daily update
[deliverable/binutils-gdb.git] / bfd / coff-sh.c
CommitLineData
c2dcd04e
NC
1/* BFD back-end for Renesas Super-H COFF binaries.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
7898deda 3 Free Software Foundation, Inc.
252b5132
RH
4 Contributed by Cygnus Support.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
7
c2dcd04e 8 This file is part of BFD, the Binary File Descriptor library.
252b5132 9
c2dcd04e
NC
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
252b5132 14
c2dcd04e
NC
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
252b5132 19
c2dcd04e
NC
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
252b5132
RH
23
24#include "bfd.h"
25#include "sysdep.h"
993e9275 26#include "libiberty.h"
252b5132
RH
27#include "libbfd.h"
28#include "bfdlink.h"
29#include "coff/sh.h"
30#include "coff/internal.h"
17505c5c
NC
31
32#ifdef COFF_WITH_PE
33#include "coff/pe.h"
86033394
NC
34
35#ifndef COFF_IMAGE_WITH_PE
b34976b6 36static bfd_boolean sh_align_load_span
86033394 37 PARAMS ((bfd *, asection *, bfd_byte *,
b34976b6
AM
38 bfd_boolean (*) (bfd *, asection *, PTR, bfd_byte *, bfd_vma),
39 PTR, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *));
86033394
NC
40
41#define _bfd_sh_align_load_span sh_align_load_span
42#endif
17505c5c
NC
43#endif
44
252b5132
RH
45#include "libcoff.h"
46
47/* Internal functions. */
48static bfd_reloc_status_type sh_reloc
49 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
50static long get_symbol_value PARAMS ((asymbol *));
b34976b6
AM
51static bfd_boolean sh_relax_section
52 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
53static bfd_boolean sh_relax_delete_bytes
252b5132 54 PARAMS ((bfd *, asection *, bfd_vma, int));
86033394 55#ifndef COFF_IMAGE_WITH_PE
252b5132 56static const struct sh_opcode *sh_insn_info PARAMS ((unsigned int));
86033394 57#endif
b34976b6
AM
58static bfd_boolean sh_align_loads
59 PARAMS ((bfd *, asection *, struct internal_reloc *, bfd_byte *,
60 bfd_boolean *));
61static bfd_boolean sh_swap_insns
252b5132 62 PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
b34976b6 63static bfd_boolean sh_relocate_section
252b5132
RH
64 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
65 struct internal_reloc *, struct internal_syment *, asection **));
66static bfd_byte *sh_coff_get_relocated_section_contents
67 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
b34976b6 68 bfd_byte *, bfd_boolean, asymbol **));
f4ffd778 69static reloc_howto_type * sh_coff_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type));
252b5132 70
17505c5c
NC
71#ifdef COFF_WITH_PE
72/* Can't build import tables with 2**4 alignment. */
73#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
74#else
252b5132 75/* Default section alignment to 2**4. */
17505c5c
NC
76#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
77#endif
78
79#ifdef COFF_IMAGE_WITH_PE
80/* Align PE executables. */
81#define COFF_PAGE_SIZE 0x1000
82#endif
252b5132
RH
83
84/* Generate long file names. */
85#define COFF_LONG_FILENAMES
86
17505c5c 87#ifdef COFF_WITH_PE
b34976b6
AM
88static bfd_boolean in_reloc_p PARAMS ((bfd *, reloc_howto_type *));
89/* Return TRUE if this relocation should
17505c5c 90 appear in the output .reloc section. */
b34976b6 91static bfd_boolean in_reloc_p (abfd, howto)
17505c5c
NC
92 bfd * abfd ATTRIBUTE_UNUSED;
93 reloc_howto_type * howto;
94{
95 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
cbfe05c4 96}
17505c5c
NC
97#endif
98
252b5132
RH
99/* The supported relocations. There are a lot of relocations defined
100 in coff/internal.h which we do not expect to ever see. */
101static reloc_howto_type sh_coff_howtos[] =
102{
5f771d47
ILT
103 EMPTY_HOWTO (0),
104 EMPTY_HOWTO (1),
17505c5c
NC
105#ifdef COFF_WITH_PE
106 /* Windows CE */
107 HOWTO (R_SH_IMM32CE, /* type */
108 0, /* rightshift */
109 2, /* size (0 = byte, 1 = short, 2 = long) */
110 32, /* bitsize */
b34976b6 111 FALSE, /* pc_relative */
17505c5c
NC
112 0, /* bitpos */
113 complain_overflow_bitfield, /* complain_on_overflow */
114 sh_reloc, /* special_function */
115 "r_imm32ce", /* name */
b34976b6 116 TRUE, /* partial_inplace */
17505c5c
NC
117 0xffffffff, /* src_mask */
118 0xffffffff, /* dst_mask */
b34976b6 119 FALSE), /* pcrel_offset */
17505c5c 120#else
5f771d47 121 EMPTY_HOWTO (2),
17505c5c 122#endif
5f771d47
ILT
123 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
124 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
125 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
126 EMPTY_HOWTO (6), /* R_SH_IMM24 */
127 EMPTY_HOWTO (7), /* R_SH_LOW16 */
128 EMPTY_HOWTO (8),
129 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
252b5132
RH
130
131 HOWTO (R_SH_PCDISP8BY2, /* type */
132 1, /* rightshift */
133 1, /* size (0 = byte, 1 = short, 2 = long) */
134 8, /* bitsize */
b34976b6 135 TRUE, /* pc_relative */
252b5132
RH
136 0, /* bitpos */
137 complain_overflow_signed, /* complain_on_overflow */
138 sh_reloc, /* special_function */
139 "r_pcdisp8by2", /* name */
b34976b6 140 TRUE, /* partial_inplace */
252b5132
RH
141 0xff, /* src_mask */
142 0xff, /* dst_mask */
b34976b6 143 TRUE), /* pcrel_offset */
252b5132 144
5f771d47 145 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
252b5132
RH
146
147 HOWTO (R_SH_PCDISP, /* type */
148 1, /* rightshift */
149 1, /* size (0 = byte, 1 = short, 2 = long) */
150 12, /* bitsize */
b34976b6 151 TRUE, /* pc_relative */
252b5132
RH
152 0, /* bitpos */
153 complain_overflow_signed, /* complain_on_overflow */
154 sh_reloc, /* special_function */
155 "r_pcdisp12by2", /* name */
b34976b6 156 TRUE, /* partial_inplace */
252b5132
RH
157 0xfff, /* src_mask */
158 0xfff, /* dst_mask */
b34976b6 159 TRUE), /* pcrel_offset */
252b5132 160
5f771d47 161 EMPTY_HOWTO (13),
252b5132
RH
162
163 HOWTO (R_SH_IMM32, /* type */
164 0, /* rightshift */
165 2, /* size (0 = byte, 1 = short, 2 = long) */
166 32, /* bitsize */
b34976b6 167 FALSE, /* pc_relative */
252b5132
RH
168 0, /* bitpos */
169 complain_overflow_bitfield, /* complain_on_overflow */
170 sh_reloc, /* special_function */
171 "r_imm32", /* name */
b34976b6 172 TRUE, /* partial_inplace */
252b5132
RH
173 0xffffffff, /* src_mask */
174 0xffffffff, /* dst_mask */
b34976b6 175 FALSE), /* pcrel_offset */
252b5132 176
5f771d47 177 EMPTY_HOWTO (15),
17505c5c 178#ifdef COFF_WITH_PE
cbfe05c4
KH
179 HOWTO (R_SH_IMAGEBASE, /* type */
180 0, /* rightshift */
181 2, /* size (0 = byte, 1 = short, 2 = long) */
182 32, /* bitsize */
b34976b6 183 FALSE, /* pc_relative */
cbfe05c4 184 0, /* bitpos */
17505c5c 185 complain_overflow_bitfield, /* complain_on_overflow */
cbfe05c4
KH
186 sh_reloc, /* special_function */
187 "rva32", /* name */
b34976b6 188 TRUE, /* partial_inplace */
cbfe05c4
KH
189 0xffffffff, /* src_mask */
190 0xffffffff, /* dst_mask */
b34976b6 191 FALSE), /* pcrel_offset */
17505c5c 192#else
5f771d47 193 EMPTY_HOWTO (16), /* R_SH_IMM8 */
17505c5c 194#endif
5f771d47
ILT
195 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
196 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
197 EMPTY_HOWTO (19), /* R_SH_IMM4 */
198 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
199 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
252b5132
RH
200
201 HOWTO (R_SH_PCRELIMM8BY2, /* type */
202 1, /* rightshift */
203 1, /* size (0 = byte, 1 = short, 2 = long) */
204 8, /* bitsize */
b34976b6 205 TRUE, /* pc_relative */
252b5132
RH
206 0, /* bitpos */
207 complain_overflow_unsigned, /* complain_on_overflow */
208 sh_reloc, /* special_function */
209 "r_pcrelimm8by2", /* name */
b34976b6 210 TRUE, /* partial_inplace */
252b5132
RH
211 0xff, /* src_mask */
212 0xff, /* dst_mask */
b34976b6 213 TRUE), /* pcrel_offset */
252b5132
RH
214
215 HOWTO (R_SH_PCRELIMM8BY4, /* type */
216 2, /* rightshift */
217 1, /* size (0 = byte, 1 = short, 2 = long) */
218 8, /* bitsize */
b34976b6 219 TRUE, /* pc_relative */
252b5132
RH
220 0, /* bitpos */
221 complain_overflow_unsigned, /* complain_on_overflow */
222 sh_reloc, /* special_function */
223 "r_pcrelimm8by4", /* name */
b34976b6 224 TRUE, /* partial_inplace */
252b5132
RH
225 0xff, /* src_mask */
226 0xff, /* dst_mask */
b34976b6 227 TRUE), /* pcrel_offset */
252b5132
RH
228
229 HOWTO (R_SH_IMM16, /* type */
230 0, /* rightshift */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
b34976b6 233 FALSE, /* pc_relative */
252b5132
RH
234 0, /* bitpos */
235 complain_overflow_bitfield, /* complain_on_overflow */
236 sh_reloc, /* special_function */
237 "r_imm16", /* name */
b34976b6 238 TRUE, /* partial_inplace */
252b5132
RH
239 0xffff, /* src_mask */
240 0xffff, /* dst_mask */
b34976b6 241 FALSE), /* pcrel_offset */
252b5132
RH
242
243 HOWTO (R_SH_SWITCH16, /* type */
244 0, /* rightshift */
245 1, /* size (0 = byte, 1 = short, 2 = long) */
246 16, /* bitsize */
b34976b6 247 FALSE, /* pc_relative */
252b5132
RH
248 0, /* bitpos */
249 complain_overflow_bitfield, /* complain_on_overflow */
250 sh_reloc, /* special_function */
251 "r_switch16", /* name */
b34976b6 252 TRUE, /* partial_inplace */
252b5132
RH
253 0xffff, /* src_mask */
254 0xffff, /* dst_mask */
b34976b6 255 FALSE), /* pcrel_offset */
252b5132
RH
256
257 HOWTO (R_SH_SWITCH32, /* type */
258 0, /* rightshift */
259 2, /* size (0 = byte, 1 = short, 2 = long) */
260 32, /* bitsize */
b34976b6 261 FALSE, /* pc_relative */
252b5132
RH
262 0, /* bitpos */
263 complain_overflow_bitfield, /* complain_on_overflow */
264 sh_reloc, /* special_function */
265 "r_switch32", /* name */
b34976b6 266 TRUE, /* partial_inplace */
252b5132
RH
267 0xffffffff, /* src_mask */
268 0xffffffff, /* dst_mask */
b34976b6 269 FALSE), /* pcrel_offset */
252b5132
RH
270
271 HOWTO (R_SH_USES, /* type */
272 0, /* rightshift */
273 1, /* size (0 = byte, 1 = short, 2 = long) */
274 16, /* bitsize */
b34976b6 275 FALSE, /* pc_relative */
252b5132
RH
276 0, /* bitpos */
277 complain_overflow_bitfield, /* complain_on_overflow */
278 sh_reloc, /* special_function */
279 "r_uses", /* name */
b34976b6 280 TRUE, /* partial_inplace */
252b5132
RH
281 0xffff, /* src_mask */
282 0xffff, /* dst_mask */
b34976b6 283 FALSE), /* pcrel_offset */
252b5132
RH
284
285 HOWTO (R_SH_COUNT, /* type */
286 0, /* rightshift */
287 2, /* size (0 = byte, 1 = short, 2 = long) */
288 32, /* bitsize */
b34976b6 289 FALSE, /* pc_relative */
252b5132
RH
290 0, /* bitpos */
291 complain_overflow_bitfield, /* complain_on_overflow */
292 sh_reloc, /* special_function */
293 "r_count", /* name */
b34976b6 294 TRUE, /* partial_inplace */
252b5132
RH
295 0xffffffff, /* src_mask */
296 0xffffffff, /* dst_mask */
b34976b6 297 FALSE), /* pcrel_offset */
252b5132
RH
298
299 HOWTO (R_SH_ALIGN, /* type */
300 0, /* rightshift */
301 2, /* size (0 = byte, 1 = short, 2 = long) */
302 32, /* bitsize */
b34976b6 303 FALSE, /* pc_relative */
252b5132
RH
304 0, /* bitpos */
305 complain_overflow_bitfield, /* complain_on_overflow */
306 sh_reloc, /* special_function */
307 "r_align", /* name */
b34976b6 308 TRUE, /* partial_inplace */
252b5132
RH
309 0xffffffff, /* src_mask */
310 0xffffffff, /* dst_mask */
b34976b6 311 FALSE), /* pcrel_offset */
252b5132
RH
312
313 HOWTO (R_SH_CODE, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 32, /* bitsize */
b34976b6 317 FALSE, /* pc_relative */
252b5132
RH
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 sh_reloc, /* special_function */
321 "r_code", /* name */
b34976b6 322 TRUE, /* partial_inplace */
252b5132
RH
323 0xffffffff, /* src_mask */
324 0xffffffff, /* dst_mask */
b34976b6 325 FALSE), /* pcrel_offset */
252b5132
RH
326
327 HOWTO (R_SH_DATA, /* type */
328 0, /* rightshift */
329 2, /* size (0 = byte, 1 = short, 2 = long) */
330 32, /* bitsize */
b34976b6 331 FALSE, /* pc_relative */
252b5132
RH
332 0, /* bitpos */
333 complain_overflow_bitfield, /* complain_on_overflow */
334 sh_reloc, /* special_function */
335 "r_data", /* name */
b34976b6 336 TRUE, /* partial_inplace */
252b5132
RH
337 0xffffffff, /* src_mask */
338 0xffffffff, /* dst_mask */
b34976b6 339 FALSE), /* pcrel_offset */
252b5132
RH
340
341 HOWTO (R_SH_LABEL, /* type */
342 0, /* rightshift */
343 2, /* size (0 = byte, 1 = short, 2 = long) */
344 32, /* bitsize */
b34976b6 345 FALSE, /* pc_relative */
252b5132
RH
346 0, /* bitpos */
347 complain_overflow_bitfield, /* complain_on_overflow */
348 sh_reloc, /* special_function */
349 "r_label", /* name */
b34976b6 350 TRUE, /* partial_inplace */
252b5132
RH
351 0xffffffff, /* src_mask */
352 0xffffffff, /* dst_mask */
b34976b6 353 FALSE), /* pcrel_offset */
252b5132
RH
354
355 HOWTO (R_SH_SWITCH8, /* type */
356 0, /* rightshift */
357 0, /* size (0 = byte, 1 = short, 2 = long) */
358 8, /* bitsize */
b34976b6 359 FALSE, /* pc_relative */
252b5132
RH
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 sh_reloc, /* special_function */
363 "r_switch8", /* name */
b34976b6 364 TRUE, /* partial_inplace */
252b5132
RH
365 0xff, /* src_mask */
366 0xff, /* dst_mask */
b34976b6 367 FALSE) /* pcrel_offset */
252b5132
RH
368};
369
370#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
371
372/* Check for a bad magic number. */
373#define BADMAG(x) SHBADMAG(x)
374
375/* Customize coffcode.h (this is not currently used). */
376#define SH 1
377
378/* FIXME: This should not be set here. */
379#define __A_MAGIC_SET__
380
17505c5c 381#ifndef COFF_WITH_PE
252b5132 382/* Swap the r_offset field in and out. */
dc810e39
AM
383#define SWAP_IN_RELOC_OFFSET H_GET_32
384#define SWAP_OUT_RELOC_OFFSET H_PUT_32
252b5132
RH
385
386/* Swap out extra information in the reloc structure. */
387#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
388 do \
389 { \
390 dst->r_stuff[0] = 'S'; \
391 dst->r_stuff[1] = 'C'; \
392 } \
393 while (0)
17505c5c 394#endif
252b5132
RH
395
396/* Get the value of a symbol, when performing a relocation. */
397
398static long
cbfe05c4 399get_symbol_value (symbol)
252b5132 400 asymbol *symbol;
cbfe05c4 401{
252b5132
RH
402 bfd_vma relocation;
403
404 if (bfd_is_com_section (symbol->section))
cbfe05c4
KH
405 relocation = 0;
406 else
252b5132
RH
407 relocation = (symbol->value +
408 symbol->section->output_section->vma +
409 symbol->section->output_offset);
410
411 return relocation;
412}
413
17505c5c
NC
414#ifdef COFF_WITH_PE
415/* Convert an rtype to howto for the COFF backend linker.
416 Copied from coff-i386. */
417#define coff_rtype_to_howto coff_sh_rtype_to_howto
f4ffd778 418static reloc_howto_type * coff_sh_rtype_to_howto PARAMS ((bfd *, asection *, struct internal_reloc *, struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *));
17505c5c
NC
419
420static reloc_howto_type *
421coff_sh_rtype_to_howto (abfd, sec, rel, h, sym, addendp)
86033394 422 bfd * abfd ATTRIBUTE_UNUSED;
17505c5c
NC
423 asection * sec;
424 struct internal_reloc * rel;
425 struct coff_link_hash_entry * h;
426 struct internal_syment * sym;
427 bfd_vma * addendp;
428{
429 reloc_howto_type * howto;
430
431 howto = sh_coff_howtos + rel->r_type;
432
433 *addendp = 0;
434
435 if (howto->pc_relative)
436 *addendp += sec->vma;
437
438 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
439 {
440 /* This is a common symbol. The section contents include the
441 size (sym->n_value) as an addend. The relocate_section
442 function will be adding in the final value of the symbol. We
443 need to subtract out the current size in order to get the
444 correct result. */
445 BFD_ASSERT (h != NULL);
446 }
447
448 if (howto->pc_relative)
449 {
450 *addendp -= 4;
451
452 /* If the symbol is defined, then the generic code is going to
453 add back the symbol value in order to cancel out an
454 adjustment it made to the addend. However, we set the addend
455 to 0 at the start of this function. We need to adjust here,
456 to avoid the adjustment the generic code will make. FIXME:
457 This is getting a bit hackish. */
458 if (sym != NULL && sym->n_scnum != 0)
459 *addendp -= sym->n_value;
460 }
461
462 if (rel->r_type == R_SH_IMAGEBASE)
463 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
464
465 return howto;
466}
467
993e9275
NC
468#endif /* COFF_WITH_PE */
469
17505c5c
NC
470/* This structure is used to map BFD reloc codes to SH PE relocs. */
471struct shcoff_reloc_map
472{
aa066ac8 473 bfd_reloc_code_real_type bfd_reloc_val;
17505c5c
NC
474 unsigned char shcoff_reloc_val;
475};
476
a9a32010 477#ifdef COFF_WITH_PE
17505c5c
NC
478/* An array mapping BFD reloc codes to SH PE relocs. */
479static const struct shcoff_reloc_map sh_reloc_map[] =
480{
481 { BFD_RELOC_32, R_SH_IMM32CE },
482 { BFD_RELOC_RVA, R_SH_IMAGEBASE },
483 { BFD_RELOC_CTOR, R_SH_IMM32CE },
484};
a9a32010
DJ
485#else
486/* An array mapping BFD reloc codes to SH PE relocs. */
487static const struct shcoff_reloc_map sh_reloc_map[] =
488{
489 { BFD_RELOC_32, R_SH_IMM32 },
490 { BFD_RELOC_CTOR, R_SH_IMM32 },
491};
492#endif
17505c5c
NC
493
494/* Given a BFD reloc code, return the howto structure for the
495 corresponding SH PE reloc. */
496#define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
497
498static reloc_howto_type *
499sh_coff_reloc_type_lookup (abfd, code)
500 bfd * abfd ATTRIBUTE_UNUSED;
501 bfd_reloc_code_real_type code;
502{
503 unsigned int i;
504
993e9275
NC
505 for (i = ARRAY_SIZE (sh_reloc_map); i--;)
506 if (sh_reloc_map[i].bfd_reloc_val == code)
507 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
17505c5c
NC
508
509 fprintf (stderr, "SH Error: unknown reloc type %d\n", code);
510 return NULL;
511}
17505c5c 512
252b5132
RH
513/* This macro is used in coffcode.h to get the howto corresponding to
514 an internal reloc. */
515
516#define RTYPE2HOWTO(relent, internal) \
517 ((relent)->howto = \
518 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
519 ? &sh_coff_howtos[(internal)->r_type] \
520 : (reloc_howto_type *) NULL))
521
522/* This is the same as the macro in coffcode.h, except that it copies
523 r_offset into reloc_entry->addend for some relocs. */
524#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
525 { \
526 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
527 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
528 coffsym = (obj_symbols (abfd) \
529 + (cache_ptr->sym_ptr_ptr - symbols)); \
530 else if (ptr) \
531 coffsym = coff_symbol_from (abfd, ptr); \
532 if (coffsym != (coff_symbol_type *) NULL \
533 && coffsym->native->u.syment.n_scnum == 0) \
534 cache_ptr->addend = 0; \
535 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
536 && ptr->section != (asection *) NULL) \
537 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
538 else \
539 cache_ptr->addend = 0; \
540 if ((reloc).r_type == R_SH_SWITCH8 \
541 || (reloc).r_type == R_SH_SWITCH16 \
542 || (reloc).r_type == R_SH_SWITCH32 \
543 || (reloc).r_type == R_SH_USES \
544 || (reloc).r_type == R_SH_COUNT \
545 || (reloc).r_type == R_SH_ALIGN) \
546 cache_ptr->addend = (reloc).r_offset; \
547 }
548
549/* This is the howto function for the SH relocations. */
550
551static bfd_reloc_status_type
552sh_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
553 error_message)
554 bfd *abfd;
555 arelent *reloc_entry;
556 asymbol *symbol_in;
557 PTR data;
558 asection *input_section;
559 bfd *output_bfd;
5f771d47 560 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
561{
562 unsigned long insn;
563 bfd_vma sym_value;
564 unsigned short r_type;
565 bfd_vma addr = reloc_entry->address;
566 bfd_byte *hit_data = addr + (bfd_byte *) data;
567
568 r_type = reloc_entry->howto->type;
569
570 if (output_bfd != NULL)
571 {
572 /* Partial linking--do nothing. */
573 reloc_entry->address += input_section->output_offset;
574 return bfd_reloc_ok;
575 }
576
577 /* Almost all relocs have to do with relaxing. If any work must be
578 done for them, it has been done in sh_relax_section. */
579 if (r_type != R_SH_IMM32
17505c5c
NC
580#ifdef COFF_WITH_PE
581 && r_type != R_SH_IMM32CE
582 && r_type != R_SH_IMAGEBASE
583#endif
252b5132
RH
584 && (r_type != R_SH_PCDISP
585 || (symbol_in->flags & BSF_LOCAL) != 0))
586 return bfd_reloc_ok;
587
588 if (symbol_in != NULL
589 && bfd_is_und_section (symbol_in->section))
590 return bfd_reloc_undefined;
591
592 sym_value = get_symbol_value (symbol_in);
593
594 switch (r_type)
595 {
596 case R_SH_IMM32:
17505c5c
NC
597#ifdef COFF_WITH_PE
598 case R_SH_IMM32CE:
599#endif
252b5132
RH
600 insn = bfd_get_32 (abfd, hit_data);
601 insn += sym_value + reloc_entry->addend;
dc810e39 602 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
252b5132 603 break;
17505c5c
NC
604#ifdef COFF_WITH_PE
605 case R_SH_IMAGEBASE:
606 insn = bfd_get_32 (abfd, hit_data);
dc810e39
AM
607 insn += sym_value + reloc_entry->addend;
608 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
609 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
17505c5c
NC
610 break;
611#endif
252b5132
RH
612 case R_SH_PCDISP:
613 insn = bfd_get_16 (abfd, hit_data);
614 sym_value += reloc_entry->addend;
615 sym_value -= (input_section->output_section->vma
616 + input_section->output_offset
617 + addr
618 + 4);
619 sym_value += (insn & 0xfff) << 1;
620 if (insn & 0x800)
621 sym_value -= 0x1000;
622 insn = (insn & 0xf000) | (sym_value & 0xfff);
dc810e39 623 bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
252b5132
RH
624 if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
625 return bfd_reloc_overflow;
626 break;
627 default:
628 abort ();
629 break;
630 }
631
632 return bfd_reloc_ok;
633}
634
875f7f69 635#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
252b5132
RH
636
637/* We can do relaxing. */
638#define coff_bfd_relax_section sh_relax_section
639
640/* We use the special COFF backend linker. */
641#define coff_relocate_section sh_relocate_section
642
643/* When relaxing, we need to use special code to get the relocated
644 section contents. */
645#define coff_bfd_get_relocated_section_contents \
646 sh_coff_get_relocated_section_contents
647
648#include "coffcode.h"
649\f
650/* This function handles relaxing on the SH.
651
652 Function calls on the SH look like this:
653
654 movl L1,r0
655 ...
656 jsr @r0
657 ...
658 L1:
659 .long function
660
661 The compiler and assembler will cooperate to create R_SH_USES
662 relocs on the jsr instructions. The r_offset field of the
663 R_SH_USES reloc is the PC relative offset to the instruction which
664 loads the register (the r_offset field is computed as though it
665 were a jump instruction, so the offset value is actually from four
666 bytes past the instruction). The linker can use this reloc to
667 determine just which function is being called, and thus decide
668 whether it is possible to replace the jsr with a bsr.
669
670 If multiple function calls are all based on a single register load
671 (i.e., the same function is called multiple times), the compiler
672 guarantees that each function call will have an R_SH_USES reloc.
673 Therefore, if the linker is able to convert each R_SH_USES reloc
674 which refers to that address, it can safely eliminate the register
675 load.
676
677 When the assembler creates an R_SH_USES reloc, it examines it to
678 determine which address is being loaded (L1 in the above example).
679 It then counts the number of references to that address, and
680 creates an R_SH_COUNT reloc at that address. The r_offset field of
681 the R_SH_COUNT reloc will be the number of references. If the
682 linker is able to eliminate a register load, it can use the
683 R_SH_COUNT reloc to see whether it can also eliminate the function
684 address.
685
686 SH relaxing also handles another, unrelated, matter. On the SH, if
687 a load or store instruction is not aligned on a four byte boundary,
688 the memory cycle interferes with the 32 bit instruction fetch,
689 causing a one cycle bubble in the pipeline. Therefore, we try to
690 align load and store instructions on four byte boundaries if we
691 can, by swapping them with one of the adjacent instructions. */
692
b34976b6 693static bfd_boolean
252b5132
RH
694sh_relax_section (abfd, sec, link_info, again)
695 bfd *abfd;
696 asection *sec;
697 struct bfd_link_info *link_info;
b34976b6 698 bfd_boolean *again;
252b5132
RH
699{
700 struct internal_reloc *internal_relocs;
701 struct internal_reloc *free_relocs = NULL;
b34976b6 702 bfd_boolean have_code;
252b5132
RH
703 struct internal_reloc *irel, *irelend;
704 bfd_byte *contents = NULL;
705 bfd_byte *free_contents = NULL;
706
b34976b6 707 *again = FALSE;
252b5132 708
1049f94e 709 if (link_info->relocatable
252b5132
RH
710 || (sec->flags & SEC_RELOC) == 0
711 || sec->reloc_count == 0)
b34976b6 712 return TRUE;
252b5132
RH
713
714 /* If this is the first time we have been called for this section,
715 initialize the cooked size. */
716 if (sec->_cooked_size == 0)
717 sec->_cooked_size = sec->_raw_size;
718
719 internal_relocs = (_bfd_coff_read_internal_relocs
720 (abfd, sec, link_info->keep_memory,
b34976b6 721 (bfd_byte *) NULL, FALSE,
252b5132
RH
722 (struct internal_reloc *) NULL));
723 if (internal_relocs == NULL)
724 goto error_return;
725 if (! link_info->keep_memory)
726 free_relocs = internal_relocs;
727
b34976b6 728 have_code = FALSE;
252b5132
RH
729
730 irelend = internal_relocs + sec->reloc_count;
731 for (irel = internal_relocs; irel < irelend; irel++)
732 {
733 bfd_vma laddr, paddr, symval;
734 unsigned short insn;
735 struct internal_reloc *irelfn, *irelscan, *irelcount;
736 struct internal_syment sym;
737 bfd_signed_vma foff;
738
739 if (irel->r_type == R_SH_CODE)
b34976b6 740 have_code = TRUE;
252b5132
RH
741
742 if (irel->r_type != R_SH_USES)
743 continue;
744
745 /* Get the section contents. */
746 if (contents == NULL)
747 {
748 if (coff_section_data (abfd, sec) != NULL
749 && coff_section_data (abfd, sec)->contents != NULL)
750 contents = coff_section_data (abfd, sec)->contents;
751 else
752 {
753 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
754 if (contents == NULL)
755 goto error_return;
756 free_contents = contents;
757
758 if (! bfd_get_section_contents (abfd, sec, contents,
759 (file_ptr) 0, sec->_raw_size))
760 goto error_return;
761 }
762 }
763
764 /* The r_offset field of the R_SH_USES reloc will point us to
765 the register load. The 4 is because the r_offset field is
766 computed as though it were a jump offset, which are based
767 from 4 bytes after the jump instruction. */
768 laddr = irel->r_vaddr - sec->vma + 4;
769 /* Careful to sign extend the 32-bit offset. */
770 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
771 if (laddr >= sec->_raw_size)
772 {
773 (*_bfd_error_handler) ("%s: 0x%lx: warning: bad R_SH_USES offset",
8f615d07 774 bfd_archive_filename (abfd),
252b5132
RH
775 (unsigned long) irel->r_vaddr);
776 continue;
777 }
778 insn = bfd_get_16 (abfd, contents + laddr);
779
780 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
781 if ((insn & 0xf000) != 0xd000)
782 {
783 ((*_bfd_error_handler)
784 ("%s: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
8f615d07 785 bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr, insn));
252b5132
RH
786 continue;
787 }
788
789 /* Get the address from which the register is being loaded. The
790 displacement in the mov.l instruction is quadrupled. It is a
791 displacement from four bytes after the movl instruction, but,
792 before adding in the PC address, two least significant bits
793 of the PC are cleared. We assume that the section is aligned
794 on a four byte boundary. */
795 paddr = insn & 0xff;
796 paddr *= 4;
dc810e39 797 paddr += (laddr + 4) &~ (bfd_vma) 3;
252b5132
RH
798 if (paddr >= sec->_raw_size)
799 {
800 ((*_bfd_error_handler)
801 ("%s: 0x%lx: warning: bad R_SH_USES load offset",
8f615d07 802 bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr));
252b5132
RH
803 continue;
804 }
805
806 /* Get the reloc for the address from which the register is
807 being loaded. This reloc will tell us which function is
808 actually being called. */
809 paddr += sec->vma;
810 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
811 if (irelfn->r_vaddr == paddr
17505c5c
NC
812#ifdef COFF_WITH_PE
813 && (irelfn->r_type == R_SH_IMM32
814 || irelfn->r_type == R_SH_IMM32CE
815 || irelfn->r_type == R_SH_IMAGEBASE))
816
817#else
252b5132 818 && irelfn->r_type == R_SH_IMM32)
17505c5c 819#endif
252b5132
RH
820 break;
821 if (irelfn >= irelend)
822 {
823 ((*_bfd_error_handler)
824 ("%s: 0x%lx: warning: could not find expected reloc",
8f615d07 825 bfd_archive_filename (abfd), (unsigned long) paddr));
252b5132
RH
826 continue;
827 }
828
829 /* Get the value of the symbol referred to by the reloc. */
830 if (! _bfd_coff_get_external_symbols (abfd))
831 goto error_return;
832 bfd_coff_swap_sym_in (abfd,
833 ((bfd_byte *) obj_coff_external_syms (abfd)
834 + (irelfn->r_symndx
835 * bfd_coff_symesz (abfd))),
836 &sym);
837 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
838 {
839 ((*_bfd_error_handler)
840 ("%s: 0x%lx: warning: symbol in unexpected section",
8f615d07 841 bfd_archive_filename (abfd), (unsigned long) paddr));
252b5132
RH
842 continue;
843 }
844
845 if (sym.n_sclass != C_EXT)
846 {
847 symval = (sym.n_value
848 - sec->vma
849 + sec->output_section->vma
850 + sec->output_offset);
851 }
852 else
853 {
854 struct coff_link_hash_entry *h;
855
856 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
857 BFD_ASSERT (h != NULL);
858 if (h->root.type != bfd_link_hash_defined
859 && h->root.type != bfd_link_hash_defweak)
860 {
861 /* This appears to be a reference to an undefined
862 symbol. Just ignore it--it will be caught by the
863 regular reloc processing. */
864 continue;
865 }
866
867 symval = (h->root.u.def.value
868 + h->root.u.def.section->output_section->vma
869 + h->root.u.def.section->output_offset);
870 }
871
872 symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
873
874 /* See if this function call can be shortened. */
875 foff = (symval
876 - (irel->r_vaddr
877 - sec->vma
878 + sec->output_section->vma
879 + sec->output_offset
880 + 4));
881 if (foff < -0x1000 || foff >= 0x1000)
882 {
883 /* After all that work, we can't shorten this function call. */
884 continue;
885 }
886
887 /* Shorten the function call. */
888
889 /* For simplicity of coding, we are going to modify the section
890 contents, the section relocs, and the BFD symbol table. We
891 must tell the rest of the code not to free up this
892 information. It would be possible to instead create a table
893 of changes which have to be made, as is done in coff-mips.c;
894 that would be more work, but would require less memory when
895 the linker is run. */
896
897 if (coff_section_data (abfd, sec) == NULL)
898 {
dc810e39
AM
899 bfd_size_type amt = sizeof (struct coff_section_tdata);
900 sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
252b5132
RH
901 if (sec->used_by_bfd == NULL)
902 goto error_return;
903 }
904
905 coff_section_data (abfd, sec)->relocs = internal_relocs;
b34976b6 906 coff_section_data (abfd, sec)->keep_relocs = TRUE;
252b5132
RH
907 free_relocs = NULL;
908
909 coff_section_data (abfd, sec)->contents = contents;
b34976b6 910 coff_section_data (abfd, sec)->keep_contents = TRUE;
252b5132
RH
911 free_contents = NULL;
912
b34976b6 913 obj_coff_keep_syms (abfd) = TRUE;
252b5132
RH
914
915 /* Replace the jsr with a bsr. */
916
917 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
918 replace the jsr with a bsr. */
919 irel->r_type = R_SH_PCDISP;
920 irel->r_symndx = irelfn->r_symndx;
921 if (sym.n_sclass != C_EXT)
922 {
923 /* If this needs to be changed because of future relaxing,
924 it will be handled here like other internal PCDISP
925 relocs. */
926 bfd_put_16 (abfd,
dc810e39 927 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
252b5132
RH
928 contents + irel->r_vaddr - sec->vma);
929 }
930 else
931 {
932 /* We can't fully resolve this yet, because the external
933 symbol value may be changed by future relaxing. We let
934 the final link phase handle it. */
dc810e39
AM
935 bfd_put_16 (abfd, (bfd_vma) 0xb000,
936 contents + irel->r_vaddr - sec->vma);
252b5132
RH
937 }
938
939 /* See if there is another R_SH_USES reloc referring to the same
940 register load. */
941 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
942 if (irelscan->r_type == R_SH_USES
943 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
944 break;
945 if (irelscan < irelend)
946 {
947 /* Some other function call depends upon this register load,
948 and we have not yet converted that function call.
949 Indeed, we may never be able to convert it. There is
950 nothing else we can do at this point. */
951 continue;
952 }
953
954 /* Look for a R_SH_COUNT reloc on the location where the
955 function address is stored. Do this before deleting any
956 bytes, to avoid confusion about the address. */
957 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
958 if (irelcount->r_vaddr == paddr
959 && irelcount->r_type == R_SH_COUNT)
960 break;
961
962 /* Delete the register load. */
963 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
964 goto error_return;
965
966 /* That will change things, so, just in case it permits some
967 other function call to come within range, we should relax
968 again. Note that this is not required, and it may be slow. */
b34976b6 969 *again = TRUE;
252b5132
RH
970
971 /* Now check whether we got a COUNT reloc. */
972 if (irelcount >= irelend)
973 {
974 ((*_bfd_error_handler)
975 ("%s: 0x%lx: warning: could not find expected COUNT reloc",
8f615d07 976 bfd_archive_filename (abfd), (unsigned long) paddr));
252b5132
RH
977 continue;
978 }
979
980 /* The number of uses is stored in the r_offset field. We've
981 just deleted one. */
982 if (irelcount->r_offset == 0)
983 {
984 ((*_bfd_error_handler) ("%s: 0x%lx: warning: bad count",
8f615d07 985 bfd_archive_filename (abfd),
252b5132
RH
986 (unsigned long) paddr));
987 continue;
988 }
989
990 --irelcount->r_offset;
991
992 /* If there are no more uses, we can delete the address. Reload
993 the address from irelfn, in case it was changed by the
994 previous call to sh_relax_delete_bytes. */
995 if (irelcount->r_offset == 0)
996 {
997 if (! sh_relax_delete_bytes (abfd, sec,
998 irelfn->r_vaddr - sec->vma, 4))
999 goto error_return;
1000 }
1001
1002 /* We've done all we can with that function call. */
1003 }
1004
1005 /* Look for load and store instructions that we can align on four
1006 byte boundaries. */
1007 if (have_code)
1008 {
b34976b6 1009 bfd_boolean swapped;
252b5132
RH
1010
1011 /* Get the section contents. */
1012 if (contents == NULL)
1013 {
1014 if (coff_section_data (abfd, sec) != NULL
1015 && coff_section_data (abfd, sec)->contents != NULL)
1016 contents = coff_section_data (abfd, sec)->contents;
1017 else
1018 {
1019 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
1020 if (contents == NULL)
1021 goto error_return;
1022 free_contents = contents;
1023
1024 if (! bfd_get_section_contents (abfd, sec, contents,
1025 (file_ptr) 0, sec->_raw_size))
1026 goto error_return;
1027 }
1028 }
1029
1030 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1031 goto error_return;
1032
1033 if (swapped)
1034 {
1035 if (coff_section_data (abfd, sec) == NULL)
1036 {
dc810e39
AM
1037 bfd_size_type amt = sizeof (struct coff_section_tdata);
1038 sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
252b5132
RH
1039 if (sec->used_by_bfd == NULL)
1040 goto error_return;
1041 }
1042
1043 coff_section_data (abfd, sec)->relocs = internal_relocs;
b34976b6 1044 coff_section_data (abfd, sec)->keep_relocs = TRUE;
252b5132
RH
1045 free_relocs = NULL;
1046
1047 coff_section_data (abfd, sec)->contents = contents;
b34976b6 1048 coff_section_data (abfd, sec)->keep_contents = TRUE;
252b5132
RH
1049 free_contents = NULL;
1050
b34976b6 1051 obj_coff_keep_syms (abfd) = TRUE;
252b5132
RH
1052 }
1053 }
1054
1055 if (free_relocs != NULL)
1056 {
1057 free (free_relocs);
1058 free_relocs = NULL;
1059 }
1060
1061 if (free_contents != NULL)
1062 {
1063 if (! link_info->keep_memory)
1064 free (free_contents);
1065 else
1066 {
1067 /* Cache the section contents for coff_link_input_bfd. */
1068 if (coff_section_data (abfd, sec) == NULL)
1069 {
dc810e39
AM
1070 bfd_size_type amt = sizeof (struct coff_section_tdata);
1071 sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
252b5132
RH
1072 if (sec->used_by_bfd == NULL)
1073 goto error_return;
1074 coff_section_data (abfd, sec)->relocs = NULL;
1075 }
1076 coff_section_data (abfd, sec)->contents = contents;
1077 }
1078 }
1079
b34976b6 1080 return TRUE;
252b5132
RH
1081
1082 error_return:
1083 if (free_relocs != NULL)
1084 free (free_relocs);
1085 if (free_contents != NULL)
1086 free (free_contents);
b34976b6 1087 return FALSE;
252b5132
RH
1088}
1089
1090/* Delete some bytes from a section while relaxing. */
1091
b34976b6 1092static bfd_boolean
252b5132
RH
1093sh_relax_delete_bytes (abfd, sec, addr, count)
1094 bfd *abfd;
1095 asection *sec;
1096 bfd_vma addr;
1097 int count;
1098{
1099 bfd_byte *contents;
1100 struct internal_reloc *irel, *irelend;
1101 struct internal_reloc *irelalign;
1102 bfd_vma toaddr;
1103 bfd_byte *esym, *esymend;
1104 bfd_size_type symesz;
1105 struct coff_link_hash_entry **sym_hash;
1106 asection *o;
1107
1108 contents = coff_section_data (abfd, sec)->contents;
1109
1110 /* The deletion must stop at the next ALIGN reloc for an aligment
1111 power larger than the number of bytes we are deleting. */
1112
1113 irelalign = NULL;
1114 toaddr = sec->_cooked_size;
1115
1116 irel = coff_section_data (abfd, sec)->relocs;
1117 irelend = irel + sec->reloc_count;
1118 for (; irel < irelend; irel++)
1119 {
1120 if (irel->r_type == R_SH_ALIGN
1121 && irel->r_vaddr - sec->vma > addr
1122 && count < (1 << irel->r_offset))
1123 {
1124 irelalign = irel;
1125 toaddr = irel->r_vaddr - sec->vma;
1126 break;
1127 }
1128 }
1129
1130 /* Actually delete the bytes. */
dc810e39
AM
1131 memmove (contents + addr, contents + addr + count,
1132 (size_t) (toaddr - addr - count));
252b5132
RH
1133 if (irelalign == NULL)
1134 sec->_cooked_size -= count;
1135 else
1136 {
1137 int i;
1138
1139#define NOP_OPCODE (0x0009)
1140
1141 BFD_ASSERT ((count & 1) == 0);
1142 for (i = 0; i < count; i += 2)
dc810e39 1143 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
252b5132
RH
1144 }
1145
1146 /* Adjust all the relocs. */
1147 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1148 {
1149 bfd_vma nraddr, stop;
1150 bfd_vma start = 0;
1151 int insn = 0;
1152 struct internal_syment sym;
1153 int off, adjust, oinsn;
1154 bfd_signed_vma voff = 0;
b34976b6 1155 bfd_boolean overflow;
252b5132
RH
1156
1157 /* Get the new reloc address. */
1158 nraddr = irel->r_vaddr - sec->vma;
1159 if ((irel->r_vaddr - sec->vma > addr
1160 && irel->r_vaddr - sec->vma < toaddr)
1161 || (irel->r_type == R_SH_ALIGN
1162 && irel->r_vaddr - sec->vma == toaddr))
1163 nraddr -= count;
1164
1165 /* See if this reloc was for the bytes we have deleted, in which
1166 case we no longer care about it. Don't delete relocs which
1167 represent addresses, though. */
1168 if (irel->r_vaddr - sec->vma >= addr
1169 && irel->r_vaddr - sec->vma < addr + count
1170 && irel->r_type != R_SH_ALIGN
1171 && irel->r_type != R_SH_CODE
1172 && irel->r_type != R_SH_DATA
1173 && irel->r_type != R_SH_LABEL)
1174 irel->r_type = R_SH_UNUSED;
1175
1176 /* If this is a PC relative reloc, see if the range it covers
1177 includes the bytes we have deleted. */
1178 switch (irel->r_type)
1179 {
1180 default:
1181 break;
1182
1183 case R_SH_PCDISP8BY2:
1184 case R_SH_PCDISP:
1185 case R_SH_PCRELIMM8BY2:
1186 case R_SH_PCRELIMM8BY4:
1187 start = irel->r_vaddr - sec->vma;
1188 insn = bfd_get_16 (abfd, contents + nraddr);
1189 break;
1190 }
1191
1192 switch (irel->r_type)
1193 {
1194 default:
1195 start = stop = addr;
1196 break;
1197
1198 case R_SH_IMM32:
17505c5c
NC
1199#ifdef COFF_WITH_PE
1200 case R_SH_IMM32CE:
1201 case R_SH_IMAGEBASE:
1202#endif
252b5132
RH
1203 /* If this reloc is against a symbol defined in this
1204 section, and the symbol will not be adjusted below, we
1205 must check the addend to see it will put the value in
1206 range to be adjusted, and hence must be changed. */
1207 bfd_coff_swap_sym_in (abfd,
1208 ((bfd_byte *) obj_coff_external_syms (abfd)
1209 + (irel->r_symndx
1210 * bfd_coff_symesz (abfd))),
1211 &sym);
1212 if (sym.n_sclass != C_EXT
1213 && sym.n_scnum == sec->target_index
1214 && ((bfd_vma) sym.n_value <= addr
1215 || (bfd_vma) sym.n_value >= toaddr))
1216 {
1217 bfd_vma val;
1218
1219 val = bfd_get_32 (abfd, contents + nraddr);
1220 val += sym.n_value;
1221 if (val > addr && val < toaddr)
1222 bfd_put_32 (abfd, val - count, contents + nraddr);
1223 }
1224 start = stop = addr;
1225 break;
1226
1227 case R_SH_PCDISP8BY2:
1228 off = insn & 0xff;
1229 if (off & 0x80)
1230 off -= 0x100;
1231 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1232 break;
1233
1234 case R_SH_PCDISP:
1235 bfd_coff_swap_sym_in (abfd,
1236 ((bfd_byte *) obj_coff_external_syms (abfd)
1237 + (irel->r_symndx
1238 * bfd_coff_symesz (abfd))),
1239 &sym);
1240 if (sym.n_sclass == C_EXT)
1241 start = stop = addr;
1242 else
1243 {
1244 off = insn & 0xfff;
1245 if (off & 0x800)
1246 off -= 0x1000;
1247 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1248 }
1249 break;
1250
1251 case R_SH_PCRELIMM8BY2:
1252 off = insn & 0xff;
1253 stop = start + 4 + off * 2;
1254 break;
1255
1256 case R_SH_PCRELIMM8BY4:
1257 off = insn & 0xff;
1258 stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1259 break;
1260
1261 case R_SH_SWITCH8:
1262 case R_SH_SWITCH16:
1263 case R_SH_SWITCH32:
1264 /* These relocs types represent
1265 .word L2-L1
1266 The r_offset field holds the difference between the reloc
1267 address and L1. That is the start of the reloc, and
1268 adding in the contents gives us the top. We must adjust
1269 both the r_offset field and the section contents. */
1270
1271 start = irel->r_vaddr - sec->vma;
1272 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1273
1274 if (start > addr
1275 && start < toaddr
1276 && (stop <= addr || stop >= toaddr))
1277 irel->r_offset += count;
1278 else if (stop > addr
1279 && stop < toaddr
1280 && (start <= addr || start >= toaddr))
1281 irel->r_offset -= count;
1282
1283 start = stop;
1284
1285 if (irel->r_type == R_SH_SWITCH16)
1286 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1287 else if (irel->r_type == R_SH_SWITCH8)
1288 voff = bfd_get_8 (abfd, contents + nraddr);
1289 else
1290 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1291 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1292
1293 break;
1294
1295 case R_SH_USES:
1296 start = irel->r_vaddr - sec->vma;
1297 stop = (bfd_vma) ((bfd_signed_vma) start
1298 + (long) irel->r_offset
1299 + 4);
1300 break;
1301 }
1302
1303 if (start > addr
1304 && start < toaddr
1305 && (stop <= addr || stop >= toaddr))
1306 adjust = count;
1307 else if (stop > addr
1308 && stop < toaddr
1309 && (start <= addr || start >= toaddr))
1310 adjust = - count;
1311 else
1312 adjust = 0;
1313
1314 if (adjust != 0)
1315 {
1316 oinsn = insn;
b34976b6 1317 overflow = FALSE;
252b5132
RH
1318 switch (irel->r_type)
1319 {
1320 default:
1321 abort ();
1322 break;
1323
1324 case R_SH_PCDISP8BY2:
1325 case R_SH_PCRELIMM8BY2:
1326 insn += adjust / 2;
1327 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 1328 overflow = TRUE;
dc810e39 1329 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
252b5132
RH
1330 break;
1331
1332 case R_SH_PCDISP:
1333 insn += adjust / 2;
1334 if ((oinsn & 0xf000) != (insn & 0xf000))
b34976b6 1335 overflow = TRUE;
dc810e39 1336 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
252b5132
RH
1337 break;
1338
1339 case R_SH_PCRELIMM8BY4:
1340 BFD_ASSERT (adjust == count || count >= 4);
1341 if (count >= 4)
1342 insn += adjust / 4;
1343 else
1344 {
1345 if ((irel->r_vaddr & 3) == 0)
1346 ++insn;
1347 }
1348 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 1349 overflow = TRUE;
dc810e39 1350 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
252b5132
RH
1351 break;
1352
1353 case R_SH_SWITCH8:
1354 voff += adjust;
1355 if (voff < 0 || voff >= 0xff)
b34976b6 1356 overflow = TRUE;
dc810e39 1357 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
252b5132
RH
1358 break;
1359
1360 case R_SH_SWITCH16:
1361 voff += adjust;
1362 if (voff < - 0x8000 || voff >= 0x8000)
b34976b6 1363 overflow = TRUE;
dc810e39 1364 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
252b5132
RH
1365 break;
1366
1367 case R_SH_SWITCH32:
1368 voff += adjust;
dc810e39 1369 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
252b5132
RH
1370 break;
1371
1372 case R_SH_USES:
1373 irel->r_offset += adjust;
1374 break;
1375 }
1376
1377 if (overflow)
1378 {
1379 ((*_bfd_error_handler)
1380 ("%s: 0x%lx: fatal: reloc overflow while relaxing",
8f615d07 1381 bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr));
252b5132 1382 bfd_set_error (bfd_error_bad_value);
b34976b6 1383 return FALSE;
252b5132
RH
1384 }
1385 }
1386
1387 irel->r_vaddr = nraddr + sec->vma;
1388 }
1389
1390 /* Look through all the other sections. If there contain any IMM32
1391 relocs against internal symbols which we are not going to adjust
1392 below, we may need to adjust the addends. */
1393 for (o = abfd->sections; o != NULL; o = o->next)
1394 {
1395 struct internal_reloc *internal_relocs;
1396 struct internal_reloc *irelscan, *irelscanend;
1397 bfd_byte *ocontents;
1398
1399 if (o == sec
1400 || (o->flags & SEC_RELOC) == 0
1401 || o->reloc_count == 0)
1402 continue;
1403
1404 /* We always cache the relocs. Perhaps, if info->keep_memory is
b34976b6 1405 FALSE, we should free them, if we are permitted to, when we
252b5132
RH
1406 leave sh_coff_relax_section. */
1407 internal_relocs = (_bfd_coff_read_internal_relocs
b34976b6 1408 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
252b5132
RH
1409 (struct internal_reloc *) NULL));
1410 if (internal_relocs == NULL)
b34976b6 1411 return FALSE;
252b5132
RH
1412
1413 ocontents = NULL;
1414 irelscanend = internal_relocs + o->reloc_count;
1415 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1416 {
1417 struct internal_syment sym;
1418
17505c5c
NC
1419#ifdef COFF_WITH_PE
1420 if (irelscan->r_type != R_SH_IMM32
1421 && irelscan->r_type != R_SH_IMAGEBASE
1422 && irelscan->r_type != R_SH_IMM32CE)
1423#else
252b5132 1424 if (irelscan->r_type != R_SH_IMM32)
17505c5c 1425#endif
252b5132
RH
1426 continue;
1427
1428 bfd_coff_swap_sym_in (abfd,
1429 ((bfd_byte *) obj_coff_external_syms (abfd)
1430 + (irelscan->r_symndx
1431 * bfd_coff_symesz (abfd))),
1432 &sym);
1433 if (sym.n_sclass != C_EXT
1434 && sym.n_scnum == sec->target_index
1435 && ((bfd_vma) sym.n_value <= addr
1436 || (bfd_vma) sym.n_value >= toaddr))
1437 {
1438 bfd_vma val;
1439
1440 if (ocontents == NULL)
1441 {
1442 if (coff_section_data (abfd, o)->contents != NULL)
1443 ocontents = coff_section_data (abfd, o)->contents;
1444 else
1445 {
1446 /* We always cache the section contents.
b34976b6 1447 Perhaps, if info->keep_memory is FALSE, we
252b5132
RH
1448 should free them, if we are permitted to,
1449 when we leave sh_coff_relax_section. */
1450 ocontents = (bfd_byte *) bfd_malloc (o->_raw_size);
1451 if (ocontents == NULL)
b34976b6 1452 return FALSE;
252b5132
RH
1453 if (! bfd_get_section_contents (abfd, o, ocontents,
1454 (file_ptr) 0,
1455 o->_raw_size))
b34976b6 1456 return FALSE;
252b5132
RH
1457 coff_section_data (abfd, o)->contents = ocontents;
1458 }
1459 }
1460
1461 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1462 val += sym.n_value;
1463 if (val > addr && val < toaddr)
1464 bfd_put_32 (abfd, val - count,
1465 ocontents + irelscan->r_vaddr - o->vma);
1466
b34976b6 1467 coff_section_data (abfd, o)->keep_contents = TRUE;
252b5132
RH
1468 }
1469 }
1470 }
1471
1472 /* Adjusting the internal symbols will not work if something has
1473 already retrieved the generic symbols. It would be possible to
1474 make this work by adjusting the generic symbols at the same time.
1475 However, this case should not arise in normal usage. */
1476 if (obj_symbols (abfd) != NULL
1477 || obj_raw_syments (abfd) != NULL)
1478 {
1479 ((*_bfd_error_handler)
1480 ("%s: fatal: generic symbols retrieved before relaxing",
8f615d07 1481 bfd_archive_filename (abfd)));
252b5132 1482 bfd_set_error (bfd_error_invalid_operation);
b34976b6 1483 return FALSE;
252b5132
RH
1484 }
1485
1486 /* Adjust all the symbols. */
1487 sym_hash = obj_coff_sym_hashes (abfd);
1488 symesz = bfd_coff_symesz (abfd);
1489 esym = (bfd_byte *) obj_coff_external_syms (abfd);
1490 esymend = esym + obj_raw_syment_count (abfd) * symesz;
1491 while (esym < esymend)
1492 {
1493 struct internal_syment isym;
1494
1495 bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &isym);
1496
1497 if (isym.n_scnum == sec->target_index
1498 && (bfd_vma) isym.n_value > addr
1499 && (bfd_vma) isym.n_value < toaddr)
1500 {
1501 isym.n_value -= count;
1502
1503 bfd_coff_swap_sym_out (abfd, (PTR) &isym, (PTR) esym);
1504
1505 if (*sym_hash != NULL)
1506 {
1507 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1508 || (*sym_hash)->root.type == bfd_link_hash_defweak);
1509 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1510 && (*sym_hash)->root.u.def.value < toaddr);
1511 (*sym_hash)->root.u.def.value -= count;
1512 }
1513 }
1514
1515 esym += (isym.n_numaux + 1) * symesz;
1516 sym_hash += isym.n_numaux + 1;
1517 }
1518
1519 /* See if we can move the ALIGN reloc forward. We have adjusted
1520 r_vaddr for it already. */
1521 if (irelalign != NULL)
1522 {
1523 bfd_vma alignto, alignaddr;
1524
1525 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1526 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1527 1 << irelalign->r_offset);
1528 if (alignto != alignaddr)
1529 {
1530 /* Tail recursion. */
1531 return sh_relax_delete_bytes (abfd, sec, alignaddr,
dc810e39 1532 (int) (alignto - alignaddr));
252b5132
RH
1533 }
1534 }
1535
b34976b6 1536 return TRUE;
252b5132
RH
1537}
1538\f
1539/* This is yet another version of the SH opcode table, used to rapidly
1540 get information about a particular instruction. */
1541
1542/* The opcode map is represented by an array of these structures. The
1543 array is indexed by the high order four bits in the instruction. */
1544
1545struct sh_major_opcode
1546{
1547 /* A pointer to the instruction list. This is an array which
1548 contains all the instructions with this major opcode. */
1549 const struct sh_minor_opcode *minor_opcodes;
1550 /* The number of elements in minor_opcodes. */
1551 unsigned short count;
1552};
1553
1554/* This structure holds information for a set of SH opcodes. The
1555 instruction code is anded with the mask value, and the resulting
1556 value is used to search the order opcode list. */
1557
1558struct sh_minor_opcode
1559{
1560 /* The sorted opcode list. */
1561 const struct sh_opcode *opcodes;
1562 /* The number of elements in opcodes. */
1563 unsigned short count;
1564 /* The mask value to use when searching the opcode list. */
1565 unsigned short mask;
1566};
1567
1568/* This structure holds information for an SH instruction. An array
1569 of these structures is sorted in order by opcode. */
1570
1571struct sh_opcode
1572{
1573 /* The code for this instruction, after it has been anded with the
1574 mask value in the sh_major_opcode structure. */
1575 unsigned short opcode;
1576 /* Flags for this instruction. */
86033394 1577 unsigned long flags;
252b5132
RH
1578};
1579
1580/* Flag which appear in the sh_opcode structure. */
1581
1582/* This instruction loads a value from memory. */
1583#define LOAD (0x1)
1584
1585/* This instruction stores a value to memory. */
1586#define STORE (0x2)
1587
1588/* This instruction is a branch. */
1589#define BRANCH (0x4)
1590
1591/* This instruction has a delay slot. */
1592#define DELAY (0x8)
1593
1594/* This instruction uses the value in the register in the field at
1595 mask 0x0f00 of the instruction. */
1596#define USES1 (0x10)
84dcfba7 1597#define USES1_REG(x) ((x & 0x0f00) >> 8)
252b5132
RH
1598
1599/* This instruction uses the value in the register in the field at
1600 mask 0x00f0 of the instruction. */
1601#define USES2 (0x20)
84dcfba7 1602#define USES2_REG(x) ((x & 0x00f0) >> 4)
252b5132
RH
1603
1604/* This instruction uses the value in register 0. */
1605#define USESR0 (0x40)
1606
1607/* This instruction sets the value in the register in the field at
1608 mask 0x0f00 of the instruction. */
1609#define SETS1 (0x80)
84dcfba7 1610#define SETS1_REG(x) ((x & 0x0f00) >> 8)
252b5132
RH
1611
1612/* This instruction sets the value in the register in the field at
1613 mask 0x00f0 of the instruction. */
1614#define SETS2 (0x100)
84dcfba7 1615#define SETS2_REG(x) ((x & 0x00f0) >> 4)
252b5132
RH
1616
1617/* This instruction sets register 0. */
1618#define SETSR0 (0x200)
1619
1620/* This instruction sets a special register. */
1621#define SETSSP (0x400)
1622
1623/* This instruction uses a special register. */
1624#define USESSP (0x800)
1625
1626/* This instruction uses the floating point register in the field at
1627 mask 0x0f00 of the instruction. */
1628#define USESF1 (0x1000)
84dcfba7 1629#define USESF1_REG(x) ((x & 0x0f00) >> 8)
252b5132
RH
1630
1631/* This instruction uses the floating point register in the field at
1632 mask 0x00f0 of the instruction. */
1633#define USESF2 (0x2000)
84dcfba7 1634#define USESF2_REG(x) ((x & 0x00f0) >> 4)
252b5132
RH
1635
1636/* This instruction uses floating point register 0. */
1637#define USESF0 (0x4000)
1638
1639/* This instruction sets the floating point register in the field at
1640 mask 0x0f00 of the instruction. */
1641#define SETSF1 (0x8000)
84dcfba7 1642#define SETSF1_REG(x) ((x & 0x0f00) >> 8)
252b5132 1643
d4845d57
JR
1644#define USESAS (0x10000)
1645#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1646#define USESR8 (0x20000)
1647#define SETSAS (0x40000)
1648#define SETSAS_REG(x) USESAS_REG (x)
1649
8d6ad26e
AM
1650#define MAP(a) a, sizeof a / sizeof a[0]
1651
86033394 1652#ifndef COFF_IMAGE_WITH_PE
b34976b6 1653static bfd_boolean sh_insn_uses_reg
252b5132 1654 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
b34976b6 1655static bfd_boolean sh_insn_sets_reg
84dcfba7 1656 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
b34976b6 1657static bfd_boolean sh_insn_uses_or_sets_reg
84dcfba7 1658 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
b34976b6 1659static bfd_boolean sh_insn_uses_freg
252b5132 1660 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
b34976b6 1661static bfd_boolean sh_insn_sets_freg
84dcfba7 1662 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
b34976b6 1663static bfd_boolean sh_insn_uses_or_sets_freg
84dcfba7 1664 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
b34976b6 1665static bfd_boolean sh_insns_conflict
252b5132
RH
1666 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
1667 const struct sh_opcode *));
b34976b6 1668static bfd_boolean sh_load_use
252b5132
RH
1669 PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
1670 const struct sh_opcode *));
252b5132 1671
8d6ad26e 1672/* The opcode maps. */
252b5132
RH
1673
1674static const struct sh_opcode sh_opcode00[] =
1675{
1676 { 0x0008, SETSSP }, /* clrt */
1677 { 0x0009, 0 }, /* nop */
1678 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */
1679 { 0x0018, SETSSP }, /* sett */
1680 { 0x0019, SETSSP }, /* div0u */
1681 { 0x001b, 0 }, /* sleep */
1682 { 0x0028, SETSSP }, /* clrmac */
1683 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
1684 { 0x0038, USESSP | SETSSP }, /* ldtlb */
1685 { 0x0048, SETSSP }, /* clrs */
1686 { 0x0058, SETSSP } /* sets */
1687};
1688
1689static const struct sh_opcode sh_opcode01[] =
1690{
252b5132
RH
1691 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
1692 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */
252b5132 1693 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */
252b5132
RH
1694 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
1695 { 0x0029, SETS1 | USESSP }, /* movt rn */
1696 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */
d4845d57
JR
1697 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
1698 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
1699 { 0x0083, LOAD | USES1 }, /* pref @rn */
1700 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */
1701 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */
1702 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */
1703 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
1704 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */
1705};
1706
1707/* These sixteen instructions can be handled with one table entry below. */
1708#if 0
1709 { 0x0002, SETS1 | USESSP }, /* stc sr,rn */
1710 { 0x0012, SETS1 | USESSP }, /* stc gbr,rn */
1711 { 0x0022, SETS1 | USESSP }, /* stc vbr,rn */
252b5132
RH
1712 { 0x0032, SETS1 | USESSP }, /* stc ssr,rn */
1713 { 0x0042, SETS1 | USESSP }, /* stc spc,rn */
d4845d57
JR
1714 { 0x0052, SETS1 | USESSP }, /* stc mod,rn */
1715 { 0x0062, SETS1 | USESSP }, /* stc rs,rn */
1716 { 0x0072, SETS1 | USESSP }, /* stc re,rn */
252b5132 1717 { 0x0082, SETS1 | USESSP }, /* stc r0_bank,rn */
252b5132
RH
1718 { 0x0092, SETS1 | USESSP }, /* stc r1_bank,rn */
1719 { 0x00a2, SETS1 | USESSP }, /* stc r2_bank,rn */
1720 { 0x00b2, SETS1 | USESSP }, /* stc r3_bank,rn */
1721 { 0x00c2, SETS1 | USESSP }, /* stc r4_bank,rn */
1722 { 0x00d2, SETS1 | USESSP }, /* stc r5_bank,rn */
1723 { 0x00e2, SETS1 | USESSP }, /* stc r6_bank,rn */
1724 { 0x00f2, SETS1 | USESSP } /* stc r7_bank,rn */
d4845d57 1725#endif
252b5132
RH
1726
1727static const struct sh_opcode sh_opcode02[] =
1728{
d4845d57 1729 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
252b5132
RH
1730 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1731 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1732 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1733 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
1734 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
1735 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
1736 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
1737 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1738};
1739
1740static const struct sh_minor_opcode sh_opcode0[] =
1741{
1742 { MAP (sh_opcode00), 0xffff },
1743 { MAP (sh_opcode01), 0xf0ff },
1744 { MAP (sh_opcode02), 0xf00f }
1745};
1746
1747static const struct sh_opcode sh_opcode10[] =
1748{
1749 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1750};
1751
1752static const struct sh_minor_opcode sh_opcode1[] =
1753{
1754 { MAP (sh_opcode10), 0xf000 }
1755};
1756
1757static const struct sh_opcode sh_opcode20[] =
1758{
1759 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
1760 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
1761 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
1762 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
1763 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
1764 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
1765 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
1766 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
1767 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
1768 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
1769 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
1770 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
1771 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
1772 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
1773 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
1774};
1775
1776static const struct sh_minor_opcode sh_opcode2[] =
1777{
1778 { MAP (sh_opcode20), 0xf00f }
1779};
1780
1781static const struct sh_opcode sh_opcode30[] =
1782{
1783 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
1784 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
1785 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
1786 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
1787 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
1788 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
1789 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
1790 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
1791 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1792 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1793 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
1794 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
1795 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1796 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
1797};
1798
1799static const struct sh_minor_opcode sh_opcode3[] =
1800{
1801 { MAP (sh_opcode30), 0xf00f }
1802};
1803
1804static const struct sh_opcode sh_opcode40[] =
1805{
1806 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
1807 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
1808 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
252b5132
RH
1809 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
1810 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
1811 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
252b5132
RH
1812 { 0x4008, SETS1 | USES1 }, /* shll2 rn */
1813 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */
1814 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */
1815 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
252b5132
RH
1816 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
1817 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
1818 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
d4845d57 1819 { 0x4014, SETSSP | USES1 }, /* setrc rm */
252b5132
RH
1820 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
1821 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
252b5132
RH
1822 { 0x4018, SETS1 | USES1 }, /* shll8 rn */
1823 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */
1824 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */
1825 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
252b5132
RH
1826 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
1827 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
1828 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
252b5132
RH
1829 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
1830 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
1831 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
252b5132
RH
1832 { 0x4028, SETS1 | USES1 }, /* shll16 rn */
1833 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */
1834 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */
1835 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
d4845d57
JR
1836 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1837 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
1838 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
1839 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1840 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
1841 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
1842 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1843 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
1844 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
1845 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1846 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
1847 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
1848 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1849 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
1850 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
1851 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1852 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
1853 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
1854 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1855 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
1856 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
1857#if 0 /* These groups sixteen insns can be
1858 handled with one table entry each below. */
1859 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l sr,@-rn */
1860 { 0x4013, STORE | SETS1 | USES1 | USESSP }, /* stc.l gbr,@-rn */
1861 { 0x4023, STORE | SETS1 | USES1 | USESSP }, /* stc.l vbr,@-rn */
252b5132 1862 { 0x4033, STORE | SETS1 | USES1 | USESSP }, /* stc.l ssr,@-rn */
252b5132 1863 { 0x4043, STORE | SETS1 | USES1 | USESSP }, /* stc.l spc,@-rn */
d4845d57
JR
1864 { 0x4053, STORE | SETS1 | USES1 | USESSP }, /* stc.l mod,@-rn */
1865 { 0x4063, STORE | SETS1 | USES1 | USESSP }, /* stc.l rs,@-rn */
1866 { 0x4073, STORE | SETS1 | USES1 | USESSP }, /* stc.l re,@-rn */
1867 { 0x4083, STORE | SETS1 | USES1 | USESSP }, /* stc.l r0_bank,@-rn */
1868 ..
1869 { 0x40f3, STORE | SETS1 | USES1 | USESSP }, /* stc.l r7_bank,@-rn */
1870
1871 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,sr */
1872 { 0x4017, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,gbr */
1873 { 0x4027, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,vbr */
1874 { 0x4037, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,ssr */
252b5132 1875 { 0x4047, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,spc */
d4845d57
JR
1876 { 0x4057, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,mod */
1877 { 0x4067, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,rs */
1878 { 0x4077, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,re */
1879 { 0x4087, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,r0_bank */
1880 ..
1881 { 0x40f7, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,r7_bank */
1882
1883 { 0x400e, SETSSP | USES1 }, /* ldc rm,sr */
1884 { 0x401e, SETSSP | USES1 }, /* ldc rm,gbr */
1885 { 0x402e, SETSSP | USES1 }, /* ldc rm,vbr */
1886 { 0x403e, SETSSP | USES1 }, /* ldc rm,ssr */
252b5132 1887 { 0x404e, SETSSP | USES1 }, /* ldc rm,spc */
d4845d57
JR
1888 { 0x405e, SETSSP | USES1 }, /* ldc rm,mod */
1889 { 0x406e, SETSSP | USES1 }, /* ldc rm,rs */
1890 { 0x407e, SETSSP | USES1 } /* ldc rm,re */
1891 { 0x408e, SETSSP | USES1 } /* ldc rm,r0_bank */
1892 ..
1893 { 0x40fe, SETSSP | USES1 } /* ldc rm,r7_bank */
1894#endif
252b5132
RH
1895};
1896
1897static const struct sh_opcode sh_opcode41[] =
1898{
d4845d57
JR
1899 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1900 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
1901 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
1902 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
1903 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
252b5132
RH
1904 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1905};
1906
1907static const struct sh_minor_opcode sh_opcode4[] =
1908{
1909 { MAP (sh_opcode40), 0xf0ff },
d4845d57 1910 { MAP (sh_opcode41), 0xf00f }
252b5132
RH
1911};
1912
1913static const struct sh_opcode sh_opcode50[] =
1914{
1915 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
1916};
1917
1918static const struct sh_minor_opcode sh_opcode5[] =
1919{
1920 { MAP (sh_opcode50), 0xf000 }
1921};
1922
1923static const struct sh_opcode sh_opcode60[] =
1924{
1925 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
1926 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
1927 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
1928 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */
1929 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1930 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1931 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1932 { 0x6007, SETS1 | USES2 }, /* not rm,rn */
1933 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
1934 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
1935 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
1936 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */
1937 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
1938 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
1939 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
1940 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
1941};
1942
1943static const struct sh_minor_opcode sh_opcode6[] =
1944{
1945 { MAP (sh_opcode60), 0xf00f }
1946};
1947
1948static const struct sh_opcode sh_opcode70[] =
1949{
1950 { 0x7000, SETS1 | USES1 } /* add #imm,rn */
1951};
1952
1953static const struct sh_minor_opcode sh_opcode7[] =
1954{
1955 { MAP (sh_opcode70), 0xf000 }
1956};
1957
1958static const struct sh_opcode sh_opcode80[] =
1959{
1960 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1961 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
d4845d57 1962 { 0x8200, SETSSP }, /* setrc #imm */
252b5132
RH
1963 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
1964 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
1965 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
1966 { 0x8900, BRANCH | USESSP }, /* bt label */
1967 { 0x8b00, BRANCH | USESSP }, /* bf label */
d4845d57 1968 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
252b5132 1969 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
d4845d57 1970 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */
252b5132
RH
1971 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1972};
1973
1974static const struct sh_minor_opcode sh_opcode8[] =
1975{
1976 { MAP (sh_opcode80), 0xff00 }
1977};
1978
1979static const struct sh_opcode sh_opcode90[] =
1980{
1981 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
1982};
1983
1984static const struct sh_minor_opcode sh_opcode9[] =
1985{
1986 { MAP (sh_opcode90), 0xf000 }
1987};
1988
1989static const struct sh_opcode sh_opcodea0[] =
1990{
1991 { 0xa000, BRANCH | DELAY } /* bra label */
1992};
1993
1994static const struct sh_minor_opcode sh_opcodea[] =
1995{
1996 { MAP (sh_opcodea0), 0xf000 }
1997};
1998
1999static const struct sh_opcode sh_opcodeb0[] =
2000{
2001 { 0xb000, BRANCH | DELAY } /* bsr label */
2002};
2003
2004static const struct sh_minor_opcode sh_opcodeb[] =
2005{
2006 { MAP (sh_opcodeb0), 0xf000 }
2007};
2008
2009static const struct sh_opcode sh_opcodec0[] =
2010{
2011 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
2012 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
2013 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
2014 { 0xc300, BRANCH | USESSP }, /* trapa #imm */
2015 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
2016 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
2017 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
2018 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
2019 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
2020 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
2021 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
2022 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
2023 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
2024 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
2025 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
2026 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
2027};
2028
2029static const struct sh_minor_opcode sh_opcodec[] =
2030{
2031 { MAP (sh_opcodec0), 0xff00 }
2032};
2033
2034static const struct sh_opcode sh_opcoded0[] =
2035{
2036 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
2037};
2038
2039static const struct sh_minor_opcode sh_opcoded[] =
2040{
2041 { MAP (sh_opcoded0), 0xf000 }
2042};
2043
2044static const struct sh_opcode sh_opcodee0[] =
2045{
2046 { 0xe000, SETS1 } /* mov #imm,rn */
2047};
2048
2049static const struct sh_minor_opcode sh_opcodee[] =
2050{
2051 { MAP (sh_opcodee0), 0xf000 }
2052};
2053
2054static const struct sh_opcode sh_opcodef0[] =
2055{
2056 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
2057 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
2058 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
2059 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
2060 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
2061 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
2062 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
2063 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
2064 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
2065 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
2066 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
2067 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
2068 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
2069 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
2070};
2071
2072static const struct sh_opcode sh_opcodef1[] =
2073{
2074 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
2075 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
2076 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
2077 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
2078 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
2079 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
2080 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
2081 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
2082 { 0xf08d, SETSF1 }, /* fldi0 fn */
2083 { 0xf09d, SETSF1 } /* fldi1 fn */
2084};
2085
2086static const struct sh_minor_opcode sh_opcodef[] =
2087{
2088 { MAP (sh_opcodef0), 0xf00f },
2089 { MAP (sh_opcodef1), 0xf0ff }
2090};
2091
d4845d57 2092static struct sh_major_opcode sh_opcodes[] =
252b5132
RH
2093{
2094 { MAP (sh_opcode0) },
2095 { MAP (sh_opcode1) },
2096 { MAP (sh_opcode2) },
2097 { MAP (sh_opcode3) },
2098 { MAP (sh_opcode4) },
2099 { MAP (sh_opcode5) },
2100 { MAP (sh_opcode6) },
2101 { MAP (sh_opcode7) },
2102 { MAP (sh_opcode8) },
2103 { MAP (sh_opcode9) },
2104 { MAP (sh_opcodea) },
2105 { MAP (sh_opcodeb) },
2106 { MAP (sh_opcodec) },
2107 { MAP (sh_opcoded) },
2108 { MAP (sh_opcodee) },
2109 { MAP (sh_opcodef) }
2110};
2111
d4845d57
JR
2112/* The double data transfer / parallel processing insns are not
2113 described here. This will cause sh_align_load_span to leave them alone. */
2114
2115static const struct sh_opcode sh_dsp_opcodef0[] =
2116{
2117 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
2118 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2119 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
2120 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
2121 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
2122 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2123 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2124 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2125};
2126
2127static const struct sh_minor_opcode sh_dsp_opcodef[] =
2128{
2129 { MAP (sh_dsp_opcodef0), 0xfc0d }
2130};
2131
252b5132
RH
2132/* Given an instruction, return a pointer to the corresponding
2133 sh_opcode structure. Return NULL if the instruction is not
2134 recognized. */
2135
2136static const struct sh_opcode *
2137sh_insn_info (insn)
2138 unsigned int insn;
2139{
2140 const struct sh_major_opcode *maj;
2141 const struct sh_minor_opcode *min, *minend;
2142
2143 maj = &sh_opcodes[(insn & 0xf000) >> 12];
2144 min = maj->minor_opcodes;
2145 minend = min + maj->count;
2146 for (; min < minend; min++)
2147 {
2148 unsigned int l;
2149 const struct sh_opcode *op, *opend;
2150
2151 l = insn & min->mask;
2152 op = min->opcodes;
2153 opend = op + min->count;
2154
2155 /* Since the opcodes tables are sorted, we could use a binary
2156 search here if the count were above some cutoff value. */
2157 for (; op < opend; op++)
2158 if (op->opcode == l)
2159 return op;
2160 }
2161
cbfe05c4 2162 return NULL;
252b5132
RH
2163}
2164
84dcfba7
JR
2165/* See whether an instruction uses or sets a general purpose register */
2166
b34976b6 2167static bfd_boolean
84dcfba7
JR
2168sh_insn_uses_or_sets_reg (insn, op, reg)
2169 unsigned int insn;
2170 const struct sh_opcode *op;
2171 unsigned int reg;
2172{
2173 if (sh_insn_uses_reg (insn, op, reg))
b34976b6 2174 return TRUE;
84dcfba7
JR
2175
2176 return sh_insn_sets_reg (insn, op, reg);
2177}
2178
252b5132
RH
2179/* See whether an instruction uses a general purpose register. */
2180
b34976b6 2181static bfd_boolean
252b5132
RH
2182sh_insn_uses_reg (insn, op, reg)
2183 unsigned int insn;
2184 const struct sh_opcode *op;
2185 unsigned int reg;
2186{
2187 unsigned int f;
2188
2189 f = op->flags;
2190
2191 if ((f & USES1) != 0
84dcfba7 2192 && USES1_REG (insn) == reg)
b34976b6 2193 return TRUE;
252b5132 2194 if ((f & USES2) != 0
84dcfba7 2195 && USES2_REG (insn) == reg)
b34976b6 2196 return TRUE;
252b5132
RH
2197 if ((f & USESR0) != 0
2198 && reg == 0)
b34976b6 2199 return TRUE;
d4845d57 2200 if ((f & USESAS) && reg == USESAS_REG (insn))
b34976b6 2201 return TRUE;
d4845d57 2202 if ((f & USESR8) && reg == 8)
b34976b6 2203 return TRUE;
252b5132 2204
b34976b6 2205 return FALSE;
252b5132 2206}
17505c5c 2207
84dcfba7
JR
2208/* See whether an instruction sets a general purpose register. */
2209
b34976b6 2210static bfd_boolean
84dcfba7
JR
2211sh_insn_sets_reg (insn, op, reg)
2212 unsigned int insn;
2213 const struct sh_opcode *op;
2214 unsigned int reg;
2215{
2216 unsigned int f;
2217
2218 f = op->flags;
2219
2220 if ((f & SETS1) != 0
2221 && SETS1_REG (insn) == reg)
b34976b6 2222 return TRUE;
84dcfba7
JR
2223 if ((f & SETS2) != 0
2224 && SETS2_REG (insn) == reg)
b34976b6 2225 return TRUE;
84dcfba7
JR
2226 if ((f & SETSR0) != 0
2227 && reg == 0)
b34976b6 2228 return TRUE;
d4845d57 2229 if ((f & SETSAS) && reg == SETSAS_REG (insn))
b34976b6 2230 return TRUE;
84dcfba7 2231
b34976b6 2232 return FALSE;
84dcfba7
JR
2233}
2234
2235/* See whether an instruction uses or sets a floating point register */
2236
b34976b6 2237static bfd_boolean
84dcfba7
JR
2238sh_insn_uses_or_sets_freg (insn, op, reg)
2239 unsigned int insn;
2240 const struct sh_opcode *op;
2241 unsigned int reg;
2242{
2243 if (sh_insn_uses_freg (insn, op, reg))
b34976b6 2244 return TRUE;
84dcfba7
JR
2245
2246 return sh_insn_sets_freg (insn, op, reg);
2247}
252b5132
RH
2248
2249/* See whether an instruction uses a floating point register. */
2250
b34976b6 2251static bfd_boolean
252b5132
RH
2252sh_insn_uses_freg (insn, op, freg)
2253 unsigned int insn;
2254 const struct sh_opcode *op;
2255 unsigned int freg;
2256{
2257 unsigned int f;
2258
2259 f = op->flags;
2260
2261 /* We can't tell if this is a double-precision insn, so just play safe
2262 and assume that it might be. So not only have we test FREG against
2263 itself, but also even FREG against FREG+1 - if the using insn uses
2264 just the low part of a double precision value - but also an odd
2265 FREG against FREG-1 - if the setting insn sets just the low part
2266 of a double precision value.
2267 So what this all boils down to is that we have to ignore the lowest
2268 bit of the register number. */
cbfe05c4 2269
252b5132 2270 if ((f & USESF1) != 0
84dcfba7 2271 && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
b34976b6 2272 return TRUE;
252b5132 2273 if ((f & USESF2) != 0
84dcfba7 2274 && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
b34976b6 2275 return TRUE;
252b5132
RH
2276 if ((f & USESF0) != 0
2277 && freg == 0)
b34976b6 2278 return TRUE;
252b5132 2279
b34976b6 2280 return FALSE;
252b5132
RH
2281}
2282
84dcfba7
JR
2283/* See whether an instruction sets a floating point register. */
2284
b34976b6 2285static bfd_boolean
84dcfba7
JR
2286sh_insn_sets_freg (insn, op, freg)
2287 unsigned int insn;
2288 const struct sh_opcode *op;
2289 unsigned int freg;
2290{
2291 unsigned int f;
2292
2293 f = op->flags;
2294
2295 /* We can't tell if this is a double-precision insn, so just play safe
2296 and assume that it might be. So not only have we test FREG against
2297 itself, but also even FREG against FREG+1 - if the using insn uses
2298 just the low part of a double precision value - but also an odd
2299 FREG against FREG-1 - if the setting insn sets just the low part
2300 of a double precision value.
2301 So what this all boils down to is that we have to ignore the lowest
2302 bit of the register number. */
cbfe05c4 2303
84dcfba7
JR
2304 if ((f & SETSF1) != 0
2305 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
b34976b6 2306 return TRUE;
84dcfba7 2307
b34976b6 2308 return FALSE;
84dcfba7
JR
2309}
2310
252b5132
RH
2311/* See whether instructions I1 and I2 conflict, assuming I1 comes
2312 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
b34976b6 2313 This should return TRUE if there is a conflict, or FALSE if the
252b5132
RH
2314 instructions can be swapped safely. */
2315
b34976b6 2316static bfd_boolean
252b5132
RH
2317sh_insns_conflict (i1, op1, i2, op2)
2318 unsigned int i1;
2319 const struct sh_opcode *op1;
2320 unsigned int i2;
2321 const struct sh_opcode *op2;
2322{
2323 unsigned int f1, f2;
2324
2325 f1 = op1->flags;
2326 f2 = op2->flags;
2327
2328 /* Load of fpscr conflicts with floating point operations.
2329 FIXME: shouldn't test raw opcodes here. */
2330 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2331 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
b34976b6 2332 return TRUE;
252b5132
RH
2333
2334 if ((f1 & (BRANCH | DELAY)) != 0
2335 || (f2 & (BRANCH | DELAY)) != 0)
b34976b6 2336 return TRUE;
252b5132 2337
84dcfba7
JR
2338 if (((f1 | f2) & SETSSP)
2339 && (f1 & (SETSSP | USESSP))
2340 && (f2 & (SETSSP | USESSP)))
b34976b6 2341 return TRUE;
252b5132
RH
2342
2343 if ((f1 & SETS1) != 0
84dcfba7 2344 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
b34976b6 2345 return TRUE;
252b5132 2346 if ((f1 & SETS2) != 0
84dcfba7 2347 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
b34976b6 2348 return TRUE;
252b5132 2349 if ((f1 & SETSR0) != 0
84dcfba7 2350 && sh_insn_uses_or_sets_reg (i2, op2, 0))
b34976b6 2351 return TRUE;
d4845d57
JR
2352 if ((f1 & SETSAS)
2353 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
b34976b6 2354 return TRUE;
252b5132 2355 if ((f1 & SETSF1) != 0
84dcfba7 2356 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
b34976b6 2357 return TRUE;
252b5132
RH
2358
2359 if ((f2 & SETS1) != 0
84dcfba7 2360 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
b34976b6 2361 return TRUE;
252b5132 2362 if ((f2 & SETS2) != 0
84dcfba7 2363 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
b34976b6 2364 return TRUE;
252b5132 2365 if ((f2 & SETSR0) != 0
84dcfba7 2366 && sh_insn_uses_or_sets_reg (i1, op1, 0))
b34976b6 2367 return TRUE;
d4845d57
JR
2368 if ((f2 & SETSAS)
2369 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
b34976b6 2370 return TRUE;
252b5132 2371 if ((f2 & SETSF1) != 0
84dcfba7 2372 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
b34976b6 2373 return TRUE;
252b5132
RH
2374
2375 /* The instructions do not conflict. */
b34976b6 2376 return FALSE;
252b5132
RH
2377}
2378
2379/* I1 is a load instruction, and I2 is some other instruction. Return
b34976b6 2380 TRUE if I1 loads a register which I2 uses. */
252b5132 2381
b34976b6 2382static bfd_boolean
252b5132
RH
2383sh_load_use (i1, op1, i2, op2)
2384 unsigned int i1;
2385 const struct sh_opcode *op1;
2386 unsigned int i2;
2387 const struct sh_opcode *op2;
2388{
2389 unsigned int f1;
2390
2391 f1 = op1->flags;
2392
2393 if ((f1 & LOAD) == 0)
b34976b6 2394 return FALSE;
252b5132
RH
2395
2396 /* If both SETS1 and SETSSP are set, that means a load to a special
2397 register using postincrement addressing mode, which we don't care
2398 about here. */
2399 if ((f1 & SETS1) != 0
2400 && (f1 & SETSSP) == 0
2401 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
b34976b6 2402 return TRUE;
252b5132
RH
2403
2404 if ((f1 & SETSR0) != 0
2405 && sh_insn_uses_reg (i2, op2, 0))
b34976b6 2406 return TRUE;
252b5132
RH
2407
2408 if ((f1 & SETSF1) != 0
2409 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
b34976b6 2410 return TRUE;
252b5132 2411
b34976b6 2412 return FALSE;
252b5132
RH
2413}
2414
2415/* Try to align loads and stores within a span of memory. This is
2416 called by both the ELF and the COFF sh targets. ABFD and SEC are
2417 the BFD and section we are examining. CONTENTS is the contents of
2418 the section. SWAP is the routine to call to swap two instructions.
2419 RELOCS is a pointer to the internal relocation information, to be
2420 passed to SWAP. PLABEL is a pointer to the current label in a
2421 sorted list of labels; LABEL_END is the end of the list. START and
2422 STOP are the range of memory to examine. If a swap is made,
b34976b6 2423 *PSWAPPED is set to TRUE. */
252b5132 2424
86033394
NC
2425#ifdef COFF_WITH_PE
2426static
2427#endif
b34976b6 2428bfd_boolean
252b5132
RH
2429_bfd_sh_align_load_span (abfd, sec, contents, swap, relocs,
2430 plabel, label_end, start, stop, pswapped)
2431 bfd *abfd;
2432 asection *sec;
2433 bfd_byte *contents;
b34976b6 2434 bfd_boolean (*swap) PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
252b5132
RH
2435 PTR relocs;
2436 bfd_vma **plabel;
2437 bfd_vma *label_end;
2438 bfd_vma start;
2439 bfd_vma stop;
b34976b6 2440 bfd_boolean *pswapped;
252b5132 2441{
d4845d57
JR
2442 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2443 || abfd->arch_info->mach == bfd_mach_sh3_dsp);
252b5132
RH
2444 bfd_vma i;
2445
d4845d57
JR
2446 /* The SH4 has a Harvard architecture, hence aligning loads is not
2447 desirable. In fact, it is counter-productive, since it interferes
2448 with the schedules generated by the compiler. */
2449 if (abfd->arch_info->mach == bfd_mach_sh4)
b34976b6 2450 return TRUE;
d4845d57
JR
2451
2452 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2453 instructions. */
2454 if (dsp)
2455 {
2456 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2457 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef;
2458 }
2459
252b5132
RH
2460 /* Instructions should be aligned on 2 byte boundaries. */
2461 if ((start & 1) == 1)
2462 ++start;
2463
2464 /* Now look through the unaligned addresses. */
2465 i = start;
2466 if ((i & 2) == 0)
2467 i += 2;
2468 for (; i < stop; i += 4)
2469 {
2470 unsigned int insn;
2471 const struct sh_opcode *op;
2472 unsigned int prev_insn = 0;
2473 const struct sh_opcode *prev_op = NULL;
2474
2475 insn = bfd_get_16 (abfd, contents + i);
2476 op = sh_insn_info (insn);
2477 if (op == NULL
2478 || (op->flags & (LOAD | STORE)) == 0)
2479 continue;
2480
2481 /* This is a load or store which is not on a four byte boundary. */
2482
2483 while (*plabel < label_end && **plabel < i)
2484 ++*plabel;
2485
2486 if (i > start)
2487 {
2488 prev_insn = bfd_get_16 (abfd, contents + i - 2);
d4845d57
JR
2489 /* If INSN is the field b of a parallel processing insn, it is not
2490 a load / store after all. Note that the test here might mistake
2491 the field_b of a pcopy insn for the starting code of a parallel
2492 processing insn; this might miss a swapping opportunity, but at
2493 least we're on the safe side. */
2494 if (dsp && (prev_insn & 0xfc00) == 0xf800)
2495 continue;
2496
2497 /* Check if prev_insn is actually the field b of a parallel
2498 processing insn. Again, this can give a spurious match
2499 after a pcopy. */
2500 if (dsp && i - 2 > start)
2501 {
2502 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
cbfe05c4 2503
d4845d57
JR
2504 if ((pprev_insn & 0xfc00) == 0xf800)
2505 prev_op = NULL;
2506 else
2507 prev_op = sh_insn_info (prev_insn);
2508 }
2509 else
2510 prev_op = sh_insn_info (prev_insn);
252b5132
RH
2511
2512 /* If the load/store instruction is in a delay slot, we
2513 can't swap. */
2514 if (prev_op == NULL
2515 || (prev_op->flags & DELAY) != 0)
2516 continue;
2517 }
2518 if (i > start
2519 && (*plabel >= label_end || **plabel != i)
2520 && prev_op != NULL
2521 && (prev_op->flags & (LOAD | STORE)) == 0
2522 && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2523 {
b34976b6 2524 bfd_boolean ok;
252b5132
RH
2525
2526 /* The load/store instruction does not have a label, and
2527 there is a previous instruction; PREV_INSN is not
2528 itself a load/store instruction, and PREV_INSN and
2529 INSN do not conflict. */
2530
b34976b6 2531 ok = TRUE;
252b5132
RH
2532
2533 if (i >= start + 4)
2534 {
2535 unsigned int prev2_insn;
2536 const struct sh_opcode *prev2_op;
2537
2538 prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2539 prev2_op = sh_insn_info (prev2_insn);
2540
2541 /* If the instruction before PREV_INSN has a delay
2542 slot--that is, PREV_INSN is in a delay slot--we
2543 can not swap. */
2544 if (prev2_op == NULL
2545 || (prev2_op->flags & DELAY) != 0)
b34976b6 2546 ok = FALSE;
252b5132
RH
2547
2548 /* If the instruction before PREV_INSN is a load,
2549 and it sets a register which INSN uses, then
2550 putting INSN immediately after PREV_INSN will
2551 cause a pipeline bubble, so there is no point to
2552 making the swap. */
2553 if (ok
2554 && (prev2_op->flags & LOAD) != 0
2555 && sh_load_use (prev2_insn, prev2_op, insn, op))
b34976b6 2556 ok = FALSE;
252b5132
RH
2557 }
2558
2559 if (ok)
2560 {
2561 if (! (*swap) (abfd, sec, relocs, contents, i - 2))
b34976b6
AM
2562 return FALSE;
2563 *pswapped = TRUE;
252b5132
RH
2564 continue;
2565 }
2566 }
2567
2568 while (*plabel < label_end && **plabel < i + 2)
2569 ++*plabel;
2570
2571 if (i + 2 < stop
2572 && (*plabel >= label_end || **plabel != i + 2))
2573 {
2574 unsigned int next_insn;
2575 const struct sh_opcode *next_op;
2576
2577 /* There is an instruction after the load/store
2578 instruction, and it does not have a label. */
2579 next_insn = bfd_get_16 (abfd, contents + i + 2);
2580 next_op = sh_insn_info (next_insn);
2581 if (next_op != NULL
2582 && (next_op->flags & (LOAD | STORE)) == 0
2583 && ! sh_insns_conflict (insn, op, next_insn, next_op))
2584 {
b34976b6 2585 bfd_boolean ok;
252b5132
RH
2586
2587 /* NEXT_INSN is not itself a load/store instruction,
2588 and it does not conflict with INSN. */
2589
b34976b6 2590 ok = TRUE;
252b5132
RH
2591
2592 /* If PREV_INSN is a load, and it sets a register
2593 which NEXT_INSN uses, then putting NEXT_INSN
2594 immediately after PREV_INSN will cause a pipeline
2595 bubble, so there is no reason to make this swap. */
2596 if (prev_op != NULL
2597 && (prev_op->flags & LOAD) != 0
2598 && sh_load_use (prev_insn, prev_op, next_insn, next_op))
b34976b6 2599 ok = FALSE;
252b5132
RH
2600
2601 /* If INSN is a load, and it sets a register which
2602 the insn after NEXT_INSN uses, then doing the
2603 swap will cause a pipeline bubble, so there is no
2604 reason to make the swap. However, if the insn
2605 after NEXT_INSN is itself a load or store
2606 instruction, then it is misaligned, so
2607 optimistically hope that it will be swapped
2608 itself, and just live with the pipeline bubble if
2609 it isn't. */
2610 if (ok
2611 && i + 4 < stop
2612 && (op->flags & LOAD) != 0)
2613 {
2614 unsigned int next2_insn;
2615 const struct sh_opcode *next2_op;
2616
2617 next2_insn = bfd_get_16 (abfd, contents + i + 4);
2618 next2_op = sh_insn_info (next2_insn);
2619 if ((next2_op->flags & (LOAD | STORE)) == 0
2620 && sh_load_use (insn, op, next2_insn, next2_op))
b34976b6 2621 ok = FALSE;
252b5132
RH
2622 }
2623
2624 if (ok)
2625 {
2626 if (! (*swap) (abfd, sec, relocs, contents, i))
b34976b6
AM
2627 return FALSE;
2628 *pswapped = TRUE;
252b5132
RH
2629 continue;
2630 }
2631 }
2632 }
2633 }
2634
b34976b6 2635 return TRUE;
252b5132 2636}
86033394 2637#endif /* not COFF_IMAGE_WITH_PE */
252b5132
RH
2638
2639/* Look for loads and stores which we can align to four byte
2640 boundaries. See the longer comment above sh_relax_section for why
2641 this is desirable. This sets *PSWAPPED if some instruction was
2642 swapped. */
2643
b34976b6 2644static bfd_boolean
252b5132
RH
2645sh_align_loads (abfd, sec, internal_relocs, contents, pswapped)
2646 bfd *abfd;
2647 asection *sec;
2648 struct internal_reloc *internal_relocs;
2649 bfd_byte *contents;
b34976b6 2650 bfd_boolean *pswapped;
252b5132
RH
2651{
2652 struct internal_reloc *irel, *irelend;
2653 bfd_vma *labels = NULL;
2654 bfd_vma *label, *label_end;
dc810e39 2655 bfd_size_type amt;
252b5132 2656
b34976b6 2657 *pswapped = FALSE;
252b5132
RH
2658
2659 irelend = internal_relocs + sec->reloc_count;
2660
2661 /* Get all the addresses with labels on them. */
dc810e39
AM
2662 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2663 labels = (bfd_vma *) bfd_malloc (amt);
252b5132
RH
2664 if (labels == NULL)
2665 goto error_return;
2666 label_end = labels;
2667 for (irel = internal_relocs; irel < irelend; irel++)
2668 {
2669 if (irel->r_type == R_SH_LABEL)
2670 {
2671 *label_end = irel->r_vaddr - sec->vma;
2672 ++label_end;
2673 }
2674 }
2675
2676 /* Note that the assembler currently always outputs relocs in
2677 address order. If that ever changes, this code will need to sort
2678 the label values and the relocs. */
2679
2680 label = labels;
2681
2682 for (irel = internal_relocs; irel < irelend; irel++)
2683 {
2684 bfd_vma start, stop;
2685
2686 if (irel->r_type != R_SH_CODE)
2687 continue;
2688
2689 start = irel->r_vaddr - sec->vma;
2690
2691 for (irel++; irel < irelend; irel++)
2692 if (irel->r_type == R_SH_DATA)
2693 break;
2694 if (irel < irelend)
2695 stop = irel->r_vaddr - sec->vma;
2696 else
2697 stop = sec->_cooked_size;
2698
2699 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2700 (PTR) internal_relocs, &label,
2701 label_end, start, stop, pswapped))
2702 goto error_return;
2703 }
2704
2705 free (labels);
2706
b34976b6 2707 return TRUE;
252b5132
RH
2708
2709 error_return:
2710 if (labels != NULL)
2711 free (labels);
b34976b6 2712 return FALSE;
252b5132
RH
2713}
2714
2715/* Swap two SH instructions. */
2716
b34976b6 2717static bfd_boolean
252b5132
RH
2718sh_swap_insns (abfd, sec, relocs, contents, addr)
2719 bfd *abfd;
2720 asection *sec;
2721 PTR relocs;
2722 bfd_byte *contents;
2723 bfd_vma addr;
2724{
2725 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2726 unsigned short i1, i2;
2727 struct internal_reloc *irel, *irelend;
2728
2729 /* Swap the instructions themselves. */
2730 i1 = bfd_get_16 (abfd, contents + addr);
2731 i2 = bfd_get_16 (abfd, contents + addr + 2);
dc810e39
AM
2732 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2733 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
252b5132
RH
2734
2735 /* Adjust all reloc addresses. */
2736 irelend = internal_relocs + sec->reloc_count;
2737 for (irel = internal_relocs; irel < irelend; irel++)
2738 {
2739 int type, add;
2740
2741 /* There are a few special types of relocs that we don't want to
2742 adjust. These relocs do not apply to the instruction itself,
2743 but are only associated with the address. */
2744 type = irel->r_type;
2745 if (type == R_SH_ALIGN
2746 || type == R_SH_CODE
2747 || type == R_SH_DATA
2748 || type == R_SH_LABEL)
2749 continue;
2750
2751 /* If an R_SH_USES reloc points to one of the addresses being
2752 swapped, we must adjust it. It would be incorrect to do this
2753 for a jump, though, since we want to execute both
2754 instructions after the jump. (We have avoided swapping
2755 around a label, so the jump will not wind up executing an
2756 instruction it shouldn't). */
2757 if (type == R_SH_USES)
2758 {
2759 bfd_vma off;
2760
2761 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2762 if (off == addr)
2763 irel->r_offset += 2;
2764 else if (off == addr + 2)
2765 irel->r_offset -= 2;
2766 }
2767
2768 if (irel->r_vaddr - sec->vma == addr)
2769 {
2770 irel->r_vaddr += 2;
2771 add = -2;
2772 }
2773 else if (irel->r_vaddr - sec->vma == addr + 2)
2774 {
2775 irel->r_vaddr -= 2;
2776 add = 2;
2777 }
2778 else
2779 add = 0;
2780
2781 if (add != 0)
2782 {
2783 bfd_byte *loc;
2784 unsigned short insn, oinsn;
b34976b6 2785 bfd_boolean overflow;
252b5132
RH
2786
2787 loc = contents + irel->r_vaddr - sec->vma;
b34976b6 2788 overflow = FALSE;
252b5132
RH
2789 switch (type)
2790 {
2791 default:
2792 break;
2793
2794 case R_SH_PCDISP8BY2:
2795 case R_SH_PCRELIMM8BY2:
2796 insn = bfd_get_16 (abfd, loc);
2797 oinsn = insn;
2798 insn += add / 2;
2799 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 2800 overflow = TRUE;
dc810e39 2801 bfd_put_16 (abfd, (bfd_vma) insn, loc);
252b5132
RH
2802 break;
2803
2804 case R_SH_PCDISP:
2805 insn = bfd_get_16 (abfd, loc);
2806 oinsn = insn;
2807 insn += add / 2;
2808 if ((oinsn & 0xf000) != (insn & 0xf000))
b34976b6 2809 overflow = TRUE;
dc810e39 2810 bfd_put_16 (abfd, (bfd_vma) insn, loc);
252b5132
RH
2811 break;
2812
2813 case R_SH_PCRELIMM8BY4:
2814 /* This reloc ignores the least significant 3 bits of
2815 the program counter before adding in the offset.
2816 This means that if ADDR is at an even address, the
2817 swap will not affect the offset. If ADDR is an at an
2818 odd address, then the instruction will be crossing a
2819 four byte boundary, and must be adjusted. */
2820 if ((addr & 3) != 0)
2821 {
2822 insn = bfd_get_16 (abfd, loc);
2823 oinsn = insn;
2824 insn += add / 2;
2825 if ((oinsn & 0xff00) != (insn & 0xff00))
b34976b6 2826 overflow = TRUE;
dc810e39 2827 bfd_put_16 (abfd, (bfd_vma) insn, loc);
252b5132
RH
2828 }
2829
2830 break;
2831 }
2832
2833 if (overflow)
2834 {
2835 ((*_bfd_error_handler)
2836 ("%s: 0x%lx: fatal: reloc overflow while relaxing",
8f615d07 2837 bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr));
252b5132 2838 bfd_set_error (bfd_error_bad_value);
b34976b6 2839 return FALSE;
252b5132
RH
2840 }
2841 }
2842 }
2843
b34976b6 2844 return TRUE;
252b5132
RH
2845}
2846\f
2847/* This is a modification of _bfd_coff_generic_relocate_section, which
2848 will handle SH relaxing. */
2849
b34976b6 2850static bfd_boolean
252b5132
RH
2851sh_relocate_section (output_bfd, info, input_bfd, input_section, contents,
2852 relocs, syms, sections)
5f771d47 2853 bfd *output_bfd ATTRIBUTE_UNUSED;
252b5132
RH
2854 struct bfd_link_info *info;
2855 bfd *input_bfd;
2856 asection *input_section;
2857 bfd_byte *contents;
2858 struct internal_reloc *relocs;
2859 struct internal_syment *syms;
2860 asection **sections;
2861{
2862 struct internal_reloc *rel;
2863 struct internal_reloc *relend;
2864
2865 rel = relocs;
2866 relend = rel + input_section->reloc_count;
2867 for (; rel < relend; rel++)
2868 {
2869 long symndx;
2870 struct coff_link_hash_entry *h;
2871 struct internal_syment *sym;
2872 bfd_vma addend;
2873 bfd_vma val;
2874 reloc_howto_type *howto;
2875 bfd_reloc_status_type rstat;
2876
2877 /* Almost all relocs have to do with relaxing. If any work must
2878 be done for them, it has been done in sh_relax_section. */
2879 if (rel->r_type != R_SH_IMM32
17505c5c
NC
2880#ifdef COFF_WITH_PE
2881 && rel->r_type != R_SH_IMM32CE
2882 && rel->r_type != R_SH_IMAGEBASE
2883#endif
252b5132
RH
2884 && rel->r_type != R_SH_PCDISP)
2885 continue;
2886
2887 symndx = rel->r_symndx;
2888
2889 if (symndx == -1)
2890 {
2891 h = NULL;
2892 sym = NULL;
2893 }
2894 else
cbfe05c4 2895 {
252b5132
RH
2896 if (symndx < 0
2897 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2898 {
2899 (*_bfd_error_handler)
2900 ("%s: illegal symbol index %ld in relocs",
8f615d07 2901 bfd_archive_filename (input_bfd), symndx);
252b5132 2902 bfd_set_error (bfd_error_bad_value);
b34976b6 2903 return FALSE;
252b5132
RH
2904 }
2905 h = obj_coff_sym_hashes (input_bfd)[symndx];
2906 sym = syms + symndx;
2907 }
2908
2909 if (sym != NULL && sym->n_scnum != 0)
2910 addend = - sym->n_value;
2911 else
2912 addend = 0;
2913
2914 if (rel->r_type == R_SH_PCDISP)
2915 addend -= 4;
2916
2917 if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2918 howto = NULL;
2919 else
2920 howto = &sh_coff_howtos[rel->r_type];
2921
2922 if (howto == NULL)
2923 {
2924 bfd_set_error (bfd_error_bad_value);
b34976b6 2925 return FALSE;
252b5132
RH
2926 }
2927
17505c5c
NC
2928#ifdef COFF_WITH_PE
2929 if (rel->r_type == R_SH_IMAGEBASE)
2930 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2931#endif
cbfe05c4 2932
252b5132
RH
2933 val = 0;
2934
2935 if (h == NULL)
2936 {
2937 asection *sec;
2938
2939 /* There is nothing to do for an internal PCDISP reloc. */
2940 if (rel->r_type == R_SH_PCDISP)
2941 continue;
2942
2943 if (symndx == -1)
2944 {
2945 sec = bfd_abs_section_ptr;
2946 val = 0;
2947 }
2948 else
2949 {
2950 sec = sections[symndx];
2951 val = (sec->output_section->vma
2952 + sec->output_offset
2953 + sym->n_value
2954 - sec->vma);
2955 }
2956 }
2957 else
2958 {
2959 if (h->root.type == bfd_link_hash_defined
2960 || h->root.type == bfd_link_hash_defweak)
2961 {
2962 asection *sec;
2963
2964 sec = h->root.u.def.section;
2965 val = (h->root.u.def.value
2966 + sec->output_section->vma
2967 + sec->output_offset);
2968 }
1049f94e 2969 else if (! info->relocatable)
252b5132
RH
2970 {
2971 if (! ((*info->callbacks->undefined_symbol)
2972 (info, h->root.root.string, input_bfd, input_section,
b34976b6
AM
2973 rel->r_vaddr - input_section->vma, TRUE)))
2974 return FALSE;
252b5132
RH
2975 }
2976 }
2977
2978 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2979 contents,
2980 rel->r_vaddr - input_section->vma,
2981 val, addend);
2982
2983 switch (rstat)
2984 {
2985 default:
2986 abort ();
2987 case bfd_reloc_ok:
2988 break;
2989 case bfd_reloc_overflow:
2990 {
2991 const char *name;
2992 char buf[SYMNMLEN + 1];
2993
2994 if (symndx == -1)
2995 name = "*ABS*";
2996 else if (h != NULL)
2997 name = h->root.root.string;
2998 else if (sym->_n._n_n._n_zeroes == 0
2999 && sym->_n._n_n._n_offset != 0)
3000 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
3001 else
3002 {
3003 strncpy (buf, sym->_n._n_name, SYMNMLEN);
3004 buf[SYMNMLEN] = '\0';
3005 name = buf;
3006 }
3007
3008 if (! ((*info->callbacks->reloc_overflow)
3009 (info, name, howto->name, (bfd_vma) 0, input_bfd,
3010 input_section, rel->r_vaddr - input_section->vma)))
b34976b6 3011 return FALSE;
252b5132
RH
3012 }
3013 }
3014 }
3015
b34976b6 3016 return TRUE;
252b5132
RH
3017}
3018
3019/* This is a version of bfd_generic_get_relocated_section_contents
3020 which uses sh_relocate_section. */
3021
3022static bfd_byte *
3023sh_coff_get_relocated_section_contents (output_bfd, link_info, link_order,
1049f94e 3024 data, relocatable, symbols)
252b5132
RH
3025 bfd *output_bfd;
3026 struct bfd_link_info *link_info;
3027 struct bfd_link_order *link_order;
3028 bfd_byte *data;
1049f94e 3029 bfd_boolean relocatable;
252b5132
RH
3030 asymbol **symbols;
3031{
3032 asection *input_section = link_order->u.indirect.section;
3033 bfd *input_bfd = input_section->owner;
3034 asection **sections = NULL;
3035 struct internal_reloc *internal_relocs = NULL;
3036 struct internal_syment *internal_syms = NULL;
3037
3038 /* We only need to handle the case of relaxing, or of having a
3039 particular set of section contents, specially. */
1049f94e 3040 if (relocatable
252b5132
RH
3041 || coff_section_data (input_bfd, input_section) == NULL
3042 || coff_section_data (input_bfd, input_section)->contents == NULL)
3043 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
3044 link_order, data,
1049f94e 3045 relocatable,
252b5132
RH
3046 symbols);
3047
3048 memcpy (data, coff_section_data (input_bfd, input_section)->contents,
dc810e39 3049 (size_t) input_section->_raw_size);
252b5132
RH
3050
3051 if ((input_section->flags & SEC_RELOC) != 0
3052 && input_section->reloc_count > 0)
3053 {
3054 bfd_size_type symesz = bfd_coff_symesz (input_bfd);
3055 bfd_byte *esym, *esymend;
3056 struct internal_syment *isymp;
3057 asection **secpp;
dc810e39 3058 bfd_size_type amt;
252b5132
RH
3059
3060 if (! _bfd_coff_get_external_symbols (input_bfd))
3061 goto error_return;
3062
3063 internal_relocs = (_bfd_coff_read_internal_relocs
b34976b6
AM
3064 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
3065 FALSE, (struct internal_reloc *) NULL));
252b5132
RH
3066 if (internal_relocs == NULL)
3067 goto error_return;
3068
dc810e39
AM
3069 amt = obj_raw_syment_count (input_bfd);
3070 amt *= sizeof (struct internal_syment);
3071 internal_syms = (struct internal_syment *) bfd_malloc (amt);
252b5132
RH
3072 if (internal_syms == NULL)
3073 goto error_return;
3074
dc810e39
AM
3075 amt = obj_raw_syment_count (input_bfd);
3076 amt *= sizeof (asection *);
3077 sections = (asection **) bfd_malloc (amt);
252b5132
RH
3078 if (sections == NULL)
3079 goto error_return;
3080
3081 isymp = internal_syms;
3082 secpp = sections;
3083 esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
3084 esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
3085 while (esym < esymend)
3086 {
3087 bfd_coff_swap_sym_in (input_bfd, (PTR) esym, (PTR) isymp);
3088
3089 if (isymp->n_scnum != 0)
3090 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
3091 else
3092 {
3093 if (isymp->n_value == 0)
3094 *secpp = bfd_und_section_ptr;
3095 else
3096 *secpp = bfd_com_section_ptr;
3097 }
3098
3099 esym += (isymp->n_numaux + 1) * symesz;
3100 secpp += isymp->n_numaux + 1;
3101 isymp += isymp->n_numaux + 1;
3102 }
3103
3104 if (! sh_relocate_section (output_bfd, link_info, input_bfd,
3105 input_section, data, internal_relocs,
3106 internal_syms, sections))
3107 goto error_return;
3108
3109 free (sections);
3110 sections = NULL;
3111 free (internal_syms);
3112 internal_syms = NULL;
3113 free (internal_relocs);
3114 internal_relocs = NULL;
3115 }
3116
3117 return data;
3118
3119 error_return:
3120 if (internal_relocs != NULL)
3121 free (internal_relocs);
3122 if (internal_syms != NULL)
3123 free (internal_syms);
3124 if (sections != NULL)
3125 free (sections);
3126 return NULL;
3127}
3128
3129/* The target vectors. */
3130
17505c5c 3131#ifndef TARGET_SHL_SYM
3fa78519 3132CREATE_BIG_COFF_TARGET_VEC (shcoff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
17505c5c 3133#endif
252b5132 3134
c3c89269
NC
3135#ifdef TARGET_SHL_SYM
3136#define TARGET_SYM TARGET_SHL_SYM
3137#else
3138#define TARGET_SYM shlcoff_vec
3139#endif
cbfe05c4 3140
c3c89269
NC
3141#ifndef TARGET_SHL_NAME
3142#define TARGET_SHL_NAME "coff-shl"
3143#endif
252b5132 3144
17505c5c
NC
3145#ifdef COFF_WITH_PE
3146CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3fa78519 3147 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
17505c5c 3148#else
86033394 3149CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3fa78519 3150 0, '_', NULL, COFF_SWAP_TABLE)
17505c5c 3151#endif
86033394 3152
17505c5c 3153#ifndef TARGET_SHL_SYM
f4ffd778 3154static const bfd_target * coff_small_object_p PARAMS ((bfd *));
b34976b6 3155static bfd_boolean coff_small_new_section_hook PARAMS ((bfd *, asection *));
252b5132
RH
3156/* Some people want versions of the SH COFF target which do not align
3157 to 16 byte boundaries. We implement that by adding a couple of new
3158 target vectors. These are just like the ones above, but they
3159 change the default section alignment. To generate them in the
3160 assembler, use -small. To use them in the linker, use -b
3161 coff-sh{l}-small and -oformat coff-sh{l}-small.
3162
3163 Yes, this is a horrible hack. A general solution for setting
3164 section alignment in COFF is rather complex. ELF handles this
3165 correctly. */
3166
3167/* Only recognize the small versions if the target was not defaulted.
3168 Otherwise we won't recognize the non default endianness. */
3169
3170static const bfd_target *
3171coff_small_object_p (abfd)
3172 bfd *abfd;
3173{
3174 if (abfd->target_defaulted)
3175 {
3176 bfd_set_error (bfd_error_wrong_format);
3177 return NULL;
3178 }
3179 return coff_object_p (abfd);
3180}
3181
3182/* Set the section alignment for the small versions. */
3183
b34976b6 3184static bfd_boolean
252b5132
RH
3185coff_small_new_section_hook (abfd, section)
3186 bfd *abfd;
3187 asection *section;
3188{
3189 if (! coff_new_section_hook (abfd, section))
b34976b6 3190 return FALSE;
252b5132
RH
3191
3192 /* We must align to at least a four byte boundary, because longword
3193 accesses must be on a four byte boundary. */
3194 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3195 section->alignment_power = 2;
3196
b34976b6 3197 return TRUE;
252b5132
RH
3198}
3199
3200/* This is copied from bfd_coff_std_swap_table so that we can change
3201 the default section alignment power. */
3202
3203static const bfd_coff_backend_data bfd_coff_small_swap_table =
3204{
3205 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3206 coff_swap_aux_out, coff_swap_sym_out,
3207 coff_swap_lineno_out, coff_swap_reloc_out,
3208 coff_swap_filehdr_out, coff_swap_aouthdr_out,
3209 coff_swap_scnhdr_out,
692b7d62 3210 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
252b5132 3211#ifdef COFF_LONG_FILENAMES
b34976b6 3212 TRUE,
252b5132 3213#else
b34976b6 3214 FALSE,
252b5132
RH
3215#endif
3216#ifdef COFF_LONG_SECTION_NAMES
b34976b6 3217 TRUE,
252b5132 3218#else
b34976b6 3219 FALSE,
252b5132
RH
3220#endif
3221 2,
ecefdb58 3222#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
b34976b6 3223 TRUE,
ecefdb58 3224#else
b34976b6 3225 FALSE,
ecefdb58
CP
3226#endif
3227#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3228 4,
3229#else
3230 2,
3231#endif
252b5132
RH
3232 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3233 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3234 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3235 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3236 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
5d54c628 3237 coff_classify_symbol, coff_compute_section_file_positions,
252b5132
RH
3238 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3239 coff_adjust_symndx, coff_link_add_one_symbol,
3240 coff_link_output_has_begun, coff_final_link_postscript
3241};
3242
3243#define coff_small_close_and_cleanup \
3244 coff_close_and_cleanup
3245#define coff_small_bfd_free_cached_info \
3246 coff_bfd_free_cached_info
3247#define coff_small_get_section_contents \
3248 coff_get_section_contents
3249#define coff_small_get_section_contents_in_window \
3250 coff_get_section_contents_in_window
3251
c3c89269
NC
3252extern const bfd_target shlcoff_small_vec;
3253
252b5132
RH
3254const bfd_target shcoff_small_vec =
3255{
3256 "coff-sh-small", /* name */
3257 bfd_target_coff_flavour,
3258 BFD_ENDIAN_BIG, /* data byte order is big */
3259 BFD_ENDIAN_BIG, /* header byte order is big */
3260
3261 (HAS_RELOC | EXEC_P | /* object flags */
3262 HAS_LINENO | HAS_DEBUG |
3263 HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3264
3265 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3266 '_', /* leading symbol underscore */
3267 '/', /* ar_pad_char */
3268 15, /* ar_max_namelen */
3269 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3270 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3271 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3272 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3273 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3274 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3275
3276 {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3277 bfd_generic_archive_p, _bfd_dummy_target},
3278 {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3279 bfd_false},
3280 {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3281 _bfd_write_archive_contents, bfd_false},
3282
3283 BFD_JUMP_TABLE_GENERIC (coff_small),
3284 BFD_JUMP_TABLE_COPY (coff),
3285 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3286 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3287 BFD_JUMP_TABLE_SYMBOLS (coff),
3288 BFD_JUMP_TABLE_RELOCS (coff),
3289 BFD_JUMP_TABLE_WRITE (coff),
3290 BFD_JUMP_TABLE_LINK (coff),
3291 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3292
c3c89269 3293 & shlcoff_small_vec,
cbfe05c4 3294
252b5132
RH
3295 (PTR) &bfd_coff_small_swap_table
3296};
3297
3298const bfd_target shlcoff_small_vec =
3299{
3300 "coff-shl-small", /* name */
3301 bfd_target_coff_flavour,
3302 BFD_ENDIAN_LITTLE, /* data byte order is little */
3303 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
3304
3305 (HAS_RELOC | EXEC_P | /* object flags */
3306 HAS_LINENO | HAS_DEBUG |
3307 HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3308
3309 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3310 '_', /* leading symbol underscore */
3311 '/', /* ar_pad_char */
3312 15, /* ar_max_namelen */
3313 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3314 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3315 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3316 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3317 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3318 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3319
3320 {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
cbfe05c4 3321 bfd_generic_archive_p, _bfd_dummy_target},
252b5132
RH
3322 {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3323 bfd_false},
3324 {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3325 _bfd_write_archive_contents, bfd_false},
3326
3327 BFD_JUMP_TABLE_GENERIC (coff_small),
3328 BFD_JUMP_TABLE_COPY (coff),
3329 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3330 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3331 BFD_JUMP_TABLE_SYMBOLS (coff),
3332 BFD_JUMP_TABLE_RELOCS (coff),
3333 BFD_JUMP_TABLE_WRITE (coff),
3334 BFD_JUMP_TABLE_LINK (coff),
3335 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3336
c3c89269 3337 & shcoff_small_vec,
cbfe05c4 3338
252b5132
RH
3339 (PTR) &bfd_coff_small_swap_table
3340};
17505c5c 3341#endif
This page took 0.396138 seconds and 4 git commands to generate.