* elf32-spu.c (struct spu_link_hash_table): Remove overlay_fixed,
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
e44a2c9c 2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
81694485 3 2008, 2009 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
252b5132 21
6e6718a3 22#include "sysdep.h"
2468f9c9
PB
23#include <limits.h>
24
3db64b00 25#include "bfd.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
7f266840 31
00a97672
RS
32/* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34#define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37/* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39#define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44/* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46#define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51/* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53#define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
7f266840
DJ
58#define elf_info_to_howto 0
59#define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61#define ARM_ELF_ABI_VERSION 0
62#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
3e6b1042
DJ
64static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 struct bfd_link_info *link_info,
66 asection *sec,
67 bfd_byte *contents);
68
7f266840
DJ
69/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71 in that slot. */
72
c19d1205 73static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 74{
8029a119 75 /* No relocation. */
7f266840
DJ
76 HOWTO (R_ARM_NONE, /* type */
77 0, /* rightshift */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
79 0, /* bitsize */
80 FALSE, /* pc_relative */
81 0, /* bitpos */
82 complain_overflow_dont,/* complain_on_overflow */
83 bfd_elf_generic_reloc, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE, /* partial_inplace */
86 0, /* src_mask */
87 0, /* dst_mask */
88 FALSE), /* pcrel_offset */
89
90 HOWTO (R_ARM_PC24, /* type */
91 2, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 24, /* bitsize */
94 TRUE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_signed,/* complain_on_overflow */
97 bfd_elf_generic_reloc, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE), /* pcrel_offset */
103
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32, /* type */
106 0, /* rightshift */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
108 32, /* bitsize */
109 FALSE, /* pc_relative */
110 0, /* bitpos */
111 complain_overflow_bitfield,/* complain_on_overflow */
112 bfd_elf_generic_reloc, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE), /* pcrel_offset */
118
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 32, /* bitsize */
124 TRUE, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_bitfield,/* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE), /* pcrel_offset */
133
c19d1205 134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 135 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
136 0, /* rightshift */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
138 32, /* bitsize */
139 TRUE, /* pc_relative */
7f266840 140 0, /* bitpos */
4962c51a 141 complain_overflow_dont,/* complain_on_overflow */
7f266840 142 bfd_elf_generic_reloc, /* special_function */
4962c51a 143 "R_ARM_LDR_PC_G0", /* name */
7f266840 144 FALSE, /* partial_inplace */
4962c51a
MS
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE), /* pcrel_offset */
7f266840
DJ
148
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16, /* type */
151 0, /* rightshift */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
153 16, /* bitsize */
154 FALSE, /* pc_relative */
155 0, /* bitpos */
156 complain_overflow_bitfield,/* complain_on_overflow */
157 bfd_elf_generic_reloc, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE), /* pcrel_offset */
163
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12, /* type */
166 0, /* rightshift */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
168 12, /* bitsize */
169 FALSE, /* pc_relative */
170 0, /* bitpos */
171 complain_overflow_bitfield,/* complain_on_overflow */
172 bfd_elf_generic_reloc, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE, /* partial_inplace */
00a97672
RS
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
7f266840
DJ
177 FALSE), /* pcrel_offset */
178
179 HOWTO (R_ARM_THM_ABS5, /* type */
180 6, /* rightshift */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
182 5, /* bitsize */
183 FALSE, /* pc_relative */
184 0, /* bitpos */
185 complain_overflow_bitfield,/* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE), /* pcrel_offset */
192
193 /* 8 bit absolute */
194 HOWTO (R_ARM_ABS8, /* type */
195 0, /* rightshift */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
197 8, /* bitsize */
198 FALSE, /* pc_relative */
199 0, /* bitpos */
200 complain_overflow_bitfield,/* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE), /* pcrel_offset */
207
208 HOWTO (R_ARM_SBREL32, /* type */
209 0, /* rightshift */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
211 32, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_dont,/* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
c19d1205 222 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
223 1, /* rightshift */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
e95de063 225 25, /* bitsize */
7f266840
DJ
226 TRUE, /* pc_relative */
227 0, /* bitpos */
228 complain_overflow_signed,/* complain_on_overflow */
229 bfd_elf_generic_reloc, /* special_function */
c19d1205 230 "R_ARM_THM_CALL", /* name */
7f266840
DJ
231 FALSE, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE), /* pcrel_offset */
235
236 HOWTO (R_ARM_THM_PC8, /* type */
237 1, /* rightshift */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
239 8, /* bitsize */
240 TRUE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_signed,/* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE), /* pcrel_offset */
249
c19d1205 250 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
251 1, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
253 32, /* bitsize */
254 FALSE, /* pc_relative */
7f266840
DJ
255 0, /* bitpos */
256 complain_overflow_signed,/* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
c19d1205 258 "R_ARM_BREL_ADJ", /* name */
7f266840 259 FALSE, /* partial_inplace */
c19d1205
ZW
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
7f266840
DJ
263
264 HOWTO (R_ARM_SWI24, /* type */
265 0, /* rightshift */
266 0, /* size (0 = byte, 1 = short, 2 = long) */
267 0, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_signed,/* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_ARM_SWI24", /* name */
273 FALSE, /* partial_inplace */
274 0x00000000, /* src_mask */
275 0x00000000, /* dst_mask */
276 FALSE), /* pcrel_offset */
277
278 HOWTO (R_ARM_THM_SWI8, /* type */
279 0, /* rightshift */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
281 0, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_signed,/* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE), /* pcrel_offset */
291
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25, /* type */
294 2, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 25, /* bitsize */
297 TRUE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_signed,/* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE), /* pcrel_offset */
306
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22, /* type */
309 2, /* rightshift */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
311 22, /* bitsize */
312 TRUE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_signed,/* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE), /* pcrel_offset */
321
ba93b8ac 322 /* Dynamic TLS relocations. */
7f266840 323
ba93b8ac
DJ
324 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield,/* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
7f266840 337
ba93b8ac
DJ
338 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield,/* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
7f266840 351
ba93b8ac
DJ
352 HOWTO (R_ARM_TLS_TPOFF32, /* type */
353 0, /* rightshift */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
355 32, /* bitsize */
356 FALSE, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield,/* complain_on_overflow */
359 bfd_elf_generic_reloc, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE), /* pcrel_offset */
7f266840
DJ
365
366 /* Relocs used in ARM Linux */
367
368 HOWTO (R_ARM_COPY, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 FALSE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield,/* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE), /* pcrel_offset */
381
382 HOWTO (R_ARM_GLOB_DAT, /* type */
383 0, /* rightshift */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
385 32, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_bitfield,/* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE), /* pcrel_offset */
395
396 HOWTO (R_ARM_JUMP_SLOT, /* type */
397 0, /* rightshift */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
399 32, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_bitfield,/* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
409
410 HOWTO (R_ARM_RELATIVE, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 32, /* bitsize */
414 FALSE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_bitfield,/* complain_on_overflow */
417 bfd_elf_generic_reloc, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE), /* pcrel_offset */
423
c19d1205 424 HOWTO (R_ARM_GOTOFF32, /* type */
7f266840
DJ
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 FALSE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_bitfield,/* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
c19d1205 432 "R_ARM_GOTOFF32", /* name */
7f266840
DJ
433 TRUE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE), /* pcrel_offset */
437
438 HOWTO (R_ARM_GOTPC, /* type */
439 0, /* rightshift */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
441 32, /* bitsize */
442 TRUE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_bitfield,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE), /* pcrel_offset */
451
452 HOWTO (R_ARM_GOT32, /* type */
453 0, /* rightshift */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
455 32, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_bitfield,/* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 HOWTO (R_ARM_PLT32, /* type */
467 2, /* rightshift */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
ce490eda 469 24, /* bitsize */
7f266840
DJ
470 TRUE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_bitfield,/* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_ARM_PLT32", /* name */
ce490eda 475 FALSE, /* partial_inplace */
7f266840
DJ
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE), /* pcrel_offset */
479
480 HOWTO (R_ARM_CALL, /* type */
481 2, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 24, /* bitsize */
484 TRUE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_signed,/* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE), /* pcrel_offset */
493
494 HOWTO (R_ARM_JUMP24, /* type */
495 2, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 24, /* bitsize */
498 TRUE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_signed,/* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE), /* pcrel_offset */
507
c19d1205
ZW
508 HOWTO (R_ARM_THM_JUMP24, /* type */
509 1, /* rightshift */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
511 24, /* bitsize */
512 TRUE, /* pc_relative */
7f266840 513 0, /* bitpos */
c19d1205 514 complain_overflow_signed,/* complain_on_overflow */
7f266840 515 bfd_elf_generic_reloc, /* special_function */
c19d1205 516 "R_ARM_THM_JUMP24", /* name */
7f266840 517 FALSE, /* partial_inplace */
c19d1205
ZW
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE), /* pcrel_offset */
7f266840 521
c19d1205 522 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 523 0, /* rightshift */
c19d1205
ZW
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
7f266840
DJ
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_dont,/* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
c19d1205 530 "R_ARM_BASE_ABS", /* name */
7f266840 531 FALSE, /* partial_inplace */
c19d1205
ZW
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
7f266840
DJ
534 FALSE), /* pcrel_offset */
535
536 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
537 0, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 12, /* bitsize */
540 TRUE, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont,/* complain_on_overflow */
543 bfd_elf_generic_reloc, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE), /* pcrel_offset */
549
550 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
551 0, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 12, /* bitsize */
554 TRUE, /* pc_relative */
555 8, /* bitpos */
556 complain_overflow_dont,/* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE), /* pcrel_offset */
563
564 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 12, /* bitsize */
568 TRUE, /* pc_relative */
569 16, /* bitpos */
570 complain_overflow_dont,/* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE), /* pcrel_offset */
577
578 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 12, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont,/* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 8, /* bitsize */
596 FALSE, /* pc_relative */
597 12, /* bitpos */
598 complain_overflow_dont,/* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE), /* pcrel_offset */
605
606 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 8, /* bitsize */
610 FALSE, /* pc_relative */
611 20, /* bitpos */
612 complain_overflow_dont,/* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620 HOWTO (R_ARM_TARGET1, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 FALSE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_dont,/* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
633
634 HOWTO (R_ARM_ROSEGREL32, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 32, /* bitsize */
638 FALSE, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_dont,/* complain_on_overflow */
641 bfd_elf_generic_reloc, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE), /* pcrel_offset */
647
648 HOWTO (R_ARM_V4BX, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 FALSE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_dont,/* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE), /* pcrel_offset */
661
662 HOWTO (R_ARM_TARGET2, /* type */
663 0, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 32, /* bitsize */
666 FALSE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed,/* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 HOWTO (R_ARM_PREL31, /* type */
677 0, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 31, /* bitsize */
680 TRUE, /* pc_relative */
681 0, /* bitpos */
682 complain_overflow_signed,/* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
c19d1205
ZW
689
690 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
691 0, /* rightshift */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
693 16, /* bitsize */
694 FALSE, /* pc_relative */
695 0, /* bitpos */
696 complain_overflow_dont,/* complain_on_overflow */
697 bfd_elf_generic_reloc, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE, /* partial_inplace */
39623e12
PB
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
c19d1205
ZW
702 FALSE), /* pcrel_offset */
703
704 HOWTO (R_ARM_MOVT_ABS, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 FALSE, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield,/* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE, /* partial_inplace */
39623e12
PB
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
c19d1205
ZW
716 FALSE), /* pcrel_offset */
717
718 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
719 0, /* rightshift */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
721 16, /* bitsize */
722 TRUE, /* pc_relative */
723 0, /* bitpos */
724 complain_overflow_dont,/* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE, /* partial_inplace */
39623e12
PB
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
c19d1205
ZW
730 TRUE), /* pcrel_offset */
731
732 HOWTO (R_ARM_MOVT_PREL, /* type */
733 0, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 16, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield,/* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE, /* partial_inplace */
39623e12
PB
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
c19d1205
ZW
744 TRUE), /* pcrel_offset */
745
746 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 FALSE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_dont,/* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE), /* pcrel_offset */
759
760 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
761 0, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 16, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_bitfield,/* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775 0, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 TRUE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont,/* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE), /* pcrel_offset */
787
788 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
789 0, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 TRUE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_bitfield,/* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE), /* pcrel_offset */
801
802 HOWTO (R_ARM_THM_JUMP19, /* type */
803 1, /* rightshift */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
805 19, /* bitsize */
806 TRUE, /* pc_relative */
807 0, /* bitpos */
808 complain_overflow_signed,/* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE), /* pcrel_offset */
815
816 HOWTO (R_ARM_THM_JUMP6, /* type */
817 1, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 6, /* bitsize */
820 TRUE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_unsigned,/* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE), /* pcrel_offset */
829
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832 versa. */
833 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 13, /* bitsize */
837 TRUE, /* pc_relative */
838 0, /* bitpos */
2cab6cc3 839 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
840 bfd_elf_generic_reloc, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE, /* partial_inplace */
2cab6cc3
MS
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
c19d1205
ZW
845 TRUE), /* pcrel_offset */
846
847 HOWTO (R_ARM_THM_PC12, /* type */
848 0, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 13, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
2cab6cc3 853 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
854 bfd_elf_generic_reloc, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE, /* partial_inplace */
2cab6cc3
MS
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
c19d1205
ZW
859 TRUE), /* pcrel_offset */
860
861 HOWTO (R_ARM_ABS32_NOI, /* type */
862 0, /* rightshift */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
864 32, /* bitsize */
865 FALSE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_dont,/* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
874
875 HOWTO (R_ARM_REL32_NOI, /* type */
876 0, /* rightshift */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
878 32, /* bitsize */
879 TRUE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont,/* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
7f266840 888
4962c51a
MS
889 /* Group relocations. */
890
891 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
892 0, /* rightshift */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
894 32, /* bitsize */
895 TRUE, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont,/* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE), /* pcrel_offset */
904
905 HOWTO (R_ARM_ALU_PC_G0, /* type */
906 0, /* rightshift */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
908 32, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont,/* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
920 0, /* rightshift */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
922 32, /* bitsize */
923 TRUE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont,/* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE), /* pcrel_offset */
932
933 HOWTO (R_ARM_ALU_PC_G1, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 32, /* bitsize */
937 TRUE, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_dont,/* complain_on_overflow */
940 bfd_elf_generic_reloc, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE), /* pcrel_offset */
946
947 HOWTO (R_ARM_ALU_PC_G2, /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 32, /* bitsize */
951 TRUE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont,/* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE), /* pcrel_offset */
960
961 HOWTO (R_ARM_LDR_PC_G1, /* type */
962 0, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 32, /* bitsize */
965 TRUE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont,/* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
974
975 HOWTO (R_ARM_LDR_PC_G2, /* type */
976 0, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 32, /* bitsize */
979 TRUE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont,/* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
988
989 HOWTO (R_ARM_LDRS_PC_G0, /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 32, /* bitsize */
993 TRUE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont,/* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1002
1003 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1004 0, /* rightshift */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1006 32, /* bitsize */
1007 TRUE, /* pc_relative */
1008 0, /* bitpos */
1009 complain_overflow_dont,/* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE), /* pcrel_offset */
1016
1017 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 32, /* bitsize */
1021 TRUE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont,/* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE), /* pcrel_offset */
1030
1031 HOWTO (R_ARM_LDC_PC_G0, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 32, /* bitsize */
1035 TRUE, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont,/* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE), /* pcrel_offset */
1044
1045 HOWTO (R_ARM_LDC_PC_G1, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 32, /* bitsize */
1049 TRUE, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont,/* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE), /* pcrel_offset */
1058
1059 HOWTO (R_ARM_LDC_PC_G2, /* type */
1060 0, /* rightshift */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 32, /* bitsize */
1063 TRUE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_dont,/* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE), /* pcrel_offset */
1072
1073 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 32, /* bitsize */
1077 TRUE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE), /* pcrel_offset */
1086
1087 HOWTO (R_ARM_ALU_SB_G0, /* type */
1088 0, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 32, /* bitsize */
1091 TRUE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE), /* pcrel_offset */
1100
1101 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1102 0, /* rightshift */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1104 32, /* bitsize */
1105 TRUE, /* pc_relative */
1106 0, /* bitpos */
1107 complain_overflow_dont,/* complain_on_overflow */
1108 bfd_elf_generic_reloc, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE), /* pcrel_offset */
1114
1115 HOWTO (R_ARM_ALU_SB_G1, /* type */
1116 0, /* rightshift */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1118 32, /* bitsize */
1119 TRUE, /* pc_relative */
1120 0, /* bitpos */
1121 complain_overflow_dont,/* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE), /* pcrel_offset */
1128
1129 HOWTO (R_ARM_ALU_SB_G2, /* type */
1130 0, /* rightshift */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1132 32, /* bitsize */
1133 TRUE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE), /* pcrel_offset */
1142
1143 HOWTO (R_ARM_LDR_SB_G0, /* type */
1144 0, /* rightshift */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1146 32, /* bitsize */
1147 TRUE, /* pc_relative */
1148 0, /* bitpos */
1149 complain_overflow_dont,/* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE), /* pcrel_offset */
1156
1157 HOWTO (R_ARM_LDR_SB_G1, /* type */
1158 0, /* rightshift */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 32, /* bitsize */
1161 TRUE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont,/* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE), /* pcrel_offset */
1170
1171 HOWTO (R_ARM_LDR_SB_G2, /* type */
1172 0, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 32, /* bitsize */
1175 TRUE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont,/* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE), /* pcrel_offset */
1184
1185 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1186 0, /* rightshift */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 32, /* bitsize */
1189 TRUE, /* pc_relative */
1190 0, /* bitpos */
1191 complain_overflow_dont,/* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE), /* pcrel_offset */
1198
1199 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1200 0, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 32, /* bitsize */
1203 TRUE, /* pc_relative */
1204 0, /* bitpos */
1205 complain_overflow_dont,/* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE), /* pcrel_offset */
1212
1213 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1214 0, /* rightshift */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1216 32, /* bitsize */
1217 TRUE, /* pc_relative */
1218 0, /* bitpos */
1219 complain_overflow_dont,/* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE), /* pcrel_offset */
1226
1227 HOWTO (R_ARM_LDC_SB_G0, /* type */
1228 0, /* rightshift */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1230 32, /* bitsize */
1231 TRUE, /* pc_relative */
1232 0, /* bitpos */
1233 complain_overflow_dont,/* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE), /* pcrel_offset */
1240
1241 HOWTO (R_ARM_LDC_SB_G1, /* type */
1242 0, /* rightshift */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1244 32, /* bitsize */
1245 TRUE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont,/* complain_on_overflow */
1248 bfd_elf_generic_reloc, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE), /* pcrel_offset */
1254
1255 HOWTO (R_ARM_LDC_SB_G2, /* type */
1256 0, /* rightshift */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 32, /* bitsize */
1259 TRUE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont,/* complain_on_overflow */
1262 bfd_elf_generic_reloc, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE), /* pcrel_offset */
1268
1269 /* End of group relocations. */
c19d1205 1270
c19d1205
ZW
1271 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1272 0, /* rightshift */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1274 16, /* bitsize */
1275 FALSE, /* pc_relative */
1276 0, /* bitpos */
1277 complain_overflow_dont,/* complain_on_overflow */
1278 bfd_elf_generic_reloc, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE), /* pcrel_offset */
1284
1285 HOWTO (R_ARM_MOVT_BREL, /* type */
1286 0, /* rightshift */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 16, /* bitsize */
1289 FALSE, /* pc_relative */
1290 0, /* bitpos */
1291 complain_overflow_bitfield,/* complain_on_overflow */
1292 bfd_elf_generic_reloc, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE), /* pcrel_offset */
1298
1299 HOWTO (R_ARM_MOVW_BREL, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 16, /* bitsize */
1303 FALSE, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont,/* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1312
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314 0, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 16, /* bitsize */
1317 FALSE, /* pc_relative */
1318 0, /* bitpos */
1319 complain_overflow_dont,/* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1326
1327 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1328 0, /* rightshift */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1330 16, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_bitfield,/* complain_on_overflow */
1334 bfd_elf_generic_reloc, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE), /* pcrel_offset */
1340
1341 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_dont,/* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
8029a119 1355 EMPTY_HOWTO (90), /* Unallocated. */
c19d1205
ZW
1356 EMPTY_HOWTO (91),
1357 EMPTY_HOWTO (92),
1358 EMPTY_HOWTO (93),
1359
1360 HOWTO (R_ARM_PLT32_ABS, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_dont,/* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 "R_ARM_PLT32_ABS", /* name */
1369 FALSE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 HOWTO (R_ARM_GOT_ABS, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 32, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_GOT_ABS", /* name */
1383 FALSE, /* partial_inplace */
1384 0xffffffff, /* src_mask */
1385 0xffffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 HOWTO (R_ARM_GOT_PREL, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 32, /* bitsize */
1392 TRUE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_dont, /* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_GOT_PREL", /* name */
1397 FALSE, /* partial_inplace */
1398 0xffffffff, /* src_mask */
1399 0xffffffff, /* dst_mask */
1400 TRUE), /* pcrel_offset */
1401
1402 HOWTO (R_ARM_GOT_BREL12, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 12, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_bitfield,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_GOT_BREL12", /* name */
1411 FALSE, /* partial_inplace */
1412 0x00000fff, /* src_mask */
1413 0x00000fff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
1415
1416 HOWTO (R_ARM_GOTOFF12, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 12, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_bitfield,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_GOTOFF12", /* name */
1425 FALSE, /* partial_inplace */
1426 0x00000fff, /* src_mask */
1427 0x00000fff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1431
1432 /* GNU extension to record C++ vtable member usage */
1433 HOWTO (R_ARM_GNU_VTENTRY, /* type */
ba93b8ac
DJ
1434 0, /* rightshift */
1435 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1436 0, /* bitsize */
ba93b8ac
DJ
1437 FALSE, /* pc_relative */
1438 0, /* bitpos */
c19d1205
ZW
1439 complain_overflow_dont, /* complain_on_overflow */
1440 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1441 "R_ARM_GNU_VTENTRY", /* name */
1442 FALSE, /* partial_inplace */
1443 0, /* src_mask */
1444 0, /* dst_mask */
1445 FALSE), /* pcrel_offset */
1446
1447 /* GNU extension to record C++ vtable hierarchy */
1448 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1449 0, /* rightshift */
1450 2, /* size (0 = byte, 1 = short, 2 = long) */
1451 0, /* bitsize */
1452 FALSE, /* pc_relative */
1453 0, /* bitpos */
1454 complain_overflow_dont, /* complain_on_overflow */
1455 NULL, /* special_function */
1456 "R_ARM_GNU_VTINHERIT", /* name */
1457 FALSE, /* partial_inplace */
1458 0, /* src_mask */
1459 0, /* dst_mask */
1460 FALSE), /* pcrel_offset */
1461
1462 HOWTO (R_ARM_THM_JUMP11, /* type */
1463 1, /* rightshift */
1464 1, /* size (0 = byte, 1 = short, 2 = long) */
1465 11, /* bitsize */
1466 TRUE, /* pc_relative */
1467 0, /* bitpos */
1468 complain_overflow_signed, /* complain_on_overflow */
1469 bfd_elf_generic_reloc, /* special_function */
1470 "R_ARM_THM_JUMP11", /* name */
1471 FALSE, /* partial_inplace */
1472 0x000007ff, /* src_mask */
1473 0x000007ff, /* dst_mask */
1474 TRUE), /* pcrel_offset */
1475
1476 HOWTO (R_ARM_THM_JUMP8, /* type */
1477 1, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 8, /* bitsize */
1480 TRUE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_signed, /* complain_on_overflow */
1483 bfd_elf_generic_reloc, /* special_function */
1484 "R_ARM_THM_JUMP8", /* name */
1485 FALSE, /* partial_inplace */
1486 0x000000ff, /* src_mask */
1487 0x000000ff, /* dst_mask */
1488 TRUE), /* pcrel_offset */
ba93b8ac 1489
c19d1205
ZW
1490 /* TLS relocations */
1491 HOWTO (R_ARM_TLS_GD32, /* type */
ba93b8ac
DJ
1492 0, /* rightshift */
1493 2, /* size (0 = byte, 1 = short, 2 = long) */
1494 32, /* bitsize */
1495 FALSE, /* pc_relative */
1496 0, /* bitpos */
1497 complain_overflow_bitfield,/* complain_on_overflow */
c19d1205
ZW
1498 NULL, /* special_function */
1499 "R_ARM_TLS_GD32", /* name */
ba93b8ac
DJ
1500 TRUE, /* partial_inplace */
1501 0xffffffff, /* src_mask */
1502 0xffffffff, /* dst_mask */
c19d1205 1503 FALSE), /* pcrel_offset */
ba93b8ac 1504
ba93b8ac
DJ
1505 HOWTO (R_ARM_TLS_LDM32, /* type */
1506 0, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 32, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_bitfield,/* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
1513 "R_ARM_TLS_LDM32", /* name */
1514 TRUE, /* partial_inplace */
1515 0xffffffff, /* src_mask */
1516 0xffffffff, /* dst_mask */
c19d1205 1517 FALSE), /* pcrel_offset */
ba93b8ac 1518
c19d1205 1519 HOWTO (R_ARM_TLS_LDO32, /* type */
ba93b8ac
DJ
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 32, /* bitsize */
1523 FALSE, /* pc_relative */
1524 0, /* bitpos */
1525 complain_overflow_bitfield,/* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
c19d1205 1527 "R_ARM_TLS_LDO32", /* name */
ba93b8ac
DJ
1528 TRUE, /* partial_inplace */
1529 0xffffffff, /* src_mask */
1530 0xffffffff, /* dst_mask */
c19d1205 1531 FALSE), /* pcrel_offset */
ba93b8ac 1532
ba93b8ac
DJ
1533 HOWTO (R_ARM_TLS_IE32, /* type */
1534 0, /* rightshift */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1536 32, /* bitsize */
1537 FALSE, /* pc_relative */
1538 0, /* bitpos */
1539 complain_overflow_bitfield,/* complain_on_overflow */
1540 NULL, /* special_function */
1541 "R_ARM_TLS_IE32", /* name */
1542 TRUE, /* partial_inplace */
1543 0xffffffff, /* src_mask */
1544 0xffffffff, /* dst_mask */
c19d1205 1545 FALSE), /* pcrel_offset */
7f266840 1546
c19d1205 1547 HOWTO (R_ARM_TLS_LE32, /* type */
7f266840
DJ
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1550 32, /* bitsize */
7f266840
DJ
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
c19d1205
ZW
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 bfd_elf_generic_reloc, /* special_function */
1555 "R_ARM_TLS_LE32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE), /* pcrel_offset */
7f266840 1560
c19d1205
ZW
1561 HOWTO (R_ARM_TLS_LDO12, /* type */
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 12, /* bitsize */
1565 FALSE, /* pc_relative */
7f266840 1566 0, /* bitpos */
c19d1205 1567 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1568 bfd_elf_generic_reloc, /* special_function */
c19d1205 1569 "R_ARM_TLS_LDO12", /* name */
7f266840 1570 FALSE, /* partial_inplace */
c19d1205
ZW
1571 0x00000fff, /* src_mask */
1572 0x00000fff, /* dst_mask */
1573 FALSE), /* pcrel_offset */
7f266840 1574
c19d1205
ZW
1575 HOWTO (R_ARM_TLS_LE12, /* type */
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 12, /* bitsize */
1579 FALSE, /* pc_relative */
7f266840 1580 0, /* bitpos */
c19d1205 1581 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1582 bfd_elf_generic_reloc, /* special_function */
c19d1205 1583 "R_ARM_TLS_LE12", /* name */
7f266840 1584 FALSE, /* partial_inplace */
c19d1205
ZW
1585 0x00000fff, /* src_mask */
1586 0x00000fff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
7f266840 1588
c19d1205 1589 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1592 12, /* bitsize */
1593 FALSE, /* pc_relative */
7f266840 1594 0, /* bitpos */
c19d1205 1595 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1596 bfd_elf_generic_reloc, /* special_function */
c19d1205 1597 "R_ARM_TLS_IE12GP", /* name */
7f266840 1598 FALSE, /* partial_inplace */
c19d1205
ZW
1599 0x00000fff, /* src_mask */
1600 0x00000fff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1602};
1603
1604/* 112-127 private relocations
1605 128 R_ARM_ME_TOO, obsolete
1606 129-255 unallocated in AAELF.
7f266840 1607
c19d1205
ZW
1608 249-255 extended, currently unused, relocations: */
1609
4962c51a 1610static reloc_howto_type elf32_arm_howto_table_2[4] =
7f266840
DJ
1611{
1612 HOWTO (R_ARM_RREL32, /* type */
1613 0, /* rightshift */
1614 0, /* size (0 = byte, 1 = short, 2 = long) */
1615 0, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont,/* complain_on_overflow */
1619 bfd_elf_generic_reloc, /* special_function */
1620 "R_ARM_RREL32", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 HOWTO (R_ARM_RABS32, /* type */
1627 0, /* rightshift */
1628 0, /* size (0 = byte, 1 = short, 2 = long) */
1629 0, /* bitsize */
1630 FALSE, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_dont,/* complain_on_overflow */
1633 bfd_elf_generic_reloc, /* special_function */
1634 "R_ARM_RABS32", /* name */
1635 FALSE, /* partial_inplace */
1636 0, /* src_mask */
1637 0, /* dst_mask */
1638 FALSE), /* pcrel_offset */
1639
1640 HOWTO (R_ARM_RPC24, /* type */
1641 0, /* rightshift */
1642 0, /* size (0 = byte, 1 = short, 2 = long) */
1643 0, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont,/* complain_on_overflow */
1647 bfd_elf_generic_reloc, /* special_function */
1648 "R_ARM_RPC24", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 HOWTO (R_ARM_RBASE, /* type */
1655 0, /* rightshift */
1656 0, /* size (0 = byte, 1 = short, 2 = long) */
1657 0, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_dont,/* complain_on_overflow */
1661 bfd_elf_generic_reloc, /* special_function */
1662 "R_ARM_RBASE", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0, /* dst_mask */
1666 FALSE) /* pcrel_offset */
1667};
1668
1669static reloc_howto_type *
1670elf32_arm_howto_from_type (unsigned int r_type)
1671{
906e58ca 1672 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1673 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1674
c19d1205 1675 if (r_type >= R_ARM_RREL32
906e58ca 1676 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
4962c51a 1677 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
7f266840 1678
c19d1205 1679 return NULL;
7f266840
DJ
1680}
1681
1682static void
1683elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1684 Elf_Internal_Rela * elf_reloc)
1685{
1686 unsigned int r_type;
1687
1688 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1689 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1690}
1691
1692struct elf32_arm_reloc_map
1693 {
1694 bfd_reloc_code_real_type bfd_reloc_val;
1695 unsigned char elf_reloc_val;
1696 };
1697
1698/* All entries in this list must also be present in elf32_arm_howto_table. */
1699static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1700 {
1701 {BFD_RELOC_NONE, R_ARM_NONE},
1702 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1703 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1704 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1705 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1706 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1707 {BFD_RELOC_32, R_ARM_ABS32},
1708 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1709 {BFD_RELOC_8, R_ARM_ABS8},
1710 {BFD_RELOC_16, R_ARM_ABS16},
1711 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1712 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1713 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1719 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1720 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1721 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1722 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840
DJ
1723 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1724 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1725 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1726 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1727 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1728 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1729 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1730 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1731 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1732 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1733 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1734 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1735 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1736 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1737 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1738 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1739 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
c19d1205
ZW
1740 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1741 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1742 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1743 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1744 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1745 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1746 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1747 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1748 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1749 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1750 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1751 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1752 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1753 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1754 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1755 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1756 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1757 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1758 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1759 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1760 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1761 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1762 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1763 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1764 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1765 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1766 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1767 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1768 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1769 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1770 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1771 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1772 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1773 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1774 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1775 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1776 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6
PB
1777 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1778 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
7f266840
DJ
1779 };
1780
1781static reloc_howto_type *
f1c71a59
ZW
1782elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1783 bfd_reloc_code_real_type code)
7f266840
DJ
1784{
1785 unsigned int i;
8029a119 1786
906e58ca 1787 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1788 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1789 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1790
c19d1205 1791 return NULL;
7f266840
DJ
1792}
1793
157090f7
AM
1794static reloc_howto_type *
1795elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1796 const char *r_name)
1797{
1798 unsigned int i;
1799
906e58ca 1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1801 if (elf32_arm_howto_table_1[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_1[i];
1804
906e58ca 1805 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1806 if (elf32_arm_howto_table_2[i].name != NULL
1807 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1808 return &elf32_arm_howto_table_2[i];
1809
1810 return NULL;
1811}
1812
906e58ca
NC
1813/* Support for core dump NOTE sections. */
1814
7f266840 1815static bfd_boolean
f1c71a59 1816elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1817{
1818 int offset;
1819 size_t size;
1820
1821 switch (note->descsz)
1822 {
1823 default:
1824 return FALSE;
1825
8029a119 1826 case 148: /* Linux/ARM 32-bit. */
7f266840
DJ
1827 /* pr_cursig */
1828 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1829
1830 /* pr_pid */
1831 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1832
1833 /* pr_reg */
1834 offset = 72;
1835 size = 72;
1836
1837 break;
1838 }
1839
1840 /* Make a ".reg/999" section. */
1841 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1842 size, note->descpos + offset);
1843}
1844
1845static bfd_boolean
f1c71a59 1846elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1847{
1848 switch (note->descsz)
1849 {
1850 default:
1851 return FALSE;
1852
8029a119 1853 case 124: /* Linux/ARM elf_prpsinfo. */
7f266840
DJ
1854 elf_tdata (abfd)->core_program
1855 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1856 elf_tdata (abfd)->core_command
1857 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1858 }
1859
1860 /* Note that for some reason, a spurious space is tacked
1861 onto the end of the args in some (at least one anyway)
1862 implementations, so strip it off if it exists. */
7f266840
DJ
1863 {
1864 char *command = elf_tdata (abfd)->core_command;
1865 int n = strlen (command);
1866
1867 if (0 < n && command[n - 1] == ' ')
1868 command[n - 1] = '\0';
1869 }
1870
1871 return TRUE;
1872}
1873
1874#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1875#define TARGET_LITTLE_NAME "elf32-littlearm"
1876#define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1877#define TARGET_BIG_NAME "elf32-bigarm"
1878
1879#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1880#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1881
252b5132
RH
1882typedef unsigned long int insn32;
1883typedef unsigned short int insn16;
1884
3a4a14e9
PB
1885/* In lieu of proper flags, assume all EABIv4 or later objects are
1886 interworkable. */
57e8b36a 1887#define INTERWORK_FLAG(abfd) \
3a4a14e9 1888 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
1889 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1890 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 1891
252b5132
RH
1892/* The linker script knows the section names for placement.
1893 The entry_names are used to do simple name mangling on the stubs.
1894 Given a function name, and its type, the stub can be found. The
9b485d32 1895 name can be changed. The only requirement is the %s be present. */
252b5132
RH
1896#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1897#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1898
1899#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1900#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1901
c7b8f16e
JB
1902#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1903#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1904
845b51d6
PB
1905#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1906#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1907
7413f23f
DJ
1908#define STUB_ENTRY_NAME "__%s_veneer"
1909
252b5132
RH
1910/* The name of the dynamic interpreter. This is put in the .interp
1911 section. */
1912#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1913
5e681ec4
PB
1914#ifdef FOUR_WORD_PLT
1915
252b5132
RH
1916/* The first entry in a procedure linkage table looks like
1917 this. It is set up so that any shared library function that is
59f2c4e7 1918 called before the relocation has been set up calls the dynamic
9b485d32 1919 linker first. */
e5a52504 1920static const bfd_vma elf32_arm_plt0_entry [] =
5e681ec4
PB
1921 {
1922 0xe52de004, /* str lr, [sp, #-4]! */
1923 0xe59fe010, /* ldr lr, [pc, #16] */
1924 0xe08fe00e, /* add lr, pc, lr */
1925 0xe5bef008, /* ldr pc, [lr, #8]! */
1926 };
1927
1928/* Subsequent entries in a procedure linkage table look like
1929 this. */
e5a52504 1930static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
1931 {
1932 0xe28fc600, /* add ip, pc, #NN */
1933 0xe28cca00, /* add ip, ip, #NN */
1934 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1935 0x00000000, /* unused */
1936 };
1937
1938#else
1939
5e681ec4
PB
1940/* The first entry in a procedure linkage table looks like
1941 this. It is set up so that any shared library function that is
1942 called before the relocation has been set up calls the dynamic
1943 linker first. */
e5a52504 1944static const bfd_vma elf32_arm_plt0_entry [] =
917583ad 1945 {
5e681ec4
PB
1946 0xe52de004, /* str lr, [sp, #-4]! */
1947 0xe59fe004, /* ldr lr, [pc, #4] */
1948 0xe08fe00e, /* add lr, pc, lr */
1949 0xe5bef008, /* ldr pc, [lr, #8]! */
1950 0x00000000, /* &GOT[0] - . */
917583ad 1951 };
252b5132
RH
1952
1953/* Subsequent entries in a procedure linkage table look like
1954 this. */
e5a52504 1955static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
1956 {
1957 0xe28fc600, /* add ip, pc, #0xNN00000 */
1958 0xe28cca00, /* add ip, ip, #0xNN000 */
1959 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1960 };
1961
1962#endif
252b5132 1963
00a97672
RS
1964/* The format of the first entry in the procedure linkage table
1965 for a VxWorks executable. */
1966static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1967 {
1968 0xe52dc008, /* str ip,[sp,#-8]! */
1969 0xe59fc000, /* ldr ip,[pc] */
1970 0xe59cf008, /* ldr pc,[ip,#8] */
1971 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1972 };
1973
1974/* The format of subsequent entries in a VxWorks executable. */
1975static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1976 {
1977 0xe59fc000, /* ldr ip,[pc] */
1978 0xe59cf000, /* ldr pc,[ip] */
1979 0x00000000, /* .long @got */
1980 0xe59fc000, /* ldr ip,[pc] */
1981 0xea000000, /* b _PLT */
1982 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1983 };
1984
1985/* The format of entries in a VxWorks shared library. */
1986static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1987 {
1988 0xe59fc000, /* ldr ip,[pc] */
1989 0xe79cf009, /* ldr pc,[ip,r9] */
1990 0x00000000, /* .long @got */
1991 0xe59fc000, /* ldr ip,[pc] */
1992 0xe599f008, /* ldr pc,[r9,#8] */
1993 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1994 };
1995
b7693d02
DJ
1996/* An initial stub used if the PLT entry is referenced from Thumb code. */
1997#define PLT_THUMB_STUB_SIZE 4
1998static const bfd_vma elf32_arm_plt_thumb_stub [] =
1999 {
2000 0x4778, /* bx pc */
2001 0x46c0 /* nop */
2002 };
2003
e5a52504
MM
2004/* The entries in a PLT when using a DLL-based target with multiple
2005 address spaces. */
906e58ca 2006static const bfd_vma elf32_arm_symbian_plt_entry [] =
e5a52504 2007 {
83a358aa 2008 0xe51ff004, /* ldr pc, [pc, #-4] */
e5a52504
MM
2009 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2010 };
2011
906e58ca
NC
2012#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2013#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2014#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2015#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2016#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2017#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2018
461a49ca
DJ
2019enum stub_insn_type
2020 {
2021 THUMB16_TYPE = 1,
2022 THUMB32_TYPE,
2023 ARM_TYPE,
2024 DATA_TYPE
2025 };
2026
48229727
JB
2027#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2028/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2029 is inserted in arm_build_one_stub(). */
2030#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2031#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2032#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2033#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2034#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2035#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2036
2037typedef struct
2038{
2039 bfd_vma data;
2040 enum stub_insn_type type;
ebe24dd4 2041 unsigned int r_type;
461a49ca
DJ
2042 int reloc_addend;
2043} insn_sequence;
2044
fea2b4d6
CL
2045/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2046 to reach the stub if necessary. */
461a49ca 2047static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
906e58ca 2048 {
461a49ca
DJ
2049 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2050 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2051 };
2052
fea2b4d6
CL
2053/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2054 available. */
461a49ca 2055static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
906e58ca 2056 {
461a49ca
DJ
2057 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2058 ARM_INSN(0xe12fff1c), /* bx ip */
2059 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2060 };
2061
d3626fb0 2062/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2063static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
906e58ca 2064 {
461a49ca
DJ
2065 THUMB16_INSN(0xb401), /* push {r0} */
2066 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2067 THUMB16_INSN(0x4684), /* mov ip, r0 */
2068 THUMB16_INSN(0xbc01), /* pop {r0} */
2069 THUMB16_INSN(0x4760), /* bx ip */
2070 THUMB16_INSN(0xbf00), /* nop */
2071 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2072 };
2073
d3626fb0
CL
2074/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2075 allowed. */
2076static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2077 {
2078 THUMB16_INSN(0x4778), /* bx pc */
2079 THUMB16_INSN(0x46c0), /* nop */
2080 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2081 ARM_INSN(0xe12fff1c), /* bx ip */
2082 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2083 };
2084
fea2b4d6
CL
2085/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2086 available. */
461a49ca 2087static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
906e58ca 2088 {
461a49ca
DJ
2089 THUMB16_INSN(0x4778), /* bx pc */
2090 THUMB16_INSN(0x46c0), /* nop */
2091 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2092 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2093 };
2094
fea2b4d6
CL
2095/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2096 one, when the destination is close enough. */
461a49ca 2097static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
c820be07 2098 {
461a49ca
DJ
2099 THUMB16_INSN(0x4778), /* bx pc */
2100 THUMB16_INSN(0x46c0), /* nop */
2101 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
c820be07
NC
2102 };
2103
cf3eccff 2104/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2105 blx to reach the stub if necessary. */
cf3eccff 2106static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
906e58ca 2107 {
461a49ca
DJ
2108 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2109 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2110 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
906e58ca
NC
2111 };
2112
cf3eccff
DJ
2113/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2114 blx to reach the stub if necessary. We can not add into pc;
2115 it is not guaranteed to mode switch (different in ARMv6 and
2116 ARMv7). */
2117static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2118 {
2119 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2120 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2121 ARM_INSN(0xe12fff1c), /* bx ip */
2122 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2123 };
2124
ebe24dd4
CL
2125/* V4T ARM -> ARM long branch stub, PIC. */
2126static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2127 {
2128 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2129 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2130 ARM_INSN(0xe12fff1c), /* bx ip */
2131 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2132 };
2133
2134/* V4T Thumb -> ARM long branch stub, PIC. */
2135static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2136 {
2137 THUMB16_INSN(0x4778), /* bx pc */
2138 THUMB16_INSN(0x46c0), /* nop */
2139 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2140 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2141 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2142 };
2143
d3626fb0
CL
2144/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2145 architectures. */
ebe24dd4
CL
2146static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2147 {
2148 THUMB16_INSN(0xb401), /* push {r0} */
2149 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2150 THUMB16_INSN(0x46fc), /* mov ip, pc */
2151 THUMB16_INSN(0x4484), /* add ip, r0 */
2152 THUMB16_INSN(0xbc01), /* pop {r0} */
2153 THUMB16_INSN(0x4760), /* bx ip */
2154 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2155 };
2156
d3626fb0
CL
2157/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2158 allowed. */
2159static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2160 {
2161 THUMB16_INSN(0x4778), /* bx pc */
2162 THUMB16_INSN(0x46c0), /* nop */
2163 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2164 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2165 ARM_INSN(0xe12fff1c), /* bx ip */
2166 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2167 };
2168
48229727
JB
2169/* Cortex-A8 erratum-workaround stubs. */
2170
2171/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2172 can't use a conditional branch to reach this stub). */
2173
2174static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2175 {
2176 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2177 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2178 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2179 };
2180
2181/* Stub used for b.w and bl.w instructions. */
2182
2183static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2184 {
2185 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2186 };
2187
2188static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2189 {
2190 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2191 };
2192
2193/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2194 instruction (which switches to ARM mode) to point to this stub. Jump to the
2195 real destination using an ARM-mode branch. */
2196
2197static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2198 {
2199 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2200 };
2201
906e58ca
NC
2202/* Section name for stubs is the associated section name plus this
2203 string. */
2204#define STUB_SUFFIX ".stub"
2205
738a79f6
CL
2206/* One entry per long/short branch stub defined above. */
2207#define DEF_STUBS \
2208 DEF_STUB(long_branch_any_any) \
2209 DEF_STUB(long_branch_v4t_arm_thumb) \
2210 DEF_STUB(long_branch_thumb_only) \
2211 DEF_STUB(long_branch_v4t_thumb_thumb) \
2212 DEF_STUB(long_branch_v4t_thumb_arm) \
2213 DEF_STUB(short_branch_v4t_thumb_arm) \
2214 DEF_STUB(long_branch_any_arm_pic) \
2215 DEF_STUB(long_branch_any_thumb_pic) \
2216 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2217 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727
JB
2219 DEF_STUB(long_branch_thumb_only_pic) \
2220 DEF_STUB(a8_veneer_b_cond) \
2221 DEF_STUB(a8_veneer_b) \
2222 DEF_STUB(a8_veneer_bl) \
2223 DEF_STUB(a8_veneer_blx)
738a79f6
CL
2224
2225#define DEF_STUB(x) arm_stub_##x,
2226enum elf32_arm_stub_type {
906e58ca 2227 arm_stub_none,
738a79f6 2228 DEF_STUBS
eb7c4339
NS
2229 /* Note the first a8_veneer type */
2230 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
738a79f6
CL
2231};
2232#undef DEF_STUB
2233
2234typedef struct
2235{
d3ce72d0 2236 const insn_sequence* template_sequence;
738a79f6
CL
2237 int template_size;
2238} stub_def;
2239
2240#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2241static const stub_def stub_definitions[] = {
2242 {NULL, 0},
2243 DEF_STUBS
906e58ca
NC
2244};
2245
2246struct elf32_arm_stub_hash_entry
2247{
2248 /* Base hash table entry structure. */
2249 struct bfd_hash_entry root;
2250
2251 /* The stub section. */
2252 asection *stub_sec;
2253
2254 /* Offset within stub_sec of the beginning of this stub. */
2255 bfd_vma stub_offset;
2256
2257 /* Given the symbol's value and its section we can determine its final
2258 value when building the stubs (so the stub knows where to jump). */
2259 bfd_vma target_value;
2260 asection *target_section;
2261
48229727
JB
2262 /* Offset to apply to relocation referencing target_value. */
2263 bfd_vma target_addend;
2264
2265 /* The instruction which caused this stub to be generated (only valid for
2266 Cortex-A8 erratum workaround stubs at present). */
2267 unsigned long orig_insn;
2268
461a49ca 2269 /* The stub type. */
906e58ca 2270 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2271 /* Its encoding size in bytes. */
2272 int stub_size;
2273 /* Its template. */
2274 const insn_sequence *stub_template;
2275 /* The size of the template (number of entries). */
2276 int stub_template_size;
906e58ca
NC
2277
2278 /* The symbol table entry, if any, that this was derived from. */
2279 struct elf32_arm_link_hash_entry *h;
2280
2281 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2282 unsigned char st_type;
2283
2284 /* Where this stub is being called from, or, in the case of combined
2285 stub sections, the first input section in the group. */
2286 asection *id_sec;
7413f23f
DJ
2287
2288 /* The name for the local symbol at the start of this stub. The
2289 stub name in the hash table has to be unique; this does not, so
2290 it can be friendlier. */
2291 char *output_name;
906e58ca
NC
2292};
2293
e489d0ae
PB
2294/* Used to build a map of a section. This is required for mixed-endian
2295 code/data. */
2296
2297typedef struct elf32_elf_section_map
2298{
2299 bfd_vma vma;
2300 char type;
2301}
2302elf32_arm_section_map;
2303
c7b8f16e
JB
2304/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2305
2306typedef enum
2307{
2308 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2309 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2310 VFP11_ERRATUM_ARM_VENEER,
2311 VFP11_ERRATUM_THUMB_VENEER
2312}
2313elf32_vfp11_erratum_type;
2314
2315typedef struct elf32_vfp11_erratum_list
2316{
2317 struct elf32_vfp11_erratum_list *next;
2318 bfd_vma vma;
2319 union
2320 {
2321 struct
2322 {
2323 struct elf32_vfp11_erratum_list *veneer;
2324 unsigned int vfp_insn;
2325 } b;
2326 struct
2327 {
2328 struct elf32_vfp11_erratum_list *branch;
2329 unsigned int id;
2330 } v;
2331 } u;
2332 elf32_vfp11_erratum_type type;
2333}
2334elf32_vfp11_erratum_list;
2335
2468f9c9
PB
2336typedef enum
2337{
2338 DELETE_EXIDX_ENTRY,
2339 INSERT_EXIDX_CANTUNWIND_AT_END
2340}
2341arm_unwind_edit_type;
2342
2343/* A (sorted) list of edits to apply to an unwind table. */
2344typedef struct arm_unwind_table_edit
2345{
2346 arm_unwind_edit_type type;
2347 /* Note: we sometimes want to insert an unwind entry corresponding to a
2348 section different from the one we're currently writing out, so record the
2349 (text) section this edit relates to here. */
2350 asection *linked_section;
2351 unsigned int index;
2352 struct arm_unwind_table_edit *next;
2353}
2354arm_unwind_table_edit;
2355
8e3de13a 2356typedef struct _arm_elf_section_data
e489d0ae 2357{
2468f9c9 2358 /* Information about mapping symbols. */
e489d0ae 2359 struct bfd_elf_section_data elf;
8e3de13a 2360 unsigned int mapcount;
c7b8f16e 2361 unsigned int mapsize;
e489d0ae 2362 elf32_arm_section_map *map;
2468f9c9 2363 /* Information about CPU errata. */
c7b8f16e
JB
2364 unsigned int erratumcount;
2365 elf32_vfp11_erratum_list *erratumlist;
2468f9c9
PB
2366 /* Information about unwind tables. */
2367 union
2368 {
2369 /* Unwind info attached to a text section. */
2370 struct
2371 {
2372 asection *arm_exidx_sec;
2373 } text;
2374
2375 /* Unwind info attached to an .ARM.exidx section. */
2376 struct
2377 {
2378 arm_unwind_table_edit *unwind_edit_list;
2379 arm_unwind_table_edit *unwind_edit_tail;
2380 } exidx;
2381 } u;
8e3de13a
NC
2382}
2383_arm_elf_section_data;
e489d0ae
PB
2384
2385#define elf32_arm_section_data(sec) \
8e3de13a 2386 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2387
48229727
JB
2388/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2389 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2390 so may be created multiple times: we use an array of these entries whilst
2391 relaxing which we can refresh easily, then create stubs for each potentially
2392 erratum-triggering instruction once we've settled on a solution. */
2393
2394struct a8_erratum_fix {
2395 bfd *input_bfd;
2396 asection *section;
2397 bfd_vma offset;
2398 bfd_vma addend;
2399 unsigned long orig_insn;
2400 char *stub_name;
2401 enum elf32_arm_stub_type stub_type;
2402};
2403
2404/* A table of relocs applied to branches which might trigger Cortex-A8
2405 erratum. */
2406
2407struct a8_erratum_reloc {
2408 bfd_vma from;
2409 bfd_vma destination;
2410 unsigned int r_type;
2411 unsigned char st_type;
2412 const char *sym_name;
2413 bfd_boolean non_a8_stub;
2414};
2415
ba93b8ac
DJ
2416/* The size of the thread control block. */
2417#define TCB_SIZE 8
2418
0ffa91dd 2419struct elf_arm_obj_tdata
ba93b8ac
DJ
2420{
2421 struct elf_obj_tdata root;
2422
2423 /* tls_type for each local got entry. */
2424 char *local_got_tls_type;
ee065d83 2425
bf21ed78
MS
2426 /* Zero to warn when linking objects with incompatible enum sizes. */
2427 int no_enum_size_warning;
a9dc9481
JM
2428
2429 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2430 int no_wchar_size_warning;
ba93b8ac
DJ
2431};
2432
0ffa91dd
NC
2433#define elf_arm_tdata(bfd) \
2434 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2435
0ffa91dd
NC
2436#define elf32_arm_local_got_tls_type(bfd) \
2437 (elf_arm_tdata (bfd)->local_got_tls_type)
2438
2439#define is_arm_elf(bfd) \
2440 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2441 && elf_tdata (bfd) != NULL \
2442 && elf_object_id (bfd) == ARM_ELF_TDATA)
ba93b8ac
DJ
2443
2444static bfd_boolean
2445elf32_arm_mkobject (bfd *abfd)
2446{
0ffa91dd
NC
2447 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2448 ARM_ELF_TDATA);
ba93b8ac
DJ
2449}
2450
252b5132
RH
2451/* The ARM linker needs to keep track of the number of relocs that it
2452 decides to copy in check_relocs for each symbol. This is so that
2453 it can discard PC relative relocs if it doesn't need them when
2454 linking with -Bsymbolic. We store the information in a field
2455 extending the regular ELF linker hash table. */
2456
ba93b8ac
DJ
2457/* This structure keeps track of the number of relocs we have copied
2458 for a given symbol. */
5e681ec4 2459struct elf32_arm_relocs_copied
917583ad
NC
2460 {
2461 /* Next section. */
5e681ec4 2462 struct elf32_arm_relocs_copied * next;
917583ad
NC
2463 /* A section in dynobj. */
2464 asection * section;
2465 /* Number of relocs copied in this section. */
2466 bfd_size_type count;
ba93b8ac
DJ
2467 /* Number of PC-relative relocs copied in this section. */
2468 bfd_size_type pc_count;
917583ad 2469 };
252b5132 2470
ba93b8ac
DJ
2471#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2472
ba96a88f 2473/* Arm ELF linker hash entry. */
252b5132 2474struct elf32_arm_link_hash_entry
917583ad
NC
2475 {
2476 struct elf_link_hash_entry root;
252b5132 2477
917583ad 2478 /* Number of PC relative relocs copied for this symbol. */
5e681ec4 2479 struct elf32_arm_relocs_copied * relocs_copied;
b7693d02
DJ
2480
2481 /* We reference count Thumb references to a PLT entry separately,
2482 so that we can emit the Thumb trampoline only if needed. */
2483 bfd_signed_vma plt_thumb_refcount;
2484
bd97cb95
DJ
2485 /* Some references from Thumb code may be eliminated by BL->BLX
2486 conversion, so record them separately. */
2487 bfd_signed_vma plt_maybe_thumb_refcount;
2488
b7693d02
DJ
2489 /* Since PLT entries have variable size if the Thumb prologue is
2490 used, we need to record the index into .got.plt instead of
2491 recomputing it from the PLT offset. */
2492 bfd_signed_vma plt_got_offset;
ba93b8ac
DJ
2493
2494#define GOT_UNKNOWN 0
2495#define GOT_NORMAL 1
2496#define GOT_TLS_GD 2
2497#define GOT_TLS_IE 4
2498 unsigned char tls_type;
a4fd1a8e
PB
2499
2500 /* The symbol marking the real symbol location for exported thumb
2501 symbols with Arm stubs. */
2502 struct elf_link_hash_entry *export_glue;
906e58ca 2503
da5938a2 2504 /* A pointer to the most recently used stub hash entry against this
8029a119 2505 symbol. */
da5938a2 2506 struct elf32_arm_stub_hash_entry *stub_cache;
917583ad 2507 };
252b5132 2508
252b5132 2509/* Traverse an arm ELF linker hash table. */
252b5132
RH
2510#define elf32_arm_link_hash_traverse(table, func, info) \
2511 (elf_link_hash_traverse \
2512 (&(table)->root, \
b7693d02 2513 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
2514 (info)))
2515
2516/* Get the ARM elf linker hash table from a link_info structure. */
2517#define elf32_arm_hash_table(info) \
2518 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2519
906e58ca
NC
2520#define arm_stub_hash_lookup(table, string, create, copy) \
2521 ((struct elf32_arm_stub_hash_entry *) \
2522 bfd_hash_lookup ((table), (string), (create), (copy)))
2523
21d799b5
NC
2524/* Array to keep track of which stub sections have been created, and
2525 information on stub grouping. */
2526struct map_stub
2527{
2528 /* This is the section to which stubs in the group will be
2529 attached. */
2530 asection *link_sec;
2531 /* The stub section. */
2532 asection *stub_sec;
2533};
2534
9b485d32 2535/* ARM ELF linker hash table. */
252b5132 2536struct elf32_arm_link_hash_table
906e58ca
NC
2537{
2538 /* The main hash table. */
2539 struct elf_link_hash_table root;
252b5132 2540
906e58ca
NC
2541 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2542 bfd_size_type thumb_glue_size;
252b5132 2543
906e58ca
NC
2544 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2545 bfd_size_type arm_glue_size;
252b5132 2546
906e58ca
NC
2547 /* The size in bytes of section containing the ARMv4 BX veneers. */
2548 bfd_size_type bx_glue_size;
845b51d6 2549
906e58ca
NC
2550 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2551 veneer has been populated. */
2552 bfd_vma bx_glue_offset[15];
845b51d6 2553
906e58ca
NC
2554 /* The size in bytes of the section containing glue for VFP11 erratum
2555 veneers. */
2556 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 2557
48229727
JB
2558 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2559 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2560 elf32_arm_write_section(). */
2561 struct a8_erratum_fix *a8_erratum_fixes;
2562 unsigned int num_a8_erratum_fixes;
2563
906e58ca
NC
2564 /* An arbitrary input BFD chosen to hold the glue sections. */
2565 bfd * bfd_of_glue_owner;
ba96a88f 2566
906e58ca
NC
2567 /* Nonzero to output a BE8 image. */
2568 int byteswap_code;
e489d0ae 2569
906e58ca
NC
2570 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2571 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2572 int target1_is_rel;
9c504268 2573
906e58ca
NC
2574 /* The relocation to use for R_ARM_TARGET2 relocations. */
2575 int target2_reloc;
eb043451 2576
906e58ca
NC
2577 /* 0 = Ignore R_ARM_V4BX.
2578 1 = Convert BX to MOV PC.
2579 2 = Generate v4 interworing stubs. */
2580 int fix_v4bx;
319850b4 2581
48229727
JB
2582 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2583 int fix_cortex_a8;
2584
906e58ca
NC
2585 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2586 int use_blx;
33bfe774 2587
906e58ca
NC
2588 /* What sort of code sequences we should look for which may trigger the
2589 VFP11 denorm erratum. */
2590 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 2591
906e58ca
NC
2592 /* Global counter for the number of fixes we have emitted. */
2593 int num_vfp11_fixes;
c7b8f16e 2594
906e58ca
NC
2595 /* Nonzero to force PIC branch veneers. */
2596 int pic_veneer;
27e55c4d 2597
906e58ca
NC
2598 /* The number of bytes in the initial entry in the PLT. */
2599 bfd_size_type plt_header_size;
e5a52504 2600
906e58ca
NC
2601 /* The number of bytes in the subsequent PLT etries. */
2602 bfd_size_type plt_entry_size;
e5a52504 2603
906e58ca
NC
2604 /* True if the target system is VxWorks. */
2605 int vxworks_p;
00a97672 2606
906e58ca
NC
2607 /* True if the target system is Symbian OS. */
2608 int symbian_p;
e5a52504 2609
906e58ca
NC
2610 /* True if the target uses REL relocations. */
2611 int use_rel;
4e7fd91e 2612
906e58ca
NC
2613 /* Short-cuts to get to dynamic linker sections. */
2614 asection *sgot;
2615 asection *sgotplt;
2616 asection *srelgot;
2617 asection *splt;
2618 asection *srelplt;
2619 asection *sdynbss;
2620 asection *srelbss;
5e681ec4 2621
906e58ca
NC
2622 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2623 asection *srelplt2;
00a97672 2624
906e58ca
NC
2625 /* Data for R_ARM_TLS_LDM32 relocations. */
2626 union
2627 {
2628 bfd_signed_vma refcount;
2629 bfd_vma offset;
2630 } tls_ldm_got;
b7693d02 2631
87d72d41
AM
2632 /* Small local sym cache. */
2633 struct sym_cache sym_cache;
906e58ca
NC
2634
2635 /* For convenience in allocate_dynrelocs. */
2636 bfd * obfd;
2637
2638 /* The stub hash table. */
2639 struct bfd_hash_table stub_hash_table;
2640
2641 /* Linker stub bfd. */
2642 bfd *stub_bfd;
2643
2644 /* Linker call-backs. */
2645 asection * (*add_stub_section) (const char *, asection *);
2646 void (*layout_sections_again) (void);
2647
2648 /* Array to keep track of which stub sections have been created, and
2649 information on stub grouping. */
21d799b5 2650 struct map_stub *stub_group;
906e58ca
NC
2651
2652 /* Assorted information used by elf32_arm_size_stubs. */
2653 unsigned int bfd_count;
2654 int top_index;
2655 asection **input_list;
2656};
252b5132 2657
780a67af
NC
2658/* Create an entry in an ARM ELF linker hash table. */
2659
2660static struct bfd_hash_entry *
57e8b36a
NC
2661elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2662 struct bfd_hash_table * table,
2663 const char * string)
780a67af
NC
2664{
2665 struct elf32_arm_link_hash_entry * ret =
2666 (struct elf32_arm_link_hash_entry *) entry;
2667
2668 /* Allocate the structure if it has not already been allocated by a
2669 subclass. */
906e58ca 2670 if (ret == NULL)
21d799b5
NC
2671 ret = (struct elf32_arm_link_hash_entry *)
2672 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 2673 if (ret == NULL)
780a67af
NC
2674 return (struct bfd_hash_entry *) ret;
2675
2676 /* Call the allocation method of the superclass. */
2677 ret = ((struct elf32_arm_link_hash_entry *)
2678 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2679 table, string));
57e8b36a 2680 if (ret != NULL)
b7693d02
DJ
2681 {
2682 ret->relocs_copied = NULL;
ba93b8ac 2683 ret->tls_type = GOT_UNKNOWN;
b7693d02 2684 ret->plt_thumb_refcount = 0;
bd97cb95 2685 ret->plt_maybe_thumb_refcount = 0;
b7693d02 2686 ret->plt_got_offset = -1;
a4fd1a8e 2687 ret->export_glue = NULL;
906e58ca
NC
2688
2689 ret->stub_cache = NULL;
b7693d02 2690 }
780a67af
NC
2691
2692 return (struct bfd_hash_entry *) ret;
2693}
2694
906e58ca
NC
2695/* Initialize an entry in the stub hash table. */
2696
2697static struct bfd_hash_entry *
2698stub_hash_newfunc (struct bfd_hash_entry *entry,
2699 struct bfd_hash_table *table,
2700 const char *string)
2701{
2702 /* Allocate the structure if it has not already been allocated by a
2703 subclass. */
2704 if (entry == NULL)
2705 {
21d799b5
NC
2706 entry = (struct bfd_hash_entry *)
2707 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
2708 if (entry == NULL)
2709 return entry;
2710 }
2711
2712 /* Call the allocation method of the superclass. */
2713 entry = bfd_hash_newfunc (entry, table, string);
2714 if (entry != NULL)
2715 {
2716 struct elf32_arm_stub_hash_entry *eh;
2717
2718 /* Initialize the local fields. */
2719 eh = (struct elf32_arm_stub_hash_entry *) entry;
2720 eh->stub_sec = NULL;
2721 eh->stub_offset = 0;
2722 eh->target_value = 0;
2723 eh->target_section = NULL;
cedfb179
DK
2724 eh->target_addend = 0;
2725 eh->orig_insn = 0;
906e58ca 2726 eh->stub_type = arm_stub_none;
461a49ca
DJ
2727 eh->stub_size = 0;
2728 eh->stub_template = NULL;
2729 eh->stub_template_size = 0;
906e58ca
NC
2730 eh->h = NULL;
2731 eh->id_sec = NULL;
d8d2f433 2732 eh->output_name = NULL;
906e58ca
NC
2733 }
2734
2735 return entry;
2736}
2737
00a97672 2738/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
2739 shortcuts to them in our hash table. */
2740
2741static bfd_boolean
57e8b36a 2742create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2743{
2744 struct elf32_arm_link_hash_table *htab;
2745
e5a52504
MM
2746 htab = elf32_arm_hash_table (info);
2747 /* BPABI objects never have a GOT, or associated sections. */
2748 if (htab->symbian_p)
2749 return TRUE;
2750
5e681ec4
PB
2751 if (! _bfd_elf_create_got_section (dynobj, info))
2752 return FALSE;
2753
5e681ec4
PB
2754 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2755 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2756 if (!htab->sgot || !htab->sgotplt)
2757 abort ();
2758
64e77c6d
L
2759 htab->srelgot = bfd_get_section_by_name (dynobj,
2760 RELOC_SECTION (htab, ".got"));
2761 if (htab->srelgot == NULL)
5e681ec4
PB
2762 return FALSE;
2763 return TRUE;
2764}
2765
00a97672
RS
2766/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2767 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
2768 hash table. */
2769
2770static bfd_boolean
57e8b36a 2771elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2772{
2773 struct elf32_arm_link_hash_table *htab;
2774
2775 htab = elf32_arm_hash_table (info);
2776 if (!htab->sgot && !create_got_section (dynobj, info))
2777 return FALSE;
2778
2779 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2780 return FALSE;
2781
2782 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
00a97672
RS
2783 htab->srelplt = bfd_get_section_by_name (dynobj,
2784 RELOC_SECTION (htab, ".plt"));
5e681ec4
PB
2785 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2786 if (!info->shared)
00a97672
RS
2787 htab->srelbss = bfd_get_section_by_name (dynobj,
2788 RELOC_SECTION (htab, ".bss"));
2789
2790 if (htab->vxworks_p)
2791 {
2792 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2793 return FALSE;
2794
2795 if (info->shared)
2796 {
2797 htab->plt_header_size = 0;
2798 htab->plt_entry_size
2799 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2800 }
2801 else
2802 {
2803 htab->plt_header_size
2804 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2805 htab->plt_entry_size
2806 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2807 }
2808 }
5e681ec4 2809
906e58ca 2810 if (!htab->splt
e5a52504
MM
2811 || !htab->srelplt
2812 || !htab->sdynbss
5e681ec4
PB
2813 || (!info->shared && !htab->srelbss))
2814 abort ();
2815
2816 return TRUE;
2817}
2818
906e58ca
NC
2819/* Copy the extra info we tack onto an elf_link_hash_entry. */
2820
2821static void
2822elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2823 struct elf_link_hash_entry *dir,
2824 struct elf_link_hash_entry *ind)
2825{
2826 struct elf32_arm_link_hash_entry *edir, *eind;
2827
2828 edir = (struct elf32_arm_link_hash_entry *) dir;
2829 eind = (struct elf32_arm_link_hash_entry *) ind;
2830
2831 if (eind->relocs_copied != NULL)
2832 {
2833 if (edir->relocs_copied != NULL)
2834 {
2835 struct elf32_arm_relocs_copied **pp;
2836 struct elf32_arm_relocs_copied *p;
2837
2838 /* Add reloc counts against the indirect sym to the direct sym
2839 list. Merge any entries against the same section. */
2840 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2841 {
2842 struct elf32_arm_relocs_copied *q;
2843
2844 for (q = edir->relocs_copied; q != NULL; q = q->next)
2845 if (q->section == p->section)
2846 {
2847 q->pc_count += p->pc_count;
2848 q->count += p->count;
2849 *pp = p->next;
2850 break;
2851 }
2852 if (q == NULL)
2853 pp = &p->next;
2854 }
2855 *pp = edir->relocs_copied;
2856 }
2857
2858 edir->relocs_copied = eind->relocs_copied;
2859 eind->relocs_copied = NULL;
2860 }
2861
2862 if (ind->root.type == bfd_link_hash_indirect)
2863 {
2864 /* Copy over PLT info. */
2865 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2866 eind->plt_thumb_refcount = 0;
2867 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2868 eind->plt_maybe_thumb_refcount = 0;
2869
2870 if (dir->got.refcount <= 0)
2871 {
2872 edir->tls_type = eind->tls_type;
2873 eind->tls_type = GOT_UNKNOWN;
2874 }
2875 }
2876
2877 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2878}
2879
2880/* Create an ARM elf linker hash table. */
2881
2882static struct bfd_link_hash_table *
2883elf32_arm_link_hash_table_create (bfd *abfd)
2884{
2885 struct elf32_arm_link_hash_table *ret;
2886 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2887
21d799b5 2888 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
906e58ca
NC
2889 if (ret == NULL)
2890 return NULL;
2891
2892 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2893 elf32_arm_link_hash_newfunc,
2894 sizeof (struct elf32_arm_link_hash_entry)))
2895 {
2896 free (ret);
2897 return NULL;
2898 }
2899
2900 ret->sgot = NULL;
2901 ret->sgotplt = NULL;
2902 ret->srelgot = NULL;
2903 ret->splt = NULL;
2904 ret->srelplt = NULL;
2905 ret->sdynbss = NULL;
2906 ret->srelbss = NULL;
2907 ret->srelplt2 = NULL;
2908 ret->thumb_glue_size = 0;
2909 ret->arm_glue_size = 0;
2910 ret->bx_glue_size = 0;
2911 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2912 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2913 ret->vfp11_erratum_glue_size = 0;
2914 ret->num_vfp11_fixes = 0;
48229727 2915 ret->fix_cortex_a8 = 0;
906e58ca
NC
2916 ret->bfd_of_glue_owner = NULL;
2917 ret->byteswap_code = 0;
2918 ret->target1_is_rel = 0;
2919 ret->target2_reloc = R_ARM_NONE;
2920#ifdef FOUR_WORD_PLT
2921 ret->plt_header_size = 16;
2922 ret->plt_entry_size = 16;
2923#else
2924 ret->plt_header_size = 20;
2925 ret->plt_entry_size = 12;
2926#endif
2927 ret->fix_v4bx = 0;
2928 ret->use_blx = 0;
2929 ret->vxworks_p = 0;
2930 ret->symbian_p = 0;
2931 ret->use_rel = 1;
87d72d41 2932 ret->sym_cache.abfd = NULL;
906e58ca
NC
2933 ret->obfd = abfd;
2934 ret->tls_ldm_got.refcount = 0;
6cee0a6f
L
2935 ret->stub_bfd = NULL;
2936 ret->add_stub_section = NULL;
2937 ret->layout_sections_again = NULL;
2938 ret->stub_group = NULL;
2939 ret->bfd_count = 0;
2940 ret->top_index = 0;
2941 ret->input_list = NULL;
906e58ca
NC
2942
2943 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2944 sizeof (struct elf32_arm_stub_hash_entry)))
2945 {
2946 free (ret);
2947 return NULL;
2948 }
2949
2950 return &ret->root.root;
2951}
2952
2953/* Free the derived linker hash table. */
2954
2955static void
2956elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2957{
2958 struct elf32_arm_link_hash_table *ret
2959 = (struct elf32_arm_link_hash_table *) hash;
2960
2961 bfd_hash_table_free (&ret->stub_hash_table);
2962 _bfd_generic_link_hash_table_free (hash);
2963}
2964
2965/* Determine if we're dealing with a Thumb only architecture. */
2966
2967static bfd_boolean
2968using_thumb_only (struct elf32_arm_link_hash_table *globals)
2969{
2970 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2971 Tag_CPU_arch);
2972 int profile;
2973
2974 if (arch != TAG_CPU_ARCH_V7)
2975 return FALSE;
2976
2977 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2978 Tag_CPU_arch_profile);
2979
2980 return profile == 'M';
2981}
2982
2983/* Determine if we're dealing with a Thumb-2 object. */
2984
2985static bfd_boolean
2986using_thumb2 (struct elf32_arm_link_hash_table *globals)
2987{
2988 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2989 Tag_CPU_arch);
2990 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2991}
2992
cd1dac3d
DG
2993/* Determine what kind of NOPs are available. */
2994
2995static bfd_boolean
2996arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
2997{
2998 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2999 Tag_CPU_arch);
3000 return arch == TAG_CPU_ARCH_V6T2
3001 || arch == TAG_CPU_ARCH_V6K
3002 || arch == TAG_CPU_ARCH_V7;
3003}
3004
3005static bfd_boolean
3006arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3007{
3008 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3009 Tag_CPU_arch);
3010 return arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7;
3011}
3012
f4ac8484
DJ
3013static bfd_boolean
3014arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3015{
3016 switch (stub_type)
3017 {
fea2b4d6
CL
3018 case arm_stub_long_branch_thumb_only:
3019 case arm_stub_long_branch_v4t_thumb_arm:
3020 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4
CL
3021 case arm_stub_long_branch_v4t_thumb_arm_pic:
3022 case arm_stub_long_branch_thumb_only_pic:
f4ac8484
DJ
3023 return TRUE;
3024 case arm_stub_none:
3025 BFD_FAIL ();
3026 return FALSE;
3027 break;
3028 default:
3029 return FALSE;
3030 }
3031}
3032
906e58ca
NC
3033/* Determine the type of stub needed, if any, for a call. */
3034
3035static enum elf32_arm_stub_type
3036arm_type_of_stub (struct bfd_link_info *info,
3037 asection *input_sec,
3038 const Elf_Internal_Rela *rel,
3039 unsigned char st_type,
3040 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
3041 bfd_vma destination,
3042 asection *sym_sec,
3043 bfd *input_bfd,
3044 const char *name)
906e58ca
NC
3045{
3046 bfd_vma location;
3047 bfd_signed_vma branch_offset;
3048 unsigned int r_type;
3049 struct elf32_arm_link_hash_table * globals;
3050 int thumb2;
3051 int thumb_only;
3052 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 3053 int use_plt = 0;
906e58ca 3054
da5938a2 3055 /* We don't know the actual type of destination in case it is of
8029a119 3056 type STT_SECTION: give up. */
da5938a2
NC
3057 if (st_type == STT_SECTION)
3058 return stub_type;
3059
906e58ca
NC
3060 globals = elf32_arm_hash_table (info);
3061
3062 thumb_only = using_thumb_only (globals);
3063
3064 thumb2 = using_thumb2 (globals);
3065
3066 /* Determine where the call point is. */
3067 location = (input_sec->output_offset
3068 + input_sec->output_section->vma
3069 + rel->r_offset);
3070
3071 branch_offset = (bfd_signed_vma)(destination - location);
3072
3073 r_type = ELF32_R_TYPE (rel->r_info);
3074
5fa9e92f 3075 /* Keep a simpler condition, for the sake of clarity. */
329dcd78 3076 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
5fa9e92f
CL
3077 {
3078 use_plt = 1;
3079 /* Note when dealing with PLT entries: the main PLT stub is in
3080 ARM mode, so if the branch is in Thumb mode, another
3081 Thumb->ARM stub will be inserted later just before the ARM
3082 PLT stub. We don't take this extra distance into account
3083 here, because if a long branch stub is needed, we'll add a
3084 Thumb->Arm one and branch directly to the ARM PLT entry
3085 because it avoids spreading offset corrections in several
3086 places. */
3087 }
906e58ca 3088
155d87d7 3089 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca 3090 {
5fa9e92f
CL
3091 /* Handle cases where:
3092 - this call goes too far (different Thumb/Thumb2 max
3093 distance)
155d87d7
CL
3094 - it's a Thumb->Arm call and blx is not available, or it's a
3095 Thumb->Arm branch (not bl). A stub is needed in this case,
3096 but only if this call is not through a PLT entry. Indeed,
3097 PLT stubs handle mode switching already.
5fa9e92f 3098 */
906e58ca
NC
3099 if ((!thumb2
3100 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3101 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3102 || (thumb2
3103 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3104 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
5fa9e92f 3105 || ((st_type != STT_ARM_TFUNC)
155d87d7
CL
3106 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
3107 || (r_type == R_ARM_THM_JUMP24))
5fa9e92f 3108 && !use_plt))
906e58ca
NC
3109 {
3110 if (st_type == STT_ARM_TFUNC)
3111 {
3112 /* Thumb to thumb. */
3113 if (!thumb_only)
3114 {
3115 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3116 /* PIC stubs. */
155d87d7
CL
3117 ? ((globals->use_blx
3118 && (r_type ==R_ARM_THM_CALL))
3119 /* V5T and above. Stub starts with ARM code, so
3120 we must be able to switch mode before
3121 reaching it, which is only possible for 'bl'
3122 (ie R_ARM_THM_CALL relocation). */
cf3eccff 3123 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 3124 /* On V4T, use Thumb code only. */
d3626fb0 3125 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
3126
3127 /* non-PIC stubs. */
155d87d7
CL
3128 : ((globals->use_blx
3129 && (r_type ==R_ARM_THM_CALL))
c2b4a39d
CL
3130 /* V5T and above. */
3131 ? arm_stub_long_branch_any_any
3132 /* V4T. */
d3626fb0 3133 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
3134 }
3135 else
3136 {
3137 stub_type = (info->shared | globals->pic_veneer)
ebe24dd4
CL
3138 /* PIC stub. */
3139 ? arm_stub_long_branch_thumb_only_pic
c2b4a39d
CL
3140 /* non-PIC stub. */
3141 : arm_stub_long_branch_thumb_only;
906e58ca
NC
3142 }
3143 }
3144 else
3145 {
3146 /* Thumb to arm. */
c820be07
NC
3147 if (sym_sec != NULL
3148 && sym_sec->owner != NULL
3149 && !INTERWORK_FLAG (sym_sec->owner))
3150 {
3151 (*_bfd_error_handler)
3152 (_("%B(%s): warning: interworking not enabled.\n"
3153 " first occurrence: %B: Thumb call to ARM"),
3154 sym_sec->owner, input_bfd, name);
3155 }
3156
906e58ca 3157 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3158 /* PIC stubs. */
155d87d7
CL
3159 ? ((globals->use_blx
3160 && (r_type ==R_ARM_THM_CALL))
c2b4a39d 3161 /* V5T and above. */
cf3eccff 3162 ? arm_stub_long_branch_any_arm_pic
ebe24dd4
CL
3163 /* V4T PIC stub. */
3164 : arm_stub_long_branch_v4t_thumb_arm_pic)
c2b4a39d
CL
3165
3166 /* non-PIC stubs. */
155d87d7
CL
3167 : ((globals->use_blx
3168 && (r_type ==R_ARM_THM_CALL))
c2b4a39d
CL
3169 /* V5T and above. */
3170 ? arm_stub_long_branch_any_any
3171 /* V4T. */
3172 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
3173
3174 /* Handle v4t short branches. */
fea2b4d6 3175 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
3176 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3177 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 3178 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
3179 }
3180 }
3181 }
155d87d7 3182 else if (r_type == R_ARM_CALL || r_type == R_ARM_JUMP24 || r_type == R_ARM_PLT32)
906e58ca
NC
3183 {
3184 if (st_type == STT_ARM_TFUNC)
3185 {
3186 /* Arm to thumb. */
c820be07
NC
3187
3188 if (sym_sec != NULL
3189 && sym_sec->owner != NULL
3190 && !INTERWORK_FLAG (sym_sec->owner))
3191 {
3192 (*_bfd_error_handler)
3193 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 3194 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
3195 sym_sec->owner, input_bfd, name);
3196 }
3197
3198 /* We have an extra 2-bytes reach because of
3199 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
3200 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3201 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3202 || ((r_type == R_ARM_CALL) && !globals->use_blx)
3203 || (r_type == R_ARM_JUMP24)
3204 || (r_type == R_ARM_PLT32))
906e58ca
NC
3205 {
3206 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3207 /* PIC stubs. */
ebe24dd4
CL
3208 ? ((globals->use_blx)
3209 /* V5T and above. */
3210 ? arm_stub_long_branch_any_thumb_pic
3211 /* V4T stub. */
3212 : arm_stub_long_branch_v4t_arm_thumb_pic)
3213
c2b4a39d
CL
3214 /* non-PIC stubs. */
3215 : ((globals->use_blx)
3216 /* V5T and above. */
3217 ? arm_stub_long_branch_any_any
3218 /* V4T. */
3219 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
3220 }
3221 }
3222 else
3223 {
3224 /* Arm to arm. */
3225 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3226 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3227 {
3228 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3229 /* PIC stubs. */
cf3eccff 3230 ? arm_stub_long_branch_any_arm_pic
c2b4a39d 3231 /* non-PIC stubs. */
fea2b4d6 3232 : arm_stub_long_branch_any_any;
906e58ca
NC
3233 }
3234 }
3235 }
3236
3237 return stub_type;
3238}
3239
3240/* Build a name for an entry in the stub hash table. */
3241
3242static char *
3243elf32_arm_stub_name (const asection *input_section,
3244 const asection *sym_sec,
3245 const struct elf32_arm_link_hash_entry *hash,
3246 const Elf_Internal_Rela *rel)
3247{
3248 char *stub_name;
3249 bfd_size_type len;
3250
3251 if (hash)
3252 {
3253 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
21d799b5 3254 stub_name = (char *) bfd_malloc (len);
906e58ca
NC
3255 if (stub_name != NULL)
3256 sprintf (stub_name, "%08x_%s+%x",
3257 input_section->id & 0xffffffff,
3258 hash->root.root.root.string,
3259 (int) rel->r_addend & 0xffffffff);
3260 }
3261 else
3262 {
3263 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
21d799b5 3264 stub_name = (char *) bfd_malloc (len);
906e58ca
NC
3265 if (stub_name != NULL)
3266 sprintf (stub_name, "%08x_%x:%x+%x",
3267 input_section->id & 0xffffffff,
3268 sym_sec->id & 0xffffffff,
3269 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3270 (int) rel->r_addend & 0xffffffff);
3271 }
3272
3273 return stub_name;
3274}
3275
3276/* Look up an entry in the stub hash. Stub entries are cached because
3277 creating the stub name takes a bit of time. */
3278
3279static struct elf32_arm_stub_hash_entry *
3280elf32_arm_get_stub_entry (const asection *input_section,
3281 const asection *sym_sec,
3282 struct elf_link_hash_entry *hash,
3283 const Elf_Internal_Rela *rel,
3284 struct elf32_arm_link_hash_table *htab)
3285{
3286 struct elf32_arm_stub_hash_entry *stub_entry;
3287 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3288 const asection *id_sec;
3289
3290 if ((input_section->flags & SEC_CODE) == 0)
3291 return NULL;
3292
3293 /* If this input section is part of a group of sections sharing one
3294 stub section, then use the id of the first section in the group.
3295 Stub names need to include a section id, as there may well be
3296 more than one stub used to reach say, printf, and we need to
3297 distinguish between them. */
3298 id_sec = htab->stub_group[input_section->id].link_sec;
3299
3300 if (h != NULL && h->stub_cache != NULL
3301 && h->stub_cache->h == h
3302 && h->stub_cache->id_sec == id_sec)
3303 {
3304 stub_entry = h->stub_cache;
3305 }
3306 else
3307 {
3308 char *stub_name;
3309
3310 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3311 if (stub_name == NULL)
3312 return NULL;
3313
3314 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3315 stub_name, FALSE, FALSE);
3316 if (h != NULL)
3317 h->stub_cache = stub_entry;
3318
3319 free (stub_name);
3320 }
3321
3322 return stub_entry;
3323}
3324
48229727
JB
3325/* Find or create a stub section. Returns a pointer to the stub section, and
3326 the section to which the stub section will be attached (in *LINK_SEC_P).
3327 LINK_SEC_P may be NULL. */
906e58ca 3328
48229727
JB
3329static asection *
3330elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3331 struct elf32_arm_link_hash_table *htab)
906e58ca
NC
3332{
3333 asection *link_sec;
3334 asection *stub_sec;
906e58ca
NC
3335
3336 link_sec = htab->stub_group[section->id].link_sec;
3337 stub_sec = htab->stub_group[section->id].stub_sec;
3338 if (stub_sec == NULL)
3339 {
3340 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3341 if (stub_sec == NULL)
3342 {
3343 size_t namelen;
3344 bfd_size_type len;
3345 char *s_name;
3346
3347 namelen = strlen (link_sec->name);
3348 len = namelen + sizeof (STUB_SUFFIX);
21d799b5 3349 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
906e58ca
NC
3350 if (s_name == NULL)
3351 return NULL;
3352
3353 memcpy (s_name, link_sec->name, namelen);
3354 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3355 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3356 if (stub_sec == NULL)
3357 return NULL;
3358 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3359 }
3360 htab->stub_group[section->id].stub_sec = stub_sec;
3361 }
48229727
JB
3362
3363 if (link_sec_p)
3364 *link_sec_p = link_sec;
3365
3366 return stub_sec;
3367}
3368
3369/* Add a new stub entry to the stub hash. Not all fields of the new
3370 stub entry are initialised. */
3371
3372static struct elf32_arm_stub_hash_entry *
3373elf32_arm_add_stub (const char *stub_name,
3374 asection *section,
3375 struct elf32_arm_link_hash_table *htab)
3376{
3377 asection *link_sec;
3378 asection *stub_sec;
3379 struct elf32_arm_stub_hash_entry *stub_entry;
3380
3381 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3382 if (stub_sec == NULL)
3383 return NULL;
906e58ca
NC
3384
3385 /* Enter this entry into the linker stub hash table. */
3386 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3387 TRUE, FALSE);
3388 if (stub_entry == NULL)
3389 {
3390 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3391 section->owner,
3392 stub_name);
3393 return NULL;
3394 }
3395
3396 stub_entry->stub_sec = stub_sec;
3397 stub_entry->stub_offset = 0;
3398 stub_entry->id_sec = link_sec;
3399
906e58ca
NC
3400 return stub_entry;
3401}
3402
3403/* Store an Arm insn into an output section not processed by
3404 elf32_arm_write_section. */
3405
3406static void
8029a119
NC
3407put_arm_insn (struct elf32_arm_link_hash_table * htab,
3408 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3409{
3410 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3411 bfd_putl32 (val, ptr);
3412 else
3413 bfd_putb32 (val, ptr);
3414}
3415
3416/* Store a 16-bit Thumb insn into an output section not processed by
3417 elf32_arm_write_section. */
3418
3419static void
8029a119
NC
3420put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3421 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3422{
3423 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3424 bfd_putl16 (val, ptr);
3425 else
3426 bfd_putb16 (val, ptr);
3427}
3428
48229727
JB
3429static bfd_reloc_status_type elf32_arm_final_link_relocate
3430 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3431 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3432 const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3433
906e58ca
NC
3434static bfd_boolean
3435arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3436 void * in_arg)
3437{
48229727 3438#define MAXRELOCS 2
906e58ca
NC
3439 struct elf32_arm_stub_hash_entry *stub_entry;
3440 struct bfd_link_info *info;
3441 struct elf32_arm_link_hash_table *htab;
3442 asection *stub_sec;
3443 bfd *stub_bfd;
3444 bfd_vma stub_addr;
3445 bfd_byte *loc;
3446 bfd_vma sym_value;
3447 int template_size;
3448 int size;
d3ce72d0 3449 const insn_sequence *template_sequence;
906e58ca
NC
3450 int i;
3451 struct elf32_arm_link_hash_table * globals;
48229727
JB
3452 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3453 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3454 int nrelocs = 0;
906e58ca
NC
3455
3456 /* Massage our args to the form they really have. */
3457 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3458 info = (struct bfd_link_info *) in_arg;
3459
3460 globals = elf32_arm_hash_table (info);
3461
3462 htab = elf32_arm_hash_table (info);
3463 stub_sec = stub_entry->stub_sec;
3464
eb7c4339
NS
3465 if ((htab->fix_cortex_a8 < 0)
3466 != (stub_entry->stub_type >= arm_stub_a8_veneer_lwm))
3467 /* We have to do the a8 fixes last, as they are less aligned than
3468 the other veneers. */
3469 return TRUE;
3470
906e58ca
NC
3471 /* Make a note of the offset within the stubs for this entry. */
3472 stub_entry->stub_offset = stub_sec->size;
3473 loc = stub_sec->contents + stub_entry->stub_offset;
3474
3475 stub_bfd = stub_sec->owner;
3476
3477 /* This is the address of the start of the stub. */
3478 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3479 + stub_entry->stub_offset;
3480
3481 /* This is the address of the stub destination. */
3482 sym_value = (stub_entry->target_value
3483 + stub_entry->target_section->output_offset
3484 + stub_entry->target_section->output_section->vma);
3485
d3ce72d0 3486 template_sequence = stub_entry->stub_template;
461a49ca 3487 template_size = stub_entry->stub_template_size;
906e58ca
NC
3488
3489 size = 0;
461a49ca 3490 for (i = 0; i < template_size; i++)
906e58ca 3491 {
d3ce72d0 3492 switch (template_sequence[i].type)
461a49ca
DJ
3493 {
3494 case THUMB16_TYPE:
48229727 3495 {
d3ce72d0
NC
3496 bfd_vma data = (bfd_vma) template_sequence[i].data;
3497 if (template_sequence[i].reloc_addend != 0)
48229727
JB
3498 {
3499 /* We've borrowed the reloc_addend field to mean we should
3500 insert a condition code into this (Thumb-1 branch)
3501 instruction. See THUMB16_BCOND_INSN. */
3502 BFD_ASSERT ((data & 0xff00) == 0xd000);
3503 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3504 }
3505 put_thumb_insn (globals, stub_bfd, data, loc + size);
3506 size += 2;
3507 }
461a49ca 3508 break;
906e58ca 3509
48229727 3510 case THUMB32_TYPE:
d3ce72d0
NC
3511 put_thumb_insn (globals, stub_bfd,
3512 (template_sequence[i].data >> 16) & 0xffff,
48229727 3513 loc + size);
d3ce72d0 3514 put_thumb_insn (globals, stub_bfd, template_sequence[i].data & 0xffff,
48229727 3515 loc + size + 2);
d3ce72d0 3516 if (template_sequence[i].r_type != R_ARM_NONE)
48229727
JB
3517 {
3518 stub_reloc_idx[nrelocs] = i;
3519 stub_reloc_offset[nrelocs++] = size;
3520 }
3521 size += 4;
3522 break;
3523
461a49ca 3524 case ARM_TYPE:
d3ce72d0
NC
3525 put_arm_insn (globals, stub_bfd, template_sequence[i].data,
3526 loc + size);
461a49ca
DJ
3527 /* Handle cases where the target is encoded within the
3528 instruction. */
d3ce72d0 3529 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 3530 {
48229727
JB
3531 stub_reloc_idx[nrelocs] = i;
3532 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
3533 }
3534 size += 4;
3535 break;
3536
3537 case DATA_TYPE:
d3ce72d0 3538 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
3539 stub_reloc_idx[nrelocs] = i;
3540 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
3541 size += 4;
3542 break;
3543
3544 default:
3545 BFD_FAIL ();
3546 return FALSE;
3547 }
906e58ca 3548 }
461a49ca 3549
906e58ca
NC
3550 stub_sec->size += size;
3551
461a49ca
DJ
3552 /* Stub size has already been computed in arm_size_one_stub. Check
3553 consistency. */
3554 BFD_ASSERT (size == stub_entry->stub_size);
3555
906e58ca
NC
3556 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3557 if (stub_entry->st_type == STT_ARM_TFUNC)
3558 sym_value |= 1;
3559
48229727
JB
3560 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3561 in each stub. */
3562 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
c820be07 3563
48229727 3564 for (i = 0; i < nrelocs; i++)
d3ce72d0
NC
3565 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3566 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3567 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3568 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
48229727
JB
3569 {
3570 Elf_Internal_Rela rel;
3571 bfd_boolean unresolved_reloc;
3572 char *error_message;
3573 int sym_flags
d3ce72d0 3574 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
48229727
JB
3575 ? STT_ARM_TFUNC : 0;
3576 bfd_vma points_to = sym_value + stub_entry->target_addend;
3577
3578 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
d3ce72d0
NC
3579 rel.r_info = ELF32_R_INFO (0,
3580 template_sequence[stub_reloc_idx[i]].r_type);
3581 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
48229727
JB
3582
3583 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3584 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3585 template should refer back to the instruction after the original
3586 branch. */
3587 points_to = sym_value;
3588
33c6a8fc
JB
3589 /* There may be unintended consequences if this is not true. */
3590 BFD_ASSERT (stub_entry->h == NULL);
3591
48229727
JB
3592 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3593 properly. We should probably use this function unconditionally,
3594 rather than only for certain relocations listed in the enclosing
3595 conditional, for the sake of consistency. */
3596 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 3597 (template_sequence[stub_reloc_idx[i]].r_type),
48229727
JB
3598 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3599 points_to, info, stub_entry->target_section, "", sym_flags,
33c6a8fc 3600 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
48229727
JB
3601 &error_message);
3602 }
3603 else
3604 {
3605 _bfd_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 3606 (template_sequence[stub_reloc_idx[i]].r_type), stub_bfd, stub_sec,
48229727
JB
3607 stub_sec->contents, stub_entry->stub_offset + stub_reloc_offset[i],
3608 sym_value + stub_entry->target_addend,
d3ce72d0 3609 template_sequence[stub_reloc_idx[i]].reloc_addend);
48229727 3610 }
906e58ca
NC
3611
3612 return TRUE;
48229727 3613#undef MAXRELOCS
906e58ca
NC
3614}
3615
48229727
JB
3616/* Calculate the template, template size and instruction size for a stub.
3617 Return value is the instruction size. */
906e58ca 3618
48229727
JB
3619static unsigned int
3620find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3621 const insn_sequence **stub_template,
3622 int *stub_template_size)
906e58ca 3623{
d3ce72d0 3624 const insn_sequence *template_sequence = NULL;
48229727
JB
3625 int template_size = 0, i;
3626 unsigned int size;
906e58ca 3627
d3ce72d0 3628 template_sequence = stub_definitions[stub_type].template_sequence;
48229727 3629 template_size = stub_definitions[stub_type].template_size;
906e58ca
NC
3630
3631 size = 0;
461a49ca
DJ
3632 for (i = 0; i < template_size; i++)
3633 {
d3ce72d0 3634 switch (template_sequence[i].type)
461a49ca
DJ
3635 {
3636 case THUMB16_TYPE:
3637 size += 2;
3638 break;
3639
3640 case ARM_TYPE:
48229727 3641 case THUMB32_TYPE:
461a49ca
DJ
3642 case DATA_TYPE:
3643 size += 4;
3644 break;
3645
3646 default:
3647 BFD_FAIL ();
3648 return FALSE;
3649 }
3650 }
3651
48229727 3652 if (stub_template)
d3ce72d0 3653 *stub_template = template_sequence;
48229727
JB
3654
3655 if (stub_template_size)
3656 *stub_template_size = template_size;
3657
3658 return size;
3659}
3660
3661/* As above, but don't actually build the stub. Just bump offset so
3662 we know stub section sizes. */
3663
3664static bfd_boolean
3665arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3666 void * in_arg)
3667{
3668 struct elf32_arm_stub_hash_entry *stub_entry;
3669 struct elf32_arm_link_hash_table *htab;
d3ce72d0 3670 const insn_sequence *template_sequence;
48229727
JB
3671 int template_size, size;
3672
3673 /* Massage our args to the form they really have. */
3674 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3675 htab = (struct elf32_arm_link_hash_table *) in_arg;
3676
3677 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3678 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3679
d3ce72d0 3680 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
3681 &template_size);
3682
461a49ca 3683 stub_entry->stub_size = size;
d3ce72d0 3684 stub_entry->stub_template = template_sequence;
461a49ca
DJ
3685 stub_entry->stub_template_size = template_size;
3686
906e58ca
NC
3687 size = (size + 7) & ~7;
3688 stub_entry->stub_sec->size += size;
461a49ca 3689
906e58ca
NC
3690 return TRUE;
3691}
3692
3693/* External entry points for sizing and building linker stubs. */
3694
3695/* Set up various things so that we can make a list of input sections
3696 for each output section included in the link. Returns -1 on error,
3697 0 when no stubs will be needed, and 1 on success. */
3698
3699int
3700elf32_arm_setup_section_lists (bfd *output_bfd,
3701 struct bfd_link_info *info)
3702{
3703 bfd *input_bfd;
3704 unsigned int bfd_count;
3705 int top_id, top_index;
3706 asection *section;
3707 asection **input_list, **list;
3708 bfd_size_type amt;
3709 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3710
3711 if (! is_elf_hash_table (htab))
3712 return 0;
3713
3714 /* Count the number of input BFDs and find the top input section id. */
3715 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3716 input_bfd != NULL;
3717 input_bfd = input_bfd->link_next)
3718 {
3719 bfd_count += 1;
3720 for (section = input_bfd->sections;
3721 section != NULL;
3722 section = section->next)
3723 {
3724 if (top_id < section->id)
3725 top_id = section->id;
3726 }
3727 }
3728 htab->bfd_count = bfd_count;
3729
3730 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 3731 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
3732 if (htab->stub_group == NULL)
3733 return -1;
3734
3735 /* We can't use output_bfd->section_count here to find the top output
3736 section index as some sections may have been removed, and
3737 _bfd_strip_section_from_output doesn't renumber the indices. */
3738 for (section = output_bfd->sections, top_index = 0;
3739 section != NULL;
3740 section = section->next)
3741 {
3742 if (top_index < section->index)
3743 top_index = section->index;
3744 }
3745
3746 htab->top_index = top_index;
3747 amt = sizeof (asection *) * (top_index + 1);
21d799b5 3748 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
3749 htab->input_list = input_list;
3750 if (input_list == NULL)
3751 return -1;
3752
3753 /* For sections we aren't interested in, mark their entries with a
3754 value we can check later. */
3755 list = input_list + top_index;
3756 do
3757 *list = bfd_abs_section_ptr;
3758 while (list-- != input_list);
3759
3760 for (section = output_bfd->sections;
3761 section != NULL;
3762 section = section->next)
3763 {
3764 if ((section->flags & SEC_CODE) != 0)
3765 input_list[section->index] = NULL;
3766 }
3767
3768 return 1;
3769}
3770
3771/* The linker repeatedly calls this function for each input section,
3772 in the order that input sections are linked into output sections.
3773 Build lists of input sections to determine groupings between which
3774 we may insert linker stubs. */
3775
3776void
3777elf32_arm_next_input_section (struct bfd_link_info *info,
3778 asection *isec)
3779{
3780 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3781
3782 if (isec->output_section->index <= htab->top_index)
3783 {
3784 asection **list = htab->input_list + isec->output_section->index;
3785
3786 if (*list != bfd_abs_section_ptr)
3787 {
3788 /* Steal the link_sec pointer for our list. */
3789#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3790 /* This happens to make the list in reverse order,
07d72278 3791 which we reverse later. */
906e58ca
NC
3792 PREV_SEC (isec) = *list;
3793 *list = isec;
3794 }
3795 }
3796}
3797
3798/* See whether we can group stub sections together. Grouping stub
3799 sections may result in fewer stubs. More importantly, we need to
07d72278 3800 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
3801 .fini output sections respectively, because glibc splits the
3802 _init and _fini functions into multiple parts. Putting a stub in
3803 the middle of a function is not a good idea. */
3804
3805static void
3806group_sections (struct elf32_arm_link_hash_table *htab,
3807 bfd_size_type stub_group_size,
07d72278 3808 bfd_boolean stubs_always_after_branch)
906e58ca 3809{
07d72278 3810 asection **list = htab->input_list;
906e58ca
NC
3811
3812 do
3813 {
3814 asection *tail = *list;
07d72278 3815 asection *head;
906e58ca
NC
3816
3817 if (tail == bfd_abs_section_ptr)
3818 continue;
3819
07d72278
DJ
3820 /* Reverse the list: we must avoid placing stubs at the
3821 beginning of the section because the beginning of the text
3822 section may be required for an interrupt vector in bare metal
3823 code. */
3824#define NEXT_SEC PREV_SEC
e780aef2
CL
3825 head = NULL;
3826 while (tail != NULL)
3827 {
3828 /* Pop from tail. */
3829 asection *item = tail;
3830 tail = PREV_SEC (item);
3831
3832 /* Push on head. */
3833 NEXT_SEC (item) = head;
3834 head = item;
3835 }
07d72278
DJ
3836
3837 while (head != NULL)
906e58ca
NC
3838 {
3839 asection *curr;
07d72278 3840 asection *next;
e780aef2
CL
3841 bfd_vma stub_group_start = head->output_offset;
3842 bfd_vma end_of_next;
906e58ca 3843
07d72278 3844 curr = head;
e780aef2 3845 while (NEXT_SEC (curr) != NULL)
8cd931b7 3846 {
e780aef2
CL
3847 next = NEXT_SEC (curr);
3848 end_of_next = next->output_offset + next->size;
3849 if (end_of_next - stub_group_start >= stub_group_size)
3850 /* End of NEXT is too far from start, so stop. */
8cd931b7 3851 break;
e780aef2
CL
3852 /* Add NEXT to the group. */
3853 curr = next;
8cd931b7 3854 }
906e58ca 3855
07d72278 3856 /* OK, the size from the start to the start of CURR is less
906e58ca 3857 than stub_group_size and thus can be handled by one stub
07d72278 3858 section. (Or the head section is itself larger than
906e58ca
NC
3859 stub_group_size, in which case we may be toast.)
3860 We should really be keeping track of the total size of
3861 stubs added here, as stubs contribute to the final output
7fb9f789 3862 section size. */
906e58ca
NC
3863 do
3864 {
07d72278 3865 next = NEXT_SEC (head);
906e58ca 3866 /* Set up this stub group. */
07d72278 3867 htab->stub_group[head->id].link_sec = curr;
906e58ca 3868 }
07d72278 3869 while (head != curr && (head = next) != NULL);
906e58ca
NC
3870
3871 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
3872 bytes after the stub section can be handled by it too. */
3873 if (!stubs_always_after_branch)
906e58ca 3874 {
e780aef2
CL
3875 stub_group_start = curr->output_offset + curr->size;
3876
8cd931b7 3877 while (next != NULL)
906e58ca 3878 {
e780aef2
CL
3879 end_of_next = next->output_offset + next->size;
3880 if (end_of_next - stub_group_start >= stub_group_size)
3881 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 3882 break;
e780aef2 3883 /* Add NEXT to the stub group. */
07d72278
DJ
3884 head = next;
3885 next = NEXT_SEC (head);
3886 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
3887 }
3888 }
07d72278 3889 head = next;
906e58ca
NC
3890 }
3891 }
07d72278 3892 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
3893
3894 free (htab->input_list);
3895#undef PREV_SEC
07d72278 3896#undef NEXT_SEC
906e58ca
NC
3897}
3898
48229727
JB
3899/* Comparison function for sorting/searching relocations relating to Cortex-A8
3900 erratum fix. */
3901
3902static int
3903a8_reloc_compare (const void *a, const void *b)
3904{
21d799b5
NC
3905 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
3906 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
3907
3908 if (ra->from < rb->from)
3909 return -1;
3910 else if (ra->from > rb->from)
3911 return 1;
3912 else
3913 return 0;
3914}
3915
3916static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
3917 const char *, char **);
3918
3919/* Helper function to scan code for sequences which might trigger the Cortex-A8
3920 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 3921 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
3922 otherwise. */
3923
81694485
NC
3924static bfd_boolean
3925cortex_a8_erratum_scan (bfd *input_bfd,
3926 struct bfd_link_info *info,
48229727
JB
3927 struct a8_erratum_fix **a8_fixes_p,
3928 unsigned int *num_a8_fixes_p,
3929 unsigned int *a8_fix_table_size_p,
3930 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
3931 unsigned int num_a8_relocs,
3932 unsigned prev_num_a8_fixes,
3933 bfd_boolean *stub_changed_p)
48229727
JB
3934{
3935 asection *section;
3936 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3937 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
3938 unsigned int num_a8_fixes = *num_a8_fixes_p;
3939 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
3940
3941 for (section = input_bfd->sections;
3942 section != NULL;
3943 section = section->next)
3944 {
3945 bfd_byte *contents = NULL;
3946 struct _arm_elf_section_data *sec_data;
3947 unsigned int span;
3948 bfd_vma base_vma;
3949
3950 if (elf_section_type (section) != SHT_PROGBITS
3951 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3952 || (section->flags & SEC_EXCLUDE) != 0
3953 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3954 || (section->output_section == bfd_abs_section_ptr))
3955 continue;
3956
3957 base_vma = section->output_section->vma + section->output_offset;
3958
3959 if (elf_section_data (section)->this_hdr.contents != NULL)
3960 contents = elf_section_data (section)->this_hdr.contents;
3961 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
81694485 3962 return TRUE;
48229727
JB
3963
3964 sec_data = elf32_arm_section_data (section);
3965
3966 for (span = 0; span < sec_data->mapcount; span++)
3967 {
3968 unsigned int span_start = sec_data->map[span].vma;
3969 unsigned int span_end = (span == sec_data->mapcount - 1)
3970 ? section->size : sec_data->map[span + 1].vma;
3971 unsigned int i;
3972 char span_type = sec_data->map[span].type;
3973 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
3974
3975 if (span_type != 't')
3976 continue;
3977
3978 /* Span is entirely within a single 4KB region: skip scanning. */
3979 if (((base_vma + span_start) & ~0xfff)
3980 == ((base_vma + span_end) & ~0xfff))
3981 continue;
3982
3983 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
3984
3985 * The opcode is BLX.W, BL.W, B.W, Bcc.W
3986 * The branch target is in the same 4KB region as the
3987 first half of the branch.
3988 * The instruction before the branch is a 32-bit
81694485 3989 length non-branch instruction. */
48229727
JB
3990 for (i = span_start; i < span_end;)
3991 {
3992 unsigned int insn = bfd_getl16 (&contents[i]);
3993 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
3994 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
3995
3996 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
3997 insn_32bit = TRUE;
3998
3999 if (insn_32bit)
4000 {
4001 /* Load the rest of the insn (in manual-friendly order). */
4002 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4003
4004 /* Encoding T4: B<c>.W. */
4005 is_b = (insn & 0xf800d000) == 0xf0009000;
4006 /* Encoding T1: BL<c>.W. */
4007 is_bl = (insn & 0xf800d000) == 0xf000d000;
4008 /* Encoding T2: BLX<c>.W. */
4009 is_blx = (insn & 0xf800d000) == 0xf000c000;
4010 /* Encoding T3: B<c>.W (not permitted in IT block). */
4011 is_bcc = (insn & 0xf800d000) == 0xf0008000
4012 && (insn & 0x07f00000) != 0x03800000;
4013 }
4014
4015 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4016
81694485
NC
4017 if (((base_vma + i) & 0xfff) == 0xffe
4018 && insn_32bit
4019 && is_32bit_branch
4020 && last_was_32bit
4021 && ! last_was_branch)
48229727 4022 {
81694485 4023 bfd_signed_vma offset;
48229727
JB
4024 bfd_boolean force_target_arm = FALSE;
4025 bfd_boolean force_target_thumb = FALSE;
4026 bfd_vma target;
4027 enum elf32_arm_stub_type stub_type = arm_stub_none;
4028 struct a8_erratum_reloc key, *found;
4029
4030 key.from = base_vma + i;
21d799b5
NC
4031 found = (struct a8_erratum_reloc *)
4032 bsearch (&key, a8_relocs, num_a8_relocs,
4033 sizeof (struct a8_erratum_reloc),
4034 &a8_reloc_compare);
48229727
JB
4035
4036 if (found)
4037 {
4038 char *error_message = NULL;
4039 struct elf_link_hash_entry *entry;
4040
4041 /* We don't care about the error returned from this
4042 function, only if there is glue or not. */
4043 entry = find_thumb_glue (info, found->sym_name,
4044 &error_message);
4045
4046 if (entry)
4047 found->non_a8_stub = TRUE;
4048
4049 if (found->r_type == R_ARM_THM_CALL
4050 && found->st_type != STT_ARM_TFUNC)
4051 force_target_arm = TRUE;
4052 else if (found->r_type == R_ARM_THM_CALL
4053 && found->st_type == STT_ARM_TFUNC)
4054 force_target_thumb = TRUE;
4055 }
4056
4057 /* Check if we have an offending branch instruction. */
4058
4059 if (found && found->non_a8_stub)
4060 /* We've already made a stub for this instruction, e.g.
4061 it's a long branch or a Thumb->ARM stub. Assume that
4062 stub will suffice to work around the A8 erratum (see
4063 setting of always_after_branch above). */
4064 ;
4065 else if (is_bcc)
4066 {
4067 offset = (insn & 0x7ff) << 1;
4068 offset |= (insn & 0x3f0000) >> 4;
4069 offset |= (insn & 0x2000) ? 0x40000 : 0;
4070 offset |= (insn & 0x800) ? 0x80000 : 0;
4071 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4072 if (offset & 0x100000)
81694485 4073 offset |= ~ ((bfd_signed_vma) 0xfffff);
48229727
JB
4074 stub_type = arm_stub_a8_veneer_b_cond;
4075 }
4076 else if (is_b || is_bl || is_blx)
4077 {
4078 int s = (insn & 0x4000000) != 0;
4079 int j1 = (insn & 0x2000) != 0;
4080 int j2 = (insn & 0x800) != 0;
4081 int i1 = !(j1 ^ s);
4082 int i2 = !(j2 ^ s);
4083
4084 offset = (insn & 0x7ff) << 1;
4085 offset |= (insn & 0x3ff0000) >> 4;
4086 offset |= i2 << 22;
4087 offset |= i1 << 23;
4088 offset |= s << 24;
4089 if (offset & 0x1000000)
81694485 4090 offset |= ~ ((bfd_signed_vma) 0xffffff);
48229727
JB
4091
4092 if (is_blx)
81694485 4093 offset &= ~ ((bfd_signed_vma) 3);
48229727
JB
4094
4095 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4096 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4097 }
4098
4099 if (stub_type != arm_stub_none)
4100 {
4101 bfd_vma pc_for_insn = base_vma + i + 4;
4102
4103 /* The original instruction is a BL, but the target is
4104 an ARM instruction. If we were not making a stub,
4105 the BL would have been converted to a BLX. Use the
4106 BLX stub instead in that case. */
4107 if (htab->use_blx && force_target_arm
4108 && stub_type == arm_stub_a8_veneer_bl)
4109 {
4110 stub_type = arm_stub_a8_veneer_blx;
4111 is_blx = TRUE;
4112 is_bl = FALSE;
4113 }
4114 /* Conversely, if the original instruction was
4115 BLX but the target is Thumb mode, use the BL
4116 stub. */
4117 else if (force_target_thumb
4118 && stub_type == arm_stub_a8_veneer_blx)
4119 {
4120 stub_type = arm_stub_a8_veneer_bl;
4121 is_blx = FALSE;
4122 is_bl = TRUE;
4123 }
4124
4125 if (is_blx)
81694485 4126 pc_for_insn &= ~ ((bfd_vma) 3);
48229727
JB
4127
4128 /* If we found a relocation, use the proper destination,
4129 not the offset in the (unrelocated) instruction.
4130 Note this is always done if we switched the stub type
4131 above. */
4132 if (found)
81694485
NC
4133 offset =
4134 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727
JB
4135
4136 target = pc_for_insn + offset;
4137
4138 /* The BLX stub is ARM-mode code. Adjust the offset to
4139 take the different PC value (+8 instead of +4) into
4140 account. */
4141 if (stub_type == arm_stub_a8_veneer_blx)
4142 offset += 4;
4143
4144 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4145 {
eb7c4339 4146 char *stub_name = NULL;
48229727
JB
4147
4148 if (num_a8_fixes == a8_fix_table_size)
4149 {
4150 a8_fix_table_size *= 2;
21d799b5
NC
4151 a8_fixes = (struct a8_erratum_fix *)
4152 bfd_realloc (a8_fixes,
4153 sizeof (struct a8_erratum_fix)
4154 * a8_fix_table_size);
48229727
JB
4155 }
4156
eb7c4339
NS
4157 if (num_a8_fixes < prev_num_a8_fixes)
4158 {
4159 /* If we're doing a subsequent scan,
4160 check if we've found the same fix as
4161 before, and try and reuse the stub
4162 name. */
4163 stub_name = a8_fixes[num_a8_fixes].stub_name;
4164 if ((a8_fixes[num_a8_fixes].section != section)
4165 || (a8_fixes[num_a8_fixes].offset != i))
4166 {
4167 free (stub_name);
4168 stub_name = NULL;
4169 *stub_changed_p = TRUE;
4170 }
4171 }
4172
4173 if (!stub_name)
4174 {
21d799b5 4175 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
4176 if (stub_name != NULL)
4177 sprintf (stub_name, "%x:%x", section->id, i);
4178 }
48229727
JB
4179
4180 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4181 a8_fixes[num_a8_fixes].section = section;
4182 a8_fixes[num_a8_fixes].offset = i;
4183 a8_fixes[num_a8_fixes].addend = offset;
4184 a8_fixes[num_a8_fixes].orig_insn = insn;
4185 a8_fixes[num_a8_fixes].stub_name = stub_name;
4186 a8_fixes[num_a8_fixes].stub_type = stub_type;
4187
4188 num_a8_fixes++;
4189 }
4190 }
4191 }
4192
4193 i += insn_32bit ? 4 : 2;
4194 last_was_32bit = insn_32bit;
4195 last_was_branch = is_32bit_branch;
4196 }
4197 }
4198
4199 if (elf_section_data (section)->this_hdr.contents == NULL)
4200 free (contents);
4201 }
4202
4203 *a8_fixes_p = a8_fixes;
4204 *num_a8_fixes_p = num_a8_fixes;
4205 *a8_fix_table_size_p = a8_fix_table_size;
4206
81694485 4207 return FALSE;
48229727
JB
4208}
4209
906e58ca
NC
4210/* Determine and set the size of the stub section for a final link.
4211
4212 The basic idea here is to examine all the relocations looking for
4213 PC-relative calls to a target that is unreachable with a "bl"
4214 instruction. */
4215
4216bfd_boolean
4217elf32_arm_size_stubs (bfd *output_bfd,
4218 bfd *stub_bfd,
4219 struct bfd_link_info *info,
4220 bfd_signed_vma group_size,
4221 asection * (*add_stub_section) (const char *, asection *),
4222 void (*layout_sections_again) (void))
4223{
4224 bfd_size_type stub_group_size;
07d72278 4225 bfd_boolean stubs_always_after_branch;
906e58ca 4226 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 4227 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 4228 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
4229 struct a8_erratum_reloc *a8_relocs = NULL;
4230 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4231
4232 if (htab->fix_cortex_a8)
4233 {
21d799b5
NC
4234 a8_fixes = (struct a8_erratum_fix *)
4235 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4236 a8_relocs = (struct a8_erratum_reloc *)
4237 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 4238 }
906e58ca
NC
4239
4240 /* Propagate mach to stub bfd, because it may not have been
4241 finalized when we created stub_bfd. */
4242 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4243 bfd_get_mach (output_bfd));
4244
4245 /* Stash our params away. */
4246 htab->stub_bfd = stub_bfd;
4247 htab->add_stub_section = add_stub_section;
4248 htab->layout_sections_again = layout_sections_again;
07d72278 4249 stubs_always_after_branch = group_size < 0;
48229727
JB
4250
4251 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4252 as the first half of a 32-bit branch straddling two 4K pages. This is a
4253 crude way of enforcing that. */
4254 if (htab->fix_cortex_a8)
4255 stubs_always_after_branch = 1;
4256
906e58ca
NC
4257 if (group_size < 0)
4258 stub_group_size = -group_size;
4259 else
4260 stub_group_size = group_size;
4261
4262 if (stub_group_size == 1)
4263 {
4264 /* Default values. */
4265 /* Thumb branch range is +-4MB has to be used as the default
4266 maximum size (a given section can contain both ARM and Thumb
4267 code, so the worst case has to be taken into account).
4268
4269 This value is 24K less than that, which allows for 2025
4270 12-byte stubs. If we exceed that, then we will fail to link.
4271 The user will have to relink with an explicit group size
4272 option. */
4273 stub_group_size = 4170000;
4274 }
4275
07d72278 4276 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 4277
3ae046cc
NS
4278 /* If we're applying the cortex A8 fix, we need to determine the
4279 program header size now, because we cannot change it later --
4280 that could alter section placements. Notice the A8 erratum fix
4281 ends up requiring the section addresses to remain unchanged
4282 modulo the page size. That's something we cannot represent
4283 inside BFD, and we don't want to force the section alignment to
4284 be the page size. */
4285 if (htab->fix_cortex_a8)
4286 (*htab->layout_sections_again) ();
4287
906e58ca
NC
4288 while (1)
4289 {
4290 bfd *input_bfd;
4291 unsigned int bfd_indx;
4292 asection *stub_sec;
eb7c4339
NS
4293 bfd_boolean stub_changed = FALSE;
4294 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 4295
48229727 4296 num_a8_fixes = 0;
906e58ca
NC
4297 for (input_bfd = info->input_bfds, bfd_indx = 0;
4298 input_bfd != NULL;
4299 input_bfd = input_bfd->link_next, bfd_indx++)
4300 {
4301 Elf_Internal_Shdr *symtab_hdr;
4302 asection *section;
4303 Elf_Internal_Sym *local_syms = NULL;
4304
48229727
JB
4305 num_a8_relocs = 0;
4306
906e58ca
NC
4307 /* We'll need the symbol table in a second. */
4308 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4309 if (symtab_hdr->sh_info == 0)
4310 continue;
4311
4312 /* Walk over each section attached to the input bfd. */
4313 for (section = input_bfd->sections;
4314 section != NULL;
4315 section = section->next)
4316 {
4317 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4318
4319 /* If there aren't any relocs, then there's nothing more
4320 to do. */
4321 if ((section->flags & SEC_RELOC) == 0
4322 || section->reloc_count == 0
4323 || (section->flags & SEC_CODE) == 0)
4324 continue;
4325
4326 /* If this section is a link-once section that will be
4327 discarded, then don't create any stubs. */
4328 if (section->output_section == NULL
4329 || section->output_section->owner != output_bfd)
4330 continue;
4331
4332 /* Get the relocs. */
4333 internal_relocs
4334 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4335 NULL, info->keep_memory);
4336 if (internal_relocs == NULL)
4337 goto error_ret_free_local;
4338
4339 /* Now examine each relocation. */
4340 irela = internal_relocs;
4341 irelaend = irela + section->reloc_count;
4342 for (; irela < irelaend; irela++)
4343 {
4344 unsigned int r_type, r_indx;
4345 enum elf32_arm_stub_type stub_type;
4346 struct elf32_arm_stub_hash_entry *stub_entry;
4347 asection *sym_sec;
4348 bfd_vma sym_value;
4349 bfd_vma destination;
4350 struct elf32_arm_link_hash_entry *hash;
7413f23f 4351 const char *sym_name;
906e58ca
NC
4352 char *stub_name;
4353 const asection *id_sec;
4354 unsigned char st_type;
48229727 4355 bfd_boolean created_stub = FALSE;
906e58ca
NC
4356
4357 r_type = ELF32_R_TYPE (irela->r_info);
4358 r_indx = ELF32_R_SYM (irela->r_info);
4359
4360 if (r_type >= (unsigned int) R_ARM_max)
4361 {
4362 bfd_set_error (bfd_error_bad_value);
4363 error_ret_free_internal:
4364 if (elf_section_data (section)->relocs == NULL)
4365 free (internal_relocs);
4366 goto error_ret_free_local;
4367 }
4368
155d87d7 4369 /* Only look for stubs on branch instructions. */
906e58ca 4370 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
4371 && (r_type != (unsigned int) R_ARM_THM_CALL)
4372 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
4373 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4374 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7
CL
4375 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4376 && (r_type != (unsigned int) R_ARM_PLT32))
906e58ca
NC
4377 continue;
4378
4379 /* Now determine the call target, its name, value,
4380 section. */
4381 sym_sec = NULL;
4382 sym_value = 0;
4383 destination = 0;
4384 hash = NULL;
7413f23f 4385 sym_name = NULL;
906e58ca
NC
4386 if (r_indx < symtab_hdr->sh_info)
4387 {
4388 /* It's a local symbol. */
4389 Elf_Internal_Sym *sym;
4390 Elf_Internal_Shdr *hdr;
4391
4392 if (local_syms == NULL)
4393 {
4394 local_syms
4395 = (Elf_Internal_Sym *) symtab_hdr->contents;
4396 if (local_syms == NULL)
4397 local_syms
4398 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4399 symtab_hdr->sh_info, 0,
4400 NULL, NULL, NULL);
4401 if (local_syms == NULL)
4402 goto error_ret_free_internal;
4403 }
4404
4405 sym = local_syms + r_indx;
4406 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4407 sym_sec = hdr->bfd_section;
ffcb4889
NS
4408 if (!sym_sec)
4409 /* This is an undefined symbol. It can never
4410 be resolved. */
4411 continue;
4412
906e58ca
NC
4413 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4414 sym_value = sym->st_value;
4415 destination = (sym_value + irela->r_addend
4416 + sym_sec->output_offset
4417 + sym_sec->output_section->vma);
4418 st_type = ELF_ST_TYPE (sym->st_info);
7413f23f
DJ
4419 sym_name
4420 = bfd_elf_string_from_elf_section (input_bfd,
4421 symtab_hdr->sh_link,
4422 sym->st_name);
906e58ca
NC
4423 }
4424 else
4425 {
4426 /* It's an external symbol. */
4427 int e_indx;
4428
4429 e_indx = r_indx - symtab_hdr->sh_info;
4430 hash = ((struct elf32_arm_link_hash_entry *)
4431 elf_sym_hashes (input_bfd)[e_indx]);
4432
4433 while (hash->root.root.type == bfd_link_hash_indirect
4434 || hash->root.root.type == bfd_link_hash_warning)
4435 hash = ((struct elf32_arm_link_hash_entry *)
4436 hash->root.root.u.i.link);
4437
4438 if (hash->root.root.type == bfd_link_hash_defined
4439 || hash->root.root.type == bfd_link_hash_defweak)
4440 {
4441 sym_sec = hash->root.root.u.def.section;
4442 sym_value = hash->root.root.u.def.value;
022f8312
CL
4443
4444 struct elf32_arm_link_hash_table *globals =
4445 elf32_arm_hash_table (info);
4446
4447 /* For a destination in a shared library,
4448 use the PLT stub as target address to
4449 decide whether a branch stub is
4450 needed. */
4451 if (globals->splt != NULL && hash != NULL
4452 && hash->root.plt.offset != (bfd_vma) -1)
4453 {
4454 sym_sec = globals->splt;
4455 sym_value = hash->root.plt.offset;
4456 if (sym_sec->output_section != NULL)
4457 destination = (sym_value
4458 + sym_sec->output_offset
4459 + sym_sec->output_section->vma);
4460 }
4461 else if (sym_sec->output_section != NULL)
906e58ca
NC
4462 destination = (sym_value + irela->r_addend
4463 + sym_sec->output_offset
4464 + sym_sec->output_section->vma);
4465 }
69c5861e
CL
4466 else if ((hash->root.root.type == bfd_link_hash_undefined)
4467 || (hash->root.root.type == bfd_link_hash_undefweak))
4468 {
4469 /* For a shared library, use the PLT stub as
4470 target address to decide whether a long
4471 branch stub is needed.
4472 For absolute code, they cannot be handled. */
4473 struct elf32_arm_link_hash_table *globals =
4474 elf32_arm_hash_table (info);
4475
4476 if (globals->splt != NULL && hash != NULL
4477 && hash->root.plt.offset != (bfd_vma) -1)
4478 {
4479 sym_sec = globals->splt;
4480 sym_value = hash->root.plt.offset;
4481 if (sym_sec->output_section != NULL)
4482 destination = (sym_value
4483 + sym_sec->output_offset
4484 + sym_sec->output_section->vma);
4485 }
4486 else
4487 continue;
4488 }
906e58ca
NC
4489 else
4490 {
4491 bfd_set_error (bfd_error_bad_value);
4492 goto error_ret_free_internal;
4493 }
4494 st_type = ELF_ST_TYPE (hash->root.type);
7413f23f 4495 sym_name = hash->root.root.root.string;
906e58ca
NC
4496 }
4497
48229727 4498 do
7413f23f 4499 {
48229727
JB
4500 /* Determine what (if any) linker stub is needed. */
4501 stub_type = arm_type_of_stub (info, section, irela,
4502 st_type, hash,
4503 destination, sym_sec,
4504 input_bfd, sym_name);
4505 if (stub_type == arm_stub_none)
4506 break;
4507
4508 /* Support for grouping stub sections. */
4509 id_sec = htab->stub_group[section->id].link_sec;
4510
4511 /* Get the name of this stub. */
4512 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
4513 irela);
4514 if (!stub_name)
4515 goto error_ret_free_internal;
4516
4517 /* We've either created a stub for this reloc already,
4518 or we are about to. */
4519 created_stub = TRUE;
4520
4521 stub_entry = arm_stub_hash_lookup
4522 (&htab->stub_hash_table, stub_name,
4523 FALSE, FALSE);
4524 if (stub_entry != NULL)
4525 {
4526 /* The proper stub has already been created. */
4527 free (stub_name);
eb7c4339 4528 stub_entry->target_value = sym_value;
48229727
JB
4529 break;
4530 }
7413f23f 4531
48229727
JB
4532 stub_entry = elf32_arm_add_stub (stub_name, section,
4533 htab);
4534 if (stub_entry == NULL)
4535 {
4536 free (stub_name);
4537 goto error_ret_free_internal;
4538 }
7413f23f 4539
48229727
JB
4540 stub_entry->target_value = sym_value;
4541 stub_entry->target_section = sym_sec;
4542 stub_entry->stub_type = stub_type;
4543 stub_entry->h = hash;
4544 stub_entry->st_type = st_type;
4545
4546 if (sym_name == NULL)
4547 sym_name = "unnamed";
21d799b5
NC
4548 stub_entry->output_name = (char *)
4549 bfd_alloc (htab->stub_bfd,
48229727
JB
4550 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4551 + strlen (sym_name));
4552 if (stub_entry->output_name == NULL)
4553 {
4554 free (stub_name);
4555 goto error_ret_free_internal;
4556 }
4557
4558 /* For historical reasons, use the existing names for
4559 ARM-to-Thumb and Thumb-to-ARM stubs. */
4560 if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4561 || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4562 && st_type != STT_ARM_TFUNC)
4563 sprintf (stub_entry->output_name,
4564 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4565 else if ( ((r_type == (unsigned int) R_ARM_CALL)
4566 || (r_type == (unsigned int) R_ARM_JUMP24))
4567 && st_type == STT_ARM_TFUNC)
4568 sprintf (stub_entry->output_name,
4569 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4570 else
4571 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4572 sym_name);
4573
4574 stub_changed = TRUE;
4575 }
4576 while (0);
4577
4578 /* Look for relocations which might trigger Cortex-A8
4579 erratum. */
4580 if (htab->fix_cortex_a8
4581 && (r_type == (unsigned int) R_ARM_THM_JUMP24
4582 || r_type == (unsigned int) R_ARM_THM_JUMP19
4583 || r_type == (unsigned int) R_ARM_THM_CALL
4584 || r_type == (unsigned int) R_ARM_THM_XPC22))
4585 {
4586 bfd_vma from = section->output_section->vma
4587 + section->output_offset
4588 + irela->r_offset;
4589
4590 if ((from & 0xfff) == 0xffe)
4591 {
4592 /* Found a candidate. Note we haven't checked the
4593 destination is within 4K here: if we do so (and
4594 don't create an entry in a8_relocs) we can't tell
4595 that a branch should have been relocated when
4596 scanning later. */
4597 if (num_a8_relocs == a8_reloc_table_size)
4598 {
4599 a8_reloc_table_size *= 2;
21d799b5
NC
4600 a8_relocs = (struct a8_erratum_reloc *)
4601 bfd_realloc (a8_relocs,
4602 sizeof (struct a8_erratum_reloc)
4603 * a8_reloc_table_size);
48229727
JB
4604 }
4605
4606 a8_relocs[num_a8_relocs].from = from;
4607 a8_relocs[num_a8_relocs].destination = destination;
4608 a8_relocs[num_a8_relocs].r_type = r_type;
4609 a8_relocs[num_a8_relocs].st_type = st_type;
4610 a8_relocs[num_a8_relocs].sym_name = sym_name;
4611 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
4612
4613 num_a8_relocs++;
4614 }
4615 }
906e58ca
NC
4616 }
4617
48229727
JB
4618 /* We're done with the internal relocs, free them. */
4619 if (elf_section_data (section)->relocs == NULL)
4620 free (internal_relocs);
4621 }
4622
4623 if (htab->fix_cortex_a8)
4624 {
4625 /* Sort relocs which might apply to Cortex-A8 erratum. */
eb7c4339
NS
4626 qsort (a8_relocs, num_a8_relocs,
4627 sizeof (struct a8_erratum_reloc),
48229727
JB
4628 &a8_reloc_compare);
4629
4630 /* Scan for branches which might trigger Cortex-A8 erratum. */
4631 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4632 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
4633 a8_relocs, num_a8_relocs,
4634 prev_num_a8_fixes, &stub_changed)
4635 != 0)
48229727 4636 goto error_ret_free_local;
5e681ec4 4637 }
5e681ec4
PB
4638 }
4639
eb7c4339 4640 if (prev_num_a8_fixes != num_a8_fixes)
48229727
JB
4641 stub_changed = TRUE;
4642
906e58ca
NC
4643 if (!stub_changed)
4644 break;
5e681ec4 4645
906e58ca
NC
4646 /* OK, we've added some stubs. Find out the new size of the
4647 stub sections. */
4648 for (stub_sec = htab->stub_bfd->sections;
4649 stub_sec != NULL;
4650 stub_sec = stub_sec->next)
3e6b1042
DJ
4651 {
4652 /* Ignore non-stub sections. */
4653 if (!strstr (stub_sec->name, STUB_SUFFIX))
4654 continue;
4655
4656 stub_sec->size = 0;
4657 }
b34b2d70 4658
906e58ca
NC
4659 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4660
48229727
JB
4661 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4662 if (htab->fix_cortex_a8)
4663 for (i = 0; i < num_a8_fixes; i++)
4664 {
4665 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4666 a8_fixes[i].section, htab);
4667
4668 if (stub_sec == NULL)
4669 goto error_ret_free_local;
4670
4671 stub_sec->size
4672 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4673 NULL);
4674 }
4675
4676
906e58ca
NC
4677 /* Ask the linker to do its stuff. */
4678 (*htab->layout_sections_again) ();
ba93b8ac
DJ
4679 }
4680
48229727
JB
4681 /* Add stubs for Cortex-A8 erratum fixes now. */
4682 if (htab->fix_cortex_a8)
4683 {
4684 for (i = 0; i < num_a8_fixes; i++)
4685 {
4686 struct elf32_arm_stub_hash_entry *stub_entry;
4687 char *stub_name = a8_fixes[i].stub_name;
4688 asection *section = a8_fixes[i].section;
4689 unsigned int section_id = a8_fixes[i].section->id;
4690 asection *link_sec = htab->stub_group[section_id].link_sec;
4691 asection *stub_sec = htab->stub_group[section_id].stub_sec;
d3ce72d0 4692 const insn_sequence *template_sequence;
48229727
JB
4693 int template_size, size = 0;
4694
4695 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4696 TRUE, FALSE);
4697 if (stub_entry == NULL)
4698 {
4699 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4700 section->owner,
4701 stub_name);
4702 return FALSE;
4703 }
4704
4705 stub_entry->stub_sec = stub_sec;
4706 stub_entry->stub_offset = 0;
4707 stub_entry->id_sec = link_sec;
4708 stub_entry->stub_type = a8_fixes[i].stub_type;
4709 stub_entry->target_section = a8_fixes[i].section;
4710 stub_entry->target_value = a8_fixes[i].offset;
4711 stub_entry->target_addend = a8_fixes[i].addend;
4712 stub_entry->orig_insn = a8_fixes[i].orig_insn;
4713 stub_entry->st_type = STT_ARM_TFUNC;
4714
d3ce72d0
NC
4715 size = find_stub_size_and_template (a8_fixes[i].stub_type,
4716 &template_sequence,
48229727
JB
4717 &template_size);
4718
4719 stub_entry->stub_size = size;
d3ce72d0 4720 stub_entry->stub_template = template_sequence;
48229727
JB
4721 stub_entry->stub_template_size = template_size;
4722 }
4723
4724 /* Stash the Cortex-A8 erratum fix array for use later in
4725 elf32_arm_write_section(). */
4726 htab->a8_erratum_fixes = a8_fixes;
4727 htab->num_a8_erratum_fixes = num_a8_fixes;
4728 }
4729 else
4730 {
4731 htab->a8_erratum_fixes = NULL;
4732 htab->num_a8_erratum_fixes = 0;
4733 }
906e58ca
NC
4734 return TRUE;
4735
4736 error_ret_free_local:
4737 return FALSE;
5e681ec4
PB
4738}
4739
906e58ca
NC
4740/* Build all the stubs associated with the current output file. The
4741 stubs are kept in a hash table attached to the main linker hash
4742 table. We also set up the .plt entries for statically linked PIC
4743 functions here. This function is called via arm_elf_finish in the
4744 linker. */
252b5132 4745
906e58ca
NC
4746bfd_boolean
4747elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 4748{
906e58ca
NC
4749 asection *stub_sec;
4750 struct bfd_hash_table *table;
4751 struct elf32_arm_link_hash_table *htab;
252b5132 4752
906e58ca 4753 htab = elf32_arm_hash_table (info);
252b5132 4754
906e58ca
NC
4755 for (stub_sec = htab->stub_bfd->sections;
4756 stub_sec != NULL;
4757 stub_sec = stub_sec->next)
252b5132 4758 {
906e58ca
NC
4759 bfd_size_type size;
4760
8029a119 4761 /* Ignore non-stub sections. */
906e58ca
NC
4762 if (!strstr (stub_sec->name, STUB_SUFFIX))
4763 continue;
4764
4765 /* Allocate memory to hold the linker stubs. */
4766 size = stub_sec->size;
21d799b5 4767 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
4768 if (stub_sec->contents == NULL && size != 0)
4769 return FALSE;
4770 stub_sec->size = 0;
252b5132
RH
4771 }
4772
906e58ca
NC
4773 /* Build the stubs as directed by the stub hash table. */
4774 table = &htab->stub_hash_table;
4775 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
4776 if (htab->fix_cortex_a8)
4777 {
4778 /* Place the cortex a8 stubs last. */
4779 htab->fix_cortex_a8 = -1;
4780 bfd_hash_traverse (table, arm_build_one_stub, info);
4781 }
252b5132 4782
906e58ca 4783 return TRUE;
252b5132
RH
4784}
4785
9b485d32
NC
4786/* Locate the Thumb encoded calling stub for NAME. */
4787
252b5132 4788static struct elf_link_hash_entry *
57e8b36a
NC
4789find_thumb_glue (struct bfd_link_info *link_info,
4790 const char *name,
f2a9dd69 4791 char **error_message)
252b5132
RH
4792{
4793 char *tmp_name;
4794 struct elf_link_hash_entry *hash;
4795 struct elf32_arm_link_hash_table *hash_table;
4796
4797 /* We need a pointer to the armelf specific hash table. */
4798 hash_table = elf32_arm_hash_table (link_info);
4799
21d799b5
NC
4800 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4801 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4802
4803 BFD_ASSERT (tmp_name);
4804
4805 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4806
4807 hash = elf_link_hash_lookup
b34976b6 4808 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 4809
b1657152
AM
4810 if (hash == NULL
4811 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4812 tmp_name, name) == -1)
4813 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
4814
4815 free (tmp_name);
4816
4817 return hash;
4818}
4819
9b485d32
NC
4820/* Locate the ARM encoded calling stub for NAME. */
4821
252b5132 4822static struct elf_link_hash_entry *
57e8b36a
NC
4823find_arm_glue (struct bfd_link_info *link_info,
4824 const char *name,
f2a9dd69 4825 char **error_message)
252b5132
RH
4826{
4827 char *tmp_name;
4828 struct elf_link_hash_entry *myh;
4829 struct elf32_arm_link_hash_table *hash_table;
4830
4831 /* We need a pointer to the elfarm specific hash table. */
4832 hash_table = elf32_arm_hash_table (link_info);
4833
21d799b5
NC
4834 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4835 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4836
4837 BFD_ASSERT (tmp_name);
4838
4839 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4840
4841 myh = elf_link_hash_lookup
b34976b6 4842 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 4843
b1657152
AM
4844 if (myh == NULL
4845 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4846 tmp_name, name) == -1)
4847 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
4848
4849 free (tmp_name);
4850
4851 return myh;
4852}
4853
8f6277f5 4854/* ARM->Thumb glue (static images):
252b5132
RH
4855
4856 .arm
4857 __func_from_arm:
4858 ldr r12, __func_addr
4859 bx r12
4860 __func_addr:
906e58ca 4861 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 4862
26079076
PB
4863 (v5t static images)
4864 .arm
4865 __func_from_arm:
4866 ldr pc, __func_addr
4867 __func_addr:
906e58ca 4868 .word func @ behave as if you saw a ARM_32 reloc.
26079076 4869
8f6277f5
PB
4870 (relocatable images)
4871 .arm
4872 __func_from_arm:
4873 ldr r12, __func_offset
4874 add r12, r12, pc
4875 bx r12
4876 __func_offset:
8029a119 4877 .word func - . */
8f6277f5
PB
4878
4879#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
4880static const insn32 a2t1_ldr_insn = 0xe59fc000;
4881static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4882static const insn32 a2t3_func_addr_insn = 0x00000001;
4883
26079076
PB
4884#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4885static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4886static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4887
8f6277f5
PB
4888#define ARM2THUMB_PIC_GLUE_SIZE 16
4889static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4890static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4891static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4892
9b485d32 4893/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 4894
8029a119
NC
4895 .thumb .thumb
4896 .align 2 .align 2
4897 __func_from_thumb: __func_from_thumb:
4898 bx pc push {r6, lr}
4899 nop ldr r6, __func_addr
4900 .arm mov lr, pc
4901 b func bx r6
fcef9eb7
NC
4902 .arm
4903 ;; back_to_thumb
4904 ldmia r13! {r6, lr}
4905 bx lr
8029a119
NC
4906 __func_addr:
4907 .word func */
252b5132
RH
4908
4909#define THUMB2ARM_GLUE_SIZE 8
4910static const insn16 t2a1_bx_pc_insn = 0x4778;
4911static const insn16 t2a2_noop_insn = 0x46c0;
4912static const insn32 t2a3_b_insn = 0xea000000;
4913
c7b8f16e
JB
4914#define VFP11_ERRATUM_VENEER_SIZE 8
4915
845b51d6
PB
4916#define ARM_BX_VENEER_SIZE 12
4917static const insn32 armbx1_tst_insn = 0xe3100001;
4918static const insn32 armbx2_moveq_insn = 0x01a0f000;
4919static const insn32 armbx3_bx_insn = 0xe12fff10;
4920
7e392df6 4921#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
4922static void
4923arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
4924{
4925 asection * s;
8029a119 4926 bfd_byte * contents;
252b5132 4927
8029a119 4928 if (size == 0)
3e6b1042
DJ
4929 {
4930 /* Do not include empty glue sections in the output. */
4931 if (abfd != NULL)
4932 {
4933 s = bfd_get_section_by_name (abfd, name);
4934 if (s != NULL)
4935 s->flags |= SEC_EXCLUDE;
4936 }
4937 return;
4938 }
252b5132 4939
8029a119 4940 BFD_ASSERT (abfd != NULL);
252b5132 4941
8029a119
NC
4942 s = bfd_get_section_by_name (abfd, name);
4943 BFD_ASSERT (s != NULL);
252b5132 4944
21d799b5 4945 contents = (bfd_byte *) bfd_alloc (abfd, size);
252b5132 4946
8029a119
NC
4947 BFD_ASSERT (s->size == size);
4948 s->contents = contents;
4949}
906e58ca 4950
8029a119
NC
4951bfd_boolean
4952bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4953{
4954 struct elf32_arm_link_hash_table * globals;
906e58ca 4955
8029a119
NC
4956 globals = elf32_arm_hash_table (info);
4957 BFD_ASSERT (globals != NULL);
906e58ca 4958
8029a119
NC
4959 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4960 globals->arm_glue_size,
4961 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 4962
8029a119
NC
4963 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4964 globals->thumb_glue_size,
4965 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 4966
8029a119
NC
4967 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4968 globals->vfp11_erratum_glue_size,
4969 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 4970
8029a119
NC
4971 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4972 globals->bx_glue_size,
845b51d6
PB
4973 ARM_BX_GLUE_SECTION_NAME);
4974
b34976b6 4975 return TRUE;
252b5132
RH
4976}
4977
a4fd1a8e 4978/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
4979 returns the symbol identifying the stub. */
4980
a4fd1a8e 4981static struct elf_link_hash_entry *
57e8b36a
NC
4982record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4983 struct elf_link_hash_entry * h)
252b5132
RH
4984{
4985 const char * name = h->root.root.string;
63b0f745 4986 asection * s;
252b5132
RH
4987 char * tmp_name;
4988 struct elf_link_hash_entry * myh;
14a793b2 4989 struct bfd_link_hash_entry * bh;
252b5132 4990 struct elf32_arm_link_hash_table * globals;
dc810e39 4991 bfd_vma val;
2f475487 4992 bfd_size_type size;
252b5132
RH
4993
4994 globals = elf32_arm_hash_table (link_info);
4995
4996 BFD_ASSERT (globals != NULL);
4997 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4998
4999 s = bfd_get_section_by_name
5000 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5001
252b5132
RH
5002 BFD_ASSERT (s != NULL);
5003
21d799b5
NC
5004 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5005 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5006
5007 BFD_ASSERT (tmp_name);
5008
5009 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5010
5011 myh = elf_link_hash_lookup
b34976b6 5012 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
5013
5014 if (myh != NULL)
5015 {
9b485d32 5016 /* We've already seen this guy. */
252b5132 5017 free (tmp_name);
a4fd1a8e 5018 return myh;
252b5132
RH
5019 }
5020
57e8b36a
NC
5021 /* The only trick here is using hash_table->arm_glue_size as the value.
5022 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
5023 putting it. The +1 on the value marks that the stub has not been
5024 output yet - not that it is a Thumb function. */
14a793b2 5025 bh = NULL;
dc810e39
AM
5026 val = globals->arm_glue_size + 1;
5027 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5028 tmp_name, BSF_GLOBAL, s, val,
b34976b6 5029 NULL, TRUE, FALSE, &bh);
252b5132 5030
b7693d02
DJ
5031 myh = (struct elf_link_hash_entry *) bh;
5032 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5033 myh->forced_local = 1;
5034
252b5132
RH
5035 free (tmp_name);
5036
27e55c4d
PB
5037 if (link_info->shared || globals->root.is_relocatable_executable
5038 || globals->pic_veneer)
2f475487 5039 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
5040 else if (globals->use_blx)
5041 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 5042 else
2f475487
AM
5043 size = ARM2THUMB_STATIC_GLUE_SIZE;
5044
5045 s->size += size;
5046 globals->arm_glue_size += size;
252b5132 5047
a4fd1a8e 5048 return myh;
252b5132
RH
5049}
5050
845b51d6
PB
5051/* Allocate space for ARMv4 BX veneers. */
5052
5053static void
5054record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5055{
5056 asection * s;
5057 struct elf32_arm_link_hash_table *globals;
5058 char *tmp_name;
5059 struct elf_link_hash_entry *myh;
5060 struct bfd_link_hash_entry *bh;
5061 bfd_vma val;
5062
5063 /* BX PC does not need a veneer. */
5064 if (reg == 15)
5065 return;
5066
5067 globals = elf32_arm_hash_table (link_info);
5068
5069 BFD_ASSERT (globals != NULL);
5070 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5071
5072 /* Check if this veneer has already been allocated. */
5073 if (globals->bx_glue_offset[reg])
5074 return;
5075
5076 s = bfd_get_section_by_name
5077 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5078
5079 BFD_ASSERT (s != NULL);
5080
5081 /* Add symbol for veneer. */
21d799b5
NC
5082 tmp_name = (char *)
5083 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 5084
845b51d6 5085 BFD_ASSERT (tmp_name);
906e58ca 5086
845b51d6 5087 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 5088
845b51d6
PB
5089 myh = elf_link_hash_lookup
5090 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5091
845b51d6 5092 BFD_ASSERT (myh == NULL);
906e58ca 5093
845b51d6
PB
5094 bh = NULL;
5095 val = globals->bx_glue_size;
5096 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5097 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5098 NULL, TRUE, FALSE, &bh);
5099
5100 myh = (struct elf_link_hash_entry *) bh;
5101 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5102 myh->forced_local = 1;
5103
5104 s->size += ARM_BX_VENEER_SIZE;
5105 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5106 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5107}
5108
5109
c7b8f16e
JB
5110/* Add an entry to the code/data map for section SEC. */
5111
5112static void
5113elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5114{
5115 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5116 unsigned int newidx;
906e58ca 5117
c7b8f16e
JB
5118 if (sec_data->map == NULL)
5119 {
21d799b5
NC
5120 sec_data->map = (elf32_arm_section_map *)
5121 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
5122 sec_data->mapcount = 0;
5123 sec_data->mapsize = 1;
5124 }
906e58ca 5125
c7b8f16e 5126 newidx = sec_data->mapcount++;
906e58ca 5127
c7b8f16e
JB
5128 if (sec_data->mapcount > sec_data->mapsize)
5129 {
5130 sec_data->mapsize *= 2;
21d799b5
NC
5131 sec_data->map = (elf32_arm_section_map *)
5132 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5133 * sizeof (elf32_arm_section_map));
515ef31d
NC
5134 }
5135
5136 if (sec_data->map)
5137 {
5138 sec_data->map[newidx].vma = vma;
5139 sec_data->map[newidx].type = type;
c7b8f16e 5140 }
c7b8f16e
JB
5141}
5142
5143
5144/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5145 veneers are handled for now. */
5146
5147static bfd_vma
5148record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5149 elf32_vfp11_erratum_list *branch,
5150 bfd *branch_bfd,
5151 asection *branch_sec,
5152 unsigned int offset)
5153{
5154 asection *s;
5155 struct elf32_arm_link_hash_table *hash_table;
5156 char *tmp_name;
5157 struct elf_link_hash_entry *myh;
5158 struct bfd_link_hash_entry *bh;
5159 bfd_vma val;
5160 struct _arm_elf_section_data *sec_data;
5161 int errcount;
5162 elf32_vfp11_erratum_list *newerr;
906e58ca 5163
c7b8f16e 5164 hash_table = elf32_arm_hash_table (link_info);
906e58ca 5165
c7b8f16e
JB
5166 BFD_ASSERT (hash_table != NULL);
5167 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 5168
c7b8f16e
JB
5169 s = bfd_get_section_by_name
5170 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 5171
c7b8f16e 5172 sec_data = elf32_arm_section_data (s);
906e58ca 5173
c7b8f16e 5174 BFD_ASSERT (s != NULL);
906e58ca 5175
21d799b5
NC
5176 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5177 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 5178
c7b8f16e 5179 BFD_ASSERT (tmp_name);
906e58ca 5180
c7b8f16e
JB
5181 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5182 hash_table->num_vfp11_fixes);
906e58ca 5183
c7b8f16e
JB
5184 myh = elf_link_hash_lookup
5185 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5186
c7b8f16e 5187 BFD_ASSERT (myh == NULL);
906e58ca 5188
c7b8f16e
JB
5189 bh = NULL;
5190 val = hash_table->vfp11_erratum_glue_size;
5191 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5192 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5193 NULL, TRUE, FALSE, &bh);
5194
5195 myh = (struct elf_link_hash_entry *) bh;
5196 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5197 myh->forced_local = 1;
5198
5199 /* Link veneer back to calling location. */
5200 errcount = ++(sec_data->erratumcount);
21d799b5
NC
5201 newerr = (elf32_vfp11_erratum_list *)
5202 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 5203
c7b8f16e
JB
5204 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5205 newerr->vma = -1;
5206 newerr->u.v.branch = branch;
5207 newerr->u.v.id = hash_table->num_vfp11_fixes;
5208 branch->u.b.veneer = newerr;
5209
5210 newerr->next = sec_data->erratumlist;
5211 sec_data->erratumlist = newerr;
5212
5213 /* A symbol for the return from the veneer. */
5214 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5215 hash_table->num_vfp11_fixes);
5216
5217 myh = elf_link_hash_lookup
5218 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5219
c7b8f16e
JB
5220 if (myh != NULL)
5221 abort ();
5222
5223 bh = NULL;
5224 val = offset + 4;
5225 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5226 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 5227
c7b8f16e
JB
5228 myh = (struct elf_link_hash_entry *) bh;
5229 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5230 myh->forced_local = 1;
5231
5232 free (tmp_name);
906e58ca 5233
c7b8f16e
JB
5234 /* Generate a mapping symbol for the veneer section, and explicitly add an
5235 entry for that symbol to the code/data map for the section. */
5236 if (hash_table->vfp11_erratum_glue_size == 0)
5237 {
5238 bh = NULL;
5239 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5240 ever requires this erratum fix. */
5241 _bfd_generic_link_add_one_symbol (link_info,
5242 hash_table->bfd_of_glue_owner, "$a",
5243 BSF_LOCAL, s, 0, NULL,
5244 TRUE, FALSE, &bh);
5245
5246 myh = (struct elf_link_hash_entry *) bh;
5247 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5248 myh->forced_local = 1;
906e58ca 5249
c7b8f16e
JB
5250 /* The elf32_arm_init_maps function only cares about symbols from input
5251 BFDs. We must make a note of this generated mapping symbol
5252 ourselves so that code byteswapping works properly in
5253 elf32_arm_write_section. */
5254 elf32_arm_section_map_add (s, 'a', 0);
5255 }
906e58ca 5256
c7b8f16e
JB
5257 s->size += VFP11_ERRATUM_VENEER_SIZE;
5258 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5259 hash_table->num_vfp11_fixes++;
906e58ca 5260
c7b8f16e
JB
5261 /* The offset of the veneer. */
5262 return val;
5263}
5264
8029a119 5265#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
5266 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5267 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
5268
5269/* Create a fake section for use by the ARM backend of the linker. */
5270
5271static bfd_boolean
5272arm_make_glue_section (bfd * abfd, const char * name)
5273{
5274 asection * sec;
5275
5276 sec = bfd_get_section_by_name (abfd, name);
5277 if (sec != NULL)
5278 /* Already made. */
5279 return TRUE;
5280
5281 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5282
5283 if (sec == NULL
5284 || !bfd_set_section_alignment (abfd, sec, 2))
5285 return FALSE;
5286
5287 /* Set the gc mark to prevent the section from being removed by garbage
5288 collection, despite the fact that no relocs refer to this section. */
5289 sec->gc_mark = 1;
5290
5291 return TRUE;
5292}
5293
8afb0e02
NC
5294/* Add the glue sections to ABFD. This function is called from the
5295 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 5296
b34976b6 5297bfd_boolean
57e8b36a
NC
5298bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5299 struct bfd_link_info *info)
252b5132 5300{
8afb0e02
NC
5301 /* If we are only performing a partial
5302 link do not bother adding the glue. */
1049f94e 5303 if (info->relocatable)
b34976b6 5304 return TRUE;
252b5132 5305
8029a119
NC
5306 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5307 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5308 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5309 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
8afb0e02
NC
5310}
5311
5312/* Select a BFD to be used to hold the sections used by the glue code.
5313 This function is called from the linker scripts in ld/emultempl/
8029a119 5314 {armelf/pe}.em. */
8afb0e02 5315
b34976b6 5316bfd_boolean
57e8b36a 5317bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
5318{
5319 struct elf32_arm_link_hash_table *globals;
5320
5321 /* If we are only performing a partial link
5322 do not bother getting a bfd to hold the glue. */
1049f94e 5323 if (info->relocatable)
b34976b6 5324 return TRUE;
8afb0e02 5325
b7693d02
DJ
5326 /* Make sure we don't attach the glue sections to a dynamic object. */
5327 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5328
8afb0e02
NC
5329 globals = elf32_arm_hash_table (info);
5330
5331 BFD_ASSERT (globals != NULL);
5332
5333 if (globals->bfd_of_glue_owner != NULL)
b34976b6 5334 return TRUE;
8afb0e02 5335
252b5132
RH
5336 /* Save the bfd for later use. */
5337 globals->bfd_of_glue_owner = abfd;
cedb70c5 5338
b34976b6 5339 return TRUE;
252b5132
RH
5340}
5341
906e58ca
NC
5342static void
5343check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 5344{
104d59d1
JM
5345 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5346 Tag_CPU_arch) > 2)
39b41c9c
PB
5347 globals->use_blx = 1;
5348}
5349
b34976b6 5350bfd_boolean
57e8b36a 5351bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 5352 struct bfd_link_info *link_info)
252b5132
RH
5353{
5354 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 5355 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
5356 Elf_Internal_Rela *irel, *irelend;
5357 bfd_byte *contents = NULL;
252b5132
RH
5358
5359 asection *sec;
5360 struct elf32_arm_link_hash_table *globals;
5361
5362 /* If we are only performing a partial link do not bother
5363 to construct any glue. */
1049f94e 5364 if (link_info->relocatable)
b34976b6 5365 return TRUE;
252b5132 5366
39ce1a6a
NC
5367 /* Here we have a bfd that is to be included on the link. We have a
5368 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132
RH
5369 globals = elf32_arm_hash_table (link_info);
5370
5371 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
5372
5373 check_use_blx (globals);
252b5132 5374
d504ffc8 5375 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 5376 {
d003868e
AM
5377 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5378 abfd);
e489d0ae
PB
5379 return FALSE;
5380 }
f21f3fe0 5381
39ce1a6a
NC
5382 /* PR 5398: If we have not decided to include any loadable sections in
5383 the output then we will not have a glue owner bfd. This is OK, it
5384 just means that there is nothing else for us to do here. */
5385 if (globals->bfd_of_glue_owner == NULL)
5386 return TRUE;
5387
252b5132
RH
5388 /* Rummage around all the relocs and map the glue vectors. */
5389 sec = abfd->sections;
5390
5391 if (sec == NULL)
b34976b6 5392 return TRUE;
252b5132
RH
5393
5394 for (; sec != NULL; sec = sec->next)
5395 {
5396 if (sec->reloc_count == 0)
5397 continue;
5398
2f475487
AM
5399 if ((sec->flags & SEC_EXCLUDE) != 0)
5400 continue;
5401
0ffa91dd 5402 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 5403
9b485d32 5404 /* Load the relocs. */
6cdc0ccc 5405 internal_relocs
906e58ca 5406 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 5407
6cdc0ccc
AM
5408 if (internal_relocs == NULL)
5409 goto error_return;
252b5132 5410
6cdc0ccc
AM
5411 irelend = internal_relocs + sec->reloc_count;
5412 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
5413 {
5414 long r_type;
5415 unsigned long r_index;
252b5132
RH
5416
5417 struct elf_link_hash_entry *h;
5418
5419 r_type = ELF32_R_TYPE (irel->r_info);
5420 r_index = ELF32_R_SYM (irel->r_info);
5421
9b485d32 5422 /* These are the only relocation types we care about. */
ba96a88f 5423 if ( r_type != R_ARM_PC24
845b51d6 5424 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
5425 continue;
5426
5427 /* Get the section contents if we haven't done so already. */
5428 if (contents == NULL)
5429 {
5430 /* Get cached copy if it exists. */
5431 if (elf_section_data (sec)->this_hdr.contents != NULL)
5432 contents = elf_section_data (sec)->this_hdr.contents;
5433 else
5434 {
5435 /* Go get them off disk. */
57e8b36a 5436 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
5437 goto error_return;
5438 }
5439 }
5440
845b51d6
PB
5441 if (r_type == R_ARM_V4BX)
5442 {
5443 int reg;
5444
5445 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5446 record_arm_bx_glue (link_info, reg);
5447 continue;
5448 }
5449
a7c10850 5450 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
5451 h = NULL;
5452
9b485d32 5453 /* We don't care about local symbols. */
252b5132
RH
5454 if (r_index < symtab_hdr->sh_info)
5455 continue;
5456
9b485d32 5457 /* This is an external symbol. */
252b5132
RH
5458 r_index -= symtab_hdr->sh_info;
5459 h = (struct elf_link_hash_entry *)
5460 elf_sym_hashes (abfd)[r_index];
5461
5462 /* If the relocation is against a static symbol it must be within
5463 the current section and so cannot be a cross ARM/Thumb relocation. */
5464 if (h == NULL)
5465 continue;
5466
d504ffc8
DJ
5467 /* If the call will go through a PLT entry then we do not need
5468 glue. */
5469 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
5470 continue;
5471
252b5132
RH
5472 switch (r_type)
5473 {
5474 case R_ARM_PC24:
5475 /* This one is a call from arm code. We need to look up
2f0ca46a 5476 the target of the call. If it is a thumb target, we
252b5132 5477 insert glue. */
ebe24dd4 5478 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
252b5132
RH
5479 record_arm_to_thumb_glue (link_info, h);
5480 break;
5481
252b5132 5482 default:
c6596c5e 5483 abort ();
252b5132
RH
5484 }
5485 }
6cdc0ccc
AM
5486
5487 if (contents != NULL
5488 && elf_section_data (sec)->this_hdr.contents != contents)
5489 free (contents);
5490 contents = NULL;
5491
5492 if (internal_relocs != NULL
5493 && elf_section_data (sec)->relocs != internal_relocs)
5494 free (internal_relocs);
5495 internal_relocs = NULL;
252b5132
RH
5496 }
5497
b34976b6 5498 return TRUE;
9a5aca8c 5499
252b5132 5500error_return:
6cdc0ccc
AM
5501 if (contents != NULL
5502 && elf_section_data (sec)->this_hdr.contents != contents)
5503 free (contents);
5504 if (internal_relocs != NULL
5505 && elf_section_data (sec)->relocs != internal_relocs)
5506 free (internal_relocs);
9a5aca8c 5507
b34976b6 5508 return FALSE;
252b5132 5509}
7e392df6 5510#endif
252b5132 5511
eb043451 5512
c7b8f16e
JB
5513/* Initialise maps of ARM/Thumb/data for input BFDs. */
5514
5515void
5516bfd_elf32_arm_init_maps (bfd *abfd)
5517{
5518 Elf_Internal_Sym *isymbuf;
5519 Elf_Internal_Shdr *hdr;
5520 unsigned int i, localsyms;
5521
af1f4419
NC
5522 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5523 if (! is_arm_elf (abfd))
5524 return;
5525
c7b8f16e
JB
5526 if ((abfd->flags & DYNAMIC) != 0)
5527 return;
5528
0ffa91dd 5529 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
5530 localsyms = hdr->sh_info;
5531
5532 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5533 should contain the number of local symbols, which should come before any
5534 global symbols. Mapping symbols are always local. */
5535 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5536 NULL);
5537
5538 /* No internal symbols read? Skip this BFD. */
5539 if (isymbuf == NULL)
5540 return;
5541
5542 for (i = 0; i < localsyms; i++)
5543 {
5544 Elf_Internal_Sym *isym = &isymbuf[i];
5545 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5546 const char *name;
906e58ca 5547
c7b8f16e
JB
5548 if (sec != NULL
5549 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5550 {
5551 name = bfd_elf_string_from_elf_section (abfd,
5552 hdr->sh_link, isym->st_name);
906e58ca 5553
c7b8f16e
JB
5554 if (bfd_is_arm_special_symbol_name (name,
5555 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5556 elf32_arm_section_map_add (sec, name[1], isym->st_value);
5557 }
5558 }
5559}
5560
5561
48229727
JB
5562/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5563 say what they wanted. */
5564
5565void
5566bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5567{
5568 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5569 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5570
5571 if (globals->fix_cortex_a8 == -1)
5572 {
5573 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5574 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5575 && (out_attr[Tag_CPU_arch_profile].i == 'A'
5576 || out_attr[Tag_CPU_arch_profile].i == 0))
5577 globals->fix_cortex_a8 = 1;
5578 else
5579 globals->fix_cortex_a8 = 0;
5580 }
5581}
5582
5583
c7b8f16e
JB
5584void
5585bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5586{
5587 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 5588 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 5589
c7b8f16e
JB
5590 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5591 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5592 {
5593 switch (globals->vfp11_fix)
5594 {
5595 case BFD_ARM_VFP11_FIX_DEFAULT:
5596 case BFD_ARM_VFP11_FIX_NONE:
5597 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5598 break;
906e58ca 5599
c7b8f16e
JB
5600 default:
5601 /* Give a warning, but do as the user requests anyway. */
5602 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5603 "workaround is not necessary for target architecture"), obfd);
5604 }
5605 }
5606 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5607 /* For earlier architectures, we might need the workaround, but do not
5608 enable it by default. If users is running with broken hardware, they
5609 must enable the erratum fix explicitly. */
5610 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5611}
5612
5613
906e58ca
NC
5614enum bfd_arm_vfp11_pipe
5615{
c7b8f16e
JB
5616 VFP11_FMAC,
5617 VFP11_LS,
5618 VFP11_DS,
5619 VFP11_BAD
5620};
5621
5622/* Return a VFP register number. This is encoded as RX:X for single-precision
5623 registers, or X:RX for double-precision registers, where RX is the group of
5624 four bits in the instruction encoding and X is the single extension bit.
5625 RX and X fields are specified using their lowest (starting) bit. The return
5626 value is:
5627
5628 0...31: single-precision registers s0...s31
5629 32...63: double-precision registers d0...d31.
906e58ca 5630
c7b8f16e
JB
5631 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5632 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 5633
c7b8f16e
JB
5634static unsigned int
5635bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5636 unsigned int x)
5637{
5638 if (is_double)
5639 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5640 else
5641 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5642}
5643
5644/* Set bits in *WMASK according to a register number REG as encoded by
5645 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5646
5647static void
5648bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5649{
5650 if (reg < 32)
5651 *wmask |= 1 << reg;
5652 else if (reg < 48)
5653 *wmask |= 3 << ((reg - 32) * 2);
5654}
5655
5656/* Return TRUE if WMASK overwrites anything in REGS. */
5657
5658static bfd_boolean
5659bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5660{
5661 int i;
906e58ca 5662
c7b8f16e
JB
5663 for (i = 0; i < numregs; i++)
5664 {
5665 unsigned int reg = regs[i];
5666
5667 if (reg < 32 && (wmask & (1 << reg)) != 0)
5668 return TRUE;
906e58ca 5669
c7b8f16e
JB
5670 reg -= 32;
5671
5672 if (reg >= 16)
5673 continue;
906e58ca 5674
c7b8f16e
JB
5675 if ((wmask & (3 << (reg * 2))) != 0)
5676 return TRUE;
5677 }
906e58ca 5678
c7b8f16e
JB
5679 return FALSE;
5680}
5681
5682/* In this function, we're interested in two things: finding input registers
5683 for VFP data-processing instructions, and finding the set of registers which
5684 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5685 hold the written set, so FLDM etc. are easy to deal with (we're only
5686 interested in 32 SP registers or 16 dp registers, due to the VFP version
5687 implemented by the chip in question). DP registers are marked by setting
5688 both SP registers in the write mask). */
5689
5690static enum bfd_arm_vfp11_pipe
5691bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5692 int *numregs)
5693{
5694 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
5695 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
5696
5697 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5698 {
5699 unsigned int pqrs;
5700 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5701 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5702
5703 pqrs = ((insn & 0x00800000) >> 20)
5704 | ((insn & 0x00300000) >> 19)
5705 | ((insn & 0x00000040) >> 6);
5706
5707 switch (pqrs)
5708 {
5709 case 0: /* fmac[sd]. */
5710 case 1: /* fnmac[sd]. */
5711 case 2: /* fmsc[sd]. */
5712 case 3: /* fnmsc[sd]. */
5713 pipe = VFP11_FMAC;
5714 bfd_arm_vfp11_write_mask (destmask, fd);
5715 regs[0] = fd;
5716 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5717 regs[2] = fm;
5718 *numregs = 3;
5719 break;
5720
5721 case 4: /* fmul[sd]. */
5722 case 5: /* fnmul[sd]. */
5723 case 6: /* fadd[sd]. */
5724 case 7: /* fsub[sd]. */
5725 pipe = VFP11_FMAC;
5726 goto vfp_binop;
5727
5728 case 8: /* fdiv[sd]. */
5729 pipe = VFP11_DS;
5730 vfp_binop:
5731 bfd_arm_vfp11_write_mask (destmask, fd);
5732 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5733 regs[1] = fm;
5734 *numregs = 2;
5735 break;
5736
5737 case 15: /* extended opcode. */
5738 {
5739 unsigned int extn = ((insn >> 15) & 0x1e)
5740 | ((insn >> 7) & 1);
5741
5742 switch (extn)
5743 {
5744 case 0: /* fcpy[sd]. */
5745 case 1: /* fabs[sd]. */
5746 case 2: /* fneg[sd]. */
5747 case 8: /* fcmp[sd]. */
5748 case 9: /* fcmpe[sd]. */
5749 case 10: /* fcmpz[sd]. */
5750 case 11: /* fcmpez[sd]. */
5751 case 16: /* fuito[sd]. */
5752 case 17: /* fsito[sd]. */
5753 case 24: /* ftoui[sd]. */
5754 case 25: /* ftouiz[sd]. */
5755 case 26: /* ftosi[sd]. */
5756 case 27: /* ftosiz[sd]. */
5757 /* These instructions will not bounce due to underflow. */
5758 *numregs = 0;
5759 pipe = VFP11_FMAC;
5760 break;
5761
5762 case 3: /* fsqrt[sd]. */
5763 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5764 registers to cause the erratum in previous instructions. */
5765 bfd_arm_vfp11_write_mask (destmask, fd);
5766 pipe = VFP11_DS;
5767 break;
5768
5769 case 15: /* fcvt{ds,sd}. */
5770 {
5771 int rnum = 0;
5772
5773 bfd_arm_vfp11_write_mask (destmask, fd);
5774
5775 /* Only FCVTSD can underflow. */
5776 if ((insn & 0x100) != 0)
5777 regs[rnum++] = fm;
5778
5779 *numregs = rnum;
5780
5781 pipe = VFP11_FMAC;
5782 }
5783 break;
5784
5785 default:
5786 return VFP11_BAD;
5787 }
5788 }
5789 break;
5790
5791 default:
5792 return VFP11_BAD;
5793 }
5794 }
5795 /* Two-register transfer. */
5796 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5797 {
5798 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 5799
c7b8f16e
JB
5800 if ((insn & 0x100000) == 0)
5801 {
5802 if (is_double)
5803 bfd_arm_vfp11_write_mask (destmask, fm);
5804 else
5805 {
5806 bfd_arm_vfp11_write_mask (destmask, fm);
5807 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5808 }
5809 }
5810
5811 pipe = VFP11_LS;
5812 }
5813 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5814 {
5815 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5816 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 5817
c7b8f16e
JB
5818 switch (puw)
5819 {
5820 case 0: /* Two-reg transfer. We should catch these above. */
5821 abort ();
906e58ca 5822
c7b8f16e
JB
5823 case 2: /* fldm[sdx]. */
5824 case 3:
5825 case 5:
5826 {
5827 unsigned int i, offset = insn & 0xff;
5828
5829 if (is_double)
5830 offset >>= 1;
5831
5832 for (i = fd; i < fd + offset; i++)
5833 bfd_arm_vfp11_write_mask (destmask, i);
5834 }
5835 break;
906e58ca 5836
c7b8f16e
JB
5837 case 4: /* fld[sd]. */
5838 case 6:
5839 bfd_arm_vfp11_write_mask (destmask, fd);
5840 break;
906e58ca 5841
c7b8f16e
JB
5842 default:
5843 return VFP11_BAD;
5844 }
5845
5846 pipe = VFP11_LS;
5847 }
5848 /* Single-register transfer. Note L==0. */
5849 else if ((insn & 0x0f100e10) == 0x0e000a10)
5850 {
5851 unsigned int opcode = (insn >> 21) & 7;
5852 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5853
5854 switch (opcode)
5855 {
5856 case 0: /* fmsr/fmdlr. */
5857 case 1: /* fmdhr. */
5858 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5859 destination register. I don't know if this is exactly right,
5860 but it is the conservative choice. */
5861 bfd_arm_vfp11_write_mask (destmask, fn);
5862 break;
5863
5864 case 7: /* fmxr. */
5865 break;
5866 }
5867
5868 pipe = VFP11_LS;
5869 }
5870
5871 return pipe;
5872}
5873
5874
5875static int elf32_arm_compare_mapping (const void * a, const void * b);
5876
5877
5878/* Look for potentially-troublesome code sequences which might trigger the
5879 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5880 (available from ARM) for details of the erratum. A short version is
5881 described in ld.texinfo. */
5882
5883bfd_boolean
5884bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5885{
5886 asection *sec;
5887 bfd_byte *contents = NULL;
5888 int state = 0;
5889 int regs[3], numregs = 0;
5890 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5891 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 5892
c7b8f16e
JB
5893 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5894 The states transition as follows:
906e58ca 5895
c7b8f16e
JB
5896 0 -> 1 (vector) or 0 -> 2 (scalar)
5897 A VFP FMAC-pipeline instruction has been seen. Fill
5898 regs[0]..regs[numregs-1] with its input operands. Remember this
5899 instruction in 'first_fmac'.
5900
5901 1 -> 2
5902 Any instruction, except for a VFP instruction which overwrites
5903 regs[*].
906e58ca 5904
c7b8f16e
JB
5905 1 -> 3 [ -> 0 ] or
5906 2 -> 3 [ -> 0 ]
5907 A VFP instruction has been seen which overwrites any of regs[*].
5908 We must make a veneer! Reset state to 0 before examining next
5909 instruction.
906e58ca 5910
c7b8f16e
JB
5911 2 -> 0
5912 If we fail to match anything in state 2, reset to state 0 and reset
5913 the instruction pointer to the instruction after 'first_fmac'.
5914
5915 If the VFP11 vector mode is in use, there must be at least two unrelated
5916 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 5917 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
5918
5919 /* If we are only performing a partial link do not bother
5920 to construct any glue. */
5921 if (link_info->relocatable)
5922 return TRUE;
5923
0ffa91dd
NC
5924 /* Skip if this bfd does not correspond to an ELF image. */
5925 if (! is_arm_elf (abfd))
5926 return TRUE;
906e58ca 5927
c7b8f16e
JB
5928 /* We should have chosen a fix type by the time we get here. */
5929 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5930
5931 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5932 return TRUE;
2e6030b9 5933
33a7ffc2
JM
5934 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5935 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5936 return TRUE;
5937
c7b8f16e
JB
5938 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5939 {
5940 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5941 struct _arm_elf_section_data *sec_data;
5942
5943 /* If we don't have executable progbits, we're not interested in this
5944 section. Also skip if section is to be excluded. */
5945 if (elf_section_type (sec) != SHT_PROGBITS
5946 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5947 || (sec->flags & SEC_EXCLUDE) != 0
33a7ffc2
JM
5948 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5949 || sec->output_section == bfd_abs_section_ptr
c7b8f16e
JB
5950 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5951 continue;
5952
5953 sec_data = elf32_arm_section_data (sec);
906e58ca 5954
c7b8f16e
JB
5955 if (sec_data->mapcount == 0)
5956 continue;
906e58ca 5957
c7b8f16e
JB
5958 if (elf_section_data (sec)->this_hdr.contents != NULL)
5959 contents = elf_section_data (sec)->this_hdr.contents;
5960 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5961 goto error_return;
5962
5963 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5964 elf32_arm_compare_mapping);
5965
5966 for (span = 0; span < sec_data->mapcount; span++)
5967 {
5968 unsigned int span_start = sec_data->map[span].vma;
5969 unsigned int span_end = (span == sec_data->mapcount - 1)
5970 ? sec->size : sec_data->map[span + 1].vma;
5971 char span_type = sec_data->map[span].type;
906e58ca 5972
c7b8f16e
JB
5973 /* FIXME: Only ARM mode is supported at present. We may need to
5974 support Thumb-2 mode also at some point. */
5975 if (span_type != 'a')
5976 continue;
5977
5978 for (i = span_start; i < span_end;)
5979 {
5980 unsigned int next_i = i + 4;
5981 unsigned int insn = bfd_big_endian (abfd)
5982 ? (contents[i] << 24)
5983 | (contents[i + 1] << 16)
5984 | (contents[i + 2] << 8)
5985 | contents[i + 3]
5986 : (contents[i + 3] << 24)
5987 | (contents[i + 2] << 16)
5988 | (contents[i + 1] << 8)
5989 | contents[i];
5990 unsigned int writemask = 0;
5991 enum bfd_arm_vfp11_pipe pipe;
5992
5993 switch (state)
5994 {
5995 case 0:
5996 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5997 &numregs);
5998 /* I'm assuming the VFP11 erratum can trigger with denorm
5999 operands on either the FMAC or the DS pipeline. This might
6000 lead to slightly overenthusiastic veneer insertion. */
6001 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
6002 {
6003 state = use_vector ? 1 : 2;
6004 first_fmac = i;
6005 veneer_of_insn = insn;
6006 }
6007 break;
6008
6009 case 1:
6010 {
6011 int other_regs[3], other_numregs;
6012 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6013 other_regs,
6014 &other_numregs);
6015 if (pipe != VFP11_BAD
6016 && bfd_arm_vfp11_antidependency (writemask, regs,
6017 numregs))
6018 state = 3;
6019 else
6020 state = 2;
6021 }
6022 break;
6023
6024 case 2:
6025 {
6026 int other_regs[3], other_numregs;
6027 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6028 other_regs,
6029 &other_numregs);
6030 if (pipe != VFP11_BAD
6031 && bfd_arm_vfp11_antidependency (writemask, regs,
6032 numregs))
6033 state = 3;
6034 else
6035 {
6036 state = 0;
6037 next_i = first_fmac + 4;
6038 }
6039 }
6040 break;
6041
6042 case 3:
6043 abort (); /* Should be unreachable. */
6044 }
6045
6046 if (state == 3)
6047 {
21d799b5
NC
6048 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6049 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
c7b8f16e
JB
6050 int errcount;
6051
6052 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
6053
6054 newerr->u.b.vfp_insn = veneer_of_insn;
6055
6056 switch (span_type)
6057 {
6058 case 'a':
6059 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6060 break;
906e58ca 6061
c7b8f16e
JB
6062 default:
6063 abort ();
6064 }
6065
6066 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6067 first_fmac);
6068
6069 newerr->vma = -1;
6070
6071 newerr->next = sec_data->erratumlist;
6072 sec_data->erratumlist = newerr;
6073
6074 state = 0;
6075 }
6076
6077 i = next_i;
6078 }
6079 }
906e58ca 6080
c7b8f16e
JB
6081 if (contents != NULL
6082 && elf_section_data (sec)->this_hdr.contents != contents)
6083 free (contents);
6084 contents = NULL;
6085 }
6086
6087 return TRUE;
6088
6089error_return:
6090 if (contents != NULL
6091 && elf_section_data (sec)->this_hdr.contents != contents)
6092 free (contents);
906e58ca 6093
c7b8f16e
JB
6094 return FALSE;
6095}
6096
6097/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6098 after sections have been laid out, using specially-named symbols. */
6099
6100void
6101bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6102 struct bfd_link_info *link_info)
6103{
6104 asection *sec;
6105 struct elf32_arm_link_hash_table *globals;
6106 char *tmp_name;
906e58ca 6107
c7b8f16e
JB
6108 if (link_info->relocatable)
6109 return;
2e6030b9
MS
6110
6111 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 6112 if (! is_arm_elf (abfd))
2e6030b9
MS
6113 return;
6114
c7b8f16e 6115 globals = elf32_arm_hash_table (link_info);
906e58ca 6116
21d799b5
NC
6117 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6118 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e
JB
6119
6120 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6121 {
6122 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6123 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 6124
c7b8f16e
JB
6125 for (; errnode != NULL; errnode = errnode->next)
6126 {
6127 struct elf_link_hash_entry *myh;
6128 bfd_vma vma;
6129
6130 switch (errnode->type)
6131 {
6132 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6133 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6134 /* Find veneer symbol. */
6135 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6136 errnode->u.b.veneer->u.v.id);
6137
6138 myh = elf_link_hash_lookup
6139 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6140
6141 if (myh == NULL)
6142 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6143 "`%s'"), abfd, tmp_name);
6144
6145 vma = myh->root.u.def.section->output_section->vma
6146 + myh->root.u.def.section->output_offset
6147 + myh->root.u.def.value;
6148
6149 errnode->u.b.veneer->vma = vma;
6150 break;
6151
6152 case VFP11_ERRATUM_ARM_VENEER:
6153 case VFP11_ERRATUM_THUMB_VENEER:
6154 /* Find return location. */
6155 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6156 errnode->u.v.id);
6157
6158 myh = elf_link_hash_lookup
6159 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6160
6161 if (myh == NULL)
6162 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6163 "`%s'"), abfd, tmp_name);
6164
6165 vma = myh->root.u.def.section->output_section->vma
6166 + myh->root.u.def.section->output_offset
6167 + myh->root.u.def.value;
6168
6169 errnode->u.v.branch->vma = vma;
6170 break;
906e58ca 6171
c7b8f16e
JB
6172 default:
6173 abort ();
6174 }
6175 }
6176 }
906e58ca 6177
c7b8f16e
JB
6178 free (tmp_name);
6179}
6180
6181
eb043451
PB
6182/* Set target relocation values needed during linking. */
6183
6184void
bf21ed78
MS
6185bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6186 struct bfd_link_info *link_info,
eb043451 6187 int target1_is_rel,
319850b4 6188 char * target2_type,
33bfe774 6189 int fix_v4bx,
c7b8f16e 6190 int use_blx,
bf21ed78 6191 bfd_arm_vfp11_fix vfp11_fix,
a9dc9481 6192 int no_enum_warn, int no_wchar_warn,
48229727 6193 int pic_veneer, int fix_cortex_a8)
eb043451
PB
6194{
6195 struct elf32_arm_link_hash_table *globals;
6196
6197 globals = elf32_arm_hash_table (link_info);
6198
6199 globals->target1_is_rel = target1_is_rel;
6200 if (strcmp (target2_type, "rel") == 0)
6201 globals->target2_reloc = R_ARM_REL32;
eeac373a
PB
6202 else if (strcmp (target2_type, "abs") == 0)
6203 globals->target2_reloc = R_ARM_ABS32;
eb043451
PB
6204 else if (strcmp (target2_type, "got-rel") == 0)
6205 globals->target2_reloc = R_ARM_GOT_PREL;
6206 else
6207 {
6208 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6209 target2_type);
6210 }
319850b4 6211 globals->fix_v4bx = fix_v4bx;
33bfe774 6212 globals->use_blx |= use_blx;
c7b8f16e 6213 globals->vfp11_fix = vfp11_fix;
27e55c4d 6214 globals->pic_veneer = pic_veneer;
48229727 6215 globals->fix_cortex_a8 = fix_cortex_a8;
bf21ed78 6216
0ffa91dd
NC
6217 BFD_ASSERT (is_arm_elf (output_bfd));
6218 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
a9dc9481 6219 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
eb043451 6220}
eb043451 6221
12a0a0fd 6222/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 6223
12a0a0fd
PB
6224static void
6225insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6226{
6227 bfd_vma upper;
6228 bfd_vma lower;
6229 int reloc_sign;
6230
6231 BFD_ASSERT ((offset & 1) == 0);
6232
6233 upper = bfd_get_16 (abfd, insn);
6234 lower = bfd_get_16 (abfd, insn + 2);
6235 reloc_sign = (offset < 0) ? 1 : 0;
6236 upper = (upper & ~(bfd_vma) 0x7ff)
6237 | ((offset >> 12) & 0x3ff)
6238 | (reloc_sign << 10);
906e58ca 6239 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
6240 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6241 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6242 | ((offset >> 1) & 0x7ff);
6243 bfd_put_16 (abfd, upper, insn);
6244 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
6245}
6246
9b485d32
NC
6247/* Thumb code calling an ARM function. */
6248
252b5132 6249static int
57e8b36a
NC
6250elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6251 const char * name,
6252 bfd * input_bfd,
6253 bfd * output_bfd,
6254 asection * input_section,
6255 bfd_byte * hit_data,
6256 asection * sym_sec,
6257 bfd_vma offset,
6258 bfd_signed_vma addend,
f2a9dd69
DJ
6259 bfd_vma val,
6260 char **error_message)
252b5132 6261{
bcbdc74c 6262 asection * s = 0;
dc810e39 6263 bfd_vma my_offset;
252b5132 6264 long int ret_offset;
bcbdc74c
NC
6265 struct elf_link_hash_entry * myh;
6266 struct elf32_arm_link_hash_table * globals;
252b5132 6267
f2a9dd69 6268 myh = find_thumb_glue (info, name, error_message);
252b5132 6269 if (myh == NULL)
b34976b6 6270 return FALSE;
252b5132
RH
6271
6272 globals = elf32_arm_hash_table (info);
6273
6274 BFD_ASSERT (globals != NULL);
6275 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6276
6277 my_offset = myh->root.u.def.value;
6278
6279 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6280 THUMB2ARM_GLUE_SECTION_NAME);
6281
6282 BFD_ASSERT (s != NULL);
6283 BFD_ASSERT (s->contents != NULL);
6284 BFD_ASSERT (s->output_section != NULL);
6285
6286 if ((my_offset & 0x01) == 0x01)
6287 {
6288 if (sym_sec != NULL
6289 && sym_sec->owner != NULL
6290 && !INTERWORK_FLAG (sym_sec->owner))
6291 {
8f615d07 6292 (*_bfd_error_handler)
d003868e
AM
6293 (_("%B(%s): warning: interworking not enabled.\n"
6294 " first occurrence: %B: thumb call to arm"),
6295 sym_sec->owner, input_bfd, name);
252b5132 6296
b34976b6 6297 return FALSE;
252b5132
RH
6298 }
6299
6300 --my_offset;
6301 myh->root.u.def.value = my_offset;
6302
52ab56c2
PB
6303 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6304 s->contents + my_offset);
252b5132 6305
52ab56c2
PB
6306 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6307 s->contents + my_offset + 2);
252b5132
RH
6308
6309 ret_offset =
9b485d32
NC
6310 /* Address of destination of the stub. */
6311 ((bfd_signed_vma) val)
252b5132 6312 - ((bfd_signed_vma)
57e8b36a
NC
6313 /* Offset from the start of the current section
6314 to the start of the stubs. */
9b485d32
NC
6315 (s->output_offset
6316 /* Offset of the start of this stub from the start of the stubs. */
6317 + my_offset
6318 /* Address of the start of the current section. */
6319 + s->output_section->vma)
6320 /* The branch instruction is 4 bytes into the stub. */
6321 + 4
6322 /* ARM branches work from the pc of the instruction + 8. */
6323 + 8);
252b5132 6324
52ab56c2
PB
6325 put_arm_insn (globals, output_bfd,
6326 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6327 s->contents + my_offset + 4);
252b5132
RH
6328 }
6329
6330 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6331
427bfd90
NC
6332 /* Now go back and fix up the original BL insn to point to here. */
6333 ret_offset =
6334 /* Address of where the stub is located. */
6335 (s->output_section->vma + s->output_offset + my_offset)
6336 /* Address of where the BL is located. */
57e8b36a
NC
6337 - (input_section->output_section->vma + input_section->output_offset
6338 + offset)
427bfd90
NC
6339 /* Addend in the relocation. */
6340 - addend
6341 /* Biassing for PC-relative addressing. */
6342 - 8;
252b5132 6343
12a0a0fd 6344 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 6345
b34976b6 6346 return TRUE;
252b5132
RH
6347}
6348
a4fd1a8e 6349/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 6350
a4fd1a8e
PB
6351static struct elf_link_hash_entry *
6352elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6353 const char * name,
6354 bfd * input_bfd,
6355 bfd * output_bfd,
6356 asection * sym_sec,
6357 bfd_vma val,
8029a119
NC
6358 asection * s,
6359 char ** error_message)
252b5132 6360{
dc810e39 6361 bfd_vma my_offset;
252b5132 6362 long int ret_offset;
bcbdc74c
NC
6363 struct elf_link_hash_entry * myh;
6364 struct elf32_arm_link_hash_table * globals;
252b5132 6365
f2a9dd69 6366 myh = find_arm_glue (info, name, error_message);
252b5132 6367 if (myh == NULL)
a4fd1a8e 6368 return NULL;
252b5132
RH
6369
6370 globals = elf32_arm_hash_table (info);
6371
6372 BFD_ASSERT (globals != NULL);
6373 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6374
6375 my_offset = myh->root.u.def.value;
252b5132
RH
6376
6377 if ((my_offset & 0x01) == 0x01)
6378 {
6379 if (sym_sec != NULL
6380 && sym_sec->owner != NULL
6381 && !INTERWORK_FLAG (sym_sec->owner))
6382 {
8f615d07 6383 (*_bfd_error_handler)
d003868e
AM
6384 (_("%B(%s): warning: interworking not enabled.\n"
6385 " first occurrence: %B: arm call to thumb"),
6386 sym_sec->owner, input_bfd, name);
252b5132 6387 }
9b485d32 6388
252b5132
RH
6389 --my_offset;
6390 myh->root.u.def.value = my_offset;
6391
27e55c4d
PB
6392 if (info->shared || globals->root.is_relocatable_executable
6393 || globals->pic_veneer)
8f6277f5
PB
6394 {
6395 /* For relocatable objects we can't use absolute addresses,
6396 so construct the address from a relative offset. */
6397 /* TODO: If the offset is small it's probably worth
6398 constructing the address with adds. */
52ab56c2
PB
6399 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6400 s->contents + my_offset);
6401 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6402 s->contents + my_offset + 4);
6403 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6404 s->contents + my_offset + 8);
8f6277f5
PB
6405 /* Adjust the offset by 4 for the position of the add,
6406 and 8 for the pipeline offset. */
6407 ret_offset = (val - (s->output_offset
6408 + s->output_section->vma
6409 + my_offset + 12))
6410 | 1;
6411 bfd_put_32 (output_bfd, ret_offset,
6412 s->contents + my_offset + 12);
6413 }
26079076
PB
6414 else if (globals->use_blx)
6415 {
6416 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6417 s->contents + my_offset);
6418
6419 /* It's a thumb address. Add the low order bit. */
6420 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6421 s->contents + my_offset + 4);
6422 }
8f6277f5
PB
6423 else
6424 {
52ab56c2
PB
6425 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6426 s->contents + my_offset);
252b5132 6427
52ab56c2
PB
6428 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6429 s->contents + my_offset + 4);
252b5132 6430
8f6277f5
PB
6431 /* It's a thumb address. Add the low order bit. */
6432 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6433 s->contents + my_offset + 8);
8029a119
NC
6434
6435 my_offset += 12;
8f6277f5 6436 }
252b5132
RH
6437 }
6438
6439 BFD_ASSERT (my_offset <= globals->arm_glue_size);
6440
a4fd1a8e
PB
6441 return myh;
6442}
6443
6444/* Arm code calling a Thumb function. */
6445
6446static int
6447elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6448 const char * name,
6449 bfd * input_bfd,
6450 bfd * output_bfd,
6451 asection * input_section,
6452 bfd_byte * hit_data,
6453 asection * sym_sec,
6454 bfd_vma offset,
6455 bfd_signed_vma addend,
f2a9dd69
DJ
6456 bfd_vma val,
6457 char **error_message)
a4fd1a8e
PB
6458{
6459 unsigned long int tmp;
6460 bfd_vma my_offset;
6461 asection * s;
6462 long int ret_offset;
6463 struct elf_link_hash_entry * myh;
6464 struct elf32_arm_link_hash_table * globals;
6465
6466 globals = elf32_arm_hash_table (info);
6467
6468 BFD_ASSERT (globals != NULL);
6469 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6470
6471 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6472 ARM2THUMB_GLUE_SECTION_NAME);
6473 BFD_ASSERT (s != NULL);
6474 BFD_ASSERT (s->contents != NULL);
6475 BFD_ASSERT (s->output_section != NULL);
6476
6477 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 6478 sym_sec, val, s, error_message);
a4fd1a8e
PB
6479 if (!myh)
6480 return FALSE;
6481
6482 my_offset = myh->root.u.def.value;
252b5132
RH
6483 tmp = bfd_get_32 (input_bfd, hit_data);
6484 tmp = tmp & 0xFF000000;
6485
9b485d32 6486 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
6487 ret_offset = (s->output_offset
6488 + my_offset
6489 + s->output_section->vma
6490 - (input_section->output_offset
6491 + input_section->output_section->vma
6492 + offset + addend)
6493 - 8);
9a5aca8c 6494
252b5132
RH
6495 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6496
dc810e39 6497 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 6498
b34976b6 6499 return TRUE;
252b5132
RH
6500}
6501
a4fd1a8e
PB
6502/* Populate Arm stub for an exported Thumb function. */
6503
6504static bfd_boolean
6505elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6506{
6507 struct bfd_link_info * info = (struct bfd_link_info *) inf;
6508 asection * s;
6509 struct elf_link_hash_entry * myh;
6510 struct elf32_arm_link_hash_entry *eh;
6511 struct elf32_arm_link_hash_table * globals;
6512 asection *sec;
6513 bfd_vma val;
f2a9dd69 6514 char *error_message;
a4fd1a8e 6515
906e58ca 6516 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
6517 /* Allocate stubs for exported Thumb functions on v4t. */
6518 if (eh->export_glue == NULL)
6519 return TRUE;
6520
6521 globals = elf32_arm_hash_table (info);
6522
6523 BFD_ASSERT (globals != NULL);
6524 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6525
6526 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6527 ARM2THUMB_GLUE_SECTION_NAME);
6528 BFD_ASSERT (s != NULL);
6529 BFD_ASSERT (s->contents != NULL);
6530 BFD_ASSERT (s->output_section != NULL);
6531
6532 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
6533
6534 BFD_ASSERT (sec->output_section != NULL);
6535
a4fd1a8e
PB
6536 val = eh->export_glue->root.u.def.value + sec->output_offset
6537 + sec->output_section->vma;
8029a119 6538
a4fd1a8e
PB
6539 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6540 h->root.u.def.section->owner,
f2a9dd69
DJ
6541 globals->obfd, sec, val, s,
6542 &error_message);
a4fd1a8e
PB
6543 BFD_ASSERT (myh);
6544 return TRUE;
6545}
6546
845b51d6
PB
6547/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6548
6549static bfd_vma
6550elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6551{
6552 bfd_byte *p;
6553 bfd_vma glue_addr;
6554 asection *s;
6555 struct elf32_arm_link_hash_table *globals;
6556
6557 globals = elf32_arm_hash_table (info);
6558
6559 BFD_ASSERT (globals != NULL);
6560 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6561
6562 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6563 ARM_BX_GLUE_SECTION_NAME);
6564 BFD_ASSERT (s != NULL);
6565 BFD_ASSERT (s->contents != NULL);
6566 BFD_ASSERT (s->output_section != NULL);
6567
6568 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6569
6570 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6571
6572 if ((globals->bx_glue_offset[reg] & 1) == 0)
6573 {
6574 p = s->contents + glue_addr;
6575 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6576 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6577 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6578 globals->bx_glue_offset[reg] |= 1;
6579 }
6580
6581 return glue_addr + s->output_section->vma + s->output_offset;
6582}
6583
a4fd1a8e
PB
6584/* Generate Arm stubs for exported Thumb symbols. */
6585static void
906e58ca 6586elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
6587 struct bfd_link_info *link_info)
6588{
6589 struct elf32_arm_link_hash_table * globals;
6590
8029a119
NC
6591 if (link_info == NULL)
6592 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
6593 return;
6594
6595 globals = elf32_arm_hash_table (link_info);
84c08195
PB
6596 /* If blx is available then exported Thumb symbols are OK and there is
6597 nothing to do. */
a4fd1a8e
PB
6598 if (globals->use_blx)
6599 return;
6600
6601 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6602 link_info);
6603}
6604
eb043451
PB
6605/* Some relocations map to different relocations depending on the
6606 target. Return the real relocation. */
8029a119 6607
eb043451
PB
6608static int
6609arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6610 int r_type)
6611{
6612 switch (r_type)
6613 {
6614 case R_ARM_TARGET1:
6615 if (globals->target1_is_rel)
6616 return R_ARM_REL32;
6617 else
6618 return R_ARM_ABS32;
6619
6620 case R_ARM_TARGET2:
6621 return globals->target2_reloc;
6622
6623 default:
6624 return r_type;
6625 }
6626}
eb043451 6627
ba93b8ac
DJ
6628/* Return the base VMA address which should be subtracted from real addresses
6629 when resolving @dtpoff relocation.
6630 This is PT_TLS segment p_vaddr. */
6631
6632static bfd_vma
6633dtpoff_base (struct bfd_link_info *info)
6634{
6635 /* If tls_sec is NULL, we should have signalled an error already. */
6636 if (elf_hash_table (info)->tls_sec == NULL)
6637 return 0;
6638 return elf_hash_table (info)->tls_sec->vma;
6639}
6640
6641/* Return the relocation value for @tpoff relocation
6642 if STT_TLS virtual address is ADDRESS. */
6643
6644static bfd_vma
6645tpoff (struct bfd_link_info *info, bfd_vma address)
6646{
6647 struct elf_link_hash_table *htab = elf_hash_table (info);
6648 bfd_vma base;
6649
6650 /* If tls_sec is NULL, we should have signalled an error already. */
6651 if (htab->tls_sec == NULL)
6652 return 0;
6653 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6654 return address - htab->tls_sec->vma + base;
6655}
6656
00a97672
RS
6657/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6658 VALUE is the relocation value. */
6659
6660static bfd_reloc_status_type
6661elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6662{
6663 if (value > 0xfff)
6664 return bfd_reloc_overflow;
6665
6666 value |= bfd_get_32 (abfd, data) & 0xfffff000;
6667 bfd_put_32 (abfd, value, data);
6668 return bfd_reloc_ok;
6669}
6670
4962c51a
MS
6671/* For a given value of n, calculate the value of G_n as required to
6672 deal with group relocations. We return it in the form of an
6673 encoded constant-and-rotation, together with the final residual. If n is
6674 specified as less than zero, then final_residual is filled with the
6675 input value and no further action is performed. */
6676
6677static bfd_vma
6678calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
6679{
6680 int current_n;
6681 bfd_vma g_n;
6682 bfd_vma encoded_g_n = 0;
6683 bfd_vma residual = value; /* Also known as Y_n. */
6684
6685 for (current_n = 0; current_n <= n; current_n++)
6686 {
6687 int shift;
6688
6689 /* Calculate which part of the value to mask. */
6690 if (residual == 0)
6691 shift = 0;
6692 else
6693 {
6694 int msb;
6695
6696 /* Determine the most significant bit in the residual and
6697 align the resulting value to a 2-bit boundary. */
6698 for (msb = 30; msb >= 0; msb -= 2)
6699 if (residual & (3 << msb))
6700 break;
6701
6702 /* The desired shift is now (msb - 6), or zero, whichever
6703 is the greater. */
6704 shift = msb - 6;
6705 if (shift < 0)
6706 shift = 0;
6707 }
6708
6709 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6710 g_n = residual & (0xff << shift);
6711 encoded_g_n = (g_n >> shift)
6712 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
6713
6714 /* Calculate the residual for the next time around. */
6715 residual &= ~g_n;
6716 }
6717
6718 *final_residual = residual;
6719
6720 return encoded_g_n;
6721}
6722
6723/* Given an ARM instruction, determine whether it is an ADD or a SUB.
6724 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 6725
4962c51a 6726static int
906e58ca 6727identify_add_or_sub (bfd_vma insn)
4962c51a
MS
6728{
6729 int opcode = insn & 0x1e00000;
6730
6731 if (opcode == 1 << 23) /* ADD */
6732 return 1;
6733
6734 if (opcode == 1 << 22) /* SUB */
6735 return -1;
6736
6737 return 0;
6738}
6739
252b5132 6740/* Perform a relocation as part of a final link. */
9b485d32 6741
252b5132 6742static bfd_reloc_status_type
57e8b36a
NC
6743elf32_arm_final_link_relocate (reloc_howto_type * howto,
6744 bfd * input_bfd,
6745 bfd * output_bfd,
6746 asection * input_section,
6747 bfd_byte * contents,
6748 Elf_Internal_Rela * rel,
6749 bfd_vma value,
6750 struct bfd_link_info * info,
6751 asection * sym_sec,
6752 const char * sym_name,
6753 int sym_flags,
0945cdfd 6754 struct elf_link_hash_entry * h,
f2a9dd69 6755 bfd_boolean * unresolved_reloc_p,
8029a119 6756 char ** error_message)
252b5132
RH
6757{
6758 unsigned long r_type = howto->type;
6759 unsigned long r_symndx;
6760 bfd_byte * hit_data = contents + rel->r_offset;
6761 bfd * dynobj = NULL;
6762 Elf_Internal_Shdr * symtab_hdr;
6763 struct elf_link_hash_entry ** sym_hashes;
6764 bfd_vma * local_got_offsets;
6765 asection * sgot = NULL;
6766 asection * splt = NULL;
6767 asection * sreloc = NULL;
252b5132 6768 bfd_vma addend;
ba96a88f
NC
6769 bfd_signed_vma signed_addend;
6770 struct elf32_arm_link_hash_table * globals;
f21f3fe0 6771
9c504268
PB
6772 globals = elf32_arm_hash_table (info);
6773
0ffa91dd
NC
6774 BFD_ASSERT (is_arm_elf (input_bfd));
6775
6776 /* Some relocation types map to different relocations depending on the
9c504268 6777 target. We pick the right one here. */
eb043451
PB
6778 r_type = arm_real_reloc_type (globals, r_type);
6779 if (r_type != howto->type)
6780 howto = elf32_arm_howto_from_type (r_type);
9c504268 6781
cac15327
NC
6782 /* If the start address has been set, then set the EF_ARM_HASENTRY
6783 flag. Setting this more than once is redundant, but the cost is
6784 not too high, and it keeps the code simple.
99e4ae17 6785
cac15327
NC
6786 The test is done here, rather than somewhere else, because the
6787 start address is only set just before the final link commences.
6788
6789 Note - if the user deliberately sets a start address of 0, the
6790 flag will not be set. */
6791 if (bfd_get_start_address (output_bfd) != 0)
6792 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
99e4ae17 6793
252b5132
RH
6794 dynobj = elf_hash_table (info)->dynobj;
6795 if (dynobj)
6796 {
6797 sgot = bfd_get_section_by_name (dynobj, ".got");
6798 splt = bfd_get_section_by_name (dynobj, ".plt");
6799 }
0ffa91dd 6800 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
6801 sym_hashes = elf_sym_hashes (input_bfd);
6802 local_got_offsets = elf_local_got_offsets (input_bfd);
6803 r_symndx = ELF32_R_SYM (rel->r_info);
6804
4e7fd91e 6805 if (globals->use_rel)
ba96a88f 6806 {
4e7fd91e
PB
6807 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6808
6809 if (addend & ((howto->src_mask + 1) >> 1))
6810 {
6811 signed_addend = -1;
6812 signed_addend &= ~ howto->src_mask;
6813 signed_addend |= addend;
6814 }
6815 else
6816 signed_addend = addend;
ba96a88f
NC
6817 }
6818 else
4e7fd91e 6819 addend = signed_addend = rel->r_addend;
f21f3fe0 6820
252b5132
RH
6821 switch (r_type)
6822 {
6823 case R_ARM_NONE:
28a094c2
DJ
6824 /* We don't need to find a value for this symbol. It's just a
6825 marker. */
6826 *unresolved_reloc_p = FALSE;
252b5132
RH
6827 return bfd_reloc_ok;
6828
00a97672
RS
6829 case R_ARM_ABS12:
6830 if (!globals->vxworks_p)
6831 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6832
252b5132
RH
6833 case R_ARM_PC24:
6834 case R_ARM_ABS32:
bb224fc3 6835 case R_ARM_ABS32_NOI:
252b5132 6836 case R_ARM_REL32:
bb224fc3 6837 case R_ARM_REL32_NOI:
5b5bb741
PB
6838 case R_ARM_CALL:
6839 case R_ARM_JUMP24:
dfc5f959 6840 case R_ARM_XPC25:
eb043451 6841 case R_ARM_PREL31:
7359ea65 6842 case R_ARM_PLT32:
7359ea65
DJ
6843 /* Handle relocations which should use the PLT entry. ABS32/REL32
6844 will use the symbol's value, which may point to a PLT entry, but we
6845 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
6846 branches in this object should go to it, except if the PLT is too
6847 far away, in which case a long branch stub should be inserted. */
bb224fc3 6848 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5fa9e92f 6849 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
6850 && r_type != R_ARM_CALL
6851 && r_type != R_ARM_JUMP24
6852 && r_type != R_ARM_PLT32)
7359ea65 6853 && h != NULL
c84cd8ee 6854 && splt != NULL
7359ea65
DJ
6855 && h->plt.offset != (bfd_vma) -1)
6856 {
c84cd8ee
DJ
6857 /* If we've created a .plt section, and assigned a PLT entry to
6858 this function, it should not be known to bind locally. If
6859 it were, we would have cleared the PLT entry. */
7359ea65
DJ
6860 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6861
6862 value = (splt->output_section->vma
6863 + splt->output_offset
6864 + h->plt.offset);
0945cdfd 6865 *unresolved_reloc_p = FALSE;
7359ea65
DJ
6866 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6867 contents, rel->r_offset, value,
00a97672 6868 rel->r_addend);
7359ea65
DJ
6869 }
6870
67687978
PB
6871 /* When generating a shared object or relocatable executable, these
6872 relocations are copied into the output file to be resolved at
6873 run time. */
6874 if ((info->shared || globals->root.is_relocatable_executable)
7359ea65 6875 && (input_section->flags & SEC_ALLOC)
3348747a
NS
6876 && !(elf32_arm_hash_table (info)->vxworks_p
6877 && strcmp (input_section->output_section->name,
6878 ".tls_vars") == 0)
bb224fc3 6879 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 6880 || !SYMBOL_CALLS_LOCAL (info, h))
7359ea65
DJ
6881 && (h == NULL
6882 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6883 || h->root.type != bfd_link_hash_undefweak)
6884 && r_type != R_ARM_PC24
5b5bb741
PB
6885 && r_type != R_ARM_CALL
6886 && r_type != R_ARM_JUMP24
ee06dc07 6887 && r_type != R_ARM_PREL31
7359ea65 6888 && r_type != R_ARM_PLT32)
252b5132 6889 {
947216bf
AM
6890 Elf_Internal_Rela outrel;
6891 bfd_byte *loc;
b34976b6 6892 bfd_boolean skip, relocate;
f21f3fe0 6893
0945cdfd
DJ
6894 *unresolved_reloc_p = FALSE;
6895
252b5132
RH
6896 if (sreloc == NULL)
6897 {
83bac4b0
NC
6898 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6899 ! globals->use_rel);
f21f3fe0 6900
83bac4b0 6901 if (sreloc == NULL)
252b5132 6902 return bfd_reloc_notsupported;
252b5132 6903 }
f21f3fe0 6904
b34976b6
AM
6905 skip = FALSE;
6906 relocate = FALSE;
f21f3fe0 6907
00a97672 6908 outrel.r_addend = addend;
c629eae0
JJ
6909 outrel.r_offset =
6910 _bfd_elf_section_offset (output_bfd, info, input_section,
6911 rel->r_offset);
6912 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 6913 skip = TRUE;
0bb2d96a 6914 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 6915 skip = TRUE, relocate = TRUE;
252b5132
RH
6916 outrel.r_offset += (input_section->output_section->vma
6917 + input_section->output_offset);
f21f3fe0 6918
252b5132 6919 if (skip)
0bb2d96a 6920 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
6921 else if (h != NULL
6922 && h->dynindx != -1
7359ea65 6923 && (!info->shared
5e681ec4 6924 || !info->symbolic
f5385ebf 6925 || !h->def_regular))
5e681ec4 6926 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
6927 else
6928 {
a16385dc
MM
6929 int symbol;
6930
5e681ec4 6931 /* This symbol is local, or marked to become local. */
b7693d02
DJ
6932 if (sym_flags == STT_ARM_TFUNC)
6933 value |= 1;
a16385dc 6934 if (globals->symbian_p)
6366ff1e 6935 {
74541ad4
AM
6936 asection *osec;
6937
6366ff1e
MM
6938 /* On Symbian OS, the data segment and text segement
6939 can be relocated independently. Therefore, we
6940 must indicate the segment to which this
6941 relocation is relative. The BPABI allows us to
6942 use any symbol in the right segment; we just use
6943 the section symbol as it is convenient. (We
6944 cannot use the symbol given by "h" directly as it
74541ad4
AM
6945 will not appear in the dynamic symbol table.)
6946
6947 Note that the dynamic linker ignores the section
6948 symbol value, so we don't subtract osec->vma
6949 from the emitted reloc addend. */
10dbd1f3 6950 if (sym_sec)
74541ad4 6951 osec = sym_sec->output_section;
10dbd1f3 6952 else
74541ad4
AM
6953 osec = input_section->output_section;
6954 symbol = elf_section_data (osec)->dynindx;
6955 if (symbol == 0)
6956 {
6957 struct elf_link_hash_table *htab = elf_hash_table (info);
6958
6959 if ((osec->flags & SEC_READONLY) == 0
6960 && htab->data_index_section != NULL)
6961 osec = htab->data_index_section;
6962 else
6963 osec = htab->text_index_section;
6964 symbol = elf_section_data (osec)->dynindx;
6965 }
6366ff1e
MM
6966 BFD_ASSERT (symbol != 0);
6967 }
a16385dc
MM
6968 else
6969 /* On SVR4-ish systems, the dynamic loader cannot
6970 relocate the text and data segments independently,
6971 so the symbol does not matter. */
6972 symbol = 0;
6973 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
6974 if (globals->use_rel)
6975 relocate = TRUE;
6976 else
6977 outrel.r_addend += value;
252b5132 6978 }
f21f3fe0 6979
947216bf 6980 loc = sreloc->contents;
00a97672
RS
6981 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6982 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9a5aca8c 6983
f21f3fe0 6984 /* If this reloc is against an external symbol, we do not want to
252b5132 6985 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 6986 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
6987 if (! relocate)
6988 return bfd_reloc_ok;
9a5aca8c 6989
f21f3fe0 6990 return _bfd_final_link_relocate (howto, input_bfd, input_section,
252b5132
RH
6991 contents, rel->r_offset, value,
6992 (bfd_vma) 0);
6993 }
6994 else switch (r_type)
6995 {
00a97672
RS
6996 case R_ARM_ABS12:
6997 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6998
dfc5f959 6999 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
7000 case R_ARM_CALL:
7001 case R_ARM_JUMP24:
8029a119 7002 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 7003 case R_ARM_PLT32:
906e58ca 7004 {
906e58ca
NC
7005 bfd_signed_vma branch_offset;
7006 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7007
dfc5f959 7008 if (r_type == R_ARM_XPC25)
252b5132 7009 {
dfc5f959
NC
7010 /* Check for Arm calling Arm function. */
7011 /* FIXME: Should we translate the instruction into a BL
7012 instruction instead ? */
7013 if (sym_flags != STT_ARM_TFUNC)
d003868e
AM
7014 (*_bfd_error_handler)
7015 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7016 input_bfd,
7017 h ? h->root.root.string : "(local)");
dfc5f959 7018 }
155d87d7 7019 else if (r_type == R_ARM_PC24)
dfc5f959
NC
7020 {
7021 /* Check for Arm calling Thumb function. */
7022 if (sym_flags == STT_ARM_TFUNC)
7023 {
f2a9dd69
DJ
7024 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7025 output_bfd, input_section,
7026 hit_data, sym_sec, rel->r_offset,
7027 signed_addend, value,
7028 error_message))
7029 return bfd_reloc_ok;
7030 else
7031 return bfd_reloc_dangerous;
dfc5f959 7032 }
252b5132 7033 }
ba96a88f 7034
906e58ca 7035 /* Check if a stub has to be inserted because the
8029a119 7036 destination is too far or we are changing mode. */
155d87d7
CL
7037 if ( r_type == R_ARM_CALL
7038 || r_type == R_ARM_JUMP24
7039 || r_type == R_ARM_PLT32)
906e58ca 7040 {
ffcb4889
NS
7041 bfd_vma from;
7042
5fa9e92f
CL
7043 /* If the call goes through a PLT entry, make sure to
7044 check distance to the right destination address. */
7045 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7046 {
7047 value = (splt->output_section->vma
7048 + splt->output_offset
7049 + h->plt.offset);
7050 *unresolved_reloc_p = FALSE;
67d74e43
DJ
7051 /* The PLT entry is in ARM mode, regardless of the
7052 target function. */
7053 sym_flags = STT_FUNC;
5fa9e92f
CL
7054 }
7055
7056 from = (input_section->output_section->vma
7057 + input_section->output_offset
7058 + rel->r_offset);
7059 branch_offset = (bfd_signed_vma)(value - from);
7060
906e58ca
NC
7061 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
7062 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
155d87d7
CL
7063 || ((sym_flags == STT_ARM_TFUNC)
7064 && (((r_type == R_ARM_CALL) && !globals->use_blx)
7065 || (r_type == R_ARM_JUMP24)
7066 || (r_type == R_ARM_PLT32) ))
7067 )
906e58ca
NC
7068 {
7069 /* The target is out of reach, so redirect the
7070 branch to the local stub for this function. */
7071
7072 stub_entry = elf32_arm_get_stub_entry (input_section,
7073 sym_sec, h,
7074 rel, globals);
7075 if (stub_entry != NULL)
7076 value = (stub_entry->stub_offset
7077 + stub_entry->stub_sec->output_offset
7078 + stub_entry->stub_sec->output_section->vma);
7079 }
7080 }
7081
dea514f5
PB
7082 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7083 where:
7084 S is the address of the symbol in the relocation.
7085 P is address of the instruction being relocated.
7086 A is the addend (extracted from the instruction) in bytes.
7087
7088 S is held in 'value'.
7089 P is the base address of the section containing the
7090 instruction plus the offset of the reloc into that
7091 section, ie:
7092 (input_section->output_section->vma +
7093 input_section->output_offset +
7094 rel->r_offset).
7095 A is the addend, converted into bytes, ie:
7096 (signed_addend * 4)
7097
7098 Note: None of these operations have knowledge of the pipeline
7099 size of the processor, thus it is up to the assembler to
7100 encode this information into the addend. */
7101 value -= (input_section->output_section->vma
7102 + input_section->output_offset);
7103 value -= rel->r_offset;
4e7fd91e
PB
7104 if (globals->use_rel)
7105 value += (signed_addend << howto->size);
7106 else
7107 /* RELA addends do not have to be adjusted by howto->size. */
7108 value += signed_addend;
23080146 7109
dcb5e6e6
NC
7110 signed_addend = value;
7111 signed_addend >>= howto->rightshift;
9a5aca8c 7112
5ab79981 7113 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 7114 the next instruction unless a PLT entry will be created.
cd1dac3d
DG
7115 Do the same for local undefined symbols.
7116 The jump to the next instruction is optimized as a NOP depending
7117 on the architecture. */
ffcb4889
NS
7118 if (h ? (h->root.type == bfd_link_hash_undefweak
7119 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7120 : bfd_is_und_section (sym_sec))
5ab79981 7121 {
cd1dac3d
DG
7122 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7123
7124 if (arch_has_arm_nop (globals))
7125 value |= 0x0320f000;
7126 else
7127 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
7128 }
7129 else
59f2c4e7 7130 {
9b485d32 7131 /* Perform a signed range check. */
dcb5e6e6 7132 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
7133 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7134 return bfd_reloc_overflow;
9a5aca8c 7135
5ab79981 7136 addend = (value & 2);
39b41c9c 7137
5ab79981
PB
7138 value = (signed_addend & howto->dst_mask)
7139 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 7140
5ab79981
PB
7141 if (r_type == R_ARM_CALL)
7142 {
155d87d7
CL
7143 /* Set the H bit in the BLX instruction. */
7144 if (sym_flags == STT_ARM_TFUNC)
7145 {
7146 if (addend)
7147 value |= (1 << 24);
7148 else
7149 value &= ~(bfd_vma)(1 << 24);
7150 }
7151
5ab79981 7152 /* Select the correct instruction (BL or BLX). */
906e58ca 7153 /* Only if we are not handling a BL to a stub. In this
8029a119 7154 case, mode switching is performed by the stub. */
906e58ca 7155 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
5ab79981
PB
7156 value |= (1 << 28);
7157 else
7158 {
7159 value &= ~(bfd_vma)(1 << 28);
7160 value |= (1 << 24);
7161 }
39b41c9c
PB
7162 }
7163 }
906e58ca 7164 }
252b5132 7165 break;
f21f3fe0 7166
252b5132
RH
7167 case R_ARM_ABS32:
7168 value += addend;
7169 if (sym_flags == STT_ARM_TFUNC)
7170 value |= 1;
7171 break;
f21f3fe0 7172
bb224fc3
MS
7173 case R_ARM_ABS32_NOI:
7174 value += addend;
7175 break;
7176
252b5132 7177 case R_ARM_REL32:
a8bc6c78
PB
7178 value += addend;
7179 if (sym_flags == STT_ARM_TFUNC)
7180 value |= 1;
252b5132 7181 value -= (input_section->output_section->vma
62efb346 7182 + input_section->output_offset + rel->r_offset);
252b5132 7183 break;
eb043451 7184
bb224fc3
MS
7185 case R_ARM_REL32_NOI:
7186 value += addend;
7187 value -= (input_section->output_section->vma
7188 + input_section->output_offset + rel->r_offset);
7189 break;
7190
eb043451
PB
7191 case R_ARM_PREL31:
7192 value -= (input_section->output_section->vma
7193 + input_section->output_offset + rel->r_offset);
7194 value += signed_addend;
7195 if (! h || h->root.type != bfd_link_hash_undefweak)
7196 {
8029a119 7197 /* Check for overflow. */
eb043451
PB
7198 if ((value ^ (value >> 1)) & (1 << 30))
7199 return bfd_reloc_overflow;
7200 }
7201 value &= 0x7fffffff;
7202 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7203 if (sym_flags == STT_ARM_TFUNC)
7204 value |= 1;
7205 break;
252b5132 7206 }
f21f3fe0 7207
252b5132
RH
7208 bfd_put_32 (input_bfd, value, hit_data);
7209 return bfd_reloc_ok;
7210
7211 case R_ARM_ABS8:
7212 value += addend;
7213 if ((long) value > 0x7f || (long) value < -0x80)
7214 return bfd_reloc_overflow;
7215
7216 bfd_put_8 (input_bfd, value, hit_data);
7217 return bfd_reloc_ok;
7218
7219 case R_ARM_ABS16:
7220 value += addend;
7221
7222 if ((long) value > 0x7fff || (long) value < -0x8000)
7223 return bfd_reloc_overflow;
7224
7225 bfd_put_16 (input_bfd, value, hit_data);
7226 return bfd_reloc_ok;
7227
252b5132 7228 case R_ARM_THM_ABS5:
9b485d32 7229 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
7230 if (globals->use_rel)
7231 {
7232 /* Need to refetch addend. */
7233 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7234 /* ??? Need to determine shift amount from operand size. */
7235 addend >>= howto->rightshift;
7236 }
252b5132
RH
7237 value += addend;
7238
7239 /* ??? Isn't value unsigned? */
7240 if ((long) value > 0x1f || (long) value < -0x10)
7241 return bfd_reloc_overflow;
7242
7243 /* ??? Value needs to be properly shifted into place first. */
7244 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7245 bfd_put_16 (input_bfd, value, hit_data);
7246 return bfd_reloc_ok;
7247
2cab6cc3
MS
7248 case R_ARM_THM_ALU_PREL_11_0:
7249 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7250 {
7251 bfd_vma insn;
7252 bfd_signed_vma relocation;
7253
7254 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7255 | bfd_get_16 (input_bfd, hit_data + 2);
7256
7257 if (globals->use_rel)
7258 {
7259 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7260 | ((insn & (1 << 26)) >> 15);
7261 if (insn & 0xf00000)
7262 signed_addend = -signed_addend;
7263 }
7264
7265 relocation = value + signed_addend;
7266 relocation -= (input_section->output_section->vma
7267 + input_section->output_offset
7268 + rel->r_offset);
7269
7270 value = abs (relocation);
7271
7272 if (value >= 0x1000)
7273 return bfd_reloc_overflow;
7274
7275 insn = (insn & 0xfb0f8f00) | (value & 0xff)
7276 | ((value & 0x700) << 4)
7277 | ((value & 0x800) << 15);
7278 if (relocation < 0)
7279 insn |= 0xa00000;
7280
7281 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7282 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7283
7284 return bfd_reloc_ok;
7285 }
7286
e1ec24c6
NC
7287 case R_ARM_THM_PC8:
7288 /* PR 10073: This reloc is not generated by the GNU toolchain,
7289 but it is supported for compatibility with third party libraries
7290 generated by other compilers, specifically the ARM/IAR. */
7291 {
7292 bfd_vma insn;
7293 bfd_signed_vma relocation;
7294
7295 insn = bfd_get_16 (input_bfd, hit_data);
7296
7297 if (globals->use_rel)
7298 addend = (insn & 0x00ff) << 2;
7299
7300 relocation = value + addend;
7301 relocation -= (input_section->output_section->vma
7302 + input_section->output_offset
7303 + rel->r_offset);
7304
7305 value = abs (relocation);
7306
7307 /* We do not check for overflow of this reloc. Although strictly
7308 speaking this is incorrect, it appears to be necessary in order
7309 to work with IAR generated relocs. Since GCC and GAS do not
7310 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7311 a problem for them. */
7312 value &= 0x3fc;
7313
7314 insn = (insn & 0xff00) | (value >> 2);
7315
7316 bfd_put_16 (input_bfd, insn, hit_data);
7317
7318 return bfd_reloc_ok;
7319 }
7320
2cab6cc3
MS
7321 case R_ARM_THM_PC12:
7322 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7323 {
7324 bfd_vma insn;
7325 bfd_signed_vma relocation;
7326
7327 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7328 | bfd_get_16 (input_bfd, hit_data + 2);
7329
7330 if (globals->use_rel)
7331 {
7332 signed_addend = insn & 0xfff;
7333 if (!(insn & (1 << 23)))
7334 signed_addend = -signed_addend;
7335 }
7336
7337 relocation = value + signed_addend;
7338 relocation -= (input_section->output_section->vma
7339 + input_section->output_offset
7340 + rel->r_offset);
7341
7342 value = abs (relocation);
7343
7344 if (value >= 0x1000)
7345 return bfd_reloc_overflow;
7346
7347 insn = (insn & 0xff7ff000) | value;
7348 if (relocation >= 0)
7349 insn |= (1 << 23);
7350
7351 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7352 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7353
7354 return bfd_reloc_ok;
7355 }
7356
dfc5f959 7357 case R_ARM_THM_XPC22:
c19d1205 7358 case R_ARM_THM_CALL:
bd97cb95 7359 case R_ARM_THM_JUMP24:
dfc5f959 7360 /* Thumb BL (branch long instruction). */
252b5132 7361 {
b34976b6 7362 bfd_vma relocation;
e95de063 7363 bfd_vma reloc_sign;
b34976b6
AM
7364 bfd_boolean overflow = FALSE;
7365 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7366 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
7367 bfd_signed_vma reloc_signed_max;
7368 bfd_signed_vma reloc_signed_min;
b34976b6 7369 bfd_vma check;
252b5132 7370 bfd_signed_vma signed_check;
e95de063 7371 int bitsize;
cd1dac3d 7372 const int thumb2 = using_thumb2 (globals);
252b5132 7373
5ab79981 7374 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
7375 the next instruction unless a PLT entry will be created.
7376 The jump to the next instruction is optimized as a NOP.W for
7377 Thumb-2 enabled architectures. */
19540007
JM
7378 if (h && h->root.type == bfd_link_hash_undefweak
7379 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
5ab79981 7380 {
cd1dac3d
DG
7381 if (arch_has_thumb2_nop (globals))
7382 {
7383 bfd_put_16 (input_bfd, 0xf3af, hit_data);
7384 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7385 }
7386 else
7387 {
7388 bfd_put_16 (input_bfd, 0xe000, hit_data);
7389 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7390 }
5ab79981
PB
7391 return bfd_reloc_ok;
7392 }
7393
e95de063
MS
7394 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7395 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
7396 if (globals->use_rel)
7397 {
e95de063
MS
7398 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7399 bfd_vma upper = upper_insn & 0x3ff;
7400 bfd_vma lower = lower_insn & 0x7ff;
7401 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7402 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7403 bfd_vma i1 = j1 ^ s ? 0 : 1;
7404 bfd_vma i2 = j2 ^ s ? 0 : 1;
7405
7406 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7407 /* Sign extend. */
7408 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7409
4e7fd91e
PB
7410 signed_addend = addend;
7411 }
cb1afa5c 7412
dfc5f959
NC
7413 if (r_type == R_ARM_THM_XPC22)
7414 {
7415 /* Check for Thumb to Thumb call. */
7416 /* FIXME: Should we translate the instruction into a BL
7417 instruction instead ? */
7418 if (sym_flags == STT_ARM_TFUNC)
d003868e
AM
7419 (*_bfd_error_handler)
7420 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7421 input_bfd,
7422 h ? h->root.root.string : "(local)");
dfc5f959
NC
7423 }
7424 else
252b5132 7425 {
dfc5f959
NC
7426 /* If it is not a call to Thumb, assume call to Arm.
7427 If it is a call relative to a section name, then it is not a
b7693d02
DJ
7428 function call at all, but rather a long jump. Calls through
7429 the PLT do not require stubs. */
7430 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7431 && (h == NULL || splt == NULL
7432 || h->plt.offset == (bfd_vma) -1))
dfc5f959 7433 {
bd97cb95 7434 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
7435 {
7436 /* Convert BL to BLX. */
7437 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7438 }
155d87d7
CL
7439 else if (( r_type != R_ARM_THM_CALL)
7440 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
7441 {
7442 if (elf32_thumb_to_arm_stub
7443 (info, sym_name, input_bfd, output_bfd, input_section,
7444 hit_data, sym_sec, rel->r_offset, signed_addend, value,
7445 error_message))
7446 return bfd_reloc_ok;
7447 else
7448 return bfd_reloc_dangerous;
7449 }
da5938a2 7450 }
bd97cb95
DJ
7451 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7452 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
7453 {
7454 /* Make sure this is a BL. */
7455 lower_insn |= 0x1800;
7456 }
252b5132 7457 }
f21f3fe0 7458
b7693d02
DJ
7459 /* Handle calls via the PLT. */
7460 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7461 {
7462 value = (splt->output_section->vma
7463 + splt->output_offset
7464 + h->plt.offset);
bd97cb95 7465 if (globals->use_blx && r_type == R_ARM_THM_CALL)
33bfe774
JB
7466 {
7467 /* If the Thumb BLX instruction is available, convert the
7468 BL to a BLX instruction to call the ARM-mode PLT entry. */
39b41c9c 7469 lower_insn = (lower_insn & ~0x1000) | 0x0800;
67d74e43 7470 sym_flags = STT_FUNC;
33bfe774
JB
7471 }
7472 else
67d74e43
DJ
7473 {
7474 /* Target the Thumb stub before the ARM PLT entry. */
7475 value -= PLT_THUMB_STUB_SIZE;
7476 sym_flags = STT_ARM_TFUNC;
7477 }
0945cdfd 7478 *unresolved_reloc_p = FALSE;
b7693d02
DJ
7479 }
7480
155d87d7 7481 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
7482 {
7483 /* Check if a stub has to be inserted because the destination
8029a119 7484 is too far. */
906e58ca
NC
7485 bfd_vma from;
7486 bfd_signed_vma branch_offset;
7487 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7488
7489 from = (input_section->output_section->vma
7490 + input_section->output_offset
7491 + rel->r_offset);
7492 branch_offset = (bfd_signed_vma)(value - from);
7493
7494 if ((!thumb2
7495 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
7496 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
7497 ||
7498 (thumb2
7499 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
f4ac8484 7500 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
155d87d7
CL
7501 || ((sym_flags != STT_ARM_TFUNC)
7502 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
7503 || r_type == R_ARM_THM_JUMP24)))
906e58ca
NC
7504 {
7505 /* The target is out of reach or we are changing modes, so
7506 redirect the branch to the local stub for this
7507 function. */
7508 stub_entry = elf32_arm_get_stub_entry (input_section,
7509 sym_sec, h,
7510 rel, globals);
7511 if (stub_entry != NULL)
7512 value = (stub_entry->stub_offset
7513 + stub_entry->stub_sec->output_offset
7514 + stub_entry->stub_sec->output_section->vma);
7515
f4ac8484 7516 /* If this call becomes a call to Arm, force BLX. */
155d87d7 7517 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
7518 {
7519 if ((stub_entry
7520 && !arm_stub_is_thumb (stub_entry->stub_type))
7521 || (sym_flags != STT_ARM_TFUNC))
7522 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7523 }
906e58ca
NC
7524 }
7525 }
7526
ba96a88f 7527 relocation = value + signed_addend;
f21f3fe0 7528
252b5132 7529 relocation -= (input_section->output_section->vma
ba96a88f
NC
7530 + input_section->output_offset
7531 + rel->r_offset);
9a5aca8c 7532
252b5132
RH
7533 check = relocation >> howto->rightshift;
7534
7535 /* If this is a signed value, the rightshift just dropped
7536 leading 1 bits (assuming twos complement). */
7537 if ((bfd_signed_vma) relocation >= 0)
7538 signed_check = check;
7539 else
7540 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
7541
e95de063
MS
7542 /* Calculate the permissable maximum and minimum values for
7543 this relocation according to whether we're relocating for
7544 Thumb-2 or not. */
7545 bitsize = howto->bitsize;
7546 if (!thumb2)
7547 bitsize -= 2;
7548 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
7549 reloc_signed_min = ~reloc_signed_max;
7550
252b5132 7551 /* Assumes two's complement. */
ba96a88f 7552 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 7553 overflow = TRUE;
252b5132 7554
bd97cb95 7555 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
7556 /* For a BLX instruction, make sure that the relocation is rounded up
7557 to a word boundary. This follows the semantics of the instruction
7558 which specifies that bit 1 of the target address will come from bit
7559 1 of the base address. */
7560 relocation = (relocation + 2) & ~ 3;
cb1afa5c 7561
e95de063
MS
7562 /* Put RELOCATION back into the insn. Assumes two's complement.
7563 We use the Thumb-2 encoding, which is safe even if dealing with
7564 a Thumb-1 instruction by virtue of our overflow check above. */
7565 reloc_sign = (signed_check < 0) ? 1 : 0;
7566 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
7567 | ((relocation >> 12) & 0x3ff)
7568 | (reloc_sign << 10);
906e58ca 7569 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
e95de063
MS
7570 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
7571 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
7572 | ((relocation >> 1) & 0x7ff);
c62e1cc3 7573
252b5132
RH
7574 /* Put the relocated value back in the object file: */
7575 bfd_put_16 (input_bfd, upper_insn, hit_data);
7576 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7577
7578 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7579 }
7580 break;
7581
c19d1205
ZW
7582 case R_ARM_THM_JUMP19:
7583 /* Thumb32 conditional branch instruction. */
7584 {
7585 bfd_vma relocation;
7586 bfd_boolean overflow = FALSE;
7587 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7588 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
7589 bfd_signed_vma reloc_signed_max = 0xffffe;
7590 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205
ZW
7591 bfd_signed_vma signed_check;
7592
7593 /* Need to refetch the addend, reconstruct the top three bits,
7594 and squish the two 11 bit pieces together. */
7595 if (globals->use_rel)
7596 {
7597 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 7598 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
7599 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
7600 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
7601 bfd_vma lower = (lower_insn & 0x07ff);
7602
a00a1f35
MS
7603 upper |= J1 << 6;
7604 upper |= J2 << 7;
7605 upper |= (!S) << 8;
c19d1205
ZW
7606 upper -= 0x0100; /* Sign extend. */
7607
7608 addend = (upper << 12) | (lower << 1);
7609 signed_addend = addend;
7610 }
7611
bd97cb95
DJ
7612 /* Handle calls via the PLT. */
7613 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7614 {
7615 value = (splt->output_section->vma
7616 + splt->output_offset
7617 + h->plt.offset);
7618 /* Target the Thumb stub before the ARM PLT entry. */
7619 value -= PLT_THUMB_STUB_SIZE;
7620 *unresolved_reloc_p = FALSE;
7621 }
7622
c19d1205
ZW
7623 /* ??? Should handle interworking? GCC might someday try to
7624 use this for tail calls. */
7625
7626 relocation = value + signed_addend;
7627 relocation -= (input_section->output_section->vma
7628 + input_section->output_offset
7629 + rel->r_offset);
a00a1f35 7630 signed_check = (bfd_signed_vma) relocation;
c19d1205 7631
c19d1205
ZW
7632 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7633 overflow = TRUE;
7634
7635 /* Put RELOCATION back into the insn. */
7636 {
7637 bfd_vma S = (relocation & 0x00100000) >> 20;
7638 bfd_vma J2 = (relocation & 0x00080000) >> 19;
7639 bfd_vma J1 = (relocation & 0x00040000) >> 18;
7640 bfd_vma hi = (relocation & 0x0003f000) >> 12;
7641 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
7642
a00a1f35 7643 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
7644 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
7645 }
7646
7647 /* Put the relocated value back in the object file: */
7648 bfd_put_16 (input_bfd, upper_insn, hit_data);
7649 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7650
7651 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7652 }
7653
7654 case R_ARM_THM_JUMP11:
7655 case R_ARM_THM_JUMP8:
7656 case R_ARM_THM_JUMP6:
51c5503b
NC
7657 /* Thumb B (branch) instruction). */
7658 {
6cf9e9fe 7659 bfd_signed_vma relocation;
51c5503b
NC
7660 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
7661 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
7662 bfd_signed_vma signed_check;
7663
c19d1205
ZW
7664 /* CZB cannot jump backward. */
7665 if (r_type == R_ARM_THM_JUMP6)
7666 reloc_signed_min = 0;
7667
4e7fd91e 7668 if (globals->use_rel)
6cf9e9fe 7669 {
4e7fd91e
PB
7670 /* Need to refetch addend. */
7671 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7672 if (addend & ((howto->src_mask + 1) >> 1))
7673 {
7674 signed_addend = -1;
7675 signed_addend &= ~ howto->src_mask;
7676 signed_addend |= addend;
7677 }
7678 else
7679 signed_addend = addend;
7680 /* The value in the insn has been right shifted. We need to
7681 undo this, so that we can perform the address calculation
7682 in terms of bytes. */
7683 signed_addend <<= howto->rightshift;
6cf9e9fe 7684 }
6cf9e9fe 7685 relocation = value + signed_addend;
51c5503b
NC
7686
7687 relocation -= (input_section->output_section->vma
7688 + input_section->output_offset
7689 + rel->r_offset);
7690
6cf9e9fe
NC
7691 relocation >>= howto->rightshift;
7692 signed_check = relocation;
c19d1205
ZW
7693
7694 if (r_type == R_ARM_THM_JUMP6)
7695 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
7696 else
7697 relocation &= howto->dst_mask;
51c5503b 7698 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 7699
51c5503b
NC
7700 bfd_put_16 (input_bfd, relocation, hit_data);
7701
7702 /* Assumes two's complement. */
7703 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7704 return bfd_reloc_overflow;
7705
7706 return bfd_reloc_ok;
7707 }
cedb70c5 7708
8375c36b
PB
7709 case R_ARM_ALU_PCREL7_0:
7710 case R_ARM_ALU_PCREL15_8:
7711 case R_ARM_ALU_PCREL23_15:
7712 {
7713 bfd_vma insn;
7714 bfd_vma relocation;
7715
7716 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
7717 if (globals->use_rel)
7718 {
7719 /* Extract the addend. */
7720 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
7721 signed_addend = addend;
7722 }
8375c36b
PB
7723 relocation = value + signed_addend;
7724
7725 relocation -= (input_section->output_section->vma
7726 + input_section->output_offset
7727 + rel->r_offset);
7728 insn = (insn & ~0xfff)
7729 | ((howto->bitpos << 7) & 0xf00)
7730 | ((relocation >> howto->bitpos) & 0xff);
7731 bfd_put_32 (input_bfd, value, hit_data);
7732 }
7733 return bfd_reloc_ok;
7734
252b5132
RH
7735 case R_ARM_GNU_VTINHERIT:
7736 case R_ARM_GNU_VTENTRY:
7737 return bfd_reloc_ok;
7738
c19d1205 7739 case R_ARM_GOTOFF32:
252b5132
RH
7740 /* Relocation is relative to the start of the
7741 global offset table. */
7742
7743 BFD_ASSERT (sgot != NULL);
7744 if (sgot == NULL)
7745 return bfd_reloc_notsupported;
9a5aca8c 7746
cedb70c5 7747 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
7748 address by one, so that attempts to call the function pointer will
7749 correctly interpret it as Thumb code. */
7750 if (sym_flags == STT_ARM_TFUNC)
7751 value += 1;
7752
252b5132
RH
7753 /* Note that sgot->output_offset is not involved in this
7754 calculation. We always want the start of .got. If we
7755 define _GLOBAL_OFFSET_TABLE in a different way, as is
7756 permitted by the ABI, we might have to change this
9b485d32 7757 calculation. */
252b5132 7758 value -= sgot->output_section->vma;
f21f3fe0 7759 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7760 contents, rel->r_offset, value,
00a97672 7761 rel->r_addend);
252b5132
RH
7762
7763 case R_ARM_GOTPC:
a7c10850 7764 /* Use global offset table as symbol value. */
252b5132 7765 BFD_ASSERT (sgot != NULL);
f21f3fe0 7766
252b5132
RH
7767 if (sgot == NULL)
7768 return bfd_reloc_notsupported;
7769
0945cdfd 7770 *unresolved_reloc_p = FALSE;
252b5132 7771 value = sgot->output_section->vma;
f21f3fe0 7772 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7773 contents, rel->r_offset, value,
00a97672 7774 rel->r_addend);
f21f3fe0 7775
252b5132 7776 case R_ARM_GOT32:
eb043451 7777 case R_ARM_GOT_PREL:
252b5132 7778 /* Relocation is to the entry for this symbol in the
9b485d32 7779 global offset table. */
252b5132
RH
7780 if (sgot == NULL)
7781 return bfd_reloc_notsupported;
f21f3fe0 7782
252b5132
RH
7783 if (h != NULL)
7784 {
7785 bfd_vma off;
5e681ec4 7786 bfd_boolean dyn;
f21f3fe0 7787
252b5132
RH
7788 off = h->got.offset;
7789 BFD_ASSERT (off != (bfd_vma) -1);
5e681ec4 7790 dyn = globals->root.dynamic_sections_created;
f21f3fe0 7791
5e681ec4 7792 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
50d6c878 7793 || (info->shared
5e681ec4
PB
7794 && SYMBOL_REFERENCES_LOCAL (info, h))
7795 || (ELF_ST_VISIBILITY (h->other)
7796 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
7797 {
7798 /* This is actually a static link, or it is a -Bsymbolic link
7799 and the symbol is defined locally. We must initialize this
7800 entry in the global offset table. Since the offset must
7801 always be a multiple of 4, we use the least significant bit
7802 to record whether we have initialized it already.
f21f3fe0 7803
00a97672 7804 When doing a dynamic link, we create a .rel(a).got relocation
f21f3fe0 7805 entry to initialize the value. This is done in the
9b485d32 7806 finish_dynamic_symbol routine. */
252b5132
RH
7807 if ((off & 1) != 0)
7808 off &= ~1;
7809 else
7810 {
ee29b9fb
RE
7811 /* If we are addressing a Thumb function, we need to
7812 adjust the address by one, so that attempts to
7813 call the function pointer will correctly
7814 interpret it as Thumb code. */
7815 if (sym_flags == STT_ARM_TFUNC)
7816 value |= 1;
7817
252b5132
RH
7818 bfd_put_32 (output_bfd, value, sgot->contents + off);
7819 h->got.offset |= 1;
7820 }
7821 }
0945cdfd
DJ
7822 else
7823 *unresolved_reloc_p = FALSE;
f21f3fe0 7824
252b5132
RH
7825 value = sgot->output_offset + off;
7826 }
7827 else
7828 {
7829 bfd_vma off;
f21f3fe0 7830
252b5132
RH
7831 BFD_ASSERT (local_got_offsets != NULL &&
7832 local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 7833
252b5132 7834 off = local_got_offsets[r_symndx];
f21f3fe0 7835
252b5132
RH
7836 /* The offset must always be a multiple of 4. We use the
7837 least significant bit to record whether we have already
9b485d32 7838 generated the necessary reloc. */
252b5132
RH
7839 if ((off & 1) != 0)
7840 off &= ~1;
7841 else
7842 {
b7693d02
DJ
7843 /* If we are addressing a Thumb function, we need to
7844 adjust the address by one, so that attempts to
7845 call the function pointer will correctly
7846 interpret it as Thumb code. */
7847 if (sym_flags == STT_ARM_TFUNC)
7848 value |= 1;
7849
00a97672
RS
7850 if (globals->use_rel)
7851 bfd_put_32 (output_bfd, value, sgot->contents + off);
f21f3fe0 7852
252b5132
RH
7853 if (info->shared)
7854 {
7855 asection * srelgot;
947216bf
AM
7856 Elf_Internal_Rela outrel;
7857 bfd_byte *loc;
f21f3fe0 7858
00a97672
RS
7859 srelgot = (bfd_get_section_by_name
7860 (dynobj, RELOC_SECTION (globals, ".got")));
252b5132 7861 BFD_ASSERT (srelgot != NULL);
f21f3fe0 7862
00a97672 7863 outrel.r_addend = addend + value;
252b5132 7864 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 7865 + sgot->output_offset
252b5132
RH
7866 + off);
7867 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
947216bf 7868 loc = srelgot->contents;
00a97672
RS
7869 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7870 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
252b5132 7871 }
f21f3fe0 7872
252b5132
RH
7873 local_got_offsets[r_symndx] |= 1;
7874 }
f21f3fe0 7875
252b5132
RH
7876 value = sgot->output_offset + off;
7877 }
eb043451
PB
7878 if (r_type != R_ARM_GOT32)
7879 value += sgot->output_section->vma;
9a5aca8c 7880
f21f3fe0 7881 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7882 contents, rel->r_offset, value,
00a97672 7883 rel->r_addend);
f21f3fe0 7884
ba93b8ac
DJ
7885 case R_ARM_TLS_LDO32:
7886 value = value - dtpoff_base (info);
7887
7888 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
7889 contents, rel->r_offset, value,
7890 rel->r_addend);
ba93b8ac
DJ
7891
7892 case R_ARM_TLS_LDM32:
7893 {
7894 bfd_vma off;
7895
7896 if (globals->sgot == NULL)
7897 abort ();
7898
7899 off = globals->tls_ldm_got.offset;
7900
7901 if ((off & 1) != 0)
7902 off &= ~1;
7903 else
7904 {
7905 /* If we don't know the module number, create a relocation
7906 for it. */
7907 if (info->shared)
7908 {
7909 Elf_Internal_Rela outrel;
7910 bfd_byte *loc;
7911
7912 if (globals->srelgot == NULL)
7913 abort ();
7914
00a97672 7915 outrel.r_addend = 0;
ba93b8ac
DJ
7916 outrel.r_offset = (globals->sgot->output_section->vma
7917 + globals->sgot->output_offset + off);
7918 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7919
00a97672
RS
7920 if (globals->use_rel)
7921 bfd_put_32 (output_bfd, outrel.r_addend,
7922 globals->sgot->contents + off);
ba93b8ac
DJ
7923
7924 loc = globals->srelgot->contents;
00a97672
RS
7925 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7926 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac
DJ
7927 }
7928 else
7929 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7930
7931 globals->tls_ldm_got.offset |= 1;
7932 }
7933
906e58ca 7934 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
ba93b8ac
DJ
7935 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7936
7937 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7938 contents, rel->r_offset, value,
00a97672 7939 rel->r_addend);
ba93b8ac
DJ
7940 }
7941
7942 case R_ARM_TLS_GD32:
7943 case R_ARM_TLS_IE32:
7944 {
7945 bfd_vma off;
7946 int indx;
7947 char tls_type;
7948
7949 if (globals->sgot == NULL)
7950 abort ();
7951
7952 indx = 0;
7953 if (h != NULL)
7954 {
7955 bfd_boolean dyn;
7956 dyn = globals->root.dynamic_sections_created;
7957 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7958 && (!info->shared
7959 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7960 {
7961 *unresolved_reloc_p = FALSE;
7962 indx = h->dynindx;
7963 }
7964 off = h->got.offset;
7965 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7966 }
7967 else
7968 {
7969 if (local_got_offsets == NULL)
7970 abort ();
7971 off = local_got_offsets[r_symndx];
7972 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7973 }
7974
7975 if (tls_type == GOT_UNKNOWN)
7976 abort ();
7977
7978 if ((off & 1) != 0)
7979 off &= ~1;
7980 else
7981 {
7982 bfd_boolean need_relocs = FALSE;
7983 Elf_Internal_Rela outrel;
7984 bfd_byte *loc = NULL;
7985 int cur_off = off;
7986
7987 /* The GOT entries have not been initialized yet. Do it
7988 now, and emit any relocations. If both an IE GOT and a
7989 GD GOT are necessary, we emit the GD first. */
7990
7991 if ((info->shared || indx != 0)
7992 && (h == NULL
7993 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7994 || h->root.type != bfd_link_hash_undefweak))
7995 {
7996 need_relocs = TRUE;
7997 if (globals->srelgot == NULL)
7998 abort ();
7999 loc = globals->srelgot->contents;
00a97672 8000 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
ba93b8ac
DJ
8001 }
8002
8003 if (tls_type & GOT_TLS_GD)
8004 {
8005 if (need_relocs)
8006 {
00a97672 8007 outrel.r_addend = 0;
ba93b8ac 8008 outrel.r_offset = (globals->sgot->output_section->vma
00a97672
RS
8009 + globals->sgot->output_offset
8010 + cur_off);
ba93b8ac 8011 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 8012
00a97672
RS
8013 if (globals->use_rel)
8014 bfd_put_32 (output_bfd, outrel.r_addend,
8015 globals->sgot->contents + cur_off);
8016
8017 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 8018 globals->srelgot->reloc_count++;
00a97672 8019 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
8020
8021 if (indx == 0)
8022 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8023 globals->sgot->contents + cur_off + 4);
8024 else
8025 {
00a97672 8026 outrel.r_addend = 0;
ba93b8ac
DJ
8027 outrel.r_info = ELF32_R_INFO (indx,
8028 R_ARM_TLS_DTPOFF32);
8029 outrel.r_offset += 4;
00a97672
RS
8030
8031 if (globals->use_rel)
8032 bfd_put_32 (output_bfd, outrel.r_addend,
8033 globals->sgot->contents + cur_off + 4);
8034
8035
8036 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 8037 globals->srelgot->reloc_count++;
00a97672 8038 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
8039 }
8040 }
8041 else
8042 {
8043 /* If we are not emitting relocations for a
8044 general dynamic reference, then we must be in a
8045 static link or an executable link with the
8046 symbol binding locally. Mark it as belonging
8047 to module 1, the executable. */
8048 bfd_put_32 (output_bfd, 1,
8049 globals->sgot->contents + cur_off);
8050 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8051 globals->sgot->contents + cur_off + 4);
8052 }
8053
8054 cur_off += 8;
8055 }
8056
8057 if (tls_type & GOT_TLS_IE)
8058 {
8059 if (need_relocs)
8060 {
00a97672
RS
8061 if (indx == 0)
8062 outrel.r_addend = value - dtpoff_base (info);
8063 else
8064 outrel.r_addend = 0;
ba93b8ac
DJ
8065 outrel.r_offset = (globals->sgot->output_section->vma
8066 + globals->sgot->output_offset
8067 + cur_off);
8068 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8069
00a97672
RS
8070 if (globals->use_rel)
8071 bfd_put_32 (output_bfd, outrel.r_addend,
ba93b8ac
DJ
8072 globals->sgot->contents + cur_off);
8073
00a97672 8074 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 8075 globals->srelgot->reloc_count++;
00a97672 8076 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
8077 }
8078 else
8079 bfd_put_32 (output_bfd, tpoff (info, value),
8080 globals->sgot->contents + cur_off);
8081 cur_off += 4;
8082 }
8083
8084 if (h != NULL)
8085 h->got.offset |= 1;
8086 else
8087 local_got_offsets[r_symndx] |= 1;
8088 }
8089
8090 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8091 off += 8;
906e58ca 8092 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
ba93b8ac
DJ
8093 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8094
8095 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8096 contents, rel->r_offset, value,
00a97672 8097 rel->r_addend);
ba93b8ac
DJ
8098 }
8099
8100 case R_ARM_TLS_LE32:
8101 if (info->shared)
8102 {
8103 (*_bfd_error_handler)
8104 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8105 input_bfd, input_section,
8106 (long) rel->r_offset, howto->name);
21d799b5 8107 return (bfd_reloc_status_type) FALSE;
ba93b8ac
DJ
8108 }
8109 else
8110 value = tpoff (info, value);
906e58ca 8111
ba93b8ac 8112 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
8113 contents, rel->r_offset, value,
8114 rel->r_addend);
ba93b8ac 8115
319850b4
JB
8116 case R_ARM_V4BX:
8117 if (globals->fix_v4bx)
845b51d6
PB
8118 {
8119 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 8120
845b51d6
PB
8121 /* Ensure that we have a BX instruction. */
8122 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 8123
845b51d6
PB
8124 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8125 {
8126 /* Branch to veneer. */
8127 bfd_vma glue_addr;
8128 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8129 glue_addr -= input_section->output_section->vma
8130 + input_section->output_offset
8131 + rel->r_offset + 8;
8132 insn = (insn & 0xf0000000) | 0x0a000000
8133 | ((glue_addr >> 2) & 0x00ffffff);
8134 }
8135 else
8136 {
8137 /* Preserve Rm (lowest four bits) and the condition code
8138 (highest four bits). Other bits encode MOV PC,Rm. */
8139 insn = (insn & 0xf000000f) | 0x01a0f000;
8140 }
319850b4 8141
845b51d6
PB
8142 bfd_put_32 (input_bfd, insn, hit_data);
8143 }
319850b4
JB
8144 return bfd_reloc_ok;
8145
b6895b4f
PB
8146 case R_ARM_MOVW_ABS_NC:
8147 case R_ARM_MOVT_ABS:
8148 case R_ARM_MOVW_PREL_NC:
8149 case R_ARM_MOVT_PREL:
92f5d02b
MS
8150 /* Until we properly support segment-base-relative addressing then
8151 we assume the segment base to be zero, as for the group relocations.
8152 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8153 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8154 case R_ARM_MOVW_BREL_NC:
8155 case R_ARM_MOVW_BREL:
8156 case R_ARM_MOVT_BREL:
b6895b4f
PB
8157 {
8158 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8159
8160 if (globals->use_rel)
8161 {
8162 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 8163 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 8164 }
92f5d02b 8165
b6895b4f 8166 value += signed_addend;
b6895b4f
PB
8167
8168 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8169 value -= (input_section->output_section->vma
8170 + input_section->output_offset + rel->r_offset);
8171
92f5d02b
MS
8172 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8173 return bfd_reloc_overflow;
8174
8175 if (sym_flags == STT_ARM_TFUNC)
8176 value |= 1;
8177
8178 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8179 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
8180 value >>= 16;
8181
8182 insn &= 0xfff0f000;
8183 insn |= value & 0xfff;
8184 insn |= (value & 0xf000) << 4;
8185 bfd_put_32 (input_bfd, insn, hit_data);
8186 }
8187 return bfd_reloc_ok;
8188
8189 case R_ARM_THM_MOVW_ABS_NC:
8190 case R_ARM_THM_MOVT_ABS:
8191 case R_ARM_THM_MOVW_PREL_NC:
8192 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
8193 /* Until we properly support segment-base-relative addressing then
8194 we assume the segment base to be zero, as for the above relocations.
8195 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8196 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8197 as R_ARM_THM_MOVT_ABS. */
8198 case R_ARM_THM_MOVW_BREL_NC:
8199 case R_ARM_THM_MOVW_BREL:
8200 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
8201 {
8202 bfd_vma insn;
906e58ca 8203
b6895b4f
PB
8204 insn = bfd_get_16 (input_bfd, hit_data) << 16;
8205 insn |= bfd_get_16 (input_bfd, hit_data + 2);
8206
8207 if (globals->use_rel)
8208 {
8209 addend = ((insn >> 4) & 0xf000)
8210 | ((insn >> 15) & 0x0800)
8211 | ((insn >> 4) & 0x0700)
8212 | (insn & 0x00ff);
39623e12 8213 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 8214 }
92f5d02b 8215
b6895b4f 8216 value += signed_addend;
b6895b4f
PB
8217
8218 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8219 value -= (input_section->output_section->vma
8220 + input_section->output_offset + rel->r_offset);
8221
92f5d02b
MS
8222 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8223 return bfd_reloc_overflow;
8224
8225 if (sym_flags == STT_ARM_TFUNC)
8226 value |= 1;
8227
8228 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8229 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
8230 value >>= 16;
8231
8232 insn &= 0xfbf08f00;
8233 insn |= (value & 0xf000) << 4;
8234 insn |= (value & 0x0800) << 15;
8235 insn |= (value & 0x0700) << 4;
8236 insn |= (value & 0x00ff);
8237
8238 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8239 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8240 }
8241 return bfd_reloc_ok;
8242
4962c51a
MS
8243 case R_ARM_ALU_PC_G0_NC:
8244 case R_ARM_ALU_PC_G1_NC:
8245 case R_ARM_ALU_PC_G0:
8246 case R_ARM_ALU_PC_G1:
8247 case R_ARM_ALU_PC_G2:
8248 case R_ARM_ALU_SB_G0_NC:
8249 case R_ARM_ALU_SB_G1_NC:
8250 case R_ARM_ALU_SB_G0:
8251 case R_ARM_ALU_SB_G1:
8252 case R_ARM_ALU_SB_G2:
8253 {
8254 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8255 bfd_vma pc = input_section->output_section->vma
8256 + input_section->output_offset + rel->r_offset;
8257 /* sb should be the origin of the *segment* containing the symbol.
8258 It is not clear how to obtain this OS-dependent value, so we
8259 make an arbitrary choice of zero. */
8260 bfd_vma sb = 0;
8261 bfd_vma residual;
8262 bfd_vma g_n;
8263 bfd_signed_vma signed_value;
8264 int group = 0;
8265
8266 /* Determine which group of bits to select. */
8267 switch (r_type)
8268 {
8269 case R_ARM_ALU_PC_G0_NC:
8270 case R_ARM_ALU_PC_G0:
8271 case R_ARM_ALU_SB_G0_NC:
8272 case R_ARM_ALU_SB_G0:
8273 group = 0;
8274 break;
8275
8276 case R_ARM_ALU_PC_G1_NC:
8277 case R_ARM_ALU_PC_G1:
8278 case R_ARM_ALU_SB_G1_NC:
8279 case R_ARM_ALU_SB_G1:
8280 group = 1;
8281 break;
8282
8283 case R_ARM_ALU_PC_G2:
8284 case R_ARM_ALU_SB_G2:
8285 group = 2;
8286 break;
8287
8288 default:
906e58ca 8289 abort ();
4962c51a
MS
8290 }
8291
8292 /* If REL, extract the addend from the insn. If RELA, it will
8293 have already been fetched for us. */
8294 if (globals->use_rel)
8295 {
8296 int negative;
8297 bfd_vma constant = insn & 0xff;
8298 bfd_vma rotation = (insn & 0xf00) >> 8;
8299
8300 if (rotation == 0)
8301 signed_addend = constant;
8302 else
8303 {
8304 /* Compensate for the fact that in the instruction, the
8305 rotation is stored in multiples of 2 bits. */
8306 rotation *= 2;
8307
8308 /* Rotate "constant" right by "rotation" bits. */
8309 signed_addend = (constant >> rotation) |
8310 (constant << (8 * sizeof (bfd_vma) - rotation));
8311 }
8312
8313 /* Determine if the instruction is an ADD or a SUB.
8314 (For REL, this determines the sign of the addend.) */
8315 negative = identify_add_or_sub (insn);
8316 if (negative == 0)
8317 {
8318 (*_bfd_error_handler)
8319 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8320 input_bfd, input_section,
8321 (long) rel->r_offset, howto->name);
906e58ca 8322 return bfd_reloc_overflow;
4962c51a
MS
8323 }
8324
8325 signed_addend *= negative;
8326 }
8327
8328 /* Compute the value (X) to go in the place. */
8329 if (r_type == R_ARM_ALU_PC_G0_NC
8330 || r_type == R_ARM_ALU_PC_G1_NC
8331 || r_type == R_ARM_ALU_PC_G0
8332 || r_type == R_ARM_ALU_PC_G1
8333 || r_type == R_ARM_ALU_PC_G2)
8334 /* PC relative. */
8335 signed_value = value - pc + signed_addend;
8336 else
8337 /* Section base relative. */
8338 signed_value = value - sb + signed_addend;
8339
8340 /* If the target symbol is a Thumb function, then set the
8341 Thumb bit in the address. */
8342 if (sym_flags == STT_ARM_TFUNC)
8343 signed_value |= 1;
8344
8345 /* Calculate the value of the relevant G_n, in encoded
8346 constant-with-rotation format. */
8347 g_n = calculate_group_reloc_mask (abs (signed_value), group,
8348 &residual);
8349
8350 /* Check for overflow if required. */
8351 if ((r_type == R_ARM_ALU_PC_G0
8352 || r_type == R_ARM_ALU_PC_G1
8353 || r_type == R_ARM_ALU_PC_G2
8354 || r_type == R_ARM_ALU_SB_G0
8355 || r_type == R_ARM_ALU_SB_G1
8356 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8357 {
8358 (*_bfd_error_handler)
8359 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8360 input_bfd, input_section,
8361 (long) rel->r_offset, abs (signed_value), howto->name);
8362 return bfd_reloc_overflow;
8363 }
8364
8365 /* Mask out the value and the ADD/SUB part of the opcode; take care
8366 not to destroy the S bit. */
8367 insn &= 0xff1ff000;
8368
8369 /* Set the opcode according to whether the value to go in the
8370 place is negative. */
8371 if (signed_value < 0)
8372 insn |= 1 << 22;
8373 else
8374 insn |= 1 << 23;
8375
8376 /* Encode the offset. */
8377 insn |= g_n;
8378
8379 bfd_put_32 (input_bfd, insn, hit_data);
8380 }
8381 return bfd_reloc_ok;
8382
8383 case R_ARM_LDR_PC_G0:
8384 case R_ARM_LDR_PC_G1:
8385 case R_ARM_LDR_PC_G2:
8386 case R_ARM_LDR_SB_G0:
8387 case R_ARM_LDR_SB_G1:
8388 case R_ARM_LDR_SB_G2:
8389 {
8390 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8391 bfd_vma pc = input_section->output_section->vma
8392 + input_section->output_offset + rel->r_offset;
8393 bfd_vma sb = 0; /* See note above. */
8394 bfd_vma residual;
8395 bfd_signed_vma signed_value;
8396 int group = 0;
8397
8398 /* Determine which groups of bits to calculate. */
8399 switch (r_type)
8400 {
8401 case R_ARM_LDR_PC_G0:
8402 case R_ARM_LDR_SB_G0:
8403 group = 0;
8404 break;
8405
8406 case R_ARM_LDR_PC_G1:
8407 case R_ARM_LDR_SB_G1:
8408 group = 1;
8409 break;
8410
8411 case R_ARM_LDR_PC_G2:
8412 case R_ARM_LDR_SB_G2:
8413 group = 2;
8414 break;
8415
8416 default:
906e58ca 8417 abort ();
4962c51a
MS
8418 }
8419
8420 /* If REL, extract the addend from the insn. If RELA, it will
8421 have already been fetched for us. */
8422 if (globals->use_rel)
8423 {
8424 int negative = (insn & (1 << 23)) ? 1 : -1;
8425 signed_addend = negative * (insn & 0xfff);
8426 }
8427
8428 /* Compute the value (X) to go in the place. */
8429 if (r_type == R_ARM_LDR_PC_G0
8430 || r_type == R_ARM_LDR_PC_G1
8431 || r_type == R_ARM_LDR_PC_G2)
8432 /* PC relative. */
8433 signed_value = value - pc + signed_addend;
8434 else
8435 /* Section base relative. */
8436 signed_value = value - sb + signed_addend;
8437
8438 /* Calculate the value of the relevant G_{n-1} to obtain
8439 the residual at that stage. */
8440 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8441
8442 /* Check for overflow. */
8443 if (residual >= 0x1000)
8444 {
8445 (*_bfd_error_handler)
8446 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8447 input_bfd, input_section,
8448 (long) rel->r_offset, abs (signed_value), howto->name);
8449 return bfd_reloc_overflow;
8450 }
8451
8452 /* Mask out the value and U bit. */
8453 insn &= 0xff7ff000;
8454
8455 /* Set the U bit if the value to go in the place is non-negative. */
8456 if (signed_value >= 0)
8457 insn |= 1 << 23;
8458
8459 /* Encode the offset. */
8460 insn |= residual;
8461
8462 bfd_put_32 (input_bfd, insn, hit_data);
8463 }
8464 return bfd_reloc_ok;
8465
8466 case R_ARM_LDRS_PC_G0:
8467 case R_ARM_LDRS_PC_G1:
8468 case R_ARM_LDRS_PC_G2:
8469 case R_ARM_LDRS_SB_G0:
8470 case R_ARM_LDRS_SB_G1:
8471 case R_ARM_LDRS_SB_G2:
8472 {
8473 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8474 bfd_vma pc = input_section->output_section->vma
8475 + input_section->output_offset + rel->r_offset;
8476 bfd_vma sb = 0; /* See note above. */
8477 bfd_vma residual;
8478 bfd_signed_vma signed_value;
8479 int group = 0;
8480
8481 /* Determine which groups of bits to calculate. */
8482 switch (r_type)
8483 {
8484 case R_ARM_LDRS_PC_G0:
8485 case R_ARM_LDRS_SB_G0:
8486 group = 0;
8487 break;
8488
8489 case R_ARM_LDRS_PC_G1:
8490 case R_ARM_LDRS_SB_G1:
8491 group = 1;
8492 break;
8493
8494 case R_ARM_LDRS_PC_G2:
8495 case R_ARM_LDRS_SB_G2:
8496 group = 2;
8497 break;
8498
8499 default:
906e58ca 8500 abort ();
4962c51a
MS
8501 }
8502
8503 /* If REL, extract the addend from the insn. If RELA, it will
8504 have already been fetched for us. */
8505 if (globals->use_rel)
8506 {
8507 int negative = (insn & (1 << 23)) ? 1 : -1;
8508 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
8509 }
8510
8511 /* Compute the value (X) to go in the place. */
8512 if (r_type == R_ARM_LDRS_PC_G0
8513 || r_type == R_ARM_LDRS_PC_G1
8514 || r_type == R_ARM_LDRS_PC_G2)
8515 /* PC relative. */
8516 signed_value = value - pc + signed_addend;
8517 else
8518 /* Section base relative. */
8519 signed_value = value - sb + signed_addend;
8520
8521 /* Calculate the value of the relevant G_{n-1} to obtain
8522 the residual at that stage. */
8523 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8524
8525 /* Check for overflow. */
8526 if (residual >= 0x100)
8527 {
8528 (*_bfd_error_handler)
8529 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8530 input_bfd, input_section,
8531 (long) rel->r_offset, abs (signed_value), howto->name);
8532 return bfd_reloc_overflow;
8533 }
8534
8535 /* Mask out the value and U bit. */
8536 insn &= 0xff7ff0f0;
8537
8538 /* Set the U bit if the value to go in the place is non-negative. */
8539 if (signed_value >= 0)
8540 insn |= 1 << 23;
8541
8542 /* Encode the offset. */
8543 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
8544
8545 bfd_put_32 (input_bfd, insn, hit_data);
8546 }
8547 return bfd_reloc_ok;
8548
8549 case R_ARM_LDC_PC_G0:
8550 case R_ARM_LDC_PC_G1:
8551 case R_ARM_LDC_PC_G2:
8552 case R_ARM_LDC_SB_G0:
8553 case R_ARM_LDC_SB_G1:
8554 case R_ARM_LDC_SB_G2:
8555 {
8556 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8557 bfd_vma pc = input_section->output_section->vma
8558 + input_section->output_offset + rel->r_offset;
8559 bfd_vma sb = 0; /* See note above. */
8560 bfd_vma residual;
8561 bfd_signed_vma signed_value;
8562 int group = 0;
8563
8564 /* Determine which groups of bits to calculate. */
8565 switch (r_type)
8566 {
8567 case R_ARM_LDC_PC_G0:
8568 case R_ARM_LDC_SB_G0:
8569 group = 0;
8570 break;
8571
8572 case R_ARM_LDC_PC_G1:
8573 case R_ARM_LDC_SB_G1:
8574 group = 1;
8575 break;
8576
8577 case R_ARM_LDC_PC_G2:
8578 case R_ARM_LDC_SB_G2:
8579 group = 2;
8580 break;
8581
8582 default:
906e58ca 8583 abort ();
4962c51a
MS
8584 }
8585
8586 /* If REL, extract the addend from the insn. If RELA, it will
8587 have already been fetched for us. */
8588 if (globals->use_rel)
8589 {
8590 int negative = (insn & (1 << 23)) ? 1 : -1;
8591 signed_addend = negative * ((insn & 0xff) << 2);
8592 }
8593
8594 /* Compute the value (X) to go in the place. */
8595 if (r_type == R_ARM_LDC_PC_G0
8596 || r_type == R_ARM_LDC_PC_G1
8597 || r_type == R_ARM_LDC_PC_G2)
8598 /* PC relative. */
8599 signed_value = value - pc + signed_addend;
8600 else
8601 /* Section base relative. */
8602 signed_value = value - sb + signed_addend;
8603
8604 /* Calculate the value of the relevant G_{n-1} to obtain
8605 the residual at that stage. */
8606 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8607
8608 /* Check for overflow. (The absolute value to go in the place must be
8609 divisible by four and, after having been divided by four, must
8610 fit in eight bits.) */
8611 if ((residual & 0x3) != 0 || residual >= 0x400)
8612 {
8613 (*_bfd_error_handler)
8614 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8615 input_bfd, input_section,
8616 (long) rel->r_offset, abs (signed_value), howto->name);
8617 return bfd_reloc_overflow;
8618 }
8619
8620 /* Mask out the value and U bit. */
8621 insn &= 0xff7fff00;
8622
8623 /* Set the U bit if the value to go in the place is non-negative. */
8624 if (signed_value >= 0)
8625 insn |= 1 << 23;
8626
8627 /* Encode the offset. */
8628 insn |= residual >> 2;
8629
8630 bfd_put_32 (input_bfd, insn, hit_data);
8631 }
8632 return bfd_reloc_ok;
8633
252b5132
RH
8634 default:
8635 return bfd_reloc_notsupported;
8636 }
8637}
8638
98c1d4aa
NC
8639/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8640static void
57e8b36a
NC
8641arm_add_to_rel (bfd * abfd,
8642 bfd_byte * address,
8643 reloc_howto_type * howto,
8644 bfd_signed_vma increment)
98c1d4aa 8645{
98c1d4aa
NC
8646 bfd_signed_vma addend;
8647
bd97cb95
DJ
8648 if (howto->type == R_ARM_THM_CALL
8649 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 8650 {
9a5aca8c
AM
8651 int upper_insn, lower_insn;
8652 int upper, lower;
98c1d4aa 8653
9a5aca8c
AM
8654 upper_insn = bfd_get_16 (abfd, address);
8655 lower_insn = bfd_get_16 (abfd, address + 2);
8656 upper = upper_insn & 0x7ff;
8657 lower = lower_insn & 0x7ff;
8658
8659 addend = (upper << 12) | (lower << 1);
ddda4409 8660 addend += increment;
9a5aca8c 8661 addend >>= 1;
98c1d4aa 8662
9a5aca8c
AM
8663 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
8664 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
8665
dc810e39
AM
8666 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
8667 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
8668 }
8669 else
8670 {
8671 bfd_vma contents;
8672
8673 contents = bfd_get_32 (abfd, address);
8674
8675 /* Get the (signed) value from the instruction. */
8676 addend = contents & howto->src_mask;
8677 if (addend & ((howto->src_mask + 1) >> 1))
8678 {
8679 bfd_signed_vma mask;
8680
8681 mask = -1;
8682 mask &= ~ howto->src_mask;
8683 addend |= mask;
8684 }
8685
8686 /* Add in the increment, (which is a byte value). */
8687 switch (howto->type)
8688 {
8689 default:
8690 addend += increment;
8691 break;
8692
8693 case R_ARM_PC24:
c6596c5e 8694 case R_ARM_PLT32:
5b5bb741
PB
8695 case R_ARM_CALL:
8696 case R_ARM_JUMP24:
9a5aca8c 8697 addend <<= howto->size;
dc810e39 8698 addend += increment;
9a5aca8c
AM
8699
8700 /* Should we check for overflow here ? */
8701
8702 /* Drop any undesired bits. */
8703 addend >>= howto->rightshift;
8704 break;
8705 }
8706
8707 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
8708
8709 bfd_put_32 (abfd, contents, address);
ddda4409 8710 }
98c1d4aa 8711}
252b5132 8712
ba93b8ac
DJ
8713#define IS_ARM_TLS_RELOC(R_TYPE) \
8714 ((R_TYPE) == R_ARM_TLS_GD32 \
8715 || (R_TYPE) == R_ARM_TLS_LDO32 \
8716 || (R_TYPE) == R_ARM_TLS_LDM32 \
8717 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8718 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8719 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8720 || (R_TYPE) == R_ARM_TLS_LE32 \
8721 || (R_TYPE) == R_ARM_TLS_IE32)
8722
252b5132 8723/* Relocate an ARM ELF section. */
906e58ca 8724
b34976b6 8725static bfd_boolean
57e8b36a
NC
8726elf32_arm_relocate_section (bfd * output_bfd,
8727 struct bfd_link_info * info,
8728 bfd * input_bfd,
8729 asection * input_section,
8730 bfd_byte * contents,
8731 Elf_Internal_Rela * relocs,
8732 Elf_Internal_Sym * local_syms,
8733 asection ** local_sections)
252b5132 8734{
b34976b6
AM
8735 Elf_Internal_Shdr *symtab_hdr;
8736 struct elf_link_hash_entry **sym_hashes;
8737 Elf_Internal_Rela *rel;
8738 Elf_Internal_Rela *relend;
8739 const char *name;
b32d3aa2 8740 struct elf32_arm_link_hash_table * globals;
252b5132 8741
4e7fd91e 8742 globals = elf32_arm_hash_table (info);
b491616a 8743
0ffa91dd 8744 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
8745 sym_hashes = elf_sym_hashes (input_bfd);
8746
8747 rel = relocs;
8748 relend = relocs + input_section->reloc_count;
8749 for (; rel < relend; rel++)
8750 {
ba96a88f
NC
8751 int r_type;
8752 reloc_howto_type * howto;
8753 unsigned long r_symndx;
8754 Elf_Internal_Sym * sym;
8755 asection * sec;
252b5132 8756 struct elf_link_hash_entry * h;
ba96a88f
NC
8757 bfd_vma relocation;
8758 bfd_reloc_status_type r;
8759 arelent bfd_reloc;
ba93b8ac 8760 char sym_type;
0945cdfd 8761 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 8762 char *error_message = NULL;
f21f3fe0 8763
252b5132 8764 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 8765 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 8766 r_type = arm_real_reloc_type (globals, r_type);
252b5132 8767
ba96a88f
NC
8768 if ( r_type == R_ARM_GNU_VTENTRY
8769 || r_type == R_ARM_GNU_VTINHERIT)
252b5132
RH
8770 continue;
8771
b32d3aa2 8772 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 8773 howto = bfd_reloc.howto;
252b5132 8774
252b5132
RH
8775 h = NULL;
8776 sym = NULL;
8777 sec = NULL;
9b485d32 8778
252b5132
RH
8779 if (r_symndx < symtab_hdr->sh_info)
8780 {
8781 sym = local_syms + r_symndx;
ba93b8ac 8782 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 8783 sec = local_sections[r_symndx];
ffcb4889
NS
8784
8785 /* An object file might have a reference to a local
8786 undefined symbol. This is a daft object file, but we
8787 should at least do something about it. V4BX & NONE
8788 relocations do not use the symbol and are explicitly
8789 allowed to use the undefined symbol, so allow those. */
8790 if (r_type != R_ARM_V4BX
8791 && r_type != R_ARM_NONE
8792 && bfd_is_und_section (sec)
8793 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
8794 {
8795 if (!info->callbacks->undefined_symbol
8796 (info, bfd_elf_string_from_elf_section
8797 (input_bfd, symtab_hdr->sh_link, sym->st_name),
8798 input_bfd, input_section,
8799 rel->r_offset, TRUE))
8800 return FALSE;
8801 }
8802
4e7fd91e 8803 if (globals->use_rel)
f8df10f4 8804 {
4e7fd91e
PB
8805 relocation = (sec->output_section->vma
8806 + sec->output_offset
8807 + sym->st_value);
ab96bf03
AM
8808 if (!info->relocatable
8809 && (sec->flags & SEC_MERGE)
8810 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 8811 {
4e7fd91e
PB
8812 asection *msec;
8813 bfd_vma addend, value;
8814
39623e12 8815 switch (r_type)
4e7fd91e 8816 {
39623e12
PB
8817 case R_ARM_MOVW_ABS_NC:
8818 case R_ARM_MOVT_ABS:
8819 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8820 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8821 addend = (addend ^ 0x8000) - 0x8000;
8822 break;
f8df10f4 8823
39623e12
PB
8824 case R_ARM_THM_MOVW_ABS_NC:
8825 case R_ARM_THM_MOVT_ABS:
8826 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8827 << 16;
8828 value |= bfd_get_16 (input_bfd,
8829 contents + rel->r_offset + 2);
8830 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8831 | ((value & 0x04000000) >> 15);
8832 addend = (addend ^ 0x8000) - 0x8000;
8833 break;
f8df10f4 8834
39623e12
PB
8835 default:
8836 if (howto->rightshift
8837 || (howto->src_mask & (howto->src_mask + 1)))
8838 {
8839 (*_bfd_error_handler)
8840 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8841 input_bfd, input_section,
8842 (long) rel->r_offset, howto->name);
8843 return FALSE;
8844 }
8845
8846 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8847
8848 /* Get the (signed) value from the instruction. */
8849 addend = value & howto->src_mask;
8850 if (addend & ((howto->src_mask + 1) >> 1))
8851 {
8852 bfd_signed_vma mask;
8853
8854 mask = -1;
8855 mask &= ~ howto->src_mask;
8856 addend |= mask;
8857 }
8858 break;
4e7fd91e 8859 }
39623e12 8860
4e7fd91e
PB
8861 msec = sec;
8862 addend =
8863 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8864 - relocation;
8865 addend += msec->output_section->vma + msec->output_offset;
39623e12
PB
8866
8867 /* Cases here must match those in the preceeding
8868 switch statement. */
8869 switch (r_type)
8870 {
8871 case R_ARM_MOVW_ABS_NC:
8872 case R_ARM_MOVT_ABS:
8873 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8874 | (addend & 0xfff);
8875 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8876 break;
8877
8878 case R_ARM_THM_MOVW_ABS_NC:
8879 case R_ARM_THM_MOVT_ABS:
8880 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8881 | (addend & 0xff) | ((addend & 0x0800) << 15);
8882 bfd_put_16 (input_bfd, value >> 16,
8883 contents + rel->r_offset);
8884 bfd_put_16 (input_bfd, value,
8885 contents + rel->r_offset + 2);
8886 break;
8887
8888 default:
8889 value = (value & ~ howto->dst_mask)
8890 | (addend & howto->dst_mask);
8891 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8892 break;
8893 }
f8df10f4 8894 }
f8df10f4 8895 }
4e7fd91e
PB
8896 else
8897 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
8898 }
8899 else
8900 {
560e09e9 8901 bfd_boolean warned;
560e09e9 8902
b2a8e766
AM
8903 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8904 r_symndx, symtab_hdr, sym_hashes,
8905 h, sec, relocation,
8906 unresolved_reloc, warned);
ba93b8ac
DJ
8907
8908 sym_type = h->type;
252b5132
RH
8909 }
8910
ab96bf03
AM
8911 if (sec != NULL && elf_discarded_section (sec))
8912 {
8913 /* For relocs against symbols from removed linkonce sections,
8914 or sections discarded by a linker script, we just want the
8915 section contents zeroed. Avoid any special processing. */
8916 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8917 rel->r_info = 0;
8918 rel->r_addend = 0;
8919 continue;
8920 }
8921
8922 if (info->relocatable)
8923 {
8924 /* This is a relocatable link. We don't have to change
8925 anything, unless the reloc is against a section symbol,
8926 in which case we have to adjust according to where the
8927 section symbol winds up in the output section. */
8928 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8929 {
8930 if (globals->use_rel)
8931 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8932 howto, (bfd_signed_vma) sec->output_offset);
8933 else
8934 rel->r_addend += sec->output_offset;
8935 }
8936 continue;
8937 }
8938
252b5132
RH
8939 if (h != NULL)
8940 name = h->root.root.string;
8941 else
8942 {
8943 name = (bfd_elf_string_from_elf_section
8944 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8945 if (name == NULL || *name == '\0')
8946 name = bfd_section_name (input_bfd, sec);
8947 }
f21f3fe0 8948
ba93b8ac
DJ
8949 if (r_symndx != 0
8950 && r_type != R_ARM_NONE
8951 && (h == NULL
8952 || h->root.type == bfd_link_hash_defined
8953 || h->root.type == bfd_link_hash_defweak)
8954 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8955 {
8956 (*_bfd_error_handler)
8957 ((sym_type == STT_TLS
8958 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8959 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8960 input_bfd,
8961 input_section,
8962 (long) rel->r_offset,
8963 howto->name,
8964 name);
8965 }
8966
252b5132
RH
8967 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8968 input_section, contents, rel,
8969 relocation, info, sec, name,
8970 (h ? ELF_ST_TYPE (h->type) :
0945cdfd 8971 ELF_ST_TYPE (sym->st_info)), h,
f2a9dd69 8972 &unresolved_reloc, &error_message);
0945cdfd
DJ
8973
8974 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8975 because such sections are not SEC_ALLOC and thus ld.so will
8976 not process them. */
8977 if (unresolved_reloc
8978 && !((input_section->flags & SEC_DEBUGGING) != 0
8979 && h->def_dynamic))
8980 {
8981 (*_bfd_error_handler)
843fe662
L
8982 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8983 input_bfd,
8984 input_section,
8985 (long) rel->r_offset,
8986 howto->name,
8987 h->root.root.string);
0945cdfd
DJ
8988 return FALSE;
8989 }
252b5132
RH
8990
8991 if (r != bfd_reloc_ok)
8992 {
252b5132
RH
8993 switch (r)
8994 {
8995 case bfd_reloc_overflow:
cf919dfd
PB
8996 /* If the overflowing reloc was to an undefined symbol,
8997 we have already printed one error message and there
8998 is no point complaining again. */
8999 if ((! h ||
9000 h->root.type != bfd_link_hash_undefined)
9001 && (!((*info->callbacks->reloc_overflow)
dfeffb9f
L
9002 (info, (h ? &h->root : NULL), name, howto->name,
9003 (bfd_vma) 0, input_bfd, input_section,
9004 rel->r_offset))))
b34976b6 9005 return FALSE;
252b5132
RH
9006 break;
9007
9008 case bfd_reloc_undefined:
9009 if (!((*info->callbacks->undefined_symbol)
9010 (info, name, input_bfd, input_section,
b34976b6
AM
9011 rel->r_offset, TRUE)))
9012 return FALSE;
252b5132
RH
9013 break;
9014
9015 case bfd_reloc_outofrange:
f2a9dd69 9016 error_message = _("out of range");
252b5132
RH
9017 goto common_error;
9018
9019 case bfd_reloc_notsupported:
f2a9dd69 9020 error_message = _("unsupported relocation");
252b5132
RH
9021 goto common_error;
9022
9023 case bfd_reloc_dangerous:
f2a9dd69 9024 /* error_message should already be set. */
252b5132
RH
9025 goto common_error;
9026
9027 default:
f2a9dd69 9028 error_message = _("unknown error");
8029a119 9029 /* Fall through. */
252b5132
RH
9030
9031 common_error:
f2a9dd69
DJ
9032 BFD_ASSERT (error_message != NULL);
9033 if (!((*info->callbacks->reloc_dangerous)
9034 (info, error_message, input_bfd, input_section,
252b5132 9035 rel->r_offset)))
b34976b6 9036 return FALSE;
252b5132
RH
9037 break;
9038 }
9039 }
9040 }
9041
b34976b6 9042 return TRUE;
252b5132
RH
9043}
9044
2468f9c9
PB
9045/* Add a new unwind edit to the list described by HEAD, TAIL. If INDEX is zero,
9046 adds the edit to the start of the list. (The list must be built in order of
9047 ascending INDEX: the function's callers are primarily responsible for
9048 maintaining that condition). */
9049
9050static void
9051add_unwind_table_edit (arm_unwind_table_edit **head,
9052 arm_unwind_table_edit **tail,
9053 arm_unwind_edit_type type,
9054 asection *linked_section,
9055 unsigned int index)
9056{
21d799b5
NC
9057 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
9058 xmalloc (sizeof (arm_unwind_table_edit));
2468f9c9
PB
9059
9060 new_edit->type = type;
9061 new_edit->linked_section = linked_section;
9062 new_edit->index = index;
9063
9064 if (index > 0)
9065 {
9066 new_edit->next = NULL;
9067
9068 if (*tail)
9069 (*tail)->next = new_edit;
9070
9071 (*tail) = new_edit;
9072
9073 if (!*head)
9074 (*head) = new_edit;
9075 }
9076 else
9077 {
9078 new_edit->next = *head;
9079
9080 if (!*tail)
9081 *tail = new_edit;
9082
9083 *head = new_edit;
9084 }
9085}
9086
9087static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9088
9089/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9090static void
9091adjust_exidx_size(asection *exidx_sec, int adjust)
9092{
9093 asection *out_sec;
9094
9095 if (!exidx_sec->rawsize)
9096 exidx_sec->rawsize = exidx_sec->size;
9097
9098 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9099 out_sec = exidx_sec->output_section;
9100 /* Adjust size of output section. */
9101 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9102}
9103
9104/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9105static void
9106insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9107{
9108 struct _arm_elf_section_data *exidx_arm_data;
9109
9110 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9111 add_unwind_table_edit (
9112 &exidx_arm_data->u.exidx.unwind_edit_list,
9113 &exidx_arm_data->u.exidx.unwind_edit_tail,
9114 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9115
9116 adjust_exidx_size(exidx_sec, 8);
9117}
9118
9119/* Scan .ARM.exidx tables, and create a list describing edits which should be
9120 made to those tables, such that:
9121
9122 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9123 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9124 codes which have been inlined into the index).
9125
9126 The edits are applied when the tables are written
9127 (in elf32_arm_write_section).
9128*/
9129
9130bfd_boolean
9131elf32_arm_fix_exidx_coverage (asection **text_section_order,
9132 unsigned int num_text_sections,
9133 struct bfd_link_info *info)
9134{
9135 bfd *inp;
9136 unsigned int last_second_word = 0, i;
9137 asection *last_exidx_sec = NULL;
9138 asection *last_text_sec = NULL;
9139 int last_unwind_type = -1;
9140
9141 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9142 text sections. */
9143 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9144 {
9145 asection *sec;
9146
9147 for (sec = inp->sections; sec != NULL; sec = sec->next)
9148 {
9149 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9150 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9151
dec9d5df 9152 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9
PB
9153 continue;
9154
9155 if (elf_sec->linked_to)
9156 {
9157 Elf_Internal_Shdr *linked_hdr
9158 = &elf_section_data (elf_sec->linked_to)->this_hdr;
9159 struct _arm_elf_section_data *linked_sec_arm_data
9160 = get_arm_elf_section_data (linked_hdr->bfd_section);
9161
9162 if (linked_sec_arm_data == NULL)
9163 continue;
9164
9165 /* Link this .ARM.exidx section back from the text section it
9166 describes. */
9167 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9168 }
9169 }
9170 }
9171
9172 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9173 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9174 and add EXIDX_CANTUNWIND entries for sections with no unwind table data.
9175 */
9176
9177 for (i = 0; i < num_text_sections; i++)
9178 {
9179 asection *sec = text_section_order[i];
9180 asection *exidx_sec;
9181 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9182 struct _arm_elf_section_data *exidx_arm_data;
9183 bfd_byte *contents = NULL;
9184 int deleted_exidx_bytes = 0;
9185 bfd_vma j;
9186 arm_unwind_table_edit *unwind_edit_head = NULL;
9187 arm_unwind_table_edit *unwind_edit_tail = NULL;
9188 Elf_Internal_Shdr *hdr;
9189 bfd *ibfd;
9190
9191 if (arm_data == NULL)
9192 continue;
9193
9194 exidx_sec = arm_data->u.text.arm_exidx_sec;
9195 if (exidx_sec == NULL)
9196 {
9197 /* Section has no unwind data. */
9198 if (last_unwind_type == 0 || !last_exidx_sec)
9199 continue;
9200
9201 /* Ignore zero sized sections. */
9202 if (sec->size == 0)
9203 continue;
9204
9205 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9206 last_unwind_type = 0;
9207 continue;
9208 }
9209
22a8f80e
PB
9210 /* Skip /DISCARD/ sections. */
9211 if (bfd_is_abs_section (exidx_sec->output_section))
9212 continue;
9213
2468f9c9
PB
9214 hdr = &elf_section_data (exidx_sec)->this_hdr;
9215 if (hdr->sh_type != SHT_ARM_EXIDX)
9216 continue;
9217
9218 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9219 if (exidx_arm_data == NULL)
9220 continue;
9221
9222 ibfd = exidx_sec->owner;
9223
9224 if (hdr->contents != NULL)
9225 contents = hdr->contents;
9226 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9227 /* An error? */
9228 continue;
9229
9230 for (j = 0; j < hdr->sh_size; j += 8)
9231 {
9232 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9233 int unwind_type;
9234 int elide = 0;
9235
9236 /* An EXIDX_CANTUNWIND entry. */
9237 if (second_word == 1)
9238 {
9239 if (last_unwind_type == 0)
9240 elide = 1;
9241 unwind_type = 0;
9242 }
9243 /* Inlined unwinding data. Merge if equal to previous. */
9244 else if ((second_word & 0x80000000) != 0)
9245 {
9246 if (last_second_word == second_word && last_unwind_type == 1)
9247 elide = 1;
9248 unwind_type = 1;
9249 last_second_word = second_word;
9250 }
9251 /* Normal table entry. In theory we could merge these too,
9252 but duplicate entries are likely to be much less common. */
9253 else
9254 unwind_type = 2;
9255
9256 if (elide)
9257 {
9258 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9259 DELETE_EXIDX_ENTRY, NULL, j / 8);
9260
9261 deleted_exidx_bytes += 8;
9262 }
9263
9264 last_unwind_type = unwind_type;
9265 }
9266
9267 /* Free contents if we allocated it ourselves. */
9268 if (contents != hdr->contents)
9269 free (contents);
9270
9271 /* Record edits to be applied later (in elf32_arm_write_section). */
9272 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9273 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9274
9275 if (deleted_exidx_bytes > 0)
9276 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9277
9278 last_exidx_sec = exidx_sec;
9279 last_text_sec = sec;
9280 }
9281
9282 /* Add terminating CANTUNWIND entry. */
9283 if (last_exidx_sec && last_unwind_type != 0)
9284 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9285
9286 return TRUE;
9287}
9288
3e6b1042
DJ
9289static bfd_boolean
9290elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9291 bfd *ibfd, const char *name)
9292{
9293 asection *sec, *osec;
9294
9295 sec = bfd_get_section_by_name (ibfd, name);
9296 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9297 return TRUE;
9298
9299 osec = sec->output_section;
9300 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9301 return TRUE;
9302
9303 if (! bfd_set_section_contents (obfd, osec, sec->contents,
9304 sec->output_offset, sec->size))
9305 return FALSE;
9306
9307 return TRUE;
9308}
9309
9310static bfd_boolean
9311elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9312{
9313 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
9314
9315 /* Invoke the regular ELF backend linker to do all the work. */
9316 if (!bfd_elf_final_link (abfd, info))
9317 return FALSE;
9318
9319 /* Write out any glue sections now that we have created all the
9320 stubs. */
9321 if (globals->bfd_of_glue_owner != NULL)
9322 {
9323 if (! elf32_arm_output_glue_section (info, abfd,
9324 globals->bfd_of_glue_owner,
9325 ARM2THUMB_GLUE_SECTION_NAME))
9326 return FALSE;
9327
9328 if (! elf32_arm_output_glue_section (info, abfd,
9329 globals->bfd_of_glue_owner,
9330 THUMB2ARM_GLUE_SECTION_NAME))
9331 return FALSE;
9332
9333 if (! elf32_arm_output_glue_section (info, abfd,
9334 globals->bfd_of_glue_owner,
9335 VFP11_ERRATUM_VENEER_SECTION_NAME))
9336 return FALSE;
9337
9338 if (! elf32_arm_output_glue_section (info, abfd,
9339 globals->bfd_of_glue_owner,
9340 ARM_BX_GLUE_SECTION_NAME))
9341 return FALSE;
9342 }
9343
9344 return TRUE;
9345}
9346
c178919b
NC
9347/* Set the right machine number. */
9348
9349static bfd_boolean
57e8b36a 9350elf32_arm_object_p (bfd *abfd)
c178919b 9351{
5a6c6817 9352 unsigned int mach;
57e8b36a 9353
5a6c6817 9354 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 9355
5a6c6817
NC
9356 if (mach != bfd_mach_arm_unknown)
9357 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9358
9359 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
9360 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
e16bb312 9361
e16bb312 9362 else
5a6c6817 9363 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
9364
9365 return TRUE;
9366}
9367
fc830a83 9368/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 9369
b34976b6 9370static bfd_boolean
57e8b36a 9371elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
9372{
9373 if (elf_flags_init (abfd)
9374 && elf_elfheader (abfd)->e_flags != flags)
9375 {
fc830a83
NC
9376 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
9377 {
fd2ec330 9378 if (flags & EF_ARM_INTERWORK)
d003868e
AM
9379 (*_bfd_error_handler)
9380 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9381 abfd);
fc830a83 9382 else
d003868e
AM
9383 _bfd_error_handler
9384 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9385 abfd);
fc830a83 9386 }
252b5132
RH
9387 }
9388 else
9389 {
9390 elf_elfheader (abfd)->e_flags = flags;
b34976b6 9391 elf_flags_init (abfd) = TRUE;
252b5132
RH
9392 }
9393
b34976b6 9394 return TRUE;
252b5132
RH
9395}
9396
fc830a83 9397/* Copy backend specific data from one object module to another. */
9b485d32 9398
b34976b6 9399static bfd_boolean
57e8b36a 9400elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
9401{
9402 flagword in_flags;
9403 flagword out_flags;
9404
0ffa91dd 9405 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 9406 return TRUE;
252b5132 9407
fc830a83 9408 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
9409 out_flags = elf_elfheader (obfd)->e_flags;
9410
fc830a83
NC
9411 if (elf_flags_init (obfd)
9412 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
9413 && in_flags != out_flags)
252b5132 9414 {
252b5132 9415 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 9416 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 9417 return FALSE;
252b5132
RH
9418
9419 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 9420 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 9421 return FALSE;
252b5132
RH
9422
9423 /* If the src and dest have different interworking flags
9424 then turn off the interworking bit. */
fd2ec330 9425 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 9426 {
fd2ec330 9427 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
9428 _bfd_error_handler
9429 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9430 obfd, ibfd);
252b5132 9431
fd2ec330 9432 in_flags &= ~EF_ARM_INTERWORK;
252b5132 9433 }
1006ba19
PB
9434
9435 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
9436 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
9437 in_flags &= ~EF_ARM_PIC;
252b5132
RH
9438 }
9439
9440 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 9441 elf_flags_init (obfd) = TRUE;
252b5132 9442
94a3258f
PB
9443 /* Also copy the EI_OSABI field. */
9444 elf_elfheader (obfd)->e_ident[EI_OSABI] =
9445 elf_elfheader (ibfd)->e_ident[EI_OSABI];
9446
104d59d1
JM
9447 /* Copy object attributes. */
9448 _bfd_elf_copy_obj_attributes (ibfd, obfd);
ee065d83
PB
9449
9450 return TRUE;
9451}
9452
9453/* Values for Tag_ABI_PCS_R9_use. */
9454enum
9455{
9456 AEABI_R9_V6,
9457 AEABI_R9_SB,
9458 AEABI_R9_TLS,
9459 AEABI_R9_unused
9460};
9461
9462/* Values for Tag_ABI_PCS_RW_data. */
9463enum
9464{
9465 AEABI_PCS_RW_data_absolute,
9466 AEABI_PCS_RW_data_PCrel,
9467 AEABI_PCS_RW_data_SBrel,
9468 AEABI_PCS_RW_data_unused
9469};
9470
9471/* Values for Tag_ABI_enum_size. */
9472enum
9473{
9474 AEABI_enum_unused,
9475 AEABI_enum_short,
9476 AEABI_enum_wide,
9477 AEABI_enum_forced_wide
9478};
9479
104d59d1
JM
9480/* Determine whether an object attribute tag takes an integer, a
9481 string or both. */
906e58ca 9482
104d59d1
JM
9483static int
9484elf32_arm_obj_attrs_arg_type (int tag)
9485{
9486 if (tag == Tag_compatibility)
3483fe2e 9487 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 9488 else if (tag == Tag_nodefaults)
3483fe2e
AS
9489 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
9490 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
9491 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 9492 else if (tag < 32)
3483fe2e 9493 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 9494 else
3483fe2e 9495 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
9496}
9497
5aa6ff7c
AS
9498/* The ABI defines that Tag_conformance should be emitted first, and that
9499 Tag_nodefaults should be second (if either is defined). This sets those
9500 two positions, and bumps up the position of all the remaining tags to
9501 compensate. */
9502static int
9503elf32_arm_obj_attrs_order (int num)
9504{
9505 if (num == 4)
9506 return Tag_conformance;
9507 if (num == 5)
9508 return Tag_nodefaults;
9509 if ((num - 2) < Tag_nodefaults)
9510 return num - 2;
9511 if ((num - 1) < Tag_conformance)
9512 return num - 1;
9513 return num;
9514}
9515
91e22acd
AS
9516/* Read the architecture from the Tag_also_compatible_with attribute, if any.
9517 Returns -1 if no architecture could be read. */
9518
9519static int
9520get_secondary_compatible_arch (bfd *abfd)
9521{
9522 obj_attribute *attr =
9523 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9524
9525 /* Note: the tag and its argument below are uleb128 values, though
9526 currently-defined values fit in one byte for each. */
9527 if (attr->s
9528 && attr->s[0] == Tag_CPU_arch
9529 && (attr->s[1] & 128) != 128
9530 && attr->s[2] == 0)
9531 return attr->s[1];
9532
9533 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9534 return -1;
9535}
9536
9537/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9538 The tag is removed if ARCH is -1. */
9539
8e79c3df 9540static void
91e22acd 9541set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 9542{
91e22acd
AS
9543 obj_attribute *attr =
9544 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 9545
91e22acd
AS
9546 if (arch == -1)
9547 {
9548 attr->s = NULL;
9549 return;
8e79c3df 9550 }
91e22acd
AS
9551
9552 /* Note: the tag and its argument below are uleb128 values, though
9553 currently-defined values fit in one byte for each. */
9554 if (!attr->s)
21d799b5 9555 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
9556 attr->s[0] = Tag_CPU_arch;
9557 attr->s[1] = arch;
9558 attr->s[2] = '\0';
8e79c3df
CM
9559}
9560
91e22acd
AS
9561/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9562 into account. */
9563
9564static int
9565tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
9566 int newtag, int secondary_compat)
8e79c3df 9567{
91e22acd
AS
9568#define T(X) TAG_CPU_ARCH_##X
9569 int tagl, tagh, result;
9570 const int v6t2[] =
9571 {
9572 T(V6T2), /* PRE_V4. */
9573 T(V6T2), /* V4. */
9574 T(V6T2), /* V4T. */
9575 T(V6T2), /* V5T. */
9576 T(V6T2), /* V5TE. */
9577 T(V6T2), /* V5TEJ. */
9578 T(V6T2), /* V6. */
9579 T(V7), /* V6KZ. */
9580 T(V6T2) /* V6T2. */
9581 };
9582 const int v6k[] =
9583 {
9584 T(V6K), /* PRE_V4. */
9585 T(V6K), /* V4. */
9586 T(V6K), /* V4T. */
9587 T(V6K), /* V5T. */
9588 T(V6K), /* V5TE. */
9589 T(V6K), /* V5TEJ. */
9590 T(V6K), /* V6. */
9591 T(V6KZ), /* V6KZ. */
9592 T(V7), /* V6T2. */
9593 T(V6K) /* V6K. */
9594 };
9595 const int v7[] =
9596 {
9597 T(V7), /* PRE_V4. */
9598 T(V7), /* V4. */
9599 T(V7), /* V4T. */
9600 T(V7), /* V5T. */
9601 T(V7), /* V5TE. */
9602 T(V7), /* V5TEJ. */
9603 T(V7), /* V6. */
9604 T(V7), /* V6KZ. */
9605 T(V7), /* V6T2. */
9606 T(V7), /* V6K. */
9607 T(V7) /* V7. */
9608 };
9609 const int v6_m[] =
9610 {
9611 -1, /* PRE_V4. */
9612 -1, /* V4. */
9613 T(V6K), /* V4T. */
9614 T(V6K), /* V5T. */
9615 T(V6K), /* V5TE. */
9616 T(V6K), /* V5TEJ. */
9617 T(V6K), /* V6. */
9618 T(V6KZ), /* V6KZ. */
9619 T(V7), /* V6T2. */
9620 T(V6K), /* V6K. */
9621 T(V7), /* V7. */
9622 T(V6_M) /* V6_M. */
9623 };
9624 const int v6s_m[] =
9625 {
9626 -1, /* PRE_V4. */
9627 -1, /* V4. */
9628 T(V6K), /* V4T. */
9629 T(V6K), /* V5T. */
9630 T(V6K), /* V5TE. */
9631 T(V6K), /* V5TEJ. */
9632 T(V6K), /* V6. */
9633 T(V6KZ), /* V6KZ. */
9634 T(V7), /* V6T2. */
9635 T(V6K), /* V6K. */
9636 T(V7), /* V7. */
9637 T(V6S_M), /* V6_M. */
9638 T(V6S_M) /* V6S_M. */
9639 };
9640 const int v4t_plus_v6_m[] =
9641 {
9642 -1, /* PRE_V4. */
9643 -1, /* V4. */
9644 T(V4T), /* V4T. */
9645 T(V5T), /* V5T. */
9646 T(V5TE), /* V5TE. */
9647 T(V5TEJ), /* V5TEJ. */
9648 T(V6), /* V6. */
9649 T(V6KZ), /* V6KZ. */
9650 T(V6T2), /* V6T2. */
9651 T(V6K), /* V6K. */
9652 T(V7), /* V7. */
9653 T(V6_M), /* V6_M. */
9654 T(V6S_M), /* V6S_M. */
9655 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
9656 };
9657 const int *comb[] =
9658 {
9659 v6t2,
9660 v6k,
9661 v7,
9662 v6_m,
9663 v6s_m,
9664 /* Pseudo-architecture. */
9665 v4t_plus_v6_m
9666 };
9667
9668 /* Check we've not got a higher architecture than we know about. */
9669
9670 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
9671 {
3895f852 9672 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
9673 return -1;
9674 }
9675
9676 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9677
9678 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9679 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9680 oldtag = T(V4T_PLUS_V6_M);
9681
9682 /* And override the new tag if we have a Tag_also_compatible_with on the
9683 input. */
9684
9685 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9686 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9687 newtag = T(V4T_PLUS_V6_M);
9688
9689 tagl = (oldtag < newtag) ? oldtag : newtag;
9690 result = tagh = (oldtag > newtag) ? oldtag : newtag;
9691
9692 /* Architectures before V6KZ add features monotonically. */
9693 if (tagh <= TAG_CPU_ARCH_V6KZ)
9694 return result;
9695
9696 result = comb[tagh - T(V6T2)][tagl];
9697
9698 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9699 as the canonical version. */
9700 if (result == T(V4T_PLUS_V6_M))
9701 {
9702 result = T(V4T);
9703 *secondary_compat_out = T(V6_M);
9704 }
9705 else
9706 *secondary_compat_out = -1;
9707
9708 if (result == -1)
9709 {
3895f852 9710 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
9711 ibfd, oldtag, newtag);
9712 return -1;
9713 }
9714
9715 return result;
9716#undef T
8e79c3df
CM
9717}
9718
ee065d83
PB
9719/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9720 are conflicting attributes. */
906e58ca 9721
ee065d83
PB
9722static bfd_boolean
9723elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
9724{
104d59d1
JM
9725 obj_attribute *in_attr;
9726 obj_attribute *out_attr;
9727 obj_attribute_list *in_list;
8e79c3df 9728 obj_attribute_list *out_list;
91e22acd 9729 obj_attribute_list **out_listp;
ee065d83
PB
9730 /* Some tags have 0 = don't care, 1 = strong requirement,
9731 2 = weak requirement. */
91e22acd 9732 static const int order_021[3] = {0, 2, 1};
ee065d83 9733 int i;
91e22acd 9734 bfd_boolean result = TRUE;
ee065d83 9735
3e6b1042
DJ
9736 /* Skip the linker stubs file. This preserves previous behavior
9737 of accepting unknown attributes in the first input file - but
9738 is that a bug? */
9739 if (ibfd->flags & BFD_LINKER_CREATED)
9740 return TRUE;
9741
104d59d1 9742 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
9743 {
9744 /* This is the first object. Copy the attributes. */
104d59d1 9745 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526
PB
9746
9747 /* Use the Tag_null value to indicate the attributes have been
9748 initialized. */
104d59d1 9749 elf_known_obj_attributes_proc (obfd)[0].i = 1;
004ae526 9750
ee065d83
PB
9751 return TRUE;
9752 }
9753
104d59d1
JM
9754 in_attr = elf_known_obj_attributes_proc (ibfd);
9755 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
9756 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9757 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
9758 {
8e79c3df 9759 /* Ignore mismatches if the object doesn't use floating point. */
ee065d83
PB
9760 if (out_attr[Tag_ABI_FP_number_model].i == 0)
9761 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
9762 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
9763 {
9764 _bfd_error_handler
3895f852 9765 (_("error: %B uses VFP register arguments, %B does not"),
ee065d83 9766 ibfd, obfd);
91e22acd 9767 result = FALSE;
ee065d83
PB
9768 }
9769 }
9770
104d59d1 9771 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
9772 {
9773 /* Merge this attribute with existing attributes. */
9774 switch (i)
9775 {
9776 case Tag_CPU_raw_name:
9777 case Tag_CPU_name:
91e22acd 9778 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
9779 break;
9780
9781 case Tag_ABI_optimization_goals:
9782 case Tag_ABI_FP_optimization_goals:
9783 /* Use the first value seen. */
9784 break;
9785
9786 case Tag_CPU_arch:
91e22acd
AS
9787 {
9788 int secondary_compat = -1, secondary_compat_out = -1;
9789 unsigned int saved_out_attr = out_attr[i].i;
9790 static const char *name_table[] = {
9791 /* These aren't real CPU names, but we can't guess
9792 that from the architecture version alone. */
9793 "Pre v4",
9794 "ARM v4",
9795 "ARM v4T",
9796 "ARM v5T",
9797 "ARM v5TE",
9798 "ARM v5TEJ",
9799 "ARM v6",
9800 "ARM v6KZ",
9801 "ARM v6T2",
9802 "ARM v6K",
9803 "ARM v7",
9804 "ARM v6-M",
9805 "ARM v6S-M"
9806 };
9807
9808 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9809 secondary_compat = get_secondary_compatible_arch (ibfd);
9810 secondary_compat_out = get_secondary_compatible_arch (obfd);
9811 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
9812 &secondary_compat_out,
9813 in_attr[i].i,
9814 secondary_compat);
9815 set_secondary_compatible_arch (obfd, secondary_compat_out);
9816
9817 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9818 if (out_attr[i].i == saved_out_attr)
9819 ; /* Leave the names alone. */
9820 else if (out_attr[i].i == in_attr[i].i)
9821 {
9822 /* The output architecture has been changed to match the
9823 input architecture. Use the input names. */
9824 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
9825 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
9826 : NULL;
9827 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
9828 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
9829 : NULL;
9830 }
9831 else
9832 {
9833 out_attr[Tag_CPU_name].s = NULL;
9834 out_attr[Tag_CPU_raw_name].s = NULL;
9835 }
9836
9837 /* If we still don't have a value for Tag_CPU_name,
9838 make one up now. Tag_CPU_raw_name remains blank. */
9839 if (out_attr[Tag_CPU_name].s == NULL
9840 && out_attr[i].i < ARRAY_SIZE (name_table))
9841 out_attr[Tag_CPU_name].s =
9842 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
9843 }
9844 break;
9845
ee065d83
PB
9846 case Tag_ARM_ISA_use:
9847 case Tag_THUMB_ISA_use:
ee065d83 9848 case Tag_WMMX_arch:
91e22acd
AS
9849 case Tag_Advanced_SIMD_arch:
9850 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 9851 case Tag_ABI_FP_rounding:
ee065d83
PB
9852 case Tag_ABI_FP_exceptions:
9853 case Tag_ABI_FP_user_exceptions:
9854 case Tag_ABI_FP_number_model:
91e22acd
AS
9855 case Tag_VFP_HP_extension:
9856 case Tag_CPU_unaligned_access:
9857 case Tag_T2EE_use:
9858 case Tag_Virtualization_use:
9859 case Tag_MPextension_use:
ee065d83
PB
9860 /* Use the largest value specified. */
9861 if (in_attr[i].i > out_attr[i].i)
9862 out_attr[i].i = in_attr[i].i;
9863 break;
9864
91e22acd
AS
9865 case Tag_ABI_align8_preserved:
9866 case Tag_ABI_PCS_RO_data:
9867 /* Use the smallest value specified. */
9868 if (in_attr[i].i < out_attr[i].i)
9869 out_attr[i].i = in_attr[i].i;
9870 break;
9871
9872 case Tag_ABI_align8_needed:
9873 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
9874 && (in_attr[Tag_ABI_align8_preserved].i == 0
9875 || out_attr[Tag_ABI_align8_preserved].i == 0))
ee065d83 9876 {
91e22acd
AS
9877 /* This error message should be enabled once all non-conformant
9878 binaries in the toolchain have had the attributes set
9879 properly.
ee065d83 9880 _bfd_error_handler
3895f852 9881 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
9882 obfd, ibfd);
9883 result = FALSE; */
ee065d83 9884 }
91e22acd
AS
9885 /* Fall through. */
9886 case Tag_ABI_FP_denormal:
9887 case Tag_ABI_PCS_GOT_use:
9888 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9889 value if greater than 2 (for future-proofing). */
9890 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
9891 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
9892 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
9893 out_attr[i].i = in_attr[i].i;
9894 break;
91e22acd
AS
9895
9896
9897 case Tag_CPU_arch_profile:
9898 if (out_attr[i].i != in_attr[i].i)
9899 {
9900 /* 0 will merge with anything.
9901 'A' and 'S' merge to 'A'.
9902 'R' and 'S' merge to 'R'.
9903 'M' and 'A|R|S' is an error. */
9904 if (out_attr[i].i == 0
9905 || (out_attr[i].i == 'S'
9906 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
9907 out_attr[i].i = in_attr[i].i;
9908 else if (in_attr[i].i == 0
9909 || (in_attr[i].i == 'S'
9910 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
9911 ; /* Do nothing. */
9912 else
9913 {
9914 _bfd_error_handler
3895f852 9915 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
9916 ibfd,
9917 in_attr[i].i ? in_attr[i].i : '0',
9918 out_attr[i].i ? out_attr[i].i : '0');
9919 result = FALSE;
9920 }
9921 }
9922 break;
b1cc4aeb 9923 case Tag_VFP_arch:
62f3b8c8
PB
9924 {
9925 static const struct
9926 {
9927 int ver;
9928 int regs;
9929 } vfp_versions[7] =
9930 {
9931 {0, 0},
9932 {1, 16},
9933 {2, 16},
9934 {3, 32},
9935 {3, 16},
9936 {4, 32},
9937 {4, 16}
9938 };
9939 int ver;
9940 int regs;
9941 int newval;
9942
9943 /* Values greater than 6 aren't defined, so just pick the
9944 biggest */
9945 if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
9946 {
9947 out_attr[i] = in_attr[i];
9948 break;
9949 }
9950 /* The output uses the superset of input features
9951 (ISA version) and registers. */
9952 ver = vfp_versions[in_attr[i].i].ver;
9953 if (ver < vfp_versions[out_attr[i].i].ver)
9954 ver = vfp_versions[out_attr[i].i].ver;
9955 regs = vfp_versions[in_attr[i].i].regs;
9956 if (regs < vfp_versions[out_attr[i].i].regs)
9957 regs = vfp_versions[out_attr[i].i].regs;
9958 /* This assumes all possible supersets are also a valid
9959 options. */
9960 for (newval = 6; newval > 0; newval--)
9961 {
9962 if (regs == vfp_versions[newval].regs
9963 && ver == vfp_versions[newval].ver)
9964 break;
9965 }
9966 out_attr[i].i = newval;
9967 }
b1cc4aeb 9968 break;
ee065d83
PB
9969 case Tag_PCS_config:
9970 if (out_attr[i].i == 0)
9971 out_attr[i].i = in_attr[i].i;
9972 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
9973 {
9974 /* It's sometimes ok to mix different configs, so this is only
9975 a warning. */
9976 _bfd_error_handler
9977 (_("Warning: %B: Conflicting platform configuration"), ibfd);
9978 }
9979 break;
9980 case Tag_ABI_PCS_R9_use:
004ae526
PB
9981 if (in_attr[i].i != out_attr[i].i
9982 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
9983 && in_attr[i].i != AEABI_R9_unused)
9984 {
9985 _bfd_error_handler
3895f852 9986 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 9987 result = FALSE;
ee065d83
PB
9988 }
9989 if (out_attr[i].i == AEABI_R9_unused)
9990 out_attr[i].i = in_attr[i].i;
9991 break;
9992 case Tag_ABI_PCS_RW_data:
9993 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
9994 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
9995 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
9996 {
9997 _bfd_error_handler
3895f852 9998 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 9999 ibfd);
91e22acd 10000 result = FALSE;
ee065d83
PB
10001 }
10002 /* Use the smallest value specified. */
10003 if (in_attr[i].i < out_attr[i].i)
10004 out_attr[i].i = in_attr[i].i;
10005 break;
ee065d83 10006 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
10007 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
10008 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
10009 {
10010 _bfd_error_handler
a9dc9481
JM
10011 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
10012 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 10013 }
a9dc9481 10014 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
10015 out_attr[i].i = in_attr[i].i;
10016 break;
ee065d83
PB
10017 case Tag_ABI_enum_size:
10018 if (in_attr[i].i != AEABI_enum_unused)
10019 {
10020 if (out_attr[i].i == AEABI_enum_unused
10021 || out_attr[i].i == AEABI_enum_forced_wide)
10022 {
10023 /* The existing object is compatible with anything.
10024 Use whatever requirements the new object has. */
10025 out_attr[i].i = in_attr[i].i;
10026 }
10027 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 10028 && out_attr[i].i != in_attr[i].i
0ffa91dd 10029 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 10030 {
91e22acd 10031 static const char *aeabi_enum_names[] =
bf21ed78 10032 { "", "variable-size", "32-bit", "" };
91e22acd
AS
10033 const char *in_name =
10034 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10035 ? aeabi_enum_names[in_attr[i].i]
10036 : "<unknown>";
10037 const char *out_name =
10038 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10039 ? aeabi_enum_names[out_attr[i].i]
10040 : "<unknown>";
ee065d83 10041 _bfd_error_handler
bf21ed78 10042 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 10043 ibfd, in_name, out_name);
ee065d83
PB
10044 }
10045 }
10046 break;
10047 case Tag_ABI_VFP_args:
10048 /* Aready done. */
10049 break;
10050 case Tag_ABI_WMMX_args:
10051 if (in_attr[i].i != out_attr[i].i)
10052 {
10053 _bfd_error_handler
3895f852 10054 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 10055 ibfd, obfd);
91e22acd 10056 result = FALSE;
ee065d83
PB
10057 }
10058 break;
7b86a9fa
AS
10059 case Tag_compatibility:
10060 /* Merged in target-independent code. */
10061 break;
91e22acd
AS
10062 case Tag_ABI_HardFP_use:
10063 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
10064 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
10065 || (in_attr[i].i == 2 && out_attr[i].i == 1))
10066 out_attr[i].i = 3;
10067 else if (in_attr[i].i > out_attr[i].i)
10068 out_attr[i].i = in_attr[i].i;
10069 break;
10070 case Tag_ABI_FP_16bit_format:
10071 if (in_attr[i].i != 0 && out_attr[i].i != 0)
10072 {
10073 if (in_attr[i].i != out_attr[i].i)
10074 {
10075 _bfd_error_handler
3895f852 10076 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
10077 ibfd, obfd);
10078 result = FALSE;
10079 }
10080 }
10081 if (in_attr[i].i != 0)
10082 out_attr[i].i = in_attr[i].i;
10083 break;
7b86a9fa 10084
91e22acd 10085 case Tag_nodefaults:
2d0bb761
AS
10086 /* This tag is set if it exists, but the value is unused (and is
10087 typically zero). We don't actually need to do anything here -
10088 the merge happens automatically when the type flags are merged
10089 below. */
91e22acd
AS
10090 break;
10091 case Tag_also_compatible_with:
10092 /* Already done in Tag_CPU_arch. */
10093 break;
10094 case Tag_conformance:
10095 /* Keep the attribute if it matches. Throw it away otherwise.
10096 No attribute means no claim to conform. */
10097 if (!in_attr[i].s || !out_attr[i].s
10098 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10099 out_attr[i].s = NULL;
10100 break;
3cfad14c 10101
91e22acd 10102 default:
3cfad14c 10103 {
91e22acd
AS
10104 bfd *err_bfd = NULL;
10105
10106 /* The "known_obj_attributes" table does contain some undefined
10107 attributes. Ensure that there are unused. */
10108 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
10109 err_bfd = obfd;
10110 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
10111 err_bfd = ibfd;
10112
10113 if (err_bfd != NULL)
10114 {
10115 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10116 if ((i & 127) < 64)
10117 {
10118 _bfd_error_handler
10119 (_("%B: Unknown mandatory EABI object attribute %d"),
10120 err_bfd, i);
10121 bfd_set_error (bfd_error_bad_value);
10122 result = FALSE;
10123 }
10124 else
10125 {
10126 _bfd_error_handler
10127 (_("Warning: %B: Unknown EABI object attribute %d"),
10128 err_bfd, i);
10129 }
10130 }
10131
10132 /* Only pass on attributes that match in both inputs. */
10133 if (in_attr[i].i != out_attr[i].i
10134 || in_attr[i].s != out_attr[i].s
10135 || (in_attr[i].s != NULL && out_attr[i].s != NULL
10136 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
10137 {
10138 out_attr[i].i = 0;
10139 out_attr[i].s = NULL;
10140 }
3cfad14c 10141 }
91e22acd
AS
10142 }
10143
10144 /* If out_attr was copied from in_attr then it won't have a type yet. */
10145 if (in_attr[i].type && !out_attr[i].type)
10146 out_attr[i].type = in_attr[i].type;
ee065d83
PB
10147 }
10148
104d59d1
JM
10149 /* Merge Tag_compatibility attributes and any common GNU ones. */
10150 _bfd_elf_merge_object_attributes (ibfd, obfd);
ee065d83 10151
104d59d1
JM
10152 /* Check for any attributes not known on ARM. */
10153 in_list = elf_other_obj_attributes_proc (ibfd);
91e22acd
AS
10154 out_listp = &elf_other_obj_attributes_proc (obfd);
10155 out_list = *out_listp;
8e79c3df 10156
91e22acd 10157 for (; in_list || out_list; )
ee065d83 10158 {
91e22acd
AS
10159 bfd *err_bfd = NULL;
10160 int err_tag = 0;
8e79c3df
CM
10161
10162 /* The tags for each list are in numerical order. */
10163 /* If the tags are equal, then merge. */
91e22acd 10164 if (out_list && (!in_list || in_list->tag > out_list->tag))
8e79c3df 10165 {
91e22acd
AS
10166 /* This attribute only exists in obfd. We can't merge, and we don't
10167 know what the tag means, so delete it. */
10168 err_bfd = obfd;
10169 err_tag = out_list->tag;
10170 *out_listp = out_list->next;
10171 out_list = *out_listp;
8e79c3df 10172 }
91e22acd 10173 else if (in_list && (!out_list || in_list->tag < out_list->tag))
8e79c3df 10174 {
91e22acd
AS
10175 /* This attribute only exists in ibfd. We can't merge, and we don't
10176 know what the tag means, so ignore it. */
10177 err_bfd = ibfd;
10178 err_tag = in_list->tag;
8e79c3df 10179 in_list = in_list->next;
eb111b1f 10180 }
91e22acd
AS
10181 else /* The tags are equal. */
10182 {
10183 /* As present, all attributes in the list are unknown, and
10184 therefore can't be merged meaningfully. */
10185 err_bfd = obfd;
10186 err_tag = out_list->tag;
10187
10188 /* Only pass on attributes that match in both inputs. */
10189 if (in_list->attr.i != out_list->attr.i
10190 || in_list->attr.s != out_list->attr.s
10191 || (in_list->attr.s && out_list->attr.s
10192 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
10193 {
10194 /* No match. Delete the attribute. */
10195 *out_listp = out_list->next;
10196 out_list = *out_listp;
10197 }
10198 else
10199 {
10200 /* Matched. Keep the attribute and move to the next. */
10201 out_list = out_list->next;
10202 in_list = in_list->next;
10203 }
10204 }
10205
10206 if (err_bfd)
10207 {
10208 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10209 if ((err_tag & 127) < 64)
10210 {
10211 _bfd_error_handler
10212 (_("%B: Unknown mandatory EABI object attribute %d"),
10213 err_bfd, err_tag);
10214 bfd_set_error (bfd_error_bad_value);
10215 result = FALSE;
10216 }
10217 else
10218 {
10219 _bfd_error_handler
10220 (_("Warning: %B: Unknown EABI object attribute %d"),
10221 err_bfd, err_tag);
10222 }
10223 }
ee065d83 10224 }
91e22acd 10225 return result;
252b5132
RH
10226}
10227
3a4a14e9
PB
10228
10229/* Return TRUE if the two EABI versions are incompatible. */
10230
10231static bfd_boolean
10232elf32_arm_versions_compatible (unsigned iver, unsigned over)
10233{
10234 /* v4 and v5 are the same spec before and after it was released,
10235 so allow mixing them. */
10236 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10237 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10238 return TRUE;
10239
10240 return (iver == over);
10241}
10242
252b5132
RH
10243/* Merge backend specific data from an object file to the output
10244 object file when linking. */
9b485d32 10245
b34976b6 10246static bfd_boolean
21d799b5 10247elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
252b5132 10248
9b485d32
NC
10249/* Display the flags field. */
10250
b34976b6 10251static bfd_boolean
57e8b36a 10252elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 10253{
fc830a83
NC
10254 FILE * file = (FILE *) ptr;
10255 unsigned long flags;
252b5132
RH
10256
10257 BFD_ASSERT (abfd != NULL && ptr != NULL);
10258
10259 /* Print normal ELF private data. */
10260 _bfd_elf_print_private_bfd_data (abfd, ptr);
10261
fc830a83 10262 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
10263 /* Ignore init flag - it may not be set, despite the flags field
10264 containing valid data. */
252b5132
RH
10265
10266 /* xgettext:c-format */
9b485d32 10267 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 10268
fc830a83
NC
10269 switch (EF_ARM_EABI_VERSION (flags))
10270 {
10271 case EF_ARM_EABI_UNKNOWN:
4cc11e76 10272 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
10273 official ARM ELF extended ABI. Hence they are only decoded if
10274 the EABI version is not set. */
fd2ec330 10275 if (flags & EF_ARM_INTERWORK)
9b485d32 10276 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 10277
fd2ec330 10278 if (flags & EF_ARM_APCS_26)
6c571f00 10279 fprintf (file, " [APCS-26]");
fc830a83 10280 else
6c571f00 10281 fprintf (file, " [APCS-32]");
9a5aca8c 10282
96a846ea
RE
10283 if (flags & EF_ARM_VFP_FLOAT)
10284 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
10285 else if (flags & EF_ARM_MAVERICK_FLOAT)
10286 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
10287 else
10288 fprintf (file, _(" [FPA float format]"));
10289
fd2ec330 10290 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 10291 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 10292
fd2ec330 10293 if (flags & EF_ARM_PIC)
9b485d32 10294 fprintf (file, _(" [position independent]"));
fc830a83 10295
fd2ec330 10296 if (flags & EF_ARM_NEW_ABI)
9b485d32 10297 fprintf (file, _(" [new ABI]"));
9a5aca8c 10298
fd2ec330 10299 if (flags & EF_ARM_OLD_ABI)
9b485d32 10300 fprintf (file, _(" [old ABI]"));
9a5aca8c 10301
fd2ec330 10302 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 10303 fprintf (file, _(" [software FP]"));
9a5aca8c 10304
96a846ea
RE
10305 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
10306 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
10307 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
10308 | EF_ARM_MAVERICK_FLOAT);
fc830a83 10309 break;
9a5aca8c 10310
fc830a83 10311 case EF_ARM_EABI_VER1:
9b485d32 10312 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 10313
fc830a83 10314 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 10315 fprintf (file, _(" [sorted symbol table]"));
fc830a83 10316 else
9b485d32 10317 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 10318
fc830a83
NC
10319 flags &= ~ EF_ARM_SYMSARESORTED;
10320 break;
9a5aca8c 10321
fd2ec330
PB
10322 case EF_ARM_EABI_VER2:
10323 fprintf (file, _(" [Version2 EABI]"));
10324
10325 if (flags & EF_ARM_SYMSARESORTED)
10326 fprintf (file, _(" [sorted symbol table]"));
10327 else
10328 fprintf (file, _(" [unsorted symbol table]"));
10329
10330 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
10331 fprintf (file, _(" [dynamic symbols use segment index]"));
10332
10333 if (flags & EF_ARM_MAPSYMSFIRST)
10334 fprintf (file, _(" [mapping symbols precede others]"));
10335
99e4ae17 10336 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
10337 | EF_ARM_MAPSYMSFIRST);
10338 break;
10339
d507cf36
PB
10340 case EF_ARM_EABI_VER3:
10341 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
10342 break;
10343
10344 case EF_ARM_EABI_VER4:
10345 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 10346 goto eabi;
d507cf36 10347
3a4a14e9
PB
10348 case EF_ARM_EABI_VER5:
10349 fprintf (file, _(" [Version5 EABI]"));
10350 eabi:
d507cf36
PB
10351 if (flags & EF_ARM_BE8)
10352 fprintf (file, _(" [BE8]"));
10353
10354 if (flags & EF_ARM_LE8)
10355 fprintf (file, _(" [LE8]"));
10356
10357 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
10358 break;
10359
fc830a83 10360 default:
9b485d32 10361 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
10362 break;
10363 }
252b5132 10364
fc830a83 10365 flags &= ~ EF_ARM_EABIMASK;
252b5132 10366
fc830a83 10367 if (flags & EF_ARM_RELEXEC)
9b485d32 10368 fprintf (file, _(" [relocatable executable]"));
252b5132 10369
fc830a83 10370 if (flags & EF_ARM_HASENTRY)
9b485d32 10371 fprintf (file, _(" [has entry point]"));
252b5132 10372
fc830a83
NC
10373 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
10374
10375 if (flags)
9b485d32 10376 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 10377
252b5132
RH
10378 fputc ('\n', file);
10379
b34976b6 10380 return TRUE;
252b5132
RH
10381}
10382
10383static int
57e8b36a 10384elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 10385{
2f0ca46a
NC
10386 switch (ELF_ST_TYPE (elf_sym->st_info))
10387 {
10388 case STT_ARM_TFUNC:
10389 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 10390
2f0ca46a
NC
10391 case STT_ARM_16BIT:
10392 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10393 This allows us to distinguish between data used by Thumb instructions
10394 and non-data (which is probably code) inside Thumb regions of an
10395 executable. */
1a0eb693 10396 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
10397 return ELF_ST_TYPE (elf_sym->st_info);
10398 break;
9a5aca8c 10399
ce855c42
NC
10400 default:
10401 break;
2f0ca46a
NC
10402 }
10403
10404 return type;
252b5132 10405}
f21f3fe0 10406
252b5132 10407static asection *
07adf181
AM
10408elf32_arm_gc_mark_hook (asection *sec,
10409 struct bfd_link_info *info,
10410 Elf_Internal_Rela *rel,
10411 struct elf_link_hash_entry *h,
10412 Elf_Internal_Sym *sym)
252b5132
RH
10413{
10414 if (h != NULL)
07adf181 10415 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
10416 {
10417 case R_ARM_GNU_VTINHERIT:
10418 case R_ARM_GNU_VTENTRY:
07adf181
AM
10419 return NULL;
10420 }
9ad5cbcf 10421
07adf181 10422 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
10423}
10424
780a67af
NC
10425/* Update the got entry reference counts for the section being removed. */
10426
b34976b6 10427static bfd_boolean
ba93b8ac
DJ
10428elf32_arm_gc_sweep_hook (bfd * abfd,
10429 struct bfd_link_info * info,
10430 asection * sec,
10431 const Elf_Internal_Rela * relocs)
252b5132 10432{
5e681ec4
PB
10433 Elf_Internal_Shdr *symtab_hdr;
10434 struct elf_link_hash_entry **sym_hashes;
10435 bfd_signed_vma *local_got_refcounts;
10436 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
10437 struct elf32_arm_link_hash_table * globals;
10438
7dda2462
TG
10439 if (info->relocatable)
10440 return TRUE;
10441
eb043451 10442 globals = elf32_arm_hash_table (info);
5e681ec4
PB
10443
10444 elf_section_data (sec)->local_dynrel = NULL;
10445
0ffa91dd 10446 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
10447 sym_hashes = elf_sym_hashes (abfd);
10448 local_got_refcounts = elf_local_got_refcounts (abfd);
10449
906e58ca 10450 check_use_blx (globals);
bd97cb95 10451
5e681ec4
PB
10452 relend = relocs + sec->reloc_count;
10453 for (rel = relocs; rel < relend; rel++)
eb043451 10454 {
3eb128b2
AM
10455 unsigned long r_symndx;
10456 struct elf_link_hash_entry *h = NULL;
eb043451 10457 int r_type;
5e681ec4 10458
3eb128b2
AM
10459 r_symndx = ELF32_R_SYM (rel->r_info);
10460 if (r_symndx >= symtab_hdr->sh_info)
10461 {
10462 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10463 while (h->root.type == bfd_link_hash_indirect
10464 || h->root.type == bfd_link_hash_warning)
10465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10466 }
10467
eb043451 10468 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 10469 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
10470 switch (r_type)
10471 {
10472 case R_ARM_GOT32:
eb043451 10473 case R_ARM_GOT_PREL:
ba93b8ac
DJ
10474 case R_ARM_TLS_GD32:
10475 case R_ARM_TLS_IE32:
3eb128b2 10476 if (h != NULL)
eb043451 10477 {
eb043451
PB
10478 if (h->got.refcount > 0)
10479 h->got.refcount -= 1;
10480 }
10481 else if (local_got_refcounts != NULL)
10482 {
10483 if (local_got_refcounts[r_symndx] > 0)
10484 local_got_refcounts[r_symndx] -= 1;
10485 }
10486 break;
10487
ba93b8ac
DJ
10488 case R_ARM_TLS_LDM32:
10489 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
10490 break;
10491
eb043451 10492 case R_ARM_ABS32:
bb224fc3 10493 case R_ARM_ABS32_NOI:
eb043451 10494 case R_ARM_REL32:
bb224fc3 10495 case R_ARM_REL32_NOI:
eb043451
PB
10496 case R_ARM_PC24:
10497 case R_ARM_PLT32:
5b5bb741
PB
10498 case R_ARM_CALL:
10499 case R_ARM_JUMP24:
eb043451 10500 case R_ARM_PREL31:
c19d1205 10501 case R_ARM_THM_CALL:
bd97cb95
DJ
10502 case R_ARM_THM_JUMP24:
10503 case R_ARM_THM_JUMP19:
b6895b4f
PB
10504 case R_ARM_MOVW_ABS_NC:
10505 case R_ARM_MOVT_ABS:
10506 case R_ARM_MOVW_PREL_NC:
10507 case R_ARM_MOVT_PREL:
10508 case R_ARM_THM_MOVW_ABS_NC:
10509 case R_ARM_THM_MOVT_ABS:
10510 case R_ARM_THM_MOVW_PREL_NC:
10511 case R_ARM_THM_MOVT_PREL:
b7693d02
DJ
10512 /* Should the interworking branches be here also? */
10513
3eb128b2 10514 if (h != NULL)
eb043451
PB
10515 {
10516 struct elf32_arm_link_hash_entry *eh;
10517 struct elf32_arm_relocs_copied **pp;
10518 struct elf32_arm_relocs_copied *p;
5e681ec4 10519
b7693d02 10520 eh = (struct elf32_arm_link_hash_entry *) h;
5e681ec4 10521
eb043451 10522 if (h->plt.refcount > 0)
b7693d02
DJ
10523 {
10524 h->plt.refcount -= 1;
bd97cb95
DJ
10525 if (r_type == R_ARM_THM_CALL)
10526 eh->plt_maybe_thumb_refcount--;
10527
10528 if (r_type == R_ARM_THM_JUMP24
10529 || r_type == R_ARM_THM_JUMP19)
b7693d02
DJ
10530 eh->plt_thumb_refcount--;
10531 }
5e681ec4 10532
eb043451 10533 if (r_type == R_ARM_ABS32
bb224fc3
MS
10534 || r_type == R_ARM_REL32
10535 || r_type == R_ARM_ABS32_NOI
10536 || r_type == R_ARM_REL32_NOI)
eb043451 10537 {
eb043451
PB
10538 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
10539 pp = &p->next)
10540 if (p->section == sec)
10541 {
10542 p->count -= 1;
bb224fc3
MS
10543 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
10544 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
ba93b8ac 10545 p->pc_count -= 1;
eb043451
PB
10546 if (p->count == 0)
10547 *pp = p->next;
10548 break;
10549 }
10550 }
10551 }
10552 break;
5e681ec4 10553
eb043451
PB
10554 default:
10555 break;
10556 }
10557 }
5e681ec4 10558
b34976b6 10559 return TRUE;
252b5132
RH
10560}
10561
780a67af
NC
10562/* Look through the relocs for a section during the first phase. */
10563
b34976b6 10564static bfd_boolean
57e8b36a
NC
10565elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
10566 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 10567{
b34976b6
AM
10568 Elf_Internal_Shdr *symtab_hdr;
10569 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
10570 const Elf_Internal_Rela *rel;
10571 const Elf_Internal_Rela *rel_end;
10572 bfd *dynobj;
5e681ec4 10573 asection *sreloc;
b34976b6 10574 bfd_vma *local_got_offsets;
5e681ec4 10575 struct elf32_arm_link_hash_table *htab;
39623e12 10576 bfd_boolean needs_plt;
ce98a316 10577 unsigned long nsyms;
9a5aca8c 10578
1049f94e 10579 if (info->relocatable)
b34976b6 10580 return TRUE;
9a5aca8c 10581
0ffa91dd
NC
10582 BFD_ASSERT (is_arm_elf (abfd));
10583
5e681ec4
PB
10584 htab = elf32_arm_hash_table (info);
10585 sreloc = NULL;
9a5aca8c 10586
67687978
PB
10587 /* Create dynamic sections for relocatable executables so that we can
10588 copy relocations. */
10589 if (htab->root.is_relocatable_executable
10590 && ! htab->root.dynamic_sections_created)
10591 {
10592 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
10593 return FALSE;
10594 }
10595
252b5132
RH
10596 dynobj = elf_hash_table (info)->dynobj;
10597 local_got_offsets = elf_local_got_offsets (abfd);
f21f3fe0 10598
0ffa91dd 10599 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 10600 sym_hashes = elf_sym_hashes (abfd);
ce98a316
NC
10601 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
10602
252b5132
RH
10603 rel_end = relocs + sec->reloc_count;
10604 for (rel = relocs; rel < rel_end; rel++)
10605 {
10606 struct elf_link_hash_entry *h;
b7693d02 10607 struct elf32_arm_link_hash_entry *eh;
252b5132 10608 unsigned long r_symndx;
eb043451 10609 int r_type;
9a5aca8c 10610
252b5132 10611 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 10612 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 10613 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 10614
ce98a316
NC
10615 if (r_symndx >= nsyms
10616 /* PR 9934: It is possible to have relocations that do not
10617 refer to symbols, thus it is also possible to have an
10618 object file containing relocations but no symbol table. */
10619 && (r_symndx > 0 || nsyms > 0))
ba93b8ac
DJ
10620 {
10621 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
ce98a316 10622 r_symndx);
ba93b8ac
DJ
10623 return FALSE;
10624 }
10625
ce98a316 10626 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
252b5132
RH
10627 h = NULL;
10628 else
973a3492
L
10629 {
10630 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10631 while (h->root.type == bfd_link_hash_indirect
10632 || h->root.type == bfd_link_hash_warning)
10633 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10634 }
9a5aca8c 10635
b7693d02
DJ
10636 eh = (struct elf32_arm_link_hash_entry *) h;
10637
eb043451 10638 switch (r_type)
252b5132 10639 {
5e681ec4 10640 case R_ARM_GOT32:
eb043451 10641 case R_ARM_GOT_PREL:
ba93b8ac
DJ
10642 case R_ARM_TLS_GD32:
10643 case R_ARM_TLS_IE32:
5e681ec4 10644 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
10645 {
10646 int tls_type, old_tls_type;
5e681ec4 10647
ba93b8ac
DJ
10648 switch (r_type)
10649 {
10650 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
10651 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
10652 default: tls_type = GOT_NORMAL; break;
10653 }
252b5132 10654
ba93b8ac
DJ
10655 if (h != NULL)
10656 {
10657 h->got.refcount++;
10658 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
10659 }
10660 else
10661 {
10662 bfd_signed_vma *local_got_refcounts;
10663
10664 /* This is a global offset table entry for a local symbol. */
10665 local_got_refcounts = elf_local_got_refcounts (abfd);
10666 if (local_got_refcounts == NULL)
10667 {
10668 bfd_size_type size;
906e58ca 10669
ba93b8ac 10670 size = symtab_hdr->sh_info;
906e58ca 10671 size *= (sizeof (bfd_signed_vma) + sizeof (char));
21d799b5
NC
10672 local_got_refcounts = (bfd_signed_vma *)
10673 bfd_zalloc (abfd, size);
ba93b8ac
DJ
10674 if (local_got_refcounts == NULL)
10675 return FALSE;
10676 elf_local_got_refcounts (abfd) = local_got_refcounts;
10677 elf32_arm_local_got_tls_type (abfd)
10678 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
10679 }
10680 local_got_refcounts[r_symndx] += 1;
10681 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10682 }
10683
10684 /* We will already have issued an error message if there is a
10685 TLS / non-TLS mismatch, based on the symbol type. We don't
10686 support any linker relaxations. So just combine any TLS
10687 types needed. */
10688 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10689 && tls_type != GOT_NORMAL)
10690 tls_type |= old_tls_type;
10691
10692 if (old_tls_type != tls_type)
10693 {
10694 if (h != NULL)
10695 elf32_arm_hash_entry (h)->tls_type = tls_type;
10696 else
10697 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10698 }
10699 }
8029a119 10700 /* Fall through. */
ba93b8ac
DJ
10701
10702 case R_ARM_TLS_LDM32:
10703 if (r_type == R_ARM_TLS_LDM32)
10704 htab->tls_ldm_got.refcount++;
8029a119 10705 /* Fall through. */
252b5132 10706
c19d1205 10707 case R_ARM_GOTOFF32:
5e681ec4
PB
10708 case R_ARM_GOTPC:
10709 if (htab->sgot == NULL)
10710 {
10711 if (htab->root.dynobj == NULL)
10712 htab->root.dynobj = abfd;
10713 if (!create_got_section (htab->root.dynobj, info))
10714 return FALSE;
10715 }
252b5132
RH
10716 break;
10717
00a97672
RS
10718 case R_ARM_ABS12:
10719 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10720 ldr __GOTT_INDEX__ offsets. */
10721 if (!htab->vxworks_p)
10722 break;
8029a119 10723 /* Fall through. */
00a97672 10724
252b5132 10725 case R_ARM_PC24:
7359ea65 10726 case R_ARM_PLT32:
5b5bb741
PB
10727 case R_ARM_CALL:
10728 case R_ARM_JUMP24:
eb043451 10729 case R_ARM_PREL31:
c19d1205 10730 case R_ARM_THM_CALL:
bd97cb95
DJ
10731 case R_ARM_THM_JUMP24:
10732 case R_ARM_THM_JUMP19:
39623e12
PB
10733 needs_plt = 1;
10734 goto normal_reloc;
10735
96c23d59
JM
10736 case R_ARM_MOVW_ABS_NC:
10737 case R_ARM_MOVT_ABS:
10738 case R_ARM_THM_MOVW_ABS_NC:
10739 case R_ARM_THM_MOVT_ABS:
10740 if (info->shared)
10741 {
10742 (*_bfd_error_handler)
10743 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10744 abfd, elf32_arm_howto_table_1[r_type].name,
10745 (h) ? h->root.root.string : "a local symbol");
10746 bfd_set_error (bfd_error_bad_value);
10747 return FALSE;
10748 }
10749
10750 /* Fall through. */
39623e12
PB
10751 case R_ARM_ABS32:
10752 case R_ARM_ABS32_NOI:
10753 case R_ARM_REL32:
10754 case R_ARM_REL32_NOI:
b6895b4f
PB
10755 case R_ARM_MOVW_PREL_NC:
10756 case R_ARM_MOVT_PREL:
b6895b4f
PB
10757 case R_ARM_THM_MOVW_PREL_NC:
10758 case R_ARM_THM_MOVT_PREL:
39623e12
PB
10759 needs_plt = 0;
10760 normal_reloc:
10761
b7693d02 10762 /* Should the interworking branches be listed here? */
7359ea65 10763 if (h != NULL)
5e681ec4
PB
10764 {
10765 /* If this reloc is in a read-only section, we might
10766 need a copy reloc. We can't check reliably at this
10767 stage whether the section is read-only, as input
10768 sections have not yet been mapped to output sections.
10769 Tentatively set the flag for now, and correct in
10770 adjust_dynamic_symbol. */
7359ea65 10771 if (!info->shared)
f5385ebf 10772 h->non_got_ref = 1;
7359ea65 10773
5e681ec4 10774 /* We may need a .plt entry if the function this reloc
c84cd8ee
DJ
10775 refers to is in a different object. We can't tell for
10776 sure yet, because something later might force the
10777 symbol local. */
39623e12 10778 if (needs_plt)
f5385ebf 10779 h->needs_plt = 1;
4f199be3
DJ
10780
10781 /* If we create a PLT entry, this relocation will reference
10782 it, even if it's an ABS32 relocation. */
10783 h->plt.refcount += 1;
b7693d02 10784
bd97cb95
DJ
10785 /* It's too early to use htab->use_blx here, so we have to
10786 record possible blx references separately from
10787 relocs that definitely need a thumb stub. */
10788
c19d1205 10789 if (r_type == R_ARM_THM_CALL)
bd97cb95
DJ
10790 eh->plt_maybe_thumb_refcount += 1;
10791
10792 if (r_type == R_ARM_THM_JUMP24
10793 || r_type == R_ARM_THM_JUMP19)
b7693d02 10794 eh->plt_thumb_refcount += 1;
5e681ec4
PB
10795 }
10796
67687978
PB
10797 /* If we are creating a shared library or relocatable executable,
10798 and this is a reloc against a global symbol, or a non PC
10799 relative reloc against a local symbol, then we need to copy
10800 the reloc into the shared library. However, if we are linking
10801 with -Bsymbolic, we do not need to copy a reloc against a
252b5132
RH
10802 global symbol which is defined in an object we are
10803 including in the link (i.e., DEF_REGULAR is set). At
10804 this point we have not seen all the input files, so it is
10805 possible that DEF_REGULAR is not set now but will be set
10806 later (it is never cleared). We account for that
10807 possibility below by storing information in the
5e681ec4 10808 relocs_copied field of the hash table entry. */
67687978 10809 if ((info->shared || htab->root.is_relocatable_executable)
5e681ec4 10810 && (sec->flags & SEC_ALLOC) != 0
bb224fc3 10811 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
71a976dd
DJ
10812 || (h != NULL && ! h->needs_plt
10813 && (! info->symbolic || ! h->def_regular))))
252b5132 10814 {
5e681ec4
PB
10815 struct elf32_arm_relocs_copied *p, **head;
10816
252b5132
RH
10817 /* When creating a shared object, we must copy these
10818 reloc types into the output file. We create a reloc
10819 section in dynobj and make room for this reloc. */
83bac4b0 10820 if (sreloc == NULL)
252b5132 10821 {
83bac4b0
NC
10822 sreloc = _bfd_elf_make_dynamic_reloc_section
10823 (sec, dynobj, 2, abfd, ! htab->use_rel);
252b5132 10824
83bac4b0 10825 if (sreloc == NULL)
b34976b6 10826 return FALSE;
252b5132 10827
83bac4b0 10828 /* BPABI objects never have dynamic relocations mapped. */
a89e6478 10829 if (htab->symbian_p)
252b5132 10830 {
83bac4b0 10831 flagword flags;
5e681ec4 10832
83bac4b0 10833 flags = bfd_get_section_flags (dynobj, sreloc);
a89e6478 10834 flags &= ~(SEC_LOAD | SEC_ALLOC);
83bac4b0
NC
10835 bfd_set_section_flags (dynobj, sreloc, flags);
10836 }
252b5132
RH
10837 }
10838
5e681ec4
PB
10839 /* If this is a global symbol, we count the number of
10840 relocations we need for this symbol. */
10841 if (h != NULL)
252b5132 10842 {
5e681ec4
PB
10843 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
10844 }
10845 else
10846 {
10847 /* Track dynamic relocs needed for local syms too.
10848 We really need local syms available to do this
10849 easily. Oh well. */
5e681ec4 10850 asection *s;
6edfbbad 10851 void *vpp;
87d72d41 10852 Elf_Internal_Sym *isym;
6edfbbad 10853
87d72d41
AM
10854 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
10855 abfd, r_symndx);
10856 if (isym == NULL)
5e681ec4 10857 return FALSE;
57e8b36a 10858
87d72d41
AM
10859 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
10860 if (s == NULL)
10861 s = sec;
10862
6edfbbad
DJ
10863 vpp = &elf_section_data (s)->local_dynrel;
10864 head = (struct elf32_arm_relocs_copied **) vpp;
5e681ec4 10865 }
57e8b36a 10866
5e681ec4
PB
10867 p = *head;
10868 if (p == NULL || p->section != sec)
10869 {
10870 bfd_size_type amt = sizeof *p;
57e8b36a 10871
21d799b5
NC
10872 p = (struct elf32_arm_relocs_copied *)
10873 bfd_alloc (htab->root.dynobj, amt);
252b5132 10874 if (p == NULL)
5e681ec4
PB
10875 return FALSE;
10876 p->next = *head;
10877 *head = p;
10878 p->section = sec;
10879 p->count = 0;
ba93b8ac 10880 p->pc_count = 0;
252b5132 10881 }
57e8b36a 10882
bb224fc3 10883 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
ba93b8ac 10884 p->pc_count += 1;
71a976dd 10885 p->count += 1;
252b5132
RH
10886 }
10887 break;
10888
10889 /* This relocation describes the C++ object vtable hierarchy.
10890 Reconstruct it for later use during GC. */
10891 case R_ARM_GNU_VTINHERIT:
c152c796 10892 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 10893 return FALSE;
252b5132 10894 break;
9a5aca8c 10895
252b5132
RH
10896 /* This relocation describes which C++ vtable entries are actually
10897 used. Record for later use during GC. */
10898 case R_ARM_GNU_VTENTRY:
d17e0c6e
JB
10899 BFD_ASSERT (h != NULL);
10900 if (h != NULL
10901 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 10902 return FALSE;
252b5132
RH
10903 break;
10904 }
10905 }
f21f3fe0 10906
b34976b6 10907 return TRUE;
252b5132
RH
10908}
10909
6a5bb875
PB
10910/* Unwinding tables are not referenced directly. This pass marks them as
10911 required if the corresponding code section is marked. */
10912
10913static bfd_boolean
906e58ca
NC
10914elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
10915 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
10916{
10917 bfd *sub;
10918 Elf_Internal_Shdr **elf_shdrp;
10919 bfd_boolean again;
10920
10921 /* Marking EH data may cause additional code sections to be marked,
10922 requiring multiple passes. */
10923 again = TRUE;
10924 while (again)
10925 {
10926 again = FALSE;
10927 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10928 {
10929 asection *o;
10930
0ffa91dd 10931 if (! is_arm_elf (sub))
6a5bb875
PB
10932 continue;
10933
10934 elf_shdrp = elf_elfsections (sub);
10935 for (o = sub->sections; o != NULL; o = o->next)
10936 {
10937 Elf_Internal_Shdr *hdr;
0ffa91dd 10938
6a5bb875 10939 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
10940 if (hdr->sh_type == SHT_ARM_EXIDX
10941 && hdr->sh_link
10942 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
10943 && !o->gc_mark
10944 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
10945 {
10946 again = TRUE;
10947 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
10948 return FALSE;
10949 }
10950 }
10951 }
10952 }
10953
10954 return TRUE;
10955}
10956
3c9458e9
NC
10957/* Treat mapping symbols as special target symbols. */
10958
10959static bfd_boolean
10960elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
10961{
b0796911
PB
10962 return bfd_is_arm_special_symbol_name (sym->name,
10963 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
10964}
10965
0367ecfb
NC
10966/* This is a copy of elf_find_function() from elf.c except that
10967 ARM mapping symbols are ignored when looking for function names
10968 and STT_ARM_TFUNC is considered to a function type. */
252b5132 10969
0367ecfb
NC
10970static bfd_boolean
10971arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
10972 asection * section,
10973 asymbol ** symbols,
10974 bfd_vma offset,
10975 const char ** filename_ptr,
10976 const char ** functionname_ptr)
10977{
10978 const char * filename = NULL;
10979 asymbol * func = NULL;
10980 bfd_vma low_func = 0;
10981 asymbol ** p;
252b5132
RH
10982
10983 for (p = symbols; *p != NULL; p++)
10984 {
10985 elf_symbol_type *q;
10986
10987 q = (elf_symbol_type *) *p;
10988
252b5132
RH
10989 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
10990 {
10991 default:
10992 break;
10993 case STT_FILE:
10994 filename = bfd_asymbol_name (&q->symbol);
10995 break;
252b5132
RH
10996 case STT_FUNC:
10997 case STT_ARM_TFUNC:
9d2da7ca 10998 case STT_NOTYPE:
b0796911 10999 /* Skip mapping symbols. */
0367ecfb 11000 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
11001 && bfd_is_arm_special_symbol_name (q->symbol.name,
11002 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
11003 continue;
11004 /* Fall through. */
6b40fcba 11005 if (bfd_get_section (&q->symbol) == section
252b5132
RH
11006 && q->symbol.value >= low_func
11007 && q->symbol.value <= offset)
11008 {
11009 func = (asymbol *) q;
11010 low_func = q->symbol.value;
11011 }
11012 break;
11013 }
11014 }
11015
11016 if (func == NULL)
b34976b6 11017 return FALSE;
252b5132 11018
0367ecfb
NC
11019 if (filename_ptr)
11020 *filename_ptr = filename;
11021 if (functionname_ptr)
11022 *functionname_ptr = bfd_asymbol_name (func);
11023
11024 return TRUE;
906e58ca 11025}
0367ecfb
NC
11026
11027
11028/* Find the nearest line to a particular section and offset, for error
11029 reporting. This code is a duplicate of the code in elf.c, except
11030 that it uses arm_elf_find_function. */
11031
11032static bfd_boolean
11033elf32_arm_find_nearest_line (bfd * abfd,
11034 asection * section,
11035 asymbol ** symbols,
11036 bfd_vma offset,
11037 const char ** filename_ptr,
11038 const char ** functionname_ptr,
11039 unsigned int * line_ptr)
11040{
11041 bfd_boolean found = FALSE;
11042
11043 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11044
11045 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11046 filename_ptr, functionname_ptr,
11047 line_ptr, 0,
11048 & elf_tdata (abfd)->dwarf2_find_line_info))
11049 {
11050 if (!*functionname_ptr)
11051 arm_elf_find_function (abfd, section, symbols, offset,
11052 *filename_ptr ? NULL : filename_ptr,
11053 functionname_ptr);
f21f3fe0 11054
0367ecfb
NC
11055 return TRUE;
11056 }
11057
11058 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11059 & found, filename_ptr,
11060 functionname_ptr, line_ptr,
11061 & elf_tdata (abfd)->line_info))
11062 return FALSE;
11063
11064 if (found && (*functionname_ptr || *line_ptr))
11065 return TRUE;
11066
11067 if (symbols == NULL)
11068 return FALSE;
11069
11070 if (! arm_elf_find_function (abfd, section, symbols, offset,
11071 filename_ptr, functionname_ptr))
11072 return FALSE;
11073
11074 *line_ptr = 0;
b34976b6 11075 return TRUE;
252b5132
RH
11076}
11077
4ab527b0
FF
11078static bfd_boolean
11079elf32_arm_find_inliner_info (bfd * abfd,
11080 const char ** filename_ptr,
11081 const char ** functionname_ptr,
11082 unsigned int * line_ptr)
11083{
11084 bfd_boolean found;
11085 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11086 functionname_ptr, line_ptr,
11087 & elf_tdata (abfd)->dwarf2_find_line_info);
11088 return found;
11089}
11090
252b5132
RH
11091/* Adjust a symbol defined by a dynamic object and referenced by a
11092 regular object. The current definition is in some section of the
11093 dynamic object, but we're not including those sections. We have to
11094 change the definition to something the rest of the link can
11095 understand. */
11096
b34976b6 11097static bfd_boolean
57e8b36a
NC
11098elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11099 struct elf_link_hash_entry * h)
252b5132
RH
11100{
11101 bfd * dynobj;
11102 asection * s;
b7693d02 11103 struct elf32_arm_link_hash_entry * eh;
67687978 11104 struct elf32_arm_link_hash_table *globals;
252b5132 11105
67687978 11106 globals = elf32_arm_hash_table (info);
252b5132
RH
11107 dynobj = elf_hash_table (info)->dynobj;
11108
11109 /* Make sure we know what is going on here. */
11110 BFD_ASSERT (dynobj != NULL
f5385ebf 11111 && (h->needs_plt
f6e332e6 11112 || h->u.weakdef != NULL
f5385ebf
AM
11113 || (h->def_dynamic
11114 && h->ref_regular
11115 && !h->def_regular)));
252b5132 11116
b7693d02
DJ
11117 eh = (struct elf32_arm_link_hash_entry *) h;
11118
252b5132
RH
11119 /* If this is a function, put it in the procedure linkage table. We
11120 will fill in the contents of the procedure linkage table later,
11121 when we know the address of the .got section. */
0f88be7a 11122 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
f5385ebf 11123 || h->needs_plt)
252b5132 11124 {
5e681ec4
PB
11125 if (h->plt.refcount <= 0
11126 || SYMBOL_CALLS_LOCAL (info, h)
11127 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11128 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
11129 {
11130 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
11131 file, but the symbol was never referred to by a dynamic
11132 object, or if all references were garbage collected. In
11133 such a case, we don't actually need to build a procedure
11134 linkage table, and we can just do a PC24 reloc instead. */
11135 h->plt.offset = (bfd_vma) -1;
b7693d02 11136 eh->plt_thumb_refcount = 0;
bd97cb95 11137 eh->plt_maybe_thumb_refcount = 0;
f5385ebf 11138 h->needs_plt = 0;
252b5132
RH
11139 }
11140
b34976b6 11141 return TRUE;
252b5132 11142 }
5e681ec4 11143 else
b7693d02
DJ
11144 {
11145 /* It's possible that we incorrectly decided a .plt reloc was
11146 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11147 in check_relocs. We can't decide accurately between function
11148 and non-function syms in check-relocs; Objects loaded later in
11149 the link may change h->type. So fix it now. */
11150 h->plt.offset = (bfd_vma) -1;
11151 eh->plt_thumb_refcount = 0;
bd97cb95 11152 eh->plt_maybe_thumb_refcount = 0;
b7693d02 11153 }
252b5132
RH
11154
11155 /* If this is a weak symbol, and there is a real definition, the
11156 processor independent code will have arranged for us to see the
11157 real definition first, and we can just use the same value. */
f6e332e6 11158 if (h->u.weakdef != NULL)
252b5132 11159 {
f6e332e6
AM
11160 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11161 || h->u.weakdef->root.type == bfd_link_hash_defweak);
11162 h->root.u.def.section = h->u.weakdef->root.u.def.section;
11163 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 11164 return TRUE;
252b5132
RH
11165 }
11166
ba93b8ac
DJ
11167 /* If there are no non-GOT references, we do not need a copy
11168 relocation. */
11169 if (!h->non_got_ref)
11170 return TRUE;
11171
252b5132
RH
11172 /* This is a reference to a symbol defined by a dynamic object which
11173 is not a function. */
11174
11175 /* If we are creating a shared library, we must presume that the
11176 only references to the symbol are via the global offset table.
11177 For such cases we need not do anything here; the relocations will
67687978
PB
11178 be handled correctly by relocate_section. Relocatable executables
11179 can reference data in shared objects directly, so we don't need to
11180 do anything here. */
11181 if (info->shared || globals->root.is_relocatable_executable)
b34976b6 11182 return TRUE;
252b5132 11183
909272ee
AM
11184 if (h->size == 0)
11185 {
11186 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11187 h->root.root.string);
11188 return TRUE;
11189 }
11190
252b5132
RH
11191 /* We must allocate the symbol in our .dynbss section, which will
11192 become part of the .bss section of the executable. There will be
11193 an entry for this symbol in the .dynsym section. The dynamic
11194 object will contain position independent code, so all references
11195 from the dynamic object to this symbol will go through the global
11196 offset table. The dynamic linker will use the .dynsym entry to
11197 determine the address it must put in the global offset table, so
11198 both the dynamic object and the regular object will refer to the
11199 same memory location for the variable. */
252b5132
RH
11200 s = bfd_get_section_by_name (dynobj, ".dynbss");
11201 BFD_ASSERT (s != NULL);
11202
11203 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11204 copy the initial value out of the dynamic object and into the
11205 runtime process image. We need to remember the offset into the
00a97672 11206 .rel(a).bss section we are going to use. */
252b5132
RH
11207 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11208 {
11209 asection *srel;
11210
00a97672 11211 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
252b5132 11212 BFD_ASSERT (srel != NULL);
00a97672 11213 srel->size += RELOC_SIZE (globals);
f5385ebf 11214 h->needs_copy = 1;
252b5132
RH
11215 }
11216
027297b7 11217 return _bfd_elf_adjust_dynamic_copy (h, s);
252b5132
RH
11218}
11219
5e681ec4
PB
11220/* Allocate space in .plt, .got and associated reloc sections for
11221 dynamic relocs. */
11222
11223static bfd_boolean
57e8b36a 11224allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
11225{
11226 struct bfd_link_info *info;
11227 struct elf32_arm_link_hash_table *htab;
11228 struct elf32_arm_link_hash_entry *eh;
11229 struct elf32_arm_relocs_copied *p;
bd97cb95 11230 bfd_signed_vma thumb_refs;
5e681ec4 11231
b7693d02
DJ
11232 eh = (struct elf32_arm_link_hash_entry *) h;
11233
5e681ec4
PB
11234 if (h->root.type == bfd_link_hash_indirect)
11235 return TRUE;
11236
11237 if (h->root.type == bfd_link_hash_warning)
11238 /* When warning symbols are created, they **replace** the "real"
11239 entry in the hash table, thus we never get to see the real
11240 symbol in a hash traversal. So look at it now. */
11241 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11242
11243 info = (struct bfd_link_info *) inf;
11244 htab = elf32_arm_hash_table (info);
11245
11246 if (htab->root.dynamic_sections_created
11247 && h->plt.refcount > 0)
11248 {
11249 /* Make sure this symbol is output as a dynamic symbol.
11250 Undefined weak syms won't yet be marked as dynamic. */
11251 if (h->dynindx == -1
f5385ebf 11252 && !h->forced_local)
5e681ec4 11253 {
c152c796 11254 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
11255 return FALSE;
11256 }
11257
11258 if (info->shared
7359ea65 11259 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4
PB
11260 {
11261 asection *s = htab->splt;
11262
11263 /* If this is the first .plt entry, make room for the special
11264 first entry. */
eea6121a 11265 if (s->size == 0)
e5a52504 11266 s->size += htab->plt_header_size;
5e681ec4 11267
eea6121a 11268 h->plt.offset = s->size;
5e681ec4 11269
b7693d02
DJ
11270 /* If we will insert a Thumb trampoline before this PLT, leave room
11271 for it. */
bd97cb95
DJ
11272 thumb_refs = eh->plt_thumb_refcount;
11273 if (!htab->use_blx)
11274 thumb_refs += eh->plt_maybe_thumb_refcount;
11275
11276 if (thumb_refs > 0)
b7693d02
DJ
11277 {
11278 h->plt.offset += PLT_THUMB_STUB_SIZE;
11279 s->size += PLT_THUMB_STUB_SIZE;
11280 }
11281
5e681ec4
PB
11282 /* If this symbol is not defined in a regular file, and we are
11283 not generating a shared library, then set the symbol to this
11284 location in the .plt. This is required to make function
11285 pointers compare as equal between the normal executable and
11286 the shared library. */
11287 if (! info->shared
f5385ebf 11288 && !h->def_regular)
5e681ec4
PB
11289 {
11290 h->root.u.def.section = s;
11291 h->root.u.def.value = h->plt.offset;
5e681ec4 11292
67d74e43
DJ
11293 /* Make sure the function is not marked as Thumb, in case
11294 it is the target of an ABS32 relocation, which will
11295 point to the PLT entry. */
11296 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
11297 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11298 }
022f8312 11299
5e681ec4 11300 /* Make room for this entry. */
e5a52504 11301 s->size += htab->plt_entry_size;
5e681ec4 11302
e5a52504 11303 if (!htab->symbian_p)
b7693d02
DJ
11304 {
11305 /* We also need to make an entry in the .got.plt section, which
11306 will be placed in the .got section by the linker script. */
11307 eh->plt_got_offset = htab->sgotplt->size;
11308 htab->sgotplt->size += 4;
11309 }
5e681ec4 11310
00a97672
RS
11311 /* We also need to make an entry in the .rel(a).plt section. */
11312 htab->srelplt->size += RELOC_SIZE (htab);
11313
11314 /* VxWorks executables have a second set of relocations for
11315 each PLT entry. They go in a separate relocation section,
11316 which is processed by the kernel loader. */
11317 if (htab->vxworks_p && !info->shared)
11318 {
11319 /* There is a relocation for the initial PLT entry:
11320 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11321 if (h->plt.offset == htab->plt_header_size)
11322 htab->srelplt2->size += RELOC_SIZE (htab);
11323
11324 /* There are two extra relocations for each subsequent
11325 PLT entry: an R_ARM_32 relocation for the GOT entry,
11326 and an R_ARM_32 relocation for the PLT entry. */
11327 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
11328 }
5e681ec4
PB
11329 }
11330 else
11331 {
11332 h->plt.offset = (bfd_vma) -1;
f5385ebf 11333 h->needs_plt = 0;
5e681ec4
PB
11334 }
11335 }
11336 else
11337 {
11338 h->plt.offset = (bfd_vma) -1;
f5385ebf 11339 h->needs_plt = 0;
5e681ec4
PB
11340 }
11341
11342 if (h->got.refcount > 0)
11343 {
11344 asection *s;
11345 bfd_boolean dyn;
ba93b8ac
DJ
11346 int tls_type = elf32_arm_hash_entry (h)->tls_type;
11347 int indx;
5e681ec4
PB
11348
11349 /* Make sure this symbol is output as a dynamic symbol.
11350 Undefined weak syms won't yet be marked as dynamic. */
11351 if (h->dynindx == -1
f5385ebf 11352 && !h->forced_local)
5e681ec4 11353 {
c152c796 11354 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
11355 return FALSE;
11356 }
11357
e5a52504
MM
11358 if (!htab->symbian_p)
11359 {
11360 s = htab->sgot;
11361 h->got.offset = s->size;
ba93b8ac
DJ
11362
11363 if (tls_type == GOT_UNKNOWN)
11364 abort ();
11365
11366 if (tls_type == GOT_NORMAL)
11367 /* Non-TLS symbols need one GOT slot. */
11368 s->size += 4;
11369 else
11370 {
11371 if (tls_type & GOT_TLS_GD)
11372 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11373 s->size += 8;
11374 if (tls_type & GOT_TLS_IE)
11375 /* R_ARM_TLS_IE32 needs one GOT slot. */
11376 s->size += 4;
11377 }
11378
e5a52504 11379 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
11380
11381 indx = 0;
11382 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
11383 && (!info->shared
11384 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11385 indx = h->dynindx;
11386
11387 if (tls_type != GOT_NORMAL
11388 && (info->shared || indx != 0)
11389 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11390 || h->root.type != bfd_link_hash_undefweak))
11391 {
11392 if (tls_type & GOT_TLS_IE)
00a97672 11393 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11394
11395 if (tls_type & GOT_TLS_GD)
00a97672 11396 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11397
11398 if ((tls_type & GOT_TLS_GD) && indx != 0)
00a97672 11399 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11400 }
11401 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11402 || h->root.type != bfd_link_hash_undefweak)
11403 && (info->shared
11404 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
00a97672 11405 htab->srelgot->size += RELOC_SIZE (htab);
e5a52504 11406 }
5e681ec4
PB
11407 }
11408 else
11409 h->got.offset = (bfd_vma) -1;
11410
a4fd1a8e
PB
11411 /* Allocate stubs for exported Thumb functions on v4t. */
11412 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 11413 && h->def_regular
a4fd1a8e
PB
11414 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
11415 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
11416 {
11417 struct elf_link_hash_entry * th;
11418 struct bfd_link_hash_entry * bh;
11419 struct elf_link_hash_entry * myh;
11420 char name[1024];
11421 asection *s;
11422 bh = NULL;
11423 /* Create a new symbol to regist the real location of the function. */
11424 s = h->root.u.def.section;
906e58ca 11425 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
11426 _bfd_generic_link_add_one_symbol (info, s->owner,
11427 name, BSF_GLOBAL, s,
11428 h->root.u.def.value,
11429 NULL, TRUE, FALSE, &bh);
11430
11431 myh = (struct elf_link_hash_entry *) bh;
11432 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
11433 myh->forced_local = 1;
11434 eh->export_glue = myh;
11435 th = record_arm_to_thumb_glue (info, h);
11436 /* Point the symbol at the stub. */
11437 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11438 h->root.u.def.section = th->root.u.def.section;
11439 h->root.u.def.value = th->root.u.def.value & ~1;
11440 }
11441
5e681ec4
PB
11442 if (eh->relocs_copied == NULL)
11443 return TRUE;
11444
11445 /* In the shared -Bsymbolic case, discard space allocated for
11446 dynamic pc-relative relocs against symbols which turn out to be
11447 defined in regular objects. For the normal shared case, discard
11448 space for pc-relative relocs that have become local due to symbol
11449 visibility changes. */
11450
67687978 11451 if (info->shared || htab->root.is_relocatable_executable)
5e681ec4 11452 {
7bdca076 11453 /* The only relocs that use pc_count are R_ARM_REL32 and
bb224fc3
MS
11454 R_ARM_REL32_NOI, which will appear on something like
11455 ".long foo - .". We want calls to protected symbols to resolve
11456 directly to the function rather than going via the plt. If people
11457 want function pointer comparisons to work as expected then they
11458 should avoid writing assembly like ".long foo - .". */
ba93b8ac
DJ
11459 if (SYMBOL_CALLS_LOCAL (info, h))
11460 {
11461 struct elf32_arm_relocs_copied **pp;
11462
11463 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11464 {
11465 p->count -= p->pc_count;
11466 p->pc_count = 0;
11467 if (p->count == 0)
11468 *pp = p->next;
11469 else
11470 pp = &p->next;
11471 }
11472 }
11473
3348747a
NS
11474 if (elf32_arm_hash_table (info)->vxworks_p)
11475 {
11476 struct elf32_arm_relocs_copied **pp;
11477
11478 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11479 {
11480 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
11481 *pp = p->next;
11482 else
11483 pp = &p->next;
11484 }
11485 }
11486
ba93b8ac 11487 /* Also discard relocs on undefined weak syms with non-default
7359ea65 11488 visibility. */
22d606e9 11489 if (eh->relocs_copied != NULL
5e681ec4 11490 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
11491 {
11492 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
11493 eh->relocs_copied = NULL;
11494
11495 /* Make sure undefined weak symbols are output as a dynamic
11496 symbol in PIEs. */
11497 else if (h->dynindx == -1
11498 && !h->forced_local)
11499 {
11500 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11501 return FALSE;
11502 }
11503 }
11504
67687978
PB
11505 else if (htab->root.is_relocatable_executable && h->dynindx == -1
11506 && h->root.type == bfd_link_hash_new)
11507 {
11508 /* Output absolute symbols so that we can create relocations
11509 against them. For normal symbols we output a relocation
11510 against the section that contains them. */
11511 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11512 return FALSE;
11513 }
11514
5e681ec4
PB
11515 }
11516 else
11517 {
11518 /* For the non-shared case, discard space for relocs against
11519 symbols which turn out to need copy relocs or are not
11520 dynamic. */
11521
f5385ebf
AM
11522 if (!h->non_got_ref
11523 && ((h->def_dynamic
11524 && !h->def_regular)
5e681ec4
PB
11525 || (htab->root.dynamic_sections_created
11526 && (h->root.type == bfd_link_hash_undefweak
11527 || h->root.type == bfd_link_hash_undefined))))
11528 {
11529 /* Make sure this symbol is output as a dynamic symbol.
11530 Undefined weak syms won't yet be marked as dynamic. */
11531 if (h->dynindx == -1
f5385ebf 11532 && !h->forced_local)
5e681ec4 11533 {
c152c796 11534 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
11535 return FALSE;
11536 }
11537
11538 /* If that succeeded, we know we'll be keeping all the
11539 relocs. */
11540 if (h->dynindx != -1)
11541 goto keep;
11542 }
11543
11544 eh->relocs_copied = NULL;
11545
11546 keep: ;
11547 }
11548
11549 /* Finally, allocate space. */
11550 for (p = eh->relocs_copied; p != NULL; p = p->next)
11551 {
11552 asection *sreloc = elf_section_data (p->section)->sreloc;
00a97672 11553 sreloc->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
11554 }
11555
11556 return TRUE;
11557}
11558
08d1f311
DJ
11559/* Find any dynamic relocs that apply to read-only sections. */
11560
11561static bfd_boolean
8029a119 11562elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 11563{
8029a119
NC
11564 struct elf32_arm_link_hash_entry * eh;
11565 struct elf32_arm_relocs_copied * p;
08d1f311
DJ
11566
11567 if (h->root.type == bfd_link_hash_warning)
11568 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11569
11570 eh = (struct elf32_arm_link_hash_entry *) h;
11571 for (p = eh->relocs_copied; p != NULL; p = p->next)
11572 {
11573 asection *s = p->section;
11574
11575 if (s != NULL && (s->flags & SEC_READONLY) != 0)
11576 {
11577 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11578
11579 info->flags |= DF_TEXTREL;
11580
11581 /* Not an error, just cut short the traversal. */
11582 return FALSE;
11583 }
11584 }
11585 return TRUE;
11586}
11587
d504ffc8
DJ
11588void
11589bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
11590 int byteswap_code)
11591{
11592 struct elf32_arm_link_hash_table *globals;
11593
11594 globals = elf32_arm_hash_table (info);
11595 globals->byteswap_code = byteswap_code;
11596}
11597
252b5132
RH
11598/* Set the sizes of the dynamic sections. */
11599
b34976b6 11600static bfd_boolean
57e8b36a
NC
11601elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
11602 struct bfd_link_info * info)
252b5132
RH
11603{
11604 bfd * dynobj;
11605 asection * s;
b34976b6
AM
11606 bfd_boolean plt;
11607 bfd_boolean relocs;
5e681ec4
PB
11608 bfd *ibfd;
11609 struct elf32_arm_link_hash_table *htab;
252b5132 11610
5e681ec4 11611 htab = elf32_arm_hash_table (info);
252b5132
RH
11612 dynobj = elf_hash_table (info)->dynobj;
11613 BFD_ASSERT (dynobj != NULL);
39b41c9c 11614 check_use_blx (htab);
252b5132
RH
11615
11616 if (elf_hash_table (info)->dynamic_sections_created)
11617 {
11618 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 11619 if (info->executable)
252b5132
RH
11620 {
11621 s = bfd_get_section_by_name (dynobj, ".interp");
11622 BFD_ASSERT (s != NULL);
eea6121a 11623 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
11624 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
11625 }
11626 }
5e681ec4
PB
11627
11628 /* Set up .got offsets for local syms, and space for local dynamic
11629 relocs. */
11630 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
252b5132 11631 {
5e681ec4
PB
11632 bfd_signed_vma *local_got;
11633 bfd_signed_vma *end_local_got;
11634 char *local_tls_type;
11635 bfd_size_type locsymcount;
11636 Elf_Internal_Shdr *symtab_hdr;
11637 asection *srel;
3348747a 11638 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
5e681ec4 11639
0ffa91dd 11640 if (! is_arm_elf (ibfd))
5e681ec4
PB
11641 continue;
11642
11643 for (s = ibfd->sections; s != NULL; s = s->next)
11644 {
11645 struct elf32_arm_relocs_copied *p;
11646
21d799b5
NC
11647 for (p = (struct elf32_arm_relocs_copied *)
11648 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4
PB
11649 {
11650 if (!bfd_is_abs_section (p->section)
11651 && bfd_is_abs_section (p->section->output_section))
11652 {
11653 /* Input section has been discarded, either because
11654 it is a copy of a linkonce section or due to
11655 linker script /DISCARD/, so we'll be discarding
11656 the relocs too. */
11657 }
3348747a
NS
11658 else if (is_vxworks
11659 && strcmp (p->section->output_section->name,
11660 ".tls_vars") == 0)
11661 {
11662 /* Relocations in vxworks .tls_vars sections are
11663 handled specially by the loader. */
11664 }
5e681ec4
PB
11665 else if (p->count != 0)
11666 {
11667 srel = elf_section_data (p->section)->sreloc;
00a97672 11668 srel->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
11669 if ((p->section->output_section->flags & SEC_READONLY) != 0)
11670 info->flags |= DF_TEXTREL;
11671 }
11672 }
11673 }
11674
11675 local_got = elf_local_got_refcounts (ibfd);
11676 if (!local_got)
11677 continue;
11678
0ffa91dd 11679 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
11680 locsymcount = symtab_hdr->sh_info;
11681 end_local_got = local_got + locsymcount;
ba93b8ac 11682 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
5e681ec4
PB
11683 s = htab->sgot;
11684 srel = htab->srelgot;
11685 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11686 {
11687 if (*local_got > 0)
11688 {
eea6121a 11689 *local_got = s->size;
ba93b8ac
DJ
11690 if (*local_tls_type & GOT_TLS_GD)
11691 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11692 s->size += 8;
11693 if (*local_tls_type & GOT_TLS_IE)
11694 s->size += 4;
11695 if (*local_tls_type == GOT_NORMAL)
11696 s->size += 4;
11697
11698 if (info->shared || *local_tls_type == GOT_TLS_GD)
00a97672 11699 srel->size += RELOC_SIZE (htab);
5e681ec4
PB
11700 }
11701 else
11702 *local_got = (bfd_vma) -1;
11703 }
252b5132
RH
11704 }
11705
ba93b8ac
DJ
11706 if (htab->tls_ldm_got.refcount > 0)
11707 {
11708 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11709 for R_ARM_TLS_LDM32 relocations. */
11710 htab->tls_ldm_got.offset = htab->sgot->size;
11711 htab->sgot->size += 8;
11712 if (info->shared)
00a97672 11713 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11714 }
11715 else
11716 htab->tls_ldm_got.offset = -1;
11717
5e681ec4
PB
11718 /* Allocate global sym .plt and .got entries, and space for global
11719 sym dynamic relocs. */
57e8b36a 11720 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
252b5132 11721
d504ffc8
DJ
11722 /* Here we rummage through the found bfds to collect glue information. */
11723 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
c7b8f16e 11724 {
0ffa91dd 11725 if (! is_arm_elf (ibfd))
e44a2c9c
AM
11726 continue;
11727
c7b8f16e
JB
11728 /* Initialise mapping tables for code/data. */
11729 bfd_elf32_arm_init_maps (ibfd);
906e58ca 11730
c7b8f16e
JB
11731 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
11732 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
11733 /* xgettext:c-format */
11734 _bfd_error_handler (_("Errors encountered processing file %s"),
11735 ibfd->filename);
11736 }
d504ffc8 11737
3e6b1042
DJ
11738 /* Allocate space for the glue sections now that we've sized them. */
11739 bfd_elf32_arm_allocate_interworking_sections (info);
11740
252b5132
RH
11741 /* The check_relocs and adjust_dynamic_symbol entry points have
11742 determined the sizes of the various dynamic sections. Allocate
11743 memory for them. */
b34976b6
AM
11744 plt = FALSE;
11745 relocs = FALSE;
252b5132
RH
11746 for (s = dynobj->sections; s != NULL; s = s->next)
11747 {
11748 const char * name;
252b5132
RH
11749
11750 if ((s->flags & SEC_LINKER_CREATED) == 0)
11751 continue;
11752
11753 /* It's OK to base decisions on the section name, because none
11754 of the dynobj section names depend upon the input files. */
11755 name = bfd_get_section_name (dynobj, s);
11756
24a1ba0f 11757 if (strcmp (name, ".plt") == 0)
252b5132 11758 {
c456f082
AM
11759 /* Remember whether there is a PLT. */
11760 plt = s->size != 0;
252b5132 11761 }
0112cd26 11762 else if (CONST_STRNEQ (name, ".rel"))
252b5132 11763 {
c456f082 11764 if (s->size != 0)
252b5132 11765 {
252b5132 11766 /* Remember whether there are any reloc sections other
00a97672
RS
11767 than .rel(a).plt and .rela.plt.unloaded. */
11768 if (s != htab->srelplt && s != htab->srelplt2)
b34976b6 11769 relocs = TRUE;
252b5132
RH
11770
11771 /* We use the reloc_count field as a counter if we need
11772 to copy relocs into the output file. */
11773 s->reloc_count = 0;
11774 }
11775 }
0112cd26 11776 else if (! CONST_STRNEQ (name, ".got")
c456f082 11777 && strcmp (name, ".dynbss") != 0)
252b5132
RH
11778 {
11779 /* It's not one of our sections, so don't allocate space. */
11780 continue;
11781 }
11782
c456f082 11783 if (s->size == 0)
252b5132 11784 {
c456f082 11785 /* If we don't need this section, strip it from the
00a97672
RS
11786 output file. This is mostly to handle .rel(a).bss and
11787 .rel(a).plt. We must create both sections in
c456f082
AM
11788 create_dynamic_sections, because they must be created
11789 before the linker maps input sections to output
11790 sections. The linker does that before
11791 adjust_dynamic_symbol is called, and it is that
11792 function which decides whether anything needs to go
11793 into these sections. */
8423293d 11794 s->flags |= SEC_EXCLUDE;
252b5132
RH
11795 continue;
11796 }
11797
c456f082
AM
11798 if ((s->flags & SEC_HAS_CONTENTS) == 0)
11799 continue;
11800
252b5132 11801 /* Allocate memory for the section contents. */
21d799b5 11802 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 11803 if (s->contents == NULL)
b34976b6 11804 return FALSE;
252b5132
RH
11805 }
11806
11807 if (elf_hash_table (info)->dynamic_sections_created)
11808 {
11809 /* Add some entries to the .dynamic section. We fill in the
11810 values later, in elf32_arm_finish_dynamic_sections, but we
11811 must add the entries now so that we get the correct size for
11812 the .dynamic section. The DT_DEBUG entry is filled in by the
11813 dynamic linker and used by the debugger. */
dc810e39 11814#define add_dynamic_entry(TAG, VAL) \
5a580b3a 11815 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 11816
8532796c 11817 if (info->executable)
252b5132 11818 {
dc810e39 11819 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 11820 return FALSE;
252b5132
RH
11821 }
11822
11823 if (plt)
11824 {
dc810e39
AM
11825 if ( !add_dynamic_entry (DT_PLTGOT, 0)
11826 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
11827 || !add_dynamic_entry (DT_PLTREL,
11828 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 11829 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 11830 return FALSE;
252b5132
RH
11831 }
11832
11833 if (relocs)
11834 {
00a97672
RS
11835 if (htab->use_rel)
11836 {
11837 if (!add_dynamic_entry (DT_REL, 0)
11838 || !add_dynamic_entry (DT_RELSZ, 0)
11839 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
11840 return FALSE;
11841 }
11842 else
11843 {
11844 if (!add_dynamic_entry (DT_RELA, 0)
11845 || !add_dynamic_entry (DT_RELASZ, 0)
11846 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
11847 return FALSE;
11848 }
252b5132
RH
11849 }
11850
08d1f311
DJ
11851 /* If any dynamic relocs apply to a read-only section,
11852 then we need a DT_TEXTREL entry. */
11853 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
11854 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
11855 info);
08d1f311 11856
99e4ae17 11857 if ((info->flags & DF_TEXTREL) != 0)
252b5132 11858 {
dc810e39 11859 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 11860 return FALSE;
252b5132 11861 }
7a2b07ff
NS
11862 if (htab->vxworks_p
11863 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
11864 return FALSE;
252b5132 11865 }
8532796c 11866#undef add_dynamic_entry
252b5132 11867
b34976b6 11868 return TRUE;
252b5132
RH
11869}
11870
252b5132
RH
11871/* Finish up dynamic symbol handling. We set the contents of various
11872 dynamic sections here. */
11873
b34976b6 11874static bfd_boolean
906e58ca
NC
11875elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
11876 struct bfd_link_info * info,
11877 struct elf_link_hash_entry * h,
11878 Elf_Internal_Sym * sym)
252b5132
RH
11879{
11880 bfd * dynobj;
e5a52504 11881 struct elf32_arm_link_hash_table *htab;
b7693d02 11882 struct elf32_arm_link_hash_entry *eh;
252b5132
RH
11883
11884 dynobj = elf_hash_table (info)->dynobj;
e5a52504 11885 htab = elf32_arm_hash_table (info);
b7693d02 11886 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
11887
11888 if (h->plt.offset != (bfd_vma) -1)
11889 {
11890 asection * splt;
252b5132 11891 asection * srel;
e5a52504 11892 bfd_byte *loc;
24a1ba0f 11893 bfd_vma plt_index;
947216bf 11894 Elf_Internal_Rela rel;
252b5132
RH
11895
11896 /* This symbol has an entry in the procedure linkage table. Set
11897 it up. */
11898
11899 BFD_ASSERT (h->dynindx != -1);
11900
11901 splt = bfd_get_section_by_name (dynobj, ".plt");
00a97672 11902 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
e5a52504 11903 BFD_ASSERT (splt != NULL && srel != NULL);
252b5132 11904
e5a52504
MM
11905 /* Fill in the entry in the procedure linkage table. */
11906 if (htab->symbian_p)
11907 {
906e58ca 11908 put_arm_insn (htab, output_bfd,
52ab56c2
PB
11909 elf32_arm_symbian_plt_entry[0],
11910 splt->contents + h->plt.offset);
906e58ca 11911 bfd_put_32 (output_bfd,
52ab56c2
PB
11912 elf32_arm_symbian_plt_entry[1],
11913 splt->contents + h->plt.offset + 4);
906e58ca 11914
e5a52504 11915 /* Fill in the entry in the .rel.plt section. */
2a1b9a48
MM
11916 rel.r_offset = (splt->output_section->vma
11917 + splt->output_offset
52ab56c2 11918 + h->plt.offset + 4);
e5a52504 11919 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
b7693d02
DJ
11920
11921 /* Get the index in the procedure linkage table which
11922 corresponds to this symbol. This is the index of this symbol
11923 in all the symbols for which we are making plt entries. The
11924 first entry in the procedure linkage table is reserved. */
906e58ca 11925 plt_index = ((h->plt.offset - htab->plt_header_size)
b7693d02 11926 / htab->plt_entry_size);
e5a52504
MM
11927 }
11928 else
11929 {
00a97672 11930 bfd_vma got_offset, got_address, plt_address;
e5a52504
MM
11931 bfd_vma got_displacement;
11932 asection * sgot;
52ab56c2 11933 bfd_byte * ptr;
906e58ca 11934
e5a52504
MM
11935 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
11936 BFD_ASSERT (sgot != NULL);
11937
b7693d02
DJ
11938 /* Get the offset into the .got.plt table of the entry that
11939 corresponds to this function. */
11940 got_offset = eh->plt_got_offset;
11941
11942 /* Get the index in the procedure linkage table which
11943 corresponds to this symbol. This is the index of this symbol
11944 in all the symbols for which we are making plt entries. The
11945 first three entries in .got.plt are reserved; after that
11946 symbols appear in the same order as in .plt. */
11947 plt_index = (got_offset - 12) / 4;
e5a52504 11948
00a97672
RS
11949 /* Calculate the address of the GOT entry. */
11950 got_address = (sgot->output_section->vma
11951 + sgot->output_offset
11952 + got_offset);
5e681ec4 11953
00a97672
RS
11954 /* ...and the address of the PLT entry. */
11955 plt_address = (splt->output_section->vma
11956 + splt->output_offset
11957 + h->plt.offset);
5e681ec4 11958
52ab56c2 11959 ptr = htab->splt->contents + h->plt.offset;
00a97672
RS
11960 if (htab->vxworks_p && info->shared)
11961 {
11962 unsigned int i;
11963 bfd_vma val;
11964
52ab56c2 11965 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
11966 {
11967 val = elf32_arm_vxworks_shared_plt_entry[i];
11968 if (i == 2)
11969 val |= got_address - sgot->output_section->vma;
11970 if (i == 5)
11971 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
11972 if (i == 2 || i == 5)
11973 bfd_put_32 (output_bfd, val, ptr);
11974 else
11975 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
11976 }
11977 }
11978 else if (htab->vxworks_p)
b7693d02 11979 {
00a97672
RS
11980 unsigned int i;
11981 bfd_vma val;
11982
d3753b85 11983 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
11984 {
11985 val = elf32_arm_vxworks_exec_plt_entry[i];
11986 if (i == 2)
11987 val |= got_address;
11988 if (i == 4)
11989 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
11990 if (i == 5)
11991 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
11992 if (i == 2 || i == 5)
11993 bfd_put_32 (output_bfd, val, ptr);
11994 else
11995 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
11996 }
11997
11998 loc = (htab->srelplt2->contents
11999 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
12000
12001 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
12002 referencing the GOT for this PLT entry. */
12003 rel.r_offset = plt_address + 8;
12004 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12005 rel.r_addend = got_offset;
12006 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12007 loc += RELOC_SIZE (htab);
12008
12009 /* Create the R_ARM_ABS32 relocation referencing the
12010 beginning of the PLT for this GOT entry. */
12011 rel.r_offset = got_address;
12012 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12013 rel.r_addend = 0;
12014 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
b7693d02 12015 }
00a97672
RS
12016 else
12017 {
bd97cb95 12018 bfd_signed_vma thumb_refs;
00a97672
RS
12019 /* Calculate the displacement between the PLT slot and the
12020 entry in the GOT. The eight-byte offset accounts for the
12021 value produced by adding to pc in the first instruction
12022 of the PLT stub. */
12023 got_displacement = got_address - (plt_address + 8);
b7693d02 12024
00a97672
RS
12025 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
12026
bd97cb95
DJ
12027 thumb_refs = eh->plt_thumb_refcount;
12028 if (!htab->use_blx)
12029 thumb_refs += eh->plt_maybe_thumb_refcount;
12030
12031 if (thumb_refs > 0)
00a97672 12032 {
52ab56c2
PB
12033 put_thumb_insn (htab, output_bfd,
12034 elf32_arm_plt_thumb_stub[0], ptr - 4);
12035 put_thumb_insn (htab, output_bfd,
12036 elf32_arm_plt_thumb_stub[1], ptr - 2);
00a97672
RS
12037 }
12038
52ab56c2
PB
12039 put_arm_insn (htab, output_bfd,
12040 elf32_arm_plt_entry[0]
12041 | ((got_displacement & 0x0ff00000) >> 20),
12042 ptr + 0);
12043 put_arm_insn (htab, output_bfd,
12044 elf32_arm_plt_entry[1]
12045 | ((got_displacement & 0x000ff000) >> 12),
12046 ptr+ 4);
12047 put_arm_insn (htab, output_bfd,
12048 elf32_arm_plt_entry[2]
12049 | (got_displacement & 0x00000fff),
12050 ptr + 8);
5e681ec4 12051#ifdef FOUR_WORD_PLT
52ab56c2 12052 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
5e681ec4 12053#endif
00a97672 12054 }
252b5132 12055
e5a52504
MM
12056 /* Fill in the entry in the global offset table. */
12057 bfd_put_32 (output_bfd,
12058 (splt->output_section->vma
12059 + splt->output_offset),
12060 sgot->contents + got_offset);
906e58ca 12061
00a97672
RS
12062 /* Fill in the entry in the .rel(a).plt section. */
12063 rel.r_addend = 0;
12064 rel.r_offset = got_address;
e5a52504
MM
12065 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12066 }
57e8b36a 12067
00a97672
RS
12068 loc = srel->contents + plt_index * RELOC_SIZE (htab);
12069 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132 12070
f5385ebf 12071 if (!h->def_regular)
252b5132
RH
12072 {
12073 /* Mark the symbol as undefined, rather than as defined in
12074 the .plt section. Leave the value alone. */
12075 sym->st_shndx = SHN_UNDEF;
d982ba73
PB
12076 /* If the symbol is weak, we do need to clear the value.
12077 Otherwise, the PLT entry would provide a definition for
12078 the symbol even if the symbol wasn't defined anywhere,
12079 and so the symbol would never be NULL. */
f5385ebf 12080 if (!h->ref_regular_nonweak)
d982ba73 12081 sym->st_value = 0;
252b5132
RH
12082 }
12083 }
12084
ba93b8ac
DJ
12085 if (h->got.offset != (bfd_vma) -1
12086 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
12087 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
252b5132
RH
12088 {
12089 asection * sgot;
12090 asection * srel;
947216bf
AM
12091 Elf_Internal_Rela rel;
12092 bfd_byte *loc;
00a97672 12093 bfd_vma offset;
252b5132
RH
12094
12095 /* This symbol has an entry in the global offset table. Set it
12096 up. */
252b5132 12097 sgot = bfd_get_section_by_name (dynobj, ".got");
00a97672 12098 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
252b5132
RH
12099 BFD_ASSERT (sgot != NULL && srel != NULL);
12100
00a97672
RS
12101 offset = (h->got.offset & ~(bfd_vma) 1);
12102 rel.r_addend = 0;
252b5132
RH
12103 rel.r_offset = (sgot->output_section->vma
12104 + sgot->output_offset
00a97672 12105 + offset);
252b5132 12106
5e681ec4
PB
12107 /* If this is a static link, or it is a -Bsymbolic link and the
12108 symbol is defined locally or was forced to be local because
12109 of a version file, we just want to emit a RELATIVE reloc.
12110 The entry in the global offset table will already have been
12111 initialized in the relocate_section function. */
252b5132 12112 if (info->shared
5e681ec4
PB
12113 && SYMBOL_REFERENCES_LOCAL (info, h))
12114 {
906e58ca 12115 BFD_ASSERT ((h->got.offset & 1) != 0);
5e681ec4 12116 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
00a97672
RS
12117 if (!htab->use_rel)
12118 {
12119 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
12120 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12121 }
5e681ec4 12122 }
252b5132
RH
12123 else
12124 {
906e58ca 12125 BFD_ASSERT ((h->got.offset & 1) == 0);
00a97672 12126 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
252b5132
RH
12127 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12128 }
12129
00a97672
RS
12130 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
12131 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
12132 }
12133
f5385ebf 12134 if (h->needs_copy)
252b5132
RH
12135 {
12136 asection * s;
947216bf
AM
12137 Elf_Internal_Rela rel;
12138 bfd_byte *loc;
252b5132
RH
12139
12140 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
12141 BFD_ASSERT (h->dynindx != -1
12142 && (h->root.type == bfd_link_hash_defined
12143 || h->root.type == bfd_link_hash_defweak));
12144
12145 s = bfd_get_section_by_name (h->root.u.def.section->owner,
00a97672 12146 RELOC_SECTION (htab, ".bss"));
252b5132
RH
12147 BFD_ASSERT (s != NULL);
12148
00a97672 12149 rel.r_addend = 0;
252b5132
RH
12150 rel.r_offset = (h->root.u.def.value
12151 + h->root.u.def.section->output_section->vma
12152 + h->root.u.def.section->output_offset);
12153 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
00a97672
RS
12154 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
12155 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
12156 }
12157
00a97672
RS
12158 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12159 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12160 to the ".got" section. */
252b5132 12161 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
00a97672 12162 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
12163 sym->st_shndx = SHN_ABS;
12164
b34976b6 12165 return TRUE;
252b5132
RH
12166}
12167
12168/* Finish up the dynamic sections. */
12169
b34976b6 12170static bfd_boolean
57e8b36a 12171elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
12172{
12173 bfd * dynobj;
12174 asection * sgot;
12175 asection * sdyn;
12176
12177 dynobj = elf_hash_table (info)->dynobj;
12178
12179 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
229fcec5 12180 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
252b5132
RH
12181 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
12182
12183 if (elf_hash_table (info)->dynamic_sections_created)
12184 {
12185 asection *splt;
12186 Elf32_External_Dyn *dyncon, *dynconend;
229fcec5 12187 struct elf32_arm_link_hash_table *htab;
252b5132 12188
229fcec5 12189 htab = elf32_arm_hash_table (info);
252b5132 12190 splt = bfd_get_section_by_name (dynobj, ".plt");
24a1ba0f 12191 BFD_ASSERT (splt != NULL && sdyn != NULL);
252b5132
RH
12192
12193 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 12194 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 12195
252b5132
RH
12196 for (; dyncon < dynconend; dyncon++)
12197 {
12198 Elf_Internal_Dyn dyn;
12199 const char * name;
12200 asection * s;
12201
12202 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
12203
12204 switch (dyn.d_tag)
12205 {
229fcec5
MM
12206 unsigned int type;
12207
252b5132 12208 default:
7a2b07ff
NS
12209 if (htab->vxworks_p
12210 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12211 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
12212 break;
12213
229fcec5
MM
12214 case DT_HASH:
12215 name = ".hash";
12216 goto get_vma_if_bpabi;
12217 case DT_STRTAB:
12218 name = ".dynstr";
12219 goto get_vma_if_bpabi;
12220 case DT_SYMTAB:
12221 name = ".dynsym";
12222 goto get_vma_if_bpabi;
c0042f5d
MM
12223 case DT_VERSYM:
12224 name = ".gnu.version";
12225 goto get_vma_if_bpabi;
12226 case DT_VERDEF:
12227 name = ".gnu.version_d";
12228 goto get_vma_if_bpabi;
12229 case DT_VERNEED:
12230 name = ".gnu.version_r";
12231 goto get_vma_if_bpabi;
12232
252b5132
RH
12233 case DT_PLTGOT:
12234 name = ".got";
12235 goto get_vma;
12236 case DT_JMPREL:
00a97672 12237 name = RELOC_SECTION (htab, ".plt");
252b5132
RH
12238 get_vma:
12239 s = bfd_get_section_by_name (output_bfd, name);
12240 BFD_ASSERT (s != NULL);
229fcec5
MM
12241 if (!htab->symbian_p)
12242 dyn.d_un.d_ptr = s->vma;
12243 else
12244 /* In the BPABI, tags in the PT_DYNAMIC section point
12245 at the file offset, not the memory address, for the
12246 convenience of the post linker. */
12247 dyn.d_un.d_ptr = s->filepos;
252b5132
RH
12248 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12249 break;
12250
229fcec5
MM
12251 get_vma_if_bpabi:
12252 if (htab->symbian_p)
12253 goto get_vma;
12254 break;
12255
252b5132 12256 case DT_PLTRELSZ:
00a97672
RS
12257 s = bfd_get_section_by_name (output_bfd,
12258 RELOC_SECTION (htab, ".plt"));
252b5132 12259 BFD_ASSERT (s != NULL);
eea6121a 12260 dyn.d_un.d_val = s->size;
252b5132
RH
12261 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12262 break;
906e58ca 12263
252b5132 12264 case DT_RELSZ:
00a97672 12265 case DT_RELASZ:
229fcec5
MM
12266 if (!htab->symbian_p)
12267 {
12268 /* My reading of the SVR4 ABI indicates that the
12269 procedure linkage table relocs (DT_JMPREL) should be
12270 included in the overall relocs (DT_REL). This is
12271 what Solaris does. However, UnixWare can not handle
12272 that case. Therefore, we override the DT_RELSZ entry
12273 here to make it not include the JMPREL relocs. Since
00a97672 12274 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
12275 other relocation sections, we don't have to worry
12276 about changing the DT_REL entry. */
00a97672
RS
12277 s = bfd_get_section_by_name (output_bfd,
12278 RELOC_SECTION (htab, ".plt"));
229fcec5
MM
12279 if (s != NULL)
12280 dyn.d_un.d_val -= s->size;
12281 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12282 break;
12283 }
8029a119 12284 /* Fall through. */
229fcec5
MM
12285
12286 case DT_REL:
12287 case DT_RELA:
229fcec5
MM
12288 /* In the BPABI, the DT_REL tag must point at the file
12289 offset, not the VMA, of the first relocation
12290 section. So, we use code similar to that in
12291 elflink.c, but do not check for SHF_ALLOC on the
12292 relcoation section, since relocations sections are
12293 never allocated under the BPABI. The comments above
12294 about Unixware notwithstanding, we include all of the
12295 relocations here. */
12296 if (htab->symbian_p)
12297 {
12298 unsigned int i;
12299 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12300 ? SHT_REL : SHT_RELA);
12301 dyn.d_un.d_val = 0;
12302 for (i = 1; i < elf_numsections (output_bfd); i++)
12303 {
906e58ca 12304 Elf_Internal_Shdr *hdr
229fcec5
MM
12305 = elf_elfsections (output_bfd)[i];
12306 if (hdr->sh_type == type)
12307 {
906e58ca 12308 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
12309 || dyn.d_tag == DT_RELASZ)
12310 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
12311 else if ((ufile_ptr) hdr->sh_offset
12312 <= dyn.d_un.d_val - 1)
229fcec5
MM
12313 dyn.d_un.d_val = hdr->sh_offset;
12314 }
12315 }
12316 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12317 }
252b5132 12318 break;
88f7bcd5
NC
12319
12320 /* Set the bottom bit of DT_INIT/FINI if the
12321 corresponding function is Thumb. */
12322 case DT_INIT:
12323 name = info->init_function;
12324 goto get_sym;
12325 case DT_FINI:
12326 name = info->fini_function;
12327 get_sym:
12328 /* If it wasn't set by elf_bfd_final_link
4cc11e76 12329 then there is nothing to adjust. */
88f7bcd5
NC
12330 if (dyn.d_un.d_val != 0)
12331 {
12332 struct elf_link_hash_entry * eh;
12333
12334 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 12335 FALSE, FALSE, TRUE);
906e58ca 12336 if (eh != NULL
88f7bcd5
NC
12337 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
12338 {
12339 dyn.d_un.d_val |= 1;
b34976b6 12340 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
12341 }
12342 }
12343 break;
252b5132
RH
12344 }
12345 }
12346
24a1ba0f 12347 /* Fill in the first entry in the procedure linkage table. */
e5a52504 12348 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
f7a74f8c 12349 {
00a97672
RS
12350 const bfd_vma *plt0_entry;
12351 bfd_vma got_address, plt_address, got_displacement;
12352
12353 /* Calculate the addresses of the GOT and PLT. */
12354 got_address = sgot->output_section->vma + sgot->output_offset;
12355 plt_address = splt->output_section->vma + splt->output_offset;
12356
12357 if (htab->vxworks_p)
12358 {
12359 /* The VxWorks GOT is relocated by the dynamic linker.
12360 Therefore, we must emit relocations rather than simply
12361 computing the values now. */
12362 Elf_Internal_Rela rel;
12363
12364 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
12365 put_arm_insn (htab, output_bfd, plt0_entry[0],
12366 splt->contents + 0);
12367 put_arm_insn (htab, output_bfd, plt0_entry[1],
12368 splt->contents + 4);
12369 put_arm_insn (htab, output_bfd, plt0_entry[2],
12370 splt->contents + 8);
00a97672
RS
12371 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
12372
8029a119 12373 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
12374 rel.r_offset = plt_address + 12;
12375 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12376 rel.r_addend = 0;
12377 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
12378 htab->srelplt2->contents);
12379 }
12380 else
12381 {
12382 got_displacement = got_address - (plt_address + 16);
12383
12384 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
12385 put_arm_insn (htab, output_bfd, plt0_entry[0],
12386 splt->contents + 0);
12387 put_arm_insn (htab, output_bfd, plt0_entry[1],
12388 splt->contents + 4);
12389 put_arm_insn (htab, output_bfd, plt0_entry[2],
12390 splt->contents + 8);
12391 put_arm_insn (htab, output_bfd, plt0_entry[3],
12392 splt->contents + 12);
5e681ec4 12393
5e681ec4 12394#ifdef FOUR_WORD_PLT
00a97672
RS
12395 /* The displacement value goes in the otherwise-unused
12396 last word of the second entry. */
12397 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 12398#else
00a97672 12399 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 12400#endif
00a97672 12401 }
f7a74f8c 12402 }
252b5132
RH
12403
12404 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12405 really seem like the right value. */
74541ad4
AM
12406 if (splt->output_section->owner == output_bfd)
12407 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672
RS
12408
12409 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
12410 {
12411 /* Correct the .rel(a).plt.unloaded relocations. They will have
12412 incorrect symbol indexes. */
12413 int num_plts;
eed62c48 12414 unsigned char *p;
00a97672
RS
12415
12416 num_plts = ((htab->splt->size - htab->plt_header_size)
12417 / htab->plt_entry_size);
12418 p = htab->srelplt2->contents + RELOC_SIZE (htab);
12419
12420 for (; num_plts; num_plts--)
12421 {
12422 Elf_Internal_Rela rel;
12423
12424 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12425 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12426 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12427 p += RELOC_SIZE (htab);
12428
12429 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12430 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12431 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12432 p += RELOC_SIZE (htab);
12433 }
12434 }
252b5132
RH
12435 }
12436
12437 /* Fill in the first three entries in the global offset table. */
229fcec5 12438 if (sgot)
252b5132 12439 {
229fcec5
MM
12440 if (sgot->size > 0)
12441 {
12442 if (sdyn == NULL)
12443 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
12444 else
12445 bfd_put_32 (output_bfd,
12446 sdyn->output_section->vma + sdyn->output_offset,
12447 sgot->contents);
12448 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
12449 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
12450 }
252b5132 12451
229fcec5
MM
12452 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
12453 }
252b5132 12454
b34976b6 12455 return TRUE;
252b5132
RH
12456}
12457
ba96a88f 12458static void
57e8b36a 12459elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 12460{
9b485d32 12461 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 12462 struct elf32_arm_link_hash_table *globals;
ba96a88f
NC
12463
12464 i_ehdrp = elf_elfheader (abfd);
12465
94a3258f
PB
12466 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
12467 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
12468 else
12469 i_ehdrp->e_ident[EI_OSABI] = 0;
ba96a88f 12470 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 12471
93204d3a
PB
12472 if (link_info)
12473 {
12474 globals = elf32_arm_hash_table (link_info);
12475 if (globals->byteswap_code)
12476 i_ehdrp->e_flags |= EF_ARM_BE8;
12477 }
ba96a88f
NC
12478}
12479
99e4ae17 12480static enum elf_reloc_type_class
57e8b36a 12481elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
99e4ae17 12482{
f51e552e 12483 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
12484 {
12485 case R_ARM_RELATIVE:
12486 return reloc_class_relative;
12487 case R_ARM_JUMP_SLOT:
12488 return reloc_class_plt;
12489 case R_ARM_COPY:
12490 return reloc_class_copy;
12491 default:
12492 return reloc_class_normal;
12493 }
12494}
12495
e16bb312
NC
12496/* Set the right machine number for an Arm ELF file. */
12497
12498static bfd_boolean
57e8b36a 12499elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
e16bb312
NC
12500{
12501 if (hdr->sh_type == SHT_NOTE)
12502 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
12503
12504 return TRUE;
12505}
12506
e489d0ae 12507static void
57e8b36a 12508elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 12509{
5a6c6817 12510 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
12511}
12512
40a18ebd
NC
12513/* Return TRUE if this is an unwinding table entry. */
12514
12515static bfd_boolean
12516is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
12517{
0112cd26
NC
12518 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
12519 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
12520}
12521
12522
12523/* Set the type and flags for an ARM section. We do this by
12524 the section name, which is a hack, but ought to work. */
12525
12526static bfd_boolean
12527elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
12528{
12529 const char * name;
12530
12531 name = bfd_get_section_name (abfd, sec);
12532
12533 if (is_arm_elf_unwind_section_name (abfd, name))
12534 {
12535 hdr->sh_type = SHT_ARM_EXIDX;
12536 hdr->sh_flags |= SHF_LINK_ORDER;
12537 }
12538 return TRUE;
12539}
12540
6dc132d9
L
12541/* Handle an ARM specific section when reading an object file. This is
12542 called when bfd_section_from_shdr finds a section with an unknown
12543 type. */
40a18ebd
NC
12544
12545static bfd_boolean
12546elf32_arm_section_from_shdr (bfd *abfd,
12547 Elf_Internal_Shdr * hdr,
6dc132d9
L
12548 const char *name,
12549 int shindex)
40a18ebd
NC
12550{
12551 /* There ought to be a place to keep ELF backend specific flags, but
12552 at the moment there isn't one. We just keep track of the
12553 sections by their name, instead. Fortunately, the ABI gives
12554 names for all the ARM specific sections, so we will probably get
12555 away with this. */
12556 switch (hdr->sh_type)
12557 {
12558 case SHT_ARM_EXIDX:
0951f019
RE
12559 case SHT_ARM_PREEMPTMAP:
12560 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
12561 break;
12562
12563 default:
12564 return FALSE;
12565 }
12566
6dc132d9 12567 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
12568 return FALSE;
12569
12570 return TRUE;
12571}
e489d0ae 12572
8e3de13a
NC
12573/* A structure used to record a list of sections, independently
12574 of the next and prev fields in the asection structure. */
12575typedef struct section_list
12576{
12577 asection * sec;
12578 struct section_list * next;
12579 struct section_list * prev;
12580}
12581section_list;
12582
12583/* Unfortunately we need to keep a list of sections for which
12584 an _arm_elf_section_data structure has been allocated. This
12585 is because it is possible for functions like elf32_arm_write_section
12586 to be called on a section which has had an elf_data_structure
12587 allocated for it (and so the used_by_bfd field is valid) but
12588 for which the ARM extended version of this structure - the
12589 _arm_elf_section_data structure - has not been allocated. */
12590static section_list * sections_with_arm_elf_section_data = NULL;
12591
12592static void
957c6e41 12593record_section_with_arm_elf_section_data (asection * sec)
8e3de13a
NC
12594{
12595 struct section_list * entry;
12596
21d799b5 12597 entry = (struct section_list *) bfd_malloc (sizeof (* entry));
8e3de13a
NC
12598 if (entry == NULL)
12599 return;
12600 entry->sec = sec;
12601 entry->next = sections_with_arm_elf_section_data;
12602 entry->prev = NULL;
12603 if (entry->next != NULL)
12604 entry->next->prev = entry;
12605 sections_with_arm_elf_section_data = entry;
12606}
12607
44444f50
NC
12608static struct section_list *
12609find_arm_elf_section_entry (asection * sec)
8e3de13a
NC
12610{
12611 struct section_list * entry;
bd4aae00 12612 static struct section_list * last_entry = NULL;
8e3de13a 12613
bd4aae00
NC
12614 /* This is a short cut for the typical case where the sections are added
12615 to the sections_with_arm_elf_section_data list in forward order and
12616 then looked up here in backwards order. This makes a real difference
12617 to the ld-srec/sec64k.exp linker test. */
44444f50 12618 entry = sections_with_arm_elf_section_data;
bd4aae00
NC
12619 if (last_entry != NULL)
12620 {
12621 if (last_entry->sec == sec)
44444f50
NC
12622 entry = last_entry;
12623 else if (last_entry->next != NULL
12624 && last_entry->next->sec == sec)
12625 entry = last_entry->next;
bd4aae00 12626 }
44444f50
NC
12627
12628 for (; entry; entry = entry->next)
8e3de13a 12629 if (entry->sec == sec)
44444f50 12630 break;
bd4aae00 12631
44444f50
NC
12632 if (entry)
12633 /* Record the entry prior to this one - it is the entry we are most
12634 likely to want to locate next time. Also this way if we have been
12635 called from unrecord_section_with_arm_elf_section_data() we will not
12636 be caching a pointer that is about to be freed. */
12637 last_entry = entry->prev;
12638
12639 return entry;
12640}
12641
12642static _arm_elf_section_data *
12643get_arm_elf_section_data (asection * sec)
12644{
12645 struct section_list * entry;
12646
12647 entry = find_arm_elf_section_entry (sec);
12648
12649 if (entry)
12650 return elf32_arm_section_data (entry->sec);
12651 else
12652 return NULL;
8e3de13a
NC
12653}
12654
12655static void
12656unrecord_section_with_arm_elf_section_data (asection * sec)
12657{
12658 struct section_list * entry;
12659
44444f50
NC
12660 entry = find_arm_elf_section_entry (sec);
12661
12662 if (entry)
12663 {
12664 if (entry->prev != NULL)
12665 entry->prev->next = entry->next;
12666 if (entry->next != NULL)
12667 entry->next->prev = entry->prev;
12668 if (entry == sections_with_arm_elf_section_data)
12669 sections_with_arm_elf_section_data = entry->next;
12670 free (entry);
12671 }
8e3de13a
NC
12672}
12673
e489d0ae 12674
4e617b1e
PB
12675typedef struct
12676{
12677 void *finfo;
12678 struct bfd_link_info *info;
91a5743d
PB
12679 asection *sec;
12680 int sec_shndx;
6e0b88f1
AM
12681 int (*func) (void *, const char *, Elf_Internal_Sym *,
12682 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
12683} output_arch_syminfo;
12684
12685enum map_symbol_type
12686{
12687 ARM_MAP_ARM,
12688 ARM_MAP_THUMB,
12689 ARM_MAP_DATA
12690};
12691
12692
7413f23f 12693/* Output a single mapping symbol. */
4e617b1e
PB
12694
12695static bfd_boolean
7413f23f
DJ
12696elf32_arm_output_map_sym (output_arch_syminfo *osi,
12697 enum map_symbol_type type,
12698 bfd_vma offset)
4e617b1e
PB
12699{
12700 static const char *names[3] = {"$a", "$t", "$d"};
12701 struct elf32_arm_link_hash_table *htab;
12702 Elf_Internal_Sym sym;
12703
12704 htab = elf32_arm_hash_table (osi->info);
91a5743d
PB
12705 sym.st_value = osi->sec->output_section->vma
12706 + osi->sec->output_offset
12707 + offset;
4e617b1e
PB
12708 sym.st_size = 0;
12709 sym.st_other = 0;
12710 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 12711 sym.st_shndx = osi->sec_shndx;
6e0b88f1 12712 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
12713}
12714
12715
12716/* Output mapping symbols for PLT entries associated with H. */
12717
12718static bfd_boolean
12719elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12720{
12721 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12722 struct elf32_arm_link_hash_table *htab;
12723 struct elf32_arm_link_hash_entry *eh;
12724 bfd_vma addr;
12725
12726 htab = elf32_arm_hash_table (osi->info);
12727
12728 if (h->root.type == bfd_link_hash_indirect)
12729 return TRUE;
12730
12731 if (h->root.type == bfd_link_hash_warning)
12732 /* When warning symbols are created, they **replace** the "real"
12733 entry in the hash table, thus we never get to see the real
12734 symbol in a hash traversal. So look at it now. */
12735 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12736
12737 if (h->plt.offset == (bfd_vma) -1)
12738 return TRUE;
12739
12740 eh = (struct elf32_arm_link_hash_entry *) h;
12741 addr = h->plt.offset;
12742 if (htab->symbian_p)
12743 {
7413f23f 12744 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12745 return FALSE;
7413f23f 12746 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
12747 return FALSE;
12748 }
12749 else if (htab->vxworks_p)
12750 {
7413f23f 12751 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12752 return FALSE;
7413f23f 12753 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 12754 return FALSE;
7413f23f 12755 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 12756 return FALSE;
7413f23f 12757 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
12758 return FALSE;
12759 }
12760 else
12761 {
bd97cb95
DJ
12762 bfd_signed_vma thumb_refs;
12763
12764 thumb_refs = eh->plt_thumb_refcount;
12765 if (!htab->use_blx)
12766 thumb_refs += eh->plt_maybe_thumb_refcount;
4e617b1e 12767
bd97cb95 12768 if (thumb_refs > 0)
4e617b1e 12769 {
7413f23f 12770 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
12771 return FALSE;
12772 }
12773#ifdef FOUR_WORD_PLT
7413f23f 12774 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12775 return FALSE;
7413f23f 12776 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
12777 return FALSE;
12778#else
906e58ca 12779 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
12780 so only need to output a mapping symbol for the first PLT entry and
12781 entries with thumb thunks. */
bd97cb95 12782 if (thumb_refs > 0 || addr == 20)
4e617b1e 12783 {
7413f23f 12784 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
12785 return FALSE;
12786 }
12787#endif
12788 }
12789
12790 return TRUE;
12791}
12792
7413f23f
DJ
12793/* Output a single local symbol for a generated stub. */
12794
12795static bfd_boolean
12796elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
12797 bfd_vma offset, bfd_vma size)
12798{
12799 struct elf32_arm_link_hash_table *htab;
12800 Elf_Internal_Sym sym;
12801
12802 htab = elf32_arm_hash_table (osi->info);
12803 sym.st_value = osi->sec->output_section->vma
12804 + osi->sec->output_offset
12805 + offset;
12806 sym.st_size = size;
12807 sym.st_other = 0;
12808 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12809 sym.st_shndx = osi->sec_shndx;
6e0b88f1 12810 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 12811}
4e617b1e 12812
da5938a2 12813static bfd_boolean
8029a119
NC
12814arm_map_one_stub (struct bfd_hash_entry * gen_entry,
12815 void * in_arg)
da5938a2
NC
12816{
12817 struct elf32_arm_stub_hash_entry *stub_entry;
12818 struct bfd_link_info *info;
12819 struct elf32_arm_link_hash_table *htab;
12820 asection *stub_sec;
12821 bfd_vma addr;
7413f23f 12822 char *stub_name;
9a008db3 12823 output_arch_syminfo *osi;
d3ce72d0 12824 const insn_sequence *template_sequence;
461a49ca
DJ
12825 enum stub_insn_type prev_type;
12826 int size;
12827 int i;
12828 enum map_symbol_type sym_type;
da5938a2
NC
12829
12830 /* Massage our args to the form they really have. */
12831 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 12832 osi = (output_arch_syminfo *) in_arg;
da5938a2 12833
da5938a2
NC
12834 info = osi->info;
12835
12836 htab = elf32_arm_hash_table (info);
12837 stub_sec = stub_entry->stub_sec;
12838
12839 /* Ensure this stub is attached to the current section being
7413f23f 12840 processed. */
da5938a2
NC
12841 if (stub_sec != osi->sec)
12842 return TRUE;
12843
7413f23f
DJ
12844 addr = (bfd_vma) stub_entry->stub_offset;
12845 stub_name = stub_entry->output_name;
da5938a2 12846
d3ce72d0
NC
12847 template_sequence = stub_entry->stub_template;
12848 switch (template_sequence[0].type)
7413f23f 12849 {
461a49ca
DJ
12850 case ARM_TYPE:
12851 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
da5938a2
NC
12852 return FALSE;
12853 break;
461a49ca 12854 case THUMB16_TYPE:
48229727 12855 case THUMB32_TYPE:
461a49ca
DJ
12856 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
12857 stub_entry->stub_size))
da5938a2
NC
12858 return FALSE;
12859 break;
12860 default:
12861 BFD_FAIL ();
48229727 12862 return 0;
7413f23f 12863 }
da5938a2 12864
461a49ca
DJ
12865 prev_type = DATA_TYPE;
12866 size = 0;
12867 for (i = 0; i < stub_entry->stub_template_size; i++)
12868 {
d3ce72d0 12869 switch (template_sequence[i].type)
461a49ca
DJ
12870 {
12871 case ARM_TYPE:
12872 sym_type = ARM_MAP_ARM;
12873 break;
12874
12875 case THUMB16_TYPE:
48229727 12876 case THUMB32_TYPE:
461a49ca
DJ
12877 sym_type = ARM_MAP_THUMB;
12878 break;
12879
12880 case DATA_TYPE:
12881 sym_type = ARM_MAP_DATA;
12882 break;
12883
12884 default:
12885 BFD_FAIL ();
4e31c731 12886 return FALSE;
461a49ca
DJ
12887 }
12888
d3ce72d0 12889 if (template_sequence[i].type != prev_type)
461a49ca 12890 {
d3ce72d0 12891 prev_type = template_sequence[i].type;
461a49ca
DJ
12892 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
12893 return FALSE;
12894 }
12895
d3ce72d0 12896 switch (template_sequence[i].type)
461a49ca
DJ
12897 {
12898 case ARM_TYPE:
48229727 12899 case THUMB32_TYPE:
461a49ca
DJ
12900 size += 4;
12901 break;
12902
12903 case THUMB16_TYPE:
12904 size += 2;
12905 break;
12906
12907 case DATA_TYPE:
12908 size += 4;
12909 break;
12910
12911 default:
12912 BFD_FAIL ();
4e31c731 12913 return FALSE;
461a49ca
DJ
12914 }
12915 }
12916
da5938a2
NC
12917 return TRUE;
12918}
12919
91a5743d 12920/* Output mapping symbols for linker generated sections. */
4e617b1e
PB
12921
12922static bfd_boolean
12923elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca
NC
12924 struct bfd_link_info *info,
12925 void *finfo,
6e0b88f1
AM
12926 int (*func) (void *, const char *,
12927 Elf_Internal_Sym *,
12928 asection *,
12929 struct elf_link_hash_entry *))
4e617b1e
PB
12930{
12931 output_arch_syminfo osi;
12932 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
12933 bfd_vma offset;
12934 bfd_size_type size;
4e617b1e
PB
12935
12936 htab = elf32_arm_hash_table (info);
906e58ca 12937 check_use_blx (htab);
91a5743d 12938
4e617b1e
PB
12939 osi.finfo = finfo;
12940 osi.info = info;
12941 osi.func = func;
906e58ca 12942
91a5743d
PB
12943 /* ARM->Thumb glue. */
12944 if (htab->arm_glue_size > 0)
12945 {
12946 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12947 ARM2THUMB_GLUE_SECTION_NAME);
12948
12949 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12950 (output_bfd, osi.sec->output_section);
12951 if (info->shared || htab->root.is_relocatable_executable
12952 || htab->pic_veneer)
12953 size = ARM2THUMB_PIC_GLUE_SIZE;
12954 else if (htab->use_blx)
12955 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
12956 else
12957 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 12958
91a5743d
PB
12959 for (offset = 0; offset < htab->arm_glue_size; offset += size)
12960 {
7413f23f
DJ
12961 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
12962 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
12963 }
12964 }
12965
12966 /* Thumb->ARM glue. */
12967 if (htab->thumb_glue_size > 0)
12968 {
12969 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12970 THUMB2ARM_GLUE_SECTION_NAME);
12971
12972 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12973 (output_bfd, osi.sec->output_section);
12974 size = THUMB2ARM_GLUE_SIZE;
12975
12976 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
12977 {
7413f23f
DJ
12978 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
12979 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
12980 }
12981 }
12982
845b51d6
PB
12983 /* ARMv4 BX veneers. */
12984 if (htab->bx_glue_size > 0)
12985 {
12986 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12987 ARM_BX_GLUE_SECTION_NAME);
12988
12989 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12990 (output_bfd, osi.sec->output_section);
12991
7413f23f 12992 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
12993 }
12994
8029a119
NC
12995 /* Long calls stubs. */
12996 if (htab->stub_bfd && htab->stub_bfd->sections)
12997 {
da5938a2 12998 asection* stub_sec;
8029a119 12999
da5938a2
NC
13000 for (stub_sec = htab->stub_bfd->sections;
13001 stub_sec != NULL;
8029a119
NC
13002 stub_sec = stub_sec->next)
13003 {
13004 /* Ignore non-stub sections. */
13005 if (!strstr (stub_sec->name, STUB_SUFFIX))
13006 continue;
da5938a2 13007
8029a119 13008 osi.sec = stub_sec;
da5938a2 13009
8029a119
NC
13010 osi.sec_shndx = _bfd_elf_section_from_bfd_section
13011 (output_bfd, osi.sec->output_section);
da5938a2 13012
8029a119
NC
13013 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
13014 }
13015 }
da5938a2 13016
91a5743d
PB
13017 /* Finally, output mapping symbols for the PLT. */
13018 if (!htab->splt || htab->splt->size == 0)
13019 return TRUE;
13020
13021 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8029a119 13022 htab->splt->output_section);
91a5743d 13023 osi.sec = htab->splt;
4e617b1e
PB
13024 /* Output mapping symbols for the plt header. SymbianOS does not have a
13025 plt header. */
13026 if (htab->vxworks_p)
13027 {
13028 /* VxWorks shared libraries have no PLT header. */
13029 if (!info->shared)
13030 {
7413f23f 13031 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 13032 return FALSE;
7413f23f 13033 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
4e617b1e
PB
13034 return FALSE;
13035 }
13036 }
13037 else if (!htab->symbian_p)
13038 {
7413f23f 13039 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e
PB
13040 return FALSE;
13041#ifndef FOUR_WORD_PLT
7413f23f 13042 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e
PB
13043 return FALSE;
13044#endif
13045 }
13046
13047 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13048 return TRUE;
13049}
13050
e489d0ae
PB
13051/* Allocate target specific section data. */
13052
13053static bfd_boolean
13054elf32_arm_new_section_hook (bfd *abfd, asection *sec)
13055{
f592407e
AM
13056 if (!sec->used_by_bfd)
13057 {
13058 _arm_elf_section_data *sdata;
13059 bfd_size_type amt = sizeof (*sdata);
e489d0ae 13060
21d799b5 13061 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
13062 if (sdata == NULL)
13063 return FALSE;
13064 sec->used_by_bfd = sdata;
13065 }
e489d0ae 13066
957c6e41 13067 record_section_with_arm_elf_section_data (sec);
8e3de13a 13068
e489d0ae
PB
13069 return _bfd_elf_new_section_hook (abfd, sec);
13070}
13071
13072
13073/* Used to order a list of mapping symbols by address. */
13074
13075static int
13076elf32_arm_compare_mapping (const void * a, const void * b)
13077{
7f6a71ff
JM
13078 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
13079 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
13080
13081 if (amap->vma > bmap->vma)
13082 return 1;
13083 else if (amap->vma < bmap->vma)
13084 return -1;
13085 else if (amap->type > bmap->type)
13086 /* Ensure results do not depend on the host qsort for objects with
13087 multiple mapping symbols at the same address by sorting on type
13088 after vma. */
13089 return 1;
13090 else if (amap->type < bmap->type)
13091 return -1;
13092 else
13093 return 0;
e489d0ae
PB
13094}
13095
2468f9c9
PB
13096/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13097
13098static unsigned long
13099offset_prel31 (unsigned long addr, bfd_vma offset)
13100{
13101 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
13102}
13103
13104/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13105 relocations. */
13106
13107static void
13108copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
13109{
13110 unsigned long first_word = bfd_get_32 (output_bfd, from);
13111 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
13112
13113 /* High bit of first word is supposed to be zero. */
13114 if ((first_word & 0x80000000ul) == 0)
13115 first_word = offset_prel31 (first_word, offset);
13116
13117 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13118 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13119 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
13120 second_word = offset_prel31 (second_word, offset);
13121
13122 bfd_put_32 (output_bfd, first_word, to);
13123 bfd_put_32 (output_bfd, second_word, to + 4);
13124}
e489d0ae 13125
48229727
JB
13126/* Data for make_branch_to_a8_stub(). */
13127
13128struct a8_branch_to_stub_data {
13129 asection *writing_section;
13130 bfd_byte *contents;
13131};
13132
13133
13134/* Helper to insert branches to Cortex-A8 erratum stubs in the right
13135 places for a particular section. */
13136
13137static bfd_boolean
13138make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
13139 void *in_arg)
13140{
13141 struct elf32_arm_stub_hash_entry *stub_entry;
13142 struct a8_branch_to_stub_data *data;
13143 bfd_byte *contents;
13144 unsigned long branch_insn;
13145 bfd_vma veneered_insn_loc, veneer_entry_loc;
13146 bfd_signed_vma branch_offset;
13147 bfd *abfd;
13148 unsigned int index;
13149
13150 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13151 data = (struct a8_branch_to_stub_data *) in_arg;
13152
13153 if (stub_entry->target_section != data->writing_section
13154 || stub_entry->stub_type < arm_stub_a8_veneer_b_cond)
13155 return TRUE;
13156
13157 contents = data->contents;
13158
13159 veneered_insn_loc = stub_entry->target_section->output_section->vma
13160 + stub_entry->target_section->output_offset
13161 + stub_entry->target_value;
13162
13163 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
13164 + stub_entry->stub_sec->output_offset
13165 + stub_entry->stub_offset;
13166
13167 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
13168 veneered_insn_loc &= ~3u;
13169
13170 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
13171
13172 abfd = stub_entry->target_section->owner;
13173 index = stub_entry->target_value;
13174
13175 /* We attempt to avoid this condition by setting stubs_always_after_branch
13176 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13177 This check is just to be on the safe side... */
13178 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
13179 {
13180 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
13181 "allocated in unsafe location"), abfd);
13182 return FALSE;
13183 }
13184
13185 switch (stub_entry->stub_type)
13186 {
13187 case arm_stub_a8_veneer_b:
13188 case arm_stub_a8_veneer_b_cond:
13189 branch_insn = 0xf0009000;
13190 goto jump24;
13191
13192 case arm_stub_a8_veneer_blx:
13193 branch_insn = 0xf000e800;
13194 goto jump24;
13195
13196 case arm_stub_a8_veneer_bl:
13197 {
13198 unsigned int i1, j1, i2, j2, s;
13199
13200 branch_insn = 0xf000d000;
13201
13202 jump24:
13203 if (branch_offset < -16777216 || branch_offset > 16777214)
13204 {
13205 /* There's not much we can do apart from complain if this
13206 happens. */
13207 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
13208 "of range (input file too large)"), abfd);
13209 return FALSE;
13210 }
13211
13212 /* i1 = not(j1 eor s), so:
13213 not i1 = j1 eor s
13214 j1 = (not i1) eor s. */
13215
13216 branch_insn |= (branch_offset >> 1) & 0x7ff;
13217 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
13218 i2 = (branch_offset >> 22) & 1;
13219 i1 = (branch_offset >> 23) & 1;
13220 s = (branch_offset >> 24) & 1;
13221 j1 = (!i1) ^ s;
13222 j2 = (!i2) ^ s;
13223 branch_insn |= j2 << 11;
13224 branch_insn |= j1 << 13;
13225 branch_insn |= s << 26;
13226 }
13227 break;
13228
13229 default:
13230 BFD_FAIL ();
13231 return FALSE;
13232 }
13233
13234 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[index]);
13235 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[index + 2]);
13236
13237 return TRUE;
13238}
13239
e489d0ae
PB
13240/* Do code byteswapping. Return FALSE afterwards so that the section is
13241 written out as normal. */
13242
13243static bfd_boolean
c7b8f16e 13244elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
13245 struct bfd_link_info *link_info,
13246 asection *sec,
e489d0ae
PB
13247 bfd_byte *contents)
13248{
48229727 13249 unsigned int mapcount, errcount;
8e3de13a 13250 _arm_elf_section_data *arm_data;
c7b8f16e 13251 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 13252 elf32_arm_section_map *map;
c7b8f16e 13253 elf32_vfp11_erratum_list *errnode;
e489d0ae
PB
13254 bfd_vma ptr;
13255 bfd_vma end;
c7b8f16e 13256 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 13257 bfd_byte tmp;
48229727 13258 unsigned int i;
57e8b36a 13259
8e3de13a
NC
13260 /* If this section has not been allocated an _arm_elf_section_data
13261 structure then we cannot record anything. */
13262 arm_data = get_arm_elf_section_data (sec);
13263 if (arm_data == NULL)
13264 return FALSE;
13265
13266 mapcount = arm_data->mapcount;
13267 map = arm_data->map;
c7b8f16e
JB
13268 errcount = arm_data->erratumcount;
13269
13270 if (errcount != 0)
13271 {
13272 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
13273
13274 for (errnode = arm_data->erratumlist; errnode != 0;
13275 errnode = errnode->next)
13276 {
13277 bfd_vma index = errnode->vma - offset;
13278
13279 switch (errnode->type)
13280 {
13281 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
13282 {
13283 bfd_vma branch_to_veneer;
13284 /* Original condition code of instruction, plus bit mask for
13285 ARM B instruction. */
13286 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
13287 | 0x0a000000;
13288
13289 /* The instruction is before the label. */
13290 index -= 4;
13291
13292 /* Above offset included in -4 below. */
13293 branch_to_veneer = errnode->u.b.veneer->vma
13294 - errnode->vma - 4;
13295
13296 if ((signed) branch_to_veneer < -(1 << 25)
13297 || (signed) branch_to_veneer >= (1 << 25))
13298 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13299 "range"), output_bfd);
13300
13301 insn |= (branch_to_veneer >> 2) & 0xffffff;
13302 contents[endianflip ^ index] = insn & 0xff;
13303 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
13304 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
13305 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
13306 }
13307 break;
13308
13309 case VFP11_ERRATUM_ARM_VENEER:
13310 {
13311 bfd_vma branch_from_veneer;
13312 unsigned int insn;
13313
13314 /* Take size of veneer into account. */
13315 branch_from_veneer = errnode->u.v.branch->vma
13316 - errnode->vma - 12;
13317
13318 if ((signed) branch_from_veneer < -(1 << 25)
13319 || (signed) branch_from_veneer >= (1 << 25))
13320 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13321 "range"), output_bfd);
13322
13323 /* Original instruction. */
13324 insn = errnode->u.v.branch->u.b.vfp_insn;
13325 contents[endianflip ^ index] = insn & 0xff;
13326 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
13327 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
13328 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
13329
13330 /* Branch back to insn after original insn. */
13331 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
13332 contents[endianflip ^ (index + 4)] = insn & 0xff;
13333 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
13334 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
13335 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
13336 }
13337 break;
13338
13339 default:
13340 abort ();
13341 }
13342 }
13343 }
e489d0ae 13344
2468f9c9
PB
13345 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
13346 {
13347 arm_unwind_table_edit *edit_node
13348 = arm_data->u.exidx.unwind_edit_list;
13349 /* Now, sec->size is the size of the section we will write. The original
13350 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13351 markers) was sec->rawsize. (This isn't the case if we perform no
13352 edits, then rawsize will be zero and we should use size). */
21d799b5 13353 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
13354 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
13355 unsigned int in_index, out_index;
13356 bfd_vma add_to_offsets = 0;
13357
13358 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
13359 {
13360 if (edit_node)
13361 {
13362 unsigned int edit_index = edit_node->index;
13363
13364 if (in_index < edit_index && in_index * 8 < input_size)
13365 {
13366 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13367 contents + in_index * 8, add_to_offsets);
13368 out_index++;
13369 in_index++;
13370 }
13371 else if (in_index == edit_index
13372 || (in_index * 8 >= input_size
13373 && edit_index == UINT_MAX))
13374 {
13375 switch (edit_node->type)
13376 {
13377 case DELETE_EXIDX_ENTRY:
13378 in_index++;
13379 add_to_offsets += 8;
13380 break;
13381
13382 case INSERT_EXIDX_CANTUNWIND_AT_END:
13383 {
13384 asection *text_sec = edit_node->linked_section;
13385 bfd_vma text_offset = text_sec->output_section->vma
13386 + text_sec->output_offset
13387 + text_sec->size;
13388 bfd_vma exidx_offset = offset + out_index * 8;
13389 unsigned long prel31_offset;
13390
13391 /* Note: this is meant to be equivalent to an
13392 R_ARM_PREL31 relocation. These synthetic
13393 EXIDX_CANTUNWIND markers are not relocated by the
13394 usual BFD method. */
13395 prel31_offset = (text_offset - exidx_offset)
13396 & 0x7ffffffful;
13397
13398 /* First address we can't unwind. */
13399 bfd_put_32 (output_bfd, prel31_offset,
13400 &edited_contents[out_index * 8]);
13401
13402 /* Code for EXIDX_CANTUNWIND. */
13403 bfd_put_32 (output_bfd, 0x1,
13404 &edited_contents[out_index * 8 + 4]);
13405
13406 out_index++;
13407 add_to_offsets -= 8;
13408 }
13409 break;
13410 }
13411
13412 edit_node = edit_node->next;
13413 }
13414 }
13415 else
13416 {
13417 /* No more edits, copy remaining entries verbatim. */
13418 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13419 contents + in_index * 8, add_to_offsets);
13420 out_index++;
13421 in_index++;
13422 }
13423 }
13424
13425 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
13426 bfd_set_section_contents (output_bfd, sec->output_section,
13427 edited_contents,
13428 (file_ptr) sec->output_offset, sec->size);
13429
13430 return TRUE;
13431 }
13432
48229727
JB
13433 /* Fix code to point to Cortex-A8 erratum stubs. */
13434 if (globals->fix_cortex_a8)
13435 {
13436 struct a8_branch_to_stub_data data;
13437
13438 data.writing_section = sec;
13439 data.contents = contents;
13440
13441 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
13442 &data);
13443 }
13444
e489d0ae
PB
13445 if (mapcount == 0)
13446 return FALSE;
13447
c7b8f16e 13448 if (globals->byteswap_code)
e489d0ae 13449 {
c7b8f16e 13450 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 13451
c7b8f16e
JB
13452 ptr = map[0].vma;
13453 for (i = 0; i < mapcount; i++)
13454 {
13455 if (i == mapcount - 1)
13456 end = sec->size;
13457 else
13458 end = map[i + 1].vma;
e489d0ae 13459
c7b8f16e 13460 switch (map[i].type)
e489d0ae 13461 {
c7b8f16e
JB
13462 case 'a':
13463 /* Byte swap code words. */
13464 while (ptr + 3 < end)
13465 {
13466 tmp = contents[ptr];
13467 contents[ptr] = contents[ptr + 3];
13468 contents[ptr + 3] = tmp;
13469 tmp = contents[ptr + 1];
13470 contents[ptr + 1] = contents[ptr + 2];
13471 contents[ptr + 2] = tmp;
13472 ptr += 4;
13473 }
13474 break;
e489d0ae 13475
c7b8f16e
JB
13476 case 't':
13477 /* Byte swap code halfwords. */
13478 while (ptr + 1 < end)
13479 {
13480 tmp = contents[ptr];
13481 contents[ptr] = contents[ptr + 1];
13482 contents[ptr + 1] = tmp;
13483 ptr += 2;
13484 }
13485 break;
13486
13487 case 'd':
13488 /* Leave data alone. */
13489 break;
13490 }
13491 ptr = end;
13492 }
e489d0ae 13493 }
8e3de13a 13494
93204d3a 13495 free (map);
8e3de13a 13496 arm_data->mapcount = 0;
c7b8f16e 13497 arm_data->mapsize = 0;
8e3de13a
NC
13498 arm_data->map = NULL;
13499 unrecord_section_with_arm_elf_section_data (sec);
13500
e489d0ae
PB
13501 return FALSE;
13502}
13503
957c6e41
NC
13504static void
13505unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
13506 asection * sec,
13507 void * ignore ATTRIBUTE_UNUSED)
13508{
13509 unrecord_section_with_arm_elf_section_data (sec);
13510}
13511
13512static bfd_boolean
13513elf32_arm_close_and_cleanup (bfd * abfd)
13514{
b25e3d87
L
13515 if (abfd->sections)
13516 bfd_map_over_sections (abfd,
13517 unrecord_section_via_map_over_sections,
13518 NULL);
957c6e41
NC
13519
13520 return _bfd_elf_close_and_cleanup (abfd);
13521}
13522
b25e3d87
L
13523static bfd_boolean
13524elf32_arm_bfd_free_cached_info (bfd * abfd)
13525{
13526 if (abfd->sections)
13527 bfd_map_over_sections (abfd,
13528 unrecord_section_via_map_over_sections,
13529 NULL);
13530
13531 return _bfd_free_cached_info (abfd);
13532}
13533
b7693d02
DJ
13534/* Display STT_ARM_TFUNC symbols as functions. */
13535
13536static void
13537elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
13538 asymbol *asym)
13539{
13540 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
13541
13542 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
13543 elfsym->symbol.flags |= BSF_FUNCTION;
13544}
13545
0beaef2b
PB
13546
13547/* Mangle thumb function symbols as we read them in. */
13548
8384fb8f 13549static bfd_boolean
0beaef2b
PB
13550elf32_arm_swap_symbol_in (bfd * abfd,
13551 const void *psrc,
13552 const void *pshn,
13553 Elf_Internal_Sym *dst)
13554{
8384fb8f
AM
13555 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
13556 return FALSE;
0beaef2b
PB
13557
13558 /* New EABI objects mark thumb function symbols by setting the low bit of
13559 the address. Turn these into STT_ARM_TFUNC. */
0f88be7a 13560 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
0beaef2b
PB
13561 && (dst->st_value & 1))
13562 {
13563 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
13564 dst->st_value &= ~(bfd_vma) 1;
13565 }
8384fb8f 13566 return TRUE;
0beaef2b
PB
13567}
13568
13569
13570/* Mangle thumb function symbols as we write them out. */
13571
13572static void
13573elf32_arm_swap_symbol_out (bfd *abfd,
13574 const Elf_Internal_Sym *src,
13575 void *cdst,
13576 void *shndx)
13577{
13578 Elf_Internal_Sym newsym;
13579
13580 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13581 of the address set, as per the new EABI. We do this unconditionally
13582 because objcopy does not set the elf header flags until after
13583 it writes out the symbol table. */
13584 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
13585 {
13586 newsym = *src;
13587 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad
PB
13588 if (newsym.st_shndx != SHN_UNDEF)
13589 {
13590 /* Do this only for defined symbols. At link type, the static
13591 linker will simulate the work of dynamic linker of resolving
13592 symbols and will carry over the thumbness of found symbols to
13593 the output symbol table. It's not clear how it happens, but
b0fead2b 13594 the thumbness of undefined symbols can well be different at
0fa3dcad
PB
13595 runtime, and writing '1' for them will be confusing for users
13596 and possibly for dynamic linker itself.
13597 */
13598 newsym.st_value |= 1;
13599 }
906e58ca 13600
0beaef2b
PB
13601 src = &newsym;
13602 }
13603 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
13604}
13605
b294bdf8
MM
13606/* Add the PT_ARM_EXIDX program header. */
13607
13608static bfd_boolean
906e58ca 13609elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
13610 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13611{
13612 struct elf_segment_map *m;
13613 asection *sec;
13614
13615 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13616 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13617 {
13618 /* If there is already a PT_ARM_EXIDX header, then we do not
13619 want to add another one. This situation arises when running
13620 "strip"; the input binary already has the header. */
13621 m = elf_tdata (abfd)->segment_map;
13622 while (m && m->p_type != PT_ARM_EXIDX)
13623 m = m->next;
13624 if (!m)
13625 {
21d799b5
NC
13626 m = (struct elf_segment_map *)
13627 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
13628 if (m == NULL)
13629 return FALSE;
13630 m->p_type = PT_ARM_EXIDX;
13631 m->count = 1;
13632 m->sections[0] = sec;
13633
13634 m->next = elf_tdata (abfd)->segment_map;
13635 elf_tdata (abfd)->segment_map = m;
13636 }
13637 }
13638
13639 return TRUE;
13640}
13641
13642/* We may add a PT_ARM_EXIDX program header. */
13643
13644static int
a6b96beb
AM
13645elf32_arm_additional_program_headers (bfd *abfd,
13646 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
13647{
13648 asection *sec;
13649
13650 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13651 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13652 return 1;
13653 else
13654 return 0;
13655}
13656
fcb93ecf 13657/* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
906e58ca 13658
fcb93ecf
PB
13659static bfd_boolean
13660elf32_arm_is_function_type (unsigned int type)
13661{
0f88be7a 13662 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
fcb93ecf
PB
13663}
13664
0beaef2b 13665/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
13666const struct elf_size_info elf32_arm_size_info =
13667{
0beaef2b
PB
13668 sizeof (Elf32_External_Ehdr),
13669 sizeof (Elf32_External_Phdr),
13670 sizeof (Elf32_External_Shdr),
13671 sizeof (Elf32_External_Rel),
13672 sizeof (Elf32_External_Rela),
13673 sizeof (Elf32_External_Sym),
13674 sizeof (Elf32_External_Dyn),
13675 sizeof (Elf_External_Note),
13676 4,
13677 1,
13678 32, 2,
13679 ELFCLASS32, EV_CURRENT,
13680 bfd_elf32_write_out_phdrs,
13681 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 13682 bfd_elf32_checksum_contents,
0beaef2b
PB
13683 bfd_elf32_write_relocs,
13684 elf32_arm_swap_symbol_in,
13685 elf32_arm_swap_symbol_out,
13686 bfd_elf32_slurp_reloc_table,
13687 bfd_elf32_slurp_symbol_table,
13688 bfd_elf32_swap_dyn_in,
13689 bfd_elf32_swap_dyn_out,
13690 bfd_elf32_swap_reloc_in,
13691 bfd_elf32_swap_reloc_out,
13692 bfd_elf32_swap_reloca_in,
13693 bfd_elf32_swap_reloca_out
13694};
13695
252b5132
RH
13696#define ELF_ARCH bfd_arch_arm
13697#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
13698#ifdef __QNXTARGET__
13699#define ELF_MAXPAGESIZE 0x1000
13700#else
f21f3fe0 13701#define ELF_MAXPAGESIZE 0x8000
d0facd1b 13702#endif
b1342370 13703#define ELF_MINPAGESIZE 0x1000
24718e3b 13704#define ELF_COMMONPAGESIZE 0x1000
252b5132 13705
ba93b8ac
DJ
13706#define bfd_elf32_mkobject elf32_arm_mkobject
13707
99e4ae17
AJ
13708#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13709#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
13710#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13711#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13712#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
906e58ca 13713#define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
dc810e39 13714#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
157090f7 13715#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 13716#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 13717#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 13718#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 13719#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
957c6e41 13720#define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
b25e3d87 13721#define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
3e6b1042 13722#define bfd_elf32_bfd_final_link elf32_arm_final_link
252b5132
RH
13723
13724#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13725#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 13726#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
13727#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13728#define elf_backend_check_relocs elf32_arm_check_relocs
dc810e39 13729#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 13730#define elf_backend_write_section elf32_arm_write_section
252b5132 13731#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 13732#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
13733#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13734#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13735#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
74541ad4 13736#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 13737#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 13738#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 13739#define elf_backend_object_p elf32_arm_object_p
e16bb312 13740#define elf_backend_section_flags elf32_arm_section_flags
40a18ebd
NC
13741#define elf_backend_fake_sections elf32_arm_fake_sections
13742#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 13743#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 13744#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
b7693d02 13745#define elf_backend_symbol_processing elf32_arm_symbol_processing
0beaef2b 13746#define elf_backend_size_info elf32_arm_size_info
b294bdf8 13747#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
13748#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13749#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13750#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13751#define elf_backend_is_function_type elf32_arm_is_function_type
13752
13753#define elf_backend_can_refcount 1
13754#define elf_backend_can_gc_sections 1
13755#define elf_backend_plt_readonly 1
13756#define elf_backend_want_got_plt 1
13757#define elf_backend_want_plt_sym 0
13758#define elf_backend_may_use_rel_p 1
13759#define elf_backend_may_use_rela_p 0
4e7fd91e 13760#define elf_backend_default_use_rela_p 0
252b5132 13761
04f7c78d 13762#define elf_backend_got_header_size 12
04f7c78d 13763
906e58ca
NC
13764#undef elf_backend_obj_attrs_vendor
13765#define elf_backend_obj_attrs_vendor "aeabi"
13766#undef elf_backend_obj_attrs_section
13767#define elf_backend_obj_attrs_section ".ARM.attributes"
13768#undef elf_backend_obj_attrs_arg_type
13769#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13770#undef elf_backend_obj_attrs_section_type
104d59d1 13771#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
5aa6ff7c 13772#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
104d59d1 13773
252b5132 13774#include "elf32-target.h"
7f266840 13775
906e58ca 13776/* VxWorks Targets. */
4e7fd91e 13777
906e58ca 13778#undef TARGET_LITTLE_SYM
4e7fd91e 13779#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
906e58ca 13780#undef TARGET_LITTLE_NAME
4e7fd91e 13781#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 13782#undef TARGET_BIG_SYM
4e7fd91e 13783#define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
906e58ca 13784#undef TARGET_BIG_NAME
4e7fd91e
PB
13785#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13786
13787/* Like elf32_arm_link_hash_table_create -- but overrides
13788 appropriately for VxWorks. */
906e58ca 13789
4e7fd91e
PB
13790static struct bfd_link_hash_table *
13791elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
13792{
13793 struct bfd_link_hash_table *ret;
13794
13795 ret = elf32_arm_link_hash_table_create (abfd);
13796 if (ret)
13797 {
13798 struct elf32_arm_link_hash_table *htab
00a97672 13799 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 13800 htab->use_rel = 0;
00a97672 13801 htab->vxworks_p = 1;
4e7fd91e
PB
13802 }
13803 return ret;
906e58ca 13804}
4e7fd91e 13805
00a97672
RS
13806static void
13807elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
13808{
13809 elf32_arm_final_write_processing (abfd, linker);
13810 elf_vxworks_final_write_processing (abfd, linker);
13811}
13812
906e58ca 13813#undef elf32_bed
4e7fd91e
PB
13814#define elf32_bed elf32_arm_vxworks_bed
13815
906e58ca
NC
13816#undef bfd_elf32_bfd_link_hash_table_create
13817#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13818#undef elf_backend_add_symbol_hook
13819#define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13820#undef elf_backend_final_write_processing
13821#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13822#undef elf_backend_emit_relocs
13823#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 13824
906e58ca 13825#undef elf_backend_may_use_rel_p
00a97672 13826#define elf_backend_may_use_rel_p 0
906e58ca 13827#undef elf_backend_may_use_rela_p
00a97672 13828#define elf_backend_may_use_rela_p 1
906e58ca 13829#undef elf_backend_default_use_rela_p
00a97672 13830#define elf_backend_default_use_rela_p 1
906e58ca 13831#undef elf_backend_want_plt_sym
00a97672 13832#define elf_backend_want_plt_sym 1
906e58ca 13833#undef ELF_MAXPAGESIZE
00a97672 13834#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
13835
13836#include "elf32-target.h"
13837
13838
21d799b5
NC
13839/* Merge backend specific data from an object file to the output
13840 object file when linking. */
13841
13842static bfd_boolean
13843elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
13844{
13845 flagword out_flags;
13846 flagword in_flags;
13847 bfd_boolean flags_compatible = TRUE;
13848 asection *sec;
13849
13850 /* Check if we have the same endianess. */
13851 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13852 return FALSE;
13853
13854 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13855 return TRUE;
13856
13857 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
13858 return FALSE;
13859
13860 /* The input BFD must have had its flags initialised. */
13861 /* The following seems bogus to me -- The flags are initialized in
13862 the assembler but I don't think an elf_flags_init field is
13863 written into the object. */
13864 /* BFD_ASSERT (elf_flags_init (ibfd)); */
13865
13866 in_flags = elf_elfheader (ibfd)->e_flags;
13867 out_flags = elf_elfheader (obfd)->e_flags;
13868
13869 /* In theory there is no reason why we couldn't handle this. However
13870 in practice it isn't even close to working and there is no real
13871 reason to want it. */
13872 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
13873 && !(ibfd->flags & DYNAMIC)
13874 && (in_flags & EF_ARM_BE8))
13875 {
13876 _bfd_error_handler (_("error: %B is already in final BE8 format"),
13877 ibfd);
13878 return FALSE;
13879 }
13880
13881 if (!elf_flags_init (obfd))
13882 {
13883 /* If the input is the default architecture and had the default
13884 flags then do not bother setting the flags for the output
13885 architecture, instead allow future merges to do this. If no
13886 future merges ever set these flags then they will retain their
13887 uninitialised values, which surprise surprise, correspond
13888 to the default values. */
13889 if (bfd_get_arch_info (ibfd)->the_default
13890 && elf_elfheader (ibfd)->e_flags == 0)
13891 return TRUE;
13892
13893 elf_flags_init (obfd) = TRUE;
13894 elf_elfheader (obfd)->e_flags = in_flags;
13895
13896 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13897 && bfd_get_arch_info (obfd)->the_default)
13898 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
13899
13900 return TRUE;
13901 }
13902
13903 /* Determine what should happen if the input ARM architecture
13904 does not match the output ARM architecture. */
13905 if (! bfd_arm_merge_machines (ibfd, obfd))
13906 return FALSE;
13907
13908 /* Identical flags must be compatible. */
13909 if (in_flags == out_flags)
13910 return TRUE;
13911
13912 /* Check to see if the input BFD actually contains any sections. If
13913 not, its flags may not have been initialised either, but it
13914 cannot actually cause any incompatiblity. Do not short-circuit
13915 dynamic objects; their section list may be emptied by
13916 elf_link_add_object_symbols.
13917
13918 Also check to see if there are no code sections in the input.
13919 In this case there is no need to check for code specific flags.
13920 XXX - do we need to worry about floating-point format compatability
13921 in data sections ? */
13922 if (!(ibfd->flags & DYNAMIC))
13923 {
13924 bfd_boolean null_input_bfd = TRUE;
13925 bfd_boolean only_data_sections = TRUE;
13926
13927 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13928 {
13929 /* Ignore synthetic glue sections. */
13930 if (strcmp (sec->name, ".glue_7")
13931 && strcmp (sec->name, ".glue_7t"))
13932 {
13933 if ((bfd_get_section_flags (ibfd, sec)
13934 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
13935 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
13936 only_data_sections = FALSE;
13937
13938 null_input_bfd = FALSE;
13939 break;
13940 }
13941 }
13942
13943 if (null_input_bfd || only_data_sections)
13944 return TRUE;
13945 }
13946
13947 /* Complain about various flag mismatches. */
13948 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
13949 EF_ARM_EABI_VERSION (out_flags)))
13950 {
13951 _bfd_error_handler
13952 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
13953 ibfd, obfd,
13954 (in_flags & EF_ARM_EABIMASK) >> 24,
13955 (out_flags & EF_ARM_EABIMASK) >> 24);
13956 return FALSE;
13957 }
13958
13959 /* Not sure what needs to be checked for EABI versions >= 1. */
13960 /* VxWorks libraries do not use these flags. */
13961 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
13962 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
13963 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
13964 {
13965 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13966 {
13967 _bfd_error_handler
13968 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
13969 ibfd, obfd,
13970 in_flags & EF_ARM_APCS_26 ? 26 : 32,
13971 out_flags & EF_ARM_APCS_26 ? 26 : 32);
13972 flags_compatible = FALSE;
13973 }
13974
13975 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13976 {
13977 if (in_flags & EF_ARM_APCS_FLOAT)
13978 _bfd_error_handler
13979 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
13980 ibfd, obfd);
13981 else
13982 _bfd_error_handler
13983 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
13984 ibfd, obfd);
13985
13986 flags_compatible = FALSE;
13987 }
13988
13989 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
13990 {
13991 if (in_flags & EF_ARM_VFP_FLOAT)
13992 _bfd_error_handler
13993 (_("error: %B uses VFP instructions, whereas %B does not"),
13994 ibfd, obfd);
13995 else
13996 _bfd_error_handler
13997 (_("error: %B uses FPA instructions, whereas %B does not"),
13998 ibfd, obfd);
13999
14000 flags_compatible = FALSE;
14001 }
14002
14003 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
14004 {
14005 if (in_flags & EF_ARM_MAVERICK_FLOAT)
14006 _bfd_error_handler
14007 (_("error: %B uses Maverick instructions, whereas %B does not"),
14008 ibfd, obfd);
14009 else
14010 _bfd_error_handler
14011 (_("error: %B does not use Maverick instructions, whereas %B does"),
14012 ibfd, obfd);
14013
14014 flags_compatible = FALSE;
14015 }
14016
14017#ifdef EF_ARM_SOFT_FLOAT
14018 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
14019 {
14020 /* We can allow interworking between code that is VFP format
14021 layout, and uses either soft float or integer regs for
14022 passing floating point arguments and results. We already
14023 know that the APCS_FLOAT flags match; similarly for VFP
14024 flags. */
14025 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
14026 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
14027 {
14028 if (in_flags & EF_ARM_SOFT_FLOAT)
14029 _bfd_error_handler
14030 (_("error: %B uses software FP, whereas %B uses hardware FP"),
14031 ibfd, obfd);
14032 else
14033 _bfd_error_handler
14034 (_("error: %B uses hardware FP, whereas %B uses software FP"),
14035 ibfd, obfd);
14036
14037 flags_compatible = FALSE;
14038 }
14039 }
14040#endif
14041
14042 /* Interworking mismatch is only a warning. */
14043 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14044 {
14045 if (in_flags & EF_ARM_INTERWORK)
14046 {
14047 _bfd_error_handler
14048 (_("Warning: %B supports interworking, whereas %B does not"),
14049 ibfd, obfd);
14050 }
14051 else
14052 {
14053 _bfd_error_handler
14054 (_("Warning: %B does not support interworking, whereas %B does"),
14055 ibfd, obfd);
14056 }
14057 }
14058 }
14059
14060 return flags_compatible;
14061}
14062
14063
906e58ca 14064/* Symbian OS Targets. */
7f266840 14065
906e58ca 14066#undef TARGET_LITTLE_SYM
7f266840 14067#define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
906e58ca 14068#undef TARGET_LITTLE_NAME
7f266840 14069#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 14070#undef TARGET_BIG_SYM
7f266840 14071#define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
906e58ca 14072#undef TARGET_BIG_NAME
7f266840
DJ
14073#define TARGET_BIG_NAME "elf32-bigarm-symbian"
14074
14075/* Like elf32_arm_link_hash_table_create -- but overrides
14076 appropriately for Symbian OS. */
906e58ca 14077
7f266840
DJ
14078static struct bfd_link_hash_table *
14079elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14080{
14081 struct bfd_link_hash_table *ret;
14082
14083 ret = elf32_arm_link_hash_table_create (abfd);
14084 if (ret)
14085 {
14086 struct elf32_arm_link_hash_table *htab
14087 = (struct elf32_arm_link_hash_table *)ret;
14088 /* There is no PLT header for Symbian OS. */
14089 htab->plt_header_size = 0;
95720a86
DJ
14090 /* The PLT entries are each one instruction and one word. */
14091 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 14092 htab->symbian_p = 1;
33bfe774
JB
14093 /* Symbian uses armv5t or above, so use_blx is always true. */
14094 htab->use_blx = 1;
67687978 14095 htab->root.is_relocatable_executable = 1;
7f266840
DJ
14096 }
14097 return ret;
906e58ca 14098}
7f266840 14099
b35d266b 14100static const struct bfd_elf_special_section
551b43fd 14101elf32_arm_symbian_special_sections[] =
7f266840 14102{
5cd3778d
MM
14103 /* In a BPABI executable, the dynamic linking sections do not go in
14104 the loadable read-only segment. The post-linker may wish to
14105 refer to these sections, but they are not part of the final
14106 program image. */
0112cd26
NC
14107 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
14108 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
14109 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
14110 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
14111 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
14112 /* These sections do not need to be writable as the SymbianOS
14113 postlinker will arrange things so that no dynamic relocation is
14114 required. */
0112cd26
NC
14115 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
14116 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
14117 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
14118 { NULL, 0, 0, 0, 0 }
7f266840
DJ
14119};
14120
c3c76620 14121static void
906e58ca 14122elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 14123 struct bfd_link_info *link_info)
c3c76620
MM
14124{
14125 /* BPABI objects are never loaded directly by an OS kernel; they are
14126 processed by a postlinker first, into an OS-specific format. If
14127 the D_PAGED bit is set on the file, BFD will align segments on
14128 page boundaries, so that an OS can directly map the file. With
14129 BPABI objects, that just results in wasted space. In addition,
14130 because we clear the D_PAGED bit, map_sections_to_segments will
14131 recognize that the program headers should not be mapped into any
14132 loadable segment. */
14133 abfd->flags &= ~D_PAGED;
906e58ca 14134 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 14135}
7f266840
DJ
14136
14137static bfd_boolean
906e58ca 14138elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 14139 struct bfd_link_info *info)
7f266840
DJ
14140{
14141 struct elf_segment_map *m;
14142 asection *dynsec;
14143
7f266840
DJ
14144 /* BPABI shared libraries and executables should have a PT_DYNAMIC
14145 segment. However, because the .dynamic section is not marked
14146 with SEC_LOAD, the generic ELF code will not create such a
14147 segment. */
14148 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
14149 if (dynsec)
14150 {
8ded5a0f
AM
14151 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
14152 if (m->p_type == PT_DYNAMIC)
14153 break;
14154
14155 if (m == NULL)
14156 {
14157 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
14158 m->next = elf_tdata (abfd)->segment_map;
14159 elf_tdata (abfd)->segment_map = m;
14160 }
7f266840
DJ
14161 }
14162
b294bdf8
MM
14163 /* Also call the generic arm routine. */
14164 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
14165}
14166
95720a86
DJ
14167/* Return address for Ith PLT stub in section PLT, for relocation REL
14168 or (bfd_vma) -1 if it should not be included. */
14169
14170static bfd_vma
14171elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
14172 const arelent *rel ATTRIBUTE_UNUSED)
14173{
14174 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
14175}
14176
14177
8029a119 14178#undef elf32_bed
7f266840
DJ
14179#define elf32_bed elf32_arm_symbian_bed
14180
14181/* The dynamic sections are not allocated on SymbianOS; the postlinker
14182 will process them and then discard them. */
906e58ca 14183#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
14184#define ELF_DYNAMIC_SEC_FLAGS \
14185 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14186
00a97672 14187#undef elf_backend_add_symbol_hook
00a97672 14188#undef elf_backend_emit_relocs
c3c76620 14189
906e58ca
NC
14190#undef bfd_elf32_bfd_link_hash_table_create
14191#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
14192#undef elf_backend_special_sections
14193#define elf_backend_special_sections elf32_arm_symbian_special_sections
14194#undef elf_backend_begin_write_processing
14195#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
14196#undef elf_backend_final_write_processing
14197#define elf_backend_final_write_processing elf32_arm_final_write_processing
14198
14199#undef elf_backend_modify_segment_map
7f266840
DJ
14200#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14201
14202/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 14203#undef elf_backend_got_header_size
7f266840
DJ
14204#define elf_backend_got_header_size 0
14205
14206/* Similarly, there is no .got.plt section. */
906e58ca 14207#undef elf_backend_want_got_plt
7f266840
DJ
14208#define elf_backend_want_got_plt 0
14209
906e58ca 14210#undef elf_backend_plt_sym_val
95720a86
DJ
14211#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
14212
906e58ca 14213#undef elf_backend_may_use_rel_p
00a97672 14214#define elf_backend_may_use_rel_p 1
906e58ca 14215#undef elf_backend_may_use_rela_p
00a97672 14216#define elf_backend_may_use_rela_p 0
906e58ca 14217#undef elf_backend_default_use_rela_p
00a97672 14218#define elf_backend_default_use_rela_p 0
906e58ca 14219#undef elf_backend_want_plt_sym
00a97672 14220#define elf_backend_want_plt_sym 0
906e58ca 14221#undef ELF_MAXPAGESIZE
00a97672 14222#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 14223
7f266840 14224#include "elf32-target.h"
This page took 2.025638 seconds and 4 git commands to generate.