* config/tc-arm.c: Move as.h to start of file.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
e44a2c9c
AM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
252b5132 21
2468f9c9
PB
22#include <limits.h>
23
7f266840 24#include "sysdep.h"
3db64b00 25#include "bfd.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
00a97672 29#include "elf-vxworks.h"
ee065d83 30#include "elf/arm.h"
7f266840 31
00a97672
RS
32/* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34#define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37/* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39#define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44/* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46#define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51/* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53#define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
7f266840
DJ
58#define elf_info_to_howto 0
59#define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61#define ARM_ELF_ABI_VERSION 0
62#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
24718e3b 64static struct elf_backend_data elf32_arm_vxworks_bed;
00a97672 65
3e6b1042
DJ
66static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
67 struct bfd_link_info *link_info,
68 asection *sec,
69 bfd_byte *contents);
70
7f266840
DJ
71/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
72 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
73 in that slot. */
74
c19d1205 75static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 76{
8029a119 77 /* No relocation. */
7f266840
DJ
78 HOWTO (R_ARM_NONE, /* type */
79 0, /* rightshift */
80 0, /* size (0 = byte, 1 = short, 2 = long) */
81 0, /* bitsize */
82 FALSE, /* pc_relative */
83 0, /* bitpos */
84 complain_overflow_dont,/* complain_on_overflow */
85 bfd_elf_generic_reloc, /* special_function */
86 "R_ARM_NONE", /* name */
87 FALSE, /* partial_inplace */
88 0, /* src_mask */
89 0, /* dst_mask */
90 FALSE), /* pcrel_offset */
91
92 HOWTO (R_ARM_PC24, /* type */
93 2, /* rightshift */
94 2, /* size (0 = byte, 1 = short, 2 = long) */
95 24, /* bitsize */
96 TRUE, /* pc_relative */
97 0, /* bitpos */
98 complain_overflow_signed,/* complain_on_overflow */
99 bfd_elf_generic_reloc, /* special_function */
100 "R_ARM_PC24", /* name */
101 FALSE, /* partial_inplace */
102 0x00ffffff, /* src_mask */
103 0x00ffffff, /* dst_mask */
104 TRUE), /* pcrel_offset */
105
106 /* 32 bit absolute */
107 HOWTO (R_ARM_ABS32, /* type */
108 0, /* rightshift */
109 2, /* size (0 = byte, 1 = short, 2 = long) */
110 32, /* bitsize */
111 FALSE, /* pc_relative */
112 0, /* bitpos */
113 complain_overflow_bitfield,/* complain_on_overflow */
114 bfd_elf_generic_reloc, /* special_function */
115 "R_ARM_ABS32", /* name */
116 FALSE, /* partial_inplace */
117 0xffffffff, /* src_mask */
118 0xffffffff, /* dst_mask */
119 FALSE), /* pcrel_offset */
120
121 /* standard 32bit pc-relative reloc */
122 HOWTO (R_ARM_REL32, /* type */
123 0, /* rightshift */
124 2, /* size (0 = byte, 1 = short, 2 = long) */
125 32, /* bitsize */
126 TRUE, /* pc_relative */
127 0, /* bitpos */
128 complain_overflow_bitfield,/* complain_on_overflow */
129 bfd_elf_generic_reloc, /* special_function */
130 "R_ARM_REL32", /* name */
131 FALSE, /* partial_inplace */
132 0xffffffff, /* src_mask */
133 0xffffffff, /* dst_mask */
134 TRUE), /* pcrel_offset */
135
c19d1205 136 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 137 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
138 0, /* rightshift */
139 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
140 32, /* bitsize */
141 TRUE, /* pc_relative */
7f266840 142 0, /* bitpos */
4962c51a 143 complain_overflow_dont,/* complain_on_overflow */
7f266840 144 bfd_elf_generic_reloc, /* special_function */
4962c51a 145 "R_ARM_LDR_PC_G0", /* name */
7f266840 146 FALSE, /* partial_inplace */
4962c51a
MS
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
149 TRUE), /* pcrel_offset */
7f266840
DJ
150
151 /* 16 bit absolute */
152 HOWTO (R_ARM_ABS16, /* type */
153 0, /* rightshift */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
155 16, /* bitsize */
156 FALSE, /* pc_relative */
157 0, /* bitpos */
158 complain_overflow_bitfield,/* complain_on_overflow */
159 bfd_elf_generic_reloc, /* special_function */
160 "R_ARM_ABS16", /* name */
161 FALSE, /* partial_inplace */
162 0x0000ffff, /* src_mask */
163 0x0000ffff, /* dst_mask */
164 FALSE), /* pcrel_offset */
165
166 /* 12 bit absolute */
167 HOWTO (R_ARM_ABS12, /* type */
168 0, /* rightshift */
169 2, /* size (0 = byte, 1 = short, 2 = long) */
170 12, /* bitsize */
171 FALSE, /* pc_relative */
172 0, /* bitpos */
173 complain_overflow_bitfield,/* complain_on_overflow */
174 bfd_elf_generic_reloc, /* special_function */
175 "R_ARM_ABS12", /* name */
176 FALSE, /* partial_inplace */
00a97672
RS
177 0x00000fff, /* src_mask */
178 0x00000fff, /* dst_mask */
7f266840
DJ
179 FALSE), /* pcrel_offset */
180
181 HOWTO (R_ARM_THM_ABS5, /* type */
182 6, /* rightshift */
183 1, /* size (0 = byte, 1 = short, 2 = long) */
184 5, /* bitsize */
185 FALSE, /* pc_relative */
186 0, /* bitpos */
187 complain_overflow_bitfield,/* complain_on_overflow */
188 bfd_elf_generic_reloc, /* special_function */
189 "R_ARM_THM_ABS5", /* name */
190 FALSE, /* partial_inplace */
191 0x000007e0, /* src_mask */
192 0x000007e0, /* dst_mask */
193 FALSE), /* pcrel_offset */
194
195 /* 8 bit absolute */
196 HOWTO (R_ARM_ABS8, /* type */
197 0, /* rightshift */
198 0, /* size (0 = byte, 1 = short, 2 = long) */
199 8, /* bitsize */
200 FALSE, /* pc_relative */
201 0, /* bitpos */
202 complain_overflow_bitfield,/* complain_on_overflow */
203 bfd_elf_generic_reloc, /* special_function */
204 "R_ARM_ABS8", /* name */
205 FALSE, /* partial_inplace */
206 0x000000ff, /* src_mask */
207 0x000000ff, /* dst_mask */
208 FALSE), /* pcrel_offset */
209
210 HOWTO (R_ARM_SBREL32, /* type */
211 0, /* rightshift */
212 2, /* size (0 = byte, 1 = short, 2 = long) */
213 32, /* bitsize */
214 FALSE, /* pc_relative */
215 0, /* bitpos */
216 complain_overflow_dont,/* complain_on_overflow */
217 bfd_elf_generic_reloc, /* special_function */
218 "R_ARM_SBREL32", /* name */
219 FALSE, /* partial_inplace */
220 0xffffffff, /* src_mask */
221 0xffffffff, /* dst_mask */
222 FALSE), /* pcrel_offset */
223
c19d1205 224 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
225 1, /* rightshift */
226 2, /* size (0 = byte, 1 = short, 2 = long) */
e95de063 227 25, /* bitsize */
7f266840
DJ
228 TRUE, /* pc_relative */
229 0, /* bitpos */
230 complain_overflow_signed,/* complain_on_overflow */
231 bfd_elf_generic_reloc, /* special_function */
c19d1205 232 "R_ARM_THM_CALL", /* name */
7f266840
DJ
233 FALSE, /* partial_inplace */
234 0x07ff07ff, /* src_mask */
235 0x07ff07ff, /* dst_mask */
236 TRUE), /* pcrel_offset */
237
238 HOWTO (R_ARM_THM_PC8, /* type */
239 1, /* rightshift */
240 1, /* size (0 = byte, 1 = short, 2 = long) */
241 8, /* bitsize */
242 TRUE, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_signed,/* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_ARM_THM_PC8", /* name */
247 FALSE, /* partial_inplace */
248 0x000000ff, /* src_mask */
249 0x000000ff, /* dst_mask */
250 TRUE), /* pcrel_offset */
251
c19d1205 252 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
253 1, /* rightshift */
254 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
255 32, /* bitsize */
256 FALSE, /* pc_relative */
7f266840
DJ
257 0, /* bitpos */
258 complain_overflow_signed,/* complain_on_overflow */
259 bfd_elf_generic_reloc, /* special_function */
c19d1205 260 "R_ARM_BREL_ADJ", /* name */
7f266840 261 FALSE, /* partial_inplace */
c19d1205
ZW
262 0xffffffff, /* src_mask */
263 0xffffffff, /* dst_mask */
264 FALSE), /* pcrel_offset */
7f266840
DJ
265
266 HOWTO (R_ARM_SWI24, /* type */
267 0, /* rightshift */
268 0, /* size (0 = byte, 1 = short, 2 = long) */
269 0, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_signed,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_ARM_SWI24", /* name */
275 FALSE, /* partial_inplace */
276 0x00000000, /* src_mask */
277 0x00000000, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 HOWTO (R_ARM_THM_SWI8, /* type */
281 0, /* rightshift */
282 0, /* size (0 = byte, 1 = short, 2 = long) */
283 0, /* bitsize */
284 FALSE, /* pc_relative */
285 0, /* bitpos */
286 complain_overflow_signed,/* complain_on_overflow */
287 bfd_elf_generic_reloc, /* special_function */
288 "R_ARM_SWI8", /* name */
289 FALSE, /* partial_inplace */
290 0x00000000, /* src_mask */
291 0x00000000, /* dst_mask */
292 FALSE), /* pcrel_offset */
293
294 /* BLX instruction for the ARM. */
295 HOWTO (R_ARM_XPC25, /* type */
296 2, /* rightshift */
297 2, /* size (0 = byte, 1 = short, 2 = long) */
298 25, /* bitsize */
299 TRUE, /* pc_relative */
300 0, /* bitpos */
301 complain_overflow_signed,/* complain_on_overflow */
302 bfd_elf_generic_reloc, /* special_function */
303 "R_ARM_XPC25", /* name */
304 FALSE, /* partial_inplace */
305 0x00ffffff, /* src_mask */
306 0x00ffffff, /* dst_mask */
307 TRUE), /* pcrel_offset */
308
309 /* BLX instruction for the Thumb. */
310 HOWTO (R_ARM_THM_XPC22, /* type */
311 2, /* rightshift */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
313 22, /* bitsize */
314 TRUE, /* pc_relative */
315 0, /* bitpos */
316 complain_overflow_signed,/* complain_on_overflow */
317 bfd_elf_generic_reloc, /* special_function */
318 "R_ARM_THM_XPC22", /* name */
319 FALSE, /* partial_inplace */
320 0x07ff07ff, /* src_mask */
321 0x07ff07ff, /* dst_mask */
322 TRUE), /* pcrel_offset */
323
ba93b8ac 324 /* Dynamic TLS relocations. */
7f266840 325
ba93b8ac
DJ
326 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
327 0, /* rightshift */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
329 32, /* bitsize */
330 FALSE, /* pc_relative */
331 0, /* bitpos */
332 complain_overflow_bitfield,/* complain_on_overflow */
333 bfd_elf_generic_reloc, /* special_function */
334 "R_ARM_TLS_DTPMOD32", /* name */
335 TRUE, /* partial_inplace */
336 0xffffffff, /* src_mask */
337 0xffffffff, /* dst_mask */
338 FALSE), /* pcrel_offset */
7f266840 339
ba93b8ac
DJ
340 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
341 0, /* rightshift */
342 2, /* size (0 = byte, 1 = short, 2 = long) */
343 32, /* bitsize */
344 FALSE, /* pc_relative */
345 0, /* bitpos */
346 complain_overflow_bitfield,/* complain_on_overflow */
347 bfd_elf_generic_reloc, /* special_function */
348 "R_ARM_TLS_DTPOFF32", /* name */
349 TRUE, /* partial_inplace */
350 0xffffffff, /* src_mask */
351 0xffffffff, /* dst_mask */
352 FALSE), /* pcrel_offset */
7f266840 353
ba93b8ac
DJ
354 HOWTO (R_ARM_TLS_TPOFF32, /* type */
355 0, /* rightshift */
356 2, /* size (0 = byte, 1 = short, 2 = long) */
357 32, /* bitsize */
358 FALSE, /* pc_relative */
359 0, /* bitpos */
360 complain_overflow_bitfield,/* complain_on_overflow */
361 bfd_elf_generic_reloc, /* special_function */
362 "R_ARM_TLS_TPOFF32", /* name */
363 TRUE, /* partial_inplace */
364 0xffffffff, /* src_mask */
365 0xffffffff, /* dst_mask */
366 FALSE), /* pcrel_offset */
7f266840
DJ
367
368 /* Relocs used in ARM Linux */
369
370 HOWTO (R_ARM_COPY, /* type */
371 0, /* rightshift */
372 2, /* size (0 = byte, 1 = short, 2 = long) */
373 32, /* bitsize */
374 FALSE, /* pc_relative */
375 0, /* bitpos */
376 complain_overflow_bitfield,/* complain_on_overflow */
377 bfd_elf_generic_reloc, /* special_function */
378 "R_ARM_COPY", /* name */
379 TRUE, /* partial_inplace */
380 0xffffffff, /* src_mask */
381 0xffffffff, /* dst_mask */
382 FALSE), /* pcrel_offset */
383
384 HOWTO (R_ARM_GLOB_DAT, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 32, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_bitfield,/* complain_on_overflow */
391 bfd_elf_generic_reloc, /* special_function */
392 "R_ARM_GLOB_DAT", /* name */
393 TRUE, /* partial_inplace */
394 0xffffffff, /* src_mask */
395 0xffffffff, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 HOWTO (R_ARM_JUMP_SLOT, /* type */
399 0, /* rightshift */
400 2, /* size (0 = byte, 1 = short, 2 = long) */
401 32, /* bitsize */
402 FALSE, /* pc_relative */
403 0, /* bitpos */
404 complain_overflow_bitfield,/* complain_on_overflow */
405 bfd_elf_generic_reloc, /* special_function */
406 "R_ARM_JUMP_SLOT", /* name */
407 TRUE, /* partial_inplace */
408 0xffffffff, /* src_mask */
409 0xffffffff, /* dst_mask */
410 FALSE), /* pcrel_offset */
411
412 HOWTO (R_ARM_RELATIVE, /* type */
413 0, /* rightshift */
414 2, /* size (0 = byte, 1 = short, 2 = long) */
415 32, /* bitsize */
416 FALSE, /* pc_relative */
417 0, /* bitpos */
418 complain_overflow_bitfield,/* complain_on_overflow */
419 bfd_elf_generic_reloc, /* special_function */
420 "R_ARM_RELATIVE", /* name */
421 TRUE, /* partial_inplace */
422 0xffffffff, /* src_mask */
423 0xffffffff, /* dst_mask */
424 FALSE), /* pcrel_offset */
425
c19d1205 426 HOWTO (R_ARM_GOTOFF32, /* type */
7f266840
DJ
427 0, /* rightshift */
428 2, /* size (0 = byte, 1 = short, 2 = long) */
429 32, /* bitsize */
430 FALSE, /* pc_relative */
431 0, /* bitpos */
432 complain_overflow_bitfield,/* complain_on_overflow */
433 bfd_elf_generic_reloc, /* special_function */
c19d1205 434 "R_ARM_GOTOFF32", /* name */
7f266840
DJ
435 TRUE, /* partial_inplace */
436 0xffffffff, /* src_mask */
437 0xffffffff, /* dst_mask */
438 FALSE), /* pcrel_offset */
439
440 HOWTO (R_ARM_GOTPC, /* type */
441 0, /* rightshift */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
443 32, /* bitsize */
444 TRUE, /* pc_relative */
445 0, /* bitpos */
446 complain_overflow_bitfield,/* complain_on_overflow */
447 bfd_elf_generic_reloc, /* special_function */
448 "R_ARM_GOTPC", /* name */
449 TRUE, /* partial_inplace */
450 0xffffffff, /* src_mask */
451 0xffffffff, /* dst_mask */
452 TRUE), /* pcrel_offset */
453
454 HOWTO (R_ARM_GOT32, /* type */
455 0, /* rightshift */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
457 32, /* bitsize */
458 FALSE, /* pc_relative */
459 0, /* bitpos */
460 complain_overflow_bitfield,/* complain_on_overflow */
461 bfd_elf_generic_reloc, /* special_function */
462 "R_ARM_GOT32", /* name */
463 TRUE, /* partial_inplace */
464 0xffffffff, /* src_mask */
465 0xffffffff, /* dst_mask */
466 FALSE), /* pcrel_offset */
467
468 HOWTO (R_ARM_PLT32, /* type */
469 2, /* rightshift */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
ce490eda 471 24, /* bitsize */
7f266840
DJ
472 TRUE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_bitfield,/* complain_on_overflow */
475 bfd_elf_generic_reloc, /* special_function */
476 "R_ARM_PLT32", /* name */
ce490eda 477 FALSE, /* partial_inplace */
7f266840
DJ
478 0x00ffffff, /* src_mask */
479 0x00ffffff, /* dst_mask */
480 TRUE), /* pcrel_offset */
481
482 HOWTO (R_ARM_CALL, /* type */
483 2, /* rightshift */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
485 24, /* bitsize */
486 TRUE, /* pc_relative */
487 0, /* bitpos */
488 complain_overflow_signed,/* complain_on_overflow */
489 bfd_elf_generic_reloc, /* special_function */
490 "R_ARM_CALL", /* name */
491 FALSE, /* partial_inplace */
492 0x00ffffff, /* src_mask */
493 0x00ffffff, /* dst_mask */
494 TRUE), /* pcrel_offset */
495
496 HOWTO (R_ARM_JUMP24, /* type */
497 2, /* rightshift */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
499 24, /* bitsize */
500 TRUE, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_signed,/* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
504 "R_ARM_JUMP24", /* name */
505 FALSE, /* partial_inplace */
506 0x00ffffff, /* src_mask */
507 0x00ffffff, /* dst_mask */
508 TRUE), /* pcrel_offset */
509
c19d1205
ZW
510 HOWTO (R_ARM_THM_JUMP24, /* type */
511 1, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 24, /* bitsize */
514 TRUE, /* pc_relative */
7f266840 515 0, /* bitpos */
c19d1205 516 complain_overflow_signed,/* complain_on_overflow */
7f266840 517 bfd_elf_generic_reloc, /* special_function */
c19d1205 518 "R_ARM_THM_JUMP24", /* name */
7f266840 519 FALSE, /* partial_inplace */
c19d1205
ZW
520 0x07ff2fff, /* src_mask */
521 0x07ff2fff, /* dst_mask */
522 TRUE), /* pcrel_offset */
7f266840 523
c19d1205 524 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 525 0, /* rightshift */
c19d1205
ZW
526 2, /* size (0 = byte, 1 = short, 2 = long) */
527 32, /* bitsize */
7f266840
DJ
528 FALSE, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_dont,/* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
c19d1205 532 "R_ARM_BASE_ABS", /* name */
7f266840 533 FALSE, /* partial_inplace */
c19d1205
ZW
534 0xffffffff, /* src_mask */
535 0xffffffff, /* dst_mask */
7f266840
DJ
536 FALSE), /* pcrel_offset */
537
538 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
539 0, /* rightshift */
540 2, /* size (0 = byte, 1 = short, 2 = long) */
541 12, /* bitsize */
542 TRUE, /* pc_relative */
543 0, /* bitpos */
544 complain_overflow_dont,/* complain_on_overflow */
545 bfd_elf_generic_reloc, /* special_function */
546 "R_ARM_ALU_PCREL_7_0", /* name */
547 FALSE, /* partial_inplace */
548 0x00000fff, /* src_mask */
549 0x00000fff, /* dst_mask */
550 TRUE), /* pcrel_offset */
551
552 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
553 0, /* rightshift */
554 2, /* size (0 = byte, 1 = short, 2 = long) */
555 12, /* bitsize */
556 TRUE, /* pc_relative */
557 8, /* bitpos */
558 complain_overflow_dont,/* complain_on_overflow */
559 bfd_elf_generic_reloc, /* special_function */
560 "R_ARM_ALU_PCREL_15_8",/* name */
561 FALSE, /* partial_inplace */
562 0x00000fff, /* src_mask */
563 0x00000fff, /* dst_mask */
564 TRUE), /* pcrel_offset */
565
566 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
567 0, /* rightshift */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
569 12, /* bitsize */
570 TRUE, /* pc_relative */
571 16, /* bitpos */
572 complain_overflow_dont,/* complain_on_overflow */
573 bfd_elf_generic_reloc, /* special_function */
574 "R_ARM_ALU_PCREL_23_15",/* name */
575 FALSE, /* partial_inplace */
576 0x00000fff, /* src_mask */
577 0x00000fff, /* dst_mask */
578 TRUE), /* pcrel_offset */
579
580 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
581 0, /* rightshift */
582 2, /* size (0 = byte, 1 = short, 2 = long) */
583 12, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont,/* complain_on_overflow */
587 bfd_elf_generic_reloc, /* special_function */
588 "R_ARM_LDR_SBREL_11_0",/* name */
589 FALSE, /* partial_inplace */
590 0x00000fff, /* src_mask */
591 0x00000fff, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
595 0, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 8, /* bitsize */
598 FALSE, /* pc_relative */
599 12, /* bitpos */
600 complain_overflow_dont,/* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 "R_ARM_ALU_SBREL_19_12",/* name */
603 FALSE, /* partial_inplace */
604 0x000ff000, /* src_mask */
605 0x000ff000, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
609 0, /* rightshift */
610 2, /* size (0 = byte, 1 = short, 2 = long) */
611 8, /* bitsize */
612 FALSE, /* pc_relative */
613 20, /* bitpos */
614 complain_overflow_dont,/* complain_on_overflow */
615 bfd_elf_generic_reloc, /* special_function */
616 "R_ARM_ALU_SBREL_27_20",/* name */
617 FALSE, /* partial_inplace */
618 0x0ff00000, /* src_mask */
619 0x0ff00000, /* dst_mask */
620 FALSE), /* pcrel_offset */
621
622 HOWTO (R_ARM_TARGET1, /* type */
623 0, /* rightshift */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
625 32, /* bitsize */
626 FALSE, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont,/* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
630 "R_ARM_TARGET1", /* name */
631 FALSE, /* partial_inplace */
632 0xffffffff, /* src_mask */
633 0xffffffff, /* dst_mask */
634 FALSE), /* pcrel_offset */
635
636 HOWTO (R_ARM_ROSEGREL32, /* type */
637 0, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 32, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont,/* complain_on_overflow */
643 bfd_elf_generic_reloc, /* special_function */
644 "R_ARM_ROSEGREL32", /* name */
645 FALSE, /* partial_inplace */
646 0xffffffff, /* src_mask */
647 0xffffffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 HOWTO (R_ARM_V4BX, /* type */
651 0, /* rightshift */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
653 32, /* bitsize */
654 FALSE, /* pc_relative */
655 0, /* bitpos */
656 complain_overflow_dont,/* complain_on_overflow */
657 bfd_elf_generic_reloc, /* special_function */
658 "R_ARM_V4BX", /* name */
659 FALSE, /* partial_inplace */
660 0xffffffff, /* src_mask */
661 0xffffffff, /* dst_mask */
662 FALSE), /* pcrel_offset */
663
664 HOWTO (R_ARM_TARGET2, /* type */
665 0, /* rightshift */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
667 32, /* bitsize */
668 FALSE, /* pc_relative */
669 0, /* bitpos */
670 complain_overflow_signed,/* complain_on_overflow */
671 bfd_elf_generic_reloc, /* special_function */
672 "R_ARM_TARGET2", /* name */
673 FALSE, /* partial_inplace */
674 0xffffffff, /* src_mask */
675 0xffffffff, /* dst_mask */
676 TRUE), /* pcrel_offset */
677
678 HOWTO (R_ARM_PREL31, /* type */
679 0, /* rightshift */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
681 31, /* bitsize */
682 TRUE, /* pc_relative */
683 0, /* bitpos */
684 complain_overflow_signed,/* complain_on_overflow */
685 bfd_elf_generic_reloc, /* special_function */
686 "R_ARM_PREL31", /* name */
687 FALSE, /* partial_inplace */
688 0x7fffffff, /* src_mask */
689 0x7fffffff, /* dst_mask */
690 TRUE), /* pcrel_offset */
c19d1205
ZW
691
692 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
693 0, /* rightshift */
694 2, /* size (0 = byte, 1 = short, 2 = long) */
695 16, /* bitsize */
696 FALSE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_dont,/* complain_on_overflow */
699 bfd_elf_generic_reloc, /* special_function */
700 "R_ARM_MOVW_ABS_NC", /* name */
701 FALSE, /* partial_inplace */
39623e12
PB
702 0x000f0fff, /* src_mask */
703 0x000f0fff, /* dst_mask */
c19d1205
ZW
704 FALSE), /* pcrel_offset */
705
706 HOWTO (R_ARM_MOVT_ABS, /* type */
707 0, /* rightshift */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
709 16, /* bitsize */
710 FALSE, /* pc_relative */
711 0, /* bitpos */
712 complain_overflow_bitfield,/* complain_on_overflow */
713 bfd_elf_generic_reloc, /* special_function */
714 "R_ARM_MOVT_ABS", /* name */
715 FALSE, /* partial_inplace */
39623e12
PB
716 0x000f0fff, /* src_mask */
717 0x000f0fff, /* dst_mask */
c19d1205
ZW
718 FALSE), /* pcrel_offset */
719
720 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
721 0, /* rightshift */
722 2, /* size (0 = byte, 1 = short, 2 = long) */
723 16, /* bitsize */
724 TRUE, /* pc_relative */
725 0, /* bitpos */
726 complain_overflow_dont,/* complain_on_overflow */
727 bfd_elf_generic_reloc, /* special_function */
728 "R_ARM_MOVW_PREL_NC", /* name */
729 FALSE, /* partial_inplace */
39623e12
PB
730 0x000f0fff, /* src_mask */
731 0x000f0fff, /* dst_mask */
c19d1205
ZW
732 TRUE), /* pcrel_offset */
733
734 HOWTO (R_ARM_MOVT_PREL, /* type */
735 0, /* rightshift */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
737 16, /* bitsize */
738 TRUE, /* pc_relative */
739 0, /* bitpos */
740 complain_overflow_bitfield,/* complain_on_overflow */
741 bfd_elf_generic_reloc, /* special_function */
742 "R_ARM_MOVT_PREL", /* name */
743 FALSE, /* partial_inplace */
39623e12
PB
744 0x000f0fff, /* src_mask */
745 0x000f0fff, /* dst_mask */
c19d1205
ZW
746 TRUE), /* pcrel_offset */
747
748 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
749 0, /* rightshift */
750 2, /* size (0 = byte, 1 = short, 2 = long) */
751 16, /* bitsize */
752 FALSE, /* pc_relative */
753 0, /* bitpos */
754 complain_overflow_dont,/* complain_on_overflow */
755 bfd_elf_generic_reloc, /* special_function */
756 "R_ARM_THM_MOVW_ABS_NC",/* name */
757 FALSE, /* partial_inplace */
758 0x040f70ff, /* src_mask */
759 0x040f70ff, /* dst_mask */
760 FALSE), /* pcrel_offset */
761
762 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
763 0, /* rightshift */
764 2, /* size (0 = byte, 1 = short, 2 = long) */
765 16, /* bitsize */
766 FALSE, /* pc_relative */
767 0, /* bitpos */
768 complain_overflow_bitfield,/* complain_on_overflow */
769 bfd_elf_generic_reloc, /* special_function */
770 "R_ARM_THM_MOVT_ABS", /* name */
771 FALSE, /* partial_inplace */
772 0x040f70ff, /* src_mask */
773 0x040f70ff, /* dst_mask */
774 FALSE), /* pcrel_offset */
775
776 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
777 0, /* rightshift */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
779 16, /* bitsize */
780 TRUE, /* pc_relative */
781 0, /* bitpos */
782 complain_overflow_dont,/* complain_on_overflow */
783 bfd_elf_generic_reloc, /* special_function */
784 "R_ARM_THM_MOVW_PREL_NC",/* name */
785 FALSE, /* partial_inplace */
786 0x040f70ff, /* src_mask */
787 0x040f70ff, /* dst_mask */
788 TRUE), /* pcrel_offset */
789
790 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
791 0, /* rightshift */
792 2, /* size (0 = byte, 1 = short, 2 = long) */
793 16, /* bitsize */
794 TRUE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_bitfield,/* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
798 "R_ARM_THM_MOVT_PREL", /* name */
799 FALSE, /* partial_inplace */
800 0x040f70ff, /* src_mask */
801 0x040f70ff, /* dst_mask */
802 TRUE), /* pcrel_offset */
803
804 HOWTO (R_ARM_THM_JUMP19, /* type */
805 1, /* rightshift */
806 2, /* size (0 = byte, 1 = short, 2 = long) */
807 19, /* bitsize */
808 TRUE, /* pc_relative */
809 0, /* bitpos */
810 complain_overflow_signed,/* complain_on_overflow */
811 bfd_elf_generic_reloc, /* special_function */
812 "R_ARM_THM_JUMP19", /* name */
813 FALSE, /* partial_inplace */
814 0x043f2fff, /* src_mask */
815 0x043f2fff, /* dst_mask */
816 TRUE), /* pcrel_offset */
817
818 HOWTO (R_ARM_THM_JUMP6, /* type */
819 1, /* rightshift */
820 1, /* size (0 = byte, 1 = short, 2 = long) */
821 6, /* bitsize */
822 TRUE, /* pc_relative */
823 0, /* bitpos */
824 complain_overflow_unsigned,/* complain_on_overflow */
825 bfd_elf_generic_reloc, /* special_function */
826 "R_ARM_THM_JUMP6", /* name */
827 FALSE, /* partial_inplace */
828 0x02f8, /* src_mask */
829 0x02f8, /* dst_mask */
830 TRUE), /* pcrel_offset */
831
832 /* These are declared as 13-bit signed relocations because we can
833 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
834 versa. */
835 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
836 0, /* rightshift */
837 2, /* size (0 = byte, 1 = short, 2 = long) */
838 13, /* bitsize */
839 TRUE, /* pc_relative */
840 0, /* bitpos */
2cab6cc3 841 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
842 bfd_elf_generic_reloc, /* special_function */
843 "R_ARM_THM_ALU_PREL_11_0",/* name */
844 FALSE, /* partial_inplace */
2cab6cc3
MS
845 0xffffffff, /* src_mask */
846 0xffffffff, /* dst_mask */
c19d1205
ZW
847 TRUE), /* pcrel_offset */
848
849 HOWTO (R_ARM_THM_PC12, /* type */
850 0, /* rightshift */
851 2, /* size (0 = byte, 1 = short, 2 = long) */
852 13, /* bitsize */
853 TRUE, /* pc_relative */
854 0, /* bitpos */
2cab6cc3 855 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
856 bfd_elf_generic_reloc, /* special_function */
857 "R_ARM_THM_PC12", /* name */
858 FALSE, /* partial_inplace */
2cab6cc3
MS
859 0xffffffff, /* src_mask */
860 0xffffffff, /* dst_mask */
c19d1205
ZW
861 TRUE), /* pcrel_offset */
862
863 HOWTO (R_ARM_ABS32_NOI, /* type */
864 0, /* rightshift */
865 2, /* size (0 = byte, 1 = short, 2 = long) */
866 32, /* bitsize */
867 FALSE, /* pc_relative */
868 0, /* bitpos */
869 complain_overflow_dont,/* complain_on_overflow */
870 bfd_elf_generic_reloc, /* special_function */
871 "R_ARM_ABS32_NOI", /* name */
872 FALSE, /* partial_inplace */
873 0xffffffff, /* src_mask */
874 0xffffffff, /* dst_mask */
875 FALSE), /* pcrel_offset */
876
877 HOWTO (R_ARM_REL32_NOI, /* type */
878 0, /* rightshift */
879 2, /* size (0 = byte, 1 = short, 2 = long) */
880 32, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont,/* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_ARM_REL32_NOI", /* name */
886 FALSE, /* partial_inplace */
887 0xffffffff, /* src_mask */
888 0xffffffff, /* dst_mask */
889 FALSE), /* pcrel_offset */
7f266840 890
4962c51a
MS
891 /* Group relocations. */
892
893 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
894 0, /* rightshift */
895 2, /* size (0 = byte, 1 = short, 2 = long) */
896 32, /* bitsize */
897 TRUE, /* pc_relative */
898 0, /* bitpos */
899 complain_overflow_dont,/* complain_on_overflow */
900 bfd_elf_generic_reloc, /* special_function */
901 "R_ARM_ALU_PC_G0_NC", /* name */
902 FALSE, /* partial_inplace */
903 0xffffffff, /* src_mask */
904 0xffffffff, /* dst_mask */
905 TRUE), /* pcrel_offset */
906
907 HOWTO (R_ARM_ALU_PC_G0, /* type */
908 0, /* rightshift */
909 2, /* size (0 = byte, 1 = short, 2 = long) */
910 32, /* bitsize */
911 TRUE, /* pc_relative */
912 0, /* bitpos */
913 complain_overflow_dont,/* complain_on_overflow */
914 bfd_elf_generic_reloc, /* special_function */
915 "R_ARM_ALU_PC_G0", /* name */
916 FALSE, /* partial_inplace */
917 0xffffffff, /* src_mask */
918 0xffffffff, /* dst_mask */
919 TRUE), /* pcrel_offset */
920
921 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
922 0, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 32, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_dont,/* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 "R_ARM_ALU_PC_G1_NC", /* name */
930 FALSE, /* partial_inplace */
931 0xffffffff, /* src_mask */
932 0xffffffff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 HOWTO (R_ARM_ALU_PC_G1, /* type */
936 0, /* rightshift */
937 2, /* size (0 = byte, 1 = short, 2 = long) */
938 32, /* bitsize */
939 TRUE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont,/* complain_on_overflow */
942 bfd_elf_generic_reloc, /* special_function */
943 "R_ARM_ALU_PC_G1", /* name */
944 FALSE, /* partial_inplace */
945 0xffffffff, /* src_mask */
946 0xffffffff, /* dst_mask */
947 TRUE), /* pcrel_offset */
948
949 HOWTO (R_ARM_ALU_PC_G2, /* type */
950 0, /* rightshift */
951 2, /* size (0 = byte, 1 = short, 2 = long) */
952 32, /* bitsize */
953 TRUE, /* pc_relative */
954 0, /* bitpos */
955 complain_overflow_dont,/* complain_on_overflow */
956 bfd_elf_generic_reloc, /* special_function */
957 "R_ARM_ALU_PC_G2", /* name */
958 FALSE, /* partial_inplace */
959 0xffffffff, /* src_mask */
960 0xffffffff, /* dst_mask */
961 TRUE), /* pcrel_offset */
962
963 HOWTO (R_ARM_LDR_PC_G1, /* type */
964 0, /* rightshift */
965 2, /* size (0 = byte, 1 = short, 2 = long) */
966 32, /* bitsize */
967 TRUE, /* pc_relative */
968 0, /* bitpos */
969 complain_overflow_dont,/* complain_on_overflow */
970 bfd_elf_generic_reloc, /* special_function */
971 "R_ARM_LDR_PC_G1", /* name */
972 FALSE, /* partial_inplace */
973 0xffffffff, /* src_mask */
974 0xffffffff, /* dst_mask */
975 TRUE), /* pcrel_offset */
976
977 HOWTO (R_ARM_LDR_PC_G2, /* type */
978 0, /* rightshift */
979 2, /* size (0 = byte, 1 = short, 2 = long) */
980 32, /* bitsize */
981 TRUE, /* pc_relative */
982 0, /* bitpos */
983 complain_overflow_dont,/* complain_on_overflow */
984 bfd_elf_generic_reloc, /* special_function */
985 "R_ARM_LDR_PC_G2", /* name */
986 FALSE, /* partial_inplace */
987 0xffffffff, /* src_mask */
988 0xffffffff, /* dst_mask */
989 TRUE), /* pcrel_offset */
990
991 HOWTO (R_ARM_LDRS_PC_G0, /* type */
992 0, /* rightshift */
993 2, /* size (0 = byte, 1 = short, 2 = long) */
994 32, /* bitsize */
995 TRUE, /* pc_relative */
996 0, /* bitpos */
997 complain_overflow_dont,/* complain_on_overflow */
998 bfd_elf_generic_reloc, /* special_function */
999 "R_ARM_LDRS_PC_G0", /* name */
1000 FALSE, /* partial_inplace */
1001 0xffffffff, /* src_mask */
1002 0xffffffff, /* dst_mask */
1003 TRUE), /* pcrel_offset */
1004
1005 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1006 0, /* rightshift */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1008 32, /* bitsize */
1009 TRUE, /* pc_relative */
1010 0, /* bitpos */
1011 complain_overflow_dont,/* complain_on_overflow */
1012 bfd_elf_generic_reloc, /* special_function */
1013 "R_ARM_LDRS_PC_G1", /* name */
1014 FALSE, /* partial_inplace */
1015 0xffffffff, /* src_mask */
1016 0xffffffff, /* dst_mask */
1017 TRUE), /* pcrel_offset */
1018
1019 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1020 0, /* rightshift */
1021 2, /* size (0 = byte, 1 = short, 2 = long) */
1022 32, /* bitsize */
1023 TRUE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_dont,/* complain_on_overflow */
1026 bfd_elf_generic_reloc, /* special_function */
1027 "R_ARM_LDRS_PC_G2", /* name */
1028 FALSE, /* partial_inplace */
1029 0xffffffff, /* src_mask */
1030 0xffffffff, /* dst_mask */
1031 TRUE), /* pcrel_offset */
1032
1033 HOWTO (R_ARM_LDC_PC_G0, /* type */
1034 0, /* rightshift */
1035 2, /* size (0 = byte, 1 = short, 2 = long) */
1036 32, /* bitsize */
1037 TRUE, /* pc_relative */
1038 0, /* bitpos */
1039 complain_overflow_dont,/* complain_on_overflow */
1040 bfd_elf_generic_reloc, /* special_function */
1041 "R_ARM_LDC_PC_G0", /* name */
1042 FALSE, /* partial_inplace */
1043 0xffffffff, /* src_mask */
1044 0xffffffff, /* dst_mask */
1045 TRUE), /* pcrel_offset */
1046
1047 HOWTO (R_ARM_LDC_PC_G1, /* type */
1048 0, /* rightshift */
1049 2, /* size (0 = byte, 1 = short, 2 = long) */
1050 32, /* bitsize */
1051 TRUE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_dont,/* complain_on_overflow */
1054 bfd_elf_generic_reloc, /* special_function */
1055 "R_ARM_LDC_PC_G1", /* name */
1056 FALSE, /* partial_inplace */
1057 0xffffffff, /* src_mask */
1058 0xffffffff, /* dst_mask */
1059 TRUE), /* pcrel_offset */
1060
1061 HOWTO (R_ARM_LDC_PC_G2, /* type */
1062 0, /* rightshift */
1063 2, /* size (0 = byte, 1 = short, 2 = long) */
1064 32, /* bitsize */
1065 TRUE, /* pc_relative */
1066 0, /* bitpos */
1067 complain_overflow_dont,/* complain_on_overflow */
1068 bfd_elf_generic_reloc, /* special_function */
1069 "R_ARM_LDC_PC_G2", /* name */
1070 FALSE, /* partial_inplace */
1071 0xffffffff, /* src_mask */
1072 0xffffffff, /* dst_mask */
1073 TRUE), /* pcrel_offset */
1074
1075 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1076 0, /* rightshift */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1078 32, /* bitsize */
1079 TRUE, /* pc_relative */
1080 0, /* bitpos */
1081 complain_overflow_dont,/* complain_on_overflow */
1082 bfd_elf_generic_reloc, /* special_function */
1083 "R_ARM_ALU_SB_G0_NC", /* name */
1084 FALSE, /* partial_inplace */
1085 0xffffffff, /* src_mask */
1086 0xffffffff, /* dst_mask */
1087 TRUE), /* pcrel_offset */
1088
1089 HOWTO (R_ARM_ALU_SB_G0, /* type */
1090 0, /* rightshift */
1091 2, /* size (0 = byte, 1 = short, 2 = long) */
1092 32, /* bitsize */
1093 TRUE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_dont,/* complain_on_overflow */
1096 bfd_elf_generic_reloc, /* special_function */
1097 "R_ARM_ALU_SB_G0", /* name */
1098 FALSE, /* partial_inplace */
1099 0xffffffff, /* src_mask */
1100 0xffffffff, /* dst_mask */
1101 TRUE), /* pcrel_offset */
1102
1103 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 32, /* bitsize */
1107 TRUE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont,/* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 "R_ARM_ALU_SB_G1_NC", /* name */
1112 FALSE, /* partial_inplace */
1113 0xffffffff, /* src_mask */
1114 0xffffffff, /* dst_mask */
1115 TRUE), /* pcrel_offset */
1116
1117 HOWTO (R_ARM_ALU_SB_G1, /* type */
1118 0, /* rightshift */
1119 2, /* size (0 = byte, 1 = short, 2 = long) */
1120 32, /* bitsize */
1121 TRUE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_dont,/* complain_on_overflow */
1124 bfd_elf_generic_reloc, /* special_function */
1125 "R_ARM_ALU_SB_G1", /* name */
1126 FALSE, /* partial_inplace */
1127 0xffffffff, /* src_mask */
1128 0xffffffff, /* dst_mask */
1129 TRUE), /* pcrel_offset */
1130
1131 HOWTO (R_ARM_ALU_SB_G2, /* type */
1132 0, /* rightshift */
1133 2, /* size (0 = byte, 1 = short, 2 = long) */
1134 32, /* bitsize */
1135 TRUE, /* pc_relative */
1136 0, /* bitpos */
1137 complain_overflow_dont,/* complain_on_overflow */
1138 bfd_elf_generic_reloc, /* special_function */
1139 "R_ARM_ALU_SB_G2", /* name */
1140 FALSE, /* partial_inplace */
1141 0xffffffff, /* src_mask */
1142 0xffffffff, /* dst_mask */
1143 TRUE), /* pcrel_offset */
1144
1145 HOWTO (R_ARM_LDR_SB_G0, /* type */
1146 0, /* rightshift */
1147 2, /* size (0 = byte, 1 = short, 2 = long) */
1148 32, /* bitsize */
1149 TRUE, /* pc_relative */
1150 0, /* bitpos */
1151 complain_overflow_dont,/* complain_on_overflow */
1152 bfd_elf_generic_reloc, /* special_function */
1153 "R_ARM_LDR_SB_G0", /* name */
1154 FALSE, /* partial_inplace */
1155 0xffffffff, /* src_mask */
1156 0xffffffff, /* dst_mask */
1157 TRUE), /* pcrel_offset */
1158
1159 HOWTO (R_ARM_LDR_SB_G1, /* type */
1160 0, /* rightshift */
1161 2, /* size (0 = byte, 1 = short, 2 = long) */
1162 32, /* bitsize */
1163 TRUE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_dont,/* complain_on_overflow */
1166 bfd_elf_generic_reloc, /* special_function */
1167 "R_ARM_LDR_SB_G1", /* name */
1168 FALSE, /* partial_inplace */
1169 0xffffffff, /* src_mask */
1170 0xffffffff, /* dst_mask */
1171 TRUE), /* pcrel_offset */
1172
1173 HOWTO (R_ARM_LDR_SB_G2, /* type */
1174 0, /* rightshift */
1175 2, /* size (0 = byte, 1 = short, 2 = long) */
1176 32, /* bitsize */
1177 TRUE, /* pc_relative */
1178 0, /* bitpos */
1179 complain_overflow_dont,/* complain_on_overflow */
1180 bfd_elf_generic_reloc, /* special_function */
1181 "R_ARM_LDR_SB_G2", /* name */
1182 FALSE, /* partial_inplace */
1183 0xffffffff, /* src_mask */
1184 0xffffffff, /* dst_mask */
1185 TRUE), /* pcrel_offset */
1186
1187 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1188 0, /* rightshift */
1189 2, /* size (0 = byte, 1 = short, 2 = long) */
1190 32, /* bitsize */
1191 TRUE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_dont,/* complain_on_overflow */
1194 bfd_elf_generic_reloc, /* special_function */
1195 "R_ARM_LDRS_SB_G0", /* name */
1196 FALSE, /* partial_inplace */
1197 0xffffffff, /* src_mask */
1198 0xffffffff, /* dst_mask */
1199 TRUE), /* pcrel_offset */
1200
1201 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1202 0, /* rightshift */
1203 2, /* size (0 = byte, 1 = short, 2 = long) */
1204 32, /* bitsize */
1205 TRUE, /* pc_relative */
1206 0, /* bitpos */
1207 complain_overflow_dont,/* complain_on_overflow */
1208 bfd_elf_generic_reloc, /* special_function */
1209 "R_ARM_LDRS_SB_G1", /* name */
1210 FALSE, /* partial_inplace */
1211 0xffffffff, /* src_mask */
1212 0xffffffff, /* dst_mask */
1213 TRUE), /* pcrel_offset */
1214
1215 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1216 0, /* rightshift */
1217 2, /* size (0 = byte, 1 = short, 2 = long) */
1218 32, /* bitsize */
1219 TRUE, /* pc_relative */
1220 0, /* bitpos */
1221 complain_overflow_dont,/* complain_on_overflow */
1222 bfd_elf_generic_reloc, /* special_function */
1223 "R_ARM_LDRS_SB_G2", /* name */
1224 FALSE, /* partial_inplace */
1225 0xffffffff, /* src_mask */
1226 0xffffffff, /* dst_mask */
1227 TRUE), /* pcrel_offset */
1228
1229 HOWTO (R_ARM_LDC_SB_G0, /* type */
1230 0, /* rightshift */
1231 2, /* size (0 = byte, 1 = short, 2 = long) */
1232 32, /* bitsize */
1233 TRUE, /* pc_relative */
1234 0, /* bitpos */
1235 complain_overflow_dont,/* complain_on_overflow */
1236 bfd_elf_generic_reloc, /* special_function */
1237 "R_ARM_LDC_SB_G0", /* name */
1238 FALSE, /* partial_inplace */
1239 0xffffffff, /* src_mask */
1240 0xffffffff, /* dst_mask */
1241 TRUE), /* pcrel_offset */
1242
1243 HOWTO (R_ARM_LDC_SB_G1, /* type */
1244 0, /* rightshift */
1245 2, /* size (0 = byte, 1 = short, 2 = long) */
1246 32, /* bitsize */
1247 TRUE, /* pc_relative */
1248 0, /* bitpos */
1249 complain_overflow_dont,/* complain_on_overflow */
1250 bfd_elf_generic_reloc, /* special_function */
1251 "R_ARM_LDC_SB_G1", /* name */
1252 FALSE, /* partial_inplace */
1253 0xffffffff, /* src_mask */
1254 0xffffffff, /* dst_mask */
1255 TRUE), /* pcrel_offset */
1256
1257 HOWTO (R_ARM_LDC_SB_G2, /* type */
1258 0, /* rightshift */
1259 2, /* size (0 = byte, 1 = short, 2 = long) */
1260 32, /* bitsize */
1261 TRUE, /* pc_relative */
1262 0, /* bitpos */
1263 complain_overflow_dont,/* complain_on_overflow */
1264 bfd_elf_generic_reloc, /* special_function */
1265 "R_ARM_LDC_SB_G2", /* name */
1266 FALSE, /* partial_inplace */
1267 0xffffffff, /* src_mask */
1268 0xffffffff, /* dst_mask */
1269 TRUE), /* pcrel_offset */
1270
1271 /* End of group relocations. */
c19d1205 1272
c19d1205
ZW
1273 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1274 0, /* rightshift */
1275 2, /* size (0 = byte, 1 = short, 2 = long) */
1276 16, /* bitsize */
1277 FALSE, /* pc_relative */
1278 0, /* bitpos */
1279 complain_overflow_dont,/* complain_on_overflow */
1280 bfd_elf_generic_reloc, /* special_function */
1281 "R_ARM_MOVW_BREL_NC", /* name */
1282 FALSE, /* partial_inplace */
1283 0x0000ffff, /* src_mask */
1284 0x0000ffff, /* dst_mask */
1285 FALSE), /* pcrel_offset */
1286
1287 HOWTO (R_ARM_MOVT_BREL, /* type */
1288 0, /* rightshift */
1289 2, /* size (0 = byte, 1 = short, 2 = long) */
1290 16, /* bitsize */
1291 FALSE, /* pc_relative */
1292 0, /* bitpos */
1293 complain_overflow_bitfield,/* complain_on_overflow */
1294 bfd_elf_generic_reloc, /* special_function */
1295 "R_ARM_MOVT_BREL", /* name */
1296 FALSE, /* partial_inplace */
1297 0x0000ffff, /* src_mask */
1298 0x0000ffff, /* dst_mask */
1299 FALSE), /* pcrel_offset */
1300
1301 HOWTO (R_ARM_MOVW_BREL, /* type */
1302 0, /* rightshift */
1303 2, /* size (0 = byte, 1 = short, 2 = long) */
1304 16, /* bitsize */
1305 FALSE, /* pc_relative */
1306 0, /* bitpos */
1307 complain_overflow_dont,/* complain_on_overflow */
1308 bfd_elf_generic_reloc, /* special_function */
1309 "R_ARM_MOVW_BREL", /* name */
1310 FALSE, /* partial_inplace */
1311 0x0000ffff, /* src_mask */
1312 0x0000ffff, /* dst_mask */
1313 FALSE), /* pcrel_offset */
1314
1315 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1316 0, /* rightshift */
1317 2, /* size (0 = byte, 1 = short, 2 = long) */
1318 16, /* bitsize */
1319 FALSE, /* pc_relative */
1320 0, /* bitpos */
1321 complain_overflow_dont,/* complain_on_overflow */
1322 bfd_elf_generic_reloc, /* special_function */
1323 "R_ARM_THM_MOVW_BREL_NC",/* name */
1324 FALSE, /* partial_inplace */
1325 0x040f70ff, /* src_mask */
1326 0x040f70ff, /* dst_mask */
1327 FALSE), /* pcrel_offset */
1328
1329 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1330 0, /* rightshift */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1332 16, /* bitsize */
1333 FALSE, /* pc_relative */
1334 0, /* bitpos */
1335 complain_overflow_bitfield,/* complain_on_overflow */
1336 bfd_elf_generic_reloc, /* special_function */
1337 "R_ARM_THM_MOVT_BREL", /* name */
1338 FALSE, /* partial_inplace */
1339 0x040f70ff, /* src_mask */
1340 0x040f70ff, /* dst_mask */
1341 FALSE), /* pcrel_offset */
1342
1343 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1344 0, /* rightshift */
1345 2, /* size (0 = byte, 1 = short, 2 = long) */
1346 16, /* bitsize */
1347 FALSE, /* pc_relative */
1348 0, /* bitpos */
1349 complain_overflow_dont,/* complain_on_overflow */
1350 bfd_elf_generic_reloc, /* special_function */
1351 "R_ARM_THM_MOVW_BREL", /* name */
1352 FALSE, /* partial_inplace */
1353 0x040f70ff, /* src_mask */
1354 0x040f70ff, /* dst_mask */
1355 FALSE), /* pcrel_offset */
1356
8029a119 1357 EMPTY_HOWTO (90), /* Unallocated. */
c19d1205
ZW
1358 EMPTY_HOWTO (91),
1359 EMPTY_HOWTO (92),
1360 EMPTY_HOWTO (93),
1361
1362 HOWTO (R_ARM_PLT32_ABS, /* type */
1363 0, /* rightshift */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1365 32, /* bitsize */
1366 FALSE, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont,/* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 "R_ARM_PLT32_ABS", /* name */
1371 FALSE, /* partial_inplace */
1372 0xffffffff, /* src_mask */
1373 0xffffffff, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1375
1376 HOWTO (R_ARM_GOT_ABS, /* type */
1377 0, /* rightshift */
1378 2, /* size (0 = byte, 1 = short, 2 = long) */
1379 32, /* bitsize */
1380 FALSE, /* pc_relative */
1381 0, /* bitpos */
1382 complain_overflow_dont,/* complain_on_overflow */
1383 bfd_elf_generic_reloc, /* special_function */
1384 "R_ARM_GOT_ABS", /* name */
1385 FALSE, /* partial_inplace */
1386 0xffffffff, /* src_mask */
1387 0xffffffff, /* dst_mask */
1388 FALSE), /* pcrel_offset */
1389
1390 HOWTO (R_ARM_GOT_PREL, /* type */
1391 0, /* rightshift */
1392 2, /* size (0 = byte, 1 = short, 2 = long) */
1393 32, /* bitsize */
1394 TRUE, /* pc_relative */
1395 0, /* bitpos */
1396 complain_overflow_dont, /* complain_on_overflow */
1397 bfd_elf_generic_reloc, /* special_function */
1398 "R_ARM_GOT_PREL", /* name */
1399 FALSE, /* partial_inplace */
1400 0xffffffff, /* src_mask */
1401 0xffffffff, /* dst_mask */
1402 TRUE), /* pcrel_offset */
1403
1404 HOWTO (R_ARM_GOT_BREL12, /* type */
1405 0, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1407 12, /* bitsize */
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_bitfield,/* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
1412 "R_ARM_GOT_BREL12", /* name */
1413 FALSE, /* partial_inplace */
1414 0x00000fff, /* src_mask */
1415 0x00000fff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
1418 HOWTO (R_ARM_GOTOFF12, /* type */
1419 0, /* rightshift */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1421 12, /* bitsize */
1422 FALSE, /* pc_relative */
1423 0, /* bitpos */
1424 complain_overflow_bitfield,/* complain_on_overflow */
1425 bfd_elf_generic_reloc, /* special_function */
1426 "R_ARM_GOTOFF12", /* name */
1427 FALSE, /* partial_inplace */
1428 0x00000fff, /* src_mask */
1429 0x00000fff, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1431
1432 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1433
1434 /* GNU extension to record C++ vtable member usage */
1435 HOWTO (R_ARM_GNU_VTENTRY, /* type */
ba93b8ac
DJ
1436 0, /* rightshift */
1437 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1438 0, /* bitsize */
ba93b8ac
DJ
1439 FALSE, /* pc_relative */
1440 0, /* bitpos */
c19d1205
ZW
1441 complain_overflow_dont, /* complain_on_overflow */
1442 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1443 "R_ARM_GNU_VTENTRY", /* name */
1444 FALSE, /* partial_inplace */
1445 0, /* src_mask */
1446 0, /* dst_mask */
1447 FALSE), /* pcrel_offset */
1448
1449 /* GNU extension to record C++ vtable hierarchy */
1450 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1451 0, /* rightshift */
1452 2, /* size (0 = byte, 1 = short, 2 = long) */
1453 0, /* bitsize */
1454 FALSE, /* pc_relative */
1455 0, /* bitpos */
1456 complain_overflow_dont, /* complain_on_overflow */
1457 NULL, /* special_function */
1458 "R_ARM_GNU_VTINHERIT", /* name */
1459 FALSE, /* partial_inplace */
1460 0, /* src_mask */
1461 0, /* dst_mask */
1462 FALSE), /* pcrel_offset */
1463
1464 HOWTO (R_ARM_THM_JUMP11, /* type */
1465 1, /* rightshift */
1466 1, /* size (0 = byte, 1 = short, 2 = long) */
1467 11, /* bitsize */
1468 TRUE, /* pc_relative */
1469 0, /* bitpos */
1470 complain_overflow_signed, /* complain_on_overflow */
1471 bfd_elf_generic_reloc, /* special_function */
1472 "R_ARM_THM_JUMP11", /* name */
1473 FALSE, /* partial_inplace */
1474 0x000007ff, /* src_mask */
1475 0x000007ff, /* dst_mask */
1476 TRUE), /* pcrel_offset */
1477
1478 HOWTO (R_ARM_THM_JUMP8, /* type */
1479 1, /* rightshift */
1480 1, /* size (0 = byte, 1 = short, 2 = long) */
1481 8, /* bitsize */
1482 TRUE, /* pc_relative */
1483 0, /* bitpos */
1484 complain_overflow_signed, /* complain_on_overflow */
1485 bfd_elf_generic_reloc, /* special_function */
1486 "R_ARM_THM_JUMP8", /* name */
1487 FALSE, /* partial_inplace */
1488 0x000000ff, /* src_mask */
1489 0x000000ff, /* dst_mask */
1490 TRUE), /* pcrel_offset */
ba93b8ac 1491
c19d1205
ZW
1492 /* TLS relocations */
1493 HOWTO (R_ARM_TLS_GD32, /* type */
ba93b8ac
DJ
1494 0, /* rightshift */
1495 2, /* size (0 = byte, 1 = short, 2 = long) */
1496 32, /* bitsize */
1497 FALSE, /* pc_relative */
1498 0, /* bitpos */
1499 complain_overflow_bitfield,/* complain_on_overflow */
c19d1205
ZW
1500 NULL, /* special_function */
1501 "R_ARM_TLS_GD32", /* name */
ba93b8ac
DJ
1502 TRUE, /* partial_inplace */
1503 0xffffffff, /* src_mask */
1504 0xffffffff, /* dst_mask */
c19d1205 1505 FALSE), /* pcrel_offset */
ba93b8ac 1506
ba93b8ac
DJ
1507 HOWTO (R_ARM_TLS_LDM32, /* type */
1508 0, /* rightshift */
1509 2, /* size (0 = byte, 1 = short, 2 = long) */
1510 32, /* bitsize */
1511 FALSE, /* pc_relative */
1512 0, /* bitpos */
1513 complain_overflow_bitfield,/* complain_on_overflow */
1514 bfd_elf_generic_reloc, /* special_function */
1515 "R_ARM_TLS_LDM32", /* name */
1516 TRUE, /* partial_inplace */
1517 0xffffffff, /* src_mask */
1518 0xffffffff, /* dst_mask */
c19d1205 1519 FALSE), /* pcrel_offset */
ba93b8ac 1520
c19d1205 1521 HOWTO (R_ARM_TLS_LDO32, /* type */
ba93b8ac
DJ
1522 0, /* rightshift */
1523 2, /* size (0 = byte, 1 = short, 2 = long) */
1524 32, /* bitsize */
1525 FALSE, /* pc_relative */
1526 0, /* bitpos */
1527 complain_overflow_bitfield,/* complain_on_overflow */
1528 bfd_elf_generic_reloc, /* special_function */
c19d1205 1529 "R_ARM_TLS_LDO32", /* name */
ba93b8ac
DJ
1530 TRUE, /* partial_inplace */
1531 0xffffffff, /* src_mask */
1532 0xffffffff, /* dst_mask */
c19d1205 1533 FALSE), /* pcrel_offset */
ba93b8ac 1534
ba93b8ac
DJ
1535 HOWTO (R_ARM_TLS_IE32, /* type */
1536 0, /* rightshift */
1537 2, /* size (0 = byte, 1 = short, 2 = long) */
1538 32, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_bitfield,/* complain_on_overflow */
1542 NULL, /* special_function */
1543 "R_ARM_TLS_IE32", /* name */
1544 TRUE, /* partial_inplace */
1545 0xffffffff, /* src_mask */
1546 0xffffffff, /* dst_mask */
c19d1205 1547 FALSE), /* pcrel_offset */
7f266840 1548
c19d1205 1549 HOWTO (R_ARM_TLS_LE32, /* type */
7f266840
DJ
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205 1552 32, /* bitsize */
7f266840
DJ
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
c19d1205
ZW
1555 complain_overflow_bitfield,/* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 "R_ARM_TLS_LE32", /* name */
1558 TRUE, /* partial_inplace */
1559 0xffffffff, /* src_mask */
1560 0xffffffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
7f266840 1562
c19d1205
ZW
1563 HOWTO (R_ARM_TLS_LDO12, /* type */
1564 0, /* rightshift */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1566 12, /* bitsize */
1567 FALSE, /* pc_relative */
7f266840 1568 0, /* bitpos */
c19d1205 1569 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1570 bfd_elf_generic_reloc, /* special_function */
c19d1205 1571 "R_ARM_TLS_LDO12", /* name */
7f266840 1572 FALSE, /* partial_inplace */
c19d1205
ZW
1573 0x00000fff, /* src_mask */
1574 0x00000fff, /* dst_mask */
1575 FALSE), /* pcrel_offset */
7f266840 1576
c19d1205
ZW
1577 HOWTO (R_ARM_TLS_LE12, /* type */
1578 0, /* rightshift */
1579 2, /* size (0 = byte, 1 = short, 2 = long) */
1580 12, /* bitsize */
1581 FALSE, /* pc_relative */
7f266840 1582 0, /* bitpos */
c19d1205 1583 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1584 bfd_elf_generic_reloc, /* special_function */
c19d1205 1585 "R_ARM_TLS_LE12", /* name */
7f266840 1586 FALSE, /* partial_inplace */
c19d1205
ZW
1587 0x00000fff, /* src_mask */
1588 0x00000fff, /* dst_mask */
1589 FALSE), /* pcrel_offset */
7f266840 1590
c19d1205 1591 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1592 0, /* rightshift */
1593 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1594 12, /* bitsize */
1595 FALSE, /* pc_relative */
7f266840 1596 0, /* bitpos */
c19d1205 1597 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1598 bfd_elf_generic_reloc, /* special_function */
c19d1205 1599 "R_ARM_TLS_IE12GP", /* name */
7f266840 1600 FALSE, /* partial_inplace */
c19d1205
ZW
1601 0x00000fff, /* src_mask */
1602 0x00000fff, /* dst_mask */
1603 FALSE), /* pcrel_offset */
1604};
1605
1606/* 112-127 private relocations
1607 128 R_ARM_ME_TOO, obsolete
1608 129-255 unallocated in AAELF.
7f266840 1609
c19d1205
ZW
1610 249-255 extended, currently unused, relocations: */
1611
4962c51a 1612static reloc_howto_type elf32_arm_howto_table_2[4] =
7f266840
DJ
1613{
1614 HOWTO (R_ARM_RREL32, /* type */
1615 0, /* rightshift */
1616 0, /* size (0 = byte, 1 = short, 2 = long) */
1617 0, /* bitsize */
1618 FALSE, /* pc_relative */
1619 0, /* bitpos */
1620 complain_overflow_dont,/* complain_on_overflow */
1621 bfd_elf_generic_reloc, /* special_function */
1622 "R_ARM_RREL32", /* name */
1623 FALSE, /* partial_inplace */
1624 0, /* src_mask */
1625 0, /* dst_mask */
1626 FALSE), /* pcrel_offset */
1627
1628 HOWTO (R_ARM_RABS32, /* type */
1629 0, /* rightshift */
1630 0, /* size (0 = byte, 1 = short, 2 = long) */
1631 0, /* bitsize */
1632 FALSE, /* pc_relative */
1633 0, /* bitpos */
1634 complain_overflow_dont,/* complain_on_overflow */
1635 bfd_elf_generic_reloc, /* special_function */
1636 "R_ARM_RABS32", /* name */
1637 FALSE, /* partial_inplace */
1638 0, /* src_mask */
1639 0, /* dst_mask */
1640 FALSE), /* pcrel_offset */
1641
1642 HOWTO (R_ARM_RPC24, /* type */
1643 0, /* rightshift */
1644 0, /* size (0 = byte, 1 = short, 2 = long) */
1645 0, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont,/* complain_on_overflow */
1649 bfd_elf_generic_reloc, /* special_function */
1650 "R_ARM_RPC24", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 HOWTO (R_ARM_RBASE, /* type */
1657 0, /* rightshift */
1658 0, /* size (0 = byte, 1 = short, 2 = long) */
1659 0, /* bitsize */
1660 FALSE, /* pc_relative */
1661 0, /* bitpos */
1662 complain_overflow_dont,/* complain_on_overflow */
1663 bfd_elf_generic_reloc, /* special_function */
1664 "R_ARM_RBASE", /* name */
1665 FALSE, /* partial_inplace */
1666 0, /* src_mask */
1667 0, /* dst_mask */
1668 FALSE) /* pcrel_offset */
1669};
1670
1671static reloc_howto_type *
1672elf32_arm_howto_from_type (unsigned int r_type)
1673{
906e58ca 1674 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1675 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1676
c19d1205 1677 if (r_type >= R_ARM_RREL32
906e58ca 1678 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
4962c51a 1679 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
7f266840 1680
c19d1205 1681 return NULL;
7f266840
DJ
1682}
1683
1684static void
1685elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1686 Elf_Internal_Rela * elf_reloc)
1687{
1688 unsigned int r_type;
1689
1690 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1691 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1692}
1693
1694struct elf32_arm_reloc_map
1695 {
1696 bfd_reloc_code_real_type bfd_reloc_val;
1697 unsigned char elf_reloc_val;
1698 };
1699
1700/* All entries in this list must also be present in elf32_arm_howto_table. */
1701static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1702 {
1703 {BFD_RELOC_NONE, R_ARM_NONE},
1704 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1705 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1706 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1707 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1708 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1709 {BFD_RELOC_32, R_ARM_ABS32},
1710 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1711 {BFD_RELOC_8, R_ARM_ABS8},
1712 {BFD_RELOC_16, R_ARM_ABS16},
1713 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1714 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1715 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1719 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1720 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1721 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1722 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1723 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1724 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840
DJ
1725 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1726 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1727 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1728 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1729 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1730 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1731 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1732 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1733 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1734 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1735 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1736 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1737 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1738 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1739 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1740 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1741 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
c19d1205
ZW
1742 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1743 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1744 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1745 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1746 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1747 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1748 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1749 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1750 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1751 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1752 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1753 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1754 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1755 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1756 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1757 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1758 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1759 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1760 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1761 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1762 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1763 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1764 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1765 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1766 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1767 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1768 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1769 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1770 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1771 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1772 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1773 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1774 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1775 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1776 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1777 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1778 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6
PB
1779 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1780 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
7f266840
DJ
1781 };
1782
1783static reloc_howto_type *
f1c71a59
ZW
1784elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1785 bfd_reloc_code_real_type code)
7f266840
DJ
1786{
1787 unsigned int i;
8029a119 1788
906e58ca 1789 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1790 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1791 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1792
c19d1205 1793 return NULL;
7f266840
DJ
1794}
1795
157090f7
AM
1796static reloc_howto_type *
1797elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1798 const char *r_name)
1799{
1800 unsigned int i;
1801
906e58ca 1802 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1803 if (elf32_arm_howto_table_1[i].name != NULL
1804 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1805 return &elf32_arm_howto_table_1[i];
1806
906e58ca 1807 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1808 if (elf32_arm_howto_table_2[i].name != NULL
1809 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1810 return &elf32_arm_howto_table_2[i];
1811
1812 return NULL;
1813}
1814
906e58ca
NC
1815/* Support for core dump NOTE sections. */
1816
7f266840 1817static bfd_boolean
f1c71a59 1818elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1819{
1820 int offset;
1821 size_t size;
1822
1823 switch (note->descsz)
1824 {
1825 default:
1826 return FALSE;
1827
8029a119 1828 case 148: /* Linux/ARM 32-bit. */
7f266840
DJ
1829 /* pr_cursig */
1830 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1831
1832 /* pr_pid */
1833 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1834
1835 /* pr_reg */
1836 offset = 72;
1837 size = 72;
1838
1839 break;
1840 }
1841
1842 /* Make a ".reg/999" section. */
1843 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1844 size, note->descpos + offset);
1845}
1846
1847static bfd_boolean
f1c71a59 1848elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1849{
1850 switch (note->descsz)
1851 {
1852 default:
1853 return FALSE;
1854
8029a119 1855 case 124: /* Linux/ARM elf_prpsinfo. */
7f266840
DJ
1856 elf_tdata (abfd)->core_program
1857 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1858 elf_tdata (abfd)->core_command
1859 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1860 }
1861
1862 /* Note that for some reason, a spurious space is tacked
1863 onto the end of the args in some (at least one anyway)
1864 implementations, so strip it off if it exists. */
7f266840
DJ
1865 {
1866 char *command = elf_tdata (abfd)->core_command;
1867 int n = strlen (command);
1868
1869 if (0 < n && command[n - 1] == ' ')
1870 command[n - 1] = '\0';
1871 }
1872
1873 return TRUE;
1874}
1875
1876#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1877#define TARGET_LITTLE_NAME "elf32-littlearm"
1878#define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1879#define TARGET_BIG_NAME "elf32-bigarm"
1880
1881#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1882#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1883
252b5132
RH
1884typedef unsigned long int insn32;
1885typedef unsigned short int insn16;
1886
3a4a14e9
PB
1887/* In lieu of proper flags, assume all EABIv4 or later objects are
1888 interworkable. */
57e8b36a 1889#define INTERWORK_FLAG(abfd) \
3a4a14e9 1890 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
1891 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1892 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 1893
252b5132
RH
1894/* The linker script knows the section names for placement.
1895 The entry_names are used to do simple name mangling on the stubs.
1896 Given a function name, and its type, the stub can be found. The
9b485d32 1897 name can be changed. The only requirement is the %s be present. */
252b5132
RH
1898#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1899#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1900
1901#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1902#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1903
c7b8f16e
JB
1904#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1905#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1906
845b51d6
PB
1907#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1908#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1909
7413f23f
DJ
1910#define STUB_ENTRY_NAME "__%s_veneer"
1911
252b5132
RH
1912/* The name of the dynamic interpreter. This is put in the .interp
1913 section. */
1914#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1915
5e681ec4
PB
1916#ifdef FOUR_WORD_PLT
1917
252b5132
RH
1918/* The first entry in a procedure linkage table looks like
1919 this. It is set up so that any shared library function that is
59f2c4e7 1920 called before the relocation has been set up calls the dynamic
9b485d32 1921 linker first. */
e5a52504 1922static const bfd_vma elf32_arm_plt0_entry [] =
5e681ec4
PB
1923 {
1924 0xe52de004, /* str lr, [sp, #-4]! */
1925 0xe59fe010, /* ldr lr, [pc, #16] */
1926 0xe08fe00e, /* add lr, pc, lr */
1927 0xe5bef008, /* ldr pc, [lr, #8]! */
1928 };
1929
1930/* Subsequent entries in a procedure linkage table look like
1931 this. */
e5a52504 1932static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
1933 {
1934 0xe28fc600, /* add ip, pc, #NN */
1935 0xe28cca00, /* add ip, ip, #NN */
1936 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1937 0x00000000, /* unused */
1938 };
1939
1940#else
1941
5e681ec4
PB
1942/* The first entry in a procedure linkage table looks like
1943 this. It is set up so that any shared library function that is
1944 called before the relocation has been set up calls the dynamic
1945 linker first. */
e5a52504 1946static const bfd_vma elf32_arm_plt0_entry [] =
917583ad 1947 {
5e681ec4
PB
1948 0xe52de004, /* str lr, [sp, #-4]! */
1949 0xe59fe004, /* ldr lr, [pc, #4] */
1950 0xe08fe00e, /* add lr, pc, lr */
1951 0xe5bef008, /* ldr pc, [lr, #8]! */
1952 0x00000000, /* &GOT[0] - . */
917583ad 1953 };
252b5132
RH
1954
1955/* Subsequent entries in a procedure linkage table look like
1956 this. */
e5a52504 1957static const bfd_vma elf32_arm_plt_entry [] =
5e681ec4
PB
1958 {
1959 0xe28fc600, /* add ip, pc, #0xNN00000 */
1960 0xe28cca00, /* add ip, ip, #0xNN000 */
1961 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1962 };
1963
1964#endif
252b5132 1965
00a97672
RS
1966/* The format of the first entry in the procedure linkage table
1967 for a VxWorks executable. */
1968static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1969 {
1970 0xe52dc008, /* str ip,[sp,#-8]! */
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf008, /* ldr pc,[ip,#8] */
1973 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1974 };
1975
1976/* The format of subsequent entries in a VxWorks executable. */
1977static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1978 {
1979 0xe59fc000, /* ldr ip,[pc] */
1980 0xe59cf000, /* ldr pc,[ip] */
1981 0x00000000, /* .long @got */
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xea000000, /* b _PLT */
1984 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1985 };
1986
1987/* The format of entries in a VxWorks shared library. */
1988static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1989 {
1990 0xe59fc000, /* ldr ip,[pc] */
1991 0xe79cf009, /* ldr pc,[ip,r9] */
1992 0x00000000, /* .long @got */
1993 0xe59fc000, /* ldr ip,[pc] */
1994 0xe599f008, /* ldr pc,[r9,#8] */
1995 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1996 };
1997
b7693d02
DJ
1998/* An initial stub used if the PLT entry is referenced from Thumb code. */
1999#define PLT_THUMB_STUB_SIZE 4
2000static const bfd_vma elf32_arm_plt_thumb_stub [] =
2001 {
2002 0x4778, /* bx pc */
2003 0x46c0 /* nop */
2004 };
2005
e5a52504
MM
2006/* The entries in a PLT when using a DLL-based target with multiple
2007 address spaces. */
906e58ca 2008static const bfd_vma elf32_arm_symbian_plt_entry [] =
e5a52504 2009 {
83a358aa 2010 0xe51ff004, /* ldr pc, [pc, #-4] */
e5a52504
MM
2011 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2012 };
2013
906e58ca
NC
2014#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2015#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2016#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2017#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2018#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2019#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2020
461a49ca
DJ
2021enum stub_insn_type
2022 {
2023 THUMB16_TYPE = 1,
2024 THUMB32_TYPE,
2025 ARM_TYPE,
2026 DATA_TYPE
2027 };
2028
461a49ca
DJ
2029#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2030#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2031#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2032#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2033#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2034
2035typedef struct
2036{
2037 bfd_vma data;
2038 enum stub_insn_type type;
ebe24dd4 2039 unsigned int r_type;
461a49ca
DJ
2040 int reloc_addend;
2041} insn_sequence;
2042
fea2b4d6
CL
2043/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2044 to reach the stub if necessary. */
461a49ca 2045static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
906e58ca 2046 {
461a49ca
DJ
2047 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2048 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2049 };
2050
fea2b4d6
CL
2051/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2052 available. */
461a49ca 2053static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
906e58ca 2054 {
461a49ca
DJ
2055 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2056 ARM_INSN(0xe12fff1c), /* bx ip */
2057 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2058 };
2059
d3626fb0 2060/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2061static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
906e58ca 2062 {
461a49ca
DJ
2063 THUMB16_INSN(0xb401), /* push {r0} */
2064 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2065 THUMB16_INSN(0x4684), /* mov ip, r0 */
2066 THUMB16_INSN(0xbc01), /* pop {r0} */
2067 THUMB16_INSN(0x4760), /* bx ip */
2068 THUMB16_INSN(0xbf00), /* nop */
2069 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2070 };
2071
d3626fb0
CL
2072/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2073 allowed. */
2074static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2075 {
2076 THUMB16_INSN(0x4778), /* bx pc */
2077 THUMB16_INSN(0x46c0), /* nop */
2078 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2079 ARM_INSN(0xe12fff1c), /* bx ip */
2080 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2081 };
2082
fea2b4d6
CL
2083/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2084 available. */
461a49ca 2085static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
906e58ca 2086 {
461a49ca
DJ
2087 THUMB16_INSN(0x4778), /* bx pc */
2088 THUMB16_INSN(0x46c0), /* nop */
2089 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2090 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
906e58ca
NC
2091 };
2092
fea2b4d6
CL
2093/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2094 one, when the destination is close enough. */
461a49ca 2095static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
c820be07 2096 {
461a49ca
DJ
2097 THUMB16_INSN(0x4778), /* bx pc */
2098 THUMB16_INSN(0x46c0), /* nop */
2099 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
c820be07
NC
2100 };
2101
cf3eccff 2102/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2103 blx to reach the stub if necessary. */
cf3eccff 2104static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
906e58ca 2105 {
461a49ca
DJ
2106 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2107 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2108 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
906e58ca
NC
2109 };
2110
cf3eccff
DJ
2111/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2112 blx to reach the stub if necessary. We can not add into pc;
2113 it is not guaranteed to mode switch (different in ARMv6 and
2114 ARMv7). */
2115static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2116 {
2117 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2118 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2119 ARM_INSN(0xe12fff1c), /* bx ip */
2120 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2121 };
2122
ebe24dd4
CL
2123/* V4T ARM -> ARM long branch stub, PIC. */
2124static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2125 {
2126 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2127 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2128 ARM_INSN(0xe12fff1c), /* bx ip */
2129 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2130 };
2131
2132/* V4T Thumb -> ARM long branch stub, PIC. */
2133static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2134 {
2135 THUMB16_INSN(0x4778), /* bx pc */
2136 THUMB16_INSN(0x46c0), /* nop */
2137 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2138 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2139 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2140 };
2141
d3626fb0
CL
2142/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2143 architectures. */
ebe24dd4
CL
2144static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2145 {
2146 THUMB16_INSN(0xb401), /* push {r0} */
2147 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2148 THUMB16_INSN(0x46fc), /* mov ip, pc */
2149 THUMB16_INSN(0x4484), /* add ip, r0 */
2150 THUMB16_INSN(0xbc01), /* pop {r0} */
2151 THUMB16_INSN(0x4760), /* bx ip */
2152 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2153 };
2154
d3626fb0
CL
2155/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2156 allowed. */
2157static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2158 {
2159 THUMB16_INSN(0x4778), /* bx pc */
2160 THUMB16_INSN(0x46c0), /* nop */
2161 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2162 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2163 ARM_INSN(0xe12fff1c), /* bx ip */
2164 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2165 };
2166
906e58ca
NC
2167/* Section name for stubs is the associated section name plus this
2168 string. */
2169#define STUB_SUFFIX ".stub"
2170
738a79f6
CL
2171/* One entry per long/short branch stub defined above. */
2172#define DEF_STUBS \
2173 DEF_STUB(long_branch_any_any) \
2174 DEF_STUB(long_branch_v4t_arm_thumb) \
2175 DEF_STUB(long_branch_thumb_only) \
2176 DEF_STUB(long_branch_v4t_thumb_thumb) \
2177 DEF_STUB(long_branch_v4t_thumb_arm) \
2178 DEF_STUB(short_branch_v4t_thumb_arm) \
2179 DEF_STUB(long_branch_any_arm_pic) \
2180 DEF_STUB(long_branch_any_thumb_pic) \
2181 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2182 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2183 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2184 DEF_STUB(long_branch_thumb_only_pic)
2185
2186#define DEF_STUB(x) arm_stub_##x,
2187enum elf32_arm_stub_type {
906e58ca 2188 arm_stub_none,
738a79f6
CL
2189 DEF_STUBS
2190};
2191#undef DEF_STUB
2192
2193typedef struct
2194{
2195 const insn_sequence* template;
2196 int template_size;
2197} stub_def;
2198
2199#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2200static const stub_def stub_definitions[] = {
2201 {NULL, 0},
2202 DEF_STUBS
906e58ca
NC
2203};
2204
2205struct elf32_arm_stub_hash_entry
2206{
2207 /* Base hash table entry structure. */
2208 struct bfd_hash_entry root;
2209
2210 /* The stub section. */
2211 asection *stub_sec;
2212
2213 /* Offset within stub_sec of the beginning of this stub. */
2214 bfd_vma stub_offset;
2215
2216 /* Given the symbol's value and its section we can determine its final
2217 value when building the stubs (so the stub knows where to jump). */
2218 bfd_vma target_value;
2219 asection *target_section;
2220
461a49ca 2221 /* The stub type. */
906e58ca 2222 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2223 /* Its encoding size in bytes. */
2224 int stub_size;
2225 /* Its template. */
2226 const insn_sequence *stub_template;
2227 /* The size of the template (number of entries). */
2228 int stub_template_size;
906e58ca
NC
2229
2230 /* The symbol table entry, if any, that this was derived from. */
2231 struct elf32_arm_link_hash_entry *h;
2232
2233 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2234 unsigned char st_type;
2235
2236 /* Where this stub is being called from, or, in the case of combined
2237 stub sections, the first input section in the group. */
2238 asection *id_sec;
7413f23f
DJ
2239
2240 /* The name for the local symbol at the start of this stub. The
2241 stub name in the hash table has to be unique; this does not, so
2242 it can be friendlier. */
2243 char *output_name;
906e58ca
NC
2244};
2245
e489d0ae
PB
2246/* Used to build a map of a section. This is required for mixed-endian
2247 code/data. */
2248
2249typedef struct elf32_elf_section_map
2250{
2251 bfd_vma vma;
2252 char type;
2253}
2254elf32_arm_section_map;
2255
c7b8f16e
JB
2256/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2257
2258typedef enum
2259{
2260 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2261 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2262 VFP11_ERRATUM_ARM_VENEER,
2263 VFP11_ERRATUM_THUMB_VENEER
2264}
2265elf32_vfp11_erratum_type;
2266
2267typedef struct elf32_vfp11_erratum_list
2268{
2269 struct elf32_vfp11_erratum_list *next;
2270 bfd_vma vma;
2271 union
2272 {
2273 struct
2274 {
2275 struct elf32_vfp11_erratum_list *veneer;
2276 unsigned int vfp_insn;
2277 } b;
2278 struct
2279 {
2280 struct elf32_vfp11_erratum_list *branch;
2281 unsigned int id;
2282 } v;
2283 } u;
2284 elf32_vfp11_erratum_type type;
2285}
2286elf32_vfp11_erratum_list;
2287
2468f9c9
PB
2288typedef enum
2289{
2290 DELETE_EXIDX_ENTRY,
2291 INSERT_EXIDX_CANTUNWIND_AT_END
2292}
2293arm_unwind_edit_type;
2294
2295/* A (sorted) list of edits to apply to an unwind table. */
2296typedef struct arm_unwind_table_edit
2297{
2298 arm_unwind_edit_type type;
2299 /* Note: we sometimes want to insert an unwind entry corresponding to a
2300 section different from the one we're currently writing out, so record the
2301 (text) section this edit relates to here. */
2302 asection *linked_section;
2303 unsigned int index;
2304 struct arm_unwind_table_edit *next;
2305}
2306arm_unwind_table_edit;
2307
8e3de13a 2308typedef struct _arm_elf_section_data
e489d0ae 2309{
2468f9c9 2310 /* Information about mapping symbols. */
e489d0ae 2311 struct bfd_elf_section_data elf;
8e3de13a 2312 unsigned int mapcount;
c7b8f16e 2313 unsigned int mapsize;
e489d0ae 2314 elf32_arm_section_map *map;
2468f9c9 2315 /* Information about CPU errata. */
c7b8f16e
JB
2316 unsigned int erratumcount;
2317 elf32_vfp11_erratum_list *erratumlist;
2468f9c9
PB
2318 /* Information about unwind tables. */
2319 union
2320 {
2321 /* Unwind info attached to a text section. */
2322 struct
2323 {
2324 asection *arm_exidx_sec;
2325 } text;
2326
2327 /* Unwind info attached to an .ARM.exidx section. */
2328 struct
2329 {
2330 arm_unwind_table_edit *unwind_edit_list;
2331 arm_unwind_table_edit *unwind_edit_tail;
2332 } exidx;
2333 } u;
8e3de13a
NC
2334}
2335_arm_elf_section_data;
e489d0ae
PB
2336
2337#define elf32_arm_section_data(sec) \
8e3de13a 2338 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2339
ba93b8ac
DJ
2340/* The size of the thread control block. */
2341#define TCB_SIZE 8
2342
0ffa91dd 2343struct elf_arm_obj_tdata
ba93b8ac
DJ
2344{
2345 struct elf_obj_tdata root;
2346
2347 /* tls_type for each local got entry. */
2348 char *local_got_tls_type;
ee065d83 2349
bf21ed78
MS
2350 /* Zero to warn when linking objects with incompatible enum sizes. */
2351 int no_enum_size_warning;
a9dc9481
JM
2352
2353 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2354 int no_wchar_size_warning;
ba93b8ac
DJ
2355};
2356
0ffa91dd
NC
2357#define elf_arm_tdata(bfd) \
2358 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2359
0ffa91dd
NC
2360#define elf32_arm_local_got_tls_type(bfd) \
2361 (elf_arm_tdata (bfd)->local_got_tls_type)
2362
2363#define is_arm_elf(bfd) \
2364 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2365 && elf_tdata (bfd) != NULL \
2366 && elf_object_id (bfd) == ARM_ELF_TDATA)
ba93b8ac
DJ
2367
2368static bfd_boolean
2369elf32_arm_mkobject (bfd *abfd)
2370{
0ffa91dd
NC
2371 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2372 ARM_ELF_TDATA);
ba93b8ac
DJ
2373}
2374
252b5132
RH
2375/* The ARM linker needs to keep track of the number of relocs that it
2376 decides to copy in check_relocs for each symbol. This is so that
2377 it can discard PC relative relocs if it doesn't need them when
2378 linking with -Bsymbolic. We store the information in a field
2379 extending the regular ELF linker hash table. */
2380
ba93b8ac
DJ
2381/* This structure keeps track of the number of relocs we have copied
2382 for a given symbol. */
5e681ec4 2383struct elf32_arm_relocs_copied
917583ad
NC
2384 {
2385 /* Next section. */
5e681ec4 2386 struct elf32_arm_relocs_copied * next;
917583ad
NC
2387 /* A section in dynobj. */
2388 asection * section;
2389 /* Number of relocs copied in this section. */
2390 bfd_size_type count;
ba93b8ac
DJ
2391 /* Number of PC-relative relocs copied in this section. */
2392 bfd_size_type pc_count;
917583ad 2393 };
252b5132 2394
ba93b8ac
DJ
2395#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2396
ba96a88f 2397/* Arm ELF linker hash entry. */
252b5132 2398struct elf32_arm_link_hash_entry
917583ad
NC
2399 {
2400 struct elf_link_hash_entry root;
252b5132 2401
917583ad 2402 /* Number of PC relative relocs copied for this symbol. */
5e681ec4 2403 struct elf32_arm_relocs_copied * relocs_copied;
b7693d02
DJ
2404
2405 /* We reference count Thumb references to a PLT entry separately,
2406 so that we can emit the Thumb trampoline only if needed. */
2407 bfd_signed_vma plt_thumb_refcount;
2408
bd97cb95
DJ
2409 /* Some references from Thumb code may be eliminated by BL->BLX
2410 conversion, so record them separately. */
2411 bfd_signed_vma plt_maybe_thumb_refcount;
2412
b7693d02
DJ
2413 /* Since PLT entries have variable size if the Thumb prologue is
2414 used, we need to record the index into .got.plt instead of
2415 recomputing it from the PLT offset. */
2416 bfd_signed_vma plt_got_offset;
ba93b8ac
DJ
2417
2418#define GOT_UNKNOWN 0
2419#define GOT_NORMAL 1
2420#define GOT_TLS_GD 2
2421#define GOT_TLS_IE 4
2422 unsigned char tls_type;
a4fd1a8e
PB
2423
2424 /* The symbol marking the real symbol location for exported thumb
2425 symbols with Arm stubs. */
2426 struct elf_link_hash_entry *export_glue;
906e58ca 2427
da5938a2 2428 /* A pointer to the most recently used stub hash entry against this
8029a119 2429 symbol. */
da5938a2 2430 struct elf32_arm_stub_hash_entry *stub_cache;
917583ad 2431 };
252b5132 2432
252b5132 2433/* Traverse an arm ELF linker hash table. */
252b5132
RH
2434#define elf32_arm_link_hash_traverse(table, func, info) \
2435 (elf_link_hash_traverse \
2436 (&(table)->root, \
b7693d02 2437 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
2438 (info)))
2439
2440/* Get the ARM elf linker hash table from a link_info structure. */
2441#define elf32_arm_hash_table(info) \
2442 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2443
906e58ca
NC
2444#define arm_stub_hash_lookup(table, string, create, copy) \
2445 ((struct elf32_arm_stub_hash_entry *) \
2446 bfd_hash_lookup ((table), (string), (create), (copy)))
2447
9b485d32 2448/* ARM ELF linker hash table. */
252b5132 2449struct elf32_arm_link_hash_table
906e58ca
NC
2450{
2451 /* The main hash table. */
2452 struct elf_link_hash_table root;
252b5132 2453
906e58ca
NC
2454 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2455 bfd_size_type thumb_glue_size;
252b5132 2456
906e58ca
NC
2457 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2458 bfd_size_type arm_glue_size;
252b5132 2459
906e58ca
NC
2460 /* The size in bytes of section containing the ARMv4 BX veneers. */
2461 bfd_size_type bx_glue_size;
845b51d6 2462
906e58ca
NC
2463 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2464 veneer has been populated. */
2465 bfd_vma bx_glue_offset[15];
845b51d6 2466
906e58ca
NC
2467 /* The size in bytes of the section containing glue for VFP11 erratum
2468 veneers. */
2469 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 2470
906e58ca
NC
2471 /* An arbitrary input BFD chosen to hold the glue sections. */
2472 bfd * bfd_of_glue_owner;
ba96a88f 2473
906e58ca
NC
2474 /* Nonzero to output a BE8 image. */
2475 int byteswap_code;
e489d0ae 2476
906e58ca
NC
2477 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2478 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2479 int target1_is_rel;
9c504268 2480
906e58ca
NC
2481 /* The relocation to use for R_ARM_TARGET2 relocations. */
2482 int target2_reloc;
eb043451 2483
906e58ca
NC
2484 /* 0 = Ignore R_ARM_V4BX.
2485 1 = Convert BX to MOV PC.
2486 2 = Generate v4 interworing stubs. */
2487 int fix_v4bx;
319850b4 2488
906e58ca
NC
2489 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2490 int use_blx;
33bfe774 2491
906e58ca
NC
2492 /* What sort of code sequences we should look for which may trigger the
2493 VFP11 denorm erratum. */
2494 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 2495
906e58ca
NC
2496 /* Global counter for the number of fixes we have emitted. */
2497 int num_vfp11_fixes;
c7b8f16e 2498
906e58ca
NC
2499 /* Nonzero to force PIC branch veneers. */
2500 int pic_veneer;
27e55c4d 2501
906e58ca
NC
2502 /* The number of bytes in the initial entry in the PLT. */
2503 bfd_size_type plt_header_size;
e5a52504 2504
906e58ca
NC
2505 /* The number of bytes in the subsequent PLT etries. */
2506 bfd_size_type plt_entry_size;
e5a52504 2507
906e58ca
NC
2508 /* True if the target system is VxWorks. */
2509 int vxworks_p;
00a97672 2510
906e58ca
NC
2511 /* True if the target system is Symbian OS. */
2512 int symbian_p;
e5a52504 2513
906e58ca
NC
2514 /* True if the target uses REL relocations. */
2515 int use_rel;
4e7fd91e 2516
906e58ca
NC
2517 /* Short-cuts to get to dynamic linker sections. */
2518 asection *sgot;
2519 asection *sgotplt;
2520 asection *srelgot;
2521 asection *splt;
2522 asection *srelplt;
2523 asection *sdynbss;
2524 asection *srelbss;
5e681ec4 2525
906e58ca
NC
2526 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2527 asection *srelplt2;
00a97672 2528
906e58ca
NC
2529 /* Data for R_ARM_TLS_LDM32 relocations. */
2530 union
2531 {
2532 bfd_signed_vma refcount;
2533 bfd_vma offset;
2534 } tls_ldm_got;
b7693d02 2535
906e58ca
NC
2536 /* Small local sym to section mapping cache. */
2537 struct sym_sec_cache sym_sec;
2538
2539 /* For convenience in allocate_dynrelocs. */
2540 bfd * obfd;
2541
2542 /* The stub hash table. */
2543 struct bfd_hash_table stub_hash_table;
2544
2545 /* Linker stub bfd. */
2546 bfd *stub_bfd;
2547
2548 /* Linker call-backs. */
2549 asection * (*add_stub_section) (const char *, asection *);
2550 void (*layout_sections_again) (void);
2551
2552 /* Array to keep track of which stub sections have been created, and
2553 information on stub grouping. */
2554 struct map_stub
2555 {
2556 /* This is the section to which stubs in the group will be
2557 attached. */
2558 asection *link_sec;
2559 /* The stub section. */
2560 asection *stub_sec;
2561 } *stub_group;
2562
2563 /* Assorted information used by elf32_arm_size_stubs. */
2564 unsigned int bfd_count;
2565 int top_index;
2566 asection **input_list;
2567};
252b5132 2568
780a67af
NC
2569/* Create an entry in an ARM ELF linker hash table. */
2570
2571static struct bfd_hash_entry *
57e8b36a
NC
2572elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2573 struct bfd_hash_table * table,
2574 const char * string)
780a67af
NC
2575{
2576 struct elf32_arm_link_hash_entry * ret =
2577 (struct elf32_arm_link_hash_entry *) entry;
2578
2579 /* Allocate the structure if it has not already been allocated by a
2580 subclass. */
906e58ca 2581 if (ret == NULL)
57e8b36a
NC
2582 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2583 if (ret == NULL)
780a67af
NC
2584 return (struct bfd_hash_entry *) ret;
2585
2586 /* Call the allocation method of the superclass. */
2587 ret = ((struct elf32_arm_link_hash_entry *)
2588 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2589 table, string));
57e8b36a 2590 if (ret != NULL)
b7693d02
DJ
2591 {
2592 ret->relocs_copied = NULL;
ba93b8ac 2593 ret->tls_type = GOT_UNKNOWN;
b7693d02 2594 ret->plt_thumb_refcount = 0;
bd97cb95 2595 ret->plt_maybe_thumb_refcount = 0;
b7693d02 2596 ret->plt_got_offset = -1;
a4fd1a8e 2597 ret->export_glue = NULL;
906e58ca
NC
2598
2599 ret->stub_cache = NULL;
b7693d02 2600 }
780a67af
NC
2601
2602 return (struct bfd_hash_entry *) ret;
2603}
2604
906e58ca
NC
2605/* Initialize an entry in the stub hash table. */
2606
2607static struct bfd_hash_entry *
2608stub_hash_newfunc (struct bfd_hash_entry *entry,
2609 struct bfd_hash_table *table,
2610 const char *string)
2611{
2612 /* Allocate the structure if it has not already been allocated by a
2613 subclass. */
2614 if (entry == NULL)
2615 {
2616 entry = bfd_hash_allocate (table,
2617 sizeof (struct elf32_arm_stub_hash_entry));
2618 if (entry == NULL)
2619 return entry;
2620 }
2621
2622 /* Call the allocation method of the superclass. */
2623 entry = bfd_hash_newfunc (entry, table, string);
2624 if (entry != NULL)
2625 {
2626 struct elf32_arm_stub_hash_entry *eh;
2627
2628 /* Initialize the local fields. */
2629 eh = (struct elf32_arm_stub_hash_entry *) entry;
2630 eh->stub_sec = NULL;
2631 eh->stub_offset = 0;
2632 eh->target_value = 0;
2633 eh->target_section = NULL;
2634 eh->stub_type = arm_stub_none;
461a49ca
DJ
2635 eh->stub_size = 0;
2636 eh->stub_template = NULL;
2637 eh->stub_template_size = 0;
906e58ca
NC
2638 eh->h = NULL;
2639 eh->id_sec = NULL;
2640 }
2641
2642 return entry;
2643}
2644
00a97672 2645/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
2646 shortcuts to them in our hash table. */
2647
2648static bfd_boolean
57e8b36a 2649create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2650{
2651 struct elf32_arm_link_hash_table *htab;
2652
e5a52504
MM
2653 htab = elf32_arm_hash_table (info);
2654 /* BPABI objects never have a GOT, or associated sections. */
2655 if (htab->symbian_p)
2656 return TRUE;
2657
5e681ec4
PB
2658 if (! _bfd_elf_create_got_section (dynobj, info))
2659 return FALSE;
2660
5e681ec4
PB
2661 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2662 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2663 if (!htab->sgot || !htab->sgotplt)
2664 abort ();
2665
00a97672
RS
2666 htab->srelgot = bfd_make_section_with_flags (dynobj,
2667 RELOC_SECTION (htab, ".got"),
3496cb2a
L
2668 (SEC_ALLOC | SEC_LOAD
2669 | SEC_HAS_CONTENTS
2670 | SEC_IN_MEMORY
2671 | SEC_LINKER_CREATED
2672 | SEC_READONLY));
5e681ec4 2673 if (htab->srelgot == NULL
5e681ec4
PB
2674 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2675 return FALSE;
2676 return TRUE;
2677}
2678
00a97672
RS
2679/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2680 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
2681 hash table. */
2682
2683static bfd_boolean
57e8b36a 2684elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
2685{
2686 struct elf32_arm_link_hash_table *htab;
2687
2688 htab = elf32_arm_hash_table (info);
2689 if (!htab->sgot && !create_got_section (dynobj, info))
2690 return FALSE;
2691
2692 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2693 return FALSE;
2694
2695 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
00a97672
RS
2696 htab->srelplt = bfd_get_section_by_name (dynobj,
2697 RELOC_SECTION (htab, ".plt"));
5e681ec4
PB
2698 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2699 if (!info->shared)
00a97672
RS
2700 htab->srelbss = bfd_get_section_by_name (dynobj,
2701 RELOC_SECTION (htab, ".bss"));
2702
2703 if (htab->vxworks_p)
2704 {
2705 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2706 return FALSE;
2707
2708 if (info->shared)
2709 {
2710 htab->plt_header_size = 0;
2711 htab->plt_entry_size
2712 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2713 }
2714 else
2715 {
2716 htab->plt_header_size
2717 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2718 htab->plt_entry_size
2719 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2720 }
2721 }
5e681ec4 2722
906e58ca 2723 if (!htab->splt
e5a52504
MM
2724 || !htab->srelplt
2725 || !htab->sdynbss
5e681ec4
PB
2726 || (!info->shared && !htab->srelbss))
2727 abort ();
2728
2729 return TRUE;
2730}
2731
906e58ca
NC
2732/* Copy the extra info we tack onto an elf_link_hash_entry. */
2733
2734static void
2735elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2736 struct elf_link_hash_entry *dir,
2737 struct elf_link_hash_entry *ind)
2738{
2739 struct elf32_arm_link_hash_entry *edir, *eind;
2740
2741 edir = (struct elf32_arm_link_hash_entry *) dir;
2742 eind = (struct elf32_arm_link_hash_entry *) ind;
2743
2744 if (eind->relocs_copied != NULL)
2745 {
2746 if (edir->relocs_copied != NULL)
2747 {
2748 struct elf32_arm_relocs_copied **pp;
2749 struct elf32_arm_relocs_copied *p;
2750
2751 /* Add reloc counts against the indirect sym to the direct sym
2752 list. Merge any entries against the same section. */
2753 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2754 {
2755 struct elf32_arm_relocs_copied *q;
2756
2757 for (q = edir->relocs_copied; q != NULL; q = q->next)
2758 if (q->section == p->section)
2759 {
2760 q->pc_count += p->pc_count;
2761 q->count += p->count;
2762 *pp = p->next;
2763 break;
2764 }
2765 if (q == NULL)
2766 pp = &p->next;
2767 }
2768 *pp = edir->relocs_copied;
2769 }
2770
2771 edir->relocs_copied = eind->relocs_copied;
2772 eind->relocs_copied = NULL;
2773 }
2774
2775 if (ind->root.type == bfd_link_hash_indirect)
2776 {
2777 /* Copy over PLT info. */
2778 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2779 eind->plt_thumb_refcount = 0;
2780 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2781 eind->plt_maybe_thumb_refcount = 0;
2782
2783 if (dir->got.refcount <= 0)
2784 {
2785 edir->tls_type = eind->tls_type;
2786 eind->tls_type = GOT_UNKNOWN;
2787 }
2788 }
2789
2790 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2791}
2792
2793/* Create an ARM elf linker hash table. */
2794
2795static struct bfd_link_hash_table *
2796elf32_arm_link_hash_table_create (bfd *abfd)
2797{
2798 struct elf32_arm_link_hash_table *ret;
2799 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2800
2801 ret = bfd_malloc (amt);
2802 if (ret == NULL)
2803 return NULL;
2804
2805 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2806 elf32_arm_link_hash_newfunc,
2807 sizeof (struct elf32_arm_link_hash_entry)))
2808 {
2809 free (ret);
2810 return NULL;
2811 }
2812
2813 ret->sgot = NULL;
2814 ret->sgotplt = NULL;
2815 ret->srelgot = NULL;
2816 ret->splt = NULL;
2817 ret->srelplt = NULL;
2818 ret->sdynbss = NULL;
2819 ret->srelbss = NULL;
2820 ret->srelplt2 = NULL;
2821 ret->thumb_glue_size = 0;
2822 ret->arm_glue_size = 0;
2823 ret->bx_glue_size = 0;
2824 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2825 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2826 ret->vfp11_erratum_glue_size = 0;
2827 ret->num_vfp11_fixes = 0;
2828 ret->bfd_of_glue_owner = NULL;
2829 ret->byteswap_code = 0;
2830 ret->target1_is_rel = 0;
2831 ret->target2_reloc = R_ARM_NONE;
2832#ifdef FOUR_WORD_PLT
2833 ret->plt_header_size = 16;
2834 ret->plt_entry_size = 16;
2835#else
2836 ret->plt_header_size = 20;
2837 ret->plt_entry_size = 12;
2838#endif
2839 ret->fix_v4bx = 0;
2840 ret->use_blx = 0;
2841 ret->vxworks_p = 0;
2842 ret->symbian_p = 0;
2843 ret->use_rel = 1;
2844 ret->sym_sec.abfd = NULL;
2845 ret->obfd = abfd;
2846 ret->tls_ldm_got.refcount = 0;
6cee0a6f
L
2847 ret->stub_bfd = NULL;
2848 ret->add_stub_section = NULL;
2849 ret->layout_sections_again = NULL;
2850 ret->stub_group = NULL;
2851 ret->bfd_count = 0;
2852 ret->top_index = 0;
2853 ret->input_list = NULL;
906e58ca
NC
2854
2855 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2856 sizeof (struct elf32_arm_stub_hash_entry)))
2857 {
2858 free (ret);
2859 return NULL;
2860 }
2861
2862 return &ret->root.root;
2863}
2864
2865/* Free the derived linker hash table. */
2866
2867static void
2868elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2869{
2870 struct elf32_arm_link_hash_table *ret
2871 = (struct elf32_arm_link_hash_table *) hash;
2872
2873 bfd_hash_table_free (&ret->stub_hash_table);
2874 _bfd_generic_link_hash_table_free (hash);
2875}
2876
2877/* Determine if we're dealing with a Thumb only architecture. */
2878
2879static bfd_boolean
2880using_thumb_only (struct elf32_arm_link_hash_table *globals)
2881{
2882 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2883 Tag_CPU_arch);
2884 int profile;
2885
2886 if (arch != TAG_CPU_ARCH_V7)
2887 return FALSE;
2888
2889 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2890 Tag_CPU_arch_profile);
2891
2892 return profile == 'M';
2893}
2894
2895/* Determine if we're dealing with a Thumb-2 object. */
2896
2897static bfd_boolean
2898using_thumb2 (struct elf32_arm_link_hash_table *globals)
2899{
2900 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2901 Tag_CPU_arch);
2902 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2903}
2904
f4ac8484
DJ
2905static bfd_boolean
2906arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2907{
2908 switch (stub_type)
2909 {
fea2b4d6
CL
2910 case arm_stub_long_branch_thumb_only:
2911 case arm_stub_long_branch_v4t_thumb_arm:
2912 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4
CL
2913 case arm_stub_long_branch_v4t_thumb_arm_pic:
2914 case arm_stub_long_branch_thumb_only_pic:
f4ac8484
DJ
2915 return TRUE;
2916 case arm_stub_none:
2917 BFD_FAIL ();
2918 return FALSE;
2919 break;
2920 default:
2921 return FALSE;
2922 }
2923}
2924
906e58ca
NC
2925/* Determine the type of stub needed, if any, for a call. */
2926
2927static enum elf32_arm_stub_type
2928arm_type_of_stub (struct bfd_link_info *info,
2929 asection *input_sec,
2930 const Elf_Internal_Rela *rel,
2931 unsigned char st_type,
2932 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
2933 bfd_vma destination,
2934 asection *sym_sec,
2935 bfd *input_bfd,
2936 const char *name)
906e58ca
NC
2937{
2938 bfd_vma location;
2939 bfd_signed_vma branch_offset;
2940 unsigned int r_type;
2941 struct elf32_arm_link_hash_table * globals;
2942 int thumb2;
2943 int thumb_only;
2944 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 2945 int use_plt = 0;
906e58ca 2946
da5938a2 2947 /* We don't know the actual type of destination in case it is of
8029a119 2948 type STT_SECTION: give up. */
da5938a2
NC
2949 if (st_type == STT_SECTION)
2950 return stub_type;
2951
906e58ca
NC
2952 globals = elf32_arm_hash_table (info);
2953
2954 thumb_only = using_thumb_only (globals);
2955
2956 thumb2 = using_thumb2 (globals);
2957
2958 /* Determine where the call point is. */
2959 location = (input_sec->output_offset
2960 + input_sec->output_section->vma
2961 + rel->r_offset);
2962
2963 branch_offset = (bfd_signed_vma)(destination - location);
2964
2965 r_type = ELF32_R_TYPE (rel->r_info);
2966
5fa9e92f 2967 /* Keep a simpler condition, for the sake of clarity. */
329dcd78 2968 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
5fa9e92f
CL
2969 {
2970 use_plt = 1;
2971 /* Note when dealing with PLT entries: the main PLT stub is in
2972 ARM mode, so if the branch is in Thumb mode, another
2973 Thumb->ARM stub will be inserted later just before the ARM
2974 PLT stub. We don't take this extra distance into account
2975 here, because if a long branch stub is needed, we'll add a
2976 Thumb->Arm one and branch directly to the ARM PLT entry
2977 because it avoids spreading offset corrections in several
2978 places. */
2979 }
906e58ca 2980
155d87d7 2981 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca 2982 {
5fa9e92f
CL
2983 /* Handle cases where:
2984 - this call goes too far (different Thumb/Thumb2 max
2985 distance)
155d87d7
CL
2986 - it's a Thumb->Arm call and blx is not available, or it's a
2987 Thumb->Arm branch (not bl). A stub is needed in this case,
2988 but only if this call is not through a PLT entry. Indeed,
2989 PLT stubs handle mode switching already.
5fa9e92f 2990 */
906e58ca
NC
2991 if ((!thumb2
2992 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2993 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2994 || (thumb2
2995 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2996 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
5fa9e92f 2997 || ((st_type != STT_ARM_TFUNC)
155d87d7
CL
2998 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
2999 || (r_type == R_ARM_THM_JUMP24))
5fa9e92f 3000 && !use_plt))
906e58ca
NC
3001 {
3002 if (st_type == STT_ARM_TFUNC)
3003 {
3004 /* Thumb to thumb. */
3005 if (!thumb_only)
3006 {
3007 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3008 /* PIC stubs. */
155d87d7
CL
3009 ? ((globals->use_blx
3010 && (r_type ==R_ARM_THM_CALL))
3011 /* V5T and above. Stub starts with ARM code, so
3012 we must be able to switch mode before
3013 reaching it, which is only possible for 'bl'
3014 (ie R_ARM_THM_CALL relocation). */
cf3eccff 3015 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 3016 /* On V4T, use Thumb code only. */
d3626fb0 3017 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
3018
3019 /* non-PIC stubs. */
155d87d7
CL
3020 : ((globals->use_blx
3021 && (r_type ==R_ARM_THM_CALL))
c2b4a39d
CL
3022 /* V5T and above. */
3023 ? arm_stub_long_branch_any_any
3024 /* V4T. */
d3626fb0 3025 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
3026 }
3027 else
3028 {
3029 stub_type = (info->shared | globals->pic_veneer)
ebe24dd4
CL
3030 /* PIC stub. */
3031 ? arm_stub_long_branch_thumb_only_pic
c2b4a39d
CL
3032 /* non-PIC stub. */
3033 : arm_stub_long_branch_thumb_only;
906e58ca
NC
3034 }
3035 }
3036 else
3037 {
3038 /* Thumb to arm. */
c820be07
NC
3039 if (sym_sec != NULL
3040 && sym_sec->owner != NULL
3041 && !INTERWORK_FLAG (sym_sec->owner))
3042 {
3043 (*_bfd_error_handler)
3044 (_("%B(%s): warning: interworking not enabled.\n"
3045 " first occurrence: %B: Thumb call to ARM"),
3046 sym_sec->owner, input_bfd, name);
3047 }
3048
906e58ca 3049 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3050 /* PIC stubs. */
155d87d7
CL
3051 ? ((globals->use_blx
3052 && (r_type ==R_ARM_THM_CALL))
c2b4a39d 3053 /* V5T and above. */
cf3eccff 3054 ? arm_stub_long_branch_any_arm_pic
ebe24dd4
CL
3055 /* V4T PIC stub. */
3056 : arm_stub_long_branch_v4t_thumb_arm_pic)
c2b4a39d
CL
3057
3058 /* non-PIC stubs. */
155d87d7
CL
3059 : ((globals->use_blx
3060 && (r_type ==R_ARM_THM_CALL))
c2b4a39d
CL
3061 /* V5T and above. */
3062 ? arm_stub_long_branch_any_any
3063 /* V4T. */
3064 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
3065
3066 /* Handle v4t short branches. */
fea2b4d6 3067 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
3068 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3069 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 3070 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
3071 }
3072 }
3073 }
155d87d7 3074 else if (r_type == R_ARM_CALL || r_type == R_ARM_JUMP24 || r_type == R_ARM_PLT32)
906e58ca
NC
3075 {
3076 if (st_type == STT_ARM_TFUNC)
3077 {
3078 /* Arm to thumb. */
c820be07
NC
3079
3080 if (sym_sec != NULL
3081 && sym_sec->owner != NULL
3082 && !INTERWORK_FLAG (sym_sec->owner))
3083 {
3084 (*_bfd_error_handler)
3085 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 3086 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
3087 sym_sec->owner, input_bfd, name);
3088 }
3089
3090 /* We have an extra 2-bytes reach because of
3091 the mode change (bit 24 (H) of BLX encoding). */
906e58ca
NC
3092 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3093 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
155d87d7
CL
3094 || ((r_type == R_ARM_CALL) && !globals->use_blx)
3095 || (r_type == R_ARM_JUMP24)
3096 || (r_type == R_ARM_PLT32))
906e58ca
NC
3097 {
3098 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3099 /* PIC stubs. */
ebe24dd4
CL
3100 ? ((globals->use_blx)
3101 /* V5T and above. */
3102 ? arm_stub_long_branch_any_thumb_pic
3103 /* V4T stub. */
3104 : arm_stub_long_branch_v4t_arm_thumb_pic)
3105
c2b4a39d
CL
3106 /* non-PIC stubs. */
3107 : ((globals->use_blx)
3108 /* V5T and above. */
3109 ? arm_stub_long_branch_any_any
3110 /* V4T. */
3111 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
3112 }
3113 }
3114 else
3115 {
3116 /* Arm to arm. */
3117 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3118 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3119 {
3120 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3121 /* PIC stubs. */
cf3eccff 3122 ? arm_stub_long_branch_any_arm_pic
c2b4a39d 3123 /* non-PIC stubs. */
fea2b4d6 3124 : arm_stub_long_branch_any_any;
906e58ca
NC
3125 }
3126 }
3127 }
3128
3129 return stub_type;
3130}
3131
3132/* Build a name for an entry in the stub hash table. */
3133
3134static char *
3135elf32_arm_stub_name (const asection *input_section,
3136 const asection *sym_sec,
3137 const struct elf32_arm_link_hash_entry *hash,
3138 const Elf_Internal_Rela *rel)
3139{
3140 char *stub_name;
3141 bfd_size_type len;
3142
3143 if (hash)
3144 {
3145 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
3146 stub_name = bfd_malloc (len);
3147 if (stub_name != NULL)
3148 sprintf (stub_name, "%08x_%s+%x",
3149 input_section->id & 0xffffffff,
3150 hash->root.root.root.string,
3151 (int) rel->r_addend & 0xffffffff);
3152 }
3153 else
3154 {
3155 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3156 stub_name = bfd_malloc (len);
3157 if (stub_name != NULL)
3158 sprintf (stub_name, "%08x_%x:%x+%x",
3159 input_section->id & 0xffffffff,
3160 sym_sec->id & 0xffffffff,
3161 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3162 (int) rel->r_addend & 0xffffffff);
3163 }
3164
3165 return stub_name;
3166}
3167
3168/* Look up an entry in the stub hash. Stub entries are cached because
3169 creating the stub name takes a bit of time. */
3170
3171static struct elf32_arm_stub_hash_entry *
3172elf32_arm_get_stub_entry (const asection *input_section,
3173 const asection *sym_sec,
3174 struct elf_link_hash_entry *hash,
3175 const Elf_Internal_Rela *rel,
3176 struct elf32_arm_link_hash_table *htab)
3177{
3178 struct elf32_arm_stub_hash_entry *stub_entry;
3179 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3180 const asection *id_sec;
3181
3182 if ((input_section->flags & SEC_CODE) == 0)
3183 return NULL;
3184
3185 /* If this input section is part of a group of sections sharing one
3186 stub section, then use the id of the first section in the group.
3187 Stub names need to include a section id, as there may well be
3188 more than one stub used to reach say, printf, and we need to
3189 distinguish between them. */
3190 id_sec = htab->stub_group[input_section->id].link_sec;
3191
3192 if (h != NULL && h->stub_cache != NULL
3193 && h->stub_cache->h == h
3194 && h->stub_cache->id_sec == id_sec)
3195 {
3196 stub_entry = h->stub_cache;
3197 }
3198 else
3199 {
3200 char *stub_name;
3201
3202 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3203 if (stub_name == NULL)
3204 return NULL;
3205
3206 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3207 stub_name, FALSE, FALSE);
3208 if (h != NULL)
3209 h->stub_cache = stub_entry;
3210
3211 free (stub_name);
3212 }
3213
3214 return stub_entry;
3215}
3216
906e58ca
NC
3217/* Add a new stub entry to the stub hash. Not all fields of the new
3218 stub entry are initialised. */
3219
3220static struct elf32_arm_stub_hash_entry *
3221elf32_arm_add_stub (const char *stub_name,
3222 asection *section,
da5938a2 3223 struct elf32_arm_link_hash_table *htab)
906e58ca
NC
3224{
3225 asection *link_sec;
3226 asection *stub_sec;
3227 struct elf32_arm_stub_hash_entry *stub_entry;
3228
3229 link_sec = htab->stub_group[section->id].link_sec;
3230 stub_sec = htab->stub_group[section->id].stub_sec;
3231 if (stub_sec == NULL)
3232 {
3233 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3234 if (stub_sec == NULL)
3235 {
3236 size_t namelen;
3237 bfd_size_type len;
3238 char *s_name;
3239
3240 namelen = strlen (link_sec->name);
3241 len = namelen + sizeof (STUB_SUFFIX);
3242 s_name = bfd_alloc (htab->stub_bfd, len);
3243 if (s_name == NULL)
3244 return NULL;
3245
3246 memcpy (s_name, link_sec->name, namelen);
3247 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3248 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3249 if (stub_sec == NULL)
3250 return NULL;
3251 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3252 }
3253 htab->stub_group[section->id].stub_sec = stub_sec;
3254 }
3255
3256 /* Enter this entry into the linker stub hash table. */
3257 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3258 TRUE, FALSE);
3259 if (stub_entry == NULL)
3260 {
3261 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3262 section->owner,
3263 stub_name);
3264 return NULL;
3265 }
3266
3267 stub_entry->stub_sec = stub_sec;
3268 stub_entry->stub_offset = 0;
3269 stub_entry->id_sec = link_sec;
3270
906e58ca
NC
3271 return stub_entry;
3272}
3273
3274/* Store an Arm insn into an output section not processed by
3275 elf32_arm_write_section. */
3276
3277static void
8029a119
NC
3278put_arm_insn (struct elf32_arm_link_hash_table * htab,
3279 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3280{
3281 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3282 bfd_putl32 (val, ptr);
3283 else
3284 bfd_putb32 (val, ptr);
3285}
3286
3287/* Store a 16-bit Thumb insn into an output section not processed by
3288 elf32_arm_write_section. */
3289
3290static void
8029a119
NC
3291put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3292 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
3293{
3294 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3295 bfd_putl16 (val, ptr);
3296 else
3297 bfd_putb16 (val, ptr);
3298}
3299
3300static bfd_boolean
3301arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3302 void * in_arg)
3303{
3304 struct elf32_arm_stub_hash_entry *stub_entry;
3305 struct bfd_link_info *info;
3306 struct elf32_arm_link_hash_table *htab;
3307 asection *stub_sec;
3308 bfd *stub_bfd;
3309 bfd_vma stub_addr;
3310 bfd_byte *loc;
3311 bfd_vma sym_value;
3312 int template_size;
3313 int size;
461a49ca 3314 const insn_sequence *template;
906e58ca
NC
3315 int i;
3316 struct elf32_arm_link_hash_table * globals;
461a49ca 3317 int stub_reloc_idx = -1;
4e31c731 3318 int stub_reloc_offset = 0;
906e58ca
NC
3319
3320 /* Massage our args to the form they really have. */
3321 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3322 info = (struct bfd_link_info *) in_arg;
3323
3324 globals = elf32_arm_hash_table (info);
3325
3326 htab = elf32_arm_hash_table (info);
3327 stub_sec = stub_entry->stub_sec;
3328
3329 /* Make a note of the offset within the stubs for this entry. */
3330 stub_entry->stub_offset = stub_sec->size;
3331 loc = stub_sec->contents + stub_entry->stub_offset;
3332
3333 stub_bfd = stub_sec->owner;
3334
3335 /* This is the address of the start of the stub. */
3336 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3337 + stub_entry->stub_offset;
3338
3339 /* This is the address of the stub destination. */
3340 sym_value = (stub_entry->target_value
3341 + stub_entry->target_section->output_offset
3342 + stub_entry->target_section->output_section->vma);
3343
461a49ca
DJ
3344 template = stub_entry->stub_template;
3345 template_size = stub_entry->stub_template_size;
906e58ca
NC
3346
3347 size = 0;
461a49ca 3348 for (i = 0; i < template_size; i++)
906e58ca 3349 {
4e31c731 3350 switch (template[i].type)
461a49ca
DJ
3351 {
3352 case THUMB16_TYPE:
3353 put_thumb_insn (globals, stub_bfd, template[i].data, loc + size);
3354 size += 2;
3355 break;
906e58ca 3356
461a49ca
DJ
3357 case ARM_TYPE:
3358 put_arm_insn (globals, stub_bfd, template[i].data, loc + size);
3359 /* Handle cases where the target is encoded within the
3360 instruction. */
ebe24dd4 3361 if (template[i].r_type == R_ARM_JUMP24)
461a49ca
DJ
3362 {
3363 stub_reloc_idx = i;
3364 stub_reloc_offset = size;
3365 }
3366 size += 4;
3367 break;
3368
3369 case DATA_TYPE:
3370 bfd_put_32 (stub_bfd, template[i].data, loc + size);
3371 stub_reloc_idx = i;
3372 stub_reloc_offset = size;
3373 size += 4;
3374 break;
3375
3376 default:
3377 BFD_FAIL ();
3378 return FALSE;
3379 }
906e58ca 3380 }
461a49ca 3381
906e58ca
NC
3382 stub_sec->size += size;
3383
461a49ca
DJ
3384 /* Stub size has already been computed in arm_size_one_stub. Check
3385 consistency. */
3386 BFD_ASSERT (size == stub_entry->stub_size);
3387
906e58ca
NC
3388 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3389 if (stub_entry->st_type == STT_ARM_TFUNC)
3390 sym_value |= 1;
3391
461a49ca
DJ
3392 /* Assume there is one and only one entry to relocate in each stub. */
3393 BFD_ASSERT (stub_reloc_idx != -1);
c820be07 3394
ebe24dd4 3395 _bfd_final_link_relocate (elf32_arm_howto_from_type (template[stub_reloc_idx].r_type),
461a49ca
DJ
3396 stub_bfd, stub_sec, stub_sec->contents,
3397 stub_entry->stub_offset + stub_reloc_offset,
3398 sym_value, template[stub_reloc_idx].reloc_addend);
906e58ca
NC
3399
3400 return TRUE;
3401}
3402
3403/* As above, but don't actually build the stub. Just bump offset so
3404 we know stub section sizes. */
3405
3406static bfd_boolean
3407arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3408 void * in_arg)
3409{
3410 struct elf32_arm_stub_hash_entry *stub_entry;
3411 struct elf32_arm_link_hash_table *htab;
461a49ca 3412 const insn_sequence *template;
906e58ca
NC
3413 int template_size;
3414 int size;
3415 int i;
3416
3417 /* Massage our args to the form they really have. */
3418 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3419 htab = (struct elf32_arm_link_hash_table *) in_arg;
3420
738a79f6
CL
3421 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3422 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3423
3424 template = stub_definitions[stub_entry->stub_type].template;
3425 template_size = stub_definitions[stub_entry->stub_type].template_size;
906e58ca
NC
3426
3427 size = 0;
461a49ca
DJ
3428 for (i = 0; i < template_size; i++)
3429 {
4e31c731 3430 switch (template[i].type)
461a49ca
DJ
3431 {
3432 case THUMB16_TYPE:
3433 size += 2;
3434 break;
3435
3436 case ARM_TYPE:
3437 size += 4;
3438 break;
3439
3440 case DATA_TYPE:
3441 size += 4;
3442 break;
3443
3444 default:
3445 BFD_FAIL ();
3446 return FALSE;
3447 }
3448 }
3449
3450 stub_entry->stub_size = size;
3451 stub_entry->stub_template = template;
3452 stub_entry->stub_template_size = template_size;
3453
906e58ca
NC
3454 size = (size + 7) & ~7;
3455 stub_entry->stub_sec->size += size;
461a49ca 3456
906e58ca
NC
3457 return TRUE;
3458}
3459
3460/* External entry points for sizing and building linker stubs. */
3461
3462/* Set up various things so that we can make a list of input sections
3463 for each output section included in the link. Returns -1 on error,
3464 0 when no stubs will be needed, and 1 on success. */
3465
3466int
3467elf32_arm_setup_section_lists (bfd *output_bfd,
3468 struct bfd_link_info *info)
3469{
3470 bfd *input_bfd;
3471 unsigned int bfd_count;
3472 int top_id, top_index;
3473 asection *section;
3474 asection **input_list, **list;
3475 bfd_size_type amt;
3476 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3477
3478 if (! is_elf_hash_table (htab))
3479 return 0;
3480
3481 /* Count the number of input BFDs and find the top input section id. */
3482 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3483 input_bfd != NULL;
3484 input_bfd = input_bfd->link_next)
3485 {
3486 bfd_count += 1;
3487 for (section = input_bfd->sections;
3488 section != NULL;
3489 section = section->next)
3490 {
3491 if (top_id < section->id)
3492 top_id = section->id;
3493 }
3494 }
3495 htab->bfd_count = bfd_count;
3496
3497 amt = sizeof (struct map_stub) * (top_id + 1);
3498 htab->stub_group = bfd_zmalloc (amt);
3499 if (htab->stub_group == NULL)
3500 return -1;
3501
3502 /* We can't use output_bfd->section_count here to find the top output
3503 section index as some sections may have been removed, and
3504 _bfd_strip_section_from_output doesn't renumber the indices. */
3505 for (section = output_bfd->sections, top_index = 0;
3506 section != NULL;
3507 section = section->next)
3508 {
3509 if (top_index < section->index)
3510 top_index = section->index;
3511 }
3512
3513 htab->top_index = top_index;
3514 amt = sizeof (asection *) * (top_index + 1);
3515 input_list = bfd_malloc (amt);
3516 htab->input_list = input_list;
3517 if (input_list == NULL)
3518 return -1;
3519
3520 /* For sections we aren't interested in, mark their entries with a
3521 value we can check later. */
3522 list = input_list + top_index;
3523 do
3524 *list = bfd_abs_section_ptr;
3525 while (list-- != input_list);
3526
3527 for (section = output_bfd->sections;
3528 section != NULL;
3529 section = section->next)
3530 {
3531 if ((section->flags & SEC_CODE) != 0)
3532 input_list[section->index] = NULL;
3533 }
3534
3535 return 1;
3536}
3537
3538/* The linker repeatedly calls this function for each input section,
3539 in the order that input sections are linked into output sections.
3540 Build lists of input sections to determine groupings between which
3541 we may insert linker stubs. */
3542
3543void
3544elf32_arm_next_input_section (struct bfd_link_info *info,
3545 asection *isec)
3546{
3547 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3548
3549 if (isec->output_section->index <= htab->top_index)
3550 {
3551 asection **list = htab->input_list + isec->output_section->index;
3552
3553 if (*list != bfd_abs_section_ptr)
3554 {
3555 /* Steal the link_sec pointer for our list. */
3556#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3557 /* This happens to make the list in reverse order,
07d72278 3558 which we reverse later. */
906e58ca
NC
3559 PREV_SEC (isec) = *list;
3560 *list = isec;
3561 }
3562 }
3563}
3564
3565/* See whether we can group stub sections together. Grouping stub
3566 sections may result in fewer stubs. More importantly, we need to
07d72278 3567 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
3568 .fini output sections respectively, because glibc splits the
3569 _init and _fini functions into multiple parts. Putting a stub in
3570 the middle of a function is not a good idea. */
3571
3572static void
3573group_sections (struct elf32_arm_link_hash_table *htab,
3574 bfd_size_type stub_group_size,
07d72278 3575 bfd_boolean stubs_always_after_branch)
906e58ca 3576{
07d72278 3577 asection **list = htab->input_list;
906e58ca
NC
3578
3579 do
3580 {
3581 asection *tail = *list;
07d72278 3582 asection *head;
906e58ca
NC
3583
3584 if (tail == bfd_abs_section_ptr)
3585 continue;
3586
07d72278
DJ
3587 /* Reverse the list: we must avoid placing stubs at the
3588 beginning of the section because the beginning of the text
3589 section may be required for an interrupt vector in bare metal
3590 code. */
3591#define NEXT_SEC PREV_SEC
e780aef2
CL
3592 head = NULL;
3593 while (tail != NULL)
3594 {
3595 /* Pop from tail. */
3596 asection *item = tail;
3597 tail = PREV_SEC (item);
3598
3599 /* Push on head. */
3600 NEXT_SEC (item) = head;
3601 head = item;
3602 }
07d72278
DJ
3603
3604 while (head != NULL)
906e58ca
NC
3605 {
3606 asection *curr;
07d72278 3607 asection *next;
e780aef2
CL
3608 bfd_vma stub_group_start = head->output_offset;
3609 bfd_vma end_of_next;
906e58ca 3610
07d72278 3611 curr = head;
e780aef2 3612 while (NEXT_SEC (curr) != NULL)
8cd931b7 3613 {
e780aef2
CL
3614 next = NEXT_SEC (curr);
3615 end_of_next = next->output_offset + next->size;
3616 if (end_of_next - stub_group_start >= stub_group_size)
3617 /* End of NEXT is too far from start, so stop. */
8cd931b7 3618 break;
e780aef2
CL
3619 /* Add NEXT to the group. */
3620 curr = next;
8cd931b7 3621 }
906e58ca 3622
07d72278 3623 /* OK, the size from the start to the start of CURR is less
906e58ca 3624 than stub_group_size and thus can be handled by one stub
07d72278 3625 section. (Or the head section is itself larger than
906e58ca
NC
3626 stub_group_size, in which case we may be toast.)
3627 We should really be keeping track of the total size of
3628 stubs added here, as stubs contribute to the final output
7fb9f789 3629 section size. */
906e58ca
NC
3630 do
3631 {
07d72278 3632 next = NEXT_SEC (head);
906e58ca 3633 /* Set up this stub group. */
07d72278 3634 htab->stub_group[head->id].link_sec = curr;
906e58ca 3635 }
07d72278 3636 while (head != curr && (head = next) != NULL);
906e58ca
NC
3637
3638 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
3639 bytes after the stub section can be handled by it too. */
3640 if (!stubs_always_after_branch)
906e58ca 3641 {
e780aef2
CL
3642 stub_group_start = curr->output_offset + curr->size;
3643
8cd931b7 3644 while (next != NULL)
906e58ca 3645 {
e780aef2
CL
3646 end_of_next = next->output_offset + next->size;
3647 if (end_of_next - stub_group_start >= stub_group_size)
3648 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 3649 break;
e780aef2 3650 /* Add NEXT to the stub group. */
07d72278
DJ
3651 head = next;
3652 next = NEXT_SEC (head);
3653 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
3654 }
3655 }
07d72278 3656 head = next;
906e58ca
NC
3657 }
3658 }
07d72278 3659 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
3660
3661 free (htab->input_list);
3662#undef PREV_SEC
07d72278 3663#undef NEXT_SEC
906e58ca
NC
3664}
3665
3666/* Determine and set the size of the stub section for a final link.
3667
3668 The basic idea here is to examine all the relocations looking for
3669 PC-relative calls to a target that is unreachable with a "bl"
3670 instruction. */
3671
3672bfd_boolean
3673elf32_arm_size_stubs (bfd *output_bfd,
3674 bfd *stub_bfd,
3675 struct bfd_link_info *info,
3676 bfd_signed_vma group_size,
3677 asection * (*add_stub_section) (const char *, asection *),
3678 void (*layout_sections_again) (void))
3679{
3680 bfd_size_type stub_group_size;
07d72278 3681 bfd_boolean stubs_always_after_branch;
906e58ca
NC
3682 bfd_boolean stub_changed = 0;
3683 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3684
3685 /* Propagate mach to stub bfd, because it may not have been
3686 finalized when we created stub_bfd. */
3687 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3688 bfd_get_mach (output_bfd));
3689
3690 /* Stash our params away. */
3691 htab->stub_bfd = stub_bfd;
3692 htab->add_stub_section = add_stub_section;
3693 htab->layout_sections_again = layout_sections_again;
07d72278 3694 stubs_always_after_branch = group_size < 0;
906e58ca
NC
3695 if (group_size < 0)
3696 stub_group_size = -group_size;
3697 else
3698 stub_group_size = group_size;
3699
3700 if (stub_group_size == 1)
3701 {
3702 /* Default values. */
3703 /* Thumb branch range is +-4MB has to be used as the default
3704 maximum size (a given section can contain both ARM and Thumb
3705 code, so the worst case has to be taken into account).
3706
3707 This value is 24K less than that, which allows for 2025
3708 12-byte stubs. If we exceed that, then we will fail to link.
3709 The user will have to relink with an explicit group size
3710 option. */
3711 stub_group_size = 4170000;
3712 }
3713
07d72278 3714 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca
NC
3715
3716 while (1)
3717 {
3718 bfd *input_bfd;
3719 unsigned int bfd_indx;
3720 asection *stub_sec;
3721
3722 for (input_bfd = info->input_bfds, bfd_indx = 0;
3723 input_bfd != NULL;
3724 input_bfd = input_bfd->link_next, bfd_indx++)
3725 {
3726 Elf_Internal_Shdr *symtab_hdr;
3727 asection *section;
3728 Elf_Internal_Sym *local_syms = NULL;
3729
3730 /* We'll need the symbol table in a second. */
3731 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3732 if (symtab_hdr->sh_info == 0)
3733 continue;
3734
3735 /* Walk over each section attached to the input bfd. */
3736 for (section = input_bfd->sections;
3737 section != NULL;
3738 section = section->next)
3739 {
3740 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3741
3742 /* If there aren't any relocs, then there's nothing more
3743 to do. */
3744 if ((section->flags & SEC_RELOC) == 0
3745 || section->reloc_count == 0
3746 || (section->flags & SEC_CODE) == 0)
3747 continue;
3748
3749 /* If this section is a link-once section that will be
3750 discarded, then don't create any stubs. */
3751 if (section->output_section == NULL
3752 || section->output_section->owner != output_bfd)
3753 continue;
3754
3755 /* Get the relocs. */
3756 internal_relocs
3757 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3758 NULL, info->keep_memory);
3759 if (internal_relocs == NULL)
3760 goto error_ret_free_local;
3761
3762 /* Now examine each relocation. */
3763 irela = internal_relocs;
3764 irelaend = irela + section->reloc_count;
3765 for (; irela < irelaend; irela++)
3766 {
3767 unsigned int r_type, r_indx;
3768 enum elf32_arm_stub_type stub_type;
3769 struct elf32_arm_stub_hash_entry *stub_entry;
3770 asection *sym_sec;
3771 bfd_vma sym_value;
3772 bfd_vma destination;
3773 struct elf32_arm_link_hash_entry *hash;
7413f23f 3774 const char *sym_name;
906e58ca
NC
3775 char *stub_name;
3776 const asection *id_sec;
3777 unsigned char st_type;
3778
3779 r_type = ELF32_R_TYPE (irela->r_info);
3780 r_indx = ELF32_R_SYM (irela->r_info);
3781
3782 if (r_type >= (unsigned int) R_ARM_max)
3783 {
3784 bfd_set_error (bfd_error_bad_value);
3785 error_ret_free_internal:
3786 if (elf_section_data (section)->relocs == NULL)
3787 free (internal_relocs);
3788 goto error_ret_free_local;
3789 }
3790
155d87d7 3791 /* Only look for stubs on branch instructions. */
906e58ca 3792 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
3793 && (r_type != (unsigned int) R_ARM_THM_CALL)
3794 && (r_type != (unsigned int) R_ARM_JUMP24)
3795 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
3796 && (r_type != (unsigned int) R_ARM_PLT32))
906e58ca
NC
3797 continue;
3798
3799 /* Now determine the call target, its name, value,
3800 section. */
3801 sym_sec = NULL;
3802 sym_value = 0;
3803 destination = 0;
3804 hash = NULL;
7413f23f 3805 sym_name = NULL;
906e58ca
NC
3806 if (r_indx < symtab_hdr->sh_info)
3807 {
3808 /* It's a local symbol. */
3809 Elf_Internal_Sym *sym;
3810 Elf_Internal_Shdr *hdr;
3811
3812 if (local_syms == NULL)
3813 {
3814 local_syms
3815 = (Elf_Internal_Sym *) symtab_hdr->contents;
3816 if (local_syms == NULL)
3817 local_syms
3818 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3819 symtab_hdr->sh_info, 0,
3820 NULL, NULL, NULL);
3821 if (local_syms == NULL)
3822 goto error_ret_free_internal;
3823 }
3824
3825 sym = local_syms + r_indx;
3826 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3827 sym_sec = hdr->bfd_section;
3828 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3829 sym_value = sym->st_value;
3830 destination = (sym_value + irela->r_addend
3831 + sym_sec->output_offset
3832 + sym_sec->output_section->vma);
3833 st_type = ELF_ST_TYPE (sym->st_info);
7413f23f
DJ
3834 sym_name
3835 = bfd_elf_string_from_elf_section (input_bfd,
3836 symtab_hdr->sh_link,
3837 sym->st_name);
906e58ca
NC
3838 }
3839 else
3840 {
3841 /* It's an external symbol. */
3842 int e_indx;
3843
3844 e_indx = r_indx - symtab_hdr->sh_info;
3845 hash = ((struct elf32_arm_link_hash_entry *)
3846 elf_sym_hashes (input_bfd)[e_indx]);
3847
3848 while (hash->root.root.type == bfd_link_hash_indirect
3849 || hash->root.root.type == bfd_link_hash_warning)
3850 hash = ((struct elf32_arm_link_hash_entry *)
3851 hash->root.root.u.i.link);
3852
3853 if (hash->root.root.type == bfd_link_hash_defined
3854 || hash->root.root.type == bfd_link_hash_defweak)
3855 {
3856 sym_sec = hash->root.root.u.def.section;
3857 sym_value = hash->root.root.u.def.value;
3858 if (sym_sec->output_section != NULL)
3859 destination = (sym_value + irela->r_addend
3860 + sym_sec->output_offset
3861 + sym_sec->output_section->vma);
3862 }
69c5861e
CL
3863 else if ((hash->root.root.type == bfd_link_hash_undefined)
3864 || (hash->root.root.type == bfd_link_hash_undefweak))
3865 {
3866 /* For a shared library, use the PLT stub as
3867 target address to decide whether a long
3868 branch stub is needed.
3869 For absolute code, they cannot be handled. */
3870 struct elf32_arm_link_hash_table *globals =
3871 elf32_arm_hash_table (info);
3872
3873 if (globals->splt != NULL && hash != NULL
3874 && hash->root.plt.offset != (bfd_vma) -1)
3875 {
3876 sym_sec = globals->splt;
3877 sym_value = hash->root.plt.offset;
3878 if (sym_sec->output_section != NULL)
3879 destination = (sym_value
3880 + sym_sec->output_offset
3881 + sym_sec->output_section->vma);
3882 }
3883 else
3884 continue;
3885 }
906e58ca
NC
3886 else
3887 {
3888 bfd_set_error (bfd_error_bad_value);
3889 goto error_ret_free_internal;
3890 }
3891 st_type = ELF_ST_TYPE (hash->root.type);
7413f23f 3892 sym_name = hash->root.root.root.string;
906e58ca
NC
3893 }
3894
3895 /* Determine what (if any) linker stub is needed. */
3896 stub_type = arm_type_of_stub (info, section, irela, st_type,
c820be07
NC
3897 hash, destination, sym_sec,
3898 input_bfd, sym_name);
906e58ca
NC
3899 if (stub_type == arm_stub_none)
3900 continue;
5e681ec4 3901
906e58ca
NC
3902 /* Support for grouping stub sections. */
3903 id_sec = htab->stub_group[section->id].link_sec;
5e681ec4 3904
906e58ca
NC
3905 /* Get the name of this stub. */
3906 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3907 if (!stub_name)
3908 goto error_ret_free_internal;
5e681ec4 3909
906e58ca
NC
3910 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3911 stub_name,
3912 FALSE, FALSE);
3913 if (stub_entry != NULL)
3914 {
3915 /* The proper stub has already been created. */
3916 free (stub_name);
3917 continue;
3918 }
5e681ec4 3919
da5938a2 3920 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
906e58ca
NC
3921 if (stub_entry == NULL)
3922 {
3923 free (stub_name);
3924 goto error_ret_free_internal;
3925 }
5e681ec4 3926
906e58ca
NC
3927 stub_entry->target_value = sym_value;
3928 stub_entry->target_section = sym_sec;
3929 stub_entry->stub_type = stub_type;
3930 stub_entry->h = hash;
3931 stub_entry->st_type = st_type;
7413f23f
DJ
3932
3933 if (sym_name == NULL)
3934 sym_name = "unnamed";
3935 stub_entry->output_name
3936 = bfd_alloc (htab->stub_bfd,
3937 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3938 + strlen (sym_name));
3939 if (stub_entry->output_name == NULL)
3940 {
3941 free (stub_name);
3942 goto error_ret_free_internal;
3943 }
3944
3945 /* For historical reasons, use the existing names for
3946 ARM-to-Thumb and Thumb-to-ARM stubs. */
155d87d7
CL
3947 if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
3948 || (r_type == (unsigned int) R_ARM_THM_JUMP24))
3949 && st_type != STT_ARM_TFUNC)
7413f23f
DJ
3950 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3951 sym_name);
155d87d7
CL
3952 else if ( ((r_type == (unsigned int) R_ARM_CALL)
3953 || (r_type == (unsigned int) R_ARM_JUMP24))
7413f23f
DJ
3954 && st_type == STT_ARM_TFUNC)
3955 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3956 sym_name);
3957 else
3958 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3959 sym_name);
3960
906e58ca
NC
3961 stub_changed = TRUE;
3962 }
3963
3964 /* We're done with the internal relocs, free them. */
3965 if (elf_section_data (section)->relocs == NULL)
3966 free (internal_relocs);
5e681ec4 3967 }
5e681ec4
PB
3968 }
3969
906e58ca
NC
3970 if (!stub_changed)
3971 break;
5e681ec4 3972
906e58ca
NC
3973 /* OK, we've added some stubs. Find out the new size of the
3974 stub sections. */
3975 for (stub_sec = htab->stub_bfd->sections;
3976 stub_sec != NULL;
3977 stub_sec = stub_sec->next)
3e6b1042
DJ
3978 {
3979 /* Ignore non-stub sections. */
3980 if (!strstr (stub_sec->name, STUB_SUFFIX))
3981 continue;
3982
3983 stub_sec->size = 0;
3984 }
b34b2d70 3985
906e58ca
NC
3986 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3987
3988 /* Ask the linker to do its stuff. */
3989 (*htab->layout_sections_again) ();
3990 stub_changed = FALSE;
ba93b8ac
DJ
3991 }
3992
906e58ca
NC
3993 return TRUE;
3994
3995 error_ret_free_local:
3996 return FALSE;
5e681ec4
PB
3997}
3998
906e58ca
NC
3999/* Build all the stubs associated with the current output file. The
4000 stubs are kept in a hash table attached to the main linker hash
4001 table. We also set up the .plt entries for statically linked PIC
4002 functions here. This function is called via arm_elf_finish in the
4003 linker. */
252b5132 4004
906e58ca
NC
4005bfd_boolean
4006elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 4007{
906e58ca
NC
4008 asection *stub_sec;
4009 struct bfd_hash_table *table;
4010 struct elf32_arm_link_hash_table *htab;
252b5132 4011
906e58ca 4012 htab = elf32_arm_hash_table (info);
252b5132 4013
906e58ca
NC
4014 for (stub_sec = htab->stub_bfd->sections;
4015 stub_sec != NULL;
4016 stub_sec = stub_sec->next)
252b5132 4017 {
906e58ca
NC
4018 bfd_size_type size;
4019
8029a119 4020 /* Ignore non-stub sections. */
906e58ca
NC
4021 if (!strstr (stub_sec->name, STUB_SUFFIX))
4022 continue;
4023
4024 /* Allocate memory to hold the linker stubs. */
4025 size = stub_sec->size;
4026 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4027 if (stub_sec->contents == NULL && size != 0)
4028 return FALSE;
4029 stub_sec->size = 0;
252b5132
RH
4030 }
4031
906e58ca
NC
4032 /* Build the stubs as directed by the stub hash table. */
4033 table = &htab->stub_hash_table;
4034 bfd_hash_traverse (table, arm_build_one_stub, info);
252b5132 4035
906e58ca 4036 return TRUE;
252b5132
RH
4037}
4038
9b485d32
NC
4039/* Locate the Thumb encoded calling stub for NAME. */
4040
252b5132 4041static struct elf_link_hash_entry *
57e8b36a
NC
4042find_thumb_glue (struct bfd_link_info *link_info,
4043 const char *name,
f2a9dd69 4044 char **error_message)
252b5132
RH
4045{
4046 char *tmp_name;
4047 struct elf_link_hash_entry *hash;
4048 struct elf32_arm_link_hash_table *hash_table;
4049
4050 /* We need a pointer to the armelf specific hash table. */
4051 hash_table = elf32_arm_hash_table (link_info);
4052
57e8b36a
NC
4053 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4054 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4055
4056 BFD_ASSERT (tmp_name);
4057
4058 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4059
4060 hash = elf_link_hash_lookup
b34976b6 4061 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 4062
b1657152
AM
4063 if (hash == NULL
4064 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4065 tmp_name, name) == -1)
4066 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
4067
4068 free (tmp_name);
4069
4070 return hash;
4071}
4072
9b485d32
NC
4073/* Locate the ARM encoded calling stub for NAME. */
4074
252b5132 4075static struct elf_link_hash_entry *
57e8b36a
NC
4076find_arm_glue (struct bfd_link_info *link_info,
4077 const char *name,
f2a9dd69 4078 char **error_message)
252b5132
RH
4079{
4080 char *tmp_name;
4081 struct elf_link_hash_entry *myh;
4082 struct elf32_arm_link_hash_table *hash_table;
4083
4084 /* We need a pointer to the elfarm specific hash table. */
4085 hash_table = elf32_arm_hash_table (link_info);
4086
57e8b36a
NC
4087 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4088 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4089
4090 BFD_ASSERT (tmp_name);
4091
4092 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4093
4094 myh = elf_link_hash_lookup
b34976b6 4095 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 4096
b1657152
AM
4097 if (myh == NULL
4098 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4099 tmp_name, name) == -1)
4100 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
4101
4102 free (tmp_name);
4103
4104 return myh;
4105}
4106
8f6277f5 4107/* ARM->Thumb glue (static images):
252b5132
RH
4108
4109 .arm
4110 __func_from_arm:
4111 ldr r12, __func_addr
4112 bx r12
4113 __func_addr:
906e58ca 4114 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 4115
26079076
PB
4116 (v5t static images)
4117 .arm
4118 __func_from_arm:
4119 ldr pc, __func_addr
4120 __func_addr:
906e58ca 4121 .word func @ behave as if you saw a ARM_32 reloc.
26079076 4122
8f6277f5
PB
4123 (relocatable images)
4124 .arm
4125 __func_from_arm:
4126 ldr r12, __func_offset
4127 add r12, r12, pc
4128 bx r12
4129 __func_offset:
8029a119 4130 .word func - . */
8f6277f5
PB
4131
4132#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
4133static const insn32 a2t1_ldr_insn = 0xe59fc000;
4134static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4135static const insn32 a2t3_func_addr_insn = 0x00000001;
4136
26079076
PB
4137#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4138static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4139static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4140
8f6277f5
PB
4141#define ARM2THUMB_PIC_GLUE_SIZE 16
4142static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4143static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4144static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4145
9b485d32 4146/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 4147
8029a119
NC
4148 .thumb .thumb
4149 .align 2 .align 2
4150 __func_from_thumb: __func_from_thumb:
4151 bx pc push {r6, lr}
4152 nop ldr r6, __func_addr
4153 .arm mov lr, pc
4154 b func bx r6
fcef9eb7
NC
4155 .arm
4156 ;; back_to_thumb
4157 ldmia r13! {r6, lr}
4158 bx lr
8029a119
NC
4159 __func_addr:
4160 .word func */
252b5132
RH
4161
4162#define THUMB2ARM_GLUE_SIZE 8
4163static const insn16 t2a1_bx_pc_insn = 0x4778;
4164static const insn16 t2a2_noop_insn = 0x46c0;
4165static const insn32 t2a3_b_insn = 0xea000000;
4166
c7b8f16e
JB
4167#define VFP11_ERRATUM_VENEER_SIZE 8
4168
845b51d6
PB
4169#define ARM_BX_VENEER_SIZE 12
4170static const insn32 armbx1_tst_insn = 0xe3100001;
4171static const insn32 armbx2_moveq_insn = 0x01a0f000;
4172static const insn32 armbx3_bx_insn = 0xe12fff10;
4173
7e392df6 4174#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
4175static void
4176arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
4177{
4178 asection * s;
8029a119 4179 bfd_byte * contents;
252b5132 4180
8029a119 4181 if (size == 0)
3e6b1042
DJ
4182 {
4183 /* Do not include empty glue sections in the output. */
4184 if (abfd != NULL)
4185 {
4186 s = bfd_get_section_by_name (abfd, name);
4187 if (s != NULL)
4188 s->flags |= SEC_EXCLUDE;
4189 }
4190 return;
4191 }
252b5132 4192
8029a119 4193 BFD_ASSERT (abfd != NULL);
252b5132 4194
8029a119
NC
4195 s = bfd_get_section_by_name (abfd, name);
4196 BFD_ASSERT (s != NULL);
252b5132 4197
8029a119 4198 contents = bfd_alloc (abfd, size);
252b5132 4199
8029a119
NC
4200 BFD_ASSERT (s->size == size);
4201 s->contents = contents;
4202}
906e58ca 4203
8029a119
NC
4204bfd_boolean
4205bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4206{
4207 struct elf32_arm_link_hash_table * globals;
906e58ca 4208
8029a119
NC
4209 globals = elf32_arm_hash_table (info);
4210 BFD_ASSERT (globals != NULL);
906e58ca 4211
8029a119
NC
4212 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4213 globals->arm_glue_size,
4214 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 4215
8029a119
NC
4216 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4217 globals->thumb_glue_size,
4218 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 4219
8029a119
NC
4220 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4221 globals->vfp11_erratum_glue_size,
4222 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 4223
8029a119
NC
4224 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4225 globals->bx_glue_size,
845b51d6
PB
4226 ARM_BX_GLUE_SECTION_NAME);
4227
b34976b6 4228 return TRUE;
252b5132
RH
4229}
4230
a4fd1a8e 4231/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
4232 returns the symbol identifying the stub. */
4233
a4fd1a8e 4234static struct elf_link_hash_entry *
57e8b36a
NC
4235record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4236 struct elf_link_hash_entry * h)
252b5132
RH
4237{
4238 const char * name = h->root.root.string;
63b0f745 4239 asection * s;
252b5132
RH
4240 char * tmp_name;
4241 struct elf_link_hash_entry * myh;
14a793b2 4242 struct bfd_link_hash_entry * bh;
252b5132 4243 struct elf32_arm_link_hash_table * globals;
dc810e39 4244 bfd_vma val;
2f475487 4245 bfd_size_type size;
252b5132
RH
4246
4247 globals = elf32_arm_hash_table (link_info);
4248
4249 BFD_ASSERT (globals != NULL);
4250 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4251
4252 s = bfd_get_section_by_name
4253 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4254
252b5132
RH
4255 BFD_ASSERT (s != NULL);
4256
57e8b36a 4257 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
4258
4259 BFD_ASSERT (tmp_name);
4260
4261 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4262
4263 myh = elf_link_hash_lookup
b34976b6 4264 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
4265
4266 if (myh != NULL)
4267 {
9b485d32 4268 /* We've already seen this guy. */
252b5132 4269 free (tmp_name);
a4fd1a8e 4270 return myh;
252b5132
RH
4271 }
4272
57e8b36a
NC
4273 /* The only trick here is using hash_table->arm_glue_size as the value.
4274 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
4275 putting it. The +1 on the value marks that the stub has not been
4276 output yet - not that it is a Thumb function. */
14a793b2 4277 bh = NULL;
dc810e39
AM
4278 val = globals->arm_glue_size + 1;
4279 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4280 tmp_name, BSF_GLOBAL, s, val,
b34976b6 4281 NULL, TRUE, FALSE, &bh);
252b5132 4282
b7693d02
DJ
4283 myh = (struct elf_link_hash_entry *) bh;
4284 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4285 myh->forced_local = 1;
4286
252b5132
RH
4287 free (tmp_name);
4288
27e55c4d
PB
4289 if (link_info->shared || globals->root.is_relocatable_executable
4290 || globals->pic_veneer)
2f475487 4291 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
4292 else if (globals->use_blx)
4293 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 4294 else
2f475487
AM
4295 size = ARM2THUMB_STATIC_GLUE_SIZE;
4296
4297 s->size += size;
4298 globals->arm_glue_size += size;
252b5132 4299
a4fd1a8e 4300 return myh;
252b5132
RH
4301}
4302
845b51d6
PB
4303/* Allocate space for ARMv4 BX veneers. */
4304
4305static void
4306record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4307{
4308 asection * s;
4309 struct elf32_arm_link_hash_table *globals;
4310 char *tmp_name;
4311 struct elf_link_hash_entry *myh;
4312 struct bfd_link_hash_entry *bh;
4313 bfd_vma val;
4314
4315 /* BX PC does not need a veneer. */
4316 if (reg == 15)
4317 return;
4318
4319 globals = elf32_arm_hash_table (link_info);
4320
4321 BFD_ASSERT (globals != NULL);
4322 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4323
4324 /* Check if this veneer has already been allocated. */
4325 if (globals->bx_glue_offset[reg])
4326 return;
4327
4328 s = bfd_get_section_by_name
4329 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4330
4331 BFD_ASSERT (s != NULL);
4332
4333 /* Add symbol for veneer. */
4334 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 4335
845b51d6 4336 BFD_ASSERT (tmp_name);
906e58ca 4337
845b51d6 4338 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 4339
845b51d6
PB
4340 myh = elf_link_hash_lookup
4341 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 4342
845b51d6 4343 BFD_ASSERT (myh == NULL);
906e58ca 4344
845b51d6
PB
4345 bh = NULL;
4346 val = globals->bx_glue_size;
4347 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4348 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4349 NULL, TRUE, FALSE, &bh);
4350
4351 myh = (struct elf_link_hash_entry *) bh;
4352 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4353 myh->forced_local = 1;
4354
4355 s->size += ARM_BX_VENEER_SIZE;
4356 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4357 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4358}
4359
4360
c7b8f16e
JB
4361/* Add an entry to the code/data map for section SEC. */
4362
4363static void
4364elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4365{
4366 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4367 unsigned int newidx;
906e58ca 4368
c7b8f16e
JB
4369 if (sec_data->map == NULL)
4370 {
4371 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4372 sec_data->mapcount = 0;
4373 sec_data->mapsize = 1;
4374 }
906e58ca 4375
c7b8f16e 4376 newidx = sec_data->mapcount++;
906e58ca 4377
c7b8f16e
JB
4378 if (sec_data->mapcount > sec_data->mapsize)
4379 {
4380 sec_data->mapsize *= 2;
515ef31d
NC
4381 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4382 * sizeof (elf32_arm_section_map));
4383 }
4384
4385 if (sec_data->map)
4386 {
4387 sec_data->map[newidx].vma = vma;
4388 sec_data->map[newidx].type = type;
c7b8f16e 4389 }
c7b8f16e
JB
4390}
4391
4392
4393/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4394 veneers are handled for now. */
4395
4396static bfd_vma
4397record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4398 elf32_vfp11_erratum_list *branch,
4399 bfd *branch_bfd,
4400 asection *branch_sec,
4401 unsigned int offset)
4402{
4403 asection *s;
4404 struct elf32_arm_link_hash_table *hash_table;
4405 char *tmp_name;
4406 struct elf_link_hash_entry *myh;
4407 struct bfd_link_hash_entry *bh;
4408 bfd_vma val;
4409 struct _arm_elf_section_data *sec_data;
4410 int errcount;
4411 elf32_vfp11_erratum_list *newerr;
906e58ca 4412
c7b8f16e 4413 hash_table = elf32_arm_hash_table (link_info);
906e58ca 4414
c7b8f16e
JB
4415 BFD_ASSERT (hash_table != NULL);
4416 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 4417
c7b8f16e
JB
4418 s = bfd_get_section_by_name
4419 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 4420
c7b8f16e 4421 sec_data = elf32_arm_section_data (s);
906e58ca 4422
c7b8f16e 4423 BFD_ASSERT (s != NULL);
906e58ca 4424
c7b8f16e
JB
4425 tmp_name = bfd_malloc ((bfd_size_type) strlen
4426 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 4427
c7b8f16e 4428 BFD_ASSERT (tmp_name);
906e58ca 4429
c7b8f16e
JB
4430 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4431 hash_table->num_vfp11_fixes);
906e58ca 4432
c7b8f16e
JB
4433 myh = elf_link_hash_lookup
4434 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 4435
c7b8f16e 4436 BFD_ASSERT (myh == NULL);
906e58ca 4437
c7b8f16e
JB
4438 bh = NULL;
4439 val = hash_table->vfp11_erratum_glue_size;
4440 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4441 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4442 NULL, TRUE, FALSE, &bh);
4443
4444 myh = (struct elf_link_hash_entry *) bh;
4445 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4446 myh->forced_local = 1;
4447
4448 /* Link veneer back to calling location. */
4449 errcount = ++(sec_data->erratumcount);
4450 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 4451
c7b8f16e
JB
4452 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4453 newerr->vma = -1;
4454 newerr->u.v.branch = branch;
4455 newerr->u.v.id = hash_table->num_vfp11_fixes;
4456 branch->u.b.veneer = newerr;
4457
4458 newerr->next = sec_data->erratumlist;
4459 sec_data->erratumlist = newerr;
4460
4461 /* A symbol for the return from the veneer. */
4462 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4463 hash_table->num_vfp11_fixes);
4464
4465 myh = elf_link_hash_lookup
4466 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 4467
c7b8f16e
JB
4468 if (myh != NULL)
4469 abort ();
4470
4471 bh = NULL;
4472 val = offset + 4;
4473 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4474 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 4475
c7b8f16e
JB
4476 myh = (struct elf_link_hash_entry *) bh;
4477 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4478 myh->forced_local = 1;
4479
4480 free (tmp_name);
906e58ca 4481
c7b8f16e
JB
4482 /* Generate a mapping symbol for the veneer section, and explicitly add an
4483 entry for that symbol to the code/data map for the section. */
4484 if (hash_table->vfp11_erratum_glue_size == 0)
4485 {
4486 bh = NULL;
4487 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4488 ever requires this erratum fix. */
4489 _bfd_generic_link_add_one_symbol (link_info,
4490 hash_table->bfd_of_glue_owner, "$a",
4491 BSF_LOCAL, s, 0, NULL,
4492 TRUE, FALSE, &bh);
4493
4494 myh = (struct elf_link_hash_entry *) bh;
4495 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4496 myh->forced_local = 1;
906e58ca 4497
c7b8f16e
JB
4498 /* The elf32_arm_init_maps function only cares about symbols from input
4499 BFDs. We must make a note of this generated mapping symbol
4500 ourselves so that code byteswapping works properly in
4501 elf32_arm_write_section. */
4502 elf32_arm_section_map_add (s, 'a', 0);
4503 }
906e58ca 4504
c7b8f16e
JB
4505 s->size += VFP11_ERRATUM_VENEER_SIZE;
4506 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4507 hash_table->num_vfp11_fixes++;
906e58ca 4508
c7b8f16e
JB
4509 /* The offset of the veneer. */
4510 return val;
4511}
4512
8029a119 4513#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
4514 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
4515 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
4516
4517/* Create a fake section for use by the ARM backend of the linker. */
4518
4519static bfd_boolean
4520arm_make_glue_section (bfd * abfd, const char * name)
4521{
4522 asection * sec;
4523
4524 sec = bfd_get_section_by_name (abfd, name);
4525 if (sec != NULL)
4526 /* Already made. */
4527 return TRUE;
4528
4529 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4530
4531 if (sec == NULL
4532 || !bfd_set_section_alignment (abfd, sec, 2))
4533 return FALSE;
4534
4535 /* Set the gc mark to prevent the section from being removed by garbage
4536 collection, despite the fact that no relocs refer to this section. */
4537 sec->gc_mark = 1;
4538
4539 return TRUE;
4540}
4541
8afb0e02
NC
4542/* Add the glue sections to ABFD. This function is called from the
4543 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 4544
b34976b6 4545bfd_boolean
57e8b36a
NC
4546bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4547 struct bfd_link_info *info)
252b5132 4548{
8afb0e02
NC
4549 /* If we are only performing a partial
4550 link do not bother adding the glue. */
1049f94e 4551 if (info->relocatable)
b34976b6 4552 return TRUE;
252b5132 4553
8029a119
NC
4554 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4555 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4556 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4557 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
8afb0e02
NC
4558}
4559
4560/* Select a BFD to be used to hold the sections used by the glue code.
4561 This function is called from the linker scripts in ld/emultempl/
8029a119 4562 {armelf/pe}.em. */
8afb0e02 4563
b34976b6 4564bfd_boolean
57e8b36a 4565bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
4566{
4567 struct elf32_arm_link_hash_table *globals;
4568
4569 /* If we are only performing a partial link
4570 do not bother getting a bfd to hold the glue. */
1049f94e 4571 if (info->relocatable)
b34976b6 4572 return TRUE;
8afb0e02 4573
b7693d02
DJ
4574 /* Make sure we don't attach the glue sections to a dynamic object. */
4575 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4576
8afb0e02
NC
4577 globals = elf32_arm_hash_table (info);
4578
4579 BFD_ASSERT (globals != NULL);
4580
4581 if (globals->bfd_of_glue_owner != NULL)
b34976b6 4582 return TRUE;
8afb0e02 4583
252b5132
RH
4584 /* Save the bfd for later use. */
4585 globals->bfd_of_glue_owner = abfd;
cedb70c5 4586
b34976b6 4587 return TRUE;
252b5132
RH
4588}
4589
906e58ca
NC
4590static void
4591check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 4592{
104d59d1
JM
4593 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4594 Tag_CPU_arch) > 2)
39b41c9c
PB
4595 globals->use_blx = 1;
4596}
4597
b34976b6 4598bfd_boolean
57e8b36a 4599bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 4600 struct bfd_link_info *link_info)
252b5132
RH
4601{
4602 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 4603 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
4604 Elf_Internal_Rela *irel, *irelend;
4605 bfd_byte *contents = NULL;
252b5132
RH
4606
4607 asection *sec;
4608 struct elf32_arm_link_hash_table *globals;
4609
4610 /* If we are only performing a partial link do not bother
4611 to construct any glue. */
1049f94e 4612 if (link_info->relocatable)
b34976b6 4613 return TRUE;
252b5132 4614
39ce1a6a
NC
4615 /* Here we have a bfd that is to be included on the link. We have a
4616 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132
RH
4617 globals = elf32_arm_hash_table (link_info);
4618
4619 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
4620
4621 check_use_blx (globals);
252b5132 4622
d504ffc8 4623 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 4624 {
d003868e
AM
4625 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4626 abfd);
e489d0ae
PB
4627 return FALSE;
4628 }
f21f3fe0 4629
39ce1a6a
NC
4630 /* PR 5398: If we have not decided to include any loadable sections in
4631 the output then we will not have a glue owner bfd. This is OK, it
4632 just means that there is nothing else for us to do here. */
4633 if (globals->bfd_of_glue_owner == NULL)
4634 return TRUE;
4635
252b5132
RH
4636 /* Rummage around all the relocs and map the glue vectors. */
4637 sec = abfd->sections;
4638
4639 if (sec == NULL)
b34976b6 4640 return TRUE;
252b5132
RH
4641
4642 for (; sec != NULL; sec = sec->next)
4643 {
4644 if (sec->reloc_count == 0)
4645 continue;
4646
2f475487
AM
4647 if ((sec->flags & SEC_EXCLUDE) != 0)
4648 continue;
4649
0ffa91dd 4650 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 4651
9b485d32 4652 /* Load the relocs. */
6cdc0ccc 4653 internal_relocs
906e58ca 4654 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 4655
6cdc0ccc
AM
4656 if (internal_relocs == NULL)
4657 goto error_return;
252b5132 4658
6cdc0ccc
AM
4659 irelend = internal_relocs + sec->reloc_count;
4660 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
4661 {
4662 long r_type;
4663 unsigned long r_index;
252b5132
RH
4664
4665 struct elf_link_hash_entry *h;
4666
4667 r_type = ELF32_R_TYPE (irel->r_info);
4668 r_index = ELF32_R_SYM (irel->r_info);
4669
9b485d32 4670 /* These are the only relocation types we care about. */
ba96a88f 4671 if ( r_type != R_ARM_PC24
845b51d6 4672 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
4673 continue;
4674
4675 /* Get the section contents if we haven't done so already. */
4676 if (contents == NULL)
4677 {
4678 /* Get cached copy if it exists. */
4679 if (elf_section_data (sec)->this_hdr.contents != NULL)
4680 contents = elf_section_data (sec)->this_hdr.contents;
4681 else
4682 {
4683 /* Go get them off disk. */
57e8b36a 4684 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
4685 goto error_return;
4686 }
4687 }
4688
845b51d6
PB
4689 if (r_type == R_ARM_V4BX)
4690 {
4691 int reg;
4692
4693 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4694 record_arm_bx_glue (link_info, reg);
4695 continue;
4696 }
4697
a7c10850 4698 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
4699 h = NULL;
4700
9b485d32 4701 /* We don't care about local symbols. */
252b5132
RH
4702 if (r_index < symtab_hdr->sh_info)
4703 continue;
4704
9b485d32 4705 /* This is an external symbol. */
252b5132
RH
4706 r_index -= symtab_hdr->sh_info;
4707 h = (struct elf_link_hash_entry *)
4708 elf_sym_hashes (abfd)[r_index];
4709
4710 /* If the relocation is against a static symbol it must be within
4711 the current section and so cannot be a cross ARM/Thumb relocation. */
4712 if (h == NULL)
4713 continue;
4714
d504ffc8
DJ
4715 /* If the call will go through a PLT entry then we do not need
4716 glue. */
4717 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
4718 continue;
4719
252b5132
RH
4720 switch (r_type)
4721 {
4722 case R_ARM_PC24:
4723 /* This one is a call from arm code. We need to look up
2f0ca46a 4724 the target of the call. If it is a thumb target, we
252b5132 4725 insert glue. */
ebe24dd4 4726 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
252b5132
RH
4727 record_arm_to_thumb_glue (link_info, h);
4728 break;
4729
252b5132 4730 default:
c6596c5e 4731 abort ();
252b5132
RH
4732 }
4733 }
6cdc0ccc
AM
4734
4735 if (contents != NULL
4736 && elf_section_data (sec)->this_hdr.contents != contents)
4737 free (contents);
4738 contents = NULL;
4739
4740 if (internal_relocs != NULL
4741 && elf_section_data (sec)->relocs != internal_relocs)
4742 free (internal_relocs);
4743 internal_relocs = NULL;
252b5132
RH
4744 }
4745
b34976b6 4746 return TRUE;
9a5aca8c 4747
252b5132 4748error_return:
6cdc0ccc
AM
4749 if (contents != NULL
4750 && elf_section_data (sec)->this_hdr.contents != contents)
4751 free (contents);
4752 if (internal_relocs != NULL
4753 && elf_section_data (sec)->relocs != internal_relocs)
4754 free (internal_relocs);
9a5aca8c 4755
b34976b6 4756 return FALSE;
252b5132 4757}
7e392df6 4758#endif
252b5132 4759
eb043451 4760
c7b8f16e
JB
4761/* Initialise maps of ARM/Thumb/data for input BFDs. */
4762
4763void
4764bfd_elf32_arm_init_maps (bfd *abfd)
4765{
4766 Elf_Internal_Sym *isymbuf;
4767 Elf_Internal_Shdr *hdr;
4768 unsigned int i, localsyms;
4769
af1f4419
NC
4770 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
4771 if (! is_arm_elf (abfd))
4772 return;
4773
c7b8f16e
JB
4774 if ((abfd->flags & DYNAMIC) != 0)
4775 return;
4776
0ffa91dd 4777 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
4778 localsyms = hdr->sh_info;
4779
4780 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4781 should contain the number of local symbols, which should come before any
4782 global symbols. Mapping symbols are always local. */
4783 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4784 NULL);
4785
4786 /* No internal symbols read? Skip this BFD. */
4787 if (isymbuf == NULL)
4788 return;
4789
4790 for (i = 0; i < localsyms; i++)
4791 {
4792 Elf_Internal_Sym *isym = &isymbuf[i];
4793 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4794 const char *name;
906e58ca 4795
c7b8f16e
JB
4796 if (sec != NULL
4797 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4798 {
4799 name = bfd_elf_string_from_elf_section (abfd,
4800 hdr->sh_link, isym->st_name);
906e58ca 4801
c7b8f16e
JB
4802 if (bfd_is_arm_special_symbol_name (name,
4803 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4804 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4805 }
4806 }
4807}
4808
4809
4810void
4811bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4812{
4813 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 4814 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 4815
c7b8f16e
JB
4816 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4817 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4818 {
4819 switch (globals->vfp11_fix)
4820 {
4821 case BFD_ARM_VFP11_FIX_DEFAULT:
4822 case BFD_ARM_VFP11_FIX_NONE:
4823 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4824 break;
906e58ca 4825
c7b8f16e
JB
4826 default:
4827 /* Give a warning, but do as the user requests anyway. */
4828 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4829 "workaround is not necessary for target architecture"), obfd);
4830 }
4831 }
4832 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4833 /* For earlier architectures, we might need the workaround, but do not
4834 enable it by default. If users is running with broken hardware, they
4835 must enable the erratum fix explicitly. */
4836 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4837}
4838
4839
906e58ca
NC
4840enum bfd_arm_vfp11_pipe
4841{
c7b8f16e
JB
4842 VFP11_FMAC,
4843 VFP11_LS,
4844 VFP11_DS,
4845 VFP11_BAD
4846};
4847
4848/* Return a VFP register number. This is encoded as RX:X for single-precision
4849 registers, or X:RX for double-precision registers, where RX is the group of
4850 four bits in the instruction encoding and X is the single extension bit.
4851 RX and X fields are specified using their lowest (starting) bit. The return
4852 value is:
4853
4854 0...31: single-precision registers s0...s31
4855 32...63: double-precision registers d0...d31.
906e58ca 4856
c7b8f16e
JB
4857 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4858 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 4859
c7b8f16e
JB
4860static unsigned int
4861bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4862 unsigned int x)
4863{
4864 if (is_double)
4865 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4866 else
4867 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4868}
4869
4870/* Set bits in *WMASK according to a register number REG as encoded by
4871 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4872
4873static void
4874bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4875{
4876 if (reg < 32)
4877 *wmask |= 1 << reg;
4878 else if (reg < 48)
4879 *wmask |= 3 << ((reg - 32) * 2);
4880}
4881
4882/* Return TRUE if WMASK overwrites anything in REGS. */
4883
4884static bfd_boolean
4885bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4886{
4887 int i;
906e58ca 4888
c7b8f16e
JB
4889 for (i = 0; i < numregs; i++)
4890 {
4891 unsigned int reg = regs[i];
4892
4893 if (reg < 32 && (wmask & (1 << reg)) != 0)
4894 return TRUE;
906e58ca 4895
c7b8f16e
JB
4896 reg -= 32;
4897
4898 if (reg >= 16)
4899 continue;
906e58ca 4900
c7b8f16e
JB
4901 if ((wmask & (3 << (reg * 2))) != 0)
4902 return TRUE;
4903 }
906e58ca 4904
c7b8f16e
JB
4905 return FALSE;
4906}
4907
4908/* In this function, we're interested in two things: finding input registers
4909 for VFP data-processing instructions, and finding the set of registers which
4910 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4911 hold the written set, so FLDM etc. are easy to deal with (we're only
4912 interested in 32 SP registers or 16 dp registers, due to the VFP version
4913 implemented by the chip in question). DP registers are marked by setting
4914 both SP registers in the write mask). */
4915
4916static enum bfd_arm_vfp11_pipe
4917bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4918 int *numregs)
4919{
4920 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4921 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4922
4923 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4924 {
4925 unsigned int pqrs;
4926 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4927 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4928
4929 pqrs = ((insn & 0x00800000) >> 20)
4930 | ((insn & 0x00300000) >> 19)
4931 | ((insn & 0x00000040) >> 6);
4932
4933 switch (pqrs)
4934 {
4935 case 0: /* fmac[sd]. */
4936 case 1: /* fnmac[sd]. */
4937 case 2: /* fmsc[sd]. */
4938 case 3: /* fnmsc[sd]. */
4939 pipe = VFP11_FMAC;
4940 bfd_arm_vfp11_write_mask (destmask, fd);
4941 regs[0] = fd;
4942 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4943 regs[2] = fm;
4944 *numregs = 3;
4945 break;
4946
4947 case 4: /* fmul[sd]. */
4948 case 5: /* fnmul[sd]. */
4949 case 6: /* fadd[sd]. */
4950 case 7: /* fsub[sd]. */
4951 pipe = VFP11_FMAC;
4952 goto vfp_binop;
4953
4954 case 8: /* fdiv[sd]. */
4955 pipe = VFP11_DS;
4956 vfp_binop:
4957 bfd_arm_vfp11_write_mask (destmask, fd);
4958 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4959 regs[1] = fm;
4960 *numregs = 2;
4961 break;
4962
4963 case 15: /* extended opcode. */
4964 {
4965 unsigned int extn = ((insn >> 15) & 0x1e)
4966 | ((insn >> 7) & 1);
4967
4968 switch (extn)
4969 {
4970 case 0: /* fcpy[sd]. */
4971 case 1: /* fabs[sd]. */
4972 case 2: /* fneg[sd]. */
4973 case 8: /* fcmp[sd]. */
4974 case 9: /* fcmpe[sd]. */
4975 case 10: /* fcmpz[sd]. */
4976 case 11: /* fcmpez[sd]. */
4977 case 16: /* fuito[sd]. */
4978 case 17: /* fsito[sd]. */
4979 case 24: /* ftoui[sd]. */
4980 case 25: /* ftouiz[sd]. */
4981 case 26: /* ftosi[sd]. */
4982 case 27: /* ftosiz[sd]. */
4983 /* These instructions will not bounce due to underflow. */
4984 *numregs = 0;
4985 pipe = VFP11_FMAC;
4986 break;
4987
4988 case 3: /* fsqrt[sd]. */
4989 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4990 registers to cause the erratum in previous instructions. */
4991 bfd_arm_vfp11_write_mask (destmask, fd);
4992 pipe = VFP11_DS;
4993 break;
4994
4995 case 15: /* fcvt{ds,sd}. */
4996 {
4997 int rnum = 0;
4998
4999 bfd_arm_vfp11_write_mask (destmask, fd);
5000
5001 /* Only FCVTSD can underflow. */
5002 if ((insn & 0x100) != 0)
5003 regs[rnum++] = fm;
5004
5005 *numregs = rnum;
5006
5007 pipe = VFP11_FMAC;
5008 }
5009 break;
5010
5011 default:
5012 return VFP11_BAD;
5013 }
5014 }
5015 break;
5016
5017 default:
5018 return VFP11_BAD;
5019 }
5020 }
5021 /* Two-register transfer. */
5022 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5023 {
5024 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 5025
c7b8f16e
JB
5026 if ((insn & 0x100000) == 0)
5027 {
5028 if (is_double)
5029 bfd_arm_vfp11_write_mask (destmask, fm);
5030 else
5031 {
5032 bfd_arm_vfp11_write_mask (destmask, fm);
5033 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5034 }
5035 }
5036
5037 pipe = VFP11_LS;
5038 }
5039 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5040 {
5041 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5042 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 5043
c7b8f16e
JB
5044 switch (puw)
5045 {
5046 case 0: /* Two-reg transfer. We should catch these above. */
5047 abort ();
906e58ca 5048
c7b8f16e
JB
5049 case 2: /* fldm[sdx]. */
5050 case 3:
5051 case 5:
5052 {
5053 unsigned int i, offset = insn & 0xff;
5054
5055 if (is_double)
5056 offset >>= 1;
5057
5058 for (i = fd; i < fd + offset; i++)
5059 bfd_arm_vfp11_write_mask (destmask, i);
5060 }
5061 break;
906e58ca 5062
c7b8f16e
JB
5063 case 4: /* fld[sd]. */
5064 case 6:
5065 bfd_arm_vfp11_write_mask (destmask, fd);
5066 break;
906e58ca 5067
c7b8f16e
JB
5068 default:
5069 return VFP11_BAD;
5070 }
5071
5072 pipe = VFP11_LS;
5073 }
5074 /* Single-register transfer. Note L==0. */
5075 else if ((insn & 0x0f100e10) == 0x0e000a10)
5076 {
5077 unsigned int opcode = (insn >> 21) & 7;
5078 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5079
5080 switch (opcode)
5081 {
5082 case 0: /* fmsr/fmdlr. */
5083 case 1: /* fmdhr. */
5084 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5085 destination register. I don't know if this is exactly right,
5086 but it is the conservative choice. */
5087 bfd_arm_vfp11_write_mask (destmask, fn);
5088 break;
5089
5090 case 7: /* fmxr. */
5091 break;
5092 }
5093
5094 pipe = VFP11_LS;
5095 }
5096
5097 return pipe;
5098}
5099
5100
5101static int elf32_arm_compare_mapping (const void * a, const void * b);
5102
5103
5104/* Look for potentially-troublesome code sequences which might trigger the
5105 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5106 (available from ARM) for details of the erratum. A short version is
5107 described in ld.texinfo. */
5108
5109bfd_boolean
5110bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5111{
5112 asection *sec;
5113 bfd_byte *contents = NULL;
5114 int state = 0;
5115 int regs[3], numregs = 0;
5116 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5117 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 5118
c7b8f16e
JB
5119 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5120 The states transition as follows:
906e58ca 5121
c7b8f16e
JB
5122 0 -> 1 (vector) or 0 -> 2 (scalar)
5123 A VFP FMAC-pipeline instruction has been seen. Fill
5124 regs[0]..regs[numregs-1] with its input operands. Remember this
5125 instruction in 'first_fmac'.
5126
5127 1 -> 2
5128 Any instruction, except for a VFP instruction which overwrites
5129 regs[*].
906e58ca 5130
c7b8f16e
JB
5131 1 -> 3 [ -> 0 ] or
5132 2 -> 3 [ -> 0 ]
5133 A VFP instruction has been seen which overwrites any of regs[*].
5134 We must make a veneer! Reset state to 0 before examining next
5135 instruction.
906e58ca 5136
c7b8f16e
JB
5137 2 -> 0
5138 If we fail to match anything in state 2, reset to state 0 and reset
5139 the instruction pointer to the instruction after 'first_fmac'.
5140
5141 If the VFP11 vector mode is in use, there must be at least two unrelated
5142 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 5143 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
5144
5145 /* If we are only performing a partial link do not bother
5146 to construct any glue. */
5147 if (link_info->relocatable)
5148 return TRUE;
5149
0ffa91dd
NC
5150 /* Skip if this bfd does not correspond to an ELF image. */
5151 if (! is_arm_elf (abfd))
5152 return TRUE;
906e58ca 5153
c7b8f16e
JB
5154 /* We should have chosen a fix type by the time we get here. */
5155 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5156
5157 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5158 return TRUE;
2e6030b9 5159
33a7ffc2
JM
5160 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5161 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5162 return TRUE;
5163
c7b8f16e
JB
5164 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5165 {
5166 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5167 struct _arm_elf_section_data *sec_data;
5168
5169 /* If we don't have executable progbits, we're not interested in this
5170 section. Also skip if section is to be excluded. */
5171 if (elf_section_type (sec) != SHT_PROGBITS
5172 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5173 || (sec->flags & SEC_EXCLUDE) != 0
33a7ffc2
JM
5174 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5175 || sec->output_section == bfd_abs_section_ptr
c7b8f16e
JB
5176 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5177 continue;
5178
5179 sec_data = elf32_arm_section_data (sec);
906e58ca 5180
c7b8f16e
JB
5181 if (sec_data->mapcount == 0)
5182 continue;
906e58ca 5183
c7b8f16e
JB
5184 if (elf_section_data (sec)->this_hdr.contents != NULL)
5185 contents = elf_section_data (sec)->this_hdr.contents;
5186 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5187 goto error_return;
5188
5189 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5190 elf32_arm_compare_mapping);
5191
5192 for (span = 0; span < sec_data->mapcount; span++)
5193 {
5194 unsigned int span_start = sec_data->map[span].vma;
5195 unsigned int span_end = (span == sec_data->mapcount - 1)
5196 ? sec->size : sec_data->map[span + 1].vma;
5197 char span_type = sec_data->map[span].type;
906e58ca 5198
c7b8f16e
JB
5199 /* FIXME: Only ARM mode is supported at present. We may need to
5200 support Thumb-2 mode also at some point. */
5201 if (span_type != 'a')
5202 continue;
5203
5204 for (i = span_start; i < span_end;)
5205 {
5206 unsigned int next_i = i + 4;
5207 unsigned int insn = bfd_big_endian (abfd)
5208 ? (contents[i] << 24)
5209 | (contents[i + 1] << 16)
5210 | (contents[i + 2] << 8)
5211 | contents[i + 3]
5212 : (contents[i + 3] << 24)
5213 | (contents[i + 2] << 16)
5214 | (contents[i + 1] << 8)
5215 | contents[i];
5216 unsigned int writemask = 0;
5217 enum bfd_arm_vfp11_pipe pipe;
5218
5219 switch (state)
5220 {
5221 case 0:
5222 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5223 &numregs);
5224 /* I'm assuming the VFP11 erratum can trigger with denorm
5225 operands on either the FMAC or the DS pipeline. This might
5226 lead to slightly overenthusiastic veneer insertion. */
5227 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5228 {
5229 state = use_vector ? 1 : 2;
5230 first_fmac = i;
5231 veneer_of_insn = insn;
5232 }
5233 break;
5234
5235 case 1:
5236 {
5237 int other_regs[3], other_numregs;
5238 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5239 other_regs,
5240 &other_numregs);
5241 if (pipe != VFP11_BAD
5242 && bfd_arm_vfp11_antidependency (writemask, regs,
5243 numregs))
5244 state = 3;
5245 else
5246 state = 2;
5247 }
5248 break;
5249
5250 case 2:
5251 {
5252 int other_regs[3], other_numregs;
5253 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5254 other_regs,
5255 &other_numregs);
5256 if (pipe != VFP11_BAD
5257 && bfd_arm_vfp11_antidependency (writemask, regs,
5258 numregs))
5259 state = 3;
5260 else
5261 {
5262 state = 0;
5263 next_i = first_fmac + 4;
5264 }
5265 }
5266 break;
5267
5268 case 3:
5269 abort (); /* Should be unreachable. */
5270 }
5271
5272 if (state == 3)
5273 {
5274 elf32_vfp11_erratum_list *newerr
5275 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5276 int errcount;
5277
5278 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5279
5280 newerr->u.b.vfp_insn = veneer_of_insn;
5281
5282 switch (span_type)
5283 {
5284 case 'a':
5285 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5286 break;
906e58ca 5287
c7b8f16e
JB
5288 default:
5289 abort ();
5290 }
5291
5292 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5293 first_fmac);
5294
5295 newerr->vma = -1;
5296
5297 newerr->next = sec_data->erratumlist;
5298 sec_data->erratumlist = newerr;
5299
5300 state = 0;
5301 }
5302
5303 i = next_i;
5304 }
5305 }
906e58ca 5306
c7b8f16e
JB
5307 if (contents != NULL
5308 && elf_section_data (sec)->this_hdr.contents != contents)
5309 free (contents);
5310 contents = NULL;
5311 }
5312
5313 return TRUE;
5314
5315error_return:
5316 if (contents != NULL
5317 && elf_section_data (sec)->this_hdr.contents != contents)
5318 free (contents);
906e58ca 5319
c7b8f16e
JB
5320 return FALSE;
5321}
5322
5323/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5324 after sections have been laid out, using specially-named symbols. */
5325
5326void
5327bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5328 struct bfd_link_info *link_info)
5329{
5330 asection *sec;
5331 struct elf32_arm_link_hash_table *globals;
5332 char *tmp_name;
906e58ca 5333
c7b8f16e
JB
5334 if (link_info->relocatable)
5335 return;
2e6030b9
MS
5336
5337 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 5338 if (! is_arm_elf (abfd))
2e6030b9
MS
5339 return;
5340
c7b8f16e 5341 globals = elf32_arm_hash_table (link_info);
906e58ca 5342
c7b8f16e
JB
5343 tmp_name = bfd_malloc ((bfd_size_type) strlen
5344 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5345
5346 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5347 {
5348 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5349 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 5350
c7b8f16e
JB
5351 for (; errnode != NULL; errnode = errnode->next)
5352 {
5353 struct elf_link_hash_entry *myh;
5354 bfd_vma vma;
5355
5356 switch (errnode->type)
5357 {
5358 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5359 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5360 /* Find veneer symbol. */
5361 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5362 errnode->u.b.veneer->u.v.id);
5363
5364 myh = elf_link_hash_lookup
5365 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5366
5367 if (myh == NULL)
5368 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5369 "`%s'"), abfd, tmp_name);
5370
5371 vma = myh->root.u.def.section->output_section->vma
5372 + myh->root.u.def.section->output_offset
5373 + myh->root.u.def.value;
5374
5375 errnode->u.b.veneer->vma = vma;
5376 break;
5377
5378 case VFP11_ERRATUM_ARM_VENEER:
5379 case VFP11_ERRATUM_THUMB_VENEER:
5380 /* Find return location. */
5381 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5382 errnode->u.v.id);
5383
5384 myh = elf_link_hash_lookup
5385 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5386
5387 if (myh == NULL)
5388 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5389 "`%s'"), abfd, tmp_name);
5390
5391 vma = myh->root.u.def.section->output_section->vma
5392 + myh->root.u.def.section->output_offset
5393 + myh->root.u.def.value;
5394
5395 errnode->u.v.branch->vma = vma;
5396 break;
906e58ca 5397
c7b8f16e
JB
5398 default:
5399 abort ();
5400 }
5401 }
5402 }
906e58ca 5403
c7b8f16e
JB
5404 free (tmp_name);
5405}
5406
5407
eb043451
PB
5408/* Set target relocation values needed during linking. */
5409
5410void
bf21ed78
MS
5411bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5412 struct bfd_link_info *link_info,
eb043451 5413 int target1_is_rel,
319850b4 5414 char * target2_type,
33bfe774 5415 int fix_v4bx,
c7b8f16e 5416 int use_blx,
bf21ed78 5417 bfd_arm_vfp11_fix vfp11_fix,
a9dc9481
JM
5418 int no_enum_warn, int no_wchar_warn,
5419 int pic_veneer)
eb043451
PB
5420{
5421 struct elf32_arm_link_hash_table *globals;
5422
5423 globals = elf32_arm_hash_table (link_info);
5424
5425 globals->target1_is_rel = target1_is_rel;
5426 if (strcmp (target2_type, "rel") == 0)
5427 globals->target2_reloc = R_ARM_REL32;
eeac373a
PB
5428 else if (strcmp (target2_type, "abs") == 0)
5429 globals->target2_reloc = R_ARM_ABS32;
eb043451
PB
5430 else if (strcmp (target2_type, "got-rel") == 0)
5431 globals->target2_reloc = R_ARM_GOT_PREL;
5432 else
5433 {
5434 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5435 target2_type);
5436 }
319850b4 5437 globals->fix_v4bx = fix_v4bx;
33bfe774 5438 globals->use_blx |= use_blx;
c7b8f16e 5439 globals->vfp11_fix = vfp11_fix;
27e55c4d 5440 globals->pic_veneer = pic_veneer;
bf21ed78 5441
0ffa91dd
NC
5442 BFD_ASSERT (is_arm_elf (output_bfd));
5443 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
a9dc9481 5444 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
eb043451 5445}
eb043451 5446
12a0a0fd 5447/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 5448
12a0a0fd
PB
5449static void
5450insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5451{
5452 bfd_vma upper;
5453 bfd_vma lower;
5454 int reloc_sign;
5455
5456 BFD_ASSERT ((offset & 1) == 0);
5457
5458 upper = bfd_get_16 (abfd, insn);
5459 lower = bfd_get_16 (abfd, insn + 2);
5460 reloc_sign = (offset < 0) ? 1 : 0;
5461 upper = (upper & ~(bfd_vma) 0x7ff)
5462 | ((offset >> 12) & 0x3ff)
5463 | (reloc_sign << 10);
906e58ca 5464 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
5465 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5466 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5467 | ((offset >> 1) & 0x7ff);
5468 bfd_put_16 (abfd, upper, insn);
5469 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
5470}
5471
9b485d32
NC
5472/* Thumb code calling an ARM function. */
5473
252b5132 5474static int
57e8b36a
NC
5475elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5476 const char * name,
5477 bfd * input_bfd,
5478 bfd * output_bfd,
5479 asection * input_section,
5480 bfd_byte * hit_data,
5481 asection * sym_sec,
5482 bfd_vma offset,
5483 bfd_signed_vma addend,
f2a9dd69
DJ
5484 bfd_vma val,
5485 char **error_message)
252b5132 5486{
bcbdc74c 5487 asection * s = 0;
dc810e39 5488 bfd_vma my_offset;
252b5132 5489 long int ret_offset;
bcbdc74c
NC
5490 struct elf_link_hash_entry * myh;
5491 struct elf32_arm_link_hash_table * globals;
252b5132 5492
f2a9dd69 5493 myh = find_thumb_glue (info, name, error_message);
252b5132 5494 if (myh == NULL)
b34976b6 5495 return FALSE;
252b5132
RH
5496
5497 globals = elf32_arm_hash_table (info);
5498
5499 BFD_ASSERT (globals != NULL);
5500 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5501
5502 my_offset = myh->root.u.def.value;
5503
5504 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5505 THUMB2ARM_GLUE_SECTION_NAME);
5506
5507 BFD_ASSERT (s != NULL);
5508 BFD_ASSERT (s->contents != NULL);
5509 BFD_ASSERT (s->output_section != NULL);
5510
5511 if ((my_offset & 0x01) == 0x01)
5512 {
5513 if (sym_sec != NULL
5514 && sym_sec->owner != NULL
5515 && !INTERWORK_FLAG (sym_sec->owner))
5516 {
8f615d07 5517 (*_bfd_error_handler)
d003868e
AM
5518 (_("%B(%s): warning: interworking not enabled.\n"
5519 " first occurrence: %B: thumb call to arm"),
5520 sym_sec->owner, input_bfd, name);
252b5132 5521
b34976b6 5522 return FALSE;
252b5132
RH
5523 }
5524
5525 --my_offset;
5526 myh->root.u.def.value = my_offset;
5527
52ab56c2
PB
5528 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5529 s->contents + my_offset);
252b5132 5530
52ab56c2
PB
5531 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5532 s->contents + my_offset + 2);
252b5132
RH
5533
5534 ret_offset =
9b485d32
NC
5535 /* Address of destination of the stub. */
5536 ((bfd_signed_vma) val)
252b5132 5537 - ((bfd_signed_vma)
57e8b36a
NC
5538 /* Offset from the start of the current section
5539 to the start of the stubs. */
9b485d32
NC
5540 (s->output_offset
5541 /* Offset of the start of this stub from the start of the stubs. */
5542 + my_offset
5543 /* Address of the start of the current section. */
5544 + s->output_section->vma)
5545 /* The branch instruction is 4 bytes into the stub. */
5546 + 4
5547 /* ARM branches work from the pc of the instruction + 8. */
5548 + 8);
252b5132 5549
52ab56c2
PB
5550 put_arm_insn (globals, output_bfd,
5551 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5552 s->contents + my_offset + 4);
252b5132
RH
5553 }
5554
5555 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5556
427bfd90
NC
5557 /* Now go back and fix up the original BL insn to point to here. */
5558 ret_offset =
5559 /* Address of where the stub is located. */
5560 (s->output_section->vma + s->output_offset + my_offset)
5561 /* Address of where the BL is located. */
57e8b36a
NC
5562 - (input_section->output_section->vma + input_section->output_offset
5563 + offset)
427bfd90
NC
5564 /* Addend in the relocation. */
5565 - addend
5566 /* Biassing for PC-relative addressing. */
5567 - 8;
252b5132 5568
12a0a0fd 5569 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 5570
b34976b6 5571 return TRUE;
252b5132
RH
5572}
5573
a4fd1a8e 5574/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 5575
a4fd1a8e
PB
5576static struct elf_link_hash_entry *
5577elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5578 const char * name,
5579 bfd * input_bfd,
5580 bfd * output_bfd,
5581 asection * sym_sec,
5582 bfd_vma val,
8029a119
NC
5583 asection * s,
5584 char ** error_message)
252b5132 5585{
dc810e39 5586 bfd_vma my_offset;
252b5132 5587 long int ret_offset;
bcbdc74c
NC
5588 struct elf_link_hash_entry * myh;
5589 struct elf32_arm_link_hash_table * globals;
252b5132 5590
f2a9dd69 5591 myh = find_arm_glue (info, name, error_message);
252b5132 5592 if (myh == NULL)
a4fd1a8e 5593 return NULL;
252b5132
RH
5594
5595 globals = elf32_arm_hash_table (info);
5596
5597 BFD_ASSERT (globals != NULL);
5598 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5599
5600 my_offset = myh->root.u.def.value;
252b5132
RH
5601
5602 if ((my_offset & 0x01) == 0x01)
5603 {
5604 if (sym_sec != NULL
5605 && sym_sec->owner != NULL
5606 && !INTERWORK_FLAG (sym_sec->owner))
5607 {
8f615d07 5608 (*_bfd_error_handler)
d003868e
AM
5609 (_("%B(%s): warning: interworking not enabled.\n"
5610 " first occurrence: %B: arm call to thumb"),
5611 sym_sec->owner, input_bfd, name);
252b5132 5612 }
9b485d32 5613
252b5132
RH
5614 --my_offset;
5615 myh->root.u.def.value = my_offset;
5616
27e55c4d
PB
5617 if (info->shared || globals->root.is_relocatable_executable
5618 || globals->pic_veneer)
8f6277f5
PB
5619 {
5620 /* For relocatable objects we can't use absolute addresses,
5621 so construct the address from a relative offset. */
5622 /* TODO: If the offset is small it's probably worth
5623 constructing the address with adds. */
52ab56c2
PB
5624 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5625 s->contents + my_offset);
5626 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5627 s->contents + my_offset + 4);
5628 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5629 s->contents + my_offset + 8);
8f6277f5
PB
5630 /* Adjust the offset by 4 for the position of the add,
5631 and 8 for the pipeline offset. */
5632 ret_offset = (val - (s->output_offset
5633 + s->output_section->vma
5634 + my_offset + 12))
5635 | 1;
5636 bfd_put_32 (output_bfd, ret_offset,
5637 s->contents + my_offset + 12);
5638 }
26079076
PB
5639 else if (globals->use_blx)
5640 {
5641 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5642 s->contents + my_offset);
5643
5644 /* It's a thumb address. Add the low order bit. */
5645 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5646 s->contents + my_offset + 4);
5647 }
8f6277f5
PB
5648 else
5649 {
52ab56c2
PB
5650 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5651 s->contents + my_offset);
252b5132 5652
52ab56c2
PB
5653 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5654 s->contents + my_offset + 4);
252b5132 5655
8f6277f5
PB
5656 /* It's a thumb address. Add the low order bit. */
5657 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5658 s->contents + my_offset + 8);
8029a119
NC
5659
5660 my_offset += 12;
8f6277f5 5661 }
252b5132
RH
5662 }
5663
5664 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5665
a4fd1a8e
PB
5666 return myh;
5667}
5668
5669/* Arm code calling a Thumb function. */
5670
5671static int
5672elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5673 const char * name,
5674 bfd * input_bfd,
5675 bfd * output_bfd,
5676 asection * input_section,
5677 bfd_byte * hit_data,
5678 asection * sym_sec,
5679 bfd_vma offset,
5680 bfd_signed_vma addend,
f2a9dd69
DJ
5681 bfd_vma val,
5682 char **error_message)
a4fd1a8e
PB
5683{
5684 unsigned long int tmp;
5685 bfd_vma my_offset;
5686 asection * s;
5687 long int ret_offset;
5688 struct elf_link_hash_entry * myh;
5689 struct elf32_arm_link_hash_table * globals;
5690
5691 globals = elf32_arm_hash_table (info);
5692
5693 BFD_ASSERT (globals != NULL);
5694 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5695
5696 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5697 ARM2THUMB_GLUE_SECTION_NAME);
5698 BFD_ASSERT (s != NULL);
5699 BFD_ASSERT (s->contents != NULL);
5700 BFD_ASSERT (s->output_section != NULL);
5701
5702 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 5703 sym_sec, val, s, error_message);
a4fd1a8e
PB
5704 if (!myh)
5705 return FALSE;
5706
5707 my_offset = myh->root.u.def.value;
252b5132
RH
5708 tmp = bfd_get_32 (input_bfd, hit_data);
5709 tmp = tmp & 0xFF000000;
5710
9b485d32 5711 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
5712 ret_offset = (s->output_offset
5713 + my_offset
5714 + s->output_section->vma
5715 - (input_section->output_offset
5716 + input_section->output_section->vma
5717 + offset + addend)
5718 - 8);
9a5aca8c 5719
252b5132
RH
5720 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5721
dc810e39 5722 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 5723
b34976b6 5724 return TRUE;
252b5132
RH
5725}
5726
a4fd1a8e
PB
5727/* Populate Arm stub for an exported Thumb function. */
5728
5729static bfd_boolean
5730elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5731{
5732 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5733 asection * s;
5734 struct elf_link_hash_entry * myh;
5735 struct elf32_arm_link_hash_entry *eh;
5736 struct elf32_arm_link_hash_table * globals;
5737 asection *sec;
5738 bfd_vma val;
f2a9dd69 5739 char *error_message;
a4fd1a8e 5740
906e58ca 5741 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
5742 /* Allocate stubs for exported Thumb functions on v4t. */
5743 if (eh->export_glue == NULL)
5744 return TRUE;
5745
5746 globals = elf32_arm_hash_table (info);
5747
5748 BFD_ASSERT (globals != NULL);
5749 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5750
5751 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5752 ARM2THUMB_GLUE_SECTION_NAME);
5753 BFD_ASSERT (s != NULL);
5754 BFD_ASSERT (s->contents != NULL);
5755 BFD_ASSERT (s->output_section != NULL);
5756
5757 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
5758
5759 BFD_ASSERT (sec->output_section != NULL);
5760
a4fd1a8e
PB
5761 val = eh->export_glue->root.u.def.value + sec->output_offset
5762 + sec->output_section->vma;
8029a119 5763
a4fd1a8e
PB
5764 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5765 h->root.u.def.section->owner,
f2a9dd69
DJ
5766 globals->obfd, sec, val, s,
5767 &error_message);
a4fd1a8e
PB
5768 BFD_ASSERT (myh);
5769 return TRUE;
5770}
5771
845b51d6
PB
5772/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5773
5774static bfd_vma
5775elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5776{
5777 bfd_byte *p;
5778 bfd_vma glue_addr;
5779 asection *s;
5780 struct elf32_arm_link_hash_table *globals;
5781
5782 globals = elf32_arm_hash_table (info);
5783
5784 BFD_ASSERT (globals != NULL);
5785 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5786
5787 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5788 ARM_BX_GLUE_SECTION_NAME);
5789 BFD_ASSERT (s != NULL);
5790 BFD_ASSERT (s->contents != NULL);
5791 BFD_ASSERT (s->output_section != NULL);
5792
5793 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5794
5795 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5796
5797 if ((globals->bx_glue_offset[reg] & 1) == 0)
5798 {
5799 p = s->contents + glue_addr;
5800 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5801 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5802 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5803 globals->bx_glue_offset[reg] |= 1;
5804 }
5805
5806 return glue_addr + s->output_section->vma + s->output_offset;
5807}
5808
a4fd1a8e
PB
5809/* Generate Arm stubs for exported Thumb symbols. */
5810static void
906e58ca 5811elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
5812 struct bfd_link_info *link_info)
5813{
5814 struct elf32_arm_link_hash_table * globals;
5815
8029a119
NC
5816 if (link_info == NULL)
5817 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
5818 return;
5819
5820 globals = elf32_arm_hash_table (link_info);
84c08195
PB
5821 /* If blx is available then exported Thumb symbols are OK and there is
5822 nothing to do. */
a4fd1a8e
PB
5823 if (globals->use_blx)
5824 return;
5825
5826 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5827 link_info);
5828}
5829
eb043451
PB
5830/* Some relocations map to different relocations depending on the
5831 target. Return the real relocation. */
8029a119 5832
eb043451
PB
5833static int
5834arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5835 int r_type)
5836{
5837 switch (r_type)
5838 {
5839 case R_ARM_TARGET1:
5840 if (globals->target1_is_rel)
5841 return R_ARM_REL32;
5842 else
5843 return R_ARM_ABS32;
5844
5845 case R_ARM_TARGET2:
5846 return globals->target2_reloc;
5847
5848 default:
5849 return r_type;
5850 }
5851}
eb043451 5852
ba93b8ac
DJ
5853/* Return the base VMA address which should be subtracted from real addresses
5854 when resolving @dtpoff relocation.
5855 This is PT_TLS segment p_vaddr. */
5856
5857static bfd_vma
5858dtpoff_base (struct bfd_link_info *info)
5859{
5860 /* If tls_sec is NULL, we should have signalled an error already. */
5861 if (elf_hash_table (info)->tls_sec == NULL)
5862 return 0;
5863 return elf_hash_table (info)->tls_sec->vma;
5864}
5865
5866/* Return the relocation value for @tpoff relocation
5867 if STT_TLS virtual address is ADDRESS. */
5868
5869static bfd_vma
5870tpoff (struct bfd_link_info *info, bfd_vma address)
5871{
5872 struct elf_link_hash_table *htab = elf_hash_table (info);
5873 bfd_vma base;
5874
5875 /* If tls_sec is NULL, we should have signalled an error already. */
5876 if (htab->tls_sec == NULL)
5877 return 0;
5878 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5879 return address - htab->tls_sec->vma + base;
5880}
5881
00a97672
RS
5882/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5883 VALUE is the relocation value. */
5884
5885static bfd_reloc_status_type
5886elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5887{
5888 if (value > 0xfff)
5889 return bfd_reloc_overflow;
5890
5891 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5892 bfd_put_32 (abfd, value, data);
5893 return bfd_reloc_ok;
5894}
5895
4962c51a
MS
5896/* For a given value of n, calculate the value of G_n as required to
5897 deal with group relocations. We return it in the form of an
5898 encoded constant-and-rotation, together with the final residual. If n is
5899 specified as less than zero, then final_residual is filled with the
5900 input value and no further action is performed. */
5901
5902static bfd_vma
5903calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5904{
5905 int current_n;
5906 bfd_vma g_n;
5907 bfd_vma encoded_g_n = 0;
5908 bfd_vma residual = value; /* Also known as Y_n. */
5909
5910 for (current_n = 0; current_n <= n; current_n++)
5911 {
5912 int shift;
5913
5914 /* Calculate which part of the value to mask. */
5915 if (residual == 0)
5916 shift = 0;
5917 else
5918 {
5919 int msb;
5920
5921 /* Determine the most significant bit in the residual and
5922 align the resulting value to a 2-bit boundary. */
5923 for (msb = 30; msb >= 0; msb -= 2)
5924 if (residual & (3 << msb))
5925 break;
5926
5927 /* The desired shift is now (msb - 6), or zero, whichever
5928 is the greater. */
5929 shift = msb - 6;
5930 if (shift < 0)
5931 shift = 0;
5932 }
5933
5934 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5935 g_n = residual & (0xff << shift);
5936 encoded_g_n = (g_n >> shift)
5937 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5938
5939 /* Calculate the residual for the next time around. */
5940 residual &= ~g_n;
5941 }
5942
5943 *final_residual = residual;
5944
5945 return encoded_g_n;
5946}
5947
5948/* Given an ARM instruction, determine whether it is an ADD or a SUB.
5949 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 5950
4962c51a 5951static int
906e58ca 5952identify_add_or_sub (bfd_vma insn)
4962c51a
MS
5953{
5954 int opcode = insn & 0x1e00000;
5955
5956 if (opcode == 1 << 23) /* ADD */
5957 return 1;
5958
5959 if (opcode == 1 << 22) /* SUB */
5960 return -1;
5961
5962 return 0;
5963}
5964
252b5132 5965/* Perform a relocation as part of a final link. */
9b485d32 5966
252b5132 5967static bfd_reloc_status_type
57e8b36a
NC
5968elf32_arm_final_link_relocate (reloc_howto_type * howto,
5969 bfd * input_bfd,
5970 bfd * output_bfd,
5971 asection * input_section,
5972 bfd_byte * contents,
5973 Elf_Internal_Rela * rel,
5974 bfd_vma value,
5975 struct bfd_link_info * info,
5976 asection * sym_sec,
5977 const char * sym_name,
5978 int sym_flags,
0945cdfd 5979 struct elf_link_hash_entry * h,
f2a9dd69 5980 bfd_boolean * unresolved_reloc_p,
8029a119 5981 char ** error_message)
252b5132
RH
5982{
5983 unsigned long r_type = howto->type;
5984 unsigned long r_symndx;
5985 bfd_byte * hit_data = contents + rel->r_offset;
5986 bfd * dynobj = NULL;
5987 Elf_Internal_Shdr * symtab_hdr;
5988 struct elf_link_hash_entry ** sym_hashes;
5989 bfd_vma * local_got_offsets;
5990 asection * sgot = NULL;
5991 asection * splt = NULL;
5992 asection * sreloc = NULL;
252b5132 5993 bfd_vma addend;
ba96a88f
NC
5994 bfd_signed_vma signed_addend;
5995 struct elf32_arm_link_hash_table * globals;
f21f3fe0 5996
9c504268
PB
5997 globals = elf32_arm_hash_table (info);
5998
0ffa91dd
NC
5999 BFD_ASSERT (is_arm_elf (input_bfd));
6000
6001 /* Some relocation types map to different relocations depending on the
9c504268 6002 target. We pick the right one here. */
eb043451
PB
6003 r_type = arm_real_reloc_type (globals, r_type);
6004 if (r_type != howto->type)
6005 howto = elf32_arm_howto_from_type (r_type);
9c504268 6006
cac15327
NC
6007 /* If the start address has been set, then set the EF_ARM_HASENTRY
6008 flag. Setting this more than once is redundant, but the cost is
6009 not too high, and it keeps the code simple.
99e4ae17 6010
cac15327
NC
6011 The test is done here, rather than somewhere else, because the
6012 start address is only set just before the final link commences.
6013
6014 Note - if the user deliberately sets a start address of 0, the
6015 flag will not be set. */
6016 if (bfd_get_start_address (output_bfd) != 0)
6017 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
99e4ae17 6018
252b5132
RH
6019 dynobj = elf_hash_table (info)->dynobj;
6020 if (dynobj)
6021 {
6022 sgot = bfd_get_section_by_name (dynobj, ".got");
6023 splt = bfd_get_section_by_name (dynobj, ".plt");
6024 }
0ffa91dd 6025 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
6026 sym_hashes = elf_sym_hashes (input_bfd);
6027 local_got_offsets = elf_local_got_offsets (input_bfd);
6028 r_symndx = ELF32_R_SYM (rel->r_info);
6029
4e7fd91e 6030 if (globals->use_rel)
ba96a88f 6031 {
4e7fd91e
PB
6032 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6033
6034 if (addend & ((howto->src_mask + 1) >> 1))
6035 {
6036 signed_addend = -1;
6037 signed_addend &= ~ howto->src_mask;
6038 signed_addend |= addend;
6039 }
6040 else
6041 signed_addend = addend;
ba96a88f
NC
6042 }
6043 else
4e7fd91e 6044 addend = signed_addend = rel->r_addend;
f21f3fe0 6045
252b5132
RH
6046 switch (r_type)
6047 {
6048 case R_ARM_NONE:
28a094c2
DJ
6049 /* We don't need to find a value for this symbol. It's just a
6050 marker. */
6051 *unresolved_reloc_p = FALSE;
252b5132
RH
6052 return bfd_reloc_ok;
6053
00a97672
RS
6054 case R_ARM_ABS12:
6055 if (!globals->vxworks_p)
6056 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6057
252b5132
RH
6058 case R_ARM_PC24:
6059 case R_ARM_ABS32:
bb224fc3 6060 case R_ARM_ABS32_NOI:
252b5132 6061 case R_ARM_REL32:
bb224fc3 6062 case R_ARM_REL32_NOI:
5b5bb741
PB
6063 case R_ARM_CALL:
6064 case R_ARM_JUMP24:
dfc5f959 6065 case R_ARM_XPC25:
eb043451 6066 case R_ARM_PREL31:
7359ea65 6067 case R_ARM_PLT32:
7359ea65
DJ
6068 /* Handle relocations which should use the PLT entry. ABS32/REL32
6069 will use the symbol's value, which may point to a PLT entry, but we
6070 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
6071 branches in this object should go to it, except if the PLT is too
6072 far away, in which case a long branch stub should be inserted. */
bb224fc3 6073 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5fa9e92f 6074 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
6075 && r_type != R_ARM_CALL
6076 && r_type != R_ARM_JUMP24
6077 && r_type != R_ARM_PLT32)
7359ea65 6078 && h != NULL
c84cd8ee 6079 && splt != NULL
7359ea65
DJ
6080 && h->plt.offset != (bfd_vma) -1)
6081 {
c84cd8ee
DJ
6082 /* If we've created a .plt section, and assigned a PLT entry to
6083 this function, it should not be known to bind locally. If
6084 it were, we would have cleared the PLT entry. */
7359ea65
DJ
6085 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6086
6087 value = (splt->output_section->vma
6088 + splt->output_offset
6089 + h->plt.offset);
0945cdfd 6090 *unresolved_reloc_p = FALSE;
7359ea65
DJ
6091 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6092 contents, rel->r_offset, value,
00a97672 6093 rel->r_addend);
7359ea65
DJ
6094 }
6095
67687978
PB
6096 /* When generating a shared object or relocatable executable, these
6097 relocations are copied into the output file to be resolved at
6098 run time. */
6099 if ((info->shared || globals->root.is_relocatable_executable)
7359ea65 6100 && (input_section->flags & SEC_ALLOC)
3348747a
NS
6101 && !(elf32_arm_hash_table (info)->vxworks_p
6102 && strcmp (input_section->output_section->name,
6103 ".tls_vars") == 0)
bb224fc3 6104 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 6105 || !SYMBOL_CALLS_LOCAL (info, h))
7359ea65
DJ
6106 && (h == NULL
6107 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6108 || h->root.type != bfd_link_hash_undefweak)
6109 && r_type != R_ARM_PC24
5b5bb741
PB
6110 && r_type != R_ARM_CALL
6111 && r_type != R_ARM_JUMP24
ee06dc07 6112 && r_type != R_ARM_PREL31
7359ea65 6113 && r_type != R_ARM_PLT32)
252b5132 6114 {
947216bf
AM
6115 Elf_Internal_Rela outrel;
6116 bfd_byte *loc;
b34976b6 6117 bfd_boolean skip, relocate;
f21f3fe0 6118
0945cdfd
DJ
6119 *unresolved_reloc_p = FALSE;
6120
252b5132
RH
6121 if (sreloc == NULL)
6122 {
83bac4b0
NC
6123 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6124 ! globals->use_rel);
f21f3fe0 6125
83bac4b0 6126 if (sreloc == NULL)
252b5132 6127 return bfd_reloc_notsupported;
252b5132 6128 }
f21f3fe0 6129
b34976b6
AM
6130 skip = FALSE;
6131 relocate = FALSE;
f21f3fe0 6132
00a97672 6133 outrel.r_addend = addend;
c629eae0
JJ
6134 outrel.r_offset =
6135 _bfd_elf_section_offset (output_bfd, info, input_section,
6136 rel->r_offset);
6137 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 6138 skip = TRUE;
0bb2d96a 6139 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 6140 skip = TRUE, relocate = TRUE;
252b5132
RH
6141 outrel.r_offset += (input_section->output_section->vma
6142 + input_section->output_offset);
f21f3fe0 6143
252b5132 6144 if (skip)
0bb2d96a 6145 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
6146 else if (h != NULL
6147 && h->dynindx != -1
7359ea65 6148 && (!info->shared
5e681ec4 6149 || !info->symbolic
f5385ebf 6150 || !h->def_regular))
5e681ec4 6151 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
6152 else
6153 {
a16385dc
MM
6154 int symbol;
6155
5e681ec4 6156 /* This symbol is local, or marked to become local. */
b7693d02
DJ
6157 if (sym_flags == STT_ARM_TFUNC)
6158 value |= 1;
a16385dc 6159 if (globals->symbian_p)
6366ff1e 6160 {
74541ad4
AM
6161 asection *osec;
6162
6366ff1e
MM
6163 /* On Symbian OS, the data segment and text segement
6164 can be relocated independently. Therefore, we
6165 must indicate the segment to which this
6166 relocation is relative. The BPABI allows us to
6167 use any symbol in the right segment; we just use
6168 the section symbol as it is convenient. (We
6169 cannot use the symbol given by "h" directly as it
74541ad4
AM
6170 will not appear in the dynamic symbol table.)
6171
6172 Note that the dynamic linker ignores the section
6173 symbol value, so we don't subtract osec->vma
6174 from the emitted reloc addend. */
10dbd1f3 6175 if (sym_sec)
74541ad4 6176 osec = sym_sec->output_section;
10dbd1f3 6177 else
74541ad4
AM
6178 osec = input_section->output_section;
6179 symbol = elf_section_data (osec)->dynindx;
6180 if (symbol == 0)
6181 {
6182 struct elf_link_hash_table *htab = elf_hash_table (info);
6183
6184 if ((osec->flags & SEC_READONLY) == 0
6185 && htab->data_index_section != NULL)
6186 osec = htab->data_index_section;
6187 else
6188 osec = htab->text_index_section;
6189 symbol = elf_section_data (osec)->dynindx;
6190 }
6366ff1e
MM
6191 BFD_ASSERT (symbol != 0);
6192 }
a16385dc
MM
6193 else
6194 /* On SVR4-ish systems, the dynamic loader cannot
6195 relocate the text and data segments independently,
6196 so the symbol does not matter. */
6197 symbol = 0;
6198 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
6199 if (globals->use_rel)
6200 relocate = TRUE;
6201 else
6202 outrel.r_addend += value;
252b5132 6203 }
f21f3fe0 6204
947216bf 6205 loc = sreloc->contents;
00a97672
RS
6206 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6207 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9a5aca8c 6208
f21f3fe0 6209 /* If this reloc is against an external symbol, we do not want to
252b5132 6210 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 6211 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
6212 if (! relocate)
6213 return bfd_reloc_ok;
9a5aca8c 6214
f21f3fe0 6215 return _bfd_final_link_relocate (howto, input_bfd, input_section,
252b5132
RH
6216 contents, rel->r_offset, value,
6217 (bfd_vma) 0);
6218 }
6219 else switch (r_type)
6220 {
00a97672
RS
6221 case R_ARM_ABS12:
6222 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6223
dfc5f959 6224 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
6225 case R_ARM_CALL:
6226 case R_ARM_JUMP24:
8029a119 6227 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 6228 case R_ARM_PLT32:
906e58ca
NC
6229 {
6230 bfd_vma from;
6231 bfd_signed_vma branch_offset;
6232 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6233
dfc5f959 6234 if (r_type == R_ARM_XPC25)
252b5132 6235 {
dfc5f959
NC
6236 /* Check for Arm calling Arm function. */
6237 /* FIXME: Should we translate the instruction into a BL
6238 instruction instead ? */
6239 if (sym_flags != STT_ARM_TFUNC)
d003868e
AM
6240 (*_bfd_error_handler)
6241 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6242 input_bfd,
6243 h ? h->root.root.string : "(local)");
dfc5f959 6244 }
155d87d7 6245 else if (r_type == R_ARM_PC24)
dfc5f959
NC
6246 {
6247 /* Check for Arm calling Thumb function. */
6248 if (sym_flags == STT_ARM_TFUNC)
6249 {
f2a9dd69
DJ
6250 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6251 output_bfd, input_section,
6252 hit_data, sym_sec, rel->r_offset,
6253 signed_addend, value,
6254 error_message))
6255 return bfd_reloc_ok;
6256 else
6257 return bfd_reloc_dangerous;
dfc5f959 6258 }
252b5132 6259 }
ba96a88f 6260
906e58ca 6261 /* Check if a stub has to be inserted because the
8029a119 6262 destination is too far or we are changing mode. */
155d87d7
CL
6263 if ( r_type == R_ARM_CALL
6264 || r_type == R_ARM_JUMP24
6265 || r_type == R_ARM_PLT32)
906e58ca 6266 {
5fa9e92f
CL
6267 /* If the call goes through a PLT entry, make sure to
6268 check distance to the right destination address. */
6269 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6270 {
6271 value = (splt->output_section->vma
6272 + splt->output_offset
6273 + h->plt.offset);
6274 *unresolved_reloc_p = FALSE;
6275 }
6276
6277 from = (input_section->output_section->vma
6278 + input_section->output_offset
6279 + rel->r_offset);
6280 branch_offset = (bfd_signed_vma)(value - from);
6281
906e58ca
NC
6282 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6283 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
155d87d7
CL
6284 || ((sym_flags == STT_ARM_TFUNC)
6285 && (((r_type == R_ARM_CALL) && !globals->use_blx)
6286 || (r_type == R_ARM_JUMP24)
6287 || (r_type == R_ARM_PLT32) ))
6288 )
906e58ca
NC
6289 {
6290 /* The target is out of reach, so redirect the
6291 branch to the local stub for this function. */
6292
6293 stub_entry = elf32_arm_get_stub_entry (input_section,
6294 sym_sec, h,
6295 rel, globals);
6296 if (stub_entry != NULL)
6297 value = (stub_entry->stub_offset
6298 + stub_entry->stub_sec->output_offset
6299 + stub_entry->stub_sec->output_section->vma);
6300 }
6301 }
6302
dea514f5
PB
6303 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6304 where:
6305 S is the address of the symbol in the relocation.
6306 P is address of the instruction being relocated.
6307 A is the addend (extracted from the instruction) in bytes.
6308
6309 S is held in 'value'.
6310 P is the base address of the section containing the
6311 instruction plus the offset of the reloc into that
6312 section, ie:
6313 (input_section->output_section->vma +
6314 input_section->output_offset +
6315 rel->r_offset).
6316 A is the addend, converted into bytes, ie:
6317 (signed_addend * 4)
6318
6319 Note: None of these operations have knowledge of the pipeline
6320 size of the processor, thus it is up to the assembler to
6321 encode this information into the addend. */
6322 value -= (input_section->output_section->vma
6323 + input_section->output_offset);
6324 value -= rel->r_offset;
4e7fd91e
PB
6325 if (globals->use_rel)
6326 value += (signed_addend << howto->size);
6327 else
6328 /* RELA addends do not have to be adjusted by howto->size. */
6329 value += signed_addend;
23080146 6330
dcb5e6e6
NC
6331 signed_addend = value;
6332 signed_addend >>= howto->rightshift;
9a5aca8c 6333
5ab79981 6334 /* A branch to an undefined weak symbol is turned into a jump to
82b5c97a
CL
6335 the next instruction unless a PLT entry will be created. */
6336 if (h && h->root.type == bfd_link_hash_undefweak
6337 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
5ab79981
PB
6338 {
6339 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6340 | 0x0affffff;
6341 }
6342 else
59f2c4e7 6343 {
9b485d32 6344 /* Perform a signed range check. */
dcb5e6e6 6345 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
6346 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6347 return bfd_reloc_overflow;
9a5aca8c 6348
5ab79981 6349 addend = (value & 2);
39b41c9c 6350
5ab79981
PB
6351 value = (signed_addend & howto->dst_mask)
6352 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 6353
5ab79981
PB
6354 if (r_type == R_ARM_CALL)
6355 {
155d87d7
CL
6356 /* Set the H bit in the BLX instruction. */
6357 if (sym_flags == STT_ARM_TFUNC)
6358 {
6359 if (addend)
6360 value |= (1 << 24);
6361 else
6362 value &= ~(bfd_vma)(1 << 24);
6363 }
6364
5ab79981 6365 /* Select the correct instruction (BL or BLX). */
906e58ca 6366 /* Only if we are not handling a BL to a stub. In this
8029a119 6367 case, mode switching is performed by the stub. */
906e58ca 6368 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
5ab79981
PB
6369 value |= (1 << 28);
6370 else
6371 {
6372 value &= ~(bfd_vma)(1 << 28);
6373 value |= (1 << 24);
6374 }
39b41c9c
PB
6375 }
6376 }
906e58ca 6377 }
252b5132 6378 break;
f21f3fe0 6379
252b5132
RH
6380 case R_ARM_ABS32:
6381 value += addend;
6382 if (sym_flags == STT_ARM_TFUNC)
6383 value |= 1;
6384 break;
f21f3fe0 6385
bb224fc3
MS
6386 case R_ARM_ABS32_NOI:
6387 value += addend;
6388 break;
6389
252b5132 6390 case R_ARM_REL32:
a8bc6c78
PB
6391 value += addend;
6392 if (sym_flags == STT_ARM_TFUNC)
6393 value |= 1;
252b5132 6394 value -= (input_section->output_section->vma
62efb346 6395 + input_section->output_offset + rel->r_offset);
252b5132 6396 break;
eb043451 6397
bb224fc3
MS
6398 case R_ARM_REL32_NOI:
6399 value += addend;
6400 value -= (input_section->output_section->vma
6401 + input_section->output_offset + rel->r_offset);
6402 break;
6403
eb043451
PB
6404 case R_ARM_PREL31:
6405 value -= (input_section->output_section->vma
6406 + input_section->output_offset + rel->r_offset);
6407 value += signed_addend;
6408 if (! h || h->root.type != bfd_link_hash_undefweak)
6409 {
8029a119 6410 /* Check for overflow. */
eb043451
PB
6411 if ((value ^ (value >> 1)) & (1 << 30))
6412 return bfd_reloc_overflow;
6413 }
6414 value &= 0x7fffffff;
6415 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6416 if (sym_flags == STT_ARM_TFUNC)
6417 value |= 1;
6418 break;
252b5132 6419 }
f21f3fe0 6420
252b5132
RH
6421 bfd_put_32 (input_bfd, value, hit_data);
6422 return bfd_reloc_ok;
6423
6424 case R_ARM_ABS8:
6425 value += addend;
6426 if ((long) value > 0x7f || (long) value < -0x80)
6427 return bfd_reloc_overflow;
6428
6429 bfd_put_8 (input_bfd, value, hit_data);
6430 return bfd_reloc_ok;
6431
6432 case R_ARM_ABS16:
6433 value += addend;
6434
6435 if ((long) value > 0x7fff || (long) value < -0x8000)
6436 return bfd_reloc_overflow;
6437
6438 bfd_put_16 (input_bfd, value, hit_data);
6439 return bfd_reloc_ok;
6440
252b5132 6441 case R_ARM_THM_ABS5:
9b485d32 6442 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
6443 if (globals->use_rel)
6444 {
6445 /* Need to refetch addend. */
6446 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6447 /* ??? Need to determine shift amount from operand size. */
6448 addend >>= howto->rightshift;
6449 }
252b5132
RH
6450 value += addend;
6451
6452 /* ??? Isn't value unsigned? */
6453 if ((long) value > 0x1f || (long) value < -0x10)
6454 return bfd_reloc_overflow;
6455
6456 /* ??? Value needs to be properly shifted into place first. */
6457 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6458 bfd_put_16 (input_bfd, value, hit_data);
6459 return bfd_reloc_ok;
6460
2cab6cc3
MS
6461 case R_ARM_THM_ALU_PREL_11_0:
6462 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6463 {
6464 bfd_vma insn;
6465 bfd_signed_vma relocation;
6466
6467 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6468 | bfd_get_16 (input_bfd, hit_data + 2);
6469
6470 if (globals->use_rel)
6471 {
6472 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6473 | ((insn & (1 << 26)) >> 15);
6474 if (insn & 0xf00000)
6475 signed_addend = -signed_addend;
6476 }
6477
6478 relocation = value + signed_addend;
6479 relocation -= (input_section->output_section->vma
6480 + input_section->output_offset
6481 + rel->r_offset);
6482
6483 value = abs (relocation);
6484
6485 if (value >= 0x1000)
6486 return bfd_reloc_overflow;
6487
6488 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6489 | ((value & 0x700) << 4)
6490 | ((value & 0x800) << 15);
6491 if (relocation < 0)
6492 insn |= 0xa00000;
6493
6494 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6495 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6496
6497 return bfd_reloc_ok;
6498 }
6499
6500 case R_ARM_THM_PC12:
6501 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6502 {
6503 bfd_vma insn;
6504 bfd_signed_vma relocation;
6505
6506 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6507 | bfd_get_16 (input_bfd, hit_data + 2);
6508
6509 if (globals->use_rel)
6510 {
6511 signed_addend = insn & 0xfff;
6512 if (!(insn & (1 << 23)))
6513 signed_addend = -signed_addend;
6514 }
6515
6516 relocation = value + signed_addend;
6517 relocation -= (input_section->output_section->vma
6518 + input_section->output_offset
6519 + rel->r_offset);
6520
6521 value = abs (relocation);
6522
6523 if (value >= 0x1000)
6524 return bfd_reloc_overflow;
6525
6526 insn = (insn & 0xff7ff000) | value;
6527 if (relocation >= 0)
6528 insn |= (1 << 23);
6529
6530 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6531 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6532
6533 return bfd_reloc_ok;
6534 }
6535
dfc5f959 6536 case R_ARM_THM_XPC22:
c19d1205 6537 case R_ARM_THM_CALL:
bd97cb95 6538 case R_ARM_THM_JUMP24:
dfc5f959 6539 /* Thumb BL (branch long instruction). */
252b5132 6540 {
b34976b6 6541 bfd_vma relocation;
e95de063 6542 bfd_vma reloc_sign;
b34976b6
AM
6543 bfd_boolean overflow = FALSE;
6544 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6545 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
6546 bfd_signed_vma reloc_signed_max;
6547 bfd_signed_vma reloc_signed_min;
b34976b6 6548 bfd_vma check;
252b5132 6549 bfd_signed_vma signed_check;
e95de063
MS
6550 int bitsize;
6551 int thumb2 = using_thumb2 (globals);
252b5132 6552
5ab79981 6553 /* A branch to an undefined weak symbol is turned into a jump to
19540007
JM
6554 the next instruction unless a PLT entry will be created. */
6555 if (h && h->root.type == bfd_link_hash_undefweak
6556 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
5ab79981
PB
6557 {
6558 bfd_put_16 (input_bfd, 0xe000, hit_data);
6559 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6560 return bfd_reloc_ok;
6561 }
6562
e95de063
MS
6563 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6564 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
6565 if (globals->use_rel)
6566 {
e95de063
MS
6567 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6568 bfd_vma upper = upper_insn & 0x3ff;
6569 bfd_vma lower = lower_insn & 0x7ff;
6570 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6571 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6572 bfd_vma i1 = j1 ^ s ? 0 : 1;
6573 bfd_vma i2 = j2 ^ s ? 0 : 1;
6574
6575 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6576 /* Sign extend. */
6577 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6578
4e7fd91e
PB
6579 signed_addend = addend;
6580 }
cb1afa5c 6581
dfc5f959
NC
6582 if (r_type == R_ARM_THM_XPC22)
6583 {
6584 /* Check for Thumb to Thumb call. */
6585 /* FIXME: Should we translate the instruction into a BL
6586 instruction instead ? */
6587 if (sym_flags == STT_ARM_TFUNC)
d003868e
AM
6588 (*_bfd_error_handler)
6589 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6590 input_bfd,
6591 h ? h->root.root.string : "(local)");
dfc5f959
NC
6592 }
6593 else
252b5132 6594 {
dfc5f959
NC
6595 /* If it is not a call to Thumb, assume call to Arm.
6596 If it is a call relative to a section name, then it is not a
b7693d02
DJ
6597 function call at all, but rather a long jump. Calls through
6598 the PLT do not require stubs. */
6599 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6600 && (h == NULL || splt == NULL
6601 || h->plt.offset == (bfd_vma) -1))
dfc5f959 6602 {
bd97cb95 6603 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
6604 {
6605 /* Convert BL to BLX. */
6606 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6607 }
155d87d7
CL
6608 else if (( r_type != R_ARM_THM_CALL)
6609 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
6610 {
6611 if (elf32_thumb_to_arm_stub
6612 (info, sym_name, input_bfd, output_bfd, input_section,
6613 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6614 error_message))
6615 return bfd_reloc_ok;
6616 else
6617 return bfd_reloc_dangerous;
6618 }
da5938a2 6619 }
bd97cb95
DJ
6620 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6621 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
6622 {
6623 /* Make sure this is a BL. */
6624 lower_insn |= 0x1800;
6625 }
252b5132 6626 }
f21f3fe0 6627
b7693d02
DJ
6628 /* Handle calls via the PLT. */
6629 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6630 {
6631 value = (splt->output_section->vma
6632 + splt->output_offset
6633 + h->plt.offset);
bd97cb95 6634 if (globals->use_blx && r_type == R_ARM_THM_CALL)
33bfe774
JB
6635 {
6636 /* If the Thumb BLX instruction is available, convert the
6637 BL to a BLX instruction to call the ARM-mode PLT entry. */
39b41c9c 6638 lower_insn = (lower_insn & ~0x1000) | 0x0800;
33bfe774
JB
6639 }
6640 else
6641 /* Target the Thumb stub before the ARM PLT entry. */
6642 value -= PLT_THUMB_STUB_SIZE;
0945cdfd 6643 *unresolved_reloc_p = FALSE;
b7693d02
DJ
6644 }
6645
155d87d7 6646 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
6647 {
6648 /* Check if a stub has to be inserted because the destination
8029a119 6649 is too far. */
906e58ca
NC
6650 bfd_vma from;
6651 bfd_signed_vma branch_offset;
6652 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6653
6654 from = (input_section->output_section->vma
6655 + input_section->output_offset
6656 + rel->r_offset);
6657 branch_offset = (bfd_signed_vma)(value - from);
6658
6659 if ((!thumb2
6660 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6661 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6662 ||
6663 (thumb2
6664 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
f4ac8484 6665 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
155d87d7
CL
6666 || ((sym_flags != STT_ARM_TFUNC)
6667 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
6668 || r_type == R_ARM_THM_JUMP24)))
906e58ca
NC
6669 {
6670 /* The target is out of reach or we are changing modes, so
6671 redirect the branch to the local stub for this
6672 function. */
6673 stub_entry = elf32_arm_get_stub_entry (input_section,
6674 sym_sec, h,
6675 rel, globals);
6676 if (stub_entry != NULL)
6677 value = (stub_entry->stub_offset
6678 + stub_entry->stub_sec->output_offset
6679 + stub_entry->stub_sec->output_section->vma);
6680
f4ac8484 6681 /* If this call becomes a call to Arm, force BLX. */
155d87d7 6682 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
6683 {
6684 if ((stub_entry
6685 && !arm_stub_is_thumb (stub_entry->stub_type))
6686 || (sym_flags != STT_ARM_TFUNC))
6687 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6688 }
906e58ca
NC
6689 }
6690 }
6691
ba96a88f 6692 relocation = value + signed_addend;
f21f3fe0 6693
252b5132 6694 relocation -= (input_section->output_section->vma
ba96a88f
NC
6695 + input_section->output_offset
6696 + rel->r_offset);
9a5aca8c 6697
252b5132
RH
6698 check = relocation >> howto->rightshift;
6699
6700 /* If this is a signed value, the rightshift just dropped
6701 leading 1 bits (assuming twos complement). */
6702 if ((bfd_signed_vma) relocation >= 0)
6703 signed_check = check;
6704 else
6705 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6706
e95de063
MS
6707 /* Calculate the permissable maximum and minimum values for
6708 this relocation according to whether we're relocating for
6709 Thumb-2 or not. */
6710 bitsize = howto->bitsize;
6711 if (!thumb2)
6712 bitsize -= 2;
6713 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6714 reloc_signed_min = ~reloc_signed_max;
6715
252b5132 6716 /* Assumes two's complement. */
ba96a88f 6717 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 6718 overflow = TRUE;
252b5132 6719
bd97cb95 6720 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
6721 /* For a BLX instruction, make sure that the relocation is rounded up
6722 to a word boundary. This follows the semantics of the instruction
6723 which specifies that bit 1 of the target address will come from bit
6724 1 of the base address. */
6725 relocation = (relocation + 2) & ~ 3;
cb1afa5c 6726
e95de063
MS
6727 /* Put RELOCATION back into the insn. Assumes two's complement.
6728 We use the Thumb-2 encoding, which is safe even if dealing with
6729 a Thumb-1 instruction by virtue of our overflow check above. */
6730 reloc_sign = (signed_check < 0) ? 1 : 0;
6731 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6732 | ((relocation >> 12) & 0x3ff)
6733 | (reloc_sign << 10);
906e58ca 6734 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
e95de063
MS
6735 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6736 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6737 | ((relocation >> 1) & 0x7ff);
c62e1cc3 6738
252b5132
RH
6739 /* Put the relocated value back in the object file: */
6740 bfd_put_16 (input_bfd, upper_insn, hit_data);
6741 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6742
6743 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6744 }
6745 break;
6746
c19d1205
ZW
6747 case R_ARM_THM_JUMP19:
6748 /* Thumb32 conditional branch instruction. */
6749 {
6750 bfd_vma relocation;
6751 bfd_boolean overflow = FALSE;
6752 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6753 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
6754 bfd_signed_vma reloc_signed_max = 0xffffe;
6755 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205
ZW
6756 bfd_signed_vma signed_check;
6757
6758 /* Need to refetch the addend, reconstruct the top three bits,
6759 and squish the two 11 bit pieces together. */
6760 if (globals->use_rel)
6761 {
6762 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 6763 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
6764 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6765 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6766 bfd_vma lower = (lower_insn & 0x07ff);
6767
a00a1f35
MS
6768 upper |= J1 << 6;
6769 upper |= J2 << 7;
6770 upper |= (!S) << 8;
c19d1205
ZW
6771 upper -= 0x0100; /* Sign extend. */
6772
6773 addend = (upper << 12) | (lower << 1);
6774 signed_addend = addend;
6775 }
6776
bd97cb95
DJ
6777 /* Handle calls via the PLT. */
6778 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6779 {
6780 value = (splt->output_section->vma
6781 + splt->output_offset
6782 + h->plt.offset);
6783 /* Target the Thumb stub before the ARM PLT entry. */
6784 value -= PLT_THUMB_STUB_SIZE;
6785 *unresolved_reloc_p = FALSE;
6786 }
6787
c19d1205
ZW
6788 /* ??? Should handle interworking? GCC might someday try to
6789 use this for tail calls. */
6790
6791 relocation = value + signed_addend;
6792 relocation -= (input_section->output_section->vma
6793 + input_section->output_offset
6794 + rel->r_offset);
a00a1f35 6795 signed_check = (bfd_signed_vma) relocation;
c19d1205 6796
c19d1205
ZW
6797 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6798 overflow = TRUE;
6799
6800 /* Put RELOCATION back into the insn. */
6801 {
6802 bfd_vma S = (relocation & 0x00100000) >> 20;
6803 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6804 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6805 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6806 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6807
a00a1f35 6808 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
6809 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6810 }
6811
6812 /* Put the relocated value back in the object file: */
6813 bfd_put_16 (input_bfd, upper_insn, hit_data);
6814 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6815
6816 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6817 }
6818
6819 case R_ARM_THM_JUMP11:
6820 case R_ARM_THM_JUMP8:
6821 case R_ARM_THM_JUMP6:
51c5503b
NC
6822 /* Thumb B (branch) instruction). */
6823 {
6cf9e9fe 6824 bfd_signed_vma relocation;
51c5503b
NC
6825 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6826 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
6827 bfd_signed_vma signed_check;
6828
c19d1205
ZW
6829 /* CZB cannot jump backward. */
6830 if (r_type == R_ARM_THM_JUMP6)
6831 reloc_signed_min = 0;
6832
4e7fd91e 6833 if (globals->use_rel)
6cf9e9fe 6834 {
4e7fd91e
PB
6835 /* Need to refetch addend. */
6836 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6837 if (addend & ((howto->src_mask + 1) >> 1))
6838 {
6839 signed_addend = -1;
6840 signed_addend &= ~ howto->src_mask;
6841 signed_addend |= addend;
6842 }
6843 else
6844 signed_addend = addend;
6845 /* The value in the insn has been right shifted. We need to
6846 undo this, so that we can perform the address calculation
6847 in terms of bytes. */
6848 signed_addend <<= howto->rightshift;
6cf9e9fe 6849 }
6cf9e9fe 6850 relocation = value + signed_addend;
51c5503b
NC
6851
6852 relocation -= (input_section->output_section->vma
6853 + input_section->output_offset
6854 + rel->r_offset);
6855
6cf9e9fe
NC
6856 relocation >>= howto->rightshift;
6857 signed_check = relocation;
c19d1205
ZW
6858
6859 if (r_type == R_ARM_THM_JUMP6)
6860 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6861 else
6862 relocation &= howto->dst_mask;
51c5503b 6863 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 6864
51c5503b
NC
6865 bfd_put_16 (input_bfd, relocation, hit_data);
6866
6867 /* Assumes two's complement. */
6868 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6869 return bfd_reloc_overflow;
6870
6871 return bfd_reloc_ok;
6872 }
cedb70c5 6873
8375c36b
PB
6874 case R_ARM_ALU_PCREL7_0:
6875 case R_ARM_ALU_PCREL15_8:
6876 case R_ARM_ALU_PCREL23_15:
6877 {
6878 bfd_vma insn;
6879 bfd_vma relocation;
6880
6881 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
6882 if (globals->use_rel)
6883 {
6884 /* Extract the addend. */
6885 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6886 signed_addend = addend;
6887 }
8375c36b
PB
6888 relocation = value + signed_addend;
6889
6890 relocation -= (input_section->output_section->vma
6891 + input_section->output_offset
6892 + rel->r_offset);
6893 insn = (insn & ~0xfff)
6894 | ((howto->bitpos << 7) & 0xf00)
6895 | ((relocation >> howto->bitpos) & 0xff);
6896 bfd_put_32 (input_bfd, value, hit_data);
6897 }
6898 return bfd_reloc_ok;
6899
252b5132
RH
6900 case R_ARM_GNU_VTINHERIT:
6901 case R_ARM_GNU_VTENTRY:
6902 return bfd_reloc_ok;
6903
c19d1205 6904 case R_ARM_GOTOFF32:
252b5132
RH
6905 /* Relocation is relative to the start of the
6906 global offset table. */
6907
6908 BFD_ASSERT (sgot != NULL);
6909 if (sgot == NULL)
6910 return bfd_reloc_notsupported;
9a5aca8c 6911
cedb70c5 6912 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
6913 address by one, so that attempts to call the function pointer will
6914 correctly interpret it as Thumb code. */
6915 if (sym_flags == STT_ARM_TFUNC)
6916 value += 1;
6917
252b5132
RH
6918 /* Note that sgot->output_offset is not involved in this
6919 calculation. We always want the start of .got. If we
6920 define _GLOBAL_OFFSET_TABLE in a different way, as is
6921 permitted by the ABI, we might have to change this
9b485d32 6922 calculation. */
252b5132 6923 value -= sgot->output_section->vma;
f21f3fe0 6924 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 6925 contents, rel->r_offset, value,
00a97672 6926 rel->r_addend);
252b5132
RH
6927
6928 case R_ARM_GOTPC:
a7c10850 6929 /* Use global offset table as symbol value. */
252b5132 6930 BFD_ASSERT (sgot != NULL);
f21f3fe0 6931
252b5132
RH
6932 if (sgot == NULL)
6933 return bfd_reloc_notsupported;
6934
0945cdfd 6935 *unresolved_reloc_p = FALSE;
252b5132 6936 value = sgot->output_section->vma;
f21f3fe0 6937 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 6938 contents, rel->r_offset, value,
00a97672 6939 rel->r_addend);
f21f3fe0 6940
252b5132 6941 case R_ARM_GOT32:
eb043451 6942 case R_ARM_GOT_PREL:
252b5132 6943 /* Relocation is to the entry for this symbol in the
9b485d32 6944 global offset table. */
252b5132
RH
6945 if (sgot == NULL)
6946 return bfd_reloc_notsupported;
f21f3fe0 6947
252b5132
RH
6948 if (h != NULL)
6949 {
6950 bfd_vma off;
5e681ec4 6951 bfd_boolean dyn;
f21f3fe0 6952
252b5132
RH
6953 off = h->got.offset;
6954 BFD_ASSERT (off != (bfd_vma) -1);
5e681ec4 6955 dyn = globals->root.dynamic_sections_created;
f21f3fe0 6956
5e681ec4 6957 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
50d6c878 6958 || (info->shared
5e681ec4
PB
6959 && SYMBOL_REFERENCES_LOCAL (info, h))
6960 || (ELF_ST_VISIBILITY (h->other)
6961 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
6962 {
6963 /* This is actually a static link, or it is a -Bsymbolic link
6964 and the symbol is defined locally. We must initialize this
6965 entry in the global offset table. Since the offset must
6966 always be a multiple of 4, we use the least significant bit
6967 to record whether we have initialized it already.
f21f3fe0 6968
00a97672 6969 When doing a dynamic link, we create a .rel(a).got relocation
f21f3fe0 6970 entry to initialize the value. This is done in the
9b485d32 6971 finish_dynamic_symbol routine. */
252b5132
RH
6972 if ((off & 1) != 0)
6973 off &= ~1;
6974 else
6975 {
ee29b9fb
RE
6976 /* If we are addressing a Thumb function, we need to
6977 adjust the address by one, so that attempts to
6978 call the function pointer will correctly
6979 interpret it as Thumb code. */
6980 if (sym_flags == STT_ARM_TFUNC)
6981 value |= 1;
6982
252b5132
RH
6983 bfd_put_32 (output_bfd, value, sgot->contents + off);
6984 h->got.offset |= 1;
6985 }
6986 }
0945cdfd
DJ
6987 else
6988 *unresolved_reloc_p = FALSE;
f21f3fe0 6989
252b5132
RH
6990 value = sgot->output_offset + off;
6991 }
6992 else
6993 {
6994 bfd_vma off;
f21f3fe0 6995
252b5132
RH
6996 BFD_ASSERT (local_got_offsets != NULL &&
6997 local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 6998
252b5132 6999 off = local_got_offsets[r_symndx];
f21f3fe0 7000
252b5132
RH
7001 /* The offset must always be a multiple of 4. We use the
7002 least significant bit to record whether we have already
9b485d32 7003 generated the necessary reloc. */
252b5132
RH
7004 if ((off & 1) != 0)
7005 off &= ~1;
7006 else
7007 {
b7693d02
DJ
7008 /* If we are addressing a Thumb function, we need to
7009 adjust the address by one, so that attempts to
7010 call the function pointer will correctly
7011 interpret it as Thumb code. */
7012 if (sym_flags == STT_ARM_TFUNC)
7013 value |= 1;
7014
00a97672
RS
7015 if (globals->use_rel)
7016 bfd_put_32 (output_bfd, value, sgot->contents + off);
f21f3fe0 7017
252b5132
RH
7018 if (info->shared)
7019 {
7020 asection * srelgot;
947216bf
AM
7021 Elf_Internal_Rela outrel;
7022 bfd_byte *loc;
f21f3fe0 7023
00a97672
RS
7024 srelgot = (bfd_get_section_by_name
7025 (dynobj, RELOC_SECTION (globals, ".got")));
252b5132 7026 BFD_ASSERT (srelgot != NULL);
f21f3fe0 7027
00a97672 7028 outrel.r_addend = addend + value;
252b5132 7029 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 7030 + sgot->output_offset
252b5132
RH
7031 + off);
7032 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
947216bf 7033 loc = srelgot->contents;
00a97672
RS
7034 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7035 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
252b5132 7036 }
f21f3fe0 7037
252b5132
RH
7038 local_got_offsets[r_symndx] |= 1;
7039 }
f21f3fe0 7040
252b5132
RH
7041 value = sgot->output_offset + off;
7042 }
eb043451
PB
7043 if (r_type != R_ARM_GOT32)
7044 value += sgot->output_section->vma;
9a5aca8c 7045
f21f3fe0 7046 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 7047 contents, rel->r_offset, value,
00a97672 7048 rel->r_addend);
f21f3fe0 7049
ba93b8ac
DJ
7050 case R_ARM_TLS_LDO32:
7051 value = value - dtpoff_base (info);
7052
7053 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
7054 contents, rel->r_offset, value,
7055 rel->r_addend);
ba93b8ac
DJ
7056
7057 case R_ARM_TLS_LDM32:
7058 {
7059 bfd_vma off;
7060
7061 if (globals->sgot == NULL)
7062 abort ();
7063
7064 off = globals->tls_ldm_got.offset;
7065
7066 if ((off & 1) != 0)
7067 off &= ~1;
7068 else
7069 {
7070 /* If we don't know the module number, create a relocation
7071 for it. */
7072 if (info->shared)
7073 {
7074 Elf_Internal_Rela outrel;
7075 bfd_byte *loc;
7076
7077 if (globals->srelgot == NULL)
7078 abort ();
7079
00a97672 7080 outrel.r_addend = 0;
ba93b8ac
DJ
7081 outrel.r_offset = (globals->sgot->output_section->vma
7082 + globals->sgot->output_offset + off);
7083 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7084
00a97672
RS
7085 if (globals->use_rel)
7086 bfd_put_32 (output_bfd, outrel.r_addend,
7087 globals->sgot->contents + off);
ba93b8ac
DJ
7088
7089 loc = globals->srelgot->contents;
00a97672
RS
7090 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7091 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac
DJ
7092 }
7093 else
7094 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7095
7096 globals->tls_ldm_got.offset |= 1;
7097 }
7098
906e58ca 7099 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
ba93b8ac
DJ
7100 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7101
7102 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7103 contents, rel->r_offset, value,
00a97672 7104 rel->r_addend);
ba93b8ac
DJ
7105 }
7106
7107 case R_ARM_TLS_GD32:
7108 case R_ARM_TLS_IE32:
7109 {
7110 bfd_vma off;
7111 int indx;
7112 char tls_type;
7113
7114 if (globals->sgot == NULL)
7115 abort ();
7116
7117 indx = 0;
7118 if (h != NULL)
7119 {
7120 bfd_boolean dyn;
7121 dyn = globals->root.dynamic_sections_created;
7122 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7123 && (!info->shared
7124 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7125 {
7126 *unresolved_reloc_p = FALSE;
7127 indx = h->dynindx;
7128 }
7129 off = h->got.offset;
7130 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7131 }
7132 else
7133 {
7134 if (local_got_offsets == NULL)
7135 abort ();
7136 off = local_got_offsets[r_symndx];
7137 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7138 }
7139
7140 if (tls_type == GOT_UNKNOWN)
7141 abort ();
7142
7143 if ((off & 1) != 0)
7144 off &= ~1;
7145 else
7146 {
7147 bfd_boolean need_relocs = FALSE;
7148 Elf_Internal_Rela outrel;
7149 bfd_byte *loc = NULL;
7150 int cur_off = off;
7151
7152 /* The GOT entries have not been initialized yet. Do it
7153 now, and emit any relocations. If both an IE GOT and a
7154 GD GOT are necessary, we emit the GD first. */
7155
7156 if ((info->shared || indx != 0)
7157 && (h == NULL
7158 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7159 || h->root.type != bfd_link_hash_undefweak))
7160 {
7161 need_relocs = TRUE;
7162 if (globals->srelgot == NULL)
7163 abort ();
7164 loc = globals->srelgot->contents;
00a97672 7165 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
ba93b8ac
DJ
7166 }
7167
7168 if (tls_type & GOT_TLS_GD)
7169 {
7170 if (need_relocs)
7171 {
00a97672 7172 outrel.r_addend = 0;
ba93b8ac 7173 outrel.r_offset = (globals->sgot->output_section->vma
00a97672
RS
7174 + globals->sgot->output_offset
7175 + cur_off);
ba93b8ac 7176 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 7177
00a97672
RS
7178 if (globals->use_rel)
7179 bfd_put_32 (output_bfd, outrel.r_addend,
7180 globals->sgot->contents + cur_off);
7181
7182 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 7183 globals->srelgot->reloc_count++;
00a97672 7184 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
7185
7186 if (indx == 0)
7187 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7188 globals->sgot->contents + cur_off + 4);
7189 else
7190 {
00a97672 7191 outrel.r_addend = 0;
ba93b8ac
DJ
7192 outrel.r_info = ELF32_R_INFO (indx,
7193 R_ARM_TLS_DTPOFF32);
7194 outrel.r_offset += 4;
00a97672
RS
7195
7196 if (globals->use_rel)
7197 bfd_put_32 (output_bfd, outrel.r_addend,
7198 globals->sgot->contents + cur_off + 4);
7199
7200
7201 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 7202 globals->srelgot->reloc_count++;
00a97672 7203 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
7204 }
7205 }
7206 else
7207 {
7208 /* If we are not emitting relocations for a
7209 general dynamic reference, then we must be in a
7210 static link or an executable link with the
7211 symbol binding locally. Mark it as belonging
7212 to module 1, the executable. */
7213 bfd_put_32 (output_bfd, 1,
7214 globals->sgot->contents + cur_off);
7215 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7216 globals->sgot->contents + cur_off + 4);
7217 }
7218
7219 cur_off += 8;
7220 }
7221
7222 if (tls_type & GOT_TLS_IE)
7223 {
7224 if (need_relocs)
7225 {
00a97672
RS
7226 if (indx == 0)
7227 outrel.r_addend = value - dtpoff_base (info);
7228 else
7229 outrel.r_addend = 0;
ba93b8ac
DJ
7230 outrel.r_offset = (globals->sgot->output_section->vma
7231 + globals->sgot->output_offset
7232 + cur_off);
7233 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7234
00a97672
RS
7235 if (globals->use_rel)
7236 bfd_put_32 (output_bfd, outrel.r_addend,
ba93b8ac
DJ
7237 globals->sgot->contents + cur_off);
7238
00a97672 7239 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
ba93b8ac 7240 globals->srelgot->reloc_count++;
00a97672 7241 loc += RELOC_SIZE (globals);
ba93b8ac
DJ
7242 }
7243 else
7244 bfd_put_32 (output_bfd, tpoff (info, value),
7245 globals->sgot->contents + cur_off);
7246 cur_off += 4;
7247 }
7248
7249 if (h != NULL)
7250 h->got.offset |= 1;
7251 else
7252 local_got_offsets[r_symndx] |= 1;
7253 }
7254
7255 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7256 off += 8;
906e58ca 7257 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
ba93b8ac
DJ
7258 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7259
7260 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7261 contents, rel->r_offset, value,
00a97672 7262 rel->r_addend);
ba93b8ac
DJ
7263 }
7264
7265 case R_ARM_TLS_LE32:
7266 if (info->shared)
7267 {
7268 (*_bfd_error_handler)
7269 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7270 input_bfd, input_section,
7271 (long) rel->r_offset, howto->name);
906e58ca 7272 return FALSE;
ba93b8ac
DJ
7273 }
7274 else
7275 value = tpoff (info, value);
906e58ca 7276
ba93b8ac 7277 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
7278 contents, rel->r_offset, value,
7279 rel->r_addend);
ba93b8ac 7280
319850b4
JB
7281 case R_ARM_V4BX:
7282 if (globals->fix_v4bx)
845b51d6
PB
7283 {
7284 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 7285
845b51d6
PB
7286 /* Ensure that we have a BX instruction. */
7287 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 7288
845b51d6
PB
7289 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7290 {
7291 /* Branch to veneer. */
7292 bfd_vma glue_addr;
7293 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7294 glue_addr -= input_section->output_section->vma
7295 + input_section->output_offset
7296 + rel->r_offset + 8;
7297 insn = (insn & 0xf0000000) | 0x0a000000
7298 | ((glue_addr >> 2) & 0x00ffffff);
7299 }
7300 else
7301 {
7302 /* Preserve Rm (lowest four bits) and the condition code
7303 (highest four bits). Other bits encode MOV PC,Rm. */
7304 insn = (insn & 0xf000000f) | 0x01a0f000;
7305 }
319850b4 7306
845b51d6
PB
7307 bfd_put_32 (input_bfd, insn, hit_data);
7308 }
319850b4
JB
7309 return bfd_reloc_ok;
7310
b6895b4f
PB
7311 case R_ARM_MOVW_ABS_NC:
7312 case R_ARM_MOVT_ABS:
7313 case R_ARM_MOVW_PREL_NC:
7314 case R_ARM_MOVT_PREL:
92f5d02b
MS
7315 /* Until we properly support segment-base-relative addressing then
7316 we assume the segment base to be zero, as for the group relocations.
7317 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7318 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7319 case R_ARM_MOVW_BREL_NC:
7320 case R_ARM_MOVW_BREL:
7321 case R_ARM_MOVT_BREL:
b6895b4f
PB
7322 {
7323 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7324
7325 if (globals->use_rel)
7326 {
7327 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 7328 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 7329 }
92f5d02b 7330
b6895b4f 7331 value += signed_addend;
b6895b4f
PB
7332
7333 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7334 value -= (input_section->output_section->vma
7335 + input_section->output_offset + rel->r_offset);
7336
92f5d02b
MS
7337 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7338 return bfd_reloc_overflow;
7339
7340 if (sym_flags == STT_ARM_TFUNC)
7341 value |= 1;
7342
7343 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7344 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
7345 value >>= 16;
7346
7347 insn &= 0xfff0f000;
7348 insn |= value & 0xfff;
7349 insn |= (value & 0xf000) << 4;
7350 bfd_put_32 (input_bfd, insn, hit_data);
7351 }
7352 return bfd_reloc_ok;
7353
7354 case R_ARM_THM_MOVW_ABS_NC:
7355 case R_ARM_THM_MOVT_ABS:
7356 case R_ARM_THM_MOVW_PREL_NC:
7357 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
7358 /* Until we properly support segment-base-relative addressing then
7359 we assume the segment base to be zero, as for the above relocations.
7360 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7361 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7362 as R_ARM_THM_MOVT_ABS. */
7363 case R_ARM_THM_MOVW_BREL_NC:
7364 case R_ARM_THM_MOVW_BREL:
7365 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
7366 {
7367 bfd_vma insn;
906e58ca 7368
b6895b4f
PB
7369 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7370 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7371
7372 if (globals->use_rel)
7373 {
7374 addend = ((insn >> 4) & 0xf000)
7375 | ((insn >> 15) & 0x0800)
7376 | ((insn >> 4) & 0x0700)
7377 | (insn & 0x00ff);
39623e12 7378 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 7379 }
92f5d02b 7380
b6895b4f 7381 value += signed_addend;
b6895b4f
PB
7382
7383 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7384 value -= (input_section->output_section->vma
7385 + input_section->output_offset + rel->r_offset);
7386
92f5d02b
MS
7387 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7388 return bfd_reloc_overflow;
7389
7390 if (sym_flags == STT_ARM_TFUNC)
7391 value |= 1;
7392
7393 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7394 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
7395 value >>= 16;
7396
7397 insn &= 0xfbf08f00;
7398 insn |= (value & 0xf000) << 4;
7399 insn |= (value & 0x0800) << 15;
7400 insn |= (value & 0x0700) << 4;
7401 insn |= (value & 0x00ff);
7402
7403 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7404 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7405 }
7406 return bfd_reloc_ok;
7407
4962c51a
MS
7408 case R_ARM_ALU_PC_G0_NC:
7409 case R_ARM_ALU_PC_G1_NC:
7410 case R_ARM_ALU_PC_G0:
7411 case R_ARM_ALU_PC_G1:
7412 case R_ARM_ALU_PC_G2:
7413 case R_ARM_ALU_SB_G0_NC:
7414 case R_ARM_ALU_SB_G1_NC:
7415 case R_ARM_ALU_SB_G0:
7416 case R_ARM_ALU_SB_G1:
7417 case R_ARM_ALU_SB_G2:
7418 {
7419 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7420 bfd_vma pc = input_section->output_section->vma
7421 + input_section->output_offset + rel->r_offset;
7422 /* sb should be the origin of the *segment* containing the symbol.
7423 It is not clear how to obtain this OS-dependent value, so we
7424 make an arbitrary choice of zero. */
7425 bfd_vma sb = 0;
7426 bfd_vma residual;
7427 bfd_vma g_n;
7428 bfd_signed_vma signed_value;
7429 int group = 0;
7430
7431 /* Determine which group of bits to select. */
7432 switch (r_type)
7433 {
7434 case R_ARM_ALU_PC_G0_NC:
7435 case R_ARM_ALU_PC_G0:
7436 case R_ARM_ALU_SB_G0_NC:
7437 case R_ARM_ALU_SB_G0:
7438 group = 0;
7439 break;
7440
7441 case R_ARM_ALU_PC_G1_NC:
7442 case R_ARM_ALU_PC_G1:
7443 case R_ARM_ALU_SB_G1_NC:
7444 case R_ARM_ALU_SB_G1:
7445 group = 1;
7446 break;
7447
7448 case R_ARM_ALU_PC_G2:
7449 case R_ARM_ALU_SB_G2:
7450 group = 2;
7451 break;
7452
7453 default:
906e58ca 7454 abort ();
4962c51a
MS
7455 }
7456
7457 /* If REL, extract the addend from the insn. If RELA, it will
7458 have already been fetched for us. */
7459 if (globals->use_rel)
7460 {
7461 int negative;
7462 bfd_vma constant = insn & 0xff;
7463 bfd_vma rotation = (insn & 0xf00) >> 8;
7464
7465 if (rotation == 0)
7466 signed_addend = constant;
7467 else
7468 {
7469 /* Compensate for the fact that in the instruction, the
7470 rotation is stored in multiples of 2 bits. */
7471 rotation *= 2;
7472
7473 /* Rotate "constant" right by "rotation" bits. */
7474 signed_addend = (constant >> rotation) |
7475 (constant << (8 * sizeof (bfd_vma) - rotation));
7476 }
7477
7478 /* Determine if the instruction is an ADD or a SUB.
7479 (For REL, this determines the sign of the addend.) */
7480 negative = identify_add_or_sub (insn);
7481 if (negative == 0)
7482 {
7483 (*_bfd_error_handler)
7484 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7485 input_bfd, input_section,
7486 (long) rel->r_offset, howto->name);
906e58ca 7487 return bfd_reloc_overflow;
4962c51a
MS
7488 }
7489
7490 signed_addend *= negative;
7491 }
7492
7493 /* Compute the value (X) to go in the place. */
7494 if (r_type == R_ARM_ALU_PC_G0_NC
7495 || r_type == R_ARM_ALU_PC_G1_NC
7496 || r_type == R_ARM_ALU_PC_G0
7497 || r_type == R_ARM_ALU_PC_G1
7498 || r_type == R_ARM_ALU_PC_G2)
7499 /* PC relative. */
7500 signed_value = value - pc + signed_addend;
7501 else
7502 /* Section base relative. */
7503 signed_value = value - sb + signed_addend;
7504
7505 /* If the target symbol is a Thumb function, then set the
7506 Thumb bit in the address. */
7507 if (sym_flags == STT_ARM_TFUNC)
7508 signed_value |= 1;
7509
7510 /* Calculate the value of the relevant G_n, in encoded
7511 constant-with-rotation format. */
7512 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7513 &residual);
7514
7515 /* Check for overflow if required. */
7516 if ((r_type == R_ARM_ALU_PC_G0
7517 || r_type == R_ARM_ALU_PC_G1
7518 || r_type == R_ARM_ALU_PC_G2
7519 || r_type == R_ARM_ALU_SB_G0
7520 || r_type == R_ARM_ALU_SB_G1
7521 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7522 {
7523 (*_bfd_error_handler)
7524 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7525 input_bfd, input_section,
7526 (long) rel->r_offset, abs (signed_value), howto->name);
7527 return bfd_reloc_overflow;
7528 }
7529
7530 /* Mask out the value and the ADD/SUB part of the opcode; take care
7531 not to destroy the S bit. */
7532 insn &= 0xff1ff000;
7533
7534 /* Set the opcode according to whether the value to go in the
7535 place is negative. */
7536 if (signed_value < 0)
7537 insn |= 1 << 22;
7538 else
7539 insn |= 1 << 23;
7540
7541 /* Encode the offset. */
7542 insn |= g_n;
7543
7544 bfd_put_32 (input_bfd, insn, hit_data);
7545 }
7546 return bfd_reloc_ok;
7547
7548 case R_ARM_LDR_PC_G0:
7549 case R_ARM_LDR_PC_G1:
7550 case R_ARM_LDR_PC_G2:
7551 case R_ARM_LDR_SB_G0:
7552 case R_ARM_LDR_SB_G1:
7553 case R_ARM_LDR_SB_G2:
7554 {
7555 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7556 bfd_vma pc = input_section->output_section->vma
7557 + input_section->output_offset + rel->r_offset;
7558 bfd_vma sb = 0; /* See note above. */
7559 bfd_vma residual;
7560 bfd_signed_vma signed_value;
7561 int group = 0;
7562
7563 /* Determine which groups of bits to calculate. */
7564 switch (r_type)
7565 {
7566 case R_ARM_LDR_PC_G0:
7567 case R_ARM_LDR_SB_G0:
7568 group = 0;
7569 break;
7570
7571 case R_ARM_LDR_PC_G1:
7572 case R_ARM_LDR_SB_G1:
7573 group = 1;
7574 break;
7575
7576 case R_ARM_LDR_PC_G2:
7577 case R_ARM_LDR_SB_G2:
7578 group = 2;
7579 break;
7580
7581 default:
906e58ca 7582 abort ();
4962c51a
MS
7583 }
7584
7585 /* If REL, extract the addend from the insn. If RELA, it will
7586 have already been fetched for us. */
7587 if (globals->use_rel)
7588 {
7589 int negative = (insn & (1 << 23)) ? 1 : -1;
7590 signed_addend = negative * (insn & 0xfff);
7591 }
7592
7593 /* Compute the value (X) to go in the place. */
7594 if (r_type == R_ARM_LDR_PC_G0
7595 || r_type == R_ARM_LDR_PC_G1
7596 || r_type == R_ARM_LDR_PC_G2)
7597 /* PC relative. */
7598 signed_value = value - pc + signed_addend;
7599 else
7600 /* Section base relative. */
7601 signed_value = value - sb + signed_addend;
7602
7603 /* Calculate the value of the relevant G_{n-1} to obtain
7604 the residual at that stage. */
7605 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7606
7607 /* Check for overflow. */
7608 if (residual >= 0x1000)
7609 {
7610 (*_bfd_error_handler)
7611 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7612 input_bfd, input_section,
7613 (long) rel->r_offset, abs (signed_value), howto->name);
7614 return bfd_reloc_overflow;
7615 }
7616
7617 /* Mask out the value and U bit. */
7618 insn &= 0xff7ff000;
7619
7620 /* Set the U bit if the value to go in the place is non-negative. */
7621 if (signed_value >= 0)
7622 insn |= 1 << 23;
7623
7624 /* Encode the offset. */
7625 insn |= residual;
7626
7627 bfd_put_32 (input_bfd, insn, hit_data);
7628 }
7629 return bfd_reloc_ok;
7630
7631 case R_ARM_LDRS_PC_G0:
7632 case R_ARM_LDRS_PC_G1:
7633 case R_ARM_LDRS_PC_G2:
7634 case R_ARM_LDRS_SB_G0:
7635 case R_ARM_LDRS_SB_G1:
7636 case R_ARM_LDRS_SB_G2:
7637 {
7638 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7639 bfd_vma pc = input_section->output_section->vma
7640 + input_section->output_offset + rel->r_offset;
7641 bfd_vma sb = 0; /* See note above. */
7642 bfd_vma residual;
7643 bfd_signed_vma signed_value;
7644 int group = 0;
7645
7646 /* Determine which groups of bits to calculate. */
7647 switch (r_type)
7648 {
7649 case R_ARM_LDRS_PC_G0:
7650 case R_ARM_LDRS_SB_G0:
7651 group = 0;
7652 break;
7653
7654 case R_ARM_LDRS_PC_G1:
7655 case R_ARM_LDRS_SB_G1:
7656 group = 1;
7657 break;
7658
7659 case R_ARM_LDRS_PC_G2:
7660 case R_ARM_LDRS_SB_G2:
7661 group = 2;
7662 break;
7663
7664 default:
906e58ca 7665 abort ();
4962c51a
MS
7666 }
7667
7668 /* If REL, extract the addend from the insn. If RELA, it will
7669 have already been fetched for us. */
7670 if (globals->use_rel)
7671 {
7672 int negative = (insn & (1 << 23)) ? 1 : -1;
7673 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7674 }
7675
7676 /* Compute the value (X) to go in the place. */
7677 if (r_type == R_ARM_LDRS_PC_G0
7678 || r_type == R_ARM_LDRS_PC_G1
7679 || r_type == R_ARM_LDRS_PC_G2)
7680 /* PC relative. */
7681 signed_value = value - pc + signed_addend;
7682 else
7683 /* Section base relative. */
7684 signed_value = value - sb + signed_addend;
7685
7686 /* Calculate the value of the relevant G_{n-1} to obtain
7687 the residual at that stage. */
7688 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7689
7690 /* Check for overflow. */
7691 if (residual >= 0x100)
7692 {
7693 (*_bfd_error_handler)
7694 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7695 input_bfd, input_section,
7696 (long) rel->r_offset, abs (signed_value), howto->name);
7697 return bfd_reloc_overflow;
7698 }
7699
7700 /* Mask out the value and U bit. */
7701 insn &= 0xff7ff0f0;
7702
7703 /* Set the U bit if the value to go in the place is non-negative. */
7704 if (signed_value >= 0)
7705 insn |= 1 << 23;
7706
7707 /* Encode the offset. */
7708 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7709
7710 bfd_put_32 (input_bfd, insn, hit_data);
7711 }
7712 return bfd_reloc_ok;
7713
7714 case R_ARM_LDC_PC_G0:
7715 case R_ARM_LDC_PC_G1:
7716 case R_ARM_LDC_PC_G2:
7717 case R_ARM_LDC_SB_G0:
7718 case R_ARM_LDC_SB_G1:
7719 case R_ARM_LDC_SB_G2:
7720 {
7721 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7722 bfd_vma pc = input_section->output_section->vma
7723 + input_section->output_offset + rel->r_offset;
7724 bfd_vma sb = 0; /* See note above. */
7725 bfd_vma residual;
7726 bfd_signed_vma signed_value;
7727 int group = 0;
7728
7729 /* Determine which groups of bits to calculate. */
7730 switch (r_type)
7731 {
7732 case R_ARM_LDC_PC_G0:
7733 case R_ARM_LDC_SB_G0:
7734 group = 0;
7735 break;
7736
7737 case R_ARM_LDC_PC_G1:
7738 case R_ARM_LDC_SB_G1:
7739 group = 1;
7740 break;
7741
7742 case R_ARM_LDC_PC_G2:
7743 case R_ARM_LDC_SB_G2:
7744 group = 2;
7745 break;
7746
7747 default:
906e58ca 7748 abort ();
4962c51a
MS
7749 }
7750
7751 /* If REL, extract the addend from the insn. If RELA, it will
7752 have already been fetched for us. */
7753 if (globals->use_rel)
7754 {
7755 int negative = (insn & (1 << 23)) ? 1 : -1;
7756 signed_addend = negative * ((insn & 0xff) << 2);
7757 }
7758
7759 /* Compute the value (X) to go in the place. */
7760 if (r_type == R_ARM_LDC_PC_G0
7761 || r_type == R_ARM_LDC_PC_G1
7762 || r_type == R_ARM_LDC_PC_G2)
7763 /* PC relative. */
7764 signed_value = value - pc + signed_addend;
7765 else
7766 /* Section base relative. */
7767 signed_value = value - sb + signed_addend;
7768
7769 /* Calculate the value of the relevant G_{n-1} to obtain
7770 the residual at that stage. */
7771 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7772
7773 /* Check for overflow. (The absolute value to go in the place must be
7774 divisible by four and, after having been divided by four, must
7775 fit in eight bits.) */
7776 if ((residual & 0x3) != 0 || residual >= 0x400)
7777 {
7778 (*_bfd_error_handler)
7779 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7780 input_bfd, input_section,
7781 (long) rel->r_offset, abs (signed_value), howto->name);
7782 return bfd_reloc_overflow;
7783 }
7784
7785 /* Mask out the value and U bit. */
7786 insn &= 0xff7fff00;
7787
7788 /* Set the U bit if the value to go in the place is non-negative. */
7789 if (signed_value >= 0)
7790 insn |= 1 << 23;
7791
7792 /* Encode the offset. */
7793 insn |= residual >> 2;
7794
7795 bfd_put_32 (input_bfd, insn, hit_data);
7796 }
7797 return bfd_reloc_ok;
7798
252b5132
RH
7799 default:
7800 return bfd_reloc_notsupported;
7801 }
7802}
7803
98c1d4aa
NC
7804/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7805static void
57e8b36a
NC
7806arm_add_to_rel (bfd * abfd,
7807 bfd_byte * address,
7808 reloc_howto_type * howto,
7809 bfd_signed_vma increment)
98c1d4aa 7810{
98c1d4aa
NC
7811 bfd_signed_vma addend;
7812
bd97cb95
DJ
7813 if (howto->type == R_ARM_THM_CALL
7814 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 7815 {
9a5aca8c
AM
7816 int upper_insn, lower_insn;
7817 int upper, lower;
98c1d4aa 7818
9a5aca8c
AM
7819 upper_insn = bfd_get_16 (abfd, address);
7820 lower_insn = bfd_get_16 (abfd, address + 2);
7821 upper = upper_insn & 0x7ff;
7822 lower = lower_insn & 0x7ff;
7823
7824 addend = (upper << 12) | (lower << 1);
ddda4409 7825 addend += increment;
9a5aca8c 7826 addend >>= 1;
98c1d4aa 7827
9a5aca8c
AM
7828 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7829 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7830
dc810e39
AM
7831 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7832 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
7833 }
7834 else
7835 {
7836 bfd_vma contents;
7837
7838 contents = bfd_get_32 (abfd, address);
7839
7840 /* Get the (signed) value from the instruction. */
7841 addend = contents & howto->src_mask;
7842 if (addend & ((howto->src_mask + 1) >> 1))
7843 {
7844 bfd_signed_vma mask;
7845
7846 mask = -1;
7847 mask &= ~ howto->src_mask;
7848 addend |= mask;
7849 }
7850
7851 /* Add in the increment, (which is a byte value). */
7852 switch (howto->type)
7853 {
7854 default:
7855 addend += increment;
7856 break;
7857
7858 case R_ARM_PC24:
c6596c5e 7859 case R_ARM_PLT32:
5b5bb741
PB
7860 case R_ARM_CALL:
7861 case R_ARM_JUMP24:
9a5aca8c 7862 addend <<= howto->size;
dc810e39 7863 addend += increment;
9a5aca8c
AM
7864
7865 /* Should we check for overflow here ? */
7866
7867 /* Drop any undesired bits. */
7868 addend >>= howto->rightshift;
7869 break;
7870 }
7871
7872 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7873
7874 bfd_put_32 (abfd, contents, address);
ddda4409 7875 }
98c1d4aa 7876}
252b5132 7877
ba93b8ac
DJ
7878#define IS_ARM_TLS_RELOC(R_TYPE) \
7879 ((R_TYPE) == R_ARM_TLS_GD32 \
7880 || (R_TYPE) == R_ARM_TLS_LDO32 \
7881 || (R_TYPE) == R_ARM_TLS_LDM32 \
7882 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7883 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7884 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7885 || (R_TYPE) == R_ARM_TLS_LE32 \
7886 || (R_TYPE) == R_ARM_TLS_IE32)
7887
252b5132 7888/* Relocate an ARM ELF section. */
906e58ca 7889
b34976b6 7890static bfd_boolean
57e8b36a
NC
7891elf32_arm_relocate_section (bfd * output_bfd,
7892 struct bfd_link_info * info,
7893 bfd * input_bfd,
7894 asection * input_section,
7895 bfd_byte * contents,
7896 Elf_Internal_Rela * relocs,
7897 Elf_Internal_Sym * local_syms,
7898 asection ** local_sections)
252b5132 7899{
b34976b6
AM
7900 Elf_Internal_Shdr *symtab_hdr;
7901 struct elf_link_hash_entry **sym_hashes;
7902 Elf_Internal_Rela *rel;
7903 Elf_Internal_Rela *relend;
7904 const char *name;
b32d3aa2 7905 struct elf32_arm_link_hash_table * globals;
252b5132 7906
4e7fd91e 7907 globals = elf32_arm_hash_table (info);
b491616a 7908
0ffa91dd 7909 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
7910 sym_hashes = elf_sym_hashes (input_bfd);
7911
7912 rel = relocs;
7913 relend = relocs + input_section->reloc_count;
7914 for (; rel < relend; rel++)
7915 {
ba96a88f
NC
7916 int r_type;
7917 reloc_howto_type * howto;
7918 unsigned long r_symndx;
7919 Elf_Internal_Sym * sym;
7920 asection * sec;
252b5132 7921 struct elf_link_hash_entry * h;
ba96a88f
NC
7922 bfd_vma relocation;
7923 bfd_reloc_status_type r;
7924 arelent bfd_reloc;
ba93b8ac 7925 char sym_type;
0945cdfd 7926 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 7927 char *error_message = NULL;
f21f3fe0 7928
252b5132 7929 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 7930 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 7931 r_type = arm_real_reloc_type (globals, r_type);
252b5132 7932
ba96a88f
NC
7933 if ( r_type == R_ARM_GNU_VTENTRY
7934 || r_type == R_ARM_GNU_VTINHERIT)
252b5132
RH
7935 continue;
7936
b32d3aa2 7937 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 7938 howto = bfd_reloc.howto;
252b5132 7939
252b5132
RH
7940 h = NULL;
7941 sym = NULL;
7942 sec = NULL;
9b485d32 7943
252b5132
RH
7944 if (r_symndx < symtab_hdr->sh_info)
7945 {
7946 sym = local_syms + r_symndx;
ba93b8ac 7947 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 7948 sec = local_sections[r_symndx];
4e7fd91e 7949 if (globals->use_rel)
f8df10f4 7950 {
4e7fd91e
PB
7951 relocation = (sec->output_section->vma
7952 + sec->output_offset
7953 + sym->st_value);
ab96bf03
AM
7954 if (!info->relocatable
7955 && (sec->flags & SEC_MERGE)
7956 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 7957 {
4e7fd91e
PB
7958 asection *msec;
7959 bfd_vma addend, value;
7960
39623e12 7961 switch (r_type)
4e7fd91e 7962 {
39623e12
PB
7963 case R_ARM_MOVW_ABS_NC:
7964 case R_ARM_MOVT_ABS:
7965 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7966 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7967 addend = (addend ^ 0x8000) - 0x8000;
7968 break;
f8df10f4 7969
39623e12
PB
7970 case R_ARM_THM_MOVW_ABS_NC:
7971 case R_ARM_THM_MOVT_ABS:
7972 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7973 << 16;
7974 value |= bfd_get_16 (input_bfd,
7975 contents + rel->r_offset + 2);
7976 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7977 | ((value & 0x04000000) >> 15);
7978 addend = (addend ^ 0x8000) - 0x8000;
7979 break;
f8df10f4 7980
39623e12
PB
7981 default:
7982 if (howto->rightshift
7983 || (howto->src_mask & (howto->src_mask + 1)))
7984 {
7985 (*_bfd_error_handler)
7986 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7987 input_bfd, input_section,
7988 (long) rel->r_offset, howto->name);
7989 return FALSE;
7990 }
7991
7992 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7993
7994 /* Get the (signed) value from the instruction. */
7995 addend = value & howto->src_mask;
7996 if (addend & ((howto->src_mask + 1) >> 1))
7997 {
7998 bfd_signed_vma mask;
7999
8000 mask = -1;
8001 mask &= ~ howto->src_mask;
8002 addend |= mask;
8003 }
8004 break;
4e7fd91e 8005 }
39623e12 8006
4e7fd91e
PB
8007 msec = sec;
8008 addend =
8009 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8010 - relocation;
8011 addend += msec->output_section->vma + msec->output_offset;
39623e12
PB
8012
8013 /* Cases here must match those in the preceeding
8014 switch statement. */
8015 switch (r_type)
8016 {
8017 case R_ARM_MOVW_ABS_NC:
8018 case R_ARM_MOVT_ABS:
8019 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8020 | (addend & 0xfff);
8021 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8022 break;
8023
8024 case R_ARM_THM_MOVW_ABS_NC:
8025 case R_ARM_THM_MOVT_ABS:
8026 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8027 | (addend & 0xff) | ((addend & 0x0800) << 15);
8028 bfd_put_16 (input_bfd, value >> 16,
8029 contents + rel->r_offset);
8030 bfd_put_16 (input_bfd, value,
8031 contents + rel->r_offset + 2);
8032 break;
8033
8034 default:
8035 value = (value & ~ howto->dst_mask)
8036 | (addend & howto->dst_mask);
8037 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8038 break;
8039 }
f8df10f4 8040 }
f8df10f4 8041 }
4e7fd91e
PB
8042 else
8043 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
8044 }
8045 else
8046 {
560e09e9 8047 bfd_boolean warned;
560e09e9 8048
b2a8e766
AM
8049 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8050 r_symndx, symtab_hdr, sym_hashes,
8051 h, sec, relocation,
8052 unresolved_reloc, warned);
ba93b8ac
DJ
8053
8054 sym_type = h->type;
252b5132
RH
8055 }
8056
ab96bf03
AM
8057 if (sec != NULL && elf_discarded_section (sec))
8058 {
8059 /* For relocs against symbols from removed linkonce sections,
8060 or sections discarded by a linker script, we just want the
8061 section contents zeroed. Avoid any special processing. */
8062 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8063 rel->r_info = 0;
8064 rel->r_addend = 0;
8065 continue;
8066 }
8067
8068 if (info->relocatable)
8069 {
8070 /* This is a relocatable link. We don't have to change
8071 anything, unless the reloc is against a section symbol,
8072 in which case we have to adjust according to where the
8073 section symbol winds up in the output section. */
8074 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8075 {
8076 if (globals->use_rel)
8077 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8078 howto, (bfd_signed_vma) sec->output_offset);
8079 else
8080 rel->r_addend += sec->output_offset;
8081 }
8082 continue;
8083 }
8084
252b5132
RH
8085 if (h != NULL)
8086 name = h->root.root.string;
8087 else
8088 {
8089 name = (bfd_elf_string_from_elf_section
8090 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8091 if (name == NULL || *name == '\0')
8092 name = bfd_section_name (input_bfd, sec);
8093 }
f21f3fe0 8094
ba93b8ac
DJ
8095 if (r_symndx != 0
8096 && r_type != R_ARM_NONE
8097 && (h == NULL
8098 || h->root.type == bfd_link_hash_defined
8099 || h->root.type == bfd_link_hash_defweak)
8100 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8101 {
8102 (*_bfd_error_handler)
8103 ((sym_type == STT_TLS
8104 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8105 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8106 input_bfd,
8107 input_section,
8108 (long) rel->r_offset,
8109 howto->name,
8110 name);
8111 }
8112
252b5132
RH
8113 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8114 input_section, contents, rel,
8115 relocation, info, sec, name,
8116 (h ? ELF_ST_TYPE (h->type) :
0945cdfd 8117 ELF_ST_TYPE (sym->st_info)), h,
f2a9dd69 8118 &unresolved_reloc, &error_message);
0945cdfd
DJ
8119
8120 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8121 because such sections are not SEC_ALLOC and thus ld.so will
8122 not process them. */
8123 if (unresolved_reloc
8124 && !((input_section->flags & SEC_DEBUGGING) != 0
8125 && h->def_dynamic))
8126 {
8127 (*_bfd_error_handler)
843fe662
L
8128 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8129 input_bfd,
8130 input_section,
8131 (long) rel->r_offset,
8132 howto->name,
8133 h->root.root.string);
0945cdfd
DJ
8134 return FALSE;
8135 }
252b5132
RH
8136
8137 if (r != bfd_reloc_ok)
8138 {
252b5132
RH
8139 switch (r)
8140 {
8141 case bfd_reloc_overflow:
cf919dfd
PB
8142 /* If the overflowing reloc was to an undefined symbol,
8143 we have already printed one error message and there
8144 is no point complaining again. */
8145 if ((! h ||
8146 h->root.type != bfd_link_hash_undefined)
8147 && (!((*info->callbacks->reloc_overflow)
dfeffb9f
L
8148 (info, (h ? &h->root : NULL), name, howto->name,
8149 (bfd_vma) 0, input_bfd, input_section,
8150 rel->r_offset))))
b34976b6 8151 return FALSE;
252b5132
RH
8152 break;
8153
8154 case bfd_reloc_undefined:
8155 if (!((*info->callbacks->undefined_symbol)
8156 (info, name, input_bfd, input_section,
b34976b6
AM
8157 rel->r_offset, TRUE)))
8158 return FALSE;
252b5132
RH
8159 break;
8160
8161 case bfd_reloc_outofrange:
f2a9dd69 8162 error_message = _("out of range");
252b5132
RH
8163 goto common_error;
8164
8165 case bfd_reloc_notsupported:
f2a9dd69 8166 error_message = _("unsupported relocation");
252b5132
RH
8167 goto common_error;
8168
8169 case bfd_reloc_dangerous:
f2a9dd69 8170 /* error_message should already be set. */
252b5132
RH
8171 goto common_error;
8172
8173 default:
f2a9dd69 8174 error_message = _("unknown error");
8029a119 8175 /* Fall through. */
252b5132
RH
8176
8177 common_error:
f2a9dd69
DJ
8178 BFD_ASSERT (error_message != NULL);
8179 if (!((*info->callbacks->reloc_dangerous)
8180 (info, error_message, input_bfd, input_section,
252b5132 8181 rel->r_offset)))
b34976b6 8182 return FALSE;
252b5132
RH
8183 break;
8184 }
8185 }
8186 }
8187
b34976b6 8188 return TRUE;
252b5132
RH
8189}
8190
2468f9c9
PB
8191/* Add a new unwind edit to the list described by HEAD, TAIL. If INDEX is zero,
8192 adds the edit to the start of the list. (The list must be built in order of
8193 ascending INDEX: the function's callers are primarily responsible for
8194 maintaining that condition). */
8195
8196static void
8197add_unwind_table_edit (arm_unwind_table_edit **head,
8198 arm_unwind_table_edit **tail,
8199 arm_unwind_edit_type type,
8200 asection *linked_section,
8201 unsigned int index)
8202{
8203 arm_unwind_table_edit *new_edit = xmalloc (sizeof (arm_unwind_table_edit));
8204
8205 new_edit->type = type;
8206 new_edit->linked_section = linked_section;
8207 new_edit->index = index;
8208
8209 if (index > 0)
8210 {
8211 new_edit->next = NULL;
8212
8213 if (*tail)
8214 (*tail)->next = new_edit;
8215
8216 (*tail) = new_edit;
8217
8218 if (!*head)
8219 (*head) = new_edit;
8220 }
8221 else
8222 {
8223 new_edit->next = *head;
8224
8225 if (!*tail)
8226 *tail = new_edit;
8227
8228 *head = new_edit;
8229 }
8230}
8231
8232static _arm_elf_section_data *get_arm_elf_section_data (asection *);
8233
8234/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
8235static void
8236adjust_exidx_size(asection *exidx_sec, int adjust)
8237{
8238 asection *out_sec;
8239
8240 if (!exidx_sec->rawsize)
8241 exidx_sec->rawsize = exidx_sec->size;
8242
8243 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
8244 out_sec = exidx_sec->output_section;
8245 /* Adjust size of output section. */
8246 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
8247}
8248
8249/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
8250static void
8251insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
8252{
8253 struct _arm_elf_section_data *exidx_arm_data;
8254
8255 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
8256 add_unwind_table_edit (
8257 &exidx_arm_data->u.exidx.unwind_edit_list,
8258 &exidx_arm_data->u.exidx.unwind_edit_tail,
8259 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
8260
8261 adjust_exidx_size(exidx_sec, 8);
8262}
8263
8264/* Scan .ARM.exidx tables, and create a list describing edits which should be
8265 made to those tables, such that:
8266
8267 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
8268 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
8269 codes which have been inlined into the index).
8270
8271 The edits are applied when the tables are written
8272 (in elf32_arm_write_section).
8273*/
8274
8275bfd_boolean
8276elf32_arm_fix_exidx_coverage (asection **text_section_order,
8277 unsigned int num_text_sections,
8278 struct bfd_link_info *info)
8279{
8280 bfd *inp;
8281 unsigned int last_second_word = 0, i;
8282 asection *last_exidx_sec = NULL;
8283 asection *last_text_sec = NULL;
8284 int last_unwind_type = -1;
8285
8286 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
8287 text sections. */
8288 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
8289 {
8290 asection *sec;
8291
8292 for (sec = inp->sections; sec != NULL; sec = sec->next)
8293 {
8294 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
8295 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
8296
8297 if (hdr->sh_type != SHT_ARM_EXIDX)
8298 continue;
8299
8300 if (elf_sec->linked_to)
8301 {
8302 Elf_Internal_Shdr *linked_hdr
8303 = &elf_section_data (elf_sec->linked_to)->this_hdr;
8304 struct _arm_elf_section_data *linked_sec_arm_data
8305 = get_arm_elf_section_data (linked_hdr->bfd_section);
8306
8307 if (linked_sec_arm_data == NULL)
8308 continue;
8309
8310 /* Link this .ARM.exidx section back from the text section it
8311 describes. */
8312 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
8313 }
8314 }
8315 }
8316
8317 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
8318 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
8319 and add EXIDX_CANTUNWIND entries for sections with no unwind table data.
8320 */
8321
8322 for (i = 0; i < num_text_sections; i++)
8323 {
8324 asection *sec = text_section_order[i];
8325 asection *exidx_sec;
8326 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
8327 struct _arm_elf_section_data *exidx_arm_data;
8328 bfd_byte *contents = NULL;
8329 int deleted_exidx_bytes = 0;
8330 bfd_vma j;
8331 arm_unwind_table_edit *unwind_edit_head = NULL;
8332 arm_unwind_table_edit *unwind_edit_tail = NULL;
8333 Elf_Internal_Shdr *hdr;
8334 bfd *ibfd;
8335
8336 if (arm_data == NULL)
8337 continue;
8338
8339 exidx_sec = arm_data->u.text.arm_exidx_sec;
8340 if (exidx_sec == NULL)
8341 {
8342 /* Section has no unwind data. */
8343 if (last_unwind_type == 0 || !last_exidx_sec)
8344 continue;
8345
8346 /* Ignore zero sized sections. */
8347 if (sec->size == 0)
8348 continue;
8349
8350 insert_cantunwind_after(last_text_sec, last_exidx_sec);
8351 last_unwind_type = 0;
8352 continue;
8353 }
8354
8355 hdr = &elf_section_data (exidx_sec)->this_hdr;
8356 if (hdr->sh_type != SHT_ARM_EXIDX)
8357 continue;
8358
8359 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
8360 if (exidx_arm_data == NULL)
8361 continue;
8362
8363 ibfd = exidx_sec->owner;
8364
8365 if (hdr->contents != NULL)
8366 contents = hdr->contents;
8367 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
8368 /* An error? */
8369 continue;
8370
8371 for (j = 0; j < hdr->sh_size; j += 8)
8372 {
8373 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
8374 int unwind_type;
8375 int elide = 0;
8376
8377 /* An EXIDX_CANTUNWIND entry. */
8378 if (second_word == 1)
8379 {
8380 if (last_unwind_type == 0)
8381 elide = 1;
8382 unwind_type = 0;
8383 }
8384 /* Inlined unwinding data. Merge if equal to previous. */
8385 else if ((second_word & 0x80000000) != 0)
8386 {
8387 if (last_second_word == second_word && last_unwind_type == 1)
8388 elide = 1;
8389 unwind_type = 1;
8390 last_second_word = second_word;
8391 }
8392 /* Normal table entry. In theory we could merge these too,
8393 but duplicate entries are likely to be much less common. */
8394 else
8395 unwind_type = 2;
8396
8397 if (elide)
8398 {
8399 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
8400 DELETE_EXIDX_ENTRY, NULL, j / 8);
8401
8402 deleted_exidx_bytes += 8;
8403 }
8404
8405 last_unwind_type = unwind_type;
8406 }
8407
8408 /* Free contents if we allocated it ourselves. */
8409 if (contents != hdr->contents)
8410 free (contents);
8411
8412 /* Record edits to be applied later (in elf32_arm_write_section). */
8413 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
8414 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
8415
8416 if (deleted_exidx_bytes > 0)
8417 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
8418
8419 last_exidx_sec = exidx_sec;
8420 last_text_sec = sec;
8421 }
8422
8423 /* Add terminating CANTUNWIND entry. */
8424 if (last_exidx_sec && last_unwind_type != 0)
8425 insert_cantunwind_after(last_text_sec, last_exidx_sec);
8426
8427 return TRUE;
8428}
8429
3e6b1042
DJ
8430static bfd_boolean
8431elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
8432 bfd *ibfd, const char *name)
8433{
8434 asection *sec, *osec;
8435
8436 sec = bfd_get_section_by_name (ibfd, name);
8437 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
8438 return TRUE;
8439
8440 osec = sec->output_section;
8441 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
8442 return TRUE;
8443
8444 if (! bfd_set_section_contents (obfd, osec, sec->contents,
8445 sec->output_offset, sec->size))
8446 return FALSE;
8447
8448 return TRUE;
8449}
8450
8451static bfd_boolean
8452elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
8453{
8454 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
8455
8456 /* Invoke the regular ELF backend linker to do all the work. */
8457 if (!bfd_elf_final_link (abfd, info))
8458 return FALSE;
8459
8460 /* Write out any glue sections now that we have created all the
8461 stubs. */
8462 if (globals->bfd_of_glue_owner != NULL)
8463 {
8464 if (! elf32_arm_output_glue_section (info, abfd,
8465 globals->bfd_of_glue_owner,
8466 ARM2THUMB_GLUE_SECTION_NAME))
8467 return FALSE;
8468
8469 if (! elf32_arm_output_glue_section (info, abfd,
8470 globals->bfd_of_glue_owner,
8471 THUMB2ARM_GLUE_SECTION_NAME))
8472 return FALSE;
8473
8474 if (! elf32_arm_output_glue_section (info, abfd,
8475 globals->bfd_of_glue_owner,
8476 VFP11_ERRATUM_VENEER_SECTION_NAME))
8477 return FALSE;
8478
8479 if (! elf32_arm_output_glue_section (info, abfd,
8480 globals->bfd_of_glue_owner,
8481 ARM_BX_GLUE_SECTION_NAME))
8482 return FALSE;
8483 }
8484
8485 return TRUE;
8486}
8487
c178919b
NC
8488/* Set the right machine number. */
8489
8490static bfd_boolean
57e8b36a 8491elf32_arm_object_p (bfd *abfd)
c178919b 8492{
5a6c6817 8493 unsigned int mach;
57e8b36a 8494
5a6c6817 8495 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 8496
5a6c6817
NC
8497 if (mach != bfd_mach_arm_unknown)
8498 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8499
8500 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8501 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
e16bb312 8502
e16bb312 8503 else
5a6c6817 8504 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
8505
8506 return TRUE;
8507}
8508
fc830a83 8509/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 8510
b34976b6 8511static bfd_boolean
57e8b36a 8512elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
8513{
8514 if (elf_flags_init (abfd)
8515 && elf_elfheader (abfd)->e_flags != flags)
8516 {
fc830a83
NC
8517 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8518 {
fd2ec330 8519 if (flags & EF_ARM_INTERWORK)
d003868e
AM
8520 (*_bfd_error_handler)
8521 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8522 abfd);
fc830a83 8523 else
d003868e
AM
8524 _bfd_error_handler
8525 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8526 abfd);
fc830a83 8527 }
252b5132
RH
8528 }
8529 else
8530 {
8531 elf_elfheader (abfd)->e_flags = flags;
b34976b6 8532 elf_flags_init (abfd) = TRUE;
252b5132
RH
8533 }
8534
b34976b6 8535 return TRUE;
252b5132
RH
8536}
8537
fc830a83 8538/* Copy backend specific data from one object module to another. */
9b485d32 8539
b34976b6 8540static bfd_boolean
57e8b36a 8541elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
8542{
8543 flagword in_flags;
8544 flagword out_flags;
8545
0ffa91dd 8546 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 8547 return TRUE;
252b5132 8548
fc830a83 8549 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
8550 out_flags = elf_elfheader (obfd)->e_flags;
8551
fc830a83
NC
8552 if (elf_flags_init (obfd)
8553 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8554 && in_flags != out_flags)
252b5132 8555 {
252b5132 8556 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 8557 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 8558 return FALSE;
252b5132
RH
8559
8560 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 8561 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 8562 return FALSE;
252b5132
RH
8563
8564 /* If the src and dest have different interworking flags
8565 then turn off the interworking bit. */
fd2ec330 8566 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 8567 {
fd2ec330 8568 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
8569 _bfd_error_handler
8570 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8571 obfd, ibfd);
252b5132 8572
fd2ec330 8573 in_flags &= ~EF_ARM_INTERWORK;
252b5132 8574 }
1006ba19
PB
8575
8576 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
8577 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8578 in_flags &= ~EF_ARM_PIC;
252b5132
RH
8579 }
8580
8581 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 8582 elf_flags_init (obfd) = TRUE;
252b5132 8583
94a3258f
PB
8584 /* Also copy the EI_OSABI field. */
8585 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8586 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8587
104d59d1
JM
8588 /* Copy object attributes. */
8589 _bfd_elf_copy_obj_attributes (ibfd, obfd);
ee065d83
PB
8590
8591 return TRUE;
8592}
8593
8594/* Values for Tag_ABI_PCS_R9_use. */
8595enum
8596{
8597 AEABI_R9_V6,
8598 AEABI_R9_SB,
8599 AEABI_R9_TLS,
8600 AEABI_R9_unused
8601};
8602
8603/* Values for Tag_ABI_PCS_RW_data. */
8604enum
8605{
8606 AEABI_PCS_RW_data_absolute,
8607 AEABI_PCS_RW_data_PCrel,
8608 AEABI_PCS_RW_data_SBrel,
8609 AEABI_PCS_RW_data_unused
8610};
8611
8612/* Values for Tag_ABI_enum_size. */
8613enum
8614{
8615 AEABI_enum_unused,
8616 AEABI_enum_short,
8617 AEABI_enum_wide,
8618 AEABI_enum_forced_wide
8619};
8620
104d59d1
JM
8621/* Determine whether an object attribute tag takes an integer, a
8622 string or both. */
906e58ca 8623
104d59d1
JM
8624static int
8625elf32_arm_obj_attrs_arg_type (int tag)
8626{
8627 if (tag == Tag_compatibility)
3483fe2e 8628 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 8629 else if (tag == Tag_nodefaults)
3483fe2e
AS
8630 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
8631 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
8632 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 8633 else if (tag < 32)
3483fe2e 8634 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 8635 else
3483fe2e 8636 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
8637}
8638
5aa6ff7c
AS
8639/* The ABI defines that Tag_conformance should be emitted first, and that
8640 Tag_nodefaults should be second (if either is defined). This sets those
8641 two positions, and bumps up the position of all the remaining tags to
8642 compensate. */
8643static int
8644elf32_arm_obj_attrs_order (int num)
8645{
8646 if (num == 4)
8647 return Tag_conformance;
8648 if (num == 5)
8649 return Tag_nodefaults;
8650 if ((num - 2) < Tag_nodefaults)
8651 return num - 2;
8652 if ((num - 1) < Tag_conformance)
8653 return num - 1;
8654 return num;
8655}
8656
91e22acd
AS
8657/* Read the architecture from the Tag_also_compatible_with attribute, if any.
8658 Returns -1 if no architecture could be read. */
8659
8660static int
8661get_secondary_compatible_arch (bfd *abfd)
8662{
8663 obj_attribute *attr =
8664 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8665
8666 /* Note: the tag and its argument below are uleb128 values, though
8667 currently-defined values fit in one byte for each. */
8668 if (attr->s
8669 && attr->s[0] == Tag_CPU_arch
8670 && (attr->s[1] & 128) != 128
8671 && attr->s[2] == 0)
8672 return attr->s[1];
8673
8674 /* This tag is "safely ignorable", so don't complain if it looks funny. */
8675 return -1;
8676}
8677
8678/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
8679 The tag is removed if ARCH is -1. */
8680
8e79c3df 8681static void
91e22acd 8682set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 8683{
91e22acd
AS
8684 obj_attribute *attr =
8685 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 8686
91e22acd
AS
8687 if (arch == -1)
8688 {
8689 attr->s = NULL;
8690 return;
8e79c3df 8691 }
91e22acd
AS
8692
8693 /* Note: the tag and its argument below are uleb128 values, though
8694 currently-defined values fit in one byte for each. */
8695 if (!attr->s)
8696 attr->s = bfd_alloc (abfd, 3);
8697 attr->s[0] = Tag_CPU_arch;
8698 attr->s[1] = arch;
8699 attr->s[2] = '\0';
8e79c3df
CM
8700}
8701
91e22acd
AS
8702/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
8703 into account. */
8704
8705static int
8706tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
8707 int newtag, int secondary_compat)
8e79c3df 8708{
91e22acd
AS
8709#define T(X) TAG_CPU_ARCH_##X
8710 int tagl, tagh, result;
8711 const int v6t2[] =
8712 {
8713 T(V6T2), /* PRE_V4. */
8714 T(V6T2), /* V4. */
8715 T(V6T2), /* V4T. */
8716 T(V6T2), /* V5T. */
8717 T(V6T2), /* V5TE. */
8718 T(V6T2), /* V5TEJ. */
8719 T(V6T2), /* V6. */
8720 T(V7), /* V6KZ. */
8721 T(V6T2) /* V6T2. */
8722 };
8723 const int v6k[] =
8724 {
8725 T(V6K), /* PRE_V4. */
8726 T(V6K), /* V4. */
8727 T(V6K), /* V4T. */
8728 T(V6K), /* V5T. */
8729 T(V6K), /* V5TE. */
8730 T(V6K), /* V5TEJ. */
8731 T(V6K), /* V6. */
8732 T(V6KZ), /* V6KZ. */
8733 T(V7), /* V6T2. */
8734 T(V6K) /* V6K. */
8735 };
8736 const int v7[] =
8737 {
8738 T(V7), /* PRE_V4. */
8739 T(V7), /* V4. */
8740 T(V7), /* V4T. */
8741 T(V7), /* V5T. */
8742 T(V7), /* V5TE. */
8743 T(V7), /* V5TEJ. */
8744 T(V7), /* V6. */
8745 T(V7), /* V6KZ. */
8746 T(V7), /* V6T2. */
8747 T(V7), /* V6K. */
8748 T(V7) /* V7. */
8749 };
8750 const int v6_m[] =
8751 {
8752 -1, /* PRE_V4. */
8753 -1, /* V4. */
8754 T(V6K), /* V4T. */
8755 T(V6K), /* V5T. */
8756 T(V6K), /* V5TE. */
8757 T(V6K), /* V5TEJ. */
8758 T(V6K), /* V6. */
8759 T(V6KZ), /* V6KZ. */
8760 T(V7), /* V6T2. */
8761 T(V6K), /* V6K. */
8762 T(V7), /* V7. */
8763 T(V6_M) /* V6_M. */
8764 };
8765 const int v6s_m[] =
8766 {
8767 -1, /* PRE_V4. */
8768 -1, /* V4. */
8769 T(V6K), /* V4T. */
8770 T(V6K), /* V5T. */
8771 T(V6K), /* V5TE. */
8772 T(V6K), /* V5TEJ. */
8773 T(V6K), /* V6. */
8774 T(V6KZ), /* V6KZ. */
8775 T(V7), /* V6T2. */
8776 T(V6K), /* V6K. */
8777 T(V7), /* V7. */
8778 T(V6S_M), /* V6_M. */
8779 T(V6S_M) /* V6S_M. */
8780 };
8781 const int v4t_plus_v6_m[] =
8782 {
8783 -1, /* PRE_V4. */
8784 -1, /* V4. */
8785 T(V4T), /* V4T. */
8786 T(V5T), /* V5T. */
8787 T(V5TE), /* V5TE. */
8788 T(V5TEJ), /* V5TEJ. */
8789 T(V6), /* V6. */
8790 T(V6KZ), /* V6KZ. */
8791 T(V6T2), /* V6T2. */
8792 T(V6K), /* V6K. */
8793 T(V7), /* V7. */
8794 T(V6_M), /* V6_M. */
8795 T(V6S_M), /* V6S_M. */
8796 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
8797 };
8798 const int *comb[] =
8799 {
8800 v6t2,
8801 v6k,
8802 v7,
8803 v6_m,
8804 v6s_m,
8805 /* Pseudo-architecture. */
8806 v4t_plus_v6_m
8807 };
8808
8809 /* Check we've not got a higher architecture than we know about. */
8810
8811 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
8812 {
3895f852 8813 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
8814 return -1;
8815 }
8816
8817 /* Override old tag if we have a Tag_also_compatible_with on the output. */
8818
8819 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
8820 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
8821 oldtag = T(V4T_PLUS_V6_M);
8822
8823 /* And override the new tag if we have a Tag_also_compatible_with on the
8824 input. */
8825
8826 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
8827 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
8828 newtag = T(V4T_PLUS_V6_M);
8829
8830 tagl = (oldtag < newtag) ? oldtag : newtag;
8831 result = tagh = (oldtag > newtag) ? oldtag : newtag;
8832
8833 /* Architectures before V6KZ add features monotonically. */
8834 if (tagh <= TAG_CPU_ARCH_V6KZ)
8835 return result;
8836
8837 result = comb[tagh - T(V6T2)][tagl];
8838
8839 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
8840 as the canonical version. */
8841 if (result == T(V4T_PLUS_V6_M))
8842 {
8843 result = T(V4T);
8844 *secondary_compat_out = T(V6_M);
8845 }
8846 else
8847 *secondary_compat_out = -1;
8848
8849 if (result == -1)
8850 {
3895f852 8851 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
8852 ibfd, oldtag, newtag);
8853 return -1;
8854 }
8855
8856 return result;
8857#undef T
8e79c3df
CM
8858}
8859
ee065d83
PB
8860/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8861 are conflicting attributes. */
906e58ca 8862
ee065d83
PB
8863static bfd_boolean
8864elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8865{
104d59d1
JM
8866 obj_attribute *in_attr;
8867 obj_attribute *out_attr;
8868 obj_attribute_list *in_list;
8e79c3df 8869 obj_attribute_list *out_list;
91e22acd 8870 obj_attribute_list **out_listp;
ee065d83
PB
8871 /* Some tags have 0 = don't care, 1 = strong requirement,
8872 2 = weak requirement. */
91e22acd 8873 static const int order_021[3] = {0, 2, 1};
b1cc4aeb
PB
8874 /* For use with Tag_VFP_arch. */
8875 static const int order_01243[5] = {0, 1, 2, 4, 3};
ee065d83 8876 int i;
91e22acd 8877 bfd_boolean result = TRUE;
ee065d83 8878
3e6b1042
DJ
8879 /* Skip the linker stubs file. This preserves previous behavior
8880 of accepting unknown attributes in the first input file - but
8881 is that a bug? */
8882 if (ibfd->flags & BFD_LINKER_CREATED)
8883 return TRUE;
8884
104d59d1 8885 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
8886 {
8887 /* This is the first object. Copy the attributes. */
104d59d1 8888 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526
PB
8889
8890 /* Use the Tag_null value to indicate the attributes have been
8891 initialized. */
104d59d1 8892 elf_known_obj_attributes_proc (obfd)[0].i = 1;
004ae526 8893
ee065d83
PB
8894 return TRUE;
8895 }
8896
104d59d1
JM
8897 in_attr = elf_known_obj_attributes_proc (ibfd);
8898 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
8899 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8900 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8901 {
8e79c3df 8902 /* Ignore mismatches if the object doesn't use floating point. */
ee065d83
PB
8903 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8904 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8905 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8906 {
8907 _bfd_error_handler
3895f852 8908 (_("error: %B uses VFP register arguments, %B does not"),
ee065d83 8909 ibfd, obfd);
91e22acd 8910 result = FALSE;
ee065d83
PB
8911 }
8912 }
8913
104d59d1 8914 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
8915 {
8916 /* Merge this attribute with existing attributes. */
8917 switch (i)
8918 {
8919 case Tag_CPU_raw_name:
8920 case Tag_CPU_name:
91e22acd 8921 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
8922 break;
8923
8924 case Tag_ABI_optimization_goals:
8925 case Tag_ABI_FP_optimization_goals:
8926 /* Use the first value seen. */
8927 break;
8928
8929 case Tag_CPU_arch:
91e22acd
AS
8930 {
8931 int secondary_compat = -1, secondary_compat_out = -1;
8932 unsigned int saved_out_attr = out_attr[i].i;
8933 static const char *name_table[] = {
8934 /* These aren't real CPU names, but we can't guess
8935 that from the architecture version alone. */
8936 "Pre v4",
8937 "ARM v4",
8938 "ARM v4T",
8939 "ARM v5T",
8940 "ARM v5TE",
8941 "ARM v5TEJ",
8942 "ARM v6",
8943 "ARM v6KZ",
8944 "ARM v6T2",
8945 "ARM v6K",
8946 "ARM v7",
8947 "ARM v6-M",
8948 "ARM v6S-M"
8949 };
8950
8951 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
8952 secondary_compat = get_secondary_compatible_arch (ibfd);
8953 secondary_compat_out = get_secondary_compatible_arch (obfd);
8954 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
8955 &secondary_compat_out,
8956 in_attr[i].i,
8957 secondary_compat);
8958 set_secondary_compatible_arch (obfd, secondary_compat_out);
8959
8960 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
8961 if (out_attr[i].i == saved_out_attr)
8962 ; /* Leave the names alone. */
8963 else if (out_attr[i].i == in_attr[i].i)
8964 {
8965 /* The output architecture has been changed to match the
8966 input architecture. Use the input names. */
8967 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
8968 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
8969 : NULL;
8970 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
8971 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
8972 : NULL;
8973 }
8974 else
8975 {
8976 out_attr[Tag_CPU_name].s = NULL;
8977 out_attr[Tag_CPU_raw_name].s = NULL;
8978 }
8979
8980 /* If we still don't have a value for Tag_CPU_name,
8981 make one up now. Tag_CPU_raw_name remains blank. */
8982 if (out_attr[Tag_CPU_name].s == NULL
8983 && out_attr[i].i < ARRAY_SIZE (name_table))
8984 out_attr[Tag_CPU_name].s =
8985 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
8986 }
8987 break;
8988
ee065d83
PB
8989 case Tag_ARM_ISA_use:
8990 case Tag_THUMB_ISA_use:
ee065d83 8991 case Tag_WMMX_arch:
91e22acd
AS
8992 case Tag_Advanced_SIMD_arch:
8993 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 8994 case Tag_ABI_FP_rounding:
ee065d83
PB
8995 case Tag_ABI_FP_exceptions:
8996 case Tag_ABI_FP_user_exceptions:
8997 case Tag_ABI_FP_number_model:
91e22acd
AS
8998 case Tag_VFP_HP_extension:
8999 case Tag_CPU_unaligned_access:
9000 case Tag_T2EE_use:
9001 case Tag_Virtualization_use:
9002 case Tag_MPextension_use:
ee065d83
PB
9003 /* Use the largest value specified. */
9004 if (in_attr[i].i > out_attr[i].i)
9005 out_attr[i].i = in_attr[i].i;
9006 break;
9007
91e22acd
AS
9008 case Tag_ABI_align8_preserved:
9009 case Tag_ABI_PCS_RO_data:
9010 /* Use the smallest value specified. */
9011 if (in_attr[i].i < out_attr[i].i)
9012 out_attr[i].i = in_attr[i].i;
9013 break;
9014
9015 case Tag_ABI_align8_needed:
9016 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
9017 && (in_attr[Tag_ABI_align8_preserved].i == 0
9018 || out_attr[Tag_ABI_align8_preserved].i == 0))
ee065d83 9019 {
91e22acd
AS
9020 /* This error message should be enabled once all non-conformant
9021 binaries in the toolchain have had the attributes set
9022 properly.
ee065d83 9023 _bfd_error_handler
3895f852 9024 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
9025 obfd, ibfd);
9026 result = FALSE; */
ee065d83 9027 }
91e22acd
AS
9028 /* Fall through. */
9029 case Tag_ABI_FP_denormal:
9030 case Tag_ABI_PCS_GOT_use:
9031 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9032 value if greater than 2 (for future-proofing). */
9033 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
9034 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
9035 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
9036 out_attr[i].i = in_attr[i].i;
9037 break;
91e22acd
AS
9038
9039
9040 case Tag_CPU_arch_profile:
9041 if (out_attr[i].i != in_attr[i].i)
9042 {
9043 /* 0 will merge with anything.
9044 'A' and 'S' merge to 'A'.
9045 'R' and 'S' merge to 'R'.
9046 'M' and 'A|R|S' is an error. */
9047 if (out_attr[i].i == 0
9048 || (out_attr[i].i == 'S'
9049 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
9050 out_attr[i].i = in_attr[i].i;
9051 else if (in_attr[i].i == 0
9052 || (in_attr[i].i == 'S'
9053 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
9054 ; /* Do nothing. */
9055 else
9056 {
9057 _bfd_error_handler
3895f852 9058 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
9059 ibfd,
9060 in_attr[i].i ? in_attr[i].i : '0',
9061 out_attr[i].i ? out_attr[i].i : '0');
9062 result = FALSE;
9063 }
9064 }
9065 break;
b1cc4aeb 9066 case Tag_VFP_arch:
91e22acd
AS
9067 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
9068 largest value if greater than 4 (for future-proofing). */
9069 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
9070 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
9071 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
b1cc4aeb
PB
9072 out_attr[i].i = in_attr[i].i;
9073 break;
ee065d83
PB
9074 case Tag_PCS_config:
9075 if (out_attr[i].i == 0)
9076 out_attr[i].i = in_attr[i].i;
9077 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
9078 {
9079 /* It's sometimes ok to mix different configs, so this is only
9080 a warning. */
9081 _bfd_error_handler
9082 (_("Warning: %B: Conflicting platform configuration"), ibfd);
9083 }
9084 break;
9085 case Tag_ABI_PCS_R9_use:
004ae526
PB
9086 if (in_attr[i].i != out_attr[i].i
9087 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
9088 && in_attr[i].i != AEABI_R9_unused)
9089 {
9090 _bfd_error_handler
3895f852 9091 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 9092 result = FALSE;
ee065d83
PB
9093 }
9094 if (out_attr[i].i == AEABI_R9_unused)
9095 out_attr[i].i = in_attr[i].i;
9096 break;
9097 case Tag_ABI_PCS_RW_data:
9098 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
9099 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
9100 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
9101 {
9102 _bfd_error_handler
3895f852 9103 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 9104 ibfd);
91e22acd 9105 result = FALSE;
ee065d83
PB
9106 }
9107 /* Use the smallest value specified. */
9108 if (in_attr[i].i < out_attr[i].i)
9109 out_attr[i].i = in_attr[i].i;
9110 break;
ee065d83 9111 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
9112 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
9113 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
9114 {
9115 _bfd_error_handler
a9dc9481
JM
9116 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
9117 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 9118 }
a9dc9481 9119 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
9120 out_attr[i].i = in_attr[i].i;
9121 break;
ee065d83
PB
9122 case Tag_ABI_enum_size:
9123 if (in_attr[i].i != AEABI_enum_unused)
9124 {
9125 if (out_attr[i].i == AEABI_enum_unused
9126 || out_attr[i].i == AEABI_enum_forced_wide)
9127 {
9128 /* The existing object is compatible with anything.
9129 Use whatever requirements the new object has. */
9130 out_attr[i].i = in_attr[i].i;
9131 }
9132 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 9133 && out_attr[i].i != in_attr[i].i
0ffa91dd 9134 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 9135 {
91e22acd 9136 static const char *aeabi_enum_names[] =
bf21ed78 9137 { "", "variable-size", "32-bit", "" };
91e22acd
AS
9138 const char *in_name =
9139 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
9140 ? aeabi_enum_names[in_attr[i].i]
9141 : "<unknown>";
9142 const char *out_name =
9143 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
9144 ? aeabi_enum_names[out_attr[i].i]
9145 : "<unknown>";
ee065d83 9146 _bfd_error_handler
bf21ed78 9147 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 9148 ibfd, in_name, out_name);
ee065d83
PB
9149 }
9150 }
9151 break;
9152 case Tag_ABI_VFP_args:
9153 /* Aready done. */
9154 break;
9155 case Tag_ABI_WMMX_args:
9156 if (in_attr[i].i != out_attr[i].i)
9157 {
9158 _bfd_error_handler
3895f852 9159 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 9160 ibfd, obfd);
91e22acd 9161 result = FALSE;
ee065d83
PB
9162 }
9163 break;
7b86a9fa
AS
9164 case Tag_compatibility:
9165 /* Merged in target-independent code. */
9166 break;
91e22acd
AS
9167 case Tag_ABI_HardFP_use:
9168 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
9169 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
9170 || (in_attr[i].i == 2 && out_attr[i].i == 1))
9171 out_attr[i].i = 3;
9172 else if (in_attr[i].i > out_attr[i].i)
9173 out_attr[i].i = in_attr[i].i;
9174 break;
9175 case Tag_ABI_FP_16bit_format:
9176 if (in_attr[i].i != 0 && out_attr[i].i != 0)
9177 {
9178 if (in_attr[i].i != out_attr[i].i)
9179 {
9180 _bfd_error_handler
3895f852 9181 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
9182 ibfd, obfd);
9183 result = FALSE;
9184 }
9185 }
9186 if (in_attr[i].i != 0)
9187 out_attr[i].i = in_attr[i].i;
9188 break;
7b86a9fa 9189
91e22acd 9190 case Tag_nodefaults:
2d0bb761
AS
9191 /* This tag is set if it exists, but the value is unused (and is
9192 typically zero). We don't actually need to do anything here -
9193 the merge happens automatically when the type flags are merged
9194 below. */
91e22acd
AS
9195 break;
9196 case Tag_also_compatible_with:
9197 /* Already done in Tag_CPU_arch. */
9198 break;
9199 case Tag_conformance:
9200 /* Keep the attribute if it matches. Throw it away otherwise.
9201 No attribute means no claim to conform. */
9202 if (!in_attr[i].s || !out_attr[i].s
9203 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
9204 out_attr[i].s = NULL;
9205 break;
3cfad14c 9206
91e22acd 9207 default:
3cfad14c 9208 {
91e22acd
AS
9209 bfd *err_bfd = NULL;
9210
9211 /* The "known_obj_attributes" table does contain some undefined
9212 attributes. Ensure that there are unused. */
9213 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
9214 err_bfd = obfd;
9215 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
9216 err_bfd = ibfd;
9217
9218 if (err_bfd != NULL)
9219 {
9220 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9221 if ((i & 127) < 64)
9222 {
9223 _bfd_error_handler
9224 (_("%B: Unknown mandatory EABI object attribute %d"),
9225 err_bfd, i);
9226 bfd_set_error (bfd_error_bad_value);
9227 result = FALSE;
9228 }
9229 else
9230 {
9231 _bfd_error_handler
9232 (_("Warning: %B: Unknown EABI object attribute %d"),
9233 err_bfd, i);
9234 }
9235 }
9236
9237 /* Only pass on attributes that match in both inputs. */
9238 if (in_attr[i].i != out_attr[i].i
9239 || in_attr[i].s != out_attr[i].s
9240 || (in_attr[i].s != NULL && out_attr[i].s != NULL
9241 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
9242 {
9243 out_attr[i].i = 0;
9244 out_attr[i].s = NULL;
9245 }
3cfad14c 9246 }
91e22acd
AS
9247 }
9248
9249 /* If out_attr was copied from in_attr then it won't have a type yet. */
9250 if (in_attr[i].type && !out_attr[i].type)
9251 out_attr[i].type = in_attr[i].type;
ee065d83
PB
9252 }
9253
104d59d1
JM
9254 /* Merge Tag_compatibility attributes and any common GNU ones. */
9255 _bfd_elf_merge_object_attributes (ibfd, obfd);
ee065d83 9256
104d59d1
JM
9257 /* Check for any attributes not known on ARM. */
9258 in_list = elf_other_obj_attributes_proc (ibfd);
91e22acd
AS
9259 out_listp = &elf_other_obj_attributes_proc (obfd);
9260 out_list = *out_listp;
8e79c3df 9261
91e22acd 9262 for (; in_list || out_list; )
ee065d83 9263 {
91e22acd
AS
9264 bfd *err_bfd = NULL;
9265 int err_tag = 0;
8e79c3df
CM
9266
9267 /* The tags for each list are in numerical order. */
9268 /* If the tags are equal, then merge. */
91e22acd 9269 if (out_list && (!in_list || in_list->tag > out_list->tag))
8e79c3df 9270 {
91e22acd
AS
9271 /* This attribute only exists in obfd. We can't merge, and we don't
9272 know what the tag means, so delete it. */
9273 err_bfd = obfd;
9274 err_tag = out_list->tag;
9275 *out_listp = out_list->next;
9276 out_list = *out_listp;
8e79c3df 9277 }
91e22acd 9278 else if (in_list && (!out_list || in_list->tag < out_list->tag))
8e79c3df 9279 {
91e22acd
AS
9280 /* This attribute only exists in ibfd. We can't merge, and we don't
9281 know what the tag means, so ignore it. */
9282 err_bfd = ibfd;
9283 err_tag = in_list->tag;
8e79c3df 9284 in_list = in_list->next;
eb111b1f 9285 }
91e22acd
AS
9286 else /* The tags are equal. */
9287 {
9288 /* As present, all attributes in the list are unknown, and
9289 therefore can't be merged meaningfully. */
9290 err_bfd = obfd;
9291 err_tag = out_list->tag;
9292
9293 /* Only pass on attributes that match in both inputs. */
9294 if (in_list->attr.i != out_list->attr.i
9295 || in_list->attr.s != out_list->attr.s
9296 || (in_list->attr.s && out_list->attr.s
9297 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
9298 {
9299 /* No match. Delete the attribute. */
9300 *out_listp = out_list->next;
9301 out_list = *out_listp;
9302 }
9303 else
9304 {
9305 /* Matched. Keep the attribute and move to the next. */
9306 out_list = out_list->next;
9307 in_list = in_list->next;
9308 }
9309 }
9310
9311 if (err_bfd)
9312 {
9313 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9314 if ((err_tag & 127) < 64)
9315 {
9316 _bfd_error_handler
9317 (_("%B: Unknown mandatory EABI object attribute %d"),
9318 err_bfd, err_tag);
9319 bfd_set_error (bfd_error_bad_value);
9320 result = FALSE;
9321 }
9322 else
9323 {
9324 _bfd_error_handler
9325 (_("Warning: %B: Unknown EABI object attribute %d"),
9326 err_bfd, err_tag);
9327 }
9328 }
ee065d83 9329 }
91e22acd 9330 return result;
252b5132
RH
9331}
9332
3a4a14e9
PB
9333
9334/* Return TRUE if the two EABI versions are incompatible. */
9335
9336static bfd_boolean
9337elf32_arm_versions_compatible (unsigned iver, unsigned over)
9338{
9339 /* v4 and v5 are the same spec before and after it was released,
9340 so allow mixing them. */
9341 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
9342 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
9343 return TRUE;
9344
9345 return (iver == over);
9346}
9347
252b5132
RH
9348/* Merge backend specific data from an object file to the output
9349 object file when linking. */
9b485d32 9350
b34976b6 9351static bfd_boolean
57e8b36a 9352elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
252b5132
RH
9353{
9354 flagword out_flags;
9355 flagword in_flags;
b34976b6 9356 bfd_boolean flags_compatible = TRUE;
cf919dfd 9357 asection *sec;
252b5132 9358
9b485d32 9359 /* Check if we have the same endianess. */
82e51918 9360 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
b34976b6 9361 return FALSE;
1fe494a5 9362
0ffa91dd 9363 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 9364 return TRUE;
252b5132 9365
ee065d83
PB
9366 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
9367 return FALSE;
9368
252b5132
RH
9369 /* The input BFD must have had its flags initialised. */
9370 /* The following seems bogus to me -- The flags are initialized in
9371 the assembler but I don't think an elf_flags_init field is
9b485d32 9372 written into the object. */
252b5132
RH
9373 /* BFD_ASSERT (elf_flags_init (ibfd)); */
9374
9375 in_flags = elf_elfheader (ibfd)->e_flags;
9376 out_flags = elf_elfheader (obfd)->e_flags;
9377
23684067
PB
9378 /* In theory there is no reason why we couldn't handle this. However
9379 in practice it isn't even close to working and there is no real
9380 reason to want it. */
9381 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
c13bb2ea 9382 && !(ibfd->flags & DYNAMIC)
23684067
PB
9383 && (in_flags & EF_ARM_BE8))
9384 {
3895f852 9385 _bfd_error_handler (_("error: %B is already in final BE8 format"),
23684067
PB
9386 ibfd);
9387 return FALSE;
9388 }
9389
252b5132
RH
9390 if (!elf_flags_init (obfd))
9391 {
fe077fa6
NC
9392 /* If the input is the default architecture and had the default
9393 flags then do not bother setting the flags for the output
9394 architecture, instead allow future merges to do this. If no
9395 future merges ever set these flags then they will retain their
9396 uninitialised values, which surprise surprise, correspond
252b5132 9397 to the default values. */
fe077fa6
NC
9398 if (bfd_get_arch_info (ibfd)->the_default
9399 && elf_elfheader (ibfd)->e_flags == 0)
b34976b6 9400 return TRUE;
252b5132 9401
b34976b6 9402 elf_flags_init (obfd) = TRUE;
252b5132
RH
9403 elf_elfheader (obfd)->e_flags = in_flags;
9404
9405 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9406 && bfd_get_arch_info (obfd)->the_default)
9407 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
9408
b34976b6 9409 return TRUE;
252b5132
RH
9410 }
9411
5a6c6817
NC
9412 /* Determine what should happen if the input ARM architecture
9413 does not match the output ARM architecture. */
9414 if (! bfd_arm_merge_machines (ibfd, obfd))
9415 return FALSE;
e16bb312 9416
1006ba19 9417 /* Identical flags must be compatible. */
252b5132 9418 if (in_flags == out_flags)
b34976b6 9419 return TRUE;
252b5132 9420
35a0f415
DJ
9421 /* Check to see if the input BFD actually contains any sections. If
9422 not, its flags may not have been initialised either, but it
8e3de13a 9423 cannot actually cause any incompatiblity. Do not short-circuit
35a0f415 9424 dynamic objects; their section list may be emptied by
d1f161ea 9425 elf_link_add_object_symbols.
35a0f415 9426
d1f161ea
NC
9427 Also check to see if there are no code sections in the input.
9428 In this case there is no need to check for code specific flags.
9429 XXX - do we need to worry about floating-point format compatability
9430 in data sections ? */
35a0f415 9431 if (!(ibfd->flags & DYNAMIC))
cf919dfd 9432 {
35a0f415 9433 bfd_boolean null_input_bfd = TRUE;
d1f161ea 9434 bfd_boolean only_data_sections = TRUE;
35a0f415
DJ
9435
9436 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
cf919dfd 9437 {
35a0f415
DJ
9438 /* Ignore synthetic glue sections. */
9439 if (strcmp (sec->name, ".glue_7")
9440 && strcmp (sec->name, ".glue_7t"))
9441 {
d1f161ea
NC
9442 if ((bfd_get_section_flags (ibfd, sec)
9443 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9444 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9445 only_data_sections = FALSE;
9446
35a0f415
DJ
9447 null_input_bfd = FALSE;
9448 break;
9449 }
cf919dfd 9450 }
d1f161ea
NC
9451
9452 if (null_input_bfd || only_data_sections)
35a0f415 9453 return TRUE;
cf919dfd 9454 }
cf919dfd 9455
252b5132 9456 /* Complain about various flag mismatches. */
3a4a14e9
PB
9457 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
9458 EF_ARM_EABI_VERSION (out_flags)))
fc830a83 9459 {
d003868e 9460 _bfd_error_handler
3895f852 9461 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
d003868e
AM
9462 ibfd, obfd,
9463 (in_flags & EF_ARM_EABIMASK) >> 24,
9464 (out_flags & EF_ARM_EABIMASK) >> 24);
b34976b6 9465 return FALSE;
fc830a83 9466 }
252b5132 9467
1006ba19 9468 /* Not sure what needs to be checked for EABI versions >= 1. */
00a97672
RS
9469 /* VxWorks libraries do not use these flags. */
9470 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
9471 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
9472 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
1006ba19 9473 {
fd2ec330 9474 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
1006ba19 9475 {
d003868e 9476 _bfd_error_handler
3895f852 9477 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
d003868e
AM
9478 ibfd, obfd,
9479 in_flags & EF_ARM_APCS_26 ? 26 : 32,
9480 out_flags & EF_ARM_APCS_26 ? 26 : 32);
b34976b6 9481 flags_compatible = FALSE;
1006ba19 9482 }
252b5132 9483
fd2ec330 9484 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
1006ba19 9485 {
5eefb65f 9486 if (in_flags & EF_ARM_APCS_FLOAT)
d003868e 9487 _bfd_error_handler
3895f852 9488 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
d003868e 9489 ibfd, obfd);
5eefb65f 9490 else
d003868e 9491 _bfd_error_handler
3895f852 9492 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
d003868e 9493 ibfd, obfd);
63b0f745 9494
b34976b6 9495 flags_compatible = FALSE;
1006ba19 9496 }
252b5132 9497
96a846ea 9498 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
1006ba19 9499 {
96a846ea 9500 if (in_flags & EF_ARM_VFP_FLOAT)
d003868e 9501 _bfd_error_handler
3895f852 9502 (_("error: %B uses VFP instructions, whereas %B does not"),
d003868e 9503 ibfd, obfd);
5eefb65f 9504 else
d003868e 9505 _bfd_error_handler
3895f852 9506 (_("error: %B uses FPA instructions, whereas %B does not"),
d003868e 9507 ibfd, obfd);
fde78edd
NC
9508
9509 flags_compatible = FALSE;
9510 }
9511
9512 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
9513 {
9514 if (in_flags & EF_ARM_MAVERICK_FLOAT)
d003868e 9515 _bfd_error_handler
3895f852 9516 (_("error: %B uses Maverick instructions, whereas %B does not"),
d003868e 9517 ibfd, obfd);
fde78edd 9518 else
d003868e 9519 _bfd_error_handler
3895f852 9520 (_("error: %B does not use Maverick instructions, whereas %B does"),
d003868e 9521 ibfd, obfd);
63b0f745 9522
b34976b6 9523 flags_compatible = FALSE;
1006ba19 9524 }
96a846ea
RE
9525
9526#ifdef EF_ARM_SOFT_FLOAT
9527 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
9528 {
9529 /* We can allow interworking between code that is VFP format
9530 layout, and uses either soft float or integer regs for
9531 passing floating point arguments and results. We already
9532 know that the APCS_FLOAT flags match; similarly for VFP
9533 flags. */
9534 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
9535 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
9536 {
9537 if (in_flags & EF_ARM_SOFT_FLOAT)
d003868e 9538 _bfd_error_handler
3895f852 9539 (_("error: %B uses software FP, whereas %B uses hardware FP"),
d003868e 9540 ibfd, obfd);
96a846ea 9541 else
d003868e 9542 _bfd_error_handler
3895f852 9543 (_("error: %B uses hardware FP, whereas %B uses software FP"),
d003868e 9544 ibfd, obfd);
96a846ea 9545
b34976b6 9546 flags_compatible = FALSE;
96a846ea
RE
9547 }
9548 }
ee43f35e 9549#endif
252b5132 9550
1006ba19 9551 /* Interworking mismatch is only a warning. */
fd2ec330 9552 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8f615d07 9553 {
e3c8793a
NC
9554 if (in_flags & EF_ARM_INTERWORK)
9555 {
d003868e
AM
9556 _bfd_error_handler
9557 (_("Warning: %B supports interworking, whereas %B does not"),
9558 ibfd, obfd);
e3c8793a
NC
9559 }
9560 else
9561 {
d003868e
AM
9562 _bfd_error_handler
9563 (_("Warning: %B does not support interworking, whereas %B does"),
9564 ibfd, obfd);
e3c8793a 9565 }
8f615d07 9566 }
252b5132 9567 }
63b0f745 9568
1006ba19 9569 return flags_compatible;
252b5132
RH
9570}
9571
9b485d32
NC
9572/* Display the flags field. */
9573
b34976b6 9574static bfd_boolean
57e8b36a 9575elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 9576{
fc830a83
NC
9577 FILE * file = (FILE *) ptr;
9578 unsigned long flags;
252b5132
RH
9579
9580 BFD_ASSERT (abfd != NULL && ptr != NULL);
9581
9582 /* Print normal ELF private data. */
9583 _bfd_elf_print_private_bfd_data (abfd, ptr);
9584
fc830a83 9585 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
9586 /* Ignore init flag - it may not be set, despite the flags field
9587 containing valid data. */
252b5132
RH
9588
9589 /* xgettext:c-format */
9b485d32 9590 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 9591
fc830a83
NC
9592 switch (EF_ARM_EABI_VERSION (flags))
9593 {
9594 case EF_ARM_EABI_UNKNOWN:
4cc11e76 9595 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
9596 official ARM ELF extended ABI. Hence they are only decoded if
9597 the EABI version is not set. */
fd2ec330 9598 if (flags & EF_ARM_INTERWORK)
9b485d32 9599 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 9600
fd2ec330 9601 if (flags & EF_ARM_APCS_26)
6c571f00 9602 fprintf (file, " [APCS-26]");
fc830a83 9603 else
6c571f00 9604 fprintf (file, " [APCS-32]");
9a5aca8c 9605
96a846ea
RE
9606 if (flags & EF_ARM_VFP_FLOAT)
9607 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
9608 else if (flags & EF_ARM_MAVERICK_FLOAT)
9609 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
9610 else
9611 fprintf (file, _(" [FPA float format]"));
9612
fd2ec330 9613 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 9614 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 9615
fd2ec330 9616 if (flags & EF_ARM_PIC)
9b485d32 9617 fprintf (file, _(" [position independent]"));
fc830a83 9618
fd2ec330 9619 if (flags & EF_ARM_NEW_ABI)
9b485d32 9620 fprintf (file, _(" [new ABI]"));
9a5aca8c 9621
fd2ec330 9622 if (flags & EF_ARM_OLD_ABI)
9b485d32 9623 fprintf (file, _(" [old ABI]"));
9a5aca8c 9624
fd2ec330 9625 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 9626 fprintf (file, _(" [software FP]"));
9a5aca8c 9627
96a846ea
RE
9628 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
9629 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
9630 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
9631 | EF_ARM_MAVERICK_FLOAT);
fc830a83 9632 break;
9a5aca8c 9633
fc830a83 9634 case EF_ARM_EABI_VER1:
9b485d32 9635 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 9636
fc830a83 9637 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 9638 fprintf (file, _(" [sorted symbol table]"));
fc830a83 9639 else
9b485d32 9640 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 9641
fc830a83
NC
9642 flags &= ~ EF_ARM_SYMSARESORTED;
9643 break;
9a5aca8c 9644
fd2ec330
PB
9645 case EF_ARM_EABI_VER2:
9646 fprintf (file, _(" [Version2 EABI]"));
9647
9648 if (flags & EF_ARM_SYMSARESORTED)
9649 fprintf (file, _(" [sorted symbol table]"));
9650 else
9651 fprintf (file, _(" [unsorted symbol table]"));
9652
9653 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
9654 fprintf (file, _(" [dynamic symbols use segment index]"));
9655
9656 if (flags & EF_ARM_MAPSYMSFIRST)
9657 fprintf (file, _(" [mapping symbols precede others]"));
9658
99e4ae17 9659 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
9660 | EF_ARM_MAPSYMSFIRST);
9661 break;
9662
d507cf36
PB
9663 case EF_ARM_EABI_VER3:
9664 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
9665 break;
9666
9667 case EF_ARM_EABI_VER4:
9668 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 9669 goto eabi;
d507cf36 9670
3a4a14e9
PB
9671 case EF_ARM_EABI_VER5:
9672 fprintf (file, _(" [Version5 EABI]"));
9673 eabi:
d507cf36
PB
9674 if (flags & EF_ARM_BE8)
9675 fprintf (file, _(" [BE8]"));
9676
9677 if (flags & EF_ARM_LE8)
9678 fprintf (file, _(" [LE8]"));
9679
9680 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
9681 break;
9682
fc830a83 9683 default:
9b485d32 9684 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
9685 break;
9686 }
252b5132 9687
fc830a83 9688 flags &= ~ EF_ARM_EABIMASK;
252b5132 9689
fc830a83 9690 if (flags & EF_ARM_RELEXEC)
9b485d32 9691 fprintf (file, _(" [relocatable executable]"));
252b5132 9692
fc830a83 9693 if (flags & EF_ARM_HASENTRY)
9b485d32 9694 fprintf (file, _(" [has entry point]"));
252b5132 9695
fc830a83
NC
9696 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
9697
9698 if (flags)
9b485d32 9699 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 9700
252b5132
RH
9701 fputc ('\n', file);
9702
b34976b6 9703 return TRUE;
252b5132
RH
9704}
9705
9706static int
57e8b36a 9707elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 9708{
2f0ca46a
NC
9709 switch (ELF_ST_TYPE (elf_sym->st_info))
9710 {
9711 case STT_ARM_TFUNC:
9712 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 9713
2f0ca46a
NC
9714 case STT_ARM_16BIT:
9715 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
9716 This allows us to distinguish between data used by Thumb instructions
9717 and non-data (which is probably code) inside Thumb regions of an
9718 executable. */
1a0eb693 9719 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
9720 return ELF_ST_TYPE (elf_sym->st_info);
9721 break;
9a5aca8c 9722
ce855c42
NC
9723 default:
9724 break;
2f0ca46a
NC
9725 }
9726
9727 return type;
252b5132 9728}
f21f3fe0 9729
252b5132 9730static asection *
07adf181
AM
9731elf32_arm_gc_mark_hook (asection *sec,
9732 struct bfd_link_info *info,
9733 Elf_Internal_Rela *rel,
9734 struct elf_link_hash_entry *h,
9735 Elf_Internal_Sym *sym)
252b5132
RH
9736{
9737 if (h != NULL)
07adf181 9738 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
9739 {
9740 case R_ARM_GNU_VTINHERIT:
9741 case R_ARM_GNU_VTENTRY:
07adf181
AM
9742 return NULL;
9743 }
9ad5cbcf 9744
07adf181 9745 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
9746}
9747
780a67af
NC
9748/* Update the got entry reference counts for the section being removed. */
9749
b34976b6 9750static bfd_boolean
ba93b8ac
DJ
9751elf32_arm_gc_sweep_hook (bfd * abfd,
9752 struct bfd_link_info * info,
9753 asection * sec,
9754 const Elf_Internal_Rela * relocs)
252b5132 9755{
5e681ec4
PB
9756 Elf_Internal_Shdr *symtab_hdr;
9757 struct elf_link_hash_entry **sym_hashes;
9758 bfd_signed_vma *local_got_refcounts;
9759 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
9760 struct elf32_arm_link_hash_table * globals;
9761
7dda2462
TG
9762 if (info->relocatable)
9763 return TRUE;
9764
eb043451 9765 globals = elf32_arm_hash_table (info);
5e681ec4
PB
9766
9767 elf_section_data (sec)->local_dynrel = NULL;
9768
0ffa91dd 9769 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
9770 sym_hashes = elf_sym_hashes (abfd);
9771 local_got_refcounts = elf_local_got_refcounts (abfd);
9772
906e58ca 9773 check_use_blx (globals);
bd97cb95 9774
5e681ec4
PB
9775 relend = relocs + sec->reloc_count;
9776 for (rel = relocs; rel < relend; rel++)
eb043451 9777 {
3eb128b2
AM
9778 unsigned long r_symndx;
9779 struct elf_link_hash_entry *h = NULL;
eb043451 9780 int r_type;
5e681ec4 9781
3eb128b2
AM
9782 r_symndx = ELF32_R_SYM (rel->r_info);
9783 if (r_symndx >= symtab_hdr->sh_info)
9784 {
9785 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9786 while (h->root.type == bfd_link_hash_indirect
9787 || h->root.type == bfd_link_hash_warning)
9788 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9789 }
9790
eb043451 9791 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 9792 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
9793 switch (r_type)
9794 {
9795 case R_ARM_GOT32:
eb043451 9796 case R_ARM_GOT_PREL:
ba93b8ac
DJ
9797 case R_ARM_TLS_GD32:
9798 case R_ARM_TLS_IE32:
3eb128b2 9799 if (h != NULL)
eb043451 9800 {
eb043451
PB
9801 if (h->got.refcount > 0)
9802 h->got.refcount -= 1;
9803 }
9804 else if (local_got_refcounts != NULL)
9805 {
9806 if (local_got_refcounts[r_symndx] > 0)
9807 local_got_refcounts[r_symndx] -= 1;
9808 }
9809 break;
9810
ba93b8ac
DJ
9811 case R_ARM_TLS_LDM32:
9812 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
9813 break;
9814
eb043451 9815 case R_ARM_ABS32:
bb224fc3 9816 case R_ARM_ABS32_NOI:
eb043451 9817 case R_ARM_REL32:
bb224fc3 9818 case R_ARM_REL32_NOI:
eb043451
PB
9819 case R_ARM_PC24:
9820 case R_ARM_PLT32:
5b5bb741
PB
9821 case R_ARM_CALL:
9822 case R_ARM_JUMP24:
eb043451 9823 case R_ARM_PREL31:
c19d1205 9824 case R_ARM_THM_CALL:
bd97cb95
DJ
9825 case R_ARM_THM_JUMP24:
9826 case R_ARM_THM_JUMP19:
b6895b4f
PB
9827 case R_ARM_MOVW_ABS_NC:
9828 case R_ARM_MOVT_ABS:
9829 case R_ARM_MOVW_PREL_NC:
9830 case R_ARM_MOVT_PREL:
9831 case R_ARM_THM_MOVW_ABS_NC:
9832 case R_ARM_THM_MOVT_ABS:
9833 case R_ARM_THM_MOVW_PREL_NC:
9834 case R_ARM_THM_MOVT_PREL:
b7693d02
DJ
9835 /* Should the interworking branches be here also? */
9836
3eb128b2 9837 if (h != NULL)
eb043451
PB
9838 {
9839 struct elf32_arm_link_hash_entry *eh;
9840 struct elf32_arm_relocs_copied **pp;
9841 struct elf32_arm_relocs_copied *p;
5e681ec4 9842
b7693d02 9843 eh = (struct elf32_arm_link_hash_entry *) h;
5e681ec4 9844
eb043451 9845 if (h->plt.refcount > 0)
b7693d02
DJ
9846 {
9847 h->plt.refcount -= 1;
bd97cb95
DJ
9848 if (r_type == R_ARM_THM_CALL)
9849 eh->plt_maybe_thumb_refcount--;
9850
9851 if (r_type == R_ARM_THM_JUMP24
9852 || r_type == R_ARM_THM_JUMP19)
b7693d02
DJ
9853 eh->plt_thumb_refcount--;
9854 }
5e681ec4 9855
eb043451 9856 if (r_type == R_ARM_ABS32
bb224fc3
MS
9857 || r_type == R_ARM_REL32
9858 || r_type == R_ARM_ABS32_NOI
9859 || r_type == R_ARM_REL32_NOI)
eb043451 9860 {
eb043451
PB
9861 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
9862 pp = &p->next)
9863 if (p->section == sec)
9864 {
9865 p->count -= 1;
bb224fc3
MS
9866 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9867 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
ba93b8ac 9868 p->pc_count -= 1;
eb043451
PB
9869 if (p->count == 0)
9870 *pp = p->next;
9871 break;
9872 }
9873 }
9874 }
9875 break;
5e681ec4 9876
eb043451
PB
9877 default:
9878 break;
9879 }
9880 }
5e681ec4 9881
b34976b6 9882 return TRUE;
252b5132
RH
9883}
9884
780a67af
NC
9885/* Look through the relocs for a section during the first phase. */
9886
b34976b6 9887static bfd_boolean
57e8b36a
NC
9888elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9889 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 9890{
b34976b6
AM
9891 Elf_Internal_Shdr *symtab_hdr;
9892 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
9893 const Elf_Internal_Rela *rel;
9894 const Elf_Internal_Rela *rel_end;
9895 bfd *dynobj;
5e681ec4 9896 asection *sreloc;
b34976b6 9897 bfd_vma *local_got_offsets;
5e681ec4 9898 struct elf32_arm_link_hash_table *htab;
39623e12 9899 bfd_boolean needs_plt;
ce98a316 9900 unsigned long nsyms;
9a5aca8c 9901
1049f94e 9902 if (info->relocatable)
b34976b6 9903 return TRUE;
9a5aca8c 9904
0ffa91dd
NC
9905 BFD_ASSERT (is_arm_elf (abfd));
9906
5e681ec4
PB
9907 htab = elf32_arm_hash_table (info);
9908 sreloc = NULL;
9a5aca8c 9909
67687978
PB
9910 /* Create dynamic sections for relocatable executables so that we can
9911 copy relocations. */
9912 if (htab->root.is_relocatable_executable
9913 && ! htab->root.dynamic_sections_created)
9914 {
9915 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9916 return FALSE;
9917 }
9918
252b5132
RH
9919 dynobj = elf_hash_table (info)->dynobj;
9920 local_got_offsets = elf_local_got_offsets (abfd);
f21f3fe0 9921
0ffa91dd 9922 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 9923 sym_hashes = elf_sym_hashes (abfd);
ce98a316
NC
9924 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
9925
252b5132
RH
9926 rel_end = relocs + sec->reloc_count;
9927 for (rel = relocs; rel < rel_end; rel++)
9928 {
9929 struct elf_link_hash_entry *h;
b7693d02 9930 struct elf32_arm_link_hash_entry *eh;
252b5132 9931 unsigned long r_symndx;
eb043451 9932 int r_type;
9a5aca8c 9933
252b5132 9934 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 9935 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 9936 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 9937
ce98a316
NC
9938 if (r_symndx >= nsyms
9939 /* PR 9934: It is possible to have relocations that do not
9940 refer to symbols, thus it is also possible to have an
9941 object file containing relocations but no symbol table. */
9942 && (r_symndx > 0 || nsyms > 0))
ba93b8ac
DJ
9943 {
9944 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
ce98a316 9945 r_symndx);
ba93b8ac
DJ
9946 return FALSE;
9947 }
9948
ce98a316 9949 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
252b5132
RH
9950 h = NULL;
9951 else
973a3492
L
9952 {
9953 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9954 while (h->root.type == bfd_link_hash_indirect
9955 || h->root.type == bfd_link_hash_warning)
9956 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9957 }
9a5aca8c 9958
b7693d02
DJ
9959 eh = (struct elf32_arm_link_hash_entry *) h;
9960
eb043451 9961 switch (r_type)
252b5132 9962 {
5e681ec4 9963 case R_ARM_GOT32:
eb043451 9964 case R_ARM_GOT_PREL:
ba93b8ac
DJ
9965 case R_ARM_TLS_GD32:
9966 case R_ARM_TLS_IE32:
5e681ec4 9967 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
9968 {
9969 int tls_type, old_tls_type;
5e681ec4 9970
ba93b8ac
DJ
9971 switch (r_type)
9972 {
9973 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9974 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9975 default: tls_type = GOT_NORMAL; break;
9976 }
252b5132 9977
ba93b8ac
DJ
9978 if (h != NULL)
9979 {
9980 h->got.refcount++;
9981 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9982 }
9983 else
9984 {
9985 bfd_signed_vma *local_got_refcounts;
9986
9987 /* This is a global offset table entry for a local symbol. */
9988 local_got_refcounts = elf_local_got_refcounts (abfd);
9989 if (local_got_refcounts == NULL)
9990 {
9991 bfd_size_type size;
906e58ca 9992
ba93b8ac 9993 size = symtab_hdr->sh_info;
906e58ca 9994 size *= (sizeof (bfd_signed_vma) + sizeof (char));
ba93b8ac
DJ
9995 local_got_refcounts = bfd_zalloc (abfd, size);
9996 if (local_got_refcounts == NULL)
9997 return FALSE;
9998 elf_local_got_refcounts (abfd) = local_got_refcounts;
9999 elf32_arm_local_got_tls_type (abfd)
10000 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
10001 }
10002 local_got_refcounts[r_symndx] += 1;
10003 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10004 }
10005
10006 /* We will already have issued an error message if there is a
10007 TLS / non-TLS mismatch, based on the symbol type. We don't
10008 support any linker relaxations. So just combine any TLS
10009 types needed. */
10010 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10011 && tls_type != GOT_NORMAL)
10012 tls_type |= old_tls_type;
10013
10014 if (old_tls_type != tls_type)
10015 {
10016 if (h != NULL)
10017 elf32_arm_hash_entry (h)->tls_type = tls_type;
10018 else
10019 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10020 }
10021 }
8029a119 10022 /* Fall through. */
ba93b8ac
DJ
10023
10024 case R_ARM_TLS_LDM32:
10025 if (r_type == R_ARM_TLS_LDM32)
10026 htab->tls_ldm_got.refcount++;
8029a119 10027 /* Fall through. */
252b5132 10028
c19d1205 10029 case R_ARM_GOTOFF32:
5e681ec4
PB
10030 case R_ARM_GOTPC:
10031 if (htab->sgot == NULL)
10032 {
10033 if (htab->root.dynobj == NULL)
10034 htab->root.dynobj = abfd;
10035 if (!create_got_section (htab->root.dynobj, info))
10036 return FALSE;
10037 }
252b5132
RH
10038 break;
10039
00a97672
RS
10040 case R_ARM_ABS12:
10041 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10042 ldr __GOTT_INDEX__ offsets. */
10043 if (!htab->vxworks_p)
10044 break;
8029a119 10045 /* Fall through. */
00a97672 10046
252b5132 10047 case R_ARM_PC24:
7359ea65 10048 case R_ARM_PLT32:
5b5bb741
PB
10049 case R_ARM_CALL:
10050 case R_ARM_JUMP24:
eb043451 10051 case R_ARM_PREL31:
c19d1205 10052 case R_ARM_THM_CALL:
bd97cb95
DJ
10053 case R_ARM_THM_JUMP24:
10054 case R_ARM_THM_JUMP19:
39623e12
PB
10055 needs_plt = 1;
10056 goto normal_reloc;
10057
96c23d59
JM
10058 case R_ARM_MOVW_ABS_NC:
10059 case R_ARM_MOVT_ABS:
10060 case R_ARM_THM_MOVW_ABS_NC:
10061 case R_ARM_THM_MOVT_ABS:
10062 if (info->shared)
10063 {
10064 (*_bfd_error_handler)
10065 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10066 abfd, elf32_arm_howto_table_1[r_type].name,
10067 (h) ? h->root.root.string : "a local symbol");
10068 bfd_set_error (bfd_error_bad_value);
10069 return FALSE;
10070 }
10071
10072 /* Fall through. */
39623e12
PB
10073 case R_ARM_ABS32:
10074 case R_ARM_ABS32_NOI:
10075 case R_ARM_REL32:
10076 case R_ARM_REL32_NOI:
b6895b4f
PB
10077 case R_ARM_MOVW_PREL_NC:
10078 case R_ARM_MOVT_PREL:
b6895b4f
PB
10079 case R_ARM_THM_MOVW_PREL_NC:
10080 case R_ARM_THM_MOVT_PREL:
39623e12
PB
10081 needs_plt = 0;
10082 normal_reloc:
10083
b7693d02 10084 /* Should the interworking branches be listed here? */
7359ea65 10085 if (h != NULL)
5e681ec4
PB
10086 {
10087 /* If this reloc is in a read-only section, we might
10088 need a copy reloc. We can't check reliably at this
10089 stage whether the section is read-only, as input
10090 sections have not yet been mapped to output sections.
10091 Tentatively set the flag for now, and correct in
10092 adjust_dynamic_symbol. */
7359ea65 10093 if (!info->shared)
f5385ebf 10094 h->non_got_ref = 1;
7359ea65 10095
5e681ec4 10096 /* We may need a .plt entry if the function this reloc
c84cd8ee
DJ
10097 refers to is in a different object. We can't tell for
10098 sure yet, because something later might force the
10099 symbol local. */
39623e12 10100 if (needs_plt)
f5385ebf 10101 h->needs_plt = 1;
4f199be3
DJ
10102
10103 /* If we create a PLT entry, this relocation will reference
10104 it, even if it's an ABS32 relocation. */
10105 h->plt.refcount += 1;
b7693d02 10106
bd97cb95
DJ
10107 /* It's too early to use htab->use_blx here, so we have to
10108 record possible blx references separately from
10109 relocs that definitely need a thumb stub. */
10110
c19d1205 10111 if (r_type == R_ARM_THM_CALL)
bd97cb95
DJ
10112 eh->plt_maybe_thumb_refcount += 1;
10113
10114 if (r_type == R_ARM_THM_JUMP24
10115 || r_type == R_ARM_THM_JUMP19)
b7693d02 10116 eh->plt_thumb_refcount += 1;
5e681ec4
PB
10117 }
10118
67687978
PB
10119 /* If we are creating a shared library or relocatable executable,
10120 and this is a reloc against a global symbol, or a non PC
10121 relative reloc against a local symbol, then we need to copy
10122 the reloc into the shared library. However, if we are linking
10123 with -Bsymbolic, we do not need to copy a reloc against a
252b5132
RH
10124 global symbol which is defined in an object we are
10125 including in the link (i.e., DEF_REGULAR is set). At
10126 this point we have not seen all the input files, so it is
10127 possible that DEF_REGULAR is not set now but will be set
10128 later (it is never cleared). We account for that
10129 possibility below by storing information in the
5e681ec4 10130 relocs_copied field of the hash table entry. */
67687978 10131 if ((info->shared || htab->root.is_relocatable_executable)
5e681ec4 10132 && (sec->flags & SEC_ALLOC) != 0
bb224fc3 10133 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
71a976dd
DJ
10134 || (h != NULL && ! h->needs_plt
10135 && (! info->symbolic || ! h->def_regular))))
252b5132 10136 {
5e681ec4
PB
10137 struct elf32_arm_relocs_copied *p, **head;
10138
252b5132
RH
10139 /* When creating a shared object, we must copy these
10140 reloc types into the output file. We create a reloc
10141 section in dynobj and make room for this reloc. */
83bac4b0 10142 if (sreloc == NULL)
252b5132 10143 {
83bac4b0
NC
10144 sreloc = _bfd_elf_make_dynamic_reloc_section
10145 (sec, dynobj, 2, abfd, ! htab->use_rel);
252b5132 10146
83bac4b0 10147 if (sreloc == NULL)
b34976b6 10148 return FALSE;
252b5132 10149
83bac4b0 10150 /* BPABI objects never have dynamic relocations mapped. */
a89e6478 10151 if (htab->symbian_p)
252b5132 10152 {
83bac4b0 10153 flagword flags;
5e681ec4 10154
83bac4b0 10155 flags = bfd_get_section_flags (dynobj, sreloc);
a89e6478 10156 flags &= ~(SEC_LOAD | SEC_ALLOC);
83bac4b0
NC
10157 bfd_set_section_flags (dynobj, sreloc, flags);
10158 }
252b5132
RH
10159 }
10160
5e681ec4
PB
10161 /* If this is a global symbol, we count the number of
10162 relocations we need for this symbol. */
10163 if (h != NULL)
252b5132 10164 {
5e681ec4
PB
10165 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
10166 }
10167 else
10168 {
10169 /* Track dynamic relocs needed for local syms too.
10170 We really need local syms available to do this
10171 easily. Oh well. */
57e8b36a 10172
5e681ec4 10173 asection *s;
6edfbbad
DJ
10174 void *vpp;
10175
5e681ec4
PB
10176 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
10177 sec, r_symndx);
10178 if (s == NULL)
10179 return FALSE;
57e8b36a 10180
6edfbbad
DJ
10181 vpp = &elf_section_data (s)->local_dynrel;
10182 head = (struct elf32_arm_relocs_copied **) vpp;
5e681ec4 10183 }
57e8b36a 10184
5e681ec4
PB
10185 p = *head;
10186 if (p == NULL || p->section != sec)
10187 {
10188 bfd_size_type amt = sizeof *p;
57e8b36a 10189
5e681ec4 10190 p = bfd_alloc (htab->root.dynobj, amt);
252b5132 10191 if (p == NULL)
5e681ec4
PB
10192 return FALSE;
10193 p->next = *head;
10194 *head = p;
10195 p->section = sec;
10196 p->count = 0;
ba93b8ac 10197 p->pc_count = 0;
252b5132 10198 }
57e8b36a 10199
bb224fc3 10200 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
ba93b8ac 10201 p->pc_count += 1;
71a976dd 10202 p->count += 1;
252b5132
RH
10203 }
10204 break;
10205
10206 /* This relocation describes the C++ object vtable hierarchy.
10207 Reconstruct it for later use during GC. */
10208 case R_ARM_GNU_VTINHERIT:
c152c796 10209 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 10210 return FALSE;
252b5132 10211 break;
9a5aca8c 10212
252b5132
RH
10213 /* This relocation describes which C++ vtable entries are actually
10214 used. Record for later use during GC. */
10215 case R_ARM_GNU_VTENTRY:
d17e0c6e
JB
10216 BFD_ASSERT (h != NULL);
10217 if (h != NULL
10218 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 10219 return FALSE;
252b5132
RH
10220 break;
10221 }
10222 }
f21f3fe0 10223
b34976b6 10224 return TRUE;
252b5132
RH
10225}
10226
6a5bb875
PB
10227/* Unwinding tables are not referenced directly. This pass marks them as
10228 required if the corresponding code section is marked. */
10229
10230static bfd_boolean
906e58ca
NC
10231elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
10232 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
10233{
10234 bfd *sub;
10235 Elf_Internal_Shdr **elf_shdrp;
10236 bfd_boolean again;
10237
10238 /* Marking EH data may cause additional code sections to be marked,
10239 requiring multiple passes. */
10240 again = TRUE;
10241 while (again)
10242 {
10243 again = FALSE;
10244 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10245 {
10246 asection *o;
10247
0ffa91dd 10248 if (! is_arm_elf (sub))
6a5bb875
PB
10249 continue;
10250
10251 elf_shdrp = elf_elfsections (sub);
10252 for (o = sub->sections; o != NULL; o = o->next)
10253 {
10254 Elf_Internal_Shdr *hdr;
0ffa91dd 10255
6a5bb875 10256 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
10257 if (hdr->sh_type == SHT_ARM_EXIDX
10258 && hdr->sh_link
10259 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
10260 && !o->gc_mark
10261 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
10262 {
10263 again = TRUE;
10264 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
10265 return FALSE;
10266 }
10267 }
10268 }
10269 }
10270
10271 return TRUE;
10272}
10273
3c9458e9
NC
10274/* Treat mapping symbols as special target symbols. */
10275
10276static bfd_boolean
10277elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
10278{
b0796911
PB
10279 return bfd_is_arm_special_symbol_name (sym->name,
10280 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
10281}
10282
0367ecfb
NC
10283/* This is a copy of elf_find_function() from elf.c except that
10284 ARM mapping symbols are ignored when looking for function names
10285 and STT_ARM_TFUNC is considered to a function type. */
252b5132 10286
0367ecfb
NC
10287static bfd_boolean
10288arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
10289 asection * section,
10290 asymbol ** symbols,
10291 bfd_vma offset,
10292 const char ** filename_ptr,
10293 const char ** functionname_ptr)
10294{
10295 const char * filename = NULL;
10296 asymbol * func = NULL;
10297 bfd_vma low_func = 0;
10298 asymbol ** p;
252b5132
RH
10299
10300 for (p = symbols; *p != NULL; p++)
10301 {
10302 elf_symbol_type *q;
10303
10304 q = (elf_symbol_type *) *p;
10305
252b5132
RH
10306 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
10307 {
10308 default:
10309 break;
10310 case STT_FILE:
10311 filename = bfd_asymbol_name (&q->symbol);
10312 break;
252b5132
RH
10313 case STT_FUNC:
10314 case STT_ARM_TFUNC:
9d2da7ca 10315 case STT_NOTYPE:
b0796911 10316 /* Skip mapping symbols. */
0367ecfb 10317 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
10318 && bfd_is_arm_special_symbol_name (q->symbol.name,
10319 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
10320 continue;
10321 /* Fall through. */
6b40fcba 10322 if (bfd_get_section (&q->symbol) == section
252b5132
RH
10323 && q->symbol.value >= low_func
10324 && q->symbol.value <= offset)
10325 {
10326 func = (asymbol *) q;
10327 low_func = q->symbol.value;
10328 }
10329 break;
10330 }
10331 }
10332
10333 if (func == NULL)
b34976b6 10334 return FALSE;
252b5132 10335
0367ecfb
NC
10336 if (filename_ptr)
10337 *filename_ptr = filename;
10338 if (functionname_ptr)
10339 *functionname_ptr = bfd_asymbol_name (func);
10340
10341 return TRUE;
906e58ca 10342}
0367ecfb
NC
10343
10344
10345/* Find the nearest line to a particular section and offset, for error
10346 reporting. This code is a duplicate of the code in elf.c, except
10347 that it uses arm_elf_find_function. */
10348
10349static bfd_boolean
10350elf32_arm_find_nearest_line (bfd * abfd,
10351 asection * section,
10352 asymbol ** symbols,
10353 bfd_vma offset,
10354 const char ** filename_ptr,
10355 const char ** functionname_ptr,
10356 unsigned int * line_ptr)
10357{
10358 bfd_boolean found = FALSE;
10359
10360 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
10361
10362 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10363 filename_ptr, functionname_ptr,
10364 line_ptr, 0,
10365 & elf_tdata (abfd)->dwarf2_find_line_info))
10366 {
10367 if (!*functionname_ptr)
10368 arm_elf_find_function (abfd, section, symbols, offset,
10369 *filename_ptr ? NULL : filename_ptr,
10370 functionname_ptr);
f21f3fe0 10371
0367ecfb
NC
10372 return TRUE;
10373 }
10374
10375 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
10376 & found, filename_ptr,
10377 functionname_ptr, line_ptr,
10378 & elf_tdata (abfd)->line_info))
10379 return FALSE;
10380
10381 if (found && (*functionname_ptr || *line_ptr))
10382 return TRUE;
10383
10384 if (symbols == NULL)
10385 return FALSE;
10386
10387 if (! arm_elf_find_function (abfd, section, symbols, offset,
10388 filename_ptr, functionname_ptr))
10389 return FALSE;
10390
10391 *line_ptr = 0;
b34976b6 10392 return TRUE;
252b5132
RH
10393}
10394
4ab527b0
FF
10395static bfd_boolean
10396elf32_arm_find_inliner_info (bfd * abfd,
10397 const char ** filename_ptr,
10398 const char ** functionname_ptr,
10399 unsigned int * line_ptr)
10400{
10401 bfd_boolean found;
10402 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10403 functionname_ptr, line_ptr,
10404 & elf_tdata (abfd)->dwarf2_find_line_info);
10405 return found;
10406}
10407
252b5132
RH
10408/* Adjust a symbol defined by a dynamic object and referenced by a
10409 regular object. The current definition is in some section of the
10410 dynamic object, but we're not including those sections. We have to
10411 change the definition to something the rest of the link can
10412 understand. */
10413
b34976b6 10414static bfd_boolean
57e8b36a
NC
10415elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
10416 struct elf_link_hash_entry * h)
252b5132
RH
10417{
10418 bfd * dynobj;
10419 asection * s;
b7693d02 10420 struct elf32_arm_link_hash_entry * eh;
67687978 10421 struct elf32_arm_link_hash_table *globals;
252b5132 10422
67687978 10423 globals = elf32_arm_hash_table (info);
252b5132
RH
10424 dynobj = elf_hash_table (info)->dynobj;
10425
10426 /* Make sure we know what is going on here. */
10427 BFD_ASSERT (dynobj != NULL
f5385ebf 10428 && (h->needs_plt
f6e332e6 10429 || h->u.weakdef != NULL
f5385ebf
AM
10430 || (h->def_dynamic
10431 && h->ref_regular
10432 && !h->def_regular)));
252b5132 10433
b7693d02
DJ
10434 eh = (struct elf32_arm_link_hash_entry *) h;
10435
252b5132
RH
10436 /* If this is a function, put it in the procedure linkage table. We
10437 will fill in the contents of the procedure linkage table later,
10438 when we know the address of the .got section. */
0f88be7a 10439 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
f5385ebf 10440 || h->needs_plt)
252b5132 10441 {
5e681ec4
PB
10442 if (h->plt.refcount <= 0
10443 || SYMBOL_CALLS_LOCAL (info, h)
10444 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
10445 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
10446 {
10447 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
10448 file, but the symbol was never referred to by a dynamic
10449 object, or if all references were garbage collected. In
10450 such a case, we don't actually need to build a procedure
10451 linkage table, and we can just do a PC24 reloc instead. */
10452 h->plt.offset = (bfd_vma) -1;
b7693d02 10453 eh->plt_thumb_refcount = 0;
bd97cb95 10454 eh->plt_maybe_thumb_refcount = 0;
f5385ebf 10455 h->needs_plt = 0;
252b5132
RH
10456 }
10457
b34976b6 10458 return TRUE;
252b5132 10459 }
5e681ec4 10460 else
b7693d02
DJ
10461 {
10462 /* It's possible that we incorrectly decided a .plt reloc was
10463 needed for an R_ARM_PC24 or similar reloc to a non-function sym
10464 in check_relocs. We can't decide accurately between function
10465 and non-function syms in check-relocs; Objects loaded later in
10466 the link may change h->type. So fix it now. */
10467 h->plt.offset = (bfd_vma) -1;
10468 eh->plt_thumb_refcount = 0;
bd97cb95 10469 eh->plt_maybe_thumb_refcount = 0;
b7693d02 10470 }
252b5132
RH
10471
10472 /* If this is a weak symbol, and there is a real definition, the
10473 processor independent code will have arranged for us to see the
10474 real definition first, and we can just use the same value. */
f6e332e6 10475 if (h->u.weakdef != NULL)
252b5132 10476 {
f6e332e6
AM
10477 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
10478 || h->u.weakdef->root.type == bfd_link_hash_defweak);
10479 h->root.u.def.section = h->u.weakdef->root.u.def.section;
10480 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 10481 return TRUE;
252b5132
RH
10482 }
10483
ba93b8ac
DJ
10484 /* If there are no non-GOT references, we do not need a copy
10485 relocation. */
10486 if (!h->non_got_ref)
10487 return TRUE;
10488
252b5132
RH
10489 /* This is a reference to a symbol defined by a dynamic object which
10490 is not a function. */
10491
10492 /* If we are creating a shared library, we must presume that the
10493 only references to the symbol are via the global offset table.
10494 For such cases we need not do anything here; the relocations will
67687978
PB
10495 be handled correctly by relocate_section. Relocatable executables
10496 can reference data in shared objects directly, so we don't need to
10497 do anything here. */
10498 if (info->shared || globals->root.is_relocatable_executable)
b34976b6 10499 return TRUE;
252b5132 10500
909272ee
AM
10501 if (h->size == 0)
10502 {
10503 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
10504 h->root.root.string);
10505 return TRUE;
10506 }
10507
252b5132
RH
10508 /* We must allocate the symbol in our .dynbss section, which will
10509 become part of the .bss section of the executable. There will be
10510 an entry for this symbol in the .dynsym section. The dynamic
10511 object will contain position independent code, so all references
10512 from the dynamic object to this symbol will go through the global
10513 offset table. The dynamic linker will use the .dynsym entry to
10514 determine the address it must put in the global offset table, so
10515 both the dynamic object and the regular object will refer to the
10516 same memory location for the variable. */
252b5132
RH
10517 s = bfd_get_section_by_name (dynobj, ".dynbss");
10518 BFD_ASSERT (s != NULL);
10519
10520 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
10521 copy the initial value out of the dynamic object and into the
10522 runtime process image. We need to remember the offset into the
00a97672 10523 .rel(a).bss section we are going to use. */
252b5132
RH
10524 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
10525 {
10526 asection *srel;
10527
00a97672 10528 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
252b5132 10529 BFD_ASSERT (srel != NULL);
00a97672 10530 srel->size += RELOC_SIZE (globals);
f5385ebf 10531 h->needs_copy = 1;
252b5132
RH
10532 }
10533
027297b7 10534 return _bfd_elf_adjust_dynamic_copy (h, s);
252b5132
RH
10535}
10536
5e681ec4
PB
10537/* Allocate space in .plt, .got and associated reloc sections for
10538 dynamic relocs. */
10539
10540static bfd_boolean
57e8b36a 10541allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
10542{
10543 struct bfd_link_info *info;
10544 struct elf32_arm_link_hash_table *htab;
10545 struct elf32_arm_link_hash_entry *eh;
10546 struct elf32_arm_relocs_copied *p;
bd97cb95 10547 bfd_signed_vma thumb_refs;
5e681ec4 10548
b7693d02
DJ
10549 eh = (struct elf32_arm_link_hash_entry *) h;
10550
5e681ec4
PB
10551 if (h->root.type == bfd_link_hash_indirect)
10552 return TRUE;
10553
10554 if (h->root.type == bfd_link_hash_warning)
10555 /* When warning symbols are created, they **replace** the "real"
10556 entry in the hash table, thus we never get to see the real
10557 symbol in a hash traversal. So look at it now. */
10558 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10559
10560 info = (struct bfd_link_info *) inf;
10561 htab = elf32_arm_hash_table (info);
10562
10563 if (htab->root.dynamic_sections_created
10564 && h->plt.refcount > 0)
10565 {
10566 /* Make sure this symbol is output as a dynamic symbol.
10567 Undefined weak syms won't yet be marked as dynamic. */
10568 if (h->dynindx == -1
f5385ebf 10569 && !h->forced_local)
5e681ec4 10570 {
c152c796 10571 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
10572 return FALSE;
10573 }
10574
10575 if (info->shared
7359ea65 10576 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4
PB
10577 {
10578 asection *s = htab->splt;
10579
10580 /* If this is the first .plt entry, make room for the special
10581 first entry. */
eea6121a 10582 if (s->size == 0)
e5a52504 10583 s->size += htab->plt_header_size;
5e681ec4 10584
eea6121a 10585 h->plt.offset = s->size;
5e681ec4 10586
b7693d02
DJ
10587 /* If we will insert a Thumb trampoline before this PLT, leave room
10588 for it. */
bd97cb95
DJ
10589 thumb_refs = eh->plt_thumb_refcount;
10590 if (!htab->use_blx)
10591 thumb_refs += eh->plt_maybe_thumb_refcount;
10592
10593 if (thumb_refs > 0)
b7693d02
DJ
10594 {
10595 h->plt.offset += PLT_THUMB_STUB_SIZE;
10596 s->size += PLT_THUMB_STUB_SIZE;
10597 }
10598
5e681ec4
PB
10599 /* If this symbol is not defined in a regular file, and we are
10600 not generating a shared library, then set the symbol to this
10601 location in the .plt. This is required to make function
10602 pointers compare as equal between the normal executable and
10603 the shared library. */
10604 if (! info->shared
f5385ebf 10605 && !h->def_regular)
5e681ec4
PB
10606 {
10607 h->root.u.def.section = s;
10608 h->root.u.def.value = h->plt.offset;
b7693d02
DJ
10609
10610 /* Make sure the function is not marked as Thumb, in case
10611 it is the target of an ABS32 relocation, which will
10612 point to the PLT entry. */
10613 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
10614 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
5e681ec4
PB
10615 }
10616
10617 /* Make room for this entry. */
e5a52504 10618 s->size += htab->plt_entry_size;
5e681ec4 10619
e5a52504 10620 if (!htab->symbian_p)
b7693d02
DJ
10621 {
10622 /* We also need to make an entry in the .got.plt section, which
10623 will be placed in the .got section by the linker script. */
10624 eh->plt_got_offset = htab->sgotplt->size;
10625 htab->sgotplt->size += 4;
10626 }
5e681ec4 10627
00a97672
RS
10628 /* We also need to make an entry in the .rel(a).plt section. */
10629 htab->srelplt->size += RELOC_SIZE (htab);
10630
10631 /* VxWorks executables have a second set of relocations for
10632 each PLT entry. They go in a separate relocation section,
10633 which is processed by the kernel loader. */
10634 if (htab->vxworks_p && !info->shared)
10635 {
10636 /* There is a relocation for the initial PLT entry:
10637 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
10638 if (h->plt.offset == htab->plt_header_size)
10639 htab->srelplt2->size += RELOC_SIZE (htab);
10640
10641 /* There are two extra relocations for each subsequent
10642 PLT entry: an R_ARM_32 relocation for the GOT entry,
10643 and an R_ARM_32 relocation for the PLT entry. */
10644 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
10645 }
5e681ec4
PB
10646 }
10647 else
10648 {
10649 h->plt.offset = (bfd_vma) -1;
f5385ebf 10650 h->needs_plt = 0;
5e681ec4
PB
10651 }
10652 }
10653 else
10654 {
10655 h->plt.offset = (bfd_vma) -1;
f5385ebf 10656 h->needs_plt = 0;
5e681ec4
PB
10657 }
10658
10659 if (h->got.refcount > 0)
10660 {
10661 asection *s;
10662 bfd_boolean dyn;
ba93b8ac
DJ
10663 int tls_type = elf32_arm_hash_entry (h)->tls_type;
10664 int indx;
5e681ec4
PB
10665
10666 /* Make sure this symbol is output as a dynamic symbol.
10667 Undefined weak syms won't yet be marked as dynamic. */
10668 if (h->dynindx == -1
f5385ebf 10669 && !h->forced_local)
5e681ec4 10670 {
c152c796 10671 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
10672 return FALSE;
10673 }
10674
e5a52504
MM
10675 if (!htab->symbian_p)
10676 {
10677 s = htab->sgot;
10678 h->got.offset = s->size;
ba93b8ac
DJ
10679
10680 if (tls_type == GOT_UNKNOWN)
10681 abort ();
10682
10683 if (tls_type == GOT_NORMAL)
10684 /* Non-TLS symbols need one GOT slot. */
10685 s->size += 4;
10686 else
10687 {
10688 if (tls_type & GOT_TLS_GD)
10689 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
10690 s->size += 8;
10691 if (tls_type & GOT_TLS_IE)
10692 /* R_ARM_TLS_IE32 needs one GOT slot. */
10693 s->size += 4;
10694 }
10695
e5a52504 10696 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
10697
10698 indx = 0;
10699 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
10700 && (!info->shared
10701 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10702 indx = h->dynindx;
10703
10704 if (tls_type != GOT_NORMAL
10705 && (info->shared || indx != 0)
10706 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10707 || h->root.type != bfd_link_hash_undefweak))
10708 {
10709 if (tls_type & GOT_TLS_IE)
00a97672 10710 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
10711
10712 if (tls_type & GOT_TLS_GD)
00a97672 10713 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
10714
10715 if ((tls_type & GOT_TLS_GD) && indx != 0)
00a97672 10716 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
10717 }
10718 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10719 || h->root.type != bfd_link_hash_undefweak)
10720 && (info->shared
10721 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
00a97672 10722 htab->srelgot->size += RELOC_SIZE (htab);
e5a52504 10723 }
5e681ec4
PB
10724 }
10725 else
10726 h->got.offset = (bfd_vma) -1;
10727
a4fd1a8e
PB
10728 /* Allocate stubs for exported Thumb functions on v4t. */
10729 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 10730 && h->def_regular
a4fd1a8e
PB
10731 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
10732 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
10733 {
10734 struct elf_link_hash_entry * th;
10735 struct bfd_link_hash_entry * bh;
10736 struct elf_link_hash_entry * myh;
10737 char name[1024];
10738 asection *s;
10739 bh = NULL;
10740 /* Create a new symbol to regist the real location of the function. */
10741 s = h->root.u.def.section;
906e58ca 10742 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
10743 _bfd_generic_link_add_one_symbol (info, s->owner,
10744 name, BSF_GLOBAL, s,
10745 h->root.u.def.value,
10746 NULL, TRUE, FALSE, &bh);
10747
10748 myh = (struct elf_link_hash_entry *) bh;
10749 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
10750 myh->forced_local = 1;
10751 eh->export_glue = myh;
10752 th = record_arm_to_thumb_glue (info, h);
10753 /* Point the symbol at the stub. */
10754 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10755 h->root.u.def.section = th->root.u.def.section;
10756 h->root.u.def.value = th->root.u.def.value & ~1;
10757 }
10758
5e681ec4
PB
10759 if (eh->relocs_copied == NULL)
10760 return TRUE;
10761
10762 /* In the shared -Bsymbolic case, discard space allocated for
10763 dynamic pc-relative relocs against symbols which turn out to be
10764 defined in regular objects. For the normal shared case, discard
10765 space for pc-relative relocs that have become local due to symbol
10766 visibility changes. */
10767
67687978 10768 if (info->shared || htab->root.is_relocatable_executable)
5e681ec4 10769 {
7bdca076 10770 /* The only relocs that use pc_count are R_ARM_REL32 and
bb224fc3
MS
10771 R_ARM_REL32_NOI, which will appear on something like
10772 ".long foo - .". We want calls to protected symbols to resolve
10773 directly to the function rather than going via the plt. If people
10774 want function pointer comparisons to work as expected then they
10775 should avoid writing assembly like ".long foo - .". */
ba93b8ac
DJ
10776 if (SYMBOL_CALLS_LOCAL (info, h))
10777 {
10778 struct elf32_arm_relocs_copied **pp;
10779
10780 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10781 {
10782 p->count -= p->pc_count;
10783 p->pc_count = 0;
10784 if (p->count == 0)
10785 *pp = p->next;
10786 else
10787 pp = &p->next;
10788 }
10789 }
10790
3348747a
NS
10791 if (elf32_arm_hash_table (info)->vxworks_p)
10792 {
10793 struct elf32_arm_relocs_copied **pp;
10794
10795 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10796 {
10797 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
10798 *pp = p->next;
10799 else
10800 pp = &p->next;
10801 }
10802 }
10803
ba93b8ac 10804 /* Also discard relocs on undefined weak syms with non-default
7359ea65 10805 visibility. */
22d606e9 10806 if (eh->relocs_copied != NULL
5e681ec4 10807 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
10808 {
10809 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
10810 eh->relocs_copied = NULL;
10811
10812 /* Make sure undefined weak symbols are output as a dynamic
10813 symbol in PIEs. */
10814 else if (h->dynindx == -1
10815 && !h->forced_local)
10816 {
10817 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10818 return FALSE;
10819 }
10820 }
10821
67687978
PB
10822 else if (htab->root.is_relocatable_executable && h->dynindx == -1
10823 && h->root.type == bfd_link_hash_new)
10824 {
10825 /* Output absolute symbols so that we can create relocations
10826 against them. For normal symbols we output a relocation
10827 against the section that contains them. */
10828 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10829 return FALSE;
10830 }
10831
5e681ec4
PB
10832 }
10833 else
10834 {
10835 /* For the non-shared case, discard space for relocs against
10836 symbols which turn out to need copy relocs or are not
10837 dynamic. */
10838
f5385ebf
AM
10839 if (!h->non_got_ref
10840 && ((h->def_dynamic
10841 && !h->def_regular)
5e681ec4
PB
10842 || (htab->root.dynamic_sections_created
10843 && (h->root.type == bfd_link_hash_undefweak
10844 || h->root.type == bfd_link_hash_undefined))))
10845 {
10846 /* Make sure this symbol is output as a dynamic symbol.
10847 Undefined weak syms won't yet be marked as dynamic. */
10848 if (h->dynindx == -1
f5385ebf 10849 && !h->forced_local)
5e681ec4 10850 {
c152c796 10851 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
10852 return FALSE;
10853 }
10854
10855 /* If that succeeded, we know we'll be keeping all the
10856 relocs. */
10857 if (h->dynindx != -1)
10858 goto keep;
10859 }
10860
10861 eh->relocs_copied = NULL;
10862
10863 keep: ;
10864 }
10865
10866 /* Finally, allocate space. */
10867 for (p = eh->relocs_copied; p != NULL; p = p->next)
10868 {
10869 asection *sreloc = elf_section_data (p->section)->sreloc;
00a97672 10870 sreloc->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
10871 }
10872
10873 return TRUE;
10874}
10875
08d1f311
DJ
10876/* Find any dynamic relocs that apply to read-only sections. */
10877
10878static bfd_boolean
8029a119 10879elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 10880{
8029a119
NC
10881 struct elf32_arm_link_hash_entry * eh;
10882 struct elf32_arm_relocs_copied * p;
08d1f311
DJ
10883
10884 if (h->root.type == bfd_link_hash_warning)
10885 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10886
10887 eh = (struct elf32_arm_link_hash_entry *) h;
10888 for (p = eh->relocs_copied; p != NULL; p = p->next)
10889 {
10890 asection *s = p->section;
10891
10892 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10893 {
10894 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10895
10896 info->flags |= DF_TEXTREL;
10897
10898 /* Not an error, just cut short the traversal. */
10899 return FALSE;
10900 }
10901 }
10902 return TRUE;
10903}
10904
d504ffc8
DJ
10905void
10906bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10907 int byteswap_code)
10908{
10909 struct elf32_arm_link_hash_table *globals;
10910
10911 globals = elf32_arm_hash_table (info);
10912 globals->byteswap_code = byteswap_code;
10913}
10914
252b5132
RH
10915/* Set the sizes of the dynamic sections. */
10916
b34976b6 10917static bfd_boolean
57e8b36a
NC
10918elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10919 struct bfd_link_info * info)
252b5132
RH
10920{
10921 bfd * dynobj;
10922 asection * s;
b34976b6
AM
10923 bfd_boolean plt;
10924 bfd_boolean relocs;
5e681ec4
PB
10925 bfd *ibfd;
10926 struct elf32_arm_link_hash_table *htab;
252b5132 10927
5e681ec4 10928 htab = elf32_arm_hash_table (info);
252b5132
RH
10929 dynobj = elf_hash_table (info)->dynobj;
10930 BFD_ASSERT (dynobj != NULL);
39b41c9c 10931 check_use_blx (htab);
252b5132
RH
10932
10933 if (elf_hash_table (info)->dynamic_sections_created)
10934 {
10935 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 10936 if (info->executable)
252b5132
RH
10937 {
10938 s = bfd_get_section_by_name (dynobj, ".interp");
10939 BFD_ASSERT (s != NULL);
eea6121a 10940 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
10941 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10942 }
10943 }
5e681ec4
PB
10944
10945 /* Set up .got offsets for local syms, and space for local dynamic
10946 relocs. */
10947 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
252b5132 10948 {
5e681ec4
PB
10949 bfd_signed_vma *local_got;
10950 bfd_signed_vma *end_local_got;
10951 char *local_tls_type;
10952 bfd_size_type locsymcount;
10953 Elf_Internal_Shdr *symtab_hdr;
10954 asection *srel;
3348747a 10955 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
5e681ec4 10956
0ffa91dd 10957 if (! is_arm_elf (ibfd))
5e681ec4
PB
10958 continue;
10959
10960 for (s = ibfd->sections; s != NULL; s = s->next)
10961 {
10962 struct elf32_arm_relocs_copied *p;
10963
6edfbbad 10964 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4
PB
10965 {
10966 if (!bfd_is_abs_section (p->section)
10967 && bfd_is_abs_section (p->section->output_section))
10968 {
10969 /* Input section has been discarded, either because
10970 it is a copy of a linkonce section or due to
10971 linker script /DISCARD/, so we'll be discarding
10972 the relocs too. */
10973 }
3348747a
NS
10974 else if (is_vxworks
10975 && strcmp (p->section->output_section->name,
10976 ".tls_vars") == 0)
10977 {
10978 /* Relocations in vxworks .tls_vars sections are
10979 handled specially by the loader. */
10980 }
5e681ec4
PB
10981 else if (p->count != 0)
10982 {
10983 srel = elf_section_data (p->section)->sreloc;
00a97672 10984 srel->size += p->count * RELOC_SIZE (htab);
5e681ec4
PB
10985 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10986 info->flags |= DF_TEXTREL;
10987 }
10988 }
10989 }
10990
10991 local_got = elf_local_got_refcounts (ibfd);
10992 if (!local_got)
10993 continue;
10994
0ffa91dd 10995 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
10996 locsymcount = symtab_hdr->sh_info;
10997 end_local_got = local_got + locsymcount;
ba93b8ac 10998 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
5e681ec4
PB
10999 s = htab->sgot;
11000 srel = htab->srelgot;
11001 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11002 {
11003 if (*local_got > 0)
11004 {
eea6121a 11005 *local_got = s->size;
ba93b8ac
DJ
11006 if (*local_tls_type & GOT_TLS_GD)
11007 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11008 s->size += 8;
11009 if (*local_tls_type & GOT_TLS_IE)
11010 s->size += 4;
11011 if (*local_tls_type == GOT_NORMAL)
11012 s->size += 4;
11013
11014 if (info->shared || *local_tls_type == GOT_TLS_GD)
00a97672 11015 srel->size += RELOC_SIZE (htab);
5e681ec4
PB
11016 }
11017 else
11018 *local_got = (bfd_vma) -1;
11019 }
252b5132
RH
11020 }
11021
ba93b8ac
DJ
11022 if (htab->tls_ldm_got.refcount > 0)
11023 {
11024 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11025 for R_ARM_TLS_LDM32 relocations. */
11026 htab->tls_ldm_got.offset = htab->sgot->size;
11027 htab->sgot->size += 8;
11028 if (info->shared)
00a97672 11029 htab->srelgot->size += RELOC_SIZE (htab);
ba93b8ac
DJ
11030 }
11031 else
11032 htab->tls_ldm_got.offset = -1;
11033
5e681ec4
PB
11034 /* Allocate global sym .plt and .got entries, and space for global
11035 sym dynamic relocs. */
57e8b36a 11036 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
252b5132 11037
d504ffc8
DJ
11038 /* Here we rummage through the found bfds to collect glue information. */
11039 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
c7b8f16e 11040 {
0ffa91dd 11041 if (! is_arm_elf (ibfd))
e44a2c9c
AM
11042 continue;
11043
c7b8f16e
JB
11044 /* Initialise mapping tables for code/data. */
11045 bfd_elf32_arm_init_maps (ibfd);
906e58ca 11046
c7b8f16e
JB
11047 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
11048 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
11049 /* xgettext:c-format */
11050 _bfd_error_handler (_("Errors encountered processing file %s"),
11051 ibfd->filename);
11052 }
d504ffc8 11053
3e6b1042
DJ
11054 /* Allocate space for the glue sections now that we've sized them. */
11055 bfd_elf32_arm_allocate_interworking_sections (info);
11056
252b5132
RH
11057 /* The check_relocs and adjust_dynamic_symbol entry points have
11058 determined the sizes of the various dynamic sections. Allocate
11059 memory for them. */
b34976b6
AM
11060 plt = FALSE;
11061 relocs = FALSE;
252b5132
RH
11062 for (s = dynobj->sections; s != NULL; s = s->next)
11063 {
11064 const char * name;
252b5132
RH
11065
11066 if ((s->flags & SEC_LINKER_CREATED) == 0)
11067 continue;
11068
11069 /* It's OK to base decisions on the section name, because none
11070 of the dynobj section names depend upon the input files. */
11071 name = bfd_get_section_name (dynobj, s);
11072
24a1ba0f 11073 if (strcmp (name, ".plt") == 0)
252b5132 11074 {
c456f082
AM
11075 /* Remember whether there is a PLT. */
11076 plt = s->size != 0;
252b5132 11077 }
0112cd26 11078 else if (CONST_STRNEQ (name, ".rel"))
252b5132 11079 {
c456f082 11080 if (s->size != 0)
252b5132 11081 {
252b5132 11082 /* Remember whether there are any reloc sections other
00a97672
RS
11083 than .rel(a).plt and .rela.plt.unloaded. */
11084 if (s != htab->srelplt && s != htab->srelplt2)
b34976b6 11085 relocs = TRUE;
252b5132
RH
11086
11087 /* We use the reloc_count field as a counter if we need
11088 to copy relocs into the output file. */
11089 s->reloc_count = 0;
11090 }
11091 }
0112cd26 11092 else if (! CONST_STRNEQ (name, ".got")
c456f082 11093 && strcmp (name, ".dynbss") != 0)
252b5132
RH
11094 {
11095 /* It's not one of our sections, so don't allocate space. */
11096 continue;
11097 }
11098
c456f082 11099 if (s->size == 0)
252b5132 11100 {
c456f082 11101 /* If we don't need this section, strip it from the
00a97672
RS
11102 output file. This is mostly to handle .rel(a).bss and
11103 .rel(a).plt. We must create both sections in
c456f082
AM
11104 create_dynamic_sections, because they must be created
11105 before the linker maps input sections to output
11106 sections. The linker does that before
11107 adjust_dynamic_symbol is called, and it is that
11108 function which decides whether anything needs to go
11109 into these sections. */
8423293d 11110 s->flags |= SEC_EXCLUDE;
252b5132
RH
11111 continue;
11112 }
11113
c456f082
AM
11114 if ((s->flags & SEC_HAS_CONTENTS) == 0)
11115 continue;
11116
252b5132 11117 /* Allocate memory for the section contents. */
906e58ca 11118 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 11119 if (s->contents == NULL)
b34976b6 11120 return FALSE;
252b5132
RH
11121 }
11122
11123 if (elf_hash_table (info)->dynamic_sections_created)
11124 {
11125 /* Add some entries to the .dynamic section. We fill in the
11126 values later, in elf32_arm_finish_dynamic_sections, but we
11127 must add the entries now so that we get the correct size for
11128 the .dynamic section. The DT_DEBUG entry is filled in by the
11129 dynamic linker and used by the debugger. */
dc810e39 11130#define add_dynamic_entry(TAG, VAL) \
5a580b3a 11131 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 11132
8532796c 11133 if (info->executable)
252b5132 11134 {
dc810e39 11135 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 11136 return FALSE;
252b5132
RH
11137 }
11138
11139 if (plt)
11140 {
dc810e39
AM
11141 if ( !add_dynamic_entry (DT_PLTGOT, 0)
11142 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
11143 || !add_dynamic_entry (DT_PLTREL,
11144 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 11145 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 11146 return FALSE;
252b5132
RH
11147 }
11148
11149 if (relocs)
11150 {
00a97672
RS
11151 if (htab->use_rel)
11152 {
11153 if (!add_dynamic_entry (DT_REL, 0)
11154 || !add_dynamic_entry (DT_RELSZ, 0)
11155 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
11156 return FALSE;
11157 }
11158 else
11159 {
11160 if (!add_dynamic_entry (DT_RELA, 0)
11161 || !add_dynamic_entry (DT_RELASZ, 0)
11162 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
11163 return FALSE;
11164 }
252b5132
RH
11165 }
11166
08d1f311
DJ
11167 /* If any dynamic relocs apply to a read-only section,
11168 then we need a DT_TEXTREL entry. */
11169 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
11170 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
11171 info);
08d1f311 11172
99e4ae17 11173 if ((info->flags & DF_TEXTREL) != 0)
252b5132 11174 {
dc810e39 11175 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 11176 return FALSE;
252b5132 11177 }
7a2b07ff
NS
11178 if (htab->vxworks_p
11179 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
11180 return FALSE;
252b5132 11181 }
8532796c 11182#undef add_dynamic_entry
252b5132 11183
b34976b6 11184 return TRUE;
252b5132
RH
11185}
11186
252b5132
RH
11187/* Finish up dynamic symbol handling. We set the contents of various
11188 dynamic sections here. */
11189
b34976b6 11190static bfd_boolean
906e58ca
NC
11191elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
11192 struct bfd_link_info * info,
11193 struct elf_link_hash_entry * h,
11194 Elf_Internal_Sym * sym)
252b5132
RH
11195{
11196 bfd * dynobj;
e5a52504 11197 struct elf32_arm_link_hash_table *htab;
b7693d02 11198 struct elf32_arm_link_hash_entry *eh;
252b5132
RH
11199
11200 dynobj = elf_hash_table (info)->dynobj;
e5a52504 11201 htab = elf32_arm_hash_table (info);
b7693d02 11202 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
11203
11204 if (h->plt.offset != (bfd_vma) -1)
11205 {
11206 asection * splt;
252b5132 11207 asection * srel;
e5a52504 11208 bfd_byte *loc;
24a1ba0f 11209 bfd_vma plt_index;
947216bf 11210 Elf_Internal_Rela rel;
252b5132
RH
11211
11212 /* This symbol has an entry in the procedure linkage table. Set
11213 it up. */
11214
11215 BFD_ASSERT (h->dynindx != -1);
11216
11217 splt = bfd_get_section_by_name (dynobj, ".plt");
00a97672 11218 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
e5a52504 11219 BFD_ASSERT (splt != NULL && srel != NULL);
252b5132 11220
e5a52504
MM
11221 /* Fill in the entry in the procedure linkage table. */
11222 if (htab->symbian_p)
11223 {
906e58ca 11224 put_arm_insn (htab, output_bfd,
52ab56c2
PB
11225 elf32_arm_symbian_plt_entry[0],
11226 splt->contents + h->plt.offset);
906e58ca 11227 bfd_put_32 (output_bfd,
52ab56c2
PB
11228 elf32_arm_symbian_plt_entry[1],
11229 splt->contents + h->plt.offset + 4);
906e58ca 11230
e5a52504 11231 /* Fill in the entry in the .rel.plt section. */
2a1b9a48
MM
11232 rel.r_offset = (splt->output_section->vma
11233 + splt->output_offset
52ab56c2 11234 + h->plt.offset + 4);
e5a52504 11235 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
b7693d02
DJ
11236
11237 /* Get the index in the procedure linkage table which
11238 corresponds to this symbol. This is the index of this symbol
11239 in all the symbols for which we are making plt entries. The
11240 first entry in the procedure linkage table is reserved. */
906e58ca 11241 plt_index = ((h->plt.offset - htab->plt_header_size)
b7693d02 11242 / htab->plt_entry_size);
e5a52504
MM
11243 }
11244 else
11245 {
00a97672 11246 bfd_vma got_offset, got_address, plt_address;
e5a52504
MM
11247 bfd_vma got_displacement;
11248 asection * sgot;
52ab56c2 11249 bfd_byte * ptr;
906e58ca 11250
e5a52504
MM
11251 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
11252 BFD_ASSERT (sgot != NULL);
11253
b7693d02
DJ
11254 /* Get the offset into the .got.plt table of the entry that
11255 corresponds to this function. */
11256 got_offset = eh->plt_got_offset;
11257
11258 /* Get the index in the procedure linkage table which
11259 corresponds to this symbol. This is the index of this symbol
11260 in all the symbols for which we are making plt entries. The
11261 first three entries in .got.plt are reserved; after that
11262 symbols appear in the same order as in .plt. */
11263 plt_index = (got_offset - 12) / 4;
e5a52504 11264
00a97672
RS
11265 /* Calculate the address of the GOT entry. */
11266 got_address = (sgot->output_section->vma
11267 + sgot->output_offset
11268 + got_offset);
5e681ec4 11269
00a97672
RS
11270 /* ...and the address of the PLT entry. */
11271 plt_address = (splt->output_section->vma
11272 + splt->output_offset
11273 + h->plt.offset);
5e681ec4 11274
52ab56c2 11275 ptr = htab->splt->contents + h->plt.offset;
00a97672
RS
11276 if (htab->vxworks_p && info->shared)
11277 {
11278 unsigned int i;
11279 bfd_vma val;
11280
52ab56c2 11281 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
11282 {
11283 val = elf32_arm_vxworks_shared_plt_entry[i];
11284 if (i == 2)
11285 val |= got_address - sgot->output_section->vma;
11286 if (i == 5)
11287 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
11288 if (i == 2 || i == 5)
11289 bfd_put_32 (output_bfd, val, ptr);
11290 else
11291 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
11292 }
11293 }
11294 else if (htab->vxworks_p)
b7693d02 11295 {
00a97672
RS
11296 unsigned int i;
11297 bfd_vma val;
11298
d3753b85 11299 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
00a97672
RS
11300 {
11301 val = elf32_arm_vxworks_exec_plt_entry[i];
11302 if (i == 2)
11303 val |= got_address;
11304 if (i == 4)
11305 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
11306 if (i == 5)
11307 val |= plt_index * RELOC_SIZE (htab);
52ab56c2
PB
11308 if (i == 2 || i == 5)
11309 bfd_put_32 (output_bfd, val, ptr);
11310 else
11311 put_arm_insn (htab, output_bfd, val, ptr);
00a97672
RS
11312 }
11313
11314 loc = (htab->srelplt2->contents
11315 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
11316
11317 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
11318 referencing the GOT for this PLT entry. */
11319 rel.r_offset = plt_address + 8;
11320 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11321 rel.r_addend = got_offset;
11322 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11323 loc += RELOC_SIZE (htab);
11324
11325 /* Create the R_ARM_ABS32 relocation referencing the
11326 beginning of the PLT for this GOT entry. */
11327 rel.r_offset = got_address;
11328 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11329 rel.r_addend = 0;
11330 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
b7693d02 11331 }
00a97672
RS
11332 else
11333 {
bd97cb95 11334 bfd_signed_vma thumb_refs;
00a97672
RS
11335 /* Calculate the displacement between the PLT slot and the
11336 entry in the GOT. The eight-byte offset accounts for the
11337 value produced by adding to pc in the first instruction
11338 of the PLT stub. */
11339 got_displacement = got_address - (plt_address + 8);
b7693d02 11340
00a97672
RS
11341 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
11342
bd97cb95
DJ
11343 thumb_refs = eh->plt_thumb_refcount;
11344 if (!htab->use_blx)
11345 thumb_refs += eh->plt_maybe_thumb_refcount;
11346
11347 if (thumb_refs > 0)
00a97672 11348 {
52ab56c2
PB
11349 put_thumb_insn (htab, output_bfd,
11350 elf32_arm_plt_thumb_stub[0], ptr - 4);
11351 put_thumb_insn (htab, output_bfd,
11352 elf32_arm_plt_thumb_stub[1], ptr - 2);
00a97672
RS
11353 }
11354
52ab56c2
PB
11355 put_arm_insn (htab, output_bfd,
11356 elf32_arm_plt_entry[0]
11357 | ((got_displacement & 0x0ff00000) >> 20),
11358 ptr + 0);
11359 put_arm_insn (htab, output_bfd,
11360 elf32_arm_plt_entry[1]
11361 | ((got_displacement & 0x000ff000) >> 12),
11362 ptr+ 4);
11363 put_arm_insn (htab, output_bfd,
11364 elf32_arm_plt_entry[2]
11365 | (got_displacement & 0x00000fff),
11366 ptr + 8);
5e681ec4 11367#ifdef FOUR_WORD_PLT
52ab56c2 11368 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
5e681ec4 11369#endif
00a97672 11370 }
252b5132 11371
e5a52504
MM
11372 /* Fill in the entry in the global offset table. */
11373 bfd_put_32 (output_bfd,
11374 (splt->output_section->vma
11375 + splt->output_offset),
11376 sgot->contents + got_offset);
906e58ca 11377
00a97672
RS
11378 /* Fill in the entry in the .rel(a).plt section. */
11379 rel.r_addend = 0;
11380 rel.r_offset = got_address;
e5a52504
MM
11381 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
11382 }
57e8b36a 11383
00a97672
RS
11384 loc = srel->contents + plt_index * RELOC_SIZE (htab);
11385 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132 11386
f5385ebf 11387 if (!h->def_regular)
252b5132
RH
11388 {
11389 /* Mark the symbol as undefined, rather than as defined in
11390 the .plt section. Leave the value alone. */
11391 sym->st_shndx = SHN_UNDEF;
d982ba73
PB
11392 /* If the symbol is weak, we do need to clear the value.
11393 Otherwise, the PLT entry would provide a definition for
11394 the symbol even if the symbol wasn't defined anywhere,
11395 and so the symbol would never be NULL. */
f5385ebf 11396 if (!h->ref_regular_nonweak)
d982ba73 11397 sym->st_value = 0;
252b5132
RH
11398 }
11399 }
11400
ba93b8ac
DJ
11401 if (h->got.offset != (bfd_vma) -1
11402 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
11403 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
252b5132
RH
11404 {
11405 asection * sgot;
11406 asection * srel;
947216bf
AM
11407 Elf_Internal_Rela rel;
11408 bfd_byte *loc;
00a97672 11409 bfd_vma offset;
252b5132
RH
11410
11411 /* This symbol has an entry in the global offset table. Set it
11412 up. */
252b5132 11413 sgot = bfd_get_section_by_name (dynobj, ".got");
00a97672 11414 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
252b5132
RH
11415 BFD_ASSERT (sgot != NULL && srel != NULL);
11416
00a97672
RS
11417 offset = (h->got.offset & ~(bfd_vma) 1);
11418 rel.r_addend = 0;
252b5132
RH
11419 rel.r_offset = (sgot->output_section->vma
11420 + sgot->output_offset
00a97672 11421 + offset);
252b5132 11422
5e681ec4
PB
11423 /* If this is a static link, or it is a -Bsymbolic link and the
11424 symbol is defined locally or was forced to be local because
11425 of a version file, we just want to emit a RELATIVE reloc.
11426 The entry in the global offset table will already have been
11427 initialized in the relocate_section function. */
252b5132 11428 if (info->shared
5e681ec4
PB
11429 && SYMBOL_REFERENCES_LOCAL (info, h))
11430 {
906e58ca 11431 BFD_ASSERT ((h->got.offset & 1) != 0);
5e681ec4 11432 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
00a97672
RS
11433 if (!htab->use_rel)
11434 {
11435 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
11436 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11437 }
5e681ec4 11438 }
252b5132
RH
11439 else
11440 {
906e58ca 11441 BFD_ASSERT ((h->got.offset & 1) == 0);
00a97672 11442 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
252b5132
RH
11443 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11444 }
11445
00a97672
RS
11446 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
11447 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
11448 }
11449
f5385ebf 11450 if (h->needs_copy)
252b5132
RH
11451 {
11452 asection * s;
947216bf
AM
11453 Elf_Internal_Rela rel;
11454 bfd_byte *loc;
252b5132
RH
11455
11456 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
11457 BFD_ASSERT (h->dynindx != -1
11458 && (h->root.type == bfd_link_hash_defined
11459 || h->root.type == bfd_link_hash_defweak));
11460
11461 s = bfd_get_section_by_name (h->root.u.def.section->owner,
00a97672 11462 RELOC_SECTION (htab, ".bss"));
252b5132
RH
11463 BFD_ASSERT (s != NULL);
11464
00a97672 11465 rel.r_addend = 0;
252b5132
RH
11466 rel.r_offset = (h->root.u.def.value
11467 + h->root.u.def.section->output_section->vma
11468 + h->root.u.def.section->output_offset);
11469 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
00a97672
RS
11470 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
11471 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
252b5132
RH
11472 }
11473
00a97672
RS
11474 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
11475 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
11476 to the ".got" section. */
252b5132 11477 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
00a97672 11478 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
11479 sym->st_shndx = SHN_ABS;
11480
b34976b6 11481 return TRUE;
252b5132
RH
11482}
11483
11484/* Finish up the dynamic sections. */
11485
b34976b6 11486static bfd_boolean
57e8b36a 11487elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
11488{
11489 bfd * dynobj;
11490 asection * sgot;
11491 asection * sdyn;
11492
11493 dynobj = elf_hash_table (info)->dynobj;
11494
11495 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
229fcec5 11496 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
252b5132
RH
11497 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11498
11499 if (elf_hash_table (info)->dynamic_sections_created)
11500 {
11501 asection *splt;
11502 Elf32_External_Dyn *dyncon, *dynconend;
229fcec5 11503 struct elf32_arm_link_hash_table *htab;
252b5132 11504
229fcec5 11505 htab = elf32_arm_hash_table (info);
252b5132 11506 splt = bfd_get_section_by_name (dynobj, ".plt");
24a1ba0f 11507 BFD_ASSERT (splt != NULL && sdyn != NULL);
252b5132
RH
11508
11509 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 11510 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 11511
252b5132
RH
11512 for (; dyncon < dynconend; dyncon++)
11513 {
11514 Elf_Internal_Dyn dyn;
11515 const char * name;
11516 asection * s;
11517
11518 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
11519
11520 switch (dyn.d_tag)
11521 {
229fcec5
MM
11522 unsigned int type;
11523
252b5132 11524 default:
7a2b07ff
NS
11525 if (htab->vxworks_p
11526 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11527 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
11528 break;
11529
229fcec5
MM
11530 case DT_HASH:
11531 name = ".hash";
11532 goto get_vma_if_bpabi;
11533 case DT_STRTAB:
11534 name = ".dynstr";
11535 goto get_vma_if_bpabi;
11536 case DT_SYMTAB:
11537 name = ".dynsym";
11538 goto get_vma_if_bpabi;
c0042f5d
MM
11539 case DT_VERSYM:
11540 name = ".gnu.version";
11541 goto get_vma_if_bpabi;
11542 case DT_VERDEF:
11543 name = ".gnu.version_d";
11544 goto get_vma_if_bpabi;
11545 case DT_VERNEED:
11546 name = ".gnu.version_r";
11547 goto get_vma_if_bpabi;
11548
252b5132
RH
11549 case DT_PLTGOT:
11550 name = ".got";
11551 goto get_vma;
11552 case DT_JMPREL:
00a97672 11553 name = RELOC_SECTION (htab, ".plt");
252b5132
RH
11554 get_vma:
11555 s = bfd_get_section_by_name (output_bfd, name);
11556 BFD_ASSERT (s != NULL);
229fcec5
MM
11557 if (!htab->symbian_p)
11558 dyn.d_un.d_ptr = s->vma;
11559 else
11560 /* In the BPABI, tags in the PT_DYNAMIC section point
11561 at the file offset, not the memory address, for the
11562 convenience of the post linker. */
11563 dyn.d_un.d_ptr = s->filepos;
252b5132
RH
11564 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11565 break;
11566
229fcec5
MM
11567 get_vma_if_bpabi:
11568 if (htab->symbian_p)
11569 goto get_vma;
11570 break;
11571
252b5132 11572 case DT_PLTRELSZ:
00a97672
RS
11573 s = bfd_get_section_by_name (output_bfd,
11574 RELOC_SECTION (htab, ".plt"));
252b5132 11575 BFD_ASSERT (s != NULL);
eea6121a 11576 dyn.d_un.d_val = s->size;
252b5132
RH
11577 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11578 break;
906e58ca 11579
252b5132 11580 case DT_RELSZ:
00a97672 11581 case DT_RELASZ:
229fcec5
MM
11582 if (!htab->symbian_p)
11583 {
11584 /* My reading of the SVR4 ABI indicates that the
11585 procedure linkage table relocs (DT_JMPREL) should be
11586 included in the overall relocs (DT_REL). This is
11587 what Solaris does. However, UnixWare can not handle
11588 that case. Therefore, we override the DT_RELSZ entry
11589 here to make it not include the JMPREL relocs. Since
00a97672 11590 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
11591 other relocation sections, we don't have to worry
11592 about changing the DT_REL entry. */
00a97672
RS
11593 s = bfd_get_section_by_name (output_bfd,
11594 RELOC_SECTION (htab, ".plt"));
229fcec5
MM
11595 if (s != NULL)
11596 dyn.d_un.d_val -= s->size;
11597 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11598 break;
11599 }
8029a119 11600 /* Fall through. */
229fcec5
MM
11601
11602 case DT_REL:
11603 case DT_RELA:
229fcec5
MM
11604 /* In the BPABI, the DT_REL tag must point at the file
11605 offset, not the VMA, of the first relocation
11606 section. So, we use code similar to that in
11607 elflink.c, but do not check for SHF_ALLOC on the
11608 relcoation section, since relocations sections are
11609 never allocated under the BPABI. The comments above
11610 about Unixware notwithstanding, we include all of the
11611 relocations here. */
11612 if (htab->symbian_p)
11613 {
11614 unsigned int i;
11615 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11616 ? SHT_REL : SHT_RELA);
11617 dyn.d_un.d_val = 0;
11618 for (i = 1; i < elf_numsections (output_bfd); i++)
11619 {
906e58ca 11620 Elf_Internal_Shdr *hdr
229fcec5
MM
11621 = elf_elfsections (output_bfd)[i];
11622 if (hdr->sh_type == type)
11623 {
906e58ca 11624 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
11625 || dyn.d_tag == DT_RELASZ)
11626 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
11627 else if ((ufile_ptr) hdr->sh_offset
11628 <= dyn.d_un.d_val - 1)
229fcec5
MM
11629 dyn.d_un.d_val = hdr->sh_offset;
11630 }
11631 }
11632 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11633 }
252b5132 11634 break;
88f7bcd5
NC
11635
11636 /* Set the bottom bit of DT_INIT/FINI if the
11637 corresponding function is Thumb. */
11638 case DT_INIT:
11639 name = info->init_function;
11640 goto get_sym;
11641 case DT_FINI:
11642 name = info->fini_function;
11643 get_sym:
11644 /* If it wasn't set by elf_bfd_final_link
4cc11e76 11645 then there is nothing to adjust. */
88f7bcd5
NC
11646 if (dyn.d_un.d_val != 0)
11647 {
11648 struct elf_link_hash_entry * eh;
11649
11650 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 11651 FALSE, FALSE, TRUE);
906e58ca 11652 if (eh != NULL
88f7bcd5
NC
11653 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
11654 {
11655 dyn.d_un.d_val |= 1;
b34976b6 11656 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
11657 }
11658 }
11659 break;
252b5132
RH
11660 }
11661 }
11662
24a1ba0f 11663 /* Fill in the first entry in the procedure linkage table. */
e5a52504 11664 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
f7a74f8c 11665 {
00a97672
RS
11666 const bfd_vma *plt0_entry;
11667 bfd_vma got_address, plt_address, got_displacement;
11668
11669 /* Calculate the addresses of the GOT and PLT. */
11670 got_address = sgot->output_section->vma + sgot->output_offset;
11671 plt_address = splt->output_section->vma + splt->output_offset;
11672
11673 if (htab->vxworks_p)
11674 {
11675 /* The VxWorks GOT is relocated by the dynamic linker.
11676 Therefore, we must emit relocations rather than simply
11677 computing the values now. */
11678 Elf_Internal_Rela rel;
11679
11680 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
11681 put_arm_insn (htab, output_bfd, plt0_entry[0],
11682 splt->contents + 0);
11683 put_arm_insn (htab, output_bfd, plt0_entry[1],
11684 splt->contents + 4);
11685 put_arm_insn (htab, output_bfd, plt0_entry[2],
11686 splt->contents + 8);
00a97672
RS
11687 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
11688
8029a119 11689 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
11690 rel.r_offset = plt_address + 12;
11691 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11692 rel.r_addend = 0;
11693 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
11694 htab->srelplt2->contents);
11695 }
11696 else
11697 {
11698 got_displacement = got_address - (plt_address + 16);
11699
11700 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
11701 put_arm_insn (htab, output_bfd, plt0_entry[0],
11702 splt->contents + 0);
11703 put_arm_insn (htab, output_bfd, plt0_entry[1],
11704 splt->contents + 4);
11705 put_arm_insn (htab, output_bfd, plt0_entry[2],
11706 splt->contents + 8);
11707 put_arm_insn (htab, output_bfd, plt0_entry[3],
11708 splt->contents + 12);
5e681ec4 11709
5e681ec4 11710#ifdef FOUR_WORD_PLT
00a97672
RS
11711 /* The displacement value goes in the otherwise-unused
11712 last word of the second entry. */
11713 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 11714#else
00a97672 11715 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 11716#endif
00a97672 11717 }
f7a74f8c 11718 }
252b5132
RH
11719
11720 /* UnixWare sets the entsize of .plt to 4, although that doesn't
11721 really seem like the right value. */
74541ad4
AM
11722 if (splt->output_section->owner == output_bfd)
11723 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672
RS
11724
11725 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
11726 {
11727 /* Correct the .rel(a).plt.unloaded relocations. They will have
11728 incorrect symbol indexes. */
11729 int num_plts;
eed62c48 11730 unsigned char *p;
00a97672
RS
11731
11732 num_plts = ((htab->splt->size - htab->plt_header_size)
11733 / htab->plt_entry_size);
11734 p = htab->srelplt2->contents + RELOC_SIZE (htab);
11735
11736 for (; num_plts; num_plts--)
11737 {
11738 Elf_Internal_Rela rel;
11739
11740 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11741 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11742 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11743 p += RELOC_SIZE (htab);
11744
11745 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11746 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11747 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11748 p += RELOC_SIZE (htab);
11749 }
11750 }
252b5132
RH
11751 }
11752
11753 /* Fill in the first three entries in the global offset table. */
229fcec5 11754 if (sgot)
252b5132 11755 {
229fcec5
MM
11756 if (sgot->size > 0)
11757 {
11758 if (sdyn == NULL)
11759 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
11760 else
11761 bfd_put_32 (output_bfd,
11762 sdyn->output_section->vma + sdyn->output_offset,
11763 sgot->contents);
11764 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
11765 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
11766 }
252b5132 11767
229fcec5
MM
11768 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
11769 }
252b5132 11770
b34976b6 11771 return TRUE;
252b5132
RH
11772}
11773
ba96a88f 11774static void
57e8b36a 11775elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 11776{
9b485d32 11777 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 11778 struct elf32_arm_link_hash_table *globals;
ba96a88f
NC
11779
11780 i_ehdrp = elf_elfheader (abfd);
11781
94a3258f
PB
11782 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
11783 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
11784 else
11785 i_ehdrp->e_ident[EI_OSABI] = 0;
ba96a88f 11786 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 11787
93204d3a
PB
11788 if (link_info)
11789 {
11790 globals = elf32_arm_hash_table (link_info);
11791 if (globals->byteswap_code)
11792 i_ehdrp->e_flags |= EF_ARM_BE8;
11793 }
ba96a88f
NC
11794}
11795
99e4ae17 11796static enum elf_reloc_type_class
57e8b36a 11797elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
99e4ae17 11798{
f51e552e 11799 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
11800 {
11801 case R_ARM_RELATIVE:
11802 return reloc_class_relative;
11803 case R_ARM_JUMP_SLOT:
11804 return reloc_class_plt;
11805 case R_ARM_COPY:
11806 return reloc_class_copy;
11807 default:
11808 return reloc_class_normal;
11809 }
11810}
11811
e16bb312
NC
11812/* Set the right machine number for an Arm ELF file. */
11813
11814static bfd_boolean
57e8b36a 11815elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
e16bb312
NC
11816{
11817 if (hdr->sh_type == SHT_NOTE)
11818 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
11819
11820 return TRUE;
11821}
11822
e489d0ae 11823static void
57e8b36a 11824elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 11825{
5a6c6817 11826 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
11827}
11828
40a18ebd
NC
11829/* Return TRUE if this is an unwinding table entry. */
11830
11831static bfd_boolean
11832is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
11833{
0112cd26
NC
11834 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
11835 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
11836}
11837
11838
11839/* Set the type and flags for an ARM section. We do this by
11840 the section name, which is a hack, but ought to work. */
11841
11842static bfd_boolean
11843elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
11844{
11845 const char * name;
11846
11847 name = bfd_get_section_name (abfd, sec);
11848
11849 if (is_arm_elf_unwind_section_name (abfd, name))
11850 {
11851 hdr->sh_type = SHT_ARM_EXIDX;
11852 hdr->sh_flags |= SHF_LINK_ORDER;
11853 }
11854 return TRUE;
11855}
11856
6dc132d9
L
11857/* Handle an ARM specific section when reading an object file. This is
11858 called when bfd_section_from_shdr finds a section with an unknown
11859 type. */
40a18ebd
NC
11860
11861static bfd_boolean
11862elf32_arm_section_from_shdr (bfd *abfd,
11863 Elf_Internal_Shdr * hdr,
6dc132d9
L
11864 const char *name,
11865 int shindex)
40a18ebd
NC
11866{
11867 /* There ought to be a place to keep ELF backend specific flags, but
11868 at the moment there isn't one. We just keep track of the
11869 sections by their name, instead. Fortunately, the ABI gives
11870 names for all the ARM specific sections, so we will probably get
11871 away with this. */
11872 switch (hdr->sh_type)
11873 {
11874 case SHT_ARM_EXIDX:
0951f019
RE
11875 case SHT_ARM_PREEMPTMAP:
11876 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
11877 break;
11878
11879 default:
11880 return FALSE;
11881 }
11882
6dc132d9 11883 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
11884 return FALSE;
11885
11886 return TRUE;
11887}
e489d0ae 11888
8e3de13a
NC
11889/* A structure used to record a list of sections, independently
11890 of the next and prev fields in the asection structure. */
11891typedef struct section_list
11892{
11893 asection * sec;
11894 struct section_list * next;
11895 struct section_list * prev;
11896}
11897section_list;
11898
11899/* Unfortunately we need to keep a list of sections for which
11900 an _arm_elf_section_data structure has been allocated. This
11901 is because it is possible for functions like elf32_arm_write_section
11902 to be called on a section which has had an elf_data_structure
11903 allocated for it (and so the used_by_bfd field is valid) but
11904 for which the ARM extended version of this structure - the
11905 _arm_elf_section_data structure - has not been allocated. */
11906static section_list * sections_with_arm_elf_section_data = NULL;
11907
11908static void
957c6e41 11909record_section_with_arm_elf_section_data (asection * sec)
8e3de13a
NC
11910{
11911 struct section_list * entry;
11912
957c6e41 11913 entry = bfd_malloc (sizeof (* entry));
8e3de13a
NC
11914 if (entry == NULL)
11915 return;
11916 entry->sec = sec;
11917 entry->next = sections_with_arm_elf_section_data;
11918 entry->prev = NULL;
11919 if (entry->next != NULL)
11920 entry->next->prev = entry;
11921 sections_with_arm_elf_section_data = entry;
11922}
11923
44444f50
NC
11924static struct section_list *
11925find_arm_elf_section_entry (asection * sec)
8e3de13a
NC
11926{
11927 struct section_list * entry;
bd4aae00 11928 static struct section_list * last_entry = NULL;
8e3de13a 11929
bd4aae00
NC
11930 /* This is a short cut for the typical case where the sections are added
11931 to the sections_with_arm_elf_section_data list in forward order and
11932 then looked up here in backwards order. This makes a real difference
11933 to the ld-srec/sec64k.exp linker test. */
44444f50 11934 entry = sections_with_arm_elf_section_data;
bd4aae00
NC
11935 if (last_entry != NULL)
11936 {
11937 if (last_entry->sec == sec)
44444f50
NC
11938 entry = last_entry;
11939 else if (last_entry->next != NULL
11940 && last_entry->next->sec == sec)
11941 entry = last_entry->next;
bd4aae00 11942 }
44444f50
NC
11943
11944 for (; entry; entry = entry->next)
8e3de13a 11945 if (entry->sec == sec)
44444f50 11946 break;
bd4aae00 11947
44444f50
NC
11948 if (entry)
11949 /* Record the entry prior to this one - it is the entry we are most
11950 likely to want to locate next time. Also this way if we have been
11951 called from unrecord_section_with_arm_elf_section_data() we will not
11952 be caching a pointer that is about to be freed. */
11953 last_entry = entry->prev;
11954
11955 return entry;
11956}
11957
11958static _arm_elf_section_data *
11959get_arm_elf_section_data (asection * sec)
11960{
11961 struct section_list * entry;
11962
11963 entry = find_arm_elf_section_entry (sec);
11964
11965 if (entry)
11966 return elf32_arm_section_data (entry->sec);
11967 else
11968 return NULL;
8e3de13a
NC
11969}
11970
11971static void
11972unrecord_section_with_arm_elf_section_data (asection * sec)
11973{
11974 struct section_list * entry;
11975
44444f50
NC
11976 entry = find_arm_elf_section_entry (sec);
11977
11978 if (entry)
11979 {
11980 if (entry->prev != NULL)
11981 entry->prev->next = entry->next;
11982 if (entry->next != NULL)
11983 entry->next->prev = entry->prev;
11984 if (entry == sections_with_arm_elf_section_data)
11985 sections_with_arm_elf_section_data = entry->next;
11986 free (entry);
11987 }
8e3de13a
NC
11988}
11989
e489d0ae 11990
4e617b1e
PB
11991typedef struct
11992{
11993 void *finfo;
11994 struct bfd_link_info *info;
91a5743d
PB
11995 asection *sec;
11996 int sec_shndx;
4e617b1e
PB
11997 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11998 asection *, struct elf_link_hash_entry *);
11999} output_arch_syminfo;
12000
12001enum map_symbol_type
12002{
12003 ARM_MAP_ARM,
12004 ARM_MAP_THUMB,
12005 ARM_MAP_DATA
12006};
12007
12008
7413f23f 12009/* Output a single mapping symbol. */
4e617b1e
PB
12010
12011static bfd_boolean
7413f23f
DJ
12012elf32_arm_output_map_sym (output_arch_syminfo *osi,
12013 enum map_symbol_type type,
12014 bfd_vma offset)
4e617b1e
PB
12015{
12016 static const char *names[3] = {"$a", "$t", "$d"};
12017 struct elf32_arm_link_hash_table *htab;
12018 Elf_Internal_Sym sym;
12019
12020 htab = elf32_arm_hash_table (osi->info);
91a5743d
PB
12021 sym.st_value = osi->sec->output_section->vma
12022 + osi->sec->output_offset
12023 + offset;
4e617b1e
PB
12024 sym.st_size = 0;
12025 sym.st_other = 0;
12026 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d
PB
12027 sym.st_shndx = osi->sec_shndx;
12028 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
4e617b1e
PB
12029 return FALSE;
12030 return TRUE;
12031}
12032
12033
12034/* Output mapping symbols for PLT entries associated with H. */
12035
12036static bfd_boolean
12037elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12038{
12039 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12040 struct elf32_arm_link_hash_table *htab;
12041 struct elf32_arm_link_hash_entry *eh;
12042 bfd_vma addr;
12043
12044 htab = elf32_arm_hash_table (osi->info);
12045
12046 if (h->root.type == bfd_link_hash_indirect)
12047 return TRUE;
12048
12049 if (h->root.type == bfd_link_hash_warning)
12050 /* When warning symbols are created, they **replace** the "real"
12051 entry in the hash table, thus we never get to see the real
12052 symbol in a hash traversal. So look at it now. */
12053 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12054
12055 if (h->plt.offset == (bfd_vma) -1)
12056 return TRUE;
12057
12058 eh = (struct elf32_arm_link_hash_entry *) h;
12059 addr = h->plt.offset;
12060 if (htab->symbian_p)
12061 {
7413f23f 12062 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12063 return FALSE;
7413f23f 12064 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
12065 return FALSE;
12066 }
12067 else if (htab->vxworks_p)
12068 {
7413f23f 12069 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12070 return FALSE;
7413f23f 12071 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 12072 return FALSE;
7413f23f 12073 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 12074 return FALSE;
7413f23f 12075 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
12076 return FALSE;
12077 }
12078 else
12079 {
bd97cb95
DJ
12080 bfd_signed_vma thumb_refs;
12081
12082 thumb_refs = eh->plt_thumb_refcount;
12083 if (!htab->use_blx)
12084 thumb_refs += eh->plt_maybe_thumb_refcount;
4e617b1e 12085
bd97cb95 12086 if (thumb_refs > 0)
4e617b1e 12087 {
7413f23f 12088 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
12089 return FALSE;
12090 }
12091#ifdef FOUR_WORD_PLT
7413f23f 12092 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 12093 return FALSE;
7413f23f 12094 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
12095 return FALSE;
12096#else
906e58ca 12097 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
12098 so only need to output a mapping symbol for the first PLT entry and
12099 entries with thumb thunks. */
bd97cb95 12100 if (thumb_refs > 0 || addr == 20)
4e617b1e 12101 {
7413f23f 12102 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
12103 return FALSE;
12104 }
12105#endif
12106 }
12107
12108 return TRUE;
12109}
12110
7413f23f
DJ
12111/* Output a single local symbol for a generated stub. */
12112
12113static bfd_boolean
12114elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
12115 bfd_vma offset, bfd_vma size)
12116{
12117 struct elf32_arm_link_hash_table *htab;
12118 Elf_Internal_Sym sym;
12119
12120 htab = elf32_arm_hash_table (osi->info);
12121 sym.st_value = osi->sec->output_section->vma
12122 + osi->sec->output_offset
12123 + offset;
12124 sym.st_size = size;
12125 sym.st_other = 0;
12126 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12127 sym.st_shndx = osi->sec_shndx;
12128 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
12129 return FALSE;
12130 return TRUE;
12131}
4e617b1e 12132
da5938a2 12133static bfd_boolean
8029a119
NC
12134arm_map_one_stub (struct bfd_hash_entry * gen_entry,
12135 void * in_arg)
da5938a2
NC
12136{
12137 struct elf32_arm_stub_hash_entry *stub_entry;
12138 struct bfd_link_info *info;
12139 struct elf32_arm_link_hash_table *htab;
12140 asection *stub_sec;
12141 bfd_vma addr;
7413f23f 12142 char *stub_name;
9a008db3 12143 output_arch_syminfo *osi;
461a49ca
DJ
12144 const insn_sequence *template;
12145 enum stub_insn_type prev_type;
12146 int size;
12147 int i;
12148 enum map_symbol_type sym_type;
da5938a2
NC
12149
12150 /* Massage our args to the form they really have. */
12151 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 12152 osi = (output_arch_syminfo *) in_arg;
da5938a2 12153
da5938a2
NC
12154 info = osi->info;
12155
12156 htab = elf32_arm_hash_table (info);
12157 stub_sec = stub_entry->stub_sec;
12158
12159 /* Ensure this stub is attached to the current section being
7413f23f 12160 processed. */
da5938a2
NC
12161 if (stub_sec != osi->sec)
12162 return TRUE;
12163
7413f23f
DJ
12164 addr = (bfd_vma) stub_entry->stub_offset;
12165 stub_name = stub_entry->output_name;
da5938a2 12166
461a49ca 12167 template = stub_entry->stub_template;
4e31c731 12168 switch (template[0].type)
7413f23f 12169 {
461a49ca
DJ
12170 case ARM_TYPE:
12171 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
da5938a2
NC
12172 return FALSE;
12173 break;
461a49ca
DJ
12174 case THUMB16_TYPE:
12175 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
12176 stub_entry->stub_size))
da5938a2
NC
12177 return FALSE;
12178 break;
12179 default:
12180 BFD_FAIL ();
4e31c731 12181 return FALSE;
7413f23f 12182 }
da5938a2 12183
461a49ca
DJ
12184 prev_type = DATA_TYPE;
12185 size = 0;
12186 for (i = 0; i < stub_entry->stub_template_size; i++)
12187 {
4e31c731 12188 switch (template[i].type)
461a49ca
DJ
12189 {
12190 case ARM_TYPE:
12191 sym_type = ARM_MAP_ARM;
12192 break;
12193
12194 case THUMB16_TYPE:
12195 sym_type = ARM_MAP_THUMB;
12196 break;
12197
12198 case DATA_TYPE:
12199 sym_type = ARM_MAP_DATA;
12200 break;
12201
12202 default:
12203 BFD_FAIL ();
4e31c731 12204 return FALSE;
461a49ca
DJ
12205 }
12206
12207 if (template[i].type != prev_type)
12208 {
12209 prev_type = template[i].type;
12210 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
12211 return FALSE;
12212 }
12213
4e31c731 12214 switch (template[i].type)
461a49ca
DJ
12215 {
12216 case ARM_TYPE:
12217 size += 4;
12218 break;
12219
12220 case THUMB16_TYPE:
12221 size += 2;
12222 break;
12223
12224 case DATA_TYPE:
12225 size += 4;
12226 break;
12227
12228 default:
12229 BFD_FAIL ();
4e31c731 12230 return FALSE;
461a49ca
DJ
12231 }
12232 }
12233
da5938a2
NC
12234 return TRUE;
12235}
12236
91a5743d 12237/* Output mapping symbols for linker generated sections. */
4e617b1e
PB
12238
12239static bfd_boolean
12240elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca
NC
12241 struct bfd_link_info *info,
12242 void *finfo,
12243 bfd_boolean (*func) (void *, const char *,
12244 Elf_Internal_Sym *,
12245 asection *,
12246 struct elf_link_hash_entry *))
4e617b1e
PB
12247{
12248 output_arch_syminfo osi;
12249 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
12250 bfd_vma offset;
12251 bfd_size_type size;
4e617b1e
PB
12252
12253 htab = elf32_arm_hash_table (info);
906e58ca 12254 check_use_blx (htab);
91a5743d 12255
4e617b1e
PB
12256 osi.finfo = finfo;
12257 osi.info = info;
12258 osi.func = func;
906e58ca 12259
91a5743d
PB
12260 /* ARM->Thumb glue. */
12261 if (htab->arm_glue_size > 0)
12262 {
12263 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12264 ARM2THUMB_GLUE_SECTION_NAME);
12265
12266 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12267 (output_bfd, osi.sec->output_section);
12268 if (info->shared || htab->root.is_relocatable_executable
12269 || htab->pic_veneer)
12270 size = ARM2THUMB_PIC_GLUE_SIZE;
12271 else if (htab->use_blx)
12272 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
12273 else
12274 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 12275
91a5743d
PB
12276 for (offset = 0; offset < htab->arm_glue_size; offset += size)
12277 {
7413f23f
DJ
12278 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
12279 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
12280 }
12281 }
12282
12283 /* Thumb->ARM glue. */
12284 if (htab->thumb_glue_size > 0)
12285 {
12286 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12287 THUMB2ARM_GLUE_SECTION_NAME);
12288
12289 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12290 (output_bfd, osi.sec->output_section);
12291 size = THUMB2ARM_GLUE_SIZE;
12292
12293 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
12294 {
7413f23f
DJ
12295 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
12296 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
12297 }
12298 }
12299
845b51d6
PB
12300 /* ARMv4 BX veneers. */
12301 if (htab->bx_glue_size > 0)
12302 {
12303 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12304 ARM_BX_GLUE_SECTION_NAME);
12305
12306 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12307 (output_bfd, osi.sec->output_section);
12308
7413f23f 12309 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
12310 }
12311
8029a119
NC
12312 /* Long calls stubs. */
12313 if (htab->stub_bfd && htab->stub_bfd->sections)
12314 {
da5938a2 12315 asection* stub_sec;
8029a119 12316
da5938a2
NC
12317 for (stub_sec = htab->stub_bfd->sections;
12318 stub_sec != NULL;
8029a119
NC
12319 stub_sec = stub_sec->next)
12320 {
12321 /* Ignore non-stub sections. */
12322 if (!strstr (stub_sec->name, STUB_SUFFIX))
12323 continue;
da5938a2 12324
8029a119 12325 osi.sec = stub_sec;
da5938a2 12326
8029a119
NC
12327 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12328 (output_bfd, osi.sec->output_section);
da5938a2 12329
8029a119
NC
12330 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
12331 }
12332 }
da5938a2 12333
91a5743d
PB
12334 /* Finally, output mapping symbols for the PLT. */
12335 if (!htab->splt || htab->splt->size == 0)
12336 return TRUE;
12337
12338 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8029a119 12339 htab->splt->output_section);
91a5743d 12340 osi.sec = htab->splt;
4e617b1e
PB
12341 /* Output mapping symbols for the plt header. SymbianOS does not have a
12342 plt header. */
12343 if (htab->vxworks_p)
12344 {
12345 /* VxWorks shared libraries have no PLT header. */
12346 if (!info->shared)
12347 {
7413f23f 12348 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 12349 return FALSE;
7413f23f 12350 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
4e617b1e
PB
12351 return FALSE;
12352 }
12353 }
12354 else if (!htab->symbian_p)
12355 {
7413f23f 12356 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e
PB
12357 return FALSE;
12358#ifndef FOUR_WORD_PLT
7413f23f 12359 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e
PB
12360 return FALSE;
12361#endif
12362 }
12363
12364 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
12365 return TRUE;
12366}
12367
e489d0ae
PB
12368/* Allocate target specific section data. */
12369
12370static bfd_boolean
12371elf32_arm_new_section_hook (bfd *abfd, asection *sec)
12372{
f592407e
AM
12373 if (!sec->used_by_bfd)
12374 {
12375 _arm_elf_section_data *sdata;
12376 bfd_size_type amt = sizeof (*sdata);
e489d0ae 12377
f592407e
AM
12378 sdata = bfd_zalloc (abfd, amt);
12379 if (sdata == NULL)
12380 return FALSE;
12381 sec->used_by_bfd = sdata;
12382 }
e489d0ae 12383
957c6e41 12384 record_section_with_arm_elf_section_data (sec);
8e3de13a 12385
e489d0ae
PB
12386 return _bfd_elf_new_section_hook (abfd, sec);
12387}
12388
12389
12390/* Used to order a list of mapping symbols by address. */
12391
12392static int
12393elf32_arm_compare_mapping (const void * a, const void * b)
12394{
7f6a71ff
JM
12395 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
12396 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
12397
12398 if (amap->vma > bmap->vma)
12399 return 1;
12400 else if (amap->vma < bmap->vma)
12401 return -1;
12402 else if (amap->type > bmap->type)
12403 /* Ensure results do not depend on the host qsort for objects with
12404 multiple mapping symbols at the same address by sorting on type
12405 after vma. */
12406 return 1;
12407 else if (amap->type < bmap->type)
12408 return -1;
12409 else
12410 return 0;
e489d0ae
PB
12411}
12412
2468f9c9
PB
12413/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
12414
12415static unsigned long
12416offset_prel31 (unsigned long addr, bfd_vma offset)
12417{
12418 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
12419}
12420
12421/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
12422 relocations. */
12423
12424static void
12425copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
12426{
12427 unsigned long first_word = bfd_get_32 (output_bfd, from);
12428 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
12429
12430 /* High bit of first word is supposed to be zero. */
12431 if ((first_word & 0x80000000ul) == 0)
12432 first_word = offset_prel31 (first_word, offset);
12433
12434 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
12435 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
12436 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
12437 second_word = offset_prel31 (second_word, offset);
12438
12439 bfd_put_32 (output_bfd, first_word, to);
12440 bfd_put_32 (output_bfd, second_word, to + 4);
12441}
e489d0ae
PB
12442
12443/* Do code byteswapping. Return FALSE afterwards so that the section is
12444 written out as normal. */
12445
12446static bfd_boolean
c7b8f16e 12447elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
12448 struct bfd_link_info *link_info,
12449 asection *sec,
e489d0ae
PB
12450 bfd_byte *contents)
12451{
c7b8f16e 12452 int mapcount, errcount;
8e3de13a 12453 _arm_elf_section_data *arm_data;
c7b8f16e 12454 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 12455 elf32_arm_section_map *map;
c7b8f16e 12456 elf32_vfp11_erratum_list *errnode;
e489d0ae
PB
12457 bfd_vma ptr;
12458 bfd_vma end;
c7b8f16e 12459 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae
PB
12460 bfd_byte tmp;
12461 int i;
57e8b36a 12462
8e3de13a
NC
12463 /* If this section has not been allocated an _arm_elf_section_data
12464 structure then we cannot record anything. */
12465 arm_data = get_arm_elf_section_data (sec);
12466 if (arm_data == NULL)
12467 return FALSE;
12468
12469 mapcount = arm_data->mapcount;
12470 map = arm_data->map;
c7b8f16e
JB
12471 errcount = arm_data->erratumcount;
12472
12473 if (errcount != 0)
12474 {
12475 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
12476
12477 for (errnode = arm_data->erratumlist; errnode != 0;
12478 errnode = errnode->next)
12479 {
12480 bfd_vma index = errnode->vma - offset;
12481
12482 switch (errnode->type)
12483 {
12484 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
12485 {
12486 bfd_vma branch_to_veneer;
12487 /* Original condition code of instruction, plus bit mask for
12488 ARM B instruction. */
12489 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
12490 | 0x0a000000;
12491
12492 /* The instruction is before the label. */
12493 index -= 4;
12494
12495 /* Above offset included in -4 below. */
12496 branch_to_veneer = errnode->u.b.veneer->vma
12497 - errnode->vma - 4;
12498
12499 if ((signed) branch_to_veneer < -(1 << 25)
12500 || (signed) branch_to_veneer >= (1 << 25))
12501 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12502 "range"), output_bfd);
12503
12504 insn |= (branch_to_veneer >> 2) & 0xffffff;
12505 contents[endianflip ^ index] = insn & 0xff;
12506 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12507 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12508 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12509 }
12510 break;
12511
12512 case VFP11_ERRATUM_ARM_VENEER:
12513 {
12514 bfd_vma branch_from_veneer;
12515 unsigned int insn;
12516
12517 /* Take size of veneer into account. */
12518 branch_from_veneer = errnode->u.v.branch->vma
12519 - errnode->vma - 12;
12520
12521 if ((signed) branch_from_veneer < -(1 << 25)
12522 || (signed) branch_from_veneer >= (1 << 25))
12523 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12524 "range"), output_bfd);
12525
12526 /* Original instruction. */
12527 insn = errnode->u.v.branch->u.b.vfp_insn;
12528 contents[endianflip ^ index] = insn & 0xff;
12529 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12530 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12531 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12532
12533 /* Branch back to insn after original insn. */
12534 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
12535 contents[endianflip ^ (index + 4)] = insn & 0xff;
12536 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
12537 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
12538 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
12539 }
12540 break;
12541
12542 default:
12543 abort ();
12544 }
12545 }
12546 }
e489d0ae 12547
2468f9c9
PB
12548 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
12549 {
12550 arm_unwind_table_edit *edit_node
12551 = arm_data->u.exidx.unwind_edit_list;
12552 /* Now, sec->size is the size of the section we will write. The original
12553 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
12554 markers) was sec->rawsize. (This isn't the case if we perform no
12555 edits, then rawsize will be zero and we should use size). */
12556 bfd_byte *edited_contents = bfd_malloc (sec->size);
12557 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
12558 unsigned int in_index, out_index;
12559 bfd_vma add_to_offsets = 0;
12560
12561 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
12562 {
12563 if (edit_node)
12564 {
12565 unsigned int edit_index = edit_node->index;
12566
12567 if (in_index < edit_index && in_index * 8 < input_size)
12568 {
12569 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
12570 contents + in_index * 8, add_to_offsets);
12571 out_index++;
12572 in_index++;
12573 }
12574 else if (in_index == edit_index
12575 || (in_index * 8 >= input_size
12576 && edit_index == UINT_MAX))
12577 {
12578 switch (edit_node->type)
12579 {
12580 case DELETE_EXIDX_ENTRY:
12581 in_index++;
12582 add_to_offsets += 8;
12583 break;
12584
12585 case INSERT_EXIDX_CANTUNWIND_AT_END:
12586 {
12587 asection *text_sec = edit_node->linked_section;
12588 bfd_vma text_offset = text_sec->output_section->vma
12589 + text_sec->output_offset
12590 + text_sec->size;
12591 bfd_vma exidx_offset = offset + out_index * 8;
12592 unsigned long prel31_offset;
12593
12594 /* Note: this is meant to be equivalent to an
12595 R_ARM_PREL31 relocation. These synthetic
12596 EXIDX_CANTUNWIND markers are not relocated by the
12597 usual BFD method. */
12598 prel31_offset = (text_offset - exidx_offset)
12599 & 0x7ffffffful;
12600
12601 /* First address we can't unwind. */
12602 bfd_put_32 (output_bfd, prel31_offset,
12603 &edited_contents[out_index * 8]);
12604
12605 /* Code for EXIDX_CANTUNWIND. */
12606 bfd_put_32 (output_bfd, 0x1,
12607 &edited_contents[out_index * 8 + 4]);
12608
12609 out_index++;
12610 add_to_offsets -= 8;
12611 }
12612 break;
12613 }
12614
12615 edit_node = edit_node->next;
12616 }
12617 }
12618 else
12619 {
12620 /* No more edits, copy remaining entries verbatim. */
12621 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
12622 contents + in_index * 8, add_to_offsets);
12623 out_index++;
12624 in_index++;
12625 }
12626 }
12627
12628 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
12629 bfd_set_section_contents (output_bfd, sec->output_section,
12630 edited_contents,
12631 (file_ptr) sec->output_offset, sec->size);
12632
12633 return TRUE;
12634 }
12635
e489d0ae
PB
12636 if (mapcount == 0)
12637 return FALSE;
12638
c7b8f16e 12639 if (globals->byteswap_code)
e489d0ae 12640 {
c7b8f16e 12641 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 12642
c7b8f16e
JB
12643 ptr = map[0].vma;
12644 for (i = 0; i < mapcount; i++)
12645 {
12646 if (i == mapcount - 1)
12647 end = sec->size;
12648 else
12649 end = map[i + 1].vma;
e489d0ae 12650
c7b8f16e 12651 switch (map[i].type)
e489d0ae 12652 {
c7b8f16e
JB
12653 case 'a':
12654 /* Byte swap code words. */
12655 while (ptr + 3 < end)
12656 {
12657 tmp = contents[ptr];
12658 contents[ptr] = contents[ptr + 3];
12659 contents[ptr + 3] = tmp;
12660 tmp = contents[ptr + 1];
12661 contents[ptr + 1] = contents[ptr + 2];
12662 contents[ptr + 2] = tmp;
12663 ptr += 4;
12664 }
12665 break;
e489d0ae 12666
c7b8f16e
JB
12667 case 't':
12668 /* Byte swap code halfwords. */
12669 while (ptr + 1 < end)
12670 {
12671 tmp = contents[ptr];
12672 contents[ptr] = contents[ptr + 1];
12673 contents[ptr + 1] = tmp;
12674 ptr += 2;
12675 }
12676 break;
12677
12678 case 'd':
12679 /* Leave data alone. */
12680 break;
12681 }
12682 ptr = end;
12683 }
e489d0ae 12684 }
8e3de13a 12685
93204d3a 12686 free (map);
8e3de13a 12687 arm_data->mapcount = 0;
c7b8f16e 12688 arm_data->mapsize = 0;
8e3de13a
NC
12689 arm_data->map = NULL;
12690 unrecord_section_with_arm_elf_section_data (sec);
12691
e489d0ae
PB
12692 return FALSE;
12693}
12694
957c6e41
NC
12695static void
12696unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
12697 asection * sec,
12698 void * ignore ATTRIBUTE_UNUSED)
12699{
12700 unrecord_section_with_arm_elf_section_data (sec);
12701}
12702
12703static bfd_boolean
12704elf32_arm_close_and_cleanup (bfd * abfd)
12705{
b25e3d87
L
12706 if (abfd->sections)
12707 bfd_map_over_sections (abfd,
12708 unrecord_section_via_map_over_sections,
12709 NULL);
957c6e41
NC
12710
12711 return _bfd_elf_close_and_cleanup (abfd);
12712}
12713
b25e3d87
L
12714static bfd_boolean
12715elf32_arm_bfd_free_cached_info (bfd * abfd)
12716{
12717 if (abfd->sections)
12718 bfd_map_over_sections (abfd,
12719 unrecord_section_via_map_over_sections,
12720 NULL);
12721
12722 return _bfd_free_cached_info (abfd);
12723}
12724
b7693d02
DJ
12725/* Display STT_ARM_TFUNC symbols as functions. */
12726
12727static void
12728elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
12729 asymbol *asym)
12730{
12731 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
12732
12733 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
12734 elfsym->symbol.flags |= BSF_FUNCTION;
12735}
12736
0beaef2b
PB
12737
12738/* Mangle thumb function symbols as we read them in. */
12739
8384fb8f 12740static bfd_boolean
0beaef2b
PB
12741elf32_arm_swap_symbol_in (bfd * abfd,
12742 const void *psrc,
12743 const void *pshn,
12744 Elf_Internal_Sym *dst)
12745{
8384fb8f
AM
12746 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
12747 return FALSE;
0beaef2b
PB
12748
12749 /* New EABI objects mark thumb function symbols by setting the low bit of
12750 the address. Turn these into STT_ARM_TFUNC. */
0f88be7a 12751 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
0beaef2b
PB
12752 && (dst->st_value & 1))
12753 {
12754 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
12755 dst->st_value &= ~(bfd_vma) 1;
12756 }
8384fb8f 12757 return TRUE;
0beaef2b
PB
12758}
12759
12760
12761/* Mangle thumb function symbols as we write them out. */
12762
12763static void
12764elf32_arm_swap_symbol_out (bfd *abfd,
12765 const Elf_Internal_Sym *src,
12766 void *cdst,
12767 void *shndx)
12768{
12769 Elf_Internal_Sym newsym;
12770
12771 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
12772 of the address set, as per the new EABI. We do this unconditionally
12773 because objcopy does not set the elf header flags until after
12774 it writes out the symbol table. */
12775 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
12776 {
12777 newsym = *src;
12778 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad
PB
12779 if (newsym.st_shndx != SHN_UNDEF)
12780 {
12781 /* Do this only for defined symbols. At link type, the static
12782 linker will simulate the work of dynamic linker of resolving
12783 symbols and will carry over the thumbness of found symbols to
12784 the output symbol table. It's not clear how it happens, but
b0fead2b 12785 the thumbness of undefined symbols can well be different at
0fa3dcad
PB
12786 runtime, and writing '1' for them will be confusing for users
12787 and possibly for dynamic linker itself.
12788 */
12789 newsym.st_value |= 1;
12790 }
906e58ca 12791
0beaef2b
PB
12792 src = &newsym;
12793 }
12794 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
12795}
12796
b294bdf8
MM
12797/* Add the PT_ARM_EXIDX program header. */
12798
12799static bfd_boolean
906e58ca 12800elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
12801 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12802{
12803 struct elf_segment_map *m;
12804 asection *sec;
12805
12806 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12807 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12808 {
12809 /* If there is already a PT_ARM_EXIDX header, then we do not
12810 want to add another one. This situation arises when running
12811 "strip"; the input binary already has the header. */
12812 m = elf_tdata (abfd)->segment_map;
12813 while (m && m->p_type != PT_ARM_EXIDX)
12814 m = m->next;
12815 if (!m)
12816 {
12817 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
12818 if (m == NULL)
12819 return FALSE;
12820 m->p_type = PT_ARM_EXIDX;
12821 m->count = 1;
12822 m->sections[0] = sec;
12823
12824 m->next = elf_tdata (abfd)->segment_map;
12825 elf_tdata (abfd)->segment_map = m;
12826 }
12827 }
12828
12829 return TRUE;
12830}
12831
12832/* We may add a PT_ARM_EXIDX program header. */
12833
12834static int
a6b96beb
AM
12835elf32_arm_additional_program_headers (bfd *abfd,
12836 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
12837{
12838 asection *sec;
12839
12840 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12841 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12842 return 1;
12843 else
12844 return 0;
12845}
12846
fcb93ecf 12847/* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
906e58ca 12848
fcb93ecf
PB
12849static bfd_boolean
12850elf32_arm_is_function_type (unsigned int type)
12851{
0f88be7a 12852 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
fcb93ecf
PB
12853}
12854
0beaef2b 12855/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
12856const struct elf_size_info elf32_arm_size_info =
12857{
0beaef2b
PB
12858 sizeof (Elf32_External_Ehdr),
12859 sizeof (Elf32_External_Phdr),
12860 sizeof (Elf32_External_Shdr),
12861 sizeof (Elf32_External_Rel),
12862 sizeof (Elf32_External_Rela),
12863 sizeof (Elf32_External_Sym),
12864 sizeof (Elf32_External_Dyn),
12865 sizeof (Elf_External_Note),
12866 4,
12867 1,
12868 32, 2,
12869 ELFCLASS32, EV_CURRENT,
12870 bfd_elf32_write_out_phdrs,
12871 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 12872 bfd_elf32_checksum_contents,
0beaef2b
PB
12873 bfd_elf32_write_relocs,
12874 elf32_arm_swap_symbol_in,
12875 elf32_arm_swap_symbol_out,
12876 bfd_elf32_slurp_reloc_table,
12877 bfd_elf32_slurp_symbol_table,
12878 bfd_elf32_swap_dyn_in,
12879 bfd_elf32_swap_dyn_out,
12880 bfd_elf32_swap_reloc_in,
12881 bfd_elf32_swap_reloc_out,
12882 bfd_elf32_swap_reloca_in,
12883 bfd_elf32_swap_reloca_out
12884};
12885
252b5132
RH
12886#define ELF_ARCH bfd_arch_arm
12887#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
12888#ifdef __QNXTARGET__
12889#define ELF_MAXPAGESIZE 0x1000
12890#else
f21f3fe0 12891#define ELF_MAXPAGESIZE 0x8000
d0facd1b 12892#endif
b1342370 12893#define ELF_MINPAGESIZE 0x1000
24718e3b 12894#define ELF_COMMONPAGESIZE 0x1000
252b5132 12895
ba93b8ac
DJ
12896#define bfd_elf32_mkobject elf32_arm_mkobject
12897
99e4ae17
AJ
12898#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
12899#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
12900#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
12901#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
12902#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
906e58ca 12903#define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
dc810e39 12904#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
157090f7 12905#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 12906#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 12907#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 12908#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 12909#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
957c6e41 12910#define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
b25e3d87 12911#define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
3e6b1042 12912#define bfd_elf32_bfd_final_link elf32_arm_final_link
252b5132
RH
12913
12914#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
12915#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 12916#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
12917#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
12918#define elf_backend_check_relocs elf32_arm_check_relocs
dc810e39 12919#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 12920#define elf_backend_write_section elf32_arm_write_section
252b5132 12921#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 12922#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
12923#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
12924#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
12925#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
74541ad4 12926#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 12927#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 12928#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 12929#define elf_backend_object_p elf32_arm_object_p
e16bb312 12930#define elf_backend_section_flags elf32_arm_section_flags
40a18ebd
NC
12931#define elf_backend_fake_sections elf32_arm_fake_sections
12932#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 12933#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 12934#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
b7693d02 12935#define elf_backend_symbol_processing elf32_arm_symbol_processing
0beaef2b 12936#define elf_backend_size_info elf32_arm_size_info
b294bdf8 12937#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
12938#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
12939#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
12940#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
12941#define elf_backend_is_function_type elf32_arm_is_function_type
12942
12943#define elf_backend_can_refcount 1
12944#define elf_backend_can_gc_sections 1
12945#define elf_backend_plt_readonly 1
12946#define elf_backend_want_got_plt 1
12947#define elf_backend_want_plt_sym 0
12948#define elf_backend_may_use_rel_p 1
12949#define elf_backend_may_use_rela_p 0
4e7fd91e 12950#define elf_backend_default_use_rela_p 0
252b5132 12951
04f7c78d 12952#define elf_backend_got_header_size 12
04f7c78d 12953
906e58ca
NC
12954#undef elf_backend_obj_attrs_vendor
12955#define elf_backend_obj_attrs_vendor "aeabi"
12956#undef elf_backend_obj_attrs_section
12957#define elf_backend_obj_attrs_section ".ARM.attributes"
12958#undef elf_backend_obj_attrs_arg_type
12959#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
12960#undef elf_backend_obj_attrs_section_type
104d59d1 12961#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
5aa6ff7c 12962#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
104d59d1 12963
252b5132 12964#include "elf32-target.h"
7f266840 12965
906e58ca 12966/* VxWorks Targets. */
4e7fd91e 12967
906e58ca 12968#undef TARGET_LITTLE_SYM
4e7fd91e 12969#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
906e58ca 12970#undef TARGET_LITTLE_NAME
4e7fd91e 12971#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 12972#undef TARGET_BIG_SYM
4e7fd91e 12973#define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
906e58ca 12974#undef TARGET_BIG_NAME
4e7fd91e
PB
12975#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
12976
12977/* Like elf32_arm_link_hash_table_create -- but overrides
12978 appropriately for VxWorks. */
906e58ca 12979
4e7fd91e
PB
12980static struct bfd_link_hash_table *
12981elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
12982{
12983 struct bfd_link_hash_table *ret;
12984
12985 ret = elf32_arm_link_hash_table_create (abfd);
12986 if (ret)
12987 {
12988 struct elf32_arm_link_hash_table *htab
00a97672 12989 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 12990 htab->use_rel = 0;
00a97672 12991 htab->vxworks_p = 1;
4e7fd91e
PB
12992 }
12993 return ret;
906e58ca 12994}
4e7fd91e 12995
00a97672
RS
12996static void
12997elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
12998{
12999 elf32_arm_final_write_processing (abfd, linker);
13000 elf_vxworks_final_write_processing (abfd, linker);
13001}
13002
906e58ca 13003#undef elf32_bed
4e7fd91e
PB
13004#define elf32_bed elf32_arm_vxworks_bed
13005
906e58ca
NC
13006#undef bfd_elf32_bfd_link_hash_table_create
13007#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13008#undef elf_backend_add_symbol_hook
13009#define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13010#undef elf_backend_final_write_processing
13011#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13012#undef elf_backend_emit_relocs
13013#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 13014
906e58ca 13015#undef elf_backend_may_use_rel_p
00a97672 13016#define elf_backend_may_use_rel_p 0
906e58ca 13017#undef elf_backend_may_use_rela_p
00a97672 13018#define elf_backend_may_use_rela_p 1
906e58ca 13019#undef elf_backend_default_use_rela_p
00a97672 13020#define elf_backend_default_use_rela_p 1
906e58ca 13021#undef elf_backend_want_plt_sym
00a97672 13022#define elf_backend_want_plt_sym 1
906e58ca 13023#undef ELF_MAXPAGESIZE
00a97672 13024#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
13025
13026#include "elf32-target.h"
13027
13028
906e58ca 13029/* Symbian OS Targets. */
7f266840 13030
906e58ca 13031#undef TARGET_LITTLE_SYM
7f266840 13032#define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
906e58ca 13033#undef TARGET_LITTLE_NAME
7f266840 13034#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 13035#undef TARGET_BIG_SYM
7f266840 13036#define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
906e58ca 13037#undef TARGET_BIG_NAME
7f266840
DJ
13038#define TARGET_BIG_NAME "elf32-bigarm-symbian"
13039
13040/* Like elf32_arm_link_hash_table_create -- but overrides
13041 appropriately for Symbian OS. */
906e58ca 13042
7f266840
DJ
13043static struct bfd_link_hash_table *
13044elf32_arm_symbian_link_hash_table_create (bfd *abfd)
13045{
13046 struct bfd_link_hash_table *ret;
13047
13048 ret = elf32_arm_link_hash_table_create (abfd);
13049 if (ret)
13050 {
13051 struct elf32_arm_link_hash_table *htab
13052 = (struct elf32_arm_link_hash_table *)ret;
13053 /* There is no PLT header for Symbian OS. */
13054 htab->plt_header_size = 0;
95720a86
DJ
13055 /* The PLT entries are each one instruction and one word. */
13056 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 13057 htab->symbian_p = 1;
33bfe774
JB
13058 /* Symbian uses armv5t or above, so use_blx is always true. */
13059 htab->use_blx = 1;
67687978 13060 htab->root.is_relocatable_executable = 1;
7f266840
DJ
13061 }
13062 return ret;
906e58ca 13063}
7f266840 13064
b35d266b 13065static const struct bfd_elf_special_section
551b43fd 13066elf32_arm_symbian_special_sections[] =
7f266840 13067{
5cd3778d
MM
13068 /* In a BPABI executable, the dynamic linking sections do not go in
13069 the loadable read-only segment. The post-linker may wish to
13070 refer to these sections, but they are not part of the final
13071 program image. */
0112cd26
NC
13072 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
13073 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
13074 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
13075 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
13076 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
13077 /* These sections do not need to be writable as the SymbianOS
13078 postlinker will arrange things so that no dynamic relocation is
13079 required. */
0112cd26
NC
13080 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
13081 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
13082 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
13083 { NULL, 0, 0, 0, 0 }
7f266840
DJ
13084};
13085
c3c76620 13086static void
906e58ca 13087elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 13088 struct bfd_link_info *link_info)
c3c76620
MM
13089{
13090 /* BPABI objects are never loaded directly by an OS kernel; they are
13091 processed by a postlinker first, into an OS-specific format. If
13092 the D_PAGED bit is set on the file, BFD will align segments on
13093 page boundaries, so that an OS can directly map the file. With
13094 BPABI objects, that just results in wasted space. In addition,
13095 because we clear the D_PAGED bit, map_sections_to_segments will
13096 recognize that the program headers should not be mapped into any
13097 loadable segment. */
13098 abfd->flags &= ~D_PAGED;
906e58ca 13099 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 13100}
7f266840
DJ
13101
13102static bfd_boolean
906e58ca 13103elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 13104 struct bfd_link_info *info)
7f266840
DJ
13105{
13106 struct elf_segment_map *m;
13107 asection *dynsec;
13108
7f266840
DJ
13109 /* BPABI shared libraries and executables should have a PT_DYNAMIC
13110 segment. However, because the .dynamic section is not marked
13111 with SEC_LOAD, the generic ELF code will not create such a
13112 segment. */
13113 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
13114 if (dynsec)
13115 {
8ded5a0f
AM
13116 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
13117 if (m->p_type == PT_DYNAMIC)
13118 break;
13119
13120 if (m == NULL)
13121 {
13122 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
13123 m->next = elf_tdata (abfd)->segment_map;
13124 elf_tdata (abfd)->segment_map = m;
13125 }
7f266840
DJ
13126 }
13127
b294bdf8
MM
13128 /* Also call the generic arm routine. */
13129 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
13130}
13131
95720a86
DJ
13132/* Return address for Ith PLT stub in section PLT, for relocation REL
13133 or (bfd_vma) -1 if it should not be included. */
13134
13135static bfd_vma
13136elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
13137 const arelent *rel ATTRIBUTE_UNUSED)
13138{
13139 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
13140}
13141
13142
8029a119 13143#undef elf32_bed
7f266840
DJ
13144#define elf32_bed elf32_arm_symbian_bed
13145
13146/* The dynamic sections are not allocated on SymbianOS; the postlinker
13147 will process them and then discard them. */
906e58ca 13148#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
13149#define ELF_DYNAMIC_SEC_FLAGS \
13150 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
13151
00a97672 13152#undef elf_backend_add_symbol_hook
00a97672 13153#undef elf_backend_emit_relocs
c3c76620 13154
906e58ca
NC
13155#undef bfd_elf32_bfd_link_hash_table_create
13156#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
13157#undef elf_backend_special_sections
13158#define elf_backend_special_sections elf32_arm_symbian_special_sections
13159#undef elf_backend_begin_write_processing
13160#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
13161#undef elf_backend_final_write_processing
13162#define elf_backend_final_write_processing elf32_arm_final_write_processing
13163
13164#undef elf_backend_modify_segment_map
7f266840
DJ
13165#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
13166
13167/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 13168#undef elf_backend_got_header_size
7f266840
DJ
13169#define elf_backend_got_header_size 0
13170
13171/* Similarly, there is no .got.plt section. */
906e58ca 13172#undef elf_backend_want_got_plt
7f266840
DJ
13173#define elf_backend_want_got_plt 0
13174
906e58ca 13175#undef elf_backend_plt_sym_val
95720a86
DJ
13176#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
13177
906e58ca 13178#undef elf_backend_may_use_rel_p
00a97672 13179#define elf_backend_may_use_rel_p 1
906e58ca 13180#undef elf_backend_may_use_rela_p
00a97672 13181#define elf_backend_may_use_rela_p 0
906e58ca 13182#undef elf_backend_default_use_rela_p
00a97672 13183#define elf_backend_default_use_rela_p 0
906e58ca 13184#undef elf_backend_want_plt_sym
00a97672 13185#define elf_backend_want_plt_sym 0
906e58ca 13186#undef ELF_MAXPAGESIZE
00a97672 13187#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 13188
7f266840 13189#include "elf32-target.h"
This page took 1.383859 seconds and 4 git commands to generate.