Use dynamic text relocs for protected vars
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
b90efa5b 2 Copyright (C) 1998-2015 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
6034aab8 25#include "bfd_stdint.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
b38cadfb 29#include "elf-nacl.h"
00a97672 30#include "elf-vxworks.h"
ee065d83 31#include "elf/arm.h"
7f266840 32
00a97672
RS
33/* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35#define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38/* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40#define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45/* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47#define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52/* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54#define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
7f266840
DJ
59#define elf_info_to_howto 0
60#define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62#define ARM_ELF_ABI_VERSION 0
63#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
79f08007
YZ
65/* The Adjusted Place, as defined by AAELF. */
66#define Pa(X) ((X) & 0xfffffffc)
67
3e6b1042
DJ
68static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
7f266840
DJ
73/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
c19d1205 77static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 78{
8029a119 79 /* No relocation. */
7f266840
DJ
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
6346d5ca 82 3, /* size (0 = byte, 1 = short, 2 = long) */
7f266840
DJ
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
c19d1205 138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 139 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
142 32, /* bitsize */
143 TRUE, /* pc_relative */
7f266840 144 0, /* bitpos */
4962c51a 145 complain_overflow_dont,/* complain_on_overflow */
7f266840 146 bfd_elf_generic_reloc, /* special_function */
4962c51a 147 "R_ARM_LDR_PC_G0", /* name */
7f266840 148 FALSE, /* partial_inplace */
4962c51a
MS
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
7f266840
DJ
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
00a97672
RS
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
7f266840
DJ
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
c19d1205 226 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 229 24, /* bitsize */
7f266840
DJ
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
c19d1205 234 "R_ARM_THM_CALL", /* name */
7f266840 235 FALSE, /* partial_inplace */
7f6ab9f8
AM
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
7f266840
DJ
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
c19d1205 254 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
257 32, /* bitsize */
258 FALSE, /* pc_relative */
7f266840
DJ
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
c19d1205 262 "R_ARM_BREL_ADJ", /* name */
7f266840 263 FALSE, /* partial_inplace */
c19d1205
ZW
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
7f266840 267
0855e32b 268 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 269 0, /* rightshift */
0855e32b
NS
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
7f266840
DJ
272 FALSE, /* pc_relative */
273 0, /* bitpos */
0855e32b 274 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 275 bfd_elf_generic_reloc, /* special_function */
0855e32b 276 "R_ARM_TLS_DESC", /* name */
7f266840 277 FALSE, /* partial_inplace */
0855e32b
NS
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
7f266840
DJ
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 300 24, /* bitsize */
7f266840
DJ
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 315 24, /* bitsize */
7f266840
DJ
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
7f6ab9f8
AM
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
7f266840
DJ
324 TRUE), /* pcrel_offset */
325
ba93b8ac 326 /* Dynamic TLS relocations. */
7f266840 327
ba93b8ac 328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
99059e56
RM
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
7f266840 341
ba93b8ac 342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
99059e56
RM
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
7f266840 355
ba93b8ac 356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
99059e56
RM
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
7f266840
DJ
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
99059e56
RM
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
7f266840
DJ
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
99059e56
RM
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
7f266840
DJ
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
99059e56
RM
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
7f266840
DJ
413
414 HOWTO (R_ARM_RELATIVE, /* type */
99059e56
RM
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
7f266840 427
c19d1205 428 HOWTO (R_ARM_GOTOFF32, /* type */
99059e56
RM
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
7f266840
DJ
441
442 HOWTO (R_ARM_GOTPC, /* type */
99059e56
RM
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
7f266840
DJ
455
456 HOWTO (R_ARM_GOT32, /* type */
99059e56
RM
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
7f266840
DJ
469
470 HOWTO (R_ARM_PLT32, /* type */
99059e56
RM
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
7f266840
DJ
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
c19d1205
ZW
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
7f266840 517 0, /* bitpos */
c19d1205 518 complain_overflow_signed,/* complain_on_overflow */
7f266840 519 bfd_elf_generic_reloc, /* special_function */
c19d1205 520 "R_ARM_THM_JUMP24", /* name */
7f266840 521 FALSE, /* partial_inplace */
c19d1205
ZW
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
7f266840 525
c19d1205 526 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 527 0, /* rightshift */
c19d1205
ZW
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
7f266840
DJ
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
c19d1205 534 "R_ARM_BASE_ABS", /* name */
7f266840 535 FALSE, /* partial_inplace */
c19d1205
ZW
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
7f266840
DJ
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
c19d1205
ZW
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
39623e12
PB
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
c19d1205
ZW
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
39623e12
PB
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
c19d1205
ZW
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
39623e12
PB
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
c19d1205
ZW
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
39623e12
PB
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
c19d1205
ZW
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
2cab6cc3 843 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
2cab6cc3
MS
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
c19d1205
ZW
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
2cab6cc3 857 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
2cab6cc3
MS
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
c19d1205
ZW
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
7f266840 892
4962c51a
MS
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
c19d1205 1274
c19d1205
ZW
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
0855e32b
NS
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
c19d1205
ZW
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
99059e56
RM
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
c19d1205
ZW
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
99059e56
RM
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
c19d1205
ZW
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
ba93b8ac 1544
c19d1205
ZW
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
99059e56
RM
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
ba93b8ac 1559
ba93b8ac 1560 HOWTO (R_ARM_TLS_LDM32, /* type */
99059e56
RM
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
ba93b8ac 1573
c19d1205 1574 HOWTO (R_ARM_TLS_LDO32, /* type */
99059e56
RM
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
ba93b8ac 1587
ba93b8ac 1588 HOWTO (R_ARM_TLS_IE32, /* type */
99059e56
RM
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
7f266840 1601
c19d1205 1602 HOWTO (R_ARM_TLS_LE32, /* type */
99059e56
RM
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 bfd_elf_generic_reloc, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
7f266840 1615
c19d1205
ZW
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
7f266840 1621 0, /* bitpos */
c19d1205 1622 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1623 bfd_elf_generic_reloc, /* special_function */
c19d1205 1624 "R_ARM_TLS_LDO12", /* name */
7f266840 1625 FALSE, /* partial_inplace */
c19d1205
ZW
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
7f266840 1629
c19d1205
ZW
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
7f266840 1635 0, /* bitpos */
c19d1205 1636 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1637 bfd_elf_generic_reloc, /* special_function */
c19d1205 1638 "R_ARM_TLS_LE12", /* name */
7f266840 1639 FALSE, /* partial_inplace */
c19d1205
ZW
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
7f266840 1643
c19d1205 1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
7f266840 1649 0, /* bitpos */
c19d1205 1650 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1651 bfd_elf_generic_reloc, /* special_function */
c19d1205 1652 "R_ARM_TLS_IE12GP", /* name */
7f266840 1653 FALSE, /* partial_inplace */
c19d1205
ZW
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
0855e32b 1657
34e77a92 1658 /* 112-127 private relocations. */
0855e32b
NS
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
34e77a92
RS
1675
1676 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
c19d1205
ZW
1692};
1693
34e77a92
RS
1694/* 160 onwards: */
1695static reloc_howto_type elf32_arm_howto_table_2[1] =
1696{
1697 HOWTO (R_ARM_IRELATIVE, /* type */
99059e56
RM
1698 0, /* rightshift */
1699 2, /* size (0 = byte, 1 = short, 2 = long) */
1700 32, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_bitfield,/* complain_on_overflow */
1704 bfd_elf_generic_reloc, /* special_function */
1705 "R_ARM_IRELATIVE", /* name */
1706 TRUE, /* partial_inplace */
1707 0xffffffff, /* src_mask */
1708 0xffffffff, /* dst_mask */
1709 FALSE) /* pcrel_offset */
34e77a92 1710};
c19d1205 1711
34e77a92
RS
1712/* 249-255 extended, currently unused, relocations: */
1713static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1714{
1715 HOWTO (R_ARM_RREL32, /* type */
1716 0, /* rightshift */
1717 0, /* size (0 = byte, 1 = short, 2 = long) */
1718 0, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_dont,/* complain_on_overflow */
1722 bfd_elf_generic_reloc, /* special_function */
1723 "R_ARM_RREL32", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 HOWTO (R_ARM_RABS32, /* type */
1730 0, /* rightshift */
1731 0, /* size (0 = byte, 1 = short, 2 = long) */
1732 0, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont,/* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 "R_ARM_RABS32", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 HOWTO (R_ARM_RPC24, /* type */
1744 0, /* rightshift */
1745 0, /* size (0 = byte, 1 = short, 2 = long) */
1746 0, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont,/* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 "R_ARM_RPC24", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 HOWTO (R_ARM_RBASE, /* type */
1758 0, /* rightshift */
1759 0, /* size (0 = byte, 1 = short, 2 = long) */
1760 0, /* bitsize */
1761 FALSE, /* pc_relative */
1762 0, /* bitpos */
1763 complain_overflow_dont,/* complain_on_overflow */
1764 bfd_elf_generic_reloc, /* special_function */
1765 "R_ARM_RBASE", /* name */
1766 FALSE, /* partial_inplace */
1767 0, /* src_mask */
1768 0, /* dst_mask */
1769 FALSE) /* pcrel_offset */
1770};
1771
1772static reloc_howto_type *
1773elf32_arm_howto_from_type (unsigned int r_type)
1774{
906e58ca 1775 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1776 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1777
34e77a92
RS
1778 if (r_type == R_ARM_IRELATIVE)
1779 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1780
c19d1205 1781 if (r_type >= R_ARM_RREL32
34e77a92
RS
1782 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1783 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1784
c19d1205 1785 return NULL;
7f266840
DJ
1786}
1787
1788static void
1789elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1790 Elf_Internal_Rela * elf_reloc)
1791{
1792 unsigned int r_type;
1793
1794 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1795 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1796}
1797
1798struct elf32_arm_reloc_map
1799 {
1800 bfd_reloc_code_real_type bfd_reloc_val;
1801 unsigned char elf_reloc_val;
1802 };
1803
1804/* All entries in this list must also be present in elf32_arm_howto_table. */
1805static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1806 {
1807 {BFD_RELOC_NONE, R_ARM_NONE},
1808 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1809 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1810 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1811 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1812 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1813 {BFD_RELOC_32, R_ARM_ABS32},
1814 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1815 {BFD_RELOC_8, R_ARM_ABS8},
1816 {BFD_RELOC_16, R_ARM_ABS16},
1817 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1818 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1819 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1825 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1826 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1827 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1828 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840 1829 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
b43420e6 1830 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
7f266840
DJ
1831 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1832 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1833 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1834 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1835 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1836 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1837 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1838 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
0855e32b
NS
1839 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1840 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1841 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1842 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1843 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
1845 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1846 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1847 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1848 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1849 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1850 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1851 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1852 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
34e77a92 1853 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
c19d1205
ZW
1854 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1855 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1856 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1858 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1860 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1861 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1862 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1863 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1864 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1865 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1866 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1867 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1868 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1869 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1870 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1871 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1872 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1873 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1874 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1875 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1876 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1877 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1878 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1879 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1880 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1881 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1882 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1883 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1884 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1885 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1886 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1887 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1888 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1889 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1890 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6
PB
1891 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1892 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
7f266840
DJ
1893 };
1894
1895static reloc_howto_type *
f1c71a59
ZW
1896elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1897 bfd_reloc_code_real_type code)
7f266840
DJ
1898{
1899 unsigned int i;
8029a119 1900
906e58ca 1901 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1902 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1903 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1904
c19d1205 1905 return NULL;
7f266840
DJ
1906}
1907
157090f7
AM
1908static reloc_howto_type *
1909elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1910 const char *r_name)
1911{
1912 unsigned int i;
1913
906e58ca 1914 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1915 if (elf32_arm_howto_table_1[i].name != NULL
1916 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1917 return &elf32_arm_howto_table_1[i];
1918
906e58ca 1919 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1920 if (elf32_arm_howto_table_2[i].name != NULL
1921 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1922 return &elf32_arm_howto_table_2[i];
1923
34e77a92
RS
1924 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1925 if (elf32_arm_howto_table_3[i].name != NULL
1926 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1927 return &elf32_arm_howto_table_3[i];
1928
157090f7
AM
1929 return NULL;
1930}
1931
906e58ca
NC
1932/* Support for core dump NOTE sections. */
1933
7f266840 1934static bfd_boolean
f1c71a59 1935elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1936{
1937 int offset;
1938 size_t size;
1939
1940 switch (note->descsz)
1941 {
1942 default:
1943 return FALSE;
1944
8029a119 1945 case 148: /* Linux/ARM 32-bit. */
7f266840 1946 /* pr_cursig */
228e534f 1947 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
1948
1949 /* pr_pid */
228e534f 1950 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
1951
1952 /* pr_reg */
1953 offset = 72;
1954 size = 72;
1955
1956 break;
1957 }
1958
1959 /* Make a ".reg/999" section. */
1960 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1961 size, note->descpos + offset);
1962}
1963
1964static bfd_boolean
f1c71a59 1965elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1966{
1967 switch (note->descsz)
1968 {
1969 default:
1970 return FALSE;
1971
8029a119 1972 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 1973 elf_tdata (abfd)->core->pid
4395ee08 1974 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 1975 elf_tdata (abfd)->core->program
7f266840 1976 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 1977 elf_tdata (abfd)->core->command
7f266840
DJ
1978 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1979 }
1980
1981 /* Note that for some reason, a spurious space is tacked
1982 onto the end of the args in some (at least one anyway)
1983 implementations, so strip it off if it exists. */
7f266840 1984 {
228e534f 1985 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
1986 int n = strlen (command);
1987
1988 if (0 < n && command[n - 1] == ' ')
1989 command[n - 1] = '\0';
1990 }
1991
1992 return TRUE;
1993}
1994
1f20dca5
UW
1995static char *
1996elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1997 int note_type, ...)
1998{
1999 switch (note_type)
2000 {
2001 default:
2002 return NULL;
2003
2004 case NT_PRPSINFO:
2005 {
2006 char data[124];
2007 va_list ap;
2008
2009 va_start (ap, note_type);
2010 memset (data, 0, sizeof (data));
2011 strncpy (data + 28, va_arg (ap, const char *), 16);
2012 strncpy (data + 44, va_arg (ap, const char *), 80);
2013 va_end (ap);
2014
2015 return elfcore_write_note (abfd, buf, bufsiz,
2016 "CORE", note_type, data, sizeof (data));
2017 }
2018
2019 case NT_PRSTATUS:
2020 {
2021 char data[148];
2022 va_list ap;
2023 long pid;
2024 int cursig;
2025 const void *greg;
2026
2027 va_start (ap, note_type);
2028 memset (data, 0, sizeof (data));
2029 pid = va_arg (ap, long);
2030 bfd_put_32 (abfd, pid, data + 24);
2031 cursig = va_arg (ap, int);
2032 bfd_put_16 (abfd, cursig, data + 12);
2033 greg = va_arg (ap, const void *);
2034 memcpy (data + 72, greg, 72);
2035 va_end (ap);
2036
2037 return elfcore_write_note (abfd, buf, bufsiz,
2038 "CORE", note_type, data, sizeof (data));
2039 }
2040 }
2041}
2042
6d00b590 2043#define TARGET_LITTLE_SYM arm_elf32_le_vec
7f266840 2044#define TARGET_LITTLE_NAME "elf32-littlearm"
6d00b590 2045#define TARGET_BIG_SYM arm_elf32_be_vec
7f266840
DJ
2046#define TARGET_BIG_NAME "elf32-bigarm"
2047
2048#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2049#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2050#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2051
252b5132
RH
2052typedef unsigned long int insn32;
2053typedef unsigned short int insn16;
2054
3a4a14e9
PB
2055/* In lieu of proper flags, assume all EABIv4 or later objects are
2056 interworkable. */
57e8b36a 2057#define INTERWORK_FLAG(abfd) \
3a4a14e9 2058 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2059 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2060 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2061
252b5132
RH
2062/* The linker script knows the section names for placement.
2063 The entry_names are used to do simple name mangling on the stubs.
2064 Given a function name, and its type, the stub can be found. The
9b485d32 2065 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2066#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2067#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2068
2069#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2070#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2071
c7b8f16e
JB
2072#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2073#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2074
845b51d6
PB
2075#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2076#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2077
7413f23f
DJ
2078#define STUB_ENTRY_NAME "__%s_veneer"
2079
252b5132
RH
2080/* The name of the dynamic interpreter. This is put in the .interp
2081 section. */
2082#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2083
0855e32b 2084static const unsigned long tls_trampoline [] =
b38cadfb
NC
2085{
2086 0xe08e0000, /* add r0, lr, r0 */
2087 0xe5901004, /* ldr r1, [r0,#4] */
2088 0xe12fff11, /* bx r1 */
2089};
0855e32b
NS
2090
2091static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2092{
2093 0xe52d2004, /* push {r2} */
2094 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2095 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2096 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2097 0xe081100f, /* 2: add r1, pc */
2098 0xe12fff12, /* bx r2 */
2099 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2100 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2101 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2102};
0855e32b 2103
5e681ec4
PB
2104#ifdef FOUR_WORD_PLT
2105
252b5132
RH
2106/* The first entry in a procedure linkage table looks like
2107 this. It is set up so that any shared library function that is
59f2c4e7 2108 called before the relocation has been set up calls the dynamic
9b485d32 2109 linker first. */
e5a52504 2110static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2111{
2112 0xe52de004, /* str lr, [sp, #-4]! */
2113 0xe59fe010, /* ldr lr, [pc, #16] */
2114 0xe08fe00e, /* add lr, pc, lr */
2115 0xe5bef008, /* ldr pc, [lr, #8]! */
2116};
5e681ec4
PB
2117
2118/* Subsequent entries in a procedure linkage table look like
2119 this. */
e5a52504 2120static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2121{
2122 0xe28fc600, /* add ip, pc, #NN */
2123 0xe28cca00, /* add ip, ip, #NN */
2124 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2125 0x00000000, /* unused */
2126};
5e681ec4 2127
eed94f8f 2128#else /* not FOUR_WORD_PLT */
5e681ec4 2129
5e681ec4
PB
2130/* The first entry in a procedure linkage table looks like
2131 this. It is set up so that any shared library function that is
2132 called before the relocation has been set up calls the dynamic
2133 linker first. */
e5a52504 2134static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2135{
2136 0xe52de004, /* str lr, [sp, #-4]! */
2137 0xe59fe004, /* ldr lr, [pc, #4] */
2138 0xe08fe00e, /* add lr, pc, lr */
2139 0xe5bef008, /* ldr pc, [lr, #8]! */
2140 0x00000000, /* &GOT[0] - . */
2141};
252b5132 2142
1db37fe6
YG
2143/* By default subsequent entries in a procedure linkage table look like
2144 this. Offsets that don't fit into 28 bits will cause link error. */
2145static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2146{
2147 0xe28fc600, /* add ip, pc, #0xNN00000 */
2148 0xe28cca00, /* add ip, ip, #0xNN000 */
2149 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2150};
5e681ec4 2151
1db37fe6
YG
2152/* When explicitly asked, we'll use this "long" entry format
2153 which can cope with arbitrary displacements. */
2154static const bfd_vma elf32_arm_plt_entry_long [] =
2155{
2156 0xe28fc200, /* add ip, pc, #0xN0000000 */
2157 0xe28cc600, /* add ip, ip, #0xNN00000 */
2158 0xe28cca00, /* add ip, ip, #0xNN000 */
2159 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2160};
2161
2162static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2163
eed94f8f
NC
2164#endif /* not FOUR_WORD_PLT */
2165
2166/* The first entry in a procedure linkage table looks like this.
2167 It is set up so that any shared library function that is called before the
2168 relocation has been set up calls the dynamic linker first. */
2169static const bfd_vma elf32_thumb2_plt0_entry [] =
2170{
2171 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2172 an instruction maybe encoded to one or two array elements. */
2173 0xf8dfb500, /* push {lr} */
2174 0x44fee008, /* ldr.w lr, [pc, #8] */
469a3493 2175 /* add lr, pc */
eed94f8f
NC
2176 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2177 0x00000000, /* &GOT[0] - . */
2178};
2179
2180/* Subsequent entries in a procedure linkage table for thumb only target
2181 look like this. */
2182static const bfd_vma elf32_thumb2_plt_entry [] =
2183{
2184 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2185 an instruction maybe encoded to one or two array elements. */
2186 0x0c00f240, /* movw ip, #0xNNNN */
2187 0x0c00f2c0, /* movt ip, #0xNNNN */
2188 0xf8dc44fc, /* add ip, pc */
2189 0xbf00f000 /* ldr.w pc, [ip] */
469a3493 2190 /* nop */
eed94f8f 2191};
252b5132 2192
00a97672
RS
2193/* The format of the first entry in the procedure linkage table
2194 for a VxWorks executable. */
2195static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb
NC
2196{
2197 0xe52dc008, /* str ip,[sp,#-8]! */
2198 0xe59fc000, /* ldr ip,[pc] */
2199 0xe59cf008, /* ldr pc,[ip,#8] */
2200 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2201};
00a97672
RS
2202
2203/* The format of subsequent entries in a VxWorks executable. */
2204static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb
NC
2205{
2206 0xe59fc000, /* ldr ip,[pc] */
2207 0xe59cf000, /* ldr pc,[ip] */
2208 0x00000000, /* .long @got */
2209 0xe59fc000, /* ldr ip,[pc] */
2210 0xea000000, /* b _PLT */
2211 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2212};
00a97672
RS
2213
2214/* The format of entries in a VxWorks shared library. */
2215static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb
NC
2216{
2217 0xe59fc000, /* ldr ip,[pc] */
2218 0xe79cf009, /* ldr pc,[ip,r9] */
2219 0x00000000, /* .long @got */
2220 0xe59fc000, /* ldr ip,[pc] */
2221 0xe599f008, /* ldr pc,[r9,#8] */
2222 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2223};
00a97672 2224
b7693d02
DJ
2225/* An initial stub used if the PLT entry is referenced from Thumb code. */
2226#define PLT_THUMB_STUB_SIZE 4
2227static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2228{
2229 0x4778, /* bx pc */
2230 0x46c0 /* nop */
2231};
b7693d02 2232
e5a52504
MM
2233/* The entries in a PLT when using a DLL-based target with multiple
2234 address spaces. */
906e58ca 2235static const bfd_vma elf32_arm_symbian_plt_entry [] =
b38cadfb
NC
2236{
2237 0xe51ff004, /* ldr pc, [pc, #-4] */
2238 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2239};
2240
2241/* The first entry in a procedure linkage table looks like
2242 this. It is set up so that any shared library function that is
2243 called before the relocation has been set up calls the dynamic
2244 linker first. */
2245static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2246{
2247 /* First bundle: */
2248 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2249 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2250 0xe08cc00f, /* add ip, ip, pc */
2251 0xe52dc008, /* str ip, [sp, #-8]! */
2252 /* Second bundle: */
edccdf7c
RM
2253 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2254 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2255 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2256 0xe12fff1c, /* bx ip */
b38cadfb 2257 /* Third bundle: */
edccdf7c
RM
2258 0xe320f000, /* nop */
2259 0xe320f000, /* nop */
2260 0xe320f000, /* nop */
b38cadfb
NC
2261 /* .Lplt_tail: */
2262 0xe50dc004, /* str ip, [sp, #-4] */
2263 /* Fourth bundle: */
edccdf7c
RM
2264 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2265 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2266 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2267 0xe12fff1c, /* bx ip */
b38cadfb
NC
2268};
2269#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2270
2271/* Subsequent entries in a procedure linkage table look like this. */
2272static const bfd_vma elf32_arm_nacl_plt_entry [] =
2273{
2274 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2275 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2276 0xe08cc00f, /* add ip, ip, pc */
2277 0xea000000, /* b .Lplt_tail */
2278};
e5a52504 2279
906e58ca
NC
2280#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2281#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2282#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2283#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2284#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2285#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
c5423981
TG
2286#define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2287#define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
906e58ca 2288
461a49ca 2289enum stub_insn_type
b38cadfb
NC
2290{
2291 THUMB16_TYPE = 1,
2292 THUMB32_TYPE,
2293 ARM_TYPE,
2294 DATA_TYPE
2295};
461a49ca 2296
48229727
JB
2297#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2298/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2299 is inserted in arm_build_one_stub(). */
2300#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2301#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2302#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2303#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2304#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2305#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2306
2307typedef struct
2308{
b38cadfb
NC
2309 bfd_vma data;
2310 enum stub_insn_type type;
2311 unsigned int r_type;
2312 int reloc_addend;
461a49ca
DJ
2313} insn_sequence;
2314
fea2b4d6
CL
2315/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2316 to reach the stub if necessary. */
461a49ca 2317static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb
NC
2318{
2319 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2320 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2321};
906e58ca 2322
fea2b4d6
CL
2323/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2324 available. */
461a49ca 2325static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb
NC
2326{
2327 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2328 ARM_INSN (0xe12fff1c), /* bx ip */
2329 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2330};
906e58ca 2331
d3626fb0 2332/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2333static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb
NC
2334{
2335 THUMB16_INSN (0xb401), /* push {r0} */
2336 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2337 THUMB16_INSN (0x4684), /* mov ip, r0 */
2338 THUMB16_INSN (0xbc01), /* pop {r0} */
2339 THUMB16_INSN (0x4760), /* bx ip */
2340 THUMB16_INSN (0xbf00), /* nop */
2341 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2342};
906e58ca 2343
d3626fb0
CL
2344/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2345 allowed. */
2346static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb
NC
2347{
2348 THUMB16_INSN (0x4778), /* bx pc */
2349 THUMB16_INSN (0x46c0), /* nop */
2350 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2351 ARM_INSN (0xe12fff1c), /* bx ip */
2352 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2353};
d3626fb0 2354
fea2b4d6
CL
2355/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2356 available. */
461a49ca 2357static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb
NC
2358{
2359 THUMB16_INSN (0x4778), /* bx pc */
2360 THUMB16_INSN (0x46c0), /* nop */
2361 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2362 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2363};
906e58ca 2364
fea2b4d6
CL
2365/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2366 one, when the destination is close enough. */
461a49ca 2367static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb
NC
2368{
2369 THUMB16_INSN (0x4778), /* bx pc */
2370 THUMB16_INSN (0x46c0), /* nop */
2371 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2372};
c820be07 2373
cf3eccff 2374/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2375 blx to reach the stub if necessary. */
cf3eccff 2376static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb
NC
2377{
2378 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2379 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2380 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2381};
906e58ca 2382
cf3eccff
DJ
2383/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2384 blx to reach the stub if necessary. We can not add into pc;
2385 it is not guaranteed to mode switch (different in ARMv6 and
2386 ARMv7). */
2387static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb
NC
2388{
2389 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2390 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2391 ARM_INSN (0xe12fff1c), /* bx ip */
2392 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2393};
cf3eccff 2394
ebe24dd4
CL
2395/* V4T ARM -> ARM long branch stub, PIC. */
2396static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb
NC
2397{
2398 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2399 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2400 ARM_INSN (0xe12fff1c), /* bx ip */
2401 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2402};
ebe24dd4
CL
2403
2404/* V4T Thumb -> ARM long branch stub, PIC. */
2405static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb
NC
2406{
2407 THUMB16_INSN (0x4778), /* bx pc */
2408 THUMB16_INSN (0x46c0), /* nop */
2409 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2410 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2411 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2412};
ebe24dd4 2413
d3626fb0
CL
2414/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2415 architectures. */
ebe24dd4 2416static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb
NC
2417{
2418 THUMB16_INSN (0xb401), /* push {r0} */
2419 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2420 THUMB16_INSN (0x46fc), /* mov ip, pc */
2421 THUMB16_INSN (0x4484), /* add ip, r0 */
2422 THUMB16_INSN (0xbc01), /* pop {r0} */
2423 THUMB16_INSN (0x4760), /* bx ip */
2424 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2425};
ebe24dd4 2426
d3626fb0
CL
2427/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2428 allowed. */
2429static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb
NC
2430{
2431 THUMB16_INSN (0x4778), /* bx pc */
2432 THUMB16_INSN (0x46c0), /* nop */
2433 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2434 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2435 ARM_INSN (0xe12fff1c), /* bx ip */
2436 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2437};
d3626fb0 2438
0855e32b
NS
2439/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2440 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2441static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2442{
b38cadfb
NC
2443 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2444 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2445 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2446};
2447
2448/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2449 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2450static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2451{
b38cadfb
NC
2452 THUMB16_INSN (0x4778), /* bx pc */
2453 THUMB16_INSN (0x46c0), /* nop */
2454 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2455 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2456 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2457};
2458
7a89b94e
NC
2459/* NaCl ARM -> ARM long branch stub. */
2460static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2461{
2462 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2463 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2464 ARM_INSN (0xe12fff1c), /* bx ip */
2465 ARM_INSN (0xe320f000), /* nop */
2466 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2467 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2468 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2469 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2470};
2471
2472/* NaCl ARM -> ARM long branch stub, PIC. */
2473static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2474{
2475 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2476 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2477 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2478 ARM_INSN (0xe12fff1c), /* bx ip */
2479 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2480 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2481 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2482 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2483};
2484
2485
48229727
JB
2486/* Cortex-A8 erratum-workaround stubs. */
2487
2488/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2489 can't use a conditional branch to reach this stub). */
2490
2491static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb
NC
2492{
2493 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2494 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2495 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2496};
48229727
JB
2497
2498/* Stub used for b.w and bl.w instructions. */
2499
2500static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2501{
2502 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2503};
48229727
JB
2504
2505static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2506{
2507 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2508};
48229727
JB
2509
2510/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2511 instruction (which switches to ARM mode) to point to this stub. Jump to the
2512 real destination using an ARM-mode branch. */
2513
2514static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2515{
2516 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2517};
48229727 2518
9553db3c
NC
2519/* For each section group there can be a specially created linker section
2520 to hold the stubs for that group. The name of the stub section is based
2521 upon the name of another section within that group with the suffix below
2522 applied.
2523
2524 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2525 create what appeared to be a linker stub section when it actually
2526 contained user code/data. For example, consider this fragment:
b38cadfb 2527
9553db3c
NC
2528 const char * stubborn_problems[] = { "np" };
2529
2530 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2531 section called:
2532
2533 .data.rel.local.stubborn_problems
2534
2535 This then causes problems in arm32_arm_build_stubs() as it triggers:
2536
2537 // Ignore non-stub sections.
2538 if (!strstr (stub_sec->name, STUB_SUFFIX))
2539 continue;
2540
2541 And so the section would be ignored instead of being processed. Hence
2542 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2543 C identifier. */
2544#define STUB_SUFFIX ".__stub"
906e58ca 2545
738a79f6
CL
2546/* One entry per long/short branch stub defined above. */
2547#define DEF_STUBS \
2548 DEF_STUB(long_branch_any_any) \
2549 DEF_STUB(long_branch_v4t_arm_thumb) \
2550 DEF_STUB(long_branch_thumb_only) \
2551 DEF_STUB(long_branch_v4t_thumb_thumb) \
2552 DEF_STUB(long_branch_v4t_thumb_arm) \
2553 DEF_STUB(short_branch_v4t_thumb_arm) \
2554 DEF_STUB(long_branch_any_arm_pic) \
2555 DEF_STUB(long_branch_any_thumb_pic) \
2556 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2557 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2558 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727 2559 DEF_STUB(long_branch_thumb_only_pic) \
0855e32b
NS
2560 DEF_STUB(long_branch_any_tls_pic) \
2561 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
7a89b94e
NC
2562 DEF_STUB(long_branch_arm_nacl) \
2563 DEF_STUB(long_branch_arm_nacl_pic) \
48229727
JB
2564 DEF_STUB(a8_veneer_b_cond) \
2565 DEF_STUB(a8_veneer_b) \
2566 DEF_STUB(a8_veneer_bl) \
2567 DEF_STUB(a8_veneer_blx)
738a79f6
CL
2568
2569#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2570enum elf32_arm_stub_type
2571{
906e58ca 2572 arm_stub_none,
738a79f6 2573 DEF_STUBS
6a631e86 2574 /* Note the first a8_veneer type. */
eb7c4339 2575 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
738a79f6
CL
2576};
2577#undef DEF_STUB
2578
2579typedef struct
2580{
d3ce72d0 2581 const insn_sequence* template_sequence;
738a79f6
CL
2582 int template_size;
2583} stub_def;
2584
2585#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2586static const stub_def stub_definitions[] =
2587{
738a79f6
CL
2588 {NULL, 0},
2589 DEF_STUBS
906e58ca
NC
2590};
2591
2592struct elf32_arm_stub_hash_entry
2593{
2594 /* Base hash table entry structure. */
2595 struct bfd_hash_entry root;
2596
2597 /* The stub section. */
2598 asection *stub_sec;
2599
2600 /* Offset within stub_sec of the beginning of this stub. */
2601 bfd_vma stub_offset;
2602
2603 /* Given the symbol's value and its section we can determine its final
2604 value when building the stubs (so the stub knows where to jump). */
2605 bfd_vma target_value;
2606 asection *target_section;
2607
48229727
JB
2608 /* Offset to apply to relocation referencing target_value. */
2609 bfd_vma target_addend;
2610
2611 /* The instruction which caused this stub to be generated (only valid for
2612 Cortex-A8 erratum workaround stubs at present). */
2613 unsigned long orig_insn;
2614
461a49ca 2615 /* The stub type. */
906e58ca 2616 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2617 /* Its encoding size in bytes. */
2618 int stub_size;
2619 /* Its template. */
2620 const insn_sequence *stub_template;
2621 /* The size of the template (number of entries). */
2622 int stub_template_size;
906e58ca
NC
2623
2624 /* The symbol table entry, if any, that this was derived from. */
2625 struct elf32_arm_link_hash_entry *h;
2626
35fc36a8
RS
2627 /* Type of branch. */
2628 enum arm_st_branch_type branch_type;
906e58ca
NC
2629
2630 /* Where this stub is being called from, or, in the case of combined
2631 stub sections, the first input section in the group. */
2632 asection *id_sec;
7413f23f
DJ
2633
2634 /* The name for the local symbol at the start of this stub. The
2635 stub name in the hash table has to be unique; this does not, so
2636 it can be friendlier. */
2637 char *output_name;
906e58ca
NC
2638};
2639
e489d0ae
PB
2640/* Used to build a map of a section. This is required for mixed-endian
2641 code/data. */
2642
2643typedef struct elf32_elf_section_map
2644{
2645 bfd_vma vma;
2646 char type;
2647}
2648elf32_arm_section_map;
2649
c7b8f16e
JB
2650/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2651
2652typedef enum
2653{
2654 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2655 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2656 VFP11_ERRATUM_ARM_VENEER,
2657 VFP11_ERRATUM_THUMB_VENEER
2658}
2659elf32_vfp11_erratum_type;
2660
2661typedef struct elf32_vfp11_erratum_list
2662{
2663 struct elf32_vfp11_erratum_list *next;
2664 bfd_vma vma;
2665 union
2666 {
2667 struct
2668 {
2669 struct elf32_vfp11_erratum_list *veneer;
2670 unsigned int vfp_insn;
2671 } b;
2672 struct
2673 {
2674 struct elf32_vfp11_erratum_list *branch;
2675 unsigned int id;
2676 } v;
2677 } u;
2678 elf32_vfp11_erratum_type type;
2679}
2680elf32_vfp11_erratum_list;
2681
2468f9c9
PB
2682typedef enum
2683{
2684 DELETE_EXIDX_ENTRY,
2685 INSERT_EXIDX_CANTUNWIND_AT_END
2686}
2687arm_unwind_edit_type;
2688
2689/* A (sorted) list of edits to apply to an unwind table. */
2690typedef struct arm_unwind_table_edit
2691{
2692 arm_unwind_edit_type type;
2693 /* Note: we sometimes want to insert an unwind entry corresponding to a
2694 section different from the one we're currently writing out, so record the
2695 (text) section this edit relates to here. */
2696 asection *linked_section;
2697 unsigned int index;
2698 struct arm_unwind_table_edit *next;
2699}
2700arm_unwind_table_edit;
2701
8e3de13a 2702typedef struct _arm_elf_section_data
e489d0ae 2703{
2468f9c9 2704 /* Information about mapping symbols. */
e489d0ae 2705 struct bfd_elf_section_data elf;
8e3de13a 2706 unsigned int mapcount;
c7b8f16e 2707 unsigned int mapsize;
e489d0ae 2708 elf32_arm_section_map *map;
2468f9c9 2709 /* Information about CPU errata. */
c7b8f16e
JB
2710 unsigned int erratumcount;
2711 elf32_vfp11_erratum_list *erratumlist;
2468f9c9
PB
2712 /* Information about unwind tables. */
2713 union
2714 {
2715 /* Unwind info attached to a text section. */
2716 struct
2717 {
2718 asection *arm_exidx_sec;
2719 } text;
2720
2721 /* Unwind info attached to an .ARM.exidx section. */
2722 struct
2723 {
2724 arm_unwind_table_edit *unwind_edit_list;
2725 arm_unwind_table_edit *unwind_edit_tail;
2726 } exidx;
2727 } u;
8e3de13a
NC
2728}
2729_arm_elf_section_data;
e489d0ae
PB
2730
2731#define elf32_arm_section_data(sec) \
8e3de13a 2732 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2733
48229727
JB
2734/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2735 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2736 so may be created multiple times: we use an array of these entries whilst
2737 relaxing which we can refresh easily, then create stubs for each potentially
2738 erratum-triggering instruction once we've settled on a solution. */
2739
b38cadfb
NC
2740struct a8_erratum_fix
2741{
48229727
JB
2742 bfd *input_bfd;
2743 asection *section;
2744 bfd_vma offset;
2745 bfd_vma addend;
2746 unsigned long orig_insn;
2747 char *stub_name;
2748 enum elf32_arm_stub_type stub_type;
35fc36a8 2749 enum arm_st_branch_type branch_type;
48229727
JB
2750};
2751
2752/* A table of relocs applied to branches which might trigger Cortex-A8
2753 erratum. */
2754
b38cadfb
NC
2755struct a8_erratum_reloc
2756{
48229727
JB
2757 bfd_vma from;
2758 bfd_vma destination;
92750f34
DJ
2759 struct elf32_arm_link_hash_entry *hash;
2760 const char *sym_name;
48229727 2761 unsigned int r_type;
35fc36a8 2762 enum arm_st_branch_type branch_type;
48229727
JB
2763 bfd_boolean non_a8_stub;
2764};
2765
ba93b8ac
DJ
2766/* The size of the thread control block. */
2767#define TCB_SIZE 8
2768
34e77a92
RS
2769/* ARM-specific information about a PLT entry, over and above the usual
2770 gotplt_union. */
b38cadfb
NC
2771struct arm_plt_info
2772{
34e77a92
RS
2773 /* We reference count Thumb references to a PLT entry separately,
2774 so that we can emit the Thumb trampoline only if needed. */
2775 bfd_signed_vma thumb_refcount;
2776
2777 /* Some references from Thumb code may be eliminated by BL->BLX
2778 conversion, so record them separately. */
2779 bfd_signed_vma maybe_thumb_refcount;
2780
2781 /* How many of the recorded PLT accesses were from non-call relocations.
2782 This information is useful when deciding whether anything takes the
2783 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2784 non-call references to the function should resolve directly to the
2785 real runtime target. */
2786 unsigned int noncall_refcount;
2787
2788 /* Since PLT entries have variable size if the Thumb prologue is
2789 used, we need to record the index into .got.plt instead of
2790 recomputing it from the PLT offset. */
2791 bfd_signed_vma got_offset;
2792};
2793
2794/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
2795struct arm_local_iplt_info
2796{
34e77a92
RS
2797 /* The information that is usually found in the generic ELF part of
2798 the hash table entry. */
2799 union gotplt_union root;
2800
2801 /* The information that is usually found in the ARM-specific part of
2802 the hash table entry. */
2803 struct arm_plt_info arm;
2804
2805 /* A list of all potential dynamic relocations against this symbol. */
2806 struct elf_dyn_relocs *dyn_relocs;
2807};
2808
0ffa91dd 2809struct elf_arm_obj_tdata
ba93b8ac
DJ
2810{
2811 struct elf_obj_tdata root;
2812
2813 /* tls_type for each local got entry. */
2814 char *local_got_tls_type;
ee065d83 2815
0855e32b
NS
2816 /* GOTPLT entries for TLS descriptors. */
2817 bfd_vma *local_tlsdesc_gotent;
2818
34e77a92
RS
2819 /* Information for local symbols that need entries in .iplt. */
2820 struct arm_local_iplt_info **local_iplt;
2821
bf21ed78
MS
2822 /* Zero to warn when linking objects with incompatible enum sizes. */
2823 int no_enum_size_warning;
a9dc9481
JM
2824
2825 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2826 int no_wchar_size_warning;
ba93b8ac
DJ
2827};
2828
0ffa91dd
NC
2829#define elf_arm_tdata(bfd) \
2830 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2831
0ffa91dd
NC
2832#define elf32_arm_local_got_tls_type(bfd) \
2833 (elf_arm_tdata (bfd)->local_got_tls_type)
2834
0855e32b
NS
2835#define elf32_arm_local_tlsdesc_gotent(bfd) \
2836 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2837
34e77a92
RS
2838#define elf32_arm_local_iplt(bfd) \
2839 (elf_arm_tdata (bfd)->local_iplt)
2840
0ffa91dd
NC
2841#define is_arm_elf(bfd) \
2842 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2843 && elf_tdata (bfd) != NULL \
4dfe6ac6 2844 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
2845
2846static bfd_boolean
2847elf32_arm_mkobject (bfd *abfd)
2848{
0ffa91dd 2849 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 2850 ARM_ELF_DATA);
ba93b8ac
DJ
2851}
2852
ba93b8ac
DJ
2853#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2854
ba96a88f 2855/* Arm ELF linker hash entry. */
252b5132 2856struct elf32_arm_link_hash_entry
b38cadfb
NC
2857{
2858 struct elf_link_hash_entry root;
252b5132 2859
b38cadfb
NC
2860 /* Track dynamic relocs copied for this symbol. */
2861 struct elf_dyn_relocs *dyn_relocs;
b7693d02 2862
b38cadfb
NC
2863 /* ARM-specific PLT information. */
2864 struct arm_plt_info plt;
ba93b8ac
DJ
2865
2866#define GOT_UNKNOWN 0
2867#define GOT_NORMAL 1
2868#define GOT_TLS_GD 2
2869#define GOT_TLS_IE 4
0855e32b
NS
2870#define GOT_TLS_GDESC 8
2871#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 2872 unsigned int tls_type : 8;
34e77a92 2873
b38cadfb
NC
2874 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2875 unsigned int is_iplt : 1;
34e77a92 2876
b38cadfb 2877 unsigned int unused : 23;
a4fd1a8e 2878
b38cadfb
NC
2879 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2880 starting at the end of the jump table. */
2881 bfd_vma tlsdesc_got;
0855e32b 2882
b38cadfb
NC
2883 /* The symbol marking the real symbol location for exported thumb
2884 symbols with Arm stubs. */
2885 struct elf_link_hash_entry *export_glue;
906e58ca 2886
b38cadfb 2887 /* A pointer to the most recently used stub hash entry against this
8029a119 2888 symbol. */
b38cadfb
NC
2889 struct elf32_arm_stub_hash_entry *stub_cache;
2890};
252b5132 2891
252b5132 2892/* Traverse an arm ELF linker hash table. */
252b5132
RH
2893#define elf32_arm_link_hash_traverse(table, func, info) \
2894 (elf_link_hash_traverse \
2895 (&(table)->root, \
b7693d02 2896 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
2897 (info)))
2898
2899/* Get the ARM elf linker hash table from a link_info structure. */
2900#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
2901 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2902 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 2903
906e58ca
NC
2904#define arm_stub_hash_lookup(table, string, create, copy) \
2905 ((struct elf32_arm_stub_hash_entry *) \
2906 bfd_hash_lookup ((table), (string), (create), (copy)))
2907
21d799b5
NC
2908/* Array to keep track of which stub sections have been created, and
2909 information on stub grouping. */
2910struct map_stub
2911{
2912 /* This is the section to which stubs in the group will be
2913 attached. */
2914 asection *link_sec;
2915 /* The stub section. */
2916 asection *stub_sec;
2917};
2918
0855e32b
NS
2919#define elf32_arm_compute_jump_table_size(htab) \
2920 ((htab)->next_tls_desc_index * 4)
2921
9b485d32 2922/* ARM ELF linker hash table. */
252b5132 2923struct elf32_arm_link_hash_table
906e58ca
NC
2924{
2925 /* The main hash table. */
2926 struct elf_link_hash_table root;
252b5132 2927
906e58ca
NC
2928 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2929 bfd_size_type thumb_glue_size;
252b5132 2930
906e58ca
NC
2931 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2932 bfd_size_type arm_glue_size;
252b5132 2933
906e58ca
NC
2934 /* The size in bytes of section containing the ARMv4 BX veneers. */
2935 bfd_size_type bx_glue_size;
845b51d6 2936
906e58ca
NC
2937 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2938 veneer has been populated. */
2939 bfd_vma bx_glue_offset[15];
845b51d6 2940
906e58ca
NC
2941 /* The size in bytes of the section containing glue for VFP11 erratum
2942 veneers. */
2943 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 2944
48229727
JB
2945 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2946 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2947 elf32_arm_write_section(). */
2948 struct a8_erratum_fix *a8_erratum_fixes;
2949 unsigned int num_a8_erratum_fixes;
2950
906e58ca
NC
2951 /* An arbitrary input BFD chosen to hold the glue sections. */
2952 bfd * bfd_of_glue_owner;
ba96a88f 2953
906e58ca
NC
2954 /* Nonzero to output a BE8 image. */
2955 int byteswap_code;
e489d0ae 2956
906e58ca
NC
2957 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2958 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2959 int target1_is_rel;
9c504268 2960
906e58ca
NC
2961 /* The relocation to use for R_ARM_TARGET2 relocations. */
2962 int target2_reloc;
eb043451 2963
906e58ca
NC
2964 /* 0 = Ignore R_ARM_V4BX.
2965 1 = Convert BX to MOV PC.
2966 2 = Generate v4 interworing stubs. */
2967 int fix_v4bx;
319850b4 2968
48229727
JB
2969 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2970 int fix_cortex_a8;
2971
2de70689
MGD
2972 /* Whether we should fix the ARM1176 BLX immediate issue. */
2973 int fix_arm1176;
2974
906e58ca
NC
2975 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2976 int use_blx;
33bfe774 2977
906e58ca
NC
2978 /* What sort of code sequences we should look for which may trigger the
2979 VFP11 denorm erratum. */
2980 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 2981
906e58ca
NC
2982 /* Global counter for the number of fixes we have emitted. */
2983 int num_vfp11_fixes;
c7b8f16e 2984
906e58ca
NC
2985 /* Nonzero to force PIC branch veneers. */
2986 int pic_veneer;
27e55c4d 2987
906e58ca
NC
2988 /* The number of bytes in the initial entry in the PLT. */
2989 bfd_size_type plt_header_size;
e5a52504 2990
906e58ca
NC
2991 /* The number of bytes in the subsequent PLT etries. */
2992 bfd_size_type plt_entry_size;
e5a52504 2993
906e58ca
NC
2994 /* True if the target system is VxWorks. */
2995 int vxworks_p;
00a97672 2996
906e58ca
NC
2997 /* True if the target system is Symbian OS. */
2998 int symbian_p;
e5a52504 2999
b38cadfb
NC
3000 /* True if the target system is Native Client. */
3001 int nacl_p;
3002
906e58ca
NC
3003 /* True if the target uses REL relocations. */
3004 int use_rel;
4e7fd91e 3005
0855e32b
NS
3006 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3007 bfd_vma next_tls_desc_index;
3008
3009 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3010 bfd_vma num_tls_desc;
3011
906e58ca 3012 /* Short-cuts to get to dynamic linker sections. */
906e58ca
NC
3013 asection *sdynbss;
3014 asection *srelbss;
5e681ec4 3015
906e58ca
NC
3016 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3017 asection *srelplt2;
00a97672 3018
0855e32b
NS
3019 /* The offset into splt of the PLT entry for the TLS descriptor
3020 resolver. Special values are 0, if not necessary (or not found
3021 to be necessary yet), and -1 if needed but not determined
3022 yet. */
3023 bfd_vma dt_tlsdesc_plt;
3024
3025 /* The offset into sgot of the GOT entry used by the PLT entry
3026 above. */
b38cadfb 3027 bfd_vma dt_tlsdesc_got;
0855e32b
NS
3028
3029 /* Offset in .plt section of tls_arm_trampoline. */
3030 bfd_vma tls_trampoline;
3031
906e58ca
NC
3032 /* Data for R_ARM_TLS_LDM32 relocations. */
3033 union
3034 {
3035 bfd_signed_vma refcount;
3036 bfd_vma offset;
3037 } tls_ldm_got;
b7693d02 3038
87d72d41
AM
3039 /* Small local sym cache. */
3040 struct sym_cache sym_cache;
906e58ca
NC
3041
3042 /* For convenience in allocate_dynrelocs. */
3043 bfd * obfd;
3044
0855e32b
NS
3045 /* The amount of space used by the reserved portion of the sgotplt
3046 section, plus whatever space is used by the jump slots. */
3047 bfd_vma sgotplt_jump_table_size;
3048
906e58ca
NC
3049 /* The stub hash table. */
3050 struct bfd_hash_table stub_hash_table;
3051
3052 /* Linker stub bfd. */
3053 bfd *stub_bfd;
3054
3055 /* Linker call-backs. */
7a89b94e 3056 asection * (*add_stub_section) (const char *, asection *, unsigned int);
906e58ca
NC
3057 void (*layout_sections_again) (void);
3058
3059 /* Array to keep track of which stub sections have been created, and
3060 information on stub grouping. */
21d799b5 3061 struct map_stub *stub_group;
906e58ca 3062
fe33d2fa
CL
3063 /* Number of elements in stub_group. */
3064 int top_id;
3065
906e58ca
NC
3066 /* Assorted information used by elf32_arm_size_stubs. */
3067 unsigned int bfd_count;
3068 int top_index;
3069 asection **input_list;
3070};
252b5132 3071
780a67af
NC
3072/* Create an entry in an ARM ELF linker hash table. */
3073
3074static struct bfd_hash_entry *
57e8b36a 3075elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3076 struct bfd_hash_table * table,
3077 const char * string)
780a67af
NC
3078{
3079 struct elf32_arm_link_hash_entry * ret =
3080 (struct elf32_arm_link_hash_entry *) entry;
3081
3082 /* Allocate the structure if it has not already been allocated by a
3083 subclass. */
906e58ca 3084 if (ret == NULL)
21d799b5 3085 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3086 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3087 if (ret == NULL)
780a67af
NC
3088 return (struct bfd_hash_entry *) ret;
3089
3090 /* Call the allocation method of the superclass. */
3091 ret = ((struct elf32_arm_link_hash_entry *)
3092 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3093 table, string));
57e8b36a 3094 if (ret != NULL)
b7693d02 3095 {
0bdcacaf 3096 ret->dyn_relocs = NULL;
ba93b8ac 3097 ret->tls_type = GOT_UNKNOWN;
0855e32b 3098 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3099 ret->plt.thumb_refcount = 0;
3100 ret->plt.maybe_thumb_refcount = 0;
3101 ret->plt.noncall_refcount = 0;
3102 ret->plt.got_offset = -1;
3103 ret->is_iplt = FALSE;
a4fd1a8e 3104 ret->export_glue = NULL;
906e58ca
NC
3105
3106 ret->stub_cache = NULL;
b7693d02 3107 }
780a67af
NC
3108
3109 return (struct bfd_hash_entry *) ret;
3110}
3111
34e77a92
RS
3112/* Ensure that we have allocated bookkeeping structures for ABFD's local
3113 symbols. */
3114
3115static bfd_boolean
3116elf32_arm_allocate_local_sym_info (bfd *abfd)
3117{
3118 if (elf_local_got_refcounts (abfd) == NULL)
3119 {
3120 bfd_size_type num_syms;
3121 bfd_size_type size;
3122 char *data;
3123
3124 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3125 size = num_syms * (sizeof (bfd_signed_vma)
3126 + sizeof (struct arm_local_iplt_info *)
3127 + sizeof (bfd_vma)
3128 + sizeof (char));
3129 data = bfd_zalloc (abfd, size);
3130 if (data == NULL)
3131 return FALSE;
3132
3133 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3134 data += num_syms * sizeof (bfd_signed_vma);
3135
3136 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3137 data += num_syms * sizeof (struct arm_local_iplt_info *);
3138
3139 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3140 data += num_syms * sizeof (bfd_vma);
3141
3142 elf32_arm_local_got_tls_type (abfd) = data;
3143 }
3144 return TRUE;
3145}
3146
3147/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3148 to input bfd ABFD. Create the information if it doesn't already exist.
3149 Return null if an allocation fails. */
3150
3151static struct arm_local_iplt_info *
3152elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3153{
3154 struct arm_local_iplt_info **ptr;
3155
3156 if (!elf32_arm_allocate_local_sym_info (abfd))
3157 return NULL;
3158
3159 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3160 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3161 if (*ptr == NULL)
3162 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3163 return *ptr;
3164}
3165
3166/* Try to obtain PLT information for the symbol with index R_SYMNDX
3167 in ABFD's symbol table. If the symbol is global, H points to its
3168 hash table entry, otherwise H is null.
3169
3170 Return true if the symbol does have PLT information. When returning
3171 true, point *ROOT_PLT at the target-independent reference count/offset
3172 union and *ARM_PLT at the ARM-specific information. */
3173
3174static bfd_boolean
3175elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3176 unsigned long r_symndx, union gotplt_union **root_plt,
3177 struct arm_plt_info **arm_plt)
3178{
3179 struct arm_local_iplt_info *local_iplt;
3180
3181 if (h != NULL)
3182 {
3183 *root_plt = &h->root.plt;
3184 *arm_plt = &h->plt;
3185 return TRUE;
3186 }
3187
3188 if (elf32_arm_local_iplt (abfd) == NULL)
3189 return FALSE;
3190
3191 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3192 if (local_iplt == NULL)
3193 return FALSE;
3194
3195 *root_plt = &local_iplt->root;
3196 *arm_plt = &local_iplt->arm;
3197 return TRUE;
3198}
3199
3200/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3201 before it. */
3202
3203static bfd_boolean
3204elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3205 struct arm_plt_info *arm_plt)
3206{
3207 struct elf32_arm_link_hash_table *htab;
3208
3209 htab = elf32_arm_hash_table (info);
3210 return (arm_plt->thumb_refcount != 0
3211 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3212}
3213
3214/* Return a pointer to the head of the dynamic reloc list that should
3215 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3216 ABFD's symbol table. Return null if an error occurs. */
3217
3218static struct elf_dyn_relocs **
3219elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3220 Elf_Internal_Sym *isym)
3221{
3222 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3223 {
3224 struct arm_local_iplt_info *local_iplt;
3225
3226 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3227 if (local_iplt == NULL)
3228 return NULL;
3229 return &local_iplt->dyn_relocs;
3230 }
3231 else
3232 {
3233 /* Track dynamic relocs needed for local syms too.
3234 We really need local syms available to do this
3235 easily. Oh well. */
3236 asection *s;
3237 void *vpp;
3238
3239 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3240 if (s == NULL)
3241 abort ();
3242
3243 vpp = &elf_section_data (s)->local_dynrel;
3244 return (struct elf_dyn_relocs **) vpp;
3245 }
3246}
3247
906e58ca
NC
3248/* Initialize an entry in the stub hash table. */
3249
3250static struct bfd_hash_entry *
3251stub_hash_newfunc (struct bfd_hash_entry *entry,
3252 struct bfd_hash_table *table,
3253 const char *string)
3254{
3255 /* Allocate the structure if it has not already been allocated by a
3256 subclass. */
3257 if (entry == NULL)
3258 {
21d799b5 3259 entry = (struct bfd_hash_entry *)
99059e56 3260 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3261 if (entry == NULL)
3262 return entry;
3263 }
3264
3265 /* Call the allocation method of the superclass. */
3266 entry = bfd_hash_newfunc (entry, table, string);
3267 if (entry != NULL)
3268 {
3269 struct elf32_arm_stub_hash_entry *eh;
3270
3271 /* Initialize the local fields. */
3272 eh = (struct elf32_arm_stub_hash_entry *) entry;
3273 eh->stub_sec = NULL;
3274 eh->stub_offset = 0;
3275 eh->target_value = 0;
3276 eh->target_section = NULL;
cedfb179
DK
3277 eh->target_addend = 0;
3278 eh->orig_insn = 0;
906e58ca 3279 eh->stub_type = arm_stub_none;
461a49ca
DJ
3280 eh->stub_size = 0;
3281 eh->stub_template = NULL;
3282 eh->stub_template_size = 0;
906e58ca
NC
3283 eh->h = NULL;
3284 eh->id_sec = NULL;
d8d2f433 3285 eh->output_name = NULL;
906e58ca
NC
3286 }
3287
3288 return entry;
3289}
3290
00a97672 3291/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3292 shortcuts to them in our hash table. */
3293
3294static bfd_boolean
57e8b36a 3295create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3296{
3297 struct elf32_arm_link_hash_table *htab;
3298
e5a52504 3299 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3300 if (htab == NULL)
3301 return FALSE;
3302
e5a52504
MM
3303 /* BPABI objects never have a GOT, or associated sections. */
3304 if (htab->symbian_p)
3305 return TRUE;
3306
5e681ec4
PB
3307 if (! _bfd_elf_create_got_section (dynobj, info))
3308 return FALSE;
3309
5e681ec4
PB
3310 return TRUE;
3311}
3312
34e77a92
RS
3313/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3314
3315static bfd_boolean
3316create_ifunc_sections (struct bfd_link_info *info)
3317{
3318 struct elf32_arm_link_hash_table *htab;
3319 const struct elf_backend_data *bed;
3320 bfd *dynobj;
3321 asection *s;
3322 flagword flags;
b38cadfb 3323
34e77a92
RS
3324 htab = elf32_arm_hash_table (info);
3325 dynobj = htab->root.dynobj;
3326 bed = get_elf_backend_data (dynobj);
3327 flags = bed->dynamic_sec_flags;
3328
3329 if (htab->root.iplt == NULL)
3330 {
3d4d4302
AM
3331 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3332 flags | SEC_READONLY | SEC_CODE);
34e77a92 3333 if (s == NULL
a0f49396 3334 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
34e77a92
RS
3335 return FALSE;
3336 htab->root.iplt = s;
3337 }
3338
3339 if (htab->root.irelplt == NULL)
3340 {
3d4d4302
AM
3341 s = bfd_make_section_anyway_with_flags (dynobj,
3342 RELOC_SECTION (htab, ".iplt"),
3343 flags | SEC_READONLY);
34e77a92 3344 if (s == NULL
a0f49396 3345 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
34e77a92
RS
3346 return FALSE;
3347 htab->root.irelplt = s;
3348 }
3349
3350 if (htab->root.igotplt == NULL)
3351 {
3d4d4302 3352 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92
RS
3353 if (s == NULL
3354 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3355 return FALSE;
3356 htab->root.igotplt = s;
3357 }
3358 return TRUE;
3359}
3360
eed94f8f
NC
3361/* Determine if we're dealing with a Thumb only architecture. */
3362
3363static bfd_boolean
3364using_thumb_only (struct elf32_arm_link_hash_table *globals)
3365{
3366 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3367 Tag_CPU_arch);
3368 int profile;
3369
3370 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3371 return TRUE;
3372
3373 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3374 return FALSE;
3375
3376 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3377 Tag_CPU_arch_profile);
3378
3379 return profile == 'M';
3380}
3381
3382/* Determine if we're dealing with a Thumb-2 object. */
3383
3384static bfd_boolean
3385using_thumb2 (struct elf32_arm_link_hash_table *globals)
3386{
3387 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3388 Tag_CPU_arch);
3389 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3390}
3391
00a97672
RS
3392/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3393 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3394 hash table. */
3395
3396static bfd_boolean
57e8b36a 3397elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3398{
3399 struct elf32_arm_link_hash_table *htab;
3400
3401 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3402 if (htab == NULL)
3403 return FALSE;
3404
362d30a1 3405 if (!htab->root.sgot && !create_got_section (dynobj, info))
5e681ec4
PB
3406 return FALSE;
3407
3408 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3409 return FALSE;
3410
3d4d4302 3411 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5e681ec4 3412 if (!info->shared)
3d4d4302
AM
3413 htab->srelbss = bfd_get_linker_section (dynobj,
3414 RELOC_SECTION (htab, ".bss"));
00a97672
RS
3415
3416 if (htab->vxworks_p)
3417 {
3418 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3419 return FALSE;
3420
3421 if (info->shared)
3422 {
3423 htab->plt_header_size = 0;
3424 htab->plt_entry_size
3425 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3426 }
3427 else
3428 {
3429 htab->plt_header_size
3430 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3431 htab->plt_entry_size
3432 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3433 }
3434 }
eed94f8f
NC
3435 else
3436 {
3437 /* PR ld/16017
3438 Test for thumb only architectures. Note - we cannot just call
3439 using_thumb_only() as the attributes in the output bfd have not been
3440 initialised at this point, so instead we use the input bfd. */
3441 bfd * saved_obfd = htab->obfd;
3442
3443 htab->obfd = dynobj;
3444 if (using_thumb_only (htab))
3445 {
3446 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3447 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3448 }
3449 htab->obfd = saved_obfd;
3450 }
5e681ec4 3451
362d30a1
RS
3452 if (!htab->root.splt
3453 || !htab->root.srelplt
e5a52504 3454 || !htab->sdynbss
5e681ec4
PB
3455 || (!info->shared && !htab->srelbss))
3456 abort ();
3457
3458 return TRUE;
3459}
3460
906e58ca
NC
3461/* Copy the extra info we tack onto an elf_link_hash_entry. */
3462
3463static void
3464elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3465 struct elf_link_hash_entry *dir,
3466 struct elf_link_hash_entry *ind)
3467{
3468 struct elf32_arm_link_hash_entry *edir, *eind;
3469
3470 edir = (struct elf32_arm_link_hash_entry *) dir;
3471 eind = (struct elf32_arm_link_hash_entry *) ind;
3472
0bdcacaf 3473 if (eind->dyn_relocs != NULL)
906e58ca 3474 {
0bdcacaf 3475 if (edir->dyn_relocs != NULL)
906e58ca 3476 {
0bdcacaf
RS
3477 struct elf_dyn_relocs **pp;
3478 struct elf_dyn_relocs *p;
906e58ca
NC
3479
3480 /* Add reloc counts against the indirect sym to the direct sym
3481 list. Merge any entries against the same section. */
0bdcacaf 3482 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
906e58ca 3483 {
0bdcacaf 3484 struct elf_dyn_relocs *q;
906e58ca 3485
0bdcacaf
RS
3486 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3487 if (q->sec == p->sec)
906e58ca
NC
3488 {
3489 q->pc_count += p->pc_count;
3490 q->count += p->count;
3491 *pp = p->next;
3492 break;
3493 }
3494 if (q == NULL)
3495 pp = &p->next;
3496 }
0bdcacaf 3497 *pp = edir->dyn_relocs;
906e58ca
NC
3498 }
3499
0bdcacaf
RS
3500 edir->dyn_relocs = eind->dyn_relocs;
3501 eind->dyn_relocs = NULL;
906e58ca
NC
3502 }
3503
3504 if (ind->root.type == bfd_link_hash_indirect)
3505 {
3506 /* Copy over PLT info. */
34e77a92
RS
3507 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3508 eind->plt.thumb_refcount = 0;
3509 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3510 eind->plt.maybe_thumb_refcount = 0;
3511 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3512 eind->plt.noncall_refcount = 0;
3513
3514 /* We should only allocate a function to .iplt once the final
3515 symbol information is known. */
3516 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
3517
3518 if (dir->got.refcount <= 0)
3519 {
3520 edir->tls_type = eind->tls_type;
3521 eind->tls_type = GOT_UNKNOWN;
3522 }
3523 }
3524
3525 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3526}
3527
68faa637
AM
3528/* Destroy an ARM elf linker hash table. */
3529
3530static void
d495ab0d 3531elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
3532{
3533 struct elf32_arm_link_hash_table *ret
d495ab0d 3534 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
3535
3536 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 3537 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
3538}
3539
906e58ca
NC
3540/* Create an ARM elf linker hash table. */
3541
3542static struct bfd_link_hash_table *
3543elf32_arm_link_hash_table_create (bfd *abfd)
3544{
3545 struct elf32_arm_link_hash_table *ret;
3546 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3547
7bf52ea2 3548 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
3549 if (ret == NULL)
3550 return NULL;
3551
3552 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3553 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
3554 sizeof (struct elf32_arm_link_hash_entry),
3555 ARM_ELF_DATA))
906e58ca
NC
3556 {
3557 free (ret);
3558 return NULL;
3559 }
3560
906e58ca 3561 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
906e58ca
NC
3562#ifdef FOUR_WORD_PLT
3563 ret->plt_header_size = 16;
3564 ret->plt_entry_size = 16;
3565#else
3566 ret->plt_header_size = 20;
1db37fe6 3567 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 3568#endif
906e58ca 3569 ret->use_rel = 1;
906e58ca 3570 ret->obfd = abfd;
906e58ca
NC
3571
3572 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3573 sizeof (struct elf32_arm_stub_hash_entry)))
3574 {
d495ab0d 3575 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
3576 return NULL;
3577 }
d495ab0d 3578 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
3579
3580 return &ret->root.root;
3581}
3582
cd1dac3d
DG
3583/* Determine what kind of NOPs are available. */
3584
3585static bfd_boolean
3586arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3587{
3588 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3589 Tag_CPU_arch);
3590 return arch == TAG_CPU_ARCH_V6T2
3591 || arch == TAG_CPU_ARCH_V6K
9e3c6df6
PB
3592 || arch == TAG_CPU_ARCH_V7
3593 || arch == TAG_CPU_ARCH_V7E_M;
cd1dac3d
DG
3594}
3595
3596static bfd_boolean
3597arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3598{
3599 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3600 Tag_CPU_arch);
9e3c6df6
PB
3601 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3602 || arch == TAG_CPU_ARCH_V7E_M);
cd1dac3d
DG
3603}
3604
f4ac8484
DJ
3605static bfd_boolean
3606arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3607{
3608 switch (stub_type)
3609 {
fea2b4d6
CL
3610 case arm_stub_long_branch_thumb_only:
3611 case arm_stub_long_branch_v4t_thumb_arm:
3612 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 3613 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 3614 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 3615 case arm_stub_long_branch_thumb_only_pic:
f4ac8484
DJ
3616 return TRUE;
3617 case arm_stub_none:
3618 BFD_FAIL ();
3619 return FALSE;
3620 break;
3621 default:
3622 return FALSE;
3623 }
3624}
3625
906e58ca
NC
3626/* Determine the type of stub needed, if any, for a call. */
3627
3628static enum elf32_arm_stub_type
3629arm_type_of_stub (struct bfd_link_info *info,
3630 asection *input_sec,
3631 const Elf_Internal_Rela *rel,
34e77a92 3632 unsigned char st_type,
35fc36a8 3633 enum arm_st_branch_type *actual_branch_type,
906e58ca 3634 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
3635 bfd_vma destination,
3636 asection *sym_sec,
3637 bfd *input_bfd,
3638 const char *name)
906e58ca
NC
3639{
3640 bfd_vma location;
3641 bfd_signed_vma branch_offset;
3642 unsigned int r_type;
3643 struct elf32_arm_link_hash_table * globals;
3644 int thumb2;
3645 int thumb_only;
3646 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 3647 int use_plt = 0;
35fc36a8 3648 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
3649 union gotplt_union *root_plt;
3650 struct arm_plt_info *arm_plt;
906e58ca 3651
35fc36a8 3652 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
3653 return stub_type;
3654
906e58ca 3655 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
3656 if (globals == NULL)
3657 return stub_type;
906e58ca
NC
3658
3659 thumb_only = using_thumb_only (globals);
3660
3661 thumb2 = using_thumb2 (globals);
3662
3663 /* Determine where the call point is. */
3664 location = (input_sec->output_offset
3665 + input_sec->output_section->vma
3666 + rel->r_offset);
3667
906e58ca
NC
3668 r_type = ELF32_R_TYPE (rel->r_info);
3669
39f21624
NC
3670 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3671 are considering a function call relocation. */
c5423981
TG
3672 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3673 || r_type == R_ARM_THM_JUMP19)
39f21624
NC
3674 && branch_type == ST_BRANCH_TO_ARM)
3675 branch_type = ST_BRANCH_TO_THUMB;
3676
34e77a92
RS
3677 /* For TLS call relocs, it is the caller's responsibility to provide
3678 the address of the appropriate trampoline. */
3679 if (r_type != R_ARM_TLS_CALL
3680 && r_type != R_ARM_THM_TLS_CALL
3681 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3682 &root_plt, &arm_plt)
3683 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 3684 {
34e77a92 3685 asection *splt;
fe33d2fa 3686
34e77a92
RS
3687 if (hash == NULL || hash->is_iplt)
3688 splt = globals->root.iplt;
3689 else
3690 splt = globals->root.splt;
3691 if (splt != NULL)
b38cadfb 3692 {
34e77a92
RS
3693 use_plt = 1;
3694
3695 /* Note when dealing with PLT entries: the main PLT stub is in
3696 ARM mode, so if the branch is in Thumb mode, another
3697 Thumb->ARM stub will be inserted later just before the ARM
3698 PLT stub. We don't take this extra distance into account
3699 here, because if a long branch stub is needed, we'll add a
3700 Thumb->Arm one and branch directly to the ARM PLT entry
3701 because it avoids spreading offset corrections in several
3702 places. */
3703
3704 destination = (splt->output_section->vma
3705 + splt->output_offset
3706 + root_plt->offset);
3707 st_type = STT_FUNC;
3708 branch_type = ST_BRANCH_TO_ARM;
3709 }
5fa9e92f 3710 }
34e77a92
RS
3711 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3712 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 3713
fe33d2fa
CL
3714 branch_offset = (bfd_signed_vma)(destination - location);
3715
0855e32b 3716 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
c5423981 3717 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
906e58ca 3718 {
5fa9e92f
CL
3719 /* Handle cases where:
3720 - this call goes too far (different Thumb/Thumb2 max
99059e56 3721 distance)
155d87d7 3722 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
3723 Thumb->Arm branch (not bl). A stub is needed in this case,
3724 but only if this call is not through a PLT entry. Indeed,
3725 PLT stubs handle mode switching already.
5fa9e92f 3726 */
906e58ca
NC
3727 if ((!thumb2
3728 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3729 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3730 || (thumb2
3731 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3732 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
c5423981
TG
3733 || (thumb2
3734 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
3735 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
3736 && (r_type == R_ARM_THM_JUMP19))
35fc36a8 3737 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
3738 && (((r_type == R_ARM_THM_CALL
3739 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
c5423981
TG
3740 || (r_type == R_ARM_THM_JUMP24)
3741 || (r_type == R_ARM_THM_JUMP19))
5fa9e92f 3742 && !use_plt))
906e58ca 3743 {
35fc36a8 3744 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
3745 {
3746 /* Thumb to thumb. */
3747 if (!thumb_only)
3748 {
3749 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3750 /* PIC stubs. */
155d87d7 3751 ? ((globals->use_blx
9553db3c 3752 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
3753 /* V5T and above. Stub starts with ARM code, so
3754 we must be able to switch mode before
3755 reaching it, which is only possible for 'bl'
3756 (ie R_ARM_THM_CALL relocation). */
cf3eccff 3757 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 3758 /* On V4T, use Thumb code only. */
d3626fb0 3759 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
3760
3761 /* non-PIC stubs. */
155d87d7 3762 : ((globals->use_blx
9553db3c 3763 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
3764 /* V5T and above. */
3765 ? arm_stub_long_branch_any_any
3766 /* V4T. */
d3626fb0 3767 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
3768 }
3769 else
3770 {
3771 stub_type = (info->shared | globals->pic_veneer)
ebe24dd4
CL
3772 /* PIC stub. */
3773 ? arm_stub_long_branch_thumb_only_pic
c2b4a39d
CL
3774 /* non-PIC stub. */
3775 : arm_stub_long_branch_thumb_only;
906e58ca
NC
3776 }
3777 }
3778 else
3779 {
3780 /* Thumb to arm. */
c820be07
NC
3781 if (sym_sec != NULL
3782 && sym_sec->owner != NULL
3783 && !INTERWORK_FLAG (sym_sec->owner))
3784 {
3785 (*_bfd_error_handler)
3786 (_("%B(%s): warning: interworking not enabled.\n"
3787 " first occurrence: %B: Thumb call to ARM"),
3788 sym_sec->owner, input_bfd, name);
3789 }
3790
0855e32b
NS
3791 stub_type =
3792 (info->shared | globals->pic_veneer)
c2b4a39d 3793 /* PIC stubs. */
0855e32b 3794 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 3795 /* TLS PIC stubs. */
0855e32b
NS
3796 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3797 : arm_stub_long_branch_v4t_thumb_tls_pic)
3798 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3799 /* V5T PIC and above. */
3800 ? arm_stub_long_branch_any_arm_pic
3801 /* V4T PIC stub. */
3802 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
3803
3804 /* non-PIC stubs. */
0855e32b 3805 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
3806 /* V5T and above. */
3807 ? arm_stub_long_branch_any_any
3808 /* V4T. */
3809 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
3810
3811 /* Handle v4t short branches. */
fea2b4d6 3812 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
3813 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3814 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 3815 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
3816 }
3817 }
3818 }
fe33d2fa
CL
3819 else if (r_type == R_ARM_CALL
3820 || r_type == R_ARM_JUMP24
0855e32b
NS
3821 || r_type == R_ARM_PLT32
3822 || r_type == R_ARM_TLS_CALL)
906e58ca 3823 {
35fc36a8 3824 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
3825 {
3826 /* Arm to thumb. */
c820be07
NC
3827
3828 if (sym_sec != NULL
3829 && sym_sec->owner != NULL
3830 && !INTERWORK_FLAG (sym_sec->owner))
3831 {
3832 (*_bfd_error_handler)
3833 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 3834 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
3835 sym_sec->owner, input_bfd, name);
3836 }
3837
3838 /* We have an extra 2-bytes reach because of
3839 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
3840 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3841 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 3842 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
3843 || (r_type == R_ARM_JUMP24)
3844 || (r_type == R_ARM_PLT32))
906e58ca
NC
3845 {
3846 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3847 /* PIC stubs. */
ebe24dd4
CL
3848 ? ((globals->use_blx)
3849 /* V5T and above. */
3850 ? arm_stub_long_branch_any_thumb_pic
3851 /* V4T stub. */
3852 : arm_stub_long_branch_v4t_arm_thumb_pic)
3853
c2b4a39d
CL
3854 /* non-PIC stubs. */
3855 : ((globals->use_blx)
3856 /* V5T and above. */
3857 ? arm_stub_long_branch_any_any
3858 /* V4T. */
3859 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
3860 }
3861 }
3862 else
3863 {
3864 /* Arm to arm. */
3865 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3866 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3867 {
0855e32b
NS
3868 stub_type =
3869 (info->shared | globals->pic_veneer)
c2b4a39d 3870 /* PIC stubs. */
0855e32b 3871 ? (r_type == R_ARM_TLS_CALL
6a631e86 3872 /* TLS PIC Stub. */
0855e32b 3873 ? arm_stub_long_branch_any_tls_pic
7a89b94e
NC
3874 : (globals->nacl_p
3875 ? arm_stub_long_branch_arm_nacl_pic
3876 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 3877 /* non-PIC stubs. */
7a89b94e
NC
3878 : (globals->nacl_p
3879 ? arm_stub_long_branch_arm_nacl
3880 : arm_stub_long_branch_any_any);
906e58ca
NC
3881 }
3882 }
3883 }
3884
fe33d2fa
CL
3885 /* If a stub is needed, record the actual destination type. */
3886 if (stub_type != arm_stub_none)
35fc36a8 3887 *actual_branch_type = branch_type;
fe33d2fa 3888
906e58ca
NC
3889 return stub_type;
3890}
3891
3892/* Build a name for an entry in the stub hash table. */
3893
3894static char *
3895elf32_arm_stub_name (const asection *input_section,
3896 const asection *sym_sec,
3897 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
3898 const Elf_Internal_Rela *rel,
3899 enum elf32_arm_stub_type stub_type)
906e58ca
NC
3900{
3901 char *stub_name;
3902 bfd_size_type len;
3903
3904 if (hash)
3905 {
fe33d2fa 3906 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 3907 stub_name = (char *) bfd_malloc (len);
906e58ca 3908 if (stub_name != NULL)
fe33d2fa 3909 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
3910 input_section->id & 0xffffffff,
3911 hash->root.root.root.string,
fe33d2fa
CL
3912 (int) rel->r_addend & 0xffffffff,
3913 (int) stub_type);
906e58ca
NC
3914 }
3915 else
3916 {
fe33d2fa 3917 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 3918 stub_name = (char *) bfd_malloc (len);
906e58ca 3919 if (stub_name != NULL)
fe33d2fa 3920 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
3921 input_section->id & 0xffffffff,
3922 sym_sec->id & 0xffffffff,
0855e32b
NS
3923 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3924 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3925 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
3926 (int) rel->r_addend & 0xffffffff,
3927 (int) stub_type);
906e58ca
NC
3928 }
3929
3930 return stub_name;
3931}
3932
3933/* Look up an entry in the stub hash. Stub entries are cached because
3934 creating the stub name takes a bit of time. */
3935
3936static struct elf32_arm_stub_hash_entry *
3937elf32_arm_get_stub_entry (const asection *input_section,
3938 const asection *sym_sec,
3939 struct elf_link_hash_entry *hash,
3940 const Elf_Internal_Rela *rel,
fe33d2fa
CL
3941 struct elf32_arm_link_hash_table *htab,
3942 enum elf32_arm_stub_type stub_type)
906e58ca
NC
3943{
3944 struct elf32_arm_stub_hash_entry *stub_entry;
3945 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3946 const asection *id_sec;
3947
3948 if ((input_section->flags & SEC_CODE) == 0)
3949 return NULL;
3950
3951 /* If this input section is part of a group of sections sharing one
3952 stub section, then use the id of the first section in the group.
3953 Stub names need to include a section id, as there may well be
3954 more than one stub used to reach say, printf, and we need to
3955 distinguish between them. */
3956 id_sec = htab->stub_group[input_section->id].link_sec;
3957
3958 if (h != NULL && h->stub_cache != NULL
3959 && h->stub_cache->h == h
fe33d2fa
CL
3960 && h->stub_cache->id_sec == id_sec
3961 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
3962 {
3963 stub_entry = h->stub_cache;
3964 }
3965 else
3966 {
3967 char *stub_name;
3968
fe33d2fa 3969 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
3970 if (stub_name == NULL)
3971 return NULL;
3972
3973 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3974 stub_name, FALSE, FALSE);
3975 if (h != NULL)
3976 h->stub_cache = stub_entry;
3977
3978 free (stub_name);
3979 }
3980
3981 return stub_entry;
3982}
3983
48229727 3984/* Find or create a stub section. Returns a pointer to the stub section, and
b38cadfb 3985 the section to which the stub section will be attached (in *LINK_SEC_P).
48229727 3986 LINK_SEC_P may be NULL. */
906e58ca 3987
48229727
JB
3988static asection *
3989elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3990 struct elf32_arm_link_hash_table *htab)
906e58ca
NC
3991{
3992 asection *link_sec;
3993 asection *stub_sec;
906e58ca
NC
3994
3995 link_sec = htab->stub_group[section->id].link_sec;
9553db3c 3996 BFD_ASSERT (link_sec != NULL);
906e58ca 3997 stub_sec = htab->stub_group[section->id].stub_sec;
9553db3c 3998
906e58ca
NC
3999 if (stub_sec == NULL)
4000 {
4001 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4002 if (stub_sec == NULL)
4003 {
4004 size_t namelen;
4005 bfd_size_type len;
4006 char *s_name;
4007
4008 namelen = strlen (link_sec->name);
4009 len = namelen + sizeof (STUB_SUFFIX);
21d799b5 4010 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
906e58ca
NC
4011 if (s_name == NULL)
4012 return NULL;
4013
4014 memcpy (s_name, link_sec->name, namelen);
4015 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
7a89b94e
NC
4016 stub_sec = (*htab->add_stub_section) (s_name, link_sec,
4017 htab->nacl_p ? 4 : 3);
906e58ca
NC
4018 if (stub_sec == NULL)
4019 return NULL;
4020 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4021 }
4022 htab->stub_group[section->id].stub_sec = stub_sec;
4023 }
b38cadfb 4024
48229727
JB
4025 if (link_sec_p)
4026 *link_sec_p = link_sec;
b38cadfb 4027
48229727
JB
4028 return stub_sec;
4029}
4030
4031/* Add a new stub entry to the stub hash. Not all fields of the new
4032 stub entry are initialised. */
4033
4034static struct elf32_arm_stub_hash_entry *
4035elf32_arm_add_stub (const char *stub_name,
4036 asection *section,
4037 struct elf32_arm_link_hash_table *htab)
4038{
4039 asection *link_sec;
4040 asection *stub_sec;
4041 struct elf32_arm_stub_hash_entry *stub_entry;
4042
4043 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
4044 if (stub_sec == NULL)
4045 return NULL;
906e58ca
NC
4046
4047 /* Enter this entry into the linker stub hash table. */
4048 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4049 TRUE, FALSE);
4050 if (stub_entry == NULL)
4051 {
4052 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4053 section->owner,
4054 stub_name);
4055 return NULL;
4056 }
4057
4058 stub_entry->stub_sec = stub_sec;
4059 stub_entry->stub_offset = 0;
4060 stub_entry->id_sec = link_sec;
4061
906e58ca
NC
4062 return stub_entry;
4063}
4064
4065/* Store an Arm insn into an output section not processed by
4066 elf32_arm_write_section. */
4067
4068static void
8029a119
NC
4069put_arm_insn (struct elf32_arm_link_hash_table * htab,
4070 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4071{
4072 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4073 bfd_putl32 (val, ptr);
4074 else
4075 bfd_putb32 (val, ptr);
4076}
4077
4078/* Store a 16-bit Thumb insn into an output section not processed by
4079 elf32_arm_write_section. */
4080
4081static void
8029a119
NC
4082put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4083 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4084{
4085 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4086 bfd_putl16 (val, ptr);
4087 else
4088 bfd_putb16 (val, ptr);
4089}
4090
0855e32b
NS
4091/* If it's possible to change R_TYPE to a more efficient access
4092 model, return the new reloc type. */
4093
4094static unsigned
b38cadfb 4095elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4096 struct elf_link_hash_entry *h)
4097{
4098 int is_local = (h == NULL);
4099
4100 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
4101 return r_type;
4102
b38cadfb 4103 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4104 switch (r_type)
4105 {
4106 case R_ARM_TLS_GOTDESC:
4107 case R_ARM_TLS_CALL:
4108 case R_ARM_THM_TLS_CALL:
4109 case R_ARM_TLS_DESCSEQ:
4110 case R_ARM_THM_TLS_DESCSEQ:
4111 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4112 }
4113
4114 return r_type;
4115}
4116
48229727
JB
4117static bfd_reloc_status_type elf32_arm_final_link_relocate
4118 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4119 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92
RS
4120 const char *, unsigned char, enum arm_st_branch_type,
4121 struct elf_link_hash_entry *, bfd_boolean *, char **);
48229727 4122
4563a860
JB
4123static unsigned int
4124arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4125{
4126 switch (stub_type)
4127 {
4128 case arm_stub_a8_veneer_b_cond:
4129 case arm_stub_a8_veneer_b:
4130 case arm_stub_a8_veneer_bl:
4131 return 2;
4132
4133 case arm_stub_long_branch_any_any:
4134 case arm_stub_long_branch_v4t_arm_thumb:
4135 case arm_stub_long_branch_thumb_only:
4136 case arm_stub_long_branch_v4t_thumb_thumb:
4137 case arm_stub_long_branch_v4t_thumb_arm:
4138 case arm_stub_short_branch_v4t_thumb_arm:
4139 case arm_stub_long_branch_any_arm_pic:
4140 case arm_stub_long_branch_any_thumb_pic:
4141 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4142 case arm_stub_long_branch_v4t_arm_thumb_pic:
4143 case arm_stub_long_branch_v4t_thumb_arm_pic:
4144 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4145 case arm_stub_long_branch_any_tls_pic:
4146 case arm_stub_long_branch_v4t_thumb_tls_pic:
4563a860
JB
4147 case arm_stub_a8_veneer_blx:
4148 return 4;
b38cadfb 4149
7a89b94e
NC
4150 case arm_stub_long_branch_arm_nacl:
4151 case arm_stub_long_branch_arm_nacl_pic:
4152 return 16;
4153
4563a860
JB
4154 default:
4155 abort (); /* Should be unreachable. */
4156 }
4157}
4158
906e58ca
NC
4159static bfd_boolean
4160arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4161 void * in_arg)
4162{
7a89b94e 4163#define MAXRELOCS 3
906e58ca 4164 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 4165 struct elf32_arm_link_hash_table *globals;
906e58ca 4166 struct bfd_link_info *info;
906e58ca
NC
4167 asection *stub_sec;
4168 bfd *stub_bfd;
906e58ca
NC
4169 bfd_byte *loc;
4170 bfd_vma sym_value;
4171 int template_size;
4172 int size;
d3ce72d0 4173 const insn_sequence *template_sequence;
906e58ca 4174 int i;
48229727
JB
4175 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4176 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4177 int nrelocs = 0;
906e58ca
NC
4178
4179 /* Massage our args to the form they really have. */
4180 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4181 info = (struct bfd_link_info *) in_arg;
4182
4183 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4184 if (globals == NULL)
4185 return FALSE;
906e58ca 4186
906e58ca
NC
4187 stub_sec = stub_entry->stub_sec;
4188
4dfe6ac6 4189 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
4190 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4191 /* We have to do less-strictly-aligned fixes last. */
eb7c4339 4192 return TRUE;
fe33d2fa 4193
906e58ca
NC
4194 /* Make a note of the offset within the stubs for this entry. */
4195 stub_entry->stub_offset = stub_sec->size;
4196 loc = stub_sec->contents + stub_entry->stub_offset;
4197
4198 stub_bfd = stub_sec->owner;
4199
906e58ca
NC
4200 /* This is the address of the stub destination. */
4201 sym_value = (stub_entry->target_value
4202 + stub_entry->target_section->output_offset
4203 + stub_entry->target_section->output_section->vma);
4204
d3ce72d0 4205 template_sequence = stub_entry->stub_template;
461a49ca 4206 template_size = stub_entry->stub_template_size;
906e58ca
NC
4207
4208 size = 0;
461a49ca 4209 for (i = 0; i < template_size; i++)
906e58ca 4210 {
d3ce72d0 4211 switch (template_sequence[i].type)
461a49ca
DJ
4212 {
4213 case THUMB16_TYPE:
48229727 4214 {
d3ce72d0
NC
4215 bfd_vma data = (bfd_vma) template_sequence[i].data;
4216 if (template_sequence[i].reloc_addend != 0)
48229727 4217 {
99059e56
RM
4218 /* We've borrowed the reloc_addend field to mean we should
4219 insert a condition code into this (Thumb-1 branch)
4220 instruction. See THUMB16_BCOND_INSN. */
4221 BFD_ASSERT ((data & 0xff00) == 0xd000);
4222 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 4223 }
fe33d2fa 4224 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
4225 size += 2;
4226 }
461a49ca 4227 break;
906e58ca 4228
48229727 4229 case THUMB32_TYPE:
fe33d2fa
CL
4230 bfd_put_16 (stub_bfd,
4231 (template_sequence[i].data >> 16) & 0xffff,
4232 loc + size);
4233 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4234 loc + size + 2);
99059e56
RM
4235 if (template_sequence[i].r_type != R_ARM_NONE)
4236 {
4237 stub_reloc_idx[nrelocs] = i;
4238 stub_reloc_offset[nrelocs++] = size;
4239 }
4240 size += 4;
4241 break;
48229727 4242
461a49ca 4243 case ARM_TYPE:
fe33d2fa
CL
4244 bfd_put_32 (stub_bfd, template_sequence[i].data,
4245 loc + size);
461a49ca
DJ
4246 /* Handle cases where the target is encoded within the
4247 instruction. */
d3ce72d0 4248 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 4249 {
48229727
JB
4250 stub_reloc_idx[nrelocs] = i;
4251 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4252 }
4253 size += 4;
4254 break;
4255
4256 case DATA_TYPE:
d3ce72d0 4257 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
4258 stub_reloc_idx[nrelocs] = i;
4259 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4260 size += 4;
4261 break;
4262
4263 default:
4264 BFD_FAIL ();
4265 return FALSE;
4266 }
906e58ca 4267 }
461a49ca 4268
906e58ca
NC
4269 stub_sec->size += size;
4270
461a49ca
DJ
4271 /* Stub size has already been computed in arm_size_one_stub. Check
4272 consistency. */
4273 BFD_ASSERT (size == stub_entry->stub_size);
4274
906e58ca 4275 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 4276 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4277 sym_value |= 1;
4278
48229727
JB
4279 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4280 in each stub. */
4281 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
c820be07 4282
48229727 4283 for (i = 0; i < nrelocs; i++)
d3ce72d0
NC
4284 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4285 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4286 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4287 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
48229727
JB
4288 {
4289 Elf_Internal_Rela rel;
4290 bfd_boolean unresolved_reloc;
4291 char *error_message;
35fc36a8
RS
4292 enum arm_st_branch_type branch_type
4293 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4294 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
48229727
JB
4295 bfd_vma points_to = sym_value + stub_entry->target_addend;
4296
4297 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
d3ce72d0 4298 rel.r_info = ELF32_R_INFO (0,
99059e56 4299 template_sequence[stub_reloc_idx[i]].r_type);
d3ce72d0 4300 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
48229727
JB
4301
4302 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4303 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4304 template should refer back to the instruction after the original
4305 branch. */
4306 points_to = sym_value;
4307
33c6a8fc
JB
4308 /* There may be unintended consequences if this is not true. */
4309 BFD_ASSERT (stub_entry->h == NULL);
4310
48229727
JB
4311 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4312 properly. We should probably use this function unconditionally,
4313 rather than only for certain relocations listed in the enclosing
4314 conditional, for the sake of consistency. */
4315 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 4316 (template_sequence[stub_reloc_idx[i]].r_type),
48229727 4317 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
34e77a92
RS
4318 points_to, info, stub_entry->target_section, "", STT_FUNC,
4319 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4320 &unresolved_reloc, &error_message);
48229727
JB
4321 }
4322 else
4323 {
fe33d2fa
CL
4324 Elf_Internal_Rela rel;
4325 bfd_boolean unresolved_reloc;
4326 char *error_message;
4327 bfd_vma points_to = sym_value + stub_entry->target_addend
4328 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4329
4330 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4331 rel.r_info = ELF32_R_INFO (0,
99059e56 4332 template_sequence[stub_reloc_idx[i]].r_type);
fe33d2fa
CL
4333 rel.r_addend = 0;
4334
4335 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4336 (template_sequence[stub_reloc_idx[i]].r_type),
4337 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
34e77a92 4338 points_to, info, stub_entry->target_section, "", STT_FUNC,
35fc36a8 4339 stub_entry->branch_type,
fe33d2fa
CL
4340 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4341 &error_message);
48229727 4342 }
906e58ca
NC
4343
4344 return TRUE;
48229727 4345#undef MAXRELOCS
906e58ca
NC
4346}
4347
48229727
JB
4348/* Calculate the template, template size and instruction size for a stub.
4349 Return value is the instruction size. */
906e58ca 4350
48229727
JB
4351static unsigned int
4352find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4353 const insn_sequence **stub_template,
4354 int *stub_template_size)
906e58ca 4355{
d3ce72d0 4356 const insn_sequence *template_sequence = NULL;
48229727
JB
4357 int template_size = 0, i;
4358 unsigned int size;
906e58ca 4359
d3ce72d0 4360 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
4361 if (stub_template)
4362 *stub_template = template_sequence;
4363
48229727 4364 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
4365 if (stub_template_size)
4366 *stub_template_size = template_size;
906e58ca
NC
4367
4368 size = 0;
461a49ca
DJ
4369 for (i = 0; i < template_size; i++)
4370 {
d3ce72d0 4371 switch (template_sequence[i].type)
461a49ca
DJ
4372 {
4373 case THUMB16_TYPE:
4374 size += 2;
4375 break;
4376
4377 case ARM_TYPE:
48229727 4378 case THUMB32_TYPE:
461a49ca
DJ
4379 case DATA_TYPE:
4380 size += 4;
4381 break;
4382
4383 default:
4384 BFD_FAIL ();
2a229407 4385 return 0;
461a49ca
DJ
4386 }
4387 }
4388
48229727
JB
4389 return size;
4390}
4391
4392/* As above, but don't actually build the stub. Just bump offset so
4393 we know stub section sizes. */
4394
4395static bfd_boolean
4396arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 4397 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
4398{
4399 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 4400 const insn_sequence *template_sequence;
48229727
JB
4401 int template_size, size;
4402
4403 /* Massage our args to the form they really have. */
4404 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727
JB
4405
4406 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4407 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4408
d3ce72d0 4409 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
4410 &template_size);
4411
461a49ca 4412 stub_entry->stub_size = size;
d3ce72d0 4413 stub_entry->stub_template = template_sequence;
461a49ca
DJ
4414 stub_entry->stub_template_size = template_size;
4415
906e58ca
NC
4416 size = (size + 7) & ~7;
4417 stub_entry->stub_sec->size += size;
461a49ca 4418
906e58ca
NC
4419 return TRUE;
4420}
4421
4422/* External entry points for sizing and building linker stubs. */
4423
4424/* Set up various things so that we can make a list of input sections
4425 for each output section included in the link. Returns -1 on error,
4426 0 when no stubs will be needed, and 1 on success. */
4427
4428int
4429elf32_arm_setup_section_lists (bfd *output_bfd,
4430 struct bfd_link_info *info)
4431{
4432 bfd *input_bfd;
4433 unsigned int bfd_count;
4434 int top_id, top_index;
4435 asection *section;
4436 asection **input_list, **list;
4437 bfd_size_type amt;
4438 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4439
4dfe6ac6
NC
4440 if (htab == NULL)
4441 return 0;
906e58ca
NC
4442 if (! is_elf_hash_table (htab))
4443 return 0;
4444
4445 /* Count the number of input BFDs and find the top input section id. */
4446 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4447 input_bfd != NULL;
c72f2fb2 4448 input_bfd = input_bfd->link.next)
906e58ca
NC
4449 {
4450 bfd_count += 1;
4451 for (section = input_bfd->sections;
4452 section != NULL;
4453 section = section->next)
4454 {
4455 if (top_id < section->id)
4456 top_id = section->id;
4457 }
4458 }
4459 htab->bfd_count = bfd_count;
4460
4461 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 4462 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
4463 if (htab->stub_group == NULL)
4464 return -1;
fe33d2fa 4465 htab->top_id = top_id;
906e58ca
NC
4466
4467 /* We can't use output_bfd->section_count here to find the top output
4468 section index as some sections may have been removed, and
4469 _bfd_strip_section_from_output doesn't renumber the indices. */
4470 for (section = output_bfd->sections, top_index = 0;
4471 section != NULL;
4472 section = section->next)
4473 {
4474 if (top_index < section->index)
4475 top_index = section->index;
4476 }
4477
4478 htab->top_index = top_index;
4479 amt = sizeof (asection *) * (top_index + 1);
21d799b5 4480 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
4481 htab->input_list = input_list;
4482 if (input_list == NULL)
4483 return -1;
4484
4485 /* For sections we aren't interested in, mark their entries with a
4486 value we can check later. */
4487 list = input_list + top_index;
4488 do
4489 *list = bfd_abs_section_ptr;
4490 while (list-- != input_list);
4491
4492 for (section = output_bfd->sections;
4493 section != NULL;
4494 section = section->next)
4495 {
4496 if ((section->flags & SEC_CODE) != 0)
4497 input_list[section->index] = NULL;
4498 }
4499
4500 return 1;
4501}
4502
4503/* The linker repeatedly calls this function for each input section,
4504 in the order that input sections are linked into output sections.
4505 Build lists of input sections to determine groupings between which
4506 we may insert linker stubs. */
4507
4508void
4509elf32_arm_next_input_section (struct bfd_link_info *info,
4510 asection *isec)
4511{
4512 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4513
4dfe6ac6
NC
4514 if (htab == NULL)
4515 return;
4516
906e58ca
NC
4517 if (isec->output_section->index <= htab->top_index)
4518 {
4519 asection **list = htab->input_list + isec->output_section->index;
4520
a7470592 4521 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
4522 {
4523 /* Steal the link_sec pointer for our list. */
4524#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4525 /* This happens to make the list in reverse order,
07d72278 4526 which we reverse later. */
906e58ca
NC
4527 PREV_SEC (isec) = *list;
4528 *list = isec;
4529 }
4530 }
4531}
4532
4533/* See whether we can group stub sections together. Grouping stub
4534 sections may result in fewer stubs. More importantly, we need to
07d72278 4535 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
4536 .fini output sections respectively, because glibc splits the
4537 _init and _fini functions into multiple parts. Putting a stub in
4538 the middle of a function is not a good idea. */
4539
4540static void
4541group_sections (struct elf32_arm_link_hash_table *htab,
4542 bfd_size_type stub_group_size,
07d72278 4543 bfd_boolean stubs_always_after_branch)
906e58ca 4544{
07d72278 4545 asection **list = htab->input_list;
906e58ca
NC
4546
4547 do
4548 {
4549 asection *tail = *list;
07d72278 4550 asection *head;
906e58ca
NC
4551
4552 if (tail == bfd_abs_section_ptr)
4553 continue;
4554
07d72278
DJ
4555 /* Reverse the list: we must avoid placing stubs at the
4556 beginning of the section because the beginning of the text
4557 section may be required for an interrupt vector in bare metal
4558 code. */
4559#define NEXT_SEC PREV_SEC
e780aef2
CL
4560 head = NULL;
4561 while (tail != NULL)
99059e56
RM
4562 {
4563 /* Pop from tail. */
4564 asection *item = tail;
4565 tail = PREV_SEC (item);
e780aef2 4566
99059e56
RM
4567 /* Push on head. */
4568 NEXT_SEC (item) = head;
4569 head = item;
4570 }
07d72278
DJ
4571
4572 while (head != NULL)
906e58ca
NC
4573 {
4574 asection *curr;
07d72278 4575 asection *next;
e780aef2
CL
4576 bfd_vma stub_group_start = head->output_offset;
4577 bfd_vma end_of_next;
906e58ca 4578
07d72278 4579 curr = head;
e780aef2 4580 while (NEXT_SEC (curr) != NULL)
8cd931b7 4581 {
e780aef2
CL
4582 next = NEXT_SEC (curr);
4583 end_of_next = next->output_offset + next->size;
4584 if (end_of_next - stub_group_start >= stub_group_size)
4585 /* End of NEXT is too far from start, so stop. */
8cd931b7 4586 break;
e780aef2
CL
4587 /* Add NEXT to the group. */
4588 curr = next;
8cd931b7 4589 }
906e58ca 4590
07d72278 4591 /* OK, the size from the start to the start of CURR is less
906e58ca 4592 than stub_group_size and thus can be handled by one stub
07d72278 4593 section. (Or the head section is itself larger than
906e58ca
NC
4594 stub_group_size, in which case we may be toast.)
4595 We should really be keeping track of the total size of
4596 stubs added here, as stubs contribute to the final output
7fb9f789 4597 section size. */
906e58ca
NC
4598 do
4599 {
07d72278 4600 next = NEXT_SEC (head);
906e58ca 4601 /* Set up this stub group. */
07d72278 4602 htab->stub_group[head->id].link_sec = curr;
906e58ca 4603 }
07d72278 4604 while (head != curr && (head = next) != NULL);
906e58ca
NC
4605
4606 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
4607 bytes after the stub section can be handled by it too. */
4608 if (!stubs_always_after_branch)
906e58ca 4609 {
e780aef2
CL
4610 stub_group_start = curr->output_offset + curr->size;
4611
8cd931b7 4612 while (next != NULL)
906e58ca 4613 {
e780aef2
CL
4614 end_of_next = next->output_offset + next->size;
4615 if (end_of_next - stub_group_start >= stub_group_size)
4616 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 4617 break;
e780aef2 4618 /* Add NEXT to the stub group. */
07d72278
DJ
4619 head = next;
4620 next = NEXT_SEC (head);
4621 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
4622 }
4623 }
07d72278 4624 head = next;
906e58ca
NC
4625 }
4626 }
07d72278 4627 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
4628
4629 free (htab->input_list);
4630#undef PREV_SEC
07d72278 4631#undef NEXT_SEC
906e58ca
NC
4632}
4633
48229727
JB
4634/* Comparison function for sorting/searching relocations relating to Cortex-A8
4635 erratum fix. */
4636
4637static int
4638a8_reloc_compare (const void *a, const void *b)
4639{
21d799b5
NC
4640 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4641 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
4642
4643 if (ra->from < rb->from)
4644 return -1;
4645 else if (ra->from > rb->from)
4646 return 1;
4647 else
4648 return 0;
4649}
4650
4651static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4652 const char *, char **);
4653
4654/* Helper function to scan code for sequences which might trigger the Cortex-A8
4655 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 4656 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
4657 otherwise. */
4658
81694485
NC
4659static bfd_boolean
4660cortex_a8_erratum_scan (bfd *input_bfd,
4661 struct bfd_link_info *info,
48229727
JB
4662 struct a8_erratum_fix **a8_fixes_p,
4663 unsigned int *num_a8_fixes_p,
4664 unsigned int *a8_fix_table_size_p,
4665 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
4666 unsigned int num_a8_relocs,
4667 unsigned prev_num_a8_fixes,
4668 bfd_boolean *stub_changed_p)
48229727
JB
4669{
4670 asection *section;
4671 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4672 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4673 unsigned int num_a8_fixes = *num_a8_fixes_p;
4674 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4675
4dfe6ac6
NC
4676 if (htab == NULL)
4677 return FALSE;
4678
48229727
JB
4679 for (section = input_bfd->sections;
4680 section != NULL;
4681 section = section->next)
4682 {
4683 bfd_byte *contents = NULL;
4684 struct _arm_elf_section_data *sec_data;
4685 unsigned int span;
4686 bfd_vma base_vma;
4687
4688 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
4689 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4690 || (section->flags & SEC_EXCLUDE) != 0
4691 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4692 || (section->output_section == bfd_abs_section_ptr))
4693 continue;
48229727
JB
4694
4695 base_vma = section->output_section->vma + section->output_offset;
4696
4697 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 4698 contents = elf_section_data (section)->this_hdr.contents;
48229727 4699 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
99059e56 4700 return TRUE;
48229727
JB
4701
4702 sec_data = elf32_arm_section_data (section);
4703
4704 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
4705 {
4706 unsigned int span_start = sec_data->map[span].vma;
4707 unsigned int span_end = (span == sec_data->mapcount - 1)
4708 ? section->size : sec_data->map[span + 1].vma;
4709 unsigned int i;
4710 char span_type = sec_data->map[span].type;
4711 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4712
4713 if (span_type != 't')
4714 continue;
4715
4716 /* Span is entirely within a single 4KB region: skip scanning. */
4717 if (((base_vma + span_start) & ~0xfff)
48229727 4718 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
4719 continue;
4720
4721 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4722
4723 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4724 * The branch target is in the same 4KB region as the
4725 first half of the branch.
4726 * The instruction before the branch is a 32-bit
4727 length non-branch instruction. */
4728 for (i = span_start; i < span_end;)
4729 {
4730 unsigned int insn = bfd_getl16 (&contents[i]);
4731 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
48229727
JB
4732 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4733
99059e56
RM
4734 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4735 insn_32bit = TRUE;
48229727
JB
4736
4737 if (insn_32bit)
99059e56
RM
4738 {
4739 /* Load the rest of the insn (in manual-friendly order). */
4740 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4741
4742 /* Encoding T4: B<c>.W. */
4743 is_b = (insn & 0xf800d000) == 0xf0009000;
4744 /* Encoding T1: BL<c>.W. */
4745 is_bl = (insn & 0xf800d000) == 0xf000d000;
4746 /* Encoding T2: BLX<c>.W. */
4747 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
4748 /* Encoding T3: B<c>.W (not permitted in IT block). */
4749 is_bcc = (insn & 0xf800d000) == 0xf0008000
4750 && (insn & 0x07f00000) != 0x03800000;
4751 }
4752
4753 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 4754
99059e56 4755 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
4756 && insn_32bit
4757 && is_32bit_branch
4758 && last_was_32bit
4759 && ! last_was_branch)
99059e56
RM
4760 {
4761 bfd_signed_vma offset = 0;
4762 bfd_boolean force_target_arm = FALSE;
48229727 4763 bfd_boolean force_target_thumb = FALSE;
99059e56
RM
4764 bfd_vma target;
4765 enum elf32_arm_stub_type stub_type = arm_stub_none;
4766 struct a8_erratum_reloc key, *found;
4767 bfd_boolean use_plt = FALSE;
48229727 4768
99059e56
RM
4769 key.from = base_vma + i;
4770 found = (struct a8_erratum_reloc *)
4771 bsearch (&key, a8_relocs, num_a8_relocs,
4772 sizeof (struct a8_erratum_reloc),
4773 &a8_reloc_compare);
48229727
JB
4774
4775 if (found)
4776 {
4777 char *error_message = NULL;
4778 struct elf_link_hash_entry *entry;
4779
4780 /* We don't care about the error returned from this
99059e56 4781 function, only if there is glue or not. */
48229727
JB
4782 entry = find_thumb_glue (info, found->sym_name,
4783 &error_message);
4784
4785 if (entry)
4786 found->non_a8_stub = TRUE;
4787
92750f34 4788 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 4789 if (htab->root.splt != NULL && found->hash != NULL
92750f34
DJ
4790 && found->hash->root.plt.offset != (bfd_vma) -1)
4791 use_plt = TRUE;
4792
4793 if (found->r_type == R_ARM_THM_CALL)
4794 {
35fc36a8
RS
4795 if (found->branch_type == ST_BRANCH_TO_ARM
4796 || use_plt)
92750f34
DJ
4797 force_target_arm = TRUE;
4798 else
4799 force_target_thumb = TRUE;
4800 }
48229727
JB
4801 }
4802
99059e56 4803 /* Check if we have an offending branch instruction. */
48229727
JB
4804
4805 if (found && found->non_a8_stub)
4806 /* We've already made a stub for this instruction, e.g.
4807 it's a long branch or a Thumb->ARM stub. Assume that
4808 stub will suffice to work around the A8 erratum (see
4809 setting of always_after_branch above). */
4810 ;
99059e56
RM
4811 else if (is_bcc)
4812 {
4813 offset = (insn & 0x7ff) << 1;
4814 offset |= (insn & 0x3f0000) >> 4;
4815 offset |= (insn & 0x2000) ? 0x40000 : 0;
4816 offset |= (insn & 0x800) ? 0x80000 : 0;
4817 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4818 if (offset & 0x100000)
4819 offset |= ~ ((bfd_signed_vma) 0xfffff);
4820 stub_type = arm_stub_a8_veneer_b_cond;
4821 }
4822 else if (is_b || is_bl || is_blx)
4823 {
4824 int s = (insn & 0x4000000) != 0;
4825 int j1 = (insn & 0x2000) != 0;
4826 int j2 = (insn & 0x800) != 0;
4827 int i1 = !(j1 ^ s);
4828 int i2 = !(j2 ^ s);
4829
4830 offset = (insn & 0x7ff) << 1;
4831 offset |= (insn & 0x3ff0000) >> 4;
4832 offset |= i2 << 22;
4833 offset |= i1 << 23;
4834 offset |= s << 24;
4835 if (offset & 0x1000000)
4836 offset |= ~ ((bfd_signed_vma) 0xffffff);
4837
4838 if (is_blx)
4839 offset &= ~ ((bfd_signed_vma) 3);
4840
4841 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4842 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4843 }
4844
4845 if (stub_type != arm_stub_none)
4846 {
4847 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
4848
4849 /* The original instruction is a BL, but the target is
99059e56 4850 an ARM instruction. If we were not making a stub,
48229727
JB
4851 the BL would have been converted to a BLX. Use the
4852 BLX stub instead in that case. */
4853 if (htab->use_blx && force_target_arm
4854 && stub_type == arm_stub_a8_veneer_bl)
4855 {
4856 stub_type = arm_stub_a8_veneer_blx;
4857 is_blx = TRUE;
4858 is_bl = FALSE;
4859 }
4860 /* Conversely, if the original instruction was
4861 BLX but the target is Thumb mode, use the BL
4862 stub. */
4863 else if (force_target_thumb
4864 && stub_type == arm_stub_a8_veneer_blx)
4865 {
4866 stub_type = arm_stub_a8_veneer_bl;
4867 is_blx = FALSE;
4868 is_bl = TRUE;
4869 }
4870
99059e56
RM
4871 if (is_blx)
4872 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 4873
99059e56
RM
4874 /* If we found a relocation, use the proper destination,
4875 not the offset in the (unrelocated) instruction.
48229727
JB
4876 Note this is always done if we switched the stub type
4877 above. */
99059e56
RM
4878 if (found)
4879 offset =
81694485 4880 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 4881
99059e56
RM
4882 /* If the stub will use a Thumb-mode branch to a
4883 PLT target, redirect it to the preceding Thumb
4884 entry point. */
4885 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4886 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 4887
99059e56 4888 target = pc_for_insn + offset;
48229727 4889
99059e56
RM
4890 /* The BLX stub is ARM-mode code. Adjust the offset to
4891 take the different PC value (+8 instead of +4) into
48229727 4892 account. */
99059e56
RM
4893 if (stub_type == arm_stub_a8_veneer_blx)
4894 offset += 4;
4895
4896 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4897 {
4898 char *stub_name = NULL;
4899
4900 if (num_a8_fixes == a8_fix_table_size)
4901 {
4902 a8_fix_table_size *= 2;
4903 a8_fixes = (struct a8_erratum_fix *)
4904 bfd_realloc (a8_fixes,
4905 sizeof (struct a8_erratum_fix)
4906 * a8_fix_table_size);
4907 }
48229727 4908
eb7c4339
NS
4909 if (num_a8_fixes < prev_num_a8_fixes)
4910 {
4911 /* If we're doing a subsequent scan,
4912 check if we've found the same fix as
4913 before, and try and reuse the stub
4914 name. */
4915 stub_name = a8_fixes[num_a8_fixes].stub_name;
4916 if ((a8_fixes[num_a8_fixes].section != section)
4917 || (a8_fixes[num_a8_fixes].offset != i))
4918 {
4919 free (stub_name);
4920 stub_name = NULL;
4921 *stub_changed_p = TRUE;
4922 }
4923 }
4924
4925 if (!stub_name)
4926 {
21d799b5 4927 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
4928 if (stub_name != NULL)
4929 sprintf (stub_name, "%x:%x", section->id, i);
4930 }
48229727 4931
99059e56
RM
4932 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4933 a8_fixes[num_a8_fixes].section = section;
4934 a8_fixes[num_a8_fixes].offset = i;
4935 a8_fixes[num_a8_fixes].addend = offset;
4936 a8_fixes[num_a8_fixes].orig_insn = insn;
4937 a8_fixes[num_a8_fixes].stub_name = stub_name;
4938 a8_fixes[num_a8_fixes].stub_type = stub_type;
4939 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 4940 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 4941
99059e56
RM
4942 num_a8_fixes++;
4943 }
4944 }
4945 }
48229727 4946
99059e56
RM
4947 i += insn_32bit ? 4 : 2;
4948 last_was_32bit = insn_32bit;
48229727 4949 last_was_branch = is_32bit_branch;
99059e56
RM
4950 }
4951 }
48229727
JB
4952
4953 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 4954 free (contents);
48229727 4955 }
fe33d2fa 4956
48229727
JB
4957 *a8_fixes_p = a8_fixes;
4958 *num_a8_fixes_p = num_a8_fixes;
4959 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 4960
81694485 4961 return FALSE;
48229727
JB
4962}
4963
906e58ca
NC
4964/* Determine and set the size of the stub section for a final link.
4965
4966 The basic idea here is to examine all the relocations looking for
4967 PC-relative calls to a target that is unreachable with a "bl"
4968 instruction. */
4969
4970bfd_boolean
4971elf32_arm_size_stubs (bfd *output_bfd,
4972 bfd *stub_bfd,
4973 struct bfd_link_info *info,
4974 bfd_signed_vma group_size,
7a89b94e
NC
4975 asection * (*add_stub_section) (const char *, asection *,
4976 unsigned int),
906e58ca
NC
4977 void (*layout_sections_again) (void))
4978{
4979 bfd_size_type stub_group_size;
07d72278 4980 bfd_boolean stubs_always_after_branch;
906e58ca 4981 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 4982 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 4983 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
4984 struct a8_erratum_reloc *a8_relocs = NULL;
4985 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4986
4dfe6ac6
NC
4987 if (htab == NULL)
4988 return FALSE;
4989
48229727
JB
4990 if (htab->fix_cortex_a8)
4991 {
21d799b5 4992 a8_fixes = (struct a8_erratum_fix *)
99059e56 4993 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 4994 a8_relocs = (struct a8_erratum_reloc *)
99059e56 4995 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 4996 }
906e58ca
NC
4997
4998 /* Propagate mach to stub bfd, because it may not have been
4999 finalized when we created stub_bfd. */
5000 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
5001 bfd_get_mach (output_bfd));
5002
5003 /* Stash our params away. */
5004 htab->stub_bfd = stub_bfd;
5005 htab->add_stub_section = add_stub_section;
5006 htab->layout_sections_again = layout_sections_again;
07d72278 5007 stubs_always_after_branch = group_size < 0;
48229727
JB
5008
5009 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
5010 as the first half of a 32-bit branch straddling two 4K pages. This is a
5011 crude way of enforcing that. */
5012 if (htab->fix_cortex_a8)
5013 stubs_always_after_branch = 1;
5014
906e58ca
NC
5015 if (group_size < 0)
5016 stub_group_size = -group_size;
5017 else
5018 stub_group_size = group_size;
5019
5020 if (stub_group_size == 1)
5021 {
5022 /* Default values. */
5023 /* Thumb branch range is +-4MB has to be used as the default
5024 maximum size (a given section can contain both ARM and Thumb
5025 code, so the worst case has to be taken into account).
5026
5027 This value is 24K less than that, which allows for 2025
5028 12-byte stubs. If we exceed that, then we will fail to link.
5029 The user will have to relink with an explicit group size
5030 option. */
5031 stub_group_size = 4170000;
5032 }
5033
07d72278 5034 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 5035
3ae046cc
NS
5036 /* If we're applying the cortex A8 fix, we need to determine the
5037 program header size now, because we cannot change it later --
5038 that could alter section placements. Notice the A8 erratum fix
5039 ends up requiring the section addresses to remain unchanged
5040 modulo the page size. That's something we cannot represent
5041 inside BFD, and we don't want to force the section alignment to
5042 be the page size. */
5043 if (htab->fix_cortex_a8)
5044 (*htab->layout_sections_again) ();
5045
906e58ca
NC
5046 while (1)
5047 {
5048 bfd *input_bfd;
5049 unsigned int bfd_indx;
5050 asection *stub_sec;
eb7c4339
NS
5051 bfd_boolean stub_changed = FALSE;
5052 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 5053
48229727 5054 num_a8_fixes = 0;
906e58ca
NC
5055 for (input_bfd = info->input_bfds, bfd_indx = 0;
5056 input_bfd != NULL;
c72f2fb2 5057 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
5058 {
5059 Elf_Internal_Shdr *symtab_hdr;
5060 asection *section;
5061 Elf_Internal_Sym *local_syms = NULL;
5062
99059e56
RM
5063 if (!is_arm_elf (input_bfd))
5064 continue;
adbcc655 5065
48229727
JB
5066 num_a8_relocs = 0;
5067
906e58ca
NC
5068 /* We'll need the symbol table in a second. */
5069 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5070 if (symtab_hdr->sh_info == 0)
5071 continue;
5072
5073 /* Walk over each section attached to the input bfd. */
5074 for (section = input_bfd->sections;
5075 section != NULL;
5076 section = section->next)
5077 {
5078 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5079
5080 /* If there aren't any relocs, then there's nothing more
5081 to do. */
5082 if ((section->flags & SEC_RELOC) == 0
5083 || section->reloc_count == 0
5084 || (section->flags & SEC_CODE) == 0)
5085 continue;
5086
5087 /* If this section is a link-once section that will be
5088 discarded, then don't create any stubs. */
5089 if (section->output_section == NULL
5090 || section->output_section->owner != output_bfd)
5091 continue;
5092
5093 /* Get the relocs. */
5094 internal_relocs
5095 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5096 NULL, info->keep_memory);
5097 if (internal_relocs == NULL)
5098 goto error_ret_free_local;
5099
5100 /* Now examine each relocation. */
5101 irela = internal_relocs;
5102 irelaend = irela + section->reloc_count;
5103 for (; irela < irelaend; irela++)
5104 {
5105 unsigned int r_type, r_indx;
5106 enum elf32_arm_stub_type stub_type;
5107 struct elf32_arm_stub_hash_entry *stub_entry;
5108 asection *sym_sec;
5109 bfd_vma sym_value;
5110 bfd_vma destination;
5111 struct elf32_arm_link_hash_entry *hash;
7413f23f 5112 const char *sym_name;
906e58ca
NC
5113 char *stub_name;
5114 const asection *id_sec;
34e77a92 5115 unsigned char st_type;
35fc36a8 5116 enum arm_st_branch_type branch_type;
48229727 5117 bfd_boolean created_stub = FALSE;
906e58ca
NC
5118
5119 r_type = ELF32_R_TYPE (irela->r_info);
5120 r_indx = ELF32_R_SYM (irela->r_info);
5121
5122 if (r_type >= (unsigned int) R_ARM_max)
5123 {
5124 bfd_set_error (bfd_error_bad_value);
5125 error_ret_free_internal:
5126 if (elf_section_data (section)->relocs == NULL)
5127 free (internal_relocs);
5128 goto error_ret_free_local;
5129 }
b38cadfb 5130
0855e32b
NS
5131 hash = NULL;
5132 if (r_indx >= symtab_hdr->sh_info)
5133 hash = elf32_arm_hash_entry
5134 (elf_sym_hashes (input_bfd)
5135 [r_indx - symtab_hdr->sh_info]);
b38cadfb 5136
0855e32b
NS
5137 /* Only look for stubs on branch instructions, or
5138 non-relaxed TLSCALL */
906e58ca 5139 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
5140 && (r_type != (unsigned int) R_ARM_THM_CALL)
5141 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
5142 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5143 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 5144 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
5145 && (r_type != (unsigned int) R_ARM_PLT32)
5146 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5147 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5148 && r_type == elf32_arm_tls_transition
5149 (info, r_type, &hash->root)
5150 && ((hash ? hash->tls_type
5151 : (elf32_arm_local_got_tls_type
5152 (input_bfd)[r_indx]))
5153 & GOT_TLS_GDESC) != 0))
906e58ca
NC
5154 continue;
5155
5156 /* Now determine the call target, its name, value,
5157 section. */
5158 sym_sec = NULL;
5159 sym_value = 0;
5160 destination = 0;
7413f23f 5161 sym_name = NULL;
b38cadfb 5162
0855e32b
NS
5163 if (r_type == (unsigned int) R_ARM_TLS_CALL
5164 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5165 {
5166 /* A non-relaxed TLS call. The target is the
5167 plt-resident trampoline and nothing to do
5168 with the symbol. */
5169 BFD_ASSERT (htab->tls_trampoline > 0);
5170 sym_sec = htab->root.splt;
5171 sym_value = htab->tls_trampoline;
5172 hash = 0;
34e77a92 5173 st_type = STT_FUNC;
35fc36a8 5174 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
5175 }
5176 else if (!hash)
906e58ca
NC
5177 {
5178 /* It's a local symbol. */
5179 Elf_Internal_Sym *sym;
906e58ca
NC
5180
5181 if (local_syms == NULL)
5182 {
5183 local_syms
5184 = (Elf_Internal_Sym *) symtab_hdr->contents;
5185 if (local_syms == NULL)
5186 local_syms
5187 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5188 symtab_hdr->sh_info, 0,
5189 NULL, NULL, NULL);
5190 if (local_syms == NULL)
5191 goto error_ret_free_internal;
5192 }
5193
5194 sym = local_syms + r_indx;
f6d250ce
TS
5195 if (sym->st_shndx == SHN_UNDEF)
5196 sym_sec = bfd_und_section_ptr;
5197 else if (sym->st_shndx == SHN_ABS)
5198 sym_sec = bfd_abs_section_ptr;
5199 else if (sym->st_shndx == SHN_COMMON)
5200 sym_sec = bfd_com_section_ptr;
5201 else
5202 sym_sec =
5203 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5204
ffcb4889
NS
5205 if (!sym_sec)
5206 /* This is an undefined symbol. It can never
6a631e86 5207 be resolved. */
ffcb4889 5208 continue;
fe33d2fa 5209
906e58ca
NC
5210 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5211 sym_value = sym->st_value;
5212 destination = (sym_value + irela->r_addend
5213 + sym_sec->output_offset
5214 + sym_sec->output_section->vma);
34e77a92 5215 st_type = ELF_ST_TYPE (sym->st_info);
35fc36a8 5216 branch_type = ARM_SYM_BRANCH_TYPE (sym);
7413f23f
DJ
5217 sym_name
5218 = bfd_elf_string_from_elf_section (input_bfd,
5219 symtab_hdr->sh_link,
5220 sym->st_name);
906e58ca
NC
5221 }
5222 else
5223 {
5224 /* It's an external symbol. */
906e58ca
NC
5225 while (hash->root.root.type == bfd_link_hash_indirect
5226 || hash->root.root.type == bfd_link_hash_warning)
5227 hash = ((struct elf32_arm_link_hash_entry *)
5228 hash->root.root.u.i.link);
5229
5230 if (hash->root.root.type == bfd_link_hash_defined
5231 || hash->root.root.type == bfd_link_hash_defweak)
5232 {
5233 sym_sec = hash->root.root.u.def.section;
5234 sym_value = hash->root.root.u.def.value;
022f8312
CL
5235
5236 struct elf32_arm_link_hash_table *globals =
5237 elf32_arm_hash_table (info);
5238
5239 /* For a destination in a shared library,
5240 use the PLT stub as target address to
5241 decide whether a branch stub is
5242 needed. */
4dfe6ac6 5243 if (globals != NULL
362d30a1 5244 && globals->root.splt != NULL
4dfe6ac6 5245 && hash != NULL
022f8312
CL
5246 && hash->root.plt.offset != (bfd_vma) -1)
5247 {
362d30a1 5248 sym_sec = globals->root.splt;
022f8312
CL
5249 sym_value = hash->root.plt.offset;
5250 if (sym_sec->output_section != NULL)
5251 destination = (sym_value
5252 + sym_sec->output_offset
5253 + sym_sec->output_section->vma);
5254 }
5255 else if (sym_sec->output_section != NULL)
906e58ca
NC
5256 destination = (sym_value + irela->r_addend
5257 + sym_sec->output_offset
5258 + sym_sec->output_section->vma);
5259 }
69c5861e
CL
5260 else if ((hash->root.root.type == bfd_link_hash_undefined)
5261 || (hash->root.root.type == bfd_link_hash_undefweak))
5262 {
5263 /* For a shared library, use the PLT stub as
5264 target address to decide whether a long
5265 branch stub is needed.
5266 For absolute code, they cannot be handled. */
5267 struct elf32_arm_link_hash_table *globals =
5268 elf32_arm_hash_table (info);
5269
4dfe6ac6 5270 if (globals != NULL
362d30a1 5271 && globals->root.splt != NULL
4dfe6ac6 5272 && hash != NULL
69c5861e
CL
5273 && hash->root.plt.offset != (bfd_vma) -1)
5274 {
362d30a1 5275 sym_sec = globals->root.splt;
69c5861e
CL
5276 sym_value = hash->root.plt.offset;
5277 if (sym_sec->output_section != NULL)
5278 destination = (sym_value
5279 + sym_sec->output_offset
5280 + sym_sec->output_section->vma);
5281 }
5282 else
5283 continue;
5284 }
906e58ca
NC
5285 else
5286 {
5287 bfd_set_error (bfd_error_bad_value);
5288 goto error_ret_free_internal;
5289 }
34e77a92 5290 st_type = hash->root.type;
35fc36a8 5291 branch_type = hash->root.target_internal;
7413f23f 5292 sym_name = hash->root.root.root.string;
906e58ca
NC
5293 }
5294
48229727 5295 do
7413f23f 5296 {
48229727
JB
5297 /* Determine what (if any) linker stub is needed. */
5298 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
5299 st_type, &branch_type,
5300 hash, destination, sym_sec,
48229727
JB
5301 input_bfd, sym_name);
5302 if (stub_type == arm_stub_none)
5303 break;
5304
5305 /* Support for grouping stub sections. */
5306 id_sec = htab->stub_group[section->id].link_sec;
5307
5308 /* Get the name of this stub. */
5309 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
fe33d2fa 5310 irela, stub_type);
48229727
JB
5311 if (!stub_name)
5312 goto error_ret_free_internal;
5313
5314 /* We've either created a stub for this reloc already,
5315 or we are about to. */
5316 created_stub = TRUE;
5317
5318 stub_entry = arm_stub_hash_lookup
5319 (&htab->stub_hash_table, stub_name,
5320 FALSE, FALSE);
5321 if (stub_entry != NULL)
5322 {
5323 /* The proper stub has already been created. */
5324 free (stub_name);
eb7c4339 5325 stub_entry->target_value = sym_value;
48229727
JB
5326 break;
5327 }
7413f23f 5328
48229727
JB
5329 stub_entry = elf32_arm_add_stub (stub_name, section,
5330 htab);
5331 if (stub_entry == NULL)
5332 {
5333 free (stub_name);
5334 goto error_ret_free_internal;
5335 }
7413f23f 5336
99059e56
RM
5337 stub_entry->target_value = sym_value;
5338 stub_entry->target_section = sym_sec;
5339 stub_entry->stub_type = stub_type;
5340 stub_entry->h = hash;
5341 stub_entry->branch_type = branch_type;
5342
5343 if (sym_name == NULL)
5344 sym_name = "unnamed";
5345 stub_entry->output_name = (char *)
5346 bfd_alloc (htab->stub_bfd,
5347 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5348 + strlen (sym_name));
5349 if (stub_entry->output_name == NULL)
5350 {
5351 free (stub_name);
5352 goto error_ret_free_internal;
5353 }
5354
5355 /* For historical reasons, use the existing names for
5356 ARM-to-Thumb and Thumb-to-ARM stubs. */
5357 if ((r_type == (unsigned int) R_ARM_THM_CALL
c5423981
TG
5358 || r_type == (unsigned int) R_ARM_THM_JUMP24
5359 || r_type == (unsigned int) R_ARM_THM_JUMP19)
35fc36a8 5360 && branch_type == ST_BRANCH_TO_ARM)
99059e56
RM
5361 sprintf (stub_entry->output_name,
5362 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5363 else if ((r_type == (unsigned int) R_ARM_CALL
35fc36a8
RS
5364 || r_type == (unsigned int) R_ARM_JUMP24)
5365 && branch_type == ST_BRANCH_TO_THUMB)
99059e56
RM
5366 sprintf (stub_entry->output_name,
5367 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5368 else
5369 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5370 sym_name);
5371
5372 stub_changed = TRUE;
5373 }
5374 while (0);
5375
5376 /* Look for relocations which might trigger Cortex-A8
5377 erratum. */
5378 if (htab->fix_cortex_a8
5379 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5380 || r_type == (unsigned int) R_ARM_THM_JUMP19
5381 || r_type == (unsigned int) R_ARM_THM_CALL
5382 || r_type == (unsigned int) R_ARM_THM_XPC22))
5383 {
5384 bfd_vma from = section->output_section->vma
5385 + section->output_offset
5386 + irela->r_offset;
5387
5388 if ((from & 0xfff) == 0xffe)
5389 {
5390 /* Found a candidate. Note we haven't checked the
5391 destination is within 4K here: if we do so (and
5392 don't create an entry in a8_relocs) we can't tell
5393 that a branch should have been relocated when
5394 scanning later. */
5395 if (num_a8_relocs == a8_reloc_table_size)
5396 {
5397 a8_reloc_table_size *= 2;
5398 a8_relocs = (struct a8_erratum_reloc *)
5399 bfd_realloc (a8_relocs,
5400 sizeof (struct a8_erratum_reloc)
5401 * a8_reloc_table_size);
5402 }
5403
5404 a8_relocs[num_a8_relocs].from = from;
5405 a8_relocs[num_a8_relocs].destination = destination;
5406 a8_relocs[num_a8_relocs].r_type = r_type;
5407 a8_relocs[num_a8_relocs].branch_type = branch_type;
5408 a8_relocs[num_a8_relocs].sym_name = sym_name;
5409 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5410 a8_relocs[num_a8_relocs].hash = hash;
5411
5412 num_a8_relocs++;
5413 }
5414 }
906e58ca
NC
5415 }
5416
99059e56
RM
5417 /* We're done with the internal relocs, free them. */
5418 if (elf_section_data (section)->relocs == NULL)
5419 free (internal_relocs);
5420 }
48229727 5421
99059e56 5422 if (htab->fix_cortex_a8)
48229727 5423 {
99059e56
RM
5424 /* Sort relocs which might apply to Cortex-A8 erratum. */
5425 qsort (a8_relocs, num_a8_relocs,
eb7c4339 5426 sizeof (struct a8_erratum_reloc),
99059e56 5427 &a8_reloc_compare);
48229727 5428
99059e56
RM
5429 /* Scan for branches which might trigger Cortex-A8 erratum. */
5430 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 5431 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
5432 a8_relocs, num_a8_relocs,
5433 prev_num_a8_fixes, &stub_changed)
5434 != 0)
48229727 5435 goto error_ret_free_local;
5e681ec4 5436 }
5e681ec4
PB
5437 }
5438
eb7c4339 5439 if (prev_num_a8_fixes != num_a8_fixes)
99059e56 5440 stub_changed = TRUE;
48229727 5441
906e58ca
NC
5442 if (!stub_changed)
5443 break;
5e681ec4 5444
906e58ca
NC
5445 /* OK, we've added some stubs. Find out the new size of the
5446 stub sections. */
5447 for (stub_sec = htab->stub_bfd->sections;
5448 stub_sec != NULL;
5449 stub_sec = stub_sec->next)
3e6b1042
DJ
5450 {
5451 /* Ignore non-stub sections. */
5452 if (!strstr (stub_sec->name, STUB_SUFFIX))
5453 continue;
5454
5455 stub_sec->size = 0;
5456 }
b34b2d70 5457
906e58ca
NC
5458 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5459
48229727
JB
5460 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5461 if (htab->fix_cortex_a8)
99059e56
RM
5462 for (i = 0; i < num_a8_fixes; i++)
5463 {
48229727
JB
5464 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5465 a8_fixes[i].section, htab);
5466
5467 if (stub_sec == NULL)
5468 goto error_ret_free_local;
5469
99059e56
RM
5470 stub_sec->size
5471 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5472 NULL);
5473 }
48229727
JB
5474
5475
906e58ca
NC
5476 /* Ask the linker to do its stuff. */
5477 (*htab->layout_sections_again) ();
ba93b8ac
DJ
5478 }
5479
48229727
JB
5480 /* Add stubs for Cortex-A8 erratum fixes now. */
5481 if (htab->fix_cortex_a8)
5482 {
5483 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
5484 {
5485 struct elf32_arm_stub_hash_entry *stub_entry;
5486 char *stub_name = a8_fixes[i].stub_name;
5487 asection *section = a8_fixes[i].section;
5488 unsigned int section_id = a8_fixes[i].section->id;
5489 asection *link_sec = htab->stub_group[section_id].link_sec;
5490 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5491 const insn_sequence *template_sequence;
5492 int template_size, size = 0;
5493
5494 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5495 TRUE, FALSE);
5496 if (stub_entry == NULL)
5497 {
5498 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5499 section->owner,
5500 stub_name);
5501 return FALSE;
5502 }
5503
5504 stub_entry->stub_sec = stub_sec;
5505 stub_entry->stub_offset = 0;
5506 stub_entry->id_sec = link_sec;
5507 stub_entry->stub_type = a8_fixes[i].stub_type;
5508 stub_entry->target_section = a8_fixes[i].section;
5509 stub_entry->target_value = a8_fixes[i].offset;
5510 stub_entry->target_addend = a8_fixes[i].addend;
5511 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 5512 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 5513
99059e56
RM
5514 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5515 &template_sequence,
5516 &template_size);
48229727 5517
99059e56
RM
5518 stub_entry->stub_size = size;
5519 stub_entry->stub_template = template_sequence;
5520 stub_entry->stub_template_size = template_size;
5521 }
48229727
JB
5522
5523 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 5524 elf32_arm_write_section(). */
48229727
JB
5525 htab->a8_erratum_fixes = a8_fixes;
5526 htab->num_a8_erratum_fixes = num_a8_fixes;
5527 }
5528 else
5529 {
5530 htab->a8_erratum_fixes = NULL;
5531 htab->num_a8_erratum_fixes = 0;
5532 }
906e58ca
NC
5533 return TRUE;
5534
5535 error_ret_free_local:
5536 return FALSE;
5e681ec4
PB
5537}
5538
906e58ca
NC
5539/* Build all the stubs associated with the current output file. The
5540 stubs are kept in a hash table attached to the main linker hash
5541 table. We also set up the .plt entries for statically linked PIC
5542 functions here. This function is called via arm_elf_finish in the
5543 linker. */
252b5132 5544
906e58ca
NC
5545bfd_boolean
5546elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 5547{
906e58ca
NC
5548 asection *stub_sec;
5549 struct bfd_hash_table *table;
5550 struct elf32_arm_link_hash_table *htab;
252b5132 5551
906e58ca 5552 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
5553 if (htab == NULL)
5554 return FALSE;
252b5132 5555
906e58ca
NC
5556 for (stub_sec = htab->stub_bfd->sections;
5557 stub_sec != NULL;
5558 stub_sec = stub_sec->next)
252b5132 5559 {
906e58ca
NC
5560 bfd_size_type size;
5561
8029a119 5562 /* Ignore non-stub sections. */
906e58ca
NC
5563 if (!strstr (stub_sec->name, STUB_SUFFIX))
5564 continue;
5565
5566 /* Allocate memory to hold the linker stubs. */
5567 size = stub_sec->size;
21d799b5 5568 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
5569 if (stub_sec->contents == NULL && size != 0)
5570 return FALSE;
5571 stub_sec->size = 0;
252b5132
RH
5572 }
5573
906e58ca
NC
5574 /* Build the stubs as directed by the stub hash table. */
5575 table = &htab->stub_hash_table;
5576 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
5577 if (htab->fix_cortex_a8)
5578 {
5579 /* Place the cortex a8 stubs last. */
5580 htab->fix_cortex_a8 = -1;
5581 bfd_hash_traverse (table, arm_build_one_stub, info);
5582 }
252b5132 5583
906e58ca 5584 return TRUE;
252b5132
RH
5585}
5586
9b485d32
NC
5587/* Locate the Thumb encoded calling stub for NAME. */
5588
252b5132 5589static struct elf_link_hash_entry *
57e8b36a
NC
5590find_thumb_glue (struct bfd_link_info *link_info,
5591 const char *name,
f2a9dd69 5592 char **error_message)
252b5132
RH
5593{
5594 char *tmp_name;
5595 struct elf_link_hash_entry *hash;
5596 struct elf32_arm_link_hash_table *hash_table;
5597
5598 /* We need a pointer to the armelf specific hash table. */
5599 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
5600 if (hash_table == NULL)
5601 return NULL;
252b5132 5602
21d799b5 5603 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 5604 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5605
5606 BFD_ASSERT (tmp_name);
5607
5608 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5609
5610 hash = elf_link_hash_lookup
b34976b6 5611 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 5612
b1657152
AM
5613 if (hash == NULL
5614 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5615 tmp_name, name) == -1)
5616 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
5617
5618 free (tmp_name);
5619
5620 return hash;
5621}
5622
9b485d32
NC
5623/* Locate the ARM encoded calling stub for NAME. */
5624
252b5132 5625static struct elf_link_hash_entry *
57e8b36a
NC
5626find_arm_glue (struct bfd_link_info *link_info,
5627 const char *name,
f2a9dd69 5628 char **error_message)
252b5132
RH
5629{
5630 char *tmp_name;
5631 struct elf_link_hash_entry *myh;
5632 struct elf32_arm_link_hash_table *hash_table;
5633
5634 /* We need a pointer to the elfarm specific hash table. */
5635 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
5636 if (hash_table == NULL)
5637 return NULL;
252b5132 5638
21d799b5 5639 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 5640 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5641
5642 BFD_ASSERT (tmp_name);
5643
5644 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5645
5646 myh = elf_link_hash_lookup
b34976b6 5647 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 5648
b1657152
AM
5649 if (myh == NULL
5650 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5651 tmp_name, name) == -1)
5652 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
5653
5654 free (tmp_name);
5655
5656 return myh;
5657}
5658
8f6277f5 5659/* ARM->Thumb glue (static images):
252b5132
RH
5660
5661 .arm
5662 __func_from_arm:
5663 ldr r12, __func_addr
5664 bx r12
5665 __func_addr:
906e58ca 5666 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 5667
26079076
PB
5668 (v5t static images)
5669 .arm
5670 __func_from_arm:
5671 ldr pc, __func_addr
5672 __func_addr:
906e58ca 5673 .word func @ behave as if you saw a ARM_32 reloc.
26079076 5674
8f6277f5
PB
5675 (relocatable images)
5676 .arm
5677 __func_from_arm:
5678 ldr r12, __func_offset
5679 add r12, r12, pc
5680 bx r12
5681 __func_offset:
8029a119 5682 .word func - . */
8f6277f5
PB
5683
5684#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
5685static const insn32 a2t1_ldr_insn = 0xe59fc000;
5686static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5687static const insn32 a2t3_func_addr_insn = 0x00000001;
5688
26079076
PB
5689#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5690static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5691static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5692
8f6277f5
PB
5693#define ARM2THUMB_PIC_GLUE_SIZE 16
5694static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5695static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5696static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5697
9b485d32 5698/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 5699
8029a119
NC
5700 .thumb .thumb
5701 .align 2 .align 2
5702 __func_from_thumb: __func_from_thumb:
5703 bx pc push {r6, lr}
5704 nop ldr r6, __func_addr
5705 .arm mov lr, pc
5706 b func bx r6
99059e56
RM
5707 .arm
5708 ;; back_to_thumb
5709 ldmia r13! {r6, lr}
5710 bx lr
5711 __func_addr:
5712 .word func */
252b5132
RH
5713
5714#define THUMB2ARM_GLUE_SIZE 8
5715static const insn16 t2a1_bx_pc_insn = 0x4778;
5716static const insn16 t2a2_noop_insn = 0x46c0;
5717static const insn32 t2a3_b_insn = 0xea000000;
5718
c7b8f16e
JB
5719#define VFP11_ERRATUM_VENEER_SIZE 8
5720
845b51d6
PB
5721#define ARM_BX_VENEER_SIZE 12
5722static const insn32 armbx1_tst_insn = 0xe3100001;
5723static const insn32 armbx2_moveq_insn = 0x01a0f000;
5724static const insn32 armbx3_bx_insn = 0xe12fff10;
5725
7e392df6 5726#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
5727static void
5728arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
5729{
5730 asection * s;
8029a119 5731 bfd_byte * contents;
252b5132 5732
8029a119 5733 if (size == 0)
3e6b1042
DJ
5734 {
5735 /* Do not include empty glue sections in the output. */
5736 if (abfd != NULL)
5737 {
3d4d4302 5738 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
5739 if (s != NULL)
5740 s->flags |= SEC_EXCLUDE;
5741 }
5742 return;
5743 }
252b5132 5744
8029a119 5745 BFD_ASSERT (abfd != NULL);
252b5132 5746
3d4d4302 5747 s = bfd_get_linker_section (abfd, name);
8029a119 5748 BFD_ASSERT (s != NULL);
252b5132 5749
21d799b5 5750 contents = (bfd_byte *) bfd_alloc (abfd, size);
252b5132 5751
8029a119
NC
5752 BFD_ASSERT (s->size == size);
5753 s->contents = contents;
5754}
906e58ca 5755
8029a119
NC
5756bfd_boolean
5757bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5758{
5759 struct elf32_arm_link_hash_table * globals;
906e58ca 5760
8029a119
NC
5761 globals = elf32_arm_hash_table (info);
5762 BFD_ASSERT (globals != NULL);
906e58ca 5763
8029a119
NC
5764 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5765 globals->arm_glue_size,
5766 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 5767
8029a119
NC
5768 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5769 globals->thumb_glue_size,
5770 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 5771
8029a119
NC
5772 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5773 globals->vfp11_erratum_glue_size,
5774 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 5775
8029a119
NC
5776 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5777 globals->bx_glue_size,
845b51d6
PB
5778 ARM_BX_GLUE_SECTION_NAME);
5779
b34976b6 5780 return TRUE;
252b5132
RH
5781}
5782
a4fd1a8e 5783/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
5784 returns the symbol identifying the stub. */
5785
a4fd1a8e 5786static struct elf_link_hash_entry *
57e8b36a
NC
5787record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5788 struct elf_link_hash_entry * h)
252b5132
RH
5789{
5790 const char * name = h->root.root.string;
63b0f745 5791 asection * s;
252b5132
RH
5792 char * tmp_name;
5793 struct elf_link_hash_entry * myh;
14a793b2 5794 struct bfd_link_hash_entry * bh;
252b5132 5795 struct elf32_arm_link_hash_table * globals;
dc810e39 5796 bfd_vma val;
2f475487 5797 bfd_size_type size;
252b5132
RH
5798
5799 globals = elf32_arm_hash_table (link_info);
252b5132
RH
5800 BFD_ASSERT (globals != NULL);
5801 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5802
3d4d4302 5803 s = bfd_get_linker_section
252b5132
RH
5804 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5805
252b5132
RH
5806 BFD_ASSERT (s != NULL);
5807
21d799b5 5808 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 5809 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5810
5811 BFD_ASSERT (tmp_name);
5812
5813 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5814
5815 myh = elf_link_hash_lookup
b34976b6 5816 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
5817
5818 if (myh != NULL)
5819 {
9b485d32 5820 /* We've already seen this guy. */
252b5132 5821 free (tmp_name);
a4fd1a8e 5822 return myh;
252b5132
RH
5823 }
5824
57e8b36a
NC
5825 /* The only trick here is using hash_table->arm_glue_size as the value.
5826 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
5827 putting it. The +1 on the value marks that the stub has not been
5828 output yet - not that it is a Thumb function. */
14a793b2 5829 bh = NULL;
dc810e39
AM
5830 val = globals->arm_glue_size + 1;
5831 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5832 tmp_name, BSF_GLOBAL, s, val,
b34976b6 5833 NULL, TRUE, FALSE, &bh);
252b5132 5834
b7693d02
DJ
5835 myh = (struct elf_link_hash_entry *) bh;
5836 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5837 myh->forced_local = 1;
5838
252b5132
RH
5839 free (tmp_name);
5840
27e55c4d
PB
5841 if (link_info->shared || globals->root.is_relocatable_executable
5842 || globals->pic_veneer)
2f475487 5843 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
5844 else if (globals->use_blx)
5845 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 5846 else
2f475487
AM
5847 size = ARM2THUMB_STATIC_GLUE_SIZE;
5848
5849 s->size += size;
5850 globals->arm_glue_size += size;
252b5132 5851
a4fd1a8e 5852 return myh;
252b5132
RH
5853}
5854
845b51d6
PB
5855/* Allocate space for ARMv4 BX veneers. */
5856
5857static void
5858record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5859{
5860 asection * s;
5861 struct elf32_arm_link_hash_table *globals;
5862 char *tmp_name;
5863 struct elf_link_hash_entry *myh;
5864 struct bfd_link_hash_entry *bh;
5865 bfd_vma val;
5866
5867 /* BX PC does not need a veneer. */
5868 if (reg == 15)
5869 return;
5870
5871 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
5872 BFD_ASSERT (globals != NULL);
5873 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5874
5875 /* Check if this veneer has already been allocated. */
5876 if (globals->bx_glue_offset[reg])
5877 return;
5878
3d4d4302 5879 s = bfd_get_linker_section
845b51d6
PB
5880 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5881
5882 BFD_ASSERT (s != NULL);
5883
5884 /* Add symbol for veneer. */
21d799b5
NC
5885 tmp_name = (char *)
5886 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 5887
845b51d6 5888 BFD_ASSERT (tmp_name);
906e58ca 5889
845b51d6 5890 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 5891
845b51d6
PB
5892 myh = elf_link_hash_lookup
5893 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5894
845b51d6 5895 BFD_ASSERT (myh == NULL);
906e58ca 5896
845b51d6
PB
5897 bh = NULL;
5898 val = globals->bx_glue_size;
5899 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56
RM
5900 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5901 NULL, TRUE, FALSE, &bh);
845b51d6
PB
5902
5903 myh = (struct elf_link_hash_entry *) bh;
5904 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5905 myh->forced_local = 1;
5906
5907 s->size += ARM_BX_VENEER_SIZE;
5908 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5909 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5910}
5911
5912
c7b8f16e
JB
5913/* Add an entry to the code/data map for section SEC. */
5914
5915static void
5916elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5917{
5918 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5919 unsigned int newidx;
906e58ca 5920
c7b8f16e
JB
5921 if (sec_data->map == NULL)
5922 {
21d799b5 5923 sec_data->map = (elf32_arm_section_map *)
99059e56 5924 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
5925 sec_data->mapcount = 0;
5926 sec_data->mapsize = 1;
5927 }
906e58ca 5928
c7b8f16e 5929 newidx = sec_data->mapcount++;
906e58ca 5930
c7b8f16e
JB
5931 if (sec_data->mapcount > sec_data->mapsize)
5932 {
5933 sec_data->mapsize *= 2;
21d799b5 5934 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
5935 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5936 * sizeof (elf32_arm_section_map));
515ef31d
NC
5937 }
5938
5939 if (sec_data->map)
5940 {
5941 sec_data->map[newidx].vma = vma;
5942 sec_data->map[newidx].type = type;
c7b8f16e 5943 }
c7b8f16e
JB
5944}
5945
5946
5947/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5948 veneers are handled for now. */
5949
5950static bfd_vma
5951record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
5952 elf32_vfp11_erratum_list *branch,
5953 bfd *branch_bfd,
5954 asection *branch_sec,
5955 unsigned int offset)
c7b8f16e
JB
5956{
5957 asection *s;
5958 struct elf32_arm_link_hash_table *hash_table;
5959 char *tmp_name;
5960 struct elf_link_hash_entry *myh;
5961 struct bfd_link_hash_entry *bh;
5962 bfd_vma val;
5963 struct _arm_elf_section_data *sec_data;
c7b8f16e 5964 elf32_vfp11_erratum_list *newerr;
906e58ca 5965
c7b8f16e 5966 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
5967 BFD_ASSERT (hash_table != NULL);
5968 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 5969
3d4d4302 5970 s = bfd_get_linker_section
c7b8f16e 5971 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 5972
c7b8f16e 5973 sec_data = elf32_arm_section_data (s);
906e58ca 5974
c7b8f16e 5975 BFD_ASSERT (s != NULL);
906e58ca 5976
21d799b5 5977 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 5978 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 5979
c7b8f16e 5980 BFD_ASSERT (tmp_name);
906e58ca 5981
c7b8f16e
JB
5982 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5983 hash_table->num_vfp11_fixes);
906e58ca 5984
c7b8f16e
JB
5985 myh = elf_link_hash_lookup
5986 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5987
c7b8f16e 5988 BFD_ASSERT (myh == NULL);
906e58ca 5989
c7b8f16e
JB
5990 bh = NULL;
5991 val = hash_table->vfp11_erratum_glue_size;
5992 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56
RM
5993 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5994 NULL, TRUE, FALSE, &bh);
c7b8f16e
JB
5995
5996 myh = (struct elf_link_hash_entry *) bh;
5997 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5998 myh->forced_local = 1;
5999
6000 /* Link veneer back to calling location. */
c7e2358a 6001 sec_data->erratumcount += 1;
21d799b5
NC
6002 newerr = (elf32_vfp11_erratum_list *)
6003 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 6004
c7b8f16e
JB
6005 newerr->type = VFP11_ERRATUM_ARM_VENEER;
6006 newerr->vma = -1;
6007 newerr->u.v.branch = branch;
6008 newerr->u.v.id = hash_table->num_vfp11_fixes;
6009 branch->u.b.veneer = newerr;
6010
6011 newerr->next = sec_data->erratumlist;
6012 sec_data->erratumlist = newerr;
6013
6014 /* A symbol for the return from the veneer. */
6015 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6016 hash_table->num_vfp11_fixes);
6017
6018 myh = elf_link_hash_lookup
6019 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 6020
c7b8f16e
JB
6021 if (myh != NULL)
6022 abort ();
6023
6024 bh = NULL;
6025 val = offset + 4;
6026 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6027 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 6028
c7b8f16e
JB
6029 myh = (struct elf_link_hash_entry *) bh;
6030 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6031 myh->forced_local = 1;
6032
6033 free (tmp_name);
906e58ca 6034
c7b8f16e
JB
6035 /* Generate a mapping symbol for the veneer section, and explicitly add an
6036 entry for that symbol to the code/data map for the section. */
6037 if (hash_table->vfp11_erratum_glue_size == 0)
6038 {
6039 bh = NULL;
6040 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 6041 ever requires this erratum fix. */
c7b8f16e
JB
6042 _bfd_generic_link_add_one_symbol (link_info,
6043 hash_table->bfd_of_glue_owner, "$a",
6044 BSF_LOCAL, s, 0, NULL,
99059e56 6045 TRUE, FALSE, &bh);
c7b8f16e
JB
6046
6047 myh = (struct elf_link_hash_entry *) bh;
6048 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6049 myh->forced_local = 1;
906e58ca 6050
c7b8f16e 6051 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
6052 BFDs. We must make a note of this generated mapping symbol
6053 ourselves so that code byteswapping works properly in
6054 elf32_arm_write_section. */
c7b8f16e
JB
6055 elf32_arm_section_map_add (s, 'a', 0);
6056 }
906e58ca 6057
c7b8f16e
JB
6058 s->size += VFP11_ERRATUM_VENEER_SIZE;
6059 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
6060 hash_table->num_vfp11_fixes++;
906e58ca 6061
c7b8f16e
JB
6062 /* The offset of the veneer. */
6063 return val;
6064}
6065
8029a119 6066#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
6067 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6068 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
6069
6070/* Create a fake section for use by the ARM backend of the linker. */
6071
6072static bfd_boolean
6073arm_make_glue_section (bfd * abfd, const char * name)
6074{
6075 asection * sec;
6076
3d4d4302 6077 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
6078 if (sec != NULL)
6079 /* Already made. */
6080 return TRUE;
6081
3d4d4302 6082 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
6083
6084 if (sec == NULL
6085 || !bfd_set_section_alignment (abfd, sec, 2))
6086 return FALSE;
6087
6088 /* Set the gc mark to prevent the section from being removed by garbage
6089 collection, despite the fact that no relocs refer to this section. */
6090 sec->gc_mark = 1;
6091
6092 return TRUE;
6093}
6094
1db37fe6
YG
6095/* Set size of .plt entries. This function is called from the
6096 linker scripts in ld/emultempl/{armelf}.em. */
6097
6098void
6099bfd_elf32_arm_use_long_plt (void)
6100{
6101 elf32_arm_use_long_plt_entry = TRUE;
6102}
6103
8afb0e02
NC
6104/* Add the glue sections to ABFD. This function is called from the
6105 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 6106
b34976b6 6107bfd_boolean
57e8b36a
NC
6108bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6109 struct bfd_link_info *info)
252b5132 6110{
8afb0e02
NC
6111 /* If we are only performing a partial
6112 link do not bother adding the glue. */
1049f94e 6113 if (info->relocatable)
b34976b6 6114 return TRUE;
252b5132 6115
8029a119
NC
6116 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6117 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6118 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6119 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
8afb0e02
NC
6120}
6121
6122/* Select a BFD to be used to hold the sections used by the glue code.
6123 This function is called from the linker scripts in ld/emultempl/
8029a119 6124 {armelf/pe}.em. */
8afb0e02 6125
b34976b6 6126bfd_boolean
57e8b36a 6127bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
6128{
6129 struct elf32_arm_link_hash_table *globals;
6130
6131 /* If we are only performing a partial link
6132 do not bother getting a bfd to hold the glue. */
1049f94e 6133 if (info->relocatable)
b34976b6 6134 return TRUE;
8afb0e02 6135
b7693d02
DJ
6136 /* Make sure we don't attach the glue sections to a dynamic object. */
6137 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6138
8afb0e02 6139 globals = elf32_arm_hash_table (info);
8afb0e02
NC
6140 BFD_ASSERT (globals != NULL);
6141
6142 if (globals->bfd_of_glue_owner != NULL)
b34976b6 6143 return TRUE;
8afb0e02 6144
252b5132
RH
6145 /* Save the bfd for later use. */
6146 globals->bfd_of_glue_owner = abfd;
cedb70c5 6147
b34976b6 6148 return TRUE;
252b5132
RH
6149}
6150
906e58ca
NC
6151static void
6152check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 6153{
2de70689
MGD
6154 int cpu_arch;
6155
b38cadfb 6156 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
6157 Tag_CPU_arch);
6158
6159 if (globals->fix_arm1176)
6160 {
6161 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6162 globals->use_blx = 1;
6163 }
6164 else
6165 {
6166 if (cpu_arch > TAG_CPU_ARCH_V4T)
6167 globals->use_blx = 1;
6168 }
39b41c9c
PB
6169}
6170
b34976b6 6171bfd_boolean
57e8b36a 6172bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 6173 struct bfd_link_info *link_info)
252b5132
RH
6174{
6175 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 6176 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
6177 Elf_Internal_Rela *irel, *irelend;
6178 bfd_byte *contents = NULL;
252b5132
RH
6179
6180 asection *sec;
6181 struct elf32_arm_link_hash_table *globals;
6182
6183 /* If we are only performing a partial link do not bother
6184 to construct any glue. */
1049f94e 6185 if (link_info->relocatable)
b34976b6 6186 return TRUE;
252b5132 6187
39ce1a6a
NC
6188 /* Here we have a bfd that is to be included on the link. We have a
6189 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 6190 globals = elf32_arm_hash_table (link_info);
252b5132 6191 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
6192
6193 check_use_blx (globals);
252b5132 6194
d504ffc8 6195 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 6196 {
d003868e
AM
6197 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6198 abfd);
e489d0ae
PB
6199 return FALSE;
6200 }
f21f3fe0 6201
39ce1a6a
NC
6202 /* PR 5398: If we have not decided to include any loadable sections in
6203 the output then we will not have a glue owner bfd. This is OK, it
6204 just means that there is nothing else for us to do here. */
6205 if (globals->bfd_of_glue_owner == NULL)
6206 return TRUE;
6207
252b5132
RH
6208 /* Rummage around all the relocs and map the glue vectors. */
6209 sec = abfd->sections;
6210
6211 if (sec == NULL)
b34976b6 6212 return TRUE;
252b5132
RH
6213
6214 for (; sec != NULL; sec = sec->next)
6215 {
6216 if (sec->reloc_count == 0)
6217 continue;
6218
2f475487
AM
6219 if ((sec->flags & SEC_EXCLUDE) != 0)
6220 continue;
6221
0ffa91dd 6222 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 6223
9b485d32 6224 /* Load the relocs. */
6cdc0ccc 6225 internal_relocs
906e58ca 6226 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 6227
6cdc0ccc
AM
6228 if (internal_relocs == NULL)
6229 goto error_return;
252b5132 6230
6cdc0ccc
AM
6231 irelend = internal_relocs + sec->reloc_count;
6232 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
6233 {
6234 long r_type;
6235 unsigned long r_index;
252b5132
RH
6236
6237 struct elf_link_hash_entry *h;
6238
6239 r_type = ELF32_R_TYPE (irel->r_info);
6240 r_index = ELF32_R_SYM (irel->r_info);
6241
9b485d32 6242 /* These are the only relocation types we care about. */
ba96a88f 6243 if ( r_type != R_ARM_PC24
845b51d6 6244 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
6245 continue;
6246
6247 /* Get the section contents if we haven't done so already. */
6248 if (contents == NULL)
6249 {
6250 /* Get cached copy if it exists. */
6251 if (elf_section_data (sec)->this_hdr.contents != NULL)
6252 contents = elf_section_data (sec)->this_hdr.contents;
6253 else
6254 {
6255 /* Go get them off disk. */
57e8b36a 6256 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
6257 goto error_return;
6258 }
6259 }
6260
845b51d6
PB
6261 if (r_type == R_ARM_V4BX)
6262 {
6263 int reg;
6264
6265 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6266 record_arm_bx_glue (link_info, reg);
6267 continue;
6268 }
6269
a7c10850 6270 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
6271 h = NULL;
6272
9b485d32 6273 /* We don't care about local symbols. */
252b5132
RH
6274 if (r_index < symtab_hdr->sh_info)
6275 continue;
6276
9b485d32 6277 /* This is an external symbol. */
252b5132
RH
6278 r_index -= symtab_hdr->sh_info;
6279 h = (struct elf_link_hash_entry *)
6280 elf_sym_hashes (abfd)[r_index];
6281
6282 /* If the relocation is against a static symbol it must be within
6283 the current section and so cannot be a cross ARM/Thumb relocation. */
6284 if (h == NULL)
6285 continue;
6286
d504ffc8
DJ
6287 /* If the call will go through a PLT entry then we do not need
6288 glue. */
362d30a1 6289 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
6290 continue;
6291
252b5132
RH
6292 switch (r_type)
6293 {
6294 case R_ARM_PC24:
6295 /* This one is a call from arm code. We need to look up
99059e56
RM
6296 the target of the call. If it is a thumb target, we
6297 insert glue. */
35fc36a8 6298 if (h->target_internal == ST_BRANCH_TO_THUMB)
252b5132
RH
6299 record_arm_to_thumb_glue (link_info, h);
6300 break;
6301
252b5132 6302 default:
c6596c5e 6303 abort ();
252b5132
RH
6304 }
6305 }
6cdc0ccc
AM
6306
6307 if (contents != NULL
6308 && elf_section_data (sec)->this_hdr.contents != contents)
6309 free (contents);
6310 contents = NULL;
6311
6312 if (internal_relocs != NULL
6313 && elf_section_data (sec)->relocs != internal_relocs)
6314 free (internal_relocs);
6315 internal_relocs = NULL;
252b5132
RH
6316 }
6317
b34976b6 6318 return TRUE;
9a5aca8c 6319
252b5132 6320error_return:
6cdc0ccc
AM
6321 if (contents != NULL
6322 && elf_section_data (sec)->this_hdr.contents != contents)
6323 free (contents);
6324 if (internal_relocs != NULL
6325 && elf_section_data (sec)->relocs != internal_relocs)
6326 free (internal_relocs);
9a5aca8c 6327
b34976b6 6328 return FALSE;
252b5132 6329}
7e392df6 6330#endif
252b5132 6331
eb043451 6332
c7b8f16e
JB
6333/* Initialise maps of ARM/Thumb/data for input BFDs. */
6334
6335void
6336bfd_elf32_arm_init_maps (bfd *abfd)
6337{
6338 Elf_Internal_Sym *isymbuf;
6339 Elf_Internal_Shdr *hdr;
6340 unsigned int i, localsyms;
6341
af1f4419
NC
6342 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6343 if (! is_arm_elf (abfd))
6344 return;
6345
c7b8f16e
JB
6346 if ((abfd->flags & DYNAMIC) != 0)
6347 return;
6348
0ffa91dd 6349 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
6350 localsyms = hdr->sh_info;
6351
6352 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6353 should contain the number of local symbols, which should come before any
6354 global symbols. Mapping symbols are always local. */
6355 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6356 NULL);
6357
6358 /* No internal symbols read? Skip this BFD. */
6359 if (isymbuf == NULL)
6360 return;
6361
6362 for (i = 0; i < localsyms; i++)
6363 {
6364 Elf_Internal_Sym *isym = &isymbuf[i];
6365 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6366 const char *name;
906e58ca 6367
c7b8f16e 6368 if (sec != NULL
99059e56
RM
6369 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6370 {
6371 name = bfd_elf_string_from_elf_section (abfd,
6372 hdr->sh_link, isym->st_name);
906e58ca 6373
99059e56 6374 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 6375 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
6376 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6377 }
c7b8f16e
JB
6378 }
6379}
6380
6381
48229727
JB
6382/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6383 say what they wanted. */
6384
6385void
6386bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6387{
6388 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6389 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6390
4dfe6ac6
NC
6391 if (globals == NULL)
6392 return;
6393
48229727
JB
6394 if (globals->fix_cortex_a8 == -1)
6395 {
6396 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6397 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6398 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6399 || out_attr[Tag_CPU_arch_profile].i == 0))
6400 globals->fix_cortex_a8 = 1;
6401 else
6402 globals->fix_cortex_a8 = 0;
6403 }
6404}
6405
6406
c7b8f16e
JB
6407void
6408bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6409{
6410 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 6411 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 6412
4dfe6ac6
NC
6413 if (globals == NULL)
6414 return;
c7b8f16e
JB
6415 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6416 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6417 {
6418 switch (globals->vfp11_fix)
99059e56
RM
6419 {
6420 case BFD_ARM_VFP11_FIX_DEFAULT:
6421 case BFD_ARM_VFP11_FIX_NONE:
6422 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6423 break;
6424
6425 default:
6426 /* Give a warning, but do as the user requests anyway. */
6427 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6428 "workaround is not necessary for target architecture"), obfd);
6429 }
c7b8f16e
JB
6430 }
6431 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6432 /* For earlier architectures, we might need the workaround, but do not
6433 enable it by default. If users is running with broken hardware, they
6434 must enable the erratum fix explicitly. */
6435 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6436}
6437
6438
906e58ca
NC
6439enum bfd_arm_vfp11_pipe
6440{
c7b8f16e
JB
6441 VFP11_FMAC,
6442 VFP11_LS,
6443 VFP11_DS,
6444 VFP11_BAD
6445};
6446
6447/* Return a VFP register number. This is encoded as RX:X for single-precision
6448 registers, or X:RX for double-precision registers, where RX is the group of
6449 four bits in the instruction encoding and X is the single extension bit.
6450 RX and X fields are specified using their lowest (starting) bit. The return
6451 value is:
6452
6453 0...31: single-precision registers s0...s31
6454 32...63: double-precision registers d0...d31.
906e58ca 6455
c7b8f16e
JB
6456 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6457 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 6458
c7b8f16e
JB
6459static unsigned int
6460bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
99059e56 6461 unsigned int x)
c7b8f16e
JB
6462{
6463 if (is_double)
6464 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6465 else
6466 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6467}
6468
6469/* Set bits in *WMASK according to a register number REG as encoded by
6470 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6471
6472static void
6473bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6474{
6475 if (reg < 32)
6476 *wmask |= 1 << reg;
6477 else if (reg < 48)
6478 *wmask |= 3 << ((reg - 32) * 2);
6479}
6480
6481/* Return TRUE if WMASK overwrites anything in REGS. */
6482
6483static bfd_boolean
6484bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6485{
6486 int i;
906e58ca 6487
c7b8f16e
JB
6488 for (i = 0; i < numregs; i++)
6489 {
6490 unsigned int reg = regs[i];
6491
6492 if (reg < 32 && (wmask & (1 << reg)) != 0)
99059e56 6493 return TRUE;
906e58ca 6494
c7b8f16e
JB
6495 reg -= 32;
6496
6497 if (reg >= 16)
99059e56 6498 continue;
906e58ca 6499
c7b8f16e 6500 if ((wmask & (3 << (reg * 2))) != 0)
99059e56 6501 return TRUE;
c7b8f16e 6502 }
906e58ca 6503
c7b8f16e
JB
6504 return FALSE;
6505}
6506
6507/* In this function, we're interested in two things: finding input registers
6508 for VFP data-processing instructions, and finding the set of registers which
6509 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6510 hold the written set, so FLDM etc. are easy to deal with (we're only
6511 interested in 32 SP registers or 16 dp registers, due to the VFP version
6512 implemented by the chip in question). DP registers are marked by setting
6513 both SP registers in the write mask). */
6514
6515static enum bfd_arm_vfp11_pipe
6516bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 6517 int *numregs)
c7b8f16e 6518{
91d6fa6a 6519 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
6520 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6521
6522 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6523 {
6524 unsigned int pqrs;
6525 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6526 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6527
6528 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
6529 | ((insn & 0x00300000) >> 19)
6530 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
6531
6532 switch (pqrs)
99059e56
RM
6533 {
6534 case 0: /* fmac[sd]. */
6535 case 1: /* fnmac[sd]. */
6536 case 2: /* fmsc[sd]. */
6537 case 3: /* fnmsc[sd]. */
6538 vpipe = VFP11_FMAC;
6539 bfd_arm_vfp11_write_mask (destmask, fd);
6540 regs[0] = fd;
6541 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6542 regs[2] = fm;
6543 *numregs = 3;
6544 break;
6545
6546 case 4: /* fmul[sd]. */
6547 case 5: /* fnmul[sd]. */
6548 case 6: /* fadd[sd]. */
6549 case 7: /* fsub[sd]. */
6550 vpipe = VFP11_FMAC;
6551 goto vfp_binop;
6552
6553 case 8: /* fdiv[sd]. */
6554 vpipe = VFP11_DS;
6555 vfp_binop:
6556 bfd_arm_vfp11_write_mask (destmask, fd);
6557 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6558 regs[1] = fm;
6559 *numregs = 2;
6560 break;
6561
6562 case 15: /* extended opcode. */
6563 {
6564 unsigned int extn = ((insn >> 15) & 0x1e)
6565 | ((insn >> 7) & 1);
6566
6567 switch (extn)
6568 {
6569 case 0: /* fcpy[sd]. */
6570 case 1: /* fabs[sd]. */
6571 case 2: /* fneg[sd]. */
6572 case 8: /* fcmp[sd]. */
6573 case 9: /* fcmpe[sd]. */
6574 case 10: /* fcmpz[sd]. */
6575 case 11: /* fcmpez[sd]. */
6576 case 16: /* fuito[sd]. */
6577 case 17: /* fsito[sd]. */
6578 case 24: /* ftoui[sd]. */
6579 case 25: /* ftouiz[sd]. */
6580 case 26: /* ftosi[sd]. */
6581 case 27: /* ftosiz[sd]. */
6582 /* These instructions will not bounce due to underflow. */
6583 *numregs = 0;
6584 vpipe = VFP11_FMAC;
6585 break;
6586
6587 case 3: /* fsqrt[sd]. */
6588 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6589 registers to cause the erratum in previous instructions. */
6590 bfd_arm_vfp11_write_mask (destmask, fd);
6591 vpipe = VFP11_DS;
6592 break;
6593
6594 case 15: /* fcvt{ds,sd}. */
6595 {
6596 int rnum = 0;
6597
6598 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
6599
6600 /* Only FCVTSD can underflow. */
99059e56
RM
6601 if ((insn & 0x100) != 0)
6602 regs[rnum++] = fm;
c7b8f16e 6603
99059e56 6604 *numregs = rnum;
c7b8f16e 6605
99059e56
RM
6606 vpipe = VFP11_FMAC;
6607 }
6608 break;
c7b8f16e 6609
99059e56
RM
6610 default:
6611 return VFP11_BAD;
6612 }
6613 }
6614 break;
c7b8f16e 6615
99059e56
RM
6616 default:
6617 return VFP11_BAD;
6618 }
c7b8f16e
JB
6619 }
6620 /* Two-register transfer. */
6621 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6622 {
6623 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 6624
c7b8f16e
JB
6625 if ((insn & 0x100000) == 0)
6626 {
99059e56
RM
6627 if (is_double)
6628 bfd_arm_vfp11_write_mask (destmask, fm);
6629 else
6630 {
6631 bfd_arm_vfp11_write_mask (destmask, fm);
6632 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6633 }
c7b8f16e
JB
6634 }
6635
91d6fa6a 6636 vpipe = VFP11_LS;
c7b8f16e
JB
6637 }
6638 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6639 {
6640 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6641 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 6642
c7b8f16e 6643 switch (puw)
99059e56
RM
6644 {
6645 case 0: /* Two-reg transfer. We should catch these above. */
6646 abort ();
906e58ca 6647
99059e56
RM
6648 case 2: /* fldm[sdx]. */
6649 case 3:
6650 case 5:
6651 {
6652 unsigned int i, offset = insn & 0xff;
c7b8f16e 6653
99059e56
RM
6654 if (is_double)
6655 offset >>= 1;
c7b8f16e 6656
99059e56
RM
6657 for (i = fd; i < fd + offset; i++)
6658 bfd_arm_vfp11_write_mask (destmask, i);
6659 }
6660 break;
906e58ca 6661
99059e56
RM
6662 case 4: /* fld[sd]. */
6663 case 6:
6664 bfd_arm_vfp11_write_mask (destmask, fd);
6665 break;
906e58ca 6666
99059e56
RM
6667 default:
6668 return VFP11_BAD;
6669 }
c7b8f16e 6670
91d6fa6a 6671 vpipe = VFP11_LS;
c7b8f16e
JB
6672 }
6673 /* Single-register transfer. Note L==0. */
6674 else if ((insn & 0x0f100e10) == 0x0e000a10)
6675 {
6676 unsigned int opcode = (insn >> 21) & 7;
6677 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6678
6679 switch (opcode)
99059e56
RM
6680 {
6681 case 0: /* fmsr/fmdlr. */
6682 case 1: /* fmdhr. */
6683 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6684 destination register. I don't know if this is exactly right,
6685 but it is the conservative choice. */
6686 bfd_arm_vfp11_write_mask (destmask, fn);
6687 break;
6688
6689 case 7: /* fmxr. */
6690 break;
6691 }
c7b8f16e 6692
91d6fa6a 6693 vpipe = VFP11_LS;
c7b8f16e
JB
6694 }
6695
91d6fa6a 6696 return vpipe;
c7b8f16e
JB
6697}
6698
6699
6700static int elf32_arm_compare_mapping (const void * a, const void * b);
6701
6702
6703/* Look for potentially-troublesome code sequences which might trigger the
6704 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6705 (available from ARM) for details of the erratum. A short version is
6706 described in ld.texinfo. */
6707
6708bfd_boolean
6709bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6710{
6711 asection *sec;
6712 bfd_byte *contents = NULL;
6713 int state = 0;
6714 int regs[3], numregs = 0;
6715 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6716 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 6717
4dfe6ac6
NC
6718 if (globals == NULL)
6719 return FALSE;
6720
c7b8f16e
JB
6721 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6722 The states transition as follows:
906e58ca 6723
c7b8f16e 6724 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
6725 A VFP FMAC-pipeline instruction has been seen. Fill
6726 regs[0]..regs[numregs-1] with its input operands. Remember this
6727 instruction in 'first_fmac'.
c7b8f16e
JB
6728
6729 1 -> 2
99059e56
RM
6730 Any instruction, except for a VFP instruction which overwrites
6731 regs[*].
906e58ca 6732
c7b8f16e
JB
6733 1 -> 3 [ -> 0 ] or
6734 2 -> 3 [ -> 0 ]
99059e56
RM
6735 A VFP instruction has been seen which overwrites any of regs[*].
6736 We must make a veneer! Reset state to 0 before examining next
6737 instruction.
906e58ca 6738
c7b8f16e 6739 2 -> 0
99059e56
RM
6740 If we fail to match anything in state 2, reset to state 0 and reset
6741 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
6742
6743 If the VFP11 vector mode is in use, there must be at least two unrelated
6744 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 6745 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
6746
6747 /* If we are only performing a partial link do not bother
6748 to construct any glue. */
6749 if (link_info->relocatable)
6750 return TRUE;
6751
0ffa91dd
NC
6752 /* Skip if this bfd does not correspond to an ELF image. */
6753 if (! is_arm_elf (abfd))
6754 return TRUE;
906e58ca 6755
c7b8f16e
JB
6756 /* We should have chosen a fix type by the time we get here. */
6757 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6758
6759 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6760 return TRUE;
2e6030b9 6761
33a7ffc2
JM
6762 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6763 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6764 return TRUE;
6765
c7b8f16e
JB
6766 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6767 {
6768 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6769 struct _arm_elf_section_data *sec_data;
6770
6771 /* If we don't have executable progbits, we're not interested in this
99059e56 6772 section. Also skip if section is to be excluded. */
c7b8f16e 6773 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
6774 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6775 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 6776 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 6777 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
6778 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6779 continue;
c7b8f16e
JB
6780
6781 sec_data = elf32_arm_section_data (sec);
906e58ca 6782
c7b8f16e 6783 if (sec_data->mapcount == 0)
99059e56 6784 continue;
906e58ca 6785
c7b8f16e
JB
6786 if (elf_section_data (sec)->this_hdr.contents != NULL)
6787 contents = elf_section_data (sec)->this_hdr.contents;
6788 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6789 goto error_return;
6790
6791 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6792 elf32_arm_compare_mapping);
6793
6794 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
6795 {
6796 unsigned int span_start = sec_data->map[span].vma;
6797 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 6798 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
6799 char span_type = sec_data->map[span].type;
6800
6801 /* FIXME: Only ARM mode is supported at present. We may need to
6802 support Thumb-2 mode also at some point. */
6803 if (span_type != 'a')
6804 continue;
6805
6806 for (i = span_start; i < span_end;)
6807 {
6808 unsigned int next_i = i + 4;
6809 unsigned int insn = bfd_big_endian (abfd)
6810 ? (contents[i] << 24)
6811 | (contents[i + 1] << 16)
6812 | (contents[i + 2] << 8)
6813 | contents[i + 3]
6814 : (contents[i + 3] << 24)
6815 | (contents[i + 2] << 16)
6816 | (contents[i + 1] << 8)
6817 | contents[i];
6818 unsigned int writemask = 0;
6819 enum bfd_arm_vfp11_pipe vpipe;
6820
6821 switch (state)
6822 {
6823 case 0:
6824 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6825 &numregs);
6826 /* I'm assuming the VFP11 erratum can trigger with denorm
6827 operands on either the FMAC or the DS pipeline. This might
6828 lead to slightly overenthusiastic veneer insertion. */
6829 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6830 {
6831 state = use_vector ? 1 : 2;
6832 first_fmac = i;
6833 veneer_of_insn = insn;
6834 }
6835 break;
6836
6837 case 1:
6838 {
6839 int other_regs[3], other_numregs;
6840 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 6841 other_regs,
99059e56
RM
6842 &other_numregs);
6843 if (vpipe != VFP11_BAD
6844 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 6845 numregs))
99059e56
RM
6846 state = 3;
6847 else
6848 state = 2;
6849 }
6850 break;
6851
6852 case 2:
6853 {
6854 int other_regs[3], other_numregs;
6855 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 6856 other_regs,
99059e56
RM
6857 &other_numregs);
6858 if (vpipe != VFP11_BAD
6859 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 6860 numregs))
99059e56
RM
6861 state = 3;
6862 else
6863 {
6864 state = 0;
6865 next_i = first_fmac + 4;
6866 }
6867 }
6868 break;
6869
6870 case 3:
6871 abort (); /* Should be unreachable. */
6872 }
6873
6874 if (state == 3)
6875 {
6876 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6877 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6878
6879 elf32_arm_section_data (sec)->erratumcount += 1;
6880
6881 newerr->u.b.vfp_insn = veneer_of_insn;
6882
6883 switch (span_type)
6884 {
6885 case 'a':
6886 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6887 break;
6888
6889 default:
6890 abort ();
6891 }
6892
6893 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
6894 first_fmac);
6895
99059e56 6896 newerr->vma = -1;
c7b8f16e 6897
99059e56
RM
6898 newerr->next = sec_data->erratumlist;
6899 sec_data->erratumlist = newerr;
c7b8f16e 6900
99059e56
RM
6901 state = 0;
6902 }
c7b8f16e 6903
99059e56
RM
6904 i = next_i;
6905 }
6906 }
906e58ca 6907
c7b8f16e 6908 if (contents != NULL
99059e56
RM
6909 && elf_section_data (sec)->this_hdr.contents != contents)
6910 free (contents);
c7b8f16e
JB
6911 contents = NULL;
6912 }
6913
6914 return TRUE;
6915
6916error_return:
6917 if (contents != NULL
6918 && elf_section_data (sec)->this_hdr.contents != contents)
6919 free (contents);
906e58ca 6920
c7b8f16e
JB
6921 return FALSE;
6922}
6923
6924/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6925 after sections have been laid out, using specially-named symbols. */
6926
6927void
6928bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6929 struct bfd_link_info *link_info)
6930{
6931 asection *sec;
6932 struct elf32_arm_link_hash_table *globals;
6933 char *tmp_name;
906e58ca 6934
c7b8f16e
JB
6935 if (link_info->relocatable)
6936 return;
2e6030b9
MS
6937
6938 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 6939 if (! is_arm_elf (abfd))
2e6030b9
MS
6940 return;
6941
c7b8f16e 6942 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6943 if (globals == NULL)
6944 return;
906e58ca 6945
21d799b5 6946 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 6947 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e
JB
6948
6949 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6950 {
6951 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6952 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 6953
c7b8f16e 6954 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
6955 {
6956 struct elf_link_hash_entry *myh;
6957 bfd_vma vma;
6958
6959 switch (errnode->type)
6960 {
6961 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6962 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6963 /* Find veneer symbol. */
6964 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
6965 errnode->u.b.veneer->u.v.id);
6966
99059e56
RM
6967 myh = elf_link_hash_lookup
6968 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 6969
99059e56
RM
6970 if (myh == NULL)
6971 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6972 "`%s'"), abfd, tmp_name);
c7b8f16e 6973
99059e56
RM
6974 vma = myh->root.u.def.section->output_section->vma
6975 + myh->root.u.def.section->output_offset
6976 + myh->root.u.def.value;
c7b8f16e 6977
99059e56
RM
6978 errnode->u.b.veneer->vma = vma;
6979 break;
c7b8f16e
JB
6980
6981 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
6982 case VFP11_ERRATUM_THUMB_VENEER:
6983 /* Find return location. */
6984 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6985 errnode->u.v.id);
c7b8f16e 6986
99059e56
RM
6987 myh = elf_link_hash_lookup
6988 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 6989
99059e56
RM
6990 if (myh == NULL)
6991 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
c7b8f16e
JB
6992 "`%s'"), abfd, tmp_name);
6993
99059e56
RM
6994 vma = myh->root.u.def.section->output_section->vma
6995 + myh->root.u.def.section->output_offset
6996 + myh->root.u.def.value;
c7b8f16e 6997
99059e56
RM
6998 errnode->u.v.branch->vma = vma;
6999 break;
906e58ca 7000
99059e56
RM
7001 default:
7002 abort ();
7003 }
7004 }
c7b8f16e 7005 }
906e58ca 7006
c7b8f16e
JB
7007 free (tmp_name);
7008}
7009
7010
eb043451
PB
7011/* Set target relocation values needed during linking. */
7012
7013void
bf21ed78
MS
7014bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
7015 struct bfd_link_info *link_info,
eb043451 7016 int target1_is_rel,
319850b4 7017 char * target2_type,
99059e56 7018 int fix_v4bx,
c7b8f16e 7019 int use_blx,
99059e56 7020 bfd_arm_vfp11_fix vfp11_fix,
a9dc9481 7021 int no_enum_warn, int no_wchar_warn,
2de70689
MGD
7022 int pic_veneer, int fix_cortex_a8,
7023 int fix_arm1176)
eb043451
PB
7024{
7025 struct elf32_arm_link_hash_table *globals;
7026
7027 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7028 if (globals == NULL)
7029 return;
eb043451
PB
7030
7031 globals->target1_is_rel = target1_is_rel;
7032 if (strcmp (target2_type, "rel") == 0)
7033 globals->target2_reloc = R_ARM_REL32;
eeac373a
PB
7034 else if (strcmp (target2_type, "abs") == 0)
7035 globals->target2_reloc = R_ARM_ABS32;
eb043451
PB
7036 else if (strcmp (target2_type, "got-rel") == 0)
7037 globals->target2_reloc = R_ARM_GOT_PREL;
7038 else
7039 {
7040 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
7041 target2_type);
7042 }
319850b4 7043 globals->fix_v4bx = fix_v4bx;
33bfe774 7044 globals->use_blx |= use_blx;
c7b8f16e 7045 globals->vfp11_fix = vfp11_fix;
27e55c4d 7046 globals->pic_veneer = pic_veneer;
48229727 7047 globals->fix_cortex_a8 = fix_cortex_a8;
2de70689 7048 globals->fix_arm1176 = fix_arm1176;
bf21ed78 7049
0ffa91dd
NC
7050 BFD_ASSERT (is_arm_elf (output_bfd));
7051 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
a9dc9481 7052 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
eb043451 7053}
eb043451 7054
12a0a0fd 7055/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 7056
12a0a0fd
PB
7057static void
7058insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
7059{
7060 bfd_vma upper;
7061 bfd_vma lower;
7062 int reloc_sign;
7063
7064 BFD_ASSERT ((offset & 1) == 0);
7065
7066 upper = bfd_get_16 (abfd, insn);
7067 lower = bfd_get_16 (abfd, insn + 2);
7068 reloc_sign = (offset < 0) ? 1 : 0;
7069 upper = (upper & ~(bfd_vma) 0x7ff)
7070 | ((offset >> 12) & 0x3ff)
7071 | (reloc_sign << 10);
906e58ca 7072 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
7073 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7074 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7075 | ((offset >> 1) & 0x7ff);
7076 bfd_put_16 (abfd, upper, insn);
7077 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
7078}
7079
9b485d32
NC
7080/* Thumb code calling an ARM function. */
7081
252b5132 7082static int
57e8b36a
NC
7083elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7084 const char * name,
7085 bfd * input_bfd,
7086 bfd * output_bfd,
7087 asection * input_section,
7088 bfd_byte * hit_data,
7089 asection * sym_sec,
7090 bfd_vma offset,
7091 bfd_signed_vma addend,
f2a9dd69
DJ
7092 bfd_vma val,
7093 char **error_message)
252b5132 7094{
bcbdc74c 7095 asection * s = 0;
dc810e39 7096 bfd_vma my_offset;
252b5132 7097 long int ret_offset;
bcbdc74c
NC
7098 struct elf_link_hash_entry * myh;
7099 struct elf32_arm_link_hash_table * globals;
252b5132 7100
f2a9dd69 7101 myh = find_thumb_glue (info, name, error_message);
252b5132 7102 if (myh == NULL)
b34976b6 7103 return FALSE;
252b5132
RH
7104
7105 globals = elf32_arm_hash_table (info);
252b5132
RH
7106 BFD_ASSERT (globals != NULL);
7107 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7108
7109 my_offset = myh->root.u.def.value;
7110
3d4d4302
AM
7111 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7112 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
7113
7114 BFD_ASSERT (s != NULL);
7115 BFD_ASSERT (s->contents != NULL);
7116 BFD_ASSERT (s->output_section != NULL);
7117
7118 if ((my_offset & 0x01) == 0x01)
7119 {
7120 if (sym_sec != NULL
7121 && sym_sec->owner != NULL
7122 && !INTERWORK_FLAG (sym_sec->owner))
7123 {
8f615d07 7124 (*_bfd_error_handler)
d003868e 7125 (_("%B(%s): warning: interworking not enabled.\n"
3aaeb7d3 7126 " first occurrence: %B: Thumb call to ARM"),
d003868e 7127 sym_sec->owner, input_bfd, name);
252b5132 7128
b34976b6 7129 return FALSE;
252b5132
RH
7130 }
7131
7132 --my_offset;
7133 myh->root.u.def.value = my_offset;
7134
52ab56c2
PB
7135 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7136 s->contents + my_offset);
252b5132 7137
52ab56c2
PB
7138 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7139 s->contents + my_offset + 2);
252b5132
RH
7140
7141 ret_offset =
9b485d32
NC
7142 /* Address of destination of the stub. */
7143 ((bfd_signed_vma) val)
252b5132 7144 - ((bfd_signed_vma)
57e8b36a
NC
7145 /* Offset from the start of the current section
7146 to the start of the stubs. */
9b485d32
NC
7147 (s->output_offset
7148 /* Offset of the start of this stub from the start of the stubs. */
7149 + my_offset
7150 /* Address of the start of the current section. */
7151 + s->output_section->vma)
7152 /* The branch instruction is 4 bytes into the stub. */
7153 + 4
7154 /* ARM branches work from the pc of the instruction + 8. */
7155 + 8);
252b5132 7156
52ab56c2
PB
7157 put_arm_insn (globals, output_bfd,
7158 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7159 s->contents + my_offset + 4);
252b5132
RH
7160 }
7161
7162 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7163
427bfd90
NC
7164 /* Now go back and fix up the original BL insn to point to here. */
7165 ret_offset =
7166 /* Address of where the stub is located. */
7167 (s->output_section->vma + s->output_offset + my_offset)
7168 /* Address of where the BL is located. */
57e8b36a
NC
7169 - (input_section->output_section->vma + input_section->output_offset
7170 + offset)
427bfd90
NC
7171 /* Addend in the relocation. */
7172 - addend
7173 /* Biassing for PC-relative addressing. */
7174 - 8;
252b5132 7175
12a0a0fd 7176 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 7177
b34976b6 7178 return TRUE;
252b5132
RH
7179}
7180
a4fd1a8e 7181/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 7182
a4fd1a8e
PB
7183static struct elf_link_hash_entry *
7184elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7185 const char * name,
7186 bfd * input_bfd,
7187 bfd * output_bfd,
7188 asection * sym_sec,
7189 bfd_vma val,
8029a119
NC
7190 asection * s,
7191 char ** error_message)
252b5132 7192{
dc810e39 7193 bfd_vma my_offset;
252b5132 7194 long int ret_offset;
bcbdc74c
NC
7195 struct elf_link_hash_entry * myh;
7196 struct elf32_arm_link_hash_table * globals;
252b5132 7197
f2a9dd69 7198 myh = find_arm_glue (info, name, error_message);
252b5132 7199 if (myh == NULL)
a4fd1a8e 7200 return NULL;
252b5132
RH
7201
7202 globals = elf32_arm_hash_table (info);
252b5132
RH
7203 BFD_ASSERT (globals != NULL);
7204 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7205
7206 my_offset = myh->root.u.def.value;
252b5132
RH
7207
7208 if ((my_offset & 0x01) == 0x01)
7209 {
7210 if (sym_sec != NULL
7211 && sym_sec->owner != NULL
7212 && !INTERWORK_FLAG (sym_sec->owner))
7213 {
8f615d07 7214 (*_bfd_error_handler)
d003868e
AM
7215 (_("%B(%s): warning: interworking not enabled.\n"
7216 " first occurrence: %B: arm call to thumb"),
7217 sym_sec->owner, input_bfd, name);
252b5132 7218 }
9b485d32 7219
252b5132
RH
7220 --my_offset;
7221 myh->root.u.def.value = my_offset;
7222
27e55c4d
PB
7223 if (info->shared || globals->root.is_relocatable_executable
7224 || globals->pic_veneer)
8f6277f5
PB
7225 {
7226 /* For relocatable objects we can't use absolute addresses,
7227 so construct the address from a relative offset. */
7228 /* TODO: If the offset is small it's probably worth
7229 constructing the address with adds. */
52ab56c2
PB
7230 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7231 s->contents + my_offset);
7232 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7233 s->contents + my_offset + 4);
7234 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7235 s->contents + my_offset + 8);
8f6277f5
PB
7236 /* Adjust the offset by 4 for the position of the add,
7237 and 8 for the pipeline offset. */
7238 ret_offset = (val - (s->output_offset
7239 + s->output_section->vma
7240 + my_offset + 12))
7241 | 1;
7242 bfd_put_32 (output_bfd, ret_offset,
7243 s->contents + my_offset + 12);
7244 }
26079076
PB
7245 else if (globals->use_blx)
7246 {
7247 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7248 s->contents + my_offset);
7249
7250 /* It's a thumb address. Add the low order bit. */
7251 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7252 s->contents + my_offset + 4);
7253 }
8f6277f5
PB
7254 else
7255 {
52ab56c2
PB
7256 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7257 s->contents + my_offset);
252b5132 7258
52ab56c2
PB
7259 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7260 s->contents + my_offset + 4);
252b5132 7261
8f6277f5
PB
7262 /* It's a thumb address. Add the low order bit. */
7263 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7264 s->contents + my_offset + 8);
8029a119
NC
7265
7266 my_offset += 12;
8f6277f5 7267 }
252b5132
RH
7268 }
7269
7270 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7271
a4fd1a8e
PB
7272 return myh;
7273}
7274
7275/* Arm code calling a Thumb function. */
7276
7277static int
7278elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7279 const char * name,
7280 bfd * input_bfd,
7281 bfd * output_bfd,
7282 asection * input_section,
7283 bfd_byte * hit_data,
7284 asection * sym_sec,
7285 bfd_vma offset,
7286 bfd_signed_vma addend,
f2a9dd69
DJ
7287 bfd_vma val,
7288 char **error_message)
a4fd1a8e
PB
7289{
7290 unsigned long int tmp;
7291 bfd_vma my_offset;
7292 asection * s;
7293 long int ret_offset;
7294 struct elf_link_hash_entry * myh;
7295 struct elf32_arm_link_hash_table * globals;
7296
7297 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
7298 BFD_ASSERT (globals != NULL);
7299 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7300
3d4d4302
AM
7301 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7302 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
7303 BFD_ASSERT (s != NULL);
7304 BFD_ASSERT (s->contents != NULL);
7305 BFD_ASSERT (s->output_section != NULL);
7306
7307 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 7308 sym_sec, val, s, error_message);
a4fd1a8e
PB
7309 if (!myh)
7310 return FALSE;
7311
7312 my_offset = myh->root.u.def.value;
252b5132
RH
7313 tmp = bfd_get_32 (input_bfd, hit_data);
7314 tmp = tmp & 0xFF000000;
7315
9b485d32 7316 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
7317 ret_offset = (s->output_offset
7318 + my_offset
7319 + s->output_section->vma
7320 - (input_section->output_offset
7321 + input_section->output_section->vma
7322 + offset + addend)
7323 - 8);
9a5aca8c 7324
252b5132
RH
7325 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7326
dc810e39 7327 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 7328
b34976b6 7329 return TRUE;
252b5132
RH
7330}
7331
a4fd1a8e
PB
7332/* Populate Arm stub for an exported Thumb function. */
7333
7334static bfd_boolean
7335elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7336{
7337 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7338 asection * s;
7339 struct elf_link_hash_entry * myh;
7340 struct elf32_arm_link_hash_entry *eh;
7341 struct elf32_arm_link_hash_table * globals;
7342 asection *sec;
7343 bfd_vma val;
f2a9dd69 7344 char *error_message;
a4fd1a8e 7345
906e58ca 7346 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
7347 /* Allocate stubs for exported Thumb functions on v4t. */
7348 if (eh->export_glue == NULL)
7349 return TRUE;
7350
7351 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
7352 BFD_ASSERT (globals != NULL);
7353 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7354
3d4d4302
AM
7355 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7356 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
7357 BFD_ASSERT (s != NULL);
7358 BFD_ASSERT (s->contents != NULL);
7359 BFD_ASSERT (s->output_section != NULL);
7360
7361 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
7362
7363 BFD_ASSERT (sec->output_section != NULL);
7364
a4fd1a8e
PB
7365 val = eh->export_glue->root.u.def.value + sec->output_offset
7366 + sec->output_section->vma;
8029a119 7367
a4fd1a8e
PB
7368 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7369 h->root.u.def.section->owner,
f2a9dd69
DJ
7370 globals->obfd, sec, val, s,
7371 &error_message);
a4fd1a8e
PB
7372 BFD_ASSERT (myh);
7373 return TRUE;
7374}
7375
845b51d6
PB
7376/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7377
7378static bfd_vma
7379elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7380{
7381 bfd_byte *p;
7382 bfd_vma glue_addr;
7383 asection *s;
7384 struct elf32_arm_link_hash_table *globals;
7385
7386 globals = elf32_arm_hash_table (info);
845b51d6
PB
7387 BFD_ASSERT (globals != NULL);
7388 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7389
3d4d4302
AM
7390 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7391 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
7392 BFD_ASSERT (s != NULL);
7393 BFD_ASSERT (s->contents != NULL);
7394 BFD_ASSERT (s->output_section != NULL);
7395
7396 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7397
7398 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7399
7400 if ((globals->bx_glue_offset[reg] & 1) == 0)
7401 {
7402 p = s->contents + glue_addr;
7403 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7404 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7405 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7406 globals->bx_glue_offset[reg] |= 1;
7407 }
7408
7409 return glue_addr + s->output_section->vma + s->output_offset;
7410}
7411
a4fd1a8e
PB
7412/* Generate Arm stubs for exported Thumb symbols. */
7413static void
906e58ca 7414elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
7415 struct bfd_link_info *link_info)
7416{
7417 struct elf32_arm_link_hash_table * globals;
7418
8029a119
NC
7419 if (link_info == NULL)
7420 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
7421 return;
7422
7423 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7424 if (globals == NULL)
7425 return;
7426
84c08195
PB
7427 /* If blx is available then exported Thumb symbols are OK and there is
7428 nothing to do. */
a4fd1a8e
PB
7429 if (globals->use_blx)
7430 return;
7431
7432 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7433 link_info);
7434}
7435
47beaa6a
RS
7436/* Reserve space for COUNT dynamic relocations in relocation selection
7437 SRELOC. */
7438
7439static void
7440elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7441 bfd_size_type count)
7442{
7443 struct elf32_arm_link_hash_table *htab;
7444
7445 htab = elf32_arm_hash_table (info);
7446 BFD_ASSERT (htab->root.dynamic_sections_created);
7447 if (sreloc == NULL)
7448 abort ();
7449 sreloc->size += RELOC_SIZE (htab) * count;
7450}
7451
34e77a92
RS
7452/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7453 dynamic, the relocations should go in SRELOC, otherwise they should
7454 go in the special .rel.iplt section. */
7455
7456static void
7457elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7458 bfd_size_type count)
7459{
7460 struct elf32_arm_link_hash_table *htab;
7461
7462 htab = elf32_arm_hash_table (info);
7463 if (!htab->root.dynamic_sections_created)
7464 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7465 else
7466 {
7467 BFD_ASSERT (sreloc != NULL);
7468 sreloc->size += RELOC_SIZE (htab) * count;
7469 }
7470}
7471
47beaa6a
RS
7472/* Add relocation REL to the end of relocation section SRELOC. */
7473
7474static void
7475elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7476 asection *sreloc, Elf_Internal_Rela *rel)
7477{
7478 bfd_byte *loc;
7479 struct elf32_arm_link_hash_table *htab;
7480
7481 htab = elf32_arm_hash_table (info);
34e77a92
RS
7482 if (!htab->root.dynamic_sections_created
7483 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7484 sreloc = htab->root.irelplt;
47beaa6a
RS
7485 if (sreloc == NULL)
7486 abort ();
7487 loc = sreloc->contents;
7488 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7489 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7490 abort ();
7491 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7492}
7493
34e77a92
RS
7494/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7495 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7496 to .plt. */
7497
7498static void
7499elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7500 bfd_boolean is_iplt_entry,
7501 union gotplt_union *root_plt,
7502 struct arm_plt_info *arm_plt)
7503{
7504 struct elf32_arm_link_hash_table *htab;
7505 asection *splt;
7506 asection *sgotplt;
7507
7508 htab = elf32_arm_hash_table (info);
7509
7510 if (is_iplt_entry)
7511 {
7512 splt = htab->root.iplt;
7513 sgotplt = htab->root.igotplt;
7514
99059e56
RM
7515 /* NaCl uses a special first entry in .iplt too. */
7516 if (htab->nacl_p && splt->size == 0)
7517 splt->size += htab->plt_header_size;
7518
34e77a92
RS
7519 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7520 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7521 }
7522 else
7523 {
7524 splt = htab->root.splt;
7525 sgotplt = htab->root.sgotplt;
7526
7527 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7528 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7529
7530 /* If this is the first .plt entry, make room for the special
7531 first entry. */
7532 if (splt->size == 0)
7533 splt->size += htab->plt_header_size;
9f19ab6d
WN
7534
7535 htab->next_tls_desc_index++;
34e77a92
RS
7536 }
7537
7538 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7539 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7540 splt->size += PLT_THUMB_STUB_SIZE;
7541 root_plt->offset = splt->size;
7542 splt->size += htab->plt_entry_size;
7543
7544 if (!htab->symbian_p)
7545 {
7546 /* We also need to make an entry in the .got.plt section, which
7547 will be placed in the .got section by the linker script. */
9f19ab6d
WN
7548 if (is_iplt_entry)
7549 arm_plt->got_offset = sgotplt->size;
7550 else
7551 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
34e77a92
RS
7552 sgotplt->size += 4;
7553 }
7554}
7555
b38cadfb
NC
7556static bfd_vma
7557arm_movw_immediate (bfd_vma value)
7558{
7559 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7560}
7561
7562static bfd_vma
7563arm_movt_immediate (bfd_vma value)
7564{
7565 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7566}
7567
34e77a92
RS
7568/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7569 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7570 Otherwise, DYNINDX is the index of the symbol in the dynamic
7571 symbol table and SYM_VALUE is undefined.
7572
7573 ROOT_PLT points to the offset of the PLT entry from the start of its
7574 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 7575 bookkeeping information.
34e77a92 7576
57460bcf
NC
7577 Returns FALSE if there was a problem. */
7578
7579static bfd_boolean
34e77a92
RS
7580elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7581 union gotplt_union *root_plt,
7582 struct arm_plt_info *arm_plt,
7583 int dynindx, bfd_vma sym_value)
7584{
7585 struct elf32_arm_link_hash_table *htab;
7586 asection *sgot;
7587 asection *splt;
7588 asection *srel;
7589 bfd_byte *loc;
7590 bfd_vma plt_index;
7591 Elf_Internal_Rela rel;
7592 bfd_vma plt_header_size;
7593 bfd_vma got_header_size;
7594
7595 htab = elf32_arm_hash_table (info);
7596
7597 /* Pick the appropriate sections and sizes. */
7598 if (dynindx == -1)
7599 {
7600 splt = htab->root.iplt;
7601 sgot = htab->root.igotplt;
7602 srel = htab->root.irelplt;
7603
7604 /* There are no reserved entries in .igot.plt, and no special
7605 first entry in .iplt. */
7606 got_header_size = 0;
7607 plt_header_size = 0;
7608 }
7609 else
7610 {
7611 splt = htab->root.splt;
7612 sgot = htab->root.sgotplt;
7613 srel = htab->root.srelplt;
7614
7615 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7616 plt_header_size = htab->plt_header_size;
7617 }
7618 BFD_ASSERT (splt != NULL && srel != NULL);
7619
7620 /* Fill in the entry in the procedure linkage table. */
7621 if (htab->symbian_p)
7622 {
7623 BFD_ASSERT (dynindx >= 0);
7624 put_arm_insn (htab, output_bfd,
7625 elf32_arm_symbian_plt_entry[0],
7626 splt->contents + root_plt->offset);
7627 bfd_put_32 (output_bfd,
7628 elf32_arm_symbian_plt_entry[1],
7629 splt->contents + root_plt->offset + 4);
7630
7631 /* Fill in the entry in the .rel.plt section. */
7632 rel.r_offset = (splt->output_section->vma
7633 + splt->output_offset
7634 + root_plt->offset + 4);
7635 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7636
7637 /* Get the index in the procedure linkage table which
7638 corresponds to this symbol. This is the index of this symbol
7639 in all the symbols for which we are making plt entries. The
7640 first entry in the procedure linkage table is reserved. */
7641 plt_index = ((root_plt->offset - plt_header_size)
7642 / htab->plt_entry_size);
7643 }
7644 else
7645 {
7646 bfd_vma got_offset, got_address, plt_address;
7647 bfd_vma got_displacement, initial_got_entry;
7648 bfd_byte * ptr;
7649
7650 BFD_ASSERT (sgot != NULL);
7651
7652 /* Get the offset into the .(i)got.plt table of the entry that
7653 corresponds to this function. */
7654 got_offset = (arm_plt->got_offset & -2);
7655
7656 /* Get the index in the procedure linkage table which
7657 corresponds to this symbol. This is the index of this symbol
7658 in all the symbols for which we are making plt entries.
7659 After the reserved .got.plt entries, all symbols appear in
7660 the same order as in .plt. */
7661 plt_index = (got_offset - got_header_size) / 4;
7662
7663 /* Calculate the address of the GOT entry. */
7664 got_address = (sgot->output_section->vma
7665 + sgot->output_offset
7666 + got_offset);
7667
7668 /* ...and the address of the PLT entry. */
7669 plt_address = (splt->output_section->vma
7670 + splt->output_offset
7671 + root_plt->offset);
7672
7673 ptr = splt->contents + root_plt->offset;
7674 if (htab->vxworks_p && info->shared)
7675 {
7676 unsigned int i;
7677 bfd_vma val;
7678
7679 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7680 {
7681 val = elf32_arm_vxworks_shared_plt_entry[i];
7682 if (i == 2)
7683 val |= got_address - sgot->output_section->vma;
7684 if (i == 5)
7685 val |= plt_index * RELOC_SIZE (htab);
7686 if (i == 2 || i == 5)
7687 bfd_put_32 (output_bfd, val, ptr);
7688 else
7689 put_arm_insn (htab, output_bfd, val, ptr);
7690 }
7691 }
7692 else if (htab->vxworks_p)
7693 {
7694 unsigned int i;
7695 bfd_vma val;
7696
7697 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7698 {
7699 val = elf32_arm_vxworks_exec_plt_entry[i];
7700 if (i == 2)
7701 val |= got_address;
7702 if (i == 4)
7703 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7704 if (i == 5)
7705 val |= plt_index * RELOC_SIZE (htab);
7706 if (i == 2 || i == 5)
7707 bfd_put_32 (output_bfd, val, ptr);
7708 else
7709 put_arm_insn (htab, output_bfd, val, ptr);
7710 }
7711
7712 loc = (htab->srelplt2->contents
7713 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7714
7715 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7716 referencing the GOT for this PLT entry. */
7717 rel.r_offset = plt_address + 8;
7718 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7719 rel.r_addend = got_offset;
7720 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7721 loc += RELOC_SIZE (htab);
7722
7723 /* Create the R_ARM_ABS32 relocation referencing the
7724 beginning of the PLT for this GOT entry. */
7725 rel.r_offset = got_address;
7726 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7727 rel.r_addend = 0;
7728 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7729 }
b38cadfb
NC
7730 else if (htab->nacl_p)
7731 {
7732 /* Calculate the displacement between the PLT slot and the
7733 common tail that's part of the special initial PLT slot. */
6034aab8 7734 int32_t tail_displacement
b38cadfb
NC
7735 = ((splt->output_section->vma + splt->output_offset
7736 + ARM_NACL_PLT_TAIL_OFFSET)
7737 - (plt_address + htab->plt_entry_size + 4));
7738 BFD_ASSERT ((tail_displacement & 3) == 0);
7739 tail_displacement >>= 2;
7740
7741 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7742 || (-tail_displacement & 0xff000000) == 0);
7743
7744 /* Calculate the displacement between the PLT slot and the entry
7745 in the GOT. The offset accounts for the value produced by
7746 adding to pc in the penultimate instruction of the PLT stub. */
6034aab8 7747 got_displacement = (got_address
99059e56 7748 - (plt_address + htab->plt_entry_size));
b38cadfb
NC
7749
7750 /* NaCl does not support interworking at all. */
7751 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7752
7753 put_arm_insn (htab, output_bfd,
7754 elf32_arm_nacl_plt_entry[0]
7755 | arm_movw_immediate (got_displacement),
7756 ptr + 0);
7757 put_arm_insn (htab, output_bfd,
7758 elf32_arm_nacl_plt_entry[1]
7759 | arm_movt_immediate (got_displacement),
7760 ptr + 4);
7761 put_arm_insn (htab, output_bfd,
7762 elf32_arm_nacl_plt_entry[2],
7763 ptr + 8);
7764 put_arm_insn (htab, output_bfd,
7765 elf32_arm_nacl_plt_entry[3]
7766 | (tail_displacement & 0x00ffffff),
7767 ptr + 12);
7768 }
57460bcf
NC
7769 else if (using_thumb_only (htab))
7770 {
eed94f8f 7771 /* PR ld/16017: Generate thumb only PLT entries. */
469a3493 7772 if (!using_thumb2 (htab))
eed94f8f
NC
7773 {
7774 /* FIXME: We ought to be able to generate thumb-1 PLT
7775 instructions... */
7776 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
7777 output_bfd);
7778 return FALSE;
7779 }
57460bcf 7780
eed94f8f
NC
7781 /* Calculate the displacement between the PLT slot and the entry in
7782 the GOT. The 12-byte offset accounts for the value produced by
7783 adding to pc in the 3rd instruction of the PLT stub. */
7784 got_displacement = got_address - (plt_address + 12);
7785
7786 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
7787 instead of 'put_thumb_insn'. */
7788 put_arm_insn (htab, output_bfd,
7789 elf32_thumb2_plt_entry[0]
7790 | ((got_displacement & 0x000000ff) << 16)
7791 | ((got_displacement & 0x00000700) << 20)
7792 | ((got_displacement & 0x00000800) >> 1)
7793 | ((got_displacement & 0x0000f000) >> 12),
7794 ptr + 0);
7795 put_arm_insn (htab, output_bfd,
7796 elf32_thumb2_plt_entry[1]
7797 | ((got_displacement & 0x00ff0000) )
7798 | ((got_displacement & 0x07000000) << 4)
7799 | ((got_displacement & 0x08000000) >> 17)
7800 | ((got_displacement & 0xf0000000) >> 28),
7801 ptr + 4);
7802 put_arm_insn (htab, output_bfd,
7803 elf32_thumb2_plt_entry[2],
7804 ptr + 8);
7805 put_arm_insn (htab, output_bfd,
7806 elf32_thumb2_plt_entry[3],
7807 ptr + 12);
57460bcf 7808 }
34e77a92
RS
7809 else
7810 {
7811 /* Calculate the displacement between the PLT slot and the
7812 entry in the GOT. The eight-byte offset accounts for the
7813 value produced by adding to pc in the first instruction
7814 of the PLT stub. */
7815 got_displacement = got_address - (plt_address + 8);
7816
34e77a92
RS
7817 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7818 {
7819 put_thumb_insn (htab, output_bfd,
7820 elf32_arm_plt_thumb_stub[0], ptr - 4);
7821 put_thumb_insn (htab, output_bfd,
7822 elf32_arm_plt_thumb_stub[1], ptr - 2);
7823 }
7824
1db37fe6
YG
7825 if (!elf32_arm_use_long_plt_entry)
7826 {
7827 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7828
7829 put_arm_insn (htab, output_bfd,
7830 elf32_arm_plt_entry_short[0]
7831 | ((got_displacement & 0x0ff00000) >> 20),
7832 ptr + 0);
7833 put_arm_insn (htab, output_bfd,
7834 elf32_arm_plt_entry_short[1]
7835 | ((got_displacement & 0x000ff000) >> 12),
7836 ptr+ 4);
7837 put_arm_insn (htab, output_bfd,
7838 elf32_arm_plt_entry_short[2]
7839 | (got_displacement & 0x00000fff),
7840 ptr + 8);
34e77a92 7841#ifdef FOUR_WORD_PLT
1db37fe6 7842 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
34e77a92 7843#endif
1db37fe6
YG
7844 }
7845 else
7846 {
7847 put_arm_insn (htab, output_bfd,
7848 elf32_arm_plt_entry_long[0]
7849 | ((got_displacement & 0xf0000000) >> 28),
7850 ptr + 0);
7851 put_arm_insn (htab, output_bfd,
7852 elf32_arm_plt_entry_long[1]
7853 | ((got_displacement & 0x0ff00000) >> 20),
7854 ptr + 4);
7855 put_arm_insn (htab, output_bfd,
7856 elf32_arm_plt_entry_long[2]
7857 | ((got_displacement & 0x000ff000) >> 12),
7858 ptr+ 8);
7859 put_arm_insn (htab, output_bfd,
7860 elf32_arm_plt_entry_long[3]
7861 | (got_displacement & 0x00000fff),
7862 ptr + 12);
7863 }
34e77a92
RS
7864 }
7865
7866 /* Fill in the entry in the .rel(a).(i)plt section. */
7867 rel.r_offset = got_address;
7868 rel.r_addend = 0;
7869 if (dynindx == -1)
7870 {
7871 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7872 The dynamic linker or static executable then calls SYM_VALUE
7873 to determine the correct run-time value of the .igot.plt entry. */
7874 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7875 initial_got_entry = sym_value;
7876 }
7877 else
7878 {
7879 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7880 initial_got_entry = (splt->output_section->vma
7881 + splt->output_offset);
7882 }
7883
7884 /* Fill in the entry in the global offset table. */
7885 bfd_put_32 (output_bfd, initial_got_entry,
7886 sgot->contents + got_offset);
7887 }
7888
aba8c3de
WN
7889 if (dynindx == -1)
7890 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
7891 else
7892 {
7893 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7894 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7895 }
57460bcf
NC
7896
7897 return TRUE;
34e77a92
RS
7898}
7899
eb043451
PB
7900/* Some relocations map to different relocations depending on the
7901 target. Return the real relocation. */
8029a119 7902
eb043451
PB
7903static int
7904arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7905 int r_type)
7906{
7907 switch (r_type)
7908 {
7909 case R_ARM_TARGET1:
7910 if (globals->target1_is_rel)
7911 return R_ARM_REL32;
7912 else
7913 return R_ARM_ABS32;
7914
7915 case R_ARM_TARGET2:
7916 return globals->target2_reloc;
7917
7918 default:
7919 return r_type;
7920 }
7921}
eb043451 7922
ba93b8ac
DJ
7923/* Return the base VMA address which should be subtracted from real addresses
7924 when resolving @dtpoff relocation.
7925 This is PT_TLS segment p_vaddr. */
7926
7927static bfd_vma
7928dtpoff_base (struct bfd_link_info *info)
7929{
7930 /* If tls_sec is NULL, we should have signalled an error already. */
7931 if (elf_hash_table (info)->tls_sec == NULL)
7932 return 0;
7933 return elf_hash_table (info)->tls_sec->vma;
7934}
7935
7936/* Return the relocation value for @tpoff relocation
7937 if STT_TLS virtual address is ADDRESS. */
7938
7939static bfd_vma
7940tpoff (struct bfd_link_info *info, bfd_vma address)
7941{
7942 struct elf_link_hash_table *htab = elf_hash_table (info);
7943 bfd_vma base;
7944
7945 /* If tls_sec is NULL, we should have signalled an error already. */
7946 if (htab->tls_sec == NULL)
7947 return 0;
7948 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7949 return address - htab->tls_sec->vma + base;
7950}
7951
00a97672
RS
7952/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7953 VALUE is the relocation value. */
7954
7955static bfd_reloc_status_type
7956elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7957{
7958 if (value > 0xfff)
7959 return bfd_reloc_overflow;
7960
7961 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7962 bfd_put_32 (abfd, value, data);
7963 return bfd_reloc_ok;
7964}
7965
0855e32b
NS
7966/* Handle TLS relaxations. Relaxing is possible for symbols that use
7967 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7968 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7969
7970 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7971 is to then call final_link_relocate. Return other values in the
62672b10
NS
7972 case of error.
7973
7974 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7975 the pre-relaxed code. It would be nice if the relocs were updated
7976 to match the optimization. */
0855e32b 7977
b38cadfb 7978static bfd_reloc_status_type
0855e32b 7979elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 7980 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
7981 Elf_Internal_Rela *rel, unsigned long is_local)
7982{
7983 unsigned long insn;
b38cadfb 7984
0855e32b
NS
7985 switch (ELF32_R_TYPE (rel->r_info))
7986 {
7987 default:
7988 return bfd_reloc_notsupported;
b38cadfb 7989
0855e32b
NS
7990 case R_ARM_TLS_GOTDESC:
7991 if (is_local)
7992 insn = 0;
7993 else
7994 {
7995 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7996 if (insn & 1)
7997 insn -= 5; /* THUMB */
7998 else
7999 insn -= 8; /* ARM */
8000 }
8001 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8002 return bfd_reloc_continue;
8003
8004 case R_ARM_THM_TLS_DESCSEQ:
8005 /* Thumb insn. */
8006 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
8007 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
8008 {
8009 if (is_local)
8010 /* nop */
8011 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8012 }
8013 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
8014 {
8015 if (is_local)
8016 /* nop */
8017 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8018 else
8019 /* ldr rx,[ry] */
8020 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
8021 }
8022 else if ((insn & 0xff87) == 0x4780) /* blx rx */
8023 {
8024 if (is_local)
8025 /* nop */
8026 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8027 else
8028 /* mov r0, rx */
8029 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
8030 contents + rel->r_offset);
8031 }
8032 else
8033 {
8034 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
8035 /* It's a 32 bit instruction, fetch the rest of it for
8036 error generation. */
8037 insn = (insn << 16)
8038 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
8039 (*_bfd_error_handler)
8040 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
8041 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8042 return bfd_reloc_notsupported;
8043 }
8044 break;
b38cadfb 8045
0855e32b
NS
8046 case R_ARM_TLS_DESCSEQ:
8047 /* arm insn. */
8048 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8049 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
8050 {
8051 if (is_local)
8052 /* mov rx, ry */
8053 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
8054 contents + rel->r_offset);
8055 }
8056 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
8057 {
8058 if (is_local)
8059 /* nop */
8060 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8061 else
8062 /* ldr rx,[ry] */
8063 bfd_put_32 (input_bfd, insn & 0xfffff000,
8064 contents + rel->r_offset);
8065 }
8066 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
8067 {
8068 if (is_local)
8069 /* nop */
8070 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8071 else
8072 /* mov r0, rx */
8073 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
8074 contents + rel->r_offset);
8075 }
8076 else
8077 {
8078 (*_bfd_error_handler)
8079 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
8080 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8081 return bfd_reloc_notsupported;
8082 }
8083 break;
8084
8085 case R_ARM_TLS_CALL:
8086 /* GD->IE relaxation, turn the instruction into 'nop' or
8087 'ldr r0, [pc,r0]' */
8088 insn = is_local ? 0xe1a00000 : 0xe79f0000;
8089 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8090 break;
b38cadfb 8091
0855e32b 8092 case R_ARM_THM_TLS_CALL:
6a631e86 8093 /* GD->IE relaxation. */
0855e32b
NS
8094 if (!is_local)
8095 /* add r0,pc; ldr r0, [r0] */
8096 insn = 0x44786800;
8097 else if (arch_has_thumb2_nop (globals))
8098 /* nop.w */
8099 insn = 0xf3af8000;
8100 else
8101 /* nop; nop */
8102 insn = 0xbf00bf00;
b38cadfb 8103
0855e32b
NS
8104 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
8105 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
8106 break;
8107 }
8108 return bfd_reloc_ok;
8109}
8110
4962c51a
MS
8111/* For a given value of n, calculate the value of G_n as required to
8112 deal with group relocations. We return it in the form of an
8113 encoded constant-and-rotation, together with the final residual. If n is
8114 specified as less than zero, then final_residual is filled with the
8115 input value and no further action is performed. */
8116
8117static bfd_vma
8118calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
8119{
8120 int current_n;
8121 bfd_vma g_n;
8122 bfd_vma encoded_g_n = 0;
8123 bfd_vma residual = value; /* Also known as Y_n. */
8124
8125 for (current_n = 0; current_n <= n; current_n++)
8126 {
8127 int shift;
8128
8129 /* Calculate which part of the value to mask. */
8130 if (residual == 0)
99059e56 8131 shift = 0;
4962c51a 8132 else
99059e56
RM
8133 {
8134 int msb;
8135
8136 /* Determine the most significant bit in the residual and
8137 align the resulting value to a 2-bit boundary. */
8138 for (msb = 30; msb >= 0; msb -= 2)
8139 if (residual & (3 << msb))
8140 break;
8141
8142 /* The desired shift is now (msb - 6), or zero, whichever
8143 is the greater. */
8144 shift = msb - 6;
8145 if (shift < 0)
8146 shift = 0;
8147 }
4962c51a
MS
8148
8149 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8150 g_n = residual & (0xff << shift);
8151 encoded_g_n = (g_n >> shift)
99059e56 8152 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
8153
8154 /* Calculate the residual for the next time around. */
8155 residual &= ~g_n;
8156 }
8157
8158 *final_residual = residual;
8159
8160 return encoded_g_n;
8161}
8162
8163/* Given an ARM instruction, determine whether it is an ADD or a SUB.
8164 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 8165
4962c51a 8166static int
906e58ca 8167identify_add_or_sub (bfd_vma insn)
4962c51a
MS
8168{
8169 int opcode = insn & 0x1e00000;
8170
8171 if (opcode == 1 << 23) /* ADD */
8172 return 1;
8173
8174 if (opcode == 1 << 22) /* SUB */
8175 return -1;
8176
8177 return 0;
8178}
8179
252b5132 8180/* Perform a relocation as part of a final link. */
9b485d32 8181
252b5132 8182static bfd_reloc_status_type
57e8b36a
NC
8183elf32_arm_final_link_relocate (reloc_howto_type * howto,
8184 bfd * input_bfd,
8185 bfd * output_bfd,
8186 asection * input_section,
8187 bfd_byte * contents,
8188 Elf_Internal_Rela * rel,
8189 bfd_vma value,
8190 struct bfd_link_info * info,
8191 asection * sym_sec,
8192 const char * sym_name,
34e77a92
RS
8193 unsigned char st_type,
8194 enum arm_st_branch_type branch_type,
0945cdfd 8195 struct elf_link_hash_entry * h,
f2a9dd69 8196 bfd_boolean * unresolved_reloc_p,
8029a119 8197 char ** error_message)
252b5132
RH
8198{
8199 unsigned long r_type = howto->type;
8200 unsigned long r_symndx;
8201 bfd_byte * hit_data = contents + rel->r_offset;
252b5132 8202 bfd_vma * local_got_offsets;
0855e32b 8203 bfd_vma * local_tlsdesc_gotents;
34e77a92
RS
8204 asection * sgot;
8205 asection * splt;
252b5132 8206 asection * sreloc = NULL;
362d30a1 8207 asection * srelgot;
252b5132 8208 bfd_vma addend;
ba96a88f 8209 bfd_signed_vma signed_addend;
34e77a92
RS
8210 unsigned char dynreloc_st_type;
8211 bfd_vma dynreloc_value;
ba96a88f 8212 struct elf32_arm_link_hash_table * globals;
34e77a92
RS
8213 struct elf32_arm_link_hash_entry *eh;
8214 union gotplt_union *root_plt;
8215 struct arm_plt_info *arm_plt;
8216 bfd_vma plt_offset;
8217 bfd_vma gotplt_offset;
8218 bfd_boolean has_iplt_entry;
f21f3fe0 8219
9c504268 8220 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
8221 if (globals == NULL)
8222 return bfd_reloc_notsupported;
9c504268 8223
0ffa91dd
NC
8224 BFD_ASSERT (is_arm_elf (input_bfd));
8225
8226 /* Some relocation types map to different relocations depending on the
9c504268 8227 target. We pick the right one here. */
eb043451 8228 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
8229
8230 /* It is possible to have linker relaxations on some TLS access
8231 models. Update our information here. */
8232 r_type = elf32_arm_tls_transition (info, r_type, h);
8233
eb043451
PB
8234 if (r_type != howto->type)
8235 howto = elf32_arm_howto_from_type (r_type);
9c504268 8236
cac15327
NC
8237 /* If the start address has been set, then set the EF_ARM_HASENTRY
8238 flag. Setting this more than once is redundant, but the cost is
8239 not too high, and it keeps the code simple.
99e4ae17 8240
cac15327
NC
8241 The test is done here, rather than somewhere else, because the
8242 start address is only set just before the final link commences.
8243
8244 Note - if the user deliberately sets a start address of 0, the
8245 flag will not be set. */
8246 if (bfd_get_start_address (output_bfd) != 0)
8247 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
99e4ae17 8248
34e77a92 8249 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 8250 sgot = globals->root.sgot;
252b5132 8251 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
8252 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8253
34e77a92
RS
8254 if (globals->root.dynamic_sections_created)
8255 srelgot = globals->root.srelgot;
8256 else
8257 srelgot = NULL;
8258
252b5132
RH
8259 r_symndx = ELF32_R_SYM (rel->r_info);
8260
4e7fd91e 8261 if (globals->use_rel)
ba96a88f 8262 {
4e7fd91e
PB
8263 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8264
8265 if (addend & ((howto->src_mask + 1) >> 1))
8266 {
8267 signed_addend = -1;
8268 signed_addend &= ~ howto->src_mask;
8269 signed_addend |= addend;
8270 }
8271 else
8272 signed_addend = addend;
ba96a88f
NC
8273 }
8274 else
4e7fd91e 8275 addend = signed_addend = rel->r_addend;
f21f3fe0 8276
39f21624
NC
8277 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8278 are resolving a function call relocation. */
8279 if (using_thumb_only (globals)
8280 && (r_type == R_ARM_THM_CALL
8281 || r_type == R_ARM_THM_JUMP24)
8282 && branch_type == ST_BRANCH_TO_ARM)
8283 branch_type = ST_BRANCH_TO_THUMB;
8284
34e77a92
RS
8285 /* Record the symbol information that should be used in dynamic
8286 relocations. */
8287 dynreloc_st_type = st_type;
8288 dynreloc_value = value;
8289 if (branch_type == ST_BRANCH_TO_THUMB)
8290 dynreloc_value |= 1;
8291
8292 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8293 VALUE appropriately for relocations that we resolve at link time. */
8294 has_iplt_entry = FALSE;
8295 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8296 && root_plt->offset != (bfd_vma) -1)
8297 {
8298 plt_offset = root_plt->offset;
8299 gotplt_offset = arm_plt->got_offset;
8300
8301 if (h == NULL || eh->is_iplt)
8302 {
8303 has_iplt_entry = TRUE;
8304 splt = globals->root.iplt;
8305
8306 /* Populate .iplt entries here, because not all of them will
8307 be seen by finish_dynamic_symbol. The lower bit is set if
8308 we have already populated the entry. */
8309 if (plt_offset & 1)
8310 plt_offset--;
8311 else
8312 {
57460bcf
NC
8313 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8314 -1, dynreloc_value))
8315 root_plt->offset |= 1;
8316 else
8317 return bfd_reloc_notsupported;
34e77a92
RS
8318 }
8319
8320 /* Static relocations always resolve to the .iplt entry. */
8321 st_type = STT_FUNC;
8322 value = (splt->output_section->vma
8323 + splt->output_offset
8324 + plt_offset);
8325 branch_type = ST_BRANCH_TO_ARM;
8326
8327 /* If there are non-call relocations that resolve to the .iplt
8328 entry, then all dynamic ones must too. */
8329 if (arm_plt->noncall_refcount != 0)
8330 {
8331 dynreloc_st_type = st_type;
8332 dynreloc_value = value;
8333 }
8334 }
8335 else
8336 /* We populate the .plt entry in finish_dynamic_symbol. */
8337 splt = globals->root.splt;
8338 }
8339 else
8340 {
8341 splt = NULL;
8342 plt_offset = (bfd_vma) -1;
8343 gotplt_offset = (bfd_vma) -1;
8344 }
8345
252b5132
RH
8346 switch (r_type)
8347 {
8348 case R_ARM_NONE:
28a094c2
DJ
8349 /* We don't need to find a value for this symbol. It's just a
8350 marker. */
8351 *unresolved_reloc_p = FALSE;
252b5132
RH
8352 return bfd_reloc_ok;
8353
00a97672
RS
8354 case R_ARM_ABS12:
8355 if (!globals->vxworks_p)
8356 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8357
252b5132
RH
8358 case R_ARM_PC24:
8359 case R_ARM_ABS32:
bb224fc3 8360 case R_ARM_ABS32_NOI:
252b5132 8361 case R_ARM_REL32:
bb224fc3 8362 case R_ARM_REL32_NOI:
5b5bb741
PB
8363 case R_ARM_CALL:
8364 case R_ARM_JUMP24:
dfc5f959 8365 case R_ARM_XPC25:
eb043451 8366 case R_ARM_PREL31:
7359ea65 8367 case R_ARM_PLT32:
7359ea65
DJ
8368 /* Handle relocations which should use the PLT entry. ABS32/REL32
8369 will use the symbol's value, which may point to a PLT entry, but we
8370 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
8371 branches in this object should go to it, except if the PLT is too
8372 far away, in which case a long branch stub should be inserted. */
bb224fc3 8373 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 8374 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
8375 && r_type != R_ARM_CALL
8376 && r_type != R_ARM_JUMP24
8377 && r_type != R_ARM_PLT32)
34e77a92 8378 && plt_offset != (bfd_vma) -1)
7359ea65 8379 {
34e77a92
RS
8380 /* If we've created a .plt section, and assigned a PLT entry
8381 to this function, it must either be a STT_GNU_IFUNC reference
8382 or not be known to bind locally. In other cases, we should
8383 have cleared the PLT entry by now. */
8384 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
8385
8386 value = (splt->output_section->vma
8387 + splt->output_offset
34e77a92 8388 + plt_offset);
0945cdfd 8389 *unresolved_reloc_p = FALSE;
7359ea65
DJ
8390 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8391 contents, rel->r_offset, value,
00a97672 8392 rel->r_addend);
7359ea65
DJ
8393 }
8394
67687978
PB
8395 /* When generating a shared object or relocatable executable, these
8396 relocations are copied into the output file to be resolved at
8397 run time. */
8398 if ((info->shared || globals->root.is_relocatable_executable)
7359ea65 8399 && (input_section->flags & SEC_ALLOC)
4dfe6ac6 8400 && !(globals->vxworks_p
3348747a
NS
8401 && strcmp (input_section->output_section->name,
8402 ".tls_vars") == 0)
bb224fc3 8403 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 8404 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
8405 && !(input_bfd == globals->stub_bfd
8406 && strstr (input_section->name, STUB_SUFFIX))
7359ea65
DJ
8407 && (h == NULL
8408 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8409 || h->root.type != bfd_link_hash_undefweak)
8410 && r_type != R_ARM_PC24
5b5bb741
PB
8411 && r_type != R_ARM_CALL
8412 && r_type != R_ARM_JUMP24
ee06dc07 8413 && r_type != R_ARM_PREL31
7359ea65 8414 && r_type != R_ARM_PLT32)
252b5132 8415 {
947216bf 8416 Elf_Internal_Rela outrel;
b34976b6 8417 bfd_boolean skip, relocate;
f21f3fe0 8418
52db4ec2
JW
8419 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
8420 && !h->def_regular)
8421 {
8422 char *v = _("shared object");
8423
8424 if (info->executable)
8425 v = _("PIE executable");
8426
8427 (*_bfd_error_handler)
8428 (_("%B: relocation %s against external or undefined symbol `%s'"
8429 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
8430 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
8431 return bfd_reloc_notsupported;
8432 }
8433
0945cdfd
DJ
8434 *unresolved_reloc_p = FALSE;
8435
34e77a92 8436 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 8437 {
83bac4b0
NC
8438 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8439 ! globals->use_rel);
f21f3fe0 8440
83bac4b0 8441 if (sreloc == NULL)
252b5132 8442 return bfd_reloc_notsupported;
252b5132 8443 }
f21f3fe0 8444
b34976b6
AM
8445 skip = FALSE;
8446 relocate = FALSE;
f21f3fe0 8447
00a97672 8448 outrel.r_addend = addend;
c629eae0
JJ
8449 outrel.r_offset =
8450 _bfd_elf_section_offset (output_bfd, info, input_section,
8451 rel->r_offset);
8452 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 8453 skip = TRUE;
0bb2d96a 8454 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 8455 skip = TRUE, relocate = TRUE;
252b5132
RH
8456 outrel.r_offset += (input_section->output_section->vma
8457 + input_section->output_offset);
f21f3fe0 8458
252b5132 8459 if (skip)
0bb2d96a 8460 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
8461 else if (h != NULL
8462 && h->dynindx != -1
7359ea65 8463 && (!info->shared
5e681ec4 8464 || !info->symbolic
f5385ebf 8465 || !h->def_regular))
5e681ec4 8466 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
8467 else
8468 {
a16385dc
MM
8469 int symbol;
8470
5e681ec4 8471 /* This symbol is local, or marked to become local. */
34e77a92 8472 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
a16385dc 8473 if (globals->symbian_p)
6366ff1e 8474 {
74541ad4
AM
8475 asection *osec;
8476
6366ff1e
MM
8477 /* On Symbian OS, the data segment and text segement
8478 can be relocated independently. Therefore, we
8479 must indicate the segment to which this
8480 relocation is relative. The BPABI allows us to
8481 use any symbol in the right segment; we just use
8482 the section symbol as it is convenient. (We
8483 cannot use the symbol given by "h" directly as it
74541ad4
AM
8484 will not appear in the dynamic symbol table.)
8485
8486 Note that the dynamic linker ignores the section
8487 symbol value, so we don't subtract osec->vma
8488 from the emitted reloc addend. */
10dbd1f3 8489 if (sym_sec)
74541ad4 8490 osec = sym_sec->output_section;
10dbd1f3 8491 else
74541ad4
AM
8492 osec = input_section->output_section;
8493 symbol = elf_section_data (osec)->dynindx;
8494 if (symbol == 0)
8495 {
8496 struct elf_link_hash_table *htab = elf_hash_table (info);
8497
8498 if ((osec->flags & SEC_READONLY) == 0
8499 && htab->data_index_section != NULL)
8500 osec = htab->data_index_section;
8501 else
8502 osec = htab->text_index_section;
8503 symbol = elf_section_data (osec)->dynindx;
8504 }
6366ff1e
MM
8505 BFD_ASSERT (symbol != 0);
8506 }
a16385dc
MM
8507 else
8508 /* On SVR4-ish systems, the dynamic loader cannot
8509 relocate the text and data segments independently,
8510 so the symbol does not matter. */
8511 symbol = 0;
34e77a92
RS
8512 if (dynreloc_st_type == STT_GNU_IFUNC)
8513 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8514 to the .iplt entry. Instead, every non-call reference
8515 must use an R_ARM_IRELATIVE relocation to obtain the
8516 correct run-time address. */
8517 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8518 else
8519 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
8520 if (globals->use_rel)
8521 relocate = TRUE;
8522 else
34e77a92 8523 outrel.r_addend += dynreloc_value;
252b5132 8524 }
f21f3fe0 8525
47beaa6a 8526 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 8527
f21f3fe0 8528 /* If this reloc is against an external symbol, we do not want to
252b5132 8529 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 8530 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
8531 if (! relocate)
8532 return bfd_reloc_ok;
9a5aca8c 8533
f21f3fe0 8534 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
8535 contents, rel->r_offset,
8536 dynreloc_value, (bfd_vma) 0);
252b5132
RH
8537 }
8538 else switch (r_type)
8539 {
00a97672
RS
8540 case R_ARM_ABS12:
8541 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8542
dfc5f959 8543 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
8544 case R_ARM_CALL:
8545 case R_ARM_JUMP24:
8029a119 8546 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 8547 case R_ARM_PLT32:
906e58ca 8548 {
906e58ca
NC
8549 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8550
dfc5f959 8551 if (r_type == R_ARM_XPC25)
252b5132 8552 {
dfc5f959
NC
8553 /* Check for Arm calling Arm function. */
8554 /* FIXME: Should we translate the instruction into a BL
8555 instruction instead ? */
35fc36a8 8556 if (branch_type != ST_BRANCH_TO_THUMB)
d003868e
AM
8557 (*_bfd_error_handler)
8558 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8559 input_bfd,
8560 h ? h->root.root.string : "(local)");
dfc5f959 8561 }
155d87d7 8562 else if (r_type == R_ARM_PC24)
dfc5f959
NC
8563 {
8564 /* Check for Arm calling Thumb function. */
35fc36a8 8565 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 8566 {
f2a9dd69
DJ
8567 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8568 output_bfd, input_section,
8569 hit_data, sym_sec, rel->r_offset,
8570 signed_addend, value,
8571 error_message))
8572 return bfd_reloc_ok;
8573 else
8574 return bfd_reloc_dangerous;
dfc5f959 8575 }
252b5132 8576 }
ba96a88f 8577
906e58ca 8578 /* Check if a stub has to be inserted because the
8029a119 8579 destination is too far or we are changing mode. */
155d87d7
CL
8580 if ( r_type == R_ARM_CALL
8581 || r_type == R_ARM_JUMP24
8582 || r_type == R_ARM_PLT32)
906e58ca 8583 {
fe33d2fa
CL
8584 enum elf32_arm_stub_type stub_type = arm_stub_none;
8585 struct elf32_arm_link_hash_entry *hash;
8586
8587 hash = (struct elf32_arm_link_hash_entry *) h;
8588 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
8589 st_type, &branch_type,
8590 hash, value, sym_sec,
fe33d2fa 8591 input_bfd, sym_name);
5fa9e92f 8592
fe33d2fa 8593 if (stub_type != arm_stub_none)
906e58ca
NC
8594 {
8595 /* The target is out of reach, so redirect the
8596 branch to the local stub for this function. */
906e58ca
NC
8597 stub_entry = elf32_arm_get_stub_entry (input_section,
8598 sym_sec, h,
fe33d2fa
CL
8599 rel, globals,
8600 stub_type);
9cd3e4e5
NC
8601 {
8602 if (stub_entry != NULL)
8603 value = (stub_entry->stub_offset
8604 + stub_entry->stub_sec->output_offset
8605 + stub_entry->stub_sec->output_section->vma);
8606
8607 if (plt_offset != (bfd_vma) -1)
8608 *unresolved_reloc_p = FALSE;
8609 }
906e58ca 8610 }
fe33d2fa
CL
8611 else
8612 {
8613 /* If the call goes through a PLT entry, make sure to
8614 check distance to the right destination address. */
34e77a92 8615 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
8616 {
8617 value = (splt->output_section->vma
8618 + splt->output_offset
34e77a92 8619 + plt_offset);
fe33d2fa
CL
8620 *unresolved_reloc_p = FALSE;
8621 /* The PLT entry is in ARM mode, regardless of the
8622 target function. */
35fc36a8 8623 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
8624 }
8625 }
906e58ca
NC
8626 }
8627
dea514f5
PB
8628 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8629 where:
8630 S is the address of the symbol in the relocation.
8631 P is address of the instruction being relocated.
8632 A is the addend (extracted from the instruction) in bytes.
8633
8634 S is held in 'value'.
8635 P is the base address of the section containing the
8636 instruction plus the offset of the reloc into that
8637 section, ie:
8638 (input_section->output_section->vma +
8639 input_section->output_offset +
8640 rel->r_offset).
8641 A is the addend, converted into bytes, ie:
8642 (signed_addend * 4)
8643
8644 Note: None of these operations have knowledge of the pipeline
8645 size of the processor, thus it is up to the assembler to
8646 encode this information into the addend. */
8647 value -= (input_section->output_section->vma
8648 + input_section->output_offset);
8649 value -= rel->r_offset;
4e7fd91e
PB
8650 if (globals->use_rel)
8651 value += (signed_addend << howto->size);
8652 else
8653 /* RELA addends do not have to be adjusted by howto->size. */
8654 value += signed_addend;
23080146 8655
dcb5e6e6
NC
8656 signed_addend = value;
8657 signed_addend >>= howto->rightshift;
9a5aca8c 8658
5ab79981 8659 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 8660 the next instruction unless a PLT entry will be created.
77b4f08f 8661 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
8662 The jump to the next instruction is optimized as a NOP depending
8663 on the architecture. */
ffcb4889 8664 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 8665 && plt_offset == (bfd_vma) -1)
77b4f08f 8666 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 8667 {
cd1dac3d
DG
8668 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8669
8670 if (arch_has_arm_nop (globals))
8671 value |= 0x0320f000;
8672 else
8673 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
8674 }
8675 else
59f2c4e7 8676 {
9b485d32 8677 /* Perform a signed range check. */
dcb5e6e6 8678 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
8679 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8680 return bfd_reloc_overflow;
9a5aca8c 8681
5ab79981 8682 addend = (value & 2);
39b41c9c 8683
5ab79981
PB
8684 value = (signed_addend & howto->dst_mask)
8685 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 8686
5ab79981
PB
8687 if (r_type == R_ARM_CALL)
8688 {
155d87d7 8689 /* Set the H bit in the BLX instruction. */
35fc36a8 8690 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
8691 {
8692 if (addend)
8693 value |= (1 << 24);
8694 else
8695 value &= ~(bfd_vma)(1 << 24);
8696 }
8697
5ab79981 8698 /* Select the correct instruction (BL or BLX). */
906e58ca 8699 /* Only if we are not handling a BL to a stub. In this
8029a119 8700 case, mode switching is performed by the stub. */
35fc36a8 8701 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 8702 value |= (1 << 28);
63e1a0fc 8703 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
8704 {
8705 value &= ~(bfd_vma)(1 << 28);
8706 value |= (1 << 24);
8707 }
39b41c9c
PB
8708 }
8709 }
906e58ca 8710 }
252b5132 8711 break;
f21f3fe0 8712
252b5132
RH
8713 case R_ARM_ABS32:
8714 value += addend;
35fc36a8 8715 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
8716 value |= 1;
8717 break;
f21f3fe0 8718
bb224fc3
MS
8719 case R_ARM_ABS32_NOI:
8720 value += addend;
8721 break;
8722
252b5132 8723 case R_ARM_REL32:
a8bc6c78 8724 value += addend;
35fc36a8 8725 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 8726 value |= 1;
252b5132 8727 value -= (input_section->output_section->vma
62efb346 8728 + input_section->output_offset + rel->r_offset);
252b5132 8729 break;
eb043451 8730
bb224fc3
MS
8731 case R_ARM_REL32_NOI:
8732 value += addend;
8733 value -= (input_section->output_section->vma
8734 + input_section->output_offset + rel->r_offset);
8735 break;
8736
eb043451
PB
8737 case R_ARM_PREL31:
8738 value -= (input_section->output_section->vma
8739 + input_section->output_offset + rel->r_offset);
8740 value += signed_addend;
8741 if (! h || h->root.type != bfd_link_hash_undefweak)
8742 {
8029a119 8743 /* Check for overflow. */
eb043451
PB
8744 if ((value ^ (value >> 1)) & (1 << 30))
8745 return bfd_reloc_overflow;
8746 }
8747 value &= 0x7fffffff;
8748 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 8749 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
8750 value |= 1;
8751 break;
252b5132 8752 }
f21f3fe0 8753
252b5132
RH
8754 bfd_put_32 (input_bfd, value, hit_data);
8755 return bfd_reloc_ok;
8756
8757 case R_ARM_ABS8:
fd0fd00c
MJ
8758 /* PR 16202: Refectch the addend using the correct size. */
8759 if (globals->use_rel)
8760 addend = bfd_get_8 (input_bfd, hit_data);
252b5132 8761 value += addend;
4e67d4ca
DG
8762
8763 /* There is no way to tell whether the user intended to use a signed or
8764 unsigned addend. When checking for overflow we accept either,
8765 as specified by the AAELF. */
8766 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
8767 return bfd_reloc_overflow;
8768
8769 bfd_put_8 (input_bfd, value, hit_data);
8770 return bfd_reloc_ok;
8771
8772 case R_ARM_ABS16:
fd0fd00c
MJ
8773 /* PR 16202: Refectch the addend using the correct size. */
8774 if (globals->use_rel)
8775 addend = bfd_get_16 (input_bfd, hit_data);
252b5132
RH
8776 value += addend;
8777
4e67d4ca
DG
8778 /* See comment for R_ARM_ABS8. */
8779 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
8780 return bfd_reloc_overflow;
8781
8782 bfd_put_16 (input_bfd, value, hit_data);
8783 return bfd_reloc_ok;
8784
252b5132 8785 case R_ARM_THM_ABS5:
9b485d32 8786 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
8787 if (globals->use_rel)
8788 {
8789 /* Need to refetch addend. */
8790 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8791 /* ??? Need to determine shift amount from operand size. */
8792 addend >>= howto->rightshift;
8793 }
252b5132
RH
8794 value += addend;
8795
8796 /* ??? Isn't value unsigned? */
8797 if ((long) value > 0x1f || (long) value < -0x10)
8798 return bfd_reloc_overflow;
8799
8800 /* ??? Value needs to be properly shifted into place first. */
8801 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8802 bfd_put_16 (input_bfd, value, hit_data);
8803 return bfd_reloc_ok;
8804
2cab6cc3
MS
8805 case R_ARM_THM_ALU_PREL_11_0:
8806 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8807 {
8808 bfd_vma insn;
8809 bfd_signed_vma relocation;
8810
8811 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 8812 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 8813
99059e56
RM
8814 if (globals->use_rel)
8815 {
8816 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8817 | ((insn & (1 << 26)) >> 15);
8818 if (insn & 0xf00000)
8819 signed_addend = -signed_addend;
8820 }
2cab6cc3
MS
8821
8822 relocation = value + signed_addend;
79f08007 8823 relocation -= Pa (input_section->output_section->vma
99059e56
RM
8824 + input_section->output_offset
8825 + rel->r_offset);
2cab6cc3 8826
99059e56 8827 value = abs (relocation);
2cab6cc3 8828
99059e56
RM
8829 if (value >= 0x1000)
8830 return bfd_reloc_overflow;
2cab6cc3
MS
8831
8832 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
8833 | ((value & 0x700) << 4)
8834 | ((value & 0x800) << 15);
8835 if (relocation < 0)
8836 insn |= 0xa00000;
2cab6cc3
MS
8837
8838 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8839 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8840
99059e56 8841 return bfd_reloc_ok;
2cab6cc3
MS
8842 }
8843
e1ec24c6
NC
8844 case R_ARM_THM_PC8:
8845 /* PR 10073: This reloc is not generated by the GNU toolchain,
8846 but it is supported for compatibility with third party libraries
8847 generated by other compilers, specifically the ARM/IAR. */
8848 {
8849 bfd_vma insn;
8850 bfd_signed_vma relocation;
8851
8852 insn = bfd_get_16 (input_bfd, hit_data);
8853
99059e56 8854 if (globals->use_rel)
79f08007 8855 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
8856
8857 relocation = value + addend;
79f08007 8858 relocation -= Pa (input_section->output_section->vma
99059e56
RM
8859 + input_section->output_offset
8860 + rel->r_offset);
e1ec24c6 8861
99059e56 8862 value = abs (relocation);
e1ec24c6
NC
8863
8864 /* We do not check for overflow of this reloc. Although strictly
8865 speaking this is incorrect, it appears to be necessary in order
8866 to work with IAR generated relocs. Since GCC and GAS do not
8867 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8868 a problem for them. */
8869 value &= 0x3fc;
8870
8871 insn = (insn & 0xff00) | (value >> 2);
8872
8873 bfd_put_16 (input_bfd, insn, hit_data);
8874
99059e56 8875 return bfd_reloc_ok;
e1ec24c6
NC
8876 }
8877
2cab6cc3
MS
8878 case R_ARM_THM_PC12:
8879 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8880 {
8881 bfd_vma insn;
8882 bfd_signed_vma relocation;
8883
8884 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 8885 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 8886
99059e56
RM
8887 if (globals->use_rel)
8888 {
8889 signed_addend = insn & 0xfff;
8890 if (!(insn & (1 << 23)))
8891 signed_addend = -signed_addend;
8892 }
2cab6cc3
MS
8893
8894 relocation = value + signed_addend;
79f08007 8895 relocation -= Pa (input_section->output_section->vma
99059e56
RM
8896 + input_section->output_offset
8897 + rel->r_offset);
2cab6cc3 8898
99059e56 8899 value = abs (relocation);
2cab6cc3 8900
99059e56
RM
8901 if (value >= 0x1000)
8902 return bfd_reloc_overflow;
2cab6cc3
MS
8903
8904 insn = (insn & 0xff7ff000) | value;
99059e56
RM
8905 if (relocation >= 0)
8906 insn |= (1 << 23);
2cab6cc3
MS
8907
8908 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8909 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8910
99059e56 8911 return bfd_reloc_ok;
2cab6cc3
MS
8912 }
8913
dfc5f959 8914 case R_ARM_THM_XPC22:
c19d1205 8915 case R_ARM_THM_CALL:
bd97cb95 8916 case R_ARM_THM_JUMP24:
dfc5f959 8917 /* Thumb BL (branch long instruction). */
252b5132 8918 {
b34976b6 8919 bfd_vma relocation;
99059e56 8920 bfd_vma reloc_sign;
b34976b6
AM
8921 bfd_boolean overflow = FALSE;
8922 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8923 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
8924 bfd_signed_vma reloc_signed_max;
8925 bfd_signed_vma reloc_signed_min;
b34976b6 8926 bfd_vma check;
252b5132 8927 bfd_signed_vma signed_check;
e95de063 8928 int bitsize;
cd1dac3d 8929 const int thumb2 = using_thumb2 (globals);
252b5132 8930
5ab79981 8931 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
8932 the next instruction unless a PLT entry will be created.
8933 The jump to the next instruction is optimized as a NOP.W for
8934 Thumb-2 enabled architectures. */
19540007 8935 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 8936 && plt_offset == (bfd_vma) -1)
5ab79981 8937 {
cd1dac3d
DG
8938 if (arch_has_thumb2_nop (globals))
8939 {
8940 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8941 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8942 }
8943 else
8944 {
8945 bfd_put_16 (input_bfd, 0xe000, hit_data);
8946 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8947 }
5ab79981
PB
8948 return bfd_reloc_ok;
8949 }
8950
e95de063 8951 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 8952 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
8953 if (globals->use_rel)
8954 {
99059e56
RM
8955 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8956 bfd_vma upper = upper_insn & 0x3ff;
8957 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
8958 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8959 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
8960 bfd_vma i1 = j1 ^ s ? 0 : 1;
8961 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 8962
99059e56
RM
8963 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8964 /* Sign extend. */
8965 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 8966
4e7fd91e
PB
8967 signed_addend = addend;
8968 }
cb1afa5c 8969
dfc5f959
NC
8970 if (r_type == R_ARM_THM_XPC22)
8971 {
8972 /* Check for Thumb to Thumb call. */
8973 /* FIXME: Should we translate the instruction into a BL
8974 instruction instead ? */
35fc36a8 8975 if (branch_type == ST_BRANCH_TO_THUMB)
d003868e
AM
8976 (*_bfd_error_handler)
8977 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8978 input_bfd,
8979 h ? h->root.root.string : "(local)");
dfc5f959
NC
8980 }
8981 else
252b5132 8982 {
dfc5f959
NC
8983 /* If it is not a call to Thumb, assume call to Arm.
8984 If it is a call relative to a section name, then it is not a
b7693d02
DJ
8985 function call at all, but rather a long jump. Calls through
8986 the PLT do not require stubs. */
34e77a92 8987 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 8988 {
bd97cb95 8989 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
8990 {
8991 /* Convert BL to BLX. */
8992 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8993 }
155d87d7
CL
8994 else if (( r_type != R_ARM_THM_CALL)
8995 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
8996 {
8997 if (elf32_thumb_to_arm_stub
8998 (info, sym_name, input_bfd, output_bfd, input_section,
8999 hit_data, sym_sec, rel->r_offset, signed_addend, value,
9000 error_message))
9001 return bfd_reloc_ok;
9002 else
9003 return bfd_reloc_dangerous;
9004 }
da5938a2 9005 }
35fc36a8
RS
9006 else if (branch_type == ST_BRANCH_TO_THUMB
9007 && globals->use_blx
bd97cb95 9008 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
9009 {
9010 /* Make sure this is a BL. */
9011 lower_insn |= 0x1800;
9012 }
252b5132 9013 }
f21f3fe0 9014
fe33d2fa 9015 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 9016 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
9017 {
9018 /* Check if a stub has to be inserted because the destination
8029a119 9019 is too far. */
fe33d2fa
CL
9020 struct elf32_arm_stub_hash_entry *stub_entry;
9021 struct elf32_arm_link_hash_entry *hash;
9022
9023 hash = (struct elf32_arm_link_hash_entry *) h;
9024
9025 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
9026 st_type, &branch_type,
9027 hash, value, sym_sec,
fe33d2fa
CL
9028 input_bfd, sym_name);
9029
9030 if (stub_type != arm_stub_none)
906e58ca
NC
9031 {
9032 /* The target is out of reach or we are changing modes, so
9033 redirect the branch to the local stub for this
9034 function. */
9035 stub_entry = elf32_arm_get_stub_entry (input_section,
9036 sym_sec, h,
fe33d2fa
CL
9037 rel, globals,
9038 stub_type);
906e58ca 9039 if (stub_entry != NULL)
9cd3e4e5
NC
9040 {
9041 value = (stub_entry->stub_offset
9042 + stub_entry->stub_sec->output_offset
9043 + stub_entry->stub_sec->output_section->vma);
9044
9045 if (plt_offset != (bfd_vma) -1)
9046 *unresolved_reloc_p = FALSE;
9047 }
906e58ca 9048
f4ac8484 9049 /* If this call becomes a call to Arm, force BLX. */
155d87d7 9050 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
9051 {
9052 if ((stub_entry
9053 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 9054 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
9055 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9056 }
906e58ca
NC
9057 }
9058 }
9059
fe33d2fa 9060 /* Handle calls via the PLT. */
34e77a92 9061 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
9062 {
9063 value = (splt->output_section->vma
9064 + splt->output_offset
34e77a92 9065 + plt_offset);
fe33d2fa 9066
eed94f8f
NC
9067 if (globals->use_blx
9068 && r_type == R_ARM_THM_CALL
9069 && ! using_thumb_only (globals))
fe33d2fa
CL
9070 {
9071 /* If the Thumb BLX instruction is available, convert
9072 the BL to a BLX instruction to call the ARM-mode
9073 PLT entry. */
9074 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 9075 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
9076 }
9077 else
9078 {
eed94f8f
NC
9079 if (! using_thumb_only (globals))
9080 /* Target the Thumb stub before the ARM PLT entry. */
9081 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 9082 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa
CL
9083 }
9084 *unresolved_reloc_p = FALSE;
9085 }
9086
ba96a88f 9087 relocation = value + signed_addend;
f21f3fe0 9088
252b5132 9089 relocation -= (input_section->output_section->vma
ba96a88f
NC
9090 + input_section->output_offset
9091 + rel->r_offset);
9a5aca8c 9092
252b5132
RH
9093 check = relocation >> howto->rightshift;
9094
9095 /* If this is a signed value, the rightshift just dropped
9096 leading 1 bits (assuming twos complement). */
9097 if ((bfd_signed_vma) relocation >= 0)
9098 signed_check = check;
9099 else
9100 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
9101
e95de063
MS
9102 /* Calculate the permissable maximum and minimum values for
9103 this relocation according to whether we're relocating for
9104 Thumb-2 or not. */
9105 bitsize = howto->bitsize;
9106 if (!thumb2)
9107 bitsize -= 2;
f6ebfac0 9108 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
9109 reloc_signed_min = ~reloc_signed_max;
9110
252b5132 9111 /* Assumes two's complement. */
ba96a88f 9112 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 9113 overflow = TRUE;
252b5132 9114
bd97cb95 9115 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
9116 /* For a BLX instruction, make sure that the relocation is rounded up
9117 to a word boundary. This follows the semantics of the instruction
9118 which specifies that bit 1 of the target address will come from bit
9119 1 of the base address. */
9120 relocation = (relocation + 2) & ~ 3;
cb1afa5c 9121
e95de063
MS
9122 /* Put RELOCATION back into the insn. Assumes two's complement.
9123 We use the Thumb-2 encoding, which is safe even if dealing with
9124 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 9125 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 9126 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
9127 | ((relocation >> 12) & 0x3ff)
9128 | (reloc_sign << 10);
906e58ca 9129 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
9130 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
9131 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
9132 | ((relocation >> 1) & 0x7ff);
c62e1cc3 9133
252b5132
RH
9134 /* Put the relocated value back in the object file: */
9135 bfd_put_16 (input_bfd, upper_insn, hit_data);
9136 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9137
9138 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9139 }
9140 break;
9141
c19d1205
ZW
9142 case R_ARM_THM_JUMP19:
9143 /* Thumb32 conditional branch instruction. */
9144 {
9145 bfd_vma relocation;
9146 bfd_boolean overflow = FALSE;
9147 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9148 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
9149 bfd_signed_vma reloc_signed_max = 0xffffe;
9150 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205 9151 bfd_signed_vma signed_check;
c5423981
TG
9152 enum elf32_arm_stub_type stub_type = arm_stub_none;
9153 struct elf32_arm_stub_hash_entry *stub_entry;
9154 struct elf32_arm_link_hash_entry *hash;
c19d1205
ZW
9155
9156 /* Need to refetch the addend, reconstruct the top three bits,
9157 and squish the two 11 bit pieces together. */
9158 if (globals->use_rel)
9159 {
9160 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 9161 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
9162 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
9163 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
9164 bfd_vma lower = (lower_insn & 0x07ff);
9165
a00a1f35
MS
9166 upper |= J1 << 6;
9167 upper |= J2 << 7;
9168 upper |= (!S) << 8;
c19d1205
ZW
9169 upper -= 0x0100; /* Sign extend. */
9170
9171 addend = (upper << 12) | (lower << 1);
9172 signed_addend = addend;
9173 }
9174
bd97cb95 9175 /* Handle calls via the PLT. */
34e77a92 9176 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
9177 {
9178 value = (splt->output_section->vma
9179 + splt->output_offset
34e77a92 9180 + plt_offset);
bd97cb95
DJ
9181 /* Target the Thumb stub before the ARM PLT entry. */
9182 value -= PLT_THUMB_STUB_SIZE;
9183 *unresolved_reloc_p = FALSE;
9184 }
9185
c5423981
TG
9186 hash = (struct elf32_arm_link_hash_entry *)h;
9187
9188 stub_type = arm_type_of_stub (info, input_section, rel,
9189 st_type, &branch_type,
9190 hash, value, sym_sec,
9191 input_bfd, sym_name);
9192 if (stub_type != arm_stub_none)
9193 {
9194 stub_entry = elf32_arm_get_stub_entry (input_section,
9195 sym_sec, h,
9196 rel, globals,
9197 stub_type);
9198 if (stub_entry != NULL)
9199 {
9200 value = (stub_entry->stub_offset
9201 + stub_entry->stub_sec->output_offset
9202 + stub_entry->stub_sec->output_section->vma);
9203 }
9204 }
c19d1205 9205
99059e56 9206 relocation = value + signed_addend;
c19d1205
ZW
9207 relocation -= (input_section->output_section->vma
9208 + input_section->output_offset
9209 + rel->r_offset);
a00a1f35 9210 signed_check = (bfd_signed_vma) relocation;
c19d1205 9211
c19d1205
ZW
9212 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9213 overflow = TRUE;
9214
9215 /* Put RELOCATION back into the insn. */
9216 {
9217 bfd_vma S = (relocation & 0x00100000) >> 20;
9218 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9219 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9220 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9221 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9222
a00a1f35 9223 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
9224 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9225 }
9226
9227 /* Put the relocated value back in the object file: */
9228 bfd_put_16 (input_bfd, upper_insn, hit_data);
9229 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9230
9231 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9232 }
9233
9234 case R_ARM_THM_JUMP11:
9235 case R_ARM_THM_JUMP8:
9236 case R_ARM_THM_JUMP6:
51c5503b
NC
9237 /* Thumb B (branch) instruction). */
9238 {
6cf9e9fe 9239 bfd_signed_vma relocation;
51c5503b
NC
9240 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9241 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
9242 bfd_signed_vma signed_check;
9243
c19d1205
ZW
9244 /* CZB cannot jump backward. */
9245 if (r_type == R_ARM_THM_JUMP6)
9246 reloc_signed_min = 0;
9247
4e7fd91e 9248 if (globals->use_rel)
6cf9e9fe 9249 {
4e7fd91e
PB
9250 /* Need to refetch addend. */
9251 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9252 if (addend & ((howto->src_mask + 1) >> 1))
9253 {
9254 signed_addend = -1;
9255 signed_addend &= ~ howto->src_mask;
9256 signed_addend |= addend;
9257 }
9258 else
9259 signed_addend = addend;
9260 /* The value in the insn has been right shifted. We need to
9261 undo this, so that we can perform the address calculation
9262 in terms of bytes. */
9263 signed_addend <<= howto->rightshift;
6cf9e9fe 9264 }
6cf9e9fe 9265 relocation = value + signed_addend;
51c5503b
NC
9266
9267 relocation -= (input_section->output_section->vma
9268 + input_section->output_offset
9269 + rel->r_offset);
9270
6cf9e9fe
NC
9271 relocation >>= howto->rightshift;
9272 signed_check = relocation;
c19d1205
ZW
9273
9274 if (r_type == R_ARM_THM_JUMP6)
9275 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9276 else
9277 relocation &= howto->dst_mask;
51c5503b 9278 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 9279
51c5503b
NC
9280 bfd_put_16 (input_bfd, relocation, hit_data);
9281
9282 /* Assumes two's complement. */
9283 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9284 return bfd_reloc_overflow;
9285
9286 return bfd_reloc_ok;
9287 }
cedb70c5 9288
8375c36b
PB
9289 case R_ARM_ALU_PCREL7_0:
9290 case R_ARM_ALU_PCREL15_8:
9291 case R_ARM_ALU_PCREL23_15:
9292 {
9293 bfd_vma insn;
9294 bfd_vma relocation;
9295
9296 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
9297 if (globals->use_rel)
9298 {
9299 /* Extract the addend. */
9300 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9301 signed_addend = addend;
9302 }
8375c36b
PB
9303 relocation = value + signed_addend;
9304
9305 relocation -= (input_section->output_section->vma
9306 + input_section->output_offset
9307 + rel->r_offset);
9308 insn = (insn & ~0xfff)
9309 | ((howto->bitpos << 7) & 0xf00)
9310 | ((relocation >> howto->bitpos) & 0xff);
9311 bfd_put_32 (input_bfd, value, hit_data);
9312 }
9313 return bfd_reloc_ok;
9314
252b5132
RH
9315 case R_ARM_GNU_VTINHERIT:
9316 case R_ARM_GNU_VTENTRY:
9317 return bfd_reloc_ok;
9318
c19d1205 9319 case R_ARM_GOTOFF32:
252b5132 9320 /* Relocation is relative to the start of the
99059e56 9321 global offset table. */
252b5132
RH
9322
9323 BFD_ASSERT (sgot != NULL);
9324 if (sgot == NULL)
99059e56 9325 return bfd_reloc_notsupported;
9a5aca8c 9326
cedb70c5 9327 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
9328 address by one, so that attempts to call the function pointer will
9329 correctly interpret it as Thumb code. */
35fc36a8 9330 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
9331 value += 1;
9332
252b5132 9333 /* Note that sgot->output_offset is not involved in this
99059e56
RM
9334 calculation. We always want the start of .got. If we
9335 define _GLOBAL_OFFSET_TABLE in a different way, as is
9336 permitted by the ABI, we might have to change this
9337 calculation. */
252b5132 9338 value -= sgot->output_section->vma;
f21f3fe0 9339 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9340 contents, rel->r_offset, value,
00a97672 9341 rel->r_addend);
252b5132
RH
9342
9343 case R_ARM_GOTPC:
a7c10850 9344 /* Use global offset table as symbol value. */
252b5132 9345 BFD_ASSERT (sgot != NULL);
f21f3fe0 9346
252b5132 9347 if (sgot == NULL)
99059e56 9348 return bfd_reloc_notsupported;
252b5132 9349
0945cdfd 9350 *unresolved_reloc_p = FALSE;
252b5132 9351 value = sgot->output_section->vma;
f21f3fe0 9352 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9353 contents, rel->r_offset, value,
00a97672 9354 rel->r_addend);
f21f3fe0 9355
252b5132 9356 case R_ARM_GOT32:
eb043451 9357 case R_ARM_GOT_PREL:
252b5132 9358 /* Relocation is to the entry for this symbol in the
99059e56 9359 global offset table. */
252b5132
RH
9360 if (sgot == NULL)
9361 return bfd_reloc_notsupported;
f21f3fe0 9362
34e77a92
RS
9363 if (dynreloc_st_type == STT_GNU_IFUNC
9364 && plt_offset != (bfd_vma) -1
9365 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9366 {
9367 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9368 symbol, and the relocation resolves directly to the runtime
9369 target rather than to the .iplt entry. This means that any
9370 .got entry would be the same value as the .igot.plt entry,
9371 so there's no point creating both. */
9372 sgot = globals->root.igotplt;
9373 value = sgot->output_offset + gotplt_offset;
9374 }
9375 else if (h != NULL)
252b5132
RH
9376 {
9377 bfd_vma off;
f21f3fe0 9378
252b5132
RH
9379 off = h->got.offset;
9380 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 9381 if ((off & 1) != 0)
252b5132 9382 {
b436d854
RS
9383 /* We have already processsed one GOT relocation against
9384 this symbol. */
9385 off &= ~1;
9386 if (globals->root.dynamic_sections_created
9387 && !SYMBOL_REFERENCES_LOCAL (info, h))
9388 *unresolved_reloc_p = FALSE;
9389 }
9390 else
9391 {
9392 Elf_Internal_Rela outrel;
9393
6f820c85 9394 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
9395 {
9396 /* If the symbol doesn't resolve locally in a static
9397 object, we have an undefined reference. If the
9398 symbol doesn't resolve locally in a dynamic object,
9399 it should be resolved by the dynamic linker. */
9400 if (globals->root.dynamic_sections_created)
9401 {
9402 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9403 *unresolved_reloc_p = FALSE;
9404 }
9405 else
9406 outrel.r_info = 0;
9407 outrel.r_addend = 0;
9408 }
252b5132
RH
9409 else
9410 {
34e77a92 9411 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 9412 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
31943882
WN
9413 else if (info->shared &&
9414 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9415 || h->root.type != bfd_link_hash_undefweak))
99059e56
RM
9416 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9417 else
9418 outrel.r_info = 0;
34e77a92 9419 outrel.r_addend = dynreloc_value;
b436d854 9420 }
ee29b9fb 9421
b436d854
RS
9422 /* The GOT entry is initialized to zero by default.
9423 See if we should install a different value. */
9424 if (outrel.r_addend != 0
9425 && (outrel.r_info == 0 || globals->use_rel))
9426 {
9427 bfd_put_32 (output_bfd, outrel.r_addend,
9428 sgot->contents + off);
9429 outrel.r_addend = 0;
252b5132 9430 }
f21f3fe0 9431
b436d854
RS
9432 if (outrel.r_info != 0)
9433 {
9434 outrel.r_offset = (sgot->output_section->vma
9435 + sgot->output_offset
9436 + off);
9437 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9438 }
9439 h->got.offset |= 1;
9440 }
252b5132
RH
9441 value = sgot->output_offset + off;
9442 }
9443 else
9444 {
9445 bfd_vma off;
f21f3fe0 9446
252b5132
RH
9447 BFD_ASSERT (local_got_offsets != NULL &&
9448 local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 9449
252b5132 9450 off = local_got_offsets[r_symndx];
f21f3fe0 9451
252b5132
RH
9452 /* The offset must always be a multiple of 4. We use the
9453 least significant bit to record whether we have already
9b485d32 9454 generated the necessary reloc. */
252b5132
RH
9455 if ((off & 1) != 0)
9456 off &= ~1;
9457 else
9458 {
00a97672 9459 if (globals->use_rel)
34e77a92 9460 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
f21f3fe0 9461
34e77a92 9462 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
252b5132 9463 {
947216bf 9464 Elf_Internal_Rela outrel;
f21f3fe0 9465
34e77a92 9466 outrel.r_addend = addend + dynreloc_value;
252b5132 9467 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 9468 + sgot->output_offset
252b5132 9469 + off);
34e77a92 9470 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 9471 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
34e77a92
RS
9472 else
9473 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
47beaa6a 9474 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 9475 }
f21f3fe0 9476
252b5132
RH
9477 local_got_offsets[r_symndx] |= 1;
9478 }
f21f3fe0 9479
252b5132
RH
9480 value = sgot->output_offset + off;
9481 }
eb043451
PB
9482 if (r_type != R_ARM_GOT32)
9483 value += sgot->output_section->vma;
9a5aca8c 9484
f21f3fe0 9485 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9486 contents, rel->r_offset, value,
00a97672 9487 rel->r_addend);
f21f3fe0 9488
ba93b8ac
DJ
9489 case R_ARM_TLS_LDO32:
9490 value = value - dtpoff_base (info);
9491
9492 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
9493 contents, rel->r_offset, value,
9494 rel->r_addend);
ba93b8ac
DJ
9495
9496 case R_ARM_TLS_LDM32:
9497 {
9498 bfd_vma off;
9499
362d30a1 9500 if (sgot == NULL)
ba93b8ac
DJ
9501 abort ();
9502
9503 off = globals->tls_ldm_got.offset;
9504
9505 if ((off & 1) != 0)
9506 off &= ~1;
9507 else
9508 {
9509 /* If we don't know the module number, create a relocation
9510 for it. */
9511 if (info->shared)
9512 {
9513 Elf_Internal_Rela outrel;
ba93b8ac 9514
362d30a1 9515 if (srelgot == NULL)
ba93b8ac
DJ
9516 abort ();
9517
00a97672 9518 outrel.r_addend = 0;
362d30a1
RS
9519 outrel.r_offset = (sgot->output_section->vma
9520 + sgot->output_offset + off);
ba93b8ac
DJ
9521 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9522
00a97672
RS
9523 if (globals->use_rel)
9524 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9525 sgot->contents + off);
ba93b8ac 9526
47beaa6a 9527 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9528 }
9529 else
362d30a1 9530 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
9531
9532 globals->tls_ldm_got.offset |= 1;
9533 }
9534
362d30a1 9535 value = sgot->output_section->vma + sgot->output_offset + off
ba93b8ac
DJ
9536 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9537
9538 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9539 contents, rel->r_offset, value,
00a97672 9540 rel->r_addend);
ba93b8ac
DJ
9541 }
9542
0855e32b
NS
9543 case R_ARM_TLS_CALL:
9544 case R_ARM_THM_TLS_CALL:
ba93b8ac
DJ
9545 case R_ARM_TLS_GD32:
9546 case R_ARM_TLS_IE32:
0855e32b
NS
9547 case R_ARM_TLS_GOTDESC:
9548 case R_ARM_TLS_DESCSEQ:
9549 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 9550 {
0855e32b
NS
9551 bfd_vma off, offplt;
9552 int indx = 0;
ba93b8ac
DJ
9553 char tls_type;
9554
0855e32b 9555 BFD_ASSERT (sgot != NULL);
ba93b8ac 9556
ba93b8ac
DJ
9557 if (h != NULL)
9558 {
9559 bfd_boolean dyn;
9560 dyn = globals->root.dynamic_sections_created;
9561 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9562 && (!info->shared
9563 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9564 {
9565 *unresolved_reloc_p = FALSE;
9566 indx = h->dynindx;
9567 }
9568 off = h->got.offset;
0855e32b 9569 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
9570 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9571 }
9572 else
9573 {
0855e32b 9574 BFD_ASSERT (local_got_offsets != NULL);
ba93b8ac 9575 off = local_got_offsets[r_symndx];
0855e32b 9576 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
9577 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9578 }
9579
0855e32b 9580 /* Linker relaxations happens from one of the
b38cadfb 9581 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
0855e32b 9582 if (ELF32_R_TYPE(rel->r_info) != r_type)
b38cadfb 9583 tls_type = GOT_TLS_IE;
0855e32b
NS
9584
9585 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
9586
9587 if ((off & 1) != 0)
9588 off &= ~1;
9589 else
9590 {
9591 bfd_boolean need_relocs = FALSE;
9592 Elf_Internal_Rela outrel;
ba93b8ac
DJ
9593 int cur_off = off;
9594
9595 /* The GOT entries have not been initialized yet. Do it
9596 now, and emit any relocations. If both an IE GOT and a
9597 GD GOT are necessary, we emit the GD first. */
9598
9599 if ((info->shared || indx != 0)
9600 && (h == NULL
9601 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9602 || h->root.type != bfd_link_hash_undefweak))
9603 {
9604 need_relocs = TRUE;
0855e32b 9605 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
9606 }
9607
0855e32b
NS
9608 if (tls_type & GOT_TLS_GDESC)
9609 {
47beaa6a
RS
9610 bfd_byte *loc;
9611
0855e32b
NS
9612 /* We should have relaxed, unless this is an undefined
9613 weak symbol. */
9614 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9615 || info->shared);
9616 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 9617 <= globals->root.sgotplt->size);
0855e32b
NS
9618
9619 outrel.r_addend = 0;
9620 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9621 + globals->root.sgotplt->output_offset
9622 + offplt
9623 + globals->sgotplt_jump_table_size);
b38cadfb 9624
0855e32b
NS
9625 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9626 sreloc = globals->root.srelplt;
9627 loc = sreloc->contents;
9628 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9629 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 9630 <= sreloc->contents + sreloc->size);
0855e32b
NS
9631
9632 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9633
9634 /* For globals, the first word in the relocation gets
9635 the relocation index and the top bit set, or zero,
9636 if we're binding now. For locals, it gets the
9637 symbol's offset in the tls section. */
99059e56 9638 bfd_put_32 (output_bfd,
0855e32b
NS
9639 !h ? value - elf_hash_table (info)->tls_sec->vma
9640 : info->flags & DF_BIND_NOW ? 0
9641 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
9642 globals->root.sgotplt->contents + offplt
9643 + globals->sgotplt_jump_table_size);
9644
0855e32b 9645 /* Second word in the relocation is always zero. */
99059e56 9646 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
9647 globals->root.sgotplt->contents + offplt
9648 + globals->sgotplt_jump_table_size + 4);
0855e32b 9649 }
ba93b8ac
DJ
9650 if (tls_type & GOT_TLS_GD)
9651 {
9652 if (need_relocs)
9653 {
00a97672 9654 outrel.r_addend = 0;
362d30a1
RS
9655 outrel.r_offset = (sgot->output_section->vma
9656 + sgot->output_offset
00a97672 9657 + cur_off);
ba93b8ac 9658 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 9659
00a97672
RS
9660 if (globals->use_rel)
9661 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9662 sgot->contents + cur_off);
00a97672 9663
47beaa6a 9664 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9665
9666 if (indx == 0)
9667 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 9668 sgot->contents + cur_off + 4);
ba93b8ac
DJ
9669 else
9670 {
00a97672 9671 outrel.r_addend = 0;
ba93b8ac
DJ
9672 outrel.r_info = ELF32_R_INFO (indx,
9673 R_ARM_TLS_DTPOFF32);
9674 outrel.r_offset += 4;
00a97672
RS
9675
9676 if (globals->use_rel)
9677 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9678 sgot->contents + cur_off + 4);
00a97672 9679
47beaa6a
RS
9680 elf32_arm_add_dynreloc (output_bfd, info,
9681 srelgot, &outrel);
ba93b8ac
DJ
9682 }
9683 }
9684 else
9685 {
9686 /* If we are not emitting relocations for a
9687 general dynamic reference, then we must be in a
9688 static link or an executable link with the
9689 symbol binding locally. Mark it as belonging
9690 to module 1, the executable. */
9691 bfd_put_32 (output_bfd, 1,
362d30a1 9692 sgot->contents + cur_off);
ba93b8ac 9693 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 9694 sgot->contents + cur_off + 4);
ba93b8ac
DJ
9695 }
9696
9697 cur_off += 8;
9698 }
9699
9700 if (tls_type & GOT_TLS_IE)
9701 {
9702 if (need_relocs)
9703 {
00a97672
RS
9704 if (indx == 0)
9705 outrel.r_addend = value - dtpoff_base (info);
9706 else
9707 outrel.r_addend = 0;
362d30a1
RS
9708 outrel.r_offset = (sgot->output_section->vma
9709 + sgot->output_offset
ba93b8ac
DJ
9710 + cur_off);
9711 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9712
00a97672
RS
9713 if (globals->use_rel)
9714 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9715 sgot->contents + cur_off);
ba93b8ac 9716
47beaa6a 9717 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9718 }
9719 else
9720 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 9721 sgot->contents + cur_off);
ba93b8ac
DJ
9722 cur_off += 4;
9723 }
9724
9725 if (h != NULL)
9726 h->got.offset |= 1;
9727 else
9728 local_got_offsets[r_symndx] |= 1;
9729 }
9730
9731 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9732 off += 8;
0855e32b
NS
9733 else if (tls_type & GOT_TLS_GDESC)
9734 off = offplt;
9735
9736 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9737 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9738 {
9739 bfd_signed_vma offset;
12352d3f
PB
9740 /* TLS stubs are arm mode. The original symbol is a
9741 data object, so branch_type is bogus. */
9742 branch_type = ST_BRANCH_TO_ARM;
0855e32b 9743 enum elf32_arm_stub_type stub_type
34e77a92
RS
9744 = arm_type_of_stub (info, input_section, rel,
9745 st_type, &branch_type,
0855e32b
NS
9746 (struct elf32_arm_link_hash_entry *)h,
9747 globals->tls_trampoline, globals->root.splt,
9748 input_bfd, sym_name);
9749
9750 if (stub_type != arm_stub_none)
9751 {
9752 struct elf32_arm_stub_hash_entry *stub_entry
9753 = elf32_arm_get_stub_entry
9754 (input_section, globals->root.splt, 0, rel,
9755 globals, stub_type);
9756 offset = (stub_entry->stub_offset
9757 + stub_entry->stub_sec->output_offset
9758 + stub_entry->stub_sec->output_section->vma);
9759 }
9760 else
9761 offset = (globals->root.splt->output_section->vma
9762 + globals->root.splt->output_offset
9763 + globals->tls_trampoline);
9764
9765 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9766 {
9767 unsigned long inst;
b38cadfb
NC
9768
9769 offset -= (input_section->output_section->vma
9770 + input_section->output_offset
9771 + rel->r_offset + 8);
0855e32b
NS
9772
9773 inst = offset >> 2;
9774 inst &= 0x00ffffff;
9775 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9776 }
9777 else
9778 {
9779 /* Thumb blx encodes the offset in a complicated
9780 fashion. */
9781 unsigned upper_insn, lower_insn;
9782 unsigned neg;
9783
b38cadfb
NC
9784 offset -= (input_section->output_section->vma
9785 + input_section->output_offset
0855e32b 9786 + rel->r_offset + 4);
b38cadfb 9787
12352d3f
PB
9788 if (stub_type != arm_stub_none
9789 && arm_stub_is_thumb (stub_type))
9790 {
9791 lower_insn = 0xd000;
9792 }
9793 else
9794 {
9795 lower_insn = 0xc000;
6a631e86 9796 /* Round up the offset to a word boundary. */
12352d3f
PB
9797 offset = (offset + 2) & ~2;
9798 }
9799
0855e32b
NS
9800 neg = offset < 0;
9801 upper_insn = (0xf000
9802 | ((offset >> 12) & 0x3ff)
9803 | (neg << 10));
12352d3f 9804 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 9805 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 9806 | ((offset >> 1) & 0x7ff);
0855e32b
NS
9807 bfd_put_16 (input_bfd, upper_insn, hit_data);
9808 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9809 return bfd_reloc_ok;
9810 }
9811 }
9812 /* These relocations needs special care, as besides the fact
9813 they point somewhere in .gotplt, the addend must be
9814 adjusted accordingly depending on the type of instruction
6a631e86 9815 we refer to. */
0855e32b
NS
9816 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9817 {
9818 unsigned long data, insn;
9819 unsigned thumb;
b38cadfb 9820
0855e32b
NS
9821 data = bfd_get_32 (input_bfd, hit_data);
9822 thumb = data & 1;
9823 data &= ~1u;
b38cadfb 9824
0855e32b
NS
9825 if (thumb)
9826 {
9827 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9828 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9829 insn = (insn << 16)
9830 | bfd_get_16 (input_bfd,
9831 contents + rel->r_offset - data + 2);
9832 if ((insn & 0xf800c000) == 0xf000c000)
9833 /* bl/blx */
9834 value = -6;
9835 else if ((insn & 0xffffff00) == 0x4400)
9836 /* add */
9837 value = -5;
9838 else
9839 {
9840 (*_bfd_error_handler)
9841 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9842 input_bfd, input_section,
9843 (unsigned long)rel->r_offset, insn);
9844 return bfd_reloc_notsupported;
9845 }
9846 }
9847 else
9848 {
9849 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9850
9851 switch (insn >> 24)
9852 {
9853 case 0xeb: /* bl */
9854 case 0xfa: /* blx */
9855 value = -4;
9856 break;
9857
9858 case 0xe0: /* add */
9859 value = -8;
9860 break;
b38cadfb 9861
0855e32b
NS
9862 default:
9863 (*_bfd_error_handler)
9864 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9865 input_bfd, input_section,
9866 (unsigned long)rel->r_offset, insn);
9867 return bfd_reloc_notsupported;
9868 }
9869 }
b38cadfb 9870
0855e32b
NS
9871 value += ((globals->root.sgotplt->output_section->vma
9872 + globals->root.sgotplt->output_offset + off)
9873 - (input_section->output_section->vma
9874 + input_section->output_offset
9875 + rel->r_offset)
9876 + globals->sgotplt_jump_table_size);
9877 }
9878 else
9879 value = ((globals->root.sgot->output_section->vma
9880 + globals->root.sgot->output_offset + off)
9881 - (input_section->output_section->vma
9882 + input_section->output_offset + rel->r_offset));
ba93b8ac
DJ
9883
9884 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9885 contents, rel->r_offset, value,
00a97672 9886 rel->r_addend);
ba93b8ac
DJ
9887 }
9888
9889 case R_ARM_TLS_LE32:
9ec0c936 9890 if (info->shared && !info->pie)
ba93b8ac
DJ
9891 {
9892 (*_bfd_error_handler)
9893 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9894 input_bfd, input_section,
9895 (long) rel->r_offset, howto->name);
46691134 9896 return bfd_reloc_notsupported;
ba93b8ac
DJ
9897 }
9898 else
9899 value = tpoff (info, value);
906e58ca 9900
ba93b8ac 9901 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
9902 contents, rel->r_offset, value,
9903 rel->r_addend);
ba93b8ac 9904
319850b4
JB
9905 case R_ARM_V4BX:
9906 if (globals->fix_v4bx)
845b51d6
PB
9907 {
9908 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 9909
845b51d6
PB
9910 /* Ensure that we have a BX instruction. */
9911 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 9912
845b51d6
PB
9913 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9914 {
9915 /* Branch to veneer. */
9916 bfd_vma glue_addr;
9917 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9918 glue_addr -= input_section->output_section->vma
9919 + input_section->output_offset
9920 + rel->r_offset + 8;
9921 insn = (insn & 0xf0000000) | 0x0a000000
9922 | ((glue_addr >> 2) & 0x00ffffff);
9923 }
9924 else
9925 {
9926 /* Preserve Rm (lowest four bits) and the condition code
9927 (highest four bits). Other bits encode MOV PC,Rm. */
9928 insn = (insn & 0xf000000f) | 0x01a0f000;
9929 }
319850b4 9930
845b51d6
PB
9931 bfd_put_32 (input_bfd, insn, hit_data);
9932 }
319850b4
JB
9933 return bfd_reloc_ok;
9934
b6895b4f
PB
9935 case R_ARM_MOVW_ABS_NC:
9936 case R_ARM_MOVT_ABS:
9937 case R_ARM_MOVW_PREL_NC:
9938 case R_ARM_MOVT_PREL:
92f5d02b
MS
9939 /* Until we properly support segment-base-relative addressing then
9940 we assume the segment base to be zero, as for the group relocations.
9941 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9942 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9943 case R_ARM_MOVW_BREL_NC:
9944 case R_ARM_MOVW_BREL:
9945 case R_ARM_MOVT_BREL:
b6895b4f
PB
9946 {
9947 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9948
9949 if (globals->use_rel)
9950 {
9951 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 9952 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 9953 }
92f5d02b 9954
b6895b4f 9955 value += signed_addend;
b6895b4f
PB
9956
9957 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9958 value -= (input_section->output_section->vma
9959 + input_section->output_offset + rel->r_offset);
9960
92f5d02b 9961 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 9962 return bfd_reloc_overflow;
92f5d02b 9963
35fc36a8 9964 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
9965 value |= 1;
9966
9967 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 9968 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
9969 value >>= 16;
9970
9971 insn &= 0xfff0f000;
9972 insn |= value & 0xfff;
9973 insn |= (value & 0xf000) << 4;
9974 bfd_put_32 (input_bfd, insn, hit_data);
9975 }
9976 return bfd_reloc_ok;
9977
9978 case R_ARM_THM_MOVW_ABS_NC:
9979 case R_ARM_THM_MOVT_ABS:
9980 case R_ARM_THM_MOVW_PREL_NC:
9981 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
9982 /* Until we properly support segment-base-relative addressing then
9983 we assume the segment base to be zero, as for the above relocations.
9984 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9985 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9986 as R_ARM_THM_MOVT_ABS. */
9987 case R_ARM_THM_MOVW_BREL_NC:
9988 case R_ARM_THM_MOVW_BREL:
9989 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
9990 {
9991 bfd_vma insn;
906e58ca 9992
b6895b4f
PB
9993 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9994 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9995
9996 if (globals->use_rel)
9997 {
9998 addend = ((insn >> 4) & 0xf000)
9999 | ((insn >> 15) & 0x0800)
10000 | ((insn >> 4) & 0x0700)
10001 | (insn & 0x00ff);
39623e12 10002 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 10003 }
92f5d02b 10004
b6895b4f 10005 value += signed_addend;
b6895b4f
PB
10006
10007 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
10008 value -= (input_section->output_section->vma
10009 + input_section->output_offset + rel->r_offset);
10010
92f5d02b 10011 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 10012 return bfd_reloc_overflow;
92f5d02b 10013
35fc36a8 10014 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
10015 value |= 1;
10016
10017 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 10018 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
10019 value >>= 16;
10020
10021 insn &= 0xfbf08f00;
10022 insn |= (value & 0xf000) << 4;
10023 insn |= (value & 0x0800) << 15;
10024 insn |= (value & 0x0700) << 4;
10025 insn |= (value & 0x00ff);
10026
10027 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10028 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10029 }
10030 return bfd_reloc_ok;
10031
4962c51a
MS
10032 case R_ARM_ALU_PC_G0_NC:
10033 case R_ARM_ALU_PC_G1_NC:
10034 case R_ARM_ALU_PC_G0:
10035 case R_ARM_ALU_PC_G1:
10036 case R_ARM_ALU_PC_G2:
10037 case R_ARM_ALU_SB_G0_NC:
10038 case R_ARM_ALU_SB_G1_NC:
10039 case R_ARM_ALU_SB_G0:
10040 case R_ARM_ALU_SB_G1:
10041 case R_ARM_ALU_SB_G2:
10042 {
10043 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 10044 bfd_vma pc = input_section->output_section->vma
4962c51a 10045 + input_section->output_offset + rel->r_offset;
31a91d61 10046 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 10047 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
10048 bfd_vma residual;
10049 bfd_vma g_n;
4962c51a 10050 bfd_signed_vma signed_value;
99059e56
RM
10051 int group = 0;
10052
10053 /* Determine which group of bits to select. */
10054 switch (r_type)
10055 {
10056 case R_ARM_ALU_PC_G0_NC:
10057 case R_ARM_ALU_PC_G0:
10058 case R_ARM_ALU_SB_G0_NC:
10059 case R_ARM_ALU_SB_G0:
10060 group = 0;
10061 break;
10062
10063 case R_ARM_ALU_PC_G1_NC:
10064 case R_ARM_ALU_PC_G1:
10065 case R_ARM_ALU_SB_G1_NC:
10066 case R_ARM_ALU_SB_G1:
10067 group = 1;
10068 break;
10069
10070 case R_ARM_ALU_PC_G2:
10071 case R_ARM_ALU_SB_G2:
10072 group = 2;
10073 break;
10074
10075 default:
10076 abort ();
10077 }
10078
10079 /* If REL, extract the addend from the insn. If RELA, it will
10080 have already been fetched for us. */
4962c51a 10081 if (globals->use_rel)
99059e56
RM
10082 {
10083 int negative;
10084 bfd_vma constant = insn & 0xff;
10085 bfd_vma rotation = (insn & 0xf00) >> 8;
10086
10087 if (rotation == 0)
10088 signed_addend = constant;
10089 else
10090 {
10091 /* Compensate for the fact that in the instruction, the
10092 rotation is stored in multiples of 2 bits. */
10093 rotation *= 2;
10094
10095 /* Rotate "constant" right by "rotation" bits. */
10096 signed_addend = (constant >> rotation) |
10097 (constant << (8 * sizeof (bfd_vma) - rotation));
10098 }
10099
10100 /* Determine if the instruction is an ADD or a SUB.
10101 (For REL, this determines the sign of the addend.) */
10102 negative = identify_add_or_sub (insn);
10103 if (negative == 0)
10104 {
10105 (*_bfd_error_handler)
10106 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
10107 input_bfd, input_section,
10108 (long) rel->r_offset, howto->name);
10109 return bfd_reloc_overflow;
10110 }
10111
10112 signed_addend *= negative;
10113 }
4962c51a
MS
10114
10115 /* Compute the value (X) to go in the place. */
99059e56
RM
10116 if (r_type == R_ARM_ALU_PC_G0_NC
10117 || r_type == R_ARM_ALU_PC_G1_NC
10118 || r_type == R_ARM_ALU_PC_G0
10119 || r_type == R_ARM_ALU_PC_G1
10120 || r_type == R_ARM_ALU_PC_G2)
10121 /* PC relative. */
10122 signed_value = value - pc + signed_addend;
10123 else
10124 /* Section base relative. */
10125 signed_value = value - sb + signed_addend;
10126
10127 /* If the target symbol is a Thumb function, then set the
10128 Thumb bit in the address. */
35fc36a8 10129 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
10130 signed_value |= 1;
10131
99059e56
RM
10132 /* Calculate the value of the relevant G_n, in encoded
10133 constant-with-rotation format. */
10134 g_n = calculate_group_reloc_mask (abs (signed_value), group,
10135 &residual);
10136
10137 /* Check for overflow if required. */
10138 if ((r_type == R_ARM_ALU_PC_G0
10139 || r_type == R_ARM_ALU_PC_G1
10140 || r_type == R_ARM_ALU_PC_G2
10141 || r_type == R_ARM_ALU_SB_G0
10142 || r_type == R_ARM_ALU_SB_G1
10143 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
10144 {
10145 (*_bfd_error_handler)
10146 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10147 input_bfd, input_section,
10148 (long) rel->r_offset, abs (signed_value), howto->name);
10149 return bfd_reloc_overflow;
10150 }
10151
10152 /* Mask out the value and the ADD/SUB part of the opcode; take care
10153 not to destroy the S bit. */
10154 insn &= 0xff1ff000;
10155
10156 /* Set the opcode according to whether the value to go in the
10157 place is negative. */
10158 if (signed_value < 0)
10159 insn |= 1 << 22;
10160 else
10161 insn |= 1 << 23;
10162
10163 /* Encode the offset. */
10164 insn |= g_n;
4962c51a
MS
10165
10166 bfd_put_32 (input_bfd, insn, hit_data);
10167 }
10168 return bfd_reloc_ok;
10169
10170 case R_ARM_LDR_PC_G0:
10171 case R_ARM_LDR_PC_G1:
10172 case R_ARM_LDR_PC_G2:
10173 case R_ARM_LDR_SB_G0:
10174 case R_ARM_LDR_SB_G1:
10175 case R_ARM_LDR_SB_G2:
10176 {
10177 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 10178 bfd_vma pc = input_section->output_section->vma
4962c51a 10179 + input_section->output_offset + rel->r_offset;
31a91d61 10180 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 10181 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 10182 bfd_vma residual;
4962c51a 10183 bfd_signed_vma signed_value;
99059e56
RM
10184 int group = 0;
10185
10186 /* Determine which groups of bits to calculate. */
10187 switch (r_type)
10188 {
10189 case R_ARM_LDR_PC_G0:
10190 case R_ARM_LDR_SB_G0:
10191 group = 0;
10192 break;
10193
10194 case R_ARM_LDR_PC_G1:
10195 case R_ARM_LDR_SB_G1:
10196 group = 1;
10197 break;
10198
10199 case R_ARM_LDR_PC_G2:
10200 case R_ARM_LDR_SB_G2:
10201 group = 2;
10202 break;
10203
10204 default:
10205 abort ();
10206 }
10207
10208 /* If REL, extract the addend from the insn. If RELA, it will
10209 have already been fetched for us. */
4962c51a 10210 if (globals->use_rel)
99059e56
RM
10211 {
10212 int negative = (insn & (1 << 23)) ? 1 : -1;
10213 signed_addend = negative * (insn & 0xfff);
10214 }
4962c51a
MS
10215
10216 /* Compute the value (X) to go in the place. */
99059e56
RM
10217 if (r_type == R_ARM_LDR_PC_G0
10218 || r_type == R_ARM_LDR_PC_G1
10219 || r_type == R_ARM_LDR_PC_G2)
10220 /* PC relative. */
10221 signed_value = value - pc + signed_addend;
10222 else
10223 /* Section base relative. */
10224 signed_value = value - sb + signed_addend;
10225
10226 /* Calculate the value of the relevant G_{n-1} to obtain
10227 the residual at that stage. */
10228 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10229
10230 /* Check for overflow. */
10231 if (residual >= 0x1000)
10232 {
10233 (*_bfd_error_handler)
10234 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10235 input_bfd, input_section,
10236 (long) rel->r_offset, abs (signed_value), howto->name);
10237 return bfd_reloc_overflow;
10238 }
10239
10240 /* Mask out the value and U bit. */
10241 insn &= 0xff7ff000;
10242
10243 /* Set the U bit if the value to go in the place is non-negative. */
10244 if (signed_value >= 0)
10245 insn |= 1 << 23;
10246
10247 /* Encode the offset. */
10248 insn |= residual;
4962c51a
MS
10249
10250 bfd_put_32 (input_bfd, insn, hit_data);
10251 }
10252 return bfd_reloc_ok;
10253
10254 case R_ARM_LDRS_PC_G0:
10255 case R_ARM_LDRS_PC_G1:
10256 case R_ARM_LDRS_PC_G2:
10257 case R_ARM_LDRS_SB_G0:
10258 case R_ARM_LDRS_SB_G1:
10259 case R_ARM_LDRS_SB_G2:
10260 {
10261 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 10262 bfd_vma pc = input_section->output_section->vma
4962c51a 10263 + input_section->output_offset + rel->r_offset;
31a91d61 10264 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 10265 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 10266 bfd_vma residual;
4962c51a 10267 bfd_signed_vma signed_value;
99059e56
RM
10268 int group = 0;
10269
10270 /* Determine which groups of bits to calculate. */
10271 switch (r_type)
10272 {
10273 case R_ARM_LDRS_PC_G0:
10274 case R_ARM_LDRS_SB_G0:
10275 group = 0;
10276 break;
10277
10278 case R_ARM_LDRS_PC_G1:
10279 case R_ARM_LDRS_SB_G1:
10280 group = 1;
10281 break;
10282
10283 case R_ARM_LDRS_PC_G2:
10284 case R_ARM_LDRS_SB_G2:
10285 group = 2;
10286 break;
10287
10288 default:
10289 abort ();
10290 }
10291
10292 /* If REL, extract the addend from the insn. If RELA, it will
10293 have already been fetched for us. */
4962c51a 10294 if (globals->use_rel)
99059e56
RM
10295 {
10296 int negative = (insn & (1 << 23)) ? 1 : -1;
10297 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10298 }
4962c51a
MS
10299
10300 /* Compute the value (X) to go in the place. */
99059e56
RM
10301 if (r_type == R_ARM_LDRS_PC_G0
10302 || r_type == R_ARM_LDRS_PC_G1
10303 || r_type == R_ARM_LDRS_PC_G2)
10304 /* PC relative. */
10305 signed_value = value - pc + signed_addend;
10306 else
10307 /* Section base relative. */
10308 signed_value = value - sb + signed_addend;
10309
10310 /* Calculate the value of the relevant G_{n-1} to obtain
10311 the residual at that stage. */
10312 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10313
10314 /* Check for overflow. */
10315 if (residual >= 0x100)
10316 {
10317 (*_bfd_error_handler)
10318 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10319 input_bfd, input_section,
10320 (long) rel->r_offset, abs (signed_value), howto->name);
10321 return bfd_reloc_overflow;
10322 }
10323
10324 /* Mask out the value and U bit. */
10325 insn &= 0xff7ff0f0;
10326
10327 /* Set the U bit if the value to go in the place is non-negative. */
10328 if (signed_value >= 0)
10329 insn |= 1 << 23;
10330
10331 /* Encode the offset. */
10332 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
10333
10334 bfd_put_32 (input_bfd, insn, hit_data);
10335 }
10336 return bfd_reloc_ok;
10337
10338 case R_ARM_LDC_PC_G0:
10339 case R_ARM_LDC_PC_G1:
10340 case R_ARM_LDC_PC_G2:
10341 case R_ARM_LDC_SB_G0:
10342 case R_ARM_LDC_SB_G1:
10343 case R_ARM_LDC_SB_G2:
10344 {
10345 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 10346 bfd_vma pc = input_section->output_section->vma
4962c51a 10347 + input_section->output_offset + rel->r_offset;
31a91d61 10348 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 10349 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 10350 bfd_vma residual;
4962c51a 10351 bfd_signed_vma signed_value;
99059e56
RM
10352 int group = 0;
10353
10354 /* Determine which groups of bits to calculate. */
10355 switch (r_type)
10356 {
10357 case R_ARM_LDC_PC_G0:
10358 case R_ARM_LDC_SB_G0:
10359 group = 0;
10360 break;
10361
10362 case R_ARM_LDC_PC_G1:
10363 case R_ARM_LDC_SB_G1:
10364 group = 1;
10365 break;
10366
10367 case R_ARM_LDC_PC_G2:
10368 case R_ARM_LDC_SB_G2:
10369 group = 2;
10370 break;
10371
10372 default:
10373 abort ();
10374 }
10375
10376 /* If REL, extract the addend from the insn. If RELA, it will
10377 have already been fetched for us. */
4962c51a 10378 if (globals->use_rel)
99059e56
RM
10379 {
10380 int negative = (insn & (1 << 23)) ? 1 : -1;
10381 signed_addend = negative * ((insn & 0xff) << 2);
10382 }
4962c51a
MS
10383
10384 /* Compute the value (X) to go in the place. */
99059e56
RM
10385 if (r_type == R_ARM_LDC_PC_G0
10386 || r_type == R_ARM_LDC_PC_G1
10387 || r_type == R_ARM_LDC_PC_G2)
10388 /* PC relative. */
10389 signed_value = value - pc + signed_addend;
10390 else
10391 /* Section base relative. */
10392 signed_value = value - sb + signed_addend;
10393
10394 /* Calculate the value of the relevant G_{n-1} to obtain
10395 the residual at that stage. */
10396 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10397
10398 /* Check for overflow. (The absolute value to go in the place must be
10399 divisible by four and, after having been divided by four, must
10400 fit in eight bits.) */
10401 if ((residual & 0x3) != 0 || residual >= 0x400)
10402 {
10403 (*_bfd_error_handler)
10404 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10405 input_bfd, input_section,
10406 (long) rel->r_offset, abs (signed_value), howto->name);
10407 return bfd_reloc_overflow;
10408 }
10409
10410 /* Mask out the value and U bit. */
10411 insn &= 0xff7fff00;
10412
10413 /* Set the U bit if the value to go in the place is non-negative. */
10414 if (signed_value >= 0)
10415 insn |= 1 << 23;
10416
10417 /* Encode the offset. */
10418 insn |= residual >> 2;
4962c51a
MS
10419
10420 bfd_put_32 (input_bfd, insn, hit_data);
10421 }
10422 return bfd_reloc_ok;
10423
252b5132
RH
10424 default:
10425 return bfd_reloc_notsupported;
10426 }
10427}
10428
98c1d4aa
NC
10429/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10430static void
57e8b36a
NC
10431arm_add_to_rel (bfd * abfd,
10432 bfd_byte * address,
10433 reloc_howto_type * howto,
10434 bfd_signed_vma increment)
98c1d4aa 10435{
98c1d4aa
NC
10436 bfd_signed_vma addend;
10437
bd97cb95
DJ
10438 if (howto->type == R_ARM_THM_CALL
10439 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 10440 {
9a5aca8c
AM
10441 int upper_insn, lower_insn;
10442 int upper, lower;
98c1d4aa 10443
9a5aca8c
AM
10444 upper_insn = bfd_get_16 (abfd, address);
10445 lower_insn = bfd_get_16 (abfd, address + 2);
10446 upper = upper_insn & 0x7ff;
10447 lower = lower_insn & 0x7ff;
10448
10449 addend = (upper << 12) | (lower << 1);
ddda4409 10450 addend += increment;
9a5aca8c 10451 addend >>= 1;
98c1d4aa 10452
9a5aca8c
AM
10453 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10454 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10455
dc810e39
AM
10456 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10457 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
10458 }
10459 else
10460 {
10461 bfd_vma contents;
10462
10463 contents = bfd_get_32 (abfd, address);
10464
10465 /* Get the (signed) value from the instruction. */
10466 addend = contents & howto->src_mask;
10467 if (addend & ((howto->src_mask + 1) >> 1))
10468 {
10469 bfd_signed_vma mask;
10470
10471 mask = -1;
10472 mask &= ~ howto->src_mask;
10473 addend |= mask;
10474 }
10475
10476 /* Add in the increment, (which is a byte value). */
10477 switch (howto->type)
10478 {
10479 default:
10480 addend += increment;
10481 break;
10482
10483 case R_ARM_PC24:
c6596c5e 10484 case R_ARM_PLT32:
5b5bb741
PB
10485 case R_ARM_CALL:
10486 case R_ARM_JUMP24:
9a5aca8c 10487 addend <<= howto->size;
dc810e39 10488 addend += increment;
9a5aca8c
AM
10489
10490 /* Should we check for overflow here ? */
10491
10492 /* Drop any undesired bits. */
10493 addend >>= howto->rightshift;
10494 break;
10495 }
10496
10497 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10498
10499 bfd_put_32 (abfd, contents, address);
ddda4409 10500 }
98c1d4aa 10501}
252b5132 10502
ba93b8ac
DJ
10503#define IS_ARM_TLS_RELOC(R_TYPE) \
10504 ((R_TYPE) == R_ARM_TLS_GD32 \
10505 || (R_TYPE) == R_ARM_TLS_LDO32 \
10506 || (R_TYPE) == R_ARM_TLS_LDM32 \
10507 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10508 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10509 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10510 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b
NS
10511 || (R_TYPE) == R_ARM_TLS_IE32 \
10512 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10513
10514/* Specific set of relocations for the gnu tls dialect. */
10515#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10516 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10517 || (R_TYPE) == R_ARM_TLS_CALL \
10518 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10519 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10520 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 10521
252b5132 10522/* Relocate an ARM ELF section. */
906e58ca 10523
b34976b6 10524static bfd_boolean
57e8b36a
NC
10525elf32_arm_relocate_section (bfd * output_bfd,
10526 struct bfd_link_info * info,
10527 bfd * input_bfd,
10528 asection * input_section,
10529 bfd_byte * contents,
10530 Elf_Internal_Rela * relocs,
10531 Elf_Internal_Sym * local_syms,
10532 asection ** local_sections)
252b5132 10533{
b34976b6
AM
10534 Elf_Internal_Shdr *symtab_hdr;
10535 struct elf_link_hash_entry **sym_hashes;
10536 Elf_Internal_Rela *rel;
10537 Elf_Internal_Rela *relend;
10538 const char *name;
b32d3aa2 10539 struct elf32_arm_link_hash_table * globals;
252b5132 10540
4e7fd91e 10541 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10542 if (globals == NULL)
10543 return FALSE;
b491616a 10544
0ffa91dd 10545 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
10546 sym_hashes = elf_sym_hashes (input_bfd);
10547
10548 rel = relocs;
10549 relend = relocs + input_section->reloc_count;
10550 for (; rel < relend; rel++)
10551 {
ba96a88f
NC
10552 int r_type;
10553 reloc_howto_type * howto;
10554 unsigned long r_symndx;
10555 Elf_Internal_Sym * sym;
10556 asection * sec;
252b5132 10557 struct elf_link_hash_entry * h;
ba96a88f
NC
10558 bfd_vma relocation;
10559 bfd_reloc_status_type r;
10560 arelent bfd_reloc;
ba93b8ac 10561 char sym_type;
0945cdfd 10562 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 10563 char *error_message = NULL;
f21f3fe0 10564
252b5132 10565 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 10566 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 10567 r_type = arm_real_reloc_type (globals, r_type);
252b5132 10568
ba96a88f 10569 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
10570 || r_type == R_ARM_GNU_VTINHERIT)
10571 continue;
252b5132 10572
b32d3aa2 10573 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 10574 howto = bfd_reloc.howto;
252b5132 10575
252b5132
RH
10576 h = NULL;
10577 sym = NULL;
10578 sec = NULL;
9b485d32 10579
252b5132
RH
10580 if (r_symndx < symtab_hdr->sh_info)
10581 {
10582 sym = local_syms + r_symndx;
ba93b8ac 10583 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 10584 sec = local_sections[r_symndx];
ffcb4889
NS
10585
10586 /* An object file might have a reference to a local
10587 undefined symbol. This is a daft object file, but we
10588 should at least do something about it. V4BX & NONE
10589 relocations do not use the symbol and are explicitly
77b4f08f
TS
10590 allowed to use the undefined symbol, so allow those.
10591 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
10592 if (r_type != R_ARM_V4BX
10593 && r_type != R_ARM_NONE
77b4f08f 10594 && r_symndx != STN_UNDEF
ffcb4889
NS
10595 && bfd_is_und_section (sec)
10596 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10597 {
10598 if (!info->callbacks->undefined_symbol
10599 (info, bfd_elf_string_from_elf_section
10600 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10601 input_bfd, input_section,
10602 rel->r_offset, TRUE))
10603 return FALSE;
10604 }
b38cadfb 10605
4e7fd91e 10606 if (globals->use_rel)
f8df10f4 10607 {
4e7fd91e
PB
10608 relocation = (sec->output_section->vma
10609 + sec->output_offset
10610 + sym->st_value);
ab96bf03
AM
10611 if (!info->relocatable
10612 && (sec->flags & SEC_MERGE)
10613 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 10614 {
4e7fd91e
PB
10615 asection *msec;
10616 bfd_vma addend, value;
10617
39623e12 10618 switch (r_type)
4e7fd91e 10619 {
39623e12
PB
10620 case R_ARM_MOVW_ABS_NC:
10621 case R_ARM_MOVT_ABS:
10622 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10623 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10624 addend = (addend ^ 0x8000) - 0x8000;
10625 break;
f8df10f4 10626
39623e12
PB
10627 case R_ARM_THM_MOVW_ABS_NC:
10628 case R_ARM_THM_MOVT_ABS:
10629 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10630 << 16;
10631 value |= bfd_get_16 (input_bfd,
10632 contents + rel->r_offset + 2);
10633 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10634 | ((value & 0x04000000) >> 15);
10635 addend = (addend ^ 0x8000) - 0x8000;
10636 break;
f8df10f4 10637
39623e12
PB
10638 default:
10639 if (howto->rightshift
10640 || (howto->src_mask & (howto->src_mask + 1)))
10641 {
10642 (*_bfd_error_handler)
10643 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10644 input_bfd, input_section,
10645 (long) rel->r_offset, howto->name);
10646 return FALSE;
10647 }
10648
10649 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10650
10651 /* Get the (signed) value from the instruction. */
10652 addend = value & howto->src_mask;
10653 if (addend & ((howto->src_mask + 1) >> 1))
10654 {
10655 bfd_signed_vma mask;
10656
10657 mask = -1;
10658 mask &= ~ howto->src_mask;
10659 addend |= mask;
10660 }
10661 break;
4e7fd91e 10662 }
39623e12 10663
4e7fd91e
PB
10664 msec = sec;
10665 addend =
10666 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10667 - relocation;
10668 addend += msec->output_section->vma + msec->output_offset;
39623e12 10669
cc643b88 10670 /* Cases here must match those in the preceding
39623e12
PB
10671 switch statement. */
10672 switch (r_type)
10673 {
10674 case R_ARM_MOVW_ABS_NC:
10675 case R_ARM_MOVT_ABS:
10676 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10677 | (addend & 0xfff);
10678 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10679 break;
10680
10681 case R_ARM_THM_MOVW_ABS_NC:
10682 case R_ARM_THM_MOVT_ABS:
10683 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10684 | (addend & 0xff) | ((addend & 0x0800) << 15);
10685 bfd_put_16 (input_bfd, value >> 16,
10686 contents + rel->r_offset);
10687 bfd_put_16 (input_bfd, value,
10688 contents + rel->r_offset + 2);
10689 break;
10690
10691 default:
10692 value = (value & ~ howto->dst_mask)
10693 | (addend & howto->dst_mask);
10694 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10695 break;
10696 }
f8df10f4 10697 }
f8df10f4 10698 }
4e7fd91e
PB
10699 else
10700 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
10701 }
10702 else
10703 {
62d887d4 10704 bfd_boolean warned, ignored;
560e09e9 10705
b2a8e766
AM
10706 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10707 r_symndx, symtab_hdr, sym_hashes,
10708 h, sec, relocation,
62d887d4 10709 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
10710
10711 sym_type = h->type;
252b5132
RH
10712 }
10713
dbaa2011 10714 if (sec != NULL && discarded_section (sec))
e4067dbb 10715 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 10716 rel, 1, relend, howto, 0, contents);
ab96bf03
AM
10717
10718 if (info->relocatable)
10719 {
10720 /* This is a relocatable link. We don't have to change
10721 anything, unless the reloc is against a section symbol,
10722 in which case we have to adjust according to where the
10723 section symbol winds up in the output section. */
10724 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10725 {
10726 if (globals->use_rel)
10727 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10728 howto, (bfd_signed_vma) sec->output_offset);
10729 else
10730 rel->r_addend += sec->output_offset;
10731 }
10732 continue;
10733 }
10734
252b5132
RH
10735 if (h != NULL)
10736 name = h->root.root.string;
10737 else
10738 {
10739 name = (bfd_elf_string_from_elf_section
10740 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10741 if (name == NULL || *name == '\0')
10742 name = bfd_section_name (input_bfd, sec);
10743 }
f21f3fe0 10744
cf35638d 10745 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
10746 && r_type != R_ARM_NONE
10747 && (h == NULL
10748 || h->root.type == bfd_link_hash_defined
10749 || h->root.type == bfd_link_hash_defweak)
10750 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10751 {
10752 (*_bfd_error_handler)
10753 ((sym_type == STT_TLS
10754 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10755 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10756 input_bfd,
10757 input_section,
10758 (long) rel->r_offset,
10759 howto->name,
10760 name);
10761 }
10762
0855e32b 10763 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
10764 done, i.e., the relaxation produced the final output we want,
10765 and we won't let anybody mess with it. Also, we have to do
10766 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 10767 both in relaxed and non-relaxed cases. */
0855e32b
NS
10768 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10769 || (IS_ARM_TLS_GNU_RELOC (r_type)
b38cadfb 10770 && !((h ? elf32_arm_hash_entry (h)->tls_type :
0855e32b
NS
10771 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10772 & GOT_TLS_GDESC)))
10773 {
10774 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10775 contents, rel, h == NULL);
10776 /* This may have been marked unresolved because it came from
10777 a shared library. But we've just dealt with that. */
10778 unresolved_reloc = 0;
10779 }
10780 else
10781 r = bfd_reloc_continue;
b38cadfb 10782
0855e32b
NS
10783 if (r == bfd_reloc_continue)
10784 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10785 input_section, contents, rel,
34e77a92 10786 relocation, info, sec, name, sym_type,
35fc36a8
RS
10787 (h ? h->target_internal
10788 : ARM_SYM_BRANCH_TYPE (sym)), h,
0855e32b 10789 &unresolved_reloc, &error_message);
0945cdfd
DJ
10790
10791 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10792 because such sections are not SEC_ALLOC and thus ld.so will
10793 not process them. */
10794 if (unresolved_reloc
99059e56
RM
10795 && !((input_section->flags & SEC_DEBUGGING) != 0
10796 && h->def_dynamic)
1d5316ab
AM
10797 && _bfd_elf_section_offset (output_bfd, info, input_section,
10798 rel->r_offset) != (bfd_vma) -1)
0945cdfd
DJ
10799 {
10800 (*_bfd_error_handler)
843fe662
L
10801 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10802 input_bfd,
10803 input_section,
10804 (long) rel->r_offset,
10805 howto->name,
10806 h->root.root.string);
0945cdfd
DJ
10807 return FALSE;
10808 }
252b5132
RH
10809
10810 if (r != bfd_reloc_ok)
10811 {
252b5132
RH
10812 switch (r)
10813 {
10814 case bfd_reloc_overflow:
cf919dfd
PB
10815 /* If the overflowing reloc was to an undefined symbol,
10816 we have already printed one error message and there
10817 is no point complaining again. */
10818 if ((! h ||
10819 h->root.type != bfd_link_hash_undefined)
10820 && (!((*info->callbacks->reloc_overflow)
dfeffb9f
L
10821 (info, (h ? &h->root : NULL), name, howto->name,
10822 (bfd_vma) 0, input_bfd, input_section,
10823 rel->r_offset))))
b34976b6 10824 return FALSE;
252b5132
RH
10825 break;
10826
10827 case bfd_reloc_undefined:
10828 if (!((*info->callbacks->undefined_symbol)
10829 (info, name, input_bfd, input_section,
b34976b6
AM
10830 rel->r_offset, TRUE)))
10831 return FALSE;
252b5132
RH
10832 break;
10833
10834 case bfd_reloc_outofrange:
f2a9dd69 10835 error_message = _("out of range");
252b5132
RH
10836 goto common_error;
10837
10838 case bfd_reloc_notsupported:
f2a9dd69 10839 error_message = _("unsupported relocation");
252b5132
RH
10840 goto common_error;
10841
10842 case bfd_reloc_dangerous:
f2a9dd69 10843 /* error_message should already be set. */
252b5132
RH
10844 goto common_error;
10845
10846 default:
f2a9dd69 10847 error_message = _("unknown error");
8029a119 10848 /* Fall through. */
252b5132
RH
10849
10850 common_error:
f2a9dd69
DJ
10851 BFD_ASSERT (error_message != NULL);
10852 if (!((*info->callbacks->reloc_dangerous)
10853 (info, error_message, input_bfd, input_section,
252b5132 10854 rel->r_offset)))
b34976b6 10855 return FALSE;
252b5132
RH
10856 break;
10857 }
10858 }
10859 }
10860
b34976b6 10861 return TRUE;
252b5132
RH
10862}
10863
91d6fa6a 10864/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 10865 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 10866 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
10867 maintaining that condition). */
10868
10869static void
10870add_unwind_table_edit (arm_unwind_table_edit **head,
10871 arm_unwind_table_edit **tail,
10872 arm_unwind_edit_type type,
10873 asection *linked_section,
91d6fa6a 10874 unsigned int tindex)
2468f9c9 10875{
21d799b5
NC
10876 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10877 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 10878
2468f9c9
PB
10879 new_edit->type = type;
10880 new_edit->linked_section = linked_section;
91d6fa6a 10881 new_edit->index = tindex;
b38cadfb 10882
91d6fa6a 10883 if (tindex > 0)
2468f9c9
PB
10884 {
10885 new_edit->next = NULL;
10886
10887 if (*tail)
10888 (*tail)->next = new_edit;
10889
10890 (*tail) = new_edit;
10891
10892 if (!*head)
10893 (*head) = new_edit;
10894 }
10895 else
10896 {
10897 new_edit->next = *head;
10898
10899 if (!*tail)
10900 *tail = new_edit;
10901
10902 *head = new_edit;
10903 }
10904}
10905
10906static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10907
10908/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10909static void
10910adjust_exidx_size(asection *exidx_sec, int adjust)
10911{
10912 asection *out_sec;
10913
10914 if (!exidx_sec->rawsize)
10915 exidx_sec->rawsize = exidx_sec->size;
10916
10917 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10918 out_sec = exidx_sec->output_section;
10919 /* Adjust size of output section. */
10920 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10921}
10922
10923/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10924static void
10925insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10926{
10927 struct _arm_elf_section_data *exidx_arm_data;
10928
10929 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10930 add_unwind_table_edit (
10931 &exidx_arm_data->u.exidx.unwind_edit_list,
10932 &exidx_arm_data->u.exidx.unwind_edit_tail,
10933 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10934
10935 adjust_exidx_size(exidx_sec, 8);
10936}
10937
10938/* Scan .ARM.exidx tables, and create a list describing edits which should be
10939 made to those tables, such that:
b38cadfb 10940
2468f9c9
PB
10941 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10942 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 10943 codes which have been inlined into the index).
2468f9c9 10944
85fdf906
AH
10945 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10946
2468f9c9 10947 The edits are applied when the tables are written
b38cadfb 10948 (in elf32_arm_write_section). */
2468f9c9
PB
10949
10950bfd_boolean
10951elf32_arm_fix_exidx_coverage (asection **text_section_order,
10952 unsigned int num_text_sections,
85fdf906
AH
10953 struct bfd_link_info *info,
10954 bfd_boolean merge_exidx_entries)
2468f9c9
PB
10955{
10956 bfd *inp;
10957 unsigned int last_second_word = 0, i;
10958 asection *last_exidx_sec = NULL;
10959 asection *last_text_sec = NULL;
10960 int last_unwind_type = -1;
10961
10962 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10963 text sections. */
c72f2fb2 10964 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
10965 {
10966 asection *sec;
b38cadfb 10967
2468f9c9 10968 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 10969 {
2468f9c9
PB
10970 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10971 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 10972
dec9d5df 10973 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 10974 continue;
b38cadfb 10975
2468f9c9
PB
10976 if (elf_sec->linked_to)
10977 {
10978 Elf_Internal_Shdr *linked_hdr
99059e56 10979 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 10980 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 10981 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
10982
10983 if (linked_sec_arm_data == NULL)
99059e56 10984 continue;
2468f9c9
PB
10985
10986 /* Link this .ARM.exidx section back from the text section it
99059e56 10987 describes. */
2468f9c9
PB
10988 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10989 }
10990 }
10991 }
10992
10993 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10994 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 10995 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
10996
10997 for (i = 0; i < num_text_sections; i++)
10998 {
10999 asection *sec = text_section_order[i];
11000 asection *exidx_sec;
11001 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
11002 struct _arm_elf_section_data *exidx_arm_data;
11003 bfd_byte *contents = NULL;
11004 int deleted_exidx_bytes = 0;
11005 bfd_vma j;
11006 arm_unwind_table_edit *unwind_edit_head = NULL;
11007 arm_unwind_table_edit *unwind_edit_tail = NULL;
11008 Elf_Internal_Shdr *hdr;
11009 bfd *ibfd;
11010
11011 if (arm_data == NULL)
99059e56 11012 continue;
2468f9c9
PB
11013
11014 exidx_sec = arm_data->u.text.arm_exidx_sec;
11015 if (exidx_sec == NULL)
11016 {
11017 /* Section has no unwind data. */
11018 if (last_unwind_type == 0 || !last_exidx_sec)
11019 continue;
11020
11021 /* Ignore zero sized sections. */
11022 if (sec->size == 0)
11023 continue;
11024
11025 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11026 last_unwind_type = 0;
11027 continue;
11028 }
11029
22a8f80e
PB
11030 /* Skip /DISCARD/ sections. */
11031 if (bfd_is_abs_section (exidx_sec->output_section))
11032 continue;
11033
2468f9c9
PB
11034 hdr = &elf_section_data (exidx_sec)->this_hdr;
11035 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 11036 continue;
b38cadfb 11037
2468f9c9
PB
11038 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
11039 if (exidx_arm_data == NULL)
99059e56 11040 continue;
b38cadfb 11041
2468f9c9 11042 ibfd = exidx_sec->owner;
b38cadfb 11043
2468f9c9
PB
11044 if (hdr->contents != NULL)
11045 contents = hdr->contents;
11046 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
11047 /* An error? */
11048 continue;
11049
11050 for (j = 0; j < hdr->sh_size; j += 8)
11051 {
11052 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
11053 int unwind_type;
11054 int elide = 0;
11055
11056 /* An EXIDX_CANTUNWIND entry. */
11057 if (second_word == 1)
11058 {
11059 if (last_unwind_type == 0)
11060 elide = 1;
11061 unwind_type = 0;
11062 }
11063 /* Inlined unwinding data. Merge if equal to previous. */
11064 else if ((second_word & 0x80000000) != 0)
11065 {
85fdf906
AH
11066 if (merge_exidx_entries
11067 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
11068 elide = 1;
11069 unwind_type = 1;
11070 last_second_word = second_word;
11071 }
11072 /* Normal table entry. In theory we could merge these too,
11073 but duplicate entries are likely to be much less common. */
11074 else
11075 unwind_type = 2;
11076
11077 if (elide)
11078 {
11079 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
11080 DELETE_EXIDX_ENTRY, NULL, j / 8);
11081
11082 deleted_exidx_bytes += 8;
11083 }
11084
11085 last_unwind_type = unwind_type;
11086 }
11087
11088 /* Free contents if we allocated it ourselves. */
11089 if (contents != hdr->contents)
99059e56 11090 free (contents);
2468f9c9
PB
11091
11092 /* Record edits to be applied later (in elf32_arm_write_section). */
11093 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
11094 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 11095
2468f9c9
PB
11096 if (deleted_exidx_bytes > 0)
11097 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
11098
11099 last_exidx_sec = exidx_sec;
11100 last_text_sec = sec;
11101 }
11102
11103 /* Add terminating CANTUNWIND entry. */
11104 if (last_exidx_sec && last_unwind_type != 0)
11105 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11106
11107 return TRUE;
11108}
11109
3e6b1042
DJ
11110static bfd_boolean
11111elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
11112 bfd *ibfd, const char *name)
11113{
11114 asection *sec, *osec;
11115
3d4d4302 11116 sec = bfd_get_linker_section (ibfd, name);
3e6b1042
DJ
11117 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
11118 return TRUE;
11119
11120 osec = sec->output_section;
11121 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
11122 return TRUE;
11123
11124 if (! bfd_set_section_contents (obfd, osec, sec->contents,
11125 sec->output_offset, sec->size))
11126 return FALSE;
11127
11128 return TRUE;
11129}
11130
11131static bfd_boolean
11132elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
11133{
11134 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 11135 asection *sec, *osec;
3e6b1042 11136
4dfe6ac6
NC
11137 if (globals == NULL)
11138 return FALSE;
11139
3e6b1042
DJ
11140 /* Invoke the regular ELF backend linker to do all the work. */
11141 if (!bfd_elf_final_link (abfd, info))
11142 return FALSE;
11143
fe33d2fa
CL
11144 /* Process stub sections (eg BE8 encoding, ...). */
11145 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
11146 int i;
cdb21a0a
NS
11147 for (i=0; i<htab->top_id; i++)
11148 {
11149 sec = htab->stub_group[i].stub_sec;
11150 /* Only process it once, in its link_sec slot. */
11151 if (sec && i == htab->stub_group[i].link_sec->id)
11152 {
11153 osec = sec->output_section;
11154 elf32_arm_write_section (abfd, info, sec, sec->contents);
11155 if (! bfd_set_section_contents (abfd, osec, sec->contents,
11156 sec->output_offset, sec->size))
11157 return FALSE;
11158 }
fe33d2fa 11159 }
fe33d2fa 11160
3e6b1042
DJ
11161 /* Write out any glue sections now that we have created all the
11162 stubs. */
11163 if (globals->bfd_of_glue_owner != NULL)
11164 {
11165 if (! elf32_arm_output_glue_section (info, abfd,
11166 globals->bfd_of_glue_owner,
11167 ARM2THUMB_GLUE_SECTION_NAME))
11168 return FALSE;
11169
11170 if (! elf32_arm_output_glue_section (info, abfd,
11171 globals->bfd_of_glue_owner,
11172 THUMB2ARM_GLUE_SECTION_NAME))
11173 return FALSE;
11174
11175 if (! elf32_arm_output_glue_section (info, abfd,
11176 globals->bfd_of_glue_owner,
11177 VFP11_ERRATUM_VENEER_SECTION_NAME))
11178 return FALSE;
11179
11180 if (! elf32_arm_output_glue_section (info, abfd,
11181 globals->bfd_of_glue_owner,
11182 ARM_BX_GLUE_SECTION_NAME))
11183 return FALSE;
11184 }
11185
11186 return TRUE;
11187}
11188
5968a7b8
NC
11189/* Return a best guess for the machine number based on the attributes. */
11190
11191static unsigned int
11192bfd_arm_get_mach_from_attributes (bfd * abfd)
11193{
11194 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11195
11196 switch (arch)
11197 {
11198 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11199 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11200 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11201
11202 case TAG_CPU_ARCH_V5TE:
11203 {
11204 char * name;
11205
11206 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11207 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11208
11209 if (name)
11210 {
11211 if (strcmp (name, "IWMMXT2") == 0)
11212 return bfd_mach_arm_iWMMXt2;
11213
11214 if (strcmp (name, "IWMMXT") == 0)
6034aab8 11215 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
11216
11217 if (strcmp (name, "XSCALE") == 0)
11218 {
11219 int wmmx;
11220
11221 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11222 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11223 switch (wmmx)
11224 {
11225 case 1: return bfd_mach_arm_iWMMXt;
11226 case 2: return bfd_mach_arm_iWMMXt2;
11227 default: return bfd_mach_arm_XScale;
11228 }
11229 }
5968a7b8
NC
11230 }
11231
11232 return bfd_mach_arm_5TE;
11233 }
11234
11235 default:
11236 return bfd_mach_arm_unknown;
11237 }
11238}
11239
c178919b
NC
11240/* Set the right machine number. */
11241
11242static bfd_boolean
57e8b36a 11243elf32_arm_object_p (bfd *abfd)
c178919b 11244{
5a6c6817 11245 unsigned int mach;
57e8b36a 11246
5a6c6817 11247 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 11248
5968a7b8
NC
11249 if (mach == bfd_mach_arm_unknown)
11250 {
11251 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11252 mach = bfd_mach_arm_ep9312;
11253 else
11254 mach = bfd_arm_get_mach_from_attributes (abfd);
11255 }
c178919b 11256
5968a7b8 11257 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
11258 return TRUE;
11259}
11260
fc830a83 11261/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 11262
b34976b6 11263static bfd_boolean
57e8b36a 11264elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
11265{
11266 if (elf_flags_init (abfd)
11267 && elf_elfheader (abfd)->e_flags != flags)
11268 {
fc830a83
NC
11269 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11270 {
fd2ec330 11271 if (flags & EF_ARM_INTERWORK)
d003868e
AM
11272 (*_bfd_error_handler)
11273 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11274 abfd);
fc830a83 11275 else
d003868e
AM
11276 _bfd_error_handler
11277 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11278 abfd);
fc830a83 11279 }
252b5132
RH
11280 }
11281 else
11282 {
11283 elf_elfheader (abfd)->e_flags = flags;
b34976b6 11284 elf_flags_init (abfd) = TRUE;
252b5132
RH
11285 }
11286
b34976b6 11287 return TRUE;
252b5132
RH
11288}
11289
fc830a83 11290/* Copy backend specific data from one object module to another. */
9b485d32 11291
b34976b6 11292static bfd_boolean
57e8b36a 11293elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
11294{
11295 flagword in_flags;
11296 flagword out_flags;
11297
0ffa91dd 11298 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 11299 return TRUE;
252b5132 11300
fc830a83 11301 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
11302 out_flags = elf_elfheader (obfd)->e_flags;
11303
fc830a83
NC
11304 if (elf_flags_init (obfd)
11305 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11306 && in_flags != out_flags)
252b5132 11307 {
252b5132 11308 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 11309 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 11310 return FALSE;
252b5132
RH
11311
11312 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 11313 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 11314 return FALSE;
252b5132
RH
11315
11316 /* If the src and dest have different interworking flags
99059e56 11317 then turn off the interworking bit. */
fd2ec330 11318 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 11319 {
fd2ec330 11320 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
11321 _bfd_error_handler
11322 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11323 obfd, ibfd);
252b5132 11324
fd2ec330 11325 in_flags &= ~EF_ARM_INTERWORK;
252b5132 11326 }
1006ba19
PB
11327
11328 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
11329 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11330 in_flags &= ~EF_ARM_PIC;
252b5132
RH
11331 }
11332
11333 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 11334 elf_flags_init (obfd) = TRUE;
252b5132 11335
e2349352 11336 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
11337}
11338
11339/* Values for Tag_ABI_PCS_R9_use. */
11340enum
11341{
11342 AEABI_R9_V6,
11343 AEABI_R9_SB,
11344 AEABI_R9_TLS,
11345 AEABI_R9_unused
11346};
11347
11348/* Values for Tag_ABI_PCS_RW_data. */
11349enum
11350{
11351 AEABI_PCS_RW_data_absolute,
11352 AEABI_PCS_RW_data_PCrel,
11353 AEABI_PCS_RW_data_SBrel,
11354 AEABI_PCS_RW_data_unused
11355};
11356
11357/* Values for Tag_ABI_enum_size. */
11358enum
11359{
11360 AEABI_enum_unused,
11361 AEABI_enum_short,
11362 AEABI_enum_wide,
11363 AEABI_enum_forced_wide
11364};
11365
104d59d1
JM
11366/* Determine whether an object attribute tag takes an integer, a
11367 string or both. */
906e58ca 11368
104d59d1
JM
11369static int
11370elf32_arm_obj_attrs_arg_type (int tag)
11371{
11372 if (tag == Tag_compatibility)
3483fe2e 11373 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 11374 else if (tag == Tag_nodefaults)
3483fe2e
AS
11375 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11376 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11377 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 11378 else if (tag < 32)
3483fe2e 11379 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 11380 else
3483fe2e 11381 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
11382}
11383
5aa6ff7c
AS
11384/* The ABI defines that Tag_conformance should be emitted first, and that
11385 Tag_nodefaults should be second (if either is defined). This sets those
11386 two positions, and bumps up the position of all the remaining tags to
11387 compensate. */
11388static int
11389elf32_arm_obj_attrs_order (int num)
11390{
3de4a297 11391 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 11392 return Tag_conformance;
3de4a297 11393 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
11394 return Tag_nodefaults;
11395 if ((num - 2) < Tag_nodefaults)
11396 return num - 2;
11397 if ((num - 1) < Tag_conformance)
11398 return num - 1;
11399 return num;
11400}
11401
e8b36cd1
JM
11402/* Attribute numbers >=64 (mod 128) can be safely ignored. */
11403static bfd_boolean
11404elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11405{
11406 if ((tag & 127) < 64)
11407 {
11408 _bfd_error_handler
11409 (_("%B: Unknown mandatory EABI object attribute %d"),
11410 abfd, tag);
11411 bfd_set_error (bfd_error_bad_value);
11412 return FALSE;
11413 }
11414 else
11415 {
11416 _bfd_error_handler
11417 (_("Warning: %B: Unknown EABI object attribute %d"),
11418 abfd, tag);
11419 return TRUE;
11420 }
11421}
11422
91e22acd
AS
11423/* Read the architecture from the Tag_also_compatible_with attribute, if any.
11424 Returns -1 if no architecture could be read. */
11425
11426static int
11427get_secondary_compatible_arch (bfd *abfd)
11428{
11429 obj_attribute *attr =
11430 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11431
11432 /* Note: the tag and its argument below are uleb128 values, though
11433 currently-defined values fit in one byte for each. */
11434 if (attr->s
11435 && attr->s[0] == Tag_CPU_arch
11436 && (attr->s[1] & 128) != 128
11437 && attr->s[2] == 0)
11438 return attr->s[1];
11439
11440 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11441 return -1;
11442}
11443
11444/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11445 The tag is removed if ARCH is -1. */
11446
8e79c3df 11447static void
91e22acd 11448set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 11449{
91e22acd
AS
11450 obj_attribute *attr =
11451 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 11452
91e22acd
AS
11453 if (arch == -1)
11454 {
11455 attr->s = NULL;
11456 return;
8e79c3df 11457 }
91e22acd
AS
11458
11459 /* Note: the tag and its argument below are uleb128 values, though
11460 currently-defined values fit in one byte for each. */
11461 if (!attr->s)
21d799b5 11462 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
11463 attr->s[0] = Tag_CPU_arch;
11464 attr->s[1] = arch;
11465 attr->s[2] = '\0';
8e79c3df
CM
11466}
11467
91e22acd
AS
11468/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11469 into account. */
11470
11471static int
11472tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11473 int newtag, int secondary_compat)
8e79c3df 11474{
91e22acd
AS
11475#define T(X) TAG_CPU_ARCH_##X
11476 int tagl, tagh, result;
11477 const int v6t2[] =
11478 {
11479 T(V6T2), /* PRE_V4. */
11480 T(V6T2), /* V4. */
11481 T(V6T2), /* V4T. */
11482 T(V6T2), /* V5T. */
11483 T(V6T2), /* V5TE. */
11484 T(V6T2), /* V5TEJ. */
11485 T(V6T2), /* V6. */
11486 T(V7), /* V6KZ. */
11487 T(V6T2) /* V6T2. */
11488 };
11489 const int v6k[] =
11490 {
11491 T(V6K), /* PRE_V4. */
11492 T(V6K), /* V4. */
11493 T(V6K), /* V4T. */
11494 T(V6K), /* V5T. */
11495 T(V6K), /* V5TE. */
11496 T(V6K), /* V5TEJ. */
11497 T(V6K), /* V6. */
11498 T(V6KZ), /* V6KZ. */
11499 T(V7), /* V6T2. */
11500 T(V6K) /* V6K. */
11501 };
11502 const int v7[] =
11503 {
11504 T(V7), /* PRE_V4. */
11505 T(V7), /* V4. */
11506 T(V7), /* V4T. */
11507 T(V7), /* V5T. */
11508 T(V7), /* V5TE. */
11509 T(V7), /* V5TEJ. */
11510 T(V7), /* V6. */
11511 T(V7), /* V6KZ. */
11512 T(V7), /* V6T2. */
11513 T(V7), /* V6K. */
11514 T(V7) /* V7. */
11515 };
11516 const int v6_m[] =
11517 {
11518 -1, /* PRE_V4. */
11519 -1, /* V4. */
11520 T(V6K), /* V4T. */
11521 T(V6K), /* V5T. */
11522 T(V6K), /* V5TE. */
11523 T(V6K), /* V5TEJ. */
11524 T(V6K), /* V6. */
11525 T(V6KZ), /* V6KZ. */
11526 T(V7), /* V6T2. */
11527 T(V6K), /* V6K. */
11528 T(V7), /* V7. */
11529 T(V6_M) /* V6_M. */
11530 };
11531 const int v6s_m[] =
11532 {
11533 -1, /* PRE_V4. */
11534 -1, /* V4. */
11535 T(V6K), /* V4T. */
11536 T(V6K), /* V5T. */
11537 T(V6K), /* V5TE. */
11538 T(V6K), /* V5TEJ. */
11539 T(V6K), /* V6. */
11540 T(V6KZ), /* V6KZ. */
11541 T(V7), /* V6T2. */
11542 T(V6K), /* V6K. */
11543 T(V7), /* V7. */
11544 T(V6S_M), /* V6_M. */
11545 T(V6S_M) /* V6S_M. */
11546 };
9e3c6df6
PB
11547 const int v7e_m[] =
11548 {
11549 -1, /* PRE_V4. */
11550 -1, /* V4. */
11551 T(V7E_M), /* V4T. */
11552 T(V7E_M), /* V5T. */
11553 T(V7E_M), /* V5TE. */
11554 T(V7E_M), /* V5TEJ. */
11555 T(V7E_M), /* V6. */
11556 T(V7E_M), /* V6KZ. */
11557 T(V7E_M), /* V6T2. */
11558 T(V7E_M), /* V6K. */
11559 T(V7E_M), /* V7. */
11560 T(V7E_M), /* V6_M. */
11561 T(V7E_M), /* V6S_M. */
11562 T(V7E_M) /* V7E_M. */
11563 };
bca38921
MGD
11564 const int v8[] =
11565 {
11566 T(V8), /* PRE_V4. */
11567 T(V8), /* V4. */
11568 T(V8), /* V4T. */
11569 T(V8), /* V5T. */
11570 T(V8), /* V5TE. */
11571 T(V8), /* V5TEJ. */
11572 T(V8), /* V6. */
11573 T(V8), /* V6KZ. */
11574 T(V8), /* V6T2. */
11575 T(V8), /* V6K. */
11576 T(V8), /* V7. */
11577 T(V8), /* V6_M. */
11578 T(V8), /* V6S_M. */
11579 T(V8), /* V7E_M. */
11580 T(V8) /* V8. */
11581 };
91e22acd
AS
11582 const int v4t_plus_v6_m[] =
11583 {
11584 -1, /* PRE_V4. */
11585 -1, /* V4. */
11586 T(V4T), /* V4T. */
11587 T(V5T), /* V5T. */
11588 T(V5TE), /* V5TE. */
11589 T(V5TEJ), /* V5TEJ. */
11590 T(V6), /* V6. */
11591 T(V6KZ), /* V6KZ. */
11592 T(V6T2), /* V6T2. */
11593 T(V6K), /* V6K. */
11594 T(V7), /* V7. */
11595 T(V6_M), /* V6_M. */
11596 T(V6S_M), /* V6S_M. */
9e3c6df6 11597 T(V7E_M), /* V7E_M. */
bca38921 11598 T(V8), /* V8. */
91e22acd
AS
11599 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11600 };
11601 const int *comb[] =
11602 {
11603 v6t2,
11604 v6k,
11605 v7,
11606 v6_m,
11607 v6s_m,
9e3c6df6 11608 v7e_m,
bca38921 11609 v8,
91e22acd
AS
11610 /* Pseudo-architecture. */
11611 v4t_plus_v6_m
11612 };
11613
11614 /* Check we've not got a higher architecture than we know about. */
11615
9e3c6df6 11616 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 11617 {
3895f852 11618 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
11619 return -1;
11620 }
11621
11622 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11623
11624 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11625 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11626 oldtag = T(V4T_PLUS_V6_M);
11627
11628 /* And override the new tag if we have a Tag_also_compatible_with on the
11629 input. */
11630
11631 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11632 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11633 newtag = T(V4T_PLUS_V6_M);
11634
11635 tagl = (oldtag < newtag) ? oldtag : newtag;
11636 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11637
11638 /* Architectures before V6KZ add features monotonically. */
11639 if (tagh <= TAG_CPU_ARCH_V6KZ)
11640 return result;
11641
11642 result = comb[tagh - T(V6T2)][tagl];
11643
11644 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11645 as the canonical version. */
11646 if (result == T(V4T_PLUS_V6_M))
11647 {
11648 result = T(V4T);
11649 *secondary_compat_out = T(V6_M);
11650 }
11651 else
11652 *secondary_compat_out = -1;
11653
11654 if (result == -1)
11655 {
3895f852 11656 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
11657 ibfd, oldtag, newtag);
11658 return -1;
11659 }
11660
11661 return result;
11662#undef T
8e79c3df
CM
11663}
11664
ac56ee8f
MGD
11665/* Query attributes object to see if integer divide instructions may be
11666 present in an object. */
11667static bfd_boolean
11668elf32_arm_attributes_accept_div (const obj_attribute *attr)
11669{
11670 int arch = attr[Tag_CPU_arch].i;
11671 int profile = attr[Tag_CPU_arch_profile].i;
11672
11673 switch (attr[Tag_DIV_use].i)
11674 {
11675 case 0:
11676 /* Integer divide allowed if instruction contained in archetecture. */
11677 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11678 return TRUE;
11679 else if (arch >= TAG_CPU_ARCH_V7E_M)
11680 return TRUE;
11681 else
11682 return FALSE;
11683
11684 case 1:
11685 /* Integer divide explicitly prohibited. */
11686 return FALSE;
11687
11688 default:
11689 /* Unrecognised case - treat as allowing divide everywhere. */
11690 case 2:
11691 /* Integer divide allowed in ARM state. */
11692 return TRUE;
11693 }
11694}
11695
11696/* Query attributes object to see if integer divide instructions are
11697 forbidden to be in the object. This is not the inverse of
11698 elf32_arm_attributes_accept_div. */
11699static bfd_boolean
11700elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11701{
11702 return attr[Tag_DIV_use].i == 1;
11703}
11704
ee065d83
PB
11705/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11706 are conflicting attributes. */
906e58ca 11707
ee065d83
PB
11708static bfd_boolean
11709elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11710{
104d59d1
JM
11711 obj_attribute *in_attr;
11712 obj_attribute *out_attr;
ee065d83
PB
11713 /* Some tags have 0 = don't care, 1 = strong requirement,
11714 2 = weak requirement. */
91e22acd 11715 static const int order_021[3] = {0, 2, 1};
ee065d83 11716 int i;
91e22acd 11717 bfd_boolean result = TRUE;
9274e9de 11718 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
ee065d83 11719
3e6b1042
DJ
11720 /* Skip the linker stubs file. This preserves previous behavior
11721 of accepting unknown attributes in the first input file - but
11722 is that a bug? */
11723 if (ibfd->flags & BFD_LINKER_CREATED)
11724 return TRUE;
11725
9274e9de
TG
11726 /* Skip any input that hasn't attribute section.
11727 This enables to link object files without attribute section with
11728 any others. */
11729 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
11730 return TRUE;
11731
104d59d1 11732 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
11733 {
11734 /* This is the first object. Copy the attributes. */
104d59d1 11735 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 11736
cd21e546
MGD
11737 out_attr = elf_known_obj_attributes_proc (obfd);
11738
004ae526
PB
11739 /* Use the Tag_null value to indicate the attributes have been
11740 initialized. */
cd21e546 11741 out_attr[0].i = 1;
004ae526 11742
cd21e546
MGD
11743 /* We do not output objects with Tag_MPextension_use_legacy - we move
11744 the attribute's value to Tag_MPextension_use. */
11745 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11746 {
11747 if (out_attr[Tag_MPextension_use].i != 0
11748 && out_attr[Tag_MPextension_use_legacy].i
99059e56 11749 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
11750 {
11751 _bfd_error_handler
11752 (_("Error: %B has both the current and legacy "
11753 "Tag_MPextension_use attributes"), ibfd);
11754 result = FALSE;
11755 }
11756
11757 out_attr[Tag_MPextension_use] =
11758 out_attr[Tag_MPextension_use_legacy];
11759 out_attr[Tag_MPextension_use_legacy].type = 0;
11760 out_attr[Tag_MPextension_use_legacy].i = 0;
11761 }
11762
11763 return result;
ee065d83
PB
11764 }
11765
104d59d1
JM
11766 in_attr = elf_known_obj_attributes_proc (ibfd);
11767 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
11768 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11769 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11770 {
5c294fee
TG
11771 /* Ignore mismatches if the object doesn't use floating point or is
11772 floating point ABI independent. */
11773 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
11774 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
11775 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
ee065d83 11776 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
5c294fee
TG
11777 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
11778 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
ee065d83
PB
11779 {
11780 _bfd_error_handler
3895f852 11781 (_("error: %B uses VFP register arguments, %B does not"),
deddc40b
NS
11782 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11783 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
91e22acd 11784 result = FALSE;
ee065d83
PB
11785 }
11786 }
11787
3de4a297 11788 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
11789 {
11790 /* Merge this attribute with existing attributes. */
11791 switch (i)
11792 {
11793 case Tag_CPU_raw_name:
11794 case Tag_CPU_name:
6a631e86 11795 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
11796 break;
11797
11798 case Tag_ABI_optimization_goals:
11799 case Tag_ABI_FP_optimization_goals:
11800 /* Use the first value seen. */
11801 break;
11802
11803 case Tag_CPU_arch:
91e22acd
AS
11804 {
11805 int secondary_compat = -1, secondary_compat_out = -1;
11806 unsigned int saved_out_attr = out_attr[i].i;
70e99720
TG
11807 int arch_attr;
11808 static const char *name_table[] =
11809 {
91e22acd
AS
11810 /* These aren't real CPU names, but we can't guess
11811 that from the architecture version alone. */
11812 "Pre v4",
11813 "ARM v4",
11814 "ARM v4T",
11815 "ARM v5T",
11816 "ARM v5TE",
11817 "ARM v5TEJ",
11818 "ARM v6",
11819 "ARM v6KZ",
11820 "ARM v6T2",
11821 "ARM v6K",
11822 "ARM v7",
11823 "ARM v6-M",
bca38921
MGD
11824 "ARM v6S-M",
11825 "ARM v8"
91e22acd
AS
11826 };
11827
11828 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11829 secondary_compat = get_secondary_compatible_arch (ibfd);
11830 secondary_compat_out = get_secondary_compatible_arch (obfd);
70e99720
TG
11831 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11832 &secondary_compat_out,
11833 in_attr[i].i,
11834 secondary_compat);
11835
11836 /* Return with error if failed to merge. */
11837 if (arch_attr == -1)
11838 return FALSE;
11839
11840 out_attr[i].i = arch_attr;
11841
91e22acd
AS
11842 set_secondary_compatible_arch (obfd, secondary_compat_out);
11843
11844 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11845 if (out_attr[i].i == saved_out_attr)
11846 ; /* Leave the names alone. */
11847 else if (out_attr[i].i == in_attr[i].i)
11848 {
11849 /* The output architecture has been changed to match the
11850 input architecture. Use the input names. */
11851 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11852 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11853 : NULL;
11854 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11855 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11856 : NULL;
11857 }
11858 else
11859 {
11860 out_attr[Tag_CPU_name].s = NULL;
11861 out_attr[Tag_CPU_raw_name].s = NULL;
11862 }
11863
11864 /* If we still don't have a value for Tag_CPU_name,
11865 make one up now. Tag_CPU_raw_name remains blank. */
11866 if (out_attr[Tag_CPU_name].s == NULL
11867 && out_attr[i].i < ARRAY_SIZE (name_table))
11868 out_attr[Tag_CPU_name].s =
11869 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11870 }
11871 break;
11872
ee065d83
PB
11873 case Tag_ARM_ISA_use:
11874 case Tag_THUMB_ISA_use:
ee065d83 11875 case Tag_WMMX_arch:
91e22acd
AS
11876 case Tag_Advanced_SIMD_arch:
11877 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 11878 case Tag_ABI_FP_rounding:
ee065d83
PB
11879 case Tag_ABI_FP_exceptions:
11880 case Tag_ABI_FP_user_exceptions:
11881 case Tag_ABI_FP_number_model:
75375b3e 11882 case Tag_FP_HP_extension:
91e22acd
AS
11883 case Tag_CPU_unaligned_access:
11884 case Tag_T2EE_use:
91e22acd 11885 case Tag_MPextension_use:
ee065d83
PB
11886 /* Use the largest value specified. */
11887 if (in_attr[i].i > out_attr[i].i)
11888 out_attr[i].i = in_attr[i].i;
11889 break;
11890
75375b3e 11891 case Tag_ABI_align_preserved:
91e22acd
AS
11892 case Tag_ABI_PCS_RO_data:
11893 /* Use the smallest value specified. */
11894 if (in_attr[i].i < out_attr[i].i)
11895 out_attr[i].i = in_attr[i].i;
11896 break;
11897
75375b3e 11898 case Tag_ABI_align_needed:
91e22acd 11899 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
11900 && (in_attr[Tag_ABI_align_preserved].i == 0
11901 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 11902 {
91e22acd
AS
11903 /* This error message should be enabled once all non-conformant
11904 binaries in the toolchain have had the attributes set
11905 properly.
ee065d83 11906 _bfd_error_handler
3895f852 11907 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
11908 obfd, ibfd);
11909 result = FALSE; */
ee065d83 11910 }
91e22acd
AS
11911 /* Fall through. */
11912 case Tag_ABI_FP_denormal:
11913 case Tag_ABI_PCS_GOT_use:
11914 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11915 value if greater than 2 (for future-proofing). */
11916 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11917 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11918 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
11919 out_attr[i].i = in_attr[i].i;
11920 break;
91e22acd 11921
75375b3e
MGD
11922 case Tag_Virtualization_use:
11923 /* The virtualization tag effectively stores two bits of
11924 information: the intended use of TrustZone (in bit 0), and the
11925 intended use of Virtualization (in bit 1). */
11926 if (out_attr[i].i == 0)
11927 out_attr[i].i = in_attr[i].i;
11928 else if (in_attr[i].i != 0
11929 && in_attr[i].i != out_attr[i].i)
11930 {
11931 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11932 out_attr[i].i = 3;
11933 else
11934 {
11935 _bfd_error_handler
11936 (_("error: %B: unable to merge virtualization attributes "
11937 "with %B"),
11938 obfd, ibfd);
11939 result = FALSE;
11940 }
11941 }
11942 break;
91e22acd
AS
11943
11944 case Tag_CPU_arch_profile:
11945 if (out_attr[i].i != in_attr[i].i)
11946 {
11947 /* 0 will merge with anything.
11948 'A' and 'S' merge to 'A'.
11949 'R' and 'S' merge to 'R'.
99059e56 11950 'M' and 'A|R|S' is an error. */
91e22acd
AS
11951 if (out_attr[i].i == 0
11952 || (out_attr[i].i == 'S'
11953 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11954 out_attr[i].i = in_attr[i].i;
11955 else if (in_attr[i].i == 0
11956 || (in_attr[i].i == 'S'
11957 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 11958 ; /* Do nothing. */
91e22acd
AS
11959 else
11960 {
11961 _bfd_error_handler
3895f852 11962 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
11963 ibfd,
11964 in_attr[i].i ? in_attr[i].i : '0',
11965 out_attr[i].i ? out_attr[i].i : '0');
11966 result = FALSE;
11967 }
11968 }
11969 break;
75375b3e 11970 case Tag_FP_arch:
62f3b8c8 11971 {
4547cb56
NC
11972 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11973 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11974 when it's 0. It might mean absence of FP hardware if
11975 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11976
a715796b 11977#define VFP_VERSION_COUNT 9
62f3b8c8
PB
11978 static const struct
11979 {
11980 int ver;
11981 int regs;
bca38921 11982 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
11983 {
11984 {0, 0},
11985 {1, 16},
11986 {2, 16},
11987 {3, 32},
11988 {3, 16},
11989 {4, 32},
bca38921 11990 {4, 16},
a715796b
TG
11991 {8, 32},
11992 {8, 16}
62f3b8c8
PB
11993 };
11994 int ver;
11995 int regs;
11996 int newval;
11997
4547cb56
NC
11998 /* If the output has no requirement about FP hardware,
11999 follow the requirement of the input. */
12000 if (out_attr[i].i == 0)
12001 {
12002 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
12003 out_attr[i].i = in_attr[i].i;
12004 out_attr[Tag_ABI_HardFP_use].i
12005 = in_attr[Tag_ABI_HardFP_use].i;
12006 break;
12007 }
12008 /* If the input has no requirement about FP hardware, do
12009 nothing. */
12010 else if (in_attr[i].i == 0)
12011 {
12012 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
12013 break;
12014 }
12015
12016 /* Both the input and the output have nonzero Tag_FP_arch.
12017 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
12018
12019 /* If both the input and the output have zero Tag_ABI_HardFP_use,
12020 do nothing. */
12021 if (in_attr[Tag_ABI_HardFP_use].i == 0
12022 && out_attr[Tag_ABI_HardFP_use].i == 0)
12023 ;
12024 /* If the input and the output have different Tag_ABI_HardFP_use,
12025 the combination of them is 3 (SP & DP). */
12026 else if (in_attr[Tag_ABI_HardFP_use].i
12027 != out_attr[Tag_ABI_HardFP_use].i)
12028 out_attr[Tag_ABI_HardFP_use].i = 3;
12029
12030 /* Now we can handle Tag_FP_arch. */
12031
bca38921
MGD
12032 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
12033 pick the biggest. */
12034 if (in_attr[i].i >= VFP_VERSION_COUNT
12035 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
12036 {
12037 out_attr[i] = in_attr[i];
12038 break;
12039 }
12040 /* The output uses the superset of input features
12041 (ISA version) and registers. */
12042 ver = vfp_versions[in_attr[i].i].ver;
12043 if (ver < vfp_versions[out_attr[i].i].ver)
12044 ver = vfp_versions[out_attr[i].i].ver;
12045 regs = vfp_versions[in_attr[i].i].regs;
12046 if (regs < vfp_versions[out_attr[i].i].regs)
12047 regs = vfp_versions[out_attr[i].i].regs;
12048 /* This assumes all possible supersets are also a valid
99059e56 12049 options. */
bca38921 12050 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
12051 {
12052 if (regs == vfp_versions[newval].regs
12053 && ver == vfp_versions[newval].ver)
12054 break;
12055 }
12056 out_attr[i].i = newval;
12057 }
b1cc4aeb 12058 break;
ee065d83
PB
12059 case Tag_PCS_config:
12060 if (out_attr[i].i == 0)
12061 out_attr[i].i = in_attr[i].i;
b6009aca 12062 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
12063 {
12064 /* It's sometimes ok to mix different configs, so this is only
99059e56 12065 a warning. */
ee065d83
PB
12066 _bfd_error_handler
12067 (_("Warning: %B: Conflicting platform configuration"), ibfd);
12068 }
12069 break;
12070 case Tag_ABI_PCS_R9_use:
004ae526
PB
12071 if (in_attr[i].i != out_attr[i].i
12072 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
12073 && in_attr[i].i != AEABI_R9_unused)
12074 {
12075 _bfd_error_handler
3895f852 12076 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 12077 result = FALSE;
ee065d83
PB
12078 }
12079 if (out_attr[i].i == AEABI_R9_unused)
12080 out_attr[i].i = in_attr[i].i;
12081 break;
12082 case Tag_ABI_PCS_RW_data:
12083 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
12084 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
12085 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
12086 {
12087 _bfd_error_handler
3895f852 12088 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 12089 ibfd);
91e22acd 12090 result = FALSE;
ee065d83
PB
12091 }
12092 /* Use the smallest value specified. */
12093 if (in_attr[i].i < out_attr[i].i)
12094 out_attr[i].i = in_attr[i].i;
12095 break;
ee065d83 12096 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
12097 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
12098 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
12099 {
12100 _bfd_error_handler
a9dc9481
JM
12101 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
12102 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 12103 }
a9dc9481 12104 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
12105 out_attr[i].i = in_attr[i].i;
12106 break;
ee065d83
PB
12107 case Tag_ABI_enum_size:
12108 if (in_attr[i].i != AEABI_enum_unused)
12109 {
12110 if (out_attr[i].i == AEABI_enum_unused
12111 || out_attr[i].i == AEABI_enum_forced_wide)
12112 {
12113 /* The existing object is compatible with anything.
12114 Use whatever requirements the new object has. */
12115 out_attr[i].i = in_attr[i].i;
12116 }
12117 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 12118 && out_attr[i].i != in_attr[i].i
0ffa91dd 12119 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 12120 {
91e22acd 12121 static const char *aeabi_enum_names[] =
bf21ed78 12122 { "", "variable-size", "32-bit", "" };
91e22acd
AS
12123 const char *in_name =
12124 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12125 ? aeabi_enum_names[in_attr[i].i]
12126 : "<unknown>";
12127 const char *out_name =
12128 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12129 ? aeabi_enum_names[out_attr[i].i]
12130 : "<unknown>";
ee065d83 12131 _bfd_error_handler
bf21ed78 12132 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 12133 ibfd, in_name, out_name);
ee065d83
PB
12134 }
12135 }
12136 break;
12137 case Tag_ABI_VFP_args:
12138 /* Aready done. */
12139 break;
12140 case Tag_ABI_WMMX_args:
12141 if (in_attr[i].i != out_attr[i].i)
12142 {
12143 _bfd_error_handler
3895f852 12144 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 12145 ibfd, obfd);
91e22acd 12146 result = FALSE;
ee065d83
PB
12147 }
12148 break;
7b86a9fa
AS
12149 case Tag_compatibility:
12150 /* Merged in target-independent code. */
12151 break;
91e22acd 12152 case Tag_ABI_HardFP_use:
4547cb56 12153 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
12154 break;
12155 case Tag_ABI_FP_16bit_format:
12156 if (in_attr[i].i != 0 && out_attr[i].i != 0)
12157 {
12158 if (in_attr[i].i != out_attr[i].i)
12159 {
12160 _bfd_error_handler
3895f852 12161 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
12162 ibfd, obfd);
12163 result = FALSE;
12164 }
12165 }
12166 if (in_attr[i].i != 0)
12167 out_attr[i].i = in_attr[i].i;
12168 break;
7b86a9fa 12169
cd21e546 12170 case Tag_DIV_use:
ac56ee8f
MGD
12171 /* A value of zero on input means that the divide instruction may
12172 be used if available in the base architecture as specified via
12173 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
12174 the user did not want divide instructions. A value of 2
12175 explicitly means that divide instructions were allowed in ARM
12176 and Thumb state. */
12177 if (in_attr[i].i == out_attr[i].i)
12178 /* Do nothing. */ ;
12179 else if (elf32_arm_attributes_forbid_div (in_attr)
12180 && !elf32_arm_attributes_accept_div (out_attr))
12181 out_attr[i].i = 1;
12182 else if (elf32_arm_attributes_forbid_div (out_attr)
12183 && elf32_arm_attributes_accept_div (in_attr))
12184 out_attr[i].i = in_attr[i].i;
12185 else if (in_attr[i].i == 2)
12186 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
12187 break;
12188
12189 case Tag_MPextension_use_legacy:
12190 /* We don't output objects with Tag_MPextension_use_legacy - we
12191 move the value to Tag_MPextension_use. */
12192 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
12193 {
12194 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
12195 {
12196 _bfd_error_handler
12197 (_("%B has has both the current and legacy "
b38cadfb 12198 "Tag_MPextension_use attributes"),
cd21e546
MGD
12199 ibfd);
12200 result = FALSE;
12201 }
12202 }
12203
12204 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
12205 out_attr[Tag_MPextension_use] = in_attr[i];
12206
12207 break;
12208
91e22acd 12209 case Tag_nodefaults:
2d0bb761
AS
12210 /* This tag is set if it exists, but the value is unused (and is
12211 typically zero). We don't actually need to do anything here -
12212 the merge happens automatically when the type flags are merged
12213 below. */
91e22acd
AS
12214 break;
12215 case Tag_also_compatible_with:
12216 /* Already done in Tag_CPU_arch. */
12217 break;
12218 case Tag_conformance:
12219 /* Keep the attribute if it matches. Throw it away otherwise.
12220 No attribute means no claim to conform. */
12221 if (!in_attr[i].s || !out_attr[i].s
12222 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12223 out_attr[i].s = NULL;
12224 break;
3cfad14c 12225
91e22acd 12226 default:
e8b36cd1
JM
12227 result
12228 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
12229 }
12230
12231 /* If out_attr was copied from in_attr then it won't have a type yet. */
12232 if (in_attr[i].type && !out_attr[i].type)
12233 out_attr[i].type = in_attr[i].type;
ee065d83
PB
12234 }
12235
104d59d1 12236 /* Merge Tag_compatibility attributes and any common GNU ones. */
5488d830
MGD
12237 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
12238 return FALSE;
ee065d83 12239
104d59d1 12240 /* Check for any attributes not known on ARM. */
e8b36cd1 12241 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 12242
91e22acd 12243 return result;
252b5132
RH
12244}
12245
3a4a14e9
PB
12246
12247/* Return TRUE if the two EABI versions are incompatible. */
12248
12249static bfd_boolean
12250elf32_arm_versions_compatible (unsigned iver, unsigned over)
12251{
12252 /* v4 and v5 are the same spec before and after it was released,
12253 so allow mixing them. */
12254 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
12255 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
12256 return TRUE;
12257
12258 return (iver == over);
12259}
12260
252b5132
RH
12261/* Merge backend specific data from an object file to the output
12262 object file when linking. */
9b485d32 12263
b34976b6 12264static bfd_boolean
21d799b5 12265elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
252b5132 12266
9b485d32
NC
12267/* Display the flags field. */
12268
b34976b6 12269static bfd_boolean
57e8b36a 12270elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 12271{
fc830a83
NC
12272 FILE * file = (FILE *) ptr;
12273 unsigned long flags;
252b5132
RH
12274
12275 BFD_ASSERT (abfd != NULL && ptr != NULL);
12276
12277 /* Print normal ELF private data. */
12278 _bfd_elf_print_private_bfd_data (abfd, ptr);
12279
fc830a83 12280 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
12281 /* Ignore init flag - it may not be set, despite the flags field
12282 containing valid data. */
252b5132
RH
12283
12284 /* xgettext:c-format */
9b485d32 12285 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 12286
fc830a83
NC
12287 switch (EF_ARM_EABI_VERSION (flags))
12288 {
12289 case EF_ARM_EABI_UNKNOWN:
4cc11e76 12290 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
12291 official ARM ELF extended ABI. Hence they are only decoded if
12292 the EABI version is not set. */
fd2ec330 12293 if (flags & EF_ARM_INTERWORK)
9b485d32 12294 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 12295
fd2ec330 12296 if (flags & EF_ARM_APCS_26)
6c571f00 12297 fprintf (file, " [APCS-26]");
fc830a83 12298 else
6c571f00 12299 fprintf (file, " [APCS-32]");
9a5aca8c 12300
96a846ea
RE
12301 if (flags & EF_ARM_VFP_FLOAT)
12302 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
12303 else if (flags & EF_ARM_MAVERICK_FLOAT)
12304 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
12305 else
12306 fprintf (file, _(" [FPA float format]"));
12307
fd2ec330 12308 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 12309 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 12310
fd2ec330 12311 if (flags & EF_ARM_PIC)
9b485d32 12312 fprintf (file, _(" [position independent]"));
fc830a83 12313
fd2ec330 12314 if (flags & EF_ARM_NEW_ABI)
9b485d32 12315 fprintf (file, _(" [new ABI]"));
9a5aca8c 12316
fd2ec330 12317 if (flags & EF_ARM_OLD_ABI)
9b485d32 12318 fprintf (file, _(" [old ABI]"));
9a5aca8c 12319
fd2ec330 12320 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 12321 fprintf (file, _(" [software FP]"));
9a5aca8c 12322
96a846ea
RE
12323 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12324 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
12325 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12326 | EF_ARM_MAVERICK_FLOAT);
fc830a83 12327 break;
9a5aca8c 12328
fc830a83 12329 case EF_ARM_EABI_VER1:
9b485d32 12330 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 12331
fc830a83 12332 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 12333 fprintf (file, _(" [sorted symbol table]"));
fc830a83 12334 else
9b485d32 12335 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 12336
fc830a83
NC
12337 flags &= ~ EF_ARM_SYMSARESORTED;
12338 break;
9a5aca8c 12339
fd2ec330
PB
12340 case EF_ARM_EABI_VER2:
12341 fprintf (file, _(" [Version2 EABI]"));
12342
12343 if (flags & EF_ARM_SYMSARESORTED)
12344 fprintf (file, _(" [sorted symbol table]"));
12345 else
12346 fprintf (file, _(" [unsorted symbol table]"));
12347
12348 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12349 fprintf (file, _(" [dynamic symbols use segment index]"));
12350
12351 if (flags & EF_ARM_MAPSYMSFIRST)
12352 fprintf (file, _(" [mapping symbols precede others]"));
12353
99e4ae17 12354 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
12355 | EF_ARM_MAPSYMSFIRST);
12356 break;
12357
d507cf36
PB
12358 case EF_ARM_EABI_VER3:
12359 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
12360 break;
12361
12362 case EF_ARM_EABI_VER4:
12363 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 12364 goto eabi;
d507cf36 12365
3a4a14e9
PB
12366 case EF_ARM_EABI_VER5:
12367 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
12368
12369 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12370 fprintf (file, _(" [soft-float ABI]"));
12371
12372 if (flags & EF_ARM_ABI_FLOAT_HARD)
12373 fprintf (file, _(" [hard-float ABI]"));
12374
12375 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12376
3a4a14e9 12377 eabi:
d507cf36
PB
12378 if (flags & EF_ARM_BE8)
12379 fprintf (file, _(" [BE8]"));
12380
12381 if (flags & EF_ARM_LE8)
12382 fprintf (file, _(" [LE8]"));
12383
12384 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12385 break;
12386
fc830a83 12387 default:
9b485d32 12388 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
12389 break;
12390 }
252b5132 12391
fc830a83 12392 flags &= ~ EF_ARM_EABIMASK;
252b5132 12393
fc830a83 12394 if (flags & EF_ARM_RELEXEC)
9b485d32 12395 fprintf (file, _(" [relocatable executable]"));
252b5132 12396
fc830a83 12397 if (flags & EF_ARM_HASENTRY)
9b485d32 12398 fprintf (file, _(" [has entry point]"));
252b5132 12399
fc830a83
NC
12400 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12401
12402 if (flags)
9b485d32 12403 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 12404
252b5132
RH
12405 fputc ('\n', file);
12406
b34976b6 12407 return TRUE;
252b5132
RH
12408}
12409
12410static int
57e8b36a 12411elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 12412{
2f0ca46a
NC
12413 switch (ELF_ST_TYPE (elf_sym->st_info))
12414 {
12415 case STT_ARM_TFUNC:
12416 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 12417
2f0ca46a
NC
12418 case STT_ARM_16BIT:
12419 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12420 This allows us to distinguish between data used by Thumb instructions
12421 and non-data (which is probably code) inside Thumb regions of an
12422 executable. */
1a0eb693 12423 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
12424 return ELF_ST_TYPE (elf_sym->st_info);
12425 break;
9a5aca8c 12426
ce855c42
NC
12427 default:
12428 break;
2f0ca46a
NC
12429 }
12430
12431 return type;
252b5132 12432}
f21f3fe0 12433
252b5132 12434static asection *
07adf181
AM
12435elf32_arm_gc_mark_hook (asection *sec,
12436 struct bfd_link_info *info,
12437 Elf_Internal_Rela *rel,
12438 struct elf_link_hash_entry *h,
12439 Elf_Internal_Sym *sym)
252b5132
RH
12440{
12441 if (h != NULL)
07adf181 12442 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
12443 {
12444 case R_ARM_GNU_VTINHERIT:
12445 case R_ARM_GNU_VTENTRY:
07adf181
AM
12446 return NULL;
12447 }
9ad5cbcf 12448
07adf181 12449 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
12450}
12451
780a67af
NC
12452/* Update the got entry reference counts for the section being removed. */
12453
b34976b6 12454static bfd_boolean
ba93b8ac
DJ
12455elf32_arm_gc_sweep_hook (bfd * abfd,
12456 struct bfd_link_info * info,
12457 asection * sec,
12458 const Elf_Internal_Rela * relocs)
252b5132 12459{
5e681ec4
PB
12460 Elf_Internal_Shdr *symtab_hdr;
12461 struct elf_link_hash_entry **sym_hashes;
12462 bfd_signed_vma *local_got_refcounts;
12463 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
12464 struct elf32_arm_link_hash_table * globals;
12465
7dda2462
TG
12466 if (info->relocatable)
12467 return TRUE;
12468
eb043451 12469 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
12470 if (globals == NULL)
12471 return FALSE;
5e681ec4
PB
12472
12473 elf_section_data (sec)->local_dynrel = NULL;
12474
0ffa91dd 12475 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
12476 sym_hashes = elf_sym_hashes (abfd);
12477 local_got_refcounts = elf_local_got_refcounts (abfd);
12478
906e58ca 12479 check_use_blx (globals);
bd97cb95 12480
5e681ec4
PB
12481 relend = relocs + sec->reloc_count;
12482 for (rel = relocs; rel < relend; rel++)
eb043451 12483 {
3eb128b2
AM
12484 unsigned long r_symndx;
12485 struct elf_link_hash_entry *h = NULL;
f6e32f6d 12486 struct elf32_arm_link_hash_entry *eh;
eb043451 12487 int r_type;
34e77a92 12488 bfd_boolean call_reloc_p;
f6e32f6d
RS
12489 bfd_boolean may_become_dynamic_p;
12490 bfd_boolean may_need_local_target_p;
34e77a92
RS
12491 union gotplt_union *root_plt;
12492 struct arm_plt_info *arm_plt;
5e681ec4 12493
3eb128b2
AM
12494 r_symndx = ELF32_R_SYM (rel->r_info);
12495 if (r_symndx >= symtab_hdr->sh_info)
12496 {
12497 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12498 while (h->root.type == bfd_link_hash_indirect
12499 || h->root.type == bfd_link_hash_warning)
12500 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12501 }
f6e32f6d
RS
12502 eh = (struct elf32_arm_link_hash_entry *) h;
12503
34e77a92 12504 call_reloc_p = FALSE;
f6e32f6d
RS
12505 may_become_dynamic_p = FALSE;
12506 may_need_local_target_p = FALSE;
3eb128b2 12507
eb043451 12508 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 12509 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
12510 switch (r_type)
12511 {
12512 case R_ARM_GOT32:
eb043451 12513 case R_ARM_GOT_PREL:
ba93b8ac
DJ
12514 case R_ARM_TLS_GD32:
12515 case R_ARM_TLS_IE32:
3eb128b2 12516 if (h != NULL)
eb043451 12517 {
eb043451
PB
12518 if (h->got.refcount > 0)
12519 h->got.refcount -= 1;
12520 }
12521 else if (local_got_refcounts != NULL)
12522 {
12523 if (local_got_refcounts[r_symndx] > 0)
12524 local_got_refcounts[r_symndx] -= 1;
12525 }
12526 break;
12527
ba93b8ac 12528 case R_ARM_TLS_LDM32:
4dfe6ac6 12529 globals->tls_ldm_got.refcount -= 1;
ba93b8ac
DJ
12530 break;
12531
eb043451
PB
12532 case R_ARM_PC24:
12533 case R_ARM_PLT32:
5b5bb741
PB
12534 case R_ARM_CALL:
12535 case R_ARM_JUMP24:
eb043451 12536 case R_ARM_PREL31:
c19d1205 12537 case R_ARM_THM_CALL:
bd97cb95
DJ
12538 case R_ARM_THM_JUMP24:
12539 case R_ARM_THM_JUMP19:
34e77a92 12540 call_reloc_p = TRUE;
f6e32f6d
RS
12541 may_need_local_target_p = TRUE;
12542 break;
12543
12544 case R_ARM_ABS12:
12545 if (!globals->vxworks_p)
12546 {
12547 may_need_local_target_p = TRUE;
12548 break;
12549 }
12550 /* Fall through. */
12551 case R_ARM_ABS32:
12552 case R_ARM_ABS32_NOI:
12553 case R_ARM_REL32:
12554 case R_ARM_REL32_NOI:
b6895b4f
PB
12555 case R_ARM_MOVW_ABS_NC:
12556 case R_ARM_MOVT_ABS:
12557 case R_ARM_MOVW_PREL_NC:
12558 case R_ARM_MOVT_PREL:
12559 case R_ARM_THM_MOVW_ABS_NC:
12560 case R_ARM_THM_MOVT_ABS:
12561 case R_ARM_THM_MOVW_PREL_NC:
12562 case R_ARM_THM_MOVT_PREL:
b7693d02 12563 /* Should the interworking branches be here also? */
f6e32f6d 12564 if ((info->shared || globals->root.is_relocatable_executable)
34e77a92
RS
12565 && (sec->flags & SEC_ALLOC) != 0)
12566 {
12567 if (h == NULL
469a3493 12568 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
12569 {
12570 call_reloc_p = TRUE;
12571 may_need_local_target_p = TRUE;
12572 }
12573 else
12574 may_become_dynamic_p = TRUE;
12575 }
f6e32f6d
RS
12576 else
12577 may_need_local_target_p = TRUE;
12578 break;
b7693d02 12579
f6e32f6d
RS
12580 default:
12581 break;
12582 }
5e681ec4 12583
34e77a92
RS
12584 if (may_need_local_target_p
12585 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
f6e32f6d 12586 {
27586251
HPN
12587 /* If PLT refcount book-keeping is wrong and too low, we'll
12588 see a zero value (going to -1) for the root PLT reference
12589 count. */
12590 if (root_plt->refcount >= 0)
12591 {
12592 BFD_ASSERT (root_plt->refcount != 0);
12593 root_plt->refcount -= 1;
12594 }
12595 else
12596 /* A value of -1 means the symbol has become local, forced
12597 or seeing a hidden definition. Any other negative value
12598 is an error. */
12599 BFD_ASSERT (root_plt->refcount == -1);
34e77a92
RS
12600
12601 if (!call_reloc_p)
12602 arm_plt->noncall_refcount--;
5e681ec4 12603
f6e32f6d 12604 if (r_type == R_ARM_THM_CALL)
34e77a92 12605 arm_plt->maybe_thumb_refcount--;
bd97cb95 12606
f6e32f6d
RS
12607 if (r_type == R_ARM_THM_JUMP24
12608 || r_type == R_ARM_THM_JUMP19)
34e77a92 12609 arm_plt->thumb_refcount--;
f6e32f6d 12610 }
5e681ec4 12611
34e77a92 12612 if (may_become_dynamic_p)
f6e32f6d
RS
12613 {
12614 struct elf_dyn_relocs **pp;
12615 struct elf_dyn_relocs *p;
5e681ec4 12616
34e77a92 12617 if (h != NULL)
9c489990 12618 pp = &(eh->dyn_relocs);
34e77a92
RS
12619 else
12620 {
12621 Elf_Internal_Sym *isym;
12622
12623 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12624 abfd, r_symndx);
12625 if (isym == NULL)
12626 return FALSE;
12627 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12628 if (pp == NULL)
12629 return FALSE;
12630 }
9c489990 12631 for (; (p = *pp) != NULL; pp = &p->next)
f6e32f6d
RS
12632 if (p->sec == sec)
12633 {
12634 /* Everything must go for SEC. */
12635 *pp = p->next;
12636 break;
12637 }
eb043451
PB
12638 }
12639 }
5e681ec4 12640
b34976b6 12641 return TRUE;
252b5132
RH
12642}
12643
780a67af
NC
12644/* Look through the relocs for a section during the first phase. */
12645
b34976b6 12646static bfd_boolean
57e8b36a
NC
12647elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12648 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 12649{
b34976b6
AM
12650 Elf_Internal_Shdr *symtab_hdr;
12651 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
12652 const Elf_Internal_Rela *rel;
12653 const Elf_Internal_Rela *rel_end;
12654 bfd *dynobj;
5e681ec4 12655 asection *sreloc;
5e681ec4 12656 struct elf32_arm_link_hash_table *htab;
f6e32f6d
RS
12657 bfd_boolean call_reloc_p;
12658 bfd_boolean may_become_dynamic_p;
12659 bfd_boolean may_need_local_target_p;
ce98a316 12660 unsigned long nsyms;
9a5aca8c 12661
1049f94e 12662 if (info->relocatable)
b34976b6 12663 return TRUE;
9a5aca8c 12664
0ffa91dd
NC
12665 BFD_ASSERT (is_arm_elf (abfd));
12666
5e681ec4 12667 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
12668 if (htab == NULL)
12669 return FALSE;
12670
5e681ec4 12671 sreloc = NULL;
9a5aca8c 12672
67687978
PB
12673 /* Create dynamic sections for relocatable executables so that we can
12674 copy relocations. */
12675 if (htab->root.is_relocatable_executable
12676 && ! htab->root.dynamic_sections_created)
12677 {
12678 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12679 return FALSE;
12680 }
12681
cbc704f3
RS
12682 if (htab->root.dynobj == NULL)
12683 htab->root.dynobj = abfd;
34e77a92
RS
12684 if (!create_ifunc_sections (info))
12685 return FALSE;
cbc704f3
RS
12686
12687 dynobj = htab->root.dynobj;
12688
0ffa91dd 12689 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 12690 sym_hashes = elf_sym_hashes (abfd);
ce98a316 12691 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 12692
252b5132
RH
12693 rel_end = relocs + sec->reloc_count;
12694 for (rel = relocs; rel < rel_end; rel++)
12695 {
34e77a92 12696 Elf_Internal_Sym *isym;
252b5132 12697 struct elf_link_hash_entry *h;
b7693d02 12698 struct elf32_arm_link_hash_entry *eh;
252b5132 12699 unsigned long r_symndx;
eb043451 12700 int r_type;
9a5aca8c 12701
252b5132 12702 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 12703 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 12704 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 12705
ce98a316
NC
12706 if (r_symndx >= nsyms
12707 /* PR 9934: It is possible to have relocations that do not
12708 refer to symbols, thus it is also possible to have an
12709 object file containing relocations but no symbol table. */
cf35638d 12710 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac
DJ
12711 {
12712 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
ce98a316 12713 r_symndx);
ba93b8ac
DJ
12714 return FALSE;
12715 }
12716
34e77a92
RS
12717 h = NULL;
12718 isym = NULL;
12719 if (nsyms > 0)
973a3492 12720 {
34e77a92
RS
12721 if (r_symndx < symtab_hdr->sh_info)
12722 {
12723 /* A local symbol. */
12724 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12725 abfd, r_symndx);
12726 if (isym == NULL)
12727 return FALSE;
12728 }
12729 else
12730 {
12731 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12732 while (h->root.type == bfd_link_hash_indirect
12733 || h->root.type == bfd_link_hash_warning)
12734 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
12735
12736 /* PR15323, ref flags aren't set for references in the
12737 same object. */
12738 h->root.non_ir_ref = 1;
34e77a92 12739 }
973a3492 12740 }
9a5aca8c 12741
b7693d02
DJ
12742 eh = (struct elf32_arm_link_hash_entry *) h;
12743
f6e32f6d
RS
12744 call_reloc_p = FALSE;
12745 may_become_dynamic_p = FALSE;
12746 may_need_local_target_p = FALSE;
12747
0855e32b
NS
12748 /* Could be done earlier, if h were already available. */
12749 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 12750 switch (r_type)
99059e56 12751 {
5e681ec4 12752 case R_ARM_GOT32:
eb043451 12753 case R_ARM_GOT_PREL:
ba93b8ac
DJ
12754 case R_ARM_TLS_GD32:
12755 case R_ARM_TLS_IE32:
0855e32b
NS
12756 case R_ARM_TLS_GOTDESC:
12757 case R_ARM_TLS_DESCSEQ:
12758 case R_ARM_THM_TLS_DESCSEQ:
12759 case R_ARM_TLS_CALL:
12760 case R_ARM_THM_TLS_CALL:
5e681ec4 12761 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
12762 {
12763 int tls_type, old_tls_type;
5e681ec4 12764
ba93b8ac
DJ
12765 switch (r_type)
12766 {
12767 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
b38cadfb 12768
ba93b8ac 12769 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
b38cadfb 12770
0855e32b
NS
12771 case R_ARM_TLS_GOTDESC:
12772 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12773 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12774 tls_type = GOT_TLS_GDESC; break;
b38cadfb 12775
ba93b8ac
DJ
12776 default: tls_type = GOT_NORMAL; break;
12777 }
252b5132 12778
eea6dad2
KM
12779 if (!info->executable && (tls_type & GOT_TLS_IE))
12780 info->flags |= DF_STATIC_TLS;
12781
ba93b8ac
DJ
12782 if (h != NULL)
12783 {
12784 h->got.refcount++;
12785 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12786 }
12787 else
12788 {
ba93b8ac 12789 /* This is a global offset table entry for a local symbol. */
34e77a92
RS
12790 if (!elf32_arm_allocate_local_sym_info (abfd))
12791 return FALSE;
12792 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
12793 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12794 }
12795
0855e32b 12796 /* If a variable is accessed with both tls methods, two
99059e56 12797 slots may be created. */
0855e32b
NS
12798 if (GOT_TLS_GD_ANY_P (old_tls_type)
12799 && GOT_TLS_GD_ANY_P (tls_type))
12800 tls_type |= old_tls_type;
12801
12802 /* We will already have issued an error message if there
12803 is a TLS/non-TLS mismatch, based on the symbol
12804 type. So just combine any TLS types needed. */
ba93b8ac
DJ
12805 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12806 && tls_type != GOT_NORMAL)
12807 tls_type |= old_tls_type;
12808
0855e32b 12809 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
12810 method, we're able to relax. Turn off the GDESC flag,
12811 without messing up with any other kind of tls types
6a631e86 12812 that may be involved. */
0855e32b
NS
12813 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12814 tls_type &= ~GOT_TLS_GDESC;
12815
ba93b8ac
DJ
12816 if (old_tls_type != tls_type)
12817 {
12818 if (h != NULL)
12819 elf32_arm_hash_entry (h)->tls_type = tls_type;
12820 else
12821 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12822 }
12823 }
8029a119 12824 /* Fall through. */
ba93b8ac
DJ
12825
12826 case R_ARM_TLS_LDM32:
12827 if (r_type == R_ARM_TLS_LDM32)
12828 htab->tls_ldm_got.refcount++;
8029a119 12829 /* Fall through. */
252b5132 12830
c19d1205 12831 case R_ARM_GOTOFF32:
5e681ec4 12832 case R_ARM_GOTPC:
cbc704f3
RS
12833 if (htab->root.sgot == NULL
12834 && !create_got_section (htab->root.dynobj, info))
12835 return FALSE;
252b5132
RH
12836 break;
12837
252b5132 12838 case R_ARM_PC24:
7359ea65 12839 case R_ARM_PLT32:
5b5bb741
PB
12840 case R_ARM_CALL:
12841 case R_ARM_JUMP24:
eb043451 12842 case R_ARM_PREL31:
c19d1205 12843 case R_ARM_THM_CALL:
bd97cb95
DJ
12844 case R_ARM_THM_JUMP24:
12845 case R_ARM_THM_JUMP19:
f6e32f6d
RS
12846 call_reloc_p = TRUE;
12847 may_need_local_target_p = TRUE;
12848 break;
12849
12850 case R_ARM_ABS12:
12851 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12852 ldr __GOTT_INDEX__ offsets. */
12853 if (!htab->vxworks_p)
12854 {
12855 may_need_local_target_p = TRUE;
12856 break;
12857 }
12858 /* Fall through. */
39623e12 12859
96c23d59
JM
12860 case R_ARM_MOVW_ABS_NC:
12861 case R_ARM_MOVT_ABS:
12862 case R_ARM_THM_MOVW_ABS_NC:
12863 case R_ARM_THM_MOVT_ABS:
12864 if (info->shared)
12865 {
12866 (*_bfd_error_handler)
12867 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12868 abfd, elf32_arm_howto_table_1[r_type].name,
12869 (h) ? h->root.root.string : "a local symbol");
12870 bfd_set_error (bfd_error_bad_value);
12871 return FALSE;
12872 }
12873
12874 /* Fall through. */
39623e12
PB
12875 case R_ARM_ABS32:
12876 case R_ARM_ABS32_NOI:
97323ad1
WN
12877 if (h != NULL && info->executable)
12878 {
12879 h->pointer_equality_needed = 1;
12880 }
12881 /* Fall through. */
39623e12
PB
12882 case R_ARM_REL32:
12883 case R_ARM_REL32_NOI:
b6895b4f
PB
12884 case R_ARM_MOVW_PREL_NC:
12885 case R_ARM_MOVT_PREL:
b6895b4f
PB
12886 case R_ARM_THM_MOVW_PREL_NC:
12887 case R_ARM_THM_MOVT_PREL:
39623e12 12888
b7693d02 12889 /* Should the interworking branches be listed here? */
67687978 12890 if ((info->shared || htab->root.is_relocatable_executable)
34e77a92
RS
12891 && (sec->flags & SEC_ALLOC) != 0)
12892 {
12893 if (h == NULL
469a3493 12894 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
12895 {
12896 /* In shared libraries and relocatable executables,
12897 we treat local relative references as calls;
12898 see the related SYMBOL_CALLS_LOCAL code in
12899 allocate_dynrelocs. */
12900 call_reloc_p = TRUE;
12901 may_need_local_target_p = TRUE;
12902 }
12903 else
12904 /* We are creating a shared library or relocatable
12905 executable, and this is a reloc against a global symbol,
12906 or a non-PC-relative reloc against a local symbol.
12907 We may need to copy the reloc into the output. */
12908 may_become_dynamic_p = TRUE;
12909 }
f6e32f6d
RS
12910 else
12911 may_need_local_target_p = TRUE;
252b5132
RH
12912 break;
12913
99059e56
RM
12914 /* This relocation describes the C++ object vtable hierarchy.
12915 Reconstruct it for later use during GC. */
12916 case R_ARM_GNU_VTINHERIT:
12917 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12918 return FALSE;
12919 break;
12920
12921 /* This relocation describes which C++ vtable entries are actually
12922 used. Record for later use during GC. */
12923 case R_ARM_GNU_VTENTRY:
12924 BFD_ASSERT (h != NULL);
12925 if (h != NULL
12926 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12927 return FALSE;
12928 break;
12929 }
f6e32f6d
RS
12930
12931 if (h != NULL)
12932 {
12933 if (call_reloc_p)
12934 /* We may need a .plt entry if the function this reloc
12935 refers to is in a different object, regardless of the
12936 symbol's type. We can't tell for sure yet, because
12937 something later might force the symbol local. */
12938 h->needs_plt = 1;
12939 else if (may_need_local_target_p)
12940 /* If this reloc is in a read-only section, we might
12941 need a copy reloc. We can't check reliably at this
12942 stage whether the section is read-only, as input
12943 sections have not yet been mapped to output sections.
12944 Tentatively set the flag for now, and correct in
12945 adjust_dynamic_symbol. */
12946 h->non_got_ref = 1;
12947 }
12948
34e77a92
RS
12949 if (may_need_local_target_p
12950 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 12951 {
34e77a92
RS
12952 union gotplt_union *root_plt;
12953 struct arm_plt_info *arm_plt;
12954 struct arm_local_iplt_info *local_iplt;
12955
12956 if (h != NULL)
12957 {
12958 root_plt = &h->plt;
12959 arm_plt = &eh->plt;
12960 }
12961 else
12962 {
12963 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12964 if (local_iplt == NULL)
12965 return FALSE;
12966 root_plt = &local_iplt->root;
12967 arm_plt = &local_iplt->arm;
12968 }
12969
f6e32f6d
RS
12970 /* If the symbol is a function that doesn't bind locally,
12971 this relocation will need a PLT entry. */
a8c887dd
NC
12972 if (root_plt->refcount != -1)
12973 root_plt->refcount += 1;
34e77a92
RS
12974
12975 if (!call_reloc_p)
12976 arm_plt->noncall_refcount++;
f6e32f6d
RS
12977
12978 /* It's too early to use htab->use_blx here, so we have to
12979 record possible blx references separately from
12980 relocs that definitely need a thumb stub. */
12981
12982 if (r_type == R_ARM_THM_CALL)
34e77a92 12983 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
12984
12985 if (r_type == R_ARM_THM_JUMP24
12986 || r_type == R_ARM_THM_JUMP19)
34e77a92 12987 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
12988 }
12989
12990 if (may_become_dynamic_p)
12991 {
12992 struct elf_dyn_relocs *p, **head;
12993
12994 /* Create a reloc section in dynobj. */
12995 if (sreloc == NULL)
12996 {
12997 sreloc = _bfd_elf_make_dynamic_reloc_section
12998 (sec, dynobj, 2, abfd, ! htab->use_rel);
12999
13000 if (sreloc == NULL)
13001 return FALSE;
13002
13003 /* BPABI objects never have dynamic relocations mapped. */
13004 if (htab->symbian_p)
13005 {
13006 flagword flags;
13007
13008 flags = bfd_get_section_flags (dynobj, sreloc);
13009 flags &= ~(SEC_LOAD | SEC_ALLOC);
13010 bfd_set_section_flags (dynobj, sreloc, flags);
13011 }
13012 }
13013
13014 /* If this is a global symbol, count the number of
13015 relocations we need for this symbol. */
13016 if (h != NULL)
13017 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
13018 else
13019 {
34e77a92
RS
13020 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
13021 if (head == NULL)
f6e32f6d 13022 return FALSE;
f6e32f6d
RS
13023 }
13024
13025 p = *head;
13026 if (p == NULL || p->sec != sec)
13027 {
13028 bfd_size_type amt = sizeof *p;
13029
13030 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
13031 if (p == NULL)
13032 return FALSE;
13033 p->next = *head;
13034 *head = p;
13035 p->sec = sec;
13036 p->count = 0;
13037 p->pc_count = 0;
13038 }
13039
469a3493 13040 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
13041 p->pc_count += 1;
13042 p->count += 1;
13043 }
252b5132 13044 }
f21f3fe0 13045
b34976b6 13046 return TRUE;
252b5132
RH
13047}
13048
6a5bb875
PB
13049/* Unwinding tables are not referenced directly. This pass marks them as
13050 required if the corresponding code section is marked. */
13051
13052static bfd_boolean
906e58ca
NC
13053elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
13054 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
13055{
13056 bfd *sub;
13057 Elf_Internal_Shdr **elf_shdrp;
13058 bfd_boolean again;
13059
7f6ab9f8
AM
13060 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
13061
6a5bb875
PB
13062 /* Marking EH data may cause additional code sections to be marked,
13063 requiring multiple passes. */
13064 again = TRUE;
13065 while (again)
13066 {
13067 again = FALSE;
c72f2fb2 13068 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
13069 {
13070 asection *o;
13071
0ffa91dd 13072 if (! is_arm_elf (sub))
6a5bb875
PB
13073 continue;
13074
13075 elf_shdrp = elf_elfsections (sub);
13076 for (o = sub->sections; o != NULL; o = o->next)
13077 {
13078 Elf_Internal_Shdr *hdr;
0ffa91dd 13079
6a5bb875 13080 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
13081 if (hdr->sh_type == SHT_ARM_EXIDX
13082 && hdr->sh_link
13083 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
13084 && !o->gc_mark
13085 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
13086 {
13087 again = TRUE;
13088 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13089 return FALSE;
13090 }
13091 }
13092 }
13093 }
13094
13095 return TRUE;
13096}
13097
3c9458e9
NC
13098/* Treat mapping symbols as special target symbols. */
13099
13100static bfd_boolean
13101elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
13102{
b0796911
PB
13103 return bfd_is_arm_special_symbol_name (sym->name,
13104 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
13105}
13106
0367ecfb
NC
13107/* This is a copy of elf_find_function() from elf.c except that
13108 ARM mapping symbols are ignored when looking for function names
13109 and STT_ARM_TFUNC is considered to a function type. */
252b5132 13110
0367ecfb
NC
13111static bfd_boolean
13112arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
0367ecfb 13113 asymbol ** symbols,
fb167eb2 13114 asection * section,
0367ecfb
NC
13115 bfd_vma offset,
13116 const char ** filename_ptr,
13117 const char ** functionname_ptr)
13118{
13119 const char * filename = NULL;
13120 asymbol * func = NULL;
13121 bfd_vma low_func = 0;
13122 asymbol ** p;
252b5132
RH
13123
13124 for (p = symbols; *p != NULL; p++)
13125 {
13126 elf_symbol_type *q;
13127
13128 q = (elf_symbol_type *) *p;
13129
252b5132
RH
13130 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
13131 {
13132 default:
13133 break;
13134 case STT_FILE:
13135 filename = bfd_asymbol_name (&q->symbol);
13136 break;
252b5132
RH
13137 case STT_FUNC:
13138 case STT_ARM_TFUNC:
9d2da7ca 13139 case STT_NOTYPE:
b0796911 13140 /* Skip mapping symbols. */
0367ecfb 13141 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
13142 && bfd_is_arm_special_symbol_name (q->symbol.name,
13143 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
13144 continue;
13145 /* Fall through. */
6b40fcba 13146 if (bfd_get_section (&q->symbol) == section
252b5132
RH
13147 && q->symbol.value >= low_func
13148 && q->symbol.value <= offset)
13149 {
13150 func = (asymbol *) q;
13151 low_func = q->symbol.value;
13152 }
13153 break;
13154 }
13155 }
13156
13157 if (func == NULL)
b34976b6 13158 return FALSE;
252b5132 13159
0367ecfb
NC
13160 if (filename_ptr)
13161 *filename_ptr = filename;
13162 if (functionname_ptr)
13163 *functionname_ptr = bfd_asymbol_name (func);
13164
13165 return TRUE;
906e58ca 13166}
0367ecfb
NC
13167
13168
13169/* Find the nearest line to a particular section and offset, for error
13170 reporting. This code is a duplicate of the code in elf.c, except
13171 that it uses arm_elf_find_function. */
13172
13173static bfd_boolean
13174elf32_arm_find_nearest_line (bfd * abfd,
0367ecfb 13175 asymbol ** symbols,
fb167eb2 13176 asection * section,
0367ecfb
NC
13177 bfd_vma offset,
13178 const char ** filename_ptr,
13179 const char ** functionname_ptr,
fb167eb2
AM
13180 unsigned int * line_ptr,
13181 unsigned int * discriminator_ptr)
0367ecfb
NC
13182{
13183 bfd_boolean found = FALSE;
13184
fb167eb2 13185 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
0367ecfb 13186 filename_ptr, functionname_ptr,
fb167eb2
AM
13187 line_ptr, discriminator_ptr,
13188 dwarf_debug_sections, 0,
0367ecfb
NC
13189 & elf_tdata (abfd)->dwarf2_find_line_info))
13190 {
13191 if (!*functionname_ptr)
fb167eb2 13192 arm_elf_find_function (abfd, symbols, section, offset,
0367ecfb
NC
13193 *filename_ptr ? NULL : filename_ptr,
13194 functionname_ptr);
f21f3fe0 13195
0367ecfb
NC
13196 return TRUE;
13197 }
13198
fb167eb2
AM
13199 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
13200 uses DWARF1. */
13201
0367ecfb
NC
13202 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
13203 & found, filename_ptr,
13204 functionname_ptr, line_ptr,
13205 & elf_tdata (abfd)->line_info))
13206 return FALSE;
13207
13208 if (found && (*functionname_ptr || *line_ptr))
13209 return TRUE;
13210
13211 if (symbols == NULL)
13212 return FALSE;
13213
fb167eb2 13214 if (! arm_elf_find_function (abfd, symbols, section, offset,
0367ecfb
NC
13215 filename_ptr, functionname_ptr))
13216 return FALSE;
13217
13218 *line_ptr = 0;
b34976b6 13219 return TRUE;
252b5132
RH
13220}
13221
4ab527b0
FF
13222static bfd_boolean
13223elf32_arm_find_inliner_info (bfd * abfd,
13224 const char ** filename_ptr,
13225 const char ** functionname_ptr,
13226 unsigned int * line_ptr)
13227{
13228 bfd_boolean found;
13229 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13230 functionname_ptr, line_ptr,
13231 & elf_tdata (abfd)->dwarf2_find_line_info);
13232 return found;
13233}
13234
252b5132
RH
13235/* Adjust a symbol defined by a dynamic object and referenced by a
13236 regular object. The current definition is in some section of the
13237 dynamic object, but we're not including those sections. We have to
13238 change the definition to something the rest of the link can
13239 understand. */
13240
b34976b6 13241static bfd_boolean
57e8b36a
NC
13242elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
13243 struct elf_link_hash_entry * h)
252b5132
RH
13244{
13245 bfd * dynobj;
13246 asection * s;
b7693d02 13247 struct elf32_arm_link_hash_entry * eh;
67687978 13248 struct elf32_arm_link_hash_table *globals;
252b5132 13249
67687978 13250 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
13251 if (globals == NULL)
13252 return FALSE;
13253
252b5132
RH
13254 dynobj = elf_hash_table (info)->dynobj;
13255
13256 /* Make sure we know what is going on here. */
13257 BFD_ASSERT (dynobj != NULL
f5385ebf 13258 && (h->needs_plt
34e77a92 13259 || h->type == STT_GNU_IFUNC
f6e332e6 13260 || h->u.weakdef != NULL
f5385ebf
AM
13261 || (h->def_dynamic
13262 && h->ref_regular
13263 && !h->def_regular)));
252b5132 13264
b7693d02
DJ
13265 eh = (struct elf32_arm_link_hash_entry *) h;
13266
252b5132
RH
13267 /* If this is a function, put it in the procedure linkage table. We
13268 will fill in the contents of the procedure linkage table later,
13269 when we know the address of the .got section. */
34e77a92 13270 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 13271 {
34e77a92
RS
13272 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13273 symbol binds locally. */
5e681ec4 13274 if (h->plt.refcount <= 0
34e77a92
RS
13275 || (h->type != STT_GNU_IFUNC
13276 && (SYMBOL_CALLS_LOCAL (info, h)
13277 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
13278 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
13279 {
13280 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
13281 file, but the symbol was never referred to by a dynamic
13282 object, or if all references were garbage collected. In
13283 such a case, we don't actually need to build a procedure
13284 linkage table, and we can just do a PC24 reloc instead. */
13285 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
13286 eh->plt.thumb_refcount = 0;
13287 eh->plt.maybe_thumb_refcount = 0;
13288 eh->plt.noncall_refcount = 0;
f5385ebf 13289 h->needs_plt = 0;
252b5132
RH
13290 }
13291
b34976b6 13292 return TRUE;
252b5132 13293 }
5e681ec4 13294 else
b7693d02
DJ
13295 {
13296 /* It's possible that we incorrectly decided a .plt reloc was
13297 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13298 in check_relocs. We can't decide accurately between function
13299 and non-function syms in check-relocs; Objects loaded later in
13300 the link may change h->type. So fix it now. */
13301 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
13302 eh->plt.thumb_refcount = 0;
13303 eh->plt.maybe_thumb_refcount = 0;
13304 eh->plt.noncall_refcount = 0;
b7693d02 13305 }
252b5132
RH
13306
13307 /* If this is a weak symbol, and there is a real definition, the
13308 processor independent code will have arranged for us to see the
13309 real definition first, and we can just use the same value. */
f6e332e6 13310 if (h->u.weakdef != NULL)
252b5132 13311 {
f6e332e6
AM
13312 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13313 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13314 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13315 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 13316 return TRUE;
252b5132
RH
13317 }
13318
ba93b8ac
DJ
13319 /* If there are no non-GOT references, we do not need a copy
13320 relocation. */
13321 if (!h->non_got_ref)
13322 return TRUE;
13323
252b5132
RH
13324 /* This is a reference to a symbol defined by a dynamic object which
13325 is not a function. */
13326
13327 /* If we are creating a shared library, we must presume that the
13328 only references to the symbol are via the global offset table.
13329 For such cases we need not do anything here; the relocations will
67687978
PB
13330 be handled correctly by relocate_section. Relocatable executables
13331 can reference data in shared objects directly, so we don't need to
13332 do anything here. */
13333 if (info->shared || globals->root.is_relocatable_executable)
b34976b6 13334 return TRUE;
252b5132
RH
13335
13336 /* We must allocate the symbol in our .dynbss section, which will
13337 become part of the .bss section of the executable. There will be
13338 an entry for this symbol in the .dynsym section. The dynamic
13339 object will contain position independent code, so all references
13340 from the dynamic object to this symbol will go through the global
13341 offset table. The dynamic linker will use the .dynsym entry to
13342 determine the address it must put in the global offset table, so
13343 both the dynamic object and the regular object will refer to the
13344 same memory location for the variable. */
3d4d4302 13345 s = bfd_get_linker_section (dynobj, ".dynbss");
252b5132
RH
13346 BFD_ASSERT (s != NULL);
13347
13348 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13349 copy the initial value out of the dynamic object and into the
13350 runtime process image. We need to remember the offset into the
00a97672 13351 .rel(a).bss section we are going to use. */
1d7e9d18 13352 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
252b5132
RH
13353 {
13354 asection *srel;
13355
3d4d4302 13356 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
47beaa6a 13357 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 13358 h->needs_copy = 1;
252b5132
RH
13359 }
13360
6cabe1ea 13361 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
13362}
13363
5e681ec4
PB
13364/* Allocate space in .plt, .got and associated reloc sections for
13365 dynamic relocs. */
13366
13367static bfd_boolean
47beaa6a 13368allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
13369{
13370 struct bfd_link_info *info;
13371 struct elf32_arm_link_hash_table *htab;
13372 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 13373 struct elf_dyn_relocs *p;
5e681ec4
PB
13374
13375 if (h->root.type == bfd_link_hash_indirect)
13376 return TRUE;
13377
e6a6bb22
AM
13378 eh = (struct elf32_arm_link_hash_entry *) h;
13379
5e681ec4
PB
13380 info = (struct bfd_link_info *) inf;
13381 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13382 if (htab == NULL)
13383 return FALSE;
5e681ec4 13384
34e77a92 13385 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
13386 && h->plt.refcount > 0)
13387 {
13388 /* Make sure this symbol is output as a dynamic symbol.
13389 Undefined weak syms won't yet be marked as dynamic. */
13390 if (h->dynindx == -1
f5385ebf 13391 && !h->forced_local)
5e681ec4 13392 {
c152c796 13393 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13394 return FALSE;
13395 }
13396
34e77a92
RS
13397 /* If the call in the PLT entry binds locally, the associated
13398 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13399 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13400 than the .plt section. */
13401 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13402 {
13403 eh->is_iplt = 1;
13404 if (eh->plt.noncall_refcount == 0
13405 && SYMBOL_REFERENCES_LOCAL (info, h))
13406 /* All non-call references can be resolved directly.
13407 This means that they can (and in some cases, must)
13408 resolve directly to the run-time target, rather than
13409 to the PLT. That in turns means that any .got entry
13410 would be equal to the .igot.plt entry, so there's
13411 no point having both. */
13412 h->got.refcount = 0;
13413 }
13414
5e681ec4 13415 if (info->shared
34e77a92 13416 || eh->is_iplt
7359ea65 13417 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 13418 {
34e77a92 13419 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 13420
5e681ec4
PB
13421 /* If this symbol is not defined in a regular file, and we are
13422 not generating a shared library, then set the symbol to this
13423 location in the .plt. This is required to make function
13424 pointers compare as equal between the normal executable and
13425 the shared library. */
13426 if (! info->shared
f5385ebf 13427 && !h->def_regular)
5e681ec4 13428 {
34e77a92 13429 h->root.u.def.section = htab->root.splt;
5e681ec4 13430 h->root.u.def.value = h->plt.offset;
5e681ec4 13431
67d74e43
DJ
13432 /* Make sure the function is not marked as Thumb, in case
13433 it is the target of an ABS32 relocation, which will
13434 point to the PLT entry. */
35fc36a8 13435 h->target_internal = ST_BRANCH_TO_ARM;
67d74e43 13436 }
022f8312 13437
00a97672
RS
13438 /* VxWorks executables have a second set of relocations for
13439 each PLT entry. They go in a separate relocation section,
13440 which is processed by the kernel loader. */
13441 if (htab->vxworks_p && !info->shared)
13442 {
13443 /* There is a relocation for the initial PLT entry:
13444 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13445 if (h->plt.offset == htab->plt_header_size)
47beaa6a 13446 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
13447
13448 /* There are two extra relocations for each subsequent
13449 PLT entry: an R_ARM_32 relocation for the GOT entry,
13450 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 13451 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 13452 }
5e681ec4
PB
13453 }
13454 else
13455 {
13456 h->plt.offset = (bfd_vma) -1;
f5385ebf 13457 h->needs_plt = 0;
5e681ec4
PB
13458 }
13459 }
13460 else
13461 {
13462 h->plt.offset = (bfd_vma) -1;
f5385ebf 13463 h->needs_plt = 0;
5e681ec4
PB
13464 }
13465
0855e32b
NS
13466 eh = (struct elf32_arm_link_hash_entry *) h;
13467 eh->tlsdesc_got = (bfd_vma) -1;
13468
5e681ec4
PB
13469 if (h->got.refcount > 0)
13470 {
13471 asection *s;
13472 bfd_boolean dyn;
ba93b8ac
DJ
13473 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13474 int indx;
5e681ec4
PB
13475
13476 /* Make sure this symbol is output as a dynamic symbol.
13477 Undefined weak syms won't yet be marked as dynamic. */
13478 if (h->dynindx == -1
f5385ebf 13479 && !h->forced_local)
5e681ec4 13480 {
c152c796 13481 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13482 return FALSE;
13483 }
13484
e5a52504
MM
13485 if (!htab->symbian_p)
13486 {
362d30a1 13487 s = htab->root.sgot;
e5a52504 13488 h->got.offset = s->size;
ba93b8ac
DJ
13489
13490 if (tls_type == GOT_UNKNOWN)
13491 abort ();
13492
13493 if (tls_type == GOT_NORMAL)
13494 /* Non-TLS symbols need one GOT slot. */
13495 s->size += 4;
13496 else
13497 {
99059e56
RM
13498 if (tls_type & GOT_TLS_GDESC)
13499 {
0855e32b 13500 /* R_ARM_TLS_DESC needs 2 GOT slots. */
99059e56 13501 eh->tlsdesc_got
0855e32b
NS
13502 = (htab->root.sgotplt->size
13503 - elf32_arm_compute_jump_table_size (htab));
99059e56
RM
13504 htab->root.sgotplt->size += 8;
13505 h->got.offset = (bfd_vma) -2;
34e77a92 13506 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 13507 reloc in the middle of .got.plt. */
99059e56
RM
13508 htab->num_tls_desc++;
13509 }
0855e32b 13510
ba93b8ac 13511 if (tls_type & GOT_TLS_GD)
0855e32b
NS
13512 {
13513 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13514 the symbol is both GD and GDESC, got.offset may
13515 have been overwritten. */
13516 h->got.offset = s->size;
13517 s->size += 8;
13518 }
13519
ba93b8ac
DJ
13520 if (tls_type & GOT_TLS_IE)
13521 /* R_ARM_TLS_IE32 needs one GOT slot. */
13522 s->size += 4;
13523 }
13524
e5a52504 13525 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
13526
13527 indx = 0;
13528 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13529 && (!info->shared
13530 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13531 indx = h->dynindx;
13532
13533 if (tls_type != GOT_NORMAL
13534 && (info->shared || indx != 0)
13535 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13536 || h->root.type != bfd_link_hash_undefweak))
13537 {
13538 if (tls_type & GOT_TLS_IE)
47beaa6a 13539 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
13540
13541 if (tls_type & GOT_TLS_GD)
47beaa6a 13542 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 13543
b38cadfb 13544 if (tls_type & GOT_TLS_GDESC)
0855e32b 13545 {
47beaa6a 13546 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
0855e32b
NS
13547 /* GDESC needs a trampoline to jump to. */
13548 htab->tls_trampoline = -1;
13549 }
13550
13551 /* Only GD needs it. GDESC just emits one relocation per
13552 2 entries. */
b38cadfb 13553 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 13554 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 13555 }
6f820c85 13556 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
13557 {
13558 if (htab->root.dynamic_sections_created)
13559 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13560 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13561 }
34e77a92
RS
13562 else if (h->type == STT_GNU_IFUNC
13563 && eh->plt.noncall_refcount == 0)
13564 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13565 they all resolve dynamically instead. Reserve room for the
13566 GOT entry's R_ARM_IRELATIVE relocation. */
13567 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
31943882
WN
13568 else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13569 || h->root.type != bfd_link_hash_undefweak))
b436d854 13570 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
47beaa6a 13571 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e5a52504 13572 }
5e681ec4
PB
13573 }
13574 else
13575 h->got.offset = (bfd_vma) -1;
13576
a4fd1a8e
PB
13577 /* Allocate stubs for exported Thumb functions on v4t. */
13578 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 13579 && h->def_regular
35fc36a8 13580 && h->target_internal == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
13581 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13582 {
13583 struct elf_link_hash_entry * th;
13584 struct bfd_link_hash_entry * bh;
13585 struct elf_link_hash_entry * myh;
13586 char name[1024];
13587 asection *s;
13588 bh = NULL;
13589 /* Create a new symbol to regist the real location of the function. */
13590 s = h->root.u.def.section;
906e58ca 13591 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
13592 _bfd_generic_link_add_one_symbol (info, s->owner,
13593 name, BSF_GLOBAL, s,
13594 h->root.u.def.value,
13595 NULL, TRUE, FALSE, &bh);
13596
13597 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 13598 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 13599 myh->forced_local = 1;
35fc36a8 13600 myh->target_internal = ST_BRANCH_TO_THUMB;
a4fd1a8e
PB
13601 eh->export_glue = myh;
13602 th = record_arm_to_thumb_glue (info, h);
13603 /* Point the symbol at the stub. */
13604 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
35fc36a8 13605 h->target_internal = ST_BRANCH_TO_ARM;
a4fd1a8e
PB
13606 h->root.u.def.section = th->root.u.def.section;
13607 h->root.u.def.value = th->root.u.def.value & ~1;
13608 }
13609
0bdcacaf 13610 if (eh->dyn_relocs == NULL)
5e681ec4
PB
13611 return TRUE;
13612
13613 /* In the shared -Bsymbolic case, discard space allocated for
13614 dynamic pc-relative relocs against symbols which turn out to be
13615 defined in regular objects. For the normal shared case, discard
13616 space for pc-relative relocs that have become local due to symbol
13617 visibility changes. */
13618
67687978 13619 if (info->shared || htab->root.is_relocatable_executable)
5e681ec4 13620 {
469a3493
RM
13621 /* Relocs that use pc_count are PC-relative forms, which will appear
13622 on something like ".long foo - ." or "movw REG, foo - .". We want
13623 calls to protected symbols to resolve directly to the function
13624 rather than going via the plt. If people want function pointer
13625 comparisons to work as expected then they should avoid writing
13626 assembly like ".long foo - .". */
ba93b8ac
DJ
13627 if (SYMBOL_CALLS_LOCAL (info, h))
13628 {
0bdcacaf 13629 struct elf_dyn_relocs **pp;
ba93b8ac 13630
0bdcacaf 13631 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
13632 {
13633 p->count -= p->pc_count;
13634 p->pc_count = 0;
13635 if (p->count == 0)
13636 *pp = p->next;
13637 else
13638 pp = &p->next;
13639 }
13640 }
13641
4dfe6ac6 13642 if (htab->vxworks_p)
3348747a 13643 {
0bdcacaf 13644 struct elf_dyn_relocs **pp;
3348747a 13645
0bdcacaf 13646 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
3348747a 13647 {
0bdcacaf 13648 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
13649 *pp = p->next;
13650 else
13651 pp = &p->next;
13652 }
13653 }
13654
ba93b8ac 13655 /* Also discard relocs on undefined weak syms with non-default
99059e56 13656 visibility. */
0bdcacaf 13657 if (eh->dyn_relocs != NULL
5e681ec4 13658 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
13659 {
13660 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
0bdcacaf 13661 eh->dyn_relocs = NULL;
22d606e9
AM
13662
13663 /* Make sure undefined weak symbols are output as a dynamic
13664 symbol in PIEs. */
13665 else if (h->dynindx == -1
13666 && !h->forced_local)
13667 {
13668 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13669 return FALSE;
13670 }
13671 }
13672
67687978
PB
13673 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13674 && h->root.type == bfd_link_hash_new)
13675 {
13676 /* Output absolute symbols so that we can create relocations
13677 against them. For normal symbols we output a relocation
13678 against the section that contains them. */
13679 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13680 return FALSE;
13681 }
13682
5e681ec4
PB
13683 }
13684 else
13685 {
13686 /* For the non-shared case, discard space for relocs against
13687 symbols which turn out to need copy relocs or are not
13688 dynamic. */
13689
f5385ebf
AM
13690 if (!h->non_got_ref
13691 && ((h->def_dynamic
13692 && !h->def_regular)
5e681ec4
PB
13693 || (htab->root.dynamic_sections_created
13694 && (h->root.type == bfd_link_hash_undefweak
13695 || h->root.type == bfd_link_hash_undefined))))
13696 {
13697 /* Make sure this symbol is output as a dynamic symbol.
13698 Undefined weak syms won't yet be marked as dynamic. */
13699 if (h->dynindx == -1
f5385ebf 13700 && !h->forced_local)
5e681ec4 13701 {
c152c796 13702 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13703 return FALSE;
13704 }
13705
13706 /* If that succeeded, we know we'll be keeping all the
13707 relocs. */
13708 if (h->dynindx != -1)
13709 goto keep;
13710 }
13711
0bdcacaf 13712 eh->dyn_relocs = NULL;
5e681ec4
PB
13713
13714 keep: ;
13715 }
13716
13717 /* Finally, allocate space. */
0bdcacaf 13718 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5e681ec4 13719 {
0bdcacaf 13720 asection *sreloc = elf_section_data (p->sec)->sreloc;
34e77a92
RS
13721 if (h->type == STT_GNU_IFUNC
13722 && eh->plt.noncall_refcount == 0
13723 && SYMBOL_REFERENCES_LOCAL (info, h))
13724 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13725 else
13726 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
13727 }
13728
13729 return TRUE;
13730}
13731
08d1f311
DJ
13732/* Find any dynamic relocs that apply to read-only sections. */
13733
13734static bfd_boolean
8029a119 13735elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 13736{
8029a119 13737 struct elf32_arm_link_hash_entry * eh;
0bdcacaf 13738 struct elf_dyn_relocs * p;
08d1f311 13739
08d1f311 13740 eh = (struct elf32_arm_link_hash_entry *) h;
0bdcacaf 13741 for (p = eh->dyn_relocs; p != NULL; p = p->next)
08d1f311 13742 {
0bdcacaf 13743 asection *s = p->sec;
08d1f311
DJ
13744
13745 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13746 {
13747 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13748
13749 info->flags |= DF_TEXTREL;
13750
13751 /* Not an error, just cut short the traversal. */
13752 return FALSE;
13753 }
13754 }
13755 return TRUE;
13756}
13757
d504ffc8
DJ
13758void
13759bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13760 int byteswap_code)
13761{
13762 struct elf32_arm_link_hash_table *globals;
13763
13764 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
13765 if (globals == NULL)
13766 return;
13767
d504ffc8
DJ
13768 globals->byteswap_code = byteswap_code;
13769}
13770
252b5132
RH
13771/* Set the sizes of the dynamic sections. */
13772
b34976b6 13773static bfd_boolean
57e8b36a
NC
13774elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13775 struct bfd_link_info * info)
252b5132
RH
13776{
13777 bfd * dynobj;
13778 asection * s;
b34976b6
AM
13779 bfd_boolean plt;
13780 bfd_boolean relocs;
5e681ec4
PB
13781 bfd *ibfd;
13782 struct elf32_arm_link_hash_table *htab;
252b5132 13783
5e681ec4 13784 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13785 if (htab == NULL)
13786 return FALSE;
13787
252b5132
RH
13788 dynobj = elf_hash_table (info)->dynobj;
13789 BFD_ASSERT (dynobj != NULL);
39b41c9c 13790 check_use_blx (htab);
252b5132
RH
13791
13792 if (elf_hash_table (info)->dynamic_sections_created)
13793 {
13794 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 13795 if (info->executable)
252b5132 13796 {
3d4d4302 13797 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 13798 BFD_ASSERT (s != NULL);
eea6121a 13799 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
13800 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13801 }
13802 }
5e681ec4
PB
13803
13804 /* Set up .got offsets for local syms, and space for local dynamic
13805 relocs. */
c72f2fb2 13806 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 13807 {
5e681ec4
PB
13808 bfd_signed_vma *local_got;
13809 bfd_signed_vma *end_local_got;
34e77a92 13810 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 13811 char *local_tls_type;
0855e32b 13812 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
13813 bfd_size_type locsymcount;
13814 Elf_Internal_Shdr *symtab_hdr;
13815 asection *srel;
4dfe6ac6 13816 bfd_boolean is_vxworks = htab->vxworks_p;
34e77a92 13817 unsigned int symndx;
5e681ec4 13818
0ffa91dd 13819 if (! is_arm_elf (ibfd))
5e681ec4
PB
13820 continue;
13821
13822 for (s = ibfd->sections; s != NULL; s = s->next)
13823 {
0bdcacaf 13824 struct elf_dyn_relocs *p;
5e681ec4 13825
0bdcacaf 13826 for (p = (struct elf_dyn_relocs *)
99059e56 13827 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 13828 {
0bdcacaf
RS
13829 if (!bfd_is_abs_section (p->sec)
13830 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
13831 {
13832 /* Input section has been discarded, either because
13833 it is a copy of a linkonce section or due to
13834 linker script /DISCARD/, so we'll be discarding
13835 the relocs too. */
13836 }
3348747a 13837 else if (is_vxworks
0bdcacaf 13838 && strcmp (p->sec->output_section->name,
3348747a
NS
13839 ".tls_vars") == 0)
13840 {
13841 /* Relocations in vxworks .tls_vars sections are
13842 handled specially by the loader. */
13843 }
5e681ec4
PB
13844 else if (p->count != 0)
13845 {
0bdcacaf 13846 srel = elf_section_data (p->sec)->sreloc;
47beaa6a 13847 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 13848 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
13849 info->flags |= DF_TEXTREL;
13850 }
13851 }
13852 }
13853
13854 local_got = elf_local_got_refcounts (ibfd);
13855 if (!local_got)
13856 continue;
13857
0ffa91dd 13858 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
13859 locsymcount = symtab_hdr->sh_info;
13860 end_local_got = local_got + locsymcount;
34e77a92 13861 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 13862 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 13863 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
34e77a92 13864 symndx = 0;
362d30a1
RS
13865 s = htab->root.sgot;
13866 srel = htab->root.srelgot;
0855e32b 13867 for (; local_got < end_local_got;
34e77a92
RS
13868 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13869 ++local_tlsdesc_gotent, ++symndx)
5e681ec4 13870 {
0855e32b 13871 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92
RS
13872 local_iplt = *local_iplt_ptr;
13873 if (local_iplt != NULL)
13874 {
13875 struct elf_dyn_relocs *p;
13876
13877 if (local_iplt->root.refcount > 0)
13878 {
13879 elf32_arm_allocate_plt_entry (info, TRUE,
13880 &local_iplt->root,
13881 &local_iplt->arm);
13882 if (local_iplt->arm.noncall_refcount == 0)
13883 /* All references to the PLT are calls, so all
13884 non-call references can resolve directly to the
13885 run-time target. This means that the .got entry
13886 would be the same as the .igot.plt entry, so there's
13887 no point creating both. */
13888 *local_got = 0;
13889 }
13890 else
13891 {
13892 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13893 local_iplt->root.offset = (bfd_vma) -1;
13894 }
13895
13896 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13897 {
13898 asection *psrel;
13899
13900 psrel = elf_section_data (p->sec)->sreloc;
13901 if (local_iplt->arm.noncall_refcount == 0)
13902 elf32_arm_allocate_irelocs (info, psrel, p->count);
13903 else
13904 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13905 }
13906 }
5e681ec4
PB
13907 if (*local_got > 0)
13908 {
34e77a92
RS
13909 Elf_Internal_Sym *isym;
13910
eea6121a 13911 *local_got = s->size;
ba93b8ac
DJ
13912 if (*local_tls_type & GOT_TLS_GD)
13913 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13914 s->size += 8;
0855e32b
NS
13915 if (*local_tls_type & GOT_TLS_GDESC)
13916 {
13917 *local_tlsdesc_gotent = htab->root.sgotplt->size
13918 - elf32_arm_compute_jump_table_size (htab);
13919 htab->root.sgotplt->size += 8;
13920 *local_got = (bfd_vma) -2;
34e77a92 13921 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 13922 reloc in the middle of .got.plt. */
99059e56 13923 htab->num_tls_desc++;
0855e32b 13924 }
ba93b8ac
DJ
13925 if (*local_tls_type & GOT_TLS_IE)
13926 s->size += 4;
ba93b8ac 13927
0855e32b
NS
13928 if (*local_tls_type & GOT_NORMAL)
13929 {
13930 /* If the symbol is both GD and GDESC, *local_got
13931 may have been overwritten. */
13932 *local_got = s->size;
13933 s->size += 4;
13934 }
13935
34e77a92
RS
13936 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13937 if (isym == NULL)
13938 return FALSE;
13939
13940 /* If all references to an STT_GNU_IFUNC PLT are calls,
13941 then all non-call references, including this GOT entry,
13942 resolve directly to the run-time target. */
13943 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13944 && (local_iplt == NULL
13945 || local_iplt->arm.noncall_refcount == 0))
13946 elf32_arm_allocate_irelocs (info, srel, 1);
3064e1ff 13947 else if (info->shared || output_bfd->flags & DYNAMIC)
0855e32b 13948 {
3064e1ff
JB
13949 if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13950 || *local_tls_type & GOT_TLS_GD)
13951 elf32_arm_allocate_dynrelocs (info, srel, 1);
99059e56 13952
3064e1ff
JB
13953 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13954 {
13955 elf32_arm_allocate_dynrelocs (info,
13956 htab->root.srelplt, 1);
13957 htab->tls_trampoline = -1;
13958 }
0855e32b 13959 }
5e681ec4
PB
13960 }
13961 else
13962 *local_got = (bfd_vma) -1;
13963 }
252b5132
RH
13964 }
13965
ba93b8ac
DJ
13966 if (htab->tls_ldm_got.refcount > 0)
13967 {
13968 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13969 for R_ARM_TLS_LDM32 relocations. */
362d30a1
RS
13970 htab->tls_ldm_got.offset = htab->root.sgot->size;
13971 htab->root.sgot->size += 8;
ba93b8ac 13972 if (info->shared)
47beaa6a 13973 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
13974 }
13975 else
13976 htab->tls_ldm_got.offset = -1;
13977
5e681ec4
PB
13978 /* Allocate global sym .plt and .got entries, and space for global
13979 sym dynamic relocs. */
47beaa6a 13980 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 13981
d504ffc8 13982 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 13983 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 13984 {
0ffa91dd 13985 if (! is_arm_elf (ibfd))
e44a2c9c
AM
13986 continue;
13987
c7b8f16e
JB
13988 /* Initialise mapping tables for code/data. */
13989 bfd_elf32_arm_init_maps (ibfd);
906e58ca 13990
c7b8f16e
JB
13991 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13992 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
99059e56
RM
13993 /* xgettext:c-format */
13994 _bfd_error_handler (_("Errors encountered processing file %s"),
c7b8f16e
JB
13995 ibfd->filename);
13996 }
d504ffc8 13997
3e6b1042
DJ
13998 /* Allocate space for the glue sections now that we've sized them. */
13999 bfd_elf32_arm_allocate_interworking_sections (info);
14000
0855e32b
NS
14001 /* For every jump slot reserved in the sgotplt, reloc_count is
14002 incremented. However, when we reserve space for TLS descriptors,
14003 it's not incremented, so in order to compute the space reserved
14004 for them, it suffices to multiply the reloc count by the jump
14005 slot size. */
14006 if (htab->root.srelplt)
14007 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
14008
14009 if (htab->tls_trampoline)
14010 {
14011 if (htab->root.splt->size == 0)
14012 htab->root.splt->size += htab->plt_header_size;
b38cadfb 14013
0855e32b
NS
14014 htab->tls_trampoline = htab->root.splt->size;
14015 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 14016
0855e32b 14017 /* If we're not using lazy TLS relocations, don't generate the
99059e56 14018 PLT and GOT entries they require. */
0855e32b
NS
14019 if (!(info->flags & DF_BIND_NOW))
14020 {
14021 htab->dt_tlsdesc_got = htab->root.sgot->size;
14022 htab->root.sgot->size += 4;
14023
14024 htab->dt_tlsdesc_plt = htab->root.splt->size;
14025 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
14026 }
14027 }
14028
252b5132
RH
14029 /* The check_relocs and adjust_dynamic_symbol entry points have
14030 determined the sizes of the various dynamic sections. Allocate
14031 memory for them. */
b34976b6
AM
14032 plt = FALSE;
14033 relocs = FALSE;
252b5132
RH
14034 for (s = dynobj->sections; s != NULL; s = s->next)
14035 {
14036 const char * name;
252b5132
RH
14037
14038 if ((s->flags & SEC_LINKER_CREATED) == 0)
14039 continue;
14040
14041 /* It's OK to base decisions on the section name, because none
14042 of the dynobj section names depend upon the input files. */
14043 name = bfd_get_section_name (dynobj, s);
14044
34e77a92 14045 if (s == htab->root.splt)
252b5132 14046 {
c456f082
AM
14047 /* Remember whether there is a PLT. */
14048 plt = s->size != 0;
252b5132 14049 }
0112cd26 14050 else if (CONST_STRNEQ (name, ".rel"))
252b5132 14051 {
c456f082 14052 if (s->size != 0)
252b5132 14053 {
252b5132 14054 /* Remember whether there are any reloc sections other
00a97672 14055 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 14056 if (s != htab->root.srelplt && s != htab->srelplt2)
b34976b6 14057 relocs = TRUE;
252b5132
RH
14058
14059 /* We use the reloc_count field as a counter if we need
14060 to copy relocs into the output file. */
14061 s->reloc_count = 0;
14062 }
14063 }
34e77a92
RS
14064 else if (s != htab->root.sgot
14065 && s != htab->root.sgotplt
14066 && s != htab->root.iplt
14067 && s != htab->root.igotplt
14068 && s != htab->sdynbss)
252b5132
RH
14069 {
14070 /* It's not one of our sections, so don't allocate space. */
14071 continue;
14072 }
14073
c456f082 14074 if (s->size == 0)
252b5132 14075 {
c456f082 14076 /* If we don't need this section, strip it from the
00a97672
RS
14077 output file. This is mostly to handle .rel(a).bss and
14078 .rel(a).plt. We must create both sections in
c456f082
AM
14079 create_dynamic_sections, because they must be created
14080 before the linker maps input sections to output
14081 sections. The linker does that before
14082 adjust_dynamic_symbol is called, and it is that
14083 function which decides whether anything needs to go
14084 into these sections. */
8423293d 14085 s->flags |= SEC_EXCLUDE;
252b5132
RH
14086 continue;
14087 }
14088
c456f082
AM
14089 if ((s->flags & SEC_HAS_CONTENTS) == 0)
14090 continue;
14091
252b5132 14092 /* Allocate memory for the section contents. */
21d799b5 14093 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 14094 if (s->contents == NULL)
b34976b6 14095 return FALSE;
252b5132
RH
14096 }
14097
14098 if (elf_hash_table (info)->dynamic_sections_created)
14099 {
14100 /* Add some entries to the .dynamic section. We fill in the
14101 values later, in elf32_arm_finish_dynamic_sections, but we
14102 must add the entries now so that we get the correct size for
14103 the .dynamic section. The DT_DEBUG entry is filled in by the
14104 dynamic linker and used by the debugger. */
dc810e39 14105#define add_dynamic_entry(TAG, VAL) \
5a580b3a 14106 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 14107
8532796c 14108 if (info->executable)
252b5132 14109 {
dc810e39 14110 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 14111 return FALSE;
252b5132
RH
14112 }
14113
14114 if (plt)
14115 {
dc810e39
AM
14116 if ( !add_dynamic_entry (DT_PLTGOT, 0)
14117 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
14118 || !add_dynamic_entry (DT_PLTREL,
14119 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 14120 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 14121 return FALSE;
0855e32b
NS
14122
14123 if (htab->dt_tlsdesc_plt &&
b38cadfb 14124 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
0855e32b 14125 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
b38cadfb 14126 return FALSE;
252b5132
RH
14127 }
14128
14129 if (relocs)
14130 {
00a97672
RS
14131 if (htab->use_rel)
14132 {
14133 if (!add_dynamic_entry (DT_REL, 0)
14134 || !add_dynamic_entry (DT_RELSZ, 0)
14135 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
14136 return FALSE;
14137 }
14138 else
14139 {
14140 if (!add_dynamic_entry (DT_RELA, 0)
14141 || !add_dynamic_entry (DT_RELASZ, 0)
14142 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
14143 return FALSE;
14144 }
252b5132
RH
14145 }
14146
08d1f311
DJ
14147 /* If any dynamic relocs apply to a read-only section,
14148 then we need a DT_TEXTREL entry. */
14149 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
14150 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
14151 info);
08d1f311 14152
99e4ae17 14153 if ((info->flags & DF_TEXTREL) != 0)
252b5132 14154 {
dc810e39 14155 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 14156 return FALSE;
252b5132 14157 }
7a2b07ff
NS
14158 if (htab->vxworks_p
14159 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
14160 return FALSE;
252b5132 14161 }
8532796c 14162#undef add_dynamic_entry
252b5132 14163
b34976b6 14164 return TRUE;
252b5132
RH
14165}
14166
0855e32b
NS
14167/* Size sections even though they're not dynamic. We use it to setup
14168 _TLS_MODULE_BASE_, if needed. */
14169
14170static bfd_boolean
14171elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 14172 struct bfd_link_info *info)
0855e32b
NS
14173{
14174 asection *tls_sec;
14175
14176 if (info->relocatable)
14177 return TRUE;
14178
14179 tls_sec = elf_hash_table (info)->tls_sec;
14180
14181 if (tls_sec)
14182 {
14183 struct elf_link_hash_entry *tlsbase;
14184
14185 tlsbase = elf_link_hash_lookup
14186 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
14187
14188 if (tlsbase)
99059e56
RM
14189 {
14190 struct bfd_link_hash_entry *bh = NULL;
0855e32b 14191 const struct elf_backend_data *bed
99059e56 14192 = get_elf_backend_data (output_bfd);
0855e32b 14193
99059e56 14194 if (!(_bfd_generic_link_add_one_symbol
0855e32b
NS
14195 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
14196 tls_sec, 0, NULL, FALSE,
14197 bed->collect, &bh)))
14198 return FALSE;
b38cadfb 14199
99059e56
RM
14200 tlsbase->type = STT_TLS;
14201 tlsbase = (struct elf_link_hash_entry *)bh;
14202 tlsbase->def_regular = 1;
14203 tlsbase->other = STV_HIDDEN;
14204 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
0855e32b
NS
14205 }
14206 }
14207 return TRUE;
14208}
14209
252b5132
RH
14210/* Finish up dynamic symbol handling. We set the contents of various
14211 dynamic sections here. */
14212
b34976b6 14213static bfd_boolean
906e58ca
NC
14214elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14215 struct bfd_link_info * info,
14216 struct elf_link_hash_entry * h,
14217 Elf_Internal_Sym * sym)
252b5132 14218{
e5a52504 14219 struct elf32_arm_link_hash_table *htab;
b7693d02 14220 struct elf32_arm_link_hash_entry *eh;
252b5132 14221
e5a52504 14222 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
14223 if (htab == NULL)
14224 return FALSE;
14225
b7693d02 14226 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
14227
14228 if (h->plt.offset != (bfd_vma) -1)
14229 {
34e77a92 14230 if (!eh->is_iplt)
e5a52504 14231 {
34e77a92 14232 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
14233 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
14234 h->dynindx, 0))
14235 return FALSE;
e5a52504 14236 }
57e8b36a 14237
f5385ebf 14238 if (!h->def_regular)
252b5132
RH
14239 {
14240 /* Mark the symbol as undefined, rather than as defined in
3a635617 14241 the .plt section. */
252b5132 14242 sym->st_shndx = SHN_UNDEF;
3a635617 14243 /* If the symbol is weak we need to clear the value.
d982ba73
PB
14244 Otherwise, the PLT entry would provide a definition for
14245 the symbol even if the symbol wasn't defined anywhere,
3a635617
WN
14246 and so the symbol would never be NULL. Leave the value if
14247 there were any relocations where pointer equality matters
14248 (this is a clue for the dynamic linker, to make function
14249 pointer comparisons work between an application and shared
14250 library). */
97323ad1 14251 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 14252 sym->st_value = 0;
252b5132 14253 }
34e77a92
RS
14254 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
14255 {
14256 /* At least one non-call relocation references this .iplt entry,
14257 so the .iplt entry is the function's canonical address. */
14258 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
14259 sym->st_target_internal = ST_BRANCH_TO_ARM;
14260 sym->st_shndx = (_bfd_elf_section_from_bfd_section
14261 (output_bfd, htab->root.iplt->output_section));
14262 sym->st_value = (h->plt.offset
14263 + htab->root.iplt->output_section->vma
14264 + htab->root.iplt->output_offset);
14265 }
252b5132
RH
14266 }
14267
f5385ebf 14268 if (h->needs_copy)
252b5132
RH
14269 {
14270 asection * s;
947216bf 14271 Elf_Internal_Rela rel;
252b5132
RH
14272
14273 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
14274 BFD_ASSERT (h->dynindx != -1
14275 && (h->root.type == bfd_link_hash_defined
14276 || h->root.type == bfd_link_hash_defweak));
14277
362d30a1 14278 s = htab->srelbss;
252b5132
RH
14279 BFD_ASSERT (s != NULL);
14280
00a97672 14281 rel.r_addend = 0;
252b5132
RH
14282 rel.r_offset = (h->root.u.def.value
14283 + h->root.u.def.section->output_section->vma
14284 + h->root.u.def.section->output_offset);
14285 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
47beaa6a 14286 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
14287 }
14288
00a97672
RS
14289 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14290 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14291 to the ".got" section. */
9637f6ef 14292 if (h == htab->root.hdynamic
00a97672 14293 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
14294 sym->st_shndx = SHN_ABS;
14295
b34976b6 14296 return TRUE;
252b5132
RH
14297}
14298
0855e32b
NS
14299static void
14300arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14301 void *contents,
14302 const unsigned long *template, unsigned count)
14303{
14304 unsigned ix;
b38cadfb 14305
0855e32b
NS
14306 for (ix = 0; ix != count; ix++)
14307 {
14308 unsigned long insn = template[ix];
14309
14310 /* Emit mov pc,rx if bx is not permitted. */
14311 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14312 insn = (insn & 0xf000000f) | 0x01a0f000;
14313 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14314 }
14315}
14316
99059e56
RM
14317/* Install the special first PLT entry for elf32-arm-nacl. Unlike
14318 other variants, NaCl needs this entry in a static executable's
14319 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
14320 zero. For .iplt really only the last bundle is useful, and .iplt
14321 could have a shorter first entry, with each individual PLT entry's
14322 relative branch calculated differently so it targets the last
14323 bundle instead of the instruction before it (labelled .Lplt_tail
14324 above). But it's simpler to keep the size and layout of PLT0
14325 consistent with the dynamic case, at the cost of some dead code at
14326 the start of .iplt and the one dead store to the stack at the start
14327 of .Lplt_tail. */
14328static void
14329arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14330 asection *plt, bfd_vma got_displacement)
14331{
14332 unsigned int i;
14333
14334 put_arm_insn (htab, output_bfd,
14335 elf32_arm_nacl_plt0_entry[0]
14336 | arm_movw_immediate (got_displacement),
14337 plt->contents + 0);
14338 put_arm_insn (htab, output_bfd,
14339 elf32_arm_nacl_plt0_entry[1]
14340 | arm_movt_immediate (got_displacement),
14341 plt->contents + 4);
14342
14343 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14344 put_arm_insn (htab, output_bfd,
14345 elf32_arm_nacl_plt0_entry[i],
14346 plt->contents + (i * 4));
14347}
14348
252b5132
RH
14349/* Finish up the dynamic sections. */
14350
b34976b6 14351static bfd_boolean
57e8b36a 14352elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
14353{
14354 bfd * dynobj;
14355 asection * sgot;
14356 asection * sdyn;
4dfe6ac6
NC
14357 struct elf32_arm_link_hash_table *htab;
14358
14359 htab = elf32_arm_hash_table (info);
14360 if (htab == NULL)
14361 return FALSE;
252b5132
RH
14362
14363 dynobj = elf_hash_table (info)->dynobj;
14364
362d30a1 14365 sgot = htab->root.sgotplt;
894891db
NC
14366 /* A broken linker script might have discarded the dynamic sections.
14367 Catch this here so that we do not seg-fault later on. */
14368 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14369 return FALSE;
3d4d4302 14370 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
14371
14372 if (elf_hash_table (info)->dynamic_sections_created)
14373 {
14374 asection *splt;
14375 Elf32_External_Dyn *dyncon, *dynconend;
14376
362d30a1 14377 splt = htab->root.splt;
24a1ba0f 14378 BFD_ASSERT (splt != NULL && sdyn != NULL);
cbc704f3 14379 BFD_ASSERT (htab->symbian_p || sgot != NULL);
252b5132
RH
14380
14381 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 14382 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 14383
252b5132
RH
14384 for (; dyncon < dynconend; dyncon++)
14385 {
14386 Elf_Internal_Dyn dyn;
14387 const char * name;
14388 asection * s;
14389
14390 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14391
14392 switch (dyn.d_tag)
14393 {
229fcec5
MM
14394 unsigned int type;
14395
252b5132 14396 default:
7a2b07ff
NS
14397 if (htab->vxworks_p
14398 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14399 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
14400 break;
14401
229fcec5
MM
14402 case DT_HASH:
14403 name = ".hash";
14404 goto get_vma_if_bpabi;
14405 case DT_STRTAB:
14406 name = ".dynstr";
14407 goto get_vma_if_bpabi;
14408 case DT_SYMTAB:
14409 name = ".dynsym";
14410 goto get_vma_if_bpabi;
c0042f5d
MM
14411 case DT_VERSYM:
14412 name = ".gnu.version";
14413 goto get_vma_if_bpabi;
14414 case DT_VERDEF:
14415 name = ".gnu.version_d";
14416 goto get_vma_if_bpabi;
14417 case DT_VERNEED:
14418 name = ".gnu.version_r";
14419 goto get_vma_if_bpabi;
14420
252b5132
RH
14421 case DT_PLTGOT:
14422 name = ".got";
14423 goto get_vma;
14424 case DT_JMPREL:
00a97672 14425 name = RELOC_SECTION (htab, ".plt");
252b5132
RH
14426 get_vma:
14427 s = bfd_get_section_by_name (output_bfd, name);
05456594
NC
14428 if (s == NULL)
14429 {
14430 /* PR ld/14397: Issue an error message if a required section is missing. */
14431 (*_bfd_error_handler)
14432 (_("error: required section '%s' not found in the linker script"), name);
14433 bfd_set_error (bfd_error_invalid_operation);
14434 return FALSE;
14435 }
229fcec5
MM
14436 if (!htab->symbian_p)
14437 dyn.d_un.d_ptr = s->vma;
14438 else
14439 /* In the BPABI, tags in the PT_DYNAMIC section point
14440 at the file offset, not the memory address, for the
14441 convenience of the post linker. */
14442 dyn.d_un.d_ptr = s->filepos;
252b5132
RH
14443 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14444 break;
14445
229fcec5
MM
14446 get_vma_if_bpabi:
14447 if (htab->symbian_p)
14448 goto get_vma;
14449 break;
14450
252b5132 14451 case DT_PLTRELSZ:
362d30a1 14452 s = htab->root.srelplt;
252b5132 14453 BFD_ASSERT (s != NULL);
eea6121a 14454 dyn.d_un.d_val = s->size;
252b5132
RH
14455 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14456 break;
906e58ca 14457
252b5132 14458 case DT_RELSZ:
00a97672 14459 case DT_RELASZ:
229fcec5
MM
14460 if (!htab->symbian_p)
14461 {
14462 /* My reading of the SVR4 ABI indicates that the
14463 procedure linkage table relocs (DT_JMPREL) should be
14464 included in the overall relocs (DT_REL). This is
14465 what Solaris does. However, UnixWare can not handle
14466 that case. Therefore, we override the DT_RELSZ entry
14467 here to make it not include the JMPREL relocs. Since
00a97672 14468 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
14469 other relocation sections, we don't have to worry
14470 about changing the DT_REL entry. */
362d30a1 14471 s = htab->root.srelplt;
229fcec5
MM
14472 if (s != NULL)
14473 dyn.d_un.d_val -= s->size;
14474 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14475 break;
14476 }
8029a119 14477 /* Fall through. */
229fcec5
MM
14478
14479 case DT_REL:
14480 case DT_RELA:
229fcec5
MM
14481 /* In the BPABI, the DT_REL tag must point at the file
14482 offset, not the VMA, of the first relocation
14483 section. So, we use code similar to that in
14484 elflink.c, but do not check for SHF_ALLOC on the
14485 relcoation section, since relocations sections are
14486 never allocated under the BPABI. The comments above
14487 about Unixware notwithstanding, we include all of the
14488 relocations here. */
14489 if (htab->symbian_p)
14490 {
14491 unsigned int i;
14492 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14493 ? SHT_REL : SHT_RELA);
14494 dyn.d_un.d_val = 0;
14495 for (i = 1; i < elf_numsections (output_bfd); i++)
14496 {
906e58ca 14497 Elf_Internal_Shdr *hdr
229fcec5
MM
14498 = elf_elfsections (output_bfd)[i];
14499 if (hdr->sh_type == type)
14500 {
906e58ca 14501 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
14502 || dyn.d_tag == DT_RELASZ)
14503 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
14504 else if ((ufile_ptr) hdr->sh_offset
14505 <= dyn.d_un.d_val - 1)
229fcec5
MM
14506 dyn.d_un.d_val = hdr->sh_offset;
14507 }
14508 }
14509 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14510 }
252b5132 14511 break;
88f7bcd5 14512
0855e32b 14513 case DT_TLSDESC_PLT:
99059e56 14514 s = htab->root.splt;
0855e32b
NS
14515 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14516 + htab->dt_tlsdesc_plt);
14517 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14518 break;
14519
14520 case DT_TLSDESC_GOT:
99059e56 14521 s = htab->root.sgot;
0855e32b 14522 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
99059e56 14523 + htab->dt_tlsdesc_got);
0855e32b
NS
14524 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14525 break;
14526
88f7bcd5
NC
14527 /* Set the bottom bit of DT_INIT/FINI if the
14528 corresponding function is Thumb. */
14529 case DT_INIT:
14530 name = info->init_function;
14531 goto get_sym;
14532 case DT_FINI:
14533 name = info->fini_function;
14534 get_sym:
14535 /* If it wasn't set by elf_bfd_final_link
4cc11e76 14536 then there is nothing to adjust. */
88f7bcd5
NC
14537 if (dyn.d_un.d_val != 0)
14538 {
14539 struct elf_link_hash_entry * eh;
14540
14541 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 14542 FALSE, FALSE, TRUE);
35fc36a8 14543 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
14544 {
14545 dyn.d_un.d_val |= 1;
b34976b6 14546 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
14547 }
14548 }
14549 break;
252b5132
RH
14550 }
14551 }
14552
24a1ba0f 14553 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 14554 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 14555 {
00a97672
RS
14556 const bfd_vma *plt0_entry;
14557 bfd_vma got_address, plt_address, got_displacement;
14558
14559 /* Calculate the addresses of the GOT and PLT. */
14560 got_address = sgot->output_section->vma + sgot->output_offset;
14561 plt_address = splt->output_section->vma + splt->output_offset;
14562
14563 if (htab->vxworks_p)
14564 {
14565 /* The VxWorks GOT is relocated by the dynamic linker.
14566 Therefore, we must emit relocations rather than simply
14567 computing the values now. */
14568 Elf_Internal_Rela rel;
14569
14570 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
14571 put_arm_insn (htab, output_bfd, plt0_entry[0],
14572 splt->contents + 0);
14573 put_arm_insn (htab, output_bfd, plt0_entry[1],
14574 splt->contents + 4);
14575 put_arm_insn (htab, output_bfd, plt0_entry[2],
14576 splt->contents + 8);
00a97672
RS
14577 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14578
8029a119 14579 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
14580 rel.r_offset = plt_address + 12;
14581 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14582 rel.r_addend = 0;
14583 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14584 htab->srelplt2->contents);
14585 }
b38cadfb 14586 else if (htab->nacl_p)
99059e56
RM
14587 arm_nacl_put_plt0 (htab, output_bfd, splt,
14588 got_address + 8 - (plt_address + 16));
eed94f8f
NC
14589 else if (using_thumb_only (htab))
14590 {
14591 got_displacement = got_address - (plt_address + 12);
14592
14593 plt0_entry = elf32_thumb2_plt0_entry;
14594 put_arm_insn (htab, output_bfd, plt0_entry[0],
14595 splt->contents + 0);
14596 put_arm_insn (htab, output_bfd, plt0_entry[1],
14597 splt->contents + 4);
14598 put_arm_insn (htab, output_bfd, plt0_entry[2],
14599 splt->contents + 8);
14600
14601 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
14602 }
00a97672
RS
14603 else
14604 {
14605 got_displacement = got_address - (plt_address + 16);
14606
14607 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
14608 put_arm_insn (htab, output_bfd, plt0_entry[0],
14609 splt->contents + 0);
14610 put_arm_insn (htab, output_bfd, plt0_entry[1],
14611 splt->contents + 4);
14612 put_arm_insn (htab, output_bfd, plt0_entry[2],
14613 splt->contents + 8);
14614 put_arm_insn (htab, output_bfd, plt0_entry[3],
14615 splt->contents + 12);
5e681ec4 14616
5e681ec4 14617#ifdef FOUR_WORD_PLT
00a97672
RS
14618 /* The displacement value goes in the otherwise-unused
14619 last word of the second entry. */
14620 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 14621#else
00a97672 14622 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 14623#endif
00a97672 14624 }
f7a74f8c 14625 }
252b5132
RH
14626
14627 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14628 really seem like the right value. */
74541ad4
AM
14629 if (splt->output_section->owner == output_bfd)
14630 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 14631
0855e32b
NS
14632 if (htab->dt_tlsdesc_plt)
14633 {
14634 bfd_vma got_address
14635 = sgot->output_section->vma + sgot->output_offset;
14636 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14637 + htab->root.sgot->output_offset);
14638 bfd_vma plt_address
14639 = splt->output_section->vma + splt->output_offset;
14640
b38cadfb 14641 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
14642 splt->contents + htab->dt_tlsdesc_plt,
14643 dl_tlsdesc_lazy_trampoline, 6);
14644
14645 bfd_put_32 (output_bfd,
14646 gotplt_address + htab->dt_tlsdesc_got
14647 - (plt_address + htab->dt_tlsdesc_plt)
14648 - dl_tlsdesc_lazy_trampoline[6],
14649 splt->contents + htab->dt_tlsdesc_plt + 24);
14650 bfd_put_32 (output_bfd,
14651 got_address - (plt_address + htab->dt_tlsdesc_plt)
14652 - dl_tlsdesc_lazy_trampoline[7],
14653 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14654 }
14655
14656 if (htab->tls_trampoline)
14657 {
b38cadfb 14658 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
14659 splt->contents + htab->tls_trampoline,
14660 tls_trampoline, 3);
14661#ifdef FOUR_WORD_PLT
14662 bfd_put_32 (output_bfd, 0x00000000,
14663 splt->contents + htab->tls_trampoline + 12);
b38cadfb 14664#endif
0855e32b
NS
14665 }
14666
362d30a1 14667 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
00a97672
RS
14668 {
14669 /* Correct the .rel(a).plt.unloaded relocations. They will have
14670 incorrect symbol indexes. */
14671 int num_plts;
eed62c48 14672 unsigned char *p;
00a97672 14673
362d30a1 14674 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
14675 / htab->plt_entry_size);
14676 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14677
14678 for (; num_plts; num_plts--)
14679 {
14680 Elf_Internal_Rela rel;
14681
14682 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14683 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14684 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14685 p += RELOC_SIZE (htab);
14686
14687 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14688 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14689 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14690 p += RELOC_SIZE (htab);
14691 }
14692 }
252b5132
RH
14693 }
14694
99059e56
RM
14695 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
14696 /* NaCl uses a special first entry in .iplt too. */
14697 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
14698
252b5132 14699 /* Fill in the first three entries in the global offset table. */
229fcec5 14700 if (sgot)
252b5132 14701 {
229fcec5
MM
14702 if (sgot->size > 0)
14703 {
14704 if (sdyn == NULL)
14705 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14706 else
14707 bfd_put_32 (output_bfd,
14708 sdyn->output_section->vma + sdyn->output_offset,
14709 sgot->contents);
14710 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14711 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14712 }
252b5132 14713
229fcec5
MM
14714 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14715 }
252b5132 14716
b34976b6 14717 return TRUE;
252b5132
RH
14718}
14719
ba96a88f 14720static void
57e8b36a 14721elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 14722{
9b485d32 14723 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 14724 struct elf32_arm_link_hash_table *globals;
ba96a88f
NC
14725
14726 i_ehdrp = elf_elfheader (abfd);
14727
94a3258f
PB
14728 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14729 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14730 else
7394f108 14731 _bfd_elf_post_process_headers (abfd, link_info);
ba96a88f 14732 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 14733
93204d3a
PB
14734 if (link_info)
14735 {
14736 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 14737 if (globals != NULL && globals->byteswap_code)
93204d3a
PB
14738 i_ehdrp->e_flags |= EF_ARM_BE8;
14739 }
3bfcb652
NC
14740
14741 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14742 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14743 {
14744 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
5c294fee 14745 if (abi == AEABI_VFP_args_vfp)
3bfcb652
NC
14746 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14747 else
14748 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14749 }
ba96a88f
NC
14750}
14751
99e4ae17 14752static enum elf_reloc_type_class
7e612e98
AM
14753elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
14754 const asection *rel_sec ATTRIBUTE_UNUSED,
14755 const Elf_Internal_Rela *rela)
99e4ae17 14756{
f51e552e 14757 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
14758 {
14759 case R_ARM_RELATIVE:
14760 return reloc_class_relative;
14761 case R_ARM_JUMP_SLOT:
14762 return reloc_class_plt;
14763 case R_ARM_COPY:
14764 return reloc_class_copy;
14765 default:
14766 return reloc_class_normal;
14767 }
14768}
14769
e489d0ae 14770static void
57e8b36a 14771elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 14772{
5a6c6817 14773 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
14774}
14775
40a18ebd
NC
14776/* Return TRUE if this is an unwinding table entry. */
14777
14778static bfd_boolean
14779is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14780{
0112cd26
NC
14781 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14782 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
14783}
14784
14785
14786/* Set the type and flags for an ARM section. We do this by
14787 the section name, which is a hack, but ought to work. */
14788
14789static bfd_boolean
14790elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14791{
14792 const char * name;
14793
14794 name = bfd_get_section_name (abfd, sec);
14795
14796 if (is_arm_elf_unwind_section_name (abfd, name))
14797 {
14798 hdr->sh_type = SHT_ARM_EXIDX;
14799 hdr->sh_flags |= SHF_LINK_ORDER;
14800 }
14801 return TRUE;
14802}
14803
6dc132d9
L
14804/* Handle an ARM specific section when reading an object file. This is
14805 called when bfd_section_from_shdr finds a section with an unknown
14806 type. */
40a18ebd
NC
14807
14808static bfd_boolean
14809elf32_arm_section_from_shdr (bfd *abfd,
14810 Elf_Internal_Shdr * hdr,
6dc132d9
L
14811 const char *name,
14812 int shindex)
40a18ebd
NC
14813{
14814 /* There ought to be a place to keep ELF backend specific flags, but
14815 at the moment there isn't one. We just keep track of the
14816 sections by their name, instead. Fortunately, the ABI gives
14817 names for all the ARM specific sections, so we will probably get
14818 away with this. */
14819 switch (hdr->sh_type)
14820 {
14821 case SHT_ARM_EXIDX:
0951f019
RE
14822 case SHT_ARM_PREEMPTMAP:
14823 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
14824 break;
14825
14826 default:
14827 return FALSE;
14828 }
14829
6dc132d9 14830 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
14831 return FALSE;
14832
14833 return TRUE;
14834}
e489d0ae 14835
44444f50
NC
14836static _arm_elf_section_data *
14837get_arm_elf_section_data (asection * sec)
14838{
47b2e99c
JZ
14839 if (sec && sec->owner && is_arm_elf (sec->owner))
14840 return elf32_arm_section_data (sec);
44444f50
NC
14841 else
14842 return NULL;
8e3de13a
NC
14843}
14844
4e617b1e
PB
14845typedef struct
14846{
57402f1e 14847 void *flaginfo;
4e617b1e 14848 struct bfd_link_info *info;
91a5743d
PB
14849 asection *sec;
14850 int sec_shndx;
6e0b88f1
AM
14851 int (*func) (void *, const char *, Elf_Internal_Sym *,
14852 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
14853} output_arch_syminfo;
14854
14855enum map_symbol_type
14856{
14857 ARM_MAP_ARM,
14858 ARM_MAP_THUMB,
14859 ARM_MAP_DATA
14860};
14861
14862
7413f23f 14863/* Output a single mapping symbol. */
4e617b1e
PB
14864
14865static bfd_boolean
7413f23f
DJ
14866elf32_arm_output_map_sym (output_arch_syminfo *osi,
14867 enum map_symbol_type type,
14868 bfd_vma offset)
4e617b1e
PB
14869{
14870 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
14871 Elf_Internal_Sym sym;
14872
91a5743d
PB
14873 sym.st_value = osi->sec->output_section->vma
14874 + osi->sec->output_offset
14875 + offset;
4e617b1e
PB
14876 sym.st_size = 0;
14877 sym.st_other = 0;
14878 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 14879 sym.st_shndx = osi->sec_shndx;
35fc36a8 14880 sym.st_target_internal = 0;
fe33d2fa 14881 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 14882 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
14883}
14884
34e77a92
RS
14885/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14886 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e
PB
14887
14888static bfd_boolean
34e77a92
RS
14889elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14890 bfd_boolean is_iplt_entry_p,
14891 union gotplt_union *root_plt,
14892 struct arm_plt_info *arm_plt)
4e617b1e 14893{
4e617b1e 14894 struct elf32_arm_link_hash_table *htab;
34e77a92 14895 bfd_vma addr, plt_header_size;
4e617b1e 14896
34e77a92 14897 if (root_plt->offset == (bfd_vma) -1)
4e617b1e
PB
14898 return TRUE;
14899
4dfe6ac6
NC
14900 htab = elf32_arm_hash_table (osi->info);
14901 if (htab == NULL)
14902 return FALSE;
14903
34e77a92
RS
14904 if (is_iplt_entry_p)
14905 {
14906 osi->sec = htab->root.iplt;
14907 plt_header_size = 0;
14908 }
14909 else
14910 {
14911 osi->sec = htab->root.splt;
14912 plt_header_size = htab->plt_header_size;
14913 }
14914 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14915 (osi->info->output_bfd, osi->sec->output_section));
14916
14917 addr = root_plt->offset & -2;
4e617b1e
PB
14918 if (htab->symbian_p)
14919 {
7413f23f 14920 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14921 return FALSE;
7413f23f 14922 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
14923 return FALSE;
14924 }
14925 else if (htab->vxworks_p)
14926 {
7413f23f 14927 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14928 return FALSE;
7413f23f 14929 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 14930 return FALSE;
7413f23f 14931 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 14932 return FALSE;
7413f23f 14933 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
14934 return FALSE;
14935 }
b38cadfb
NC
14936 else if (htab->nacl_p)
14937 {
14938 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14939 return FALSE;
14940 }
eed94f8f
NC
14941 else if (using_thumb_only (htab))
14942 {
14943 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
14944 return FALSE;
6a631e86 14945 }
4e617b1e
PB
14946 else
14947 {
34e77a92 14948 bfd_boolean thumb_stub_p;
bd97cb95 14949
34e77a92
RS
14950 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14951 if (thumb_stub_p)
4e617b1e 14952 {
7413f23f 14953 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
14954 return FALSE;
14955 }
14956#ifdef FOUR_WORD_PLT
7413f23f 14957 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14958 return FALSE;
7413f23f 14959 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
14960 return FALSE;
14961#else
906e58ca 14962 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
14963 so only need to output a mapping symbol for the first PLT entry and
14964 entries with thumb thunks. */
34e77a92 14965 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 14966 {
7413f23f 14967 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
14968 return FALSE;
14969 }
14970#endif
14971 }
14972
14973 return TRUE;
14974}
14975
34e77a92
RS
14976/* Output mapping symbols for PLT entries associated with H. */
14977
14978static bfd_boolean
14979elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14980{
14981 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14982 struct elf32_arm_link_hash_entry *eh;
14983
14984 if (h->root.type == bfd_link_hash_indirect)
14985 return TRUE;
14986
14987 if (h->root.type == bfd_link_hash_warning)
14988 /* When warning symbols are created, they **replace** the "real"
14989 entry in the hash table, thus we never get to see the real
14990 symbol in a hash traversal. So look at it now. */
14991 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14992
14993 eh = (struct elf32_arm_link_hash_entry *) h;
14994 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14995 &h->plt, &eh->plt);
14996}
14997
7413f23f
DJ
14998/* Output a single local symbol for a generated stub. */
14999
15000static bfd_boolean
15001elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
15002 bfd_vma offset, bfd_vma size)
15003{
7413f23f
DJ
15004 Elf_Internal_Sym sym;
15005
7413f23f
DJ
15006 sym.st_value = osi->sec->output_section->vma
15007 + osi->sec->output_offset
15008 + offset;
15009 sym.st_size = size;
15010 sym.st_other = 0;
15011 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15012 sym.st_shndx = osi->sec_shndx;
35fc36a8 15013 sym.st_target_internal = 0;
57402f1e 15014 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 15015}
4e617b1e 15016
da5938a2 15017static bfd_boolean
8029a119
NC
15018arm_map_one_stub (struct bfd_hash_entry * gen_entry,
15019 void * in_arg)
da5938a2
NC
15020{
15021 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
15022 asection *stub_sec;
15023 bfd_vma addr;
7413f23f 15024 char *stub_name;
9a008db3 15025 output_arch_syminfo *osi;
d3ce72d0 15026 const insn_sequence *template_sequence;
461a49ca
DJ
15027 enum stub_insn_type prev_type;
15028 int size;
15029 int i;
15030 enum map_symbol_type sym_type;
da5938a2
NC
15031
15032 /* Massage our args to the form they really have. */
15033 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 15034 osi = (output_arch_syminfo *) in_arg;
da5938a2 15035
da5938a2
NC
15036 stub_sec = stub_entry->stub_sec;
15037
15038 /* Ensure this stub is attached to the current section being
7413f23f 15039 processed. */
da5938a2
NC
15040 if (stub_sec != osi->sec)
15041 return TRUE;
15042
7413f23f
DJ
15043 addr = (bfd_vma) stub_entry->stub_offset;
15044 stub_name = stub_entry->output_name;
da5938a2 15045
d3ce72d0
NC
15046 template_sequence = stub_entry->stub_template;
15047 switch (template_sequence[0].type)
7413f23f 15048 {
461a49ca
DJ
15049 case ARM_TYPE:
15050 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
da5938a2
NC
15051 return FALSE;
15052 break;
461a49ca 15053 case THUMB16_TYPE:
48229727 15054 case THUMB32_TYPE:
461a49ca
DJ
15055 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
15056 stub_entry->stub_size))
da5938a2
NC
15057 return FALSE;
15058 break;
15059 default:
15060 BFD_FAIL ();
48229727 15061 return 0;
7413f23f 15062 }
da5938a2 15063
461a49ca
DJ
15064 prev_type = DATA_TYPE;
15065 size = 0;
15066 for (i = 0; i < stub_entry->stub_template_size; i++)
15067 {
d3ce72d0 15068 switch (template_sequence[i].type)
461a49ca
DJ
15069 {
15070 case ARM_TYPE:
15071 sym_type = ARM_MAP_ARM;
15072 break;
15073
15074 case THUMB16_TYPE:
48229727 15075 case THUMB32_TYPE:
461a49ca
DJ
15076 sym_type = ARM_MAP_THUMB;
15077 break;
15078
15079 case DATA_TYPE:
15080 sym_type = ARM_MAP_DATA;
15081 break;
15082
15083 default:
15084 BFD_FAIL ();
4e31c731 15085 return FALSE;
461a49ca
DJ
15086 }
15087
d3ce72d0 15088 if (template_sequence[i].type != prev_type)
461a49ca 15089 {
d3ce72d0 15090 prev_type = template_sequence[i].type;
461a49ca
DJ
15091 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
15092 return FALSE;
15093 }
15094
d3ce72d0 15095 switch (template_sequence[i].type)
461a49ca
DJ
15096 {
15097 case ARM_TYPE:
48229727 15098 case THUMB32_TYPE:
461a49ca
DJ
15099 size += 4;
15100 break;
15101
15102 case THUMB16_TYPE:
15103 size += 2;
15104 break;
15105
15106 case DATA_TYPE:
15107 size += 4;
15108 break;
15109
15110 default:
15111 BFD_FAIL ();
4e31c731 15112 return FALSE;
461a49ca
DJ
15113 }
15114 }
15115
da5938a2
NC
15116 return TRUE;
15117}
15118
33811162
DG
15119/* Output mapping symbols for linker generated sections,
15120 and for those data-only sections that do not have a
15121 $d. */
4e617b1e
PB
15122
15123static bfd_boolean
15124elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 15125 struct bfd_link_info *info,
57402f1e 15126 void *flaginfo,
6e0b88f1
AM
15127 int (*func) (void *, const char *,
15128 Elf_Internal_Sym *,
15129 asection *,
15130 struct elf_link_hash_entry *))
4e617b1e
PB
15131{
15132 output_arch_syminfo osi;
15133 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
15134 bfd_vma offset;
15135 bfd_size_type size;
33811162 15136 bfd *input_bfd;
4e617b1e
PB
15137
15138 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
15139 if (htab == NULL)
15140 return FALSE;
15141
906e58ca 15142 check_use_blx (htab);
91a5743d 15143
57402f1e 15144 osi.flaginfo = flaginfo;
4e617b1e
PB
15145 osi.info = info;
15146 osi.func = func;
906e58ca 15147
33811162
DG
15148 /* Add a $d mapping symbol to data-only sections that
15149 don't have any mapping symbol. This may result in (harmless) redundant
15150 mapping symbols. */
15151 for (input_bfd = info->input_bfds;
15152 input_bfd != NULL;
c72f2fb2 15153 input_bfd = input_bfd->link.next)
33811162
DG
15154 {
15155 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
15156 for (osi.sec = input_bfd->sections;
15157 osi.sec != NULL;
15158 osi.sec = osi.sec->next)
15159 {
15160 if (osi.sec->output_section != NULL
f7dd8c79
DJ
15161 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
15162 != 0)
33811162
DG
15163 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
15164 == SEC_HAS_CONTENTS
15165 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 15166 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
15167 && osi.sec->size > 0
15168 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
15169 {
15170 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15171 (output_bfd, osi.sec->output_section);
15172 if (osi.sec_shndx != (int)SHN_BAD)
15173 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
15174 }
15175 }
15176 }
15177
91a5743d
PB
15178 /* ARM->Thumb glue. */
15179 if (htab->arm_glue_size > 0)
15180 {
3d4d4302
AM
15181 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15182 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
15183
15184 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15185 (output_bfd, osi.sec->output_section);
15186 if (info->shared || htab->root.is_relocatable_executable
15187 || htab->pic_veneer)
15188 size = ARM2THUMB_PIC_GLUE_SIZE;
15189 else if (htab->use_blx)
15190 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
15191 else
15192 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 15193
91a5743d
PB
15194 for (offset = 0; offset < htab->arm_glue_size; offset += size)
15195 {
7413f23f
DJ
15196 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
15197 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
15198 }
15199 }
15200
15201 /* Thumb->ARM glue. */
15202 if (htab->thumb_glue_size > 0)
15203 {
3d4d4302
AM
15204 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15205 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
15206
15207 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15208 (output_bfd, osi.sec->output_section);
15209 size = THUMB2ARM_GLUE_SIZE;
15210
15211 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
15212 {
7413f23f
DJ
15213 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
15214 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
15215 }
15216 }
15217
845b51d6
PB
15218 /* ARMv4 BX veneers. */
15219 if (htab->bx_glue_size > 0)
15220 {
3d4d4302
AM
15221 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15222 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
15223
15224 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15225 (output_bfd, osi.sec->output_section);
15226
7413f23f 15227 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
15228 }
15229
8029a119
NC
15230 /* Long calls stubs. */
15231 if (htab->stub_bfd && htab->stub_bfd->sections)
15232 {
da5938a2 15233 asection* stub_sec;
8029a119 15234
da5938a2
NC
15235 for (stub_sec = htab->stub_bfd->sections;
15236 stub_sec != NULL;
8029a119
NC
15237 stub_sec = stub_sec->next)
15238 {
15239 /* Ignore non-stub sections. */
15240 if (!strstr (stub_sec->name, STUB_SUFFIX))
15241 continue;
da5938a2 15242
8029a119 15243 osi.sec = stub_sec;
da5938a2 15244
8029a119
NC
15245 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15246 (output_bfd, osi.sec->output_section);
da5938a2 15247
8029a119
NC
15248 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
15249 }
15250 }
da5938a2 15251
91a5743d 15252 /* Finally, output mapping symbols for the PLT. */
34e77a92 15253 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 15254 {
34e77a92
RS
15255 osi.sec = htab->root.splt;
15256 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15257 (output_bfd, osi.sec->output_section));
15258
15259 /* Output mapping symbols for the plt header. SymbianOS does not have a
15260 plt header. */
15261 if (htab->vxworks_p)
15262 {
15263 /* VxWorks shared libraries have no PLT header. */
15264 if (!info->shared)
15265 {
15266 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15267 return FALSE;
15268 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15269 return FALSE;
15270 }
15271 }
b38cadfb
NC
15272 else if (htab->nacl_p)
15273 {
15274 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15275 return FALSE;
15276 }
eed94f8f
NC
15277 else if (using_thumb_only (htab))
15278 {
15279 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
15280 return FALSE;
15281 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15282 return FALSE;
15283 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
15284 return FALSE;
15285 }
34e77a92 15286 else if (!htab->symbian_p)
4e617b1e 15287 {
7413f23f 15288 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 15289 return FALSE;
34e77a92
RS
15290#ifndef FOUR_WORD_PLT
15291 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e 15292 return FALSE;
34e77a92 15293#endif
4e617b1e
PB
15294 }
15295 }
99059e56
RM
15296 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
15297 {
15298 /* NaCl uses a special first entry in .iplt too. */
15299 osi.sec = htab->root.iplt;
15300 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15301 (output_bfd, osi.sec->output_section));
15302 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15303 return FALSE;
15304 }
34e77a92
RS
15305 if ((htab->root.splt && htab->root.splt->size > 0)
15306 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 15307 {
34e77a92
RS
15308 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
15309 for (input_bfd = info->input_bfds;
15310 input_bfd != NULL;
c72f2fb2 15311 input_bfd = input_bfd->link.next)
34e77a92
RS
15312 {
15313 struct arm_local_iplt_info **local_iplt;
15314 unsigned int i, num_syms;
4e617b1e 15315
34e77a92
RS
15316 local_iplt = elf32_arm_local_iplt (input_bfd);
15317 if (local_iplt != NULL)
15318 {
15319 num_syms = elf_symtab_hdr (input_bfd).sh_info;
15320 for (i = 0; i < num_syms; i++)
15321 if (local_iplt[i] != NULL
15322 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
15323 &local_iplt[i]->root,
15324 &local_iplt[i]->arm))
15325 return FALSE;
15326 }
15327 }
15328 }
0855e32b
NS
15329 if (htab->dt_tlsdesc_plt != 0)
15330 {
15331 /* Mapping symbols for the lazy tls trampoline. */
15332 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
15333 return FALSE;
b38cadfb 15334
0855e32b
NS
15335 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15336 htab->dt_tlsdesc_plt + 24))
15337 return FALSE;
15338 }
15339 if (htab->tls_trampoline != 0)
15340 {
15341 /* Mapping symbols for the tls trampoline. */
15342 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15343 return FALSE;
15344#ifdef FOUR_WORD_PLT
15345 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15346 htab->tls_trampoline + 12))
15347 return FALSE;
b38cadfb 15348#endif
0855e32b 15349 }
b38cadfb 15350
4e617b1e
PB
15351 return TRUE;
15352}
15353
e489d0ae
PB
15354/* Allocate target specific section data. */
15355
15356static bfd_boolean
15357elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15358{
f592407e
AM
15359 if (!sec->used_by_bfd)
15360 {
15361 _arm_elf_section_data *sdata;
15362 bfd_size_type amt = sizeof (*sdata);
e489d0ae 15363
21d799b5 15364 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
15365 if (sdata == NULL)
15366 return FALSE;
15367 sec->used_by_bfd = sdata;
15368 }
e489d0ae
PB
15369
15370 return _bfd_elf_new_section_hook (abfd, sec);
15371}
15372
15373
15374/* Used to order a list of mapping symbols by address. */
15375
15376static int
15377elf32_arm_compare_mapping (const void * a, const void * b)
15378{
7f6a71ff
JM
15379 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15380 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15381
15382 if (amap->vma > bmap->vma)
15383 return 1;
15384 else if (amap->vma < bmap->vma)
15385 return -1;
15386 else if (amap->type > bmap->type)
15387 /* Ensure results do not depend on the host qsort for objects with
15388 multiple mapping symbols at the same address by sorting on type
15389 after vma. */
15390 return 1;
15391 else if (amap->type < bmap->type)
15392 return -1;
15393 else
15394 return 0;
e489d0ae
PB
15395}
15396
2468f9c9
PB
15397/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15398
15399static unsigned long
15400offset_prel31 (unsigned long addr, bfd_vma offset)
15401{
15402 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15403}
15404
15405/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15406 relocations. */
15407
15408static void
15409copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15410{
15411 unsigned long first_word = bfd_get_32 (output_bfd, from);
15412 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 15413
2468f9c9
PB
15414 /* High bit of first word is supposed to be zero. */
15415 if ((first_word & 0x80000000ul) == 0)
15416 first_word = offset_prel31 (first_word, offset);
b38cadfb 15417
2468f9c9
PB
15418 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15419 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15420 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15421 second_word = offset_prel31 (second_word, offset);
b38cadfb 15422
2468f9c9
PB
15423 bfd_put_32 (output_bfd, first_word, to);
15424 bfd_put_32 (output_bfd, second_word, to + 4);
15425}
e489d0ae 15426
48229727
JB
15427/* Data for make_branch_to_a8_stub(). */
15428
b38cadfb
NC
15429struct a8_branch_to_stub_data
15430{
48229727
JB
15431 asection *writing_section;
15432 bfd_byte *contents;
15433};
15434
15435
15436/* Helper to insert branches to Cortex-A8 erratum stubs in the right
15437 places for a particular section. */
15438
15439static bfd_boolean
15440make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 15441 void *in_arg)
48229727
JB
15442{
15443 struct elf32_arm_stub_hash_entry *stub_entry;
15444 struct a8_branch_to_stub_data *data;
15445 bfd_byte *contents;
15446 unsigned long branch_insn;
15447 bfd_vma veneered_insn_loc, veneer_entry_loc;
15448 bfd_signed_vma branch_offset;
15449 bfd *abfd;
91d6fa6a 15450 unsigned int target;
48229727
JB
15451
15452 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15453 data = (struct a8_branch_to_stub_data *) in_arg;
15454
15455 if (stub_entry->target_section != data->writing_section
4563a860 15456 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
48229727
JB
15457 return TRUE;
15458
15459 contents = data->contents;
15460
15461 veneered_insn_loc = stub_entry->target_section->output_section->vma
15462 + stub_entry->target_section->output_offset
15463 + stub_entry->target_value;
15464
15465 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15466 + stub_entry->stub_sec->output_offset
15467 + stub_entry->stub_offset;
15468
15469 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15470 veneered_insn_loc &= ~3u;
15471
15472 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15473
15474 abfd = stub_entry->target_section->owner;
91d6fa6a 15475 target = stub_entry->target_value;
48229727
JB
15476
15477 /* We attempt to avoid this condition by setting stubs_always_after_branch
15478 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15479 This check is just to be on the safe side... */
15480 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15481 {
15482 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15483 "allocated in unsafe location"), abfd);
15484 return FALSE;
15485 }
15486
15487 switch (stub_entry->stub_type)
15488 {
15489 case arm_stub_a8_veneer_b:
15490 case arm_stub_a8_veneer_b_cond:
15491 branch_insn = 0xf0009000;
15492 goto jump24;
15493
15494 case arm_stub_a8_veneer_blx:
15495 branch_insn = 0xf000e800;
15496 goto jump24;
15497
15498 case arm_stub_a8_veneer_bl:
15499 {
15500 unsigned int i1, j1, i2, j2, s;
15501
15502 branch_insn = 0xf000d000;
15503
15504 jump24:
15505 if (branch_offset < -16777216 || branch_offset > 16777214)
15506 {
15507 /* There's not much we can do apart from complain if this
15508 happens. */
15509 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15510 "of range (input file too large)"), abfd);
15511 return FALSE;
15512 }
15513
15514 /* i1 = not(j1 eor s), so:
15515 not i1 = j1 eor s
15516 j1 = (not i1) eor s. */
15517
15518 branch_insn |= (branch_offset >> 1) & 0x7ff;
15519 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15520 i2 = (branch_offset >> 22) & 1;
15521 i1 = (branch_offset >> 23) & 1;
15522 s = (branch_offset >> 24) & 1;
15523 j1 = (!i1) ^ s;
15524 j2 = (!i2) ^ s;
15525 branch_insn |= j2 << 11;
15526 branch_insn |= j1 << 13;
15527 branch_insn |= s << 26;
15528 }
15529 break;
15530
15531 default:
15532 BFD_FAIL ();
15533 return FALSE;
15534 }
15535
91d6fa6a
NC
15536 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15537 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
48229727
JB
15538
15539 return TRUE;
15540}
15541
e489d0ae
PB
15542/* Do code byteswapping. Return FALSE afterwards so that the section is
15543 written out as normal. */
15544
15545static bfd_boolean
c7b8f16e 15546elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
15547 struct bfd_link_info *link_info,
15548 asection *sec,
e489d0ae
PB
15549 bfd_byte *contents)
15550{
48229727 15551 unsigned int mapcount, errcount;
8e3de13a 15552 _arm_elf_section_data *arm_data;
c7b8f16e 15553 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 15554 elf32_arm_section_map *map;
c7b8f16e 15555 elf32_vfp11_erratum_list *errnode;
e489d0ae
PB
15556 bfd_vma ptr;
15557 bfd_vma end;
c7b8f16e 15558 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 15559 bfd_byte tmp;
48229727 15560 unsigned int i;
57e8b36a 15561
4dfe6ac6
NC
15562 if (globals == NULL)
15563 return FALSE;
15564
8e3de13a
NC
15565 /* If this section has not been allocated an _arm_elf_section_data
15566 structure then we cannot record anything. */
15567 arm_data = get_arm_elf_section_data (sec);
15568 if (arm_data == NULL)
15569 return FALSE;
15570
15571 mapcount = arm_data->mapcount;
15572 map = arm_data->map;
c7b8f16e
JB
15573 errcount = arm_data->erratumcount;
15574
15575 if (errcount != 0)
15576 {
15577 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15578
15579 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
15580 errnode = errnode->next)
15581 {
15582 bfd_vma target = errnode->vma - offset;
15583
15584 switch (errnode->type)
15585 {
15586 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15587 {
15588 bfd_vma branch_to_veneer;
15589 /* Original condition code of instruction, plus bit mask for
15590 ARM B instruction. */
15591 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15592 | 0x0a000000;
c7b8f16e
JB
15593
15594 /* The instruction is before the label. */
91d6fa6a 15595 target -= 4;
c7b8f16e
JB
15596
15597 /* Above offset included in -4 below. */
15598 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 15599 - errnode->vma - 4;
c7b8f16e
JB
15600
15601 if ((signed) branch_to_veneer < -(1 << 25)
15602 || (signed) branch_to_veneer >= (1 << 25))
15603 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15604 "range"), output_bfd);
15605
99059e56
RM
15606 insn |= (branch_to_veneer >> 2) & 0xffffff;
15607 contents[endianflip ^ target] = insn & 0xff;
15608 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15609 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15610 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15611 }
15612 break;
c7b8f16e
JB
15613
15614 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
15615 {
15616 bfd_vma branch_from_veneer;
15617 unsigned int insn;
c7b8f16e 15618
99059e56
RM
15619 /* Take size of veneer into account. */
15620 branch_from_veneer = errnode->u.v.branch->vma
15621 - errnode->vma - 12;
c7b8f16e
JB
15622
15623 if ((signed) branch_from_veneer < -(1 << 25)
15624 || (signed) branch_from_veneer >= (1 << 25))
15625 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15626 "range"), output_bfd);
15627
99059e56
RM
15628 /* Original instruction. */
15629 insn = errnode->u.v.branch->u.b.vfp_insn;
15630 contents[endianflip ^ target] = insn & 0xff;
15631 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15632 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15633 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15634
15635 /* Branch back to insn after original insn. */
15636 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15637 contents[endianflip ^ (target + 4)] = insn & 0xff;
15638 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15639 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15640 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15641 }
15642 break;
c7b8f16e 15643
99059e56
RM
15644 default:
15645 abort ();
15646 }
15647 }
c7b8f16e 15648 }
e489d0ae 15649
2468f9c9
PB
15650 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15651 {
15652 arm_unwind_table_edit *edit_node
99059e56 15653 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 15654 /* Now, sec->size is the size of the section we will write. The original
99059e56 15655 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
15656 markers) was sec->rawsize. (This isn't the case if we perform no
15657 edits, then rawsize will be zero and we should use size). */
21d799b5 15658 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
15659 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15660 unsigned int in_index, out_index;
15661 bfd_vma add_to_offsets = 0;
15662
15663 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 15664 {
2468f9c9
PB
15665 if (edit_node)
15666 {
15667 unsigned int edit_index = edit_node->index;
b38cadfb 15668
2468f9c9 15669 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 15670 {
2468f9c9
PB
15671 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15672 contents + in_index * 8, add_to_offsets);
15673 out_index++;
15674 in_index++;
15675 }
15676 else if (in_index == edit_index
15677 || (in_index * 8 >= input_size
15678 && edit_index == UINT_MAX))
99059e56 15679 {
2468f9c9
PB
15680 switch (edit_node->type)
15681 {
15682 case DELETE_EXIDX_ENTRY:
15683 in_index++;
15684 add_to_offsets += 8;
15685 break;
b38cadfb 15686
2468f9c9
PB
15687 case INSERT_EXIDX_CANTUNWIND_AT_END:
15688 {
99059e56 15689 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
15690 bfd_vma text_offset = text_sec->output_section->vma
15691 + text_sec->output_offset
15692 + text_sec->size;
15693 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 15694 unsigned long prel31_offset;
2468f9c9
PB
15695
15696 /* Note: this is meant to be equivalent to an
15697 R_ARM_PREL31 relocation. These synthetic
15698 EXIDX_CANTUNWIND markers are not relocated by the
15699 usual BFD method. */
15700 prel31_offset = (text_offset - exidx_offset)
15701 & 0x7ffffffful;
15702
15703 /* First address we can't unwind. */
15704 bfd_put_32 (output_bfd, prel31_offset,
15705 &edited_contents[out_index * 8]);
15706
15707 /* Code for EXIDX_CANTUNWIND. */
15708 bfd_put_32 (output_bfd, 0x1,
15709 &edited_contents[out_index * 8 + 4]);
15710
15711 out_index++;
15712 add_to_offsets -= 8;
15713 }
15714 break;
15715 }
b38cadfb 15716
2468f9c9
PB
15717 edit_node = edit_node->next;
15718 }
15719 }
15720 else
15721 {
15722 /* No more edits, copy remaining entries verbatim. */
15723 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15724 contents + in_index * 8, add_to_offsets);
15725 out_index++;
15726 in_index++;
15727 }
15728 }
15729
15730 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15731 bfd_set_section_contents (output_bfd, sec->output_section,
15732 edited_contents,
15733 (file_ptr) sec->output_offset, sec->size);
15734
15735 return TRUE;
15736 }
15737
48229727
JB
15738 /* Fix code to point to Cortex-A8 erratum stubs. */
15739 if (globals->fix_cortex_a8)
15740 {
15741 struct a8_branch_to_stub_data data;
15742
15743 data.writing_section = sec;
15744 data.contents = contents;
15745
15746 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15747 &data);
15748 }
15749
e489d0ae
PB
15750 if (mapcount == 0)
15751 return FALSE;
15752
c7b8f16e 15753 if (globals->byteswap_code)
e489d0ae 15754 {
c7b8f16e 15755 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 15756
c7b8f16e
JB
15757 ptr = map[0].vma;
15758 for (i = 0; i < mapcount; i++)
99059e56
RM
15759 {
15760 if (i == mapcount - 1)
c7b8f16e 15761 end = sec->size;
99059e56
RM
15762 else
15763 end = map[i + 1].vma;
e489d0ae 15764
99059e56 15765 switch (map[i].type)
e489d0ae 15766 {
c7b8f16e
JB
15767 case 'a':
15768 /* Byte swap code words. */
15769 while (ptr + 3 < end)
99059e56
RM
15770 {
15771 tmp = contents[ptr];
15772 contents[ptr] = contents[ptr + 3];
15773 contents[ptr + 3] = tmp;
15774 tmp = contents[ptr + 1];
15775 contents[ptr + 1] = contents[ptr + 2];
15776 contents[ptr + 2] = tmp;
15777 ptr += 4;
15778 }
c7b8f16e 15779 break;
e489d0ae 15780
c7b8f16e
JB
15781 case 't':
15782 /* Byte swap code halfwords. */
15783 while (ptr + 1 < end)
99059e56
RM
15784 {
15785 tmp = contents[ptr];
15786 contents[ptr] = contents[ptr + 1];
15787 contents[ptr + 1] = tmp;
15788 ptr += 2;
15789 }
c7b8f16e
JB
15790 break;
15791
15792 case 'd':
15793 /* Leave data alone. */
15794 break;
15795 }
99059e56
RM
15796 ptr = end;
15797 }
e489d0ae 15798 }
8e3de13a 15799
93204d3a 15800 free (map);
47b2e99c 15801 arm_data->mapcount = -1;
c7b8f16e 15802 arm_data->mapsize = 0;
8e3de13a 15803 arm_data->map = NULL;
8e3de13a 15804
e489d0ae
PB
15805 return FALSE;
15806}
15807
0beaef2b
PB
15808/* Mangle thumb function symbols as we read them in. */
15809
8384fb8f 15810static bfd_boolean
0beaef2b
PB
15811elf32_arm_swap_symbol_in (bfd * abfd,
15812 const void *psrc,
15813 const void *pshn,
15814 Elf_Internal_Sym *dst)
15815{
8384fb8f
AM
15816 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15817 return FALSE;
0beaef2b
PB
15818
15819 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 15820 the address. */
63e1a0fc
PB
15821 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15822 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 15823 {
63e1a0fc
PB
15824 if (dst->st_value & 1)
15825 {
15826 dst->st_value &= ~(bfd_vma) 1;
15827 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15828 }
15829 else
15830 dst->st_target_internal = ST_BRANCH_TO_ARM;
35fc36a8
RS
15831 }
15832 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15833 {
15834 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15835 dst->st_target_internal = ST_BRANCH_TO_THUMB;
0beaef2b 15836 }
35fc36a8
RS
15837 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15838 dst->st_target_internal = ST_BRANCH_LONG;
15839 else
63e1a0fc 15840 dst->st_target_internal = ST_BRANCH_UNKNOWN;
35fc36a8 15841
8384fb8f 15842 return TRUE;
0beaef2b
PB
15843}
15844
15845
15846/* Mangle thumb function symbols as we write them out. */
15847
15848static void
15849elf32_arm_swap_symbol_out (bfd *abfd,
15850 const Elf_Internal_Sym *src,
15851 void *cdst,
15852 void *shndx)
15853{
15854 Elf_Internal_Sym newsym;
15855
15856 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15857 of the address set, as per the new EABI. We do this unconditionally
15858 because objcopy does not set the elf header flags until after
15859 it writes out the symbol table. */
35fc36a8 15860 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
0beaef2b
PB
15861 {
15862 newsym = *src;
34e77a92
RS
15863 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15864 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 15865 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
15866 {
15867 /* Do this only for defined symbols. At link type, the static
15868 linker will simulate the work of dynamic linker of resolving
15869 symbols and will carry over the thumbness of found symbols to
15870 the output symbol table. It's not clear how it happens, but
15871 the thumbness of undefined symbols can well be different at
15872 runtime, and writing '1' for them will be confusing for users
15873 and possibly for dynamic linker itself.
15874 */
15875 newsym.st_value |= 1;
15876 }
906e58ca 15877
0beaef2b
PB
15878 src = &newsym;
15879 }
15880 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15881}
15882
b294bdf8
MM
15883/* Add the PT_ARM_EXIDX program header. */
15884
15885static bfd_boolean
906e58ca 15886elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
15887 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15888{
15889 struct elf_segment_map *m;
15890 asection *sec;
15891
15892 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15893 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15894 {
15895 /* If there is already a PT_ARM_EXIDX header, then we do not
15896 want to add another one. This situation arises when running
15897 "strip"; the input binary already has the header. */
12bd6957 15898 m = elf_seg_map (abfd);
b294bdf8
MM
15899 while (m && m->p_type != PT_ARM_EXIDX)
15900 m = m->next;
15901 if (!m)
15902 {
21d799b5 15903 m = (struct elf_segment_map *)
99059e56 15904 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
15905 if (m == NULL)
15906 return FALSE;
15907 m->p_type = PT_ARM_EXIDX;
15908 m->count = 1;
15909 m->sections[0] = sec;
15910
12bd6957
AM
15911 m->next = elf_seg_map (abfd);
15912 elf_seg_map (abfd) = m;
b294bdf8
MM
15913 }
15914 }
15915
15916 return TRUE;
15917}
15918
15919/* We may add a PT_ARM_EXIDX program header. */
15920
15921static int
a6b96beb
AM
15922elf32_arm_additional_program_headers (bfd *abfd,
15923 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
15924{
15925 asection *sec;
15926
15927 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15928 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15929 return 1;
15930 else
15931 return 0;
15932}
15933
34e77a92
RS
15934/* Hook called by the linker routine which adds symbols from an object
15935 file. */
15936
15937static bfd_boolean
15938elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15939 Elf_Internal_Sym *sym, const char **namep,
15940 flagword *flagsp, asection **secp, bfd_vma *valp)
15941{
f1885d1e
AM
15942 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15943 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
15944 && (abfd->flags & DYNAMIC) == 0
15945 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
f64b2e8d 15946 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
34e77a92 15947
c792917c
NC
15948 if (elf32_arm_hash_table (info) == NULL)
15949 return FALSE;
15950
34e77a92
RS
15951 if (elf32_arm_hash_table (info)->vxworks_p
15952 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15953 flagsp, secp, valp))
15954 return FALSE;
15955
15956 return TRUE;
15957}
15958
0beaef2b 15959/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
15960const struct elf_size_info elf32_arm_size_info =
15961{
0beaef2b
PB
15962 sizeof (Elf32_External_Ehdr),
15963 sizeof (Elf32_External_Phdr),
15964 sizeof (Elf32_External_Shdr),
15965 sizeof (Elf32_External_Rel),
15966 sizeof (Elf32_External_Rela),
15967 sizeof (Elf32_External_Sym),
15968 sizeof (Elf32_External_Dyn),
15969 sizeof (Elf_External_Note),
15970 4,
15971 1,
15972 32, 2,
15973 ELFCLASS32, EV_CURRENT,
15974 bfd_elf32_write_out_phdrs,
15975 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 15976 bfd_elf32_checksum_contents,
0beaef2b
PB
15977 bfd_elf32_write_relocs,
15978 elf32_arm_swap_symbol_in,
15979 elf32_arm_swap_symbol_out,
15980 bfd_elf32_slurp_reloc_table,
15981 bfd_elf32_slurp_symbol_table,
15982 bfd_elf32_swap_dyn_in,
15983 bfd_elf32_swap_dyn_out,
15984 bfd_elf32_swap_reloc_in,
15985 bfd_elf32_swap_reloc_out,
15986 bfd_elf32_swap_reloca_in,
15987 bfd_elf32_swap_reloca_out
15988};
15989
685e70ae
VK
15990static bfd_vma
15991read_code32 (const bfd *abfd, const bfd_byte *addr)
15992{
15993 /* V7 BE8 code is always little endian. */
15994 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
15995 return bfd_getl32 (addr);
15996
15997 return bfd_get_32 (abfd, addr);
15998}
15999
16000static bfd_vma
16001read_code16 (const bfd *abfd, const bfd_byte *addr)
16002{
16003 /* V7 BE8 code is always little endian. */
16004 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
16005 return bfd_getl16 (addr);
16006
16007 return bfd_get_16 (abfd, addr);
16008}
16009
6a631e86
YG
16010/* Return size of plt0 entry starting at ADDR
16011 or (bfd_vma) -1 if size can not be determined. */
16012
16013static bfd_vma
16014elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
16015{
16016 bfd_vma first_word;
16017 bfd_vma plt0_size;
16018
685e70ae 16019 first_word = read_code32 (abfd, addr);
6a631e86
YG
16020
16021 if (first_word == elf32_arm_plt0_entry[0])
16022 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
16023 else if (first_word == elf32_thumb2_plt0_entry[0])
16024 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
16025 else
16026 /* We don't yet handle this PLT format. */
16027 return (bfd_vma) -1;
16028
16029 return plt0_size;
16030}
16031
16032/* Return size of plt entry starting at offset OFFSET
16033 of plt section located at address START
16034 or (bfd_vma) -1 if size can not be determined. */
16035
16036static bfd_vma
16037elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
16038{
16039 bfd_vma first_insn;
16040 bfd_vma plt_size = 0;
16041 const bfd_byte *addr = start + offset;
16042
16043 /* PLT entry size if fixed on Thumb-only platforms. */
685e70ae 16044 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
6a631e86
YG
16045 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
16046
16047 /* Respect Thumb stub if necessary. */
685e70ae 16048 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
6a631e86
YG
16049 {
16050 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
16051 }
16052
16053 /* Strip immediate from first add. */
685e70ae 16054 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
6a631e86
YG
16055
16056#ifdef FOUR_WORD_PLT
16057 if (first_insn == elf32_arm_plt_entry[0])
16058 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
16059#else
16060 if (first_insn == elf32_arm_plt_entry_long[0])
16061 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
16062 else if (first_insn == elf32_arm_plt_entry_short[0])
16063 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
16064#endif
16065 else
16066 /* We don't yet handle this PLT format. */
16067 return (bfd_vma) -1;
16068
16069 return plt_size;
16070}
16071
16072/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
16073
16074static long
16075elf32_arm_get_synthetic_symtab (bfd *abfd,
16076 long symcount ATTRIBUTE_UNUSED,
16077 asymbol **syms ATTRIBUTE_UNUSED,
16078 long dynsymcount,
16079 asymbol **dynsyms,
16080 asymbol **ret)
16081{
16082 asection *relplt;
16083 asymbol *s;
16084 arelent *p;
16085 long count, i, n;
16086 size_t size;
16087 Elf_Internal_Shdr *hdr;
16088 char *names;
16089 asection *plt;
16090 bfd_vma offset;
16091 bfd_byte *data;
16092
16093 *ret = NULL;
16094
16095 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
16096 return 0;
16097
16098 if (dynsymcount <= 0)
16099 return 0;
16100
16101 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16102 if (relplt == NULL)
16103 return 0;
16104
16105 hdr = &elf_section_data (relplt)->this_hdr;
16106 if (hdr->sh_link != elf_dynsymtab (abfd)
16107 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
16108 return 0;
16109
16110 plt = bfd_get_section_by_name (abfd, ".plt");
16111 if (plt == NULL)
16112 return 0;
16113
16114 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
16115 return -1;
16116
16117 data = plt->contents;
16118 if (data == NULL)
16119 {
16120 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
16121 return -1;
16122 bfd_cache_section_contents((asection *) plt, data);
16123 }
16124
16125 count = relplt->size / hdr->sh_entsize;
16126 size = count * sizeof (asymbol);
16127 p = relplt->relocation;
16128 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
16129 {
16130 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
16131 if (p->addend != 0)
16132 size += sizeof ("+0x") - 1 + 8;
16133 }
16134
16135 s = *ret = (asymbol *) bfd_malloc (size);
16136 if (s == NULL)
16137 return -1;
16138
16139 offset = elf32_arm_plt0_size (abfd, data);
16140 if (offset == (bfd_vma) -1)
16141 return -1;
16142
16143 names = (char *) (s + count);
16144 p = relplt->relocation;
16145 n = 0;
16146 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
16147 {
16148 size_t len;
16149
16150 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
16151 if (plt_size == (bfd_vma) -1)
16152 break;
16153
16154 *s = **p->sym_ptr_ptr;
16155 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16156 we are defining a symbol, ensure one of them is set. */
16157 if ((s->flags & BSF_LOCAL) == 0)
16158 s->flags |= BSF_GLOBAL;
16159 s->flags |= BSF_SYNTHETIC;
16160 s->section = plt;
16161 s->value = offset;
16162 s->name = names;
16163 s->udata.p = NULL;
16164 len = strlen ((*p->sym_ptr_ptr)->name);
16165 memcpy (names, (*p->sym_ptr_ptr)->name, len);
16166 names += len;
16167 if (p->addend != 0)
16168 {
16169 char buf[30], *a;
16170
16171 memcpy (names, "+0x", sizeof ("+0x") - 1);
16172 names += sizeof ("+0x") - 1;
16173 bfd_sprintf_vma (abfd, buf, p->addend);
16174 for (a = buf; *a == '0'; ++a)
16175 ;
16176 len = strlen (a);
16177 memcpy (names, a, len);
16178 names += len;
16179 }
16180 memcpy (names, "@plt", sizeof ("@plt"));
16181 names += sizeof ("@plt");
16182 ++s, ++n;
16183 offset += plt_size;
16184 }
16185
16186 return n;
16187}
16188
252b5132 16189#define ELF_ARCH bfd_arch_arm
ae95ffa6 16190#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 16191#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
16192#ifdef __QNXTARGET__
16193#define ELF_MAXPAGESIZE 0x1000
16194#else
7572ca89 16195#define ELF_MAXPAGESIZE 0x10000
d0facd1b 16196#endif
b1342370 16197#define ELF_MINPAGESIZE 0x1000
24718e3b 16198#define ELF_COMMONPAGESIZE 0x1000
252b5132 16199
ba93b8ac
DJ
16200#define bfd_elf32_mkobject elf32_arm_mkobject
16201
99e4ae17
AJ
16202#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
16203#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
16204#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
16205#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
16206#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 16207#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 16208#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 16209#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 16210#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 16211#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 16212#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 16213#define bfd_elf32_bfd_final_link elf32_arm_final_link
6a631e86 16214#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132
RH
16215
16216#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
16217#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 16218#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
16219#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
16220#define elf_backend_check_relocs elf32_arm_check_relocs
dc810e39 16221#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 16222#define elf_backend_write_section elf32_arm_write_section
252b5132 16223#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 16224#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
16225#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
16226#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
16227#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 16228#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 16229#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 16230#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 16231#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 16232#define elf_backend_object_p elf32_arm_object_p
40a18ebd
NC
16233#define elf_backend_fake_sections elf32_arm_fake_sections
16234#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 16235#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 16236#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 16237#define elf_backend_size_info elf32_arm_size_info
b294bdf8 16238#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
16239#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
16240#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
16241#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 16242#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
906e58ca
NC
16243
16244#define elf_backend_can_refcount 1
16245#define elf_backend_can_gc_sections 1
16246#define elf_backend_plt_readonly 1
16247#define elf_backend_want_got_plt 1
16248#define elf_backend_want_plt_sym 0
16249#define elf_backend_may_use_rel_p 1
16250#define elf_backend_may_use_rela_p 0
4e7fd91e 16251#define elf_backend_default_use_rela_p 0
252b5132 16252
04f7c78d 16253#define elf_backend_got_header_size 12
04f7c78d 16254
906e58ca
NC
16255#undef elf_backend_obj_attrs_vendor
16256#define elf_backend_obj_attrs_vendor "aeabi"
16257#undef elf_backend_obj_attrs_section
16258#define elf_backend_obj_attrs_section ".ARM.attributes"
16259#undef elf_backend_obj_attrs_arg_type
16260#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
16261#undef elf_backend_obj_attrs_section_type
104d59d1 16262#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb
NC
16263#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
16264#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 16265
252b5132 16266#include "elf32-target.h"
7f266840 16267
b38cadfb
NC
16268/* Native Client targets. */
16269
16270#undef TARGET_LITTLE_SYM
6d00b590 16271#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
16272#undef TARGET_LITTLE_NAME
16273#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
16274#undef TARGET_BIG_SYM
6d00b590 16275#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
16276#undef TARGET_BIG_NAME
16277#define TARGET_BIG_NAME "elf32-bigarm-nacl"
16278
16279/* Like elf32_arm_link_hash_table_create -- but overrides
16280 appropriately for NaCl. */
16281
16282static struct bfd_link_hash_table *
16283elf32_arm_nacl_link_hash_table_create (bfd *abfd)
16284{
16285 struct bfd_link_hash_table *ret;
16286
16287 ret = elf32_arm_link_hash_table_create (abfd);
16288 if (ret)
16289 {
16290 struct elf32_arm_link_hash_table *htab
16291 = (struct elf32_arm_link_hash_table *) ret;
16292
16293 htab->nacl_p = 1;
16294
16295 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
16296 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
16297 }
16298 return ret;
16299}
16300
16301/* Since NaCl doesn't use the ARM-specific unwind format, we don't
16302 really need to use elf32_arm_modify_segment_map. But we do it
16303 anyway just to reduce gratuitous differences with the stock ARM backend. */
16304
16305static bfd_boolean
16306elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
16307{
16308 return (elf32_arm_modify_segment_map (abfd, info)
16309 && nacl_modify_segment_map (abfd, info));
16310}
16311
887badb3
RM
16312static void
16313elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
16314{
16315 elf32_arm_final_write_processing (abfd, linker);
16316 nacl_final_write_processing (abfd, linker);
16317}
16318
6a631e86
YG
16319static bfd_vma
16320elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
16321 const arelent *rel ATTRIBUTE_UNUSED)
16322{
16323 return plt->vma
16324 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
16325 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
16326}
887badb3 16327
b38cadfb 16328#undef elf32_bed
6a631e86 16329#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
16330#undef bfd_elf32_bfd_link_hash_table_create
16331#define bfd_elf32_bfd_link_hash_table_create \
16332 elf32_arm_nacl_link_hash_table_create
16333#undef elf_backend_plt_alignment
6a631e86 16334#define elf_backend_plt_alignment 4
b38cadfb
NC
16335#undef elf_backend_modify_segment_map
16336#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
16337#undef elf_backend_modify_program_headers
16338#define elf_backend_modify_program_headers nacl_modify_program_headers
887badb3
RM
16339#undef elf_backend_final_write_processing
16340#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
16341#undef bfd_elf32_get_synthetic_symtab
16342#undef elf_backend_plt_sym_val
16343#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
b38cadfb 16344
887badb3
RM
16345#undef ELF_MINPAGESIZE
16346#undef ELF_COMMONPAGESIZE
16347
b38cadfb
NC
16348
16349#include "elf32-target.h"
16350
16351/* Reset to defaults. */
16352#undef elf_backend_plt_alignment
16353#undef elf_backend_modify_segment_map
16354#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
16355#undef elf_backend_modify_program_headers
887badb3
RM
16356#undef elf_backend_final_write_processing
16357#define elf_backend_final_write_processing elf32_arm_final_write_processing
16358#undef ELF_MINPAGESIZE
16359#define ELF_MINPAGESIZE 0x1000
16360#undef ELF_COMMONPAGESIZE
16361#define ELF_COMMONPAGESIZE 0x1000
16362
b38cadfb 16363
906e58ca 16364/* VxWorks Targets. */
4e7fd91e 16365
906e58ca 16366#undef TARGET_LITTLE_SYM
6d00b590 16367#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
906e58ca 16368#undef TARGET_LITTLE_NAME
4e7fd91e 16369#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 16370#undef TARGET_BIG_SYM
6d00b590 16371#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
906e58ca 16372#undef TARGET_BIG_NAME
4e7fd91e
PB
16373#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
16374
16375/* Like elf32_arm_link_hash_table_create -- but overrides
16376 appropriately for VxWorks. */
906e58ca 16377
4e7fd91e
PB
16378static struct bfd_link_hash_table *
16379elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
16380{
16381 struct bfd_link_hash_table *ret;
16382
16383 ret = elf32_arm_link_hash_table_create (abfd);
16384 if (ret)
16385 {
16386 struct elf32_arm_link_hash_table *htab
00a97672 16387 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 16388 htab->use_rel = 0;
00a97672 16389 htab->vxworks_p = 1;
4e7fd91e
PB
16390 }
16391 return ret;
906e58ca 16392}
4e7fd91e 16393
00a97672
RS
16394static void
16395elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
16396{
16397 elf32_arm_final_write_processing (abfd, linker);
16398 elf_vxworks_final_write_processing (abfd, linker);
16399}
16400
906e58ca 16401#undef elf32_bed
4e7fd91e
PB
16402#define elf32_bed elf32_arm_vxworks_bed
16403
906e58ca
NC
16404#undef bfd_elf32_bfd_link_hash_table_create
16405#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
16406#undef elf_backend_final_write_processing
16407#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
16408#undef elf_backend_emit_relocs
16409#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 16410
906e58ca 16411#undef elf_backend_may_use_rel_p
00a97672 16412#define elf_backend_may_use_rel_p 0
906e58ca 16413#undef elf_backend_may_use_rela_p
00a97672 16414#define elf_backend_may_use_rela_p 1
906e58ca 16415#undef elf_backend_default_use_rela_p
00a97672 16416#define elf_backend_default_use_rela_p 1
906e58ca 16417#undef elf_backend_want_plt_sym
00a97672 16418#define elf_backend_want_plt_sym 1
906e58ca 16419#undef ELF_MAXPAGESIZE
00a97672 16420#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
16421
16422#include "elf32-target.h"
16423
16424
21d799b5
NC
16425/* Merge backend specific data from an object file to the output
16426 object file when linking. */
16427
16428static bfd_boolean
16429elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
16430{
16431 flagword out_flags;
16432 flagword in_flags;
16433 bfd_boolean flags_compatible = TRUE;
16434 asection *sec;
16435
cc643b88 16436 /* Check if we have the same endianness. */
21d799b5
NC
16437 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
16438 return FALSE;
16439
16440 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
16441 return TRUE;
16442
16443 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
16444 return FALSE;
16445
16446 /* The input BFD must have had its flags initialised. */
16447 /* The following seems bogus to me -- The flags are initialized in
16448 the assembler but I don't think an elf_flags_init field is
16449 written into the object. */
16450 /* BFD_ASSERT (elf_flags_init (ibfd)); */
16451
16452 in_flags = elf_elfheader (ibfd)->e_flags;
16453 out_flags = elf_elfheader (obfd)->e_flags;
16454
16455 /* In theory there is no reason why we couldn't handle this. However
16456 in practice it isn't even close to working and there is no real
16457 reason to want it. */
16458 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
16459 && !(ibfd->flags & DYNAMIC)
16460 && (in_flags & EF_ARM_BE8))
16461 {
16462 _bfd_error_handler (_("error: %B is already in final BE8 format"),
16463 ibfd);
16464 return FALSE;
16465 }
16466
16467 if (!elf_flags_init (obfd))
16468 {
16469 /* If the input is the default architecture and had the default
16470 flags then do not bother setting the flags for the output
16471 architecture, instead allow future merges to do this. If no
16472 future merges ever set these flags then they will retain their
99059e56
RM
16473 uninitialised values, which surprise surprise, correspond
16474 to the default values. */
21d799b5
NC
16475 if (bfd_get_arch_info (ibfd)->the_default
16476 && elf_elfheader (ibfd)->e_flags == 0)
16477 return TRUE;
16478
16479 elf_flags_init (obfd) = TRUE;
16480 elf_elfheader (obfd)->e_flags = in_flags;
16481
16482 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
16483 && bfd_get_arch_info (obfd)->the_default)
16484 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
16485
16486 return TRUE;
16487 }
16488
16489 /* Determine what should happen if the input ARM architecture
16490 does not match the output ARM architecture. */
16491 if (! bfd_arm_merge_machines (ibfd, obfd))
16492 return FALSE;
16493
16494 /* Identical flags must be compatible. */
16495 if (in_flags == out_flags)
16496 return TRUE;
16497
16498 /* Check to see if the input BFD actually contains any sections. If
16499 not, its flags may not have been initialised either, but it
16500 cannot actually cause any incompatiblity. Do not short-circuit
16501 dynamic objects; their section list may be emptied by
16502 elf_link_add_object_symbols.
16503
16504 Also check to see if there are no code sections in the input.
16505 In this case there is no need to check for code specific flags.
16506 XXX - do we need to worry about floating-point format compatability
16507 in data sections ? */
16508 if (!(ibfd->flags & DYNAMIC))
16509 {
16510 bfd_boolean null_input_bfd = TRUE;
16511 bfd_boolean only_data_sections = TRUE;
16512
16513 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
16514 {
16515 /* Ignore synthetic glue sections. */
16516 if (strcmp (sec->name, ".glue_7")
16517 && strcmp (sec->name, ".glue_7t"))
16518 {
16519 if ((bfd_get_section_flags (ibfd, sec)
16520 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16521 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
99059e56 16522 only_data_sections = FALSE;
21d799b5
NC
16523
16524 null_input_bfd = FALSE;
16525 break;
16526 }
16527 }
16528
16529 if (null_input_bfd || only_data_sections)
16530 return TRUE;
16531 }
16532
16533 /* Complain about various flag mismatches. */
16534 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
16535 EF_ARM_EABI_VERSION (out_flags)))
16536 {
16537 _bfd_error_handler
16538 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
16539 ibfd, obfd,
16540 (in_flags & EF_ARM_EABIMASK) >> 24,
16541 (out_flags & EF_ARM_EABIMASK) >> 24);
16542 return FALSE;
16543 }
16544
16545 /* Not sure what needs to be checked for EABI versions >= 1. */
16546 /* VxWorks libraries do not use these flags. */
16547 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
16548 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
16549 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
16550 {
16551 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
16552 {
16553 _bfd_error_handler
16554 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
16555 ibfd, obfd,
16556 in_flags & EF_ARM_APCS_26 ? 26 : 32,
16557 out_flags & EF_ARM_APCS_26 ? 26 : 32);
16558 flags_compatible = FALSE;
16559 }
16560
16561 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
16562 {
16563 if (in_flags & EF_ARM_APCS_FLOAT)
16564 _bfd_error_handler
16565 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16566 ibfd, obfd);
16567 else
16568 _bfd_error_handler
16569 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16570 ibfd, obfd);
16571
16572 flags_compatible = FALSE;
16573 }
16574
16575 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16576 {
16577 if (in_flags & EF_ARM_VFP_FLOAT)
16578 _bfd_error_handler
16579 (_("error: %B uses VFP instructions, whereas %B does not"),
16580 ibfd, obfd);
16581 else
16582 _bfd_error_handler
16583 (_("error: %B uses FPA instructions, whereas %B does not"),
16584 ibfd, obfd);
16585
16586 flags_compatible = FALSE;
16587 }
16588
16589 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16590 {
16591 if (in_flags & EF_ARM_MAVERICK_FLOAT)
16592 _bfd_error_handler
16593 (_("error: %B uses Maverick instructions, whereas %B does not"),
16594 ibfd, obfd);
16595 else
16596 _bfd_error_handler
16597 (_("error: %B does not use Maverick instructions, whereas %B does"),
16598 ibfd, obfd);
16599
16600 flags_compatible = FALSE;
16601 }
16602
16603#ifdef EF_ARM_SOFT_FLOAT
16604 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16605 {
16606 /* We can allow interworking between code that is VFP format
16607 layout, and uses either soft float or integer regs for
16608 passing floating point arguments and results. We already
16609 know that the APCS_FLOAT flags match; similarly for VFP
16610 flags. */
16611 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16612 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16613 {
16614 if (in_flags & EF_ARM_SOFT_FLOAT)
16615 _bfd_error_handler
16616 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16617 ibfd, obfd);
16618 else
16619 _bfd_error_handler
16620 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16621 ibfd, obfd);
16622
16623 flags_compatible = FALSE;
16624 }
16625 }
16626#endif
16627
16628 /* Interworking mismatch is only a warning. */
16629 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16630 {
16631 if (in_flags & EF_ARM_INTERWORK)
16632 {
16633 _bfd_error_handler
16634 (_("Warning: %B supports interworking, whereas %B does not"),
16635 ibfd, obfd);
16636 }
16637 else
16638 {
16639 _bfd_error_handler
16640 (_("Warning: %B does not support interworking, whereas %B does"),
16641 ibfd, obfd);
16642 }
16643 }
16644 }
16645
16646 return flags_compatible;
16647}
16648
16649
906e58ca 16650/* Symbian OS Targets. */
7f266840 16651
906e58ca 16652#undef TARGET_LITTLE_SYM
6d00b590 16653#define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
906e58ca 16654#undef TARGET_LITTLE_NAME
7f266840 16655#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 16656#undef TARGET_BIG_SYM
6d00b590 16657#define TARGET_BIG_SYM arm_elf32_symbian_be_vec
906e58ca 16658#undef TARGET_BIG_NAME
7f266840
DJ
16659#define TARGET_BIG_NAME "elf32-bigarm-symbian"
16660
16661/* Like elf32_arm_link_hash_table_create -- but overrides
16662 appropriately for Symbian OS. */
906e58ca 16663
7f266840
DJ
16664static struct bfd_link_hash_table *
16665elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16666{
16667 struct bfd_link_hash_table *ret;
16668
16669 ret = elf32_arm_link_hash_table_create (abfd);
16670 if (ret)
16671 {
16672 struct elf32_arm_link_hash_table *htab
16673 = (struct elf32_arm_link_hash_table *)ret;
16674 /* There is no PLT header for Symbian OS. */
16675 htab->plt_header_size = 0;
95720a86
DJ
16676 /* The PLT entries are each one instruction and one word. */
16677 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 16678 htab->symbian_p = 1;
33bfe774
JB
16679 /* Symbian uses armv5t or above, so use_blx is always true. */
16680 htab->use_blx = 1;
67687978 16681 htab->root.is_relocatable_executable = 1;
7f266840
DJ
16682 }
16683 return ret;
906e58ca 16684}
7f266840 16685
b35d266b 16686static const struct bfd_elf_special_section
551b43fd 16687elf32_arm_symbian_special_sections[] =
7f266840 16688{
5cd3778d
MM
16689 /* In a BPABI executable, the dynamic linking sections do not go in
16690 the loadable read-only segment. The post-linker may wish to
16691 refer to these sections, but they are not part of the final
16692 program image. */
0112cd26
NC
16693 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16694 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16695 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16696 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16697 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
16698 /* These sections do not need to be writable as the SymbianOS
16699 postlinker will arrange things so that no dynamic relocation is
16700 required. */
0112cd26
NC
16701 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16702 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16703 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16704 { NULL, 0, 0, 0, 0 }
7f266840
DJ
16705};
16706
c3c76620 16707static void
906e58ca 16708elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 16709 struct bfd_link_info *link_info)
c3c76620
MM
16710{
16711 /* BPABI objects are never loaded directly by an OS kernel; they are
16712 processed by a postlinker first, into an OS-specific format. If
16713 the D_PAGED bit is set on the file, BFD will align segments on
16714 page boundaries, so that an OS can directly map the file. With
16715 BPABI objects, that just results in wasted space. In addition,
16716 because we clear the D_PAGED bit, map_sections_to_segments will
16717 recognize that the program headers should not be mapped into any
16718 loadable segment. */
16719 abfd->flags &= ~D_PAGED;
906e58ca 16720 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 16721}
7f266840
DJ
16722
16723static bfd_boolean
906e58ca 16724elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 16725 struct bfd_link_info *info)
7f266840
DJ
16726{
16727 struct elf_segment_map *m;
16728 asection *dynsec;
16729
7f266840
DJ
16730 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16731 segment. However, because the .dynamic section is not marked
16732 with SEC_LOAD, the generic ELF code will not create such a
16733 segment. */
16734 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16735 if (dynsec)
16736 {
12bd6957 16737 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8ded5a0f
AM
16738 if (m->p_type == PT_DYNAMIC)
16739 break;
16740
16741 if (m == NULL)
16742 {
16743 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12bd6957
AM
16744 m->next = elf_seg_map (abfd);
16745 elf_seg_map (abfd) = m;
8ded5a0f 16746 }
7f266840
DJ
16747 }
16748
b294bdf8
MM
16749 /* Also call the generic arm routine. */
16750 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
16751}
16752
95720a86
DJ
16753/* Return address for Ith PLT stub in section PLT, for relocation REL
16754 or (bfd_vma) -1 if it should not be included. */
16755
16756static bfd_vma
16757elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16758 const arelent *rel ATTRIBUTE_UNUSED)
16759{
16760 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16761}
16762
16763
8029a119 16764#undef elf32_bed
7f266840
DJ
16765#define elf32_bed elf32_arm_symbian_bed
16766
16767/* The dynamic sections are not allocated on SymbianOS; the postlinker
16768 will process them and then discard them. */
906e58ca 16769#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
16770#define ELF_DYNAMIC_SEC_FLAGS \
16771 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16772
00a97672 16773#undef elf_backend_emit_relocs
c3c76620 16774
906e58ca
NC
16775#undef bfd_elf32_bfd_link_hash_table_create
16776#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16777#undef elf_backend_special_sections
16778#define elf_backend_special_sections elf32_arm_symbian_special_sections
16779#undef elf_backend_begin_write_processing
16780#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16781#undef elf_backend_final_write_processing
16782#define elf_backend_final_write_processing elf32_arm_final_write_processing
16783
16784#undef elf_backend_modify_segment_map
7f266840
DJ
16785#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16786
16787/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 16788#undef elf_backend_got_header_size
7f266840
DJ
16789#define elf_backend_got_header_size 0
16790
16791/* Similarly, there is no .got.plt section. */
906e58ca 16792#undef elf_backend_want_got_plt
7f266840
DJ
16793#define elf_backend_want_got_plt 0
16794
906e58ca 16795#undef elf_backend_plt_sym_val
95720a86
DJ
16796#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16797
906e58ca 16798#undef elf_backend_may_use_rel_p
00a97672 16799#define elf_backend_may_use_rel_p 1
906e58ca 16800#undef elf_backend_may_use_rela_p
00a97672 16801#define elf_backend_may_use_rela_p 0
906e58ca 16802#undef elf_backend_default_use_rela_p
00a97672 16803#define elf_backend_default_use_rela_p 0
906e58ca 16804#undef elf_backend_want_plt_sym
00a97672 16805#define elf_backend_want_plt_sym 0
906e58ca 16806#undef ELF_MAXPAGESIZE
00a97672 16807#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 16808
7f266840 16809#include "elf32-target.h"
This page took 2.530637 seconds and 4 git commands to generate.