gdb: Fix aarch64 native build issue caused by use of LONGEST
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
CommitLineData
252b5132 1/* 32-bit ELF support for ARM
4b95cf5c 2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
252b5132
RH
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
6e6718a3 21#include "sysdep.h"
2468f9c9
PB
22#include <limits.h>
23
3db64b00 24#include "bfd.h"
6034aab8 25#include "bfd_stdint.h"
00a97672 26#include "libiberty.h"
7f266840
DJ
27#include "libbfd.h"
28#include "elf-bfd.h"
b38cadfb 29#include "elf-nacl.h"
00a97672 30#include "elf-vxworks.h"
ee065d83 31#include "elf/arm.h"
7f266840 32
00a97672
RS
33/* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35#define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38/* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40#define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45/* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47#define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52/* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54#define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
7f266840
DJ
59#define elf_info_to_howto 0
60#define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62#define ARM_ELF_ABI_VERSION 0
63#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
79f08007
YZ
65/* The Adjusted Place, as defined by AAELF. */
66#define Pa(X) ((X) & 0xfffffffc)
67
3e6b1042
DJ
68static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
7f266840
DJ
73/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
c19d1205 77static reloc_howto_type elf32_arm_howto_table_1[] =
7f266840 78{
8029a119 79 /* No relocation. */
7f266840
DJ
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 0, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
c19d1205 138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
4962c51a 139 HOWTO (R_ARM_LDR_PC_G0, /* type */
7f266840
DJ
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
4962c51a
MS
142 32, /* bitsize */
143 TRUE, /* pc_relative */
7f266840 144 0, /* bitpos */
4962c51a 145 complain_overflow_dont,/* complain_on_overflow */
7f266840 146 bfd_elf_generic_reloc, /* special_function */
4962c51a 147 "R_ARM_LDR_PC_G0", /* name */
7f266840 148 FALSE, /* partial_inplace */
4962c51a
MS
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
7f266840
DJ
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
00a97672
RS
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
7f266840
DJ
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
c19d1205 226 HOWTO (R_ARM_THM_CALL, /* type */
7f266840
DJ
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
f6ebfac0 229 24, /* bitsize */
7f266840
DJ
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
c19d1205 234 "R_ARM_THM_CALL", /* name */
7f266840 235 FALSE, /* partial_inplace */
7f6ab9f8
AM
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
7f266840
DJ
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
c19d1205 254 HOWTO (R_ARM_BREL_ADJ, /* type */
7f266840
DJ
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
257 32, /* bitsize */
258 FALSE, /* pc_relative */
7f266840
DJ
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
c19d1205 262 "R_ARM_BREL_ADJ", /* name */
7f266840 263 FALSE, /* partial_inplace */
c19d1205
ZW
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
7f266840 267
0855e32b 268 HOWTO (R_ARM_TLS_DESC, /* type */
7f266840 269 0, /* rightshift */
0855e32b
NS
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
7f266840
DJ
272 FALSE, /* pc_relative */
273 0, /* bitpos */
0855e32b 274 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 275 bfd_elf_generic_reloc, /* special_function */
0855e32b 276 "R_ARM_TLS_DESC", /* name */
7f266840 277 FALSE, /* partial_inplace */
0855e32b
NS
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
7f266840
DJ
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 300 24, /* bitsize */
7f266840
DJ
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
7f6ab9f8 315 24, /* bitsize */
7f266840
DJ
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
7f6ab9f8
AM
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
7f266840
DJ
324 TRUE), /* pcrel_offset */
325
ba93b8ac 326 /* Dynamic TLS relocations. */
7f266840 327
ba93b8ac 328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
99059e56
RM
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
7f266840 341
ba93b8ac 342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
99059e56
RM
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
7f266840 355
ba93b8ac 356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
99059e56
RM
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
7f266840
DJ
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
99059e56
RM
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
7f266840
DJ
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
99059e56
RM
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
7f266840
DJ
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
99059e56
RM
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
7f266840
DJ
413
414 HOWTO (R_ARM_RELATIVE, /* type */
99059e56
RM
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
7f266840 427
c19d1205 428 HOWTO (R_ARM_GOTOFF32, /* type */
99059e56
RM
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
7f266840
DJ
441
442 HOWTO (R_ARM_GOTPC, /* type */
99059e56
RM
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
7f266840
DJ
455
456 HOWTO (R_ARM_GOT32, /* type */
99059e56
RM
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
7f266840
DJ
469
470 HOWTO (R_ARM_PLT32, /* type */
99059e56
RM
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
7f266840
DJ
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
c19d1205
ZW
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
7f266840 517 0, /* bitpos */
c19d1205 518 complain_overflow_signed,/* complain_on_overflow */
7f266840 519 bfd_elf_generic_reloc, /* special_function */
c19d1205 520 "R_ARM_THM_JUMP24", /* name */
7f266840 521 FALSE, /* partial_inplace */
c19d1205
ZW
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
7f266840 525
c19d1205 526 HOWTO (R_ARM_BASE_ABS, /* type */
7f266840 527 0, /* rightshift */
c19d1205
ZW
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
7f266840
DJ
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
c19d1205 534 "R_ARM_BASE_ABS", /* name */
7f266840 535 FALSE, /* partial_inplace */
c19d1205
ZW
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
7f266840
DJ
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
c19d1205
ZW
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
39623e12
PB
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
c19d1205
ZW
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
39623e12
PB
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
c19d1205
ZW
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
39623e12
PB
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
c19d1205
ZW
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
39623e12
PB
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
c19d1205
ZW
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
2cab6cc3 843 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
2cab6cc3
MS
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
c19d1205
ZW
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
2cab6cc3 857 complain_overflow_dont,/* complain_on_overflow */
c19d1205
ZW
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
2cab6cc3
MS
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
c19d1205
ZW
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
7f266840 892
4962c51a
MS
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
c19d1205 1274
c19d1205
ZW
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
0855e32b
NS
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
c19d1205
ZW
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
99059e56
RM
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
c19d1205
ZW
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
99059e56
RM
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
c19d1205
ZW
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
ba93b8ac 1544
c19d1205
ZW
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
99059e56
RM
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
ba93b8ac 1559
ba93b8ac 1560 HOWTO (R_ARM_TLS_LDM32, /* type */
99059e56
RM
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
ba93b8ac 1573
c19d1205 1574 HOWTO (R_ARM_TLS_LDO32, /* type */
99059e56
RM
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
ba93b8ac 1587
ba93b8ac 1588 HOWTO (R_ARM_TLS_IE32, /* type */
99059e56
RM
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
7f266840 1601
c19d1205 1602 HOWTO (R_ARM_TLS_LE32, /* type */
99059e56
RM
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 bfd_elf_generic_reloc, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
7f266840 1615
c19d1205
ZW
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
7f266840 1621 0, /* bitpos */
c19d1205 1622 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1623 bfd_elf_generic_reloc, /* special_function */
c19d1205 1624 "R_ARM_TLS_LDO12", /* name */
7f266840 1625 FALSE, /* partial_inplace */
c19d1205
ZW
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
7f266840 1629
c19d1205
ZW
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
7f266840 1635 0, /* bitpos */
c19d1205 1636 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1637 bfd_elf_generic_reloc, /* special_function */
c19d1205 1638 "R_ARM_TLS_LE12", /* name */
7f266840 1639 FALSE, /* partial_inplace */
c19d1205
ZW
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
7f266840 1643
c19d1205 1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
7f266840
DJ
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
c19d1205
ZW
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
7f266840 1649 0, /* bitpos */
c19d1205 1650 complain_overflow_bitfield,/* complain_on_overflow */
7f266840 1651 bfd_elf_generic_reloc, /* special_function */
c19d1205 1652 "R_ARM_TLS_IE12GP", /* name */
7f266840 1653 FALSE, /* partial_inplace */
c19d1205
ZW
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
0855e32b 1657
34e77a92 1658 /* 112-127 private relocations. */
0855e32b
NS
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
34e77a92
RS
1675
1676 /* R_ARM_ME_TOO, obsolete. */
0855e32b
NS
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
c19d1205
ZW
1692};
1693
34e77a92
RS
1694/* 160 onwards: */
1695static reloc_howto_type elf32_arm_howto_table_2[1] =
1696{
1697 HOWTO (R_ARM_IRELATIVE, /* type */
99059e56
RM
1698 0, /* rightshift */
1699 2, /* size (0 = byte, 1 = short, 2 = long) */
1700 32, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_bitfield,/* complain_on_overflow */
1704 bfd_elf_generic_reloc, /* special_function */
1705 "R_ARM_IRELATIVE", /* name */
1706 TRUE, /* partial_inplace */
1707 0xffffffff, /* src_mask */
1708 0xffffffff, /* dst_mask */
1709 FALSE) /* pcrel_offset */
34e77a92 1710};
c19d1205 1711
34e77a92
RS
1712/* 249-255 extended, currently unused, relocations: */
1713static reloc_howto_type elf32_arm_howto_table_3[4] =
7f266840
DJ
1714{
1715 HOWTO (R_ARM_RREL32, /* type */
1716 0, /* rightshift */
1717 0, /* size (0 = byte, 1 = short, 2 = long) */
1718 0, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_dont,/* complain_on_overflow */
1722 bfd_elf_generic_reloc, /* special_function */
1723 "R_ARM_RREL32", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 HOWTO (R_ARM_RABS32, /* type */
1730 0, /* rightshift */
1731 0, /* size (0 = byte, 1 = short, 2 = long) */
1732 0, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont,/* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 "R_ARM_RABS32", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 HOWTO (R_ARM_RPC24, /* type */
1744 0, /* rightshift */
1745 0, /* size (0 = byte, 1 = short, 2 = long) */
1746 0, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont,/* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 "R_ARM_RPC24", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 HOWTO (R_ARM_RBASE, /* type */
1758 0, /* rightshift */
1759 0, /* size (0 = byte, 1 = short, 2 = long) */
1760 0, /* bitsize */
1761 FALSE, /* pc_relative */
1762 0, /* bitpos */
1763 complain_overflow_dont,/* complain_on_overflow */
1764 bfd_elf_generic_reloc, /* special_function */
1765 "R_ARM_RBASE", /* name */
1766 FALSE, /* partial_inplace */
1767 0, /* src_mask */
1768 0, /* dst_mask */
1769 FALSE) /* pcrel_offset */
1770};
1771
1772static reloc_howto_type *
1773elf32_arm_howto_from_type (unsigned int r_type)
1774{
906e58ca 1775 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
c19d1205 1776 return &elf32_arm_howto_table_1[r_type];
ba93b8ac 1777
34e77a92
RS
1778 if (r_type == R_ARM_IRELATIVE)
1779 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1780
c19d1205 1781 if (r_type >= R_ARM_RREL32
34e77a92
RS
1782 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1783 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
7f266840 1784
c19d1205 1785 return NULL;
7f266840
DJ
1786}
1787
1788static void
1789elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1790 Elf_Internal_Rela * elf_reloc)
1791{
1792 unsigned int r_type;
1793
1794 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1795 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1796}
1797
1798struct elf32_arm_reloc_map
1799 {
1800 bfd_reloc_code_real_type bfd_reloc_val;
1801 unsigned char elf_reloc_val;
1802 };
1803
1804/* All entries in this list must also be present in elf32_arm_howto_table. */
1805static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1806 {
1807 {BFD_RELOC_NONE, R_ARM_NONE},
1808 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
39b41c9c
PB
1809 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1810 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
7f266840
DJ
1811 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1812 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1813 {BFD_RELOC_32, R_ARM_ABS32},
1814 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1815 {BFD_RELOC_8, R_ARM_ABS8},
1816 {BFD_RELOC_16, R_ARM_ABS16},
1817 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1818 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
c19d1205
ZW
1819 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
7f266840
DJ
1825 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1826 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1827 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
c19d1205 1828 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
7f266840 1829 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
b43420e6 1830 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
7f266840
DJ
1831 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1832 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1833 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1834 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1835 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1836 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
ba93b8ac
DJ
1837 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1838 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
0855e32b
NS
1839 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1840 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1841 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1842 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1843 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
ba93b8ac
DJ
1845 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1846 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1847 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1848 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1849 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1850 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1851 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1852 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
34e77a92 1853 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
c19d1205
ZW
1854 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1855 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
b6895b4f
PB
1856 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1858 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1860 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1861 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1862 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1863 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
4962c51a
MS
1864 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1865 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1866 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1867 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1868 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1869 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1870 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1871 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1872 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1873 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1874 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1875 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1876 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1877 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1878 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1879 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1880 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1881 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1882 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1883 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1884 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1885 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1886 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1887 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1888 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1889 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1890 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
845b51d6
PB
1891 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1892 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
7f266840
DJ
1893 };
1894
1895static reloc_howto_type *
f1c71a59
ZW
1896elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1897 bfd_reloc_code_real_type code)
7f266840
DJ
1898{
1899 unsigned int i;
8029a119 1900
906e58ca 1901 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
c19d1205
ZW
1902 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1903 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
7f266840 1904
c19d1205 1905 return NULL;
7f266840
DJ
1906}
1907
157090f7
AM
1908static reloc_howto_type *
1909elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1910 const char *r_name)
1911{
1912 unsigned int i;
1913
906e58ca 1914 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
157090f7
AM
1915 if (elf32_arm_howto_table_1[i].name != NULL
1916 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1917 return &elf32_arm_howto_table_1[i];
1918
906e58ca 1919 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
157090f7
AM
1920 if (elf32_arm_howto_table_2[i].name != NULL
1921 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1922 return &elf32_arm_howto_table_2[i];
1923
34e77a92
RS
1924 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1925 if (elf32_arm_howto_table_3[i].name != NULL
1926 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1927 return &elf32_arm_howto_table_3[i];
1928
157090f7
AM
1929 return NULL;
1930}
1931
906e58ca
NC
1932/* Support for core dump NOTE sections. */
1933
7f266840 1934static bfd_boolean
f1c71a59 1935elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1936{
1937 int offset;
1938 size_t size;
1939
1940 switch (note->descsz)
1941 {
1942 default:
1943 return FALSE;
1944
8029a119 1945 case 148: /* Linux/ARM 32-bit. */
7f266840 1946 /* pr_cursig */
228e534f 1947 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
7f266840
DJ
1948
1949 /* pr_pid */
228e534f 1950 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
7f266840
DJ
1951
1952 /* pr_reg */
1953 offset = 72;
1954 size = 72;
1955
1956 break;
1957 }
1958
1959 /* Make a ".reg/999" section. */
1960 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1961 size, note->descpos + offset);
1962}
1963
1964static bfd_boolean
f1c71a59 1965elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7f266840
DJ
1966{
1967 switch (note->descsz)
1968 {
1969 default:
1970 return FALSE;
1971
8029a119 1972 case 124: /* Linux/ARM elf_prpsinfo. */
228e534f 1973 elf_tdata (abfd)->core->pid
4395ee08 1974 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 1975 elf_tdata (abfd)->core->program
7f266840 1976 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 1977 elf_tdata (abfd)->core->command
7f266840
DJ
1978 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1979 }
1980
1981 /* Note that for some reason, a spurious space is tacked
1982 onto the end of the args in some (at least one anyway)
1983 implementations, so strip it off if it exists. */
7f266840 1984 {
228e534f 1985 char *command = elf_tdata (abfd)->core->command;
7f266840
DJ
1986 int n = strlen (command);
1987
1988 if (0 < n && command[n - 1] == ' ')
1989 command[n - 1] = '\0';
1990 }
1991
1992 return TRUE;
1993}
1994
1f20dca5
UW
1995static char *
1996elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1997 int note_type, ...)
1998{
1999 switch (note_type)
2000 {
2001 default:
2002 return NULL;
2003
2004 case NT_PRPSINFO:
2005 {
2006 char data[124];
2007 va_list ap;
2008
2009 va_start (ap, note_type);
2010 memset (data, 0, sizeof (data));
2011 strncpy (data + 28, va_arg (ap, const char *), 16);
2012 strncpy (data + 44, va_arg (ap, const char *), 80);
2013 va_end (ap);
2014
2015 return elfcore_write_note (abfd, buf, bufsiz,
2016 "CORE", note_type, data, sizeof (data));
2017 }
2018
2019 case NT_PRSTATUS:
2020 {
2021 char data[148];
2022 va_list ap;
2023 long pid;
2024 int cursig;
2025 const void *greg;
2026
2027 va_start (ap, note_type);
2028 memset (data, 0, sizeof (data));
2029 pid = va_arg (ap, long);
2030 bfd_put_32 (abfd, pid, data + 24);
2031 cursig = va_arg (ap, int);
2032 bfd_put_16 (abfd, cursig, data + 12);
2033 greg = va_arg (ap, const void *);
2034 memcpy (data + 72, greg, 72);
2035 va_end (ap);
2036
2037 return elfcore_write_note (abfd, buf, bufsiz,
2038 "CORE", note_type, data, sizeof (data));
2039 }
2040 }
2041}
2042
6d00b590 2043#define TARGET_LITTLE_SYM arm_elf32_le_vec
7f266840 2044#define TARGET_LITTLE_NAME "elf32-littlearm"
6d00b590 2045#define TARGET_BIG_SYM arm_elf32_be_vec
7f266840
DJ
2046#define TARGET_BIG_NAME "elf32-bigarm"
2047
2048#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2049#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1f20dca5 2050#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
7f266840 2051
252b5132
RH
2052typedef unsigned long int insn32;
2053typedef unsigned short int insn16;
2054
3a4a14e9
PB
2055/* In lieu of proper flags, assume all EABIv4 or later objects are
2056 interworkable. */
57e8b36a 2057#define INTERWORK_FLAG(abfd) \
3a4a14e9 2058 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
3e6b1042
DJ
2059 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2060 || ((abfd)->flags & BFD_LINKER_CREATED))
9b485d32 2061
252b5132
RH
2062/* The linker script knows the section names for placement.
2063 The entry_names are used to do simple name mangling on the stubs.
2064 Given a function name, and its type, the stub can be found. The
9b485d32 2065 name can be changed. The only requirement is the %s be present. */
252b5132
RH
2066#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2067#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2068
2069#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2070#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2071
c7b8f16e
JB
2072#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2073#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2074
845b51d6
PB
2075#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2076#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2077
7413f23f
DJ
2078#define STUB_ENTRY_NAME "__%s_veneer"
2079
252b5132
RH
2080/* The name of the dynamic interpreter. This is put in the .interp
2081 section. */
2082#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2083
0855e32b 2084static const unsigned long tls_trampoline [] =
b38cadfb
NC
2085{
2086 0xe08e0000, /* add r0, lr, r0 */
2087 0xe5901004, /* ldr r1, [r0,#4] */
2088 0xe12fff11, /* bx r1 */
2089};
0855e32b
NS
2090
2091static const unsigned long dl_tlsdesc_lazy_trampoline [] =
b38cadfb
NC
2092{
2093 0xe52d2004, /* push {r2} */
2094 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2095 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2096 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2097 0xe081100f, /* 2: add r1, pc */
2098 0xe12fff12, /* bx r2 */
2099 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
99059e56 2100 + dl_tlsdesc_lazy_resolver(GOT) */
b38cadfb
NC
2101 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2102};
0855e32b 2103
5e681ec4
PB
2104#ifdef FOUR_WORD_PLT
2105
252b5132
RH
2106/* The first entry in a procedure linkage table looks like
2107 this. It is set up so that any shared library function that is
59f2c4e7 2108 called before the relocation has been set up calls the dynamic
9b485d32 2109 linker first. */
e5a52504 2110static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2111{
2112 0xe52de004, /* str lr, [sp, #-4]! */
2113 0xe59fe010, /* ldr lr, [pc, #16] */
2114 0xe08fe00e, /* add lr, pc, lr */
2115 0xe5bef008, /* ldr pc, [lr, #8]! */
2116};
5e681ec4
PB
2117
2118/* Subsequent entries in a procedure linkage table look like
2119 this. */
e5a52504 2120static const bfd_vma elf32_arm_plt_entry [] =
b38cadfb
NC
2121{
2122 0xe28fc600, /* add ip, pc, #NN */
2123 0xe28cca00, /* add ip, ip, #NN */
2124 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2125 0x00000000, /* unused */
2126};
5e681ec4 2127
eed94f8f 2128#else /* not FOUR_WORD_PLT */
5e681ec4 2129
5e681ec4
PB
2130/* The first entry in a procedure linkage table looks like
2131 this. It is set up so that any shared library function that is
2132 called before the relocation has been set up calls the dynamic
2133 linker first. */
e5a52504 2134static const bfd_vma elf32_arm_plt0_entry [] =
b38cadfb
NC
2135{
2136 0xe52de004, /* str lr, [sp, #-4]! */
2137 0xe59fe004, /* ldr lr, [pc, #4] */
2138 0xe08fe00e, /* add lr, pc, lr */
2139 0xe5bef008, /* ldr pc, [lr, #8]! */
2140 0x00000000, /* &GOT[0] - . */
2141};
252b5132 2142
1db37fe6
YG
2143/* By default subsequent entries in a procedure linkage table look like
2144 this. Offsets that don't fit into 28 bits will cause link error. */
2145static const bfd_vma elf32_arm_plt_entry_short [] =
b38cadfb
NC
2146{
2147 0xe28fc600, /* add ip, pc, #0xNN00000 */
2148 0xe28cca00, /* add ip, ip, #0xNN000 */
2149 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2150};
5e681ec4 2151
1db37fe6
YG
2152/* When explicitly asked, we'll use this "long" entry format
2153 which can cope with arbitrary displacements. */
2154static const bfd_vma elf32_arm_plt_entry_long [] =
2155{
2156 0xe28fc200, /* add ip, pc, #0xN0000000 */
2157 0xe28cc600, /* add ip, ip, #0xNN00000 */
2158 0xe28cca00, /* add ip, ip, #0xNN000 */
2159 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2160};
2161
2162static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2163
eed94f8f
NC
2164#endif /* not FOUR_WORD_PLT */
2165
2166/* The first entry in a procedure linkage table looks like this.
2167 It is set up so that any shared library function that is called before the
2168 relocation has been set up calls the dynamic linker first. */
2169static const bfd_vma elf32_thumb2_plt0_entry [] =
2170{
2171 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2172 an instruction maybe encoded to one or two array elements. */
2173 0xf8dfb500, /* push {lr} */
2174 0x44fee008, /* ldr.w lr, [pc, #8] */
469a3493 2175 /* add lr, pc */
eed94f8f
NC
2176 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2177 0x00000000, /* &GOT[0] - . */
2178};
2179
2180/* Subsequent entries in a procedure linkage table for thumb only target
2181 look like this. */
2182static const bfd_vma elf32_thumb2_plt_entry [] =
2183{
2184 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2185 an instruction maybe encoded to one or two array elements. */
2186 0x0c00f240, /* movw ip, #0xNNNN */
2187 0x0c00f2c0, /* movt ip, #0xNNNN */
2188 0xf8dc44fc, /* add ip, pc */
2189 0xbf00f000 /* ldr.w pc, [ip] */
469a3493 2190 /* nop */
eed94f8f 2191};
252b5132 2192
00a97672
RS
2193/* The format of the first entry in the procedure linkage table
2194 for a VxWorks executable. */
2195static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
b38cadfb
NC
2196{
2197 0xe52dc008, /* str ip,[sp,#-8]! */
2198 0xe59fc000, /* ldr ip,[pc] */
2199 0xe59cf008, /* ldr pc,[ip,#8] */
2200 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2201};
00a97672
RS
2202
2203/* The format of subsequent entries in a VxWorks executable. */
2204static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
b38cadfb
NC
2205{
2206 0xe59fc000, /* ldr ip,[pc] */
2207 0xe59cf000, /* ldr pc,[ip] */
2208 0x00000000, /* .long @got */
2209 0xe59fc000, /* ldr ip,[pc] */
2210 0xea000000, /* b _PLT */
2211 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2212};
00a97672
RS
2213
2214/* The format of entries in a VxWorks shared library. */
2215static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
b38cadfb
NC
2216{
2217 0xe59fc000, /* ldr ip,[pc] */
2218 0xe79cf009, /* ldr pc,[ip,r9] */
2219 0x00000000, /* .long @got */
2220 0xe59fc000, /* ldr ip,[pc] */
2221 0xe599f008, /* ldr pc,[r9,#8] */
2222 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2223};
00a97672 2224
b7693d02
DJ
2225/* An initial stub used if the PLT entry is referenced from Thumb code. */
2226#define PLT_THUMB_STUB_SIZE 4
2227static const bfd_vma elf32_arm_plt_thumb_stub [] =
b38cadfb
NC
2228{
2229 0x4778, /* bx pc */
2230 0x46c0 /* nop */
2231};
b7693d02 2232
e5a52504
MM
2233/* The entries in a PLT when using a DLL-based target with multiple
2234 address spaces. */
906e58ca 2235static const bfd_vma elf32_arm_symbian_plt_entry [] =
b38cadfb
NC
2236{
2237 0xe51ff004, /* ldr pc, [pc, #-4] */
2238 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2239};
2240
2241/* The first entry in a procedure linkage table looks like
2242 this. It is set up so that any shared library function that is
2243 called before the relocation has been set up calls the dynamic
2244 linker first. */
2245static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2246{
2247 /* First bundle: */
2248 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2249 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2250 0xe08cc00f, /* add ip, ip, pc */
2251 0xe52dc008, /* str ip, [sp, #-8]! */
2252 /* Second bundle: */
edccdf7c
RM
2253 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2254 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2255 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2256 0xe12fff1c, /* bx ip */
b38cadfb 2257 /* Third bundle: */
edccdf7c
RM
2258 0xe320f000, /* nop */
2259 0xe320f000, /* nop */
2260 0xe320f000, /* nop */
b38cadfb
NC
2261 /* .Lplt_tail: */
2262 0xe50dc004, /* str ip, [sp, #-4] */
2263 /* Fourth bundle: */
edccdf7c
RM
2264 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2265 0xe59cc000, /* ldr ip, [ip] */
b38cadfb 2266 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
edccdf7c 2267 0xe12fff1c, /* bx ip */
b38cadfb
NC
2268};
2269#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2270
2271/* Subsequent entries in a procedure linkage table look like this. */
2272static const bfd_vma elf32_arm_nacl_plt_entry [] =
2273{
2274 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2275 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2276 0xe08cc00f, /* add ip, ip, pc */
2277 0xea000000, /* b .Lplt_tail */
2278};
e5a52504 2279
906e58ca
NC
2280#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2281#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2282#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2283#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2284#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2285#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2286
461a49ca 2287enum stub_insn_type
b38cadfb
NC
2288{
2289 THUMB16_TYPE = 1,
2290 THUMB32_TYPE,
2291 ARM_TYPE,
2292 DATA_TYPE
2293};
461a49ca 2294
48229727
JB
2295#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2296/* A bit of a hack. A Thumb conditional branch, in which the proper condition
2297 is inserted in arm_build_one_stub(). */
2298#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2299#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2300#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2301#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2302#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2303#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
461a49ca
DJ
2304
2305typedef struct
2306{
b38cadfb
NC
2307 bfd_vma data;
2308 enum stub_insn_type type;
2309 unsigned int r_type;
2310 int reloc_addend;
461a49ca
DJ
2311} insn_sequence;
2312
fea2b4d6
CL
2313/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2314 to reach the stub if necessary. */
461a49ca 2315static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
b38cadfb
NC
2316{
2317 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2318 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2319};
906e58ca 2320
fea2b4d6
CL
2321/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2322 available. */
461a49ca 2323static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
b38cadfb
NC
2324{
2325 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2326 ARM_INSN (0xe12fff1c), /* bx ip */
2327 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2328};
906e58ca 2329
d3626fb0 2330/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
461a49ca 2331static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
b38cadfb
NC
2332{
2333 THUMB16_INSN (0xb401), /* push {r0} */
2334 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2335 THUMB16_INSN (0x4684), /* mov ip, r0 */
2336 THUMB16_INSN (0xbc01), /* pop {r0} */
2337 THUMB16_INSN (0x4760), /* bx ip */
2338 THUMB16_INSN (0xbf00), /* nop */
2339 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2340};
906e58ca 2341
d3626fb0
CL
2342/* V4T Thumb -> Thumb long branch stub. Using the stack is not
2343 allowed. */
2344static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
b38cadfb
NC
2345{
2346 THUMB16_INSN (0x4778), /* bx pc */
2347 THUMB16_INSN (0x46c0), /* nop */
2348 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2349 ARM_INSN (0xe12fff1c), /* bx ip */
2350 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2351};
d3626fb0 2352
fea2b4d6
CL
2353/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2354 available. */
461a49ca 2355static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
b38cadfb
NC
2356{
2357 THUMB16_INSN (0x4778), /* bx pc */
2358 THUMB16_INSN (0x46c0), /* nop */
2359 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2360 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2361};
906e58ca 2362
fea2b4d6
CL
2363/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2364 one, when the destination is close enough. */
461a49ca 2365static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
b38cadfb
NC
2366{
2367 THUMB16_INSN (0x4778), /* bx pc */
2368 THUMB16_INSN (0x46c0), /* nop */
2369 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2370};
c820be07 2371
cf3eccff 2372/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
fea2b4d6 2373 blx to reach the stub if necessary. */
cf3eccff 2374static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
b38cadfb
NC
2375{
2376 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2377 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2378 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2379};
906e58ca 2380
cf3eccff
DJ
2381/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2382 blx to reach the stub if necessary. We can not add into pc;
2383 it is not guaranteed to mode switch (different in ARMv6 and
2384 ARMv7). */
2385static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
b38cadfb
NC
2386{
2387 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2388 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2389 ARM_INSN (0xe12fff1c), /* bx ip */
2390 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2391};
cf3eccff 2392
ebe24dd4
CL
2393/* V4T ARM -> ARM long branch stub, PIC. */
2394static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
b38cadfb
NC
2395{
2396 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2397 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2398 ARM_INSN (0xe12fff1c), /* bx ip */
2399 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2400};
ebe24dd4
CL
2401
2402/* V4T Thumb -> ARM long branch stub, PIC. */
2403static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
b38cadfb
NC
2404{
2405 THUMB16_INSN (0x4778), /* bx pc */
2406 THUMB16_INSN (0x46c0), /* nop */
2407 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2408 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2409 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2410};
ebe24dd4 2411
d3626fb0
CL
2412/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2413 architectures. */
ebe24dd4 2414static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
b38cadfb
NC
2415{
2416 THUMB16_INSN (0xb401), /* push {r0} */
2417 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2418 THUMB16_INSN (0x46fc), /* mov ip, pc */
2419 THUMB16_INSN (0x4484), /* add ip, r0 */
2420 THUMB16_INSN (0xbc01), /* pop {r0} */
2421 THUMB16_INSN (0x4760), /* bx ip */
2422 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2423};
ebe24dd4 2424
d3626fb0
CL
2425/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2426 allowed. */
2427static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
b38cadfb
NC
2428{
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2432 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2433 ARM_INSN (0xe12fff1c), /* bx ip */
2434 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2435};
d3626fb0 2436
0855e32b
NS
2437/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2438 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2439static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2440{
b38cadfb
NC
2441 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2442 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2443 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
0855e32b
NS
2444};
2445
2446/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2447 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2448static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2449{
b38cadfb
NC
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2453 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2454 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
0855e32b
NS
2455};
2456
7a89b94e
NC
2457/* NaCl ARM -> ARM long branch stub. */
2458static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2459{
2460 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2461 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2462 ARM_INSN (0xe12fff1c), /* bx ip */
2463 ARM_INSN (0xe320f000), /* nop */
2464 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2465 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2466 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2467 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2468};
2469
2470/* NaCl ARM -> ARM long branch stub, PIC. */
2471static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2472{
2473 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2474 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2475 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2476 ARM_INSN (0xe12fff1c), /* bx ip */
2477 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2478 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2479 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2480 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2481};
2482
2483
48229727
JB
2484/* Cortex-A8 erratum-workaround stubs. */
2485
2486/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2487 can't use a conditional branch to reach this stub). */
2488
2489static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
b38cadfb
NC
2490{
2491 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2492 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2493 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2494};
48229727
JB
2495
2496/* Stub used for b.w and bl.w instructions. */
2497
2498static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
b38cadfb
NC
2499{
2500 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2501};
48229727
JB
2502
2503static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
b38cadfb
NC
2504{
2505 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2506};
48229727
JB
2507
2508/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2509 instruction (which switches to ARM mode) to point to this stub. Jump to the
2510 real destination using an ARM-mode branch. */
2511
2512static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
b38cadfb
NC
2513{
2514 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2515};
48229727 2516
9553db3c
NC
2517/* For each section group there can be a specially created linker section
2518 to hold the stubs for that group. The name of the stub section is based
2519 upon the name of another section within that group with the suffix below
2520 applied.
2521
2522 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2523 create what appeared to be a linker stub section when it actually
2524 contained user code/data. For example, consider this fragment:
b38cadfb 2525
9553db3c
NC
2526 const char * stubborn_problems[] = { "np" };
2527
2528 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2529 section called:
2530
2531 .data.rel.local.stubborn_problems
2532
2533 This then causes problems in arm32_arm_build_stubs() as it triggers:
2534
2535 // Ignore non-stub sections.
2536 if (!strstr (stub_sec->name, STUB_SUFFIX))
2537 continue;
2538
2539 And so the section would be ignored instead of being processed. Hence
2540 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2541 C identifier. */
2542#define STUB_SUFFIX ".__stub"
906e58ca 2543
738a79f6
CL
2544/* One entry per long/short branch stub defined above. */
2545#define DEF_STUBS \
2546 DEF_STUB(long_branch_any_any) \
2547 DEF_STUB(long_branch_v4t_arm_thumb) \
2548 DEF_STUB(long_branch_thumb_only) \
2549 DEF_STUB(long_branch_v4t_thumb_thumb) \
2550 DEF_STUB(long_branch_v4t_thumb_arm) \
2551 DEF_STUB(short_branch_v4t_thumb_arm) \
2552 DEF_STUB(long_branch_any_arm_pic) \
2553 DEF_STUB(long_branch_any_thumb_pic) \
2554 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2555 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2556 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
48229727 2557 DEF_STUB(long_branch_thumb_only_pic) \
0855e32b
NS
2558 DEF_STUB(long_branch_any_tls_pic) \
2559 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
7a89b94e
NC
2560 DEF_STUB(long_branch_arm_nacl) \
2561 DEF_STUB(long_branch_arm_nacl_pic) \
48229727
JB
2562 DEF_STUB(a8_veneer_b_cond) \
2563 DEF_STUB(a8_veneer_b) \
2564 DEF_STUB(a8_veneer_bl) \
2565 DEF_STUB(a8_veneer_blx)
738a79f6
CL
2566
2567#define DEF_STUB(x) arm_stub_##x,
b38cadfb
NC
2568enum elf32_arm_stub_type
2569{
906e58ca 2570 arm_stub_none,
738a79f6 2571 DEF_STUBS
6a631e86 2572 /* Note the first a8_veneer type. */
eb7c4339 2573 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
738a79f6
CL
2574};
2575#undef DEF_STUB
2576
2577typedef struct
2578{
d3ce72d0 2579 const insn_sequence* template_sequence;
738a79f6
CL
2580 int template_size;
2581} stub_def;
2582
2583#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
b38cadfb
NC
2584static const stub_def stub_definitions[] =
2585{
738a79f6
CL
2586 {NULL, 0},
2587 DEF_STUBS
906e58ca
NC
2588};
2589
2590struct elf32_arm_stub_hash_entry
2591{
2592 /* Base hash table entry structure. */
2593 struct bfd_hash_entry root;
2594
2595 /* The stub section. */
2596 asection *stub_sec;
2597
2598 /* Offset within stub_sec of the beginning of this stub. */
2599 bfd_vma stub_offset;
2600
2601 /* Given the symbol's value and its section we can determine its final
2602 value when building the stubs (so the stub knows where to jump). */
2603 bfd_vma target_value;
2604 asection *target_section;
2605
48229727
JB
2606 /* Offset to apply to relocation referencing target_value. */
2607 bfd_vma target_addend;
2608
2609 /* The instruction which caused this stub to be generated (only valid for
2610 Cortex-A8 erratum workaround stubs at present). */
2611 unsigned long orig_insn;
2612
461a49ca 2613 /* The stub type. */
906e58ca 2614 enum elf32_arm_stub_type stub_type;
461a49ca
DJ
2615 /* Its encoding size in bytes. */
2616 int stub_size;
2617 /* Its template. */
2618 const insn_sequence *stub_template;
2619 /* The size of the template (number of entries). */
2620 int stub_template_size;
906e58ca
NC
2621
2622 /* The symbol table entry, if any, that this was derived from. */
2623 struct elf32_arm_link_hash_entry *h;
2624
35fc36a8
RS
2625 /* Type of branch. */
2626 enum arm_st_branch_type branch_type;
906e58ca
NC
2627
2628 /* Where this stub is being called from, or, in the case of combined
2629 stub sections, the first input section in the group. */
2630 asection *id_sec;
7413f23f
DJ
2631
2632 /* The name for the local symbol at the start of this stub. The
2633 stub name in the hash table has to be unique; this does not, so
2634 it can be friendlier. */
2635 char *output_name;
906e58ca
NC
2636};
2637
e489d0ae
PB
2638/* Used to build a map of a section. This is required for mixed-endian
2639 code/data. */
2640
2641typedef struct elf32_elf_section_map
2642{
2643 bfd_vma vma;
2644 char type;
2645}
2646elf32_arm_section_map;
2647
c7b8f16e
JB
2648/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2649
2650typedef enum
2651{
2652 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2653 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2654 VFP11_ERRATUM_ARM_VENEER,
2655 VFP11_ERRATUM_THUMB_VENEER
2656}
2657elf32_vfp11_erratum_type;
2658
2659typedef struct elf32_vfp11_erratum_list
2660{
2661 struct elf32_vfp11_erratum_list *next;
2662 bfd_vma vma;
2663 union
2664 {
2665 struct
2666 {
2667 struct elf32_vfp11_erratum_list *veneer;
2668 unsigned int vfp_insn;
2669 } b;
2670 struct
2671 {
2672 struct elf32_vfp11_erratum_list *branch;
2673 unsigned int id;
2674 } v;
2675 } u;
2676 elf32_vfp11_erratum_type type;
2677}
2678elf32_vfp11_erratum_list;
2679
2468f9c9
PB
2680typedef enum
2681{
2682 DELETE_EXIDX_ENTRY,
2683 INSERT_EXIDX_CANTUNWIND_AT_END
2684}
2685arm_unwind_edit_type;
2686
2687/* A (sorted) list of edits to apply to an unwind table. */
2688typedef struct arm_unwind_table_edit
2689{
2690 arm_unwind_edit_type type;
2691 /* Note: we sometimes want to insert an unwind entry corresponding to a
2692 section different from the one we're currently writing out, so record the
2693 (text) section this edit relates to here. */
2694 asection *linked_section;
2695 unsigned int index;
2696 struct arm_unwind_table_edit *next;
2697}
2698arm_unwind_table_edit;
2699
8e3de13a 2700typedef struct _arm_elf_section_data
e489d0ae 2701{
2468f9c9 2702 /* Information about mapping symbols. */
e489d0ae 2703 struct bfd_elf_section_data elf;
8e3de13a 2704 unsigned int mapcount;
c7b8f16e 2705 unsigned int mapsize;
e489d0ae 2706 elf32_arm_section_map *map;
2468f9c9 2707 /* Information about CPU errata. */
c7b8f16e
JB
2708 unsigned int erratumcount;
2709 elf32_vfp11_erratum_list *erratumlist;
2468f9c9
PB
2710 /* Information about unwind tables. */
2711 union
2712 {
2713 /* Unwind info attached to a text section. */
2714 struct
2715 {
2716 asection *arm_exidx_sec;
2717 } text;
2718
2719 /* Unwind info attached to an .ARM.exidx section. */
2720 struct
2721 {
2722 arm_unwind_table_edit *unwind_edit_list;
2723 arm_unwind_table_edit *unwind_edit_tail;
2724 } exidx;
2725 } u;
8e3de13a
NC
2726}
2727_arm_elf_section_data;
e489d0ae
PB
2728
2729#define elf32_arm_section_data(sec) \
8e3de13a 2730 ((_arm_elf_section_data *) elf_section_data (sec))
e489d0ae 2731
48229727
JB
2732/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2733 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2734 so may be created multiple times: we use an array of these entries whilst
2735 relaxing which we can refresh easily, then create stubs for each potentially
2736 erratum-triggering instruction once we've settled on a solution. */
2737
b38cadfb
NC
2738struct a8_erratum_fix
2739{
48229727
JB
2740 bfd *input_bfd;
2741 asection *section;
2742 bfd_vma offset;
2743 bfd_vma addend;
2744 unsigned long orig_insn;
2745 char *stub_name;
2746 enum elf32_arm_stub_type stub_type;
35fc36a8 2747 enum arm_st_branch_type branch_type;
48229727
JB
2748};
2749
2750/* A table of relocs applied to branches which might trigger Cortex-A8
2751 erratum. */
2752
b38cadfb
NC
2753struct a8_erratum_reloc
2754{
48229727
JB
2755 bfd_vma from;
2756 bfd_vma destination;
92750f34
DJ
2757 struct elf32_arm_link_hash_entry *hash;
2758 const char *sym_name;
48229727 2759 unsigned int r_type;
35fc36a8 2760 enum arm_st_branch_type branch_type;
48229727
JB
2761 bfd_boolean non_a8_stub;
2762};
2763
ba93b8ac
DJ
2764/* The size of the thread control block. */
2765#define TCB_SIZE 8
2766
34e77a92
RS
2767/* ARM-specific information about a PLT entry, over and above the usual
2768 gotplt_union. */
b38cadfb
NC
2769struct arm_plt_info
2770{
34e77a92
RS
2771 /* We reference count Thumb references to a PLT entry separately,
2772 so that we can emit the Thumb trampoline only if needed. */
2773 bfd_signed_vma thumb_refcount;
2774
2775 /* Some references from Thumb code may be eliminated by BL->BLX
2776 conversion, so record them separately. */
2777 bfd_signed_vma maybe_thumb_refcount;
2778
2779 /* How many of the recorded PLT accesses were from non-call relocations.
2780 This information is useful when deciding whether anything takes the
2781 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2782 non-call references to the function should resolve directly to the
2783 real runtime target. */
2784 unsigned int noncall_refcount;
2785
2786 /* Since PLT entries have variable size if the Thumb prologue is
2787 used, we need to record the index into .got.plt instead of
2788 recomputing it from the PLT offset. */
2789 bfd_signed_vma got_offset;
2790};
2791
2792/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
b38cadfb
NC
2793struct arm_local_iplt_info
2794{
34e77a92
RS
2795 /* The information that is usually found in the generic ELF part of
2796 the hash table entry. */
2797 union gotplt_union root;
2798
2799 /* The information that is usually found in the ARM-specific part of
2800 the hash table entry. */
2801 struct arm_plt_info arm;
2802
2803 /* A list of all potential dynamic relocations against this symbol. */
2804 struct elf_dyn_relocs *dyn_relocs;
2805};
2806
0ffa91dd 2807struct elf_arm_obj_tdata
ba93b8ac
DJ
2808{
2809 struct elf_obj_tdata root;
2810
2811 /* tls_type for each local got entry. */
2812 char *local_got_tls_type;
ee065d83 2813
0855e32b
NS
2814 /* GOTPLT entries for TLS descriptors. */
2815 bfd_vma *local_tlsdesc_gotent;
2816
34e77a92
RS
2817 /* Information for local symbols that need entries in .iplt. */
2818 struct arm_local_iplt_info **local_iplt;
2819
bf21ed78
MS
2820 /* Zero to warn when linking objects with incompatible enum sizes. */
2821 int no_enum_size_warning;
a9dc9481
JM
2822
2823 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2824 int no_wchar_size_warning;
ba93b8ac
DJ
2825};
2826
0ffa91dd
NC
2827#define elf_arm_tdata(bfd) \
2828 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
ba93b8ac 2829
0ffa91dd
NC
2830#define elf32_arm_local_got_tls_type(bfd) \
2831 (elf_arm_tdata (bfd)->local_got_tls_type)
2832
0855e32b
NS
2833#define elf32_arm_local_tlsdesc_gotent(bfd) \
2834 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2835
34e77a92
RS
2836#define elf32_arm_local_iplt(bfd) \
2837 (elf_arm_tdata (bfd)->local_iplt)
2838
0ffa91dd
NC
2839#define is_arm_elf(bfd) \
2840 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2841 && elf_tdata (bfd) != NULL \
4dfe6ac6 2842 && elf_object_id (bfd) == ARM_ELF_DATA)
ba93b8ac
DJ
2843
2844static bfd_boolean
2845elf32_arm_mkobject (bfd *abfd)
2846{
0ffa91dd 2847 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
4dfe6ac6 2848 ARM_ELF_DATA);
ba93b8ac
DJ
2849}
2850
ba93b8ac
DJ
2851#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2852
ba96a88f 2853/* Arm ELF linker hash entry. */
252b5132 2854struct elf32_arm_link_hash_entry
b38cadfb
NC
2855{
2856 struct elf_link_hash_entry root;
252b5132 2857
b38cadfb
NC
2858 /* Track dynamic relocs copied for this symbol. */
2859 struct elf_dyn_relocs *dyn_relocs;
b7693d02 2860
b38cadfb
NC
2861 /* ARM-specific PLT information. */
2862 struct arm_plt_info plt;
ba93b8ac
DJ
2863
2864#define GOT_UNKNOWN 0
2865#define GOT_NORMAL 1
2866#define GOT_TLS_GD 2
2867#define GOT_TLS_IE 4
0855e32b
NS
2868#define GOT_TLS_GDESC 8
2869#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
b38cadfb 2870 unsigned int tls_type : 8;
34e77a92 2871
b38cadfb
NC
2872 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2873 unsigned int is_iplt : 1;
34e77a92 2874
b38cadfb 2875 unsigned int unused : 23;
a4fd1a8e 2876
b38cadfb
NC
2877 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2878 starting at the end of the jump table. */
2879 bfd_vma tlsdesc_got;
0855e32b 2880
b38cadfb
NC
2881 /* The symbol marking the real symbol location for exported thumb
2882 symbols with Arm stubs. */
2883 struct elf_link_hash_entry *export_glue;
906e58ca 2884
b38cadfb 2885 /* A pointer to the most recently used stub hash entry against this
8029a119 2886 symbol. */
b38cadfb
NC
2887 struct elf32_arm_stub_hash_entry *stub_cache;
2888};
252b5132 2889
252b5132 2890/* Traverse an arm ELF linker hash table. */
252b5132
RH
2891#define elf32_arm_link_hash_traverse(table, func, info) \
2892 (elf_link_hash_traverse \
2893 (&(table)->root, \
b7693d02 2894 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
252b5132
RH
2895 (info)))
2896
2897/* Get the ARM elf linker hash table from a link_info structure. */
2898#define elf32_arm_hash_table(info) \
4dfe6ac6
NC
2899 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2900 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
252b5132 2901
906e58ca
NC
2902#define arm_stub_hash_lookup(table, string, create, copy) \
2903 ((struct elf32_arm_stub_hash_entry *) \
2904 bfd_hash_lookup ((table), (string), (create), (copy)))
2905
21d799b5
NC
2906/* Array to keep track of which stub sections have been created, and
2907 information on stub grouping. */
2908struct map_stub
2909{
2910 /* This is the section to which stubs in the group will be
2911 attached. */
2912 asection *link_sec;
2913 /* The stub section. */
2914 asection *stub_sec;
2915};
2916
0855e32b
NS
2917#define elf32_arm_compute_jump_table_size(htab) \
2918 ((htab)->next_tls_desc_index * 4)
2919
9b485d32 2920/* ARM ELF linker hash table. */
252b5132 2921struct elf32_arm_link_hash_table
906e58ca
NC
2922{
2923 /* The main hash table. */
2924 struct elf_link_hash_table root;
252b5132 2925
906e58ca
NC
2926 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2927 bfd_size_type thumb_glue_size;
252b5132 2928
906e58ca
NC
2929 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2930 bfd_size_type arm_glue_size;
252b5132 2931
906e58ca
NC
2932 /* The size in bytes of section containing the ARMv4 BX veneers. */
2933 bfd_size_type bx_glue_size;
845b51d6 2934
906e58ca
NC
2935 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2936 veneer has been populated. */
2937 bfd_vma bx_glue_offset[15];
845b51d6 2938
906e58ca
NC
2939 /* The size in bytes of the section containing glue for VFP11 erratum
2940 veneers. */
2941 bfd_size_type vfp11_erratum_glue_size;
c7b8f16e 2942
48229727
JB
2943 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2944 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2945 elf32_arm_write_section(). */
2946 struct a8_erratum_fix *a8_erratum_fixes;
2947 unsigned int num_a8_erratum_fixes;
2948
906e58ca
NC
2949 /* An arbitrary input BFD chosen to hold the glue sections. */
2950 bfd * bfd_of_glue_owner;
ba96a88f 2951
906e58ca
NC
2952 /* Nonzero to output a BE8 image. */
2953 int byteswap_code;
e489d0ae 2954
906e58ca
NC
2955 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2956 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2957 int target1_is_rel;
9c504268 2958
906e58ca
NC
2959 /* The relocation to use for R_ARM_TARGET2 relocations. */
2960 int target2_reloc;
eb043451 2961
906e58ca
NC
2962 /* 0 = Ignore R_ARM_V4BX.
2963 1 = Convert BX to MOV PC.
2964 2 = Generate v4 interworing stubs. */
2965 int fix_v4bx;
319850b4 2966
48229727
JB
2967 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2968 int fix_cortex_a8;
2969
2de70689
MGD
2970 /* Whether we should fix the ARM1176 BLX immediate issue. */
2971 int fix_arm1176;
2972
906e58ca
NC
2973 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2974 int use_blx;
33bfe774 2975
906e58ca
NC
2976 /* What sort of code sequences we should look for which may trigger the
2977 VFP11 denorm erratum. */
2978 bfd_arm_vfp11_fix vfp11_fix;
c7b8f16e 2979
906e58ca
NC
2980 /* Global counter for the number of fixes we have emitted. */
2981 int num_vfp11_fixes;
c7b8f16e 2982
906e58ca
NC
2983 /* Nonzero to force PIC branch veneers. */
2984 int pic_veneer;
27e55c4d 2985
906e58ca
NC
2986 /* The number of bytes in the initial entry in the PLT. */
2987 bfd_size_type plt_header_size;
e5a52504 2988
906e58ca
NC
2989 /* The number of bytes in the subsequent PLT etries. */
2990 bfd_size_type plt_entry_size;
e5a52504 2991
906e58ca
NC
2992 /* True if the target system is VxWorks. */
2993 int vxworks_p;
00a97672 2994
906e58ca
NC
2995 /* True if the target system is Symbian OS. */
2996 int symbian_p;
e5a52504 2997
b38cadfb
NC
2998 /* True if the target system is Native Client. */
2999 int nacl_p;
3000
906e58ca
NC
3001 /* True if the target uses REL relocations. */
3002 int use_rel;
4e7fd91e 3003
0855e32b
NS
3004 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3005 bfd_vma next_tls_desc_index;
3006
3007 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3008 bfd_vma num_tls_desc;
3009
906e58ca 3010 /* Short-cuts to get to dynamic linker sections. */
906e58ca
NC
3011 asection *sdynbss;
3012 asection *srelbss;
5e681ec4 3013
906e58ca
NC
3014 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3015 asection *srelplt2;
00a97672 3016
0855e32b
NS
3017 /* The offset into splt of the PLT entry for the TLS descriptor
3018 resolver. Special values are 0, if not necessary (or not found
3019 to be necessary yet), and -1 if needed but not determined
3020 yet. */
3021 bfd_vma dt_tlsdesc_plt;
3022
3023 /* The offset into sgot of the GOT entry used by the PLT entry
3024 above. */
b38cadfb 3025 bfd_vma dt_tlsdesc_got;
0855e32b
NS
3026
3027 /* Offset in .plt section of tls_arm_trampoline. */
3028 bfd_vma tls_trampoline;
3029
906e58ca
NC
3030 /* Data for R_ARM_TLS_LDM32 relocations. */
3031 union
3032 {
3033 bfd_signed_vma refcount;
3034 bfd_vma offset;
3035 } tls_ldm_got;
b7693d02 3036
87d72d41
AM
3037 /* Small local sym cache. */
3038 struct sym_cache sym_cache;
906e58ca
NC
3039
3040 /* For convenience in allocate_dynrelocs. */
3041 bfd * obfd;
3042
0855e32b
NS
3043 /* The amount of space used by the reserved portion of the sgotplt
3044 section, plus whatever space is used by the jump slots. */
3045 bfd_vma sgotplt_jump_table_size;
3046
906e58ca
NC
3047 /* The stub hash table. */
3048 struct bfd_hash_table stub_hash_table;
3049
3050 /* Linker stub bfd. */
3051 bfd *stub_bfd;
3052
3053 /* Linker call-backs. */
7a89b94e 3054 asection * (*add_stub_section) (const char *, asection *, unsigned int);
906e58ca
NC
3055 void (*layout_sections_again) (void);
3056
3057 /* Array to keep track of which stub sections have been created, and
3058 information on stub grouping. */
21d799b5 3059 struct map_stub *stub_group;
906e58ca 3060
fe33d2fa
CL
3061 /* Number of elements in stub_group. */
3062 int top_id;
3063
906e58ca
NC
3064 /* Assorted information used by elf32_arm_size_stubs. */
3065 unsigned int bfd_count;
3066 int top_index;
3067 asection **input_list;
3068};
252b5132 3069
780a67af
NC
3070/* Create an entry in an ARM ELF linker hash table. */
3071
3072static struct bfd_hash_entry *
57e8b36a 3073elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
99059e56
RM
3074 struct bfd_hash_table * table,
3075 const char * string)
780a67af
NC
3076{
3077 struct elf32_arm_link_hash_entry * ret =
3078 (struct elf32_arm_link_hash_entry *) entry;
3079
3080 /* Allocate the structure if it has not already been allocated by a
3081 subclass. */
906e58ca 3082 if (ret == NULL)
21d799b5 3083 ret = (struct elf32_arm_link_hash_entry *)
99059e56 3084 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
57e8b36a 3085 if (ret == NULL)
780a67af
NC
3086 return (struct bfd_hash_entry *) ret;
3087
3088 /* Call the allocation method of the superclass. */
3089 ret = ((struct elf32_arm_link_hash_entry *)
3090 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3091 table, string));
57e8b36a 3092 if (ret != NULL)
b7693d02 3093 {
0bdcacaf 3094 ret->dyn_relocs = NULL;
ba93b8ac 3095 ret->tls_type = GOT_UNKNOWN;
0855e32b 3096 ret->tlsdesc_got = (bfd_vma) -1;
34e77a92
RS
3097 ret->plt.thumb_refcount = 0;
3098 ret->plt.maybe_thumb_refcount = 0;
3099 ret->plt.noncall_refcount = 0;
3100 ret->plt.got_offset = -1;
3101 ret->is_iplt = FALSE;
a4fd1a8e 3102 ret->export_glue = NULL;
906e58ca
NC
3103
3104 ret->stub_cache = NULL;
b7693d02 3105 }
780a67af
NC
3106
3107 return (struct bfd_hash_entry *) ret;
3108}
3109
34e77a92
RS
3110/* Ensure that we have allocated bookkeeping structures for ABFD's local
3111 symbols. */
3112
3113static bfd_boolean
3114elf32_arm_allocate_local_sym_info (bfd *abfd)
3115{
3116 if (elf_local_got_refcounts (abfd) == NULL)
3117 {
3118 bfd_size_type num_syms;
3119 bfd_size_type size;
3120 char *data;
3121
3122 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3123 size = num_syms * (sizeof (bfd_signed_vma)
3124 + sizeof (struct arm_local_iplt_info *)
3125 + sizeof (bfd_vma)
3126 + sizeof (char));
3127 data = bfd_zalloc (abfd, size);
3128 if (data == NULL)
3129 return FALSE;
3130
3131 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3132 data += num_syms * sizeof (bfd_signed_vma);
3133
3134 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3135 data += num_syms * sizeof (struct arm_local_iplt_info *);
3136
3137 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3138 data += num_syms * sizeof (bfd_vma);
3139
3140 elf32_arm_local_got_tls_type (abfd) = data;
3141 }
3142 return TRUE;
3143}
3144
3145/* Return the .iplt information for local symbol R_SYMNDX, which belongs
3146 to input bfd ABFD. Create the information if it doesn't already exist.
3147 Return null if an allocation fails. */
3148
3149static struct arm_local_iplt_info *
3150elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3151{
3152 struct arm_local_iplt_info **ptr;
3153
3154 if (!elf32_arm_allocate_local_sym_info (abfd))
3155 return NULL;
3156
3157 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3158 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3159 if (*ptr == NULL)
3160 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3161 return *ptr;
3162}
3163
3164/* Try to obtain PLT information for the symbol with index R_SYMNDX
3165 in ABFD's symbol table. If the symbol is global, H points to its
3166 hash table entry, otherwise H is null.
3167
3168 Return true if the symbol does have PLT information. When returning
3169 true, point *ROOT_PLT at the target-independent reference count/offset
3170 union and *ARM_PLT at the ARM-specific information. */
3171
3172static bfd_boolean
3173elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3174 unsigned long r_symndx, union gotplt_union **root_plt,
3175 struct arm_plt_info **arm_plt)
3176{
3177 struct arm_local_iplt_info *local_iplt;
3178
3179 if (h != NULL)
3180 {
3181 *root_plt = &h->root.plt;
3182 *arm_plt = &h->plt;
3183 return TRUE;
3184 }
3185
3186 if (elf32_arm_local_iplt (abfd) == NULL)
3187 return FALSE;
3188
3189 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3190 if (local_iplt == NULL)
3191 return FALSE;
3192
3193 *root_plt = &local_iplt->root;
3194 *arm_plt = &local_iplt->arm;
3195 return TRUE;
3196}
3197
3198/* Return true if the PLT described by ARM_PLT requires a Thumb stub
3199 before it. */
3200
3201static bfd_boolean
3202elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3203 struct arm_plt_info *arm_plt)
3204{
3205 struct elf32_arm_link_hash_table *htab;
3206
3207 htab = elf32_arm_hash_table (info);
3208 return (arm_plt->thumb_refcount != 0
3209 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3210}
3211
3212/* Return a pointer to the head of the dynamic reloc list that should
3213 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3214 ABFD's symbol table. Return null if an error occurs. */
3215
3216static struct elf_dyn_relocs **
3217elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3218 Elf_Internal_Sym *isym)
3219{
3220 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3221 {
3222 struct arm_local_iplt_info *local_iplt;
3223
3224 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3225 if (local_iplt == NULL)
3226 return NULL;
3227 return &local_iplt->dyn_relocs;
3228 }
3229 else
3230 {
3231 /* Track dynamic relocs needed for local syms too.
3232 We really need local syms available to do this
3233 easily. Oh well. */
3234 asection *s;
3235 void *vpp;
3236
3237 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3238 if (s == NULL)
3239 abort ();
3240
3241 vpp = &elf_section_data (s)->local_dynrel;
3242 return (struct elf_dyn_relocs **) vpp;
3243 }
3244}
3245
906e58ca
NC
3246/* Initialize an entry in the stub hash table. */
3247
3248static struct bfd_hash_entry *
3249stub_hash_newfunc (struct bfd_hash_entry *entry,
3250 struct bfd_hash_table *table,
3251 const char *string)
3252{
3253 /* Allocate the structure if it has not already been allocated by a
3254 subclass. */
3255 if (entry == NULL)
3256 {
21d799b5 3257 entry = (struct bfd_hash_entry *)
99059e56 3258 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
906e58ca
NC
3259 if (entry == NULL)
3260 return entry;
3261 }
3262
3263 /* Call the allocation method of the superclass. */
3264 entry = bfd_hash_newfunc (entry, table, string);
3265 if (entry != NULL)
3266 {
3267 struct elf32_arm_stub_hash_entry *eh;
3268
3269 /* Initialize the local fields. */
3270 eh = (struct elf32_arm_stub_hash_entry *) entry;
3271 eh->stub_sec = NULL;
3272 eh->stub_offset = 0;
3273 eh->target_value = 0;
3274 eh->target_section = NULL;
cedfb179
DK
3275 eh->target_addend = 0;
3276 eh->orig_insn = 0;
906e58ca 3277 eh->stub_type = arm_stub_none;
461a49ca
DJ
3278 eh->stub_size = 0;
3279 eh->stub_template = NULL;
3280 eh->stub_template_size = 0;
906e58ca
NC
3281 eh->h = NULL;
3282 eh->id_sec = NULL;
d8d2f433 3283 eh->output_name = NULL;
906e58ca
NC
3284 }
3285
3286 return entry;
3287}
3288
00a97672 3289/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
5e681ec4
PB
3290 shortcuts to them in our hash table. */
3291
3292static bfd_boolean
57e8b36a 3293create_got_section (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3294{
3295 struct elf32_arm_link_hash_table *htab;
3296
e5a52504 3297 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3298 if (htab == NULL)
3299 return FALSE;
3300
e5a52504
MM
3301 /* BPABI objects never have a GOT, or associated sections. */
3302 if (htab->symbian_p)
3303 return TRUE;
3304
5e681ec4
PB
3305 if (! _bfd_elf_create_got_section (dynobj, info))
3306 return FALSE;
3307
5e681ec4
PB
3308 return TRUE;
3309}
3310
34e77a92
RS
3311/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3312
3313static bfd_boolean
3314create_ifunc_sections (struct bfd_link_info *info)
3315{
3316 struct elf32_arm_link_hash_table *htab;
3317 const struct elf_backend_data *bed;
3318 bfd *dynobj;
3319 asection *s;
3320 flagword flags;
b38cadfb 3321
34e77a92
RS
3322 htab = elf32_arm_hash_table (info);
3323 dynobj = htab->root.dynobj;
3324 bed = get_elf_backend_data (dynobj);
3325 flags = bed->dynamic_sec_flags;
3326
3327 if (htab->root.iplt == NULL)
3328 {
3d4d4302
AM
3329 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3330 flags | SEC_READONLY | SEC_CODE);
34e77a92 3331 if (s == NULL
a0f49396 3332 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
34e77a92
RS
3333 return FALSE;
3334 htab->root.iplt = s;
3335 }
3336
3337 if (htab->root.irelplt == NULL)
3338 {
3d4d4302
AM
3339 s = bfd_make_section_anyway_with_flags (dynobj,
3340 RELOC_SECTION (htab, ".iplt"),
3341 flags | SEC_READONLY);
34e77a92 3342 if (s == NULL
a0f49396 3343 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
34e77a92
RS
3344 return FALSE;
3345 htab->root.irelplt = s;
3346 }
3347
3348 if (htab->root.igotplt == NULL)
3349 {
3d4d4302 3350 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
34e77a92
RS
3351 if (s == NULL
3352 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3353 return FALSE;
3354 htab->root.igotplt = s;
3355 }
3356 return TRUE;
3357}
3358
eed94f8f
NC
3359/* Determine if we're dealing with a Thumb only architecture. */
3360
3361static bfd_boolean
3362using_thumb_only (struct elf32_arm_link_hash_table *globals)
3363{
3364 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3365 Tag_CPU_arch);
3366 int profile;
3367
3368 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3369 return TRUE;
3370
3371 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3372 return FALSE;
3373
3374 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3375 Tag_CPU_arch_profile);
3376
3377 return profile == 'M';
3378}
3379
3380/* Determine if we're dealing with a Thumb-2 object. */
3381
3382static bfd_boolean
3383using_thumb2 (struct elf32_arm_link_hash_table *globals)
3384{
3385 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3386 Tag_CPU_arch);
3387 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3388}
3389
00a97672
RS
3390/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3391 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
5e681ec4
PB
3392 hash table. */
3393
3394static bfd_boolean
57e8b36a 3395elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
5e681ec4
PB
3396{
3397 struct elf32_arm_link_hash_table *htab;
3398
3399 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
3400 if (htab == NULL)
3401 return FALSE;
3402
362d30a1 3403 if (!htab->root.sgot && !create_got_section (dynobj, info))
5e681ec4
PB
3404 return FALSE;
3405
3406 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3407 return FALSE;
3408
3d4d4302 3409 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5e681ec4 3410 if (!info->shared)
3d4d4302
AM
3411 htab->srelbss = bfd_get_linker_section (dynobj,
3412 RELOC_SECTION (htab, ".bss"));
00a97672
RS
3413
3414 if (htab->vxworks_p)
3415 {
3416 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3417 return FALSE;
3418
3419 if (info->shared)
3420 {
3421 htab->plt_header_size = 0;
3422 htab->plt_entry_size
3423 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3424 }
3425 else
3426 {
3427 htab->plt_header_size
3428 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3429 htab->plt_entry_size
3430 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3431 }
3432 }
eed94f8f
NC
3433 else
3434 {
3435 /* PR ld/16017
3436 Test for thumb only architectures. Note - we cannot just call
3437 using_thumb_only() as the attributes in the output bfd have not been
3438 initialised at this point, so instead we use the input bfd. */
3439 bfd * saved_obfd = htab->obfd;
3440
3441 htab->obfd = dynobj;
3442 if (using_thumb_only (htab))
3443 {
3444 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3445 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3446 }
3447 htab->obfd = saved_obfd;
3448 }
5e681ec4 3449
362d30a1
RS
3450 if (!htab->root.splt
3451 || !htab->root.srelplt
e5a52504 3452 || !htab->sdynbss
5e681ec4
PB
3453 || (!info->shared && !htab->srelbss))
3454 abort ();
3455
3456 return TRUE;
3457}
3458
906e58ca
NC
3459/* Copy the extra info we tack onto an elf_link_hash_entry. */
3460
3461static void
3462elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3463 struct elf_link_hash_entry *dir,
3464 struct elf_link_hash_entry *ind)
3465{
3466 struct elf32_arm_link_hash_entry *edir, *eind;
3467
3468 edir = (struct elf32_arm_link_hash_entry *) dir;
3469 eind = (struct elf32_arm_link_hash_entry *) ind;
3470
0bdcacaf 3471 if (eind->dyn_relocs != NULL)
906e58ca 3472 {
0bdcacaf 3473 if (edir->dyn_relocs != NULL)
906e58ca 3474 {
0bdcacaf
RS
3475 struct elf_dyn_relocs **pp;
3476 struct elf_dyn_relocs *p;
906e58ca
NC
3477
3478 /* Add reloc counts against the indirect sym to the direct sym
3479 list. Merge any entries against the same section. */
0bdcacaf 3480 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
906e58ca 3481 {
0bdcacaf 3482 struct elf_dyn_relocs *q;
906e58ca 3483
0bdcacaf
RS
3484 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3485 if (q->sec == p->sec)
906e58ca
NC
3486 {
3487 q->pc_count += p->pc_count;
3488 q->count += p->count;
3489 *pp = p->next;
3490 break;
3491 }
3492 if (q == NULL)
3493 pp = &p->next;
3494 }
0bdcacaf 3495 *pp = edir->dyn_relocs;
906e58ca
NC
3496 }
3497
0bdcacaf
RS
3498 edir->dyn_relocs = eind->dyn_relocs;
3499 eind->dyn_relocs = NULL;
906e58ca
NC
3500 }
3501
3502 if (ind->root.type == bfd_link_hash_indirect)
3503 {
3504 /* Copy over PLT info. */
34e77a92
RS
3505 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3506 eind->plt.thumb_refcount = 0;
3507 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3508 eind->plt.maybe_thumb_refcount = 0;
3509 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3510 eind->plt.noncall_refcount = 0;
3511
3512 /* We should only allocate a function to .iplt once the final
3513 symbol information is known. */
3514 BFD_ASSERT (!eind->is_iplt);
906e58ca
NC
3515
3516 if (dir->got.refcount <= 0)
3517 {
3518 edir->tls_type = eind->tls_type;
3519 eind->tls_type = GOT_UNKNOWN;
3520 }
3521 }
3522
3523 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3524}
3525
68faa637
AM
3526/* Destroy an ARM elf linker hash table. */
3527
3528static void
d495ab0d 3529elf32_arm_link_hash_table_free (bfd *obfd)
68faa637
AM
3530{
3531 struct elf32_arm_link_hash_table *ret
d495ab0d 3532 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
68faa637
AM
3533
3534 bfd_hash_table_free (&ret->stub_hash_table);
d495ab0d 3535 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
3536}
3537
906e58ca
NC
3538/* Create an ARM elf linker hash table. */
3539
3540static struct bfd_link_hash_table *
3541elf32_arm_link_hash_table_create (bfd *abfd)
3542{
3543 struct elf32_arm_link_hash_table *ret;
3544 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3545
7bf52ea2 3546 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
906e58ca
NC
3547 if (ret == NULL)
3548 return NULL;
3549
3550 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3551 elf32_arm_link_hash_newfunc,
4dfe6ac6
NC
3552 sizeof (struct elf32_arm_link_hash_entry),
3553 ARM_ELF_DATA))
906e58ca
NC
3554 {
3555 free (ret);
3556 return NULL;
3557 }
3558
906e58ca 3559 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
906e58ca
NC
3560#ifdef FOUR_WORD_PLT
3561 ret->plt_header_size = 16;
3562 ret->plt_entry_size = 16;
3563#else
3564 ret->plt_header_size = 20;
1db37fe6 3565 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
906e58ca 3566#endif
906e58ca 3567 ret->use_rel = 1;
906e58ca 3568 ret->obfd = abfd;
906e58ca
NC
3569
3570 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3571 sizeof (struct elf32_arm_stub_hash_entry)))
3572 {
d495ab0d 3573 _bfd_elf_link_hash_table_free (abfd);
906e58ca
NC
3574 return NULL;
3575 }
d495ab0d 3576 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
906e58ca
NC
3577
3578 return &ret->root.root;
3579}
3580
cd1dac3d
DG
3581/* Determine what kind of NOPs are available. */
3582
3583static bfd_boolean
3584arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3585{
3586 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3587 Tag_CPU_arch);
3588 return arch == TAG_CPU_ARCH_V6T2
3589 || arch == TAG_CPU_ARCH_V6K
9e3c6df6
PB
3590 || arch == TAG_CPU_ARCH_V7
3591 || arch == TAG_CPU_ARCH_V7E_M;
cd1dac3d
DG
3592}
3593
3594static bfd_boolean
3595arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3596{
3597 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3598 Tag_CPU_arch);
9e3c6df6
PB
3599 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3600 || arch == TAG_CPU_ARCH_V7E_M);
cd1dac3d
DG
3601}
3602
f4ac8484
DJ
3603static bfd_boolean
3604arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3605{
3606 switch (stub_type)
3607 {
fea2b4d6
CL
3608 case arm_stub_long_branch_thumb_only:
3609 case arm_stub_long_branch_v4t_thumb_arm:
3610 case arm_stub_short_branch_v4t_thumb_arm:
ebe24dd4 3611 case arm_stub_long_branch_v4t_thumb_arm_pic:
12352d3f 3612 case arm_stub_long_branch_v4t_thumb_tls_pic:
ebe24dd4 3613 case arm_stub_long_branch_thumb_only_pic:
f4ac8484
DJ
3614 return TRUE;
3615 case arm_stub_none:
3616 BFD_FAIL ();
3617 return FALSE;
3618 break;
3619 default:
3620 return FALSE;
3621 }
3622}
3623
906e58ca
NC
3624/* Determine the type of stub needed, if any, for a call. */
3625
3626static enum elf32_arm_stub_type
3627arm_type_of_stub (struct bfd_link_info *info,
3628 asection *input_sec,
3629 const Elf_Internal_Rela *rel,
34e77a92 3630 unsigned char st_type,
35fc36a8 3631 enum arm_st_branch_type *actual_branch_type,
906e58ca 3632 struct elf32_arm_link_hash_entry *hash,
c820be07
NC
3633 bfd_vma destination,
3634 asection *sym_sec,
3635 bfd *input_bfd,
3636 const char *name)
906e58ca
NC
3637{
3638 bfd_vma location;
3639 bfd_signed_vma branch_offset;
3640 unsigned int r_type;
3641 struct elf32_arm_link_hash_table * globals;
3642 int thumb2;
3643 int thumb_only;
3644 enum elf32_arm_stub_type stub_type = arm_stub_none;
5fa9e92f 3645 int use_plt = 0;
35fc36a8 3646 enum arm_st_branch_type branch_type = *actual_branch_type;
34e77a92
RS
3647 union gotplt_union *root_plt;
3648 struct arm_plt_info *arm_plt;
906e58ca 3649
35fc36a8 3650 if (branch_type == ST_BRANCH_LONG)
da5938a2
NC
3651 return stub_type;
3652
906e58ca 3653 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
3654 if (globals == NULL)
3655 return stub_type;
906e58ca
NC
3656
3657 thumb_only = using_thumb_only (globals);
3658
3659 thumb2 = using_thumb2 (globals);
3660
3661 /* Determine where the call point is. */
3662 location = (input_sec->output_offset
3663 + input_sec->output_section->vma
3664 + rel->r_offset);
3665
906e58ca
NC
3666 r_type = ELF32_R_TYPE (rel->r_info);
3667
39f21624
NC
3668 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3669 are considering a function call relocation. */
3670 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3671 && branch_type == ST_BRANCH_TO_ARM)
3672 branch_type = ST_BRANCH_TO_THUMB;
3673
34e77a92
RS
3674 /* For TLS call relocs, it is the caller's responsibility to provide
3675 the address of the appropriate trampoline. */
3676 if (r_type != R_ARM_TLS_CALL
3677 && r_type != R_ARM_THM_TLS_CALL
3678 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3679 &root_plt, &arm_plt)
3680 && root_plt->offset != (bfd_vma) -1)
5fa9e92f 3681 {
34e77a92 3682 asection *splt;
fe33d2fa 3683
34e77a92
RS
3684 if (hash == NULL || hash->is_iplt)
3685 splt = globals->root.iplt;
3686 else
3687 splt = globals->root.splt;
3688 if (splt != NULL)
b38cadfb 3689 {
34e77a92
RS
3690 use_plt = 1;
3691
3692 /* Note when dealing with PLT entries: the main PLT stub is in
3693 ARM mode, so if the branch is in Thumb mode, another
3694 Thumb->ARM stub will be inserted later just before the ARM
3695 PLT stub. We don't take this extra distance into account
3696 here, because if a long branch stub is needed, we'll add a
3697 Thumb->Arm one and branch directly to the ARM PLT entry
3698 because it avoids spreading offset corrections in several
3699 places. */
3700
3701 destination = (splt->output_section->vma
3702 + splt->output_offset
3703 + root_plt->offset);
3704 st_type = STT_FUNC;
3705 branch_type = ST_BRANCH_TO_ARM;
3706 }
5fa9e92f 3707 }
34e77a92
RS
3708 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3709 BFD_ASSERT (st_type != STT_GNU_IFUNC);
906e58ca 3710
fe33d2fa
CL
3711 branch_offset = (bfd_signed_vma)(destination - location);
3712
0855e32b
NS
3713 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3714 || r_type == R_ARM_THM_TLS_CALL)
906e58ca 3715 {
5fa9e92f
CL
3716 /* Handle cases where:
3717 - this call goes too far (different Thumb/Thumb2 max
99059e56 3718 distance)
155d87d7 3719 - it's a Thumb->Arm call and blx is not available, or it's a
99059e56
RM
3720 Thumb->Arm branch (not bl). A stub is needed in this case,
3721 but only if this call is not through a PLT entry. Indeed,
3722 PLT stubs handle mode switching already.
5fa9e92f 3723 */
906e58ca
NC
3724 if ((!thumb2
3725 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3726 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3727 || (thumb2
3728 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3729 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
35fc36a8 3730 || (branch_type == ST_BRANCH_TO_ARM
0855e32b
NS
3731 && (((r_type == R_ARM_THM_CALL
3732 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
155d87d7 3733 || (r_type == R_ARM_THM_JUMP24))
5fa9e92f 3734 && !use_plt))
906e58ca 3735 {
35fc36a8 3736 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
3737 {
3738 /* Thumb to thumb. */
3739 if (!thumb_only)
3740 {
3741 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3742 /* PIC stubs. */
155d87d7 3743 ? ((globals->use_blx
9553db3c 3744 && (r_type == R_ARM_THM_CALL))
155d87d7
CL
3745 /* V5T and above. Stub starts with ARM code, so
3746 we must be able to switch mode before
3747 reaching it, which is only possible for 'bl'
3748 (ie R_ARM_THM_CALL relocation). */
cf3eccff 3749 ? arm_stub_long_branch_any_thumb_pic
ebe24dd4 3750 /* On V4T, use Thumb code only. */
d3626fb0 3751 : arm_stub_long_branch_v4t_thumb_thumb_pic)
c2b4a39d
CL
3752
3753 /* non-PIC stubs. */
155d87d7 3754 : ((globals->use_blx
9553db3c 3755 && (r_type == R_ARM_THM_CALL))
c2b4a39d
CL
3756 /* V5T and above. */
3757 ? arm_stub_long_branch_any_any
3758 /* V4T. */
d3626fb0 3759 : arm_stub_long_branch_v4t_thumb_thumb);
906e58ca
NC
3760 }
3761 else
3762 {
3763 stub_type = (info->shared | globals->pic_veneer)
ebe24dd4
CL
3764 /* PIC stub. */
3765 ? arm_stub_long_branch_thumb_only_pic
c2b4a39d
CL
3766 /* non-PIC stub. */
3767 : arm_stub_long_branch_thumb_only;
906e58ca
NC
3768 }
3769 }
3770 else
3771 {
3772 /* Thumb to arm. */
c820be07
NC
3773 if (sym_sec != NULL
3774 && sym_sec->owner != NULL
3775 && !INTERWORK_FLAG (sym_sec->owner))
3776 {
3777 (*_bfd_error_handler)
3778 (_("%B(%s): warning: interworking not enabled.\n"
3779 " first occurrence: %B: Thumb call to ARM"),
3780 sym_sec->owner, input_bfd, name);
3781 }
3782
0855e32b
NS
3783 stub_type =
3784 (info->shared | globals->pic_veneer)
c2b4a39d 3785 /* PIC stubs. */
0855e32b 3786 ? (r_type == R_ARM_THM_TLS_CALL
6a631e86 3787 /* TLS PIC stubs. */
0855e32b
NS
3788 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3789 : arm_stub_long_branch_v4t_thumb_tls_pic)
3790 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3791 /* V5T PIC and above. */
3792 ? arm_stub_long_branch_any_arm_pic
3793 /* V4T PIC stub. */
3794 : arm_stub_long_branch_v4t_thumb_arm_pic))
c2b4a39d
CL
3795
3796 /* non-PIC stubs. */
0855e32b 3797 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
c2b4a39d
CL
3798 /* V5T and above. */
3799 ? arm_stub_long_branch_any_any
3800 /* V4T. */
3801 : arm_stub_long_branch_v4t_thumb_arm);
c820be07
NC
3802
3803 /* Handle v4t short branches. */
fea2b4d6 3804 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
c820be07
NC
3805 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3806 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
fea2b4d6 3807 stub_type = arm_stub_short_branch_v4t_thumb_arm;
906e58ca
NC
3808 }
3809 }
3810 }
fe33d2fa
CL
3811 else if (r_type == R_ARM_CALL
3812 || r_type == R_ARM_JUMP24
0855e32b
NS
3813 || r_type == R_ARM_PLT32
3814 || r_type == R_ARM_TLS_CALL)
906e58ca 3815 {
35fc36a8 3816 if (branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
3817 {
3818 /* Arm to thumb. */
c820be07
NC
3819
3820 if (sym_sec != NULL
3821 && sym_sec->owner != NULL
3822 && !INTERWORK_FLAG (sym_sec->owner))
3823 {
3824 (*_bfd_error_handler)
3825 (_("%B(%s): warning: interworking not enabled.\n"
c2b4a39d 3826 " first occurrence: %B: ARM call to Thumb"),
c820be07
NC
3827 sym_sec->owner, input_bfd, name);
3828 }
3829
3830 /* We have an extra 2-bytes reach because of
3831 the mode change (bit 24 (H) of BLX encoding). */
4116d8d7
PB
3832 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3833 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
0855e32b 3834 || (r_type == R_ARM_CALL && !globals->use_blx)
4116d8d7
PB
3835 || (r_type == R_ARM_JUMP24)
3836 || (r_type == R_ARM_PLT32))
906e58ca
NC
3837 {
3838 stub_type = (info->shared | globals->pic_veneer)
c2b4a39d 3839 /* PIC stubs. */
ebe24dd4
CL
3840 ? ((globals->use_blx)
3841 /* V5T and above. */
3842 ? arm_stub_long_branch_any_thumb_pic
3843 /* V4T stub. */
3844 : arm_stub_long_branch_v4t_arm_thumb_pic)
3845
c2b4a39d
CL
3846 /* non-PIC stubs. */
3847 : ((globals->use_blx)
3848 /* V5T and above. */
3849 ? arm_stub_long_branch_any_any
3850 /* V4T. */
3851 : arm_stub_long_branch_v4t_arm_thumb);
906e58ca
NC
3852 }
3853 }
3854 else
3855 {
3856 /* Arm to arm. */
3857 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3858 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3859 {
0855e32b
NS
3860 stub_type =
3861 (info->shared | globals->pic_veneer)
c2b4a39d 3862 /* PIC stubs. */
0855e32b 3863 ? (r_type == R_ARM_TLS_CALL
6a631e86 3864 /* TLS PIC Stub. */
0855e32b 3865 ? arm_stub_long_branch_any_tls_pic
7a89b94e
NC
3866 : (globals->nacl_p
3867 ? arm_stub_long_branch_arm_nacl_pic
3868 : arm_stub_long_branch_any_arm_pic))
c2b4a39d 3869 /* non-PIC stubs. */
7a89b94e
NC
3870 : (globals->nacl_p
3871 ? arm_stub_long_branch_arm_nacl
3872 : arm_stub_long_branch_any_any);
906e58ca
NC
3873 }
3874 }
3875 }
3876
fe33d2fa
CL
3877 /* If a stub is needed, record the actual destination type. */
3878 if (stub_type != arm_stub_none)
35fc36a8 3879 *actual_branch_type = branch_type;
fe33d2fa 3880
906e58ca
NC
3881 return stub_type;
3882}
3883
3884/* Build a name for an entry in the stub hash table. */
3885
3886static char *
3887elf32_arm_stub_name (const asection *input_section,
3888 const asection *sym_sec,
3889 const struct elf32_arm_link_hash_entry *hash,
fe33d2fa
CL
3890 const Elf_Internal_Rela *rel,
3891 enum elf32_arm_stub_type stub_type)
906e58ca
NC
3892{
3893 char *stub_name;
3894 bfd_size_type len;
3895
3896 if (hash)
3897 {
fe33d2fa 3898 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
21d799b5 3899 stub_name = (char *) bfd_malloc (len);
906e58ca 3900 if (stub_name != NULL)
fe33d2fa 3901 sprintf (stub_name, "%08x_%s+%x_%d",
906e58ca
NC
3902 input_section->id & 0xffffffff,
3903 hash->root.root.root.string,
fe33d2fa
CL
3904 (int) rel->r_addend & 0xffffffff,
3905 (int) stub_type);
906e58ca
NC
3906 }
3907 else
3908 {
fe33d2fa 3909 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
21d799b5 3910 stub_name = (char *) bfd_malloc (len);
906e58ca 3911 if (stub_name != NULL)
fe33d2fa 3912 sprintf (stub_name, "%08x_%x:%x+%x_%d",
906e58ca
NC
3913 input_section->id & 0xffffffff,
3914 sym_sec->id & 0xffffffff,
0855e32b
NS
3915 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3916 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3917 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
fe33d2fa
CL
3918 (int) rel->r_addend & 0xffffffff,
3919 (int) stub_type);
906e58ca
NC
3920 }
3921
3922 return stub_name;
3923}
3924
3925/* Look up an entry in the stub hash. Stub entries are cached because
3926 creating the stub name takes a bit of time. */
3927
3928static struct elf32_arm_stub_hash_entry *
3929elf32_arm_get_stub_entry (const asection *input_section,
3930 const asection *sym_sec,
3931 struct elf_link_hash_entry *hash,
3932 const Elf_Internal_Rela *rel,
fe33d2fa
CL
3933 struct elf32_arm_link_hash_table *htab,
3934 enum elf32_arm_stub_type stub_type)
906e58ca
NC
3935{
3936 struct elf32_arm_stub_hash_entry *stub_entry;
3937 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3938 const asection *id_sec;
3939
3940 if ((input_section->flags & SEC_CODE) == 0)
3941 return NULL;
3942
3943 /* If this input section is part of a group of sections sharing one
3944 stub section, then use the id of the first section in the group.
3945 Stub names need to include a section id, as there may well be
3946 more than one stub used to reach say, printf, and we need to
3947 distinguish between them. */
3948 id_sec = htab->stub_group[input_section->id].link_sec;
3949
3950 if (h != NULL && h->stub_cache != NULL
3951 && h->stub_cache->h == h
fe33d2fa
CL
3952 && h->stub_cache->id_sec == id_sec
3953 && h->stub_cache->stub_type == stub_type)
906e58ca
NC
3954 {
3955 stub_entry = h->stub_cache;
3956 }
3957 else
3958 {
3959 char *stub_name;
3960
fe33d2fa 3961 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
906e58ca
NC
3962 if (stub_name == NULL)
3963 return NULL;
3964
3965 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3966 stub_name, FALSE, FALSE);
3967 if (h != NULL)
3968 h->stub_cache = stub_entry;
3969
3970 free (stub_name);
3971 }
3972
3973 return stub_entry;
3974}
3975
48229727 3976/* Find or create a stub section. Returns a pointer to the stub section, and
b38cadfb 3977 the section to which the stub section will be attached (in *LINK_SEC_P).
48229727 3978 LINK_SEC_P may be NULL. */
906e58ca 3979
48229727
JB
3980static asection *
3981elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3982 struct elf32_arm_link_hash_table *htab)
906e58ca
NC
3983{
3984 asection *link_sec;
3985 asection *stub_sec;
906e58ca
NC
3986
3987 link_sec = htab->stub_group[section->id].link_sec;
9553db3c 3988 BFD_ASSERT (link_sec != NULL);
906e58ca 3989 stub_sec = htab->stub_group[section->id].stub_sec;
9553db3c 3990
906e58ca
NC
3991 if (stub_sec == NULL)
3992 {
3993 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3994 if (stub_sec == NULL)
3995 {
3996 size_t namelen;
3997 bfd_size_type len;
3998 char *s_name;
3999
4000 namelen = strlen (link_sec->name);
4001 len = namelen + sizeof (STUB_SUFFIX);
21d799b5 4002 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
906e58ca
NC
4003 if (s_name == NULL)
4004 return NULL;
4005
4006 memcpy (s_name, link_sec->name, namelen);
4007 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
7a89b94e
NC
4008 stub_sec = (*htab->add_stub_section) (s_name, link_sec,
4009 htab->nacl_p ? 4 : 3);
906e58ca
NC
4010 if (stub_sec == NULL)
4011 return NULL;
4012 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4013 }
4014 htab->stub_group[section->id].stub_sec = stub_sec;
4015 }
b38cadfb 4016
48229727
JB
4017 if (link_sec_p)
4018 *link_sec_p = link_sec;
b38cadfb 4019
48229727
JB
4020 return stub_sec;
4021}
4022
4023/* Add a new stub entry to the stub hash. Not all fields of the new
4024 stub entry are initialised. */
4025
4026static struct elf32_arm_stub_hash_entry *
4027elf32_arm_add_stub (const char *stub_name,
4028 asection *section,
4029 struct elf32_arm_link_hash_table *htab)
4030{
4031 asection *link_sec;
4032 asection *stub_sec;
4033 struct elf32_arm_stub_hash_entry *stub_entry;
4034
4035 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
4036 if (stub_sec == NULL)
4037 return NULL;
906e58ca
NC
4038
4039 /* Enter this entry into the linker stub hash table. */
4040 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4041 TRUE, FALSE);
4042 if (stub_entry == NULL)
4043 {
4044 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4045 section->owner,
4046 stub_name);
4047 return NULL;
4048 }
4049
4050 stub_entry->stub_sec = stub_sec;
4051 stub_entry->stub_offset = 0;
4052 stub_entry->id_sec = link_sec;
4053
906e58ca
NC
4054 return stub_entry;
4055}
4056
4057/* Store an Arm insn into an output section not processed by
4058 elf32_arm_write_section. */
4059
4060static void
8029a119
NC
4061put_arm_insn (struct elf32_arm_link_hash_table * htab,
4062 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4063{
4064 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4065 bfd_putl32 (val, ptr);
4066 else
4067 bfd_putb32 (val, ptr);
4068}
4069
4070/* Store a 16-bit Thumb insn into an output section not processed by
4071 elf32_arm_write_section. */
4072
4073static void
8029a119
NC
4074put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4075 bfd * output_bfd, bfd_vma val, void * ptr)
906e58ca
NC
4076{
4077 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4078 bfd_putl16 (val, ptr);
4079 else
4080 bfd_putb16 (val, ptr);
4081}
4082
0855e32b
NS
4083/* If it's possible to change R_TYPE to a more efficient access
4084 model, return the new reloc type. */
4085
4086static unsigned
b38cadfb 4087elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
0855e32b
NS
4088 struct elf_link_hash_entry *h)
4089{
4090 int is_local = (h == NULL);
4091
4092 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
4093 return r_type;
4094
b38cadfb 4095 /* We do not support relaxations for Old TLS models. */
0855e32b
NS
4096 switch (r_type)
4097 {
4098 case R_ARM_TLS_GOTDESC:
4099 case R_ARM_TLS_CALL:
4100 case R_ARM_THM_TLS_CALL:
4101 case R_ARM_TLS_DESCSEQ:
4102 case R_ARM_THM_TLS_DESCSEQ:
4103 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4104 }
4105
4106 return r_type;
4107}
4108
48229727
JB
4109static bfd_reloc_status_type elf32_arm_final_link_relocate
4110 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4111 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
34e77a92
RS
4112 const char *, unsigned char, enum arm_st_branch_type,
4113 struct elf_link_hash_entry *, bfd_boolean *, char **);
48229727 4114
4563a860
JB
4115static unsigned int
4116arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4117{
4118 switch (stub_type)
4119 {
4120 case arm_stub_a8_veneer_b_cond:
4121 case arm_stub_a8_veneer_b:
4122 case arm_stub_a8_veneer_bl:
4123 return 2;
4124
4125 case arm_stub_long_branch_any_any:
4126 case arm_stub_long_branch_v4t_arm_thumb:
4127 case arm_stub_long_branch_thumb_only:
4128 case arm_stub_long_branch_v4t_thumb_thumb:
4129 case arm_stub_long_branch_v4t_thumb_arm:
4130 case arm_stub_short_branch_v4t_thumb_arm:
4131 case arm_stub_long_branch_any_arm_pic:
4132 case arm_stub_long_branch_any_thumb_pic:
4133 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4134 case arm_stub_long_branch_v4t_arm_thumb_pic:
4135 case arm_stub_long_branch_v4t_thumb_arm_pic:
4136 case arm_stub_long_branch_thumb_only_pic:
0855e32b
NS
4137 case arm_stub_long_branch_any_tls_pic:
4138 case arm_stub_long_branch_v4t_thumb_tls_pic:
4563a860
JB
4139 case arm_stub_a8_veneer_blx:
4140 return 4;
b38cadfb 4141
7a89b94e
NC
4142 case arm_stub_long_branch_arm_nacl:
4143 case arm_stub_long_branch_arm_nacl_pic:
4144 return 16;
4145
4563a860
JB
4146 default:
4147 abort (); /* Should be unreachable. */
4148 }
4149}
4150
906e58ca
NC
4151static bfd_boolean
4152arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4153 void * in_arg)
4154{
7a89b94e 4155#define MAXRELOCS 3
906e58ca 4156 struct elf32_arm_stub_hash_entry *stub_entry;
4dfe6ac6 4157 struct elf32_arm_link_hash_table *globals;
906e58ca 4158 struct bfd_link_info *info;
906e58ca
NC
4159 asection *stub_sec;
4160 bfd *stub_bfd;
906e58ca
NC
4161 bfd_byte *loc;
4162 bfd_vma sym_value;
4163 int template_size;
4164 int size;
d3ce72d0 4165 const insn_sequence *template_sequence;
906e58ca 4166 int i;
48229727
JB
4167 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4168 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4169 int nrelocs = 0;
906e58ca
NC
4170
4171 /* Massage our args to the form they really have. */
4172 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4173 info = (struct bfd_link_info *) in_arg;
4174
4175 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
4176 if (globals == NULL)
4177 return FALSE;
906e58ca 4178
906e58ca
NC
4179 stub_sec = stub_entry->stub_sec;
4180
4dfe6ac6 4181 if ((globals->fix_cortex_a8 < 0)
4563a860
JB
4182 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4183 /* We have to do less-strictly-aligned fixes last. */
eb7c4339 4184 return TRUE;
fe33d2fa 4185
906e58ca
NC
4186 /* Make a note of the offset within the stubs for this entry. */
4187 stub_entry->stub_offset = stub_sec->size;
4188 loc = stub_sec->contents + stub_entry->stub_offset;
4189
4190 stub_bfd = stub_sec->owner;
4191
906e58ca
NC
4192 /* This is the address of the stub destination. */
4193 sym_value = (stub_entry->target_value
4194 + stub_entry->target_section->output_offset
4195 + stub_entry->target_section->output_section->vma);
4196
d3ce72d0 4197 template_sequence = stub_entry->stub_template;
461a49ca 4198 template_size = stub_entry->stub_template_size;
906e58ca
NC
4199
4200 size = 0;
461a49ca 4201 for (i = 0; i < template_size; i++)
906e58ca 4202 {
d3ce72d0 4203 switch (template_sequence[i].type)
461a49ca
DJ
4204 {
4205 case THUMB16_TYPE:
48229727 4206 {
d3ce72d0
NC
4207 bfd_vma data = (bfd_vma) template_sequence[i].data;
4208 if (template_sequence[i].reloc_addend != 0)
48229727 4209 {
99059e56
RM
4210 /* We've borrowed the reloc_addend field to mean we should
4211 insert a condition code into this (Thumb-1 branch)
4212 instruction. See THUMB16_BCOND_INSN. */
4213 BFD_ASSERT ((data & 0xff00) == 0xd000);
4214 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
48229727 4215 }
fe33d2fa 4216 bfd_put_16 (stub_bfd, data, loc + size);
48229727
JB
4217 size += 2;
4218 }
461a49ca 4219 break;
906e58ca 4220
48229727 4221 case THUMB32_TYPE:
fe33d2fa
CL
4222 bfd_put_16 (stub_bfd,
4223 (template_sequence[i].data >> 16) & 0xffff,
4224 loc + size);
4225 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4226 loc + size + 2);
99059e56
RM
4227 if (template_sequence[i].r_type != R_ARM_NONE)
4228 {
4229 stub_reloc_idx[nrelocs] = i;
4230 stub_reloc_offset[nrelocs++] = size;
4231 }
4232 size += 4;
4233 break;
48229727 4234
461a49ca 4235 case ARM_TYPE:
fe33d2fa
CL
4236 bfd_put_32 (stub_bfd, template_sequence[i].data,
4237 loc + size);
461a49ca
DJ
4238 /* Handle cases where the target is encoded within the
4239 instruction. */
d3ce72d0 4240 if (template_sequence[i].r_type == R_ARM_JUMP24)
461a49ca 4241 {
48229727
JB
4242 stub_reloc_idx[nrelocs] = i;
4243 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4244 }
4245 size += 4;
4246 break;
4247
4248 case DATA_TYPE:
d3ce72d0 4249 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
48229727
JB
4250 stub_reloc_idx[nrelocs] = i;
4251 stub_reloc_offset[nrelocs++] = size;
461a49ca
DJ
4252 size += 4;
4253 break;
4254
4255 default:
4256 BFD_FAIL ();
4257 return FALSE;
4258 }
906e58ca 4259 }
461a49ca 4260
906e58ca
NC
4261 stub_sec->size += size;
4262
461a49ca
DJ
4263 /* Stub size has already been computed in arm_size_one_stub. Check
4264 consistency. */
4265 BFD_ASSERT (size == stub_entry->stub_size);
4266
906e58ca 4267 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
35fc36a8 4268 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
906e58ca
NC
4269 sym_value |= 1;
4270
48229727
JB
4271 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4272 in each stub. */
4273 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
c820be07 4274
48229727 4275 for (i = 0; i < nrelocs; i++)
d3ce72d0
NC
4276 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4277 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4278 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4279 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
48229727
JB
4280 {
4281 Elf_Internal_Rela rel;
4282 bfd_boolean unresolved_reloc;
4283 char *error_message;
35fc36a8
RS
4284 enum arm_st_branch_type branch_type
4285 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4286 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
48229727
JB
4287 bfd_vma points_to = sym_value + stub_entry->target_addend;
4288
4289 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
d3ce72d0 4290 rel.r_info = ELF32_R_INFO (0,
99059e56 4291 template_sequence[stub_reloc_idx[i]].r_type);
d3ce72d0 4292 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
48229727
JB
4293
4294 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4295 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4296 template should refer back to the instruction after the original
4297 branch. */
4298 points_to = sym_value;
4299
33c6a8fc
JB
4300 /* There may be unintended consequences if this is not true. */
4301 BFD_ASSERT (stub_entry->h == NULL);
4302
48229727
JB
4303 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4304 properly. We should probably use this function unconditionally,
4305 rather than only for certain relocations listed in the enclosing
4306 conditional, for the sake of consistency. */
4307 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
d3ce72d0 4308 (template_sequence[stub_reloc_idx[i]].r_type),
48229727 4309 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
34e77a92
RS
4310 points_to, info, stub_entry->target_section, "", STT_FUNC,
4311 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4312 &unresolved_reloc, &error_message);
48229727
JB
4313 }
4314 else
4315 {
fe33d2fa
CL
4316 Elf_Internal_Rela rel;
4317 bfd_boolean unresolved_reloc;
4318 char *error_message;
4319 bfd_vma points_to = sym_value + stub_entry->target_addend
4320 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4321
4322 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4323 rel.r_info = ELF32_R_INFO (0,
99059e56 4324 template_sequence[stub_reloc_idx[i]].r_type);
fe33d2fa
CL
4325 rel.r_addend = 0;
4326
4327 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4328 (template_sequence[stub_reloc_idx[i]].r_type),
4329 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
34e77a92 4330 points_to, info, stub_entry->target_section, "", STT_FUNC,
35fc36a8 4331 stub_entry->branch_type,
fe33d2fa
CL
4332 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4333 &error_message);
48229727 4334 }
906e58ca
NC
4335
4336 return TRUE;
48229727 4337#undef MAXRELOCS
906e58ca
NC
4338}
4339
48229727
JB
4340/* Calculate the template, template size and instruction size for a stub.
4341 Return value is the instruction size. */
906e58ca 4342
48229727
JB
4343static unsigned int
4344find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4345 const insn_sequence **stub_template,
4346 int *stub_template_size)
906e58ca 4347{
d3ce72d0 4348 const insn_sequence *template_sequence = NULL;
48229727
JB
4349 int template_size = 0, i;
4350 unsigned int size;
906e58ca 4351
d3ce72d0 4352 template_sequence = stub_definitions[stub_type].template_sequence;
2a229407
AM
4353 if (stub_template)
4354 *stub_template = template_sequence;
4355
48229727 4356 template_size = stub_definitions[stub_type].template_size;
2a229407
AM
4357 if (stub_template_size)
4358 *stub_template_size = template_size;
906e58ca
NC
4359
4360 size = 0;
461a49ca
DJ
4361 for (i = 0; i < template_size; i++)
4362 {
d3ce72d0 4363 switch (template_sequence[i].type)
461a49ca
DJ
4364 {
4365 case THUMB16_TYPE:
4366 size += 2;
4367 break;
4368
4369 case ARM_TYPE:
48229727 4370 case THUMB32_TYPE:
461a49ca
DJ
4371 case DATA_TYPE:
4372 size += 4;
4373 break;
4374
4375 default:
4376 BFD_FAIL ();
2a229407 4377 return 0;
461a49ca
DJ
4378 }
4379 }
4380
48229727
JB
4381 return size;
4382}
4383
4384/* As above, but don't actually build the stub. Just bump offset so
4385 we know stub section sizes. */
4386
4387static bfd_boolean
4388arm_size_one_stub (struct bfd_hash_entry *gen_entry,
c7e2358a 4389 void *in_arg ATTRIBUTE_UNUSED)
48229727
JB
4390{
4391 struct elf32_arm_stub_hash_entry *stub_entry;
d3ce72d0 4392 const insn_sequence *template_sequence;
48229727
JB
4393 int template_size, size;
4394
4395 /* Massage our args to the form they really have. */
4396 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
48229727
JB
4397
4398 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4399 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4400
d3ce72d0 4401 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
48229727
JB
4402 &template_size);
4403
461a49ca 4404 stub_entry->stub_size = size;
d3ce72d0 4405 stub_entry->stub_template = template_sequence;
461a49ca
DJ
4406 stub_entry->stub_template_size = template_size;
4407
906e58ca
NC
4408 size = (size + 7) & ~7;
4409 stub_entry->stub_sec->size += size;
461a49ca 4410
906e58ca
NC
4411 return TRUE;
4412}
4413
4414/* External entry points for sizing and building linker stubs. */
4415
4416/* Set up various things so that we can make a list of input sections
4417 for each output section included in the link. Returns -1 on error,
4418 0 when no stubs will be needed, and 1 on success. */
4419
4420int
4421elf32_arm_setup_section_lists (bfd *output_bfd,
4422 struct bfd_link_info *info)
4423{
4424 bfd *input_bfd;
4425 unsigned int bfd_count;
4426 int top_id, top_index;
4427 asection *section;
4428 asection **input_list, **list;
4429 bfd_size_type amt;
4430 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4431
4dfe6ac6
NC
4432 if (htab == NULL)
4433 return 0;
906e58ca
NC
4434 if (! is_elf_hash_table (htab))
4435 return 0;
4436
4437 /* Count the number of input BFDs and find the top input section id. */
4438 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4439 input_bfd != NULL;
c72f2fb2 4440 input_bfd = input_bfd->link.next)
906e58ca
NC
4441 {
4442 bfd_count += 1;
4443 for (section = input_bfd->sections;
4444 section != NULL;
4445 section = section->next)
4446 {
4447 if (top_id < section->id)
4448 top_id = section->id;
4449 }
4450 }
4451 htab->bfd_count = bfd_count;
4452
4453 amt = sizeof (struct map_stub) * (top_id + 1);
21d799b5 4454 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
906e58ca
NC
4455 if (htab->stub_group == NULL)
4456 return -1;
fe33d2fa 4457 htab->top_id = top_id;
906e58ca
NC
4458
4459 /* We can't use output_bfd->section_count here to find the top output
4460 section index as some sections may have been removed, and
4461 _bfd_strip_section_from_output doesn't renumber the indices. */
4462 for (section = output_bfd->sections, top_index = 0;
4463 section != NULL;
4464 section = section->next)
4465 {
4466 if (top_index < section->index)
4467 top_index = section->index;
4468 }
4469
4470 htab->top_index = top_index;
4471 amt = sizeof (asection *) * (top_index + 1);
21d799b5 4472 input_list = (asection **) bfd_malloc (amt);
906e58ca
NC
4473 htab->input_list = input_list;
4474 if (input_list == NULL)
4475 return -1;
4476
4477 /* For sections we aren't interested in, mark their entries with a
4478 value we can check later. */
4479 list = input_list + top_index;
4480 do
4481 *list = bfd_abs_section_ptr;
4482 while (list-- != input_list);
4483
4484 for (section = output_bfd->sections;
4485 section != NULL;
4486 section = section->next)
4487 {
4488 if ((section->flags & SEC_CODE) != 0)
4489 input_list[section->index] = NULL;
4490 }
4491
4492 return 1;
4493}
4494
4495/* The linker repeatedly calls this function for each input section,
4496 in the order that input sections are linked into output sections.
4497 Build lists of input sections to determine groupings between which
4498 we may insert linker stubs. */
4499
4500void
4501elf32_arm_next_input_section (struct bfd_link_info *info,
4502 asection *isec)
4503{
4504 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4505
4dfe6ac6
NC
4506 if (htab == NULL)
4507 return;
4508
906e58ca
NC
4509 if (isec->output_section->index <= htab->top_index)
4510 {
4511 asection **list = htab->input_list + isec->output_section->index;
4512
a7470592 4513 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
906e58ca
NC
4514 {
4515 /* Steal the link_sec pointer for our list. */
4516#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4517 /* This happens to make the list in reverse order,
07d72278 4518 which we reverse later. */
906e58ca
NC
4519 PREV_SEC (isec) = *list;
4520 *list = isec;
4521 }
4522 }
4523}
4524
4525/* See whether we can group stub sections together. Grouping stub
4526 sections may result in fewer stubs. More importantly, we need to
07d72278 4527 put all .init* and .fini* stubs at the end of the .init or
906e58ca
NC
4528 .fini output sections respectively, because glibc splits the
4529 _init and _fini functions into multiple parts. Putting a stub in
4530 the middle of a function is not a good idea. */
4531
4532static void
4533group_sections (struct elf32_arm_link_hash_table *htab,
4534 bfd_size_type stub_group_size,
07d72278 4535 bfd_boolean stubs_always_after_branch)
906e58ca 4536{
07d72278 4537 asection **list = htab->input_list;
906e58ca
NC
4538
4539 do
4540 {
4541 asection *tail = *list;
07d72278 4542 asection *head;
906e58ca
NC
4543
4544 if (tail == bfd_abs_section_ptr)
4545 continue;
4546
07d72278
DJ
4547 /* Reverse the list: we must avoid placing stubs at the
4548 beginning of the section because the beginning of the text
4549 section may be required for an interrupt vector in bare metal
4550 code. */
4551#define NEXT_SEC PREV_SEC
e780aef2
CL
4552 head = NULL;
4553 while (tail != NULL)
99059e56
RM
4554 {
4555 /* Pop from tail. */
4556 asection *item = tail;
4557 tail = PREV_SEC (item);
e780aef2 4558
99059e56
RM
4559 /* Push on head. */
4560 NEXT_SEC (item) = head;
4561 head = item;
4562 }
07d72278
DJ
4563
4564 while (head != NULL)
906e58ca
NC
4565 {
4566 asection *curr;
07d72278 4567 asection *next;
e780aef2
CL
4568 bfd_vma stub_group_start = head->output_offset;
4569 bfd_vma end_of_next;
906e58ca 4570
07d72278 4571 curr = head;
e780aef2 4572 while (NEXT_SEC (curr) != NULL)
8cd931b7 4573 {
e780aef2
CL
4574 next = NEXT_SEC (curr);
4575 end_of_next = next->output_offset + next->size;
4576 if (end_of_next - stub_group_start >= stub_group_size)
4577 /* End of NEXT is too far from start, so stop. */
8cd931b7 4578 break;
e780aef2
CL
4579 /* Add NEXT to the group. */
4580 curr = next;
8cd931b7 4581 }
906e58ca 4582
07d72278 4583 /* OK, the size from the start to the start of CURR is less
906e58ca 4584 than stub_group_size and thus can be handled by one stub
07d72278 4585 section. (Or the head section is itself larger than
906e58ca
NC
4586 stub_group_size, in which case we may be toast.)
4587 We should really be keeping track of the total size of
4588 stubs added here, as stubs contribute to the final output
7fb9f789 4589 section size. */
906e58ca
NC
4590 do
4591 {
07d72278 4592 next = NEXT_SEC (head);
906e58ca 4593 /* Set up this stub group. */
07d72278 4594 htab->stub_group[head->id].link_sec = curr;
906e58ca 4595 }
07d72278 4596 while (head != curr && (head = next) != NULL);
906e58ca
NC
4597
4598 /* But wait, there's more! Input sections up to stub_group_size
07d72278
DJ
4599 bytes after the stub section can be handled by it too. */
4600 if (!stubs_always_after_branch)
906e58ca 4601 {
e780aef2
CL
4602 stub_group_start = curr->output_offset + curr->size;
4603
8cd931b7 4604 while (next != NULL)
906e58ca 4605 {
e780aef2
CL
4606 end_of_next = next->output_offset + next->size;
4607 if (end_of_next - stub_group_start >= stub_group_size)
4608 /* End of NEXT is too far from stubs, so stop. */
8cd931b7 4609 break;
e780aef2 4610 /* Add NEXT to the stub group. */
07d72278
DJ
4611 head = next;
4612 next = NEXT_SEC (head);
4613 htab->stub_group[head->id].link_sec = curr;
906e58ca
NC
4614 }
4615 }
07d72278 4616 head = next;
906e58ca
NC
4617 }
4618 }
07d72278 4619 while (list++ != htab->input_list + htab->top_index);
906e58ca
NC
4620
4621 free (htab->input_list);
4622#undef PREV_SEC
07d72278 4623#undef NEXT_SEC
906e58ca
NC
4624}
4625
48229727
JB
4626/* Comparison function for sorting/searching relocations relating to Cortex-A8
4627 erratum fix. */
4628
4629static int
4630a8_reloc_compare (const void *a, const void *b)
4631{
21d799b5
NC
4632 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4633 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
48229727
JB
4634
4635 if (ra->from < rb->from)
4636 return -1;
4637 else if (ra->from > rb->from)
4638 return 1;
4639 else
4640 return 0;
4641}
4642
4643static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4644 const char *, char **);
4645
4646/* Helper function to scan code for sequences which might trigger the Cortex-A8
4647 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
81694485 4648 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
48229727
JB
4649 otherwise. */
4650
81694485
NC
4651static bfd_boolean
4652cortex_a8_erratum_scan (bfd *input_bfd,
4653 struct bfd_link_info *info,
48229727
JB
4654 struct a8_erratum_fix **a8_fixes_p,
4655 unsigned int *num_a8_fixes_p,
4656 unsigned int *a8_fix_table_size_p,
4657 struct a8_erratum_reloc *a8_relocs,
eb7c4339
NS
4658 unsigned int num_a8_relocs,
4659 unsigned prev_num_a8_fixes,
4660 bfd_boolean *stub_changed_p)
48229727
JB
4661{
4662 asection *section;
4663 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4664 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4665 unsigned int num_a8_fixes = *num_a8_fixes_p;
4666 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4667
4dfe6ac6
NC
4668 if (htab == NULL)
4669 return FALSE;
4670
48229727
JB
4671 for (section = input_bfd->sections;
4672 section != NULL;
4673 section = section->next)
4674 {
4675 bfd_byte *contents = NULL;
4676 struct _arm_elf_section_data *sec_data;
4677 unsigned int span;
4678 bfd_vma base_vma;
4679
4680 if (elf_section_type (section) != SHT_PROGBITS
99059e56
RM
4681 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4682 || (section->flags & SEC_EXCLUDE) != 0
4683 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4684 || (section->output_section == bfd_abs_section_ptr))
4685 continue;
48229727
JB
4686
4687 base_vma = section->output_section->vma + section->output_offset;
4688
4689 if (elf_section_data (section)->this_hdr.contents != NULL)
99059e56 4690 contents = elf_section_data (section)->this_hdr.contents;
48229727 4691 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
99059e56 4692 return TRUE;
48229727
JB
4693
4694 sec_data = elf32_arm_section_data (section);
4695
4696 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
4697 {
4698 unsigned int span_start = sec_data->map[span].vma;
4699 unsigned int span_end = (span == sec_data->mapcount - 1)
4700 ? section->size : sec_data->map[span + 1].vma;
4701 unsigned int i;
4702 char span_type = sec_data->map[span].type;
4703 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4704
4705 if (span_type != 't')
4706 continue;
4707
4708 /* Span is entirely within a single 4KB region: skip scanning. */
4709 if (((base_vma + span_start) & ~0xfff)
48229727 4710 == ((base_vma + span_end) & ~0xfff))
99059e56
RM
4711 continue;
4712
4713 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4714
4715 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4716 * The branch target is in the same 4KB region as the
4717 first half of the branch.
4718 * The instruction before the branch is a 32-bit
4719 length non-branch instruction. */
4720 for (i = span_start; i < span_end;)
4721 {
4722 unsigned int insn = bfd_getl16 (&contents[i]);
4723 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
48229727
JB
4724 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4725
99059e56
RM
4726 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4727 insn_32bit = TRUE;
48229727
JB
4728
4729 if (insn_32bit)
99059e56
RM
4730 {
4731 /* Load the rest of the insn (in manual-friendly order). */
4732 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4733
4734 /* Encoding T4: B<c>.W. */
4735 is_b = (insn & 0xf800d000) == 0xf0009000;
4736 /* Encoding T1: BL<c>.W. */
4737 is_bl = (insn & 0xf800d000) == 0xf000d000;
4738 /* Encoding T2: BLX<c>.W. */
4739 is_blx = (insn & 0xf800d000) == 0xf000c000;
48229727
JB
4740 /* Encoding T3: B<c>.W (not permitted in IT block). */
4741 is_bcc = (insn & 0xf800d000) == 0xf0008000
4742 && (insn & 0x07f00000) != 0x03800000;
4743 }
4744
4745 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
fe33d2fa 4746
99059e56 4747 if (((base_vma + i) & 0xfff) == 0xffe
81694485
NC
4748 && insn_32bit
4749 && is_32bit_branch
4750 && last_was_32bit
4751 && ! last_was_branch)
99059e56
RM
4752 {
4753 bfd_signed_vma offset = 0;
4754 bfd_boolean force_target_arm = FALSE;
48229727 4755 bfd_boolean force_target_thumb = FALSE;
99059e56
RM
4756 bfd_vma target;
4757 enum elf32_arm_stub_type stub_type = arm_stub_none;
4758 struct a8_erratum_reloc key, *found;
4759 bfd_boolean use_plt = FALSE;
48229727 4760
99059e56
RM
4761 key.from = base_vma + i;
4762 found = (struct a8_erratum_reloc *)
4763 bsearch (&key, a8_relocs, num_a8_relocs,
4764 sizeof (struct a8_erratum_reloc),
4765 &a8_reloc_compare);
48229727
JB
4766
4767 if (found)
4768 {
4769 char *error_message = NULL;
4770 struct elf_link_hash_entry *entry;
4771
4772 /* We don't care about the error returned from this
99059e56 4773 function, only if there is glue or not. */
48229727
JB
4774 entry = find_thumb_glue (info, found->sym_name,
4775 &error_message);
4776
4777 if (entry)
4778 found->non_a8_stub = TRUE;
4779
92750f34 4780 /* Keep a simpler condition, for the sake of clarity. */
362d30a1 4781 if (htab->root.splt != NULL && found->hash != NULL
92750f34
DJ
4782 && found->hash->root.plt.offset != (bfd_vma) -1)
4783 use_plt = TRUE;
4784
4785 if (found->r_type == R_ARM_THM_CALL)
4786 {
35fc36a8
RS
4787 if (found->branch_type == ST_BRANCH_TO_ARM
4788 || use_plt)
92750f34
DJ
4789 force_target_arm = TRUE;
4790 else
4791 force_target_thumb = TRUE;
4792 }
48229727
JB
4793 }
4794
99059e56 4795 /* Check if we have an offending branch instruction. */
48229727
JB
4796
4797 if (found && found->non_a8_stub)
4798 /* We've already made a stub for this instruction, e.g.
4799 it's a long branch or a Thumb->ARM stub. Assume that
4800 stub will suffice to work around the A8 erratum (see
4801 setting of always_after_branch above). */
4802 ;
99059e56
RM
4803 else if (is_bcc)
4804 {
4805 offset = (insn & 0x7ff) << 1;
4806 offset |= (insn & 0x3f0000) >> 4;
4807 offset |= (insn & 0x2000) ? 0x40000 : 0;
4808 offset |= (insn & 0x800) ? 0x80000 : 0;
4809 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4810 if (offset & 0x100000)
4811 offset |= ~ ((bfd_signed_vma) 0xfffff);
4812 stub_type = arm_stub_a8_veneer_b_cond;
4813 }
4814 else if (is_b || is_bl || is_blx)
4815 {
4816 int s = (insn & 0x4000000) != 0;
4817 int j1 = (insn & 0x2000) != 0;
4818 int j2 = (insn & 0x800) != 0;
4819 int i1 = !(j1 ^ s);
4820 int i2 = !(j2 ^ s);
4821
4822 offset = (insn & 0x7ff) << 1;
4823 offset |= (insn & 0x3ff0000) >> 4;
4824 offset |= i2 << 22;
4825 offset |= i1 << 23;
4826 offset |= s << 24;
4827 if (offset & 0x1000000)
4828 offset |= ~ ((bfd_signed_vma) 0xffffff);
4829
4830 if (is_blx)
4831 offset &= ~ ((bfd_signed_vma) 3);
4832
4833 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4834 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4835 }
4836
4837 if (stub_type != arm_stub_none)
4838 {
4839 bfd_vma pc_for_insn = base_vma + i + 4;
48229727
JB
4840
4841 /* The original instruction is a BL, but the target is
99059e56 4842 an ARM instruction. If we were not making a stub,
48229727
JB
4843 the BL would have been converted to a BLX. Use the
4844 BLX stub instead in that case. */
4845 if (htab->use_blx && force_target_arm
4846 && stub_type == arm_stub_a8_veneer_bl)
4847 {
4848 stub_type = arm_stub_a8_veneer_blx;
4849 is_blx = TRUE;
4850 is_bl = FALSE;
4851 }
4852 /* Conversely, if the original instruction was
4853 BLX but the target is Thumb mode, use the BL
4854 stub. */
4855 else if (force_target_thumb
4856 && stub_type == arm_stub_a8_veneer_blx)
4857 {
4858 stub_type = arm_stub_a8_veneer_bl;
4859 is_blx = FALSE;
4860 is_bl = TRUE;
4861 }
4862
99059e56
RM
4863 if (is_blx)
4864 pc_for_insn &= ~ ((bfd_vma) 3);
48229727 4865
99059e56
RM
4866 /* If we found a relocation, use the proper destination,
4867 not the offset in the (unrelocated) instruction.
48229727
JB
4868 Note this is always done if we switched the stub type
4869 above. */
99059e56
RM
4870 if (found)
4871 offset =
81694485 4872 (bfd_signed_vma) (found->destination - pc_for_insn);
48229727 4873
99059e56
RM
4874 /* If the stub will use a Thumb-mode branch to a
4875 PLT target, redirect it to the preceding Thumb
4876 entry point. */
4877 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4878 offset -= PLT_THUMB_STUB_SIZE;
7d24e6a6 4879
99059e56 4880 target = pc_for_insn + offset;
48229727 4881
99059e56
RM
4882 /* The BLX stub is ARM-mode code. Adjust the offset to
4883 take the different PC value (+8 instead of +4) into
48229727 4884 account. */
99059e56
RM
4885 if (stub_type == arm_stub_a8_veneer_blx)
4886 offset += 4;
4887
4888 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4889 {
4890 char *stub_name = NULL;
4891
4892 if (num_a8_fixes == a8_fix_table_size)
4893 {
4894 a8_fix_table_size *= 2;
4895 a8_fixes = (struct a8_erratum_fix *)
4896 bfd_realloc (a8_fixes,
4897 sizeof (struct a8_erratum_fix)
4898 * a8_fix_table_size);
4899 }
48229727 4900
eb7c4339
NS
4901 if (num_a8_fixes < prev_num_a8_fixes)
4902 {
4903 /* If we're doing a subsequent scan,
4904 check if we've found the same fix as
4905 before, and try and reuse the stub
4906 name. */
4907 stub_name = a8_fixes[num_a8_fixes].stub_name;
4908 if ((a8_fixes[num_a8_fixes].section != section)
4909 || (a8_fixes[num_a8_fixes].offset != i))
4910 {
4911 free (stub_name);
4912 stub_name = NULL;
4913 *stub_changed_p = TRUE;
4914 }
4915 }
4916
4917 if (!stub_name)
4918 {
21d799b5 4919 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
eb7c4339
NS
4920 if (stub_name != NULL)
4921 sprintf (stub_name, "%x:%x", section->id, i);
4922 }
48229727 4923
99059e56
RM
4924 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4925 a8_fixes[num_a8_fixes].section = section;
4926 a8_fixes[num_a8_fixes].offset = i;
4927 a8_fixes[num_a8_fixes].addend = offset;
4928 a8_fixes[num_a8_fixes].orig_insn = insn;
4929 a8_fixes[num_a8_fixes].stub_name = stub_name;
4930 a8_fixes[num_a8_fixes].stub_type = stub_type;
4931 a8_fixes[num_a8_fixes].branch_type =
35fc36a8 4932 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
48229727 4933
99059e56
RM
4934 num_a8_fixes++;
4935 }
4936 }
4937 }
48229727 4938
99059e56
RM
4939 i += insn_32bit ? 4 : 2;
4940 last_was_32bit = insn_32bit;
48229727 4941 last_was_branch = is_32bit_branch;
99059e56
RM
4942 }
4943 }
48229727
JB
4944
4945 if (elf_section_data (section)->this_hdr.contents == NULL)
99059e56 4946 free (contents);
48229727 4947 }
fe33d2fa 4948
48229727
JB
4949 *a8_fixes_p = a8_fixes;
4950 *num_a8_fixes_p = num_a8_fixes;
4951 *a8_fix_table_size_p = a8_fix_table_size;
fe33d2fa 4952
81694485 4953 return FALSE;
48229727
JB
4954}
4955
906e58ca
NC
4956/* Determine and set the size of the stub section for a final link.
4957
4958 The basic idea here is to examine all the relocations looking for
4959 PC-relative calls to a target that is unreachable with a "bl"
4960 instruction. */
4961
4962bfd_boolean
4963elf32_arm_size_stubs (bfd *output_bfd,
4964 bfd *stub_bfd,
4965 struct bfd_link_info *info,
4966 bfd_signed_vma group_size,
7a89b94e
NC
4967 asection * (*add_stub_section) (const char *, asection *,
4968 unsigned int),
906e58ca
NC
4969 void (*layout_sections_again) (void))
4970{
4971 bfd_size_type stub_group_size;
07d72278 4972 bfd_boolean stubs_always_after_branch;
906e58ca 4973 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
48229727 4974 struct a8_erratum_fix *a8_fixes = NULL;
eb7c4339 4975 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
48229727
JB
4976 struct a8_erratum_reloc *a8_relocs = NULL;
4977 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4978
4dfe6ac6
NC
4979 if (htab == NULL)
4980 return FALSE;
4981
48229727
JB
4982 if (htab->fix_cortex_a8)
4983 {
21d799b5 4984 a8_fixes = (struct a8_erratum_fix *)
99059e56 4985 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
21d799b5 4986 a8_relocs = (struct a8_erratum_reloc *)
99059e56 4987 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
48229727 4988 }
906e58ca
NC
4989
4990 /* Propagate mach to stub bfd, because it may not have been
4991 finalized when we created stub_bfd. */
4992 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4993 bfd_get_mach (output_bfd));
4994
4995 /* Stash our params away. */
4996 htab->stub_bfd = stub_bfd;
4997 htab->add_stub_section = add_stub_section;
4998 htab->layout_sections_again = layout_sections_again;
07d72278 4999 stubs_always_after_branch = group_size < 0;
48229727
JB
5000
5001 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
5002 as the first half of a 32-bit branch straddling two 4K pages. This is a
5003 crude way of enforcing that. */
5004 if (htab->fix_cortex_a8)
5005 stubs_always_after_branch = 1;
5006
906e58ca
NC
5007 if (group_size < 0)
5008 stub_group_size = -group_size;
5009 else
5010 stub_group_size = group_size;
5011
5012 if (stub_group_size == 1)
5013 {
5014 /* Default values. */
5015 /* Thumb branch range is +-4MB has to be used as the default
5016 maximum size (a given section can contain both ARM and Thumb
5017 code, so the worst case has to be taken into account).
5018
5019 This value is 24K less than that, which allows for 2025
5020 12-byte stubs. If we exceed that, then we will fail to link.
5021 The user will have to relink with an explicit group size
5022 option. */
5023 stub_group_size = 4170000;
5024 }
5025
07d72278 5026 group_sections (htab, stub_group_size, stubs_always_after_branch);
906e58ca 5027
3ae046cc
NS
5028 /* If we're applying the cortex A8 fix, we need to determine the
5029 program header size now, because we cannot change it later --
5030 that could alter section placements. Notice the A8 erratum fix
5031 ends up requiring the section addresses to remain unchanged
5032 modulo the page size. That's something we cannot represent
5033 inside BFD, and we don't want to force the section alignment to
5034 be the page size. */
5035 if (htab->fix_cortex_a8)
5036 (*htab->layout_sections_again) ();
5037
906e58ca
NC
5038 while (1)
5039 {
5040 bfd *input_bfd;
5041 unsigned int bfd_indx;
5042 asection *stub_sec;
eb7c4339
NS
5043 bfd_boolean stub_changed = FALSE;
5044 unsigned prev_num_a8_fixes = num_a8_fixes;
906e58ca 5045
48229727 5046 num_a8_fixes = 0;
906e58ca
NC
5047 for (input_bfd = info->input_bfds, bfd_indx = 0;
5048 input_bfd != NULL;
c72f2fb2 5049 input_bfd = input_bfd->link.next, bfd_indx++)
906e58ca
NC
5050 {
5051 Elf_Internal_Shdr *symtab_hdr;
5052 asection *section;
5053 Elf_Internal_Sym *local_syms = NULL;
5054
99059e56
RM
5055 if (!is_arm_elf (input_bfd))
5056 continue;
adbcc655 5057
48229727
JB
5058 num_a8_relocs = 0;
5059
906e58ca
NC
5060 /* We'll need the symbol table in a second. */
5061 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5062 if (symtab_hdr->sh_info == 0)
5063 continue;
5064
5065 /* Walk over each section attached to the input bfd. */
5066 for (section = input_bfd->sections;
5067 section != NULL;
5068 section = section->next)
5069 {
5070 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5071
5072 /* If there aren't any relocs, then there's nothing more
5073 to do. */
5074 if ((section->flags & SEC_RELOC) == 0
5075 || section->reloc_count == 0
5076 || (section->flags & SEC_CODE) == 0)
5077 continue;
5078
5079 /* If this section is a link-once section that will be
5080 discarded, then don't create any stubs. */
5081 if (section->output_section == NULL
5082 || section->output_section->owner != output_bfd)
5083 continue;
5084
5085 /* Get the relocs. */
5086 internal_relocs
5087 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5088 NULL, info->keep_memory);
5089 if (internal_relocs == NULL)
5090 goto error_ret_free_local;
5091
5092 /* Now examine each relocation. */
5093 irela = internal_relocs;
5094 irelaend = irela + section->reloc_count;
5095 for (; irela < irelaend; irela++)
5096 {
5097 unsigned int r_type, r_indx;
5098 enum elf32_arm_stub_type stub_type;
5099 struct elf32_arm_stub_hash_entry *stub_entry;
5100 asection *sym_sec;
5101 bfd_vma sym_value;
5102 bfd_vma destination;
5103 struct elf32_arm_link_hash_entry *hash;
7413f23f 5104 const char *sym_name;
906e58ca
NC
5105 char *stub_name;
5106 const asection *id_sec;
34e77a92 5107 unsigned char st_type;
35fc36a8 5108 enum arm_st_branch_type branch_type;
48229727 5109 bfd_boolean created_stub = FALSE;
906e58ca
NC
5110
5111 r_type = ELF32_R_TYPE (irela->r_info);
5112 r_indx = ELF32_R_SYM (irela->r_info);
5113
5114 if (r_type >= (unsigned int) R_ARM_max)
5115 {
5116 bfd_set_error (bfd_error_bad_value);
5117 error_ret_free_internal:
5118 if (elf_section_data (section)->relocs == NULL)
5119 free (internal_relocs);
5120 goto error_ret_free_local;
5121 }
b38cadfb 5122
0855e32b
NS
5123 hash = NULL;
5124 if (r_indx >= symtab_hdr->sh_info)
5125 hash = elf32_arm_hash_entry
5126 (elf_sym_hashes (input_bfd)
5127 [r_indx - symtab_hdr->sh_info]);
b38cadfb 5128
0855e32b
NS
5129 /* Only look for stubs on branch instructions, or
5130 non-relaxed TLSCALL */
906e58ca 5131 if ((r_type != (unsigned int) R_ARM_CALL)
155d87d7
CL
5132 && (r_type != (unsigned int) R_ARM_THM_CALL)
5133 && (r_type != (unsigned int) R_ARM_JUMP24)
48229727
JB
5134 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5135 && (r_type != (unsigned int) R_ARM_THM_XPC22)
155d87d7 5136 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
0855e32b
NS
5137 && (r_type != (unsigned int) R_ARM_PLT32)
5138 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5139 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5140 && r_type == elf32_arm_tls_transition
5141 (info, r_type, &hash->root)
5142 && ((hash ? hash->tls_type
5143 : (elf32_arm_local_got_tls_type
5144 (input_bfd)[r_indx]))
5145 & GOT_TLS_GDESC) != 0))
906e58ca
NC
5146 continue;
5147
5148 /* Now determine the call target, its name, value,
5149 section. */
5150 sym_sec = NULL;
5151 sym_value = 0;
5152 destination = 0;
7413f23f 5153 sym_name = NULL;
b38cadfb 5154
0855e32b
NS
5155 if (r_type == (unsigned int) R_ARM_TLS_CALL
5156 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5157 {
5158 /* A non-relaxed TLS call. The target is the
5159 plt-resident trampoline and nothing to do
5160 with the symbol. */
5161 BFD_ASSERT (htab->tls_trampoline > 0);
5162 sym_sec = htab->root.splt;
5163 sym_value = htab->tls_trampoline;
5164 hash = 0;
34e77a92 5165 st_type = STT_FUNC;
35fc36a8 5166 branch_type = ST_BRANCH_TO_ARM;
0855e32b
NS
5167 }
5168 else if (!hash)
906e58ca
NC
5169 {
5170 /* It's a local symbol. */
5171 Elf_Internal_Sym *sym;
906e58ca
NC
5172
5173 if (local_syms == NULL)
5174 {
5175 local_syms
5176 = (Elf_Internal_Sym *) symtab_hdr->contents;
5177 if (local_syms == NULL)
5178 local_syms
5179 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5180 symtab_hdr->sh_info, 0,
5181 NULL, NULL, NULL);
5182 if (local_syms == NULL)
5183 goto error_ret_free_internal;
5184 }
5185
5186 sym = local_syms + r_indx;
f6d250ce
TS
5187 if (sym->st_shndx == SHN_UNDEF)
5188 sym_sec = bfd_und_section_ptr;
5189 else if (sym->st_shndx == SHN_ABS)
5190 sym_sec = bfd_abs_section_ptr;
5191 else if (sym->st_shndx == SHN_COMMON)
5192 sym_sec = bfd_com_section_ptr;
5193 else
5194 sym_sec =
5195 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5196
ffcb4889
NS
5197 if (!sym_sec)
5198 /* This is an undefined symbol. It can never
6a631e86 5199 be resolved. */
ffcb4889 5200 continue;
fe33d2fa 5201
906e58ca
NC
5202 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5203 sym_value = sym->st_value;
5204 destination = (sym_value + irela->r_addend
5205 + sym_sec->output_offset
5206 + sym_sec->output_section->vma);
34e77a92 5207 st_type = ELF_ST_TYPE (sym->st_info);
35fc36a8 5208 branch_type = ARM_SYM_BRANCH_TYPE (sym);
7413f23f
DJ
5209 sym_name
5210 = bfd_elf_string_from_elf_section (input_bfd,
5211 symtab_hdr->sh_link,
5212 sym->st_name);
906e58ca
NC
5213 }
5214 else
5215 {
5216 /* It's an external symbol. */
906e58ca
NC
5217 while (hash->root.root.type == bfd_link_hash_indirect
5218 || hash->root.root.type == bfd_link_hash_warning)
5219 hash = ((struct elf32_arm_link_hash_entry *)
5220 hash->root.root.u.i.link);
5221
5222 if (hash->root.root.type == bfd_link_hash_defined
5223 || hash->root.root.type == bfd_link_hash_defweak)
5224 {
5225 sym_sec = hash->root.root.u.def.section;
5226 sym_value = hash->root.root.u.def.value;
022f8312
CL
5227
5228 struct elf32_arm_link_hash_table *globals =
5229 elf32_arm_hash_table (info);
5230
5231 /* For a destination in a shared library,
5232 use the PLT stub as target address to
5233 decide whether a branch stub is
5234 needed. */
4dfe6ac6 5235 if (globals != NULL
362d30a1 5236 && globals->root.splt != NULL
4dfe6ac6 5237 && hash != NULL
022f8312
CL
5238 && hash->root.plt.offset != (bfd_vma) -1)
5239 {
362d30a1 5240 sym_sec = globals->root.splt;
022f8312
CL
5241 sym_value = hash->root.plt.offset;
5242 if (sym_sec->output_section != NULL)
5243 destination = (sym_value
5244 + sym_sec->output_offset
5245 + sym_sec->output_section->vma);
5246 }
5247 else if (sym_sec->output_section != NULL)
906e58ca
NC
5248 destination = (sym_value + irela->r_addend
5249 + sym_sec->output_offset
5250 + sym_sec->output_section->vma);
5251 }
69c5861e
CL
5252 else if ((hash->root.root.type == bfd_link_hash_undefined)
5253 || (hash->root.root.type == bfd_link_hash_undefweak))
5254 {
5255 /* For a shared library, use the PLT stub as
5256 target address to decide whether a long
5257 branch stub is needed.
5258 For absolute code, they cannot be handled. */
5259 struct elf32_arm_link_hash_table *globals =
5260 elf32_arm_hash_table (info);
5261
4dfe6ac6 5262 if (globals != NULL
362d30a1 5263 && globals->root.splt != NULL
4dfe6ac6 5264 && hash != NULL
69c5861e
CL
5265 && hash->root.plt.offset != (bfd_vma) -1)
5266 {
362d30a1 5267 sym_sec = globals->root.splt;
69c5861e
CL
5268 sym_value = hash->root.plt.offset;
5269 if (sym_sec->output_section != NULL)
5270 destination = (sym_value
5271 + sym_sec->output_offset
5272 + sym_sec->output_section->vma);
5273 }
5274 else
5275 continue;
5276 }
906e58ca
NC
5277 else
5278 {
5279 bfd_set_error (bfd_error_bad_value);
5280 goto error_ret_free_internal;
5281 }
34e77a92 5282 st_type = hash->root.type;
35fc36a8 5283 branch_type = hash->root.target_internal;
7413f23f 5284 sym_name = hash->root.root.root.string;
906e58ca
NC
5285 }
5286
48229727 5287 do
7413f23f 5288 {
48229727
JB
5289 /* Determine what (if any) linker stub is needed. */
5290 stub_type = arm_type_of_stub (info, section, irela,
34e77a92
RS
5291 st_type, &branch_type,
5292 hash, destination, sym_sec,
48229727
JB
5293 input_bfd, sym_name);
5294 if (stub_type == arm_stub_none)
5295 break;
5296
5297 /* Support for grouping stub sections. */
5298 id_sec = htab->stub_group[section->id].link_sec;
5299
5300 /* Get the name of this stub. */
5301 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
fe33d2fa 5302 irela, stub_type);
48229727
JB
5303 if (!stub_name)
5304 goto error_ret_free_internal;
5305
5306 /* We've either created a stub for this reloc already,
5307 or we are about to. */
5308 created_stub = TRUE;
5309
5310 stub_entry = arm_stub_hash_lookup
5311 (&htab->stub_hash_table, stub_name,
5312 FALSE, FALSE);
5313 if (stub_entry != NULL)
5314 {
5315 /* The proper stub has already been created. */
5316 free (stub_name);
eb7c4339 5317 stub_entry->target_value = sym_value;
48229727
JB
5318 break;
5319 }
7413f23f 5320
48229727
JB
5321 stub_entry = elf32_arm_add_stub (stub_name, section,
5322 htab);
5323 if (stub_entry == NULL)
5324 {
5325 free (stub_name);
5326 goto error_ret_free_internal;
5327 }
7413f23f 5328
99059e56
RM
5329 stub_entry->target_value = sym_value;
5330 stub_entry->target_section = sym_sec;
5331 stub_entry->stub_type = stub_type;
5332 stub_entry->h = hash;
5333 stub_entry->branch_type = branch_type;
5334
5335 if (sym_name == NULL)
5336 sym_name = "unnamed";
5337 stub_entry->output_name = (char *)
5338 bfd_alloc (htab->stub_bfd,
5339 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5340 + strlen (sym_name));
5341 if (stub_entry->output_name == NULL)
5342 {
5343 free (stub_name);
5344 goto error_ret_free_internal;
5345 }
5346
5347 /* For historical reasons, use the existing names for
5348 ARM-to-Thumb and Thumb-to-ARM stubs. */
5349 if ((r_type == (unsigned int) R_ARM_THM_CALL
35fc36a8
RS
5350 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5351 && branch_type == ST_BRANCH_TO_ARM)
99059e56
RM
5352 sprintf (stub_entry->output_name,
5353 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5354 else if ((r_type == (unsigned int) R_ARM_CALL
35fc36a8
RS
5355 || r_type == (unsigned int) R_ARM_JUMP24)
5356 && branch_type == ST_BRANCH_TO_THUMB)
99059e56
RM
5357 sprintf (stub_entry->output_name,
5358 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5359 else
5360 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5361 sym_name);
5362
5363 stub_changed = TRUE;
5364 }
5365 while (0);
5366
5367 /* Look for relocations which might trigger Cortex-A8
5368 erratum. */
5369 if (htab->fix_cortex_a8
5370 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5371 || r_type == (unsigned int) R_ARM_THM_JUMP19
5372 || r_type == (unsigned int) R_ARM_THM_CALL
5373 || r_type == (unsigned int) R_ARM_THM_XPC22))
5374 {
5375 bfd_vma from = section->output_section->vma
5376 + section->output_offset
5377 + irela->r_offset;
5378
5379 if ((from & 0xfff) == 0xffe)
5380 {
5381 /* Found a candidate. Note we haven't checked the
5382 destination is within 4K here: if we do so (and
5383 don't create an entry in a8_relocs) we can't tell
5384 that a branch should have been relocated when
5385 scanning later. */
5386 if (num_a8_relocs == a8_reloc_table_size)
5387 {
5388 a8_reloc_table_size *= 2;
5389 a8_relocs = (struct a8_erratum_reloc *)
5390 bfd_realloc (a8_relocs,
5391 sizeof (struct a8_erratum_reloc)
5392 * a8_reloc_table_size);
5393 }
5394
5395 a8_relocs[num_a8_relocs].from = from;
5396 a8_relocs[num_a8_relocs].destination = destination;
5397 a8_relocs[num_a8_relocs].r_type = r_type;
5398 a8_relocs[num_a8_relocs].branch_type = branch_type;
5399 a8_relocs[num_a8_relocs].sym_name = sym_name;
5400 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5401 a8_relocs[num_a8_relocs].hash = hash;
5402
5403 num_a8_relocs++;
5404 }
5405 }
906e58ca
NC
5406 }
5407
99059e56
RM
5408 /* We're done with the internal relocs, free them. */
5409 if (elf_section_data (section)->relocs == NULL)
5410 free (internal_relocs);
5411 }
48229727 5412
99059e56 5413 if (htab->fix_cortex_a8)
48229727 5414 {
99059e56
RM
5415 /* Sort relocs which might apply to Cortex-A8 erratum. */
5416 qsort (a8_relocs, num_a8_relocs,
eb7c4339 5417 sizeof (struct a8_erratum_reloc),
99059e56 5418 &a8_reloc_compare);
48229727 5419
99059e56
RM
5420 /* Scan for branches which might trigger Cortex-A8 erratum. */
5421 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
48229727 5422 &num_a8_fixes, &a8_fix_table_size,
eb7c4339
NS
5423 a8_relocs, num_a8_relocs,
5424 prev_num_a8_fixes, &stub_changed)
5425 != 0)
48229727 5426 goto error_ret_free_local;
5e681ec4 5427 }
5e681ec4
PB
5428 }
5429
eb7c4339 5430 if (prev_num_a8_fixes != num_a8_fixes)
99059e56 5431 stub_changed = TRUE;
48229727 5432
906e58ca
NC
5433 if (!stub_changed)
5434 break;
5e681ec4 5435
906e58ca
NC
5436 /* OK, we've added some stubs. Find out the new size of the
5437 stub sections. */
5438 for (stub_sec = htab->stub_bfd->sections;
5439 stub_sec != NULL;
5440 stub_sec = stub_sec->next)
3e6b1042
DJ
5441 {
5442 /* Ignore non-stub sections. */
5443 if (!strstr (stub_sec->name, STUB_SUFFIX))
5444 continue;
5445
5446 stub_sec->size = 0;
5447 }
b34b2d70 5448
906e58ca
NC
5449 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5450
48229727
JB
5451 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5452 if (htab->fix_cortex_a8)
99059e56
RM
5453 for (i = 0; i < num_a8_fixes; i++)
5454 {
48229727
JB
5455 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5456 a8_fixes[i].section, htab);
5457
5458 if (stub_sec == NULL)
5459 goto error_ret_free_local;
5460
99059e56
RM
5461 stub_sec->size
5462 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5463 NULL);
5464 }
48229727
JB
5465
5466
906e58ca
NC
5467 /* Ask the linker to do its stuff. */
5468 (*htab->layout_sections_again) ();
ba93b8ac
DJ
5469 }
5470
48229727
JB
5471 /* Add stubs for Cortex-A8 erratum fixes now. */
5472 if (htab->fix_cortex_a8)
5473 {
5474 for (i = 0; i < num_a8_fixes; i++)
99059e56
RM
5475 {
5476 struct elf32_arm_stub_hash_entry *stub_entry;
5477 char *stub_name = a8_fixes[i].stub_name;
5478 asection *section = a8_fixes[i].section;
5479 unsigned int section_id = a8_fixes[i].section->id;
5480 asection *link_sec = htab->stub_group[section_id].link_sec;
5481 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5482 const insn_sequence *template_sequence;
5483 int template_size, size = 0;
5484
5485 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5486 TRUE, FALSE);
5487 if (stub_entry == NULL)
5488 {
5489 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5490 section->owner,
5491 stub_name);
5492 return FALSE;
5493 }
5494
5495 stub_entry->stub_sec = stub_sec;
5496 stub_entry->stub_offset = 0;
5497 stub_entry->id_sec = link_sec;
5498 stub_entry->stub_type = a8_fixes[i].stub_type;
5499 stub_entry->target_section = a8_fixes[i].section;
5500 stub_entry->target_value = a8_fixes[i].offset;
5501 stub_entry->target_addend = a8_fixes[i].addend;
5502 stub_entry->orig_insn = a8_fixes[i].orig_insn;
35fc36a8 5503 stub_entry->branch_type = a8_fixes[i].branch_type;
48229727 5504
99059e56
RM
5505 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5506 &template_sequence,
5507 &template_size);
48229727 5508
99059e56
RM
5509 stub_entry->stub_size = size;
5510 stub_entry->stub_template = template_sequence;
5511 stub_entry->stub_template_size = template_size;
5512 }
48229727
JB
5513
5514 /* Stash the Cortex-A8 erratum fix array for use later in
99059e56 5515 elf32_arm_write_section(). */
48229727
JB
5516 htab->a8_erratum_fixes = a8_fixes;
5517 htab->num_a8_erratum_fixes = num_a8_fixes;
5518 }
5519 else
5520 {
5521 htab->a8_erratum_fixes = NULL;
5522 htab->num_a8_erratum_fixes = 0;
5523 }
906e58ca
NC
5524 return TRUE;
5525
5526 error_ret_free_local:
5527 return FALSE;
5e681ec4
PB
5528}
5529
906e58ca
NC
5530/* Build all the stubs associated with the current output file. The
5531 stubs are kept in a hash table attached to the main linker hash
5532 table. We also set up the .plt entries for statically linked PIC
5533 functions here. This function is called via arm_elf_finish in the
5534 linker. */
252b5132 5535
906e58ca
NC
5536bfd_boolean
5537elf32_arm_build_stubs (struct bfd_link_info *info)
252b5132 5538{
906e58ca
NC
5539 asection *stub_sec;
5540 struct bfd_hash_table *table;
5541 struct elf32_arm_link_hash_table *htab;
252b5132 5542
906e58ca 5543 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
5544 if (htab == NULL)
5545 return FALSE;
252b5132 5546
906e58ca
NC
5547 for (stub_sec = htab->stub_bfd->sections;
5548 stub_sec != NULL;
5549 stub_sec = stub_sec->next)
252b5132 5550 {
906e58ca
NC
5551 bfd_size_type size;
5552
8029a119 5553 /* Ignore non-stub sections. */
906e58ca
NC
5554 if (!strstr (stub_sec->name, STUB_SUFFIX))
5555 continue;
5556
5557 /* Allocate memory to hold the linker stubs. */
5558 size = stub_sec->size;
21d799b5 5559 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
906e58ca
NC
5560 if (stub_sec->contents == NULL && size != 0)
5561 return FALSE;
5562 stub_sec->size = 0;
252b5132
RH
5563 }
5564
906e58ca
NC
5565 /* Build the stubs as directed by the stub hash table. */
5566 table = &htab->stub_hash_table;
5567 bfd_hash_traverse (table, arm_build_one_stub, info);
eb7c4339
NS
5568 if (htab->fix_cortex_a8)
5569 {
5570 /* Place the cortex a8 stubs last. */
5571 htab->fix_cortex_a8 = -1;
5572 bfd_hash_traverse (table, arm_build_one_stub, info);
5573 }
252b5132 5574
906e58ca 5575 return TRUE;
252b5132
RH
5576}
5577
9b485d32
NC
5578/* Locate the Thumb encoded calling stub for NAME. */
5579
252b5132 5580static struct elf_link_hash_entry *
57e8b36a
NC
5581find_thumb_glue (struct bfd_link_info *link_info,
5582 const char *name,
f2a9dd69 5583 char **error_message)
252b5132
RH
5584{
5585 char *tmp_name;
5586 struct elf_link_hash_entry *hash;
5587 struct elf32_arm_link_hash_table *hash_table;
5588
5589 /* We need a pointer to the armelf specific hash table. */
5590 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
5591 if (hash_table == NULL)
5592 return NULL;
252b5132 5593
21d799b5 5594 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 5595 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5596
5597 BFD_ASSERT (tmp_name);
5598
5599 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5600
5601 hash = elf_link_hash_lookup
b34976b6 5602 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 5603
b1657152
AM
5604 if (hash == NULL
5605 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5606 tmp_name, name) == -1)
5607 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
5608
5609 free (tmp_name);
5610
5611 return hash;
5612}
5613
9b485d32
NC
5614/* Locate the ARM encoded calling stub for NAME. */
5615
252b5132 5616static struct elf_link_hash_entry *
57e8b36a
NC
5617find_arm_glue (struct bfd_link_info *link_info,
5618 const char *name,
f2a9dd69 5619 char **error_message)
252b5132
RH
5620{
5621 char *tmp_name;
5622 struct elf_link_hash_entry *myh;
5623 struct elf32_arm_link_hash_table *hash_table;
5624
5625 /* We need a pointer to the elfarm specific hash table. */
5626 hash_table = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
5627 if (hash_table == NULL)
5628 return NULL;
252b5132 5629
21d799b5 5630 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 5631 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5632
5633 BFD_ASSERT (tmp_name);
5634
5635 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5636
5637 myh = elf_link_hash_lookup
b34976b6 5638 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132 5639
b1657152
AM
5640 if (myh == NULL
5641 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5642 tmp_name, name) == -1)
5643 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
252b5132
RH
5644
5645 free (tmp_name);
5646
5647 return myh;
5648}
5649
8f6277f5 5650/* ARM->Thumb glue (static images):
252b5132
RH
5651
5652 .arm
5653 __func_from_arm:
5654 ldr r12, __func_addr
5655 bx r12
5656 __func_addr:
906e58ca 5657 .word func @ behave as if you saw a ARM_32 reloc.
252b5132 5658
26079076
PB
5659 (v5t static images)
5660 .arm
5661 __func_from_arm:
5662 ldr pc, __func_addr
5663 __func_addr:
906e58ca 5664 .word func @ behave as if you saw a ARM_32 reloc.
26079076 5665
8f6277f5
PB
5666 (relocatable images)
5667 .arm
5668 __func_from_arm:
5669 ldr r12, __func_offset
5670 add r12, r12, pc
5671 bx r12
5672 __func_offset:
8029a119 5673 .word func - . */
8f6277f5
PB
5674
5675#define ARM2THUMB_STATIC_GLUE_SIZE 12
252b5132
RH
5676static const insn32 a2t1_ldr_insn = 0xe59fc000;
5677static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5678static const insn32 a2t3_func_addr_insn = 0x00000001;
5679
26079076
PB
5680#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5681static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5682static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5683
8f6277f5
PB
5684#define ARM2THUMB_PIC_GLUE_SIZE 16
5685static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5686static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5687static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5688
9b485d32 5689/* Thumb->ARM: Thumb->(non-interworking aware) ARM
252b5132 5690
8029a119
NC
5691 .thumb .thumb
5692 .align 2 .align 2
5693 __func_from_thumb: __func_from_thumb:
5694 bx pc push {r6, lr}
5695 nop ldr r6, __func_addr
5696 .arm mov lr, pc
5697 b func bx r6
99059e56
RM
5698 .arm
5699 ;; back_to_thumb
5700 ldmia r13! {r6, lr}
5701 bx lr
5702 __func_addr:
5703 .word func */
252b5132
RH
5704
5705#define THUMB2ARM_GLUE_SIZE 8
5706static const insn16 t2a1_bx_pc_insn = 0x4778;
5707static const insn16 t2a2_noop_insn = 0x46c0;
5708static const insn32 t2a3_b_insn = 0xea000000;
5709
c7b8f16e
JB
5710#define VFP11_ERRATUM_VENEER_SIZE 8
5711
845b51d6
PB
5712#define ARM_BX_VENEER_SIZE 12
5713static const insn32 armbx1_tst_insn = 0xe3100001;
5714static const insn32 armbx2_moveq_insn = 0x01a0f000;
5715static const insn32 armbx3_bx_insn = 0xe12fff10;
5716
7e392df6 5717#ifndef ELFARM_NABI_C_INCLUDED
8029a119
NC
5718static void
5719arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
252b5132
RH
5720{
5721 asection * s;
8029a119 5722 bfd_byte * contents;
252b5132 5723
8029a119 5724 if (size == 0)
3e6b1042
DJ
5725 {
5726 /* Do not include empty glue sections in the output. */
5727 if (abfd != NULL)
5728 {
3d4d4302 5729 s = bfd_get_linker_section (abfd, name);
3e6b1042
DJ
5730 if (s != NULL)
5731 s->flags |= SEC_EXCLUDE;
5732 }
5733 return;
5734 }
252b5132 5735
8029a119 5736 BFD_ASSERT (abfd != NULL);
252b5132 5737
3d4d4302 5738 s = bfd_get_linker_section (abfd, name);
8029a119 5739 BFD_ASSERT (s != NULL);
252b5132 5740
21d799b5 5741 contents = (bfd_byte *) bfd_alloc (abfd, size);
252b5132 5742
8029a119
NC
5743 BFD_ASSERT (s->size == size);
5744 s->contents = contents;
5745}
906e58ca 5746
8029a119
NC
5747bfd_boolean
5748bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5749{
5750 struct elf32_arm_link_hash_table * globals;
906e58ca 5751
8029a119
NC
5752 globals = elf32_arm_hash_table (info);
5753 BFD_ASSERT (globals != NULL);
906e58ca 5754
8029a119
NC
5755 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5756 globals->arm_glue_size,
5757 ARM2THUMB_GLUE_SECTION_NAME);
906e58ca 5758
8029a119
NC
5759 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5760 globals->thumb_glue_size,
5761 THUMB2ARM_GLUE_SECTION_NAME);
252b5132 5762
8029a119
NC
5763 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5764 globals->vfp11_erratum_glue_size,
5765 VFP11_ERRATUM_VENEER_SECTION_NAME);
845b51d6 5766
8029a119
NC
5767 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5768 globals->bx_glue_size,
845b51d6
PB
5769 ARM_BX_GLUE_SECTION_NAME);
5770
b34976b6 5771 return TRUE;
252b5132
RH
5772}
5773
a4fd1a8e 5774/* Allocate space and symbols for calling a Thumb function from Arm mode.
906e58ca
NC
5775 returns the symbol identifying the stub. */
5776
a4fd1a8e 5777static struct elf_link_hash_entry *
57e8b36a
NC
5778record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5779 struct elf_link_hash_entry * h)
252b5132
RH
5780{
5781 const char * name = h->root.root.string;
63b0f745 5782 asection * s;
252b5132
RH
5783 char * tmp_name;
5784 struct elf_link_hash_entry * myh;
14a793b2 5785 struct bfd_link_hash_entry * bh;
252b5132 5786 struct elf32_arm_link_hash_table * globals;
dc810e39 5787 bfd_vma val;
2f475487 5788 bfd_size_type size;
252b5132
RH
5789
5790 globals = elf32_arm_hash_table (link_info);
252b5132
RH
5791 BFD_ASSERT (globals != NULL);
5792 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5793
3d4d4302 5794 s = bfd_get_linker_section
252b5132
RH
5795 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5796
252b5132
RH
5797 BFD_ASSERT (s != NULL);
5798
21d799b5 5799 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
99059e56 5800 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
252b5132
RH
5801
5802 BFD_ASSERT (tmp_name);
5803
5804 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5805
5806 myh = elf_link_hash_lookup
b34976b6 5807 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
252b5132
RH
5808
5809 if (myh != NULL)
5810 {
9b485d32 5811 /* We've already seen this guy. */
252b5132 5812 free (tmp_name);
a4fd1a8e 5813 return myh;
252b5132
RH
5814 }
5815
57e8b36a
NC
5816 /* The only trick here is using hash_table->arm_glue_size as the value.
5817 Even though the section isn't allocated yet, this is where we will be
3dccd7b7
DJ
5818 putting it. The +1 on the value marks that the stub has not been
5819 output yet - not that it is a Thumb function. */
14a793b2 5820 bh = NULL;
dc810e39
AM
5821 val = globals->arm_glue_size + 1;
5822 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5823 tmp_name, BSF_GLOBAL, s, val,
b34976b6 5824 NULL, TRUE, FALSE, &bh);
252b5132 5825
b7693d02
DJ
5826 myh = (struct elf_link_hash_entry *) bh;
5827 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5828 myh->forced_local = 1;
5829
252b5132
RH
5830 free (tmp_name);
5831
27e55c4d
PB
5832 if (link_info->shared || globals->root.is_relocatable_executable
5833 || globals->pic_veneer)
2f475487 5834 size = ARM2THUMB_PIC_GLUE_SIZE;
26079076
PB
5835 else if (globals->use_blx)
5836 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
8f6277f5 5837 else
2f475487
AM
5838 size = ARM2THUMB_STATIC_GLUE_SIZE;
5839
5840 s->size += size;
5841 globals->arm_glue_size += size;
252b5132 5842
a4fd1a8e 5843 return myh;
252b5132
RH
5844}
5845
845b51d6
PB
5846/* Allocate space for ARMv4 BX veneers. */
5847
5848static void
5849record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5850{
5851 asection * s;
5852 struct elf32_arm_link_hash_table *globals;
5853 char *tmp_name;
5854 struct elf_link_hash_entry *myh;
5855 struct bfd_link_hash_entry *bh;
5856 bfd_vma val;
5857
5858 /* BX PC does not need a veneer. */
5859 if (reg == 15)
5860 return;
5861
5862 globals = elf32_arm_hash_table (link_info);
845b51d6
PB
5863 BFD_ASSERT (globals != NULL);
5864 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5865
5866 /* Check if this veneer has already been allocated. */
5867 if (globals->bx_glue_offset[reg])
5868 return;
5869
3d4d4302 5870 s = bfd_get_linker_section
845b51d6
PB
5871 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5872
5873 BFD_ASSERT (s != NULL);
5874
5875 /* Add symbol for veneer. */
21d799b5
NC
5876 tmp_name = (char *)
5877 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
906e58ca 5878
845b51d6 5879 BFD_ASSERT (tmp_name);
906e58ca 5880
845b51d6 5881 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
906e58ca 5882
845b51d6
PB
5883 myh = elf_link_hash_lookup
5884 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5885
845b51d6 5886 BFD_ASSERT (myh == NULL);
906e58ca 5887
845b51d6
PB
5888 bh = NULL;
5889 val = globals->bx_glue_size;
5890 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
99059e56
RM
5891 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5892 NULL, TRUE, FALSE, &bh);
845b51d6
PB
5893
5894 myh = (struct elf_link_hash_entry *) bh;
5895 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5896 myh->forced_local = 1;
5897
5898 s->size += ARM_BX_VENEER_SIZE;
5899 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5900 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5901}
5902
5903
c7b8f16e
JB
5904/* Add an entry to the code/data map for section SEC. */
5905
5906static void
5907elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5908{
5909 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5910 unsigned int newidx;
906e58ca 5911
c7b8f16e
JB
5912 if (sec_data->map == NULL)
5913 {
21d799b5 5914 sec_data->map = (elf32_arm_section_map *)
99059e56 5915 bfd_malloc (sizeof (elf32_arm_section_map));
c7b8f16e
JB
5916 sec_data->mapcount = 0;
5917 sec_data->mapsize = 1;
5918 }
906e58ca 5919
c7b8f16e 5920 newidx = sec_data->mapcount++;
906e58ca 5921
c7b8f16e
JB
5922 if (sec_data->mapcount > sec_data->mapsize)
5923 {
5924 sec_data->mapsize *= 2;
21d799b5 5925 sec_data->map = (elf32_arm_section_map *)
99059e56
RM
5926 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5927 * sizeof (elf32_arm_section_map));
515ef31d
NC
5928 }
5929
5930 if (sec_data->map)
5931 {
5932 sec_data->map[newidx].vma = vma;
5933 sec_data->map[newidx].type = type;
c7b8f16e 5934 }
c7b8f16e
JB
5935}
5936
5937
5938/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5939 veneers are handled for now. */
5940
5941static bfd_vma
5942record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
99059e56
RM
5943 elf32_vfp11_erratum_list *branch,
5944 bfd *branch_bfd,
5945 asection *branch_sec,
5946 unsigned int offset)
c7b8f16e
JB
5947{
5948 asection *s;
5949 struct elf32_arm_link_hash_table *hash_table;
5950 char *tmp_name;
5951 struct elf_link_hash_entry *myh;
5952 struct bfd_link_hash_entry *bh;
5953 bfd_vma val;
5954 struct _arm_elf_section_data *sec_data;
c7b8f16e 5955 elf32_vfp11_erratum_list *newerr;
906e58ca 5956
c7b8f16e 5957 hash_table = elf32_arm_hash_table (link_info);
c7b8f16e
JB
5958 BFD_ASSERT (hash_table != NULL);
5959 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
906e58ca 5960
3d4d4302 5961 s = bfd_get_linker_section
c7b8f16e 5962 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
906e58ca 5963
c7b8f16e 5964 sec_data = elf32_arm_section_data (s);
906e58ca 5965
c7b8f16e 5966 BFD_ASSERT (s != NULL);
906e58ca 5967
21d799b5 5968 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 5969 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
906e58ca 5970
c7b8f16e 5971 BFD_ASSERT (tmp_name);
906e58ca 5972
c7b8f16e
JB
5973 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5974 hash_table->num_vfp11_fixes);
906e58ca 5975
c7b8f16e
JB
5976 myh = elf_link_hash_lookup
5977 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 5978
c7b8f16e 5979 BFD_ASSERT (myh == NULL);
906e58ca 5980
c7b8f16e
JB
5981 bh = NULL;
5982 val = hash_table->vfp11_erratum_glue_size;
5983 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
99059e56
RM
5984 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5985 NULL, TRUE, FALSE, &bh);
c7b8f16e
JB
5986
5987 myh = (struct elf_link_hash_entry *) bh;
5988 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5989 myh->forced_local = 1;
5990
5991 /* Link veneer back to calling location. */
c7e2358a 5992 sec_data->erratumcount += 1;
21d799b5
NC
5993 newerr = (elf32_vfp11_erratum_list *)
5994 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
906e58ca 5995
c7b8f16e
JB
5996 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5997 newerr->vma = -1;
5998 newerr->u.v.branch = branch;
5999 newerr->u.v.id = hash_table->num_vfp11_fixes;
6000 branch->u.b.veneer = newerr;
6001
6002 newerr->next = sec_data->erratumlist;
6003 sec_data->erratumlist = newerr;
6004
6005 /* A symbol for the return from the veneer. */
6006 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6007 hash_table->num_vfp11_fixes);
6008
6009 myh = elf_link_hash_lookup
6010 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
906e58ca 6011
c7b8f16e
JB
6012 if (myh != NULL)
6013 abort ();
6014
6015 bh = NULL;
6016 val = offset + 4;
6017 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6018 branch_sec, val, NULL, TRUE, FALSE, &bh);
906e58ca 6019
c7b8f16e
JB
6020 myh = (struct elf_link_hash_entry *) bh;
6021 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6022 myh->forced_local = 1;
6023
6024 free (tmp_name);
906e58ca 6025
c7b8f16e
JB
6026 /* Generate a mapping symbol for the veneer section, and explicitly add an
6027 entry for that symbol to the code/data map for the section. */
6028 if (hash_table->vfp11_erratum_glue_size == 0)
6029 {
6030 bh = NULL;
6031 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
99059e56 6032 ever requires this erratum fix. */
c7b8f16e
JB
6033 _bfd_generic_link_add_one_symbol (link_info,
6034 hash_table->bfd_of_glue_owner, "$a",
6035 BSF_LOCAL, s, 0, NULL,
99059e56 6036 TRUE, FALSE, &bh);
c7b8f16e
JB
6037
6038 myh = (struct elf_link_hash_entry *) bh;
6039 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6040 myh->forced_local = 1;
906e58ca 6041
c7b8f16e 6042 /* The elf32_arm_init_maps function only cares about symbols from input
99059e56
RM
6043 BFDs. We must make a note of this generated mapping symbol
6044 ourselves so that code byteswapping works properly in
6045 elf32_arm_write_section. */
c7b8f16e
JB
6046 elf32_arm_section_map_add (s, 'a', 0);
6047 }
906e58ca 6048
c7b8f16e
JB
6049 s->size += VFP11_ERRATUM_VENEER_SIZE;
6050 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
6051 hash_table->num_vfp11_fixes++;
906e58ca 6052
c7b8f16e
JB
6053 /* The offset of the veneer. */
6054 return val;
6055}
6056
8029a119 6057#define ARM_GLUE_SECTION_FLAGS \
3e6b1042
DJ
6058 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6059 | SEC_READONLY | SEC_LINKER_CREATED)
8029a119
NC
6060
6061/* Create a fake section for use by the ARM backend of the linker. */
6062
6063static bfd_boolean
6064arm_make_glue_section (bfd * abfd, const char * name)
6065{
6066 asection * sec;
6067
3d4d4302 6068 sec = bfd_get_linker_section (abfd, name);
8029a119
NC
6069 if (sec != NULL)
6070 /* Already made. */
6071 return TRUE;
6072
3d4d4302 6073 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
8029a119
NC
6074
6075 if (sec == NULL
6076 || !bfd_set_section_alignment (abfd, sec, 2))
6077 return FALSE;
6078
6079 /* Set the gc mark to prevent the section from being removed by garbage
6080 collection, despite the fact that no relocs refer to this section. */
6081 sec->gc_mark = 1;
6082
6083 return TRUE;
6084}
6085
1db37fe6
YG
6086/* Set size of .plt entries. This function is called from the
6087 linker scripts in ld/emultempl/{armelf}.em. */
6088
6089void
6090bfd_elf32_arm_use_long_plt (void)
6091{
6092 elf32_arm_use_long_plt_entry = TRUE;
6093}
6094
8afb0e02
NC
6095/* Add the glue sections to ABFD. This function is called from the
6096 linker scripts in ld/emultempl/{armelf}.em. */
9b485d32 6097
b34976b6 6098bfd_boolean
57e8b36a
NC
6099bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6100 struct bfd_link_info *info)
252b5132 6101{
8afb0e02
NC
6102 /* If we are only performing a partial
6103 link do not bother adding the glue. */
1049f94e 6104 if (info->relocatable)
b34976b6 6105 return TRUE;
252b5132 6106
8029a119
NC
6107 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6108 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6109 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6110 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
8afb0e02
NC
6111}
6112
6113/* Select a BFD to be used to hold the sections used by the glue code.
6114 This function is called from the linker scripts in ld/emultempl/
8029a119 6115 {armelf/pe}.em. */
8afb0e02 6116
b34976b6 6117bfd_boolean
57e8b36a 6118bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
8afb0e02
NC
6119{
6120 struct elf32_arm_link_hash_table *globals;
6121
6122 /* If we are only performing a partial link
6123 do not bother getting a bfd to hold the glue. */
1049f94e 6124 if (info->relocatable)
b34976b6 6125 return TRUE;
8afb0e02 6126
b7693d02
DJ
6127 /* Make sure we don't attach the glue sections to a dynamic object. */
6128 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6129
8afb0e02 6130 globals = elf32_arm_hash_table (info);
8afb0e02
NC
6131 BFD_ASSERT (globals != NULL);
6132
6133 if (globals->bfd_of_glue_owner != NULL)
b34976b6 6134 return TRUE;
8afb0e02 6135
252b5132
RH
6136 /* Save the bfd for later use. */
6137 globals->bfd_of_glue_owner = abfd;
cedb70c5 6138
b34976b6 6139 return TRUE;
252b5132
RH
6140}
6141
906e58ca
NC
6142static void
6143check_use_blx (struct elf32_arm_link_hash_table *globals)
39b41c9c 6144{
2de70689
MGD
6145 int cpu_arch;
6146
b38cadfb 6147 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2de70689
MGD
6148 Tag_CPU_arch);
6149
6150 if (globals->fix_arm1176)
6151 {
6152 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6153 globals->use_blx = 1;
6154 }
6155 else
6156 {
6157 if (cpu_arch > TAG_CPU_ARCH_V4T)
6158 globals->use_blx = 1;
6159 }
39b41c9c
PB
6160}
6161
b34976b6 6162bfd_boolean
57e8b36a 6163bfd_elf32_arm_process_before_allocation (bfd *abfd,
d504ffc8 6164 struct bfd_link_info *link_info)
252b5132
RH
6165{
6166 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc 6167 Elf_Internal_Rela *internal_relocs = NULL;
252b5132
RH
6168 Elf_Internal_Rela *irel, *irelend;
6169 bfd_byte *contents = NULL;
252b5132
RH
6170
6171 asection *sec;
6172 struct elf32_arm_link_hash_table *globals;
6173
6174 /* If we are only performing a partial link do not bother
6175 to construct any glue. */
1049f94e 6176 if (link_info->relocatable)
b34976b6 6177 return TRUE;
252b5132 6178
39ce1a6a
NC
6179 /* Here we have a bfd that is to be included on the link. We have a
6180 hook to do reloc rummaging, before section sizes are nailed down. */
252b5132 6181 globals = elf32_arm_hash_table (link_info);
252b5132 6182 BFD_ASSERT (globals != NULL);
39ce1a6a
NC
6183
6184 check_use_blx (globals);
252b5132 6185
d504ffc8 6186 if (globals->byteswap_code && !bfd_big_endian (abfd))
e489d0ae 6187 {
d003868e
AM
6188 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6189 abfd);
e489d0ae
PB
6190 return FALSE;
6191 }
f21f3fe0 6192
39ce1a6a
NC
6193 /* PR 5398: If we have not decided to include any loadable sections in
6194 the output then we will not have a glue owner bfd. This is OK, it
6195 just means that there is nothing else for us to do here. */
6196 if (globals->bfd_of_glue_owner == NULL)
6197 return TRUE;
6198
252b5132
RH
6199 /* Rummage around all the relocs and map the glue vectors. */
6200 sec = abfd->sections;
6201
6202 if (sec == NULL)
b34976b6 6203 return TRUE;
252b5132
RH
6204
6205 for (; sec != NULL; sec = sec->next)
6206 {
6207 if (sec->reloc_count == 0)
6208 continue;
6209
2f475487
AM
6210 if ((sec->flags & SEC_EXCLUDE) != 0)
6211 continue;
6212
0ffa91dd 6213 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 6214
9b485d32 6215 /* Load the relocs. */
6cdc0ccc 6216 internal_relocs
906e58ca 6217 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
252b5132 6218
6cdc0ccc
AM
6219 if (internal_relocs == NULL)
6220 goto error_return;
252b5132 6221
6cdc0ccc
AM
6222 irelend = internal_relocs + sec->reloc_count;
6223 for (irel = internal_relocs; irel < irelend; irel++)
252b5132
RH
6224 {
6225 long r_type;
6226 unsigned long r_index;
252b5132
RH
6227
6228 struct elf_link_hash_entry *h;
6229
6230 r_type = ELF32_R_TYPE (irel->r_info);
6231 r_index = ELF32_R_SYM (irel->r_info);
6232
9b485d32 6233 /* These are the only relocation types we care about. */
ba96a88f 6234 if ( r_type != R_ARM_PC24
845b51d6 6235 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
252b5132
RH
6236 continue;
6237
6238 /* Get the section contents if we haven't done so already. */
6239 if (contents == NULL)
6240 {
6241 /* Get cached copy if it exists. */
6242 if (elf_section_data (sec)->this_hdr.contents != NULL)
6243 contents = elf_section_data (sec)->this_hdr.contents;
6244 else
6245 {
6246 /* Go get them off disk. */
57e8b36a 6247 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
252b5132
RH
6248 goto error_return;
6249 }
6250 }
6251
845b51d6
PB
6252 if (r_type == R_ARM_V4BX)
6253 {
6254 int reg;
6255
6256 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6257 record_arm_bx_glue (link_info, reg);
6258 continue;
6259 }
6260
a7c10850 6261 /* If the relocation is not against a symbol it cannot concern us. */
252b5132
RH
6262 h = NULL;
6263
9b485d32 6264 /* We don't care about local symbols. */
252b5132
RH
6265 if (r_index < symtab_hdr->sh_info)
6266 continue;
6267
9b485d32 6268 /* This is an external symbol. */
252b5132
RH
6269 r_index -= symtab_hdr->sh_info;
6270 h = (struct elf_link_hash_entry *)
6271 elf_sym_hashes (abfd)[r_index];
6272
6273 /* If the relocation is against a static symbol it must be within
6274 the current section and so cannot be a cross ARM/Thumb relocation. */
6275 if (h == NULL)
6276 continue;
6277
d504ffc8
DJ
6278 /* If the call will go through a PLT entry then we do not need
6279 glue. */
362d30a1 6280 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
b7693d02
DJ
6281 continue;
6282
252b5132
RH
6283 switch (r_type)
6284 {
6285 case R_ARM_PC24:
6286 /* This one is a call from arm code. We need to look up
99059e56
RM
6287 the target of the call. If it is a thumb target, we
6288 insert glue. */
35fc36a8 6289 if (h->target_internal == ST_BRANCH_TO_THUMB)
252b5132
RH
6290 record_arm_to_thumb_glue (link_info, h);
6291 break;
6292
252b5132 6293 default:
c6596c5e 6294 abort ();
252b5132
RH
6295 }
6296 }
6cdc0ccc
AM
6297
6298 if (contents != NULL
6299 && elf_section_data (sec)->this_hdr.contents != contents)
6300 free (contents);
6301 contents = NULL;
6302
6303 if (internal_relocs != NULL
6304 && elf_section_data (sec)->relocs != internal_relocs)
6305 free (internal_relocs);
6306 internal_relocs = NULL;
252b5132
RH
6307 }
6308
b34976b6 6309 return TRUE;
9a5aca8c 6310
252b5132 6311error_return:
6cdc0ccc
AM
6312 if (contents != NULL
6313 && elf_section_data (sec)->this_hdr.contents != contents)
6314 free (contents);
6315 if (internal_relocs != NULL
6316 && elf_section_data (sec)->relocs != internal_relocs)
6317 free (internal_relocs);
9a5aca8c 6318
b34976b6 6319 return FALSE;
252b5132 6320}
7e392df6 6321#endif
252b5132 6322
eb043451 6323
c7b8f16e
JB
6324/* Initialise maps of ARM/Thumb/data for input BFDs. */
6325
6326void
6327bfd_elf32_arm_init_maps (bfd *abfd)
6328{
6329 Elf_Internal_Sym *isymbuf;
6330 Elf_Internal_Shdr *hdr;
6331 unsigned int i, localsyms;
6332
af1f4419
NC
6333 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6334 if (! is_arm_elf (abfd))
6335 return;
6336
c7b8f16e
JB
6337 if ((abfd->flags & DYNAMIC) != 0)
6338 return;
6339
0ffa91dd 6340 hdr = & elf_symtab_hdr (abfd);
c7b8f16e
JB
6341 localsyms = hdr->sh_info;
6342
6343 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6344 should contain the number of local symbols, which should come before any
6345 global symbols. Mapping symbols are always local. */
6346 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6347 NULL);
6348
6349 /* No internal symbols read? Skip this BFD. */
6350 if (isymbuf == NULL)
6351 return;
6352
6353 for (i = 0; i < localsyms; i++)
6354 {
6355 Elf_Internal_Sym *isym = &isymbuf[i];
6356 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6357 const char *name;
906e58ca 6358
c7b8f16e 6359 if (sec != NULL
99059e56
RM
6360 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6361 {
6362 name = bfd_elf_string_from_elf_section (abfd,
6363 hdr->sh_link, isym->st_name);
906e58ca 6364
99059e56 6365 if (bfd_is_arm_special_symbol_name (name,
c7b8f16e 6366 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
99059e56
RM
6367 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6368 }
c7b8f16e
JB
6369 }
6370}
6371
6372
48229727
JB
6373/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6374 say what they wanted. */
6375
6376void
6377bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6378{
6379 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6380 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6381
4dfe6ac6
NC
6382 if (globals == NULL)
6383 return;
6384
48229727
JB
6385 if (globals->fix_cortex_a8 == -1)
6386 {
6387 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6388 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6389 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6390 || out_attr[Tag_CPU_arch_profile].i == 0))
6391 globals->fix_cortex_a8 = 1;
6392 else
6393 globals->fix_cortex_a8 = 0;
6394 }
6395}
6396
6397
c7b8f16e
JB
6398void
6399bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6400{
6401 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
104d59d1 6402 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
906e58ca 6403
4dfe6ac6
NC
6404 if (globals == NULL)
6405 return;
c7b8f16e
JB
6406 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6407 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6408 {
6409 switch (globals->vfp11_fix)
99059e56
RM
6410 {
6411 case BFD_ARM_VFP11_FIX_DEFAULT:
6412 case BFD_ARM_VFP11_FIX_NONE:
6413 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6414 break;
6415
6416 default:
6417 /* Give a warning, but do as the user requests anyway. */
6418 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6419 "workaround is not necessary for target architecture"), obfd);
6420 }
c7b8f16e
JB
6421 }
6422 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6423 /* For earlier architectures, we might need the workaround, but do not
6424 enable it by default. If users is running with broken hardware, they
6425 must enable the erratum fix explicitly. */
6426 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6427}
6428
6429
906e58ca
NC
6430enum bfd_arm_vfp11_pipe
6431{
c7b8f16e
JB
6432 VFP11_FMAC,
6433 VFP11_LS,
6434 VFP11_DS,
6435 VFP11_BAD
6436};
6437
6438/* Return a VFP register number. This is encoded as RX:X for single-precision
6439 registers, or X:RX for double-precision registers, where RX is the group of
6440 four bits in the instruction encoding and X is the single extension bit.
6441 RX and X fields are specified using their lowest (starting) bit. The return
6442 value is:
6443
6444 0...31: single-precision registers s0...s31
6445 32...63: double-precision registers d0...d31.
906e58ca 6446
c7b8f16e
JB
6447 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6448 encounter VFP3 instructions, so we allow the full range for DP registers. */
906e58ca 6449
c7b8f16e
JB
6450static unsigned int
6451bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
99059e56 6452 unsigned int x)
c7b8f16e
JB
6453{
6454 if (is_double)
6455 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6456 else
6457 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6458}
6459
6460/* Set bits in *WMASK according to a register number REG as encoded by
6461 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6462
6463static void
6464bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6465{
6466 if (reg < 32)
6467 *wmask |= 1 << reg;
6468 else if (reg < 48)
6469 *wmask |= 3 << ((reg - 32) * 2);
6470}
6471
6472/* Return TRUE if WMASK overwrites anything in REGS. */
6473
6474static bfd_boolean
6475bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6476{
6477 int i;
906e58ca 6478
c7b8f16e
JB
6479 for (i = 0; i < numregs; i++)
6480 {
6481 unsigned int reg = regs[i];
6482
6483 if (reg < 32 && (wmask & (1 << reg)) != 0)
99059e56 6484 return TRUE;
906e58ca 6485
c7b8f16e
JB
6486 reg -= 32;
6487
6488 if (reg >= 16)
99059e56 6489 continue;
906e58ca 6490
c7b8f16e 6491 if ((wmask & (3 << (reg * 2))) != 0)
99059e56 6492 return TRUE;
c7b8f16e 6493 }
906e58ca 6494
c7b8f16e
JB
6495 return FALSE;
6496}
6497
6498/* In this function, we're interested in two things: finding input registers
6499 for VFP data-processing instructions, and finding the set of registers which
6500 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6501 hold the written set, so FLDM etc. are easy to deal with (we're only
6502 interested in 32 SP registers or 16 dp registers, due to the VFP version
6503 implemented by the chip in question). DP registers are marked by setting
6504 both SP registers in the write mask). */
6505
6506static enum bfd_arm_vfp11_pipe
6507bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
99059e56 6508 int *numregs)
c7b8f16e 6509{
91d6fa6a 6510 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
c7b8f16e
JB
6511 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6512
6513 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6514 {
6515 unsigned int pqrs;
6516 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6517 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6518
6519 pqrs = ((insn & 0x00800000) >> 20)
99059e56
RM
6520 | ((insn & 0x00300000) >> 19)
6521 | ((insn & 0x00000040) >> 6);
c7b8f16e
JB
6522
6523 switch (pqrs)
99059e56
RM
6524 {
6525 case 0: /* fmac[sd]. */
6526 case 1: /* fnmac[sd]. */
6527 case 2: /* fmsc[sd]. */
6528 case 3: /* fnmsc[sd]. */
6529 vpipe = VFP11_FMAC;
6530 bfd_arm_vfp11_write_mask (destmask, fd);
6531 regs[0] = fd;
6532 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6533 regs[2] = fm;
6534 *numregs = 3;
6535 break;
6536
6537 case 4: /* fmul[sd]. */
6538 case 5: /* fnmul[sd]. */
6539 case 6: /* fadd[sd]. */
6540 case 7: /* fsub[sd]. */
6541 vpipe = VFP11_FMAC;
6542 goto vfp_binop;
6543
6544 case 8: /* fdiv[sd]. */
6545 vpipe = VFP11_DS;
6546 vfp_binop:
6547 bfd_arm_vfp11_write_mask (destmask, fd);
6548 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6549 regs[1] = fm;
6550 *numregs = 2;
6551 break;
6552
6553 case 15: /* extended opcode. */
6554 {
6555 unsigned int extn = ((insn >> 15) & 0x1e)
6556 | ((insn >> 7) & 1);
6557
6558 switch (extn)
6559 {
6560 case 0: /* fcpy[sd]. */
6561 case 1: /* fabs[sd]. */
6562 case 2: /* fneg[sd]. */
6563 case 8: /* fcmp[sd]. */
6564 case 9: /* fcmpe[sd]. */
6565 case 10: /* fcmpz[sd]. */
6566 case 11: /* fcmpez[sd]. */
6567 case 16: /* fuito[sd]. */
6568 case 17: /* fsito[sd]. */
6569 case 24: /* ftoui[sd]. */
6570 case 25: /* ftouiz[sd]. */
6571 case 26: /* ftosi[sd]. */
6572 case 27: /* ftosiz[sd]. */
6573 /* These instructions will not bounce due to underflow. */
6574 *numregs = 0;
6575 vpipe = VFP11_FMAC;
6576 break;
6577
6578 case 3: /* fsqrt[sd]. */
6579 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6580 registers to cause the erratum in previous instructions. */
6581 bfd_arm_vfp11_write_mask (destmask, fd);
6582 vpipe = VFP11_DS;
6583 break;
6584
6585 case 15: /* fcvt{ds,sd}. */
6586 {
6587 int rnum = 0;
6588
6589 bfd_arm_vfp11_write_mask (destmask, fd);
c7b8f16e
JB
6590
6591 /* Only FCVTSD can underflow. */
99059e56
RM
6592 if ((insn & 0x100) != 0)
6593 regs[rnum++] = fm;
c7b8f16e 6594
99059e56 6595 *numregs = rnum;
c7b8f16e 6596
99059e56
RM
6597 vpipe = VFP11_FMAC;
6598 }
6599 break;
c7b8f16e 6600
99059e56
RM
6601 default:
6602 return VFP11_BAD;
6603 }
6604 }
6605 break;
c7b8f16e 6606
99059e56
RM
6607 default:
6608 return VFP11_BAD;
6609 }
c7b8f16e
JB
6610 }
6611 /* Two-register transfer. */
6612 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6613 {
6614 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
906e58ca 6615
c7b8f16e
JB
6616 if ((insn & 0x100000) == 0)
6617 {
99059e56
RM
6618 if (is_double)
6619 bfd_arm_vfp11_write_mask (destmask, fm);
6620 else
6621 {
6622 bfd_arm_vfp11_write_mask (destmask, fm);
6623 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6624 }
c7b8f16e
JB
6625 }
6626
91d6fa6a 6627 vpipe = VFP11_LS;
c7b8f16e
JB
6628 }
6629 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6630 {
6631 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6632 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
906e58ca 6633
c7b8f16e 6634 switch (puw)
99059e56
RM
6635 {
6636 case 0: /* Two-reg transfer. We should catch these above. */
6637 abort ();
906e58ca 6638
99059e56
RM
6639 case 2: /* fldm[sdx]. */
6640 case 3:
6641 case 5:
6642 {
6643 unsigned int i, offset = insn & 0xff;
c7b8f16e 6644
99059e56
RM
6645 if (is_double)
6646 offset >>= 1;
c7b8f16e 6647
99059e56
RM
6648 for (i = fd; i < fd + offset; i++)
6649 bfd_arm_vfp11_write_mask (destmask, i);
6650 }
6651 break;
906e58ca 6652
99059e56
RM
6653 case 4: /* fld[sd]. */
6654 case 6:
6655 bfd_arm_vfp11_write_mask (destmask, fd);
6656 break;
906e58ca 6657
99059e56
RM
6658 default:
6659 return VFP11_BAD;
6660 }
c7b8f16e 6661
91d6fa6a 6662 vpipe = VFP11_LS;
c7b8f16e
JB
6663 }
6664 /* Single-register transfer. Note L==0. */
6665 else if ((insn & 0x0f100e10) == 0x0e000a10)
6666 {
6667 unsigned int opcode = (insn >> 21) & 7;
6668 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6669
6670 switch (opcode)
99059e56
RM
6671 {
6672 case 0: /* fmsr/fmdlr. */
6673 case 1: /* fmdhr. */
6674 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6675 destination register. I don't know if this is exactly right,
6676 but it is the conservative choice. */
6677 bfd_arm_vfp11_write_mask (destmask, fn);
6678 break;
6679
6680 case 7: /* fmxr. */
6681 break;
6682 }
c7b8f16e 6683
91d6fa6a 6684 vpipe = VFP11_LS;
c7b8f16e
JB
6685 }
6686
91d6fa6a 6687 return vpipe;
c7b8f16e
JB
6688}
6689
6690
6691static int elf32_arm_compare_mapping (const void * a, const void * b);
6692
6693
6694/* Look for potentially-troublesome code sequences which might trigger the
6695 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6696 (available from ARM) for details of the erratum. A short version is
6697 described in ld.texinfo. */
6698
6699bfd_boolean
6700bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6701{
6702 asection *sec;
6703 bfd_byte *contents = NULL;
6704 int state = 0;
6705 int regs[3], numregs = 0;
6706 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6707 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
906e58ca 6708
4dfe6ac6
NC
6709 if (globals == NULL)
6710 return FALSE;
6711
c7b8f16e
JB
6712 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6713 The states transition as follows:
906e58ca 6714
c7b8f16e 6715 0 -> 1 (vector) or 0 -> 2 (scalar)
99059e56
RM
6716 A VFP FMAC-pipeline instruction has been seen. Fill
6717 regs[0]..regs[numregs-1] with its input operands. Remember this
6718 instruction in 'first_fmac'.
c7b8f16e
JB
6719
6720 1 -> 2
99059e56
RM
6721 Any instruction, except for a VFP instruction which overwrites
6722 regs[*].
906e58ca 6723
c7b8f16e
JB
6724 1 -> 3 [ -> 0 ] or
6725 2 -> 3 [ -> 0 ]
99059e56
RM
6726 A VFP instruction has been seen which overwrites any of regs[*].
6727 We must make a veneer! Reset state to 0 before examining next
6728 instruction.
906e58ca 6729
c7b8f16e 6730 2 -> 0
99059e56
RM
6731 If we fail to match anything in state 2, reset to state 0 and reset
6732 the instruction pointer to the instruction after 'first_fmac'.
c7b8f16e
JB
6733
6734 If the VFP11 vector mode is in use, there must be at least two unrelated
6735 instructions between anti-dependent VFP11 instructions to properly avoid
906e58ca 6736 triggering the erratum, hence the use of the extra state 1. */
c7b8f16e
JB
6737
6738 /* If we are only performing a partial link do not bother
6739 to construct any glue. */
6740 if (link_info->relocatable)
6741 return TRUE;
6742
0ffa91dd
NC
6743 /* Skip if this bfd does not correspond to an ELF image. */
6744 if (! is_arm_elf (abfd))
6745 return TRUE;
906e58ca 6746
c7b8f16e
JB
6747 /* We should have chosen a fix type by the time we get here. */
6748 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6749
6750 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6751 return TRUE;
2e6030b9 6752
33a7ffc2
JM
6753 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6754 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6755 return TRUE;
6756
c7b8f16e
JB
6757 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6758 {
6759 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6760 struct _arm_elf_section_data *sec_data;
6761
6762 /* If we don't have executable progbits, we're not interested in this
99059e56 6763 section. Also skip if section is to be excluded. */
c7b8f16e 6764 if (elf_section_type (sec) != SHT_PROGBITS
99059e56
RM
6765 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6766 || (sec->flags & SEC_EXCLUDE) != 0
dbaa2011 6767 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
33a7ffc2 6768 || sec->output_section == bfd_abs_section_ptr
99059e56
RM
6769 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6770 continue;
c7b8f16e
JB
6771
6772 sec_data = elf32_arm_section_data (sec);
906e58ca 6773
c7b8f16e 6774 if (sec_data->mapcount == 0)
99059e56 6775 continue;
906e58ca 6776
c7b8f16e
JB
6777 if (elf_section_data (sec)->this_hdr.contents != NULL)
6778 contents = elf_section_data (sec)->this_hdr.contents;
6779 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6780 goto error_return;
6781
6782 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6783 elf32_arm_compare_mapping);
6784
6785 for (span = 0; span < sec_data->mapcount; span++)
99059e56
RM
6786 {
6787 unsigned int span_start = sec_data->map[span].vma;
6788 unsigned int span_end = (span == sec_data->mapcount - 1)
c7b8f16e 6789 ? sec->size : sec_data->map[span + 1].vma;
99059e56
RM
6790 char span_type = sec_data->map[span].type;
6791
6792 /* FIXME: Only ARM mode is supported at present. We may need to
6793 support Thumb-2 mode also at some point. */
6794 if (span_type != 'a')
6795 continue;
6796
6797 for (i = span_start; i < span_end;)
6798 {
6799 unsigned int next_i = i + 4;
6800 unsigned int insn = bfd_big_endian (abfd)
6801 ? (contents[i] << 24)
6802 | (contents[i + 1] << 16)
6803 | (contents[i + 2] << 8)
6804 | contents[i + 3]
6805 : (contents[i + 3] << 24)
6806 | (contents[i + 2] << 16)
6807 | (contents[i + 1] << 8)
6808 | contents[i];
6809 unsigned int writemask = 0;
6810 enum bfd_arm_vfp11_pipe vpipe;
6811
6812 switch (state)
6813 {
6814 case 0:
6815 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6816 &numregs);
6817 /* I'm assuming the VFP11 erratum can trigger with denorm
6818 operands on either the FMAC or the DS pipeline. This might
6819 lead to slightly overenthusiastic veneer insertion. */
6820 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6821 {
6822 state = use_vector ? 1 : 2;
6823 first_fmac = i;
6824 veneer_of_insn = insn;
6825 }
6826 break;
6827
6828 case 1:
6829 {
6830 int other_regs[3], other_numregs;
6831 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 6832 other_regs,
99059e56
RM
6833 &other_numregs);
6834 if (vpipe != VFP11_BAD
6835 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 6836 numregs))
99059e56
RM
6837 state = 3;
6838 else
6839 state = 2;
6840 }
6841 break;
6842
6843 case 2:
6844 {
6845 int other_regs[3], other_numregs;
6846 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
c7b8f16e 6847 other_regs,
99059e56
RM
6848 &other_numregs);
6849 if (vpipe != VFP11_BAD
6850 && bfd_arm_vfp11_antidependency (writemask, regs,
c7b8f16e 6851 numregs))
99059e56
RM
6852 state = 3;
6853 else
6854 {
6855 state = 0;
6856 next_i = first_fmac + 4;
6857 }
6858 }
6859 break;
6860
6861 case 3:
6862 abort (); /* Should be unreachable. */
6863 }
6864
6865 if (state == 3)
6866 {
6867 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6868 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6869
6870 elf32_arm_section_data (sec)->erratumcount += 1;
6871
6872 newerr->u.b.vfp_insn = veneer_of_insn;
6873
6874 switch (span_type)
6875 {
6876 case 'a':
6877 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6878 break;
6879
6880 default:
6881 abort ();
6882 }
6883
6884 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
c7b8f16e
JB
6885 first_fmac);
6886
99059e56 6887 newerr->vma = -1;
c7b8f16e 6888
99059e56
RM
6889 newerr->next = sec_data->erratumlist;
6890 sec_data->erratumlist = newerr;
c7b8f16e 6891
99059e56
RM
6892 state = 0;
6893 }
c7b8f16e 6894
99059e56
RM
6895 i = next_i;
6896 }
6897 }
906e58ca 6898
c7b8f16e 6899 if (contents != NULL
99059e56
RM
6900 && elf_section_data (sec)->this_hdr.contents != contents)
6901 free (contents);
c7b8f16e
JB
6902 contents = NULL;
6903 }
6904
6905 return TRUE;
6906
6907error_return:
6908 if (contents != NULL
6909 && elf_section_data (sec)->this_hdr.contents != contents)
6910 free (contents);
906e58ca 6911
c7b8f16e
JB
6912 return FALSE;
6913}
6914
6915/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6916 after sections have been laid out, using specially-named symbols. */
6917
6918void
6919bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6920 struct bfd_link_info *link_info)
6921{
6922 asection *sec;
6923 struct elf32_arm_link_hash_table *globals;
6924 char *tmp_name;
906e58ca 6925
c7b8f16e
JB
6926 if (link_info->relocatable)
6927 return;
2e6030b9
MS
6928
6929 /* Skip if this bfd does not correspond to an ELF image. */
0ffa91dd 6930 if (! is_arm_elf (abfd))
2e6030b9
MS
6931 return;
6932
c7b8f16e 6933 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
6934 if (globals == NULL)
6935 return;
906e58ca 6936
21d799b5 6937 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
99059e56 6938 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
c7b8f16e
JB
6939
6940 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6941 {
6942 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6943 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
906e58ca 6944
c7b8f16e 6945 for (; errnode != NULL; errnode = errnode->next)
99059e56
RM
6946 {
6947 struct elf_link_hash_entry *myh;
6948 bfd_vma vma;
6949
6950 switch (errnode->type)
6951 {
6952 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6953 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6954 /* Find veneer symbol. */
6955 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
c7b8f16e
JB
6956 errnode->u.b.veneer->u.v.id);
6957
99059e56
RM
6958 myh = elf_link_hash_lookup
6959 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 6960
99059e56
RM
6961 if (myh == NULL)
6962 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6963 "`%s'"), abfd, tmp_name);
c7b8f16e 6964
99059e56
RM
6965 vma = myh->root.u.def.section->output_section->vma
6966 + myh->root.u.def.section->output_offset
6967 + myh->root.u.def.value;
c7b8f16e 6968
99059e56
RM
6969 errnode->u.b.veneer->vma = vma;
6970 break;
c7b8f16e
JB
6971
6972 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
6973 case VFP11_ERRATUM_THUMB_VENEER:
6974 /* Find return location. */
6975 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6976 errnode->u.v.id);
c7b8f16e 6977
99059e56
RM
6978 myh = elf_link_hash_lookup
6979 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
c7b8f16e 6980
99059e56
RM
6981 if (myh == NULL)
6982 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
c7b8f16e
JB
6983 "`%s'"), abfd, tmp_name);
6984
99059e56
RM
6985 vma = myh->root.u.def.section->output_section->vma
6986 + myh->root.u.def.section->output_offset
6987 + myh->root.u.def.value;
c7b8f16e 6988
99059e56
RM
6989 errnode->u.v.branch->vma = vma;
6990 break;
906e58ca 6991
99059e56
RM
6992 default:
6993 abort ();
6994 }
6995 }
c7b8f16e 6996 }
906e58ca 6997
c7b8f16e
JB
6998 free (tmp_name);
6999}
7000
7001
eb043451
PB
7002/* Set target relocation values needed during linking. */
7003
7004void
bf21ed78
MS
7005bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
7006 struct bfd_link_info *link_info,
eb043451 7007 int target1_is_rel,
319850b4 7008 char * target2_type,
99059e56 7009 int fix_v4bx,
c7b8f16e 7010 int use_blx,
99059e56 7011 bfd_arm_vfp11_fix vfp11_fix,
a9dc9481 7012 int no_enum_warn, int no_wchar_warn,
2de70689
MGD
7013 int pic_veneer, int fix_cortex_a8,
7014 int fix_arm1176)
eb043451
PB
7015{
7016 struct elf32_arm_link_hash_table *globals;
7017
7018 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7019 if (globals == NULL)
7020 return;
eb043451
PB
7021
7022 globals->target1_is_rel = target1_is_rel;
7023 if (strcmp (target2_type, "rel") == 0)
7024 globals->target2_reloc = R_ARM_REL32;
eeac373a
PB
7025 else if (strcmp (target2_type, "abs") == 0)
7026 globals->target2_reloc = R_ARM_ABS32;
eb043451
PB
7027 else if (strcmp (target2_type, "got-rel") == 0)
7028 globals->target2_reloc = R_ARM_GOT_PREL;
7029 else
7030 {
7031 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
7032 target2_type);
7033 }
319850b4 7034 globals->fix_v4bx = fix_v4bx;
33bfe774 7035 globals->use_blx |= use_blx;
c7b8f16e 7036 globals->vfp11_fix = vfp11_fix;
27e55c4d 7037 globals->pic_veneer = pic_veneer;
48229727 7038 globals->fix_cortex_a8 = fix_cortex_a8;
2de70689 7039 globals->fix_arm1176 = fix_arm1176;
bf21ed78 7040
0ffa91dd
NC
7041 BFD_ASSERT (is_arm_elf (output_bfd));
7042 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
a9dc9481 7043 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
eb043451 7044}
eb043451 7045
12a0a0fd 7046/* Replace the target offset of a Thumb bl or b.w instruction. */
252b5132 7047
12a0a0fd
PB
7048static void
7049insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
7050{
7051 bfd_vma upper;
7052 bfd_vma lower;
7053 int reloc_sign;
7054
7055 BFD_ASSERT ((offset & 1) == 0);
7056
7057 upper = bfd_get_16 (abfd, insn);
7058 lower = bfd_get_16 (abfd, insn + 2);
7059 reloc_sign = (offset < 0) ? 1 : 0;
7060 upper = (upper & ~(bfd_vma) 0x7ff)
7061 | ((offset >> 12) & 0x3ff)
7062 | (reloc_sign << 10);
906e58ca 7063 lower = (lower & ~(bfd_vma) 0x2fff)
12a0a0fd
PB
7064 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7065 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7066 | ((offset >> 1) & 0x7ff);
7067 bfd_put_16 (abfd, upper, insn);
7068 bfd_put_16 (abfd, lower, insn + 2);
252b5132
RH
7069}
7070
9b485d32
NC
7071/* Thumb code calling an ARM function. */
7072
252b5132 7073static int
57e8b36a
NC
7074elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7075 const char * name,
7076 bfd * input_bfd,
7077 bfd * output_bfd,
7078 asection * input_section,
7079 bfd_byte * hit_data,
7080 asection * sym_sec,
7081 bfd_vma offset,
7082 bfd_signed_vma addend,
f2a9dd69
DJ
7083 bfd_vma val,
7084 char **error_message)
252b5132 7085{
bcbdc74c 7086 asection * s = 0;
dc810e39 7087 bfd_vma my_offset;
252b5132 7088 long int ret_offset;
bcbdc74c
NC
7089 struct elf_link_hash_entry * myh;
7090 struct elf32_arm_link_hash_table * globals;
252b5132 7091
f2a9dd69 7092 myh = find_thumb_glue (info, name, error_message);
252b5132 7093 if (myh == NULL)
b34976b6 7094 return FALSE;
252b5132
RH
7095
7096 globals = elf32_arm_hash_table (info);
252b5132
RH
7097 BFD_ASSERT (globals != NULL);
7098 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7099
7100 my_offset = myh->root.u.def.value;
7101
3d4d4302
AM
7102 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7103 THUMB2ARM_GLUE_SECTION_NAME);
252b5132
RH
7104
7105 BFD_ASSERT (s != NULL);
7106 BFD_ASSERT (s->contents != NULL);
7107 BFD_ASSERT (s->output_section != NULL);
7108
7109 if ((my_offset & 0x01) == 0x01)
7110 {
7111 if (sym_sec != NULL
7112 && sym_sec->owner != NULL
7113 && !INTERWORK_FLAG (sym_sec->owner))
7114 {
8f615d07 7115 (*_bfd_error_handler)
d003868e 7116 (_("%B(%s): warning: interworking not enabled.\n"
3aaeb7d3 7117 " first occurrence: %B: Thumb call to ARM"),
d003868e 7118 sym_sec->owner, input_bfd, name);
252b5132 7119
b34976b6 7120 return FALSE;
252b5132
RH
7121 }
7122
7123 --my_offset;
7124 myh->root.u.def.value = my_offset;
7125
52ab56c2
PB
7126 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7127 s->contents + my_offset);
252b5132 7128
52ab56c2
PB
7129 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7130 s->contents + my_offset + 2);
252b5132
RH
7131
7132 ret_offset =
9b485d32
NC
7133 /* Address of destination of the stub. */
7134 ((bfd_signed_vma) val)
252b5132 7135 - ((bfd_signed_vma)
57e8b36a
NC
7136 /* Offset from the start of the current section
7137 to the start of the stubs. */
9b485d32
NC
7138 (s->output_offset
7139 /* Offset of the start of this stub from the start of the stubs. */
7140 + my_offset
7141 /* Address of the start of the current section. */
7142 + s->output_section->vma)
7143 /* The branch instruction is 4 bytes into the stub. */
7144 + 4
7145 /* ARM branches work from the pc of the instruction + 8. */
7146 + 8);
252b5132 7147
52ab56c2
PB
7148 put_arm_insn (globals, output_bfd,
7149 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7150 s->contents + my_offset + 4);
252b5132
RH
7151 }
7152
7153 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7154
427bfd90
NC
7155 /* Now go back and fix up the original BL insn to point to here. */
7156 ret_offset =
7157 /* Address of where the stub is located. */
7158 (s->output_section->vma + s->output_offset + my_offset)
7159 /* Address of where the BL is located. */
57e8b36a
NC
7160 - (input_section->output_section->vma + input_section->output_offset
7161 + offset)
427bfd90
NC
7162 /* Addend in the relocation. */
7163 - addend
7164 /* Biassing for PC-relative addressing. */
7165 - 8;
252b5132 7166
12a0a0fd 7167 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
252b5132 7168
b34976b6 7169 return TRUE;
252b5132
RH
7170}
7171
a4fd1a8e 7172/* Populate an Arm to Thumb stub. Returns the stub symbol. */
9b485d32 7173
a4fd1a8e
PB
7174static struct elf_link_hash_entry *
7175elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7176 const char * name,
7177 bfd * input_bfd,
7178 bfd * output_bfd,
7179 asection * sym_sec,
7180 bfd_vma val,
8029a119
NC
7181 asection * s,
7182 char ** error_message)
252b5132 7183{
dc810e39 7184 bfd_vma my_offset;
252b5132 7185 long int ret_offset;
bcbdc74c
NC
7186 struct elf_link_hash_entry * myh;
7187 struct elf32_arm_link_hash_table * globals;
252b5132 7188
f2a9dd69 7189 myh = find_arm_glue (info, name, error_message);
252b5132 7190 if (myh == NULL)
a4fd1a8e 7191 return NULL;
252b5132
RH
7192
7193 globals = elf32_arm_hash_table (info);
252b5132
RH
7194 BFD_ASSERT (globals != NULL);
7195 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7196
7197 my_offset = myh->root.u.def.value;
252b5132
RH
7198
7199 if ((my_offset & 0x01) == 0x01)
7200 {
7201 if (sym_sec != NULL
7202 && sym_sec->owner != NULL
7203 && !INTERWORK_FLAG (sym_sec->owner))
7204 {
8f615d07 7205 (*_bfd_error_handler)
d003868e
AM
7206 (_("%B(%s): warning: interworking not enabled.\n"
7207 " first occurrence: %B: arm call to thumb"),
7208 sym_sec->owner, input_bfd, name);
252b5132 7209 }
9b485d32 7210
252b5132
RH
7211 --my_offset;
7212 myh->root.u.def.value = my_offset;
7213
27e55c4d
PB
7214 if (info->shared || globals->root.is_relocatable_executable
7215 || globals->pic_veneer)
8f6277f5
PB
7216 {
7217 /* For relocatable objects we can't use absolute addresses,
7218 so construct the address from a relative offset. */
7219 /* TODO: If the offset is small it's probably worth
7220 constructing the address with adds. */
52ab56c2
PB
7221 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7222 s->contents + my_offset);
7223 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7224 s->contents + my_offset + 4);
7225 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7226 s->contents + my_offset + 8);
8f6277f5
PB
7227 /* Adjust the offset by 4 for the position of the add,
7228 and 8 for the pipeline offset. */
7229 ret_offset = (val - (s->output_offset
7230 + s->output_section->vma
7231 + my_offset + 12))
7232 | 1;
7233 bfd_put_32 (output_bfd, ret_offset,
7234 s->contents + my_offset + 12);
7235 }
26079076
PB
7236 else if (globals->use_blx)
7237 {
7238 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7239 s->contents + my_offset);
7240
7241 /* It's a thumb address. Add the low order bit. */
7242 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7243 s->contents + my_offset + 4);
7244 }
8f6277f5
PB
7245 else
7246 {
52ab56c2
PB
7247 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7248 s->contents + my_offset);
252b5132 7249
52ab56c2
PB
7250 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7251 s->contents + my_offset + 4);
252b5132 7252
8f6277f5
PB
7253 /* It's a thumb address. Add the low order bit. */
7254 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7255 s->contents + my_offset + 8);
8029a119
NC
7256
7257 my_offset += 12;
8f6277f5 7258 }
252b5132
RH
7259 }
7260
7261 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7262
a4fd1a8e
PB
7263 return myh;
7264}
7265
7266/* Arm code calling a Thumb function. */
7267
7268static int
7269elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7270 const char * name,
7271 bfd * input_bfd,
7272 bfd * output_bfd,
7273 asection * input_section,
7274 bfd_byte * hit_data,
7275 asection * sym_sec,
7276 bfd_vma offset,
7277 bfd_signed_vma addend,
f2a9dd69
DJ
7278 bfd_vma val,
7279 char **error_message)
a4fd1a8e
PB
7280{
7281 unsigned long int tmp;
7282 bfd_vma my_offset;
7283 asection * s;
7284 long int ret_offset;
7285 struct elf_link_hash_entry * myh;
7286 struct elf32_arm_link_hash_table * globals;
7287
7288 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
7289 BFD_ASSERT (globals != NULL);
7290 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7291
3d4d4302
AM
7292 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7293 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
7294 BFD_ASSERT (s != NULL);
7295 BFD_ASSERT (s->contents != NULL);
7296 BFD_ASSERT (s->output_section != NULL);
7297
7298 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
f2a9dd69 7299 sym_sec, val, s, error_message);
a4fd1a8e
PB
7300 if (!myh)
7301 return FALSE;
7302
7303 my_offset = myh->root.u.def.value;
252b5132
RH
7304 tmp = bfd_get_32 (input_bfd, hit_data);
7305 tmp = tmp & 0xFF000000;
7306
9b485d32 7307 /* Somehow these are both 4 too far, so subtract 8. */
dc810e39
AM
7308 ret_offset = (s->output_offset
7309 + my_offset
7310 + s->output_section->vma
7311 - (input_section->output_offset
7312 + input_section->output_section->vma
7313 + offset + addend)
7314 - 8);
9a5aca8c 7315
252b5132
RH
7316 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7317
dc810e39 7318 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
252b5132 7319
b34976b6 7320 return TRUE;
252b5132
RH
7321}
7322
a4fd1a8e
PB
7323/* Populate Arm stub for an exported Thumb function. */
7324
7325static bfd_boolean
7326elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7327{
7328 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7329 asection * s;
7330 struct elf_link_hash_entry * myh;
7331 struct elf32_arm_link_hash_entry *eh;
7332 struct elf32_arm_link_hash_table * globals;
7333 asection *sec;
7334 bfd_vma val;
f2a9dd69 7335 char *error_message;
a4fd1a8e 7336
906e58ca 7337 eh = elf32_arm_hash_entry (h);
a4fd1a8e
PB
7338 /* Allocate stubs for exported Thumb functions on v4t. */
7339 if (eh->export_glue == NULL)
7340 return TRUE;
7341
7342 globals = elf32_arm_hash_table (info);
a4fd1a8e
PB
7343 BFD_ASSERT (globals != NULL);
7344 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7345
3d4d4302
AM
7346 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7347 ARM2THUMB_GLUE_SECTION_NAME);
a4fd1a8e
PB
7348 BFD_ASSERT (s != NULL);
7349 BFD_ASSERT (s->contents != NULL);
7350 BFD_ASSERT (s->output_section != NULL);
7351
7352 sec = eh->export_glue->root.u.def.section;
0eaedd0e
PB
7353
7354 BFD_ASSERT (sec->output_section != NULL);
7355
a4fd1a8e
PB
7356 val = eh->export_glue->root.u.def.value + sec->output_offset
7357 + sec->output_section->vma;
8029a119 7358
a4fd1a8e
PB
7359 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7360 h->root.u.def.section->owner,
f2a9dd69
DJ
7361 globals->obfd, sec, val, s,
7362 &error_message);
a4fd1a8e
PB
7363 BFD_ASSERT (myh);
7364 return TRUE;
7365}
7366
845b51d6
PB
7367/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7368
7369static bfd_vma
7370elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7371{
7372 bfd_byte *p;
7373 bfd_vma glue_addr;
7374 asection *s;
7375 struct elf32_arm_link_hash_table *globals;
7376
7377 globals = elf32_arm_hash_table (info);
845b51d6
PB
7378 BFD_ASSERT (globals != NULL);
7379 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7380
3d4d4302
AM
7381 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7382 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
7383 BFD_ASSERT (s != NULL);
7384 BFD_ASSERT (s->contents != NULL);
7385 BFD_ASSERT (s->output_section != NULL);
7386
7387 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7388
7389 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7390
7391 if ((globals->bx_glue_offset[reg] & 1) == 0)
7392 {
7393 p = s->contents + glue_addr;
7394 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7395 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7396 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7397 globals->bx_glue_offset[reg] |= 1;
7398 }
7399
7400 return glue_addr + s->output_section->vma + s->output_offset;
7401}
7402
a4fd1a8e
PB
7403/* Generate Arm stubs for exported Thumb symbols. */
7404static void
906e58ca 7405elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
a4fd1a8e
PB
7406 struct bfd_link_info *link_info)
7407{
7408 struct elf32_arm_link_hash_table * globals;
7409
8029a119
NC
7410 if (link_info == NULL)
7411 /* Ignore this if we are not called by the ELF backend linker. */
a4fd1a8e
PB
7412 return;
7413
7414 globals = elf32_arm_hash_table (link_info);
4dfe6ac6
NC
7415 if (globals == NULL)
7416 return;
7417
84c08195
PB
7418 /* If blx is available then exported Thumb symbols are OK and there is
7419 nothing to do. */
a4fd1a8e
PB
7420 if (globals->use_blx)
7421 return;
7422
7423 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7424 link_info);
7425}
7426
47beaa6a
RS
7427/* Reserve space for COUNT dynamic relocations in relocation selection
7428 SRELOC. */
7429
7430static void
7431elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7432 bfd_size_type count)
7433{
7434 struct elf32_arm_link_hash_table *htab;
7435
7436 htab = elf32_arm_hash_table (info);
7437 BFD_ASSERT (htab->root.dynamic_sections_created);
7438 if (sreloc == NULL)
7439 abort ();
7440 sreloc->size += RELOC_SIZE (htab) * count;
7441}
7442
34e77a92
RS
7443/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7444 dynamic, the relocations should go in SRELOC, otherwise they should
7445 go in the special .rel.iplt section. */
7446
7447static void
7448elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7449 bfd_size_type count)
7450{
7451 struct elf32_arm_link_hash_table *htab;
7452
7453 htab = elf32_arm_hash_table (info);
7454 if (!htab->root.dynamic_sections_created)
7455 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7456 else
7457 {
7458 BFD_ASSERT (sreloc != NULL);
7459 sreloc->size += RELOC_SIZE (htab) * count;
7460 }
7461}
7462
47beaa6a
RS
7463/* Add relocation REL to the end of relocation section SRELOC. */
7464
7465static void
7466elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7467 asection *sreloc, Elf_Internal_Rela *rel)
7468{
7469 bfd_byte *loc;
7470 struct elf32_arm_link_hash_table *htab;
7471
7472 htab = elf32_arm_hash_table (info);
34e77a92
RS
7473 if (!htab->root.dynamic_sections_created
7474 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7475 sreloc = htab->root.irelplt;
47beaa6a
RS
7476 if (sreloc == NULL)
7477 abort ();
7478 loc = sreloc->contents;
7479 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7480 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7481 abort ();
7482 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7483}
7484
34e77a92
RS
7485/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7486 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7487 to .plt. */
7488
7489static void
7490elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7491 bfd_boolean is_iplt_entry,
7492 union gotplt_union *root_plt,
7493 struct arm_plt_info *arm_plt)
7494{
7495 struct elf32_arm_link_hash_table *htab;
7496 asection *splt;
7497 asection *sgotplt;
7498
7499 htab = elf32_arm_hash_table (info);
7500
7501 if (is_iplt_entry)
7502 {
7503 splt = htab->root.iplt;
7504 sgotplt = htab->root.igotplt;
7505
99059e56
RM
7506 /* NaCl uses a special first entry in .iplt too. */
7507 if (htab->nacl_p && splt->size == 0)
7508 splt->size += htab->plt_header_size;
7509
34e77a92
RS
7510 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7511 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7512 }
7513 else
7514 {
7515 splt = htab->root.splt;
7516 sgotplt = htab->root.sgotplt;
7517
7518 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7519 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7520
7521 /* If this is the first .plt entry, make room for the special
7522 first entry. */
7523 if (splt->size == 0)
7524 splt->size += htab->plt_header_size;
9f19ab6d
WN
7525
7526 htab->next_tls_desc_index++;
34e77a92
RS
7527 }
7528
7529 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7530 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7531 splt->size += PLT_THUMB_STUB_SIZE;
7532 root_plt->offset = splt->size;
7533 splt->size += htab->plt_entry_size;
7534
7535 if (!htab->symbian_p)
7536 {
7537 /* We also need to make an entry in the .got.plt section, which
7538 will be placed in the .got section by the linker script. */
9f19ab6d
WN
7539 if (is_iplt_entry)
7540 arm_plt->got_offset = sgotplt->size;
7541 else
7542 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
34e77a92
RS
7543 sgotplt->size += 4;
7544 }
7545}
7546
b38cadfb
NC
7547static bfd_vma
7548arm_movw_immediate (bfd_vma value)
7549{
7550 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7551}
7552
7553static bfd_vma
7554arm_movt_immediate (bfd_vma value)
7555{
7556 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7557}
7558
34e77a92
RS
7559/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7560 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7561 Otherwise, DYNINDX is the index of the symbol in the dynamic
7562 symbol table and SYM_VALUE is undefined.
7563
7564 ROOT_PLT points to the offset of the PLT entry from the start of its
7565 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
57460bcf 7566 bookkeeping information.
34e77a92 7567
57460bcf
NC
7568 Returns FALSE if there was a problem. */
7569
7570static bfd_boolean
34e77a92
RS
7571elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7572 union gotplt_union *root_plt,
7573 struct arm_plt_info *arm_plt,
7574 int dynindx, bfd_vma sym_value)
7575{
7576 struct elf32_arm_link_hash_table *htab;
7577 asection *sgot;
7578 asection *splt;
7579 asection *srel;
7580 bfd_byte *loc;
7581 bfd_vma plt_index;
7582 Elf_Internal_Rela rel;
7583 bfd_vma plt_header_size;
7584 bfd_vma got_header_size;
7585
7586 htab = elf32_arm_hash_table (info);
7587
7588 /* Pick the appropriate sections and sizes. */
7589 if (dynindx == -1)
7590 {
7591 splt = htab->root.iplt;
7592 sgot = htab->root.igotplt;
7593 srel = htab->root.irelplt;
7594
7595 /* There are no reserved entries in .igot.plt, and no special
7596 first entry in .iplt. */
7597 got_header_size = 0;
7598 plt_header_size = 0;
7599 }
7600 else
7601 {
7602 splt = htab->root.splt;
7603 sgot = htab->root.sgotplt;
7604 srel = htab->root.srelplt;
7605
7606 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7607 plt_header_size = htab->plt_header_size;
7608 }
7609 BFD_ASSERT (splt != NULL && srel != NULL);
7610
7611 /* Fill in the entry in the procedure linkage table. */
7612 if (htab->symbian_p)
7613 {
7614 BFD_ASSERT (dynindx >= 0);
7615 put_arm_insn (htab, output_bfd,
7616 elf32_arm_symbian_plt_entry[0],
7617 splt->contents + root_plt->offset);
7618 bfd_put_32 (output_bfd,
7619 elf32_arm_symbian_plt_entry[1],
7620 splt->contents + root_plt->offset + 4);
7621
7622 /* Fill in the entry in the .rel.plt section. */
7623 rel.r_offset = (splt->output_section->vma
7624 + splt->output_offset
7625 + root_plt->offset + 4);
7626 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7627
7628 /* Get the index in the procedure linkage table which
7629 corresponds to this symbol. This is the index of this symbol
7630 in all the symbols for which we are making plt entries. The
7631 first entry in the procedure linkage table is reserved. */
7632 plt_index = ((root_plt->offset - plt_header_size)
7633 / htab->plt_entry_size);
7634 }
7635 else
7636 {
7637 bfd_vma got_offset, got_address, plt_address;
7638 bfd_vma got_displacement, initial_got_entry;
7639 bfd_byte * ptr;
7640
7641 BFD_ASSERT (sgot != NULL);
7642
7643 /* Get the offset into the .(i)got.plt table of the entry that
7644 corresponds to this function. */
7645 got_offset = (arm_plt->got_offset & -2);
7646
7647 /* Get the index in the procedure linkage table which
7648 corresponds to this symbol. This is the index of this symbol
7649 in all the symbols for which we are making plt entries.
7650 After the reserved .got.plt entries, all symbols appear in
7651 the same order as in .plt. */
7652 plt_index = (got_offset - got_header_size) / 4;
7653
7654 /* Calculate the address of the GOT entry. */
7655 got_address = (sgot->output_section->vma
7656 + sgot->output_offset
7657 + got_offset);
7658
7659 /* ...and the address of the PLT entry. */
7660 plt_address = (splt->output_section->vma
7661 + splt->output_offset
7662 + root_plt->offset);
7663
7664 ptr = splt->contents + root_plt->offset;
7665 if (htab->vxworks_p && info->shared)
7666 {
7667 unsigned int i;
7668 bfd_vma val;
7669
7670 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7671 {
7672 val = elf32_arm_vxworks_shared_plt_entry[i];
7673 if (i == 2)
7674 val |= got_address - sgot->output_section->vma;
7675 if (i == 5)
7676 val |= plt_index * RELOC_SIZE (htab);
7677 if (i == 2 || i == 5)
7678 bfd_put_32 (output_bfd, val, ptr);
7679 else
7680 put_arm_insn (htab, output_bfd, val, ptr);
7681 }
7682 }
7683 else if (htab->vxworks_p)
7684 {
7685 unsigned int i;
7686 bfd_vma val;
7687
7688 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7689 {
7690 val = elf32_arm_vxworks_exec_plt_entry[i];
7691 if (i == 2)
7692 val |= got_address;
7693 if (i == 4)
7694 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7695 if (i == 5)
7696 val |= plt_index * RELOC_SIZE (htab);
7697 if (i == 2 || i == 5)
7698 bfd_put_32 (output_bfd, val, ptr);
7699 else
7700 put_arm_insn (htab, output_bfd, val, ptr);
7701 }
7702
7703 loc = (htab->srelplt2->contents
7704 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7705
7706 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7707 referencing the GOT for this PLT entry. */
7708 rel.r_offset = plt_address + 8;
7709 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7710 rel.r_addend = got_offset;
7711 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7712 loc += RELOC_SIZE (htab);
7713
7714 /* Create the R_ARM_ABS32 relocation referencing the
7715 beginning of the PLT for this GOT entry. */
7716 rel.r_offset = got_address;
7717 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7718 rel.r_addend = 0;
7719 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7720 }
b38cadfb
NC
7721 else if (htab->nacl_p)
7722 {
7723 /* Calculate the displacement between the PLT slot and the
7724 common tail that's part of the special initial PLT slot. */
6034aab8 7725 int32_t tail_displacement
b38cadfb
NC
7726 = ((splt->output_section->vma + splt->output_offset
7727 + ARM_NACL_PLT_TAIL_OFFSET)
7728 - (plt_address + htab->plt_entry_size + 4));
7729 BFD_ASSERT ((tail_displacement & 3) == 0);
7730 tail_displacement >>= 2;
7731
7732 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7733 || (-tail_displacement & 0xff000000) == 0);
7734
7735 /* Calculate the displacement between the PLT slot and the entry
7736 in the GOT. The offset accounts for the value produced by
7737 adding to pc in the penultimate instruction of the PLT stub. */
6034aab8 7738 got_displacement = (got_address
99059e56 7739 - (plt_address + htab->plt_entry_size));
b38cadfb
NC
7740
7741 /* NaCl does not support interworking at all. */
7742 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7743
7744 put_arm_insn (htab, output_bfd,
7745 elf32_arm_nacl_plt_entry[0]
7746 | arm_movw_immediate (got_displacement),
7747 ptr + 0);
7748 put_arm_insn (htab, output_bfd,
7749 elf32_arm_nacl_plt_entry[1]
7750 | arm_movt_immediate (got_displacement),
7751 ptr + 4);
7752 put_arm_insn (htab, output_bfd,
7753 elf32_arm_nacl_plt_entry[2],
7754 ptr + 8);
7755 put_arm_insn (htab, output_bfd,
7756 elf32_arm_nacl_plt_entry[3]
7757 | (tail_displacement & 0x00ffffff),
7758 ptr + 12);
7759 }
57460bcf
NC
7760 else if (using_thumb_only (htab))
7761 {
eed94f8f 7762 /* PR ld/16017: Generate thumb only PLT entries. */
469a3493 7763 if (!using_thumb2 (htab))
eed94f8f
NC
7764 {
7765 /* FIXME: We ought to be able to generate thumb-1 PLT
7766 instructions... */
7767 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
7768 output_bfd);
7769 return FALSE;
7770 }
57460bcf 7771
eed94f8f
NC
7772 /* Calculate the displacement between the PLT slot and the entry in
7773 the GOT. The 12-byte offset accounts for the value produced by
7774 adding to pc in the 3rd instruction of the PLT stub. */
7775 got_displacement = got_address - (plt_address + 12);
7776
7777 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
7778 instead of 'put_thumb_insn'. */
7779 put_arm_insn (htab, output_bfd,
7780 elf32_thumb2_plt_entry[0]
7781 | ((got_displacement & 0x000000ff) << 16)
7782 | ((got_displacement & 0x00000700) << 20)
7783 | ((got_displacement & 0x00000800) >> 1)
7784 | ((got_displacement & 0x0000f000) >> 12),
7785 ptr + 0);
7786 put_arm_insn (htab, output_bfd,
7787 elf32_thumb2_plt_entry[1]
7788 | ((got_displacement & 0x00ff0000) )
7789 | ((got_displacement & 0x07000000) << 4)
7790 | ((got_displacement & 0x08000000) >> 17)
7791 | ((got_displacement & 0xf0000000) >> 28),
7792 ptr + 4);
7793 put_arm_insn (htab, output_bfd,
7794 elf32_thumb2_plt_entry[2],
7795 ptr + 8);
7796 put_arm_insn (htab, output_bfd,
7797 elf32_thumb2_plt_entry[3],
7798 ptr + 12);
57460bcf 7799 }
34e77a92
RS
7800 else
7801 {
7802 /* Calculate the displacement between the PLT slot and the
7803 entry in the GOT. The eight-byte offset accounts for the
7804 value produced by adding to pc in the first instruction
7805 of the PLT stub. */
7806 got_displacement = got_address - (plt_address + 8);
7807
34e77a92
RS
7808 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7809 {
7810 put_thumb_insn (htab, output_bfd,
7811 elf32_arm_plt_thumb_stub[0], ptr - 4);
7812 put_thumb_insn (htab, output_bfd,
7813 elf32_arm_plt_thumb_stub[1], ptr - 2);
7814 }
7815
1db37fe6
YG
7816 if (!elf32_arm_use_long_plt_entry)
7817 {
7818 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7819
7820 put_arm_insn (htab, output_bfd,
7821 elf32_arm_plt_entry_short[0]
7822 | ((got_displacement & 0x0ff00000) >> 20),
7823 ptr + 0);
7824 put_arm_insn (htab, output_bfd,
7825 elf32_arm_plt_entry_short[1]
7826 | ((got_displacement & 0x000ff000) >> 12),
7827 ptr+ 4);
7828 put_arm_insn (htab, output_bfd,
7829 elf32_arm_plt_entry_short[2]
7830 | (got_displacement & 0x00000fff),
7831 ptr + 8);
34e77a92 7832#ifdef FOUR_WORD_PLT
1db37fe6 7833 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
34e77a92 7834#endif
1db37fe6
YG
7835 }
7836 else
7837 {
7838 put_arm_insn (htab, output_bfd,
7839 elf32_arm_plt_entry_long[0]
7840 | ((got_displacement & 0xf0000000) >> 28),
7841 ptr + 0);
7842 put_arm_insn (htab, output_bfd,
7843 elf32_arm_plt_entry_long[1]
7844 | ((got_displacement & 0x0ff00000) >> 20),
7845 ptr + 4);
7846 put_arm_insn (htab, output_bfd,
7847 elf32_arm_plt_entry_long[2]
7848 | ((got_displacement & 0x000ff000) >> 12),
7849 ptr+ 8);
7850 put_arm_insn (htab, output_bfd,
7851 elf32_arm_plt_entry_long[3]
7852 | (got_displacement & 0x00000fff),
7853 ptr + 12);
7854 }
34e77a92
RS
7855 }
7856
7857 /* Fill in the entry in the .rel(a).(i)plt section. */
7858 rel.r_offset = got_address;
7859 rel.r_addend = 0;
7860 if (dynindx == -1)
7861 {
7862 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7863 The dynamic linker or static executable then calls SYM_VALUE
7864 to determine the correct run-time value of the .igot.plt entry. */
7865 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7866 initial_got_entry = sym_value;
7867 }
7868 else
7869 {
7870 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7871 initial_got_entry = (splt->output_section->vma
7872 + splt->output_offset);
7873 }
7874
7875 /* Fill in the entry in the global offset table. */
7876 bfd_put_32 (output_bfd, initial_got_entry,
7877 sgot->contents + got_offset);
7878 }
7879
aba8c3de
WN
7880 if (dynindx == -1)
7881 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
7882 else
7883 {
7884 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7885 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7886 }
57460bcf
NC
7887
7888 return TRUE;
34e77a92
RS
7889}
7890
eb043451
PB
7891/* Some relocations map to different relocations depending on the
7892 target. Return the real relocation. */
8029a119 7893
eb043451
PB
7894static int
7895arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7896 int r_type)
7897{
7898 switch (r_type)
7899 {
7900 case R_ARM_TARGET1:
7901 if (globals->target1_is_rel)
7902 return R_ARM_REL32;
7903 else
7904 return R_ARM_ABS32;
7905
7906 case R_ARM_TARGET2:
7907 return globals->target2_reloc;
7908
7909 default:
7910 return r_type;
7911 }
7912}
eb043451 7913
ba93b8ac
DJ
7914/* Return the base VMA address which should be subtracted from real addresses
7915 when resolving @dtpoff relocation.
7916 This is PT_TLS segment p_vaddr. */
7917
7918static bfd_vma
7919dtpoff_base (struct bfd_link_info *info)
7920{
7921 /* If tls_sec is NULL, we should have signalled an error already. */
7922 if (elf_hash_table (info)->tls_sec == NULL)
7923 return 0;
7924 return elf_hash_table (info)->tls_sec->vma;
7925}
7926
7927/* Return the relocation value for @tpoff relocation
7928 if STT_TLS virtual address is ADDRESS. */
7929
7930static bfd_vma
7931tpoff (struct bfd_link_info *info, bfd_vma address)
7932{
7933 struct elf_link_hash_table *htab = elf_hash_table (info);
7934 bfd_vma base;
7935
7936 /* If tls_sec is NULL, we should have signalled an error already. */
7937 if (htab->tls_sec == NULL)
7938 return 0;
7939 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7940 return address - htab->tls_sec->vma + base;
7941}
7942
00a97672
RS
7943/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7944 VALUE is the relocation value. */
7945
7946static bfd_reloc_status_type
7947elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7948{
7949 if (value > 0xfff)
7950 return bfd_reloc_overflow;
7951
7952 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7953 bfd_put_32 (abfd, value, data);
7954 return bfd_reloc_ok;
7955}
7956
0855e32b
NS
7957/* Handle TLS relaxations. Relaxing is possible for symbols that use
7958 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7959 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7960
7961 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7962 is to then call final_link_relocate. Return other values in the
62672b10
NS
7963 case of error.
7964
7965 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7966 the pre-relaxed code. It would be nice if the relocs were updated
7967 to match the optimization. */
0855e32b 7968
b38cadfb 7969static bfd_reloc_status_type
0855e32b 7970elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
b38cadfb 7971 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
0855e32b
NS
7972 Elf_Internal_Rela *rel, unsigned long is_local)
7973{
7974 unsigned long insn;
b38cadfb 7975
0855e32b
NS
7976 switch (ELF32_R_TYPE (rel->r_info))
7977 {
7978 default:
7979 return bfd_reloc_notsupported;
b38cadfb 7980
0855e32b
NS
7981 case R_ARM_TLS_GOTDESC:
7982 if (is_local)
7983 insn = 0;
7984 else
7985 {
7986 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7987 if (insn & 1)
7988 insn -= 5; /* THUMB */
7989 else
7990 insn -= 8; /* ARM */
7991 }
7992 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7993 return bfd_reloc_continue;
7994
7995 case R_ARM_THM_TLS_DESCSEQ:
7996 /* Thumb insn. */
7997 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7998 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7999 {
8000 if (is_local)
8001 /* nop */
8002 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8003 }
8004 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
8005 {
8006 if (is_local)
8007 /* nop */
8008 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8009 else
8010 /* ldr rx,[ry] */
8011 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
8012 }
8013 else if ((insn & 0xff87) == 0x4780) /* blx rx */
8014 {
8015 if (is_local)
8016 /* nop */
8017 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8018 else
8019 /* mov r0, rx */
8020 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
8021 contents + rel->r_offset);
8022 }
8023 else
8024 {
8025 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
8026 /* It's a 32 bit instruction, fetch the rest of it for
8027 error generation. */
8028 insn = (insn << 16)
8029 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
8030 (*_bfd_error_handler)
8031 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
8032 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8033 return bfd_reloc_notsupported;
8034 }
8035 break;
b38cadfb 8036
0855e32b
NS
8037 case R_ARM_TLS_DESCSEQ:
8038 /* arm insn. */
8039 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8040 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
8041 {
8042 if (is_local)
8043 /* mov rx, ry */
8044 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
8045 contents + rel->r_offset);
8046 }
8047 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
8048 {
8049 if (is_local)
8050 /* nop */
8051 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8052 else
8053 /* ldr rx,[ry] */
8054 bfd_put_32 (input_bfd, insn & 0xfffff000,
8055 contents + rel->r_offset);
8056 }
8057 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
8058 {
8059 if (is_local)
8060 /* nop */
8061 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8062 else
8063 /* mov r0, rx */
8064 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
8065 contents + rel->r_offset);
8066 }
8067 else
8068 {
8069 (*_bfd_error_handler)
8070 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
8071 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8072 return bfd_reloc_notsupported;
8073 }
8074 break;
8075
8076 case R_ARM_TLS_CALL:
8077 /* GD->IE relaxation, turn the instruction into 'nop' or
8078 'ldr r0, [pc,r0]' */
8079 insn = is_local ? 0xe1a00000 : 0xe79f0000;
8080 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8081 break;
b38cadfb 8082
0855e32b 8083 case R_ARM_THM_TLS_CALL:
6a631e86 8084 /* GD->IE relaxation. */
0855e32b
NS
8085 if (!is_local)
8086 /* add r0,pc; ldr r0, [r0] */
8087 insn = 0x44786800;
8088 else if (arch_has_thumb2_nop (globals))
8089 /* nop.w */
8090 insn = 0xf3af8000;
8091 else
8092 /* nop; nop */
8093 insn = 0xbf00bf00;
b38cadfb 8094
0855e32b
NS
8095 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
8096 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
8097 break;
8098 }
8099 return bfd_reloc_ok;
8100}
8101
4962c51a
MS
8102/* For a given value of n, calculate the value of G_n as required to
8103 deal with group relocations. We return it in the form of an
8104 encoded constant-and-rotation, together with the final residual. If n is
8105 specified as less than zero, then final_residual is filled with the
8106 input value and no further action is performed. */
8107
8108static bfd_vma
8109calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
8110{
8111 int current_n;
8112 bfd_vma g_n;
8113 bfd_vma encoded_g_n = 0;
8114 bfd_vma residual = value; /* Also known as Y_n. */
8115
8116 for (current_n = 0; current_n <= n; current_n++)
8117 {
8118 int shift;
8119
8120 /* Calculate which part of the value to mask. */
8121 if (residual == 0)
99059e56 8122 shift = 0;
4962c51a 8123 else
99059e56
RM
8124 {
8125 int msb;
8126
8127 /* Determine the most significant bit in the residual and
8128 align the resulting value to a 2-bit boundary. */
8129 for (msb = 30; msb >= 0; msb -= 2)
8130 if (residual & (3 << msb))
8131 break;
8132
8133 /* The desired shift is now (msb - 6), or zero, whichever
8134 is the greater. */
8135 shift = msb - 6;
8136 if (shift < 0)
8137 shift = 0;
8138 }
4962c51a
MS
8139
8140 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8141 g_n = residual & (0xff << shift);
8142 encoded_g_n = (g_n >> shift)
99059e56 8143 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4962c51a
MS
8144
8145 /* Calculate the residual for the next time around. */
8146 residual &= ~g_n;
8147 }
8148
8149 *final_residual = residual;
8150
8151 return encoded_g_n;
8152}
8153
8154/* Given an ARM instruction, determine whether it is an ADD or a SUB.
8155 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
906e58ca 8156
4962c51a 8157static int
906e58ca 8158identify_add_or_sub (bfd_vma insn)
4962c51a
MS
8159{
8160 int opcode = insn & 0x1e00000;
8161
8162 if (opcode == 1 << 23) /* ADD */
8163 return 1;
8164
8165 if (opcode == 1 << 22) /* SUB */
8166 return -1;
8167
8168 return 0;
8169}
8170
252b5132 8171/* Perform a relocation as part of a final link. */
9b485d32 8172
252b5132 8173static bfd_reloc_status_type
57e8b36a
NC
8174elf32_arm_final_link_relocate (reloc_howto_type * howto,
8175 bfd * input_bfd,
8176 bfd * output_bfd,
8177 asection * input_section,
8178 bfd_byte * contents,
8179 Elf_Internal_Rela * rel,
8180 bfd_vma value,
8181 struct bfd_link_info * info,
8182 asection * sym_sec,
8183 const char * sym_name,
34e77a92
RS
8184 unsigned char st_type,
8185 enum arm_st_branch_type branch_type,
0945cdfd 8186 struct elf_link_hash_entry * h,
f2a9dd69 8187 bfd_boolean * unresolved_reloc_p,
8029a119 8188 char ** error_message)
252b5132
RH
8189{
8190 unsigned long r_type = howto->type;
8191 unsigned long r_symndx;
8192 bfd_byte * hit_data = contents + rel->r_offset;
252b5132 8193 bfd_vma * local_got_offsets;
0855e32b 8194 bfd_vma * local_tlsdesc_gotents;
34e77a92
RS
8195 asection * sgot;
8196 asection * splt;
252b5132 8197 asection * sreloc = NULL;
362d30a1 8198 asection * srelgot;
252b5132 8199 bfd_vma addend;
ba96a88f 8200 bfd_signed_vma signed_addend;
34e77a92
RS
8201 unsigned char dynreloc_st_type;
8202 bfd_vma dynreloc_value;
ba96a88f 8203 struct elf32_arm_link_hash_table * globals;
34e77a92
RS
8204 struct elf32_arm_link_hash_entry *eh;
8205 union gotplt_union *root_plt;
8206 struct arm_plt_info *arm_plt;
8207 bfd_vma plt_offset;
8208 bfd_vma gotplt_offset;
8209 bfd_boolean has_iplt_entry;
f21f3fe0 8210
9c504268 8211 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
8212 if (globals == NULL)
8213 return bfd_reloc_notsupported;
9c504268 8214
0ffa91dd
NC
8215 BFD_ASSERT (is_arm_elf (input_bfd));
8216
8217 /* Some relocation types map to different relocations depending on the
9c504268 8218 target. We pick the right one here. */
eb043451 8219 r_type = arm_real_reloc_type (globals, r_type);
0855e32b
NS
8220
8221 /* It is possible to have linker relaxations on some TLS access
8222 models. Update our information here. */
8223 r_type = elf32_arm_tls_transition (info, r_type, h);
8224
eb043451
PB
8225 if (r_type != howto->type)
8226 howto = elf32_arm_howto_from_type (r_type);
9c504268 8227
cac15327
NC
8228 /* If the start address has been set, then set the EF_ARM_HASENTRY
8229 flag. Setting this more than once is redundant, but the cost is
8230 not too high, and it keeps the code simple.
99e4ae17 8231
cac15327
NC
8232 The test is done here, rather than somewhere else, because the
8233 start address is only set just before the final link commences.
8234
8235 Note - if the user deliberately sets a start address of 0, the
8236 flag will not be set. */
8237 if (bfd_get_start_address (output_bfd) != 0)
8238 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
99e4ae17 8239
34e77a92 8240 eh = (struct elf32_arm_link_hash_entry *) h;
362d30a1 8241 sgot = globals->root.sgot;
252b5132 8242 local_got_offsets = elf_local_got_offsets (input_bfd);
0855e32b
NS
8243 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8244
34e77a92
RS
8245 if (globals->root.dynamic_sections_created)
8246 srelgot = globals->root.srelgot;
8247 else
8248 srelgot = NULL;
8249
252b5132
RH
8250 r_symndx = ELF32_R_SYM (rel->r_info);
8251
4e7fd91e 8252 if (globals->use_rel)
ba96a88f 8253 {
4e7fd91e
PB
8254 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8255
8256 if (addend & ((howto->src_mask + 1) >> 1))
8257 {
8258 signed_addend = -1;
8259 signed_addend &= ~ howto->src_mask;
8260 signed_addend |= addend;
8261 }
8262 else
8263 signed_addend = addend;
ba96a88f
NC
8264 }
8265 else
4e7fd91e 8266 addend = signed_addend = rel->r_addend;
f21f3fe0 8267
39f21624
NC
8268 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8269 are resolving a function call relocation. */
8270 if (using_thumb_only (globals)
8271 && (r_type == R_ARM_THM_CALL
8272 || r_type == R_ARM_THM_JUMP24)
8273 && branch_type == ST_BRANCH_TO_ARM)
8274 branch_type = ST_BRANCH_TO_THUMB;
8275
34e77a92
RS
8276 /* Record the symbol information that should be used in dynamic
8277 relocations. */
8278 dynreloc_st_type = st_type;
8279 dynreloc_value = value;
8280 if (branch_type == ST_BRANCH_TO_THUMB)
8281 dynreloc_value |= 1;
8282
8283 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8284 VALUE appropriately for relocations that we resolve at link time. */
8285 has_iplt_entry = FALSE;
8286 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8287 && root_plt->offset != (bfd_vma) -1)
8288 {
8289 plt_offset = root_plt->offset;
8290 gotplt_offset = arm_plt->got_offset;
8291
8292 if (h == NULL || eh->is_iplt)
8293 {
8294 has_iplt_entry = TRUE;
8295 splt = globals->root.iplt;
8296
8297 /* Populate .iplt entries here, because not all of them will
8298 be seen by finish_dynamic_symbol. The lower bit is set if
8299 we have already populated the entry. */
8300 if (plt_offset & 1)
8301 plt_offset--;
8302 else
8303 {
57460bcf
NC
8304 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8305 -1, dynreloc_value))
8306 root_plt->offset |= 1;
8307 else
8308 return bfd_reloc_notsupported;
34e77a92
RS
8309 }
8310
8311 /* Static relocations always resolve to the .iplt entry. */
8312 st_type = STT_FUNC;
8313 value = (splt->output_section->vma
8314 + splt->output_offset
8315 + plt_offset);
8316 branch_type = ST_BRANCH_TO_ARM;
8317
8318 /* If there are non-call relocations that resolve to the .iplt
8319 entry, then all dynamic ones must too. */
8320 if (arm_plt->noncall_refcount != 0)
8321 {
8322 dynreloc_st_type = st_type;
8323 dynreloc_value = value;
8324 }
8325 }
8326 else
8327 /* We populate the .plt entry in finish_dynamic_symbol. */
8328 splt = globals->root.splt;
8329 }
8330 else
8331 {
8332 splt = NULL;
8333 plt_offset = (bfd_vma) -1;
8334 gotplt_offset = (bfd_vma) -1;
8335 }
8336
252b5132
RH
8337 switch (r_type)
8338 {
8339 case R_ARM_NONE:
28a094c2
DJ
8340 /* We don't need to find a value for this symbol. It's just a
8341 marker. */
8342 *unresolved_reloc_p = FALSE;
252b5132
RH
8343 return bfd_reloc_ok;
8344
00a97672
RS
8345 case R_ARM_ABS12:
8346 if (!globals->vxworks_p)
8347 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8348
252b5132
RH
8349 case R_ARM_PC24:
8350 case R_ARM_ABS32:
bb224fc3 8351 case R_ARM_ABS32_NOI:
252b5132 8352 case R_ARM_REL32:
bb224fc3 8353 case R_ARM_REL32_NOI:
5b5bb741
PB
8354 case R_ARM_CALL:
8355 case R_ARM_JUMP24:
dfc5f959 8356 case R_ARM_XPC25:
eb043451 8357 case R_ARM_PREL31:
7359ea65 8358 case R_ARM_PLT32:
7359ea65
DJ
8359 /* Handle relocations which should use the PLT entry. ABS32/REL32
8360 will use the symbol's value, which may point to a PLT entry, but we
8361 don't need to handle that here. If we created a PLT entry, all
5fa9e92f
CL
8362 branches in this object should go to it, except if the PLT is too
8363 far away, in which case a long branch stub should be inserted. */
bb224fc3 8364 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
99059e56 8365 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
155d87d7
CL
8366 && r_type != R_ARM_CALL
8367 && r_type != R_ARM_JUMP24
8368 && r_type != R_ARM_PLT32)
34e77a92 8369 && plt_offset != (bfd_vma) -1)
7359ea65 8370 {
34e77a92
RS
8371 /* If we've created a .plt section, and assigned a PLT entry
8372 to this function, it must either be a STT_GNU_IFUNC reference
8373 or not be known to bind locally. In other cases, we should
8374 have cleared the PLT entry by now. */
8375 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
7359ea65
DJ
8376
8377 value = (splt->output_section->vma
8378 + splt->output_offset
34e77a92 8379 + plt_offset);
0945cdfd 8380 *unresolved_reloc_p = FALSE;
7359ea65
DJ
8381 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8382 contents, rel->r_offset, value,
00a97672 8383 rel->r_addend);
7359ea65
DJ
8384 }
8385
67687978
PB
8386 /* When generating a shared object or relocatable executable, these
8387 relocations are copied into the output file to be resolved at
8388 run time. */
8389 if ((info->shared || globals->root.is_relocatable_executable)
7359ea65 8390 && (input_section->flags & SEC_ALLOC)
4dfe6ac6 8391 && !(globals->vxworks_p
3348747a
NS
8392 && strcmp (input_section->output_section->name,
8393 ".tls_vars") == 0)
bb224fc3 8394 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
ee06dc07 8395 || !SYMBOL_CALLS_LOCAL (info, h))
ca6b5f82
AM
8396 && !(input_bfd == globals->stub_bfd
8397 && strstr (input_section->name, STUB_SUFFIX))
7359ea65
DJ
8398 && (h == NULL
8399 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8400 || h->root.type != bfd_link_hash_undefweak)
8401 && r_type != R_ARM_PC24
5b5bb741
PB
8402 && r_type != R_ARM_CALL
8403 && r_type != R_ARM_JUMP24
ee06dc07 8404 && r_type != R_ARM_PREL31
7359ea65 8405 && r_type != R_ARM_PLT32)
252b5132 8406 {
947216bf 8407 Elf_Internal_Rela outrel;
b34976b6 8408 bfd_boolean skip, relocate;
f21f3fe0 8409
0945cdfd
DJ
8410 *unresolved_reloc_p = FALSE;
8411
34e77a92 8412 if (sreloc == NULL && globals->root.dynamic_sections_created)
252b5132 8413 {
83bac4b0
NC
8414 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8415 ! globals->use_rel);
f21f3fe0 8416
83bac4b0 8417 if (sreloc == NULL)
252b5132 8418 return bfd_reloc_notsupported;
252b5132 8419 }
f21f3fe0 8420
b34976b6
AM
8421 skip = FALSE;
8422 relocate = FALSE;
f21f3fe0 8423
00a97672 8424 outrel.r_addend = addend;
c629eae0
JJ
8425 outrel.r_offset =
8426 _bfd_elf_section_offset (output_bfd, info, input_section,
8427 rel->r_offset);
8428 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 8429 skip = TRUE;
0bb2d96a 8430 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 8431 skip = TRUE, relocate = TRUE;
252b5132
RH
8432 outrel.r_offset += (input_section->output_section->vma
8433 + input_section->output_offset);
f21f3fe0 8434
252b5132 8435 if (skip)
0bb2d96a 8436 memset (&outrel, 0, sizeof outrel);
5e681ec4
PB
8437 else if (h != NULL
8438 && h->dynindx != -1
7359ea65 8439 && (!info->shared
5e681ec4 8440 || !info->symbolic
f5385ebf 8441 || !h->def_regular))
5e681ec4 8442 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
252b5132
RH
8443 else
8444 {
a16385dc
MM
8445 int symbol;
8446
5e681ec4 8447 /* This symbol is local, or marked to become local. */
34e77a92 8448 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
a16385dc 8449 if (globals->symbian_p)
6366ff1e 8450 {
74541ad4
AM
8451 asection *osec;
8452
6366ff1e
MM
8453 /* On Symbian OS, the data segment and text segement
8454 can be relocated independently. Therefore, we
8455 must indicate the segment to which this
8456 relocation is relative. The BPABI allows us to
8457 use any symbol in the right segment; we just use
8458 the section symbol as it is convenient. (We
8459 cannot use the symbol given by "h" directly as it
74541ad4
AM
8460 will not appear in the dynamic symbol table.)
8461
8462 Note that the dynamic linker ignores the section
8463 symbol value, so we don't subtract osec->vma
8464 from the emitted reloc addend. */
10dbd1f3 8465 if (sym_sec)
74541ad4 8466 osec = sym_sec->output_section;
10dbd1f3 8467 else
74541ad4
AM
8468 osec = input_section->output_section;
8469 symbol = elf_section_data (osec)->dynindx;
8470 if (symbol == 0)
8471 {
8472 struct elf_link_hash_table *htab = elf_hash_table (info);
8473
8474 if ((osec->flags & SEC_READONLY) == 0
8475 && htab->data_index_section != NULL)
8476 osec = htab->data_index_section;
8477 else
8478 osec = htab->text_index_section;
8479 symbol = elf_section_data (osec)->dynindx;
8480 }
6366ff1e
MM
8481 BFD_ASSERT (symbol != 0);
8482 }
a16385dc
MM
8483 else
8484 /* On SVR4-ish systems, the dynamic loader cannot
8485 relocate the text and data segments independently,
8486 so the symbol does not matter. */
8487 symbol = 0;
34e77a92
RS
8488 if (dynreloc_st_type == STT_GNU_IFUNC)
8489 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8490 to the .iplt entry. Instead, every non-call reference
8491 must use an R_ARM_IRELATIVE relocation to obtain the
8492 correct run-time address. */
8493 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8494 else
8495 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
00a97672
RS
8496 if (globals->use_rel)
8497 relocate = TRUE;
8498 else
34e77a92 8499 outrel.r_addend += dynreloc_value;
252b5132 8500 }
f21f3fe0 8501
47beaa6a 8502 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9a5aca8c 8503
f21f3fe0 8504 /* If this reloc is against an external symbol, we do not want to
252b5132 8505 fiddle with the addend. Otherwise, we need to include the symbol
9b485d32 8506 value so that it becomes an addend for the dynamic reloc. */
252b5132
RH
8507 if (! relocate)
8508 return bfd_reloc_ok;
9a5aca8c 8509
f21f3fe0 8510 return _bfd_final_link_relocate (howto, input_bfd, input_section,
34e77a92
RS
8511 contents, rel->r_offset,
8512 dynreloc_value, (bfd_vma) 0);
252b5132
RH
8513 }
8514 else switch (r_type)
8515 {
00a97672
RS
8516 case R_ARM_ABS12:
8517 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8518
dfc5f959 8519 case R_ARM_XPC25: /* Arm BLX instruction. */
5b5bb741
PB
8520 case R_ARM_CALL:
8521 case R_ARM_JUMP24:
8029a119 8522 case R_ARM_PC24: /* Arm B/BL instruction. */
7359ea65 8523 case R_ARM_PLT32:
906e58ca 8524 {
906e58ca
NC
8525 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8526
dfc5f959 8527 if (r_type == R_ARM_XPC25)
252b5132 8528 {
dfc5f959
NC
8529 /* Check for Arm calling Arm function. */
8530 /* FIXME: Should we translate the instruction into a BL
8531 instruction instead ? */
35fc36a8 8532 if (branch_type != ST_BRANCH_TO_THUMB)
d003868e
AM
8533 (*_bfd_error_handler)
8534 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8535 input_bfd,
8536 h ? h->root.root.string : "(local)");
dfc5f959 8537 }
155d87d7 8538 else if (r_type == R_ARM_PC24)
dfc5f959
NC
8539 {
8540 /* Check for Arm calling Thumb function. */
35fc36a8 8541 if (branch_type == ST_BRANCH_TO_THUMB)
dfc5f959 8542 {
f2a9dd69
DJ
8543 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8544 output_bfd, input_section,
8545 hit_data, sym_sec, rel->r_offset,
8546 signed_addend, value,
8547 error_message))
8548 return bfd_reloc_ok;
8549 else
8550 return bfd_reloc_dangerous;
dfc5f959 8551 }
252b5132 8552 }
ba96a88f 8553
906e58ca 8554 /* Check if a stub has to be inserted because the
8029a119 8555 destination is too far or we are changing mode. */
155d87d7
CL
8556 if ( r_type == R_ARM_CALL
8557 || r_type == R_ARM_JUMP24
8558 || r_type == R_ARM_PLT32)
906e58ca 8559 {
fe33d2fa
CL
8560 enum elf32_arm_stub_type stub_type = arm_stub_none;
8561 struct elf32_arm_link_hash_entry *hash;
8562
8563 hash = (struct elf32_arm_link_hash_entry *) h;
8564 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
8565 st_type, &branch_type,
8566 hash, value, sym_sec,
fe33d2fa 8567 input_bfd, sym_name);
5fa9e92f 8568
fe33d2fa 8569 if (stub_type != arm_stub_none)
906e58ca
NC
8570 {
8571 /* The target is out of reach, so redirect the
8572 branch to the local stub for this function. */
906e58ca
NC
8573 stub_entry = elf32_arm_get_stub_entry (input_section,
8574 sym_sec, h,
fe33d2fa
CL
8575 rel, globals,
8576 stub_type);
9cd3e4e5
NC
8577 {
8578 if (stub_entry != NULL)
8579 value = (stub_entry->stub_offset
8580 + stub_entry->stub_sec->output_offset
8581 + stub_entry->stub_sec->output_section->vma);
8582
8583 if (plt_offset != (bfd_vma) -1)
8584 *unresolved_reloc_p = FALSE;
8585 }
906e58ca 8586 }
fe33d2fa
CL
8587 else
8588 {
8589 /* If the call goes through a PLT entry, make sure to
8590 check distance to the right destination address. */
34e77a92 8591 if (plt_offset != (bfd_vma) -1)
fe33d2fa
CL
8592 {
8593 value = (splt->output_section->vma
8594 + splt->output_offset
34e77a92 8595 + plt_offset);
fe33d2fa
CL
8596 *unresolved_reloc_p = FALSE;
8597 /* The PLT entry is in ARM mode, regardless of the
8598 target function. */
35fc36a8 8599 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
8600 }
8601 }
906e58ca
NC
8602 }
8603
dea514f5
PB
8604 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8605 where:
8606 S is the address of the symbol in the relocation.
8607 P is address of the instruction being relocated.
8608 A is the addend (extracted from the instruction) in bytes.
8609
8610 S is held in 'value'.
8611 P is the base address of the section containing the
8612 instruction plus the offset of the reloc into that
8613 section, ie:
8614 (input_section->output_section->vma +
8615 input_section->output_offset +
8616 rel->r_offset).
8617 A is the addend, converted into bytes, ie:
8618 (signed_addend * 4)
8619
8620 Note: None of these operations have knowledge of the pipeline
8621 size of the processor, thus it is up to the assembler to
8622 encode this information into the addend. */
8623 value -= (input_section->output_section->vma
8624 + input_section->output_offset);
8625 value -= rel->r_offset;
4e7fd91e
PB
8626 if (globals->use_rel)
8627 value += (signed_addend << howto->size);
8628 else
8629 /* RELA addends do not have to be adjusted by howto->size. */
8630 value += signed_addend;
23080146 8631
dcb5e6e6
NC
8632 signed_addend = value;
8633 signed_addend >>= howto->rightshift;
9a5aca8c 8634
5ab79981 8635 /* A branch to an undefined weak symbol is turned into a jump to
ffcb4889 8636 the next instruction unless a PLT entry will be created.
77b4f08f 8637 Do the same for local undefined symbols (but not for STN_UNDEF).
cd1dac3d
DG
8638 The jump to the next instruction is optimized as a NOP depending
8639 on the architecture. */
ffcb4889 8640 if (h ? (h->root.type == bfd_link_hash_undefweak
34e77a92 8641 && plt_offset == (bfd_vma) -1)
77b4f08f 8642 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
5ab79981 8643 {
cd1dac3d
DG
8644 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8645
8646 if (arch_has_arm_nop (globals))
8647 value |= 0x0320f000;
8648 else
8649 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
5ab79981
PB
8650 }
8651 else
59f2c4e7 8652 {
9b485d32 8653 /* Perform a signed range check. */
dcb5e6e6 8654 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
59f2c4e7
NC
8655 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8656 return bfd_reloc_overflow;
9a5aca8c 8657
5ab79981 8658 addend = (value & 2);
39b41c9c 8659
5ab79981
PB
8660 value = (signed_addend & howto->dst_mask)
8661 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
39b41c9c 8662
5ab79981
PB
8663 if (r_type == R_ARM_CALL)
8664 {
155d87d7 8665 /* Set the H bit in the BLX instruction. */
35fc36a8 8666 if (branch_type == ST_BRANCH_TO_THUMB)
155d87d7
CL
8667 {
8668 if (addend)
8669 value |= (1 << 24);
8670 else
8671 value &= ~(bfd_vma)(1 << 24);
8672 }
8673
5ab79981 8674 /* Select the correct instruction (BL or BLX). */
906e58ca 8675 /* Only if we are not handling a BL to a stub. In this
8029a119 8676 case, mode switching is performed by the stub. */
35fc36a8 8677 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
5ab79981 8678 value |= (1 << 28);
63e1a0fc 8679 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
5ab79981
PB
8680 {
8681 value &= ~(bfd_vma)(1 << 28);
8682 value |= (1 << 24);
8683 }
39b41c9c
PB
8684 }
8685 }
906e58ca 8686 }
252b5132 8687 break;
f21f3fe0 8688
252b5132
RH
8689 case R_ARM_ABS32:
8690 value += addend;
35fc36a8 8691 if (branch_type == ST_BRANCH_TO_THUMB)
252b5132
RH
8692 value |= 1;
8693 break;
f21f3fe0 8694
bb224fc3
MS
8695 case R_ARM_ABS32_NOI:
8696 value += addend;
8697 break;
8698
252b5132 8699 case R_ARM_REL32:
a8bc6c78 8700 value += addend;
35fc36a8 8701 if (branch_type == ST_BRANCH_TO_THUMB)
a8bc6c78 8702 value |= 1;
252b5132 8703 value -= (input_section->output_section->vma
62efb346 8704 + input_section->output_offset + rel->r_offset);
252b5132 8705 break;
eb043451 8706
bb224fc3
MS
8707 case R_ARM_REL32_NOI:
8708 value += addend;
8709 value -= (input_section->output_section->vma
8710 + input_section->output_offset + rel->r_offset);
8711 break;
8712
eb043451
PB
8713 case R_ARM_PREL31:
8714 value -= (input_section->output_section->vma
8715 + input_section->output_offset + rel->r_offset);
8716 value += signed_addend;
8717 if (! h || h->root.type != bfd_link_hash_undefweak)
8718 {
8029a119 8719 /* Check for overflow. */
eb043451
PB
8720 if ((value ^ (value >> 1)) & (1 << 30))
8721 return bfd_reloc_overflow;
8722 }
8723 value &= 0x7fffffff;
8724 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
35fc36a8 8725 if (branch_type == ST_BRANCH_TO_THUMB)
eb043451
PB
8726 value |= 1;
8727 break;
252b5132 8728 }
f21f3fe0 8729
252b5132
RH
8730 bfd_put_32 (input_bfd, value, hit_data);
8731 return bfd_reloc_ok;
8732
8733 case R_ARM_ABS8:
fd0fd00c
MJ
8734 /* PR 16202: Refectch the addend using the correct size. */
8735 if (globals->use_rel)
8736 addend = bfd_get_8 (input_bfd, hit_data);
252b5132 8737 value += addend;
4e67d4ca
DG
8738
8739 /* There is no way to tell whether the user intended to use a signed or
8740 unsigned addend. When checking for overflow we accept either,
8741 as specified by the AAELF. */
8742 if ((long) value > 0xff || (long) value < -0x80)
252b5132
RH
8743 return bfd_reloc_overflow;
8744
8745 bfd_put_8 (input_bfd, value, hit_data);
8746 return bfd_reloc_ok;
8747
8748 case R_ARM_ABS16:
fd0fd00c
MJ
8749 /* PR 16202: Refectch the addend using the correct size. */
8750 if (globals->use_rel)
8751 addend = bfd_get_16 (input_bfd, hit_data);
252b5132
RH
8752 value += addend;
8753
4e67d4ca
DG
8754 /* See comment for R_ARM_ABS8. */
8755 if ((long) value > 0xffff || (long) value < -0x8000)
252b5132
RH
8756 return bfd_reloc_overflow;
8757
8758 bfd_put_16 (input_bfd, value, hit_data);
8759 return bfd_reloc_ok;
8760
252b5132 8761 case R_ARM_THM_ABS5:
9b485d32 8762 /* Support ldr and str instructions for the thumb. */
4e7fd91e
PB
8763 if (globals->use_rel)
8764 {
8765 /* Need to refetch addend. */
8766 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8767 /* ??? Need to determine shift amount from operand size. */
8768 addend >>= howto->rightshift;
8769 }
252b5132
RH
8770 value += addend;
8771
8772 /* ??? Isn't value unsigned? */
8773 if ((long) value > 0x1f || (long) value < -0x10)
8774 return bfd_reloc_overflow;
8775
8776 /* ??? Value needs to be properly shifted into place first. */
8777 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8778 bfd_put_16 (input_bfd, value, hit_data);
8779 return bfd_reloc_ok;
8780
2cab6cc3
MS
8781 case R_ARM_THM_ALU_PREL_11_0:
8782 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8783 {
8784 bfd_vma insn;
8785 bfd_signed_vma relocation;
8786
8787 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 8788 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 8789
99059e56
RM
8790 if (globals->use_rel)
8791 {
8792 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8793 | ((insn & (1 << 26)) >> 15);
8794 if (insn & 0xf00000)
8795 signed_addend = -signed_addend;
8796 }
2cab6cc3
MS
8797
8798 relocation = value + signed_addend;
79f08007 8799 relocation -= Pa (input_section->output_section->vma
99059e56
RM
8800 + input_section->output_offset
8801 + rel->r_offset);
2cab6cc3 8802
99059e56 8803 value = abs (relocation);
2cab6cc3 8804
99059e56
RM
8805 if (value >= 0x1000)
8806 return bfd_reloc_overflow;
2cab6cc3
MS
8807
8808 insn = (insn & 0xfb0f8f00) | (value & 0xff)
99059e56
RM
8809 | ((value & 0x700) << 4)
8810 | ((value & 0x800) << 15);
8811 if (relocation < 0)
8812 insn |= 0xa00000;
2cab6cc3
MS
8813
8814 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8815 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8816
99059e56 8817 return bfd_reloc_ok;
2cab6cc3
MS
8818 }
8819
e1ec24c6
NC
8820 case R_ARM_THM_PC8:
8821 /* PR 10073: This reloc is not generated by the GNU toolchain,
8822 but it is supported for compatibility with third party libraries
8823 generated by other compilers, specifically the ARM/IAR. */
8824 {
8825 bfd_vma insn;
8826 bfd_signed_vma relocation;
8827
8828 insn = bfd_get_16 (input_bfd, hit_data);
8829
99059e56 8830 if (globals->use_rel)
79f08007 8831 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
e1ec24c6
NC
8832
8833 relocation = value + addend;
79f08007 8834 relocation -= Pa (input_section->output_section->vma
99059e56
RM
8835 + input_section->output_offset
8836 + rel->r_offset);
e1ec24c6 8837
99059e56 8838 value = abs (relocation);
e1ec24c6
NC
8839
8840 /* We do not check for overflow of this reloc. Although strictly
8841 speaking this is incorrect, it appears to be necessary in order
8842 to work with IAR generated relocs. Since GCC and GAS do not
8843 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8844 a problem for them. */
8845 value &= 0x3fc;
8846
8847 insn = (insn & 0xff00) | (value >> 2);
8848
8849 bfd_put_16 (input_bfd, insn, hit_data);
8850
99059e56 8851 return bfd_reloc_ok;
e1ec24c6
NC
8852 }
8853
2cab6cc3
MS
8854 case R_ARM_THM_PC12:
8855 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8856 {
8857 bfd_vma insn;
8858 bfd_signed_vma relocation;
8859
8860 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
99059e56 8861 | bfd_get_16 (input_bfd, hit_data + 2);
2cab6cc3 8862
99059e56
RM
8863 if (globals->use_rel)
8864 {
8865 signed_addend = insn & 0xfff;
8866 if (!(insn & (1 << 23)))
8867 signed_addend = -signed_addend;
8868 }
2cab6cc3
MS
8869
8870 relocation = value + signed_addend;
79f08007 8871 relocation -= Pa (input_section->output_section->vma
99059e56
RM
8872 + input_section->output_offset
8873 + rel->r_offset);
2cab6cc3 8874
99059e56 8875 value = abs (relocation);
2cab6cc3 8876
99059e56
RM
8877 if (value >= 0x1000)
8878 return bfd_reloc_overflow;
2cab6cc3
MS
8879
8880 insn = (insn & 0xff7ff000) | value;
99059e56
RM
8881 if (relocation >= 0)
8882 insn |= (1 << 23);
2cab6cc3
MS
8883
8884 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8885 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8886
99059e56 8887 return bfd_reloc_ok;
2cab6cc3
MS
8888 }
8889
dfc5f959 8890 case R_ARM_THM_XPC22:
c19d1205 8891 case R_ARM_THM_CALL:
bd97cb95 8892 case R_ARM_THM_JUMP24:
dfc5f959 8893 /* Thumb BL (branch long instruction). */
252b5132 8894 {
b34976b6 8895 bfd_vma relocation;
99059e56 8896 bfd_vma reloc_sign;
b34976b6
AM
8897 bfd_boolean overflow = FALSE;
8898 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8899 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
e95de063
MS
8900 bfd_signed_vma reloc_signed_max;
8901 bfd_signed_vma reloc_signed_min;
b34976b6 8902 bfd_vma check;
252b5132 8903 bfd_signed_vma signed_check;
e95de063 8904 int bitsize;
cd1dac3d 8905 const int thumb2 = using_thumb2 (globals);
252b5132 8906
5ab79981 8907 /* A branch to an undefined weak symbol is turned into a jump to
cd1dac3d
DG
8908 the next instruction unless a PLT entry will be created.
8909 The jump to the next instruction is optimized as a NOP.W for
8910 Thumb-2 enabled architectures. */
19540007 8911 if (h && h->root.type == bfd_link_hash_undefweak
34e77a92 8912 && plt_offset == (bfd_vma) -1)
5ab79981 8913 {
cd1dac3d
DG
8914 if (arch_has_thumb2_nop (globals))
8915 {
8916 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8917 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8918 }
8919 else
8920 {
8921 bfd_put_16 (input_bfd, 0xe000, hit_data);
8922 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8923 }
5ab79981
PB
8924 return bfd_reloc_ok;
8925 }
8926
e95de063 8927 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
99059e56 8928 with Thumb-1) involving the J1 and J2 bits. */
4e7fd91e
PB
8929 if (globals->use_rel)
8930 {
99059e56
RM
8931 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8932 bfd_vma upper = upper_insn & 0x3ff;
8933 bfd_vma lower = lower_insn & 0x7ff;
e95de063
MS
8934 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8935 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
99059e56
RM
8936 bfd_vma i1 = j1 ^ s ? 0 : 1;
8937 bfd_vma i2 = j2 ^ s ? 0 : 1;
e95de063 8938
99059e56
RM
8939 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8940 /* Sign extend. */
8941 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
e95de063 8942
4e7fd91e
PB
8943 signed_addend = addend;
8944 }
cb1afa5c 8945
dfc5f959
NC
8946 if (r_type == R_ARM_THM_XPC22)
8947 {
8948 /* Check for Thumb to Thumb call. */
8949 /* FIXME: Should we translate the instruction into a BL
8950 instruction instead ? */
35fc36a8 8951 if (branch_type == ST_BRANCH_TO_THUMB)
d003868e
AM
8952 (*_bfd_error_handler)
8953 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8954 input_bfd,
8955 h ? h->root.root.string : "(local)");
dfc5f959
NC
8956 }
8957 else
252b5132 8958 {
dfc5f959
NC
8959 /* If it is not a call to Thumb, assume call to Arm.
8960 If it is a call relative to a section name, then it is not a
b7693d02
DJ
8961 function call at all, but rather a long jump. Calls through
8962 the PLT do not require stubs. */
34e77a92 8963 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
dfc5f959 8964 {
bd97cb95 8965 if (globals->use_blx && r_type == R_ARM_THM_CALL)
39b41c9c
PB
8966 {
8967 /* Convert BL to BLX. */
8968 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8969 }
155d87d7
CL
8970 else if (( r_type != R_ARM_THM_CALL)
8971 && (r_type != R_ARM_THM_JUMP24))
8029a119
NC
8972 {
8973 if (elf32_thumb_to_arm_stub
8974 (info, sym_name, input_bfd, output_bfd, input_section,
8975 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8976 error_message))
8977 return bfd_reloc_ok;
8978 else
8979 return bfd_reloc_dangerous;
8980 }
da5938a2 8981 }
35fc36a8
RS
8982 else if (branch_type == ST_BRANCH_TO_THUMB
8983 && globals->use_blx
bd97cb95 8984 && r_type == R_ARM_THM_CALL)
39b41c9c
PB
8985 {
8986 /* Make sure this is a BL. */
8987 lower_insn |= 0x1800;
8988 }
252b5132 8989 }
f21f3fe0 8990
fe33d2fa 8991 enum elf32_arm_stub_type stub_type = arm_stub_none;
155d87d7 8992 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
906e58ca
NC
8993 {
8994 /* Check if a stub has to be inserted because the destination
8029a119 8995 is too far. */
fe33d2fa
CL
8996 struct elf32_arm_stub_hash_entry *stub_entry;
8997 struct elf32_arm_link_hash_entry *hash;
8998
8999 hash = (struct elf32_arm_link_hash_entry *) h;
9000
9001 stub_type = arm_type_of_stub (info, input_section, rel,
34e77a92
RS
9002 st_type, &branch_type,
9003 hash, value, sym_sec,
fe33d2fa
CL
9004 input_bfd, sym_name);
9005
9006 if (stub_type != arm_stub_none)
906e58ca
NC
9007 {
9008 /* The target is out of reach or we are changing modes, so
9009 redirect the branch to the local stub for this
9010 function. */
9011 stub_entry = elf32_arm_get_stub_entry (input_section,
9012 sym_sec, h,
fe33d2fa
CL
9013 rel, globals,
9014 stub_type);
906e58ca 9015 if (stub_entry != NULL)
9cd3e4e5
NC
9016 {
9017 value = (stub_entry->stub_offset
9018 + stub_entry->stub_sec->output_offset
9019 + stub_entry->stub_sec->output_section->vma);
9020
9021 if (plt_offset != (bfd_vma) -1)
9022 *unresolved_reloc_p = FALSE;
9023 }
906e58ca 9024
f4ac8484 9025 /* If this call becomes a call to Arm, force BLX. */
155d87d7 9026 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
f4ac8484
DJ
9027 {
9028 if ((stub_entry
9029 && !arm_stub_is_thumb (stub_entry->stub_type))
35fc36a8 9030 || branch_type != ST_BRANCH_TO_THUMB)
f4ac8484
DJ
9031 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9032 }
906e58ca
NC
9033 }
9034 }
9035
fe33d2fa 9036 /* Handle calls via the PLT. */
34e77a92 9037 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
fe33d2fa
CL
9038 {
9039 value = (splt->output_section->vma
9040 + splt->output_offset
34e77a92 9041 + plt_offset);
fe33d2fa 9042
eed94f8f
NC
9043 if (globals->use_blx
9044 && r_type == R_ARM_THM_CALL
9045 && ! using_thumb_only (globals))
fe33d2fa
CL
9046 {
9047 /* If the Thumb BLX instruction is available, convert
9048 the BL to a BLX instruction to call the ARM-mode
9049 PLT entry. */
9050 lower_insn = (lower_insn & ~0x1000) | 0x0800;
35fc36a8 9051 branch_type = ST_BRANCH_TO_ARM;
fe33d2fa
CL
9052 }
9053 else
9054 {
eed94f8f
NC
9055 if (! using_thumb_only (globals))
9056 /* Target the Thumb stub before the ARM PLT entry. */
9057 value -= PLT_THUMB_STUB_SIZE;
35fc36a8 9058 branch_type = ST_BRANCH_TO_THUMB;
fe33d2fa
CL
9059 }
9060 *unresolved_reloc_p = FALSE;
9061 }
9062
ba96a88f 9063 relocation = value + signed_addend;
f21f3fe0 9064
252b5132 9065 relocation -= (input_section->output_section->vma
ba96a88f
NC
9066 + input_section->output_offset
9067 + rel->r_offset);
9a5aca8c 9068
252b5132
RH
9069 check = relocation >> howto->rightshift;
9070
9071 /* If this is a signed value, the rightshift just dropped
9072 leading 1 bits (assuming twos complement). */
9073 if ((bfd_signed_vma) relocation >= 0)
9074 signed_check = check;
9075 else
9076 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
9077
e95de063
MS
9078 /* Calculate the permissable maximum and minimum values for
9079 this relocation according to whether we're relocating for
9080 Thumb-2 or not. */
9081 bitsize = howto->bitsize;
9082 if (!thumb2)
9083 bitsize -= 2;
f6ebfac0 9084 reloc_signed_max = (1 << (bitsize - 1)) - 1;
e95de063
MS
9085 reloc_signed_min = ~reloc_signed_max;
9086
252b5132 9087 /* Assumes two's complement. */
ba96a88f 9088 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
b34976b6 9089 overflow = TRUE;
252b5132 9090
bd97cb95 9091 if ((lower_insn & 0x5000) == 0x4000)
c62e1cc3
NC
9092 /* For a BLX instruction, make sure that the relocation is rounded up
9093 to a word boundary. This follows the semantics of the instruction
9094 which specifies that bit 1 of the target address will come from bit
9095 1 of the base address. */
9096 relocation = (relocation + 2) & ~ 3;
cb1afa5c 9097
e95de063
MS
9098 /* Put RELOCATION back into the insn. Assumes two's complement.
9099 We use the Thumb-2 encoding, which is safe even if dealing with
9100 a Thumb-1 instruction by virtue of our overflow check above. */
99059e56 9101 reloc_sign = (signed_check < 0) ? 1 : 0;
e95de063 9102 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
99059e56
RM
9103 | ((relocation >> 12) & 0x3ff)
9104 | (reloc_sign << 10);
906e58ca 9105 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
99059e56
RM
9106 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
9107 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
9108 | ((relocation >> 1) & 0x7ff);
c62e1cc3 9109
252b5132
RH
9110 /* Put the relocated value back in the object file: */
9111 bfd_put_16 (input_bfd, upper_insn, hit_data);
9112 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9113
9114 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9115 }
9116 break;
9117
c19d1205
ZW
9118 case R_ARM_THM_JUMP19:
9119 /* Thumb32 conditional branch instruction. */
9120 {
9121 bfd_vma relocation;
9122 bfd_boolean overflow = FALSE;
9123 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9124 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
a00a1f35
MS
9125 bfd_signed_vma reloc_signed_max = 0xffffe;
9126 bfd_signed_vma reloc_signed_min = -0x100000;
c19d1205
ZW
9127 bfd_signed_vma signed_check;
9128
9129 /* Need to refetch the addend, reconstruct the top three bits,
9130 and squish the two 11 bit pieces together. */
9131 if (globals->use_rel)
9132 {
9133 bfd_vma S = (upper_insn & 0x0400) >> 10;
a00a1f35 9134 bfd_vma upper = (upper_insn & 0x003f);
c19d1205
ZW
9135 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
9136 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
9137 bfd_vma lower = (lower_insn & 0x07ff);
9138
a00a1f35
MS
9139 upper |= J1 << 6;
9140 upper |= J2 << 7;
9141 upper |= (!S) << 8;
c19d1205
ZW
9142 upper -= 0x0100; /* Sign extend. */
9143
9144 addend = (upper << 12) | (lower << 1);
9145 signed_addend = addend;
9146 }
9147
bd97cb95 9148 /* Handle calls via the PLT. */
34e77a92 9149 if (plt_offset != (bfd_vma) -1)
bd97cb95
DJ
9150 {
9151 value = (splt->output_section->vma
9152 + splt->output_offset
34e77a92 9153 + plt_offset);
bd97cb95
DJ
9154 /* Target the Thumb stub before the ARM PLT entry. */
9155 value -= PLT_THUMB_STUB_SIZE;
9156 *unresolved_reloc_p = FALSE;
9157 }
9158
c19d1205
ZW
9159 /* ??? Should handle interworking? GCC might someday try to
9160 use this for tail calls. */
9161
99059e56 9162 relocation = value + signed_addend;
c19d1205
ZW
9163 relocation -= (input_section->output_section->vma
9164 + input_section->output_offset
9165 + rel->r_offset);
a00a1f35 9166 signed_check = (bfd_signed_vma) relocation;
c19d1205 9167
c19d1205
ZW
9168 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9169 overflow = TRUE;
9170
9171 /* Put RELOCATION back into the insn. */
9172 {
9173 bfd_vma S = (relocation & 0x00100000) >> 20;
9174 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9175 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9176 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9177 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9178
a00a1f35 9179 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
c19d1205
ZW
9180 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9181 }
9182
9183 /* Put the relocated value back in the object file: */
9184 bfd_put_16 (input_bfd, upper_insn, hit_data);
9185 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9186
9187 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9188 }
9189
9190 case R_ARM_THM_JUMP11:
9191 case R_ARM_THM_JUMP8:
9192 case R_ARM_THM_JUMP6:
51c5503b
NC
9193 /* Thumb B (branch) instruction). */
9194 {
6cf9e9fe 9195 bfd_signed_vma relocation;
51c5503b
NC
9196 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9197 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
51c5503b
NC
9198 bfd_signed_vma signed_check;
9199
c19d1205
ZW
9200 /* CZB cannot jump backward. */
9201 if (r_type == R_ARM_THM_JUMP6)
9202 reloc_signed_min = 0;
9203
4e7fd91e 9204 if (globals->use_rel)
6cf9e9fe 9205 {
4e7fd91e
PB
9206 /* Need to refetch addend. */
9207 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9208 if (addend & ((howto->src_mask + 1) >> 1))
9209 {
9210 signed_addend = -1;
9211 signed_addend &= ~ howto->src_mask;
9212 signed_addend |= addend;
9213 }
9214 else
9215 signed_addend = addend;
9216 /* The value in the insn has been right shifted. We need to
9217 undo this, so that we can perform the address calculation
9218 in terms of bytes. */
9219 signed_addend <<= howto->rightshift;
6cf9e9fe 9220 }
6cf9e9fe 9221 relocation = value + signed_addend;
51c5503b
NC
9222
9223 relocation -= (input_section->output_section->vma
9224 + input_section->output_offset
9225 + rel->r_offset);
9226
6cf9e9fe
NC
9227 relocation >>= howto->rightshift;
9228 signed_check = relocation;
c19d1205
ZW
9229
9230 if (r_type == R_ARM_THM_JUMP6)
9231 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9232 else
9233 relocation &= howto->dst_mask;
51c5503b 9234 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
cedb70c5 9235
51c5503b
NC
9236 bfd_put_16 (input_bfd, relocation, hit_data);
9237
9238 /* Assumes two's complement. */
9239 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9240 return bfd_reloc_overflow;
9241
9242 return bfd_reloc_ok;
9243 }
cedb70c5 9244
8375c36b
PB
9245 case R_ARM_ALU_PCREL7_0:
9246 case R_ARM_ALU_PCREL15_8:
9247 case R_ARM_ALU_PCREL23_15:
9248 {
9249 bfd_vma insn;
9250 bfd_vma relocation;
9251
9252 insn = bfd_get_32 (input_bfd, hit_data);
4e7fd91e
PB
9253 if (globals->use_rel)
9254 {
9255 /* Extract the addend. */
9256 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9257 signed_addend = addend;
9258 }
8375c36b
PB
9259 relocation = value + signed_addend;
9260
9261 relocation -= (input_section->output_section->vma
9262 + input_section->output_offset
9263 + rel->r_offset);
9264 insn = (insn & ~0xfff)
9265 | ((howto->bitpos << 7) & 0xf00)
9266 | ((relocation >> howto->bitpos) & 0xff);
9267 bfd_put_32 (input_bfd, value, hit_data);
9268 }
9269 return bfd_reloc_ok;
9270
252b5132
RH
9271 case R_ARM_GNU_VTINHERIT:
9272 case R_ARM_GNU_VTENTRY:
9273 return bfd_reloc_ok;
9274
c19d1205 9275 case R_ARM_GOTOFF32:
252b5132 9276 /* Relocation is relative to the start of the
99059e56 9277 global offset table. */
252b5132
RH
9278
9279 BFD_ASSERT (sgot != NULL);
9280 if (sgot == NULL)
99059e56 9281 return bfd_reloc_notsupported;
9a5aca8c 9282
cedb70c5 9283 /* If we are addressing a Thumb function, we need to adjust the
ee29b9fb
RE
9284 address by one, so that attempts to call the function pointer will
9285 correctly interpret it as Thumb code. */
35fc36a8 9286 if (branch_type == ST_BRANCH_TO_THUMB)
ee29b9fb
RE
9287 value += 1;
9288
252b5132 9289 /* Note that sgot->output_offset is not involved in this
99059e56
RM
9290 calculation. We always want the start of .got. If we
9291 define _GLOBAL_OFFSET_TABLE in a different way, as is
9292 permitted by the ABI, we might have to change this
9293 calculation. */
252b5132 9294 value -= sgot->output_section->vma;
f21f3fe0 9295 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9296 contents, rel->r_offset, value,
00a97672 9297 rel->r_addend);
252b5132
RH
9298
9299 case R_ARM_GOTPC:
a7c10850 9300 /* Use global offset table as symbol value. */
252b5132 9301 BFD_ASSERT (sgot != NULL);
f21f3fe0 9302
252b5132 9303 if (sgot == NULL)
99059e56 9304 return bfd_reloc_notsupported;
252b5132 9305
0945cdfd 9306 *unresolved_reloc_p = FALSE;
252b5132 9307 value = sgot->output_section->vma;
f21f3fe0 9308 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9309 contents, rel->r_offset, value,
00a97672 9310 rel->r_addend);
f21f3fe0 9311
252b5132 9312 case R_ARM_GOT32:
eb043451 9313 case R_ARM_GOT_PREL:
252b5132 9314 /* Relocation is to the entry for this symbol in the
99059e56 9315 global offset table. */
252b5132
RH
9316 if (sgot == NULL)
9317 return bfd_reloc_notsupported;
f21f3fe0 9318
34e77a92
RS
9319 if (dynreloc_st_type == STT_GNU_IFUNC
9320 && plt_offset != (bfd_vma) -1
9321 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9322 {
9323 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9324 symbol, and the relocation resolves directly to the runtime
9325 target rather than to the .iplt entry. This means that any
9326 .got entry would be the same value as the .igot.plt entry,
9327 so there's no point creating both. */
9328 sgot = globals->root.igotplt;
9329 value = sgot->output_offset + gotplt_offset;
9330 }
9331 else if (h != NULL)
252b5132
RH
9332 {
9333 bfd_vma off;
f21f3fe0 9334
252b5132
RH
9335 off = h->got.offset;
9336 BFD_ASSERT (off != (bfd_vma) -1);
b436d854 9337 if ((off & 1) != 0)
252b5132 9338 {
b436d854
RS
9339 /* We have already processsed one GOT relocation against
9340 this symbol. */
9341 off &= ~1;
9342 if (globals->root.dynamic_sections_created
9343 && !SYMBOL_REFERENCES_LOCAL (info, h))
9344 *unresolved_reloc_p = FALSE;
9345 }
9346 else
9347 {
9348 Elf_Internal_Rela outrel;
9349
6f820c85 9350 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
9351 {
9352 /* If the symbol doesn't resolve locally in a static
9353 object, we have an undefined reference. If the
9354 symbol doesn't resolve locally in a dynamic object,
9355 it should be resolved by the dynamic linker. */
9356 if (globals->root.dynamic_sections_created)
9357 {
9358 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9359 *unresolved_reloc_p = FALSE;
9360 }
9361 else
9362 outrel.r_info = 0;
9363 outrel.r_addend = 0;
9364 }
252b5132
RH
9365 else
9366 {
34e77a92 9367 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 9368 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
31943882
WN
9369 else if (info->shared &&
9370 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9371 || h->root.type != bfd_link_hash_undefweak))
99059e56
RM
9372 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9373 else
9374 outrel.r_info = 0;
34e77a92 9375 outrel.r_addend = dynreloc_value;
b436d854 9376 }
ee29b9fb 9377
b436d854
RS
9378 /* The GOT entry is initialized to zero by default.
9379 See if we should install a different value. */
9380 if (outrel.r_addend != 0
9381 && (outrel.r_info == 0 || globals->use_rel))
9382 {
9383 bfd_put_32 (output_bfd, outrel.r_addend,
9384 sgot->contents + off);
9385 outrel.r_addend = 0;
252b5132 9386 }
f21f3fe0 9387
b436d854
RS
9388 if (outrel.r_info != 0)
9389 {
9390 outrel.r_offset = (sgot->output_section->vma
9391 + sgot->output_offset
9392 + off);
9393 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9394 }
9395 h->got.offset |= 1;
9396 }
252b5132
RH
9397 value = sgot->output_offset + off;
9398 }
9399 else
9400 {
9401 bfd_vma off;
f21f3fe0 9402
252b5132
RH
9403 BFD_ASSERT (local_got_offsets != NULL &&
9404 local_got_offsets[r_symndx] != (bfd_vma) -1);
f21f3fe0 9405
252b5132 9406 off = local_got_offsets[r_symndx];
f21f3fe0 9407
252b5132
RH
9408 /* The offset must always be a multiple of 4. We use the
9409 least significant bit to record whether we have already
9b485d32 9410 generated the necessary reloc. */
252b5132
RH
9411 if ((off & 1) != 0)
9412 off &= ~1;
9413 else
9414 {
00a97672 9415 if (globals->use_rel)
34e77a92 9416 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
f21f3fe0 9417
34e77a92 9418 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
252b5132 9419 {
947216bf 9420 Elf_Internal_Rela outrel;
f21f3fe0 9421
34e77a92 9422 outrel.r_addend = addend + dynreloc_value;
252b5132 9423 outrel.r_offset = (sgot->output_section->vma
f21f3fe0 9424 + sgot->output_offset
252b5132 9425 + off);
34e77a92 9426 if (dynreloc_st_type == STT_GNU_IFUNC)
99059e56 9427 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
34e77a92
RS
9428 else
9429 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
47beaa6a 9430 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
252b5132 9431 }
f21f3fe0 9432
252b5132
RH
9433 local_got_offsets[r_symndx] |= 1;
9434 }
f21f3fe0 9435
252b5132
RH
9436 value = sgot->output_offset + off;
9437 }
eb043451
PB
9438 if (r_type != R_ARM_GOT32)
9439 value += sgot->output_section->vma;
9a5aca8c 9440
f21f3fe0 9441 return _bfd_final_link_relocate (howto, input_bfd, input_section,
99e4ae17 9442 contents, rel->r_offset, value,
00a97672 9443 rel->r_addend);
f21f3fe0 9444
ba93b8ac
DJ
9445 case R_ARM_TLS_LDO32:
9446 value = value - dtpoff_base (info);
9447
9448 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
9449 contents, rel->r_offset, value,
9450 rel->r_addend);
ba93b8ac
DJ
9451
9452 case R_ARM_TLS_LDM32:
9453 {
9454 bfd_vma off;
9455
362d30a1 9456 if (sgot == NULL)
ba93b8ac
DJ
9457 abort ();
9458
9459 off = globals->tls_ldm_got.offset;
9460
9461 if ((off & 1) != 0)
9462 off &= ~1;
9463 else
9464 {
9465 /* If we don't know the module number, create a relocation
9466 for it. */
9467 if (info->shared)
9468 {
9469 Elf_Internal_Rela outrel;
ba93b8ac 9470
362d30a1 9471 if (srelgot == NULL)
ba93b8ac
DJ
9472 abort ();
9473
00a97672 9474 outrel.r_addend = 0;
362d30a1
RS
9475 outrel.r_offset = (sgot->output_section->vma
9476 + sgot->output_offset + off);
ba93b8ac
DJ
9477 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9478
00a97672
RS
9479 if (globals->use_rel)
9480 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9481 sgot->contents + off);
ba93b8ac 9482
47beaa6a 9483 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9484 }
9485 else
362d30a1 9486 bfd_put_32 (output_bfd, 1, sgot->contents + off);
ba93b8ac
DJ
9487
9488 globals->tls_ldm_got.offset |= 1;
9489 }
9490
362d30a1 9491 value = sgot->output_section->vma + sgot->output_offset + off
ba93b8ac
DJ
9492 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9493
9494 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9495 contents, rel->r_offset, value,
00a97672 9496 rel->r_addend);
ba93b8ac
DJ
9497 }
9498
0855e32b
NS
9499 case R_ARM_TLS_CALL:
9500 case R_ARM_THM_TLS_CALL:
ba93b8ac
DJ
9501 case R_ARM_TLS_GD32:
9502 case R_ARM_TLS_IE32:
0855e32b
NS
9503 case R_ARM_TLS_GOTDESC:
9504 case R_ARM_TLS_DESCSEQ:
9505 case R_ARM_THM_TLS_DESCSEQ:
ba93b8ac 9506 {
0855e32b
NS
9507 bfd_vma off, offplt;
9508 int indx = 0;
ba93b8ac
DJ
9509 char tls_type;
9510
0855e32b 9511 BFD_ASSERT (sgot != NULL);
ba93b8ac 9512
ba93b8ac
DJ
9513 if (h != NULL)
9514 {
9515 bfd_boolean dyn;
9516 dyn = globals->root.dynamic_sections_created;
9517 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9518 && (!info->shared
9519 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9520 {
9521 *unresolved_reloc_p = FALSE;
9522 indx = h->dynindx;
9523 }
9524 off = h->got.offset;
0855e32b 9525 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
ba93b8ac
DJ
9526 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9527 }
9528 else
9529 {
0855e32b 9530 BFD_ASSERT (local_got_offsets != NULL);
ba93b8ac 9531 off = local_got_offsets[r_symndx];
0855e32b 9532 offplt = local_tlsdesc_gotents[r_symndx];
ba93b8ac
DJ
9533 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9534 }
9535
0855e32b 9536 /* Linker relaxations happens from one of the
b38cadfb 9537 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
0855e32b 9538 if (ELF32_R_TYPE(rel->r_info) != r_type)
b38cadfb 9539 tls_type = GOT_TLS_IE;
0855e32b
NS
9540
9541 BFD_ASSERT (tls_type != GOT_UNKNOWN);
ba93b8ac
DJ
9542
9543 if ((off & 1) != 0)
9544 off &= ~1;
9545 else
9546 {
9547 bfd_boolean need_relocs = FALSE;
9548 Elf_Internal_Rela outrel;
ba93b8ac
DJ
9549 int cur_off = off;
9550
9551 /* The GOT entries have not been initialized yet. Do it
9552 now, and emit any relocations. If both an IE GOT and a
9553 GD GOT are necessary, we emit the GD first. */
9554
9555 if ((info->shared || indx != 0)
9556 && (h == NULL
9557 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9558 || h->root.type != bfd_link_hash_undefweak))
9559 {
9560 need_relocs = TRUE;
0855e32b 9561 BFD_ASSERT (srelgot != NULL);
ba93b8ac
DJ
9562 }
9563
0855e32b
NS
9564 if (tls_type & GOT_TLS_GDESC)
9565 {
47beaa6a
RS
9566 bfd_byte *loc;
9567
0855e32b
NS
9568 /* We should have relaxed, unless this is an undefined
9569 weak symbol. */
9570 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9571 || info->shared);
9572 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
99059e56 9573 <= globals->root.sgotplt->size);
0855e32b
NS
9574
9575 outrel.r_addend = 0;
9576 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9577 + globals->root.sgotplt->output_offset
9578 + offplt
9579 + globals->sgotplt_jump_table_size);
b38cadfb 9580
0855e32b
NS
9581 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9582 sreloc = globals->root.srelplt;
9583 loc = sreloc->contents;
9584 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9585 BFD_ASSERT (loc + RELOC_SIZE (globals)
99059e56 9586 <= sreloc->contents + sreloc->size);
0855e32b
NS
9587
9588 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9589
9590 /* For globals, the first word in the relocation gets
9591 the relocation index and the top bit set, or zero,
9592 if we're binding now. For locals, it gets the
9593 symbol's offset in the tls section. */
99059e56 9594 bfd_put_32 (output_bfd,
0855e32b
NS
9595 !h ? value - elf_hash_table (info)->tls_sec->vma
9596 : info->flags & DF_BIND_NOW ? 0
9597 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
b38cadfb
NC
9598 globals->root.sgotplt->contents + offplt
9599 + globals->sgotplt_jump_table_size);
9600
0855e32b 9601 /* Second word in the relocation is always zero. */
99059e56 9602 bfd_put_32 (output_bfd, 0,
b38cadfb
NC
9603 globals->root.sgotplt->contents + offplt
9604 + globals->sgotplt_jump_table_size + 4);
0855e32b 9605 }
ba93b8ac
DJ
9606 if (tls_type & GOT_TLS_GD)
9607 {
9608 if (need_relocs)
9609 {
00a97672 9610 outrel.r_addend = 0;
362d30a1
RS
9611 outrel.r_offset = (sgot->output_section->vma
9612 + sgot->output_offset
00a97672 9613 + cur_off);
ba93b8ac 9614 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
ba93b8ac 9615
00a97672
RS
9616 if (globals->use_rel)
9617 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9618 sgot->contents + cur_off);
00a97672 9619
47beaa6a 9620 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9621
9622 if (indx == 0)
9623 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 9624 sgot->contents + cur_off + 4);
ba93b8ac
DJ
9625 else
9626 {
00a97672 9627 outrel.r_addend = 0;
ba93b8ac
DJ
9628 outrel.r_info = ELF32_R_INFO (indx,
9629 R_ARM_TLS_DTPOFF32);
9630 outrel.r_offset += 4;
00a97672
RS
9631
9632 if (globals->use_rel)
9633 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9634 sgot->contents + cur_off + 4);
00a97672 9635
47beaa6a
RS
9636 elf32_arm_add_dynreloc (output_bfd, info,
9637 srelgot, &outrel);
ba93b8ac
DJ
9638 }
9639 }
9640 else
9641 {
9642 /* If we are not emitting relocations for a
9643 general dynamic reference, then we must be in a
9644 static link or an executable link with the
9645 symbol binding locally. Mark it as belonging
9646 to module 1, the executable. */
9647 bfd_put_32 (output_bfd, 1,
362d30a1 9648 sgot->contents + cur_off);
ba93b8ac 9649 bfd_put_32 (output_bfd, value - dtpoff_base (info),
362d30a1 9650 sgot->contents + cur_off + 4);
ba93b8ac
DJ
9651 }
9652
9653 cur_off += 8;
9654 }
9655
9656 if (tls_type & GOT_TLS_IE)
9657 {
9658 if (need_relocs)
9659 {
00a97672
RS
9660 if (indx == 0)
9661 outrel.r_addend = value - dtpoff_base (info);
9662 else
9663 outrel.r_addend = 0;
362d30a1
RS
9664 outrel.r_offset = (sgot->output_section->vma
9665 + sgot->output_offset
ba93b8ac
DJ
9666 + cur_off);
9667 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9668
00a97672
RS
9669 if (globals->use_rel)
9670 bfd_put_32 (output_bfd, outrel.r_addend,
362d30a1 9671 sgot->contents + cur_off);
ba93b8ac 9672
47beaa6a 9673 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
ba93b8ac
DJ
9674 }
9675 else
9676 bfd_put_32 (output_bfd, tpoff (info, value),
362d30a1 9677 sgot->contents + cur_off);
ba93b8ac
DJ
9678 cur_off += 4;
9679 }
9680
9681 if (h != NULL)
9682 h->got.offset |= 1;
9683 else
9684 local_got_offsets[r_symndx] |= 1;
9685 }
9686
9687 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9688 off += 8;
0855e32b
NS
9689 else if (tls_type & GOT_TLS_GDESC)
9690 off = offplt;
9691
9692 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9693 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9694 {
9695 bfd_signed_vma offset;
12352d3f
PB
9696 /* TLS stubs are arm mode. The original symbol is a
9697 data object, so branch_type is bogus. */
9698 branch_type = ST_BRANCH_TO_ARM;
0855e32b 9699 enum elf32_arm_stub_type stub_type
34e77a92
RS
9700 = arm_type_of_stub (info, input_section, rel,
9701 st_type, &branch_type,
0855e32b
NS
9702 (struct elf32_arm_link_hash_entry *)h,
9703 globals->tls_trampoline, globals->root.splt,
9704 input_bfd, sym_name);
9705
9706 if (stub_type != arm_stub_none)
9707 {
9708 struct elf32_arm_stub_hash_entry *stub_entry
9709 = elf32_arm_get_stub_entry
9710 (input_section, globals->root.splt, 0, rel,
9711 globals, stub_type);
9712 offset = (stub_entry->stub_offset
9713 + stub_entry->stub_sec->output_offset
9714 + stub_entry->stub_sec->output_section->vma);
9715 }
9716 else
9717 offset = (globals->root.splt->output_section->vma
9718 + globals->root.splt->output_offset
9719 + globals->tls_trampoline);
9720
9721 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9722 {
9723 unsigned long inst;
b38cadfb
NC
9724
9725 offset -= (input_section->output_section->vma
9726 + input_section->output_offset
9727 + rel->r_offset + 8);
0855e32b
NS
9728
9729 inst = offset >> 2;
9730 inst &= 0x00ffffff;
9731 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9732 }
9733 else
9734 {
9735 /* Thumb blx encodes the offset in a complicated
9736 fashion. */
9737 unsigned upper_insn, lower_insn;
9738 unsigned neg;
9739
b38cadfb
NC
9740 offset -= (input_section->output_section->vma
9741 + input_section->output_offset
0855e32b 9742 + rel->r_offset + 4);
b38cadfb 9743
12352d3f
PB
9744 if (stub_type != arm_stub_none
9745 && arm_stub_is_thumb (stub_type))
9746 {
9747 lower_insn = 0xd000;
9748 }
9749 else
9750 {
9751 lower_insn = 0xc000;
6a631e86 9752 /* Round up the offset to a word boundary. */
12352d3f
PB
9753 offset = (offset + 2) & ~2;
9754 }
9755
0855e32b
NS
9756 neg = offset < 0;
9757 upper_insn = (0xf000
9758 | ((offset >> 12) & 0x3ff)
9759 | (neg << 10));
12352d3f 9760 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
0855e32b 9761 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12352d3f 9762 | ((offset >> 1) & 0x7ff);
0855e32b
NS
9763 bfd_put_16 (input_bfd, upper_insn, hit_data);
9764 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9765 return bfd_reloc_ok;
9766 }
9767 }
9768 /* These relocations needs special care, as besides the fact
9769 they point somewhere in .gotplt, the addend must be
9770 adjusted accordingly depending on the type of instruction
6a631e86 9771 we refer to. */
0855e32b
NS
9772 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9773 {
9774 unsigned long data, insn;
9775 unsigned thumb;
b38cadfb 9776
0855e32b
NS
9777 data = bfd_get_32 (input_bfd, hit_data);
9778 thumb = data & 1;
9779 data &= ~1u;
b38cadfb 9780
0855e32b
NS
9781 if (thumb)
9782 {
9783 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9784 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9785 insn = (insn << 16)
9786 | bfd_get_16 (input_bfd,
9787 contents + rel->r_offset - data + 2);
9788 if ((insn & 0xf800c000) == 0xf000c000)
9789 /* bl/blx */
9790 value = -6;
9791 else if ((insn & 0xffffff00) == 0x4400)
9792 /* add */
9793 value = -5;
9794 else
9795 {
9796 (*_bfd_error_handler)
9797 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9798 input_bfd, input_section,
9799 (unsigned long)rel->r_offset, insn);
9800 return bfd_reloc_notsupported;
9801 }
9802 }
9803 else
9804 {
9805 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9806
9807 switch (insn >> 24)
9808 {
9809 case 0xeb: /* bl */
9810 case 0xfa: /* blx */
9811 value = -4;
9812 break;
9813
9814 case 0xe0: /* add */
9815 value = -8;
9816 break;
b38cadfb 9817
0855e32b
NS
9818 default:
9819 (*_bfd_error_handler)
9820 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9821 input_bfd, input_section,
9822 (unsigned long)rel->r_offset, insn);
9823 return bfd_reloc_notsupported;
9824 }
9825 }
b38cadfb 9826
0855e32b
NS
9827 value += ((globals->root.sgotplt->output_section->vma
9828 + globals->root.sgotplt->output_offset + off)
9829 - (input_section->output_section->vma
9830 + input_section->output_offset
9831 + rel->r_offset)
9832 + globals->sgotplt_jump_table_size);
9833 }
9834 else
9835 value = ((globals->root.sgot->output_section->vma
9836 + globals->root.sgot->output_offset + off)
9837 - (input_section->output_section->vma
9838 + input_section->output_offset + rel->r_offset));
ba93b8ac
DJ
9839
9840 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9841 contents, rel->r_offset, value,
00a97672 9842 rel->r_addend);
ba93b8ac
DJ
9843 }
9844
9845 case R_ARM_TLS_LE32:
9ec0c936 9846 if (info->shared && !info->pie)
ba93b8ac
DJ
9847 {
9848 (*_bfd_error_handler)
9849 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9850 input_bfd, input_section,
9851 (long) rel->r_offset, howto->name);
46691134 9852 return bfd_reloc_notsupported;
ba93b8ac
DJ
9853 }
9854 else
9855 value = tpoff (info, value);
906e58ca 9856
ba93b8ac 9857 return _bfd_final_link_relocate (howto, input_bfd, input_section,
00a97672
RS
9858 contents, rel->r_offset, value,
9859 rel->r_addend);
ba93b8ac 9860
319850b4
JB
9861 case R_ARM_V4BX:
9862 if (globals->fix_v4bx)
845b51d6
PB
9863 {
9864 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
319850b4 9865
845b51d6
PB
9866 /* Ensure that we have a BX instruction. */
9867 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
319850b4 9868
845b51d6
PB
9869 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9870 {
9871 /* Branch to veneer. */
9872 bfd_vma glue_addr;
9873 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9874 glue_addr -= input_section->output_section->vma
9875 + input_section->output_offset
9876 + rel->r_offset + 8;
9877 insn = (insn & 0xf0000000) | 0x0a000000
9878 | ((glue_addr >> 2) & 0x00ffffff);
9879 }
9880 else
9881 {
9882 /* Preserve Rm (lowest four bits) and the condition code
9883 (highest four bits). Other bits encode MOV PC,Rm. */
9884 insn = (insn & 0xf000000f) | 0x01a0f000;
9885 }
319850b4 9886
845b51d6
PB
9887 bfd_put_32 (input_bfd, insn, hit_data);
9888 }
319850b4
JB
9889 return bfd_reloc_ok;
9890
b6895b4f
PB
9891 case R_ARM_MOVW_ABS_NC:
9892 case R_ARM_MOVT_ABS:
9893 case R_ARM_MOVW_PREL_NC:
9894 case R_ARM_MOVT_PREL:
92f5d02b
MS
9895 /* Until we properly support segment-base-relative addressing then
9896 we assume the segment base to be zero, as for the group relocations.
9897 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9898 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9899 case R_ARM_MOVW_BREL_NC:
9900 case R_ARM_MOVW_BREL:
9901 case R_ARM_MOVT_BREL:
b6895b4f
PB
9902 {
9903 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9904
9905 if (globals->use_rel)
9906 {
9907 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
39623e12 9908 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 9909 }
92f5d02b 9910
b6895b4f 9911 value += signed_addend;
b6895b4f
PB
9912
9913 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9914 value -= (input_section->output_section->vma
9915 + input_section->output_offset + rel->r_offset);
9916
92f5d02b 9917 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
99059e56 9918 return bfd_reloc_overflow;
92f5d02b 9919
35fc36a8 9920 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
9921 value |= 1;
9922
9923 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
99059e56 9924 || r_type == R_ARM_MOVT_BREL)
b6895b4f
PB
9925 value >>= 16;
9926
9927 insn &= 0xfff0f000;
9928 insn |= value & 0xfff;
9929 insn |= (value & 0xf000) << 4;
9930 bfd_put_32 (input_bfd, insn, hit_data);
9931 }
9932 return bfd_reloc_ok;
9933
9934 case R_ARM_THM_MOVW_ABS_NC:
9935 case R_ARM_THM_MOVT_ABS:
9936 case R_ARM_THM_MOVW_PREL_NC:
9937 case R_ARM_THM_MOVT_PREL:
92f5d02b
MS
9938 /* Until we properly support segment-base-relative addressing then
9939 we assume the segment base to be zero, as for the above relocations.
9940 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9941 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9942 as R_ARM_THM_MOVT_ABS. */
9943 case R_ARM_THM_MOVW_BREL_NC:
9944 case R_ARM_THM_MOVW_BREL:
9945 case R_ARM_THM_MOVT_BREL:
b6895b4f
PB
9946 {
9947 bfd_vma insn;
906e58ca 9948
b6895b4f
PB
9949 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9950 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9951
9952 if (globals->use_rel)
9953 {
9954 addend = ((insn >> 4) & 0xf000)
9955 | ((insn >> 15) & 0x0800)
9956 | ((insn >> 4) & 0x0700)
9957 | (insn & 0x00ff);
39623e12 9958 signed_addend = (addend ^ 0x8000) - 0x8000;
b6895b4f 9959 }
92f5d02b 9960
b6895b4f 9961 value += signed_addend;
b6895b4f
PB
9962
9963 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9964 value -= (input_section->output_section->vma
9965 + input_section->output_offset + rel->r_offset);
9966
92f5d02b 9967 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
99059e56 9968 return bfd_reloc_overflow;
92f5d02b 9969
35fc36a8 9970 if (branch_type == ST_BRANCH_TO_THUMB)
92f5d02b
MS
9971 value |= 1;
9972
9973 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
99059e56 9974 || r_type == R_ARM_THM_MOVT_BREL)
b6895b4f
PB
9975 value >>= 16;
9976
9977 insn &= 0xfbf08f00;
9978 insn |= (value & 0xf000) << 4;
9979 insn |= (value & 0x0800) << 15;
9980 insn |= (value & 0x0700) << 4;
9981 insn |= (value & 0x00ff);
9982
9983 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9984 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9985 }
9986 return bfd_reloc_ok;
9987
4962c51a
MS
9988 case R_ARM_ALU_PC_G0_NC:
9989 case R_ARM_ALU_PC_G1_NC:
9990 case R_ARM_ALU_PC_G0:
9991 case R_ARM_ALU_PC_G1:
9992 case R_ARM_ALU_PC_G2:
9993 case R_ARM_ALU_SB_G0_NC:
9994 case R_ARM_ALU_SB_G1_NC:
9995 case R_ARM_ALU_SB_G0:
9996 case R_ARM_ALU_SB_G1:
9997 case R_ARM_ALU_SB_G2:
9998 {
9999 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 10000 bfd_vma pc = input_section->output_section->vma
4962c51a 10001 + input_section->output_offset + rel->r_offset;
31a91d61 10002 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 10003 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56
RM
10004 bfd_vma residual;
10005 bfd_vma g_n;
4962c51a 10006 bfd_signed_vma signed_value;
99059e56
RM
10007 int group = 0;
10008
10009 /* Determine which group of bits to select. */
10010 switch (r_type)
10011 {
10012 case R_ARM_ALU_PC_G0_NC:
10013 case R_ARM_ALU_PC_G0:
10014 case R_ARM_ALU_SB_G0_NC:
10015 case R_ARM_ALU_SB_G0:
10016 group = 0;
10017 break;
10018
10019 case R_ARM_ALU_PC_G1_NC:
10020 case R_ARM_ALU_PC_G1:
10021 case R_ARM_ALU_SB_G1_NC:
10022 case R_ARM_ALU_SB_G1:
10023 group = 1;
10024 break;
10025
10026 case R_ARM_ALU_PC_G2:
10027 case R_ARM_ALU_SB_G2:
10028 group = 2;
10029 break;
10030
10031 default:
10032 abort ();
10033 }
10034
10035 /* If REL, extract the addend from the insn. If RELA, it will
10036 have already been fetched for us. */
4962c51a 10037 if (globals->use_rel)
99059e56
RM
10038 {
10039 int negative;
10040 bfd_vma constant = insn & 0xff;
10041 bfd_vma rotation = (insn & 0xf00) >> 8;
10042
10043 if (rotation == 0)
10044 signed_addend = constant;
10045 else
10046 {
10047 /* Compensate for the fact that in the instruction, the
10048 rotation is stored in multiples of 2 bits. */
10049 rotation *= 2;
10050
10051 /* Rotate "constant" right by "rotation" bits. */
10052 signed_addend = (constant >> rotation) |
10053 (constant << (8 * sizeof (bfd_vma) - rotation));
10054 }
10055
10056 /* Determine if the instruction is an ADD or a SUB.
10057 (For REL, this determines the sign of the addend.) */
10058 negative = identify_add_or_sub (insn);
10059 if (negative == 0)
10060 {
10061 (*_bfd_error_handler)
10062 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
10063 input_bfd, input_section,
10064 (long) rel->r_offset, howto->name);
10065 return bfd_reloc_overflow;
10066 }
10067
10068 signed_addend *= negative;
10069 }
4962c51a
MS
10070
10071 /* Compute the value (X) to go in the place. */
99059e56
RM
10072 if (r_type == R_ARM_ALU_PC_G0_NC
10073 || r_type == R_ARM_ALU_PC_G1_NC
10074 || r_type == R_ARM_ALU_PC_G0
10075 || r_type == R_ARM_ALU_PC_G1
10076 || r_type == R_ARM_ALU_PC_G2)
10077 /* PC relative. */
10078 signed_value = value - pc + signed_addend;
10079 else
10080 /* Section base relative. */
10081 signed_value = value - sb + signed_addend;
10082
10083 /* If the target symbol is a Thumb function, then set the
10084 Thumb bit in the address. */
35fc36a8 10085 if (branch_type == ST_BRANCH_TO_THUMB)
4962c51a
MS
10086 signed_value |= 1;
10087
99059e56
RM
10088 /* Calculate the value of the relevant G_n, in encoded
10089 constant-with-rotation format. */
10090 g_n = calculate_group_reloc_mask (abs (signed_value), group,
10091 &residual);
10092
10093 /* Check for overflow if required. */
10094 if ((r_type == R_ARM_ALU_PC_G0
10095 || r_type == R_ARM_ALU_PC_G1
10096 || r_type == R_ARM_ALU_PC_G2
10097 || r_type == R_ARM_ALU_SB_G0
10098 || r_type == R_ARM_ALU_SB_G1
10099 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
10100 {
10101 (*_bfd_error_handler)
10102 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10103 input_bfd, input_section,
10104 (long) rel->r_offset, abs (signed_value), howto->name);
10105 return bfd_reloc_overflow;
10106 }
10107
10108 /* Mask out the value and the ADD/SUB part of the opcode; take care
10109 not to destroy the S bit. */
10110 insn &= 0xff1ff000;
10111
10112 /* Set the opcode according to whether the value to go in the
10113 place is negative. */
10114 if (signed_value < 0)
10115 insn |= 1 << 22;
10116 else
10117 insn |= 1 << 23;
10118
10119 /* Encode the offset. */
10120 insn |= g_n;
4962c51a
MS
10121
10122 bfd_put_32 (input_bfd, insn, hit_data);
10123 }
10124 return bfd_reloc_ok;
10125
10126 case R_ARM_LDR_PC_G0:
10127 case R_ARM_LDR_PC_G1:
10128 case R_ARM_LDR_PC_G2:
10129 case R_ARM_LDR_SB_G0:
10130 case R_ARM_LDR_SB_G1:
10131 case R_ARM_LDR_SB_G2:
10132 {
10133 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 10134 bfd_vma pc = input_section->output_section->vma
4962c51a 10135 + input_section->output_offset + rel->r_offset;
31a91d61 10136 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 10137 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 10138 bfd_vma residual;
4962c51a 10139 bfd_signed_vma signed_value;
99059e56
RM
10140 int group = 0;
10141
10142 /* Determine which groups of bits to calculate. */
10143 switch (r_type)
10144 {
10145 case R_ARM_LDR_PC_G0:
10146 case R_ARM_LDR_SB_G0:
10147 group = 0;
10148 break;
10149
10150 case R_ARM_LDR_PC_G1:
10151 case R_ARM_LDR_SB_G1:
10152 group = 1;
10153 break;
10154
10155 case R_ARM_LDR_PC_G2:
10156 case R_ARM_LDR_SB_G2:
10157 group = 2;
10158 break;
10159
10160 default:
10161 abort ();
10162 }
10163
10164 /* If REL, extract the addend from the insn. If RELA, it will
10165 have already been fetched for us. */
4962c51a 10166 if (globals->use_rel)
99059e56
RM
10167 {
10168 int negative = (insn & (1 << 23)) ? 1 : -1;
10169 signed_addend = negative * (insn & 0xfff);
10170 }
4962c51a
MS
10171
10172 /* Compute the value (X) to go in the place. */
99059e56
RM
10173 if (r_type == R_ARM_LDR_PC_G0
10174 || r_type == R_ARM_LDR_PC_G1
10175 || r_type == R_ARM_LDR_PC_G2)
10176 /* PC relative. */
10177 signed_value = value - pc + signed_addend;
10178 else
10179 /* Section base relative. */
10180 signed_value = value - sb + signed_addend;
10181
10182 /* Calculate the value of the relevant G_{n-1} to obtain
10183 the residual at that stage. */
10184 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10185
10186 /* Check for overflow. */
10187 if (residual >= 0x1000)
10188 {
10189 (*_bfd_error_handler)
10190 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10191 input_bfd, input_section,
10192 (long) rel->r_offset, abs (signed_value), howto->name);
10193 return bfd_reloc_overflow;
10194 }
10195
10196 /* Mask out the value and U bit. */
10197 insn &= 0xff7ff000;
10198
10199 /* Set the U bit if the value to go in the place is non-negative. */
10200 if (signed_value >= 0)
10201 insn |= 1 << 23;
10202
10203 /* Encode the offset. */
10204 insn |= residual;
4962c51a
MS
10205
10206 bfd_put_32 (input_bfd, insn, hit_data);
10207 }
10208 return bfd_reloc_ok;
10209
10210 case R_ARM_LDRS_PC_G0:
10211 case R_ARM_LDRS_PC_G1:
10212 case R_ARM_LDRS_PC_G2:
10213 case R_ARM_LDRS_SB_G0:
10214 case R_ARM_LDRS_SB_G1:
10215 case R_ARM_LDRS_SB_G2:
10216 {
10217 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 10218 bfd_vma pc = input_section->output_section->vma
4962c51a 10219 + input_section->output_offset + rel->r_offset;
31a91d61 10220 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 10221 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 10222 bfd_vma residual;
4962c51a 10223 bfd_signed_vma signed_value;
99059e56
RM
10224 int group = 0;
10225
10226 /* Determine which groups of bits to calculate. */
10227 switch (r_type)
10228 {
10229 case R_ARM_LDRS_PC_G0:
10230 case R_ARM_LDRS_SB_G0:
10231 group = 0;
10232 break;
10233
10234 case R_ARM_LDRS_PC_G1:
10235 case R_ARM_LDRS_SB_G1:
10236 group = 1;
10237 break;
10238
10239 case R_ARM_LDRS_PC_G2:
10240 case R_ARM_LDRS_SB_G2:
10241 group = 2;
10242 break;
10243
10244 default:
10245 abort ();
10246 }
10247
10248 /* If REL, extract the addend from the insn. If RELA, it will
10249 have already been fetched for us. */
4962c51a 10250 if (globals->use_rel)
99059e56
RM
10251 {
10252 int negative = (insn & (1 << 23)) ? 1 : -1;
10253 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10254 }
4962c51a
MS
10255
10256 /* Compute the value (X) to go in the place. */
99059e56
RM
10257 if (r_type == R_ARM_LDRS_PC_G0
10258 || r_type == R_ARM_LDRS_PC_G1
10259 || r_type == R_ARM_LDRS_PC_G2)
10260 /* PC relative. */
10261 signed_value = value - pc + signed_addend;
10262 else
10263 /* Section base relative. */
10264 signed_value = value - sb + signed_addend;
10265
10266 /* Calculate the value of the relevant G_{n-1} to obtain
10267 the residual at that stage. */
10268 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10269
10270 /* Check for overflow. */
10271 if (residual >= 0x100)
10272 {
10273 (*_bfd_error_handler)
10274 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10275 input_bfd, input_section,
10276 (long) rel->r_offset, abs (signed_value), howto->name);
10277 return bfd_reloc_overflow;
10278 }
10279
10280 /* Mask out the value and U bit. */
10281 insn &= 0xff7ff0f0;
10282
10283 /* Set the U bit if the value to go in the place is non-negative. */
10284 if (signed_value >= 0)
10285 insn |= 1 << 23;
10286
10287 /* Encode the offset. */
10288 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
4962c51a
MS
10289
10290 bfd_put_32 (input_bfd, insn, hit_data);
10291 }
10292 return bfd_reloc_ok;
10293
10294 case R_ARM_LDC_PC_G0:
10295 case R_ARM_LDC_PC_G1:
10296 case R_ARM_LDC_PC_G2:
10297 case R_ARM_LDC_SB_G0:
10298 case R_ARM_LDC_SB_G1:
10299 case R_ARM_LDC_SB_G2:
10300 {
10301 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
99059e56 10302 bfd_vma pc = input_section->output_section->vma
4962c51a 10303 + input_section->output_offset + rel->r_offset;
31a91d61 10304 /* sb is the origin of the *segment* containing the symbol. */
62c34db3 10305 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
99059e56 10306 bfd_vma residual;
4962c51a 10307 bfd_signed_vma signed_value;
99059e56
RM
10308 int group = 0;
10309
10310 /* Determine which groups of bits to calculate. */
10311 switch (r_type)
10312 {
10313 case R_ARM_LDC_PC_G0:
10314 case R_ARM_LDC_SB_G0:
10315 group = 0;
10316 break;
10317
10318 case R_ARM_LDC_PC_G1:
10319 case R_ARM_LDC_SB_G1:
10320 group = 1;
10321 break;
10322
10323 case R_ARM_LDC_PC_G2:
10324 case R_ARM_LDC_SB_G2:
10325 group = 2;
10326 break;
10327
10328 default:
10329 abort ();
10330 }
10331
10332 /* If REL, extract the addend from the insn. If RELA, it will
10333 have already been fetched for us. */
4962c51a 10334 if (globals->use_rel)
99059e56
RM
10335 {
10336 int negative = (insn & (1 << 23)) ? 1 : -1;
10337 signed_addend = negative * ((insn & 0xff) << 2);
10338 }
4962c51a
MS
10339
10340 /* Compute the value (X) to go in the place. */
99059e56
RM
10341 if (r_type == R_ARM_LDC_PC_G0
10342 || r_type == R_ARM_LDC_PC_G1
10343 || r_type == R_ARM_LDC_PC_G2)
10344 /* PC relative. */
10345 signed_value = value - pc + signed_addend;
10346 else
10347 /* Section base relative. */
10348 signed_value = value - sb + signed_addend;
10349
10350 /* Calculate the value of the relevant G_{n-1} to obtain
10351 the residual at that stage. */
10352 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10353
10354 /* Check for overflow. (The absolute value to go in the place must be
10355 divisible by four and, after having been divided by four, must
10356 fit in eight bits.) */
10357 if ((residual & 0x3) != 0 || residual >= 0x400)
10358 {
10359 (*_bfd_error_handler)
10360 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10361 input_bfd, input_section,
10362 (long) rel->r_offset, abs (signed_value), howto->name);
10363 return bfd_reloc_overflow;
10364 }
10365
10366 /* Mask out the value and U bit. */
10367 insn &= 0xff7fff00;
10368
10369 /* Set the U bit if the value to go in the place is non-negative. */
10370 if (signed_value >= 0)
10371 insn |= 1 << 23;
10372
10373 /* Encode the offset. */
10374 insn |= residual >> 2;
4962c51a
MS
10375
10376 bfd_put_32 (input_bfd, insn, hit_data);
10377 }
10378 return bfd_reloc_ok;
10379
252b5132
RH
10380 default:
10381 return bfd_reloc_notsupported;
10382 }
10383}
10384
98c1d4aa
NC
10385/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10386static void
57e8b36a
NC
10387arm_add_to_rel (bfd * abfd,
10388 bfd_byte * address,
10389 reloc_howto_type * howto,
10390 bfd_signed_vma increment)
98c1d4aa 10391{
98c1d4aa
NC
10392 bfd_signed_vma addend;
10393
bd97cb95
DJ
10394 if (howto->type == R_ARM_THM_CALL
10395 || howto->type == R_ARM_THM_JUMP24)
98c1d4aa 10396 {
9a5aca8c
AM
10397 int upper_insn, lower_insn;
10398 int upper, lower;
98c1d4aa 10399
9a5aca8c
AM
10400 upper_insn = bfd_get_16 (abfd, address);
10401 lower_insn = bfd_get_16 (abfd, address + 2);
10402 upper = upper_insn & 0x7ff;
10403 lower = lower_insn & 0x7ff;
10404
10405 addend = (upper << 12) | (lower << 1);
ddda4409 10406 addend += increment;
9a5aca8c 10407 addend >>= 1;
98c1d4aa 10408
9a5aca8c
AM
10409 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10410 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10411
dc810e39
AM
10412 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10413 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
9a5aca8c
AM
10414 }
10415 else
10416 {
10417 bfd_vma contents;
10418
10419 contents = bfd_get_32 (abfd, address);
10420
10421 /* Get the (signed) value from the instruction. */
10422 addend = contents & howto->src_mask;
10423 if (addend & ((howto->src_mask + 1) >> 1))
10424 {
10425 bfd_signed_vma mask;
10426
10427 mask = -1;
10428 mask &= ~ howto->src_mask;
10429 addend |= mask;
10430 }
10431
10432 /* Add in the increment, (which is a byte value). */
10433 switch (howto->type)
10434 {
10435 default:
10436 addend += increment;
10437 break;
10438
10439 case R_ARM_PC24:
c6596c5e 10440 case R_ARM_PLT32:
5b5bb741
PB
10441 case R_ARM_CALL:
10442 case R_ARM_JUMP24:
9a5aca8c 10443 addend <<= howto->size;
dc810e39 10444 addend += increment;
9a5aca8c
AM
10445
10446 /* Should we check for overflow here ? */
10447
10448 /* Drop any undesired bits. */
10449 addend >>= howto->rightshift;
10450 break;
10451 }
10452
10453 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10454
10455 bfd_put_32 (abfd, contents, address);
ddda4409 10456 }
98c1d4aa 10457}
252b5132 10458
ba93b8ac
DJ
10459#define IS_ARM_TLS_RELOC(R_TYPE) \
10460 ((R_TYPE) == R_ARM_TLS_GD32 \
10461 || (R_TYPE) == R_ARM_TLS_LDO32 \
10462 || (R_TYPE) == R_ARM_TLS_LDM32 \
10463 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10464 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10465 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10466 || (R_TYPE) == R_ARM_TLS_LE32 \
0855e32b
NS
10467 || (R_TYPE) == R_ARM_TLS_IE32 \
10468 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10469
10470/* Specific set of relocations for the gnu tls dialect. */
10471#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10472 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10473 || (R_TYPE) == R_ARM_TLS_CALL \
10474 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10475 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10476 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
ba93b8ac 10477
252b5132 10478/* Relocate an ARM ELF section. */
906e58ca 10479
b34976b6 10480static bfd_boolean
57e8b36a
NC
10481elf32_arm_relocate_section (bfd * output_bfd,
10482 struct bfd_link_info * info,
10483 bfd * input_bfd,
10484 asection * input_section,
10485 bfd_byte * contents,
10486 Elf_Internal_Rela * relocs,
10487 Elf_Internal_Sym * local_syms,
10488 asection ** local_sections)
252b5132 10489{
b34976b6
AM
10490 Elf_Internal_Shdr *symtab_hdr;
10491 struct elf_link_hash_entry **sym_hashes;
10492 Elf_Internal_Rela *rel;
10493 Elf_Internal_Rela *relend;
10494 const char *name;
b32d3aa2 10495 struct elf32_arm_link_hash_table * globals;
252b5132 10496
4e7fd91e 10497 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
10498 if (globals == NULL)
10499 return FALSE;
b491616a 10500
0ffa91dd 10501 symtab_hdr = & elf_symtab_hdr (input_bfd);
252b5132
RH
10502 sym_hashes = elf_sym_hashes (input_bfd);
10503
10504 rel = relocs;
10505 relend = relocs + input_section->reloc_count;
10506 for (; rel < relend; rel++)
10507 {
ba96a88f
NC
10508 int r_type;
10509 reloc_howto_type * howto;
10510 unsigned long r_symndx;
10511 Elf_Internal_Sym * sym;
10512 asection * sec;
252b5132 10513 struct elf_link_hash_entry * h;
ba96a88f
NC
10514 bfd_vma relocation;
10515 bfd_reloc_status_type r;
10516 arelent bfd_reloc;
ba93b8ac 10517 char sym_type;
0945cdfd 10518 bfd_boolean unresolved_reloc = FALSE;
f2a9dd69 10519 char *error_message = NULL;
f21f3fe0 10520
252b5132 10521 r_symndx = ELF32_R_SYM (rel->r_info);
ba96a88f 10522 r_type = ELF32_R_TYPE (rel->r_info);
b32d3aa2 10523 r_type = arm_real_reloc_type (globals, r_type);
252b5132 10524
ba96a88f 10525 if ( r_type == R_ARM_GNU_VTENTRY
99059e56
RM
10526 || r_type == R_ARM_GNU_VTINHERIT)
10527 continue;
252b5132 10528
b32d3aa2 10529 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
ba96a88f 10530 howto = bfd_reloc.howto;
252b5132 10531
252b5132
RH
10532 h = NULL;
10533 sym = NULL;
10534 sec = NULL;
9b485d32 10535
252b5132
RH
10536 if (r_symndx < symtab_hdr->sh_info)
10537 {
10538 sym = local_syms + r_symndx;
ba93b8ac 10539 sym_type = ELF32_ST_TYPE (sym->st_info);
252b5132 10540 sec = local_sections[r_symndx];
ffcb4889
NS
10541
10542 /* An object file might have a reference to a local
10543 undefined symbol. This is a daft object file, but we
10544 should at least do something about it. V4BX & NONE
10545 relocations do not use the symbol and are explicitly
77b4f08f
TS
10546 allowed to use the undefined symbol, so allow those.
10547 Likewise for relocations against STN_UNDEF. */
ffcb4889
NS
10548 if (r_type != R_ARM_V4BX
10549 && r_type != R_ARM_NONE
77b4f08f 10550 && r_symndx != STN_UNDEF
ffcb4889
NS
10551 && bfd_is_und_section (sec)
10552 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10553 {
10554 if (!info->callbacks->undefined_symbol
10555 (info, bfd_elf_string_from_elf_section
10556 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10557 input_bfd, input_section,
10558 rel->r_offset, TRUE))
10559 return FALSE;
10560 }
b38cadfb 10561
4e7fd91e 10562 if (globals->use_rel)
f8df10f4 10563 {
4e7fd91e
PB
10564 relocation = (sec->output_section->vma
10565 + sec->output_offset
10566 + sym->st_value);
ab96bf03
AM
10567 if (!info->relocatable
10568 && (sec->flags & SEC_MERGE)
10569 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
f8df10f4 10570 {
4e7fd91e
PB
10571 asection *msec;
10572 bfd_vma addend, value;
10573
39623e12 10574 switch (r_type)
4e7fd91e 10575 {
39623e12
PB
10576 case R_ARM_MOVW_ABS_NC:
10577 case R_ARM_MOVT_ABS:
10578 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10579 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10580 addend = (addend ^ 0x8000) - 0x8000;
10581 break;
f8df10f4 10582
39623e12
PB
10583 case R_ARM_THM_MOVW_ABS_NC:
10584 case R_ARM_THM_MOVT_ABS:
10585 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10586 << 16;
10587 value |= bfd_get_16 (input_bfd,
10588 contents + rel->r_offset + 2);
10589 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10590 | ((value & 0x04000000) >> 15);
10591 addend = (addend ^ 0x8000) - 0x8000;
10592 break;
f8df10f4 10593
39623e12
PB
10594 default:
10595 if (howto->rightshift
10596 || (howto->src_mask & (howto->src_mask + 1)))
10597 {
10598 (*_bfd_error_handler)
10599 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10600 input_bfd, input_section,
10601 (long) rel->r_offset, howto->name);
10602 return FALSE;
10603 }
10604
10605 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10606
10607 /* Get the (signed) value from the instruction. */
10608 addend = value & howto->src_mask;
10609 if (addend & ((howto->src_mask + 1) >> 1))
10610 {
10611 bfd_signed_vma mask;
10612
10613 mask = -1;
10614 mask &= ~ howto->src_mask;
10615 addend |= mask;
10616 }
10617 break;
4e7fd91e 10618 }
39623e12 10619
4e7fd91e
PB
10620 msec = sec;
10621 addend =
10622 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10623 - relocation;
10624 addend += msec->output_section->vma + msec->output_offset;
39623e12 10625
cc643b88 10626 /* Cases here must match those in the preceding
39623e12
PB
10627 switch statement. */
10628 switch (r_type)
10629 {
10630 case R_ARM_MOVW_ABS_NC:
10631 case R_ARM_MOVT_ABS:
10632 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10633 | (addend & 0xfff);
10634 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10635 break;
10636
10637 case R_ARM_THM_MOVW_ABS_NC:
10638 case R_ARM_THM_MOVT_ABS:
10639 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10640 | (addend & 0xff) | ((addend & 0x0800) << 15);
10641 bfd_put_16 (input_bfd, value >> 16,
10642 contents + rel->r_offset);
10643 bfd_put_16 (input_bfd, value,
10644 contents + rel->r_offset + 2);
10645 break;
10646
10647 default:
10648 value = (value & ~ howto->dst_mask)
10649 | (addend & howto->dst_mask);
10650 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10651 break;
10652 }
f8df10f4 10653 }
f8df10f4 10654 }
4e7fd91e
PB
10655 else
10656 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
10657 }
10658 else
10659 {
62d887d4 10660 bfd_boolean warned, ignored;
560e09e9 10661
b2a8e766
AM
10662 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10663 r_symndx, symtab_hdr, sym_hashes,
10664 h, sec, relocation,
62d887d4 10665 unresolved_reloc, warned, ignored);
ba93b8ac
DJ
10666
10667 sym_type = h->type;
252b5132
RH
10668 }
10669
dbaa2011 10670 if (sec != NULL && discarded_section (sec))
e4067dbb 10671 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 10672 rel, 1, relend, howto, 0, contents);
ab96bf03
AM
10673
10674 if (info->relocatable)
10675 {
10676 /* This is a relocatable link. We don't have to change
10677 anything, unless the reloc is against a section symbol,
10678 in which case we have to adjust according to where the
10679 section symbol winds up in the output section. */
10680 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10681 {
10682 if (globals->use_rel)
10683 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10684 howto, (bfd_signed_vma) sec->output_offset);
10685 else
10686 rel->r_addend += sec->output_offset;
10687 }
10688 continue;
10689 }
10690
252b5132
RH
10691 if (h != NULL)
10692 name = h->root.root.string;
10693 else
10694 {
10695 name = (bfd_elf_string_from_elf_section
10696 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10697 if (name == NULL || *name == '\0')
10698 name = bfd_section_name (input_bfd, sec);
10699 }
f21f3fe0 10700
cf35638d 10701 if (r_symndx != STN_UNDEF
ba93b8ac
DJ
10702 && r_type != R_ARM_NONE
10703 && (h == NULL
10704 || h->root.type == bfd_link_hash_defined
10705 || h->root.type == bfd_link_hash_defweak)
10706 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10707 {
10708 (*_bfd_error_handler)
10709 ((sym_type == STT_TLS
10710 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10711 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10712 input_bfd,
10713 input_section,
10714 (long) rel->r_offset,
10715 howto->name,
10716 name);
10717 }
10718
0855e32b 10719 /* We call elf32_arm_final_link_relocate unless we're completely
99059e56
RM
10720 done, i.e., the relaxation produced the final output we want,
10721 and we won't let anybody mess with it. Also, we have to do
10722 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
6a631e86 10723 both in relaxed and non-relaxed cases. */
0855e32b
NS
10724 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10725 || (IS_ARM_TLS_GNU_RELOC (r_type)
b38cadfb 10726 && !((h ? elf32_arm_hash_entry (h)->tls_type :
0855e32b
NS
10727 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10728 & GOT_TLS_GDESC)))
10729 {
10730 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10731 contents, rel, h == NULL);
10732 /* This may have been marked unresolved because it came from
10733 a shared library. But we've just dealt with that. */
10734 unresolved_reloc = 0;
10735 }
10736 else
10737 r = bfd_reloc_continue;
b38cadfb 10738
0855e32b
NS
10739 if (r == bfd_reloc_continue)
10740 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10741 input_section, contents, rel,
34e77a92 10742 relocation, info, sec, name, sym_type,
35fc36a8
RS
10743 (h ? h->target_internal
10744 : ARM_SYM_BRANCH_TYPE (sym)), h,
0855e32b 10745 &unresolved_reloc, &error_message);
0945cdfd
DJ
10746
10747 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10748 because such sections are not SEC_ALLOC and thus ld.so will
10749 not process them. */
10750 if (unresolved_reloc
99059e56
RM
10751 && !((input_section->flags & SEC_DEBUGGING) != 0
10752 && h->def_dynamic)
1d5316ab
AM
10753 && _bfd_elf_section_offset (output_bfd, info, input_section,
10754 rel->r_offset) != (bfd_vma) -1)
0945cdfd
DJ
10755 {
10756 (*_bfd_error_handler)
843fe662
L
10757 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10758 input_bfd,
10759 input_section,
10760 (long) rel->r_offset,
10761 howto->name,
10762 h->root.root.string);
0945cdfd
DJ
10763 return FALSE;
10764 }
252b5132
RH
10765
10766 if (r != bfd_reloc_ok)
10767 {
252b5132
RH
10768 switch (r)
10769 {
10770 case bfd_reloc_overflow:
cf919dfd
PB
10771 /* If the overflowing reloc was to an undefined symbol,
10772 we have already printed one error message and there
10773 is no point complaining again. */
10774 if ((! h ||
10775 h->root.type != bfd_link_hash_undefined)
10776 && (!((*info->callbacks->reloc_overflow)
dfeffb9f
L
10777 (info, (h ? &h->root : NULL), name, howto->name,
10778 (bfd_vma) 0, input_bfd, input_section,
10779 rel->r_offset))))
b34976b6 10780 return FALSE;
252b5132
RH
10781 break;
10782
10783 case bfd_reloc_undefined:
10784 if (!((*info->callbacks->undefined_symbol)
10785 (info, name, input_bfd, input_section,
b34976b6
AM
10786 rel->r_offset, TRUE)))
10787 return FALSE;
252b5132
RH
10788 break;
10789
10790 case bfd_reloc_outofrange:
f2a9dd69 10791 error_message = _("out of range");
252b5132
RH
10792 goto common_error;
10793
10794 case bfd_reloc_notsupported:
f2a9dd69 10795 error_message = _("unsupported relocation");
252b5132
RH
10796 goto common_error;
10797
10798 case bfd_reloc_dangerous:
f2a9dd69 10799 /* error_message should already be set. */
252b5132
RH
10800 goto common_error;
10801
10802 default:
f2a9dd69 10803 error_message = _("unknown error");
8029a119 10804 /* Fall through. */
252b5132
RH
10805
10806 common_error:
f2a9dd69
DJ
10807 BFD_ASSERT (error_message != NULL);
10808 if (!((*info->callbacks->reloc_dangerous)
10809 (info, error_message, input_bfd, input_section,
252b5132 10810 rel->r_offset)))
b34976b6 10811 return FALSE;
252b5132
RH
10812 break;
10813 }
10814 }
10815 }
10816
b34976b6 10817 return TRUE;
252b5132
RH
10818}
10819
91d6fa6a 10820/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
2468f9c9 10821 adds the edit to the start of the list. (The list must be built in order of
91d6fa6a 10822 ascending TINDEX: the function's callers are primarily responsible for
2468f9c9
PB
10823 maintaining that condition). */
10824
10825static void
10826add_unwind_table_edit (arm_unwind_table_edit **head,
10827 arm_unwind_table_edit **tail,
10828 arm_unwind_edit_type type,
10829 asection *linked_section,
91d6fa6a 10830 unsigned int tindex)
2468f9c9 10831{
21d799b5
NC
10832 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10833 xmalloc (sizeof (arm_unwind_table_edit));
b38cadfb 10834
2468f9c9
PB
10835 new_edit->type = type;
10836 new_edit->linked_section = linked_section;
91d6fa6a 10837 new_edit->index = tindex;
b38cadfb 10838
91d6fa6a 10839 if (tindex > 0)
2468f9c9
PB
10840 {
10841 new_edit->next = NULL;
10842
10843 if (*tail)
10844 (*tail)->next = new_edit;
10845
10846 (*tail) = new_edit;
10847
10848 if (!*head)
10849 (*head) = new_edit;
10850 }
10851 else
10852 {
10853 new_edit->next = *head;
10854
10855 if (!*tail)
10856 *tail = new_edit;
10857
10858 *head = new_edit;
10859 }
10860}
10861
10862static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10863
10864/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10865static void
10866adjust_exidx_size(asection *exidx_sec, int adjust)
10867{
10868 asection *out_sec;
10869
10870 if (!exidx_sec->rawsize)
10871 exidx_sec->rawsize = exidx_sec->size;
10872
10873 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10874 out_sec = exidx_sec->output_section;
10875 /* Adjust size of output section. */
10876 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10877}
10878
10879/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10880static void
10881insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10882{
10883 struct _arm_elf_section_data *exidx_arm_data;
10884
10885 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10886 add_unwind_table_edit (
10887 &exidx_arm_data->u.exidx.unwind_edit_list,
10888 &exidx_arm_data->u.exidx.unwind_edit_tail,
10889 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10890
10891 adjust_exidx_size(exidx_sec, 8);
10892}
10893
10894/* Scan .ARM.exidx tables, and create a list describing edits which should be
10895 made to those tables, such that:
b38cadfb 10896
2468f9c9
PB
10897 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10898 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
99059e56 10899 codes which have been inlined into the index).
2468f9c9 10900
85fdf906
AH
10901 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10902
2468f9c9 10903 The edits are applied when the tables are written
b38cadfb 10904 (in elf32_arm_write_section). */
2468f9c9
PB
10905
10906bfd_boolean
10907elf32_arm_fix_exidx_coverage (asection **text_section_order,
10908 unsigned int num_text_sections,
85fdf906
AH
10909 struct bfd_link_info *info,
10910 bfd_boolean merge_exidx_entries)
2468f9c9
PB
10911{
10912 bfd *inp;
10913 unsigned int last_second_word = 0, i;
10914 asection *last_exidx_sec = NULL;
10915 asection *last_text_sec = NULL;
10916 int last_unwind_type = -1;
10917
10918 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10919 text sections. */
c72f2fb2 10920 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
2468f9c9
PB
10921 {
10922 asection *sec;
b38cadfb 10923
2468f9c9 10924 for (sec = inp->sections; sec != NULL; sec = sec->next)
99059e56 10925 {
2468f9c9
PB
10926 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10927 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
b38cadfb 10928
dec9d5df 10929 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
2468f9c9 10930 continue;
b38cadfb 10931
2468f9c9
PB
10932 if (elf_sec->linked_to)
10933 {
10934 Elf_Internal_Shdr *linked_hdr
99059e56 10935 = &elf_section_data (elf_sec->linked_to)->this_hdr;
2468f9c9 10936 struct _arm_elf_section_data *linked_sec_arm_data
99059e56 10937 = get_arm_elf_section_data (linked_hdr->bfd_section);
2468f9c9
PB
10938
10939 if (linked_sec_arm_data == NULL)
99059e56 10940 continue;
2468f9c9
PB
10941
10942 /* Link this .ARM.exidx section back from the text section it
99059e56 10943 describes. */
2468f9c9
PB
10944 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10945 }
10946 }
10947 }
10948
10949 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10950 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
91d6fa6a 10951 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
2468f9c9
PB
10952
10953 for (i = 0; i < num_text_sections; i++)
10954 {
10955 asection *sec = text_section_order[i];
10956 asection *exidx_sec;
10957 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10958 struct _arm_elf_section_data *exidx_arm_data;
10959 bfd_byte *contents = NULL;
10960 int deleted_exidx_bytes = 0;
10961 bfd_vma j;
10962 arm_unwind_table_edit *unwind_edit_head = NULL;
10963 arm_unwind_table_edit *unwind_edit_tail = NULL;
10964 Elf_Internal_Shdr *hdr;
10965 bfd *ibfd;
10966
10967 if (arm_data == NULL)
99059e56 10968 continue;
2468f9c9
PB
10969
10970 exidx_sec = arm_data->u.text.arm_exidx_sec;
10971 if (exidx_sec == NULL)
10972 {
10973 /* Section has no unwind data. */
10974 if (last_unwind_type == 0 || !last_exidx_sec)
10975 continue;
10976
10977 /* Ignore zero sized sections. */
10978 if (sec->size == 0)
10979 continue;
10980
10981 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10982 last_unwind_type = 0;
10983 continue;
10984 }
10985
22a8f80e
PB
10986 /* Skip /DISCARD/ sections. */
10987 if (bfd_is_abs_section (exidx_sec->output_section))
10988 continue;
10989
2468f9c9
PB
10990 hdr = &elf_section_data (exidx_sec)->this_hdr;
10991 if (hdr->sh_type != SHT_ARM_EXIDX)
99059e56 10992 continue;
b38cadfb 10993
2468f9c9
PB
10994 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10995 if (exidx_arm_data == NULL)
99059e56 10996 continue;
b38cadfb 10997
2468f9c9 10998 ibfd = exidx_sec->owner;
b38cadfb 10999
2468f9c9
PB
11000 if (hdr->contents != NULL)
11001 contents = hdr->contents;
11002 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
11003 /* An error? */
11004 continue;
11005
11006 for (j = 0; j < hdr->sh_size; j += 8)
11007 {
11008 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
11009 int unwind_type;
11010 int elide = 0;
11011
11012 /* An EXIDX_CANTUNWIND entry. */
11013 if (second_word == 1)
11014 {
11015 if (last_unwind_type == 0)
11016 elide = 1;
11017 unwind_type = 0;
11018 }
11019 /* Inlined unwinding data. Merge if equal to previous. */
11020 else if ((second_word & 0x80000000) != 0)
11021 {
85fdf906
AH
11022 if (merge_exidx_entries
11023 && last_second_word == second_word && last_unwind_type == 1)
2468f9c9
PB
11024 elide = 1;
11025 unwind_type = 1;
11026 last_second_word = second_word;
11027 }
11028 /* Normal table entry. In theory we could merge these too,
11029 but duplicate entries are likely to be much less common. */
11030 else
11031 unwind_type = 2;
11032
11033 if (elide)
11034 {
11035 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
11036 DELETE_EXIDX_ENTRY, NULL, j / 8);
11037
11038 deleted_exidx_bytes += 8;
11039 }
11040
11041 last_unwind_type = unwind_type;
11042 }
11043
11044 /* Free contents if we allocated it ourselves. */
11045 if (contents != hdr->contents)
99059e56 11046 free (contents);
2468f9c9
PB
11047
11048 /* Record edits to be applied later (in elf32_arm_write_section). */
11049 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
11050 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
b38cadfb 11051
2468f9c9
PB
11052 if (deleted_exidx_bytes > 0)
11053 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
11054
11055 last_exidx_sec = exidx_sec;
11056 last_text_sec = sec;
11057 }
11058
11059 /* Add terminating CANTUNWIND entry. */
11060 if (last_exidx_sec && last_unwind_type != 0)
11061 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11062
11063 return TRUE;
11064}
11065
3e6b1042
DJ
11066static bfd_boolean
11067elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
11068 bfd *ibfd, const char *name)
11069{
11070 asection *sec, *osec;
11071
3d4d4302 11072 sec = bfd_get_linker_section (ibfd, name);
3e6b1042
DJ
11073 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
11074 return TRUE;
11075
11076 osec = sec->output_section;
11077 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
11078 return TRUE;
11079
11080 if (! bfd_set_section_contents (obfd, osec, sec->contents,
11081 sec->output_offset, sec->size))
11082 return FALSE;
11083
11084 return TRUE;
11085}
11086
11087static bfd_boolean
11088elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
11089{
11090 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
fe33d2fa 11091 asection *sec, *osec;
3e6b1042 11092
4dfe6ac6
NC
11093 if (globals == NULL)
11094 return FALSE;
11095
3e6b1042
DJ
11096 /* Invoke the regular ELF backend linker to do all the work. */
11097 if (!bfd_elf_final_link (abfd, info))
11098 return FALSE;
11099
fe33d2fa
CL
11100 /* Process stub sections (eg BE8 encoding, ...). */
11101 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
11102 int i;
cdb21a0a
NS
11103 for (i=0; i<htab->top_id; i++)
11104 {
11105 sec = htab->stub_group[i].stub_sec;
11106 /* Only process it once, in its link_sec slot. */
11107 if (sec && i == htab->stub_group[i].link_sec->id)
11108 {
11109 osec = sec->output_section;
11110 elf32_arm_write_section (abfd, info, sec, sec->contents);
11111 if (! bfd_set_section_contents (abfd, osec, sec->contents,
11112 sec->output_offset, sec->size))
11113 return FALSE;
11114 }
fe33d2fa 11115 }
fe33d2fa 11116
3e6b1042
DJ
11117 /* Write out any glue sections now that we have created all the
11118 stubs. */
11119 if (globals->bfd_of_glue_owner != NULL)
11120 {
11121 if (! elf32_arm_output_glue_section (info, abfd,
11122 globals->bfd_of_glue_owner,
11123 ARM2THUMB_GLUE_SECTION_NAME))
11124 return FALSE;
11125
11126 if (! elf32_arm_output_glue_section (info, abfd,
11127 globals->bfd_of_glue_owner,
11128 THUMB2ARM_GLUE_SECTION_NAME))
11129 return FALSE;
11130
11131 if (! elf32_arm_output_glue_section (info, abfd,
11132 globals->bfd_of_glue_owner,
11133 VFP11_ERRATUM_VENEER_SECTION_NAME))
11134 return FALSE;
11135
11136 if (! elf32_arm_output_glue_section (info, abfd,
11137 globals->bfd_of_glue_owner,
11138 ARM_BX_GLUE_SECTION_NAME))
11139 return FALSE;
11140 }
11141
11142 return TRUE;
11143}
11144
5968a7b8
NC
11145/* Return a best guess for the machine number based on the attributes. */
11146
11147static unsigned int
11148bfd_arm_get_mach_from_attributes (bfd * abfd)
11149{
11150 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11151
11152 switch (arch)
11153 {
11154 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11155 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11156 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11157
11158 case TAG_CPU_ARCH_V5TE:
11159 {
11160 char * name;
11161
11162 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11163 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11164
11165 if (name)
11166 {
11167 if (strcmp (name, "IWMMXT2") == 0)
11168 return bfd_mach_arm_iWMMXt2;
11169
11170 if (strcmp (name, "IWMMXT") == 0)
6034aab8 11171 return bfd_mach_arm_iWMMXt;
088ca6c1
NC
11172
11173 if (strcmp (name, "XSCALE") == 0)
11174 {
11175 int wmmx;
11176
11177 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11178 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11179 switch (wmmx)
11180 {
11181 case 1: return bfd_mach_arm_iWMMXt;
11182 case 2: return bfd_mach_arm_iWMMXt2;
11183 default: return bfd_mach_arm_XScale;
11184 }
11185 }
5968a7b8
NC
11186 }
11187
11188 return bfd_mach_arm_5TE;
11189 }
11190
11191 default:
11192 return bfd_mach_arm_unknown;
11193 }
11194}
11195
c178919b
NC
11196/* Set the right machine number. */
11197
11198static bfd_boolean
57e8b36a 11199elf32_arm_object_p (bfd *abfd)
c178919b 11200{
5a6c6817 11201 unsigned int mach;
57e8b36a 11202
5a6c6817 11203 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
c178919b 11204
5968a7b8
NC
11205 if (mach == bfd_mach_arm_unknown)
11206 {
11207 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11208 mach = bfd_mach_arm_ep9312;
11209 else
11210 mach = bfd_arm_get_mach_from_attributes (abfd);
11211 }
c178919b 11212
5968a7b8 11213 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
c178919b
NC
11214 return TRUE;
11215}
11216
fc830a83 11217/* Function to keep ARM specific flags in the ELF header. */
3c9458e9 11218
b34976b6 11219static bfd_boolean
57e8b36a 11220elf32_arm_set_private_flags (bfd *abfd, flagword flags)
252b5132
RH
11221{
11222 if (elf_flags_init (abfd)
11223 && elf_elfheader (abfd)->e_flags != flags)
11224 {
fc830a83
NC
11225 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11226 {
fd2ec330 11227 if (flags & EF_ARM_INTERWORK)
d003868e
AM
11228 (*_bfd_error_handler)
11229 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11230 abfd);
fc830a83 11231 else
d003868e
AM
11232 _bfd_error_handler
11233 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11234 abfd);
fc830a83 11235 }
252b5132
RH
11236 }
11237 else
11238 {
11239 elf_elfheader (abfd)->e_flags = flags;
b34976b6 11240 elf_flags_init (abfd) = TRUE;
252b5132
RH
11241 }
11242
b34976b6 11243 return TRUE;
252b5132
RH
11244}
11245
fc830a83 11246/* Copy backend specific data from one object module to another. */
9b485d32 11247
b34976b6 11248static bfd_boolean
57e8b36a 11249elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
252b5132
RH
11250{
11251 flagword in_flags;
11252 flagword out_flags;
11253
0ffa91dd 11254 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
b34976b6 11255 return TRUE;
252b5132 11256
fc830a83 11257 in_flags = elf_elfheader (ibfd)->e_flags;
252b5132
RH
11258 out_flags = elf_elfheader (obfd)->e_flags;
11259
fc830a83
NC
11260 if (elf_flags_init (obfd)
11261 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11262 && in_flags != out_flags)
252b5132 11263 {
252b5132 11264 /* Cannot mix APCS26 and APCS32 code. */
fd2ec330 11265 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
b34976b6 11266 return FALSE;
252b5132
RH
11267
11268 /* Cannot mix float APCS and non-float APCS code. */
fd2ec330 11269 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
b34976b6 11270 return FALSE;
252b5132
RH
11271
11272 /* If the src and dest have different interworking flags
99059e56 11273 then turn off the interworking bit. */
fd2ec330 11274 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
252b5132 11275 {
fd2ec330 11276 if (out_flags & EF_ARM_INTERWORK)
d003868e
AM
11277 _bfd_error_handler
11278 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11279 obfd, ibfd);
252b5132 11280
fd2ec330 11281 in_flags &= ~EF_ARM_INTERWORK;
252b5132 11282 }
1006ba19
PB
11283
11284 /* Likewise for PIC, though don't warn for this case. */
fd2ec330
PB
11285 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11286 in_flags &= ~EF_ARM_PIC;
252b5132
RH
11287 }
11288
11289 elf_elfheader (obfd)->e_flags = in_flags;
b34976b6 11290 elf_flags_init (obfd) = TRUE;
252b5132 11291
e2349352 11292 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
ee065d83
PB
11293}
11294
11295/* Values for Tag_ABI_PCS_R9_use. */
11296enum
11297{
11298 AEABI_R9_V6,
11299 AEABI_R9_SB,
11300 AEABI_R9_TLS,
11301 AEABI_R9_unused
11302};
11303
11304/* Values for Tag_ABI_PCS_RW_data. */
11305enum
11306{
11307 AEABI_PCS_RW_data_absolute,
11308 AEABI_PCS_RW_data_PCrel,
11309 AEABI_PCS_RW_data_SBrel,
11310 AEABI_PCS_RW_data_unused
11311};
11312
11313/* Values for Tag_ABI_enum_size. */
11314enum
11315{
11316 AEABI_enum_unused,
11317 AEABI_enum_short,
11318 AEABI_enum_wide,
11319 AEABI_enum_forced_wide
11320};
11321
104d59d1
JM
11322/* Determine whether an object attribute tag takes an integer, a
11323 string or both. */
906e58ca 11324
104d59d1
JM
11325static int
11326elf32_arm_obj_attrs_arg_type (int tag)
11327{
11328 if (tag == Tag_compatibility)
3483fe2e 11329 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
2d0bb761 11330 else if (tag == Tag_nodefaults)
3483fe2e
AS
11331 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11332 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11333 return ATTR_TYPE_FLAG_STR_VAL;
104d59d1 11334 else if (tag < 32)
3483fe2e 11335 return ATTR_TYPE_FLAG_INT_VAL;
104d59d1 11336 else
3483fe2e 11337 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
104d59d1
JM
11338}
11339
5aa6ff7c
AS
11340/* The ABI defines that Tag_conformance should be emitted first, and that
11341 Tag_nodefaults should be second (if either is defined). This sets those
11342 two positions, and bumps up the position of all the remaining tags to
11343 compensate. */
11344static int
11345elf32_arm_obj_attrs_order (int num)
11346{
3de4a297 11347 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
5aa6ff7c 11348 return Tag_conformance;
3de4a297 11349 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
5aa6ff7c
AS
11350 return Tag_nodefaults;
11351 if ((num - 2) < Tag_nodefaults)
11352 return num - 2;
11353 if ((num - 1) < Tag_conformance)
11354 return num - 1;
11355 return num;
11356}
11357
e8b36cd1
JM
11358/* Attribute numbers >=64 (mod 128) can be safely ignored. */
11359static bfd_boolean
11360elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11361{
11362 if ((tag & 127) < 64)
11363 {
11364 _bfd_error_handler
11365 (_("%B: Unknown mandatory EABI object attribute %d"),
11366 abfd, tag);
11367 bfd_set_error (bfd_error_bad_value);
11368 return FALSE;
11369 }
11370 else
11371 {
11372 _bfd_error_handler
11373 (_("Warning: %B: Unknown EABI object attribute %d"),
11374 abfd, tag);
11375 return TRUE;
11376 }
11377}
11378
91e22acd
AS
11379/* Read the architecture from the Tag_also_compatible_with attribute, if any.
11380 Returns -1 if no architecture could be read. */
11381
11382static int
11383get_secondary_compatible_arch (bfd *abfd)
11384{
11385 obj_attribute *attr =
11386 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11387
11388 /* Note: the tag and its argument below are uleb128 values, though
11389 currently-defined values fit in one byte for each. */
11390 if (attr->s
11391 && attr->s[0] == Tag_CPU_arch
11392 && (attr->s[1] & 128) != 128
11393 && attr->s[2] == 0)
11394 return attr->s[1];
11395
11396 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11397 return -1;
11398}
11399
11400/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11401 The tag is removed if ARCH is -1. */
11402
8e79c3df 11403static void
91e22acd 11404set_secondary_compatible_arch (bfd *abfd, int arch)
8e79c3df 11405{
91e22acd
AS
11406 obj_attribute *attr =
11407 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8e79c3df 11408
91e22acd
AS
11409 if (arch == -1)
11410 {
11411 attr->s = NULL;
11412 return;
8e79c3df 11413 }
91e22acd
AS
11414
11415 /* Note: the tag and its argument below are uleb128 values, though
11416 currently-defined values fit in one byte for each. */
11417 if (!attr->s)
21d799b5 11418 attr->s = (char *) bfd_alloc (abfd, 3);
91e22acd
AS
11419 attr->s[0] = Tag_CPU_arch;
11420 attr->s[1] = arch;
11421 attr->s[2] = '\0';
8e79c3df
CM
11422}
11423
91e22acd
AS
11424/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11425 into account. */
11426
11427static int
11428tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11429 int newtag, int secondary_compat)
8e79c3df 11430{
91e22acd
AS
11431#define T(X) TAG_CPU_ARCH_##X
11432 int tagl, tagh, result;
11433 const int v6t2[] =
11434 {
11435 T(V6T2), /* PRE_V4. */
11436 T(V6T2), /* V4. */
11437 T(V6T2), /* V4T. */
11438 T(V6T2), /* V5T. */
11439 T(V6T2), /* V5TE. */
11440 T(V6T2), /* V5TEJ. */
11441 T(V6T2), /* V6. */
11442 T(V7), /* V6KZ. */
11443 T(V6T2) /* V6T2. */
11444 };
11445 const int v6k[] =
11446 {
11447 T(V6K), /* PRE_V4. */
11448 T(V6K), /* V4. */
11449 T(V6K), /* V4T. */
11450 T(V6K), /* V5T. */
11451 T(V6K), /* V5TE. */
11452 T(V6K), /* V5TEJ. */
11453 T(V6K), /* V6. */
11454 T(V6KZ), /* V6KZ. */
11455 T(V7), /* V6T2. */
11456 T(V6K) /* V6K. */
11457 };
11458 const int v7[] =
11459 {
11460 T(V7), /* PRE_V4. */
11461 T(V7), /* V4. */
11462 T(V7), /* V4T. */
11463 T(V7), /* V5T. */
11464 T(V7), /* V5TE. */
11465 T(V7), /* V5TEJ. */
11466 T(V7), /* V6. */
11467 T(V7), /* V6KZ. */
11468 T(V7), /* V6T2. */
11469 T(V7), /* V6K. */
11470 T(V7) /* V7. */
11471 };
11472 const int v6_m[] =
11473 {
11474 -1, /* PRE_V4. */
11475 -1, /* V4. */
11476 T(V6K), /* V4T. */
11477 T(V6K), /* V5T. */
11478 T(V6K), /* V5TE. */
11479 T(V6K), /* V5TEJ. */
11480 T(V6K), /* V6. */
11481 T(V6KZ), /* V6KZ. */
11482 T(V7), /* V6T2. */
11483 T(V6K), /* V6K. */
11484 T(V7), /* V7. */
11485 T(V6_M) /* V6_M. */
11486 };
11487 const int v6s_m[] =
11488 {
11489 -1, /* PRE_V4. */
11490 -1, /* V4. */
11491 T(V6K), /* V4T. */
11492 T(V6K), /* V5T. */
11493 T(V6K), /* V5TE. */
11494 T(V6K), /* V5TEJ. */
11495 T(V6K), /* V6. */
11496 T(V6KZ), /* V6KZ. */
11497 T(V7), /* V6T2. */
11498 T(V6K), /* V6K. */
11499 T(V7), /* V7. */
11500 T(V6S_M), /* V6_M. */
11501 T(V6S_M) /* V6S_M. */
11502 };
9e3c6df6
PB
11503 const int v7e_m[] =
11504 {
11505 -1, /* PRE_V4. */
11506 -1, /* V4. */
11507 T(V7E_M), /* V4T. */
11508 T(V7E_M), /* V5T. */
11509 T(V7E_M), /* V5TE. */
11510 T(V7E_M), /* V5TEJ. */
11511 T(V7E_M), /* V6. */
11512 T(V7E_M), /* V6KZ. */
11513 T(V7E_M), /* V6T2. */
11514 T(V7E_M), /* V6K. */
11515 T(V7E_M), /* V7. */
11516 T(V7E_M), /* V6_M. */
11517 T(V7E_M), /* V6S_M. */
11518 T(V7E_M) /* V7E_M. */
11519 };
bca38921
MGD
11520 const int v8[] =
11521 {
11522 T(V8), /* PRE_V4. */
11523 T(V8), /* V4. */
11524 T(V8), /* V4T. */
11525 T(V8), /* V5T. */
11526 T(V8), /* V5TE. */
11527 T(V8), /* V5TEJ. */
11528 T(V8), /* V6. */
11529 T(V8), /* V6KZ. */
11530 T(V8), /* V6T2. */
11531 T(V8), /* V6K. */
11532 T(V8), /* V7. */
11533 T(V8), /* V6_M. */
11534 T(V8), /* V6S_M. */
11535 T(V8), /* V7E_M. */
11536 T(V8) /* V8. */
11537 };
91e22acd
AS
11538 const int v4t_plus_v6_m[] =
11539 {
11540 -1, /* PRE_V4. */
11541 -1, /* V4. */
11542 T(V4T), /* V4T. */
11543 T(V5T), /* V5T. */
11544 T(V5TE), /* V5TE. */
11545 T(V5TEJ), /* V5TEJ. */
11546 T(V6), /* V6. */
11547 T(V6KZ), /* V6KZ. */
11548 T(V6T2), /* V6T2. */
11549 T(V6K), /* V6K. */
11550 T(V7), /* V7. */
11551 T(V6_M), /* V6_M. */
11552 T(V6S_M), /* V6S_M. */
9e3c6df6 11553 T(V7E_M), /* V7E_M. */
bca38921 11554 T(V8), /* V8. */
91e22acd
AS
11555 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11556 };
11557 const int *comb[] =
11558 {
11559 v6t2,
11560 v6k,
11561 v7,
11562 v6_m,
11563 v6s_m,
9e3c6df6 11564 v7e_m,
bca38921 11565 v8,
91e22acd
AS
11566 /* Pseudo-architecture. */
11567 v4t_plus_v6_m
11568 };
11569
11570 /* Check we've not got a higher architecture than we know about. */
11571
9e3c6df6 11572 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
91e22acd 11573 {
3895f852 11574 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
91e22acd
AS
11575 return -1;
11576 }
11577
11578 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11579
11580 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11581 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11582 oldtag = T(V4T_PLUS_V6_M);
11583
11584 /* And override the new tag if we have a Tag_also_compatible_with on the
11585 input. */
11586
11587 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11588 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11589 newtag = T(V4T_PLUS_V6_M);
11590
11591 tagl = (oldtag < newtag) ? oldtag : newtag;
11592 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11593
11594 /* Architectures before V6KZ add features monotonically. */
11595 if (tagh <= TAG_CPU_ARCH_V6KZ)
11596 return result;
11597
11598 result = comb[tagh - T(V6T2)][tagl];
11599
11600 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11601 as the canonical version. */
11602 if (result == T(V4T_PLUS_V6_M))
11603 {
11604 result = T(V4T);
11605 *secondary_compat_out = T(V6_M);
11606 }
11607 else
11608 *secondary_compat_out = -1;
11609
11610 if (result == -1)
11611 {
3895f852 11612 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
91e22acd
AS
11613 ibfd, oldtag, newtag);
11614 return -1;
11615 }
11616
11617 return result;
11618#undef T
8e79c3df
CM
11619}
11620
ac56ee8f
MGD
11621/* Query attributes object to see if integer divide instructions may be
11622 present in an object. */
11623static bfd_boolean
11624elf32_arm_attributes_accept_div (const obj_attribute *attr)
11625{
11626 int arch = attr[Tag_CPU_arch].i;
11627 int profile = attr[Tag_CPU_arch_profile].i;
11628
11629 switch (attr[Tag_DIV_use].i)
11630 {
11631 case 0:
11632 /* Integer divide allowed if instruction contained in archetecture. */
11633 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11634 return TRUE;
11635 else if (arch >= TAG_CPU_ARCH_V7E_M)
11636 return TRUE;
11637 else
11638 return FALSE;
11639
11640 case 1:
11641 /* Integer divide explicitly prohibited. */
11642 return FALSE;
11643
11644 default:
11645 /* Unrecognised case - treat as allowing divide everywhere. */
11646 case 2:
11647 /* Integer divide allowed in ARM state. */
11648 return TRUE;
11649 }
11650}
11651
11652/* Query attributes object to see if integer divide instructions are
11653 forbidden to be in the object. This is not the inverse of
11654 elf32_arm_attributes_accept_div. */
11655static bfd_boolean
11656elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11657{
11658 return attr[Tag_DIV_use].i == 1;
11659}
11660
ee065d83
PB
11661/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11662 are conflicting attributes. */
906e58ca 11663
ee065d83
PB
11664static bfd_boolean
11665elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11666{
104d59d1
JM
11667 obj_attribute *in_attr;
11668 obj_attribute *out_attr;
ee065d83
PB
11669 /* Some tags have 0 = don't care, 1 = strong requirement,
11670 2 = weak requirement. */
91e22acd 11671 static const int order_021[3] = {0, 2, 1};
ee065d83 11672 int i;
91e22acd 11673 bfd_boolean result = TRUE;
ee065d83 11674
3e6b1042
DJ
11675 /* Skip the linker stubs file. This preserves previous behavior
11676 of accepting unknown attributes in the first input file - but
11677 is that a bug? */
11678 if (ibfd->flags & BFD_LINKER_CREATED)
11679 return TRUE;
11680
104d59d1 11681 if (!elf_known_obj_attributes_proc (obfd)[0].i)
ee065d83
PB
11682 {
11683 /* This is the first object. Copy the attributes. */
104d59d1 11684 _bfd_elf_copy_obj_attributes (ibfd, obfd);
004ae526 11685
cd21e546
MGD
11686 out_attr = elf_known_obj_attributes_proc (obfd);
11687
004ae526
PB
11688 /* Use the Tag_null value to indicate the attributes have been
11689 initialized. */
cd21e546 11690 out_attr[0].i = 1;
004ae526 11691
cd21e546
MGD
11692 /* We do not output objects with Tag_MPextension_use_legacy - we move
11693 the attribute's value to Tag_MPextension_use. */
11694 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11695 {
11696 if (out_attr[Tag_MPextension_use].i != 0
11697 && out_attr[Tag_MPextension_use_legacy].i
99059e56 11698 != out_attr[Tag_MPextension_use].i)
cd21e546
MGD
11699 {
11700 _bfd_error_handler
11701 (_("Error: %B has both the current and legacy "
11702 "Tag_MPextension_use attributes"), ibfd);
11703 result = FALSE;
11704 }
11705
11706 out_attr[Tag_MPextension_use] =
11707 out_attr[Tag_MPextension_use_legacy];
11708 out_attr[Tag_MPextension_use_legacy].type = 0;
11709 out_attr[Tag_MPextension_use_legacy].i = 0;
11710 }
11711
11712 return result;
ee065d83
PB
11713 }
11714
104d59d1
JM
11715 in_attr = elf_known_obj_attributes_proc (ibfd);
11716 out_attr = elf_known_obj_attributes_proc (obfd);
ee065d83
PB
11717 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11718 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11719 {
8e79c3df 11720 /* Ignore mismatches if the object doesn't use floating point. */
ee065d83
PB
11721 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11722 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11723 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11724 {
11725 _bfd_error_handler
3895f852 11726 (_("error: %B uses VFP register arguments, %B does not"),
deddc40b
NS
11727 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11728 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
91e22acd 11729 result = FALSE;
ee065d83
PB
11730 }
11731 }
11732
3de4a297 11733 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
ee065d83
PB
11734 {
11735 /* Merge this attribute with existing attributes. */
11736 switch (i)
11737 {
11738 case Tag_CPU_raw_name:
11739 case Tag_CPU_name:
6a631e86 11740 /* These are merged after Tag_CPU_arch. */
ee065d83
PB
11741 break;
11742
11743 case Tag_ABI_optimization_goals:
11744 case Tag_ABI_FP_optimization_goals:
11745 /* Use the first value seen. */
11746 break;
11747
11748 case Tag_CPU_arch:
91e22acd
AS
11749 {
11750 int secondary_compat = -1, secondary_compat_out = -1;
11751 unsigned int saved_out_attr = out_attr[i].i;
11752 static const char *name_table[] = {
11753 /* These aren't real CPU names, but we can't guess
11754 that from the architecture version alone. */
11755 "Pre v4",
11756 "ARM v4",
11757 "ARM v4T",
11758 "ARM v5T",
11759 "ARM v5TE",
11760 "ARM v5TEJ",
11761 "ARM v6",
11762 "ARM v6KZ",
11763 "ARM v6T2",
11764 "ARM v6K",
11765 "ARM v7",
11766 "ARM v6-M",
bca38921
MGD
11767 "ARM v6S-M",
11768 "ARM v8"
91e22acd
AS
11769 };
11770
11771 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11772 secondary_compat = get_secondary_compatible_arch (ibfd);
11773 secondary_compat_out = get_secondary_compatible_arch (obfd);
11774 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11775 &secondary_compat_out,
11776 in_attr[i].i,
11777 secondary_compat);
11778 set_secondary_compatible_arch (obfd, secondary_compat_out);
11779
11780 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11781 if (out_attr[i].i == saved_out_attr)
11782 ; /* Leave the names alone. */
11783 else if (out_attr[i].i == in_attr[i].i)
11784 {
11785 /* The output architecture has been changed to match the
11786 input architecture. Use the input names. */
11787 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11788 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11789 : NULL;
11790 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11791 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11792 : NULL;
11793 }
11794 else
11795 {
11796 out_attr[Tag_CPU_name].s = NULL;
11797 out_attr[Tag_CPU_raw_name].s = NULL;
11798 }
11799
11800 /* If we still don't have a value for Tag_CPU_name,
11801 make one up now. Tag_CPU_raw_name remains blank. */
11802 if (out_attr[Tag_CPU_name].s == NULL
11803 && out_attr[i].i < ARRAY_SIZE (name_table))
11804 out_attr[Tag_CPU_name].s =
11805 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11806 }
11807 break;
11808
ee065d83
PB
11809 case Tag_ARM_ISA_use:
11810 case Tag_THUMB_ISA_use:
ee065d83 11811 case Tag_WMMX_arch:
91e22acd
AS
11812 case Tag_Advanced_SIMD_arch:
11813 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
ee065d83 11814 case Tag_ABI_FP_rounding:
ee065d83
PB
11815 case Tag_ABI_FP_exceptions:
11816 case Tag_ABI_FP_user_exceptions:
11817 case Tag_ABI_FP_number_model:
75375b3e 11818 case Tag_FP_HP_extension:
91e22acd
AS
11819 case Tag_CPU_unaligned_access:
11820 case Tag_T2EE_use:
91e22acd 11821 case Tag_MPextension_use:
ee065d83
PB
11822 /* Use the largest value specified. */
11823 if (in_attr[i].i > out_attr[i].i)
11824 out_attr[i].i = in_attr[i].i;
11825 break;
11826
75375b3e 11827 case Tag_ABI_align_preserved:
91e22acd
AS
11828 case Tag_ABI_PCS_RO_data:
11829 /* Use the smallest value specified. */
11830 if (in_attr[i].i < out_attr[i].i)
11831 out_attr[i].i = in_attr[i].i;
11832 break;
11833
75375b3e 11834 case Tag_ABI_align_needed:
91e22acd 11835 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
75375b3e
MGD
11836 && (in_attr[Tag_ABI_align_preserved].i == 0
11837 || out_attr[Tag_ABI_align_preserved].i == 0))
ee065d83 11838 {
91e22acd
AS
11839 /* This error message should be enabled once all non-conformant
11840 binaries in the toolchain have had the attributes set
11841 properly.
ee065d83 11842 _bfd_error_handler
3895f852 11843 (_("error: %B: 8-byte data alignment conflicts with %B"),
91e22acd
AS
11844 obfd, ibfd);
11845 result = FALSE; */
ee065d83 11846 }
91e22acd
AS
11847 /* Fall through. */
11848 case Tag_ABI_FP_denormal:
11849 case Tag_ABI_PCS_GOT_use:
11850 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11851 value if greater than 2 (for future-proofing). */
11852 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11853 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11854 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
ee065d83
PB
11855 out_attr[i].i = in_attr[i].i;
11856 break;
91e22acd 11857
75375b3e
MGD
11858 case Tag_Virtualization_use:
11859 /* The virtualization tag effectively stores two bits of
11860 information: the intended use of TrustZone (in bit 0), and the
11861 intended use of Virtualization (in bit 1). */
11862 if (out_attr[i].i == 0)
11863 out_attr[i].i = in_attr[i].i;
11864 else if (in_attr[i].i != 0
11865 && in_attr[i].i != out_attr[i].i)
11866 {
11867 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11868 out_attr[i].i = 3;
11869 else
11870 {
11871 _bfd_error_handler
11872 (_("error: %B: unable to merge virtualization attributes "
11873 "with %B"),
11874 obfd, ibfd);
11875 result = FALSE;
11876 }
11877 }
11878 break;
91e22acd
AS
11879
11880 case Tag_CPU_arch_profile:
11881 if (out_attr[i].i != in_attr[i].i)
11882 {
11883 /* 0 will merge with anything.
11884 'A' and 'S' merge to 'A'.
11885 'R' and 'S' merge to 'R'.
99059e56 11886 'M' and 'A|R|S' is an error. */
91e22acd
AS
11887 if (out_attr[i].i == 0
11888 || (out_attr[i].i == 'S'
11889 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11890 out_attr[i].i = in_attr[i].i;
11891 else if (in_attr[i].i == 0
11892 || (in_attr[i].i == 'S'
11893 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
6a631e86 11894 ; /* Do nothing. */
91e22acd
AS
11895 else
11896 {
11897 _bfd_error_handler
3895f852 11898 (_("error: %B: Conflicting architecture profiles %c/%c"),
91e22acd
AS
11899 ibfd,
11900 in_attr[i].i ? in_attr[i].i : '0',
11901 out_attr[i].i ? out_attr[i].i : '0');
11902 result = FALSE;
11903 }
11904 }
11905 break;
75375b3e 11906 case Tag_FP_arch:
62f3b8c8 11907 {
4547cb56
NC
11908 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11909 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11910 when it's 0. It might mean absence of FP hardware if
11911 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11912
bca38921 11913#define VFP_VERSION_COUNT 8
62f3b8c8
PB
11914 static const struct
11915 {
11916 int ver;
11917 int regs;
bca38921 11918 } vfp_versions[VFP_VERSION_COUNT] =
62f3b8c8
PB
11919 {
11920 {0, 0},
11921 {1, 16},
11922 {2, 16},
11923 {3, 32},
11924 {3, 16},
11925 {4, 32},
bca38921
MGD
11926 {4, 16},
11927 {8, 32}
62f3b8c8
PB
11928 };
11929 int ver;
11930 int regs;
11931 int newval;
11932
4547cb56
NC
11933 /* If the output has no requirement about FP hardware,
11934 follow the requirement of the input. */
11935 if (out_attr[i].i == 0)
11936 {
11937 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11938 out_attr[i].i = in_attr[i].i;
11939 out_attr[Tag_ABI_HardFP_use].i
11940 = in_attr[Tag_ABI_HardFP_use].i;
11941 break;
11942 }
11943 /* If the input has no requirement about FP hardware, do
11944 nothing. */
11945 else if (in_attr[i].i == 0)
11946 {
11947 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11948 break;
11949 }
11950
11951 /* Both the input and the output have nonzero Tag_FP_arch.
11952 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11953
11954 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11955 do nothing. */
11956 if (in_attr[Tag_ABI_HardFP_use].i == 0
11957 && out_attr[Tag_ABI_HardFP_use].i == 0)
11958 ;
11959 /* If the input and the output have different Tag_ABI_HardFP_use,
11960 the combination of them is 3 (SP & DP). */
11961 else if (in_attr[Tag_ABI_HardFP_use].i
11962 != out_attr[Tag_ABI_HardFP_use].i)
11963 out_attr[Tag_ABI_HardFP_use].i = 3;
11964
11965 /* Now we can handle Tag_FP_arch. */
11966
bca38921
MGD
11967 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
11968 pick the biggest. */
11969 if (in_attr[i].i >= VFP_VERSION_COUNT
11970 && in_attr[i].i > out_attr[i].i)
62f3b8c8
PB
11971 {
11972 out_attr[i] = in_attr[i];
11973 break;
11974 }
11975 /* The output uses the superset of input features
11976 (ISA version) and registers. */
11977 ver = vfp_versions[in_attr[i].i].ver;
11978 if (ver < vfp_versions[out_attr[i].i].ver)
11979 ver = vfp_versions[out_attr[i].i].ver;
11980 regs = vfp_versions[in_attr[i].i].regs;
11981 if (regs < vfp_versions[out_attr[i].i].regs)
11982 regs = vfp_versions[out_attr[i].i].regs;
11983 /* This assumes all possible supersets are also a valid
99059e56 11984 options. */
bca38921 11985 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
62f3b8c8
PB
11986 {
11987 if (regs == vfp_versions[newval].regs
11988 && ver == vfp_versions[newval].ver)
11989 break;
11990 }
11991 out_attr[i].i = newval;
11992 }
b1cc4aeb 11993 break;
ee065d83
PB
11994 case Tag_PCS_config:
11995 if (out_attr[i].i == 0)
11996 out_attr[i].i = in_attr[i].i;
b6009aca 11997 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
ee065d83
PB
11998 {
11999 /* It's sometimes ok to mix different configs, so this is only
99059e56 12000 a warning. */
ee065d83
PB
12001 _bfd_error_handler
12002 (_("Warning: %B: Conflicting platform configuration"), ibfd);
12003 }
12004 break;
12005 case Tag_ABI_PCS_R9_use:
004ae526
PB
12006 if (in_attr[i].i != out_attr[i].i
12007 && out_attr[i].i != AEABI_R9_unused
ee065d83
PB
12008 && in_attr[i].i != AEABI_R9_unused)
12009 {
12010 _bfd_error_handler
3895f852 12011 (_("error: %B: Conflicting use of R9"), ibfd);
91e22acd 12012 result = FALSE;
ee065d83
PB
12013 }
12014 if (out_attr[i].i == AEABI_R9_unused)
12015 out_attr[i].i = in_attr[i].i;
12016 break;
12017 case Tag_ABI_PCS_RW_data:
12018 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
12019 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
12020 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
12021 {
12022 _bfd_error_handler
3895f852 12023 (_("error: %B: SB relative addressing conflicts with use of R9"),
ee065d83 12024 ibfd);
91e22acd 12025 result = FALSE;
ee065d83
PB
12026 }
12027 /* Use the smallest value specified. */
12028 if (in_attr[i].i < out_attr[i].i)
12029 out_attr[i].i = in_attr[i].i;
12030 break;
ee065d83 12031 case Tag_ABI_PCS_wchar_t:
a9dc9481
JM
12032 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
12033 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
ee065d83
PB
12034 {
12035 _bfd_error_handler
a9dc9481
JM
12036 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
12037 ibfd, in_attr[i].i, out_attr[i].i);
ee065d83 12038 }
a9dc9481 12039 else if (in_attr[i].i && !out_attr[i].i)
ee065d83
PB
12040 out_attr[i].i = in_attr[i].i;
12041 break;
ee065d83
PB
12042 case Tag_ABI_enum_size:
12043 if (in_attr[i].i != AEABI_enum_unused)
12044 {
12045 if (out_attr[i].i == AEABI_enum_unused
12046 || out_attr[i].i == AEABI_enum_forced_wide)
12047 {
12048 /* The existing object is compatible with anything.
12049 Use whatever requirements the new object has. */
12050 out_attr[i].i = in_attr[i].i;
12051 }
12052 else if (in_attr[i].i != AEABI_enum_forced_wide
bf21ed78 12053 && out_attr[i].i != in_attr[i].i
0ffa91dd 12054 && !elf_arm_tdata (obfd)->no_enum_size_warning)
ee065d83 12055 {
91e22acd 12056 static const char *aeabi_enum_names[] =
bf21ed78 12057 { "", "variable-size", "32-bit", "" };
91e22acd
AS
12058 const char *in_name =
12059 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12060 ? aeabi_enum_names[in_attr[i].i]
12061 : "<unknown>";
12062 const char *out_name =
12063 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12064 ? aeabi_enum_names[out_attr[i].i]
12065 : "<unknown>";
ee065d83 12066 _bfd_error_handler
bf21ed78 12067 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
91e22acd 12068 ibfd, in_name, out_name);
ee065d83
PB
12069 }
12070 }
12071 break;
12072 case Tag_ABI_VFP_args:
12073 /* Aready done. */
12074 break;
12075 case Tag_ABI_WMMX_args:
12076 if (in_attr[i].i != out_attr[i].i)
12077 {
12078 _bfd_error_handler
3895f852 12079 (_("error: %B uses iWMMXt register arguments, %B does not"),
ee065d83 12080 ibfd, obfd);
91e22acd 12081 result = FALSE;
ee065d83
PB
12082 }
12083 break;
7b86a9fa
AS
12084 case Tag_compatibility:
12085 /* Merged in target-independent code. */
12086 break;
91e22acd 12087 case Tag_ABI_HardFP_use:
4547cb56 12088 /* This is handled along with Tag_FP_arch. */
91e22acd
AS
12089 break;
12090 case Tag_ABI_FP_16bit_format:
12091 if (in_attr[i].i != 0 && out_attr[i].i != 0)
12092 {
12093 if (in_attr[i].i != out_attr[i].i)
12094 {
12095 _bfd_error_handler
3895f852 12096 (_("error: fp16 format mismatch between %B and %B"),
91e22acd
AS
12097 ibfd, obfd);
12098 result = FALSE;
12099 }
12100 }
12101 if (in_attr[i].i != 0)
12102 out_attr[i].i = in_attr[i].i;
12103 break;
7b86a9fa 12104
cd21e546 12105 case Tag_DIV_use:
ac56ee8f
MGD
12106 /* A value of zero on input means that the divide instruction may
12107 be used if available in the base architecture as specified via
12108 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
12109 the user did not want divide instructions. A value of 2
12110 explicitly means that divide instructions were allowed in ARM
12111 and Thumb state. */
12112 if (in_attr[i].i == out_attr[i].i)
12113 /* Do nothing. */ ;
12114 else if (elf32_arm_attributes_forbid_div (in_attr)
12115 && !elf32_arm_attributes_accept_div (out_attr))
12116 out_attr[i].i = 1;
12117 else if (elf32_arm_attributes_forbid_div (out_attr)
12118 && elf32_arm_attributes_accept_div (in_attr))
12119 out_attr[i].i = in_attr[i].i;
12120 else if (in_attr[i].i == 2)
12121 out_attr[i].i = in_attr[i].i;
cd21e546
MGD
12122 break;
12123
12124 case Tag_MPextension_use_legacy:
12125 /* We don't output objects with Tag_MPextension_use_legacy - we
12126 move the value to Tag_MPextension_use. */
12127 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
12128 {
12129 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
12130 {
12131 _bfd_error_handler
12132 (_("%B has has both the current and legacy "
b38cadfb 12133 "Tag_MPextension_use attributes"),
cd21e546
MGD
12134 ibfd);
12135 result = FALSE;
12136 }
12137 }
12138
12139 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
12140 out_attr[Tag_MPextension_use] = in_attr[i];
12141
12142 break;
12143
91e22acd 12144 case Tag_nodefaults:
2d0bb761
AS
12145 /* This tag is set if it exists, but the value is unused (and is
12146 typically zero). We don't actually need to do anything here -
12147 the merge happens automatically when the type flags are merged
12148 below. */
91e22acd
AS
12149 break;
12150 case Tag_also_compatible_with:
12151 /* Already done in Tag_CPU_arch. */
12152 break;
12153 case Tag_conformance:
12154 /* Keep the attribute if it matches. Throw it away otherwise.
12155 No attribute means no claim to conform. */
12156 if (!in_attr[i].s || !out_attr[i].s
12157 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12158 out_attr[i].s = NULL;
12159 break;
3cfad14c 12160
91e22acd 12161 default:
e8b36cd1
JM
12162 result
12163 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
91e22acd
AS
12164 }
12165
12166 /* If out_attr was copied from in_attr then it won't have a type yet. */
12167 if (in_attr[i].type && !out_attr[i].type)
12168 out_attr[i].type = in_attr[i].type;
ee065d83
PB
12169 }
12170
104d59d1 12171 /* Merge Tag_compatibility attributes and any common GNU ones. */
5488d830
MGD
12172 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
12173 return FALSE;
ee065d83 12174
104d59d1 12175 /* Check for any attributes not known on ARM. */
e8b36cd1 12176 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
91e22acd 12177
91e22acd 12178 return result;
252b5132
RH
12179}
12180
3a4a14e9
PB
12181
12182/* Return TRUE if the two EABI versions are incompatible. */
12183
12184static bfd_boolean
12185elf32_arm_versions_compatible (unsigned iver, unsigned over)
12186{
12187 /* v4 and v5 are the same spec before and after it was released,
12188 so allow mixing them. */
12189 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
12190 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
12191 return TRUE;
12192
12193 return (iver == over);
12194}
12195
252b5132
RH
12196/* Merge backend specific data from an object file to the output
12197 object file when linking. */
9b485d32 12198
b34976b6 12199static bfd_boolean
21d799b5 12200elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
252b5132 12201
9b485d32
NC
12202/* Display the flags field. */
12203
b34976b6 12204static bfd_boolean
57e8b36a 12205elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
252b5132 12206{
fc830a83
NC
12207 FILE * file = (FILE *) ptr;
12208 unsigned long flags;
252b5132
RH
12209
12210 BFD_ASSERT (abfd != NULL && ptr != NULL);
12211
12212 /* Print normal ELF private data. */
12213 _bfd_elf_print_private_bfd_data (abfd, ptr);
12214
fc830a83 12215 flags = elf_elfheader (abfd)->e_flags;
9b485d32
NC
12216 /* Ignore init flag - it may not be set, despite the flags field
12217 containing valid data. */
252b5132
RH
12218
12219 /* xgettext:c-format */
9b485d32 12220 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132 12221
fc830a83
NC
12222 switch (EF_ARM_EABI_VERSION (flags))
12223 {
12224 case EF_ARM_EABI_UNKNOWN:
4cc11e76 12225 /* The following flag bits are GNU extensions and not part of the
fc830a83
NC
12226 official ARM ELF extended ABI. Hence they are only decoded if
12227 the EABI version is not set. */
fd2ec330 12228 if (flags & EF_ARM_INTERWORK)
9b485d32 12229 fprintf (file, _(" [interworking enabled]"));
9a5aca8c 12230
fd2ec330 12231 if (flags & EF_ARM_APCS_26)
6c571f00 12232 fprintf (file, " [APCS-26]");
fc830a83 12233 else
6c571f00 12234 fprintf (file, " [APCS-32]");
9a5aca8c 12235
96a846ea
RE
12236 if (flags & EF_ARM_VFP_FLOAT)
12237 fprintf (file, _(" [VFP float format]"));
fde78edd
NC
12238 else if (flags & EF_ARM_MAVERICK_FLOAT)
12239 fprintf (file, _(" [Maverick float format]"));
96a846ea
RE
12240 else
12241 fprintf (file, _(" [FPA float format]"));
12242
fd2ec330 12243 if (flags & EF_ARM_APCS_FLOAT)
9b485d32 12244 fprintf (file, _(" [floats passed in float registers]"));
9a5aca8c 12245
fd2ec330 12246 if (flags & EF_ARM_PIC)
9b485d32 12247 fprintf (file, _(" [position independent]"));
fc830a83 12248
fd2ec330 12249 if (flags & EF_ARM_NEW_ABI)
9b485d32 12250 fprintf (file, _(" [new ABI]"));
9a5aca8c 12251
fd2ec330 12252 if (flags & EF_ARM_OLD_ABI)
9b485d32 12253 fprintf (file, _(" [old ABI]"));
9a5aca8c 12254
fd2ec330 12255 if (flags & EF_ARM_SOFT_FLOAT)
9b485d32 12256 fprintf (file, _(" [software FP]"));
9a5aca8c 12257
96a846ea
RE
12258 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12259 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
fde78edd
NC
12260 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12261 | EF_ARM_MAVERICK_FLOAT);
fc830a83 12262 break;
9a5aca8c 12263
fc830a83 12264 case EF_ARM_EABI_VER1:
9b485d32 12265 fprintf (file, _(" [Version1 EABI]"));
9a5aca8c 12266
fc830a83 12267 if (flags & EF_ARM_SYMSARESORTED)
9b485d32 12268 fprintf (file, _(" [sorted symbol table]"));
fc830a83 12269 else
9b485d32 12270 fprintf (file, _(" [unsorted symbol table]"));
9a5aca8c 12271
fc830a83
NC
12272 flags &= ~ EF_ARM_SYMSARESORTED;
12273 break;
9a5aca8c 12274
fd2ec330
PB
12275 case EF_ARM_EABI_VER2:
12276 fprintf (file, _(" [Version2 EABI]"));
12277
12278 if (flags & EF_ARM_SYMSARESORTED)
12279 fprintf (file, _(" [sorted symbol table]"));
12280 else
12281 fprintf (file, _(" [unsorted symbol table]"));
12282
12283 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12284 fprintf (file, _(" [dynamic symbols use segment index]"));
12285
12286 if (flags & EF_ARM_MAPSYMSFIRST)
12287 fprintf (file, _(" [mapping symbols precede others]"));
12288
99e4ae17 12289 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
fd2ec330
PB
12290 | EF_ARM_MAPSYMSFIRST);
12291 break;
12292
d507cf36
PB
12293 case EF_ARM_EABI_VER3:
12294 fprintf (file, _(" [Version3 EABI]"));
8cb51566
PB
12295 break;
12296
12297 case EF_ARM_EABI_VER4:
12298 fprintf (file, _(" [Version4 EABI]"));
3a4a14e9 12299 goto eabi;
d507cf36 12300
3a4a14e9
PB
12301 case EF_ARM_EABI_VER5:
12302 fprintf (file, _(" [Version5 EABI]"));
3bfcb652
NC
12303
12304 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12305 fprintf (file, _(" [soft-float ABI]"));
12306
12307 if (flags & EF_ARM_ABI_FLOAT_HARD)
12308 fprintf (file, _(" [hard-float ABI]"));
12309
12310 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12311
3a4a14e9 12312 eabi:
d507cf36
PB
12313 if (flags & EF_ARM_BE8)
12314 fprintf (file, _(" [BE8]"));
12315
12316 if (flags & EF_ARM_LE8)
12317 fprintf (file, _(" [LE8]"));
12318
12319 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12320 break;
12321
fc830a83 12322 default:
9b485d32 12323 fprintf (file, _(" <EABI version unrecognised>"));
fc830a83
NC
12324 break;
12325 }
252b5132 12326
fc830a83 12327 flags &= ~ EF_ARM_EABIMASK;
252b5132 12328
fc830a83 12329 if (flags & EF_ARM_RELEXEC)
9b485d32 12330 fprintf (file, _(" [relocatable executable]"));
252b5132 12331
fc830a83 12332 if (flags & EF_ARM_HASENTRY)
9b485d32 12333 fprintf (file, _(" [has entry point]"));
252b5132 12334
fc830a83
NC
12335 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12336
12337 if (flags)
9b485d32 12338 fprintf (file, _("<Unrecognised flag bits set>"));
9a5aca8c 12339
252b5132
RH
12340 fputc ('\n', file);
12341
b34976b6 12342 return TRUE;
252b5132
RH
12343}
12344
12345static int
57e8b36a 12346elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
252b5132 12347{
2f0ca46a
NC
12348 switch (ELF_ST_TYPE (elf_sym->st_info))
12349 {
12350 case STT_ARM_TFUNC:
12351 return ELF_ST_TYPE (elf_sym->st_info);
ce855c42 12352
2f0ca46a
NC
12353 case STT_ARM_16BIT:
12354 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12355 This allows us to distinguish between data used by Thumb instructions
12356 and non-data (which is probably code) inside Thumb regions of an
12357 executable. */
1a0eb693 12358 if (type != STT_OBJECT && type != STT_TLS)
2f0ca46a
NC
12359 return ELF_ST_TYPE (elf_sym->st_info);
12360 break;
9a5aca8c 12361
ce855c42
NC
12362 default:
12363 break;
2f0ca46a
NC
12364 }
12365
12366 return type;
252b5132 12367}
f21f3fe0 12368
252b5132 12369static asection *
07adf181
AM
12370elf32_arm_gc_mark_hook (asection *sec,
12371 struct bfd_link_info *info,
12372 Elf_Internal_Rela *rel,
12373 struct elf_link_hash_entry *h,
12374 Elf_Internal_Sym *sym)
252b5132
RH
12375{
12376 if (h != NULL)
07adf181 12377 switch (ELF32_R_TYPE (rel->r_info))
252b5132
RH
12378 {
12379 case R_ARM_GNU_VTINHERIT:
12380 case R_ARM_GNU_VTENTRY:
07adf181
AM
12381 return NULL;
12382 }
9ad5cbcf 12383
07adf181 12384 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
12385}
12386
780a67af
NC
12387/* Update the got entry reference counts for the section being removed. */
12388
b34976b6 12389static bfd_boolean
ba93b8ac
DJ
12390elf32_arm_gc_sweep_hook (bfd * abfd,
12391 struct bfd_link_info * info,
12392 asection * sec,
12393 const Elf_Internal_Rela * relocs)
252b5132 12394{
5e681ec4
PB
12395 Elf_Internal_Shdr *symtab_hdr;
12396 struct elf_link_hash_entry **sym_hashes;
12397 bfd_signed_vma *local_got_refcounts;
12398 const Elf_Internal_Rela *rel, *relend;
eb043451
PB
12399 struct elf32_arm_link_hash_table * globals;
12400
7dda2462
TG
12401 if (info->relocatable)
12402 return TRUE;
12403
eb043451 12404 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
12405 if (globals == NULL)
12406 return FALSE;
5e681ec4
PB
12407
12408 elf_section_data (sec)->local_dynrel = NULL;
12409
0ffa91dd 12410 symtab_hdr = & elf_symtab_hdr (abfd);
5e681ec4
PB
12411 sym_hashes = elf_sym_hashes (abfd);
12412 local_got_refcounts = elf_local_got_refcounts (abfd);
12413
906e58ca 12414 check_use_blx (globals);
bd97cb95 12415
5e681ec4
PB
12416 relend = relocs + sec->reloc_count;
12417 for (rel = relocs; rel < relend; rel++)
eb043451 12418 {
3eb128b2
AM
12419 unsigned long r_symndx;
12420 struct elf_link_hash_entry *h = NULL;
f6e32f6d 12421 struct elf32_arm_link_hash_entry *eh;
eb043451 12422 int r_type;
34e77a92 12423 bfd_boolean call_reloc_p;
f6e32f6d
RS
12424 bfd_boolean may_become_dynamic_p;
12425 bfd_boolean may_need_local_target_p;
34e77a92
RS
12426 union gotplt_union *root_plt;
12427 struct arm_plt_info *arm_plt;
5e681ec4 12428
3eb128b2
AM
12429 r_symndx = ELF32_R_SYM (rel->r_info);
12430 if (r_symndx >= symtab_hdr->sh_info)
12431 {
12432 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12433 while (h->root.type == bfd_link_hash_indirect
12434 || h->root.type == bfd_link_hash_warning)
12435 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12436 }
f6e32f6d
RS
12437 eh = (struct elf32_arm_link_hash_entry *) h;
12438
34e77a92 12439 call_reloc_p = FALSE;
f6e32f6d
RS
12440 may_become_dynamic_p = FALSE;
12441 may_need_local_target_p = FALSE;
3eb128b2 12442
eb043451 12443 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 12444 r_type = arm_real_reloc_type (globals, r_type);
eb043451
PB
12445 switch (r_type)
12446 {
12447 case R_ARM_GOT32:
eb043451 12448 case R_ARM_GOT_PREL:
ba93b8ac
DJ
12449 case R_ARM_TLS_GD32:
12450 case R_ARM_TLS_IE32:
3eb128b2 12451 if (h != NULL)
eb043451 12452 {
eb043451
PB
12453 if (h->got.refcount > 0)
12454 h->got.refcount -= 1;
12455 }
12456 else if (local_got_refcounts != NULL)
12457 {
12458 if (local_got_refcounts[r_symndx] > 0)
12459 local_got_refcounts[r_symndx] -= 1;
12460 }
12461 break;
12462
ba93b8ac 12463 case R_ARM_TLS_LDM32:
4dfe6ac6 12464 globals->tls_ldm_got.refcount -= 1;
ba93b8ac
DJ
12465 break;
12466
eb043451
PB
12467 case R_ARM_PC24:
12468 case R_ARM_PLT32:
5b5bb741
PB
12469 case R_ARM_CALL:
12470 case R_ARM_JUMP24:
eb043451 12471 case R_ARM_PREL31:
c19d1205 12472 case R_ARM_THM_CALL:
bd97cb95
DJ
12473 case R_ARM_THM_JUMP24:
12474 case R_ARM_THM_JUMP19:
34e77a92 12475 call_reloc_p = TRUE;
f6e32f6d
RS
12476 may_need_local_target_p = TRUE;
12477 break;
12478
12479 case R_ARM_ABS12:
12480 if (!globals->vxworks_p)
12481 {
12482 may_need_local_target_p = TRUE;
12483 break;
12484 }
12485 /* Fall through. */
12486 case R_ARM_ABS32:
12487 case R_ARM_ABS32_NOI:
12488 case R_ARM_REL32:
12489 case R_ARM_REL32_NOI:
b6895b4f
PB
12490 case R_ARM_MOVW_ABS_NC:
12491 case R_ARM_MOVT_ABS:
12492 case R_ARM_MOVW_PREL_NC:
12493 case R_ARM_MOVT_PREL:
12494 case R_ARM_THM_MOVW_ABS_NC:
12495 case R_ARM_THM_MOVT_ABS:
12496 case R_ARM_THM_MOVW_PREL_NC:
12497 case R_ARM_THM_MOVT_PREL:
b7693d02 12498 /* Should the interworking branches be here also? */
f6e32f6d 12499 if ((info->shared || globals->root.is_relocatable_executable)
34e77a92
RS
12500 && (sec->flags & SEC_ALLOC) != 0)
12501 {
12502 if (h == NULL
469a3493 12503 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
12504 {
12505 call_reloc_p = TRUE;
12506 may_need_local_target_p = TRUE;
12507 }
12508 else
12509 may_become_dynamic_p = TRUE;
12510 }
f6e32f6d
RS
12511 else
12512 may_need_local_target_p = TRUE;
12513 break;
b7693d02 12514
f6e32f6d
RS
12515 default:
12516 break;
12517 }
5e681ec4 12518
34e77a92
RS
12519 if (may_need_local_target_p
12520 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
f6e32f6d 12521 {
27586251
HPN
12522 /* If PLT refcount book-keeping is wrong and too low, we'll
12523 see a zero value (going to -1) for the root PLT reference
12524 count. */
12525 if (root_plt->refcount >= 0)
12526 {
12527 BFD_ASSERT (root_plt->refcount != 0);
12528 root_plt->refcount -= 1;
12529 }
12530 else
12531 /* A value of -1 means the symbol has become local, forced
12532 or seeing a hidden definition. Any other negative value
12533 is an error. */
12534 BFD_ASSERT (root_plt->refcount == -1);
34e77a92
RS
12535
12536 if (!call_reloc_p)
12537 arm_plt->noncall_refcount--;
5e681ec4 12538
f6e32f6d 12539 if (r_type == R_ARM_THM_CALL)
34e77a92 12540 arm_plt->maybe_thumb_refcount--;
bd97cb95 12541
f6e32f6d
RS
12542 if (r_type == R_ARM_THM_JUMP24
12543 || r_type == R_ARM_THM_JUMP19)
34e77a92 12544 arm_plt->thumb_refcount--;
f6e32f6d 12545 }
5e681ec4 12546
34e77a92 12547 if (may_become_dynamic_p)
f6e32f6d
RS
12548 {
12549 struct elf_dyn_relocs **pp;
12550 struct elf_dyn_relocs *p;
5e681ec4 12551
34e77a92 12552 if (h != NULL)
9c489990 12553 pp = &(eh->dyn_relocs);
34e77a92
RS
12554 else
12555 {
12556 Elf_Internal_Sym *isym;
12557
12558 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12559 abfd, r_symndx);
12560 if (isym == NULL)
12561 return FALSE;
12562 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12563 if (pp == NULL)
12564 return FALSE;
12565 }
9c489990 12566 for (; (p = *pp) != NULL; pp = &p->next)
f6e32f6d
RS
12567 if (p->sec == sec)
12568 {
12569 /* Everything must go for SEC. */
12570 *pp = p->next;
12571 break;
12572 }
eb043451
PB
12573 }
12574 }
5e681ec4 12575
b34976b6 12576 return TRUE;
252b5132
RH
12577}
12578
780a67af
NC
12579/* Look through the relocs for a section during the first phase. */
12580
b34976b6 12581static bfd_boolean
57e8b36a
NC
12582elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12583 asection *sec, const Elf_Internal_Rela *relocs)
252b5132 12584{
b34976b6
AM
12585 Elf_Internal_Shdr *symtab_hdr;
12586 struct elf_link_hash_entry **sym_hashes;
b34976b6
AM
12587 const Elf_Internal_Rela *rel;
12588 const Elf_Internal_Rela *rel_end;
12589 bfd *dynobj;
5e681ec4 12590 asection *sreloc;
5e681ec4 12591 struct elf32_arm_link_hash_table *htab;
f6e32f6d
RS
12592 bfd_boolean call_reloc_p;
12593 bfd_boolean may_become_dynamic_p;
12594 bfd_boolean may_need_local_target_p;
ce98a316 12595 unsigned long nsyms;
9a5aca8c 12596
1049f94e 12597 if (info->relocatable)
b34976b6 12598 return TRUE;
9a5aca8c 12599
0ffa91dd
NC
12600 BFD_ASSERT (is_arm_elf (abfd));
12601
5e681ec4 12602 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
12603 if (htab == NULL)
12604 return FALSE;
12605
5e681ec4 12606 sreloc = NULL;
9a5aca8c 12607
67687978
PB
12608 /* Create dynamic sections for relocatable executables so that we can
12609 copy relocations. */
12610 if (htab->root.is_relocatable_executable
12611 && ! htab->root.dynamic_sections_created)
12612 {
12613 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12614 return FALSE;
12615 }
12616
cbc704f3
RS
12617 if (htab->root.dynobj == NULL)
12618 htab->root.dynobj = abfd;
34e77a92
RS
12619 if (!create_ifunc_sections (info))
12620 return FALSE;
cbc704f3
RS
12621
12622 dynobj = htab->root.dynobj;
12623
0ffa91dd 12624 symtab_hdr = & elf_symtab_hdr (abfd);
252b5132 12625 sym_hashes = elf_sym_hashes (abfd);
ce98a316 12626 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
b38cadfb 12627
252b5132
RH
12628 rel_end = relocs + sec->reloc_count;
12629 for (rel = relocs; rel < rel_end; rel++)
12630 {
34e77a92 12631 Elf_Internal_Sym *isym;
252b5132 12632 struct elf_link_hash_entry *h;
b7693d02 12633 struct elf32_arm_link_hash_entry *eh;
252b5132 12634 unsigned long r_symndx;
eb043451 12635 int r_type;
9a5aca8c 12636
252b5132 12637 r_symndx = ELF32_R_SYM (rel->r_info);
eb043451 12638 r_type = ELF32_R_TYPE (rel->r_info);
eb043451 12639 r_type = arm_real_reloc_type (htab, r_type);
ba93b8ac 12640
ce98a316
NC
12641 if (r_symndx >= nsyms
12642 /* PR 9934: It is possible to have relocations that do not
12643 refer to symbols, thus it is also possible to have an
12644 object file containing relocations but no symbol table. */
cf35638d 12645 && (r_symndx > STN_UNDEF || nsyms > 0))
ba93b8ac
DJ
12646 {
12647 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
ce98a316 12648 r_symndx);
ba93b8ac
DJ
12649 return FALSE;
12650 }
12651
34e77a92
RS
12652 h = NULL;
12653 isym = NULL;
12654 if (nsyms > 0)
973a3492 12655 {
34e77a92
RS
12656 if (r_symndx < symtab_hdr->sh_info)
12657 {
12658 /* A local symbol. */
12659 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12660 abfd, r_symndx);
12661 if (isym == NULL)
12662 return FALSE;
12663 }
12664 else
12665 {
12666 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12667 while (h->root.type == bfd_link_hash_indirect
12668 || h->root.type == bfd_link_hash_warning)
12669 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
12670
12671 /* PR15323, ref flags aren't set for references in the
12672 same object. */
12673 h->root.non_ir_ref = 1;
34e77a92 12674 }
973a3492 12675 }
9a5aca8c 12676
b7693d02
DJ
12677 eh = (struct elf32_arm_link_hash_entry *) h;
12678
f6e32f6d
RS
12679 call_reloc_p = FALSE;
12680 may_become_dynamic_p = FALSE;
12681 may_need_local_target_p = FALSE;
12682
0855e32b
NS
12683 /* Could be done earlier, if h were already available. */
12684 r_type = elf32_arm_tls_transition (info, r_type, h);
eb043451 12685 switch (r_type)
99059e56 12686 {
5e681ec4 12687 case R_ARM_GOT32:
eb043451 12688 case R_ARM_GOT_PREL:
ba93b8ac
DJ
12689 case R_ARM_TLS_GD32:
12690 case R_ARM_TLS_IE32:
0855e32b
NS
12691 case R_ARM_TLS_GOTDESC:
12692 case R_ARM_TLS_DESCSEQ:
12693 case R_ARM_THM_TLS_DESCSEQ:
12694 case R_ARM_TLS_CALL:
12695 case R_ARM_THM_TLS_CALL:
5e681ec4 12696 /* This symbol requires a global offset table entry. */
ba93b8ac
DJ
12697 {
12698 int tls_type, old_tls_type;
5e681ec4 12699
ba93b8ac
DJ
12700 switch (r_type)
12701 {
12702 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
b38cadfb 12703
ba93b8ac 12704 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
b38cadfb 12705
0855e32b
NS
12706 case R_ARM_TLS_GOTDESC:
12707 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12708 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12709 tls_type = GOT_TLS_GDESC; break;
b38cadfb 12710
ba93b8ac
DJ
12711 default: tls_type = GOT_NORMAL; break;
12712 }
252b5132 12713
eea6dad2
KM
12714 if (!info->executable && (tls_type & GOT_TLS_IE))
12715 info->flags |= DF_STATIC_TLS;
12716
ba93b8ac
DJ
12717 if (h != NULL)
12718 {
12719 h->got.refcount++;
12720 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12721 }
12722 else
12723 {
ba93b8ac 12724 /* This is a global offset table entry for a local symbol. */
34e77a92
RS
12725 if (!elf32_arm_allocate_local_sym_info (abfd))
12726 return FALSE;
12727 elf_local_got_refcounts (abfd)[r_symndx] += 1;
ba93b8ac
DJ
12728 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12729 }
12730
0855e32b 12731 /* If a variable is accessed with both tls methods, two
99059e56 12732 slots may be created. */
0855e32b
NS
12733 if (GOT_TLS_GD_ANY_P (old_tls_type)
12734 && GOT_TLS_GD_ANY_P (tls_type))
12735 tls_type |= old_tls_type;
12736
12737 /* We will already have issued an error message if there
12738 is a TLS/non-TLS mismatch, based on the symbol
12739 type. So just combine any TLS types needed. */
ba93b8ac
DJ
12740 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12741 && tls_type != GOT_NORMAL)
12742 tls_type |= old_tls_type;
12743
0855e32b 12744 /* If the symbol is accessed in both IE and GDESC
99059e56
RM
12745 method, we're able to relax. Turn off the GDESC flag,
12746 without messing up with any other kind of tls types
6a631e86 12747 that may be involved. */
0855e32b
NS
12748 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12749 tls_type &= ~GOT_TLS_GDESC;
12750
ba93b8ac
DJ
12751 if (old_tls_type != tls_type)
12752 {
12753 if (h != NULL)
12754 elf32_arm_hash_entry (h)->tls_type = tls_type;
12755 else
12756 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12757 }
12758 }
8029a119 12759 /* Fall through. */
ba93b8ac
DJ
12760
12761 case R_ARM_TLS_LDM32:
12762 if (r_type == R_ARM_TLS_LDM32)
12763 htab->tls_ldm_got.refcount++;
8029a119 12764 /* Fall through. */
252b5132 12765
c19d1205 12766 case R_ARM_GOTOFF32:
5e681ec4 12767 case R_ARM_GOTPC:
cbc704f3
RS
12768 if (htab->root.sgot == NULL
12769 && !create_got_section (htab->root.dynobj, info))
12770 return FALSE;
252b5132
RH
12771 break;
12772
252b5132 12773 case R_ARM_PC24:
7359ea65 12774 case R_ARM_PLT32:
5b5bb741
PB
12775 case R_ARM_CALL:
12776 case R_ARM_JUMP24:
eb043451 12777 case R_ARM_PREL31:
c19d1205 12778 case R_ARM_THM_CALL:
bd97cb95
DJ
12779 case R_ARM_THM_JUMP24:
12780 case R_ARM_THM_JUMP19:
f6e32f6d
RS
12781 call_reloc_p = TRUE;
12782 may_need_local_target_p = TRUE;
12783 break;
12784
12785 case R_ARM_ABS12:
12786 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12787 ldr __GOTT_INDEX__ offsets. */
12788 if (!htab->vxworks_p)
12789 {
12790 may_need_local_target_p = TRUE;
12791 break;
12792 }
12793 /* Fall through. */
39623e12 12794
96c23d59
JM
12795 case R_ARM_MOVW_ABS_NC:
12796 case R_ARM_MOVT_ABS:
12797 case R_ARM_THM_MOVW_ABS_NC:
12798 case R_ARM_THM_MOVT_ABS:
12799 if (info->shared)
12800 {
12801 (*_bfd_error_handler)
12802 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12803 abfd, elf32_arm_howto_table_1[r_type].name,
12804 (h) ? h->root.root.string : "a local symbol");
12805 bfd_set_error (bfd_error_bad_value);
12806 return FALSE;
12807 }
12808
12809 /* Fall through. */
39623e12
PB
12810 case R_ARM_ABS32:
12811 case R_ARM_ABS32_NOI:
97323ad1
WN
12812 if (h != NULL && info->executable)
12813 {
12814 h->pointer_equality_needed = 1;
12815 }
12816 /* Fall through. */
39623e12
PB
12817 case R_ARM_REL32:
12818 case R_ARM_REL32_NOI:
b6895b4f
PB
12819 case R_ARM_MOVW_PREL_NC:
12820 case R_ARM_MOVT_PREL:
b6895b4f
PB
12821 case R_ARM_THM_MOVW_PREL_NC:
12822 case R_ARM_THM_MOVT_PREL:
39623e12 12823
b7693d02 12824 /* Should the interworking branches be listed here? */
67687978 12825 if ((info->shared || htab->root.is_relocatable_executable)
34e77a92
RS
12826 && (sec->flags & SEC_ALLOC) != 0)
12827 {
12828 if (h == NULL
469a3493 12829 && elf32_arm_howto_from_type (r_type)->pc_relative)
34e77a92
RS
12830 {
12831 /* In shared libraries and relocatable executables,
12832 we treat local relative references as calls;
12833 see the related SYMBOL_CALLS_LOCAL code in
12834 allocate_dynrelocs. */
12835 call_reloc_p = TRUE;
12836 may_need_local_target_p = TRUE;
12837 }
12838 else
12839 /* We are creating a shared library or relocatable
12840 executable, and this is a reloc against a global symbol,
12841 or a non-PC-relative reloc against a local symbol.
12842 We may need to copy the reloc into the output. */
12843 may_become_dynamic_p = TRUE;
12844 }
f6e32f6d
RS
12845 else
12846 may_need_local_target_p = TRUE;
252b5132
RH
12847 break;
12848
99059e56
RM
12849 /* This relocation describes the C++ object vtable hierarchy.
12850 Reconstruct it for later use during GC. */
12851 case R_ARM_GNU_VTINHERIT:
12852 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12853 return FALSE;
12854 break;
12855
12856 /* This relocation describes which C++ vtable entries are actually
12857 used. Record for later use during GC. */
12858 case R_ARM_GNU_VTENTRY:
12859 BFD_ASSERT (h != NULL);
12860 if (h != NULL
12861 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12862 return FALSE;
12863 break;
12864 }
f6e32f6d
RS
12865
12866 if (h != NULL)
12867 {
12868 if (call_reloc_p)
12869 /* We may need a .plt entry if the function this reloc
12870 refers to is in a different object, regardless of the
12871 symbol's type. We can't tell for sure yet, because
12872 something later might force the symbol local. */
12873 h->needs_plt = 1;
12874 else if (may_need_local_target_p)
12875 /* If this reloc is in a read-only section, we might
12876 need a copy reloc. We can't check reliably at this
12877 stage whether the section is read-only, as input
12878 sections have not yet been mapped to output sections.
12879 Tentatively set the flag for now, and correct in
12880 adjust_dynamic_symbol. */
12881 h->non_got_ref = 1;
12882 }
12883
34e77a92
RS
12884 if (may_need_local_target_p
12885 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
f6e32f6d 12886 {
34e77a92
RS
12887 union gotplt_union *root_plt;
12888 struct arm_plt_info *arm_plt;
12889 struct arm_local_iplt_info *local_iplt;
12890
12891 if (h != NULL)
12892 {
12893 root_plt = &h->plt;
12894 arm_plt = &eh->plt;
12895 }
12896 else
12897 {
12898 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12899 if (local_iplt == NULL)
12900 return FALSE;
12901 root_plt = &local_iplt->root;
12902 arm_plt = &local_iplt->arm;
12903 }
12904
f6e32f6d
RS
12905 /* If the symbol is a function that doesn't bind locally,
12906 this relocation will need a PLT entry. */
a8c887dd
NC
12907 if (root_plt->refcount != -1)
12908 root_plt->refcount += 1;
34e77a92
RS
12909
12910 if (!call_reloc_p)
12911 arm_plt->noncall_refcount++;
f6e32f6d
RS
12912
12913 /* It's too early to use htab->use_blx here, so we have to
12914 record possible blx references separately from
12915 relocs that definitely need a thumb stub. */
12916
12917 if (r_type == R_ARM_THM_CALL)
34e77a92 12918 arm_plt->maybe_thumb_refcount += 1;
f6e32f6d
RS
12919
12920 if (r_type == R_ARM_THM_JUMP24
12921 || r_type == R_ARM_THM_JUMP19)
34e77a92 12922 arm_plt->thumb_refcount += 1;
f6e32f6d
RS
12923 }
12924
12925 if (may_become_dynamic_p)
12926 {
12927 struct elf_dyn_relocs *p, **head;
12928
12929 /* Create a reloc section in dynobj. */
12930 if (sreloc == NULL)
12931 {
12932 sreloc = _bfd_elf_make_dynamic_reloc_section
12933 (sec, dynobj, 2, abfd, ! htab->use_rel);
12934
12935 if (sreloc == NULL)
12936 return FALSE;
12937
12938 /* BPABI objects never have dynamic relocations mapped. */
12939 if (htab->symbian_p)
12940 {
12941 flagword flags;
12942
12943 flags = bfd_get_section_flags (dynobj, sreloc);
12944 flags &= ~(SEC_LOAD | SEC_ALLOC);
12945 bfd_set_section_flags (dynobj, sreloc, flags);
12946 }
12947 }
12948
12949 /* If this is a global symbol, count the number of
12950 relocations we need for this symbol. */
12951 if (h != NULL)
12952 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12953 else
12954 {
34e77a92
RS
12955 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12956 if (head == NULL)
f6e32f6d 12957 return FALSE;
f6e32f6d
RS
12958 }
12959
12960 p = *head;
12961 if (p == NULL || p->sec != sec)
12962 {
12963 bfd_size_type amt = sizeof *p;
12964
12965 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12966 if (p == NULL)
12967 return FALSE;
12968 p->next = *head;
12969 *head = p;
12970 p->sec = sec;
12971 p->count = 0;
12972 p->pc_count = 0;
12973 }
12974
469a3493 12975 if (elf32_arm_howto_from_type (r_type)->pc_relative)
f6e32f6d
RS
12976 p->pc_count += 1;
12977 p->count += 1;
12978 }
252b5132 12979 }
f21f3fe0 12980
b34976b6 12981 return TRUE;
252b5132
RH
12982}
12983
6a5bb875
PB
12984/* Unwinding tables are not referenced directly. This pass marks them as
12985 required if the corresponding code section is marked. */
12986
12987static bfd_boolean
906e58ca
NC
12988elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12989 elf_gc_mark_hook_fn gc_mark_hook)
6a5bb875
PB
12990{
12991 bfd *sub;
12992 Elf_Internal_Shdr **elf_shdrp;
12993 bfd_boolean again;
12994
7f6ab9f8
AM
12995 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12996
6a5bb875
PB
12997 /* Marking EH data may cause additional code sections to be marked,
12998 requiring multiple passes. */
12999 again = TRUE;
13000 while (again)
13001 {
13002 again = FALSE;
c72f2fb2 13003 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6a5bb875
PB
13004 {
13005 asection *o;
13006
0ffa91dd 13007 if (! is_arm_elf (sub))
6a5bb875
PB
13008 continue;
13009
13010 elf_shdrp = elf_elfsections (sub);
13011 for (o = sub->sections; o != NULL; o = o->next)
13012 {
13013 Elf_Internal_Shdr *hdr;
0ffa91dd 13014
6a5bb875 13015 hdr = &elf_section_data (o)->this_hdr;
4fbb74a6
AM
13016 if (hdr->sh_type == SHT_ARM_EXIDX
13017 && hdr->sh_link
13018 && hdr->sh_link < elf_numsections (sub)
6a5bb875
PB
13019 && !o->gc_mark
13020 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
13021 {
13022 again = TRUE;
13023 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13024 return FALSE;
13025 }
13026 }
13027 }
13028 }
13029
13030 return TRUE;
13031}
13032
3c9458e9
NC
13033/* Treat mapping symbols as special target symbols. */
13034
13035static bfd_boolean
13036elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
13037{
b0796911
PB
13038 return bfd_is_arm_special_symbol_name (sym->name,
13039 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
3c9458e9
NC
13040}
13041
0367ecfb
NC
13042/* This is a copy of elf_find_function() from elf.c except that
13043 ARM mapping symbols are ignored when looking for function names
13044 and STT_ARM_TFUNC is considered to a function type. */
252b5132 13045
0367ecfb
NC
13046static bfd_boolean
13047arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
13048 asection * section,
13049 asymbol ** symbols,
13050 bfd_vma offset,
13051 const char ** filename_ptr,
13052 const char ** functionname_ptr)
13053{
13054 const char * filename = NULL;
13055 asymbol * func = NULL;
13056 bfd_vma low_func = 0;
13057 asymbol ** p;
252b5132
RH
13058
13059 for (p = symbols; *p != NULL; p++)
13060 {
13061 elf_symbol_type *q;
13062
13063 q = (elf_symbol_type *) *p;
13064
252b5132
RH
13065 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
13066 {
13067 default:
13068 break;
13069 case STT_FILE:
13070 filename = bfd_asymbol_name (&q->symbol);
13071 break;
252b5132
RH
13072 case STT_FUNC:
13073 case STT_ARM_TFUNC:
9d2da7ca 13074 case STT_NOTYPE:
b0796911 13075 /* Skip mapping symbols. */
0367ecfb 13076 if ((q->symbol.flags & BSF_LOCAL)
b0796911
PB
13077 && bfd_is_arm_special_symbol_name (q->symbol.name,
13078 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
0367ecfb
NC
13079 continue;
13080 /* Fall through. */
6b40fcba 13081 if (bfd_get_section (&q->symbol) == section
252b5132
RH
13082 && q->symbol.value >= low_func
13083 && q->symbol.value <= offset)
13084 {
13085 func = (asymbol *) q;
13086 low_func = q->symbol.value;
13087 }
13088 break;
13089 }
13090 }
13091
13092 if (func == NULL)
b34976b6 13093 return FALSE;
252b5132 13094
0367ecfb
NC
13095 if (filename_ptr)
13096 *filename_ptr = filename;
13097 if (functionname_ptr)
13098 *functionname_ptr = bfd_asymbol_name (func);
13099
13100 return TRUE;
906e58ca 13101}
0367ecfb
NC
13102
13103
13104/* Find the nearest line to a particular section and offset, for error
13105 reporting. This code is a duplicate of the code in elf.c, except
13106 that it uses arm_elf_find_function. */
13107
13108static bfd_boolean
13109elf32_arm_find_nearest_line (bfd * abfd,
13110 asection * section,
13111 asymbol ** symbols,
13112 bfd_vma offset,
13113 const char ** filename_ptr,
13114 const char ** functionname_ptr,
13115 unsigned int * line_ptr)
13116{
13117 bfd_boolean found = FALSE;
13118
13119 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
13120
fc28f9aa 13121 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
99059e56 13122 section, symbols, offset,
0367ecfb 13123 filename_ptr, functionname_ptr,
9b8d1a36 13124 line_ptr, NULL, 0,
0367ecfb
NC
13125 & elf_tdata (abfd)->dwarf2_find_line_info))
13126 {
13127 if (!*functionname_ptr)
13128 arm_elf_find_function (abfd, section, symbols, offset,
13129 *filename_ptr ? NULL : filename_ptr,
13130 functionname_ptr);
f21f3fe0 13131
0367ecfb
NC
13132 return TRUE;
13133 }
13134
13135 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
13136 & found, filename_ptr,
13137 functionname_ptr, line_ptr,
13138 & elf_tdata (abfd)->line_info))
13139 return FALSE;
13140
13141 if (found && (*functionname_ptr || *line_ptr))
13142 return TRUE;
13143
13144 if (symbols == NULL)
13145 return FALSE;
13146
13147 if (! arm_elf_find_function (abfd, section, symbols, offset,
13148 filename_ptr, functionname_ptr))
13149 return FALSE;
13150
13151 *line_ptr = 0;
b34976b6 13152 return TRUE;
252b5132
RH
13153}
13154
4ab527b0
FF
13155static bfd_boolean
13156elf32_arm_find_inliner_info (bfd * abfd,
13157 const char ** filename_ptr,
13158 const char ** functionname_ptr,
13159 unsigned int * line_ptr)
13160{
13161 bfd_boolean found;
13162 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13163 functionname_ptr, line_ptr,
13164 & elf_tdata (abfd)->dwarf2_find_line_info);
13165 return found;
13166}
13167
252b5132
RH
13168/* Adjust a symbol defined by a dynamic object and referenced by a
13169 regular object. The current definition is in some section of the
13170 dynamic object, but we're not including those sections. We have to
13171 change the definition to something the rest of the link can
13172 understand. */
13173
b34976b6 13174static bfd_boolean
57e8b36a
NC
13175elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
13176 struct elf_link_hash_entry * h)
252b5132
RH
13177{
13178 bfd * dynobj;
13179 asection * s;
b7693d02 13180 struct elf32_arm_link_hash_entry * eh;
67687978 13181 struct elf32_arm_link_hash_table *globals;
252b5132 13182
67687978 13183 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
13184 if (globals == NULL)
13185 return FALSE;
13186
252b5132
RH
13187 dynobj = elf_hash_table (info)->dynobj;
13188
13189 /* Make sure we know what is going on here. */
13190 BFD_ASSERT (dynobj != NULL
f5385ebf 13191 && (h->needs_plt
34e77a92 13192 || h->type == STT_GNU_IFUNC
f6e332e6 13193 || h->u.weakdef != NULL
f5385ebf
AM
13194 || (h->def_dynamic
13195 && h->ref_regular
13196 && !h->def_regular)));
252b5132 13197
b7693d02
DJ
13198 eh = (struct elf32_arm_link_hash_entry *) h;
13199
252b5132
RH
13200 /* If this is a function, put it in the procedure linkage table. We
13201 will fill in the contents of the procedure linkage table later,
13202 when we know the address of the .got section. */
34e77a92 13203 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
252b5132 13204 {
34e77a92
RS
13205 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13206 symbol binds locally. */
5e681ec4 13207 if (h->plt.refcount <= 0
34e77a92
RS
13208 || (h->type != STT_GNU_IFUNC
13209 && (SYMBOL_CALLS_LOCAL (info, h)
13210 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
13211 && h->root.type == bfd_link_hash_undefweak))))
252b5132
RH
13212 {
13213 /* This case can occur if we saw a PLT32 reloc in an input
5e681ec4
PB
13214 file, but the symbol was never referred to by a dynamic
13215 object, or if all references were garbage collected. In
13216 such a case, we don't actually need to build a procedure
13217 linkage table, and we can just do a PC24 reloc instead. */
13218 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
13219 eh->plt.thumb_refcount = 0;
13220 eh->plt.maybe_thumb_refcount = 0;
13221 eh->plt.noncall_refcount = 0;
f5385ebf 13222 h->needs_plt = 0;
252b5132
RH
13223 }
13224
b34976b6 13225 return TRUE;
252b5132 13226 }
5e681ec4 13227 else
b7693d02
DJ
13228 {
13229 /* It's possible that we incorrectly decided a .plt reloc was
13230 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13231 in check_relocs. We can't decide accurately between function
13232 and non-function syms in check-relocs; Objects loaded later in
13233 the link may change h->type. So fix it now. */
13234 h->plt.offset = (bfd_vma) -1;
34e77a92
RS
13235 eh->plt.thumb_refcount = 0;
13236 eh->plt.maybe_thumb_refcount = 0;
13237 eh->plt.noncall_refcount = 0;
b7693d02 13238 }
252b5132
RH
13239
13240 /* If this is a weak symbol, and there is a real definition, the
13241 processor independent code will have arranged for us to see the
13242 real definition first, and we can just use the same value. */
f6e332e6 13243 if (h->u.weakdef != NULL)
252b5132 13244 {
f6e332e6
AM
13245 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13246 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13247 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13248 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 13249 return TRUE;
252b5132
RH
13250 }
13251
ba93b8ac
DJ
13252 /* If there are no non-GOT references, we do not need a copy
13253 relocation. */
13254 if (!h->non_got_ref)
13255 return TRUE;
13256
252b5132
RH
13257 /* This is a reference to a symbol defined by a dynamic object which
13258 is not a function. */
13259
13260 /* If we are creating a shared library, we must presume that the
13261 only references to the symbol are via the global offset table.
13262 For such cases we need not do anything here; the relocations will
67687978
PB
13263 be handled correctly by relocate_section. Relocatable executables
13264 can reference data in shared objects directly, so we don't need to
13265 do anything here. */
13266 if (info->shared || globals->root.is_relocatable_executable)
b34976b6 13267 return TRUE;
252b5132
RH
13268
13269 /* We must allocate the symbol in our .dynbss section, which will
13270 become part of the .bss section of the executable. There will be
13271 an entry for this symbol in the .dynsym section. The dynamic
13272 object will contain position independent code, so all references
13273 from the dynamic object to this symbol will go through the global
13274 offset table. The dynamic linker will use the .dynsym entry to
13275 determine the address it must put in the global offset table, so
13276 both the dynamic object and the regular object will refer to the
13277 same memory location for the variable. */
3d4d4302 13278 s = bfd_get_linker_section (dynobj, ".dynbss");
252b5132
RH
13279 BFD_ASSERT (s != NULL);
13280
13281 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13282 copy the initial value out of the dynamic object and into the
13283 runtime process image. We need to remember the offset into the
00a97672 13284 .rel(a).bss section we are going to use. */
1d7e9d18 13285 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
252b5132
RH
13286 {
13287 asection *srel;
13288
3d4d4302 13289 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
47beaa6a 13290 elf32_arm_allocate_dynrelocs (info, srel, 1);
f5385ebf 13291 h->needs_copy = 1;
252b5132
RH
13292 }
13293
027297b7 13294 return _bfd_elf_adjust_dynamic_copy (h, s);
252b5132
RH
13295}
13296
5e681ec4
PB
13297/* Allocate space in .plt, .got and associated reloc sections for
13298 dynamic relocs. */
13299
13300static bfd_boolean
47beaa6a 13301allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
5e681ec4
PB
13302{
13303 struct bfd_link_info *info;
13304 struct elf32_arm_link_hash_table *htab;
13305 struct elf32_arm_link_hash_entry *eh;
0bdcacaf 13306 struct elf_dyn_relocs *p;
5e681ec4
PB
13307
13308 if (h->root.type == bfd_link_hash_indirect)
13309 return TRUE;
13310
e6a6bb22
AM
13311 eh = (struct elf32_arm_link_hash_entry *) h;
13312
5e681ec4
PB
13313 info = (struct bfd_link_info *) inf;
13314 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13315 if (htab == NULL)
13316 return FALSE;
5e681ec4 13317
34e77a92 13318 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
5e681ec4
PB
13319 && h->plt.refcount > 0)
13320 {
13321 /* Make sure this symbol is output as a dynamic symbol.
13322 Undefined weak syms won't yet be marked as dynamic. */
13323 if (h->dynindx == -1
f5385ebf 13324 && !h->forced_local)
5e681ec4 13325 {
c152c796 13326 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13327 return FALSE;
13328 }
13329
34e77a92
RS
13330 /* If the call in the PLT entry binds locally, the associated
13331 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13332 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13333 than the .plt section. */
13334 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13335 {
13336 eh->is_iplt = 1;
13337 if (eh->plt.noncall_refcount == 0
13338 && SYMBOL_REFERENCES_LOCAL (info, h))
13339 /* All non-call references can be resolved directly.
13340 This means that they can (and in some cases, must)
13341 resolve directly to the run-time target, rather than
13342 to the PLT. That in turns means that any .got entry
13343 would be equal to the .igot.plt entry, so there's
13344 no point having both. */
13345 h->got.refcount = 0;
13346 }
13347
5e681ec4 13348 if (info->shared
34e77a92 13349 || eh->is_iplt
7359ea65 13350 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5e681ec4 13351 {
34e77a92 13352 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
b7693d02 13353
5e681ec4
PB
13354 /* If this symbol is not defined in a regular file, and we are
13355 not generating a shared library, then set the symbol to this
13356 location in the .plt. This is required to make function
13357 pointers compare as equal between the normal executable and
13358 the shared library. */
13359 if (! info->shared
f5385ebf 13360 && !h->def_regular)
5e681ec4 13361 {
34e77a92 13362 h->root.u.def.section = htab->root.splt;
5e681ec4 13363 h->root.u.def.value = h->plt.offset;
5e681ec4 13364
67d74e43
DJ
13365 /* Make sure the function is not marked as Thumb, in case
13366 it is the target of an ABS32 relocation, which will
13367 point to the PLT entry. */
35fc36a8 13368 h->target_internal = ST_BRANCH_TO_ARM;
67d74e43 13369 }
022f8312 13370
00a97672
RS
13371 /* VxWorks executables have a second set of relocations for
13372 each PLT entry. They go in a separate relocation section,
13373 which is processed by the kernel loader. */
13374 if (htab->vxworks_p && !info->shared)
13375 {
13376 /* There is a relocation for the initial PLT entry:
13377 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13378 if (h->plt.offset == htab->plt_header_size)
47beaa6a 13379 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
00a97672
RS
13380
13381 /* There are two extra relocations for each subsequent
13382 PLT entry: an R_ARM_32 relocation for the GOT entry,
13383 and an R_ARM_32 relocation for the PLT entry. */
47beaa6a 13384 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
00a97672 13385 }
5e681ec4
PB
13386 }
13387 else
13388 {
13389 h->plt.offset = (bfd_vma) -1;
f5385ebf 13390 h->needs_plt = 0;
5e681ec4
PB
13391 }
13392 }
13393 else
13394 {
13395 h->plt.offset = (bfd_vma) -1;
f5385ebf 13396 h->needs_plt = 0;
5e681ec4
PB
13397 }
13398
0855e32b
NS
13399 eh = (struct elf32_arm_link_hash_entry *) h;
13400 eh->tlsdesc_got = (bfd_vma) -1;
13401
5e681ec4
PB
13402 if (h->got.refcount > 0)
13403 {
13404 asection *s;
13405 bfd_boolean dyn;
ba93b8ac
DJ
13406 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13407 int indx;
5e681ec4
PB
13408
13409 /* Make sure this symbol is output as a dynamic symbol.
13410 Undefined weak syms won't yet be marked as dynamic. */
13411 if (h->dynindx == -1
f5385ebf 13412 && !h->forced_local)
5e681ec4 13413 {
c152c796 13414 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13415 return FALSE;
13416 }
13417
e5a52504
MM
13418 if (!htab->symbian_p)
13419 {
362d30a1 13420 s = htab->root.sgot;
e5a52504 13421 h->got.offset = s->size;
ba93b8ac
DJ
13422
13423 if (tls_type == GOT_UNKNOWN)
13424 abort ();
13425
13426 if (tls_type == GOT_NORMAL)
13427 /* Non-TLS symbols need one GOT slot. */
13428 s->size += 4;
13429 else
13430 {
99059e56
RM
13431 if (tls_type & GOT_TLS_GDESC)
13432 {
0855e32b 13433 /* R_ARM_TLS_DESC needs 2 GOT slots. */
99059e56 13434 eh->tlsdesc_got
0855e32b
NS
13435 = (htab->root.sgotplt->size
13436 - elf32_arm_compute_jump_table_size (htab));
99059e56
RM
13437 htab->root.sgotplt->size += 8;
13438 h->got.offset = (bfd_vma) -2;
34e77a92 13439 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 13440 reloc in the middle of .got.plt. */
99059e56
RM
13441 htab->num_tls_desc++;
13442 }
0855e32b 13443
ba93b8ac 13444 if (tls_type & GOT_TLS_GD)
0855e32b
NS
13445 {
13446 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13447 the symbol is both GD and GDESC, got.offset may
13448 have been overwritten. */
13449 h->got.offset = s->size;
13450 s->size += 8;
13451 }
13452
ba93b8ac
DJ
13453 if (tls_type & GOT_TLS_IE)
13454 /* R_ARM_TLS_IE32 needs one GOT slot. */
13455 s->size += 4;
13456 }
13457
e5a52504 13458 dyn = htab->root.dynamic_sections_created;
ba93b8ac
DJ
13459
13460 indx = 0;
13461 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13462 && (!info->shared
13463 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13464 indx = h->dynindx;
13465
13466 if (tls_type != GOT_NORMAL
13467 && (info->shared || indx != 0)
13468 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13469 || h->root.type != bfd_link_hash_undefweak))
13470 {
13471 if (tls_type & GOT_TLS_IE)
47beaa6a 13472 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
13473
13474 if (tls_type & GOT_TLS_GD)
47beaa6a 13475 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 13476
b38cadfb 13477 if (tls_type & GOT_TLS_GDESC)
0855e32b 13478 {
47beaa6a 13479 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
0855e32b
NS
13480 /* GDESC needs a trampoline to jump to. */
13481 htab->tls_trampoline = -1;
13482 }
13483
13484 /* Only GD needs it. GDESC just emits one relocation per
13485 2 entries. */
b38cadfb 13486 if ((tls_type & GOT_TLS_GD) && indx != 0)
47beaa6a 13487 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac 13488 }
6f820c85 13489 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
b436d854
RS
13490 {
13491 if (htab->root.dynamic_sections_created)
13492 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13493 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13494 }
34e77a92
RS
13495 else if (h->type == STT_GNU_IFUNC
13496 && eh->plt.noncall_refcount == 0)
13497 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13498 they all resolve dynamically instead. Reserve room for the
13499 GOT entry's R_ARM_IRELATIVE relocation. */
13500 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
31943882
WN
13501 else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13502 || h->root.type != bfd_link_hash_undefweak))
b436d854 13503 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
47beaa6a 13504 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
e5a52504 13505 }
5e681ec4
PB
13506 }
13507 else
13508 h->got.offset = (bfd_vma) -1;
13509
a4fd1a8e
PB
13510 /* Allocate stubs for exported Thumb functions on v4t. */
13511 if (!htab->use_blx && h->dynindx != -1
0eaedd0e 13512 && h->def_regular
35fc36a8 13513 && h->target_internal == ST_BRANCH_TO_THUMB
a4fd1a8e
PB
13514 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13515 {
13516 struct elf_link_hash_entry * th;
13517 struct bfd_link_hash_entry * bh;
13518 struct elf_link_hash_entry * myh;
13519 char name[1024];
13520 asection *s;
13521 bh = NULL;
13522 /* Create a new symbol to regist the real location of the function. */
13523 s = h->root.u.def.section;
906e58ca 13524 sprintf (name, "__real_%s", h->root.root.string);
a4fd1a8e
PB
13525 _bfd_generic_link_add_one_symbol (info, s->owner,
13526 name, BSF_GLOBAL, s,
13527 h->root.u.def.value,
13528 NULL, TRUE, FALSE, &bh);
13529
13530 myh = (struct elf_link_hash_entry *) bh;
35fc36a8 13531 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
a4fd1a8e 13532 myh->forced_local = 1;
35fc36a8 13533 myh->target_internal = ST_BRANCH_TO_THUMB;
a4fd1a8e
PB
13534 eh->export_glue = myh;
13535 th = record_arm_to_thumb_glue (info, h);
13536 /* Point the symbol at the stub. */
13537 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
35fc36a8 13538 h->target_internal = ST_BRANCH_TO_ARM;
a4fd1a8e
PB
13539 h->root.u.def.section = th->root.u.def.section;
13540 h->root.u.def.value = th->root.u.def.value & ~1;
13541 }
13542
0bdcacaf 13543 if (eh->dyn_relocs == NULL)
5e681ec4
PB
13544 return TRUE;
13545
13546 /* In the shared -Bsymbolic case, discard space allocated for
13547 dynamic pc-relative relocs against symbols which turn out to be
13548 defined in regular objects. For the normal shared case, discard
13549 space for pc-relative relocs that have become local due to symbol
13550 visibility changes. */
13551
67687978 13552 if (info->shared || htab->root.is_relocatable_executable)
5e681ec4 13553 {
469a3493
RM
13554 /* Relocs that use pc_count are PC-relative forms, which will appear
13555 on something like ".long foo - ." or "movw REG, foo - .". We want
13556 calls to protected symbols to resolve directly to the function
13557 rather than going via the plt. If people want function pointer
13558 comparisons to work as expected then they should avoid writing
13559 assembly like ".long foo - .". */
ba93b8ac
DJ
13560 if (SYMBOL_CALLS_LOCAL (info, h))
13561 {
0bdcacaf 13562 struct elf_dyn_relocs **pp;
ba93b8ac 13563
0bdcacaf 13564 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
ba93b8ac
DJ
13565 {
13566 p->count -= p->pc_count;
13567 p->pc_count = 0;
13568 if (p->count == 0)
13569 *pp = p->next;
13570 else
13571 pp = &p->next;
13572 }
13573 }
13574
4dfe6ac6 13575 if (htab->vxworks_p)
3348747a 13576 {
0bdcacaf 13577 struct elf_dyn_relocs **pp;
3348747a 13578
0bdcacaf 13579 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
3348747a 13580 {
0bdcacaf 13581 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
3348747a
NS
13582 *pp = p->next;
13583 else
13584 pp = &p->next;
13585 }
13586 }
13587
ba93b8ac 13588 /* Also discard relocs on undefined weak syms with non-default
99059e56 13589 visibility. */
0bdcacaf 13590 if (eh->dyn_relocs != NULL
5e681ec4 13591 && h->root.type == bfd_link_hash_undefweak)
22d606e9
AM
13592 {
13593 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
0bdcacaf 13594 eh->dyn_relocs = NULL;
22d606e9
AM
13595
13596 /* Make sure undefined weak symbols are output as a dynamic
13597 symbol in PIEs. */
13598 else if (h->dynindx == -1
13599 && !h->forced_local)
13600 {
13601 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13602 return FALSE;
13603 }
13604 }
13605
67687978
PB
13606 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13607 && h->root.type == bfd_link_hash_new)
13608 {
13609 /* Output absolute symbols so that we can create relocations
13610 against them. For normal symbols we output a relocation
13611 against the section that contains them. */
13612 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13613 return FALSE;
13614 }
13615
5e681ec4
PB
13616 }
13617 else
13618 {
13619 /* For the non-shared case, discard space for relocs against
13620 symbols which turn out to need copy relocs or are not
13621 dynamic. */
13622
f5385ebf
AM
13623 if (!h->non_got_ref
13624 && ((h->def_dynamic
13625 && !h->def_regular)
5e681ec4
PB
13626 || (htab->root.dynamic_sections_created
13627 && (h->root.type == bfd_link_hash_undefweak
13628 || h->root.type == bfd_link_hash_undefined))))
13629 {
13630 /* Make sure this symbol is output as a dynamic symbol.
13631 Undefined weak syms won't yet be marked as dynamic. */
13632 if (h->dynindx == -1
f5385ebf 13633 && !h->forced_local)
5e681ec4 13634 {
c152c796 13635 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5e681ec4
PB
13636 return FALSE;
13637 }
13638
13639 /* If that succeeded, we know we'll be keeping all the
13640 relocs. */
13641 if (h->dynindx != -1)
13642 goto keep;
13643 }
13644
0bdcacaf 13645 eh->dyn_relocs = NULL;
5e681ec4
PB
13646
13647 keep: ;
13648 }
13649
13650 /* Finally, allocate space. */
0bdcacaf 13651 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5e681ec4 13652 {
0bdcacaf 13653 asection *sreloc = elf_section_data (p->sec)->sreloc;
34e77a92
RS
13654 if (h->type == STT_GNU_IFUNC
13655 && eh->plt.noncall_refcount == 0
13656 && SYMBOL_REFERENCES_LOCAL (info, h))
13657 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13658 else
13659 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
5e681ec4
PB
13660 }
13661
13662 return TRUE;
13663}
13664
08d1f311
DJ
13665/* Find any dynamic relocs that apply to read-only sections. */
13666
13667static bfd_boolean
8029a119 13668elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
08d1f311 13669{
8029a119 13670 struct elf32_arm_link_hash_entry * eh;
0bdcacaf 13671 struct elf_dyn_relocs * p;
08d1f311 13672
08d1f311 13673 eh = (struct elf32_arm_link_hash_entry *) h;
0bdcacaf 13674 for (p = eh->dyn_relocs; p != NULL; p = p->next)
08d1f311 13675 {
0bdcacaf 13676 asection *s = p->sec;
08d1f311
DJ
13677
13678 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13679 {
13680 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13681
13682 info->flags |= DF_TEXTREL;
13683
13684 /* Not an error, just cut short the traversal. */
13685 return FALSE;
13686 }
13687 }
13688 return TRUE;
13689}
13690
d504ffc8
DJ
13691void
13692bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13693 int byteswap_code)
13694{
13695 struct elf32_arm_link_hash_table *globals;
13696
13697 globals = elf32_arm_hash_table (info);
4dfe6ac6
NC
13698 if (globals == NULL)
13699 return;
13700
d504ffc8
DJ
13701 globals->byteswap_code = byteswap_code;
13702}
13703
252b5132
RH
13704/* Set the sizes of the dynamic sections. */
13705
b34976b6 13706static bfd_boolean
57e8b36a
NC
13707elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13708 struct bfd_link_info * info)
252b5132
RH
13709{
13710 bfd * dynobj;
13711 asection * s;
b34976b6
AM
13712 bfd_boolean plt;
13713 bfd_boolean relocs;
5e681ec4
PB
13714 bfd *ibfd;
13715 struct elf32_arm_link_hash_table *htab;
252b5132 13716
5e681ec4 13717 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
13718 if (htab == NULL)
13719 return FALSE;
13720
252b5132
RH
13721 dynobj = elf_hash_table (info)->dynobj;
13722 BFD_ASSERT (dynobj != NULL);
39b41c9c 13723 check_use_blx (htab);
252b5132
RH
13724
13725 if (elf_hash_table (info)->dynamic_sections_created)
13726 {
13727 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 13728 if (info->executable)
252b5132 13729 {
3d4d4302 13730 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 13731 BFD_ASSERT (s != NULL);
eea6121a 13732 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
13733 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13734 }
13735 }
5e681ec4
PB
13736
13737 /* Set up .got offsets for local syms, and space for local dynamic
13738 relocs. */
c72f2fb2 13739 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
252b5132 13740 {
5e681ec4
PB
13741 bfd_signed_vma *local_got;
13742 bfd_signed_vma *end_local_got;
34e77a92 13743 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
5e681ec4 13744 char *local_tls_type;
0855e32b 13745 bfd_vma *local_tlsdesc_gotent;
5e681ec4
PB
13746 bfd_size_type locsymcount;
13747 Elf_Internal_Shdr *symtab_hdr;
13748 asection *srel;
4dfe6ac6 13749 bfd_boolean is_vxworks = htab->vxworks_p;
34e77a92 13750 unsigned int symndx;
5e681ec4 13751
0ffa91dd 13752 if (! is_arm_elf (ibfd))
5e681ec4
PB
13753 continue;
13754
13755 for (s = ibfd->sections; s != NULL; s = s->next)
13756 {
0bdcacaf 13757 struct elf_dyn_relocs *p;
5e681ec4 13758
0bdcacaf 13759 for (p = (struct elf_dyn_relocs *)
99059e56 13760 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
5e681ec4 13761 {
0bdcacaf
RS
13762 if (!bfd_is_abs_section (p->sec)
13763 && bfd_is_abs_section (p->sec->output_section))
5e681ec4
PB
13764 {
13765 /* Input section has been discarded, either because
13766 it is a copy of a linkonce section or due to
13767 linker script /DISCARD/, so we'll be discarding
13768 the relocs too. */
13769 }
3348747a 13770 else if (is_vxworks
0bdcacaf 13771 && strcmp (p->sec->output_section->name,
3348747a
NS
13772 ".tls_vars") == 0)
13773 {
13774 /* Relocations in vxworks .tls_vars sections are
13775 handled specially by the loader. */
13776 }
5e681ec4
PB
13777 else if (p->count != 0)
13778 {
0bdcacaf 13779 srel = elf_section_data (p->sec)->sreloc;
47beaa6a 13780 elf32_arm_allocate_dynrelocs (info, srel, p->count);
0bdcacaf 13781 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
5e681ec4
PB
13782 info->flags |= DF_TEXTREL;
13783 }
13784 }
13785 }
13786
13787 local_got = elf_local_got_refcounts (ibfd);
13788 if (!local_got)
13789 continue;
13790
0ffa91dd 13791 symtab_hdr = & elf_symtab_hdr (ibfd);
5e681ec4
PB
13792 locsymcount = symtab_hdr->sh_info;
13793 end_local_got = local_got + locsymcount;
34e77a92 13794 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
ba93b8ac 13795 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
0855e32b 13796 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
34e77a92 13797 symndx = 0;
362d30a1
RS
13798 s = htab->root.sgot;
13799 srel = htab->root.srelgot;
0855e32b 13800 for (; local_got < end_local_got;
34e77a92
RS
13801 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13802 ++local_tlsdesc_gotent, ++symndx)
5e681ec4 13803 {
0855e32b 13804 *local_tlsdesc_gotent = (bfd_vma) -1;
34e77a92
RS
13805 local_iplt = *local_iplt_ptr;
13806 if (local_iplt != NULL)
13807 {
13808 struct elf_dyn_relocs *p;
13809
13810 if (local_iplt->root.refcount > 0)
13811 {
13812 elf32_arm_allocate_plt_entry (info, TRUE,
13813 &local_iplt->root,
13814 &local_iplt->arm);
13815 if (local_iplt->arm.noncall_refcount == 0)
13816 /* All references to the PLT are calls, so all
13817 non-call references can resolve directly to the
13818 run-time target. This means that the .got entry
13819 would be the same as the .igot.plt entry, so there's
13820 no point creating both. */
13821 *local_got = 0;
13822 }
13823 else
13824 {
13825 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13826 local_iplt->root.offset = (bfd_vma) -1;
13827 }
13828
13829 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13830 {
13831 asection *psrel;
13832
13833 psrel = elf_section_data (p->sec)->sreloc;
13834 if (local_iplt->arm.noncall_refcount == 0)
13835 elf32_arm_allocate_irelocs (info, psrel, p->count);
13836 else
13837 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13838 }
13839 }
5e681ec4
PB
13840 if (*local_got > 0)
13841 {
34e77a92
RS
13842 Elf_Internal_Sym *isym;
13843
eea6121a 13844 *local_got = s->size;
ba93b8ac
DJ
13845 if (*local_tls_type & GOT_TLS_GD)
13846 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13847 s->size += 8;
0855e32b
NS
13848 if (*local_tls_type & GOT_TLS_GDESC)
13849 {
13850 *local_tlsdesc_gotent = htab->root.sgotplt->size
13851 - elf32_arm_compute_jump_table_size (htab);
13852 htab->root.sgotplt->size += 8;
13853 *local_got = (bfd_vma) -2;
34e77a92 13854 /* plt.got_offset needs to know there's a TLS_DESC
0855e32b 13855 reloc in the middle of .got.plt. */
99059e56 13856 htab->num_tls_desc++;
0855e32b 13857 }
ba93b8ac
DJ
13858 if (*local_tls_type & GOT_TLS_IE)
13859 s->size += 4;
ba93b8ac 13860
0855e32b
NS
13861 if (*local_tls_type & GOT_NORMAL)
13862 {
13863 /* If the symbol is both GD and GDESC, *local_got
13864 may have been overwritten. */
13865 *local_got = s->size;
13866 s->size += 4;
13867 }
13868
34e77a92
RS
13869 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13870 if (isym == NULL)
13871 return FALSE;
13872
13873 /* If all references to an STT_GNU_IFUNC PLT are calls,
13874 then all non-call references, including this GOT entry,
13875 resolve directly to the run-time target. */
13876 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13877 && (local_iplt == NULL
13878 || local_iplt->arm.noncall_refcount == 0))
13879 elf32_arm_allocate_irelocs (info, srel, 1);
3064e1ff 13880 else if (info->shared || output_bfd->flags & DYNAMIC)
0855e32b 13881 {
3064e1ff
JB
13882 if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13883 || *local_tls_type & GOT_TLS_GD)
13884 elf32_arm_allocate_dynrelocs (info, srel, 1);
99059e56 13885
3064e1ff
JB
13886 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13887 {
13888 elf32_arm_allocate_dynrelocs (info,
13889 htab->root.srelplt, 1);
13890 htab->tls_trampoline = -1;
13891 }
0855e32b 13892 }
5e681ec4
PB
13893 }
13894 else
13895 *local_got = (bfd_vma) -1;
13896 }
252b5132
RH
13897 }
13898
ba93b8ac
DJ
13899 if (htab->tls_ldm_got.refcount > 0)
13900 {
13901 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13902 for R_ARM_TLS_LDM32 relocations. */
362d30a1
RS
13903 htab->tls_ldm_got.offset = htab->root.sgot->size;
13904 htab->root.sgot->size += 8;
ba93b8ac 13905 if (info->shared)
47beaa6a 13906 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
ba93b8ac
DJ
13907 }
13908 else
13909 htab->tls_ldm_got.offset = -1;
13910
5e681ec4
PB
13911 /* Allocate global sym .plt and .got entries, and space for global
13912 sym dynamic relocs. */
47beaa6a 13913 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
252b5132 13914
d504ffc8 13915 /* Here we rummage through the found bfds to collect glue information. */
c72f2fb2 13916 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
c7b8f16e 13917 {
0ffa91dd 13918 if (! is_arm_elf (ibfd))
e44a2c9c
AM
13919 continue;
13920
c7b8f16e
JB
13921 /* Initialise mapping tables for code/data. */
13922 bfd_elf32_arm_init_maps (ibfd);
906e58ca 13923
c7b8f16e
JB
13924 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13925 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
99059e56
RM
13926 /* xgettext:c-format */
13927 _bfd_error_handler (_("Errors encountered processing file %s"),
c7b8f16e
JB
13928 ibfd->filename);
13929 }
d504ffc8 13930
3e6b1042
DJ
13931 /* Allocate space for the glue sections now that we've sized them. */
13932 bfd_elf32_arm_allocate_interworking_sections (info);
13933
0855e32b
NS
13934 /* For every jump slot reserved in the sgotplt, reloc_count is
13935 incremented. However, when we reserve space for TLS descriptors,
13936 it's not incremented, so in order to compute the space reserved
13937 for them, it suffices to multiply the reloc count by the jump
13938 slot size. */
13939 if (htab->root.srelplt)
13940 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13941
13942 if (htab->tls_trampoline)
13943 {
13944 if (htab->root.splt->size == 0)
13945 htab->root.splt->size += htab->plt_header_size;
b38cadfb 13946
0855e32b
NS
13947 htab->tls_trampoline = htab->root.splt->size;
13948 htab->root.splt->size += htab->plt_entry_size;
b38cadfb 13949
0855e32b 13950 /* If we're not using lazy TLS relocations, don't generate the
99059e56 13951 PLT and GOT entries they require. */
0855e32b
NS
13952 if (!(info->flags & DF_BIND_NOW))
13953 {
13954 htab->dt_tlsdesc_got = htab->root.sgot->size;
13955 htab->root.sgot->size += 4;
13956
13957 htab->dt_tlsdesc_plt = htab->root.splt->size;
13958 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13959 }
13960 }
13961
252b5132
RH
13962 /* The check_relocs and adjust_dynamic_symbol entry points have
13963 determined the sizes of the various dynamic sections. Allocate
13964 memory for them. */
b34976b6
AM
13965 plt = FALSE;
13966 relocs = FALSE;
252b5132
RH
13967 for (s = dynobj->sections; s != NULL; s = s->next)
13968 {
13969 const char * name;
252b5132
RH
13970
13971 if ((s->flags & SEC_LINKER_CREATED) == 0)
13972 continue;
13973
13974 /* It's OK to base decisions on the section name, because none
13975 of the dynobj section names depend upon the input files. */
13976 name = bfd_get_section_name (dynobj, s);
13977
34e77a92 13978 if (s == htab->root.splt)
252b5132 13979 {
c456f082
AM
13980 /* Remember whether there is a PLT. */
13981 plt = s->size != 0;
252b5132 13982 }
0112cd26 13983 else if (CONST_STRNEQ (name, ".rel"))
252b5132 13984 {
c456f082 13985 if (s->size != 0)
252b5132 13986 {
252b5132 13987 /* Remember whether there are any reloc sections other
00a97672 13988 than .rel(a).plt and .rela.plt.unloaded. */
362d30a1 13989 if (s != htab->root.srelplt && s != htab->srelplt2)
b34976b6 13990 relocs = TRUE;
252b5132
RH
13991
13992 /* We use the reloc_count field as a counter if we need
13993 to copy relocs into the output file. */
13994 s->reloc_count = 0;
13995 }
13996 }
34e77a92
RS
13997 else if (s != htab->root.sgot
13998 && s != htab->root.sgotplt
13999 && s != htab->root.iplt
14000 && s != htab->root.igotplt
14001 && s != htab->sdynbss)
252b5132
RH
14002 {
14003 /* It's not one of our sections, so don't allocate space. */
14004 continue;
14005 }
14006
c456f082 14007 if (s->size == 0)
252b5132 14008 {
c456f082 14009 /* If we don't need this section, strip it from the
00a97672
RS
14010 output file. This is mostly to handle .rel(a).bss and
14011 .rel(a).plt. We must create both sections in
c456f082
AM
14012 create_dynamic_sections, because they must be created
14013 before the linker maps input sections to output
14014 sections. The linker does that before
14015 adjust_dynamic_symbol is called, and it is that
14016 function which decides whether anything needs to go
14017 into these sections. */
8423293d 14018 s->flags |= SEC_EXCLUDE;
252b5132
RH
14019 continue;
14020 }
14021
c456f082
AM
14022 if ((s->flags & SEC_HAS_CONTENTS) == 0)
14023 continue;
14024
252b5132 14025 /* Allocate memory for the section contents. */
21d799b5 14026 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
c456f082 14027 if (s->contents == NULL)
b34976b6 14028 return FALSE;
252b5132
RH
14029 }
14030
14031 if (elf_hash_table (info)->dynamic_sections_created)
14032 {
14033 /* Add some entries to the .dynamic section. We fill in the
14034 values later, in elf32_arm_finish_dynamic_sections, but we
14035 must add the entries now so that we get the correct size for
14036 the .dynamic section. The DT_DEBUG entry is filled in by the
14037 dynamic linker and used by the debugger. */
dc810e39 14038#define add_dynamic_entry(TAG, VAL) \
5a580b3a 14039 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 14040
8532796c 14041 if (info->executable)
252b5132 14042 {
dc810e39 14043 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 14044 return FALSE;
252b5132
RH
14045 }
14046
14047 if (plt)
14048 {
dc810e39
AM
14049 if ( !add_dynamic_entry (DT_PLTGOT, 0)
14050 || !add_dynamic_entry (DT_PLTRELSZ, 0)
00a97672
RS
14051 || !add_dynamic_entry (DT_PLTREL,
14052 htab->use_rel ? DT_REL : DT_RELA)
dc810e39 14053 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 14054 return FALSE;
0855e32b
NS
14055
14056 if (htab->dt_tlsdesc_plt &&
b38cadfb 14057 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
0855e32b 14058 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
b38cadfb 14059 return FALSE;
252b5132
RH
14060 }
14061
14062 if (relocs)
14063 {
00a97672
RS
14064 if (htab->use_rel)
14065 {
14066 if (!add_dynamic_entry (DT_REL, 0)
14067 || !add_dynamic_entry (DT_RELSZ, 0)
14068 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
14069 return FALSE;
14070 }
14071 else
14072 {
14073 if (!add_dynamic_entry (DT_RELA, 0)
14074 || !add_dynamic_entry (DT_RELASZ, 0)
14075 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
14076 return FALSE;
14077 }
252b5132
RH
14078 }
14079
08d1f311
DJ
14080 /* If any dynamic relocs apply to a read-only section,
14081 then we need a DT_TEXTREL entry. */
14082 if ((info->flags & DF_TEXTREL) == 0)
8029a119
NC
14083 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
14084 info);
08d1f311 14085
99e4ae17 14086 if ((info->flags & DF_TEXTREL) != 0)
252b5132 14087 {
dc810e39 14088 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 14089 return FALSE;
252b5132 14090 }
7a2b07ff
NS
14091 if (htab->vxworks_p
14092 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
14093 return FALSE;
252b5132 14094 }
8532796c 14095#undef add_dynamic_entry
252b5132 14096
b34976b6 14097 return TRUE;
252b5132
RH
14098}
14099
0855e32b
NS
14100/* Size sections even though they're not dynamic. We use it to setup
14101 _TLS_MODULE_BASE_, if needed. */
14102
14103static bfd_boolean
14104elf32_arm_always_size_sections (bfd *output_bfd,
99059e56 14105 struct bfd_link_info *info)
0855e32b
NS
14106{
14107 asection *tls_sec;
14108
14109 if (info->relocatable)
14110 return TRUE;
14111
14112 tls_sec = elf_hash_table (info)->tls_sec;
14113
14114 if (tls_sec)
14115 {
14116 struct elf_link_hash_entry *tlsbase;
14117
14118 tlsbase = elf_link_hash_lookup
14119 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
14120
14121 if (tlsbase)
99059e56
RM
14122 {
14123 struct bfd_link_hash_entry *bh = NULL;
0855e32b 14124 const struct elf_backend_data *bed
99059e56 14125 = get_elf_backend_data (output_bfd);
0855e32b 14126
99059e56 14127 if (!(_bfd_generic_link_add_one_symbol
0855e32b
NS
14128 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
14129 tls_sec, 0, NULL, FALSE,
14130 bed->collect, &bh)))
14131 return FALSE;
b38cadfb 14132
99059e56
RM
14133 tlsbase->type = STT_TLS;
14134 tlsbase = (struct elf_link_hash_entry *)bh;
14135 tlsbase->def_regular = 1;
14136 tlsbase->other = STV_HIDDEN;
14137 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
0855e32b
NS
14138 }
14139 }
14140 return TRUE;
14141}
14142
252b5132
RH
14143/* Finish up dynamic symbol handling. We set the contents of various
14144 dynamic sections here. */
14145
b34976b6 14146static bfd_boolean
906e58ca
NC
14147elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14148 struct bfd_link_info * info,
14149 struct elf_link_hash_entry * h,
14150 Elf_Internal_Sym * sym)
252b5132 14151{
e5a52504 14152 struct elf32_arm_link_hash_table *htab;
b7693d02 14153 struct elf32_arm_link_hash_entry *eh;
252b5132 14154
e5a52504 14155 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
14156 if (htab == NULL)
14157 return FALSE;
14158
b7693d02 14159 eh = (struct elf32_arm_link_hash_entry *) h;
252b5132
RH
14160
14161 if (h->plt.offset != (bfd_vma) -1)
14162 {
34e77a92 14163 if (!eh->is_iplt)
e5a52504 14164 {
34e77a92 14165 BFD_ASSERT (h->dynindx != -1);
57460bcf
NC
14166 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
14167 h->dynindx, 0))
14168 return FALSE;
e5a52504 14169 }
57e8b36a 14170
f5385ebf 14171 if (!h->def_regular)
252b5132
RH
14172 {
14173 /* Mark the symbol as undefined, rather than as defined in
14174 the .plt section. Leave the value alone. */
14175 sym->st_shndx = SHN_UNDEF;
d982ba73
PB
14176 /* If the symbol is weak, we do need to clear the value.
14177 Otherwise, the PLT entry would provide a definition for
14178 the symbol even if the symbol wasn't defined anywhere,
14179 and so the symbol would never be NULL. */
97323ad1 14180 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
d982ba73 14181 sym->st_value = 0;
252b5132 14182 }
34e77a92
RS
14183 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
14184 {
14185 /* At least one non-call relocation references this .iplt entry,
14186 so the .iplt entry is the function's canonical address. */
14187 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
14188 sym->st_target_internal = ST_BRANCH_TO_ARM;
14189 sym->st_shndx = (_bfd_elf_section_from_bfd_section
14190 (output_bfd, htab->root.iplt->output_section));
14191 sym->st_value = (h->plt.offset
14192 + htab->root.iplt->output_section->vma
14193 + htab->root.iplt->output_offset);
14194 }
252b5132
RH
14195 }
14196
f5385ebf 14197 if (h->needs_copy)
252b5132
RH
14198 {
14199 asection * s;
947216bf 14200 Elf_Internal_Rela rel;
252b5132
RH
14201
14202 /* This symbol needs a copy reloc. Set it up. */
252b5132
RH
14203 BFD_ASSERT (h->dynindx != -1
14204 && (h->root.type == bfd_link_hash_defined
14205 || h->root.type == bfd_link_hash_defweak));
14206
362d30a1 14207 s = htab->srelbss;
252b5132
RH
14208 BFD_ASSERT (s != NULL);
14209
00a97672 14210 rel.r_addend = 0;
252b5132
RH
14211 rel.r_offset = (h->root.u.def.value
14212 + h->root.u.def.section->output_section->vma
14213 + h->root.u.def.section->output_offset);
14214 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
47beaa6a 14215 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
252b5132
RH
14216 }
14217
00a97672
RS
14218 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14219 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14220 to the ".got" section. */
9637f6ef 14221 if (h == htab->root.hdynamic
00a97672 14222 || (!htab->vxworks_p && h == htab->root.hgot))
252b5132
RH
14223 sym->st_shndx = SHN_ABS;
14224
b34976b6 14225 return TRUE;
252b5132
RH
14226}
14227
0855e32b
NS
14228static void
14229arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14230 void *contents,
14231 const unsigned long *template, unsigned count)
14232{
14233 unsigned ix;
b38cadfb 14234
0855e32b
NS
14235 for (ix = 0; ix != count; ix++)
14236 {
14237 unsigned long insn = template[ix];
14238
14239 /* Emit mov pc,rx if bx is not permitted. */
14240 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14241 insn = (insn & 0xf000000f) | 0x01a0f000;
14242 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14243 }
14244}
14245
99059e56
RM
14246/* Install the special first PLT entry for elf32-arm-nacl. Unlike
14247 other variants, NaCl needs this entry in a static executable's
14248 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
14249 zero. For .iplt really only the last bundle is useful, and .iplt
14250 could have a shorter first entry, with each individual PLT entry's
14251 relative branch calculated differently so it targets the last
14252 bundle instead of the instruction before it (labelled .Lplt_tail
14253 above). But it's simpler to keep the size and layout of PLT0
14254 consistent with the dynamic case, at the cost of some dead code at
14255 the start of .iplt and the one dead store to the stack at the start
14256 of .Lplt_tail. */
14257static void
14258arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14259 asection *plt, bfd_vma got_displacement)
14260{
14261 unsigned int i;
14262
14263 put_arm_insn (htab, output_bfd,
14264 elf32_arm_nacl_plt0_entry[0]
14265 | arm_movw_immediate (got_displacement),
14266 plt->contents + 0);
14267 put_arm_insn (htab, output_bfd,
14268 elf32_arm_nacl_plt0_entry[1]
14269 | arm_movt_immediate (got_displacement),
14270 plt->contents + 4);
14271
14272 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14273 put_arm_insn (htab, output_bfd,
14274 elf32_arm_nacl_plt0_entry[i],
14275 plt->contents + (i * 4));
14276}
14277
252b5132
RH
14278/* Finish up the dynamic sections. */
14279
b34976b6 14280static bfd_boolean
57e8b36a 14281elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
252b5132
RH
14282{
14283 bfd * dynobj;
14284 asection * sgot;
14285 asection * sdyn;
4dfe6ac6
NC
14286 struct elf32_arm_link_hash_table *htab;
14287
14288 htab = elf32_arm_hash_table (info);
14289 if (htab == NULL)
14290 return FALSE;
252b5132
RH
14291
14292 dynobj = elf_hash_table (info)->dynobj;
14293
362d30a1 14294 sgot = htab->root.sgotplt;
894891db
NC
14295 /* A broken linker script might have discarded the dynamic sections.
14296 Catch this here so that we do not seg-fault later on. */
14297 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14298 return FALSE;
3d4d4302 14299 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
14300
14301 if (elf_hash_table (info)->dynamic_sections_created)
14302 {
14303 asection *splt;
14304 Elf32_External_Dyn *dyncon, *dynconend;
14305
362d30a1 14306 splt = htab->root.splt;
24a1ba0f 14307 BFD_ASSERT (splt != NULL && sdyn != NULL);
cbc704f3 14308 BFD_ASSERT (htab->symbian_p || sgot != NULL);
252b5132
RH
14309
14310 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 14311 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9b485d32 14312
252b5132
RH
14313 for (; dyncon < dynconend; dyncon++)
14314 {
14315 Elf_Internal_Dyn dyn;
14316 const char * name;
14317 asection * s;
14318
14319 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14320
14321 switch (dyn.d_tag)
14322 {
229fcec5
MM
14323 unsigned int type;
14324
252b5132 14325 default:
7a2b07ff
NS
14326 if (htab->vxworks_p
14327 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14328 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
252b5132
RH
14329 break;
14330
229fcec5
MM
14331 case DT_HASH:
14332 name = ".hash";
14333 goto get_vma_if_bpabi;
14334 case DT_STRTAB:
14335 name = ".dynstr";
14336 goto get_vma_if_bpabi;
14337 case DT_SYMTAB:
14338 name = ".dynsym";
14339 goto get_vma_if_bpabi;
c0042f5d
MM
14340 case DT_VERSYM:
14341 name = ".gnu.version";
14342 goto get_vma_if_bpabi;
14343 case DT_VERDEF:
14344 name = ".gnu.version_d";
14345 goto get_vma_if_bpabi;
14346 case DT_VERNEED:
14347 name = ".gnu.version_r";
14348 goto get_vma_if_bpabi;
14349
252b5132
RH
14350 case DT_PLTGOT:
14351 name = ".got";
14352 goto get_vma;
14353 case DT_JMPREL:
00a97672 14354 name = RELOC_SECTION (htab, ".plt");
252b5132
RH
14355 get_vma:
14356 s = bfd_get_section_by_name (output_bfd, name);
05456594
NC
14357 if (s == NULL)
14358 {
14359 /* PR ld/14397: Issue an error message if a required section is missing. */
14360 (*_bfd_error_handler)
14361 (_("error: required section '%s' not found in the linker script"), name);
14362 bfd_set_error (bfd_error_invalid_operation);
14363 return FALSE;
14364 }
229fcec5
MM
14365 if (!htab->symbian_p)
14366 dyn.d_un.d_ptr = s->vma;
14367 else
14368 /* In the BPABI, tags in the PT_DYNAMIC section point
14369 at the file offset, not the memory address, for the
14370 convenience of the post linker. */
14371 dyn.d_un.d_ptr = s->filepos;
252b5132
RH
14372 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14373 break;
14374
229fcec5
MM
14375 get_vma_if_bpabi:
14376 if (htab->symbian_p)
14377 goto get_vma;
14378 break;
14379
252b5132 14380 case DT_PLTRELSZ:
362d30a1 14381 s = htab->root.srelplt;
252b5132 14382 BFD_ASSERT (s != NULL);
eea6121a 14383 dyn.d_un.d_val = s->size;
252b5132
RH
14384 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14385 break;
906e58ca 14386
252b5132 14387 case DT_RELSZ:
00a97672 14388 case DT_RELASZ:
229fcec5
MM
14389 if (!htab->symbian_p)
14390 {
14391 /* My reading of the SVR4 ABI indicates that the
14392 procedure linkage table relocs (DT_JMPREL) should be
14393 included in the overall relocs (DT_REL). This is
14394 what Solaris does. However, UnixWare can not handle
14395 that case. Therefore, we override the DT_RELSZ entry
14396 here to make it not include the JMPREL relocs. Since
00a97672 14397 the linker script arranges for .rel(a).plt to follow all
229fcec5
MM
14398 other relocation sections, we don't have to worry
14399 about changing the DT_REL entry. */
362d30a1 14400 s = htab->root.srelplt;
229fcec5
MM
14401 if (s != NULL)
14402 dyn.d_un.d_val -= s->size;
14403 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14404 break;
14405 }
8029a119 14406 /* Fall through. */
229fcec5
MM
14407
14408 case DT_REL:
14409 case DT_RELA:
229fcec5
MM
14410 /* In the BPABI, the DT_REL tag must point at the file
14411 offset, not the VMA, of the first relocation
14412 section. So, we use code similar to that in
14413 elflink.c, but do not check for SHF_ALLOC on the
14414 relcoation section, since relocations sections are
14415 never allocated under the BPABI. The comments above
14416 about Unixware notwithstanding, we include all of the
14417 relocations here. */
14418 if (htab->symbian_p)
14419 {
14420 unsigned int i;
14421 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14422 ? SHT_REL : SHT_RELA);
14423 dyn.d_un.d_val = 0;
14424 for (i = 1; i < elf_numsections (output_bfd); i++)
14425 {
906e58ca 14426 Elf_Internal_Shdr *hdr
229fcec5
MM
14427 = elf_elfsections (output_bfd)[i];
14428 if (hdr->sh_type == type)
14429 {
906e58ca 14430 if (dyn.d_tag == DT_RELSZ
229fcec5
MM
14431 || dyn.d_tag == DT_RELASZ)
14432 dyn.d_un.d_val += hdr->sh_size;
de52dba4
AM
14433 else if ((ufile_ptr) hdr->sh_offset
14434 <= dyn.d_un.d_val - 1)
229fcec5
MM
14435 dyn.d_un.d_val = hdr->sh_offset;
14436 }
14437 }
14438 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14439 }
252b5132 14440 break;
88f7bcd5 14441
0855e32b 14442 case DT_TLSDESC_PLT:
99059e56 14443 s = htab->root.splt;
0855e32b
NS
14444 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14445 + htab->dt_tlsdesc_plt);
14446 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14447 break;
14448
14449 case DT_TLSDESC_GOT:
99059e56 14450 s = htab->root.sgot;
0855e32b 14451 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
99059e56 14452 + htab->dt_tlsdesc_got);
0855e32b
NS
14453 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14454 break;
14455
88f7bcd5
NC
14456 /* Set the bottom bit of DT_INIT/FINI if the
14457 corresponding function is Thumb. */
14458 case DT_INIT:
14459 name = info->init_function;
14460 goto get_sym;
14461 case DT_FINI:
14462 name = info->fini_function;
14463 get_sym:
14464 /* If it wasn't set by elf_bfd_final_link
4cc11e76 14465 then there is nothing to adjust. */
88f7bcd5
NC
14466 if (dyn.d_un.d_val != 0)
14467 {
14468 struct elf_link_hash_entry * eh;
14469
14470 eh = elf_link_hash_lookup (elf_hash_table (info), name,
b34976b6 14471 FALSE, FALSE, TRUE);
35fc36a8 14472 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
88f7bcd5
NC
14473 {
14474 dyn.d_un.d_val |= 1;
b34976b6 14475 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
88f7bcd5
NC
14476 }
14477 }
14478 break;
252b5132
RH
14479 }
14480 }
14481
24a1ba0f 14482 /* Fill in the first entry in the procedure linkage table. */
4dfe6ac6 14483 if (splt->size > 0 && htab->plt_header_size)
f7a74f8c 14484 {
00a97672
RS
14485 const bfd_vma *plt0_entry;
14486 bfd_vma got_address, plt_address, got_displacement;
14487
14488 /* Calculate the addresses of the GOT and PLT. */
14489 got_address = sgot->output_section->vma + sgot->output_offset;
14490 plt_address = splt->output_section->vma + splt->output_offset;
14491
14492 if (htab->vxworks_p)
14493 {
14494 /* The VxWorks GOT is relocated by the dynamic linker.
14495 Therefore, we must emit relocations rather than simply
14496 computing the values now. */
14497 Elf_Internal_Rela rel;
14498
14499 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
52ab56c2
PB
14500 put_arm_insn (htab, output_bfd, plt0_entry[0],
14501 splt->contents + 0);
14502 put_arm_insn (htab, output_bfd, plt0_entry[1],
14503 splt->contents + 4);
14504 put_arm_insn (htab, output_bfd, plt0_entry[2],
14505 splt->contents + 8);
00a97672
RS
14506 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14507
8029a119 14508 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
00a97672
RS
14509 rel.r_offset = plt_address + 12;
14510 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14511 rel.r_addend = 0;
14512 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14513 htab->srelplt2->contents);
14514 }
b38cadfb 14515 else if (htab->nacl_p)
99059e56
RM
14516 arm_nacl_put_plt0 (htab, output_bfd, splt,
14517 got_address + 8 - (plt_address + 16));
eed94f8f
NC
14518 else if (using_thumb_only (htab))
14519 {
14520 got_displacement = got_address - (plt_address + 12);
14521
14522 plt0_entry = elf32_thumb2_plt0_entry;
14523 put_arm_insn (htab, output_bfd, plt0_entry[0],
14524 splt->contents + 0);
14525 put_arm_insn (htab, output_bfd, plt0_entry[1],
14526 splt->contents + 4);
14527 put_arm_insn (htab, output_bfd, plt0_entry[2],
14528 splt->contents + 8);
14529
14530 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
14531 }
00a97672
RS
14532 else
14533 {
14534 got_displacement = got_address - (plt_address + 16);
14535
14536 plt0_entry = elf32_arm_plt0_entry;
52ab56c2
PB
14537 put_arm_insn (htab, output_bfd, plt0_entry[0],
14538 splt->contents + 0);
14539 put_arm_insn (htab, output_bfd, plt0_entry[1],
14540 splt->contents + 4);
14541 put_arm_insn (htab, output_bfd, plt0_entry[2],
14542 splt->contents + 8);
14543 put_arm_insn (htab, output_bfd, plt0_entry[3],
14544 splt->contents + 12);
5e681ec4 14545
5e681ec4 14546#ifdef FOUR_WORD_PLT
00a97672
RS
14547 /* The displacement value goes in the otherwise-unused
14548 last word of the second entry. */
14549 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
5e681ec4 14550#else
00a97672 14551 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
5e681ec4 14552#endif
00a97672 14553 }
f7a74f8c 14554 }
252b5132
RH
14555
14556 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14557 really seem like the right value. */
74541ad4
AM
14558 if (splt->output_section->owner == output_bfd)
14559 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
00a97672 14560
0855e32b
NS
14561 if (htab->dt_tlsdesc_plt)
14562 {
14563 bfd_vma got_address
14564 = sgot->output_section->vma + sgot->output_offset;
14565 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14566 + htab->root.sgot->output_offset);
14567 bfd_vma plt_address
14568 = splt->output_section->vma + splt->output_offset;
14569
b38cadfb 14570 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
14571 splt->contents + htab->dt_tlsdesc_plt,
14572 dl_tlsdesc_lazy_trampoline, 6);
14573
14574 bfd_put_32 (output_bfd,
14575 gotplt_address + htab->dt_tlsdesc_got
14576 - (plt_address + htab->dt_tlsdesc_plt)
14577 - dl_tlsdesc_lazy_trampoline[6],
14578 splt->contents + htab->dt_tlsdesc_plt + 24);
14579 bfd_put_32 (output_bfd,
14580 got_address - (plt_address + htab->dt_tlsdesc_plt)
14581 - dl_tlsdesc_lazy_trampoline[7],
14582 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14583 }
14584
14585 if (htab->tls_trampoline)
14586 {
b38cadfb 14587 arm_put_trampoline (htab, output_bfd,
0855e32b
NS
14588 splt->contents + htab->tls_trampoline,
14589 tls_trampoline, 3);
14590#ifdef FOUR_WORD_PLT
14591 bfd_put_32 (output_bfd, 0x00000000,
14592 splt->contents + htab->tls_trampoline + 12);
b38cadfb 14593#endif
0855e32b
NS
14594 }
14595
362d30a1 14596 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
00a97672
RS
14597 {
14598 /* Correct the .rel(a).plt.unloaded relocations. They will have
14599 incorrect symbol indexes. */
14600 int num_plts;
eed62c48 14601 unsigned char *p;
00a97672 14602
362d30a1 14603 num_plts = ((htab->root.splt->size - htab->plt_header_size)
00a97672
RS
14604 / htab->plt_entry_size);
14605 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14606
14607 for (; num_plts; num_plts--)
14608 {
14609 Elf_Internal_Rela rel;
14610
14611 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14612 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14613 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14614 p += RELOC_SIZE (htab);
14615
14616 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14617 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14618 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14619 p += RELOC_SIZE (htab);
14620 }
14621 }
252b5132
RH
14622 }
14623
99059e56
RM
14624 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
14625 /* NaCl uses a special first entry in .iplt too. */
14626 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
14627
252b5132 14628 /* Fill in the first three entries in the global offset table. */
229fcec5 14629 if (sgot)
252b5132 14630 {
229fcec5
MM
14631 if (sgot->size > 0)
14632 {
14633 if (sdyn == NULL)
14634 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14635 else
14636 bfd_put_32 (output_bfd,
14637 sdyn->output_section->vma + sdyn->output_offset,
14638 sgot->contents);
14639 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14640 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14641 }
252b5132 14642
229fcec5
MM
14643 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14644 }
252b5132 14645
b34976b6 14646 return TRUE;
252b5132
RH
14647}
14648
ba96a88f 14649static void
57e8b36a 14650elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
ba96a88f 14651{
9b485d32 14652 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
e489d0ae 14653 struct elf32_arm_link_hash_table *globals;
ba96a88f
NC
14654
14655 i_ehdrp = elf_elfheader (abfd);
14656
94a3258f
PB
14657 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14658 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14659 else
7394f108 14660 _bfd_elf_post_process_headers (abfd, link_info);
ba96a88f 14661 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
e489d0ae 14662
93204d3a
PB
14663 if (link_info)
14664 {
14665 globals = elf32_arm_hash_table (link_info);
4dfe6ac6 14666 if (globals != NULL && globals->byteswap_code)
93204d3a
PB
14667 i_ehdrp->e_flags |= EF_ARM_BE8;
14668 }
3bfcb652
NC
14669
14670 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14671 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14672 {
14673 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14674 if (abi)
14675 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14676 else
14677 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14678 }
ba96a88f
NC
14679}
14680
99e4ae17 14681static enum elf_reloc_type_class
7e612e98
AM
14682elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
14683 const asection *rel_sec ATTRIBUTE_UNUSED,
14684 const Elf_Internal_Rela *rela)
99e4ae17 14685{
f51e552e 14686 switch ((int) ELF32_R_TYPE (rela->r_info))
99e4ae17
AJ
14687 {
14688 case R_ARM_RELATIVE:
14689 return reloc_class_relative;
14690 case R_ARM_JUMP_SLOT:
14691 return reloc_class_plt;
14692 case R_ARM_COPY:
14693 return reloc_class_copy;
14694 default:
14695 return reloc_class_normal;
14696 }
14697}
14698
e489d0ae 14699static void
57e8b36a 14700elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
e16bb312 14701{
5a6c6817 14702 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
e16bb312
NC
14703}
14704
40a18ebd
NC
14705/* Return TRUE if this is an unwinding table entry. */
14706
14707static bfd_boolean
14708is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14709{
0112cd26
NC
14710 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14711 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
40a18ebd
NC
14712}
14713
14714
14715/* Set the type and flags for an ARM section. We do this by
14716 the section name, which is a hack, but ought to work. */
14717
14718static bfd_boolean
14719elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14720{
14721 const char * name;
14722
14723 name = bfd_get_section_name (abfd, sec);
14724
14725 if (is_arm_elf_unwind_section_name (abfd, name))
14726 {
14727 hdr->sh_type = SHT_ARM_EXIDX;
14728 hdr->sh_flags |= SHF_LINK_ORDER;
14729 }
14730 return TRUE;
14731}
14732
6dc132d9
L
14733/* Handle an ARM specific section when reading an object file. This is
14734 called when bfd_section_from_shdr finds a section with an unknown
14735 type. */
40a18ebd
NC
14736
14737static bfd_boolean
14738elf32_arm_section_from_shdr (bfd *abfd,
14739 Elf_Internal_Shdr * hdr,
6dc132d9
L
14740 const char *name,
14741 int shindex)
40a18ebd
NC
14742{
14743 /* There ought to be a place to keep ELF backend specific flags, but
14744 at the moment there isn't one. We just keep track of the
14745 sections by their name, instead. Fortunately, the ABI gives
14746 names for all the ARM specific sections, so we will probably get
14747 away with this. */
14748 switch (hdr->sh_type)
14749 {
14750 case SHT_ARM_EXIDX:
0951f019
RE
14751 case SHT_ARM_PREEMPTMAP:
14752 case SHT_ARM_ATTRIBUTES:
40a18ebd
NC
14753 break;
14754
14755 default:
14756 return FALSE;
14757 }
14758
6dc132d9 14759 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
40a18ebd
NC
14760 return FALSE;
14761
14762 return TRUE;
14763}
e489d0ae 14764
44444f50
NC
14765static _arm_elf_section_data *
14766get_arm_elf_section_data (asection * sec)
14767{
47b2e99c
JZ
14768 if (sec && sec->owner && is_arm_elf (sec->owner))
14769 return elf32_arm_section_data (sec);
44444f50
NC
14770 else
14771 return NULL;
8e3de13a
NC
14772}
14773
4e617b1e
PB
14774typedef struct
14775{
57402f1e 14776 void *flaginfo;
4e617b1e 14777 struct bfd_link_info *info;
91a5743d
PB
14778 asection *sec;
14779 int sec_shndx;
6e0b88f1
AM
14780 int (*func) (void *, const char *, Elf_Internal_Sym *,
14781 asection *, struct elf_link_hash_entry *);
4e617b1e
PB
14782} output_arch_syminfo;
14783
14784enum map_symbol_type
14785{
14786 ARM_MAP_ARM,
14787 ARM_MAP_THUMB,
14788 ARM_MAP_DATA
14789};
14790
14791
7413f23f 14792/* Output a single mapping symbol. */
4e617b1e
PB
14793
14794static bfd_boolean
7413f23f
DJ
14795elf32_arm_output_map_sym (output_arch_syminfo *osi,
14796 enum map_symbol_type type,
14797 bfd_vma offset)
4e617b1e
PB
14798{
14799 static const char *names[3] = {"$a", "$t", "$d"};
4e617b1e
PB
14800 Elf_Internal_Sym sym;
14801
91a5743d
PB
14802 sym.st_value = osi->sec->output_section->vma
14803 + osi->sec->output_offset
14804 + offset;
4e617b1e
PB
14805 sym.st_size = 0;
14806 sym.st_other = 0;
14807 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
91a5743d 14808 sym.st_shndx = osi->sec_shndx;
35fc36a8 14809 sym.st_target_internal = 0;
fe33d2fa 14810 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
57402f1e 14811 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
4e617b1e
PB
14812}
14813
34e77a92
RS
14814/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14815 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
4e617b1e
PB
14816
14817static bfd_boolean
34e77a92
RS
14818elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14819 bfd_boolean is_iplt_entry_p,
14820 union gotplt_union *root_plt,
14821 struct arm_plt_info *arm_plt)
4e617b1e 14822{
4e617b1e 14823 struct elf32_arm_link_hash_table *htab;
34e77a92 14824 bfd_vma addr, plt_header_size;
4e617b1e 14825
34e77a92 14826 if (root_plt->offset == (bfd_vma) -1)
4e617b1e
PB
14827 return TRUE;
14828
4dfe6ac6
NC
14829 htab = elf32_arm_hash_table (osi->info);
14830 if (htab == NULL)
14831 return FALSE;
14832
34e77a92
RS
14833 if (is_iplt_entry_p)
14834 {
14835 osi->sec = htab->root.iplt;
14836 plt_header_size = 0;
14837 }
14838 else
14839 {
14840 osi->sec = htab->root.splt;
14841 plt_header_size = htab->plt_header_size;
14842 }
14843 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14844 (osi->info->output_bfd, osi->sec->output_section));
14845
14846 addr = root_plt->offset & -2;
4e617b1e
PB
14847 if (htab->symbian_p)
14848 {
7413f23f 14849 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14850 return FALSE;
7413f23f 14851 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
4e617b1e
PB
14852 return FALSE;
14853 }
14854 else if (htab->vxworks_p)
14855 {
7413f23f 14856 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14857 return FALSE;
7413f23f 14858 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
4e617b1e 14859 return FALSE;
7413f23f 14860 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
4e617b1e 14861 return FALSE;
7413f23f 14862 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
4e617b1e
PB
14863 return FALSE;
14864 }
b38cadfb
NC
14865 else if (htab->nacl_p)
14866 {
14867 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14868 return FALSE;
14869 }
eed94f8f
NC
14870 else if (using_thumb_only (htab))
14871 {
14872 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
14873 return FALSE;
6a631e86 14874 }
4e617b1e
PB
14875 else
14876 {
34e77a92 14877 bfd_boolean thumb_stub_p;
bd97cb95 14878
34e77a92
RS
14879 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14880 if (thumb_stub_p)
4e617b1e 14881 {
7413f23f 14882 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
4e617b1e
PB
14883 return FALSE;
14884 }
14885#ifdef FOUR_WORD_PLT
7413f23f 14886 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e 14887 return FALSE;
7413f23f 14888 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
4e617b1e
PB
14889 return FALSE;
14890#else
906e58ca 14891 /* A three-word PLT with no Thumb thunk contains only Arm code,
4e617b1e
PB
14892 so only need to output a mapping symbol for the first PLT entry and
14893 entries with thumb thunks. */
34e77a92 14894 if (thumb_stub_p || addr == plt_header_size)
4e617b1e 14895 {
7413f23f 14896 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
4e617b1e
PB
14897 return FALSE;
14898 }
14899#endif
14900 }
14901
14902 return TRUE;
14903}
14904
34e77a92
RS
14905/* Output mapping symbols for PLT entries associated with H. */
14906
14907static bfd_boolean
14908elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14909{
14910 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14911 struct elf32_arm_link_hash_entry *eh;
14912
14913 if (h->root.type == bfd_link_hash_indirect)
14914 return TRUE;
14915
14916 if (h->root.type == bfd_link_hash_warning)
14917 /* When warning symbols are created, they **replace** the "real"
14918 entry in the hash table, thus we never get to see the real
14919 symbol in a hash traversal. So look at it now. */
14920 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14921
14922 eh = (struct elf32_arm_link_hash_entry *) h;
14923 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14924 &h->plt, &eh->plt);
14925}
14926
7413f23f
DJ
14927/* Output a single local symbol for a generated stub. */
14928
14929static bfd_boolean
14930elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14931 bfd_vma offset, bfd_vma size)
14932{
7413f23f
DJ
14933 Elf_Internal_Sym sym;
14934
7413f23f
DJ
14935 sym.st_value = osi->sec->output_section->vma
14936 + osi->sec->output_offset
14937 + offset;
14938 sym.st_size = size;
14939 sym.st_other = 0;
14940 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14941 sym.st_shndx = osi->sec_shndx;
35fc36a8 14942 sym.st_target_internal = 0;
57402f1e 14943 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
7413f23f 14944}
4e617b1e 14945
da5938a2 14946static bfd_boolean
8029a119
NC
14947arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14948 void * in_arg)
da5938a2
NC
14949{
14950 struct elf32_arm_stub_hash_entry *stub_entry;
da5938a2
NC
14951 asection *stub_sec;
14952 bfd_vma addr;
7413f23f 14953 char *stub_name;
9a008db3 14954 output_arch_syminfo *osi;
d3ce72d0 14955 const insn_sequence *template_sequence;
461a49ca
DJ
14956 enum stub_insn_type prev_type;
14957 int size;
14958 int i;
14959 enum map_symbol_type sym_type;
da5938a2
NC
14960
14961 /* Massage our args to the form they really have. */
14962 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
9a008db3 14963 osi = (output_arch_syminfo *) in_arg;
da5938a2 14964
da5938a2
NC
14965 stub_sec = stub_entry->stub_sec;
14966
14967 /* Ensure this stub is attached to the current section being
7413f23f 14968 processed. */
da5938a2
NC
14969 if (stub_sec != osi->sec)
14970 return TRUE;
14971
7413f23f
DJ
14972 addr = (bfd_vma) stub_entry->stub_offset;
14973 stub_name = stub_entry->output_name;
da5938a2 14974
d3ce72d0
NC
14975 template_sequence = stub_entry->stub_template;
14976 switch (template_sequence[0].type)
7413f23f 14977 {
461a49ca
DJ
14978 case ARM_TYPE:
14979 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
da5938a2
NC
14980 return FALSE;
14981 break;
461a49ca 14982 case THUMB16_TYPE:
48229727 14983 case THUMB32_TYPE:
461a49ca
DJ
14984 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14985 stub_entry->stub_size))
da5938a2
NC
14986 return FALSE;
14987 break;
14988 default:
14989 BFD_FAIL ();
48229727 14990 return 0;
7413f23f 14991 }
da5938a2 14992
461a49ca
DJ
14993 prev_type = DATA_TYPE;
14994 size = 0;
14995 for (i = 0; i < stub_entry->stub_template_size; i++)
14996 {
d3ce72d0 14997 switch (template_sequence[i].type)
461a49ca
DJ
14998 {
14999 case ARM_TYPE:
15000 sym_type = ARM_MAP_ARM;
15001 break;
15002
15003 case THUMB16_TYPE:
48229727 15004 case THUMB32_TYPE:
461a49ca
DJ
15005 sym_type = ARM_MAP_THUMB;
15006 break;
15007
15008 case DATA_TYPE:
15009 sym_type = ARM_MAP_DATA;
15010 break;
15011
15012 default:
15013 BFD_FAIL ();
4e31c731 15014 return FALSE;
461a49ca
DJ
15015 }
15016
d3ce72d0 15017 if (template_sequence[i].type != prev_type)
461a49ca 15018 {
d3ce72d0 15019 prev_type = template_sequence[i].type;
461a49ca
DJ
15020 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
15021 return FALSE;
15022 }
15023
d3ce72d0 15024 switch (template_sequence[i].type)
461a49ca
DJ
15025 {
15026 case ARM_TYPE:
48229727 15027 case THUMB32_TYPE:
461a49ca
DJ
15028 size += 4;
15029 break;
15030
15031 case THUMB16_TYPE:
15032 size += 2;
15033 break;
15034
15035 case DATA_TYPE:
15036 size += 4;
15037 break;
15038
15039 default:
15040 BFD_FAIL ();
4e31c731 15041 return FALSE;
461a49ca
DJ
15042 }
15043 }
15044
da5938a2
NC
15045 return TRUE;
15046}
15047
33811162
DG
15048/* Output mapping symbols for linker generated sections,
15049 and for those data-only sections that do not have a
15050 $d. */
4e617b1e
PB
15051
15052static bfd_boolean
15053elf32_arm_output_arch_local_syms (bfd *output_bfd,
906e58ca 15054 struct bfd_link_info *info,
57402f1e 15055 void *flaginfo,
6e0b88f1
AM
15056 int (*func) (void *, const char *,
15057 Elf_Internal_Sym *,
15058 asection *,
15059 struct elf_link_hash_entry *))
4e617b1e
PB
15060{
15061 output_arch_syminfo osi;
15062 struct elf32_arm_link_hash_table *htab;
91a5743d
PB
15063 bfd_vma offset;
15064 bfd_size_type size;
33811162 15065 bfd *input_bfd;
4e617b1e
PB
15066
15067 htab = elf32_arm_hash_table (info);
4dfe6ac6
NC
15068 if (htab == NULL)
15069 return FALSE;
15070
906e58ca 15071 check_use_blx (htab);
91a5743d 15072
57402f1e 15073 osi.flaginfo = flaginfo;
4e617b1e
PB
15074 osi.info = info;
15075 osi.func = func;
906e58ca 15076
33811162
DG
15077 /* Add a $d mapping symbol to data-only sections that
15078 don't have any mapping symbol. This may result in (harmless) redundant
15079 mapping symbols. */
15080 for (input_bfd = info->input_bfds;
15081 input_bfd != NULL;
c72f2fb2 15082 input_bfd = input_bfd->link.next)
33811162
DG
15083 {
15084 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
15085 for (osi.sec = input_bfd->sections;
15086 osi.sec != NULL;
15087 osi.sec = osi.sec->next)
15088 {
15089 if (osi.sec->output_section != NULL
f7dd8c79
DJ
15090 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
15091 != 0)
33811162
DG
15092 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
15093 == SEC_HAS_CONTENTS
15094 && get_arm_elf_section_data (osi.sec) != NULL
501abfe0 15095 && get_arm_elf_section_data (osi.sec)->mapcount == 0
7d500b83
CL
15096 && osi.sec->size > 0
15097 && (osi.sec->flags & SEC_EXCLUDE) == 0)
33811162
DG
15098 {
15099 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15100 (output_bfd, osi.sec->output_section);
15101 if (osi.sec_shndx != (int)SHN_BAD)
15102 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
15103 }
15104 }
15105 }
15106
91a5743d
PB
15107 /* ARM->Thumb glue. */
15108 if (htab->arm_glue_size > 0)
15109 {
3d4d4302
AM
15110 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15111 ARM2THUMB_GLUE_SECTION_NAME);
91a5743d
PB
15112
15113 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15114 (output_bfd, osi.sec->output_section);
15115 if (info->shared || htab->root.is_relocatable_executable
15116 || htab->pic_veneer)
15117 size = ARM2THUMB_PIC_GLUE_SIZE;
15118 else if (htab->use_blx)
15119 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
15120 else
15121 size = ARM2THUMB_STATIC_GLUE_SIZE;
4e617b1e 15122
91a5743d
PB
15123 for (offset = 0; offset < htab->arm_glue_size; offset += size)
15124 {
7413f23f
DJ
15125 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
15126 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
91a5743d
PB
15127 }
15128 }
15129
15130 /* Thumb->ARM glue. */
15131 if (htab->thumb_glue_size > 0)
15132 {
3d4d4302
AM
15133 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15134 THUMB2ARM_GLUE_SECTION_NAME);
91a5743d
PB
15135
15136 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15137 (output_bfd, osi.sec->output_section);
15138 size = THUMB2ARM_GLUE_SIZE;
15139
15140 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
15141 {
7413f23f
DJ
15142 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
15143 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
91a5743d
PB
15144 }
15145 }
15146
845b51d6
PB
15147 /* ARMv4 BX veneers. */
15148 if (htab->bx_glue_size > 0)
15149 {
3d4d4302
AM
15150 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15151 ARM_BX_GLUE_SECTION_NAME);
845b51d6
PB
15152
15153 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15154 (output_bfd, osi.sec->output_section);
15155
7413f23f 15156 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
845b51d6
PB
15157 }
15158
8029a119
NC
15159 /* Long calls stubs. */
15160 if (htab->stub_bfd && htab->stub_bfd->sections)
15161 {
da5938a2 15162 asection* stub_sec;
8029a119 15163
da5938a2
NC
15164 for (stub_sec = htab->stub_bfd->sections;
15165 stub_sec != NULL;
8029a119
NC
15166 stub_sec = stub_sec->next)
15167 {
15168 /* Ignore non-stub sections. */
15169 if (!strstr (stub_sec->name, STUB_SUFFIX))
15170 continue;
da5938a2 15171
8029a119 15172 osi.sec = stub_sec;
da5938a2 15173
8029a119
NC
15174 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15175 (output_bfd, osi.sec->output_section);
da5938a2 15176
8029a119
NC
15177 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
15178 }
15179 }
da5938a2 15180
91a5743d 15181 /* Finally, output mapping symbols for the PLT. */
34e77a92 15182 if (htab->root.splt && htab->root.splt->size > 0)
4e617b1e 15183 {
34e77a92
RS
15184 osi.sec = htab->root.splt;
15185 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15186 (output_bfd, osi.sec->output_section));
15187
15188 /* Output mapping symbols for the plt header. SymbianOS does not have a
15189 plt header. */
15190 if (htab->vxworks_p)
15191 {
15192 /* VxWorks shared libraries have no PLT header. */
15193 if (!info->shared)
15194 {
15195 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15196 return FALSE;
15197 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15198 return FALSE;
15199 }
15200 }
b38cadfb
NC
15201 else if (htab->nacl_p)
15202 {
15203 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15204 return FALSE;
15205 }
eed94f8f
NC
15206 else if (using_thumb_only (htab))
15207 {
15208 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
15209 return FALSE;
15210 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15211 return FALSE;
15212 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
15213 return FALSE;
15214 }
34e77a92 15215 else if (!htab->symbian_p)
4e617b1e 15216 {
7413f23f 15217 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
4e617b1e 15218 return FALSE;
34e77a92
RS
15219#ifndef FOUR_WORD_PLT
15220 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
4e617b1e 15221 return FALSE;
34e77a92 15222#endif
4e617b1e
PB
15223 }
15224 }
99059e56
RM
15225 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
15226 {
15227 /* NaCl uses a special first entry in .iplt too. */
15228 osi.sec = htab->root.iplt;
15229 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15230 (output_bfd, osi.sec->output_section));
15231 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15232 return FALSE;
15233 }
34e77a92
RS
15234 if ((htab->root.splt && htab->root.splt->size > 0)
15235 || (htab->root.iplt && htab->root.iplt->size > 0))
4e617b1e 15236 {
34e77a92
RS
15237 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
15238 for (input_bfd = info->input_bfds;
15239 input_bfd != NULL;
c72f2fb2 15240 input_bfd = input_bfd->link.next)
34e77a92
RS
15241 {
15242 struct arm_local_iplt_info **local_iplt;
15243 unsigned int i, num_syms;
4e617b1e 15244
34e77a92
RS
15245 local_iplt = elf32_arm_local_iplt (input_bfd);
15246 if (local_iplt != NULL)
15247 {
15248 num_syms = elf_symtab_hdr (input_bfd).sh_info;
15249 for (i = 0; i < num_syms; i++)
15250 if (local_iplt[i] != NULL
15251 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
15252 &local_iplt[i]->root,
15253 &local_iplt[i]->arm))
15254 return FALSE;
15255 }
15256 }
15257 }
0855e32b
NS
15258 if (htab->dt_tlsdesc_plt != 0)
15259 {
15260 /* Mapping symbols for the lazy tls trampoline. */
15261 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
15262 return FALSE;
b38cadfb 15263
0855e32b
NS
15264 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15265 htab->dt_tlsdesc_plt + 24))
15266 return FALSE;
15267 }
15268 if (htab->tls_trampoline != 0)
15269 {
15270 /* Mapping symbols for the tls trampoline. */
15271 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15272 return FALSE;
15273#ifdef FOUR_WORD_PLT
15274 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15275 htab->tls_trampoline + 12))
15276 return FALSE;
b38cadfb 15277#endif
0855e32b 15278 }
b38cadfb 15279
4e617b1e
PB
15280 return TRUE;
15281}
15282
e489d0ae
PB
15283/* Allocate target specific section data. */
15284
15285static bfd_boolean
15286elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15287{
f592407e
AM
15288 if (!sec->used_by_bfd)
15289 {
15290 _arm_elf_section_data *sdata;
15291 bfd_size_type amt = sizeof (*sdata);
e489d0ae 15292
21d799b5 15293 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
f592407e
AM
15294 if (sdata == NULL)
15295 return FALSE;
15296 sec->used_by_bfd = sdata;
15297 }
e489d0ae
PB
15298
15299 return _bfd_elf_new_section_hook (abfd, sec);
15300}
15301
15302
15303/* Used to order a list of mapping symbols by address. */
15304
15305static int
15306elf32_arm_compare_mapping (const void * a, const void * b)
15307{
7f6a71ff
JM
15308 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15309 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15310
15311 if (amap->vma > bmap->vma)
15312 return 1;
15313 else if (amap->vma < bmap->vma)
15314 return -1;
15315 else if (amap->type > bmap->type)
15316 /* Ensure results do not depend on the host qsort for objects with
15317 multiple mapping symbols at the same address by sorting on type
15318 after vma. */
15319 return 1;
15320 else if (amap->type < bmap->type)
15321 return -1;
15322 else
15323 return 0;
e489d0ae
PB
15324}
15325
2468f9c9
PB
15326/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15327
15328static unsigned long
15329offset_prel31 (unsigned long addr, bfd_vma offset)
15330{
15331 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15332}
15333
15334/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15335 relocations. */
15336
15337static void
15338copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15339{
15340 unsigned long first_word = bfd_get_32 (output_bfd, from);
15341 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
b38cadfb 15342
2468f9c9
PB
15343 /* High bit of first word is supposed to be zero. */
15344 if ((first_word & 0x80000000ul) == 0)
15345 first_word = offset_prel31 (first_word, offset);
b38cadfb 15346
2468f9c9
PB
15347 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15348 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15349 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15350 second_word = offset_prel31 (second_word, offset);
b38cadfb 15351
2468f9c9
PB
15352 bfd_put_32 (output_bfd, first_word, to);
15353 bfd_put_32 (output_bfd, second_word, to + 4);
15354}
e489d0ae 15355
48229727
JB
15356/* Data for make_branch_to_a8_stub(). */
15357
b38cadfb
NC
15358struct a8_branch_to_stub_data
15359{
48229727
JB
15360 asection *writing_section;
15361 bfd_byte *contents;
15362};
15363
15364
15365/* Helper to insert branches to Cortex-A8 erratum stubs in the right
15366 places for a particular section. */
15367
15368static bfd_boolean
15369make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
99059e56 15370 void *in_arg)
48229727
JB
15371{
15372 struct elf32_arm_stub_hash_entry *stub_entry;
15373 struct a8_branch_to_stub_data *data;
15374 bfd_byte *contents;
15375 unsigned long branch_insn;
15376 bfd_vma veneered_insn_loc, veneer_entry_loc;
15377 bfd_signed_vma branch_offset;
15378 bfd *abfd;
91d6fa6a 15379 unsigned int target;
48229727
JB
15380
15381 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15382 data = (struct a8_branch_to_stub_data *) in_arg;
15383
15384 if (stub_entry->target_section != data->writing_section
4563a860 15385 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
48229727
JB
15386 return TRUE;
15387
15388 contents = data->contents;
15389
15390 veneered_insn_loc = stub_entry->target_section->output_section->vma
15391 + stub_entry->target_section->output_offset
15392 + stub_entry->target_value;
15393
15394 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15395 + stub_entry->stub_sec->output_offset
15396 + stub_entry->stub_offset;
15397
15398 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15399 veneered_insn_loc &= ~3u;
15400
15401 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15402
15403 abfd = stub_entry->target_section->owner;
91d6fa6a 15404 target = stub_entry->target_value;
48229727
JB
15405
15406 /* We attempt to avoid this condition by setting stubs_always_after_branch
15407 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15408 This check is just to be on the safe side... */
15409 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15410 {
15411 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15412 "allocated in unsafe location"), abfd);
15413 return FALSE;
15414 }
15415
15416 switch (stub_entry->stub_type)
15417 {
15418 case arm_stub_a8_veneer_b:
15419 case arm_stub_a8_veneer_b_cond:
15420 branch_insn = 0xf0009000;
15421 goto jump24;
15422
15423 case arm_stub_a8_veneer_blx:
15424 branch_insn = 0xf000e800;
15425 goto jump24;
15426
15427 case arm_stub_a8_veneer_bl:
15428 {
15429 unsigned int i1, j1, i2, j2, s;
15430
15431 branch_insn = 0xf000d000;
15432
15433 jump24:
15434 if (branch_offset < -16777216 || branch_offset > 16777214)
15435 {
15436 /* There's not much we can do apart from complain if this
15437 happens. */
15438 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15439 "of range (input file too large)"), abfd);
15440 return FALSE;
15441 }
15442
15443 /* i1 = not(j1 eor s), so:
15444 not i1 = j1 eor s
15445 j1 = (not i1) eor s. */
15446
15447 branch_insn |= (branch_offset >> 1) & 0x7ff;
15448 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15449 i2 = (branch_offset >> 22) & 1;
15450 i1 = (branch_offset >> 23) & 1;
15451 s = (branch_offset >> 24) & 1;
15452 j1 = (!i1) ^ s;
15453 j2 = (!i2) ^ s;
15454 branch_insn |= j2 << 11;
15455 branch_insn |= j1 << 13;
15456 branch_insn |= s << 26;
15457 }
15458 break;
15459
15460 default:
15461 BFD_FAIL ();
15462 return FALSE;
15463 }
15464
91d6fa6a
NC
15465 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15466 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
48229727
JB
15467
15468 return TRUE;
15469}
15470
e489d0ae
PB
15471/* Do code byteswapping. Return FALSE afterwards so that the section is
15472 written out as normal. */
15473
15474static bfd_boolean
c7b8f16e 15475elf32_arm_write_section (bfd *output_bfd,
8029a119
NC
15476 struct bfd_link_info *link_info,
15477 asection *sec,
e489d0ae
PB
15478 bfd_byte *contents)
15479{
48229727 15480 unsigned int mapcount, errcount;
8e3de13a 15481 _arm_elf_section_data *arm_data;
c7b8f16e 15482 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
e489d0ae 15483 elf32_arm_section_map *map;
c7b8f16e 15484 elf32_vfp11_erratum_list *errnode;
e489d0ae
PB
15485 bfd_vma ptr;
15486 bfd_vma end;
c7b8f16e 15487 bfd_vma offset = sec->output_section->vma + sec->output_offset;
e489d0ae 15488 bfd_byte tmp;
48229727 15489 unsigned int i;
57e8b36a 15490
4dfe6ac6
NC
15491 if (globals == NULL)
15492 return FALSE;
15493
8e3de13a
NC
15494 /* If this section has not been allocated an _arm_elf_section_data
15495 structure then we cannot record anything. */
15496 arm_data = get_arm_elf_section_data (sec);
15497 if (arm_data == NULL)
15498 return FALSE;
15499
15500 mapcount = arm_data->mapcount;
15501 map = arm_data->map;
c7b8f16e
JB
15502 errcount = arm_data->erratumcount;
15503
15504 if (errcount != 0)
15505 {
15506 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15507
15508 for (errnode = arm_data->erratumlist; errnode != 0;
99059e56
RM
15509 errnode = errnode->next)
15510 {
15511 bfd_vma target = errnode->vma - offset;
15512
15513 switch (errnode->type)
15514 {
15515 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15516 {
15517 bfd_vma branch_to_veneer;
15518 /* Original condition code of instruction, plus bit mask for
15519 ARM B instruction. */
15520 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15521 | 0x0a000000;
c7b8f16e
JB
15522
15523 /* The instruction is before the label. */
91d6fa6a 15524 target -= 4;
c7b8f16e
JB
15525
15526 /* Above offset included in -4 below. */
15527 branch_to_veneer = errnode->u.b.veneer->vma
99059e56 15528 - errnode->vma - 4;
c7b8f16e
JB
15529
15530 if ((signed) branch_to_veneer < -(1 << 25)
15531 || (signed) branch_to_veneer >= (1 << 25))
15532 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15533 "range"), output_bfd);
15534
99059e56
RM
15535 insn |= (branch_to_veneer >> 2) & 0xffffff;
15536 contents[endianflip ^ target] = insn & 0xff;
15537 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15538 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15539 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15540 }
15541 break;
c7b8f16e
JB
15542
15543 case VFP11_ERRATUM_ARM_VENEER:
99059e56
RM
15544 {
15545 bfd_vma branch_from_veneer;
15546 unsigned int insn;
c7b8f16e 15547
99059e56
RM
15548 /* Take size of veneer into account. */
15549 branch_from_veneer = errnode->u.v.branch->vma
15550 - errnode->vma - 12;
c7b8f16e
JB
15551
15552 if ((signed) branch_from_veneer < -(1 << 25)
15553 || (signed) branch_from_veneer >= (1 << 25))
15554 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15555 "range"), output_bfd);
15556
99059e56
RM
15557 /* Original instruction. */
15558 insn = errnode->u.v.branch->u.b.vfp_insn;
15559 contents[endianflip ^ target] = insn & 0xff;
15560 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15561 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15562 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15563
15564 /* Branch back to insn after original insn. */
15565 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15566 contents[endianflip ^ (target + 4)] = insn & 0xff;
15567 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15568 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15569 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15570 }
15571 break;
c7b8f16e 15572
99059e56
RM
15573 default:
15574 abort ();
15575 }
15576 }
c7b8f16e 15577 }
e489d0ae 15578
2468f9c9
PB
15579 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15580 {
15581 arm_unwind_table_edit *edit_node
99059e56 15582 = arm_data->u.exidx.unwind_edit_list;
2468f9c9 15583 /* Now, sec->size is the size of the section we will write. The original
99059e56 15584 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
2468f9c9
PB
15585 markers) was sec->rawsize. (This isn't the case if we perform no
15586 edits, then rawsize will be zero and we should use size). */
21d799b5 15587 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
2468f9c9
PB
15588 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15589 unsigned int in_index, out_index;
15590 bfd_vma add_to_offsets = 0;
15591
15592 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
99059e56 15593 {
2468f9c9
PB
15594 if (edit_node)
15595 {
15596 unsigned int edit_index = edit_node->index;
b38cadfb 15597
2468f9c9 15598 if (in_index < edit_index && in_index * 8 < input_size)
99059e56 15599 {
2468f9c9
PB
15600 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15601 contents + in_index * 8, add_to_offsets);
15602 out_index++;
15603 in_index++;
15604 }
15605 else if (in_index == edit_index
15606 || (in_index * 8 >= input_size
15607 && edit_index == UINT_MAX))
99059e56 15608 {
2468f9c9
PB
15609 switch (edit_node->type)
15610 {
15611 case DELETE_EXIDX_ENTRY:
15612 in_index++;
15613 add_to_offsets += 8;
15614 break;
b38cadfb 15615
2468f9c9
PB
15616 case INSERT_EXIDX_CANTUNWIND_AT_END:
15617 {
99059e56 15618 asection *text_sec = edit_node->linked_section;
2468f9c9
PB
15619 bfd_vma text_offset = text_sec->output_section->vma
15620 + text_sec->output_offset
15621 + text_sec->size;
15622 bfd_vma exidx_offset = offset + out_index * 8;
99059e56 15623 unsigned long prel31_offset;
2468f9c9
PB
15624
15625 /* Note: this is meant to be equivalent to an
15626 R_ARM_PREL31 relocation. These synthetic
15627 EXIDX_CANTUNWIND markers are not relocated by the
15628 usual BFD method. */
15629 prel31_offset = (text_offset - exidx_offset)
15630 & 0x7ffffffful;
15631
15632 /* First address we can't unwind. */
15633 bfd_put_32 (output_bfd, prel31_offset,
15634 &edited_contents[out_index * 8]);
15635
15636 /* Code for EXIDX_CANTUNWIND. */
15637 bfd_put_32 (output_bfd, 0x1,
15638 &edited_contents[out_index * 8 + 4]);
15639
15640 out_index++;
15641 add_to_offsets -= 8;
15642 }
15643 break;
15644 }
b38cadfb 15645
2468f9c9
PB
15646 edit_node = edit_node->next;
15647 }
15648 }
15649 else
15650 {
15651 /* No more edits, copy remaining entries verbatim. */
15652 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15653 contents + in_index * 8, add_to_offsets);
15654 out_index++;
15655 in_index++;
15656 }
15657 }
15658
15659 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15660 bfd_set_section_contents (output_bfd, sec->output_section,
15661 edited_contents,
15662 (file_ptr) sec->output_offset, sec->size);
15663
15664 return TRUE;
15665 }
15666
48229727
JB
15667 /* Fix code to point to Cortex-A8 erratum stubs. */
15668 if (globals->fix_cortex_a8)
15669 {
15670 struct a8_branch_to_stub_data data;
15671
15672 data.writing_section = sec;
15673 data.contents = contents;
15674
15675 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15676 &data);
15677 }
15678
e489d0ae
PB
15679 if (mapcount == 0)
15680 return FALSE;
15681
c7b8f16e 15682 if (globals->byteswap_code)
e489d0ae 15683 {
c7b8f16e 15684 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
57e8b36a 15685
c7b8f16e
JB
15686 ptr = map[0].vma;
15687 for (i = 0; i < mapcount; i++)
99059e56
RM
15688 {
15689 if (i == mapcount - 1)
c7b8f16e 15690 end = sec->size;
99059e56
RM
15691 else
15692 end = map[i + 1].vma;
e489d0ae 15693
99059e56 15694 switch (map[i].type)
e489d0ae 15695 {
c7b8f16e
JB
15696 case 'a':
15697 /* Byte swap code words. */
15698 while (ptr + 3 < end)
99059e56
RM
15699 {
15700 tmp = contents[ptr];
15701 contents[ptr] = contents[ptr + 3];
15702 contents[ptr + 3] = tmp;
15703 tmp = contents[ptr + 1];
15704 contents[ptr + 1] = contents[ptr + 2];
15705 contents[ptr + 2] = tmp;
15706 ptr += 4;
15707 }
c7b8f16e 15708 break;
e489d0ae 15709
c7b8f16e
JB
15710 case 't':
15711 /* Byte swap code halfwords. */
15712 while (ptr + 1 < end)
99059e56
RM
15713 {
15714 tmp = contents[ptr];
15715 contents[ptr] = contents[ptr + 1];
15716 contents[ptr + 1] = tmp;
15717 ptr += 2;
15718 }
c7b8f16e
JB
15719 break;
15720
15721 case 'd':
15722 /* Leave data alone. */
15723 break;
15724 }
99059e56
RM
15725 ptr = end;
15726 }
e489d0ae 15727 }
8e3de13a 15728
93204d3a 15729 free (map);
47b2e99c 15730 arm_data->mapcount = -1;
c7b8f16e 15731 arm_data->mapsize = 0;
8e3de13a 15732 arm_data->map = NULL;
8e3de13a 15733
e489d0ae
PB
15734 return FALSE;
15735}
15736
0beaef2b
PB
15737/* Mangle thumb function symbols as we read them in. */
15738
8384fb8f 15739static bfd_boolean
0beaef2b
PB
15740elf32_arm_swap_symbol_in (bfd * abfd,
15741 const void *psrc,
15742 const void *pshn,
15743 Elf_Internal_Sym *dst)
15744{
8384fb8f
AM
15745 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15746 return FALSE;
0beaef2b
PB
15747
15748 /* New EABI objects mark thumb function symbols by setting the low bit of
35fc36a8 15749 the address. */
63e1a0fc
PB
15750 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15751 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
0beaef2b 15752 {
63e1a0fc
PB
15753 if (dst->st_value & 1)
15754 {
15755 dst->st_value &= ~(bfd_vma) 1;
15756 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15757 }
15758 else
15759 dst->st_target_internal = ST_BRANCH_TO_ARM;
35fc36a8
RS
15760 }
15761 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15762 {
15763 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15764 dst->st_target_internal = ST_BRANCH_TO_THUMB;
0beaef2b 15765 }
35fc36a8
RS
15766 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15767 dst->st_target_internal = ST_BRANCH_LONG;
15768 else
63e1a0fc 15769 dst->st_target_internal = ST_BRANCH_UNKNOWN;
35fc36a8 15770
8384fb8f 15771 return TRUE;
0beaef2b
PB
15772}
15773
15774
15775/* Mangle thumb function symbols as we write them out. */
15776
15777static void
15778elf32_arm_swap_symbol_out (bfd *abfd,
15779 const Elf_Internal_Sym *src,
15780 void *cdst,
15781 void *shndx)
15782{
15783 Elf_Internal_Sym newsym;
15784
15785 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15786 of the address set, as per the new EABI. We do this unconditionally
15787 because objcopy does not set the elf header flags until after
15788 it writes out the symbol table. */
35fc36a8 15789 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
0beaef2b
PB
15790 {
15791 newsym = *src;
34e77a92
RS
15792 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15793 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
0fa3dcad 15794 if (newsym.st_shndx != SHN_UNDEF)
99059e56
RM
15795 {
15796 /* Do this only for defined symbols. At link type, the static
15797 linker will simulate the work of dynamic linker of resolving
15798 symbols and will carry over the thumbness of found symbols to
15799 the output symbol table. It's not clear how it happens, but
15800 the thumbness of undefined symbols can well be different at
15801 runtime, and writing '1' for them will be confusing for users
15802 and possibly for dynamic linker itself.
15803 */
15804 newsym.st_value |= 1;
15805 }
906e58ca 15806
0beaef2b
PB
15807 src = &newsym;
15808 }
15809 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15810}
15811
b294bdf8
MM
15812/* Add the PT_ARM_EXIDX program header. */
15813
15814static bfd_boolean
906e58ca 15815elf32_arm_modify_segment_map (bfd *abfd,
b294bdf8
MM
15816 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15817{
15818 struct elf_segment_map *m;
15819 asection *sec;
15820
15821 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15822 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15823 {
15824 /* If there is already a PT_ARM_EXIDX header, then we do not
15825 want to add another one. This situation arises when running
15826 "strip"; the input binary already has the header. */
12bd6957 15827 m = elf_seg_map (abfd);
b294bdf8
MM
15828 while (m && m->p_type != PT_ARM_EXIDX)
15829 m = m->next;
15830 if (!m)
15831 {
21d799b5 15832 m = (struct elf_segment_map *)
99059e56 15833 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
b294bdf8
MM
15834 if (m == NULL)
15835 return FALSE;
15836 m->p_type = PT_ARM_EXIDX;
15837 m->count = 1;
15838 m->sections[0] = sec;
15839
12bd6957
AM
15840 m->next = elf_seg_map (abfd);
15841 elf_seg_map (abfd) = m;
b294bdf8
MM
15842 }
15843 }
15844
15845 return TRUE;
15846}
15847
15848/* We may add a PT_ARM_EXIDX program header. */
15849
15850static int
a6b96beb
AM
15851elf32_arm_additional_program_headers (bfd *abfd,
15852 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b294bdf8
MM
15853{
15854 asection *sec;
15855
15856 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15857 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15858 return 1;
15859 else
15860 return 0;
15861}
15862
34e77a92
RS
15863/* Hook called by the linker routine which adds symbols from an object
15864 file. */
15865
15866static bfd_boolean
15867elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15868 Elf_Internal_Sym *sym, const char **namep,
15869 flagword *flagsp, asection **secp, bfd_vma *valp)
15870{
15871 if ((abfd->flags & DYNAMIC) == 0
f64b2e8d
NC
15872 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15873 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15874 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
34e77a92 15875
c792917c
NC
15876 if (elf32_arm_hash_table (info) == NULL)
15877 return FALSE;
15878
34e77a92
RS
15879 if (elf32_arm_hash_table (info)->vxworks_p
15880 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15881 flagsp, secp, valp))
15882 return FALSE;
15883
15884 return TRUE;
15885}
15886
0beaef2b 15887/* We use this to override swap_symbol_in and swap_symbol_out. */
906e58ca
NC
15888const struct elf_size_info elf32_arm_size_info =
15889{
0beaef2b
PB
15890 sizeof (Elf32_External_Ehdr),
15891 sizeof (Elf32_External_Phdr),
15892 sizeof (Elf32_External_Shdr),
15893 sizeof (Elf32_External_Rel),
15894 sizeof (Elf32_External_Rela),
15895 sizeof (Elf32_External_Sym),
15896 sizeof (Elf32_External_Dyn),
15897 sizeof (Elf_External_Note),
15898 4,
15899 1,
15900 32, 2,
15901 ELFCLASS32, EV_CURRENT,
15902 bfd_elf32_write_out_phdrs,
15903 bfd_elf32_write_shdrs_and_ehdr,
1489a3a0 15904 bfd_elf32_checksum_contents,
0beaef2b
PB
15905 bfd_elf32_write_relocs,
15906 elf32_arm_swap_symbol_in,
15907 elf32_arm_swap_symbol_out,
15908 bfd_elf32_slurp_reloc_table,
15909 bfd_elf32_slurp_symbol_table,
15910 bfd_elf32_swap_dyn_in,
15911 bfd_elf32_swap_dyn_out,
15912 bfd_elf32_swap_reloc_in,
15913 bfd_elf32_swap_reloc_out,
15914 bfd_elf32_swap_reloca_in,
15915 bfd_elf32_swap_reloca_out
15916};
15917
6a631e86
YG
15918/* Return size of plt0 entry starting at ADDR
15919 or (bfd_vma) -1 if size can not be determined. */
15920
15921static bfd_vma
15922elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
15923{
15924 bfd_vma first_word;
15925 bfd_vma plt0_size;
15926
15927 first_word = H_GET_32 (abfd, addr);
15928
15929 if (first_word == elf32_arm_plt0_entry[0])
15930 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
15931 else if (first_word == elf32_thumb2_plt0_entry[0])
15932 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
15933 else
15934 /* We don't yet handle this PLT format. */
15935 return (bfd_vma) -1;
15936
15937 return plt0_size;
15938}
15939
15940/* Return size of plt entry starting at offset OFFSET
15941 of plt section located at address START
15942 or (bfd_vma) -1 if size can not be determined. */
15943
15944static bfd_vma
15945elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
15946{
15947 bfd_vma first_insn;
15948 bfd_vma plt_size = 0;
15949 const bfd_byte *addr = start + offset;
15950
15951 /* PLT entry size if fixed on Thumb-only platforms. */
15952 if (H_GET_32(abfd, start) == elf32_thumb2_plt0_entry[0])
15953 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
15954
15955 /* Respect Thumb stub if necessary. */
15956 if (H_GET_16(abfd, addr) == elf32_arm_plt_thumb_stub[0])
15957 {
15958 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
15959 }
15960
15961 /* Strip immediate from first add. */
15962 first_insn = H_GET_32(abfd, addr + plt_size) & 0xffffff00;
15963
15964#ifdef FOUR_WORD_PLT
15965 if (first_insn == elf32_arm_plt_entry[0])
15966 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
15967#else
15968 if (first_insn == elf32_arm_plt_entry_long[0])
15969 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
15970 else if (first_insn == elf32_arm_plt_entry_short[0])
15971 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
15972#endif
15973 else
15974 /* We don't yet handle this PLT format. */
15975 return (bfd_vma) -1;
15976
15977 return plt_size;
15978}
15979
15980/* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
15981
15982static long
15983elf32_arm_get_synthetic_symtab (bfd *abfd,
15984 long symcount ATTRIBUTE_UNUSED,
15985 asymbol **syms ATTRIBUTE_UNUSED,
15986 long dynsymcount,
15987 asymbol **dynsyms,
15988 asymbol **ret)
15989{
15990 asection *relplt;
15991 asymbol *s;
15992 arelent *p;
15993 long count, i, n;
15994 size_t size;
15995 Elf_Internal_Shdr *hdr;
15996 char *names;
15997 asection *plt;
15998 bfd_vma offset;
15999 bfd_byte *data;
16000
16001 *ret = NULL;
16002
16003 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
16004 return 0;
16005
16006 if (dynsymcount <= 0)
16007 return 0;
16008
16009 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16010 if (relplt == NULL)
16011 return 0;
16012
16013 hdr = &elf_section_data (relplt)->this_hdr;
16014 if (hdr->sh_link != elf_dynsymtab (abfd)
16015 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
16016 return 0;
16017
16018 plt = bfd_get_section_by_name (abfd, ".plt");
16019 if (plt == NULL)
16020 return 0;
16021
16022 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
16023 return -1;
16024
16025 data = plt->contents;
16026 if (data == NULL)
16027 {
16028 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
16029 return -1;
16030 bfd_cache_section_contents((asection *) plt, data);
16031 }
16032
16033 count = relplt->size / hdr->sh_entsize;
16034 size = count * sizeof (asymbol);
16035 p = relplt->relocation;
16036 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
16037 {
16038 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
16039 if (p->addend != 0)
16040 size += sizeof ("+0x") - 1 + 8;
16041 }
16042
16043 s = *ret = (asymbol *) bfd_malloc (size);
16044 if (s == NULL)
16045 return -1;
16046
16047 offset = elf32_arm_plt0_size (abfd, data);
16048 if (offset == (bfd_vma) -1)
16049 return -1;
16050
16051 names = (char *) (s + count);
16052 p = relplt->relocation;
16053 n = 0;
16054 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
16055 {
16056 size_t len;
16057
16058 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
16059 if (plt_size == (bfd_vma) -1)
16060 break;
16061
16062 *s = **p->sym_ptr_ptr;
16063 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16064 we are defining a symbol, ensure one of them is set. */
16065 if ((s->flags & BSF_LOCAL) == 0)
16066 s->flags |= BSF_GLOBAL;
16067 s->flags |= BSF_SYNTHETIC;
16068 s->section = plt;
16069 s->value = offset;
16070 s->name = names;
16071 s->udata.p = NULL;
16072 len = strlen ((*p->sym_ptr_ptr)->name);
16073 memcpy (names, (*p->sym_ptr_ptr)->name, len);
16074 names += len;
16075 if (p->addend != 0)
16076 {
16077 char buf[30], *a;
16078
16079 memcpy (names, "+0x", sizeof ("+0x") - 1);
16080 names += sizeof ("+0x") - 1;
16081 bfd_sprintf_vma (abfd, buf, p->addend);
16082 for (a = buf; *a == '0'; ++a)
16083 ;
16084 len = strlen (a);
16085 memcpy (names, a, len);
16086 names += len;
16087 }
16088 memcpy (names, "@plt", sizeof ("@plt"));
16089 names += sizeof ("@plt");
16090 ++s, ++n;
16091 offset += plt_size;
16092 }
16093
16094 return n;
16095}
16096
252b5132 16097#define ELF_ARCH bfd_arch_arm
ae95ffa6 16098#define ELF_TARGET_ID ARM_ELF_DATA
252b5132 16099#define ELF_MACHINE_CODE EM_ARM
d0facd1b
NC
16100#ifdef __QNXTARGET__
16101#define ELF_MAXPAGESIZE 0x1000
16102#else
7572ca89 16103#define ELF_MAXPAGESIZE 0x10000
d0facd1b 16104#endif
b1342370 16105#define ELF_MINPAGESIZE 0x1000
24718e3b 16106#define ELF_COMMONPAGESIZE 0x1000
252b5132 16107
ba93b8ac
DJ
16108#define bfd_elf32_mkobject elf32_arm_mkobject
16109
99e4ae17
AJ
16110#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
16111#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
252b5132
RH
16112#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
16113#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
16114#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
dc810e39 16115#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
b38cadfb 16116#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
252b5132 16117#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4ab527b0 16118#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
e489d0ae 16119#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
3c9458e9 16120#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
3e6b1042 16121#define bfd_elf32_bfd_final_link elf32_arm_final_link
6a631e86 16122#define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
252b5132
RH
16123
16124#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
16125#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
6a5bb875 16126#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
252b5132
RH
16127#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
16128#define elf_backend_check_relocs elf32_arm_check_relocs
dc810e39 16129#define elf_backend_relocate_section elf32_arm_relocate_section
e489d0ae 16130#define elf_backend_write_section elf32_arm_write_section
252b5132 16131#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
5e681ec4 16132#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
252b5132
RH
16133#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
16134#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
16135#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
0855e32b 16136#define elf_backend_always_size_sections elf32_arm_always_size_sections
74541ad4 16137#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
ba96a88f 16138#define elf_backend_post_process_headers elf32_arm_post_process_headers
99e4ae17 16139#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
c178919b 16140#define elf_backend_object_p elf32_arm_object_p
40a18ebd
NC
16141#define elf_backend_fake_sections elf32_arm_fake_sections
16142#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
e16bb312 16143#define elf_backend_final_write_processing elf32_arm_final_write_processing
5e681ec4 16144#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
0beaef2b 16145#define elf_backend_size_info elf32_arm_size_info
b294bdf8 16146#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
906e58ca
NC
16147#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
16148#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
16149#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
34e77a92 16150#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
906e58ca
NC
16151
16152#define elf_backend_can_refcount 1
16153#define elf_backend_can_gc_sections 1
16154#define elf_backend_plt_readonly 1
16155#define elf_backend_want_got_plt 1
16156#define elf_backend_want_plt_sym 0
16157#define elf_backend_may_use_rel_p 1
16158#define elf_backend_may_use_rela_p 0
4e7fd91e 16159#define elf_backend_default_use_rela_p 0
252b5132 16160
04f7c78d 16161#define elf_backend_got_header_size 12
04f7c78d 16162
906e58ca
NC
16163#undef elf_backend_obj_attrs_vendor
16164#define elf_backend_obj_attrs_vendor "aeabi"
16165#undef elf_backend_obj_attrs_section
16166#define elf_backend_obj_attrs_section ".ARM.attributes"
16167#undef elf_backend_obj_attrs_arg_type
16168#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
16169#undef elf_backend_obj_attrs_section_type
104d59d1 16170#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
b38cadfb
NC
16171#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
16172#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
104d59d1 16173
252b5132 16174#include "elf32-target.h"
7f266840 16175
b38cadfb
NC
16176/* Native Client targets. */
16177
16178#undef TARGET_LITTLE_SYM
6d00b590 16179#define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
b38cadfb
NC
16180#undef TARGET_LITTLE_NAME
16181#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
16182#undef TARGET_BIG_SYM
6d00b590 16183#define TARGET_BIG_SYM arm_elf32_nacl_be_vec
b38cadfb
NC
16184#undef TARGET_BIG_NAME
16185#define TARGET_BIG_NAME "elf32-bigarm-nacl"
16186
16187/* Like elf32_arm_link_hash_table_create -- but overrides
16188 appropriately for NaCl. */
16189
16190static struct bfd_link_hash_table *
16191elf32_arm_nacl_link_hash_table_create (bfd *abfd)
16192{
16193 struct bfd_link_hash_table *ret;
16194
16195 ret = elf32_arm_link_hash_table_create (abfd);
16196 if (ret)
16197 {
16198 struct elf32_arm_link_hash_table *htab
16199 = (struct elf32_arm_link_hash_table *) ret;
16200
16201 htab->nacl_p = 1;
16202
16203 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
16204 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
16205 }
16206 return ret;
16207}
16208
16209/* Since NaCl doesn't use the ARM-specific unwind format, we don't
16210 really need to use elf32_arm_modify_segment_map. But we do it
16211 anyway just to reduce gratuitous differences with the stock ARM backend. */
16212
16213static bfd_boolean
16214elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
16215{
16216 return (elf32_arm_modify_segment_map (abfd, info)
16217 && nacl_modify_segment_map (abfd, info));
16218}
16219
887badb3
RM
16220static void
16221elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
16222{
16223 elf32_arm_final_write_processing (abfd, linker);
16224 nacl_final_write_processing (abfd, linker);
16225}
16226
6a631e86
YG
16227static bfd_vma
16228elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
16229 const arelent *rel ATTRIBUTE_UNUSED)
16230{
16231 return plt->vma
16232 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
16233 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
16234}
887badb3 16235
b38cadfb 16236#undef elf32_bed
6a631e86 16237#define elf32_bed elf32_arm_nacl_bed
b38cadfb
NC
16238#undef bfd_elf32_bfd_link_hash_table_create
16239#define bfd_elf32_bfd_link_hash_table_create \
16240 elf32_arm_nacl_link_hash_table_create
16241#undef elf_backend_plt_alignment
6a631e86 16242#define elf_backend_plt_alignment 4
b38cadfb
NC
16243#undef elf_backend_modify_segment_map
16244#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
16245#undef elf_backend_modify_program_headers
16246#define elf_backend_modify_program_headers nacl_modify_program_headers
887badb3
RM
16247#undef elf_backend_final_write_processing
16248#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
6a631e86
YG
16249#undef bfd_elf32_get_synthetic_symtab
16250#undef elf_backend_plt_sym_val
16251#define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
b38cadfb 16252
887badb3
RM
16253#undef ELF_MINPAGESIZE
16254#undef ELF_COMMONPAGESIZE
16255
b38cadfb
NC
16256
16257#include "elf32-target.h"
16258
16259/* Reset to defaults. */
16260#undef elf_backend_plt_alignment
16261#undef elf_backend_modify_segment_map
16262#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
16263#undef elf_backend_modify_program_headers
887badb3
RM
16264#undef elf_backend_final_write_processing
16265#define elf_backend_final_write_processing elf32_arm_final_write_processing
16266#undef ELF_MINPAGESIZE
16267#define ELF_MINPAGESIZE 0x1000
16268#undef ELF_COMMONPAGESIZE
16269#define ELF_COMMONPAGESIZE 0x1000
16270
b38cadfb 16271
906e58ca 16272/* VxWorks Targets. */
4e7fd91e 16273
906e58ca 16274#undef TARGET_LITTLE_SYM
6d00b590 16275#define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
906e58ca 16276#undef TARGET_LITTLE_NAME
4e7fd91e 16277#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
906e58ca 16278#undef TARGET_BIG_SYM
6d00b590 16279#define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
906e58ca 16280#undef TARGET_BIG_NAME
4e7fd91e
PB
16281#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
16282
16283/* Like elf32_arm_link_hash_table_create -- but overrides
16284 appropriately for VxWorks. */
906e58ca 16285
4e7fd91e
PB
16286static struct bfd_link_hash_table *
16287elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
16288{
16289 struct bfd_link_hash_table *ret;
16290
16291 ret = elf32_arm_link_hash_table_create (abfd);
16292 if (ret)
16293 {
16294 struct elf32_arm_link_hash_table *htab
00a97672 16295 = (struct elf32_arm_link_hash_table *) ret;
4e7fd91e 16296 htab->use_rel = 0;
00a97672 16297 htab->vxworks_p = 1;
4e7fd91e
PB
16298 }
16299 return ret;
906e58ca 16300}
4e7fd91e 16301
00a97672
RS
16302static void
16303elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
16304{
16305 elf32_arm_final_write_processing (abfd, linker);
16306 elf_vxworks_final_write_processing (abfd, linker);
16307}
16308
906e58ca 16309#undef elf32_bed
4e7fd91e
PB
16310#define elf32_bed elf32_arm_vxworks_bed
16311
906e58ca
NC
16312#undef bfd_elf32_bfd_link_hash_table_create
16313#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
906e58ca
NC
16314#undef elf_backend_final_write_processing
16315#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
16316#undef elf_backend_emit_relocs
16317#define elf_backend_emit_relocs elf_vxworks_emit_relocs
4e7fd91e 16318
906e58ca 16319#undef elf_backend_may_use_rel_p
00a97672 16320#define elf_backend_may_use_rel_p 0
906e58ca 16321#undef elf_backend_may_use_rela_p
00a97672 16322#define elf_backend_may_use_rela_p 1
906e58ca 16323#undef elf_backend_default_use_rela_p
00a97672 16324#define elf_backend_default_use_rela_p 1
906e58ca 16325#undef elf_backend_want_plt_sym
00a97672 16326#define elf_backend_want_plt_sym 1
906e58ca 16327#undef ELF_MAXPAGESIZE
00a97672 16328#define ELF_MAXPAGESIZE 0x1000
4e7fd91e
PB
16329
16330#include "elf32-target.h"
16331
16332
21d799b5
NC
16333/* Merge backend specific data from an object file to the output
16334 object file when linking. */
16335
16336static bfd_boolean
16337elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
16338{
16339 flagword out_flags;
16340 flagword in_flags;
16341 bfd_boolean flags_compatible = TRUE;
16342 asection *sec;
16343
cc643b88 16344 /* Check if we have the same endianness. */
21d799b5
NC
16345 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
16346 return FALSE;
16347
16348 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
16349 return TRUE;
16350
16351 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
16352 return FALSE;
16353
16354 /* The input BFD must have had its flags initialised. */
16355 /* The following seems bogus to me -- The flags are initialized in
16356 the assembler but I don't think an elf_flags_init field is
16357 written into the object. */
16358 /* BFD_ASSERT (elf_flags_init (ibfd)); */
16359
16360 in_flags = elf_elfheader (ibfd)->e_flags;
16361 out_flags = elf_elfheader (obfd)->e_flags;
16362
16363 /* In theory there is no reason why we couldn't handle this. However
16364 in practice it isn't even close to working and there is no real
16365 reason to want it. */
16366 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
16367 && !(ibfd->flags & DYNAMIC)
16368 && (in_flags & EF_ARM_BE8))
16369 {
16370 _bfd_error_handler (_("error: %B is already in final BE8 format"),
16371 ibfd);
16372 return FALSE;
16373 }
16374
16375 if (!elf_flags_init (obfd))
16376 {
16377 /* If the input is the default architecture and had the default
16378 flags then do not bother setting the flags for the output
16379 architecture, instead allow future merges to do this. If no
16380 future merges ever set these flags then they will retain their
99059e56
RM
16381 uninitialised values, which surprise surprise, correspond
16382 to the default values. */
21d799b5
NC
16383 if (bfd_get_arch_info (ibfd)->the_default
16384 && elf_elfheader (ibfd)->e_flags == 0)
16385 return TRUE;
16386
16387 elf_flags_init (obfd) = TRUE;
16388 elf_elfheader (obfd)->e_flags = in_flags;
16389
16390 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
16391 && bfd_get_arch_info (obfd)->the_default)
16392 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
16393
16394 return TRUE;
16395 }
16396
16397 /* Determine what should happen if the input ARM architecture
16398 does not match the output ARM architecture. */
16399 if (! bfd_arm_merge_machines (ibfd, obfd))
16400 return FALSE;
16401
16402 /* Identical flags must be compatible. */
16403 if (in_flags == out_flags)
16404 return TRUE;
16405
16406 /* Check to see if the input BFD actually contains any sections. If
16407 not, its flags may not have been initialised either, but it
16408 cannot actually cause any incompatiblity. Do not short-circuit
16409 dynamic objects; their section list may be emptied by
16410 elf_link_add_object_symbols.
16411
16412 Also check to see if there are no code sections in the input.
16413 In this case there is no need to check for code specific flags.
16414 XXX - do we need to worry about floating-point format compatability
16415 in data sections ? */
16416 if (!(ibfd->flags & DYNAMIC))
16417 {
16418 bfd_boolean null_input_bfd = TRUE;
16419 bfd_boolean only_data_sections = TRUE;
16420
16421 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
16422 {
16423 /* Ignore synthetic glue sections. */
16424 if (strcmp (sec->name, ".glue_7")
16425 && strcmp (sec->name, ".glue_7t"))
16426 {
16427 if ((bfd_get_section_flags (ibfd, sec)
16428 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16429 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
99059e56 16430 only_data_sections = FALSE;
21d799b5
NC
16431
16432 null_input_bfd = FALSE;
16433 break;
16434 }
16435 }
16436
16437 if (null_input_bfd || only_data_sections)
16438 return TRUE;
16439 }
16440
16441 /* Complain about various flag mismatches. */
16442 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
16443 EF_ARM_EABI_VERSION (out_flags)))
16444 {
16445 _bfd_error_handler
16446 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
16447 ibfd, obfd,
16448 (in_flags & EF_ARM_EABIMASK) >> 24,
16449 (out_flags & EF_ARM_EABIMASK) >> 24);
16450 return FALSE;
16451 }
16452
16453 /* Not sure what needs to be checked for EABI versions >= 1. */
16454 /* VxWorks libraries do not use these flags. */
16455 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
16456 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
16457 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
16458 {
16459 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
16460 {
16461 _bfd_error_handler
16462 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
16463 ibfd, obfd,
16464 in_flags & EF_ARM_APCS_26 ? 26 : 32,
16465 out_flags & EF_ARM_APCS_26 ? 26 : 32);
16466 flags_compatible = FALSE;
16467 }
16468
16469 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
16470 {
16471 if (in_flags & EF_ARM_APCS_FLOAT)
16472 _bfd_error_handler
16473 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16474 ibfd, obfd);
16475 else
16476 _bfd_error_handler
16477 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16478 ibfd, obfd);
16479
16480 flags_compatible = FALSE;
16481 }
16482
16483 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16484 {
16485 if (in_flags & EF_ARM_VFP_FLOAT)
16486 _bfd_error_handler
16487 (_("error: %B uses VFP instructions, whereas %B does not"),
16488 ibfd, obfd);
16489 else
16490 _bfd_error_handler
16491 (_("error: %B uses FPA instructions, whereas %B does not"),
16492 ibfd, obfd);
16493
16494 flags_compatible = FALSE;
16495 }
16496
16497 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16498 {
16499 if (in_flags & EF_ARM_MAVERICK_FLOAT)
16500 _bfd_error_handler
16501 (_("error: %B uses Maverick instructions, whereas %B does not"),
16502 ibfd, obfd);
16503 else
16504 _bfd_error_handler
16505 (_("error: %B does not use Maverick instructions, whereas %B does"),
16506 ibfd, obfd);
16507
16508 flags_compatible = FALSE;
16509 }
16510
16511#ifdef EF_ARM_SOFT_FLOAT
16512 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16513 {
16514 /* We can allow interworking between code that is VFP format
16515 layout, and uses either soft float or integer regs for
16516 passing floating point arguments and results. We already
16517 know that the APCS_FLOAT flags match; similarly for VFP
16518 flags. */
16519 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16520 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16521 {
16522 if (in_flags & EF_ARM_SOFT_FLOAT)
16523 _bfd_error_handler
16524 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16525 ibfd, obfd);
16526 else
16527 _bfd_error_handler
16528 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16529 ibfd, obfd);
16530
16531 flags_compatible = FALSE;
16532 }
16533 }
16534#endif
16535
16536 /* Interworking mismatch is only a warning. */
16537 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16538 {
16539 if (in_flags & EF_ARM_INTERWORK)
16540 {
16541 _bfd_error_handler
16542 (_("Warning: %B supports interworking, whereas %B does not"),
16543 ibfd, obfd);
16544 }
16545 else
16546 {
16547 _bfd_error_handler
16548 (_("Warning: %B does not support interworking, whereas %B does"),
16549 ibfd, obfd);
16550 }
16551 }
16552 }
16553
16554 return flags_compatible;
16555}
16556
16557
906e58ca 16558/* Symbian OS Targets. */
7f266840 16559
906e58ca 16560#undef TARGET_LITTLE_SYM
6d00b590 16561#define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
906e58ca 16562#undef TARGET_LITTLE_NAME
7f266840 16563#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
906e58ca 16564#undef TARGET_BIG_SYM
6d00b590 16565#define TARGET_BIG_SYM arm_elf32_symbian_be_vec
906e58ca 16566#undef TARGET_BIG_NAME
7f266840
DJ
16567#define TARGET_BIG_NAME "elf32-bigarm-symbian"
16568
16569/* Like elf32_arm_link_hash_table_create -- but overrides
16570 appropriately for Symbian OS. */
906e58ca 16571
7f266840
DJ
16572static struct bfd_link_hash_table *
16573elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16574{
16575 struct bfd_link_hash_table *ret;
16576
16577 ret = elf32_arm_link_hash_table_create (abfd);
16578 if (ret)
16579 {
16580 struct elf32_arm_link_hash_table *htab
16581 = (struct elf32_arm_link_hash_table *)ret;
16582 /* There is no PLT header for Symbian OS. */
16583 htab->plt_header_size = 0;
95720a86
DJ
16584 /* The PLT entries are each one instruction and one word. */
16585 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
7f266840 16586 htab->symbian_p = 1;
33bfe774
JB
16587 /* Symbian uses armv5t or above, so use_blx is always true. */
16588 htab->use_blx = 1;
67687978 16589 htab->root.is_relocatable_executable = 1;
7f266840
DJ
16590 }
16591 return ret;
906e58ca 16592}
7f266840 16593
b35d266b 16594static const struct bfd_elf_special_section
551b43fd 16595elf32_arm_symbian_special_sections[] =
7f266840 16596{
5cd3778d
MM
16597 /* In a BPABI executable, the dynamic linking sections do not go in
16598 the loadable read-only segment. The post-linker may wish to
16599 refer to these sections, but they are not part of the final
16600 program image. */
0112cd26
NC
16601 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16602 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16603 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16604 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16605 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
5cd3778d
MM
16606 /* These sections do not need to be writable as the SymbianOS
16607 postlinker will arrange things so that no dynamic relocation is
16608 required. */
0112cd26
NC
16609 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16610 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16611 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16612 { NULL, 0, 0, 0, 0 }
7f266840
DJ
16613};
16614
c3c76620 16615static void
906e58ca 16616elf32_arm_symbian_begin_write_processing (bfd *abfd,
a4fd1a8e 16617 struct bfd_link_info *link_info)
c3c76620
MM
16618{
16619 /* BPABI objects are never loaded directly by an OS kernel; they are
16620 processed by a postlinker first, into an OS-specific format. If
16621 the D_PAGED bit is set on the file, BFD will align segments on
16622 page boundaries, so that an OS can directly map the file. With
16623 BPABI objects, that just results in wasted space. In addition,
16624 because we clear the D_PAGED bit, map_sections_to_segments will
16625 recognize that the program headers should not be mapped into any
16626 loadable segment. */
16627 abfd->flags &= ~D_PAGED;
906e58ca 16628 elf32_arm_begin_write_processing (abfd, link_info);
c3c76620 16629}
7f266840
DJ
16630
16631static bfd_boolean
906e58ca 16632elf32_arm_symbian_modify_segment_map (bfd *abfd,
b294bdf8 16633 struct bfd_link_info *info)
7f266840
DJ
16634{
16635 struct elf_segment_map *m;
16636 asection *dynsec;
16637
7f266840
DJ
16638 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16639 segment. However, because the .dynamic section is not marked
16640 with SEC_LOAD, the generic ELF code will not create such a
16641 segment. */
16642 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16643 if (dynsec)
16644 {
12bd6957 16645 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8ded5a0f
AM
16646 if (m->p_type == PT_DYNAMIC)
16647 break;
16648
16649 if (m == NULL)
16650 {
16651 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12bd6957
AM
16652 m->next = elf_seg_map (abfd);
16653 elf_seg_map (abfd) = m;
8ded5a0f 16654 }
7f266840
DJ
16655 }
16656
b294bdf8
MM
16657 /* Also call the generic arm routine. */
16658 return elf32_arm_modify_segment_map (abfd, info);
7f266840
DJ
16659}
16660
95720a86
DJ
16661/* Return address for Ith PLT stub in section PLT, for relocation REL
16662 or (bfd_vma) -1 if it should not be included. */
16663
16664static bfd_vma
16665elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16666 const arelent *rel ATTRIBUTE_UNUSED)
16667{
16668 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16669}
16670
16671
8029a119 16672#undef elf32_bed
7f266840
DJ
16673#define elf32_bed elf32_arm_symbian_bed
16674
16675/* The dynamic sections are not allocated on SymbianOS; the postlinker
16676 will process them and then discard them. */
906e58ca 16677#undef ELF_DYNAMIC_SEC_FLAGS
7f266840
DJ
16678#define ELF_DYNAMIC_SEC_FLAGS \
16679 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16680
00a97672 16681#undef elf_backend_emit_relocs
c3c76620 16682
906e58ca
NC
16683#undef bfd_elf32_bfd_link_hash_table_create
16684#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16685#undef elf_backend_special_sections
16686#define elf_backend_special_sections elf32_arm_symbian_special_sections
16687#undef elf_backend_begin_write_processing
16688#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16689#undef elf_backend_final_write_processing
16690#define elf_backend_final_write_processing elf32_arm_final_write_processing
16691
16692#undef elf_backend_modify_segment_map
7f266840
DJ
16693#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16694
16695/* There is no .got section for BPABI objects, and hence no header. */
906e58ca 16696#undef elf_backend_got_header_size
7f266840
DJ
16697#define elf_backend_got_header_size 0
16698
16699/* Similarly, there is no .got.plt section. */
906e58ca 16700#undef elf_backend_want_got_plt
7f266840
DJ
16701#define elf_backend_want_got_plt 0
16702
906e58ca 16703#undef elf_backend_plt_sym_val
95720a86
DJ
16704#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16705
906e58ca 16706#undef elf_backend_may_use_rel_p
00a97672 16707#define elf_backend_may_use_rel_p 1
906e58ca 16708#undef elf_backend_may_use_rela_p
00a97672 16709#define elf_backend_may_use_rela_p 0
906e58ca 16710#undef elf_backend_default_use_rela_p
00a97672 16711#define elf_backend_default_use_rela_p 0
906e58ca 16712#undef elf_backend_want_plt_sym
00a97672 16713#define elf_backend_want_plt_sym 0
906e58ca 16714#undef ELF_MAXPAGESIZE
00a97672 16715#define ELF_MAXPAGESIZE 0x8000
4e7fd91e 16716
7f266840 16717#include "elf32-target.h"
This page took 1.984002 seconds and 4 git commands to generate.