/bfd:
[deliverable/binutils-gdb.git] / bfd / elf32-avr.c
CommitLineData
adde6300 1/* AVR-specific support for 32-bit ELF
4fbb74a6 2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008
b2a8e766 3 Free Software Foundation, Inc.
adde6300
AM
4 Contributed by Denis Chertykov <denisc@overta.ru>
5
750bce0e 6 This file is part of BFD, the Binary File Descriptor library.
adde6300 7
750bce0e
NC
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
cd123cb7 10 the Free Software Foundation; either version 3 of the License, or
750bce0e 11 (at your option) any later version.
adde6300 12
750bce0e
NC
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
adde6300 17
750bce0e
NC
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
4cdc7696 20 Foundation, Inc., 51 Franklin Street - Fifth Floor,
df406460 21 Boston, MA 02110-1301, USA. */
adde6300 22
adde6300 23#include "sysdep.h"
3db64b00 24#include "bfd.h"
adde6300
AM
25#include "libbfd.h"
26#include "elf-bfd.h"
27#include "elf/avr.h"
28c9d252
NC
28#include "elf32-avr.h"
29
30/* Enable debugging printout at stdout with this variable. */
31static bfd_boolean debug_relax = FALSE;
32
33/* Enable debugging printout at stdout with this variable. */
34static bfd_boolean debug_stubs = FALSE;
35
36/* Hash table initialization and handling. Code is taken from the hppa port
37 and adapted to the needs of AVR. */
38
39/* We use two hash tables to hold information for linking avr objects.
40
41 The first is the elf32_avr_link_hash_tablse which is derived from the
42 stanard ELF linker hash table. We use this as a place to attach the other
43 hash table and some static information.
44
45 The second is the stub hash table which is derived from the base BFD
46 hash table. The stub hash table holds the information on the linker
47 stubs. */
48
49struct elf32_avr_stub_hash_entry
50{
51 /* Base hash table entry structure. */
52 struct bfd_hash_entry bh_root;
53
54 /* Offset within stub_sec of the beginning of this stub. */
55 bfd_vma stub_offset;
56
57 /* Given the symbol's value and its section we can determine its final
58 value when building the stubs (so the stub knows where to jump). */
59 bfd_vma target_value;
60
61 /* This way we could mark stubs to be no longer necessary. */
62 bfd_boolean is_actually_needed;
63};
64
65struct elf32_avr_link_hash_table
66{
67 /* The main hash table. */
68 struct elf_link_hash_table etab;
69
70 /* The stub hash table. */
71 struct bfd_hash_table bstab;
72
73 bfd_boolean no_stubs;
74
75 /* Linker stub bfd. */
76 bfd *stub_bfd;
77
78 /* The stub section. */
79 asection *stub_sec;
80
81 /* Usually 0, unless we are generating code for a bootloader. Will
82 be initialized by elf32_avr_size_stubs to the vma offset of the
83 output section associated with the stub section. */
84 bfd_vma vector_base;
85
86 /* Assorted information used by elf32_avr_size_stubs. */
87 unsigned int bfd_count;
88 int top_index;
89 asection ** input_list;
90 Elf_Internal_Sym ** all_local_syms;
91
92 /* Tables for mapping vma beyond the 128k boundary to the address of the
93 corresponding stub. (AMT)
94 "amt_max_entry_cnt" reflects the number of entries that memory is allocated
95 for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
96 "amt_entry_cnt" informs how many of these entries actually contain
97 useful data. */
98 unsigned int amt_entry_cnt;
99 unsigned int amt_max_entry_cnt;
100 bfd_vma * amt_stub_offsets;
101 bfd_vma * amt_destination_addr;
102};
103
104/* Various hash macros and functions. */
105#define avr_link_hash_table(p) \
64ee10b6
NC
106 /* PR 3874: Check that we have an AVR style hash table before using it. */\
107 ((p)->hash->table.newfunc != elf32_avr_link_hash_newfunc ? NULL : \
108 ((struct elf32_avr_link_hash_table *) ((p)->hash)))
28c9d252
NC
109
110#define avr_stub_hash_entry(ent) \
111 ((struct elf32_avr_stub_hash_entry *)(ent))
112
113#define avr_stub_hash_lookup(table, string, create, copy) \
114 ((struct elf32_avr_stub_hash_entry *) \
115 bfd_hash_lookup ((table), (string), (create), (copy)))
adde6300 116
adde6300
AM
117static reloc_howto_type elf_avr_howto_table[] =
118{
119 HOWTO (R_AVR_NONE, /* type */
120 0, /* rightshift */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
122 32, /* bitsize */
b34976b6 123 FALSE, /* pc_relative */
adde6300
AM
124 0, /* bitpos */
125 complain_overflow_bitfield, /* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_AVR_NONE", /* name */
b34976b6 128 FALSE, /* partial_inplace */
adde6300
AM
129 0, /* src_mask */
130 0, /* dst_mask */
b34976b6 131 FALSE), /* pcrel_offset */
adde6300
AM
132
133 HOWTO (R_AVR_32, /* type */
134 0, /* rightshift */
135 2, /* size (0 = byte, 1 = short, 2 = long) */
136 32, /* bitsize */
b34976b6 137 FALSE, /* pc_relative */
adde6300
AM
138 0, /* bitpos */
139 complain_overflow_bitfield, /* complain_on_overflow */
140 bfd_elf_generic_reloc, /* special_function */
141 "R_AVR_32", /* name */
b34976b6 142 FALSE, /* partial_inplace */
adde6300
AM
143 0xffffffff, /* src_mask */
144 0xffffffff, /* dst_mask */
b34976b6 145 FALSE), /* pcrel_offset */
adde6300
AM
146
147 /* A 7 bit PC relative relocation. */
148 HOWTO (R_AVR_7_PCREL, /* type */
149 1, /* rightshift */
150 1, /* size (0 = byte, 1 = short, 2 = long) */
151 7, /* bitsize */
b34976b6 152 TRUE, /* pc_relative */
adde6300
AM
153 3, /* bitpos */
154 complain_overflow_bitfield, /* complain_on_overflow */
155 bfd_elf_generic_reloc, /* special_function */
156 "R_AVR_7_PCREL", /* name */
b34976b6 157 FALSE, /* partial_inplace */
adde6300
AM
158 0xffff, /* src_mask */
159 0xffff, /* dst_mask */
b34976b6 160 TRUE), /* pcrel_offset */
adde6300
AM
161
162 /* A 13 bit PC relative relocation. */
163 HOWTO (R_AVR_13_PCREL, /* type */
164 1, /* rightshift */
165 1, /* size (0 = byte, 1 = short, 2 = long) */
166 13, /* bitsize */
b34976b6 167 TRUE, /* pc_relative */
adde6300
AM
168 0, /* bitpos */
169 complain_overflow_bitfield, /* complain_on_overflow */
170 bfd_elf_generic_reloc, /* special_function */
171 "R_AVR_13_PCREL", /* name */
b34976b6 172 FALSE, /* partial_inplace */
adde6300
AM
173 0xfff, /* src_mask */
174 0xfff, /* dst_mask */
b34976b6 175 TRUE), /* pcrel_offset */
adde6300
AM
176
177 /* A 16 bit absolute relocation. */
178 HOWTO (R_AVR_16, /* type */
179 0, /* rightshift */
180 1, /* size (0 = byte, 1 = short, 2 = long) */
181 16, /* bitsize */
b34976b6 182 FALSE, /* pc_relative */
adde6300
AM
183 0, /* bitpos */
184 complain_overflow_dont, /* complain_on_overflow */
185 bfd_elf_generic_reloc, /* special_function */
186 "R_AVR_16", /* name */
b34976b6 187 FALSE, /* partial_inplace */
adde6300
AM
188 0xffff, /* src_mask */
189 0xffff, /* dst_mask */
b34976b6 190 FALSE), /* pcrel_offset */
adde6300 191
28c9d252
NC
192 /* A 16 bit absolute relocation for command address
193 Will be changed when linker stubs are needed. */
adde6300
AM
194 HOWTO (R_AVR_16_PM, /* type */
195 1, /* rightshift */
196 1, /* size (0 = byte, 1 = short, 2 = long) */
197 16, /* bitsize */
b34976b6 198 FALSE, /* pc_relative */
adde6300
AM
199 0, /* bitpos */
200 complain_overflow_bitfield, /* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_AVR_16_PM", /* name */
b34976b6 203 FALSE, /* partial_inplace */
adde6300
AM
204 0xffff, /* src_mask */
205 0xffff, /* dst_mask */
b34976b6 206 FALSE), /* pcrel_offset */
adde6300
AM
207 /* A low 8 bit absolute relocation of 16 bit address.
208 For LDI command. */
209 HOWTO (R_AVR_LO8_LDI, /* type */
210 0, /* rightshift */
211 1, /* size (0 = byte, 1 = short, 2 = long) */
212 8, /* bitsize */
b34976b6 213 FALSE, /* pc_relative */
adde6300
AM
214 0, /* bitpos */
215 complain_overflow_dont, /* complain_on_overflow */
216 bfd_elf_generic_reloc, /* special_function */
217 "R_AVR_LO8_LDI", /* name */
b34976b6 218 FALSE, /* partial_inplace */
adde6300
AM
219 0xffff, /* src_mask */
220 0xffff, /* dst_mask */
b34976b6 221 FALSE), /* pcrel_offset */
adde6300
AM
222 /* A high 8 bit absolute relocation of 16 bit address.
223 For LDI command. */
224 HOWTO (R_AVR_HI8_LDI, /* type */
225 8, /* rightshift */
226 1, /* size (0 = byte, 1 = short, 2 = long) */
227 8, /* bitsize */
b34976b6 228 FALSE, /* pc_relative */
adde6300
AM
229 0, /* bitpos */
230 complain_overflow_dont, /* complain_on_overflow */
231 bfd_elf_generic_reloc, /* special_function */
232 "R_AVR_HI8_LDI", /* name */
b34976b6 233 FALSE, /* partial_inplace */
adde6300
AM
234 0xffff, /* src_mask */
235 0xffff, /* dst_mask */
b34976b6 236 FALSE), /* pcrel_offset */
adde6300 237 /* A high 6 bit absolute relocation of 22 bit address.
4cdc7696 238 For LDI command. As well second most significant 8 bit value of
df406460 239 a 32 bit link-time constant. */
adde6300
AM
240 HOWTO (R_AVR_HH8_LDI, /* type */
241 16, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
b34976b6 244 FALSE, /* pc_relative */
adde6300
AM
245 0, /* bitpos */
246 complain_overflow_dont, /* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_AVR_HH8_LDI", /* name */
b34976b6 249 FALSE, /* partial_inplace */
adde6300
AM
250 0xffff, /* src_mask */
251 0xffff, /* dst_mask */
b34976b6 252 FALSE), /* pcrel_offset */
adde6300
AM
253 /* A negative low 8 bit absolute relocation of 16 bit address.
254 For LDI command. */
255 HOWTO (R_AVR_LO8_LDI_NEG, /* type */
256 0, /* rightshift */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
258 8, /* bitsize */
b34976b6 259 FALSE, /* pc_relative */
adde6300
AM
260 0, /* bitpos */
261 complain_overflow_dont, /* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
263 "R_AVR_LO8_LDI_NEG", /* name */
b34976b6 264 FALSE, /* partial_inplace */
adde6300
AM
265 0xffff, /* src_mask */
266 0xffff, /* dst_mask */
b34976b6 267 FALSE), /* pcrel_offset */
df406460 268 /* A negative high 8 bit absolute relocation of 16 bit address.
adde6300
AM
269 For LDI command. */
270 HOWTO (R_AVR_HI8_LDI_NEG, /* type */
271 8, /* rightshift */
272 1, /* size (0 = byte, 1 = short, 2 = long) */
273 8, /* bitsize */
b34976b6 274 FALSE, /* pc_relative */
adde6300
AM
275 0, /* bitpos */
276 complain_overflow_dont, /* complain_on_overflow */
277 bfd_elf_generic_reloc, /* special_function */
278 "R_AVR_HI8_LDI_NEG", /* name */
b34976b6 279 FALSE, /* partial_inplace */
adde6300
AM
280 0xffff, /* src_mask */
281 0xffff, /* dst_mask */
b34976b6 282 FALSE), /* pcrel_offset */
df406460 283 /* A negative high 6 bit absolute relocation of 22 bit address.
adde6300
AM
284 For LDI command. */
285 HOWTO (R_AVR_HH8_LDI_NEG, /* type */
286 16, /* rightshift */
287 1, /* size (0 = byte, 1 = short, 2 = long) */
288 8, /* bitsize */
b34976b6 289 FALSE, /* pc_relative */
adde6300
AM
290 0, /* bitpos */
291 complain_overflow_dont, /* complain_on_overflow */
292 bfd_elf_generic_reloc, /* special_function */
293 "R_AVR_HH8_LDI_NEG", /* name */
b34976b6 294 FALSE, /* partial_inplace */
adde6300
AM
295 0xffff, /* src_mask */
296 0xffff, /* dst_mask */
b34976b6 297 FALSE), /* pcrel_offset */
adde6300 298 /* A low 8 bit absolute relocation of 24 bit program memory address.
28c9d252 299 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
300 HOWTO (R_AVR_LO8_LDI_PM, /* type */
301 1, /* rightshift */
302 1, /* size (0 = byte, 1 = short, 2 = long) */
303 8, /* bitsize */
b34976b6 304 FALSE, /* pc_relative */
adde6300
AM
305 0, /* bitpos */
306 complain_overflow_dont, /* complain_on_overflow */
307 bfd_elf_generic_reloc, /* special_function */
308 "R_AVR_LO8_LDI_PM", /* name */
b34976b6 309 FALSE, /* partial_inplace */
adde6300
AM
310 0xffff, /* src_mask */
311 0xffff, /* dst_mask */
b34976b6 312 FALSE), /* pcrel_offset */
28c9d252
NC
313 /* A low 8 bit absolute relocation of 24 bit program memory address.
314 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
315 HOWTO (R_AVR_HI8_LDI_PM, /* type */
316 9, /* rightshift */
317 1, /* size (0 = byte, 1 = short, 2 = long) */
318 8, /* bitsize */
b34976b6 319 FALSE, /* pc_relative */
adde6300
AM
320 0, /* bitpos */
321 complain_overflow_dont, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_AVR_HI8_LDI_PM", /* name */
b34976b6 324 FALSE, /* partial_inplace */
adde6300
AM
325 0xffff, /* src_mask */
326 0xffff, /* dst_mask */
b34976b6 327 FALSE), /* pcrel_offset */
28c9d252
NC
328 /* A low 8 bit absolute relocation of 24 bit program memory address.
329 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
330 HOWTO (R_AVR_HH8_LDI_PM, /* type */
331 17, /* rightshift */
332 1, /* size (0 = byte, 1 = short, 2 = long) */
333 8, /* bitsize */
b34976b6 334 FALSE, /* pc_relative */
adde6300
AM
335 0, /* bitpos */
336 complain_overflow_dont, /* complain_on_overflow */
337 bfd_elf_generic_reloc, /* special_function */
338 "R_AVR_HH8_LDI_PM", /* name */
b34976b6 339 FALSE, /* partial_inplace */
adde6300
AM
340 0xffff, /* src_mask */
341 0xffff, /* dst_mask */
b34976b6 342 FALSE), /* pcrel_offset */
28c9d252
NC
343 /* A low 8 bit absolute relocation of 24 bit program memory address.
344 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
345 HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
346 1, /* rightshift */
347 1, /* size (0 = byte, 1 = short, 2 = long) */
348 8, /* bitsize */
b34976b6 349 FALSE, /* pc_relative */
adde6300
AM
350 0, /* bitpos */
351 complain_overflow_dont, /* complain_on_overflow */
352 bfd_elf_generic_reloc, /* special_function */
353 "R_AVR_LO8_LDI_PM_NEG", /* name */
b34976b6 354 FALSE, /* partial_inplace */
adde6300
AM
355 0xffff, /* src_mask */
356 0xffff, /* dst_mask */
b34976b6 357 FALSE), /* pcrel_offset */
28c9d252
NC
358 /* A low 8 bit absolute relocation of 24 bit program memory address.
359 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
360 HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
361 9, /* rightshift */
362 1, /* size (0 = byte, 1 = short, 2 = long) */
363 8, /* bitsize */
b34976b6 364 FALSE, /* pc_relative */
adde6300
AM
365 0, /* bitpos */
366 complain_overflow_dont, /* complain_on_overflow */
367 bfd_elf_generic_reloc, /* special_function */
368 "R_AVR_HI8_LDI_PM_NEG", /* name */
b34976b6 369 FALSE, /* partial_inplace */
adde6300
AM
370 0xffff, /* src_mask */
371 0xffff, /* dst_mask */
b34976b6 372 FALSE), /* pcrel_offset */
28c9d252
NC
373 /* A low 8 bit absolute relocation of 24 bit program memory address.
374 For LDI command. Will not be changed when linker stubs are needed. */
adde6300
AM
375 HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
376 17, /* rightshift */
377 1, /* size (0 = byte, 1 = short, 2 = long) */
378 8, /* bitsize */
b34976b6 379 FALSE, /* pc_relative */
adde6300
AM
380 0, /* bitpos */
381 complain_overflow_dont, /* complain_on_overflow */
382 bfd_elf_generic_reloc, /* special_function */
383 "R_AVR_HH8_LDI_PM_NEG", /* name */
b34976b6 384 FALSE, /* partial_inplace */
adde6300
AM
385 0xffff, /* src_mask */
386 0xffff, /* dst_mask */
b34976b6 387 FALSE), /* pcrel_offset */
adde6300
AM
388 /* Relocation for CALL command in ATmega. */
389 HOWTO (R_AVR_CALL, /* type */
390 1, /* rightshift */
391 2, /* size (0 = byte, 1 = short, 2 = long) */
392 23, /* bitsize */
b34976b6 393 FALSE, /* pc_relative */
adde6300 394 0, /* bitpos */
750bce0e 395 complain_overflow_dont,/* complain_on_overflow */
adde6300
AM
396 bfd_elf_generic_reloc, /* special_function */
397 "R_AVR_CALL", /* name */
b34976b6 398 FALSE, /* partial_inplace */
adde6300
AM
399 0xffffffff, /* src_mask */
400 0xffffffff, /* dst_mask */
750bce0e
NC
401 FALSE), /* pcrel_offset */
402 /* A 16 bit absolute relocation of 16 bit address.
403 For LDI command. */
404 HOWTO (R_AVR_LDI, /* type */
405 0, /* rightshift */
406 1, /* size (0 = byte, 1 = short, 2 = long) */
407 16, /* bitsize */
408 FALSE, /* pc_relative */
409 0, /* bitpos */
410 complain_overflow_dont,/* complain_on_overflow */
411 bfd_elf_generic_reloc, /* special_function */
412 "R_AVR_LDI", /* name */
413 FALSE, /* partial_inplace */
414 0xffff, /* src_mask */
415 0xffff, /* dst_mask */
416 FALSE), /* pcrel_offset */
417 /* A 6 bit absolute relocation of 6 bit offset.
418 For ldd/sdd command. */
419 HOWTO (R_AVR_6, /* type */
420 0, /* rightshift */
421 0, /* size (0 = byte, 1 = short, 2 = long) */
422 6, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_dont,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_AVR_6", /* name */
428 FALSE, /* partial_inplace */
429 0xffff, /* src_mask */
430 0xffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432 /* A 6 bit absolute relocation of 6 bit offset.
433 For sbiw/adiw command. */
434 HOWTO (R_AVR_6_ADIW, /* type */
435 0, /* rightshift */
436 0, /* size (0 = byte, 1 = short, 2 = long) */
437 6, /* bitsize */
438 FALSE, /* pc_relative */
439 0, /* bitpos */
440 complain_overflow_dont,/* complain_on_overflow */
441 bfd_elf_generic_reloc, /* special_function */
442 "R_AVR_6_ADIW", /* name */
443 FALSE, /* partial_inplace */
444 0xffff, /* src_mask */
445 0xffff, /* dst_mask */
df406460
NC
446 FALSE), /* pcrel_offset */
447 /* Most significant 8 bit value of a 32 bit link-time constant. */
448 HOWTO (R_AVR_MS8_LDI, /* type */
449 24, /* rightshift */
450 1, /* size (0 = byte, 1 = short, 2 = long) */
451 8, /* bitsize */
452 FALSE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_dont, /* complain_on_overflow */
455 bfd_elf_generic_reloc, /* special_function */
456 "R_AVR_MS8_LDI", /* name */
457 FALSE, /* partial_inplace */
458 0xffff, /* src_mask */
459 0xffff, /* dst_mask */
460 FALSE), /* pcrel_offset */
461 /* Negative most significant 8 bit value of a 32 bit link-time constant. */
462 HOWTO (R_AVR_MS8_LDI_NEG, /* type */
463 24, /* rightshift */
464 1, /* size (0 = byte, 1 = short, 2 = long) */
465 8, /* bitsize */
466 FALSE, /* pc_relative */
467 0, /* bitpos */
468 complain_overflow_dont, /* complain_on_overflow */
469 bfd_elf_generic_reloc, /* special_function */
470 "R_AVR_MS8_LDI_NEG", /* name */
471 FALSE, /* partial_inplace */
472 0xffff, /* src_mask */
473 0xffff, /* dst_mask */
28c9d252
NC
474 FALSE), /* pcrel_offset */
475 /* A low 8 bit absolute relocation of 24 bit program memory address.
476 For LDI command. Will be changed when linker stubs are needed. */
477 HOWTO (R_AVR_LO8_LDI_GS, /* type */
478 1, /* rightshift */
479 1, /* size (0 = byte, 1 = short, 2 = long) */
480 8, /* bitsize */
481 FALSE, /* pc_relative */
482 0, /* bitpos */
483 complain_overflow_dont, /* complain_on_overflow */
484 bfd_elf_generic_reloc, /* special_function */
485 "R_AVR_LO8_LDI_GS", /* name */
486 FALSE, /* partial_inplace */
487 0xffff, /* src_mask */
488 0xffff, /* dst_mask */
489 FALSE), /* pcrel_offset */
490 /* A low 8 bit absolute relocation of 24 bit program memory address.
491 For LDI command. Will be changed when linker stubs are needed. */
492 HOWTO (R_AVR_HI8_LDI_GS, /* type */
493 9, /* rightshift */
494 1, /* size (0 = byte, 1 = short, 2 = long) */
495 8, /* bitsize */
496 FALSE, /* pc_relative */
497 0, /* bitpos */
498 complain_overflow_dont, /* complain_on_overflow */
499 bfd_elf_generic_reloc, /* special_function */
500 "R_AVR_HI8_LDI_GS", /* name */
501 FALSE, /* partial_inplace */
502 0xffff, /* src_mask */
503 0xffff, /* dst_mask */
504 FALSE) /* pcrel_offset */
adde6300
AM
505};
506
507/* Map BFD reloc types to AVR ELF reloc types. */
508
509struct avr_reloc_map
510{
511 bfd_reloc_code_real_type bfd_reloc_val;
512 unsigned int elf_reloc_val;
513};
514
28c9d252 515static const struct avr_reloc_map avr_reloc_map[] =
adde6300
AM
516{
517 { BFD_RELOC_NONE, R_AVR_NONE },
518 { BFD_RELOC_32, R_AVR_32 },
519 { BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
520 { BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
521 { BFD_RELOC_16, R_AVR_16 },
522 { BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
523 { BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
524 { BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
525 { BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
df406460 526 { BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
adde6300
AM
527 { BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
528 { BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
529 { BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
df406460 530 { BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
adde6300 531 { BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
28c9d252 532 { BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
adde6300 533 { BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
28c9d252 534 { BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
adde6300
AM
535 { BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
536 { BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
537 { BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
538 { BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
750bce0e
NC
539 { BFD_RELOC_AVR_CALL, R_AVR_CALL },
540 { BFD_RELOC_AVR_LDI, R_AVR_LDI },
541 { BFD_RELOC_AVR_6, R_AVR_6 },
542 { BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW }
adde6300
AM
543};
544
df406460 545/* Meant to be filled one day with the wrap around address for the
4cdc7696 546 specific device. I.e. should get the value 0x4000 for 16k devices,
df406460 547 0x8000 for 32k devices and so on.
4cdc7696 548
df406460 549 We initialize it here with a value of 0x1000000 resulting in
4cdc7696
NC
550 that we will never suggest a wrap-around jump during relaxation.
551 The logic of the source code later on assumes that in
df406460 552 avr_pc_wrap_around one single bit is set. */
28c9d252
NC
553static bfd_vma avr_pc_wrap_around = 0x10000000;
554
555/* If this variable holds a value different from zero, the linker relaxation
556 machine will try to optimize call/ret sequences by a single jump
557 instruction. This option could be switched off by a linker switch. */
558static int avr_replace_call_ret_sequences = 1;
559\f
560/* Initialize an entry in the stub hash table. */
561
562static struct bfd_hash_entry *
563stub_hash_newfunc (struct bfd_hash_entry *entry,
564 struct bfd_hash_table *table,
565 const char *string)
566{
567 /* Allocate the structure if it has not already been allocated by a
568 subclass. */
569 if (entry == NULL)
570 {
571 entry = bfd_hash_allocate (table,
572 sizeof (struct elf32_avr_stub_hash_entry));
573 if (entry == NULL)
574 return entry;
575 }
576
577 /* Call the allocation method of the superclass. */
578 entry = bfd_hash_newfunc (entry, table, string);
579 if (entry != NULL)
580 {
581 struct elf32_avr_stub_hash_entry *hsh;
582
583 /* Initialize the local fields. */
584 hsh = avr_stub_hash_entry (entry);
585 hsh->stub_offset = 0;
586 hsh->target_value = 0;
587 }
588
589 return entry;
590}
591
64ee10b6
NC
592/* This function is just a straight passthrough to the real
593 function in linker.c. Its prupose is so that its address
594 can be compared inside the avr_link_hash_table macro. */
595
596static struct bfd_hash_entry *
597elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
598 struct bfd_hash_table * table,
599 const char * string)
600{
601 return _bfd_elf_link_hash_newfunc (entry, table, string);
602}
603
28c9d252
NC
604/* Create the derived linker hash table. The AVR ELF port uses the derived
605 hash table to keep information specific to the AVR ELF linker (without
606 using static variables). */
607
608static struct bfd_link_hash_table *
609elf32_avr_link_hash_table_create (bfd *abfd)
610{
611 struct elf32_avr_link_hash_table *htab;
612 bfd_size_type amt = sizeof (*htab);
613
614 htab = bfd_malloc (amt);
615 if (htab == NULL)
616 return NULL;
617
618 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
64ee10b6 619 elf32_avr_link_hash_newfunc,
28c9d252
NC
620 sizeof (struct elf_link_hash_entry)))
621 {
622 free (htab);
623 return NULL;
624 }
625
626 /* Init the stub hash table too. */
627 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
628 sizeof (struct elf32_avr_stub_hash_entry)))
629 return NULL;
4cdc7696 630
28c9d252
NC
631 htab->stub_bfd = NULL;
632 htab->stub_sec = NULL;
633
634 /* Initialize the address mapping table. */
635 htab->amt_stub_offsets = NULL;
636 htab->amt_destination_addr = NULL;
637 htab->amt_entry_cnt = 0;
638 htab->amt_max_entry_cnt = 0;
639
640 return &htab->etab.root;
641}
642
643/* Free the derived linker hash table. */
644
645static void
646elf32_avr_link_hash_table_free (struct bfd_link_hash_table *btab)
647{
648 struct elf32_avr_link_hash_table *htab
649 = (struct elf32_avr_link_hash_table *) btab;
650
651 /* Free the address mapping table. */
652 if (htab->amt_stub_offsets != NULL)
653 free (htab->amt_stub_offsets);
654 if (htab->amt_destination_addr != NULL)
655 free (htab->amt_destination_addr);
656
657 bfd_hash_table_free (&htab->bstab);
658 _bfd_generic_link_hash_table_free (btab);
659}
df406460
NC
660
661/* Calculates the effective distance of a pc relative jump/call. */
73160847 662
df406460
NC
663static int
664avr_relative_distance_considering_wrap_around (unsigned int distance)
4cdc7696 665{
df406460 666 unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
df406460
NC
667 int dist_with_wrap_around = distance & wrap_around_mask;
668
4cdc7696 669 if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
df406460
NC
670 dist_with_wrap_around -= avr_pc_wrap_around;
671
672 return dist_with_wrap_around;
673}
674
675
adde6300 676static reloc_howto_type *
4cdc7696
NC
677bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
678 bfd_reloc_code_real_type code)
adde6300
AM
679{
680 unsigned int i;
681
682 for (i = 0;
683 i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
684 i++)
73160847
NC
685 if (avr_reloc_map[i].bfd_reloc_val == code)
686 return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
adde6300
AM
687
688 return NULL;
689}
690
157090f7
AM
691static reloc_howto_type *
692bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
693 const char *r_name)
694{
695 unsigned int i;
696
697 for (i = 0;
698 i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
699 i++)
700 if (elf_avr_howto_table[i].name != NULL
701 && strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
702 return &elf_avr_howto_table[i];
703
704 return NULL;
705}
706
adde6300
AM
707/* Set the howto pointer for an AVR ELF reloc. */
708
709static void
4cdc7696
NC
710avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
711 arelent *cache_ptr,
712 Elf_Internal_Rela *dst)
adde6300
AM
713{
714 unsigned int r_type;
715
716 r_type = ELF32_R_TYPE (dst->r_info);
717 BFD_ASSERT (r_type < (unsigned int) R_AVR_max);
718 cache_ptr->howto = &elf_avr_howto_table[r_type];
719}
720
adde6300
AM
721/* Look through the relocs for a section during the first phase.
722 Since we don't do .gots or .plts, we just need to consider the
723 virtual table relocs for gc. */
724
b34976b6 725static bfd_boolean
4cdc7696
NC
726elf32_avr_check_relocs (bfd *abfd,
727 struct bfd_link_info *info,
728 asection *sec,
729 const Elf_Internal_Rela *relocs)
adde6300
AM
730{
731 Elf_Internal_Shdr *symtab_hdr;
5582a088 732 struct elf_link_hash_entry **sym_hashes;
adde6300
AM
733 const Elf_Internal_Rela *rel;
734 const Elf_Internal_Rela *rel_end;
735
1049f94e 736 if (info->relocatable)
b34976b6 737 return TRUE;
adde6300
AM
738
739 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
740 sym_hashes = elf_sym_hashes (abfd);
adde6300
AM
741
742 rel_end = relocs + sec->reloc_count;
743 for (rel = relocs; rel < rel_end; rel++)
744 {
745 struct elf_link_hash_entry *h;
746 unsigned long r_symndx;
747
748 r_symndx = ELF32_R_SYM (rel->r_info);
749 if (r_symndx < symtab_hdr->sh_info)
750 h = NULL;
751 else
973a3492
L
752 {
753 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
754 while (h->root.type == bfd_link_hash_indirect
755 || h->root.type == bfd_link_hash_warning)
756 h = (struct elf_link_hash_entry *) h->root.u.i.link;
757 }
adde6300
AM
758 }
759
b34976b6 760 return TRUE;
adde6300
AM
761}
762
28c9d252
NC
763static bfd_boolean
764avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
765{
766 return (relocation >= 0x020000);
767}
768
769/* Returns the address of the corresponding stub if there is one.
770 Returns otherwise an address above 0x020000. This function
771 could also be used, if there is no knowledge on the section where
772 the destination is found. */
773
774static bfd_vma
775avr_get_stub_addr (bfd_vma srel,
776 struct elf32_avr_link_hash_table *htab)
777{
778 unsigned int index;
779 bfd_vma stub_sec_addr =
780 (htab->stub_sec->output_section->vma +
781 htab->stub_sec->output_offset);
782
783 for (index = 0; index < htab->amt_max_entry_cnt; index ++)
784 if (htab->amt_destination_addr[index] == srel)
785 return htab->amt_stub_offsets[index] + stub_sec_addr;
786
787 /* Return an address that could not be reached by 16 bit relocs. */
788 return 0x020000;
789}
790
adde6300
AM
791/* Perform a single relocation. By default we use the standard BFD
792 routines, but a few relocs, we have to do them ourselves. */
793
794static bfd_reloc_status_type
28c9d252
NC
795avr_final_link_relocate (reloc_howto_type * howto,
796 bfd * input_bfd,
797 asection * input_section,
798 bfd_byte * contents,
799 Elf_Internal_Rela * rel,
800 bfd_vma relocation,
801 struct elf32_avr_link_hash_table * htab)
adde6300
AM
802{
803 bfd_reloc_status_type r = bfd_reloc_ok;
804 bfd_vma x;
805 bfd_signed_vma srel;
28c9d252
NC
806 bfd_signed_vma reloc_addr;
807 bfd_boolean use_stubs = FALSE;
808 /* Usually is 0, unless we are generating code for a bootloader. */
809 bfd_signed_vma base_addr = htab->vector_base;
810
811 /* Absolute addr of the reloc in the final excecutable. */
812 reloc_addr = rel->r_offset + input_section->output_section->vma
813 + input_section->output_offset;
adde6300
AM
814
815 switch (howto->type)
816 {
817 case R_AVR_7_PCREL:
818 contents += rel->r_offset;
819 srel = (bfd_signed_vma) relocation;
820 srel += rel->r_addend;
821 srel -= rel->r_offset;
a7c10850 822 srel -= 2; /* Branch instructions add 2 to the PC... */
adde6300
AM
823 srel -= (input_section->output_section->vma +
824 input_section->output_offset);
825
826 if (srel & 1)
827 return bfd_reloc_outofrange;
828 if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
829 return bfd_reloc_overflow;
830 x = bfd_get_16 (input_bfd, contents);
831 x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
832 bfd_put_16 (input_bfd, x, contents);
833 break;
834
835 case R_AVR_13_PCREL:
836 contents += rel->r_offset;
837 srel = (bfd_signed_vma) relocation;
838 srel += rel->r_addend;
839 srel -= rel->r_offset;
a7c10850 840 srel -= 2; /* Branch instructions add 2 to the PC... */
adde6300
AM
841 srel -= (input_section->output_section->vma +
842 input_section->output_offset);
843
844 if (srel & 1)
845 return bfd_reloc_outofrange;
846
df406460
NC
847 srel = avr_relative_distance_considering_wrap_around (srel);
848
adde6300
AM
849 /* AVR addresses commands as words. */
850 srel >>= 1;
851
852 /* Check for overflow. */
853 if (srel < -2048 || srel > 2047)
854 {
df406460
NC
855 /* Relative distance is too large. */
856
654c3c9f 857 /* Always apply WRAPAROUND for avr2, avr25, and avr4. */
65aa24b6 858 switch (bfd_get_mach (input_bfd))
adde6300 859 {
65aa24b6 860 case bfd_mach_avr2:
654c3c9f 861 case bfd_mach_avr25:
65aa24b6
NC
862 case bfd_mach_avr4:
863 break;
864
865 default:
866 return bfd_reloc_overflow;
adde6300 867 }
adde6300
AM
868 }
869
870 x = bfd_get_16 (input_bfd, contents);
871 x = (x & 0xf000) | (srel & 0xfff);
872 bfd_put_16 (input_bfd, x, contents);
873 break;
874
875 case R_AVR_LO8_LDI:
876 contents += rel->r_offset;
877 srel = (bfd_signed_vma) relocation + rel->r_addend;
878 x = bfd_get_16 (input_bfd, contents);
879 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
880 bfd_put_16 (input_bfd, x, contents);
881 break;
882
750bce0e
NC
883 case R_AVR_LDI:
884 contents += rel->r_offset;
885 srel = (bfd_signed_vma) relocation + rel->r_addend;
4cdc7696
NC
886 if (((srel > 0) && (srel & 0xffff) > 255)
887 || ((srel < 0) && ((-srel) & 0xffff) > 128))
df406460
NC
888 /* Remove offset for data/eeprom section. */
889 return bfd_reloc_overflow;
890
750bce0e
NC
891 x = bfd_get_16 (input_bfd, contents);
892 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
893 bfd_put_16 (input_bfd, x, contents);
894 break;
895
896 case R_AVR_6:
897 contents += rel->r_offset;
898 srel = (bfd_signed_vma) relocation + rel->r_addend;
899 if (((srel & 0xffff) > 63) || (srel < 0))
900 /* Remove offset for data/eeprom section. */
901 return bfd_reloc_overflow;
902 x = bfd_get_16 (input_bfd, contents);
4cdc7696 903 x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
df406460 904 | ((srel & (1 << 5)) << 8));
750bce0e
NC
905 bfd_put_16 (input_bfd, x, contents);
906 break;
907
908 case R_AVR_6_ADIW:
909 contents += rel->r_offset;
910 srel = (bfd_signed_vma) relocation + rel->r_addend;
911 if (((srel & 0xffff) > 63) || (srel < 0))
912 /* Remove offset for data/eeprom section. */
913 return bfd_reloc_overflow;
914 x = bfd_get_16 (input_bfd, contents);
4cdc7696 915 x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
750bce0e
NC
916 bfd_put_16 (input_bfd, x, contents);
917 break;
918
adde6300
AM
919 case R_AVR_HI8_LDI:
920 contents += rel->r_offset;
921 srel = (bfd_signed_vma) relocation + rel->r_addend;
922 srel = (srel >> 8) & 0xff;
923 x = bfd_get_16 (input_bfd, contents);
924 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
925 bfd_put_16 (input_bfd, x, contents);
926 break;
927
928 case R_AVR_HH8_LDI:
929 contents += rel->r_offset;
930 srel = (bfd_signed_vma) relocation + rel->r_addend;
931 srel = (srel >> 16) & 0xff;
932 x = bfd_get_16 (input_bfd, contents);
933 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
934 bfd_put_16 (input_bfd, x, contents);
935 break;
936
df406460
NC
937 case R_AVR_MS8_LDI:
938 contents += rel->r_offset;
939 srel = (bfd_signed_vma) relocation + rel->r_addend;
940 srel = (srel >> 24) & 0xff;
941 x = bfd_get_16 (input_bfd, contents);
942 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
943 bfd_put_16 (input_bfd, x, contents);
944 break;
945
adde6300
AM
946 case R_AVR_LO8_LDI_NEG:
947 contents += rel->r_offset;
948 srel = (bfd_signed_vma) relocation + rel->r_addend;
949 srel = -srel;
950 x = bfd_get_16 (input_bfd, contents);
951 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
952 bfd_put_16 (input_bfd, x, contents);
953 break;
954
955 case R_AVR_HI8_LDI_NEG:
956 contents += rel->r_offset;
957 srel = (bfd_signed_vma) relocation + rel->r_addend;
958 srel = -srel;
959 srel = (srel >> 8) & 0xff;
960 x = bfd_get_16 (input_bfd, contents);
961 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
962 bfd_put_16 (input_bfd, x, contents);
963 break;
964
965 case R_AVR_HH8_LDI_NEG:
966 contents += rel->r_offset;
967 srel = (bfd_signed_vma) relocation + rel->r_addend;
968 srel = -srel;
969 srel = (srel >> 16) & 0xff;
970 x = bfd_get_16 (input_bfd, contents);
971 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
972 bfd_put_16 (input_bfd, x, contents);
973 break;
974
df406460
NC
975 case R_AVR_MS8_LDI_NEG:
976 contents += rel->r_offset;
977 srel = (bfd_signed_vma) relocation + rel->r_addend;
978 srel = -srel;
979 srel = (srel >> 24) & 0xff;
980 x = bfd_get_16 (input_bfd, contents);
981 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
982 bfd_put_16 (input_bfd, x, contents);
983 break;
984
28c9d252
NC
985 case R_AVR_LO8_LDI_GS:
986 use_stubs = (!htab->no_stubs);
987 /* Fall through. */
adde6300
AM
988 case R_AVR_LO8_LDI_PM:
989 contents += rel->r_offset;
990 srel = (bfd_signed_vma) relocation + rel->r_addend;
28c9d252
NC
991
992 if (use_stubs
993 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
994 {
995 bfd_vma old_srel = srel;
996
997 /* We need to use the address of the stub instead. */
998 srel = avr_get_stub_addr (srel, htab);
999 if (debug_stubs)
1000 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1001 "reloc at address 0x%x.\n",
1002 (unsigned int) srel,
1003 (unsigned int) old_srel,
1004 (unsigned int) reloc_addr);
1005
1006 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1007 return bfd_reloc_outofrange;
1008 }
1009
adde6300
AM
1010 if (srel & 1)
1011 return bfd_reloc_outofrange;
1012 srel = srel >> 1;
1013 x = bfd_get_16 (input_bfd, contents);
1014 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1015 bfd_put_16 (input_bfd, x, contents);
1016 break;
1017
28c9d252
NC
1018 case R_AVR_HI8_LDI_GS:
1019 use_stubs = (!htab->no_stubs);
1020 /* Fall through. */
adde6300
AM
1021 case R_AVR_HI8_LDI_PM:
1022 contents += rel->r_offset;
1023 srel = (bfd_signed_vma) relocation + rel->r_addend;
28c9d252
NC
1024
1025 if (use_stubs
1026 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1027 {
1028 bfd_vma old_srel = srel;
1029
1030 /* We need to use the address of the stub instead. */
1031 srel = avr_get_stub_addr (srel, htab);
1032 if (debug_stubs)
1033 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1034 "reloc at address 0x%x.\n",
1035 (unsigned int) srel,
1036 (unsigned int) old_srel,
1037 (unsigned int) reloc_addr);
1038
1039 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1040 return bfd_reloc_outofrange;
1041 }
1042
adde6300
AM
1043 if (srel & 1)
1044 return bfd_reloc_outofrange;
1045 srel = srel >> 1;
1046 srel = (srel >> 8) & 0xff;
1047 x = bfd_get_16 (input_bfd, contents);
1048 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1049 bfd_put_16 (input_bfd, x, contents);
1050 break;
1051
1052 case R_AVR_HH8_LDI_PM:
1053 contents += rel->r_offset;
1054 srel = (bfd_signed_vma) relocation + rel->r_addend;
1055 if (srel & 1)
1056 return bfd_reloc_outofrange;
1057 srel = srel >> 1;
1058 srel = (srel >> 16) & 0xff;
1059 x = bfd_get_16 (input_bfd, contents);
1060 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1061 bfd_put_16 (input_bfd, x, contents);
1062 break;
1063
1064 case R_AVR_LO8_LDI_PM_NEG:
1065 contents += rel->r_offset;
1066 srel = (bfd_signed_vma) relocation + rel->r_addend;
1067 srel = -srel;
1068 if (srel & 1)
1069 return bfd_reloc_outofrange;
1070 srel = srel >> 1;
1071 x = bfd_get_16 (input_bfd, contents);
1072 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1073 bfd_put_16 (input_bfd, x, contents);
1074 break;
1075
1076 case R_AVR_HI8_LDI_PM_NEG:
1077 contents += rel->r_offset;
1078 srel = (bfd_signed_vma) relocation + rel->r_addend;
1079 srel = -srel;
1080 if (srel & 1)
1081 return bfd_reloc_outofrange;
1082 srel = srel >> 1;
1083 srel = (srel >> 8) & 0xff;
1084 x = bfd_get_16 (input_bfd, contents);
1085 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1086 bfd_put_16 (input_bfd, x, contents);
1087 break;
1088
1089 case R_AVR_HH8_LDI_PM_NEG:
1090 contents += rel->r_offset;
1091 srel = (bfd_signed_vma) relocation + rel->r_addend;
1092 srel = -srel;
1093 if (srel & 1)
1094 return bfd_reloc_outofrange;
1095 srel = srel >> 1;
1096 srel = (srel >> 16) & 0xff;
1097 x = bfd_get_16 (input_bfd, contents);
1098 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1099 bfd_put_16 (input_bfd, x, contents);
1100 break;
1101
1102 case R_AVR_CALL:
1103 contents += rel->r_offset;
1104 srel = (bfd_signed_vma) relocation + rel->r_addend;
1105 if (srel & 1)
1106 return bfd_reloc_outofrange;
1107 srel = srel >> 1;
1108 x = bfd_get_16 (input_bfd, contents);
1109 x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1110 bfd_put_16 (input_bfd, x, contents);
dc810e39 1111 bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
adde6300
AM
1112 break;
1113
28c9d252
NC
1114 case R_AVR_16_PM:
1115 use_stubs = (!htab->no_stubs);
1116 contents += rel->r_offset;
1117 srel = (bfd_signed_vma) relocation + rel->r_addend;
1118
1119 if (use_stubs
1120 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1121 {
1122 bfd_vma old_srel = srel;
1123
1124 /* We need to use the address of the stub instead. */
1125 srel = avr_get_stub_addr (srel,htab);
1126 if (debug_stubs)
1127 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1128 "reloc at address 0x%x.\n",
1129 (unsigned int) srel,
1130 (unsigned int) old_srel,
1131 (unsigned int) reloc_addr);
1132
1133 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1134 return bfd_reloc_outofrange;
1135 }
1136
1137 if (srel & 1)
1138 return bfd_reloc_outofrange;
1139 srel = srel >> 1;
1140 bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1141 break;
1142
adde6300
AM
1143 default:
1144 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1145 contents, rel->r_offset,
1146 relocation, rel->r_addend);
1147 }
1148
1149 return r;
1150}
1151
1152/* Relocate an AVR ELF section. */
4cdc7696 1153
b34976b6 1154static bfd_boolean
4cdc7696
NC
1155elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1156 struct bfd_link_info *info,
1157 bfd *input_bfd,
1158 asection *input_section,
1159 bfd_byte *contents,
1160 Elf_Internal_Rela *relocs,
1161 Elf_Internal_Sym *local_syms,
1162 asection **local_sections)
adde6300
AM
1163{
1164 Elf_Internal_Shdr * symtab_hdr;
1165 struct elf_link_hash_entry ** sym_hashes;
1166 Elf_Internal_Rela * rel;
1167 Elf_Internal_Rela * relend;
28c9d252 1168 struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
adde6300
AM
1169
1170 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1171 sym_hashes = elf_sym_hashes (input_bfd);
1172 relend = relocs + input_section->reloc_count;
1173
1174 for (rel = relocs; rel < relend; rel ++)
1175 {
1176 reloc_howto_type * howto;
1177 unsigned long r_symndx;
1178 Elf_Internal_Sym * sym;
1179 asection * sec;
1180 struct elf_link_hash_entry * h;
1181 bfd_vma relocation;
1182 bfd_reloc_status_type r;
dfeffb9f 1183 const char * name;
adde6300
AM
1184 int r_type;
1185
1186 r_type = ELF32_R_TYPE (rel->r_info);
1187 r_symndx = ELF32_R_SYM (rel->r_info);
adde6300
AM
1188 howto = elf_avr_howto_table + ELF32_R_TYPE (rel->r_info);
1189 h = NULL;
1190 sym = NULL;
1191 sec = NULL;
1192
1193 if (r_symndx < symtab_hdr->sh_info)
1194 {
1195 sym = local_syms + r_symndx;
1196 sec = local_sections [r_symndx];
8517fae7 1197 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
adde6300
AM
1198
1199 name = bfd_elf_string_from_elf_section
1200 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1201 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1202 }
1203 else
1204 {
59c2e50f 1205 bfd_boolean unresolved_reloc, warned;
adde6300 1206
b2a8e766
AM
1207 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1208 r_symndx, symtab_hdr, sym_hashes,
1209 h, sec, relocation,
1210 unresolved_reloc, warned);
dfeffb9f
L
1211
1212 name = h->root.root.string;
adde6300
AM
1213 }
1214
ab96bf03
AM
1215 if (sec != NULL && elf_discarded_section (sec))
1216 {
1217 /* For relocs against symbols from removed linkonce sections,
1218 or sections discarded by a linker script, we just want the
1219 section contents zeroed. Avoid any special processing. */
1220 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
1221 rel->r_info = 0;
1222 rel->r_addend = 0;
1223 continue;
1224 }
1225
1226 if (info->relocatable)
1227 continue;
1228
adde6300 1229 r = avr_final_link_relocate (howto, input_bfd, input_section,
28c9d252 1230 contents, rel, relocation, htab);
adde6300
AM
1231
1232 if (r != bfd_reloc_ok)
1233 {
1234 const char * msg = (const char *) NULL;
1235
1236 switch (r)
1237 {
1238 case bfd_reloc_overflow:
1239 r = info->callbacks->reloc_overflow
dfeffb9f
L
1240 (info, (h ? &h->root : NULL),
1241 name, howto->name, (bfd_vma) 0,
adde6300
AM
1242 input_bfd, input_section, rel->r_offset);
1243 break;
1244
1245 case bfd_reloc_undefined:
1246 r = info->callbacks->undefined_symbol
b34976b6 1247 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
adde6300
AM
1248 break;
1249
1250 case bfd_reloc_outofrange:
1251 msg = _("internal error: out of range error");
1252 break;
1253
1254 case bfd_reloc_notsupported:
1255 msg = _("internal error: unsupported relocation error");
1256 break;
1257
1258 case bfd_reloc_dangerous:
1259 msg = _("internal error: dangerous relocation");
1260 break;
1261
1262 default:
1263 msg = _("internal error: unknown error");
1264 break;
1265 }
1266
1267 if (msg)
1268 r = info->callbacks->warning
1269 (info, msg, name, input_bfd, input_section, rel->r_offset);
1270
1271 if (! r)
b34976b6 1272 return FALSE;
adde6300
AM
1273 }
1274 }
1275
b34976b6 1276 return TRUE;
adde6300
AM
1277}
1278
1279/* The final processing done just before writing out a AVR ELF object
1280 file. This gets the AVR architecture right based on the machine
1281 number. */
1282
1283static void
4cdc7696
NC
1284bfd_elf_avr_final_write_processing (bfd *abfd,
1285 bfd_boolean linker ATTRIBUTE_UNUSED)
adde6300
AM
1286{
1287 unsigned long val;
1288
1289 switch (bfd_get_mach (abfd))
1290 {
1291 default:
1292 case bfd_mach_avr2:
1293 val = E_AVR_MACH_AVR2;
1294 break;
1295
1296 case bfd_mach_avr1:
1297 val = E_AVR_MACH_AVR1;
1298 break;
1299
7b21ac3f
EW
1300 case bfd_mach_avr25:
1301 val = E_AVR_MACH_AVR25;
28b02751 1302 break;
7b21ac3f 1303
adde6300
AM
1304 case bfd_mach_avr3:
1305 val = E_AVR_MACH_AVR3;
1306 break;
1307
7b21ac3f
EW
1308 case bfd_mach_avr31:
1309 val = E_AVR_MACH_AVR31;
28b02751 1310 break;
7b21ac3f
EW
1311
1312 case bfd_mach_avr35:
1313 val = E_AVR_MACH_AVR35;
28b02751 1314 break;
7b21ac3f 1315
adde6300
AM
1316 case bfd_mach_avr4:
1317 val = E_AVR_MACH_AVR4;
1318 break;
1319
65aa24b6
NC
1320 case bfd_mach_avr5:
1321 val = E_AVR_MACH_AVR5;
1322 break;
28c9d252 1323
7b21ac3f
EW
1324 case bfd_mach_avr51:
1325 val = E_AVR_MACH_AVR51;
1326 break;
1327
28c9d252
NC
1328 case bfd_mach_avr6:
1329 val = E_AVR_MACH_AVR6;
1330 break;
adde6300
AM
1331 }
1332
1333 elf_elfheader (abfd)->e_machine = EM_AVR;
1334 elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1335 elf_elfheader (abfd)->e_flags |= val;
df406460 1336 elf_elfheader (abfd)->e_flags |= EF_AVR_LINKRELAX_PREPARED;
adde6300
AM
1337}
1338
1339/* Set the right machine number. */
1340
b34976b6 1341static bfd_boolean
4cdc7696 1342elf32_avr_object_p (bfd *abfd)
adde6300 1343{
dc810e39 1344 unsigned int e_set = bfd_mach_avr2;
4cdc7696 1345
aa4f99bb
AO
1346 if (elf_elfheader (abfd)->e_machine == EM_AVR
1347 || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
adde6300
AM
1348 {
1349 int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
4cdc7696 1350
adde6300
AM
1351 switch (e_mach)
1352 {
1353 default:
1354 case E_AVR_MACH_AVR2:
1355 e_set = bfd_mach_avr2;
1356 break;
1357
1358 case E_AVR_MACH_AVR1:
1359 e_set = bfd_mach_avr1;
1360 break;
1361
7b21ac3f
EW
1362 case E_AVR_MACH_AVR25:
1363 e_set = bfd_mach_avr25;
1364 break;
1365
adde6300
AM
1366 case E_AVR_MACH_AVR3:
1367 e_set = bfd_mach_avr3;
1368 break;
1369
7b21ac3f
EW
1370 case E_AVR_MACH_AVR31:
1371 e_set = bfd_mach_avr31;
1372 break;
1373
1374 case E_AVR_MACH_AVR35:
1375 e_set = bfd_mach_avr35;
1376 break;
1377
adde6300
AM
1378 case E_AVR_MACH_AVR4:
1379 e_set = bfd_mach_avr4;
1380 break;
65aa24b6
NC
1381
1382 case E_AVR_MACH_AVR5:
1383 e_set = bfd_mach_avr5;
1384 break;
28c9d252 1385
7b21ac3f
EW
1386 case E_AVR_MACH_AVR51:
1387 e_set = bfd_mach_avr51;
1388 break;
1389
28c9d252
NC
1390 case E_AVR_MACH_AVR6:
1391 e_set = bfd_mach_avr6;
1392 break;
adde6300
AM
1393 }
1394 }
1395 return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1396 e_set);
1397}
1398
df406460 1399
4cdc7696
NC
1400/* Delete some bytes from a section while changing the size of an instruction.
1401 The parameter "addr" denotes the section-relative offset pointing just
1402 behind the shrinked instruction. "addr+count" point at the first
1403 byte just behind the original unshrinked instruction. */
1404
1405static bfd_boolean
1406elf32_avr_relax_delete_bytes (bfd *abfd,
73160847 1407 asection *sec,
4cdc7696 1408 bfd_vma addr,
73160847 1409 int count)
4cdc7696
NC
1410{
1411 Elf_Internal_Shdr *symtab_hdr;
1412 unsigned int sec_shndx;
1413 bfd_byte *contents;
1414 Elf_Internal_Rela *irel, *irelend;
1415 Elf_Internal_Rela *irelalign;
1416 Elf_Internal_Sym *isym;
1417 Elf_Internal_Sym *isymbuf = NULL;
1418 Elf_Internal_Sym *isymend;
1419 bfd_vma toaddr;
1420 struct elf_link_hash_entry **sym_hashes;
1421 struct elf_link_hash_entry **end_hashes;
1422 unsigned int symcount;
1423
1424 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1425 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1426 contents = elf_section_data (sec)->this_hdr.contents;
1427
1428 /* The deletion must stop at the next ALIGN reloc for an aligment
1429 power larger than the number of bytes we are deleting. */
1430
1431 irelalign = NULL;
1432 toaddr = sec->size;
1433
1434 irel = elf_section_data (sec)->relocs;
1435 irelend = irel + sec->reloc_count;
1436
1437 /* Actually delete the bytes. */
1438 if (toaddr - addr - count > 0)
1439 memmove (contents + addr, contents + addr + count,
1440 (size_t) (toaddr - addr - count));
1441 sec->size -= count;
1442
73160847 1443 /* Adjust all the reloc addresses. */
4cdc7696
NC
1444 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1445 {
4cdc7696
NC
1446 bfd_vma old_reloc_address;
1447 bfd_vma shrinked_insn_address;
1448
1449 old_reloc_address = (sec->output_section->vma
1450 + sec->output_offset + irel->r_offset);
1451 shrinked_insn_address = (sec->output_section->vma
1452 + sec->output_offset + addr - count);
1453
1454 /* Get the new reloc address. */
1455 if ((irel->r_offset > addr
1456 && irel->r_offset < toaddr))
1457 {
28c9d252 1458 if (debug_relax)
4cdc7696
NC
1459 printf ("Relocation at address 0x%x needs to be moved.\n"
1460 "Old section offset: 0x%x, New section offset: 0x%x \n",
1461 (unsigned int) old_reloc_address,
1462 (unsigned int) irel->r_offset,
1463 (unsigned int) ((irel->r_offset) - count));
1464
1465 irel->r_offset -= count;
1466 }
1467
73160847 1468 }
4cdc7696 1469
73160847
NC
1470 /* The reloc's own addresses are now ok. However, we need to readjust
1471 the reloc's addend, i.e. the reloc's value if two conditions are met:
1472 1.) the reloc is relative to a symbol in this section that
1473 is located in front of the shrinked instruction
28c9d252
NC
1474 2.) symbol plus addend end up behind the shrinked instruction.
1475
73160847
NC
1476 The most common case where this happens are relocs relative to
1477 the section-start symbol.
28c9d252 1478
73160847
NC
1479 This step needs to be done for all of the sections of the bfd. */
1480
1481 {
1482 struct bfd_section *isec;
1483
1484 for (isec = abfd->sections; isec; isec = isec->next)
1485 {
1486 bfd_vma symval;
1487 bfd_vma shrinked_insn_address;
1488
1489 shrinked_insn_address = (sec->output_section->vma
1490 + sec->output_offset + addr - count);
1491
1492 irelend = elf_section_data (isec)->relocs + isec->reloc_count;
28c9d252 1493 for (irel = elf_section_data (isec)->relocs;
73160847
NC
1494 irel < irelend;
1495 irel++)
1496 {
28c9d252 1497 /* Read this BFD's local symbols if we haven't done
73160847
NC
1498 so already. */
1499 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1500 {
1501 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1502 if (isymbuf == NULL)
1503 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1504 symtab_hdr->sh_info, 0,
1505 NULL, NULL, NULL);
1506 if (isymbuf == NULL)
1507 return FALSE;
1508 }
1509
1510 /* Get the value of the symbol referred to by the reloc. */
1511 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1512 {
1513 /* A local symbol. */
1514 Elf_Internal_Sym *isym;
1515 asection *sym_sec;
1516
1517 isym = isymbuf + ELF32_R_SYM (irel->r_info);
1518 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1519 symval = isym->st_value;
1520 /* If the reloc is absolute, it will not have
1521 a symbol or section associated with it. */
1522 if (sym_sec == sec)
28c9d252 1523 {
73160847
NC
1524 symval += sym_sec->output_section->vma
1525 + sym_sec->output_offset;
4cdc7696 1526
28c9d252 1527 if (debug_relax)
73160847
NC
1528 printf ("Checking if the relocation's "
1529 "addend needs corrections.\n"
1530 "Address of anchor symbol: 0x%x \n"
1531 "Address of relocation target: 0x%x \n"
1532 "Address of relaxed insn: 0x%x \n",
1533 (unsigned int) symval,
1534 (unsigned int) (symval + irel->r_addend),
1535 (unsigned int) shrinked_insn_address);
1536
1537 if (symval <= shrinked_insn_address
1538 && (symval + irel->r_addend) > shrinked_insn_address)
1539 {
1540 irel->r_addend -= count;
1541
28c9d252 1542 if (debug_relax)
73160847
NC
1543 printf ("Relocation's addend needed to be fixed \n");
1544 }
4cdc7696 1545 }
73160847 1546 /* else...Reference symbol is absolute. No adjustment needed. */
28c9d252
NC
1547 }
1548 /* else...Reference symbol is extern. No need for adjusting
73160847 1549 the addend. */
28c9d252 1550 }
73160847
NC
1551 }
1552 }
4cdc7696
NC
1553
1554 /* Adjust the local symbols defined in this section. */
1555 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
1556 isymend = isym + symtab_hdr->sh_info;
1557 for (; isym < isymend; isym++)
1558 {
1559 if (isym->st_shndx == sec_shndx
1560 && isym->st_value > addr
1561 && isym->st_value < toaddr)
1562 isym->st_value -= count;
1563 }
1564
1565 /* Now adjust the global symbols defined in this section. */
1566 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1567 - symtab_hdr->sh_info);
1568 sym_hashes = elf_sym_hashes (abfd);
1569 end_hashes = sym_hashes + symcount;
1570 for (; sym_hashes < end_hashes; sym_hashes++)
1571 {
1572 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1573 if ((sym_hash->root.type == bfd_link_hash_defined
1574 || sym_hash->root.type == bfd_link_hash_defweak)
1575 && sym_hash->root.u.def.section == sec
1576 && sym_hash->root.u.def.value > addr
1577 && sym_hash->root.u.def.value < toaddr)
1578 {
1579 sym_hash->root.u.def.value -= count;
1580 }
1581 }
1582
1583 return TRUE;
1584}
1585
df406460
NC
1586/* This function handles relaxing for the avr.
1587 Many important relaxing opportunities within functions are already
1588 realized by the compiler itself.
1589 Here we try to replace call (4 bytes) -> rcall (2 bytes)
4cdc7696
NC
1590 and jump -> rjmp (safes also 2 bytes).
1591 As well we now optimize seqences of
df406460
NC
1592 - call/rcall function
1593 - ret
1594 to yield
1595 - jmp/rjmp function
1596 - ret
1597 . In case that within a sequence
1598 - jmp/rjmp label
1599 - ret
1600 the ret could no longer be reached it is optimized away. In order
1601 to check if the ret is no longer needed, it is checked that the ret's address
1602 is not the target of a branch or jump within the same section, it is checked
1603 that there is no skip instruction before the jmp/rjmp and that there
1604 is no local or global label place at the address of the ret.
4cdc7696 1605
df406460 1606 We refrain from relaxing within sections ".vectors" and
4cdc7696 1607 ".jumptables" in order to maintain the position of the instructions.
df406460 1608 There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
4cdc7696 1609 if possible. (In future one could possibly use the space of the nop
df406460
NC
1610 for the first instruction of the irq service function.
1611
1612 The .jumptables sections is meant to be used for a future tablejump variant
1613 for the devices with 3-byte program counter where the table itself
4cdc7696 1614 contains 4-byte jump instructions whose relative offset must not
df406460 1615 be changed. */
4cdc7696 1616
28c9d252 1617static bfd_boolean
4cdc7696
NC
1618elf32_avr_relax_section (bfd *abfd,
1619 asection *sec,
df406460
NC
1620 struct bfd_link_info *link_info,
1621 bfd_boolean *again)
1622{
1623 Elf_Internal_Shdr *symtab_hdr;
1624 Elf_Internal_Rela *internal_relocs;
1625 Elf_Internal_Rela *irel, *irelend;
1626 bfd_byte *contents = NULL;
1627 Elf_Internal_Sym *isymbuf = NULL;
1628 static asection *last_input_section = NULL;
1629 static Elf_Internal_Rela *last_reloc = NULL;
28c9d252
NC
1630 struct elf32_avr_link_hash_table *htab;
1631
1632 htab = avr_link_hash_table (link_info);
64ee10b6
NC
1633 if (htab == NULL)
1634 return FALSE;
df406460
NC
1635
1636 /* Assume nothing changes. */
1637 *again = FALSE;
1638
28c9d252
NC
1639 if ((!htab->no_stubs) && (sec == htab->stub_sec))
1640 {
1641 /* We are just relaxing the stub section.
1642 Let's calculate the size needed again. */
1643 bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
1644
1645 if (debug_relax)
1646 printf ("Relaxing the stub section. Size prior to this pass: %i\n",
1647 (int) last_estimated_stub_section_size);
1648
1649 elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
1650 link_info, FALSE);
1651
1652 /* Check if the number of trampolines changed. */
1653 if (last_estimated_stub_section_size != htab->stub_sec->size)
1654 *again = TRUE;
1655
1656 if (debug_relax)
1657 printf ("Size of stub section after this pass: %i\n",
1658 (int) htab->stub_sec->size);
1659
1660 return TRUE;
1661 }
1662
df406460
NC
1663 /* We don't have to do anything for a relocatable link, if
1664 this section does not have relocs, or if this is not a
1665 code section. */
1666 if (link_info->relocatable
1667 || (sec->flags & SEC_RELOC) == 0
1668 || sec->reloc_count == 0
1669 || (sec->flags & SEC_CODE) == 0)
1670 return TRUE;
4cdc7696 1671
df406460
NC
1672 /* Check if the object file to relax uses internal symbols so that we
1673 could fix up the relocations. */
df406460
NC
1674 if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
1675 return TRUE;
df406460
NC
1676
1677 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1678
1679 /* Get a copy of the native relocations. */
1680 internal_relocs = (_bfd_elf_link_read_relocs
4cdc7696 1681 (abfd, sec, NULL, NULL, link_info->keep_memory));
df406460
NC
1682 if (internal_relocs == NULL)
1683 goto error_return;
1684
1685 if (sec != last_input_section)
1686 last_reloc = NULL;
1687
1688 last_input_section = sec;
1689
1690 /* Walk through the relocs looking for relaxing opportunities. */
1691 irelend = internal_relocs + sec->reloc_count;
1692 for (irel = internal_relocs; irel < irelend; irel++)
1693 {
1694 bfd_vma symval;
1695
4cdc7696 1696 if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
df406460
NC
1697 && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
1698 && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
1699 continue;
4cdc7696 1700
df406460
NC
1701 /* Get the section contents if we haven't done so already. */
1702 if (contents == NULL)
1703 {
1704 /* Get cached copy if it exists. */
1705 if (elf_section_data (sec)->this_hdr.contents != NULL)
1706 contents = elf_section_data (sec)->this_hdr.contents;
1707 else
1708 {
1709 /* Go get them off disk. */
4cdc7696 1710 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
df406460
NC
1711 goto error_return;
1712 }
1713 }
1714
1715 /* Read this BFD's local symbols if we haven't done so already. */
1716 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1717 {
1718 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1719 if (isymbuf == NULL)
1720 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1721 symtab_hdr->sh_info, 0,
1722 NULL, NULL, NULL);
1723 if (isymbuf == NULL)
1724 goto error_return;
1725 }
1726
1727
1728 /* Get the value of the symbol referred to by the reloc. */
1729 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
1730 {
1731 /* A local symbol. */
1732 Elf_Internal_Sym *isym;
1733 asection *sym_sec;
1734
1735 isym = isymbuf + ELF32_R_SYM (irel->r_info);
1736 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1737 symval = isym->st_value;
1738 /* If the reloc is absolute, it will not have
1739 a symbol or section associated with it. */
1740 if (sym_sec)
1741 symval += sym_sec->output_section->vma
1742 + sym_sec->output_offset;
1743 }
1744 else
1745 {
1746 unsigned long indx;
1747 struct elf_link_hash_entry *h;
1748
1749 /* An external symbol. */
1750 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1751 h = elf_sym_hashes (abfd)[indx];
1752 BFD_ASSERT (h != NULL);
1753 if (h->root.type != bfd_link_hash_defined
1754 && h->root.type != bfd_link_hash_defweak)
4cdc7696
NC
1755 /* This appears to be a reference to an undefined
1756 symbol. Just ignore it--it will be caught by the
1757 regular reloc processing. */
1758 continue;
1759
df406460
NC
1760 symval = (h->root.u.def.value
1761 + h->root.u.def.section->output_section->vma
1762 + h->root.u.def.section->output_offset);
1763 }
1764
1765 /* For simplicity of coding, we are going to modify the section
1766 contents, the section relocs, and the BFD symbol table. We
1767 must tell the rest of the code not to free up this
1768 information. It would be possible to instead create a table
1769 of changes which have to be made, as is done in coff-mips.c;
1770 that would be more work, but would require less memory when
1771 the linker is run. */
1772 switch (ELF32_R_TYPE (irel->r_info))
1773 {
1774 /* Try to turn a 22-bit absolute call/jump into an 13-bit
1775 pc-relative rcall/rjmp. */
1776 case R_AVR_CALL:
1777 {
1778 bfd_vma value = symval + irel->r_addend;
1779 bfd_vma dot, gap;
1780 int distance_short_enough = 0;
1781
1782 /* Get the address of this instruction. */
1783 dot = (sec->output_section->vma
1784 + sec->output_offset + irel->r_offset);
1785
1786 /* Compute the distance from this insn to the branch target. */
1787 gap = value - dot;
1788
1789 /* If the distance is within -4094..+4098 inclusive, then we can
1790 relax this jump/call. +4098 because the call/jump target
4cdc7696 1791 will be closer after the relaxation. */
df406460
NC
1792 if ((int) gap >= -4094 && (int) gap <= 4098)
1793 distance_short_enough = 1;
1794
1795 /* Here we handle the wrap-around case. E.g. for a 16k device
4cdc7696 1796 we could use a rjmp to jump from address 0x100 to 0x3d00!
df406460
NC
1797 In order to make this work properly, we need to fill the
1798 vaiable avr_pc_wrap_around with the appropriate value.
1799 I.e. 0x4000 for a 16k device. */
1800 {
1801 /* Shrinking the code size makes the gaps larger in the
1802 case of wrap-arounds. So we use a heuristical safety
1803 margin to avoid that during relax the distance gets
1804 again too large for the short jumps. Let's assume
1805 a typical code-size reduction due to relax for a
1806 16k device of 600 bytes. So let's use twice the
4cdc7696 1807 typical value as safety margin. */
df406460
NC
1808 int rgap;
1809 int safety_margin;
1810
1811 int assumed_shrink = 600;
1812 if (avr_pc_wrap_around > 0x4000)
1813 assumed_shrink = 900;
4cdc7696 1814
df406460
NC
1815 safety_margin = 2 * assumed_shrink;
1816
1817 rgap = avr_relative_distance_considering_wrap_around (gap);
4cdc7696
NC
1818
1819 if (rgap >= (-4092 + safety_margin)
df406460 1820 && rgap <= (4094 - safety_margin))
4cdc7696
NC
1821 distance_short_enough = 1;
1822 }
df406460
NC
1823
1824 if (distance_short_enough)
1825 {
1826 unsigned char code_msb;
1827 unsigned char code_lsb;
1828
28c9d252 1829 if (debug_relax)
df406460
NC
1830 printf ("shrinking jump/call instruction at address 0x%x"
1831 " in section %s\n\n",
1832 (int) dot, sec->name);
1833
1834 /* Note that we've changed the relocs, section contents,
1835 etc. */
1836 elf_section_data (sec)->relocs = internal_relocs;
1837 elf_section_data (sec)->this_hdr.contents = contents;
1838 symtab_hdr->contents = (unsigned char *) isymbuf;
1839
1840 /* Get the instruction code for relaxing. */
1841 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
1842 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
1843
1844 /* Mask out the relocation bits. */
1845 code_msb &= 0x94;
1846 code_lsb &= 0x0E;
1847 if (code_msb == 0x94 && code_lsb == 0x0E)
1848 {
1849 /* we are changing call -> rcall . */
1850 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
1851 bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
1852 }
1853 else if (code_msb == 0x94 && code_lsb == 0x0C)
1854 {
1855 /* we are changeing jump -> rjmp. */
1856 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
1857 bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
1858 }
4cdc7696 1859 else
df406460
NC
1860 abort ();
1861
1862 /* Fix the relocation's type. */
1863 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
1864 R_AVR_13_PCREL);
1865
1866 /* Check for the vector section. There we don't want to
1867 modify the ordering! */
1868
1869 if (!strcmp (sec->name,".vectors")
1870 || !strcmp (sec->name,".jumptables"))
1871 {
1872 /* Let's insert a nop. */
1873 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
1874 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
1875 }
1876 else
1877 {
1878 /* Delete two bytes of data. */
1879 if (!elf32_avr_relax_delete_bytes (abfd, sec,
1880 irel->r_offset + 2, 2))
1881 goto error_return;
1882
1883 /* That will change things, so, we should relax again.
1884 Note that this is not required, and it may be slow. */
1885 *again = TRUE;
1886 }
1887 }
1888 }
4cdc7696 1889
df406460
NC
1890 default:
1891 {
1892 unsigned char code_msb;
1893 unsigned char code_lsb;
1894 bfd_vma dot;
1895
1896 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
1897 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
1898
1899 /* Get the address of this instruction. */
1900 dot = (sec->output_section->vma
1901 + sec->output_offset + irel->r_offset);
4cdc7696
NC
1902
1903 /* Here we look for rcall/ret or call/ret sequences that could be
28c9d252
NC
1904 safely replaced by rjmp/ret or jmp/ret. */
1905 if (((code_msb & 0xf0) == 0xd0)
1906 && avr_replace_call_ret_sequences)
df406460
NC
1907 {
1908 /* This insn is a rcall. */
1909 unsigned char next_insn_msb = 0;
1910 unsigned char next_insn_lsb = 0;
1911
1912 if (irel->r_offset + 3 < sec->size)
1913 {
4cdc7696 1914 next_insn_msb =
df406460 1915 bfd_get_8 (abfd, contents + irel->r_offset + 3);
4cdc7696 1916 next_insn_lsb =
df406460
NC
1917 bfd_get_8 (abfd, contents + irel->r_offset + 2);
1918 }
4cdc7696
NC
1919
1920 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
df406460
NC
1921 {
1922 /* The next insn is a ret. We now convert the rcall insn
1923 into a rjmp instruction. */
df406460
NC
1924 code_msb &= 0xef;
1925 bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
28c9d252 1926 if (debug_relax)
df406460
NC
1927 printf ("converted rcall/ret sequence at address 0x%x"
1928 " into rjmp/ret sequence. Section is %s\n\n",
1929 (int) dot, sec->name);
1930 *again = TRUE;
1931 break;
1932 }
1933 }
1934 else if ((0x94 == (code_msb & 0xfe))
28c9d252
NC
1935 && (0x0e == (code_lsb & 0x0e))
1936 && avr_replace_call_ret_sequences)
df406460
NC
1937 {
1938 /* This insn is a call. */
1939 unsigned char next_insn_msb = 0;
1940 unsigned char next_insn_lsb = 0;
1941
1942 if (irel->r_offset + 5 < sec->size)
1943 {
1944 next_insn_msb =
1945 bfd_get_8 (abfd, contents + irel->r_offset + 5);
1946 next_insn_lsb =
1947 bfd_get_8 (abfd, contents + irel->r_offset + 4);
1948 }
4cdc7696 1949
df406460
NC
1950 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
1951 {
1952 /* The next insn is a ret. We now convert the call insn
1953 into a jmp instruction. */
1954
1955 code_lsb &= 0xfd;
1956 bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
28c9d252 1957 if (debug_relax)
df406460
NC
1958 printf ("converted call/ret sequence at address 0x%x"
1959 " into jmp/ret sequence. Section is %s\n\n",
1960 (int) dot, sec->name);
1961 *again = TRUE;
1962 break;
1963 }
1964 }
4cdc7696
NC
1965 else if ((0xc0 == (code_msb & 0xf0))
1966 || ((0x94 == (code_msb & 0xfe))
df406460
NC
1967 && (0x0c == (code_lsb & 0x0e))))
1968 {
4cdc7696 1969 /* This insn is a rjmp or a jmp. */
df406460
NC
1970 unsigned char next_insn_msb = 0;
1971 unsigned char next_insn_lsb = 0;
1972 int insn_size;
1973
1974 if (0xc0 == (code_msb & 0xf0))
1975 insn_size = 2; /* rjmp insn */
1976 else
1977 insn_size = 4; /* jmp insn */
1978
1979 if (irel->r_offset + insn_size + 1 < sec->size)
1980 {
4cdc7696
NC
1981 next_insn_msb =
1982 bfd_get_8 (abfd, contents + irel->r_offset
df406460 1983 + insn_size + 1);
4cdc7696
NC
1984 next_insn_lsb =
1985 bfd_get_8 (abfd, contents + irel->r_offset
df406460
NC
1986 + insn_size);
1987 }
1988
1989 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
1990 {
1991 /* The next insn is a ret. We possibly could delete
1992 this ret. First we need to check for preceeding
1993 sbis/sbic/sbrs or cpse "skip" instructions. */
1994
1995 int there_is_preceeding_non_skip_insn = 1;
1996 bfd_vma address_of_ret;
1997
1998 address_of_ret = dot + insn_size;
1999
28c9d252 2000 if (debug_relax && (insn_size == 2))
4cdc7696 2001 printf ("found rjmp / ret sequence at address 0x%x\n",
df406460 2002 (int) dot);
28c9d252 2003 if (debug_relax && (insn_size == 4))
4cdc7696 2004 printf ("found jmp / ret sequence at address 0x%x\n",
df406460
NC
2005 (int) dot);
2006
2007 /* We have to make sure that there is a preceeding insn. */
2008 if (irel->r_offset >= 2)
2009 {
2010 unsigned char preceeding_msb;
2011 unsigned char preceeding_lsb;
4cdc7696 2012 preceeding_msb =
df406460 2013 bfd_get_8 (abfd, contents + irel->r_offset - 1);
4cdc7696 2014 preceeding_lsb =
df406460
NC
2015 bfd_get_8 (abfd, contents + irel->r_offset - 2);
2016
2017 /* sbic. */
4cdc7696 2018 if (0x99 == preceeding_msb)
df406460
NC
2019 there_is_preceeding_non_skip_insn = 0;
2020
2021 /* sbis. */
4cdc7696 2022 if (0x9b == preceeding_msb)
df406460
NC
2023 there_is_preceeding_non_skip_insn = 0;
2024
2025 /* sbrc */
2026 if ((0xfc == (preceeding_msb & 0xfe)
2027 && (0x00 == (preceeding_lsb & 0x08))))
2028 there_is_preceeding_non_skip_insn = 0;
2029
4cdc7696 2030 /* sbrs */
df406460
NC
2031 if ((0xfe == (preceeding_msb & 0xfe)
2032 && (0x00 == (preceeding_lsb & 0x08))))
2033 there_is_preceeding_non_skip_insn = 0;
4cdc7696 2034
df406460
NC
2035 /* cpse */
2036 if (0x10 == (preceeding_msb & 0xfc))
2037 there_is_preceeding_non_skip_insn = 0;
4cdc7696 2038
df406460 2039 if (there_is_preceeding_non_skip_insn == 0)
28c9d252 2040 if (debug_relax)
df406460
NC
2041 printf ("preceeding skip insn prevents deletion of"
2042 " ret insn at addr 0x%x in section %s\n",
2043 (int) dot + 2, sec->name);
2044 }
2045 else
2046 {
2047 /* There is no previous instruction. */
2048 there_is_preceeding_non_skip_insn = 0;
4cdc7696 2049 }
df406460
NC
2050
2051 if (there_is_preceeding_non_skip_insn)
2052 {
2053 /* We now only have to make sure that there is no
2054 local label defined at the address of the ret
2055 instruction and that there is no local relocation
2056 in this section pointing to the ret. */
2057
2058 int deleting_ret_is_safe = 1;
4cdc7696 2059 unsigned int section_offset_of_ret_insn =
df406460
NC
2060 irel->r_offset + insn_size;
2061 Elf_Internal_Sym *isym, *isymend;
2062 unsigned int sec_shndx;
4cdc7696
NC
2063
2064 sec_shndx =
2065 _bfd_elf_section_from_bfd_section (abfd, sec);
df406460
NC
2066
2067 /* Check for local symbols. */
2068 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2069 isymend = isym + symtab_hdr->sh_info;
696b7ad2
NC
2070 /* PR 6019: There may not be any local symbols. */
2071 for (; isym != NULL && isym < isymend; isym++)
df406460
NC
2072 {
2073 if (isym->st_value == section_offset_of_ret_insn
2074 && isym->st_shndx == sec_shndx)
2075 {
2076 deleting_ret_is_safe = 0;
28c9d252 2077 if (debug_relax)
df406460
NC
2078 printf ("local label prevents deletion of ret "
2079 "insn at address 0x%x\n",
2080 (int) dot + insn_size);
2081 }
2082 }
2083
2084 /* Now check for global symbols. */
2085 {
2086 int symcount;
2087 struct elf_link_hash_entry **sym_hashes;
2088 struct elf_link_hash_entry **end_hashes;
2089
4cdc7696 2090 symcount = (symtab_hdr->sh_size
df406460
NC
2091 / sizeof (Elf32_External_Sym)
2092 - symtab_hdr->sh_info);
2093 sym_hashes = elf_sym_hashes (abfd);
2094 end_hashes = sym_hashes + symcount;
2095 for (; sym_hashes < end_hashes; sym_hashes++)
2096 {
4cdc7696 2097 struct elf_link_hash_entry *sym_hash =
df406460
NC
2098 *sym_hashes;
2099 if ((sym_hash->root.type == bfd_link_hash_defined
4cdc7696
NC
2100 || sym_hash->root.type ==
2101 bfd_link_hash_defweak)
df406460 2102 && sym_hash->root.u.def.section == sec
4cdc7696 2103 && sym_hash->root.u.def.value == section_offset_of_ret_insn)
df406460
NC
2104 {
2105 deleting_ret_is_safe = 0;
28c9d252 2106 if (debug_relax)
df406460
NC
2107 printf ("global label prevents deletion of "
2108 "ret insn at address 0x%x\n",
2109 (int) dot + insn_size);
2110 }
2111 }
2112 }
2113 /* Now we check for relocations pointing to ret. */
2114 {
2115 Elf_Internal_Rela *irel;
2116 Elf_Internal_Rela *relend;
2117 Elf_Internal_Shdr *symtab_hdr;
2118
4cdc7696
NC
2119 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2120 relend = elf_section_data (sec)->relocs
df406460
NC
2121 + sec->reloc_count;
2122
4cdc7696 2123 for (irel = elf_section_data (sec)->relocs;
df406460
NC
2124 irel < relend; irel++)
2125 {
2126 bfd_vma reloc_target = 0;
2127 bfd_vma symval;
2128 Elf_Internal_Sym *isymbuf = NULL;
4cdc7696
NC
2129
2130 /* Read this BFD's local symbols if we haven't
df406460
NC
2131 done so already. */
2132 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2133 {
4cdc7696 2134 isymbuf = (Elf_Internal_Sym *)
df406460
NC
2135 symtab_hdr->contents;
2136 if (isymbuf == NULL)
4cdc7696
NC
2137 isymbuf = bfd_elf_get_elf_syms
2138 (abfd,
2139 symtab_hdr,
2140 symtab_hdr->sh_info, 0,
2141 NULL, NULL, NULL);
df406460
NC
2142 if (isymbuf == NULL)
2143 break;
2144 }
4cdc7696
NC
2145
2146 /* Get the value of the symbol referred to
df406460 2147 by the reloc. */
4cdc7696 2148 if (ELF32_R_SYM (irel->r_info)
df406460
NC
2149 < symtab_hdr->sh_info)
2150 {
2151 /* A local symbol. */
2152 Elf_Internal_Sym *isym;
2153 asection *sym_sec;
2154
4cdc7696 2155 isym = isymbuf
df406460 2156 + ELF32_R_SYM (irel->r_info);
4cdc7696
NC
2157 sym_sec = bfd_section_from_elf_index
2158 (abfd, isym->st_shndx);
2159 symval = isym->st_value;
2160
2161 /* If the reloc is absolute, it will not
df406460
NC
2162 have a symbol or section associated
2163 with it. */
4cdc7696 2164
df406460 2165 if (sym_sec)
4cdc7696
NC
2166 {
2167 symval +=
df406460
NC
2168 sym_sec->output_section->vma
2169 + sym_sec->output_offset;
2170 reloc_target = symval + irel->r_addend;
2171 }
2172 else
2173 {
2174 reloc_target = symval + irel->r_addend;
4cdc7696 2175 /* Reference symbol is absolute. */
df406460
NC
2176 }
2177 }
4cdc7696
NC
2178 /* else ... reference symbol is extern. */
2179
df406460 2180 if (address_of_ret == reloc_target)
4cdc7696 2181 {
df406460 2182 deleting_ret_is_safe = 0;
28c9d252 2183 if (debug_relax)
df406460
NC
2184 printf ("ret from "
2185 "rjmp/jmp ret sequence at address"
2186 " 0x%x could not be deleted. ret"
2187 " is target of a relocation.\n",
2188 (int) address_of_ret);
2189 }
2190 }
2191 }
2192
2193 if (deleting_ret_is_safe)
2194 {
28c9d252 2195 if (debug_relax)
df406460
NC
2196 printf ("unreachable ret instruction "
2197 "at address 0x%x deleted.\n",
2198 (int) dot + insn_size);
4cdc7696 2199
df406460
NC
2200 /* Delete two bytes of data. */
2201 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2202 irel->r_offset + insn_size, 2))
2203 goto error_return;
2204
4cdc7696
NC
2205 /* That will change things, so, we should relax
2206 again. Note that this is not required, and it
df406460 2207 may be slow. */
df406460
NC
2208 *again = TRUE;
2209 break;
2210 }
2211 }
4cdc7696
NC
2212
2213 }
2214 }
df406460
NC
2215 break;
2216 }
2217 }
2218 }
2219
2220 if (contents != NULL
2221 && elf_section_data (sec)->this_hdr.contents != contents)
2222 {
2223 if (! link_info->keep_memory)
2224 free (contents);
2225 else
2226 {
2227 /* Cache the section contents for elf_link_input_bfd. */
2228 elf_section_data (sec)->this_hdr.contents = contents;
2229 }
2230 }
2231
2232 if (internal_relocs != NULL
2233 && elf_section_data (sec)->relocs != internal_relocs)
2234 free (internal_relocs);
2235
2236 return TRUE;
2237
2238 error_return:
2239 if (isymbuf != NULL
2240 && symtab_hdr->contents != (unsigned char *) isymbuf)
2241 free (isymbuf);
2242 if (contents != NULL
2243 && elf_section_data (sec)->this_hdr.contents != contents)
2244 free (contents);
2245 if (internal_relocs != NULL
2246 && elf_section_data (sec)->relocs != internal_relocs)
2247 free (internal_relocs);
2248
4cdc7696 2249 return FALSE;
df406460
NC
2250}
2251
2252/* This is a version of bfd_generic_get_relocated_section_contents
4cdc7696 2253 which uses elf32_avr_relocate_section.
df406460 2254
4cdc7696 2255 For avr it's essentially a cut and paste taken from the H8300 port.
df406460 2256 The author of the relaxation support patch for avr had absolutely no
4cdc7696 2257 clue what is happening here but found out that this part of the code
df406460
NC
2258 seems to be important. */
2259
2260static bfd_byte *
2261elf32_avr_get_relocated_section_contents (bfd *output_bfd,
2262 struct bfd_link_info *link_info,
2263 struct bfd_link_order *link_order,
2264 bfd_byte *data,
2265 bfd_boolean relocatable,
2266 asymbol **symbols)
2267{
2268 Elf_Internal_Shdr *symtab_hdr;
2269 asection *input_section = link_order->u.indirect.section;
2270 bfd *input_bfd = input_section->owner;
2271 asection **sections = NULL;
2272 Elf_Internal_Rela *internal_relocs = NULL;
2273 Elf_Internal_Sym *isymbuf = NULL;
2274
2275 /* We only need to handle the case of relaxing, or of having a
2276 particular set of section contents, specially. */
2277 if (relocatable
2278 || elf_section_data (input_section)->this_hdr.contents == NULL)
2279 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2280 link_order, data,
2281 relocatable,
2282 symbols);
2283 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2284
2285 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
2286 (size_t) input_section->size);
2287
2288 if ((input_section->flags & SEC_RELOC) != 0
2289 && input_section->reloc_count > 0)
2290 {
2291 asection **secpp;
2292 Elf_Internal_Sym *isym, *isymend;
2293 bfd_size_type amt;
2294
2295 internal_relocs = (_bfd_elf_link_read_relocs
4cdc7696 2296 (input_bfd, input_section, NULL, NULL, FALSE));
df406460
NC
2297 if (internal_relocs == NULL)
2298 goto error_return;
2299
2300 if (symtab_hdr->sh_info != 0)
2301 {
2302 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2303 if (isymbuf == NULL)
2304 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2305 symtab_hdr->sh_info, 0,
2306 NULL, NULL, NULL);
2307 if (isymbuf == NULL)
2308 goto error_return;
2309 }
2310
2311 amt = symtab_hdr->sh_info;
2312 amt *= sizeof (asection *);
4cdc7696 2313 sections = bfd_malloc (amt);
df406460
NC
2314 if (sections == NULL && amt != 0)
2315 goto error_return;
2316
2317 isymend = isymbuf + symtab_hdr->sh_info;
2318 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
2319 {
2320 asection *isec;
2321
2322 if (isym->st_shndx == SHN_UNDEF)
2323 isec = bfd_und_section_ptr;
2324 else if (isym->st_shndx == SHN_ABS)
2325 isec = bfd_abs_section_ptr;
2326 else if (isym->st_shndx == SHN_COMMON)
2327 isec = bfd_com_section_ptr;
2328 else
2329 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
2330
2331 *secpp = isec;
2332 }
2333
2334 if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
2335 input_section, data, internal_relocs,
2336 isymbuf, sections))
2337 goto error_return;
2338
2339 if (sections != NULL)
2340 free (sections);
2341 if (isymbuf != NULL
2342 && symtab_hdr->contents != (unsigned char *) isymbuf)
2343 free (isymbuf);
2344 if (elf_section_data (input_section)->relocs != internal_relocs)
2345 free (internal_relocs);
2346 }
2347
2348 return data;
2349
2350 error_return:
2351 if (sections != NULL)
2352 free (sections);
2353 if (isymbuf != NULL
2354 && symtab_hdr->contents != (unsigned char *) isymbuf)
2355 free (isymbuf);
2356 if (internal_relocs != NULL
2357 && elf_section_data (input_section)->relocs != internal_relocs)
2358 free (internal_relocs);
2359 return NULL;
2360}
2361
2362
28c9d252
NC
2363/* Determines the hash entry name for a particular reloc. It consists of
2364 the identifier of the symbol section and the added reloc addend and
2365 symbol offset relative to the section the symbol is attached to. */
2366
2367static char *
2368avr_stub_name (const asection *symbol_section,
2369 const bfd_vma symbol_offset,
2370 const Elf_Internal_Rela *rela)
2371{
2372 char *stub_name;
2373 bfd_size_type len;
2374
2375 len = 8 + 1 + 8 + 1 + 1;
2376 stub_name = bfd_malloc (len);
2377
2378 sprintf (stub_name, "%08x+%08x",
2379 symbol_section->id & 0xffffffff,
2380 (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
2381
2382 return stub_name;
2383}
2384
2385
2386/* Add a new stub entry to the stub hash. Not all fields of the new
2387 stub entry are initialised. */
2388
2389static struct elf32_avr_stub_hash_entry *
2390avr_add_stub (const char *stub_name,
2391 struct elf32_avr_link_hash_table *htab)
2392{
2393 struct elf32_avr_stub_hash_entry *hsh;
2394
2395 /* Enter this entry into the linker stub hash table. */
2396 hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
2397
2398 if (hsh == NULL)
2399 {
2400 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
2401 NULL, stub_name);
2402 return NULL;
2403 }
2404
2405 hsh->stub_offset = 0;
2406 return hsh;
2407}
2408
2409/* We assume that there is already space allocated for the stub section
2410 contents and that before building the stubs the section size is
2411 initialized to 0. We assume that within the stub hash table entry,
2412 the absolute position of the jmp target has been written in the
2413 target_value field. We write here the offset of the generated jmp insn
2414 relative to the trampoline section start to the stub_offset entry in
2415 the stub hash table entry. */
2416
2417static bfd_boolean
2418avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
2419{
2420 struct elf32_avr_stub_hash_entry *hsh;
2421 struct bfd_link_info *info;
2422 struct elf32_avr_link_hash_table *htab;
2423 bfd *stub_bfd;
2424 bfd_byte *loc;
2425 bfd_vma target;
2426 bfd_vma starget;
2427
2428 /* Basic opcode */
2429 bfd_vma jmp_insn = 0x0000940c;
2430
2431 /* Massage our args to the form they really have. */
2432 hsh = avr_stub_hash_entry (bh);
2433
2434 if (!hsh->is_actually_needed)
2435 return TRUE;
2436
2437 info = (struct bfd_link_info *) in_arg;
2438
2439 htab = avr_link_hash_table (info);
64ee10b6
NC
2440 if (htab == NULL)
2441 return FALSE;
28c9d252
NC
2442
2443 target = hsh->target_value;
2444
2445 /* Make a note of the offset within the stubs for this entry. */
2446 hsh->stub_offset = htab->stub_sec->size;
2447 loc = htab->stub_sec->contents + hsh->stub_offset;
2448
2449 stub_bfd = htab->stub_sec->owner;
2450
2451 if (debug_stubs)
2452 printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
2453 (unsigned int) target,
2454 (unsigned int) hsh->stub_offset);
2455
2456 /* We now have to add the information on the jump target to the bare
2457 opcode bits already set in jmp_insn. */
2458
2459 /* Check for the alignment of the address. */
2460 if (target & 1)
2461 return FALSE;
2462
2463 starget = target >> 1;
2464 jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
2465 bfd_put_16 (stub_bfd, jmp_insn, loc);
2466 bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
2467
2468 htab->stub_sec->size += 4;
2469
2470 /* Now add the entries in the address mapping table if there is still
2471 space left. */
2472 {
2473 unsigned int nr;
2474
2475 nr = htab->amt_entry_cnt + 1;
2476 if (nr <= htab->amt_max_entry_cnt)
2477 {
2478 htab->amt_entry_cnt = nr;
2479
2480 htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
2481 htab->amt_destination_addr[nr - 1] = target;
2482 }
2483 }
2484
2485 return TRUE;
2486}
2487
2488static bfd_boolean
2489avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
2490 void *in_arg)
2491{
2492 struct elf32_avr_stub_hash_entry *hsh;
2493 struct elf32_avr_link_hash_table *htab;
2494
2495 htab = in_arg;
2496 hsh = avr_stub_hash_entry (bh);
2497 hsh->is_actually_needed = FALSE;
2498
2499 return TRUE;
2500}
2501
2502static bfd_boolean
2503avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
2504{
2505 struct elf32_avr_stub_hash_entry *hsh;
2506 struct elf32_avr_link_hash_table *htab;
2507 int size;
2508
2509 /* Massage our args to the form they really have. */
2510 hsh = avr_stub_hash_entry (bh);
2511 htab = in_arg;
2512
2513 if (hsh->is_actually_needed)
2514 size = 4;
2515 else
2516 size = 0;
2517
2518 htab->stub_sec->size += size;
2519 return TRUE;
2520}
2521
2522void
2523elf32_avr_setup_params (struct bfd_link_info *info,
2524 bfd *avr_stub_bfd,
2525 asection *avr_stub_section,
2526 bfd_boolean no_stubs,
2527 bfd_boolean deb_stubs,
2528 bfd_boolean deb_relax,
2529 bfd_vma pc_wrap_around,
2530 bfd_boolean call_ret_replacement)
2531{
64ee10b6 2532 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
28c9d252 2533
64ee10b6
NC
2534 if (htab == NULL)
2535 return;
28c9d252
NC
2536 htab->stub_sec = avr_stub_section;
2537 htab->stub_bfd = avr_stub_bfd;
2538 htab->no_stubs = no_stubs;
2539
2540 debug_relax = deb_relax;
2541 debug_stubs = deb_stubs;
2542 avr_pc_wrap_around = pc_wrap_around;
2543 avr_replace_call_ret_sequences = call_ret_replacement;
2544}
2545
2546
2547/* Set up various things so that we can make a list of input sections
2548 for each output section included in the link. Returns -1 on error,
2549 0 when no stubs will be needed, and 1 on success. It also sets
2550 information on the stubs bfd and the stub section in the info
2551 struct. */
2552
2553int
2554elf32_avr_setup_section_lists (bfd *output_bfd,
2555 struct bfd_link_info *info)
2556{
2557 bfd *input_bfd;
2558 unsigned int bfd_count;
2559 int top_id, top_index;
2560 asection *section;
2561 asection **input_list, **list;
2562 bfd_size_type amt;
2563 struct elf32_avr_link_hash_table *htab = avr_link_hash_table(info);
2564
64ee10b6 2565 if (htab == NULL || htab->no_stubs)
28c9d252
NC
2566 return 0;
2567
2568 /* Count the number of input BFDs and find the top input section id. */
2569 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2570 input_bfd != NULL;
2571 input_bfd = input_bfd->link_next)
2572 {
2573 bfd_count += 1;
2574 for (section = input_bfd->sections;
2575 section != NULL;
2576 section = section->next)
2577 if (top_id < section->id)
2578 top_id = section->id;
2579 }
2580
2581 htab->bfd_count = bfd_count;
2582
2583 /* We can't use output_bfd->section_count here to find the top output
2584 section index as some sections may have been removed, and
2585 strip_excluded_output_sections doesn't renumber the indices. */
2586 for (section = output_bfd->sections, top_index = 0;
2587 section != NULL;
2588 section = section->next)
2589 if (top_index < section->index)
2590 top_index = section->index;
2591
2592 htab->top_index = top_index;
2593 amt = sizeof (asection *) * (top_index + 1);
2594 input_list = bfd_malloc (amt);
2595 htab->input_list = input_list;
2596 if (input_list == NULL)
2597 return -1;
2598
2599 /* For sections we aren't interested in, mark their entries with a
2600 value we can check later. */
2601 list = input_list + top_index;
2602 do
2603 *list = bfd_abs_section_ptr;
2604 while (list-- != input_list);
2605
2606 for (section = output_bfd->sections;
2607 section != NULL;
2608 section = section->next)
2609 if ((section->flags & SEC_CODE) != 0)
2610 input_list[section->index] = NULL;
2611
2612 return 1;
2613}
2614
2615
2616/* Read in all local syms for all input bfds, and create hash entries
2617 for export stubs if we are building a multi-subspace shared lib.
2618 Returns -1 on error, 0 otherwise. */
2619
2620static int
2621get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
2622{
2623 unsigned int bfd_indx;
2624 Elf_Internal_Sym *local_syms, **all_local_syms;
2625 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
9a008db3 2626 bfd_size_type amt;
28c9d252 2627
64ee10b6
NC
2628 if (htab == NULL)
2629 return -1;
2630
28c9d252
NC
2631 /* We want to read in symbol extension records only once. To do this
2632 we need to read in the local symbols in parallel and save them for
2633 later use; so hold pointers to the local symbols in an array. */
9a008db3 2634 amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
28c9d252
NC
2635 all_local_syms = bfd_zmalloc (amt);
2636 htab->all_local_syms = all_local_syms;
2637 if (all_local_syms == NULL)
2638 return -1;
2639
2640 /* Walk over all the input BFDs, swapping in local symbols.
2641 If we are creating a shared library, create hash entries for the
2642 export stubs. */
2643 for (bfd_indx = 0;
2644 input_bfd != NULL;
2645 input_bfd = input_bfd->link_next, bfd_indx++)
2646 {
2647 Elf_Internal_Shdr *symtab_hdr;
2648
2649 /* We'll need the symbol table in a second. */
2650 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2651 if (symtab_hdr->sh_info == 0)
2652 continue;
2653
2654 /* We need an array of the local symbols attached to the input bfd. */
2655 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2656 if (local_syms == NULL)
2657 {
2658 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2659 symtab_hdr->sh_info, 0,
2660 NULL, NULL, NULL);
2661 /* Cache them for elf_link_input_bfd. */
2662 symtab_hdr->contents = (unsigned char *) local_syms;
2663 }
2664 if (local_syms == NULL)
2665 return -1;
2666
2667 all_local_syms[bfd_indx] = local_syms;
2668 }
2669
2670 return 0;
2671}
2672
2673#define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
2674
2675bfd_boolean
2676elf32_avr_size_stubs (bfd *output_bfd,
2677 struct bfd_link_info *info,
2678 bfd_boolean is_prealloc_run)
2679{
64ee10b6
NC
2680 struct elf32_avr_link_hash_table *htab;
2681 int stub_changed = 0;
28c9d252 2682
64ee10b6
NC
2683 htab = avr_link_hash_table (info);
2684 if (htab == NULL)
2685 return FALSE;
28c9d252 2686
64ee10b6
NC
2687 /* At this point we initialize htab->vector_base
2688 To the start of the text output section. */
2689 htab->vector_base = htab->stub_sec->output_section->vma;
28c9d252 2690
64ee10b6
NC
2691 if (get_local_syms (info->input_bfds, info))
2692 {
2693 if (htab->all_local_syms)
2694 goto error_ret_free_local;
2695 return FALSE;
2696 }
28c9d252
NC
2697
2698 if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
2699 {
2700 struct elf32_avr_stub_hash_entry *test;
2701
2702 test = avr_add_stub ("Hugo",htab);
2703 test->target_value = 0x123456;
2704 test->stub_offset = 13;
2705
2706 test = avr_add_stub ("Hugo2",htab);
2707 test->target_value = 0x84210;
2708 test->stub_offset = 14;
2709 }
2710
2711 while (1)
2712 {
2713 bfd *input_bfd;
2714 unsigned int bfd_indx;
2715
2716 /* We will have to re-generate the stub hash table each time anything
2717 in memory has changed. */
2718
2719 bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
2720 for (input_bfd = info->input_bfds, bfd_indx = 0;
2721 input_bfd != NULL;
2722 input_bfd = input_bfd->link_next, bfd_indx++)
2723 {
2724 Elf_Internal_Shdr *symtab_hdr;
2725 asection *section;
2726 Elf_Internal_Sym *local_syms;
2727
2728 /* We'll need the symbol table in a second. */
2729 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2730 if (symtab_hdr->sh_info == 0)
2731 continue;
2732
2733 local_syms = htab->all_local_syms[bfd_indx];
2734
2735 /* Walk over each section attached to the input bfd. */
2736 for (section = input_bfd->sections;
2737 section != NULL;
2738 section = section->next)
2739 {
2740 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2741
2742 /* If there aren't any relocs, then there's nothing more
2743 to do. */
2744 if ((section->flags & SEC_RELOC) == 0
2745 || section->reloc_count == 0)
2746 continue;
2747
2748 /* If this section is a link-once section that will be
2749 discarded, then don't create any stubs. */
2750 if (section->output_section == NULL
2751 || section->output_section->owner != output_bfd)
2752 continue;
2753
2754 /* Get the relocs. */
2755 internal_relocs
2756 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2757 info->keep_memory);
2758 if (internal_relocs == NULL)
2759 goto error_ret_free_local;
2760
2761 /* Now examine each relocation. */
2762 irela = internal_relocs;
2763 irelaend = irela + section->reloc_count;
2764 for (; irela < irelaend; irela++)
2765 {
2766 unsigned int r_type, r_indx;
2767 struct elf32_avr_stub_hash_entry *hsh;
2768 asection *sym_sec;
2769 bfd_vma sym_value;
2770 bfd_vma destination;
2771 struct elf_link_hash_entry *hh;
2772 char *stub_name;
2773
2774 r_type = ELF32_R_TYPE (irela->r_info);
2775 r_indx = ELF32_R_SYM (irela->r_info);
2776
2777 /* Only look for 16 bit GS relocs. No other reloc will need a
2778 stub. */
2779 if (!((r_type == R_AVR_16_PM)
2780 || (r_type == R_AVR_LO8_LDI_GS)
2781 || (r_type == R_AVR_HI8_LDI_GS)))
2782 continue;
2783
2784 /* Now determine the call target, its name, value,
2785 section. */
2786 sym_sec = NULL;
2787 sym_value = 0;
2788 destination = 0;
2789 hh = NULL;
2790 if (r_indx < symtab_hdr->sh_info)
2791 {
2792 /* It's a local symbol. */
2793 Elf_Internal_Sym *sym;
2794 Elf_Internal_Shdr *hdr;
4fbb74a6 2795 unsigned int shndx;
28c9d252
NC
2796
2797 sym = local_syms + r_indx;
28c9d252
NC
2798 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2799 sym_value = sym->st_value;
4fbb74a6
AM
2800 shndx = sym->st_shndx;
2801 if (shndx < elf_numsections (input_bfd))
2802 {
2803 hdr = elf_elfsections (input_bfd)[shndx];
2804 sym_sec = hdr->bfd_section;
2805 destination = (sym_value + irela->r_addend
2806 + sym_sec->output_offset
2807 + sym_sec->output_section->vma);
2808 }
28c9d252
NC
2809 }
2810 else
2811 {
2812 /* It's an external symbol. */
2813 int e_indx;
2814
2815 e_indx = r_indx - symtab_hdr->sh_info;
2816 hh = elf_sym_hashes (input_bfd)[e_indx];
2817
2818 while (hh->root.type == bfd_link_hash_indirect
2819 || hh->root.type == bfd_link_hash_warning)
2820 hh = (struct elf_link_hash_entry *)
2821 (hh->root.u.i.link);
2822
2823 if (hh->root.type == bfd_link_hash_defined
2824 || hh->root.type == bfd_link_hash_defweak)
2825 {
2826 sym_sec = hh->root.u.def.section;
2827 sym_value = hh->root.u.def.value;
2828 if (sym_sec->output_section != NULL)
2829 destination = (sym_value + irela->r_addend
2830 + sym_sec->output_offset
2831 + sym_sec->output_section->vma);
2832 }
2833 else if (hh->root.type == bfd_link_hash_undefweak)
2834 {
2835 if (! info->shared)
2836 continue;
2837 }
2838 else if (hh->root.type == bfd_link_hash_undefined)
2839 {
2840 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2841 && (ELF_ST_VISIBILITY (hh->other)
2842 == STV_DEFAULT)))
2843 continue;
2844 }
2845 else
2846 {
2847 bfd_set_error (bfd_error_bad_value);
2848
2849 error_ret_free_internal:
2850 if (elf_section_data (section)->relocs == NULL)
2851 free (internal_relocs);
2852 goto error_ret_free_local;
2853 }
2854 }
2855
2856 if (! avr_stub_is_required_for_16_bit_reloc
2857 (destination - htab->vector_base))
2858 {
2859 if (!is_prealloc_run)
2860 /* We are having a reloc that does't need a stub. */
2861 continue;
2862
2863 /* We don't right now know if a stub will be needed.
2864 Let's rather be on the safe side. */
2865 }
2866
2867 /* Get the name of this stub. */
2868 stub_name = avr_stub_name (sym_sec, sym_value, irela);
2869
2870 if (!stub_name)
2871 goto error_ret_free_internal;
2872
2873
2874 hsh = avr_stub_hash_lookup (&htab->bstab,
2875 stub_name,
2876 FALSE, FALSE);
2877 if (hsh != NULL)
2878 {
2879 /* The proper stub has already been created. Mark it
2880 to be used and write the possibly changed destination
2881 value. */
2882 hsh->is_actually_needed = TRUE;
2883 hsh->target_value = destination;
2884 free (stub_name);
2885 continue;
2886 }
2887
2888 hsh = avr_add_stub (stub_name, htab);
2889 if (hsh == NULL)
2890 {
2891 free (stub_name);
2892 goto error_ret_free_internal;
2893 }
2894
2895 hsh->is_actually_needed = TRUE;
2896 hsh->target_value = destination;
2897
2898 if (debug_stubs)
2899 printf ("Adding stub with destination 0x%x to the"
2900 " hash table.\n", (unsigned int) destination);
2901 if (debug_stubs)
2902 printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
2903
2904 stub_changed = TRUE;
2905 }
2906
2907 /* We're done with the internal relocs, free them. */
2908 if (elf_section_data (section)->relocs == NULL)
2909 free (internal_relocs);
2910 }
2911 }
2912
2913 /* Re-Calculate the number of needed stubs. */
2914 htab->stub_sec->size = 0;
2915 bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
2916
2917 if (!stub_changed)
2918 break;
2919
2920 stub_changed = FALSE;
2921 }
2922
2923 free (htab->all_local_syms);
2924 return TRUE;
2925
2926 error_ret_free_local:
2927 free (htab->all_local_syms);
2928 return FALSE;
2929}
2930
2931
2932/* Build all the stubs associated with the current output file. The
2933 stubs are kept in a hash table attached to the main linker hash
2934 table. We also set up the .plt entries for statically linked PIC
2935 functions here. This function is called via hppaelf_finish in the
2936 linker. */
2937
2938bfd_boolean
2939elf32_avr_build_stubs (struct bfd_link_info *info)
2940{
2941 asection *stub_sec;
2942 struct bfd_hash_table *table;
2943 struct elf32_avr_link_hash_table *htab;
2944 bfd_size_type total_size = 0;
2945
2946 htab = avr_link_hash_table (info);
64ee10b6
NC
2947 if (htab == NULL)
2948 return FALSE;
28c9d252
NC
2949
2950 /* In case that there were several stub sections: */
2951 for (stub_sec = htab->stub_bfd->sections;
2952 stub_sec != NULL;
2953 stub_sec = stub_sec->next)
2954 {
2955 bfd_size_type size;
2956
2957 /* Allocate memory to hold the linker stubs. */
2958 size = stub_sec->size;
2959 total_size += size;
2960
2961 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2962 if (stub_sec->contents == NULL && size != 0)
2963 return FALSE;
2964 stub_sec->size = 0;
2965 }
2966
2967 /* Allocate memory for the adress mapping table. */
2968 htab->amt_entry_cnt = 0;
2969 htab->amt_max_entry_cnt = total_size / 4;
2970 htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
2971 * htab->amt_max_entry_cnt);
2972 htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
2973 * htab->amt_max_entry_cnt );
2974
2975 if (debug_stubs)
2976 printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
2977
2978 /* Build the stubs as directed by the stub hash table. */
2979 table = &htab->bstab;
2980 bfd_hash_traverse (table, avr_build_one_stub, info);
2981
2982 if (debug_stubs)
2983 printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
2984
2985 return TRUE;
2986}
2987
adde6300
AM
2988#define ELF_ARCH bfd_arch_avr
2989#define ELF_MACHINE_CODE EM_AVR
aa4f99bb 2990#define ELF_MACHINE_ALT1 EM_AVR_OLD
adde6300
AM
2991#define ELF_MAXPAGESIZE 1
2992
2993#define TARGET_LITTLE_SYM bfd_elf32_avr_vec
2994#define TARGET_LITTLE_NAME "elf32-avr"
2995
28c9d252
NC
2996#define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
2997#define bfd_elf32_bfd_link_hash_table_free elf32_avr_link_hash_table_free
2998
adde6300
AM
2999#define elf_info_to_howto avr_info_to_howto_rela
3000#define elf_info_to_howto_rel NULL
3001#define elf_backend_relocate_section elf32_avr_relocate_section
adde6300
AM
3002#define elf_backend_check_relocs elf32_avr_check_relocs
3003#define elf_backend_can_gc_sections 1
f0fe0e16 3004#define elf_backend_rela_normal 1
adde6300
AM
3005#define elf_backend_final_write_processing \
3006 bfd_elf_avr_final_write_processing
3007#define elf_backend_object_p elf32_avr_object_p
3008
df406460
NC
3009#define bfd_elf32_bfd_relax_section elf32_avr_relax_section
3010#define bfd_elf32_bfd_get_relocated_section_contents \
3011 elf32_avr_get_relocated_section_contents
3012
adde6300 3013#include "elf32-target.h"
This page took 0.770628 seconds and 4 git commands to generate.