* libbfd.c (bfd_read): Set bfd_error as appropriate for a short
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
CommitLineData
4c85cbfa 1/* BFD back-end for HP PA-RISC ELF files.
f4bd7a8f 2 Copyright (C) 1990, 91, 92, 93, 94 Free Software Foundation, Inc.
4c85cbfa
KR
3
4 Written by
e8f2240a 5
4c85cbfa
KR
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9
10This file is part of BFD, the Binary File Descriptor library.
11
12This program is free software; you can redistribute it and/or modify
13it under the terms of the GNU General Public License as published by
14the Free Software Foundation; either version 2 of the License, or
15(at your option) any later version.
16
17This program is distributed in the hope that it will be useful,
18but WITHOUT ANY WARRANTY; without even the implied warranty of
19MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20GNU General Public License for more details.
21
22You should have received a copy of the GNU General Public License
23along with this program; if not, write to the Free Software
24Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
25
26#include "bfd.h"
27#include "sysdep.h"
28#include "libbfd.h"
29#include "obstack.h"
4991ebb9 30#include "bfdlink.h"
4c85cbfa
KR
31#include "libelf.h"
32
f5bfdacd
JL
33/* Note there isn't much error handling code in here yet. Unexpected
34 conditions are handled by just calling abort. FIXME damnit! */
35
4c85cbfa
KR
36/* ELF32/HPPA relocation support
37
38 This file contains ELF32/HPPA relocation support as specified
39 in the Stratus FTX/Golf Object File Format (SED-1762) dated
f5bfdacd 40 November 19, 1992. */
4c85cbfa 41
4c85cbfa 42#include "elf32-hppa.h"
e8f2240a 43#include "aout/aout64.h"
d9ad93bc 44#include "hppa_stubs.h"
4c85cbfa 45
e08b9ad7
JL
46/* The basic stub types supported. If/when shared libraries are
47 implemented some form of IMPORT and EXPORT stubs will be needed. */
48typedef enum
49{
50 HPPA_STUB_ILLEGAL,
51 HPPA_STUB_ARG_RELOC,
52 HPPA_STUB_LONG_CALL,
53} hppa_stub_type;
54
55/* This is a list of all the stubs for a particular BFD. */
56
57typedef struct elf32_hppa_stub_name_list_struct
58{
59 /* The symbol associated with this stub. */
60 asymbol *sym;
61 /* Pointer to chain of all stub chains. */
62 struct elf32_hppa_stub_description_struct *stub_desc;
63 /* Pointer to the stub contents (eg instructions). */
64 int *stub_secp;
65 /* Size of this stub? (in what units? FIXME). */
66 unsigned size;
67 /* Pointer to the next stub entry in the chain. */
68 struct elf32_hppa_stub_name_list_struct *next;
69} elf32_hppa_stub_name_list;
70
71/* This is a linked list in which each entry describes all the
72 linker stubs for a particular bfd. */
73
74typedef struct elf32_hppa_stub_description_struct
75{
76 /* The next group of stubs. */
77 struct elf32_hppa_stub_description_struct *next;
78 /* Used to identify this group of stubs as belonging
79 to a particular bfd. */
80 bfd *this_bfd;
81 /* FIXME: The stub section for this group of stubs? Is
82 this redundant with stub_listP->sym->section? */
83 asection *stub_sec;
84 /* FIXME: what the hell is this? */
85 unsigned relocs_allocated_cnt;
86 /* The current real size of the stubs (in bytes?). */
87 unsigned real_size;
88 /* How much space we have allocated for stubs (in bytes?). */
89 unsigned allocated_size;
90 /* Pointer to the first available space for new stubs. */
91 int *stub_secp;
92 /* Pointer to the beginning of the stubs. FIXME: Why an int *
93 above and a char * here? */
94 char *stub_contents;
95 /* The list of stubs for this bfd. */
96 elf32_hppa_stub_name_list *stub_listP;
97 /* I guess we just carry this around for fun. */
98 struct bfd_link_info *link_info;
99} elf32_hppa_stub_description;
100
101/* FIXME. */
102#define ARGUMENTS 0
103#define RETURN_VALUE 1
104
105/* The various argument relocations that may be performed.
106 Note GRX,GRY really means ARGX,ARGY. */
107typedef enum
108{
109 /* No relocation. */
110 NO_ARG_RELOC,
111 /* Relocate 32 bits from general to FP register. */
112 R_TO_FR,
113 /* Relocate 64 bits from arg0,arg1 to FParg1. */
114 R01_TO_FR,
115 /* Relocate 64 bits from arg2,arg3 to FParg3. */
116 R23_TO_FR,
117 /* Relocate 32 bits from FP to general register. */
118 FR_TO_R,
119 /* Relocate 64 bits from FParg1 to arg0,arg1. */
120 FR_TO_R01,
121 /* Relocate 64 bits from FParg3 to arg2,arg3. */
122 FR_TO_R23,
123 /* Death. */
124 ARG_RELOC_ERR,
125} arg_reloc_type;
126
127/* Where (what register type) is an argument comming from? */
128typedef enum
129{
130 /* Not in a register. */
131 AR_NO,
132 /* In a general argument register. */
133 AR_GR,
134 /* In right half of a FP argument register. */
135 AR_FR,
136 /* In upper (left) half of a FP argument register. */
137 AR_FU,
138 /* In general argument register pair 0 (arg0, arg1). */
139 AR_DBL01,
140 /* In general argument register pair 1 (arg2, arg3). */
141 AR_DBL23,
142} arg_location;
143
144/* What is being relocated (eg which argument or the return value). */
145typedef enum
146{
147 ARG0, ARG1, ARG2, ARG3, RETVAL,
148} arg_reloc_location;
149
150/* Horizontal represents callee's argument location information, vertical
151 represents caller's argument location information. Value at a particular
152 X, Y location represents what (if any) argument relocation needs to
153 be performed to make caller and callee agree. */
154static CONST arg_reloc_type mismatches[6][6] =
155{
f3b477be 156 {NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC,
e08b9ad7
JL
157 NO_ARG_RELOC, NO_ARG_RELOC},
158 {NO_ARG_RELOC, NO_ARG_RELOC, R_TO_FR, ARG_RELOC_ERR,
159 R01_TO_FR, ARG_RELOC_ERR},
160 {NO_ARG_RELOC, FR_TO_R, NO_ARG_RELOC, ARG_RELOC_ERR,
161 ARG_RELOC_ERR, ARG_RELOC_ERR},
162 {ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR,
163 ARG_RELOC_ERR, ARG_RELOC_ERR},
164 {NO_ARG_RELOC, FR_TO_R01, NO_ARG_RELOC, ARG_RELOC_ERR,
165 NO_ARG_RELOC, ARG_RELOC_ERR},
166 {NO_ARG_RELOC, FR_TO_R23, NO_ARG_RELOC, ARG_RELOC_ERR,
167 ARG_RELOC_ERR, NO_ARG_RELOC},
168};
169
170/* Likewise for the return value. */
171static CONST arg_reloc_type retval_mismatches[6][6] =
172{
f3b477be 173 {NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC,
e08b9ad7
JL
174 NO_ARG_RELOC, NO_ARG_RELOC},
175 {NO_ARG_RELOC, NO_ARG_RELOC, FR_TO_R, ARG_RELOC_ERR,
176 FR_TO_R01, ARG_RELOC_ERR},
177 {NO_ARG_RELOC, R_TO_FR, NO_ARG_RELOC, ARG_RELOC_ERR,
178 ARG_RELOC_ERR, ARG_RELOC_ERR},
179 {ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR,
180 ARG_RELOC_ERR, ARG_RELOC_ERR},
181 {NO_ARG_RELOC, R01_TO_FR, NO_ARG_RELOC, ARG_RELOC_ERR,
182 NO_ARG_RELOC, ARG_RELOC_ERR},
183 {NO_ARG_RELOC, R23_TO_FR, NO_ARG_RELOC, ARG_RELOC_ERR,
184 ARG_RELOC_ERR, NO_ARG_RELOC},
185};
186
187/* Used for index mapping in symbol-extension sections. */
188struct elf32_hppa_symextn_map_struct
189{
190 int old_index;
191 bfd *bfd;
192 asymbol *sym;
193 int new_index;
194};
4c85cbfa 195
4991ebb9
ILT
196static bfd_reloc_status_type hppa_elf_reloc
197 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
4c85cbfa 198
f5bfdacd
JL
199static unsigned long hppa_elf_relocate_insn
200 PARAMS ((bfd *, asection *, unsigned long, unsigned long, long,
201 long, unsigned long, unsigned long, unsigned long));
202
203static void hppa_elf_relocate_unwind_table
204 PARAMS ((bfd *, PTR, unsigned long, long, long,
205 unsigned long, unsigned long));
206
207static long get_symbol_value PARAMS ((asymbol *));
e08b9ad7 208
f5bfdacd
JL
209static bfd_reloc_status_type hppa_elf_reloc
210 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd*, char **));
211
212static CONST reloc_howto_type * elf_hppa_reloc_type_lookup
213 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
214
e08b9ad7
JL
215static symext_entryS elf32_hppa_get_sym_extn PARAMS ((bfd *, asymbol *, int));
216
217static elf32_hppa_stub_description * find_stubs PARAMS ((bfd *, asection *));
218
219static elf32_hppa_stub_description * new_stub
220 PARAMS ((bfd *, asection *, struct bfd_link_info *));
221
222static arg_reloc_type type_of_mismatch PARAMS ((int, int, int));
223
224static elf32_hppa_stub_name_list * find_stub_by_name
225 PARAMS ((bfd *, asection *, char *));
226
227static elf32_hppa_stub_name_list * add_stub_by_name
228 PARAMS ((bfd *, asection *, asymbol *, struct bfd_link_info *));
229
230static void hppa_elf_stub_finish PARAMS ((bfd *));
231
232static void hppa_elf_stub_reloc
6e58a4e5 233 PARAMS ((elf32_hppa_stub_description *, bfd *, asymbol **, int,
e08b9ad7
JL
234 elf32_hppa_reloc_type));
235
236static int hppa_elf_arg_reloc_needed_p
237 PARAMS ((bfd *, arelent *, arg_reloc_type [5], symext_entryS));
238
239static asymbol * hppa_elf_build_linker_stub
240 PARAMS ((bfd *, bfd *, struct bfd_link_info *, arelent *,
241 arg_reloc_type [5], int, unsigned *, hppa_stub_type));
242
243static void hppa_elf_create_stub_sec
244 PARAMS ((bfd *, bfd *, asection **, struct bfd_link_info *));
245
246static int hppa_elf_long_branch_needed_p
247 PARAMS ((bfd *, asection *, arelent *, asymbol *, unsigned));
248
249static boolean hppa_elf_set_section_contents
250 PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
251
252static void elf_info_to_howto
253 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
254
255static void elf32_hppa_backend_symbol_processing PARAMS ((bfd *, asymbol *));
256
257static boolean elf32_hppa_backend_section_processing
258 PARAMS ((bfd *, Elf32_Internal_Shdr *));
259
260static boolean elf32_hppa_backend_symbol_table_processing
261 PARAMS ((bfd *, elf_symbol_type *, int));
262
263static boolean elf32_hppa_backend_section_from_shdr
264 PARAMS ((bfd *, Elf32_Internal_Shdr *, char *));
265
266static boolean elf32_hppa_backend_fake_sections
267 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
268
269static boolean elf32_hppa_backend_section_from_bfd_section
270 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *, int *));
271
25057836
JL
272static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
273
e08b9ad7
JL
274/* ELF/PA relocation howto entries. */
275
d9ad93bc 276static reloc_howto_type elf_hppa_howto_table[ELF_HOWTO_TABLE_SIZE] =
4c85cbfa 277{
d9ad93bc
KR
278 {R_HPPA_NONE, 0, 3, 19, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_NONE"},
279 {R_HPPA_32, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_32"},
280 {R_HPPA_11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_11"},
281 {R_HPPA_14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_14"},
282 {R_HPPA_17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_17"},
283{R_HPPA_L21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_L21"},
284{R_HPPA_R11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_R11"},
285{R_HPPA_R14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_R14"},
286{R_HPPA_R17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_R17"},
287 {R_HPPA_LS21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_LS21"},
288 {R_HPPA_RS11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RS11"},
289 {R_HPPA_RS14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RS14"},
290 {R_HPPA_RS17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RS17"},
291 {R_HPPA_LD21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_LD21"},
292 {R_HPPA_RD11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RD11"},
293 {R_HPPA_RD14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RD14"},
294 {R_HPPA_RD17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RD17"},
295 {R_HPPA_LR21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_LR21"},
296 {R_HPPA_RR14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RR14"},
297 {R_HPPA_RR17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RR17"},
d9ad93bc
KR
298 {R_HPPA_GOTOFF_11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_11"},
299 {R_HPPA_GOTOFF_14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_14"},
300 {R_HPPA_GOTOFF_L21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_L21"},
301 {R_HPPA_GOTOFF_R11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_R11"},
302 {R_HPPA_GOTOFF_R14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_R14"},
303 {R_HPPA_GOTOFF_LS21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_LS21"},
304 {R_HPPA_GOTOFF_RS11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_RS11"},
305 {R_HPPA_GOTOFF_RS14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_RS14"},
306 {R_HPPA_GOTOFF_LD21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_LD21"},
307 {R_HPPA_GOTOFF_RD11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_RD11"},
308 {R_HPPA_GOTOFF_RD14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_RD14"},
309 {R_HPPA_GOTOFF_LR21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_LR21"},
310 {R_HPPA_GOTOFF_RR14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_RR14"},
d9ad93bc
KR
311 {R_HPPA_ABS_CALL_11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_11"},
312 {R_HPPA_ABS_CALL_14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_14"},
313 {R_HPPA_ABS_CALL_17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_17"},
314 {R_HPPA_ABS_CALL_L21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_L21"},
315 {R_HPPA_ABS_CALL_R11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_R11"},
316 {R_HPPA_ABS_CALL_R14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_R14"},
317 {R_HPPA_ABS_CALL_R17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_R17"},
318 {R_HPPA_ABS_CALL_LS21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_LS21"},
319 {R_HPPA_ABS_CALL_RS11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RS11"},
320 {R_HPPA_ABS_CALL_RS14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RS14"},
321 {R_HPPA_ABS_CALL_RS17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RS17"},
322 {R_HPPA_ABS_CALL_LD21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_LD21"},
323 {R_HPPA_ABS_CALL_RD11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RD11"},
324 {R_HPPA_ABS_CALL_RD14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RD14"},
325 {R_HPPA_ABS_CALL_RD17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RD17"},
326 {R_HPPA_ABS_CALL_LR21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_LR21"},
327 {R_HPPA_ABS_CALL_RR14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RR14"},
328 {R_HPPA_ABS_CALL_RR17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RR17"},
d9ad93bc
KR
329 {R_HPPA_PCREL_CALL_11, 0, 3, 11, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_11"},
330 {R_HPPA_PCREL_CALL_14, 0, 3, 14, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_14"},
331 {R_HPPA_PCREL_CALL_17, 0, 3, 17, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_17"},
332 {R_HPPA_PCREL_CALL_12, 0, 3, 12, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_12"},
333 {R_HPPA_PCREL_CALL_L21, 0, 3, 21, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_L21"},
334 {R_HPPA_PCREL_CALL_R11, 0, 3, 11, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_R11"},
335 {R_HPPA_PCREL_CALL_R14, 0, 3, 14, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_R14"},
336 {R_HPPA_PCREL_CALL_R17, 0, 3, 17, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_R17"},
337 {R_HPPA_PCREL_CALL_LS21, 0, 3, 21, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_LS21"},
338 {R_HPPA_PCREL_CALL_RS11, 0, 3, 11, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RS11"},
339 {R_HPPA_PCREL_CALL_RS14, 0, 3, 14, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RS14"},
340 {R_HPPA_PCREL_CALL_RS17, 0, 3, 17, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RS17"},
341 {R_HPPA_PCREL_CALL_LD21, 0, 3, 21, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_LD21"},
342 {R_HPPA_PCREL_CALL_RD11, 0, 3, 11, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RD11"},
343 {R_HPPA_PCREL_CALL_RD14, 0, 3, 14, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RD14"},
344 {R_HPPA_PCREL_CALL_RD17, 0, 3, 17, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RD17"},
345 {R_HPPA_PCREL_CALL_LR21, 0, 3, 21, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_LR21"},
346 {R_HPPA_PCREL_CALL_RR14, 0, 3, 14, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RR14"},
347 {R_HPPA_PCREL_CALL_RR17, 0, 3, 17, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RR17"},
4861ac76
JL
348 {R_HPPA_PLABEL_32, 0, 3, 32, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_32"},
349 {R_HPPA_PLABEL_11, 0, 3, 11, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_11"},
350 {R_HPPA_PLABEL_14, 0, 3, 14, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_14"},
351 {R_HPPA_PLABEL_L21, 0, 3, 21, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_L21"},
352 {R_HPPA_PLABEL_R11, 0, 3, 11, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_R11"},
353 {R_HPPA_PLABEL_R14, 0, 3, 14, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_R14"},
4861ac76
JL
354 {R_HPPA_DLT_32, 0, 3, 32, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_32"},
355 {R_HPPA_DLT_11, 0, 3, 11, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_11"},
356 {R_HPPA_DLT_14, 0, 3, 14, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_14"},
357 {R_HPPA_DLT_L21, 0, 3, 21, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_L21"},
358 {R_HPPA_DLT_R11, 0, 3, 11, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_R11"},
359 {R_HPPA_DLT_R14, 0, 3, 14, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_R14"},
d9ad93bc
KR
360 {R_HPPA_UNWIND_ENTRY, 0, 3, 32, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_UNWIND_ENTRY"},
361 {R_HPPA_UNWIND_ENTRIES, 0, 3, 32, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_UNWIND_ENTRIES"},
d9ad93bc
KR
362 {R_HPPA_PUSH_CONST, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_CONST"},
363 {R_HPPA_PUSH_PC, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_PC"},
364 {R_HPPA_PUSH_SYM, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_SYM"},
365 {R_HPPA_PUSH_GOTOFF, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_GOTOFF"},
366 {R_HPPA_PUSH_ABS_CALL, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_ABS_CALL"},
367 {R_HPPA_PUSH_PCREL_CALL, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_PCREL_CALL"},
368 {R_HPPA_PUSH_PLABEL, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_PLABEL"},
369{R_HPPA_MAX, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_MAX"},
370{R_HPPA_MIN, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_MIN"},
371{R_HPPA_ADD, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ADD"},
372{R_HPPA_SUB, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_SUB"},
373 {R_HPPA_MULT, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_MULT"},
374{R_HPPA_DIV, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_DIV"},
375{R_HPPA_MOD, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_MOD"},
376{R_HPPA_AND, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_AND"},
377 {R_HPPA_OR, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_OR"},
378{R_HPPA_XOR, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_XOR"},
379{R_HPPA_NOT, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_NOT"},
380 {R_HPPA_LSHIFT, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_LSHIFT"},
381 {R_HPPA_ARITH_RSHIFT, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ARITH_RSHIFT"},
382 {R_HPPA_LOGIC_RSHIFT, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_LOGIC_RSHIFT"},
383{R_HPPA_EXPR_F, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_L"},
384 {R_HPPA_EXPR_L, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_L"},
385 {R_HPPA_EXPR_R, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_R"},
386 {R_HPPA_EXPR_LS, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_LS"},
387 {R_HPPA_EXPR_RS, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_RS"},
388 {R_HPPA_EXPR_LD, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_LD"},
389 {R_HPPA_EXPR_RD, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_RD"},
390 {R_HPPA_EXPR_LR, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_LR"},
391 {R_HPPA_EXPR_RR, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_RR"},
d9ad93bc
KR
392 {R_HPPA_EXPR_32, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_32"},
393 {R_HPPA_EXPR_21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_21"},
394 {R_HPPA_EXPR_11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_11"},
395 {R_HPPA_EXPR_14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_14"},
396 {R_HPPA_EXPR_17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_17"},
397 {R_HPPA_EXPR_12, 0, 3, 12, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_12"},
398 {R_HPPA_STUB_CALL_17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_STUB_CALL_17"},
399 {R_HPPA_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_dont, NULL, "R_HPPA_UNIMPLEMENTED"},
e8f2240a 400};
4c85cbfa 401
d9ad93bc
KR
402static symext_chainS *symext_rootP;
403static symext_chainS *symext_lastP;
7218bb04 404static boolean symext_chain_built;
f5bfdacd
JL
405static long global_value;
406static long GOT_value;
407static asymbol *global_symbol;
408static int global_sym_defined;
f5bfdacd
JL
409static symext_entryS *symextn_contents;
410static unsigned int symextn_contents_real_size;
e08b9ad7
JL
411static elf32_hppa_stub_description *elf_hppa_stub_rootP;
412static boolean stubs_finished = false;
413static struct elf32_hppa_symextn_map_struct *elf32_hppa_symextn_map;
414static int elf32_hppa_symextn_map_size;
415
416static char *linker_stubs = NULL;
417static int linker_stubs_size = 0;
418static int linker_stubs_max_size = 0;
419#define STUB_ALLOC_INCR 100
420#define STUB_SYM_BUFFER_INC 5
e8f2240a 421
f5bfdacd 422/* Relocate the given INSN given the various input parameters.
e8f2240a 423
f5bfdacd 424 FIXME: endianness and sizeof (long) issues abound here. */
4c85cbfa
KR
425
426static unsigned long
f5bfdacd
JL
427hppa_elf_relocate_insn (abfd, input_sect, insn, address, sym_value,
428 r_addend, r_format, r_field, pcrel)
f4bd7a8f
DM
429 bfd *abfd;
430 asection *input_sect;
431 unsigned long insn;
432 unsigned long address;
f4bd7a8f
DM
433 long sym_value;
434 long r_addend;
f5bfdacd
JL
435 unsigned long r_format;
436 unsigned long r_field;
437 unsigned long pcrel;
4c85cbfa 438{
e8f2240a
KR
439 unsigned char opcode = get_opcode (insn);
440 long constant_value;
441 unsigned arg_reloc;
442
443 switch (opcode)
444 {
445 case LDO:
446 case LDB:
447 case LDH:
448 case LDW:
449 case LDWM:
450 case STB:
451 case STH:
452 case STW:
453 case STWM:
f5bfdacd
JL
454 case COMICLR:
455 case SUBI:
456 case ADDIT:
457 case ADDI:
458 case LDIL:
459 case ADDIL:
7218bb04 460 constant_value = HPPA_R_CONSTANT (r_addend);
e8f2240a
KR
461
462 if (pcrel)
463 sym_value -= address;
e8f2240a 464
e8f2240a 465 sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
f5bfdacd 466 return hppa_rebuild_insn (abfd, insn, sym_value, r_format);
e8f2240a
KR
467
468 case BL:
469 case BE:
470 case BLE:
7218bb04 471 arg_reloc = HPPA_R_ARG_RELOC (r_addend);
e8f2240a 472
e8f2240a
KR
473 /* XXX computing constant_value is not needed??? */
474 constant_value = assemble_17 ((insn & 0x001f0000) >> 16,
475 (insn & 0x00001ffc) >> 2,
476 insn & 1);
f5bfdacd 477
e8f2240a
KR
478 constant_value = (constant_value << 15) >> 15;
479 if (pcrel)
480 {
481 sym_value -=
482 address + input_sect->output_offset
483 + input_sect->output_section->vma;
484 sym_value = hppa_field_adjust (sym_value, -8, r_field);
485 }
486 else
487 sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
4c85cbfa 488
f5bfdacd 489 return hppa_rebuild_insn (abfd, insn, sym_value >> 2, r_format);
4c85cbfa 490
e8f2240a
KR
491 default:
492 if (opcode == 0)
493 {
7218bb04 494 constant_value = HPPA_R_CONSTANT (r_addend);
e8f2240a 495
f5bfdacd
JL
496 if (pcrel)
497 sym_value -= address;
498
e8f2240a
KR
499 return hppa_field_adjust (sym_value, constant_value, r_field);
500 }
501 else
f5bfdacd 502 abort ();
e8f2240a 503 }
4c85cbfa
KR
504}
505
f5bfdacd
JL
506/* Relocate a single unwind entry, or an entire table of them. */
507
4c85cbfa 508static void
f5bfdacd
JL
509hppa_elf_relocate_unwind_table (abfd, data, address, sym_value,
510 r_addend, r_type, r_field)
f4bd7a8f 511 bfd *abfd;
f4bd7a8f
DM
512 PTR data;
513 unsigned long address;
f4bd7a8f
DM
514 long sym_value;
515 long r_addend;
f5bfdacd
JL
516 unsigned long r_type;
517 unsigned long r_field;
4c85cbfa 518{
f5bfdacd 519 bfd_byte *hit_data = address + (bfd_byte *) data;
e8f2240a
KR
520 long start_offset;
521 long end_offset;
522 long relocated_value;
523 int i;
524
e8f2240a
KR
525 switch (r_type)
526 {
527 case R_HPPA_UNWIND_ENTRY:
f5bfdacd
JL
528 /* Need to relocate the first two 32bit fields in the unwind. They
529 correspond to a function's start and end address. */
e8f2240a
KR
530 start_offset = bfd_get_32 (abfd, hit_data);
531 relocated_value = hppa_field_adjust (sym_value, start_offset, r_field);
532 bfd_put_32 (abfd, relocated_value, hit_data);
533
534 hit_data += sizeof (unsigned long);
535 end_offset = bfd_get_32 (abfd, hit_data);
536 relocated_value = hppa_field_adjust (sym_value, end_offset, r_field);
537 bfd_put_32 (abfd, relocated_value, hit_data);
538 break;
539
540 case R_HPPA_UNWIND_ENTRIES:
f5bfdacd
JL
541 /* Relocate a mass of unwind entires. The count is passed in r_addend
542 (who's braindamaged idea was this anyway? */
e8f2240a
KR
543 for (i = 0; i < r_addend; i++, hit_data += 3 * sizeof (unsigned long))
544 {
d9ad93bc 545 unsigned int adjustment;
f5bfdacd
JL
546 /* Adjust the first 32bit field in the unwind entry. It's
547 the starting offset of a function. */
e8f2240a 548 start_offset = bfd_get_32 (abfd, hit_data);
e8f2240a 549 bfd_put_32 (abfd, sym_value, hit_data);
d9ad93bc 550 adjustment = sym_value - start_offset;
e8f2240a 551
f5bfdacd
JL
552 /* Now adjust the second 32bit field, it's the ending offset
553 of a function. */
e8f2240a 554 hit_data += sizeof (unsigned long);
d9ad93bc
KR
555 end_offset = adjustment + bfd_get_32 (abfd, hit_data);
556 bfd_put_32 (abfd, end_offset, hit_data);
e8f2240a 557
f5bfdacd
JL
558 /* Prepare for the next iteration. */
559 start_offset = bfd_get_32 (abfd,
560 hit_data + 3 * sizeof (unsigned long));
561 sym_value = start_offset + adjustment;
4c85cbfa 562 }
e8f2240a
KR
563 break;
564
565 default:
f5bfdacd 566 abort ();
e8f2240a 567 }
4c85cbfa
KR
568}
569
f5bfdacd
JL
570/* Return the relocated value of the given symbol. */
571
e8f2240a
KR
572static long
573get_symbol_value (symbol)
574 asymbol *symbol;
575{
f5bfdacd
JL
576 if (symbol == NULL
577 || symbol->section == &bfd_com_section)
578 return 0;
e8f2240a 579 else
f5bfdacd
JL
580 return symbol->value + symbol->section->output_section->vma
581 + symbol->section->output_offset;
4c85cbfa
KR
582}
583
f5bfdacd 584/* Return one (or more) BFD relocations which implement the base
e08b9ad7 585 relocation with modifications based on format and field. */
4c85cbfa 586
e8f2240a
KR
587elf32_hppa_reloc_type **
588hppa_elf_gen_reloc_type (abfd, base_type, format, field)
589 bfd *abfd;
590 elf32_hppa_reloc_type base_type;
591 int format;
592 int field;
4c85cbfa 593{
e8f2240a
KR
594 elf32_hppa_reloc_type *finaltype;
595 elf32_hppa_reloc_type **final_types;
e8f2240a 596
f5bfdacd
JL
597 /* Allocate slots for the BFD relocation. */
598 final_types = (elf32_hppa_reloc_type **)
599 bfd_alloc_by_size_t (abfd, sizeof (elf32_hppa_reloc_type *) * 2);
9783e04a 600 BFD_ASSERT (final_types != 0); /* FIXME */
e8f2240a 601
f5bfdacd
JL
602 /* Allocate space for the relocation itself. */
603 finaltype = (elf32_hppa_reloc_type *)
604 bfd_alloc_by_size_t (abfd, sizeof (elf32_hppa_reloc_type));
9783e04a 605 BFD_ASSERT (finaltype != 0); /* FIXME */
e8f2240a 606
f5bfdacd 607 /* Some reasonable defaults. */
e8f2240a
KR
608 final_types[0] = finaltype;
609 final_types[1] = NULL;
610
611#define final_type finaltype[0]
612
613 final_type = base_type;
614
f5bfdacd
JL
615 /* Just a tangle of nested switch statements to deal with the braindamage
616 that a different field selector means a completely different relocation
617 for PA ELF. */
e8f2240a
KR
618 switch (base_type)
619 {
620 case R_HPPA:
621 switch (format)
622 {
623 case 11:
624 switch (field)
625 {
626 case e_fsel:
627 final_type = R_HPPA_11;
628 break;
629 case e_rsel:
630 final_type = R_HPPA_R11;
631 break;
632 case e_rssel:
633 final_type = R_HPPA_RS11;
634 break;
635 case e_rdsel:
636 final_type = R_HPPA_RD11;
637 break;
e8f2240a
KR
638 case e_psel:
639 final_type = R_HPPA_PLABEL_11;
640 break;
641 case e_rpsel:
642 final_type = R_HPPA_PLABEL_R11;
643 break;
e8f2240a 644 case e_tsel:
a36b6f1d
JL
645 final_type = R_HPPA_DLT_11;
646 break;
e8f2240a 647 case e_rtsel:
a36b6f1d
JL
648 final_type = R_HPPA_DLT_R11;
649 break;
e8f2240a 650 default:
f5bfdacd 651 abort ();
e8f2240a
KR
652 break;
653 }
654 break;
f5bfdacd 655
e8f2240a
KR
656 case 14:
657 switch (field)
658 {
659 case e_rsel:
660 final_type = R_HPPA_R14;
661 break;
662 case e_rssel:
663 final_type = R_HPPA_RS14;
664 break;
665 case e_rdsel:
666 final_type = R_HPPA_RD14;
667 break;
668 case e_rrsel:
669 final_type = R_HPPA_RR14;
670 break;
e8f2240a
KR
671 case e_psel:
672 final_type = R_HPPA_PLABEL_14;
673 break;
674 case e_rpsel:
675 final_type = R_HPPA_PLABEL_R14;
676 break;
e8f2240a 677 case e_tsel:
a36b6f1d
JL
678 final_type = R_HPPA_DLT_14;
679 break;
e8f2240a 680 case e_rtsel:
a36b6f1d
JL
681 final_type = R_HPPA_DLT_R14;
682 break;
e8f2240a 683 default:
f5bfdacd 684 abort ();
e8f2240a
KR
685 break;
686 }
687 break;
f5bfdacd 688
e8f2240a
KR
689 case 17:
690 switch (field)
691 {
692 case e_fsel:
693 final_type = R_HPPA_17;
694 break;
695 case e_rsel:
696 final_type = R_HPPA_R17;
697 break;
698 case e_rssel:
699 final_type = R_HPPA_RS17;
700 break;
701 case e_rdsel:
702 final_type = R_HPPA_RD17;
703 break;
704 case e_rrsel:
705 final_type = R_HPPA_RR17;
706 break;
e8f2240a 707 default:
f5bfdacd 708 abort ();
e8f2240a
KR
709 break;
710 }
711 break;
f5bfdacd 712
e8f2240a
KR
713 case 21:
714 switch (field)
715 {
716 case e_lsel:
717 final_type = R_HPPA_L21;
718 break;
719 case e_lssel:
720 final_type = R_HPPA_LS21;
721 break;
722 case e_ldsel:
723 final_type = R_HPPA_LD21;
724 break;
725 case e_lrsel:
726 final_type = R_HPPA_LR21;
727 break;
728 case e_lpsel:
729 final_type = R_HPPA_PLABEL_L21;
730 break;
a36b6f1d
JL
731 case e_ltsel:
732 final_type = R_HPPA_PLABEL_L21;
733 break;
e8f2240a 734 default:
f5bfdacd 735 abort ();
e8f2240a
KR
736 break;
737 }
738 break;
f5bfdacd 739
e8f2240a
KR
740 case 32:
741 switch (field)
742 {
743 case e_fsel:
744 final_type = R_HPPA_32;
745 break;
746 case e_psel:
747 final_type = R_HPPA_PLABEL_32;
748 break;
a36b6f1d 749 case e_tsel:
7a60ed8c 750 final_type = R_HPPA_DLT_32;
a36b6f1d 751 break;
e8f2240a 752 default:
f5bfdacd 753 abort ();
e8f2240a
KR
754 break;
755 }
756 break;
f5bfdacd 757
e8f2240a 758 default:
f5bfdacd 759 abort ();
e8f2240a
KR
760 break;
761 }
762 break;
f5bfdacd
JL
763
764
e8f2240a
KR
765 case R_HPPA_GOTOFF:
766 switch (format)
767 {
768 case 11:
769 switch (field)
770 {
771 case e_rsel:
772 final_type = R_HPPA_GOTOFF_R11;
773 break;
774 case e_rssel:
775 final_type = R_HPPA_GOTOFF_RS11;
776 break;
777 case e_rdsel:
778 final_type = R_HPPA_GOTOFF_RD11;
779 break;
780 case e_fsel:
781 final_type = R_HPPA_GOTOFF_11;
782 break;
e8f2240a 783 default:
f5bfdacd 784 abort ();
e8f2240a
KR
785 break;
786 }
787 break;
f5bfdacd 788
e8f2240a
KR
789 case 14:
790 switch (field)
791 {
792 case e_rsel:
793 final_type = R_HPPA_GOTOFF_R14;
794 break;
795 case e_rssel:
796 final_type = R_HPPA_GOTOFF_RS14;
797 break;
798 case e_rdsel:
799 final_type = R_HPPA_GOTOFF_RD14;
800 break;
801 case e_rrsel:
802 final_type = R_HPPA_GOTOFF_RR14;
803 break;
804 case e_fsel:
805 final_type = R_HPPA_GOTOFF_14;
806 break;
e8f2240a 807 default:
f5bfdacd 808 abort ();
e8f2240a
KR
809 break;
810 }
811 break;
f5bfdacd 812
e8f2240a
KR
813 case 21:
814 switch (field)
815 {
816 case e_lsel:
817 final_type = R_HPPA_GOTOFF_L21;
818 break;
819 case e_lssel:
820 final_type = R_HPPA_GOTOFF_LS21;
821 break;
822 case e_ldsel:
823 final_type = R_HPPA_GOTOFF_LD21;
824 break;
825 case e_lrsel:
826 final_type = R_HPPA_GOTOFF_LR21;
827 break;
e8f2240a 828 default:
f5bfdacd 829 abort ();
e8f2240a
KR
830 break;
831 }
832 break;
f5bfdacd 833
e8f2240a 834 default:
f5bfdacd 835 abort ();
e8f2240a
KR
836 break;
837 }
838 break;
f5bfdacd
JL
839
840
e8f2240a
KR
841 case R_HPPA_PCREL_CALL:
842 switch (format)
843 {
844 case 11:
845 switch (field)
846 {
847 case e_rsel:
848 final_type = R_HPPA_PCREL_CALL_R11;
849 break;
850 case e_rssel:
851 final_type = R_HPPA_PCREL_CALL_RS11;
852 break;
853 case e_rdsel:
854 final_type = R_HPPA_PCREL_CALL_RD11;
855 break;
856 case e_fsel:
857 final_type = R_HPPA_PCREL_CALL_11;
858 break;
e8f2240a 859 default:
f5bfdacd 860 abort ();
e8f2240a
KR
861 break;
862 }
863 break;
f5bfdacd 864
e8f2240a
KR
865 case 14:
866 switch (field)
867 {
868 case e_rsel:
869 final_type = R_HPPA_PCREL_CALL_R14;
870 break;
871 case e_rssel:
872 final_type = R_HPPA_PCREL_CALL_RS14;
873 break;
874 case e_rdsel:
875 final_type = R_HPPA_PCREL_CALL_RD14;
876 break;
877 case e_rrsel:
878 final_type = R_HPPA_PCREL_CALL_RR14;
879 break;
880 case e_fsel:
881 final_type = R_HPPA_PCREL_CALL_14;
882 break;
e8f2240a 883 default:
f5bfdacd 884 abort ();
e8f2240a
KR
885 break;
886 }
887 break;
f5bfdacd 888
e8f2240a
KR
889 case 17:
890 switch (field)
891 {
892 case e_rsel:
893 final_type = R_HPPA_PCREL_CALL_R17;
894 break;
895 case e_rssel:
896 final_type = R_HPPA_PCREL_CALL_RS17;
897 break;
898 case e_rdsel:
899 final_type = R_HPPA_PCREL_CALL_RD17;
900 break;
901 case e_rrsel:
902 final_type = R_HPPA_PCREL_CALL_RR17;
903 break;
904 case e_fsel:
905 final_type = R_HPPA_PCREL_CALL_17;
906 break;
e8f2240a 907 default:
f5bfdacd 908 abort ();
e8f2240a
KR
909 break;
910 }
911 break;
f5bfdacd 912
e8f2240a
KR
913 case 21:
914 switch (field)
915 {
916 case e_lsel:
917 final_type = R_HPPA_PCREL_CALL_L21;
918 break;
919 case e_lssel:
920 final_type = R_HPPA_PCREL_CALL_LS21;
921 break;
922 case e_ldsel:
923 final_type = R_HPPA_PCREL_CALL_LD21;
924 break;
925 case e_lrsel:
926 final_type = R_HPPA_PCREL_CALL_LR21;
927 break;
e8f2240a 928 default:
f5bfdacd 929 abort ();
e8f2240a
KR
930 break;
931 }
932 break;
f5bfdacd 933
e8f2240a 934 default:
f5bfdacd 935 abort ();
e8f2240a
KR
936 break;
937 }
938 break;
f5bfdacd
JL
939
940
e8f2240a
KR
941 case R_HPPA_PLABEL:
942 switch (format)
943 {
944 case 11:
945 switch (field)
946 {
947 case e_fsel:
948 final_type = R_HPPA_PLABEL_11;
949 break;
950 case e_rsel:
951 final_type = R_HPPA_PLABEL_R11;
952 break;
953 default:
f5bfdacd 954 abort ();
e8f2240a
KR
955 break;
956 }
957 break;
f5bfdacd 958
e8f2240a
KR
959 case 14:
960 switch (field)
961 {
962 case e_fsel:
963 final_type = R_HPPA_PLABEL_14;
964 break;
965 case e_rsel:
966 final_type = R_HPPA_PLABEL_R14;
967 break;
968 default:
f5bfdacd 969 abort ();
e8f2240a
KR
970 break;
971 }
972 break;
f5bfdacd 973
e8f2240a
KR
974 case 21:
975 switch (field)
976 {
977 case e_lsel:
978 final_type = R_HPPA_PLABEL_L21;
979 break;
980 default:
f5bfdacd 981 abort ();
e8f2240a
KR
982 break;
983 }
984 break;
f5bfdacd 985
e8f2240a
KR
986 case 32:
987 switch (field)
988 {
989 case e_fsel:
990 final_type = R_HPPA_PLABEL_32;
991 break;
992 default:
f5bfdacd 993 abort ();
e8f2240a
KR
994 break;
995 }
996 break;
f5bfdacd 997
e8f2240a 998 default:
f5bfdacd 999 abort ();
e8f2240a
KR
1000 break;
1001 }
f5bfdacd
JL
1002
1003
e8f2240a
KR
1004 case R_HPPA_ABS_CALL:
1005 switch (format)
1006 {
1007 case 11:
1008 switch (field)
1009 {
1010 case e_rsel:
1011 final_type = R_HPPA_ABS_CALL_R11;
1012 break;
1013 case e_rssel:
1014 final_type = R_HPPA_ABS_CALL_RS11;
1015 break;
1016 case e_rdsel:
1017 final_type = R_HPPA_ABS_CALL_RD11;
1018 break;
1019 case e_fsel:
1020 final_type = R_HPPA_ABS_CALL_11;
1021 break;
4c85cbfa 1022 default:
f5bfdacd 1023 abort ();
e8f2240a
KR
1024 break;
1025 }
1026 break;
f5bfdacd 1027
e8f2240a
KR
1028 case 14:
1029 switch (field)
1030 {
1031 case e_rsel:
1032 final_type = R_HPPA_ABS_CALL_R14;
1033 break;
1034 case e_rssel:
1035 final_type = R_HPPA_ABS_CALL_RS14;
1036 break;
1037 case e_rdsel:
1038 final_type = R_HPPA_ABS_CALL_RD14;
1039 break;
1040 case e_rrsel:
1041 final_type = R_HPPA_ABS_CALL_RR14;
1042 break;
1043 case e_fsel:
1044 final_type = R_HPPA_ABS_CALL_14;
1045 break;
e8f2240a 1046 default:
f5bfdacd 1047 abort ();
e8f2240a
KR
1048 break;
1049 }
1050 break;
f5bfdacd 1051
e8f2240a
KR
1052 case 17:
1053 switch (field)
1054 {
1055 case e_rsel:
1056 final_type = R_HPPA_ABS_CALL_R17;
1057 break;
1058 case e_rssel:
1059 final_type = R_HPPA_ABS_CALL_RS17;
1060 break;
1061 case e_rdsel:
1062 final_type = R_HPPA_ABS_CALL_RD17;
1063 break;
1064 case e_rrsel:
1065 final_type = R_HPPA_ABS_CALL_RR17;
1066 break;
1067 case e_fsel:
1068 final_type = R_HPPA_ABS_CALL_17;
1069 break;
e8f2240a 1070 default:
f5bfdacd 1071 abort ();
e8f2240a
KR
1072 break;
1073 }
1074 break;
f5bfdacd 1075
e8f2240a
KR
1076 case 21:
1077 switch (field)
1078 {
1079 case e_lsel:
1080 final_type = R_HPPA_ABS_CALL_L21;
1081 break;
1082 case e_lssel:
1083 final_type = R_HPPA_ABS_CALL_LS21;
1084 break;
1085 case e_ldsel:
1086 final_type = R_HPPA_ABS_CALL_LD21;
1087 break;
1088 case e_lrsel:
1089 final_type = R_HPPA_ABS_CALL_LR21;
1090 break;
e8f2240a 1091 default:
f5bfdacd 1092 abort ();
e8f2240a
KR
1093 break;
1094 }
1095 break;
f5bfdacd 1096
e8f2240a 1097 default:
f5bfdacd 1098 abort ();
e8f2240a
KR
1099 break;
1100 }
1101 break;
f5bfdacd
JL
1102
1103
e8f2240a
KR
1104 case R_HPPA_UNWIND:
1105 final_type = R_HPPA_UNWIND_ENTRY;
1106 break;
f5bfdacd
JL
1107
1108
e8f2240a
KR
1109 case R_HPPA_COMPLEX:
1110 case R_HPPA_COMPLEX_PCREL_CALL:
1111 case R_HPPA_COMPLEX_ABS_CALL:
f5bfdacd
JL
1112 /* The code originally here was horribly broken, and apparently
1113 never used. Zap it. When we need complex relocations rewrite
1114 it correctly! */
1115 abort ();
e8f2240a 1116 break;
f5bfdacd 1117
e8f2240a
KR
1118 default:
1119 final_type = base_type;
1120 break;
1121 }
1122
1123 return final_types;
4c85cbfa
KR
1124}
1125
e8f2240a
KR
1126#undef final_type
1127
4c85cbfa 1128
f5bfdacd 1129/* Actually perform a relocation. */
4c85cbfa
KR
1130
1131static bfd_reloc_status_type
4991ebb9
ILT
1132hppa_elf_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
1133 error_message)
4861ac76
JL
1134 bfd *abfd;
1135 arelent *reloc_entry;
1136 asymbol *symbol_in;
1137 PTR data;
1138 asection *input_section;
1139 bfd *output_bfd;
4991ebb9 1140 char **error_message;
e8f2240a
KR
1141{
1142 unsigned long insn;
1143 long sym_value = 0;
4861ac76 1144 unsigned long addr = reloc_entry->address;
f5bfdacd
JL
1145 bfd_byte *hit_data = addr + (bfd_byte *) data;
1146 unsigned long r_type = reloc_entry->howto->type;
1147 unsigned long r_field = e_fsel;
e8f2240a 1148 boolean r_pcrel = reloc_entry->howto->pc_relative;
e8f2240a
KR
1149 unsigned r_format = reloc_entry->howto->bitsize;
1150 long r_addend = reloc_entry->addend;
1151
f5bfdacd 1152 /* If only performing a partial link, get out early. */
e8f2240a
KR
1153 if (output_bfd)
1154 {
e8f2240a
KR
1155 reloc_entry->address += input_section->output_offset;
1156 return bfd_reloc_ok;
1157 }
1158
4861ac76
JL
1159 /* If performing final link and the symbol we're relocating against
1160 is undefined, then return an error. */
e8f2240a
KR
1161 if (symbol_in && symbol_in->section == &bfd_und_section)
1162 return bfd_reloc_undefined;
1163
f5bfdacd 1164 /* Get the final relocated value. */
e8f2240a
KR
1165 sym_value = get_symbol_value (symbol_in);
1166
f5bfdacd
JL
1167 /* Compute the value of $global$.
1168 FIXME: None of this should be necessary. $global$ is just a
1169 marker and shouldn't really figure into these computations.
1170
1171 Once that's fixed we'll need to teach this backend to change
1172 DP-relative relocations involving symbols in the text section
1173 to be simple absolute relocations. */
d9ad93bc 1174 if (!global_sym_defined)
e8f2240a 1175 {
d9ad93bc 1176 if (global_symbol)
e8f2240a 1177 {
d9ad93bc
KR
1178 global_value = (global_symbol->value
1179 + global_symbol->section->output_section->vma
1180 + global_symbol->section->output_offset);
4861ac76 1181 GOT_value = global_value;
d9ad93bc 1182 global_sym_defined++;
e8f2240a
KR
1183 }
1184 }
1185
4861ac76 1186 /* Get the instruction word. */
e8f2240a
KR
1187 insn = bfd_get_32 (abfd, hit_data);
1188
4861ac76 1189 /* Relocate the value based on one of the basic relocation types
e8f2240a 1190
4861ac76
JL
1191 basic_type_1: relocation is relative to $global$
1192 basic_type_2: relocation is relative to the current GOT
1193 basic_type_3: relocation is an absolute call
1194 basic_type_4: relocation is an PC-relative call
1195 basic_type_5: relocation is plabel reference
1196 basic_type_6: relocation is an unwind table relocation
1197 extended_type: unimplemented */
e8f2240a
KR
1198
1199 switch (r_type)
1200 {
1201 case R_HPPA_NONE:
1202 break;
4861ac76
JL
1203
1204 /* Handle all the basic type 1 relocations. */
1205 case R_HPPA_32:
4861ac76 1206 case R_HPPA_11:
4861ac76 1207 case R_HPPA_14:
4861ac76 1208 case R_HPPA_17:
e8f2240a
KR
1209 r_field = e_fsel;
1210 goto do_basic_type_1;
4861ac76 1211 case R_HPPA_L21:
e8f2240a
KR
1212 r_field = e_lsel;
1213 goto do_basic_type_1;
4861ac76 1214 case R_HPPA_R11:
4861ac76 1215 case R_HPPA_R14:
4861ac76 1216 case R_HPPA_R17:
e8f2240a
KR
1217 r_field = e_rsel;
1218 goto do_basic_type_1;
4861ac76 1219 case R_HPPA_LS21:
e8f2240a
KR
1220 r_field = e_lssel;
1221 goto do_basic_type_1;
4861ac76 1222 case R_HPPA_RS11:
4861ac76 1223 case R_HPPA_RS14:
4861ac76 1224 case R_HPPA_RS17:
e8f2240a
KR
1225 r_field = e_ldsel;
1226 goto do_basic_type_1;
4861ac76 1227 case R_HPPA_LD21:
e8f2240a
KR
1228 r_field = e_ldsel;
1229 goto do_basic_type_1;
4861ac76 1230 case R_HPPA_RD11:
4861ac76 1231 case R_HPPA_RD14:
4861ac76 1232 case R_HPPA_RD17:
e8f2240a
KR
1233 r_field = e_rdsel;
1234 goto do_basic_type_1;
4861ac76 1235 case R_HPPA_LR21:
e8f2240a
KR
1236 r_field = e_lrsel;
1237 goto do_basic_type_1;
4861ac76 1238 case R_HPPA_RR14:
4861ac76 1239 case R_HPPA_RR17:
e8f2240a
KR
1240 r_field = e_rrsel;
1241
1242 do_basic_type_1:
1243 insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
f5bfdacd
JL
1244 sym_value, r_addend, r_format,
1245 r_field, r_pcrel);
e8f2240a
KR
1246 break;
1247
4861ac76
JL
1248 /* Handle all the basic type 2 relocations. */
1249 case R_HPPA_GOTOFF_11:
4861ac76 1250 case R_HPPA_GOTOFF_14:
e8f2240a
KR
1251 r_field = e_fsel;
1252 goto do_basic_type_2;
4861ac76 1253 case R_HPPA_GOTOFF_L21:
e8f2240a
KR
1254 r_field = e_lsel;
1255 goto do_basic_type_2;
4861ac76 1256 case R_HPPA_GOTOFF_R11:
4861ac76 1257 case R_HPPA_GOTOFF_R14:
e8f2240a
KR
1258 r_field = e_rsel;
1259 goto do_basic_type_2;
4861ac76 1260 case R_HPPA_GOTOFF_LS21:
e8f2240a
KR
1261 r_field = e_lssel;
1262 goto do_basic_type_2;
4861ac76 1263 case R_HPPA_GOTOFF_RS11:
4861ac76 1264 case R_HPPA_GOTOFF_RS14:
e8f2240a
KR
1265 r_field = e_rssel;
1266 goto do_basic_type_2;
4861ac76 1267 case R_HPPA_GOTOFF_LD21:
e8f2240a
KR
1268 r_field = e_ldsel;
1269 goto do_basic_type_2;
4861ac76 1270 case R_HPPA_GOTOFF_RD11:
4861ac76 1271 case R_HPPA_GOTOFF_RD14:
e8f2240a
KR
1272 r_field = e_rdsel;
1273 goto do_basic_type_2;
4861ac76 1274 case R_HPPA_GOTOFF_LR21:
e8f2240a
KR
1275 r_field = e_lrsel;
1276 goto do_basic_type_2;
4861ac76 1277 case R_HPPA_GOTOFF_RR14:
e8f2240a 1278 r_field = e_rrsel;
4861ac76 1279
e8f2240a
KR
1280 do_basic_type_2:
1281 sym_value -= GOT_value;
1282 insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
f5bfdacd
JL
1283 sym_value, r_addend, r_format,
1284 r_field, r_pcrel);
e8f2240a
KR
1285 break;
1286
4861ac76
JL
1287 /* Handle all the basic type 3 relocations. */
1288 case R_HPPA_ABS_CALL_11:
4861ac76 1289 case R_HPPA_ABS_CALL_14:
4861ac76 1290 case R_HPPA_ABS_CALL_17:
e8f2240a
KR
1291 r_field = e_fsel;
1292 goto do_basic_type_3;
4861ac76 1293 case R_HPPA_ABS_CALL_L21:
e8f2240a
KR
1294 r_field = e_lsel;
1295 goto do_basic_type_3;
4861ac76 1296 case R_HPPA_ABS_CALL_R11:
4861ac76 1297 case R_HPPA_ABS_CALL_R14:
4861ac76 1298 case R_HPPA_ABS_CALL_R17:
e8f2240a
KR
1299 r_field = e_rsel;
1300 goto do_basic_type_3;
4861ac76 1301 case R_HPPA_ABS_CALL_LS21:
e8f2240a
KR
1302 r_field = e_lssel;
1303 goto do_basic_type_3;
4861ac76 1304 case R_HPPA_ABS_CALL_RS11:
4861ac76 1305 case R_HPPA_ABS_CALL_RS14:
4861ac76 1306 case R_HPPA_ABS_CALL_RS17:
e8f2240a
KR
1307 r_field = e_rssel;
1308 goto do_basic_type_3;
4861ac76 1309 case R_HPPA_ABS_CALL_LD21:
e8f2240a
KR
1310 r_field = e_ldsel;
1311 goto do_basic_type_3;
4861ac76 1312 case R_HPPA_ABS_CALL_RD11:
4861ac76 1313 case R_HPPA_ABS_CALL_RD14:
4861ac76 1314 case R_HPPA_ABS_CALL_RD17:
e8f2240a
KR
1315 r_field = e_rdsel;
1316 goto do_basic_type_3;
4861ac76 1317 case R_HPPA_ABS_CALL_LR21:
e8f2240a
KR
1318 r_field = e_lrsel;
1319 goto do_basic_type_3;
4861ac76 1320 case R_HPPA_ABS_CALL_RR14:
4861ac76 1321 case R_HPPA_ABS_CALL_RR17:
e8f2240a 1322 r_field = e_rrsel;
4861ac76 1323
e8f2240a
KR
1324 do_basic_type_3:
1325 insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
f5bfdacd
JL
1326 sym_value, r_addend, r_format,
1327 r_field, r_pcrel);
e8f2240a
KR
1328 break;
1329
4861ac76
JL
1330 /* Handle all the basic type 4 relocations. */
1331 case R_HPPA_PCREL_CALL_11:
4861ac76 1332 case R_HPPA_PCREL_CALL_14:
4861ac76 1333 case R_HPPA_PCREL_CALL_17:
e8f2240a
KR
1334 r_field = e_fsel;
1335 goto do_basic_type_4;
4861ac76 1336 case R_HPPA_PCREL_CALL_L21:
e8f2240a
KR
1337 r_field = e_lsel;
1338 goto do_basic_type_4;
4861ac76 1339 case R_HPPA_PCREL_CALL_R11:
4861ac76 1340 case R_HPPA_PCREL_CALL_R14:
4861ac76 1341 case R_HPPA_PCREL_CALL_R17:
e8f2240a
KR
1342 r_field = e_rsel;
1343 goto do_basic_type_4;
4861ac76 1344 case R_HPPA_PCREL_CALL_LS21:
e8f2240a
KR
1345 r_field = e_lssel;
1346 goto do_basic_type_4;
4861ac76 1347 case R_HPPA_PCREL_CALL_RS11:
4861ac76 1348 case R_HPPA_PCREL_CALL_RS14:
4861ac76 1349 case R_HPPA_PCREL_CALL_RS17:
e8f2240a
KR
1350 r_field = e_rssel;
1351 goto do_basic_type_4;
4861ac76 1352 case R_HPPA_PCREL_CALL_LD21:
e8f2240a
KR
1353 r_field = e_ldsel;
1354 goto do_basic_type_4;
4861ac76 1355 case R_HPPA_PCREL_CALL_RD11:
4861ac76 1356 case R_HPPA_PCREL_CALL_RD14:
4861ac76 1357 case R_HPPA_PCREL_CALL_RD17:
e8f2240a
KR
1358 r_field = e_rdsel;
1359 goto do_basic_type_4;
4861ac76 1360 case R_HPPA_PCREL_CALL_LR21:
e8f2240a
KR
1361 r_field = e_lrsel;
1362 goto do_basic_type_4;
4861ac76 1363 case R_HPPA_PCREL_CALL_RR14:
4861ac76 1364 case R_HPPA_PCREL_CALL_RR17:
e8f2240a 1365 r_field = e_rrsel;
4861ac76 1366
e8f2240a
KR
1367 do_basic_type_4:
1368 insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
f5bfdacd
JL
1369 sym_value, r_addend, r_format,
1370 r_field, r_pcrel);
e8f2240a
KR
1371 break;
1372
4861ac76 1373 /* Handle all the basic type 5 relocations. */
e8f2240a
KR
1374 case R_HPPA_PLABEL_32:
1375 case R_HPPA_PLABEL_11:
1376 case R_HPPA_PLABEL_14:
1377 r_field = e_fsel;
1378 goto do_basic_type_5;
1379 case R_HPPA_PLABEL_L21:
1380 r_field = e_lsel;
1381 goto do_basic_type_5;
1382 case R_HPPA_PLABEL_R11:
1383 case R_HPPA_PLABEL_R14:
1384 r_field = e_rsel;
1385 do_basic_type_5:
1386 insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
f5bfdacd
JL
1387 sym_value, r_addend, r_format,
1388 r_field, r_pcrel);
e8f2240a
KR
1389 break;
1390
4861ac76 1391 /* Handle all basic type 6 relocations. */
e8f2240a
KR
1392 case R_HPPA_UNWIND_ENTRY:
1393 case R_HPPA_UNWIND_ENTRIES:
f5bfdacd
JL
1394 hppa_elf_relocate_unwind_table (abfd, data, addr,
1395 sym_value, r_addend,
1396 r_type, r_field);
4861ac76
JL
1397 return bfd_reloc_ok;
1398
4861ac76 1399 /* This is a linker internal relocation. */
d9ad93bc 1400 case R_HPPA_STUB_CALL_17:
4861ac76
JL
1401 /* This relocation is for a branch to a long branch stub.
1402 Change instruction to a BLE,N. It may also be necessary
f5bfdacd 1403 to interchange the branch and its delay slot.
4861ac76
JL
1404 The original instruction stream is
1405
1406 bl <foo>,r ; call foo using register r as
1407 ; the return pointer
1408 XXX ; delay slot instruction
1409
1410 The new instruction stream will be:
1411
1412 XXX ; delay slot instruction
1413 ble <foo_stub> ; call the long call stub for foo
1414 ; using r31 as the return pointer
1415
1416 This braindamage is necessary because the compiler may put
1417 an instruction which uses %r31 in the delay slot of the original
1418 call. By changing the call instruction from a "bl" to a "ble"
f5bfdacd
JL
1419 %r31 gets clobbered before the delay slot executes. This
1420 also means the stub has to play funny games to make sure
1421 we return to the instruction just after the BLE rather than
1422 two instructions after the BLE.
4861ac76
JL
1423
1424 We do not interchange the branch and delay slot if the delay
1425 slot was already nullified, or if the instruction in the delay
1426 slot modifies the return pointer to avoid an unconditional
f5bfdacd
JL
1427 jump after the call returns (GCC optimization).
1428
1429 None of this horseshit would be necessary if we put the
1430 stubs between functions and just redirected the "bl" to
1431 the stub. Live and learn. */
4861ac76 1432
f5bfdacd 1433 /* Is this instruction nullified? (does this ever happen?) */
4861ac76 1434 if (insn & 2)
a36b6f1d
JL
1435 {
1436 insn = BLE_N_XXX_0_0;
1437 bfd_put_32 (abfd, insn, hit_data);
1438 r_type = R_HPPA_ABS_CALL_17;
1439 r_pcrel = 0;
1440 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
f5bfdacd
JL
1441 addr, sym_value, r_addend,
1442 r_format, r_field, r_pcrel);
a36b6f1d 1443 }
d9ad93bc 1444 else
7218bb04 1445 {
f5bfdacd 1446 /* So much for the trivial case... */
7218bb04
KR
1447 unsigned long old_delay_slot_insn = bfd_get_32 (abfd, hit_data + 4);
1448 unsigned rtn_reg = (insn & 0x03e00000) >> 21;
1449
4861ac76 1450 if (get_opcode (old_delay_slot_insn) == LDO)
7218bb04
KR
1451 {
1452 unsigned ldo_src_reg = (old_delay_slot_insn & 0x03e00000) >> 21;
1453 unsigned ldo_target_reg = (old_delay_slot_insn & 0x001f0000) >> 16;
1454
4861ac76
JL
1455 /* If the target of the LDO is the same as the return
1456 register then there is no reordering. We can leave the
f5bfdacd
JL
1457 instuction as a non-nullified BLE in this case.
1458
1459 FIXME: This test looks wrong. If we had a ble using
1460 ldo_target_reg as the *source* we'd fuck this up. */
7218bb04
KR
1461 if (ldo_target_reg == rtn_reg)
1462 {
1463 unsigned long new_delay_slot_insn = old_delay_slot_insn;
1464
f5bfdacd 1465 BFD_ASSERT (ldo_src_reg == ldo_target_reg);
7218bb04
KR
1466 new_delay_slot_insn &= 0xfc00ffff;
1467 new_delay_slot_insn |= ((31 << 21) | (31 << 16));
4861ac76
JL
1468 bfd_put_32 (abfd, new_delay_slot_insn, hit_data + 4);
1469 insn = BLE_XXX_0_0;
4861ac76
JL
1470 r_type = R_HPPA_ABS_CALL_17;
1471 r_pcrel = 0;
1472 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
f5bfdacd
JL
1473 addr, sym_value, r_addend,
1474 r_format, r_field, r_pcrel);
a36b6f1d 1475 bfd_put_32 (abfd, insn, hit_data);
4861ac76 1476 return bfd_reloc_ok;
7218bb04 1477 }
a36b6f1d
JL
1478 else if (rtn_reg == 31)
1479 {
1480 /* The return register is r31, so this is a millicode
1481 call. Do not perform any instruction reordering. */
1482 insn = BLE_XXX_0_0;
1483 r_type = R_HPPA_ABS_CALL_17;
1484 r_pcrel = 0;
1485 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
f5bfdacd
JL
1486 addr, sym_value,
1487 r_addend, r_format,
a36b6f1d
JL
1488 r_field, r_pcrel);
1489 bfd_put_32 (abfd, insn, hit_data);
1490 return bfd_reloc_ok;
1491 }
4861ac76
JL
1492 else
1493 {
1494 /* Check to see if the delay slot instruction has a
1495 relocation. If so, we need to change the address
f5bfdacd
JL
1496 field of it because the instruction it relocates
1497 is going to be moved. Oh what a mess. */
4861ac76
JL
1498 arelent * next_reloc_entry = reloc_entry+1;
1499
1500 if (next_reloc_entry->address == reloc_entry->address + 4)
1501 next_reloc_entry->address -= 4;
1502
1503 insn = old_delay_slot_insn;
1504 bfd_put_32 (abfd, insn, hit_data);
1505 insn = BLE_N_XXX_0_0;
1506 bfd_put_32 (abfd, insn, hit_data + 4);
1507 r_type = R_HPPA_ABS_CALL_17;
1508 r_pcrel = 0;
1509 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
f5bfdacd
JL
1510 addr + 4,
1511 sym_value, r_addend,
4861ac76
JL
1512 r_format, r_field, r_pcrel);
1513 bfd_put_32 (abfd, insn, hit_data + 4);
1514 return bfd_reloc_ok;
1515 }
1516 }
f5bfdacd 1517 /* Same comments as above regarding incorrect test. */
a36b6f1d
JL
1518 else if (rtn_reg == 31)
1519 {
1520 /* The return register is r31, so this is a millicode call.
1521 Perform no instruction reordering in this case. */
1522 insn = BLE_XXX_0_0;
1523 r_type = R_HPPA_ABS_CALL_17;
1524 r_pcrel = 0;
1525 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
f5bfdacd
JL
1526 addr, sym_value,
1527 r_addend, r_format,
a36b6f1d
JL
1528 r_field, r_pcrel);
1529 bfd_put_32 (abfd, insn, hit_data);
1530 return bfd_reloc_ok;
1531 }
4861ac76
JL
1532 else
1533 {
1534 /* Check to see if the delay slot instruction has a
1535 relocation. If so, we need to change its address
1536 field because the instruction it relocates is going
1537 to be moved. */
1538 arelent * next_reloc_entry = reloc_entry+1;
1539
1540 if (next_reloc_entry->address == reloc_entry->address + 4)
1541 next_reloc_entry->address -= 4;
1542
1543 insn = old_delay_slot_insn;
1544 bfd_put_32 (abfd, insn, hit_data);
1545 insn = BLE_N_XXX_0_0;
1546 bfd_put_32 (abfd, insn, hit_data + 4);
1547 r_type = R_HPPA_ABS_CALL_17;
1548 r_pcrel = 0;
1549 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
f5bfdacd
JL
1550 addr + 4, sym_value,
1551 r_addend, r_format,
4861ac76
JL
1552 r_field, r_pcrel);
1553 bfd_put_32 (abfd, insn, hit_data + 4);
1554 return bfd_reloc_ok;
7218bb04 1555 }
7218bb04 1556 }
d9ad93bc
KR
1557 break;
1558
f5bfdacd 1559 /* Something we don't know how to handle. */
e8f2240a 1560 default:
4991ebb9 1561 *error_message = (char *) "Unrecognized reloc";
f5bfdacd 1562 return bfd_reloc_notsupported;
e8f2240a
KR
1563 }
1564
4861ac76 1565 /* Update the instruction word. */
e8f2240a 1566 bfd_put_32 (abfd, insn, hit_data);
e8f2240a 1567 return (bfd_reloc_ok);
e8f2240a
KR
1568}
1569
f5bfdacd
JL
1570/* Return the address of the howto table entry to perform the CODE
1571 relocation for an ARCH machine. */
1572
1573static CONST reloc_howto_type *
e8f2240a
KR
1574elf_hppa_reloc_type_lookup (arch, code)
1575 bfd_arch_info_type *arch;
1576 bfd_reloc_code_real_type code;
1577{
e8f2240a
KR
1578 if ((int) code < (int) R_HPPA_UNIMPLEMENTED)
1579 {
1580 BFD_ASSERT ((int) elf_hppa_howto_table[(int) code].type == (int) code);
1581 return &elf_hppa_howto_table[(int) code];
1582 }
f5bfdacd 1583 return NULL;
e8f2240a
KR
1584}
1585
25057836
JL
1586/* Return true if SYM represents a local label symbol. */
1587
1588static boolean
1589hppa_elf_is_local_label (abfd, sym)
1590 bfd *abfd;
1591 asymbol *sym;
1592{
1593 return (sym->name[0] == 'L' && sym->name[1] == '$');
1594}
e8f2240a 1595
f5bfdacd
JL
1596/* Update the symbol extention chain to include the symbol pointed to
1597 by SYMBOLP if SYMBOLP is a function symbol. Used internally and by GAS. */
e8f2240a
KR
1598
1599void
f5bfdacd 1600elf_hppa_tc_symbol (abfd, symbolP, sym_idx, symext_root, symext_last)
f4bd7a8f
DM
1601 bfd *abfd;
1602 elf_symbol_type *symbolP;
1603 int sym_idx;
f5bfdacd
JL
1604 symext_chainS **symext_root;
1605 symext_chainS **symext_last;
e8f2240a
KR
1606{
1607 symext_chainS *symextP;
1608 unsigned int arg_reloc;
1609
3a70b01d 1610 /* Only functions can have argument relocations. */
e8f2240a
KR
1611 if (!(symbolP->symbol.flags & BSF_FUNCTION))
1612 return;
1613
e8f2240a
KR
1614 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
1615
3a70b01d
KR
1616 /* If there are no argument relocation bits, then no relocation is
1617 necessary. Do not add this to the symextn section. */
1618 if (arg_reloc == 0)
1619 return;
1620
f5bfdacd 1621 /* Allocate memory and initialize this entry. */
e8f2240a 1622 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
9783e04a
DM
1623 if (!symextP)
1624 {
f5bfdacd 1625 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
1626 abort(); /* FIXME */
1627 }
e8f2240a
KR
1628
1629 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
1630 symextP[0].next = &symextP[1];
1631
1632 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
1633 symextP[1].next = NULL;
1634
f5bfdacd
JL
1635 /* Now update the chain itself so it can be walked later to build
1636 the symbol extension section. */
1637 if (*symext_root == NULL)
e8f2240a 1638 {
f5bfdacd
JL
1639 *symext_root = &symextP[0];
1640 *symext_last = &symextP[1];
e8f2240a
KR
1641 }
1642 else
1643 {
f5bfdacd
JL
1644 (*symext_last)->next = &symextP[0];
1645 *symext_last = &symextP[1];
e8f2240a
KR
1646 }
1647}
1648
f5bfdacd 1649/* Build the symbol extension section. Used internally and by GAS. */
e8f2240a
KR
1650
1651void
f5bfdacd 1652elf_hppa_tc_make_sections (abfd, symext_root)
f4bd7a8f 1653 bfd *abfd;
f5bfdacd 1654 symext_chainS *symext_root;
e8f2240a
KR
1655{
1656 symext_chainS *symextP;
f5bfdacd 1657 int size, n, i;
e8f2240a
KR
1658 asection *symextn_sec;
1659
f5bfdacd 1660 /* FIXME: Huh? I don't see what this is supposed to do for us. */
e8f2240a
KR
1661 hppa_elf_stub_finish (abfd);
1662
f5bfdacd
JL
1663 /* If there are no entries in the symbol extension chain, then
1664 there is no symbol extension section. */
1665 if (symext_root == NULL)
e8f2240a
KR
1666 return;
1667
f5bfdacd
JL
1668 /* Count the number of entries on the chain. */
1669 for (n = 0, symextP = symext_root; symextP; symextP = symextP->next, ++n)
e8f2240a
KR
1670 ;
1671
f5bfdacd
JL
1672 /* Create the symbol extension section and set some appropriate
1673 attributes. */
e8f2240a
KR
1674 size = sizeof (symext_entryS) * n;
1675 symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
1676 if (symextn_sec == (asection *) 0)
1677 {
1678 symextn_sec = bfd_make_section (abfd, SYMEXTN_SECTION_NAME);
1679 bfd_set_section_flags (abfd,
1680 symextn_sec,
f5bfdacd 1681 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
e8f2240a
KR
1682 symextn_sec->output_section = symextn_sec;
1683 symextn_sec->output_offset = 0;
1684 bfd_set_section_alignment (abfd, symextn_sec, 2);
1685 }
f5bfdacd
JL
1686 bfd_set_section_size (abfd, symextn_sec, symextn_contents_real_size);
1687 symextn_contents_real_size = size;
1688
1689 /* Grab some memory for the contents of the symbol extension section
1690 itself. */
e8f2240a 1691 symextn_contents = (symext_entryS *) bfd_alloc (abfd, size);
9783e04a
DM
1692 if (!symextn_contents)
1693 {
f5bfdacd 1694 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
1695 abort(); /* FIXME */
1696 }
e8f2240a 1697
f5bfdacd
JL
1698 /* Fill in the contents of the symbol extension section. */
1699 for (i = 0, symextP = symext_root; symextP; symextP = symextP->next, ++i)
e8f2240a 1700 symextn_contents[i] = symextP->entry;
e8f2240a
KR
1701
1702 return;
1703}
1704
e08b9ad7 1705/* Return the symbol extension record of type TYPE for the symbol SYM. */
e8f2240a 1706
e08b9ad7 1707static symext_entryS
e8f2240a
KR
1708elf32_hppa_get_sym_extn (abfd, sym, type)
1709 bfd *abfd;
1710 asymbol *sym;
1711 int type;
1712{
e8f2240a
KR
1713 switch (type)
1714 {
e8f2240a 1715 case HPPA_SXT_SYMNDX:
e08b9ad7
JL
1716 case HPPA_SXT_NULL:
1717 return (symext_entryS) 0;
e8f2240a
KR
1718 case HPPA_SXT_ARG_RELOC:
1719 {
3a70b01d 1720 elf_symbol_type *esymP = (elf_symbol_type *) sym;
e8f2240a 1721
e08b9ad7 1722 return (symext_entryS) esymP->tc_data.hppa_arg_reloc;
e8f2240a 1723 }
d9ad93bc
KR
1724 /* This should never happen. */
1725 default:
1726 abort();
e8f2240a 1727 }
e8f2240a
KR
1728}
1729
e08b9ad7
JL
1730/* Search the chain of stub descriptions and locate the stub
1731 description for this the given section within the given bfd.
e8f2240a 1732
e08b9ad7
JL
1733 FIXME: I see yet another wonderful linear linked list search
1734 here. This is probably bad. */
e8f2240a 1735
3a70b01d 1736static elf32_hppa_stub_description *
e8f2240a
KR
1737find_stubs (abfd, stub_sec)
1738 bfd *abfd;
1739 asection *stub_sec;
1740{
3a70b01d 1741 elf32_hppa_stub_description *stubP;
e8f2240a
KR
1742
1743 for (stubP = elf_hppa_stub_rootP; stubP; stubP = stubP->next)
1744 {
e08b9ad7
JL
1745 /* Is this the right one? */
1746 if (stubP->this_bfd == abfd && stubP->stub_sec == stub_sec)
3a70b01d 1747 return stubP;
e8f2240a 1748 }
e08b9ad7 1749 return NULL;
e8f2240a
KR
1750}
1751
3a70b01d 1752static elf32_hppa_stub_description *
4991ebb9 1753new_stub (abfd, stub_sec, link_info)
e8f2240a
KR
1754 bfd *abfd;
1755 asection *stub_sec;
4991ebb9 1756 struct bfd_link_info *link_info;
e8f2240a 1757{
3a70b01d 1758 elf32_hppa_stub_description *stub = find_stubs (abfd, stub_sec);
e8f2240a 1759
e08b9ad7 1760 /* If we found a list for this bfd, then use it. */
e8f2240a
KR
1761 if (stub)
1762 return stub;
1763
e08b9ad7
JL
1764 /* Nope, allocate and initialize a new entry in the stub list chain. */
1765 stub = (elf32_hppa_stub_description *)
1766 bfd_zalloc (abfd, sizeof (elf32_hppa_stub_description));
3a70b01d
KR
1767 if (stub)
1768 {
1769 stub->this_bfd = abfd;
1770 stub->stub_sec = stub_sec;
1771 stub->real_size = 0;
1772 stub->allocated_size = 0;
1773 stub->stub_contents = NULL;
1774 stub->stub_secp = NULL;
4991ebb9 1775 stub->link_info = link_info;
3a70b01d
KR
1776
1777 stub->next = elf_hppa_stub_rootP;
1778 elf_hppa_stub_rootP = stub;
1779 }
1780 else
1781 {
f5bfdacd 1782 bfd_set_error (bfd_error_no_memory);
9783e04a 1783 abort(); /* FIXME */
3a70b01d 1784 }
e8f2240a
KR
1785
1786 return stub;
1787}
1788
e08b9ad7
JL
1789/* Try and locate a stub with the name NAME within the stubs
1790 associated with ABFD. More linked list searches. */
1791
3a70b01d
KR
1792static elf32_hppa_stub_name_list *
1793find_stub_by_name (abfd, stub_sec, name)
1794 bfd *abfd;
1795 asection *stub_sec;
1796 char *name;
1797{
e08b9ad7 1798 /* Find the stubs associated with this bfd. */
3a70b01d
KR
1799 elf32_hppa_stub_description *stub = find_stubs (abfd, stub_sec);
1800
e08b9ad7 1801 /* If found, then we have to walk down them looking for a match. */
3a70b01d
KR
1802 if (stub)
1803 {
1804 elf32_hppa_stub_name_list *name_listP;
1805
e08b9ad7
JL
1806 for (name_listP = stub->stub_listP;
1807 name_listP;
1808 name_listP = name_listP->next)
3a70b01d
KR
1809 {
1810 if (!strcmp (name_listP->sym->name, name))
1811 return name_listP;
1812 }
1813 }
1814
e08b9ad7 1815 /* Not found. */
3a70b01d
KR
1816 return 0;
1817}
1818
e08b9ad7 1819/* Add a new stub (SYM) to the list of stubs associated with the given BFD. */
3a70b01d 1820static elf32_hppa_stub_name_list *
4991ebb9 1821add_stub_by_name(abfd, stub_sec, sym, link_info)
3a70b01d
KR
1822 bfd *abfd;
1823 asection *stub_sec;
1824 asymbol *sym;
4991ebb9 1825 struct bfd_link_info *link_info;
e8f2240a 1826{
3a70b01d
KR
1827 elf32_hppa_stub_description *stub = find_stubs (abfd, stub_sec);
1828 elf32_hppa_stub_name_list *stub_entry;
e8f2240a 1829
e08b9ad7
JL
1830 /* If no stubs are associated with this bfd, then we have to make
1831 a chain-of-stubs associated with this bfd. */
3a70b01d 1832 if (!stub)
e08b9ad7 1833 stub = new_stub (abfd, stub_sec, link_info);
e8f2240a 1834
3a70b01d 1835 if (stub)
e8f2240a 1836 {
e08b9ad7 1837 /* Allocate and initialize an entry in the stub chain. */
3a70b01d
KR
1838 stub_entry = (elf32_hppa_stub_name_list *)
1839 bfd_zalloc (abfd, sizeof (elf32_hppa_stub_name_list));
e8f2240a 1840
3a70b01d 1841 if (stub_entry)
e8f2240a 1842 {
3a70b01d
KR
1843 stub_entry->size = 0;
1844 stub_entry->sym = sym;
1845 stub_entry->stub_desc = stub;
1846 /* First byte of this stub is the pointer to
1847 the next available location in the stub buffer. */
1848 stub_entry->stub_secp = stub->stub_secp;
e08b9ad7 1849 /* Add it to the chain. */
3a70b01d
KR
1850 if (stub->stub_listP)
1851 stub_entry->next = stub->stub_listP;
1852 else
1853 stub_entry->next = NULL;
1854 stub->stub_listP = stub_entry;
1855 return stub_entry;
4c85cbfa 1856 }
e8f2240a
KR
1857 else
1858 {
f5bfdacd 1859 bfd_set_error (bfd_error_no_memory);
9783e04a 1860 abort(); /* FIXME */
e8f2240a
KR
1861 }
1862 }
e08b9ad7
JL
1863 /* Death by mis-adventure. */
1864 abort ();
3a70b01d 1865 return (elf32_hppa_stub_name_list *)NULL;
e8f2240a
KR
1866}
1867
e08b9ad7
JL
1868/* For the given caller/callee argument location information and the
1869 type of relocation (arguments or return value), return the type
1870 of argument relocation needed to make caller and callee happy. */
e8f2240a 1871
e08b9ad7 1872static arg_reloc_type
e8f2240a
KR
1873type_of_mismatch (caller_bits, callee_bits, type)
1874 int caller_bits;
1875 int callee_bits;
1876 int type;
1877{
1878 switch (type)
1879 {
1880 case ARGUMENTS:
1881 return mismatches[caller_bits][callee_bits];
1882 case RETURN_VALUE:
1883 return retval_mismatches[caller_bits][callee_bits];
1884 }
e08b9ad7 1885 return ARG_RELOC_ERR;
e8f2240a
KR
1886}
1887
e08b9ad7
JL
1888/* Extract specific argument location bits for WHICH from the
1889 the full argument location information in AR. */
1890#define EXTRACT_ARBITS(ar, which) ((ar) >> (8 - ((which) * 2))) & 3
e8f2240a 1891
e08b9ad7
JL
1892/* Add the new instruction INSN into the stub area denoted by ENTRY.
1893 FIXME: Looks like more cases where we assume sizeof (int) ==
1894 sizeof (insn) which may not be true if building cross tools. */
1895#define NEW_INSTRUCTION(entry, insn) \
4861ac76 1896{ \
3a70b01d 1897 *((entry)->stub_desc->stub_secp)++ = (insn); \
e08b9ad7 1898 (entry)->stub_desc->real_size += sizeof (int); \
3a70b01d
KR
1899 (entry)->size += sizeof(int); \
1900 bfd_set_section_size((entry)->stub_desc->this_bfd, \
1901 (entry)->stub_desc->stub_sec, \
4861ac76
JL
1902 (entry)->stub_desc->real_size); \
1903}
e8f2240a 1904
e08b9ad7
JL
1905/* Find the offset of the current stub? Looks more like it
1906 finds the offset of the last instruction to me. */
3a70b01d 1907#define CURRENT_STUB_OFFSET(entry) \
9783e04a
DM
1908 ((char *)(entry)->stub_desc->stub_secp \
1909 - (char *)(entry)->stub_desc->stub_contents - 4)
d9ad93bc 1910
e08b9ad7
JL
1911/* All the stubs have already been built, finish up stub stuff
1912 by applying relocations to the stubs. */
d9ad93bc 1913
e08b9ad7 1914static void
e8f2240a
KR
1915hppa_elf_stub_finish (output_bfd)
1916 bfd *output_bfd;
1917{
3a70b01d 1918 elf32_hppa_stub_description *stub_list = elf_hppa_stub_rootP;
e8f2240a 1919
e08b9ad7 1920 /* If the stubs have been finished, then we're already done. */
f5bfdacd 1921 if (stubs_finished)
d9ad93bc
KR
1922 return;
1923
e08b9ad7 1924 /* Walk down the list of stub lists. */
e8f2240a
KR
1925 for (; stub_list; stub_list = stub_list->next)
1926 {
e08b9ad7 1927 /* If this list has stubs, then do something. */
3a70b01d 1928 if (stub_list->real_size)
e8f2240a 1929 {
3a70b01d 1930 bfd *stub_bfd = stub_list->this_bfd;
e08b9ad7
JL
1931 asection *stub_sec = bfd_get_section_by_name (stub_bfd,
1932 ".hppa_linker_stubs");
e8f2240a
KR
1933 bfd_size_type reloc_size;
1934 arelent **reloc_vector;
1935
e08b9ad7 1936 /* Some sanity checking. */
3a70b01d 1937 BFD_ASSERT (stub_sec == stub_list->stub_sec);
e8f2240a
KR
1938 BFD_ASSERT (stub_sec);
1939
e08b9ad7
JL
1940 /* For stub sections raw_size == cooked_size. Also update
1941 reloc_done as we're handling the relocs now. */
e8f2240a
KR
1942 stub_sec->_cooked_size = stub_sec->_raw_size;
1943 stub_sec->reloc_done = true;
1944
e08b9ad7
JL
1945 /* Make space to hold the relocations for the stub section. */
1946 reloc_size = bfd_get_reloc_upper_bound (stub_bfd, stub_sec);
80425e6c 1947 reloc_vector = (arelent **) malloc (reloc_size);
25057836 1948 if (reloc_vector == NULL && reloc_size != 0)
80425e6c
JK
1949 {
1950 /* FIXME: should be returning an error so the caller can
1951 clean up */
1952 abort ();
1953 }
e8f2240a 1954
e08b9ad7
JL
1955 /* If we have relocations, do them. */
1956 if (bfd_canonicalize_reloc (stub_bfd, stub_sec, reloc_vector,
e8f2240a
KR
1957 output_bfd->outsymbols))
1958 {
1959 arelent **parent;
e08b9ad7 1960 for (parent = reloc_vector; *parent != NULL; parent++)
e8f2240a 1961 {
e08b9ad7 1962 char *err = NULL;
e8f2240a 1963 bfd_reloc_status_type r =
e08b9ad7 1964 bfd_perform_relocation (stub_bfd, *parent,
4991ebb9
ILT
1965 stub_list->stub_contents,
1966 stub_sec, (bfd *) NULL, &err);
e8f2240a 1967
e08b9ad7 1968 /* If there was an error, tell someone about it. */
e8f2240a
KR
1969 if (r != bfd_reloc_ok)
1970 {
4991ebb9
ILT
1971 struct bfd_link_info *link_info = stub_list->link_info;
1972
e8f2240a
KR
1973 switch (r)
1974 {
1975 case bfd_reloc_undefined:
4991ebb9
ILT
1976 if (! ((*link_info->callbacks->undefined_symbol)
1977 (link_info,
1978 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
1979 stub_bfd, stub_sec, (*parent)->address)))
1980 abort ();
e8f2240a
KR
1981 break;
1982 case bfd_reloc_dangerous:
4991ebb9
ILT
1983 if (! ((*link_info->callbacks->reloc_dangerous)
1984 (link_info, err, stub_bfd, stub_sec,
1985 (*parent)->address)))
1986 abort ();
e8f2240a 1987 break;
e8f2240a 1988 case bfd_reloc_overflow:
4991ebb9
ILT
1989 {
1990 if (! ((*link_info->callbacks->reloc_overflow)
1991 (link_info,
1992 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
1993 (*parent)->howto->name,
1994 (*parent)->addend,
1995 stub_bfd, stub_sec,
1996 (*parent)->address)))
1997 abort ();
1998 }
e8f2240a 1999 break;
4991ebb9 2000 case bfd_reloc_outofrange:
e8f2240a
KR
2001 default:
2002 abort ();
2003 break;
2004 }
2005 }
2006 }
2007 }
80425e6c 2008 free (reloc_vector);
e8f2240a 2009
e08b9ad7
JL
2010 /* All done with the relocations. Set the final contents
2011 of the stub section. FIXME: no check of return value! */
2012 bfd_set_section_contents (output_bfd, stub_sec,
3a70b01d 2013 stub_list->stub_contents,
e08b9ad7 2014 0, stub_list->real_size);
e8f2240a
KR
2015 }
2016 }
e08b9ad7 2017 /* All done. */
d9ad93bc 2018 stubs_finished = true;
e8f2240a
KR
2019}
2020
e08b9ad7 2021/* Allocate a new relocation entry to be used in a linker stub. */
d9ad93bc 2022
e08b9ad7
JL
2023static void
2024hppa_elf_stub_reloc (stub_desc, output_bfd, target_sym, offset, type)
f4bd7a8f
DM
2025 elf32_hppa_stub_description *stub_desc;
2026 bfd *output_bfd;
6e58a4e5 2027 asymbol **target_sym;
f4bd7a8f
DM
2028 int offset;
2029 elf32_hppa_reloc_type type;
d9ad93bc 2030{
d9ad93bc
KR
2031 arelent relent;
2032 int size;
2033 Elf_Internal_Shdr *rela_hdr;
2034
e08b9ad7 2035 /* I really don't like the realloc nonsense in here. FIXME. */
d9ad93bc
KR
2036 if (stub_desc->relocs_allocated_cnt == stub_desc->stub_sec->reloc_count)
2037 {
e08b9ad7 2038 /* Allocate the first few relocation entries. */
d9ad93bc
KR
2039 if (stub_desc->stub_sec->relocation == NULL)
2040 {
2041 stub_desc->relocs_allocated_cnt = STUB_RELOC_INCR;
2042 size = sizeof (arelent) * stub_desc->relocs_allocated_cnt;
f4bd7a8f 2043 stub_desc->stub_sec->relocation = (arelent *) bfd_zmalloc (size);
d9ad93bc
KR
2044 }
2045 else
2046 {
e08b9ad7
JL
2047 /* We've used all the entries we've already allocated. So get
2048 some more. */
d9ad93bc
KR
2049 stub_desc->relocs_allocated_cnt += STUB_RELOC_INCR;
2050 size = sizeof (arelent) * stub_desc->relocs_allocated_cnt;
e08b9ad7
JL
2051 stub_desc->stub_sec->relocation = (arelent *)
2052 realloc (stub_desc->stub_sec->relocation, size);
d9ad93bc 2053 }
9783e04a
DM
2054 if (!stub_desc->stub_sec->relocation)
2055 {
f5bfdacd 2056 bfd_set_error (bfd_error_no_memory);
e08b9ad7 2057 abort (); /* FIXME */
9783e04a 2058 }
d9ad93bc
KR
2059 }
2060
2061 rela_hdr = &elf_section_data(stub_desc->stub_sec)->rel_hdr;
2062 rela_hdr->sh_size += sizeof(Elf32_External_Rela);
2063
2064 /* Fill in the details. */
2065 relent.address = offset;
2066 relent.addend = 0;
6e58a4e5 2067 relent.sym_ptr_ptr = target_sym;
d9ad93bc 2068 relent.howto = bfd_reloc_type_lookup (stub_desc->this_bfd, type);
e8f2240a 2069
e08b9ad7 2070 /* Save it in the array of relocations for the stub section. */
e8f2240a 2071 memcpy (&stub_desc->stub_sec->relocation[stub_desc->stub_sec->reloc_count++],
e08b9ad7 2072 &relent, sizeof (arelent));
e8f2240a
KR
2073}
2074
e08b9ad7
JL
2075/* Build an argument relocation stub. RTN_ADJUST is a hint that an
2076 adjust to the return pointer from within the stub itself may be
2077 needed. */
2078
2079static asymbol *
2080hppa_elf_build_linker_stub (abfd, output_bfd, link_info, reloc_entry,
2081 stub_types, rtn_adjust, data, linker_stub_type)
e8f2240a
KR
2082 bfd *abfd;
2083 bfd *output_bfd;
4991ebb9 2084 struct bfd_link_info *link_info;
e8f2240a 2085 arelent *reloc_entry;
e08b9ad7 2086 arg_reloc_type stub_types[5];
4861ac76
JL
2087 int rtn_adjust;
2088 unsigned *data;
e08b9ad7 2089 hppa_stub_type linker_stub_type;
e8f2240a 2090{
e8f2240a 2091 int i;
e08b9ad7 2092 boolean milli, dyncall;
e8f2240a 2093 char stub_sym_name[128];
3a70b01d 2094 elf32_hppa_stub_name_list *stub_entry;
e08b9ad7 2095 /* Some initialization. */
4861ac76 2096 unsigned insn = data[0];
e08b9ad7 2097 asymbol *stub_sym = NULL;
f3b477be 2098 asymbol **orig_sym = reloc_entry->sym_ptr_ptr;
e08b9ad7
JL
2099 asection *stub_sec = bfd_get_section_by_name (abfd, ".hppa_linker_stubs");
2100 elf32_hppa_stub_description *stub_desc = find_stubs (abfd, stub_sec);
4861ac76
JL
2101
2102 /* Perform some additional checks on whether we should really do the
2103 return adjustment. For example, if the instruction is nullified
2104 or if the delay slot contains an instruction that modifies the return
2105 pointer, then the branch instructions should not be rearranged
2106 (rtn_adjust is false). */
2107 if (insn & 2 || insn == 0)
2108 rtn_adjust = false;
2109 else
2110 {
2111 unsigned delay_insn = data[1];
e8f2240a 2112
4861ac76
JL
2113 if (get_opcode (delay_insn) == LDO
2114 && (((insn & 0x03e00000) >> 21) == ((delay_insn & 0x001f0000) >> 16)))
2115 rtn_adjust = false;
2116 }
2117
e08b9ad7
JL
2118 /* Some special code for long-call stubs. */
2119 if (linker_stub_type == HPPA_STUB_LONG_CALL)
2120 {
2121
2122 /* Is this a millicode call? If so, the return address
2123 comes in on r31 rather than r2 (rp) so a slightly
2124 different code sequence is needed. */
2125 unsigned rtn_reg = (insn & 0x03e00000) >> 21;
2126 if (rtn_reg == 31)
2127 milli = true;
2128
2129 /* Dyncall is special because the user code has already
2130 put the return pointer in %r2 (aka RP). Other millicode
2131 calls have the return pointer in %r31. */
f3b477be 2132 if (strcmp ((*orig_sym)->name, "$$dyncall") == 0)
e08b9ad7
JL
2133 dyncall = true;
2134
2135 /* If we are creating a call from a stub to another stub, then
2136 never do the instruction reordering. We can tell if we are
2137 going to be calling one stub from another by the fact that
2138 the symbol name has '_stub_' (arg. reloc. stub) or '_lb_stub_'
2139 prepended to the name. Alternatively, the section of the
2140 symbol will be '.hppa_linker_stubs'. This is only an issue
2141 for long-calls; they are the only stubs allowed to call another
2142 stub. */
f3b477be
JL
2143 if ((strncmp ((*orig_sym)->name, "_stub_", 6) == 0)
2144 || (strncmp ((*orig_sym)->name, "_lb_stub_", 9) == 0))
e08b9ad7 2145 {
f3b477be 2146 BFD_ASSERT (strcmp ((*orig_sym)->section->name, ".hppa_linker_stubs")
e08b9ad7
JL
2147 == 0);
2148 rtn_adjust = false;
2149 }
2150 }
2151
2152 /* Create the stub section if necessary. */
e8f2240a
KR
2153 if (!stub_sec)
2154 {
2155 BFD_ASSERT (stub_desc == NULL);
e08b9ad7 2156 hppa_elf_create_stub_sec (abfd, output_bfd, &stub_sec, link_info);
4991ebb9 2157 stub_desc = new_stub (abfd, stub_sec, link_info);
e8f2240a
KR
2158 }
2159
4861ac76 2160 /* Make the stub if we did not find one already. */
e8f2240a 2161 if (!stub_desc)
4991ebb9 2162 stub_desc = new_stub (abfd, stub_sec, link_info);
e8f2240a 2163
4861ac76 2164 /* Allocate space to write the stub.
e08b9ad7 2165 FIXME: Why using realloc?!? */
e8f2240a
KR
2166 if (!stub_desc->stub_contents)
2167 {
2168 stub_desc->allocated_size = STUB_BUFFER_INCR;
9783e04a 2169 stub_desc->stub_contents = (char *) malloc (STUB_BUFFER_INCR);
e8f2240a
KR
2170 }
2171 else if ((stub_desc->allocated_size - stub_desc->real_size) < STUB_MAX_SIZE)
2172 {
2173 stub_desc->allocated_size = stub_desc->allocated_size + STUB_BUFFER_INCR;
a5ccdad1
ILT
2174 stub_desc->stub_contents = (char *) realloc (stub_desc->stub_contents,
2175 stub_desc->allocated_size);
e8f2240a
KR
2176 }
2177
e08b9ad7
JL
2178 /* If no memory die. (I seriously doubt the other routines
2179 are prepared to get a NULL return value). */
2180 if (!stub_desc->stub_contents)
2181 {
2182 bfd_set_error (bfd_error_no_memory);
2183 abort ();
2184 }
2185
2186 /* Generate an appropriate name for this stub. */
2187 if (linker_stub_type == HPPA_STUB_ARG_RELOC)
2188 sprintf (stub_sym_name,
2189 "_stub_%s_%02d_%02d_%02d_%02d_%02d_%s",
2190 reloc_entry->sym_ptr_ptr[0]->name,
2191 stub_types[0], stub_types[1], stub_types[2],
2192 stub_types[3], stub_types[4],
2193 rtn_adjust ? "RA" : "");
2194 else
2195 sprintf (stub_sym_name,
2196 "_lb_stub_%s_%s", reloc_entry->sym_ptr_ptr[0]->name,
2197 rtn_adjust ? "RA" : "");
2198
2199
4861ac76
JL
2200 stub_desc->stub_secp
2201 = (int *) (stub_desc->stub_contents + stub_desc->real_size);
4861ac76 2202 stub_entry = find_stub_by_name (abfd, stub_sec, stub_sym_name);
e8f2240a 2203
e08b9ad7 2204 /* See if we already have one by this name. */
3a70b01d
KR
2205 if (stub_entry)
2206 {
e08b9ad7
JL
2207 /* Yes, re-use it. Redirect the original relocation from the
2208 old symbol (a function symbol) to the stub (the stub will call
2209 the original function). */
3a70b01d 2210 stub_sym = stub_entry->sym;
44fd6622
JL
2211 reloc_entry->sym_ptr_ptr = (asymbol **) bfd_zalloc (abfd,
2212 sizeof (asymbol **));
6e58a4e5
JL
2213 if (reloc_entry->sym_ptr_ptr == NULL)
2214 {
2215 bfd_set_error (bfd_error_no_memory);
2216 abort ();
2217 }
2218 reloc_entry->sym_ptr_ptr[0] = stub_sym;
e08b9ad7
JL
2219 if (linker_stub_type == HPPA_STUB_LONG_CALL
2220 || (reloc_entry->howto->type != R_HPPA_PLABEL_32
2221 && (get_opcode(insn) == BLE
2222 || get_opcode (insn) == BE
2223 || get_opcode (insn) == BL)))
4861ac76 2224 reloc_entry->howto = bfd_reloc_type_lookup (abfd, R_HPPA_STUB_CALL_17);
3a70b01d
KR
2225 }
2226 else
2227 {
4861ac76 2228 /* Create a new symbol to point to this stub. */
3a70b01d 2229 stub_sym = bfd_make_empty_symbol (abfd);
9783e04a
DM
2230 if (!stub_sym)
2231 {
f5bfdacd 2232 bfd_set_error (bfd_error_no_memory);
e08b9ad7 2233 abort ();
9783e04a 2234 }
3a70b01d 2235 stub_sym->name = bfd_zalloc (abfd, strlen (stub_sym_name) + 1);
9783e04a
DM
2236 if (!stub_sym->name)
2237 {
f5bfdacd 2238 bfd_set_error (bfd_error_no_memory);
e08b9ad7 2239 abort ();
9783e04a 2240 }
3a70b01d 2241 strcpy ((char *) stub_sym->name, stub_sym_name);
4861ac76 2242 stub_sym->value
9783e04a 2243 = (char *) stub_desc->stub_secp - (char *) stub_desc->stub_contents;
3a70b01d
KR
2244 stub_sym->section = stub_sec;
2245 stub_sym->flags = BSF_LOCAL | BSF_FUNCTION;
4991ebb9 2246 stub_entry = add_stub_by_name (abfd, stub_sec, stub_sym, link_info);
3a70b01d 2247
4861ac76 2248 /* Redirect the original relocation from the old symbol (a function)
e08b9ad7 2249 to the stub (the stub calls the function). */
44fd6622
JL
2250 reloc_entry->sym_ptr_ptr = (asymbol **) bfd_zalloc (abfd,
2251 sizeof (asymbol **));
6e58a4e5
JL
2252 if (reloc_entry->sym_ptr_ptr == NULL)
2253 {
2254 bfd_set_error (bfd_error_no_memory);
2255 abort ();
2256 }
2257 reloc_entry->sym_ptr_ptr[0] = stub_sym;
e08b9ad7
JL
2258 if (linker_stub_type == HPPA_STUB_LONG_CALL
2259 || (reloc_entry->howto->type != R_HPPA_PLABEL_32
2260 && (get_opcode (insn) == BLE
2261 || get_opcode (insn) == BE
2262 || get_opcode (insn) == BL)))
4861ac76 2263 reloc_entry->howto = bfd_reloc_type_lookup (abfd, R_HPPA_STUB_CALL_17);
3a70b01d 2264
e08b9ad7
JL
2265 /* Now generate the code for the stub. Starting with two
2266 common instructions.
3a70b01d 2267
e08b9ad7
JL
2268 FIXME: Do we still need the SP adjustment?
2269 Do we still need to muck with space registers? */
2270 NEW_INSTRUCTION (stub_entry, LDSID_31_1)
2271 NEW_INSTRUCTION (stub_entry, MTSP_1_SR0)
3a70b01d 2272
e08b9ad7 2273 if (linker_stub_type == HPPA_STUB_ARG_RELOC)
3a70b01d 2274 {
e08b9ad7 2275 NEW_INSTRUCTION (stub_entry, ADDI_8_SP)
e8f2240a 2276
e08b9ad7
JL
2277 /* Examine each argument, generating code to relocate it
2278 into a different register if necessary. */
2279 for (i = ARG0; i < ARG3; i++)
2280 {
2281 switch (stub_types[i])
2282 {
4861ac76 2283
e08b9ad7
JL
2284 case NO_ARG_RELOC:
2285 continue;
2286
2287 case R_TO_FR:
2288 switch (i)
2289 {
2290 case ARG0:
2291 NEW_INSTRUCTION (stub_entry, STWS_ARG0_M8SP)
2292 NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG0)
2293 break;
2294 case ARG1:
2295 NEW_INSTRUCTION (stub_entry, STWS_ARG1_M8SP)
2296 NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG1)
2297 break;
2298 case ARG2:
2299 NEW_INSTRUCTION (stub_entry, STWS_ARG2_M8SP)
2300 NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG2)
2301 break;
2302 case ARG3:
2303 NEW_INSTRUCTION (stub_entry, STWS_ARG3_M8SP)
2304 NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG3)
2305 break;
2306 }
2307 continue;
2308
2309 case R01_TO_FR:
2310 switch (i)
2311 {
2312 case ARG0:
2313 NEW_INSTRUCTION (stub_entry, STWS_ARG0_M4SP)
2314 NEW_INSTRUCTION (stub_entry, STWS_ARG1_M8SP)
2315 NEW_INSTRUCTION (stub_entry, FLDDS_M8SP_FARG1)
2316 break;
2317 default:
2318 abort ();
2319 break;
2320 }
2321 continue;
2322
2323 case R23_TO_FR:
2324 switch (i)
2325 {
2326 case ARG2:
2327 NEW_INSTRUCTION (stub_entry, STWS_ARG2_M4SP)
2328 NEW_INSTRUCTION (stub_entry, STWS_ARG3_M8SP)
2329 NEW_INSTRUCTION (stub_entry, FLDDS_M8SP_FARG3)
2330 break;
2331 default:
2332 abort ();
2333 break;
2334 }
2335 continue;
2336
2337 case FR_TO_R:
2338 switch (i)
2339 {
2340 case ARG0:
2341 NEW_INSTRUCTION (stub_entry, FSTWS_FARG0_M8SP)
2342 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG0)
2343 break;
2344 case ARG1:
2345 NEW_INSTRUCTION (stub_entry, FSTWS_FARG1_M8SP)
2346 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG1)
2347 break;
2348 case ARG2:
2349 NEW_INSTRUCTION (stub_entry, FSTWS_FARG2_M8SP)
2350 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG2)
2351 break;
2352 case ARG3:
2353 NEW_INSTRUCTION (stub_entry, FSTWS_FARG3_M8SP)
2354 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG3)
2355 break;
2356 }
2357 continue;
2358
2359 case FR_TO_R01:
2360 switch (i)
2361 {
2362 case ARG0:
2363 NEW_INSTRUCTION (stub_entry, FSTDS_FARG1_M8SP)
2364 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG0)
2365 NEW_INSTRUCTION (stub_entry, LDWS_M8SP_ARG1)
2366 break;
2367 default:
2368 abort ();
2369 break;
2370 }
2371 continue;
2372
2373 case FR_TO_R23:
2374 switch (i)
2375 {
2376 case ARG2:
2377 NEW_INSTRUCTION (stub_entry, FSTDS_FARG3_M8SP)
2378 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG2)
2379 NEW_INSTRUCTION (stub_entry, LDWS_M8SP_ARG3)
2380 break;
2381 default:
2382 abort ();
2383 break;
2384 }
2385 continue;
2386
2387 default:
2388 abort ();
2389 break;
2390 }
2391 }
2392
2393 /* Put the stack pointer back. FIXME: Is this still necessary? */
2394 NEW_INSTRUCTION (stub_entry, ADDI_M8_SP_SP)
2395 }
2396
2397 /* Common code again. Return pointer adjustment and the like. */
2398 if (!dyncall)
4861ac76 2399 {
e08b9ad7
JL
2400 /* This isn't dyncall. */
2401 if (!milli)
2402 {
2403 /* It's not a millicode call, so get the correct return
2404 value into %r2 (aka RP). */
2405 if (rtn_adjust)
2406 NEW_INSTRUCTION (stub_entry, ADDI_M4_31_RP)
2407 else
2408 NEW_INSTRUCTION (stub_entry, COPY_31_2)
2409 }
2410 else
2411 {
2412 /* It is a millicode call, so get the correct return
2413 value into %r1?!?. FIXME: Shouldn't this be
2414 %r31? Yes, and a little re-arrangement of the
2415 code below would make that possible. */
2416 if (rtn_adjust)
2417 NEW_INSTRUCTION (stub_entry, ADDI_M4_31_1)
2418 else
2419 NEW_INSTRUCTION (stub_entry, COPY_31_1)
2420 }
4861ac76 2421 }
4991ebb9 2422 else
e08b9ad7
JL
2423 {
2424 /* This is dyncall, so the code is a little different as the
2425 return pointer is already in %r2 (aka RP). */
2426 if (rtn_adjust)
2427 NEW_INSTRUCTION (stub_entry, ADDI_M4_31_RP)
2428 }
e8f2240a 2429
4861ac76 2430 /* Save the return address. */
e08b9ad7
JL
2431 if (linker_stub_type == HPPA_STUB_ARG_RELOC)
2432 NEW_INSTRUCTION (stub_entry, STW_RP_M8SP)
e8f2240a 2433
4861ac76 2434 /* Long branch to the target function. */
e08b9ad7 2435 NEW_INSTRUCTION (stub_entry, LDIL_XXX_31)
3a70b01d 2436 hppa_elf_stub_reloc (stub_entry->stub_desc,
f3b477be 2437 abfd, orig_sym,
4861ac76 2438 CURRENT_STUB_OFFSET (stub_entry),
3a70b01d 2439 R_HPPA_L21);
e08b9ad7 2440 NEW_INSTRUCTION (stub_entry, BLE_XXX_0_31)
3a70b01d 2441 hppa_elf_stub_reloc (stub_entry->stub_desc,
f3b477be 2442 abfd, orig_sym,
4861ac76 2443 CURRENT_STUB_OFFSET (stub_entry),
3a70b01d 2444 R_HPPA_ABS_CALL_R17);
4861ac76 2445
e08b9ad7
JL
2446 if (linker_stub_type == HPPA_STUB_ARG_RELOC)
2447 {
2448 /* In delay slot of long-call, copy %r31 into %r2 so that
2449 the callee can return in the normal fashion. */
2450 NEW_INSTRUCTION (stub_entry, COPY_31_2)
2451
2452 /* Restore the return address. */
2453 NEW_INSTRUCTION (stub_entry, LDW_M8SP_RP)
3a70b01d 2454
e08b9ad7
JL
2455 /* Generate the code to move the return value around. */
2456 switch (stub_types[RETVAL])
2457 {
2458 case NO_ARG_RELOC:
2459 break;
2460
2461 case R_TO_FR:
2462 NEW_INSTRUCTION (stub_entry, STWS_RET0_M8SP)
2463 NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FRET0)
2464 break;
2465
2466 case FR_TO_R:
2467 NEW_INSTRUCTION (stub_entry, FSTWS_FRET0_M8SP)
2468 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_RET0)
2469 break;
2470
2471 default:
2472 abort ();
2473 break;
2474 }
2475
2476 /* Return back to the main code stream. */
2477 NEW_INSTRUCTION (stub_entry, BV_N_0_RP)
2478 }
2479 else
e8f2240a 2480 {
e08b9ad7 2481 if (!dyncall)
e8f2240a 2482 {
e08b9ad7
JL
2483 /* Get return address into %r31. Both variants may be necessary
2484 (I think) as we could be cascading into another stub. */
2485 if (!milli)
2486 NEW_INSTRUCTION (stub_entry, COPY_2_31)
2487 else
2488 NEW_INSTRUCTION (stub_entry, COPY_1_31)
2489 }
2490 else
2491 {
2492 /* Get the return address into %r31 too. Might be necessary
2493 (I think) as we could be cascading into another stub. */
2494 NEW_INSTRUCTION (stub_entry, COPY_2_31)
e8f2240a 2495 }
e08b9ad7
JL
2496
2497 /* No need for a return to the main stream. */
e8f2240a
KR
2498 }
2499 }
e8f2240a
KR
2500 return stub_sym;
2501}
2502
e08b9ad7
JL
2503/* Return nonzero if an argument relocation will be needed to call
2504 the function (symbol in RELOC_ENTRY) assuming the caller has
2505 argument relocation bugs CALLER_AR. */
2506
2507static int
3a70b01d 2508hppa_elf_arg_reloc_needed_p (abfd, reloc_entry, stub_types, caller_ar)
e8f2240a
KR
2509 bfd *abfd;
2510 arelent *reloc_entry;
e08b9ad7 2511 arg_reloc_type stub_types[5];
3a70b01d 2512 symext_entryS caller_ar;
e8f2240a 2513{
e08b9ad7
JL
2514 /* If the symbol is still undefined, then it's impossible to know
2515 if an argument relocation is needed. */
2516 if (reloc_entry->sym_ptr_ptr[0]
2517 && reloc_entry->sym_ptr_ptr[0]->section != &bfd_und_section)
e8f2240a 2518 {
e8f2240a
KR
2519 symext_entryS callee_ar = elf32_hppa_get_sym_extn (abfd,
2520 reloc_entry->sym_ptr_ptr[0],
2521 HPPA_SXT_ARG_RELOC);
2522
e08b9ad7
JL
2523 /* Now examine all the argument and return value location
2524 information to determine if a relocation stub will be needed. */
e8f2240a
KR
2525 if (caller_ar && callee_ar)
2526 {
e08b9ad7
JL
2527 arg_location caller_loc[5];
2528 arg_location callee_loc[5];
e8f2240a 2529
e08b9ad7
JL
2530 /* Extract the location information for the return value
2531 and argument registers separately. */
e8f2240a
KR
2532 callee_loc[RETVAL] = EXTRACT_ARBITS (callee_ar, RETVAL);
2533 caller_loc[RETVAL] = EXTRACT_ARBITS (caller_ar, RETVAL);
2534 callee_loc[ARG0] = EXTRACT_ARBITS (callee_ar, ARG0);
2535 caller_loc[ARG0] = EXTRACT_ARBITS (caller_ar, ARG0);
2536 callee_loc[ARG1] = EXTRACT_ARBITS (callee_ar, ARG1);
2537 caller_loc[ARG1] = EXTRACT_ARBITS (caller_ar, ARG1);
2538 callee_loc[ARG2] = EXTRACT_ARBITS (callee_ar, ARG2);
2539 caller_loc[ARG2] = EXTRACT_ARBITS (caller_ar, ARG2);
2540 callee_loc[ARG3] = EXTRACT_ARBITS (callee_ar, ARG3);
2541 caller_loc[ARG3] = EXTRACT_ARBITS (caller_ar, ARG3);
2542
e08b9ad7
JL
2543 /* Check some special combinations. For example, if FU
2544 appears in ARG1 or ARG3, we can move it to ARG0 or ARG2,
2545 respectively. (I guess this braindamage is correct? It'd
2546 take an hour or two of reading PA calling conventions to
2547 really know). */
e8f2240a
KR
2548
2549 if (caller_loc[ARG0] == AR_FU || caller_loc[ARG1] == AR_FU)
2550 {
d9ad93bc 2551 caller_loc[ARG0] = AR_DBL01;
e8f2240a
KR
2552 caller_loc[ARG1] = AR_NO;
2553 }
2554 if (caller_loc[ARG2] == AR_FU || caller_loc[ARG3] == AR_FU)
2555 {
d9ad93bc 2556 caller_loc[ARG2] = AR_DBL23;
e8f2240a
KR
2557 caller_loc[ARG3] = AR_NO;
2558 }
2559 if (callee_loc[ARG0] == AR_FU || callee_loc[ARG1] == AR_FU)
2560 {
d9ad93bc 2561 callee_loc[ARG0] = AR_DBL01;
e8f2240a
KR
2562 callee_loc[ARG1] = AR_NO;
2563 }
2564 if (callee_loc[ARG2] == AR_FU || callee_loc[ARG3] == AR_FU)
2565 {
d9ad93bc 2566 callee_loc[ARG2] = AR_DBL23;
e8f2240a
KR
2567 callee_loc[ARG3] = AR_NO;
2568 }
2569
e08b9ad7
JL
2570 /* Now look up potential mismatches. */
2571 stub_types[ARG0] = type_of_mismatch (caller_loc[ARG0],
2572 callee_loc[ARG0],
2573 ARGUMENTS);
2574 stub_types[ARG1] = type_of_mismatch (caller_loc[ARG1],
2575 callee_loc[ARG1],
2576 ARGUMENTS);
2577 stub_types[ARG2] = type_of_mismatch (caller_loc[ARG2],
2578 callee_loc[ARG2],
2579 ARGUMENTS);
2580 stub_types[ARG3] = type_of_mismatch (caller_loc[ARG3],
2581 callee_loc[ARG3],
2582 ARGUMENTS);
2583 stub_types[RETVAL] = type_of_mismatch (caller_loc[RETVAL],
2584 callee_loc[RETVAL],
2585 RETURN_VALUE);
2586
2587 /* If any of the arguments or return value need an argument
2588 relocation, then we will need an argument relocation stub. */
2589 if (stub_types[ARG0] != NO_ARG_RELOC
2590 || stub_types[ARG1] != NO_ARG_RELOC
2591 || stub_types[ARG2] != NO_ARG_RELOC
2592 || stub_types[ARG3] != NO_ARG_RELOC
2593 || stub_types[RETVAL] != NO_ARG_RELOC)
2594 return 1;
e8f2240a
KR
2595 }
2596 }
2597 return 0;
2598}
2599
e08b9ad7
JL
2600/* Create the linker stub section. */
2601
2602static void
2603hppa_elf_create_stub_sec (abfd, output_bfd, secptr, link_info)
d9ad93bc
KR
2604 bfd *abfd;
2605 bfd *output_bfd;
e08b9ad7 2606 asection **secptr;
4991ebb9 2607 struct bfd_link_info *link_info;
d9ad93bc 2608{
e08b9ad7
JL
2609 asection *output_text_section;
2610
2611 output_text_section = bfd_get_section_by_name (output_bfd, ".text");
2612 *secptr = bfd_make_section (abfd, ".hppa_linker_stubs");
2613 bfd_set_section_flags (abfd, *secptr,
2614 SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
2615 | SEC_RELOC | SEC_CODE | SEC_READONLY);
2616 (*secptr)->output_section = output_text_section->output_section;
2617 (*secptr)->output_offset = 0;
2618
2619 /* Set up the ELF section header for this new section. This
2620 is basically the same processing as elf_make_sections().
2621 elf_make_sections is static and therefore not accessable
2622 here. */
2623 {
2624 Elf_Internal_Shdr *this_hdr;
2625 this_hdr = &elf_section_data ((*secptr))->this_hdr;
2626
2627 /* Set the sizes of this section. The contents have already
2628 been set up ?!? */
2629 this_hdr->sh_addr = (*secptr)->vma;
2630 this_hdr->sh_size = (*secptr)->_raw_size;
2631
2632 /* Set appropriate flags for sections with relocations. */
2633 if ((*secptr)->flags & SEC_RELOC)
d9ad93bc 2634 {
e08b9ad7
JL
2635 Elf_Internal_Shdr *rela_hdr;
2636 int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
4861ac76 2637
e08b9ad7 2638 rela_hdr = &elf_section_data ((*secptr))->rel_hdr;
4861ac76 2639
e08b9ad7 2640 if (use_rela_p)
d9ad93bc 2641 {
e08b9ad7
JL
2642 rela_hdr->sh_type = SHT_RELA;
2643 rela_hdr->sh_entsize = sizeof (Elf32_External_Rela);
d9ad93bc 2644 }
e08b9ad7 2645 else
d9ad93bc 2646 {
e08b9ad7
JL
2647 rela_hdr->sh_type = SHT_REL;
2648 rela_hdr->sh_entsize = sizeof (Elf32_External_Rel);
d9ad93bc 2649 }
e08b9ad7
JL
2650 rela_hdr->sh_flags = 0;
2651 rela_hdr->sh_addr = 0;
2652 rela_hdr->sh_offset = 0;
2653 rela_hdr->sh_addralign = 0;
2654 rela_hdr->size = 0;
d9ad93bc 2655 }
4861ac76 2656
e08b9ad7
JL
2657 if ((*secptr)->flags & SEC_ALLOC)
2658 this_hdr->sh_flags |= SHF_ALLOC;
2659
2660 if (!((*secptr)->flags & SEC_READONLY))
2661 this_hdr->sh_flags |= SHF_WRITE;
2662
2663 if ((*secptr)->flags & SEC_CODE)
2664 this_hdr->sh_flags |= SHF_EXECINSTR;
4861ac76
JL
2665 }
2666
e08b9ad7 2667 bfd_set_section_alignment (abfd, *secptr, 2);
d9ad93bc
KR
2668}
2669
e08b9ad7
JL
2670/* Return nonzero if a long-call stub will be needed to call the
2671 function (symbol in RELOC_ENTRY). */
2672
2673static int
d9ad93bc
KR
2674hppa_elf_long_branch_needed_p (abfd, asec, reloc_entry, symbol, insn)
2675 bfd *abfd;
2676 asection *asec;
2677 arelent *reloc_entry;
2678 asymbol *symbol;
2679 unsigned insn;
2680{
e08b9ad7 2681 long sym_value = get_symbol_value (symbol);
d9ad93bc 2682 int fmt = reloc_entry->howto->bitsize;
e08b9ad7 2683 unsigned char op = get_opcode (insn);
d9ad93bc
KR
2684 unsigned raddr;
2685
e08b9ad7
JL
2686#define too_far(val,num_bits) \
2687 ((int)(val) > (1 << (num_bits)) - 1) || ((int)(val) < (-1 << (num_bits)))
d9ad93bc 2688
d9ad93bc
KR
2689 switch (op)
2690 {
2691 case BL:
2692 raddr =
2693 reloc_entry->address + asec->output_offset + asec->output_section->vma;
e08b9ad7
JL
2694 /* If the symbol and raddr (relocated addr?) are too far away from
2695 each other, then a long-call stub will be needed. */
2696 if (too_far (sym_value - raddr, fmt + 1))
d9ad93bc 2697 return 1;
d9ad93bc
KR
2698 break;
2699 }
2700 return 0;
2701}
2702
e08b9ad7
JL
2703/* Search the given section and determine if linker stubs will be
2704 needed for any calls within that section.
2705
2706 Return any new stub symbols created.
e8f2240a 2707
e08b9ad7
JL
2708 Used out of hppaelf.em in the linker. */
2709
e8f2240a 2710asymbol *
4861ac76 2711hppa_look_for_stubs_in_section (stub_bfd, abfd, output_bfd, asec,
6e58a4e5 2712 new_sym_cnt, link_info)
d9ad93bc 2713 bfd *stub_bfd;
e8f2240a
KR
2714 bfd *abfd;
2715 bfd *output_bfd;
2716 asection *asec;
e8f2240a 2717 int *new_sym_cnt;
4991ebb9 2718 struct bfd_link_info *link_info;
e8f2240a
KR
2719{
2720 int i;
e08b9ad7
JL
2721 arg_reloc_type stub_types[5];
2722 asymbol *new_syms = NULL;
e8f2240a
KR
2723 int new_cnt = 0;
2724 int new_max = 0;
80425e6c 2725 arelent **reloc_vector = NULL;
e8f2240a 2726
3a70b01d
KR
2727 /* Relocations are in different places depending on whether this is
2728 an output section or an input section. Also, the relocations are
e08b9ad7
JL
2729 in different forms. Sigh. Luckily, we have bfd_canonicalize_reloc()
2730 to straighten this out for us . */
e8f2240a
KR
2731 if (asec->reloc_count > 0)
2732 {
80425e6c
JK
2733 reloc_vector
2734 = (arelent **) malloc (asec->reloc_count * (sizeof (arelent *) + 1));
2735 if (reloc_vector == NULL)
2736 {
2737 bfd_set_error (bfd_error_no_memory);
2738 goto error_return;
2739 }
e8f2240a 2740
6e58a4e5
JL
2741 /* Make sure the canonical symbols are hanging around in a convient
2742 location. */
2743 if (bfd_get_outsymbols (abfd) == NULL)
2744 {
2745 size_t symsize;
2746
2747 symsize = get_symtab_upper_bound (abfd);
2748 abfd->outsymbols = (asymbol **) bfd_alloc (abfd, symsize);
2749 if (!abfd->outsymbols)
2750 {
2751 bfd_set_error (bfd_error_no_memory);
80425e6c 2752 goto error_return;
6e58a4e5
JL
2753 }
2754 abfd->symcount = bfd_canonicalize_symtab (abfd, abfd->outsymbols);
2755 }
2756
2757 /* Now get the relocations. */
2758 bfd_canonicalize_reloc (abfd, asec, reloc_vector,
2759 bfd_get_outsymbols (abfd));
e08b9ad7
JL
2760
2761 /* Examine each relocation entry in this section. */
e8f2240a
KR
2762 for (i = 0; i < asec->reloc_count; i++)
2763 {
e8f2240a
KR
2764 arelent *rle = reloc_vector[i];
2765
2766 switch (rle->howto->type)
2767 {
e08b9ad7
JL
2768 /* Any call could need argument relocation stubs, and
2769 some may need long-call stubs. */
4861ac76
JL
2770 case R_HPPA_ABS_CALL_11:
2771 case R_HPPA_ABS_CALL_14:
2772 case R_HPPA_ABS_CALL_17:
2773 case R_HPPA_ABS_CALL_L21:
2774 case R_HPPA_ABS_CALL_R11:
2775 case R_HPPA_ABS_CALL_R14:
2776 case R_HPPA_ABS_CALL_R17:
2777 case R_HPPA_ABS_CALL_LS21:
2778 case R_HPPA_ABS_CALL_RS11:
2779 case R_HPPA_ABS_CALL_RS14:
2780 case R_HPPA_ABS_CALL_RS17:
2781 case R_HPPA_ABS_CALL_LD21:
2782 case R_HPPA_ABS_CALL_RD11:
2783 case R_HPPA_ABS_CALL_RD14:
2784 case R_HPPA_ABS_CALL_RD17:
2785 case R_HPPA_ABS_CALL_LR21:
2786 case R_HPPA_ABS_CALL_RR14:
2787 case R_HPPA_ABS_CALL_RR17:
2788 case R_HPPA_PCREL_CALL_11:
2789 case R_HPPA_PCREL_CALL_14:
2790 case R_HPPA_PCREL_CALL_17:
2791 case R_HPPA_PCREL_CALL_12:
2792 case R_HPPA_PCREL_CALL_L21:
2793 case R_HPPA_PCREL_CALL_R11:
2794 case R_HPPA_PCREL_CALL_R14:
2795 case R_HPPA_PCREL_CALL_R17:
2796 case R_HPPA_PCREL_CALL_LS21:
2797 case R_HPPA_PCREL_CALL_RS11:
2798 case R_HPPA_PCREL_CALL_RS14:
2799 case R_HPPA_PCREL_CALL_RS17:
2800 case R_HPPA_PCREL_CALL_LD21:
2801 case R_HPPA_PCREL_CALL_RD11:
2802 case R_HPPA_PCREL_CALL_RD14:
2803 case R_HPPA_PCREL_CALL_RD17:
2804 case R_HPPA_PCREL_CALL_LR21:
2805 case R_HPPA_PCREL_CALL_RR14:
2806 case R_HPPA_PCREL_CALL_RR17:
3a70b01d 2807 {
4861ac76
JL
2808 symext_entryS caller_ar
2809 = (symext_entryS) HPPA_R_ARG_RELOC (rle->addend);
2810 unsigned insn[2];
2811
e08b9ad7 2812 /* We'll need this for the long-call checks. */
4861ac76
JL
2813 bfd_get_section_contents (abfd, asec, insn, rle->address,
2814 sizeof(insn));
e08b9ad7
JL
2815
2816 /* See if this call needs an argument relocation stub. */
3a70b01d
KR
2817 if (hppa_elf_arg_reloc_needed_p (abfd, rle, stub_types,
2818 caller_ar))
2819 {
4861ac76 2820 /* Generate a stub and keep track of the new symbol. */
3a70b01d 2821 asymbol *r;
d9ad93bc 2822
3a70b01d
KR
2823 if (new_cnt == new_max)
2824 {
2825 new_max += STUB_SYM_BUFFER_INC;
4861ac76
JL
2826 new_syms = (asymbol *)
2827 realloc (new_syms, new_max * sizeof (asymbol));
e08b9ad7 2828 if (new_syms == NULL)
80425e6c
JK
2829 {
2830 bfd_set_error (bfd_error_no_memory);
2831 goto error_return;
2832 }
3a70b01d 2833 }
4861ac76 2834
e08b9ad7
JL
2835 /* Build the argument relocation stub. */
2836 r = hppa_elf_build_linker_stub (stub_bfd, output_bfd,
2837 link_info, rle,
2838 stub_types, true, insn,
2839 HPPA_STUB_ARG_RELOC);
3a70b01d
KR
2840 new_syms[new_cnt++] = *r;
2841 }
d9ad93bc 2842
e08b9ad7 2843 /* See if this call needs a long-call stub. */
4861ac76
JL
2844 if (hppa_elf_long_branch_needed_p (abfd, asec, rle,
2845 rle->sym_ptr_ptr[0],
2846 insn[0]))
2847 {
2848 /* Generate a stub and keep track of the new symbol. */
2849 asymbol *r;
3a70b01d 2850
4861ac76
JL
2851 if (new_cnt == new_max)
2852 {
2853 new_max += STUB_SYM_BUFFER_INC;
2854 new_syms = (asymbol *)
2855 realloc (new_syms, (new_max * sizeof (asymbol)));
e08b9ad7 2856 if (! new_syms)
80425e6c
JK
2857 {
2858 bfd_set_error (bfd_error_no_memory);
2859 goto error_return;
2860 }
4861ac76 2861 }
e08b9ad7
JL
2862
2863 /* Build the long-call stub. */
2864 r = hppa_elf_build_linker_stub (stub_bfd, output_bfd,
2865 link_info, rle,
2866 NULL, true, insn,
2867 HPPA_STUB_LONG_CALL);
4861ac76
JL
2868 new_syms[new_cnt++] = *r;
2869 }
3a70b01d
KR
2870 }
2871 break;
2872
e08b9ad7 2873 /* PLABELs may need argument relocation stubs. */
4861ac76
JL
2874 case R_HPPA_PLABEL_32:
2875 case R_HPPA_PLABEL_11:
2876 case R_HPPA_PLABEL_14:
2877 case R_HPPA_PLABEL_L21:
2878 case R_HPPA_PLABEL_R11:
2879 case R_HPPA_PLABEL_R14:
d9ad93bc 2880 {
3a70b01d 2881 /* On a plabel relocation, assume the arguments of the
e08b9ad7
JL
2882 caller are set up in general registers (indirect
2883 calls only use general registers.
2884 NOTE: 0x155 = ARGW0=GR,ARGW1=GR,ARGW2=GR,RETVAL=GR. */
3a70b01d 2885 symext_entryS caller_ar = (symext_entryS) 0x155;
4861ac76
JL
2886 unsigned insn[2];
2887
e08b9ad7 2888 /* Do we really need this? */
4861ac76
JL
2889 bfd_get_section_contents (abfd, asec, insn, rle->address,
2890 sizeof(insn));
d9ad93bc 2891
e08b9ad7 2892 /* See if this call needs an argument relocation stub. */
3a70b01d
KR
2893 if (hppa_elf_arg_reloc_needed_p (abfd, rle, stub_types,
2894 caller_ar))
d9ad93bc 2895 {
4861ac76
JL
2896 /* Generate a plabel stub and keep track of the
2897 new symbol. */
d9ad93bc 2898 asymbol *r;
4861ac76 2899 int rtn_adjust;
d9ad93bc
KR
2900
2901 if (new_cnt == new_max)
2902 {
2903 new_max += STUB_SYM_BUFFER_INC;
4861ac76
JL
2904 new_syms = (asymbol *) realloc (new_syms, new_max
2905 * sizeof (asymbol));
d9ad93bc 2906 }
4861ac76
JL
2907
2908 /* Determine whether a return adjustment
2909 (see the relocation code for relocation type
2910 R_HPPA_STUB_CALL_17) is possible. Basically,
2911 determine whether we are looking at a branch or not. */
4861ac76
JL
2912 if (rle->howto->type == R_HPPA_PLABEL_32)
2913 rtn_adjust = false;
2914 else
2915 {
2916 switch (get_opcode(insn[0]))
2917 {
2918 case BLE:
2919 case BE:
2920 rtn_adjust = true;
2921 break;
2922 default:
2923 rtn_adjust = false;
2924 }
2925 }
e08b9ad7
JL
2926
2927 /* Build the argument relocation stub. */
2928 r = hppa_elf_build_linker_stub (stub_bfd, output_bfd,
2929 link_info, rle, stub_types,
2930 rtn_adjust, insn,
2931 HPPA_STUB_ARG_RELOC);
d9ad93bc
KR
2932 new_syms[new_cnt++] = *r;
2933 }
2934 }
e8f2240a 2935 break;
4c85cbfa 2936
e8f2240a
KR
2937 default:
2938 break;
e8f2240a
KR
2939 }
2940 }
2941 }
e08b9ad7 2942
80425e6c
JK
2943 if (reloc_vector != NULL)
2944 free (reloc_vector);
e08b9ad7 2945 /* Return the new symbols and update the counters. */
e8f2240a
KR
2946 *new_sym_cnt = new_cnt;
2947 return new_syms;
80425e6c
JK
2948
2949 error_return:
2950 if (reloc_vector != NULL)
2951 free (reloc_vector);
2952 /* FIXME: This is bogus. We should be returning NULL. But do the callers
2953 check for that? */
2954 abort ();
4c85cbfa
KR
2955}
2956
e08b9ad7 2957/* Set the contents of a particular section at a particular location. */
d9ad93bc 2958
e08b9ad7 2959static boolean
f4bd7a8f
DM
2960hppa_elf_set_section_contents (abfd, section, location, offset, count)
2961 bfd *abfd;
2962 sec_ptr section;
2963 PTR location;
2964 file_ptr offset;
2965 bfd_size_type count;
4c85cbfa 2966{
e08b9ad7
JL
2967 /* Linker stubs are handled a little differently. */
2968 if (! strcmp (section->name, ".hppa_linker_stubs"))
d9ad93bc 2969 {
f5bfdacd 2970 if (linker_stubs_max_size < offset + count)
d9ad93bc
KR
2971 {
2972 linker_stubs_max_size = offset + count + STUB_ALLOC_INCR;
e08b9ad7
JL
2973 linker_stubs = (char *)realloc (linker_stubs, linker_stubs_max_size);
2974 if (! linker_stubs)
2975 abort ();
d9ad93bc
KR
2976 }
2977
f5bfdacd 2978 if (offset + count > linker_stubs_size)
d9ad93bc
KR
2979 linker_stubs_size = offset + count;
2980
e08b9ad7
JL
2981 /* Set the contents. */
2982 memcpy(linker_stubs + offset, location, count);
d9ad93bc
KR
2983 return (true);
2984 }
2985 else
e08b9ad7
JL
2986 /* For everything but the linker stub section, use the generic
2987 code. */
d9ad93bc
KR
2988 return bfd_elf32_set_section_contents (abfd, section, location,
2989 offset, count);
e8f2240a 2990}
4c85cbfa 2991
7218bb04
KR
2992/* Get the contents of the given section.
2993
2994 This is special for PA ELF because some sections (such as linker stubs)
2995 may reside in memory rather than on disk, or in the case of the symbol
2996 extension section, the contents may need to be generated from other
2997 information contained in the BFD. */
2998
e8f2240a 2999boolean
7218bb04
KR
3000hppa_elf_get_section_contents (abfd, section, location, offset, count)
3001 bfd *abfd;
3002 sec_ptr section;
3003 PTR location;
3004 file_ptr offset;
3005 bfd_size_type count;
e8f2240a 3006{
7218bb04
KR
3007 /* If this is the linker stub section, then its contents are contained
3008 in memory rather than on disk. FIXME. Is that always right? What
3009 about the case where a final executable is read in and a user tries
3010 to get the contents of this section? In that case the contents would
3011 be on disk like everything else. */
e8f2240a
KR
3012 if (strcmp (section->name, ".hppa_linker_stubs") == 0)
3013 {
3a70b01d 3014 elf32_hppa_stub_description *stub_desc = find_stubs (abfd, section);
7218bb04 3015
e8f2240a
KR
3016 if (count == 0)
3017 return true;
7218bb04
KR
3018
3019 /* Sanity check our arguments. */
3020 if ((bfd_size_type) (offset + count) > section->_raw_size
3021 || (bfd_size_type) (offset + count) > stub_desc->real_size)
3022 return (false);
3023
e8f2240a
KR
3024 memcpy (location, stub_desc->stub_contents + offset, count);
3025 return (true);
3026 }
7218bb04
KR
3027
3028 /* The symbol extension section also needs special handling. Its
3029 contents might be on the disk, in memory, or still need to
3030 be generated. */
e8f2240a
KR
3031 else if (strcmp (section->name, ".hppa_symextn") == 0)
3032 {
4861ac76 3033 /* If there are no output sections, then read the contents of the
a5ccdad1
ILT
3034 symbol extension section from disk. */
3035 if (section->output_section == NULL
3036 && abfd->direction == read_direction)
7218bb04
KR
3037 {
3038 return bfd_generic_get_section_contents (abfd, section, location,
3039 offset, count);
3040 }
3041
3042 /* If this is the first time through, and there are output sections,
3043 then build the symbol extension section based on other information
3044 contained in the BFD. */
3045 else if (! symext_chain_built)
3046 {
3047 int i;
a5ccdad1 3048 int *symtab_map =
e08b9ad7 3049 (int *) elf_sym_extra (section->output_section->owner);
7218bb04 3050
f5bfdacd 3051 for (i = 0; i < section->output_section->owner->symcount; i++)
7218bb04 3052 {
e08b9ad7
JL
3053 elf_hppa_tc_symbol (section->output_section->owner,
3054 ((elf_symbol_type *)
3055 section->output_section->owner->outsymbols[i]),
3056 symtab_map[i], &symext_rootP, &symext_lastP);
7218bb04
KR
3057 }
3058 symext_chain_built++;
f5bfdacd
JL
3059 elf_hppa_tc_make_sections (section->output_section->owner,
3060 symext_rootP);
7218bb04 3061 }
a5ccdad1
ILT
3062
3063 /* At this point we know that the symbol extension section has been
3064 built. We just need to copy it into the user's buffer. */
e8f2240a
KR
3065 if (count == 0)
3066 return true;
7218bb04
KR
3067
3068 /* Sanity check our arguments. */
3069 if ((bfd_size_type) (offset + count) > section->_raw_size
3070 || (bfd_size_type) (offset + count) > symextn_contents_real_size)
3071 return (false);
3072
3073 memcpy (location,
e08b9ad7 3074 (char *)symextn_contents + section->output_offset + offset,
7218bb04 3075 count);
e8f2240a
KR
3076 return (true);
3077 }
3078 else
e08b9ad7
JL
3079 /* It's not the symbol extension or linker stub sections, use
3080 the generic routines. */
7218bb04
KR
3081 return bfd_generic_get_section_contents (abfd, section, location,
3082 offset, count);
4c85cbfa
KR
3083}
3084
e08b9ad7
JL
3085/* Translate from an elf into field into a howto relocation pointer. */
3086
8ddd7ab3 3087static void
f4bd7a8f
DM
3088elf_info_to_howto (abfd, cache_ptr, dst)
3089 bfd *abfd;
3090 arelent *cache_ptr;
3091 Elf32_Internal_Rela *dst;
4c85cbfa 3092{
d9ad93bc 3093 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_HPPA_UNIMPLEMENTED);
e08b9ad7 3094 cache_ptr->howto = &elf_hppa_howto_table[ELF32_R_TYPE (dst->r_info)];
d9ad93bc
KR
3095}
3096
e08b9ad7
JL
3097/* Do PA ELF specific processing for symbols. Needed to find the
3098 value of $global$. */
3099
d9ad93bc 3100static void
f4bd7a8f
DM
3101elf32_hppa_backend_symbol_processing (abfd, sym)
3102 bfd *abfd;
3103 asymbol *sym;
d9ad93bc
KR
3104{
3105 /* Is this a definition of $global$? If so, keep it because it will be
3106 needed if any relocations are performed. */
d9ad93bc
KR
3107 if (!strcmp (sym->name, "$global$")
3108 && sym->section != &bfd_und_section)
3109 {
3110 global_symbol = sym;
3111 }
3112}
3113
e08b9ad7
JL
3114/* Do some PA ELF specific work after reading in the symbol table.
3115 In particular attach the argument relocation from the
3116 symbol extension section to the appropriate symbols. */
d9ad93bc 3117static boolean
f4bd7a8f
DM
3118elf32_hppa_backend_symbol_table_processing (abfd, esyms,symcnt)
3119 bfd *abfd;
3120 elf_symbol_type *esyms;
3121 int symcnt;
d9ad93bc 3122{
e08b9ad7
JL
3123 Elf32_Internal_Shdr *symextn_hdr =
3124 bfd_elf_find_section (abfd, SYMEXTN_SECTION_NAME);
3125 int i, current_sym_idx = 0;
d9ad93bc 3126
e08b9ad7
JL
3127 /* If no symbol extension existed, then all symbol extension information
3128 is assumed to be zero. */
f5bfdacd 3129 if (symextn_hdr == NULL)
d9ad93bc 3130 {
f5bfdacd 3131 for (i = 0; i < symcnt; i++)
e08b9ad7 3132 esyms[i].tc_data.hppa_arg_reloc = 0;
d9ad93bc
KR
3133 return (true);
3134 }
3135
e08b9ad7 3136 /* Allocate a buffer of the appropriate size for the symextn section. */
d9ad93bc 3137 symextn_hdr->contents = bfd_zalloc(abfd,symextn_hdr->sh_size);
9783e04a
DM
3138 if (!symextn_hdr->contents)
3139 {
f5bfdacd 3140 bfd_set_error (bfd_error_no_memory);
9783e04a
DM
3141 return false;
3142 }
d9ad93bc
KR
3143 symextn_hdr->size = symextn_hdr->sh_size;
3144
e08b9ad7 3145 /* Read in the symextn section. */
d9ad93bc 3146 if (bfd_seek (abfd, symextn_hdr->sh_offset, SEEK_SET) == -1)
25057836 3147 return false;
d9ad93bc
KR
3148 if (bfd_read ((PTR) symextn_hdr->contents, 1, symextn_hdr->size, abfd)
3149 != symextn_hdr->size)
25057836 3150 return false;
d9ad93bc 3151
e08b9ad7
JL
3152 /* Parse entries in the symbol extension section, updating the symtab
3153 entries as we go */
f5bfdacd 3154 for (i = 0; i < symextn_hdr->size / sizeof(symext_entryS); i++)
d9ad93bc
KR
3155 {
3156 symext_entryS *seP = ((symext_entryS *)symextn_hdr->contents) + i;
e08b9ad7
JL
3157 int se_value = ELF32_HPPA_SX_VAL (*seP);
3158 int se_type = ELF32_HPPA_SX_TYPE (*seP);
d9ad93bc 3159
f5bfdacd 3160 switch (se_type)
d9ad93bc
KR
3161 {
3162 case HPPA_SXT_NULL:
3163 break;
3164
3165 case HPPA_SXT_SYMNDX:
f5bfdacd 3166 if (se_value >= symcnt)
d9ad93bc 3167 {
f5bfdacd 3168 bfd_set_error (bfd_error_bad_value);
d9ad93bc
KR
3169 return (false);
3170 }
3171 current_sym_idx = se_value - 1;
3172 break;
3173
3174 case HPPA_SXT_ARG_RELOC:
3175 esyms[current_sym_idx].tc_data.hppa_arg_reloc = se_value;
3176 break;
3177
3178 default:
f5bfdacd 3179 bfd_set_error (bfd_error_bad_value);
d9ad93bc
KR
3180 return (false);
3181 }
3182 }
3183 return (true);
3184}
3185
e08b9ad7
JL
3186/* Perform on PA ELF specific processing once a section has been
3187 read in. In particular keep the symbol indexes correct for
3188 the symbol extension information. */
d9ad93bc
KR
3189
3190static boolean
f4bd7a8f
DM
3191elf32_hppa_backend_section_processing (abfd, secthdr)
3192 bfd *abfd;
3193 Elf32_Internal_Shdr *secthdr;
d9ad93bc 3194{
e08b9ad7 3195 int i, j, k;
d9ad93bc 3196
f5bfdacd 3197 if (secthdr->sh_type == SHT_HPPA_SYMEXTN)
d9ad93bc 3198 {
e08b9ad7 3199 for (i = 0; i < secthdr->size / sizeof (symext_entryS); i++)
d9ad93bc
KR
3200 {
3201 symext_entryS *seP = ((symext_entryS *)secthdr->contents) + i;
e08b9ad7
JL
3202 int se_value = ELF32_HPPA_SX_VAL (*seP);
3203 int se_type = ELF32_HPPA_SX_TYPE (*seP);
d9ad93bc 3204
f5bfdacd 3205 switch (se_type)
d9ad93bc
KR
3206 {
3207 case HPPA_SXT_NULL:
3208 break;
3209
3210 case HPPA_SXT_SYMNDX:
f5bfdacd 3211 for (j = 0; j < abfd->symcount; j++)
d9ad93bc 3212 {
e08b9ad7
JL
3213 /* Locate the map entry for this symbol and modify the
3214 symbol extension section symbol index entry to reflect
3215 the new symbol table index. */
f5bfdacd 3216 for (k = 0; k < elf32_hppa_symextn_map_size; k++)
d9ad93bc 3217 {
f5bfdacd 3218 if (elf32_hppa_symextn_map[k].old_index == se_value
e08b9ad7
JL
3219 && elf32_hppa_symextn_map[k].bfd
3220 == abfd->outsymbols[j]->the_bfd
3221 && elf32_hppa_symextn_map[k].sym
3222 == abfd->outsymbols[j])
d9ad93bc
KR
3223 {
3224 bfd_put_32(abfd,
3225 ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, j),
3226 (char *)seP);
3227 }
3228 }
3229 }
3230 break;
3231
3232 case HPPA_SXT_ARG_RELOC:
3233 break;
3234
3235 default:
f5bfdacd 3236 bfd_set_error (bfd_error_bad_value);
d9ad93bc
KR
3237 return (false);
3238 }
3239 }
3240 }
3241 return true;
3242}
3243
e08b9ad7
JL
3244/* What does this really do? Just determine if there is an appropriate
3245 mapping from ELF section headers to backend sections? More symbol
3246 extension braindamage. */
d9ad93bc
KR
3247
3248static boolean
f4bd7a8f
DM
3249elf32_hppa_backend_section_from_shdr (abfd, hdr, name)
3250 bfd *abfd;
3251 Elf32_Internal_Shdr *hdr;
3252 char *name;
d9ad93bc
KR
3253{
3254 asection *newsect;
3255
f5bfdacd 3256 if (hdr->sh_type == SHT_HPPA_SYMEXTN)
d9ad93bc 3257 {
e08b9ad7 3258 BFD_ASSERT (strcmp (name, ".hppa_symextn") == 0);
d9ad93bc 3259
e08b9ad7 3260 /* Bits that get saved. This one is real. */
d9ad93bc
KR
3261 if (!hdr->rawdata)
3262 {
3263 newsect = bfd_make_section (abfd, name);
3264 if (newsect != NULL)
3265 {
3266 newsect->vma = hdr->sh_addr;
3267 newsect->_raw_size = hdr->sh_size;
e08b9ad7 3268 newsect->filepos = hdr->sh_offset;
d9ad93bc
KR
3269 newsect->flags |= SEC_HAS_CONTENTS;
3270 newsect->alignment_power = hdr->sh_addralign;
3271
3272 if (hdr->sh_flags & SHF_ALLOC)
3273 {
3274 newsect->flags |= SEC_ALLOC;
3275 newsect->flags |= SEC_LOAD;
3276 }
3277
3278 if (!(hdr->sh_flags & SHF_WRITE))
3279 newsect->flags |= SEC_READONLY;
3280
3281 if (hdr->sh_flags & SHF_EXECINSTR)
e08b9ad7 3282 newsect->flags |= SEC_CODE;
d9ad93bc
KR
3283 else
3284 newsect->flags |= SEC_DATA;
3285
3286 hdr->rawdata = (void *) newsect;
3287 }
3288 }
3289 return true;
3290 }
3291 return false;
3292}
3293
e08b9ad7 3294/* Return true if the given section is a fake section. */
d9ad93bc
KR
3295
3296static boolean
f4bd7a8f
DM
3297elf32_hppa_backend_fake_sections (abfd, secthdr, asect)
3298 bfd *abfd;
3299 Elf_Internal_Shdr *secthdr;
3300 asection *asect;
d9ad93bc
KR
3301{
3302
f5bfdacd 3303 if (strcmp(asect->name, ".hppa_symextn") == 0)
d9ad93bc
KR
3304 {
3305 secthdr->sh_type = SHT_HPPA_SYMEXTN;
3306 secthdr->sh_flags = 0;
3307 secthdr->sh_info = elf_section_data(asect)->rel_hdr.sh_link;
3308 secthdr->sh_link = elf_onesymtab(abfd);
3309 return true;
3310 }
3311
3312 if (!strcmp (asect->name, ".hppa_unwind"))
3313 {
3314 secthdr->sh_type = SHT_PROGBITS;
3315 /* Unwind descriptors are not part of the program memory image. */
3316 secthdr->sh_flags = 0;
3317 secthdr->sh_info = 0;
3318 secthdr->sh_link = 0;
3319 secthdr->sh_entsize = 16;
3320 return true;
3321 }
3322
7218bb04
KR
3323 /* @@ Should this be CPU specific?? KR */
3324 if (!strcmp (asect->name, ".stabstr"))
3325 {
3326 secthdr->sh_type = SHT_STRTAB;
3327 secthdr->sh_flags = 0;
3328 secthdr->sh_info = 0;
3329 secthdr->sh_link = 0;
3330 secthdr->sh_entsize = 0;
3331 return true;
3332 }
3333
d9ad93bc
KR
3334 return false;
3335}
3336
e08b9ad7
JL
3337/* Return true if there is a mapping from bfd section into a
3338 backend section. */
d9ad93bc
KR
3339
3340static boolean
e08b9ad7 3341elf32_hppa_backend_section_from_bfd_section (abfd, hdr, asect, ignored)
f4bd7a8f
DM
3342 bfd *abfd;
3343 Elf32_Internal_Shdr *hdr;
3344 asection *asect;
e08b9ad7 3345 int *ignored;
d9ad93bc 3346{
f5bfdacd 3347 if (hdr->sh_type == SHT_HPPA_SYMEXTN)
d9ad93bc
KR
3348 {
3349 if (hdr->rawdata)
3350 {
3351 if (((struct sec *) (hdr->rawdata)) == asect)
3352 {
e08b9ad7 3353 BFD_ASSERT (strcmp (asect->name, ".hppa_symextn") == 0);
d9ad93bc
KR
3354 return true;
3355 }
3356 }
3357 }
f5bfdacd 3358 else if (hdr->sh_type == SHT_STRTAB)
7218bb04
KR
3359 {
3360 if (hdr->rawdata)
3361 {
3362 if (((struct sec *) (hdr->rawdata)) == asect)
3363 {
f5bfdacd 3364 BFD_ASSERT (strcmp (asect->name, ".stabstr") == 0);
7218bb04
KR
3365 return true;
3366 }
3367 }
3368 }
d9ad93bc
KR
3369
3370 return false;
8ddd7ab3 3371}
4c85cbfa 3372
f5bfdacd 3373#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
d9ad93bc
KR
3374#define elf_backend_section_from_bfd_section elf32_hppa_backend_section_from_bfd_section
3375
e08b9ad7
JL
3376#define elf_backend_symbol_processing elf32_hppa_backend_symbol_processing
3377#define elf_backend_symbol_table_processing elf32_hppa_backend_symbol_table_processing
3378
d9ad93bc
KR
3379#define bfd_generic_get_section_contents hppa_elf_get_section_contents
3380#define bfd_elf32_set_section_contents hppa_elf_set_section_contents
25057836 3381#define bfd_elf32_bfd_is_local_label hppa_elf_is_local_label
d9ad93bc 3382
e08b9ad7
JL
3383#define elf_backend_section_processing elf32_hppa_backend_section_processing
3384
3385#define elf_backend_section_from_shdr elf32_hppa_backend_section_from_shdr
3386#define elf_backend_fake_sections elf32_hppa_backend_fake_sections
3387
e8f2240a 3388#define TARGET_BIG_SYM bfd_elf32_hppa_vec
8ddd7ab3
KR
3389#define TARGET_BIG_NAME "elf32-hppa"
3390#define ELF_ARCH bfd_arch_hppa
a5ccdad1 3391#define ELF_MACHINE_CODE EM_HPPA
3a70b01d 3392#define ELF_MAXPAGESIZE 0x1000
8ddd7ab3
KR
3393
3394#include "elf32-target.h"
This page took 0.329662 seconds and 4 git commands to generate.