*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
CommitLineData
252b5132 1/* BFD back-end for HP PA-RISC ELF files.
e5094212 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
acc990f2 3 2002, 2003 Free Software Foundation, Inc.
252b5132 4
30667bf3 5 Original code by
252b5132
RH
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
30667bf3 9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
252b5132 10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
252b5132 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
252b5132 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
252b5132 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
252b5132
RH
26
27#include "bfd.h"
28#include "sysdep.h"
252b5132
RH
29#include "libbfd.h"
30#include "elf-bfd.h"
9e103c9c
JL
31#include "elf/hppa.h"
32#include "libhppa.h"
33#include "elf32-hppa.h"
34#define ARCH_SIZE 32
edd21aca 35#include "elf32-hppa.h"
189c6563 36#include "elf-hppa.h"
9e103c9c 37
74d1c347
AM
38/* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
edd21aca 49/* We use two hash tables to hold information for linking PA ELF objects.
252b5132
RH
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
30667bf3
AM
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
3ee1d854
AM
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
30667bf3
AM
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
3ee1d854
AM
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
46fe4e66 74 : bv %r0(%r21)
3ee1d854 75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
3ee1d854
AM
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
46fe4e66 81 : bv %r0(%r21)
3ee1d854 82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
3ee1d854
AM
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
3ee1d854
AM
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
30667bf3
AM
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
ae9a127f 114 : be,n 0(%sr0,%rp) ; inter-space return. */
30667bf3
AM
115
116#define PLT_ENTRY_SIZE 8
117#define GOT_ENTRY_SIZE 4
118#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
47d89dba
AM
120static const bfd_byte plt_stub[] =
121{
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125#define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130};
131
30667bf3
AM
132/* Section name for stubs is the associated section name plus this
133 string. */
134#define STUB_SUFFIX ".stub"
135
98ceb8ce
AM
136/* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139#ifndef RELATIVE_DYNRELOCS
140#define RELATIVE_DYNRELOCS 0
446f2863 141#define IS_ABSOLUTE_RELOC(r_type) 1
30667bf3
AM
142#endif
143
4fc8051d
AM
144/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
147 shared lib. */
148#define ELIMINATE_COPY_RELOCS 1
149
30667bf3
AM
150enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
153 hppa_stub_import,
154 hppa_stub_import_shared,
155 hppa_stub_export,
156 hppa_stub_none
157};
158
30667bf3 159struct elf32_hppa_stub_hash_entry {
252b5132 160
edd21aca 161 /* Base hash table entry structure. */
252b5132
RH
162 struct bfd_hash_entry root;
163
edd21aca
AM
164 /* The stub section. */
165 asection *stub_sec;
166
167 /* Offset within stub_sec of the beginning of this stub. */
30667bf3 168 bfd_vma stub_offset;
252b5132
RH
169
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
30667bf3 172 bfd_vma target_value;
252b5132 173 asection *target_section;
30667bf3
AM
174
175 enum elf32_hppa_stub_type stub_type;
176
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
179
25f72752
AM
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
182 asection *id_sec;
252b5132
RH
183};
184
30667bf3
AM
185struct elf32_hppa_link_hash_entry {
186
187 struct elf_link_hash_entry elf;
188
189 /* A pointer to the most recently used stub hash entry against this
190 symbol. */
191 struct elf32_hppa_stub_hash_entry *stub_cache;
192
30667bf3
AM
193 /* Used to count relocations for delayed sizing of relocation
194 sections. */
195 struct elf32_hppa_dyn_reloc_entry {
196
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
199
98ceb8ce
AM
200 /* The input section of the reloc. */
201 asection *sec;
30667bf3
AM
202
203 /* Number of relocs copied in this section. */
204 bfd_size_type count;
98ceb8ce
AM
205
206#if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
209#endif
210 } *dyn_relocs;
30667bf3 211
74d1c347
AM
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
30667bf3
AM
214};
215
30667bf3
AM
216struct elf32_hppa_link_hash_table {
217
252b5132 218 /* The main hash table. */
ebe50bae 219 struct elf_link_hash_table elf;
252b5132
RH
220
221 /* The stub hash table. */
edd21aca 222 struct bfd_hash_table stub_hash_table;
252b5132 223
30667bf3
AM
224 /* Linker stub bfd. */
225 bfd *stub_bfd;
226
30667bf3 227 /* Linker call-backs. */
c39a58e6
AM
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
30667bf3 230
25f72752
AM
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
233 struct map_stub {
234 /* This is the section to which stubs in the group will be
235 attached. */
236 asection *link_sec;
237 /* The stub section. */
238 asection *stub_sec;
25f72752 239 } *stub_group;
30667bf3 240
b4655ea9
AM
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
243 int top_index;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
246
30667bf3
AM
247 /* Short-cuts to get to dynamic linker sections. */
248 asection *sgot;
249 asection *srelgot;
250 asection *splt;
251 asection *srelplt;
252 asection *sdynbss;
253 asection *srelbss;
47d89dba 254
c46b7515
AM
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
259
47d89dba
AM
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
262
067fa4a6 263 /* Flags set when various size branches are detected. Used to
47d89dba
AM
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
067fa4a6 267 unsigned int has_22bit_branch:1;
47d89dba
AM
268
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
ec338859
AM
271
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
252b5132
RH
274};
275
30667bf3
AM
276/* Various hash macros and functions. */
277#define hppa_link_hash_table(p) \
edd21aca 278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
252b5132 279
30667bf3
AM
280#define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
283
252b5132
RH
284/* Assorted hash table functions. */
285
286/* Initialize an entry in the stub hash table. */
287
288static struct bfd_hash_entry *
c39a58e6
AM
289stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
291 const char *string)
252b5132 292{
252b5132
RH
293 /* Allocate the structure if it has not already been allocated by a
294 subclass. */
ebe50bae 295 if (entry == NULL)
30667bf3 296 {
ebe50bae
AM
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
299 if (entry == NULL)
300 return entry;
30667bf3 301 }
252b5132
RH
302
303 /* Call the allocation method of the superclass. */
ebe50bae
AM
304 entry = bfd_hash_newfunc (entry, table, string);
305 if (entry != NULL)
252b5132 306 {
ebe50bae
AM
307 struct elf32_hppa_stub_hash_entry *eh;
308
252b5132 309 /* Initialize the local fields. */
ebe50bae
AM
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
311 eh->stub_sec = NULL;
312 eh->stub_offset = 0;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
316 eh->h = NULL;
317 eh->id_sec = NULL;
30667bf3
AM
318 }
319
ebe50bae 320 return entry;
30667bf3
AM
321}
322
30667bf3
AM
323/* Initialize an entry in the link hash table. */
324
325static struct bfd_hash_entry *
c39a58e6
AM
326hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
30667bf3 329{
30667bf3
AM
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
ebe50bae 332 if (entry == NULL)
30667bf3 333 {
ebe50bae
AM
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
336 if (entry == NULL)
337 return entry;
30667bf3
AM
338 }
339
340 /* Call the allocation method of the superclass. */
ebe50bae
AM
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342 if (entry != NULL)
30667bf3 343 {
ebe50bae
AM
344 struct elf32_hppa_link_hash_entry *eh;
345
30667bf3 346 /* Initialize the local fields. */
ebe50bae
AM
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
ebe50bae 350 eh->plabel = 0;
252b5132
RH
351 }
352
ebe50bae 353 return entry;
252b5132
RH
354}
355
252b5132
RH
356/* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
359
360static struct bfd_link_hash_table *
c39a58e6 361elf32_hppa_link_hash_table_create (bfd *abfd)
252b5132
RH
362{
363 struct elf32_hppa_link_hash_table *ret;
dc810e39 364 bfd_size_type amt = sizeof (*ret);
252b5132 365
c39a58e6 366 ret = bfd_malloc (amt);
252b5132
RH
367 if (ret == NULL)
368 return NULL;
edd21aca 369
ebe50bae 370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
252b5132 371 {
e2d34d7d 372 free (ret);
252b5132
RH
373 return NULL;
374 }
edd21aca
AM
375
376 /* Init the stub hash table too. */
30667bf3 377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
edd21aca
AM
378 return NULL;
379
30667bf3 380 ret->stub_bfd = NULL;
30667bf3
AM
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
25f72752 383 ret->stub_group = NULL;
30667bf3
AM
384 ret->sgot = NULL;
385 ret->srelgot = NULL;
386 ret->splt = NULL;
387 ret->srelplt = NULL;
388 ret->sdynbss = NULL;
389 ret->srelbss = NULL;
c46b7515
AM
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
47d89dba
AM
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
067fa4a6 395 ret->has_22bit_branch = 0;
47d89dba 396 ret->need_plt_stub = 0;
ec338859 397 ret->sym_sec.abfd = NULL;
252b5132 398
ebe50bae 399 return &ret->elf.root;
252b5132
RH
400}
401
e2d34d7d
DJ
402/* Free the derived linker hash table. */
403
404static void
c39a58e6 405elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
e2d34d7d
DJ
406{
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
409
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
412}
413
30667bf3
AM
414/* Build a name for an entry in the stub hash table. */
415
edd21aca 416static char *
c39a58e6
AM
417hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
edd21aca
AM
421{
422 char *stub_name;
dc810e39 423 bfd_size_type len;
edd21aca 424
30667bf3
AM
425 if (hash)
426 {
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
430 {
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
435 }
436 }
437 else
edd21aca 438 {
30667bf3
AM
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
442 {
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
448 }
edd21aca
AM
449 }
450 return stub_name;
451}
252b5132 452
30667bf3
AM
453/* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
455
456static struct elf32_hppa_stub_hash_entry *
c39a58e6
AM
457hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
252b5132 462{
30667bf3 463 struct elf32_hppa_stub_hash_entry *stub_entry;
25f72752
AM
464 const asection *id_sec;
465
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
83c81bfe 471 id_sec = htab->stub_group[input_section->id].link_sec;
edd21aca 472
30667bf3
AM
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
25f72752 475 && hash->stub_cache->id_sec == id_sec)
edd21aca 476 {
30667bf3
AM
477 stub_entry = hash->stub_cache;
478 }
479 else
480 {
30667bf3 481 char *stub_name;
edd21aca 482
25f72752 483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
30667bf3
AM
484 if (stub_name == NULL)
485 return NULL;
edd21aca 486
83c81bfe 487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
b34976b6 488 stub_name, FALSE, FALSE);
f09ebc7d
AM
489 if (hash != NULL)
490 hash->stub_cache = stub_entry;
30667bf3
AM
491
492 free (stub_name);
edd21aca 493 }
30667bf3
AM
494
495 return stub_entry;
496}
497
30667bf3
AM
498/* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
500
501static struct elf32_hppa_stub_hash_entry *
c39a58e6
AM
502hppa_add_stub (const char *stub_name,
503 asection *section,
504 struct elf32_hppa_link_hash_table *htab)
30667bf3 505{
25f72752 506 asection *link_sec;
30667bf3 507 asection *stub_sec;
30667bf3 508 struct elf32_hppa_stub_hash_entry *stub_entry;
edd21aca 509
83c81bfe
AM
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
30667bf3 512 if (stub_sec == NULL)
edd21aca 513 {
83c81bfe 514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
30667bf3
AM
515 if (stub_sec == NULL)
516 {
d4c88bbb 517 size_t namelen;
dc810e39 518 bfd_size_type len;
30667bf3
AM
519 char *s_name;
520
d4c88bbb
AM
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
83c81bfe 523 s_name = bfd_alloc (htab->stub_bfd, len);
30667bf3
AM
524 if (s_name == NULL)
525 return NULL;
526
d4c88bbb
AM
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
83c81bfe 529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
30667bf3
AM
530 if (stub_sec == NULL)
531 return NULL;
83c81bfe 532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
30667bf3 533 }
83c81bfe 534 htab->stub_group[section->id].stub_sec = stub_sec;
edd21aca 535 }
252b5132 536
30667bf3 537 /* Enter this entry into the linker stub hash table. */
83c81bfe 538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
b34976b6 539 TRUE, FALSE);
30667bf3
AM
540 if (stub_entry == NULL)
541 {
542 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
8f615d07 543 bfd_archive_filename (section->owner),
30667bf3
AM
544 stub_name);
545 return NULL;
edd21aca
AM
546 }
547
30667bf3 548 stub_entry->stub_sec = stub_sec;
30667bf3 549 stub_entry->stub_offset = 0;
25f72752 550 stub_entry->id_sec = link_sec;
30667bf3 551 return stub_entry;
edd21aca
AM
552}
553
30667bf3
AM
554/* Determine the type of stub needed, if any, for a call. */
555
556static enum elf32_hppa_stub_type
c39a58e6
AM
557hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
a252afa4
DA
560 bfd_vma destination,
561 struct bfd_link_info *info)
edd21aca 562{
edd21aca 563 bfd_vma location;
30667bf3
AM
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
566 unsigned int r_type;
567
568 if (hash != NULL
067fa4a6 569 && hash->elf.plt.offset != (bfd_vma) -1
a252afa4
DA
570 && hash->elf.dynindx != -1
571 && !hash->plabel
572 && (info->shared
573 || !(hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
574 || hash->elf.root.type == bfd_link_hash_defweak))
30667bf3 575 {
067fa4a6
AM
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
30667bf3
AM
578 return hppa_stub_import;
579 }
edd21aca 580
30667bf3
AM
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
584 + rel->r_offset);
edd21aca 585
30667bf3
AM
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
edd21aca 588
30667bf3
AM
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
edd21aca 594 {
30667bf3
AM
595 max_branch_offset = (1 << (17-1)) << 2;
596 }
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
598 {
599 max_branch_offset = (1 << (12-1)) << 2;
600 }
25f72752 601 else /* R_PARISC_PCREL22F. */
30667bf3
AM
602 {
603 max_branch_offset = (1 << (22-1)) << 2;
edd21aca
AM
604 }
605
30667bf3 606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
98ceb8ce
AM
607 return hppa_stub_long_branch;
608
30667bf3
AM
609 return hppa_stub_none;
610}
edd21aca 611
30667bf3
AM
612/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
edd21aca 614
30667bf3
AM
615#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
edd21aca 617
30667bf3 618#define BL_R1 0xe8200000 /* b,l .+8,%r1 */
3ee1d854 619#define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
30667bf3 620#define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
252b5132 621
3ee1d854
AM
622#define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623#define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
30667bf3 624#define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
3ee1d854 625#define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
252b5132 626
3ee1d854
AM
627#define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628#define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
edd21aca 629
30667bf3
AM
630#define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631#define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632#define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633#define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
edd21aca 634
067fa4a6 635#define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
30667bf3
AM
636#define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637#define NOP 0x08000240 /* nop */
638#define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639#define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640#define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
edd21aca 641
30667bf3
AM
642#ifndef R19_STUBS
643#define R19_STUBS 1
644#endif
edd21aca 645
30667bf3
AM
646#if R19_STUBS
647#define LDW_R1_DLT LDW_R1_R19
648#else
649#define LDW_R1_DLT LDW_R1_DP
650#endif
edd21aca 651
b34976b6 652static bfd_boolean
c39a58e6 653hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
30667bf3
AM
654{
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
83c81bfe 657 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
658 asection *stub_sec;
659 bfd *stub_bfd;
660 bfd_byte *loc;
661 bfd_vma sym_value;
74d1c347 662 bfd_vma insn;
8dea1268 663 bfd_vma off;
74d1c347 664 int val;
30667bf3 665 int size;
edd21aca 666
30667bf3
AM
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
c39a58e6 669 info = in_arg;
30667bf3 670
83c81bfe 671 htab = hppa_link_hash_table (info);
30667bf3 672 stub_sec = stub_entry->stub_sec;
edd21aca 673
30667bf3 674 /* Make a note of the offset within the stubs for this entry. */
74d1c347 675 stub_entry->stub_offset = stub_sec->_raw_size;
30667bf3 676 loc = stub_sec->contents + stub_entry->stub_offset;
252b5132 677
30667bf3
AM
678 stub_bfd = stub_sec->owner;
679
680 switch (stub_entry->stub_type)
681 {
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
690
c39a58e6 691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
74d1c347 692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
30667bf3
AM
693 bfd_put_32 (stub_bfd, insn, loc);
694
c39a58e6 695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
74d1c347 696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
30667bf3
AM
697 bfd_put_32 (stub_bfd, insn, loc + 4);
698
30667bf3 699 size = 8;
edd21aca
AM
700 break;
701
30667bf3
AM
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
707
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
712
74d1c347 713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
47d89dba 714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
74d1c347 715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
30667bf3
AM
716 bfd_put_32 (stub_bfd, insn, loc + 4);
717
47d89dba 718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
74d1c347 719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
30667bf3
AM
720 bfd_put_32 (stub_bfd, insn, loc + 8);
721 size = 12;
722 break;
edd21aca 723
30667bf3
AM
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
8dea1268
AM
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
49e9d0d3 728 abort ();
8dea1268
AM
729
730 off &= ~ (bfd_vma) 1;
731 sym_value = (off
83c81bfe
AM
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
30667bf3
AM
735
736 insn = ADDIL_DP;
737#if R19_STUBS
738 if (stub_entry->stub_type == hppa_stub_import_shared)
739 insn = ADDIL_R19;
740#endif
c39a58e6 741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
74d1c347 742 insn = hppa_rebuild_insn ((int) insn, val, 21);
30667bf3 743 bfd_put_32 (stub_bfd, insn, loc);
edd21aca 744
47d89dba
AM
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
c39a58e6 750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
74d1c347 751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
30667bf3 752 bfd_put_32 (stub_bfd, insn, loc + 4);
252b5132 753
83c81bfe 754 if (htab->multi_subspace)
30667bf3 755 {
47d89dba 756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
74d1c347 757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
30667bf3 758 bfd_put_32 (stub_bfd, insn, loc + 8);
252b5132 759
74d1c347
AM
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
252b5132 764
30667bf3
AM
765 size = 28;
766 }
767 else
768 {
74d1c347 769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
47d89dba 770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
74d1c347 771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
30667bf3 772 bfd_put_32 (stub_bfd, insn, loc + 12);
252b5132 773
30667bf3
AM
774 size = 16;
775 }
252b5132 776
30667bf3 777 break;
252b5132 778
30667bf3
AM
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
252b5132 784
30667bf3
AM
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
edd21aca 789
067fa4a6
AM
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
30667bf3 793 {
edd21aca 794 (*_bfd_error_handler)
30667bf3 795 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
8f615d07 796 bfd_archive_filename (stub_entry->target_section->owner),
30667bf3
AM
797 stub_sec->name,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
b34976b6 801 return FALSE;
252b5132 802 }
30667bf3 803
74d1c347 804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
067fa4a6
AM
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807 else
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
30667bf3
AM
809 bfd_put_32 (stub_bfd, insn, loc);
810
74d1c347
AM
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
30667bf3
AM
816
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
74d1c347 819 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
30667bf3
AM
820
821 size = 24;
822 break;
823
824 default:
825 BFD_FAIL ();
b34976b6 826 return FALSE;
252b5132
RH
827 }
828
74d1c347 829 stub_sec->_raw_size += size;
b34976b6 830 return TRUE;
252b5132
RH
831}
832
30667bf3
AM
833#undef LDIL_R1
834#undef BE_SR4_R1
835#undef BL_R1
836#undef ADDIL_R1
837#undef DEPI_R1
30667bf3
AM
838#undef LDW_R1_R21
839#undef LDW_R1_DLT
840#undef LDW_R1_R19
841#undef ADDIL_R19
842#undef LDW_R1_DP
843#undef LDSID_R21_R1
844#undef MTSP_R1
845#undef BE_SR0_R21
846#undef STW_RP
847#undef BV_R0_R21
848#undef BL_RP
849#undef NOP
850#undef LDW_RP
851#undef LDSID_RP_R1
852#undef BE_SR0_RP
252b5132 853
30667bf3
AM
854/* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
856
b34976b6 857static bfd_boolean
c39a58e6 858hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
252b5132 859{
30667bf3 860 struct elf32_hppa_stub_hash_entry *stub_entry;
83c81bfe 861 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
862 int size;
863
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
c39a58e6 866 htab = in_arg;
30667bf3
AM
867
868 if (stub_entry->stub_type == hppa_stub_long_branch)
98ceb8ce 869 size = 8;
30667bf3
AM
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871 size = 12;
872 else if (stub_entry->stub_type == hppa_stub_export)
873 size = 24;
74d1c347 874 else /* hppa_stub_import or hppa_stub_import_shared. */
252b5132 875 {
83c81bfe 876 if (htab->multi_subspace)
30667bf3
AM
877 size = 28;
878 else
879 size = 16;
880 }
252b5132 881
74d1c347 882 stub_entry->stub_sec->_raw_size += size;
b34976b6 883 return TRUE;
30667bf3 884}
252b5132 885
30667bf3
AM
886/* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
888
b34976b6 889static bfd_boolean
c39a58e6 890elf32_hppa_object_p (bfd *abfd)
30667bf3 891{
24a5e751
L
892 Elf_Internal_Ehdr * i_ehdrp;
893 unsigned int flags;
252b5132 894
24a5e751
L
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
897 {
6c21aa76
NC
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 902 return FALSE;
24a5e751
L
903 }
904 else
905 {
906 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
b34976b6 907 return FALSE;
24a5e751
L
908 }
909
910 flags = i_ehdrp->e_flags;
30667bf3
AM
911 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
912 {
913 case EFA_PARISC_1_0:
914 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
915 case EFA_PARISC_1_1:
916 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
917 case EFA_PARISC_2_0:
918 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
919 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
920 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
921 }
b34976b6 922 return TRUE;
252b5132
RH
923}
924
30667bf3
AM
925/* Create the .plt and .got sections, and set up our hash table
926 short-cuts to various dynamic sections. */
927
b34976b6 928static bfd_boolean
c39a58e6 929elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
252b5132 930{
83c81bfe 931 struct elf32_hppa_link_hash_table *htab;
edd21aca 932
30667bf3 933 /* Don't try to create the .plt and .got twice. */
83c81bfe
AM
934 htab = hppa_link_hash_table (info);
935 if (htab->splt != NULL)
b34976b6 936 return TRUE;
edd21aca 937
30667bf3
AM
938 /* Call the generic code to do most of the work. */
939 if (! _bfd_elf_create_dynamic_sections (abfd, info))
b34976b6 940 return FALSE;
252b5132 941
83c81bfe
AM
942 htab->splt = bfd_get_section_by_name (abfd, ".plt");
943 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
30667bf3 944
83c81bfe
AM
945 htab->sgot = bfd_get_section_by_name (abfd, ".got");
946 htab->srelgot = bfd_make_section (abfd, ".rela.got");
947 if (htab->srelgot == NULL
948 || ! bfd_set_section_flags (abfd, htab->srelgot,
30667bf3
AM
949 (SEC_ALLOC
950 | SEC_LOAD
951 | SEC_HAS_CONTENTS
952 | SEC_IN_MEMORY
953 | SEC_LINKER_CREATED
954 | SEC_READONLY))
83c81bfe 955 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
b34976b6 956 return FALSE;
edd21aca 957
83c81bfe
AM
958 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
959 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
30667bf3 960
b34976b6 961 return TRUE;
30667bf3
AM
962}
963
ebe50bae
AM
964/* Copy the extra info we tack onto an elf_link_hash_entry. */
965
51b64d56 966static void
9c5bfbb7 967elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
c39a58e6
AM
968 struct elf_link_hash_entry *dir,
969 struct elf_link_hash_entry *ind)
ebe50bae
AM
970{
971 struct elf32_hppa_link_hash_entry *edir, *eind;
972
973 edir = (struct elf32_hppa_link_hash_entry *) dir;
974 eind = (struct elf32_hppa_link_hash_entry *) ind;
975
bbd7ec4a 976 if (eind->dyn_relocs != NULL)
ebe50bae 977 {
bbd7ec4a
AM
978 if (edir->dyn_relocs != NULL)
979 {
980 struct elf32_hppa_dyn_reloc_entry **pp;
981 struct elf32_hppa_dyn_reloc_entry *p;
982
1e370bd2 983 if (ind->root.type == bfd_link_hash_indirect)
bbd7ec4a
AM
984 abort ();
985
986 /* Add reloc counts against the weak sym to the strong sym
987 list. Merge any entries against the same section. */
988 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
989 {
990 struct elf32_hppa_dyn_reloc_entry *q;
991
992 for (q = edir->dyn_relocs; q != NULL; q = q->next)
993 if (q->sec == p->sec)
994 {
995#if RELATIVE_DYNRELOCS
996 q->relative_count += p->relative_count;
997#endif
998 q->count += p->count;
999 *pp = p->next;
1000 break;
1001 }
1002 if (q == NULL)
1003 pp = &p->next;
1004 }
1005 *pp = edir->dyn_relocs;
1006 }
1007
ebe50bae
AM
1008 edir->dyn_relocs = eind->dyn_relocs;
1009 eind->dyn_relocs = NULL;
1010 }
ebe50bae 1011
4fc8051d
AM
1012 if (ELIMINATE_COPY_RELOCS
1013 && ind->root.type != bfd_link_hash_indirect
1014 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1015 /* If called to transfer flags for a weakdef during processing
1016 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
1017 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1018 dir->elf_link_hash_flags |=
1019 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1020 | ELF_LINK_HASH_REF_REGULAR
3addb0a9
DJ
1021 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1022 | ELF_LINK_HASH_NEEDS_PLT));
4fc8051d
AM
1023 else
1024 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
ebe50bae
AM
1025}
1026
30667bf3 1027/* Look through the relocs for a section during the first phase, and
3ac8354b
AM
1028 calculate needed space in the global offset table, procedure linkage
1029 table, and dynamic reloc sections. At this point we haven't
1030 necessarily read all the input files. */
252b5132 1031
b34976b6 1032static bfd_boolean
c39a58e6
AM
1033elf32_hppa_check_relocs (bfd *abfd,
1034 struct bfd_link_info *info,
1035 asection *sec,
1036 const Elf_Internal_Rela *relocs)
252b5132 1037{
30667bf3
AM
1038 Elf_Internal_Shdr *symtab_hdr;
1039 struct elf_link_hash_entry **sym_hashes;
30667bf3
AM
1040 const Elf_Internal_Rela *rel;
1041 const Elf_Internal_Rela *rel_end;
83c81bfe 1042 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
1043 asection *sreloc;
1044 asection *stubreloc;
1045
1049f94e 1046 if (info->relocatable)
b34976b6 1047 return TRUE;
30667bf3 1048
83c81bfe 1049 htab = hppa_link_hash_table (info);
30667bf3
AM
1050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051 sym_hashes = elf_sym_hashes (abfd);
30667bf3
AM
1052 sreloc = NULL;
1053 stubreloc = NULL;
1054
1055 rel_end = relocs + sec->reloc_count;
1056 for (rel = relocs; rel < rel_end; rel++)
1057 {
1058 enum {
1059 NEED_GOT = 1,
1060 NEED_PLT = 2,
1061 NEED_DYNREL = 4,
98ceb8ce 1062 PLT_PLABEL = 8
30667bf3 1063 };
edd21aca 1064
30667bf3
AM
1065 unsigned int r_symndx, r_type;
1066 struct elf32_hppa_link_hash_entry *h;
1067 int need_entry;
252b5132 1068
30667bf3 1069 r_symndx = ELF32_R_SYM (rel->r_info);
252b5132 1070
30667bf3
AM
1071 if (r_symndx < symtab_hdr->sh_info)
1072 h = NULL;
1073 else
1074 h = ((struct elf32_hppa_link_hash_entry *)
1075 sym_hashes[r_symndx - symtab_hdr->sh_info]);
252b5132 1076
30667bf3 1077 r_type = ELF32_R_TYPE (rel->r_info);
252b5132 1078
30667bf3
AM
1079 switch (r_type)
1080 {
1081 case R_PARISC_DLTIND14F:
1082 case R_PARISC_DLTIND14R:
1083 case R_PARISC_DLTIND21L:
1084 /* This symbol requires a global offset table entry. */
1085 need_entry = NEED_GOT;
30667bf3
AM
1086 break;
1087
1088 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1089 case R_PARISC_PLABEL21L:
1090 case R_PARISC_PLABEL32:
74d1c347 1091 /* If the addend is non-zero, we break badly. */
49e9d0d3
AM
1092 if (rel->r_addend != 0)
1093 abort ();
74d1c347
AM
1094
1095 /* If we are creating a shared library, then we need to
1096 create a PLT entry for all PLABELs, because PLABELs with
1097 local symbols may be passed via a pointer to another
1098 object. Additionally, output a dynamic relocation
4dc86686
AM
1099 pointing to the PLT entry.
1100 For executables, the original 32-bit ABI allowed two
1101 different styles of PLABELs (function pointers): For
1102 global functions, the PLABEL word points into the .plt
1103 two bytes past a (function address, gp) pair, and for
1104 local functions the PLABEL points directly at the
1105 function. The magic +2 for the first type allows us to
1106 differentiate between the two. As you can imagine, this
1107 is a real pain when it comes to generating code to call
1108 functions indirectly or to compare function pointers.
1109 We avoid the mess by always pointing a PLABEL into the
1110 .plt, even for local functions. */
74d1c347 1111 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
30667bf3
AM
1112 break;
1113
1114 case R_PARISC_PCREL12F:
83c81bfe 1115 htab->has_12bit_branch = 1;
067fa4a6
AM
1116 goto branch_common;
1117
30667bf3
AM
1118 case R_PARISC_PCREL17C:
1119 case R_PARISC_PCREL17F:
83c81bfe 1120 htab->has_17bit_branch = 1;
067fa4a6
AM
1121 goto branch_common;
1122
30667bf3 1123 case R_PARISC_PCREL22F:
067fa4a6
AM
1124 htab->has_22bit_branch = 1;
1125 branch_common:
47d89dba
AM
1126 /* Function calls might need to go through the .plt, and
1127 might require long branch stubs. */
30667bf3
AM
1128 if (h == NULL)
1129 {
1130 /* We know local syms won't need a .plt entry, and if
1131 they need a long branch stub we can't guarantee that
1132 we can reach the stub. So just flag an error later
1133 if we're doing a shared link and find we need a long
1134 branch stub. */
1135 continue;
1136 }
1137 else
1138 {
1139 /* Global symbols will need a .plt entry if they remain
1140 global, and in most cases won't need a long branch
1141 stub. Unfortunately, we have to cater for the case
1142 where a symbol is forced local by versioning, or due
1143 to symbolic linking, and we lose the .plt entry. */
98ceb8ce 1144 need_entry = NEED_PLT;
4dc86686 1145 if (h->elf.type == STT_PARISC_MILLI)
98ceb8ce 1146 need_entry = 0;
30667bf3
AM
1147 }
1148 break;
1149
1150 case R_PARISC_SEGBASE: /* Used to set segment base. */
c46b7515 1151 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
30667bf3
AM
1152 case R_PARISC_PCREL14F: /* PC relative load/store. */
1153 case R_PARISC_PCREL14R:
1154 case R_PARISC_PCREL17R: /* External branches. */
1155 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1156 /* We don't need to propagate the relocation if linking a
1157 shared object since these are section relative. */
1158 continue;
1159
1160 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1161 case R_PARISC_DPREL14R:
1162 case R_PARISC_DPREL21L:
1163 if (info->shared)
1164 {
1165 (*_bfd_error_handler)
1166 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
8f615d07 1167 bfd_archive_filename (abfd),
30667bf3
AM
1168 elf_hppa_howto_table[r_type].name);
1169 bfd_set_error (bfd_error_bad_value);
b34976b6 1170 return FALSE;
30667bf3
AM
1171 }
1172 /* Fall through. */
1173
1174 case R_PARISC_DIR17F: /* Used for external branches. */
1175 case R_PARISC_DIR17R:
47d89dba
AM
1176 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1177 case R_PARISC_DIR14R:
30667bf3 1178 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
067fa4a6 1179#if 0
30667bf3
AM
1180 /* Help debug shared library creation. Any of the above
1181 relocs can be used in shared libs, but they may cause
1182 pages to become unshared. */
1183 if (info->shared)
1184 {
1185 (*_bfd_error_handler)
1186 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
8f615d07 1187 bfd_archive_filename (abfd),
30667bf3
AM
1188 elf_hppa_howto_table[r_type].name);
1189 }
1190 /* Fall through. */
1191#endif
1192
c46b7515 1193 case R_PARISC_DIR32: /* .word relocs. */
30667bf3
AM
1194 /* We may want to output a dynamic relocation later. */
1195 need_entry = NEED_DYNREL;
1196 break;
1197
1198 /* This relocation describes the C++ object vtable hierarchy.
1199 Reconstruct it for later use during GC. */
1200 case R_PARISC_GNU_VTINHERIT:
1201 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1202 &h->elf, rel->r_offset))
b34976b6 1203 return FALSE;
30667bf3
AM
1204 continue;
1205
1206 /* This relocation describes which C++ vtable entries are actually
1207 used. Record for later use during GC. */
1208 case R_PARISC_GNU_VTENTRY:
1209 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
36605136 1210 &h->elf, rel->r_addend))
b34976b6 1211 return FALSE;
30667bf3
AM
1212 continue;
1213
1214 default:
1215 continue;
1216 }
1217
1218 /* Now carry out our orders. */
1219 if (need_entry & NEED_GOT)
1220 {
1221 /* Allocate space for a GOT entry, as well as a dynamic
25f72752 1222 relocation for this entry. */
83c81bfe 1223 if (htab->sgot == NULL)
30667bf3 1224 {
3ac8354b
AM
1225 if (htab->elf.dynobj == NULL)
1226 htab->elf.dynobj = abfd;
1227 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
b34976b6 1228 return FALSE;
30667bf3
AM
1229 }
1230
1231 if (h != NULL)
1232 {
51b64d56 1233 h->elf.got.refcount += 1;
30667bf3
AM
1234 }
1235 else
1236 {
3ac8354b
AM
1237 bfd_signed_vma *local_got_refcounts;
1238
30667bf3 1239 /* This is a global offset table entry for a local symbol. */
3ac8354b 1240 local_got_refcounts = elf_local_got_refcounts (abfd);
30667bf3
AM
1241 if (local_got_refcounts == NULL)
1242 {
dc810e39 1243 bfd_size_type size;
30667bf3 1244
74d1c347
AM
1245 /* Allocate space for local got offsets and local
1246 plt offsets. Done this way to save polluting
1247 elf_obj_tdata with another target specific
1248 pointer. */
dc810e39
AM
1249 size = symtab_hdr->sh_info;
1250 size *= 2 * sizeof (bfd_signed_vma);
c39a58e6 1251 local_got_refcounts = bfd_zalloc (abfd, size);
30667bf3 1252 if (local_got_refcounts == NULL)
b34976b6 1253 return FALSE;
30667bf3 1254 elf_local_got_refcounts (abfd) = local_got_refcounts;
30667bf3 1255 }
ebe50bae 1256 local_got_refcounts[r_symndx] += 1;
30667bf3
AM
1257 }
1258 }
1259
1260 if (need_entry & NEED_PLT)
1261 {
1262 /* If we are creating a shared library, and this is a reloc
1263 against a weak symbol or a global symbol in a dynamic
1264 object, then we will be creating an import stub and a
1265 .plt entry for the symbol. Similarly, on a normal link
1266 to symbols defined in a dynamic object we'll need the
1267 import stub and a .plt entry. We don't know yet whether
1268 the symbol is defined or not, so make an entry anyway and
1269 clean up later in adjust_dynamic_symbol. */
1270 if ((sec->flags & SEC_ALLOC) != 0)
1271 {
74d1c347 1272 if (h != NULL)
30667bf3 1273 {
51b64d56
AM
1274 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1275 h->elf.plt.refcount += 1;
74d1c347 1276
36605136
AM
1277 /* If this .plt entry is for a plabel, mark it so
1278 that adjust_dynamic_symbol will keep the entry
1279 even if it appears to be local. */
74d1c347
AM
1280 if (need_entry & PLT_PLABEL)
1281 h->plabel = 1;
1282 }
1283 else if (need_entry & PLT_PLABEL)
1284 {
3ac8354b 1285 bfd_signed_vma *local_got_refcounts;
68fb2e56 1286 bfd_signed_vma *local_plt_refcounts;
74d1c347 1287
3ac8354b 1288 local_got_refcounts = elf_local_got_refcounts (abfd);
74d1c347
AM
1289 if (local_got_refcounts == NULL)
1290 {
dc810e39 1291 bfd_size_type size;
74d1c347
AM
1292
1293 /* Allocate space for local got offsets and local
1294 plt offsets. */
dc810e39
AM
1295 size = symtab_hdr->sh_info;
1296 size *= 2 * sizeof (bfd_signed_vma);
c39a58e6 1297 local_got_refcounts = bfd_zalloc (abfd, size);
74d1c347 1298 if (local_got_refcounts == NULL)
b34976b6 1299 return FALSE;
74d1c347 1300 elf_local_got_refcounts (abfd) = local_got_refcounts;
74d1c347 1301 }
68fb2e56
AM
1302 local_plt_refcounts = (local_got_refcounts
1303 + symtab_hdr->sh_info);
ebe50bae 1304 local_plt_refcounts[r_symndx] += 1;
30667bf3 1305 }
30667bf3
AM
1306 }
1307 }
1308
98ceb8ce 1309 if (need_entry & NEED_DYNREL)
30667bf3
AM
1310 {
1311 /* Flag this symbol as having a non-got, non-plt reference
1312 so that we generate copy relocs if it turns out to be
1313 dynamic. */
ebe50bae 1314 if (h != NULL && !info->shared)
30667bf3
AM
1315 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1316
1317 /* If we are creating a shared library then we need to copy
1318 the reloc into the shared library. However, if we are
1319 linking with -Bsymbolic, we need only copy absolute
1320 relocs or relocs against symbols that are not defined in
1321 an object we are including in the link. PC- or DP- or
1322 DLT-relative relocs against any local sym or global sym
1323 with DEF_REGULAR set, can be discarded. At this point we
1324 have not seen all the input files, so it is possible that
1325 DEF_REGULAR is not set now but will be set later (it is
1326 never cleared). We account for that possibility below by
98ceb8ce 1327 storing information in the dyn_relocs field of the
30667bf3
AM
1328 hash table entry.
1329
1330 A similar situation to the -Bsymbolic case occurs when
1331 creating shared libraries and symbol visibility changes
1332 render the symbol local.
1333
1334 As it turns out, all the relocs we will be creating here
1335 are absolute, so we cannot remove them on -Bsymbolic
1336 links or visibility changes anyway. A STUB_REL reloc
1337 is absolute too, as in that case it is the reloc in the
1338 stub we will be creating, rather than copying the PCREL
56882138
AM
1339 reloc in the branch.
1340
1341 If on the other hand, we are creating an executable, we
1342 may need to keep relocations for symbols satisfied by a
1343 dynamic library if we manage to avoid copy relocs for the
1344 symbol. */
446f2863
AM
1345 if ((info->shared
1346 && (sec->flags & SEC_ALLOC) != 0
1347 && (IS_ABSOLUTE_RELOC (r_type)
1348 || (h != NULL
1349 && (!info->symbolic
1350 || h->elf.root.type == bfd_link_hash_defweak
1351 || (h->elf.elf_link_hash_flags
1352 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
4fc8051d
AM
1353 || (ELIMINATE_COPY_RELOCS
1354 && !info->shared
446f2863
AM
1355 && (sec->flags & SEC_ALLOC) != 0
1356 && h != NULL
446f2863
AM
1357 && (h->elf.root.type == bfd_link_hash_defweak
1358 || (h->elf.elf_link_hash_flags
1359 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
30667bf3 1360 {
ec338859
AM
1361 struct elf32_hppa_dyn_reloc_entry *p;
1362 struct elf32_hppa_dyn_reloc_entry **head;
1363
30667bf3
AM
1364 /* Create a reloc section in dynobj and make room for
1365 this reloc. */
98ceb8ce 1366 if (sreloc == NULL)
30667bf3
AM
1367 {
1368 char *name;
3ac8354b 1369 bfd *dynobj;
30667bf3 1370
98ceb8ce
AM
1371 name = (bfd_elf_string_from_elf_section
1372 (abfd,
1373 elf_elfheader (abfd)->e_shstrndx,
1374 elf_section_data (sec)->rel_hdr.sh_name));
30667bf3
AM
1375 if (name == NULL)
1376 {
1377 (*_bfd_error_handler)
1378 (_("Could not find relocation section for %s"),
1379 sec->name);
1380 bfd_set_error (bfd_error_bad_value);
b34976b6 1381 return FALSE;
30667bf3
AM
1382 }
1383
3ac8354b
AM
1384 if (htab->elf.dynobj == NULL)
1385 htab->elf.dynobj = abfd;
1386
1387 dynobj = htab->elf.dynobj;
98ceb8ce
AM
1388 sreloc = bfd_get_section_by_name (dynobj, name);
1389 if (sreloc == NULL)
30667bf3
AM
1390 {
1391 flagword flags;
1392
98ceb8ce 1393 sreloc = bfd_make_section (dynobj, name);
30667bf3
AM
1394 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1395 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1396 if ((sec->flags & SEC_ALLOC) != 0)
1397 flags |= SEC_ALLOC | SEC_LOAD;
98ceb8ce
AM
1398 if (sreloc == NULL
1399 || !bfd_set_section_flags (dynobj, sreloc, flags)
1400 || !bfd_set_section_alignment (dynobj, sreloc, 2))
b34976b6 1401 return FALSE;
30667bf3 1402 }
30667bf3 1403
98ceb8ce 1404 elf_section_data (sec)->sreloc = sreloc;
30667bf3
AM
1405 }
1406
98ceb8ce
AM
1407 /* If this is a global symbol, we count the number of
1408 relocations we need for this symbol. */
1409 if (h != NULL)
30667bf3 1410 {
ec338859
AM
1411 head = &h->dyn_relocs;
1412 }
1413 else
1414 {
1415 /* Track dynamic relocs needed for local syms too.
1416 We really need local syms available to do this
1417 easily. Oh well. */
1418
1419 asection *s;
1420 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1421 sec, r_symndx);
1422 if (s == NULL)
b34976b6 1423 return FALSE;
30667bf3 1424
ec338859
AM
1425 head = ((struct elf32_hppa_dyn_reloc_entry **)
1426 &elf_section_data (s)->local_dynrel);
1427 }
1428
1429 p = *head;
1430 if (p == NULL || p->sec != sec)
1431 {
c39a58e6 1432 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
ec338859 1433 if (p == NULL)
b34976b6 1434 return FALSE;
ec338859
AM
1435 p->next = *head;
1436 *head = p;
1437 p->sec = sec;
1438 p->count = 0;
98ceb8ce 1439#if RELATIVE_DYNRELOCS
ec338859 1440 p->relative_count = 0;
98ceb8ce 1441#endif
ec338859 1442 }
98ceb8ce 1443
ec338859 1444 p->count += 1;
98ceb8ce 1445#if RELATIVE_DYNRELOCS
ec338859
AM
1446 if (!IS_ABSOLUTE_RELOC (rtype))
1447 p->relative_count += 1;
98ceb8ce 1448#endif
30667bf3
AM
1449 }
1450 }
1451 }
edd21aca 1452
b34976b6 1453 return TRUE;
edd21aca
AM
1454}
1455
30667bf3
AM
1456/* Return the section that should be marked against garbage collection
1457 for a given relocation. */
1458
1459static asection *
c39a58e6
AM
1460elf32_hppa_gc_mark_hook (asection *sec,
1461 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1462 Elf_Internal_Rela *rel,
1463 struct elf_link_hash_entry *h,
1464 Elf_Internal_Sym *sym)
30667bf3
AM
1465{
1466 if (h != NULL)
1467 {
1468 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1469 {
1470 case R_PARISC_GNU_VTINHERIT:
1471 case R_PARISC_GNU_VTENTRY:
1472 break;
1473
1474 default:
1475 switch (h->root.type)
1476 {
1477 case bfd_link_hash_defined:
1478 case bfd_link_hash_defweak:
1479 return h->root.u.def.section;
1480
1481 case bfd_link_hash_common:
1482 return h->root.u.c.p->section;
1483
1484 default:
1485 break;
1486 }
1487 }
1488 }
1489 else
1e2f5b6e 1490 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
30667bf3
AM
1491
1492 return NULL;
1493}
1494
30667bf3
AM
1495/* Update the got and plt entry reference counts for the section being
1496 removed. */
edd21aca 1497
b34976b6 1498static bfd_boolean
c39a58e6
AM
1499elf32_hppa_gc_sweep_hook (bfd *abfd,
1500 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1501 asection *sec,
1502 const Elf_Internal_Rela *relocs)
edd21aca 1503{
30667bf3
AM
1504 Elf_Internal_Shdr *symtab_hdr;
1505 struct elf_link_hash_entry **sym_hashes;
1506 bfd_signed_vma *local_got_refcounts;
74d1c347 1507 bfd_signed_vma *local_plt_refcounts;
30667bf3 1508 const Elf_Internal_Rela *rel, *relend;
30667bf3 1509
ec338859 1510 elf_section_data (sec)->local_dynrel = NULL;
98ceb8ce 1511
30667bf3
AM
1512 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1513 sym_hashes = elf_sym_hashes (abfd);
1514 local_got_refcounts = elf_local_got_refcounts (abfd);
74d1c347
AM
1515 local_plt_refcounts = local_got_refcounts;
1516 if (local_plt_refcounts != NULL)
1517 local_plt_refcounts += symtab_hdr->sh_info;
30667bf3 1518
30667bf3
AM
1519 relend = relocs + sec->reloc_count;
1520 for (rel = relocs; rel < relend; rel++)
26e41594
AM
1521 {
1522 unsigned long r_symndx;
1523 unsigned int r_type;
1524 struct elf_link_hash_entry *h = NULL;
1525
1526 r_symndx = ELF32_R_SYM (rel->r_info);
1527 if (r_symndx >= symtab_hdr->sh_info)
1528 {
1529 struct elf32_hppa_link_hash_entry *eh;
1530 struct elf32_hppa_dyn_reloc_entry **pp;
1531 struct elf32_hppa_dyn_reloc_entry *p;
1532
1533 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1534 eh = (struct elf32_hppa_link_hash_entry *) h;
1535
1536 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1537 if (p->sec == sec)
1538 {
1539 /* Everything must go for SEC. */
1540 *pp = p->next;
1541 break;
1542 }
1543 }
1544
1545 r_type = ELF32_R_TYPE (rel->r_info);
1546 switch (r_type)
1547 {
1548 case R_PARISC_DLTIND14F:
1549 case R_PARISC_DLTIND14R:
1550 case R_PARISC_DLTIND21L:
1551 if (h != NULL)
1552 {
1553 if (h->got.refcount > 0)
1554 h->got.refcount -= 1;
1555 }
1556 else if (local_got_refcounts != NULL)
1557 {
1558 if (local_got_refcounts[r_symndx] > 0)
1559 local_got_refcounts[r_symndx] -= 1;
1560 }
1561 break;
98ceb8ce 1562
26e41594
AM
1563 case R_PARISC_PCREL12F:
1564 case R_PARISC_PCREL17C:
1565 case R_PARISC_PCREL17F:
1566 case R_PARISC_PCREL22F:
1567 if (h != NULL)
1568 {
1569 if (h->plt.refcount > 0)
1570 h->plt.refcount -= 1;
1571 }
1572 break;
1573
1574 case R_PARISC_PLABEL14R:
1575 case R_PARISC_PLABEL21L:
1576 case R_PARISC_PLABEL32:
1577 if (h != NULL)
1578 {
1579 if (h->plt.refcount > 0)
1580 h->plt.refcount -= 1;
1581 }
1582 else if (local_plt_refcounts != NULL)
1583 {
1584 if (local_plt_refcounts[r_symndx] > 0)
1585 local_plt_refcounts[r_symndx] -= 1;
1586 }
1587 break;
1588
1589 default:
1590 break;
1591 }
1592 }
252b5132 1593
b34976b6 1594 return TRUE;
252b5132
RH
1595}
1596
74d1c347
AM
1597/* Our own version of hide_symbol, so that we can keep plt entries for
1598 plabels. */
1599
1600static void
c39a58e6
AM
1601elf32_hppa_hide_symbol (struct bfd_link_info *info,
1602 struct elf_link_hash_entry *h,
1603 bfd_boolean force_local)
74d1c347 1604{
e5094212
AM
1605 if (force_local)
1606 {
1607 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1608 if (h->dynindx != -1)
1609 {
1610 h->dynindx = -1;
1611 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1612 h->dynstr_index);
1613 }
1614 }
1615
74d1c347
AM
1616 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1617 {
1618 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1619 h->plt.offset = (bfd_vma) -1;
1620 }
1621}
1622
4dc86686
AM
1623/* This is the condition under which elf32_hppa_finish_dynamic_symbol
1624 will be called from elflink.h. If elflink.h doesn't call our
1625 finish_dynamic_symbol routine, we'll need to do something about
1626 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1627#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1628 ((DYN) \
1629 && ((INFO)->shared \
1630 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1631 && ((H)->dynindx != -1 \
1632 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1633
30667bf3
AM
1634/* Adjust a symbol defined by a dynamic object and referenced by a
1635 regular object. The current definition is in some section of the
1636 dynamic object, but we're not including those sections. We have to
1637 change the definition to something the rest of the link can
1638 understand. */
252b5132 1639
b34976b6 1640static bfd_boolean
c39a58e6
AM
1641elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1642 struct elf_link_hash_entry *h)
252b5132 1643{
83c81bfe 1644 struct elf32_hppa_link_hash_table *htab;
30667bf3 1645 asection *s;
3ac8354b 1646 unsigned int power_of_two;
30667bf3
AM
1647
1648 /* If this is a function, put it in the procedure linkage table. We
067fa4a6 1649 will fill in the contents of the procedure linkage table later. */
30667bf3
AM
1650 if (h->type == STT_FUNC
1651 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1652 {
1653 if (h->plt.refcount <= 0
1654 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1655 && h->root.type != bfd_link_hash_defweak
74d1c347 1656 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
30667bf3
AM
1657 && (!info->shared || info->symbolic)))
1658 {
1659 /* The .plt entry is not needed when:
1660 a) Garbage collection has removed all references to the
1661 symbol, or
1662 b) We know for certain the symbol is defined in this
74d1c347
AM
1663 object, and it's not a weak definition, nor is the symbol
1664 used by a plabel relocation. Either this object is the
1665 application or we are doing a shared symbolic link. */
1666
a252afa4
DA
1667 h->plt.offset = (bfd_vma) -1;
1668 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
30667bf3 1669 }
4dc86686 1670
b34976b6 1671 return TRUE;
30667bf3 1672 }
bbd7ec4a
AM
1673 else
1674 h->plt.offset = (bfd_vma) -1;
edd21aca 1675
30667bf3
AM
1676 /* If this is a weak symbol, and there is a real definition, the
1677 processor independent code will have arranged for us to see the
1678 real definition first, and we can just use the same value. */
1679 if (h->weakdef != NULL)
edd21aca 1680 {
49e9d0d3
AM
1681 if (h->weakdef->root.type != bfd_link_hash_defined
1682 && h->weakdef->root.type != bfd_link_hash_defweak)
1683 abort ();
30667bf3
AM
1684 h->root.u.def.section = h->weakdef->root.u.def.section;
1685 h->root.u.def.value = h->weakdef->root.u.def.value;
4fc8051d
AM
1686 if (ELIMINATE_COPY_RELOCS)
1687 h->elf_link_hash_flags
1688 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1689 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
b34976b6 1690 return TRUE;
30667bf3 1691 }
edd21aca 1692
30667bf3
AM
1693 /* This is a reference to a symbol defined by a dynamic object which
1694 is not a function. */
1695
1696 /* If we are creating a shared library, we must presume that the
1697 only references to the symbol are via the global offset table.
1698 For such cases we need not do anything here; the relocations will
1699 be handled correctly by relocate_section. */
1700 if (info->shared)
b34976b6 1701 return TRUE;
30667bf3
AM
1702
1703 /* If there are no references to this symbol that do not use the
1704 GOT, we don't need to generate a copy reloc. */
1705 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
b34976b6 1706 return TRUE;
30667bf3 1707
4fc8051d 1708 if (ELIMINATE_COPY_RELOCS)
ebe50bae 1709 {
4fc8051d
AM
1710 struct elf32_hppa_link_hash_entry *eh;
1711 struct elf32_hppa_dyn_reloc_entry *p;
ebe50bae 1712
4fc8051d
AM
1713 eh = (struct elf32_hppa_link_hash_entry *) h;
1714 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1715 {
1716 s = p->sec->output_section;
1717 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1718 break;
1719 }
1720
1721 /* If we didn't find any dynamic relocs in read-only sections, then
1722 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1723 if (p == NULL)
1724 {
1725 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1726 return TRUE;
1727 }
ebe50bae
AM
1728 }
1729
30667bf3
AM
1730 /* We must allocate the symbol in our .dynbss section, which will
1731 become part of the .bss section of the executable. There will be
1732 an entry for this symbol in the .dynsym section. The dynamic
1733 object will contain position independent code, so all references
1734 from the dynamic object to this symbol will go through the global
1735 offset table. The dynamic linker will use the .dynsym entry to
1736 determine the address it must put in the global offset table, so
1737 both the dynamic object and the regular object will refer to the
1738 same memory location for the variable. */
1739
3ac8354b 1740 htab = hppa_link_hash_table (info);
30667bf3
AM
1741
1742 /* We must generate a COPY reloc to tell the dynamic linker to
1743 copy the initial value out of the dynamic object and into the
3ac8354b 1744 runtime process image. */
30667bf3
AM
1745 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1746 {
3ac8354b 1747 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
30667bf3 1748 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
edd21aca 1749 }
252b5132 1750
3ac8354b
AM
1751 /* We need to figure out the alignment required for this symbol. I
1752 have no idea how other ELF linkers handle this. */
30667bf3 1753
3ac8354b
AM
1754 power_of_two = bfd_log2 (h->size);
1755 if (power_of_two > 3)
1756 power_of_two = 3;
1757
1758 /* Apply the required alignment. */
1759 s = htab->sdynbss;
1760 s->_raw_size = BFD_ALIGN (s->_raw_size,
1761 (bfd_size_type) (1 << power_of_two));
1762 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1763 {
1764 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
b34976b6 1765 return FALSE;
3ac8354b 1766 }
30667bf3 1767
30667bf3
AM
1768 /* Define the symbol as being at this point in the section. */
1769 h->root.u.def.section = s;
1770 h->root.u.def.value = s->_raw_size;
edd21aca 1771
30667bf3
AM
1772 /* Increment the section size to make room for the symbol. */
1773 s->_raw_size += h->size;
252b5132 1774
b34976b6 1775 return TRUE;
252b5132
RH
1776}
1777
e5ee5df1 1778/* Allocate space in the .plt for entries that won't have relocations.
a252afa4 1779 ie. plabel entries. */
a8d02d66 1780
b34976b6 1781static bfd_boolean
c39a58e6 1782allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
a8d02d66
AM
1783{
1784 struct bfd_link_info *info;
1785 struct elf32_hppa_link_hash_table *htab;
1786 asection *s;
1787
e92d460e 1788 if (h->root.type == bfd_link_hash_indirect)
b34976b6 1789 return TRUE;
a8d02d66 1790
e92d460e
AM
1791 if (h->root.type == bfd_link_hash_warning)
1792 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1793
c39a58e6 1794 info = inf;
a8d02d66 1795 htab = hppa_link_hash_table (info);
a252afa4 1796 if (htab->elf.dynamic_sections_created
e5ee5df1
AM
1797 && h->plt.refcount > 0)
1798 {
1799 /* Make sure this symbol is output as a dynamic symbol.
1800 Undefined weak syms won't yet be marked as dynamic. */
1801 if (h->dynindx == -1
1802 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1803 && h->type != STT_PARISC_MILLI)
a8d02d66 1804 {
e5ee5df1 1805 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 1806 return FALSE;
e5ee5df1
AM
1807 }
1808
1809 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1810 {
067fa4a6
AM
1811 /* Allocate these later. From this point on, h->plabel
1812 means that the plt entry is only used by a plabel.
1813 We'll be using a normal plt entry for this symbol, so
1814 clear the plabel indicator. */
1815 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
e5ee5df1
AM
1816 }
1817 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1818 {
1819 /* Make an entry in the .plt section for plabel references
1820 that won't have a .plt entry for other reasons. */
1821 s = htab->splt;
1822 h->plt.offset = s->_raw_size;
1823 s->_raw_size += PLT_ENTRY_SIZE;
a8d02d66
AM
1824 }
1825 else
e5ee5df1
AM
1826 {
1827 /* No .plt entry needed. */
1828 h->plt.offset = (bfd_vma) -1;
1829 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1830 }
1831 }
1832 else
1833 {
1834 h->plt.offset = (bfd_vma) -1;
1835 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
a8d02d66
AM
1836 }
1837
b34976b6 1838 return TRUE;
a8d02d66
AM
1839}
1840
4dc86686
AM
1841/* Allocate space in .plt, .got and associated reloc sections for
1842 global syms. */
1843
b34976b6 1844static bfd_boolean
c39a58e6 1845allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
4dc86686
AM
1846{
1847 struct bfd_link_info *info;
83c81bfe 1848 struct elf32_hppa_link_hash_table *htab;
4dc86686 1849 asection *s;
446f2863 1850 struct elf32_hppa_link_hash_entry *eh;
98ceb8ce 1851 struct elf32_hppa_dyn_reloc_entry *p;
4dc86686 1852
e92d460e 1853 if (h->root.type == bfd_link_hash_indirect)
b34976b6 1854 return TRUE;
73a74a62 1855
e92d460e
AM
1856 if (h->root.type == bfd_link_hash_warning)
1857 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1858
c39a58e6 1859 info = inf;
83c81bfe 1860 htab = hppa_link_hash_table (info);
e5ee5df1
AM
1861 if (htab->elf.dynamic_sections_created
1862 && h->plt.offset != (bfd_vma) -1
067fa4a6 1863 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
4dc86686 1864 {
e5ee5df1
AM
1865 /* Make an entry in the .plt section. */
1866 s = htab->splt;
1867 h->plt.offset = s->_raw_size;
1868 s->_raw_size += PLT_ENTRY_SIZE;
3ac8354b 1869
e5ee5df1
AM
1870 /* We also need to make an entry in the .rela.plt section. */
1871 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1872 htab->need_plt_stub = 1;
4dc86686 1873 }
edd21aca 1874
4dc86686
AM
1875 if (h->got.refcount > 0)
1876 {
446f2863
AM
1877 /* Make sure this symbol is output as a dynamic symbol.
1878 Undefined weak syms won't yet be marked as dynamic. */
1879 if (h->dynindx == -1
1880 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1881 && h->type != STT_PARISC_MILLI)
1882 {
1883 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 1884 return FALSE;
446f2863
AM
1885 }
1886
83c81bfe 1887 s = htab->sgot;
4dc86686
AM
1888 h->got.offset = s->_raw_size;
1889 s->_raw_size += GOT_ENTRY_SIZE;
ce757d15
AM
1890 if (htab->elf.dynamic_sections_created
1891 && (info->shared
1892 || (h->dynindx != -1
1893 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1894 {
1895 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1896 }
4dc86686
AM
1897 }
1898 else
1899 h->got.offset = (bfd_vma) -1;
30667bf3 1900
446f2863 1901 eh = (struct elf32_hppa_link_hash_entry *) h;
98ceb8ce 1902 if (eh->dyn_relocs == NULL)
b34976b6 1903 return TRUE;
30667bf3 1904
98ceb8ce
AM
1905 /* If this is a -Bsymbolic shared link, then we need to discard all
1906 space allocated for dynamic pc-relative relocs against symbols
1907 defined in a regular object. For the normal shared case, discard
1908 space for relocs that have become local due to symbol visibility
1909 changes. */
1910 if (info->shared)
446f2863 1911 {
98ceb8ce 1912#if RELATIVE_DYNRELOCS
4fc8051d 1913 if (SYMBOL_CALLS_LOCAL (info, h))
446f2863 1914 {
98ceb8ce 1915 struct elf32_hppa_dyn_reloc_entry **pp;
30667bf3 1916
98ceb8ce
AM
1917 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1918 {
1919 p->count -= p->relative_count;
1920 p->relative_count = 0;
1921 if (p->count == 0)
1922 *pp = p->next;
1923 else
1924 pp = &p->next;
1925 }
1926 }
1927#endif
4fc8051d
AM
1928
1929 /* Also discard relocs on undefined weak syms with non-default
1930 visibility. */
1931 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1932 && h->root.type == bfd_link_hash_undefweak)
1933 eh->dyn_relocs = NULL;
446f2863 1934 }
98ceb8ce 1935 else
30667bf3 1936 {
98ceb8ce
AM
1937 /* For the non-shared case, discard space for relocs against
1938 symbols which turn out to need copy relocs or are not
1939 dynamic. */
1940 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
4fc8051d
AM
1941 && ((ELIMINATE_COPY_RELOCS
1942 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
98ceb8ce 1943 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
ebe50bae 1944 || (htab->elf.dynamic_sections_created
98ceb8ce
AM
1945 && (h->root.type == bfd_link_hash_undefweak
1946 || h->root.type == bfd_link_hash_undefined))))
1947 {
1948 /* Make sure this symbol is output as a dynamic symbol.
1949 Undefined weak syms won't yet be marked as dynamic. */
1950 if (h->dynindx == -1
1951 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1952 && h->type != STT_PARISC_MILLI)
1953 {
1954 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
b34976b6 1955 return FALSE;
98ceb8ce
AM
1956 }
1957
1958 /* If that succeeded, we know we'll be keeping all the
1959 relocs. */
1960 if (h->dynindx != -1)
1961 goto keep;
1962 }
446f2863 1963
98ceb8ce 1964 eh->dyn_relocs = NULL;
b34976b6 1965 return TRUE;
98ceb8ce 1966
ec338859 1967 keep: ;
30667bf3 1968 }
30667bf3 1969
98ceb8ce
AM
1970 /* Finally, allocate space. */
1971 for (p = eh->dyn_relocs; p != NULL; p = p->next)
30667bf3 1972 {
98ceb8ce
AM
1973 asection *sreloc = elf_section_data (p->sec)->sreloc;
1974 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
30667bf3 1975 }
30667bf3 1976
b34976b6 1977 return TRUE;
30667bf3 1978}
30667bf3 1979
d5c73c2f
AM
1980/* This function is called via elf_link_hash_traverse to force
1981 millicode symbols local so they do not end up as globals in the
1982 dynamic symbol table. We ought to be able to do this in
1983 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1984 for all dynamic symbols. Arguably, this is a bug in
1985 elf_adjust_dynamic_symbol. */
1986
b34976b6 1987static bfd_boolean
c39a58e6
AM
1988clobber_millicode_symbols (struct elf_link_hash_entry *h,
1989 struct bfd_link_info *info)
d5c73c2f 1990{
e92d460e
AM
1991 if (h->root.type == bfd_link_hash_warning)
1992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1993
142f8c94
AM
1994 if (h->type == STT_PARISC_MILLI
1995 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
e0522e89 1996 {
b34976b6 1997 elf32_hppa_hide_symbol (info, h, TRUE);
e0522e89 1998 }
b34976b6 1999 return TRUE;
d5c73c2f
AM
2000}
2001
98ceb8ce
AM
2002/* Find any dynamic relocs that apply to read-only sections. */
2003
b34976b6 2004static bfd_boolean
c39a58e6 2005readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
98ceb8ce
AM
2006{
2007 struct elf32_hppa_link_hash_entry *eh;
2008 struct elf32_hppa_dyn_reloc_entry *p;
2009
e92d460e
AM
2010 if (h->root.type == bfd_link_hash_warning)
2011 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2012
98ceb8ce
AM
2013 eh = (struct elf32_hppa_link_hash_entry *) h;
2014 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2015 {
2016 asection *s = p->sec->output_section;
2017
2018 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2019 {
c39a58e6 2020 struct bfd_link_info *info = inf;
98ceb8ce
AM
2021
2022 info->flags |= DF_TEXTREL;
2023
2024 /* Not an error, just cut short the traversal. */
b34976b6 2025 return FALSE;
98ceb8ce
AM
2026 }
2027 }
b34976b6 2028 return TRUE;
98ceb8ce
AM
2029}
2030
30667bf3
AM
2031/* Set the sizes of the dynamic sections. */
2032
b34976b6 2033static bfd_boolean
c39a58e6
AM
2034elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2035 struct bfd_link_info *info)
30667bf3 2036{
83c81bfe 2037 struct elf32_hppa_link_hash_table *htab;
30667bf3 2038 bfd *dynobj;
98ceb8ce 2039 bfd *ibfd;
30667bf3 2040 asection *s;
b34976b6 2041 bfd_boolean relocs;
30667bf3 2042
83c81bfe 2043 htab = hppa_link_hash_table (info);
ebe50bae 2044 dynobj = htab->elf.dynobj;
49e9d0d3
AM
2045 if (dynobj == NULL)
2046 abort ();
30667bf3 2047
ebe50bae 2048 if (htab->elf.dynamic_sections_created)
30667bf3
AM
2049 {
2050 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 2051 if (info->executable)
30667bf3
AM
2052 {
2053 s = bfd_get_section_by_name (dynobj, ".interp");
49e9d0d3
AM
2054 if (s == NULL)
2055 abort ();
30667bf3
AM
2056 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2057 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2058 }
74d1c347 2059
d5c73c2f 2060 /* Force millicode symbols local. */
ebe50bae 2061 elf_link_hash_traverse (&htab->elf,
d5c73c2f
AM
2062 clobber_millicode_symbols,
2063 info);
68fb2e56 2064 }
d5c73c2f 2065
98ceb8ce
AM
2066 /* Set up .got and .plt offsets for local syms, and space for local
2067 dynamic relocs. */
2068 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
68fb2e56
AM
2069 {
2070 bfd_signed_vma *local_got;
2071 bfd_signed_vma *end_local_got;
2072 bfd_signed_vma *local_plt;
2073 bfd_signed_vma *end_local_plt;
2074 bfd_size_type locsymcount;
2075 Elf_Internal_Shdr *symtab_hdr;
2076 asection *srel;
74d1c347 2077
98ceb8ce 2078 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
68fb2e56 2079 continue;
4dc86686 2080
98ceb8ce
AM
2081 for (s = ibfd->sections; s != NULL; s = s->next)
2082 {
ec338859 2083 struct elf32_hppa_dyn_reloc_entry *p;
98ceb8ce 2084
ec338859
AM
2085 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2086 elf_section_data (s)->local_dynrel);
2087 p != NULL;
2088 p = p->next)
98ceb8ce 2089 {
ec338859
AM
2090 if (!bfd_is_abs_section (p->sec)
2091 && bfd_is_abs_section (p->sec->output_section))
2092 {
2093 /* Input section has been discarded, either because
2094 it is a copy of a linkonce section or due to
2095 linker script /DISCARD/, so we'll be discarding
2096 the relocs too. */
2097 }
248866a8 2098 else if (p->count != 0)
ec338859
AM
2099 {
2100 srel = elf_section_data (p->sec)->sreloc;
2101 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
248866a8
AM
2102 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2103 info->flags |= DF_TEXTREL;
ec338859 2104 }
98ceb8ce
AM
2105 }
2106 }
2107
2108 local_got = elf_local_got_refcounts (ibfd);
68fb2e56
AM
2109 if (!local_got)
2110 continue;
74d1c347 2111
98ceb8ce 2112 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
68fb2e56
AM
2113 locsymcount = symtab_hdr->sh_info;
2114 end_local_got = local_got + locsymcount;
83c81bfe
AM
2115 s = htab->sgot;
2116 srel = htab->srelgot;
68fb2e56
AM
2117 for (; local_got < end_local_got; ++local_got)
2118 {
2119 if (*local_got > 0)
4dc86686 2120 {
68fb2e56
AM
2121 *local_got = s->_raw_size;
2122 s->_raw_size += GOT_ENTRY_SIZE;
2123 if (info->shared)
2124 srel->_raw_size += sizeof (Elf32_External_Rela);
4dc86686 2125 }
68fb2e56
AM
2126 else
2127 *local_got = (bfd_vma) -1;
2128 }
74d1c347 2129
68fb2e56
AM
2130 local_plt = end_local_got;
2131 end_local_plt = local_plt + locsymcount;
ebe50bae 2132 if (! htab->elf.dynamic_sections_created)
68fb2e56
AM
2133 {
2134 /* Won't be used, but be safe. */
2135 for (; local_plt < end_local_plt; ++local_plt)
2136 *local_plt = (bfd_vma) -1;
2137 }
2138 else
2139 {
83c81bfe
AM
2140 s = htab->splt;
2141 srel = htab->srelplt;
74d1c347
AM
2142 for (; local_plt < end_local_plt; ++local_plt)
2143 {
2144 if (*local_plt > 0)
2145 {
74d1c347
AM
2146 *local_plt = s->_raw_size;
2147 s->_raw_size += PLT_ENTRY_SIZE;
2148 if (info->shared)
4dc86686 2149 srel->_raw_size += sizeof (Elf32_External_Rela);
74d1c347
AM
2150 }
2151 else
2152 *local_plt = (bfd_vma) -1;
2153 }
2154 }
30667bf3 2155 }
30667bf3 2156
e5ee5df1
AM
2157 /* Do all the .plt entries without relocs first. The dynamic linker
2158 uses the last .plt reloc to find the end of the .plt (and hence
2159 the start of the .got) for lazy linking. */
c39a58e6 2160 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
a8d02d66 2161
98ceb8ce
AM
2162 /* Allocate global sym .plt and .got entries, and space for global
2163 sym dynamic relocs. */
c39a58e6 2164 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
30667bf3
AM
2165
2166 /* The check_relocs and adjust_dynamic_symbol entry points have
2167 determined the sizes of the various dynamic sections. Allocate
2168 memory for them. */
b34976b6 2169 relocs = FALSE;
30667bf3
AM
2170 for (s = dynobj->sections; s != NULL; s = s->next)
2171 {
30667bf3
AM
2172 if ((s->flags & SEC_LINKER_CREATED) == 0)
2173 continue;
2174
83c81bfe 2175 if (s == htab->splt)
68fb2e56 2176 {
83c81bfe 2177 if (htab->need_plt_stub)
68fb2e56
AM
2178 {
2179 /* Make space for the plt stub at the end of the .plt
2180 section. We want this stub right at the end, up
2181 against the .got section. */
83c81bfe 2182 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
68fb2e56
AM
2183 int pltalign = bfd_section_alignment (dynobj, s);
2184 bfd_size_type mask;
30667bf3 2185
68fb2e56
AM
2186 if (gotalign > pltalign)
2187 bfd_set_section_alignment (dynobj, s, gotalign);
2188 mask = ((bfd_size_type) 1 << gotalign) - 1;
2189 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2190 }
2191 }
83c81bfe 2192 else if (s == htab->sgot)
68fb2e56
AM
2193 ;
2194 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
30667bf3
AM
2195 {
2196 if (s->_raw_size != 0)
2197 {
4e12ff7f
AM
2198 /* Remember whether there are any reloc sections other
2199 than .rela.plt. */
2200 if (s != htab->srelplt)
b34976b6 2201 relocs = TRUE;
47d89dba 2202
30667bf3
AM
2203 /* We use the reloc_count field as a counter if we need
2204 to copy relocs into the output file. */
2205 s->reloc_count = 0;
2206 }
2207 }
30667bf3
AM
2208 else
2209 {
2210 /* It's not one of our sections, so don't allocate space. */
2211 continue;
2212 }
2213
2214 if (s->_raw_size == 0)
2215 {
2216 /* If we don't need this section, strip it from the
2217 output file. This is mostly to handle .rela.bss and
2218 .rela.plt. We must create both sections in
2219 create_dynamic_sections, because they must be created
2220 before the linker maps input sections to output
2221 sections. The linker does that before
2222 adjust_dynamic_symbol is called, and it is that
2223 function which decides whether anything needs to go
2224 into these sections. */
2225 _bfd_strip_section_from_output (info, s);
2226 continue;
2227 }
2228
2229 /* Allocate memory for the section contents. Zero it, because
2230 we may not fill in all the reloc sections. */
c39a58e6 2231 s->contents = bfd_zalloc (dynobj, s->_raw_size);
30667bf3 2232 if (s->contents == NULL && s->_raw_size != 0)
b34976b6 2233 return FALSE;
30667bf3
AM
2234 }
2235
ebe50bae 2236 if (htab->elf.dynamic_sections_created)
30667bf3
AM
2237 {
2238 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2239 actually has nothing to do with the PLT, it is how we
2240 communicate the LTP value of a load module to the dynamic
2241 linker. */
dc810e39
AM
2242#define add_dynamic_entry(TAG, VAL) \
2243 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2244
2245 if (!add_dynamic_entry (DT_PLTGOT, 0))
b34976b6 2246 return FALSE;
30667bf3
AM
2247
2248 /* Add some entries to the .dynamic section. We fill in the
2249 values later, in elf32_hppa_finish_dynamic_sections, but we
2250 must add the entries now so that we get the correct size for
2251 the .dynamic section. The DT_DEBUG entry is filled in by the
2252 dynamic linker and used by the debugger. */
dc810e39 2253 if (!info->shared)
30667bf3 2254 {
dc810e39 2255 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 2256 return FALSE;
30667bf3
AM
2257 }
2258
83c81bfe 2259 if (htab->srelplt->_raw_size != 0)
30667bf3 2260 {
dc810e39
AM
2261 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2262 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2263 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 2264 return FALSE;
30667bf3
AM
2265 }
2266
2267 if (relocs)
2268 {
dc810e39
AM
2269 if (!add_dynamic_entry (DT_RELA, 0)
2270 || !add_dynamic_entry (DT_RELASZ, 0)
2271 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
b34976b6 2272 return FALSE;
30667bf3 2273
98ceb8ce
AM
2274 /* If any dynamic relocs apply to a read-only section,
2275 then we need a DT_TEXTREL entry. */
248866a8 2276 if ((info->flags & DF_TEXTREL) == 0)
c39a58e6 2277 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
98ceb8ce
AM
2278
2279 if ((info->flags & DF_TEXTREL) != 0)
2280 {
2281 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 2282 return FALSE;
98ceb8ce 2283 }
30667bf3
AM
2284 }
2285 }
dc810e39 2286#undef add_dynamic_entry
30667bf3 2287
b34976b6 2288 return TRUE;
30667bf3
AM
2289}
2290
30667bf3
AM
2291/* External entry points for sizing and building linker stubs. */
2292
b4655ea9
AM
2293/* Set up various things so that we can make a list of input sections
2294 for each output section included in the link. Returns -1 on error,
cedb70c5 2295 0 when no stubs will be needed, and 1 on success. */
30667bf3 2296
b4655ea9 2297int
c39a58e6 2298elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
30667bf3
AM
2299{
2300 bfd *input_bfd;
b4655ea9
AM
2301 unsigned int bfd_count;
2302 int top_id, top_index;
30667bf3 2303 asection *section;
25f72752 2304 asection **input_list, **list;
dc810e39 2305 bfd_size_type amt;
b4655ea9 2306 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
30667bf3 2307
1badb539
AM
2308 /* Count the number of input BFDs and find the top input section id. */
2309 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
30667bf3
AM
2310 input_bfd != NULL;
2311 input_bfd = input_bfd->link_next)
2312 {
2313 bfd_count += 1;
25f72752
AM
2314 for (section = input_bfd->sections;
2315 section != NULL;
2316 section = section->next)
2317 {
2318 if (top_id < section->id)
2319 top_id = section->id;
2320 }
30667bf3 2321 }
b4655ea9 2322 htab->bfd_count = bfd_count;
30667bf3 2323
dc810e39 2324 amt = sizeof (struct map_stub) * (top_id + 1);
c39a58e6 2325 htab->stub_group = bfd_zmalloc (amt);
83c81bfe 2326 if (htab->stub_group == NULL)
b4655ea9 2327 return -1;
1badb539 2328
b4655ea9 2329 /* We can't use output_bfd->section_count here to find the top output
1badb539
AM
2330 section index as some sections may have been removed, and
2331 _bfd_strip_section_from_output doesn't renumber the indices. */
2332 for (section = output_bfd->sections, top_index = 0;
2333 section != NULL;
2334 section = section->next)
2335 {
2336 if (top_index < section->index)
2337 top_index = section->index;
2338 }
2339
b4655ea9 2340 htab->top_index = top_index;
dc810e39 2341 amt = sizeof (asection *) * (top_index + 1);
c39a58e6 2342 input_list = bfd_malloc (amt);
b4655ea9 2343 htab->input_list = input_list;
25f72752 2344 if (input_list == NULL)
b4655ea9 2345 return -1;
25f72752 2346
1badb539
AM
2347 /* For sections we aren't interested in, mark their entries with a
2348 value we can check later. */
2349 list = input_list + top_index;
2350 do
2351 *list = bfd_abs_section_ptr;
2352 while (list-- != input_list);
2353
2354 for (section = output_bfd->sections;
2355 section != NULL;
2356 section = section->next)
2357 {
47d89dba 2358 if ((section->flags & SEC_CODE) != 0)
1badb539
AM
2359 input_list[section->index] = NULL;
2360 }
2361
b4655ea9
AM
2362 return 1;
2363}
2364
2365/* The linker repeatedly calls this function for each input section,
2366 in the order that input sections are linked into output sections.
2367 Build lists of input sections to determine groupings between which
2368 we may insert linker stubs. */
2369
2370void
c39a58e6 2371elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
b4655ea9
AM
2372{
2373 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2374
2375 if (isec->output_section->index <= htab->top_index)
25f72752 2376 {
b4655ea9
AM
2377 asection **list = htab->input_list + isec->output_section->index;
2378 if (*list != bfd_abs_section_ptr)
25f72752 2379 {
b4655ea9 2380 /* Steal the link_sec pointer for our list. */
83c81bfe 2381#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
b4655ea9
AM
2382 /* This happens to make the list in reverse order,
2383 which is what we want. */
2384 PREV_SEC (isec) = *list;
2385 *list = isec;
25f72752
AM
2386 }
2387 }
b4655ea9 2388}
25f72752 2389
b4655ea9
AM
2390/* See whether we can group stub sections together. Grouping stub
2391 sections may result in fewer stubs. More importantly, we need to
2392 put all .init* and .fini* stubs at the beginning of the .init or
2393 .fini output sections respectively, because glibc splits the
2394 _init and _fini functions into multiple parts. Putting a stub in
2395 the middle of a function is not a good idea. */
2396
2397static void
c39a58e6
AM
2398group_sections (struct elf32_hppa_link_hash_table *htab,
2399 bfd_size_type stub_group_size,
2400 bfd_boolean stubs_always_before_branch)
b4655ea9
AM
2401{
2402 asection **list = htab->input_list + htab->top_index;
1badb539 2403 do
25f72752
AM
2404 {
2405 asection *tail = *list;
1badb539
AM
2406 if (tail == bfd_abs_section_ptr)
2407 continue;
25f72752
AM
2408 while (tail != NULL)
2409 {
2410 asection *curr;
2411 asection *prev;
2412 bfd_size_type total;
00b28bb0 2413 bfd_boolean big_sec;
25f72752
AM
2414
2415 curr = tail;
2416 if (tail->_cooked_size)
2417 total = tail->_cooked_size;
2418 else
2419 total = tail->_raw_size;
00b28bb0
AM
2420 big_sec = total >= stub_group_size;
2421
25f72752
AM
2422 while ((prev = PREV_SEC (curr)) != NULL
2423 && ((total += curr->output_offset - prev->output_offset)
47d89dba 2424 < stub_group_size))
25f72752
AM
2425 curr = prev;
2426
2427 /* OK, the size from the start of CURR to the end is less
a248e267 2428 than 240000 bytes and thus can be handled by one stub
25f72752 2429 section. (or the tail section is itself larger than
a248e267 2430 240000 bytes, in which case we may be toast.)
25f72752
AM
2431 We should really be keeping track of the total size of
2432 stubs added here, as stubs contribute to the final output
2433 section size. That's a little tricky, and this way will
a248e267
AM
2434 only break if stubs added total more than 22144 bytes, or
2435 2768 long branch stubs. It seems unlikely for more than
2436 2768 different functions to be called, especially from
2437 code only 240000 bytes long. This limit used to be
2438 250000, but c++ code tends to generate lots of little
2439 functions, and sometimes violated the assumption. */
25f72752
AM
2440 do
2441 {
2442 prev = PREV_SEC (tail);
2443 /* Set up this stub group. */
83c81bfe 2444 htab->stub_group[tail->id].link_sec = curr;
25f72752
AM
2445 }
2446 while (tail != curr && (tail = prev) != NULL);
2447
a248e267 2448 /* But wait, there's more! Input sections up to 240000
00b28bb0
AM
2449 bytes before the stub section can be handled by it too.
2450 Don't do this if we have a really large section after the
2451 stubs, as adding more stubs increases the chance that
2452 branches may not reach into the stub section. */
2453 if (!stubs_always_before_branch && !big_sec)
25f72752 2454 {
47d89dba
AM
2455 total = 0;
2456 while (prev != NULL
2457 && ((total += tail->output_offset - prev->output_offset)
2458 < stub_group_size))
2459 {
2460 tail = prev;
2461 prev = PREV_SEC (tail);
83c81bfe 2462 htab->stub_group[tail->id].link_sec = curr;
47d89dba 2463 }
25f72752
AM
2464 }
2465 tail = prev;
2466 }
2467 }
b4655ea9
AM
2468 while (list-- != htab->input_list);
2469 free (htab->input_list);
1badb539 2470#undef PREV_SEC
b4655ea9
AM
2471}
2472
2473/* Read in all local syms for all input bfds, and create hash entries
2474 for export stubs if we are building a multi-subspace shared lib.
2475 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2476
2477static int
c39a58e6 2478get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
b4655ea9
AM
2479{
2480 unsigned int bfd_indx;
2481 Elf_Internal_Sym *local_syms, **all_local_syms;
2482 int stub_changed = 0;
2483 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
30667bf3
AM
2484
2485 /* We want to read in symbol extension records only once. To do this
2486 we need to read in the local symbols in parallel and save them for
2487 later use; so hold pointers to the local symbols in an array. */
b4655ea9 2488 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
c39a58e6 2489 all_local_syms = bfd_zmalloc (amt);
b4655ea9 2490 htab->all_local_syms = all_local_syms;
30667bf3 2491 if (all_local_syms == NULL)
b4655ea9 2492 return -1;
30667bf3
AM
2493
2494 /* Walk over all the input BFDs, swapping in local symbols.
2495 If we are creating a shared library, create hash entries for the
2496 export stubs. */
b4655ea9 2497 for (bfd_indx = 0;
30667bf3 2498 input_bfd != NULL;
25f72752 2499 input_bfd = input_bfd->link_next, bfd_indx++)
30667bf3
AM
2500 {
2501 Elf_Internal_Shdr *symtab_hdr;
edd21aca 2502
252b5132
RH
2503 /* We'll need the symbol table in a second. */
2504 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2505 if (symtab_hdr->sh_info == 0)
2506 continue;
2507
6cdc0ccc
AM
2508 /* We need an array of the local symbols attached to the input bfd. */
2509 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
edd21aca 2510 if (local_syms == NULL)
edd21aca 2511 {
6cdc0ccc
AM
2512 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2513 symtab_hdr->sh_info, 0,
2514 NULL, NULL, NULL);
2515 /* Cache them for elf_link_input_bfd. */
2516 symtab_hdr->contents = (unsigned char *) local_syms;
edd21aca 2517 }
6cdc0ccc
AM
2518 if (local_syms == NULL)
2519 return -1;
edd21aca 2520
6cdc0ccc 2521 all_local_syms[bfd_indx] = local_syms;
edd21aca 2522
83c81bfe 2523 if (info->shared && htab->multi_subspace)
30667bf3 2524 {
25f72752
AM
2525 struct elf_link_hash_entry **sym_hashes;
2526 struct elf_link_hash_entry **end_hashes;
30667bf3
AM
2527 unsigned int symcount;
2528
2529 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2530 - symtab_hdr->sh_info);
25f72752
AM
2531 sym_hashes = elf_sym_hashes (input_bfd);
2532 end_hashes = sym_hashes + symcount;
30667bf3
AM
2533
2534 /* Look through the global syms for functions; We need to
2535 build export stubs for all globally visible functions. */
25f72752 2536 for (; sym_hashes < end_hashes; sym_hashes++)
30667bf3
AM
2537 {
2538 struct elf32_hppa_link_hash_entry *hash;
2539
25f72752 2540 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
30667bf3
AM
2541
2542 while (hash->elf.root.type == bfd_link_hash_indirect
2543 || hash->elf.root.type == bfd_link_hash_warning)
2544 hash = ((struct elf32_hppa_link_hash_entry *)
2545 hash->elf.root.u.i.link);
2546
2547 /* At this point in the link, undefined syms have been
2548 resolved, so we need to check that the symbol was
2549 defined in this BFD. */
2550 if ((hash->elf.root.type == bfd_link_hash_defined
2551 || hash->elf.root.type == bfd_link_hash_defweak)
2552 && hash->elf.type == STT_FUNC
2553 && hash->elf.root.u.def.section->output_section != NULL
25f72752
AM
2554 && (hash->elf.root.u.def.section->output_section->owner
2555 == output_bfd)
30667bf3
AM
2556 && hash->elf.root.u.def.section->owner == input_bfd
2557 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2558 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2559 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2560 {
2561 asection *sec;
2562 const char *stub_name;
2563 struct elf32_hppa_stub_hash_entry *stub_entry;
2564
2565 sec = hash->elf.root.u.def.section;
2566 stub_name = hash->elf.root.root.string;
83c81bfe 2567 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
30667bf3 2568 stub_name,
b34976b6 2569 FALSE, FALSE);
30667bf3
AM
2570 if (stub_entry == NULL)
2571 {
83c81bfe 2572 stub_entry = hppa_add_stub (stub_name, sec, htab);
30667bf3 2573 if (!stub_entry)
b4655ea9 2574 return -1;
30667bf3
AM
2575
2576 stub_entry->target_value = hash->elf.root.u.def.value;
2577 stub_entry->target_section = hash->elf.root.u.def.section;
2578 stub_entry->stub_type = hppa_stub_export;
2579 stub_entry->h = hash;
2580 stub_changed = 1;
2581 }
2582 else
2583 {
2584 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
8f615d07
AM
2585 bfd_archive_filename (input_bfd),
2586 stub_name);
30667bf3
AM
2587 }
2588 }
2589 }
30667bf3
AM
2590 }
2591 }
edd21aca 2592
b4655ea9
AM
2593 return stub_changed;
2594}
2595
2596/* Determine and set the size of the stub section for a final link.
2597
2598 The basic idea here is to examine all the relocations looking for
2599 PC-relative calls to a target that is unreachable with a "bl"
2600 instruction. */
2601
b34976b6 2602bfd_boolean
c39a58e6
AM
2603elf32_hppa_size_stubs
2604 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2605 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2606 asection * (*add_stub_section) (const char *, asection *),
2607 void (*layout_sections_again) (void))
b4655ea9
AM
2608{
2609 bfd_size_type stub_group_size;
b34976b6
AM
2610 bfd_boolean stubs_always_before_branch;
2611 bfd_boolean stub_changed;
b4655ea9
AM
2612 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2613
2614 /* Stash our params away. */
2615 htab->stub_bfd = stub_bfd;
2616 htab->multi_subspace = multi_subspace;
2617 htab->add_stub_section = add_stub_section;
2618 htab->layout_sections_again = layout_sections_again;
2619 stubs_always_before_branch = group_size < 0;
2620 if (group_size < 0)
2621 stub_group_size = -group_size;
2622 else
2623 stub_group_size = group_size;
2624 if (stub_group_size == 1)
2625 {
2626 /* Default values. */
acc990f2
AM
2627 if (stubs_always_before_branch)
2628 {
2629 stub_group_size = 7680000;
2630 if (htab->has_17bit_branch || htab->multi_subspace)
2631 stub_group_size = 240000;
2632 if (htab->has_12bit_branch)
2633 stub_group_size = 7500;
2634 }
2635 else
2636 {
2637 stub_group_size = 6971392;
2638 if (htab->has_17bit_branch || htab->multi_subspace)
2639 stub_group_size = 217856;
2640 if (htab->has_12bit_branch)
2641 stub_group_size = 6808;
2642 }
b4655ea9
AM
2643 }
2644
2645 group_sections (htab, stub_group_size, stubs_always_before_branch);
2646
2647 switch (get_local_syms (output_bfd, info->input_bfds, info))
2648 {
2649 default:
2650 if (htab->all_local_syms)
2651 goto error_ret_free_local;
b34976b6 2652 return FALSE;
b4655ea9
AM
2653
2654 case 0:
b34976b6 2655 stub_changed = FALSE;
b4655ea9
AM
2656 break;
2657
2658 case 1:
b34976b6 2659 stub_changed = TRUE;
b4655ea9
AM
2660 break;
2661 }
2662
edd21aca
AM
2663 while (1)
2664 {
b4655ea9
AM
2665 bfd *input_bfd;
2666 unsigned int bfd_indx;
30667bf3
AM
2667 asection *stub_sec;
2668
25f72752 2669 for (input_bfd = info->input_bfds, bfd_indx = 0;
30667bf3 2670 input_bfd != NULL;
25f72752 2671 input_bfd = input_bfd->link_next, bfd_indx++)
30667bf3
AM
2672 {
2673 Elf_Internal_Shdr *symtab_hdr;
b4655ea9
AM
2674 asection *section;
2675 Elf_Internal_Sym *local_syms;
30667bf3
AM
2676
2677 /* We'll need the symbol table in a second. */
2678 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2679 if (symtab_hdr->sh_info == 0)
2680 continue;
2681
b4655ea9 2682 local_syms = htab->all_local_syms[bfd_indx];
30667bf3
AM
2683
2684 /* Walk over each section attached to the input bfd. */
2685 for (section = input_bfd->sections;
2686 section != NULL;
25f72752 2687 section = section->next)
30667bf3 2688 {
30667bf3
AM
2689 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2690
2691 /* If there aren't any relocs, then there's nothing more
2692 to do. */
2693 if ((section->flags & SEC_RELOC) == 0
2694 || section->reloc_count == 0)
2695 continue;
2696
25f72752
AM
2697 /* If this section is a link-once section that will be
2698 discarded, then don't create any stubs. */
2699 if (section->output_section == NULL
2700 || section->output_section->owner != output_bfd)
2701 continue;
2702
1e2f5b6e
AM
2703 /* Get the relocs. */
2704 internal_relocs
c39a58e6 2705 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
45d6a902 2706 info->keep_memory);
30667bf3 2707 if (internal_relocs == NULL)
1e2f5b6e 2708 goto error_ret_free_local;
30667bf3
AM
2709
2710 /* Now examine each relocation. */
2711 irela = internal_relocs;
2712 irelaend = irela + section->reloc_count;
2713 for (; irela < irelaend; irela++)
2714 {
2715 unsigned int r_type, r_indx;
2716 enum elf32_hppa_stub_type stub_type;
2717 struct elf32_hppa_stub_hash_entry *stub_entry;
2718 asection *sym_sec;
2719 bfd_vma sym_value;
2720 bfd_vma destination;
2721 struct elf32_hppa_link_hash_entry *hash;
2722 char *stub_name;
25f72752 2723 const asection *id_sec;
30667bf3
AM
2724
2725 r_type = ELF32_R_TYPE (irela->r_info);
2726 r_indx = ELF32_R_SYM (irela->r_info);
2727
2728 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2729 {
2730 bfd_set_error (bfd_error_bad_value);
1e2f5b6e
AM
2731 error_ret_free_internal:
2732 if (elf_section_data (section)->relocs == NULL)
2733 free (internal_relocs);
2734 goto error_ret_free_local;
30667bf3
AM
2735 }
2736
2737 /* Only look for stubs on call instructions. */
2738 if (r_type != (unsigned int) R_PARISC_PCREL12F
2739 && r_type != (unsigned int) R_PARISC_PCREL17F
2740 && r_type != (unsigned int) R_PARISC_PCREL22F)
2741 continue;
2742
2743 /* Now determine the call target, its name, value,
2744 section. */
2745 sym_sec = NULL;
2746 sym_value = 0;
2747 destination = 0;
2748 hash = NULL;
2749 if (r_indx < symtab_hdr->sh_info)
2750 {
2751 /* It's a local symbol. */
2752 Elf_Internal_Sym *sym;
2753 Elf_Internal_Shdr *hdr;
2754
2755 sym = local_syms + r_indx;
2756 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2757 sym_sec = hdr->bfd_section;
2758 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2759 sym_value = sym->st_value;
2760 destination = (sym_value + irela->r_addend
2761 + sym_sec->output_offset
2762 + sym_sec->output_section->vma);
2763 }
2764 else
2765 {
2766 /* It's an external symbol. */
2767 int e_indx;
2768
2769 e_indx = r_indx - symtab_hdr->sh_info;
2770 hash = ((struct elf32_hppa_link_hash_entry *)
2771 elf_sym_hashes (input_bfd)[e_indx]);
2772
2773 while (hash->elf.root.type == bfd_link_hash_indirect
2774 || hash->elf.root.type == bfd_link_hash_warning)
2775 hash = ((struct elf32_hppa_link_hash_entry *)
2776 hash->elf.root.u.i.link);
2777
2778 if (hash->elf.root.type == bfd_link_hash_defined
2779 || hash->elf.root.type == bfd_link_hash_defweak)
2780 {
2781 sym_sec = hash->elf.root.u.def.section;
2782 sym_value = hash->elf.root.u.def.value;
2783 if (sym_sec->output_section != NULL)
2784 destination = (sym_value + irela->r_addend
2785 + sym_sec->output_offset
2786 + sym_sec->output_section->vma);
2787 }
2788 else if (hash->elf.root.type == bfd_link_hash_undefweak)
c432ba1a
AM
2789 {
2790 if (! info->shared)
2791 continue;
2792 }
30667bf3 2793 else if (hash->elf.root.type == bfd_link_hash_undefined)
c432ba1a
AM
2794 {
2795 if (! (info->shared
560e09e9 2796 && info->unresolved_syms_in_objects == RM_IGNORE
c432ba1a
AM
2797 && (ELF_ST_VISIBILITY (hash->elf.other)
2798 == STV_DEFAULT)
2799 && hash->elf.type != STT_PARISC_MILLI))
2800 continue;
2801 }
30667bf3
AM
2802 else
2803 {
2804 bfd_set_error (bfd_error_bad_value);
2805 goto error_ret_free_internal;
2806 }
2807 }
2808
2809 /* Determine what (if any) linker stub is needed. */
2810 stub_type = hppa_type_of_stub (section, irela, hash,
a252afa4 2811 destination, info);
30667bf3
AM
2812 if (stub_type == hppa_stub_none)
2813 continue;
2814
25f72752 2815 /* Support for grouping stub sections. */
83c81bfe 2816 id_sec = htab->stub_group[section->id].link_sec;
25f72752 2817
30667bf3 2818 /* Get the name of this stub. */
25f72752 2819 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
30667bf3
AM
2820 if (!stub_name)
2821 goto error_ret_free_internal;
2822
83c81bfe 2823 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
30667bf3 2824 stub_name,
b34976b6 2825 FALSE, FALSE);
30667bf3
AM
2826 if (stub_entry != NULL)
2827 {
2828 /* The proper stub has already been created. */
2829 free (stub_name);
2830 continue;
2831 }
2832
83c81bfe 2833 stub_entry = hppa_add_stub (stub_name, section, htab);
30667bf3
AM
2834 if (stub_entry == NULL)
2835 {
2836 free (stub_name);
1e2f5b6e 2837 goto error_ret_free_internal;
30667bf3
AM
2838 }
2839
2840 stub_entry->target_value = sym_value;
2841 stub_entry->target_section = sym_sec;
2842 stub_entry->stub_type = stub_type;
2843 if (info->shared)
2844 {
2845 if (stub_type == hppa_stub_import)
2846 stub_entry->stub_type = hppa_stub_import_shared;
98ceb8ce 2847 else if (stub_type == hppa_stub_long_branch)
30667bf3
AM
2848 stub_entry->stub_type = hppa_stub_long_branch_shared;
2849 }
2850 stub_entry->h = hash;
b34976b6 2851 stub_changed = TRUE;
30667bf3
AM
2852 }
2853
2854 /* We're done with the internal relocs, free them. */
1e2f5b6e
AM
2855 if (elf_section_data (section)->relocs == NULL)
2856 free (internal_relocs);
30667bf3
AM
2857 }
2858 }
2859
2860 if (!stub_changed)
2861 break;
2862
2863 /* OK, we've added some stubs. Find out the new size of the
2864 stub sections. */
83c81bfe 2865 for (stub_sec = htab->stub_bfd->sections;
30667bf3
AM
2866 stub_sec != NULL;
2867 stub_sec = stub_sec->next)
2868 {
74d1c347
AM
2869 stub_sec->_raw_size = 0;
2870 stub_sec->_cooked_size = 0;
2871 }
74d1c347 2872
83c81bfe 2873 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
74d1c347 2874
30667bf3 2875 /* Ask the linker to do its stuff. */
83c81bfe 2876 (*htab->layout_sections_again) ();
b34976b6 2877 stub_changed = FALSE;
30667bf3
AM
2878 }
2879
6cdc0ccc 2880 free (htab->all_local_syms);
b34976b6 2881 return TRUE;
30667bf3
AM
2882
2883 error_ret_free_local:
b4655ea9 2884 free (htab->all_local_syms);
b34976b6 2885 return FALSE;
30667bf3
AM
2886}
2887
30667bf3
AM
2888/* For a final link, this function is called after we have sized the
2889 stubs to provide a value for __gp. */
2890
b34976b6 2891bfd_boolean
c39a58e6 2892elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
30667bf3 2893{
b4655ea9
AM
2894 struct bfd_link_hash_entry *h;
2895 asection *sec = NULL;
2896 bfd_vma gp_val = 0;
83c81bfe 2897 struct elf32_hppa_link_hash_table *htab;
30667bf3 2898
83c81bfe 2899 htab = hppa_link_hash_table (info);
b34976b6 2900 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
30667bf3 2901
df8634e3 2902 if (h != NULL
b4655ea9
AM
2903 && (h->type == bfd_link_hash_defined
2904 || h->type == bfd_link_hash_defweak))
30667bf3 2905 {
b4655ea9
AM
2906 gp_val = h->u.def.value;
2907 sec = h->u.def.section;
30667bf3
AM
2908 }
2909 else
2910 {
0eddce27
AM
2911 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2912 asection *sgot = bfd_get_section_by_name (abfd, ".got");
b4655ea9 2913
74d1c347
AM
2914 /* Choose to point our LTP at, in this order, one of .plt, .got,
2915 or .data, if these sections exist. In the case of choosing
2916 .plt try to make the LTP ideal for addressing anywhere in the
2917 .plt or .got with a 14 bit signed offset. Typically, the end
2918 of the .plt is the start of the .got, so choose .plt + 0x2000
2919 if either the .plt or .got is larger than 0x2000. If both
2920 the .plt and .got are smaller than 0x2000, choose the end of
2921 the .plt section. */
b4655ea9 2922 sec = splt;
74d1c347 2923 if (sec != NULL)
30667bf3 2924 {
74d1c347 2925 gp_val = sec->_raw_size;
b4655ea9 2926 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
74d1c347
AM
2927 {
2928 gp_val = 0x2000;
2929 }
2930 }
2931 else
2932 {
b4655ea9 2933 sec = sgot;
74d1c347
AM
2934 if (sec != NULL)
2935 {
2936 /* We know we don't have a .plt. If .got is large,
2937 offset our LTP. */
2938 if (sec->_raw_size > 0x2000)
2939 gp_val = 0x2000;
2940 }
2941 else
2942 {
2943 /* No .plt or .got. Who cares what the LTP is? */
2944 sec = bfd_get_section_by_name (abfd, ".data");
2945 }
30667bf3 2946 }
df8634e3
AM
2947
2948 if (h != NULL)
2949 {
b4655ea9
AM
2950 h->type = bfd_link_hash_defined;
2951 h->u.def.value = gp_val;
df8634e3 2952 if (sec != NULL)
b4655ea9 2953 h->u.def.section = sec;
df8634e3 2954 else
b4655ea9 2955 h->u.def.section = bfd_abs_section_ptr;
df8634e3 2956 }
30667bf3
AM
2957 }
2958
b32b5d6e 2959 if (sec != NULL && sec->output_section != NULL)
74d1c347
AM
2960 gp_val += sec->output_section->vma + sec->output_offset;
2961
2962 elf_gp (abfd) = gp_val;
b34976b6 2963 return TRUE;
30667bf3
AM
2964}
2965
30667bf3
AM
2966/* Build all the stubs associated with the current output file. The
2967 stubs are kept in a hash table attached to the main linker hash
2968 table. We also set up the .plt entries for statically linked PIC
2969 functions here. This function is called via hppaelf_finish in the
2970 linker. */
2971
b34976b6 2972bfd_boolean
c39a58e6 2973elf32_hppa_build_stubs (struct bfd_link_info *info)
30667bf3
AM
2974{
2975 asection *stub_sec;
2976 struct bfd_hash_table *table;
83c81bfe 2977 struct elf32_hppa_link_hash_table *htab;
30667bf3 2978
83c81bfe 2979 htab = hppa_link_hash_table (info);
30667bf3 2980
83c81bfe 2981 for (stub_sec = htab->stub_bfd->sections;
30667bf3
AM
2982 stub_sec != NULL;
2983 stub_sec = stub_sec->next)
2984 {
dc810e39 2985 bfd_size_type size;
30667bf3
AM
2986
2987 /* Allocate memory to hold the linker stubs. */
74d1c347 2988 size = stub_sec->_raw_size;
c39a58e6 2989 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
30667bf3 2990 if (stub_sec->contents == NULL && size != 0)
b34976b6 2991 return FALSE;
74d1c347 2992 stub_sec->_raw_size = 0;
30667bf3
AM
2993 }
2994
2995 /* Build the stubs as directed by the stub hash table. */
83c81bfe 2996 table = &htab->stub_hash_table;
30667bf3
AM
2997 bfd_hash_traverse (table, hppa_build_one_stub, info);
2998
b34976b6 2999 return TRUE;
30667bf3
AM
3000}
3001
c46b7515
AM
3002/* Perform a final link. */
3003
b34976b6 3004static bfd_boolean
c39a58e6 3005elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
c46b7515 3006{
4dc86686
AM
3007 /* Invoke the regular ELF linker to do all the work. */
3008 if (!bfd_elf32_bfd_final_link (abfd, info))
b34976b6 3009 return FALSE;
c46b7515
AM
3010
3011 /* If we're producing a final executable, sort the contents of the
985142a4 3012 unwind section. */
46fe4e66 3013 return elf_hppa_sort_unwind (abfd);
c46b7515
AM
3014}
3015
3016/* Record the lowest address for the data and text segments. */
3017
3018static void
c39a58e6
AM
3019hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3020 asection *section,
3021 void *data)
c46b7515 3022{
83c81bfe 3023 struct elf32_hppa_link_hash_table *htab;
c46b7515 3024
83c81bfe 3025 htab = (struct elf32_hppa_link_hash_table *) data;
c46b7515
AM
3026
3027 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3028 {
3029 bfd_vma value = section->vma - section->filepos;
3030
3031 if ((section->flags & SEC_READONLY) != 0)
3032 {
83c81bfe
AM
3033 if (value < htab->text_segment_base)
3034 htab->text_segment_base = value;
c46b7515
AM
3035 }
3036 else
3037 {
83c81bfe
AM
3038 if (value < htab->data_segment_base)
3039 htab->data_segment_base = value;
c46b7515
AM
3040 }
3041 }
3042}
3043
30667bf3
AM
3044/* Perform a relocation as part of a final link. */
3045
3046static bfd_reloc_status_type
c39a58e6
AM
3047final_link_relocate (asection *input_section,
3048 bfd_byte *contents,
3049 const Elf_Internal_Rela *rel,
3050 bfd_vma value,
3051 struct elf32_hppa_link_hash_table *htab,
3052 asection *sym_sec,
a252afa4
DA
3053 struct elf32_hppa_link_hash_entry *h,
3054 struct bfd_link_info *info)
30667bf3
AM
3055{
3056 int insn;
3057 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
a252afa4 3058 unsigned int orig_r_type = r_type;
30667bf3
AM
3059 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3060 int r_format = howto->bitsize;
3061 enum hppa_reloc_field_selector_type_alt r_field;
3062 bfd *input_bfd = input_section->owner;
3063 bfd_vma offset = rel->r_offset;
3064 bfd_vma max_branch_offset = 0;
3065 bfd_byte *hit_data = contents + offset;
3066 bfd_signed_vma addend = rel->r_addend;
3067 bfd_vma location;
3068 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3069 int val;
3070
3071 if (r_type == R_PARISC_NONE)
3072 return bfd_reloc_ok;
3073
3074 insn = bfd_get_32 (input_bfd, hit_data);
3075
3076 /* Find out where we are and where we're going. */
3077 location = (offset +
3078 input_section->output_offset +
3079 input_section->output_section->vma);
3080
a252afa4
DA
3081 /* If we are not building a shared library, convert DLTIND relocs to
3082 DPREL relocs. */
3083 if (!info->shared)
3084 {
3085 switch (r_type)
4fc8051d
AM
3086 {
3087 case R_PARISC_DLTIND21L:
3088 r_type = R_PARISC_DPREL21L;
a252afa4
DA
3089 break;
3090
4fc8051d
AM
3091 case R_PARISC_DLTIND14R:
3092 r_type = R_PARISC_DPREL14R;
a252afa4
DA
3093 break;
3094
4fc8051d
AM
3095 case R_PARISC_DLTIND14F:
3096 r_type = R_PARISC_DPREL14F;
a252afa4
DA
3097 break;
3098 }
3099 }
3100
30667bf3
AM
3101 switch (r_type)
3102 {
3103 case R_PARISC_PCREL12F:
3104 case R_PARISC_PCREL17F:
3105 case R_PARISC_PCREL22F:
067fa4a6
AM
3106 /* If this call should go via the plt, find the import stub in
3107 the stub hash. */
30667bf3
AM
3108 if (sym_sec == NULL
3109 || sym_sec->output_section == NULL
12cca0d2 3110 || (h != NULL
067fa4a6 3111 && h->elf.plt.offset != (bfd_vma) -1
a252afa4
DA
3112 && h->elf.dynindx != -1
3113 && !h->plabel
3114 && (info->shared
3115 || !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
3116 || h->elf.root.type == bfd_link_hash_defweak)))
30667bf3
AM
3117 {
3118 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
83c81bfe 3119 h, rel, htab);
30667bf3
AM
3120 if (stub_entry != NULL)
3121 {
3122 value = (stub_entry->stub_offset
3123 + stub_entry->stub_sec->output_offset
3124 + stub_entry->stub_sec->output_section->vma);
3125 addend = 0;
3126 }
3127 else if (sym_sec == NULL && h != NULL
3128 && h->elf.root.type == bfd_link_hash_undefweak)
3129 {
db20fd76
AM
3130 /* It's OK if undefined weak. Calls to undefined weak
3131 symbols behave as if the "called" function
3132 immediately returns. We can thus call to a weak
3133 function without first checking whether the function
3134 is defined. */
30667bf3 3135 value = location;
db20fd76 3136 addend = 8;
30667bf3
AM
3137 }
3138 else
f09ebc7d 3139 return bfd_reloc_undefined;
30667bf3
AM
3140 }
3141 /* Fall thru. */
3142
3143 case R_PARISC_PCREL21L:
3144 case R_PARISC_PCREL17C:
3145 case R_PARISC_PCREL17R:
3146 case R_PARISC_PCREL14R:
3147 case R_PARISC_PCREL14F:
3148 /* Make it a pc relative offset. */
3149 value -= location;
3150 addend -= 8;
3151 break;
3152
3153 case R_PARISC_DPREL21L:
3154 case R_PARISC_DPREL14R:
3155 case R_PARISC_DPREL14F:
a252afa4
DA
3156 /* Convert instructions that use the linkage table pointer (r19) to
3157 instructions that use the global data pointer (dp). This is the
3158 most efficient way of using PIC code in an incomplete executable,
3159 but the user must follow the standard runtime conventions for
3160 accessing data for this to work. */
3161 if (orig_r_type == R_PARISC_DLTIND21L)
3162 {
3163 /* Convert addil instructions if the original reloc was a
3164 DLTIND21L. GCC sometimes uses a register other than r19 for
3165 the operation, so we must convert any addil instruction
3166 that uses this relocation. */
3167 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3168 insn = ADDIL_DP;
3169 else
3170 /* We must have a ldil instruction. It's too hard to find
3171 and convert the associated add instruction, so issue an
3172 error. */
3173 (*_bfd_error_handler)
4fc8051d 3174 (_("%s(%s+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
a252afa4
DA
3175 bfd_archive_filename (input_bfd),
3176 input_section->name,
3177 (long) rel->r_offset,
3178 howto->name,
3179 insn);
3180 }
3181 else if (orig_r_type == R_PARISC_DLTIND14F)
3182 {
3183 /* This must be a format 1 load/store. Change the base
3184 register to dp. */
3185 insn = (insn & 0xfc1ffff) | (27 << 21);
3186 }
3187
30667bf3 3188 /* For all the DP relative relocations, we need to examine the symbol's
95d0f04a
DA
3189 section. If it has no section or if it's a code section, then
3190 "data pointer relative" makes no sense. In that case we don't
3191 adjust the "value", and for 21 bit addil instructions, we change the
3192 source addend register from %dp to %r0. This situation commonly
3193 arises for undefined weak symbols and when a variable's "constness"
30667bf3
AM
3194 is declared differently from the way the variable is defined. For
3195 instance: "extern int foo" with foo defined as "const int foo". */
95d0f04a 3196 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
30667bf3
AM
3197 {
3198 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3199 == (((int) OP_ADDIL << 26) | (27 << 21)))
3200 {
3201 insn &= ~ (0x1f << 21);
067fa4a6 3202#if 0 /* debug them. */
30667bf3
AM
3203 (*_bfd_error_handler)
3204 (_("%s(%s+0x%lx): fixing %s"),
8f615d07 3205 bfd_archive_filename (input_bfd),
30667bf3
AM
3206 input_section->name,
3207 (long) rel->r_offset,
3208 howto->name);
3209#endif
3210 }
3211 /* Now try to make things easy for the dynamic linker. */
3212
3213 break;
3214 }
74d1c347 3215 /* Fall thru. */
30667bf3
AM
3216
3217 case R_PARISC_DLTIND21L:
3218 case R_PARISC_DLTIND14R:
3219 case R_PARISC_DLTIND14F:
3220 value -= elf_gp (input_section->output_section->owner);
3221 break;
3222
c46b7515
AM
3223 case R_PARISC_SEGREL32:
3224 if ((sym_sec->flags & SEC_CODE) != 0)
83c81bfe 3225 value -= htab->text_segment_base;
c46b7515 3226 else
83c81bfe 3227 value -= htab->data_segment_base;
c46b7515
AM
3228 break;
3229
30667bf3
AM
3230 default:
3231 break;
3232 }
3233
3234 switch (r_type)
3235 {
3236 case R_PARISC_DIR32:
47d89dba 3237 case R_PARISC_DIR14F:
30667bf3
AM
3238 case R_PARISC_DIR17F:
3239 case R_PARISC_PCREL17C:
3240 case R_PARISC_PCREL14F:
3241 case R_PARISC_DPREL14F:
3242 case R_PARISC_PLABEL32:
3243 case R_PARISC_DLTIND14F:
3244 case R_PARISC_SEGBASE:
3245 case R_PARISC_SEGREL32:
3246 r_field = e_fsel;
3247 break;
3248
1bf42538 3249 case R_PARISC_DLTIND21L:
30667bf3 3250 case R_PARISC_PCREL21L:
30667bf3 3251 case R_PARISC_PLABEL21L:
1bf42538
JL
3252 r_field = e_lsel;
3253 break;
3254
3255 case R_PARISC_DIR21L:
3256 case R_PARISC_DPREL21L:
30667bf3
AM
3257 r_field = e_lrsel;
3258 break;
3259
30667bf3 3260 case R_PARISC_PCREL17R:
30667bf3 3261 case R_PARISC_PCREL14R:
30667bf3
AM
3262 case R_PARISC_PLABEL14R:
3263 case R_PARISC_DLTIND14R:
1bf42538
JL
3264 r_field = e_rsel;
3265 break;
3266
3267 case R_PARISC_DIR17R:
3268 case R_PARISC_DIR14R:
3269 case R_PARISC_DPREL14R:
30667bf3
AM
3270 r_field = e_rrsel;
3271 break;
3272
3273 case R_PARISC_PCREL12F:
3274 case R_PARISC_PCREL17F:
3275 case R_PARISC_PCREL22F:
3276 r_field = e_fsel;
3277
3278 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3279 {
3280 max_branch_offset = (1 << (17-1)) << 2;
3281 }
3282 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3283 {
3284 max_branch_offset = (1 << (12-1)) << 2;
3285 }
3286 else
3287 {
3288 max_branch_offset = (1 << (22-1)) << 2;
3289 }
3290
3291 /* sym_sec is NULL on undefined weak syms or when shared on
3292 undefined syms. We've already checked for a stub for the
3293 shared undefined case. */
3294 if (sym_sec == NULL)
3295 break;
3296
3297 /* If the branch is out of reach, then redirect the
3298 call to the local stub for this function. */
3299 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3300 {
3301 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
83c81bfe 3302 h, rel, htab);
30667bf3 3303 if (stub_entry == NULL)
f09ebc7d 3304 return bfd_reloc_undefined;
30667bf3
AM
3305
3306 /* Munge up the value and addend so that we call the stub
3307 rather than the procedure directly. */
3308 value = (stub_entry->stub_offset
3309 + stub_entry->stub_sec->output_offset
3310 + stub_entry->stub_sec->output_section->vma
3311 - location);
3312 addend = -8;
3313 }
3314 break;
3315
3316 /* Something we don't know how to handle. */
3317 default:
3318 return bfd_reloc_notsupported;
3319 }
3320
3321 /* Make sure we can reach the stub. */
3322 if (max_branch_offset != 0
3323 && value + addend + max_branch_offset >= 2*max_branch_offset)
3324 {
3325 (*_bfd_error_handler)
3326 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
8f615d07 3327 bfd_archive_filename (input_bfd),
30667bf3
AM
3328 input_section->name,
3329 (long) rel->r_offset,
3330 stub_entry->root.string);
ce757d15 3331 bfd_set_error (bfd_error_bad_value);
30667bf3
AM
3332 return bfd_reloc_notsupported;
3333 }
3334
3335 val = hppa_field_adjust (value, addend, r_field);
3336
3337 switch (r_type)
3338 {
3339 case R_PARISC_PCREL12F:
3340 case R_PARISC_PCREL17C:
3341 case R_PARISC_PCREL17F:
3342 case R_PARISC_PCREL17R:
3343 case R_PARISC_PCREL22F:
3344 case R_PARISC_DIR17F:
3345 case R_PARISC_DIR17R:
3346 /* This is a branch. Divide the offset by four.
3347 Note that we need to decide whether it's a branch or
3348 otherwise by inspecting the reloc. Inspecting insn won't
3349 work as insn might be from a .word directive. */
3350 val >>= 2;
3351 break;
3352
3353 default:
3354 break;
3355 }
3356
3357 insn = hppa_rebuild_insn (insn, val, r_format);
3358
3359 /* Update the instruction word. */
74d1c347 3360 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
30667bf3
AM
3361 return bfd_reloc_ok;
3362}
3363
30667bf3
AM
3364/* Relocate an HPPA ELF section. */
3365
b34976b6 3366static bfd_boolean
c39a58e6
AM
3367elf32_hppa_relocate_section (bfd *output_bfd,
3368 struct bfd_link_info *info,
3369 bfd *input_bfd,
3370 asection *input_section,
3371 bfd_byte *contents,
3372 Elf_Internal_Rela *relocs,
3373 Elf_Internal_Sym *local_syms,
3374 asection **local_sections)
30667bf3 3375{
30667bf3 3376 bfd_vma *local_got_offsets;
83c81bfe 3377 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
3378 Elf_Internal_Shdr *symtab_hdr;
3379 Elf_Internal_Rela *rel;
3380 Elf_Internal_Rela *relend;
30667bf3 3381
1049f94e 3382 if (info->relocatable)
b34976b6 3383 return TRUE;
f0fe0e16 3384
30667bf3
AM
3385 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3386
83c81bfe 3387 htab = hppa_link_hash_table (info);
74d1c347 3388 local_got_offsets = elf_local_got_offsets (input_bfd);
30667bf3
AM
3389
3390 rel = relocs;
3391 relend = relocs + input_section->reloc_count;
3392 for (; rel < relend; rel++)
3393 {
3394 unsigned int r_type;
3395 reloc_howto_type *howto;
3396 unsigned int r_symndx;
3397 struct elf32_hppa_link_hash_entry *h;
3398 Elf_Internal_Sym *sym;
3399 asection *sym_sec;
3400 bfd_vma relocation;
3401 bfd_reloc_status_type r;
3402 const char *sym_name;
b34976b6
AM
3403 bfd_boolean plabel;
3404 bfd_boolean warned_undef;
30667bf3
AM
3405
3406 r_type = ELF32_R_TYPE (rel->r_info);
3407 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3408 {
3409 bfd_set_error (bfd_error_bad_value);
b34976b6 3410 return FALSE;
30667bf3
AM
3411 }
3412 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3413 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3414 continue;
3415
30667bf3 3416 /* This is a final link. */
f0fe0e16 3417 r_symndx = ELF32_R_SYM (rel->r_info);
30667bf3
AM
3418 h = NULL;
3419 sym = NULL;
3420 sym_sec = NULL;
b34976b6 3421 warned_undef = FALSE;
30667bf3
AM
3422 if (r_symndx < symtab_hdr->sh_info)
3423 {
3424 /* This is a local symbol, h defaults to NULL. */
3425 sym = local_syms + r_symndx;
3426 sym_sec = local_sections[r_symndx];
8517fae7 3427 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
30667bf3
AM
3428 }
3429 else
3430 {
560e09e9
NC
3431 struct elf_link_hash_entry *hh;
3432 bfd_boolean unresolved_reloc;
3433
3434 RELOC_FOR_GLOBAL_SYMBOL (hh, elf_sym_hashes (input_bfd), r_symndx, symtab_hdr,
3435 relocation, sym_sec, unresolved_reloc, info,
3436 warned_undef);
3437
3438 if (relocation == 0
3439 && hh->root.type != bfd_link_hash_defined
3440 && hh->root.type != bfd_link_hash_defweak
3441 && hh->root.type != bfd_link_hash_undefweak)
4fc8051d 3442 {
560e09e9
NC
3443 if (!info->executable
3444 && info->unresolved_syms_in_objects == RM_IGNORE
3445 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3446 && hh->type == STT_PARISC_MILLI)
3447 {
3448 if (! info->callbacks->undefined_symbol
3449 (info, hh->root.root.string, input_bfd,
3450 input_section, rel->r_offset,
3451 ((info->shared && info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)
3452 || (!info->shared && info->unresolved_syms_in_objects == RM_GENERATE_ERROR))))
3453 return FALSE;
3454 warned_undef = TRUE;
3455 }
30667bf3 3456 }
560e09e9 3457 h = (struct elf32_hppa_link_hash_entry *) hh;
30667bf3
AM
3458 }
3459
3460 /* Do any required modifications to the relocation value, and
25f72752
AM
3461 determine what types of dynamic info we need to output, if
3462 any. */
74d1c347 3463 plabel = 0;
30667bf3
AM
3464 switch (r_type)
3465 {
3466 case R_PARISC_DLTIND14F:
3467 case R_PARISC_DLTIND14R:
3468 case R_PARISC_DLTIND21L:
ce757d15
AM
3469 {
3470 bfd_vma off;
b34976b6 3471 bfd_boolean do_got = 0;
ce757d15
AM
3472
3473 /* Relocation is to the entry for this symbol in the
3474 global offset table. */
3475 if (h != NULL)
3476 {
b34976b6 3477 bfd_boolean dyn;
ce757d15
AM
3478
3479 off = h->elf.got.offset;
3480 dyn = htab->elf.dynamic_sections_created;
3481 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3482 {
3483 /* If we aren't going to call finish_dynamic_symbol,
3484 then we need to handle initialisation of the .got
3485 entry and create needed relocs here. Since the
3486 offset must always be a multiple of 4, we use the
3487 least significant bit to record whether we have
3488 initialised it already. */
3489 if ((off & 1) != 0)
3490 off &= ~1;
3491 else
3492 {
3493 h->elf.got.offset |= 1;
3494 do_got = 1;
3495 }
3496 }
3497 }
3498 else
3499 {
3500 /* Local symbol case. */
3501 if (local_got_offsets == NULL)
3502 abort ();
3503
3504 off = local_got_offsets[r_symndx];
3505
3506 /* The offset must always be a multiple of 4. We use
3507 the least significant bit to record whether we have
3508 already generated the necessary reloc. */
3509 if ((off & 1) != 0)
3510 off &= ~1;
3511 else
3512 {
3513 local_got_offsets[r_symndx] |= 1;
3514 do_got = 1;
3515 }
3516 }
68fb2e56 3517
ce757d15
AM
3518 if (do_got)
3519 {
3520 if (info->shared)
3521 {
3522 /* Output a dynamic relocation for this GOT entry.
3523 In this case it is relative to the base of the
3524 object because the symbol index is zero. */
3525 Elf_Internal_Rela outrel;
947216bf
AM
3526 bfd_byte *loc;
3527 asection *s = htab->srelgot;
ce757d15
AM
3528
3529 outrel.r_offset = (off
3530 + htab->sgot->output_offset
3531 + htab->sgot->output_section->vma);
3532 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3533 outrel.r_addend = relocation;
947216bf
AM
3534 loc = s->contents;
3535 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
ce757d15
AM
3536 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3537 }
3538 else
30667bf3 3539 bfd_put_32 (output_bfd, relocation,
83c81bfe 3540 htab->sgot->contents + off);
ce757d15 3541 }
30667bf3 3542
ce757d15
AM
3543 if (off >= (bfd_vma) -2)
3544 abort ();
30667bf3 3545
ce757d15
AM
3546 /* Add the base of the GOT to the relocation value. */
3547 relocation = (off
3548 + htab->sgot->output_offset
3549 + htab->sgot->output_section->vma);
3550 }
30667bf3 3551 break;
252b5132 3552
c46b7515
AM
3553 case R_PARISC_SEGREL32:
3554 /* If this is the first SEGREL relocation, then initialize
3555 the segment base values. */
83c81bfe
AM
3556 if (htab->text_segment_base == (bfd_vma) -1)
3557 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
c46b7515
AM
3558 break;
3559
30667bf3
AM
3560 case R_PARISC_PLABEL14R:
3561 case R_PARISC_PLABEL21L:
3562 case R_PARISC_PLABEL32:
ebe50bae 3563 if (htab->elf.dynamic_sections_created)
252b5132 3564 {
ce757d15 3565 bfd_vma off;
b34976b6 3566 bfd_boolean do_plt = 0;
ce757d15 3567
74d1c347
AM
3568 /* If we have a global symbol with a PLT slot, then
3569 redirect this relocation to it. */
3570 if (h != NULL)
3571 {
3572 off = h->elf.plt.offset;
4dc86686 3573 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
8dea1268
AM
3574 {
3575 /* In a non-shared link, adjust_dynamic_symbols
3576 isn't called for symbols forced local. We
dc810e39 3577 need to write out the plt entry here. */
8dea1268
AM
3578 if ((off & 1) != 0)
3579 off &= ~1;
3580 else
3581 {
8dea1268 3582 h->elf.plt.offset |= 1;
ce757d15 3583 do_plt = 1;
8dea1268
AM
3584 }
3585 }
74d1c347
AM
3586 }
3587 else
3588 {
68fb2e56
AM
3589 bfd_vma *local_plt_offsets;
3590
3591 if (local_got_offsets == NULL)
3592 abort ();
74d1c347 3593
68fb2e56
AM
3594 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3595 off = local_plt_offsets[r_symndx];
74d1c347
AM
3596
3597 /* As for the local .got entry case, we use the last
3598 bit to record whether we've already initialised
3599 this local .plt entry. */
3600 if ((off & 1) != 0)
3601 off &= ~1;
ce757d15
AM
3602 else
3603 {
3604 local_plt_offsets[r_symndx] |= 1;
3605 do_plt = 1;
3606 }
3607 }
3608
3609 if (do_plt)
3610 {
3611 if (info->shared)
3612 {
3613 /* Output a dynamic IPLT relocation for this
3614 PLT entry. */
3615 Elf_Internal_Rela outrel;
947216bf
AM
3616 bfd_byte *loc;
3617 asection *s = htab->srelplt;
ce757d15
AM
3618
3619 outrel.r_offset = (off
3620 + htab->splt->output_offset
3621 + htab->splt->output_section->vma);
3622 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3623 outrel.r_addend = relocation;
947216bf
AM
3624 loc = s->contents;
3625 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
ce757d15
AM
3626 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3627 }
74d1c347
AM
3628 else
3629 {
3630 bfd_put_32 (output_bfd,
3631 relocation,
83c81bfe 3632 htab->splt->contents + off);
74d1c347 3633 bfd_put_32 (output_bfd,
83c81bfe
AM
3634 elf_gp (htab->splt->output_section->owner),
3635 htab->splt->contents + off + 4);
74d1c347
AM
3636 }
3637 }
3638
68fb2e56 3639 if (off >= (bfd_vma) -2)
49e9d0d3 3640 abort ();
74d1c347
AM
3641
3642 /* PLABELs contain function pointers. Relocation is to
3643 the entry for the function in the .plt. The magic +2
3644 offset signals to $$dyncall that the function pointer
3645 is in the .plt and thus has a gp pointer too.
3646 Exception: Undefined PLABELs should have a value of
3647 zero. */
3648 if (h == NULL
3649 || (h->elf.root.type != bfd_link_hash_undefweak
3650 && h->elf.root.type != bfd_link_hash_undefined))
3651 {
3652 relocation = (off
83c81bfe
AM
3653 + htab->splt->output_offset
3654 + htab->splt->output_section->vma
74d1c347
AM
3655 + 2);
3656 }
3657 plabel = 1;
30667bf3
AM
3658 }
3659 /* Fall through and possibly emit a dynamic relocation. */
3660
3661 case R_PARISC_DIR17F:
3662 case R_PARISC_DIR17R:
47d89dba 3663 case R_PARISC_DIR14F:
30667bf3
AM
3664 case R_PARISC_DIR14R:
3665 case R_PARISC_DIR21L:
3666 case R_PARISC_DPREL14F:
3667 case R_PARISC_DPREL14R:
3668 case R_PARISC_DPREL21L:
3669 case R_PARISC_DIR32:
ec338859
AM
3670 /* r_symndx will be zero only for relocs against symbols
3671 from removed linkonce sections, or sections discarded by
3672 a linker script. */
3673 if (r_symndx == 0
3674 || (input_section->flags & SEC_ALLOC) == 0)
3675 break;
3676
30667bf3 3677 /* The reloc types handled here and this conditional
56882138 3678 expression must match the code in ..check_relocs and
ec338859 3679 allocate_dynrelocs. ie. We need exactly the same condition
56882138
AM
3680 as in ..check_relocs, with some extra conditions (dynindx
3681 test in this case) to cater for relocs removed by
ec338859 3682 allocate_dynrelocs. If you squint, the non-shared test
56882138
AM
3683 here does indeed match the one in ..check_relocs, the
3684 difference being that here we test DEF_DYNAMIC as well as
3685 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3686 which is why we can't use just that test here.
3687 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3688 there all files have not been loaded. */
446f2863 3689 if ((info->shared
4fc8051d
AM
3690 && (h == NULL
3691 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3692 || h->elf.root.type != bfd_link_hash_undefweak)
446f2863 3693 && (IS_ABSOLUTE_RELOC (r_type)
4fc8051d 3694 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
446f2863 3695 || (!info->shared
446f2863
AM
3696 && h != NULL
3697 && h->elf.dynindx != -1
3698 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
4fc8051d
AM
3699 && ((ELIMINATE_COPY_RELOCS
3700 && (h->elf.elf_link_hash_flags
3701 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
56882138
AM
3702 && (h->elf.elf_link_hash_flags
3703 & ELF_LINK_HASH_DEF_REGULAR) == 0)
446f2863
AM
3704 || h->elf.root.type == bfd_link_hash_undefweak
3705 || h->elf.root.type == bfd_link_hash_undefined)))
30667bf3
AM
3706 {
3707 Elf_Internal_Rela outrel;
b34976b6 3708 bfd_boolean skip;
98ceb8ce 3709 asection *sreloc;
947216bf 3710 bfd_byte *loc;
252b5132 3711
30667bf3
AM
3712 /* When generating a shared object, these relocations
3713 are copied into the output file to be resolved at run
3714 time. */
252b5132 3715
30667bf3 3716 outrel.r_addend = rel->r_addend;
c629eae0
JJ
3717 outrel.r_offset =
3718 _bfd_elf_section_offset (output_bfd, info, input_section,
3719 rel->r_offset);
0bb2d96a
JJ
3720 skip = (outrel.r_offset == (bfd_vma) -1
3721 || outrel.r_offset == (bfd_vma) -2);
30667bf3
AM
3722 outrel.r_offset += (input_section->output_offset
3723 + input_section->output_section->vma);
3724
3725 if (skip)
252b5132 3726 {
30667bf3 3727 memset (&outrel, 0, sizeof (outrel));
252b5132 3728 }
74d1c347
AM
3729 else if (h != NULL
3730 && h->elf.dynindx != -1
3731 && (plabel
446f2863
AM
3732 || !IS_ABSOLUTE_RELOC (r_type)
3733 || !info->shared
74d1c347 3734 || !info->symbolic
30667bf3
AM
3735 || (h->elf.elf_link_hash_flags
3736 & ELF_LINK_HASH_DEF_REGULAR) == 0))
252b5132 3737 {
30667bf3
AM
3738 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3739 }
3740 else /* It's a local symbol, or one marked to become local. */
3741 {
3742 int indx = 0;
edd21aca 3743
30667bf3
AM
3744 /* Add the absolute offset of the symbol. */
3745 outrel.r_addend += relocation;
edd21aca 3746
74d1c347
AM
3747 /* Global plabels need to be processed by the
3748 dynamic linker so that functions have at most one
3749 fptr. For this reason, we need to differentiate
3750 between global and local plabels, which we do by
3751 providing the function symbol for a global plabel
3752 reloc, and no symbol for local plabels. */
3753 if (! plabel
3754 && sym_sec != NULL
30667bf3
AM
3755 && sym_sec->output_section != NULL
3756 && ! bfd_is_abs_section (sym_sec))
252b5132 3757 {
4b71bec0
DA
3758 /* Skip this relocation if the output section has
3759 been discarded. */
3760 if (bfd_is_abs_section (sym_sec->output_section))
3761 break;
3762
30667bf3
AM
3763 indx = elf_section_data (sym_sec->output_section)->dynindx;
3764 /* We are turning this relocation into one
3765 against a section symbol, so subtract out the
3766 output section's address but not the offset
3767 of the input section in the output section. */
3768 outrel.r_addend -= sym_sec->output_section->vma;
252b5132 3769 }
252b5132 3770
30667bf3
AM
3771 outrel.r_info = ELF32_R_INFO (indx, r_type);
3772 }
68fb2e56
AM
3773#if 0
3774 /* EH info can cause unaligned DIR32 relocs.
3775 Tweak the reloc type for the dynamic linker. */
3776 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3777 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3778 R_PARISC_DIR32U);
3779#endif
98ceb8ce
AM
3780 sreloc = elf_section_data (input_section)->sreloc;
3781 if (sreloc == NULL)
3782 abort ();
3783
947216bf
AM
3784 loc = sreloc->contents;
3785 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
98ceb8ce 3786 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
30667bf3
AM
3787 }
3788 break;
edd21aca 3789
30667bf3
AM
3790 default:
3791 break;
3792 }
252b5132 3793
30667bf3 3794 r = final_link_relocate (input_section, contents, rel, relocation,
a252afa4 3795 htab, sym_sec, h, info);
252b5132 3796
30667bf3
AM
3797 if (r == bfd_reloc_ok)
3798 continue;
252b5132 3799
30667bf3
AM
3800 if (h != NULL)
3801 sym_name = h->elf.root.root.string;
3802 else
3803 {
3804 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3805 symtab_hdr->sh_link,
3806 sym->st_name);
3807 if (sym_name == NULL)
b34976b6 3808 return FALSE;
30667bf3
AM
3809 if (*sym_name == '\0')
3810 sym_name = bfd_section_name (input_bfd, sym_sec);
3811 }
edd21aca 3812
30667bf3 3813 howto = elf_hppa_howto_table + r_type;
252b5132 3814
30667bf3
AM
3815 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3816 {
f09ebc7d
AM
3817 if (r == bfd_reloc_notsupported || !warned_undef)
3818 {
3819 (*_bfd_error_handler)
3820 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3821 bfd_archive_filename (input_bfd),
3822 input_section->name,
3823 (long) rel->r_offset,
3824 howto->name,
3825 sym_name);
3826 bfd_set_error (bfd_error_bad_value);
b34976b6 3827 return FALSE;
f09ebc7d 3828 }
30667bf3
AM
3829 }
3830 else
3831 {
3832 if (!((*info->callbacks->reloc_overflow)
c39a58e6
AM
3833 (info, sym_name, howto->name, 0, input_bfd, input_section,
3834 rel->r_offset)))
b34976b6 3835 return FALSE;
30667bf3
AM
3836 }
3837 }
edd21aca 3838
b34976b6 3839 return TRUE;
30667bf3 3840}
252b5132 3841
30667bf3
AM
3842/* Finish up dynamic symbol handling. We set the contents of various
3843 dynamic sections here. */
252b5132 3844
b34976b6 3845static bfd_boolean
c39a58e6
AM
3846elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3847 struct bfd_link_info *info,
3848 struct elf_link_hash_entry *h,
3849 Elf_Internal_Sym *sym)
30667bf3 3850{
83c81bfe 3851 struct elf32_hppa_link_hash_table *htab;
a252afa4
DA
3852 Elf_Internal_Rela rel;
3853 bfd_byte *loc;
edd21aca 3854
83c81bfe 3855 htab = hppa_link_hash_table (info);
30667bf3 3856
30667bf3
AM
3857 if (h->plt.offset != (bfd_vma) -1)
3858 {
3859 bfd_vma value;
30667bf3 3860
8dea1268
AM
3861 if (h->plt.offset & 1)
3862 abort ();
3863
30667bf3
AM
3864 /* This symbol has an entry in the procedure linkage table. Set
3865 it up.
3866
3867 The format of a plt entry is
74d1c347
AM
3868 <funcaddr>
3869 <__gp>
47d89dba 3870 */
30667bf3
AM
3871 value = 0;
3872 if (h->root.type == bfd_link_hash_defined
3873 || h->root.type == bfd_link_hash_defweak)
3874 {
3875 value = h->root.u.def.value;
3876 if (h->root.u.def.section->output_section != NULL)
3877 value += (h->root.u.def.section->output_offset
3878 + h->root.u.def.section->output_section->vma);
252b5132 3879 }
edd21aca 3880
a252afa4
DA
3881 /* Create a dynamic IPLT relocation for this entry. */
3882 rel.r_offset = (h->plt.offset
3883 + htab->splt->output_offset
3884 + htab->splt->output_section->vma);
3885 if (h->dynindx != -1)
30667bf3 3886 {
a252afa4
DA
3887 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3888 rel.r_addend = 0;
30667bf3 3889 }
ce757d15 3890 else
47d89dba 3891 {
a252afa4
DA
3892 /* This symbol has been marked to become local, and is
3893 used by a plabel so must be kept in the .plt. */
3894 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3895 rel.r_addend = value;
47d89dba
AM
3896 }
3897
a252afa4
DA
3898 loc = htab->srelplt->contents;
3899 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3900 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3901
30667bf3
AM
3902 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3903 {
3904 /* Mark the symbol as undefined, rather than as defined in
3905 the .plt section. Leave the value alone. */
3906 sym->st_shndx = SHN_UNDEF;
3907 }
3908 }
edd21aca 3909
30667bf3
AM
3910 if (h->got.offset != (bfd_vma) -1)
3911 {
30667bf3
AM
3912 /* This symbol has an entry in the global offset table. Set it
3913 up. */
3914
3915 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
83c81bfe
AM
3916 + htab->sgot->output_offset
3917 + htab->sgot->output_section->vma);
30667bf3 3918
4dc86686
AM
3919 /* If this is a -Bsymbolic link and the symbol is defined
3920 locally or was forced to be local because of a version file,
3921 we just want to emit a RELATIVE reloc. The entry in the
3922 global offset table will already have been initialized in the
3923 relocate_section function. */
3924 if (info->shared
3925 && (info->symbolic || h->dynindx == -1)
3926 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
30667bf3 3927 {
74d1c347 3928 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
30667bf3
AM
3929 rel.r_addend = (h->root.u.def.value
3930 + h->root.u.def.section->output_offset
3931 + h->root.u.def.section->output_section->vma);
3932 }
3933 else
3934 {
49e9d0d3
AM
3935 if ((h->got.offset & 1) != 0)
3936 abort ();
c39a58e6 3937 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
30667bf3
AM
3938 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3939 rel.r_addend = 0;
3940 }
edd21aca 3941
947216bf
AM
3942 loc = htab->srelgot->contents;
3943 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3ac8354b 3944 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
30667bf3 3945 }
edd21aca 3946
30667bf3
AM
3947 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3948 {
3949 asection *s;
30667bf3
AM
3950
3951 /* This symbol needs a copy reloc. Set it up. */
3952
49e9d0d3
AM
3953 if (! (h->dynindx != -1
3954 && (h->root.type == bfd_link_hash_defined
3955 || h->root.type == bfd_link_hash_defweak)))
3956 abort ();
30667bf3 3957
83c81bfe 3958 s = htab->srelbss;
30667bf3
AM
3959
3960 rel.r_offset = (h->root.u.def.value
3961 + h->root.u.def.section->output_offset
3962 + h->root.u.def.section->output_section->vma);
3963 rel.r_addend = 0;
3964 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
947216bf 3965 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3ac8354b 3966 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
30667bf3
AM
3967 }
3968
3969 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3970 if (h->root.root.string[0] == '_'
3971 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3972 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3973 {
3974 sym->st_shndx = SHN_ABS;
3975 }
3976
b34976b6 3977 return TRUE;
30667bf3
AM
3978}
3979
98ceb8ce
AM
3980/* Used to decide how to sort relocs in an optimal manner for the
3981 dynamic linker, before writing them out. */
3982
3983static enum elf_reloc_type_class
c39a58e6 3984elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
98ceb8ce
AM
3985{
3986 if (ELF32_R_SYM (rela->r_info) == 0)
3987 return reloc_class_relative;
3988
3989 switch ((int) ELF32_R_TYPE (rela->r_info))
3990 {
3991 case R_PARISC_IPLT:
3992 return reloc_class_plt;
3993 case R_PARISC_COPY:
3994 return reloc_class_copy;
3995 default:
3996 return reloc_class_normal;
3997 }
3998}
3999
30667bf3
AM
4000/* Finish up the dynamic sections. */
4001
b34976b6 4002static bfd_boolean
c39a58e6
AM
4003elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4004 struct bfd_link_info *info)
30667bf3
AM
4005{
4006 bfd *dynobj;
83c81bfe 4007 struct elf32_hppa_link_hash_table *htab;
30667bf3
AM
4008 asection *sdyn;
4009
83c81bfe 4010 htab = hppa_link_hash_table (info);
ebe50bae 4011 dynobj = htab->elf.dynobj;
30667bf3
AM
4012
4013 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4014
ebe50bae 4015 if (htab->elf.dynamic_sections_created)
30667bf3
AM
4016 {
4017 Elf32_External_Dyn *dyncon, *dynconend;
4018
49e9d0d3
AM
4019 if (sdyn == NULL)
4020 abort ();
30667bf3
AM
4021
4022 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4023 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4024 for (; dyncon < dynconend; dyncon++)
edd21aca 4025 {
30667bf3
AM
4026 Elf_Internal_Dyn dyn;
4027 asection *s;
4028
4029 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4030
4031 switch (dyn.d_tag)
4032 {
4033 default:
3ac8354b 4034 continue;
30667bf3
AM
4035
4036 case DT_PLTGOT:
4037 /* Use PLTGOT to set the GOT register. */
4038 dyn.d_un.d_ptr = elf_gp (output_bfd);
30667bf3
AM
4039 break;
4040
4041 case DT_JMPREL:
83c81bfe 4042 s = htab->srelplt;
30667bf3 4043 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
30667bf3
AM
4044 break;
4045
4046 case DT_PLTRELSZ:
83c81bfe 4047 s = htab->srelplt;
6348e046 4048 dyn.d_un.d_val = s->_raw_size;
30667bf3 4049 break;
4e12ff7f
AM
4050
4051 case DT_RELASZ:
4052 /* Don't count procedure linkage table relocs in the
4053 overall reloc count. */
6348e046
AM
4054 s = htab->srelplt;
4055 if (s == NULL)
4056 continue;
4057 dyn.d_un.d_val -= s->_raw_size;
4058 break;
4059
4060 case DT_RELA:
4061 /* We may not be using the standard ELF linker script.
4062 If .rela.plt is the first .rela section, we adjust
4063 DT_RELA to not include it. */
4064 s = htab->srelplt;
4065 if (s == NULL)
4066 continue;
4067 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4068 continue;
4069 dyn.d_un.d_ptr += s->_raw_size;
4e12ff7f 4070 break;
30667bf3 4071 }
3ac8354b
AM
4072
4073 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
edd21aca 4074 }
252b5132 4075 }
edd21aca 4076
83c81bfe 4077 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
30667bf3 4078 {
74d1c347
AM
4079 /* Fill in the first entry in the global offset table.
4080 We use it to point to our dynamic section, if we have one. */
30667bf3 4081 bfd_put_32 (output_bfd,
c39a58e6 4082 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
83c81bfe 4083 htab->sgot->contents);
30667bf3 4084
74d1c347 4085 /* The second entry is reserved for use by the dynamic linker. */
83c81bfe 4086 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
74d1c347 4087
30667bf3 4088 /* Set .got entry size. */
83c81bfe 4089 elf_section_data (htab->sgot->output_section)
74d1c347 4090 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
30667bf3
AM
4091 }
4092
83c81bfe 4093 if (htab->splt != NULL && htab->splt->_raw_size != 0)
47d89dba
AM
4094 {
4095 /* Set plt entry size. */
83c81bfe 4096 elf_section_data (htab->splt->output_section)
47d89dba
AM
4097 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4098
83c81bfe 4099 if (htab->need_plt_stub)
47d89dba
AM
4100 {
4101 /* Set up the .plt stub. */
83c81bfe
AM
4102 memcpy (htab->splt->contents
4103 + htab->splt->_raw_size - sizeof (plt_stub),
47d89dba
AM
4104 plt_stub, sizeof (plt_stub));
4105
83c81bfe
AM
4106 if ((htab->splt->output_offset
4107 + htab->splt->output_section->vma
4108 + htab->splt->_raw_size)
4109 != (htab->sgot->output_offset
4110 + htab->sgot->output_section->vma))
47d89dba
AM
4111 {
4112 (*_bfd_error_handler)
4113 (_(".got section not immediately after .plt section"));
b34976b6 4114 return FALSE;
47d89dba
AM
4115 }
4116 }
4117 }
30667bf3 4118
b34976b6 4119 return TRUE;
30667bf3 4120}
252b5132 4121
d952f17a
AM
4122/* Tweak the OSABI field of the elf header. */
4123
4124static void
c39a58e6
AM
4125elf32_hppa_post_process_headers (bfd *abfd,
4126 struct bfd_link_info *info ATTRIBUTE_UNUSED)
d952f17a
AM
4127{
4128 Elf_Internal_Ehdr * i_ehdrp;
4129
4130 i_ehdrp = elf_elfheader (abfd);
4131
4132 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4133 {
4134 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4135 }
4136 else
4137 {
4138 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4139 }
4140}
4141
30667bf3
AM
4142/* Called when writing out an object file to decide the type of a
4143 symbol. */
4144static int
c39a58e6 4145elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
30667bf3
AM
4146{
4147 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4148 return STT_PARISC_MILLI;
4149 else
4150 return type;
252b5132
RH
4151}
4152
4153/* Misc BFD support code. */
30667bf3
AM
4154#define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4155#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4156#define elf_info_to_howto elf_hppa_info_to_howto
4157#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
252b5132 4158
252b5132 4159/* Stuff for the BFD linker. */
c46b7515 4160#define bfd_elf32_bfd_final_link elf32_hppa_final_link
30667bf3 4161#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
e2d34d7d 4162#define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
30667bf3 4163#define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
ebe50bae 4164#define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
30667bf3
AM
4165#define elf_backend_check_relocs elf32_hppa_check_relocs
4166#define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4167#define elf_backend_fake_sections elf_hppa_fake_sections
4168#define elf_backend_relocate_section elf32_hppa_relocate_section
74d1c347 4169#define elf_backend_hide_symbol elf32_hppa_hide_symbol
30667bf3
AM
4170#define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4171#define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4172#define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4173#define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4174#define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4175#define elf_backend_object_p elf32_hppa_object_p
4176#define elf_backend_final_write_processing elf_hppa_final_write_processing
d952f17a 4177#define elf_backend_post_process_headers elf32_hppa_post_process_headers
30667bf3 4178#define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
98ceb8ce 4179#define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
30667bf3
AM
4180
4181#define elf_backend_can_gc_sections 1
51b64d56 4182#define elf_backend_can_refcount 1
30667bf3
AM
4183#define elf_backend_plt_alignment 2
4184#define elf_backend_want_got_plt 0
4185#define elf_backend_plt_readonly 0
4186#define elf_backend_want_plt_sym 0
74d1c347 4187#define elf_backend_got_header_size 8
f0fe0e16 4188#define elf_backend_rela_normal 1
252b5132
RH
4189
4190#define TARGET_BIG_SYM bfd_elf32_hppa_vec
4191#define TARGET_BIG_NAME "elf32-hppa"
4192#define ELF_ARCH bfd_arch_hppa
4193#define ELF_MACHINE_CODE EM_PARISC
4194#define ELF_MAXPAGESIZE 0x1000
4195
4196#include "elf32-target.h"
d952f17a
AM
4197
4198#undef TARGET_BIG_SYM
4199#define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4200#undef TARGET_BIG_NAME
4201#define TARGET_BIG_NAME "elf32-hppa-linux"
4202
4203#define INCLUDED_TARGET_FILE 1
4204#include "elf32-target.h"
This page took 0.517705 seconds and 4 git commands to generate.