Commit | Line | Data |
---|---|---|
3a65329d SC |
1 | /* Motorola 68HC11/HC12-specific support for 32-bit ELF |
2 | Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. | |
3 | Contributed by Stephane Carrez (stcarrez@nerim.fr) | |
4 | ||
5 | This file is part of BFD, the Binary File Descriptor library. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | #include "bfd.h" | |
22 | #include "sysdep.h" | |
23 | #include "bfdlink.h" | |
24 | #include "libbfd.h" | |
25 | #include "elf-bfd.h" | |
26 | #include "elf32-m68hc1x.h" | |
27 | #include "elf/m68hc11.h" | |
28 | #include "opcode/m68hc11.h" | |
29 | ||
30 | ||
31 | #define m68hc12_stub_hash_lookup(table, string, create, copy) \ | |
32 | ((struct elf32_m68hc11_stub_hash_entry *) \ | |
33 | bfd_hash_lookup ((table), (string), (create), (copy))) | |
34 | ||
35 | static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub | |
0a6a3ebe SC |
36 | (const char *stub_name, |
37 | asection *section, | |
38 | struct m68hc11_elf_link_hash_table *htab); | |
3a65329d SC |
39 | |
40 | static struct bfd_hash_entry *stub_hash_newfunc | |
0a6a3ebe | 41 | (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); |
3a65329d | 42 | |
0a6a3ebe SC |
43 | static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info, |
44 | const char* name, bfd_vma value, | |
45 | asection* sec); | |
3a65329d SC |
46 | |
47 | static bfd_boolean m68hc11_elf_export_one_stub | |
0a6a3ebe | 48 | (struct bfd_hash_entry *gen_entry, void *in_arg); |
3a65329d SC |
49 | |
50 | static bfd_boolean m68hc11_get_relocation_value | |
0a6a3ebe SC |
51 | (bfd* abfd, |
52 | struct bfd_link_info* info, | |
53 | asection **local_sections, | |
54 | Elf_Internal_Sym* local_syms, | |
55 | Elf_Internal_Rela* rel, | |
56 | const char** name, | |
57 | bfd_vma* relocation, | |
58 | bfd_boolean* is_far); | |
3a65329d | 59 | |
0a6a3ebe | 60 | static void scan_sections_for_abi (bfd*, asection*, PTR); |
3a65329d SC |
61 | |
62 | struct m68hc11_scan_param | |
63 | { | |
64 | struct m68hc11_page_info* pinfo; | |
65 | bfd_boolean use_memory_banks; | |
66 | }; | |
67 | ||
68 | ||
69 | /* Create a 68HC11/68HC12 ELF linker hash table. */ | |
70 | ||
71 | struct m68hc11_elf_link_hash_table* | |
0a6a3ebe | 72 | m68hc11_elf_hash_table_create (bfd *abfd) |
3a65329d SC |
73 | { |
74 | struct m68hc11_elf_link_hash_table *ret; | |
75 | bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table); | |
76 | ||
47247ced | 77 | ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt); |
3a65329d SC |
78 | if (ret == (struct m68hc11_elf_link_hash_table *) NULL) |
79 | return NULL; | |
80 | ||
47247ced | 81 | memset (ret, 0, amt); |
3a65329d SC |
82 | if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, |
83 | _bfd_elf_link_hash_newfunc)) | |
84 | { | |
47247ced | 85 | free (ret); |
3a65329d SC |
86 | return NULL; |
87 | } | |
88 | ||
89 | /* Init the stub hash table too. */ | |
90 | amt = sizeof (struct bfd_hash_table); | |
91 | ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt); | |
92 | if (ret->stub_hash_table == NULL) | |
93 | { | |
47247ced | 94 | free (ret); |
3a65329d SC |
95 | return NULL; |
96 | } | |
97 | if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc)) | |
98 | return NULL; | |
99 | ||
100 | ret->stub_bfd = NULL; | |
101 | ret->stub_section = 0; | |
102 | ret->add_stub_section = NULL; | |
103 | ret->sym_sec.abfd = NULL; | |
104 | ||
105 | return ret; | |
106 | } | |
107 | ||
108 | /* Free the derived linker hash table. */ | |
109 | ||
110 | void | |
0a6a3ebe | 111 | m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash) |
3a65329d SC |
112 | { |
113 | struct m68hc11_elf_link_hash_table *ret | |
114 | = (struct m68hc11_elf_link_hash_table *) hash; | |
115 | ||
116 | bfd_hash_table_free (ret->stub_hash_table); | |
117 | free (ret->stub_hash_table); | |
118 | _bfd_generic_link_hash_table_free (hash); | |
119 | } | |
120 | ||
121 | /* Assorted hash table functions. */ | |
122 | ||
123 | /* Initialize an entry in the stub hash table. */ | |
124 | ||
125 | static struct bfd_hash_entry * | |
0a6a3ebe SC |
126 | stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, |
127 | const char *string) | |
3a65329d SC |
128 | { |
129 | /* Allocate the structure if it has not already been allocated by a | |
130 | subclass. */ | |
131 | if (entry == NULL) | |
132 | { | |
133 | entry = bfd_hash_allocate (table, | |
134 | sizeof (struct elf32_m68hc11_stub_hash_entry)); | |
135 | if (entry == NULL) | |
136 | return entry; | |
137 | } | |
138 | ||
139 | /* Call the allocation method of the superclass. */ | |
140 | entry = bfd_hash_newfunc (entry, table, string); | |
141 | if (entry != NULL) | |
142 | { | |
143 | struct elf32_m68hc11_stub_hash_entry *eh; | |
144 | ||
145 | /* Initialize the local fields. */ | |
146 | eh = (struct elf32_m68hc11_stub_hash_entry *) entry; | |
147 | eh->stub_sec = NULL; | |
148 | eh->stub_offset = 0; | |
149 | eh->target_value = 0; | |
150 | eh->target_section = NULL; | |
151 | } | |
152 | ||
153 | return entry; | |
154 | } | |
155 | ||
156 | /* Add a new stub entry to the stub hash. Not all fields of the new | |
157 | stub entry are initialised. */ | |
158 | ||
159 | static struct elf32_m68hc11_stub_hash_entry * | |
0a6a3ebe SC |
160 | m68hc12_add_stub (const char *stub_name, asection *section, |
161 | struct m68hc11_elf_link_hash_table *htab) | |
3a65329d SC |
162 | { |
163 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
164 | ||
165 | /* Enter this entry into the linker stub hash table. */ | |
166 | stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name, | |
167 | TRUE, FALSE); | |
168 | if (stub_entry == NULL) | |
169 | { | |
170 | (*_bfd_error_handler) (_("%s: cannot create stub entry %s"), | |
171 | bfd_archive_filename (section->owner), | |
172 | stub_name); | |
173 | return NULL; | |
174 | } | |
175 | ||
176 | if (htab->stub_section == 0) | |
177 | { | |
178 | htab->stub_section = (*htab->add_stub_section) (".tramp", | |
179 | htab->tramp_section); | |
180 | } | |
181 | ||
182 | stub_entry->stub_sec = htab->stub_section; | |
183 | stub_entry->stub_offset = 0; | |
184 | return stub_entry; | |
185 | } | |
186 | ||
187 | /* Hook called by the linker routine which adds symbols from an object | |
188 | file. We use it for identify far symbols and force a loading of | |
189 | the trampoline handler. */ | |
190 | ||
191 | bfd_boolean | |
0a6a3ebe SC |
192 | elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
193 | const Elf_Internal_Sym *sym, | |
194 | const char **namep ATTRIBUTE_UNUSED, | |
195 | flagword *flagsp ATTRIBUTE_UNUSED, | |
196 | asection **secp ATTRIBUTE_UNUSED, | |
197 | bfd_vma *valp ATTRIBUTE_UNUSED) | |
3a65329d SC |
198 | { |
199 | if (sym->st_other & STO_M68HC12_FAR) | |
200 | { | |
201 | struct elf_link_hash_entry *h; | |
202 | ||
203 | h = (struct elf_link_hash_entry *) | |
204 | bfd_link_hash_lookup (info->hash, "__far_trampoline", | |
205 | FALSE, FALSE, FALSE); | |
206 | if (h == NULL) | |
207 | { | |
208 | struct bfd_link_hash_entry* entry = NULL; | |
209 | ||
210 | _bfd_generic_link_add_one_symbol (info, abfd, | |
211 | "__far_trampoline", | |
212 | BSF_GLOBAL, | |
213 | bfd_und_section_ptr, | |
214 | (bfd_vma) 0, (const char*) NULL, | |
215 | FALSE, FALSE, &entry); | |
216 | } | |
217 | ||
218 | } | |
219 | return TRUE; | |
220 | } | |
221 | ||
222 | /* External entry points for sizing and building linker stubs. */ | |
223 | ||
224 | /* Set up various things so that we can make a list of input sections | |
225 | for each output section included in the link. Returns -1 on error, | |
226 | 0 when no stubs will be needed, and 1 on success. */ | |
227 | ||
228 | int | |
0a6a3ebe | 229 | elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) |
3a65329d SC |
230 | { |
231 | bfd *input_bfd; | |
232 | unsigned int bfd_count; | |
233 | int top_id, top_index; | |
234 | asection *section; | |
235 | asection **input_list, **list; | |
236 | bfd_size_type amt; | |
237 | asection *text_section; | |
238 | struct m68hc11_elf_link_hash_table *htab; | |
239 | ||
240 | htab = m68hc11_elf_hash_table (info); | |
241 | ||
242 | if (htab->root.root.creator->flavour != bfd_target_elf_flavour) | |
243 | return 0; | |
244 | ||
245 | /* Count the number of input BFDs and find the top input section id. | |
246 | Also search for an existing ".tramp" section so that we know | |
247 | where generated trampolines must go. Default to ".text" if we | |
248 | can't find it. */ | |
249 | htab->tramp_section = 0; | |
250 | text_section = 0; | |
251 | for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; | |
252 | input_bfd != NULL; | |
253 | input_bfd = input_bfd->link_next) | |
254 | { | |
255 | bfd_count += 1; | |
256 | for (section = input_bfd->sections; | |
257 | section != NULL; | |
258 | section = section->next) | |
259 | { | |
260 | const char* name = bfd_get_section_name (input_bfd, section); | |
261 | ||
262 | if (!strcmp (name, ".tramp")) | |
263 | htab->tramp_section = section; | |
264 | ||
265 | if (!strcmp (name, ".text")) | |
266 | text_section = section; | |
267 | ||
268 | if (top_id < section->id) | |
269 | top_id = section->id; | |
270 | } | |
271 | } | |
272 | htab->bfd_count = bfd_count; | |
273 | if (htab->tramp_section == 0) | |
274 | htab->tramp_section = text_section; | |
275 | ||
276 | /* We can't use output_bfd->section_count here to find the top output | |
277 | section index as some sections may have been removed, and | |
278 | _bfd_strip_section_from_output doesn't renumber the indices. */ | |
279 | for (section = output_bfd->sections, top_index = 0; | |
280 | section != NULL; | |
281 | section = section->next) | |
282 | { | |
283 | if (top_index < section->index) | |
284 | top_index = section->index; | |
285 | } | |
286 | ||
287 | htab->top_index = top_index; | |
288 | amt = sizeof (asection *) * (top_index + 1); | |
289 | input_list = (asection **) bfd_malloc (amt); | |
290 | htab->input_list = input_list; | |
291 | if (input_list == NULL) | |
292 | return -1; | |
293 | ||
294 | /* For sections we aren't interested in, mark their entries with a | |
295 | value we can check later. */ | |
296 | list = input_list + top_index; | |
297 | do | |
298 | *list = bfd_abs_section_ptr; | |
299 | while (list-- != input_list); | |
300 | ||
301 | for (section = output_bfd->sections; | |
302 | section != NULL; | |
303 | section = section->next) | |
304 | { | |
305 | if ((section->flags & SEC_CODE) != 0) | |
306 | input_list[section->index] = NULL; | |
307 | } | |
308 | ||
309 | return 1; | |
310 | } | |
311 | ||
312 | /* Determine and set the size of the stub section for a final link. | |
313 | ||
314 | The basic idea here is to examine all the relocations looking for | |
315 | PC-relative calls to a target that is unreachable with a "bl" | |
316 | instruction. */ | |
317 | ||
318 | bfd_boolean | |
0a6a3ebe SC |
319 | elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd, |
320 | struct bfd_link_info *info, | |
321 | asection * (*add_stub_section) (const char*, asection*)) | |
3a65329d SC |
322 | { |
323 | bfd *input_bfd; | |
324 | asection *section; | |
325 | Elf_Internal_Sym *local_syms, **all_local_syms; | |
326 | unsigned int bfd_indx, bfd_count; | |
327 | bfd_size_type amt; | |
328 | asection *stub_sec; | |
329 | ||
330 | struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info); | |
331 | ||
332 | /* Stash our params away. */ | |
333 | htab->stub_bfd = stub_bfd; | |
334 | htab->add_stub_section = add_stub_section; | |
335 | ||
336 | /* Count the number of input BFDs and find the top input section id. */ | |
337 | for (input_bfd = info->input_bfds, bfd_count = 0; | |
338 | input_bfd != NULL; | |
339 | input_bfd = input_bfd->link_next) | |
340 | { | |
341 | bfd_count += 1; | |
342 | } | |
343 | ||
344 | /* We want to read in symbol extension records only once. To do this | |
345 | we need to read in the local symbols in parallel and save them for | |
346 | later use; so hold pointers to the local symbols in an array. */ | |
347 | amt = sizeof (Elf_Internal_Sym *) * bfd_count; | |
348 | all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt); | |
349 | if (all_local_syms == NULL) | |
350 | return FALSE; | |
351 | ||
352 | /* Walk over all the input BFDs, swapping in local symbols. */ | |
353 | for (input_bfd = info->input_bfds, bfd_indx = 0; | |
354 | input_bfd != NULL; | |
355 | input_bfd = input_bfd->link_next, bfd_indx++) | |
356 | { | |
357 | Elf_Internal_Shdr *symtab_hdr; | |
3a65329d SC |
358 | |
359 | /* We'll need the symbol table in a second. */ | |
360 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
361 | if (symtab_hdr->sh_info == 0) | |
362 | continue; | |
363 | ||
2a0e29b4 SC |
364 | /* We need an array of the local symbols attached to the input bfd. */ |
365 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; | |
366 | if (local_syms == NULL) | |
367 | { | |
368 | local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, | |
369 | symtab_hdr->sh_info, 0, | |
370 | NULL, NULL, NULL); | |
371 | /* Cache them for elf_link_input_bfd. */ | |
372 | symtab_hdr->contents = (unsigned char *) local_syms; | |
373 | } | |
3a65329d | 374 | if (local_syms == NULL) |
3a65329d | 375 | { |
2a0e29b4 SC |
376 | free (all_local_syms); |
377 | return FALSE; | |
3a65329d SC |
378 | } |
379 | ||
2a0e29b4 | 380 | all_local_syms[bfd_indx] = local_syms; |
3a65329d SC |
381 | } |
382 | ||
383 | for (input_bfd = info->input_bfds, bfd_indx = 0; | |
384 | input_bfd != NULL; | |
385 | input_bfd = input_bfd->link_next, bfd_indx++) | |
386 | { | |
387 | Elf_Internal_Shdr *symtab_hdr; | |
388 | Elf_Internal_Sym *local_syms; | |
389 | struct elf_link_hash_entry ** sym_hashes; | |
390 | ||
391 | sym_hashes = elf_sym_hashes (input_bfd); | |
392 | ||
393 | /* We'll need the symbol table in a second. */ | |
394 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
395 | if (symtab_hdr->sh_info == 0) | |
396 | continue; | |
397 | ||
398 | local_syms = all_local_syms[bfd_indx]; | |
399 | ||
400 | /* Walk over each section attached to the input bfd. */ | |
401 | for (section = input_bfd->sections; | |
402 | section != NULL; | |
403 | section = section->next) | |
404 | { | |
405 | Elf_Internal_Rela *internal_relocs, *irelaend, *irela; | |
406 | ||
407 | /* If there aren't any relocs, then there's nothing more | |
408 | to do. */ | |
409 | if ((section->flags & SEC_RELOC) == 0 | |
410 | || section->reloc_count == 0) | |
411 | continue; | |
412 | ||
413 | /* If this section is a link-once section that will be | |
414 | discarded, then don't create any stubs. */ | |
415 | if (section->output_section == NULL | |
416 | || section->output_section->owner != output_bfd) | |
417 | continue; | |
418 | ||
419 | /* Get the relocs. */ | |
420 | internal_relocs | |
45d6a902 AM |
421 | = _bfd_elf_link_read_relocs (input_bfd, section, NULL, |
422 | (Elf_Internal_Rela *) NULL, | |
423 | info->keep_memory); | |
3a65329d SC |
424 | if (internal_relocs == NULL) |
425 | goto error_ret_free_local; | |
426 | ||
427 | /* Now examine each relocation. */ | |
428 | irela = internal_relocs; | |
429 | irelaend = irela + section->reloc_count; | |
430 | for (; irela < irelaend; irela++) | |
431 | { | |
432 | unsigned int r_type, r_indx; | |
433 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
434 | asection *sym_sec; | |
435 | bfd_vma sym_value; | |
436 | struct elf_link_hash_entry *hash; | |
437 | const char *stub_name; | |
438 | Elf_Internal_Sym *sym; | |
439 | ||
440 | r_type = ELF32_R_TYPE (irela->r_info); | |
441 | ||
442 | /* Only look at 16-bit relocs. */ | |
443 | if (r_type != (unsigned int) R_M68HC11_16) | |
444 | continue; | |
445 | ||
446 | /* Now determine the call target, its name, value, | |
447 | section. */ | |
448 | r_indx = ELF32_R_SYM (irela->r_info); | |
449 | if (r_indx < symtab_hdr->sh_info) | |
450 | { | |
451 | /* It's a local symbol. */ | |
452 | Elf_Internal_Shdr *hdr; | |
453 | bfd_boolean is_far; | |
454 | ||
455 | sym = local_syms + r_indx; | |
3a65329d SC |
456 | is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); |
457 | if (!is_far) | |
458 | continue; | |
7f888330 SC |
459 | |
460 | hdr = elf_elfsections (input_bfd)[sym->st_shndx]; | |
461 | sym_sec = hdr->bfd_section; | |
3a65329d SC |
462 | stub_name = (bfd_elf_string_from_elf_section |
463 | (input_bfd, symtab_hdr->sh_link, | |
464 | sym->st_name)); | |
465 | sym_value = sym->st_value; | |
466 | hash = NULL; | |
467 | } | |
468 | else | |
469 | { | |
470 | /* It's an external symbol. */ | |
471 | int e_indx; | |
472 | ||
473 | e_indx = r_indx - symtab_hdr->sh_info; | |
474 | hash = (struct elf_link_hash_entry *) | |
475 | (sym_hashes[e_indx]); | |
476 | ||
477 | while (hash->root.type == bfd_link_hash_indirect | |
478 | || hash->root.type == bfd_link_hash_warning) | |
479 | hash = ((struct elf_link_hash_entry *) | |
480 | hash->root.u.i.link); | |
481 | ||
482 | if (hash->root.type == bfd_link_hash_defined | |
483 | || hash->root.type == bfd_link_hash_defweak) | |
484 | { | |
485 | if (!(hash->other & STO_M68HC12_FAR)) | |
486 | continue; | |
487 | } | |
488 | else if (hash->root.type == bfd_link_hash_undefweak) | |
489 | { | |
490 | continue; | |
491 | } | |
492 | else if (hash->root.type == bfd_link_hash_undefined) | |
493 | { | |
494 | continue; | |
495 | } | |
496 | else | |
497 | { | |
498 | bfd_set_error (bfd_error_bad_value); | |
499 | goto error_ret_free_internal; | |
500 | } | |
501 | sym_sec = hash->root.u.def.section; | |
502 | sym_value = hash->root.u.def.value; | |
503 | stub_name = hash->root.root.string; | |
504 | } | |
505 | ||
506 | if (!stub_name) | |
507 | goto error_ret_free_internal; | |
508 | ||
509 | stub_entry = m68hc12_stub_hash_lookup | |
510 | (htab->stub_hash_table, | |
511 | stub_name, | |
512 | FALSE, FALSE); | |
513 | if (stub_entry == NULL) | |
514 | { | |
515 | if (add_stub_section == 0) | |
516 | continue; | |
517 | ||
518 | stub_entry = m68hc12_add_stub (stub_name, section, htab); | |
519 | if (stub_entry == NULL) | |
520 | { | |
521 | error_ret_free_internal: | |
522 | if (elf_section_data (section)->relocs == NULL) | |
523 | free (internal_relocs); | |
524 | goto error_ret_free_local; | |
525 | } | |
526 | } | |
527 | ||
528 | stub_entry->target_value = sym_value; | |
529 | stub_entry->target_section = sym_sec; | |
530 | } | |
531 | ||
532 | /* We're done with the internal relocs, free them. */ | |
533 | if (elf_section_data (section)->relocs == NULL) | |
534 | free (internal_relocs); | |
535 | } | |
536 | } | |
537 | ||
538 | if (add_stub_section) | |
539 | { | |
540 | /* OK, we've added some stubs. Find out the new size of the | |
541 | stub sections. */ | |
542 | for (stub_sec = htab->stub_bfd->sections; | |
543 | stub_sec != NULL; | |
544 | stub_sec = stub_sec->next) | |
545 | { | |
546 | stub_sec->_raw_size = 0; | |
547 | stub_sec->_cooked_size = 0; | |
548 | } | |
549 | ||
550 | bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab); | |
551 | } | |
2a0e29b4 | 552 | free (all_local_syms); |
3a65329d SC |
553 | return TRUE; |
554 | ||
555 | error_ret_free_local: | |
2a0e29b4 | 556 | free (all_local_syms); |
3a65329d SC |
557 | return FALSE; |
558 | } | |
559 | ||
560 | /* Export the trampoline addresses in the symbol table. */ | |
561 | static bfd_boolean | |
0a6a3ebe | 562 | m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) |
3a65329d SC |
563 | { |
564 | struct bfd_link_info *info; | |
565 | struct m68hc11_elf_link_hash_table *htab; | |
566 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
567 | char* name; | |
568 | bfd_boolean result; | |
569 | ||
570 | info = (struct bfd_link_info *) in_arg; | |
571 | htab = m68hc11_elf_hash_table (info); | |
572 | ||
573 | /* Massage our args to the form they really have. */ | |
574 | stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry; | |
575 | ||
576 | /* Generate the trampoline according to HC11 or HC12. */ | |
577 | result = (* htab->build_one_stub) (gen_entry, in_arg); | |
578 | ||
579 | /* Make a printable name that does not conflict with the real function. */ | |
580 | name = alloca (strlen (stub_entry->root.string) + 16); | |
581 | sprintf (name, "tramp.%s", stub_entry->root.string); | |
582 | ||
583 | /* Export the symbol for debugging/disassembling. */ | |
584 | m68hc11_elf_set_symbol (htab->stub_bfd, info, name, | |
585 | stub_entry->stub_offset, | |
586 | stub_entry->stub_sec); | |
587 | return result; | |
588 | } | |
589 | ||
590 | /* Export a symbol or set its value and section. */ | |
591 | static void | |
0a6a3ebe SC |
592 | m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info, |
593 | const char *name, bfd_vma value, asection *sec) | |
3a65329d SC |
594 | { |
595 | struct elf_link_hash_entry *h; | |
596 | ||
597 | h = (struct elf_link_hash_entry *) | |
598 | bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE); | |
599 | if (h == NULL) | |
600 | { | |
601 | _bfd_generic_link_add_one_symbol (info, abfd, | |
602 | name, | |
603 | BSF_GLOBAL, | |
604 | sec, | |
605 | value, | |
606 | (const char*) NULL, | |
607 | TRUE, FALSE, NULL); | |
608 | } | |
609 | else | |
610 | { | |
611 | h->root.type = bfd_link_hash_defined; | |
612 | h->root.u.def.value = value; | |
613 | h->root.u.def.section = sec; | |
614 | } | |
615 | } | |
616 | ||
617 | ||
618 | /* Build all the stubs associated with the current output file. The | |
619 | stubs are kept in a hash table attached to the main linker hash | |
620 | table. This function is called via m68hc12elf_finish in the | |
621 | linker. */ | |
622 | ||
623 | bfd_boolean | |
0a6a3ebe | 624 | elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info) |
3a65329d SC |
625 | { |
626 | asection *stub_sec; | |
627 | struct bfd_hash_table *table; | |
628 | struct m68hc11_elf_link_hash_table *htab; | |
629 | struct m68hc11_scan_param param; | |
630 | ||
631 | m68hc11_elf_get_bank_parameters (info); | |
632 | htab = m68hc11_elf_hash_table (info); | |
633 | ||
634 | for (stub_sec = htab->stub_bfd->sections; | |
635 | stub_sec != NULL; | |
636 | stub_sec = stub_sec->next) | |
637 | { | |
638 | bfd_size_type size; | |
639 | ||
640 | /* Allocate memory to hold the linker stubs. */ | |
641 | size = stub_sec->_raw_size; | |
642 | stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); | |
643 | if (stub_sec->contents == NULL && size != 0) | |
644 | return FALSE; | |
645 | stub_sec->_raw_size = 0; | |
646 | } | |
647 | ||
648 | /* Build the stubs as directed by the stub hash table. */ | |
649 | table = htab->stub_hash_table; | |
650 | bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info); | |
651 | ||
652 | /* Scan the output sections to see if we use the memory banks. | |
653 | If so, export the symbols that define how the memory banks | |
654 | are mapped. This is used by gdb and the simulator to obtain | |
655 | the information. It can be used by programs to burn the eprom | |
656 | at the good addresses. */ | |
657 | param.use_memory_banks = FALSE; | |
658 | param.pinfo = &htab->pinfo; | |
659 | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); | |
660 | if (param.use_memory_banks) | |
661 | { | |
662 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME, | |
663 | htab->pinfo.bank_physical, | |
664 | bfd_abs_section_ptr); | |
665 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME, | |
666 | htab->pinfo.bank_virtual, | |
667 | bfd_abs_section_ptr); | |
668 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME, | |
669 | htab->pinfo.bank_size, | |
670 | bfd_abs_section_ptr); | |
671 | } | |
672 | ||
673 | return TRUE; | |
674 | } | |
675 | ||
676 | void | |
0a6a3ebe | 677 | m68hc11_elf_get_bank_parameters (struct bfd_link_info *info) |
3a65329d SC |
678 | { |
679 | unsigned i; | |
680 | struct m68hc11_page_info *pinfo; | |
681 | struct bfd_link_hash_entry *h; | |
682 | ||
683 | pinfo = &m68hc11_elf_hash_table (info)->pinfo; | |
684 | if (pinfo->bank_param_initialized) | |
685 | return; | |
686 | ||
687 | pinfo->bank_virtual = M68HC12_BANK_VIRT; | |
688 | pinfo->bank_mask = M68HC12_BANK_MASK; | |
689 | pinfo->bank_physical = M68HC12_BANK_BASE; | |
690 | pinfo->bank_shift = M68HC12_BANK_SHIFT; | |
691 | pinfo->bank_size = 1 << M68HC12_BANK_SHIFT; | |
692 | ||
693 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME, | |
694 | FALSE, FALSE, TRUE); | |
695 | if (h != (struct bfd_link_hash_entry*) NULL | |
696 | && h->type == bfd_link_hash_defined) | |
697 | pinfo->bank_physical = (h->u.def.value | |
698 | + h->u.def.section->output_section->vma | |
699 | + h->u.def.section->output_offset); | |
700 | ||
701 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME, | |
702 | FALSE, FALSE, TRUE); | |
703 | if (h != (struct bfd_link_hash_entry*) NULL | |
704 | && h->type == bfd_link_hash_defined) | |
705 | pinfo->bank_virtual = (h->u.def.value | |
706 | + h->u.def.section->output_section->vma | |
707 | + h->u.def.section->output_offset); | |
708 | ||
709 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME, | |
710 | FALSE, FALSE, TRUE); | |
711 | if (h != (struct bfd_link_hash_entry*) NULL | |
712 | && h->type == bfd_link_hash_defined) | |
713 | pinfo->bank_size = (h->u.def.value | |
714 | + h->u.def.section->output_section->vma | |
715 | + h->u.def.section->output_offset); | |
716 | ||
717 | pinfo->bank_shift = 0; | |
718 | for (i = pinfo->bank_size; i != 0; i >>= 1) | |
719 | pinfo->bank_shift++; | |
720 | pinfo->bank_shift--; | |
721 | pinfo->bank_mask = (1 << pinfo->bank_shift) - 1; | |
722 | pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size; | |
723 | pinfo->bank_param_initialized = 1; | |
724 | ||
725 | h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE, | |
726 | FALSE, TRUE); | |
727 | if (h != (struct bfd_link_hash_entry*) NULL | |
728 | && h->type == bfd_link_hash_defined) | |
729 | pinfo->trampoline_addr = (h->u.def.value | |
730 | + h->u.def.section->output_section->vma | |
731 | + h->u.def.section->output_offset); | |
732 | } | |
733 | ||
734 | /* Return 1 if the address is in banked memory. | |
735 | This can be applied to a virtual address and to a physical address. */ | |
736 | int | |
0a6a3ebe | 737 | m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
738 | { |
739 | if (addr >= pinfo->bank_virtual) | |
740 | return 1; | |
741 | ||
742 | if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end) | |
743 | return 1; | |
744 | ||
745 | return 0; | |
746 | } | |
747 | ||
748 | /* Return the physical address seen by the processor, taking | |
749 | into account banked memory. */ | |
750 | bfd_vma | |
0a6a3ebe | 751 | m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
752 | { |
753 | if (addr < pinfo->bank_virtual) | |
754 | return addr; | |
755 | ||
756 | /* Map the address to the memory bank. */ | |
757 | addr -= pinfo->bank_virtual; | |
758 | addr &= pinfo->bank_mask; | |
759 | addr += pinfo->bank_physical; | |
760 | return addr; | |
761 | } | |
762 | ||
763 | /* Return the page number corresponding to an address in banked memory. */ | |
764 | bfd_vma | |
0a6a3ebe | 765 | m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
766 | { |
767 | if (addr < pinfo->bank_virtual) | |
768 | return 0; | |
769 | ||
770 | /* Map the address to the memory bank. */ | |
771 | addr -= pinfo->bank_virtual; | |
772 | addr >>= pinfo->bank_shift; | |
773 | addr &= 0x0ff; | |
774 | return addr; | |
775 | } | |
776 | ||
777 | /* This function is used for relocs which are only used for relaxing, | |
778 | which the linker should otherwise ignore. */ | |
779 | ||
780 | bfd_reloc_status_type | |
0a6a3ebe SC |
781 | m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
782 | arelent *reloc_entry, | |
783 | asymbol *symbol ATTRIBUTE_UNUSED, | |
784 | void *data ATTRIBUTE_UNUSED, | |
785 | asection *input_section, | |
786 | bfd *output_bfd, | |
787 | char **error_message ATTRIBUTE_UNUSED) | |
3a65329d SC |
788 | { |
789 | if (output_bfd != NULL) | |
790 | reloc_entry->address += input_section->output_offset; | |
791 | return bfd_reloc_ok; | |
792 | } | |
793 | ||
794 | bfd_reloc_status_type | |
0a6a3ebe SC |
795 | m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
796 | arelent *reloc_entry, | |
797 | asymbol *symbol, | |
798 | void *data ATTRIBUTE_UNUSED, | |
799 | asection *input_section, | |
800 | bfd *output_bfd, | |
801 | char **error_message ATTRIBUTE_UNUSED) | |
3a65329d SC |
802 | { |
803 | if (output_bfd != (bfd *) NULL | |
804 | && (symbol->flags & BSF_SECTION_SYM) == 0 | |
805 | && (! reloc_entry->howto->partial_inplace | |
806 | || reloc_entry->addend == 0)) | |
807 | { | |
808 | reloc_entry->address += input_section->output_offset; | |
809 | return bfd_reloc_ok; | |
810 | } | |
811 | ||
812 | if (output_bfd != NULL) | |
813 | return bfd_reloc_continue; | |
814 | ||
815 | if (reloc_entry->address > input_section->_cooked_size) | |
816 | return bfd_reloc_outofrange; | |
817 | ||
818 | abort(); | |
819 | } | |
820 | ||
821 | asection * | |
0a6a3ebe SC |
822 | elf32_m68hc11_gc_mark_hook (asection *sec, |
823 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
824 | Elf_Internal_Rela *rel, | |
825 | struct elf_link_hash_entry *h, | |
826 | Elf_Internal_Sym *sym) | |
3a65329d SC |
827 | { |
828 | if (h != NULL) | |
829 | { | |
830 | switch (ELF32_R_TYPE (rel->r_info)) | |
831 | { | |
832 | default: | |
833 | switch (h->root.type) | |
834 | { | |
835 | case bfd_link_hash_defined: | |
836 | case bfd_link_hash_defweak: | |
837 | return h->root.u.def.section; | |
838 | ||
839 | case bfd_link_hash_common: | |
840 | return h->root.u.c.p->section; | |
841 | ||
842 | default: | |
843 | break; | |
844 | } | |
845 | } | |
846 | } | |
847 | else | |
848 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); | |
849 | ||
850 | return NULL; | |
851 | } | |
852 | ||
853 | bfd_boolean | |
0a6a3ebe SC |
854 | elf32_m68hc11_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
855 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
856 | asection *sec ATTRIBUTE_UNUSED, | |
857 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
3a65329d SC |
858 | { |
859 | /* We don't use got and plt entries for 68hc11/68hc12. */ | |
860 | return TRUE; | |
861 | } | |
862 | ||
863 | /* Look through the relocs for a section during the first phase. | |
864 | Since we don't do .gots or .plts, we just need to consider the | |
865 | virtual table relocs for gc. */ | |
866 | ||
867 | bfd_boolean | |
0a6a3ebe SC |
868 | elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info, |
869 | asection *sec, const Elf_Internal_Rela *relocs) | |
3a65329d SC |
870 | { |
871 | Elf_Internal_Shdr * symtab_hdr; | |
872 | struct elf_link_hash_entry ** sym_hashes; | |
873 | struct elf_link_hash_entry ** sym_hashes_end; | |
874 | const Elf_Internal_Rela * rel; | |
875 | const Elf_Internal_Rela * rel_end; | |
876 | ||
1049f94e | 877 | if (info->relocatable) |
3a65329d SC |
878 | return TRUE; |
879 | ||
880 | symtab_hdr = & elf_tdata (abfd)->symtab_hdr; | |
881 | sym_hashes = elf_sym_hashes (abfd); | |
882 | sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
883 | if (!elf_bad_symtab (abfd)) | |
884 | sym_hashes_end -= symtab_hdr->sh_info; | |
885 | ||
886 | rel_end = relocs + sec->reloc_count; | |
887 | ||
888 | for (rel = relocs; rel < rel_end; rel++) | |
889 | { | |
890 | struct elf_link_hash_entry * h; | |
891 | unsigned long r_symndx; | |
892 | ||
893 | r_symndx = ELF32_R_SYM (rel->r_info); | |
894 | ||
895 | if (r_symndx < symtab_hdr->sh_info) | |
896 | h = NULL; | |
897 | else | |
898 | h = sym_hashes [r_symndx - symtab_hdr->sh_info]; | |
899 | ||
900 | switch (ELF32_R_TYPE (rel->r_info)) | |
901 | { | |
902 | /* This relocation describes the C++ object vtable hierarchy. | |
903 | Reconstruct it for later use during GC. */ | |
904 | case R_M68HC11_GNU_VTINHERIT: | |
905 | if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
906 | return FALSE; | |
907 | break; | |
908 | ||
909 | /* This relocation describes which C++ vtable entries are actually | |
910 | used. Record for later use during GC. */ | |
911 | case R_M68HC11_GNU_VTENTRY: | |
912 | if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
913 | return FALSE; | |
914 | break; | |
915 | } | |
916 | } | |
917 | ||
918 | return TRUE; | |
919 | } | |
920 | ||
921 | static bfd_boolean | |
0a6a3ebe SC |
922 | m68hc11_get_relocation_value (bfd *abfd, struct bfd_link_info *info, |
923 | asection **local_sections, | |
924 | Elf_Internal_Sym *local_syms, | |
925 | Elf_Internal_Rela *rel, | |
926 | const char **name, | |
927 | bfd_vma *relocation, bfd_boolean *is_far) | |
3a65329d SC |
928 | { |
929 | Elf_Internal_Shdr *symtab_hdr; | |
930 | struct elf_link_hash_entry **sym_hashes; | |
931 | unsigned long r_symndx; | |
932 | asection *sec; | |
933 | struct elf_link_hash_entry *h; | |
934 | Elf_Internal_Sym *sym; | |
935 | const char* stub_name = 0; | |
936 | ||
937 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
938 | sym_hashes = elf_sym_hashes (abfd); | |
939 | ||
940 | r_symndx = ELF32_R_SYM (rel->r_info); | |
941 | ||
942 | /* This is a final link. */ | |
943 | h = NULL; | |
944 | sym = NULL; | |
945 | sec = NULL; | |
946 | if (r_symndx < symtab_hdr->sh_info) | |
947 | { | |
948 | sym = local_syms + r_symndx; | |
949 | sec = local_sections[r_symndx]; | |
950 | *relocation = (sec->output_section->vma | |
951 | + sec->output_offset | |
952 | + sym->st_value); | |
953 | *is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); | |
954 | if (*is_far) | |
955 | stub_name = (bfd_elf_string_from_elf_section | |
956 | (abfd, symtab_hdr->sh_link, | |
957 | sym->st_name)); | |
958 | } | |
959 | else | |
960 | { | |
961 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
962 | while (h->root.type == bfd_link_hash_indirect | |
963 | || h->root.type == bfd_link_hash_warning) | |
964 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
965 | if (h->root.type == bfd_link_hash_defined | |
966 | || h->root.type == bfd_link_hash_defweak) | |
967 | { | |
968 | sec = h->root.u.def.section; | |
969 | *relocation = (h->root.u.def.value | |
970 | + sec->output_section->vma | |
971 | + sec->output_offset); | |
972 | } | |
973 | else if (h->root.type == bfd_link_hash_undefweak) | |
974 | *relocation = 0; | |
975 | else | |
976 | { | |
977 | if (!((*info->callbacks->undefined_symbol) | |
978 | (info, h->root.root.string, abfd, | |
979 | sec, rel->r_offset, TRUE))) | |
980 | return FALSE; | |
981 | *relocation = 0; | |
982 | } | |
983 | *is_far = (h && (h->other & STO_M68HC12_FAR)); | |
984 | stub_name = h->root.root.string; | |
985 | } | |
986 | ||
987 | if (h != NULL) | |
988 | *name = h->root.root.string; | |
989 | else | |
990 | { | |
991 | *name = (bfd_elf_string_from_elf_section | |
992 | (abfd, symtab_hdr->sh_link, sym->st_name)); | |
993 | if (*name == NULL || **name == '\0') | |
994 | *name = bfd_section_name (input_bfd, sec); | |
995 | } | |
996 | ||
997 | if (*is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16) | |
998 | { | |
999 | struct elf32_m68hc11_stub_hash_entry* stub; | |
1000 | struct m68hc11_elf_link_hash_table *htab; | |
1001 | ||
1002 | htab = m68hc11_elf_hash_table (info); | |
1003 | stub = m68hc12_stub_hash_lookup (htab->stub_hash_table, | |
1004 | *name, FALSE, FALSE); | |
1005 | if (stub) | |
1006 | { | |
1007 | *relocation = stub->stub_offset | |
1008 | + stub->stub_sec->output_section->vma | |
1009 | + stub->stub_sec->output_offset; | |
1010 | *is_far = FALSE; | |
1011 | } | |
1012 | } | |
1013 | return TRUE; | |
1014 | } | |
1015 | ||
1016 | /* Relocate a 68hc11/68hc12 ELF section. */ | |
1017 | bfd_boolean | |
0a6a3ebe SC |
1018 | elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, |
1019 | struct bfd_link_info *info, | |
1020 | bfd *input_bfd, asection *input_section, | |
1021 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
1022 | Elf_Internal_Sym *local_syms, | |
1023 | asection **local_sections) | |
3a65329d SC |
1024 | { |
1025 | Elf_Internal_Shdr *symtab_hdr; | |
1026 | struct elf_link_hash_entry **sym_hashes; | |
1027 | Elf_Internal_Rela *rel, *relend; | |
1028 | const char *name; | |
1029 | struct m68hc11_page_info *pinfo; | |
9c5bfbb7 | 1030 | const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd); |
3a65329d SC |
1031 | |
1032 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
1033 | sym_hashes = elf_sym_hashes (input_bfd); | |
1034 | ||
1035 | /* Get memory bank parameters. */ | |
1036 | m68hc11_elf_get_bank_parameters (info); | |
1037 | pinfo = &m68hc11_elf_hash_table (info)->pinfo; | |
1038 | ||
1039 | rel = relocs; | |
1040 | relend = relocs + input_section->reloc_count; | |
1041 | for (; rel < relend; rel++) | |
1042 | { | |
1043 | int r_type; | |
1044 | arelent arel; | |
1045 | reloc_howto_type *howto; | |
1046 | unsigned long r_symndx; | |
1047 | Elf_Internal_Sym *sym; | |
1048 | asection *sec; | |
1049 | bfd_vma relocation; | |
1050 | bfd_reloc_status_type r = bfd_reloc_undefined; | |
1051 | bfd_vma phys_page; | |
1052 | bfd_vma phys_addr; | |
1053 | bfd_vma insn_addr; | |
1054 | bfd_vma insn_page; | |
1055 | bfd_boolean is_far; | |
1056 | ||
1057 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1058 | r_type = ELF32_R_TYPE (rel->r_info); | |
1059 | ||
1060 | if (r_type == R_M68HC11_GNU_VTENTRY | |
1061 | || r_type == R_M68HC11_GNU_VTINHERIT ) | |
1062 | continue; | |
1063 | ||
1049f94e | 1064 | if (info->relocatable) |
3a65329d | 1065 | { |
1049f94e | 1066 | /* This is a relocatable link. We don't have to change |
3a65329d SC |
1067 | anything, unless the reloc is against a section symbol, |
1068 | in which case we have to adjust according to where the | |
1069 | section symbol winds up in the output section. */ | |
1070 | if (r_symndx < symtab_hdr->sh_info) | |
1071 | { | |
1072 | sym = local_syms + r_symndx; | |
1073 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
1074 | { | |
1075 | sec = local_sections[r_symndx]; | |
1076 | rel->r_addend += sec->output_offset + sym->st_value; | |
1077 | } | |
1078 | } | |
1079 | ||
1080 | continue; | |
1081 | } | |
1082 | (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel); | |
1083 | howto = arel.howto; | |
1084 | ||
1085 | m68hc11_get_relocation_value (input_bfd, info, | |
1086 | local_sections, local_syms, | |
1087 | rel, &name, &relocation, &is_far); | |
1088 | ||
1089 | /* Do the memory bank mapping. */ | |
1090 | phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend); | |
1091 | phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend); | |
1092 | switch (r_type) | |
1093 | { | |
1094 | case R_M68HC11_24: | |
1095 | /* Reloc used by 68HC12 call instruction. */ | |
1096 | bfd_put_16 (input_bfd, phys_addr, | |
1097 | (bfd_byte*) contents + rel->r_offset); | |
1098 | bfd_put_8 (input_bfd, phys_page, | |
1099 | (bfd_byte*) contents + rel->r_offset + 2); | |
1100 | r = bfd_reloc_ok; | |
1101 | r_type = R_M68HC11_NONE; | |
1102 | break; | |
1103 | ||
1104 | case R_M68HC11_NONE: | |
1105 | r = bfd_reloc_ok; | |
1106 | break; | |
1107 | ||
1108 | case R_M68HC11_LO16: | |
1109 | /* Reloc generated by %addr(expr) gas to obtain the | |
1110 | address as mapped in the memory bank window. */ | |
1111 | relocation = phys_addr; | |
1112 | break; | |
1113 | ||
1114 | case R_M68HC11_PAGE: | |
1115 | /* Reloc generated by %page(expr) gas to obtain the | |
1116 | page number associated with the address. */ | |
1117 | relocation = phys_page; | |
1118 | break; | |
1119 | ||
1120 | case R_M68HC11_16: | |
1121 | /* Get virtual address of instruction having the relocation. */ | |
1122 | if (is_far) | |
1123 | { | |
1124 | const char* msg; | |
1125 | char* buf; | |
1126 | msg = _("Reference to the far symbol `%s' using a wrong " | |
1127 | "relocation may result in incorrect execution"); | |
1128 | buf = alloca (strlen (msg) + strlen (name) + 10); | |
1129 | sprintf (buf, msg, name); | |
1130 | ||
1131 | (* info->callbacks->warning) | |
1132 | (info, buf, name, input_bfd, NULL, rel->r_offset); | |
1133 | } | |
1134 | ||
1135 | /* Get virtual address of instruction having the relocation. */ | |
1136 | insn_addr = input_section->output_section->vma | |
1137 | + input_section->output_offset | |
1138 | + rel->r_offset; | |
1139 | ||
1140 | insn_page = m68hc11_phys_page (pinfo, insn_addr); | |
1141 | ||
1142 | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend) | |
1143 | && m68hc11_addr_is_banked (pinfo, insn_addr) | |
1144 | && phys_page != insn_page) | |
1145 | { | |
1146 | const char* msg; | |
1147 | char* buf; | |
1148 | ||
1149 | msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank " | |
1150 | "as current banked address [%lx:%04lx] (%lx)"); | |
1151 | ||
1152 | buf = alloca (strlen (msg) + 128); | |
1153 | sprintf (buf, msg, phys_page, phys_addr, | |
1154 | (long) (relocation + rel->r_addend), | |
1155 | insn_page, m68hc11_phys_addr (pinfo, insn_addr), | |
1156 | (long) (insn_addr)); | |
1157 | if (!((*info->callbacks->warning) | |
1158 | (info, buf, name, input_bfd, input_section, | |
1159 | rel->r_offset))) | |
1160 | return FALSE; | |
1161 | break; | |
1162 | } | |
1163 | if (phys_page != 0 && insn_page == 0) | |
1164 | { | |
1165 | const char* msg; | |
1166 | char* buf; | |
1167 | ||
1168 | msg = _("reference to a banked address [%lx:%04lx] in the " | |
1169 | "normal address space at %04lx"); | |
1170 | ||
1171 | buf = alloca (strlen (msg) + 128); | |
1172 | sprintf (buf, msg, phys_page, phys_addr, insn_addr); | |
1173 | if (!((*info->callbacks->warning) | |
1174 | (info, buf, name, input_bfd, input_section, | |
1175 | insn_addr))) | |
1176 | return FALSE; | |
1177 | ||
1178 | relocation = phys_addr; | |
1179 | break; | |
1180 | } | |
1181 | ||
1182 | /* If this is a banked address use the phys_addr so that | |
1183 | we stay in the banked window. */ | |
1184 | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)) | |
1185 | relocation = phys_addr; | |
1186 | break; | |
1187 | } | |
1188 | if (r_type != R_M68HC11_NONE) | |
1189 | r = _bfd_final_link_relocate (howto, input_bfd, input_section, | |
1190 | contents, rel->r_offset, | |
1191 | relocation, rel->r_addend); | |
1192 | ||
1193 | if (r != bfd_reloc_ok) | |
1194 | { | |
1195 | const char * msg = (const char *) 0; | |
1196 | ||
1197 | switch (r) | |
1198 | { | |
1199 | case bfd_reloc_overflow: | |
1200 | if (!((*info->callbacks->reloc_overflow) | |
1201 | (info, name, howto->name, (bfd_vma) 0, | |
1202 | input_bfd, input_section, rel->r_offset))) | |
1203 | return FALSE; | |
1204 | break; | |
1205 | ||
1206 | case bfd_reloc_undefined: | |
1207 | if (!((*info->callbacks->undefined_symbol) | |
1208 | (info, name, input_bfd, input_section, | |
1209 | rel->r_offset, TRUE))) | |
1210 | return FALSE; | |
1211 | break; | |
1212 | ||
1213 | case bfd_reloc_outofrange: | |
1214 | msg = _ ("internal error: out of range error"); | |
1215 | goto common_error; | |
1216 | ||
1217 | case bfd_reloc_notsupported: | |
1218 | msg = _ ("internal error: unsupported relocation error"); | |
1219 | goto common_error; | |
1220 | ||
1221 | case bfd_reloc_dangerous: | |
1222 | msg = _ ("internal error: dangerous error"); | |
1223 | goto common_error; | |
1224 | ||
1225 | default: | |
1226 | msg = _ ("internal error: unknown error"); | |
1227 | /* fall through */ | |
1228 | ||
1229 | common_error: | |
1230 | if (!((*info->callbacks->warning) | |
1231 | (info, msg, name, input_bfd, input_section, | |
1232 | rel->r_offset))) | |
1233 | return FALSE; | |
1234 | break; | |
1235 | } | |
1236 | } | |
1237 | } | |
1238 | ||
1239 | return TRUE; | |
1240 | } | |
1241 | ||
1242 | ||
1243 | \f | |
1244 | /* Set and control ELF flags in ELF header. */ | |
1245 | ||
1246 | bfd_boolean | |
0a6a3ebe | 1247 | _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags) |
3a65329d SC |
1248 | { |
1249 | BFD_ASSERT (!elf_flags_init (abfd) | |
1250 | || elf_elfheader (abfd)->e_flags == flags); | |
1251 | ||
1252 | elf_elfheader (abfd)->e_flags = flags; | |
1253 | elf_flags_init (abfd) = TRUE; | |
1254 | return TRUE; | |
1255 | } | |
1256 | ||
1257 | /* Merge backend specific data from an object file to the output | |
1258 | object file when linking. */ | |
1259 | ||
1260 | bfd_boolean | |
0a6a3ebe | 1261 | _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
3a65329d SC |
1262 | { |
1263 | flagword old_flags; | |
1264 | flagword new_flags; | |
1265 | bfd_boolean ok = TRUE; | |
1266 | ||
1267 | /* Check if we have the same endianess */ | |
1268 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | |
1269 | return FALSE; | |
1270 | ||
1271 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
1272 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
1273 | return TRUE; | |
1274 | ||
1275 | new_flags = elf_elfheader (ibfd)->e_flags; | |
1276 | elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI; | |
1277 | old_flags = elf_elfheader (obfd)->e_flags; | |
1278 | ||
1279 | if (! elf_flags_init (obfd)) | |
1280 | { | |
1281 | elf_flags_init (obfd) = TRUE; | |
1282 | elf_elfheader (obfd)->e_flags = new_flags; | |
1283 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
1284 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
1285 | ||
1286 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
1287 | && bfd_get_arch_info (obfd)->the_default) | |
1288 | { | |
1289 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
1290 | bfd_get_mach (ibfd))) | |
1291 | return FALSE; | |
1292 | } | |
1293 | ||
1294 | return TRUE; | |
1295 | } | |
1296 | ||
1297 | /* Check ABI compatibility. */ | |
1298 | if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32)) | |
1299 | { | |
1300 | (*_bfd_error_handler) | |
1301 | (_("%s: linking files compiled for 16-bit integers (-mshort) " | |
1302 | "and others for 32-bit integers"), | |
1303 | bfd_archive_filename (ibfd)); | |
1304 | ok = FALSE; | |
1305 | } | |
1306 | if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64)) | |
1307 | { | |
1308 | (*_bfd_error_handler) | |
1309 | (_("%s: linking files compiled for 32-bit double (-fshort-double) " | |
1310 | "and others for 64-bit double"), | |
1311 | bfd_archive_filename (ibfd)); | |
1312 | ok = FALSE; | |
1313 | } | |
47247ced SC |
1314 | |
1315 | /* Processor compatibility. */ | |
1316 | if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags)) | |
1317 | { | |
1318 | (*_bfd_error_handler) | |
1319 | (_("%s: linking files compiled for HCS12 with " | |
1320 | "others compiled for HC12"), | |
1321 | bfd_archive_filename (ibfd)); | |
1322 | ok = FALSE; | |
1323 | } | |
1324 | new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK) | |
1325 | | (EF_M68HC11_MERGE_MACH (new_flags, old_flags))); | |
1326 | ||
1327 | elf_elfheader (obfd)->e_flags = new_flags; | |
1328 | ||
17e58af0 SC |
1329 | new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); |
1330 | old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); | |
3a65329d SC |
1331 | |
1332 | /* Warn about any other mismatches */ | |
1333 | if (new_flags != old_flags) | |
1334 | { | |
1335 | (*_bfd_error_handler) | |
1336 | (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), | |
1337 | bfd_archive_filename (ibfd), (unsigned long) new_flags, | |
1338 | (unsigned long) old_flags); | |
1339 | ok = FALSE; | |
1340 | } | |
1341 | ||
1342 | if (! ok) | |
1343 | { | |
1344 | bfd_set_error (bfd_error_bad_value); | |
1345 | return FALSE; | |
1346 | } | |
1347 | ||
1348 | return TRUE; | |
1349 | } | |
1350 | ||
1351 | bfd_boolean | |
0a6a3ebe | 1352 | _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
3a65329d SC |
1353 | { |
1354 | FILE *file = (FILE *) ptr; | |
1355 | ||
1356 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
1357 | ||
1358 | /* Print normal ELF private data. */ | |
1359 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
1360 | ||
1361 | /* xgettext:c-format */ | |
1362 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
1363 | ||
1364 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32) | |
1365 | fprintf (file, _("[abi=32-bit int, ")); | |
1366 | else | |
1367 | fprintf (file, _("[abi=16-bit int, ")); | |
1368 | ||
1369 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64) | |
1370 | fprintf (file, _("64-bit double, ")); | |
1371 | else | |
1372 | fprintf (file, _("32-bit double, ")); | |
1373 | ||
1374 | if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0) | |
1375 | fprintf (file, _("cpu=HC11]")); | |
1376 | else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH) | |
1377 | fprintf (file, _("cpu=HCS12]")); | |
1378 | else | |
1379 | fprintf (file, _("cpu=HC12]")); | |
1380 | ||
1381 | if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS) | |
1382 | fprintf (file, _(" [memory=bank-model]")); | |
1383 | else | |
1384 | fprintf (file, _(" [memory=flat]")); | |
1385 | ||
1386 | fputc ('\n', file); | |
1387 | ||
1388 | return TRUE; | |
1389 | } | |
1390 | ||
0a6a3ebe SC |
1391 | static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED, |
1392 | asection *asect, void *arg) | |
3a65329d SC |
1393 | { |
1394 | struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg; | |
1395 | ||
1396 | if (asect->vma >= p->pinfo->bank_virtual) | |
1397 | p->use_memory_banks = TRUE; | |
1398 | } | |
1399 | ||
1400 | /* Tweak the OSABI field of the elf header. */ | |
1401 | ||
1402 | void | |
0a6a3ebe | 1403 | elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) |
3a65329d SC |
1404 | { |
1405 | struct m68hc11_scan_param param; | |
1406 | ||
1407 | if (link_info == 0) | |
1408 | return; | |
1409 | ||
1410 | m68hc11_elf_get_bank_parameters (link_info); | |
1411 | ||
1412 | param.use_memory_banks = FALSE; | |
1413 | param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo; | |
1414 | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); | |
1415 | if (param.use_memory_banks) | |
1416 | { | |
1417 | Elf_Internal_Ehdr * i_ehdrp; | |
1418 | ||
1419 | i_ehdrp = elf_elfheader (abfd); | |
1420 | i_ehdrp->e_flags |= E_M68HC12_BANKS; | |
1421 | } | |
1422 | } | |
1423 |