Commit | Line | Data |
---|---|---|
3a65329d | 1 | /* Motorola 68HC11/HC12-specific support for 32-bit ELF |
8d25cc3d | 2 | Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
5efbbc43 | 3 | 2009, 2010, 2011, 2012 Free Software Foundation, Inc. |
3a65329d SC |
4 | Contributed by Stephane Carrez (stcarrez@nerim.fr) |
5 | ||
cd123cb7 NC |
6 | This file is part of BFD, the Binary File Descriptor library. |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | |
21 | MA 02110-1301, USA. */ | |
3a65329d | 22 | |
8d25cc3d | 23 | #include "alloca-conf.h" |
3a65329d | 24 | #include "sysdep.h" |
3db64b00 | 25 | #include "bfd.h" |
3a65329d SC |
26 | #include "bfdlink.h" |
27 | #include "libbfd.h" | |
28 | #include "elf-bfd.h" | |
29 | #include "elf32-m68hc1x.h" | |
30 | #include "elf/m68hc11.h" | |
31 | #include "opcode/m68hc11.h" | |
32 | ||
33 | ||
34 | #define m68hc12_stub_hash_lookup(table, string, create, copy) \ | |
35 | ((struct elf32_m68hc11_stub_hash_entry *) \ | |
36 | bfd_hash_lookup ((table), (string), (create), (copy))) | |
37 | ||
38 | static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub | |
0a6a3ebe SC |
39 | (const char *stub_name, |
40 | asection *section, | |
41 | struct m68hc11_elf_link_hash_table *htab); | |
3a65329d SC |
42 | |
43 | static struct bfd_hash_entry *stub_hash_newfunc | |
0a6a3ebe | 44 | (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); |
3a65329d | 45 | |
0a6a3ebe SC |
46 | static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info, |
47 | const char* name, bfd_vma value, | |
48 | asection* sec); | |
3a65329d SC |
49 | |
50 | static bfd_boolean m68hc11_elf_export_one_stub | |
0a6a3ebe | 51 | (struct bfd_hash_entry *gen_entry, void *in_arg); |
3a65329d | 52 | |
0a6a3ebe | 53 | static void scan_sections_for_abi (bfd*, asection*, PTR); |
3a65329d SC |
54 | |
55 | struct m68hc11_scan_param | |
56 | { | |
57 | struct m68hc11_page_info* pinfo; | |
58 | bfd_boolean use_memory_banks; | |
59 | }; | |
60 | ||
61 | ||
62 | /* Create a 68HC11/68HC12 ELF linker hash table. */ | |
63 | ||
64 | struct m68hc11_elf_link_hash_table* | |
0a6a3ebe | 65 | m68hc11_elf_hash_table_create (bfd *abfd) |
3a65329d SC |
66 | { |
67 | struct m68hc11_elf_link_hash_table *ret; | |
68 | bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table); | |
69 | ||
47247ced | 70 | ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt); |
3a65329d SC |
71 | if (ret == (struct m68hc11_elf_link_hash_table *) NULL) |
72 | return NULL; | |
73 | ||
47247ced | 74 | memset (ret, 0, amt); |
66eb6687 AM |
75 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
76 | _bfd_elf_link_hash_newfunc, | |
4dfe6ac6 NC |
77 | sizeof (struct elf_link_hash_entry), |
78 | M68HC11_ELF_DATA)) | |
3a65329d | 79 | { |
47247ced | 80 | free (ret); |
3a65329d SC |
81 | return NULL; |
82 | } | |
83 | ||
84 | /* Init the stub hash table too. */ | |
85 | amt = sizeof (struct bfd_hash_table); | |
86 | ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt); | |
87 | if (ret->stub_hash_table == NULL) | |
88 | { | |
47247ced | 89 | free (ret); |
3a65329d SC |
90 | return NULL; |
91 | } | |
66eb6687 AM |
92 | if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc, |
93 | sizeof (struct elf32_m68hc11_stub_hash_entry))) | |
3a65329d SC |
94 | return NULL; |
95 | ||
96 | ret->stub_bfd = NULL; | |
97 | ret->stub_section = 0; | |
98 | ret->add_stub_section = NULL; | |
87d72d41 | 99 | ret->sym_cache.abfd = NULL; |
3a65329d SC |
100 | |
101 | return ret; | |
102 | } | |
103 | ||
104 | /* Free the derived linker hash table. */ | |
105 | ||
106 | void | |
0a6a3ebe | 107 | m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash) |
3a65329d SC |
108 | { |
109 | struct m68hc11_elf_link_hash_table *ret | |
110 | = (struct m68hc11_elf_link_hash_table *) hash; | |
111 | ||
112 | bfd_hash_table_free (ret->stub_hash_table); | |
113 | free (ret->stub_hash_table); | |
114 | _bfd_generic_link_hash_table_free (hash); | |
115 | } | |
116 | ||
117 | /* Assorted hash table functions. */ | |
118 | ||
119 | /* Initialize an entry in the stub hash table. */ | |
120 | ||
121 | static struct bfd_hash_entry * | |
0a6a3ebe SC |
122 | stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, |
123 | const char *string) | |
3a65329d SC |
124 | { |
125 | /* Allocate the structure if it has not already been allocated by a | |
126 | subclass. */ | |
127 | if (entry == NULL) | |
128 | { | |
129 | entry = bfd_hash_allocate (table, | |
130 | sizeof (struct elf32_m68hc11_stub_hash_entry)); | |
131 | if (entry == NULL) | |
132 | return entry; | |
133 | } | |
134 | ||
135 | /* Call the allocation method of the superclass. */ | |
136 | entry = bfd_hash_newfunc (entry, table, string); | |
137 | if (entry != NULL) | |
138 | { | |
139 | struct elf32_m68hc11_stub_hash_entry *eh; | |
140 | ||
141 | /* Initialize the local fields. */ | |
142 | eh = (struct elf32_m68hc11_stub_hash_entry *) entry; | |
143 | eh->stub_sec = NULL; | |
144 | eh->stub_offset = 0; | |
145 | eh->target_value = 0; | |
146 | eh->target_section = NULL; | |
147 | } | |
148 | ||
149 | return entry; | |
150 | } | |
151 | ||
152 | /* Add a new stub entry to the stub hash. Not all fields of the new | |
153 | stub entry are initialised. */ | |
154 | ||
155 | static struct elf32_m68hc11_stub_hash_entry * | |
0a6a3ebe SC |
156 | m68hc12_add_stub (const char *stub_name, asection *section, |
157 | struct m68hc11_elf_link_hash_table *htab) | |
3a65329d SC |
158 | { |
159 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
160 | ||
161 | /* Enter this entry into the linker stub hash table. */ | |
162 | stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name, | |
163 | TRUE, FALSE); | |
164 | if (stub_entry == NULL) | |
165 | { | |
d003868e AM |
166 | (*_bfd_error_handler) (_("%B: cannot create stub entry %s"), |
167 | section->owner, stub_name); | |
3a65329d SC |
168 | return NULL; |
169 | } | |
170 | ||
171 | if (htab->stub_section == 0) | |
172 | { | |
173 | htab->stub_section = (*htab->add_stub_section) (".tramp", | |
174 | htab->tramp_section); | |
175 | } | |
176 | ||
177 | stub_entry->stub_sec = htab->stub_section; | |
178 | stub_entry->stub_offset = 0; | |
179 | return stub_entry; | |
180 | } | |
181 | ||
182 | /* Hook called by the linker routine which adds symbols from an object | |
183 | file. We use it for identify far symbols and force a loading of | |
184 | the trampoline handler. */ | |
185 | ||
186 | bfd_boolean | |
0a6a3ebe | 187 | elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 188 | Elf_Internal_Sym *sym, |
0a6a3ebe SC |
189 | const char **namep ATTRIBUTE_UNUSED, |
190 | flagword *flagsp ATTRIBUTE_UNUSED, | |
191 | asection **secp ATTRIBUTE_UNUSED, | |
192 | bfd_vma *valp ATTRIBUTE_UNUSED) | |
3a65329d SC |
193 | { |
194 | if (sym->st_other & STO_M68HC12_FAR) | |
195 | { | |
196 | struct elf_link_hash_entry *h; | |
197 | ||
198 | h = (struct elf_link_hash_entry *) | |
199 | bfd_link_hash_lookup (info->hash, "__far_trampoline", | |
200 | FALSE, FALSE, FALSE); | |
201 | if (h == NULL) | |
202 | { | |
203 | struct bfd_link_hash_entry* entry = NULL; | |
204 | ||
205 | _bfd_generic_link_add_one_symbol (info, abfd, | |
206 | "__far_trampoline", | |
207 | BSF_GLOBAL, | |
208 | bfd_und_section_ptr, | |
209 | (bfd_vma) 0, (const char*) NULL, | |
210 | FALSE, FALSE, &entry); | |
211 | } | |
212 | ||
213 | } | |
214 | return TRUE; | |
215 | } | |
216 | ||
5efbbc43 AM |
217 | /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and |
218 | STO_M68HC12_INTERRUPT. */ | |
219 | ||
220 | void | |
221 | elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h, | |
222 | const Elf_Internal_Sym *isym, | |
223 | bfd_boolean definition, | |
224 | bfd_boolean dynamic ATTRIBUTE_UNUSED) | |
225 | { | |
226 | if (definition) | |
227 | h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) | |
228 | | ELF_ST_VISIBILITY (h->other)); | |
229 | } | |
230 | ||
3a65329d SC |
231 | /* External entry points for sizing and building linker stubs. */ |
232 | ||
233 | /* Set up various things so that we can make a list of input sections | |
234 | for each output section included in the link. Returns -1 on error, | |
235 | 0 when no stubs will be needed, and 1 on success. */ | |
236 | ||
237 | int | |
0a6a3ebe | 238 | elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) |
3a65329d SC |
239 | { |
240 | bfd *input_bfd; | |
241 | unsigned int bfd_count; | |
242 | int top_id, top_index; | |
243 | asection *section; | |
244 | asection **input_list, **list; | |
245 | bfd_size_type amt; | |
246 | asection *text_section; | |
247 | struct m68hc11_elf_link_hash_table *htab; | |
248 | ||
249 | htab = m68hc11_elf_hash_table (info); | |
4dfe6ac6 NC |
250 | if (htab == NULL) |
251 | return -1; | |
3a65329d | 252 | |
f13a99db | 253 | if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour) |
3a65329d SC |
254 | return 0; |
255 | ||
256 | /* Count the number of input BFDs and find the top input section id. | |
257 | Also search for an existing ".tramp" section so that we know | |
258 | where generated trampolines must go. Default to ".text" if we | |
259 | can't find it. */ | |
260 | htab->tramp_section = 0; | |
261 | text_section = 0; | |
262 | for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; | |
263 | input_bfd != NULL; | |
264 | input_bfd = input_bfd->link_next) | |
265 | { | |
266 | bfd_count += 1; | |
267 | for (section = input_bfd->sections; | |
268 | section != NULL; | |
269 | section = section->next) | |
270 | { | |
271 | const char* name = bfd_get_section_name (input_bfd, section); | |
272 | ||
273 | if (!strcmp (name, ".tramp")) | |
274 | htab->tramp_section = section; | |
275 | ||
276 | if (!strcmp (name, ".text")) | |
277 | text_section = section; | |
278 | ||
279 | if (top_id < section->id) | |
280 | top_id = section->id; | |
281 | } | |
282 | } | |
283 | htab->bfd_count = bfd_count; | |
284 | if (htab->tramp_section == 0) | |
285 | htab->tramp_section = text_section; | |
286 | ||
287 | /* We can't use output_bfd->section_count here to find the top output | |
288 | section index as some sections may have been removed, and | |
8423293d | 289 | strip_excluded_output_sections doesn't renumber the indices. */ |
3a65329d SC |
290 | for (section = output_bfd->sections, top_index = 0; |
291 | section != NULL; | |
292 | section = section->next) | |
293 | { | |
294 | if (top_index < section->index) | |
295 | top_index = section->index; | |
296 | } | |
297 | ||
298 | htab->top_index = top_index; | |
299 | amt = sizeof (asection *) * (top_index + 1); | |
300 | input_list = (asection **) bfd_malloc (amt); | |
301 | htab->input_list = input_list; | |
302 | if (input_list == NULL) | |
303 | return -1; | |
304 | ||
305 | /* For sections we aren't interested in, mark their entries with a | |
306 | value we can check later. */ | |
307 | list = input_list + top_index; | |
308 | do | |
309 | *list = bfd_abs_section_ptr; | |
310 | while (list-- != input_list); | |
311 | ||
312 | for (section = output_bfd->sections; | |
313 | section != NULL; | |
314 | section = section->next) | |
315 | { | |
316 | if ((section->flags & SEC_CODE) != 0) | |
317 | input_list[section->index] = NULL; | |
318 | } | |
319 | ||
320 | return 1; | |
321 | } | |
322 | ||
323 | /* Determine and set the size of the stub section for a final link. | |
324 | ||
325 | The basic idea here is to examine all the relocations looking for | |
326 | PC-relative calls to a target that is unreachable with a "bl" | |
327 | instruction. */ | |
328 | ||
329 | bfd_boolean | |
0a6a3ebe SC |
330 | elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd, |
331 | struct bfd_link_info *info, | |
332 | asection * (*add_stub_section) (const char*, asection*)) | |
3a65329d SC |
333 | { |
334 | bfd *input_bfd; | |
335 | asection *section; | |
336 | Elf_Internal_Sym *local_syms, **all_local_syms; | |
337 | unsigned int bfd_indx, bfd_count; | |
338 | bfd_size_type amt; | |
339 | asection *stub_sec; | |
3a65329d SC |
340 | struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info); |
341 | ||
4dfe6ac6 NC |
342 | if (htab == NULL) |
343 | return FALSE; | |
344 | ||
3a65329d SC |
345 | /* Stash our params away. */ |
346 | htab->stub_bfd = stub_bfd; | |
347 | htab->add_stub_section = add_stub_section; | |
348 | ||
349 | /* Count the number of input BFDs and find the top input section id. */ | |
350 | for (input_bfd = info->input_bfds, bfd_count = 0; | |
351 | input_bfd != NULL; | |
352 | input_bfd = input_bfd->link_next) | |
4dfe6ac6 | 353 | bfd_count += 1; |
3a65329d SC |
354 | |
355 | /* We want to read in symbol extension records only once. To do this | |
356 | we need to read in the local symbols in parallel and save them for | |
357 | later use; so hold pointers to the local symbols in an array. */ | |
358 | amt = sizeof (Elf_Internal_Sym *) * bfd_count; | |
359 | all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt); | |
360 | if (all_local_syms == NULL) | |
361 | return FALSE; | |
362 | ||
363 | /* Walk over all the input BFDs, swapping in local symbols. */ | |
364 | for (input_bfd = info->input_bfds, bfd_indx = 0; | |
365 | input_bfd != NULL; | |
366 | input_bfd = input_bfd->link_next, bfd_indx++) | |
367 | { | |
368 | Elf_Internal_Shdr *symtab_hdr; | |
3a65329d SC |
369 | |
370 | /* We'll need the symbol table in a second. */ | |
371 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
372 | if (symtab_hdr->sh_info == 0) | |
373 | continue; | |
374 | ||
2a0e29b4 SC |
375 | /* We need an array of the local symbols attached to the input bfd. */ |
376 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; | |
377 | if (local_syms == NULL) | |
378 | { | |
379 | local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, | |
380 | symtab_hdr->sh_info, 0, | |
381 | NULL, NULL, NULL); | |
382 | /* Cache them for elf_link_input_bfd. */ | |
383 | symtab_hdr->contents = (unsigned char *) local_syms; | |
384 | } | |
3a65329d | 385 | if (local_syms == NULL) |
3a65329d | 386 | { |
2a0e29b4 SC |
387 | free (all_local_syms); |
388 | return FALSE; | |
3a65329d SC |
389 | } |
390 | ||
2a0e29b4 | 391 | all_local_syms[bfd_indx] = local_syms; |
3a65329d SC |
392 | } |
393 | ||
394 | for (input_bfd = info->input_bfds, bfd_indx = 0; | |
395 | input_bfd != NULL; | |
396 | input_bfd = input_bfd->link_next, bfd_indx++) | |
397 | { | |
398 | Elf_Internal_Shdr *symtab_hdr; | |
3a65329d SC |
399 | struct elf_link_hash_entry ** sym_hashes; |
400 | ||
401 | sym_hashes = elf_sym_hashes (input_bfd); | |
402 | ||
403 | /* We'll need the symbol table in a second. */ | |
404 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
405 | if (symtab_hdr->sh_info == 0) | |
406 | continue; | |
407 | ||
408 | local_syms = all_local_syms[bfd_indx]; | |
409 | ||
410 | /* Walk over each section attached to the input bfd. */ | |
411 | for (section = input_bfd->sections; | |
412 | section != NULL; | |
413 | section = section->next) | |
414 | { | |
415 | Elf_Internal_Rela *internal_relocs, *irelaend, *irela; | |
416 | ||
417 | /* If there aren't any relocs, then there's nothing more | |
418 | to do. */ | |
419 | if ((section->flags & SEC_RELOC) == 0 | |
420 | || section->reloc_count == 0) | |
421 | continue; | |
422 | ||
423 | /* If this section is a link-once section that will be | |
424 | discarded, then don't create any stubs. */ | |
425 | if (section->output_section == NULL | |
426 | || section->output_section->owner != output_bfd) | |
427 | continue; | |
428 | ||
429 | /* Get the relocs. */ | |
430 | internal_relocs | |
45d6a902 AM |
431 | = _bfd_elf_link_read_relocs (input_bfd, section, NULL, |
432 | (Elf_Internal_Rela *) NULL, | |
433 | info->keep_memory); | |
3a65329d SC |
434 | if (internal_relocs == NULL) |
435 | goto error_ret_free_local; | |
436 | ||
437 | /* Now examine each relocation. */ | |
438 | irela = internal_relocs; | |
439 | irelaend = irela + section->reloc_count; | |
440 | for (; irela < irelaend; irela++) | |
441 | { | |
442 | unsigned int r_type, r_indx; | |
443 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
444 | asection *sym_sec; | |
445 | bfd_vma sym_value; | |
446 | struct elf_link_hash_entry *hash; | |
447 | const char *stub_name; | |
448 | Elf_Internal_Sym *sym; | |
449 | ||
450 | r_type = ELF32_R_TYPE (irela->r_info); | |
451 | ||
452 | /* Only look at 16-bit relocs. */ | |
453 | if (r_type != (unsigned int) R_M68HC11_16) | |
454 | continue; | |
455 | ||
456 | /* Now determine the call target, its name, value, | |
457 | section. */ | |
458 | r_indx = ELF32_R_SYM (irela->r_info); | |
459 | if (r_indx < symtab_hdr->sh_info) | |
460 | { | |
461 | /* It's a local symbol. */ | |
462 | Elf_Internal_Shdr *hdr; | |
463 | bfd_boolean is_far; | |
464 | ||
465 | sym = local_syms + r_indx; | |
3a65329d SC |
466 | is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); |
467 | if (!is_far) | |
468 | continue; | |
7f888330 | 469 | |
4fbb74a6 AM |
470 | if (sym->st_shndx >= elf_numsections (input_bfd)) |
471 | sym_sec = NULL; | |
472 | else | |
473 | { | |
474 | hdr = elf_elfsections (input_bfd)[sym->st_shndx]; | |
475 | sym_sec = hdr->bfd_section; | |
476 | } | |
3a65329d SC |
477 | stub_name = (bfd_elf_string_from_elf_section |
478 | (input_bfd, symtab_hdr->sh_link, | |
479 | sym->st_name)); | |
480 | sym_value = sym->st_value; | |
481 | hash = NULL; | |
482 | } | |
483 | else | |
484 | { | |
485 | /* It's an external symbol. */ | |
486 | int e_indx; | |
487 | ||
488 | e_indx = r_indx - symtab_hdr->sh_info; | |
489 | hash = (struct elf_link_hash_entry *) | |
490 | (sym_hashes[e_indx]); | |
491 | ||
492 | while (hash->root.type == bfd_link_hash_indirect | |
493 | || hash->root.type == bfd_link_hash_warning) | |
494 | hash = ((struct elf_link_hash_entry *) | |
495 | hash->root.u.i.link); | |
496 | ||
497 | if (hash->root.type == bfd_link_hash_defined | |
83774818 SC |
498 | || hash->root.type == bfd_link_hash_defweak |
499 | || hash->root.type == bfd_link_hash_new) | |
3a65329d SC |
500 | { |
501 | if (!(hash->other & STO_M68HC12_FAR)) | |
502 | continue; | |
503 | } | |
504 | else if (hash->root.type == bfd_link_hash_undefweak) | |
505 | { | |
506 | continue; | |
507 | } | |
508 | else if (hash->root.type == bfd_link_hash_undefined) | |
509 | { | |
510 | continue; | |
511 | } | |
512 | else | |
513 | { | |
514 | bfd_set_error (bfd_error_bad_value); | |
515 | goto error_ret_free_internal; | |
516 | } | |
517 | sym_sec = hash->root.u.def.section; | |
518 | sym_value = hash->root.u.def.value; | |
519 | stub_name = hash->root.root.string; | |
520 | } | |
521 | ||
522 | if (!stub_name) | |
523 | goto error_ret_free_internal; | |
524 | ||
525 | stub_entry = m68hc12_stub_hash_lookup | |
526 | (htab->stub_hash_table, | |
527 | stub_name, | |
528 | FALSE, FALSE); | |
529 | if (stub_entry == NULL) | |
530 | { | |
531 | if (add_stub_section == 0) | |
532 | continue; | |
533 | ||
534 | stub_entry = m68hc12_add_stub (stub_name, section, htab); | |
535 | if (stub_entry == NULL) | |
536 | { | |
537 | error_ret_free_internal: | |
538 | if (elf_section_data (section)->relocs == NULL) | |
539 | free (internal_relocs); | |
540 | goto error_ret_free_local; | |
541 | } | |
542 | } | |
543 | ||
544 | stub_entry->target_value = sym_value; | |
545 | stub_entry->target_section = sym_sec; | |
546 | } | |
547 | ||
548 | /* We're done with the internal relocs, free them. */ | |
549 | if (elf_section_data (section)->relocs == NULL) | |
550 | free (internal_relocs); | |
551 | } | |
552 | } | |
553 | ||
554 | if (add_stub_section) | |
555 | { | |
556 | /* OK, we've added some stubs. Find out the new size of the | |
557 | stub sections. */ | |
558 | for (stub_sec = htab->stub_bfd->sections; | |
559 | stub_sec != NULL; | |
560 | stub_sec = stub_sec->next) | |
561 | { | |
eea6121a | 562 | stub_sec->size = 0; |
3a65329d SC |
563 | } |
564 | ||
565 | bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab); | |
566 | } | |
2a0e29b4 | 567 | free (all_local_syms); |
3a65329d SC |
568 | return TRUE; |
569 | ||
570 | error_ret_free_local: | |
2a0e29b4 | 571 | free (all_local_syms); |
3a65329d SC |
572 | return FALSE; |
573 | } | |
574 | ||
575 | /* Export the trampoline addresses in the symbol table. */ | |
576 | static bfd_boolean | |
0a6a3ebe | 577 | m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) |
3a65329d SC |
578 | { |
579 | struct bfd_link_info *info; | |
580 | struct m68hc11_elf_link_hash_table *htab; | |
581 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
582 | char* name; | |
583 | bfd_boolean result; | |
584 | ||
585 | info = (struct bfd_link_info *) in_arg; | |
586 | htab = m68hc11_elf_hash_table (info); | |
4dfe6ac6 NC |
587 | if (htab == NULL) |
588 | return FALSE; | |
3a65329d SC |
589 | |
590 | /* Massage our args to the form they really have. */ | |
591 | stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry; | |
592 | ||
593 | /* Generate the trampoline according to HC11 or HC12. */ | |
594 | result = (* htab->build_one_stub) (gen_entry, in_arg); | |
595 | ||
596 | /* Make a printable name that does not conflict with the real function. */ | |
597 | name = alloca (strlen (stub_entry->root.string) + 16); | |
598 | sprintf (name, "tramp.%s", stub_entry->root.string); | |
599 | ||
600 | /* Export the symbol for debugging/disassembling. */ | |
601 | m68hc11_elf_set_symbol (htab->stub_bfd, info, name, | |
602 | stub_entry->stub_offset, | |
603 | stub_entry->stub_sec); | |
604 | return result; | |
605 | } | |
606 | ||
607 | /* Export a symbol or set its value and section. */ | |
608 | static void | |
0a6a3ebe SC |
609 | m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info, |
610 | const char *name, bfd_vma value, asection *sec) | |
3a65329d SC |
611 | { |
612 | struct elf_link_hash_entry *h; | |
613 | ||
614 | h = (struct elf_link_hash_entry *) | |
615 | bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE); | |
616 | if (h == NULL) | |
617 | { | |
618 | _bfd_generic_link_add_one_symbol (info, abfd, | |
619 | name, | |
620 | BSF_GLOBAL, | |
621 | sec, | |
622 | value, | |
623 | (const char*) NULL, | |
624 | TRUE, FALSE, NULL); | |
625 | } | |
626 | else | |
627 | { | |
628 | h->root.type = bfd_link_hash_defined; | |
629 | h->root.u.def.value = value; | |
630 | h->root.u.def.section = sec; | |
631 | } | |
632 | } | |
633 | ||
634 | ||
635 | /* Build all the stubs associated with the current output file. The | |
636 | stubs are kept in a hash table attached to the main linker hash | |
637 | table. This function is called via m68hc12elf_finish in the | |
638 | linker. */ | |
639 | ||
640 | bfd_boolean | |
0a6a3ebe | 641 | elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info) |
3a65329d SC |
642 | { |
643 | asection *stub_sec; | |
644 | struct bfd_hash_table *table; | |
645 | struct m68hc11_elf_link_hash_table *htab; | |
646 | struct m68hc11_scan_param param; | |
647 | ||
648 | m68hc11_elf_get_bank_parameters (info); | |
649 | htab = m68hc11_elf_hash_table (info); | |
4dfe6ac6 NC |
650 | if (htab == NULL) |
651 | return FALSE; | |
3a65329d SC |
652 | |
653 | for (stub_sec = htab->stub_bfd->sections; | |
654 | stub_sec != NULL; | |
655 | stub_sec = stub_sec->next) | |
656 | { | |
657 | bfd_size_type size; | |
658 | ||
659 | /* Allocate memory to hold the linker stubs. */ | |
eea6121a | 660 | size = stub_sec->size; |
3a65329d SC |
661 | stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); |
662 | if (stub_sec->contents == NULL && size != 0) | |
663 | return FALSE; | |
eea6121a | 664 | stub_sec->size = 0; |
3a65329d SC |
665 | } |
666 | ||
667 | /* Build the stubs as directed by the stub hash table. */ | |
668 | table = htab->stub_hash_table; | |
669 | bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info); | |
670 | ||
671 | /* Scan the output sections to see if we use the memory banks. | |
672 | If so, export the symbols that define how the memory banks | |
673 | are mapped. This is used by gdb and the simulator to obtain | |
674 | the information. It can be used by programs to burn the eprom | |
675 | at the good addresses. */ | |
676 | param.use_memory_banks = FALSE; | |
677 | param.pinfo = &htab->pinfo; | |
678 | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); | |
679 | if (param.use_memory_banks) | |
680 | { | |
681 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME, | |
682 | htab->pinfo.bank_physical, | |
683 | bfd_abs_section_ptr); | |
684 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME, | |
685 | htab->pinfo.bank_virtual, | |
686 | bfd_abs_section_ptr); | |
687 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME, | |
688 | htab->pinfo.bank_size, | |
689 | bfd_abs_section_ptr); | |
690 | } | |
691 | ||
692 | return TRUE; | |
693 | } | |
694 | ||
695 | void | |
0a6a3ebe | 696 | m68hc11_elf_get_bank_parameters (struct bfd_link_info *info) |
3a65329d SC |
697 | { |
698 | unsigned i; | |
699 | struct m68hc11_page_info *pinfo; | |
700 | struct bfd_link_hash_entry *h; | |
4dfe6ac6 NC |
701 | struct m68hc11_elf_link_hash_table *htab; |
702 | ||
703 | htab = m68hc11_elf_hash_table (info); | |
704 | if (htab == NULL) | |
705 | return; | |
3a65329d | 706 | |
4dfe6ac6 | 707 | pinfo = & htab->pinfo; |
3a65329d SC |
708 | if (pinfo->bank_param_initialized) |
709 | return; | |
710 | ||
711 | pinfo->bank_virtual = M68HC12_BANK_VIRT; | |
712 | pinfo->bank_mask = M68HC12_BANK_MASK; | |
713 | pinfo->bank_physical = M68HC12_BANK_BASE; | |
714 | pinfo->bank_shift = M68HC12_BANK_SHIFT; | |
715 | pinfo->bank_size = 1 << M68HC12_BANK_SHIFT; | |
716 | ||
717 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME, | |
718 | FALSE, FALSE, TRUE); | |
719 | if (h != (struct bfd_link_hash_entry*) NULL | |
720 | && h->type == bfd_link_hash_defined) | |
721 | pinfo->bank_physical = (h->u.def.value | |
722 | + h->u.def.section->output_section->vma | |
723 | + h->u.def.section->output_offset); | |
724 | ||
725 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME, | |
726 | FALSE, FALSE, TRUE); | |
727 | if (h != (struct bfd_link_hash_entry*) NULL | |
728 | && h->type == bfd_link_hash_defined) | |
729 | pinfo->bank_virtual = (h->u.def.value | |
730 | + h->u.def.section->output_section->vma | |
731 | + h->u.def.section->output_offset); | |
732 | ||
733 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME, | |
734 | FALSE, FALSE, TRUE); | |
735 | if (h != (struct bfd_link_hash_entry*) NULL | |
736 | && h->type == bfd_link_hash_defined) | |
737 | pinfo->bank_size = (h->u.def.value | |
738 | + h->u.def.section->output_section->vma | |
739 | + h->u.def.section->output_offset); | |
740 | ||
741 | pinfo->bank_shift = 0; | |
742 | for (i = pinfo->bank_size; i != 0; i >>= 1) | |
743 | pinfo->bank_shift++; | |
744 | pinfo->bank_shift--; | |
745 | pinfo->bank_mask = (1 << pinfo->bank_shift) - 1; | |
746 | pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size; | |
747 | pinfo->bank_param_initialized = 1; | |
748 | ||
749 | h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE, | |
750 | FALSE, TRUE); | |
751 | if (h != (struct bfd_link_hash_entry*) NULL | |
752 | && h->type == bfd_link_hash_defined) | |
753 | pinfo->trampoline_addr = (h->u.def.value | |
754 | + h->u.def.section->output_section->vma | |
755 | + h->u.def.section->output_offset); | |
756 | } | |
757 | ||
758 | /* Return 1 if the address is in banked memory. | |
759 | This can be applied to a virtual address and to a physical address. */ | |
760 | int | |
0a6a3ebe | 761 | m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
762 | { |
763 | if (addr >= pinfo->bank_virtual) | |
764 | return 1; | |
765 | ||
766 | if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end) | |
767 | return 1; | |
768 | ||
769 | return 0; | |
770 | } | |
771 | ||
772 | /* Return the physical address seen by the processor, taking | |
773 | into account banked memory. */ | |
774 | bfd_vma | |
0a6a3ebe | 775 | m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
776 | { |
777 | if (addr < pinfo->bank_virtual) | |
778 | return addr; | |
779 | ||
780 | /* Map the address to the memory bank. */ | |
781 | addr -= pinfo->bank_virtual; | |
782 | addr &= pinfo->bank_mask; | |
783 | addr += pinfo->bank_physical; | |
784 | return addr; | |
785 | } | |
786 | ||
787 | /* Return the page number corresponding to an address in banked memory. */ | |
788 | bfd_vma | |
0a6a3ebe | 789 | m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
790 | { |
791 | if (addr < pinfo->bank_virtual) | |
792 | return 0; | |
793 | ||
794 | /* Map the address to the memory bank. */ | |
795 | addr -= pinfo->bank_virtual; | |
796 | addr >>= pinfo->bank_shift; | |
797 | addr &= 0x0ff; | |
798 | return addr; | |
799 | } | |
800 | ||
801 | /* This function is used for relocs which are only used for relaxing, | |
802 | which the linker should otherwise ignore. */ | |
803 | ||
804 | bfd_reloc_status_type | |
0a6a3ebe SC |
805 | m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
806 | arelent *reloc_entry, | |
807 | asymbol *symbol ATTRIBUTE_UNUSED, | |
808 | void *data ATTRIBUTE_UNUSED, | |
809 | asection *input_section, | |
810 | bfd *output_bfd, | |
811 | char **error_message ATTRIBUTE_UNUSED) | |
3a65329d SC |
812 | { |
813 | if (output_bfd != NULL) | |
814 | reloc_entry->address += input_section->output_offset; | |
815 | return bfd_reloc_ok; | |
816 | } | |
817 | ||
818 | bfd_reloc_status_type | |
0a6a3ebe SC |
819 | m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
820 | arelent *reloc_entry, | |
821 | asymbol *symbol, | |
822 | void *data ATTRIBUTE_UNUSED, | |
823 | asection *input_section, | |
824 | bfd *output_bfd, | |
825 | char **error_message ATTRIBUTE_UNUSED) | |
3a65329d SC |
826 | { |
827 | if (output_bfd != (bfd *) NULL | |
828 | && (symbol->flags & BSF_SECTION_SYM) == 0 | |
829 | && (! reloc_entry->howto->partial_inplace | |
830 | || reloc_entry->addend == 0)) | |
831 | { | |
832 | reloc_entry->address += input_section->output_offset; | |
833 | return bfd_reloc_ok; | |
834 | } | |
835 | ||
836 | if (output_bfd != NULL) | |
837 | return bfd_reloc_continue; | |
838 | ||
07515404 | 839 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
3a65329d SC |
840 | return bfd_reloc_outofrange; |
841 | ||
842 | abort(); | |
843 | } | |
844 | ||
3a65329d SC |
845 | /* Look through the relocs for a section during the first phase. |
846 | Since we don't do .gots or .plts, we just need to consider the | |
847 | virtual table relocs for gc. */ | |
848 | ||
849 | bfd_boolean | |
0a6a3ebe SC |
850 | elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info, |
851 | asection *sec, const Elf_Internal_Rela *relocs) | |
3a65329d SC |
852 | { |
853 | Elf_Internal_Shdr * symtab_hdr; | |
854 | struct elf_link_hash_entry ** sym_hashes; | |
3a65329d SC |
855 | const Elf_Internal_Rela * rel; |
856 | const Elf_Internal_Rela * rel_end; | |
857 | ||
1049f94e | 858 | if (info->relocatable) |
3a65329d SC |
859 | return TRUE; |
860 | ||
861 | symtab_hdr = & elf_tdata (abfd)->symtab_hdr; | |
862 | sym_hashes = elf_sym_hashes (abfd); | |
3a65329d SC |
863 | rel_end = relocs + sec->reloc_count; |
864 | ||
865 | for (rel = relocs; rel < rel_end; rel++) | |
866 | { | |
867 | struct elf_link_hash_entry * h; | |
868 | unsigned long r_symndx; | |
869 | ||
870 | r_symndx = ELF32_R_SYM (rel->r_info); | |
871 | ||
872 | if (r_symndx < symtab_hdr->sh_info) | |
873 | h = NULL; | |
874 | else | |
973a3492 L |
875 | { |
876 | h = sym_hashes [r_symndx - symtab_hdr->sh_info]; | |
877 | while (h->root.type == bfd_link_hash_indirect | |
878 | || h->root.type == bfd_link_hash_warning) | |
879 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
880 | } | |
3a65329d SC |
881 | |
882 | switch (ELF32_R_TYPE (rel->r_info)) | |
883 | { | |
884 | /* This relocation describes the C++ object vtable hierarchy. | |
885 | Reconstruct it for later use during GC. */ | |
886 | case R_M68HC11_GNU_VTINHERIT: | |
c152c796 | 887 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
3a65329d SC |
888 | return FALSE; |
889 | break; | |
890 | ||
891 | /* This relocation describes which C++ vtable entries are actually | |
892 | used. Record for later use during GC. */ | |
893 | case R_M68HC11_GNU_VTENTRY: | |
d17e0c6e JB |
894 | BFD_ASSERT (h != NULL); |
895 | if (h != NULL | |
896 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
3a65329d SC |
897 | return FALSE; |
898 | break; | |
899 | } | |
900 | } | |
901 | ||
902 | return TRUE; | |
903 | } | |
904 | ||
3a65329d SC |
905 | /* Relocate a 68hc11/68hc12 ELF section. */ |
906 | bfd_boolean | |
0a6a3ebe SC |
907 | elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, |
908 | struct bfd_link_info *info, | |
909 | bfd *input_bfd, asection *input_section, | |
910 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
911 | Elf_Internal_Sym *local_syms, | |
912 | asection **local_sections) | |
3a65329d SC |
913 | { |
914 | Elf_Internal_Shdr *symtab_hdr; | |
915 | struct elf_link_hash_entry **sym_hashes; | |
916 | Elf_Internal_Rela *rel, *relend; | |
9b69b847 | 917 | const char *name = NULL; |
3a65329d | 918 | struct m68hc11_page_info *pinfo; |
9c5bfbb7 | 919 | const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd); |
4dfe6ac6 | 920 | struct m68hc11_elf_link_hash_table *htab; |
3a65329d SC |
921 | |
922 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
923 | sym_hashes = elf_sym_hashes (input_bfd); | |
924 | ||
4dfe6ac6 NC |
925 | htab = m68hc11_elf_hash_table (info); |
926 | if (htab == NULL) | |
927 | return FALSE; | |
928 | ||
3a65329d SC |
929 | /* Get memory bank parameters. */ |
930 | m68hc11_elf_get_bank_parameters (info); | |
3a65329d | 931 | |
4dfe6ac6 | 932 | pinfo = & htab->pinfo; |
3a65329d SC |
933 | rel = relocs; |
934 | relend = relocs + input_section->reloc_count; | |
4dfe6ac6 | 935 | |
3a65329d SC |
936 | for (; rel < relend; rel++) |
937 | { | |
938 | int r_type; | |
939 | arelent arel; | |
940 | reloc_howto_type *howto; | |
941 | unsigned long r_symndx; | |
942 | Elf_Internal_Sym *sym; | |
943 | asection *sec; | |
9b69b847 | 944 | bfd_vma relocation = 0; |
3a65329d SC |
945 | bfd_reloc_status_type r = bfd_reloc_undefined; |
946 | bfd_vma phys_page; | |
947 | bfd_vma phys_addr; | |
948 | bfd_vma insn_addr; | |
949 | bfd_vma insn_page; | |
9b69b847 | 950 | bfd_boolean is_far = FALSE; |
ab96bf03 | 951 | struct elf_link_hash_entry *h; |
3a65329d SC |
952 | |
953 | r_symndx = ELF32_R_SYM (rel->r_info); | |
954 | r_type = ELF32_R_TYPE (rel->r_info); | |
955 | ||
956 | if (r_type == R_M68HC11_GNU_VTENTRY | |
957 | || r_type == R_M68HC11_GNU_VTINHERIT ) | |
958 | continue; | |
959 | ||
ab96bf03 AM |
960 | (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel); |
961 | howto = arel.howto; | |
962 | ||
963 | h = NULL; | |
964 | sym = NULL; | |
965 | sec = NULL; | |
966 | if (r_symndx < symtab_hdr->sh_info) | |
967 | { | |
968 | sym = local_syms + r_symndx; | |
969 | sec = local_sections[r_symndx]; | |
970 | relocation = (sec->output_section->vma | |
971 | + sec->output_offset | |
972 | + sym->st_value); | |
973 | is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); | |
ab96bf03 AM |
974 | } |
975 | else | |
976 | { | |
977 | bfd_boolean unresolved_reloc, warned; | |
978 | ||
979 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, | |
980 | r_symndx, symtab_hdr, sym_hashes, | |
981 | h, sec, relocation, unresolved_reloc, | |
982 | warned); | |
983 | ||
984 | is_far = (h && (h->other & STO_M68HC12_FAR)); | |
ab96bf03 AM |
985 | } |
986 | ||
987 | if (sec != NULL && elf_discarded_section (sec)) | |
e4067dbb DJ |
988 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
989 | rel, relend, howto, contents); | |
ab96bf03 | 990 | |
1049f94e | 991 | if (info->relocatable) |
3a65329d | 992 | { |
1049f94e | 993 | /* This is a relocatable link. We don't have to change |
3a65329d SC |
994 | anything, unless the reloc is against a section symbol, |
995 | in which case we have to adjust according to where the | |
996 | section symbol winds up in the output section. */ | |
ab96bf03 AM |
997 | if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
998 | rel->r_addend += sec->output_offset; | |
3a65329d SC |
999 | continue; |
1000 | } | |
3a65329d | 1001 | |
ab96bf03 AM |
1002 | if (h != NULL) |
1003 | name = h->root.root.string; | |
1004 | else | |
1005 | { | |
1006 | name = (bfd_elf_string_from_elf_section | |
1007 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | |
1008 | if (name == NULL || *name == '\0') | |
1009 | name = bfd_section_name (input_bfd, sec); | |
1010 | } | |
1011 | ||
1012 | if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16) | |
1013 | { | |
1014 | struct elf32_m68hc11_stub_hash_entry* stub; | |
ab96bf03 | 1015 | |
ab96bf03 AM |
1016 | stub = m68hc12_stub_hash_lookup (htab->stub_hash_table, |
1017 | name, FALSE, FALSE); | |
1018 | if (stub) | |
1019 | { | |
1020 | relocation = stub->stub_offset | |
1021 | + stub->stub_sec->output_section->vma | |
1022 | + stub->stub_sec->output_offset; | |
1023 | is_far = FALSE; | |
1024 | } | |
1025 | } | |
3a65329d SC |
1026 | |
1027 | /* Do the memory bank mapping. */ | |
1028 | phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend); | |
1029 | phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend); | |
1030 | switch (r_type) | |
1031 | { | |
1032 | case R_M68HC11_24: | |
1033 | /* Reloc used by 68HC12 call instruction. */ | |
1034 | bfd_put_16 (input_bfd, phys_addr, | |
1035 | (bfd_byte*) contents + rel->r_offset); | |
1036 | bfd_put_8 (input_bfd, phys_page, | |
1037 | (bfd_byte*) contents + rel->r_offset + 2); | |
1038 | r = bfd_reloc_ok; | |
1039 | r_type = R_M68HC11_NONE; | |
1040 | break; | |
1041 | ||
1042 | case R_M68HC11_NONE: | |
1043 | r = bfd_reloc_ok; | |
1044 | break; | |
1045 | ||
1046 | case R_M68HC11_LO16: | |
1047 | /* Reloc generated by %addr(expr) gas to obtain the | |
1048 | address as mapped in the memory bank window. */ | |
1049 | relocation = phys_addr; | |
1050 | break; | |
1051 | ||
1052 | case R_M68HC11_PAGE: | |
1053 | /* Reloc generated by %page(expr) gas to obtain the | |
1054 | page number associated with the address. */ | |
1055 | relocation = phys_page; | |
1056 | break; | |
1057 | ||
1058 | case R_M68HC11_16: | |
1059 | /* Get virtual address of instruction having the relocation. */ | |
1060 | if (is_far) | |
1061 | { | |
1062 | const char* msg; | |
1063 | char* buf; | |
1064 | msg = _("Reference to the far symbol `%s' using a wrong " | |
1065 | "relocation may result in incorrect execution"); | |
1066 | buf = alloca (strlen (msg) + strlen (name) + 10); | |
1067 | sprintf (buf, msg, name); | |
1068 | ||
1069 | (* info->callbacks->warning) | |
1070 | (info, buf, name, input_bfd, NULL, rel->r_offset); | |
1071 | } | |
1072 | ||
1073 | /* Get virtual address of instruction having the relocation. */ | |
1074 | insn_addr = input_section->output_section->vma | |
1075 | + input_section->output_offset | |
1076 | + rel->r_offset; | |
1077 | ||
1078 | insn_page = m68hc11_phys_page (pinfo, insn_addr); | |
1079 | ||
1080 | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend) | |
1081 | && m68hc11_addr_is_banked (pinfo, insn_addr) | |
1082 | && phys_page != insn_page) | |
1083 | { | |
1084 | const char* msg; | |
1085 | char* buf; | |
1086 | ||
1087 | msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank " | |
1088 | "as current banked address [%lx:%04lx] (%lx)"); | |
1089 | ||
1090 | buf = alloca (strlen (msg) + 128); | |
1091 | sprintf (buf, msg, phys_page, phys_addr, | |
1092 | (long) (relocation + rel->r_addend), | |
1093 | insn_page, m68hc11_phys_addr (pinfo, insn_addr), | |
1094 | (long) (insn_addr)); | |
1095 | if (!((*info->callbacks->warning) | |
1096 | (info, buf, name, input_bfd, input_section, | |
1097 | rel->r_offset))) | |
1098 | return FALSE; | |
1099 | break; | |
1100 | } | |
1101 | if (phys_page != 0 && insn_page == 0) | |
1102 | { | |
1103 | const char* msg; | |
1104 | char* buf; | |
1105 | ||
1106 | msg = _("reference to a banked address [%lx:%04lx] in the " | |
1107 | "normal address space at %04lx"); | |
1108 | ||
1109 | buf = alloca (strlen (msg) + 128); | |
1110 | sprintf (buf, msg, phys_page, phys_addr, insn_addr); | |
1111 | if (!((*info->callbacks->warning) | |
1112 | (info, buf, name, input_bfd, input_section, | |
1113 | insn_addr))) | |
1114 | return FALSE; | |
1115 | ||
1116 | relocation = phys_addr; | |
1117 | break; | |
1118 | } | |
1119 | ||
1120 | /* If this is a banked address use the phys_addr so that | |
1121 | we stay in the banked window. */ | |
1122 | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)) | |
1123 | relocation = phys_addr; | |
1124 | break; | |
1125 | } | |
1126 | if (r_type != R_M68HC11_NONE) | |
1127 | r = _bfd_final_link_relocate (howto, input_bfd, input_section, | |
1128 | contents, rel->r_offset, | |
1129 | relocation, rel->r_addend); | |
1130 | ||
1131 | if (r != bfd_reloc_ok) | |
1132 | { | |
1133 | const char * msg = (const char *) 0; | |
1134 | ||
1135 | switch (r) | |
1136 | { | |
1137 | case bfd_reloc_overflow: | |
1138 | if (!((*info->callbacks->reloc_overflow) | |
dfeffb9f | 1139 | (info, NULL, name, howto->name, (bfd_vma) 0, |
3a65329d SC |
1140 | input_bfd, input_section, rel->r_offset))) |
1141 | return FALSE; | |
1142 | break; | |
1143 | ||
1144 | case bfd_reloc_undefined: | |
1145 | if (!((*info->callbacks->undefined_symbol) | |
1146 | (info, name, input_bfd, input_section, | |
1147 | rel->r_offset, TRUE))) | |
1148 | return FALSE; | |
1149 | break; | |
1150 | ||
1151 | case bfd_reloc_outofrange: | |
1152 | msg = _ ("internal error: out of range error"); | |
1153 | goto common_error; | |
1154 | ||
1155 | case bfd_reloc_notsupported: | |
1156 | msg = _ ("internal error: unsupported relocation error"); | |
1157 | goto common_error; | |
1158 | ||
1159 | case bfd_reloc_dangerous: | |
1160 | msg = _ ("internal error: dangerous error"); | |
1161 | goto common_error; | |
1162 | ||
1163 | default: | |
1164 | msg = _ ("internal error: unknown error"); | |
1165 | /* fall through */ | |
1166 | ||
1167 | common_error: | |
1168 | if (!((*info->callbacks->warning) | |
1169 | (info, msg, name, input_bfd, input_section, | |
1170 | rel->r_offset))) | |
1171 | return FALSE; | |
1172 | break; | |
1173 | } | |
1174 | } | |
1175 | } | |
1176 | ||
1177 | return TRUE; | |
1178 | } | |
1179 | ||
1180 | ||
1181 | \f | |
1182 | /* Set and control ELF flags in ELF header. */ | |
1183 | ||
1184 | bfd_boolean | |
0a6a3ebe | 1185 | _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags) |
3a65329d SC |
1186 | { |
1187 | BFD_ASSERT (!elf_flags_init (abfd) | |
1188 | || elf_elfheader (abfd)->e_flags == flags); | |
1189 | ||
1190 | elf_elfheader (abfd)->e_flags = flags; | |
1191 | elf_flags_init (abfd) = TRUE; | |
1192 | return TRUE; | |
1193 | } | |
1194 | ||
1195 | /* Merge backend specific data from an object file to the output | |
1196 | object file when linking. */ | |
1197 | ||
1198 | bfd_boolean | |
0a6a3ebe | 1199 | _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
3a65329d SC |
1200 | { |
1201 | flagword old_flags; | |
1202 | flagword new_flags; | |
1203 | bfd_boolean ok = TRUE; | |
1204 | ||
cc643b88 | 1205 | /* Check if we have the same endianness */ |
3a65329d SC |
1206 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) |
1207 | return FALSE; | |
1208 | ||
1209 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
1210 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
1211 | return TRUE; | |
1212 | ||
1213 | new_flags = elf_elfheader (ibfd)->e_flags; | |
1214 | elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI; | |
1215 | old_flags = elf_elfheader (obfd)->e_flags; | |
1216 | ||
1217 | if (! elf_flags_init (obfd)) | |
1218 | { | |
1219 | elf_flags_init (obfd) = TRUE; | |
1220 | elf_elfheader (obfd)->e_flags = new_flags; | |
1221 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
1222 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
1223 | ||
1224 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
1225 | && bfd_get_arch_info (obfd)->the_default) | |
1226 | { | |
1227 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
1228 | bfd_get_mach (ibfd))) | |
1229 | return FALSE; | |
1230 | } | |
1231 | ||
1232 | return TRUE; | |
1233 | } | |
1234 | ||
1235 | /* Check ABI compatibility. */ | |
1236 | if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32)) | |
1237 | { | |
1238 | (*_bfd_error_handler) | |
d003868e AM |
1239 | (_("%B: linking files compiled for 16-bit integers (-mshort) " |
1240 | "and others for 32-bit integers"), ibfd); | |
3a65329d SC |
1241 | ok = FALSE; |
1242 | } | |
1243 | if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64)) | |
1244 | { | |
1245 | (*_bfd_error_handler) | |
d003868e AM |
1246 | (_("%B: linking files compiled for 32-bit double (-fshort-double) " |
1247 | "and others for 64-bit double"), ibfd); | |
3a65329d SC |
1248 | ok = FALSE; |
1249 | } | |
47247ced SC |
1250 | |
1251 | /* Processor compatibility. */ | |
1252 | if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags)) | |
1253 | { | |
1254 | (*_bfd_error_handler) | |
d003868e AM |
1255 | (_("%B: linking files compiled for HCS12 with " |
1256 | "others compiled for HC12"), ibfd); | |
47247ced SC |
1257 | ok = FALSE; |
1258 | } | |
1259 | new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK) | |
1260 | | (EF_M68HC11_MERGE_MACH (new_flags, old_flags))); | |
1261 | ||
1262 | elf_elfheader (obfd)->e_flags = new_flags; | |
1263 | ||
17e58af0 SC |
1264 | new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); |
1265 | old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); | |
3a65329d SC |
1266 | |
1267 | /* Warn about any other mismatches */ | |
1268 | if (new_flags != old_flags) | |
1269 | { | |
1270 | (*_bfd_error_handler) | |
d003868e AM |
1271 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
1272 | ibfd, (unsigned long) new_flags, (unsigned long) old_flags); | |
3a65329d SC |
1273 | ok = FALSE; |
1274 | } | |
1275 | ||
1276 | if (! ok) | |
1277 | { | |
1278 | bfd_set_error (bfd_error_bad_value); | |
1279 | return FALSE; | |
1280 | } | |
1281 | ||
1282 | return TRUE; | |
1283 | } | |
1284 | ||
1285 | bfd_boolean | |
0a6a3ebe | 1286 | _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
3a65329d SC |
1287 | { |
1288 | FILE *file = (FILE *) ptr; | |
1289 | ||
1290 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
1291 | ||
1292 | /* Print normal ELF private data. */ | |
1293 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
1294 | ||
1295 | /* xgettext:c-format */ | |
1296 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
1297 | ||
1298 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32) | |
1299 | fprintf (file, _("[abi=32-bit int, ")); | |
1300 | else | |
1301 | fprintf (file, _("[abi=16-bit int, ")); | |
1302 | ||
1303 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64) | |
1304 | fprintf (file, _("64-bit double, ")); | |
1305 | else | |
1306 | fprintf (file, _("32-bit double, ")); | |
1307 | ||
1308 | if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0) | |
1309 | fprintf (file, _("cpu=HC11]")); | |
1310 | else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH) | |
1311 | fprintf (file, _("cpu=HCS12]")); | |
1312 | else | |
1313 | fprintf (file, _("cpu=HC12]")); | |
1314 | ||
1315 | if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS) | |
1316 | fprintf (file, _(" [memory=bank-model]")); | |
1317 | else | |
1318 | fprintf (file, _(" [memory=flat]")); | |
1319 | ||
1320 | fputc ('\n', file); | |
1321 | ||
1322 | return TRUE; | |
1323 | } | |
1324 | ||
0a6a3ebe SC |
1325 | static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED, |
1326 | asection *asect, void *arg) | |
3a65329d SC |
1327 | { |
1328 | struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg; | |
1329 | ||
1330 | if (asect->vma >= p->pinfo->bank_virtual) | |
1331 | p->use_memory_banks = TRUE; | |
1332 | } | |
1333 | ||
1334 | /* Tweak the OSABI field of the elf header. */ | |
1335 | ||
1336 | void | |
0a6a3ebe | 1337 | elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) |
3a65329d SC |
1338 | { |
1339 | struct m68hc11_scan_param param; | |
4dfe6ac6 NC |
1340 | struct m68hc11_elf_link_hash_table *htab; |
1341 | ||
1342 | if (link_info == NULL) | |
1343 | return; | |
3a65329d | 1344 | |
4dfe6ac6 NC |
1345 | htab = m68hc11_elf_hash_table (link_info); |
1346 | if (htab == NULL) | |
3a65329d SC |
1347 | return; |
1348 | ||
1349 | m68hc11_elf_get_bank_parameters (link_info); | |
1350 | ||
1351 | param.use_memory_banks = FALSE; | |
4dfe6ac6 NC |
1352 | param.pinfo = & htab->pinfo; |
1353 | ||
3a65329d | 1354 | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); |
4dfe6ac6 | 1355 | |
3a65329d SC |
1356 | if (param.use_memory_banks) |
1357 | { | |
1358 | Elf_Internal_Ehdr * i_ehdrp; | |
1359 | ||
1360 | i_ehdrp = elf_elfheader (abfd); | |
1361 | i_ehdrp->e_flags |= E_M68HC12_BANKS; | |
1362 | } | |
1363 | } |