Commit | Line | Data |
---|---|---|
3a65329d | 1 | /* Motorola 68HC11/HC12-specific support for 32-bit ELF |
66eb6687 | 2 | Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 |
b2a8e766 | 3 | Free Software Foundation, Inc. |
3a65329d SC |
4 | Contributed by Stephane Carrez (stcarrez@nerim.fr) |
5 | ||
6 | This file is part of BFD, the Binary File Descriptor library. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
3e110533 | 20 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ |
3a65329d SC |
21 | |
22 | #include "bfd.h" | |
23 | #include "sysdep.h" | |
24 | #include "bfdlink.h" | |
25 | #include "libbfd.h" | |
26 | #include "elf-bfd.h" | |
27 | #include "elf32-m68hc1x.h" | |
28 | #include "elf/m68hc11.h" | |
29 | #include "opcode/m68hc11.h" | |
30 | ||
31 | ||
32 | #define m68hc12_stub_hash_lookup(table, string, create, copy) \ | |
33 | ((struct elf32_m68hc11_stub_hash_entry *) \ | |
34 | bfd_hash_lookup ((table), (string), (create), (copy))) | |
35 | ||
36 | static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub | |
0a6a3ebe SC |
37 | (const char *stub_name, |
38 | asection *section, | |
39 | struct m68hc11_elf_link_hash_table *htab); | |
3a65329d SC |
40 | |
41 | static struct bfd_hash_entry *stub_hash_newfunc | |
0a6a3ebe | 42 | (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); |
3a65329d | 43 | |
0a6a3ebe SC |
44 | static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info, |
45 | const char* name, bfd_vma value, | |
46 | asection* sec); | |
3a65329d SC |
47 | |
48 | static bfd_boolean m68hc11_elf_export_one_stub | |
0a6a3ebe | 49 | (struct bfd_hash_entry *gen_entry, void *in_arg); |
3a65329d | 50 | |
0a6a3ebe | 51 | static void scan_sections_for_abi (bfd*, asection*, PTR); |
3a65329d SC |
52 | |
53 | struct m68hc11_scan_param | |
54 | { | |
55 | struct m68hc11_page_info* pinfo; | |
56 | bfd_boolean use_memory_banks; | |
57 | }; | |
58 | ||
59 | ||
60 | /* Create a 68HC11/68HC12 ELF linker hash table. */ | |
61 | ||
62 | struct m68hc11_elf_link_hash_table* | |
0a6a3ebe | 63 | m68hc11_elf_hash_table_create (bfd *abfd) |
3a65329d SC |
64 | { |
65 | struct m68hc11_elf_link_hash_table *ret; | |
66 | bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table); | |
67 | ||
47247ced | 68 | ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt); |
3a65329d SC |
69 | if (ret == (struct m68hc11_elf_link_hash_table *) NULL) |
70 | return NULL; | |
71 | ||
47247ced | 72 | memset (ret, 0, amt); |
66eb6687 AM |
73 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
74 | _bfd_elf_link_hash_newfunc, | |
75 | sizeof (struct elf_link_hash_entry))) | |
3a65329d | 76 | { |
47247ced | 77 | free (ret); |
3a65329d SC |
78 | return NULL; |
79 | } | |
80 | ||
81 | /* Init the stub hash table too. */ | |
82 | amt = sizeof (struct bfd_hash_table); | |
83 | ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt); | |
84 | if (ret->stub_hash_table == NULL) | |
85 | { | |
47247ced | 86 | free (ret); |
3a65329d SC |
87 | return NULL; |
88 | } | |
66eb6687 AM |
89 | if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc, |
90 | sizeof (struct elf32_m68hc11_stub_hash_entry))) | |
3a65329d SC |
91 | return NULL; |
92 | ||
93 | ret->stub_bfd = NULL; | |
94 | ret->stub_section = 0; | |
95 | ret->add_stub_section = NULL; | |
96 | ret->sym_sec.abfd = NULL; | |
97 | ||
98 | return ret; | |
99 | } | |
100 | ||
101 | /* Free the derived linker hash table. */ | |
102 | ||
103 | void | |
0a6a3ebe | 104 | m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash) |
3a65329d SC |
105 | { |
106 | struct m68hc11_elf_link_hash_table *ret | |
107 | = (struct m68hc11_elf_link_hash_table *) hash; | |
108 | ||
109 | bfd_hash_table_free (ret->stub_hash_table); | |
110 | free (ret->stub_hash_table); | |
111 | _bfd_generic_link_hash_table_free (hash); | |
112 | } | |
113 | ||
114 | /* Assorted hash table functions. */ | |
115 | ||
116 | /* Initialize an entry in the stub hash table. */ | |
117 | ||
118 | static struct bfd_hash_entry * | |
0a6a3ebe SC |
119 | stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, |
120 | const char *string) | |
3a65329d SC |
121 | { |
122 | /* Allocate the structure if it has not already been allocated by a | |
123 | subclass. */ | |
124 | if (entry == NULL) | |
125 | { | |
126 | entry = bfd_hash_allocate (table, | |
127 | sizeof (struct elf32_m68hc11_stub_hash_entry)); | |
128 | if (entry == NULL) | |
129 | return entry; | |
130 | } | |
131 | ||
132 | /* Call the allocation method of the superclass. */ | |
133 | entry = bfd_hash_newfunc (entry, table, string); | |
134 | if (entry != NULL) | |
135 | { | |
136 | struct elf32_m68hc11_stub_hash_entry *eh; | |
137 | ||
138 | /* Initialize the local fields. */ | |
139 | eh = (struct elf32_m68hc11_stub_hash_entry *) entry; | |
140 | eh->stub_sec = NULL; | |
141 | eh->stub_offset = 0; | |
142 | eh->target_value = 0; | |
143 | eh->target_section = NULL; | |
144 | } | |
145 | ||
146 | return entry; | |
147 | } | |
148 | ||
149 | /* Add a new stub entry to the stub hash. Not all fields of the new | |
150 | stub entry are initialised. */ | |
151 | ||
152 | static struct elf32_m68hc11_stub_hash_entry * | |
0a6a3ebe SC |
153 | m68hc12_add_stub (const char *stub_name, asection *section, |
154 | struct m68hc11_elf_link_hash_table *htab) | |
3a65329d SC |
155 | { |
156 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
157 | ||
158 | /* Enter this entry into the linker stub hash table. */ | |
159 | stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name, | |
160 | TRUE, FALSE); | |
161 | if (stub_entry == NULL) | |
162 | { | |
d003868e AM |
163 | (*_bfd_error_handler) (_("%B: cannot create stub entry %s"), |
164 | section->owner, stub_name); | |
3a65329d SC |
165 | return NULL; |
166 | } | |
167 | ||
168 | if (htab->stub_section == 0) | |
169 | { | |
170 | htab->stub_section = (*htab->add_stub_section) (".tramp", | |
171 | htab->tramp_section); | |
172 | } | |
173 | ||
174 | stub_entry->stub_sec = htab->stub_section; | |
175 | stub_entry->stub_offset = 0; | |
176 | return stub_entry; | |
177 | } | |
178 | ||
179 | /* Hook called by the linker routine which adds symbols from an object | |
180 | file. We use it for identify far symbols and force a loading of | |
181 | the trampoline handler. */ | |
182 | ||
183 | bfd_boolean | |
0a6a3ebe | 184 | elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 185 | Elf_Internal_Sym *sym, |
0a6a3ebe SC |
186 | const char **namep ATTRIBUTE_UNUSED, |
187 | flagword *flagsp ATTRIBUTE_UNUSED, | |
188 | asection **secp ATTRIBUTE_UNUSED, | |
189 | bfd_vma *valp ATTRIBUTE_UNUSED) | |
3a65329d SC |
190 | { |
191 | if (sym->st_other & STO_M68HC12_FAR) | |
192 | { | |
193 | struct elf_link_hash_entry *h; | |
194 | ||
195 | h = (struct elf_link_hash_entry *) | |
196 | bfd_link_hash_lookup (info->hash, "__far_trampoline", | |
197 | FALSE, FALSE, FALSE); | |
198 | if (h == NULL) | |
199 | { | |
200 | struct bfd_link_hash_entry* entry = NULL; | |
201 | ||
202 | _bfd_generic_link_add_one_symbol (info, abfd, | |
203 | "__far_trampoline", | |
204 | BSF_GLOBAL, | |
205 | bfd_und_section_ptr, | |
206 | (bfd_vma) 0, (const char*) NULL, | |
207 | FALSE, FALSE, &entry); | |
208 | } | |
209 | ||
210 | } | |
211 | return TRUE; | |
212 | } | |
213 | ||
214 | /* External entry points for sizing and building linker stubs. */ | |
215 | ||
216 | /* Set up various things so that we can make a list of input sections | |
217 | for each output section included in the link. Returns -1 on error, | |
218 | 0 when no stubs will be needed, and 1 on success. */ | |
219 | ||
220 | int | |
0a6a3ebe | 221 | elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) |
3a65329d SC |
222 | { |
223 | bfd *input_bfd; | |
224 | unsigned int bfd_count; | |
225 | int top_id, top_index; | |
226 | asection *section; | |
227 | asection **input_list, **list; | |
228 | bfd_size_type amt; | |
229 | asection *text_section; | |
230 | struct m68hc11_elf_link_hash_table *htab; | |
231 | ||
232 | htab = m68hc11_elf_hash_table (info); | |
233 | ||
234 | if (htab->root.root.creator->flavour != bfd_target_elf_flavour) | |
235 | return 0; | |
236 | ||
237 | /* Count the number of input BFDs and find the top input section id. | |
238 | Also search for an existing ".tramp" section so that we know | |
239 | where generated trampolines must go. Default to ".text" if we | |
240 | can't find it. */ | |
241 | htab->tramp_section = 0; | |
242 | text_section = 0; | |
243 | for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; | |
244 | input_bfd != NULL; | |
245 | input_bfd = input_bfd->link_next) | |
246 | { | |
247 | bfd_count += 1; | |
248 | for (section = input_bfd->sections; | |
249 | section != NULL; | |
250 | section = section->next) | |
251 | { | |
252 | const char* name = bfd_get_section_name (input_bfd, section); | |
253 | ||
254 | if (!strcmp (name, ".tramp")) | |
255 | htab->tramp_section = section; | |
256 | ||
257 | if (!strcmp (name, ".text")) | |
258 | text_section = section; | |
259 | ||
260 | if (top_id < section->id) | |
261 | top_id = section->id; | |
262 | } | |
263 | } | |
264 | htab->bfd_count = bfd_count; | |
265 | if (htab->tramp_section == 0) | |
266 | htab->tramp_section = text_section; | |
267 | ||
268 | /* We can't use output_bfd->section_count here to find the top output | |
269 | section index as some sections may have been removed, and | |
8423293d | 270 | strip_excluded_output_sections doesn't renumber the indices. */ |
3a65329d SC |
271 | for (section = output_bfd->sections, top_index = 0; |
272 | section != NULL; | |
273 | section = section->next) | |
274 | { | |
275 | if (top_index < section->index) | |
276 | top_index = section->index; | |
277 | } | |
278 | ||
279 | htab->top_index = top_index; | |
280 | amt = sizeof (asection *) * (top_index + 1); | |
281 | input_list = (asection **) bfd_malloc (amt); | |
282 | htab->input_list = input_list; | |
283 | if (input_list == NULL) | |
284 | return -1; | |
285 | ||
286 | /* For sections we aren't interested in, mark their entries with a | |
287 | value we can check later. */ | |
288 | list = input_list + top_index; | |
289 | do | |
290 | *list = bfd_abs_section_ptr; | |
291 | while (list-- != input_list); | |
292 | ||
293 | for (section = output_bfd->sections; | |
294 | section != NULL; | |
295 | section = section->next) | |
296 | { | |
297 | if ((section->flags & SEC_CODE) != 0) | |
298 | input_list[section->index] = NULL; | |
299 | } | |
300 | ||
301 | return 1; | |
302 | } | |
303 | ||
304 | /* Determine and set the size of the stub section for a final link. | |
305 | ||
306 | The basic idea here is to examine all the relocations looking for | |
307 | PC-relative calls to a target that is unreachable with a "bl" | |
308 | instruction. */ | |
309 | ||
310 | bfd_boolean | |
0a6a3ebe SC |
311 | elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd, |
312 | struct bfd_link_info *info, | |
313 | asection * (*add_stub_section) (const char*, asection*)) | |
3a65329d SC |
314 | { |
315 | bfd *input_bfd; | |
316 | asection *section; | |
317 | Elf_Internal_Sym *local_syms, **all_local_syms; | |
318 | unsigned int bfd_indx, bfd_count; | |
319 | bfd_size_type amt; | |
320 | asection *stub_sec; | |
321 | ||
322 | struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info); | |
323 | ||
324 | /* Stash our params away. */ | |
325 | htab->stub_bfd = stub_bfd; | |
326 | htab->add_stub_section = add_stub_section; | |
327 | ||
328 | /* Count the number of input BFDs and find the top input section id. */ | |
329 | for (input_bfd = info->input_bfds, bfd_count = 0; | |
330 | input_bfd != NULL; | |
331 | input_bfd = input_bfd->link_next) | |
332 | { | |
333 | bfd_count += 1; | |
334 | } | |
335 | ||
336 | /* We want to read in symbol extension records only once. To do this | |
337 | we need to read in the local symbols in parallel and save them for | |
338 | later use; so hold pointers to the local symbols in an array. */ | |
339 | amt = sizeof (Elf_Internal_Sym *) * bfd_count; | |
340 | all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt); | |
341 | if (all_local_syms == NULL) | |
342 | return FALSE; | |
343 | ||
344 | /* Walk over all the input BFDs, swapping in local symbols. */ | |
345 | for (input_bfd = info->input_bfds, bfd_indx = 0; | |
346 | input_bfd != NULL; | |
347 | input_bfd = input_bfd->link_next, bfd_indx++) | |
348 | { | |
349 | Elf_Internal_Shdr *symtab_hdr; | |
3a65329d SC |
350 | |
351 | /* We'll need the symbol table in a second. */ | |
352 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
353 | if (symtab_hdr->sh_info == 0) | |
354 | continue; | |
355 | ||
2a0e29b4 SC |
356 | /* We need an array of the local symbols attached to the input bfd. */ |
357 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; | |
358 | if (local_syms == NULL) | |
359 | { | |
360 | local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, | |
361 | symtab_hdr->sh_info, 0, | |
362 | NULL, NULL, NULL); | |
363 | /* Cache them for elf_link_input_bfd. */ | |
364 | symtab_hdr->contents = (unsigned char *) local_syms; | |
365 | } | |
3a65329d | 366 | if (local_syms == NULL) |
3a65329d | 367 | { |
2a0e29b4 SC |
368 | free (all_local_syms); |
369 | return FALSE; | |
3a65329d SC |
370 | } |
371 | ||
2a0e29b4 | 372 | all_local_syms[bfd_indx] = local_syms; |
3a65329d SC |
373 | } |
374 | ||
375 | for (input_bfd = info->input_bfds, bfd_indx = 0; | |
376 | input_bfd != NULL; | |
377 | input_bfd = input_bfd->link_next, bfd_indx++) | |
378 | { | |
379 | Elf_Internal_Shdr *symtab_hdr; | |
380 | Elf_Internal_Sym *local_syms; | |
381 | struct elf_link_hash_entry ** sym_hashes; | |
382 | ||
383 | sym_hashes = elf_sym_hashes (input_bfd); | |
384 | ||
385 | /* We'll need the symbol table in a second. */ | |
386 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
387 | if (symtab_hdr->sh_info == 0) | |
388 | continue; | |
389 | ||
390 | local_syms = all_local_syms[bfd_indx]; | |
391 | ||
392 | /* Walk over each section attached to the input bfd. */ | |
393 | for (section = input_bfd->sections; | |
394 | section != NULL; | |
395 | section = section->next) | |
396 | { | |
397 | Elf_Internal_Rela *internal_relocs, *irelaend, *irela; | |
398 | ||
399 | /* If there aren't any relocs, then there's nothing more | |
400 | to do. */ | |
401 | if ((section->flags & SEC_RELOC) == 0 | |
402 | || section->reloc_count == 0) | |
403 | continue; | |
404 | ||
405 | /* If this section is a link-once section that will be | |
406 | discarded, then don't create any stubs. */ | |
407 | if (section->output_section == NULL | |
408 | || section->output_section->owner != output_bfd) | |
409 | continue; | |
410 | ||
411 | /* Get the relocs. */ | |
412 | internal_relocs | |
45d6a902 AM |
413 | = _bfd_elf_link_read_relocs (input_bfd, section, NULL, |
414 | (Elf_Internal_Rela *) NULL, | |
415 | info->keep_memory); | |
3a65329d SC |
416 | if (internal_relocs == NULL) |
417 | goto error_ret_free_local; | |
418 | ||
419 | /* Now examine each relocation. */ | |
420 | irela = internal_relocs; | |
421 | irelaend = irela + section->reloc_count; | |
422 | for (; irela < irelaend; irela++) | |
423 | { | |
424 | unsigned int r_type, r_indx; | |
425 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
426 | asection *sym_sec; | |
427 | bfd_vma sym_value; | |
428 | struct elf_link_hash_entry *hash; | |
429 | const char *stub_name; | |
430 | Elf_Internal_Sym *sym; | |
431 | ||
432 | r_type = ELF32_R_TYPE (irela->r_info); | |
433 | ||
434 | /* Only look at 16-bit relocs. */ | |
435 | if (r_type != (unsigned int) R_M68HC11_16) | |
436 | continue; | |
437 | ||
438 | /* Now determine the call target, its name, value, | |
439 | section. */ | |
440 | r_indx = ELF32_R_SYM (irela->r_info); | |
441 | if (r_indx < symtab_hdr->sh_info) | |
442 | { | |
443 | /* It's a local symbol. */ | |
444 | Elf_Internal_Shdr *hdr; | |
445 | bfd_boolean is_far; | |
446 | ||
447 | sym = local_syms + r_indx; | |
3a65329d SC |
448 | is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); |
449 | if (!is_far) | |
450 | continue; | |
7f888330 SC |
451 | |
452 | hdr = elf_elfsections (input_bfd)[sym->st_shndx]; | |
453 | sym_sec = hdr->bfd_section; | |
3a65329d SC |
454 | stub_name = (bfd_elf_string_from_elf_section |
455 | (input_bfd, symtab_hdr->sh_link, | |
456 | sym->st_name)); | |
457 | sym_value = sym->st_value; | |
458 | hash = NULL; | |
459 | } | |
460 | else | |
461 | { | |
462 | /* It's an external symbol. */ | |
463 | int e_indx; | |
464 | ||
465 | e_indx = r_indx - symtab_hdr->sh_info; | |
466 | hash = (struct elf_link_hash_entry *) | |
467 | (sym_hashes[e_indx]); | |
468 | ||
469 | while (hash->root.type == bfd_link_hash_indirect | |
470 | || hash->root.type == bfd_link_hash_warning) | |
471 | hash = ((struct elf_link_hash_entry *) | |
472 | hash->root.u.i.link); | |
473 | ||
474 | if (hash->root.type == bfd_link_hash_defined | |
83774818 SC |
475 | || hash->root.type == bfd_link_hash_defweak |
476 | || hash->root.type == bfd_link_hash_new) | |
3a65329d SC |
477 | { |
478 | if (!(hash->other & STO_M68HC12_FAR)) | |
479 | continue; | |
480 | } | |
481 | else if (hash->root.type == bfd_link_hash_undefweak) | |
482 | { | |
483 | continue; | |
484 | } | |
485 | else if (hash->root.type == bfd_link_hash_undefined) | |
486 | { | |
487 | continue; | |
488 | } | |
489 | else | |
490 | { | |
491 | bfd_set_error (bfd_error_bad_value); | |
492 | goto error_ret_free_internal; | |
493 | } | |
494 | sym_sec = hash->root.u.def.section; | |
495 | sym_value = hash->root.u.def.value; | |
496 | stub_name = hash->root.root.string; | |
497 | } | |
498 | ||
499 | if (!stub_name) | |
500 | goto error_ret_free_internal; | |
501 | ||
502 | stub_entry = m68hc12_stub_hash_lookup | |
503 | (htab->stub_hash_table, | |
504 | stub_name, | |
505 | FALSE, FALSE); | |
506 | if (stub_entry == NULL) | |
507 | { | |
508 | if (add_stub_section == 0) | |
509 | continue; | |
510 | ||
511 | stub_entry = m68hc12_add_stub (stub_name, section, htab); | |
512 | if (stub_entry == NULL) | |
513 | { | |
514 | error_ret_free_internal: | |
515 | if (elf_section_data (section)->relocs == NULL) | |
516 | free (internal_relocs); | |
517 | goto error_ret_free_local; | |
518 | } | |
519 | } | |
520 | ||
521 | stub_entry->target_value = sym_value; | |
522 | stub_entry->target_section = sym_sec; | |
523 | } | |
524 | ||
525 | /* We're done with the internal relocs, free them. */ | |
526 | if (elf_section_data (section)->relocs == NULL) | |
527 | free (internal_relocs); | |
528 | } | |
529 | } | |
530 | ||
531 | if (add_stub_section) | |
532 | { | |
533 | /* OK, we've added some stubs. Find out the new size of the | |
534 | stub sections. */ | |
535 | for (stub_sec = htab->stub_bfd->sections; | |
536 | stub_sec != NULL; | |
537 | stub_sec = stub_sec->next) | |
538 | { | |
eea6121a | 539 | stub_sec->size = 0; |
3a65329d SC |
540 | } |
541 | ||
542 | bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab); | |
543 | } | |
2a0e29b4 | 544 | free (all_local_syms); |
3a65329d SC |
545 | return TRUE; |
546 | ||
547 | error_ret_free_local: | |
2a0e29b4 | 548 | free (all_local_syms); |
3a65329d SC |
549 | return FALSE; |
550 | } | |
551 | ||
552 | /* Export the trampoline addresses in the symbol table. */ | |
553 | static bfd_boolean | |
0a6a3ebe | 554 | m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) |
3a65329d SC |
555 | { |
556 | struct bfd_link_info *info; | |
557 | struct m68hc11_elf_link_hash_table *htab; | |
558 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
559 | char* name; | |
560 | bfd_boolean result; | |
561 | ||
562 | info = (struct bfd_link_info *) in_arg; | |
563 | htab = m68hc11_elf_hash_table (info); | |
564 | ||
565 | /* Massage our args to the form they really have. */ | |
566 | stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry; | |
567 | ||
568 | /* Generate the trampoline according to HC11 or HC12. */ | |
569 | result = (* htab->build_one_stub) (gen_entry, in_arg); | |
570 | ||
571 | /* Make a printable name that does not conflict with the real function. */ | |
572 | name = alloca (strlen (stub_entry->root.string) + 16); | |
573 | sprintf (name, "tramp.%s", stub_entry->root.string); | |
574 | ||
575 | /* Export the symbol for debugging/disassembling. */ | |
576 | m68hc11_elf_set_symbol (htab->stub_bfd, info, name, | |
577 | stub_entry->stub_offset, | |
578 | stub_entry->stub_sec); | |
579 | return result; | |
580 | } | |
581 | ||
582 | /* Export a symbol or set its value and section. */ | |
583 | static void | |
0a6a3ebe SC |
584 | m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info, |
585 | const char *name, bfd_vma value, asection *sec) | |
3a65329d SC |
586 | { |
587 | struct elf_link_hash_entry *h; | |
588 | ||
589 | h = (struct elf_link_hash_entry *) | |
590 | bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE); | |
591 | if (h == NULL) | |
592 | { | |
593 | _bfd_generic_link_add_one_symbol (info, abfd, | |
594 | name, | |
595 | BSF_GLOBAL, | |
596 | sec, | |
597 | value, | |
598 | (const char*) NULL, | |
599 | TRUE, FALSE, NULL); | |
600 | } | |
601 | else | |
602 | { | |
603 | h->root.type = bfd_link_hash_defined; | |
604 | h->root.u.def.value = value; | |
605 | h->root.u.def.section = sec; | |
606 | } | |
607 | } | |
608 | ||
609 | ||
610 | /* Build all the stubs associated with the current output file. The | |
611 | stubs are kept in a hash table attached to the main linker hash | |
612 | table. This function is called via m68hc12elf_finish in the | |
613 | linker. */ | |
614 | ||
615 | bfd_boolean | |
0a6a3ebe | 616 | elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info) |
3a65329d SC |
617 | { |
618 | asection *stub_sec; | |
619 | struct bfd_hash_table *table; | |
620 | struct m68hc11_elf_link_hash_table *htab; | |
621 | struct m68hc11_scan_param param; | |
622 | ||
623 | m68hc11_elf_get_bank_parameters (info); | |
624 | htab = m68hc11_elf_hash_table (info); | |
625 | ||
626 | for (stub_sec = htab->stub_bfd->sections; | |
627 | stub_sec != NULL; | |
628 | stub_sec = stub_sec->next) | |
629 | { | |
630 | bfd_size_type size; | |
631 | ||
632 | /* Allocate memory to hold the linker stubs. */ | |
eea6121a | 633 | size = stub_sec->size; |
3a65329d SC |
634 | stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); |
635 | if (stub_sec->contents == NULL && size != 0) | |
636 | return FALSE; | |
eea6121a | 637 | stub_sec->size = 0; |
3a65329d SC |
638 | } |
639 | ||
640 | /* Build the stubs as directed by the stub hash table. */ | |
641 | table = htab->stub_hash_table; | |
642 | bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info); | |
643 | ||
644 | /* Scan the output sections to see if we use the memory banks. | |
645 | If so, export the symbols that define how the memory banks | |
646 | are mapped. This is used by gdb and the simulator to obtain | |
647 | the information. It can be used by programs to burn the eprom | |
648 | at the good addresses. */ | |
649 | param.use_memory_banks = FALSE; | |
650 | param.pinfo = &htab->pinfo; | |
651 | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); | |
652 | if (param.use_memory_banks) | |
653 | { | |
654 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME, | |
655 | htab->pinfo.bank_physical, | |
656 | bfd_abs_section_ptr); | |
657 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME, | |
658 | htab->pinfo.bank_virtual, | |
659 | bfd_abs_section_ptr); | |
660 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME, | |
661 | htab->pinfo.bank_size, | |
662 | bfd_abs_section_ptr); | |
663 | } | |
664 | ||
665 | return TRUE; | |
666 | } | |
667 | ||
668 | void | |
0a6a3ebe | 669 | m68hc11_elf_get_bank_parameters (struct bfd_link_info *info) |
3a65329d SC |
670 | { |
671 | unsigned i; | |
672 | struct m68hc11_page_info *pinfo; | |
673 | struct bfd_link_hash_entry *h; | |
674 | ||
675 | pinfo = &m68hc11_elf_hash_table (info)->pinfo; | |
676 | if (pinfo->bank_param_initialized) | |
677 | return; | |
678 | ||
679 | pinfo->bank_virtual = M68HC12_BANK_VIRT; | |
680 | pinfo->bank_mask = M68HC12_BANK_MASK; | |
681 | pinfo->bank_physical = M68HC12_BANK_BASE; | |
682 | pinfo->bank_shift = M68HC12_BANK_SHIFT; | |
683 | pinfo->bank_size = 1 << M68HC12_BANK_SHIFT; | |
684 | ||
685 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME, | |
686 | FALSE, FALSE, TRUE); | |
687 | if (h != (struct bfd_link_hash_entry*) NULL | |
688 | && h->type == bfd_link_hash_defined) | |
689 | pinfo->bank_physical = (h->u.def.value | |
690 | + h->u.def.section->output_section->vma | |
691 | + h->u.def.section->output_offset); | |
692 | ||
693 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME, | |
694 | FALSE, FALSE, TRUE); | |
695 | if (h != (struct bfd_link_hash_entry*) NULL | |
696 | && h->type == bfd_link_hash_defined) | |
697 | pinfo->bank_virtual = (h->u.def.value | |
698 | + h->u.def.section->output_section->vma | |
699 | + h->u.def.section->output_offset); | |
700 | ||
701 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME, | |
702 | FALSE, FALSE, TRUE); | |
703 | if (h != (struct bfd_link_hash_entry*) NULL | |
704 | && h->type == bfd_link_hash_defined) | |
705 | pinfo->bank_size = (h->u.def.value | |
706 | + h->u.def.section->output_section->vma | |
707 | + h->u.def.section->output_offset); | |
708 | ||
709 | pinfo->bank_shift = 0; | |
710 | for (i = pinfo->bank_size; i != 0; i >>= 1) | |
711 | pinfo->bank_shift++; | |
712 | pinfo->bank_shift--; | |
713 | pinfo->bank_mask = (1 << pinfo->bank_shift) - 1; | |
714 | pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size; | |
715 | pinfo->bank_param_initialized = 1; | |
716 | ||
717 | h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE, | |
718 | FALSE, TRUE); | |
719 | if (h != (struct bfd_link_hash_entry*) NULL | |
720 | && h->type == bfd_link_hash_defined) | |
721 | pinfo->trampoline_addr = (h->u.def.value | |
722 | + h->u.def.section->output_section->vma | |
723 | + h->u.def.section->output_offset); | |
724 | } | |
725 | ||
726 | /* Return 1 if the address is in banked memory. | |
727 | This can be applied to a virtual address and to a physical address. */ | |
728 | int | |
0a6a3ebe | 729 | m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
730 | { |
731 | if (addr >= pinfo->bank_virtual) | |
732 | return 1; | |
733 | ||
734 | if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end) | |
735 | return 1; | |
736 | ||
737 | return 0; | |
738 | } | |
739 | ||
740 | /* Return the physical address seen by the processor, taking | |
741 | into account banked memory. */ | |
742 | bfd_vma | |
0a6a3ebe | 743 | m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
744 | { |
745 | if (addr < pinfo->bank_virtual) | |
746 | return addr; | |
747 | ||
748 | /* Map the address to the memory bank. */ | |
749 | addr -= pinfo->bank_virtual; | |
750 | addr &= pinfo->bank_mask; | |
751 | addr += pinfo->bank_physical; | |
752 | return addr; | |
753 | } | |
754 | ||
755 | /* Return the page number corresponding to an address in banked memory. */ | |
756 | bfd_vma | |
0a6a3ebe | 757 | m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
758 | { |
759 | if (addr < pinfo->bank_virtual) | |
760 | return 0; | |
761 | ||
762 | /* Map the address to the memory bank. */ | |
763 | addr -= pinfo->bank_virtual; | |
764 | addr >>= pinfo->bank_shift; | |
765 | addr &= 0x0ff; | |
766 | return addr; | |
767 | } | |
768 | ||
769 | /* This function is used for relocs which are only used for relaxing, | |
770 | which the linker should otherwise ignore. */ | |
771 | ||
772 | bfd_reloc_status_type | |
0a6a3ebe SC |
773 | m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
774 | arelent *reloc_entry, | |
775 | asymbol *symbol ATTRIBUTE_UNUSED, | |
776 | void *data ATTRIBUTE_UNUSED, | |
777 | asection *input_section, | |
778 | bfd *output_bfd, | |
779 | char **error_message ATTRIBUTE_UNUSED) | |
3a65329d SC |
780 | { |
781 | if (output_bfd != NULL) | |
782 | reloc_entry->address += input_section->output_offset; | |
783 | return bfd_reloc_ok; | |
784 | } | |
785 | ||
786 | bfd_reloc_status_type | |
0a6a3ebe SC |
787 | m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
788 | arelent *reloc_entry, | |
789 | asymbol *symbol, | |
790 | void *data ATTRIBUTE_UNUSED, | |
791 | asection *input_section, | |
792 | bfd *output_bfd, | |
793 | char **error_message ATTRIBUTE_UNUSED) | |
3a65329d SC |
794 | { |
795 | if (output_bfd != (bfd *) NULL | |
796 | && (symbol->flags & BSF_SECTION_SYM) == 0 | |
797 | && (! reloc_entry->howto->partial_inplace | |
798 | || reloc_entry->addend == 0)) | |
799 | { | |
800 | reloc_entry->address += input_section->output_offset; | |
801 | return bfd_reloc_ok; | |
802 | } | |
803 | ||
804 | if (output_bfd != NULL) | |
805 | return bfd_reloc_continue; | |
806 | ||
07515404 | 807 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
3a65329d SC |
808 | return bfd_reloc_outofrange; |
809 | ||
810 | abort(); | |
811 | } | |
812 | ||
813 | asection * | |
0a6a3ebe SC |
814 | elf32_m68hc11_gc_mark_hook (asection *sec, |
815 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
816 | Elf_Internal_Rela *rel, | |
817 | struct elf_link_hash_entry *h, | |
818 | Elf_Internal_Sym *sym) | |
3a65329d SC |
819 | { |
820 | if (h != NULL) | |
821 | { | |
822 | switch (ELF32_R_TYPE (rel->r_info)) | |
823 | { | |
824 | default: | |
825 | switch (h->root.type) | |
826 | { | |
827 | case bfd_link_hash_defined: | |
828 | case bfd_link_hash_defweak: | |
829 | return h->root.u.def.section; | |
830 | ||
831 | case bfd_link_hash_common: | |
832 | return h->root.u.c.p->section; | |
833 | ||
834 | default: | |
835 | break; | |
836 | } | |
837 | } | |
838 | } | |
839 | else | |
840 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); | |
841 | ||
842 | return NULL; | |
843 | } | |
844 | ||
845 | bfd_boolean | |
0a6a3ebe SC |
846 | elf32_m68hc11_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, |
847 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
848 | asection *sec ATTRIBUTE_UNUSED, | |
849 | const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) | |
3a65329d SC |
850 | { |
851 | /* We don't use got and plt entries for 68hc11/68hc12. */ | |
852 | return TRUE; | |
853 | } | |
854 | ||
855 | /* Look through the relocs for a section during the first phase. | |
856 | Since we don't do .gots or .plts, we just need to consider the | |
857 | virtual table relocs for gc. */ | |
858 | ||
859 | bfd_boolean | |
0a6a3ebe SC |
860 | elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info, |
861 | asection *sec, const Elf_Internal_Rela *relocs) | |
3a65329d SC |
862 | { |
863 | Elf_Internal_Shdr * symtab_hdr; | |
864 | struct elf_link_hash_entry ** sym_hashes; | |
865 | struct elf_link_hash_entry ** sym_hashes_end; | |
866 | const Elf_Internal_Rela * rel; | |
867 | const Elf_Internal_Rela * rel_end; | |
868 | ||
1049f94e | 869 | if (info->relocatable) |
3a65329d SC |
870 | return TRUE; |
871 | ||
872 | symtab_hdr = & elf_tdata (abfd)->symtab_hdr; | |
873 | sym_hashes = elf_sym_hashes (abfd); | |
874 | sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
875 | if (!elf_bad_symtab (abfd)) | |
876 | sym_hashes_end -= symtab_hdr->sh_info; | |
877 | ||
878 | rel_end = relocs + sec->reloc_count; | |
879 | ||
880 | for (rel = relocs; rel < rel_end; rel++) | |
881 | { | |
882 | struct elf_link_hash_entry * h; | |
883 | unsigned long r_symndx; | |
884 | ||
885 | r_symndx = ELF32_R_SYM (rel->r_info); | |
886 | ||
887 | if (r_symndx < symtab_hdr->sh_info) | |
888 | h = NULL; | |
889 | else | |
973a3492 L |
890 | { |
891 | h = sym_hashes [r_symndx - symtab_hdr->sh_info]; | |
892 | while (h->root.type == bfd_link_hash_indirect | |
893 | || h->root.type == bfd_link_hash_warning) | |
894 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
895 | } | |
3a65329d SC |
896 | |
897 | switch (ELF32_R_TYPE (rel->r_info)) | |
898 | { | |
899 | /* This relocation describes the C++ object vtable hierarchy. | |
900 | Reconstruct it for later use during GC. */ | |
901 | case R_M68HC11_GNU_VTINHERIT: | |
c152c796 | 902 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
3a65329d SC |
903 | return FALSE; |
904 | break; | |
905 | ||
906 | /* This relocation describes which C++ vtable entries are actually | |
907 | used. Record for later use during GC. */ | |
908 | case R_M68HC11_GNU_VTENTRY: | |
c152c796 | 909 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
3a65329d SC |
910 | return FALSE; |
911 | break; | |
912 | } | |
913 | } | |
914 | ||
915 | return TRUE; | |
916 | } | |
917 | ||
918 | static bfd_boolean | |
59c2e50f L |
919 | m68hc11_get_relocation_value (bfd *input_bfd, struct bfd_link_info *info, |
920 | asection *input_section, | |
0a6a3ebe SC |
921 | asection **local_sections, |
922 | Elf_Internal_Sym *local_syms, | |
923 | Elf_Internal_Rela *rel, | |
924 | const char **name, | |
925 | bfd_vma *relocation, bfd_boolean *is_far) | |
3a65329d SC |
926 | { |
927 | Elf_Internal_Shdr *symtab_hdr; | |
928 | struct elf_link_hash_entry **sym_hashes; | |
929 | unsigned long r_symndx; | |
930 | asection *sec; | |
931 | struct elf_link_hash_entry *h; | |
932 | Elf_Internal_Sym *sym; | |
933 | const char* stub_name = 0; | |
934 | ||
59c2e50f L |
935 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
936 | sym_hashes = elf_sym_hashes (input_bfd); | |
3a65329d SC |
937 | |
938 | r_symndx = ELF32_R_SYM (rel->r_info); | |
939 | ||
940 | /* This is a final link. */ | |
941 | h = NULL; | |
942 | sym = NULL; | |
943 | sec = NULL; | |
944 | if (r_symndx < symtab_hdr->sh_info) | |
945 | { | |
946 | sym = local_syms + r_symndx; | |
947 | sec = local_sections[r_symndx]; | |
948 | *relocation = (sec->output_section->vma | |
949 | + sec->output_offset | |
950 | + sym->st_value); | |
951 | *is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); | |
952 | if (*is_far) | |
953 | stub_name = (bfd_elf_string_from_elf_section | |
59c2e50f | 954 | (input_bfd, symtab_hdr->sh_link, |
3a65329d SC |
955 | sym->st_name)); |
956 | } | |
957 | else | |
958 | { | |
59c2e50f L |
959 | bfd_boolean unresolved_reloc, warned; |
960 | ||
b2a8e766 AM |
961 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
962 | r_symndx, symtab_hdr, sym_hashes, | |
963 | h, sec, *relocation, unresolved_reloc, warned); | |
59c2e50f | 964 | |
3a65329d SC |
965 | *is_far = (h && (h->other & STO_M68HC12_FAR)); |
966 | stub_name = h->root.root.string; | |
967 | } | |
968 | ||
969 | if (h != NULL) | |
970 | *name = h->root.root.string; | |
971 | else | |
972 | { | |
973 | *name = (bfd_elf_string_from_elf_section | |
59c2e50f | 974 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
3a65329d SC |
975 | if (*name == NULL || **name == '\0') |
976 | *name = bfd_section_name (input_bfd, sec); | |
977 | } | |
978 | ||
979 | if (*is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16) | |
980 | { | |
981 | struct elf32_m68hc11_stub_hash_entry* stub; | |
982 | struct m68hc11_elf_link_hash_table *htab; | |
983 | ||
984 | htab = m68hc11_elf_hash_table (info); | |
985 | stub = m68hc12_stub_hash_lookup (htab->stub_hash_table, | |
986 | *name, FALSE, FALSE); | |
987 | if (stub) | |
988 | { | |
989 | *relocation = stub->stub_offset | |
990 | + stub->stub_sec->output_section->vma | |
991 | + stub->stub_sec->output_offset; | |
992 | *is_far = FALSE; | |
993 | } | |
994 | } | |
995 | return TRUE; | |
996 | } | |
997 | ||
998 | /* Relocate a 68hc11/68hc12 ELF section. */ | |
999 | bfd_boolean | |
0a6a3ebe SC |
1000 | elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, |
1001 | struct bfd_link_info *info, | |
1002 | bfd *input_bfd, asection *input_section, | |
1003 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
1004 | Elf_Internal_Sym *local_syms, | |
1005 | asection **local_sections) | |
3a65329d SC |
1006 | { |
1007 | Elf_Internal_Shdr *symtab_hdr; | |
1008 | struct elf_link_hash_entry **sym_hashes; | |
1009 | Elf_Internal_Rela *rel, *relend; | |
9b69b847 | 1010 | const char *name = NULL; |
3a65329d | 1011 | struct m68hc11_page_info *pinfo; |
9c5bfbb7 | 1012 | const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd); |
3a65329d SC |
1013 | |
1014 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
1015 | sym_hashes = elf_sym_hashes (input_bfd); | |
1016 | ||
1017 | /* Get memory bank parameters. */ | |
1018 | m68hc11_elf_get_bank_parameters (info); | |
1019 | pinfo = &m68hc11_elf_hash_table (info)->pinfo; | |
1020 | ||
1021 | rel = relocs; | |
1022 | relend = relocs + input_section->reloc_count; | |
1023 | for (; rel < relend; rel++) | |
1024 | { | |
1025 | int r_type; | |
1026 | arelent arel; | |
1027 | reloc_howto_type *howto; | |
1028 | unsigned long r_symndx; | |
1029 | Elf_Internal_Sym *sym; | |
1030 | asection *sec; | |
9b69b847 | 1031 | bfd_vma relocation = 0; |
3a65329d SC |
1032 | bfd_reloc_status_type r = bfd_reloc_undefined; |
1033 | bfd_vma phys_page; | |
1034 | bfd_vma phys_addr; | |
1035 | bfd_vma insn_addr; | |
1036 | bfd_vma insn_page; | |
9b69b847 | 1037 | bfd_boolean is_far = FALSE; |
3a65329d SC |
1038 | |
1039 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1040 | r_type = ELF32_R_TYPE (rel->r_info); | |
1041 | ||
1042 | if (r_type == R_M68HC11_GNU_VTENTRY | |
1043 | || r_type == R_M68HC11_GNU_VTINHERIT ) | |
1044 | continue; | |
1045 | ||
1049f94e | 1046 | if (info->relocatable) |
3a65329d | 1047 | { |
1049f94e | 1048 | /* This is a relocatable link. We don't have to change |
3a65329d SC |
1049 | anything, unless the reloc is against a section symbol, |
1050 | in which case we have to adjust according to where the | |
1051 | section symbol winds up in the output section. */ | |
1052 | if (r_symndx < symtab_hdr->sh_info) | |
1053 | { | |
1054 | sym = local_syms + r_symndx; | |
1055 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
1056 | { | |
1057 | sec = local_sections[r_symndx]; | |
1058 | rel->r_addend += sec->output_offset + sym->st_value; | |
1059 | } | |
1060 | } | |
1061 | ||
1062 | continue; | |
1063 | } | |
1064 | (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel); | |
1065 | howto = arel.howto; | |
1066 | ||
59c2e50f L |
1067 | m68hc11_get_relocation_value (input_bfd, info, input_section, |
1068 | local_sections, local_syms, | |
3a65329d SC |
1069 | rel, &name, &relocation, &is_far); |
1070 | ||
1071 | /* Do the memory bank mapping. */ | |
1072 | phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend); | |
1073 | phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend); | |
1074 | switch (r_type) | |
1075 | { | |
1076 | case R_M68HC11_24: | |
1077 | /* Reloc used by 68HC12 call instruction. */ | |
1078 | bfd_put_16 (input_bfd, phys_addr, | |
1079 | (bfd_byte*) contents + rel->r_offset); | |
1080 | bfd_put_8 (input_bfd, phys_page, | |
1081 | (bfd_byte*) contents + rel->r_offset + 2); | |
1082 | r = bfd_reloc_ok; | |
1083 | r_type = R_M68HC11_NONE; | |
1084 | break; | |
1085 | ||
1086 | case R_M68HC11_NONE: | |
1087 | r = bfd_reloc_ok; | |
1088 | break; | |
1089 | ||
1090 | case R_M68HC11_LO16: | |
1091 | /* Reloc generated by %addr(expr) gas to obtain the | |
1092 | address as mapped in the memory bank window. */ | |
1093 | relocation = phys_addr; | |
1094 | break; | |
1095 | ||
1096 | case R_M68HC11_PAGE: | |
1097 | /* Reloc generated by %page(expr) gas to obtain the | |
1098 | page number associated with the address. */ | |
1099 | relocation = phys_page; | |
1100 | break; | |
1101 | ||
1102 | case R_M68HC11_16: | |
1103 | /* Get virtual address of instruction having the relocation. */ | |
1104 | if (is_far) | |
1105 | { | |
1106 | const char* msg; | |
1107 | char* buf; | |
1108 | msg = _("Reference to the far symbol `%s' using a wrong " | |
1109 | "relocation may result in incorrect execution"); | |
1110 | buf = alloca (strlen (msg) + strlen (name) + 10); | |
1111 | sprintf (buf, msg, name); | |
1112 | ||
1113 | (* info->callbacks->warning) | |
1114 | (info, buf, name, input_bfd, NULL, rel->r_offset); | |
1115 | } | |
1116 | ||
1117 | /* Get virtual address of instruction having the relocation. */ | |
1118 | insn_addr = input_section->output_section->vma | |
1119 | + input_section->output_offset | |
1120 | + rel->r_offset; | |
1121 | ||
1122 | insn_page = m68hc11_phys_page (pinfo, insn_addr); | |
1123 | ||
1124 | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend) | |
1125 | && m68hc11_addr_is_banked (pinfo, insn_addr) | |
1126 | && phys_page != insn_page) | |
1127 | { | |
1128 | const char* msg; | |
1129 | char* buf; | |
1130 | ||
1131 | msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank " | |
1132 | "as current banked address [%lx:%04lx] (%lx)"); | |
1133 | ||
1134 | buf = alloca (strlen (msg) + 128); | |
1135 | sprintf (buf, msg, phys_page, phys_addr, | |
1136 | (long) (relocation + rel->r_addend), | |
1137 | insn_page, m68hc11_phys_addr (pinfo, insn_addr), | |
1138 | (long) (insn_addr)); | |
1139 | if (!((*info->callbacks->warning) | |
1140 | (info, buf, name, input_bfd, input_section, | |
1141 | rel->r_offset))) | |
1142 | return FALSE; | |
1143 | break; | |
1144 | } | |
1145 | if (phys_page != 0 && insn_page == 0) | |
1146 | { | |
1147 | const char* msg; | |
1148 | char* buf; | |
1149 | ||
1150 | msg = _("reference to a banked address [%lx:%04lx] in the " | |
1151 | "normal address space at %04lx"); | |
1152 | ||
1153 | buf = alloca (strlen (msg) + 128); | |
1154 | sprintf (buf, msg, phys_page, phys_addr, insn_addr); | |
1155 | if (!((*info->callbacks->warning) | |
1156 | (info, buf, name, input_bfd, input_section, | |
1157 | insn_addr))) | |
1158 | return FALSE; | |
1159 | ||
1160 | relocation = phys_addr; | |
1161 | break; | |
1162 | } | |
1163 | ||
1164 | /* If this is a banked address use the phys_addr so that | |
1165 | we stay in the banked window. */ | |
1166 | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)) | |
1167 | relocation = phys_addr; | |
1168 | break; | |
1169 | } | |
1170 | if (r_type != R_M68HC11_NONE) | |
1171 | r = _bfd_final_link_relocate (howto, input_bfd, input_section, | |
1172 | contents, rel->r_offset, | |
1173 | relocation, rel->r_addend); | |
1174 | ||
1175 | if (r != bfd_reloc_ok) | |
1176 | { | |
1177 | const char * msg = (const char *) 0; | |
1178 | ||
1179 | switch (r) | |
1180 | { | |
1181 | case bfd_reloc_overflow: | |
1182 | if (!((*info->callbacks->reloc_overflow) | |
dfeffb9f | 1183 | (info, NULL, name, howto->name, (bfd_vma) 0, |
3a65329d SC |
1184 | input_bfd, input_section, rel->r_offset))) |
1185 | return FALSE; | |
1186 | break; | |
1187 | ||
1188 | case bfd_reloc_undefined: | |
1189 | if (!((*info->callbacks->undefined_symbol) | |
1190 | (info, name, input_bfd, input_section, | |
1191 | rel->r_offset, TRUE))) | |
1192 | return FALSE; | |
1193 | break; | |
1194 | ||
1195 | case bfd_reloc_outofrange: | |
1196 | msg = _ ("internal error: out of range error"); | |
1197 | goto common_error; | |
1198 | ||
1199 | case bfd_reloc_notsupported: | |
1200 | msg = _ ("internal error: unsupported relocation error"); | |
1201 | goto common_error; | |
1202 | ||
1203 | case bfd_reloc_dangerous: | |
1204 | msg = _ ("internal error: dangerous error"); | |
1205 | goto common_error; | |
1206 | ||
1207 | default: | |
1208 | msg = _ ("internal error: unknown error"); | |
1209 | /* fall through */ | |
1210 | ||
1211 | common_error: | |
1212 | if (!((*info->callbacks->warning) | |
1213 | (info, msg, name, input_bfd, input_section, | |
1214 | rel->r_offset))) | |
1215 | return FALSE; | |
1216 | break; | |
1217 | } | |
1218 | } | |
1219 | } | |
1220 | ||
1221 | return TRUE; | |
1222 | } | |
1223 | ||
1224 | ||
1225 | \f | |
1226 | /* Set and control ELF flags in ELF header. */ | |
1227 | ||
1228 | bfd_boolean | |
0a6a3ebe | 1229 | _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags) |
3a65329d SC |
1230 | { |
1231 | BFD_ASSERT (!elf_flags_init (abfd) | |
1232 | || elf_elfheader (abfd)->e_flags == flags); | |
1233 | ||
1234 | elf_elfheader (abfd)->e_flags = flags; | |
1235 | elf_flags_init (abfd) = TRUE; | |
1236 | return TRUE; | |
1237 | } | |
1238 | ||
1239 | /* Merge backend specific data from an object file to the output | |
1240 | object file when linking. */ | |
1241 | ||
1242 | bfd_boolean | |
0a6a3ebe | 1243 | _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
3a65329d SC |
1244 | { |
1245 | flagword old_flags; | |
1246 | flagword new_flags; | |
1247 | bfd_boolean ok = TRUE; | |
1248 | ||
1249 | /* Check if we have the same endianess */ | |
1250 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | |
1251 | return FALSE; | |
1252 | ||
1253 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
1254 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
1255 | return TRUE; | |
1256 | ||
1257 | new_flags = elf_elfheader (ibfd)->e_flags; | |
1258 | elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI; | |
1259 | old_flags = elf_elfheader (obfd)->e_flags; | |
1260 | ||
1261 | if (! elf_flags_init (obfd)) | |
1262 | { | |
1263 | elf_flags_init (obfd) = TRUE; | |
1264 | elf_elfheader (obfd)->e_flags = new_flags; | |
1265 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
1266 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
1267 | ||
1268 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
1269 | && bfd_get_arch_info (obfd)->the_default) | |
1270 | { | |
1271 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
1272 | bfd_get_mach (ibfd))) | |
1273 | return FALSE; | |
1274 | } | |
1275 | ||
1276 | return TRUE; | |
1277 | } | |
1278 | ||
1279 | /* Check ABI compatibility. */ | |
1280 | if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32)) | |
1281 | { | |
1282 | (*_bfd_error_handler) | |
d003868e AM |
1283 | (_("%B: linking files compiled for 16-bit integers (-mshort) " |
1284 | "and others for 32-bit integers"), ibfd); | |
3a65329d SC |
1285 | ok = FALSE; |
1286 | } | |
1287 | if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64)) | |
1288 | { | |
1289 | (*_bfd_error_handler) | |
d003868e AM |
1290 | (_("%B: linking files compiled for 32-bit double (-fshort-double) " |
1291 | "and others for 64-bit double"), ibfd); | |
3a65329d SC |
1292 | ok = FALSE; |
1293 | } | |
47247ced SC |
1294 | |
1295 | /* Processor compatibility. */ | |
1296 | if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags)) | |
1297 | { | |
1298 | (*_bfd_error_handler) | |
d003868e AM |
1299 | (_("%B: linking files compiled for HCS12 with " |
1300 | "others compiled for HC12"), ibfd); | |
47247ced SC |
1301 | ok = FALSE; |
1302 | } | |
1303 | new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK) | |
1304 | | (EF_M68HC11_MERGE_MACH (new_flags, old_flags))); | |
1305 | ||
1306 | elf_elfheader (obfd)->e_flags = new_flags; | |
1307 | ||
17e58af0 SC |
1308 | new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); |
1309 | old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); | |
3a65329d SC |
1310 | |
1311 | /* Warn about any other mismatches */ | |
1312 | if (new_flags != old_flags) | |
1313 | { | |
1314 | (*_bfd_error_handler) | |
d003868e AM |
1315 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
1316 | ibfd, (unsigned long) new_flags, (unsigned long) old_flags); | |
3a65329d SC |
1317 | ok = FALSE; |
1318 | } | |
1319 | ||
1320 | if (! ok) | |
1321 | { | |
1322 | bfd_set_error (bfd_error_bad_value); | |
1323 | return FALSE; | |
1324 | } | |
1325 | ||
1326 | return TRUE; | |
1327 | } | |
1328 | ||
1329 | bfd_boolean | |
0a6a3ebe | 1330 | _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
3a65329d SC |
1331 | { |
1332 | FILE *file = (FILE *) ptr; | |
1333 | ||
1334 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
1335 | ||
1336 | /* Print normal ELF private data. */ | |
1337 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
1338 | ||
1339 | /* xgettext:c-format */ | |
1340 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
1341 | ||
1342 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32) | |
1343 | fprintf (file, _("[abi=32-bit int, ")); | |
1344 | else | |
1345 | fprintf (file, _("[abi=16-bit int, ")); | |
1346 | ||
1347 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64) | |
1348 | fprintf (file, _("64-bit double, ")); | |
1349 | else | |
1350 | fprintf (file, _("32-bit double, ")); | |
1351 | ||
1352 | if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0) | |
1353 | fprintf (file, _("cpu=HC11]")); | |
1354 | else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH) | |
1355 | fprintf (file, _("cpu=HCS12]")); | |
1356 | else | |
1357 | fprintf (file, _("cpu=HC12]")); | |
1358 | ||
1359 | if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS) | |
1360 | fprintf (file, _(" [memory=bank-model]")); | |
1361 | else | |
1362 | fprintf (file, _(" [memory=flat]")); | |
1363 | ||
1364 | fputc ('\n', file); | |
1365 | ||
1366 | return TRUE; | |
1367 | } | |
1368 | ||
0a6a3ebe SC |
1369 | static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED, |
1370 | asection *asect, void *arg) | |
3a65329d SC |
1371 | { |
1372 | struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg; | |
1373 | ||
1374 | if (asect->vma >= p->pinfo->bank_virtual) | |
1375 | p->use_memory_banks = TRUE; | |
1376 | } | |
1377 | ||
1378 | /* Tweak the OSABI field of the elf header. */ | |
1379 | ||
1380 | void | |
0a6a3ebe | 1381 | elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) |
3a65329d SC |
1382 | { |
1383 | struct m68hc11_scan_param param; | |
1384 | ||
1385 | if (link_info == 0) | |
1386 | return; | |
1387 | ||
1388 | m68hc11_elf_get_bank_parameters (link_info); | |
1389 | ||
1390 | param.use_memory_banks = FALSE; | |
1391 | param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo; | |
1392 | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); | |
1393 | if (param.use_memory_banks) | |
1394 | { | |
1395 | Elf_Internal_Ehdr * i_ehdrp; | |
1396 | ||
1397 | i_ehdrp = elf_elfheader (abfd); | |
1398 | i_ehdrp->e_flags |= E_M68HC12_BANKS; | |
1399 | } | |
1400 | } | |
1401 |