Add libmsvcrt, libmsvcrt-os and libucrtbase to the list of libraries for which the...
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
CommitLineData
252b5132 1/* Motorola 68k series support for 32-bit ELF
2571583a 2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
252b5132 3
ae9a127f 4 This file is part of BFD, the Binary File Descriptor library.
252b5132 5
ae9a127f
NC
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
cd123cb7 8 the Free Software Foundation; either version 3 of the License, or
ae9a127f 9 (at your option) any later version.
252b5132 10
ae9a127f
NC
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
252b5132 15
ae9a127f
NC
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
cd123cb7
NC
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
252b5132 20
252b5132 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
252b5132
RH
23#include "bfdlink.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/m68k.h"
266abb8f 27#include "opcode/m68k.h"
252b5132 28
2c3fc389
NC
29static bfd_boolean
30elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
31
32static reloc_howto_type howto_table[] =
33{
6346d5ca 34 HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
b34976b6
AM
35 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
36 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
37 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
38 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
39 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
40 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
41 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
42 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
43 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
44 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
45 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
46 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
47 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
48 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
49 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
50 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
51 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
52 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
53 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
54 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
55 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
56 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
ae9a127f 57 /* GNU extension to record C++ vtable hierarchy. */
252b5132
RH
58 HOWTO (R_68K_GNU_VTINHERIT, /* type */
59 0, /* rightshift */
60 2, /* size (0 = byte, 1 = short, 2 = long) */
61 0, /* bitsize */
b34976b6 62 FALSE, /* pc_relative */
252b5132
RH
63 0, /* bitpos */
64 complain_overflow_dont, /* complain_on_overflow */
65 NULL, /* special_function */
66 "R_68K_GNU_VTINHERIT", /* name */
b34976b6 67 FALSE, /* partial_inplace */
252b5132
RH
68 0, /* src_mask */
69 0, /* dst_mask */
b34976b6 70 FALSE),
ae9a127f 71 /* GNU extension to record C++ vtable member usage. */
252b5132
RH
72 HOWTO (R_68K_GNU_VTENTRY, /* type */
73 0, /* rightshift */
74 2, /* size (0 = byte, 1 = short, 2 = long) */
75 0, /* bitsize */
b34976b6 76 FALSE, /* pc_relative */
252b5132
RH
77 0, /* bitpos */
78 complain_overflow_dont, /* complain_on_overflow */
79 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
80 "R_68K_GNU_VTENTRY", /* name */
b34976b6 81 FALSE, /* partial_inplace */
252b5132
RH
82 0, /* src_mask */
83 0, /* dst_mask */
b34976b6 84 FALSE),
cf869cce
NC
85
86 /* TLS general dynamic variable reference. */
87 HOWTO (R_68K_TLS_GD32, /* type */
88 0, /* rightshift */
89 2, /* size (0 = byte, 1 = short, 2 = long) */
90 32, /* bitsize */
91 FALSE, /* pc_relative */
92 0, /* bitpos */
93 complain_overflow_bitfield, /* complain_on_overflow */
94 bfd_elf_generic_reloc, /* special_function */
95 "R_68K_TLS_GD32", /* name */
96 FALSE, /* partial_inplace */
97 0, /* src_mask */
98 0xffffffff, /* dst_mask */
99 FALSE), /* pcrel_offset */
100
101 HOWTO (R_68K_TLS_GD16, /* type */
102 0, /* rightshift */
103 1, /* size (0 = byte, 1 = short, 2 = long) */
104 16, /* bitsize */
105 FALSE, /* pc_relative */
106 0, /* bitpos */
107 complain_overflow_signed, /* complain_on_overflow */
108 bfd_elf_generic_reloc, /* special_function */
109 "R_68K_TLS_GD16", /* name */
110 FALSE, /* partial_inplace */
111 0, /* src_mask */
112 0x0000ffff, /* dst_mask */
113 FALSE), /* pcrel_offset */
114
115 HOWTO (R_68K_TLS_GD8, /* type */
116 0, /* rightshift */
117 0, /* size (0 = byte, 1 = short, 2 = long) */
118 8, /* bitsize */
119 FALSE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_signed, /* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_68K_TLS_GD8", /* name */
124 FALSE, /* partial_inplace */
125 0, /* src_mask */
126 0x000000ff, /* dst_mask */
127 FALSE), /* pcrel_offset */
128
129 /* TLS local dynamic variable reference. */
130 HOWTO (R_68K_TLS_LDM32, /* type */
131 0, /* rightshift */
132 2, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 FALSE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_bitfield, /* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_68K_TLS_LDM32", /* name */
139 FALSE, /* partial_inplace */
140 0, /* src_mask */
141 0xffffffff, /* dst_mask */
142 FALSE), /* pcrel_offset */
143
144 HOWTO (R_68K_TLS_LDM16, /* type */
145 0, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 16, /* bitsize */
148 FALSE, /* pc_relative */
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 bfd_elf_generic_reloc, /* special_function */
152 "R_68K_TLS_LDM16", /* name */
153 FALSE, /* partial_inplace */
154 0, /* src_mask */
155 0x0000ffff, /* dst_mask */
156 FALSE), /* pcrel_offset */
157
158 HOWTO (R_68K_TLS_LDM8, /* type */
159 0, /* rightshift */
160 0, /* size (0 = byte, 1 = short, 2 = long) */
161 8, /* bitsize */
162 FALSE, /* pc_relative */
163 0, /* bitpos */
164 complain_overflow_signed, /* complain_on_overflow */
165 bfd_elf_generic_reloc, /* special_function */
166 "R_68K_TLS_LDM8", /* name */
167 FALSE, /* partial_inplace */
168 0, /* src_mask */
169 0x000000ff, /* dst_mask */
170 FALSE), /* pcrel_offset */
171
172 HOWTO (R_68K_TLS_LDO32, /* type */
173 0, /* rightshift */
174 2, /* size (0 = byte, 1 = short, 2 = long) */
175 32, /* bitsize */
176 FALSE, /* pc_relative */
177 0, /* bitpos */
178 complain_overflow_bitfield, /* complain_on_overflow */
179 bfd_elf_generic_reloc, /* special_function */
180 "R_68K_TLS_LDO32", /* name */
181 FALSE, /* partial_inplace */
182 0, /* src_mask */
183 0xffffffff, /* dst_mask */
184 FALSE), /* pcrel_offset */
185
186 HOWTO (R_68K_TLS_LDO16, /* type */
187 0, /* rightshift */
188 1, /* size (0 = byte, 1 = short, 2 = long) */
189 16, /* bitsize */
190 FALSE, /* pc_relative */
191 0, /* bitpos */
192 complain_overflow_signed, /* complain_on_overflow */
193 bfd_elf_generic_reloc, /* special_function */
194 "R_68K_TLS_LDO16", /* name */
195 FALSE, /* partial_inplace */
196 0, /* src_mask */
197 0x0000ffff, /* dst_mask */
198 FALSE), /* pcrel_offset */
199
200 HOWTO (R_68K_TLS_LDO8, /* type */
201 0, /* rightshift */
202 0, /* size (0 = byte, 1 = short, 2 = long) */
203 8, /* bitsize */
204 FALSE, /* pc_relative */
205 0, /* bitpos */
206 complain_overflow_signed, /* complain_on_overflow */
207 bfd_elf_generic_reloc, /* special_function */
208 "R_68K_TLS_LDO8", /* name */
209 FALSE, /* partial_inplace */
210 0, /* src_mask */
211 0x000000ff, /* dst_mask */
212 FALSE), /* pcrel_offset */
213
214 /* TLS initial execution variable reference. */
215 HOWTO (R_68K_TLS_IE32, /* type */
216 0, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 32, /* bitsize */
219 FALSE, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 bfd_elf_generic_reloc, /* special_function */
223 "R_68K_TLS_IE32", /* name */
224 FALSE, /* partial_inplace */
225 0, /* src_mask */
226 0xffffffff, /* dst_mask */
227 FALSE), /* pcrel_offset */
228
229 HOWTO (R_68K_TLS_IE16, /* type */
230 0, /* rightshift */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
233 FALSE, /* pc_relative */
234 0, /* bitpos */
235 complain_overflow_signed, /* complain_on_overflow */
236 bfd_elf_generic_reloc, /* special_function */
237 "R_68K_TLS_IE16", /* name */
238 FALSE, /* partial_inplace */
239 0, /* src_mask */
240 0x0000ffff, /* dst_mask */
241 FALSE), /* pcrel_offset */
242
243 HOWTO (R_68K_TLS_IE8, /* type */
244 0, /* rightshift */
245 0, /* size (0 = byte, 1 = short, 2 = long) */
246 8, /* bitsize */
247 FALSE, /* pc_relative */
248 0, /* bitpos */
249 complain_overflow_signed, /* complain_on_overflow */
250 bfd_elf_generic_reloc, /* special_function */
251 "R_68K_TLS_IE8", /* name */
252 FALSE, /* partial_inplace */
253 0, /* src_mask */
254 0x000000ff, /* dst_mask */
255 FALSE), /* pcrel_offset */
256
257 /* TLS local execution variable reference. */
258 HOWTO (R_68K_TLS_LE32, /* type */
259 0, /* rightshift */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
261 32, /* bitsize */
262 FALSE, /* pc_relative */
263 0, /* bitpos */
264 complain_overflow_bitfield, /* complain_on_overflow */
265 bfd_elf_generic_reloc, /* special_function */
266 "R_68K_TLS_LE32", /* name */
267 FALSE, /* partial_inplace */
268 0, /* src_mask */
269 0xffffffff, /* dst_mask */
270 FALSE), /* pcrel_offset */
271
272 HOWTO (R_68K_TLS_LE16, /* type */
273 0, /* rightshift */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
275 16, /* bitsize */
276 FALSE, /* pc_relative */
277 0, /* bitpos */
278 complain_overflow_signed, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_68K_TLS_LE16", /* name */
281 FALSE, /* partial_inplace */
282 0, /* src_mask */
283 0x0000ffff, /* dst_mask */
284 FALSE), /* pcrel_offset */
285
286 HOWTO (R_68K_TLS_LE8, /* type */
287 0, /* rightshift */
288 0, /* size (0 = byte, 1 = short, 2 = long) */
289 8, /* bitsize */
290 FALSE, /* pc_relative */
291 0, /* bitpos */
292 complain_overflow_signed, /* complain_on_overflow */
293 bfd_elf_generic_reloc, /* special_function */
294 "R_68K_TLS_LE8", /* name */
295 FALSE, /* partial_inplace */
296 0, /* src_mask */
297 0x000000ff, /* dst_mask */
298 FALSE), /* pcrel_offset */
299
300 /* TLS GD/LD dynamic relocations. */
301 HOWTO (R_68K_TLS_DTPMOD32, /* type */
302 0, /* rightshift */
303 2, /* size (0 = byte, 1 = short, 2 = long) */
304 32, /* bitsize */
305 FALSE, /* pc_relative */
306 0, /* bitpos */
307 complain_overflow_dont, /* complain_on_overflow */
308 bfd_elf_generic_reloc, /* special_function */
309 "R_68K_TLS_DTPMOD32", /* name */
310 FALSE, /* partial_inplace */
311 0, /* src_mask */
312 0xffffffff, /* dst_mask */
313 FALSE), /* pcrel_offset */
314
315 HOWTO (R_68K_TLS_DTPREL32, /* type */
316 0, /* rightshift */
317 2, /* size (0 = byte, 1 = short, 2 = long) */
318 32, /* bitsize */
319 FALSE, /* pc_relative */
320 0, /* bitpos */
321 complain_overflow_dont, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_68K_TLS_DTPREL32", /* name */
324 FALSE, /* partial_inplace */
325 0, /* src_mask */
326 0xffffffff, /* dst_mask */
327 FALSE), /* pcrel_offset */
328
329 HOWTO (R_68K_TLS_TPREL32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_dont, /* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_68K_TLS_TPREL32", /* name */
338 FALSE, /* partial_inplace */
339 0, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
252b5132
RH
342};
343
344static void
c86ad514 345rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
252b5132 346{
c86ad514
AS
347 unsigned int indx = ELF32_R_TYPE (dst->r_info);
348
349 if (indx >= (unsigned int) R_68K_max)
350 {
695344c0 351 /* xgettext:c-format */
4eca0228
AM
352 _bfd_error_handler (_("%B: invalid relocation type %d"),
353 abfd, (int) indx);
c86ad514
AS
354 indx = R_68K_NONE;
355 }
356 cache_ptr->howto = &howto_table[indx];
252b5132
RH
357}
358
359#define elf_info_to_howto rtype_to_howto
360
361static const struct
362{
363 bfd_reloc_code_real_type bfd_val;
364 int elf_val;
cf869cce
NC
365}
366 reloc_map[] =
367{
252b5132
RH
368 { BFD_RELOC_NONE, R_68K_NONE },
369 { BFD_RELOC_32, R_68K_32 },
370 { BFD_RELOC_16, R_68K_16 },
371 { BFD_RELOC_8, R_68K_8 },
372 { BFD_RELOC_32_PCREL, R_68K_PC32 },
373 { BFD_RELOC_16_PCREL, R_68K_PC16 },
374 { BFD_RELOC_8_PCREL, R_68K_PC8 },
375 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
376 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
377 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
378 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
379 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
380 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
381 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
382 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
383 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
384 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
385 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
386 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
387 { BFD_RELOC_NONE, R_68K_COPY },
388 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
389 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
390 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
391 { BFD_RELOC_CTOR, R_68K_32 },
392 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
393 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
cf869cce
NC
394 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
395 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
396 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
397 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
398 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
399 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
400 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
401 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
402 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
403 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
404 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
405 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
406 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
407 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
408 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
252b5132
RH
409};
410
411static reloc_howto_type *
2c3fc389
NC
412reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
413 bfd_reloc_code_real_type code)
252b5132
RH
414{
415 unsigned int i;
416 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
417 {
418 if (reloc_map[i].bfd_val == code)
419 return &howto_table[reloc_map[i].elf_val];
420 }
421 return 0;
422}
423
157090f7
AM
424static reloc_howto_type *
425reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
426{
427 unsigned int i;
428
429 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
430 if (howto_table[i].name != NULL
431 && strcasecmp (howto_table[i].name, r_name) == 0)
432 return &howto_table[i];
433
434 return NULL;
435}
436
252b5132 437#define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
157090f7 438#define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
252b5132 439#define ELF_ARCH bfd_arch_m68k
ae95ffa6 440#define ELF_TARGET_ID M68K_ELF_DATA
252b5132
RH
441\f
442/* Functions for the m68k ELF linker. */
443
444/* The name of the dynamic interpreter. This is put in the .interp
445 section. */
446
447#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
448
cc3e26be
RS
449/* Describes one of the various PLT styles. */
450
451struct elf_m68k_plt_info
452{
453 /* The size of each PLT entry. */
454 bfd_vma size;
455
456 /* The template for the first PLT entry. */
457 const bfd_byte *plt0_entry;
458
459 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
460 The comments by each member indicate the value that the relocation
461 is against. */
462 struct {
463 unsigned int got4; /* .got + 4 */
464 unsigned int got8; /* .got + 8 */
465 } plt0_relocs;
466
467 /* The template for a symbol's PLT entry. */
468 const bfd_byte *symbol_entry;
469
470 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
471 The comments by each member indicate the value that the relocation
472 is against. */
473 struct {
474 unsigned int got; /* the symbol's .got.plt entry */
475 unsigned int plt; /* .plt */
476 } symbol_relocs;
477
478 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
479 The stub starts with "move.l #relocoffset,%d0". */
480 bfd_vma symbol_resolve_entry;
481};
482
252b5132
RH
483/* The size in bytes of an entry in the procedure linkage table. */
484
485#define PLT_ENTRY_SIZE 20
486
487/* The first entry in a procedure linkage table looks like this. See
488 the SVR4 ABI m68k supplement to see how this works. */
489
490static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
491{
492 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
cc3e26be 493 0, 0, 0, 2, /* + (.got + 4) - . */
252b5132 494 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
cc3e26be 495 0, 0, 0, 2, /* + (.got + 8) - . */
252b5132
RH
496 0, 0, 0, 0 /* pad out to 20 bytes. */
497};
498
499/* Subsequent entries in a procedure linkage table look like this. */
500
501static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
502{
503 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
cc3e26be 504 0, 0, 0, 2, /* + (.got.plt entry) - . */
252b5132 505 0x2f, 0x3c, /* move.l #offset,-(%sp) */
cc3e26be 506 0, 0, 0, 0, /* + reloc index */
252b5132 507 0x60, 0xff, /* bra.l .plt */
cc3e26be 508 0, 0, 0, 0 /* + .plt - . */
252b5132
RH
509};
510
695344c0
NC
511static const struct elf_m68k_plt_info elf_m68k_plt_info =
512{
cc3e26be
RS
513 PLT_ENTRY_SIZE,
514 elf_m68k_plt0_entry, { 4, 12 },
515 elf_m68k_plt_entry, { 4, 16 }, 8
516};
238d258f 517
7fb9f789 518#define ISAB_PLT_ENTRY_SIZE 24
238d258f 519
cc3e26be 520static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
238d258f 521{
cc3e26be
RS
522 0x20, 0x3c, /* move.l #offset,%d0 */
523 0, 0, 0, 0, /* + (.got + 4) - . */
524 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
525 0x20, 0x3c, /* move.l #offset,%d0 */
526 0, 0, 0, 0, /* + (.got + 8) - . */
527 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
238d258f
NC
528 0x4e, 0xd0, /* jmp (%a0) */
529 0x4e, 0x71 /* nop */
530};
531
532/* Subsequent entries in a procedure linkage table look like this. */
533
cc3e26be 534static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
238d258f 535{
cc3e26be
RS
536 0x20, 0x3c, /* move.l #offset,%d0 */
537 0, 0, 0, 0, /* + (.got.plt entry) - . */
538 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
238d258f
NC
539 0x4e, 0xd0, /* jmp (%a0) */
540 0x2f, 0x3c, /* move.l #offset,-(%sp) */
cc3e26be 541 0, 0, 0, 0, /* + reloc index */
238d258f 542 0x60, 0xff, /* bra.l .plt */
cc3e26be 543 0, 0, 0, 0 /* + .plt - . */
238d258f
NC
544};
545
695344c0
NC
546static const struct elf_m68k_plt_info elf_isab_plt_info =
547{
cc3e26be
RS
548 ISAB_PLT_ENTRY_SIZE,
549 elf_isab_plt0_entry, { 2, 12 },
550 elf_isab_plt_entry, { 2, 20 }, 12
551};
9e1281c7 552
7fb9f789 553#define ISAC_PLT_ENTRY_SIZE 24
9a2e615a
NS
554
555static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
556{
557 0x20, 0x3c, /* move.l #offset,%d0 */
558 0, 0, 0, 0, /* replaced with .got + 4 - . */
559 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
560 0x20, 0x3c, /* move.l #offset,%d0 */
561 0, 0, 0, 0, /* replaced with .got + 8 - . */
562 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
563 0x4e, 0xd0, /* jmp (%a0) */
564 0x4e, 0x71 /* nop */
565};
566
567/* Subsequent entries in a procedure linkage table look like this. */
568
569static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
570{
571 0x20, 0x3c, /* move.l #offset,%d0 */
572 0, 0, 0, 0, /* replaced with (.got entry) - . */
573 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
574 0x4e, 0xd0, /* jmp (%a0) */
575 0x2f, 0x3c, /* move.l #offset,-(%sp) */
576 0, 0, 0, 0, /* replaced with offset into relocation table */
577 0x61, 0xff, /* bsr.l .plt */
578 0, 0, 0, 0 /* replaced with .plt - . */
579};
580
695344c0
NC
581static const struct elf_m68k_plt_info elf_isac_plt_info =
582{
9a2e615a
NS
583 ISAC_PLT_ENTRY_SIZE,
584 elf_isac_plt0_entry, { 2, 12},
585 elf_isac_plt_entry, { 2, 20 }, 12
586};
587
cc3e26be 588#define CPU32_PLT_ENTRY_SIZE 24
9e1281c7 589/* Procedure linkage table entries for the cpu32 */
cc3e26be 590static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
9e1281c7 591{
6091b433 592 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
cc3e26be 593 0, 0, 0, 2, /* + (.got + 4) - . */
6091b433 594 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
cc3e26be 595 0, 0, 0, 2, /* + (.got + 8) - . */
6091b433 596 0x4e, 0xd1, /* jmp %a1@ */
9e1281c7
CM
597 0, 0, 0, 0, /* pad out to 24 bytes. */
598 0, 0
599};
600
cc3e26be 601static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
9e1281c7 602{
1ca42bad 603 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
cc3e26be 604 0, 0, 0, 2, /* + (.got.plt entry) - . */
1ca42bad 605 0x4e, 0xd1, /* jmp %a1@ */
9e1281c7 606 0x2f, 0x3c, /* move.l #offset,-(%sp) */
cc3e26be 607 0, 0, 0, 0, /* + reloc index */
9e1281c7 608 0x60, 0xff, /* bra.l .plt */
cc3e26be 609 0, 0, 0, 0, /* + .plt - . */
9e1281c7
CM
610 0, 0
611};
612
695344c0
NC
613static const struct elf_m68k_plt_info elf_cpu32_plt_info =
614{
cc3e26be
RS
615 CPU32_PLT_ENTRY_SIZE,
616 elf_cpu32_plt0_entry, { 4, 12 },
617 elf_cpu32_plt_entry, { 4, 18 }, 10
618};
619
252b5132
RH
620/* The m68k linker needs to keep track of the number of relocs that it
621 decides to copy in check_relocs for each symbol. This is so that it
622 can discard PC relative relocs if it doesn't need them when linking
623 with -Bsymbolic. We store the information in a field extending the
624 regular ELF linker hash table. */
625
626/* This structure keeps track of the number of PC relative relocs we have
627 copied for a given symbol. */
628
629struct elf_m68k_pcrel_relocs_copied
630{
631 /* Next section. */
632 struct elf_m68k_pcrel_relocs_copied *next;
633 /* A section in dynobj. */
634 asection *section;
635 /* Number of relocs copied in this section. */
636 bfd_size_type count;
637};
638
7fb9f789
NC
639/* Forward declaration. */
640struct elf_m68k_got_entry;
641
252b5132
RH
642/* m68k ELF linker hash entry. */
643
644struct elf_m68k_link_hash_entry
645{
646 struct elf_link_hash_entry root;
647
648 /* Number of PC relative relocs copied for this symbol. */
649 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
7fb9f789
NC
650
651 /* Key to got_entries. */
652 unsigned long got_entry_key;
653
654 /* List of GOT entries for this symbol. This list is build during
655 offset finalization and is used within elf_m68k_finish_dynamic_symbol
656 to traverse all GOT entries for a particular symbol.
657
658 ??? We could've used root.got.glist field instead, but having
659 a separate field is cleaner. */
660 struct elf_m68k_got_entry *glist;
252b5132
RH
661};
662
0cca5f05
AS
663#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
664
7fb9f789
NC
665/* Key part of GOT entry in hashtable. */
666struct elf_m68k_got_entry_key
667{
668 /* BFD in which this symbol was defined. NULL for global symbols. */
669 const bfd *bfd;
670
671 /* Symbol index. Either local symbol index or h->got_entry_key. */
672 unsigned long symndx;
cf869cce
NC
673
674 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
675 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
676
677 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
678 matters. That is, we distinguish between, say, R_68K_GOT16O
679 and R_68K_GOT32O when allocating offsets, but they are considered to be
680 the same when searching got->entries. */
681 enum elf_m68k_reloc_type type;
7fb9f789
NC
682};
683
cf869cce
NC
684/* Size of the GOT offset suitable for relocation. */
685enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
686
7fb9f789
NC
687/* Entry of the GOT. */
688struct elf_m68k_got_entry
689{
690 /* GOT entries are put into a got->entries hashtable. This is the key. */
691 struct elf_m68k_got_entry_key key_;
692
693 /* GOT entry data. We need s1 before offset finalization and s2 after. */
694 union
695 {
696 struct
697 {
5c3261b0 698 /* Number of times this entry is referenced. */
7fb9f789 699 bfd_vma refcount;
7fb9f789
NC
700 } s1;
701
702 struct
703 {
704 /* Offset from the start of .got section. To calculate offset relative
de194d85 705 to GOT pointer one should subtract got->offset from this value. */
7fb9f789
NC
706 bfd_vma offset;
707
708 /* Pointer to the next GOT entry for this global symbol.
709 Symbols have at most one entry in one GOT, but might
710 have entries in more than one GOT.
711 Root of this list is h->glist.
712 NULL for local symbols. */
713 struct elf_m68k_got_entry *next;
714 } s2;
715 } u;
716};
717
cf869cce
NC
718/* Return representative type for relocation R_TYPE.
719 This is used to avoid enumerating many relocations in comparisons,
720 switches etc. */
721
722static enum elf_m68k_reloc_type
723elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
724{
725 switch (r_type)
726 {
727 /* In most cases R_68K_GOTx relocations require the very same
728 handling as R_68K_GOT32O relocation. In cases when we need
729 to distinguish between the two, we use explicitly compare against
730 r_type. */
731 case R_68K_GOT32:
732 case R_68K_GOT16:
733 case R_68K_GOT8:
734 case R_68K_GOT32O:
735 case R_68K_GOT16O:
736 case R_68K_GOT8O:
737 return R_68K_GOT32O;
738
739 case R_68K_TLS_GD32:
740 case R_68K_TLS_GD16:
741 case R_68K_TLS_GD8:
742 return R_68K_TLS_GD32;
743
744 case R_68K_TLS_LDM32:
745 case R_68K_TLS_LDM16:
746 case R_68K_TLS_LDM8:
747 return R_68K_TLS_LDM32;
748
749 case R_68K_TLS_IE32:
750 case R_68K_TLS_IE16:
751 case R_68K_TLS_IE8:
752 return R_68K_TLS_IE32;
753
754 default:
755 BFD_ASSERT (FALSE);
756 return 0;
757 }
758}
759
760/* Return size of the GOT entry offset for relocation R_TYPE. */
761
762static enum elf_m68k_got_offset_size
763elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
764{
765 switch (r_type)
766 {
767 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
768 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
769 case R_68K_TLS_IE32:
770 return R_32;
771
772 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
773 case R_68K_TLS_IE16:
774 return R_16;
775
776 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
777 case R_68K_TLS_IE8:
778 return R_8;
779
780 default:
781 BFD_ASSERT (FALSE);
782 return 0;
783 }
784}
785
786/* Return number of GOT entries we need to allocate in GOT for
787 relocation R_TYPE. */
788
789static bfd_vma
790elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
791{
792 switch (elf_m68k_reloc_got_type (r_type))
793 {
794 case R_68K_GOT32O:
795 case R_68K_TLS_IE32:
796 return 1;
797
798 case R_68K_TLS_GD32:
799 case R_68K_TLS_LDM32:
800 return 2;
801
802 default:
803 BFD_ASSERT (FALSE);
804 return 0;
805 }
806}
807
808/* Return TRUE if relocation R_TYPE is a TLS one. */
809
810static bfd_boolean
811elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
812{
813 switch (r_type)
814 {
815 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
816 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
817 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
818 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
819 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
820 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
821 return TRUE;
822
823 default:
824 return FALSE;
825 }
826}
827
7fb9f789
NC
828/* Data structure representing a single GOT. */
829struct elf_m68k_got
830{
831 /* Hashtable of 'struct elf_m68k_got_entry's.
832 Starting size of this table is the maximum number of
833 R_68K_GOT8O entries. */
834 htab_t entries;
835
cf869cce
NC
836 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
837 several GOT slots.
7fb9f789 838
cf869cce
NC
839 n_slots[R_8] is the count of R_8 slots in this GOT.
840 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
841 in this GOT.
842 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
843 in this GOT. This is the total number of slots. */
844 bfd_vma n_slots[R_LAST];
7fb9f789 845
cf869cce 846 /* Number of local (entry->key_.h == NULL) slots in this GOT.
7fb9f789
NC
847 This is only used to properly calculate size of .rela.got section;
848 see elf_m68k_partition_multi_got. */
cf869cce 849 bfd_vma local_n_slots;
7fb9f789
NC
850
851 /* Offset of this GOT relative to beginning of .got section. */
852 bfd_vma offset;
853};
854
855/* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
856struct elf_m68k_bfd2got_entry
857{
858 /* BFD. */
859 const bfd *bfd;
860
861 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
862 GOT structure. After partitioning several BFD's might [and often do]
863 share a single GOT. */
864 struct elf_m68k_got *got;
865};
866
867/* The main data structure holding all the pieces. */
868struct elf_m68k_multi_got
869{
870 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
871 here, then it doesn't need a GOT (this includes the case of a BFD
872 having an empty GOT).
873
874 ??? This hashtable can be replaced by an array indexed by bfd->id. */
875 htab_t bfd2got;
876
877 /* Next symndx to assign a global symbol.
878 h->got_entry_key is initialized from this counter. */
879 unsigned long global_symndx;
880};
881
252b5132
RH
882/* m68k ELF linker hash table. */
883
884struct elf_m68k_link_hash_table
885{
886 struct elf_link_hash_table root;
b6152c34 887
87d72d41
AM
888 /* Small local sym cache. */
889 struct sym_cache sym_cache;
cc3e26be
RS
890
891 /* The PLT format used by this link, or NULL if the format has not
892 yet been chosen. */
893 const struct elf_m68k_plt_info *plt_info;
7fb9f789
NC
894
895 /* True, if GP is loaded within each function which uses it.
896 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
897 bfd_boolean local_gp_p;
898
899 /* Switch controlling use of negative offsets to double the size of GOTs. */
900 bfd_boolean use_neg_got_offsets_p;
901
902 /* Switch controlling generation of multiple GOTs. */
903 bfd_boolean allow_multigot_p;
904
905 /* Multi-GOT data structure. */
906 struct elf_m68k_multi_got multi_got_;
252b5132
RH
907};
908
252b5132
RH
909/* Get the m68k ELF linker hash table from a link_info structure. */
910
911#define elf_m68k_hash_table(p) \
4dfe6ac6
NC
912 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
913 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
252b5132 914
7fb9f789
NC
915/* Shortcut to multi-GOT data. */
916#define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
917
252b5132
RH
918/* Create an entry in an m68k ELF linker hash table. */
919
920static struct bfd_hash_entry *
4dfe6ac6
NC
921elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
922 struct bfd_hash_table *table,
923 const char *string)
252b5132 924{
0cca5f05 925 struct bfd_hash_entry *ret = entry;
252b5132
RH
926
927 /* Allocate the structure if it has not already been allocated by a
928 subclass. */
0cca5f05
AS
929 if (ret == NULL)
930 ret = bfd_hash_allocate (table,
931 sizeof (struct elf_m68k_link_hash_entry));
932 if (ret == NULL)
933 return ret;
252b5132
RH
934
935 /* Call the allocation method of the superclass. */
0cca5f05
AS
936 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
937 if (ret != NULL)
7fb9f789
NC
938 {
939 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
940 elf_m68k_hash_entry (ret)->got_entry_key = 0;
941 elf_m68k_hash_entry (ret)->glist = NULL;
942 }
252b5132 943
0cca5f05 944 return ret;
252b5132
RH
945}
946
68faa637
AM
947/* Destroy an m68k ELF linker hash table. */
948
949static void
d495ab0d 950elf_m68k_link_hash_table_free (bfd *obfd)
68faa637
AM
951{
952 struct elf_m68k_link_hash_table *htab;
953
d495ab0d 954 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
68faa637
AM
955
956 if (htab->multi_got_.bfd2got != NULL)
957 {
958 htab_delete (htab->multi_got_.bfd2got);
959 htab->multi_got_.bfd2got = NULL;
960 }
d495ab0d 961 _bfd_elf_link_hash_table_free (obfd);
68faa637
AM
962}
963
252b5132
RH
964/* Create an m68k ELF linker hash table. */
965
966static struct bfd_link_hash_table *
4dfe6ac6 967elf_m68k_link_hash_table_create (bfd *abfd)
252b5132
RH
968{
969 struct elf_m68k_link_hash_table *ret;
dc810e39 970 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
252b5132 971
7bf52ea2 972 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
252b5132
RH
973 if (ret == (struct elf_m68k_link_hash_table *) NULL)
974 return NULL;
975
66eb6687
AM
976 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
977 elf_m68k_link_hash_newfunc,
4dfe6ac6
NC
978 sizeof (struct elf_m68k_link_hash_entry),
979 M68K_ELF_DATA))
252b5132 980 {
e2d34d7d 981 free (ret);
252b5132
RH
982 return NULL;
983 }
d495ab0d 984 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
252b5132 985
7fb9f789 986 ret->multi_got_.global_symndx = 1;
b6152c34 987
252b5132
RH
988 return &ret->root.root;
989}
990
266abb8f
NS
991/* Set the right machine number. */
992
993static bfd_boolean
994elf32_m68k_object_p (bfd *abfd)
995{
996 unsigned int mach = 0;
997 unsigned features = 0;
998 flagword eflags = elf_elfheader (abfd)->e_flags;
999
425c6cb0 1000 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
266abb8f 1001 features |= m68000;
425c6cb0 1002 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3bdcfdf4
KH
1003 features |= cpu32;
1004 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1005 features |= fido_a;
425c6cb0 1006 else
266abb8f 1007 {
c694fd50 1008 switch (eflags & EF_M68K_CF_ISA_MASK)
266abb8f 1009 {
c694fd50 1010 case EF_M68K_CF_ISA_A_NODIV:
266abb8f
NS
1011 features |= mcfisa_a;
1012 break;
c694fd50 1013 case EF_M68K_CF_ISA_A:
0b2e31dc
NS
1014 features |= mcfisa_a|mcfhwdiv;
1015 break;
c694fd50 1016 case EF_M68K_CF_ISA_A_PLUS:
0b2e31dc
NS
1017 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1018 break;
c694fd50 1019 case EF_M68K_CF_ISA_B_NOUSP:
0b2e31dc
NS
1020 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1021 break;
c694fd50 1022 case EF_M68K_CF_ISA_B:
0b2e31dc
NS
1023 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1024 break;
9a2e615a
NS
1025 case EF_M68K_CF_ISA_C:
1026 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1027 break;
8d100c32
KH
1028 case EF_M68K_CF_ISA_C_NODIV:
1029 features |= mcfisa_a|mcfisa_c|mcfusp;
1030 break;
266abb8f 1031 }
c694fd50 1032 switch (eflags & EF_M68K_CF_MAC_MASK)
266abb8f 1033 {
c694fd50 1034 case EF_M68K_CF_MAC:
266abb8f
NS
1035 features |= mcfmac;
1036 break;
c694fd50 1037 case EF_M68K_CF_EMAC:
266abb8f
NS
1038 features |= mcfemac;
1039 break;
1040 }
c694fd50 1041 if (eflags & EF_M68K_CF_FLOAT)
266abb8f
NS
1042 features |= cfloat;
1043 }
1044
1045 mach = bfd_m68k_features_to_mach (features);
1046 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1047
1048 return TRUE;
1049}
1050
fc9f1df9
NC
1051/* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1052 field based on the machine number. */
1053
1054static void
1055elf_m68k_final_write_processing (bfd *abfd,
1056 bfd_boolean linker ATTRIBUTE_UNUSED)
1057{
1058 int mach = bfd_get_mach (abfd);
1059 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1060
1061 if (!e_flags)
1062 {
1063 unsigned int arch_mask;
1064
1065 arch_mask = bfd_m68k_mach_to_features (mach);
1066
1067 if (arch_mask & m68000)
1068 e_flags = EF_M68K_M68000;
1069 else if (arch_mask & cpu32)
1070 e_flags = EF_M68K_CPU32;
1071 else if (arch_mask & fido_a)
1072 e_flags = EF_M68K_FIDO;
1073 else
1074 {
1075 switch (arch_mask
1076 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1077 {
1078 case mcfisa_a:
1079 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1080 break;
1081 case mcfisa_a | mcfhwdiv:
1082 e_flags |= EF_M68K_CF_ISA_A;
1083 break;
1084 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1085 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1086 break;
1087 case mcfisa_a | mcfisa_b | mcfhwdiv:
1088 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1089 break;
1090 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1091 e_flags |= EF_M68K_CF_ISA_B;
1092 break;
1093 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1094 e_flags |= EF_M68K_CF_ISA_C;
1095 break;
1096 case mcfisa_a | mcfisa_c | mcfusp:
1097 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1098 break;
1099 }
1100 if (arch_mask & mcfmac)
1101 e_flags |= EF_M68K_CF_MAC;
1102 else if (arch_mask & mcfemac)
1103 e_flags |= EF_M68K_CF_EMAC;
1104 if (arch_mask & cfloat)
1105 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1106 }
1107 elf_elfheader (abfd)->e_flags = e_flags;
1108 }
1109}
1110
ae9a127f 1111/* Keep m68k-specific flags in the ELF header. */
fc9f1df9 1112
b34976b6 1113static bfd_boolean
2c3fc389 1114elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
9e1281c7
CM
1115{
1116 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
1117 elf_flags_init (abfd) = TRUE;
1118 return TRUE;
9e1281c7
CM
1119}
1120
9e1281c7
CM
1121/* Merge backend specific data from an object file to the output
1122 object file when linking. */
b34976b6 1123static bfd_boolean
50e03d47 1124elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
9e1281c7 1125{
50e03d47 1126 bfd *obfd = info->output_bfd;
9e1281c7
CM
1127 flagword out_flags;
1128 flagword in_flags;
a9d34880
RS
1129 flagword out_isa;
1130 flagword in_isa;
1131 const bfd_arch_info_type *arch_info;
7fb9f789 1132
9e1281c7
CM
1133 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1134 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
266abb8f
NS
1135 return FALSE;
1136
a9d34880
RS
1137 /* Get the merged machine. This checks for incompatibility between
1138 Coldfire & non-Coldfire flags, incompability between different
1139 Coldfire ISAs, and incompability between different MAC types. */
1140 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1141 if (!arch_info)
1142 return FALSE;
9e1281c7 1143
7fb9f789
NC
1144 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1145
1146 in_flags = elf_elfheader (ibfd)->e_flags;
1147 if (!elf_flags_init (obfd))
1148 {
1149 elf_flags_init (obfd) = TRUE;
1150 out_flags = in_flags;
1151 }
1152 else
1153 {
1154 out_flags = elf_elfheader (obfd)->e_flags;
1155 unsigned int variant_mask;
1156
1157 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1158 variant_mask = 0;
1159 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1160 variant_mask = 0;
1161 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1162 variant_mask = 0;
1163 else
1164 variant_mask = EF_M68K_CF_ISA_MASK;
1165
1166 in_isa = (in_flags & variant_mask);
1167 out_isa = (out_flags & variant_mask);
1168 if (in_isa > out_isa)
1169 out_flags ^= in_isa ^ out_isa;
1170 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1171 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1172 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1173 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1174 out_flags = EF_M68K_FIDO;
1175 else
1176 out_flags |= in_flags ^ in_isa;
1177 }
1178 elf_elfheader (obfd)->e_flags = out_flags;
1179
1180 return TRUE;
1181}
1182
1183/* Display the flags field. */
1184
1185static bfd_boolean
1186elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1187{
1188 FILE *file = (FILE *) ptr;
1189 flagword eflags = elf_elfheader (abfd)->e_flags;
1190
1191 BFD_ASSERT (abfd != NULL && ptr != NULL);
1192
1193 /* Print normal ELF private data. */
1194 _bfd_elf_print_private_bfd_data (abfd, ptr);
1195
1196 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1197
1198 /* xgettext:c-format */
1199 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1200
1201 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1202 fprintf (file, " [m68000]");
1203 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1204 fprintf (file, " [cpu32]");
1205 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1206 fprintf (file, " [fido]");
1207 else
1208 {
1209 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1210 fprintf (file, " [cfv4e]");
1211
1212 if (eflags & EF_M68K_CF_ISA_MASK)
1213 {
1214 char const *isa = _("unknown");
1215 char const *mac = _("unknown");
1216 char const *additional = "";
1217
1218 switch (eflags & EF_M68K_CF_ISA_MASK)
1219 {
1220 case EF_M68K_CF_ISA_A_NODIV:
1221 isa = "A";
1222 additional = " [nodiv]";
1223 break;
1224 case EF_M68K_CF_ISA_A:
1225 isa = "A";
1226 break;
1227 case EF_M68K_CF_ISA_A_PLUS:
1228 isa = "A+";
1229 break;
1230 case EF_M68K_CF_ISA_B_NOUSP:
1231 isa = "B";
1232 additional = " [nousp]";
1233 break;
1234 case EF_M68K_CF_ISA_B:
1235 isa = "B";
1236 break;
1237 case EF_M68K_CF_ISA_C:
1238 isa = "C";
1239 break;
1240 case EF_M68K_CF_ISA_C_NODIV:
1241 isa = "C";
1242 additional = " [nodiv]";
1243 break;
1244 }
1245 fprintf (file, " [isa %s]%s", isa, additional);
1246
1247 if (eflags & EF_M68K_CF_FLOAT)
1248 fprintf (file, " [float]");
1249
1250 switch (eflags & EF_M68K_CF_MAC_MASK)
1251 {
1252 case 0:
1253 mac = NULL;
1254 break;
1255 case EF_M68K_CF_MAC:
1256 mac = "mac";
1257 break;
1258 case EF_M68K_CF_EMAC:
1259 mac = "emac";
1260 break;
f608cd77
NS
1261 case EF_M68K_CF_EMAC_B:
1262 mac = "emac_b";
1263 break;
7fb9f789
NC
1264 }
1265 if (mac)
1266 fprintf (file, " [%s]", mac);
1267 }
1268 }
1269
1270 fputc ('\n', file);
1271
1272 return TRUE;
1273}
1274
1275/* Multi-GOT support implementation design:
1276
1277 Multi-GOT starts in check_relocs hook. There we scan all
1278 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1279 for it. If a single BFD appears to require too many GOT slots with
1280 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1281 to user.
1282 After check_relocs has been invoked for each input BFD, we have
1283 constructed a GOT for each input BFD.
1284
1285 To minimize total number of GOTs required for a particular output BFD
1286 (as some environments support only 1 GOT per output object) we try
1287 to merge some of the GOTs to share an offset space. Ideally [and in most
1288 cases] we end up with a single GOT. In cases when there are too many
1289 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1290 several GOTs, assuming the environment can handle them.
1291
1292 Partitioning is done in elf_m68k_partition_multi_got. We start with
1293 an empty GOT and traverse bfd2got hashtable putting got_entries from
1294 local GOTs to the new 'big' one. We do that by constructing an
1295 intermediate GOT holding all the entries the local GOT has and the big
1296 GOT lacks. Then we check if there is room in the big GOT to accomodate
1297 all the entries from diff. On success we add those entries to the big
1298 GOT; on failure we start the new 'big' GOT and retry the adding of
1299 entries from the local GOT. Note that this retry will always succeed as
1300 each local GOT doesn't overflow the limits. After partitioning we
1301 end up with each bfd assigned one of the big GOTs. GOT entries in the
1302 big GOTs are initialized with GOT offsets. Note that big GOTs are
1303 positioned consequently in program space and represent a single huge GOT
1304 to the outside world.
1305
1306 After that we get to elf_m68k_relocate_section. There we
1307 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1308 relocations to refer to appropriate [assigned to current input_bfd]
1309 big GOT.
1310
1311 Notes:
1312
cf869cce
NC
1313 GOT entry type: We have several types of GOT entries.
1314 * R_8 type is used in entries for symbols that have at least one
1315 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
7fb9f789 1316 such entries in one GOT.
cf869cce
NC
1317 * R_16 type is used in entries for symbols that have at least one
1318 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
7fb9f789 1319 We can have at most 0x4000 such entries in one GOT.
cf869cce
NC
1320 * R_32 type is used in all other cases. We can have as many
1321 such entries in one GOT as we'd like.
7fb9f789
NC
1322 When counting relocations we have to include the count of the smaller
1323 ranged relocations in the counts of the larger ranged ones in order
1324 to correctly detect overflow.
1325
1326 Sorting the GOT: In each GOT starting offsets are assigned to
cf869cce
NC
1327 R_8 entries, which are followed by R_16 entries, and
1328 R_32 entries go at the end. See finalize_got_offsets for details.
7fb9f789
NC
1329
1330 Negative GOT offsets: To double usable offset range of GOTs we use
1331 negative offsets. As we assign entries with GOT offsets relative to
1332 start of .got section, the offset values are positive. They become
1333 negative only in relocate_section where got->offset value is
1334 subtracted from them.
1335
1336 3 special GOT entries: There are 3 special GOT entries used internally
1337 by loader. These entries happen to be placed to .got.plt section,
1338 so we don't do anything about them in multi-GOT support.
1339
1340 Memory management: All data except for hashtables
1341 multi_got->bfd2got and got->entries are allocated on
1342 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1343 to most functions), so we don't need to care to free them. At the
1344 moment of allocation hashtables are being linked into main data
1345 structure (multi_got), all pieces of which are reachable from
1346 elf_m68k_multi_got (info). We deallocate them in
1347 elf_m68k_link_hash_table_free. */
1348
1349/* Initialize GOT. */
1350
1351static void
cf869cce
NC
1352elf_m68k_init_got (struct elf_m68k_got *got)
1353{
1354 got->entries = NULL;
1355 got->n_slots[R_8] = 0;
1356 got->n_slots[R_16] = 0;
1357 got->n_slots[R_32] = 0;
1358 got->local_n_slots = 0;
1359 got->offset = (bfd_vma) -1;
7fb9f789
NC
1360}
1361
1362/* Destruct GOT. */
1363
1364static void
1365elf_m68k_clear_got (struct elf_m68k_got *got)
1366{
1367 if (got->entries != NULL)
1368 {
1369 htab_delete (got->entries);
1370 got->entries = NULL;
1371 }
1372}
1373
1374/* Create and empty GOT structure. INFO is the context where memory
1375 should be allocated. */
1376
1377static struct elf_m68k_got *
1378elf_m68k_create_empty_got (struct bfd_link_info *info)
1379{
1380 struct elf_m68k_got *got;
1381
1382 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1383 if (got == NULL)
1384 return NULL;
1385
cf869cce 1386 elf_m68k_init_got (got);
7fb9f789
NC
1387
1388 return got;
1389}
1390
1391/* Initialize KEY. */
1392
1393static void
1394elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1395 struct elf_link_hash_entry *h,
cf869cce
NC
1396 const bfd *abfd, unsigned long symndx,
1397 enum elf_m68k_reloc_type reloc_type)
7fb9f789 1398{
cf869cce
NC
1399 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1400 /* All TLS_LDM relocations share a single GOT entry. */
1401 {
1402 key->bfd = NULL;
1403 key->symndx = 0;
1404 }
1405 else if (h != NULL)
1406 /* Global symbols are identified with their got_entry_key. */
7fb9f789
NC
1407 {
1408 key->bfd = NULL;
1409 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1410 BFD_ASSERT (key->symndx != 0);
1411 }
1412 else
cf869cce 1413 /* Local symbols are identified by BFD they appear in and symndx. */
7fb9f789
NC
1414 {
1415 key->bfd = abfd;
1416 key->symndx = symndx;
1417 }
cf869cce
NC
1418
1419 key->type = reloc_type;
7fb9f789
NC
1420}
1421
1422/* Calculate hash of got_entry.
1423 ??? Is it good? */
1424
1425static hashval_t
1426elf_m68k_got_entry_hash (const void *_entry)
1427{
1428 const struct elf_m68k_got_entry_key *key;
1429
1430 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1431
cf869cce
NC
1432 return (key->symndx
1433 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1434 + elf_m68k_reloc_got_type (key->type));
7fb9f789
NC
1435}
1436
1437/* Check if two got entries are equal. */
1438
1439static int
1440elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1441{
1442 const struct elf_m68k_got_entry_key *key1;
1443 const struct elf_m68k_got_entry_key *key2;
1444
1445 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1446 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1447
1448 return (key1->bfd == key2->bfd
cf869cce
NC
1449 && key1->symndx == key2->symndx
1450 && (elf_m68k_reloc_got_type (key1->type)
1451 == elf_m68k_reloc_got_type (key2->type)));
7fb9f789
NC
1452}
1453
cf869cce
NC
1454/* When using negative offsets, we allocate one extra R_8, one extra R_16
1455 and one extra R_32 slots to simplify handling of 2-slot entries during
1456 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1457
1458/* Maximal number of R_8 slots in a single GOT. */
1459#define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
7fb9f789 1460 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
cf869cce 1461 ? (0x40 - 1) \
7fb9f789
NC
1462 : 0x20)
1463
cf869cce
NC
1464/* Maximal number of R_8 and R_16 slots in a single GOT. */
1465#define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
7fb9f789 1466 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
cf869cce 1467 ? (0x4000 - 2) \
7fb9f789
NC
1468 : 0x2000)
1469
1470/* SEARCH - simply search the hashtable, don't insert new entries or fail when
1471 the entry cannot be found.
1472 FIND_OR_CREATE - search for an existing entry, but create new if there's
1473 no such.
1474 MUST_FIND - search for an existing entry and assert that it exist.
1475 MUST_CREATE - assert that there's no such entry and create new one. */
1476enum elf_m68k_get_entry_howto
1477 {
1478 SEARCH,
1479 FIND_OR_CREATE,
1480 MUST_FIND,
1481 MUST_CREATE
1482 };
1483
1484/* Get or create (depending on HOWTO) entry with KEY in GOT.
1485 INFO is context in which memory should be allocated (can be NULL if
1486 HOWTO is SEARCH or MUST_FIND). */
1487
1488static struct elf_m68k_got_entry *
1489elf_m68k_get_got_entry (struct elf_m68k_got *got,
1490 const struct elf_m68k_got_entry_key *key,
1491 enum elf_m68k_get_entry_howto howto,
1492 struct bfd_link_info *info)
1493{
1494 struct elf_m68k_got_entry entry_;
1495 struct elf_m68k_got_entry *entry;
1496 void **ptr;
1497
1498 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1499
1500 if (got->entries == NULL)
1501 /* This is the first entry in ABFD. Initialize hashtable. */
1502 {
1503 if (howto == SEARCH)
1504 return NULL;
1505
cf869cce 1506 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
7fb9f789
NC
1507 (info),
1508 elf_m68k_got_entry_hash,
1509 elf_m68k_got_entry_eq, NULL);
1510 if (got->entries == NULL)
1511 {
1512 bfd_set_error (bfd_error_no_memory);
1513 return NULL;
1514 }
1515 }
1516
1517 entry_.key_ = *key;
1518 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1519 ? INSERT : NO_INSERT));
1520 if (ptr == NULL)
1521 {
1522 if (howto == SEARCH)
1523 /* Entry not found. */
1524 return NULL;
1525
1526 /* We're out of memory. */
1527 bfd_set_error (bfd_error_no_memory);
1528 return NULL;
1529 }
1530
1531 if (*ptr == NULL)
1532 /* We didn't find the entry and we're asked to create a new one. */
1533 {
1534 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1535
1536 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1537 if (entry == NULL)
1538 return NULL;
1539
1540 /* Initialize new entry. */
1541 entry->key_ = *key;
1542
1543 entry->u.s1.refcount = 0;
cf869cce
NC
1544
1545 /* Mark the entry as not initialized. */
1546 entry->key_.type = R_68K_max;
7fb9f789
NC
1547
1548 *ptr = entry;
1549 }
1550 else
1551 /* We found the entry. */
1552 {
1553 BFD_ASSERT (howto != MUST_CREATE);
1554
1555 entry = *ptr;
1556 }
1557
1558 return entry;
1559}
1560
1561/* Update GOT counters when merging entry of WAS type with entry of NEW type.
1562 Return the value to which ENTRY's type should be set. */
1563
cf869cce
NC
1564static enum elf_m68k_reloc_type
1565elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1566 enum elf_m68k_reloc_type was,
d3ce72d0 1567 enum elf_m68k_reloc_type new_reloc)
7fb9f789 1568{
cf869cce
NC
1569 enum elf_m68k_got_offset_size was_size;
1570 enum elf_m68k_got_offset_size new_size;
1571 bfd_vma n_slots;
1572
1573 if (was == R_68K_max)
1574 /* The type of the entry is not initialized yet. */
7fb9f789 1575 {
cf869cce
NC
1576 /* Update all got->n_slots counters, including n_slots[R_32]. */
1577 was_size = R_LAST;
7fb9f789 1578
d3ce72d0 1579 was = new_reloc;
7fb9f789 1580 }
7fb9f789 1581 else
cf869cce
NC
1582 {
1583 /* !!! We, probably, should emit an error rather then fail on assert
1584 in such a case. */
1585 BFD_ASSERT (elf_m68k_reloc_got_type (was)
d3ce72d0 1586 == elf_m68k_reloc_got_type (new_reloc));
cf869cce
NC
1587
1588 was_size = elf_m68k_reloc_got_offset_size (was);
1589 }
1590
d3ce72d0
NC
1591 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1592 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
cf869cce
NC
1593
1594 while (was_size > new_size)
1595 {
1596 --was_size;
1597 got->n_slots[was_size] += n_slots;
1598 }
7fb9f789 1599
d3ce72d0 1600 if (new_reloc > was)
cf869cce
NC
1601 /* Relocations are ordered from bigger got offset size to lesser,
1602 so choose the relocation type with lesser offset size. */
d3ce72d0 1603 was = new_reloc;
cf869cce
NC
1604
1605 return was;
7fb9f789
NC
1606}
1607
7fb9f789
NC
1608/* Add new or update existing entry to GOT.
1609 H, ABFD, TYPE and SYMNDX is data for the entry.
1610 INFO is a context where memory should be allocated. */
1611
1612static struct elf_m68k_got_entry *
1613elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1614 struct elf_link_hash_entry *h,
1615 const bfd *abfd,
cf869cce
NC
1616 enum elf_m68k_reloc_type reloc_type,
1617 unsigned long symndx,
7fb9f789
NC
1618 struct bfd_link_info *info)
1619{
1620 struct elf_m68k_got_entry_key key_;
1621 struct elf_m68k_got_entry *entry;
1622
1623 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1624 elf_m68k_hash_entry (h)->got_entry_key
1625 = elf_m68k_multi_got (info)->global_symndx++;
1626
cf869cce 1627 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
7fb9f789
NC
1628
1629 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1630 if (entry == NULL)
1631 return NULL;
1632
cf869cce
NC
1633 /* Determine entry's type and update got->n_slots counters. */
1634 entry->key_.type = elf_m68k_update_got_entry_type (got,
1635 entry->key_.type,
1636 reloc_type);
1637
7fb9f789
NC
1638 /* Update refcount. */
1639 ++entry->u.s1.refcount;
1640
1641 if (entry->u.s1.refcount == 1)
1642 /* We see this entry for the first time. */
1643 {
1644 if (entry->key_.bfd != NULL)
cf869cce 1645 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
7fb9f789
NC
1646 }
1647
cf869cce 1648 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
7fb9f789 1649
cf869cce
NC
1650 if ((got->n_slots[R_8]
1651 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1652 || (got->n_slots[R_16]
1653 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
7fb9f789
NC
1654 /* This BFD has too many relocation. */
1655 {
cf869cce 1656 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
695344c0 1657 /* xgettext:c-format */
4eca0228
AM
1658 _bfd_error_handler (_("%B: GOT overflow: "
1659 "Number of relocations with 8-bit "
1660 "offset > %d"),
1661 abfd,
1662 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
7fb9f789 1663 else
695344c0 1664 /* xgettext:c-format */
4eca0228
AM
1665 _bfd_error_handler (_("%B: GOT overflow: "
1666 "Number of relocations with 8- or 16-bit "
1667 "offset > %d"),
1668 abfd,
1669 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
7fb9f789
NC
1670
1671 return NULL;
1672 }
1673
1674 return entry;
1675}
1676
1677/* Compute the hash value of the bfd in a bfd2got hash entry. */
1678
1679static hashval_t
1680elf_m68k_bfd2got_entry_hash (const void *entry)
1681{
1682 const struct elf_m68k_bfd2got_entry *e;
1683
1684 e = (const struct elf_m68k_bfd2got_entry *) entry;
1685
1686 return e->bfd->id;
1687}
1688
1689/* Check whether two hash entries have the same bfd. */
1690
1691static int
1692elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1693{
1694 const struct elf_m68k_bfd2got_entry *e1;
1695 const struct elf_m68k_bfd2got_entry *e2;
1696
1697 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1698 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1699
1700 return e1->bfd == e2->bfd;
1701}
1702
1703/* Destruct a bfd2got entry. */
1704
1705static void
1706elf_m68k_bfd2got_entry_del (void *_entry)
1707{
1708 struct elf_m68k_bfd2got_entry *entry;
1709
1710 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1711
1712 BFD_ASSERT (entry->got != NULL);
1713 elf_m68k_clear_got (entry->got);
1714}
1715
1716/* Find existing or create new (depending on HOWTO) bfd2got entry in
1717 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1718 memory should be allocated. */
1719
1720static struct elf_m68k_bfd2got_entry *
1721elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1722 const bfd *abfd,
1723 enum elf_m68k_get_entry_howto howto,
1724 struct bfd_link_info *info)
1725{
1726 struct elf_m68k_bfd2got_entry entry_;
1727 void **ptr;
1728 struct elf_m68k_bfd2got_entry *entry;
1729
1730 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1731
1732 if (multi_got->bfd2got == NULL)
1733 /* This is the first GOT. Initialize bfd2got. */
1734 {
1735 if (howto == SEARCH)
1736 return NULL;
1737
1738 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1739 elf_m68k_bfd2got_entry_eq,
1740 elf_m68k_bfd2got_entry_del);
1741 if (multi_got->bfd2got == NULL)
1742 {
1743 bfd_set_error (bfd_error_no_memory);
1744 return NULL;
1745 }
1746 }
1747
1748 entry_.bfd = abfd;
1749 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1750 ? INSERT : NO_INSERT));
1751 if (ptr == NULL)
1752 {
1753 if (howto == SEARCH)
1754 /* Entry not found. */
1755 return NULL;
1756
1757 /* We're out of memory. */
1758 bfd_set_error (bfd_error_no_memory);
1759 return NULL;
1760 }
1761
1762 if (*ptr == NULL)
1763 /* Entry was not found. Create new one. */
1764 {
1765 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1766
1767 entry = ((struct elf_m68k_bfd2got_entry *)
1768 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1769 if (entry == NULL)
1770 return NULL;
1771
1772 entry->bfd = abfd;
1773
1774 entry->got = elf_m68k_create_empty_got (info);
1775 if (entry->got == NULL)
1776 return NULL;
1777
1778 *ptr = entry;
1779 }
1780 else
1781 {
1782 BFD_ASSERT (howto != MUST_CREATE);
1783
1784 /* Return existing entry. */
1785 entry = *ptr;
1786 }
1787
1788 return entry;
1789}
1790
1791struct elf_m68k_can_merge_gots_arg
1792{
1793 /* A current_got that we constructing a DIFF against. */
1794 struct elf_m68k_got *big;
1795
1796 /* GOT holding entries not present or that should be changed in
1797 BIG. */
1798 struct elf_m68k_got *diff;
1799
1800 /* Context where to allocate memory. */
1801 struct bfd_link_info *info;
1802
1803 /* Error flag. */
1804 bfd_boolean error_p;
1805};
1806
1807/* Process a single entry from the small GOT to see if it should be added
1808 or updated in the big GOT. */
1809
1810static int
1811elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1812{
1813 const struct elf_m68k_got_entry *entry1;
1814 struct elf_m68k_can_merge_gots_arg *arg;
1815 const struct elf_m68k_got_entry *entry2;
cf869cce 1816 enum elf_m68k_reloc_type type;
7fb9f789
NC
1817
1818 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1819 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1820
1821 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1822
1823 if (entry2 != NULL)
cf869cce 1824 /* We found an existing entry. Check if we should update it. */
7fb9f789 1825 {
cf869cce
NC
1826 type = elf_m68k_update_got_entry_type (arg->diff,
1827 entry2->key_.type,
1828 entry1->key_.type);
7fb9f789 1829
cf869cce 1830 if (type == entry2->key_.type)
7fb9f789
NC
1831 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1832 To skip creation of difference entry we use the type,
1833 which we won't see in GOT entries for sure. */
cf869cce 1834 type = R_68K_max;
7fb9f789
NC
1835 }
1836 else
cf869cce 1837 /* We didn't find the entry. Add entry1 to DIFF. */
7fb9f789 1838 {
cf869cce 1839 BFD_ASSERT (entry1->key_.type != R_68K_max);
7fb9f789 1840
cf869cce
NC
1841 type = elf_m68k_update_got_entry_type (arg->diff,
1842 R_68K_max, entry1->key_.type);
7fb9f789 1843
7fb9f789 1844 if (entry1->key_.bfd != NULL)
cf869cce 1845 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
7fb9f789
NC
1846 }
1847
cf869cce 1848 if (type != R_68K_max)
7fb9f789
NC
1849 /* Create an entry in DIFF. */
1850 {
1851 struct elf_m68k_got_entry *entry;
1852
1853 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1854 arg->info);
1855 if (entry == NULL)
1856 {
1857 arg->error_p = TRUE;
1858 return 0;
1859 }
1860
cf869cce 1861 entry->key_.type = type;
7fb9f789
NC
1862 }
1863
1864 return 1;
1865}
1866
1867/* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1868 Construct DIFF GOT holding the entries which should be added or updated
1869 in BIG GOT to accumulate information from SMALL.
1870 INFO is the context where memory should be allocated. */
1871
1872static bfd_boolean
1873elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1874 const struct elf_m68k_got *small,
1875 struct bfd_link_info *info,
1876 struct elf_m68k_got *diff)
1877{
1878 struct elf_m68k_can_merge_gots_arg arg_;
1879
1880 BFD_ASSERT (small->offset == (bfd_vma) -1);
1881
1882 arg_.big = big;
1883 arg_.diff = diff;
1884 arg_.info = info;
1885 arg_.error_p = FALSE;
1886 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1887 if (arg_.error_p)
1888 {
1889 diff->offset = 0;
1890 return FALSE;
1891 }
1892
1893 /* Check for overflow. */
cf869cce
NC
1894 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1895 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1896 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1897 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
7fb9f789
NC
1898 return FALSE;
1899
1900 return TRUE;
1901}
1902
1903struct elf_m68k_merge_gots_arg
1904{
1905 /* The BIG got. */
1906 struct elf_m68k_got *big;
1907
1908 /* Context where memory should be allocated. */
1909 struct bfd_link_info *info;
1910
1911 /* Error flag. */
1912 bfd_boolean error_p;
1913};
1914
1915/* Process a single entry from DIFF got. Add or update corresponding
1916 entry in the BIG got. */
1917
1918static int
1919elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1920{
1921 const struct elf_m68k_got_entry *from;
1922 struct elf_m68k_merge_gots_arg *arg;
1923 struct elf_m68k_got_entry *to;
1924
1925 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1926 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1927
1928 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1929 arg->info);
1930 if (to == NULL)
1931 {
1932 arg->error_p = TRUE;
1933 return 0;
1934 }
1935
1936 BFD_ASSERT (to->u.s1.refcount == 0);
1937 /* All we need to merge is TYPE. */
cf869cce 1938 to->key_.type = from->key_.type;
7fb9f789
NC
1939
1940 return 1;
1941}
1942
1943/* Merge data from DIFF to BIG. INFO is context where memory should be
1944 allocated. */
1945
1946static bfd_boolean
1947elf_m68k_merge_gots (struct elf_m68k_got *big,
1948 struct elf_m68k_got *diff,
1949 struct bfd_link_info *info)
1950{
1951 if (diff->entries != NULL)
1952 /* DIFF is not empty. Merge it into BIG GOT. */
1953 {
1954 struct elf_m68k_merge_gots_arg arg_;
1955
1956 /* Merge entries. */
1957 arg_.big = big;
1958 arg_.info = info;
1959 arg_.error_p = FALSE;
1960 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1961 if (arg_.error_p)
1962 return FALSE;
1963
1964 /* Merge counters. */
cf869cce
NC
1965 big->n_slots[R_8] += diff->n_slots[R_8];
1966 big->n_slots[R_16] += diff->n_slots[R_16];
1967 big->n_slots[R_32] += diff->n_slots[R_32];
1968 big->local_n_slots += diff->local_n_slots;
7fb9f789
NC
1969 }
1970 else
1971 /* DIFF is empty. */
1972 {
cf869cce
NC
1973 BFD_ASSERT (diff->n_slots[R_8] == 0);
1974 BFD_ASSERT (diff->n_slots[R_16] == 0);
1975 BFD_ASSERT (diff->n_slots[R_32] == 0);
1976 BFD_ASSERT (diff->local_n_slots == 0);
7fb9f789
NC
1977 }
1978
1979 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
cf869cce
NC
1980 || ((big->n_slots[R_8]
1981 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1982 && (big->n_slots[R_16]
1983 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
7fb9f789
NC
1984
1985 return TRUE;
1986}
1987
1988struct elf_m68k_finalize_got_offsets_arg
1989{
cf869cce
NC
1990 /* Ranges of the offsets for GOT entries.
1991 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
1992 R_x is R_8, R_16 and R_32. */
1993 bfd_vma *offset1;
1994 bfd_vma *offset2;
7fb9f789
NC
1995
1996 /* Mapping from global symndx to global symbols.
1997 This is used to build lists of got entries for global symbols. */
1998 struct elf_m68k_link_hash_entry **symndx2h;
cf869cce
NC
1999
2000 bfd_vma n_ldm_entries;
7fb9f789
NC
2001};
2002
2003/* Assign ENTRY an offset. Build list of GOT entries for global symbols
2004 along the way. */
2005
2006static int
2007elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2008{
2009 struct elf_m68k_got_entry *entry;
2010 struct elf_m68k_finalize_got_offsets_arg *arg;
2011
cf869cce
NC
2012 enum elf_m68k_got_offset_size got_offset_size;
2013 bfd_vma entry_size;
2014
7fb9f789
NC
2015 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2016 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2017
2018 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2019 BFD_ASSERT (entry->u.s1.refcount == 0);
2020
cf869cce
NC
2021 /* Get GOT offset size for the entry . */
2022 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
7fb9f789 2023
cf869cce
NC
2024 /* Calculate entry size in bytes. */
2025 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
7fb9f789 2026
cf869cce
NC
2027 /* Check if we should switch to negative range of the offsets. */
2028 if (arg->offset1[got_offset_size] + entry_size
2029 > arg->offset2[got_offset_size])
2030 {
2031 /* Verify that this is the only switch to negative range for
2032 got_offset_size. If this assertion fails, then we've miscalculated
2033 range for got_offset_size entries in
2034 elf_m68k_finalize_got_offsets. */
2035 BFD_ASSERT (arg->offset2[got_offset_size]
2036 != arg->offset2[-(int) got_offset_size - 1]);
2037
2038 /* Switch. */
2039 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2040 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2041
2042 /* Verify that now we have enough room for the entry. */
2043 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2044 <= arg->offset2[got_offset_size]);
7fb9f789
NC
2045 }
2046
cf869cce
NC
2047 /* Assign offset to entry. */
2048 entry->u.s2.offset = arg->offset1[got_offset_size];
2049 arg->offset1[got_offset_size] += entry_size;
2050
7fb9f789
NC
2051 if (entry->key_.bfd == NULL)
2052 /* Hook up this entry into the list of got_entries of H. */
2053 {
2054 struct elf_m68k_link_hash_entry *h;
2055
7fb9f789 2056 h = arg->symndx2h[entry->key_.symndx];
cf869cce
NC
2057 if (h != NULL)
2058 {
2059 entry->u.s2.next = h->glist;
2060 h->glist = entry;
2061 }
2062 else
2063 /* This should be the entry for TLS_LDM relocation then. */
2064 {
2065 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2066 == R_68K_TLS_LDM32)
2067 && entry->key_.symndx == 0);
7fb9f789 2068
cf869cce
NC
2069 ++arg->n_ldm_entries;
2070 }
7fb9f789
NC
2071 }
2072 else
2073 /* This entry is for local symbol. */
2074 entry->u.s2.next = NULL;
2075
2076 return 1;
2077}
2078
2079/* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2080 should use negative offsets.
2081 Build list of GOT entries for global symbols along the way.
2082 SYMNDX2H is mapping from global symbol indices to actual
cf869cce
NC
2083 global symbols.
2084 Return offset at which next GOT should start. */
7fb9f789
NC
2085
2086static void
2087elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2088 bfd_boolean use_neg_got_offsets_p,
cf869cce
NC
2089 struct elf_m68k_link_hash_entry **symndx2h,
2090 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
7fb9f789
NC
2091{
2092 struct elf_m68k_finalize_got_offsets_arg arg_;
cf869cce
NC
2093 bfd_vma offset1_[2 * R_LAST];
2094 bfd_vma offset2_[2 * R_LAST];
2095 int i;
2096 bfd_vma start_offset;
7fb9f789
NC
2097
2098 BFD_ASSERT (got->offset != (bfd_vma) -1);
2099
2100 /* We set entry offsets relative to the .got section (and not the
2101 start of a particular GOT), so that we can use them in
cf869cce 2102 finish_dynamic_symbol without needing to know the GOT which they come
7fb9f789
NC
2103 from. */
2104
cf869cce
NC
2105 /* Put offset1 in the middle of offset1_, same for offset2. */
2106 arg_.offset1 = offset1_ + R_LAST;
2107 arg_.offset2 = offset2_ + R_LAST;
2108
2109 start_offset = got->offset;
2110
7fb9f789 2111 if (use_neg_got_offsets_p)
cf869cce
NC
2112 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2113 i = -(int) R_32 - 1;
2114 else
2115 /* Setup positives ranges for R_8, R_16 and R_32. */
2116 i = (int) R_8;
2117
2118 for (; i <= (int) R_32; ++i)
7fb9f789 2119 {
cf869cce 2120 int j;
7fb9f789
NC
2121 size_t n;
2122
cf869cce
NC
2123 /* Set beginning of the range of offsets I. */
2124 arg_.offset1[i] = start_offset;
7fb9f789 2125
cf869cce
NC
2126 /* Calculate number of slots that require I offsets. */
2127 j = (i >= 0) ? i : -i - 1;
2128 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2129 n = got->n_slots[j] - n;
7fb9f789 2130
cf869cce
NC
2131 if (use_neg_got_offsets_p && n != 0)
2132 {
2133 if (i < 0)
2134 /* We first fill the positive side of the range, so we might
2135 end up with one empty slot at that side when we can't fit
2136 whole 2-slot entry. Account for that at negative side of
2137 the interval with one additional entry. */
2138 n = n / 2 + 1;
2139 else
2140 /* When the number of slots is odd, make positive side of the
2141 range one entry bigger. */
2142 n = (n + 1) / 2;
2143 }
2144
2145 /* N is the number of slots that require I offsets.
2146 Calculate length of the range for I offsets. */
2147 n = 4 * n;
7fb9f789 2148
cf869cce
NC
2149 /* Set end of the range. */
2150 arg_.offset2[i] = start_offset + n;
7fb9f789 2151
cf869cce 2152 start_offset = arg_.offset2[i];
7fb9f789
NC
2153 }
2154
cf869cce
NC
2155 if (!use_neg_got_offsets_p)
2156 /* Make sure that if we try to switch to negative offsets in
2157 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2158 the bug. */
2159 for (i = R_8; i <= R_32; ++i)
2160 arg_.offset2[-i - 1] = arg_.offset2[i];
7fb9f789 2161
cf869cce
NC
2162 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2163 beginning of GOT depending on use_neg_got_offsets_p. */
2164 got->offset = arg_.offset1[R_8];
7fb9f789 2165
cf869cce
NC
2166 arg_.symndx2h = symndx2h;
2167 arg_.n_ldm_entries = 0;
7fb9f789 2168
cf869cce
NC
2169 /* Assign offsets. */
2170 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
7fb9f789 2171
cf869cce
NC
2172 /* Check offset ranges we have actually assigned. */
2173 for (i = (int) R_8; i <= (int) R_32; ++i)
2174 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
7fb9f789 2175
cf869cce
NC
2176 *final_offset = start_offset;
2177 *n_ldm_entries = arg_.n_ldm_entries;
7fb9f789
NC
2178}
2179
2180struct elf_m68k_partition_multi_got_arg
2181{
2182 /* The GOT we are adding entries to. Aka big got. */
2183 struct elf_m68k_got *current_got;
2184
2185 /* Offset to assign the next CURRENT_GOT. */
2186 bfd_vma offset;
2187
2188 /* Context where memory should be allocated. */
2189 struct bfd_link_info *info;
2190
cf869cce 2191 /* Total number of slots in the .got section.
7fb9f789 2192 This is used to calculate size of the .got and .rela.got sections. */
cf869cce 2193 bfd_vma n_slots;
7fb9f789 2194
cf869cce
NC
2195 /* Difference in numbers of allocated slots in the .got section
2196 and necessary relocations in the .rela.got section.
7fb9f789 2197 This is used to calculate size of the .rela.got section. */
cf869cce 2198 bfd_vma slots_relas_diff;
7fb9f789
NC
2199
2200 /* Error flag. */
2201 bfd_boolean error_p;
2202
2203 /* Mapping from global symndx to global symbols.
2204 This is used to build lists of got entries for global symbols. */
2205 struct elf_m68k_link_hash_entry **symndx2h;
2206};
2207
cf869cce
NC
2208static void
2209elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2210{
2211 bfd_vma n_ldm_entries;
2212
2213 elf_m68k_finalize_got_offsets (arg->current_got,
2214 (elf_m68k_hash_table (arg->info)
2215 ->use_neg_got_offsets_p),
2216 arg->symndx2h,
2217 &arg->offset, &n_ldm_entries);
2218
2219 arg->n_slots += arg->current_got->n_slots[R_32];
2220
0e1862bb 2221 if (!bfd_link_pic (arg->info))
cf869cce
NC
2222 /* If we are generating a shared object, we need to
2223 output a R_68K_RELATIVE reloc so that the dynamic
2224 linker can adjust this GOT entry. Overwise we
2225 don't need space in .rela.got for local symbols. */
2226 arg->slots_relas_diff += arg->current_got->local_n_slots;
2227
2228 /* @LDM relocations require a 2-slot GOT entry, but only
2229 one relocation. Account for that. */
2230 arg->slots_relas_diff += n_ldm_entries;
2231
2232 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2233}
2234
2235
7fb9f789
NC
2236/* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2237 or start a new CURRENT_GOT. */
2238
2239static int
2240elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2241{
2242 struct elf_m68k_bfd2got_entry *entry;
2243 struct elf_m68k_partition_multi_got_arg *arg;
2244 struct elf_m68k_got *got;
7fb9f789
NC
2245 struct elf_m68k_got diff_;
2246 struct elf_m68k_got *diff;
2247
2248 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2249 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2250
2251 got = entry->got;
2252 BFD_ASSERT (got != NULL);
2253 BFD_ASSERT (got->offset == (bfd_vma) -1);
2254
2255 diff = NULL;
2256
2257 if (arg->current_got != NULL)
2258 /* Construct diff. */
2259 {
2260 diff = &diff_;
cf869cce 2261 elf_m68k_init_got (diff);
7fb9f789
NC
2262
2263 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2264 {
2265 if (diff->offset == 0)
2266 /* Offset set to 0 in the diff_ indicates an error. */
2267 {
2268 arg->error_p = TRUE;
2269 goto final_return;
2270 }
2271
2272 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2273 {
2274 elf_m68k_clear_got (diff);
cf869cce 2275 /* Schedule to finish up current_got and start new one. */
7fb9f789
NC
2276 diff = NULL;
2277 }
2278 /* else
2279 Merge GOTs no matter what. If big GOT overflows,
2280 we'll fail in relocate_section due to truncated relocations.
2281
2282 ??? May be fail earlier? E.g., in can_merge_gots. */
2283 }
2284 }
2285 else
2286 /* Diff of got against empty current_got is got itself. */
2287 {
cf869cce 2288 /* Create empty current_got to put subsequent GOTs to. */
7fb9f789
NC
2289 arg->current_got = elf_m68k_create_empty_got (arg->info);
2290 if (arg->current_got == NULL)
2291 {
2292 arg->error_p = TRUE;
2293 goto final_return;
2294 }
2295
2296 arg->current_got->offset = arg->offset;
2297
2298 diff = got;
2299 }
2300
7fb9f789
NC
2301 if (diff != NULL)
2302 {
cf869cce 2303 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
7fb9f789
NC
2304 {
2305 arg->error_p = TRUE;
2306 goto final_return;
2307 }
2308
2309 /* Now we can free GOT. */
2310 elf_m68k_clear_got (got);
2311
cf869cce 2312 entry->got = arg->current_got;
7fb9f789
NC
2313 }
2314 else
2315 {
7fb9f789 2316 /* Finish up current_got. */
cf869cce 2317 elf_m68k_partition_multi_got_2 (arg);
7fb9f789 2318
cf869cce
NC
2319 /* Schedule to start a new current_got. */
2320 arg->current_got = NULL;
7fb9f789
NC
2321
2322 /* Retry. */
2323 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2324 {
2325 BFD_ASSERT (arg->error_p);
2326 goto final_return;
2327 }
2328 }
2329
2330 final_return:
2331 if (diff != NULL)
2332 elf_m68k_clear_got (diff);
2333
535b785f 2334 return !arg->error_p;
7fb9f789
NC
2335}
2336
2337/* Helper function to build symndx2h mapping. */
2338
2339static bfd_boolean
2340elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2341 void *_arg)
2342{
2343 struct elf_m68k_link_hash_entry *h;
2344
2345 h = elf_m68k_hash_entry (_h);
2346
2347 if (h->got_entry_key != 0)
2348 /* H has at least one entry in the GOT. */
2349 {
2350 struct elf_m68k_partition_multi_got_arg *arg;
2351
2352 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2353
2354 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2355 arg->symndx2h[h->got_entry_key] = h;
2356 }
2357
2358 return TRUE;
2359}
2360
2361/* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2362 lists of GOT entries for global symbols.
2363 Calculate sizes of .got and .rela.got sections. */
2364
2365static bfd_boolean
2366elf_m68k_partition_multi_got (struct bfd_link_info *info)
2367{
2368 struct elf_m68k_multi_got *multi_got;
2369 struct elf_m68k_partition_multi_got_arg arg_;
2370
2371 multi_got = elf_m68k_multi_got (info);
2372
2373 arg_.current_got = NULL;
2374 arg_.offset = 0;
2375 arg_.info = info;
cf869cce
NC
2376 arg_.n_slots = 0;
2377 arg_.slots_relas_diff = 0;
7fb9f789
NC
2378 arg_.error_p = FALSE;
2379
2380 if (multi_got->bfd2got != NULL)
2381 {
2382 /* Initialize symndx2h mapping. */
2383 {
2384 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2385 * sizeof (*arg_.symndx2h));
2386 if (arg_.symndx2h == NULL)
2387 return FALSE;
2388
2389 elf_link_hash_traverse (elf_hash_table (info),
2390 elf_m68k_init_symndx2h_1, &arg_);
2391 }
2392
2393 /* Partition. */
2394 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2395 &arg_);
2396 if (arg_.error_p)
2397 {
2398 free (arg_.symndx2h);
2399 arg_.symndx2h = NULL;
2400
2401 return FALSE;
2402 }
2403
2404 /* Finish up last current_got. */
cf869cce 2405 elf_m68k_partition_multi_got_2 (&arg_);
7fb9f789
NC
2406
2407 free (arg_.symndx2h);
266abb8f 2408 }
7fb9f789
NC
2409
2410 if (elf_hash_table (info)->dynobj != NULL)
2411 /* Set sizes of .got and .rela.got sections. */
266abb8f 2412 {
7fb9f789 2413 asection *s;
425c6cb0 2414
ce558b89 2415 s = elf_hash_table (info)->sgot;
7fb9f789 2416 if (s != NULL)
cf869cce 2417 s->size = arg_.offset;
425c6cb0 2418 else
cf869cce 2419 BFD_ASSERT (arg_.offset == 0);
425c6cb0 2420
cf869cce
NC
2421 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2422 arg_.n_slots -= arg_.slots_relas_diff;
7fb9f789 2423
ce558b89 2424 s = elf_hash_table (info)->srelgot;
7fb9f789 2425 if (s != NULL)
cf869cce 2426 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
3bdcfdf4 2427 else
cf869cce 2428 BFD_ASSERT (arg_.n_slots == 0);
9e1281c7 2429 }
7fb9f789
NC
2430 else
2431 BFD_ASSERT (multi_got->bfd2got == NULL);
9e1281c7 2432
b34976b6 2433 return TRUE;
9e1281c7
CM
2434}
2435
7fb9f789
NC
2436/* Copy any information related to dynamic linking from a pre-existing
2437 symbol to a newly created symbol. Also called to copy flags and
2438 other back-end info to a weakdef, in which case the symbol is not
2439 newly created and plt/got refcounts and dynamic indices should not
2440 be copied. */
2441
2442static void
2443elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2444 struct elf_link_hash_entry *_dir,
2445 struct elf_link_hash_entry *_ind)
2446{
2447 struct elf_m68k_link_hash_entry *dir;
2448 struct elf_m68k_link_hash_entry *ind;
2449
2450 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2451
2452 if (_ind->root.type != bfd_link_hash_indirect)
2453 return;
2454
2455 dir = elf_m68k_hash_entry (_dir);
2456 ind = elf_m68k_hash_entry (_ind);
2457
e5f2b1de
NC
2458 /* Any absolute non-dynamic relocations against an indirect or weak
2459 definition will be against the target symbol. */
2460 _dir->non_got_ref |= _ind->non_got_ref;
2461
7fb9f789
NC
2462 /* We might have a direct symbol already having entries in the GOTs.
2463 Update its key only in case indirect symbol has GOT entries and
2464 assert that both indirect and direct symbols don't have GOT entries
2465 at the same time. */
2466 if (ind->got_entry_key != 0)
266abb8f 2467 {
7fb9f789
NC
2468 BFD_ASSERT (dir->got_entry_key == 0);
2469 /* Assert that GOTs aren't partioned yet. */
2470 BFD_ASSERT (ind->glist == NULL);
425c6cb0 2471
7fb9f789
NC
2472 dir->got_entry_key = ind->got_entry_key;
2473 ind->got_entry_key = 0;
266abb8f 2474 }
9e1281c7 2475}
7fb9f789 2476
252b5132
RH
2477/* Look through the relocs for a section during the first phase, and
2478 allocate space in the global offset table or procedure linkage
2479 table. */
2480
b34976b6 2481static bfd_boolean
2c3fc389
NC
2482elf_m68k_check_relocs (bfd *abfd,
2483 struct bfd_link_info *info,
2484 asection *sec,
2485 const Elf_Internal_Rela *relocs)
252b5132
RH
2486{
2487 bfd *dynobj;
2488 Elf_Internal_Shdr *symtab_hdr;
2489 struct elf_link_hash_entry **sym_hashes;
252b5132
RH
2490 const Elf_Internal_Rela *rel;
2491 const Elf_Internal_Rela *rel_end;
252b5132 2492 asection *sreloc;
7fb9f789 2493 struct elf_m68k_got *got;
252b5132 2494
0e1862bb 2495 if (bfd_link_relocatable (info))
b34976b6 2496 return TRUE;
252b5132
RH
2497
2498 dynobj = elf_hash_table (info)->dynobj;
2499 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2500 sym_hashes = elf_sym_hashes (abfd);
252b5132 2501
252b5132
RH
2502 sreloc = NULL;
2503
7fb9f789
NC
2504 got = NULL;
2505
252b5132
RH
2506 rel_end = relocs + sec->reloc_count;
2507 for (rel = relocs; rel < rel_end; rel++)
2508 {
2509 unsigned long r_symndx;
2510 struct elf_link_hash_entry *h;
2511
2512 r_symndx = ELF32_R_SYM (rel->r_info);
2513
2514 if (r_symndx < symtab_hdr->sh_info)
2515 h = NULL;
2516 else
973a3492
L
2517 {
2518 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2519 while (h->root.type == bfd_link_hash_indirect
2520 || h->root.type == bfd_link_hash_warning)
2521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
2522
2523 /* PR15323, ref flags aren't set for references in the same
2524 object. */
bc4e12de 2525 h->root.non_ir_ref_regular = 1;
973a3492 2526 }
252b5132
RH
2527
2528 switch (ELF32_R_TYPE (rel->r_info))
2529 {
2530 case R_68K_GOT8:
2531 case R_68K_GOT16:
2532 case R_68K_GOT32:
2533 if (h != NULL
2534 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2535 break;
2536 /* Fall through. */
cf869cce
NC
2537
2538 /* Relative GOT relocations. */
252b5132
RH
2539 case R_68K_GOT8O:
2540 case R_68K_GOT16O:
2541 case R_68K_GOT32O:
cf869cce
NC
2542 /* Fall through. */
2543
2544 /* TLS relocations. */
2545 case R_68K_TLS_GD8:
2546 case R_68K_TLS_GD16:
2547 case R_68K_TLS_GD32:
2548 case R_68K_TLS_LDM8:
2549 case R_68K_TLS_LDM16:
2550 case R_68K_TLS_LDM32:
2551 case R_68K_TLS_IE8:
2552 case R_68K_TLS_IE16:
2553 case R_68K_TLS_IE32:
2554
e5f2b1de
NC
2555 case R_68K_TLS_TPREL32:
2556 case R_68K_TLS_DTPREL32:
2557
2558 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
0e1862bb 2559 && bfd_link_pic (info))
e5f2b1de
NC
2560 /* Do the special chorus for libraries with static TLS. */
2561 info->flags |= DF_STATIC_TLS;
2562
252b5132
RH
2563 /* This symbol requires a global offset table entry. */
2564
2565 if (dynobj == NULL)
2566 {
2567 /* Create the .got section. */
2568 elf_hash_table (info)->dynobj = dynobj = abfd;
2569 if (!_bfd_elf_create_got_section (dynobj, info))
b34976b6 2570 return FALSE;
252b5132
RH
2571 }
2572
7fb9f789 2573 if (got == NULL)
252b5132 2574 {
7fb9f789 2575 struct elf_m68k_bfd2got_entry *bfd2got_entry;
252b5132 2576
7fb9f789
NC
2577 bfd2got_entry
2578 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2579 abfd, FIND_OR_CREATE, info);
2580 if (bfd2got_entry == NULL)
2581 return FALSE;
252b5132 2582
7fb9f789
NC
2583 got = bfd2got_entry->got;
2584 BFD_ASSERT (got != NULL);
252b5132 2585 }
7fb9f789
NC
2586
2587 {
2588 struct elf_m68k_got_entry *got_entry;
2589
2590 /* Add entry to got. */
2591 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2592 ELF32_R_TYPE (rel->r_info),
2593 r_symndx, info);
2594 if (got_entry == NULL)
2595 return FALSE;
2596
2597 if (got_entry->u.s1.refcount == 1)
2598 {
2599 /* Make sure this symbol is output as a dynamic symbol. */
2600 if (h != NULL
2601 && h->dynindx == -1
2602 && !h->forced_local)
2603 {
2604 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2605 return FALSE;
2606 }
7fb9f789
NC
2607 }
2608 }
2609
252b5132
RH
2610 break;
2611
2612 case R_68K_PLT8:
2613 case R_68K_PLT16:
2614 case R_68K_PLT32:
2615 /* This symbol requires a procedure linkage table entry. We
2616 actually build the entry in adjust_dynamic_symbol,
2617 because this might be a case of linking PIC code which is
2618 never referenced by a dynamic object, in which case we
2619 don't need to generate a procedure linkage table entry
2620 after all. */
2621
2622 /* If this is a local symbol, we resolve it directly without
2623 creating a procedure linkage table entry. */
2624 if (h == NULL)
2625 continue;
2626
f5385ebf 2627 h->needs_plt = 1;
51b64d56 2628 h->plt.refcount++;
252b5132
RH
2629 break;
2630
2631 case R_68K_PLT8O:
2632 case R_68K_PLT16O:
2633 case R_68K_PLT32O:
2634 /* This symbol requires a procedure linkage table entry. */
2635
2636 if (h == NULL)
2637 {
2638 /* It does not make sense to have this relocation for a
2639 local symbol. FIXME: does it? How to handle it if
2640 it does make sense? */
2641 bfd_set_error (bfd_error_bad_value);
b34976b6 2642 return FALSE;
252b5132
RH
2643 }
2644
2645 /* Make sure this symbol is output as a dynamic symbol. */
b6152c34 2646 if (h->dynindx == -1
f5385ebf 2647 && !h->forced_local)
252b5132 2648 {
c152c796 2649 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2650 return FALSE;
252b5132
RH
2651 }
2652
f5385ebf 2653 h->needs_plt = 1;
51b64d56 2654 h->plt.refcount++;
252b5132
RH
2655 break;
2656
2657 case R_68K_PC8:
2658 case R_68K_PC16:
2659 case R_68K_PC32:
2660 /* If we are creating a shared library and this is not a local
2661 symbol, we need to copy the reloc into the shared library.
2662 However when linking with -Bsymbolic and this is a global
2663 symbol which is defined in an object we are including in the
2664 link (i.e., DEF_REGULAR is set), then we can resolve the
2665 reloc directly. At this point we have not seen all the input
2666 files, so it is possible that DEF_REGULAR is not set now but
2667 will be set later (it is never cleared). We account for that
2668 possibility below by storing information in the
2669 pcrel_relocs_copied field of the hash table entry. */
0e1862bb 2670 if (!(bfd_link_pic (info)
252b5132
RH
2671 && (sec->flags & SEC_ALLOC) != 0
2672 && h != NULL
a496fbc8 2673 && (!SYMBOLIC_BIND (info, h)
b6152c34 2674 || h->root.type == bfd_link_hash_defweak
f5385ebf 2675 || !h->def_regular)))
252b5132
RH
2676 {
2677 if (h != NULL)
2678 {
2679 /* Make sure a plt entry is created for this symbol if
2680 it turns out to be a function defined by a dynamic
2681 object. */
51b64d56 2682 h->plt.refcount++;
252b5132
RH
2683 }
2684 break;
2685 }
2686 /* Fall through. */
2687 case R_68K_8:
2688 case R_68K_16:
2689 case R_68K_32:
810e6986
NC
2690 /* We don't need to handle relocs into sections not going into
2691 the "real" output. */
2692 if ((sec->flags & SEC_ALLOC) == 0)
2693 break;
2694
252b5132
RH
2695 if (h != NULL)
2696 {
2697 /* Make sure a plt entry is created for this symbol if it
2698 turns out to be a function defined by a dynamic object. */
51b64d56 2699 h->plt.refcount++;
e5f2b1de 2700
0e1862bb 2701 if (bfd_link_executable (info))
e5f2b1de
NC
2702 /* This symbol needs a non-GOT reference. */
2703 h->non_got_ref = 1;
252b5132
RH
2704 }
2705
2706 /* If we are creating a shared library, we need to copy the
2707 reloc into the shared library. */
5056ba1d
L
2708 if (bfd_link_pic (info)
2709 && (h == NULL
2710 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
252b5132
RH
2711 {
2712 /* When creating a shared object, we must copy these
2713 reloc types into the output file. We create a reloc
2714 section in dynobj and make room for this reloc. */
2715 if (sreloc == NULL)
2716 {
83bac4b0
NC
2717 sreloc = _bfd_elf_make_dynamic_reloc_section
2718 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
252b5132 2719
252b5132 2720 if (sreloc == NULL)
83bac4b0 2721 return FALSE;
252b5132
RH
2722 }
2723
3e829b4a
AS
2724 if (sec->flags & SEC_READONLY
2725 /* Don't set DF_TEXTREL yet for PC relative
2726 relocations, they might be discarded later. */
2727 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2728 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2729 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2730 info->flags |= DF_TEXTREL;
2731
eea6121a 2732 sreloc->size += sizeof (Elf32_External_Rela);
252b5132 2733
b6152c34
AS
2734 /* We count the number of PC relative relocations we have
2735 entered for this symbol, so that we can discard them
2736 again if, in the -Bsymbolic case, the symbol is later
2737 defined by a regular object, or, in the normal shared
2738 case, the symbol is forced to be local. Note that this
2739 function is only called if we are using an m68kelf linker
2740 hash table, which means that h is really a pointer to an
252b5132 2741 elf_m68k_link_hash_entry. */
b6152c34
AS
2742 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2743 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2744 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
252b5132 2745 {
252b5132 2746 struct elf_m68k_pcrel_relocs_copied *p;
b6152c34
AS
2747 struct elf_m68k_pcrel_relocs_copied **head;
2748
2749 if (h != NULL)
2750 {
2751 struct elf_m68k_link_hash_entry *eh
0cca5f05 2752 = elf_m68k_hash_entry (h);
b6152c34
AS
2753 head = &eh->pcrel_relocs_copied;
2754 }
2755 else
2756 {
2757 asection *s;
6edfbbad 2758 void *vpp;
87d72d41 2759 Elf_Internal_Sym *isym;
6edfbbad 2760
87d72d41
AM
2761 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2762 abfd, r_symndx);
2763 if (isym == NULL)
b6152c34 2764 return FALSE;
252b5132 2765
87d72d41
AM
2766 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2767 if (s == NULL)
2768 s = sec;
2769
6edfbbad
DJ
2770 vpp = &elf_section_data (s)->local_dynrel;
2771 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
b6152c34 2772 }
252b5132 2773
b6152c34 2774 for (p = *head; p != NULL; p = p->next)
252b5132
RH
2775 if (p->section == sreloc)
2776 break;
2777
2778 if (p == NULL)
2779 {
2780 p = ((struct elf_m68k_pcrel_relocs_copied *)
dc810e39 2781 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
252b5132 2782 if (p == NULL)
b34976b6 2783 return FALSE;
b6152c34
AS
2784 p->next = *head;
2785 *head = p;
252b5132
RH
2786 p->section = sreloc;
2787 p->count = 0;
2788 }
2789
2790 ++p->count;
2791 }
2792 }
2793
2794 break;
2795
2796 /* This relocation describes the C++ object vtable hierarchy.
2797 Reconstruct it for later use during GC. */
2798 case R_68K_GNU_VTINHERIT:
c152c796 2799 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 2800 return FALSE;
252b5132
RH
2801 break;
2802
2803 /* This relocation describes which C++ vtable entries are actually
2804 used. Record for later use during GC. */
2805 case R_68K_GNU_VTENTRY:
d17e0c6e
JB
2806 BFD_ASSERT (h != NULL);
2807 if (h != NULL
2808 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
b34976b6 2809 return FALSE;
252b5132
RH
2810 break;
2811
2812 default:
2813 break;
2814 }
2815 }
2816
b34976b6 2817 return TRUE;
252b5132
RH
2818}
2819
2820/* Return the section that should be marked against GC for a given
2821 relocation. */
2822
2823static asection *
07adf181
AM
2824elf_m68k_gc_mark_hook (asection *sec,
2825 struct bfd_link_info *info,
2826 Elf_Internal_Rela *rel,
2827 struct elf_link_hash_entry *h,
2828 Elf_Internal_Sym *sym)
252b5132
RH
2829{
2830 if (h != NULL)
07adf181
AM
2831 switch (ELF32_R_TYPE (rel->r_info))
2832 {
2833 case R_68K_GNU_VTINHERIT:
2834 case R_68K_GNU_VTENTRY:
2835 return NULL;
2836 }
2837
2838 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132 2839}
cc3e26be
RS
2840\f
2841/* Return the type of PLT associated with OUTPUT_BFD. */
2842
2843static const struct elf_m68k_plt_info *
2844elf_m68k_get_plt_info (bfd *output_bfd)
2845{
2846 unsigned int features;
2847
2848 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2849 if (features & cpu32)
2850 return &elf_cpu32_plt_info;
2851 if (features & mcfisa_b)
2852 return &elf_isab_plt_info;
9a2e615a
NS
2853 if (features & mcfisa_c)
2854 return &elf_isac_plt_info;
cc3e26be
RS
2855 return &elf_m68k_plt_info;
2856}
2857
2858/* This function is called after all the input files have been read,
2859 and the input sections have been assigned to output sections.
2860 It's a convenient place to determine the PLT style. */
2861
2862static bfd_boolean
2863elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2864{
7fb9f789
NC
2865 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2866 sections. */
2867 if (!elf_m68k_partition_multi_got (info))
2868 return FALSE;
2869
cc3e26be
RS
2870 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2871 return TRUE;
2872}
252b5132 2873
252b5132
RH
2874/* Adjust a symbol defined by a dynamic object and referenced by a
2875 regular object. The current definition is in some section of the
2876 dynamic object, but we're not including those sections. We have to
2877 change the definition to something the rest of the link can
2878 understand. */
2879
b34976b6 2880static bfd_boolean
2c3fc389
NC
2881elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2882 struct elf_link_hash_entry *h)
252b5132 2883{
cc3e26be 2884 struct elf_m68k_link_hash_table *htab;
252b5132
RH
2885 bfd *dynobj;
2886 asection *s;
252b5132 2887
cc3e26be 2888 htab = elf_m68k_hash_table (info);
ce558b89 2889 dynobj = htab->root.dynobj;
252b5132
RH
2890
2891 /* Make sure we know what is going on here. */
2892 BFD_ASSERT (dynobj != NULL
f5385ebf 2893 && (h->needs_plt
f6e332e6 2894 || h->u.weakdef != NULL
f5385ebf
AM
2895 || (h->def_dynamic
2896 && h->ref_regular
2897 && !h->def_regular)));
252b5132
RH
2898
2899 /* If this is a function, put it in the procedure linkage table. We
2900 will fill in the contents of the procedure linkage table later,
2901 when we know the address of the .got section. */
2902 if (h->type == STT_FUNC
f5385ebf 2903 || h->needs_plt)
252b5132 2904 {
9dfe8738
AS
2905 if ((h->plt.refcount <= 0
2906 || SYMBOL_CALLS_LOCAL (info, h)
5056ba1d
L
2907 || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2908 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9dfe8738 2909 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
2910 /* We must always create the plt entry if it was referenced
2911 by a PLTxxO relocation. In this case we already recorded
2912 it as a dynamic symbol. */
2913 && h->dynindx == -1)
2914 {
2915 /* This case can occur if we saw a PLTxx reloc in an input
2916 file, but the symbol was never referred to by a dynamic
9dfe8738
AS
2917 object, or if all references were garbage collected. In
2918 such a case, we don't actually need to build a procedure
2919 linkage table, and we can just do a PCxx reloc instead. */
252b5132 2920 h->plt.offset = (bfd_vma) -1;
f5385ebf 2921 h->needs_plt = 0;
b34976b6 2922 return TRUE;
252b5132
RH
2923 }
2924
2925 /* Make sure this symbol is output as a dynamic symbol. */
b6152c34 2926 if (h->dynindx == -1
f5385ebf 2927 && !h->forced_local)
252b5132 2928 {
c152c796 2929 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2930 return FALSE;
252b5132
RH
2931 }
2932
ce558b89 2933 s = htab->root.splt;
252b5132
RH
2934 BFD_ASSERT (s != NULL);
2935
2936 /* If this is the first .plt entry, make room for the special
2937 first entry. */
eea6121a 2938 if (s->size == 0)
cc3e26be 2939 s->size = htab->plt_info->size;
252b5132
RH
2940
2941 /* If this symbol is not defined in a regular file, and we are
2942 not generating a shared library, then set the symbol to this
2943 location in the .plt. This is required to make function
2944 pointers compare as equal between the normal executable and
2945 the shared library. */
0e1862bb 2946 if (!bfd_link_pic (info)
f5385ebf 2947 && !h->def_regular)
252b5132
RH
2948 {
2949 h->root.u.def.section = s;
eea6121a 2950 h->root.u.def.value = s->size;
252b5132
RH
2951 }
2952
eea6121a 2953 h->plt.offset = s->size;
252b5132
RH
2954
2955 /* Make room for this entry. */
cc3e26be 2956 s->size += htab->plt_info->size;
252b5132
RH
2957
2958 /* We also need to make an entry in the .got.plt section, which
2959 will be placed in the .got section by the linker script. */
ce558b89 2960 s = htab->root.sgotplt;
252b5132 2961 BFD_ASSERT (s != NULL);
eea6121a 2962 s->size += 4;
252b5132
RH
2963
2964 /* We also need to make an entry in the .rela.plt section. */
ce558b89 2965 s = htab->root.srelplt;
252b5132 2966 BFD_ASSERT (s != NULL);
eea6121a 2967 s->size += sizeof (Elf32_External_Rela);
252b5132 2968
b34976b6 2969 return TRUE;
252b5132
RH
2970 }
2971
2972 /* Reinitialize the plt offset now that it is not used as a reference
2973 count any more. */
2974 h->plt.offset = (bfd_vma) -1;
2975
2976 /* If this is a weak symbol, and there is a real definition, the
2977 processor independent code will have arranged for us to see the
2978 real definition first, and we can just use the same value. */
f6e332e6 2979 if (h->u.weakdef != NULL)
252b5132 2980 {
f6e332e6
AM
2981 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2982 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2983 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2984 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 2985 return TRUE;
252b5132
RH
2986 }
2987
2988 /* This is a reference to a symbol defined by a dynamic object which
2989 is not a function. */
2990
2991 /* If we are creating a shared library, we must presume that the
2992 only references to the symbol are via the global offset table.
2993 For such cases we need not do anything here; the relocations will
2994 be handled correctly by relocate_section. */
0e1862bb 2995 if (bfd_link_pic (info))
b34976b6 2996 return TRUE;
252b5132 2997
e5f2b1de
NC
2998 /* If there are no references to this symbol that do not use the
2999 GOT, we don't need to generate a copy reloc. */
3000 if (!h->non_got_ref)
3001 return TRUE;
3002
252b5132
RH
3003 /* We must allocate the symbol in our .dynbss section, which will
3004 become part of the .bss section of the executable. There will be
3005 an entry for this symbol in the .dynsym section. The dynamic
3006 object will contain position independent code, so all references
3007 from the dynamic object to this symbol will go through the global
3008 offset table. The dynamic linker will use the .dynsym entry to
3009 determine the address it must put in the global offset table, so
3010 both the dynamic object and the regular object will refer to the
3011 same memory location for the variable. */
3012
3d4d4302 3013 s = bfd_get_linker_section (dynobj, ".dynbss");
252b5132
RH
3014 BFD_ASSERT (s != NULL);
3015
3016 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3017 copy the initial value out of the dynamic object and into the
3018 runtime process image. We need to remember the offset into the
3019 .rela.bss section we are going to use. */
1d7e9d18 3020 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
252b5132
RH
3021 {
3022 asection *srel;
3023
3d4d4302 3024 srel = bfd_get_linker_section (dynobj, ".rela.bss");
252b5132 3025 BFD_ASSERT (srel != NULL);
eea6121a 3026 srel->size += sizeof (Elf32_External_Rela);
f5385ebf 3027 h->needs_copy = 1;
252b5132
RH
3028 }
3029
6cabe1ea 3030 return _bfd_elf_adjust_dynamic_copy (info, h, s);
252b5132
RH
3031}
3032
3033/* Set the sizes of the dynamic sections. */
3034
b34976b6 3035static bfd_boolean
2c3fc389
NC
3036elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3037 struct bfd_link_info *info)
252b5132
RH
3038{
3039 bfd *dynobj;
3040 asection *s;
b34976b6
AM
3041 bfd_boolean plt;
3042 bfd_boolean relocs;
252b5132
RH
3043
3044 dynobj = elf_hash_table (info)->dynobj;
3045 BFD_ASSERT (dynobj != NULL);
3046
3047 if (elf_hash_table (info)->dynamic_sections_created)
3048 {
3049 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 3050 if (bfd_link_executable (info) && !info->nointerp)
252b5132 3051 {
3d4d4302 3052 s = bfd_get_linker_section (dynobj, ".interp");
252b5132 3053 BFD_ASSERT (s != NULL);
eea6121a 3054 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
3055 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3056 }
3057 }
3058 else
3059 {
3060 /* We may have created entries in the .rela.got section.
3061 However, if we are not creating the dynamic sections, we will
3062 not actually use these entries. Reset the size of .rela.got,
3063 which will cause it to get stripped from the output file
3064 below. */
ce558b89 3065 s = elf_hash_table (info)->srelgot;
252b5132 3066 if (s != NULL)
eea6121a 3067 s->size = 0;
252b5132
RH
3068 }
3069
b6152c34
AS
3070 /* If this is a -Bsymbolic shared link, then we need to discard all
3071 PC relative relocs against symbols defined in a regular object.
3072 For the normal shared case we discard the PC relative relocs
3073 against symbols that have become local due to visibility changes.
3074 We allocated space for them in the check_relocs routine, but we
3075 will not fill them in in the relocate_section routine. */
0e1862bb 3076 if (bfd_link_pic (info))
0cca5f05
AS
3077 elf_link_hash_traverse (elf_hash_table (info),
3078 elf_m68k_discard_copies,
2c3fc389 3079 info);
252b5132
RH
3080
3081 /* The check_relocs and adjust_dynamic_symbol entry points have
3082 determined the sizes of the various dynamic sections. Allocate
3083 memory for them. */
b34976b6
AM
3084 plt = FALSE;
3085 relocs = FALSE;
252b5132
RH
3086 for (s = dynobj->sections; s != NULL; s = s->next)
3087 {
3088 const char *name;
252b5132
RH
3089
3090 if ((s->flags & SEC_LINKER_CREATED) == 0)
3091 continue;
3092
3093 /* It's OK to base decisions on the section name, because none
3094 of the dynobj section names depend upon the input files. */
3095 name = bfd_get_section_name (dynobj, s);
3096
252b5132
RH
3097 if (strcmp (name, ".plt") == 0)
3098 {
c456f082
AM
3099 /* Remember whether there is a PLT. */
3100 plt = s->size != 0;
252b5132 3101 }
0112cd26 3102 else if (CONST_STRNEQ (name, ".rela"))
252b5132 3103 {
c456f082 3104 if (s->size != 0)
252b5132 3105 {
b34976b6 3106 relocs = TRUE;
252b5132
RH
3107
3108 /* We use the reloc_count field as a counter if we need
3109 to copy relocs into the output file. */
3110 s->reloc_count = 0;
3111 }
3112 }
0112cd26 3113 else if (! CONST_STRNEQ (name, ".got")
c456f082 3114 && strcmp (name, ".dynbss") != 0)
252b5132
RH
3115 {
3116 /* It's not one of our sections, so don't allocate space. */
3117 continue;
3118 }
3119
c456f082 3120 if (s->size == 0)
252b5132 3121 {
c456f082
AM
3122 /* If we don't need this section, strip it from the
3123 output file. This is mostly to handle .rela.bss and
3124 .rela.plt. We must create both sections in
3125 create_dynamic_sections, because they must be created
3126 before the linker maps input sections to output
3127 sections. The linker does that before
3128 adjust_dynamic_symbol is called, and it is that
3129 function which decides whether anything needs to go
3130 into these sections. */
8423293d 3131 s->flags |= SEC_EXCLUDE;
252b5132
RH
3132 continue;
3133 }
3134
c456f082
AM
3135 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3136 continue;
3137
252b5132 3138 /* Allocate memory for the section contents. */
7a9af8c4
NC
3139 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3140 Unused entries should be reclaimed before the section's contents
3141 are written out, but at the moment this does not happen. Thus in
3142 order to prevent writing out garbage, we initialise the section's
3143 contents to zero. */
eea6121a 3144 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 3145 if (s->contents == NULL)
b34976b6 3146 return FALSE;
252b5132
RH
3147 }
3148
3149 if (elf_hash_table (info)->dynamic_sections_created)
3150 {
3151 /* Add some entries to the .dynamic section. We fill in the
3152 values later, in elf_m68k_finish_dynamic_sections, but we
3153 must add the entries now so that we get the correct size for
3154 the .dynamic section. The DT_DEBUG entry is filled in by the
3155 dynamic linker and used by the debugger. */
dc810e39 3156#define add_dynamic_entry(TAG, VAL) \
5a580b3a 3157 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 3158
0e1862bb 3159 if (bfd_link_executable (info))
252b5132 3160 {
dc810e39 3161 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 3162 return FALSE;
252b5132
RH
3163 }
3164
3165 if (plt)
3166 {
dc810e39
AM
3167 if (!add_dynamic_entry (DT_PLTGOT, 0)
3168 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3169 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3170 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 3171 return FALSE;
252b5132
RH
3172 }
3173
3174 if (relocs)
3175 {
dc810e39
AM
3176 if (!add_dynamic_entry (DT_RELA, 0)
3177 || !add_dynamic_entry (DT_RELASZ, 0)
3178 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
b34976b6 3179 return FALSE;
252b5132
RH
3180 }
3181
aa91b392 3182 if ((info->flags & DF_TEXTREL) != 0)
252b5132 3183 {
dc810e39 3184 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 3185 return FALSE;
252b5132
RH
3186 }
3187 }
dc810e39 3188#undef add_dynamic_entry
252b5132 3189
b34976b6 3190 return TRUE;
252b5132
RH
3191}
3192
0cca5f05 3193/* This function is called via elf_link_hash_traverse if we are
b6152c34
AS
3194 creating a shared object. In the -Bsymbolic case it discards the
3195 space allocated to copy PC relative relocs against symbols which
3e829b4a 3196 are defined in regular objects. For the normal shared case, it
b6152c34
AS
3197 discards space for pc-relative relocs that have become local due to
3198 symbol visibility changes. We allocated space for them in the
3199 check_relocs routine, but we won't fill them in in the
3e829b4a
AS
3200 relocate_section routine.
3201
3202 We also check whether any of the remaining relocations apply
3203 against a readonly section, and set the DF_TEXTREL flag in this
3204 case. */
252b5132 3205
b34976b6 3206static bfd_boolean
2c3fc389
NC
3207elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3208 void * inf)
252b5132 3209{
b6152c34 3210 struct bfd_link_info *info = (struct bfd_link_info *) inf;
252b5132
RH
3211 struct elf_m68k_pcrel_relocs_copied *s;
3212
2516a1ee 3213 if (!SYMBOL_CALLS_LOCAL (info, h))
3e829b4a
AS
3214 {
3215 if ((info->flags & DF_TEXTREL) == 0)
3216 {
3217 /* Look for relocations against read-only sections. */
0cca5f05
AS
3218 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3219 s != NULL;
3220 s = s->next)
3e829b4a
AS
3221 if ((s->section->flags & SEC_READONLY) != 0)
3222 {
3223 info->flags |= DF_TEXTREL;
3224 break;
3225 }
3226 }
0cca5f05 3227
cab0ad83
AS
3228 /* Make sure undefined weak symbols are output as a dynamic symbol
3229 in PIEs. */
3230 if (h->non_got_ref
3231 && h->root.type == bfd_link_hash_undefweak
3232 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3233 && h->dynindx == -1
3234 && !h->forced_local)
3235 {
3236 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3237 return FALSE;
3238 }
3239
3e829b4a
AS
3240 return TRUE;
3241 }
252b5132 3242
0cca5f05
AS
3243 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3244 s != NULL;
3245 s = s->next)
eea6121a 3246 s->section->size -= s->count * sizeof (Elf32_External_Rela);
252b5132 3247
b34976b6 3248 return TRUE;
252b5132
RH
3249}
3250
cf869cce
NC
3251
3252/* Install relocation RELA. */
3253
3254static void
3255elf_m68k_install_rela (bfd *output_bfd,
3256 asection *srela,
3257 Elf_Internal_Rela *rela)
3258{
3259 bfd_byte *loc;
3260
3261 loc = srela->contents;
3262 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3263 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3264}
3265
325e58c7
NC
3266/* Find the base offsets for thread-local storage in this object,
3267 for GD/LD and IE/LE respectively. */
3268
3269#define DTP_OFFSET 0x8000
3270#define TP_OFFSET 0x7000
cf869cce
NC
3271
3272static bfd_vma
3273dtpoff_base (struct bfd_link_info *info)
3274{
3275 /* If tls_sec is NULL, we should have signalled an error already. */
3276 if (elf_hash_table (info)->tls_sec == NULL)
3277 return 0;
325e58c7 3278 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
cf869cce
NC
3279}
3280
cf869cce 3281static bfd_vma
325e58c7 3282tpoff_base (struct bfd_link_info *info)
cf869cce 3283{
cf869cce 3284 /* If tls_sec is NULL, we should have signalled an error already. */
325e58c7 3285 if (elf_hash_table (info)->tls_sec == NULL)
cf869cce 3286 return 0;
325e58c7
NC
3287 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3288}
3289
3290/* Output necessary relocation to handle a symbol during static link.
3291 This function is called from elf_m68k_relocate_section. */
3292
3293static void
3294elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3295 bfd *output_bfd,
3296 enum elf_m68k_reloc_type r_type,
3297 asection *sgot,
3298 bfd_vma got_entry_offset,
3299 bfd_vma relocation)
3300{
3301 switch (elf_m68k_reloc_got_type (r_type))
3302 {
3303 case R_68K_GOT32O:
3304 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3305 break;
3306
3307 case R_68K_TLS_GD32:
3308 /* We know the offset within the module,
3309 put it into the second GOT slot. */
3310 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3311 sgot->contents + got_entry_offset + 4);
3312 /* FALLTHRU */
3313
3314 case R_68K_TLS_LDM32:
3315 /* Mark it as belonging to module 1, the executable. */
3316 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3317 break;
3318
3319 case R_68K_TLS_IE32:
3320 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3321 sgot->contents + got_entry_offset);
3322 break;
3323
3324 default:
3325 BFD_ASSERT (FALSE);
3326 }
3327}
3328
3329/* Output necessary relocation to handle a local symbol
3330 during dynamic link.
3331 This function is called either from elf_m68k_relocate_section
3332 or from elf_m68k_finish_dynamic_symbol. */
3333
3334static void
3335elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3336 bfd *output_bfd,
3337 enum elf_m68k_reloc_type r_type,
3338 asection *sgot,
3339 bfd_vma got_entry_offset,
3340 bfd_vma relocation,
3341 asection *srela)
3342{
3343 Elf_Internal_Rela outrel;
3344
3345 switch (elf_m68k_reloc_got_type (r_type))
3346 {
3347 case R_68K_GOT32O:
3348 /* Emit RELATIVE relocation to initialize GOT slot
3349 at run-time. */
3350 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3351 outrel.r_addend = relocation;
3352 break;
3353
3354 case R_68K_TLS_GD32:
3355 /* We know the offset within the module,
3356 put it into the second GOT slot. */
3357 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3358 sgot->contents + got_entry_offset + 4);
3359 /* FALLTHRU */
3360
3361 case R_68K_TLS_LDM32:
3362 /* We don't know the module number,
3363 create a relocation for it. */
3364 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3365 outrel.r_addend = 0;
3366 break;
3367
3368 case R_68K_TLS_IE32:
3369 /* Emit TPREL relocation to initialize GOT slot
3370 at run-time. */
3371 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3372 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3373 break;
3374
3375 default:
3376 BFD_ASSERT (FALSE);
3377 }
3378
3379 /* Offset of the GOT entry. */
3380 outrel.r_offset = (sgot->output_section->vma
3381 + sgot->output_offset
3382 + got_entry_offset);
3383
3384 /* Install one of the above relocations. */
3385 elf_m68k_install_rela (output_bfd, srela, &outrel);
3386
3387 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
cf869cce
NC
3388}
3389
252b5132
RH
3390/* Relocate an M68K ELF section. */
3391
b34976b6 3392static bfd_boolean
2c3fc389
NC
3393elf_m68k_relocate_section (bfd *output_bfd,
3394 struct bfd_link_info *info,
3395 bfd *input_bfd,
3396 asection *input_section,
3397 bfd_byte *contents,
3398 Elf_Internal_Rela *relocs,
3399 Elf_Internal_Sym *local_syms,
3400 asection **local_sections)
252b5132 3401{
252b5132
RH
3402 Elf_Internal_Shdr *symtab_hdr;
3403 struct elf_link_hash_entry **sym_hashes;
252b5132
RH
3404 asection *sgot;
3405 asection *splt;
3406 asection *sreloc;
325e58c7 3407 asection *srela;
7fb9f789 3408 struct elf_m68k_got *got;
252b5132
RH
3409 Elf_Internal_Rela *rel;
3410 Elf_Internal_Rela *relend;
3411
252b5132
RH
3412 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3413 sym_hashes = elf_sym_hashes (input_bfd);
252b5132
RH
3414
3415 sgot = NULL;
3416 splt = NULL;
3417 sreloc = NULL;
325e58c7 3418 srela = NULL;
252b5132 3419
7fb9f789
NC
3420 got = NULL;
3421
252b5132
RH
3422 rel = relocs;
3423 relend = relocs + input_section->reloc_count;
3424 for (; rel < relend; rel++)
3425 {
3426 int r_type;
3427 reloc_howto_type *howto;
3428 unsigned long r_symndx;
3429 struct elf_link_hash_entry *h;
3430 Elf_Internal_Sym *sym;
3431 asection *sec;
3432 bfd_vma relocation;
44f745a6 3433 bfd_boolean unresolved_reloc;
252b5132 3434 bfd_reloc_status_type r;
5056ba1d 3435 bfd_boolean resolved_to_zero;
252b5132
RH
3436
3437 r_type = ELF32_R_TYPE (rel->r_info);
3438 if (r_type < 0 || r_type >= (int) R_68K_max)
3439 {
3440 bfd_set_error (bfd_error_bad_value);
b34976b6 3441 return FALSE;
252b5132
RH
3442 }
3443 howto = howto_table + r_type;
3444
3445 r_symndx = ELF32_R_SYM (rel->r_info);
3446
252b5132
RH
3447 h = NULL;
3448 sym = NULL;
3449 sec = NULL;
44f745a6 3450 unresolved_reloc = FALSE;
560e09e9 3451
252b5132
RH
3452 if (r_symndx < symtab_hdr->sh_info)
3453 {
3454 sym = local_syms + r_symndx;
3455 sec = local_sections[r_symndx];
8517fae7 3456 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
3457 }
3458 else
3459 {
62d887d4 3460 bfd_boolean warned, ignored;
560e09e9 3461
b2a8e766
AM
3462 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3463 r_symndx, symtab_hdr, sym_hashes,
3464 h, sec, relocation,
62d887d4 3465 unresolved_reloc, warned, ignored);
252b5132
RH
3466 }
3467
dbaa2011 3468 if (sec != NULL && discarded_section (sec))
e4067dbb 3469 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 3470 rel, 1, relend, howto, 0, contents);
ab96bf03 3471
0e1862bb 3472 if (bfd_link_relocatable (info))
ab96bf03
AM
3473 continue;
3474
5056ba1d
L
3475 resolved_to_zero = (h != NULL
3476 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3477
252b5132
RH
3478 switch (r_type)
3479 {
3480 case R_68K_GOT8:
3481 case R_68K_GOT16:
3482 case R_68K_GOT32:
3483 /* Relocation is to the address of the entry for this symbol
3484 in the global offset table. */
3485 if (h != NULL
3486 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7fb9f789 3487 {
7fb9f789
NC
3488 if (elf_m68k_hash_table (info)->local_gp_p)
3489 {
3490 bfd_vma sgot_output_offset;
3491 bfd_vma got_offset;
3492
ce558b89 3493 sgot = elf_hash_table (info)->sgot;
7fb9f789 3494
ce558b89 3495 if (sgot != NULL)
7fb9f789 3496 sgot_output_offset = sgot->output_offset;
ce558b89
AM
3497 else
3498 /* In this case we have a reference to
3499 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3500 empty.
3501 ??? Issue a warning? */
3502 sgot_output_offset = 0;
7fb9f789
NC
3503
3504 if (got == NULL)
3505 {
3506 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3507
3508 bfd2got_entry
3509 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3510 input_bfd, SEARCH, NULL);
3511
3512 if (bfd2got_entry != NULL)
3513 {
3514 got = bfd2got_entry->got;
3515 BFD_ASSERT (got != NULL);
3516
3517 got_offset = got->offset;
3518 }
3519 else
3520 /* In this case we have a reference to
3521 _GLOBAL_OFFSET_TABLE_, but no other references
3522 accessing any GOT entries.
3523 ??? Issue a warning? */
3524 got_offset = 0;
3525 }
3526 else
3527 got_offset = got->offset;
3528
3529 /* Adjust GOT pointer to point to the GOT
3530 assigned to input_bfd. */
f57718b4 3531 rel->r_addend += sgot_output_offset + got_offset;
7fb9f789
NC
3532 }
3533 else
3534 BFD_ASSERT (got == NULL || got->offset == 0);
3535
3536 break;
3537 }
252b5132
RH
3538 /* Fall through. */
3539 case R_68K_GOT8O:
3540 case R_68K_GOT16O:
3541 case R_68K_GOT32O:
cf869cce
NC
3542
3543 case R_68K_TLS_LDM32:
3544 case R_68K_TLS_LDM16:
3545 case R_68K_TLS_LDM8:
3546
3547 case R_68K_TLS_GD8:
3548 case R_68K_TLS_GD16:
3549 case R_68K_TLS_GD32:
3550
3551 case R_68K_TLS_IE8:
3552 case R_68K_TLS_IE16:
3553 case R_68K_TLS_IE32:
3554
252b5132
RH
3555 /* Relocation is the offset of the entry for this symbol in
3556 the global offset table. */
3557
3558 {
7fb9f789
NC
3559 struct elf_m68k_got_entry_key key_;
3560 bfd_vma *off_ptr;
252b5132
RH
3561 bfd_vma off;
3562
ce558b89
AM
3563 sgot = elf_hash_table (info)->sgot;
3564 BFD_ASSERT (sgot != NULL);
252b5132 3565
7fb9f789
NC
3566 if (got == NULL)
3567 {
3568 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3569 input_bfd, MUST_FIND,
3570 NULL)->got;
3571 BFD_ASSERT (got != NULL);
3572 }
3573
3574 /* Get GOT offset for this symbol. */
cf869cce
NC
3575 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3576 r_type);
7fb9f789
NC
3577 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3578 NULL)->u.s2.offset;
3579 off = *off_ptr;
3580
cf869cce
NC
3581 /* The offset must always be a multiple of 4. We use
3582 the least significant bit to record whether we have
3583 already generated the necessary reloc. */
3584 if ((off & 1) != 0)
3585 off &= ~1;
3586 else
252b5132 3587 {
cf869cce
NC
3588 if (h != NULL
3589 /* @TLSLDM relocations are bounded to the module, in
3590 which the symbol is defined -- not to the symbol
3591 itself. */
3592 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
252b5132 3593 {
cf869cce
NC
3594 bfd_boolean dyn;
3595
3596 dyn = elf_hash_table (info)->dynamic_sections_created;
0e1862bb
L
3597 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3598 bfd_link_pic (info),
3599 h)
3600 || (bfd_link_pic (info)
cf869cce 3601 && SYMBOL_REFERENCES_LOCAL (info, h))
5056ba1d
L
3602 || ((ELF_ST_VISIBILITY (h->other)
3603 || resolved_to_zero)
cf869cce 3604 && h->root.type == bfd_link_hash_undefweak))
252b5132 3605 {
cf869cce
NC
3606 /* This is actually a static link, or it is a
3607 -Bsymbolic link and the symbol is defined
3608 locally, or the symbol was forced to be local
325e58c7 3609 because of a version file. We must initialize
cf869cce
NC
3610 this entry in the global offset table. Since
3611 the offset must always be a multiple of 4, we
3612 use the least significant bit to record whether
3613 we have initialized it already.
3614
3615 When doing a dynamic link, we create a .rela.got
3616 relocation entry to initialize the value. This
3617 is done in the finish_dynamic_symbol routine. */
3618
325e58c7
NC
3619 elf_m68k_init_got_entry_static (info,
3620 output_bfd,
3621 r_type,
3622 sgot,
3623 off,
3624 relocation);
cf869cce 3625
7fb9f789 3626 *off_ptr |= 1;
252b5132 3627 }
cf869cce
NC
3628 else
3629 unresolved_reloc = FALSE;
252b5132 3630 }
0e1862bb 3631 else if (bfd_link_pic (info)) /* && h == NULL */
325e58c7 3632 /* Process local symbol during dynamic link. */
252b5132 3633 {
ce558b89
AM
3634 srela = elf_hash_table (info)->srelgot;
3635 BFD_ASSERT (srela != NULL);
cf869cce 3636
325e58c7
NC
3637 elf_m68k_init_got_entry_local_shared (info,
3638 output_bfd,
3639 r_type,
3640 sgot,
3641 off,
3642 relocation,
3643 srela);
cf869cce
NC
3644
3645 *off_ptr |= 1;
3646 }
0e1862bb 3647 else /* h == NULL && !bfd_link_pic (info) */
cf869cce 3648 {
325e58c7
NC
3649 elf_m68k_init_got_entry_static (info,
3650 output_bfd,
3651 r_type,
3652 sgot,
3653 off,
3654 relocation);
252b5132 3655
7fb9f789 3656 *off_ptr |= 1;
252b5132
RH
3657 }
3658 }
3659
cf869cce
NC
3660 /* We don't use elf_m68k_reloc_got_type in the condition below
3661 because this is the only place where difference between
3662 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3663 if (r_type == R_68K_GOT32O
252b5132 3664 || r_type == R_68K_GOT16O
cf869cce
NC
3665 || r_type == R_68K_GOT8O
3666 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3667 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3668 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
252b5132 3669 {
7fb9f789
NC
3670 /* GOT pointer is adjusted to point to the start/middle
3671 of local GOT. Adjust the offset accordingly. */
3672 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3673 || off >= got->offset);
3674
3675 if (elf_m68k_hash_table (info)->local_gp_p)
3676 relocation = off - got->offset;
3677 else
3678 {
3679 BFD_ASSERT (got->offset == 0);
3680 relocation = sgot->output_offset + off;
3681 }
3682
252b5132
RH
3683 /* This relocation does not use the addend. */
3684 rel->r_addend = 0;
3685 }
3686 else
7fb9f789
NC
3687 relocation = (sgot->output_section->vma + sgot->output_offset
3688 + off);
252b5132
RH
3689 }
3690 break;
3691
cf869cce
NC
3692 case R_68K_TLS_LDO32:
3693 case R_68K_TLS_LDO16:
3694 case R_68K_TLS_LDO8:
3695 relocation -= dtpoff_base (info);
3696 break;
3697
3698 case R_68K_TLS_LE32:
3699 case R_68K_TLS_LE16:
3700 case R_68K_TLS_LE8:
3cbc1e5e 3701 if (bfd_link_dll (info))
cf869cce 3702 {
4eca0228 3703 _bfd_error_handler
695344c0 3704 /* xgettext:c-format */
d42c267e
AM
3705 (_("%B(%A+%#Lx): %s relocation not permitted in shared object"),
3706 input_bfd, input_section, rel->r_offset, howto->name);
cf869cce
NC
3707
3708 return FALSE;
3709 }
3710 else
325e58c7 3711 relocation -= tpoff_base (info);
cf869cce
NC
3712
3713 break;
3714
252b5132
RH
3715 case R_68K_PLT8:
3716 case R_68K_PLT16:
3717 case R_68K_PLT32:
3718 /* Relocation is to the entry for this symbol in the
3719 procedure linkage table. */
3720
3721 /* Resolve a PLTxx reloc against a local symbol directly,
3722 without using the procedure linkage table. */
3723 if (h == NULL)
3724 break;
3725
3726 if (h->plt.offset == (bfd_vma) -1
3727 || !elf_hash_table (info)->dynamic_sections_created)
3728 {
3729 /* We didn't make a PLT entry for this symbol. This
3730 happens when statically linking PIC code, or when
3731 using -Bsymbolic. */
3732 break;
3733 }
3734
ce558b89
AM
3735 splt = elf_hash_table (info)->splt;
3736 BFD_ASSERT (splt != NULL);
252b5132
RH
3737
3738 relocation = (splt->output_section->vma
3739 + splt->output_offset
3740 + h->plt.offset);
44f745a6 3741 unresolved_reloc = FALSE;
252b5132
RH
3742 break;
3743
3744 case R_68K_PLT8O:
3745 case R_68K_PLT16O:
3746 case R_68K_PLT32O:
3747 /* Relocation is the offset of the entry for this symbol in
3748 the procedure linkage table. */
3749 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3750
ce558b89
AM
3751 splt = elf_hash_table (info)->splt;
3752 BFD_ASSERT (splt != NULL);
252b5132
RH
3753
3754 relocation = h->plt.offset;
44f745a6 3755 unresolved_reloc = FALSE;
252b5132
RH
3756
3757 /* This relocation does not use the addend. */
3758 rel->r_addend = 0;
3759
3760 break;
3761
252b5132
RH
3762 case R_68K_8:
3763 case R_68K_16:
3764 case R_68K_32:
2516a1ee
AS
3765 case R_68K_PC8:
3766 case R_68K_PC16:
3767 case R_68K_PC32:
0e1862bb 3768 if (bfd_link_pic (info)
cf35638d 3769 && r_symndx != STN_UNDEF
252b5132 3770 && (input_section->flags & SEC_ALLOC) != 0
d2ff124f 3771 && (h == NULL
5056ba1d
L
3772 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3773 && !resolved_to_zero)
d2ff124f 3774 || h->root.type != bfd_link_hash_undefweak)
252b5132
RH
3775 && ((r_type != R_68K_PC8
3776 && r_type != R_68K_PC16
3777 && r_type != R_68K_PC32)
2516a1ee 3778 || !SYMBOL_CALLS_LOCAL (info, h)))
252b5132
RH
3779 {
3780 Elf_Internal_Rela outrel;
947216bf 3781 bfd_byte *loc;
b34976b6 3782 bfd_boolean skip, relocate;
252b5132
RH
3783
3784 /* When generating a shared object, these relocations
3785 are copied into the output file to be resolved at run
3786 time. */
3787
b34976b6
AM
3788 skip = FALSE;
3789 relocate = FALSE;
252b5132 3790
c629eae0
JJ
3791 outrel.r_offset =
3792 _bfd_elf_section_offset (output_bfd, info, input_section,
3793 rel->r_offset);
3794 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 3795 skip = TRUE;
0bb2d96a 3796 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 3797 skip = TRUE, relocate = TRUE;
252b5132
RH
3798 outrel.r_offset += (input_section->output_section->vma
3799 + input_section->output_offset);
3800
3801 if (skip)
0bb2d96a 3802 memset (&outrel, 0, sizeof outrel);
252b5132 3803 else if (h != NULL
d2ff124f
AS
3804 && h->dynindx != -1
3805 && (r_type == R_68K_PC8
3806 || r_type == R_68K_PC16
3807 || r_type == R_68K_PC32
0e1862bb 3808 || !bfd_link_pic (info)
a496fbc8 3809 || !SYMBOLIC_BIND (info, h)
f5385ebf 3810 || !h->def_regular))
252b5132 3811 {
252b5132 3812 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
d2ff124f 3813 outrel.r_addend = rel->r_addend;
252b5132
RH
3814 }
3815 else
3816 {
d2ff124f 3817 /* This symbol is local, or marked to become local. */
74541ad4
AM
3818 outrel.r_addend = relocation + rel->r_addend;
3819
252b5132
RH
3820 if (r_type == R_68K_32)
3821 {
b34976b6 3822 relocate = TRUE;
252b5132 3823 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
252b5132
RH
3824 }
3825 else
3826 {
3827 long indx;
3828
8517fae7 3829 if (bfd_is_abs_section (sec))
252b5132
RH
3830 indx = 0;
3831 else if (sec == NULL || sec->owner == NULL)
3832 {
3833 bfd_set_error (bfd_error_bad_value);
b34976b6 3834 return FALSE;
252b5132
RH
3835 }
3836 else
3837 {
3838 asection *osec;
3839
74541ad4
AM
3840 /* We are turning this relocation into one
3841 against a section symbol. It would be
3842 proper to subtract the symbol's value,
3843 osec->vma, from the emitted reloc addend,
3844 but ld.so expects buggy relocs. */
252b5132
RH
3845 osec = sec->output_section;
3846 indx = elf_section_data (osec)->dynindx;
74541ad4
AM
3847 if (indx == 0)
3848 {
3849 struct elf_link_hash_table *htab;
3850 htab = elf_hash_table (info);
3851 osec = htab->text_index_section;
3852 indx = elf_section_data (osec)->dynindx;
3853 }
3854 BFD_ASSERT (indx != 0);
252b5132
RH
3855 }
3856
252b5132 3857 outrel.r_info = ELF32_R_INFO (indx, r_type);
252b5132
RH
3858 }
3859 }
3860
d2ff124f
AS
3861 sreloc = elf_section_data (input_section)->sreloc;
3862 if (sreloc == NULL)
3863 abort ();
3864
947216bf
AM
3865 loc = sreloc->contents;
3866 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3867 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
252b5132
RH
3868
3869 /* This reloc will be computed at runtime, so there's no
3870 need to do anything now, except for R_68K_32
3871 relocations that have been turned into
3872 R_68K_RELATIVE. */
3873 if (!relocate)
3874 continue;
3875 }
3876
3877 break;
3878
3879 case R_68K_GNU_VTINHERIT:
3880 case R_68K_GNU_VTENTRY:
3881 /* These are no-ops in the end. */
3882 continue;
3883
3884 default:
3885 break;
3886 }
3887
44f745a6
AS
3888 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3889 because such sections are not SEC_ALLOC and thus ld.so will
3890 not process them. */
3891 if (unresolved_reloc
3892 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
3893 && h->def_dynamic)
3894 && _bfd_elf_section_offset (output_bfd, info, input_section,
3895 rel->r_offset) != (bfd_vma) -1)
44f745a6 3896 {
4eca0228 3897 _bfd_error_handler
695344c0 3898 /* xgettext:c-format */
d42c267e 3899 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
d003868e
AM
3900 input_bfd,
3901 input_section,
d42c267e 3902 rel->r_offset,
843fe662 3903 howto->name,
44f745a6
AS
3904 h->root.root.string);
3905 return FALSE;
3906 }
3907
cf35638d 3908 if (r_symndx != STN_UNDEF
cf869cce
NC
3909 && r_type != R_68K_NONE
3910 && (h == NULL
3911 || h->root.type == bfd_link_hash_defined
3912 || h->root.type == bfd_link_hash_defweak))
3913 {
3914 char sym_type;
3915
3916 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3917
3918 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3919 {
3920 const char *name;
3921
3922 if (h != NULL)
3923 name = h->root.root.string;
3924 else
3925 {
3926 name = (bfd_elf_string_from_elf_section
3927 (input_bfd, symtab_hdr->sh_link, sym->st_name));
3928 if (name == NULL || *name == '\0')
3929 name = bfd_section_name (input_bfd, sec);
3930 }
3931
4eca0228 3932 _bfd_error_handler
cf869cce 3933 ((sym_type == STT_TLS
695344c0 3934 /* xgettext:c-format */
d42c267e 3935 ? _("%B(%A+%#Lx): %s used with TLS symbol %s")
695344c0 3936 /* xgettext:c-format */
d42c267e 3937 : _("%B(%A+%#Lx): %s used with non-TLS symbol %s")),
cf869cce
NC
3938 input_bfd,
3939 input_section,
d42c267e 3940 rel->r_offset,
cf869cce
NC
3941 howto->name,
3942 name);
3943 }
3944 }
3945
252b5132
RH
3946 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3947 contents, rel->r_offset,
3948 relocation, rel->r_addend);
3949
3950 if (r != bfd_reloc_ok)
3951 {
44f745a6
AS
3952 const char *name;
3953
3954 if (h != NULL)
3955 name = h->root.root.string;
3956 else
252b5132 3957 {
44f745a6
AS
3958 name = bfd_elf_string_from_elf_section (input_bfd,
3959 symtab_hdr->sh_link,
3960 sym->st_name);
3961 if (name == NULL)
3962 return FALSE;
3963 if (*name == '\0')
3964 name = bfd_section_name (input_bfd, sec);
3965 }
252b5132 3966
44f745a6 3967 if (r == bfd_reloc_overflow)
1a72702b
AM
3968 (*info->callbacks->reloc_overflow)
3969 (info, (h ? &h->root : NULL), name, howto->name,
3970 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
44f745a6
AS
3971 else
3972 {
4eca0228 3973 _bfd_error_handler
695344c0 3974 /* xgettext:c-format */
d42c267e 3975 (_("%B(%A+%#Lx): reloc against `%s': error %d"),
d003868e 3976 input_bfd, input_section,
d42c267e 3977 rel->r_offset, name, (int) r);
44f745a6 3978 return FALSE;
252b5132
RH
3979 }
3980 }
3981 }
3982
b34976b6 3983 return TRUE;
252b5132
RH
3984}
3985
cc3e26be
RS
3986/* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
3987 into section SEC. */
3988
3989static void
3990elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
3991{
3992 /* Make VALUE PC-relative. */
3993 value -= sec->output_section->vma + offset;
3994
3995 /* Apply any in-place addend. */
3996 value += bfd_get_32 (sec->owner, sec->contents + offset);
3997
3998 bfd_put_32 (sec->owner, value, sec->contents + offset);
3999}
4000
252b5132
RH
4001/* Finish up dynamic symbol handling. We set the contents of various
4002 dynamic sections here. */
4003
b34976b6 4004static bfd_boolean
2c3fc389
NC
4005elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4006 struct bfd_link_info *info,
4007 struct elf_link_hash_entry *h,
4008 Elf_Internal_Sym *sym)
252b5132
RH
4009{
4010 bfd *dynobj;
4011
4012 dynobj = elf_hash_table (info)->dynobj;
4013
4014 if (h->plt.offset != (bfd_vma) -1)
4015 {
cc3e26be 4016 const struct elf_m68k_plt_info *plt_info;
252b5132
RH
4017 asection *splt;
4018 asection *sgot;
4019 asection *srela;
4020 bfd_vma plt_index;
4021 bfd_vma got_offset;
4022 Elf_Internal_Rela rela;
947216bf 4023 bfd_byte *loc;
252b5132
RH
4024
4025 /* This symbol has an entry in the procedure linkage table. Set
4026 it up. */
4027
4028 BFD_ASSERT (h->dynindx != -1);
4029
cc3e26be 4030 plt_info = elf_m68k_hash_table (info)->plt_info;
ce558b89
AM
4031 splt = elf_hash_table (info)->splt;
4032 sgot = elf_hash_table (info)->sgotplt;
4033 srela = elf_hash_table (info)->srelplt;
252b5132
RH
4034 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4035
4036 /* Get the index in the procedure linkage table which
4037 corresponds to this symbol. This is the index of this symbol
4038 in all the symbols for which we are making plt entries. The
4039 first entry in the procedure linkage table is reserved. */
cc3e26be 4040 plt_index = (h->plt.offset / plt_info->size) - 1;
252b5132
RH
4041
4042 /* Get the offset into the .got table of the entry that
4043 corresponds to this function. Each .got entry is 4 bytes.
4044 The first three are reserved. */
4045 got_offset = (plt_index + 3) * 4;
4046
cc3e26be
RS
4047 memcpy (splt->contents + h->plt.offset,
4048 plt_info->symbol_entry,
4049 plt_info->size);
4050
4051 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4052 (sgot->output_section->vma
4053 + sgot->output_offset
4054 + got_offset));
252b5132
RH
4055
4056 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
cc3e26be
RS
4057 splt->contents
4058 + h->plt.offset
4059 + plt_info->symbol_resolve_entry + 2);
4060
4061 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4062 splt->output_section->vma);
252b5132
RH
4063
4064 /* Fill in the entry in the global offset table. */
4065 bfd_put_32 (output_bfd,
4066 (splt->output_section->vma
4067 + splt->output_offset
4068 + h->plt.offset
cc3e26be 4069 + plt_info->symbol_resolve_entry),
252b5132
RH
4070 sgot->contents + got_offset);
4071
4072 /* Fill in the entry in the .rela.plt section. */
4073 rela.r_offset = (sgot->output_section->vma
4074 + sgot->output_offset
4075 + got_offset);
4076 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4077 rela.r_addend = 0;
947216bf
AM
4078 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4079 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
252b5132 4080
f5385ebf 4081 if (!h->def_regular)
252b5132
RH
4082 {
4083 /* Mark the symbol as undefined, rather than as defined in
4084 the .plt section. Leave the value alone. */
4085 sym->st_shndx = SHN_UNDEF;
4086 }
4087 }
4088
7fb9f789 4089 if (elf_m68k_hash_entry (h)->glist != NULL)
252b5132
RH
4090 {
4091 asection *sgot;
4092 asection *srela;
7fb9f789 4093 struct elf_m68k_got_entry *got_entry;
252b5132
RH
4094
4095 /* This symbol has an entry in the global offset table. Set it
4096 up. */
4097
ce558b89
AM
4098 sgot = elf_hash_table (info)->sgot;
4099 srela = elf_hash_table (info)->srelgot;
252b5132
RH
4100 BFD_ASSERT (sgot != NULL && srela != NULL);
4101
7fb9f789
NC
4102 got_entry = elf_m68k_hash_entry (h)->glist;
4103
4104 while (got_entry != NULL)
252b5132 4105 {
325e58c7 4106 enum elf_m68k_reloc_type r_type;
cf869cce
NC
4107 bfd_vma got_entry_offset;
4108
325e58c7 4109 r_type = got_entry->key_.type;
cf869cce 4110 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
7fb9f789 4111
7fb9f789
NC
4112 /* If this is a -Bsymbolic link, and the symbol is defined
4113 locally, we just want to emit a RELATIVE reloc. Likewise if
4114 the symbol was forced to be local because of a version file.
cf869cce 4115 The entry in the global offset table already have been
7fb9f789 4116 initialized in the relocate_section function. */
0e1862bb 4117 if (bfd_link_pic (info)
2516a1ee 4118 && SYMBOL_REFERENCES_LOCAL (info, h))
7fb9f789 4119 {
325e58c7 4120 bfd_vma relocation;
cf869cce 4121
325e58c7
NC
4122 relocation = bfd_get_signed_32 (output_bfd,
4123 (sgot->contents
4124 + got_entry_offset));
4125
4126 /* Undo TP bias. */
4127 switch (elf_m68k_reloc_got_type (r_type))
cf869cce
NC
4128 {
4129 case R_68K_GOT32O:
325e58c7 4130 case R_68K_TLS_LDM32:
cf869cce
NC
4131 break;
4132
4133 case R_68K_TLS_GD32:
93b3ac75
AS
4134 /* The value for this relocation is actually put in
4135 the second GOT slot. */
4136 relocation = bfd_get_signed_32 (output_bfd,
4137 (sgot->contents
4138 + got_entry_offset + 4));
325e58c7 4139 relocation += dtpoff_base (info);
cf869cce
NC
4140 break;
4141
4142 case R_68K_TLS_IE32:
325e58c7 4143 relocation += tpoff_base (info);
cf869cce
NC
4144 break;
4145
4146 default:
4147 BFD_ASSERT (FALSE);
cf869cce
NC
4148 }
4149
325e58c7
NC
4150 elf_m68k_init_got_entry_local_shared (info,
4151 output_bfd,
4152 r_type,
4153 sgot,
4154 got_entry_offset,
4155 relocation,
4156 srela);
7fb9f789
NC
4157 }
4158 else
4159 {
325e58c7
NC
4160 Elf_Internal_Rela rela;
4161
cf869cce
NC
4162 /* Put zeros to GOT slots that will be initialized
4163 at run-time. */
4164 {
4165 bfd_vma n_slots;
4166
4167 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4168 while (n_slots--)
4169 bfd_put_32 (output_bfd, (bfd_vma) 0,
4170 (sgot->contents + got_entry_offset
4171 + 4 * n_slots));
4172 }
4173
7fb9f789 4174 rela.r_addend = 0;
325e58c7
NC
4175 rela.r_offset = (sgot->output_section->vma
4176 + sgot->output_offset
4177 + got_entry_offset);
252b5132 4178
325e58c7 4179 switch (elf_m68k_reloc_got_type (r_type))
cf869cce
NC
4180 {
4181 case R_68K_GOT32O:
4182 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4183 elf_m68k_install_rela (output_bfd, srela, &rela);
4184 break;
4185
4186 case R_68K_TLS_GD32:
4187 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4188 elf_m68k_install_rela (output_bfd, srela, &rela);
4189
4190 rela.r_offset += 4;
4191 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4192 elf_m68k_install_rela (output_bfd, srela, &rela);
4193 break;
4194
4195 case R_68K_TLS_IE32:
4196 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4197 elf_m68k_install_rela (output_bfd, srela, &rela);
4198 break;
4199
4200 default:
4201 BFD_ASSERT (FALSE);
4202 break;
4203 }
4204 }
7fb9f789
NC
4205
4206 got_entry = got_entry->u.s2.next;
4207 }
252b5132
RH
4208 }
4209
f5385ebf 4210 if (h->needs_copy)
252b5132
RH
4211 {
4212 asection *s;
4213 Elf_Internal_Rela rela;
947216bf 4214 bfd_byte *loc;
252b5132
RH
4215
4216 /* This symbol needs a copy reloc. Set it up. */
4217
4218 BFD_ASSERT (h->dynindx != -1
4219 && (h->root.type == bfd_link_hash_defined
4220 || h->root.type == bfd_link_hash_defweak));
4221
3d4d4302 4222 s = bfd_get_linker_section (dynobj, ".rela.bss");
252b5132
RH
4223 BFD_ASSERT (s != NULL);
4224
4225 rela.r_offset = (h->root.u.def.value
4226 + h->root.u.def.section->output_section->vma
4227 + h->root.u.def.section->output_offset);
4228 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4229 rela.r_addend = 0;
947216bf
AM
4230 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4231 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
252b5132
RH
4232 }
4233
b34976b6 4234 return TRUE;
252b5132
RH
4235}
4236
4237/* Finish up the dynamic sections. */
4238
b34976b6 4239static bfd_boolean
2c3fc389 4240elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
252b5132
RH
4241{
4242 bfd *dynobj;
4243 asection *sgot;
4244 asection *sdyn;
4245
4246 dynobj = elf_hash_table (info)->dynobj;
4247
ce558b89 4248 sgot = elf_hash_table (info)->sgotplt;
252b5132 4249 BFD_ASSERT (sgot != NULL);
3d4d4302 4250 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
252b5132
RH
4251
4252 if (elf_hash_table (info)->dynamic_sections_created)
4253 {
4254 asection *splt;
4255 Elf32_External_Dyn *dyncon, *dynconend;
4256
ce558b89 4257 splt = elf_hash_table (info)->splt;
252b5132
RH
4258 BFD_ASSERT (splt != NULL && sdyn != NULL);
4259
4260 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 4261 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
252b5132
RH
4262 for (; dyncon < dynconend; dyncon++)
4263 {
4264 Elf_Internal_Dyn dyn;
252b5132
RH
4265 asection *s;
4266
4267 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4268
4269 switch (dyn.d_tag)
4270 {
4271 default:
4272 break;
4273
4274 case DT_PLTGOT:
ce558b89 4275 s = elf_hash_table (info)->sgotplt;
252b5132
RH
4276 goto get_vma;
4277 case DT_JMPREL:
ce558b89 4278 s = elf_hash_table (info)->srelplt;
252b5132 4279 get_vma:
4ade44b7 4280 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
252b5132
RH
4281 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4282 break;
4283
4284 case DT_PLTRELSZ:
ce558b89 4285 s = elf_hash_table (info)->srelplt;
eea6121a 4286 dyn.d_un.d_val = s->size;
252b5132
RH
4287 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4288 break;
252b5132
RH
4289 }
4290 }
4291
4292 /* Fill in the first entry in the procedure linkage table. */
eea6121a 4293 if (splt->size > 0)
252b5132 4294 {
cc3e26be
RS
4295 const struct elf_m68k_plt_info *plt_info;
4296
4297 plt_info = elf_m68k_hash_table (info)->plt_info;
4298 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4299
4300 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4301 (sgot->output_section->vma
4302 + sgot->output_offset
4303 + 4));
4304
4305 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4306 (sgot->output_section->vma
4307 + sgot->output_offset
4308 + 8));
4309
4310 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4311 = plt_info->size;
252b5132 4312 }
252b5132
RH
4313 }
4314
4315 /* Fill in the first three entries in the global offset table. */
eea6121a 4316 if (sgot->size > 0)
252b5132
RH
4317 {
4318 if (sdyn == NULL)
4319 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4320 else
4321 bfd_put_32 (output_bfd,
4322 sdyn->output_section->vma + sdyn->output_offset,
4323 sgot->contents);
4324 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4325 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4326 }
4327
4328 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4329
b34976b6 4330 return TRUE;
252b5132
RH
4331}
4332
0752970e
NC
4333/* Given a .data section and a .emreloc in-memory section, store
4334 relocation information into the .emreloc section which can be
4335 used at runtime to relocate the section. This is called by the
4336 linker when the --embedded-relocs switch is used. This is called
4337 after the add_symbols entry point has been called for all the
4338 objects, and before the final_link entry point is called. */
4339
b34976b6 4340bfd_boolean
e6c7cdec
TS
4341bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4342 asection *datasec, asection *relsec,
4343 char **errmsg)
0752970e
NC
4344{
4345 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc
AM
4346 Elf_Internal_Sym *isymbuf = NULL;
4347 Elf_Internal_Rela *internal_relocs = NULL;
0752970e
NC
4348 Elf_Internal_Rela *irel, *irelend;
4349 bfd_byte *p;
dc810e39 4350 bfd_size_type amt;
0752970e 4351
0e1862bb 4352 BFD_ASSERT (! bfd_link_relocatable (info));
0752970e
NC
4353
4354 *errmsg = NULL;
4355
4356 if (datasec->reloc_count == 0)
b34976b6 4357 return TRUE;
0752970e
NC
4358
4359 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9ad5cbcf 4360
0752970e 4361 /* Get a copy of the native relocations. */
45d6a902 4362 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 4363 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
0752970e
NC
4364 info->keep_memory));
4365 if (internal_relocs == NULL)
4366 goto error_return;
0752970e 4367
dc810e39
AM
4368 amt = (bfd_size_type) datasec->reloc_count * 12;
4369 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
0752970e
NC
4370 if (relsec->contents == NULL)
4371 goto error_return;
4372
4373 p = relsec->contents;
4374
4375 irelend = internal_relocs + datasec->reloc_count;
4376 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4377 {
4378 asection *targetsec;
4379
4380 /* We are going to write a four byte longword into the runtime
4381 reloc section. The longword will be the address in the data
4382 section which must be relocated. It is followed by the name
4383 of the target section NUL-padded or truncated to 8
4384 characters. */
4385
4386 /* We can only relocate absolute longword relocs at run time. */
4387 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4388 {
4389 *errmsg = _("unsupported reloc type");
4390 bfd_set_error (bfd_error_bad_value);
4391 goto error_return;
4392 }
4393
4394 /* Get the target section referred to by the reloc. */
4395 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4396 {
0752970e 4397 /* A local symbol. */
6cdc0ccc
AM
4398 Elf_Internal_Sym *isym;
4399
4400 /* Read this BFD's local symbols if we haven't done so already. */
4401 if (isymbuf == NULL)
4402 {
4403 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4404 if (isymbuf == NULL)
4405 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4406 symtab_hdr->sh_info, 0,
4407 NULL, NULL, NULL);
4408 if (isymbuf == NULL)
4409 goto error_return;
4410 }
0752970e 4411
6cdc0ccc
AM
4412 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4413 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
0752970e
NC
4414 }
4415 else
4416 {
4417 unsigned long indx;
4418 struct elf_link_hash_entry *h;
4419
4420 /* An external symbol. */
4421 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4422 h = elf_sym_hashes (abfd)[indx];
4423 BFD_ASSERT (h != NULL);
4424 if (h->root.type == bfd_link_hash_defined
4425 || h->root.type == bfd_link_hash_defweak)
4426 targetsec = h->root.u.def.section;
4427 else
4428 targetsec = NULL;
4429 }
4430
4431 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4432 memset (p + 4, 0, 8);
4433 if (targetsec != NULL)
f075ee0c 4434 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
0752970e 4435 }
c3668558 4436
6cdc0ccc
AM
4437 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4438 free (isymbuf);
4439 if (internal_relocs != NULL
4440 && elf_section_data (datasec)->relocs != internal_relocs)
4441 free (internal_relocs);
b34976b6 4442 return TRUE;
0752970e
NC
4443
4444error_return:
6cdc0ccc
AM
4445 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4446 free (isymbuf);
4447 if (internal_relocs != NULL
4448 && elf_section_data (datasec)->relocs != internal_relocs)
4449 free (internal_relocs);
b34976b6 4450 return FALSE;
0752970e
NC
4451}
4452
7fb9f789
NC
4453/* Set target options. */
4454
4455void
4456bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4457{
4458 struct elf_m68k_link_hash_table *htab;
b1345da3
MR
4459 bfd_boolean use_neg_got_offsets_p;
4460 bfd_boolean allow_multigot_p;
4461 bfd_boolean local_gp_p;
7fb9f789
NC
4462
4463 switch (got_handling)
4464 {
4465 case 0:
4466 /* --got=single. */
b1345da3
MR
4467 local_gp_p = FALSE;
4468 use_neg_got_offsets_p = FALSE;
4469 allow_multigot_p = FALSE;
7fb9f789
NC
4470 break;
4471
4472 case 1:
4473 /* --got=negative. */
b1345da3
MR
4474 local_gp_p = TRUE;
4475 use_neg_got_offsets_p = TRUE;
4476 allow_multigot_p = FALSE;
7fb9f789
NC
4477 break;
4478
4479 case 2:
4480 /* --got=multigot. */
b1345da3
MR
4481 local_gp_p = TRUE;
4482 use_neg_got_offsets_p = TRUE;
4483 allow_multigot_p = TRUE;
7fb9f789
NC
4484 break;
4485
4486 default:
4487 BFD_ASSERT (FALSE);
b1345da3
MR
4488 return;
4489 }
4490
4491 htab = elf_m68k_hash_table (info);
4492 if (htab != NULL)
4493 {
4494 htab->local_gp_p = local_gp_p;
4495 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4496 htab->allow_multigot_p = allow_multigot_p;
7fb9f789
NC
4497 }
4498}
4499
aa91b392 4500static enum elf_reloc_type_class
7e612e98
AM
4501elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4502 const asection *rel_sec ATTRIBUTE_UNUSED,
4503 const Elf_Internal_Rela *rela)
aa91b392 4504{
f51e552e 4505 switch ((int) ELF32_R_TYPE (rela->r_info))
aa91b392
AS
4506 {
4507 case R_68K_RELATIVE:
4508 return reloc_class_relative;
4509 case R_68K_JMP_SLOT:
4510 return reloc_class_plt;
4511 case R_68K_COPY:
4512 return reloc_class_copy;
4513 default:
4514 return reloc_class_normal;
4515 }
4516}
4517
1715e0e3
AS
4518/* Return address for Ith PLT stub in section PLT, for relocation REL
4519 or (bfd_vma) -1 if it should not be included. */
4520
4521static bfd_vma
4522elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4523 const arelent *rel ATTRIBUTE_UNUSED)
4524{
cc3e26be 4525 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
1715e0e3
AS
4526}
4527
8bbeae90
AS
4528/* Support for core dump NOTE sections. */
4529
4530static bfd_boolean
4531elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4532{
4533 int offset;
4534 size_t size;
4535
4536 switch (note->descsz)
4537 {
4538 default:
4539 return FALSE;
4540
4541 case 154: /* Linux/m68k */
4542 /* pr_cursig */
228e534f 4543 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
8bbeae90
AS
4544
4545 /* pr_pid */
228e534f 4546 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
8bbeae90
AS
4547
4548 /* pr_reg */
4549 offset = 70;
4550 size = 80;
4551
4552 break;
4553 }
4554
4555 /* Make a ".reg/999" section. */
4556 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4557 size, note->descpos + offset);
4558}
4559
4560static bfd_boolean
4561elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4562{
4563 switch (note->descsz)
4564 {
4565 default:
4566 return FALSE;
4567
4568 case 124: /* Linux/m68k elf_prpsinfo. */
228e534f 4569 elf_tdata (abfd)->core->pid
8bbeae90 4570 = bfd_get_32 (abfd, note->descdata + 12);
228e534f 4571 elf_tdata (abfd)->core->program
8bbeae90 4572 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
228e534f 4573 elf_tdata (abfd)->core->command
8bbeae90
AS
4574 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4575 }
4576
4577 /* Note that for some reason, a spurious space is tacked
4578 onto the end of the args in some (at least one anyway)
4579 implementations, so strip it off if it exists. */
4580 {
228e534f 4581 char *command = elf_tdata (abfd)->core->command;
8bbeae90
AS
4582 int n = strlen (command);
4583
4584 if (n > 0 && command[n - 1] == ' ')
4585 command[n - 1] = '\0';
4586 }
4587
4588 return TRUE;
4589}
4590
f6ec89e7
AS
4591/* Hook called by the linker routine which adds symbols from an object
4592 file. */
4593
4594static bfd_boolean
4595elf_m68k_add_symbol_hook (bfd *abfd,
4596 struct bfd_link_info *info,
4597 Elf_Internal_Sym *sym,
4598 const char **namep ATTRIBUTE_UNUSED,
4599 flagword *flagsp ATTRIBUTE_UNUSED,
4600 asection **secp ATTRIBUTE_UNUSED,
4601 bfd_vma *valp ATTRIBUTE_UNUSED)
4602{
a43942db 4603 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
f1885d1e
AM
4604 && (abfd->flags & DYNAMIC) == 0
4605 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
a43942db 4606 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
f6ec89e7
AS
4607
4608 return TRUE;
4609}
4610
6d00b590 4611#define TARGET_BIG_SYM m68k_elf32_vec
252b5132
RH
4612#define TARGET_BIG_NAME "elf32-m68k"
4613#define ELF_MACHINE_CODE EM_68K
4614#define ELF_MAXPAGESIZE 0x2000
4615#define elf_backend_create_dynamic_sections \
4616 _bfd_elf_create_dynamic_sections
4617#define bfd_elf32_bfd_link_hash_table_create \
4618 elf_m68k_link_hash_table_create
7fb9f789 4619#define bfd_elf32_bfd_final_link bfd_elf_final_link
252b5132
RH
4620
4621#define elf_backend_check_relocs elf_m68k_check_relocs
cc3e26be
RS
4622#define elf_backend_always_size_sections \
4623 elf_m68k_always_size_sections
252b5132
RH
4624#define elf_backend_adjust_dynamic_symbol \
4625 elf_m68k_adjust_dynamic_symbol
4626#define elf_backend_size_dynamic_sections \
4627 elf_m68k_size_dynamic_sections
fc9f1df9 4628#define elf_backend_final_write_processing elf_m68k_final_write_processing
74541ad4 4629#define elf_backend_init_index_section _bfd_elf_init_1_index_section
252b5132
RH
4630#define elf_backend_relocate_section elf_m68k_relocate_section
4631#define elf_backend_finish_dynamic_symbol \
4632 elf_m68k_finish_dynamic_symbol
4633#define elf_backend_finish_dynamic_sections \
4634 elf_m68k_finish_dynamic_sections
4635#define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
7fb9f789 4636#define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
9e1281c7
CM
4637#define bfd_elf32_bfd_merge_private_bfd_data \
4638 elf32_m68k_merge_private_bfd_data
4639#define bfd_elf32_bfd_set_private_flags \
4640 elf32_m68k_set_private_flags
4641#define bfd_elf32_bfd_print_private_bfd_data \
4642 elf32_m68k_print_private_bfd_data
aa91b392 4643#define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
1715e0e3 4644#define elf_backend_plt_sym_val elf_m68k_plt_sym_val
266abb8f 4645#define elf_backend_object_p elf32_m68k_object_p
8bbeae90
AS
4646#define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4647#define elf_backend_grok_psinfo elf_m68k_grok_psinfo
f6ec89e7 4648#define elf_backend_add_symbol_hook elf_m68k_add_symbol_hook
9e1281c7 4649
252b5132 4650#define elf_backend_can_gc_sections 1
51b64d56 4651#define elf_backend_can_refcount 1
252b5132
RH
4652#define elf_backend_want_got_plt 1
4653#define elf_backend_plt_readonly 1
4654#define elf_backend_want_plt_sym 0
4655#define elf_backend_got_header_size 12
b491616a 4656#define elf_backend_rela_normal 1
64f52338 4657#define elf_backend_dtrel_excludes_plt 1
252b5132 4658
a2f63b2e
MR
4659#define elf_backend_linux_prpsinfo32_ugid16 TRUE
4660
252b5132 4661#include "elf32-target.h"
This page took 1.199346 seconds and 4 git commands to generate.