2009-06-18 Paul Pluzhnikov <ppluzhnikov@google.com>
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
CommitLineData
252b5132 1/* Motorola 68k series support for 32-bit ELF
b2a8e766 2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
cf869cce 3 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
252b5132 4
ae9a127f 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
ae9a127f
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
ae9a127f 10 (at your option) any later version.
252b5132 11
ae9a127f
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
ae9a127f
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
252b5132 21
252b5132 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
252b5132
RH
24#include "bfdlink.h"
25#include "libbfd.h"
26#include "elf-bfd.h"
27#include "elf/m68k.h"
266abb8f 28#include "opcode/m68k.h"
252b5132
RH
29
30static reloc_howto_type *reloc_type_lookup
31 PARAMS ((bfd *, bfd_reloc_code_real_type));
32static void rtype_to_howto
947216bf 33 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
252b5132
RH
34static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
37 PARAMS ((bfd *));
b34976b6 38static bfd_boolean elf_m68k_check_relocs
252b5132
RH
39 PARAMS ((bfd *, struct bfd_link_info *, asection *,
40 const Elf_Internal_Rela *));
b34976b6 41static bfd_boolean elf_m68k_adjust_dynamic_symbol
252b5132 42 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
b34976b6 43static bfd_boolean elf_m68k_size_dynamic_sections
252b5132 44 PARAMS ((bfd *, struct bfd_link_info *));
0cca5f05
AS
45static bfd_boolean elf_m68k_discard_copies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
b34976b6 47static bfd_boolean elf_m68k_relocate_section
252b5132
RH
48 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
49 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
b34976b6 50static bfd_boolean elf_m68k_finish_dynamic_symbol
252b5132
RH
51 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
52 Elf_Internal_Sym *));
b34976b6 53static bfd_boolean elf_m68k_finish_dynamic_sections
252b5132
RH
54 PARAMS ((bfd *, struct bfd_link_info *));
55
b34976b6 56static bfd_boolean elf32_m68k_set_private_flags
9e1281c7 57 PARAMS ((bfd *, flagword));
b34976b6 58static bfd_boolean elf32_m68k_merge_private_bfd_data
9e1281c7 59 PARAMS ((bfd *, bfd *));
b34976b6 60static bfd_boolean elf32_m68k_print_private_bfd_data
9e1281c7 61 PARAMS ((bfd *, PTR));
aa91b392 62static enum elf_reloc_type_class elf32_m68k_reloc_type_class
f51e552e 63 PARAMS ((const Elf_Internal_Rela *));
9e1281c7 64
252b5132 65static reloc_howto_type howto_table[] = {
b34976b6
AM
66 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
67 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
68 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
69 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
70 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
71 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
72 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
73 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
74 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
75 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
76 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
77 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
78 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
79 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
80 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
81 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
82 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
83 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
84 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
85 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
86 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
87 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
88 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
ae9a127f 89 /* GNU extension to record C++ vtable hierarchy. */
252b5132
RH
90 HOWTO (R_68K_GNU_VTINHERIT, /* type */
91 0, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 0, /* bitsize */
b34976b6 94 FALSE, /* pc_relative */
252b5132
RH
95 0, /* bitpos */
96 complain_overflow_dont, /* complain_on_overflow */
97 NULL, /* special_function */
98 "R_68K_GNU_VTINHERIT", /* name */
b34976b6 99 FALSE, /* partial_inplace */
252b5132
RH
100 0, /* src_mask */
101 0, /* dst_mask */
b34976b6 102 FALSE),
ae9a127f 103 /* GNU extension to record C++ vtable member usage. */
252b5132
RH
104 HOWTO (R_68K_GNU_VTENTRY, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 0, /* bitsize */
b34976b6 108 FALSE, /* pc_relative */
252b5132
RH
109 0, /* bitpos */
110 complain_overflow_dont, /* complain_on_overflow */
111 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
112 "R_68K_GNU_VTENTRY", /* name */
b34976b6 113 FALSE, /* partial_inplace */
252b5132
RH
114 0, /* src_mask */
115 0, /* dst_mask */
b34976b6 116 FALSE),
cf869cce
NC
117
118 /* TLS general dynamic variable reference. */
119 HOWTO (R_68K_TLS_GD32, /* type */
120 0, /* rightshift */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
122 32, /* bitsize */
123 FALSE, /* pc_relative */
124 0, /* bitpos */
125 complain_overflow_bitfield, /* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_68K_TLS_GD32", /* name */
128 FALSE, /* partial_inplace */
129 0, /* src_mask */
130 0xffffffff, /* dst_mask */
131 FALSE), /* pcrel_offset */
132
133 HOWTO (R_68K_TLS_GD16, /* type */
134 0, /* rightshift */
135 1, /* size (0 = byte, 1 = short, 2 = long) */
136 16, /* bitsize */
137 FALSE, /* pc_relative */
138 0, /* bitpos */
139 complain_overflow_signed, /* complain_on_overflow */
140 bfd_elf_generic_reloc, /* special_function */
141 "R_68K_TLS_GD16", /* name */
142 FALSE, /* partial_inplace */
143 0, /* src_mask */
144 0x0000ffff, /* dst_mask */
145 FALSE), /* pcrel_offset */
146
147 HOWTO (R_68K_TLS_GD8, /* type */
148 0, /* rightshift */
149 0, /* size (0 = byte, 1 = short, 2 = long) */
150 8, /* bitsize */
151 FALSE, /* pc_relative */
152 0, /* bitpos */
153 complain_overflow_signed, /* complain_on_overflow */
154 bfd_elf_generic_reloc, /* special_function */
155 "R_68K_TLS_GD8", /* name */
156 FALSE, /* partial_inplace */
157 0, /* src_mask */
158 0x000000ff, /* dst_mask */
159 FALSE), /* pcrel_offset */
160
161 /* TLS local dynamic variable reference. */
162 HOWTO (R_68K_TLS_LDM32, /* type */
163 0, /* rightshift */
164 2, /* size (0 = byte, 1 = short, 2 = long) */
165 32, /* bitsize */
166 FALSE, /* pc_relative */
167 0, /* bitpos */
168 complain_overflow_bitfield, /* complain_on_overflow */
169 bfd_elf_generic_reloc, /* special_function */
170 "R_68K_TLS_LDM32", /* name */
171 FALSE, /* partial_inplace */
172 0, /* src_mask */
173 0xffffffff, /* dst_mask */
174 FALSE), /* pcrel_offset */
175
176 HOWTO (R_68K_TLS_LDM16, /* type */
177 0, /* rightshift */
178 1, /* size (0 = byte, 1 = short, 2 = long) */
179 16, /* bitsize */
180 FALSE, /* pc_relative */
181 0, /* bitpos */
182 complain_overflow_signed, /* complain_on_overflow */
183 bfd_elf_generic_reloc, /* special_function */
184 "R_68K_TLS_LDM16", /* name */
185 FALSE, /* partial_inplace */
186 0, /* src_mask */
187 0x0000ffff, /* dst_mask */
188 FALSE), /* pcrel_offset */
189
190 HOWTO (R_68K_TLS_LDM8, /* type */
191 0, /* rightshift */
192 0, /* size (0 = byte, 1 = short, 2 = long) */
193 8, /* bitsize */
194 FALSE, /* pc_relative */
195 0, /* bitpos */
196 complain_overflow_signed, /* complain_on_overflow */
197 bfd_elf_generic_reloc, /* special_function */
198 "R_68K_TLS_LDM8", /* name */
199 FALSE, /* partial_inplace */
200 0, /* src_mask */
201 0x000000ff, /* dst_mask */
202 FALSE), /* pcrel_offset */
203
204 HOWTO (R_68K_TLS_LDO32, /* type */
205 0, /* rightshift */
206 2, /* size (0 = byte, 1 = short, 2 = long) */
207 32, /* bitsize */
208 FALSE, /* pc_relative */
209 0, /* bitpos */
210 complain_overflow_bitfield, /* complain_on_overflow */
211 bfd_elf_generic_reloc, /* special_function */
212 "R_68K_TLS_LDO32", /* name */
213 FALSE, /* partial_inplace */
214 0, /* src_mask */
215 0xffffffff, /* dst_mask */
216 FALSE), /* pcrel_offset */
217
218 HOWTO (R_68K_TLS_LDO16, /* type */
219 0, /* rightshift */
220 1, /* size (0 = byte, 1 = short, 2 = long) */
221 16, /* bitsize */
222 FALSE, /* pc_relative */
223 0, /* bitpos */
224 complain_overflow_signed, /* complain_on_overflow */
225 bfd_elf_generic_reloc, /* special_function */
226 "R_68K_TLS_LDO16", /* name */
227 FALSE, /* partial_inplace */
228 0, /* src_mask */
229 0x0000ffff, /* dst_mask */
230 FALSE), /* pcrel_offset */
231
232 HOWTO (R_68K_TLS_LDO8, /* type */
233 0, /* rightshift */
234 0, /* size (0 = byte, 1 = short, 2 = long) */
235 8, /* bitsize */
236 FALSE, /* pc_relative */
237 0, /* bitpos */
238 complain_overflow_signed, /* complain_on_overflow */
239 bfd_elf_generic_reloc, /* special_function */
240 "R_68K_TLS_LDO8", /* name */
241 FALSE, /* partial_inplace */
242 0, /* src_mask */
243 0x000000ff, /* dst_mask */
244 FALSE), /* pcrel_offset */
245
246 /* TLS initial execution variable reference. */
247 HOWTO (R_68K_TLS_IE32, /* type */
248 0, /* rightshift */
249 2, /* size (0 = byte, 1 = short, 2 = long) */
250 32, /* bitsize */
251 FALSE, /* pc_relative */
252 0, /* bitpos */
253 complain_overflow_bitfield, /* complain_on_overflow */
254 bfd_elf_generic_reloc, /* special_function */
255 "R_68K_TLS_IE32", /* name */
256 FALSE, /* partial_inplace */
257 0, /* src_mask */
258 0xffffffff, /* dst_mask */
259 FALSE), /* pcrel_offset */
260
261 HOWTO (R_68K_TLS_IE16, /* type */
262 0, /* rightshift */
263 1, /* size (0 = byte, 1 = short, 2 = long) */
264 16, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_signed, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_68K_TLS_IE16", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x0000ffff, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 HOWTO (R_68K_TLS_IE8, /* type */
276 0, /* rightshift */
277 0, /* size (0 = byte, 1 = short, 2 = long) */
278 8, /* bitsize */
279 FALSE, /* pc_relative */
280 0, /* bitpos */
281 complain_overflow_signed, /* complain_on_overflow */
282 bfd_elf_generic_reloc, /* special_function */
283 "R_68K_TLS_IE8", /* name */
284 FALSE, /* partial_inplace */
285 0, /* src_mask */
286 0x000000ff, /* dst_mask */
287 FALSE), /* pcrel_offset */
288
289 /* TLS local execution variable reference. */
290 HOWTO (R_68K_TLS_LE32, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 32, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_68K_TLS_LE32", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0xffffffff, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 HOWTO (R_68K_TLS_LE16, /* type */
305 0, /* rightshift */
306 1, /* size (0 = byte, 1 = short, 2 = long) */
307 16, /* bitsize */
308 FALSE, /* pc_relative */
309 0, /* bitpos */
310 complain_overflow_signed, /* complain_on_overflow */
311 bfd_elf_generic_reloc, /* special_function */
312 "R_68K_TLS_LE16", /* name */
313 FALSE, /* partial_inplace */
314 0, /* src_mask */
315 0x0000ffff, /* dst_mask */
316 FALSE), /* pcrel_offset */
317
318 HOWTO (R_68K_TLS_LE8, /* type */
319 0, /* rightshift */
320 0, /* size (0 = byte, 1 = short, 2 = long) */
321 8, /* bitsize */
322 FALSE, /* pc_relative */
323 0, /* bitpos */
324 complain_overflow_signed, /* complain_on_overflow */
325 bfd_elf_generic_reloc, /* special_function */
326 "R_68K_TLS_LE8", /* name */
327 FALSE, /* partial_inplace */
328 0, /* src_mask */
329 0x000000ff, /* dst_mask */
330 FALSE), /* pcrel_offset */
331
332 /* TLS GD/LD dynamic relocations. */
333 HOWTO (R_68K_TLS_DTPMOD32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_dont, /* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_68K_TLS_DTPMOD32", /* name */
342 FALSE, /* partial_inplace */
343 0, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_68K_TLS_DTPREL32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_dont, /* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_68K_TLS_DTPREL32", /* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 HOWTO (R_68K_TLS_TPREL32, /* type */
362 0, /* rightshift */
363 2, /* size (0 = byte, 1 = short, 2 = long) */
364 32, /* bitsize */
365 FALSE, /* pc_relative */
366 0, /* bitpos */
367 complain_overflow_dont, /* complain_on_overflow */
368 bfd_elf_generic_reloc, /* special_function */
369 "R_68K_TLS_TPREL32", /* name */
370 FALSE, /* partial_inplace */
371 0, /* src_mask */
372 0xffffffff, /* dst_mask */
373 FALSE), /* pcrel_offset */
252b5132
RH
374};
375
376static void
377rtype_to_howto (abfd, cache_ptr, dst)
121089cb 378 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
379 arelent *cache_ptr;
380 Elf_Internal_Rela *dst;
381{
382 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max);
383 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
384}
385
386#define elf_info_to_howto rtype_to_howto
387
388static const struct
389{
390 bfd_reloc_code_real_type bfd_val;
391 int elf_val;
cf869cce
NC
392}
393 reloc_map[] =
394{
252b5132
RH
395 { BFD_RELOC_NONE, R_68K_NONE },
396 { BFD_RELOC_32, R_68K_32 },
397 { BFD_RELOC_16, R_68K_16 },
398 { BFD_RELOC_8, R_68K_8 },
399 { BFD_RELOC_32_PCREL, R_68K_PC32 },
400 { BFD_RELOC_16_PCREL, R_68K_PC16 },
401 { BFD_RELOC_8_PCREL, R_68K_PC8 },
402 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
403 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
404 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
405 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
406 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
407 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
408 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
409 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
410 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
411 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
412 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
413 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
414 { BFD_RELOC_NONE, R_68K_COPY },
415 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
416 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
417 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
418 { BFD_RELOC_CTOR, R_68K_32 },
419 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
420 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
cf869cce
NC
421 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
422 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
423 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
424 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
425 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
426 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
427 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
428 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
429 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
430 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
431 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
432 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
433 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
434 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
435 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
252b5132
RH
436};
437
438static reloc_howto_type *
439reloc_type_lookup (abfd, code)
121089cb 440 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
441 bfd_reloc_code_real_type code;
442{
443 unsigned int i;
444 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
445 {
446 if (reloc_map[i].bfd_val == code)
447 return &howto_table[reloc_map[i].elf_val];
448 }
449 return 0;
450}
451
157090f7
AM
452static reloc_howto_type *
453reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
454{
455 unsigned int i;
456
457 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
458 if (howto_table[i].name != NULL
459 && strcasecmp (howto_table[i].name, r_name) == 0)
460 return &howto_table[i];
461
462 return NULL;
463}
464
252b5132 465#define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
157090f7 466#define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
252b5132 467#define ELF_ARCH bfd_arch_m68k
252b5132
RH
468\f
469/* Functions for the m68k ELF linker. */
470
471/* The name of the dynamic interpreter. This is put in the .interp
472 section. */
473
474#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
475
cc3e26be
RS
476/* Describes one of the various PLT styles. */
477
478struct elf_m68k_plt_info
479{
480 /* The size of each PLT entry. */
481 bfd_vma size;
482
483 /* The template for the first PLT entry. */
484 const bfd_byte *plt0_entry;
485
486 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
487 The comments by each member indicate the value that the relocation
488 is against. */
489 struct {
490 unsigned int got4; /* .got + 4 */
491 unsigned int got8; /* .got + 8 */
492 } plt0_relocs;
493
494 /* The template for a symbol's PLT entry. */
495 const bfd_byte *symbol_entry;
496
497 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
498 The comments by each member indicate the value that the relocation
499 is against. */
500 struct {
501 unsigned int got; /* the symbol's .got.plt entry */
502 unsigned int plt; /* .plt */
503 } symbol_relocs;
504
505 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
506 The stub starts with "move.l #relocoffset,%d0". */
507 bfd_vma symbol_resolve_entry;
508};
509
252b5132
RH
510/* The size in bytes of an entry in the procedure linkage table. */
511
512#define PLT_ENTRY_SIZE 20
513
514/* The first entry in a procedure linkage table looks like this. See
515 the SVR4 ABI m68k supplement to see how this works. */
516
517static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
518{
519 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
cc3e26be 520 0, 0, 0, 2, /* + (.got + 4) - . */
252b5132 521 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
cc3e26be 522 0, 0, 0, 2, /* + (.got + 8) - . */
252b5132
RH
523 0, 0, 0, 0 /* pad out to 20 bytes. */
524};
525
526/* Subsequent entries in a procedure linkage table look like this. */
527
528static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
529{
530 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
cc3e26be 531 0, 0, 0, 2, /* + (.got.plt entry) - . */
252b5132 532 0x2f, 0x3c, /* move.l #offset,-(%sp) */
cc3e26be 533 0, 0, 0, 0, /* + reloc index */
252b5132 534 0x60, 0xff, /* bra.l .plt */
cc3e26be 535 0, 0, 0, 0 /* + .plt - . */
252b5132
RH
536};
537
cc3e26be
RS
538static const struct elf_m68k_plt_info elf_m68k_plt_info = {
539 PLT_ENTRY_SIZE,
540 elf_m68k_plt0_entry, { 4, 12 },
541 elf_m68k_plt_entry, { 4, 16 }, 8
542};
238d258f 543
7fb9f789 544#define ISAB_PLT_ENTRY_SIZE 24
238d258f 545
cc3e26be 546static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
238d258f 547{
cc3e26be
RS
548 0x20, 0x3c, /* move.l #offset,%d0 */
549 0, 0, 0, 0, /* + (.got + 4) - . */
550 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
551 0x20, 0x3c, /* move.l #offset,%d0 */
552 0, 0, 0, 0, /* + (.got + 8) - . */
553 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
238d258f
NC
554 0x4e, 0xd0, /* jmp (%a0) */
555 0x4e, 0x71 /* nop */
556};
557
558/* Subsequent entries in a procedure linkage table look like this. */
559
cc3e26be 560static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
238d258f 561{
cc3e26be
RS
562 0x20, 0x3c, /* move.l #offset,%d0 */
563 0, 0, 0, 0, /* + (.got.plt entry) - . */
564 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
238d258f
NC
565 0x4e, 0xd0, /* jmp (%a0) */
566 0x2f, 0x3c, /* move.l #offset,-(%sp) */
cc3e26be 567 0, 0, 0, 0, /* + reloc index */
238d258f 568 0x60, 0xff, /* bra.l .plt */
cc3e26be 569 0, 0, 0, 0 /* + .plt - . */
238d258f
NC
570};
571
cc3e26be
RS
572static const struct elf_m68k_plt_info elf_isab_plt_info = {
573 ISAB_PLT_ENTRY_SIZE,
574 elf_isab_plt0_entry, { 2, 12 },
575 elf_isab_plt_entry, { 2, 20 }, 12
576};
9e1281c7 577
7fb9f789 578#define ISAC_PLT_ENTRY_SIZE 24
9a2e615a
NS
579
580static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
581{
582 0x20, 0x3c, /* move.l #offset,%d0 */
583 0, 0, 0, 0, /* replaced with .got + 4 - . */
584 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
585 0x20, 0x3c, /* move.l #offset,%d0 */
586 0, 0, 0, 0, /* replaced with .got + 8 - . */
587 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
588 0x4e, 0xd0, /* jmp (%a0) */
589 0x4e, 0x71 /* nop */
590};
591
592/* Subsequent entries in a procedure linkage table look like this. */
593
594static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
595{
596 0x20, 0x3c, /* move.l #offset,%d0 */
597 0, 0, 0, 0, /* replaced with (.got entry) - . */
598 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
599 0x4e, 0xd0, /* jmp (%a0) */
600 0x2f, 0x3c, /* move.l #offset,-(%sp) */
601 0, 0, 0, 0, /* replaced with offset into relocation table */
602 0x61, 0xff, /* bsr.l .plt */
603 0, 0, 0, 0 /* replaced with .plt - . */
604};
605
606static const struct elf_m68k_plt_info elf_isac_plt_info = {
607 ISAC_PLT_ENTRY_SIZE,
608 elf_isac_plt0_entry, { 2, 12},
609 elf_isac_plt_entry, { 2, 20 }, 12
610};
611
cc3e26be 612#define CPU32_PLT_ENTRY_SIZE 24
9e1281c7 613/* Procedure linkage table entries for the cpu32 */
cc3e26be 614static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
9e1281c7 615{
6091b433 616 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
cc3e26be 617 0, 0, 0, 2, /* + (.got + 4) - . */
6091b433 618 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
cc3e26be 619 0, 0, 0, 2, /* + (.got + 8) - . */
6091b433 620 0x4e, 0xd1, /* jmp %a1@ */
9e1281c7
CM
621 0, 0, 0, 0, /* pad out to 24 bytes. */
622 0, 0
623};
624
cc3e26be 625static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
9e1281c7 626{
1ca42bad 627 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
cc3e26be 628 0, 0, 0, 2, /* + (.got.plt entry) - . */
1ca42bad 629 0x4e, 0xd1, /* jmp %a1@ */
9e1281c7 630 0x2f, 0x3c, /* move.l #offset,-(%sp) */
cc3e26be 631 0, 0, 0, 0, /* + reloc index */
9e1281c7 632 0x60, 0xff, /* bra.l .plt */
cc3e26be 633 0, 0, 0, 0, /* + .plt - . */
9e1281c7
CM
634 0, 0
635};
636
cc3e26be
RS
637static const struct elf_m68k_plt_info elf_cpu32_plt_info = {
638 CPU32_PLT_ENTRY_SIZE,
639 elf_cpu32_plt0_entry, { 4, 12 },
640 elf_cpu32_plt_entry, { 4, 18 }, 10
641};
642
252b5132
RH
643/* The m68k linker needs to keep track of the number of relocs that it
644 decides to copy in check_relocs for each symbol. This is so that it
645 can discard PC relative relocs if it doesn't need them when linking
646 with -Bsymbolic. We store the information in a field extending the
647 regular ELF linker hash table. */
648
649/* This structure keeps track of the number of PC relative relocs we have
650 copied for a given symbol. */
651
652struct elf_m68k_pcrel_relocs_copied
653{
654 /* Next section. */
655 struct elf_m68k_pcrel_relocs_copied *next;
656 /* A section in dynobj. */
657 asection *section;
658 /* Number of relocs copied in this section. */
659 bfd_size_type count;
660};
661
7fb9f789
NC
662/* Forward declaration. */
663struct elf_m68k_got_entry;
664
252b5132
RH
665/* m68k ELF linker hash entry. */
666
667struct elf_m68k_link_hash_entry
668{
669 struct elf_link_hash_entry root;
670
671 /* Number of PC relative relocs copied for this symbol. */
672 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
7fb9f789
NC
673
674 /* Key to got_entries. */
675 unsigned long got_entry_key;
676
677 /* List of GOT entries for this symbol. This list is build during
678 offset finalization and is used within elf_m68k_finish_dynamic_symbol
679 to traverse all GOT entries for a particular symbol.
680
681 ??? We could've used root.got.glist field instead, but having
682 a separate field is cleaner. */
683 struct elf_m68k_got_entry *glist;
252b5132
RH
684};
685
0cca5f05
AS
686#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
687
7fb9f789
NC
688/* Key part of GOT entry in hashtable. */
689struct elf_m68k_got_entry_key
690{
691 /* BFD in which this symbol was defined. NULL for global symbols. */
692 const bfd *bfd;
693
694 /* Symbol index. Either local symbol index or h->got_entry_key. */
695 unsigned long symndx;
cf869cce
NC
696
697 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
698 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
699
700 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
701 matters. That is, we distinguish between, say, R_68K_GOT16O
702 and R_68K_GOT32O when allocating offsets, but they are considered to be
703 the same when searching got->entries. */
704 enum elf_m68k_reloc_type type;
7fb9f789
NC
705};
706
cf869cce
NC
707/* Size of the GOT offset suitable for relocation. */
708enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
709
7fb9f789
NC
710/* Entry of the GOT. */
711struct elf_m68k_got_entry
712{
713 /* GOT entries are put into a got->entries hashtable. This is the key. */
714 struct elf_m68k_got_entry_key key_;
715
716 /* GOT entry data. We need s1 before offset finalization and s2 after. */
717 union
718 {
719 struct
720 {
721 /* Number of times this entry is referenced. It is used to
722 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */
723 bfd_vma refcount;
7fb9f789
NC
724 } s1;
725
726 struct
727 {
728 /* Offset from the start of .got section. To calculate offset relative
729 to GOT pointer one should substract got->offset from this value. */
730 bfd_vma offset;
731
732 /* Pointer to the next GOT entry for this global symbol.
733 Symbols have at most one entry in one GOT, but might
734 have entries in more than one GOT.
735 Root of this list is h->glist.
736 NULL for local symbols. */
737 struct elf_m68k_got_entry *next;
738 } s2;
739 } u;
740};
741
cf869cce
NC
742/* Return representative type for relocation R_TYPE.
743 This is used to avoid enumerating many relocations in comparisons,
744 switches etc. */
745
746static enum elf_m68k_reloc_type
747elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
748{
749 switch (r_type)
750 {
751 /* In most cases R_68K_GOTx relocations require the very same
752 handling as R_68K_GOT32O relocation. In cases when we need
753 to distinguish between the two, we use explicitly compare against
754 r_type. */
755 case R_68K_GOT32:
756 case R_68K_GOT16:
757 case R_68K_GOT8:
758 case R_68K_GOT32O:
759 case R_68K_GOT16O:
760 case R_68K_GOT8O:
761 return R_68K_GOT32O;
762
763 case R_68K_TLS_GD32:
764 case R_68K_TLS_GD16:
765 case R_68K_TLS_GD8:
766 return R_68K_TLS_GD32;
767
768 case R_68K_TLS_LDM32:
769 case R_68K_TLS_LDM16:
770 case R_68K_TLS_LDM8:
771 return R_68K_TLS_LDM32;
772
773 case R_68K_TLS_IE32:
774 case R_68K_TLS_IE16:
775 case R_68K_TLS_IE8:
776 return R_68K_TLS_IE32;
777
778 default:
779 BFD_ASSERT (FALSE);
780 return 0;
781 }
782}
783
784/* Return size of the GOT entry offset for relocation R_TYPE. */
785
786static enum elf_m68k_got_offset_size
787elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
788{
789 switch (r_type)
790 {
791 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
792 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
793 case R_68K_TLS_IE32:
794 return R_32;
795
796 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
797 case R_68K_TLS_IE16:
798 return R_16;
799
800 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
801 case R_68K_TLS_IE8:
802 return R_8;
803
804 default:
805 BFD_ASSERT (FALSE);
806 return 0;
807 }
808}
809
810/* Return number of GOT entries we need to allocate in GOT for
811 relocation R_TYPE. */
812
813static bfd_vma
814elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
815{
816 switch (elf_m68k_reloc_got_type (r_type))
817 {
818 case R_68K_GOT32O:
819 case R_68K_TLS_IE32:
820 return 1;
821
822 case R_68K_TLS_GD32:
823 case R_68K_TLS_LDM32:
824 return 2;
825
826 default:
827 BFD_ASSERT (FALSE);
828 return 0;
829 }
830}
831
832/* Return TRUE if relocation R_TYPE is a TLS one. */
833
834static bfd_boolean
835elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
836{
837 switch (r_type)
838 {
839 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
840 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
841 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
842 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
843 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
844 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
845 return TRUE;
846
847 default:
848 return FALSE;
849 }
850}
851
7fb9f789
NC
852/* Data structure representing a single GOT. */
853struct elf_m68k_got
854{
855 /* Hashtable of 'struct elf_m68k_got_entry's.
856 Starting size of this table is the maximum number of
857 R_68K_GOT8O entries. */
858 htab_t entries;
859
cf869cce
NC
860 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
861 several GOT slots.
7fb9f789 862
cf869cce
NC
863 n_slots[R_8] is the count of R_8 slots in this GOT.
864 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
865 in this GOT.
866 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
867 in this GOT. This is the total number of slots. */
868 bfd_vma n_slots[R_LAST];
7fb9f789 869
cf869cce 870 /* Number of local (entry->key_.h == NULL) slots in this GOT.
7fb9f789
NC
871 This is only used to properly calculate size of .rela.got section;
872 see elf_m68k_partition_multi_got. */
cf869cce 873 bfd_vma local_n_slots;
7fb9f789
NC
874
875 /* Offset of this GOT relative to beginning of .got section. */
876 bfd_vma offset;
877};
878
879/* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
880struct elf_m68k_bfd2got_entry
881{
882 /* BFD. */
883 const bfd *bfd;
884
885 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
886 GOT structure. After partitioning several BFD's might [and often do]
887 share a single GOT. */
888 struct elf_m68k_got *got;
889};
890
891/* The main data structure holding all the pieces. */
892struct elf_m68k_multi_got
893{
894 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
895 here, then it doesn't need a GOT (this includes the case of a BFD
896 having an empty GOT).
897
898 ??? This hashtable can be replaced by an array indexed by bfd->id. */
899 htab_t bfd2got;
900
901 /* Next symndx to assign a global symbol.
902 h->got_entry_key is initialized from this counter. */
903 unsigned long global_symndx;
904};
905
252b5132
RH
906/* m68k ELF linker hash table. */
907
908struct elf_m68k_link_hash_table
909{
910 struct elf_link_hash_table root;
b6152c34
AS
911
912 /* Small local sym to section mapping cache. */
913 struct sym_sec_cache sym_sec;
cc3e26be
RS
914
915 /* The PLT format used by this link, or NULL if the format has not
916 yet been chosen. */
917 const struct elf_m68k_plt_info *plt_info;
7fb9f789
NC
918
919 /* True, if GP is loaded within each function which uses it.
920 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
921 bfd_boolean local_gp_p;
922
923 /* Switch controlling use of negative offsets to double the size of GOTs. */
924 bfd_boolean use_neg_got_offsets_p;
925
926 /* Switch controlling generation of multiple GOTs. */
927 bfd_boolean allow_multigot_p;
928
929 /* Multi-GOT data structure. */
930 struct elf_m68k_multi_got multi_got_;
252b5132
RH
931};
932
252b5132
RH
933/* Get the m68k ELF linker hash table from a link_info structure. */
934
935#define elf_m68k_hash_table(p) \
936 ((struct elf_m68k_link_hash_table *) (p)->hash)
937
7fb9f789
NC
938/* Shortcut to multi-GOT data. */
939#define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
940
252b5132
RH
941/* Create an entry in an m68k ELF linker hash table. */
942
943static struct bfd_hash_entry *
944elf_m68k_link_hash_newfunc (entry, table, string)
945 struct bfd_hash_entry *entry;
946 struct bfd_hash_table *table;
947 const char *string;
948{
0cca5f05 949 struct bfd_hash_entry *ret = entry;
252b5132
RH
950
951 /* Allocate the structure if it has not already been allocated by a
952 subclass. */
0cca5f05
AS
953 if (ret == NULL)
954 ret = bfd_hash_allocate (table,
955 sizeof (struct elf_m68k_link_hash_entry));
956 if (ret == NULL)
957 return ret;
252b5132
RH
958
959 /* Call the allocation method of the superclass. */
0cca5f05
AS
960 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
961 if (ret != NULL)
7fb9f789
NC
962 {
963 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
964 elf_m68k_hash_entry (ret)->got_entry_key = 0;
965 elf_m68k_hash_entry (ret)->glist = NULL;
966 }
252b5132 967
0cca5f05 968 return ret;
252b5132
RH
969}
970
971/* Create an m68k ELF linker hash table. */
972
973static struct bfd_link_hash_table *
974elf_m68k_link_hash_table_create (abfd)
975 bfd *abfd;
976{
977 struct elf_m68k_link_hash_table *ret;
dc810e39 978 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
252b5132 979
e2d34d7d 980 ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt);
252b5132
RH
981 if (ret == (struct elf_m68k_link_hash_table *) NULL)
982 return NULL;
983
66eb6687
AM
984 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
985 elf_m68k_link_hash_newfunc,
986 sizeof (struct elf_m68k_link_hash_entry)))
252b5132 987 {
e2d34d7d 988 free (ret);
252b5132
RH
989 return NULL;
990 }
991
b6152c34 992 ret->sym_sec.abfd = NULL;
cc3e26be 993 ret->plt_info = NULL;
7fb9f789
NC
994 ret->local_gp_p = FALSE;
995 ret->use_neg_got_offsets_p = FALSE;
996 ret->allow_multigot_p = FALSE;
997 ret->multi_got_.bfd2got = NULL;
998 ret->multi_got_.global_symndx = 1;
b6152c34 999
252b5132
RH
1000 return &ret->root.root;
1001}
1002
7fb9f789
NC
1003/* Destruct local data. */
1004
1005static void
1006elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab)
1007{
1008 struct elf_m68k_link_hash_table *htab;
1009
1010 htab = (struct elf_m68k_link_hash_table *) _htab;
1011
1012 if (htab->multi_got_.bfd2got != NULL)
1013 {
1014 htab_delete (htab->multi_got_.bfd2got);
1015 htab->multi_got_.bfd2got = NULL;
1016 }
1017}
1018
266abb8f
NS
1019/* Set the right machine number. */
1020
1021static bfd_boolean
1022elf32_m68k_object_p (bfd *abfd)
1023{
1024 unsigned int mach = 0;
1025 unsigned features = 0;
1026 flagword eflags = elf_elfheader (abfd)->e_flags;
1027
425c6cb0 1028 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
266abb8f 1029 features |= m68000;
425c6cb0 1030 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3bdcfdf4
KH
1031 features |= cpu32;
1032 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1033 features |= fido_a;
425c6cb0 1034 else
266abb8f 1035 {
c694fd50 1036 switch (eflags & EF_M68K_CF_ISA_MASK)
266abb8f 1037 {
c694fd50 1038 case EF_M68K_CF_ISA_A_NODIV:
266abb8f
NS
1039 features |= mcfisa_a;
1040 break;
c694fd50 1041 case EF_M68K_CF_ISA_A:
0b2e31dc
NS
1042 features |= mcfisa_a|mcfhwdiv;
1043 break;
c694fd50 1044 case EF_M68K_CF_ISA_A_PLUS:
0b2e31dc
NS
1045 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1046 break;
c694fd50 1047 case EF_M68K_CF_ISA_B_NOUSP:
0b2e31dc
NS
1048 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1049 break;
c694fd50 1050 case EF_M68K_CF_ISA_B:
0b2e31dc
NS
1051 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1052 break;
9a2e615a
NS
1053 case EF_M68K_CF_ISA_C:
1054 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1055 break;
8d100c32
KH
1056 case EF_M68K_CF_ISA_C_NODIV:
1057 features |= mcfisa_a|mcfisa_c|mcfusp;
1058 break;
266abb8f 1059 }
c694fd50 1060 switch (eflags & EF_M68K_CF_MAC_MASK)
266abb8f 1061 {
c694fd50 1062 case EF_M68K_CF_MAC:
266abb8f
NS
1063 features |= mcfmac;
1064 break;
c694fd50 1065 case EF_M68K_CF_EMAC:
266abb8f
NS
1066 features |= mcfemac;
1067 break;
1068 }
c694fd50 1069 if (eflags & EF_M68K_CF_FLOAT)
266abb8f
NS
1070 features |= cfloat;
1071 }
1072
1073 mach = bfd_m68k_features_to_mach (features);
1074 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1075
1076 return TRUE;
1077}
1078
ae9a127f 1079/* Keep m68k-specific flags in the ELF header. */
b34976b6 1080static bfd_boolean
9e1281c7
CM
1081elf32_m68k_set_private_flags (abfd, flags)
1082 bfd *abfd;
1083 flagword flags;
1084{
1085 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
1086 elf_flags_init (abfd) = TRUE;
1087 return TRUE;
9e1281c7
CM
1088}
1089
9e1281c7
CM
1090/* Merge backend specific data from an object file to the output
1091 object file when linking. */
b34976b6 1092static bfd_boolean
9e1281c7
CM
1093elf32_m68k_merge_private_bfd_data (ibfd, obfd)
1094 bfd *ibfd;
1095 bfd *obfd;
1096{
1097 flagword out_flags;
1098 flagword in_flags;
a9d34880
RS
1099 flagword out_isa;
1100 flagword in_isa;
1101 const bfd_arch_info_type *arch_info;
7fb9f789 1102
9e1281c7
CM
1103 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1104 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
266abb8f
NS
1105 return FALSE;
1106
a9d34880
RS
1107 /* Get the merged machine. This checks for incompatibility between
1108 Coldfire & non-Coldfire flags, incompability between different
1109 Coldfire ISAs, and incompability between different MAC types. */
1110 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1111 if (!arch_info)
1112 return FALSE;
9e1281c7 1113
7fb9f789
NC
1114 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1115
1116 in_flags = elf_elfheader (ibfd)->e_flags;
1117 if (!elf_flags_init (obfd))
1118 {
1119 elf_flags_init (obfd) = TRUE;
1120 out_flags = in_flags;
1121 }
1122 else
1123 {
1124 out_flags = elf_elfheader (obfd)->e_flags;
1125 unsigned int variant_mask;
1126
1127 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1128 variant_mask = 0;
1129 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1130 variant_mask = 0;
1131 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1132 variant_mask = 0;
1133 else
1134 variant_mask = EF_M68K_CF_ISA_MASK;
1135
1136 in_isa = (in_flags & variant_mask);
1137 out_isa = (out_flags & variant_mask);
1138 if (in_isa > out_isa)
1139 out_flags ^= in_isa ^ out_isa;
1140 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1141 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1142 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1143 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1144 out_flags = EF_M68K_FIDO;
1145 else
1146 out_flags |= in_flags ^ in_isa;
1147 }
1148 elf_elfheader (obfd)->e_flags = out_flags;
1149
1150 return TRUE;
1151}
1152
1153/* Display the flags field. */
1154
1155static bfd_boolean
1156elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1157{
1158 FILE *file = (FILE *) ptr;
1159 flagword eflags = elf_elfheader (abfd)->e_flags;
1160
1161 BFD_ASSERT (abfd != NULL && ptr != NULL);
1162
1163 /* Print normal ELF private data. */
1164 _bfd_elf_print_private_bfd_data (abfd, ptr);
1165
1166 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1167
1168 /* xgettext:c-format */
1169 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1170
1171 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1172 fprintf (file, " [m68000]");
1173 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1174 fprintf (file, " [cpu32]");
1175 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1176 fprintf (file, " [fido]");
1177 else
1178 {
1179 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1180 fprintf (file, " [cfv4e]");
1181
1182 if (eflags & EF_M68K_CF_ISA_MASK)
1183 {
1184 char const *isa = _("unknown");
1185 char const *mac = _("unknown");
1186 char const *additional = "";
1187
1188 switch (eflags & EF_M68K_CF_ISA_MASK)
1189 {
1190 case EF_M68K_CF_ISA_A_NODIV:
1191 isa = "A";
1192 additional = " [nodiv]";
1193 break;
1194 case EF_M68K_CF_ISA_A:
1195 isa = "A";
1196 break;
1197 case EF_M68K_CF_ISA_A_PLUS:
1198 isa = "A+";
1199 break;
1200 case EF_M68K_CF_ISA_B_NOUSP:
1201 isa = "B";
1202 additional = " [nousp]";
1203 break;
1204 case EF_M68K_CF_ISA_B:
1205 isa = "B";
1206 break;
1207 case EF_M68K_CF_ISA_C:
1208 isa = "C";
1209 break;
1210 case EF_M68K_CF_ISA_C_NODIV:
1211 isa = "C";
1212 additional = " [nodiv]";
1213 break;
1214 }
1215 fprintf (file, " [isa %s]%s", isa, additional);
1216
1217 if (eflags & EF_M68K_CF_FLOAT)
1218 fprintf (file, " [float]");
1219
1220 switch (eflags & EF_M68K_CF_MAC_MASK)
1221 {
1222 case 0:
1223 mac = NULL;
1224 break;
1225 case EF_M68K_CF_MAC:
1226 mac = "mac";
1227 break;
1228 case EF_M68K_CF_EMAC:
1229 mac = "emac";
1230 break;
1231 }
1232 if (mac)
1233 fprintf (file, " [%s]", mac);
1234 }
1235 }
1236
1237 fputc ('\n', file);
1238
1239 return TRUE;
1240}
1241
1242/* Multi-GOT support implementation design:
1243
1244 Multi-GOT starts in check_relocs hook. There we scan all
1245 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1246 for it. If a single BFD appears to require too many GOT slots with
1247 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1248 to user.
1249 After check_relocs has been invoked for each input BFD, we have
1250 constructed a GOT for each input BFD.
1251
1252 To minimize total number of GOTs required for a particular output BFD
1253 (as some environments support only 1 GOT per output object) we try
1254 to merge some of the GOTs to share an offset space. Ideally [and in most
1255 cases] we end up with a single GOT. In cases when there are too many
1256 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1257 several GOTs, assuming the environment can handle them.
1258
1259 Partitioning is done in elf_m68k_partition_multi_got. We start with
1260 an empty GOT and traverse bfd2got hashtable putting got_entries from
1261 local GOTs to the new 'big' one. We do that by constructing an
1262 intermediate GOT holding all the entries the local GOT has and the big
1263 GOT lacks. Then we check if there is room in the big GOT to accomodate
1264 all the entries from diff. On success we add those entries to the big
1265 GOT; on failure we start the new 'big' GOT and retry the adding of
1266 entries from the local GOT. Note that this retry will always succeed as
1267 each local GOT doesn't overflow the limits. After partitioning we
1268 end up with each bfd assigned one of the big GOTs. GOT entries in the
1269 big GOTs are initialized with GOT offsets. Note that big GOTs are
1270 positioned consequently in program space and represent a single huge GOT
1271 to the outside world.
1272
1273 After that we get to elf_m68k_relocate_section. There we
1274 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1275 relocations to refer to appropriate [assigned to current input_bfd]
1276 big GOT.
1277
1278 Notes:
1279
cf869cce
NC
1280 GOT entry type: We have several types of GOT entries.
1281 * R_8 type is used in entries for symbols that have at least one
1282 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
7fb9f789 1283 such entries in one GOT.
cf869cce
NC
1284 * R_16 type is used in entries for symbols that have at least one
1285 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
7fb9f789 1286 We can have at most 0x4000 such entries in one GOT.
cf869cce
NC
1287 * R_32 type is used in all other cases. We can have as many
1288 such entries in one GOT as we'd like.
7fb9f789
NC
1289 When counting relocations we have to include the count of the smaller
1290 ranged relocations in the counts of the larger ranged ones in order
1291 to correctly detect overflow.
1292
1293 Sorting the GOT: In each GOT starting offsets are assigned to
cf869cce
NC
1294 R_8 entries, which are followed by R_16 entries, and
1295 R_32 entries go at the end. See finalize_got_offsets for details.
7fb9f789
NC
1296
1297 Negative GOT offsets: To double usable offset range of GOTs we use
1298 negative offsets. As we assign entries with GOT offsets relative to
1299 start of .got section, the offset values are positive. They become
1300 negative only in relocate_section where got->offset value is
1301 subtracted from them.
1302
1303 3 special GOT entries: There are 3 special GOT entries used internally
1304 by loader. These entries happen to be placed to .got.plt section,
1305 so we don't do anything about them in multi-GOT support.
1306
1307 Memory management: All data except for hashtables
1308 multi_got->bfd2got and got->entries are allocated on
1309 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1310 to most functions), so we don't need to care to free them. At the
1311 moment of allocation hashtables are being linked into main data
1312 structure (multi_got), all pieces of which are reachable from
1313 elf_m68k_multi_got (info). We deallocate them in
1314 elf_m68k_link_hash_table_free. */
1315
1316/* Initialize GOT. */
1317
1318static void
cf869cce
NC
1319elf_m68k_init_got (struct elf_m68k_got *got)
1320{
1321 got->entries = NULL;
1322 got->n_slots[R_8] = 0;
1323 got->n_slots[R_16] = 0;
1324 got->n_slots[R_32] = 0;
1325 got->local_n_slots = 0;
1326 got->offset = (bfd_vma) -1;
7fb9f789
NC
1327}
1328
1329/* Destruct GOT. */
1330
1331static void
1332elf_m68k_clear_got (struct elf_m68k_got *got)
1333{
1334 if (got->entries != NULL)
1335 {
1336 htab_delete (got->entries);
1337 got->entries = NULL;
1338 }
1339}
1340
1341/* Create and empty GOT structure. INFO is the context where memory
1342 should be allocated. */
1343
1344static struct elf_m68k_got *
1345elf_m68k_create_empty_got (struct bfd_link_info *info)
1346{
1347 struct elf_m68k_got *got;
1348
1349 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1350 if (got == NULL)
1351 return NULL;
1352
cf869cce 1353 elf_m68k_init_got (got);
7fb9f789
NC
1354
1355 return got;
1356}
1357
1358/* Initialize KEY. */
1359
1360static void
1361elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1362 struct elf_link_hash_entry *h,
cf869cce
NC
1363 const bfd *abfd, unsigned long symndx,
1364 enum elf_m68k_reloc_type reloc_type)
7fb9f789 1365{
cf869cce
NC
1366 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1367 /* All TLS_LDM relocations share a single GOT entry. */
1368 {
1369 key->bfd = NULL;
1370 key->symndx = 0;
1371 }
1372 else if (h != NULL)
1373 /* Global symbols are identified with their got_entry_key. */
7fb9f789
NC
1374 {
1375 key->bfd = NULL;
1376 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1377 BFD_ASSERT (key->symndx != 0);
1378 }
1379 else
cf869cce 1380 /* Local symbols are identified by BFD they appear in and symndx. */
7fb9f789
NC
1381 {
1382 key->bfd = abfd;
1383 key->symndx = symndx;
1384 }
cf869cce
NC
1385
1386 key->type = reloc_type;
7fb9f789
NC
1387}
1388
1389/* Calculate hash of got_entry.
1390 ??? Is it good? */
1391
1392static hashval_t
1393elf_m68k_got_entry_hash (const void *_entry)
1394{
1395 const struct elf_m68k_got_entry_key *key;
1396
1397 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1398
cf869cce
NC
1399 return (key->symndx
1400 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1401 + elf_m68k_reloc_got_type (key->type));
7fb9f789
NC
1402}
1403
1404/* Check if two got entries are equal. */
1405
1406static int
1407elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1408{
1409 const struct elf_m68k_got_entry_key *key1;
1410 const struct elf_m68k_got_entry_key *key2;
1411
1412 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1413 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1414
1415 return (key1->bfd == key2->bfd
cf869cce
NC
1416 && key1->symndx == key2->symndx
1417 && (elf_m68k_reloc_got_type (key1->type)
1418 == elf_m68k_reloc_got_type (key2->type)));
7fb9f789
NC
1419}
1420
cf869cce
NC
1421/* When using negative offsets, we allocate one extra R_8, one extra R_16
1422 and one extra R_32 slots to simplify handling of 2-slot entries during
1423 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1424
1425/* Maximal number of R_8 slots in a single GOT. */
1426#define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
7fb9f789 1427 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
cf869cce 1428 ? (0x40 - 1) \
7fb9f789
NC
1429 : 0x20)
1430
cf869cce
NC
1431/* Maximal number of R_8 and R_16 slots in a single GOT. */
1432#define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
7fb9f789 1433 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
cf869cce 1434 ? (0x4000 - 2) \
7fb9f789
NC
1435 : 0x2000)
1436
1437/* SEARCH - simply search the hashtable, don't insert new entries or fail when
1438 the entry cannot be found.
1439 FIND_OR_CREATE - search for an existing entry, but create new if there's
1440 no such.
1441 MUST_FIND - search for an existing entry and assert that it exist.
1442 MUST_CREATE - assert that there's no such entry and create new one. */
1443enum elf_m68k_get_entry_howto
1444 {
1445 SEARCH,
1446 FIND_OR_CREATE,
1447 MUST_FIND,
1448 MUST_CREATE
1449 };
1450
1451/* Get or create (depending on HOWTO) entry with KEY in GOT.
1452 INFO is context in which memory should be allocated (can be NULL if
1453 HOWTO is SEARCH or MUST_FIND). */
1454
1455static struct elf_m68k_got_entry *
1456elf_m68k_get_got_entry (struct elf_m68k_got *got,
1457 const struct elf_m68k_got_entry_key *key,
1458 enum elf_m68k_get_entry_howto howto,
1459 struct bfd_link_info *info)
1460{
1461 struct elf_m68k_got_entry entry_;
1462 struct elf_m68k_got_entry *entry;
1463 void **ptr;
1464
1465 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1466
1467 if (got->entries == NULL)
1468 /* This is the first entry in ABFD. Initialize hashtable. */
1469 {
1470 if (howto == SEARCH)
1471 return NULL;
1472
cf869cce 1473 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
7fb9f789
NC
1474 (info),
1475 elf_m68k_got_entry_hash,
1476 elf_m68k_got_entry_eq, NULL);
1477 if (got->entries == NULL)
1478 {
1479 bfd_set_error (bfd_error_no_memory);
1480 return NULL;
1481 }
1482 }
1483
1484 entry_.key_ = *key;
1485 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1486 ? INSERT : NO_INSERT));
1487 if (ptr == NULL)
1488 {
1489 if (howto == SEARCH)
1490 /* Entry not found. */
1491 return NULL;
1492
1493 /* We're out of memory. */
1494 bfd_set_error (bfd_error_no_memory);
1495 return NULL;
1496 }
1497
1498 if (*ptr == NULL)
1499 /* We didn't find the entry and we're asked to create a new one. */
1500 {
1501 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1502
1503 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1504 if (entry == NULL)
1505 return NULL;
1506
1507 /* Initialize new entry. */
1508 entry->key_ = *key;
1509
1510 entry->u.s1.refcount = 0;
cf869cce
NC
1511
1512 /* Mark the entry as not initialized. */
1513 entry->key_.type = R_68K_max;
7fb9f789
NC
1514
1515 *ptr = entry;
1516 }
1517 else
1518 /* We found the entry. */
1519 {
1520 BFD_ASSERT (howto != MUST_CREATE);
1521
1522 entry = *ptr;
1523 }
1524
1525 return entry;
1526}
1527
1528/* Update GOT counters when merging entry of WAS type with entry of NEW type.
1529 Return the value to which ENTRY's type should be set. */
1530
cf869cce
NC
1531static enum elf_m68k_reloc_type
1532elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1533 enum elf_m68k_reloc_type was,
1534 enum elf_m68k_reloc_type new)
7fb9f789 1535{
cf869cce
NC
1536 enum elf_m68k_got_offset_size was_size;
1537 enum elf_m68k_got_offset_size new_size;
1538 bfd_vma n_slots;
1539
1540 if (was == R_68K_max)
1541 /* The type of the entry is not initialized yet. */
7fb9f789 1542 {
cf869cce
NC
1543 /* Update all got->n_slots counters, including n_slots[R_32]. */
1544 was_size = R_LAST;
7fb9f789 1545
cf869cce 1546 was = new;
7fb9f789 1547 }
7fb9f789 1548 else
cf869cce
NC
1549 {
1550 /* !!! We, probably, should emit an error rather then fail on assert
1551 in such a case. */
1552 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1553 == elf_m68k_reloc_got_type (new));
1554
1555 was_size = elf_m68k_reloc_got_offset_size (was);
1556 }
1557
1558 new_size = elf_m68k_reloc_got_offset_size (new);
1559 n_slots = elf_m68k_reloc_got_n_slots (new);
1560
1561 while (was_size > new_size)
1562 {
1563 --was_size;
1564 got->n_slots[was_size] += n_slots;
1565 }
7fb9f789 1566
cf869cce
NC
1567 if (new > was)
1568 /* Relocations are ordered from bigger got offset size to lesser,
1569 so choose the relocation type with lesser offset size. */
1570 was = new;
1571
1572 return was;
7fb9f789
NC
1573}
1574
1575/* Update GOT counters when removing an entry of type TYPE. */
1576
1577static void
cf869cce
NC
1578elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
1579 enum elf_m68k_reloc_type type)
7fb9f789 1580{
cf869cce
NC
1581 enum elf_m68k_got_offset_size os;
1582 bfd_vma n_slots;
7fb9f789 1583
cf869cce 1584 n_slots = elf_m68k_reloc_got_n_slots (type);
7fb9f789 1585
cf869cce
NC
1586 /* Decrese counter of slots with offset size corresponding to TYPE
1587 and all greater offset sizes. */
1588 for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
1589 {
1590 BFD_ASSERT (got->n_slots[os] >= n_slots);
7fb9f789 1591
cf869cce 1592 got->n_slots[os] -= n_slots;
7fb9f789
NC
1593 }
1594}
1595
1596/* Add new or update existing entry to GOT.
1597 H, ABFD, TYPE and SYMNDX is data for the entry.
1598 INFO is a context where memory should be allocated. */
1599
1600static struct elf_m68k_got_entry *
1601elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1602 struct elf_link_hash_entry *h,
1603 const bfd *abfd,
cf869cce
NC
1604 enum elf_m68k_reloc_type reloc_type,
1605 unsigned long symndx,
7fb9f789
NC
1606 struct bfd_link_info *info)
1607{
1608 struct elf_m68k_got_entry_key key_;
1609 struct elf_m68k_got_entry *entry;
1610
1611 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1612 elf_m68k_hash_entry (h)->got_entry_key
1613 = elf_m68k_multi_got (info)->global_symndx++;
1614
cf869cce 1615 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
7fb9f789
NC
1616
1617 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1618 if (entry == NULL)
1619 return NULL;
1620
cf869cce
NC
1621 /* Determine entry's type and update got->n_slots counters. */
1622 entry->key_.type = elf_m68k_update_got_entry_type (got,
1623 entry->key_.type,
1624 reloc_type);
1625
7fb9f789
NC
1626 /* Update refcount. */
1627 ++entry->u.s1.refcount;
1628
1629 if (entry->u.s1.refcount == 1)
1630 /* We see this entry for the first time. */
1631 {
1632 if (entry->key_.bfd != NULL)
cf869cce 1633 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
7fb9f789
NC
1634 }
1635
cf869cce 1636 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
7fb9f789 1637
cf869cce
NC
1638 if ((got->n_slots[R_8]
1639 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1640 || (got->n_slots[R_16]
1641 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
7fb9f789
NC
1642 /* This BFD has too many relocation. */
1643 {
cf869cce 1644 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
7fb9f789 1645 (*_bfd_error_handler) (_("%B: GOT overflow: "
cf869cce
NC
1646 "Number of relocations with 8-bit "
1647 "offset > %d"),
7fb9f789 1648 abfd,
cf869cce 1649 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
7fb9f789
NC
1650 else
1651 (*_bfd_error_handler) (_("%B: GOT overflow: "
cf869cce
NC
1652 "Number of relocations with 8- or 16-bit "
1653 "offset > %d"),
7fb9f789 1654 abfd,
cf869cce 1655 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
7fb9f789
NC
1656
1657 return NULL;
1658 }
1659
1660 return entry;
1661}
1662
1663/* Compute the hash value of the bfd in a bfd2got hash entry. */
1664
1665static hashval_t
1666elf_m68k_bfd2got_entry_hash (const void *entry)
1667{
1668 const struct elf_m68k_bfd2got_entry *e;
1669
1670 e = (const struct elf_m68k_bfd2got_entry *) entry;
1671
1672 return e->bfd->id;
1673}
1674
1675/* Check whether two hash entries have the same bfd. */
1676
1677static int
1678elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1679{
1680 const struct elf_m68k_bfd2got_entry *e1;
1681 const struct elf_m68k_bfd2got_entry *e2;
1682
1683 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1684 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1685
1686 return e1->bfd == e2->bfd;
1687}
1688
1689/* Destruct a bfd2got entry. */
1690
1691static void
1692elf_m68k_bfd2got_entry_del (void *_entry)
1693{
1694 struct elf_m68k_bfd2got_entry *entry;
1695
1696 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1697
1698 BFD_ASSERT (entry->got != NULL);
1699 elf_m68k_clear_got (entry->got);
1700}
1701
1702/* Find existing or create new (depending on HOWTO) bfd2got entry in
1703 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1704 memory should be allocated. */
1705
1706static struct elf_m68k_bfd2got_entry *
1707elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1708 const bfd *abfd,
1709 enum elf_m68k_get_entry_howto howto,
1710 struct bfd_link_info *info)
1711{
1712 struct elf_m68k_bfd2got_entry entry_;
1713 void **ptr;
1714 struct elf_m68k_bfd2got_entry *entry;
1715
1716 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1717
1718 if (multi_got->bfd2got == NULL)
1719 /* This is the first GOT. Initialize bfd2got. */
1720 {
1721 if (howto == SEARCH)
1722 return NULL;
1723
1724 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1725 elf_m68k_bfd2got_entry_eq,
1726 elf_m68k_bfd2got_entry_del);
1727 if (multi_got->bfd2got == NULL)
1728 {
1729 bfd_set_error (bfd_error_no_memory);
1730 return NULL;
1731 }
1732 }
1733
1734 entry_.bfd = abfd;
1735 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1736 ? INSERT : NO_INSERT));
1737 if (ptr == NULL)
1738 {
1739 if (howto == SEARCH)
1740 /* Entry not found. */
1741 return NULL;
1742
1743 /* We're out of memory. */
1744 bfd_set_error (bfd_error_no_memory);
1745 return NULL;
1746 }
1747
1748 if (*ptr == NULL)
1749 /* Entry was not found. Create new one. */
1750 {
1751 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1752
1753 entry = ((struct elf_m68k_bfd2got_entry *)
1754 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1755 if (entry == NULL)
1756 return NULL;
1757
1758 entry->bfd = abfd;
1759
1760 entry->got = elf_m68k_create_empty_got (info);
1761 if (entry->got == NULL)
1762 return NULL;
1763
1764 *ptr = entry;
1765 }
1766 else
1767 {
1768 BFD_ASSERT (howto != MUST_CREATE);
1769
1770 /* Return existing entry. */
1771 entry = *ptr;
1772 }
1773
1774 return entry;
1775}
1776
1777struct elf_m68k_can_merge_gots_arg
1778{
1779 /* A current_got that we constructing a DIFF against. */
1780 struct elf_m68k_got *big;
1781
1782 /* GOT holding entries not present or that should be changed in
1783 BIG. */
1784 struct elf_m68k_got *diff;
1785
1786 /* Context where to allocate memory. */
1787 struct bfd_link_info *info;
1788
1789 /* Error flag. */
1790 bfd_boolean error_p;
1791};
1792
1793/* Process a single entry from the small GOT to see if it should be added
1794 or updated in the big GOT. */
1795
1796static int
1797elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1798{
1799 const struct elf_m68k_got_entry *entry1;
1800 struct elf_m68k_can_merge_gots_arg *arg;
1801 const struct elf_m68k_got_entry *entry2;
cf869cce 1802 enum elf_m68k_reloc_type type;
7fb9f789
NC
1803
1804 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1805 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1806
1807 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1808
1809 if (entry2 != NULL)
cf869cce 1810 /* We found an existing entry. Check if we should update it. */
7fb9f789 1811 {
cf869cce
NC
1812 type = elf_m68k_update_got_entry_type (arg->diff,
1813 entry2->key_.type,
1814 entry1->key_.type);
7fb9f789 1815
cf869cce 1816 if (type == entry2->key_.type)
7fb9f789
NC
1817 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1818 To skip creation of difference entry we use the type,
1819 which we won't see in GOT entries for sure. */
cf869cce 1820 type = R_68K_max;
7fb9f789
NC
1821 }
1822 else
cf869cce 1823 /* We didn't find the entry. Add entry1 to DIFF. */
7fb9f789 1824 {
cf869cce 1825 BFD_ASSERT (entry1->key_.type != R_68K_max);
7fb9f789 1826
cf869cce
NC
1827 type = elf_m68k_update_got_entry_type (arg->diff,
1828 R_68K_max, entry1->key_.type);
7fb9f789 1829
7fb9f789 1830 if (entry1->key_.bfd != NULL)
cf869cce 1831 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
7fb9f789
NC
1832 }
1833
cf869cce 1834 if (type != R_68K_max)
7fb9f789
NC
1835 /* Create an entry in DIFF. */
1836 {
1837 struct elf_m68k_got_entry *entry;
1838
1839 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1840 arg->info);
1841 if (entry == NULL)
1842 {
1843 arg->error_p = TRUE;
1844 return 0;
1845 }
1846
cf869cce 1847 entry->key_.type = type;
7fb9f789
NC
1848 }
1849
1850 return 1;
1851}
1852
1853/* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1854 Construct DIFF GOT holding the entries which should be added or updated
1855 in BIG GOT to accumulate information from SMALL.
1856 INFO is the context where memory should be allocated. */
1857
1858static bfd_boolean
1859elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1860 const struct elf_m68k_got *small,
1861 struct bfd_link_info *info,
1862 struct elf_m68k_got *diff)
1863{
1864 struct elf_m68k_can_merge_gots_arg arg_;
1865
1866 BFD_ASSERT (small->offset == (bfd_vma) -1);
1867
1868 arg_.big = big;
1869 arg_.diff = diff;
1870 arg_.info = info;
1871 arg_.error_p = FALSE;
1872 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1873 if (arg_.error_p)
1874 {
1875 diff->offset = 0;
1876 return FALSE;
1877 }
1878
1879 /* Check for overflow. */
cf869cce
NC
1880 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1881 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1882 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1883 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
7fb9f789
NC
1884 return FALSE;
1885
1886 return TRUE;
1887}
1888
1889struct elf_m68k_merge_gots_arg
1890{
1891 /* The BIG got. */
1892 struct elf_m68k_got *big;
1893
1894 /* Context where memory should be allocated. */
1895 struct bfd_link_info *info;
1896
1897 /* Error flag. */
1898 bfd_boolean error_p;
1899};
1900
1901/* Process a single entry from DIFF got. Add or update corresponding
1902 entry in the BIG got. */
1903
1904static int
1905elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1906{
1907 const struct elf_m68k_got_entry *from;
1908 struct elf_m68k_merge_gots_arg *arg;
1909 struct elf_m68k_got_entry *to;
1910
1911 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1912 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1913
1914 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1915 arg->info);
1916 if (to == NULL)
1917 {
1918 arg->error_p = TRUE;
1919 return 0;
1920 }
1921
1922 BFD_ASSERT (to->u.s1.refcount == 0);
1923 /* All we need to merge is TYPE. */
cf869cce 1924 to->key_.type = from->key_.type;
7fb9f789
NC
1925
1926 return 1;
1927}
1928
1929/* Merge data from DIFF to BIG. INFO is context where memory should be
1930 allocated. */
1931
1932static bfd_boolean
1933elf_m68k_merge_gots (struct elf_m68k_got *big,
1934 struct elf_m68k_got *diff,
1935 struct bfd_link_info *info)
1936{
1937 if (diff->entries != NULL)
1938 /* DIFF is not empty. Merge it into BIG GOT. */
1939 {
1940 struct elf_m68k_merge_gots_arg arg_;
1941
1942 /* Merge entries. */
1943 arg_.big = big;
1944 arg_.info = info;
1945 arg_.error_p = FALSE;
1946 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1947 if (arg_.error_p)
1948 return FALSE;
1949
1950 /* Merge counters. */
cf869cce
NC
1951 big->n_slots[R_8] += diff->n_slots[R_8];
1952 big->n_slots[R_16] += diff->n_slots[R_16];
1953 big->n_slots[R_32] += diff->n_slots[R_32];
1954 big->local_n_slots += diff->local_n_slots;
7fb9f789
NC
1955 }
1956 else
1957 /* DIFF is empty. */
1958 {
cf869cce
NC
1959 BFD_ASSERT (diff->n_slots[R_8] == 0);
1960 BFD_ASSERT (diff->n_slots[R_16] == 0);
1961 BFD_ASSERT (diff->n_slots[R_32] == 0);
1962 BFD_ASSERT (diff->local_n_slots == 0);
7fb9f789
NC
1963 }
1964
1965 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
cf869cce
NC
1966 || ((big->n_slots[R_8]
1967 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1968 && (big->n_slots[R_16]
1969 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
7fb9f789
NC
1970
1971 return TRUE;
1972}
1973
1974struct elf_m68k_finalize_got_offsets_arg
1975{
cf869cce
NC
1976 /* Ranges of the offsets for GOT entries.
1977 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
1978 R_x is R_8, R_16 and R_32. */
1979 bfd_vma *offset1;
1980 bfd_vma *offset2;
7fb9f789
NC
1981
1982 /* Mapping from global symndx to global symbols.
1983 This is used to build lists of got entries for global symbols. */
1984 struct elf_m68k_link_hash_entry **symndx2h;
cf869cce
NC
1985
1986 bfd_vma n_ldm_entries;
7fb9f789
NC
1987};
1988
1989/* Assign ENTRY an offset. Build list of GOT entries for global symbols
1990 along the way. */
1991
1992static int
1993elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
1994{
1995 struct elf_m68k_got_entry *entry;
1996 struct elf_m68k_finalize_got_offsets_arg *arg;
1997
cf869cce
NC
1998 enum elf_m68k_got_offset_size got_offset_size;
1999 bfd_vma entry_size;
2000
7fb9f789
NC
2001 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2002 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2003
2004 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2005 BFD_ASSERT (entry->u.s1.refcount == 0);
2006
cf869cce
NC
2007 /* Get GOT offset size for the entry . */
2008 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
7fb9f789 2009
cf869cce
NC
2010 /* Calculate entry size in bytes. */
2011 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
7fb9f789 2012
cf869cce
NC
2013 /* Check if we should switch to negative range of the offsets. */
2014 if (arg->offset1[got_offset_size] + entry_size
2015 > arg->offset2[got_offset_size])
2016 {
2017 /* Verify that this is the only switch to negative range for
2018 got_offset_size. If this assertion fails, then we've miscalculated
2019 range for got_offset_size entries in
2020 elf_m68k_finalize_got_offsets. */
2021 BFD_ASSERT (arg->offset2[got_offset_size]
2022 != arg->offset2[-(int) got_offset_size - 1]);
2023
2024 /* Switch. */
2025 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2026 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2027
2028 /* Verify that now we have enough room for the entry. */
2029 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2030 <= arg->offset2[got_offset_size]);
7fb9f789
NC
2031 }
2032
cf869cce
NC
2033 /* Assign offset to entry. */
2034 entry->u.s2.offset = arg->offset1[got_offset_size];
2035 arg->offset1[got_offset_size] += entry_size;
2036
7fb9f789
NC
2037 if (entry->key_.bfd == NULL)
2038 /* Hook up this entry into the list of got_entries of H. */
2039 {
2040 struct elf_m68k_link_hash_entry *h;
2041
7fb9f789 2042 h = arg->symndx2h[entry->key_.symndx];
cf869cce
NC
2043 if (h != NULL)
2044 {
2045 entry->u.s2.next = h->glist;
2046 h->glist = entry;
2047 }
2048 else
2049 /* This should be the entry for TLS_LDM relocation then. */
2050 {
2051 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2052 == R_68K_TLS_LDM32)
2053 && entry->key_.symndx == 0);
7fb9f789 2054
cf869cce
NC
2055 ++arg->n_ldm_entries;
2056 }
7fb9f789
NC
2057 }
2058 else
2059 /* This entry is for local symbol. */
2060 entry->u.s2.next = NULL;
2061
2062 return 1;
2063}
2064
2065/* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2066 should use negative offsets.
2067 Build list of GOT entries for global symbols along the way.
2068 SYMNDX2H is mapping from global symbol indices to actual
cf869cce
NC
2069 global symbols.
2070 Return offset at which next GOT should start. */
7fb9f789
NC
2071
2072static void
2073elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2074 bfd_boolean use_neg_got_offsets_p,
cf869cce
NC
2075 struct elf_m68k_link_hash_entry **symndx2h,
2076 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
7fb9f789
NC
2077{
2078 struct elf_m68k_finalize_got_offsets_arg arg_;
cf869cce
NC
2079 bfd_vma offset1_[2 * R_LAST];
2080 bfd_vma offset2_[2 * R_LAST];
2081 int i;
2082 bfd_vma start_offset;
7fb9f789
NC
2083
2084 BFD_ASSERT (got->offset != (bfd_vma) -1);
2085
2086 /* We set entry offsets relative to the .got section (and not the
2087 start of a particular GOT), so that we can use them in
cf869cce 2088 finish_dynamic_symbol without needing to know the GOT which they come
7fb9f789
NC
2089 from. */
2090
cf869cce
NC
2091 /* Put offset1 in the middle of offset1_, same for offset2. */
2092 arg_.offset1 = offset1_ + R_LAST;
2093 arg_.offset2 = offset2_ + R_LAST;
2094
2095 start_offset = got->offset;
2096
7fb9f789 2097 if (use_neg_got_offsets_p)
cf869cce
NC
2098 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2099 i = -(int) R_32 - 1;
2100 else
2101 /* Setup positives ranges for R_8, R_16 and R_32. */
2102 i = (int) R_8;
2103
2104 for (; i <= (int) R_32; ++i)
7fb9f789 2105 {
cf869cce 2106 int j;
7fb9f789
NC
2107 size_t n;
2108
cf869cce
NC
2109 /* Set beginning of the range of offsets I. */
2110 arg_.offset1[i] = start_offset;
7fb9f789 2111
cf869cce
NC
2112 /* Calculate number of slots that require I offsets. */
2113 j = (i >= 0) ? i : -i - 1;
2114 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2115 n = got->n_slots[j] - n;
7fb9f789 2116
cf869cce
NC
2117 if (use_neg_got_offsets_p && n != 0)
2118 {
2119 if (i < 0)
2120 /* We first fill the positive side of the range, so we might
2121 end up with one empty slot at that side when we can't fit
2122 whole 2-slot entry. Account for that at negative side of
2123 the interval with one additional entry. */
2124 n = n / 2 + 1;
2125 else
2126 /* When the number of slots is odd, make positive side of the
2127 range one entry bigger. */
2128 n = (n + 1) / 2;
2129 }
2130
2131 /* N is the number of slots that require I offsets.
2132 Calculate length of the range for I offsets. */
2133 n = 4 * n;
7fb9f789 2134
cf869cce
NC
2135 /* Set end of the range. */
2136 arg_.offset2[i] = start_offset + n;
7fb9f789 2137
cf869cce 2138 start_offset = arg_.offset2[i];
7fb9f789
NC
2139 }
2140
cf869cce
NC
2141 if (!use_neg_got_offsets_p)
2142 /* Make sure that if we try to switch to negative offsets in
2143 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2144 the bug. */
2145 for (i = R_8; i <= R_32; ++i)
2146 arg_.offset2[-i - 1] = arg_.offset2[i];
7fb9f789 2147
cf869cce
NC
2148 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2149 beginning of GOT depending on use_neg_got_offsets_p. */
2150 got->offset = arg_.offset1[R_8];
7fb9f789 2151
cf869cce
NC
2152 arg_.symndx2h = symndx2h;
2153 arg_.n_ldm_entries = 0;
7fb9f789 2154
cf869cce
NC
2155 /* Assign offsets. */
2156 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
7fb9f789 2157
cf869cce
NC
2158 /* Check offset ranges we have actually assigned. */
2159 for (i = (int) R_8; i <= (int) R_32; ++i)
2160 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
7fb9f789 2161
cf869cce
NC
2162 *final_offset = start_offset;
2163 *n_ldm_entries = arg_.n_ldm_entries;
7fb9f789
NC
2164}
2165
2166struct elf_m68k_partition_multi_got_arg
2167{
2168 /* The GOT we are adding entries to. Aka big got. */
2169 struct elf_m68k_got *current_got;
2170
2171 /* Offset to assign the next CURRENT_GOT. */
2172 bfd_vma offset;
2173
2174 /* Context where memory should be allocated. */
2175 struct bfd_link_info *info;
2176
cf869cce 2177 /* Total number of slots in the .got section.
7fb9f789 2178 This is used to calculate size of the .got and .rela.got sections. */
cf869cce 2179 bfd_vma n_slots;
7fb9f789 2180
cf869cce
NC
2181 /* Difference in numbers of allocated slots in the .got section
2182 and necessary relocations in the .rela.got section.
7fb9f789 2183 This is used to calculate size of the .rela.got section. */
cf869cce 2184 bfd_vma slots_relas_diff;
7fb9f789
NC
2185
2186 /* Error flag. */
2187 bfd_boolean error_p;
2188
2189 /* Mapping from global symndx to global symbols.
2190 This is used to build lists of got entries for global symbols. */
2191 struct elf_m68k_link_hash_entry **symndx2h;
2192};
2193
cf869cce
NC
2194static void
2195elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2196{
2197 bfd_vma n_ldm_entries;
2198
2199 elf_m68k_finalize_got_offsets (arg->current_got,
2200 (elf_m68k_hash_table (arg->info)
2201 ->use_neg_got_offsets_p),
2202 arg->symndx2h,
2203 &arg->offset, &n_ldm_entries);
2204
2205 arg->n_slots += arg->current_got->n_slots[R_32];
2206
2207 if (!arg->info->shared)
2208 /* If we are generating a shared object, we need to
2209 output a R_68K_RELATIVE reloc so that the dynamic
2210 linker can adjust this GOT entry. Overwise we
2211 don't need space in .rela.got for local symbols. */
2212 arg->slots_relas_diff += arg->current_got->local_n_slots;
2213
2214 /* @LDM relocations require a 2-slot GOT entry, but only
2215 one relocation. Account for that. */
2216 arg->slots_relas_diff += n_ldm_entries;
2217
2218 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2219}
2220
2221
7fb9f789
NC
2222/* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2223 or start a new CURRENT_GOT. */
2224
2225static int
2226elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2227{
2228 struct elf_m68k_bfd2got_entry *entry;
2229 struct elf_m68k_partition_multi_got_arg *arg;
2230 struct elf_m68k_got *got;
7fb9f789
NC
2231 struct elf_m68k_got diff_;
2232 struct elf_m68k_got *diff;
2233
2234 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2235 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2236
2237 got = entry->got;
2238 BFD_ASSERT (got != NULL);
2239 BFD_ASSERT (got->offset == (bfd_vma) -1);
2240
2241 diff = NULL;
2242
2243 if (arg->current_got != NULL)
2244 /* Construct diff. */
2245 {
2246 diff = &diff_;
cf869cce 2247 elf_m68k_init_got (diff);
7fb9f789
NC
2248
2249 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2250 {
2251 if (diff->offset == 0)
2252 /* Offset set to 0 in the diff_ indicates an error. */
2253 {
2254 arg->error_p = TRUE;
2255 goto final_return;
2256 }
2257
2258 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2259 {
2260 elf_m68k_clear_got (diff);
cf869cce 2261 /* Schedule to finish up current_got and start new one. */
7fb9f789
NC
2262 diff = NULL;
2263 }
2264 /* else
2265 Merge GOTs no matter what. If big GOT overflows,
2266 we'll fail in relocate_section due to truncated relocations.
2267
2268 ??? May be fail earlier? E.g., in can_merge_gots. */
2269 }
2270 }
2271 else
2272 /* Diff of got against empty current_got is got itself. */
2273 {
cf869cce 2274 /* Create empty current_got to put subsequent GOTs to. */
7fb9f789
NC
2275 arg->current_got = elf_m68k_create_empty_got (arg->info);
2276 if (arg->current_got == NULL)
2277 {
2278 arg->error_p = TRUE;
2279 goto final_return;
2280 }
2281
2282 arg->current_got->offset = arg->offset;
2283
2284 diff = got;
2285 }
2286
7fb9f789
NC
2287 if (diff != NULL)
2288 {
cf869cce 2289 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
7fb9f789
NC
2290 {
2291 arg->error_p = TRUE;
2292 goto final_return;
2293 }
2294
2295 /* Now we can free GOT. */
2296 elf_m68k_clear_got (got);
2297
cf869cce 2298 entry->got = arg->current_got;
7fb9f789
NC
2299 }
2300 else
2301 {
7fb9f789 2302 /* Finish up current_got. */
cf869cce 2303 elf_m68k_partition_multi_got_2 (arg);
7fb9f789 2304
cf869cce
NC
2305 /* Schedule to start a new current_got. */
2306 arg->current_got = NULL;
7fb9f789
NC
2307
2308 /* Retry. */
2309 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2310 {
2311 BFD_ASSERT (arg->error_p);
2312 goto final_return;
2313 }
2314 }
2315
2316 final_return:
2317 if (diff != NULL)
2318 elf_m68k_clear_got (diff);
2319
2320 return arg->error_p == FALSE ? 1 : 0;
2321}
2322
2323/* Helper function to build symndx2h mapping. */
2324
2325static bfd_boolean
2326elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2327 void *_arg)
2328{
2329 struct elf_m68k_link_hash_entry *h;
2330
2331 h = elf_m68k_hash_entry (_h);
2332
2333 if (h->got_entry_key != 0)
2334 /* H has at least one entry in the GOT. */
2335 {
2336 struct elf_m68k_partition_multi_got_arg *arg;
2337
2338 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2339
2340 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2341 arg->symndx2h[h->got_entry_key] = h;
2342 }
2343
2344 return TRUE;
2345}
2346
2347/* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2348 lists of GOT entries for global symbols.
2349 Calculate sizes of .got and .rela.got sections. */
2350
2351static bfd_boolean
2352elf_m68k_partition_multi_got (struct bfd_link_info *info)
2353{
2354 struct elf_m68k_multi_got *multi_got;
2355 struct elf_m68k_partition_multi_got_arg arg_;
2356
2357 multi_got = elf_m68k_multi_got (info);
2358
2359 arg_.current_got = NULL;
2360 arg_.offset = 0;
2361 arg_.info = info;
cf869cce
NC
2362 arg_.n_slots = 0;
2363 arg_.slots_relas_diff = 0;
7fb9f789
NC
2364 arg_.error_p = FALSE;
2365
2366 if (multi_got->bfd2got != NULL)
2367 {
2368 /* Initialize symndx2h mapping. */
2369 {
2370 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2371 * sizeof (*arg_.symndx2h));
2372 if (arg_.symndx2h == NULL)
2373 return FALSE;
2374
2375 elf_link_hash_traverse (elf_hash_table (info),
2376 elf_m68k_init_symndx2h_1, &arg_);
2377 }
2378
2379 /* Partition. */
2380 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2381 &arg_);
2382 if (arg_.error_p)
2383 {
2384 free (arg_.symndx2h);
2385 arg_.symndx2h = NULL;
2386
2387 return FALSE;
2388 }
2389
2390 /* Finish up last current_got. */
cf869cce 2391 elf_m68k_partition_multi_got_2 (&arg_);
7fb9f789
NC
2392
2393 free (arg_.symndx2h);
266abb8f 2394 }
7fb9f789
NC
2395
2396 if (elf_hash_table (info)->dynobj != NULL)
2397 /* Set sizes of .got and .rela.got sections. */
266abb8f 2398 {
7fb9f789 2399 asection *s;
425c6cb0 2400
7fb9f789
NC
2401 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".got");
2402 if (s != NULL)
cf869cce 2403 s->size = arg_.offset;
425c6cb0 2404 else
cf869cce 2405 BFD_ASSERT (arg_.offset == 0);
425c6cb0 2406
cf869cce
NC
2407 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2408 arg_.n_slots -= arg_.slots_relas_diff;
7fb9f789
NC
2409
2410 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".rela.got");
2411 if (s != NULL)
cf869cce 2412 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
3bdcfdf4 2413 else
cf869cce 2414 BFD_ASSERT (arg_.n_slots == 0);
9e1281c7 2415 }
7fb9f789
NC
2416 else
2417 BFD_ASSERT (multi_got->bfd2got == NULL);
9e1281c7 2418
b34976b6 2419 return TRUE;
9e1281c7
CM
2420}
2421
7fb9f789
NC
2422/* Specialized version of elf_m68k_get_got_entry that returns pointer
2423 to hashtable slot, thus allowing removal of entry via
2424 elf_m68k_remove_got_entry. */
2425
2426static struct elf_m68k_got_entry **
2427elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
2428 struct elf_m68k_got_entry_key *key)
9e1281c7 2429{
7fb9f789
NC
2430 void **ptr;
2431 struct elf_m68k_got_entry entry_;
2432 struct elf_m68k_got_entry **entry_ptr;
9e1281c7 2433
7fb9f789
NC
2434 entry_.key_ = *key;
2435 ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
2436 BFD_ASSERT (ptr != NULL);
9e1281c7 2437
7fb9f789 2438 entry_ptr = (struct elf_m68k_got_entry **) ptr;
9e1281c7 2439
7fb9f789
NC
2440 return entry_ptr;
2441}
9e1281c7 2442
7fb9f789 2443/* Remove entry pointed to by ENTRY_PTR from GOT. */
9e1281c7 2444
7fb9f789
NC
2445static void
2446elf_m68k_remove_got_entry (struct elf_m68k_got *got,
2447 struct elf_m68k_got_entry **entry_ptr)
2448{
2449 struct elf_m68k_got_entry *entry;
2450
2451 entry = *entry_ptr;
2452
2453 /* Check that offsets have not been finalized yet. */
2454 BFD_ASSERT (got->offset == (bfd_vma) -1);
2455 /* Check that this entry is indeed unused. */
2456 BFD_ASSERT (entry->u.s1.refcount == 0);
2457
cf869cce 2458 elf_m68k_remove_got_entry_type (got, entry->key_.type);
7fb9f789
NC
2459
2460 if (entry->key_.bfd != NULL)
cf869cce
NC
2461 got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
2462
2463 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
7fb9f789
NC
2464
2465 htab_clear_slot (got->entries, (void **) entry_ptr);
2466}
2467
2468/* Copy any information related to dynamic linking from a pre-existing
2469 symbol to a newly created symbol. Also called to copy flags and
2470 other back-end info to a weakdef, in which case the symbol is not
2471 newly created and plt/got refcounts and dynamic indices should not
2472 be copied. */
2473
2474static void
2475elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2476 struct elf_link_hash_entry *_dir,
2477 struct elf_link_hash_entry *_ind)
2478{
2479 struct elf_m68k_link_hash_entry *dir;
2480 struct elf_m68k_link_hash_entry *ind;
2481
2482 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2483
2484 if (_ind->root.type != bfd_link_hash_indirect)
2485 return;
2486
2487 dir = elf_m68k_hash_entry (_dir);
2488 ind = elf_m68k_hash_entry (_ind);
2489
2490 /* We might have a direct symbol already having entries in the GOTs.
2491 Update its key only in case indirect symbol has GOT entries and
2492 assert that both indirect and direct symbols don't have GOT entries
2493 at the same time. */
2494 if (ind->got_entry_key != 0)
266abb8f 2495 {
7fb9f789
NC
2496 BFD_ASSERT (dir->got_entry_key == 0);
2497 /* Assert that GOTs aren't partioned yet. */
2498 BFD_ASSERT (ind->glist == NULL);
425c6cb0 2499
7fb9f789
NC
2500 dir->got_entry_key = ind->got_entry_key;
2501 ind->got_entry_key = 0;
266abb8f 2502 }
9e1281c7 2503}
7fb9f789 2504
252b5132
RH
2505/* Look through the relocs for a section during the first phase, and
2506 allocate space in the global offset table or procedure linkage
2507 table. */
2508
b34976b6 2509static bfd_boolean
252b5132
RH
2510elf_m68k_check_relocs (abfd, info, sec, relocs)
2511 bfd *abfd;
2512 struct bfd_link_info *info;
2513 asection *sec;
2514 const Elf_Internal_Rela *relocs;
2515{
2516 bfd *dynobj;
2517 Elf_Internal_Shdr *symtab_hdr;
2518 struct elf_link_hash_entry **sym_hashes;
252b5132
RH
2519 const Elf_Internal_Rela *rel;
2520 const Elf_Internal_Rela *rel_end;
2521 asection *sgot;
2522 asection *srelgot;
2523 asection *sreloc;
7fb9f789 2524 struct elf_m68k_got *got;
252b5132 2525
1049f94e 2526 if (info->relocatable)
b34976b6 2527 return TRUE;
252b5132
RH
2528
2529 dynobj = elf_hash_table (info)->dynobj;
2530 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2531 sym_hashes = elf_sym_hashes (abfd);
252b5132
RH
2532
2533 sgot = NULL;
2534 srelgot = NULL;
2535 sreloc = NULL;
2536
7fb9f789
NC
2537 got = NULL;
2538
252b5132
RH
2539 rel_end = relocs + sec->reloc_count;
2540 for (rel = relocs; rel < rel_end; rel++)
2541 {
2542 unsigned long r_symndx;
2543 struct elf_link_hash_entry *h;
2544
2545 r_symndx = ELF32_R_SYM (rel->r_info);
2546
2547 if (r_symndx < symtab_hdr->sh_info)
2548 h = NULL;
2549 else
973a3492
L
2550 {
2551 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2552 while (h->root.type == bfd_link_hash_indirect
2553 || h->root.type == bfd_link_hash_warning)
2554 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2555 }
252b5132
RH
2556
2557 switch (ELF32_R_TYPE (rel->r_info))
2558 {
2559 case R_68K_GOT8:
2560 case R_68K_GOT16:
2561 case R_68K_GOT32:
2562 if (h != NULL
2563 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2564 break;
2565 /* Fall through. */
cf869cce
NC
2566
2567 /* Relative GOT relocations. */
252b5132
RH
2568 case R_68K_GOT8O:
2569 case R_68K_GOT16O:
2570 case R_68K_GOT32O:
cf869cce
NC
2571 /* Fall through. */
2572
2573 /* TLS relocations. */
2574 case R_68K_TLS_GD8:
2575 case R_68K_TLS_GD16:
2576 case R_68K_TLS_GD32:
2577 case R_68K_TLS_LDM8:
2578 case R_68K_TLS_LDM16:
2579 case R_68K_TLS_LDM32:
2580 case R_68K_TLS_IE8:
2581 case R_68K_TLS_IE16:
2582 case R_68K_TLS_IE32:
2583
252b5132
RH
2584 /* This symbol requires a global offset table entry. */
2585
2586 if (dynobj == NULL)
2587 {
2588 /* Create the .got section. */
2589 elf_hash_table (info)->dynobj = dynobj = abfd;
2590 if (!_bfd_elf_create_got_section (dynobj, info))
b34976b6 2591 return FALSE;
252b5132
RH
2592 }
2593
2594 if (sgot == NULL)
2595 {
2596 sgot = bfd_get_section_by_name (dynobj, ".got");
2597 BFD_ASSERT (sgot != NULL);
2598 }
2599
2600 if (srelgot == NULL
2601 && (h != NULL || info->shared))
2602 {
2603 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
2604 if (srelgot == NULL)
2605 {
3496cb2a
L
2606 srelgot = bfd_make_section_with_flags (dynobj,
2607 ".rela.got",
2608 (SEC_ALLOC
2609 | SEC_LOAD
2610 | SEC_HAS_CONTENTS
2611 | SEC_IN_MEMORY
2612 | SEC_LINKER_CREATED
2613 | SEC_READONLY));
252b5132 2614 if (srelgot == NULL
252b5132 2615 || !bfd_set_section_alignment (dynobj, srelgot, 2))
b34976b6 2616 return FALSE;
252b5132
RH
2617 }
2618 }
2619
7fb9f789 2620 if (got == NULL)
252b5132 2621 {
7fb9f789 2622 struct elf_m68k_bfd2got_entry *bfd2got_entry;
252b5132 2623
7fb9f789
NC
2624 bfd2got_entry
2625 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2626 abfd, FIND_OR_CREATE, info);
2627 if (bfd2got_entry == NULL)
2628 return FALSE;
252b5132 2629
7fb9f789
NC
2630 got = bfd2got_entry->got;
2631 BFD_ASSERT (got != NULL);
252b5132 2632 }
7fb9f789
NC
2633
2634 {
2635 struct elf_m68k_got_entry *got_entry;
2636
2637 /* Add entry to got. */
2638 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2639 ELF32_R_TYPE (rel->r_info),
2640 r_symndx, info);
2641 if (got_entry == NULL)
2642 return FALSE;
2643
2644 if (got_entry->u.s1.refcount == 1)
2645 {
2646 /* Make sure this symbol is output as a dynamic symbol. */
2647 if (h != NULL
2648 && h->dynindx == -1
2649 && !h->forced_local)
2650 {
2651 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2652 return FALSE;
2653 }
7fb9f789
NC
2654 }
2655 }
2656
252b5132
RH
2657 break;
2658
2659 case R_68K_PLT8:
2660 case R_68K_PLT16:
2661 case R_68K_PLT32:
2662 /* This symbol requires a procedure linkage table entry. We
2663 actually build the entry in adjust_dynamic_symbol,
2664 because this might be a case of linking PIC code which is
2665 never referenced by a dynamic object, in which case we
2666 don't need to generate a procedure linkage table entry
2667 after all. */
2668
2669 /* If this is a local symbol, we resolve it directly without
2670 creating a procedure linkage table entry. */
2671 if (h == NULL)
2672 continue;
2673
f5385ebf 2674 h->needs_plt = 1;
51b64d56 2675 h->plt.refcount++;
252b5132
RH
2676 break;
2677
2678 case R_68K_PLT8O:
2679 case R_68K_PLT16O:
2680 case R_68K_PLT32O:
2681 /* This symbol requires a procedure linkage table entry. */
2682
2683 if (h == NULL)
2684 {
2685 /* It does not make sense to have this relocation for a
2686 local symbol. FIXME: does it? How to handle it if
2687 it does make sense? */
2688 bfd_set_error (bfd_error_bad_value);
b34976b6 2689 return FALSE;
252b5132
RH
2690 }
2691
2692 /* Make sure this symbol is output as a dynamic symbol. */
b6152c34 2693 if (h->dynindx == -1
f5385ebf 2694 && !h->forced_local)
252b5132 2695 {
c152c796 2696 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2697 return FALSE;
252b5132
RH
2698 }
2699
f5385ebf 2700 h->needs_plt = 1;
51b64d56 2701 h->plt.refcount++;
252b5132
RH
2702 break;
2703
2704 case R_68K_PC8:
2705 case R_68K_PC16:
2706 case R_68K_PC32:
2707 /* If we are creating a shared library and this is not a local
2708 symbol, we need to copy the reloc into the shared library.
2709 However when linking with -Bsymbolic and this is a global
2710 symbol which is defined in an object we are including in the
2711 link (i.e., DEF_REGULAR is set), then we can resolve the
2712 reloc directly. At this point we have not seen all the input
2713 files, so it is possible that DEF_REGULAR is not set now but
2714 will be set later (it is never cleared). We account for that
2715 possibility below by storing information in the
2716 pcrel_relocs_copied field of the hash table entry. */
2717 if (!(info->shared
2718 && (sec->flags & SEC_ALLOC) != 0
2719 && h != NULL
2720 && (!info->symbolic
b6152c34 2721 || h->root.type == bfd_link_hash_defweak
f5385ebf 2722 || !h->def_regular)))
252b5132
RH
2723 {
2724 if (h != NULL)
2725 {
2726 /* Make sure a plt entry is created for this symbol if
2727 it turns out to be a function defined by a dynamic
2728 object. */
51b64d56 2729 h->plt.refcount++;
252b5132
RH
2730 }
2731 break;
2732 }
2733 /* Fall through. */
2734 case R_68K_8:
2735 case R_68K_16:
2736 case R_68K_32:
2737 if (h != NULL)
2738 {
2739 /* Make sure a plt entry is created for this symbol if it
2740 turns out to be a function defined by a dynamic object. */
51b64d56 2741 h->plt.refcount++;
252b5132
RH
2742 }
2743
2744 /* If we are creating a shared library, we need to copy the
2745 reloc into the shared library. */
2746 if (info->shared
2747 && (sec->flags & SEC_ALLOC) != 0)
2748 {
2749 /* When creating a shared object, we must copy these
2750 reloc types into the output file. We create a reloc
2751 section in dynobj and make room for this reloc. */
2752 if (sreloc == NULL)
2753 {
83bac4b0
NC
2754 sreloc = _bfd_elf_make_dynamic_reloc_section
2755 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
252b5132 2756
252b5132 2757 if (sreloc == NULL)
83bac4b0 2758 return FALSE;
252b5132
RH
2759 }
2760
3e829b4a
AS
2761 if (sec->flags & SEC_READONLY
2762 /* Don't set DF_TEXTREL yet for PC relative
2763 relocations, they might be discarded later. */
2764 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2765 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2766 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2767 info->flags |= DF_TEXTREL;
2768
eea6121a 2769 sreloc->size += sizeof (Elf32_External_Rela);
252b5132 2770
b6152c34
AS
2771 /* We count the number of PC relative relocations we have
2772 entered for this symbol, so that we can discard them
2773 again if, in the -Bsymbolic case, the symbol is later
2774 defined by a regular object, or, in the normal shared
2775 case, the symbol is forced to be local. Note that this
2776 function is only called if we are using an m68kelf linker
2777 hash table, which means that h is really a pointer to an
252b5132 2778 elf_m68k_link_hash_entry. */
b6152c34
AS
2779 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2780 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2781 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
252b5132 2782 {
252b5132 2783 struct elf_m68k_pcrel_relocs_copied *p;
b6152c34
AS
2784 struct elf_m68k_pcrel_relocs_copied **head;
2785
2786 if (h != NULL)
2787 {
2788 struct elf_m68k_link_hash_entry *eh
0cca5f05 2789 = elf_m68k_hash_entry (h);
b6152c34
AS
2790 head = &eh->pcrel_relocs_copied;
2791 }
2792 else
2793 {
2794 asection *s;
6edfbbad
DJ
2795 void *vpp;
2796
b6152c34
AS
2797 s = (bfd_section_from_r_symndx
2798 (abfd, &elf_m68k_hash_table (info)->sym_sec,
2799 sec, r_symndx));
2800 if (s == NULL)
2801 return FALSE;
252b5132 2802
6edfbbad
DJ
2803 vpp = &elf_section_data (s)->local_dynrel;
2804 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
b6152c34 2805 }
252b5132 2806
b6152c34 2807 for (p = *head; p != NULL; p = p->next)
252b5132
RH
2808 if (p->section == sreloc)
2809 break;
2810
2811 if (p == NULL)
2812 {
2813 p = ((struct elf_m68k_pcrel_relocs_copied *)
dc810e39 2814 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
252b5132 2815 if (p == NULL)
b34976b6 2816 return FALSE;
b6152c34
AS
2817 p->next = *head;
2818 *head = p;
252b5132
RH
2819 p->section = sreloc;
2820 p->count = 0;
2821 }
2822
2823 ++p->count;
2824 }
2825 }
2826
2827 break;
2828
2829 /* This relocation describes the C++ object vtable hierarchy.
2830 Reconstruct it for later use during GC. */
2831 case R_68K_GNU_VTINHERIT:
c152c796 2832 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 2833 return FALSE;
252b5132
RH
2834 break;
2835
2836 /* This relocation describes which C++ vtable entries are actually
2837 used. Record for later use during GC. */
2838 case R_68K_GNU_VTENTRY:
d17e0c6e
JB
2839 BFD_ASSERT (h != NULL);
2840 if (h != NULL
2841 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
b34976b6 2842 return FALSE;
252b5132
RH
2843 break;
2844
2845 default:
2846 break;
2847 }
2848 }
2849
b34976b6 2850 return TRUE;
252b5132
RH
2851}
2852
2853/* Return the section that should be marked against GC for a given
2854 relocation. */
2855
2856static asection *
07adf181
AM
2857elf_m68k_gc_mark_hook (asection *sec,
2858 struct bfd_link_info *info,
2859 Elf_Internal_Rela *rel,
2860 struct elf_link_hash_entry *h,
2861 Elf_Internal_Sym *sym)
252b5132
RH
2862{
2863 if (h != NULL)
07adf181
AM
2864 switch (ELF32_R_TYPE (rel->r_info))
2865 {
2866 case R_68K_GNU_VTINHERIT:
2867 case R_68K_GNU_VTENTRY:
2868 return NULL;
2869 }
2870
2871 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
252b5132
RH
2872}
2873
2874/* Update the got entry reference counts for the section being removed. */
2875
b34976b6 2876static bfd_boolean
07adf181
AM
2877elf_m68k_gc_sweep_hook (bfd *abfd,
2878 struct bfd_link_info *info,
2879 asection *sec,
2880 const Elf_Internal_Rela *relocs)
252b5132
RH
2881{
2882 Elf_Internal_Shdr *symtab_hdr;
2883 struct elf_link_hash_entry **sym_hashes;
252b5132 2884 const Elf_Internal_Rela *rel, *relend;
252b5132 2885 bfd *dynobj;
dd5724d5
AM
2886 asection *sgot;
2887 asection *srelgot;
7fb9f789 2888 struct elf_m68k_got *got;
252b5132 2889
7dda2462
TG
2890 if (info->relocatable)
2891 return TRUE;
2892
252b5132 2893 dynobj = elf_hash_table (info)->dynobj;
dd5724d5 2894 if (dynobj == NULL)
b34976b6 2895 return TRUE;
dd5724d5 2896
4f075348
KH
2897 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2898 sym_hashes = elf_sym_hashes (abfd);
4f075348 2899
dd5724d5
AM
2900 sgot = bfd_get_section_by_name (dynobj, ".got");
2901 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
7fb9f789 2902 got = NULL;
252b5132
RH
2903
2904 relend = relocs + sec->reloc_count;
2905 for (rel = relocs; rel < relend; rel++)
2906 {
4f075348 2907 unsigned long r_symndx;
3eb128b2
AM
2908 struct elf_link_hash_entry *h = NULL;
2909
2910 r_symndx = ELF32_R_SYM (rel->r_info);
2911 if (r_symndx >= symtab_hdr->sh_info)
2912 {
2913 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2914 while (h->root.type == bfd_link_hash_indirect
2915 || h->root.type == bfd_link_hash_warning)
2916 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2917 }
4f075348 2918
252b5132
RH
2919 switch (ELF32_R_TYPE (rel->r_info))
2920 {
2921 case R_68K_GOT8:
2922 case R_68K_GOT16:
2923 case R_68K_GOT32:
7fb9f789
NC
2924 if (h != NULL
2925 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2926 break;
2927
2928 /* FALLTHRU */
252b5132
RH
2929 case R_68K_GOT8O:
2930 case R_68K_GOT16O:
2931 case R_68K_GOT32O:
cf869cce
NC
2932 /* Fall through. */
2933
2934 /* TLS relocations. */
2935 case R_68K_TLS_GD8:
2936 case R_68K_TLS_GD16:
2937 case R_68K_TLS_GD32:
2938 case R_68K_TLS_LDM8:
2939 case R_68K_TLS_LDM16:
2940 case R_68K_TLS_LDM32:
2941 case R_68K_TLS_IE8:
2942 case R_68K_TLS_IE16:
2943 case R_68K_TLS_IE32:
2944
7fb9f789 2945 if (got == NULL)
252b5132 2946 {
7fb9f789
NC
2947 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2948 abfd, MUST_FIND, NULL)->got;
2949 BFD_ASSERT (got != NULL);
252b5132 2950 }
7fb9f789
NC
2951
2952 {
2953 struct elf_m68k_got_entry_key key_;
2954 struct elf_m68k_got_entry **got_entry_ptr;
2955 struct elf_m68k_got_entry *got_entry;
2956
cf869cce
NC
2957 elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
2958 ELF32_R_TYPE (rel->r_info));
7fb9f789
NC
2959 got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
2960
2961 got_entry = *got_entry_ptr;
2962
2963 if (got_entry->u.s1.refcount > 0)
2964 {
2965 --got_entry->u.s1.refcount;
2966
2967 if (got_entry->u.s1.refcount == 0)
2968 /* We don't need the .got entry any more. */
2969 elf_m68k_remove_got_entry (got, got_entry_ptr);
2970 }
2971 }
252b5132
RH
2972 break;
2973
2974 case R_68K_PLT8:
2975 case R_68K_PLT16:
2976 case R_68K_PLT32:
2977 case R_68K_PLT8O:
2978 case R_68K_PLT16O:
2979 case R_68K_PLT32O:
2980 case R_68K_PC8:
2981 case R_68K_PC16:
2982 case R_68K_PC32:
2983 case R_68K_8:
2984 case R_68K_16:
2985 case R_68K_32:
3eb128b2 2986 if (h != NULL)
252b5132 2987 {
252b5132
RH
2988 if (h->plt.refcount > 0)
2989 --h->plt.refcount;
2990 }
2991 break;
2992
2993 default:
2994 break;
2995 }
2996 }
2997
b34976b6 2998 return TRUE;
252b5132 2999}
cc3e26be
RS
3000\f
3001/* Return the type of PLT associated with OUTPUT_BFD. */
3002
3003static const struct elf_m68k_plt_info *
3004elf_m68k_get_plt_info (bfd *output_bfd)
3005{
3006 unsigned int features;
3007
3008 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
3009 if (features & cpu32)
3010 return &elf_cpu32_plt_info;
3011 if (features & mcfisa_b)
3012 return &elf_isab_plt_info;
9a2e615a
NS
3013 if (features & mcfisa_c)
3014 return &elf_isac_plt_info;
cc3e26be
RS
3015 return &elf_m68k_plt_info;
3016}
3017
3018/* This function is called after all the input files have been read,
3019 and the input sections have been assigned to output sections.
3020 It's a convenient place to determine the PLT style. */
3021
3022static bfd_boolean
3023elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
3024{
7fb9f789
NC
3025 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
3026 sections. */
3027 if (!elf_m68k_partition_multi_got (info))
3028 return FALSE;
3029
cc3e26be
RS
3030 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
3031 return TRUE;
3032}
252b5132 3033
252b5132
RH
3034/* Adjust a symbol defined by a dynamic object and referenced by a
3035 regular object. The current definition is in some section of the
3036 dynamic object, but we're not including those sections. We have to
3037 change the definition to something the rest of the link can
3038 understand. */
3039
b34976b6 3040static bfd_boolean
252b5132
RH
3041elf_m68k_adjust_dynamic_symbol (info, h)
3042 struct bfd_link_info *info;
3043 struct elf_link_hash_entry *h;
3044{
cc3e26be 3045 struct elf_m68k_link_hash_table *htab;
252b5132
RH
3046 bfd *dynobj;
3047 asection *s;
252b5132 3048
cc3e26be 3049 htab = elf_m68k_hash_table (info);
252b5132
RH
3050 dynobj = elf_hash_table (info)->dynobj;
3051
3052 /* Make sure we know what is going on here. */
3053 BFD_ASSERT (dynobj != NULL
f5385ebf 3054 && (h->needs_plt
f6e332e6 3055 || h->u.weakdef != NULL
f5385ebf
AM
3056 || (h->def_dynamic
3057 && h->ref_regular
3058 && !h->def_regular)));
252b5132
RH
3059
3060 /* If this is a function, put it in the procedure linkage table. We
3061 will fill in the contents of the procedure linkage table later,
3062 when we know the address of the .got section. */
3063 if (h->type == STT_FUNC
f5385ebf 3064 || h->needs_plt)
252b5132 3065 {
9dfe8738
AS
3066 if ((h->plt.refcount <= 0
3067 || SYMBOL_CALLS_LOCAL (info, h)
3068 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3069 && h->root.type == bfd_link_hash_undefweak))
252b5132
RH
3070 /* We must always create the plt entry if it was referenced
3071 by a PLTxxO relocation. In this case we already recorded
3072 it as a dynamic symbol. */
3073 && h->dynindx == -1)
3074 {
3075 /* This case can occur if we saw a PLTxx reloc in an input
3076 file, but the symbol was never referred to by a dynamic
9dfe8738
AS
3077 object, or if all references were garbage collected. In
3078 such a case, we don't actually need to build a procedure
3079 linkage table, and we can just do a PCxx reloc instead. */
252b5132 3080 h->plt.offset = (bfd_vma) -1;
f5385ebf 3081 h->needs_plt = 0;
b34976b6 3082 return TRUE;
252b5132
RH
3083 }
3084
3085 /* Make sure this symbol is output as a dynamic symbol. */
b6152c34 3086 if (h->dynindx == -1
f5385ebf 3087 && !h->forced_local)
252b5132 3088 {
c152c796 3089 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3090 return FALSE;
252b5132
RH
3091 }
3092
3093 s = bfd_get_section_by_name (dynobj, ".plt");
3094 BFD_ASSERT (s != NULL);
3095
3096 /* If this is the first .plt entry, make room for the special
3097 first entry. */
eea6121a 3098 if (s->size == 0)
cc3e26be 3099 s->size = htab->plt_info->size;
252b5132
RH
3100
3101 /* If this symbol is not defined in a regular file, and we are
3102 not generating a shared library, then set the symbol to this
3103 location in the .plt. This is required to make function
3104 pointers compare as equal between the normal executable and
3105 the shared library. */
3106 if (!info->shared
f5385ebf 3107 && !h->def_regular)
252b5132
RH
3108 {
3109 h->root.u.def.section = s;
eea6121a 3110 h->root.u.def.value = s->size;
252b5132
RH
3111 }
3112
eea6121a 3113 h->plt.offset = s->size;
252b5132
RH
3114
3115 /* Make room for this entry. */
cc3e26be 3116 s->size += htab->plt_info->size;
252b5132
RH
3117
3118 /* We also need to make an entry in the .got.plt section, which
3119 will be placed in the .got section by the linker script. */
252b5132
RH
3120 s = bfd_get_section_by_name (dynobj, ".got.plt");
3121 BFD_ASSERT (s != NULL);
eea6121a 3122 s->size += 4;
252b5132
RH
3123
3124 /* We also need to make an entry in the .rela.plt section. */
252b5132
RH
3125 s = bfd_get_section_by_name (dynobj, ".rela.plt");
3126 BFD_ASSERT (s != NULL);
eea6121a 3127 s->size += sizeof (Elf32_External_Rela);
252b5132 3128
b34976b6 3129 return TRUE;
252b5132
RH
3130 }
3131
3132 /* Reinitialize the plt offset now that it is not used as a reference
3133 count any more. */
3134 h->plt.offset = (bfd_vma) -1;
3135
3136 /* If this is a weak symbol, and there is a real definition, the
3137 processor independent code will have arranged for us to see the
3138 real definition first, and we can just use the same value. */
f6e332e6 3139 if (h->u.weakdef != NULL)
252b5132 3140 {
f6e332e6
AM
3141 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3142 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3143 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3144 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 3145 return TRUE;
252b5132
RH
3146 }
3147
3148 /* This is a reference to a symbol defined by a dynamic object which
3149 is not a function. */
3150
3151 /* If we are creating a shared library, we must presume that the
3152 only references to the symbol are via the global offset table.
3153 For such cases we need not do anything here; the relocations will
3154 be handled correctly by relocate_section. */
3155 if (info->shared)
b34976b6 3156 return TRUE;
252b5132 3157
909272ee
AM
3158 if (h->size == 0)
3159 {
3160 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
3161 h->root.root.string);
3162 return TRUE;
3163 }
3164
252b5132
RH
3165 /* We must allocate the symbol in our .dynbss section, which will
3166 become part of the .bss section of the executable. There will be
3167 an entry for this symbol in the .dynsym section. The dynamic
3168 object will contain position independent code, so all references
3169 from the dynamic object to this symbol will go through the global
3170 offset table. The dynamic linker will use the .dynsym entry to
3171 determine the address it must put in the global offset table, so
3172 both the dynamic object and the regular object will refer to the
3173 same memory location for the variable. */
3174
3175 s = bfd_get_section_by_name (dynobj, ".dynbss");
3176 BFD_ASSERT (s != NULL);
3177
3178 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3179 copy the initial value out of the dynamic object and into the
3180 runtime process image. We need to remember the offset into the
3181 .rela.bss section we are going to use. */
3182 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3183 {
3184 asection *srel;
3185
3186 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
3187 BFD_ASSERT (srel != NULL);
eea6121a 3188 srel->size += sizeof (Elf32_External_Rela);
f5385ebf 3189 h->needs_copy = 1;
252b5132
RH
3190 }
3191
027297b7 3192 return _bfd_elf_adjust_dynamic_copy (h, s);
252b5132
RH
3193}
3194
3195/* Set the sizes of the dynamic sections. */
3196
b34976b6 3197static bfd_boolean
252b5132 3198elf_m68k_size_dynamic_sections (output_bfd, info)
aa91b392 3199 bfd *output_bfd ATTRIBUTE_UNUSED;
252b5132
RH
3200 struct bfd_link_info *info;
3201{
3202 bfd *dynobj;
3203 asection *s;
b34976b6
AM
3204 bfd_boolean plt;
3205 bfd_boolean relocs;
252b5132
RH
3206
3207 dynobj = elf_hash_table (info)->dynobj;
3208 BFD_ASSERT (dynobj != NULL);
3209
3210 if (elf_hash_table (info)->dynamic_sections_created)
3211 {
3212 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 3213 if (info->executable)
252b5132
RH
3214 {
3215 s = bfd_get_section_by_name (dynobj, ".interp");
3216 BFD_ASSERT (s != NULL);
eea6121a 3217 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
252b5132
RH
3218 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3219 }
3220 }
3221 else
3222 {
3223 /* We may have created entries in the .rela.got section.
3224 However, if we are not creating the dynamic sections, we will
3225 not actually use these entries. Reset the size of .rela.got,
3226 which will cause it to get stripped from the output file
3227 below. */
3228 s = bfd_get_section_by_name (dynobj, ".rela.got");
3229 if (s != NULL)
eea6121a 3230 s->size = 0;
252b5132
RH
3231 }
3232
b6152c34
AS
3233 /* If this is a -Bsymbolic shared link, then we need to discard all
3234 PC relative relocs against symbols defined in a regular object.
3235 For the normal shared case we discard the PC relative relocs
3236 against symbols that have become local due to visibility changes.
3237 We allocated space for them in the check_relocs routine, but we
3238 will not fill them in in the relocate_section routine. */
3239 if (info->shared)
0cca5f05
AS
3240 elf_link_hash_traverse (elf_hash_table (info),
3241 elf_m68k_discard_copies,
3242 (PTR) info);
252b5132
RH
3243
3244 /* The check_relocs and adjust_dynamic_symbol entry points have
3245 determined the sizes of the various dynamic sections. Allocate
3246 memory for them. */
b34976b6
AM
3247 plt = FALSE;
3248 relocs = FALSE;
252b5132
RH
3249 for (s = dynobj->sections; s != NULL; s = s->next)
3250 {
3251 const char *name;
252b5132
RH
3252
3253 if ((s->flags & SEC_LINKER_CREATED) == 0)
3254 continue;
3255
3256 /* It's OK to base decisions on the section name, because none
3257 of the dynobj section names depend upon the input files. */
3258 name = bfd_get_section_name (dynobj, s);
3259
252b5132
RH
3260 if (strcmp (name, ".plt") == 0)
3261 {
c456f082
AM
3262 /* Remember whether there is a PLT. */
3263 plt = s->size != 0;
252b5132 3264 }
0112cd26 3265 else if (CONST_STRNEQ (name, ".rela"))
252b5132 3266 {
c456f082 3267 if (s->size != 0)
252b5132 3268 {
b34976b6 3269 relocs = TRUE;
252b5132
RH
3270
3271 /* We use the reloc_count field as a counter if we need
3272 to copy relocs into the output file. */
3273 s->reloc_count = 0;
3274 }
3275 }
0112cd26 3276 else if (! CONST_STRNEQ (name, ".got")
c456f082 3277 && strcmp (name, ".dynbss") != 0)
252b5132
RH
3278 {
3279 /* It's not one of our sections, so don't allocate space. */
3280 continue;
3281 }
3282
c456f082 3283 if (s->size == 0)
252b5132 3284 {
c456f082
AM
3285 /* If we don't need this section, strip it from the
3286 output file. This is mostly to handle .rela.bss and
3287 .rela.plt. We must create both sections in
3288 create_dynamic_sections, because they must be created
3289 before the linker maps input sections to output
3290 sections. The linker does that before
3291 adjust_dynamic_symbol is called, and it is that
3292 function which decides whether anything needs to go
3293 into these sections. */
8423293d 3294 s->flags |= SEC_EXCLUDE;
252b5132
RH
3295 continue;
3296 }
3297
c456f082
AM
3298 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3299 continue;
3300
252b5132 3301 /* Allocate memory for the section contents. */
7a9af8c4
NC
3302 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3303 Unused entries should be reclaimed before the section's contents
3304 are written out, but at the moment this does not happen. Thus in
3305 order to prevent writing out garbage, we initialise the section's
3306 contents to zero. */
eea6121a 3307 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 3308 if (s->contents == NULL)
b34976b6 3309 return FALSE;
252b5132
RH
3310 }
3311
3312 if (elf_hash_table (info)->dynamic_sections_created)
3313 {
3314 /* Add some entries to the .dynamic section. We fill in the
3315 values later, in elf_m68k_finish_dynamic_sections, but we
3316 must add the entries now so that we get the correct size for
3317 the .dynamic section. The DT_DEBUG entry is filled in by the
3318 dynamic linker and used by the debugger. */
dc810e39 3319#define add_dynamic_entry(TAG, VAL) \
5a580b3a 3320 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39 3321
252b5132
RH
3322 if (!info->shared)
3323 {
dc810e39 3324 if (!add_dynamic_entry (DT_DEBUG, 0))
b34976b6 3325 return FALSE;
252b5132
RH
3326 }
3327
3328 if (plt)
3329 {
dc810e39
AM
3330 if (!add_dynamic_entry (DT_PLTGOT, 0)
3331 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3332 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3333 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 3334 return FALSE;
252b5132
RH
3335 }
3336
3337 if (relocs)
3338 {
dc810e39
AM
3339 if (!add_dynamic_entry (DT_RELA, 0)
3340 || !add_dynamic_entry (DT_RELASZ, 0)
3341 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
b34976b6 3342 return FALSE;
252b5132
RH
3343 }
3344
aa91b392 3345 if ((info->flags & DF_TEXTREL) != 0)
252b5132 3346 {
dc810e39 3347 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 3348 return FALSE;
252b5132
RH
3349 }
3350 }
dc810e39 3351#undef add_dynamic_entry
252b5132 3352
b34976b6 3353 return TRUE;
252b5132
RH
3354}
3355
0cca5f05 3356/* This function is called via elf_link_hash_traverse if we are
b6152c34
AS
3357 creating a shared object. In the -Bsymbolic case it discards the
3358 space allocated to copy PC relative relocs against symbols which
3e829b4a 3359 are defined in regular objects. For the normal shared case, it
b6152c34
AS
3360 discards space for pc-relative relocs that have become local due to
3361 symbol visibility changes. We allocated space for them in the
3362 check_relocs routine, but we won't fill them in in the
3e829b4a
AS
3363 relocate_section routine.
3364
3365 We also check whether any of the remaining relocations apply
3366 against a readonly section, and set the DF_TEXTREL flag in this
3367 case. */
252b5132 3368
b34976b6 3369static bfd_boolean
b6152c34 3370elf_m68k_discard_copies (h, inf)
0cca5f05 3371 struct elf_link_hash_entry *h;
b6152c34 3372 PTR inf;
252b5132 3373{
b6152c34 3374 struct bfd_link_info *info = (struct bfd_link_info *) inf;
252b5132
RH
3375 struct elf_m68k_pcrel_relocs_copied *s;
3376
0cca5f05
AS
3377 if (h->root.type == bfd_link_hash_warning)
3378 h = (struct elf_link_hash_entry *) h->root.u.i.link;
e92d460e 3379
2516a1ee 3380 if (!SYMBOL_CALLS_LOCAL (info, h))
3e829b4a
AS
3381 {
3382 if ((info->flags & DF_TEXTREL) == 0)
3383 {
3384 /* Look for relocations against read-only sections. */
0cca5f05
AS
3385 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3386 s != NULL;
3387 s = s->next)
3e829b4a
AS
3388 if ((s->section->flags & SEC_READONLY) != 0)
3389 {
3390 info->flags |= DF_TEXTREL;
3391 break;
3392 }
3393 }
0cca5f05 3394
3e829b4a
AS
3395 return TRUE;
3396 }
252b5132 3397
0cca5f05
AS
3398 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3399 s != NULL;
3400 s = s->next)
eea6121a 3401 s->section->size -= s->count * sizeof (Elf32_External_Rela);
252b5132 3402
b34976b6 3403 return TRUE;
252b5132
RH
3404}
3405
cf869cce
NC
3406
3407/* Install relocation RELA. */
3408
3409static void
3410elf_m68k_install_rela (bfd *output_bfd,
3411 asection *srela,
3412 Elf_Internal_Rela *rela)
3413{
3414 bfd_byte *loc;
3415
3416 loc = srela->contents;
3417 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3418 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3419}
3420
3421/* Return the base VMA address which should be subtracted from real addresses
3422 when resolving @dtpoff relocation.
3423 This is PT_TLS segment p_vaddr. */
3424
3425static bfd_vma
3426dtpoff_base (struct bfd_link_info *info)
3427{
3428 /* If tls_sec is NULL, we should have signalled an error already. */
3429 if (elf_hash_table (info)->tls_sec == NULL)
3430 return 0;
3431 return elf_hash_table (info)->tls_sec->vma;
3432}
3433
3434/* Return the relocation value for @tpoff relocation
3435 if STT_TLS virtual address is ADDRESS. */
3436
3437static bfd_vma
3438tpoff (struct bfd_link_info *info, bfd_vma address)
3439{
3440 struct elf_link_hash_table *htab = elf_hash_table (info);
3441 bfd_vma base;
3442
3443 /* If tls_sec is NULL, we should have signalled an error already. */
3444 if (htab->tls_sec == NULL)
3445 return 0;
3446 base = align_power ((bfd_vma) 8, htab->tls_sec->alignment_power);
3447 return address - htab->tls_sec->vma + base;
3448}
3449
252b5132
RH
3450/* Relocate an M68K ELF section. */
3451
b34976b6 3452static bfd_boolean
252b5132
RH
3453elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
3454 contents, relocs, local_syms, local_sections)
3455 bfd *output_bfd;
3456 struct bfd_link_info *info;
3457 bfd *input_bfd;
3458 asection *input_section;
3459 bfd_byte *contents;
3460 Elf_Internal_Rela *relocs;
3461 Elf_Internal_Sym *local_syms;
3462 asection **local_sections;
3463{
3464 bfd *dynobj;
3465 Elf_Internal_Shdr *symtab_hdr;
3466 struct elf_link_hash_entry **sym_hashes;
252b5132
RH
3467 asection *sgot;
3468 asection *splt;
3469 asection *sreloc;
7fb9f789 3470 struct elf_m68k_got *got;
252b5132
RH
3471 Elf_Internal_Rela *rel;
3472 Elf_Internal_Rela *relend;
3473
3474 dynobj = elf_hash_table (info)->dynobj;
3475 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3476 sym_hashes = elf_sym_hashes (input_bfd);
252b5132
RH
3477
3478 sgot = NULL;
3479 splt = NULL;
3480 sreloc = NULL;
3481
7fb9f789
NC
3482 got = NULL;
3483
252b5132
RH
3484 rel = relocs;
3485 relend = relocs + input_section->reloc_count;
3486 for (; rel < relend; rel++)
3487 {
3488 int r_type;
3489 reloc_howto_type *howto;
3490 unsigned long r_symndx;
3491 struct elf_link_hash_entry *h;
3492 Elf_Internal_Sym *sym;
3493 asection *sec;
3494 bfd_vma relocation;
44f745a6 3495 bfd_boolean unresolved_reloc;
252b5132
RH
3496 bfd_reloc_status_type r;
3497
3498 r_type = ELF32_R_TYPE (rel->r_info);
3499 if (r_type < 0 || r_type >= (int) R_68K_max)
3500 {
3501 bfd_set_error (bfd_error_bad_value);
b34976b6 3502 return FALSE;
252b5132
RH
3503 }
3504 howto = howto_table + r_type;
3505
3506 r_symndx = ELF32_R_SYM (rel->r_info);
3507
252b5132
RH
3508 h = NULL;
3509 sym = NULL;
3510 sec = NULL;
44f745a6 3511 unresolved_reloc = FALSE;
560e09e9 3512
252b5132
RH
3513 if (r_symndx < symtab_hdr->sh_info)
3514 {
3515 sym = local_syms + r_symndx;
3516 sec = local_sections[r_symndx];
8517fae7 3517 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
252b5132
RH
3518 }
3519 else
3520 {
560e09e9
NC
3521 bfd_boolean warned;
3522
b2a8e766
AM
3523 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3524 r_symndx, symtab_hdr, sym_hashes,
3525 h, sec, relocation,
3526 unresolved_reloc, warned);
252b5132
RH
3527 }
3528
ab96bf03
AM
3529 if (sec != NULL && elf_discarded_section (sec))
3530 {
3531 /* For relocs against symbols from removed linkonce sections,
3532 or sections discarded by a linker script, we just want the
3533 section contents zeroed. Avoid any special processing. */
3534 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
3535 rel->r_info = 0;
3536 rel->r_addend = 0;
3537 continue;
3538 }
3539
3540 if (info->relocatable)
3541 continue;
3542
252b5132
RH
3543 switch (r_type)
3544 {
3545 case R_68K_GOT8:
3546 case R_68K_GOT16:
3547 case R_68K_GOT32:
3548 /* Relocation is to the address of the entry for this symbol
3549 in the global offset table. */
3550 if (h != NULL
3551 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7fb9f789 3552 {
7fb9f789
NC
3553 if (elf_m68k_hash_table (info)->local_gp_p)
3554 {
3555 bfd_vma sgot_output_offset;
3556 bfd_vma got_offset;
3557
3558 if (sgot == NULL)
3559 {
3560 sgot = bfd_get_section_by_name (dynobj, ".got");
3561
3562 if (sgot != NULL)
3563 sgot_output_offset = sgot->output_offset;
3564 else
3565 /* In this case we have a reference to
3566 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3567 empty.
3568 ??? Issue a warning? */
3569 sgot_output_offset = 0;
3570 }
3571 else
3572 sgot_output_offset = sgot->output_offset;
3573
3574 if (got == NULL)
3575 {
3576 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3577
3578 bfd2got_entry
3579 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3580 input_bfd, SEARCH, NULL);
3581
3582 if (bfd2got_entry != NULL)
3583 {
3584 got = bfd2got_entry->got;
3585 BFD_ASSERT (got != NULL);
3586
3587 got_offset = got->offset;
3588 }
3589 else
3590 /* In this case we have a reference to
3591 _GLOBAL_OFFSET_TABLE_, but no other references
3592 accessing any GOT entries.
3593 ??? Issue a warning? */
3594 got_offset = 0;
3595 }
3596 else
3597 got_offset = got->offset;
3598
3599 /* Adjust GOT pointer to point to the GOT
3600 assigned to input_bfd. */
f57718b4 3601 rel->r_addend += sgot_output_offset + got_offset;
7fb9f789
NC
3602 }
3603 else
3604 BFD_ASSERT (got == NULL || got->offset == 0);
3605
3606 break;
3607 }
252b5132
RH
3608 /* Fall through. */
3609 case R_68K_GOT8O:
3610 case R_68K_GOT16O:
3611 case R_68K_GOT32O:
cf869cce
NC
3612
3613 case R_68K_TLS_LDM32:
3614 case R_68K_TLS_LDM16:
3615 case R_68K_TLS_LDM8:
3616
3617 case R_68K_TLS_GD8:
3618 case R_68K_TLS_GD16:
3619 case R_68K_TLS_GD32:
3620
3621 case R_68K_TLS_IE8:
3622 case R_68K_TLS_IE16:
3623 case R_68K_TLS_IE32:
3624
252b5132
RH
3625 /* Relocation is the offset of the entry for this symbol in
3626 the global offset table. */
3627
3628 {
7fb9f789
NC
3629 struct elf_m68k_got_entry_key key_;
3630 bfd_vma *off_ptr;
252b5132
RH
3631 bfd_vma off;
3632
3633 if (sgot == NULL)
3634 {
3635 sgot = bfd_get_section_by_name (dynobj, ".got");
3636 BFD_ASSERT (sgot != NULL);
3637 }
3638
7fb9f789
NC
3639 if (got == NULL)
3640 {
3641 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3642 input_bfd, MUST_FIND,
3643 NULL)->got;
3644 BFD_ASSERT (got != NULL);
3645 }
3646
3647 /* Get GOT offset for this symbol. */
cf869cce
NC
3648 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3649 r_type);
7fb9f789
NC
3650 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3651 NULL)->u.s2.offset;
3652 off = *off_ptr;
3653
cf869cce
NC
3654 /* The offset must always be a multiple of 4. We use
3655 the least significant bit to record whether we have
3656 already generated the necessary reloc. */
3657 if ((off & 1) != 0)
3658 off &= ~1;
3659 else
252b5132 3660 {
cf869cce
NC
3661 if (h != NULL
3662 /* @TLSLDM relocations are bounded to the module, in
3663 which the symbol is defined -- not to the symbol
3664 itself. */
3665 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
252b5132 3666 {
cf869cce
NC
3667 bfd_boolean dyn;
3668
3669 dyn = elf_hash_table (info)->dynamic_sections_created;
3670 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3671 || (info->shared
3672 && SYMBOL_REFERENCES_LOCAL (info, h))
3673 || (ELF_ST_VISIBILITY (h->other)
3674 && h->root.type == bfd_link_hash_undefweak))
252b5132 3675 {
cf869cce
NC
3676 /* This is actually a static link, or it is a
3677 -Bsymbolic link and the symbol is defined
3678 locally, or the symbol was forced to be local
3679 because of a version file.. We must initialize
3680 this entry in the global offset table. Since
3681 the offset must always be a multiple of 4, we
3682 use the least significant bit to record whether
3683 we have initialized it already.
3684
3685 When doing a dynamic link, we create a .rela.got
3686 relocation entry to initialize the value. This
3687 is done in the finish_dynamic_symbol routine. */
3688
3689 if (elf_m68k_reloc_got_type (r_type) == R_68K_GOT32O)
3690 bfd_put_32 (output_bfd, relocation,
3691 sgot->contents + off);
3692 else if (elf_m68k_reloc_got_type (r_type)
3693 == R_68K_TLS_GD32)
3694 /* Mark it as belonging to module 1,
3695 the executable. */
3696 {
3697 bfd_put_32 (output_bfd, 1,
3698 sgot->contents + off);
3699 bfd_put_32 (output_bfd, (relocation
3700 - dtpoff_base (info)),
3701 sgot->contents + off + 4);
3702 }
3703 else if (elf_m68k_reloc_got_type (r_type)
3704 == R_68K_TLS_IE32)
3705 bfd_put_32 (output_bfd, tpoff (info, relocation),
3706 sgot->contents + off);
3707 else
3708 BFD_ASSERT (FALSE);
3709
7fb9f789 3710 *off_ptr |= 1;
252b5132 3711 }
cf869cce
NC
3712 else
3713 unresolved_reloc = FALSE;
252b5132 3714 }
cf869cce 3715 else if (info->shared) /* && h == NULL */
252b5132 3716 {
cf869cce
NC
3717 asection *srela;
3718 Elf_Internal_Rela outrel;
3719
3720 srela = bfd_get_section_by_name (dynobj, ".rela.got");
3721 BFD_ASSERT (srela != NULL);
252b5132 3722
cf869cce 3723 if (elf_m68k_reloc_got_type (r_type) == R_68K_GOT32O)
252b5132 3724 {
cf869cce
NC
3725 /* Emit RELATIVE relocation to initialize GOT slot
3726 at run-time. */
3727 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3728 outrel.r_addend = relocation;
3729 outrel.r_offset = (sgot->output_section->vma
3730 + sgot->output_offset
3731 + off);
252b5132 3732
cf869cce
NC
3733 elf_m68k_install_rela (output_bfd, srela, &outrel);
3734 }
3735 else if (elf_m68k_reloc_got_type (r_type)
3736 == R_68K_TLS_LDM32)
3737 {
3738 /* If we don't know the module number, create
3739 a relocation for it. */
3740 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3741 outrel.r_addend = 0;
3742 outrel.r_offset = (sgot->output_section->vma
3743 + sgot->output_offset
3744 + off);
252b5132 3745
cf869cce
NC
3746 elf_m68k_install_rela (output_bfd, srela, &outrel);
3747 }
3748 else if (elf_m68k_reloc_got_type (r_type)
3749 == R_68K_TLS_GD32)
3750 {
3751 /* If we don't know the module number, create
3752 a relocation for it. */
3753 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3754 outrel.r_addend = 0;
252b5132
RH
3755 outrel.r_offset = (sgot->output_section->vma
3756 + sgot->output_offset
3757 + off);
cf869cce
NC
3758
3759 elf_m68k_install_rela (output_bfd, srela, &outrel);
3760
3761 bfd_put_32 (output_bfd, (relocation
3762 - dtpoff_base (info)),
3763 sgot->contents + off + 4);
3764 }
3765 else if (elf_m68k_reloc_got_type (r_type)
3766 == R_68K_TLS_IE32)
3767 {
3768 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3769 outrel.r_addend = relocation - dtpoff_base (info);
3770 outrel.r_offset = (sgot->output_section->vma
3771 + sgot->output_offset
3772 + off);
3773
3774 elf_m68k_install_rela (output_bfd, srela, &outrel);
252b5132 3775 }
cf869cce
NC
3776 else
3777 BFD_ASSERT (FALSE);
3778
3779 bfd_put_32 (output_bfd, outrel.r_addend,
3780 sgot->contents + off);
3781
3782 *off_ptr |= 1;
3783 }
3784 else /* h == NULL && !info->shared */
3785 {
3786 if (elf_m68k_reloc_got_type (r_type) == R_68K_GOT32O)
3787 bfd_put_32 (output_bfd, relocation,
3788 sgot->contents + off);
3789 else if (elf_m68k_reloc_got_type (r_type)
3790 == R_68K_TLS_LDM32)
3791 /* If this is a static link, put the number of the
3792 only module in the GOT slot. */
3793 bfd_put_32 (output_bfd, 1, sgot->contents + off);
3794 else if (elf_m68k_reloc_got_type (r_type)
3795 == R_68K_TLS_GD32)
3796 {
3797 /* If we are not emitting relocations for a
3798 general dynamic reference, then we must be in a
3799 static link or an executable link with the
3800 symbol binding locally. Mark it as belonging
3801 to module 1, the executable. */
3802 bfd_put_32 (output_bfd, 1, sgot->contents + off);
3803 bfd_put_32 (output_bfd, (relocation
3804 - dtpoff_base (info)),
3805 sgot->contents + off + 4);
3806 }
3807 else if (elf_m68k_reloc_got_type (r_type)
3808 == R_68K_TLS_IE32)
3809 bfd_put_32 (output_bfd, tpoff (info, relocation),
3810 sgot->contents + off);
3811 else
3812 BFD_ASSERT (FALSE);
252b5132 3813
7fb9f789 3814 *off_ptr |= 1;
252b5132
RH
3815 }
3816 }
3817
cf869cce
NC
3818 /* We don't use elf_m68k_reloc_got_type in the condition below
3819 because this is the only place where difference between
3820 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3821 if (r_type == R_68K_GOT32O
252b5132 3822 || r_type == R_68K_GOT16O
cf869cce
NC
3823 || r_type == R_68K_GOT8O
3824 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3825 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3826 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
252b5132 3827 {
7fb9f789
NC
3828 /* GOT pointer is adjusted to point to the start/middle
3829 of local GOT. Adjust the offset accordingly. */
3830 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3831 || off >= got->offset);
3832
3833 if (elf_m68k_hash_table (info)->local_gp_p)
3834 relocation = off - got->offset;
3835 else
3836 {
3837 BFD_ASSERT (got->offset == 0);
3838 relocation = sgot->output_offset + off;
3839 }
3840
252b5132 3841 /* This relocation does not use the addend. */
7fb9f789 3842 BFD_ASSERT (rel->r_addend == 0);
252b5132
RH
3843 rel->r_addend = 0;
3844 }
3845 else
7fb9f789
NC
3846 relocation = (sgot->output_section->vma + sgot->output_offset
3847 + off);
252b5132
RH
3848 }
3849 break;
3850
cf869cce
NC
3851 case R_68K_TLS_LDO32:
3852 case R_68K_TLS_LDO16:
3853 case R_68K_TLS_LDO8:
3854 relocation -= dtpoff_base (info);
3855 break;
3856
3857 case R_68K_TLS_LE32:
3858 case R_68K_TLS_LE16:
3859 case R_68K_TLS_LE8:
3860 if (info->shared)
3861 {
3862 (*_bfd_error_handler)
3863 (_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted "
3864 "in shared object"),
3865 input_bfd, input_section, (long) rel->r_offset, howto->name);
3866
3867 return FALSE;
3868 }
3869 else
3870 relocation = tpoff (info, relocation);
3871
3872 break;
3873
252b5132
RH
3874 case R_68K_PLT8:
3875 case R_68K_PLT16:
3876 case R_68K_PLT32:
3877 /* Relocation is to the entry for this symbol in the
3878 procedure linkage table. */
3879
3880 /* Resolve a PLTxx reloc against a local symbol directly,
3881 without using the procedure linkage table. */
3882 if (h == NULL)
3883 break;
3884
3885 if (h->plt.offset == (bfd_vma) -1
3886 || !elf_hash_table (info)->dynamic_sections_created)
3887 {
3888 /* We didn't make a PLT entry for this symbol. This
3889 happens when statically linking PIC code, or when
3890 using -Bsymbolic. */
3891 break;
3892 }
3893
3894 if (splt == NULL)
3895 {
3896 splt = bfd_get_section_by_name (dynobj, ".plt");
3897 BFD_ASSERT (splt != NULL);
3898 }
3899
3900 relocation = (splt->output_section->vma
3901 + splt->output_offset
3902 + h->plt.offset);
44f745a6 3903 unresolved_reloc = FALSE;
252b5132
RH
3904 break;
3905
3906 case R_68K_PLT8O:
3907 case R_68K_PLT16O:
3908 case R_68K_PLT32O:
3909 /* Relocation is the offset of the entry for this symbol in
3910 the procedure linkage table. */
3911 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3912
3913 if (splt == NULL)
3914 {
3915 splt = bfd_get_section_by_name (dynobj, ".plt");
3916 BFD_ASSERT (splt != NULL);
3917 }
3918
3919 relocation = h->plt.offset;
44f745a6 3920 unresolved_reloc = FALSE;
252b5132
RH
3921
3922 /* This relocation does not use the addend. */
3923 rel->r_addend = 0;
3924
3925 break;
3926
252b5132
RH
3927 case R_68K_8:
3928 case R_68K_16:
3929 case R_68K_32:
2516a1ee
AS
3930 case R_68K_PC8:
3931 case R_68K_PC16:
3932 case R_68K_PC32:
252b5132 3933 if (info->shared
ec338859 3934 && r_symndx != 0
252b5132 3935 && (input_section->flags & SEC_ALLOC) != 0
d2ff124f
AS
3936 && (h == NULL
3937 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3938 || h->root.type != bfd_link_hash_undefweak)
252b5132
RH
3939 && ((r_type != R_68K_PC8
3940 && r_type != R_68K_PC16
3941 && r_type != R_68K_PC32)
2516a1ee 3942 || !SYMBOL_CALLS_LOCAL (info, h)))
252b5132
RH
3943 {
3944 Elf_Internal_Rela outrel;
947216bf 3945 bfd_byte *loc;
b34976b6 3946 bfd_boolean skip, relocate;
252b5132
RH
3947
3948 /* When generating a shared object, these relocations
3949 are copied into the output file to be resolved at run
3950 time. */
3951
b34976b6
AM
3952 skip = FALSE;
3953 relocate = FALSE;
252b5132 3954
c629eae0
JJ
3955 outrel.r_offset =
3956 _bfd_elf_section_offset (output_bfd, info, input_section,
3957 rel->r_offset);
3958 if (outrel.r_offset == (bfd_vma) -1)
b34976b6 3959 skip = TRUE;
0bb2d96a 3960 else if (outrel.r_offset == (bfd_vma) -2)
b34976b6 3961 skip = TRUE, relocate = TRUE;
252b5132
RH
3962 outrel.r_offset += (input_section->output_section->vma
3963 + input_section->output_offset);
3964
3965 if (skip)
0bb2d96a 3966 memset (&outrel, 0, sizeof outrel);
252b5132 3967 else if (h != NULL
d2ff124f
AS
3968 && h->dynindx != -1
3969 && (r_type == R_68K_PC8
3970 || r_type == R_68K_PC16
3971 || r_type == R_68K_PC32
3972 || !info->shared
3973 || !info->symbolic
f5385ebf 3974 || !h->def_regular))
252b5132 3975 {
252b5132 3976 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
d2ff124f 3977 outrel.r_addend = rel->r_addend;
252b5132
RH
3978 }
3979 else
3980 {
d2ff124f 3981 /* This symbol is local, or marked to become local. */
74541ad4
AM
3982 outrel.r_addend = relocation + rel->r_addend;
3983
252b5132
RH
3984 if (r_type == R_68K_32)
3985 {
b34976b6 3986 relocate = TRUE;
252b5132 3987 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
252b5132
RH
3988 }
3989 else
3990 {
3991 long indx;
3992
8517fae7 3993 if (bfd_is_abs_section (sec))
252b5132
RH
3994 indx = 0;
3995 else if (sec == NULL || sec->owner == NULL)
3996 {
3997 bfd_set_error (bfd_error_bad_value);
b34976b6 3998 return FALSE;
252b5132
RH
3999 }
4000 else
4001 {
4002 asection *osec;
4003
74541ad4
AM
4004 /* We are turning this relocation into one
4005 against a section symbol. It would be
4006 proper to subtract the symbol's value,
4007 osec->vma, from the emitted reloc addend,
4008 but ld.so expects buggy relocs. */
252b5132
RH
4009 osec = sec->output_section;
4010 indx = elf_section_data (osec)->dynindx;
74541ad4
AM
4011 if (indx == 0)
4012 {
4013 struct elf_link_hash_table *htab;
4014 htab = elf_hash_table (info);
4015 osec = htab->text_index_section;
4016 indx = elf_section_data (osec)->dynindx;
4017 }
4018 BFD_ASSERT (indx != 0);
252b5132
RH
4019 }
4020
252b5132 4021 outrel.r_info = ELF32_R_INFO (indx, r_type);
252b5132
RH
4022 }
4023 }
4024
d2ff124f
AS
4025 sreloc = elf_section_data (input_section)->sreloc;
4026 if (sreloc == NULL)
4027 abort ();
4028
947216bf
AM
4029 loc = sreloc->contents;
4030 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4031 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
252b5132
RH
4032
4033 /* This reloc will be computed at runtime, so there's no
4034 need to do anything now, except for R_68K_32
4035 relocations that have been turned into
4036 R_68K_RELATIVE. */
4037 if (!relocate)
4038 continue;
4039 }
4040
4041 break;
4042
4043 case R_68K_GNU_VTINHERIT:
4044 case R_68K_GNU_VTENTRY:
4045 /* These are no-ops in the end. */
4046 continue;
4047
4048 default:
4049 break;
4050 }
4051
44f745a6
AS
4052 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4053 because such sections are not SEC_ALLOC and thus ld.so will
4054 not process them. */
4055 if (unresolved_reloc
4056 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 4057 && h->def_dynamic))
44f745a6
AS
4058 {
4059 (*_bfd_error_handler)
843fe662 4060 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
d003868e
AM
4061 input_bfd,
4062 input_section,
44f745a6 4063 (long) rel->r_offset,
843fe662 4064 howto->name,
44f745a6
AS
4065 h->root.root.string);
4066 return FALSE;
4067 }
4068
cf869cce
NC
4069 if (r_symndx != 0
4070 && r_type != R_68K_NONE
4071 && (h == NULL
4072 || h->root.type == bfd_link_hash_defined
4073 || h->root.type == bfd_link_hash_defweak))
4074 {
4075 char sym_type;
4076
4077 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
4078
4079 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
4080 {
4081 const char *name;
4082
4083 if (h != NULL)
4084 name = h->root.root.string;
4085 else
4086 {
4087 name = (bfd_elf_string_from_elf_section
4088 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4089 if (name == NULL || *name == '\0')
4090 name = bfd_section_name (input_bfd, sec);
4091 }
4092
4093 (*_bfd_error_handler)
4094 ((sym_type == STT_TLS
4095 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4096 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4097 input_bfd,
4098 input_section,
4099 (long) rel->r_offset,
4100 howto->name,
4101 name);
4102 }
4103 }
4104
252b5132
RH
4105 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4106 contents, rel->r_offset,
4107 relocation, rel->r_addend);
4108
4109 if (r != bfd_reloc_ok)
4110 {
44f745a6
AS
4111 const char *name;
4112
4113 if (h != NULL)
4114 name = h->root.root.string;
4115 else
252b5132 4116 {
44f745a6
AS
4117 name = bfd_elf_string_from_elf_section (input_bfd,
4118 symtab_hdr->sh_link,
4119 sym->st_name);
4120 if (name == NULL)
4121 return FALSE;
4122 if (*name == '\0')
4123 name = bfd_section_name (input_bfd, sec);
4124 }
252b5132 4125
44f745a6
AS
4126 if (r == bfd_reloc_overflow)
4127 {
4128 if (!(info->callbacks->reloc_overflow
dfeffb9f
L
4129 (info, (h ? &h->root : NULL), name, howto->name,
4130 (bfd_vma) 0, input_bfd, input_section,
4131 rel->r_offset)))
44f745a6
AS
4132 return FALSE;
4133 }
4134 else
4135 {
4136 (*_bfd_error_handler)
d003868e
AM
4137 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4138 input_bfd, input_section,
44f745a6
AS
4139 (long) rel->r_offset, name, (int) r);
4140 return FALSE;
252b5132
RH
4141 }
4142 }
4143 }
4144
b34976b6 4145 return TRUE;
252b5132
RH
4146}
4147
cc3e26be
RS
4148/* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4149 into section SEC. */
4150
4151static void
4152elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4153{
4154 /* Make VALUE PC-relative. */
4155 value -= sec->output_section->vma + offset;
4156
4157 /* Apply any in-place addend. */
4158 value += bfd_get_32 (sec->owner, sec->contents + offset);
4159
4160 bfd_put_32 (sec->owner, value, sec->contents + offset);
4161}
4162
252b5132
RH
4163/* Finish up dynamic symbol handling. We set the contents of various
4164 dynamic sections here. */
4165
b34976b6 4166static bfd_boolean
252b5132
RH
4167elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
4168 bfd *output_bfd;
4169 struct bfd_link_info *info;
4170 struct elf_link_hash_entry *h;
4171 Elf_Internal_Sym *sym;
4172{
4173 bfd *dynobj;
4174
4175 dynobj = elf_hash_table (info)->dynobj;
4176
4177 if (h->plt.offset != (bfd_vma) -1)
4178 {
cc3e26be 4179 const struct elf_m68k_plt_info *plt_info;
252b5132
RH
4180 asection *splt;
4181 asection *sgot;
4182 asection *srela;
4183 bfd_vma plt_index;
4184 bfd_vma got_offset;
4185 Elf_Internal_Rela rela;
947216bf 4186 bfd_byte *loc;
252b5132
RH
4187
4188 /* This symbol has an entry in the procedure linkage table. Set
4189 it up. */
4190
4191 BFD_ASSERT (h->dynindx != -1);
4192
cc3e26be 4193 plt_info = elf_m68k_hash_table (info)->plt_info;
252b5132
RH
4194 splt = bfd_get_section_by_name (dynobj, ".plt");
4195 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
4196 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
4197 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4198
4199 /* Get the index in the procedure linkage table which
4200 corresponds to this symbol. This is the index of this symbol
4201 in all the symbols for which we are making plt entries. The
4202 first entry in the procedure linkage table is reserved. */
cc3e26be 4203 plt_index = (h->plt.offset / plt_info->size) - 1;
252b5132
RH
4204
4205 /* Get the offset into the .got table of the entry that
4206 corresponds to this function. Each .got entry is 4 bytes.
4207 The first three are reserved. */
4208 got_offset = (plt_index + 3) * 4;
4209
cc3e26be
RS
4210 memcpy (splt->contents + h->plt.offset,
4211 plt_info->symbol_entry,
4212 plt_info->size);
4213
4214 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4215 (sgot->output_section->vma
4216 + sgot->output_offset
4217 + got_offset));
252b5132
RH
4218
4219 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
cc3e26be
RS
4220 splt->contents
4221 + h->plt.offset
4222 + plt_info->symbol_resolve_entry + 2);
4223
4224 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4225 splt->output_section->vma);
252b5132
RH
4226
4227 /* Fill in the entry in the global offset table. */
4228 bfd_put_32 (output_bfd,
4229 (splt->output_section->vma
4230 + splt->output_offset
4231 + h->plt.offset
cc3e26be 4232 + plt_info->symbol_resolve_entry),
252b5132
RH
4233 sgot->contents + got_offset);
4234
4235 /* Fill in the entry in the .rela.plt section. */
4236 rela.r_offset = (sgot->output_section->vma
4237 + sgot->output_offset
4238 + got_offset);
4239 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4240 rela.r_addend = 0;
947216bf
AM
4241 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4242 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
252b5132 4243
f5385ebf 4244 if (!h->def_regular)
252b5132
RH
4245 {
4246 /* Mark the symbol as undefined, rather than as defined in
4247 the .plt section. Leave the value alone. */
4248 sym->st_shndx = SHN_UNDEF;
4249 }
4250 }
4251
7fb9f789 4252 if (elf_m68k_hash_entry (h)->glist != NULL)
252b5132
RH
4253 {
4254 asection *sgot;
4255 asection *srela;
7fb9f789 4256 struct elf_m68k_got_entry *got_entry;
252b5132
RH
4257
4258 /* This symbol has an entry in the global offset table. Set it
4259 up. */
4260
4261 sgot = bfd_get_section_by_name (dynobj, ".got");
4262 srela = bfd_get_section_by_name (dynobj, ".rela.got");
4263 BFD_ASSERT (sgot != NULL && srela != NULL);
4264
7fb9f789
NC
4265 got_entry = elf_m68k_hash_entry (h)->glist;
4266
4267 while (got_entry != NULL)
252b5132 4268 {
7fb9f789 4269 Elf_Internal_Rela rela;
cf869cce
NC
4270 bfd_vma got_entry_offset;
4271
4272 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
7fb9f789
NC
4273
4274 rela.r_offset = (sgot->output_section->vma
4275 + sgot->output_offset
cf869cce 4276 + got_entry_offset);
7fb9f789
NC
4277
4278 /* If this is a -Bsymbolic link, and the symbol is defined
4279 locally, we just want to emit a RELATIVE reloc. Likewise if
4280 the symbol was forced to be local because of a version file.
cf869cce 4281 The entry in the global offset table already have been
7fb9f789
NC
4282 initialized in the relocate_section function. */
4283 if (info->shared
2516a1ee 4284 && SYMBOL_REFERENCES_LOCAL (info, h))
7fb9f789 4285 {
7fb9f789
NC
4286 rela.r_addend = bfd_get_signed_32 (output_bfd,
4287 (sgot->contents
cf869cce
NC
4288 + got_entry_offset));
4289
4290 switch (elf_m68k_reloc_got_type (got_entry->key_.type))
4291 {
4292 case R_68K_GOT32O:
4293 rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
4294 break;
4295
4296 case R_68K_TLS_GD32:
4297 rela.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
4298 break;
4299
4300 case R_68K_TLS_IE32:
4301 rela.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
4302 break;
4303
4304 default:
4305 BFD_ASSERT (FALSE);
4306 break;
4307 }
4308
4309 elf_m68k_install_rela (output_bfd, srela, &rela);
7fb9f789
NC
4310 }
4311 else
4312 {
cf869cce
NC
4313 /* Put zeros to GOT slots that will be initialized
4314 at run-time. */
4315 {
4316 bfd_vma n_slots;
4317
4318 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4319 while (n_slots--)
4320 bfd_put_32 (output_bfd, (bfd_vma) 0,
4321 (sgot->contents + got_entry_offset
4322 + 4 * n_slots));
4323 }
4324
7fb9f789 4325 rela.r_addend = 0;
252b5132 4326
cf869cce
NC
4327 switch (elf_m68k_reloc_got_type (got_entry->key_.type))
4328 {
4329 case R_68K_GOT32O:
4330 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4331 elf_m68k_install_rela (output_bfd, srela, &rela);
4332 break;
4333
4334 case R_68K_TLS_GD32:
4335 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4336 elf_m68k_install_rela (output_bfd, srela, &rela);
4337
4338 rela.r_offset += 4;
4339 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4340 elf_m68k_install_rela (output_bfd, srela, &rela);
4341 break;
4342
4343 case R_68K_TLS_IE32:
4344 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4345 elf_m68k_install_rela (output_bfd, srela, &rela);
4346 break;
4347
4348 default:
4349 BFD_ASSERT (FALSE);
4350 break;
4351 }
4352 }
7fb9f789
NC
4353
4354 got_entry = got_entry->u.s2.next;
4355 }
252b5132
RH
4356 }
4357
f5385ebf 4358 if (h->needs_copy)
252b5132
RH
4359 {
4360 asection *s;
4361 Elf_Internal_Rela rela;
947216bf 4362 bfd_byte *loc;
252b5132
RH
4363
4364 /* This symbol needs a copy reloc. Set it up. */
4365
4366 BFD_ASSERT (h->dynindx != -1
4367 && (h->root.type == bfd_link_hash_defined
4368 || h->root.type == bfd_link_hash_defweak));
4369
4370 s = bfd_get_section_by_name (h->root.u.def.section->owner,
4371 ".rela.bss");
4372 BFD_ASSERT (s != NULL);
4373
4374 rela.r_offset = (h->root.u.def.value
4375 + h->root.u.def.section->output_section->vma
4376 + h->root.u.def.section->output_offset);
4377 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4378 rela.r_addend = 0;
947216bf
AM
4379 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4380 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
252b5132
RH
4381 }
4382
4383 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4384 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 4385 || h == elf_hash_table (info)->hgot)
252b5132
RH
4386 sym->st_shndx = SHN_ABS;
4387
b34976b6 4388 return TRUE;
252b5132
RH
4389}
4390
4391/* Finish up the dynamic sections. */
4392
b34976b6 4393static bfd_boolean
252b5132
RH
4394elf_m68k_finish_dynamic_sections (output_bfd, info)
4395 bfd *output_bfd;
4396 struct bfd_link_info *info;
4397{
4398 bfd *dynobj;
4399 asection *sgot;
4400 asection *sdyn;
4401
4402 dynobj = elf_hash_table (info)->dynobj;
4403
4404 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
4405 BFD_ASSERT (sgot != NULL);
4406 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4407
4408 if (elf_hash_table (info)->dynamic_sections_created)
4409 {
4410 asection *splt;
4411 Elf32_External_Dyn *dyncon, *dynconend;
4412
4413 splt = bfd_get_section_by_name (dynobj, ".plt");
4414 BFD_ASSERT (splt != NULL && sdyn != NULL);
4415
4416 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 4417 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
252b5132
RH
4418 for (; dyncon < dynconend; dyncon++)
4419 {
4420 Elf_Internal_Dyn dyn;
4421 const char *name;
4422 asection *s;
4423
4424 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4425
4426 switch (dyn.d_tag)
4427 {
4428 default:
4429 break;
4430
4431 case DT_PLTGOT:
4432 name = ".got";
4433 goto get_vma;
4434 case DT_JMPREL:
4435 name = ".rela.plt";
4436 get_vma:
4437 s = bfd_get_section_by_name (output_bfd, name);
4438 BFD_ASSERT (s != NULL);
4439 dyn.d_un.d_ptr = s->vma;
4440 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4441 break;
4442
4443 case DT_PLTRELSZ:
4444 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4445 BFD_ASSERT (s != NULL);
eea6121a 4446 dyn.d_un.d_val = s->size;
252b5132
RH
4447 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4448 break;
4449
4450 case DT_RELASZ:
4451 /* The procedure linkage table relocs (DT_JMPREL) should
4452 not be included in the overall relocs (DT_RELA).
4453 Therefore, we override the DT_RELASZ entry here to
4454 make it not include the JMPREL relocs. Since the
4455 linker script arranges for .rela.plt to follow all
4456 other relocation sections, we don't have to worry
4457 about changing the DT_RELA entry. */
4458 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4459 if (s != NULL)
eea6121a 4460 dyn.d_un.d_val -= s->size;
252b5132
RH
4461 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4462 break;
4463 }
4464 }
4465
4466 /* Fill in the first entry in the procedure linkage table. */
eea6121a 4467 if (splt->size > 0)
252b5132 4468 {
cc3e26be
RS
4469 const struct elf_m68k_plt_info *plt_info;
4470
4471 plt_info = elf_m68k_hash_table (info)->plt_info;
4472 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4473
4474 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4475 (sgot->output_section->vma
4476 + sgot->output_offset
4477 + 4));
4478
4479 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4480 (sgot->output_section->vma
4481 + sgot->output_offset
4482 + 8));
4483
4484 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4485 = plt_info->size;
252b5132 4486 }
252b5132
RH
4487 }
4488
4489 /* Fill in the first three entries in the global offset table. */
eea6121a 4490 if (sgot->size > 0)
252b5132
RH
4491 {
4492 if (sdyn == NULL)
4493 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4494 else
4495 bfd_put_32 (output_bfd,
4496 sdyn->output_section->vma + sdyn->output_offset,
4497 sgot->contents);
4498 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4499 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4500 }
4501
4502 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4503
b34976b6 4504 return TRUE;
252b5132
RH
4505}
4506
0752970e
NC
4507/* Given a .data section and a .emreloc in-memory section, store
4508 relocation information into the .emreloc section which can be
4509 used at runtime to relocate the section. This is called by the
4510 linker when the --embedded-relocs switch is used. This is called
4511 after the add_symbols entry point has been called for all the
4512 objects, and before the final_link entry point is called. */
4513
b34976b6 4514bfd_boolean
0752970e
NC
4515bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
4516 bfd *abfd;
4517 struct bfd_link_info *info;
4518 asection *datasec;
4519 asection *relsec;
4520 char **errmsg;
4521{
4522 Elf_Internal_Shdr *symtab_hdr;
6cdc0ccc
AM
4523 Elf_Internal_Sym *isymbuf = NULL;
4524 Elf_Internal_Rela *internal_relocs = NULL;
0752970e
NC
4525 Elf_Internal_Rela *irel, *irelend;
4526 bfd_byte *p;
dc810e39 4527 bfd_size_type amt;
0752970e 4528
1049f94e 4529 BFD_ASSERT (! info->relocatable);
0752970e
NC
4530
4531 *errmsg = NULL;
4532
4533 if (datasec->reloc_count == 0)
b34976b6 4534 return TRUE;
0752970e
NC
4535
4536 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9ad5cbcf 4537
0752970e 4538 /* Get a copy of the native relocations. */
45d6a902 4539 internal_relocs = (_bfd_elf_link_read_relocs
0752970e
NC
4540 (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
4541 info->keep_memory));
4542 if (internal_relocs == NULL)
4543 goto error_return;
0752970e 4544
dc810e39
AM
4545 amt = (bfd_size_type) datasec->reloc_count * 12;
4546 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
0752970e
NC
4547 if (relsec->contents == NULL)
4548 goto error_return;
4549
4550 p = relsec->contents;
4551
4552 irelend = internal_relocs + datasec->reloc_count;
4553 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4554 {
4555 asection *targetsec;
4556
4557 /* We are going to write a four byte longword into the runtime
4558 reloc section. The longword will be the address in the data
4559 section which must be relocated. It is followed by the name
4560 of the target section NUL-padded or truncated to 8
4561 characters. */
4562
4563 /* We can only relocate absolute longword relocs at run time. */
4564 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4565 {
4566 *errmsg = _("unsupported reloc type");
4567 bfd_set_error (bfd_error_bad_value);
4568 goto error_return;
4569 }
4570
4571 /* Get the target section referred to by the reloc. */
4572 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4573 {
0752970e 4574 /* A local symbol. */
6cdc0ccc
AM
4575 Elf_Internal_Sym *isym;
4576
4577 /* Read this BFD's local symbols if we haven't done so already. */
4578 if (isymbuf == NULL)
4579 {
4580 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4581 if (isymbuf == NULL)
4582 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4583 symtab_hdr->sh_info, 0,
4584 NULL, NULL, NULL);
4585 if (isymbuf == NULL)
4586 goto error_return;
4587 }
0752970e 4588
6cdc0ccc
AM
4589 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4590 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
0752970e
NC
4591 }
4592 else
4593 {
4594 unsigned long indx;
4595 struct elf_link_hash_entry *h;
4596
4597 /* An external symbol. */
4598 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4599 h = elf_sym_hashes (abfd)[indx];
4600 BFD_ASSERT (h != NULL);
4601 if (h->root.type == bfd_link_hash_defined
4602 || h->root.type == bfd_link_hash_defweak)
4603 targetsec = h->root.u.def.section;
4604 else
4605 targetsec = NULL;
4606 }
4607
4608 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4609 memset (p + 4, 0, 8);
4610 if (targetsec != NULL)
f075ee0c 4611 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
0752970e 4612 }
c3668558 4613
6cdc0ccc
AM
4614 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4615 free (isymbuf);
4616 if (internal_relocs != NULL
4617 && elf_section_data (datasec)->relocs != internal_relocs)
4618 free (internal_relocs);
b34976b6 4619 return TRUE;
0752970e
NC
4620
4621error_return:
6cdc0ccc
AM
4622 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4623 free (isymbuf);
4624 if (internal_relocs != NULL
4625 && elf_section_data (datasec)->relocs != internal_relocs)
4626 free (internal_relocs);
b34976b6 4627 return FALSE;
0752970e
NC
4628}
4629
7fb9f789
NC
4630/* Set target options. */
4631
4632void
4633bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4634{
4635 struct elf_m68k_link_hash_table *htab;
4636
4637 htab = elf_m68k_hash_table (info);
4638
4639 switch (got_handling)
4640 {
4641 case 0:
4642 /* --got=single. */
4643 htab->local_gp_p = FALSE;
4644 htab->use_neg_got_offsets_p = FALSE;
4645 htab->allow_multigot_p = FALSE;
4646 break;
4647
4648 case 1:
4649 /* --got=negative. */
4650 htab->local_gp_p = TRUE;
4651 htab->use_neg_got_offsets_p = TRUE;
4652 htab->allow_multigot_p = FALSE;
4653 break;
4654
4655 case 2:
4656 /* --got=multigot. */
4657 htab->local_gp_p = TRUE;
4658 htab->use_neg_got_offsets_p = TRUE;
4659 htab->allow_multigot_p = TRUE;
4660 break;
4661
4662 default:
4663 BFD_ASSERT (FALSE);
4664 }
4665}
4666
aa91b392 4667static enum elf_reloc_type_class
f51e552e
AM
4668elf32_m68k_reloc_type_class (rela)
4669 const Elf_Internal_Rela *rela;
aa91b392 4670{
f51e552e 4671 switch ((int) ELF32_R_TYPE (rela->r_info))
aa91b392
AS
4672 {
4673 case R_68K_RELATIVE:
4674 return reloc_class_relative;
4675 case R_68K_JMP_SLOT:
4676 return reloc_class_plt;
4677 case R_68K_COPY:
4678 return reloc_class_copy;
4679 default:
4680 return reloc_class_normal;
4681 }
4682}
4683
1715e0e3
AS
4684/* Return address for Ith PLT stub in section PLT, for relocation REL
4685 or (bfd_vma) -1 if it should not be included. */
4686
4687static bfd_vma
4688elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4689 const arelent *rel ATTRIBUTE_UNUSED)
4690{
cc3e26be 4691 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
1715e0e3
AS
4692}
4693
252b5132
RH
4694#define TARGET_BIG_SYM bfd_elf32_m68k_vec
4695#define TARGET_BIG_NAME "elf32-m68k"
4696#define ELF_MACHINE_CODE EM_68K
4697#define ELF_MAXPAGESIZE 0x2000
4698#define elf_backend_create_dynamic_sections \
4699 _bfd_elf_create_dynamic_sections
4700#define bfd_elf32_bfd_link_hash_table_create \
4701 elf_m68k_link_hash_table_create
7fb9f789
NC
4702/* ??? Should it be this macro or bfd_elfNN_bfd_link_hash_table_create? */
4703#define bfd_elf32_bfd_link_hash_table_free \
4704 elf_m68k_link_hash_table_free
4705#define bfd_elf32_bfd_final_link bfd_elf_final_link
252b5132
RH
4706
4707#define elf_backend_check_relocs elf_m68k_check_relocs
cc3e26be
RS
4708#define elf_backend_always_size_sections \
4709 elf_m68k_always_size_sections
252b5132
RH
4710#define elf_backend_adjust_dynamic_symbol \
4711 elf_m68k_adjust_dynamic_symbol
4712#define elf_backend_size_dynamic_sections \
4713 elf_m68k_size_dynamic_sections
74541ad4 4714#define elf_backend_init_index_section _bfd_elf_init_1_index_section
252b5132
RH
4715#define elf_backend_relocate_section elf_m68k_relocate_section
4716#define elf_backend_finish_dynamic_symbol \
4717 elf_m68k_finish_dynamic_symbol
4718#define elf_backend_finish_dynamic_sections \
4719 elf_m68k_finish_dynamic_sections
4720#define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4721#define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
7fb9f789 4722#define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
9e1281c7
CM
4723#define bfd_elf32_bfd_merge_private_bfd_data \
4724 elf32_m68k_merge_private_bfd_data
4725#define bfd_elf32_bfd_set_private_flags \
4726 elf32_m68k_set_private_flags
4727#define bfd_elf32_bfd_print_private_bfd_data \
4728 elf32_m68k_print_private_bfd_data
aa91b392 4729#define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
1715e0e3 4730#define elf_backend_plt_sym_val elf_m68k_plt_sym_val
266abb8f 4731#define elf_backend_object_p elf32_m68k_object_p
9e1281c7 4732
252b5132 4733#define elf_backend_can_gc_sections 1
51b64d56 4734#define elf_backend_can_refcount 1
252b5132
RH
4735#define elf_backend_want_got_plt 1
4736#define elf_backend_plt_readonly 1
4737#define elf_backend_want_plt_sym 0
4738#define elf_backend_got_header_size 12
b491616a 4739#define elf_backend_rela_normal 1
252b5132
RH
4740
4741#include "elf32-target.h"
This page took 0.781536 seconds and 4 git commands to generate.