* arc-dis.c: Don't include <ctype.h>.
[deliverable/binutils-gdb.git] / bfd / elf32-mips.c
CommitLineData
efcbd82c 1/* MIPS-specific support for 32-bit ELF
7898deda 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
be3ccd9c 3 Free Software Foundation, Inc.
252b5132
RH
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
103186c6
MM
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
f7cb7d68
UC
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
252b5132
RH
11
12This file is part of BFD, the Binary File Descriptor library.
13
14This program is free software; you can redistribute it and/or modify
15it under the terms of the GNU General Public License as published by
16the Free Software Foundation; either version 2 of the License, or
17(at your option) any later version.
18
19This program is distributed in the hope that it will be useful,
20but WITHOUT ANY WARRANTY; without even the implied warranty of
21MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22GNU General Public License for more details.
23
24You should have received a copy of the GNU General Public License
25along with this program; if not, write to the Free Software
26Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28/* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
31
32#include "bfd.h"
33#include "sysdep.h"
34#include "libbfd.h"
35#include "bfdlink.h"
36#include "genlink.h"
37#include "elf-bfd.h"
38#include "elf/mips.h"
39
40/* Get the ECOFF swapping routines. */
41#include "coff/sym.h"
42#include "coff/symconst.h"
43#include "coff/internal.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
23e2c83b 46#define ECOFF_SIGNED_32
252b5132
RH
47#include "ecoffswap.h"
48
7403cb63
MM
49/* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
51
38b1a46c
NC
52struct mips_got_info
53{
7403cb63
MM
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
b3be9b46
RH
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
7403cb63
MM
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
63};
64
65/* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
67
38b1a46c
NC
68struct mips_elf_link_hash_entry
69{
7403cb63
MM
70 struct elf_link_hash_entry root;
71
72 /* External symbol information. */
73 EXTR esym;
74
a3c7651d 75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
be3ccd9c 76 this symbol. */
a3c7651d 77 unsigned int possibly_dynamic_relocs;
7403cb63 78
43917054
L
79 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
80 a readonly section. */
81 boolean readonly_reloc;
82
7403cb63
MM
83 /* The index of the first dynamic relocation (in the .rel.dyn
84 section) against this symbol. */
85 unsigned int min_dyn_reloc_index;
86
9117d219
NC
87 /* We must not create a stub for a symbol that has relocations
88 related to taking the function's address, i.e. any but
89 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
90 p. 4-20. */
91 boolean no_fn_stub;
92
7403cb63
MM
93 /* If there is a stub that 32 bit functions should use to call this
94 16 bit function, this points to the section containing the stub. */
95 asection *fn_stub;
96
97 /* Whether we need the fn_stub; this is set if this symbol appears
98 in any relocs other than a 16 bit call. */
99 boolean need_fn_stub;
100
101 /* If there is a stub that 16 bit functions should use to call this
102 32 bit function, this points to the section containing the stub. */
103 asection *call_stub;
104
105 /* This is like the call_stub field, but it is used if the function
106 being called returns a floating point value. */
107 asection *call_fp_stub;
108};
109
252b5132
RH
110static bfd_reloc_status_type mips32_64bit_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
113 PARAMS ((bfd *, bfd_reloc_code_real_type));
c9b3cbf3
RH
114static reloc_howto_type *mips_rtype_to_howto
115 PARAMS ((unsigned int));
252b5132
RH
116static void mips_info_to_howto_rel
117 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
3f830999
MM
118static void mips_info_to_howto_rela
119 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
252b5132
RH
120static void bfd_mips_elf32_swap_gptab_in
121 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
122static void bfd_mips_elf32_swap_gptab_out
123 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
86033394 124#if 0
be3ccd9c 125static void bfd_mips_elf_swap_msym_in
c6142e5d 126 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
86033394 127#endif
c6142e5d
MM
128static void bfd_mips_elf_swap_msym_out
129 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
252b5132 130static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
252b5132
RH
131static boolean mips_elf_create_procedure_table
132 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
133 struct ecoff_debug_info *));
252b5132 134static INLINE int elf_mips_isa PARAMS ((flagword));
dc810e39 135static INLINE unsigned long elf_mips_mach PARAMS ((flagword));
103186c6 136static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
252b5132
RH
137static boolean mips_elf_is_local_label_name
138 PARAMS ((bfd *, const char *));
139static struct bfd_hash_entry *mips_elf_link_hash_newfunc
140 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
252b5132 141static int gptab_compare PARAMS ((const void *, const void *));
252b5132
RH
142static bfd_reloc_status_type mips16_jump_reloc
143 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
144static bfd_reloc_status_type mips16_gprel_reloc
145 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
252b5132
RH
146static boolean mips_elf_create_compact_rel_section
147 PARAMS ((bfd *, struct bfd_link_info *));
148static boolean mips_elf_create_got_section
149 PARAMS ((bfd *, struct bfd_link_info *));
252b5132
RH
150static bfd_reloc_status_type mips_elf_final_gp
151 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
152static bfd_byte *elf32_mips_get_relocated_section_contents
153 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
154 bfd_byte *, boolean, asymbol **));
be3ccd9c 155static asection *mips_elf_create_msym_section
c6142e5d 156 PARAMS ((bfd *));
be3ccd9c 157static void mips_elf_irix6_finish_dynamic_symbol
7403cb63
MM
158 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
159static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
160static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
161static bfd_vma mips_elf_high PARAMS ((bfd_vma));
162static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
163static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
164static bfd_vma mips_elf_global_got_index
165 PARAMS ((bfd *, struct elf_link_hash_entry *));
166static bfd_vma mips_elf_local_got_index
167 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
168static bfd_vma mips_elf_got_offset_from_index
169 PARAMS ((bfd *, bfd *, bfd_vma));
be3ccd9c 170static boolean mips_elf_record_global_got_symbol
7403cb63
MM
171 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
172 struct mips_got_info *));
173static bfd_vma mips_elf_got_page
174 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
bb2d6cd7 175static const Elf_Internal_Rela *mips_elf_next_relocation
be3ccd9c 176 PARAMS ((unsigned int, const Elf_Internal_Rela *,
bb2d6cd7 177 const Elf_Internal_Rela *));
7403cb63
MM
178static bfd_reloc_status_type mips_elf_calculate_relocation
179 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
103186c6 180 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
197b9ca0
MM
181 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
182 boolean *));
7403cb63 183static bfd_vma mips_elf_obtain_contents
103186c6 184 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
197b9ca0 185static boolean mips_elf_perform_relocation
be3ccd9c 186 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
e53bd91b 187 const Elf_Internal_Rela *, bfd_vma,
197b9ca0 188 bfd *, asection *, bfd_byte *, boolean));
7403cb63 189static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
be3ccd9c 190static boolean mips_elf_sort_hash_table_f
7403cb63 191 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
be3ccd9c 192static boolean mips_elf_sort_hash_table
b3be9b46 193 PARAMS ((struct bfd_link_info *, unsigned long));
7403cb63 194static asection * mips_elf_got_section PARAMS ((bfd *));
be3ccd9c 195static struct mips_got_info *mips_elf_got_info
7403cb63 196 PARAMS ((bfd *, asection **));
6387d602 197static boolean mips_elf_local_relocation_p
b305ef96 198 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
be3ccd9c 199static bfd_vma mips_elf_create_local_got_entry
7403cb63 200 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
be3ccd9c 201static bfd_vma mips_elf_got16_entry
b305ef96 202 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
be3ccd9c 203static boolean mips_elf_create_dynamic_relocation
103186c6 204 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
7b1f1231 205 struct mips_elf_link_hash_entry *, asection *,
9117d219 206 bfd_vma, bfd_vma *, asection *));
be3ccd9c 207static void mips_elf_allocate_dynamic_relocations
103186c6 208 PARAMS ((bfd *, unsigned int));
be3ccd9c 209static boolean mips_elf_stub_section_p
197b9ca0 210 PARAMS ((bfd *, asection *));
adb76a3e
UC
211static int sort_dynamic_relocs
212 PARAMS ((const void *, const void *));
9e80ff3a
L
213static void _bfd_mips_elf_hide_symbol
214 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
215static void _bfd_mips_elf_copy_indirect_symbol
216 PARAMS ((struct elf_link_hash_entry *,
217 struct elf_link_hash_entry *));
218static boolean _bfd_elf32_mips_grok_prstatus
219 PARAMS ((bfd *, Elf_Internal_Note *));
220static boolean _bfd_elf32_mips_grok_psinfo
221 PARAMS ((bfd *, Elf_Internal_Note *));
252b5132 222
f7cb7d68 223extern const bfd_target bfd_elf32_tradbigmips_vec;
fdbafa10 224extern const bfd_target bfd_elf32_tradlittlemips_vec;
b3baf5d0 225#ifdef BFD64
fdbafa10
L
226extern const bfd_target bfd_elf64_tradbigmips_vec;
227extern const bfd_target bfd_elf64_tradlittlemips_vec;
b3baf5d0 228#endif
f7cb7d68 229
a94a7c1c 230/* The level of IRIX compatibility we're striving for. */
252b5132 231
a94a7c1c
MM
232typedef enum {
233 ict_none,
234 ict_irix5,
235 ict_irix6
236} irix_compat_t;
237
adb76a3e
UC
238/* This will be used when we sort the dynamic relocation records. */
239static bfd *reldyn_sorting_bfd;
240
a94a7c1c
MM
241/* Nonzero if ABFD is using the N32 ABI. */
242
243#define ABI_N32_P(abfd) \
244 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
245
fdbafa10 246/* Nonzero if ABFD is using the 64-bit ABI. */
5e38c3b8
MM
247#define ABI_64_P(abfd) \
248 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
249
f7cb7d68 250/* Depending on the target vector we generate some version of Irix
be3ccd9c 251 executables or "normal" MIPS ELF ABI executables. */
b3baf5d0 252#ifdef BFD64
a94a7c1c 253#define IRIX_COMPAT(abfd) \
fdbafa10
L
254 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
255 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
256 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
257 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
f7cb7d68 258 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
b3baf5d0
NC
259#else
260#define IRIX_COMPAT(abfd) \
261 (((abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
262 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
263 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
264#endif
a94a7c1c 265
4e8a9624 266/* Whether we are trying to be compatible with IRIX at all. */
a94a7c1c
MM
267#define SGI_COMPAT(abfd) \
268 (IRIX_COMPAT (abfd) != ict_none)
252b5132 269
c6142e5d
MM
270/* The name of the msym section. */
271#define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
272
303f629d
MM
273/* The name of the srdata section. */
274#define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
275
276/* The name of the options section. */
277#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
278 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
279
280/* The name of the stub section. */
281#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
282 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
283
103186c6
MM
284/* The name of the dynamic relocation section. */
285#define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
286
287/* The size of an external REL relocation. */
288#define MIPS_ELF_REL_SIZE(abfd) \
289 (get_elf_backend_data (abfd)->s->sizeof_rel)
290
291/* The size of an external dynamic table entry. */
292#define MIPS_ELF_DYN_SIZE(abfd) \
293 (get_elf_backend_data (abfd)->s->sizeof_dyn)
294
295/* The size of a GOT entry. */
296#define MIPS_ELF_GOT_SIZE(abfd) \
297 (get_elf_backend_data (abfd)->s->arch_size / 8)
298
299/* The size of a symbol-table entry. */
300#define MIPS_ELF_SYM_SIZE(abfd) \
301 (get_elf_backend_data (abfd)->s->sizeof_sym)
302
303/* The default alignment for sections, as a power of two. */
304#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
305 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
306
307/* Get word-sized data. */
308#define MIPS_ELF_GET_WORD(abfd, ptr) \
309 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
310
311/* Put out word-sized data. */
312#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
313 (ABI_64_P (abfd) \
314 ? bfd_put_64 (abfd, val, ptr) \
315 : bfd_put_32 (abfd, val, ptr))
316
317/* Add a dynamic symbol table-entry. */
9ebbd33e 318#ifdef BFD64
dc810e39
AM
319#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
320 (ABI_64_P (elf_hash_table (info)->dynobj) \
321 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
322 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
9ebbd33e 323#else
dc810e39
AM
324#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
325 (ABI_64_P (elf_hash_table (info)->dynobj) \
326 ? (abort (), false) \
327 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
9ebbd33e 328#endif
103186c6 329
252b5132
RH
330/* The number of local .got entries we reserve. */
331#define MIPS_RESERVED_GOTNO (2)
332
333/* Instructions which appear in a stub. For some reason the stub is
334 slightly different on an SGI system. */
335#define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
103186c6
MM
336#define STUB_LW(abfd) \
337 (SGI_COMPAT (abfd) \
338 ? (ABI_64_P (abfd) \
339 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
340 : 0x8f998010) /* lw t9,0x8010(gp) */ \
f7cb7d68
UC
341 : 0x8f998010) /* lw t9,0x8000(gp) */
342#define STUB_MOVE(abfd) \
343 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
344#define STUB_JALR 0x0320f809 /* jal t9 */
345#define STUB_LI16(abfd) \
346 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
252b5132
RH
347#define MIPS_FUNCTION_STUB_SIZE (16)
348
349#if 0
350/* We no longer try to identify particular sections for the .dynsym
351 section. When we do, we wind up crashing if there are other random
352 sections with relocations. */
353
354/* Names of sections which appear in the .dynsym section in an Irix 5
355 executable. */
356
38b1a46c
NC
357static const char * const mips_elf_dynsym_sec_names[] =
358{
252b5132
RH
359 ".text",
360 ".init",
361 ".fini",
362 ".data",
363 ".rodata",
364 ".sdata",
365 ".sbss",
366 ".bss",
367 NULL
368};
369
370#define SIZEOF_MIPS_DYNSYM_SECNAMES \
371 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
372
373/* The number of entries in mips_elf_dynsym_sec_names which go in the
374 text segment. */
375
376#define MIPS_TEXT_DYNSYM_SECNO (3)
377
378#endif /* 0 */
379
380/* The names of the runtime procedure table symbols used on Irix 5. */
381
38b1a46c
NC
382static const char * const mips_elf_dynsym_rtproc_names[] =
383{
252b5132
RH
384 "_procedure_table",
385 "_procedure_string_table",
386 "_procedure_table_size",
387 NULL
388};
389
390/* These structures are used to generate the .compact_rel section on
391 Irix 5. */
392
38b1a46c
NC
393typedef struct
394{
252b5132
RH
395 unsigned long id1; /* Always one? */
396 unsigned long num; /* Number of compact relocation entries. */
397 unsigned long id2; /* Always two? */
398 unsigned long offset; /* The file offset of the first relocation. */
399 unsigned long reserved0; /* Zero? */
400 unsigned long reserved1; /* Zero? */
401} Elf32_compact_rel;
402
38b1a46c
NC
403typedef struct
404{
252b5132
RH
405 bfd_byte id1[4];
406 bfd_byte num[4];
407 bfd_byte id2[4];
408 bfd_byte offset[4];
409 bfd_byte reserved0[4];
410 bfd_byte reserved1[4];
411} Elf32_External_compact_rel;
412
38b1a46c
NC
413typedef struct
414{
252b5132 415 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
be3ccd9c 416 unsigned int rtype : 4; /* Relocation types. See below. */
252b5132
RH
417 unsigned int dist2to : 8;
418 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
419 unsigned long konst; /* KONST field. See below. */
420 unsigned long vaddr; /* VADDR to be relocated. */
421} Elf32_crinfo;
422
38b1a46c
NC
423typedef struct
424{
252b5132 425 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
be3ccd9c 426 unsigned int rtype : 4; /* Relocation types. See below. */
252b5132
RH
427 unsigned int dist2to : 8;
428 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
429 unsigned long konst; /* KONST field. See below. */
430} Elf32_crinfo2;
431
38b1a46c
NC
432typedef struct
433{
252b5132
RH
434 bfd_byte info[4];
435 bfd_byte konst[4];
436 bfd_byte vaddr[4];
437} Elf32_External_crinfo;
438
38b1a46c
NC
439typedef struct
440{
252b5132
RH
441 bfd_byte info[4];
442 bfd_byte konst[4];
443} Elf32_External_crinfo2;
444
445/* These are the constants used to swap the bitfields in a crinfo. */
446
447#define CRINFO_CTYPE (0x1)
448#define CRINFO_CTYPE_SH (31)
449#define CRINFO_RTYPE (0xf)
450#define CRINFO_RTYPE_SH (27)
451#define CRINFO_DIST2TO (0xff)
452#define CRINFO_DIST2TO_SH (19)
453#define CRINFO_RELVADDR (0x7ffff)
454#define CRINFO_RELVADDR_SH (0)
455
456/* A compact relocation info has long (3 words) or short (2 words)
457 formats. A short format doesn't have VADDR field and relvaddr
458 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
459#define CRF_MIPS_LONG 1
460#define CRF_MIPS_SHORT 0
461
462/* There are 4 types of compact relocation at least. The value KONST
463 has different meaning for each type:
464
465 (type) (konst)
466 CT_MIPS_REL32 Address in data
467 CT_MIPS_WORD Address in word (XXX)
468 CT_MIPS_GPHI_LO GP - vaddr
469 CT_MIPS_JMPAD Address to jump
470 */
471
472#define CRT_MIPS_REL32 0xa
473#define CRT_MIPS_WORD 0xb
474#define CRT_MIPS_GPHI_LO 0xc
475#define CRT_MIPS_JMPAD 0xd
476
477#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
478#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
479#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
480#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
481
482static void bfd_elf32_swap_compact_rel_out
483 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
484static void bfd_elf32_swap_crinfo_out
485 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
486
487#define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
488
3f830999
MM
489/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
490 from smaller values. Start with zero, widen, *then* decrement. */
491#define MINUS_ONE (((bfd_vma)0) - 1)
492
38b1a46c
NC
493static reloc_howto_type elf_mips_howto_table[] =
494{
252b5132
RH
495 /* No relocation. */
496 HOWTO (R_MIPS_NONE, /* type */
497 0, /* rightshift */
498 0, /* size (0 = byte, 1 = short, 2 = long) */
499 0, /* bitsize */
500 false, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_dont, /* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
504 "R_MIPS_NONE", /* name */
505 false, /* partial_inplace */
506 0, /* src_mask */
507 0, /* dst_mask */
508 false), /* pcrel_offset */
509
510 /* 16 bit relocation. */
511 HOWTO (R_MIPS_16, /* type */
512 0, /* rightshift */
513 1, /* size (0 = byte, 1 = short, 2 = long) */
514 16, /* bitsize */
515 false, /* pc_relative */
516 0, /* bitpos */
517 complain_overflow_bitfield, /* complain_on_overflow */
518 bfd_elf_generic_reloc, /* special_function */
519 "R_MIPS_16", /* name */
520 true, /* partial_inplace */
521 0xffff, /* src_mask */
522 0xffff, /* dst_mask */
523 false), /* pcrel_offset */
524
525 /* 32 bit relocation. */
526 HOWTO (R_MIPS_32, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 false, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_bitfield, /* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_MIPS_32", /* name */
535 true, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 false), /* pcrel_offset */
539
540 /* 32 bit symbol relative relocation. */
541 HOWTO (R_MIPS_REL32, /* type */
542 0, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 32, /* bitsize */
545 false, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_bitfield, /* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_MIPS_REL32", /* name */
550 true, /* partial_inplace */
551 0xffffffff, /* src_mask */
552 0xffffffff, /* dst_mask */
553 false), /* pcrel_offset */
554
062e2358 555 /* 26 bit jump address. */
252b5132
RH
556 HOWTO (R_MIPS_26, /* type */
557 2, /* rightshift */
558 2, /* size (0 = byte, 1 = short, 2 = long) */
559 26, /* bitsize */
560 false, /* pc_relative */
561 0, /* bitpos */
562 complain_overflow_dont, /* complain_on_overflow */
563 /* This needs complex overflow
564 detection, because the upper four
9117d219 565 bits must match the PC + 4. */
252b5132
RH
566 bfd_elf_generic_reloc, /* special_function */
567 "R_MIPS_26", /* name */
568 true, /* partial_inplace */
569 0x3ffffff, /* src_mask */
570 0x3ffffff, /* dst_mask */
571 false), /* pcrel_offset */
572
573 /* High 16 bits of symbol value. */
574 HOWTO (R_MIPS_HI16, /* type */
575 0, /* rightshift */
576 2, /* size (0 = byte, 1 = short, 2 = long) */
577 16, /* bitsize */
578 false, /* pc_relative */
579 0, /* bitpos */
580 complain_overflow_dont, /* complain_on_overflow */
581 _bfd_mips_elf_hi16_reloc, /* special_function */
582 "R_MIPS_HI16", /* name */
583 true, /* partial_inplace */
584 0xffff, /* src_mask */
585 0xffff, /* dst_mask */
586 false), /* pcrel_offset */
587
588 /* Low 16 bits of symbol value. */
589 HOWTO (R_MIPS_LO16, /* type */
590 0, /* rightshift */
591 2, /* size (0 = byte, 1 = short, 2 = long) */
592 16, /* bitsize */
593 false, /* pc_relative */
594 0, /* bitpos */
595 complain_overflow_dont, /* complain_on_overflow */
596 _bfd_mips_elf_lo16_reloc, /* special_function */
597 "R_MIPS_LO16", /* name */
598 true, /* partial_inplace */
599 0xffff, /* src_mask */
600 0xffff, /* dst_mask */
601 false), /* pcrel_offset */
602
603 /* GP relative reference. */
604 HOWTO (R_MIPS_GPREL16, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 16, /* bitsize */
608 false, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_signed, /* complain_on_overflow */
611 _bfd_mips_elf_gprel16_reloc, /* special_function */
612 "R_MIPS_GPREL16", /* name */
613 true, /* partial_inplace */
614 0xffff, /* src_mask */
615 0xffff, /* dst_mask */
616 false), /* pcrel_offset */
617
618 /* Reference to literal section. */
619 HOWTO (R_MIPS_LITERAL, /* type */
620 0, /* rightshift */
621 2, /* size (0 = byte, 1 = short, 2 = long) */
622 16, /* bitsize */
623 false, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_signed, /* complain_on_overflow */
626 _bfd_mips_elf_gprel16_reloc, /* special_function */
627 "R_MIPS_LITERAL", /* name */
628 true, /* partial_inplace */
629 0xffff, /* src_mask */
630 0xffff, /* dst_mask */
631 false), /* pcrel_offset */
632
633 /* Reference to global offset table. */
634 HOWTO (R_MIPS_GOT16, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 16, /* bitsize */
638 false, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_signed, /* complain_on_overflow */
641 _bfd_mips_elf_got16_reloc, /* special_function */
642 "R_MIPS_GOT16", /* name */
643 false, /* partial_inplace */
b944b044 644 0xffff, /* src_mask */
252b5132
RH
645 0xffff, /* dst_mask */
646 false), /* pcrel_offset */
647
648 /* 16 bit PC relative reference. */
649 HOWTO (R_MIPS_PC16, /* type */
650 0, /* rightshift */
651 2, /* size (0 = byte, 1 = short, 2 = long) */
652 16, /* bitsize */
653 true, /* pc_relative */
654 0, /* bitpos */
655 complain_overflow_signed, /* complain_on_overflow */
656 bfd_elf_generic_reloc, /* special_function */
657 "R_MIPS_PC16", /* name */
658 true, /* partial_inplace */
659 0xffff, /* src_mask */
660 0xffff, /* dst_mask */
bb2d6cd7 661 true), /* pcrel_offset */
252b5132
RH
662
663 /* 16 bit call through global offset table. */
252b5132
RH
664 HOWTO (R_MIPS_CALL16, /* type */
665 0, /* rightshift */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
667 16, /* bitsize */
668 false, /* pc_relative */
669 0, /* bitpos */
670 complain_overflow_signed, /* complain_on_overflow */
671 bfd_elf_generic_reloc, /* special_function */
672 "R_MIPS_CALL16", /* name */
673 false, /* partial_inplace */
b944b044 674 0xffff, /* src_mask */
252b5132
RH
675 0xffff, /* dst_mask */
676 false), /* pcrel_offset */
677
678 /* 32 bit GP relative reference. */
679 HOWTO (R_MIPS_GPREL32, /* type */
680 0, /* rightshift */
681 2, /* size (0 = byte, 1 = short, 2 = long) */
682 32, /* bitsize */
683 false, /* pc_relative */
684 0, /* bitpos */
685 complain_overflow_bitfield, /* complain_on_overflow */
686 _bfd_mips_elf_gprel32_reloc, /* special_function */
687 "R_MIPS_GPREL32", /* name */
688 true, /* partial_inplace */
689 0xffffffff, /* src_mask */
690 0xffffffff, /* dst_mask */
691 false), /* pcrel_offset */
692
693 /* The remaining relocs are defined on Irix 5, although they are
694 not defined by the ABI. */
5f771d47
ILT
695 EMPTY_HOWTO (13),
696 EMPTY_HOWTO (14),
697 EMPTY_HOWTO (15),
252b5132
RH
698
699 /* A 5 bit shift field. */
700 HOWTO (R_MIPS_SHIFT5, /* type */
701 0, /* rightshift */
702 2, /* size (0 = byte, 1 = short, 2 = long) */
703 5, /* bitsize */
704 false, /* pc_relative */
705 6, /* bitpos */
706 complain_overflow_bitfield, /* complain_on_overflow */
707 bfd_elf_generic_reloc, /* special_function */
708 "R_MIPS_SHIFT5", /* name */
709 true, /* partial_inplace */
710 0x000007c0, /* src_mask */
711 0x000007c0, /* dst_mask */
712 false), /* pcrel_offset */
713
714 /* A 6 bit shift field. */
715 /* FIXME: This is not handled correctly; a special function is
716 needed to put the most significant bit in the right place. */
717 HOWTO (R_MIPS_SHIFT6, /* type */
718 0, /* rightshift */
719 2, /* size (0 = byte, 1 = short, 2 = long) */
720 6, /* bitsize */
721 false, /* pc_relative */
722 6, /* bitpos */
723 complain_overflow_bitfield, /* complain_on_overflow */
724 bfd_elf_generic_reloc, /* special_function */
725 "R_MIPS_SHIFT6", /* name */
726 true, /* partial_inplace */
727 0x000007c4, /* src_mask */
728 0x000007c4, /* dst_mask */
729 false), /* pcrel_offset */
730
a3c7651d 731 /* A 64 bit relocation. */
252b5132
RH
732 HOWTO (R_MIPS_64, /* type */
733 0, /* rightshift */
a3c7651d
MM
734 4, /* size (0 = byte, 1 = short, 2 = long) */
735 64, /* bitsize */
252b5132
RH
736 false, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield, /* complain_on_overflow */
739 mips32_64bit_reloc, /* special_function */
740 "R_MIPS_64", /* name */
741 true, /* partial_inplace */
a3c7651d
MM
742 MINUS_ONE, /* src_mask */
743 MINUS_ONE, /* dst_mask */
252b5132
RH
744 false), /* pcrel_offset */
745
746 /* Displacement in the global offset table. */
252b5132
RH
747 HOWTO (R_MIPS_GOT_DISP, /* type */
748 0, /* rightshift */
749 2, /* size (0 = byte, 1 = short, 2 = long) */
750 16, /* bitsize */
751 false, /* pc_relative */
752 0, /* bitpos */
753 complain_overflow_bitfield, /* complain_on_overflow */
754 bfd_elf_generic_reloc, /* special_function */
755 "R_MIPS_GOT_DISP", /* name */
756 true, /* partial_inplace */
757 0x0000ffff, /* src_mask */
758 0x0000ffff, /* dst_mask */
759 false), /* pcrel_offset */
760
761 /* Displacement to page pointer in the global offset table. */
252b5132
RH
762 HOWTO (R_MIPS_GOT_PAGE, /* type */
763 0, /* rightshift */
764 2, /* size (0 = byte, 1 = short, 2 = long) */
765 16, /* bitsize */
766 false, /* pc_relative */
767 0, /* bitpos */
768 complain_overflow_bitfield, /* complain_on_overflow */
769 bfd_elf_generic_reloc, /* special_function */
770 "R_MIPS_GOT_PAGE", /* name */
771 true, /* partial_inplace */
772 0x0000ffff, /* src_mask */
773 0x0000ffff, /* dst_mask */
774 false), /* pcrel_offset */
775
776 /* Offset from page pointer in the global offset table. */
252b5132
RH
777 HOWTO (R_MIPS_GOT_OFST, /* type */
778 0, /* rightshift */
779 2, /* size (0 = byte, 1 = short, 2 = long) */
780 16, /* bitsize */
781 false, /* pc_relative */
782 0, /* bitpos */
783 complain_overflow_bitfield, /* complain_on_overflow */
784 bfd_elf_generic_reloc, /* special_function */
785 "R_MIPS_GOT_OFST", /* name */
786 true, /* partial_inplace */
787 0x0000ffff, /* src_mask */
788 0x0000ffff, /* dst_mask */
789 false), /* pcrel_offset */
790
791 /* High 16 bits of displacement in global offset table. */
252b5132
RH
792 HOWTO (R_MIPS_GOT_HI16, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 false, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_dont, /* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_MIPS_GOT_HI16", /* name */
801 true, /* partial_inplace */
802 0x0000ffff, /* src_mask */
803 0x0000ffff, /* dst_mask */
804 false), /* pcrel_offset */
805
806 /* Low 16 bits of displacement in global offset table. */
252b5132
RH
807 HOWTO (R_MIPS_GOT_LO16, /* type */
808 0, /* rightshift */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
810 16, /* bitsize */
811 false, /* pc_relative */
812 0, /* bitpos */
813 complain_overflow_dont, /* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_MIPS_GOT_LO16", /* name */
816 true, /* partial_inplace */
817 0x0000ffff, /* src_mask */
818 0x0000ffff, /* dst_mask */
819 false), /* pcrel_offset */
820
3f830999 821 /* 64 bit subtraction. Used in the N32 ABI. */
3f830999
MM
822 HOWTO (R_MIPS_SUB, /* type */
823 0, /* rightshift */
824 4, /* size (0 = byte, 1 = short, 2 = long) */
825 64, /* bitsize */
826 false, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_bitfield, /* complain_on_overflow */
829 bfd_elf_generic_reloc, /* special_function */
830 "R_MIPS_SUB", /* name */
831 true, /* partial_inplace */
832 MINUS_ONE, /* src_mask */
833 MINUS_ONE, /* dst_mask */
834 false), /* pcrel_offset */
252b5132
RH
835
836 /* Used to cause the linker to insert and delete instructions? */
5f771d47
ILT
837 EMPTY_HOWTO (R_MIPS_INSERT_A),
838 EMPTY_HOWTO (R_MIPS_INSERT_B),
839 EMPTY_HOWTO (R_MIPS_DELETE),
252b5132 840
103186c6
MM
841 /* Get the higher value of a 64 bit addend. */
842 HOWTO (R_MIPS_HIGHER, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 16, /* bitsize */
846 false, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont, /* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_MIPS_HIGHER", /* name */
851 true, /* partial_inplace */
852 0, /* src_mask */
853 0xffff, /* dst_mask */
854 false), /* pcrel_offset */
855
856 /* Get the highest value of a 64 bit addend. */
857 HOWTO (R_MIPS_HIGHEST, /* type */
858 0, /* rightshift */
859 2, /* size (0 = byte, 1 = short, 2 = long) */
860 16, /* bitsize */
861 false, /* pc_relative */
862 0, /* bitpos */
863 complain_overflow_dont, /* complain_on_overflow */
864 bfd_elf_generic_reloc, /* special_function */
865 "R_MIPS_HIGHEST", /* name */
866 true, /* partial_inplace */
867 0, /* src_mask */
868 0xffff, /* dst_mask */
869 false), /* pcrel_offset */
252b5132
RH
870
871 /* High 16 bits of displacement in global offset table. */
252b5132
RH
872 HOWTO (R_MIPS_CALL_HI16, /* type */
873 0, /* rightshift */
874 2, /* size (0 = byte, 1 = short, 2 = long) */
875 16, /* bitsize */
876 false, /* pc_relative */
877 0, /* bitpos */
878 complain_overflow_dont, /* complain_on_overflow */
879 bfd_elf_generic_reloc, /* special_function */
880 "R_MIPS_CALL_HI16", /* name */
881 true, /* partial_inplace */
882 0x0000ffff, /* src_mask */
883 0x0000ffff, /* dst_mask */
884 false), /* pcrel_offset */
885
886 /* Low 16 bits of displacement in global offset table. */
252b5132
RH
887 HOWTO (R_MIPS_CALL_LO16, /* type */
888 0, /* rightshift */
889 2, /* size (0 = byte, 1 = short, 2 = long) */
890 16, /* bitsize */
891 false, /* pc_relative */
892 0, /* bitpos */
893 complain_overflow_dont, /* complain_on_overflow */
894 bfd_elf_generic_reloc, /* special_function */
895 "R_MIPS_CALL_LO16", /* name */
896 true, /* partial_inplace */
897 0x0000ffff, /* src_mask */
898 0x0000ffff, /* dst_mask */
899 false), /* pcrel_offset */
900
7403cb63
MM
901 /* Section displacement. */
902 HOWTO (R_MIPS_SCN_DISP, /* type */
903 0, /* rightshift */
904 2, /* size (0 = byte, 1 = short, 2 = long) */
905 32, /* bitsize */
906 false, /* pc_relative */
907 0, /* bitpos */
908 complain_overflow_dont, /* complain_on_overflow */
909 bfd_elf_generic_reloc, /* special_function */
910 "R_MIPS_SCN_DISP", /* name */
911 false, /* partial_inplace */
912 0xffffffff, /* src_mask */
913 0xffffffff, /* dst_mask */
914 false), /* pcrel_offset */
915
5f771d47
ILT
916 EMPTY_HOWTO (R_MIPS_REL16),
917 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
918 EMPTY_HOWTO (R_MIPS_PJUMP),
919 EMPTY_HOWTO (R_MIPS_RELGOT),
d2905643 920
be3ccd9c 921 /* Protected jump conversion. This is an optimization hint. No
d2905643
MM
922 relocation is required for correctness. */
923 HOWTO (R_MIPS_JALR, /* type */
924 0, /* rightshift */
925 0, /* size (0 = byte, 1 = short, 2 = long) */
926 0, /* bitsize */
927 false, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont, /* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_MIPS_JALR", /* name */
932 false, /* partial_inplace */
933 0x00000000, /* src_mask */
934 0x00000000, /* dst_mask */
935 false), /* pcrel_offset */
252b5132
RH
936};
937
938/* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
939 is a hack to make the linker think that we need 64 bit values. */
940static reloc_howto_type elf_mips_ctor64_howto =
941 HOWTO (R_MIPS_64, /* type */
942 0, /* rightshift */
943 4, /* size (0 = byte, 1 = short, 2 = long) */
944 32, /* bitsize */
945 false, /* pc_relative */
946 0, /* bitpos */
947 complain_overflow_signed, /* complain_on_overflow */
948 mips32_64bit_reloc, /* special_function */
949 "R_MIPS_64", /* name */
950 true, /* partial_inplace */
951 0xffffffff, /* src_mask */
952 0xffffffff, /* dst_mask */
953 false); /* pcrel_offset */
954
955/* The reloc used for the mips16 jump instruction. */
956static reloc_howto_type elf_mips16_jump_howto =
957 HOWTO (R_MIPS16_26, /* type */
958 2, /* rightshift */
959 2, /* size (0 = byte, 1 = short, 2 = long) */
960 26, /* bitsize */
961 false, /* pc_relative */
962 0, /* bitpos */
963 complain_overflow_dont, /* complain_on_overflow */
964 /* This needs complex overflow
965 detection, because the upper four
966 bits must match the PC. */
967 mips16_jump_reloc, /* special_function */
968 "R_MIPS16_26", /* name */
969 true, /* partial_inplace */
970 0x3ffffff, /* src_mask */
971 0x3ffffff, /* dst_mask */
972 false); /* pcrel_offset */
973
b7233c24 974/* The reloc used for the mips16 gprel instruction. */
252b5132
RH
975static reloc_howto_type elf_mips16_gprel_howto =
976 HOWTO (R_MIPS16_GPREL, /* type */
977 0, /* rightshift */
978 2, /* size (0 = byte, 1 = short, 2 = long) */
979 16, /* bitsize */
980 false, /* pc_relative */
981 0, /* bitpos */
982 complain_overflow_signed, /* complain_on_overflow */
983 mips16_gprel_reloc, /* special_function */
984 "R_MIPS16_GPREL", /* name */
985 true, /* partial_inplace */
b7233c24
MM
986 0x07ff001f, /* src_mask */
987 0x07ff001f, /* dst_mask */
252b5132
RH
988 false); /* pcrel_offset */
989
bb2d6cd7
GK
990/* GNU extensions for embedded-pic. */
991/* High 16 bits of symbol value, pc-relative. */
992static reloc_howto_type elf_mips_gnu_rel_hi16 =
993 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 16, /* bitsize */
997 true, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 _bfd_mips_elf_hi16_reloc, /* special_function */
1001 "R_MIPS_GNU_REL_HI16", /* name */
1002 true, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 true); /* pcrel_offset */
1006
1007/* Low 16 bits of symbol value, pc-relative. */
1008static reloc_howto_type elf_mips_gnu_rel_lo16 =
1009 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
1010 0, /* rightshift */
1011 2, /* size (0 = byte, 1 = short, 2 = long) */
1012 16, /* bitsize */
1013 true, /* pc_relative */
1014 0, /* bitpos */
1015 complain_overflow_dont, /* complain_on_overflow */
1016 _bfd_mips_elf_lo16_reloc, /* special_function */
1017 "R_MIPS_GNU_REL_LO16", /* name */
1018 true, /* partial_inplace */
1019 0xffff, /* src_mask */
1020 0xffff, /* dst_mask */
1021 true); /* pcrel_offset */
1022
1023/* 16 bit offset for pc-relative branches. */
1024static reloc_howto_type elf_mips_gnu_rel16_s2 =
1025 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
1026 2, /* rightshift */
1027 2, /* size (0 = byte, 1 = short, 2 = long) */
1028 16, /* bitsize */
1029 true, /* pc_relative */
1030 0, /* bitpos */
1031 complain_overflow_signed, /* complain_on_overflow */
1032 bfd_elf_generic_reloc, /* special_function */
1033 "R_MIPS_GNU_REL16_S2", /* name */
1034 true, /* partial_inplace */
1035 0xffff, /* src_mask */
1036 0xffff, /* dst_mask */
1037 true); /* pcrel_offset */
1038
1039/* 64 bit pc-relative. */
1040static reloc_howto_type elf_mips_gnu_pcrel64 =
1041 HOWTO (R_MIPS_PC64, /* type */
1042 0, /* rightshift */
1043 4, /* size (0 = byte, 1 = short, 2 = long) */
1044 64, /* bitsize */
1045 true, /* pc_relative */
1046 0, /* bitpos */
1047 complain_overflow_signed, /* complain_on_overflow */
1048 bfd_elf_generic_reloc, /* special_function */
1049 "R_MIPS_PC64", /* name */
1050 true, /* partial_inplace */
1051 MINUS_ONE, /* src_mask */
1052 MINUS_ONE, /* dst_mask */
1053 true); /* pcrel_offset */
1054
1055/* 32 bit pc-relative. */
1056static reloc_howto_type elf_mips_gnu_pcrel32 =
1057 HOWTO (R_MIPS_PC32, /* type */
1058 0, /* rightshift */
1059 2, /* size (0 = byte, 1 = short, 2 = long) */
1060 32, /* bitsize */
1061 true, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_signed, /* complain_on_overflow */
1064 bfd_elf_generic_reloc, /* special_function */
1065 "R_MIPS_PC32", /* name */
1066 true, /* partial_inplace */
1067 0xffffffff, /* src_mask */
1068 0xffffffff, /* dst_mask */
1069 true); /* pcrel_offset */
1070
252b5132
RH
1071/* GNU extension to record C++ vtable hierarchy */
1072static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1073 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 0, /* bitsize */
1077 false, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 NULL, /* special_function */
1081 "R_MIPS_GNU_VTINHERIT", /* name */
1082 false, /* partial_inplace */
1083 0, /* src_mask */
1084 0, /* dst_mask */
1085 false); /* pcrel_offset */
1086
1087/* GNU extension to record C++ vtable member usage */
1088static reloc_howto_type elf_mips_gnu_vtentry_howto =
1089 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1090 0, /* rightshift */
1091 2, /* size (0 = byte, 1 = short, 2 = long) */
1092 0, /* bitsize */
1093 false, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_dont, /* complain_on_overflow */
1096 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1097 "R_MIPS_GNU_VTENTRY", /* name */
1098 false, /* partial_inplace */
1099 0, /* src_mask */
1100 0, /* dst_mask */
1101 false); /* pcrel_offset */
1102
1103/* Do a R_MIPS_HI16 relocation. This has to be done in combination
1104 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1105 the HI16. Here we just save the information we need; we do the
1106 actual relocation when we see the LO16. MIPS ELF requires that the
1107 LO16 immediately follow the HI16. As a GNU extension, we permit an
1108 arbitrary number of HI16 relocs to be associated with a single LO16
1109 reloc. This extension permits gcc to output the HI and LO relocs
1110 itself. */
1111
38b1a46c
NC
1112struct mips_hi16
1113{
252b5132
RH
1114 struct mips_hi16 *next;
1115 bfd_byte *addr;
1116 bfd_vma addend;
1117};
1118
1119/* FIXME: This should not be a static variable. */
1120
1121static struct mips_hi16 *mips_hi16_list;
1122
1123bfd_reloc_status_type
1124_bfd_mips_elf_hi16_reloc (abfd,
1125 reloc_entry,
1126 symbol,
1127 data,
1128 input_section,
1129 output_bfd,
1130 error_message)
5f771d47 1131 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1132 arelent *reloc_entry;
1133 asymbol *symbol;
1134 PTR data;
1135 asection *input_section;
1136 bfd *output_bfd;
1137 char **error_message;
1138{
1139 bfd_reloc_status_type ret;
1140 bfd_vma relocation;
1141 struct mips_hi16 *n;
1142
1143 /* If we're relocating, and this an external symbol, we don't want
1144 to change anything. */
1145 if (output_bfd != (bfd *) NULL
1146 && (symbol->flags & BSF_SECTION_SYM) == 0
1147 && reloc_entry->addend == 0)
1148 {
1149 reloc_entry->address += input_section->output_offset;
1150 return bfd_reloc_ok;
1151 }
1152
1153 ret = bfd_reloc_ok;
1154
1155 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1156 {
1157 boolean relocateable;
1158 bfd_vma gp;
1159
1160 if (ret == bfd_reloc_undefined)
1161 abort ();
1162
1163 if (output_bfd != NULL)
1164 relocateable = true;
1165 else
1166 {
1167 relocateable = false;
1168 output_bfd = symbol->section->output_section->owner;
1169 }
1170
1171 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1172 error_message, &gp);
1173 if (ret != bfd_reloc_ok)
1174 return ret;
1175
1176 relocation = gp - reloc_entry->address;
1177 }
1178 else
1179 {
1180 if (bfd_is_und_section (symbol->section)
1181 && output_bfd == (bfd *) NULL)
1182 ret = bfd_reloc_undefined;
1183
1184 if (bfd_is_com_section (symbol->section))
1185 relocation = 0;
1186 else
1187 relocation = symbol->value;
1188 }
1189
1190 relocation += symbol->section->output_section->vma;
1191 relocation += symbol->section->output_offset;
1192 relocation += reloc_entry->addend;
1193
1194 if (reloc_entry->address > input_section->_cooked_size)
1195 return bfd_reloc_outofrange;
1196
1197 /* Save the information, and let LO16 do the actual relocation. */
dc810e39 1198 n = (struct mips_hi16 *) bfd_malloc ((bfd_size_type) sizeof *n);
252b5132
RH
1199 if (n == NULL)
1200 return bfd_reloc_outofrange;
1201 n->addr = (bfd_byte *) data + reloc_entry->address;
1202 n->addend = relocation;
1203 n->next = mips_hi16_list;
1204 mips_hi16_list = n;
1205
1206 if (output_bfd != (bfd *) NULL)
1207 reloc_entry->address += input_section->output_offset;
1208
1209 return ret;
1210}
1211
1212/* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1213 inplace relocation; this function exists in order to do the
1214 R_MIPS_HI16 relocation described above. */
1215
1216bfd_reloc_status_type
1217_bfd_mips_elf_lo16_reloc (abfd,
1218 reloc_entry,
1219 symbol,
1220 data,
1221 input_section,
1222 output_bfd,
1223 error_message)
1224 bfd *abfd;
1225 arelent *reloc_entry;
1226 asymbol *symbol;
1227 PTR data;
1228 asection *input_section;
1229 bfd *output_bfd;
1230 char **error_message;
1231{
1232 arelent gp_disp_relent;
1233
1234 if (mips_hi16_list != NULL)
1235 {
1236 struct mips_hi16 *l;
1237
1238 l = mips_hi16_list;
1239 while (l != NULL)
1240 {
1241 unsigned long insn;
1242 unsigned long val;
1243 unsigned long vallo;
1244 struct mips_hi16 *next;
1245
1246 /* Do the HI16 relocation. Note that we actually don't need
1247 to know anything about the LO16 itself, except where to
1248 find the low 16 bits of the addend needed by the LO16. */
1249 insn = bfd_get_32 (abfd, l->addr);
1250 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1251 & 0xffff);
1252 val = ((insn & 0xffff) << 16) + vallo;
1253 val += l->addend;
1254
1255 /* The low order 16 bits are always treated as a signed
1256 value. Therefore, a negative value in the low order bits
1257 requires an adjustment in the high order bits. We need
1258 to make this adjustment in two ways: once for the bits we
1259 took from the data, and once for the bits we are putting
1260 back in to the data. */
1261 if ((vallo & 0x8000) != 0)
1262 val -= 0x10000;
1263 if ((val & 0x8000) != 0)
1264 val += 0x10000;
1265
dc810e39
AM
1266 insn = (insn &~ (bfd_vma) 0xffff) | ((val >> 16) & 0xffff);
1267 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
252b5132
RH
1268
1269 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1270 {
1271 gp_disp_relent = *reloc_entry;
1272 reloc_entry = &gp_disp_relent;
1273 reloc_entry->addend = l->addend;
1274 }
1275
1276 next = l->next;
1277 free (l);
1278 l = next;
1279 }
1280
1281 mips_hi16_list = NULL;
1282 }
1283 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1284 {
1285 bfd_reloc_status_type ret;
1286 bfd_vma gp, relocation;
1287
1288 /* FIXME: Does this case ever occur? */
1289
1290 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1291 if (ret != bfd_reloc_ok)
1292 return ret;
1293
1294 relocation = gp - reloc_entry->address;
1295 relocation += symbol->section->output_section->vma;
1296 relocation += symbol->section->output_offset;
1297 relocation += reloc_entry->addend;
1298
1299 if (reloc_entry->address > input_section->_cooked_size)
1300 return bfd_reloc_outofrange;
1301
1302 gp_disp_relent = *reloc_entry;
1303 reloc_entry = &gp_disp_relent;
1304 reloc_entry->addend = relocation - 4;
1305 }
1306
1307 /* Now do the LO16 reloc in the usual way. */
1308 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1309 input_section, output_bfd, error_message);
1310}
1311
1312/* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1313 table used for PIC code. If the symbol is an external symbol, the
1314 instruction is modified to contain the offset of the appropriate
1315 entry in the global offset table. If the symbol is a section
1316 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1317 addends are combined to form the real addend against the section
1318 symbol; the GOT16 is modified to contain the offset of an entry in
1319 the global offset table, and the LO16 is modified to offset it
1320 appropriately. Thus an offset larger than 16 bits requires a
1321 modified value in the global offset table.
1322
1323 This implementation suffices for the assembler, but the linker does
1324 not yet know how to create global offset tables. */
1325
1326bfd_reloc_status_type
1327_bfd_mips_elf_got16_reloc (abfd,
1328 reloc_entry,
1329 symbol,
1330 data,
1331 input_section,
1332 output_bfd,
1333 error_message)
1334 bfd *abfd;
1335 arelent *reloc_entry;
1336 asymbol *symbol;
1337 PTR data;
1338 asection *input_section;
1339 bfd *output_bfd;
1340 char **error_message;
1341{
1342 /* If we're relocating, and this an external symbol, we don't want
1343 to change anything. */
1344 if (output_bfd != (bfd *) NULL
1345 && (symbol->flags & BSF_SECTION_SYM) == 0
1346 && reloc_entry->addend == 0)
1347 {
1348 reloc_entry->address += input_section->output_offset;
1349 return bfd_reloc_ok;
1350 }
1351
1352 /* If we're relocating, and this is a local symbol, we can handle it
1353 just like HI16. */
1354 if (output_bfd != (bfd *) NULL
1355 && (symbol->flags & BSF_SECTION_SYM) != 0)
1356 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1357 input_section, output_bfd, error_message);
1358
1359 abort ();
1360}
1361
7403cb63
MM
1362/* Set the GP value for OUTPUT_BFD. Returns false if this is a
1363 dangerous relocation. */
1364
1365static boolean
1366mips_elf_assign_gp (output_bfd, pgp)
1367 bfd *output_bfd;
1368 bfd_vma *pgp;
1369{
1370 unsigned int count;
1371 asymbol **sym;
1372 unsigned int i;
1373
1374 /* If we've already figured out what GP will be, just return it. */
1375 *pgp = _bfd_get_gp_value (output_bfd);
1376 if (*pgp)
1377 return true;
1378
1379 count = bfd_get_symcount (output_bfd);
1380 sym = bfd_get_outsymbols (output_bfd);
1381
1382 /* The linker script will have created a symbol named `_gp' with the
1383 appropriate value. */
1384 if (sym == (asymbol **) NULL)
1385 i = count;
1386 else
1387 {
1388 for (i = 0; i < count; i++, sym++)
1389 {
dc810e39 1390 register const char *name;
7403cb63
MM
1391
1392 name = bfd_asymbol_name (*sym);
1393 if (*name == '_' && strcmp (name, "_gp") == 0)
1394 {
1395 *pgp = bfd_asymbol_value (*sym);
1396 _bfd_set_gp_value (output_bfd, *pgp);
1397 break;
1398 }
1399 }
1400 }
1401
1402 if (i >= count)
1403 {
1404 /* Only get the error once. */
1405 *pgp = 4;
1406 _bfd_set_gp_value (output_bfd, *pgp);
1407 return false;
1408 }
1409
1410 return true;
1411}
1412
252b5132
RH
1413/* We have to figure out the gp value, so that we can adjust the
1414 symbol value correctly. We look up the symbol _gp in the output
1415 BFD. If we can't find it, we're stuck. We cache it in the ELF
1416 target data. We don't need to adjust the symbol value for an
1417 external symbol if we are producing relocateable output. */
1418
1419static bfd_reloc_status_type
1420mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1421 bfd *output_bfd;
1422 asymbol *symbol;
1423 boolean relocateable;
1424 char **error_message;
1425 bfd_vma *pgp;
1426{
1427 if (bfd_is_und_section (symbol->section)
1428 && ! relocateable)
1429 {
1430 *pgp = 0;
1431 return bfd_reloc_undefined;
1432 }
1433
1434 *pgp = _bfd_get_gp_value (output_bfd);
1435 if (*pgp == 0
1436 && (! relocateable
1437 || (symbol->flags & BSF_SECTION_SYM) != 0))
1438 {
1439 if (relocateable)
1440 {
1441 /* Make up a value. */
1442 *pgp = symbol->section->output_section->vma + 0x4000;
1443 _bfd_set_gp_value (output_bfd, *pgp);
1444 }
7403cb63 1445 else if (!mips_elf_assign_gp (output_bfd, pgp))
252b5132 1446 {
7403cb63
MM
1447 *error_message =
1448 (char *) _("GP relative relocation when _gp not defined");
1449 return bfd_reloc_dangerous;
252b5132
RH
1450 }
1451 }
1452
1453 return bfd_reloc_ok;
1454}
1455
1456/* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1457 become the offset from the gp register. This function also handles
1458 R_MIPS_LITERAL relocations, although those can be handled more
1459 cleverly because the entries in the .lit8 and .lit4 sections can be
1460 merged. */
1461
1462static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1463 arelent *, asection *,
1464 boolean, PTR, bfd_vma));
1465
1466bfd_reloc_status_type
1467_bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1468 output_bfd, error_message)
1469 bfd *abfd;
1470 arelent *reloc_entry;
1471 asymbol *symbol;
1472 PTR data;
1473 asection *input_section;
1474 bfd *output_bfd;
1475 char **error_message;
1476{
1477 boolean relocateable;
1478 bfd_reloc_status_type ret;
1479 bfd_vma gp;
1480
1481 /* If we're relocating, and this is an external symbol with no
1482 addend, we don't want to change anything. We will only have an
1483 addend if this is a newly created reloc, not read from an ELF
1484 file. */
1485 if (output_bfd != (bfd *) NULL
1486 && (symbol->flags & BSF_SECTION_SYM) == 0
1487 && reloc_entry->addend == 0)
1488 {
1489 reloc_entry->address += input_section->output_offset;
1490 return bfd_reloc_ok;
1491 }
1492
1493 if (output_bfd != (bfd *) NULL)
1494 relocateable = true;
1495 else
1496 {
1497 relocateable = false;
1498 output_bfd = symbol->section->output_section->owner;
1499 }
1500
1501 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1502 &gp);
1503 if (ret != bfd_reloc_ok)
1504 return ret;
1505
1506 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1507 relocateable, data, gp);
1508}
1509
1510static bfd_reloc_status_type
1511gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1512 gp)
1513 bfd *abfd;
1514 asymbol *symbol;
1515 arelent *reloc_entry;
1516 asection *input_section;
1517 boolean relocateable;
1518 PTR data;
1519 bfd_vma gp;
1520{
1521 bfd_vma relocation;
1522 unsigned long insn;
1523 unsigned long val;
1524
1525 if (bfd_is_com_section (symbol->section))
1526 relocation = 0;
1527 else
1528 relocation = symbol->value;
1529
1530 relocation += symbol->section->output_section->vma;
1531 relocation += symbol->section->output_offset;
1532
1533 if (reloc_entry->address > input_section->_cooked_size)
1534 return bfd_reloc_outofrange;
1535
1536 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1537
1538 /* Set val to the offset into the section or symbol. */
1539 if (reloc_entry->howto->src_mask == 0)
1540 {
1541 /* This case occurs with the 64-bit MIPS ELF ABI. */
1542 val = reloc_entry->addend;
1543 }
1544 else
1545 {
1546 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1547 if (val & 0x8000)
1548 val -= 0x10000;
1549 }
1550
1551 /* Adjust val for the final section location and GP value. If we
1552 are producing relocateable output, we don't want to do this for
1553 an external symbol. */
1554 if (! relocateable
1555 || (symbol->flags & BSF_SECTION_SYM) != 0)
1556 val += relocation - gp;
1557
dc810e39
AM
1558 insn = (insn &~ (bfd_vma) 0xffff) | (val & 0xffff);
1559 bfd_put_32 (abfd, (bfd_vma) insn, (bfd_byte *) data + reloc_entry->address);
252b5132
RH
1560
1561 if (relocateable)
1562 reloc_entry->address += input_section->output_offset;
1563
1564 /* Make sure it fit in 16 bits. */
43cbcf28 1565 if ((long) val >= 0x8000 || (long) val < -0x8000)
252b5132
RH
1566 return bfd_reloc_overflow;
1567
1568 return bfd_reloc_ok;
1569}
1570
1571/* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1572 from the gp register? XXX */
1573
1574static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1575 arelent *, asection *,
1576 boolean, PTR, bfd_vma));
1577
1578bfd_reloc_status_type
1579_bfd_mips_elf_gprel32_reloc (abfd,
1580 reloc_entry,
1581 symbol,
1582 data,
1583 input_section,
1584 output_bfd,
1585 error_message)
1586 bfd *abfd;
1587 arelent *reloc_entry;
1588 asymbol *symbol;
1589 PTR data;
1590 asection *input_section;
1591 bfd *output_bfd;
1592 char **error_message;
1593{
1594 boolean relocateable;
1595 bfd_reloc_status_type ret;
1596 bfd_vma gp;
1597
1598 /* If we're relocating, and this is an external symbol with no
1599 addend, we don't want to change anything. We will only have an
1600 addend if this is a newly created reloc, not read from an ELF
1601 file. */
1602 if (output_bfd != (bfd *) NULL
1603 && (symbol->flags & BSF_SECTION_SYM) == 0
1604 && reloc_entry->addend == 0)
1605 {
1606 *error_message = (char *)
1607 _("32bits gp relative relocation occurs for an external symbol");
1608 return bfd_reloc_outofrange;
1609 }
1610
1611 if (output_bfd != (bfd *) NULL)
1612 {
1613 relocateable = true;
1614 gp = _bfd_get_gp_value (output_bfd);
1615 }
1616 else
1617 {
1618 relocateable = false;
1619 output_bfd = symbol->section->output_section->owner;
1620
1621 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1622 error_message, &gp);
1623 if (ret != bfd_reloc_ok)
1624 return ret;
1625 }
1626
1627 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1628 relocateable, data, gp);
1629}
1630
1631static bfd_reloc_status_type
1632gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1633 gp)
1634 bfd *abfd;
1635 asymbol *symbol;
1636 arelent *reloc_entry;
1637 asection *input_section;
1638 boolean relocateable;
1639 PTR data;
1640 bfd_vma gp;
1641{
1642 bfd_vma relocation;
1643 unsigned long val;
1644
1645 if (bfd_is_com_section (symbol->section))
1646 relocation = 0;
1647 else
1648 relocation = symbol->value;
1649
1650 relocation += symbol->section->output_section->vma;
1651 relocation += symbol->section->output_offset;
1652
1653 if (reloc_entry->address > input_section->_cooked_size)
1654 return bfd_reloc_outofrange;
1655
1656 if (reloc_entry->howto->src_mask == 0)
1657 {
1658 /* This case arises with the 64-bit MIPS ELF ABI. */
1659 val = 0;
1660 }
1661 else
1662 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1663
1664 /* Set val to the offset into the section or symbol. */
1665 val += reloc_entry->addend;
1666
1667 /* Adjust val for the final section location and GP value. If we
1668 are producing relocateable output, we don't want to do this for
1669 an external symbol. */
1670 if (! relocateable
1671 || (symbol->flags & BSF_SECTION_SYM) != 0)
1672 val += relocation - gp;
1673
dc810e39 1674 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + reloc_entry->address);
252b5132
RH
1675
1676 if (relocateable)
1677 reloc_entry->address += input_section->output_offset;
1678
1679 return bfd_reloc_ok;
1680}
1681
1682/* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
062e2358 1683 generated when addresses are 64 bits. The upper 32 bits are a simple
252b5132
RH
1684 sign extension. */
1685
1686static bfd_reloc_status_type
1687mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1688 output_bfd, error_message)
1689 bfd *abfd;
1690 arelent *reloc_entry;
1691 asymbol *symbol;
1692 PTR data;
1693 asection *input_section;
1694 bfd *output_bfd;
1695 char **error_message;
1696{
1697 bfd_reloc_status_type r;
1698 arelent reloc32;
1699 unsigned long val;
1700 bfd_size_type addr;
1701
1702 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1703 input_section, output_bfd, error_message);
1704 if (r != bfd_reloc_continue)
1705 return r;
1706
1707 /* Do a normal 32 bit relocation on the lower 32 bits. */
1708 reloc32 = *reloc_entry;
1709 if (bfd_big_endian (abfd))
1710 reloc32.address += 4;
1711 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1712 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1713 output_bfd, error_message);
1714
1715 /* Sign extend into the upper 32 bits. */
1716 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1717 if ((val & 0x80000000) != 0)
1718 val = 0xffffffff;
1719 else
1720 val = 0;
1721 addr = reloc_entry->address;
1722 if (bfd_little_endian (abfd))
1723 addr += 4;
dc810e39 1724 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + addr);
252b5132
RH
1725
1726 return r;
1727}
1728
1729/* Handle a mips16 jump. */
1730
1731static bfd_reloc_status_type
1732mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1733 output_bfd, error_message)
5f771d47 1734 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1735 arelent *reloc_entry;
1736 asymbol *symbol;
5f771d47 1737 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
1738 asection *input_section;
1739 bfd *output_bfd;
5f771d47 1740 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
1741{
1742 if (output_bfd != (bfd *) NULL
1743 && (symbol->flags & BSF_SECTION_SYM) == 0
1744 && reloc_entry->addend == 0)
1745 {
1746 reloc_entry->address += input_section->output_offset;
1747 return bfd_reloc_ok;
1748 }
1749
1750 /* FIXME. */
1751 {
1752 static boolean warned;
1753
1754 if (! warned)
1755 (*_bfd_error_handler)
1756 (_("Linking mips16 objects into %s format is not supported"),
1757 bfd_get_target (input_section->output_section->owner));
1758 warned = true;
1759 }
1760
1761 return bfd_reloc_undefined;
1762}
1763
1764/* Handle a mips16 GP relative reloc. */
1765
1766static bfd_reloc_status_type
1767mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1768 output_bfd, error_message)
1769 bfd *abfd;
1770 arelent *reloc_entry;
1771 asymbol *symbol;
1772 PTR data;
1773 asection *input_section;
1774 bfd *output_bfd;
1775 char **error_message;
1776{
1777 boolean relocateable;
1778 bfd_reloc_status_type ret;
1779 bfd_vma gp;
1780 unsigned short extend, insn;
1781 unsigned long final;
1782
1783 /* If we're relocating, and this is an external symbol with no
1784 addend, we don't want to change anything. We will only have an
1785 addend if this is a newly created reloc, not read from an ELF
1786 file. */
1787 if (output_bfd != NULL
1788 && (symbol->flags & BSF_SECTION_SYM) == 0
1789 && reloc_entry->addend == 0)
1790 {
1791 reloc_entry->address += input_section->output_offset;
1792 return bfd_reloc_ok;
1793 }
1794
1795 if (output_bfd != NULL)
1796 relocateable = true;
1797 else
1798 {
1799 relocateable = false;
1800 output_bfd = symbol->section->output_section->owner;
1801 }
1802
1803 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1804 &gp);
1805 if (ret != bfd_reloc_ok)
1806 return ret;
1807
1808 if (reloc_entry->address > input_section->_cooked_size)
1809 return bfd_reloc_outofrange;
1810
1811 /* Pick up the mips16 extend instruction and the real instruction. */
1812 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1813 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1814
1815 /* Stuff the current addend back as a 32 bit value, do the usual
1816 relocation, and then clean up. */
1817 bfd_put_32 (abfd,
dc810e39
AM
1818 (bfd_vma) (((extend & 0x1f) << 11)
1819 | (extend & 0x7e0)
1820 | (insn & 0x1f)),
252b5132
RH
1821 (bfd_byte *) data + reloc_entry->address);
1822
1823 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1824 relocateable, data, gp);
1825
1826 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1827 bfd_put_16 (abfd,
dc810e39
AM
1828 (bfd_vma) ((extend & 0xf800)
1829 | ((final >> 11) & 0x1f)
1830 | (final & 0x7e0)),
252b5132
RH
1831 (bfd_byte *) data + reloc_entry->address);
1832 bfd_put_16 (abfd,
dc810e39
AM
1833 (bfd_vma) ((insn & 0xffe0)
1834 | (final & 0x1f)),
252b5132
RH
1835 (bfd_byte *) data + reloc_entry->address + 2);
1836
1837 return ret;
1838}
1839
1840/* Return the ISA for a MIPS e_flags value. */
1841
1842static INLINE int
1843elf_mips_isa (flags)
1844 flagword flags;
1845{
1846 switch (flags & EF_MIPS_ARCH)
1847 {
1848 case E_MIPS_ARCH_1:
1849 return 1;
1850 case E_MIPS_ARCH_2:
1851 return 2;
1852 case E_MIPS_ARCH_3:
1853 return 3;
1854 case E_MIPS_ARCH_4:
1855 return 4;
84ea6cf2
NC
1856 case E_MIPS_ARCH_5:
1857 return 5;
e7af610e
NC
1858 case E_MIPS_ARCH_32:
1859 return 32;
84ea6cf2
NC
1860 case E_MIPS_ARCH_64:
1861 return 64;
252b5132
RH
1862 }
1863 return 4;
1864}
1865
1866/* Return the MACH for a MIPS e_flags value. */
1867
dc810e39 1868static INLINE unsigned long
252b5132
RH
1869elf_mips_mach (flags)
1870 flagword flags;
1871{
1872 switch (flags & EF_MIPS_MACH)
1873 {
1874 case E_MIPS_MACH_3900:
1875 return bfd_mach_mips3900;
1876
1877 case E_MIPS_MACH_4010:
1878 return bfd_mach_mips4010;
1879
1880 case E_MIPS_MACH_4100:
1881 return bfd_mach_mips4100;
1882
1883 case E_MIPS_MACH_4111:
1884 return bfd_mach_mips4111;
1885
1886 case E_MIPS_MACH_4650:
1887 return bfd_mach_mips4650;
1888
c6c98b38
NC
1889 case E_MIPS_MACH_SB1:
1890 return bfd_mach_mips_sb1;
1891
252b5132
RH
1892 default:
1893 switch (flags & EF_MIPS_ARCH)
1894 {
1895 default:
1896 case E_MIPS_ARCH_1:
1897 return bfd_mach_mips3000;
1898 break;
1899
1900 case E_MIPS_ARCH_2:
1901 return bfd_mach_mips6000;
1902 break;
1903
1904 case E_MIPS_ARCH_3:
1905 return bfd_mach_mips4000;
1906 break;
1907
1908 case E_MIPS_ARCH_4:
1909 return bfd_mach_mips8000;
1910 break;
e7af610e 1911
84ea6cf2
NC
1912 case E_MIPS_ARCH_5:
1913 return bfd_mach_mips5;
1914 break;
1915
e7af610e 1916 case E_MIPS_ARCH_32:
a1cd6a8f 1917 return bfd_mach_mipsisa32;
e7af610e 1918 break;
84ea6cf2
NC
1919
1920 case E_MIPS_ARCH_64:
a1cd6a8f 1921 return bfd_mach_mipsisa64;
84ea6cf2 1922 break;
252b5132
RH
1923 }
1924 }
1925
1926 return 0;
1927}
1928
be3ccd9c 1929/* Return printable name for ABI. */
252b5132 1930
be3ccd9c 1931static INLINE char *
103186c6
MM
1932elf_mips_abi_name (abfd)
1933 bfd *abfd;
252b5132 1934{
103186c6
MM
1935 flagword flags;
1936
103186c6 1937 flags = elf_elfheader (abfd)->e_flags;
252b5132
RH
1938 switch (flags & EF_MIPS_ABI)
1939 {
1940 case 0:
aee61b13
TS
1941 if (ABI_N32_P (abfd))
1942 return "N32";
1943 else if (ABI_64_P (abfd))
1944 return "64";
1945 else
1946 return "none";
252b5132
RH
1947 case E_MIPS_ABI_O32:
1948 return "O32";
1949 case E_MIPS_ABI_O64:
1950 return "O64";
1951 case E_MIPS_ABI_EABI32:
1952 return "EABI32";
1953 case E_MIPS_ABI_EABI64:
1954 return "EABI64";
1955 default:
1956 return "unknown abi";
1957 }
1958}
1959
1960/* A mapping from BFD reloc types to MIPS ELF reloc types. */
1961
1962struct elf_reloc_map {
1963 bfd_reloc_code_real_type bfd_reloc_val;
1964 enum elf_mips_reloc_type elf_reloc_val;
1965};
1966
dc810e39 1967static const struct elf_reloc_map mips_reloc_map[] =
38b1a46c 1968{
252b5132
RH
1969 { BFD_RELOC_NONE, R_MIPS_NONE, },
1970 { BFD_RELOC_16, R_MIPS_16 },
1971 { BFD_RELOC_32, R_MIPS_32 },
1972 { BFD_RELOC_64, R_MIPS_64 },
1973 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1974 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1975 { BFD_RELOC_LO16, R_MIPS_LO16 },
1976 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1977 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1978 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1979 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1980 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1981 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1982 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1983 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1984 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
3f830999
MM
1985 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1986 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1987 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1988 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1989 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
252b5132
RH
1990};
1991
1992/* Given a BFD reloc type, return a howto structure. */
1993
1994static reloc_howto_type *
1995bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1996 bfd *abfd;
1997 bfd_reloc_code_real_type code;
1998{
1999 unsigned int i;
2000
2001 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
2002 {
2003 if (mips_reloc_map[i].bfd_reloc_val == code)
2004 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
2005 }
2006
2007 switch (code)
2008 {
2009 default:
2010 bfd_set_error (bfd_error_bad_value);
2011 return NULL;
2012
2013 case BFD_RELOC_CTOR:
2014 /* We need to handle BFD_RELOC_CTOR specially.
2015 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
2016 size of addresses on this architecture. */
2017 if (bfd_arch_bits_per_address (abfd) == 32)
2018 return &elf_mips_howto_table[(int) R_MIPS_32];
2019 else
2020 return &elf_mips_ctor64_howto;
2021
2022 case BFD_RELOC_MIPS16_JMP:
2023 return &elf_mips16_jump_howto;
2024 case BFD_RELOC_MIPS16_GPREL:
2025 return &elf_mips16_gprel_howto;
2026 case BFD_RELOC_VTABLE_INHERIT:
2027 return &elf_mips_gnu_vtinherit_howto;
2028 case BFD_RELOC_VTABLE_ENTRY:
2029 return &elf_mips_gnu_vtentry_howto;
bb2d6cd7
GK
2030 case BFD_RELOC_PCREL_HI16_S:
2031 return &elf_mips_gnu_rel_hi16;
2032 case BFD_RELOC_PCREL_LO16:
2033 return &elf_mips_gnu_rel_lo16;
2034 case BFD_RELOC_16_PCREL_S2:
2035 return &elf_mips_gnu_rel16_s2;
2036 case BFD_RELOC_64_PCREL:
2037 return &elf_mips_gnu_pcrel64;
2038 case BFD_RELOC_32_PCREL:
2039 return &elf_mips_gnu_pcrel32;
252b5132
RH
2040 }
2041}
2042
3f830999 2043/* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
252b5132 2044
c9b3cbf3
RH
2045static reloc_howto_type *
2046mips_rtype_to_howto (r_type)
2047 unsigned int r_type;
252b5132 2048{
252b5132
RH
2049 switch (r_type)
2050 {
2051 case R_MIPS16_26:
c9b3cbf3 2052 return &elf_mips16_jump_howto;
252b5132
RH
2053 break;
2054 case R_MIPS16_GPREL:
c9b3cbf3 2055 return &elf_mips16_gprel_howto;
252b5132
RH
2056 break;
2057 case R_MIPS_GNU_VTINHERIT:
c9b3cbf3 2058 return &elf_mips_gnu_vtinherit_howto;
252b5132
RH
2059 break;
2060 case R_MIPS_GNU_VTENTRY:
c9b3cbf3 2061 return &elf_mips_gnu_vtentry_howto;
252b5132 2062 break;
bb2d6cd7
GK
2063 case R_MIPS_GNU_REL_HI16:
2064 return &elf_mips_gnu_rel_hi16;
2065 break;
2066 case R_MIPS_GNU_REL_LO16:
2067 return &elf_mips_gnu_rel_lo16;
2068 break;
2069 case R_MIPS_GNU_REL16_S2:
2070 return &elf_mips_gnu_rel16_s2;
2071 break;
2072 case R_MIPS_PC64:
2073 return &elf_mips_gnu_pcrel64;
2074 break;
2075 case R_MIPS_PC32:
2076 return &elf_mips_gnu_pcrel32;
2077 break;
252b5132
RH
2078
2079 default:
2080 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
c9b3cbf3 2081 return &elf_mips_howto_table[r_type];
252b5132
RH
2082 break;
2083 }
c9b3cbf3
RH
2084}
2085
2086/* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2087
2088static void
2089mips_info_to_howto_rel (abfd, cache_ptr, dst)
2090 bfd *abfd;
2091 arelent *cache_ptr;
2092 Elf32_Internal_Rel *dst;
2093{
2094 unsigned int r_type;
2095
2096 r_type = ELF32_R_TYPE (dst->r_info);
2097 cache_ptr->howto = mips_rtype_to_howto (r_type);
252b5132
RH
2098
2099 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2100 value for the object file. We get the addend now, rather than
2101 when we do the relocation, because the symbol manipulations done
2102 by the linker may cause us to lose track of the input BFD. */
2103 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2104 && (r_type == (unsigned int) R_MIPS_GPREL16
2105 || r_type == (unsigned int) R_MIPS_LITERAL))
2106 cache_ptr->addend = elf_gp (abfd);
2107}
3f830999
MM
2108
2109/* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2110
2111static void
2112mips_info_to_howto_rela (abfd, cache_ptr, dst)
2113 bfd *abfd;
2114 arelent *cache_ptr;
2115 Elf32_Internal_Rela *dst;
2116{
2117 /* Since an Elf32_Internal_Rel is an initial prefix of an
2118 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2119 above. */
2120 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2121
2122 /* If we ever need to do any extra processing with dst->r_addend
2123 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2124}
252b5132
RH
2125\f
2126/* A .reginfo section holds a single Elf32_RegInfo structure. These
2127 routines swap this structure in and out. They are used outside of
2128 BFD, so they are globally visible. */
2129
2130void
2131bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2132 bfd *abfd;
2133 const Elf32_External_RegInfo *ex;
2134 Elf32_RegInfo *in;
2135{
dc810e39
AM
2136 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2137 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2138 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2139 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2140 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2141 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
252b5132
RH
2142}
2143
2144void
2145bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2146 bfd *abfd;
2147 const Elf32_RegInfo *in;
2148 Elf32_External_RegInfo *ex;
2149{
dc810e39
AM
2150 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2151 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2152 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2153 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2154 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2155 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
252b5132
RH
2156}
2157
2158/* In the 64 bit ABI, the .MIPS.options section holds register
2159 information in an Elf64_Reginfo structure. These routines swap
2160 them in and out. They are globally visible because they are used
2161 outside of BFD. These routines are here so that gas can call them
2162 without worrying about whether the 64 bit ABI has been included. */
2163
2164void
2165bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2166 bfd *abfd;
2167 const Elf64_External_RegInfo *ex;
2168 Elf64_Internal_RegInfo *in;
2169{
dc810e39
AM
2170 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2171 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2172 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2173 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2174 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2175 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2176 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
252b5132
RH
2177}
2178
2179void
2180bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2181 bfd *abfd;
2182 const Elf64_Internal_RegInfo *in;
2183 Elf64_External_RegInfo *ex;
2184{
dc810e39
AM
2185 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2186 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2187 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2188 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2189 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2190 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2191 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
252b5132
RH
2192}
2193
2194/* Swap an entry in a .gptab section. Note that these routines rely
2195 on the equivalence of the two elements of the union. */
2196
2197static void
2198bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2199 bfd *abfd;
2200 const Elf32_External_gptab *ex;
2201 Elf32_gptab *in;
2202{
dc810e39
AM
2203 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2204 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
252b5132
RH
2205}
2206
2207static void
2208bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2209 bfd *abfd;
2210 const Elf32_gptab *in;
2211 Elf32_External_gptab *ex;
2212{
dc810e39
AM
2213 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2214 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
252b5132
RH
2215}
2216
2217static void
2218bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2219 bfd *abfd;
2220 const Elf32_compact_rel *in;
2221 Elf32_External_compact_rel *ex;
2222{
dc810e39
AM
2223 H_PUT_32 (abfd, in->id1, ex->id1);
2224 H_PUT_32 (abfd, in->num, ex->num);
2225 H_PUT_32 (abfd, in->id2, ex->id2);
2226 H_PUT_32 (abfd, in->offset, ex->offset);
2227 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2228 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
252b5132
RH
2229}
2230
2231static void
2232bfd_elf32_swap_crinfo_out (abfd, in, ex)
2233 bfd *abfd;
2234 const Elf32_crinfo *in;
2235 Elf32_External_crinfo *ex;
2236{
2237 unsigned long l;
2238
2239 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2240 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2241 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2242 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
dc810e39
AM
2243 H_PUT_32 (abfd, l, ex->info);
2244 H_PUT_32 (abfd, in->konst, ex->konst);
2245 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
252b5132
RH
2246}
2247
2248/* Swap in an options header. */
2249
2250void
2251bfd_mips_elf_swap_options_in (abfd, ex, in)
2252 bfd *abfd;
2253 const Elf_External_Options *ex;
2254 Elf_Internal_Options *in;
2255{
dc810e39
AM
2256 in->kind = H_GET_8 (abfd, ex->kind);
2257 in->size = H_GET_8 (abfd, ex->size);
2258 in->section = H_GET_16 (abfd, ex->section);
2259 in->info = H_GET_32 (abfd, ex->info);
252b5132
RH
2260}
2261
2262/* Swap out an options header. */
2263
2264void
2265bfd_mips_elf_swap_options_out (abfd, in, ex)
2266 bfd *abfd;
2267 const Elf_Internal_Options *in;
2268 Elf_External_Options *ex;
2269{
dc810e39
AM
2270 H_PUT_8 (abfd, in->kind, ex->kind);
2271 H_PUT_8 (abfd, in->size, ex->size);
2272 H_PUT_16 (abfd, in->section, ex->section);
2273 H_PUT_32 (abfd, in->info, ex->info);
252b5132 2274}
86033394 2275#if 0
c6142e5d
MM
2276/* Swap in an MSYM entry. */
2277
2278static void
2279bfd_mips_elf_swap_msym_in (abfd, ex, in)
2280 bfd *abfd;
2281 const Elf32_External_Msym *ex;
2282 Elf32_Internal_Msym *in;
2283{
dc810e39
AM
2284 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
2285 in->ms_info = H_GET_32 (abfd, ex->ms_info);
c6142e5d 2286}
86033394 2287#endif
c6142e5d
MM
2288/* Swap out an MSYM entry. */
2289
2290static void
2291bfd_mips_elf_swap_msym_out (abfd, in, ex)
2292 bfd *abfd;
2293 const Elf32_Internal_Msym *in;
2294 Elf32_External_Msym *ex;
2295{
dc810e39
AM
2296 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2297 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
c6142e5d 2298}
252b5132
RH
2299\f
2300/* Determine whether a symbol is global for the purposes of splitting
2301 the symbol table into global symbols and local symbols. At least
2302 on Irix 5, this split must be between section symbols and all other
2303 symbols. On most ELF targets the split is between static symbols
2304 and externally visible symbols. */
2305
252b5132
RH
2306static boolean
2307mips_elf_sym_is_global (abfd, sym)
5f771d47 2308 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
2309 asymbol *sym;
2310{
936e320b
AM
2311 if (SGI_COMPAT (abfd))
2312 return (sym->flags & BSF_SECTION_SYM) == 0;
fdbafa10
L
2313 else
2314 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
936e320b
AM
2315 || bfd_is_und_section (bfd_get_section (sym))
2316 || bfd_is_com_section (bfd_get_section (sym)));
252b5132
RH
2317}
2318\f
2319/* Set the right machine number for a MIPS ELF file. This is used for
2320 both the 32-bit and the 64-bit ABI. */
2321
2322boolean
2323_bfd_mips_elf_object_p (abfd)
2324 bfd *abfd;
2325{
103186c6 2326 /* Irix 5 and 6 is broken. Object file symbol tables are not always
252b5132
RH
2327 sorted correctly such that local symbols precede global symbols,
2328 and the sh_info field in the symbol table is not always right. */
c36e006f
L
2329 if (SGI_COMPAT(abfd))
2330 elf_bad_symtab (abfd) = true;
252b5132 2331
103186c6
MM
2332 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2333 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2334 return true;
252b5132
RH
2335}
2336
2337/* The final processing done just before writing out a MIPS ELF object
2338 file. This gets the MIPS architecture right based on the machine
2339 number. This is used by both the 32-bit and the 64-bit ABI. */
2340
252b5132
RH
2341void
2342_bfd_mips_elf_final_write_processing (abfd, linker)
2343 bfd *abfd;
5f771d47 2344 boolean linker ATTRIBUTE_UNUSED;
252b5132
RH
2345{
2346 unsigned long val;
2347 unsigned int i;
2348 Elf_Internal_Shdr **hdrpp;
2349 const char *name;
2350 asection *sec;
2351
2352 switch (bfd_get_mach (abfd))
2353 {
2354 default:
2355 case bfd_mach_mips3000:
2356 val = E_MIPS_ARCH_1;
2357 break;
2358
2359 case bfd_mach_mips3900:
2360 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2361 break;
2362
2363 case bfd_mach_mips6000:
2364 val = E_MIPS_ARCH_2;
2365 break;
2366
2367 case bfd_mach_mips4000:
2368 case bfd_mach_mips4300:
5e7079af
L
2369 case bfd_mach_mips4400:
2370 case bfd_mach_mips4600:
252b5132
RH
2371 val = E_MIPS_ARCH_3;
2372 break;
2373
2374 case bfd_mach_mips4010:
2375 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2376 break;
2377
2378 case bfd_mach_mips4100:
2379 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2380 break;
2381
2382 case bfd_mach_mips4111:
2383 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2384 break;
2385
2386 case bfd_mach_mips4650:
2387 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2388 break;
2389
5e7079af 2390 case bfd_mach_mips5000:
252b5132 2391 case bfd_mach_mips8000:
d1cf510e
NC
2392 case bfd_mach_mips10000:
2393 case bfd_mach_mips12000:
252b5132
RH
2394 val = E_MIPS_ARCH_4;
2395 break;
156c2f8b 2396
84ea6cf2
NC
2397 case bfd_mach_mips5:
2398 val = E_MIPS_ARCH_5;
2399 break;
2400
c6c98b38
NC
2401 case bfd_mach_mips_sb1:
2402 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2403 break;
a1cd6a8f
EC
2404
2405 case bfd_mach_mipsisa32:
2406 val = E_MIPS_ARCH_32;
2407 break;
2408
2409 case bfd_mach_mipsisa64:
2410 val = E_MIPS_ARCH_64;
252b5132
RH
2411 }
2412
be3ccd9c 2413 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
252b5132
RH
2414 elf_elfheader (abfd)->e_flags |= val;
2415
2416 /* Set the sh_info field for .gptab sections and other appropriate
2417 info for each special section. */
2418 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2419 i < elf_elfheader (abfd)->e_shnum;
2420 i++, hdrpp++)
2421 {
2422 switch ((*hdrpp)->sh_type)
2423 {
c6142e5d 2424 case SHT_MIPS_MSYM:
252b5132
RH
2425 case SHT_MIPS_LIBLIST:
2426 sec = bfd_get_section_by_name (abfd, ".dynstr");
2427 if (sec != NULL)
2428 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2429 break;
2430
2431 case SHT_MIPS_GPTAB:
2432 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2433 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2434 BFD_ASSERT (name != NULL
2435 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2436 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2437 BFD_ASSERT (sec != NULL);
2438 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2439 break;
2440
2441 case SHT_MIPS_CONTENT:
2442 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2443 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2444 BFD_ASSERT (name != NULL
2445 && strncmp (name, ".MIPS.content",
2446 sizeof ".MIPS.content" - 1) == 0);
2447 sec = bfd_get_section_by_name (abfd,
2448 name + sizeof ".MIPS.content" - 1);
2449 BFD_ASSERT (sec != NULL);
3f830999 2450 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
252b5132
RH
2451 break;
2452
2453 case SHT_MIPS_SYMBOL_LIB:
2454 sec = bfd_get_section_by_name (abfd, ".dynsym");
2455 if (sec != NULL)
2456 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2457 sec = bfd_get_section_by_name (abfd, ".liblist");
2458 if (sec != NULL)
2459 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2460 break;
2461
2462 case SHT_MIPS_EVENTS:
2463 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2464 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2465 BFD_ASSERT (name != NULL);
2466 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2467 sec = bfd_get_section_by_name (abfd,
2468 name + sizeof ".MIPS.events" - 1);
2469 else
2470 {
2471 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2472 sizeof ".MIPS.post_rel" - 1) == 0);
2473 sec = bfd_get_section_by_name (abfd,
2474 (name
2475 + sizeof ".MIPS.post_rel" - 1));
2476 }
2477 BFD_ASSERT (sec != NULL);
2478 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2479 break;
2480
2481 }
2482 }
2483}
2484\f
be3ccd9c 2485/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
252b5132
RH
2486
2487boolean
2488_bfd_mips_elf_set_private_flags (abfd, flags)
2489 bfd *abfd;
2490 flagword flags;
2491{
2492 BFD_ASSERT (!elf_flags_init (abfd)
2493 || elf_elfheader (abfd)->e_flags == flags);
2494
2495 elf_elfheader (abfd)->e_flags = flags;
2496 elf_flags_init (abfd) = true;
2497 return true;
2498}
2499
2500/* Copy backend specific data from one object module to another */
2501
2502boolean
2503_bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2504 bfd *ibfd;
2505 bfd *obfd;
2506{
2507 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2508 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2509 return true;
2510
2511 BFD_ASSERT (!elf_flags_init (obfd)
2512 || (elf_elfheader (obfd)->e_flags
2513 == elf_elfheader (ibfd)->e_flags));
2514
2515 elf_gp (obfd) = elf_gp (ibfd);
2516 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2517 elf_flags_init (obfd) = true;
2518 return true;
2519}
2520
2521/* Merge backend specific data from an object file to the output
2522 object file when linking. */
2523
2524boolean
2525_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2526 bfd *ibfd;
2527 bfd *obfd;
2528{
2529 flagword old_flags;
2530 flagword new_flags;
2531 boolean ok;
a9922e52
UC
2532 boolean null_input_bfd = true;
2533 asection *sec;
252b5132
RH
2534
2535 /* Check if we have the same endianess */
1fe494a5
NC
2536 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2537 return false;
252b5132
RH
2538
2539 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2540 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2541 return true;
2542
2543 new_flags = elf_elfheader (ibfd)->e_flags;
2544 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2545 old_flags = elf_elfheader (obfd)->e_flags;
2546
2547 if (! elf_flags_init (obfd))
2548 {
2549 elf_flags_init (obfd) = true;
2550 elf_elfheader (obfd)->e_flags = new_flags;
be3ccd9c 2551 elf_elfheader (obfd)->e_ident[EI_CLASS]
103186c6 2552 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
252b5132
RH
2553
2554 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2555 && bfd_get_arch_info (obfd)->the_default)
2556 {
2557 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2558 bfd_get_mach (ibfd)))
2559 return false;
2560 }
2561
2562 return true;
2563 }
2564
2565 /* Check flag compatibility. */
2566
2567 new_flags &= ~EF_MIPS_NOREORDER;
2568 old_flags &= ~EF_MIPS_NOREORDER;
2569
2570 if (new_flags == old_flags)
2571 return true;
2572
a9922e52
UC
2573 /* Check to see if the input BFD actually contains any sections.
2574 If not, its flags may not have been initialised either, but it cannot
2575 actually cause any incompatibility. */
2576 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2577 {
2578 /* Ignore synthetic sections and empty .text, .data and .bss sections
2579 which are automatically generated by gas. */
2580 if (strcmp (sec->name, ".reginfo")
2581 && strcmp (sec->name, ".mdebug")
2582 && ((!strcmp (sec->name, ".text")
2583 || !strcmp (sec->name, ".data")
2584 || !strcmp (sec->name, ".bss"))
2585 && sec->_raw_size != 0))
2586 {
2587 null_input_bfd = false;
2588 break;
2589 }
2590 }
2591 if (null_input_bfd)
2592 return true;
2593
252b5132
RH
2594 ok = true;
2595
2596 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2597 {
2598 new_flags &= ~EF_MIPS_PIC;
2599 old_flags &= ~EF_MIPS_PIC;
2600 (*_bfd_error_handler)
2601 (_("%s: linking PIC files with non-PIC files"),
8f615d07 2602 bfd_archive_filename (ibfd));
252b5132
RH
2603 ok = false;
2604 }
2605
2606 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2607 {
2608 new_flags &= ~EF_MIPS_CPIC;
2609 old_flags &= ~EF_MIPS_CPIC;
2610 (*_bfd_error_handler)
2611 (_("%s: linking abicalls files with non-abicalls files"),
8f615d07 2612 bfd_archive_filename (ibfd));
252b5132
RH
2613 ok = false;
2614 }
2615
be3ccd9c 2616 /* Compare the ISA's. */
252b5132
RH
2617 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2618 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2619 {
2620 int new_mach = new_flags & EF_MIPS_MACH;
2621 int old_mach = old_flags & EF_MIPS_MACH;
2622 int new_isa = elf_mips_isa (new_flags);
2623 int old_isa = elf_mips_isa (old_flags);
2624
2625 /* If either has no machine specified, just compare the general isa's.
be3ccd9c
KH
2626 Some combinations of machines are ok, if the isa's match. */
2627 if (! new_mach
252b5132
RH
2628 || ! old_mach
2629 || new_mach == old_mach
2630 )
2631 {
e7af610e
NC
2632 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
2633 using 64-bit ISAs. They will normally use the same data sizes
2634 and calling conventions. */
252b5132 2635
e7af610e
NC
2636 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
2637 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
252b5132
RH
2638 {
2639 (*_bfd_error_handler)
2640 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
8f615d07 2641 bfd_archive_filename (ibfd), new_isa, old_isa);
252b5132
RH
2642 ok = false;
2643 }
2644 }
2645
2646 else
2647 {
2648 (*_bfd_error_handler)
2649 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
8f615d07 2650 bfd_archive_filename (ibfd),
252b5132
RH
2651 elf_mips_mach (new_flags),
2652 elf_mips_mach (old_flags));
2653 ok = false;
2654 }
2655
be3ccd9c
KH
2656 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2657 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
252b5132
RH
2658 }
2659
103186c6
MM
2660 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2661 does set EI_CLASS differently from any 32-bit ABI. */
2662 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
be3ccd9c 2663 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
103186c6 2664 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
252b5132 2665 {
be3ccd9c 2666 /* Only error if both are set (to different values). */
103186c6 2667 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
be3ccd9c 2668 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
103186c6 2669 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
252b5132
RH
2670 {
2671 (*_bfd_error_handler)
2672 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
8f615d07 2673 bfd_archive_filename (ibfd),
103186c6
MM
2674 elf_mips_abi_name (ibfd),
2675 elf_mips_abi_name (obfd));
252b5132
RH
2676 ok = false;
2677 }
2678 new_flags &= ~EF_MIPS_ABI;
2679 old_flags &= ~EF_MIPS_ABI;
2680 }
2681
2682 /* Warn about any other mismatches */
2683 if (new_flags != old_flags)
2684 {
2685 (*_bfd_error_handler)
2686 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
8f615d07 2687 bfd_archive_filename (ibfd), (unsigned long) new_flags,
252b5132
RH
2688 (unsigned long) old_flags);
2689 ok = false;
2690 }
2691
2692 if (! ok)
2693 {
2694 bfd_set_error (bfd_error_bad_value);
2695 return false;
2696 }
2697
2698 return true;
2699}
2700\f
103186c6 2701boolean
252b5132
RH
2702_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2703 bfd *abfd;
2704 PTR ptr;
2705{
2706 FILE *file = (FILE *) ptr;
2707
2708 BFD_ASSERT (abfd != NULL && ptr != NULL);
2709
2710 /* Print normal ELF private data. */
2711 _bfd_elf_print_private_bfd_data (abfd, ptr);
2712
2713 /* xgettext:c-format */
be3ccd9c 2714 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132
RH
2715
2716 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
be3ccd9c 2717 fprintf (file, _(" [abi=O32]"));
252b5132 2718 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
be3ccd9c 2719 fprintf (file, _(" [abi=O64]"));
252b5132 2720 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
be3ccd9c 2721 fprintf (file, _(" [abi=EABI32]"));
252b5132 2722 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
be3ccd9c 2723 fprintf (file, _(" [abi=EABI64]"));
252b5132 2724 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
be3ccd9c 2725 fprintf (file, _(" [abi unknown]"));
103186c6 2726 else if (ABI_N32_P (abfd))
be3ccd9c 2727 fprintf (file, _(" [abi=N32]"));
103186c6 2728 else if (ABI_64_P (abfd))
be3ccd9c 2729 fprintf (file, _(" [abi=64]"));
252b5132 2730 else
be3ccd9c 2731 fprintf (file, _(" [no abi set]"));
252b5132
RH
2732
2733 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
be3ccd9c 2734 fprintf (file, _(" [mips1]"));
252b5132 2735 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
be3ccd9c 2736 fprintf (file, _(" [mips2]"));
252b5132 2737 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
be3ccd9c 2738 fprintf (file, _(" [mips3]"));
252b5132 2739 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
be3ccd9c 2740 fprintf (file, _(" [mips4]"));
84ea6cf2
NC
2741 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
2742 fprintf (file, _ (" [mips5]"));
e7af610e
NC
2743 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
2744 fprintf (file, _ (" [mips32]"));
84ea6cf2
NC
2745 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
2746 fprintf (file, _ (" [mips64]"));
252b5132 2747 else
be3ccd9c 2748 fprintf (file, _(" [unknown ISA]"));
252b5132
RH
2749
2750 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
be3ccd9c 2751 fprintf (file, _(" [32bitmode]"));
252b5132 2752 else
be3ccd9c 2753 fprintf (file, _(" [not 32bitmode]"));
252b5132
RH
2754
2755 fputc ('\n', file);
2756
2757 return true;
2758}
2759\f
2760/* Handle a MIPS specific section when reading an object file. This
2761 is called when elfcode.h finds a section with an unknown type.
2762 This routine supports both the 32-bit and 64-bit ELF ABI.
2763
2764 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2765 how to. */
2766
2767boolean
2768_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2769 bfd *abfd;
2770 Elf_Internal_Shdr *hdr;
103186c6 2771 char *name;
252b5132
RH
2772{
2773 flagword flags = 0;
2774
2775 /* There ought to be a place to keep ELF backend specific flags, but
2776 at the moment there isn't one. We just keep track of the
2777 sections by their name, instead. Fortunately, the ABI gives
2778 suggested names for all the MIPS specific sections, so we will
2779 probably get away with this. */
2780 switch (hdr->sh_type)
2781 {
2782 case SHT_MIPS_LIBLIST:
2783 if (strcmp (name, ".liblist") != 0)
2784 return false;
2785 break;
2786 case SHT_MIPS_MSYM:
c6142e5d 2787 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
252b5132
RH
2788 return false;
2789 break;
2790 case SHT_MIPS_CONFLICT:
2791 if (strcmp (name, ".conflict") != 0)
2792 return false;
2793 break;
2794 case SHT_MIPS_GPTAB:
2795 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2796 return false;
2797 break;
2798 case SHT_MIPS_UCODE:
2799 if (strcmp (name, ".ucode") != 0)
2800 return false;
2801 break;
2802 case SHT_MIPS_DEBUG:
2803 if (strcmp (name, ".mdebug") != 0)
2804 return false;
2805 flags = SEC_DEBUGGING;
2806 break;
2807 case SHT_MIPS_REGINFO:
2808 if (strcmp (name, ".reginfo") != 0
2809 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2810 return false;
2811 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2812 break;
2813 case SHT_MIPS_IFACE:
2814 if (strcmp (name, ".MIPS.interfaces") != 0)
2815 return false;
2816 break;
2817 case SHT_MIPS_CONTENT:
2818 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2819 return false;
2820 break;
2821 case SHT_MIPS_OPTIONS:
303f629d 2822 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
252b5132
RH
2823 return false;
2824 break;
2825 case SHT_MIPS_DWARF:
2826 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2827 return false;
2828 break;
2829 case SHT_MIPS_SYMBOL_LIB:
2830 if (strcmp (name, ".MIPS.symlib") != 0)
2831 return false;
2832 break;
2833 case SHT_MIPS_EVENTS:
2834 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2835 && strncmp (name, ".MIPS.post_rel",
2836 sizeof ".MIPS.post_rel" - 1) != 0)
2837 return false;
2838 break;
2839 default:
2840 return false;
2841 }
2842
2843 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2844 return false;
2845
2846 if (flags)
2847 {
2848 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2849 (bfd_get_section_flags (abfd,
2850 hdr->bfd_section)
2851 | flags)))
2852 return false;
2853 }
2854
252b5132
RH
2855 /* FIXME: We should record sh_info for a .gptab section. */
2856
2857 /* For a .reginfo section, set the gp value in the tdata information
2858 from the contents of this section. We need the gp value while
2859 processing relocs, so we just get it now. The .reginfo section
2860 is not used in the 64-bit MIPS ELF ABI. */
2861 if (hdr->sh_type == SHT_MIPS_REGINFO)
2862 {
2863 Elf32_External_RegInfo ext;
2864 Elf32_RegInfo s;
2865
2866 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
dc810e39
AM
2867 (file_ptr) 0,
2868 (bfd_size_type) sizeof ext))
252b5132
RH
2869 return false;
2870 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2871 elf_gp (abfd) = s.ri_gp_value;
2872 }
2873
2874 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2875 set the gp value based on what we find. We may see both
2876 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2877 they should agree. */
2878 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2879 {
2880 bfd_byte *contents, *l, *lend;
2881
2882 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2883 if (contents == NULL)
2884 return false;
2885 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2886 (file_ptr) 0, hdr->sh_size))
2887 {
2888 free (contents);
2889 return false;
2890 }
2891 l = contents;
2892 lend = contents + hdr->sh_size;
2893 while (l + sizeof (Elf_External_Options) <= lend)
2894 {
2895 Elf_Internal_Options intopt;
2896
2897 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2898 &intopt);
103186c6
MM
2899 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2900 {
2901 Elf64_Internal_RegInfo intreg;
2902
2903 bfd_mips_elf64_swap_reginfo_in
2904 (abfd,
2905 ((Elf64_External_RegInfo *)
2906 (l + sizeof (Elf_External_Options))),
2907 &intreg);
2908 elf_gp (abfd) = intreg.ri_gp_value;
2909 }
2910 else if (intopt.kind == ODK_REGINFO)
252b5132
RH
2911 {
2912 Elf32_RegInfo intreg;
2913
2914 bfd_mips_elf32_swap_reginfo_in
2915 (abfd,
2916 ((Elf32_External_RegInfo *)
2917 (l + sizeof (Elf_External_Options))),
2918 &intreg);
2919 elf_gp (abfd) = intreg.ri_gp_value;
2920 }
2921 l += intopt.size;
2922 }
2923 free (contents);
2924 }
2925
2926 return true;
2927}
2928
2929/* Set the correct type for a MIPS ELF section. We do this by the
2930 section name, which is a hack, but ought to work. This routine is
2931 used by both the 32-bit and the 64-bit ABI. */
2932
2933boolean
2934_bfd_mips_elf_fake_sections (abfd, hdr, sec)
2935 bfd *abfd;
2936 Elf32_Internal_Shdr *hdr;
2937 asection *sec;
2938{
2939 register const char *name;
2940
2941 name = bfd_get_section_name (abfd, sec);
2942
2943 if (strcmp (name, ".liblist") == 0)
2944 {
2945 hdr->sh_type = SHT_MIPS_LIBLIST;
2946 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2947 /* The sh_link field is set in final_write_processing. */
2948 }
252b5132
RH
2949 else if (strcmp (name, ".conflict") == 0)
2950 hdr->sh_type = SHT_MIPS_CONFLICT;
2951 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2952 {
2953 hdr->sh_type = SHT_MIPS_GPTAB;
2954 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2955 /* The sh_info field is set in final_write_processing. */
2956 }
2957 else if (strcmp (name, ".ucode") == 0)
2958 hdr->sh_type = SHT_MIPS_UCODE;
2959 else if (strcmp (name, ".mdebug") == 0)
2960 {
2961 hdr->sh_type = SHT_MIPS_DEBUG;
2962 /* In a shared object on Irix 5.3, the .mdebug section has an
2963 entsize of 0. FIXME: Does this matter? */
2964 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2965 hdr->sh_entsize = 0;
2966 else
2967 hdr->sh_entsize = 1;
2968 }
2969 else if (strcmp (name, ".reginfo") == 0)
2970 {
2971 hdr->sh_type = SHT_MIPS_REGINFO;
2972 /* In a shared object on Irix 5.3, the .reginfo section has an
2973 entsize of 0x18. FIXME: Does this matter? */
f7cb7d68 2974 if (SGI_COMPAT (abfd))
be3ccd9c
KH
2975 {
2976 if ((abfd->flags & DYNAMIC) != 0)
2977 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2978 else
2979 hdr->sh_entsize = 1;
2980 }
252b5132 2981 else
be3ccd9c 2982 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
252b5132
RH
2983 }
2984 else if (SGI_COMPAT (abfd)
2985 && (strcmp (name, ".hash") == 0
2986 || strcmp (name, ".dynamic") == 0
2987 || strcmp (name, ".dynstr") == 0))
2988 {
be3ccd9c
KH
2989 if (SGI_COMPAT (abfd))
2990 hdr->sh_entsize = 0;
252b5132
RH
2991#if 0
2992 /* This isn't how the Irix 6 linker behaves. */
2993 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2994#endif
2995 }
2996 else if (strcmp (name, ".got") == 0
303f629d 2997 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
252b5132
RH
2998 || strcmp (name, ".sdata") == 0
2999 || strcmp (name, ".sbss") == 0
3000 || strcmp (name, ".lit4") == 0
3001 || strcmp (name, ".lit8") == 0)
3002 hdr->sh_flags |= SHF_MIPS_GPREL;
3003 else if (strcmp (name, ".MIPS.interfaces") == 0)
3004 {
3005 hdr->sh_type = SHT_MIPS_IFACE;
3006 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3007 }
3f830999 3008 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
252b5132
RH
3009 {
3010 hdr->sh_type = SHT_MIPS_CONTENT;
3f830999 3011 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
252b5132
RH
3012 /* The sh_info field is set in final_write_processing. */
3013 }
303f629d 3014 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
252b5132
RH
3015 {
3016 hdr->sh_type = SHT_MIPS_OPTIONS;
3017 hdr->sh_entsize = 1;
3018 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3019 }
3020 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3021 hdr->sh_type = SHT_MIPS_DWARF;
3022 else if (strcmp (name, ".MIPS.symlib") == 0)
3023 {
3024 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3025 /* The sh_link and sh_info fields are set in
3026 final_write_processing. */
3027 }
3028 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3029 || strncmp (name, ".MIPS.post_rel",
3030 sizeof ".MIPS.post_rel" - 1) == 0)
3031 {
3032 hdr->sh_type = SHT_MIPS_EVENTS;
3033 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3034 /* The sh_link field is set in final_write_processing. */
3035 }
c6142e5d
MM
3036 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3037 {
3038 hdr->sh_type = SHT_MIPS_MSYM;
3039 hdr->sh_flags |= SHF_ALLOC;
3040 hdr->sh_entsize = 8;
3041 }
252b5132 3042
23bc299b
MM
3043 /* The generic elf_fake_sections will set up REL_HDR using the
3044 default kind of relocations. But, we may actually need both
3045 kinds of relocations, so we set up the second header here. */
3046 if ((sec->flags & SEC_RELOC) != 0)
3047 {
3048 struct bfd_elf_section_data *esd;
dc810e39 3049 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
23bc299b
MM
3050
3051 esd = elf_section_data (sec);
3052 BFD_ASSERT (esd->rel_hdr2 == NULL);
dc810e39 3053 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
23bc299b
MM
3054 if (!esd->rel_hdr2)
3055 return false;
3056 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3057 !elf_section_data (sec)->use_rela_p);
3058 }
3059
252b5132
RH
3060 return true;
3061}
3062
3063/* Given a BFD section, try to locate the corresponding ELF section
3064 index. This is used by both the 32-bit and the 64-bit ABI.
3065 Actually, it's not clear to me that the 64-bit ABI supports these,
3066 but for non-PIC objects we will certainly want support for at least
3067 the .scommon section. */
3068
3069boolean
3070_bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
d9bc7a44 3071 bfd *abfd ATTRIBUTE_UNUSED;
062e2358 3072 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
252b5132
RH
3073 asection *sec;
3074 int *retval;
3075{
3076 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3077 {
3078 *retval = SHN_MIPS_SCOMMON;
3079 return true;
3080 }
3081 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3082 {
3083 *retval = SHN_MIPS_ACOMMON;
3084 return true;
3085 }
3086 return false;
3087}
3088
3089/* When are writing out the .options or .MIPS.options section,
3090 remember the bytes we are writing out, so that we can install the
3091 GP value in the section_processing routine. */
3092
3093boolean
3094_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3095 bfd *abfd;
3096 sec_ptr section;
3097 PTR location;
3098 file_ptr offset;
3099 bfd_size_type count;
3100{
303f629d 3101 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
252b5132
RH
3102 {
3103 bfd_byte *c;
3104
3105 if (elf_section_data (section) == NULL)
3106 {
dc810e39
AM
3107 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
3108 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
252b5132
RH
3109 if (elf_section_data (section) == NULL)
3110 return false;
3111 }
3112 c = (bfd_byte *) elf_section_data (section)->tdata;
3113 if (c == NULL)
3114 {
3115 bfd_size_type size;
3116
3117 if (section->_cooked_size != 0)
3118 size = section->_cooked_size;
3119 else
3120 size = section->_raw_size;
3121 c = (bfd_byte *) bfd_zalloc (abfd, size);
3122 if (c == NULL)
3123 return false;
3124 elf_section_data (section)->tdata = (PTR) c;
3125 }
3126
dc810e39 3127 memcpy (c + offset, location, (size_t) count);
252b5132
RH
3128 }
3129
3130 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3131 count);
3132}
3133
3134/* Work over a section just before writing it out. This routine is
3135 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3136 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3137 a better way. */
3138
3139boolean
3140_bfd_mips_elf_section_processing (abfd, hdr)
3141 bfd *abfd;
3142 Elf_Internal_Shdr *hdr;
252b5132 3143{
cc3bfcee
ILT
3144 if (hdr->sh_type == SHT_MIPS_REGINFO
3145 && hdr->sh_size > 0)
252b5132
RH
3146 {
3147 bfd_byte buf[4];
3148
3149 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3150 BFD_ASSERT (hdr->contents == NULL);
3151
3152 if (bfd_seek (abfd,
3153 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
dc810e39 3154 SEEK_SET) != 0)
252b5132 3155 return false;
dc810e39
AM
3156 H_PUT_32 (abfd, elf_gp (abfd), buf);
3157 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
252b5132
RH
3158 return false;
3159 }
3160
3161 if (hdr->sh_type == SHT_MIPS_OPTIONS
3162 && hdr->bfd_section != NULL
3163 && elf_section_data (hdr->bfd_section) != NULL
3164 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3165 {
3166 bfd_byte *contents, *l, *lend;
3167
3168 /* We stored the section contents in the elf_section_data tdata
3169 field in the set_section_contents routine. We save the
3170 section contents so that we don't have to read them again.
3171 At this point we know that elf_gp is set, so we can look
3172 through the section contents to see if there is an
3173 ODK_REGINFO structure. */
3174
3175 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3176 l = contents;
3177 lend = contents + hdr->sh_size;
3178 while (l + sizeof (Elf_External_Options) <= lend)
3179 {
3180 Elf_Internal_Options intopt;
3181
3182 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3183 &intopt);
103186c6
MM
3184 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3185 {
3186 bfd_byte buf[8];
3187
3188 if (bfd_seek (abfd,
3189 (hdr->sh_offset
3190 + (l - contents)
3191 + sizeof (Elf_External_Options)
3192 + (sizeof (Elf64_External_RegInfo) - 8)),
dc810e39 3193 SEEK_SET) != 0)
103186c6 3194 return false;
dc810e39
AM
3195 H_PUT_64 (abfd, elf_gp (abfd), buf);
3196 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
103186c6
MM
3197 return false;
3198 }
3199 else if (intopt.kind == ODK_REGINFO)
252b5132
RH
3200 {
3201 bfd_byte buf[4];
3202
3203 if (bfd_seek (abfd,
3204 (hdr->sh_offset
3205 + (l - contents)
3206 + sizeof (Elf_External_Options)
3207 + (sizeof (Elf32_External_RegInfo) - 4)),
dc810e39 3208 SEEK_SET) != 0)
252b5132 3209 return false;
dc810e39
AM
3210 H_PUT_32 (abfd, elf_gp (abfd), buf);
3211 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
252b5132
RH
3212 return false;
3213 }
3214 l += intopt.size;
3215 }
3216 }
3217
103186c6
MM
3218 if (hdr->bfd_section != NULL)
3219 {
3220 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3221
3222 if (strcmp (name, ".sdata") == 0
3223 || strcmp (name, ".lit8") == 0
3224 || strcmp (name, ".lit4") == 0)
3225 {
3226 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3227 hdr->sh_type = SHT_PROGBITS;
3228 }
3229 else if (strcmp (name, ".sbss") == 0)
3230 {
3231 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3232 hdr->sh_type = SHT_NOBITS;
3233 }
3234 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3235 {
3236 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3237 hdr->sh_type = SHT_PROGBITS;
3238 }
3239 else if (strcmp (name, ".compact_rel") == 0)
3240 {
3241 hdr->sh_flags = 0;
3242 hdr->sh_type = SHT_PROGBITS;
3243 }
3244 else if (strcmp (name, ".rtproc") == 0)
3245 {
3246 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3247 {
3248 unsigned int adjust;
3249
3250 adjust = hdr->sh_size % hdr->sh_addralign;
3251 if (adjust != 0)
3252 hdr->sh_size += hdr->sh_addralign - adjust;
3253 }
3254 }
3255 }
3256
3257 return true;
252b5132
RH
3258}
3259\f
3260/* MIPS ELF uses two common sections. One is the usual one, and the
3261 other is for small objects. All the small objects are kept
3262 together, and then referenced via the gp pointer, which yields
3263 faster assembler code. This is what we use for the small common
3264 section. This approach is copied from ecoff.c. */
3265static asection mips_elf_scom_section;
3266static asymbol mips_elf_scom_symbol;
3267static asymbol *mips_elf_scom_symbol_ptr;
3268
3269/* MIPS ELF also uses an acommon section, which represents an
3270 allocated common symbol which may be overridden by a
3271 definition in a shared library. */
3272static asection mips_elf_acom_section;
3273static asymbol mips_elf_acom_symbol;
3274static asymbol *mips_elf_acom_symbol_ptr;
3275
252b5132
RH
3276/* Handle the special MIPS section numbers that a symbol may use.
3277 This is used for both the 32-bit and the 64-bit ABI. */
3278
3279void
3280_bfd_mips_elf_symbol_processing (abfd, asym)
3281 bfd *abfd;
3282 asymbol *asym;
3283{
3284 elf_symbol_type *elfsym;
3285
3286 elfsym = (elf_symbol_type *) asym;
3287 switch (elfsym->internal_elf_sym.st_shndx)
3288 {
3289 case SHN_MIPS_ACOMMON:
3290 /* This section is used in a dynamically linked executable file.
3291 It is an allocated common section. The dynamic linker can
3292 either resolve these symbols to something in a shared
3293 library, or it can just leave them here. For our purposes,
3294 we can consider these symbols to be in a new section. */
3295 if (mips_elf_acom_section.name == NULL)
3296 {
3297 /* Initialize the acommon section. */
3298 mips_elf_acom_section.name = ".acommon";
3299 mips_elf_acom_section.flags = SEC_ALLOC;
3300 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3301 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3302 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3303 mips_elf_acom_symbol.name = ".acommon";
3304 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3305 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3306 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3307 }
3308 asym->section = &mips_elf_acom_section;
3309 break;
3310
3311 case SHN_COMMON:
3312 /* Common symbols less than the GP size are automatically
7403cb63
MM
3313 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3314 if (asym->value > elf_gp_size (abfd)
3315 || IRIX_COMPAT (abfd) == ict_irix6)
252b5132
RH
3316 break;
3317 /* Fall through. */
3318 case SHN_MIPS_SCOMMON:
3319 if (mips_elf_scom_section.name == NULL)
3320 {
3321 /* Initialize the small common section. */
3322 mips_elf_scom_section.name = ".scommon";
3323 mips_elf_scom_section.flags = SEC_IS_COMMON;
3324 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3325 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3326 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3327 mips_elf_scom_symbol.name = ".scommon";
3328 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3329 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3330 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3331 }
3332 asym->section = &mips_elf_scom_section;
3333 asym->value = elfsym->internal_elf_sym.st_size;
3334 break;
3335
3336 case SHN_MIPS_SUNDEFINED:
3337 asym->section = bfd_und_section_ptr;
3338 break;
3339
3340#if 0 /* for SGI_COMPAT */
3341 case SHN_MIPS_TEXT:
3342 asym->section = mips_elf_text_section_ptr;
3343 break;
3344
3345 case SHN_MIPS_DATA:
3346 asym->section = mips_elf_data_section_ptr;
3347 break;
3348#endif
3349 }
3350}
3351\f
3352/* When creating an Irix 5 executable, we need REGINFO and RTPROC
3353 segments. */
3354
103186c6
MM
3355int
3356_bfd_mips_elf_additional_program_headers (abfd)
252b5132
RH
3357 bfd *abfd;
3358{
3359 asection *s;
303f629d 3360 int ret = 0;
252b5132 3361
303f629d 3362 /* See if we need a PT_MIPS_REGINFO segment. */
252b5132 3363 s = bfd_get_section_by_name (abfd, ".reginfo");
303f629d
MM
3364 if (s && (s->flags & SEC_LOAD))
3365 ++ret;
252b5132 3366
303f629d
MM
3367 /* See if we need a PT_MIPS_OPTIONS segment. */
3368 if (IRIX_COMPAT (abfd) == ict_irix6
be3ccd9c 3369 && bfd_get_section_by_name (abfd,
303f629d
MM
3370 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3371 ++ret;
3372
3373 /* See if we need a PT_MIPS_RTPROC segment. */
3374 if (IRIX_COMPAT (abfd) == ict_irix5
3375 && bfd_get_section_by_name (abfd, ".dynamic")
3376 && bfd_get_section_by_name (abfd, ".mdebug"))
3377 ++ret;
252b5132
RH
3378
3379 return ret;
3380}
3381
3382/* Modify the segment map for an Irix 5 executable. */
3383
103186c6
MM
3384boolean
3385_bfd_mips_elf_modify_segment_map (abfd)
252b5132
RH
3386 bfd *abfd;
3387{
3388 asection *s;
3389 struct elf_segment_map *m, **pm;
dc810e39 3390 bfd_size_type amt;
252b5132 3391
252b5132
RH
3392 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3393 segment. */
3394 s = bfd_get_section_by_name (abfd, ".reginfo");
3395 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3396 {
3397 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3398 if (m->p_type == PT_MIPS_REGINFO)
3399 break;
3400 if (m == NULL)
3401 {
dc810e39
AM
3402 amt = sizeof *m;
3403 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
252b5132
RH
3404 if (m == NULL)
3405 return false;
3406
3407 m->p_type = PT_MIPS_REGINFO;
3408 m->count = 1;
3409 m->sections[0] = s;
3410
3411 /* We want to put it after the PHDR and INTERP segments. */
3412 pm = &elf_tdata (abfd)->segment_map;
3413 while (*pm != NULL
3414 && ((*pm)->p_type == PT_PHDR
3415 || (*pm)->p_type == PT_INTERP))
3416 pm = &(*pm)->next;
3417
3418 m->next = *pm;
3419 *pm = m;
3420 }
3421 }
3422
303f629d
MM
3423 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3424 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3425 PT_OPTIONS segement immediately following the program header
3426 table. */
3427 if (IRIX_COMPAT (abfd) == ict_irix6)
252b5132 3428 {
303f629d
MM
3429 for (s = abfd->sections; s; s = s->next)
3430 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
252b5132 3431 break;
303f629d
MM
3432
3433 if (s)
252b5132 3434 {
303f629d
MM
3435 struct elf_segment_map *options_segment;
3436
435394bf
MM
3437 /* Usually, there's a program header table. But, sometimes
3438 there's not (like when running the `ld' testsuite). So,
3439 if there's no program header table, we just put the
3440 options segement at the end. */
be3ccd9c 3441 for (pm = &elf_tdata (abfd)->segment_map;
435394bf
MM
3442 *pm != NULL;
3443 pm = &(*pm)->next)
3444 if ((*pm)->p_type == PT_PHDR)
303f629d
MM
3445 break;
3446
dc810e39
AM
3447 amt = sizeof (struct elf_segment_map);
3448 options_segment = bfd_zalloc (abfd, amt);
435394bf 3449 options_segment->next = *pm;
303f629d
MM
3450 options_segment->p_type = PT_MIPS_OPTIONS;
3451 options_segment->p_flags = PF_R;
3452 options_segment->p_flags_valid = true;
3453 options_segment->count = 1;
3454 options_segment->sections[0] = s;
435394bf 3455 *pm = options_segment;
303f629d
MM
3456 }
3457 }
3458 else
3459 {
f7cb7d68 3460 if (IRIX_COMPAT (abfd) == ict_irix5)
303f629d 3461 {
f7cb7d68
UC
3462 /* If there are .dynamic and .mdebug sections, we make a room
3463 for the RTPROC header. FIXME: Rewrite without section names. */
3464 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3465 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3466 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
252b5132 3467 {
f7cb7d68
UC
3468 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3469 if (m->p_type == PT_MIPS_RTPROC)
3470 break;
303f629d 3471 if (m == NULL)
f7cb7d68 3472 {
dc810e39
AM
3473 amt = sizeof *m;
3474 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
f7cb7d68
UC
3475 if (m == NULL)
3476 return false;
252b5132 3477
f7cb7d68 3478 m->p_type = PT_MIPS_RTPROC;
252b5132 3479
f7cb7d68
UC
3480 s = bfd_get_section_by_name (abfd, ".rtproc");
3481 if (s == NULL)
3482 {
3483 m->count = 0;
3484 m->p_flags = 0;
3485 m->p_flags_valid = 1;
3486 }
3487 else
3488 {
3489 m->count = 1;
3490 m->sections[0] = s;
3491 }
303f629d 3492
f7cb7d68
UC
3493 /* We want to put it after the DYNAMIC segment. */
3494 pm = &elf_tdata (abfd)->segment_map;
3495 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3496 pm = &(*pm)->next;
3497 if (*pm != NULL)
3498 pm = &(*pm)->next;
303f629d 3499
f7cb7d68
UC
3500 m->next = *pm;
3501 *pm = m;
3502 }
303f629d 3503 }
252b5132 3504 }
303f629d
MM
3505 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3506 .dynstr, .dynsym, and .hash sections, and everything in
3507 between. */
f7cb7d68
UC
3508 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
3509 pm = &(*pm)->next)
303f629d
MM
3510 if ((*pm)->p_type == PT_DYNAMIC)
3511 break;
3512 m = *pm;
f7cb7d68
UC
3513 if (IRIX_COMPAT (abfd) == ict_none)
3514 {
3515 /* For a normal mips executable the permissions for the PT_DYNAMIC
3516 segment are read, write and execute. We do that here since
3517 the code in elf.c sets only the read permission. This matters
be3ccd9c 3518 sometimes for the dynamic linker. */
f7cb7d68
UC
3519 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3520 {
3521 m->p_flags = PF_R | PF_W | PF_X;
3522 m->p_flags_valid = 1;
3523 }
3524 }
303f629d 3525 if (m != NULL
f7cb7d68 3526 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
252b5132 3527 {
38b1a46c
NC
3528 static const char *sec_names[] =
3529 {
be3ccd9c
KH
3530 ".dynamic", ".dynstr", ".dynsym", ".hash"
3531 };
303f629d
MM
3532 bfd_vma low, high;
3533 unsigned int i, c;
3534 struct elf_segment_map *n;
3535
3536 low = 0xffffffff;
3537 high = 0;
3538 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
252b5132 3539 {
303f629d
MM
3540 s = bfd_get_section_by_name (abfd, sec_names[i]);
3541 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3542 {
3543 bfd_size_type sz;
3544
3545 if (low > s->vma)
3546 low = s->vma;
3547 sz = s->_cooked_size;
3548 if (sz == 0)
3549 sz = s->_raw_size;
3550 if (high < s->vma + sz)
3551 high = s->vma + sz;
3552 }
252b5132 3553 }
252b5132 3554
303f629d
MM
3555 c = 0;
3556 for (s = abfd->sections; s != NULL; s = s->next)
3557 if ((s->flags & SEC_LOAD) != 0
3558 && s->vma >= low
3559 && ((s->vma
f7cb7d68
UC
3560 + (s->_cooked_size !=
3561 0 ? s->_cooked_size : s->_raw_size)) <= high))
303f629d
MM
3562 ++c;
3563
dc810e39
AM
3564 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
3565 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
303f629d
MM
3566 if (n == NULL)
3567 return false;
3568 *n = *m;
3569 n->count = c;
252b5132 3570
303f629d
MM
3571 i = 0;
3572 for (s = abfd->sections; s != NULL; s = s->next)
252b5132 3573 {
303f629d
MM
3574 if ((s->flags & SEC_LOAD) != 0
3575 && s->vma >= low
3576 && ((s->vma
3577 + (s->_cooked_size != 0 ?
f7cb7d68 3578 s->_cooked_size : s->_raw_size)) <= high))
303f629d
MM
3579 {
3580 n->sections[i] = s;
3581 ++i;
3582 }
252b5132 3583 }
252b5132 3584
303f629d
MM
3585 *pm = n;
3586 }
252b5132
RH
3587 }
3588
3589 return true;
3590}
3591\f
3592/* The structure of the runtime procedure descriptor created by the
3593 loader for use by the static exception system. */
3594
3595typedef struct runtime_pdr {
3596 bfd_vma adr; /* memory address of start of procedure */
3597 long regmask; /* save register mask */
3598 long regoffset; /* save register offset */
3599 long fregmask; /* save floating point register mask */
3600 long fregoffset; /* save floating point register offset */
3601 long frameoffset; /* frame size */
3602 short framereg; /* frame pointer register */
3603 short pcreg; /* offset or reg of return pc */
3604 long irpss; /* index into the runtime string table */
3605 long reserved;
3606 struct exception_info *exception_info;/* pointer to exception array */
3607} RPDR, *pRPDR;
be3ccd9c 3608#define cbRPDR sizeof (RPDR)
252b5132
RH
3609#define rpdNil ((pRPDR) 0)
3610
3611/* Swap RPDR (runtime procedure table entry) for output. */
3612
3613static void ecoff_swap_rpdr_out
3614 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3615
3616static void
3617ecoff_swap_rpdr_out (abfd, in, ex)
3618 bfd *abfd;
3619 const RPDR *in;
3620 struct rpdr_ext *ex;
3621{
dc810e39
AM
3622 /* ECOFF_PUT_OFF was defined in ecoffswap.h. */
3623 ECOFF_PUT_OFF (abfd, in->adr, ex->p_adr);
3624 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
3625 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
3626 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
3627 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
3628 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
3629
3630 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
3631 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
3632
3633 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
252b5132 3634#if 0 /* FIXME */
dc810e39 3635 ECOFF_PUT_OFF (abfd, in->exception_info, ex->p_exception_info);
252b5132
RH
3636#endif
3637}
3638\f
3639/* Read ECOFF debugging information from a .mdebug section into a
3640 ecoff_debug_info structure. */
3641
3642boolean
3643_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3644 bfd *abfd;
3645 asection *section;
3646 struct ecoff_debug_info *debug;
3647{
3648 HDRR *symhdr;
3649 const struct ecoff_debug_swap *swap;
3650 char *ext_hdr = NULL;
3651
3652 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
be3ccd9c 3653 memset (debug, 0, sizeof (*debug));
252b5132 3654
dc810e39 3655 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
252b5132
RH
3656 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3657 goto error_return;
3658
3659 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3660 swap->external_hdr_size)
3661 == false)
3662 goto error_return;
3663
3664 symhdr = &debug->symbolic_header;
3665 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3666
3667 /* The symbolic header contains absolute file offsets and sizes to
3668 read. */
3669#define READ(ptr, offset, count, size, type) \
3670 if (symhdr->count == 0) \
3671 debug->ptr = NULL; \
3672 else \
3673 { \
dc810e39
AM
3674 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
3675 debug->ptr = (type) bfd_malloc (amt); \
252b5132
RH
3676 if (debug->ptr == NULL) \
3677 goto error_return; \
3678 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
dc810e39 3679 || bfd_bread (debug->ptr, amt, abfd) != amt) \
252b5132
RH
3680 goto error_return; \
3681 }
3682
3683 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3684 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3685 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3686 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3687 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3688 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3689 union aux_ext *);
3690 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3691 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3692 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3693 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3694 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3695#undef READ
3696
3697 debug->fdr = NULL;
3698 debug->adjust = NULL;
3699
3700 return true;
3701
3702 error_return:
3703 if (ext_hdr != NULL)
3704 free (ext_hdr);
3705 if (debug->line != NULL)
3706 free (debug->line);
3707 if (debug->external_dnr != NULL)
3708 free (debug->external_dnr);
3709 if (debug->external_pdr != NULL)
3710 free (debug->external_pdr);
3711 if (debug->external_sym != NULL)
3712 free (debug->external_sym);
3713 if (debug->external_opt != NULL)
3714 free (debug->external_opt);
3715 if (debug->external_aux != NULL)
3716 free (debug->external_aux);
3717 if (debug->ss != NULL)
3718 free (debug->ss);
3719 if (debug->ssext != NULL)
3720 free (debug->ssext);
3721 if (debug->external_fdr != NULL)
3722 free (debug->external_fdr);
3723 if (debug->external_rfd != NULL)
3724 free (debug->external_rfd);
3725 if (debug->external_ext != NULL)
3726 free (debug->external_ext);
3727 return false;
3728}
3729\f
3730/* MIPS ELF local labels start with '$', not 'L'. */
3731
252b5132
RH
3732static boolean
3733mips_elf_is_local_label_name (abfd, name)
3734 bfd *abfd;
3735 const char *name;
3736{
3737 if (name[0] == '$')
3738 return true;
3739
3740 /* On Irix 6, the labels go back to starting with '.', so we accept
3741 the generic ELF local label syntax as well. */
3742 return _bfd_elf_is_local_label_name (abfd, name);
3743}
3744
3745/* MIPS ELF uses a special find_nearest_line routine in order the
3746 handle the ECOFF debugging information. */
3747
38b1a46c
NC
3748struct mips_elf_find_line
3749{
252b5132
RH
3750 struct ecoff_debug_info d;
3751 struct ecoff_find_line i;
3752};
3753
3754boolean
3755_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3756 functionname_ptr, line_ptr)
3757 bfd *abfd;
3758 asection *section;
3759 asymbol **symbols;
3760 bfd_vma offset;
3761 const char **filename_ptr;
3762 const char **functionname_ptr;
3763 unsigned int *line_ptr;
3764{
3765 asection *msec;
3766
3767 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3768 filename_ptr, functionname_ptr,
3769 line_ptr))
3770 return true;
3771
3772 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3773 filename_ptr, functionname_ptr,
be3ccd9c 3774 line_ptr,
dc810e39 3775 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
857ec808 3776 &elf_tdata (abfd)->dwarf2_find_line_info))
252b5132
RH
3777 return true;
3778
3779 msec = bfd_get_section_by_name (abfd, ".mdebug");
3780 if (msec != NULL)
3781 {
3782 flagword origflags;
3783 struct mips_elf_find_line *fi;
3784 const struct ecoff_debug_swap * const swap =
3785 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3786
3787 /* If we are called during a link, mips_elf_final_link may have
3788 cleared the SEC_HAS_CONTENTS field. We force it back on here
3789 if appropriate (which it normally will be). */
3790 origflags = msec->flags;
3791 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3792 msec->flags |= SEC_HAS_CONTENTS;
3793
3794 fi = elf_tdata (abfd)->find_line_info;
3795 if (fi == NULL)
3796 {
3797 bfd_size_type external_fdr_size;
3798 char *fraw_src;
3799 char *fraw_end;
3800 struct fdr *fdr_ptr;
dc810e39 3801 bfd_size_type amt = sizeof (struct mips_elf_find_line);
252b5132 3802
dc810e39 3803 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
252b5132
RH
3804 if (fi == NULL)
3805 {
3806 msec->flags = origflags;
3807 return false;
3808 }
3809
3810 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3811 {
3812 msec->flags = origflags;
3813 return false;
3814 }
3815
3816 /* Swap in the FDR information. */
dc810e39
AM
3817 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
3818 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
252b5132
RH
3819 if (fi->d.fdr == NULL)
3820 {
3821 msec->flags = origflags;
3822 return false;
3823 }
3824 external_fdr_size = swap->external_fdr_size;
3825 fdr_ptr = fi->d.fdr;
3826 fraw_src = (char *) fi->d.external_fdr;
3827 fraw_end = (fraw_src
3828 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3829 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3830 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3831
3832 elf_tdata (abfd)->find_line_info = fi;
3833
3834 /* Note that we don't bother to ever free this information.
3835 find_nearest_line is either called all the time, as in
3836 objdump -l, so the information should be saved, or it is
3837 rarely called, as in ld error messages, so the memory
3838 wasted is unimportant. Still, it would probably be a
3839 good idea for free_cached_info to throw it away. */
3840 }
3841
3842 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3843 &fi->i, filename_ptr, functionname_ptr,
3844 line_ptr))
3845 {
3846 msec->flags = origflags;
3847 return true;
3848 }
3849
3850 msec->flags = origflags;
3851 }
3852
3853 /* Fall back on the generic ELF find_nearest_line routine. */
3854
3855 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3856 filename_ptr, functionname_ptr,
3857 line_ptr);
3858}
3859\f
3860 /* The mips16 compiler uses a couple of special sections to handle
3861 floating point arguments.
3862
3863 Section names that look like .mips16.fn.FNNAME contain stubs that
3864 copy floating point arguments from the fp regs to the gp regs and
3865 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3866 call should be redirected to the stub instead. If no 32 bit
3867 function calls FNNAME, the stub should be discarded. We need to
3868 consider any reference to the function, not just a call, because
3869 if the address of the function is taken we will need the stub,
3870 since the address might be passed to a 32 bit function.
3871
3872 Section names that look like .mips16.call.FNNAME contain stubs
3873 that copy floating point arguments from the gp regs to the fp
3874 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3875 then any 16 bit function that calls FNNAME should be redirected
3876 to the stub instead. If FNNAME is not a 32 bit function, the
3877 stub should be discarded.
3878
3879 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3880 which call FNNAME and then copy the return value from the fp regs
3881 to the gp regs. These stubs store the return value in $18 while
3882 calling FNNAME; any function which might call one of these stubs
3883 must arrange to save $18 around the call. (This case is not
3884 needed for 32 bit functions that call 16 bit functions, because
3885 16 bit functions always return floating point values in both
3886 $f0/$f1 and $2/$3.)
3887
3888 Note that in all cases FNNAME might be defined statically.
3889 Therefore, FNNAME is not used literally. Instead, the relocation
3890 information will indicate which symbol the section is for.
3891
3892 We record any stubs that we find in the symbol table. */
3893
3894#define FN_STUB ".mips16.fn."
3895#define CALL_STUB ".mips16.call."
3896#define CALL_FP_STUB ".mips16.call.fp."
3897
252b5132
RH
3898/* MIPS ELF linker hash table. */
3899
38b1a46c
NC
3900struct mips_elf_link_hash_table
3901{
252b5132
RH
3902 struct elf_link_hash_table root;
3903#if 0
3904 /* We no longer use this. */
3905 /* String section indices for the dynamic section symbols. */
3906 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3907#endif
3908 /* The number of .rtproc entries. */
3909 bfd_size_type procedure_count;
3910 /* The size of the .compact_rel section (if SGI_COMPAT). */
3911 bfd_size_type compact_rel_size;
3912 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
be3ccd9c 3913 entry is set to the address of __rld_obj_head as in Irix 5. */
252b5132
RH
3914 boolean use_rld_obj_head;
3915 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3916 bfd_vma rld_value;
be3ccd9c 3917 /* This is set if we see any mips16 stub sections. */
252b5132
RH
3918 boolean mips16_stubs_seen;
3919};
3920
3921/* Look up an entry in a MIPS ELF linker hash table. */
3922
3923#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3924 ((struct mips_elf_link_hash_entry *) \
3925 elf_link_hash_lookup (&(table)->root, (string), (create), \
3926 (copy), (follow)))
3927
3928/* Traverse a MIPS ELF linker hash table. */
3929
3930#define mips_elf_link_hash_traverse(table, func, info) \
3931 (elf_link_hash_traverse \
3932 (&(table)->root, \
3933 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3934 (info)))
3935
3936/* Get the MIPS ELF linker hash table from a link_info structure. */
3937
3938#define mips_elf_hash_table(p) \
3939 ((struct mips_elf_link_hash_table *) ((p)->hash))
3940
3941static boolean mips_elf_output_extsym
3942 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3943
3944/* Create an entry in a MIPS ELF linker hash table. */
3945
3946static struct bfd_hash_entry *
3947mips_elf_link_hash_newfunc (entry, table, string)
3948 struct bfd_hash_entry *entry;
3949 struct bfd_hash_table *table;
3950 const char *string;
3951{
3952 struct mips_elf_link_hash_entry *ret =
3953 (struct mips_elf_link_hash_entry *) entry;
3954
3955 /* Allocate the structure if it has not already been allocated by a
3956 subclass. */
3957 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3958 ret = ((struct mips_elf_link_hash_entry *)
3959 bfd_hash_allocate (table,
3960 sizeof (struct mips_elf_link_hash_entry)));
3961 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3962 return (struct bfd_hash_entry *) ret;
3963
3964 /* Call the allocation method of the superclass. */
3965 ret = ((struct mips_elf_link_hash_entry *)
3966 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3967 table, string));
3968 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3969 {
3970 /* Set local fields. */
3971 memset (&ret->esym, 0, sizeof (EXTR));
3972 /* We use -2 as a marker to indicate that the information has
3973 not been set. -1 means there is no associated ifd. */
3974 ret->esym.ifd = -2;
a3c7651d 3975 ret->possibly_dynamic_relocs = 0;
43917054 3976 ret->readonly_reloc = false;
c6142e5d 3977 ret->min_dyn_reloc_index = 0;
9117d219 3978 ret->no_fn_stub = false;
252b5132
RH
3979 ret->fn_stub = NULL;
3980 ret->need_fn_stub = false;
3981 ret->call_stub = NULL;
3982 ret->call_fp_stub = NULL;
3983 }
3984
3985 return (struct bfd_hash_entry *) ret;
3986}
3987
9e80ff3a
L
3988static void
3989_bfd_mips_elf_hide_symbol (info, entry)
b305ef96 3990 struct bfd_link_info *info;
9e80ff3a 3991 struct elf_link_hash_entry *entry;
b305ef96
UC
3992{
3993 bfd *dynobj;
3994 asection *got;
3995 struct mips_got_info *g;
9e80ff3a
L
3996 struct mips_elf_link_hash_entry *h;
3997 h = (struct mips_elf_link_hash_entry *) entry;
b305ef96
UC
3998 dynobj = elf_hash_table (info)->dynobj;
3999 got = bfd_get_section_by_name (dynobj, ".got");
4000 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4001
4002 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
4003 h->root.plt.offset = (bfd_vma) -1;
5fba655a
L
4004 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4005 h->root.dynindx = -1;
b305ef96
UC
4006
4007 /* FIXME: Do we allocate too much GOT space here? */
4008 g->local_gotno++;
4009 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4010}
4011
252b5132
RH
4012/* Create a MIPS ELF linker hash table. */
4013
103186c6
MM
4014struct bfd_link_hash_table *
4015_bfd_mips_elf_link_hash_table_create (abfd)
252b5132
RH
4016 bfd *abfd;
4017{
4018 struct mips_elf_link_hash_table *ret;
dc810e39 4019 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
252b5132 4020
dc810e39 4021 ret = (struct mips_elf_link_hash_table *) bfd_alloc (abfd, amt);
252b5132
RH
4022 if (ret == (struct mips_elf_link_hash_table *) NULL)
4023 return NULL;
4024
4025 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4026 mips_elf_link_hash_newfunc))
4027 {
4028 bfd_release (abfd, ret);
4029 return NULL;
4030 }
4031
4032#if 0
4033 /* We no longer use this. */
4034 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4035 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4036#endif
4037 ret->procedure_count = 0;
4038 ret->compact_rel_size = 0;
4039 ret->use_rld_obj_head = false;
4040 ret->rld_value = 0;
4041 ret->mips16_stubs_seen = false;
4042
4043 return &ret->root.root;
4044}
4045
4046/* Hook called by the linker routine which adds symbols from an object
4047 file. We must handle the special MIPS section numbers here. */
4048
103186c6
MM
4049boolean
4050_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
252b5132
RH
4051 bfd *abfd;
4052 struct bfd_link_info *info;
4053 const Elf_Internal_Sym *sym;
4054 const char **namep;
5f771d47 4055 flagword *flagsp ATTRIBUTE_UNUSED;
252b5132
RH
4056 asection **secp;
4057 bfd_vma *valp;
4058{
4059 if (SGI_COMPAT (abfd)
4060 && (abfd->flags & DYNAMIC) != 0
4061 && strcmp (*namep, "_rld_new_interface") == 0)
4062 {
4063 /* Skip Irix 5 rld entry name. */
4064 *namep = NULL;
4065 return true;
4066 }
4067
4068 switch (sym->st_shndx)
4069 {
4070 case SHN_COMMON:
4071 /* Common symbols less than the GP size are automatically
4072 treated as SHN_MIPS_SCOMMON symbols. */
7403cb63
MM
4073 if (sym->st_size > elf_gp_size (abfd)
4074 || IRIX_COMPAT (abfd) == ict_irix6)
252b5132
RH
4075 break;
4076 /* Fall through. */
4077 case SHN_MIPS_SCOMMON:
4078 *secp = bfd_make_section_old_way (abfd, ".scommon");
4079 (*secp)->flags |= SEC_IS_COMMON;
4080 *valp = sym->st_size;
4081 break;
4082
4083 case SHN_MIPS_TEXT:
4084 /* This section is used in a shared object. */
b305ef96 4085 if (elf_tdata (abfd)->elf_text_section == NULL)
252b5132 4086 {
b305ef96
UC
4087 asymbol *elf_text_symbol;
4088 asection *elf_text_section;
dc810e39 4089 bfd_size_type amt = sizeof (asection);
b305ef96 4090
dc810e39 4091 elf_text_section = bfd_zalloc (abfd, amt);
b305ef96
UC
4092 if (elf_text_section == NULL)
4093 return false;
4094
dc810e39
AM
4095 amt = sizeof (asymbol);
4096 elf_text_symbol = bfd_zalloc (abfd, amt);
b305ef96
UC
4097 if (elf_text_symbol == NULL)
4098 return false;
4099
252b5132 4100 /* Initialize the section. */
b305ef96
UC
4101
4102 elf_tdata (abfd)->elf_text_section = elf_text_section;
4103 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4104
4105 elf_text_section->symbol = elf_text_symbol;
4106 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4107
4108 elf_text_section->name = ".text";
4109 elf_text_section->flags = SEC_NO_FLAGS;
4110 elf_text_section->output_section = NULL;
4111 elf_text_section->owner = abfd;
4112 elf_text_symbol->name = ".text";
4113 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4114 elf_text_symbol->section = elf_text_section;
252b5132
RH
4115 }
4116 /* This code used to do *secp = bfd_und_section_ptr if
4117 info->shared. I don't know why, and that doesn't make sense,
4118 so I took it out. */
b305ef96 4119 *secp = elf_tdata (abfd)->elf_text_section;
252b5132
RH
4120 break;
4121
4122 case SHN_MIPS_ACOMMON:
4123 /* Fall through. XXX Can we treat this as allocated data? */
4124 case SHN_MIPS_DATA:
4125 /* This section is used in a shared object. */
b305ef96 4126 if (elf_tdata (abfd)->elf_data_section == NULL)
252b5132 4127 {
b305ef96
UC
4128 asymbol *elf_data_symbol;
4129 asection *elf_data_section;
dc810e39 4130 bfd_size_type amt = sizeof (asection);
b305ef96 4131
dc810e39 4132 elf_data_section = bfd_zalloc (abfd, amt);
b305ef96
UC
4133 if (elf_data_section == NULL)
4134 return false;
4135
dc810e39
AM
4136 amt = sizeof (asymbol);
4137 elf_data_symbol = bfd_zalloc (abfd, amt);
b305ef96
UC
4138 if (elf_data_symbol == NULL)
4139 return false;
4140
252b5132 4141 /* Initialize the section. */
b305ef96
UC
4142
4143 elf_tdata (abfd)->elf_data_section = elf_data_section;
4144 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4145
4146 elf_data_section->symbol = elf_data_symbol;
4147 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4148
4149 elf_data_section->name = ".data";
4150 elf_data_section->flags = SEC_NO_FLAGS;
4151 elf_data_section->output_section = NULL;
4152 elf_data_section->owner = abfd;
4153 elf_data_symbol->name = ".data";
4154 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4155 elf_data_symbol->section = elf_data_section;
252b5132
RH
4156 }
4157 /* This code used to do *secp = bfd_und_section_ptr if
4158 info->shared. I don't know why, and that doesn't make sense,
4159 so I took it out. */
b305ef96 4160 *secp = elf_tdata (abfd)->elf_data_section;
252b5132
RH
4161 break;
4162
4163 case SHN_MIPS_SUNDEFINED:
4164 *secp = bfd_und_section_ptr;
4165 break;
4166 }
4167
4168 if (SGI_COMPAT (abfd)
4169 && ! info->shared
4170 && info->hash->creator == abfd->xvec
4171 && strcmp (*namep, "__rld_obj_head") == 0)
4172 {
4173 struct elf_link_hash_entry *h;
4174
4175 /* Mark __rld_obj_head as dynamic. */
4176 h = NULL;
4177 if (! (_bfd_generic_link_add_one_symbol
4178 (info, abfd, *namep, BSF_GLOBAL, *secp,
4179 (bfd_vma) *valp, (const char *) NULL, false,
4180 get_elf_backend_data (abfd)->collect,
4181 (struct bfd_link_hash_entry **) &h)))
4182 return false;
be3ccd9c 4183 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
252b5132
RH
4184 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4185 h->type = STT_OBJECT;
4186
4187 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4188 return false;
4189
4190 mips_elf_hash_table (info)->use_rld_obj_head = true;
4191 }
4192
4193 /* If this is a mips16 text symbol, add 1 to the value to make it
4194 odd. This will cause something like .word SYM to come up with
4195 the right value when it is loaded into the PC. */
4196 if (sym->st_other == STO_MIPS16)
4197 ++*valp;
4198
4199 return true;
4200}
4201
4202/* Structure used to pass information to mips_elf_output_extsym. */
4203
38b1a46c
NC
4204struct extsym_info
4205{
252b5132
RH
4206 bfd *abfd;
4207 struct bfd_link_info *info;
4208 struct ecoff_debug_info *debug;
4209 const struct ecoff_debug_swap *swap;
4210 boolean failed;
4211};
4212
4213/* This routine is used to write out ECOFF debugging external symbol
4214 information. It is called via mips_elf_link_hash_traverse. The
4215 ECOFF external symbol information must match the ELF external
4216 symbol information. Unfortunately, at this point we don't know
4217 whether a symbol is required by reloc information, so the two
4218 tables may wind up being different. We must sort out the external
4219 symbol information before we can set the final size of the .mdebug
4220 section, and we must set the size of the .mdebug section before we
4221 can relocate any sections, and we can't know which symbols are
4222 required by relocation until we relocate the sections.
4223 Fortunately, it is relatively unlikely that any symbol will be
4224 stripped but required by a reloc. In particular, it can not happen
4225 when generating a final executable. */
4226
4227static boolean
4228mips_elf_output_extsym (h, data)
4229 struct mips_elf_link_hash_entry *h;
4230 PTR data;
4231{
4232 struct extsym_info *einfo = (struct extsym_info *) data;
4233 boolean strip;
4234 asection *sec, *output_section;
4235
4236 if (h->root.indx == -2)
4237 strip = false;
4238 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4239 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4240 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4241 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4242 strip = true;
4243 else if (einfo->info->strip == strip_all
4244 || (einfo->info->strip == strip_some
4245 && bfd_hash_lookup (einfo->info->keep_hash,
4246 h->root.root.root.string,
4247 false, false) == NULL))
4248 strip = true;
4249 else
4250 strip = false;
4251
4252 if (strip)
4253 return true;
4254
4255 if (h->esym.ifd == -2)
4256 {
4257 h->esym.jmptbl = 0;
4258 h->esym.cobol_main = 0;
4259 h->esym.weakext = 0;
4260 h->esym.reserved = 0;
4261 h->esym.ifd = ifdNil;
4262 h->esym.asym.value = 0;
4263 h->esym.asym.st = stGlobal;
4264
f7cb7d68 4265 if (h->root.root.type == bfd_link_hash_undefined
be3ccd9c 4266 || h->root.root.type == bfd_link_hash_undefweak)
252b5132
RH
4267 {
4268 const char *name;
4269
4270 /* Use undefined class. Also, set class and type for some
4271 special symbols. */
4272 name = h->root.root.root.string;
4273 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4274 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4275 {
4276 h->esym.asym.sc = scData;
4277 h->esym.asym.st = stLabel;
4278 h->esym.asym.value = 0;
4279 }
4280 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4281 {
4282 h->esym.asym.sc = scAbs;
4283 h->esym.asym.st = stLabel;
4284 h->esym.asym.value =
4285 mips_elf_hash_table (einfo->info)->procedure_count;
4286 }
4287 else if (strcmp (name, "_gp_disp") == 0)
4288 {
4289 h->esym.asym.sc = scAbs;
4290 h->esym.asym.st = stLabel;
4291 h->esym.asym.value = elf_gp (einfo->abfd);
4292 }
4293 else
4294 h->esym.asym.sc = scUndefined;
4295 }
4296 else if (h->root.root.type != bfd_link_hash_defined
4297 && h->root.root.type != bfd_link_hash_defweak)
4298 h->esym.asym.sc = scAbs;
4299 else
4300 {
4301 const char *name;
4302
4303 sec = h->root.root.u.def.section;
4304 output_section = sec->output_section;
4305
4306 /* When making a shared library and symbol h is the one from
4307 the another shared library, OUTPUT_SECTION may be null. */
4308 if (output_section == NULL)
4309 h->esym.asym.sc = scUndefined;
4310 else
4311 {
4312 name = bfd_section_name (output_section->owner, output_section);
4313
4314 if (strcmp (name, ".text") == 0)
4315 h->esym.asym.sc = scText;
4316 else if (strcmp (name, ".data") == 0)
4317 h->esym.asym.sc = scData;
4318 else if (strcmp (name, ".sdata") == 0)
4319 h->esym.asym.sc = scSData;
4320 else if (strcmp (name, ".rodata") == 0
4321 || strcmp (name, ".rdata") == 0)
4322 h->esym.asym.sc = scRData;
4323 else if (strcmp (name, ".bss") == 0)
4324 h->esym.asym.sc = scBss;
4325 else if (strcmp (name, ".sbss") == 0)
4326 h->esym.asym.sc = scSBss;
4327 else if (strcmp (name, ".init") == 0)
4328 h->esym.asym.sc = scInit;
4329 else if (strcmp (name, ".fini") == 0)
4330 h->esym.asym.sc = scFini;
4331 else
4332 h->esym.asym.sc = scAbs;
4333 }
4334 }
4335
4336 h->esym.asym.reserved = 0;
4337 h->esym.asym.index = indexNil;
4338 }
4339
4340 if (h->root.root.type == bfd_link_hash_common)
4341 h->esym.asym.value = h->root.root.u.c.size;
4342 else if (h->root.root.type == bfd_link_hash_defined
4343 || h->root.root.type == bfd_link_hash_defweak)
4344 {
4345 if (h->esym.asym.sc == scCommon)
4346 h->esym.asym.sc = scBss;
4347 else if (h->esym.asym.sc == scSCommon)
4348 h->esym.asym.sc = scSBss;
4349
4350 sec = h->root.root.u.def.section;
4351 output_section = sec->output_section;
4352 if (output_section != NULL)
4353 h->esym.asym.value = (h->root.root.u.def.value
4354 + sec->output_offset
4355 + output_section->vma);
4356 else
4357 h->esym.asym.value = 0;
4358 }
4359 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4360 {
9117d219
NC
4361 struct mips_elf_link_hash_entry *hd = h;
4362 boolean no_fn_stub = h->no_fn_stub;
4363
4364 while (hd->root.root.type == bfd_link_hash_indirect)
252b5132 4365 {
9117d219
NC
4366 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
4367 no_fn_stub = no_fn_stub || hd->no_fn_stub;
252b5132 4368 }
9117d219
NC
4369
4370 if (!no_fn_stub)
4371 {
4372 /* Set type and value for a symbol with a function stub. */
4373 h->esym.asym.st = stProc;
4374 sec = hd->root.root.u.def.section;
4375 if (sec == NULL)
4376 h->esym.asym.value = 0;
4377 else
4378 {
4379 output_section = sec->output_section;
4380 if (output_section != NULL)
4381 h->esym.asym.value = (hd->root.plt.offset
4382 + sec->output_offset
4383 + output_section->vma);
4384 else
4385 h->esym.asym.value = 0;
4386 }
252b5132 4387#if 0 /* FIXME? */
9117d219 4388 h->esym.ifd = 0;
252b5132 4389#endif
9117d219 4390 }
252b5132
RH
4391 }
4392
4393 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4394 h->root.root.root.string,
4395 &h->esym))
4396 {
4397 einfo->failed = true;
4398 return false;
4399 }
4400
4401 return true;
4402}
4403
4404/* Create a runtime procedure table from the .mdebug section. */
4405
4406static boolean
4407mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4408 PTR handle;
4409 bfd *abfd;
4410 struct bfd_link_info *info;
4411 asection *s;
4412 struct ecoff_debug_info *debug;
4413{
4414 const struct ecoff_debug_swap *swap;
4415 HDRR *hdr = &debug->symbolic_header;
4416 RPDR *rpdr, *rp;
4417 struct rpdr_ext *erp;
4418 PTR rtproc;
4419 struct pdr_ext *epdr;
4420 struct sym_ext *esym;
4421 char *ss, **sv;
4422 char *str;
dc810e39
AM
4423 bfd_size_type size;
4424 bfd_size_type count;
252b5132
RH
4425 unsigned long sindex;
4426 unsigned long i;
4427 PDR pdr;
4428 SYMR sym;
4429 const char *no_name_func = _("static procedure (no name)");
4430
4431 epdr = NULL;
4432 rpdr = NULL;
4433 esym = NULL;
4434 ss = NULL;
4435 sv = NULL;
4436
4437 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4438
4439 sindex = strlen (no_name_func) + 1;
4440 count = hdr->ipdMax;
4441 if (count > 0)
4442 {
4443 size = swap->external_pdr_size;
4444
4445 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4446 if (epdr == NULL)
4447 goto error_return;
4448
4449 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4450 goto error_return;
4451
4452 size = sizeof (RPDR);
4453 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4454 if (rpdr == NULL)
4455 goto error_return;
4456
dc810e39
AM
4457 size = sizeof (char *);
4458 sv = (char **) bfd_malloc (size * count);
252b5132
RH
4459 if (sv == NULL)
4460 goto error_return;
4461
4462 count = hdr->isymMax;
4463 size = swap->external_sym_size;
4464 esym = (struct sym_ext *) bfd_malloc (size * count);
4465 if (esym == NULL)
4466 goto error_return;
4467
4468 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4469 goto error_return;
4470
4471 count = hdr->issMax;
4472 ss = (char *) bfd_malloc (count);
4473 if (ss == NULL)
4474 goto error_return;
4475 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4476 goto error_return;
4477
4478 count = hdr->ipdMax;
dc810e39 4479 for (i = 0; i < (unsigned long) count; i++, rp++)
252b5132
RH
4480 {
4481 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4482 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4483 rp->adr = sym.value;
4484 rp->regmask = pdr.regmask;
4485 rp->regoffset = pdr.regoffset;
4486 rp->fregmask = pdr.fregmask;
4487 rp->fregoffset = pdr.fregoffset;
4488 rp->frameoffset = pdr.frameoffset;
4489 rp->framereg = pdr.framereg;
4490 rp->pcreg = pdr.pcreg;
4491 rp->irpss = sindex;
4492 sv[i] = ss + sym.iss;
4493 sindex += strlen (sv[i]) + 1;
4494 }
4495 }
4496
4497 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4498 size = BFD_ALIGN (size, 16);
4499 rtproc = (PTR) bfd_alloc (abfd, size);
4500 if (rtproc == NULL)
4501 {
4502 mips_elf_hash_table (info)->procedure_count = 0;
4503 goto error_return;
4504 }
4505
4506 mips_elf_hash_table (info)->procedure_count = count + 2;
4507
4508 erp = (struct rpdr_ext *) rtproc;
4509 memset (erp, 0, sizeof (struct rpdr_ext));
4510 erp++;
4511 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4512 strcpy (str, no_name_func);
4513 str += strlen (no_name_func) + 1;
4514 for (i = 0; i < count; i++)
4515 {
4516 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4517 strcpy (str, sv[i]);
4518 str += strlen (sv[i]) + 1;
4519 }
dc810e39 4520 ECOFF_PUT_OFF (abfd, -1, (erp + count)->p_adr);
252b5132
RH
4521
4522 /* Set the size and contents of .rtproc section. */
4523 s->_raw_size = size;
4524 s->contents = (bfd_byte *) rtproc;
4525
4526 /* Skip this section later on (I don't think this currently
4527 matters, but someday it might). */
4528 s->link_order_head = (struct bfd_link_order *) NULL;
4529
4530 if (epdr != NULL)
4531 free (epdr);
4532 if (rpdr != NULL)
4533 free (rpdr);
4534 if (esym != NULL)
4535 free (esym);
4536 if (ss != NULL)
4537 free (ss);
4538 if (sv != NULL)
4539 free (sv);
4540
4541 return true;
4542
4543 error_return:
4544 if (epdr != NULL)
4545 free (epdr);
4546 if (rpdr != NULL)
4547 free (rpdr);
4548 if (esym != NULL)
4549 free (esym);
4550 if (ss != NULL)
4551 free (ss);
4552 if (sv != NULL)
4553 free (sv);
4554 return false;
4555}
4556
4557/* A comparison routine used to sort .gptab entries. */
4558
4559static int
4560gptab_compare (p1, p2)
4561 const PTR p1;
4562 const PTR p2;
4563{
4564 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4565 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4566
4567 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4568}
4569
4570/* We need to use a special link routine to handle the .reginfo and
4571 the .mdebug sections. We need to merge all instances of these
4572 sections together, not write them all out sequentially. */
4573
103186c6
MM
4574boolean
4575_bfd_mips_elf_final_link (abfd, info)
252b5132
RH
4576 bfd *abfd;
4577 struct bfd_link_info *info;
4578{
4579 asection **secpp;
4580 asection *o;
4581 struct bfd_link_order *p;
4582 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4583 asection *rtproc_sec;
4584 Elf32_RegInfo reginfo;
4585 struct ecoff_debug_info debug;
4586 const struct ecoff_debug_swap *swap
4587 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4588 HDRR *symhdr = &debug.symbolic_header;
4589 PTR mdebug_handle = NULL;
f7cb7d68
UC
4590 asection *s;
4591 EXTR esym;
f7cb7d68 4592 unsigned int i;
dc810e39
AM
4593 bfd_size_type amt;
4594
4595 static const char * const secname[] =
38b1a46c 4596 {
be3ccd9c
KH
4597 ".text", ".init", ".fini", ".data",
4598 ".rodata", ".sdata", ".sbss", ".bss"
4599 };
38b1a46c
NC
4600 static const int sc[] =
4601 {
be3ccd9c
KH
4602 scText, scInit, scFini, scData,
4603 scRData, scSData, scSBss, scBss
4604 };
252b5132 4605
303f629d
MM
4606 /* If all the things we linked together were PIC, but we're
4607 producing an executable (rather than a shared object), then the
4608 resulting file is CPIC (i.e., it calls PIC code.) */
0dda5f7a
ILT
4609 if (!info->shared
4610 && !info->relocateable
4611 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
252b5132 4612 {
303f629d
MM
4613 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4614 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
252b5132
RH
4615 }
4616
b3be9b46
RH
4617 /* We'd carefully arranged the dynamic symbol indices, and then the
4618 generic size_dynamic_sections renumbered them out from under us.
4619 Rather than trying somehow to prevent the renumbering, just do
4620 the sort again. */
441d6d79 4621 if (elf_hash_table (info)->dynamic_sections_created)
b3be9b46
RH
4622 {
4623 bfd *dynobj;
4624 asection *got;
4625 struct mips_got_info *g;
4626
435394bf
MM
4627 /* When we resort, we must tell mips_elf_sort_hash_table what
4628 the lowest index it may use is. That's the number of section
4629 symbols we're going to add. The generic ELF linker only
4630 adds these symbols when building a shared object. Note that
4631 we count the sections after (possibly) removing the .options
4632 section above. */
be3ccd9c 4633 if (!mips_elf_sort_hash_table (info, (info->shared
435394bf
MM
4634 ? bfd_count_sections (abfd) + 1
4635 : 1)))
be3ccd9c 4636 return false;
b3be9b46
RH
4637
4638 /* Make sure we didn't grow the global .got region. */
4639 dynobj = elf_hash_table (info)->dynobj;
4640 got = bfd_get_section_by_name (dynobj, ".got");
4641 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4642
8b237a89
MM
4643 if (g->global_gotsym != NULL)
4644 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4645 - g->global_gotsym->dynindx)
4646 <= g->global_gotno);
b3be9b46
RH
4647 }
4648
303f629d
MM
4649 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4650 include it, even though we don't process it quite right. (Some
4651 entries are supposed to be merged.) Empirically, we seem to be
4652 better off including it then not. */
f7cb7d68 4653 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
303f629d
MM
4654 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4655 {
4656 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4657 {
4658 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4659 if (p->type == bfd_indirect_link_order)
be3ccd9c 4660 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
303f629d
MM
4661 (*secpp)->link_order_head = NULL;
4662 *secpp = (*secpp)->next;
4663 --abfd->section_count;
be3ccd9c 4664
303f629d
MM
4665 break;
4666 }
4667 }
4668
252b5132
RH
4669 /* Get a value for the GP register. */
4670 if (elf_gp (abfd) == 0)
4671 {
4672 struct bfd_link_hash_entry *h;
4673
4674 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4675 if (h != (struct bfd_link_hash_entry *) NULL
4676 && h->type == bfd_link_hash_defined)
4677 elf_gp (abfd) = (h->u.def.value
4678 + h->u.def.section->output_section->vma
4679 + h->u.def.section->output_offset);
0db63c18
MM
4680 else if (info->relocateable)
4681 {
4682 bfd_vma lo;
4683
4684 /* Find the GP-relative section with the lowest offset. */
4685 lo = (bfd_vma) -1;
4686 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
be3ccd9c 4687 if (o->vma < lo
0db63c18
MM
4688 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4689 lo = o->vma;
4690
4691 /* And calculate GP relative to that. */
4692 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4693 }
252b5132
RH
4694 else
4695 {
4696 /* If the relocate_section function needs to do a reloc
4697 involving the GP value, it should make a reloc_dangerous
4698 callback to warn that GP is not defined. */
4699 }
4700 }
4701
4702 /* Go through the sections and collect the .reginfo and .mdebug
4703 information. */
4704 reginfo_sec = NULL;
4705 mdebug_sec = NULL;
4706 gptab_data_sec = NULL;
4707 gptab_bss_sec = NULL;
4708 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4709 {
4710 if (strcmp (o->name, ".reginfo") == 0)
4711 {
4712 memset (&reginfo, 0, sizeof reginfo);
4713
4714 /* We have found the .reginfo section in the output file.
4715 Look through all the link_orders comprising it and merge
4716 the information together. */
4717 for (p = o->link_order_head;
4718 p != (struct bfd_link_order *) NULL;
4719 p = p->next)
4720 {
4721 asection *input_section;
4722 bfd *input_bfd;
4723 Elf32_External_RegInfo ext;
4724 Elf32_RegInfo sub;
4725
4726 if (p->type != bfd_indirect_link_order)
4727 {
4728 if (p->type == bfd_fill_link_order)
4729 continue;
4730 abort ();
4731 }
4732
4733 input_section = p->u.indirect.section;
4734 input_bfd = input_section->owner;
4735
4736 /* The linker emulation code has probably clobbered the
4737 size to be zero bytes. */
4738 if (input_section->_raw_size == 0)
4739 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4740
4741 if (! bfd_get_section_contents (input_bfd, input_section,
4742 (PTR) &ext,
4743 (file_ptr) 0,
dc810e39 4744 (bfd_size_type) sizeof ext))
252b5132
RH
4745 return false;
4746
4747 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4748
4749 reginfo.ri_gprmask |= sub.ri_gprmask;
4750 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4751 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4752 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4753 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4754
4755 /* ri_gp_value is set by the function
4756 mips_elf32_section_processing when the section is
4757 finally written out. */
4758
4759 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4760 elf_link_input_bfd ignores this section. */
be3ccd9c 4761 input_section->flags &= ~SEC_HAS_CONTENTS;
252b5132
RH
4762 }
4763
4764 /* Size has been set in mips_elf_always_size_sections */
4765 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4766
4767 /* Skip this section later on (I don't think this currently
4768 matters, but someday it might). */
4769 o->link_order_head = (struct bfd_link_order *) NULL;
4770
4771 reginfo_sec = o;
4772 }
4773
4774 if (strcmp (o->name, ".mdebug") == 0)
4775 {
4776 struct extsym_info einfo;
dc810e39 4777 bfd_vma last;
252b5132
RH
4778
4779 /* We have found the .mdebug section in the output file.
4780 Look through all the link_orders comprising it and merge
4781 the information together. */
4782 symhdr->magic = swap->sym_magic;
4783 /* FIXME: What should the version stamp be? */
4784 symhdr->vstamp = 0;
4785 symhdr->ilineMax = 0;
4786 symhdr->cbLine = 0;
4787 symhdr->idnMax = 0;
4788 symhdr->ipdMax = 0;
4789 symhdr->isymMax = 0;
4790 symhdr->ioptMax = 0;
4791 symhdr->iauxMax = 0;
4792 symhdr->issMax = 0;
4793 symhdr->issExtMax = 0;
4794 symhdr->ifdMax = 0;
4795 symhdr->crfd = 0;
4796 symhdr->iextMax = 0;
4797
4798 /* We accumulate the debugging information itself in the
4799 debug_info structure. */
4800 debug.line = NULL;
4801 debug.external_dnr = NULL;
4802 debug.external_pdr = NULL;
4803 debug.external_sym = NULL;
4804 debug.external_opt = NULL;
4805 debug.external_aux = NULL;
4806 debug.ss = NULL;
4807 debug.ssext = debug.ssext_end = NULL;
4808 debug.external_fdr = NULL;
4809 debug.external_rfd = NULL;
4810 debug.external_ext = debug.external_ext_end = NULL;
4811
4812 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4813 if (mdebug_handle == (PTR) NULL)
4814 return false;
4815
be3ccd9c
KH
4816 esym.jmptbl = 0;
4817 esym.cobol_main = 0;
4818 esym.weakext = 0;
4819 esym.reserved = 0;
4820 esym.ifd = ifdNil;
4821 esym.asym.iss = issNil;
4822 esym.asym.st = stLocal;
4823 esym.asym.reserved = 0;
4824 esym.asym.index = indexNil;
4825 last = 0;
dc810e39 4826 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
be3ccd9c
KH
4827 {
4828 esym.asym.sc = sc[i];
dc810e39 4829 s = bfd_get_section_by_name (abfd, secname[i]);
be3ccd9c
KH
4830 if (s != NULL)
4831 {
4832 esym.asym.value = s->vma;
4833 last = s->vma + s->_raw_size;
4834 }
4835 else
4836 esym.asym.value = last;
4837 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
dc810e39 4838 secname[i], &esym))
be3ccd9c
KH
4839 return false;
4840 }
252b5132
RH
4841
4842 for (p = o->link_order_head;
4843 p != (struct bfd_link_order *) NULL;
4844 p = p->next)
4845 {
4846 asection *input_section;
4847 bfd *input_bfd;
4848 const struct ecoff_debug_swap *input_swap;
4849 struct ecoff_debug_info input_debug;
4850 char *eraw_src;
4851 char *eraw_end;
4852
4853 if (p->type != bfd_indirect_link_order)
4854 {
4855 if (p->type == bfd_fill_link_order)
4856 continue;
4857 abort ();
4858 }
4859
4860 input_section = p->u.indirect.section;
4861 input_bfd = input_section->owner;
4862
4863 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4864 || (get_elf_backend_data (input_bfd)
4865 ->elf_backend_ecoff_debug_swap) == NULL)
4866 {
4867 /* I don't know what a non MIPS ELF bfd would be
4868 doing with a .mdebug section, but I don't really
4869 want to deal with it. */
4870 continue;
4871 }
4872
4873 input_swap = (get_elf_backend_data (input_bfd)
4874 ->elf_backend_ecoff_debug_swap);
4875
4876 BFD_ASSERT (p->size == input_section->_raw_size);
4877
4878 /* The ECOFF linking code expects that we have already
4879 read in the debugging information and set up an
4880 ecoff_debug_info structure, so we do that now. */
4881 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4882 &input_debug))
4883 return false;
4884
4885 if (! (bfd_ecoff_debug_accumulate
4886 (mdebug_handle, abfd, &debug, swap, input_bfd,
4887 &input_debug, input_swap, info)))
4888 return false;
4889
4890 /* Loop through the external symbols. For each one with
4891 interesting information, try to find the symbol in
4892 the linker global hash table and save the information
4893 for the output external symbols. */
4894 eraw_src = input_debug.external_ext;
4895 eraw_end = (eraw_src
4896 + (input_debug.symbolic_header.iextMax
4897 * input_swap->external_ext_size));
4898 for (;
4899 eraw_src < eraw_end;
4900 eraw_src += input_swap->external_ext_size)
4901 {
4902 EXTR ext;
4903 const char *name;
4904 struct mips_elf_link_hash_entry *h;
4905
4906 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4907 if (ext.asym.sc == scNil
4908 || ext.asym.sc == scUndefined
4909 || ext.asym.sc == scSUndefined)
4910 continue;
4911
4912 name = input_debug.ssext + ext.asym.iss;
4913 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4914 name, false, false, true);
4915 if (h == NULL || h->esym.ifd != -2)
4916 continue;
4917
4918 if (ext.ifd != -1)
4919 {
4920 BFD_ASSERT (ext.ifd
4921 < input_debug.symbolic_header.ifdMax);
4922 ext.ifd = input_debug.ifdmap[ext.ifd];
4923 }
4924
4925 h->esym = ext;
4926 }
4927
4928 /* Free up the information we just read. */
4929 free (input_debug.line);
4930 free (input_debug.external_dnr);
4931 free (input_debug.external_pdr);
4932 free (input_debug.external_sym);
4933 free (input_debug.external_opt);
4934 free (input_debug.external_aux);
4935 free (input_debug.ss);
4936 free (input_debug.ssext);
4937 free (input_debug.external_fdr);
4938 free (input_debug.external_rfd);
4939 free (input_debug.external_ext);
4940
4941 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4942 elf_link_input_bfd ignores this section. */
be3ccd9c 4943 input_section->flags &= ~SEC_HAS_CONTENTS;
252b5132
RH
4944 }
4945
4946 if (SGI_COMPAT (abfd) && info->shared)
4947 {
4948 /* Create .rtproc section. */
4949 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4950 if (rtproc_sec == NULL)
4951 {
4952 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4953 | SEC_LINKER_CREATED | SEC_READONLY);
4954
4955 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4956 if (rtproc_sec == NULL
4957 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4958 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4959 return false;
4960 }
4961
4962 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4963 info, rtproc_sec, &debug))
4964 return false;
4965 }
4966
4967 /* Build the external symbol information. */
4968 einfo.abfd = abfd;
4969 einfo.info = info;
4970 einfo.debug = &debug;
4971 einfo.swap = swap;
4972 einfo.failed = false;
4973 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4974 mips_elf_output_extsym,
4975 (PTR) &einfo);
4976 if (einfo.failed)
4977 return false;
4978
4979 /* Set the size of the .mdebug section. */
4980 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4981
4982 /* Skip this section later on (I don't think this currently
4983 matters, but someday it might). */
4984 o->link_order_head = (struct bfd_link_order *) NULL;
4985
4986 mdebug_sec = o;
4987 }
4988
4989 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4990 {
4991 const char *subname;
4992 unsigned int c;
4993 Elf32_gptab *tab;
4994 Elf32_External_gptab *ext_tab;
dc810e39 4995 unsigned int j;
252b5132
RH
4996
4997 /* The .gptab.sdata and .gptab.sbss sections hold
4998 information describing how the small data area would
4999 change depending upon the -G switch. These sections
5000 not used in executables files. */
5001 if (! info->relocateable)
5002 {
252b5132
RH
5003 for (p = o->link_order_head;
5004 p != (struct bfd_link_order *) NULL;
5005 p = p->next)
5006 {
5007 asection *input_section;
5008
5009 if (p->type != bfd_indirect_link_order)
5010 {
5011 if (p->type == bfd_fill_link_order)
5012 continue;
5013 abort ();
5014 }
5015
5016 input_section = p->u.indirect.section;
5017
5018 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5019 elf_link_input_bfd ignores this section. */
be3ccd9c 5020 input_section->flags &= ~SEC_HAS_CONTENTS;
252b5132
RH
5021 }
5022
5023 /* Skip this section later on (I don't think this
5024 currently matters, but someday it might). */
5025 o->link_order_head = (struct bfd_link_order *) NULL;
5026
5027 /* Really remove the section. */
5028 for (secpp = &abfd->sections;
5029 *secpp != o;
5030 secpp = &(*secpp)->next)
5031 ;
5032 *secpp = (*secpp)->next;
5033 --abfd->section_count;
5034
5035 continue;
5036 }
5037
5038 /* There is one gptab for initialized data, and one for
5039 uninitialized data. */
5040 if (strcmp (o->name, ".gptab.sdata") == 0)
5041 gptab_data_sec = o;
5042 else if (strcmp (o->name, ".gptab.sbss") == 0)
5043 gptab_bss_sec = o;
5044 else
5045 {
5046 (*_bfd_error_handler)
5047 (_("%s: illegal section name `%s'"),
5048 bfd_get_filename (abfd), o->name);
5049 bfd_set_error (bfd_error_nonrepresentable_section);
5050 return false;
5051 }
5052
5053 /* The linker script always combines .gptab.data and
5054 .gptab.sdata into .gptab.sdata, and likewise for
5055 .gptab.bss and .gptab.sbss. It is possible that there is
5056 no .sdata or .sbss section in the output file, in which
5057 case we must change the name of the output section. */
5058 subname = o->name + sizeof ".gptab" - 1;
5059 if (bfd_get_section_by_name (abfd, subname) == NULL)
5060 {
5061 if (o == gptab_data_sec)
5062 o->name = ".gptab.data";
5063 else
5064 o->name = ".gptab.bss";
5065 subname = o->name + sizeof ".gptab" - 1;
5066 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5067 }
5068
5069 /* Set up the first entry. */
5070 c = 1;
dc810e39
AM
5071 amt = c * sizeof (Elf32_gptab);
5072 tab = (Elf32_gptab *) bfd_malloc (amt);
252b5132
RH
5073 if (tab == NULL)
5074 return false;
5075 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5076 tab[0].gt_header.gt_unused = 0;
5077
5078 /* Combine the input sections. */
5079 for (p = o->link_order_head;
5080 p != (struct bfd_link_order *) NULL;
5081 p = p->next)
5082 {
5083 asection *input_section;
5084 bfd *input_bfd;
5085 bfd_size_type size;
5086 unsigned long last;
5087 bfd_size_type gpentry;
5088
5089 if (p->type != bfd_indirect_link_order)
5090 {
5091 if (p->type == bfd_fill_link_order)
5092 continue;
5093 abort ();
5094 }
5095
5096 input_section = p->u.indirect.section;
5097 input_bfd = input_section->owner;
5098
5099 /* Combine the gptab entries for this input section one
5100 by one. We know that the input gptab entries are
5101 sorted by ascending -G value. */
5102 size = bfd_section_size (input_bfd, input_section);
5103 last = 0;
5104 for (gpentry = sizeof (Elf32_External_gptab);
5105 gpentry < size;
5106 gpentry += sizeof (Elf32_External_gptab))
5107 {
5108 Elf32_External_gptab ext_gptab;
5109 Elf32_gptab int_gptab;
5110 unsigned long val;
5111 unsigned long add;
5112 boolean exact;
5113 unsigned int look;
5114
5115 if (! (bfd_get_section_contents
5116 (input_bfd, input_section, (PTR) &ext_gptab,
dc810e39
AM
5117 (file_ptr) gpentry,
5118 (bfd_size_type) sizeof (Elf32_External_gptab))))
252b5132
RH
5119 {
5120 free (tab);
5121 return false;
5122 }
5123
5124 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5125 &int_gptab);
5126 val = int_gptab.gt_entry.gt_g_value;
5127 add = int_gptab.gt_entry.gt_bytes - last;
5128
5129 exact = false;
5130 for (look = 1; look < c; look++)
5131 {
5132 if (tab[look].gt_entry.gt_g_value >= val)
5133 tab[look].gt_entry.gt_bytes += add;
5134
5135 if (tab[look].gt_entry.gt_g_value == val)
5136 exact = true;
5137 }
5138
5139 if (! exact)
5140 {
5141 Elf32_gptab *new_tab;
5142 unsigned int max;
5143
5144 /* We need a new table entry. */
dc810e39
AM
5145 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
5146 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
252b5132
RH
5147 if (new_tab == NULL)
5148 {
5149 free (tab);
5150 return false;
5151 }
5152 tab = new_tab;
5153 tab[c].gt_entry.gt_g_value = val;
5154 tab[c].gt_entry.gt_bytes = add;
5155
5156 /* Merge in the size for the next smallest -G
5157 value, since that will be implied by this new
5158 value. */
5159 max = 0;
5160 for (look = 1; look < c; look++)
5161 {
5162 if (tab[look].gt_entry.gt_g_value < val
5163 && (max == 0
5164 || (tab[look].gt_entry.gt_g_value
5165 > tab[max].gt_entry.gt_g_value)))
5166 max = look;
5167 }
5168 if (max != 0)
5169 tab[c].gt_entry.gt_bytes +=
5170 tab[max].gt_entry.gt_bytes;
5171
5172 ++c;
5173 }
5174
5175 last = int_gptab.gt_entry.gt_bytes;
5176 }
5177
5178 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5179 elf_link_input_bfd ignores this section. */
be3ccd9c 5180 input_section->flags &= ~SEC_HAS_CONTENTS;
252b5132
RH
5181 }
5182
5183 /* The table must be sorted by -G value. */
5184 if (c > 2)
5185 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5186
5187 /* Swap out the table. */
dc810e39
AM
5188 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
5189 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
252b5132
RH
5190 if (ext_tab == NULL)
5191 {
5192 free (tab);
5193 return false;
5194 }
5195
dc810e39
AM
5196 for (j = 0; j < c; j++)
5197 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
252b5132
RH
5198 free (tab);
5199
5200 o->_raw_size = c * sizeof (Elf32_External_gptab);
5201 o->contents = (bfd_byte *) ext_tab;
5202
5203 /* Skip this section later on (I don't think this currently
5204 matters, but someday it might). */
5205 o->link_order_head = (struct bfd_link_order *) NULL;
5206 }
5207 }
5208
5209 /* Invoke the regular ELF backend linker to do all the work. */
9ebbd33e
MM
5210 if (ABI_64_P (abfd))
5211 {
5212#ifdef BFD64
5213 if (!bfd_elf64_bfd_final_link (abfd, info))
5214 return false;
5215#else
5216 abort ();
103186c6 5217 return false;
9ebbd33e
MM
5218#endif /* BFD64 */
5219 }
5220 else if (!bfd_elf32_bfd_final_link (abfd, info))
5221 return false;
252b5132
RH
5222
5223 /* Now write out the computed sections. */
5224
5225 if (reginfo_sec != (asection *) NULL)
5226 {
5227 Elf32_External_RegInfo ext;
5228
5229 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5230 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
dc810e39 5231 (file_ptr) 0, (bfd_size_type) sizeof ext))
252b5132
RH
5232 return false;
5233 }
5234
5235 if (mdebug_sec != (asection *) NULL)
5236 {
5237 BFD_ASSERT (abfd->output_has_begun);
5238 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5239 swap, info,
5240 mdebug_sec->filepos))
5241 return false;
5242
5243 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5244 }
5245
5246 if (gptab_data_sec != (asection *) NULL)
5247 {
5248 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5249 gptab_data_sec->contents,
5250 (file_ptr) 0,
5251 gptab_data_sec->_raw_size))
5252 return false;
5253 }
5254
5255 if (gptab_bss_sec != (asection *) NULL)
5256 {
5257 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5258 gptab_bss_sec->contents,
5259 (file_ptr) 0,
5260 gptab_bss_sec->_raw_size))
5261 return false;
5262 }
5263
5264 if (SGI_COMPAT (abfd))
5265 {
5266 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5267 if (rtproc_sec != NULL)
5268 {
5269 if (! bfd_set_section_contents (abfd, rtproc_sec,
5270 rtproc_sec->contents,
5271 (file_ptr) 0,
5272 rtproc_sec->_raw_size))
5273 return false;
5274 }
5275 }
5276
5277 return true;
5278}
5279
adb76a3e
UC
5280/* This function is called via qsort() to sort the dynamic relocation
5281 entries by increasing r_symndx value. */
5282
5283static int
be3ccd9c
KH
5284sort_dynamic_relocs (arg1, arg2)
5285 const PTR arg1;
5286 const PTR arg2;
adb76a3e
UC
5287{
5288 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5289 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5290
5291 Elf_Internal_Rel int_reloc1;
5292 Elf_Internal_Rel int_reloc2;
5293
be3ccd9c
KH
5294 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5295 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
adb76a3e 5296
be3ccd9c 5297 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
adb76a3e
UC
5298}
5299
7403cb63 5300/* Returns the GOT section for ABFD. */
252b5132 5301
7403cb63
MM
5302static asection *
5303mips_elf_got_section (abfd)
5304 bfd *abfd;
252b5132 5305{
7403cb63
MM
5306 return bfd_get_section_by_name (abfd, ".got");
5307}
5308
5309/* Returns the GOT information associated with the link indicated by
be3ccd9c 5310 INFO. If SGOTP is non-NULL, it is filled in with the GOT
7403cb63
MM
5311 section. */
5312
5313static struct mips_got_info *
5314mips_elf_got_info (abfd, sgotp)
5315 bfd *abfd;
5316 asection **sgotp;
5317{
5318 asection *sgot;
252b5132
RH
5319 struct mips_got_info *g;
5320
7403cb63
MM
5321 sgot = mips_elf_got_section (abfd);
5322 BFD_ASSERT (sgot != NULL);
5323 BFD_ASSERT (elf_section_data (sgot) != NULL);
5324 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5325 BFD_ASSERT (g != NULL);
252b5132 5326
7403cb63
MM
5327 if (sgotp)
5328 *sgotp = sgot;
5329 return g;
5330}
252b5132 5331
6387d602
ILT
5332/* Return whether a relocation is against a local symbol. */
5333
5334static boolean
b305ef96
UC
5335mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5336 check_forced)
6387d602
ILT
5337 bfd *input_bfd;
5338 const Elf_Internal_Rela *relocation;
5339 asection **local_sections;
b305ef96 5340 boolean check_forced;
6387d602
ILT
5341{
5342 unsigned long r_symndx;
5343 Elf_Internal_Shdr *symtab_hdr;
be3ccd9c 5344 struct mips_elf_link_hash_entry *h;
b305ef96 5345 size_t extsymoff;
6387d602
ILT
5346
5347 r_symndx = ELF32_R_SYM (relocation->r_info);
5348 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
b305ef96
UC
5349 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5350
5351 if (r_symndx < extsymoff)
5352 return true;
5353 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5354 return true;
5355
5356 if (check_forced)
6387d602 5357 {
be3ccd9c 5358 /* Look up the hash table to check whether the symbol
b305ef96 5359 was forced local. */
be3ccd9c
KH
5360 h = (struct mips_elf_link_hash_entry *)
5361 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5362 /* Find the real hash-table entry for this symbol. */
5363 while (h->root.root.type == bfd_link_hash_indirect
b305ef96 5364 || h->root.root.type == bfd_link_hash_warning)
be3ccd9c
KH
5365 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5366 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5367 return true;
6387d602 5368 }
b305ef96
UC
5369
5370 return false;
6387d602
ILT
5371}
5372
7403cb63 5373/* Sign-extend VALUE, which has the indicated number of BITS. */
252b5132 5374
7403cb63
MM
5375static bfd_vma
5376mips_elf_sign_extend (value, bits)
5377 bfd_vma value;
5378 int bits;
5379{
be3ccd9c 5380 if (value & ((bfd_vma) 1 << (bits - 1)))
7403cb63 5381 /* VALUE is negative. */
be3ccd9c
KH
5382 value |= ((bfd_vma) - 1) << bits;
5383
7403cb63
MM
5384 return value;
5385}
252b5132 5386
7403cb63
MM
5387/* Return non-zero if the indicated VALUE has overflowed the maximum
5388 range expressable by a signed number with the indicated number of
5389 BITS. */
252b5132 5390
7403cb63
MM
5391static boolean
5392mips_elf_overflow_p (value, bits)
5393 bfd_vma value;
5394 int bits;
5395{
5396 bfd_signed_vma svalue = (bfd_signed_vma) value;
252b5132 5397
7403cb63
MM
5398 if (svalue > (1 << (bits - 1)) - 1)
5399 /* The value is too big. */
5400 return true;
5401 else if (svalue < -(1 << (bits - 1)))
5402 /* The value is too small. */
5403 return true;
be3ccd9c 5404
7403cb63
MM
5405 /* All is well. */
5406 return false;
5407}
252b5132 5408
7403cb63 5409/* Calculate the %high function. */
252b5132 5410
7403cb63
MM
5411static bfd_vma
5412mips_elf_high (value)
5413 bfd_vma value;
5414{
5415 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5416}
252b5132 5417
7403cb63
MM
5418/* Calculate the %higher function. */
5419
5420static bfd_vma
5421mips_elf_higher (value)
5f771d47 5422 bfd_vma value ATTRIBUTE_UNUSED;
7403cb63
MM
5423{
5424#ifdef BFD64
5425 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5426#else
5427 abort ();
5428 return (bfd_vma) -1;
5429#endif
5430}
5431
5432/* Calculate the %highest function. */
5433
be3ccd9c 5434static bfd_vma
7403cb63 5435mips_elf_highest (value)
5f771d47 5436 bfd_vma value ATTRIBUTE_UNUSED;
7403cb63
MM
5437{
5438#ifdef BFD64
0af99795 5439 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
7403cb63
MM
5440#else
5441 abort ();
5442 return (bfd_vma) -1;
5443#endif
5444}
5445
5446/* Returns the GOT index for the global symbol indicated by H. */
5447
be3ccd9c 5448static bfd_vma
7403cb63
MM
5449mips_elf_global_got_index (abfd, h)
5450 bfd *abfd;
5451 struct elf_link_hash_entry *h;
5452{
5453 bfd_vma index;
5454 asection *sgot;
5455 struct mips_got_info *g;
5456
5457 g = mips_elf_got_info (abfd, &sgot);
5458
5459 /* Once we determine the global GOT entry with the lowest dynamic
5460 symbol table index, we must put all dynamic symbols with greater
5461 indices into the GOT. That makes it easy to calculate the GOT
5462 offset. */
5463 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
be3ccd9c 5464 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
103186c6 5465 * MIPS_ELF_GOT_SIZE (abfd));
7403cb63
MM
5466 BFD_ASSERT (index < sgot->_raw_size);
5467
5468 return index;
5469}
5470
5471/* Returns the offset for the entry at the INDEXth position
5472 in the GOT. */
5473
5474static bfd_vma
5475mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5476 bfd *dynobj;
5477 bfd *output_bfd;
5478 bfd_vma index;
5479{
5480 asection *sgot;
5481 bfd_vma gp;
7403cb63 5482
103186c6 5483 sgot = mips_elf_got_section (dynobj);
7403cb63 5484 gp = _bfd_get_gp_value (output_bfd);
be3ccd9c 5485 return (sgot->output_section->vma + sgot->output_offset + index -
7403cb63
MM
5486 gp);
5487}
5488
5489/* If H is a symbol that needs a global GOT entry, but has a dynamic
5490 symbol table index lower than any we've seen to date, record it for
5491 posterity. */
5492
5493static boolean
5494mips_elf_record_global_got_symbol (h, info, g)
5495 struct elf_link_hash_entry *h;
5496 struct bfd_link_info *info;
5f771d47 5497 struct mips_got_info *g ATTRIBUTE_UNUSED;
7403cb63
MM
5498{
5499 /* A global symbol in the GOT must also be in the dynamic symbol
5500 table. */
5501 if (h->dynindx == -1
5502 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5503 return false;
be3ccd9c 5504
7403cb63
MM
5505 /* If we've already marked this entry as need GOT space, we don't
5506 need to do it again. */
5507 if (h->got.offset != (bfd_vma) - 1)
5508 return true;
5509
5510 /* By setting this to a value other than -1, we are indicating that
5511 there needs to be a GOT entry for H. */
5512 h->got.offset = 0;
5513
5514 return true;
5515}
5516
5517/* This structure is passed to mips_elf_sort_hash_table_f when sorting
5518 the dynamic symbols. */
be3ccd9c 5519
38b1a46c
NC
5520struct mips_elf_hash_sort_data
5521{
7403cb63
MM
5522 /* The symbol in the global GOT with the lowest dynamic symbol table
5523 index. */
5524 struct elf_link_hash_entry *low;
5525 /* The least dynamic symbol table index corresponding to a symbol
5526 with a GOT entry. */
5527 long min_got_dynindx;
5528 /* The greatest dynamic symbol table index not corresponding to a
5529 symbol without a GOT entry. */
5530 long max_non_got_dynindx;
5531};
5532
5533/* If H needs a GOT entry, assign it the highest available dynamic
be3ccd9c 5534 index. Otherwise, assign it the lowest available dynamic
7403cb63
MM
5535 index. */
5536
5537static boolean
5538mips_elf_sort_hash_table_f (h, data)
5539 struct mips_elf_link_hash_entry *h;
5540 PTR data;
5541{
be3ccd9c 5542 struct mips_elf_hash_sort_data *hsd
7403cb63
MM
5543 = (struct mips_elf_hash_sort_data *) data;
5544
5545 /* Symbols without dynamic symbol table entries aren't interesting
5546 at all. */
5547 if (h->root.dynindx == -1)
5548 return true;
5549
5550 if (h->root.got.offset != 0)
5551 h->root.dynindx = hsd->max_non_got_dynindx++;
5552 else
5553 {
5554 h->root.dynindx = --hsd->min_got_dynindx;
5555 hsd->low = (struct elf_link_hash_entry *) h;
5556 }
5557
5558 return true;
5559}
5560
5561/* Sort the dynamic symbol table so that symbols that need GOT entries
5562 appear towards the end. This reduces the amount of GOT space
b3be9b46
RH
5563 required. MAX_LOCAL is used to set the number of local symbols
5564 known to be in the dynamic symbol table. During
5565 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5566 section symbols are added and the count is higher. */
7403cb63
MM
5567
5568static boolean
b3be9b46 5569mips_elf_sort_hash_table (info, max_local)
7403cb63 5570 struct bfd_link_info *info;
b3be9b46 5571 unsigned long max_local;
7403cb63
MM
5572{
5573 struct mips_elf_hash_sort_data hsd;
5574 struct mips_got_info *g;
5575 bfd *dynobj;
5576
5577 dynobj = elf_hash_table (info)->dynobj;
5578
5579 hsd.low = NULL;
5580 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
b3be9b46 5581 hsd.max_non_got_dynindx = max_local;
be3ccd9c
KH
5582 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5583 elf_hash_table (info)),
5584 mips_elf_sort_hash_table_f,
7403cb63
MM
5585 &hsd);
5586
5587 /* There shoud have been enough room in the symbol table to
5588 accomodate both the GOT and non-GOT symbols. */
b305ef96 5589 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
7403cb63
MM
5590
5591 /* Now we know which dynamic symbol has the lowest dynamic symbol
5592 table index in the GOT. */
5593 g = mips_elf_got_info (dynobj, NULL);
5594 g->global_gotsym = hsd.low;
5595
5596 return true;
5597}
5598
5599/* Create a local GOT entry for VALUE. Return the index of the entry,
5600 or -1 if it could not be created. */
5601
5602static bfd_vma
5603mips_elf_create_local_got_entry (abfd, g, sgot, value)
5604 bfd *abfd;
5605 struct mips_got_info *g;
5606 asection *sgot;
5607 bfd_vma value;
5608{
5609 if (g->assigned_gotno >= g->local_gotno)
5610 {
5611 /* We didn't allocate enough space in the GOT. */
5612 (*_bfd_error_handler)
5613 (_("not enough GOT space for local GOT entries"));
5614 bfd_set_error (bfd_error_bad_value);
5615 return (bfd_vma) -1;
5616 }
5617
103186c6 5618 MIPS_ELF_PUT_WORD (abfd, value,
be3ccd9c 5619 (sgot->contents
103186c6
MM
5620 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5621 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
7403cb63
MM
5622}
5623
5624/* Returns the GOT offset at which the indicated address can be found.
5625 If there is not yet a GOT entry for this value, create one. Returns
5626 -1 if no satisfactory GOT offset can be found. */
5627
5628static bfd_vma
5629mips_elf_local_got_index (abfd, info, value)
5630 bfd *abfd;
5631 struct bfd_link_info *info;
5632 bfd_vma value;
5633{
5634 asection *sgot;
5635 struct mips_got_info *g;
5636 bfd_byte *entry;
5637
5638 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5639
5640 /* Look to see if we already have an appropriate entry. */
be3ccd9c
KH
5641 for (entry = (sgot->contents
5642 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
103186c6
MM
5643 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5644 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5645 {
103186c6 5646 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
7403cb63
MM
5647 if (address == value)
5648 return entry - sgot->contents;
5649 }
5650
5651 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5652}
5653
5654/* Find a GOT entry that is within 32KB of the VALUE. These entries
5655 are supposed to be placed at small offsets in the GOT, i.e.,
5656 within 32KB of GP. Return the index into the GOT for this page,
5657 and store the offset from this entry to the desired address in
5658 OFFSETP, if it is non-NULL. */
5659
5660static bfd_vma
5661mips_elf_got_page (abfd, info, value, offsetp)
5662 bfd *abfd;
5663 struct bfd_link_info *info;
5664 bfd_vma value;
5665 bfd_vma *offsetp;
5666{
5667 asection *sgot;
5668 struct mips_got_info *g;
5669 bfd_byte *entry;
5670 bfd_byte *last_entry;
86033394 5671 bfd_vma index = 0;
7403cb63
MM
5672 bfd_vma address;
5673
5674 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5675
5676 /* Look to see if we aleady have an appropriate entry. */
103186c6 5677 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
be3ccd9c 5678 for (entry = (sgot->contents
103186c6 5679 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
7403cb63 5680 entry != last_entry;
103186c6 5681 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5682 {
103186c6
MM
5683 address = MIPS_ELF_GET_WORD (abfd, entry);
5684
7403cb63
MM
5685 if (!mips_elf_overflow_p (value - address, 16))
5686 {
5687 /* This entry will serve as the page pointer. We can add a
5688 16-bit number to it to get the actual address. */
5689 index = entry - sgot->contents;
5690 break;
252b5132 5691 }
7403cb63
MM
5692 }
5693
5694 /* If we didn't have an appropriate entry, we create one now. */
5695 if (entry == last_entry)
5696 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5697
5698 if (offsetp)
5699 {
103186c6 5700 address = MIPS_ELF_GET_WORD (abfd, entry);
7403cb63
MM
5701 *offsetp = value - address;
5702 }
5703
5704 return index;
5705}
5706
5707/* Find a GOT entry whose higher-order 16 bits are the same as those
5708 for value. Return the index into the GOT for this entry. */
5709
5710static bfd_vma
b305ef96 5711mips_elf_got16_entry (abfd, info, value, external)
7403cb63
MM
5712 bfd *abfd;
5713 struct bfd_link_info *info;
5714 bfd_vma value;
b305ef96 5715 boolean external;
7403cb63
MM
5716{
5717 asection *sgot;
5718 struct mips_got_info *g;
5719 bfd_byte *entry;
5720 bfd_byte *last_entry;
86033394 5721 bfd_vma index = 0;
7403cb63
MM
5722 bfd_vma address;
5723
b305ef96
UC
5724 if (! external)
5725 {
5726 /* Although the ABI says that it is "the high-order 16 bits" that we
5727 want, it is really the %high value. The complete value is
5728 calculated with a `addiu' of a LO16 relocation, just as with a
5729 HI16/LO16 pair. */
5730 value = mips_elf_high (value) << 16;
5731 }
5732
7403cb63
MM
5733 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5734
5735 /* Look to see if we already have an appropriate entry. */
103186c6 5736 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
be3ccd9c 5737 for (entry = (sgot->contents
103186c6 5738 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
7403cb63 5739 entry != last_entry;
103186c6 5740 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5741 {
103186c6 5742 address = MIPS_ELF_GET_WORD (abfd, entry);
b305ef96 5743 if (address == value)
252b5132 5744 {
b305ef96
UC
5745 /* This entry has the right high-order 16 bits, and the low-order
5746 16 bits are set to zero. */
4f2860ca 5747 index = entry - sgot->contents;
7403cb63
MM
5748 break;
5749 }
5750 }
5751
5752 /* If we didn't have an appropriate entry, we create one now. */
5753 if (entry == last_entry)
5754 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5755
5756 return index;
5757}
5758
bb2d6cd7 5759/* Returns the first relocation of type r_type found, beginning with
23b255aa 5760 RELOCATION. RELEND is one-past-the-end of the relocation table. */
7403cb63 5761
23b255aa 5762static const Elf_Internal_Rela *
bb2d6cd7
GK
5763mips_elf_next_relocation (r_type, relocation, relend)
5764 unsigned int r_type;
103186c6
MM
5765 const Elf_Internal_Rela *relocation;
5766 const Elf_Internal_Rela *relend;
7403cb63
MM
5767{
5768 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5769 immediately following. However, for the IRIX6 ABI, the next
5770 relocation may be a composed relocation consisting of several
5771 relocations for the same address. In that case, the R_MIPS_LO16
435394bf 5772 relocation may occur as one of these. We permit a similar
7403cb63
MM
5773 extension in general, as that is useful for GCC. */
5774 while (relocation < relend)
5775 {
bb2d6cd7 5776 if (ELF32_R_TYPE (relocation->r_info) == r_type)
23b255aa 5777 return relocation;
7403cb63
MM
5778
5779 ++relocation;
5780 }
5781
5782 /* We didn't find it. */
6387d602 5783 bfd_set_error (bfd_error_bad_value);
23b255aa 5784 return NULL;
7403cb63
MM
5785}
5786
7b1f1231
MM
5787/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5788 is the original relocation, which is now being transformed into a
b305ef96 5789 dynamic relocation. The ADDENDP is adjusted if necessary; the
7b1f1231 5790 caller should store the result in place of the original addend. */
7403cb63 5791
7b1f1231
MM
5792static boolean
5793mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
9117d219 5794 symbol, addendp, input_section)
7403cb63
MM
5795 bfd *output_bfd;
5796 struct bfd_link_info *info;
103186c6 5797 const Elf_Internal_Rela *rel;
7b1f1231
MM
5798 struct mips_elf_link_hash_entry *h;
5799 asection *sec;
5800 bfd_vma symbol;
5801 bfd_vma *addendp;
7403cb63
MM
5802 asection *input_section;
5803{
5804 Elf_Internal_Rel outrel;
5805 boolean skip;
5806 asection *sreloc;
5807 bfd *dynobj;
5808 int r_type;
5809
5810 r_type = ELF32_R_TYPE (rel->r_info);
5811 dynobj = elf_hash_table (info)->dynobj;
be3ccd9c 5812 sreloc
103186c6
MM
5813 = bfd_get_section_by_name (dynobj,
5814 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
7403cb63 5815 BFD_ASSERT (sreloc != NULL);
b305ef96 5816 BFD_ASSERT (sreloc->contents != NULL);
14d5043a
L
5817 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5818 < sreloc->_raw_size);
7403cb63
MM
5819
5820 skip = false;
5821
7b1f1231
MM
5822 /* We begin by assuming that the offset for the dynamic relocation
5823 is the same as for the original relocation. We'll adjust this
5824 later to reflect the correct output offsets. */
7403cb63
MM
5825 if (elf_section_data (input_section)->stab_info == NULL)
5826 outrel.r_offset = rel->r_offset;
5827 else
5828 {
7b1f1231
MM
5829 /* Except that in a stab section things are more complex.
5830 Because we compress stab information, the offset given in the
5831 relocation may not be the one we want; we must let the stabs
5832 machinery tell us the offset. */
be3ccd9c 5833 outrel.r_offset
7b1f1231
MM
5834 = (_bfd_stab_section_offset
5835 (output_bfd, &elf_hash_table (info)->stab_info,
5836 input_section,
5837 &elf_section_data (input_section)->stab_info,
5838 rel->r_offset));
5839 /* If we didn't need the relocation at all, this value will be
5840 -1. */
5841 if (outrel.r_offset == (bfd_vma) -1)
7403cb63 5842 skip = true;
7403cb63 5843 }
7403cb63 5844
b305ef96 5845 /* If we've decided to skip this relocation, just output an empty
7b1f1231
MM
5846 record. Note that R_MIPS_NONE == 0, so that this call to memset
5847 is a way of setting R_TYPE to R_MIPS_NONE. */
7403cb63
MM
5848 if (skip)
5849 memset (&outrel, 0, sizeof (outrel));
7b1f1231
MM
5850 else
5851 {
5852 long indx;
5853 bfd_vma section_offset;
5854
5855 /* We must now calculate the dynamic symbol table index to use
5856 in the relocation. */
5857 if (h != NULL
5858 && (! info->symbolic || (h->root.elf_link_hash_flags
5859 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5860 {
5861 indx = h->root.dynindx;
b305ef96
UC
5862 /* h->root.dynindx may be -1 if this symbol was marked to
5863 become local. */
5864 if (indx == -1)
be3ccd9c 5865 indx = 0;
7b1f1231
MM
5866 }
5867 else
5868 {
5869 if (sec != NULL && bfd_is_abs_section (sec))
5870 indx = 0;
5871 else if (sec == NULL || sec->owner == NULL)
5872 {
5873 bfd_set_error (bfd_error_bad_value);
5874 return false;
5875 }
5876 else
5877 {
5878 indx = elf_section_data (sec->output_section)->dynindx;
5879 if (indx == 0)
5880 abort ();
5881 }
5882
5883 /* Figure out how far the target of the relocation is from
5884 the beginning of its section. */
5885 section_offset = symbol - sec->output_section->vma;
5886 /* The relocation we're building is section-relative.
5887 Therefore, the original addend must be adjusted by the
5888 section offset. */
9117d219 5889 *addendp += section_offset;
7b1f1231
MM
5890 /* Now, the relocation is just against the section. */
5891 symbol = sec->output_section->vma;
5892 }
be3ccd9c 5893
9117d219
NC
5894 /* If the relocation was previously an absolute relocation and
5895 this symbol will not be referred to by the relocation, we must
5896 adjust it by the value we give it in the dynamic symbol table.
5897 Otherwise leave the job up to the dynamic linker. */
5898 if (!indx && r_type != R_MIPS_REL32)
7b1f1231
MM
5899 *addendp += symbol;
5900
5901 /* The relocation is always an REL32 relocation because we don't
5902 know where the shared library will wind up at load-time. */
5903 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5904
5905 /* Adjust the output offset of the relocation to reference the
5906 correct location in the output file. */
5907 outrel.r_offset += (input_section->output_section->vma
5908 + input_section->output_offset);
5909 }
7403cb63 5910
7b1f1231
MM
5911 /* Put the relocation back out. We have to use the special
5912 relocation outputter in the 64-bit case since the 64-bit
5913 relocation format is non-standard. */
103186c6
MM
5914 if (ABI_64_P (output_bfd))
5915 {
5916 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5917 (output_bfd, &outrel,
be3ccd9c 5918 (sreloc->contents
103186c6
MM
5919 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5920 }
5921 else
5922 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5923 (((Elf32_External_Rel *)
5924 sreloc->contents)
5925 + sreloc->reloc_count));
7b1f1231
MM
5926
5927 /* Record the index of the first relocation referencing H. This
5928 information is later emitted in the .msym section. */
5929 if (h != NULL
be3ccd9c 5930 && (h->min_dyn_reloc_index == 0
7b1f1231
MM
5931 || sreloc->reloc_count < h->min_dyn_reloc_index))
5932 h->min_dyn_reloc_index = sreloc->reloc_count;
5933
5934 /* We've now added another relocation. */
7403cb63
MM
5935 ++sreloc->reloc_count;
5936
5937 /* Make sure the output section is writable. The dynamic linker
5938 will be writing to it. */
5939 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5940 |= SHF_WRITE;
5941
5942 /* On IRIX5, make an entry of compact relocation info. */
5943 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5944 {
be3ccd9c 5945 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
7403cb63
MM
5946 bfd_byte *cr;
5947
5948 if (scpt)
5949 {
5950 Elf32_crinfo cptrel;
5951
5952 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5953 cptrel.vaddr = (rel->r_offset
5954 + input_section->output_section->vma
5955 + input_section->output_offset);
5956 if (r_type == R_MIPS_REL32)
5957 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
252b5132 5958 else
7403cb63
MM
5959 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5960 mips_elf_set_cr_dist2to (cptrel, 0);
7b1f1231 5961 cptrel.konst = *addendp;
7403cb63
MM
5962
5963 cr = (scpt->contents
5964 + sizeof (Elf32_External_compact_rel));
5965 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5966 ((Elf32_External_crinfo *) cr
5967 + scpt->reloc_count));
5968 ++scpt->reloc_count;
5969 }
5970 }
252b5132 5971
7b1f1231 5972 return true;
7403cb63 5973}
252b5132 5974
7403cb63
MM
5975/* Calculate the value produced by the RELOCATION (which comes from
5976 the INPUT_BFD). The ADDEND is the addend to use for this
5977 RELOCATION; RELOCATION->R_ADDEND is ignored.
5978
5979 The result of the relocation calculation is stored in VALUEP.
197b9ca0
MM
5980 REQUIRE_JALXP indicates whether or not the opcode used with this
5981 relocation must be JALX.
7403cb63
MM
5982
5983 This function returns bfd_reloc_continue if the caller need take no
5984 further action regarding this relocation, bfd_reloc_notsupported if
5985 something goes dramatically wrong, bfd_reloc_overflow if an
5986 overflow occurs, and bfd_reloc_ok to indicate success. */
5987
5988static bfd_reloc_status_type
be3ccd9c 5989mips_elf_calculate_relocation (abfd,
7403cb63
MM
5990 input_bfd,
5991 input_section,
5992 info,
5993 relocation,
5994 addend,
5995 howto,
7403cb63
MM
5996 local_syms,
5997 local_sections,
5998 valuep,
197b9ca0 5999 namep,
be3ccd9c 6000 require_jalxp)
7403cb63
MM
6001 bfd *abfd;
6002 bfd *input_bfd;
6003 asection *input_section;
6004 struct bfd_link_info *info;
103186c6 6005 const Elf_Internal_Rela *relocation;
7403cb63
MM
6006 bfd_vma addend;
6007 reloc_howto_type *howto;
7403cb63
MM
6008 Elf_Internal_Sym *local_syms;
6009 asection **local_sections;
6010 bfd_vma *valuep;
6011 const char **namep;
197b9ca0 6012 boolean *require_jalxp;
7403cb63
MM
6013{
6014 /* The eventual value we will return. */
6015 bfd_vma value;
6016 /* The address of the symbol against which the relocation is
6017 occurring. */
6018 bfd_vma symbol = 0;
6019 /* The final GP value to be used for the relocatable, executable, or
6020 shared object file being produced. */
6021 bfd_vma gp = (bfd_vma) - 1;
6022 /* The place (section offset or address) of the storage unit being
6023 relocated. */
6024 bfd_vma p;
6025 /* The value of GP used to create the relocatable object. */
6026 bfd_vma gp0 = (bfd_vma) - 1;
6027 /* The offset into the global offset table at which the address of
6028 the relocation entry symbol, adjusted by the addend, resides
6029 during execution. */
6030 bfd_vma g = (bfd_vma) - 1;
6031 /* The section in which the symbol referenced by the relocation is
6032 located. */
6033 asection *sec = NULL;
be3ccd9c 6034 struct mips_elf_link_hash_entry *h = NULL;
103186c6
MM
6035 /* True if the symbol referred to by this relocation is a local
6036 symbol. */
7403cb63 6037 boolean local_p;
103186c6 6038 /* True if the symbol referred to by this relocation is "_gp_disp". */
7403cb63
MM
6039 boolean gp_disp_p = false;
6040 Elf_Internal_Shdr *symtab_hdr;
6041 size_t extsymoff;
103186c6 6042 unsigned long r_symndx;
7403cb63 6043 int r_type;
103186c6
MM
6044 /* True if overflow occurred during the calculation of the
6045 relocation value. */
7403cb63 6046 boolean overflowed_p;
197b9ca0
MM
6047 /* True if this relocation refers to a MIPS16 function. */
6048 boolean target_is_16_bit_code_p = false;
7403cb63
MM
6049
6050 /* Parse the relocation. */
6051 r_symndx = ELF32_R_SYM (relocation->r_info);
6052 r_type = ELF32_R_TYPE (relocation->r_info);
be3ccd9c 6053 p = (input_section->output_section->vma
7403cb63
MM
6054 + input_section->output_offset
6055 + relocation->r_offset);
6056
6057 /* Assume that there will be no overflow. */
6058 overflowed_p = false;
6059
6387d602
ILT
6060 /* Figure out whether or not the symbol is local, and get the offset
6061 used in the array of hash table entries. */
7403cb63 6062 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6387d602 6063 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b305ef96 6064 local_sections, false);
6387d602
ILT
6065 if (! elf_bad_symtab (input_bfd))
6066 extsymoff = symtab_hdr->sh_info;
6067 else
7403cb63
MM
6068 {
6069 /* The symbol table does not follow the rule that local symbols
6070 must come before globals. */
6071 extsymoff = 0;
7403cb63 6072 }
be3ccd9c 6073
7403cb63
MM
6074 /* Figure out the value of the symbol. */
6075 if (local_p)
6076 {
6077 Elf_Internal_Sym *sym;
6078
6079 sym = local_syms + r_symndx;
6080 sec = local_sections[r_symndx];
6081
6082 symbol = sec->output_section->vma + sec->output_offset;
6083 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6084 symbol += sym->st_value;
6085
6086 /* MIPS16 text labels should be treated as odd. */
6087 if (sym->st_other == STO_MIPS16)
6088 ++symbol;
6089
6090 /* Record the name of this symbol, for our caller. */
6091 *namep = bfd_elf_string_from_elf_section (input_bfd,
6092 symtab_hdr->sh_link,
6093 sym->st_name);
e049a0de 6094 if (*namep == '\0')
7403cb63 6095 *namep = bfd_section_name (input_bfd, sec);
197b9ca0
MM
6096
6097 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
7403cb63
MM
6098 }
6099 else
6100 {
6101 /* For global symbols we look up the symbol in the hash-table. */
be3ccd9c 6102 h = ((struct mips_elf_link_hash_entry *)
7403cb63
MM
6103 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6104 /* Find the real hash-table entry for this symbol. */
b305ef96
UC
6105 while (h->root.root.type == bfd_link_hash_indirect
6106 || h->root.root.type == bfd_link_hash_warning)
7403cb63 6107 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
be3ccd9c 6108
7403cb63
MM
6109 /* Record the name of this symbol, for our caller. */
6110 *namep = h->root.root.root.string;
6111
6112 /* See if this is the special _gp_disp symbol. Note that such a
6113 symbol must always be a global symbol. */
6114 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6115 {
6116 /* Relocations against _gp_disp are permitted only with
6117 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6118 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6119 return bfd_reloc_notsupported;
6120
6121 gp_disp_p = true;
6122 }
97a4bb05
MM
6123 /* If this symbol is defined, calculate its address. Note that
6124 _gp_disp is a magic symbol, always implicitly defined by the
6125 linker, so it's inappropriate to check to see whether or not
6126 its defined. */
6127 else if ((h->root.root.type == bfd_link_hash_defined
6128 || h->root.root.type == bfd_link_hash_defweak)
6129 && h->root.root.u.def.section)
7403cb63
MM
6130 {
6131 sec = h->root.root.u.def.section;
6132 if (sec->output_section)
be3ccd9c 6133 symbol = (h->root.root.u.def.value
7403cb63
MM
6134 + sec->output_section->vma
6135 + sec->output_offset);
252b5132 6136 else
7403cb63
MM
6137 symbol = h->root.root.u.def.value;
6138 }
97287574
MM
6139 else if (h->root.root.type == bfd_link_hash_undefweak)
6140 /* We allow relocations against undefined weak symbols, giving
6141 it the value zero, so that you can undefined weak functions
6142 and check to see if they exist by looking at their
6143 addresses. */
6144 symbol = 0;
671bae9c
NC
6145 else if (info->shared
6146 && (!info->symbolic || info->allow_shlib_undefined)
6147 && !info->no_undefined
ba09750c 6148 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
8535d39c 6149 symbol = 0;
f7cb7d68
UC
6150 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6151 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3811169e
MM
6152 {
6153 /* If this is a dynamic link, we should have created a
be3ccd9c 6154 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
f7cb7d68 6155 in in mips_elf_create_dynamic_sections.
3811169e
MM
6156 Otherwise, we should define the symbol with a value of 0.
6157 FIXME: It should probably get into the symbol table
6158 somehow as well. */
6159 BFD_ASSERT (! info->shared);
6160 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
8535d39c 6161 symbol = 0;
3811169e 6162 }
7403cb63
MM
6163 else
6164 {
5cc7c785
L
6165 if (! ((*info->callbacks->undefined_symbol)
6166 (info, h->root.root.root.string, input_bfd,
6167 input_section, relocation->r_offset,
3a27a730 6168 (!info->shared || info->no_undefined
ba09750c 6169 || ELF_ST_VISIBILITY (h->root.other)))))
5cc7c785
L
6170 return bfd_reloc_undefined;
6171 symbol = 0;
7403cb63 6172 }
197b9ca0
MM
6173
6174 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6175 }
be3ccd9c 6176
197b9ca0
MM
6177 /* If this is a 32-bit call to a 16-bit function with a stub, we
6178 need to redirect the call to the stub, unless we're already *in*
6179 a stub. */
6180 if (r_type != R_MIPS16_26 && !info->relocateable
6181 && ((h != NULL && h->fn_stub != NULL)
6182 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6183 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6184 && !mips_elf_stub_section_p (input_bfd, input_section))
6185 {
6186 /* This is a 32-bit call to a 16-bit function. We should
6187 have already noticed that we were going to need the
6188 stub. */
6189 if (local_p)
6190 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6191 else
6192 {
6193 BFD_ASSERT (h->need_fn_stub);
6194 sec = h->fn_stub;
6195 }
6196
6197 symbol = sec->output_section->vma + sec->output_offset;
7403cb63 6198 }
197b9ca0
MM
6199 /* If this is a 16-bit call to a 32-bit function with a stub, we
6200 need to redirect the call to the stub. */
6201 else if (r_type == R_MIPS16_26 && !info->relocateable
be3ccd9c 6202 && h != NULL
197b9ca0
MM
6203 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6204 && !target_is_16_bit_code_p)
6205 {
6206 /* If both call_stub and call_fp_stub are defined, we can figure
6207 out which one to use by seeing which one appears in the input
6208 file. */
6209 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6210 {
6211 asection *o;
6212
6213 sec = NULL;
6214 for (o = input_bfd->sections; o != NULL; o = o->next)
6215 {
6216 if (strncmp (bfd_get_section_name (input_bfd, o),
6217 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6218 {
6219 sec = h->call_fp_stub;
6220 break;
6221 }
6222 }
6223 if (sec == NULL)
6224 sec = h->call_stub;
6225 }
6226 else if (h->call_stub != NULL)
6227 sec = h->call_stub;
6228 else
6229 sec = h->call_fp_stub;
6230
6231 BFD_ASSERT (sec->_raw_size > 0);
6232 symbol = sec->output_section->vma + sec->output_offset;
6233 }
6234
6235 /* Calls from 16-bit code to 32-bit code and vice versa require the
6236 special jalx instruction. */
6387d602
ILT
6237 *require_jalxp = (!info->relocateable
6238 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
252b5132 6239
b305ef96
UC
6240 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6241 local_sections, true);
6242
7403cb63
MM
6243 /* If we haven't already determined the GOT offset, or the GP value,
6244 and we're going to need it, get it now. */
6245 switch (r_type)
6246 {
6247 case R_MIPS_CALL16:
2841ecd0 6248 case R_MIPS_GOT16:
7403cb63
MM
6249 case R_MIPS_GOT_DISP:
6250 case R_MIPS_GOT_HI16:
6251 case R_MIPS_CALL_HI16:
6252 case R_MIPS_GOT_LO16:
6253 case R_MIPS_CALL_LO16:
6254 /* Find the index into the GOT where this value is located. */
4f2860ca 6255 if (!local_p)
7403cb63
MM
6256 {
6257 BFD_ASSERT (addend == 0);
be3ccd9c 6258 g = mips_elf_global_got_index
7403cb63 6259 (elf_hash_table (info)->dynobj,
be3ccd9c 6260 (struct elf_link_hash_entry *) h);
9a8f3bb7
UC
6261 if (! elf_hash_table(info)->dynamic_sections_created
6262 || (info->shared
6263 && (info->symbolic || h->root.dynindx == -1)
6264 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6265 {
6266 /* This is a static link or a -Bsymbolic link. The
6267 symbol is defined locally, or was forced to be local.
6268 We must initialize this entry in the GOT. */
6269 asection *sgot = mips_elf_got_section(elf_hash_table
6270 (info)->dynobj);
6271 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6272 symbol + addend, sgot->contents + g);
6273 }
7403cb63 6274 }
9117d219 6275 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
4f2860ca
MM
6276 /* There's no need to create a local GOT entry here; the
6277 calculation for a local GOT16 entry does not involve G. */
6278 break;
7403cb63
MM
6279 else
6280 {
6281 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6282 if (g == (bfd_vma) -1)
6283 return false;
6284 }
252b5132 6285
7403cb63
MM
6286 /* Convert GOT indices to actual offsets. */
6287 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6288 abfd, g);
6289 break;
be3ccd9c 6290
7403cb63
MM
6291 case R_MIPS_HI16:
6292 case R_MIPS_LO16:
6293 case R_MIPS_GPREL16:
6294 case R_MIPS_GPREL32:
0af99795 6295 case R_MIPS_LITERAL:
7403cb63
MM
6296 gp0 = _bfd_get_gp_value (input_bfd);
6297 gp = _bfd_get_gp_value (abfd);
6298 break;
252b5132 6299
7403cb63
MM
6300 default:
6301 break;
6302 }
252b5132 6303
7403cb63
MM
6304 /* Figure out what kind of relocation is being performed. */
6305 switch (r_type)
6306 {
6307 case R_MIPS_NONE:
6308 return bfd_reloc_continue;
252b5132 6309
7403cb63
MM
6310 case R_MIPS_16:
6311 value = symbol + mips_elf_sign_extend (addend, 16);
6312 overflowed_p = mips_elf_overflow_p (value, 16);
6313 break;
252b5132 6314
7403cb63
MM
6315 case R_MIPS_32:
6316 case R_MIPS_REL32:
a3c7651d 6317 case R_MIPS_64:
7b1f1231
MM
6318 if ((info->shared
6319 || (elf_hash_table (info)->dynamic_sections_created
6320 && h != NULL
2bab9785
L
6321 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
6322 != 0)))
7b1f1231 6323 && (input_section->flags & SEC_ALLOC) != 0)
7403cb63 6324 {
7b1f1231
MM
6325 /* If we're creating a shared library, or this relocation is
6326 against a symbol in a shared library, then we can't know
6327 where the symbol will end up. So, we create a relocation
6328 record in the output, and leave the job up to the dynamic
6329 linker. */
6330 value = addend;
be3ccd9c
KH
6331 if (!mips_elf_create_dynamic_relocation (abfd,
6332 info,
7b1f1231
MM
6333 relocation,
6334 h,
6335 sec,
6336 symbol,
6337 &value,
9117d219 6338 input_section))
7b1f1231 6339 return false;
7403cb63
MM
6340 }
6341 else
6342 {
a3c7651d 6343 if (r_type != R_MIPS_REL32)
7403cb63
MM
6344 value = symbol + addend;
6345 else
6346 value = addend;
6347 }
6348 value &= howto->dst_mask;
6349 break;
6350
bb2d6cd7
GK
6351 case R_MIPS_PC32:
6352 case R_MIPS_PC64:
6353 case R_MIPS_GNU_REL_LO16:
6354 value = symbol + addend - p;
6355 value &= howto->dst_mask;
6356 break;
6357
6358 case R_MIPS_GNU_REL16_S2:
6359 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6360 overflowed_p = mips_elf_overflow_p (value, 18);
6361 value = (value >> 2) & howto->dst_mask;
6362 break;
6363
6364 case R_MIPS_GNU_REL_HI16:
6365 value = mips_elf_high (addend + symbol - p);
6366 value &= howto->dst_mask;
6367 break;
6368
e53bd91b 6369 case R_MIPS16_26:
9117d219 6370 /* The calculation for R_MIPS16_26 is just the same as for an
e53bd91b 6371 R_MIPS_26. It's only the storage of the relocated field into
1e52e2ee 6372 the output file that's different. That's handled in
e53bd91b
MM
6373 mips_elf_perform_relocation. So, we just fall through to the
6374 R_MIPS_26 case here. */
7403cb63
MM
6375 case R_MIPS_26:
6376 if (local_p)
9117d219 6377 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
7403cb63
MM
6378 else
6379 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6380 value &= howto->dst_mask;
6381 break;
6382
6383 case R_MIPS_HI16:
6384 if (!gp_disp_p)
6385 {
6386 value = mips_elf_high (addend + symbol);
6387 value &= howto->dst_mask;
6388 }
6389 else
6390 {
6391 value = mips_elf_high (addend + gp - p);
6392 overflowed_p = mips_elf_overflow_p (value, 16);
6393 }
6394 break;
6395
6396 case R_MIPS_LO16:
6397 if (!gp_disp_p)
6398 value = (symbol + addend) & howto->dst_mask;
6399 else
6400 {
6401 value = addend + gp - p + 4;
97a4bb05
MM
6402 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6403 for overflow. But, on, say, Irix 5, relocations against
6404 _gp_disp are normally generated from the .cpload
6405 pseudo-op. It generates code that normally looks like
6406 this:
6407
6408 lui $gp,%hi(_gp_disp)
6409 addiu $gp,$gp,%lo(_gp_disp)
6410 addu $gp,$gp,$t9
6411
6412 Here $t9 holds the address of the function being called,
6413 as required by the MIPS ELF ABI. The R_MIPS_LO16
e53bd91b 6414 relocation can easily overflow in this situation, but the
97a4bb05
MM
6415 R_MIPS_HI16 relocation will handle the overflow.
6416 Therefore, we consider this a bug in the MIPS ABI, and do
6417 not check for overflow here. */
7403cb63
MM
6418 }
6419 break;
6420
6421 case R_MIPS_LITERAL:
6422 /* Because we don't merge literal sections, we can handle this
6423 just like R_MIPS_GPREL16. In the long run, we should merge
6424 shared literals, and then we will need to additional work
6425 here. */
6426
6427 /* Fall through. */
6428
b7233c24
MM
6429 case R_MIPS16_GPREL:
6430 /* The R_MIPS16_GPREL performs the same calculation as
6431 R_MIPS_GPREL16, but stores the relocated bits in a different
6432 order. We don't need to do anything special here; the
6433 differences are handled in mips_elf_perform_relocation. */
7403cb63
MM
6434 case R_MIPS_GPREL16:
6435 if (local_p)
6436 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6437 else
6438 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6439 overflowed_p = mips_elf_overflow_p (value, 16);
6440 break;
be3ccd9c 6441
7403cb63 6442 case R_MIPS_GOT16:
9117d219 6443 case R_MIPS_CALL16:
7403cb63
MM
6444 if (local_p)
6445 {
b305ef96 6446 boolean forced;
be3ccd9c 6447
b305ef96
UC
6448 /* The special case is when the symbol is forced to be local. We
6449 need the full address in the GOT since no R_MIPS_LO16 relocation
6450 follows. */
6451 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6452 local_sections, false);
6453 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
7403cb63
MM
6454 if (value == (bfd_vma) -1)
6455 return false;
be3ccd9c 6456 value
7403cb63
MM
6457 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6458 abfd,
6459 value);
6460 overflowed_p = mips_elf_overflow_p (value, 16);
6461 break;
6462 }
6463
6464 /* Fall through. */
6465
7403cb63
MM
6466 case R_MIPS_GOT_DISP:
6467 value = g;
6468 overflowed_p = mips_elf_overflow_p (value, 16);
6469 break;
6470
6471 case R_MIPS_GPREL32:
6472 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6473 break;
6474
6475 case R_MIPS_PC16:
6476 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6477 overflowed_p = mips_elf_overflow_p (value, 16);
cb56d3d3 6478 value = (bfd_vma) ((bfd_signed_vma) value / 4);
7403cb63
MM
6479 break;
6480
6481 case R_MIPS_GOT_HI16:
6482 case R_MIPS_CALL_HI16:
6483 /* We're allowed to handle these two relocations identically.
6484 The dynamic linker is allowed to handle the CALL relocations
6485 differently by creating a lazy evaluation stub. */
6486 value = g;
6487 value = mips_elf_high (value);
6488 value &= howto->dst_mask;
6489 break;
6490
6491 case R_MIPS_GOT_LO16:
6492 case R_MIPS_CALL_LO16:
6493 value = g & howto->dst_mask;
6494 break;
6495
7403cb63
MM
6496 case R_MIPS_GOT_PAGE:
6497 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6498 if (value == (bfd_vma) -1)
6499 return false;
6500 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6501 abfd,
6502 value);
6503 overflowed_p = mips_elf_overflow_p (value, 16);
6504 break;
be3ccd9c 6505
7403cb63
MM
6506 case R_MIPS_GOT_OFST:
6507 mips_elf_got_page (abfd, info, symbol + addend, &value);
6508 overflowed_p = mips_elf_overflow_p (value, 16);
6509 break;
6510
6511 case R_MIPS_SUB:
6512 value = symbol - addend;
6513 value &= howto->dst_mask;
6514 break;
6515
6516 case R_MIPS_HIGHER:
6517 value = mips_elf_higher (addend + symbol);
6518 value &= howto->dst_mask;
6519 break;
6520
6521 case R_MIPS_HIGHEST:
6522 value = mips_elf_highest (addend + symbol);
6523 value &= howto->dst_mask;
6524 break;
be3ccd9c 6525
7403cb63
MM
6526 case R_MIPS_SCN_DISP:
6527 value = symbol + addend - sec->output_offset;
6528 value &= howto->dst_mask;
6529 break;
6530
6531 case R_MIPS_PJUMP:
6532 case R_MIPS_JALR:
6533 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6534 hint; we could improve performance by honoring that hint. */
6535 return bfd_reloc_continue;
6536
6537 case R_MIPS_GNU_VTINHERIT:
6538 case R_MIPS_GNU_VTENTRY:
6539 /* We don't do anything with these at present. */
6540 return bfd_reloc_continue;
6541
7403cb63
MM
6542 default:
6543 /* An unrecognized relocation type. */
6544 return bfd_reloc_notsupported;
6545 }
6546
6547 /* Store the VALUE for our caller. */
6548 *valuep = value;
6549 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6550}
6551
6552/* Obtain the field relocated by RELOCATION. */
6553
6554static bfd_vma
6555mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6556 reloc_howto_type *howto;
103186c6 6557 const Elf_Internal_Rela *relocation;
7403cb63
MM
6558 bfd *input_bfd;
6559 bfd_byte *contents;
6560{
6561 bfd_vma x;
6562 bfd_byte *location = contents + relocation->r_offset;
6563
b7233c24
MM
6564 /* Obtain the bytes. */
6565 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
7403cb63 6566
6296902e
MM
6567 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6568 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
1e52e2ee
MM
6569 && bfd_little_endian (input_bfd))
6570 /* The two 16-bit words will be reversed on a little-endian
6571 system. See mips_elf_perform_relocation for more details. */
6572 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6573
7403cb63
MM
6574 return x;
6575}
6576
6577/* It has been determined that the result of the RELOCATION is the
6578 VALUE. Use HOWTO to place VALUE into the output file at the
6579 appropriate position. The SECTION is the section to which the
197b9ca0
MM
6580 relocation applies. If REQUIRE_JALX is true, then the opcode used
6581 for the relocation must be either JAL or JALX, and it is
6582 unconditionally converted to JALX.
7403cb63
MM
6583
6584 Returns false if anything goes wrong. */
252b5132 6585
197b9ca0 6586static boolean
e53bd91b 6587mips_elf_perform_relocation (info, howto, relocation, value,
be3ccd9c 6588 input_bfd, input_section,
197b9ca0 6589 contents, require_jalx)
e53bd91b 6590 struct bfd_link_info *info;
7403cb63 6591 reloc_howto_type *howto;
103186c6 6592 const Elf_Internal_Rela *relocation;
7403cb63
MM
6593 bfd_vma value;
6594 bfd *input_bfd;
197b9ca0 6595 asection *input_section;
7403cb63 6596 bfd_byte *contents;
197b9ca0 6597 boolean require_jalx;
7403cb63
MM
6598{
6599 bfd_vma x;
e53bd91b 6600 bfd_byte *location;
197b9ca0 6601 int r_type = ELF32_R_TYPE (relocation->r_info);
e53bd91b
MM
6602
6603 /* Figure out where the relocation is occurring. */
6604 location = contents + relocation->r_offset;
252b5132 6605
7403cb63
MM
6606 /* Obtain the current value. */
6607 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
252b5132 6608
7403cb63
MM
6609 /* Clear the field we are setting. */
6610 x &= ~howto->dst_mask;
252b5132 6611
e53bd91b
MM
6612 /* If this is the R_MIPS16_26 relocation, we must store the
6613 value in a funny way. */
197b9ca0 6614 if (r_type == R_MIPS16_26)
7403cb63 6615 {
e53bd91b
MM
6616 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6617 Most mips16 instructions are 16 bits, but these instructions
6618 are 32 bits.
6619
6620 The format of these instructions is:
6621
6622 +--------------+--------------------------------+
6623 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6624 +--------------+--------------------------------+
6625 ! Immediate 15:0 !
6626 +-----------------------------------------------+
be3ccd9c 6627
e53bd91b
MM
6628 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6629 Note that the immediate value in the first word is swapped.
6630
6631 When producing a relocateable object file, R_MIPS16_26 is
6632 handled mostly like R_MIPS_26. In particular, the addend is
6633 stored as a straight 26-bit value in a 32-bit instruction.
6634 (gas makes life simpler for itself by never adjusting a
6635 R_MIPS16_26 reloc to be against a section, so the addend is
6636 always zero). However, the 32 bit instruction is stored as 2
6637 16-bit values, rather than a single 32-bit value. In a
6638 big-endian file, the result is the same; in a little-endian
6639 file, the two 16-bit halves of the 32 bit value are swapped.
6640 This is so that a disassembler can recognize the jal
6641 instruction.
6642
6643 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6644 instruction stored as two 16-bit values. The addend A is the
6645 contents of the targ26 field. The calculation is the same as
6646 R_MIPS_26. When storing the calculated value, reorder the
6647 immediate value as shown above, and don't forget to store the
6648 value as two 16-bit values.
6649
6650 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6651 defined as
be3ccd9c 6652
e53bd91b
MM
6653 big-endian:
6654 +--------+----------------------+
6655 | | |
6656 | | targ26-16 |
6657 |31 26|25 0|
6658 +--------+----------------------+
be3ccd9c 6659
e53bd91b
MM
6660 little-endian:
6661 +----------+------+-------------+
6662 | | | |
6663 | sub1 | | sub2 |
6664 |0 9|10 15|16 31|
6665 +----------+--------------------+
6666 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6667 ((sub1 << 16) | sub2)).
be3ccd9c 6668
e53bd91b 6669 When producing a relocateable object file, the calculation is
9117d219 6670 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
e53bd91b 6671 When producing a fully linked file, the calculation is
9117d219 6672 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
e53bd91b
MM
6673 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6674
6675 if (!info->relocateable)
6676 /* Shuffle the bits according to the formula above. */
be3ccd9c
KH
6677 value = (((value & 0x1f0000) << 5)
6678 | ((value & 0x3e00000) >> 5)
e53bd91b 6679 | (value & 0xffff));
e53bd91b 6680 }
197b9ca0 6681 else if (r_type == R_MIPS16_GPREL)
b7233c24
MM
6682 {
6683 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6684 mode. A typical instruction will have a format like this:
6685
6686 +--------------+--------------------------------+
6687 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6688 +--------------+--------------------------------+
6689 ! Major ! rx ! ry ! Imm 4:0 !
6690 +--------------+--------------------------------+
be3ccd9c 6691
b7233c24
MM
6692 EXTEND is the five bit value 11110. Major is the instruction
6693 opcode.
be3ccd9c 6694
b7233c24
MM
6695 This is handled exactly like R_MIPS_GPREL16, except that the
6696 addend is retrieved and stored as shown in this diagram; that
be3ccd9c 6697 is, the Imm fields above replace the V-rel16 field.
b7233c24 6698
6296902e
MM
6699 All we need to do here is shuffle the bits appropriately. As
6700 above, the two 16-bit halves must be swapped on a
6701 little-endian system. */
b7233c24
MM
6702 value = (((value & 0x7e0) << 16)
6703 | ((value & 0xf800) << 5)
6704 | (value & 0x1f));
6705 }
252b5132 6706
e53bd91b
MM
6707 /* Set the field. */
6708 x |= (value & howto->dst_mask);
252b5132 6709
197b9ca0
MM
6710 /* If required, turn JAL into JALX. */
6711 if (require_jalx)
6712 {
6713 boolean ok;
6714 bfd_vma opcode = x >> 26;
6715 bfd_vma jalx_opcode;
6716
6717 /* Check to see if the opcode is already JAL or JALX. */
6718 if (r_type == R_MIPS16_26)
6719 {
6720 ok = ((opcode == 0x6) || (opcode == 0x7));
6721 jalx_opcode = 0x7;
6722 }
6723 else
6724 {
6725 ok = ((opcode == 0x3) || (opcode == 0x1d));
6726 jalx_opcode = 0x1d;
6727 }
6728
6729 /* If the opcode is not JAL or JALX, there's a problem. */
6730 if (!ok)
6731 {
6732 (*_bfd_error_handler)
6733 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
8f615d07 6734 bfd_archive_filename (input_bfd),
197b9ca0
MM
6735 input_section->name,
6736 (unsigned long) relocation->r_offset);
6737 bfd_set_error (bfd_error_bad_value);
6738 return false;
6739 }
6740
6741 /* Make this the JALX opcode. */
6742 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6743 }
6744
6296902e
MM
6745 /* Swap the high- and low-order 16 bits on little-endian systems
6746 when doing a MIPS16 relocation. */
197b9ca0 6747 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6296902e
MM
6748 && bfd_little_endian (input_bfd))
6749 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
be3ccd9c 6750
e53bd91b
MM
6751 /* Put the value into the output. */
6752 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
197b9ca0
MM
6753 return true;
6754}
6755
6756/* Returns true if SECTION is a MIPS16 stub section. */
6757
6758static boolean
6759mips_elf_stub_section_p (abfd, section)
6387d602 6760 bfd *abfd ATTRIBUTE_UNUSED;
197b9ca0
MM
6761 asection *section;
6762{
6763 const char *name = bfd_get_section_name (abfd, section);
6764
6765 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6766 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6767 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
7403cb63 6768}
252b5132 6769
7403cb63 6770/* Relocate a MIPS ELF section. */
252b5132 6771
103186c6
MM
6772boolean
6773_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6774 contents, relocs, local_syms, local_sections)
7403cb63
MM
6775 bfd *output_bfd;
6776 struct bfd_link_info *info;
6777 bfd *input_bfd;
6778 asection *input_section;
6779 bfd_byte *contents;
6780 Elf_Internal_Rela *relocs;
6781 Elf_Internal_Sym *local_syms;
6782 asection **local_sections;
6783{
31367b81 6784 Elf_Internal_Rela *rel;
103186c6 6785 const Elf_Internal_Rela *relend;
86033394 6786 bfd_vma addend = 0;
7403cb63 6787 boolean use_saved_addend_p = false;
103186c6 6788 struct elf_backend_data *bed;
252b5132 6789
103186c6
MM
6790 bed = get_elf_backend_data (output_bfd);
6791 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7403cb63
MM
6792 for (rel = relocs; rel < relend; ++rel)
6793 {
6794 const char *name;
6795 bfd_vma value;
7403cb63 6796 reloc_howto_type *howto;
197b9ca0 6797 boolean require_jalx;
31367b81
MM
6798 /* True if the relocation is a RELA relocation, rather than a
6799 REL relocation. */
6800 boolean rela_relocation_p = true;
dc810e39 6801 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
7a65545d 6802 const char * msg = (const char *) NULL;
252b5132 6803
7403cb63 6804 /* Find the relocation howto for this relocation. */
31367b81 6805 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
0af99795
GK
6806 {
6807 /* Some 32-bit code uses R_MIPS_64. In particular, people use
be3ccd9c 6808 64-bit code, but make sure all their addresses are in the
0af99795
GK
6809 lowermost or uppermost 32-bit section of the 64-bit address
6810 space. Thus, when they use an R_MIPS_64 they mean what is
6811 usually meant by R_MIPS_32, with the exception that the
6812 stored value is sign-extended to 64 bits. */
6813 howto = elf_mips_howto_table + R_MIPS_32;
6814
6815 /* On big-endian systems, we need to lie about the position
6816 of the reloc. */
6817 if (bfd_big_endian (input_bfd))
be3ccd9c 6818 rel->r_offset += 4;
0af99795 6819 }
a3c7651d 6820 else
c9b3cbf3 6821 howto = mips_rtype_to_howto (r_type);
252b5132 6822
7403cb63
MM
6823 if (!use_saved_addend_p)
6824 {
6825 Elf_Internal_Shdr *rel_hdr;
6826
6827 /* If these relocations were originally of the REL variety,
6828 we must pull the addend out of the field that will be
6829 relocated. Otherwise, we simply use the contents of the
6830 RELA relocation. To determine which flavor or relocation
6831 this is, we depend on the fact that the INPUT_SECTION's
6832 REL_HDR is read before its REL_HDR2. */
6833 rel_hdr = &elf_section_data (input_section)->rel_hdr;
5f771d47 6834 if ((size_t) (rel - relocs)
d9bc7a44 6835 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7403cb63 6836 rel_hdr = elf_section_data (input_section)->rel_hdr2;
103186c6 6837 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7403cb63 6838 {
31367b81
MM
6839 /* Note that this is a REL relocation. */
6840 rela_relocation_p = false;
7403cb63 6841
31367b81 6842 /* Get the addend, which is stored in the input file. */
be3ccd9c 6843 addend = mips_elf_obtain_contents (howto,
7403cb63
MM
6844 rel,
6845 input_bfd,
6846 contents);
6847 addend &= howto->src_mask;
6848
6849 /* For some kinds of relocations, the ADDEND is a
6850 combination of the addend stored in two different
6851 relocations. */
6387d602 6852 if (r_type == R_MIPS_HI16
bb2d6cd7 6853 || r_type == R_MIPS_GNU_REL_HI16
6387d602
ILT
6854 || (r_type == R_MIPS_GOT16
6855 && mips_elf_local_relocation_p (input_bfd, rel,
b305ef96 6856 local_sections, false)))
252b5132 6857 {
23b255aa
MM
6858 bfd_vma l;
6859 const Elf_Internal_Rela *lo16_relocation;
6860 reloc_howto_type *lo16_howto;
dc810e39 6861 unsigned int lo;
23b255aa 6862
e7c44218
MM
6863 /* The combined value is the sum of the HI16 addend,
6864 left-shifted by sixteen bits, and the LO16
6865 addend, sign extended. (Usually, the code does
6866 a `lui' of the HI16 value, and then an `addiu' of
be3ccd9c 6867 the LO16 value.)
e7c44218 6868
bb2d6cd7
GK
6869 Scan ahead to find a matching LO16 relocation. */
6870 if (r_type == R_MIPS_GNU_REL_HI16)
6871 lo = R_MIPS_GNU_REL_LO16;
6872 else
6873 lo = R_MIPS_LO16;
be3ccd9c
KH
6874 lo16_relocation
6875 = mips_elf_next_relocation (lo, rel, relend);
23b255aa 6876 if (lo16_relocation == NULL)
7403cb63 6877 return false;
252b5132 6878
23b255aa 6879 /* Obtain the addend kept there. */
bb2d6cd7 6880 lo16_howto = mips_rtype_to_howto (lo);
23b255aa
MM
6881 l = mips_elf_obtain_contents (lo16_howto,
6882 lo16_relocation,
6883 input_bfd, contents);
6884 l &= lo16_howto->src_mask;
e7c44218 6885 l = mips_elf_sign_extend (l, 16);
23b255aa 6886
7403cb63 6887 addend <<= 16;
252b5132 6888
7403cb63 6889 /* Compute the combined addend. */
e7c44218 6890 addend += l;
252b5132 6891 }
b7233c24
MM
6892 else if (r_type == R_MIPS16_GPREL)
6893 {
6894 /* The addend is scrambled in the object file. See
6895 mips_elf_perform_relocation for details on the
6896 format. */
6897 addend = (((addend & 0x1f0000) >> 5)
6898 | ((addend & 0x7e00000) >> 16)
6899 | (addend & 0x1f));
6900 }
252b5132
RH
6901 }
6902 else
7403cb63
MM
6903 addend = rel->r_addend;
6904 }
252b5132 6905
31367b81
MM
6906 if (info->relocateable)
6907 {
6908 Elf_Internal_Sym *sym;
6909 unsigned long r_symndx;
6910
7893e6a2
GK
6911 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6912 && bfd_big_endian (input_bfd))
6913 rel->r_offset -= 4;
6914
31367b81 6915 /* Since we're just relocating, all we need to do is copy
0db63c18
MM
6916 the relocations back out to the object file, unless
6917 they're against a section symbol, in which case we need
6918 to adjust by the section offset, or unless they're GP
6919 relative in which case we need to adjust by the amount
6920 that we're adjusting GP in this relocateable object. */
31367b81 6921
b305ef96
UC
6922 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6923 false))
f1a5f37e 6924 /* There's nothing to do for non-local relocations. */
31367b81
MM
6925 continue;
6926
be3ccd9c 6927 if (r_type == R_MIPS16_GPREL
0db63c18 6928 || r_type == R_MIPS_GPREL16
0af99795
GK
6929 || r_type == R_MIPS_GPREL32
6930 || r_type == R_MIPS_LITERAL)
0db63c18
MM
6931 addend -= (_bfd_get_gp_value (output_bfd)
6932 - _bfd_get_gp_value (input_bfd));
bb2d6cd7
GK
6933 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6934 || r_type == R_MIPS_GNU_REL16_S2)
e7c44218
MM
6935 /* The addend is stored without its two least
6936 significant bits (which are always zero.) In a
6937 non-relocateable link, calculate_relocation will do
6938 this shift; here, we must do it ourselves. */
6939 addend <<= 2;
31367b81 6940
4f2860ca
MM
6941 r_symndx = ELF32_R_SYM (rel->r_info);
6942 sym = local_syms + r_symndx;
6943 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6944 /* Adjust the addend appropriately. */
6945 addend += local_sections[r_symndx]->output_offset;
be3ccd9c 6946
f1a5f37e
MM
6947 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6948 then we only want to write out the high-order 16 bits.
6949 The subsequent R_MIPS_LO16 will handle the low-order bits. */
bb2d6cd7
GK
6950 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6951 || r_type == R_MIPS_GNU_REL_HI16)
23b255aa 6952 addend = mips_elf_high (addend);
5a44662b
MM
6953 /* If the relocation is for an R_MIPS_26 relocation, then
6954 the two low-order bits are not stored in the object file;
6955 they are implicitly zero. */
bb2d6cd7
GK
6956 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6957 || r_type == R_MIPS_GNU_REL16_S2)
5a44662b 6958 addend >>= 2;
f1a5f37e 6959
31367b81
MM
6960 if (rela_relocation_p)
6961 /* If this is a RELA relocation, just update the addend.
bb2d6cd7 6962 We have to cast away constness for REL. */
31367b81
MM
6963 rel->r_addend = addend;
6964 else
6965 {
6966 /* Otherwise, we have to write the value back out. Note
6967 that we use the source mask, rather than the
6968 destination mask because the place to which we are
6969 writing will be source of the addend in the final
6970 link. */
6971 addend &= howto->src_mask;
7893e6a2
GK
6972
6973 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6974 /* See the comment above about using R_MIPS_64 in the 32-bit
6975 ABI. Here, we need to update the addend. It would be
6976 possible to get away with just using the R_MIPS_32 reloc
6977 but for endianness. */
6978 {
6979 bfd_vma sign_bits;
6980 bfd_vma low_bits;
6981 bfd_vma high_bits;
be3ccd9c 6982
fc633e5b
AM
6983 if (addend & ((bfd_vma) 1 << 31))
6984 sign_bits = ((bfd_vma) 1 << 32) - 1;
7893e6a2
GK
6985 else
6986 sign_bits = 0;
be3ccd9c 6987
7893e6a2
GK
6988 /* If we don't know that we have a 64-bit type,
6989 do two separate stores. */
6990 if (bfd_big_endian (input_bfd))
6991 {
6992 /* Store the sign-bits (which are most significant)
6993 first. */
6994 low_bits = sign_bits;
6995 high_bits = addend;
6996 }
6997 else
6998 {
6999 low_bits = addend;
7000 high_bits = sign_bits;
7001 }
be3ccd9c 7002 bfd_put_32 (input_bfd, low_bits,
7893e6a2 7003 contents + rel->r_offset);
be3ccd9c 7004 bfd_put_32 (input_bfd, high_bits,
7893e6a2
GK
7005 contents + rel->r_offset + 4);
7006 continue;
7007 }
7008
31367b81 7009 if (!mips_elf_perform_relocation (info, howto, rel, addend,
be3ccd9c 7010 input_bfd, input_section,
31367b81
MM
7011 contents, false))
7012 return false;
7013 }
7014
7015 /* Go on to the next relocation. */
7016 continue;
7017 }
7018
7403cb63
MM
7019 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7020 relocations for the same offset. In that case we are
7021 supposed to treat the output of each relocation as the addend
7022 for the next. */
be3ccd9c 7023 if (rel + 1 < relend
103186c6 7024 && rel->r_offset == rel[1].r_offset
b89db8f2 7025 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7403cb63
MM
7026 use_saved_addend_p = true;
7027 else
7028 use_saved_addend_p = false;
7029
7030 /* Figure out what value we are supposed to relocate. */
be3ccd9c 7031 switch (mips_elf_calculate_relocation (output_bfd,
7403cb63
MM
7032 input_bfd,
7033 input_section,
7034 info,
7035 rel,
7036 addend,
7037 howto,
7403cb63
MM
7038 local_syms,
7039 local_sections,
7040 &value,
197b9ca0
MM
7041 &name,
7042 &require_jalx))
7403cb63
MM
7043 {
7044 case bfd_reloc_continue:
7045 /* There's nothing to do. */
7046 continue;
252b5132 7047
7403cb63 7048 case bfd_reloc_undefined:
6387d602 7049 /* mips_elf_calculate_relocation already called the
bb2d6cd7 7050 undefined_symbol callback. There's no real point in
97287574
MM
7051 trying to perform the relocation at this point, so we
7052 just skip ahead to the next relocation. */
7053 continue;
252b5132 7054
7403cb63 7055 case bfd_reloc_notsupported:
7a65545d
DN
7056 msg = _("internal error: unsupported relocation error");
7057 info->callbacks->warning
7058 (info, msg, name, input_bfd, input_section, rel->r_offset);
7059 return false;
252b5132 7060
7403cb63
MM
7061 case bfd_reloc_overflow:
7062 if (use_saved_addend_p)
7063 /* Ignore overflow until we reach the last relocation for
7064 a given location. */
7065 ;
6387d602
ILT
7066 else
7067 {
7068 BFD_ASSERT (name != NULL);
7069 if (! ((*info->callbacks->reloc_overflow)
7070 (info, name, howto->name, (bfd_vma) 0,
7071 input_bfd, input_section, rel->r_offset)))
7072 return false;
7073 }
7403cb63 7074 break;
252b5132 7075
7403cb63
MM
7076 case bfd_reloc_ok:
7077 break;
7078
7079 default:
7080 abort ();
7081 break;
252b5132
RH
7082 }
7083
7403cb63
MM
7084 /* If we've got another relocation for the address, keep going
7085 until we reach the last one. */
7086 if (use_saved_addend_p)
252b5132 7087 {
7403cb63
MM
7088 addend = value;
7089 continue;
252b5132 7090 }
7403cb63 7091
31367b81 7092 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
a3c7651d
MM
7093 /* See the comment above about using R_MIPS_64 in the 32-bit
7094 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7095 that calculated the right value. Now, however, we
7096 sign-extend the 32-bit result to 64-bits, and store it as a
7097 64-bit value. We are especially generous here in that we
7098 go to extreme lengths to support this usage on systems with
7099 only a 32-bit VMA. */
7100 {
a3c7651d
MM
7101 bfd_vma sign_bits;
7102 bfd_vma low_bits;
7103 bfd_vma high_bits;
7104
fc633e5b
AM
7105 if (value & ((bfd_vma) 1 << 31))
7106 sign_bits = ((bfd_vma) 1 << 32) - 1;
a3c7651d
MM
7107 else
7108 sign_bits = 0;
7109
7893e6a2
GK
7110 /* If we don't know that we have a 64-bit type,
7111 do two separate stores. */
a3c7651d
MM
7112 if (bfd_big_endian (input_bfd))
7113 {
0af99795
GK
7114 /* Undo what we did above. */
7115 rel->r_offset -= 4;
a3c7651d
MM
7116 /* Store the sign-bits (which are most significant)
7117 first. */
7118 low_bits = sign_bits;
7119 high_bits = value;
7120 }
7121 else
7122 {
7123 low_bits = value;
7124 high_bits = sign_bits;
7125 }
be3ccd9c 7126 bfd_put_32 (input_bfd, low_bits,
a3c7651d 7127 contents + rel->r_offset);
be3ccd9c 7128 bfd_put_32 (input_bfd, high_bits,
a3c7651d
MM
7129 contents + rel->r_offset + 4);
7130 continue;
a3c7651d
MM
7131 }
7132
7403cb63 7133 /* Actually perform the relocation. */
be3ccd9c 7134 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
197b9ca0
MM
7135 input_section, contents,
7136 require_jalx))
7137 return false;
252b5132
RH
7138 }
7139
7140 return true;
7141}
7142
7143/* This hook function is called before the linker writes out a global
7144 symbol. We mark symbols as small common if appropriate. This is
7145 also where we undo the increment of the value for a mips16 symbol. */
7146
103186c6
MM
7147boolean
7148_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
5f771d47
ILT
7149 bfd *abfd ATTRIBUTE_UNUSED;
7150 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7151 const char *name ATTRIBUTE_UNUSED;
252b5132
RH
7152 Elf_Internal_Sym *sym;
7153 asection *input_sec;
7154{
7155 /* If we see a common symbol, which implies a relocatable link, then
7156 if a symbol was small common in an input file, mark it as small
7157 common in the output file. */
7158 if (sym->st_shndx == SHN_COMMON
7159 && strcmp (input_sec->name, ".scommon") == 0)
7160 sym->st_shndx = SHN_MIPS_SCOMMON;
7161
7162 if (sym->st_other == STO_MIPS16
7163 && (sym->st_value & 1) != 0)
7164 --sym->st_value;
7165
7166 return true;
7167}
7168\f
7169/* Functions for the dynamic linker. */
7170
7171/* The name of the dynamic interpreter. This is put in the .interp
7172 section. */
7173
103186c6
MM
7174#define ELF_DYNAMIC_INTERPRETER(abfd) \
7175 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7176 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7177 : "/usr/lib/libc.so.1")
252b5132
RH
7178
7179/* Create dynamic sections when linking against a dynamic object. */
7180
103186c6
MM
7181boolean
7182_bfd_mips_elf_create_dynamic_sections (abfd, info)
252b5132
RH
7183 bfd *abfd;
7184 struct bfd_link_info *info;
7185{
7186 struct elf_link_hash_entry *h;
7187 flagword flags;
7188 register asection *s;
7189 const char * const *namep;
7190
7191 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7192 | SEC_LINKER_CREATED | SEC_READONLY);
7193
7194 /* Mips ABI requests the .dynamic section to be read only. */
7195 s = bfd_get_section_by_name (abfd, ".dynamic");
7196 if (s != NULL)
7197 {
7198 if (! bfd_set_section_flags (abfd, s, flags))
7199 return false;
7200 }
7201
7202 /* We need to create .got section. */
7203 if (! mips_elf_create_got_section (abfd, info))
7204 return false;
7205
c6142e5d
MM
7206 /* Create the .msym section on IRIX6. It is used by the dynamic
7207 linker to speed up dynamic relocations, and to avoid computing
7208 the ELF hash for symbols. */
7209 if (IRIX_COMPAT (abfd) == ict_irix6
7210 && !mips_elf_create_msym_section (abfd))
7211 return false;
be3ccd9c 7212
252b5132 7213 /* Create .stub section. */
be3ccd9c 7214 if (bfd_get_section_by_name (abfd,
7403cb63 7215 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
252b5132 7216 {
7403cb63 7217 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
252b5132 7218 if (s == NULL
7403cb63 7219 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
103186c6
MM
7220 || ! bfd_set_section_alignment (abfd, s,
7221 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
7222 return false;
7223 }
7224
31a9bdd9 7225 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
252b5132
RH
7226 && !info->shared
7227 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7228 {
7229 s = bfd_make_section (abfd, ".rld_map");
7230 if (s == NULL
dc810e39 7231 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
103186c6
MM
7232 || ! bfd_set_section_alignment (abfd, s,
7233 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
7234 return false;
7235 }
7236
303f629d
MM
7237 /* On IRIX5, we adjust add some additional symbols and change the
7238 alignments of several sections. There is no ABI documentation
7239 indicating that this is necessary on IRIX6, nor any evidence that
7240 the linker takes such action. */
7241 if (IRIX_COMPAT (abfd) == ict_irix5)
252b5132
RH
7242 {
7243 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7244 {
7245 h = NULL;
7246 if (! (_bfd_generic_link_add_one_symbol
7247 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7248 (bfd_vma) 0, (const char *) NULL, false,
7249 get_elf_backend_data (abfd)->collect,
7250 (struct bfd_link_hash_entry **) &h)))
7251 return false;
be3ccd9c 7252 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
252b5132
RH
7253 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7254 h->type = STT_SECTION;
7255
7256 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7257 return false;
7258 }
7259
7260 /* We need to create a .compact_rel section. */
f7cb7d68 7261 if (SGI_COMPAT (abfd))
be3ccd9c
KH
7262 {
7263 if (!mips_elf_create_compact_rel_section (abfd, info))
f7cb7d68 7264 return false;
be3ccd9c 7265 }
252b5132
RH
7266
7267 /* Change aligments of some sections. */
7268 s = bfd_get_section_by_name (abfd, ".hash");
7269 if (s != NULL)
7270 bfd_set_section_alignment (abfd, s, 4);
7271 s = bfd_get_section_by_name (abfd, ".dynsym");
7272 if (s != NULL)
7273 bfd_set_section_alignment (abfd, s, 4);
7274 s = bfd_get_section_by_name (abfd, ".dynstr");
7275 if (s != NULL)
7276 bfd_set_section_alignment (abfd, s, 4);
7277 s = bfd_get_section_by_name (abfd, ".reginfo");
7278 if (s != NULL)
7279 bfd_set_section_alignment (abfd, s, 4);
7280 s = bfd_get_section_by_name (abfd, ".dynamic");
7281 if (s != NULL)
7282 bfd_set_section_alignment (abfd, s, 4);
7283 }
7284
7285 if (!info->shared)
7286 {
7287 h = NULL;
f7cb7d68 7288 if (SGI_COMPAT (abfd))
be3ccd9c
KH
7289 {
7290 if (!(_bfd_generic_link_add_one_symbol
7291 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7292 (bfd_vma) 0, (const char *) NULL, false,
7293 get_elf_backend_data (abfd)->collect,
7294 (struct bfd_link_hash_entry **) &h)))
f7cb7d68 7295 return false;
be3ccd9c 7296 }
f7cb7d68 7297 else
be3ccd9c
KH
7298 {
7299 /* For normal mips it is _DYNAMIC_LINKING. */
7300 if (!(_bfd_generic_link_add_one_symbol
7301 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7302 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7303 get_elf_backend_data (abfd)->collect,
7304 (struct bfd_link_hash_entry **) &h)))
7305 return false;
7306 }
7307 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
252b5132
RH
7308 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7309 h->type = STT_SECTION;
7310
7311 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7312 return false;
7313
7314 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7315 {
7316 /* __rld_map is a four byte word located in the .data section
7317 and is filled in by the rtld to contain a pointer to
7318 the _r_debug structure. Its symbol value will be set in
7319 mips_elf_finish_dynamic_symbol. */
7320 s = bfd_get_section_by_name (abfd, ".rld_map");
7321 BFD_ASSERT (s != NULL);
7322
7323 h = NULL;
be3ccd9c
KH
7324 if (SGI_COMPAT (abfd))
7325 {
7326 if (!(_bfd_generic_link_add_one_symbol
7327 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7328 (bfd_vma) 0, (const char *) NULL, false,
7329 get_elf_backend_data (abfd)->collect,
7330 (struct bfd_link_hash_entry **) &h)))
7331 return false;
7332 }
7333 else
7334 {
7335 /* For normal mips the symbol is __RLD_MAP. */
7336 if (!(_bfd_generic_link_add_one_symbol
7337 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7338 (bfd_vma) 0, (const char *) NULL, false,
7339 get_elf_backend_data (abfd)->collect,
7340 (struct bfd_link_hash_entry **) &h)))
7341 return false;
7342 }
7343 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
252b5132
RH
7344 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7345 h->type = STT_OBJECT;
7346
7347 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7348 return false;
7349 }
7350 }
7351
7352 return true;
7353}
7354
7355/* Create the .compact_rel section. */
7356
7357static boolean
7358mips_elf_create_compact_rel_section (abfd, info)
7359 bfd *abfd;
5f771d47 7360 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132
RH
7361{
7362 flagword flags;
7363 register asection *s;
7364
7365 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7366 {
7367 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7368 | SEC_READONLY);
7369
7370 s = bfd_make_section (abfd, ".compact_rel");
7371 if (s == NULL
7372 || ! bfd_set_section_flags (abfd, s, flags)
103186c6
MM
7373 || ! bfd_set_section_alignment (abfd, s,
7374 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
7375 return false;
7376
7377 s->_raw_size = sizeof (Elf32_External_compact_rel);
7378 }
7379
7380 return true;
7381}
7382
be3ccd9c 7383/* Create the .got section to hold the global offset table. */
252b5132
RH
7384
7385static boolean
7386mips_elf_create_got_section (abfd, info)
7387 bfd *abfd;
7388 struct bfd_link_info *info;
7389{
7390 flagword flags;
7391 register asection *s;
7392 struct elf_link_hash_entry *h;
7393 struct mips_got_info *g;
dc810e39 7394 bfd_size_type amt;
252b5132
RH
7395
7396 /* This function may be called more than once. */
103186c6 7397 if (mips_elf_got_section (abfd))
252b5132
RH
7398 return true;
7399
7400 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7401 | SEC_LINKER_CREATED);
7402
7403 s = bfd_make_section (abfd, ".got");
7404 if (s == NULL
7405 || ! bfd_set_section_flags (abfd, s, flags)
7406 || ! bfd_set_section_alignment (abfd, s, 4))
7407 return false;
7408
7409 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7410 linker script because we don't want to define the symbol if we
7411 are not creating a global offset table. */
7412 h = NULL;
7413 if (! (_bfd_generic_link_add_one_symbol
7414 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7415 (bfd_vma) 0, (const char *) NULL, false,
7416 get_elf_backend_data (abfd)->collect,
7417 (struct bfd_link_hash_entry **) &h)))
7418 return false;
be3ccd9c 7419 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
252b5132
RH
7420 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7421 h->type = STT_OBJECT;
7422
7423 if (info->shared
7424 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7425 return false;
7426
7427 /* The first several global offset table entries are reserved. */
103186c6 7428 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
252b5132 7429
dc810e39
AM
7430 amt = sizeof (struct mips_got_info);
7431 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
252b5132
RH
7432 if (g == NULL)
7433 return false;
7403cb63 7434 g->global_gotsym = NULL;
252b5132
RH
7435 g->local_gotno = MIPS_RESERVED_GOTNO;
7436 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7437 if (elf_section_data (s) == NULL)
7438 {
dc810e39
AM
7439 amt = sizeof (struct bfd_elf_section_data);
7440 s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
252b5132
RH
7441 if (elf_section_data (s) == NULL)
7442 return false;
7443 }
7444 elf_section_data (s)->tdata = (PTR) g;
be3ccd9c 7445 elf_section_data (s)->this_hdr.sh_flags
7403cb63 7446 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
252b5132
RH
7447
7448 return true;
7449}
7450
c6142e5d
MM
7451/* Returns the .msym section for ABFD, creating it if it does not
7452 already exist. Returns NULL to indicate error. */
7453
7454static asection *
7455mips_elf_create_msym_section (abfd)
7456 bfd *abfd;
7457{
7458 asection *s;
7459
7460 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
be3ccd9c 7461 if (!s)
c6142e5d
MM
7462 {
7463 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7464 if (!s
be3ccd9c 7465 || !bfd_set_section_flags (abfd, s,
c6142e5d
MM
7466 SEC_ALLOC
7467 | SEC_LOAD
7468 | SEC_HAS_CONTENTS
be3ccd9c 7469 | SEC_LINKER_CREATED
c6142e5d 7470 | SEC_READONLY)
103186c6
MM
7471 || !bfd_set_section_alignment (abfd, s,
7472 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
c6142e5d
MM
7473 return NULL;
7474 }
7475
7476 return s;
7477}
7478
103186c6
MM
7479/* Add room for N relocations to the .rel.dyn section in ABFD. */
7480
7481static void
7482mips_elf_allocate_dynamic_relocations (abfd, n)
7483 bfd *abfd;
7484 unsigned int n;
7485{
7486 asection *s;
7487
7488 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7489 BFD_ASSERT (s != NULL);
be3ccd9c 7490
103186c6
MM
7491 if (s->_raw_size == 0)
7492 {
be3ccd9c 7493 /* Make room for a null element. */
103186c6
MM
7494 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7495 ++s->reloc_count;
7496 }
7497 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7498}
7499
252b5132
RH
7500/* Look through the relocs for a section during the first phase, and
7501 allocate space in the global offset table. */
7502
103186c6
MM
7503boolean
7504_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
252b5132
RH
7505 bfd *abfd;
7506 struct bfd_link_info *info;
7507 asection *sec;
7508 const Elf_Internal_Rela *relocs;
7509{
7510 const char *name;
7511 bfd *dynobj;
7512 Elf_Internal_Shdr *symtab_hdr;
7513 struct elf_link_hash_entry **sym_hashes;
7514 struct mips_got_info *g;
7515 size_t extsymoff;
7516 const Elf_Internal_Rela *rel;
7517 const Elf_Internal_Rela *rel_end;
7518 asection *sgot;
7519 asection *sreloc;
103186c6 7520 struct elf_backend_data *bed;
252b5132
RH
7521
7522 if (info->relocateable)
7523 return true;
7524
7525 dynobj = elf_hash_table (info)->dynobj;
7526 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7527 sym_hashes = elf_sym_hashes (abfd);
7528 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7529
7530 /* Check for the mips16 stub sections. */
7531
7532 name = bfd_get_section_name (abfd, sec);
7533 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7534 {
7535 unsigned long r_symndx;
7536
7537 /* Look at the relocation information to figure out which symbol
7538 this is for. */
7539
7540 r_symndx = ELF32_R_SYM (relocs->r_info);
7541
7542 if (r_symndx < extsymoff
7543 || sym_hashes[r_symndx - extsymoff] == NULL)
7544 {
7545 asection *o;
7546
7547 /* This stub is for a local symbol. This stub will only be
7548 needed if there is some relocation in this BFD, other
7549 than a 16 bit function call, which refers to this symbol. */
7550 for (o = abfd->sections; o != NULL; o = o->next)
7551 {
7552 Elf_Internal_Rela *sec_relocs;
7553 const Elf_Internal_Rela *r, *rend;
7554
7555 /* We can ignore stub sections when looking for relocs. */
7556 if ((o->flags & SEC_RELOC) == 0
7557 || o->reloc_count == 0
7558 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7559 sizeof FN_STUB - 1) == 0
7560 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7561 sizeof CALL_STUB - 1) == 0
7562 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7563 sizeof CALL_FP_STUB - 1) == 0)
7564 continue;
7565
7566 sec_relocs = (_bfd_elf32_link_read_relocs
7567 (abfd, o, (PTR) NULL,
7568 (Elf_Internal_Rela *) NULL,
7569 info->keep_memory));
7570 if (sec_relocs == NULL)
7571 return false;
7572
7573 rend = sec_relocs + o->reloc_count;
7574 for (r = sec_relocs; r < rend; r++)
7575 if (ELF32_R_SYM (r->r_info) == r_symndx
7576 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7577 break;
7578
7579 if (! info->keep_memory)
7580 free (sec_relocs);
7581
7582 if (r < rend)
7583 break;
7584 }
7585
7586 if (o == NULL)
7587 {
7588 /* There is no non-call reloc for this stub, so we do
7589 not need it. Since this function is called before
7590 the linker maps input sections to output sections, we
7591 can easily discard it by setting the SEC_EXCLUDE
7592 flag. */
7593 sec->flags |= SEC_EXCLUDE;
7594 return true;
7595 }
7596
7597 /* Record this stub in an array of local symbol stubs for
be3ccd9c 7598 this BFD. */
252b5132
RH
7599 if (elf_tdata (abfd)->local_stubs == NULL)
7600 {
7601 unsigned long symcount;
7602 asection **n;
dc810e39 7603 bfd_size_type amt;
252b5132
RH
7604
7605 if (elf_bad_symtab (abfd))
d9bc7a44 7606 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
252b5132
RH
7607 else
7608 symcount = symtab_hdr->sh_info;
dc810e39
AM
7609 amt = symcount * sizeof (asection *);
7610 n = (asection **) bfd_zalloc (abfd, amt);
252b5132
RH
7611 if (n == NULL)
7612 return false;
7613 elf_tdata (abfd)->local_stubs = n;
7614 }
7615
7616 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7617
7618 /* We don't need to set mips16_stubs_seen in this case.
7619 That flag is used to see whether we need to look through
7620 the global symbol table for stubs. We don't need to set
7621 it here, because we just have a local stub. */
7622 }
7623 else
7624 {
7625 struct mips_elf_link_hash_entry *h;
7626
7627 h = ((struct mips_elf_link_hash_entry *)
7628 sym_hashes[r_symndx - extsymoff]);
7629
7630 /* H is the symbol this stub is for. */
7631
7632 h->fn_stub = sec;
7633 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7634 }
7635 }
7636 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7637 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7638 {
7639 unsigned long r_symndx;
7640 struct mips_elf_link_hash_entry *h;
7641 asection **loc;
7642
7643 /* Look at the relocation information to figure out which symbol
7644 this is for. */
7645
7646 r_symndx = ELF32_R_SYM (relocs->r_info);
7647
7648 if (r_symndx < extsymoff
7649 || sym_hashes[r_symndx - extsymoff] == NULL)
7650 {
7651 /* This stub was actually built for a static symbol defined
7652 in the same file. We assume that all static symbols in
7653 mips16 code are themselves mips16, so we can simply
7654 discard this stub. Since this function is called before
7655 the linker maps input sections to output sections, we can
7656 easily discard it by setting the SEC_EXCLUDE flag. */
7657 sec->flags |= SEC_EXCLUDE;
7658 return true;
7659 }
7660
7661 h = ((struct mips_elf_link_hash_entry *)
7662 sym_hashes[r_symndx - extsymoff]);
7663
7664 /* H is the symbol this stub is for. */
7665
7666 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7667 loc = &h->call_fp_stub;
7668 else
7669 loc = &h->call_stub;
7670
7671 /* If we already have an appropriate stub for this function, we
7672 don't need another one, so we can discard this one. Since
7673 this function is called before the linker maps input sections
7674 to output sections, we can easily discard it by setting the
7675 SEC_EXCLUDE flag. We can also discard this section if we
7676 happen to already know that this is a mips16 function; it is
7677 not necessary to check this here, as it is checked later, but
7678 it is slightly faster to check now. */
7679 if (*loc != NULL || h->root.other == STO_MIPS16)
7680 {
7681 sec->flags |= SEC_EXCLUDE;
7682 return true;
7683 }
7684
7685 *loc = sec;
7686 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7687 }
7688
7689 if (dynobj == NULL)
7690 {
7691 sgot = NULL;
7692 g = NULL;
7693 }
7694 else
7695 {
103186c6 7696 sgot = mips_elf_got_section (dynobj);
252b5132
RH
7697 if (sgot == NULL)
7698 g = NULL;
7699 else
7700 {
7701 BFD_ASSERT (elf_section_data (sgot) != NULL);
7702 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7703 BFD_ASSERT (g != NULL);
7704 }
7705 }
7706
7707 sreloc = NULL;
103186c6
MM
7708 bed = get_elf_backend_data (abfd);
7709 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7710 for (rel = relocs; rel < rel_end; ++rel)
252b5132
RH
7711 {
7712 unsigned long r_symndx;
dc810e39 7713 unsigned int r_type;
252b5132
RH
7714 struct elf_link_hash_entry *h;
7715
7716 r_symndx = ELF32_R_SYM (rel->r_info);
7403cb63 7717 r_type = ELF32_R_TYPE (rel->r_info);
252b5132
RH
7718
7719 if (r_symndx < extsymoff)
7720 h = NULL;
d9bc7a44 7721 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7a3120d9 7722 {
8f615d07
AM
7723 (*_bfd_error_handler)
7724 (_("%s: Malformed reloc detected for section %s"),
7725 bfd_archive_filename (abfd), name);
7a3120d9
NC
7726 bfd_set_error (bfd_error_bad_value);
7727 return false;
7728 }
252b5132
RH
7729 else
7730 {
7731 h = sym_hashes[r_symndx - extsymoff];
7732
7733 /* This may be an indirect symbol created because of a version. */
7734 if (h != NULL)
7735 {
7736 while (h->root.type == bfd_link_hash_indirect)
7737 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7738 }
7739 }
7740
7741 /* Some relocs require a global offset table. */
7742 if (dynobj == NULL || sgot == NULL)
7743 {
7403cb63 7744 switch (r_type)
252b5132
RH
7745 {
7746 case R_MIPS_GOT16:
7747 case R_MIPS_CALL16:
7748 case R_MIPS_CALL_HI16:
7749 case R_MIPS_CALL_LO16:
7750 case R_MIPS_GOT_HI16:
7751 case R_MIPS_GOT_LO16:
435394bf
MM
7752 case R_MIPS_GOT_PAGE:
7753 case R_MIPS_GOT_OFST:
7754 case R_MIPS_GOT_DISP:
252b5132
RH
7755 if (dynobj == NULL)
7756 elf_hash_table (info)->dynobj = dynobj = abfd;
7757 if (! mips_elf_create_got_section (dynobj, info))
7758 return false;
7403cb63 7759 g = mips_elf_got_info (dynobj, &sgot);
252b5132
RH
7760 break;
7761
7762 case R_MIPS_32:
7763 case R_MIPS_REL32:
a3c7651d 7764 case R_MIPS_64:
252b5132
RH
7765 if (dynobj == NULL
7766 && (info->shared || h != NULL)
7767 && (sec->flags & SEC_ALLOC) != 0)
7768 elf_hash_table (info)->dynobj = dynobj = abfd;
7769 break;
7770
7771 default:
7772 break;
7773 }
7774 }
7775
7403cb63
MM
7776 if (!h && (r_type == R_MIPS_CALL_LO16
7777 || r_type == R_MIPS_GOT_LO16
9458945f 7778 || r_type == R_MIPS_GOT_DISP))
252b5132 7779 {
7403cb63 7780 /* We may need a local GOT entry for this relocation. We
97287574
MM
7781 don't count R_MIPS_GOT_PAGE because we can estimate the
7782 maximum number of pages needed by looking at the size of
9117d219
NC
7783 the segment. Similar comments apply to R_MIPS_GOT16 and
7784 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
7785 R_MIPS_CALL_HI16 because these are always followed by an
7786 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
7403cb63
MM
7787
7788 This estimation is very conservative since we can merge
7789 duplicate entries in the GOT. In order to be less
7790 conservative, we could actually build the GOT here,
7791 rather than in relocate_section. */
7792 g->local_gotno++;
a3c7651d 7793 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7403cb63 7794 }
252b5132 7795
7403cb63
MM
7796 switch (r_type)
7797 {
7798 case R_MIPS_CALL16:
252b5132
RH
7799 if (h == NULL)
7800 {
7801 (*_bfd_error_handler)
7802 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
8f615d07 7803 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
252b5132
RH
7804 bfd_set_error (bfd_error_bad_value);
7805 return false;
7806 }
7403cb63 7807 /* Fall through. */
252b5132 7808
7403cb63
MM
7809 case R_MIPS_CALL_HI16:
7810 case R_MIPS_CALL_LO16:
5a44662b
MM
7811 if (h != NULL)
7812 {
7813 /* This symbol requires a global offset table entry. */
7814 if (!mips_elf_record_global_got_symbol (h, info, g))
7815 return false;
252b5132 7816
5a44662b
MM
7817 /* We need a stub, not a plt entry for the undefined
7818 function. But we record it as if it needs plt. See
7819 elf_adjust_dynamic_symbol in elflink.h. */
7820 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7821 h->type = STT_FUNC;
7822 }
252b5132
RH
7823 break;
7824
7825 case R_MIPS_GOT16:
7826 case R_MIPS_GOT_HI16:
7827 case R_MIPS_GOT_LO16:
7403cb63 7828 case R_MIPS_GOT_DISP:
252b5132 7829 /* This symbol requires a global offset table entry. */
7403cb63
MM
7830 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7831 return false;
252b5132
RH
7832 break;
7833
7834 case R_MIPS_32:
7835 case R_MIPS_REL32:
a3c7651d 7836 case R_MIPS_64:
252b5132
RH
7837 if ((info->shared || h != NULL)
7838 && (sec->flags & SEC_ALLOC) != 0)
7839 {
7840 if (sreloc == NULL)
7841 {
dc810e39 7842 const char *dname = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
252b5132 7843
dc810e39 7844 sreloc = bfd_get_section_by_name (dynobj, dname);
252b5132
RH
7845 if (sreloc == NULL)
7846 {
dc810e39 7847 sreloc = bfd_make_section (dynobj, dname);
252b5132
RH
7848 if (sreloc == NULL
7849 || ! bfd_set_section_flags (dynobj, sreloc,
7850 (SEC_ALLOC
7851 | SEC_LOAD
7852 | SEC_HAS_CONTENTS
7853 | SEC_IN_MEMORY
7854 | SEC_LINKER_CREATED
7855 | SEC_READONLY))
7856 || ! bfd_set_section_alignment (dynobj, sreloc,
7857 4))
7858 return false;
7859 }
7860 }
43917054 7861#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
252b5132 7862 if (info->shared)
43917054
L
7863 {
7864 /* When creating a shared object, we must copy these
7865 reloc types into the output file as R_MIPS_REL32
7866 relocs. We make room for this reloc in the
7867 .rel.dyn reloc section. */
7868 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7869 if ((sec->flags & MIPS_READONLY_SECTION)
7870 == MIPS_READONLY_SECTION)
7871 /* We tell the dynamic linker that there are
7872 relocations against the text segment. */
7873 info->flags |= DF_TEXTREL;
7874 }
252b5132
RH
7875 else
7876 {
7877 struct mips_elf_link_hash_entry *hmips;
7878
7879 /* We only need to copy this reloc if the symbol is
7880 defined in a dynamic object. */
7881 hmips = (struct mips_elf_link_hash_entry *) h;
a3c7651d 7882 ++hmips->possibly_dynamic_relocs;
43917054
L
7883 if ((sec->flags & MIPS_READONLY_SECTION)
7884 == MIPS_READONLY_SECTION)
7885 /* We need it to tell the dynamic linker if there
7886 are relocations against the text segment. */
7887 hmips->readonly_reloc = true;
252b5132 7888 }
be3ccd9c 7889
7403cb63
MM
7890 /* Even though we don't directly need a GOT entry for
7891 this symbol, a symbol must have a dynamic symbol
5499724a 7892 table index greater that DT_MIPS_GOTSYM if there are
7403cb63 7893 dynamic relocations against it. */
7b1f1231
MM
7894 if (h != NULL
7895 && !mips_elf_record_global_got_symbol (h, info, g))
7403cb63 7896 return false;
252b5132
RH
7897 }
7898
313ba8d6 7899 if (SGI_COMPAT (abfd))
252b5132
RH
7900 mips_elf_hash_table (info)->compact_rel_size +=
7901 sizeof (Elf32_External_crinfo);
252b5132
RH
7902 break;
7903
7904 case R_MIPS_26:
7905 case R_MIPS_GPREL16:
7906 case R_MIPS_LITERAL:
7907 case R_MIPS_GPREL32:
313ba8d6 7908 if (SGI_COMPAT (abfd))
252b5132
RH
7909 mips_elf_hash_table (info)->compact_rel_size +=
7910 sizeof (Elf32_External_crinfo);
7911 break;
7912
7913 /* This relocation describes the C++ object vtable hierarchy.
7914 Reconstruct it for later use during GC. */
7915 case R_MIPS_GNU_VTINHERIT:
7916 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7917 return false;
7918 break;
7919
7920 /* This relocation describes which C++ vtable entries are actually
7921 used. Record for later use during GC. */
7922 case R_MIPS_GNU_VTENTRY:
7923 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7924 return false;
7925 break;
7926
7927 default:
7928 break;
7929 }
7930
9117d219
NC
7931 /* We must not create a stub for a symbol that has relocations
7932 related to taking the function's address. */
7933 switch (r_type)
7934 {
7935 default:
7936 if (h != NULL)
7937 {
7938 struct mips_elf_link_hash_entry *mh;
7939
7940 mh = (struct mips_elf_link_hash_entry *) h;
7941 mh->no_fn_stub = true;
7942 }
7943 break;
7944 case R_MIPS_CALL16:
7945 case R_MIPS_CALL_HI16:
7946 case R_MIPS_CALL_LO16:
7947 break;
7948 }
7949
252b5132
RH
7950 /* If this reloc is not a 16 bit call, and it has a global
7951 symbol, then we will need the fn_stub if there is one.
be3ccd9c 7952 References from a stub section do not count. */
252b5132 7953 if (h != NULL
7403cb63 7954 && r_type != R_MIPS16_26
252b5132
RH
7955 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7956 sizeof FN_STUB - 1) != 0
7957 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7958 sizeof CALL_STUB - 1) != 0
7959 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7960 sizeof CALL_FP_STUB - 1) != 0)
7961 {
7962 struct mips_elf_link_hash_entry *mh;
7963
7964 mh = (struct mips_elf_link_hash_entry *) h;
7965 mh->need_fn_stub = true;
7966 }
7967 }
7968
7969 return true;
7970}
7971
7972/* Return the section that should be marked against GC for a given
7973 relocation. */
7974
103186c6
MM
7975asection *
7976_bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
252b5132 7977 bfd *abfd;
5f771d47 7978 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132
RH
7979 Elf_Internal_Rela *rel;
7980 struct elf_link_hash_entry *h;
7981 Elf_Internal_Sym *sym;
7982{
7983 /* ??? Do mips16 stub sections need to be handled special? */
7984
7985 if (h != NULL)
7986 {
7987 switch (ELF32_R_TYPE (rel->r_info))
7988 {
7989 case R_MIPS_GNU_VTINHERIT:
7990 case R_MIPS_GNU_VTENTRY:
7991 break;
7992
7993 default:
7994 switch (h->root.type)
7995 {
7996 case bfd_link_hash_defined:
7997 case bfd_link_hash_defweak:
7998 return h->root.u.def.section;
7999
8000 case bfd_link_hash_common:
8001 return h->root.u.c.p->section;
8002
8003 default:
8004 break;
8005 }
8006 }
8007 }
8008 else
8009 {
8010 if (!(elf_bad_symtab (abfd)
8011 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8012 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
8013 && sym->st_shndx != SHN_COMMON))
8014 {
8015 return bfd_section_from_elf_index (abfd, sym->st_shndx);
8016 }
8017 }
8018
8019 return NULL;
8020}
8021
8022/* Update the got entry reference counts for the section being removed. */
8023
103186c6
MM
8024boolean
8025_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
5f771d47
ILT
8026 bfd *abfd ATTRIBUTE_UNUSED;
8027 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8028 asection *sec ATTRIBUTE_UNUSED;
8029 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
252b5132
RH
8030{
8031#if 0
8032 Elf_Internal_Shdr *symtab_hdr;
8033 struct elf_link_hash_entry **sym_hashes;
8034 bfd_signed_vma *local_got_refcounts;
8035 const Elf_Internal_Rela *rel, *relend;
8036 unsigned long r_symndx;
8037 struct elf_link_hash_entry *h;
8038
8039 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8040 sym_hashes = elf_sym_hashes (abfd);
8041 local_got_refcounts = elf_local_got_refcounts (abfd);
8042
8043 relend = relocs + sec->reloc_count;
8044 for (rel = relocs; rel < relend; rel++)
8045 switch (ELF32_R_TYPE (rel->r_info))
8046 {
8047 case R_MIPS_GOT16:
8048 case R_MIPS_CALL16:
8049 case R_MIPS_CALL_HI16:
8050 case R_MIPS_CALL_LO16:
8051 case R_MIPS_GOT_HI16:
8052 case R_MIPS_GOT_LO16:
8053 /* ??? It would seem that the existing MIPS code does no sort
8054 of reference counting or whatnot on its GOT and PLT entries,
8055 so it is not possible to garbage collect them at this time. */
be3ccd9c 8056 break;
252b5132
RH
8057
8058 default:
8059 break;
8060 }
8061#endif
8062
8063 return true;
8064}
8065
8a20f077
UC
8066/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8067 hiding the old indirect symbol. Process additional relocation
8068 information. */
8069
9e80ff3a 8070static void
8a20f077
UC
8071_bfd_mips_elf_copy_indirect_symbol (dir, ind)
8072 struct elf_link_hash_entry *dir, *ind;
8073{
8074 struct mips_elf_link_hash_entry *dirmips, *indmips;
8075
8076 _bfd_elf_link_hash_copy_indirect (dir, ind);
8077
8078 dirmips = (struct mips_elf_link_hash_entry *) dir;
8079 indmips = (struct mips_elf_link_hash_entry *) ind;
8080 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
43917054
L
8081 if (indmips->readonly_reloc)
8082 dirmips->readonly_reloc = true;
8a20f077
UC
8083 if (dirmips->min_dyn_reloc_index == 0
8084 || (indmips->min_dyn_reloc_index != 0
be3ccd9c 8085 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8a20f077 8086 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
9117d219
NC
8087 if (indmips->no_fn_stub)
8088 dirmips->no_fn_stub = true;
8a20f077
UC
8089}
8090
252b5132
RH
8091/* Adjust a symbol defined by a dynamic object and referenced by a
8092 regular object. The current definition is in some section of the
8093 dynamic object, but we're not including those sections. We have to
8094 change the definition to something the rest of the link can
8095 understand. */
8096
103186c6
MM
8097boolean
8098_bfd_mips_elf_adjust_dynamic_symbol (info, h)
252b5132
RH
8099 struct bfd_link_info *info;
8100 struct elf_link_hash_entry *h;
8101{
8102 bfd *dynobj;
8103 struct mips_elf_link_hash_entry *hmips;
8104 asection *s;
8105
8106 dynobj = elf_hash_table (info)->dynobj;
8107
8108 /* Make sure we know what is going on here. */
8109 BFD_ASSERT (dynobj != NULL
8110 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8111 || h->weakdef != NULL
8112 || ((h->elf_link_hash_flags
8113 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8114 && (h->elf_link_hash_flags
8115 & ELF_LINK_HASH_REF_REGULAR) != 0
8116 && (h->elf_link_hash_flags
8117 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8118
8119 /* If this symbol is defined in a dynamic object, we need to copy
8120 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8121 file. */
8122 hmips = (struct mips_elf_link_hash_entry *) h;
8123 if (! info->relocateable
a3c7651d 8124 && hmips->possibly_dynamic_relocs != 0
2bab9785 8125 && (h->root.type == bfd_link_hash_defweak
dc810e39 8126 || (h->elf_link_hash_flags
2bab9785 8127 & ELF_LINK_HASH_DEF_REGULAR) == 0))
43917054
L
8128 {
8129 mips_elf_allocate_dynamic_relocations (dynobj,
8130 hmips->possibly_dynamic_relocs);
8131 if (hmips->readonly_reloc)
8132 /* We tell the dynamic linker that there are relocations
8133 against the text segment. */
8134 info->flags |= DF_TEXTREL;
8135 }
252b5132 8136
9117d219
NC
8137 /* For a function, create a stub, if allowed. */
8138 if (! hmips->no_fn_stub
8139 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
252b5132
RH
8140 {
8141 if (! elf_hash_table (info)->dynamic_sections_created)
8142 return true;
8143
8144 /* If this symbol is not defined in a regular file, then set
8145 the symbol to the stub location. This is required to make
8146 function pointers compare as equal between the normal
8147 executable and the shared library. */
8148 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8149 {
8150 /* We need .stub section. */
be3ccd9c 8151 s = bfd_get_section_by_name (dynobj,
303f629d 8152 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
8153 BFD_ASSERT (s != NULL);
8154
8155 h->root.u.def.section = s;
8156 h->root.u.def.value = s->_raw_size;
8157
8158 /* XXX Write this stub address somewhere. */
8159 h->plt.offset = s->_raw_size;
8160
8161 /* Make room for this stub code. */
8162 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8163
8164 /* The last half word of the stub will be filled with the index
8165 of this symbol in .dynsym section. */
8166 return true;
8167 }
8168 }
f7cb7d68 8169 else if ((h->type == STT_FUNC)
be3ccd9c 8170 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
f7cb7d68
UC
8171 {
8172 /* This will set the entry for this symbol in the GOT to 0, and
be3ccd9c 8173 the dynamic linker will take care of this. */
f7cb7d68
UC
8174 h->root.u.def.value = 0;
8175 return true;
8176 }
252b5132
RH
8177
8178 /* If this is a weak symbol, and there is a real definition, the
8179 processor independent code will have arranged for us to see the
8180 real definition first, and we can just use the same value. */
8181 if (h->weakdef != NULL)
8182 {
8183 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8184 || h->weakdef->root.type == bfd_link_hash_defweak);
8185 h->root.u.def.section = h->weakdef->root.u.def.section;
8186 h->root.u.def.value = h->weakdef->root.u.def.value;
8187 return true;
8188 }
8189
8190 /* This is a reference to a symbol defined by a dynamic object which
8191 is not a function. */
8192
8193 return true;
8194}
8195
8196/* This function is called after all the input files have been read,
8197 and the input sections have been assigned to output sections. We
8198 check for any mips16 stub sections that we can discard. */
8199
8200static boolean mips_elf_check_mips16_stubs
8201 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8202
103186c6
MM
8203boolean
8204_bfd_mips_elf_always_size_sections (output_bfd, info)
252b5132
RH
8205 bfd *output_bfd;
8206 struct bfd_link_info *info;
8207{
8208 asection *ri;
8209
8210 /* The .reginfo section has a fixed size. */
8211 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8212 if (ri != NULL)
dc810e39
AM
8213 bfd_set_section_size (output_bfd, ri,
8214 (bfd_size_type) sizeof (Elf32_External_RegInfo));
252b5132
RH
8215
8216 if (info->relocateable
8217 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8218 return true;
8219
8220 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8221 mips_elf_check_mips16_stubs,
8222 (PTR) NULL);
8223
8224 return true;
8225}
8226
8227/* Check the mips16 stubs for a particular symbol, and see if we can
8228 discard them. */
8229
252b5132
RH
8230static boolean
8231mips_elf_check_mips16_stubs (h, data)
8232 struct mips_elf_link_hash_entry *h;
5f771d47 8233 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
8234{
8235 if (h->fn_stub != NULL
8236 && ! h->need_fn_stub)
8237 {
8238 /* We don't need the fn_stub; the only references to this symbol
8239 are 16 bit calls. Clobber the size to 0 to prevent it from
8240 being included in the link. */
8241 h->fn_stub->_raw_size = 0;
8242 h->fn_stub->_cooked_size = 0;
be3ccd9c 8243 h->fn_stub->flags &= ~SEC_RELOC;
252b5132
RH
8244 h->fn_stub->reloc_count = 0;
8245 h->fn_stub->flags |= SEC_EXCLUDE;
8246 }
8247
8248 if (h->call_stub != NULL
8249 && h->root.other == STO_MIPS16)
8250 {
8251 /* We don't need the call_stub; this is a 16 bit function, so
8252 calls from other 16 bit functions are OK. Clobber the size
8253 to 0 to prevent it from being included in the link. */
8254 h->call_stub->_raw_size = 0;
8255 h->call_stub->_cooked_size = 0;
be3ccd9c 8256 h->call_stub->flags &= ~SEC_RELOC;
252b5132
RH
8257 h->call_stub->reloc_count = 0;
8258 h->call_stub->flags |= SEC_EXCLUDE;
8259 }
8260
8261 if (h->call_fp_stub != NULL
8262 && h->root.other == STO_MIPS16)
8263 {
8264 /* We don't need the call_stub; this is a 16 bit function, so
8265 calls from other 16 bit functions are OK. Clobber the size
8266 to 0 to prevent it from being included in the link. */
8267 h->call_fp_stub->_raw_size = 0;
8268 h->call_fp_stub->_cooked_size = 0;
be3ccd9c 8269 h->call_fp_stub->flags &= ~SEC_RELOC;
252b5132
RH
8270 h->call_fp_stub->reloc_count = 0;
8271 h->call_fp_stub->flags |= SEC_EXCLUDE;
8272 }
8273
8274 return true;
8275}
8276
8277/* Set the sizes of the dynamic sections. */
8278
103186c6
MM
8279boolean
8280_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
252b5132
RH
8281 bfd *output_bfd;
8282 struct bfd_link_info *info;
8283{
8284 bfd *dynobj;
8285 asection *s;
8286 boolean reltext;
7a12753d 8287 struct mips_got_info *g = NULL;
252b5132
RH
8288
8289 dynobj = elf_hash_table (info)->dynobj;
8290 BFD_ASSERT (dynobj != NULL);
8291
8292 if (elf_hash_table (info)->dynamic_sections_created)
8293 {
8294 /* Set the contents of the .interp section to the interpreter. */
8295 if (! info->shared)
8296 {
8297 s = bfd_get_section_by_name (dynobj, ".interp");
8298 BFD_ASSERT (s != NULL);
be3ccd9c 8299 s->_raw_size
303f629d 8300 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
be3ccd9c 8301 s->contents
7403cb63 8302 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
252b5132
RH
8303 }
8304 }
8305
252b5132
RH
8306 /* The check_relocs and adjust_dynamic_symbol entry points have
8307 determined the sizes of the various dynamic sections. Allocate
8308 memory for them. */
8309 reltext = false;
8310 for (s = dynobj->sections; s != NULL; s = s->next)
8311 {
8312 const char *name;
8313 boolean strip;
8314
8315 /* It's OK to base decisions on the section name, because none
8316 of the dynobj section names depend upon the input files. */
8317 name = bfd_get_section_name (dynobj, s);
8318
8319 if ((s->flags & SEC_LINKER_CREATED) == 0)
8320 continue;
8321
8322 strip = false;
8323
8324 if (strncmp (name, ".rel", 4) == 0)
8325 {
8326 if (s->_raw_size == 0)
8327 {
8328 /* We only strip the section if the output section name
8329 has the same name. Otherwise, there might be several
8330 input sections for this output section. FIXME: This
8331 code is probably not needed these days anyhow, since
8332 the linker now does not create empty output sections. */
8333 if (s->output_section != NULL
8334 && strcmp (name,
8335 bfd_get_section_name (s->output_section->owner,
8336 s->output_section)) == 0)
8337 strip = true;
8338 }
8339 else
8340 {
8341 const char *outname;
8342 asection *target;
8343
8344 /* If this relocation section applies to a read only
8345 section, then we probably need a DT_TEXTREL entry.
8346 If the relocation section is .rel.dyn, we always
8347 assert a DT_TEXTREL entry rather than testing whether
8348 there exists a relocation to a read only section or
8349 not. */
8350 outname = bfd_get_section_name (output_bfd,
8351 s->output_section);
8352 target = bfd_get_section_by_name (output_bfd, outname + 4);
8353 if ((target != NULL
8354 && (target->flags & SEC_READONLY) != 0
8355 && (target->flags & SEC_ALLOC) != 0)
be3ccd9c 8356 || strcmp (outname,
103186c6 8357 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
252b5132
RH
8358 reltext = true;
8359
8360 /* We use the reloc_count field as a counter if we need
8361 to copy relocs into the output file. */
be3ccd9c 8362 if (strcmp (name,
103186c6 8363 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
252b5132
RH
8364 s->reloc_count = 0;
8365 }
8366 }
8367 else if (strncmp (name, ".got", 4) == 0)
8368 {
8369 int i;
be3ccd9c
KH
8370 bfd_size_type loadable_size = 0;
8371 bfd_size_type local_gotno;
d1cf510e 8372 bfd *sub;
252b5132 8373
be3ccd9c 8374 BFD_ASSERT (elf_section_data (s) != NULL);
252b5132 8375 g = (struct mips_got_info *) elf_section_data (s)->tdata;
be3ccd9c
KH
8376 BFD_ASSERT (g != NULL);
8377
8378 /* Calculate the total loadable size of the output. That
8379 will give us the maximum number of GOT_PAGE entries
8380 required. */
8381 for (sub = info->input_bfds; sub; sub = sub->link_next)
8382 {
8383 asection *subsection;
8384
8385 for (subsection = sub->sections;
8386 subsection;
8387 subsection = subsection->next)
8388 {
8389 if ((subsection->flags & SEC_ALLOC) == 0)
8390 continue;
dc810e39
AM
8391 loadable_size += ((subsection->_raw_size + 0xf)
8392 &~ (bfd_size_type) 0xf);
be3ccd9c
KH
8393 }
8394 }
8395 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8396
8397 /* Assume there are two loadable segments consisting of
8398 contiguous sections. Is 5 enough? */
8399 local_gotno = (loadable_size >> 16) + 5;
9458945f
MM
8400 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8401 /* It's possible we will need GOT_PAGE entries as well as
8402 GOT16 entries. Often, these will be able to share GOT
8403 entries, but not always. */
8404 local_gotno *= 2;
8405
be3ccd9c
KH
8406 g->local_gotno += local_gotno;
8407 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
7403cb63 8408
be3ccd9c
KH
8409 /* There has to be a global GOT entry for every symbol with
8410 a dynamic symbol table index of DT_MIPS_GOTSYM or
8411 higher. Therefore, it make sense to put those symbols
8412 that need GOT entries at the end of the symbol table. We
8413 do that here. */
b3be9b46 8414 if (!mips_elf_sort_hash_table (info, 1))
7403cb63
MM
8415 return false;
8416
8b237a89
MM
8417 if (g->global_gotsym != NULL)
8418 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8419 else
8420 /* If there are no global symbols, or none requiring
8421 relocations, then GLOBAL_GOTSYM will be NULL. */
8422 i = 0;
b3be9b46 8423 g->global_gotno = i;
103186c6 8424 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
252b5132 8425 }
303f629d 8426 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
252b5132
RH
8427 {
8428 /* Irix rld assumes that the function stub isn't at the end
8429 of .text section. So put a dummy. XXX */
8430 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8431 }
8432 else if (! info->shared
8433 && ! mips_elf_hash_table (info)->use_rld_obj_head
8434 && strncmp (name, ".rld_map", 8) == 0)
8435 {
8436 /* We add a room for __rld_map. It will be filled in by the
8437 rtld to contain a pointer to the _r_debug structure. */
8438 s->_raw_size += 4;
8439 }
8440 else if (SGI_COMPAT (output_bfd)
8441 && strncmp (name, ".compact_rel", 12) == 0)
8442 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
c6142e5d
MM
8443 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8444 == 0)
be3ccd9c 8445 s->_raw_size = (sizeof (Elf32_External_Msym)
c6142e5d
MM
8446 * (elf_hash_table (info)->dynsymcount
8447 + bfd_count_sections (output_bfd)));
252b5132
RH
8448 else if (strncmp (name, ".init", 5) != 0)
8449 {
8450 /* It's not one of our sections, so don't allocate space. */
8451 continue;
8452 }
8453
8454 if (strip)
8455 {
7f8d5fc9 8456 _bfd_strip_section_from_output (info, s);
252b5132
RH
8457 continue;
8458 }
8459
8460 /* Allocate memory for the section contents. */
303f629d 8461 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
252b5132
RH
8462 if (s->contents == NULL && s->_raw_size != 0)
8463 {
8464 bfd_set_error (bfd_error_no_memory);
8465 return false;
8466 }
252b5132
RH
8467 }
8468
8469 if (elf_hash_table (info)->dynamic_sections_created)
8470 {
8471 /* Add some entries to the .dynamic section. We fill in the
8472 values later, in elf_mips_finish_dynamic_sections, but we
8473 must add the entries now so that we get the correct size for
8474 the .dynamic section. The DT_DEBUG entry is filled in by the
8475 dynamic linker and used by the debugger. */
8476 if (! info->shared)
8477 {
be3ccd9c
KH
8478 /* SGI object has the equivalence of DT_DEBUG in the
8479 DT_MIPS_RLD_MAP entry. */
8480 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8481 return false;
8482 if (!SGI_COMPAT (output_bfd))
8483 {
8484 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8485 return false;
8486 }
8487 }
f7cb7d68 8488 else
be3ccd9c
KH
8489 {
8490 /* Shared libraries on traditional mips have DT_DEBUG. */
8491 if (!SGI_COMPAT (output_bfd))
8492 {
8493 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8494 return false;
8495 }
8496 }
43917054 8497
be3ccd9c 8498 if (reltext && SGI_COMPAT (output_bfd))
43917054
L
8499 info->flags |= DF_TEXTREL;
8500
8501 if ((info->flags & DF_TEXTREL) != 0)
252b5132 8502 {
103186c6 8503 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
252b5132
RH
8504 return false;
8505 }
8506
103186c6 8507 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
252b5132
RH
8508 return false;
8509
103186c6
MM
8510 if (bfd_get_section_by_name (dynobj,
8511 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
252b5132 8512 {
103186c6 8513 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
252b5132
RH
8514 return false;
8515
103186c6 8516 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
252b5132
RH
8517 return false;
8518
103186c6 8519 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
252b5132
RH
8520 return false;
8521 }
8522
f7cb7d68 8523 if (SGI_COMPAT (output_bfd))
be3ccd9c
KH
8524 {
8525 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
f7cb7d68 8526 return false;
be3ccd9c 8527 }
252b5132 8528
f7cb7d68 8529 if (SGI_COMPAT (output_bfd))
be3ccd9c
KH
8530 {
8531 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
f7cb7d68 8532 return false;
be3ccd9c 8533 }
252b5132
RH
8534
8535 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8536 {
103186c6 8537 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
252b5132
RH
8538 return false;
8539
8540 s = bfd_get_section_by_name (dynobj, ".liblist");
8541 BFD_ASSERT (s != NULL);
8542
103186c6 8543 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
252b5132
RH
8544 return false;
8545 }
8546
103186c6 8547 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
252b5132
RH
8548 return false;
8549
103186c6 8550 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
252b5132
RH
8551 return false;
8552
8553#if 0
8554 /* Time stamps in executable files are a bad idea. */
103186c6 8555 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
252b5132
RH
8556 return false;
8557#endif
8558
8559#if 0 /* FIXME */
103186c6 8560 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
252b5132
RH
8561 return false;
8562#endif
8563
8564#if 0 /* FIXME */
103186c6 8565 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
252b5132
RH
8566 return false;
8567#endif
8568
103186c6 8569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
252b5132
RH
8570 return false;
8571
103186c6 8572 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
252b5132
RH
8573 return false;
8574
103186c6 8575 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
252b5132
RH
8576 return false;
8577
103186c6 8578 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
252b5132
RH
8579 return false;
8580
5499724a 8581 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
252b5132
RH
8582 return false;
8583
7403cb63 8584 if (IRIX_COMPAT (dynobj) == ict_irix5
103186c6 8585 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
252b5132
RH
8586 return false;
8587
7403cb63 8588 if (IRIX_COMPAT (dynobj) == ict_irix6
be3ccd9c 8589 && (bfd_get_section_by_name
7403cb63 8590 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
103186c6 8591 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7403cb63 8592 return false;
c6142e5d 8593
be3ccd9c 8594 if (bfd_get_section_by_name (dynobj,
c6142e5d 8595 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
103186c6 8596 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
c6142e5d 8597 return false;
252b5132
RH
8598 }
8599
252b5132
RH
8600 return true;
8601}
8602
7403cb63
MM
8603/* If NAME is one of the special IRIX6 symbols defined by the linker,
8604 adjust it appropriately now. */
8605
8606static void
8607mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
5f771d47 8608 bfd *abfd ATTRIBUTE_UNUSED;
7403cb63
MM
8609 const char *name;
8610 Elf_Internal_Sym *sym;
8611{
8612 /* The linker script takes care of providing names and values for
8613 these, but we must place them into the right sections. */
8614 static const char* const text_section_symbols[] = {
8615 "_ftext",
8616 "_etext",
8617 "__dso_displacement",
8618 "__elf_header",
8619 "__program_header_table",
8620 NULL
8621 };
8622
8623 static const char* const data_section_symbols[] = {
8624 "_fdata",
8625 "_edata",
8626 "_end",
8627 "_fbss",
8628 NULL
8629 };
8630
8631 const char* const *p;
8632 int i;
8633
8634 for (i = 0; i < 2; ++i)
be3ccd9c 8635 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7403cb63
MM
8636 *p;
8637 ++p)
8638 if (strcmp (*p, name) == 0)
8639 {
8640 /* All of these symbols are given type STT_SECTION by the
8641 IRIX6 linker. */
8642 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
be3ccd9c 8643
7403cb63
MM
8644 /* The IRIX linker puts these symbols in special sections. */
8645 if (i == 0)
8646 sym->st_shndx = SHN_MIPS_TEXT;
8647 else
8648 sym->st_shndx = SHN_MIPS_DATA;
be3ccd9c 8649
7403cb63
MM
8650 break;
8651 }
8652}
8653
252b5132
RH
8654/* Finish up dynamic symbol handling. We set the contents of various
8655 dynamic sections here. */
8656
103186c6
MM
8657boolean
8658_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
252b5132
RH
8659 bfd *output_bfd;
8660 struct bfd_link_info *info;
8661 struct elf_link_hash_entry *h;
8662 Elf_Internal_Sym *sym;
8663{
8664 bfd *dynobj;
8665 bfd_vma gval;
8666 asection *sgot;
c6142e5d 8667 asection *smsym;
252b5132
RH
8668 struct mips_got_info *g;
8669 const char *name;
c6142e5d 8670 struct mips_elf_link_hash_entry *mh;
252b5132
RH
8671
8672 dynobj = elf_hash_table (info)->dynobj;
8673 gval = sym->st_value;
c6142e5d 8674 mh = (struct mips_elf_link_hash_entry *) h;
252b5132
RH
8675
8676 if (h->plt.offset != (bfd_vma) -1)
8677 {
8678 asection *s;
8679 bfd_byte *p;
8680 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8681
8682 /* This symbol has a stub. Set it up. */
8683
8684 BFD_ASSERT (h->dynindx != -1);
8685
be3ccd9c 8686 s = bfd_get_section_by_name (dynobj,
303f629d 8687 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
8688 BFD_ASSERT (s != NULL);
8689
8690 /* Fill the stub. */
8691 p = stub;
dc810e39 8692 bfd_put_32 (output_bfd, (bfd_vma) STUB_LW (output_bfd), p);
252b5132 8693 p += 4;
dc810e39 8694 bfd_put_32 (output_bfd, (bfd_vma) STUB_MOVE (output_bfd), p);
252b5132
RH
8695 p += 4;
8696
8697 /* FIXME: Can h->dynindex be more than 64K? */
8698 if (h->dynindx & 0xffff0000)
8699 return false;
8700
dc810e39 8701 bfd_put_32 (output_bfd, (bfd_vma) STUB_JALR, p);
252b5132 8702 p += 4;
dc810e39 8703 bfd_put_32 (output_bfd, (bfd_vma) STUB_LI16 (output_bfd) + h->dynindx, p);
252b5132
RH
8704
8705 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8706 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8707
8708 /* Mark the symbol as undefined. plt.offset != -1 occurs
8709 only for the referenced symbol. */
8710 sym->st_shndx = SHN_UNDEF;
8711
8712 /* The run-time linker uses the st_value field of the symbol
8713 to reset the global offset table entry for this external
8714 to its stub address when unlinking a shared object. */
8715 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8716 sym->st_value = gval;
8717 }
8718
b305ef96
UC
8719 BFD_ASSERT (h->dynindx != -1
8720 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
252b5132 8721
103186c6 8722 sgot = mips_elf_got_section (dynobj);
252b5132
RH
8723 BFD_ASSERT (sgot != NULL);
8724 BFD_ASSERT (elf_section_data (sgot) != NULL);
8725 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8726 BFD_ASSERT (g != NULL);
8727
7403cb63
MM
8728 /* Run through the global symbol table, creating GOT entries for all
8729 the symbols that need them. */
8b237a89
MM
8730 if (g->global_gotsym != NULL
8731 && h->dynindx >= g->global_gotsym->dynindx)
252b5132 8732 {
7403cb63
MM
8733 bfd_vma offset;
8734 bfd_vma value;
252b5132 8735
7403cb63
MM
8736 if (sym->st_value)
8737 value = sym->st_value;
8738 else
be3ccd9c
KH
8739 {
8740 /* For an entity defined in a shared object, this will be
8741 NULL. (For functions in shared objects for
8742 which we have created stubs, ST_VALUE will be non-NULL.
8743 That's because such the functions are now no longer defined
8744 in a shared object.) */
8745
8746 if (info->shared && h->root.type == bfd_link_hash_undefined)
8747 value = 0;
8748 else
8749 value = h->root.u.def.value;
8750 }
7403cb63 8751 offset = mips_elf_global_got_index (dynobj, h);
103186c6 8752 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
252b5132
RH
8753 }
8754
c6142e5d 8755 /* Create a .msym entry, if appropriate. */
be3ccd9c 8756 smsym = bfd_get_section_by_name (dynobj,
c6142e5d
MM
8757 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8758 if (smsym)
8759 {
8760 Elf32_Internal_Msym msym;
8761
8762 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8763 /* It is undocumented what the `1' indicates, but IRIX6 uses
8764 this value. */
8765 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
be3ccd9c 8766 bfd_mips_elf_swap_msym_out
c6142e5d
MM
8767 (dynobj, &msym,
8768 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8769 }
8770
252b5132
RH
8771 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8772 name = h->root.root.string;
8773 if (strcmp (name, "_DYNAMIC") == 0
8774 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8775 sym->st_shndx = SHN_ABS;
f7cb7d68 8776 else if (strcmp (name, "_DYNAMIC_LINK") == 0
be3ccd9c 8777 || strcmp (name, "_DYNAMIC_LINKING") == 0)
252b5132
RH
8778 {
8779 sym->st_shndx = SHN_ABS;
8780 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8781 sym->st_value = 1;
8782 }
f7cb7d68
UC
8783 else if (strcmp (name, "_gp_disp") == 0)
8784 {
8785 sym->st_shndx = SHN_ABS;
8786 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8787 sym->st_value = elf_gp (output_bfd);
8788 }
252b5132
RH
8789 else if (SGI_COMPAT (output_bfd))
8790 {
f7cb7d68 8791 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
be3ccd9c 8792 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
252b5132
RH
8793 {
8794 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8795 sym->st_other = STO_PROTECTED;
8796 sym->st_value = 0;
8797 sym->st_shndx = SHN_MIPS_DATA;
8798 }
8799 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8800 {
8801 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8802 sym->st_other = STO_PROTECTED;
8803 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8804 sym->st_shndx = SHN_ABS;
8805 }
8806 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8807 {
8808 if (h->type == STT_FUNC)
8809 sym->st_shndx = SHN_MIPS_TEXT;
8810 else if (h->type == STT_OBJECT)
8811 sym->st_shndx = SHN_MIPS_DATA;
8812 }
8813 }
8814
7403cb63
MM
8815 /* Handle the IRIX6-specific symbols. */
8816 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8817 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8818
f7cb7d68 8819 if (! info->shared)
252b5132
RH
8820 {
8821 if (! mips_elf_hash_table (info)->use_rld_obj_head
31a9bdd9
UC
8822 && (strcmp (name, "__rld_map") == 0
8823 || strcmp (name, "__RLD_MAP") == 0))
252b5132
RH
8824 {
8825 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8826 BFD_ASSERT (s != NULL);
8827 sym->st_value = s->output_section->vma + s->output_offset;
8828 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8829 if (mips_elf_hash_table (info)->rld_value == 0)
8830 mips_elf_hash_table (info)->rld_value = sym->st_value;
8831 }
8832 else if (mips_elf_hash_table (info)->use_rld_obj_head
8833 && strcmp (name, "__rld_obj_head") == 0)
8834 {
303f629d 8835 /* IRIX6 does not use a .rld_map section. */
f7cb7d68
UC
8836 if (IRIX_COMPAT (output_bfd) == ict_irix5
8837 || IRIX_COMPAT (output_bfd) == ict_none)
be3ccd9c 8838 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
303f629d 8839 != NULL);
252b5132
RH
8840 mips_elf_hash_table (info)->rld_value = sym->st_value;
8841 }
8842 }
8843
8844 /* If this is a mips16 symbol, force the value to be even. */
8845 if (sym->st_other == STO_MIPS16
8846 && (sym->st_value & 1) != 0)
8847 --sym->st_value;
8848
8849 return true;
8850}
8851
8852/* Finish up the dynamic sections. */
8853
103186c6
MM
8854boolean
8855_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
252b5132
RH
8856 bfd *output_bfd;
8857 struct bfd_link_info *info;
8858{
8859 bfd *dynobj;
8860 asection *sdyn;
8861 asection *sgot;
8862 struct mips_got_info *g;
8863
8864 dynobj = elf_hash_table (info)->dynobj;
8865
8866 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8867
103186c6 8868 sgot = mips_elf_got_section (dynobj);
252b5132
RH
8869 if (sgot == NULL)
8870 g = NULL;
8871 else
8872 {
8873 BFD_ASSERT (elf_section_data (sgot) != NULL);
8874 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8875 BFD_ASSERT (g != NULL);
8876 }
8877
8878 if (elf_hash_table (info)->dynamic_sections_created)
8879 {
103186c6 8880 bfd_byte *b;
252b5132
RH
8881
8882 BFD_ASSERT (sdyn != NULL);
8883 BFD_ASSERT (g != NULL);
8884
103186c6
MM
8885 for (b = sdyn->contents;
8886 b < sdyn->contents + sdyn->_raw_size;
8887 b += MIPS_ELF_DYN_SIZE (dynobj))
252b5132
RH
8888 {
8889 Elf_Internal_Dyn dyn;
8890 const char *name;
8891 size_t elemsize;
8892 asection *s;
103186c6 8893 boolean swap_out_p;
252b5132 8894
103186c6
MM
8895 /* Read in the current dynamic entry. */
8896 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
be3ccd9c 8897
103186c6
MM
8898 /* Assume that we're going to modify it and write it out. */
8899 swap_out_p = true;
252b5132
RH
8900
8901 switch (dyn.d_tag)
8902 {
252b5132 8903 case DT_RELENT:
be3ccd9c 8904 s = (bfd_get_section_by_name
103186c6
MM
8905 (dynobj,
8906 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
252b5132 8907 BFD_ASSERT (s != NULL);
103186c6 8908 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
252b5132
RH
8909 break;
8910
8911 case DT_STRSZ:
8912 /* Rewrite DT_STRSZ. */
8913 dyn.d_un.d_val =
8914 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
252b5132
RH
8915 break;
8916
8917 case DT_PLTGOT:
8918 name = ".got";
8919 goto get_vma;
8920 case DT_MIPS_CONFLICT:
8921 name = ".conflict";
8922 goto get_vma;
8923 case DT_MIPS_LIBLIST:
8924 name = ".liblist";
8925 get_vma:
8926 s = bfd_get_section_by_name (output_bfd, name);
8927 BFD_ASSERT (s != NULL);
8928 dyn.d_un.d_ptr = s->vma;
252b5132
RH
8929 break;
8930
8931 case DT_MIPS_RLD_VERSION:
8932 dyn.d_un.d_val = 1; /* XXX */
252b5132
RH
8933 break;
8934
8935 case DT_MIPS_FLAGS:
8936 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
252b5132
RH
8937 break;
8938
8939 case DT_MIPS_CONFLICTNO:
8940 name = ".conflict";
8941 elemsize = sizeof (Elf32_Conflict);
8942 goto set_elemno;
8943
8944 case DT_MIPS_LIBLISTNO:
8945 name = ".liblist";
8946 elemsize = sizeof (Elf32_Lib);
8947 set_elemno:
8948 s = bfd_get_section_by_name (output_bfd, name);
8949 if (s != NULL)
8950 {
8951 if (s->_cooked_size != 0)
8952 dyn.d_un.d_val = s->_cooked_size / elemsize;
8953 else
8954 dyn.d_un.d_val = s->_raw_size / elemsize;
8955 }
8956 else
be3ccd9c 8957 dyn.d_un.d_val = 0;
252b5132
RH
8958 break;
8959
8960 case DT_MIPS_TIME_STAMP:
8961 time ((time_t *) &dyn.d_un.d_val);
252b5132
RH
8962 break;
8963
8964 case DT_MIPS_ICHECKSUM:
8965 /* XXX FIXME: */
103186c6 8966 swap_out_p = false;
252b5132
RH
8967 break;
8968
8969 case DT_MIPS_IVERSION:
8970 /* XXX FIXME: */
103186c6 8971 swap_out_p = false;
252b5132
RH
8972 break;
8973
8974 case DT_MIPS_BASE_ADDRESS:
8975 s = output_bfd->sections;
8976 BFD_ASSERT (s != NULL);
dc810e39 8977 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
252b5132
RH
8978 break;
8979
8980 case DT_MIPS_LOCAL_GOTNO:
8981 dyn.d_un.d_val = g->local_gotno;
252b5132
RH
8982 break;
8983
5499724a
MM
8984 case DT_MIPS_UNREFEXTNO:
8985 /* The index into the dynamic symbol table which is the
8986 entry of the first external symbol that is not
8987 referenced within the same object. */
8988 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8989 break;
8990
8991 case DT_MIPS_GOTSYM:
8992 if (g->global_gotsym)
8993 {
8994 dyn.d_un.d_val = g->global_gotsym->dynindx;
8995 break;
8996 }
8997 /* In case if we don't have global got symbols we default
8998 to setting DT_MIPS_GOTSYM to the same value as
8999 DT_MIPS_SYMTABNO, so we just fall through. */
9000
252b5132
RH
9001 case DT_MIPS_SYMTABNO:
9002 name = ".dynsym";
103186c6 9003 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
252b5132
RH
9004 s = bfd_get_section_by_name (output_bfd, name);
9005 BFD_ASSERT (s != NULL);
9006
9007 if (s->_cooked_size != 0)
9008 dyn.d_un.d_val = s->_cooked_size / elemsize;
9009 else
9010 dyn.d_un.d_val = s->_raw_size / elemsize;
252b5132
RH
9011 break;
9012
252b5132
RH
9013 case DT_MIPS_HIPAGENO:
9014 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
252b5132
RH
9015 break;
9016
9017 case DT_MIPS_RLD_MAP:
9018 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
252b5132
RH
9019 break;
9020
7403cb63 9021 case DT_MIPS_OPTIONS:
be3ccd9c 9022 s = (bfd_get_section_by_name
7403cb63
MM
9023 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9024 dyn.d_un.d_ptr = s->vma;
7403cb63
MM
9025 break;
9026
c6142e5d 9027 case DT_MIPS_MSYM:
be3ccd9c 9028 s = (bfd_get_section_by_name
c6142e5d
MM
9029 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
9030 dyn.d_un.d_ptr = s->vma;
103186c6
MM
9031 break;
9032
9033 default:
9034 swap_out_p = false;
c6142e5d 9035 break;
252b5132 9036 }
103186c6
MM
9037
9038 if (swap_out_p)
be3ccd9c 9039 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
103186c6 9040 (dynobj, &dyn, b);
252b5132
RH
9041 }
9042 }
9043
9044 /* The first entry of the global offset table will be filled at
9045 runtime. The second entry will be used by some runtime loaders.
be3ccd9c 9046 This isn't the case of Irix rld. */
252b5132
RH
9047 if (sgot != NULL && sgot->_raw_size > 0)
9048 {
103186c6 9049 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
be3ccd9c 9050 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
103186c6 9051 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
252b5132
RH
9052 }
9053
9054 if (sgot != NULL)
103186c6
MM
9055 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9056 = MIPS_ELF_GOT_SIZE (output_bfd);
252b5132
RH
9057
9058 {
c6142e5d 9059 asection *smsym;
252b5132 9060 asection *s;
252b5132
RH
9061 Elf32_compact_rel cpt;
9062
30b30c21
RH
9063 /* ??? The section symbols for the output sections were set up in
9064 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9065 symbols. Should we do so? */
252b5132 9066
be3ccd9c 9067 smsym = bfd_get_section_by_name (dynobj,
c6142e5d 9068 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
30b30c21 9069 if (smsym != NULL)
252b5132 9070 {
103186c6 9071 Elf32_Internal_Msym msym;
c6142e5d 9072
103186c6
MM
9073 msym.ms_hash_value = 0;
9074 msym.ms_info = ELF32_MS_INFO (0, 1);
c6142e5d 9075
103186c6
MM
9076 for (s = output_bfd->sections; s != NULL; s = s->next)
9077 {
30b30c21 9078 long dynindx = elf_section_data (s)->dynindx;
252b5132 9079
be3ccd9c 9080 bfd_mips_elf_swap_msym_out
30b30c21
RH
9081 (output_bfd, &msym,
9082 (((Elf32_External_Msym *) smsym->contents)
9083 + dynindx));
9084 }
252b5132
RH
9085 }
9086
9087 if (SGI_COMPAT (output_bfd))
9088 {
9089 /* Write .compact_rel section out. */
9090 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9091 if (s != NULL)
9092 {
9093 cpt.id1 = 1;
9094 cpt.num = s->reloc_count;
9095 cpt.id2 = 2;
9096 cpt.offset = (s->output_section->filepos
9097 + sizeof (Elf32_External_compact_rel));
9098 cpt.reserved0 = 0;
9099 cpt.reserved1 = 0;
9100 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9101 ((Elf32_External_compact_rel *)
9102 s->contents));
9103
9104 /* Clean up a dummy stub function entry in .text. */
be3ccd9c 9105 s = bfd_get_section_by_name (dynobj,
303f629d 9106 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
9107 if (s != NULL)
9108 {
9109 file_ptr dummy_offset;
9110
9111 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9112 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9113 memset (s->contents + dummy_offset, 0,
9114 MIPS_FUNCTION_STUB_SIZE);
9115 }
9116 }
9117 }
9118
adb76a3e
UC
9119 /* We need to sort the entries of the dynamic relocation section. */
9120
9121 if (!ABI_64_P (output_bfd))
9122 {
be3ccd9c
KH
9123 asection *reldyn;
9124
9125 reldyn = bfd_get_section_by_name (dynobj,
9126 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9127 if (reldyn != NULL && reldyn->reloc_count > 2)
9128 {
9129 reldyn_sorting_bfd = output_bfd;
9130 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9131 (size_t) reldyn->reloc_count - 1,
9132 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9133 }
adb76a3e
UC
9134 }
9135
252b5132 9136 /* Clean up a first relocation in .rel.dyn. */
be3ccd9c 9137 s = bfd_get_section_by_name (dynobj,
103186c6 9138 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
252b5132 9139 if (s != NULL && s->_raw_size > 0)
103186c6 9140 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
252b5132
RH
9141 }
9142
9143 return true;
9144}
9145\f
bb0082d6
AM
9146/* Support for core dump NOTE sections */
9147static boolean
9148_bfd_elf32_mips_grok_prstatus (abfd, note)
9149 bfd *abfd;
9150 Elf_Internal_Note *note;
9151{
9152 int offset;
dc810e39 9153 unsigned int raw_size;
bb0082d6
AM
9154
9155 switch (note->descsz)
9156 {
9157 default:
9158 return false;
9159
9160 case 256: /* Linux/MIPS */
9161 /* pr_cursig */
9162 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
9163
9164 /* pr_pid */
9165 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
9166
9167 /* pr_reg */
9168 offset = 72;
9169 raw_size = 180;
9170
9171 break;
9172 }
9173
9174 /* Make a ".reg/999" section. */
936e320b
AM
9175 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9176 raw_size, note->descpos + offset);
bb0082d6
AM
9177}
9178
9e80ff3a
L
9179static boolean
9180_bfd_elf32_mips_grok_psinfo (abfd, note)
bb0082d6
AM
9181 bfd *abfd;
9182 Elf_Internal_Note *note;
9183{
9184 switch (note->descsz)
9185 {
9186 default:
9187 return false;
9188
9189 case 128: /* Linux/MIPS elf_prpsinfo */
9190 elf_tdata (abfd)->core_program
9191 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
9192 elf_tdata (abfd)->core_command
9193 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
9194 }
9195
9196 /* Note that for some reason, a spurious space is tacked
9197 onto the end of the args in some (at least one anyway)
9198 implementations, so strip it off if it exists. */
9199
9200 {
9201 char *command = elf_tdata (abfd)->core_command;
9202 int n = strlen (command);
9203
9204 if (0 < n && command[n - 1] == ' ')
9205 command[n - 1] = '\0';
9206 }
9207
9208 return true;
9209}
9210\f
252b5132
RH
9211/* This is almost identical to bfd_generic_get_... except that some
9212 MIPS relocations need to be handled specially. Sigh. */
9213
9214static bfd_byte *
9215elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
9216 relocateable, symbols)
9217 bfd *abfd;
9218 struct bfd_link_info *link_info;
9219 struct bfd_link_order *link_order;
9220 bfd_byte *data;
9221 boolean relocateable;
9222 asymbol **symbols;
9223{
9224 /* Get enough memory to hold the stuff */
9225 bfd *input_bfd = link_order->u.indirect.section->owner;
9226 asection *input_section = link_order->u.indirect.section;
9227
9228 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9229 arelent **reloc_vector = NULL;
9230 long reloc_count;
9231
9232 if (reloc_size < 0)
9233 goto error_return;
9234
dc810e39 9235 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132
RH
9236 if (reloc_vector == NULL && reloc_size != 0)
9237 goto error_return;
9238
9239 /* read in the section */
9240 if (!bfd_get_section_contents (input_bfd,
9241 input_section,
9242 (PTR) data,
dc810e39 9243 (file_ptr) 0,
252b5132
RH
9244 input_section->_raw_size))
9245 goto error_return;
9246
9247 /* We're not relaxing the section, so just copy the size info */
9248 input_section->_cooked_size = input_section->_raw_size;
9249 input_section->reloc_done = true;
9250
9251 reloc_count = bfd_canonicalize_reloc (input_bfd,
9252 input_section,
9253 reloc_vector,
9254 symbols);
9255 if (reloc_count < 0)
9256 goto error_return;
9257
9258 if (reloc_count > 0)
9259 {
9260 arelent **parent;
9261 /* for mips */
9262 int gp_found;
9263 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9264
9265 {
9266 struct bfd_hash_entry *h;
9267 struct bfd_link_hash_entry *lh;
9268 /* Skip all this stuff if we aren't mixing formats. */
9269 if (abfd && input_bfd
9270 && abfd->xvec == input_bfd->xvec)
9271 lh = 0;
9272 else
9273 {
9274 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9275 lh = (struct bfd_link_hash_entry *) h;
9276 }
9277 lookup:
9278 if (lh)
9279 {
9280 switch (lh->type)
9281 {
9282 case bfd_link_hash_undefined:
9283 case bfd_link_hash_undefweak:
9284 case bfd_link_hash_common:
9285 gp_found = 0;
9286 break;
9287 case bfd_link_hash_defined:
9288 case bfd_link_hash_defweak:
9289 gp_found = 1;
9290 gp = lh->u.def.value;
9291 break;
9292 case bfd_link_hash_indirect:
9293 case bfd_link_hash_warning:
9294 lh = lh->u.i.link;
9295 /* @@FIXME ignoring warning for now */
9296 goto lookup;
9297 case bfd_link_hash_new:
9298 default:
9299 abort ();
9300 }
9301 }
9302 else
9303 gp_found = 0;
9304 }
9305 /* end mips */
9306 for (parent = reloc_vector; *parent != (arelent *) NULL;
9307 parent++)
9308 {
9309 char *error_message = (char *) NULL;
9310 bfd_reloc_status_type r;
9311
9312 /* Specific to MIPS: Deal with relocation types that require
9313 knowing the gp of the output bfd. */
9314 asymbol *sym = *(*parent)->sym_ptr_ptr;
9315 if (bfd_is_abs_section (sym->section) && abfd)
9316 {
9317 /* The special_function wouldn't get called anyways. */
9318 }
9319 else if (!gp_found)
9320 {
9321 /* The gp isn't there; let the special function code
9322 fall over on its own. */
9323 }
9324 else if ((*parent)->howto->special_function
9325 == _bfd_mips_elf_gprel16_reloc)
9326 {
9327 /* bypass special_function call */
9328 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9329 relocateable, (PTR) data, gp);
9330 goto skip_bfd_perform_relocation;
9331 }
9332 /* end mips specific stuff */
9333
9334 r = bfd_perform_relocation (input_bfd,
9335 *parent,
9336 (PTR) data,
9337 input_section,
9338 relocateable ? abfd : (bfd *) NULL,
9339 &error_message);
9340 skip_bfd_perform_relocation:
9341
9342 if (relocateable)
9343 {
9344 asection *os = input_section->output_section;
9345
9346 /* A partial link, so keep the relocs */
9347 os->orelocation[os->reloc_count] = *parent;
9348 os->reloc_count++;
9349 }
9350
9351 if (r != bfd_reloc_ok)
9352 {
9353 switch (r)
9354 {
9355 case bfd_reloc_undefined:
9356 if (!((*link_info->callbacks->undefined_symbol)
9357 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
9358 input_bfd, input_section, (*parent)->address,
9359 true)))
252b5132
RH
9360 goto error_return;
9361 break;
9362 case bfd_reloc_dangerous:
9363 BFD_ASSERT (error_message != (char *) NULL);
9364 if (!((*link_info->callbacks->reloc_dangerous)
9365 (link_info, error_message, input_bfd, input_section,
9366 (*parent)->address)))
9367 goto error_return;
9368 break;
9369 case bfd_reloc_overflow:
9370 if (!((*link_info->callbacks->reloc_overflow)
9371 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9372 (*parent)->howto->name, (*parent)->addend,
9373 input_bfd, input_section, (*parent)->address)))
9374 goto error_return;
9375 break;
9376 case bfd_reloc_outofrange:
9377 default:
9378 abort ();
9379 break;
9380 }
9381
9382 }
9383 }
9384 }
9385 if (reloc_vector != NULL)
9386 free (reloc_vector);
9387 return data;
9388
9389error_return:
9390 if (reloc_vector != NULL)
9391 free (reloc_vector);
9392 return NULL;
9393}
be3ccd9c 9394
252b5132
RH
9395#define bfd_elf32_bfd_get_relocated_section_contents \
9396 elf32_mips_get_relocated_section_contents
9397\f
9398/* ECOFF swapping routines. These are used when dealing with the
9399 .mdebug section, which is in the ECOFF debugging format. */
be3ccd9c 9400static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
252b5132
RH
9401 /* Symbol table magic number. */
9402 magicSym,
9403 /* Alignment of debugging information. E.g., 4. */
9404 4,
9405 /* Sizes of external symbolic information. */
9406 sizeof (struct hdr_ext),
9407 sizeof (struct dnr_ext),
9408 sizeof (struct pdr_ext),
9409 sizeof (struct sym_ext),
9410 sizeof (struct opt_ext),
9411 sizeof (struct fdr_ext),
9412 sizeof (struct rfd_ext),
9413 sizeof (struct ext_ext),
9414 /* Functions to swap in external symbolic data. */
9415 ecoff_swap_hdr_in,
9416 ecoff_swap_dnr_in,
9417 ecoff_swap_pdr_in,
9418 ecoff_swap_sym_in,
9419 ecoff_swap_opt_in,
9420 ecoff_swap_fdr_in,
9421 ecoff_swap_rfd_in,
9422 ecoff_swap_ext_in,
9423 _bfd_ecoff_swap_tir_in,
9424 _bfd_ecoff_swap_rndx_in,
9425 /* Functions to swap out external symbolic data. */
9426 ecoff_swap_hdr_out,
9427 ecoff_swap_dnr_out,
9428 ecoff_swap_pdr_out,
9429 ecoff_swap_sym_out,
9430 ecoff_swap_opt_out,
9431 ecoff_swap_fdr_out,
9432 ecoff_swap_rfd_out,
9433 ecoff_swap_ext_out,
9434 _bfd_ecoff_swap_tir_out,
9435 _bfd_ecoff_swap_rndx_out,
9436 /* Function to read in symbolic data. */
9437 _bfd_mips_elf_read_ecoff_info
9438};
9439\f
9440#define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9441#define TARGET_LITTLE_NAME "elf32-littlemips"
9442#define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9443#define TARGET_BIG_NAME "elf32-bigmips"
9444#define ELF_ARCH bfd_arch_mips
9445#define ELF_MACHINE_CODE EM_MIPS
9446
9447/* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9448 a value of 0x1000, and we are compatible. */
9449#define ELF_MAXPAGESIZE 0x1000
9450
9451#define elf_backend_collect true
9452#define elf_backend_type_change_ok true
9453#define elf_backend_can_gc_sections true
86dc0f79 9454#define elf_backend_sign_extend_vma true
3f830999 9455#define elf_info_to_howto mips_info_to_howto_rela
252b5132
RH
9456#define elf_info_to_howto_rel mips_info_to_howto_rel
9457#define elf_backend_sym_is_global mips_elf_sym_is_global
103186c6
MM
9458#define elf_backend_object_p _bfd_mips_elf_object_p
9459#define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
252b5132
RH
9460#define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9461#define elf_backend_section_from_bfd_section \
9462 _bfd_mips_elf_section_from_bfd_section
103186c6 9463#define elf_backend_section_processing _bfd_mips_elf_section_processing
252b5132
RH
9464#define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9465#define elf_backend_additional_program_headers \
103186c6
MM
9466 _bfd_mips_elf_additional_program_headers
9467#define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
252b5132
RH
9468#define elf_backend_final_write_processing \
9469 _bfd_mips_elf_final_write_processing
9470#define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
103186c6
MM
9471#define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9472#define elf_backend_create_dynamic_sections \
9473 _bfd_mips_elf_create_dynamic_sections
9474#define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9475#define elf_backend_adjust_dynamic_symbol \
9476 _bfd_mips_elf_adjust_dynamic_symbol
9477#define elf_backend_always_size_sections \
9478 _bfd_mips_elf_always_size_sections
9479#define elf_backend_size_dynamic_sections \
9480 _bfd_mips_elf_size_dynamic_sections
9481#define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9482#define elf_backend_link_output_symbol_hook \
9483 _bfd_mips_elf_link_output_symbol_hook
9484#define elf_backend_finish_dynamic_symbol \
9485 _bfd_mips_elf_finish_dynamic_symbol
9486#define elf_backend_finish_dynamic_sections \
9487 _bfd_mips_elf_finish_dynamic_sections
9488#define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9489#define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9490
9491#define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9492#define elf_backend_plt_header_size 0
252b5132 9493
8a20f077
UC
9494#define elf_backend_copy_indirect_symbol \
9495 _bfd_mips_elf_copy_indirect_symbol
9496
b305ef96 9497#define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
bb0082d6
AM
9498#define elf_backend_grok_prstatus _bfd_elf32_mips_grok_prstatus
9499#define elf_backend_grok_psinfo _bfd_elf32_mips_grok_psinfo
b305ef96 9500
252b5132
RH
9501#define bfd_elf32_bfd_is_local_label_name \
9502 mips_elf_is_local_label_name
9503#define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9504#define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9505#define bfd_elf32_bfd_link_hash_table_create \
103186c6
MM
9506 _bfd_mips_elf_link_hash_table_create
9507#define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
252b5132
RH
9508#define bfd_elf32_bfd_copy_private_bfd_data \
9509 _bfd_mips_elf_copy_private_bfd_data
9510#define bfd_elf32_bfd_merge_private_bfd_data \
9511 _bfd_mips_elf_merge_private_bfd_data
9512#define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9513#define bfd_elf32_bfd_print_private_bfd_data \
9514 _bfd_mips_elf_print_private_bfd_data
252b5132 9515#include "elf32-target.h"
e364195d
UC
9516
9517/* Support for traditional mips targets */
9518
9519#define INCLUDED_TARGET_FILE /* More a type of flag */
9520
9521#undef TARGET_LITTLE_SYM
9522#undef TARGET_LITTLE_NAME
9523#undef TARGET_BIG_SYM
9524#undef TARGET_BIG_NAME
9525
9526#define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
9527#define TARGET_LITTLE_NAME "elf32-tradlittlemips"
9528#define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
9529#define TARGET_BIG_NAME "elf32-tradbigmips"
9530
9531/* Include the target file again for this target */
9532#include "elf32-target.h"
This page took 0.682488 seconds and 4 git commands to generate.