* coffread.c: Replace all occurrences of bfd_read with bfd_bread.
[deliverable/binutils-gdb.git] / bfd / elf32-mips.c
CommitLineData
efcbd82c 1/* MIPS-specific support for 32-bit ELF
7898deda 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
be3ccd9c 3 Free Software Foundation, Inc.
252b5132
RH
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
103186c6
MM
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
f7cb7d68
UC
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
252b5132
RH
11
12This file is part of BFD, the Binary File Descriptor library.
13
14This program is free software; you can redistribute it and/or modify
15it under the terms of the GNU General Public License as published by
16the Free Software Foundation; either version 2 of the License, or
17(at your option) any later version.
18
19This program is distributed in the hope that it will be useful,
20but WITHOUT ANY WARRANTY; without even the implied warranty of
21MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22GNU General Public License for more details.
23
24You should have received a copy of the GNU General Public License
25along with this program; if not, write to the Free Software
26Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28/* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
31
32#include "bfd.h"
33#include "sysdep.h"
34#include "libbfd.h"
35#include "bfdlink.h"
36#include "genlink.h"
37#include "elf-bfd.h"
38#include "elf/mips.h"
39
40/* Get the ECOFF swapping routines. */
41#include "coff/sym.h"
42#include "coff/symconst.h"
43#include "coff/internal.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
23e2c83b 46#define ECOFF_SIGNED_32
252b5132
RH
47#include "ecoffswap.h"
48
7403cb63
MM
49/* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
51
38b1a46c
NC
52struct mips_got_info
53{
7403cb63
MM
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
b3be9b46
RH
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
7403cb63
MM
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
63};
64
65/* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
67
38b1a46c
NC
68struct mips_elf_link_hash_entry
69{
7403cb63
MM
70 struct elf_link_hash_entry root;
71
72 /* External symbol information. */
73 EXTR esym;
74
a3c7651d 75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
be3ccd9c 76 this symbol. */
a3c7651d 77 unsigned int possibly_dynamic_relocs;
7403cb63 78
43917054
L
79 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
80 a readonly section. */
81 boolean readonly_reloc;
82
7403cb63
MM
83 /* The index of the first dynamic relocation (in the .rel.dyn
84 section) against this symbol. */
85 unsigned int min_dyn_reloc_index;
86
9117d219
NC
87 /* We must not create a stub for a symbol that has relocations
88 related to taking the function's address, i.e. any but
89 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
90 p. 4-20. */
91 boolean no_fn_stub;
92
7403cb63
MM
93 /* If there is a stub that 32 bit functions should use to call this
94 16 bit function, this points to the section containing the stub. */
95 asection *fn_stub;
96
97 /* Whether we need the fn_stub; this is set if this symbol appears
98 in any relocs other than a 16 bit call. */
99 boolean need_fn_stub;
100
101 /* If there is a stub that 16 bit functions should use to call this
102 32 bit function, this points to the section containing the stub. */
103 asection *call_stub;
104
105 /* This is like the call_stub field, but it is used if the function
106 being called returns a floating point value. */
107 asection *call_fp_stub;
108};
109
252b5132
RH
110static bfd_reloc_status_type mips32_64bit_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
113 PARAMS ((bfd *, bfd_reloc_code_real_type));
c9b3cbf3
RH
114static reloc_howto_type *mips_rtype_to_howto
115 PARAMS ((unsigned int));
252b5132
RH
116static void mips_info_to_howto_rel
117 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
3f830999
MM
118static void mips_info_to_howto_rela
119 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
252b5132
RH
120static void bfd_mips_elf32_swap_gptab_in
121 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
122static void bfd_mips_elf32_swap_gptab_out
123 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
86033394 124#if 0
be3ccd9c 125static void bfd_mips_elf_swap_msym_in
c6142e5d 126 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
86033394 127#endif
c6142e5d
MM
128static void bfd_mips_elf_swap_msym_out
129 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
252b5132 130static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
252b5132
RH
131static boolean mips_elf_create_procedure_table
132 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
133 struct ecoff_debug_info *));
252b5132 134static INLINE int elf_mips_isa PARAMS ((flagword));
dc810e39 135static INLINE unsigned long elf_mips_mach PARAMS ((flagword));
103186c6 136static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
252b5132
RH
137static boolean mips_elf_is_local_label_name
138 PARAMS ((bfd *, const char *));
139static struct bfd_hash_entry *mips_elf_link_hash_newfunc
140 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
252b5132 141static int gptab_compare PARAMS ((const void *, const void *));
252b5132
RH
142static bfd_reloc_status_type mips16_jump_reloc
143 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
144static bfd_reloc_status_type mips16_gprel_reloc
145 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
252b5132
RH
146static boolean mips_elf_create_compact_rel_section
147 PARAMS ((bfd *, struct bfd_link_info *));
148static boolean mips_elf_create_got_section
149 PARAMS ((bfd *, struct bfd_link_info *));
252b5132
RH
150static bfd_reloc_status_type mips_elf_final_gp
151 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
152static bfd_byte *elf32_mips_get_relocated_section_contents
153 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
154 bfd_byte *, boolean, asymbol **));
be3ccd9c 155static asection *mips_elf_create_msym_section
c6142e5d 156 PARAMS ((bfd *));
be3ccd9c 157static void mips_elf_irix6_finish_dynamic_symbol
7403cb63
MM
158 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
159static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
160static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
161static bfd_vma mips_elf_high PARAMS ((bfd_vma));
162static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
163static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
164static bfd_vma mips_elf_global_got_index
165 PARAMS ((bfd *, struct elf_link_hash_entry *));
166static bfd_vma mips_elf_local_got_index
167 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
168static bfd_vma mips_elf_got_offset_from_index
169 PARAMS ((bfd *, bfd *, bfd_vma));
be3ccd9c 170static boolean mips_elf_record_global_got_symbol
7403cb63
MM
171 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
172 struct mips_got_info *));
173static bfd_vma mips_elf_got_page
174 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
bb2d6cd7 175static const Elf_Internal_Rela *mips_elf_next_relocation
be3ccd9c 176 PARAMS ((unsigned int, const Elf_Internal_Rela *,
bb2d6cd7 177 const Elf_Internal_Rela *));
7403cb63
MM
178static bfd_reloc_status_type mips_elf_calculate_relocation
179 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
103186c6 180 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
197b9ca0
MM
181 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
182 boolean *));
7403cb63 183static bfd_vma mips_elf_obtain_contents
103186c6 184 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
197b9ca0 185static boolean mips_elf_perform_relocation
be3ccd9c 186 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
e53bd91b 187 const Elf_Internal_Rela *, bfd_vma,
197b9ca0 188 bfd *, asection *, bfd_byte *, boolean));
7403cb63 189static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
be3ccd9c 190static boolean mips_elf_sort_hash_table_f
7403cb63 191 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
be3ccd9c 192static boolean mips_elf_sort_hash_table
b3be9b46 193 PARAMS ((struct bfd_link_info *, unsigned long));
7403cb63 194static asection * mips_elf_got_section PARAMS ((bfd *));
be3ccd9c 195static struct mips_got_info *mips_elf_got_info
7403cb63 196 PARAMS ((bfd *, asection **));
6387d602 197static boolean mips_elf_local_relocation_p
b305ef96 198 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
be3ccd9c 199static bfd_vma mips_elf_create_local_got_entry
7403cb63 200 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
be3ccd9c 201static bfd_vma mips_elf_got16_entry
b305ef96 202 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
be3ccd9c 203static boolean mips_elf_create_dynamic_relocation
103186c6 204 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
7b1f1231 205 struct mips_elf_link_hash_entry *, asection *,
9117d219 206 bfd_vma, bfd_vma *, asection *));
be3ccd9c 207static void mips_elf_allocate_dynamic_relocations
103186c6 208 PARAMS ((bfd *, unsigned int));
be3ccd9c 209static boolean mips_elf_stub_section_p
197b9ca0 210 PARAMS ((bfd *, asection *));
adb76a3e
UC
211static int sort_dynamic_relocs
212 PARAMS ((const void *, const void *));
9e80ff3a
L
213static void _bfd_mips_elf_hide_symbol
214 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
215static void _bfd_mips_elf_copy_indirect_symbol
216 PARAMS ((struct elf_link_hash_entry *,
217 struct elf_link_hash_entry *));
218static boolean _bfd_elf32_mips_grok_prstatus
219 PARAMS ((bfd *, Elf_Internal_Note *));
220static boolean _bfd_elf32_mips_grok_psinfo
221 PARAMS ((bfd *, Elf_Internal_Note *));
252b5132 222
f7cb7d68 223extern const bfd_target bfd_elf32_tradbigmips_vec;
fdbafa10 224extern const bfd_target bfd_elf32_tradlittlemips_vec;
b3baf5d0 225#ifdef BFD64
fdbafa10
L
226extern const bfd_target bfd_elf64_tradbigmips_vec;
227extern const bfd_target bfd_elf64_tradlittlemips_vec;
b3baf5d0 228#endif
f7cb7d68 229
a94a7c1c 230/* The level of IRIX compatibility we're striving for. */
252b5132 231
a94a7c1c
MM
232typedef enum {
233 ict_none,
234 ict_irix5,
235 ict_irix6
236} irix_compat_t;
237
adb76a3e
UC
238/* This will be used when we sort the dynamic relocation records. */
239static bfd *reldyn_sorting_bfd;
240
a94a7c1c
MM
241/* Nonzero if ABFD is using the N32 ABI. */
242
243#define ABI_N32_P(abfd) \
244 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
245
fdbafa10 246/* Nonzero if ABFD is using the 64-bit ABI. */
5e38c3b8
MM
247#define ABI_64_P(abfd) \
248 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
249
f7cb7d68 250/* Depending on the target vector we generate some version of Irix
be3ccd9c 251 executables or "normal" MIPS ELF ABI executables. */
b3baf5d0 252#ifdef BFD64
a94a7c1c 253#define IRIX_COMPAT(abfd) \
fdbafa10
L
254 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
255 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
256 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
257 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
f7cb7d68 258 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
b3baf5d0
NC
259#else
260#define IRIX_COMPAT(abfd) \
261 (((abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
262 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
263 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
264#endif
a94a7c1c 265
4e8a9624 266/* Whether we are trying to be compatible with IRIX at all. */
a94a7c1c
MM
267#define SGI_COMPAT(abfd) \
268 (IRIX_COMPAT (abfd) != ict_none)
252b5132 269
c6142e5d
MM
270/* The name of the msym section. */
271#define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
272
303f629d
MM
273/* The name of the srdata section. */
274#define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
275
276/* The name of the options section. */
277#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
278 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
279
280/* The name of the stub section. */
281#define MIPS_ELF_STUB_SECTION_NAME(abfd) \
282 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
283
103186c6
MM
284/* The name of the dynamic relocation section. */
285#define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
286
287/* The size of an external REL relocation. */
288#define MIPS_ELF_REL_SIZE(abfd) \
289 (get_elf_backend_data (abfd)->s->sizeof_rel)
290
291/* The size of an external dynamic table entry. */
292#define MIPS_ELF_DYN_SIZE(abfd) \
293 (get_elf_backend_data (abfd)->s->sizeof_dyn)
294
295/* The size of a GOT entry. */
296#define MIPS_ELF_GOT_SIZE(abfd) \
297 (get_elf_backend_data (abfd)->s->arch_size / 8)
298
299/* The size of a symbol-table entry. */
300#define MIPS_ELF_SYM_SIZE(abfd) \
301 (get_elf_backend_data (abfd)->s->sizeof_sym)
302
303/* The default alignment for sections, as a power of two. */
304#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
305 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
306
307/* Get word-sized data. */
308#define MIPS_ELF_GET_WORD(abfd, ptr) \
309 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
310
311/* Put out word-sized data. */
312#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
313 (ABI_64_P (abfd) \
314 ? bfd_put_64 (abfd, val, ptr) \
315 : bfd_put_32 (abfd, val, ptr))
316
317/* Add a dynamic symbol table-entry. */
9ebbd33e 318#ifdef BFD64
dc810e39
AM
319#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
320 (ABI_64_P (elf_hash_table (info)->dynobj) \
321 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
322 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
9ebbd33e 323#else
dc810e39
AM
324#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
325 (ABI_64_P (elf_hash_table (info)->dynobj) \
326 ? (abort (), false) \
327 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
9ebbd33e 328#endif
103186c6 329
252b5132
RH
330/* The number of local .got entries we reserve. */
331#define MIPS_RESERVED_GOTNO (2)
332
333/* Instructions which appear in a stub. For some reason the stub is
334 slightly different on an SGI system. */
335#define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
103186c6
MM
336#define STUB_LW(abfd) \
337 (SGI_COMPAT (abfd) \
338 ? (ABI_64_P (abfd) \
339 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
340 : 0x8f998010) /* lw t9,0x8010(gp) */ \
f7cb7d68
UC
341 : 0x8f998010) /* lw t9,0x8000(gp) */
342#define STUB_MOVE(abfd) \
343 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
344#define STUB_JALR 0x0320f809 /* jal t9 */
345#define STUB_LI16(abfd) \
346 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
252b5132
RH
347#define MIPS_FUNCTION_STUB_SIZE (16)
348
349#if 0
350/* We no longer try to identify particular sections for the .dynsym
351 section. When we do, we wind up crashing if there are other random
352 sections with relocations. */
353
354/* Names of sections which appear in the .dynsym section in an Irix 5
355 executable. */
356
38b1a46c
NC
357static const char * const mips_elf_dynsym_sec_names[] =
358{
252b5132
RH
359 ".text",
360 ".init",
361 ".fini",
362 ".data",
363 ".rodata",
364 ".sdata",
365 ".sbss",
366 ".bss",
367 NULL
368};
369
370#define SIZEOF_MIPS_DYNSYM_SECNAMES \
371 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
372
373/* The number of entries in mips_elf_dynsym_sec_names which go in the
374 text segment. */
375
376#define MIPS_TEXT_DYNSYM_SECNO (3)
377
378#endif /* 0 */
379
380/* The names of the runtime procedure table symbols used on Irix 5. */
381
38b1a46c
NC
382static const char * const mips_elf_dynsym_rtproc_names[] =
383{
252b5132
RH
384 "_procedure_table",
385 "_procedure_string_table",
386 "_procedure_table_size",
387 NULL
388};
389
390/* These structures are used to generate the .compact_rel section on
391 Irix 5. */
392
38b1a46c
NC
393typedef struct
394{
252b5132
RH
395 unsigned long id1; /* Always one? */
396 unsigned long num; /* Number of compact relocation entries. */
397 unsigned long id2; /* Always two? */
398 unsigned long offset; /* The file offset of the first relocation. */
399 unsigned long reserved0; /* Zero? */
400 unsigned long reserved1; /* Zero? */
401} Elf32_compact_rel;
402
38b1a46c
NC
403typedef struct
404{
252b5132
RH
405 bfd_byte id1[4];
406 bfd_byte num[4];
407 bfd_byte id2[4];
408 bfd_byte offset[4];
409 bfd_byte reserved0[4];
410 bfd_byte reserved1[4];
411} Elf32_External_compact_rel;
412
38b1a46c
NC
413typedef struct
414{
252b5132 415 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
be3ccd9c 416 unsigned int rtype : 4; /* Relocation types. See below. */
252b5132
RH
417 unsigned int dist2to : 8;
418 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
419 unsigned long konst; /* KONST field. See below. */
420 unsigned long vaddr; /* VADDR to be relocated. */
421} Elf32_crinfo;
422
38b1a46c
NC
423typedef struct
424{
252b5132 425 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
be3ccd9c 426 unsigned int rtype : 4; /* Relocation types. See below. */
252b5132
RH
427 unsigned int dist2to : 8;
428 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
429 unsigned long konst; /* KONST field. See below. */
430} Elf32_crinfo2;
431
38b1a46c
NC
432typedef struct
433{
252b5132
RH
434 bfd_byte info[4];
435 bfd_byte konst[4];
436 bfd_byte vaddr[4];
437} Elf32_External_crinfo;
438
38b1a46c
NC
439typedef struct
440{
252b5132
RH
441 bfd_byte info[4];
442 bfd_byte konst[4];
443} Elf32_External_crinfo2;
444
445/* These are the constants used to swap the bitfields in a crinfo. */
446
447#define CRINFO_CTYPE (0x1)
448#define CRINFO_CTYPE_SH (31)
449#define CRINFO_RTYPE (0xf)
450#define CRINFO_RTYPE_SH (27)
451#define CRINFO_DIST2TO (0xff)
452#define CRINFO_DIST2TO_SH (19)
453#define CRINFO_RELVADDR (0x7ffff)
454#define CRINFO_RELVADDR_SH (0)
455
456/* A compact relocation info has long (3 words) or short (2 words)
457 formats. A short format doesn't have VADDR field and relvaddr
458 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
459#define CRF_MIPS_LONG 1
460#define CRF_MIPS_SHORT 0
461
462/* There are 4 types of compact relocation at least. The value KONST
463 has different meaning for each type:
464
465 (type) (konst)
466 CT_MIPS_REL32 Address in data
467 CT_MIPS_WORD Address in word (XXX)
468 CT_MIPS_GPHI_LO GP - vaddr
469 CT_MIPS_JMPAD Address to jump
470 */
471
472#define CRT_MIPS_REL32 0xa
473#define CRT_MIPS_WORD 0xb
474#define CRT_MIPS_GPHI_LO 0xc
475#define CRT_MIPS_JMPAD 0xd
476
477#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
478#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
479#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
480#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
481
482static void bfd_elf32_swap_compact_rel_out
483 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
484static void bfd_elf32_swap_crinfo_out
485 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
486
487#define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
488
3f830999
MM
489/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
490 from smaller values. Start with zero, widen, *then* decrement. */
491#define MINUS_ONE (((bfd_vma)0) - 1)
492
38b1a46c
NC
493static reloc_howto_type elf_mips_howto_table[] =
494{
252b5132
RH
495 /* No relocation. */
496 HOWTO (R_MIPS_NONE, /* type */
497 0, /* rightshift */
498 0, /* size (0 = byte, 1 = short, 2 = long) */
499 0, /* bitsize */
500 false, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_dont, /* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
504 "R_MIPS_NONE", /* name */
505 false, /* partial_inplace */
506 0, /* src_mask */
507 0, /* dst_mask */
508 false), /* pcrel_offset */
509
510 /* 16 bit relocation. */
511 HOWTO (R_MIPS_16, /* type */
512 0, /* rightshift */
513 1, /* size (0 = byte, 1 = short, 2 = long) */
514 16, /* bitsize */
515 false, /* pc_relative */
516 0, /* bitpos */
517 complain_overflow_bitfield, /* complain_on_overflow */
518 bfd_elf_generic_reloc, /* special_function */
519 "R_MIPS_16", /* name */
520 true, /* partial_inplace */
521 0xffff, /* src_mask */
522 0xffff, /* dst_mask */
523 false), /* pcrel_offset */
524
525 /* 32 bit relocation. */
526 HOWTO (R_MIPS_32, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 false, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_bitfield, /* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_MIPS_32", /* name */
535 true, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 false), /* pcrel_offset */
539
540 /* 32 bit symbol relative relocation. */
541 HOWTO (R_MIPS_REL32, /* type */
542 0, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 32, /* bitsize */
545 false, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_bitfield, /* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_MIPS_REL32", /* name */
550 true, /* partial_inplace */
551 0xffffffff, /* src_mask */
552 0xffffffff, /* dst_mask */
553 false), /* pcrel_offset */
554
062e2358 555 /* 26 bit jump address. */
252b5132
RH
556 HOWTO (R_MIPS_26, /* type */
557 2, /* rightshift */
558 2, /* size (0 = byte, 1 = short, 2 = long) */
559 26, /* bitsize */
560 false, /* pc_relative */
561 0, /* bitpos */
562 complain_overflow_dont, /* complain_on_overflow */
563 /* This needs complex overflow
564 detection, because the upper four
9117d219 565 bits must match the PC + 4. */
252b5132
RH
566 bfd_elf_generic_reloc, /* special_function */
567 "R_MIPS_26", /* name */
568 true, /* partial_inplace */
569 0x3ffffff, /* src_mask */
570 0x3ffffff, /* dst_mask */
571 false), /* pcrel_offset */
572
573 /* High 16 bits of symbol value. */
574 HOWTO (R_MIPS_HI16, /* type */
575 0, /* rightshift */
576 2, /* size (0 = byte, 1 = short, 2 = long) */
577 16, /* bitsize */
578 false, /* pc_relative */
579 0, /* bitpos */
580 complain_overflow_dont, /* complain_on_overflow */
581 _bfd_mips_elf_hi16_reloc, /* special_function */
582 "R_MIPS_HI16", /* name */
583 true, /* partial_inplace */
584 0xffff, /* src_mask */
585 0xffff, /* dst_mask */
586 false), /* pcrel_offset */
587
588 /* Low 16 bits of symbol value. */
589 HOWTO (R_MIPS_LO16, /* type */
590 0, /* rightshift */
591 2, /* size (0 = byte, 1 = short, 2 = long) */
592 16, /* bitsize */
593 false, /* pc_relative */
594 0, /* bitpos */
595 complain_overflow_dont, /* complain_on_overflow */
596 _bfd_mips_elf_lo16_reloc, /* special_function */
597 "R_MIPS_LO16", /* name */
598 true, /* partial_inplace */
599 0xffff, /* src_mask */
600 0xffff, /* dst_mask */
601 false), /* pcrel_offset */
602
603 /* GP relative reference. */
604 HOWTO (R_MIPS_GPREL16, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 16, /* bitsize */
608 false, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_signed, /* complain_on_overflow */
611 _bfd_mips_elf_gprel16_reloc, /* special_function */
612 "R_MIPS_GPREL16", /* name */
613 true, /* partial_inplace */
614 0xffff, /* src_mask */
615 0xffff, /* dst_mask */
616 false), /* pcrel_offset */
617
618 /* Reference to literal section. */
619 HOWTO (R_MIPS_LITERAL, /* type */
620 0, /* rightshift */
621 2, /* size (0 = byte, 1 = short, 2 = long) */
622 16, /* bitsize */
623 false, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_signed, /* complain_on_overflow */
626 _bfd_mips_elf_gprel16_reloc, /* special_function */
627 "R_MIPS_LITERAL", /* name */
628 true, /* partial_inplace */
629 0xffff, /* src_mask */
630 0xffff, /* dst_mask */
631 false), /* pcrel_offset */
632
633 /* Reference to global offset table. */
634 HOWTO (R_MIPS_GOT16, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 16, /* bitsize */
638 false, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_signed, /* complain_on_overflow */
641 _bfd_mips_elf_got16_reloc, /* special_function */
642 "R_MIPS_GOT16", /* name */
643 false, /* partial_inplace */
b944b044 644 0xffff, /* src_mask */
252b5132
RH
645 0xffff, /* dst_mask */
646 false), /* pcrel_offset */
647
648 /* 16 bit PC relative reference. */
649 HOWTO (R_MIPS_PC16, /* type */
650 0, /* rightshift */
651 2, /* size (0 = byte, 1 = short, 2 = long) */
652 16, /* bitsize */
653 true, /* pc_relative */
654 0, /* bitpos */
655 complain_overflow_signed, /* complain_on_overflow */
656 bfd_elf_generic_reloc, /* special_function */
657 "R_MIPS_PC16", /* name */
658 true, /* partial_inplace */
659 0xffff, /* src_mask */
660 0xffff, /* dst_mask */
bb2d6cd7 661 true), /* pcrel_offset */
252b5132
RH
662
663 /* 16 bit call through global offset table. */
252b5132
RH
664 HOWTO (R_MIPS_CALL16, /* type */
665 0, /* rightshift */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
667 16, /* bitsize */
668 false, /* pc_relative */
669 0, /* bitpos */
670 complain_overflow_signed, /* complain_on_overflow */
671 bfd_elf_generic_reloc, /* special_function */
672 "R_MIPS_CALL16", /* name */
673 false, /* partial_inplace */
b944b044 674 0xffff, /* src_mask */
252b5132
RH
675 0xffff, /* dst_mask */
676 false), /* pcrel_offset */
677
678 /* 32 bit GP relative reference. */
679 HOWTO (R_MIPS_GPREL32, /* type */
680 0, /* rightshift */
681 2, /* size (0 = byte, 1 = short, 2 = long) */
682 32, /* bitsize */
683 false, /* pc_relative */
684 0, /* bitpos */
685 complain_overflow_bitfield, /* complain_on_overflow */
686 _bfd_mips_elf_gprel32_reloc, /* special_function */
687 "R_MIPS_GPREL32", /* name */
688 true, /* partial_inplace */
689 0xffffffff, /* src_mask */
690 0xffffffff, /* dst_mask */
691 false), /* pcrel_offset */
692
693 /* The remaining relocs are defined on Irix 5, although they are
694 not defined by the ABI. */
5f771d47
ILT
695 EMPTY_HOWTO (13),
696 EMPTY_HOWTO (14),
697 EMPTY_HOWTO (15),
252b5132
RH
698
699 /* A 5 bit shift field. */
700 HOWTO (R_MIPS_SHIFT5, /* type */
701 0, /* rightshift */
702 2, /* size (0 = byte, 1 = short, 2 = long) */
703 5, /* bitsize */
704 false, /* pc_relative */
705 6, /* bitpos */
706 complain_overflow_bitfield, /* complain_on_overflow */
707 bfd_elf_generic_reloc, /* special_function */
708 "R_MIPS_SHIFT5", /* name */
709 true, /* partial_inplace */
710 0x000007c0, /* src_mask */
711 0x000007c0, /* dst_mask */
712 false), /* pcrel_offset */
713
714 /* A 6 bit shift field. */
715 /* FIXME: This is not handled correctly; a special function is
716 needed to put the most significant bit in the right place. */
717 HOWTO (R_MIPS_SHIFT6, /* type */
718 0, /* rightshift */
719 2, /* size (0 = byte, 1 = short, 2 = long) */
720 6, /* bitsize */
721 false, /* pc_relative */
722 6, /* bitpos */
723 complain_overflow_bitfield, /* complain_on_overflow */
724 bfd_elf_generic_reloc, /* special_function */
725 "R_MIPS_SHIFT6", /* name */
726 true, /* partial_inplace */
727 0x000007c4, /* src_mask */
728 0x000007c4, /* dst_mask */
729 false), /* pcrel_offset */
730
a3c7651d 731 /* A 64 bit relocation. */
252b5132
RH
732 HOWTO (R_MIPS_64, /* type */
733 0, /* rightshift */
a3c7651d
MM
734 4, /* size (0 = byte, 1 = short, 2 = long) */
735 64, /* bitsize */
252b5132
RH
736 false, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield, /* complain_on_overflow */
739 mips32_64bit_reloc, /* special_function */
740 "R_MIPS_64", /* name */
741 true, /* partial_inplace */
a3c7651d
MM
742 MINUS_ONE, /* src_mask */
743 MINUS_ONE, /* dst_mask */
252b5132
RH
744 false), /* pcrel_offset */
745
746 /* Displacement in the global offset table. */
252b5132
RH
747 HOWTO (R_MIPS_GOT_DISP, /* type */
748 0, /* rightshift */
749 2, /* size (0 = byte, 1 = short, 2 = long) */
750 16, /* bitsize */
751 false, /* pc_relative */
752 0, /* bitpos */
753 complain_overflow_bitfield, /* complain_on_overflow */
754 bfd_elf_generic_reloc, /* special_function */
755 "R_MIPS_GOT_DISP", /* name */
756 true, /* partial_inplace */
757 0x0000ffff, /* src_mask */
758 0x0000ffff, /* dst_mask */
759 false), /* pcrel_offset */
760
761 /* Displacement to page pointer in the global offset table. */
252b5132
RH
762 HOWTO (R_MIPS_GOT_PAGE, /* type */
763 0, /* rightshift */
764 2, /* size (0 = byte, 1 = short, 2 = long) */
765 16, /* bitsize */
766 false, /* pc_relative */
767 0, /* bitpos */
768 complain_overflow_bitfield, /* complain_on_overflow */
769 bfd_elf_generic_reloc, /* special_function */
770 "R_MIPS_GOT_PAGE", /* name */
771 true, /* partial_inplace */
772 0x0000ffff, /* src_mask */
773 0x0000ffff, /* dst_mask */
774 false), /* pcrel_offset */
775
776 /* Offset from page pointer in the global offset table. */
252b5132
RH
777 HOWTO (R_MIPS_GOT_OFST, /* type */
778 0, /* rightshift */
779 2, /* size (0 = byte, 1 = short, 2 = long) */
780 16, /* bitsize */
781 false, /* pc_relative */
782 0, /* bitpos */
783 complain_overflow_bitfield, /* complain_on_overflow */
784 bfd_elf_generic_reloc, /* special_function */
785 "R_MIPS_GOT_OFST", /* name */
786 true, /* partial_inplace */
787 0x0000ffff, /* src_mask */
788 0x0000ffff, /* dst_mask */
789 false), /* pcrel_offset */
790
791 /* High 16 bits of displacement in global offset table. */
252b5132
RH
792 HOWTO (R_MIPS_GOT_HI16, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 false, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_dont, /* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_MIPS_GOT_HI16", /* name */
801 true, /* partial_inplace */
802 0x0000ffff, /* src_mask */
803 0x0000ffff, /* dst_mask */
804 false), /* pcrel_offset */
805
806 /* Low 16 bits of displacement in global offset table. */
252b5132
RH
807 HOWTO (R_MIPS_GOT_LO16, /* type */
808 0, /* rightshift */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
810 16, /* bitsize */
811 false, /* pc_relative */
812 0, /* bitpos */
813 complain_overflow_dont, /* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_MIPS_GOT_LO16", /* name */
816 true, /* partial_inplace */
817 0x0000ffff, /* src_mask */
818 0x0000ffff, /* dst_mask */
819 false), /* pcrel_offset */
820
3f830999 821 /* 64 bit subtraction. Used in the N32 ABI. */
3f830999
MM
822 HOWTO (R_MIPS_SUB, /* type */
823 0, /* rightshift */
824 4, /* size (0 = byte, 1 = short, 2 = long) */
825 64, /* bitsize */
826 false, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_bitfield, /* complain_on_overflow */
829 bfd_elf_generic_reloc, /* special_function */
830 "R_MIPS_SUB", /* name */
831 true, /* partial_inplace */
832 MINUS_ONE, /* src_mask */
833 MINUS_ONE, /* dst_mask */
834 false), /* pcrel_offset */
252b5132
RH
835
836 /* Used to cause the linker to insert and delete instructions? */
5f771d47
ILT
837 EMPTY_HOWTO (R_MIPS_INSERT_A),
838 EMPTY_HOWTO (R_MIPS_INSERT_B),
839 EMPTY_HOWTO (R_MIPS_DELETE),
252b5132 840
103186c6
MM
841 /* Get the higher value of a 64 bit addend. */
842 HOWTO (R_MIPS_HIGHER, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 16, /* bitsize */
846 false, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont, /* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_MIPS_HIGHER", /* name */
851 true, /* partial_inplace */
852 0, /* src_mask */
853 0xffff, /* dst_mask */
854 false), /* pcrel_offset */
855
856 /* Get the highest value of a 64 bit addend. */
857 HOWTO (R_MIPS_HIGHEST, /* type */
858 0, /* rightshift */
859 2, /* size (0 = byte, 1 = short, 2 = long) */
860 16, /* bitsize */
861 false, /* pc_relative */
862 0, /* bitpos */
863 complain_overflow_dont, /* complain_on_overflow */
864 bfd_elf_generic_reloc, /* special_function */
865 "R_MIPS_HIGHEST", /* name */
866 true, /* partial_inplace */
867 0, /* src_mask */
868 0xffff, /* dst_mask */
869 false), /* pcrel_offset */
252b5132
RH
870
871 /* High 16 bits of displacement in global offset table. */
252b5132
RH
872 HOWTO (R_MIPS_CALL_HI16, /* type */
873 0, /* rightshift */
874 2, /* size (0 = byte, 1 = short, 2 = long) */
875 16, /* bitsize */
876 false, /* pc_relative */
877 0, /* bitpos */
878 complain_overflow_dont, /* complain_on_overflow */
879 bfd_elf_generic_reloc, /* special_function */
880 "R_MIPS_CALL_HI16", /* name */
881 true, /* partial_inplace */
882 0x0000ffff, /* src_mask */
883 0x0000ffff, /* dst_mask */
884 false), /* pcrel_offset */
885
886 /* Low 16 bits of displacement in global offset table. */
252b5132
RH
887 HOWTO (R_MIPS_CALL_LO16, /* type */
888 0, /* rightshift */
889 2, /* size (0 = byte, 1 = short, 2 = long) */
890 16, /* bitsize */
891 false, /* pc_relative */
892 0, /* bitpos */
893 complain_overflow_dont, /* complain_on_overflow */
894 bfd_elf_generic_reloc, /* special_function */
895 "R_MIPS_CALL_LO16", /* name */
896 true, /* partial_inplace */
897 0x0000ffff, /* src_mask */
898 0x0000ffff, /* dst_mask */
899 false), /* pcrel_offset */
900
7403cb63
MM
901 /* Section displacement. */
902 HOWTO (R_MIPS_SCN_DISP, /* type */
903 0, /* rightshift */
904 2, /* size (0 = byte, 1 = short, 2 = long) */
905 32, /* bitsize */
906 false, /* pc_relative */
907 0, /* bitpos */
908 complain_overflow_dont, /* complain_on_overflow */
909 bfd_elf_generic_reloc, /* special_function */
910 "R_MIPS_SCN_DISP", /* name */
911 false, /* partial_inplace */
912 0xffffffff, /* src_mask */
913 0xffffffff, /* dst_mask */
914 false), /* pcrel_offset */
915
5f771d47
ILT
916 EMPTY_HOWTO (R_MIPS_REL16),
917 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
918 EMPTY_HOWTO (R_MIPS_PJUMP),
919 EMPTY_HOWTO (R_MIPS_RELGOT),
d2905643 920
be3ccd9c 921 /* Protected jump conversion. This is an optimization hint. No
d2905643
MM
922 relocation is required for correctness. */
923 HOWTO (R_MIPS_JALR, /* type */
924 0, /* rightshift */
925 0, /* size (0 = byte, 1 = short, 2 = long) */
926 0, /* bitsize */
927 false, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont, /* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_MIPS_JALR", /* name */
932 false, /* partial_inplace */
933 0x00000000, /* src_mask */
934 0x00000000, /* dst_mask */
935 false), /* pcrel_offset */
252b5132
RH
936};
937
938/* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
939 is a hack to make the linker think that we need 64 bit values. */
940static reloc_howto_type elf_mips_ctor64_howto =
941 HOWTO (R_MIPS_64, /* type */
942 0, /* rightshift */
943 4, /* size (0 = byte, 1 = short, 2 = long) */
944 32, /* bitsize */
945 false, /* pc_relative */
946 0, /* bitpos */
947 complain_overflow_signed, /* complain_on_overflow */
948 mips32_64bit_reloc, /* special_function */
949 "R_MIPS_64", /* name */
950 true, /* partial_inplace */
951 0xffffffff, /* src_mask */
952 0xffffffff, /* dst_mask */
953 false); /* pcrel_offset */
954
955/* The reloc used for the mips16 jump instruction. */
956static reloc_howto_type elf_mips16_jump_howto =
957 HOWTO (R_MIPS16_26, /* type */
958 2, /* rightshift */
959 2, /* size (0 = byte, 1 = short, 2 = long) */
960 26, /* bitsize */
961 false, /* pc_relative */
962 0, /* bitpos */
963 complain_overflow_dont, /* complain_on_overflow */
964 /* This needs complex overflow
965 detection, because the upper four
966 bits must match the PC. */
967 mips16_jump_reloc, /* special_function */
968 "R_MIPS16_26", /* name */
969 true, /* partial_inplace */
970 0x3ffffff, /* src_mask */
971 0x3ffffff, /* dst_mask */
972 false); /* pcrel_offset */
973
b7233c24 974/* The reloc used for the mips16 gprel instruction. */
252b5132
RH
975static reloc_howto_type elf_mips16_gprel_howto =
976 HOWTO (R_MIPS16_GPREL, /* type */
977 0, /* rightshift */
978 2, /* size (0 = byte, 1 = short, 2 = long) */
979 16, /* bitsize */
980 false, /* pc_relative */
981 0, /* bitpos */
982 complain_overflow_signed, /* complain_on_overflow */
983 mips16_gprel_reloc, /* special_function */
984 "R_MIPS16_GPREL", /* name */
985 true, /* partial_inplace */
b7233c24
MM
986 0x07ff001f, /* src_mask */
987 0x07ff001f, /* dst_mask */
252b5132
RH
988 false); /* pcrel_offset */
989
bb2d6cd7
GK
990/* GNU extensions for embedded-pic. */
991/* High 16 bits of symbol value, pc-relative. */
992static reloc_howto_type elf_mips_gnu_rel_hi16 =
993 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 16, /* bitsize */
997 true, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 _bfd_mips_elf_hi16_reloc, /* special_function */
1001 "R_MIPS_GNU_REL_HI16", /* name */
1002 true, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 true); /* pcrel_offset */
1006
1007/* Low 16 bits of symbol value, pc-relative. */
1008static reloc_howto_type elf_mips_gnu_rel_lo16 =
1009 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
1010 0, /* rightshift */
1011 2, /* size (0 = byte, 1 = short, 2 = long) */
1012 16, /* bitsize */
1013 true, /* pc_relative */
1014 0, /* bitpos */
1015 complain_overflow_dont, /* complain_on_overflow */
1016 _bfd_mips_elf_lo16_reloc, /* special_function */
1017 "R_MIPS_GNU_REL_LO16", /* name */
1018 true, /* partial_inplace */
1019 0xffff, /* src_mask */
1020 0xffff, /* dst_mask */
1021 true); /* pcrel_offset */
1022
1023/* 16 bit offset for pc-relative branches. */
1024static reloc_howto_type elf_mips_gnu_rel16_s2 =
1025 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
1026 2, /* rightshift */
1027 2, /* size (0 = byte, 1 = short, 2 = long) */
1028 16, /* bitsize */
1029 true, /* pc_relative */
1030 0, /* bitpos */
1031 complain_overflow_signed, /* complain_on_overflow */
1032 bfd_elf_generic_reloc, /* special_function */
1033 "R_MIPS_GNU_REL16_S2", /* name */
1034 true, /* partial_inplace */
1035 0xffff, /* src_mask */
1036 0xffff, /* dst_mask */
1037 true); /* pcrel_offset */
1038
1039/* 64 bit pc-relative. */
1040static reloc_howto_type elf_mips_gnu_pcrel64 =
1041 HOWTO (R_MIPS_PC64, /* type */
1042 0, /* rightshift */
1043 4, /* size (0 = byte, 1 = short, 2 = long) */
1044 64, /* bitsize */
1045 true, /* pc_relative */
1046 0, /* bitpos */
1047 complain_overflow_signed, /* complain_on_overflow */
1048 bfd_elf_generic_reloc, /* special_function */
1049 "R_MIPS_PC64", /* name */
1050 true, /* partial_inplace */
1051 MINUS_ONE, /* src_mask */
1052 MINUS_ONE, /* dst_mask */
1053 true); /* pcrel_offset */
1054
1055/* 32 bit pc-relative. */
1056static reloc_howto_type elf_mips_gnu_pcrel32 =
1057 HOWTO (R_MIPS_PC32, /* type */
1058 0, /* rightshift */
1059 2, /* size (0 = byte, 1 = short, 2 = long) */
1060 32, /* bitsize */
1061 true, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_signed, /* complain_on_overflow */
1064 bfd_elf_generic_reloc, /* special_function */
1065 "R_MIPS_PC32", /* name */
1066 true, /* partial_inplace */
1067 0xffffffff, /* src_mask */
1068 0xffffffff, /* dst_mask */
1069 true); /* pcrel_offset */
1070
252b5132
RH
1071/* GNU extension to record C++ vtable hierarchy */
1072static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1073 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 0, /* bitsize */
1077 false, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 NULL, /* special_function */
1081 "R_MIPS_GNU_VTINHERIT", /* name */
1082 false, /* partial_inplace */
1083 0, /* src_mask */
1084 0, /* dst_mask */
1085 false); /* pcrel_offset */
1086
1087/* GNU extension to record C++ vtable member usage */
1088static reloc_howto_type elf_mips_gnu_vtentry_howto =
1089 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1090 0, /* rightshift */
1091 2, /* size (0 = byte, 1 = short, 2 = long) */
1092 0, /* bitsize */
1093 false, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_dont, /* complain_on_overflow */
1096 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1097 "R_MIPS_GNU_VTENTRY", /* name */
1098 false, /* partial_inplace */
1099 0, /* src_mask */
1100 0, /* dst_mask */
1101 false); /* pcrel_offset */
1102
1103/* Do a R_MIPS_HI16 relocation. This has to be done in combination
1104 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1105 the HI16. Here we just save the information we need; we do the
1106 actual relocation when we see the LO16. MIPS ELF requires that the
1107 LO16 immediately follow the HI16. As a GNU extension, we permit an
1108 arbitrary number of HI16 relocs to be associated with a single LO16
1109 reloc. This extension permits gcc to output the HI and LO relocs
1110 itself. */
1111
38b1a46c
NC
1112struct mips_hi16
1113{
252b5132
RH
1114 struct mips_hi16 *next;
1115 bfd_byte *addr;
1116 bfd_vma addend;
1117};
1118
1119/* FIXME: This should not be a static variable. */
1120
1121static struct mips_hi16 *mips_hi16_list;
1122
1123bfd_reloc_status_type
1124_bfd_mips_elf_hi16_reloc (abfd,
1125 reloc_entry,
1126 symbol,
1127 data,
1128 input_section,
1129 output_bfd,
1130 error_message)
5f771d47 1131 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1132 arelent *reloc_entry;
1133 asymbol *symbol;
1134 PTR data;
1135 asection *input_section;
1136 bfd *output_bfd;
1137 char **error_message;
1138{
1139 bfd_reloc_status_type ret;
1140 bfd_vma relocation;
1141 struct mips_hi16 *n;
1142
1143 /* If we're relocating, and this an external symbol, we don't want
1144 to change anything. */
1145 if (output_bfd != (bfd *) NULL
1146 && (symbol->flags & BSF_SECTION_SYM) == 0
1147 && reloc_entry->addend == 0)
1148 {
1149 reloc_entry->address += input_section->output_offset;
1150 return bfd_reloc_ok;
1151 }
1152
1153 ret = bfd_reloc_ok;
1154
1155 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1156 {
1157 boolean relocateable;
1158 bfd_vma gp;
1159
1160 if (ret == bfd_reloc_undefined)
1161 abort ();
1162
1163 if (output_bfd != NULL)
1164 relocateable = true;
1165 else
1166 {
1167 relocateable = false;
1168 output_bfd = symbol->section->output_section->owner;
1169 }
1170
1171 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1172 error_message, &gp);
1173 if (ret != bfd_reloc_ok)
1174 return ret;
1175
1176 relocation = gp - reloc_entry->address;
1177 }
1178 else
1179 {
1180 if (bfd_is_und_section (symbol->section)
1181 && output_bfd == (bfd *) NULL)
1182 ret = bfd_reloc_undefined;
1183
1184 if (bfd_is_com_section (symbol->section))
1185 relocation = 0;
1186 else
1187 relocation = symbol->value;
1188 }
1189
1190 relocation += symbol->section->output_section->vma;
1191 relocation += symbol->section->output_offset;
1192 relocation += reloc_entry->addend;
1193
1194 if (reloc_entry->address > input_section->_cooked_size)
1195 return bfd_reloc_outofrange;
1196
1197 /* Save the information, and let LO16 do the actual relocation. */
dc810e39 1198 n = (struct mips_hi16 *) bfd_malloc ((bfd_size_type) sizeof *n);
252b5132
RH
1199 if (n == NULL)
1200 return bfd_reloc_outofrange;
1201 n->addr = (bfd_byte *) data + reloc_entry->address;
1202 n->addend = relocation;
1203 n->next = mips_hi16_list;
1204 mips_hi16_list = n;
1205
1206 if (output_bfd != (bfd *) NULL)
1207 reloc_entry->address += input_section->output_offset;
1208
1209 return ret;
1210}
1211
1212/* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1213 inplace relocation; this function exists in order to do the
1214 R_MIPS_HI16 relocation described above. */
1215
1216bfd_reloc_status_type
1217_bfd_mips_elf_lo16_reloc (abfd,
1218 reloc_entry,
1219 symbol,
1220 data,
1221 input_section,
1222 output_bfd,
1223 error_message)
1224 bfd *abfd;
1225 arelent *reloc_entry;
1226 asymbol *symbol;
1227 PTR data;
1228 asection *input_section;
1229 bfd *output_bfd;
1230 char **error_message;
1231{
1232 arelent gp_disp_relent;
1233
1234 if (mips_hi16_list != NULL)
1235 {
1236 struct mips_hi16 *l;
1237
1238 l = mips_hi16_list;
1239 while (l != NULL)
1240 {
1241 unsigned long insn;
1242 unsigned long val;
1243 unsigned long vallo;
1244 struct mips_hi16 *next;
1245
1246 /* Do the HI16 relocation. Note that we actually don't need
1247 to know anything about the LO16 itself, except where to
1248 find the low 16 bits of the addend needed by the LO16. */
1249 insn = bfd_get_32 (abfd, l->addr);
1250 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1251 & 0xffff);
1252 val = ((insn & 0xffff) << 16) + vallo;
1253 val += l->addend;
1254
1255 /* The low order 16 bits are always treated as a signed
1256 value. Therefore, a negative value in the low order bits
1257 requires an adjustment in the high order bits. We need
1258 to make this adjustment in two ways: once for the bits we
1259 took from the data, and once for the bits we are putting
1260 back in to the data. */
1261 if ((vallo & 0x8000) != 0)
1262 val -= 0x10000;
1263 if ((val & 0x8000) != 0)
1264 val += 0x10000;
1265
dc810e39
AM
1266 insn = (insn &~ (bfd_vma) 0xffff) | ((val >> 16) & 0xffff);
1267 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
252b5132
RH
1268
1269 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1270 {
1271 gp_disp_relent = *reloc_entry;
1272 reloc_entry = &gp_disp_relent;
1273 reloc_entry->addend = l->addend;
1274 }
1275
1276 next = l->next;
1277 free (l);
1278 l = next;
1279 }
1280
1281 mips_hi16_list = NULL;
1282 }
1283 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1284 {
1285 bfd_reloc_status_type ret;
1286 bfd_vma gp, relocation;
1287
1288 /* FIXME: Does this case ever occur? */
1289
1290 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1291 if (ret != bfd_reloc_ok)
1292 return ret;
1293
1294 relocation = gp - reloc_entry->address;
1295 relocation += symbol->section->output_section->vma;
1296 relocation += symbol->section->output_offset;
1297 relocation += reloc_entry->addend;
1298
1299 if (reloc_entry->address > input_section->_cooked_size)
1300 return bfd_reloc_outofrange;
1301
1302 gp_disp_relent = *reloc_entry;
1303 reloc_entry = &gp_disp_relent;
1304 reloc_entry->addend = relocation - 4;
1305 }
1306
1307 /* Now do the LO16 reloc in the usual way. */
1308 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1309 input_section, output_bfd, error_message);
1310}
1311
1312/* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1313 table used for PIC code. If the symbol is an external symbol, the
1314 instruction is modified to contain the offset of the appropriate
1315 entry in the global offset table. If the symbol is a section
1316 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1317 addends are combined to form the real addend against the section
1318 symbol; the GOT16 is modified to contain the offset of an entry in
1319 the global offset table, and the LO16 is modified to offset it
1320 appropriately. Thus an offset larger than 16 bits requires a
1321 modified value in the global offset table.
1322
1323 This implementation suffices for the assembler, but the linker does
1324 not yet know how to create global offset tables. */
1325
1326bfd_reloc_status_type
1327_bfd_mips_elf_got16_reloc (abfd,
1328 reloc_entry,
1329 symbol,
1330 data,
1331 input_section,
1332 output_bfd,
1333 error_message)
1334 bfd *abfd;
1335 arelent *reloc_entry;
1336 asymbol *symbol;
1337 PTR data;
1338 asection *input_section;
1339 bfd *output_bfd;
1340 char **error_message;
1341{
1342 /* If we're relocating, and this an external symbol, we don't want
1343 to change anything. */
1344 if (output_bfd != (bfd *) NULL
1345 && (symbol->flags & BSF_SECTION_SYM) == 0
1346 && reloc_entry->addend == 0)
1347 {
1348 reloc_entry->address += input_section->output_offset;
1349 return bfd_reloc_ok;
1350 }
1351
1352 /* If we're relocating, and this is a local symbol, we can handle it
1353 just like HI16. */
1354 if (output_bfd != (bfd *) NULL
1355 && (symbol->flags & BSF_SECTION_SYM) != 0)
1356 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1357 input_section, output_bfd, error_message);
1358
1359 abort ();
1360}
1361
7403cb63
MM
1362/* Set the GP value for OUTPUT_BFD. Returns false if this is a
1363 dangerous relocation. */
1364
1365static boolean
1366mips_elf_assign_gp (output_bfd, pgp)
1367 bfd *output_bfd;
1368 bfd_vma *pgp;
1369{
1370 unsigned int count;
1371 asymbol **sym;
1372 unsigned int i;
1373
1374 /* If we've already figured out what GP will be, just return it. */
1375 *pgp = _bfd_get_gp_value (output_bfd);
1376 if (*pgp)
1377 return true;
1378
1379 count = bfd_get_symcount (output_bfd);
1380 sym = bfd_get_outsymbols (output_bfd);
1381
1382 /* The linker script will have created a symbol named `_gp' with the
1383 appropriate value. */
1384 if (sym == (asymbol **) NULL)
1385 i = count;
1386 else
1387 {
1388 for (i = 0; i < count; i++, sym++)
1389 {
dc810e39 1390 register const char *name;
7403cb63
MM
1391
1392 name = bfd_asymbol_name (*sym);
1393 if (*name == '_' && strcmp (name, "_gp") == 0)
1394 {
1395 *pgp = bfd_asymbol_value (*sym);
1396 _bfd_set_gp_value (output_bfd, *pgp);
1397 break;
1398 }
1399 }
1400 }
1401
1402 if (i >= count)
1403 {
1404 /* Only get the error once. */
1405 *pgp = 4;
1406 _bfd_set_gp_value (output_bfd, *pgp);
1407 return false;
1408 }
1409
1410 return true;
1411}
1412
252b5132
RH
1413/* We have to figure out the gp value, so that we can adjust the
1414 symbol value correctly. We look up the symbol _gp in the output
1415 BFD. If we can't find it, we're stuck. We cache it in the ELF
1416 target data. We don't need to adjust the symbol value for an
1417 external symbol if we are producing relocateable output. */
1418
1419static bfd_reloc_status_type
1420mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1421 bfd *output_bfd;
1422 asymbol *symbol;
1423 boolean relocateable;
1424 char **error_message;
1425 bfd_vma *pgp;
1426{
1427 if (bfd_is_und_section (symbol->section)
1428 && ! relocateable)
1429 {
1430 *pgp = 0;
1431 return bfd_reloc_undefined;
1432 }
1433
1434 *pgp = _bfd_get_gp_value (output_bfd);
1435 if (*pgp == 0
1436 && (! relocateable
1437 || (symbol->flags & BSF_SECTION_SYM) != 0))
1438 {
1439 if (relocateable)
1440 {
1441 /* Make up a value. */
1442 *pgp = symbol->section->output_section->vma + 0x4000;
1443 _bfd_set_gp_value (output_bfd, *pgp);
1444 }
7403cb63 1445 else if (!mips_elf_assign_gp (output_bfd, pgp))
252b5132 1446 {
7403cb63
MM
1447 *error_message =
1448 (char *) _("GP relative relocation when _gp not defined");
1449 return bfd_reloc_dangerous;
252b5132
RH
1450 }
1451 }
1452
1453 return bfd_reloc_ok;
1454}
1455
1456/* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1457 become the offset from the gp register. This function also handles
1458 R_MIPS_LITERAL relocations, although those can be handled more
1459 cleverly because the entries in the .lit8 and .lit4 sections can be
1460 merged. */
1461
1462static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1463 arelent *, asection *,
1464 boolean, PTR, bfd_vma));
1465
1466bfd_reloc_status_type
1467_bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1468 output_bfd, error_message)
1469 bfd *abfd;
1470 arelent *reloc_entry;
1471 asymbol *symbol;
1472 PTR data;
1473 asection *input_section;
1474 bfd *output_bfd;
1475 char **error_message;
1476{
1477 boolean relocateable;
1478 bfd_reloc_status_type ret;
1479 bfd_vma gp;
1480
1481 /* If we're relocating, and this is an external symbol with no
1482 addend, we don't want to change anything. We will only have an
1483 addend if this is a newly created reloc, not read from an ELF
1484 file. */
1485 if (output_bfd != (bfd *) NULL
1486 && (symbol->flags & BSF_SECTION_SYM) == 0
1487 && reloc_entry->addend == 0)
1488 {
1489 reloc_entry->address += input_section->output_offset;
1490 return bfd_reloc_ok;
1491 }
1492
1493 if (output_bfd != (bfd *) NULL)
1494 relocateable = true;
1495 else
1496 {
1497 relocateable = false;
1498 output_bfd = symbol->section->output_section->owner;
1499 }
1500
1501 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1502 &gp);
1503 if (ret != bfd_reloc_ok)
1504 return ret;
1505
1506 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1507 relocateable, data, gp);
1508}
1509
1510static bfd_reloc_status_type
1511gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1512 gp)
1513 bfd *abfd;
1514 asymbol *symbol;
1515 arelent *reloc_entry;
1516 asection *input_section;
1517 boolean relocateable;
1518 PTR data;
1519 bfd_vma gp;
1520{
1521 bfd_vma relocation;
1522 unsigned long insn;
1523 unsigned long val;
1524
1525 if (bfd_is_com_section (symbol->section))
1526 relocation = 0;
1527 else
1528 relocation = symbol->value;
1529
1530 relocation += symbol->section->output_section->vma;
1531 relocation += symbol->section->output_offset;
1532
1533 if (reloc_entry->address > input_section->_cooked_size)
1534 return bfd_reloc_outofrange;
1535
1536 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1537
1538 /* Set val to the offset into the section or symbol. */
1539 if (reloc_entry->howto->src_mask == 0)
1540 {
1541 /* This case occurs with the 64-bit MIPS ELF ABI. */
1542 val = reloc_entry->addend;
1543 }
1544 else
1545 {
1546 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1547 if (val & 0x8000)
1548 val -= 0x10000;
1549 }
1550
1551 /* Adjust val for the final section location and GP value. If we
1552 are producing relocateable output, we don't want to do this for
1553 an external symbol. */
1554 if (! relocateable
1555 || (symbol->flags & BSF_SECTION_SYM) != 0)
1556 val += relocation - gp;
1557
dc810e39
AM
1558 insn = (insn &~ (bfd_vma) 0xffff) | (val & 0xffff);
1559 bfd_put_32 (abfd, (bfd_vma) insn, (bfd_byte *) data + reloc_entry->address);
252b5132
RH
1560
1561 if (relocateable)
1562 reloc_entry->address += input_section->output_offset;
1563
1564 /* Make sure it fit in 16 bits. */
43cbcf28 1565 if ((long) val >= 0x8000 || (long) val < -0x8000)
252b5132
RH
1566 return bfd_reloc_overflow;
1567
1568 return bfd_reloc_ok;
1569}
1570
1571/* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1572 from the gp register? XXX */
1573
1574static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1575 arelent *, asection *,
1576 boolean, PTR, bfd_vma));
1577
1578bfd_reloc_status_type
1579_bfd_mips_elf_gprel32_reloc (abfd,
1580 reloc_entry,
1581 symbol,
1582 data,
1583 input_section,
1584 output_bfd,
1585 error_message)
1586 bfd *abfd;
1587 arelent *reloc_entry;
1588 asymbol *symbol;
1589 PTR data;
1590 asection *input_section;
1591 bfd *output_bfd;
1592 char **error_message;
1593{
1594 boolean relocateable;
1595 bfd_reloc_status_type ret;
1596 bfd_vma gp;
1597
1598 /* If we're relocating, and this is an external symbol with no
1599 addend, we don't want to change anything. We will only have an
1600 addend if this is a newly created reloc, not read from an ELF
1601 file. */
1602 if (output_bfd != (bfd *) NULL
1603 && (symbol->flags & BSF_SECTION_SYM) == 0
1604 && reloc_entry->addend == 0)
1605 {
1606 *error_message = (char *)
1607 _("32bits gp relative relocation occurs for an external symbol");
1608 return bfd_reloc_outofrange;
1609 }
1610
1611 if (output_bfd != (bfd *) NULL)
1612 {
1613 relocateable = true;
1614 gp = _bfd_get_gp_value (output_bfd);
1615 }
1616 else
1617 {
1618 relocateable = false;
1619 output_bfd = symbol->section->output_section->owner;
1620
1621 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1622 error_message, &gp);
1623 if (ret != bfd_reloc_ok)
1624 return ret;
1625 }
1626
1627 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1628 relocateable, data, gp);
1629}
1630
1631static bfd_reloc_status_type
1632gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1633 gp)
1634 bfd *abfd;
1635 asymbol *symbol;
1636 arelent *reloc_entry;
1637 asection *input_section;
1638 boolean relocateable;
1639 PTR data;
1640 bfd_vma gp;
1641{
1642 bfd_vma relocation;
1643 unsigned long val;
1644
1645 if (bfd_is_com_section (symbol->section))
1646 relocation = 0;
1647 else
1648 relocation = symbol->value;
1649
1650 relocation += symbol->section->output_section->vma;
1651 relocation += symbol->section->output_offset;
1652
1653 if (reloc_entry->address > input_section->_cooked_size)
1654 return bfd_reloc_outofrange;
1655
1656 if (reloc_entry->howto->src_mask == 0)
1657 {
1658 /* This case arises with the 64-bit MIPS ELF ABI. */
1659 val = 0;
1660 }
1661 else
1662 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1663
1664 /* Set val to the offset into the section or symbol. */
1665 val += reloc_entry->addend;
1666
1667 /* Adjust val for the final section location and GP value. If we
1668 are producing relocateable output, we don't want to do this for
1669 an external symbol. */
1670 if (! relocateable
1671 || (symbol->flags & BSF_SECTION_SYM) != 0)
1672 val += relocation - gp;
1673
dc810e39 1674 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + reloc_entry->address);
252b5132
RH
1675
1676 if (relocateable)
1677 reloc_entry->address += input_section->output_offset;
1678
1679 return bfd_reloc_ok;
1680}
1681
1682/* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
062e2358 1683 generated when addresses are 64 bits. The upper 32 bits are a simple
252b5132
RH
1684 sign extension. */
1685
1686static bfd_reloc_status_type
1687mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1688 output_bfd, error_message)
1689 bfd *abfd;
1690 arelent *reloc_entry;
1691 asymbol *symbol;
1692 PTR data;
1693 asection *input_section;
1694 bfd *output_bfd;
1695 char **error_message;
1696{
1697 bfd_reloc_status_type r;
1698 arelent reloc32;
1699 unsigned long val;
1700 bfd_size_type addr;
1701
1702 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1703 input_section, output_bfd, error_message);
1704 if (r != bfd_reloc_continue)
1705 return r;
1706
1707 /* Do a normal 32 bit relocation on the lower 32 bits. */
1708 reloc32 = *reloc_entry;
1709 if (bfd_big_endian (abfd))
1710 reloc32.address += 4;
1711 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1712 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1713 output_bfd, error_message);
1714
1715 /* Sign extend into the upper 32 bits. */
1716 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1717 if ((val & 0x80000000) != 0)
1718 val = 0xffffffff;
1719 else
1720 val = 0;
1721 addr = reloc_entry->address;
1722 if (bfd_little_endian (abfd))
1723 addr += 4;
dc810e39 1724 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + addr);
252b5132
RH
1725
1726 return r;
1727}
1728
1729/* Handle a mips16 jump. */
1730
1731static bfd_reloc_status_type
1732mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1733 output_bfd, error_message)
5f771d47 1734 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
1735 arelent *reloc_entry;
1736 asymbol *symbol;
5f771d47 1737 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
1738 asection *input_section;
1739 bfd *output_bfd;
5f771d47 1740 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
1741{
1742 if (output_bfd != (bfd *) NULL
1743 && (symbol->flags & BSF_SECTION_SYM) == 0
1744 && reloc_entry->addend == 0)
1745 {
1746 reloc_entry->address += input_section->output_offset;
1747 return bfd_reloc_ok;
1748 }
1749
1750 /* FIXME. */
1751 {
1752 static boolean warned;
1753
1754 if (! warned)
1755 (*_bfd_error_handler)
1756 (_("Linking mips16 objects into %s format is not supported"),
1757 bfd_get_target (input_section->output_section->owner));
1758 warned = true;
1759 }
1760
1761 return bfd_reloc_undefined;
1762}
1763
1764/* Handle a mips16 GP relative reloc. */
1765
1766static bfd_reloc_status_type
1767mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1768 output_bfd, error_message)
1769 bfd *abfd;
1770 arelent *reloc_entry;
1771 asymbol *symbol;
1772 PTR data;
1773 asection *input_section;
1774 bfd *output_bfd;
1775 char **error_message;
1776{
1777 boolean relocateable;
1778 bfd_reloc_status_type ret;
1779 bfd_vma gp;
1780 unsigned short extend, insn;
1781 unsigned long final;
1782
1783 /* If we're relocating, and this is an external symbol with no
1784 addend, we don't want to change anything. We will only have an
1785 addend if this is a newly created reloc, not read from an ELF
1786 file. */
1787 if (output_bfd != NULL
1788 && (symbol->flags & BSF_SECTION_SYM) == 0
1789 && reloc_entry->addend == 0)
1790 {
1791 reloc_entry->address += input_section->output_offset;
1792 return bfd_reloc_ok;
1793 }
1794
1795 if (output_bfd != NULL)
1796 relocateable = true;
1797 else
1798 {
1799 relocateable = false;
1800 output_bfd = symbol->section->output_section->owner;
1801 }
1802
1803 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1804 &gp);
1805 if (ret != bfd_reloc_ok)
1806 return ret;
1807
1808 if (reloc_entry->address > input_section->_cooked_size)
1809 return bfd_reloc_outofrange;
1810
1811 /* Pick up the mips16 extend instruction and the real instruction. */
1812 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1813 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1814
1815 /* Stuff the current addend back as a 32 bit value, do the usual
1816 relocation, and then clean up. */
1817 bfd_put_32 (abfd,
dc810e39
AM
1818 (bfd_vma) (((extend & 0x1f) << 11)
1819 | (extend & 0x7e0)
1820 | (insn & 0x1f)),
252b5132
RH
1821 (bfd_byte *) data + reloc_entry->address);
1822
1823 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1824 relocateable, data, gp);
1825
1826 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1827 bfd_put_16 (abfd,
dc810e39
AM
1828 (bfd_vma) ((extend & 0xf800)
1829 | ((final >> 11) & 0x1f)
1830 | (final & 0x7e0)),
252b5132
RH
1831 (bfd_byte *) data + reloc_entry->address);
1832 bfd_put_16 (abfd,
dc810e39
AM
1833 (bfd_vma) ((insn & 0xffe0)
1834 | (final & 0x1f)),
252b5132
RH
1835 (bfd_byte *) data + reloc_entry->address + 2);
1836
1837 return ret;
1838}
1839
1840/* Return the ISA for a MIPS e_flags value. */
1841
1842static INLINE int
1843elf_mips_isa (flags)
1844 flagword flags;
1845{
1846 switch (flags & EF_MIPS_ARCH)
1847 {
1848 case E_MIPS_ARCH_1:
1849 return 1;
1850 case E_MIPS_ARCH_2:
1851 return 2;
1852 case E_MIPS_ARCH_3:
1853 return 3;
1854 case E_MIPS_ARCH_4:
1855 return 4;
84ea6cf2
NC
1856 case E_MIPS_ARCH_5:
1857 return 5;
e7af610e
NC
1858 case E_MIPS_ARCH_32:
1859 return 32;
84ea6cf2
NC
1860 case E_MIPS_ARCH_64:
1861 return 64;
252b5132
RH
1862 }
1863 return 4;
1864}
1865
1866/* Return the MACH for a MIPS e_flags value. */
1867
dc810e39 1868static INLINE unsigned long
252b5132
RH
1869elf_mips_mach (flags)
1870 flagword flags;
1871{
1872 switch (flags & EF_MIPS_MACH)
1873 {
1874 case E_MIPS_MACH_3900:
1875 return bfd_mach_mips3900;
1876
1877 case E_MIPS_MACH_4010:
1878 return bfd_mach_mips4010;
1879
1880 case E_MIPS_MACH_4100:
1881 return bfd_mach_mips4100;
1882
1883 case E_MIPS_MACH_4111:
1884 return bfd_mach_mips4111;
1885
1886 case E_MIPS_MACH_4650:
1887 return bfd_mach_mips4650;
1888
c6c98b38
NC
1889 case E_MIPS_MACH_SB1:
1890 return bfd_mach_mips_sb1;
1891
252b5132
RH
1892 default:
1893 switch (flags & EF_MIPS_ARCH)
1894 {
1895 default:
1896 case E_MIPS_ARCH_1:
1897 return bfd_mach_mips3000;
1898 break;
1899
1900 case E_MIPS_ARCH_2:
1901 return bfd_mach_mips6000;
1902 break;
1903
1904 case E_MIPS_ARCH_3:
1905 return bfd_mach_mips4000;
1906 break;
1907
1908 case E_MIPS_ARCH_4:
1909 return bfd_mach_mips8000;
1910 break;
e7af610e 1911
84ea6cf2
NC
1912 case E_MIPS_ARCH_5:
1913 return bfd_mach_mips5;
1914 break;
1915
e7af610e 1916 case E_MIPS_ARCH_32:
a1cd6a8f 1917 return bfd_mach_mipsisa32;
e7af610e 1918 break;
84ea6cf2
NC
1919
1920 case E_MIPS_ARCH_64:
a1cd6a8f 1921 return bfd_mach_mipsisa64;
84ea6cf2 1922 break;
252b5132
RH
1923 }
1924 }
1925
1926 return 0;
1927}
1928
be3ccd9c 1929/* Return printable name for ABI. */
252b5132 1930
be3ccd9c 1931static INLINE char *
103186c6
MM
1932elf_mips_abi_name (abfd)
1933 bfd *abfd;
252b5132 1934{
103186c6
MM
1935 flagword flags;
1936
103186c6 1937 flags = elf_elfheader (abfd)->e_flags;
252b5132
RH
1938 switch (flags & EF_MIPS_ABI)
1939 {
1940 case 0:
aee61b13
TS
1941 if (ABI_N32_P (abfd))
1942 return "N32";
1943 else if (ABI_64_P (abfd))
1944 return "64";
1945 else
1946 return "none";
252b5132
RH
1947 case E_MIPS_ABI_O32:
1948 return "O32";
1949 case E_MIPS_ABI_O64:
1950 return "O64";
1951 case E_MIPS_ABI_EABI32:
1952 return "EABI32";
1953 case E_MIPS_ABI_EABI64:
1954 return "EABI64";
1955 default:
1956 return "unknown abi";
1957 }
1958}
1959
1960/* A mapping from BFD reloc types to MIPS ELF reloc types. */
1961
1962struct elf_reloc_map {
1963 bfd_reloc_code_real_type bfd_reloc_val;
1964 enum elf_mips_reloc_type elf_reloc_val;
1965};
1966
dc810e39 1967static const struct elf_reloc_map mips_reloc_map[] =
38b1a46c 1968{
252b5132
RH
1969 { BFD_RELOC_NONE, R_MIPS_NONE, },
1970 { BFD_RELOC_16, R_MIPS_16 },
1971 { BFD_RELOC_32, R_MIPS_32 },
1972 { BFD_RELOC_64, R_MIPS_64 },
1973 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1974 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1975 { BFD_RELOC_LO16, R_MIPS_LO16 },
1976 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1977 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1978 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1979 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1980 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1981 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1982 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1983 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1984 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
3f830999
MM
1985 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1986 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1987 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1988 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1989 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
252b5132
RH
1990};
1991
1992/* Given a BFD reloc type, return a howto structure. */
1993
1994static reloc_howto_type *
1995bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1996 bfd *abfd;
1997 bfd_reloc_code_real_type code;
1998{
1999 unsigned int i;
2000
2001 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
2002 {
2003 if (mips_reloc_map[i].bfd_reloc_val == code)
2004 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
2005 }
2006
2007 switch (code)
2008 {
2009 default:
2010 bfd_set_error (bfd_error_bad_value);
2011 return NULL;
2012
2013 case BFD_RELOC_CTOR:
2014 /* We need to handle BFD_RELOC_CTOR specially.
2015 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
2016 size of addresses on this architecture. */
2017 if (bfd_arch_bits_per_address (abfd) == 32)
2018 return &elf_mips_howto_table[(int) R_MIPS_32];
2019 else
2020 return &elf_mips_ctor64_howto;
2021
2022 case BFD_RELOC_MIPS16_JMP:
2023 return &elf_mips16_jump_howto;
2024 case BFD_RELOC_MIPS16_GPREL:
2025 return &elf_mips16_gprel_howto;
2026 case BFD_RELOC_VTABLE_INHERIT:
2027 return &elf_mips_gnu_vtinherit_howto;
2028 case BFD_RELOC_VTABLE_ENTRY:
2029 return &elf_mips_gnu_vtentry_howto;
bb2d6cd7
GK
2030 case BFD_RELOC_PCREL_HI16_S:
2031 return &elf_mips_gnu_rel_hi16;
2032 case BFD_RELOC_PCREL_LO16:
2033 return &elf_mips_gnu_rel_lo16;
2034 case BFD_RELOC_16_PCREL_S2:
2035 return &elf_mips_gnu_rel16_s2;
2036 case BFD_RELOC_64_PCREL:
2037 return &elf_mips_gnu_pcrel64;
2038 case BFD_RELOC_32_PCREL:
2039 return &elf_mips_gnu_pcrel32;
252b5132
RH
2040 }
2041}
2042
3f830999 2043/* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
252b5132 2044
c9b3cbf3
RH
2045static reloc_howto_type *
2046mips_rtype_to_howto (r_type)
2047 unsigned int r_type;
252b5132 2048{
252b5132
RH
2049 switch (r_type)
2050 {
2051 case R_MIPS16_26:
c9b3cbf3 2052 return &elf_mips16_jump_howto;
252b5132
RH
2053 break;
2054 case R_MIPS16_GPREL:
c9b3cbf3 2055 return &elf_mips16_gprel_howto;
252b5132
RH
2056 break;
2057 case R_MIPS_GNU_VTINHERIT:
c9b3cbf3 2058 return &elf_mips_gnu_vtinherit_howto;
252b5132
RH
2059 break;
2060 case R_MIPS_GNU_VTENTRY:
c9b3cbf3 2061 return &elf_mips_gnu_vtentry_howto;
252b5132 2062 break;
bb2d6cd7
GK
2063 case R_MIPS_GNU_REL_HI16:
2064 return &elf_mips_gnu_rel_hi16;
2065 break;
2066 case R_MIPS_GNU_REL_LO16:
2067 return &elf_mips_gnu_rel_lo16;
2068 break;
2069 case R_MIPS_GNU_REL16_S2:
2070 return &elf_mips_gnu_rel16_s2;
2071 break;
2072 case R_MIPS_PC64:
2073 return &elf_mips_gnu_pcrel64;
2074 break;
2075 case R_MIPS_PC32:
2076 return &elf_mips_gnu_pcrel32;
2077 break;
252b5132
RH
2078
2079 default:
2080 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
c9b3cbf3 2081 return &elf_mips_howto_table[r_type];
252b5132
RH
2082 break;
2083 }
c9b3cbf3
RH
2084}
2085
2086/* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2087
2088static void
2089mips_info_to_howto_rel (abfd, cache_ptr, dst)
2090 bfd *abfd;
2091 arelent *cache_ptr;
2092 Elf32_Internal_Rel *dst;
2093{
2094 unsigned int r_type;
2095
2096 r_type = ELF32_R_TYPE (dst->r_info);
2097 cache_ptr->howto = mips_rtype_to_howto (r_type);
252b5132
RH
2098
2099 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2100 value for the object file. We get the addend now, rather than
2101 when we do the relocation, because the symbol manipulations done
2102 by the linker may cause us to lose track of the input BFD. */
2103 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2104 && (r_type == (unsigned int) R_MIPS_GPREL16
2105 || r_type == (unsigned int) R_MIPS_LITERAL))
2106 cache_ptr->addend = elf_gp (abfd);
2107}
3f830999
MM
2108
2109/* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2110
2111static void
2112mips_info_to_howto_rela (abfd, cache_ptr, dst)
2113 bfd *abfd;
2114 arelent *cache_ptr;
2115 Elf32_Internal_Rela *dst;
2116{
2117 /* Since an Elf32_Internal_Rel is an initial prefix of an
2118 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2119 above. */
2120 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2121
2122 /* If we ever need to do any extra processing with dst->r_addend
2123 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2124}
252b5132
RH
2125\f
2126/* A .reginfo section holds a single Elf32_RegInfo structure. These
2127 routines swap this structure in and out. They are used outside of
2128 BFD, so they are globally visible. */
2129
2130void
2131bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2132 bfd *abfd;
2133 const Elf32_External_RegInfo *ex;
2134 Elf32_RegInfo *in;
2135{
dc810e39
AM
2136 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2137 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2138 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2139 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2140 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2141 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
252b5132
RH
2142}
2143
2144void
2145bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2146 bfd *abfd;
2147 const Elf32_RegInfo *in;
2148 Elf32_External_RegInfo *ex;
2149{
dc810e39
AM
2150 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2151 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2152 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2153 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2154 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2155 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
252b5132
RH
2156}
2157
2158/* In the 64 bit ABI, the .MIPS.options section holds register
2159 information in an Elf64_Reginfo structure. These routines swap
2160 them in and out. They are globally visible because they are used
2161 outside of BFD. These routines are here so that gas can call them
2162 without worrying about whether the 64 bit ABI has been included. */
2163
2164void
2165bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2166 bfd *abfd;
2167 const Elf64_External_RegInfo *ex;
2168 Elf64_Internal_RegInfo *in;
2169{
dc810e39
AM
2170 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2171 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2172 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2173 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2174 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2175 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2176 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
252b5132
RH
2177}
2178
2179void
2180bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2181 bfd *abfd;
2182 const Elf64_Internal_RegInfo *in;
2183 Elf64_External_RegInfo *ex;
2184{
dc810e39
AM
2185 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2186 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2187 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2188 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2189 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2190 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2191 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
252b5132
RH
2192}
2193
2194/* Swap an entry in a .gptab section. Note that these routines rely
2195 on the equivalence of the two elements of the union. */
2196
2197static void
2198bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2199 bfd *abfd;
2200 const Elf32_External_gptab *ex;
2201 Elf32_gptab *in;
2202{
dc810e39
AM
2203 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2204 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
252b5132
RH
2205}
2206
2207static void
2208bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2209 bfd *abfd;
2210 const Elf32_gptab *in;
2211 Elf32_External_gptab *ex;
2212{
dc810e39
AM
2213 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2214 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
252b5132
RH
2215}
2216
2217static void
2218bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2219 bfd *abfd;
2220 const Elf32_compact_rel *in;
2221 Elf32_External_compact_rel *ex;
2222{
dc810e39
AM
2223 H_PUT_32 (abfd, in->id1, ex->id1);
2224 H_PUT_32 (abfd, in->num, ex->num);
2225 H_PUT_32 (abfd, in->id2, ex->id2);
2226 H_PUT_32 (abfd, in->offset, ex->offset);
2227 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2228 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
252b5132
RH
2229}
2230
2231static void
2232bfd_elf32_swap_crinfo_out (abfd, in, ex)
2233 bfd *abfd;
2234 const Elf32_crinfo *in;
2235 Elf32_External_crinfo *ex;
2236{
2237 unsigned long l;
2238
2239 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2240 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2241 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2242 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
dc810e39
AM
2243 H_PUT_32 (abfd, l, ex->info);
2244 H_PUT_32 (abfd, in->konst, ex->konst);
2245 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
252b5132
RH
2246}
2247
2248/* Swap in an options header. */
2249
2250void
2251bfd_mips_elf_swap_options_in (abfd, ex, in)
2252 bfd *abfd;
2253 const Elf_External_Options *ex;
2254 Elf_Internal_Options *in;
2255{
dc810e39
AM
2256 in->kind = H_GET_8 (abfd, ex->kind);
2257 in->size = H_GET_8 (abfd, ex->size);
2258 in->section = H_GET_16 (abfd, ex->section);
2259 in->info = H_GET_32 (abfd, ex->info);
252b5132
RH
2260}
2261
2262/* Swap out an options header. */
2263
2264void
2265bfd_mips_elf_swap_options_out (abfd, in, ex)
2266 bfd *abfd;
2267 const Elf_Internal_Options *in;
2268 Elf_External_Options *ex;
2269{
dc810e39
AM
2270 H_PUT_8 (abfd, in->kind, ex->kind);
2271 H_PUT_8 (abfd, in->size, ex->size);
2272 H_PUT_16 (abfd, in->section, ex->section);
2273 H_PUT_32 (abfd, in->info, ex->info);
252b5132 2274}
86033394 2275#if 0
c6142e5d
MM
2276/* Swap in an MSYM entry. */
2277
2278static void
2279bfd_mips_elf_swap_msym_in (abfd, ex, in)
2280 bfd *abfd;
2281 const Elf32_External_Msym *ex;
2282 Elf32_Internal_Msym *in;
2283{
dc810e39
AM
2284 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
2285 in->ms_info = H_GET_32 (abfd, ex->ms_info);
c6142e5d 2286}
86033394 2287#endif
c6142e5d
MM
2288/* Swap out an MSYM entry. */
2289
2290static void
2291bfd_mips_elf_swap_msym_out (abfd, in, ex)
2292 bfd *abfd;
2293 const Elf32_Internal_Msym *in;
2294 Elf32_External_Msym *ex;
2295{
dc810e39
AM
2296 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2297 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
c6142e5d 2298}
252b5132
RH
2299\f
2300/* Determine whether a symbol is global for the purposes of splitting
2301 the symbol table into global symbols and local symbols. At least
2302 on Irix 5, this split must be between section symbols and all other
2303 symbols. On most ELF targets the split is between static symbols
2304 and externally visible symbols. */
2305
252b5132
RH
2306static boolean
2307mips_elf_sym_is_global (abfd, sym)
5f771d47 2308 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
2309 asymbol *sym;
2310{
936e320b
AM
2311 if (SGI_COMPAT (abfd))
2312 return (sym->flags & BSF_SECTION_SYM) == 0;
fdbafa10
L
2313 else
2314 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
936e320b
AM
2315 || bfd_is_und_section (bfd_get_section (sym))
2316 || bfd_is_com_section (bfd_get_section (sym)));
252b5132
RH
2317}
2318\f
2319/* Set the right machine number for a MIPS ELF file. This is used for
2320 both the 32-bit and the 64-bit ABI. */
2321
2322boolean
2323_bfd_mips_elf_object_p (abfd)
2324 bfd *abfd;
2325{
103186c6 2326 /* Irix 5 and 6 is broken. Object file symbol tables are not always
252b5132
RH
2327 sorted correctly such that local symbols precede global symbols,
2328 and the sh_info field in the symbol table is not always right. */
c36e006f
L
2329 if (SGI_COMPAT(abfd))
2330 elf_bad_symtab (abfd) = true;
252b5132 2331
103186c6
MM
2332 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2333 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2334 return true;
252b5132
RH
2335}
2336
2337/* The final processing done just before writing out a MIPS ELF object
2338 file. This gets the MIPS architecture right based on the machine
2339 number. This is used by both the 32-bit and the 64-bit ABI. */
2340
252b5132
RH
2341void
2342_bfd_mips_elf_final_write_processing (abfd, linker)
2343 bfd *abfd;
5f771d47 2344 boolean linker ATTRIBUTE_UNUSED;
252b5132
RH
2345{
2346 unsigned long val;
2347 unsigned int i;
2348 Elf_Internal_Shdr **hdrpp;
2349 const char *name;
2350 asection *sec;
2351
2352 switch (bfd_get_mach (abfd))
2353 {
2354 default:
2355 case bfd_mach_mips3000:
2356 val = E_MIPS_ARCH_1;
2357 break;
2358
2359 case bfd_mach_mips3900:
2360 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2361 break;
2362
2363 case bfd_mach_mips6000:
2364 val = E_MIPS_ARCH_2;
2365 break;
2366
2367 case bfd_mach_mips4000:
2368 case bfd_mach_mips4300:
5e7079af
L
2369 case bfd_mach_mips4400:
2370 case bfd_mach_mips4600:
252b5132
RH
2371 val = E_MIPS_ARCH_3;
2372 break;
2373
2374 case bfd_mach_mips4010:
2375 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2376 break;
2377
2378 case bfd_mach_mips4100:
2379 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2380 break;
2381
2382 case bfd_mach_mips4111:
2383 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2384 break;
2385
2386 case bfd_mach_mips4650:
2387 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2388 break;
2389
5e7079af 2390 case bfd_mach_mips5000:
252b5132 2391 case bfd_mach_mips8000:
d1cf510e
NC
2392 case bfd_mach_mips10000:
2393 case bfd_mach_mips12000:
252b5132
RH
2394 val = E_MIPS_ARCH_4;
2395 break;
156c2f8b 2396
84ea6cf2
NC
2397 case bfd_mach_mips5:
2398 val = E_MIPS_ARCH_5;
2399 break;
2400
c6c98b38
NC
2401 case bfd_mach_mips_sb1:
2402 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2403 break;
a1cd6a8f
EC
2404
2405 case bfd_mach_mipsisa32:
2406 val = E_MIPS_ARCH_32;
2407 break;
2408
2409 case bfd_mach_mipsisa64:
2410 val = E_MIPS_ARCH_64;
252b5132
RH
2411 }
2412
be3ccd9c 2413 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
252b5132
RH
2414 elf_elfheader (abfd)->e_flags |= val;
2415
2416 /* Set the sh_info field for .gptab sections and other appropriate
2417 info for each special section. */
2418 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2419 i < elf_elfheader (abfd)->e_shnum;
2420 i++, hdrpp++)
2421 {
2422 switch ((*hdrpp)->sh_type)
2423 {
c6142e5d 2424 case SHT_MIPS_MSYM:
252b5132
RH
2425 case SHT_MIPS_LIBLIST:
2426 sec = bfd_get_section_by_name (abfd, ".dynstr");
2427 if (sec != NULL)
2428 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2429 break;
2430
2431 case SHT_MIPS_GPTAB:
2432 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2433 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2434 BFD_ASSERT (name != NULL
2435 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2436 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2437 BFD_ASSERT (sec != NULL);
2438 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2439 break;
2440
2441 case SHT_MIPS_CONTENT:
2442 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2443 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2444 BFD_ASSERT (name != NULL
2445 && strncmp (name, ".MIPS.content",
2446 sizeof ".MIPS.content" - 1) == 0);
2447 sec = bfd_get_section_by_name (abfd,
2448 name + sizeof ".MIPS.content" - 1);
2449 BFD_ASSERT (sec != NULL);
3f830999 2450 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
252b5132
RH
2451 break;
2452
2453 case SHT_MIPS_SYMBOL_LIB:
2454 sec = bfd_get_section_by_name (abfd, ".dynsym");
2455 if (sec != NULL)
2456 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2457 sec = bfd_get_section_by_name (abfd, ".liblist");
2458 if (sec != NULL)
2459 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2460 break;
2461
2462 case SHT_MIPS_EVENTS:
2463 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2464 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2465 BFD_ASSERT (name != NULL);
2466 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2467 sec = bfd_get_section_by_name (abfd,
2468 name + sizeof ".MIPS.events" - 1);
2469 else
2470 {
2471 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2472 sizeof ".MIPS.post_rel" - 1) == 0);
2473 sec = bfd_get_section_by_name (abfd,
2474 (name
2475 + sizeof ".MIPS.post_rel" - 1));
2476 }
2477 BFD_ASSERT (sec != NULL);
2478 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2479 break;
2480
2481 }
2482 }
2483}
2484\f
be3ccd9c 2485/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
252b5132
RH
2486
2487boolean
2488_bfd_mips_elf_set_private_flags (abfd, flags)
2489 bfd *abfd;
2490 flagword flags;
2491{
2492 BFD_ASSERT (!elf_flags_init (abfd)
2493 || elf_elfheader (abfd)->e_flags == flags);
2494
2495 elf_elfheader (abfd)->e_flags = flags;
2496 elf_flags_init (abfd) = true;
2497 return true;
2498}
2499
2500/* Copy backend specific data from one object module to another */
2501
2502boolean
2503_bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2504 bfd *ibfd;
2505 bfd *obfd;
2506{
2507 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2508 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2509 return true;
2510
2511 BFD_ASSERT (!elf_flags_init (obfd)
2512 || (elf_elfheader (obfd)->e_flags
2513 == elf_elfheader (ibfd)->e_flags));
2514
2515 elf_gp (obfd) = elf_gp (ibfd);
2516 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2517 elf_flags_init (obfd) = true;
2518 return true;
2519}
2520
2521/* Merge backend specific data from an object file to the output
2522 object file when linking. */
2523
2524boolean
2525_bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2526 bfd *ibfd;
2527 bfd *obfd;
2528{
2529 flagword old_flags;
2530 flagword new_flags;
2531 boolean ok;
a9922e52
UC
2532 boolean null_input_bfd = true;
2533 asection *sec;
252b5132
RH
2534
2535 /* Check if we have the same endianess */
1fe494a5
NC
2536 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2537 return false;
252b5132
RH
2538
2539 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2540 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2541 return true;
2542
2543 new_flags = elf_elfheader (ibfd)->e_flags;
2544 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2545 old_flags = elf_elfheader (obfd)->e_flags;
2546
2547 if (! elf_flags_init (obfd))
2548 {
2549 elf_flags_init (obfd) = true;
2550 elf_elfheader (obfd)->e_flags = new_flags;
be3ccd9c 2551 elf_elfheader (obfd)->e_ident[EI_CLASS]
103186c6 2552 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
252b5132
RH
2553
2554 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2555 && bfd_get_arch_info (obfd)->the_default)
2556 {
2557 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2558 bfd_get_mach (ibfd)))
2559 return false;
2560 }
2561
2562 return true;
2563 }
2564
2565 /* Check flag compatibility. */
2566
2567 new_flags &= ~EF_MIPS_NOREORDER;
2568 old_flags &= ~EF_MIPS_NOREORDER;
2569
2570 if (new_flags == old_flags)
2571 return true;
2572
a9922e52
UC
2573 /* Check to see if the input BFD actually contains any sections.
2574 If not, its flags may not have been initialised either, but it cannot
2575 actually cause any incompatibility. */
2576 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2577 {
2578 /* Ignore synthetic sections and empty .text, .data and .bss sections
2579 which are automatically generated by gas. */
2580 if (strcmp (sec->name, ".reginfo")
2581 && strcmp (sec->name, ".mdebug")
2582 && ((!strcmp (sec->name, ".text")
2583 || !strcmp (sec->name, ".data")
2584 || !strcmp (sec->name, ".bss"))
2585 && sec->_raw_size != 0))
2586 {
2587 null_input_bfd = false;
2588 break;
2589 }
2590 }
2591 if (null_input_bfd)
2592 return true;
2593
252b5132
RH
2594 ok = true;
2595
2596 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2597 {
2598 new_flags &= ~EF_MIPS_PIC;
2599 old_flags &= ~EF_MIPS_PIC;
2600 (*_bfd_error_handler)
2601 (_("%s: linking PIC files with non-PIC files"),
2602 bfd_get_filename (ibfd));
2603 ok = false;
2604 }
2605
2606 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2607 {
2608 new_flags &= ~EF_MIPS_CPIC;
2609 old_flags &= ~EF_MIPS_CPIC;
2610 (*_bfd_error_handler)
2611 (_("%s: linking abicalls files with non-abicalls files"),
2612 bfd_get_filename (ibfd));
2613 ok = false;
2614 }
2615
be3ccd9c 2616 /* Compare the ISA's. */
252b5132
RH
2617 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2618 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2619 {
2620 int new_mach = new_flags & EF_MIPS_MACH;
2621 int old_mach = old_flags & EF_MIPS_MACH;
2622 int new_isa = elf_mips_isa (new_flags);
2623 int old_isa = elf_mips_isa (old_flags);
2624
2625 /* If either has no machine specified, just compare the general isa's.
be3ccd9c
KH
2626 Some combinations of machines are ok, if the isa's match. */
2627 if (! new_mach
252b5132
RH
2628 || ! old_mach
2629 || new_mach == old_mach
2630 )
2631 {
e7af610e
NC
2632 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
2633 using 64-bit ISAs. They will normally use the same data sizes
2634 and calling conventions. */
252b5132 2635
e7af610e
NC
2636 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
2637 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
252b5132
RH
2638 {
2639 (*_bfd_error_handler)
2640 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2641 bfd_get_filename (ibfd), new_isa, old_isa);
2642 ok = false;
2643 }
2644 }
2645
2646 else
2647 {
2648 (*_bfd_error_handler)
2649 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2650 bfd_get_filename (ibfd),
2651 elf_mips_mach (new_flags),
2652 elf_mips_mach (old_flags));
2653 ok = false;
2654 }
2655
be3ccd9c
KH
2656 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2657 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
252b5132
RH
2658 }
2659
103186c6
MM
2660 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2661 does set EI_CLASS differently from any 32-bit ABI. */
2662 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
be3ccd9c 2663 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
103186c6 2664 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
252b5132 2665 {
be3ccd9c 2666 /* Only error if both are set (to different values). */
103186c6 2667 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
be3ccd9c 2668 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
103186c6 2669 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
252b5132
RH
2670 {
2671 (*_bfd_error_handler)
2672 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2673 bfd_get_filename (ibfd),
103186c6
MM
2674 elf_mips_abi_name (ibfd),
2675 elf_mips_abi_name (obfd));
252b5132
RH
2676 ok = false;
2677 }
2678 new_flags &= ~EF_MIPS_ABI;
2679 old_flags &= ~EF_MIPS_ABI;
2680 }
2681
2682 /* Warn about any other mismatches */
2683 if (new_flags != old_flags)
2684 {
2685 (*_bfd_error_handler)
2686 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2687 bfd_get_filename (ibfd), (unsigned long) new_flags,
2688 (unsigned long) old_flags);
2689 ok = false;
2690 }
2691
2692 if (! ok)
2693 {
2694 bfd_set_error (bfd_error_bad_value);
2695 return false;
2696 }
2697
2698 return true;
2699}
2700\f
103186c6 2701boolean
252b5132
RH
2702_bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2703 bfd *abfd;
2704 PTR ptr;
2705{
2706 FILE *file = (FILE *) ptr;
2707
2708 BFD_ASSERT (abfd != NULL && ptr != NULL);
2709
2710 /* Print normal ELF private data. */
2711 _bfd_elf_print_private_bfd_data (abfd, ptr);
2712
2713 /* xgettext:c-format */
be3ccd9c 2714 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
252b5132
RH
2715
2716 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
be3ccd9c 2717 fprintf (file, _(" [abi=O32]"));
252b5132 2718 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
be3ccd9c 2719 fprintf (file, _(" [abi=O64]"));
252b5132 2720 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
be3ccd9c 2721 fprintf (file, _(" [abi=EABI32]"));
252b5132 2722 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
be3ccd9c 2723 fprintf (file, _(" [abi=EABI64]"));
252b5132 2724 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
be3ccd9c 2725 fprintf (file, _(" [abi unknown]"));
103186c6 2726 else if (ABI_N32_P (abfd))
be3ccd9c 2727 fprintf (file, _(" [abi=N32]"));
103186c6 2728 else if (ABI_64_P (abfd))
be3ccd9c 2729 fprintf (file, _(" [abi=64]"));
252b5132 2730 else
be3ccd9c 2731 fprintf (file, _(" [no abi set]"));
252b5132
RH
2732
2733 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
be3ccd9c 2734 fprintf (file, _(" [mips1]"));
252b5132 2735 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
be3ccd9c 2736 fprintf (file, _(" [mips2]"));
252b5132 2737 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
be3ccd9c 2738 fprintf (file, _(" [mips3]"));
252b5132 2739 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
be3ccd9c 2740 fprintf (file, _(" [mips4]"));
84ea6cf2
NC
2741 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
2742 fprintf (file, _ (" [mips5]"));
e7af610e
NC
2743 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
2744 fprintf (file, _ (" [mips32]"));
84ea6cf2
NC
2745 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
2746 fprintf (file, _ (" [mips64]"));
252b5132 2747 else
be3ccd9c 2748 fprintf (file, _(" [unknown ISA]"));
252b5132
RH
2749
2750 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
be3ccd9c 2751 fprintf (file, _(" [32bitmode]"));
252b5132 2752 else
be3ccd9c 2753 fprintf (file, _(" [not 32bitmode]"));
252b5132
RH
2754
2755 fputc ('\n', file);
2756
2757 return true;
2758}
2759\f
2760/* Handle a MIPS specific section when reading an object file. This
2761 is called when elfcode.h finds a section with an unknown type.
2762 This routine supports both the 32-bit and 64-bit ELF ABI.
2763
2764 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2765 how to. */
2766
2767boolean
2768_bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2769 bfd *abfd;
2770 Elf_Internal_Shdr *hdr;
103186c6 2771 char *name;
252b5132
RH
2772{
2773 flagword flags = 0;
2774
2775 /* There ought to be a place to keep ELF backend specific flags, but
2776 at the moment there isn't one. We just keep track of the
2777 sections by their name, instead. Fortunately, the ABI gives
2778 suggested names for all the MIPS specific sections, so we will
2779 probably get away with this. */
2780 switch (hdr->sh_type)
2781 {
2782 case SHT_MIPS_LIBLIST:
2783 if (strcmp (name, ".liblist") != 0)
2784 return false;
2785 break;
2786 case SHT_MIPS_MSYM:
c6142e5d 2787 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
252b5132
RH
2788 return false;
2789 break;
2790 case SHT_MIPS_CONFLICT:
2791 if (strcmp (name, ".conflict") != 0)
2792 return false;
2793 break;
2794 case SHT_MIPS_GPTAB:
2795 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2796 return false;
2797 break;
2798 case SHT_MIPS_UCODE:
2799 if (strcmp (name, ".ucode") != 0)
2800 return false;
2801 break;
2802 case SHT_MIPS_DEBUG:
2803 if (strcmp (name, ".mdebug") != 0)
2804 return false;
2805 flags = SEC_DEBUGGING;
2806 break;
2807 case SHT_MIPS_REGINFO:
2808 if (strcmp (name, ".reginfo") != 0
2809 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2810 return false;
2811 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2812 break;
2813 case SHT_MIPS_IFACE:
2814 if (strcmp (name, ".MIPS.interfaces") != 0)
2815 return false;
2816 break;
2817 case SHT_MIPS_CONTENT:
2818 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2819 return false;
2820 break;
2821 case SHT_MIPS_OPTIONS:
303f629d 2822 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
252b5132
RH
2823 return false;
2824 break;
2825 case SHT_MIPS_DWARF:
2826 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2827 return false;
2828 break;
2829 case SHT_MIPS_SYMBOL_LIB:
2830 if (strcmp (name, ".MIPS.symlib") != 0)
2831 return false;
2832 break;
2833 case SHT_MIPS_EVENTS:
2834 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2835 && strncmp (name, ".MIPS.post_rel",
2836 sizeof ".MIPS.post_rel" - 1) != 0)
2837 return false;
2838 break;
2839 default:
2840 return false;
2841 }
2842
2843 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2844 return false;
2845
2846 if (flags)
2847 {
2848 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2849 (bfd_get_section_flags (abfd,
2850 hdr->bfd_section)
2851 | flags)))
2852 return false;
2853 }
2854
252b5132
RH
2855 /* FIXME: We should record sh_info for a .gptab section. */
2856
2857 /* For a .reginfo section, set the gp value in the tdata information
2858 from the contents of this section. We need the gp value while
2859 processing relocs, so we just get it now. The .reginfo section
2860 is not used in the 64-bit MIPS ELF ABI. */
2861 if (hdr->sh_type == SHT_MIPS_REGINFO)
2862 {
2863 Elf32_External_RegInfo ext;
2864 Elf32_RegInfo s;
2865
2866 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
dc810e39
AM
2867 (file_ptr) 0,
2868 (bfd_size_type) sizeof ext))
252b5132
RH
2869 return false;
2870 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2871 elf_gp (abfd) = s.ri_gp_value;
2872 }
2873
2874 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2875 set the gp value based on what we find. We may see both
2876 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2877 they should agree. */
2878 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2879 {
2880 bfd_byte *contents, *l, *lend;
2881
2882 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2883 if (contents == NULL)
2884 return false;
2885 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2886 (file_ptr) 0, hdr->sh_size))
2887 {
2888 free (contents);
2889 return false;
2890 }
2891 l = contents;
2892 lend = contents + hdr->sh_size;
2893 while (l + sizeof (Elf_External_Options) <= lend)
2894 {
2895 Elf_Internal_Options intopt;
2896
2897 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2898 &intopt);
103186c6
MM
2899 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2900 {
2901 Elf64_Internal_RegInfo intreg;
2902
2903 bfd_mips_elf64_swap_reginfo_in
2904 (abfd,
2905 ((Elf64_External_RegInfo *)
2906 (l + sizeof (Elf_External_Options))),
2907 &intreg);
2908 elf_gp (abfd) = intreg.ri_gp_value;
2909 }
2910 else if (intopt.kind == ODK_REGINFO)
252b5132
RH
2911 {
2912 Elf32_RegInfo intreg;
2913
2914 bfd_mips_elf32_swap_reginfo_in
2915 (abfd,
2916 ((Elf32_External_RegInfo *)
2917 (l + sizeof (Elf_External_Options))),
2918 &intreg);
2919 elf_gp (abfd) = intreg.ri_gp_value;
2920 }
2921 l += intopt.size;
2922 }
2923 free (contents);
2924 }
2925
2926 return true;
2927}
2928
2929/* Set the correct type for a MIPS ELF section. We do this by the
2930 section name, which is a hack, but ought to work. This routine is
2931 used by both the 32-bit and the 64-bit ABI. */
2932
2933boolean
2934_bfd_mips_elf_fake_sections (abfd, hdr, sec)
2935 bfd *abfd;
2936 Elf32_Internal_Shdr *hdr;
2937 asection *sec;
2938{
2939 register const char *name;
2940
2941 name = bfd_get_section_name (abfd, sec);
2942
2943 if (strcmp (name, ".liblist") == 0)
2944 {
2945 hdr->sh_type = SHT_MIPS_LIBLIST;
2946 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2947 /* The sh_link field is set in final_write_processing. */
2948 }
252b5132
RH
2949 else if (strcmp (name, ".conflict") == 0)
2950 hdr->sh_type = SHT_MIPS_CONFLICT;
2951 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2952 {
2953 hdr->sh_type = SHT_MIPS_GPTAB;
2954 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2955 /* The sh_info field is set in final_write_processing. */
2956 }
2957 else if (strcmp (name, ".ucode") == 0)
2958 hdr->sh_type = SHT_MIPS_UCODE;
2959 else if (strcmp (name, ".mdebug") == 0)
2960 {
2961 hdr->sh_type = SHT_MIPS_DEBUG;
2962 /* In a shared object on Irix 5.3, the .mdebug section has an
2963 entsize of 0. FIXME: Does this matter? */
2964 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2965 hdr->sh_entsize = 0;
2966 else
2967 hdr->sh_entsize = 1;
2968 }
2969 else if (strcmp (name, ".reginfo") == 0)
2970 {
2971 hdr->sh_type = SHT_MIPS_REGINFO;
2972 /* In a shared object on Irix 5.3, the .reginfo section has an
2973 entsize of 0x18. FIXME: Does this matter? */
f7cb7d68 2974 if (SGI_COMPAT (abfd))
be3ccd9c
KH
2975 {
2976 if ((abfd->flags & DYNAMIC) != 0)
2977 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2978 else
2979 hdr->sh_entsize = 1;
2980 }
252b5132 2981 else
be3ccd9c 2982 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
252b5132
RH
2983 }
2984 else if (SGI_COMPAT (abfd)
2985 && (strcmp (name, ".hash") == 0
2986 || strcmp (name, ".dynamic") == 0
2987 || strcmp (name, ".dynstr") == 0))
2988 {
be3ccd9c
KH
2989 if (SGI_COMPAT (abfd))
2990 hdr->sh_entsize = 0;
252b5132
RH
2991#if 0
2992 /* This isn't how the Irix 6 linker behaves. */
2993 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2994#endif
2995 }
2996 else if (strcmp (name, ".got") == 0
303f629d 2997 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
252b5132
RH
2998 || strcmp (name, ".sdata") == 0
2999 || strcmp (name, ".sbss") == 0
3000 || strcmp (name, ".lit4") == 0
3001 || strcmp (name, ".lit8") == 0)
3002 hdr->sh_flags |= SHF_MIPS_GPREL;
3003 else if (strcmp (name, ".MIPS.interfaces") == 0)
3004 {
3005 hdr->sh_type = SHT_MIPS_IFACE;
3006 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3007 }
3f830999 3008 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
252b5132
RH
3009 {
3010 hdr->sh_type = SHT_MIPS_CONTENT;
3f830999 3011 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
252b5132
RH
3012 /* The sh_info field is set in final_write_processing. */
3013 }
303f629d 3014 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
252b5132
RH
3015 {
3016 hdr->sh_type = SHT_MIPS_OPTIONS;
3017 hdr->sh_entsize = 1;
3018 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3019 }
3020 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3021 hdr->sh_type = SHT_MIPS_DWARF;
3022 else if (strcmp (name, ".MIPS.symlib") == 0)
3023 {
3024 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3025 /* The sh_link and sh_info fields are set in
3026 final_write_processing. */
3027 }
3028 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3029 || strncmp (name, ".MIPS.post_rel",
3030 sizeof ".MIPS.post_rel" - 1) == 0)
3031 {
3032 hdr->sh_type = SHT_MIPS_EVENTS;
3033 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3034 /* The sh_link field is set in final_write_processing. */
3035 }
c6142e5d
MM
3036 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3037 {
3038 hdr->sh_type = SHT_MIPS_MSYM;
3039 hdr->sh_flags |= SHF_ALLOC;
3040 hdr->sh_entsize = 8;
3041 }
252b5132 3042
23bc299b
MM
3043 /* The generic elf_fake_sections will set up REL_HDR using the
3044 default kind of relocations. But, we may actually need both
3045 kinds of relocations, so we set up the second header here. */
3046 if ((sec->flags & SEC_RELOC) != 0)
3047 {
3048 struct bfd_elf_section_data *esd;
dc810e39 3049 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
23bc299b
MM
3050
3051 esd = elf_section_data (sec);
3052 BFD_ASSERT (esd->rel_hdr2 == NULL);
dc810e39 3053 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
23bc299b
MM
3054 if (!esd->rel_hdr2)
3055 return false;
3056 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3057 !elf_section_data (sec)->use_rela_p);
3058 }
3059
252b5132
RH
3060 return true;
3061}
3062
3063/* Given a BFD section, try to locate the corresponding ELF section
3064 index. This is used by both the 32-bit and the 64-bit ABI.
3065 Actually, it's not clear to me that the 64-bit ABI supports these,
3066 but for non-PIC objects we will certainly want support for at least
3067 the .scommon section. */
3068
3069boolean
3070_bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
d9bc7a44 3071 bfd *abfd ATTRIBUTE_UNUSED;
062e2358 3072 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
252b5132
RH
3073 asection *sec;
3074 int *retval;
3075{
3076 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3077 {
3078 *retval = SHN_MIPS_SCOMMON;
3079 return true;
3080 }
3081 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3082 {
3083 *retval = SHN_MIPS_ACOMMON;
3084 return true;
3085 }
3086 return false;
3087}
3088
3089/* When are writing out the .options or .MIPS.options section,
3090 remember the bytes we are writing out, so that we can install the
3091 GP value in the section_processing routine. */
3092
3093boolean
3094_bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3095 bfd *abfd;
3096 sec_ptr section;
3097 PTR location;
3098 file_ptr offset;
3099 bfd_size_type count;
3100{
303f629d 3101 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
252b5132
RH
3102 {
3103 bfd_byte *c;
3104
3105 if (elf_section_data (section) == NULL)
3106 {
dc810e39
AM
3107 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
3108 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
252b5132
RH
3109 if (elf_section_data (section) == NULL)
3110 return false;
3111 }
3112 c = (bfd_byte *) elf_section_data (section)->tdata;
3113 if (c == NULL)
3114 {
3115 bfd_size_type size;
3116
3117 if (section->_cooked_size != 0)
3118 size = section->_cooked_size;
3119 else
3120 size = section->_raw_size;
3121 c = (bfd_byte *) bfd_zalloc (abfd, size);
3122 if (c == NULL)
3123 return false;
3124 elf_section_data (section)->tdata = (PTR) c;
3125 }
3126
dc810e39 3127 memcpy (c + offset, location, (size_t) count);
252b5132
RH
3128 }
3129
3130 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3131 count);
3132}
3133
3134/* Work over a section just before writing it out. This routine is
3135 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3136 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3137 a better way. */
3138
3139boolean
3140_bfd_mips_elf_section_processing (abfd, hdr)
3141 bfd *abfd;
3142 Elf_Internal_Shdr *hdr;
252b5132 3143{
cc3bfcee
ILT
3144 if (hdr->sh_type == SHT_MIPS_REGINFO
3145 && hdr->sh_size > 0)
252b5132
RH
3146 {
3147 bfd_byte buf[4];
3148
3149 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3150 BFD_ASSERT (hdr->contents == NULL);
3151
3152 if (bfd_seek (abfd,
3153 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
dc810e39 3154 SEEK_SET) != 0)
252b5132 3155 return false;
dc810e39
AM
3156 H_PUT_32 (abfd, elf_gp (abfd), buf);
3157 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
252b5132
RH
3158 return false;
3159 }
3160
3161 if (hdr->sh_type == SHT_MIPS_OPTIONS
3162 && hdr->bfd_section != NULL
3163 && elf_section_data (hdr->bfd_section) != NULL
3164 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3165 {
3166 bfd_byte *contents, *l, *lend;
3167
3168 /* We stored the section contents in the elf_section_data tdata
3169 field in the set_section_contents routine. We save the
3170 section contents so that we don't have to read them again.
3171 At this point we know that elf_gp is set, so we can look
3172 through the section contents to see if there is an
3173 ODK_REGINFO structure. */
3174
3175 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3176 l = contents;
3177 lend = contents + hdr->sh_size;
3178 while (l + sizeof (Elf_External_Options) <= lend)
3179 {
3180 Elf_Internal_Options intopt;
3181
3182 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3183 &intopt);
103186c6
MM
3184 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3185 {
3186 bfd_byte buf[8];
3187
3188 if (bfd_seek (abfd,
3189 (hdr->sh_offset
3190 + (l - contents)
3191 + sizeof (Elf_External_Options)
3192 + (sizeof (Elf64_External_RegInfo) - 8)),
dc810e39 3193 SEEK_SET) != 0)
103186c6 3194 return false;
dc810e39
AM
3195 H_PUT_64 (abfd, elf_gp (abfd), buf);
3196 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
103186c6
MM
3197 return false;
3198 }
3199 else if (intopt.kind == ODK_REGINFO)
252b5132
RH
3200 {
3201 bfd_byte buf[4];
3202
3203 if (bfd_seek (abfd,
3204 (hdr->sh_offset
3205 + (l - contents)
3206 + sizeof (Elf_External_Options)
3207 + (sizeof (Elf32_External_RegInfo) - 4)),
dc810e39 3208 SEEK_SET) != 0)
252b5132 3209 return false;
dc810e39
AM
3210 H_PUT_32 (abfd, elf_gp (abfd), buf);
3211 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
252b5132
RH
3212 return false;
3213 }
3214 l += intopt.size;
3215 }
3216 }
3217
103186c6
MM
3218 if (hdr->bfd_section != NULL)
3219 {
3220 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3221
3222 if (strcmp (name, ".sdata") == 0
3223 || strcmp (name, ".lit8") == 0
3224 || strcmp (name, ".lit4") == 0)
3225 {
3226 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3227 hdr->sh_type = SHT_PROGBITS;
3228 }
3229 else if (strcmp (name, ".sbss") == 0)
3230 {
3231 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3232 hdr->sh_type = SHT_NOBITS;
3233 }
3234 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3235 {
3236 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3237 hdr->sh_type = SHT_PROGBITS;
3238 }
3239 else if (strcmp (name, ".compact_rel") == 0)
3240 {
3241 hdr->sh_flags = 0;
3242 hdr->sh_type = SHT_PROGBITS;
3243 }
3244 else if (strcmp (name, ".rtproc") == 0)
3245 {
3246 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3247 {
3248 unsigned int adjust;
3249
3250 adjust = hdr->sh_size % hdr->sh_addralign;
3251 if (adjust != 0)
3252 hdr->sh_size += hdr->sh_addralign - adjust;
3253 }
3254 }
3255 }
3256
3257 return true;
252b5132
RH
3258}
3259\f
3260/* MIPS ELF uses two common sections. One is the usual one, and the
3261 other is for small objects. All the small objects are kept
3262 together, and then referenced via the gp pointer, which yields
3263 faster assembler code. This is what we use for the small common
3264 section. This approach is copied from ecoff.c. */
3265static asection mips_elf_scom_section;
3266static asymbol mips_elf_scom_symbol;
3267static asymbol *mips_elf_scom_symbol_ptr;
3268
3269/* MIPS ELF also uses an acommon section, which represents an
3270 allocated common symbol which may be overridden by a
3271 definition in a shared library. */
3272static asection mips_elf_acom_section;
3273static asymbol mips_elf_acom_symbol;
3274static asymbol *mips_elf_acom_symbol_ptr;
3275
252b5132
RH
3276/* Handle the special MIPS section numbers that a symbol may use.
3277 This is used for both the 32-bit and the 64-bit ABI. */
3278
3279void
3280_bfd_mips_elf_symbol_processing (abfd, asym)
3281 bfd *abfd;
3282 asymbol *asym;
3283{
3284 elf_symbol_type *elfsym;
3285
3286 elfsym = (elf_symbol_type *) asym;
3287 switch (elfsym->internal_elf_sym.st_shndx)
3288 {
3289 case SHN_MIPS_ACOMMON:
3290 /* This section is used in a dynamically linked executable file.
3291 It is an allocated common section. The dynamic linker can
3292 either resolve these symbols to something in a shared
3293 library, or it can just leave them here. For our purposes,
3294 we can consider these symbols to be in a new section. */
3295 if (mips_elf_acom_section.name == NULL)
3296 {
3297 /* Initialize the acommon section. */
3298 mips_elf_acom_section.name = ".acommon";
3299 mips_elf_acom_section.flags = SEC_ALLOC;
3300 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3301 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3302 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3303 mips_elf_acom_symbol.name = ".acommon";
3304 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3305 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3306 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3307 }
3308 asym->section = &mips_elf_acom_section;
3309 break;
3310
3311 case SHN_COMMON:
3312 /* Common symbols less than the GP size are automatically
7403cb63
MM
3313 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3314 if (asym->value > elf_gp_size (abfd)
3315 || IRIX_COMPAT (abfd) == ict_irix6)
252b5132
RH
3316 break;
3317 /* Fall through. */
3318 case SHN_MIPS_SCOMMON:
3319 if (mips_elf_scom_section.name == NULL)
3320 {
3321 /* Initialize the small common section. */
3322 mips_elf_scom_section.name = ".scommon";
3323 mips_elf_scom_section.flags = SEC_IS_COMMON;
3324 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3325 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3326 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3327 mips_elf_scom_symbol.name = ".scommon";
3328 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3329 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3330 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3331 }
3332 asym->section = &mips_elf_scom_section;
3333 asym->value = elfsym->internal_elf_sym.st_size;
3334 break;
3335
3336 case SHN_MIPS_SUNDEFINED:
3337 asym->section = bfd_und_section_ptr;
3338 break;
3339
3340#if 0 /* for SGI_COMPAT */
3341 case SHN_MIPS_TEXT:
3342 asym->section = mips_elf_text_section_ptr;
3343 break;
3344
3345 case SHN_MIPS_DATA:
3346 asym->section = mips_elf_data_section_ptr;
3347 break;
3348#endif
3349 }
3350}
3351\f
3352/* When creating an Irix 5 executable, we need REGINFO and RTPROC
3353 segments. */
3354
103186c6
MM
3355int
3356_bfd_mips_elf_additional_program_headers (abfd)
252b5132
RH
3357 bfd *abfd;
3358{
3359 asection *s;
303f629d 3360 int ret = 0;
252b5132 3361
303f629d 3362 /* See if we need a PT_MIPS_REGINFO segment. */
252b5132 3363 s = bfd_get_section_by_name (abfd, ".reginfo");
303f629d
MM
3364 if (s && (s->flags & SEC_LOAD))
3365 ++ret;
252b5132 3366
303f629d
MM
3367 /* See if we need a PT_MIPS_OPTIONS segment. */
3368 if (IRIX_COMPAT (abfd) == ict_irix6
be3ccd9c 3369 && bfd_get_section_by_name (abfd,
303f629d
MM
3370 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3371 ++ret;
3372
3373 /* See if we need a PT_MIPS_RTPROC segment. */
3374 if (IRIX_COMPAT (abfd) == ict_irix5
3375 && bfd_get_section_by_name (abfd, ".dynamic")
3376 && bfd_get_section_by_name (abfd, ".mdebug"))
3377 ++ret;
252b5132
RH
3378
3379 return ret;
3380}
3381
3382/* Modify the segment map for an Irix 5 executable. */
3383
103186c6
MM
3384boolean
3385_bfd_mips_elf_modify_segment_map (abfd)
252b5132
RH
3386 bfd *abfd;
3387{
3388 asection *s;
3389 struct elf_segment_map *m, **pm;
dc810e39 3390 bfd_size_type amt;
252b5132 3391
252b5132
RH
3392 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3393 segment. */
3394 s = bfd_get_section_by_name (abfd, ".reginfo");
3395 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3396 {
3397 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3398 if (m->p_type == PT_MIPS_REGINFO)
3399 break;
3400 if (m == NULL)
3401 {
dc810e39
AM
3402 amt = sizeof *m;
3403 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
252b5132
RH
3404 if (m == NULL)
3405 return false;
3406
3407 m->p_type = PT_MIPS_REGINFO;
3408 m->count = 1;
3409 m->sections[0] = s;
3410
3411 /* We want to put it after the PHDR and INTERP segments. */
3412 pm = &elf_tdata (abfd)->segment_map;
3413 while (*pm != NULL
3414 && ((*pm)->p_type == PT_PHDR
3415 || (*pm)->p_type == PT_INTERP))
3416 pm = &(*pm)->next;
3417
3418 m->next = *pm;
3419 *pm = m;
3420 }
3421 }
3422
303f629d
MM
3423 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3424 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3425 PT_OPTIONS segement immediately following the program header
3426 table. */
3427 if (IRIX_COMPAT (abfd) == ict_irix6)
252b5132 3428 {
303f629d
MM
3429 for (s = abfd->sections; s; s = s->next)
3430 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
252b5132 3431 break;
303f629d
MM
3432
3433 if (s)
252b5132 3434 {
303f629d
MM
3435 struct elf_segment_map *options_segment;
3436
435394bf
MM
3437 /* Usually, there's a program header table. But, sometimes
3438 there's not (like when running the `ld' testsuite). So,
3439 if there's no program header table, we just put the
3440 options segement at the end. */
be3ccd9c 3441 for (pm = &elf_tdata (abfd)->segment_map;
435394bf
MM
3442 *pm != NULL;
3443 pm = &(*pm)->next)
3444 if ((*pm)->p_type == PT_PHDR)
303f629d
MM
3445 break;
3446
dc810e39
AM
3447 amt = sizeof (struct elf_segment_map);
3448 options_segment = bfd_zalloc (abfd, amt);
435394bf 3449 options_segment->next = *pm;
303f629d
MM
3450 options_segment->p_type = PT_MIPS_OPTIONS;
3451 options_segment->p_flags = PF_R;
3452 options_segment->p_flags_valid = true;
3453 options_segment->count = 1;
3454 options_segment->sections[0] = s;
435394bf 3455 *pm = options_segment;
303f629d
MM
3456 }
3457 }
3458 else
3459 {
f7cb7d68 3460 if (IRIX_COMPAT (abfd) == ict_irix5)
303f629d 3461 {
f7cb7d68
UC
3462 /* If there are .dynamic and .mdebug sections, we make a room
3463 for the RTPROC header. FIXME: Rewrite without section names. */
3464 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3465 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3466 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
252b5132 3467 {
f7cb7d68
UC
3468 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3469 if (m->p_type == PT_MIPS_RTPROC)
3470 break;
303f629d 3471 if (m == NULL)
f7cb7d68 3472 {
dc810e39
AM
3473 amt = sizeof *m;
3474 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
f7cb7d68
UC
3475 if (m == NULL)
3476 return false;
252b5132 3477
f7cb7d68 3478 m->p_type = PT_MIPS_RTPROC;
252b5132 3479
f7cb7d68
UC
3480 s = bfd_get_section_by_name (abfd, ".rtproc");
3481 if (s == NULL)
3482 {
3483 m->count = 0;
3484 m->p_flags = 0;
3485 m->p_flags_valid = 1;
3486 }
3487 else
3488 {
3489 m->count = 1;
3490 m->sections[0] = s;
3491 }
303f629d 3492
f7cb7d68
UC
3493 /* We want to put it after the DYNAMIC segment. */
3494 pm = &elf_tdata (abfd)->segment_map;
3495 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3496 pm = &(*pm)->next;
3497 if (*pm != NULL)
3498 pm = &(*pm)->next;
303f629d 3499
f7cb7d68
UC
3500 m->next = *pm;
3501 *pm = m;
3502 }
303f629d 3503 }
252b5132 3504 }
303f629d
MM
3505 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3506 .dynstr, .dynsym, and .hash sections, and everything in
3507 between. */
f7cb7d68
UC
3508 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
3509 pm = &(*pm)->next)
303f629d
MM
3510 if ((*pm)->p_type == PT_DYNAMIC)
3511 break;
3512 m = *pm;
f7cb7d68
UC
3513 if (IRIX_COMPAT (abfd) == ict_none)
3514 {
3515 /* For a normal mips executable the permissions for the PT_DYNAMIC
3516 segment are read, write and execute. We do that here since
3517 the code in elf.c sets only the read permission. This matters
be3ccd9c 3518 sometimes for the dynamic linker. */
f7cb7d68
UC
3519 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3520 {
3521 m->p_flags = PF_R | PF_W | PF_X;
3522 m->p_flags_valid = 1;
3523 }
3524 }
303f629d 3525 if (m != NULL
f7cb7d68 3526 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
252b5132 3527 {
38b1a46c
NC
3528 static const char *sec_names[] =
3529 {
be3ccd9c
KH
3530 ".dynamic", ".dynstr", ".dynsym", ".hash"
3531 };
303f629d
MM
3532 bfd_vma low, high;
3533 unsigned int i, c;
3534 struct elf_segment_map *n;
3535
3536 low = 0xffffffff;
3537 high = 0;
3538 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
252b5132 3539 {
303f629d
MM
3540 s = bfd_get_section_by_name (abfd, sec_names[i]);
3541 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3542 {
3543 bfd_size_type sz;
3544
3545 if (low > s->vma)
3546 low = s->vma;
3547 sz = s->_cooked_size;
3548 if (sz == 0)
3549 sz = s->_raw_size;
3550 if (high < s->vma + sz)
3551 high = s->vma + sz;
3552 }
252b5132 3553 }
252b5132 3554
303f629d
MM
3555 c = 0;
3556 for (s = abfd->sections; s != NULL; s = s->next)
3557 if ((s->flags & SEC_LOAD) != 0
3558 && s->vma >= low
3559 && ((s->vma
f7cb7d68
UC
3560 + (s->_cooked_size !=
3561 0 ? s->_cooked_size : s->_raw_size)) <= high))
303f629d
MM
3562 ++c;
3563
dc810e39
AM
3564 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
3565 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
303f629d
MM
3566 if (n == NULL)
3567 return false;
3568 *n = *m;
3569 n->count = c;
252b5132 3570
303f629d
MM
3571 i = 0;
3572 for (s = abfd->sections; s != NULL; s = s->next)
252b5132 3573 {
303f629d
MM
3574 if ((s->flags & SEC_LOAD) != 0
3575 && s->vma >= low
3576 && ((s->vma
3577 + (s->_cooked_size != 0 ?
f7cb7d68 3578 s->_cooked_size : s->_raw_size)) <= high))
303f629d
MM
3579 {
3580 n->sections[i] = s;
3581 ++i;
3582 }
252b5132 3583 }
252b5132 3584
303f629d
MM
3585 *pm = n;
3586 }
252b5132
RH
3587 }
3588
3589 return true;
3590}
3591\f
3592/* The structure of the runtime procedure descriptor created by the
3593 loader for use by the static exception system. */
3594
3595typedef struct runtime_pdr {
3596 bfd_vma adr; /* memory address of start of procedure */
3597 long regmask; /* save register mask */
3598 long regoffset; /* save register offset */
3599 long fregmask; /* save floating point register mask */
3600 long fregoffset; /* save floating point register offset */
3601 long frameoffset; /* frame size */
3602 short framereg; /* frame pointer register */
3603 short pcreg; /* offset or reg of return pc */
3604 long irpss; /* index into the runtime string table */
3605 long reserved;
3606 struct exception_info *exception_info;/* pointer to exception array */
3607} RPDR, *pRPDR;
be3ccd9c 3608#define cbRPDR sizeof (RPDR)
252b5132
RH
3609#define rpdNil ((pRPDR) 0)
3610
3611/* Swap RPDR (runtime procedure table entry) for output. */
3612
3613static void ecoff_swap_rpdr_out
3614 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3615
3616static void
3617ecoff_swap_rpdr_out (abfd, in, ex)
3618 bfd *abfd;
3619 const RPDR *in;
3620 struct rpdr_ext *ex;
3621{
dc810e39
AM
3622 /* ECOFF_PUT_OFF was defined in ecoffswap.h. */
3623 ECOFF_PUT_OFF (abfd, in->adr, ex->p_adr);
3624 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
3625 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
3626 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
3627 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
3628 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
3629
3630 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
3631 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
3632
3633 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
252b5132 3634#if 0 /* FIXME */
dc810e39 3635 ECOFF_PUT_OFF (abfd, in->exception_info, ex->p_exception_info);
252b5132
RH
3636#endif
3637}
3638\f
3639/* Read ECOFF debugging information from a .mdebug section into a
3640 ecoff_debug_info structure. */
3641
3642boolean
3643_bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3644 bfd *abfd;
3645 asection *section;
3646 struct ecoff_debug_info *debug;
3647{
3648 HDRR *symhdr;
3649 const struct ecoff_debug_swap *swap;
3650 char *ext_hdr = NULL;
3651
3652 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
be3ccd9c 3653 memset (debug, 0, sizeof (*debug));
252b5132 3654
dc810e39 3655 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
252b5132
RH
3656 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3657 goto error_return;
3658
3659 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3660 swap->external_hdr_size)
3661 == false)
3662 goto error_return;
3663
3664 symhdr = &debug->symbolic_header;
3665 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3666
3667 /* The symbolic header contains absolute file offsets and sizes to
3668 read. */
3669#define READ(ptr, offset, count, size, type) \
3670 if (symhdr->count == 0) \
3671 debug->ptr = NULL; \
3672 else \
3673 { \
dc810e39
AM
3674 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
3675 debug->ptr = (type) bfd_malloc (amt); \
252b5132
RH
3676 if (debug->ptr == NULL) \
3677 goto error_return; \
3678 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
dc810e39 3679 || bfd_bread (debug->ptr, amt, abfd) != amt) \
252b5132
RH
3680 goto error_return; \
3681 }
3682
3683 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3684 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3685 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3686 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3687 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3688 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3689 union aux_ext *);
3690 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3691 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3692 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3693 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3694 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3695#undef READ
3696
3697 debug->fdr = NULL;
3698 debug->adjust = NULL;
3699
3700 return true;
3701
3702 error_return:
3703 if (ext_hdr != NULL)
3704 free (ext_hdr);
3705 if (debug->line != NULL)
3706 free (debug->line);
3707 if (debug->external_dnr != NULL)
3708 free (debug->external_dnr);
3709 if (debug->external_pdr != NULL)
3710 free (debug->external_pdr);
3711 if (debug->external_sym != NULL)
3712 free (debug->external_sym);
3713 if (debug->external_opt != NULL)
3714 free (debug->external_opt);
3715 if (debug->external_aux != NULL)
3716 free (debug->external_aux);
3717 if (debug->ss != NULL)
3718 free (debug->ss);
3719 if (debug->ssext != NULL)
3720 free (debug->ssext);
3721 if (debug->external_fdr != NULL)
3722 free (debug->external_fdr);
3723 if (debug->external_rfd != NULL)
3724 free (debug->external_rfd);
3725 if (debug->external_ext != NULL)
3726 free (debug->external_ext);
3727 return false;
3728}
3729\f
3730/* MIPS ELF local labels start with '$', not 'L'. */
3731
252b5132
RH
3732static boolean
3733mips_elf_is_local_label_name (abfd, name)
3734 bfd *abfd;
3735 const char *name;
3736{
3737 if (name[0] == '$')
3738 return true;
3739
3740 /* On Irix 6, the labels go back to starting with '.', so we accept
3741 the generic ELF local label syntax as well. */
3742 return _bfd_elf_is_local_label_name (abfd, name);
3743}
3744
3745/* MIPS ELF uses a special find_nearest_line routine in order the
3746 handle the ECOFF debugging information. */
3747
38b1a46c
NC
3748struct mips_elf_find_line
3749{
252b5132
RH
3750 struct ecoff_debug_info d;
3751 struct ecoff_find_line i;
3752};
3753
3754boolean
3755_bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3756 functionname_ptr, line_ptr)
3757 bfd *abfd;
3758 asection *section;
3759 asymbol **symbols;
3760 bfd_vma offset;
3761 const char **filename_ptr;
3762 const char **functionname_ptr;
3763 unsigned int *line_ptr;
3764{
3765 asection *msec;
3766
3767 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3768 filename_ptr, functionname_ptr,
3769 line_ptr))
3770 return true;
3771
3772 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3773 filename_ptr, functionname_ptr,
be3ccd9c 3774 line_ptr,
dc810e39 3775 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
857ec808 3776 &elf_tdata (abfd)->dwarf2_find_line_info))
252b5132
RH
3777 return true;
3778
3779 msec = bfd_get_section_by_name (abfd, ".mdebug");
3780 if (msec != NULL)
3781 {
3782 flagword origflags;
3783 struct mips_elf_find_line *fi;
3784 const struct ecoff_debug_swap * const swap =
3785 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3786
3787 /* If we are called during a link, mips_elf_final_link may have
3788 cleared the SEC_HAS_CONTENTS field. We force it back on here
3789 if appropriate (which it normally will be). */
3790 origflags = msec->flags;
3791 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3792 msec->flags |= SEC_HAS_CONTENTS;
3793
3794 fi = elf_tdata (abfd)->find_line_info;
3795 if (fi == NULL)
3796 {
3797 bfd_size_type external_fdr_size;
3798 char *fraw_src;
3799 char *fraw_end;
3800 struct fdr *fdr_ptr;
dc810e39 3801 bfd_size_type amt = sizeof (struct mips_elf_find_line);
252b5132 3802
dc810e39 3803 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
252b5132
RH
3804 if (fi == NULL)
3805 {
3806 msec->flags = origflags;
3807 return false;
3808 }
3809
3810 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3811 {
3812 msec->flags = origflags;
3813 return false;
3814 }
3815
3816 /* Swap in the FDR information. */
dc810e39
AM
3817 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
3818 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
252b5132
RH
3819 if (fi->d.fdr == NULL)
3820 {
3821 msec->flags = origflags;
3822 return false;
3823 }
3824 external_fdr_size = swap->external_fdr_size;
3825 fdr_ptr = fi->d.fdr;
3826 fraw_src = (char *) fi->d.external_fdr;
3827 fraw_end = (fraw_src
3828 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3829 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3830 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3831
3832 elf_tdata (abfd)->find_line_info = fi;
3833
3834 /* Note that we don't bother to ever free this information.
3835 find_nearest_line is either called all the time, as in
3836 objdump -l, so the information should be saved, or it is
3837 rarely called, as in ld error messages, so the memory
3838 wasted is unimportant. Still, it would probably be a
3839 good idea for free_cached_info to throw it away. */
3840 }
3841
3842 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3843 &fi->i, filename_ptr, functionname_ptr,
3844 line_ptr))
3845 {
3846 msec->flags = origflags;
3847 return true;
3848 }
3849
3850 msec->flags = origflags;
3851 }
3852
3853 /* Fall back on the generic ELF find_nearest_line routine. */
3854
3855 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3856 filename_ptr, functionname_ptr,
3857 line_ptr);
3858}
3859\f
3860 /* The mips16 compiler uses a couple of special sections to handle
3861 floating point arguments.
3862
3863 Section names that look like .mips16.fn.FNNAME contain stubs that
3864 copy floating point arguments from the fp regs to the gp regs and
3865 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3866 call should be redirected to the stub instead. If no 32 bit
3867 function calls FNNAME, the stub should be discarded. We need to
3868 consider any reference to the function, not just a call, because
3869 if the address of the function is taken we will need the stub,
3870 since the address might be passed to a 32 bit function.
3871
3872 Section names that look like .mips16.call.FNNAME contain stubs
3873 that copy floating point arguments from the gp regs to the fp
3874 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3875 then any 16 bit function that calls FNNAME should be redirected
3876 to the stub instead. If FNNAME is not a 32 bit function, the
3877 stub should be discarded.
3878
3879 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3880 which call FNNAME and then copy the return value from the fp regs
3881 to the gp regs. These stubs store the return value in $18 while
3882 calling FNNAME; any function which might call one of these stubs
3883 must arrange to save $18 around the call. (This case is not
3884 needed for 32 bit functions that call 16 bit functions, because
3885 16 bit functions always return floating point values in both
3886 $f0/$f1 and $2/$3.)
3887
3888 Note that in all cases FNNAME might be defined statically.
3889 Therefore, FNNAME is not used literally. Instead, the relocation
3890 information will indicate which symbol the section is for.
3891
3892 We record any stubs that we find in the symbol table. */
3893
3894#define FN_STUB ".mips16.fn."
3895#define CALL_STUB ".mips16.call."
3896#define CALL_FP_STUB ".mips16.call.fp."
3897
252b5132
RH
3898/* MIPS ELF linker hash table. */
3899
38b1a46c
NC
3900struct mips_elf_link_hash_table
3901{
252b5132
RH
3902 struct elf_link_hash_table root;
3903#if 0
3904 /* We no longer use this. */
3905 /* String section indices for the dynamic section symbols. */
3906 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3907#endif
3908 /* The number of .rtproc entries. */
3909 bfd_size_type procedure_count;
3910 /* The size of the .compact_rel section (if SGI_COMPAT). */
3911 bfd_size_type compact_rel_size;
3912 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
be3ccd9c 3913 entry is set to the address of __rld_obj_head as in Irix 5. */
252b5132
RH
3914 boolean use_rld_obj_head;
3915 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3916 bfd_vma rld_value;
be3ccd9c 3917 /* This is set if we see any mips16 stub sections. */
252b5132
RH
3918 boolean mips16_stubs_seen;
3919};
3920
3921/* Look up an entry in a MIPS ELF linker hash table. */
3922
3923#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3924 ((struct mips_elf_link_hash_entry *) \
3925 elf_link_hash_lookup (&(table)->root, (string), (create), \
3926 (copy), (follow)))
3927
3928/* Traverse a MIPS ELF linker hash table. */
3929
3930#define mips_elf_link_hash_traverse(table, func, info) \
3931 (elf_link_hash_traverse \
3932 (&(table)->root, \
3933 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3934 (info)))
3935
3936/* Get the MIPS ELF linker hash table from a link_info structure. */
3937
3938#define mips_elf_hash_table(p) \
3939 ((struct mips_elf_link_hash_table *) ((p)->hash))
3940
3941static boolean mips_elf_output_extsym
3942 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3943
3944/* Create an entry in a MIPS ELF linker hash table. */
3945
3946static struct bfd_hash_entry *
3947mips_elf_link_hash_newfunc (entry, table, string)
3948 struct bfd_hash_entry *entry;
3949 struct bfd_hash_table *table;
3950 const char *string;
3951{
3952 struct mips_elf_link_hash_entry *ret =
3953 (struct mips_elf_link_hash_entry *) entry;
3954
3955 /* Allocate the structure if it has not already been allocated by a
3956 subclass. */
3957 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3958 ret = ((struct mips_elf_link_hash_entry *)
3959 bfd_hash_allocate (table,
3960 sizeof (struct mips_elf_link_hash_entry)));
3961 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3962 return (struct bfd_hash_entry *) ret;
3963
3964 /* Call the allocation method of the superclass. */
3965 ret = ((struct mips_elf_link_hash_entry *)
3966 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3967 table, string));
3968 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3969 {
3970 /* Set local fields. */
3971 memset (&ret->esym, 0, sizeof (EXTR));
3972 /* We use -2 as a marker to indicate that the information has
3973 not been set. -1 means there is no associated ifd. */
3974 ret->esym.ifd = -2;
a3c7651d 3975 ret->possibly_dynamic_relocs = 0;
43917054 3976 ret->readonly_reloc = false;
c6142e5d 3977 ret->min_dyn_reloc_index = 0;
9117d219 3978 ret->no_fn_stub = false;
252b5132
RH
3979 ret->fn_stub = NULL;
3980 ret->need_fn_stub = false;
3981 ret->call_stub = NULL;
3982 ret->call_fp_stub = NULL;
3983 }
3984
3985 return (struct bfd_hash_entry *) ret;
3986}
3987
9e80ff3a
L
3988static void
3989_bfd_mips_elf_hide_symbol (info, entry)
b305ef96 3990 struct bfd_link_info *info;
9e80ff3a 3991 struct elf_link_hash_entry *entry;
b305ef96
UC
3992{
3993 bfd *dynobj;
3994 asection *got;
3995 struct mips_got_info *g;
9e80ff3a
L
3996 struct mips_elf_link_hash_entry *h;
3997 h = (struct mips_elf_link_hash_entry *) entry;
b305ef96
UC
3998 dynobj = elf_hash_table (info)->dynobj;
3999 got = bfd_get_section_by_name (dynobj, ".got");
4000 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4001
4002 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
4003 h->root.plt.offset = (bfd_vma) -1;
5fba655a
L
4004 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4005 h->root.dynindx = -1;
b305ef96
UC
4006
4007 /* FIXME: Do we allocate too much GOT space here? */
4008 g->local_gotno++;
4009 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4010}
4011
252b5132
RH
4012/* Create a MIPS ELF linker hash table. */
4013
103186c6
MM
4014struct bfd_link_hash_table *
4015_bfd_mips_elf_link_hash_table_create (abfd)
252b5132
RH
4016 bfd *abfd;
4017{
4018 struct mips_elf_link_hash_table *ret;
dc810e39 4019 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
252b5132 4020
dc810e39 4021 ret = (struct mips_elf_link_hash_table *) bfd_alloc (abfd, amt);
252b5132
RH
4022 if (ret == (struct mips_elf_link_hash_table *) NULL)
4023 return NULL;
4024
4025 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4026 mips_elf_link_hash_newfunc))
4027 {
4028 bfd_release (abfd, ret);
4029 return NULL;
4030 }
4031
4032#if 0
4033 /* We no longer use this. */
4034 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4035 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4036#endif
4037 ret->procedure_count = 0;
4038 ret->compact_rel_size = 0;
4039 ret->use_rld_obj_head = false;
4040 ret->rld_value = 0;
4041 ret->mips16_stubs_seen = false;
4042
4043 return &ret->root.root;
4044}
4045
4046/* Hook called by the linker routine which adds symbols from an object
4047 file. We must handle the special MIPS section numbers here. */
4048
103186c6
MM
4049boolean
4050_bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
252b5132
RH
4051 bfd *abfd;
4052 struct bfd_link_info *info;
4053 const Elf_Internal_Sym *sym;
4054 const char **namep;
5f771d47 4055 flagword *flagsp ATTRIBUTE_UNUSED;
252b5132
RH
4056 asection **secp;
4057 bfd_vma *valp;
4058{
4059 if (SGI_COMPAT (abfd)
4060 && (abfd->flags & DYNAMIC) != 0
4061 && strcmp (*namep, "_rld_new_interface") == 0)
4062 {
4063 /* Skip Irix 5 rld entry name. */
4064 *namep = NULL;
4065 return true;
4066 }
4067
4068 switch (sym->st_shndx)
4069 {
4070 case SHN_COMMON:
4071 /* Common symbols less than the GP size are automatically
4072 treated as SHN_MIPS_SCOMMON symbols. */
7403cb63
MM
4073 if (sym->st_size > elf_gp_size (abfd)
4074 || IRIX_COMPAT (abfd) == ict_irix6)
252b5132
RH
4075 break;
4076 /* Fall through. */
4077 case SHN_MIPS_SCOMMON:
4078 *secp = bfd_make_section_old_way (abfd, ".scommon");
4079 (*secp)->flags |= SEC_IS_COMMON;
4080 *valp = sym->st_size;
4081 break;
4082
4083 case SHN_MIPS_TEXT:
4084 /* This section is used in a shared object. */
b305ef96 4085 if (elf_tdata (abfd)->elf_text_section == NULL)
252b5132 4086 {
b305ef96
UC
4087 asymbol *elf_text_symbol;
4088 asection *elf_text_section;
dc810e39 4089 bfd_size_type amt = sizeof (asection);
b305ef96 4090
dc810e39 4091 elf_text_section = bfd_zalloc (abfd, amt);
b305ef96
UC
4092 if (elf_text_section == NULL)
4093 return false;
4094
dc810e39
AM
4095 amt = sizeof (asymbol);
4096 elf_text_symbol = bfd_zalloc (abfd, amt);
b305ef96
UC
4097 if (elf_text_symbol == NULL)
4098 return false;
4099
252b5132 4100 /* Initialize the section. */
b305ef96
UC
4101
4102 elf_tdata (abfd)->elf_text_section = elf_text_section;
4103 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4104
4105 elf_text_section->symbol = elf_text_symbol;
4106 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4107
4108 elf_text_section->name = ".text";
4109 elf_text_section->flags = SEC_NO_FLAGS;
4110 elf_text_section->output_section = NULL;
4111 elf_text_section->owner = abfd;
4112 elf_text_symbol->name = ".text";
4113 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4114 elf_text_symbol->section = elf_text_section;
252b5132
RH
4115 }
4116 /* This code used to do *secp = bfd_und_section_ptr if
4117 info->shared. I don't know why, and that doesn't make sense,
4118 so I took it out. */
b305ef96 4119 *secp = elf_tdata (abfd)->elf_text_section;
252b5132
RH
4120 break;
4121
4122 case SHN_MIPS_ACOMMON:
4123 /* Fall through. XXX Can we treat this as allocated data? */
4124 case SHN_MIPS_DATA:
4125 /* This section is used in a shared object. */
b305ef96 4126 if (elf_tdata (abfd)->elf_data_section == NULL)
252b5132 4127 {
b305ef96
UC
4128 asymbol *elf_data_symbol;
4129 asection *elf_data_section;
dc810e39 4130 bfd_size_type amt = sizeof (asection);
b305ef96 4131
dc810e39 4132 elf_data_section = bfd_zalloc (abfd, amt);
b305ef96
UC
4133 if (elf_data_section == NULL)
4134 return false;
4135
dc810e39
AM
4136 amt = sizeof (asymbol);
4137 elf_data_symbol = bfd_zalloc (abfd, amt);
b305ef96
UC
4138 if (elf_data_symbol == NULL)
4139 return false;
4140
252b5132 4141 /* Initialize the section. */
b305ef96
UC
4142
4143 elf_tdata (abfd)->elf_data_section = elf_data_section;
4144 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4145
4146 elf_data_section->symbol = elf_data_symbol;
4147 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4148
4149 elf_data_section->name = ".data";
4150 elf_data_section->flags = SEC_NO_FLAGS;
4151 elf_data_section->output_section = NULL;
4152 elf_data_section->owner = abfd;
4153 elf_data_symbol->name = ".data";
4154 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4155 elf_data_symbol->section = elf_data_section;
252b5132
RH
4156 }
4157 /* This code used to do *secp = bfd_und_section_ptr if
4158 info->shared. I don't know why, and that doesn't make sense,
4159 so I took it out. */
b305ef96 4160 *secp = elf_tdata (abfd)->elf_data_section;
252b5132
RH
4161 break;
4162
4163 case SHN_MIPS_SUNDEFINED:
4164 *secp = bfd_und_section_ptr;
4165 break;
4166 }
4167
4168 if (SGI_COMPAT (abfd)
4169 && ! info->shared
4170 && info->hash->creator == abfd->xvec
4171 && strcmp (*namep, "__rld_obj_head") == 0)
4172 {
4173 struct elf_link_hash_entry *h;
4174
4175 /* Mark __rld_obj_head as dynamic. */
4176 h = NULL;
4177 if (! (_bfd_generic_link_add_one_symbol
4178 (info, abfd, *namep, BSF_GLOBAL, *secp,
4179 (bfd_vma) *valp, (const char *) NULL, false,
4180 get_elf_backend_data (abfd)->collect,
4181 (struct bfd_link_hash_entry **) &h)))
4182 return false;
be3ccd9c 4183 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
252b5132
RH
4184 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4185 h->type = STT_OBJECT;
4186
4187 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4188 return false;
4189
4190 mips_elf_hash_table (info)->use_rld_obj_head = true;
4191 }
4192
4193 /* If this is a mips16 text symbol, add 1 to the value to make it
4194 odd. This will cause something like .word SYM to come up with
4195 the right value when it is loaded into the PC. */
4196 if (sym->st_other == STO_MIPS16)
4197 ++*valp;
4198
4199 return true;
4200}
4201
4202/* Structure used to pass information to mips_elf_output_extsym. */
4203
38b1a46c
NC
4204struct extsym_info
4205{
252b5132
RH
4206 bfd *abfd;
4207 struct bfd_link_info *info;
4208 struct ecoff_debug_info *debug;
4209 const struct ecoff_debug_swap *swap;
4210 boolean failed;
4211};
4212
4213/* This routine is used to write out ECOFF debugging external symbol
4214 information. It is called via mips_elf_link_hash_traverse. The
4215 ECOFF external symbol information must match the ELF external
4216 symbol information. Unfortunately, at this point we don't know
4217 whether a symbol is required by reloc information, so the two
4218 tables may wind up being different. We must sort out the external
4219 symbol information before we can set the final size of the .mdebug
4220 section, and we must set the size of the .mdebug section before we
4221 can relocate any sections, and we can't know which symbols are
4222 required by relocation until we relocate the sections.
4223 Fortunately, it is relatively unlikely that any symbol will be
4224 stripped but required by a reloc. In particular, it can not happen
4225 when generating a final executable. */
4226
4227static boolean
4228mips_elf_output_extsym (h, data)
4229 struct mips_elf_link_hash_entry *h;
4230 PTR data;
4231{
4232 struct extsym_info *einfo = (struct extsym_info *) data;
4233 boolean strip;
4234 asection *sec, *output_section;
4235
4236 if (h->root.indx == -2)
4237 strip = false;
4238 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4239 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4240 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4241 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4242 strip = true;
4243 else if (einfo->info->strip == strip_all
4244 || (einfo->info->strip == strip_some
4245 && bfd_hash_lookup (einfo->info->keep_hash,
4246 h->root.root.root.string,
4247 false, false) == NULL))
4248 strip = true;
4249 else
4250 strip = false;
4251
4252 if (strip)
4253 return true;
4254
4255 if (h->esym.ifd == -2)
4256 {
4257 h->esym.jmptbl = 0;
4258 h->esym.cobol_main = 0;
4259 h->esym.weakext = 0;
4260 h->esym.reserved = 0;
4261 h->esym.ifd = ifdNil;
4262 h->esym.asym.value = 0;
4263 h->esym.asym.st = stGlobal;
4264
f7cb7d68 4265 if (h->root.root.type == bfd_link_hash_undefined
be3ccd9c 4266 || h->root.root.type == bfd_link_hash_undefweak)
252b5132
RH
4267 {
4268 const char *name;
4269
4270 /* Use undefined class. Also, set class and type for some
4271 special symbols. */
4272 name = h->root.root.root.string;
4273 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4274 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4275 {
4276 h->esym.asym.sc = scData;
4277 h->esym.asym.st = stLabel;
4278 h->esym.asym.value = 0;
4279 }
4280 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4281 {
4282 h->esym.asym.sc = scAbs;
4283 h->esym.asym.st = stLabel;
4284 h->esym.asym.value =
4285 mips_elf_hash_table (einfo->info)->procedure_count;
4286 }
4287 else if (strcmp (name, "_gp_disp") == 0)
4288 {
4289 h->esym.asym.sc = scAbs;
4290 h->esym.asym.st = stLabel;
4291 h->esym.asym.value = elf_gp (einfo->abfd);
4292 }
4293 else
4294 h->esym.asym.sc = scUndefined;
4295 }
4296 else if (h->root.root.type != bfd_link_hash_defined
4297 && h->root.root.type != bfd_link_hash_defweak)
4298 h->esym.asym.sc = scAbs;
4299 else
4300 {
4301 const char *name;
4302
4303 sec = h->root.root.u.def.section;
4304 output_section = sec->output_section;
4305
4306 /* When making a shared library and symbol h is the one from
4307 the another shared library, OUTPUT_SECTION may be null. */
4308 if (output_section == NULL)
4309 h->esym.asym.sc = scUndefined;
4310 else
4311 {
4312 name = bfd_section_name (output_section->owner, output_section);
4313
4314 if (strcmp (name, ".text") == 0)
4315 h->esym.asym.sc = scText;
4316 else if (strcmp (name, ".data") == 0)
4317 h->esym.asym.sc = scData;
4318 else if (strcmp (name, ".sdata") == 0)
4319 h->esym.asym.sc = scSData;
4320 else if (strcmp (name, ".rodata") == 0
4321 || strcmp (name, ".rdata") == 0)
4322 h->esym.asym.sc = scRData;
4323 else if (strcmp (name, ".bss") == 0)
4324 h->esym.asym.sc = scBss;
4325 else if (strcmp (name, ".sbss") == 0)
4326 h->esym.asym.sc = scSBss;
4327 else if (strcmp (name, ".init") == 0)
4328 h->esym.asym.sc = scInit;
4329 else if (strcmp (name, ".fini") == 0)
4330 h->esym.asym.sc = scFini;
4331 else
4332 h->esym.asym.sc = scAbs;
4333 }
4334 }
4335
4336 h->esym.asym.reserved = 0;
4337 h->esym.asym.index = indexNil;
4338 }
4339
4340 if (h->root.root.type == bfd_link_hash_common)
4341 h->esym.asym.value = h->root.root.u.c.size;
4342 else if (h->root.root.type == bfd_link_hash_defined
4343 || h->root.root.type == bfd_link_hash_defweak)
4344 {
4345 if (h->esym.asym.sc == scCommon)
4346 h->esym.asym.sc = scBss;
4347 else if (h->esym.asym.sc == scSCommon)
4348 h->esym.asym.sc = scSBss;
4349
4350 sec = h->root.root.u.def.section;
4351 output_section = sec->output_section;
4352 if (output_section != NULL)
4353 h->esym.asym.value = (h->root.root.u.def.value
4354 + sec->output_offset
4355 + output_section->vma);
4356 else
4357 h->esym.asym.value = 0;
4358 }
4359 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4360 {
9117d219
NC
4361 struct mips_elf_link_hash_entry *hd = h;
4362 boolean no_fn_stub = h->no_fn_stub;
4363
4364 while (hd->root.root.type == bfd_link_hash_indirect)
252b5132 4365 {
9117d219
NC
4366 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
4367 no_fn_stub = no_fn_stub || hd->no_fn_stub;
252b5132 4368 }
9117d219
NC
4369
4370 if (!no_fn_stub)
4371 {
4372 /* Set type and value for a symbol with a function stub. */
4373 h->esym.asym.st = stProc;
4374 sec = hd->root.root.u.def.section;
4375 if (sec == NULL)
4376 h->esym.asym.value = 0;
4377 else
4378 {
4379 output_section = sec->output_section;
4380 if (output_section != NULL)
4381 h->esym.asym.value = (hd->root.plt.offset
4382 + sec->output_offset
4383 + output_section->vma);
4384 else
4385 h->esym.asym.value = 0;
4386 }
252b5132 4387#if 0 /* FIXME? */
9117d219 4388 h->esym.ifd = 0;
252b5132 4389#endif
9117d219 4390 }
252b5132
RH
4391 }
4392
4393 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4394 h->root.root.root.string,
4395 &h->esym))
4396 {
4397 einfo->failed = true;
4398 return false;
4399 }
4400
4401 return true;
4402}
4403
4404/* Create a runtime procedure table from the .mdebug section. */
4405
4406static boolean
4407mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4408 PTR handle;
4409 bfd *abfd;
4410 struct bfd_link_info *info;
4411 asection *s;
4412 struct ecoff_debug_info *debug;
4413{
4414 const struct ecoff_debug_swap *swap;
4415 HDRR *hdr = &debug->symbolic_header;
4416 RPDR *rpdr, *rp;
4417 struct rpdr_ext *erp;
4418 PTR rtproc;
4419 struct pdr_ext *epdr;
4420 struct sym_ext *esym;
4421 char *ss, **sv;
4422 char *str;
dc810e39
AM
4423 bfd_size_type size;
4424 bfd_size_type count;
252b5132
RH
4425 unsigned long sindex;
4426 unsigned long i;
4427 PDR pdr;
4428 SYMR sym;
4429 const char *no_name_func = _("static procedure (no name)");
4430
4431 epdr = NULL;
4432 rpdr = NULL;
4433 esym = NULL;
4434 ss = NULL;
4435 sv = NULL;
4436
4437 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4438
4439 sindex = strlen (no_name_func) + 1;
4440 count = hdr->ipdMax;
4441 if (count > 0)
4442 {
4443 size = swap->external_pdr_size;
4444
4445 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4446 if (epdr == NULL)
4447 goto error_return;
4448
4449 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4450 goto error_return;
4451
4452 size = sizeof (RPDR);
4453 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4454 if (rpdr == NULL)
4455 goto error_return;
4456
dc810e39
AM
4457 size = sizeof (char *);
4458 sv = (char **) bfd_malloc (size * count);
252b5132
RH
4459 if (sv == NULL)
4460 goto error_return;
4461
4462 count = hdr->isymMax;
4463 size = swap->external_sym_size;
4464 esym = (struct sym_ext *) bfd_malloc (size * count);
4465 if (esym == NULL)
4466 goto error_return;
4467
4468 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4469 goto error_return;
4470
4471 count = hdr->issMax;
4472 ss = (char *) bfd_malloc (count);
4473 if (ss == NULL)
4474 goto error_return;
4475 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4476 goto error_return;
4477
4478 count = hdr->ipdMax;
dc810e39 4479 for (i = 0; i < (unsigned long) count; i++, rp++)
252b5132
RH
4480 {
4481 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4482 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4483 rp->adr = sym.value;
4484 rp->regmask = pdr.regmask;
4485 rp->regoffset = pdr.regoffset;
4486 rp->fregmask = pdr.fregmask;
4487 rp->fregoffset = pdr.fregoffset;
4488 rp->frameoffset = pdr.frameoffset;
4489 rp->framereg = pdr.framereg;
4490 rp->pcreg = pdr.pcreg;
4491 rp->irpss = sindex;
4492 sv[i] = ss + sym.iss;
4493 sindex += strlen (sv[i]) + 1;
4494 }
4495 }
4496
4497 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4498 size = BFD_ALIGN (size, 16);
4499 rtproc = (PTR) bfd_alloc (abfd, size);
4500 if (rtproc == NULL)
4501 {
4502 mips_elf_hash_table (info)->procedure_count = 0;
4503 goto error_return;
4504 }
4505
4506 mips_elf_hash_table (info)->procedure_count = count + 2;
4507
4508 erp = (struct rpdr_ext *) rtproc;
4509 memset (erp, 0, sizeof (struct rpdr_ext));
4510 erp++;
4511 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4512 strcpy (str, no_name_func);
4513 str += strlen (no_name_func) + 1;
4514 for (i = 0; i < count; i++)
4515 {
4516 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4517 strcpy (str, sv[i]);
4518 str += strlen (sv[i]) + 1;
4519 }
dc810e39 4520 ECOFF_PUT_OFF (abfd, -1, (erp + count)->p_adr);
252b5132
RH
4521
4522 /* Set the size and contents of .rtproc section. */
4523 s->_raw_size = size;
4524 s->contents = (bfd_byte *) rtproc;
4525
4526 /* Skip this section later on (I don't think this currently
4527 matters, but someday it might). */
4528 s->link_order_head = (struct bfd_link_order *) NULL;
4529
4530 if (epdr != NULL)
4531 free (epdr);
4532 if (rpdr != NULL)
4533 free (rpdr);
4534 if (esym != NULL)
4535 free (esym);
4536 if (ss != NULL)
4537 free (ss);
4538 if (sv != NULL)
4539 free (sv);
4540
4541 return true;
4542
4543 error_return:
4544 if (epdr != NULL)
4545 free (epdr);
4546 if (rpdr != NULL)
4547 free (rpdr);
4548 if (esym != NULL)
4549 free (esym);
4550 if (ss != NULL)
4551 free (ss);
4552 if (sv != NULL)
4553 free (sv);
4554 return false;
4555}
4556
4557/* A comparison routine used to sort .gptab entries. */
4558
4559static int
4560gptab_compare (p1, p2)
4561 const PTR p1;
4562 const PTR p2;
4563{
4564 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4565 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4566
4567 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4568}
4569
4570/* We need to use a special link routine to handle the .reginfo and
4571 the .mdebug sections. We need to merge all instances of these
4572 sections together, not write them all out sequentially. */
4573
103186c6
MM
4574boolean
4575_bfd_mips_elf_final_link (abfd, info)
252b5132
RH
4576 bfd *abfd;
4577 struct bfd_link_info *info;
4578{
4579 asection **secpp;
4580 asection *o;
4581 struct bfd_link_order *p;
4582 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4583 asection *rtproc_sec;
4584 Elf32_RegInfo reginfo;
4585 struct ecoff_debug_info debug;
4586 const struct ecoff_debug_swap *swap
4587 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4588 HDRR *symhdr = &debug.symbolic_header;
4589 PTR mdebug_handle = NULL;
f7cb7d68
UC
4590 asection *s;
4591 EXTR esym;
f7cb7d68 4592 unsigned int i;
dc810e39
AM
4593 bfd_size_type amt;
4594
4595 static const char * const secname[] =
38b1a46c 4596 {
be3ccd9c
KH
4597 ".text", ".init", ".fini", ".data",
4598 ".rodata", ".sdata", ".sbss", ".bss"
4599 };
38b1a46c
NC
4600 static const int sc[] =
4601 {
be3ccd9c
KH
4602 scText, scInit, scFini, scData,
4603 scRData, scSData, scSBss, scBss
4604 };
252b5132 4605
303f629d
MM
4606 /* If all the things we linked together were PIC, but we're
4607 producing an executable (rather than a shared object), then the
4608 resulting file is CPIC (i.e., it calls PIC code.) */
0dda5f7a
ILT
4609 if (!info->shared
4610 && !info->relocateable
4611 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
252b5132 4612 {
303f629d
MM
4613 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4614 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
252b5132
RH
4615 }
4616
b3be9b46
RH
4617 /* We'd carefully arranged the dynamic symbol indices, and then the
4618 generic size_dynamic_sections renumbered them out from under us.
4619 Rather than trying somehow to prevent the renumbering, just do
4620 the sort again. */
441d6d79 4621 if (elf_hash_table (info)->dynamic_sections_created)
b3be9b46
RH
4622 {
4623 bfd *dynobj;
4624 asection *got;
4625 struct mips_got_info *g;
4626
435394bf
MM
4627 /* When we resort, we must tell mips_elf_sort_hash_table what
4628 the lowest index it may use is. That's the number of section
4629 symbols we're going to add. The generic ELF linker only
4630 adds these symbols when building a shared object. Note that
4631 we count the sections after (possibly) removing the .options
4632 section above. */
be3ccd9c 4633 if (!mips_elf_sort_hash_table (info, (info->shared
435394bf
MM
4634 ? bfd_count_sections (abfd) + 1
4635 : 1)))
be3ccd9c 4636 return false;
b3be9b46
RH
4637
4638 /* Make sure we didn't grow the global .got region. */
4639 dynobj = elf_hash_table (info)->dynobj;
4640 got = bfd_get_section_by_name (dynobj, ".got");
4641 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4642
8b237a89
MM
4643 if (g->global_gotsym != NULL)
4644 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4645 - g->global_gotsym->dynindx)
4646 <= g->global_gotno);
b3be9b46
RH
4647 }
4648
303f629d
MM
4649 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4650 include it, even though we don't process it quite right. (Some
4651 entries are supposed to be merged.) Empirically, we seem to be
4652 better off including it then not. */
f7cb7d68 4653 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
303f629d
MM
4654 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4655 {
4656 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4657 {
4658 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4659 if (p->type == bfd_indirect_link_order)
be3ccd9c 4660 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
303f629d
MM
4661 (*secpp)->link_order_head = NULL;
4662 *secpp = (*secpp)->next;
4663 --abfd->section_count;
be3ccd9c 4664
303f629d
MM
4665 break;
4666 }
4667 }
4668
252b5132
RH
4669 /* Get a value for the GP register. */
4670 if (elf_gp (abfd) == 0)
4671 {
4672 struct bfd_link_hash_entry *h;
4673
4674 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4675 if (h != (struct bfd_link_hash_entry *) NULL
4676 && h->type == bfd_link_hash_defined)
4677 elf_gp (abfd) = (h->u.def.value
4678 + h->u.def.section->output_section->vma
4679 + h->u.def.section->output_offset);
0db63c18
MM
4680 else if (info->relocateable)
4681 {
4682 bfd_vma lo;
4683
4684 /* Find the GP-relative section with the lowest offset. */
4685 lo = (bfd_vma) -1;
4686 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
be3ccd9c 4687 if (o->vma < lo
0db63c18
MM
4688 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4689 lo = o->vma;
4690
4691 /* And calculate GP relative to that. */
4692 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4693 }
252b5132
RH
4694 else
4695 {
4696 /* If the relocate_section function needs to do a reloc
4697 involving the GP value, it should make a reloc_dangerous
4698 callback to warn that GP is not defined. */
4699 }
4700 }
4701
4702 /* Go through the sections and collect the .reginfo and .mdebug
4703 information. */
4704 reginfo_sec = NULL;
4705 mdebug_sec = NULL;
4706 gptab_data_sec = NULL;
4707 gptab_bss_sec = NULL;
4708 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4709 {
4710 if (strcmp (o->name, ".reginfo") == 0)
4711 {
4712 memset (&reginfo, 0, sizeof reginfo);
4713
4714 /* We have found the .reginfo section in the output file.
4715 Look through all the link_orders comprising it and merge
4716 the information together. */
4717 for (p = o->link_order_head;
4718 p != (struct bfd_link_order *) NULL;
4719 p = p->next)
4720 {
4721 asection *input_section;
4722 bfd *input_bfd;
4723 Elf32_External_RegInfo ext;
4724 Elf32_RegInfo sub;
4725
4726 if (p->type != bfd_indirect_link_order)
4727 {
4728 if (p->type == bfd_fill_link_order)
4729 continue;
4730 abort ();
4731 }
4732
4733 input_section = p->u.indirect.section;
4734 input_bfd = input_section->owner;
4735
4736 /* The linker emulation code has probably clobbered the
4737 size to be zero bytes. */
4738 if (input_section->_raw_size == 0)
4739 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4740
4741 if (! bfd_get_section_contents (input_bfd, input_section,
4742 (PTR) &ext,
4743 (file_ptr) 0,
dc810e39 4744 (bfd_size_type) sizeof ext))
252b5132
RH
4745 return false;
4746
4747 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4748
4749 reginfo.ri_gprmask |= sub.ri_gprmask;
4750 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4751 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4752 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4753 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4754
4755 /* ri_gp_value is set by the function
4756 mips_elf32_section_processing when the section is
4757 finally written out. */
4758
4759 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4760 elf_link_input_bfd ignores this section. */
be3ccd9c 4761 input_section->flags &= ~SEC_HAS_CONTENTS;
252b5132
RH
4762 }
4763
4764 /* Size has been set in mips_elf_always_size_sections */
4765 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4766
4767 /* Skip this section later on (I don't think this currently
4768 matters, but someday it might). */
4769 o->link_order_head = (struct bfd_link_order *) NULL;
4770
4771 reginfo_sec = o;
4772 }
4773
4774 if (strcmp (o->name, ".mdebug") == 0)
4775 {
4776 struct extsym_info einfo;
dc810e39 4777 bfd_vma last;
252b5132
RH
4778
4779 /* We have found the .mdebug section in the output file.
4780 Look through all the link_orders comprising it and merge
4781 the information together. */
4782 symhdr->magic = swap->sym_magic;
4783 /* FIXME: What should the version stamp be? */
4784 symhdr->vstamp = 0;
4785 symhdr->ilineMax = 0;
4786 symhdr->cbLine = 0;
4787 symhdr->idnMax = 0;
4788 symhdr->ipdMax = 0;
4789 symhdr->isymMax = 0;
4790 symhdr->ioptMax = 0;
4791 symhdr->iauxMax = 0;
4792 symhdr->issMax = 0;
4793 symhdr->issExtMax = 0;
4794 symhdr->ifdMax = 0;
4795 symhdr->crfd = 0;
4796 symhdr->iextMax = 0;
4797
4798 /* We accumulate the debugging information itself in the
4799 debug_info structure. */
4800 debug.line = NULL;
4801 debug.external_dnr = NULL;
4802 debug.external_pdr = NULL;
4803 debug.external_sym = NULL;
4804 debug.external_opt = NULL;
4805 debug.external_aux = NULL;
4806 debug.ss = NULL;
4807 debug.ssext = debug.ssext_end = NULL;
4808 debug.external_fdr = NULL;
4809 debug.external_rfd = NULL;
4810 debug.external_ext = debug.external_ext_end = NULL;
4811
4812 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4813 if (mdebug_handle == (PTR) NULL)
4814 return false;
4815
be3ccd9c
KH
4816 esym.jmptbl = 0;
4817 esym.cobol_main = 0;
4818 esym.weakext = 0;
4819 esym.reserved = 0;
4820 esym.ifd = ifdNil;
4821 esym.asym.iss = issNil;
4822 esym.asym.st = stLocal;
4823 esym.asym.reserved = 0;
4824 esym.asym.index = indexNil;
4825 last = 0;
dc810e39 4826 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
be3ccd9c
KH
4827 {
4828 esym.asym.sc = sc[i];
dc810e39 4829 s = bfd_get_section_by_name (abfd, secname[i]);
be3ccd9c
KH
4830 if (s != NULL)
4831 {
4832 esym.asym.value = s->vma;
4833 last = s->vma + s->_raw_size;
4834 }
4835 else
4836 esym.asym.value = last;
4837 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
dc810e39 4838 secname[i], &esym))
be3ccd9c
KH
4839 return false;
4840 }
252b5132
RH
4841
4842 for (p = o->link_order_head;
4843 p != (struct bfd_link_order *) NULL;
4844 p = p->next)
4845 {
4846 asection *input_section;
4847 bfd *input_bfd;
4848 const struct ecoff_debug_swap *input_swap;
4849 struct ecoff_debug_info input_debug;
4850 char *eraw_src;
4851 char *eraw_end;
4852
4853 if (p->type != bfd_indirect_link_order)
4854 {
4855 if (p->type == bfd_fill_link_order)
4856 continue;
4857 abort ();
4858 }
4859
4860 input_section = p->u.indirect.section;
4861 input_bfd = input_section->owner;
4862
4863 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4864 || (get_elf_backend_data (input_bfd)
4865 ->elf_backend_ecoff_debug_swap) == NULL)
4866 {
4867 /* I don't know what a non MIPS ELF bfd would be
4868 doing with a .mdebug section, but I don't really
4869 want to deal with it. */
4870 continue;
4871 }
4872
4873 input_swap = (get_elf_backend_data (input_bfd)
4874 ->elf_backend_ecoff_debug_swap);
4875
4876 BFD_ASSERT (p->size == input_section->_raw_size);
4877
4878 /* The ECOFF linking code expects that we have already
4879 read in the debugging information and set up an
4880 ecoff_debug_info structure, so we do that now. */
4881 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4882 &input_debug))
4883 return false;
4884
4885 if (! (bfd_ecoff_debug_accumulate
4886 (mdebug_handle, abfd, &debug, swap, input_bfd,
4887 &input_debug, input_swap, info)))
4888 return false;
4889
4890 /* Loop through the external symbols. For each one with
4891 interesting information, try to find the symbol in
4892 the linker global hash table and save the information
4893 for the output external symbols. */
4894 eraw_src = input_debug.external_ext;
4895 eraw_end = (eraw_src
4896 + (input_debug.symbolic_header.iextMax
4897 * input_swap->external_ext_size));
4898 for (;
4899 eraw_src < eraw_end;
4900 eraw_src += input_swap->external_ext_size)
4901 {
4902 EXTR ext;
4903 const char *name;
4904 struct mips_elf_link_hash_entry *h;
4905
4906 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4907 if (ext.asym.sc == scNil
4908 || ext.asym.sc == scUndefined
4909 || ext.asym.sc == scSUndefined)
4910 continue;
4911
4912 name = input_debug.ssext + ext.asym.iss;
4913 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4914 name, false, false, true);
4915 if (h == NULL || h->esym.ifd != -2)
4916 continue;
4917
4918 if (ext.ifd != -1)
4919 {
4920 BFD_ASSERT (ext.ifd
4921 < input_debug.symbolic_header.ifdMax);
4922 ext.ifd = input_debug.ifdmap[ext.ifd];
4923 }
4924
4925 h->esym = ext;
4926 }
4927
4928 /* Free up the information we just read. */
4929 free (input_debug.line);
4930 free (input_debug.external_dnr);
4931 free (input_debug.external_pdr);
4932 free (input_debug.external_sym);
4933 free (input_debug.external_opt);
4934 free (input_debug.external_aux);
4935 free (input_debug.ss);
4936 free (input_debug.ssext);
4937 free (input_debug.external_fdr);
4938 free (input_debug.external_rfd);
4939 free (input_debug.external_ext);
4940
4941 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4942 elf_link_input_bfd ignores this section. */
be3ccd9c 4943 input_section->flags &= ~SEC_HAS_CONTENTS;
252b5132
RH
4944 }
4945
4946 if (SGI_COMPAT (abfd) && info->shared)
4947 {
4948 /* Create .rtproc section. */
4949 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4950 if (rtproc_sec == NULL)
4951 {
4952 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4953 | SEC_LINKER_CREATED | SEC_READONLY);
4954
4955 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4956 if (rtproc_sec == NULL
4957 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4958 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4959 return false;
4960 }
4961
4962 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4963 info, rtproc_sec, &debug))
4964 return false;
4965 }
4966
4967 /* Build the external symbol information. */
4968 einfo.abfd = abfd;
4969 einfo.info = info;
4970 einfo.debug = &debug;
4971 einfo.swap = swap;
4972 einfo.failed = false;
4973 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4974 mips_elf_output_extsym,
4975 (PTR) &einfo);
4976 if (einfo.failed)
4977 return false;
4978
4979 /* Set the size of the .mdebug section. */
4980 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4981
4982 /* Skip this section later on (I don't think this currently
4983 matters, but someday it might). */
4984 o->link_order_head = (struct bfd_link_order *) NULL;
4985
4986 mdebug_sec = o;
4987 }
4988
4989 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4990 {
4991 const char *subname;
4992 unsigned int c;
4993 Elf32_gptab *tab;
4994 Elf32_External_gptab *ext_tab;
dc810e39 4995 unsigned int j;
252b5132
RH
4996
4997 /* The .gptab.sdata and .gptab.sbss sections hold
4998 information describing how the small data area would
4999 change depending upon the -G switch. These sections
5000 not used in executables files. */
5001 if (! info->relocateable)
5002 {
252b5132
RH
5003 for (p = o->link_order_head;
5004 p != (struct bfd_link_order *) NULL;
5005 p = p->next)
5006 {
5007 asection *input_section;
5008
5009 if (p->type != bfd_indirect_link_order)
5010 {
5011 if (p->type == bfd_fill_link_order)
5012 continue;
5013 abort ();
5014 }
5015
5016 input_section = p->u.indirect.section;
5017
5018 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5019 elf_link_input_bfd ignores this section. */
be3ccd9c 5020 input_section->flags &= ~SEC_HAS_CONTENTS;
252b5132
RH
5021 }
5022
5023 /* Skip this section later on (I don't think this
5024 currently matters, but someday it might). */
5025 o->link_order_head = (struct bfd_link_order *) NULL;
5026
5027 /* Really remove the section. */
5028 for (secpp = &abfd->sections;
5029 *secpp != o;
5030 secpp = &(*secpp)->next)
5031 ;
5032 *secpp = (*secpp)->next;
5033 --abfd->section_count;
5034
5035 continue;
5036 }
5037
5038 /* There is one gptab for initialized data, and one for
5039 uninitialized data. */
5040 if (strcmp (o->name, ".gptab.sdata") == 0)
5041 gptab_data_sec = o;
5042 else if (strcmp (o->name, ".gptab.sbss") == 0)
5043 gptab_bss_sec = o;
5044 else
5045 {
5046 (*_bfd_error_handler)
5047 (_("%s: illegal section name `%s'"),
5048 bfd_get_filename (abfd), o->name);
5049 bfd_set_error (bfd_error_nonrepresentable_section);
5050 return false;
5051 }
5052
5053 /* The linker script always combines .gptab.data and
5054 .gptab.sdata into .gptab.sdata, and likewise for
5055 .gptab.bss and .gptab.sbss. It is possible that there is
5056 no .sdata or .sbss section in the output file, in which
5057 case we must change the name of the output section. */
5058 subname = o->name + sizeof ".gptab" - 1;
5059 if (bfd_get_section_by_name (abfd, subname) == NULL)
5060 {
5061 if (o == gptab_data_sec)
5062 o->name = ".gptab.data";
5063 else
5064 o->name = ".gptab.bss";
5065 subname = o->name + sizeof ".gptab" - 1;
5066 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5067 }
5068
5069 /* Set up the first entry. */
5070 c = 1;
dc810e39
AM
5071 amt = c * sizeof (Elf32_gptab);
5072 tab = (Elf32_gptab *) bfd_malloc (amt);
252b5132
RH
5073 if (tab == NULL)
5074 return false;
5075 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5076 tab[0].gt_header.gt_unused = 0;
5077
5078 /* Combine the input sections. */
5079 for (p = o->link_order_head;
5080 p != (struct bfd_link_order *) NULL;
5081 p = p->next)
5082 {
5083 asection *input_section;
5084 bfd *input_bfd;
5085 bfd_size_type size;
5086 unsigned long last;
5087 bfd_size_type gpentry;
5088
5089 if (p->type != bfd_indirect_link_order)
5090 {
5091 if (p->type == bfd_fill_link_order)
5092 continue;
5093 abort ();
5094 }
5095
5096 input_section = p->u.indirect.section;
5097 input_bfd = input_section->owner;
5098
5099 /* Combine the gptab entries for this input section one
5100 by one. We know that the input gptab entries are
5101 sorted by ascending -G value. */
5102 size = bfd_section_size (input_bfd, input_section);
5103 last = 0;
5104 for (gpentry = sizeof (Elf32_External_gptab);
5105 gpentry < size;
5106 gpentry += sizeof (Elf32_External_gptab))
5107 {
5108 Elf32_External_gptab ext_gptab;
5109 Elf32_gptab int_gptab;
5110 unsigned long val;
5111 unsigned long add;
5112 boolean exact;
5113 unsigned int look;
5114
5115 if (! (bfd_get_section_contents
5116 (input_bfd, input_section, (PTR) &ext_gptab,
dc810e39
AM
5117 (file_ptr) gpentry,
5118 (bfd_size_type) sizeof (Elf32_External_gptab))))
252b5132
RH
5119 {
5120 free (tab);
5121 return false;
5122 }
5123
5124 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5125 &int_gptab);
5126 val = int_gptab.gt_entry.gt_g_value;
5127 add = int_gptab.gt_entry.gt_bytes - last;
5128
5129 exact = false;
5130 for (look = 1; look < c; look++)
5131 {
5132 if (tab[look].gt_entry.gt_g_value >= val)
5133 tab[look].gt_entry.gt_bytes += add;
5134
5135 if (tab[look].gt_entry.gt_g_value == val)
5136 exact = true;
5137 }
5138
5139 if (! exact)
5140 {
5141 Elf32_gptab *new_tab;
5142 unsigned int max;
5143
5144 /* We need a new table entry. */
dc810e39
AM
5145 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
5146 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
252b5132
RH
5147 if (new_tab == NULL)
5148 {
5149 free (tab);
5150 return false;
5151 }
5152 tab = new_tab;
5153 tab[c].gt_entry.gt_g_value = val;
5154 tab[c].gt_entry.gt_bytes = add;
5155
5156 /* Merge in the size for the next smallest -G
5157 value, since that will be implied by this new
5158 value. */
5159 max = 0;
5160 for (look = 1; look < c; look++)
5161 {
5162 if (tab[look].gt_entry.gt_g_value < val
5163 && (max == 0
5164 || (tab[look].gt_entry.gt_g_value
5165 > tab[max].gt_entry.gt_g_value)))
5166 max = look;
5167 }
5168 if (max != 0)
5169 tab[c].gt_entry.gt_bytes +=
5170 tab[max].gt_entry.gt_bytes;
5171
5172 ++c;
5173 }
5174
5175 last = int_gptab.gt_entry.gt_bytes;
5176 }
5177
5178 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5179 elf_link_input_bfd ignores this section. */
be3ccd9c 5180 input_section->flags &= ~SEC_HAS_CONTENTS;
252b5132
RH
5181 }
5182
5183 /* The table must be sorted by -G value. */
5184 if (c > 2)
5185 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5186
5187 /* Swap out the table. */
dc810e39
AM
5188 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
5189 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
252b5132
RH
5190 if (ext_tab == NULL)
5191 {
5192 free (tab);
5193 return false;
5194 }
5195
dc810e39
AM
5196 for (j = 0; j < c; j++)
5197 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
252b5132
RH
5198 free (tab);
5199
5200 o->_raw_size = c * sizeof (Elf32_External_gptab);
5201 o->contents = (bfd_byte *) ext_tab;
5202
5203 /* Skip this section later on (I don't think this currently
5204 matters, but someday it might). */
5205 o->link_order_head = (struct bfd_link_order *) NULL;
5206 }
5207 }
5208
5209 /* Invoke the regular ELF backend linker to do all the work. */
9ebbd33e
MM
5210 if (ABI_64_P (abfd))
5211 {
5212#ifdef BFD64
5213 if (!bfd_elf64_bfd_final_link (abfd, info))
5214 return false;
5215#else
5216 abort ();
103186c6 5217 return false;
9ebbd33e
MM
5218#endif /* BFD64 */
5219 }
5220 else if (!bfd_elf32_bfd_final_link (abfd, info))
5221 return false;
252b5132
RH
5222
5223 /* Now write out the computed sections. */
5224
5225 if (reginfo_sec != (asection *) NULL)
5226 {
5227 Elf32_External_RegInfo ext;
5228
5229 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5230 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
dc810e39 5231 (file_ptr) 0, (bfd_size_type) sizeof ext))
252b5132
RH
5232 return false;
5233 }
5234
5235 if (mdebug_sec != (asection *) NULL)
5236 {
5237 BFD_ASSERT (abfd->output_has_begun);
5238 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5239 swap, info,
5240 mdebug_sec->filepos))
5241 return false;
5242
5243 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5244 }
5245
5246 if (gptab_data_sec != (asection *) NULL)
5247 {
5248 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5249 gptab_data_sec->contents,
5250 (file_ptr) 0,
5251 gptab_data_sec->_raw_size))
5252 return false;
5253 }
5254
5255 if (gptab_bss_sec != (asection *) NULL)
5256 {
5257 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5258 gptab_bss_sec->contents,
5259 (file_ptr) 0,
5260 gptab_bss_sec->_raw_size))
5261 return false;
5262 }
5263
5264 if (SGI_COMPAT (abfd))
5265 {
5266 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5267 if (rtproc_sec != NULL)
5268 {
5269 if (! bfd_set_section_contents (abfd, rtproc_sec,
5270 rtproc_sec->contents,
5271 (file_ptr) 0,
5272 rtproc_sec->_raw_size))
5273 return false;
5274 }
5275 }
5276
5277 return true;
5278}
5279
adb76a3e
UC
5280/* This function is called via qsort() to sort the dynamic relocation
5281 entries by increasing r_symndx value. */
5282
5283static int
be3ccd9c
KH
5284sort_dynamic_relocs (arg1, arg2)
5285 const PTR arg1;
5286 const PTR arg2;
adb76a3e
UC
5287{
5288 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5289 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5290
5291 Elf_Internal_Rel int_reloc1;
5292 Elf_Internal_Rel int_reloc2;
5293
be3ccd9c
KH
5294 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5295 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
adb76a3e 5296
be3ccd9c 5297 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
adb76a3e
UC
5298}
5299
7403cb63 5300/* Returns the GOT section for ABFD. */
252b5132 5301
7403cb63
MM
5302static asection *
5303mips_elf_got_section (abfd)
5304 bfd *abfd;
252b5132 5305{
7403cb63
MM
5306 return bfd_get_section_by_name (abfd, ".got");
5307}
5308
5309/* Returns the GOT information associated with the link indicated by
be3ccd9c 5310 INFO. If SGOTP is non-NULL, it is filled in with the GOT
7403cb63
MM
5311 section. */
5312
5313static struct mips_got_info *
5314mips_elf_got_info (abfd, sgotp)
5315 bfd *abfd;
5316 asection **sgotp;
5317{
5318 asection *sgot;
252b5132
RH
5319 struct mips_got_info *g;
5320
7403cb63
MM
5321 sgot = mips_elf_got_section (abfd);
5322 BFD_ASSERT (sgot != NULL);
5323 BFD_ASSERT (elf_section_data (sgot) != NULL);
5324 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5325 BFD_ASSERT (g != NULL);
252b5132 5326
7403cb63
MM
5327 if (sgotp)
5328 *sgotp = sgot;
5329 return g;
5330}
252b5132 5331
6387d602
ILT
5332/* Return whether a relocation is against a local symbol. */
5333
5334static boolean
b305ef96
UC
5335mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5336 check_forced)
6387d602
ILT
5337 bfd *input_bfd;
5338 const Elf_Internal_Rela *relocation;
5339 asection **local_sections;
b305ef96 5340 boolean check_forced;
6387d602
ILT
5341{
5342 unsigned long r_symndx;
5343 Elf_Internal_Shdr *symtab_hdr;
be3ccd9c 5344 struct mips_elf_link_hash_entry *h;
b305ef96 5345 size_t extsymoff;
6387d602
ILT
5346
5347 r_symndx = ELF32_R_SYM (relocation->r_info);
5348 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
b305ef96
UC
5349 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5350
5351 if (r_symndx < extsymoff)
5352 return true;
5353 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5354 return true;
5355
5356 if (check_forced)
6387d602 5357 {
be3ccd9c 5358 /* Look up the hash table to check whether the symbol
b305ef96 5359 was forced local. */
be3ccd9c
KH
5360 h = (struct mips_elf_link_hash_entry *)
5361 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5362 /* Find the real hash-table entry for this symbol. */
5363 while (h->root.root.type == bfd_link_hash_indirect
b305ef96 5364 || h->root.root.type == bfd_link_hash_warning)
be3ccd9c
KH
5365 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5366 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5367 return true;
6387d602 5368 }
b305ef96
UC
5369
5370 return false;
6387d602
ILT
5371}
5372
7403cb63 5373/* Sign-extend VALUE, which has the indicated number of BITS. */
252b5132 5374
7403cb63
MM
5375static bfd_vma
5376mips_elf_sign_extend (value, bits)
5377 bfd_vma value;
5378 int bits;
5379{
be3ccd9c 5380 if (value & ((bfd_vma) 1 << (bits - 1)))
7403cb63 5381 /* VALUE is negative. */
be3ccd9c
KH
5382 value |= ((bfd_vma) - 1) << bits;
5383
7403cb63
MM
5384 return value;
5385}
252b5132 5386
7403cb63
MM
5387/* Return non-zero if the indicated VALUE has overflowed the maximum
5388 range expressable by a signed number with the indicated number of
5389 BITS. */
252b5132 5390
7403cb63
MM
5391static boolean
5392mips_elf_overflow_p (value, bits)
5393 bfd_vma value;
5394 int bits;
5395{
5396 bfd_signed_vma svalue = (bfd_signed_vma) value;
252b5132 5397
7403cb63
MM
5398 if (svalue > (1 << (bits - 1)) - 1)
5399 /* The value is too big. */
5400 return true;
5401 else if (svalue < -(1 << (bits - 1)))
5402 /* The value is too small. */
5403 return true;
be3ccd9c 5404
7403cb63
MM
5405 /* All is well. */
5406 return false;
5407}
252b5132 5408
7403cb63 5409/* Calculate the %high function. */
252b5132 5410
7403cb63
MM
5411static bfd_vma
5412mips_elf_high (value)
5413 bfd_vma value;
5414{
5415 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5416}
252b5132 5417
7403cb63
MM
5418/* Calculate the %higher function. */
5419
5420static bfd_vma
5421mips_elf_higher (value)
5f771d47 5422 bfd_vma value ATTRIBUTE_UNUSED;
7403cb63
MM
5423{
5424#ifdef BFD64
5425 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5426#else
5427 abort ();
5428 return (bfd_vma) -1;
5429#endif
5430}
5431
5432/* Calculate the %highest function. */
5433
be3ccd9c 5434static bfd_vma
7403cb63 5435mips_elf_highest (value)
5f771d47 5436 bfd_vma value ATTRIBUTE_UNUSED;
7403cb63
MM
5437{
5438#ifdef BFD64
0af99795 5439 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
7403cb63
MM
5440#else
5441 abort ();
5442 return (bfd_vma) -1;
5443#endif
5444}
5445
5446/* Returns the GOT index for the global symbol indicated by H. */
5447
be3ccd9c 5448static bfd_vma
7403cb63
MM
5449mips_elf_global_got_index (abfd, h)
5450 bfd *abfd;
5451 struct elf_link_hash_entry *h;
5452{
5453 bfd_vma index;
5454 asection *sgot;
5455 struct mips_got_info *g;
5456
5457 g = mips_elf_got_info (abfd, &sgot);
5458
5459 /* Once we determine the global GOT entry with the lowest dynamic
5460 symbol table index, we must put all dynamic symbols with greater
5461 indices into the GOT. That makes it easy to calculate the GOT
5462 offset. */
5463 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
be3ccd9c 5464 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
103186c6 5465 * MIPS_ELF_GOT_SIZE (abfd));
7403cb63
MM
5466 BFD_ASSERT (index < sgot->_raw_size);
5467
5468 return index;
5469}
5470
5471/* Returns the offset for the entry at the INDEXth position
5472 in the GOT. */
5473
5474static bfd_vma
5475mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5476 bfd *dynobj;
5477 bfd *output_bfd;
5478 bfd_vma index;
5479{
5480 asection *sgot;
5481 bfd_vma gp;
7403cb63 5482
103186c6 5483 sgot = mips_elf_got_section (dynobj);
7403cb63 5484 gp = _bfd_get_gp_value (output_bfd);
be3ccd9c 5485 return (sgot->output_section->vma + sgot->output_offset + index -
7403cb63
MM
5486 gp);
5487}
5488
5489/* If H is a symbol that needs a global GOT entry, but has a dynamic
5490 symbol table index lower than any we've seen to date, record it for
5491 posterity. */
5492
5493static boolean
5494mips_elf_record_global_got_symbol (h, info, g)
5495 struct elf_link_hash_entry *h;
5496 struct bfd_link_info *info;
5f771d47 5497 struct mips_got_info *g ATTRIBUTE_UNUSED;
7403cb63
MM
5498{
5499 /* A global symbol in the GOT must also be in the dynamic symbol
5500 table. */
5501 if (h->dynindx == -1
5502 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5503 return false;
be3ccd9c 5504
7403cb63
MM
5505 /* If we've already marked this entry as need GOT space, we don't
5506 need to do it again. */
5507 if (h->got.offset != (bfd_vma) - 1)
5508 return true;
5509
5510 /* By setting this to a value other than -1, we are indicating that
5511 there needs to be a GOT entry for H. */
5512 h->got.offset = 0;
5513
5514 return true;
5515}
5516
5517/* This structure is passed to mips_elf_sort_hash_table_f when sorting
5518 the dynamic symbols. */
be3ccd9c 5519
38b1a46c
NC
5520struct mips_elf_hash_sort_data
5521{
7403cb63
MM
5522 /* The symbol in the global GOT with the lowest dynamic symbol table
5523 index. */
5524 struct elf_link_hash_entry *low;
5525 /* The least dynamic symbol table index corresponding to a symbol
5526 with a GOT entry. */
5527 long min_got_dynindx;
5528 /* The greatest dynamic symbol table index not corresponding to a
5529 symbol without a GOT entry. */
5530 long max_non_got_dynindx;
5531};
5532
5533/* If H needs a GOT entry, assign it the highest available dynamic
be3ccd9c 5534 index. Otherwise, assign it the lowest available dynamic
7403cb63
MM
5535 index. */
5536
5537static boolean
5538mips_elf_sort_hash_table_f (h, data)
5539 struct mips_elf_link_hash_entry *h;
5540 PTR data;
5541{
be3ccd9c 5542 struct mips_elf_hash_sort_data *hsd
7403cb63
MM
5543 = (struct mips_elf_hash_sort_data *) data;
5544
5545 /* Symbols without dynamic symbol table entries aren't interesting
5546 at all. */
5547 if (h->root.dynindx == -1)
5548 return true;
5549
5550 if (h->root.got.offset != 0)
5551 h->root.dynindx = hsd->max_non_got_dynindx++;
5552 else
5553 {
5554 h->root.dynindx = --hsd->min_got_dynindx;
5555 hsd->low = (struct elf_link_hash_entry *) h;
5556 }
5557
5558 return true;
5559}
5560
5561/* Sort the dynamic symbol table so that symbols that need GOT entries
5562 appear towards the end. This reduces the amount of GOT space
b3be9b46
RH
5563 required. MAX_LOCAL is used to set the number of local symbols
5564 known to be in the dynamic symbol table. During
5565 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5566 section symbols are added and the count is higher. */
7403cb63
MM
5567
5568static boolean
b3be9b46 5569mips_elf_sort_hash_table (info, max_local)
7403cb63 5570 struct bfd_link_info *info;
b3be9b46 5571 unsigned long max_local;
7403cb63
MM
5572{
5573 struct mips_elf_hash_sort_data hsd;
5574 struct mips_got_info *g;
5575 bfd *dynobj;
5576
5577 dynobj = elf_hash_table (info)->dynobj;
5578
5579 hsd.low = NULL;
5580 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
b3be9b46 5581 hsd.max_non_got_dynindx = max_local;
be3ccd9c
KH
5582 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5583 elf_hash_table (info)),
5584 mips_elf_sort_hash_table_f,
7403cb63
MM
5585 &hsd);
5586
5587 /* There shoud have been enough room in the symbol table to
5588 accomodate both the GOT and non-GOT symbols. */
b305ef96 5589 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
7403cb63
MM
5590
5591 /* Now we know which dynamic symbol has the lowest dynamic symbol
5592 table index in the GOT. */
5593 g = mips_elf_got_info (dynobj, NULL);
5594 g->global_gotsym = hsd.low;
5595
5596 return true;
5597}
5598
5599/* Create a local GOT entry for VALUE. Return the index of the entry,
5600 or -1 if it could not be created. */
5601
5602static bfd_vma
5603mips_elf_create_local_got_entry (abfd, g, sgot, value)
5604 bfd *abfd;
5605 struct mips_got_info *g;
5606 asection *sgot;
5607 bfd_vma value;
5608{
5609 if (g->assigned_gotno >= g->local_gotno)
5610 {
5611 /* We didn't allocate enough space in the GOT. */
5612 (*_bfd_error_handler)
5613 (_("not enough GOT space for local GOT entries"));
5614 bfd_set_error (bfd_error_bad_value);
5615 return (bfd_vma) -1;
5616 }
5617
103186c6 5618 MIPS_ELF_PUT_WORD (abfd, value,
be3ccd9c 5619 (sgot->contents
103186c6
MM
5620 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5621 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
7403cb63
MM
5622}
5623
5624/* Returns the GOT offset at which the indicated address can be found.
5625 If there is not yet a GOT entry for this value, create one. Returns
5626 -1 if no satisfactory GOT offset can be found. */
5627
5628static bfd_vma
5629mips_elf_local_got_index (abfd, info, value)
5630 bfd *abfd;
5631 struct bfd_link_info *info;
5632 bfd_vma value;
5633{
5634 asection *sgot;
5635 struct mips_got_info *g;
5636 bfd_byte *entry;
5637
5638 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5639
5640 /* Look to see if we already have an appropriate entry. */
be3ccd9c
KH
5641 for (entry = (sgot->contents
5642 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
103186c6
MM
5643 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5644 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5645 {
103186c6 5646 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
7403cb63
MM
5647 if (address == value)
5648 return entry - sgot->contents;
5649 }
5650
5651 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5652}
5653
5654/* Find a GOT entry that is within 32KB of the VALUE. These entries
5655 are supposed to be placed at small offsets in the GOT, i.e.,
5656 within 32KB of GP. Return the index into the GOT for this page,
5657 and store the offset from this entry to the desired address in
5658 OFFSETP, if it is non-NULL. */
5659
5660static bfd_vma
5661mips_elf_got_page (abfd, info, value, offsetp)
5662 bfd *abfd;
5663 struct bfd_link_info *info;
5664 bfd_vma value;
5665 bfd_vma *offsetp;
5666{
5667 asection *sgot;
5668 struct mips_got_info *g;
5669 bfd_byte *entry;
5670 bfd_byte *last_entry;
86033394 5671 bfd_vma index = 0;
7403cb63
MM
5672 bfd_vma address;
5673
5674 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5675
5676 /* Look to see if we aleady have an appropriate entry. */
103186c6 5677 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
be3ccd9c 5678 for (entry = (sgot->contents
103186c6 5679 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
7403cb63 5680 entry != last_entry;
103186c6 5681 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5682 {
103186c6
MM
5683 address = MIPS_ELF_GET_WORD (abfd, entry);
5684
7403cb63
MM
5685 if (!mips_elf_overflow_p (value - address, 16))
5686 {
5687 /* This entry will serve as the page pointer. We can add a
5688 16-bit number to it to get the actual address. */
5689 index = entry - sgot->contents;
5690 break;
252b5132 5691 }
7403cb63
MM
5692 }
5693
5694 /* If we didn't have an appropriate entry, we create one now. */
5695 if (entry == last_entry)
5696 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5697
5698 if (offsetp)
5699 {
103186c6 5700 address = MIPS_ELF_GET_WORD (abfd, entry);
7403cb63
MM
5701 *offsetp = value - address;
5702 }
5703
5704 return index;
5705}
5706
5707/* Find a GOT entry whose higher-order 16 bits are the same as those
5708 for value. Return the index into the GOT for this entry. */
5709
5710static bfd_vma
b305ef96 5711mips_elf_got16_entry (abfd, info, value, external)
7403cb63
MM
5712 bfd *abfd;
5713 struct bfd_link_info *info;
5714 bfd_vma value;
b305ef96 5715 boolean external;
7403cb63
MM
5716{
5717 asection *sgot;
5718 struct mips_got_info *g;
5719 bfd_byte *entry;
5720 bfd_byte *last_entry;
86033394 5721 bfd_vma index = 0;
7403cb63
MM
5722 bfd_vma address;
5723
b305ef96
UC
5724 if (! external)
5725 {
5726 /* Although the ABI says that it is "the high-order 16 bits" that we
5727 want, it is really the %high value. The complete value is
5728 calculated with a `addiu' of a LO16 relocation, just as with a
5729 HI16/LO16 pair. */
5730 value = mips_elf_high (value) << 16;
5731 }
5732
7403cb63
MM
5733 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5734
5735 /* Look to see if we already have an appropriate entry. */
103186c6 5736 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
be3ccd9c 5737 for (entry = (sgot->contents
103186c6 5738 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
7403cb63 5739 entry != last_entry;
103186c6 5740 entry += MIPS_ELF_GOT_SIZE (abfd))
7403cb63 5741 {
103186c6 5742 address = MIPS_ELF_GET_WORD (abfd, entry);
b305ef96 5743 if (address == value)
252b5132 5744 {
b305ef96
UC
5745 /* This entry has the right high-order 16 bits, and the low-order
5746 16 bits are set to zero. */
4f2860ca 5747 index = entry - sgot->contents;
7403cb63
MM
5748 break;
5749 }
5750 }
5751
5752 /* If we didn't have an appropriate entry, we create one now. */
5753 if (entry == last_entry)
5754 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5755
5756 return index;
5757}
5758
bb2d6cd7 5759/* Returns the first relocation of type r_type found, beginning with
23b255aa 5760 RELOCATION. RELEND is one-past-the-end of the relocation table. */
7403cb63 5761
23b255aa 5762static const Elf_Internal_Rela *
bb2d6cd7
GK
5763mips_elf_next_relocation (r_type, relocation, relend)
5764 unsigned int r_type;
103186c6
MM
5765 const Elf_Internal_Rela *relocation;
5766 const Elf_Internal_Rela *relend;
7403cb63
MM
5767{
5768 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5769 immediately following. However, for the IRIX6 ABI, the next
5770 relocation may be a composed relocation consisting of several
5771 relocations for the same address. In that case, the R_MIPS_LO16
435394bf 5772 relocation may occur as one of these. We permit a similar
7403cb63
MM
5773 extension in general, as that is useful for GCC. */
5774 while (relocation < relend)
5775 {
bb2d6cd7 5776 if (ELF32_R_TYPE (relocation->r_info) == r_type)
23b255aa 5777 return relocation;
7403cb63
MM
5778
5779 ++relocation;
5780 }
5781
5782 /* We didn't find it. */
6387d602 5783 bfd_set_error (bfd_error_bad_value);
23b255aa 5784 return NULL;
7403cb63
MM
5785}
5786
7b1f1231
MM
5787/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5788 is the original relocation, which is now being transformed into a
b305ef96 5789 dynamic relocation. The ADDENDP is adjusted if necessary; the
7b1f1231 5790 caller should store the result in place of the original addend. */
7403cb63 5791
7b1f1231
MM
5792static boolean
5793mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
9117d219 5794 symbol, addendp, input_section)
7403cb63
MM
5795 bfd *output_bfd;
5796 struct bfd_link_info *info;
103186c6 5797 const Elf_Internal_Rela *rel;
7b1f1231
MM
5798 struct mips_elf_link_hash_entry *h;
5799 asection *sec;
5800 bfd_vma symbol;
5801 bfd_vma *addendp;
7403cb63
MM
5802 asection *input_section;
5803{
5804 Elf_Internal_Rel outrel;
5805 boolean skip;
5806 asection *sreloc;
5807 bfd *dynobj;
5808 int r_type;
5809
5810 r_type = ELF32_R_TYPE (rel->r_info);
5811 dynobj = elf_hash_table (info)->dynobj;
be3ccd9c 5812 sreloc
103186c6
MM
5813 = bfd_get_section_by_name (dynobj,
5814 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
7403cb63 5815 BFD_ASSERT (sreloc != NULL);
b305ef96 5816 BFD_ASSERT (sreloc->contents != NULL);
14d5043a
L
5817 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5818 < sreloc->_raw_size);
7403cb63
MM
5819
5820 skip = false;
5821
7b1f1231
MM
5822 /* We begin by assuming that the offset for the dynamic relocation
5823 is the same as for the original relocation. We'll adjust this
5824 later to reflect the correct output offsets. */
7403cb63
MM
5825 if (elf_section_data (input_section)->stab_info == NULL)
5826 outrel.r_offset = rel->r_offset;
5827 else
5828 {
7b1f1231
MM
5829 /* Except that in a stab section things are more complex.
5830 Because we compress stab information, the offset given in the
5831 relocation may not be the one we want; we must let the stabs
5832 machinery tell us the offset. */
be3ccd9c 5833 outrel.r_offset
7b1f1231
MM
5834 = (_bfd_stab_section_offset
5835 (output_bfd, &elf_hash_table (info)->stab_info,
5836 input_section,
5837 &elf_section_data (input_section)->stab_info,
5838 rel->r_offset));
5839 /* If we didn't need the relocation at all, this value will be
5840 -1. */
5841 if (outrel.r_offset == (bfd_vma) -1)
7403cb63 5842 skip = true;
7403cb63 5843 }
7403cb63 5844
b305ef96 5845 /* If we've decided to skip this relocation, just output an empty
7b1f1231
MM
5846 record. Note that R_MIPS_NONE == 0, so that this call to memset
5847 is a way of setting R_TYPE to R_MIPS_NONE. */
7403cb63
MM
5848 if (skip)
5849 memset (&outrel, 0, sizeof (outrel));
7b1f1231
MM
5850 else
5851 {
5852 long indx;
5853 bfd_vma section_offset;
5854
5855 /* We must now calculate the dynamic symbol table index to use
5856 in the relocation. */
5857 if (h != NULL
5858 && (! info->symbolic || (h->root.elf_link_hash_flags
5859 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5860 {
5861 indx = h->root.dynindx;
b305ef96
UC
5862 /* h->root.dynindx may be -1 if this symbol was marked to
5863 become local. */
5864 if (indx == -1)
be3ccd9c 5865 indx = 0;
7b1f1231
MM
5866 }
5867 else
5868 {
5869 if (sec != NULL && bfd_is_abs_section (sec))
5870 indx = 0;
5871 else if (sec == NULL || sec->owner == NULL)
5872 {
5873 bfd_set_error (bfd_error_bad_value);
5874 return false;
5875 }
5876 else
5877 {
5878 indx = elf_section_data (sec->output_section)->dynindx;
5879 if (indx == 0)
5880 abort ();
5881 }
5882
5883 /* Figure out how far the target of the relocation is from
5884 the beginning of its section. */
5885 section_offset = symbol - sec->output_section->vma;
5886 /* The relocation we're building is section-relative.
5887 Therefore, the original addend must be adjusted by the
5888 section offset. */
9117d219 5889 *addendp += section_offset;
7b1f1231
MM
5890 /* Now, the relocation is just against the section. */
5891 symbol = sec->output_section->vma;
5892 }
be3ccd9c 5893
9117d219
NC
5894 /* If the relocation was previously an absolute relocation and
5895 this symbol will not be referred to by the relocation, we must
5896 adjust it by the value we give it in the dynamic symbol table.
5897 Otherwise leave the job up to the dynamic linker. */
5898 if (!indx && r_type != R_MIPS_REL32)
7b1f1231
MM
5899 *addendp += symbol;
5900
5901 /* The relocation is always an REL32 relocation because we don't
5902 know where the shared library will wind up at load-time. */
5903 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5904
5905 /* Adjust the output offset of the relocation to reference the
5906 correct location in the output file. */
5907 outrel.r_offset += (input_section->output_section->vma
5908 + input_section->output_offset);
5909 }
7403cb63 5910
7b1f1231
MM
5911 /* Put the relocation back out. We have to use the special
5912 relocation outputter in the 64-bit case since the 64-bit
5913 relocation format is non-standard. */
103186c6
MM
5914 if (ABI_64_P (output_bfd))
5915 {
5916 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5917 (output_bfd, &outrel,
be3ccd9c 5918 (sreloc->contents
103186c6
MM
5919 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5920 }
5921 else
5922 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5923 (((Elf32_External_Rel *)
5924 sreloc->contents)
5925 + sreloc->reloc_count));
7b1f1231
MM
5926
5927 /* Record the index of the first relocation referencing H. This
5928 information is later emitted in the .msym section. */
5929 if (h != NULL
be3ccd9c 5930 && (h->min_dyn_reloc_index == 0
7b1f1231
MM
5931 || sreloc->reloc_count < h->min_dyn_reloc_index))
5932 h->min_dyn_reloc_index = sreloc->reloc_count;
5933
5934 /* We've now added another relocation. */
7403cb63
MM
5935 ++sreloc->reloc_count;
5936
5937 /* Make sure the output section is writable. The dynamic linker
5938 will be writing to it. */
5939 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5940 |= SHF_WRITE;
5941
5942 /* On IRIX5, make an entry of compact relocation info. */
5943 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5944 {
be3ccd9c 5945 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
7403cb63
MM
5946 bfd_byte *cr;
5947
5948 if (scpt)
5949 {
5950 Elf32_crinfo cptrel;
5951
5952 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5953 cptrel.vaddr = (rel->r_offset
5954 + input_section->output_section->vma
5955 + input_section->output_offset);
5956 if (r_type == R_MIPS_REL32)
5957 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
252b5132 5958 else
7403cb63
MM
5959 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5960 mips_elf_set_cr_dist2to (cptrel, 0);
7b1f1231 5961 cptrel.konst = *addendp;
7403cb63
MM
5962
5963 cr = (scpt->contents
5964 + sizeof (Elf32_External_compact_rel));
5965 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5966 ((Elf32_External_crinfo *) cr
5967 + scpt->reloc_count));
5968 ++scpt->reloc_count;
5969 }
5970 }
252b5132 5971
7b1f1231 5972 return true;
7403cb63 5973}
252b5132 5974
7403cb63
MM
5975/* Calculate the value produced by the RELOCATION (which comes from
5976 the INPUT_BFD). The ADDEND is the addend to use for this
5977 RELOCATION; RELOCATION->R_ADDEND is ignored.
5978
5979 The result of the relocation calculation is stored in VALUEP.
197b9ca0
MM
5980 REQUIRE_JALXP indicates whether or not the opcode used with this
5981 relocation must be JALX.
7403cb63
MM
5982
5983 This function returns bfd_reloc_continue if the caller need take no
5984 further action regarding this relocation, bfd_reloc_notsupported if
5985 something goes dramatically wrong, bfd_reloc_overflow if an
5986 overflow occurs, and bfd_reloc_ok to indicate success. */
5987
5988static bfd_reloc_status_type
be3ccd9c 5989mips_elf_calculate_relocation (abfd,
7403cb63
MM
5990 input_bfd,
5991 input_section,
5992 info,
5993 relocation,
5994 addend,
5995 howto,
7403cb63
MM
5996 local_syms,
5997 local_sections,
5998 valuep,
197b9ca0 5999 namep,
be3ccd9c 6000 require_jalxp)
7403cb63
MM
6001 bfd *abfd;
6002 bfd *input_bfd;
6003 asection *input_section;
6004 struct bfd_link_info *info;
103186c6 6005 const Elf_Internal_Rela *relocation;
7403cb63
MM
6006 bfd_vma addend;
6007 reloc_howto_type *howto;
7403cb63
MM
6008 Elf_Internal_Sym *local_syms;
6009 asection **local_sections;
6010 bfd_vma *valuep;
6011 const char **namep;
197b9ca0 6012 boolean *require_jalxp;
7403cb63
MM
6013{
6014 /* The eventual value we will return. */
6015 bfd_vma value;
6016 /* The address of the symbol against which the relocation is
6017 occurring. */
6018 bfd_vma symbol = 0;
6019 /* The final GP value to be used for the relocatable, executable, or
6020 shared object file being produced. */
6021 bfd_vma gp = (bfd_vma) - 1;
6022 /* The place (section offset or address) of the storage unit being
6023 relocated. */
6024 bfd_vma p;
6025 /* The value of GP used to create the relocatable object. */
6026 bfd_vma gp0 = (bfd_vma) - 1;
6027 /* The offset into the global offset table at which the address of
6028 the relocation entry symbol, adjusted by the addend, resides
6029 during execution. */
6030 bfd_vma g = (bfd_vma) - 1;
6031 /* The section in which the symbol referenced by the relocation is
6032 located. */
6033 asection *sec = NULL;
be3ccd9c 6034 struct mips_elf_link_hash_entry *h = NULL;
103186c6
MM
6035 /* True if the symbol referred to by this relocation is a local
6036 symbol. */
7403cb63 6037 boolean local_p;
103186c6 6038 /* True if the symbol referred to by this relocation is "_gp_disp". */
7403cb63
MM
6039 boolean gp_disp_p = false;
6040 Elf_Internal_Shdr *symtab_hdr;
6041 size_t extsymoff;
103186c6 6042 unsigned long r_symndx;
7403cb63 6043 int r_type;
103186c6
MM
6044 /* True if overflow occurred during the calculation of the
6045 relocation value. */
7403cb63 6046 boolean overflowed_p;
197b9ca0
MM
6047 /* True if this relocation refers to a MIPS16 function. */
6048 boolean target_is_16_bit_code_p = false;
7403cb63
MM
6049
6050 /* Parse the relocation. */
6051 r_symndx = ELF32_R_SYM (relocation->r_info);
6052 r_type = ELF32_R_TYPE (relocation->r_info);
be3ccd9c 6053 p = (input_section->output_section->vma
7403cb63
MM
6054 + input_section->output_offset
6055 + relocation->r_offset);
6056
6057 /* Assume that there will be no overflow. */
6058 overflowed_p = false;
6059
6387d602
ILT
6060 /* Figure out whether or not the symbol is local, and get the offset
6061 used in the array of hash table entries. */
7403cb63 6062 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6387d602 6063 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b305ef96 6064 local_sections, false);
6387d602
ILT
6065 if (! elf_bad_symtab (input_bfd))
6066 extsymoff = symtab_hdr->sh_info;
6067 else
7403cb63
MM
6068 {
6069 /* The symbol table does not follow the rule that local symbols
6070 must come before globals. */
6071 extsymoff = 0;
7403cb63 6072 }
be3ccd9c 6073
7403cb63
MM
6074 /* Figure out the value of the symbol. */
6075 if (local_p)
6076 {
6077 Elf_Internal_Sym *sym;
6078
6079 sym = local_syms + r_symndx;
6080 sec = local_sections[r_symndx];
6081
6082 symbol = sec->output_section->vma + sec->output_offset;
6083 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6084 symbol += sym->st_value;
6085
6086 /* MIPS16 text labels should be treated as odd. */
6087 if (sym->st_other == STO_MIPS16)
6088 ++symbol;
6089
6090 /* Record the name of this symbol, for our caller. */
6091 *namep = bfd_elf_string_from_elf_section (input_bfd,
6092 symtab_hdr->sh_link,
6093 sym->st_name);
e049a0de 6094 if (*namep == '\0')
7403cb63 6095 *namep = bfd_section_name (input_bfd, sec);
197b9ca0
MM
6096
6097 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
7403cb63
MM
6098 }
6099 else
6100 {
6101 /* For global symbols we look up the symbol in the hash-table. */
be3ccd9c 6102 h = ((struct mips_elf_link_hash_entry *)
7403cb63
MM
6103 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6104 /* Find the real hash-table entry for this symbol. */
b305ef96
UC
6105 while (h->root.root.type == bfd_link_hash_indirect
6106 || h->root.root.type == bfd_link_hash_warning)
7403cb63 6107 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
be3ccd9c 6108
7403cb63
MM
6109 /* Record the name of this symbol, for our caller. */
6110 *namep = h->root.root.root.string;
6111
6112 /* See if this is the special _gp_disp symbol. Note that such a
6113 symbol must always be a global symbol. */
6114 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6115 {
6116 /* Relocations against _gp_disp are permitted only with
6117 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6118 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6119 return bfd_reloc_notsupported;
6120
6121 gp_disp_p = true;
6122 }
97a4bb05
MM
6123 /* If this symbol is defined, calculate its address. Note that
6124 _gp_disp is a magic symbol, always implicitly defined by the
6125 linker, so it's inappropriate to check to see whether or not
6126 its defined. */
6127 else if ((h->root.root.type == bfd_link_hash_defined
6128 || h->root.root.type == bfd_link_hash_defweak)
6129 && h->root.root.u.def.section)
7403cb63
MM
6130 {
6131 sec = h->root.root.u.def.section;
6132 if (sec->output_section)
be3ccd9c 6133 symbol = (h->root.root.u.def.value
7403cb63
MM
6134 + sec->output_section->vma
6135 + sec->output_offset);
252b5132 6136 else
7403cb63
MM
6137 symbol = h->root.root.u.def.value;
6138 }
97287574
MM
6139 else if (h->root.root.type == bfd_link_hash_undefweak)
6140 /* We allow relocations against undefined weak symbols, giving
6141 it the value zero, so that you can undefined weak functions
6142 and check to see if they exist by looking at their
6143 addresses. */
6144 symbol = 0;
3a27a730 6145 else if (info->shared && !info->symbolic && !info->no_undefined
ba09750c 6146 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
8535d39c 6147 symbol = 0;
f7cb7d68
UC
6148 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6149 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3811169e
MM
6150 {
6151 /* If this is a dynamic link, we should have created a
be3ccd9c 6152 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
f7cb7d68 6153 in in mips_elf_create_dynamic_sections.
3811169e
MM
6154 Otherwise, we should define the symbol with a value of 0.
6155 FIXME: It should probably get into the symbol table
6156 somehow as well. */
6157 BFD_ASSERT (! info->shared);
6158 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
8535d39c 6159 symbol = 0;
3811169e 6160 }
7403cb63
MM
6161 else
6162 {
5cc7c785
L
6163 if (! ((*info->callbacks->undefined_symbol)
6164 (info, h->root.root.root.string, input_bfd,
6165 input_section, relocation->r_offset,
3a27a730 6166 (!info->shared || info->no_undefined
ba09750c 6167 || ELF_ST_VISIBILITY (h->root.other)))))
5cc7c785
L
6168 return bfd_reloc_undefined;
6169 symbol = 0;
7403cb63 6170 }
197b9ca0
MM
6171
6172 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6173 }
be3ccd9c 6174
197b9ca0
MM
6175 /* If this is a 32-bit call to a 16-bit function with a stub, we
6176 need to redirect the call to the stub, unless we're already *in*
6177 a stub. */
6178 if (r_type != R_MIPS16_26 && !info->relocateable
6179 && ((h != NULL && h->fn_stub != NULL)
6180 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6181 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6182 && !mips_elf_stub_section_p (input_bfd, input_section))
6183 {
6184 /* This is a 32-bit call to a 16-bit function. We should
6185 have already noticed that we were going to need the
6186 stub. */
6187 if (local_p)
6188 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6189 else
6190 {
6191 BFD_ASSERT (h->need_fn_stub);
6192 sec = h->fn_stub;
6193 }
6194
6195 symbol = sec->output_section->vma + sec->output_offset;
7403cb63 6196 }
197b9ca0
MM
6197 /* If this is a 16-bit call to a 32-bit function with a stub, we
6198 need to redirect the call to the stub. */
6199 else if (r_type == R_MIPS16_26 && !info->relocateable
be3ccd9c 6200 && h != NULL
197b9ca0
MM
6201 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6202 && !target_is_16_bit_code_p)
6203 {
6204 /* If both call_stub and call_fp_stub are defined, we can figure
6205 out which one to use by seeing which one appears in the input
6206 file. */
6207 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6208 {
6209 asection *o;
6210
6211 sec = NULL;
6212 for (o = input_bfd->sections; o != NULL; o = o->next)
6213 {
6214 if (strncmp (bfd_get_section_name (input_bfd, o),
6215 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6216 {
6217 sec = h->call_fp_stub;
6218 break;
6219 }
6220 }
6221 if (sec == NULL)
6222 sec = h->call_stub;
6223 }
6224 else if (h->call_stub != NULL)
6225 sec = h->call_stub;
6226 else
6227 sec = h->call_fp_stub;
6228
6229 BFD_ASSERT (sec->_raw_size > 0);
6230 symbol = sec->output_section->vma + sec->output_offset;
6231 }
6232
6233 /* Calls from 16-bit code to 32-bit code and vice versa require the
6234 special jalx instruction. */
6387d602
ILT
6235 *require_jalxp = (!info->relocateable
6236 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
252b5132 6237
b305ef96
UC
6238 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6239 local_sections, true);
6240
7403cb63
MM
6241 /* If we haven't already determined the GOT offset, or the GP value,
6242 and we're going to need it, get it now. */
6243 switch (r_type)
6244 {
6245 case R_MIPS_CALL16:
2841ecd0 6246 case R_MIPS_GOT16:
7403cb63
MM
6247 case R_MIPS_GOT_DISP:
6248 case R_MIPS_GOT_HI16:
6249 case R_MIPS_CALL_HI16:
6250 case R_MIPS_GOT_LO16:
6251 case R_MIPS_CALL_LO16:
6252 /* Find the index into the GOT where this value is located. */
4f2860ca 6253 if (!local_p)
7403cb63
MM
6254 {
6255 BFD_ASSERT (addend == 0);
be3ccd9c 6256 g = mips_elf_global_got_index
7403cb63 6257 (elf_hash_table (info)->dynobj,
be3ccd9c 6258 (struct elf_link_hash_entry *) h);
9a8f3bb7
UC
6259 if (! elf_hash_table(info)->dynamic_sections_created
6260 || (info->shared
6261 && (info->symbolic || h->root.dynindx == -1)
6262 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6263 {
6264 /* This is a static link or a -Bsymbolic link. The
6265 symbol is defined locally, or was forced to be local.
6266 We must initialize this entry in the GOT. */
6267 asection *sgot = mips_elf_got_section(elf_hash_table
6268 (info)->dynobj);
6269 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6270 symbol + addend, sgot->contents + g);
6271 }
7403cb63 6272 }
9117d219 6273 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
4f2860ca
MM
6274 /* There's no need to create a local GOT entry here; the
6275 calculation for a local GOT16 entry does not involve G. */
6276 break;
7403cb63
MM
6277 else
6278 {
6279 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6280 if (g == (bfd_vma) -1)
6281 return false;
6282 }
252b5132 6283
7403cb63
MM
6284 /* Convert GOT indices to actual offsets. */
6285 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6286 abfd, g);
6287 break;
be3ccd9c 6288
7403cb63
MM
6289 case R_MIPS_HI16:
6290 case R_MIPS_LO16:
6291 case R_MIPS_GPREL16:
6292 case R_MIPS_GPREL32:
0af99795 6293 case R_MIPS_LITERAL:
7403cb63
MM
6294 gp0 = _bfd_get_gp_value (input_bfd);
6295 gp = _bfd_get_gp_value (abfd);
6296 break;
252b5132 6297
7403cb63
MM
6298 default:
6299 break;
6300 }
252b5132 6301
7403cb63
MM
6302 /* Figure out what kind of relocation is being performed. */
6303 switch (r_type)
6304 {
6305 case R_MIPS_NONE:
6306 return bfd_reloc_continue;
252b5132 6307
7403cb63
MM
6308 case R_MIPS_16:
6309 value = symbol + mips_elf_sign_extend (addend, 16);
6310 overflowed_p = mips_elf_overflow_p (value, 16);
6311 break;
252b5132 6312
7403cb63
MM
6313 case R_MIPS_32:
6314 case R_MIPS_REL32:
a3c7651d 6315 case R_MIPS_64:
7b1f1231
MM
6316 if ((info->shared
6317 || (elf_hash_table (info)->dynamic_sections_created
6318 && h != NULL
2bab9785
L
6319 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
6320 != 0)))
7b1f1231 6321 && (input_section->flags & SEC_ALLOC) != 0)
7403cb63 6322 {
7b1f1231
MM
6323 /* If we're creating a shared library, or this relocation is
6324 against a symbol in a shared library, then we can't know
6325 where the symbol will end up. So, we create a relocation
6326 record in the output, and leave the job up to the dynamic
6327 linker. */
6328 value = addend;
be3ccd9c
KH
6329 if (!mips_elf_create_dynamic_relocation (abfd,
6330 info,
7b1f1231
MM
6331 relocation,
6332 h,
6333 sec,
6334 symbol,
6335 &value,
9117d219 6336 input_section))
7b1f1231 6337 return false;
7403cb63
MM
6338 }
6339 else
6340 {
a3c7651d 6341 if (r_type != R_MIPS_REL32)
7403cb63
MM
6342 value = symbol + addend;
6343 else
6344 value = addend;
6345 }
6346 value &= howto->dst_mask;
6347 break;
6348
bb2d6cd7
GK
6349 case R_MIPS_PC32:
6350 case R_MIPS_PC64:
6351 case R_MIPS_GNU_REL_LO16:
6352 value = symbol + addend - p;
6353 value &= howto->dst_mask;
6354 break;
6355
6356 case R_MIPS_GNU_REL16_S2:
6357 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6358 overflowed_p = mips_elf_overflow_p (value, 18);
6359 value = (value >> 2) & howto->dst_mask;
6360 break;
6361
6362 case R_MIPS_GNU_REL_HI16:
6363 value = mips_elf_high (addend + symbol - p);
6364 value &= howto->dst_mask;
6365 break;
6366
e53bd91b 6367 case R_MIPS16_26:
9117d219 6368 /* The calculation for R_MIPS16_26 is just the same as for an
e53bd91b 6369 R_MIPS_26. It's only the storage of the relocated field into
1e52e2ee 6370 the output file that's different. That's handled in
e53bd91b
MM
6371 mips_elf_perform_relocation. So, we just fall through to the
6372 R_MIPS_26 case here. */
7403cb63
MM
6373 case R_MIPS_26:
6374 if (local_p)
9117d219 6375 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
7403cb63
MM
6376 else
6377 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6378 value &= howto->dst_mask;
6379 break;
6380
6381 case R_MIPS_HI16:
6382 if (!gp_disp_p)
6383 {
6384 value = mips_elf_high (addend + symbol);
6385 value &= howto->dst_mask;
6386 }
6387 else
6388 {
6389 value = mips_elf_high (addend + gp - p);
6390 overflowed_p = mips_elf_overflow_p (value, 16);
6391 }
6392 break;
6393
6394 case R_MIPS_LO16:
6395 if (!gp_disp_p)
6396 value = (symbol + addend) & howto->dst_mask;
6397 else
6398 {
6399 value = addend + gp - p + 4;
97a4bb05
MM
6400 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6401 for overflow. But, on, say, Irix 5, relocations against
6402 _gp_disp are normally generated from the .cpload
6403 pseudo-op. It generates code that normally looks like
6404 this:
6405
6406 lui $gp,%hi(_gp_disp)
6407 addiu $gp,$gp,%lo(_gp_disp)
6408 addu $gp,$gp,$t9
6409
6410 Here $t9 holds the address of the function being called,
6411 as required by the MIPS ELF ABI. The R_MIPS_LO16
e53bd91b 6412 relocation can easily overflow in this situation, but the
97a4bb05
MM
6413 R_MIPS_HI16 relocation will handle the overflow.
6414 Therefore, we consider this a bug in the MIPS ABI, and do
6415 not check for overflow here. */
7403cb63
MM
6416 }
6417 break;
6418
6419 case R_MIPS_LITERAL:
6420 /* Because we don't merge literal sections, we can handle this
6421 just like R_MIPS_GPREL16. In the long run, we should merge
6422 shared literals, and then we will need to additional work
6423 here. */
6424
6425 /* Fall through. */
6426
b7233c24
MM
6427 case R_MIPS16_GPREL:
6428 /* The R_MIPS16_GPREL performs the same calculation as
6429 R_MIPS_GPREL16, but stores the relocated bits in a different
6430 order. We don't need to do anything special here; the
6431 differences are handled in mips_elf_perform_relocation. */
7403cb63
MM
6432 case R_MIPS_GPREL16:
6433 if (local_p)
6434 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6435 else
6436 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6437 overflowed_p = mips_elf_overflow_p (value, 16);
6438 break;
be3ccd9c 6439
7403cb63 6440 case R_MIPS_GOT16:
9117d219 6441 case R_MIPS_CALL16:
7403cb63
MM
6442 if (local_p)
6443 {
b305ef96 6444 boolean forced;
be3ccd9c 6445
b305ef96
UC
6446 /* The special case is when the symbol is forced to be local. We
6447 need the full address in the GOT since no R_MIPS_LO16 relocation
6448 follows. */
6449 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6450 local_sections, false);
6451 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
7403cb63
MM
6452 if (value == (bfd_vma) -1)
6453 return false;
be3ccd9c 6454 value
7403cb63
MM
6455 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6456 abfd,
6457 value);
6458 overflowed_p = mips_elf_overflow_p (value, 16);
6459 break;
6460 }
6461
6462 /* Fall through. */
6463
7403cb63
MM
6464 case R_MIPS_GOT_DISP:
6465 value = g;
6466 overflowed_p = mips_elf_overflow_p (value, 16);
6467 break;
6468
6469 case R_MIPS_GPREL32:
6470 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6471 break;
6472
6473 case R_MIPS_PC16:
6474 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6475 overflowed_p = mips_elf_overflow_p (value, 16);
cb56d3d3 6476 value = (bfd_vma) ((bfd_signed_vma) value / 4);
7403cb63
MM
6477 break;
6478
6479 case R_MIPS_GOT_HI16:
6480 case R_MIPS_CALL_HI16:
6481 /* We're allowed to handle these two relocations identically.
6482 The dynamic linker is allowed to handle the CALL relocations
6483 differently by creating a lazy evaluation stub. */
6484 value = g;
6485 value = mips_elf_high (value);
6486 value &= howto->dst_mask;
6487 break;
6488
6489 case R_MIPS_GOT_LO16:
6490 case R_MIPS_CALL_LO16:
6491 value = g & howto->dst_mask;
6492 break;
6493
7403cb63
MM
6494 case R_MIPS_GOT_PAGE:
6495 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6496 if (value == (bfd_vma) -1)
6497 return false;
6498 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6499 abfd,
6500 value);
6501 overflowed_p = mips_elf_overflow_p (value, 16);
6502 break;
be3ccd9c 6503
7403cb63
MM
6504 case R_MIPS_GOT_OFST:
6505 mips_elf_got_page (abfd, info, symbol + addend, &value);
6506 overflowed_p = mips_elf_overflow_p (value, 16);
6507 break;
6508
6509 case R_MIPS_SUB:
6510 value = symbol - addend;
6511 value &= howto->dst_mask;
6512 break;
6513
6514 case R_MIPS_HIGHER:
6515 value = mips_elf_higher (addend + symbol);
6516 value &= howto->dst_mask;
6517 break;
6518
6519 case R_MIPS_HIGHEST:
6520 value = mips_elf_highest (addend + symbol);
6521 value &= howto->dst_mask;
6522 break;
be3ccd9c 6523
7403cb63
MM
6524 case R_MIPS_SCN_DISP:
6525 value = symbol + addend - sec->output_offset;
6526 value &= howto->dst_mask;
6527 break;
6528
6529 case R_MIPS_PJUMP:
6530 case R_MIPS_JALR:
6531 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6532 hint; we could improve performance by honoring that hint. */
6533 return bfd_reloc_continue;
6534
6535 case R_MIPS_GNU_VTINHERIT:
6536 case R_MIPS_GNU_VTENTRY:
6537 /* We don't do anything with these at present. */
6538 return bfd_reloc_continue;
6539
7403cb63
MM
6540 default:
6541 /* An unrecognized relocation type. */
6542 return bfd_reloc_notsupported;
6543 }
6544
6545 /* Store the VALUE for our caller. */
6546 *valuep = value;
6547 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6548}
6549
6550/* Obtain the field relocated by RELOCATION. */
6551
6552static bfd_vma
6553mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6554 reloc_howto_type *howto;
103186c6 6555 const Elf_Internal_Rela *relocation;
7403cb63
MM
6556 bfd *input_bfd;
6557 bfd_byte *contents;
6558{
6559 bfd_vma x;
6560 bfd_byte *location = contents + relocation->r_offset;
6561
b7233c24
MM
6562 /* Obtain the bytes. */
6563 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
7403cb63 6564
6296902e
MM
6565 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6566 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
1e52e2ee
MM
6567 && bfd_little_endian (input_bfd))
6568 /* The two 16-bit words will be reversed on a little-endian
6569 system. See mips_elf_perform_relocation for more details. */
6570 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6571
7403cb63
MM
6572 return x;
6573}
6574
6575/* It has been determined that the result of the RELOCATION is the
6576 VALUE. Use HOWTO to place VALUE into the output file at the
6577 appropriate position. The SECTION is the section to which the
197b9ca0
MM
6578 relocation applies. If REQUIRE_JALX is true, then the opcode used
6579 for the relocation must be either JAL or JALX, and it is
6580 unconditionally converted to JALX.
7403cb63
MM
6581
6582 Returns false if anything goes wrong. */
252b5132 6583
197b9ca0 6584static boolean
e53bd91b 6585mips_elf_perform_relocation (info, howto, relocation, value,
be3ccd9c 6586 input_bfd, input_section,
197b9ca0 6587 contents, require_jalx)
e53bd91b 6588 struct bfd_link_info *info;
7403cb63 6589 reloc_howto_type *howto;
103186c6 6590 const Elf_Internal_Rela *relocation;
7403cb63
MM
6591 bfd_vma value;
6592 bfd *input_bfd;
197b9ca0 6593 asection *input_section;
7403cb63 6594 bfd_byte *contents;
197b9ca0 6595 boolean require_jalx;
7403cb63
MM
6596{
6597 bfd_vma x;
e53bd91b 6598 bfd_byte *location;
197b9ca0 6599 int r_type = ELF32_R_TYPE (relocation->r_info);
e53bd91b
MM
6600
6601 /* Figure out where the relocation is occurring. */
6602 location = contents + relocation->r_offset;
252b5132 6603
7403cb63
MM
6604 /* Obtain the current value. */
6605 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
252b5132 6606
7403cb63
MM
6607 /* Clear the field we are setting. */
6608 x &= ~howto->dst_mask;
252b5132 6609
e53bd91b
MM
6610 /* If this is the R_MIPS16_26 relocation, we must store the
6611 value in a funny way. */
197b9ca0 6612 if (r_type == R_MIPS16_26)
7403cb63 6613 {
e53bd91b
MM
6614 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6615 Most mips16 instructions are 16 bits, but these instructions
6616 are 32 bits.
6617
6618 The format of these instructions is:
6619
6620 +--------------+--------------------------------+
6621 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6622 +--------------+--------------------------------+
6623 ! Immediate 15:0 !
6624 +-----------------------------------------------+
be3ccd9c 6625
e53bd91b
MM
6626 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6627 Note that the immediate value in the first word is swapped.
6628
6629 When producing a relocateable object file, R_MIPS16_26 is
6630 handled mostly like R_MIPS_26. In particular, the addend is
6631 stored as a straight 26-bit value in a 32-bit instruction.
6632 (gas makes life simpler for itself by never adjusting a
6633 R_MIPS16_26 reloc to be against a section, so the addend is
6634 always zero). However, the 32 bit instruction is stored as 2
6635 16-bit values, rather than a single 32-bit value. In a
6636 big-endian file, the result is the same; in a little-endian
6637 file, the two 16-bit halves of the 32 bit value are swapped.
6638 This is so that a disassembler can recognize the jal
6639 instruction.
6640
6641 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6642 instruction stored as two 16-bit values. The addend A is the
6643 contents of the targ26 field. The calculation is the same as
6644 R_MIPS_26. When storing the calculated value, reorder the
6645 immediate value as shown above, and don't forget to store the
6646 value as two 16-bit values.
6647
6648 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6649 defined as
be3ccd9c 6650
e53bd91b
MM
6651 big-endian:
6652 +--------+----------------------+
6653 | | |
6654 | | targ26-16 |
6655 |31 26|25 0|
6656 +--------+----------------------+
be3ccd9c 6657
e53bd91b
MM
6658 little-endian:
6659 +----------+------+-------------+
6660 | | | |
6661 | sub1 | | sub2 |
6662 |0 9|10 15|16 31|
6663 +----------+--------------------+
6664 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6665 ((sub1 << 16) | sub2)).
be3ccd9c 6666
e53bd91b 6667 When producing a relocateable object file, the calculation is
9117d219 6668 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
e53bd91b 6669 When producing a fully linked file, the calculation is
9117d219 6670 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
e53bd91b
MM
6671 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6672
6673 if (!info->relocateable)
6674 /* Shuffle the bits according to the formula above. */
be3ccd9c
KH
6675 value = (((value & 0x1f0000) << 5)
6676 | ((value & 0x3e00000) >> 5)
e53bd91b 6677 | (value & 0xffff));
e53bd91b 6678 }
197b9ca0 6679 else if (r_type == R_MIPS16_GPREL)
b7233c24
MM
6680 {
6681 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6682 mode. A typical instruction will have a format like this:
6683
6684 +--------------+--------------------------------+
6685 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6686 +--------------+--------------------------------+
6687 ! Major ! rx ! ry ! Imm 4:0 !
6688 +--------------+--------------------------------+
be3ccd9c 6689
b7233c24
MM
6690 EXTEND is the five bit value 11110. Major is the instruction
6691 opcode.
be3ccd9c 6692
b7233c24
MM
6693 This is handled exactly like R_MIPS_GPREL16, except that the
6694 addend is retrieved and stored as shown in this diagram; that
be3ccd9c 6695 is, the Imm fields above replace the V-rel16 field.
b7233c24 6696
6296902e
MM
6697 All we need to do here is shuffle the bits appropriately. As
6698 above, the two 16-bit halves must be swapped on a
6699 little-endian system. */
b7233c24
MM
6700 value = (((value & 0x7e0) << 16)
6701 | ((value & 0xf800) << 5)
6702 | (value & 0x1f));
6703 }
252b5132 6704
e53bd91b
MM
6705 /* Set the field. */
6706 x |= (value & howto->dst_mask);
252b5132 6707
197b9ca0
MM
6708 /* If required, turn JAL into JALX. */
6709 if (require_jalx)
6710 {
6711 boolean ok;
6712 bfd_vma opcode = x >> 26;
6713 bfd_vma jalx_opcode;
6714
6715 /* Check to see if the opcode is already JAL or JALX. */
6716 if (r_type == R_MIPS16_26)
6717 {
6718 ok = ((opcode == 0x6) || (opcode == 0x7));
6719 jalx_opcode = 0x7;
6720 }
6721 else
6722 {
6723 ok = ((opcode == 0x3) || (opcode == 0x1d));
6724 jalx_opcode = 0x1d;
6725 }
6726
6727 /* If the opcode is not JAL or JALX, there's a problem. */
6728 if (!ok)
6729 {
6730 (*_bfd_error_handler)
6731 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6732 bfd_get_filename (input_bfd),
6733 input_section->name,
6734 (unsigned long) relocation->r_offset);
6735 bfd_set_error (bfd_error_bad_value);
6736 return false;
6737 }
6738
6739 /* Make this the JALX opcode. */
6740 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6741 }
6742
6296902e
MM
6743 /* Swap the high- and low-order 16 bits on little-endian systems
6744 when doing a MIPS16 relocation. */
197b9ca0 6745 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6296902e
MM
6746 && bfd_little_endian (input_bfd))
6747 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
be3ccd9c 6748
e53bd91b
MM
6749 /* Put the value into the output. */
6750 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
197b9ca0
MM
6751 return true;
6752}
6753
6754/* Returns true if SECTION is a MIPS16 stub section. */
6755
6756static boolean
6757mips_elf_stub_section_p (abfd, section)
6387d602 6758 bfd *abfd ATTRIBUTE_UNUSED;
197b9ca0
MM
6759 asection *section;
6760{
6761 const char *name = bfd_get_section_name (abfd, section);
6762
6763 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6764 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6765 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
7403cb63 6766}
252b5132 6767
7403cb63 6768/* Relocate a MIPS ELF section. */
252b5132 6769
103186c6
MM
6770boolean
6771_bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6772 contents, relocs, local_syms, local_sections)
7403cb63
MM
6773 bfd *output_bfd;
6774 struct bfd_link_info *info;
6775 bfd *input_bfd;
6776 asection *input_section;
6777 bfd_byte *contents;
6778 Elf_Internal_Rela *relocs;
6779 Elf_Internal_Sym *local_syms;
6780 asection **local_sections;
6781{
31367b81 6782 Elf_Internal_Rela *rel;
103186c6 6783 const Elf_Internal_Rela *relend;
86033394 6784 bfd_vma addend = 0;
7403cb63 6785 boolean use_saved_addend_p = false;
103186c6 6786 struct elf_backend_data *bed;
252b5132 6787
103186c6
MM
6788 bed = get_elf_backend_data (output_bfd);
6789 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7403cb63
MM
6790 for (rel = relocs; rel < relend; ++rel)
6791 {
6792 const char *name;
6793 bfd_vma value;
7403cb63 6794 reloc_howto_type *howto;
197b9ca0 6795 boolean require_jalx;
31367b81
MM
6796 /* True if the relocation is a RELA relocation, rather than a
6797 REL relocation. */
6798 boolean rela_relocation_p = true;
dc810e39 6799 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
7a65545d 6800 const char * msg = (const char *) NULL;
252b5132 6801
7403cb63 6802 /* Find the relocation howto for this relocation. */
31367b81 6803 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
0af99795
GK
6804 {
6805 /* Some 32-bit code uses R_MIPS_64. In particular, people use
be3ccd9c 6806 64-bit code, but make sure all their addresses are in the
0af99795
GK
6807 lowermost or uppermost 32-bit section of the 64-bit address
6808 space. Thus, when they use an R_MIPS_64 they mean what is
6809 usually meant by R_MIPS_32, with the exception that the
6810 stored value is sign-extended to 64 bits. */
6811 howto = elf_mips_howto_table + R_MIPS_32;
6812
6813 /* On big-endian systems, we need to lie about the position
6814 of the reloc. */
6815 if (bfd_big_endian (input_bfd))
be3ccd9c 6816 rel->r_offset += 4;
0af99795 6817 }
a3c7651d 6818 else
c9b3cbf3 6819 howto = mips_rtype_to_howto (r_type);
252b5132 6820
7403cb63
MM
6821 if (!use_saved_addend_p)
6822 {
6823 Elf_Internal_Shdr *rel_hdr;
6824
6825 /* If these relocations were originally of the REL variety,
6826 we must pull the addend out of the field that will be
6827 relocated. Otherwise, we simply use the contents of the
6828 RELA relocation. To determine which flavor or relocation
6829 this is, we depend on the fact that the INPUT_SECTION's
6830 REL_HDR is read before its REL_HDR2. */
6831 rel_hdr = &elf_section_data (input_section)->rel_hdr;
5f771d47 6832 if ((size_t) (rel - relocs)
d9bc7a44 6833 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7403cb63 6834 rel_hdr = elf_section_data (input_section)->rel_hdr2;
103186c6 6835 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7403cb63 6836 {
31367b81
MM
6837 /* Note that this is a REL relocation. */
6838 rela_relocation_p = false;
7403cb63 6839
31367b81 6840 /* Get the addend, which is stored in the input file. */
be3ccd9c 6841 addend = mips_elf_obtain_contents (howto,
7403cb63
MM
6842 rel,
6843 input_bfd,
6844 contents);
6845 addend &= howto->src_mask;
6846
6847 /* For some kinds of relocations, the ADDEND is a
6848 combination of the addend stored in two different
6849 relocations. */
6387d602 6850 if (r_type == R_MIPS_HI16
bb2d6cd7 6851 || r_type == R_MIPS_GNU_REL_HI16
6387d602
ILT
6852 || (r_type == R_MIPS_GOT16
6853 && mips_elf_local_relocation_p (input_bfd, rel,
b305ef96 6854 local_sections, false)))
252b5132 6855 {
23b255aa
MM
6856 bfd_vma l;
6857 const Elf_Internal_Rela *lo16_relocation;
6858 reloc_howto_type *lo16_howto;
dc810e39 6859 unsigned int lo;
23b255aa 6860
e7c44218
MM
6861 /* The combined value is the sum of the HI16 addend,
6862 left-shifted by sixteen bits, and the LO16
6863 addend, sign extended. (Usually, the code does
6864 a `lui' of the HI16 value, and then an `addiu' of
be3ccd9c 6865 the LO16 value.)
e7c44218 6866
bb2d6cd7
GK
6867 Scan ahead to find a matching LO16 relocation. */
6868 if (r_type == R_MIPS_GNU_REL_HI16)
6869 lo = R_MIPS_GNU_REL_LO16;
6870 else
6871 lo = R_MIPS_LO16;
be3ccd9c
KH
6872 lo16_relocation
6873 = mips_elf_next_relocation (lo, rel, relend);
23b255aa 6874 if (lo16_relocation == NULL)
7403cb63 6875 return false;
252b5132 6876
23b255aa 6877 /* Obtain the addend kept there. */
bb2d6cd7 6878 lo16_howto = mips_rtype_to_howto (lo);
23b255aa
MM
6879 l = mips_elf_obtain_contents (lo16_howto,
6880 lo16_relocation,
6881 input_bfd, contents);
6882 l &= lo16_howto->src_mask;
e7c44218 6883 l = mips_elf_sign_extend (l, 16);
23b255aa 6884
7403cb63 6885 addend <<= 16;
252b5132 6886
7403cb63 6887 /* Compute the combined addend. */
e7c44218 6888 addend += l;
252b5132 6889 }
b7233c24
MM
6890 else if (r_type == R_MIPS16_GPREL)
6891 {
6892 /* The addend is scrambled in the object file. See
6893 mips_elf_perform_relocation for details on the
6894 format. */
6895 addend = (((addend & 0x1f0000) >> 5)
6896 | ((addend & 0x7e00000) >> 16)
6897 | (addend & 0x1f));
6898 }
252b5132
RH
6899 }
6900 else
7403cb63
MM
6901 addend = rel->r_addend;
6902 }
252b5132 6903
31367b81
MM
6904 if (info->relocateable)
6905 {
6906 Elf_Internal_Sym *sym;
6907 unsigned long r_symndx;
6908
7893e6a2
GK
6909 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6910 && bfd_big_endian (input_bfd))
6911 rel->r_offset -= 4;
6912
31367b81 6913 /* Since we're just relocating, all we need to do is copy
0db63c18
MM
6914 the relocations back out to the object file, unless
6915 they're against a section symbol, in which case we need
6916 to adjust by the section offset, or unless they're GP
6917 relative in which case we need to adjust by the amount
6918 that we're adjusting GP in this relocateable object. */
31367b81 6919
b305ef96
UC
6920 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6921 false))
f1a5f37e 6922 /* There's nothing to do for non-local relocations. */
31367b81
MM
6923 continue;
6924
be3ccd9c 6925 if (r_type == R_MIPS16_GPREL
0db63c18 6926 || r_type == R_MIPS_GPREL16
0af99795
GK
6927 || r_type == R_MIPS_GPREL32
6928 || r_type == R_MIPS_LITERAL)
0db63c18
MM
6929 addend -= (_bfd_get_gp_value (output_bfd)
6930 - _bfd_get_gp_value (input_bfd));
bb2d6cd7
GK
6931 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6932 || r_type == R_MIPS_GNU_REL16_S2)
e7c44218
MM
6933 /* The addend is stored without its two least
6934 significant bits (which are always zero.) In a
6935 non-relocateable link, calculate_relocation will do
6936 this shift; here, we must do it ourselves. */
6937 addend <<= 2;
31367b81 6938
4f2860ca
MM
6939 r_symndx = ELF32_R_SYM (rel->r_info);
6940 sym = local_syms + r_symndx;
6941 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6942 /* Adjust the addend appropriately. */
6943 addend += local_sections[r_symndx]->output_offset;
be3ccd9c 6944
f1a5f37e
MM
6945 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6946 then we only want to write out the high-order 16 bits.
6947 The subsequent R_MIPS_LO16 will handle the low-order bits. */
bb2d6cd7
GK
6948 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6949 || r_type == R_MIPS_GNU_REL_HI16)
23b255aa 6950 addend = mips_elf_high (addend);
5a44662b
MM
6951 /* If the relocation is for an R_MIPS_26 relocation, then
6952 the two low-order bits are not stored in the object file;
6953 they are implicitly zero. */
bb2d6cd7
GK
6954 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6955 || r_type == R_MIPS_GNU_REL16_S2)
5a44662b 6956 addend >>= 2;
f1a5f37e 6957
31367b81
MM
6958 if (rela_relocation_p)
6959 /* If this is a RELA relocation, just update the addend.
bb2d6cd7 6960 We have to cast away constness for REL. */
31367b81
MM
6961 rel->r_addend = addend;
6962 else
6963 {
6964 /* Otherwise, we have to write the value back out. Note
6965 that we use the source mask, rather than the
6966 destination mask because the place to which we are
6967 writing will be source of the addend in the final
6968 link. */
6969 addend &= howto->src_mask;
7893e6a2
GK
6970
6971 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6972 /* See the comment above about using R_MIPS_64 in the 32-bit
6973 ABI. Here, we need to update the addend. It would be
6974 possible to get away with just using the R_MIPS_32 reloc
6975 but for endianness. */
6976 {
6977 bfd_vma sign_bits;
6978 bfd_vma low_bits;
6979 bfd_vma high_bits;
be3ccd9c 6980
fc633e5b
AM
6981 if (addend & ((bfd_vma) 1 << 31))
6982 sign_bits = ((bfd_vma) 1 << 32) - 1;
7893e6a2
GK
6983 else
6984 sign_bits = 0;
be3ccd9c 6985
7893e6a2
GK
6986 /* If we don't know that we have a 64-bit type,
6987 do two separate stores. */
6988 if (bfd_big_endian (input_bfd))
6989 {
6990 /* Store the sign-bits (which are most significant)
6991 first. */
6992 low_bits = sign_bits;
6993 high_bits = addend;
6994 }
6995 else
6996 {
6997 low_bits = addend;
6998 high_bits = sign_bits;
6999 }
be3ccd9c 7000 bfd_put_32 (input_bfd, low_bits,
7893e6a2 7001 contents + rel->r_offset);
be3ccd9c 7002 bfd_put_32 (input_bfd, high_bits,
7893e6a2
GK
7003 contents + rel->r_offset + 4);
7004 continue;
7005 }
7006
31367b81 7007 if (!mips_elf_perform_relocation (info, howto, rel, addend,
be3ccd9c 7008 input_bfd, input_section,
31367b81
MM
7009 contents, false))
7010 return false;
7011 }
7012
7013 /* Go on to the next relocation. */
7014 continue;
7015 }
7016
7403cb63
MM
7017 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7018 relocations for the same offset. In that case we are
7019 supposed to treat the output of each relocation as the addend
7020 for the next. */
be3ccd9c 7021 if (rel + 1 < relend
103186c6 7022 && rel->r_offset == rel[1].r_offset
b89db8f2 7023 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7403cb63
MM
7024 use_saved_addend_p = true;
7025 else
7026 use_saved_addend_p = false;
7027
7028 /* Figure out what value we are supposed to relocate. */
be3ccd9c 7029 switch (mips_elf_calculate_relocation (output_bfd,
7403cb63
MM
7030 input_bfd,
7031 input_section,
7032 info,
7033 rel,
7034 addend,
7035 howto,
7403cb63
MM
7036 local_syms,
7037 local_sections,
7038 &value,
197b9ca0
MM
7039 &name,
7040 &require_jalx))
7403cb63
MM
7041 {
7042 case bfd_reloc_continue:
7043 /* There's nothing to do. */
7044 continue;
252b5132 7045
7403cb63 7046 case bfd_reloc_undefined:
6387d602 7047 /* mips_elf_calculate_relocation already called the
bb2d6cd7 7048 undefined_symbol callback. There's no real point in
97287574
MM
7049 trying to perform the relocation at this point, so we
7050 just skip ahead to the next relocation. */
7051 continue;
252b5132 7052
7403cb63 7053 case bfd_reloc_notsupported:
7a65545d
DN
7054 msg = _("internal error: unsupported relocation error");
7055 info->callbacks->warning
7056 (info, msg, name, input_bfd, input_section, rel->r_offset);
7057 return false;
252b5132 7058
7403cb63
MM
7059 case bfd_reloc_overflow:
7060 if (use_saved_addend_p)
7061 /* Ignore overflow until we reach the last relocation for
7062 a given location. */
7063 ;
6387d602
ILT
7064 else
7065 {
7066 BFD_ASSERT (name != NULL);
7067 if (! ((*info->callbacks->reloc_overflow)
7068 (info, name, howto->name, (bfd_vma) 0,
7069 input_bfd, input_section, rel->r_offset)))
7070 return false;
7071 }
7403cb63 7072 break;
252b5132 7073
7403cb63
MM
7074 case bfd_reloc_ok:
7075 break;
7076
7077 default:
7078 abort ();
7079 break;
252b5132
RH
7080 }
7081
7403cb63
MM
7082 /* If we've got another relocation for the address, keep going
7083 until we reach the last one. */
7084 if (use_saved_addend_p)
252b5132 7085 {
7403cb63
MM
7086 addend = value;
7087 continue;
252b5132 7088 }
7403cb63 7089
31367b81 7090 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
a3c7651d
MM
7091 /* See the comment above about using R_MIPS_64 in the 32-bit
7092 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7093 that calculated the right value. Now, however, we
7094 sign-extend the 32-bit result to 64-bits, and store it as a
7095 64-bit value. We are especially generous here in that we
7096 go to extreme lengths to support this usage on systems with
7097 only a 32-bit VMA. */
7098 {
a3c7651d
MM
7099 bfd_vma sign_bits;
7100 bfd_vma low_bits;
7101 bfd_vma high_bits;
7102
fc633e5b
AM
7103 if (value & ((bfd_vma) 1 << 31))
7104 sign_bits = ((bfd_vma) 1 << 32) - 1;
a3c7651d
MM
7105 else
7106 sign_bits = 0;
7107
7893e6a2
GK
7108 /* If we don't know that we have a 64-bit type,
7109 do two separate stores. */
a3c7651d
MM
7110 if (bfd_big_endian (input_bfd))
7111 {
0af99795
GK
7112 /* Undo what we did above. */
7113 rel->r_offset -= 4;
a3c7651d
MM
7114 /* Store the sign-bits (which are most significant)
7115 first. */
7116 low_bits = sign_bits;
7117 high_bits = value;
7118 }
7119 else
7120 {
7121 low_bits = value;
7122 high_bits = sign_bits;
7123 }
be3ccd9c 7124 bfd_put_32 (input_bfd, low_bits,
a3c7651d 7125 contents + rel->r_offset);
be3ccd9c 7126 bfd_put_32 (input_bfd, high_bits,
a3c7651d
MM
7127 contents + rel->r_offset + 4);
7128 continue;
a3c7651d
MM
7129 }
7130
7403cb63 7131 /* Actually perform the relocation. */
be3ccd9c 7132 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
197b9ca0
MM
7133 input_section, contents,
7134 require_jalx))
7135 return false;
252b5132
RH
7136 }
7137
7138 return true;
7139}
7140
7141/* This hook function is called before the linker writes out a global
7142 symbol. We mark symbols as small common if appropriate. This is
7143 also where we undo the increment of the value for a mips16 symbol. */
7144
103186c6
MM
7145boolean
7146_bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
5f771d47
ILT
7147 bfd *abfd ATTRIBUTE_UNUSED;
7148 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7149 const char *name ATTRIBUTE_UNUSED;
252b5132
RH
7150 Elf_Internal_Sym *sym;
7151 asection *input_sec;
7152{
7153 /* If we see a common symbol, which implies a relocatable link, then
7154 if a symbol was small common in an input file, mark it as small
7155 common in the output file. */
7156 if (sym->st_shndx == SHN_COMMON
7157 && strcmp (input_sec->name, ".scommon") == 0)
7158 sym->st_shndx = SHN_MIPS_SCOMMON;
7159
7160 if (sym->st_other == STO_MIPS16
7161 && (sym->st_value & 1) != 0)
7162 --sym->st_value;
7163
7164 return true;
7165}
7166\f
7167/* Functions for the dynamic linker. */
7168
7169/* The name of the dynamic interpreter. This is put in the .interp
7170 section. */
7171
103186c6
MM
7172#define ELF_DYNAMIC_INTERPRETER(abfd) \
7173 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7174 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7175 : "/usr/lib/libc.so.1")
252b5132
RH
7176
7177/* Create dynamic sections when linking against a dynamic object. */
7178
103186c6
MM
7179boolean
7180_bfd_mips_elf_create_dynamic_sections (abfd, info)
252b5132
RH
7181 bfd *abfd;
7182 struct bfd_link_info *info;
7183{
7184 struct elf_link_hash_entry *h;
7185 flagword flags;
7186 register asection *s;
7187 const char * const *namep;
7188
7189 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7190 | SEC_LINKER_CREATED | SEC_READONLY);
7191
7192 /* Mips ABI requests the .dynamic section to be read only. */
7193 s = bfd_get_section_by_name (abfd, ".dynamic");
7194 if (s != NULL)
7195 {
7196 if (! bfd_set_section_flags (abfd, s, flags))
7197 return false;
7198 }
7199
7200 /* We need to create .got section. */
7201 if (! mips_elf_create_got_section (abfd, info))
7202 return false;
7203
c6142e5d
MM
7204 /* Create the .msym section on IRIX6. It is used by the dynamic
7205 linker to speed up dynamic relocations, and to avoid computing
7206 the ELF hash for symbols. */
7207 if (IRIX_COMPAT (abfd) == ict_irix6
7208 && !mips_elf_create_msym_section (abfd))
7209 return false;
be3ccd9c 7210
252b5132 7211 /* Create .stub section. */
be3ccd9c 7212 if (bfd_get_section_by_name (abfd,
7403cb63 7213 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
252b5132 7214 {
7403cb63 7215 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
252b5132 7216 if (s == NULL
7403cb63 7217 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
103186c6
MM
7218 || ! bfd_set_section_alignment (abfd, s,
7219 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
7220 return false;
7221 }
7222
31a9bdd9 7223 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
252b5132
RH
7224 && !info->shared
7225 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7226 {
7227 s = bfd_make_section (abfd, ".rld_map");
7228 if (s == NULL
dc810e39 7229 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
103186c6
MM
7230 || ! bfd_set_section_alignment (abfd, s,
7231 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
7232 return false;
7233 }
7234
303f629d
MM
7235 /* On IRIX5, we adjust add some additional symbols and change the
7236 alignments of several sections. There is no ABI documentation
7237 indicating that this is necessary on IRIX6, nor any evidence that
7238 the linker takes such action. */
7239 if (IRIX_COMPAT (abfd) == ict_irix5)
252b5132
RH
7240 {
7241 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7242 {
7243 h = NULL;
7244 if (! (_bfd_generic_link_add_one_symbol
7245 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7246 (bfd_vma) 0, (const char *) NULL, false,
7247 get_elf_backend_data (abfd)->collect,
7248 (struct bfd_link_hash_entry **) &h)))
7249 return false;
be3ccd9c 7250 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
252b5132
RH
7251 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7252 h->type = STT_SECTION;
7253
7254 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7255 return false;
7256 }
7257
7258 /* We need to create a .compact_rel section. */
f7cb7d68 7259 if (SGI_COMPAT (abfd))
be3ccd9c
KH
7260 {
7261 if (!mips_elf_create_compact_rel_section (abfd, info))
f7cb7d68 7262 return false;
be3ccd9c 7263 }
252b5132
RH
7264
7265 /* Change aligments of some sections. */
7266 s = bfd_get_section_by_name (abfd, ".hash");
7267 if (s != NULL)
7268 bfd_set_section_alignment (abfd, s, 4);
7269 s = bfd_get_section_by_name (abfd, ".dynsym");
7270 if (s != NULL)
7271 bfd_set_section_alignment (abfd, s, 4);
7272 s = bfd_get_section_by_name (abfd, ".dynstr");
7273 if (s != NULL)
7274 bfd_set_section_alignment (abfd, s, 4);
7275 s = bfd_get_section_by_name (abfd, ".reginfo");
7276 if (s != NULL)
7277 bfd_set_section_alignment (abfd, s, 4);
7278 s = bfd_get_section_by_name (abfd, ".dynamic");
7279 if (s != NULL)
7280 bfd_set_section_alignment (abfd, s, 4);
7281 }
7282
7283 if (!info->shared)
7284 {
7285 h = NULL;
f7cb7d68 7286 if (SGI_COMPAT (abfd))
be3ccd9c
KH
7287 {
7288 if (!(_bfd_generic_link_add_one_symbol
7289 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7290 (bfd_vma) 0, (const char *) NULL, false,
7291 get_elf_backend_data (abfd)->collect,
7292 (struct bfd_link_hash_entry **) &h)))
f7cb7d68 7293 return false;
be3ccd9c 7294 }
f7cb7d68 7295 else
be3ccd9c
KH
7296 {
7297 /* For normal mips it is _DYNAMIC_LINKING. */
7298 if (!(_bfd_generic_link_add_one_symbol
7299 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7300 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7301 get_elf_backend_data (abfd)->collect,
7302 (struct bfd_link_hash_entry **) &h)))
7303 return false;
7304 }
7305 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
252b5132
RH
7306 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7307 h->type = STT_SECTION;
7308
7309 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7310 return false;
7311
7312 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7313 {
7314 /* __rld_map is a four byte word located in the .data section
7315 and is filled in by the rtld to contain a pointer to
7316 the _r_debug structure. Its symbol value will be set in
7317 mips_elf_finish_dynamic_symbol. */
7318 s = bfd_get_section_by_name (abfd, ".rld_map");
7319 BFD_ASSERT (s != NULL);
7320
7321 h = NULL;
be3ccd9c
KH
7322 if (SGI_COMPAT (abfd))
7323 {
7324 if (!(_bfd_generic_link_add_one_symbol
7325 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7326 (bfd_vma) 0, (const char *) NULL, false,
7327 get_elf_backend_data (abfd)->collect,
7328 (struct bfd_link_hash_entry **) &h)))
7329 return false;
7330 }
7331 else
7332 {
7333 /* For normal mips the symbol is __RLD_MAP. */
7334 if (!(_bfd_generic_link_add_one_symbol
7335 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7336 (bfd_vma) 0, (const char *) NULL, false,
7337 get_elf_backend_data (abfd)->collect,
7338 (struct bfd_link_hash_entry **) &h)))
7339 return false;
7340 }
7341 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
252b5132
RH
7342 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7343 h->type = STT_OBJECT;
7344
7345 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7346 return false;
7347 }
7348 }
7349
7350 return true;
7351}
7352
7353/* Create the .compact_rel section. */
7354
7355static boolean
7356mips_elf_create_compact_rel_section (abfd, info)
7357 bfd *abfd;
5f771d47 7358 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132
RH
7359{
7360 flagword flags;
7361 register asection *s;
7362
7363 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7364 {
7365 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7366 | SEC_READONLY);
7367
7368 s = bfd_make_section (abfd, ".compact_rel");
7369 if (s == NULL
7370 || ! bfd_set_section_flags (abfd, s, flags)
103186c6
MM
7371 || ! bfd_set_section_alignment (abfd, s,
7372 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
252b5132
RH
7373 return false;
7374
7375 s->_raw_size = sizeof (Elf32_External_compact_rel);
7376 }
7377
7378 return true;
7379}
7380
be3ccd9c 7381/* Create the .got section to hold the global offset table. */
252b5132
RH
7382
7383static boolean
7384mips_elf_create_got_section (abfd, info)
7385 bfd *abfd;
7386 struct bfd_link_info *info;
7387{
7388 flagword flags;
7389 register asection *s;
7390 struct elf_link_hash_entry *h;
7391 struct mips_got_info *g;
dc810e39 7392 bfd_size_type amt;
252b5132
RH
7393
7394 /* This function may be called more than once. */
103186c6 7395 if (mips_elf_got_section (abfd))
252b5132
RH
7396 return true;
7397
7398 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7399 | SEC_LINKER_CREATED);
7400
7401 s = bfd_make_section (abfd, ".got");
7402 if (s == NULL
7403 || ! bfd_set_section_flags (abfd, s, flags)
7404 || ! bfd_set_section_alignment (abfd, s, 4))
7405 return false;
7406
7407 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7408 linker script because we don't want to define the symbol if we
7409 are not creating a global offset table. */
7410 h = NULL;
7411 if (! (_bfd_generic_link_add_one_symbol
7412 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7413 (bfd_vma) 0, (const char *) NULL, false,
7414 get_elf_backend_data (abfd)->collect,
7415 (struct bfd_link_hash_entry **) &h)))
7416 return false;
be3ccd9c 7417 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
252b5132
RH
7418 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7419 h->type = STT_OBJECT;
7420
7421 if (info->shared
7422 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7423 return false;
7424
7425 /* The first several global offset table entries are reserved. */
103186c6 7426 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
252b5132 7427
dc810e39
AM
7428 amt = sizeof (struct mips_got_info);
7429 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
252b5132
RH
7430 if (g == NULL)
7431 return false;
7403cb63 7432 g->global_gotsym = NULL;
252b5132
RH
7433 g->local_gotno = MIPS_RESERVED_GOTNO;
7434 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7435 if (elf_section_data (s) == NULL)
7436 {
dc810e39
AM
7437 amt = sizeof (struct bfd_elf_section_data);
7438 s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
252b5132
RH
7439 if (elf_section_data (s) == NULL)
7440 return false;
7441 }
7442 elf_section_data (s)->tdata = (PTR) g;
be3ccd9c 7443 elf_section_data (s)->this_hdr.sh_flags
7403cb63 7444 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
252b5132
RH
7445
7446 return true;
7447}
7448
c6142e5d
MM
7449/* Returns the .msym section for ABFD, creating it if it does not
7450 already exist. Returns NULL to indicate error. */
7451
7452static asection *
7453mips_elf_create_msym_section (abfd)
7454 bfd *abfd;
7455{
7456 asection *s;
7457
7458 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
be3ccd9c 7459 if (!s)
c6142e5d
MM
7460 {
7461 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7462 if (!s
be3ccd9c 7463 || !bfd_set_section_flags (abfd, s,
c6142e5d
MM
7464 SEC_ALLOC
7465 | SEC_LOAD
7466 | SEC_HAS_CONTENTS
be3ccd9c 7467 | SEC_LINKER_CREATED
c6142e5d 7468 | SEC_READONLY)
103186c6
MM
7469 || !bfd_set_section_alignment (abfd, s,
7470 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
c6142e5d
MM
7471 return NULL;
7472 }
7473
7474 return s;
7475}
7476
103186c6
MM
7477/* Add room for N relocations to the .rel.dyn section in ABFD. */
7478
7479static void
7480mips_elf_allocate_dynamic_relocations (abfd, n)
7481 bfd *abfd;
7482 unsigned int n;
7483{
7484 asection *s;
7485
7486 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7487 BFD_ASSERT (s != NULL);
be3ccd9c 7488
103186c6
MM
7489 if (s->_raw_size == 0)
7490 {
be3ccd9c 7491 /* Make room for a null element. */
103186c6
MM
7492 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7493 ++s->reloc_count;
7494 }
7495 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7496}
7497
252b5132
RH
7498/* Look through the relocs for a section during the first phase, and
7499 allocate space in the global offset table. */
7500
103186c6
MM
7501boolean
7502_bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
252b5132
RH
7503 bfd *abfd;
7504 struct bfd_link_info *info;
7505 asection *sec;
7506 const Elf_Internal_Rela *relocs;
7507{
7508 const char *name;
7509 bfd *dynobj;
7510 Elf_Internal_Shdr *symtab_hdr;
7511 struct elf_link_hash_entry **sym_hashes;
7512 struct mips_got_info *g;
7513 size_t extsymoff;
7514 const Elf_Internal_Rela *rel;
7515 const Elf_Internal_Rela *rel_end;
7516 asection *sgot;
7517 asection *sreloc;
103186c6 7518 struct elf_backend_data *bed;
252b5132
RH
7519
7520 if (info->relocateable)
7521 return true;
7522
7523 dynobj = elf_hash_table (info)->dynobj;
7524 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7525 sym_hashes = elf_sym_hashes (abfd);
7526 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7527
7528 /* Check for the mips16 stub sections. */
7529
7530 name = bfd_get_section_name (abfd, sec);
7531 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7532 {
7533 unsigned long r_symndx;
7534
7535 /* Look at the relocation information to figure out which symbol
7536 this is for. */
7537
7538 r_symndx = ELF32_R_SYM (relocs->r_info);
7539
7540 if (r_symndx < extsymoff
7541 || sym_hashes[r_symndx - extsymoff] == NULL)
7542 {
7543 asection *o;
7544
7545 /* This stub is for a local symbol. This stub will only be
7546 needed if there is some relocation in this BFD, other
7547 than a 16 bit function call, which refers to this symbol. */
7548 for (o = abfd->sections; o != NULL; o = o->next)
7549 {
7550 Elf_Internal_Rela *sec_relocs;
7551 const Elf_Internal_Rela *r, *rend;
7552
7553 /* We can ignore stub sections when looking for relocs. */
7554 if ((o->flags & SEC_RELOC) == 0
7555 || o->reloc_count == 0
7556 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7557 sizeof FN_STUB - 1) == 0
7558 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7559 sizeof CALL_STUB - 1) == 0
7560 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7561 sizeof CALL_FP_STUB - 1) == 0)
7562 continue;
7563
7564 sec_relocs = (_bfd_elf32_link_read_relocs
7565 (abfd, o, (PTR) NULL,
7566 (Elf_Internal_Rela *) NULL,
7567 info->keep_memory));
7568 if (sec_relocs == NULL)
7569 return false;
7570
7571 rend = sec_relocs + o->reloc_count;
7572 for (r = sec_relocs; r < rend; r++)
7573 if (ELF32_R_SYM (r->r_info) == r_symndx
7574 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7575 break;
7576
7577 if (! info->keep_memory)
7578 free (sec_relocs);
7579
7580 if (r < rend)
7581 break;
7582 }
7583
7584 if (o == NULL)
7585 {
7586 /* There is no non-call reloc for this stub, so we do
7587 not need it. Since this function is called before
7588 the linker maps input sections to output sections, we
7589 can easily discard it by setting the SEC_EXCLUDE
7590 flag. */
7591 sec->flags |= SEC_EXCLUDE;
7592 return true;
7593 }
7594
7595 /* Record this stub in an array of local symbol stubs for
be3ccd9c 7596 this BFD. */
252b5132
RH
7597 if (elf_tdata (abfd)->local_stubs == NULL)
7598 {
7599 unsigned long symcount;
7600 asection **n;
dc810e39 7601 bfd_size_type amt;
252b5132
RH
7602
7603 if (elf_bad_symtab (abfd))
d9bc7a44 7604 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
252b5132
RH
7605 else
7606 symcount = symtab_hdr->sh_info;
dc810e39
AM
7607 amt = symcount * sizeof (asection *);
7608 n = (asection **) bfd_zalloc (abfd, amt);
252b5132
RH
7609 if (n == NULL)
7610 return false;
7611 elf_tdata (abfd)->local_stubs = n;
7612 }
7613
7614 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7615
7616 /* We don't need to set mips16_stubs_seen in this case.
7617 That flag is used to see whether we need to look through
7618 the global symbol table for stubs. We don't need to set
7619 it here, because we just have a local stub. */
7620 }
7621 else
7622 {
7623 struct mips_elf_link_hash_entry *h;
7624
7625 h = ((struct mips_elf_link_hash_entry *)
7626 sym_hashes[r_symndx - extsymoff]);
7627
7628 /* H is the symbol this stub is for. */
7629
7630 h->fn_stub = sec;
7631 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7632 }
7633 }
7634 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7635 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7636 {
7637 unsigned long r_symndx;
7638 struct mips_elf_link_hash_entry *h;
7639 asection **loc;
7640
7641 /* Look at the relocation information to figure out which symbol
7642 this is for. */
7643
7644 r_symndx = ELF32_R_SYM (relocs->r_info);
7645
7646 if (r_symndx < extsymoff
7647 || sym_hashes[r_symndx - extsymoff] == NULL)
7648 {
7649 /* This stub was actually built for a static symbol defined
7650 in the same file. We assume that all static symbols in
7651 mips16 code are themselves mips16, so we can simply
7652 discard this stub. Since this function is called before
7653 the linker maps input sections to output sections, we can
7654 easily discard it by setting the SEC_EXCLUDE flag. */
7655 sec->flags |= SEC_EXCLUDE;
7656 return true;
7657 }
7658
7659 h = ((struct mips_elf_link_hash_entry *)
7660 sym_hashes[r_symndx - extsymoff]);
7661
7662 /* H is the symbol this stub is for. */
7663
7664 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7665 loc = &h->call_fp_stub;
7666 else
7667 loc = &h->call_stub;
7668
7669 /* If we already have an appropriate stub for this function, we
7670 don't need another one, so we can discard this one. Since
7671 this function is called before the linker maps input sections
7672 to output sections, we can easily discard it by setting the
7673 SEC_EXCLUDE flag. We can also discard this section if we
7674 happen to already know that this is a mips16 function; it is
7675 not necessary to check this here, as it is checked later, but
7676 it is slightly faster to check now. */
7677 if (*loc != NULL || h->root.other == STO_MIPS16)
7678 {
7679 sec->flags |= SEC_EXCLUDE;
7680 return true;
7681 }
7682
7683 *loc = sec;
7684 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7685 }
7686
7687 if (dynobj == NULL)
7688 {
7689 sgot = NULL;
7690 g = NULL;
7691 }
7692 else
7693 {
103186c6 7694 sgot = mips_elf_got_section (dynobj);
252b5132
RH
7695 if (sgot == NULL)
7696 g = NULL;
7697 else
7698 {
7699 BFD_ASSERT (elf_section_data (sgot) != NULL);
7700 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7701 BFD_ASSERT (g != NULL);
7702 }
7703 }
7704
7705 sreloc = NULL;
103186c6
MM
7706 bed = get_elf_backend_data (abfd);
7707 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7708 for (rel = relocs; rel < rel_end; ++rel)
252b5132
RH
7709 {
7710 unsigned long r_symndx;
dc810e39 7711 unsigned int r_type;
252b5132
RH
7712 struct elf_link_hash_entry *h;
7713
7714 r_symndx = ELF32_R_SYM (rel->r_info);
7403cb63 7715 r_type = ELF32_R_TYPE (rel->r_info);
252b5132
RH
7716
7717 if (r_symndx < extsymoff)
7718 h = NULL;
d9bc7a44 7719 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7a3120d9 7720 {
6140b3b9
L
7721 if (abfd->my_archive)
7722 (*_bfd_error_handler)
7723 (_("%s(%s) Malformed reloc detected for section %s"),
7724 bfd_get_filename (abfd->my_archive),
7725 bfd_get_filename (abfd), name);
7726 else
7727 (*_bfd_error_handler)
7728 (_("%s: Malformed reloc detected for section %s"),
7729 bfd_get_filename (abfd), name);
7a3120d9
NC
7730 bfd_set_error (bfd_error_bad_value);
7731 return false;
7732 }
252b5132
RH
7733 else
7734 {
7735 h = sym_hashes[r_symndx - extsymoff];
7736
7737 /* This may be an indirect symbol created because of a version. */
7738 if (h != NULL)
7739 {
7740 while (h->root.type == bfd_link_hash_indirect)
7741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7742 }
7743 }
7744
7745 /* Some relocs require a global offset table. */
7746 if (dynobj == NULL || sgot == NULL)
7747 {
7403cb63 7748 switch (r_type)
252b5132
RH
7749 {
7750 case R_MIPS_GOT16:
7751 case R_MIPS_CALL16:
7752 case R_MIPS_CALL_HI16:
7753 case R_MIPS_CALL_LO16:
7754 case R_MIPS_GOT_HI16:
7755 case R_MIPS_GOT_LO16:
435394bf
MM
7756 case R_MIPS_GOT_PAGE:
7757 case R_MIPS_GOT_OFST:
7758 case R_MIPS_GOT_DISP:
252b5132
RH
7759 if (dynobj == NULL)
7760 elf_hash_table (info)->dynobj = dynobj = abfd;
7761 if (! mips_elf_create_got_section (dynobj, info))
7762 return false;
7403cb63 7763 g = mips_elf_got_info (dynobj, &sgot);
252b5132
RH
7764 break;
7765
7766 case R_MIPS_32:
7767 case R_MIPS_REL32:
a3c7651d 7768 case R_MIPS_64:
252b5132
RH
7769 if (dynobj == NULL
7770 && (info->shared || h != NULL)
7771 && (sec->flags & SEC_ALLOC) != 0)
7772 elf_hash_table (info)->dynobj = dynobj = abfd;
7773 break;
7774
7775 default:
7776 break;
7777 }
7778 }
7779
7403cb63
MM
7780 if (!h && (r_type == R_MIPS_CALL_LO16
7781 || r_type == R_MIPS_GOT_LO16
9458945f 7782 || r_type == R_MIPS_GOT_DISP))
252b5132 7783 {
7403cb63 7784 /* We may need a local GOT entry for this relocation. We
97287574
MM
7785 don't count R_MIPS_GOT_PAGE because we can estimate the
7786 maximum number of pages needed by looking at the size of
9117d219
NC
7787 the segment. Similar comments apply to R_MIPS_GOT16 and
7788 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
7789 R_MIPS_CALL_HI16 because these are always followed by an
7790 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
7403cb63
MM
7791
7792 This estimation is very conservative since we can merge
7793 duplicate entries in the GOT. In order to be less
7794 conservative, we could actually build the GOT here,
7795 rather than in relocate_section. */
7796 g->local_gotno++;
a3c7651d 7797 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7403cb63 7798 }
252b5132 7799
7403cb63
MM
7800 switch (r_type)
7801 {
7802 case R_MIPS_CALL16:
252b5132
RH
7803 if (h == NULL)
7804 {
7805 (*_bfd_error_handler)
7806 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7807 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7808 bfd_set_error (bfd_error_bad_value);
7809 return false;
7810 }
7403cb63 7811 /* Fall through. */
252b5132 7812
7403cb63
MM
7813 case R_MIPS_CALL_HI16:
7814 case R_MIPS_CALL_LO16:
5a44662b
MM
7815 if (h != NULL)
7816 {
7817 /* This symbol requires a global offset table entry. */
7818 if (!mips_elf_record_global_got_symbol (h, info, g))
7819 return false;
252b5132 7820
5a44662b
MM
7821 /* We need a stub, not a plt entry for the undefined
7822 function. But we record it as if it needs plt. See
7823 elf_adjust_dynamic_symbol in elflink.h. */
7824 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7825 h->type = STT_FUNC;
7826 }
252b5132
RH
7827 break;
7828
7829 case R_MIPS_GOT16:
7830 case R_MIPS_GOT_HI16:
7831 case R_MIPS_GOT_LO16:
7403cb63 7832 case R_MIPS_GOT_DISP:
252b5132 7833 /* This symbol requires a global offset table entry. */
7403cb63
MM
7834 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7835 return false;
252b5132
RH
7836 break;
7837
7838 case R_MIPS_32:
7839 case R_MIPS_REL32:
a3c7651d 7840 case R_MIPS_64:
252b5132
RH
7841 if ((info->shared || h != NULL)
7842 && (sec->flags & SEC_ALLOC) != 0)
7843 {
7844 if (sreloc == NULL)
7845 {
dc810e39 7846 const char *dname = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
252b5132 7847
dc810e39 7848 sreloc = bfd_get_section_by_name (dynobj, dname);
252b5132
RH
7849 if (sreloc == NULL)
7850 {
dc810e39 7851 sreloc = bfd_make_section (dynobj, dname);
252b5132
RH
7852 if (sreloc == NULL
7853 || ! bfd_set_section_flags (dynobj, sreloc,
7854 (SEC_ALLOC
7855 | SEC_LOAD
7856 | SEC_HAS_CONTENTS
7857 | SEC_IN_MEMORY
7858 | SEC_LINKER_CREATED
7859 | SEC_READONLY))
7860 || ! bfd_set_section_alignment (dynobj, sreloc,
7861 4))
7862 return false;
7863 }
7864 }
43917054 7865#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
252b5132 7866 if (info->shared)
43917054
L
7867 {
7868 /* When creating a shared object, we must copy these
7869 reloc types into the output file as R_MIPS_REL32
7870 relocs. We make room for this reloc in the
7871 .rel.dyn reloc section. */
7872 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7873 if ((sec->flags & MIPS_READONLY_SECTION)
7874 == MIPS_READONLY_SECTION)
7875 /* We tell the dynamic linker that there are
7876 relocations against the text segment. */
7877 info->flags |= DF_TEXTREL;
7878 }
252b5132
RH
7879 else
7880 {
7881 struct mips_elf_link_hash_entry *hmips;
7882
7883 /* We only need to copy this reloc if the symbol is
7884 defined in a dynamic object. */
7885 hmips = (struct mips_elf_link_hash_entry *) h;
a3c7651d 7886 ++hmips->possibly_dynamic_relocs;
43917054
L
7887 if ((sec->flags & MIPS_READONLY_SECTION)
7888 == MIPS_READONLY_SECTION)
7889 /* We need it to tell the dynamic linker if there
7890 are relocations against the text segment. */
7891 hmips->readonly_reloc = true;
252b5132 7892 }
be3ccd9c 7893
7403cb63
MM
7894 /* Even though we don't directly need a GOT entry for
7895 this symbol, a symbol must have a dynamic symbol
5499724a 7896 table index greater that DT_MIPS_GOTSYM if there are
7403cb63 7897 dynamic relocations against it. */
7b1f1231
MM
7898 if (h != NULL
7899 && !mips_elf_record_global_got_symbol (h, info, g))
7403cb63 7900 return false;
252b5132
RH
7901 }
7902
313ba8d6 7903 if (SGI_COMPAT (abfd))
252b5132
RH
7904 mips_elf_hash_table (info)->compact_rel_size +=
7905 sizeof (Elf32_External_crinfo);
252b5132
RH
7906 break;
7907
7908 case R_MIPS_26:
7909 case R_MIPS_GPREL16:
7910 case R_MIPS_LITERAL:
7911 case R_MIPS_GPREL32:
313ba8d6 7912 if (SGI_COMPAT (abfd))
252b5132
RH
7913 mips_elf_hash_table (info)->compact_rel_size +=
7914 sizeof (Elf32_External_crinfo);
7915 break;
7916
7917 /* This relocation describes the C++ object vtable hierarchy.
7918 Reconstruct it for later use during GC. */
7919 case R_MIPS_GNU_VTINHERIT:
7920 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7921 return false;
7922 break;
7923
7924 /* This relocation describes which C++ vtable entries are actually
7925 used. Record for later use during GC. */
7926 case R_MIPS_GNU_VTENTRY:
7927 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7928 return false;
7929 break;
7930
7931 default:
7932 break;
7933 }
7934
9117d219
NC
7935 /* We must not create a stub for a symbol that has relocations
7936 related to taking the function's address. */
7937 switch (r_type)
7938 {
7939 default:
7940 if (h != NULL)
7941 {
7942 struct mips_elf_link_hash_entry *mh;
7943
7944 mh = (struct mips_elf_link_hash_entry *) h;
7945 mh->no_fn_stub = true;
7946 }
7947 break;
7948 case R_MIPS_CALL16:
7949 case R_MIPS_CALL_HI16:
7950 case R_MIPS_CALL_LO16:
7951 break;
7952 }
7953
252b5132
RH
7954 /* If this reloc is not a 16 bit call, and it has a global
7955 symbol, then we will need the fn_stub if there is one.
be3ccd9c 7956 References from a stub section do not count. */
252b5132 7957 if (h != NULL
7403cb63 7958 && r_type != R_MIPS16_26
252b5132
RH
7959 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7960 sizeof FN_STUB - 1) != 0
7961 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7962 sizeof CALL_STUB - 1) != 0
7963 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7964 sizeof CALL_FP_STUB - 1) != 0)
7965 {
7966 struct mips_elf_link_hash_entry *mh;
7967
7968 mh = (struct mips_elf_link_hash_entry *) h;
7969 mh->need_fn_stub = true;
7970 }
7971 }
7972
7973 return true;
7974}
7975
7976/* Return the section that should be marked against GC for a given
7977 relocation. */
7978
103186c6
MM
7979asection *
7980_bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
252b5132 7981 bfd *abfd;
5f771d47 7982 struct bfd_link_info *info ATTRIBUTE_UNUSED;
252b5132
RH
7983 Elf_Internal_Rela *rel;
7984 struct elf_link_hash_entry *h;
7985 Elf_Internal_Sym *sym;
7986{
7987 /* ??? Do mips16 stub sections need to be handled special? */
7988
7989 if (h != NULL)
7990 {
7991 switch (ELF32_R_TYPE (rel->r_info))
7992 {
7993 case R_MIPS_GNU_VTINHERIT:
7994 case R_MIPS_GNU_VTENTRY:
7995 break;
7996
7997 default:
7998 switch (h->root.type)
7999 {
8000 case bfd_link_hash_defined:
8001 case bfd_link_hash_defweak:
8002 return h->root.u.def.section;
8003
8004 case bfd_link_hash_common:
8005 return h->root.u.c.p->section;
8006
8007 default:
8008 break;
8009 }
8010 }
8011 }
8012 else
8013 {
8014 if (!(elf_bad_symtab (abfd)
8015 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8016 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
8017 && sym->st_shndx != SHN_COMMON))
8018 {
8019 return bfd_section_from_elf_index (abfd, sym->st_shndx);
8020 }
8021 }
8022
8023 return NULL;
8024}
8025
8026/* Update the got entry reference counts for the section being removed. */
8027
103186c6
MM
8028boolean
8029_bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
5f771d47
ILT
8030 bfd *abfd ATTRIBUTE_UNUSED;
8031 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8032 asection *sec ATTRIBUTE_UNUSED;
8033 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
252b5132
RH
8034{
8035#if 0
8036 Elf_Internal_Shdr *symtab_hdr;
8037 struct elf_link_hash_entry **sym_hashes;
8038 bfd_signed_vma *local_got_refcounts;
8039 const Elf_Internal_Rela *rel, *relend;
8040 unsigned long r_symndx;
8041 struct elf_link_hash_entry *h;
8042
8043 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8044 sym_hashes = elf_sym_hashes (abfd);
8045 local_got_refcounts = elf_local_got_refcounts (abfd);
8046
8047 relend = relocs + sec->reloc_count;
8048 for (rel = relocs; rel < relend; rel++)
8049 switch (ELF32_R_TYPE (rel->r_info))
8050 {
8051 case R_MIPS_GOT16:
8052 case R_MIPS_CALL16:
8053 case R_MIPS_CALL_HI16:
8054 case R_MIPS_CALL_LO16:
8055 case R_MIPS_GOT_HI16:
8056 case R_MIPS_GOT_LO16:
8057 /* ??? It would seem that the existing MIPS code does no sort
8058 of reference counting or whatnot on its GOT and PLT entries,
8059 so it is not possible to garbage collect them at this time. */
be3ccd9c 8060 break;
252b5132
RH
8061
8062 default:
8063 break;
8064 }
8065#endif
8066
8067 return true;
8068}
8069
8a20f077
UC
8070/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8071 hiding the old indirect symbol. Process additional relocation
8072 information. */
8073
9e80ff3a 8074static void
8a20f077
UC
8075_bfd_mips_elf_copy_indirect_symbol (dir, ind)
8076 struct elf_link_hash_entry *dir, *ind;
8077{
8078 struct mips_elf_link_hash_entry *dirmips, *indmips;
8079
8080 _bfd_elf_link_hash_copy_indirect (dir, ind);
8081
8082 dirmips = (struct mips_elf_link_hash_entry *) dir;
8083 indmips = (struct mips_elf_link_hash_entry *) ind;
8084 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
43917054
L
8085 if (indmips->readonly_reloc)
8086 dirmips->readonly_reloc = true;
8a20f077
UC
8087 if (dirmips->min_dyn_reloc_index == 0
8088 || (indmips->min_dyn_reloc_index != 0
be3ccd9c 8089 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8a20f077 8090 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
9117d219
NC
8091 if (indmips->no_fn_stub)
8092 dirmips->no_fn_stub = true;
8a20f077
UC
8093}
8094
252b5132
RH
8095/* Adjust a symbol defined by a dynamic object and referenced by a
8096 regular object. The current definition is in some section of the
8097 dynamic object, but we're not including those sections. We have to
8098 change the definition to something the rest of the link can
8099 understand. */
8100
103186c6
MM
8101boolean
8102_bfd_mips_elf_adjust_dynamic_symbol (info, h)
252b5132
RH
8103 struct bfd_link_info *info;
8104 struct elf_link_hash_entry *h;
8105{
8106 bfd *dynobj;
8107 struct mips_elf_link_hash_entry *hmips;
8108 asection *s;
8109
8110 dynobj = elf_hash_table (info)->dynobj;
8111
8112 /* Make sure we know what is going on here. */
8113 BFD_ASSERT (dynobj != NULL
8114 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8115 || h->weakdef != NULL
8116 || ((h->elf_link_hash_flags
8117 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8118 && (h->elf_link_hash_flags
8119 & ELF_LINK_HASH_REF_REGULAR) != 0
8120 && (h->elf_link_hash_flags
8121 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8122
8123 /* If this symbol is defined in a dynamic object, we need to copy
8124 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8125 file. */
8126 hmips = (struct mips_elf_link_hash_entry *) h;
8127 if (! info->relocateable
a3c7651d 8128 && hmips->possibly_dynamic_relocs != 0
2bab9785 8129 && (h->root.type == bfd_link_hash_defweak
dc810e39 8130 || (h->elf_link_hash_flags
2bab9785 8131 & ELF_LINK_HASH_DEF_REGULAR) == 0))
43917054
L
8132 {
8133 mips_elf_allocate_dynamic_relocations (dynobj,
8134 hmips->possibly_dynamic_relocs);
8135 if (hmips->readonly_reloc)
8136 /* We tell the dynamic linker that there are relocations
8137 against the text segment. */
8138 info->flags |= DF_TEXTREL;
8139 }
252b5132 8140
9117d219
NC
8141 /* For a function, create a stub, if allowed. */
8142 if (! hmips->no_fn_stub
8143 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
252b5132
RH
8144 {
8145 if (! elf_hash_table (info)->dynamic_sections_created)
8146 return true;
8147
8148 /* If this symbol is not defined in a regular file, then set
8149 the symbol to the stub location. This is required to make
8150 function pointers compare as equal between the normal
8151 executable and the shared library. */
8152 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8153 {
8154 /* We need .stub section. */
be3ccd9c 8155 s = bfd_get_section_by_name (dynobj,
303f629d 8156 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
8157 BFD_ASSERT (s != NULL);
8158
8159 h->root.u.def.section = s;
8160 h->root.u.def.value = s->_raw_size;
8161
8162 /* XXX Write this stub address somewhere. */
8163 h->plt.offset = s->_raw_size;
8164
8165 /* Make room for this stub code. */
8166 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8167
8168 /* The last half word of the stub will be filled with the index
8169 of this symbol in .dynsym section. */
8170 return true;
8171 }
8172 }
f7cb7d68 8173 else if ((h->type == STT_FUNC)
be3ccd9c 8174 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
f7cb7d68
UC
8175 {
8176 /* This will set the entry for this symbol in the GOT to 0, and
be3ccd9c 8177 the dynamic linker will take care of this. */
f7cb7d68
UC
8178 h->root.u.def.value = 0;
8179 return true;
8180 }
252b5132
RH
8181
8182 /* If this is a weak symbol, and there is a real definition, the
8183 processor independent code will have arranged for us to see the
8184 real definition first, and we can just use the same value. */
8185 if (h->weakdef != NULL)
8186 {
8187 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8188 || h->weakdef->root.type == bfd_link_hash_defweak);
8189 h->root.u.def.section = h->weakdef->root.u.def.section;
8190 h->root.u.def.value = h->weakdef->root.u.def.value;
8191 return true;
8192 }
8193
8194 /* This is a reference to a symbol defined by a dynamic object which
8195 is not a function. */
8196
8197 return true;
8198}
8199
8200/* This function is called after all the input files have been read,
8201 and the input sections have been assigned to output sections. We
8202 check for any mips16 stub sections that we can discard. */
8203
8204static boolean mips_elf_check_mips16_stubs
8205 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8206
103186c6
MM
8207boolean
8208_bfd_mips_elf_always_size_sections (output_bfd, info)
252b5132
RH
8209 bfd *output_bfd;
8210 struct bfd_link_info *info;
8211{
8212 asection *ri;
8213
8214 /* The .reginfo section has a fixed size. */
8215 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8216 if (ri != NULL)
dc810e39
AM
8217 bfd_set_section_size (output_bfd, ri,
8218 (bfd_size_type) sizeof (Elf32_External_RegInfo));
252b5132
RH
8219
8220 if (info->relocateable
8221 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8222 return true;
8223
8224 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8225 mips_elf_check_mips16_stubs,
8226 (PTR) NULL);
8227
8228 return true;
8229}
8230
8231/* Check the mips16 stubs for a particular symbol, and see if we can
8232 discard them. */
8233
252b5132
RH
8234static boolean
8235mips_elf_check_mips16_stubs (h, data)
8236 struct mips_elf_link_hash_entry *h;
5f771d47 8237 PTR data ATTRIBUTE_UNUSED;
252b5132
RH
8238{
8239 if (h->fn_stub != NULL
8240 && ! h->need_fn_stub)
8241 {
8242 /* We don't need the fn_stub; the only references to this symbol
8243 are 16 bit calls. Clobber the size to 0 to prevent it from
8244 being included in the link. */
8245 h->fn_stub->_raw_size = 0;
8246 h->fn_stub->_cooked_size = 0;
be3ccd9c 8247 h->fn_stub->flags &= ~SEC_RELOC;
252b5132
RH
8248 h->fn_stub->reloc_count = 0;
8249 h->fn_stub->flags |= SEC_EXCLUDE;
8250 }
8251
8252 if (h->call_stub != NULL
8253 && h->root.other == STO_MIPS16)
8254 {
8255 /* We don't need the call_stub; this is a 16 bit function, so
8256 calls from other 16 bit functions are OK. Clobber the size
8257 to 0 to prevent it from being included in the link. */
8258 h->call_stub->_raw_size = 0;
8259 h->call_stub->_cooked_size = 0;
be3ccd9c 8260 h->call_stub->flags &= ~SEC_RELOC;
252b5132
RH
8261 h->call_stub->reloc_count = 0;
8262 h->call_stub->flags |= SEC_EXCLUDE;
8263 }
8264
8265 if (h->call_fp_stub != NULL
8266 && h->root.other == STO_MIPS16)
8267 {
8268 /* We don't need the call_stub; this is a 16 bit function, so
8269 calls from other 16 bit functions are OK. Clobber the size
8270 to 0 to prevent it from being included in the link. */
8271 h->call_fp_stub->_raw_size = 0;
8272 h->call_fp_stub->_cooked_size = 0;
be3ccd9c 8273 h->call_fp_stub->flags &= ~SEC_RELOC;
252b5132
RH
8274 h->call_fp_stub->reloc_count = 0;
8275 h->call_fp_stub->flags |= SEC_EXCLUDE;
8276 }
8277
8278 return true;
8279}
8280
8281/* Set the sizes of the dynamic sections. */
8282
103186c6
MM
8283boolean
8284_bfd_mips_elf_size_dynamic_sections (output_bfd, info)
252b5132
RH
8285 bfd *output_bfd;
8286 struct bfd_link_info *info;
8287{
8288 bfd *dynobj;
8289 asection *s;
8290 boolean reltext;
7a12753d 8291 struct mips_got_info *g = NULL;
252b5132
RH
8292
8293 dynobj = elf_hash_table (info)->dynobj;
8294 BFD_ASSERT (dynobj != NULL);
8295
8296 if (elf_hash_table (info)->dynamic_sections_created)
8297 {
8298 /* Set the contents of the .interp section to the interpreter. */
8299 if (! info->shared)
8300 {
8301 s = bfd_get_section_by_name (dynobj, ".interp");
8302 BFD_ASSERT (s != NULL);
be3ccd9c 8303 s->_raw_size
303f629d 8304 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
be3ccd9c 8305 s->contents
7403cb63 8306 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
252b5132
RH
8307 }
8308 }
8309
252b5132
RH
8310 /* The check_relocs and adjust_dynamic_symbol entry points have
8311 determined the sizes of the various dynamic sections. Allocate
8312 memory for them. */
8313 reltext = false;
8314 for (s = dynobj->sections; s != NULL; s = s->next)
8315 {
8316 const char *name;
8317 boolean strip;
8318
8319 /* It's OK to base decisions on the section name, because none
8320 of the dynobj section names depend upon the input files. */
8321 name = bfd_get_section_name (dynobj, s);
8322
8323 if ((s->flags & SEC_LINKER_CREATED) == 0)
8324 continue;
8325
8326 strip = false;
8327
8328 if (strncmp (name, ".rel", 4) == 0)
8329 {
8330 if (s->_raw_size == 0)
8331 {
8332 /* We only strip the section if the output section name
8333 has the same name. Otherwise, there might be several
8334 input sections for this output section. FIXME: This
8335 code is probably not needed these days anyhow, since
8336 the linker now does not create empty output sections. */
8337 if (s->output_section != NULL
8338 && strcmp (name,
8339 bfd_get_section_name (s->output_section->owner,
8340 s->output_section)) == 0)
8341 strip = true;
8342 }
8343 else
8344 {
8345 const char *outname;
8346 asection *target;
8347
8348 /* If this relocation section applies to a read only
8349 section, then we probably need a DT_TEXTREL entry.
8350 If the relocation section is .rel.dyn, we always
8351 assert a DT_TEXTREL entry rather than testing whether
8352 there exists a relocation to a read only section or
8353 not. */
8354 outname = bfd_get_section_name (output_bfd,
8355 s->output_section);
8356 target = bfd_get_section_by_name (output_bfd, outname + 4);
8357 if ((target != NULL
8358 && (target->flags & SEC_READONLY) != 0
8359 && (target->flags & SEC_ALLOC) != 0)
be3ccd9c 8360 || strcmp (outname,
103186c6 8361 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
252b5132
RH
8362 reltext = true;
8363
8364 /* We use the reloc_count field as a counter if we need
8365 to copy relocs into the output file. */
be3ccd9c 8366 if (strcmp (name,
103186c6 8367 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
252b5132
RH
8368 s->reloc_count = 0;
8369 }
8370 }
8371 else if (strncmp (name, ".got", 4) == 0)
8372 {
8373 int i;
be3ccd9c
KH
8374 bfd_size_type loadable_size = 0;
8375 bfd_size_type local_gotno;
d1cf510e 8376 bfd *sub;
252b5132 8377
be3ccd9c 8378 BFD_ASSERT (elf_section_data (s) != NULL);
252b5132 8379 g = (struct mips_got_info *) elf_section_data (s)->tdata;
be3ccd9c
KH
8380 BFD_ASSERT (g != NULL);
8381
8382 /* Calculate the total loadable size of the output. That
8383 will give us the maximum number of GOT_PAGE entries
8384 required. */
8385 for (sub = info->input_bfds; sub; sub = sub->link_next)
8386 {
8387 asection *subsection;
8388
8389 for (subsection = sub->sections;
8390 subsection;
8391 subsection = subsection->next)
8392 {
8393 if ((subsection->flags & SEC_ALLOC) == 0)
8394 continue;
dc810e39
AM
8395 loadable_size += ((subsection->_raw_size + 0xf)
8396 &~ (bfd_size_type) 0xf);
be3ccd9c
KH
8397 }
8398 }
8399 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8400
8401 /* Assume there are two loadable segments consisting of
8402 contiguous sections. Is 5 enough? */
8403 local_gotno = (loadable_size >> 16) + 5;
9458945f
MM
8404 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8405 /* It's possible we will need GOT_PAGE entries as well as
8406 GOT16 entries. Often, these will be able to share GOT
8407 entries, but not always. */
8408 local_gotno *= 2;
8409
be3ccd9c
KH
8410 g->local_gotno += local_gotno;
8411 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
7403cb63 8412
be3ccd9c
KH
8413 /* There has to be a global GOT entry for every symbol with
8414 a dynamic symbol table index of DT_MIPS_GOTSYM or
8415 higher. Therefore, it make sense to put those symbols
8416 that need GOT entries at the end of the symbol table. We
8417 do that here. */
b3be9b46 8418 if (!mips_elf_sort_hash_table (info, 1))
7403cb63
MM
8419 return false;
8420
8b237a89
MM
8421 if (g->global_gotsym != NULL)
8422 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8423 else
8424 /* If there are no global symbols, or none requiring
8425 relocations, then GLOBAL_GOTSYM will be NULL. */
8426 i = 0;
b3be9b46 8427 g->global_gotno = i;
103186c6 8428 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
252b5132 8429 }
303f629d 8430 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
252b5132
RH
8431 {
8432 /* Irix rld assumes that the function stub isn't at the end
8433 of .text section. So put a dummy. XXX */
8434 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8435 }
8436 else if (! info->shared
8437 && ! mips_elf_hash_table (info)->use_rld_obj_head
8438 && strncmp (name, ".rld_map", 8) == 0)
8439 {
8440 /* We add a room for __rld_map. It will be filled in by the
8441 rtld to contain a pointer to the _r_debug structure. */
8442 s->_raw_size += 4;
8443 }
8444 else if (SGI_COMPAT (output_bfd)
8445 && strncmp (name, ".compact_rel", 12) == 0)
8446 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
c6142e5d
MM
8447 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8448 == 0)
be3ccd9c 8449 s->_raw_size = (sizeof (Elf32_External_Msym)
c6142e5d
MM
8450 * (elf_hash_table (info)->dynsymcount
8451 + bfd_count_sections (output_bfd)));
252b5132
RH
8452 else if (strncmp (name, ".init", 5) != 0)
8453 {
8454 /* It's not one of our sections, so don't allocate space. */
8455 continue;
8456 }
8457
8458 if (strip)
8459 {
7f8d5fc9 8460 _bfd_strip_section_from_output (info, s);
252b5132
RH
8461 continue;
8462 }
8463
8464 /* Allocate memory for the section contents. */
303f629d 8465 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
252b5132
RH
8466 if (s->contents == NULL && s->_raw_size != 0)
8467 {
8468 bfd_set_error (bfd_error_no_memory);
8469 return false;
8470 }
252b5132
RH
8471 }
8472
8473 if (elf_hash_table (info)->dynamic_sections_created)
8474 {
8475 /* Add some entries to the .dynamic section. We fill in the
8476 values later, in elf_mips_finish_dynamic_sections, but we
8477 must add the entries now so that we get the correct size for
8478 the .dynamic section. The DT_DEBUG entry is filled in by the
8479 dynamic linker and used by the debugger. */
8480 if (! info->shared)
8481 {
be3ccd9c
KH
8482 /* SGI object has the equivalence of DT_DEBUG in the
8483 DT_MIPS_RLD_MAP entry. */
8484 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8485 return false;
8486 if (!SGI_COMPAT (output_bfd))
8487 {
8488 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8489 return false;
8490 }
8491 }
f7cb7d68 8492 else
be3ccd9c
KH
8493 {
8494 /* Shared libraries on traditional mips have DT_DEBUG. */
8495 if (!SGI_COMPAT (output_bfd))
8496 {
8497 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8498 return false;
8499 }
8500 }
43917054 8501
be3ccd9c 8502 if (reltext && SGI_COMPAT (output_bfd))
43917054
L
8503 info->flags |= DF_TEXTREL;
8504
8505 if ((info->flags & DF_TEXTREL) != 0)
252b5132 8506 {
103186c6 8507 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
252b5132
RH
8508 return false;
8509 }
8510
103186c6 8511 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
252b5132
RH
8512 return false;
8513
103186c6
MM
8514 if (bfd_get_section_by_name (dynobj,
8515 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
252b5132 8516 {
103186c6 8517 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
252b5132
RH
8518 return false;
8519
103186c6 8520 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
252b5132
RH
8521 return false;
8522
103186c6 8523 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
252b5132
RH
8524 return false;
8525 }
8526
f7cb7d68 8527 if (SGI_COMPAT (output_bfd))
be3ccd9c
KH
8528 {
8529 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
f7cb7d68 8530 return false;
be3ccd9c 8531 }
252b5132 8532
f7cb7d68 8533 if (SGI_COMPAT (output_bfd))
be3ccd9c
KH
8534 {
8535 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
f7cb7d68 8536 return false;
be3ccd9c 8537 }
252b5132
RH
8538
8539 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8540 {
103186c6 8541 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
252b5132
RH
8542 return false;
8543
8544 s = bfd_get_section_by_name (dynobj, ".liblist");
8545 BFD_ASSERT (s != NULL);
8546
103186c6 8547 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
252b5132
RH
8548 return false;
8549 }
8550
103186c6 8551 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
252b5132
RH
8552 return false;
8553
103186c6 8554 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
252b5132
RH
8555 return false;
8556
8557#if 0
8558 /* Time stamps in executable files are a bad idea. */
103186c6 8559 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
252b5132
RH
8560 return false;
8561#endif
8562
8563#if 0 /* FIXME */
103186c6 8564 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
252b5132
RH
8565 return false;
8566#endif
8567
8568#if 0 /* FIXME */
103186c6 8569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
252b5132
RH
8570 return false;
8571#endif
8572
103186c6 8573 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
252b5132
RH
8574 return false;
8575
103186c6 8576 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
252b5132
RH
8577 return false;
8578
103186c6 8579 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
252b5132
RH
8580 return false;
8581
103186c6 8582 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
252b5132
RH
8583 return false;
8584
5499724a 8585 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
252b5132
RH
8586 return false;
8587
7403cb63 8588 if (IRIX_COMPAT (dynobj) == ict_irix5
103186c6 8589 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
252b5132
RH
8590 return false;
8591
7403cb63 8592 if (IRIX_COMPAT (dynobj) == ict_irix6
be3ccd9c 8593 && (bfd_get_section_by_name
7403cb63 8594 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
103186c6 8595 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7403cb63 8596 return false;
c6142e5d 8597
be3ccd9c 8598 if (bfd_get_section_by_name (dynobj,
c6142e5d 8599 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
103186c6 8600 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
c6142e5d 8601 return false;
252b5132
RH
8602 }
8603
252b5132
RH
8604 return true;
8605}
8606
7403cb63
MM
8607/* If NAME is one of the special IRIX6 symbols defined by the linker,
8608 adjust it appropriately now. */
8609
8610static void
8611mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
5f771d47 8612 bfd *abfd ATTRIBUTE_UNUSED;
7403cb63
MM
8613 const char *name;
8614 Elf_Internal_Sym *sym;
8615{
8616 /* The linker script takes care of providing names and values for
8617 these, but we must place them into the right sections. */
8618 static const char* const text_section_symbols[] = {
8619 "_ftext",
8620 "_etext",
8621 "__dso_displacement",
8622 "__elf_header",
8623 "__program_header_table",
8624 NULL
8625 };
8626
8627 static const char* const data_section_symbols[] = {
8628 "_fdata",
8629 "_edata",
8630 "_end",
8631 "_fbss",
8632 NULL
8633 };
8634
8635 const char* const *p;
8636 int i;
8637
8638 for (i = 0; i < 2; ++i)
be3ccd9c 8639 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7403cb63
MM
8640 *p;
8641 ++p)
8642 if (strcmp (*p, name) == 0)
8643 {
8644 /* All of these symbols are given type STT_SECTION by the
8645 IRIX6 linker. */
8646 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
be3ccd9c 8647
7403cb63
MM
8648 /* The IRIX linker puts these symbols in special sections. */
8649 if (i == 0)
8650 sym->st_shndx = SHN_MIPS_TEXT;
8651 else
8652 sym->st_shndx = SHN_MIPS_DATA;
be3ccd9c 8653
7403cb63
MM
8654 break;
8655 }
8656}
8657
252b5132
RH
8658/* Finish up dynamic symbol handling. We set the contents of various
8659 dynamic sections here. */
8660
103186c6
MM
8661boolean
8662_bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
252b5132
RH
8663 bfd *output_bfd;
8664 struct bfd_link_info *info;
8665 struct elf_link_hash_entry *h;
8666 Elf_Internal_Sym *sym;
8667{
8668 bfd *dynobj;
8669 bfd_vma gval;
8670 asection *sgot;
c6142e5d 8671 asection *smsym;
252b5132
RH
8672 struct mips_got_info *g;
8673 const char *name;
c6142e5d 8674 struct mips_elf_link_hash_entry *mh;
252b5132
RH
8675
8676 dynobj = elf_hash_table (info)->dynobj;
8677 gval = sym->st_value;
c6142e5d 8678 mh = (struct mips_elf_link_hash_entry *) h;
252b5132
RH
8679
8680 if (h->plt.offset != (bfd_vma) -1)
8681 {
8682 asection *s;
8683 bfd_byte *p;
8684 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8685
8686 /* This symbol has a stub. Set it up. */
8687
8688 BFD_ASSERT (h->dynindx != -1);
8689
be3ccd9c 8690 s = bfd_get_section_by_name (dynobj,
303f629d 8691 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
8692 BFD_ASSERT (s != NULL);
8693
8694 /* Fill the stub. */
8695 p = stub;
dc810e39 8696 bfd_put_32 (output_bfd, (bfd_vma) STUB_LW (output_bfd), p);
252b5132 8697 p += 4;
dc810e39 8698 bfd_put_32 (output_bfd, (bfd_vma) STUB_MOVE (output_bfd), p);
252b5132
RH
8699 p += 4;
8700
8701 /* FIXME: Can h->dynindex be more than 64K? */
8702 if (h->dynindx & 0xffff0000)
8703 return false;
8704
dc810e39 8705 bfd_put_32 (output_bfd, (bfd_vma) STUB_JALR, p);
252b5132 8706 p += 4;
dc810e39 8707 bfd_put_32 (output_bfd, (bfd_vma) STUB_LI16 (output_bfd) + h->dynindx, p);
252b5132
RH
8708
8709 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8710 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8711
8712 /* Mark the symbol as undefined. plt.offset != -1 occurs
8713 only for the referenced symbol. */
8714 sym->st_shndx = SHN_UNDEF;
8715
8716 /* The run-time linker uses the st_value field of the symbol
8717 to reset the global offset table entry for this external
8718 to its stub address when unlinking a shared object. */
8719 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8720 sym->st_value = gval;
8721 }
8722
b305ef96
UC
8723 BFD_ASSERT (h->dynindx != -1
8724 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
252b5132 8725
103186c6 8726 sgot = mips_elf_got_section (dynobj);
252b5132
RH
8727 BFD_ASSERT (sgot != NULL);
8728 BFD_ASSERT (elf_section_data (sgot) != NULL);
8729 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8730 BFD_ASSERT (g != NULL);
8731
7403cb63
MM
8732 /* Run through the global symbol table, creating GOT entries for all
8733 the symbols that need them. */
8b237a89
MM
8734 if (g->global_gotsym != NULL
8735 && h->dynindx >= g->global_gotsym->dynindx)
252b5132 8736 {
7403cb63
MM
8737 bfd_vma offset;
8738 bfd_vma value;
252b5132 8739
7403cb63
MM
8740 if (sym->st_value)
8741 value = sym->st_value;
8742 else
be3ccd9c
KH
8743 {
8744 /* For an entity defined in a shared object, this will be
8745 NULL. (For functions in shared objects for
8746 which we have created stubs, ST_VALUE will be non-NULL.
8747 That's because such the functions are now no longer defined
8748 in a shared object.) */
8749
8750 if (info->shared && h->root.type == bfd_link_hash_undefined)
8751 value = 0;
8752 else
8753 value = h->root.u.def.value;
8754 }
7403cb63 8755 offset = mips_elf_global_got_index (dynobj, h);
103186c6 8756 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
252b5132
RH
8757 }
8758
c6142e5d 8759 /* Create a .msym entry, if appropriate. */
be3ccd9c 8760 smsym = bfd_get_section_by_name (dynobj,
c6142e5d
MM
8761 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8762 if (smsym)
8763 {
8764 Elf32_Internal_Msym msym;
8765
8766 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8767 /* It is undocumented what the `1' indicates, but IRIX6 uses
8768 this value. */
8769 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
be3ccd9c 8770 bfd_mips_elf_swap_msym_out
c6142e5d
MM
8771 (dynobj, &msym,
8772 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8773 }
8774
252b5132
RH
8775 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8776 name = h->root.root.string;
8777 if (strcmp (name, "_DYNAMIC") == 0
8778 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8779 sym->st_shndx = SHN_ABS;
f7cb7d68 8780 else if (strcmp (name, "_DYNAMIC_LINK") == 0
be3ccd9c 8781 || strcmp (name, "_DYNAMIC_LINKING") == 0)
252b5132
RH
8782 {
8783 sym->st_shndx = SHN_ABS;
8784 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8785 sym->st_value = 1;
8786 }
f7cb7d68
UC
8787 else if (strcmp (name, "_gp_disp") == 0)
8788 {
8789 sym->st_shndx = SHN_ABS;
8790 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8791 sym->st_value = elf_gp (output_bfd);
8792 }
252b5132
RH
8793 else if (SGI_COMPAT (output_bfd))
8794 {
f7cb7d68 8795 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
be3ccd9c 8796 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
252b5132
RH
8797 {
8798 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8799 sym->st_other = STO_PROTECTED;
8800 sym->st_value = 0;
8801 sym->st_shndx = SHN_MIPS_DATA;
8802 }
8803 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8804 {
8805 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8806 sym->st_other = STO_PROTECTED;
8807 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8808 sym->st_shndx = SHN_ABS;
8809 }
8810 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8811 {
8812 if (h->type == STT_FUNC)
8813 sym->st_shndx = SHN_MIPS_TEXT;
8814 else if (h->type == STT_OBJECT)
8815 sym->st_shndx = SHN_MIPS_DATA;
8816 }
8817 }
8818
7403cb63
MM
8819 /* Handle the IRIX6-specific symbols. */
8820 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8821 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8822
f7cb7d68 8823 if (! info->shared)
252b5132
RH
8824 {
8825 if (! mips_elf_hash_table (info)->use_rld_obj_head
31a9bdd9
UC
8826 && (strcmp (name, "__rld_map") == 0
8827 || strcmp (name, "__RLD_MAP") == 0))
252b5132
RH
8828 {
8829 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8830 BFD_ASSERT (s != NULL);
8831 sym->st_value = s->output_section->vma + s->output_offset;
8832 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8833 if (mips_elf_hash_table (info)->rld_value == 0)
8834 mips_elf_hash_table (info)->rld_value = sym->st_value;
8835 }
8836 else if (mips_elf_hash_table (info)->use_rld_obj_head
8837 && strcmp (name, "__rld_obj_head") == 0)
8838 {
303f629d 8839 /* IRIX6 does not use a .rld_map section. */
f7cb7d68
UC
8840 if (IRIX_COMPAT (output_bfd) == ict_irix5
8841 || IRIX_COMPAT (output_bfd) == ict_none)
be3ccd9c 8842 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
303f629d 8843 != NULL);
252b5132
RH
8844 mips_elf_hash_table (info)->rld_value = sym->st_value;
8845 }
8846 }
8847
8848 /* If this is a mips16 symbol, force the value to be even. */
8849 if (sym->st_other == STO_MIPS16
8850 && (sym->st_value & 1) != 0)
8851 --sym->st_value;
8852
8853 return true;
8854}
8855
8856/* Finish up the dynamic sections. */
8857
103186c6
MM
8858boolean
8859_bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
252b5132
RH
8860 bfd *output_bfd;
8861 struct bfd_link_info *info;
8862{
8863 bfd *dynobj;
8864 asection *sdyn;
8865 asection *sgot;
8866 struct mips_got_info *g;
8867
8868 dynobj = elf_hash_table (info)->dynobj;
8869
8870 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8871
103186c6 8872 sgot = mips_elf_got_section (dynobj);
252b5132
RH
8873 if (sgot == NULL)
8874 g = NULL;
8875 else
8876 {
8877 BFD_ASSERT (elf_section_data (sgot) != NULL);
8878 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8879 BFD_ASSERT (g != NULL);
8880 }
8881
8882 if (elf_hash_table (info)->dynamic_sections_created)
8883 {
103186c6 8884 bfd_byte *b;
252b5132
RH
8885
8886 BFD_ASSERT (sdyn != NULL);
8887 BFD_ASSERT (g != NULL);
8888
103186c6
MM
8889 for (b = sdyn->contents;
8890 b < sdyn->contents + sdyn->_raw_size;
8891 b += MIPS_ELF_DYN_SIZE (dynobj))
252b5132
RH
8892 {
8893 Elf_Internal_Dyn dyn;
8894 const char *name;
8895 size_t elemsize;
8896 asection *s;
103186c6 8897 boolean swap_out_p;
252b5132 8898
103186c6
MM
8899 /* Read in the current dynamic entry. */
8900 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
be3ccd9c 8901
103186c6
MM
8902 /* Assume that we're going to modify it and write it out. */
8903 swap_out_p = true;
252b5132
RH
8904
8905 switch (dyn.d_tag)
8906 {
252b5132 8907 case DT_RELENT:
be3ccd9c 8908 s = (bfd_get_section_by_name
103186c6
MM
8909 (dynobj,
8910 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
252b5132 8911 BFD_ASSERT (s != NULL);
103186c6 8912 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
252b5132
RH
8913 break;
8914
8915 case DT_STRSZ:
8916 /* Rewrite DT_STRSZ. */
8917 dyn.d_un.d_val =
8918 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
252b5132
RH
8919 break;
8920
8921 case DT_PLTGOT:
8922 name = ".got";
8923 goto get_vma;
8924 case DT_MIPS_CONFLICT:
8925 name = ".conflict";
8926 goto get_vma;
8927 case DT_MIPS_LIBLIST:
8928 name = ".liblist";
8929 get_vma:
8930 s = bfd_get_section_by_name (output_bfd, name);
8931 BFD_ASSERT (s != NULL);
8932 dyn.d_un.d_ptr = s->vma;
252b5132
RH
8933 break;
8934
8935 case DT_MIPS_RLD_VERSION:
8936 dyn.d_un.d_val = 1; /* XXX */
252b5132
RH
8937 break;
8938
8939 case DT_MIPS_FLAGS:
8940 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
252b5132
RH
8941 break;
8942
8943 case DT_MIPS_CONFLICTNO:
8944 name = ".conflict";
8945 elemsize = sizeof (Elf32_Conflict);
8946 goto set_elemno;
8947
8948 case DT_MIPS_LIBLISTNO:
8949 name = ".liblist";
8950 elemsize = sizeof (Elf32_Lib);
8951 set_elemno:
8952 s = bfd_get_section_by_name (output_bfd, name);
8953 if (s != NULL)
8954 {
8955 if (s->_cooked_size != 0)
8956 dyn.d_un.d_val = s->_cooked_size / elemsize;
8957 else
8958 dyn.d_un.d_val = s->_raw_size / elemsize;
8959 }
8960 else
be3ccd9c 8961 dyn.d_un.d_val = 0;
252b5132
RH
8962 break;
8963
8964 case DT_MIPS_TIME_STAMP:
8965 time ((time_t *) &dyn.d_un.d_val);
252b5132
RH
8966 break;
8967
8968 case DT_MIPS_ICHECKSUM:
8969 /* XXX FIXME: */
103186c6 8970 swap_out_p = false;
252b5132
RH
8971 break;
8972
8973 case DT_MIPS_IVERSION:
8974 /* XXX FIXME: */
103186c6 8975 swap_out_p = false;
252b5132
RH
8976 break;
8977
8978 case DT_MIPS_BASE_ADDRESS:
8979 s = output_bfd->sections;
8980 BFD_ASSERT (s != NULL);
dc810e39 8981 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
252b5132
RH
8982 break;
8983
8984 case DT_MIPS_LOCAL_GOTNO:
8985 dyn.d_un.d_val = g->local_gotno;
252b5132
RH
8986 break;
8987
5499724a
MM
8988 case DT_MIPS_UNREFEXTNO:
8989 /* The index into the dynamic symbol table which is the
8990 entry of the first external symbol that is not
8991 referenced within the same object. */
8992 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8993 break;
8994
8995 case DT_MIPS_GOTSYM:
8996 if (g->global_gotsym)
8997 {
8998 dyn.d_un.d_val = g->global_gotsym->dynindx;
8999 break;
9000 }
9001 /* In case if we don't have global got symbols we default
9002 to setting DT_MIPS_GOTSYM to the same value as
9003 DT_MIPS_SYMTABNO, so we just fall through. */
9004
252b5132
RH
9005 case DT_MIPS_SYMTABNO:
9006 name = ".dynsym";
103186c6 9007 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
252b5132
RH
9008 s = bfd_get_section_by_name (output_bfd, name);
9009 BFD_ASSERT (s != NULL);
9010
9011 if (s->_cooked_size != 0)
9012 dyn.d_un.d_val = s->_cooked_size / elemsize;
9013 else
9014 dyn.d_un.d_val = s->_raw_size / elemsize;
252b5132
RH
9015 break;
9016
252b5132
RH
9017 case DT_MIPS_HIPAGENO:
9018 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
252b5132
RH
9019 break;
9020
9021 case DT_MIPS_RLD_MAP:
9022 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
252b5132
RH
9023 break;
9024
7403cb63 9025 case DT_MIPS_OPTIONS:
be3ccd9c 9026 s = (bfd_get_section_by_name
7403cb63
MM
9027 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9028 dyn.d_un.d_ptr = s->vma;
7403cb63
MM
9029 break;
9030
c6142e5d 9031 case DT_MIPS_MSYM:
be3ccd9c 9032 s = (bfd_get_section_by_name
c6142e5d
MM
9033 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
9034 dyn.d_un.d_ptr = s->vma;
103186c6
MM
9035 break;
9036
9037 default:
9038 swap_out_p = false;
c6142e5d 9039 break;
252b5132 9040 }
103186c6
MM
9041
9042 if (swap_out_p)
be3ccd9c 9043 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
103186c6 9044 (dynobj, &dyn, b);
252b5132
RH
9045 }
9046 }
9047
9048 /* The first entry of the global offset table will be filled at
9049 runtime. The second entry will be used by some runtime loaders.
be3ccd9c 9050 This isn't the case of Irix rld. */
252b5132
RH
9051 if (sgot != NULL && sgot->_raw_size > 0)
9052 {
103186c6 9053 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
be3ccd9c 9054 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
103186c6 9055 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
252b5132
RH
9056 }
9057
9058 if (sgot != NULL)
103186c6
MM
9059 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9060 = MIPS_ELF_GOT_SIZE (output_bfd);
252b5132
RH
9061
9062 {
c6142e5d 9063 asection *smsym;
252b5132 9064 asection *s;
252b5132
RH
9065 Elf32_compact_rel cpt;
9066
30b30c21
RH
9067 /* ??? The section symbols for the output sections were set up in
9068 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9069 symbols. Should we do so? */
252b5132 9070
be3ccd9c 9071 smsym = bfd_get_section_by_name (dynobj,
c6142e5d 9072 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
30b30c21 9073 if (smsym != NULL)
252b5132 9074 {
103186c6 9075 Elf32_Internal_Msym msym;
c6142e5d 9076
103186c6
MM
9077 msym.ms_hash_value = 0;
9078 msym.ms_info = ELF32_MS_INFO (0, 1);
c6142e5d 9079
103186c6
MM
9080 for (s = output_bfd->sections; s != NULL; s = s->next)
9081 {
30b30c21 9082 long dynindx = elf_section_data (s)->dynindx;
252b5132 9083
be3ccd9c 9084 bfd_mips_elf_swap_msym_out
30b30c21
RH
9085 (output_bfd, &msym,
9086 (((Elf32_External_Msym *) smsym->contents)
9087 + dynindx));
9088 }
252b5132
RH
9089 }
9090
9091 if (SGI_COMPAT (output_bfd))
9092 {
9093 /* Write .compact_rel section out. */
9094 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9095 if (s != NULL)
9096 {
9097 cpt.id1 = 1;
9098 cpt.num = s->reloc_count;
9099 cpt.id2 = 2;
9100 cpt.offset = (s->output_section->filepos
9101 + sizeof (Elf32_External_compact_rel));
9102 cpt.reserved0 = 0;
9103 cpt.reserved1 = 0;
9104 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9105 ((Elf32_External_compact_rel *)
9106 s->contents));
9107
9108 /* Clean up a dummy stub function entry in .text. */
be3ccd9c 9109 s = bfd_get_section_by_name (dynobj,
303f629d 9110 MIPS_ELF_STUB_SECTION_NAME (dynobj));
252b5132
RH
9111 if (s != NULL)
9112 {
9113 file_ptr dummy_offset;
9114
9115 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9116 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9117 memset (s->contents + dummy_offset, 0,
9118 MIPS_FUNCTION_STUB_SIZE);
9119 }
9120 }
9121 }
9122
adb76a3e
UC
9123 /* We need to sort the entries of the dynamic relocation section. */
9124
9125 if (!ABI_64_P (output_bfd))
9126 {
be3ccd9c
KH
9127 asection *reldyn;
9128
9129 reldyn = bfd_get_section_by_name (dynobj,
9130 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9131 if (reldyn != NULL && reldyn->reloc_count > 2)
9132 {
9133 reldyn_sorting_bfd = output_bfd;
9134 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9135 (size_t) reldyn->reloc_count - 1,
9136 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9137 }
adb76a3e
UC
9138 }
9139
252b5132 9140 /* Clean up a first relocation in .rel.dyn. */
be3ccd9c 9141 s = bfd_get_section_by_name (dynobj,
103186c6 9142 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
252b5132 9143 if (s != NULL && s->_raw_size > 0)
103186c6 9144 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
252b5132
RH
9145 }
9146
9147 return true;
9148}
9149\f
bb0082d6
AM
9150/* Support for core dump NOTE sections */
9151static boolean
9152_bfd_elf32_mips_grok_prstatus (abfd, note)
9153 bfd *abfd;
9154 Elf_Internal_Note *note;
9155{
9156 int offset;
dc810e39 9157 unsigned int raw_size;
bb0082d6
AM
9158
9159 switch (note->descsz)
9160 {
9161 default:
9162 return false;
9163
9164 case 256: /* Linux/MIPS */
9165 /* pr_cursig */
9166 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
9167
9168 /* pr_pid */
9169 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
9170
9171 /* pr_reg */
9172 offset = 72;
9173 raw_size = 180;
9174
9175 break;
9176 }
9177
9178 /* Make a ".reg/999" section. */
936e320b
AM
9179 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9180 raw_size, note->descpos + offset);
bb0082d6
AM
9181}
9182
9e80ff3a
L
9183static boolean
9184_bfd_elf32_mips_grok_psinfo (abfd, note)
bb0082d6
AM
9185 bfd *abfd;
9186 Elf_Internal_Note *note;
9187{
9188 switch (note->descsz)
9189 {
9190 default:
9191 return false;
9192
9193 case 128: /* Linux/MIPS elf_prpsinfo */
9194 elf_tdata (abfd)->core_program
9195 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
9196 elf_tdata (abfd)->core_command
9197 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
9198 }
9199
9200 /* Note that for some reason, a spurious space is tacked
9201 onto the end of the args in some (at least one anyway)
9202 implementations, so strip it off if it exists. */
9203
9204 {
9205 char *command = elf_tdata (abfd)->core_command;
9206 int n = strlen (command);
9207
9208 if (0 < n && command[n - 1] == ' ')
9209 command[n - 1] = '\0';
9210 }
9211
9212 return true;
9213}
9214\f
252b5132
RH
9215/* This is almost identical to bfd_generic_get_... except that some
9216 MIPS relocations need to be handled specially. Sigh. */
9217
9218static bfd_byte *
9219elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
9220 relocateable, symbols)
9221 bfd *abfd;
9222 struct bfd_link_info *link_info;
9223 struct bfd_link_order *link_order;
9224 bfd_byte *data;
9225 boolean relocateable;
9226 asymbol **symbols;
9227{
9228 /* Get enough memory to hold the stuff */
9229 bfd *input_bfd = link_order->u.indirect.section->owner;
9230 asection *input_section = link_order->u.indirect.section;
9231
9232 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9233 arelent **reloc_vector = NULL;
9234 long reloc_count;
9235
9236 if (reloc_size < 0)
9237 goto error_return;
9238
dc810e39 9239 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132
RH
9240 if (reloc_vector == NULL && reloc_size != 0)
9241 goto error_return;
9242
9243 /* read in the section */
9244 if (!bfd_get_section_contents (input_bfd,
9245 input_section,
9246 (PTR) data,
dc810e39 9247 (file_ptr) 0,
252b5132
RH
9248 input_section->_raw_size))
9249 goto error_return;
9250
9251 /* We're not relaxing the section, so just copy the size info */
9252 input_section->_cooked_size = input_section->_raw_size;
9253 input_section->reloc_done = true;
9254
9255 reloc_count = bfd_canonicalize_reloc (input_bfd,
9256 input_section,
9257 reloc_vector,
9258 symbols);
9259 if (reloc_count < 0)
9260 goto error_return;
9261
9262 if (reloc_count > 0)
9263 {
9264 arelent **parent;
9265 /* for mips */
9266 int gp_found;
9267 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9268
9269 {
9270 struct bfd_hash_entry *h;
9271 struct bfd_link_hash_entry *lh;
9272 /* Skip all this stuff if we aren't mixing formats. */
9273 if (abfd && input_bfd
9274 && abfd->xvec == input_bfd->xvec)
9275 lh = 0;
9276 else
9277 {
9278 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9279 lh = (struct bfd_link_hash_entry *) h;
9280 }
9281 lookup:
9282 if (lh)
9283 {
9284 switch (lh->type)
9285 {
9286 case bfd_link_hash_undefined:
9287 case bfd_link_hash_undefweak:
9288 case bfd_link_hash_common:
9289 gp_found = 0;
9290 break;
9291 case bfd_link_hash_defined:
9292 case bfd_link_hash_defweak:
9293 gp_found = 1;
9294 gp = lh->u.def.value;
9295 break;
9296 case bfd_link_hash_indirect:
9297 case bfd_link_hash_warning:
9298 lh = lh->u.i.link;
9299 /* @@FIXME ignoring warning for now */
9300 goto lookup;
9301 case bfd_link_hash_new:
9302 default:
9303 abort ();
9304 }
9305 }
9306 else
9307 gp_found = 0;
9308 }
9309 /* end mips */
9310 for (parent = reloc_vector; *parent != (arelent *) NULL;
9311 parent++)
9312 {
9313 char *error_message = (char *) NULL;
9314 bfd_reloc_status_type r;
9315
9316 /* Specific to MIPS: Deal with relocation types that require
9317 knowing the gp of the output bfd. */
9318 asymbol *sym = *(*parent)->sym_ptr_ptr;
9319 if (bfd_is_abs_section (sym->section) && abfd)
9320 {
9321 /* The special_function wouldn't get called anyways. */
9322 }
9323 else if (!gp_found)
9324 {
9325 /* The gp isn't there; let the special function code
9326 fall over on its own. */
9327 }
9328 else if ((*parent)->howto->special_function
9329 == _bfd_mips_elf_gprel16_reloc)
9330 {
9331 /* bypass special_function call */
9332 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9333 relocateable, (PTR) data, gp);
9334 goto skip_bfd_perform_relocation;
9335 }
9336 /* end mips specific stuff */
9337
9338 r = bfd_perform_relocation (input_bfd,
9339 *parent,
9340 (PTR) data,
9341 input_section,
9342 relocateable ? abfd : (bfd *) NULL,
9343 &error_message);
9344 skip_bfd_perform_relocation:
9345
9346 if (relocateable)
9347 {
9348 asection *os = input_section->output_section;
9349
9350 /* A partial link, so keep the relocs */
9351 os->orelocation[os->reloc_count] = *parent;
9352 os->reloc_count++;
9353 }
9354
9355 if (r != bfd_reloc_ok)
9356 {
9357 switch (r)
9358 {
9359 case bfd_reloc_undefined:
9360 if (!((*link_info->callbacks->undefined_symbol)
9361 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
9362 input_bfd, input_section, (*parent)->address,
9363 true)))
252b5132
RH
9364 goto error_return;
9365 break;
9366 case bfd_reloc_dangerous:
9367 BFD_ASSERT (error_message != (char *) NULL);
9368 if (!((*link_info->callbacks->reloc_dangerous)
9369 (link_info, error_message, input_bfd, input_section,
9370 (*parent)->address)))
9371 goto error_return;
9372 break;
9373 case bfd_reloc_overflow:
9374 if (!((*link_info->callbacks->reloc_overflow)
9375 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9376 (*parent)->howto->name, (*parent)->addend,
9377 input_bfd, input_section, (*parent)->address)))
9378 goto error_return;
9379 break;
9380 case bfd_reloc_outofrange:
9381 default:
9382 abort ();
9383 break;
9384 }
9385
9386 }
9387 }
9388 }
9389 if (reloc_vector != NULL)
9390 free (reloc_vector);
9391 return data;
9392
9393error_return:
9394 if (reloc_vector != NULL)
9395 free (reloc_vector);
9396 return NULL;
9397}
be3ccd9c 9398
252b5132
RH
9399#define bfd_elf32_bfd_get_relocated_section_contents \
9400 elf32_mips_get_relocated_section_contents
9401\f
9402/* ECOFF swapping routines. These are used when dealing with the
9403 .mdebug section, which is in the ECOFF debugging format. */
be3ccd9c 9404static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
252b5132
RH
9405 /* Symbol table magic number. */
9406 magicSym,
9407 /* Alignment of debugging information. E.g., 4. */
9408 4,
9409 /* Sizes of external symbolic information. */
9410 sizeof (struct hdr_ext),
9411 sizeof (struct dnr_ext),
9412 sizeof (struct pdr_ext),
9413 sizeof (struct sym_ext),
9414 sizeof (struct opt_ext),
9415 sizeof (struct fdr_ext),
9416 sizeof (struct rfd_ext),
9417 sizeof (struct ext_ext),
9418 /* Functions to swap in external symbolic data. */
9419 ecoff_swap_hdr_in,
9420 ecoff_swap_dnr_in,
9421 ecoff_swap_pdr_in,
9422 ecoff_swap_sym_in,
9423 ecoff_swap_opt_in,
9424 ecoff_swap_fdr_in,
9425 ecoff_swap_rfd_in,
9426 ecoff_swap_ext_in,
9427 _bfd_ecoff_swap_tir_in,
9428 _bfd_ecoff_swap_rndx_in,
9429 /* Functions to swap out external symbolic data. */
9430 ecoff_swap_hdr_out,
9431 ecoff_swap_dnr_out,
9432 ecoff_swap_pdr_out,
9433 ecoff_swap_sym_out,
9434 ecoff_swap_opt_out,
9435 ecoff_swap_fdr_out,
9436 ecoff_swap_rfd_out,
9437 ecoff_swap_ext_out,
9438 _bfd_ecoff_swap_tir_out,
9439 _bfd_ecoff_swap_rndx_out,
9440 /* Function to read in symbolic data. */
9441 _bfd_mips_elf_read_ecoff_info
9442};
9443\f
9444#define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9445#define TARGET_LITTLE_NAME "elf32-littlemips"
9446#define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9447#define TARGET_BIG_NAME "elf32-bigmips"
9448#define ELF_ARCH bfd_arch_mips
9449#define ELF_MACHINE_CODE EM_MIPS
9450
9451/* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9452 a value of 0x1000, and we are compatible. */
9453#define ELF_MAXPAGESIZE 0x1000
9454
9455#define elf_backend_collect true
9456#define elf_backend_type_change_ok true
9457#define elf_backend_can_gc_sections true
86dc0f79 9458#define elf_backend_sign_extend_vma true
3f830999 9459#define elf_info_to_howto mips_info_to_howto_rela
252b5132
RH
9460#define elf_info_to_howto_rel mips_info_to_howto_rel
9461#define elf_backend_sym_is_global mips_elf_sym_is_global
103186c6
MM
9462#define elf_backend_object_p _bfd_mips_elf_object_p
9463#define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
252b5132
RH
9464#define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9465#define elf_backend_section_from_bfd_section \
9466 _bfd_mips_elf_section_from_bfd_section
103186c6 9467#define elf_backend_section_processing _bfd_mips_elf_section_processing
252b5132
RH
9468#define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9469#define elf_backend_additional_program_headers \
103186c6
MM
9470 _bfd_mips_elf_additional_program_headers
9471#define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
252b5132
RH
9472#define elf_backend_final_write_processing \
9473 _bfd_mips_elf_final_write_processing
9474#define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
103186c6
MM
9475#define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9476#define elf_backend_create_dynamic_sections \
9477 _bfd_mips_elf_create_dynamic_sections
9478#define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9479#define elf_backend_adjust_dynamic_symbol \
9480 _bfd_mips_elf_adjust_dynamic_symbol
9481#define elf_backend_always_size_sections \
9482 _bfd_mips_elf_always_size_sections
9483#define elf_backend_size_dynamic_sections \
9484 _bfd_mips_elf_size_dynamic_sections
9485#define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9486#define elf_backend_link_output_symbol_hook \
9487 _bfd_mips_elf_link_output_symbol_hook
9488#define elf_backend_finish_dynamic_symbol \
9489 _bfd_mips_elf_finish_dynamic_symbol
9490#define elf_backend_finish_dynamic_sections \
9491 _bfd_mips_elf_finish_dynamic_sections
9492#define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9493#define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9494
9495#define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9496#define elf_backend_plt_header_size 0
252b5132 9497
8a20f077
UC
9498#define elf_backend_copy_indirect_symbol \
9499 _bfd_mips_elf_copy_indirect_symbol
9500
b305ef96 9501#define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
bb0082d6
AM
9502#define elf_backend_grok_prstatus _bfd_elf32_mips_grok_prstatus
9503#define elf_backend_grok_psinfo _bfd_elf32_mips_grok_psinfo
b305ef96 9504
252b5132
RH
9505#define bfd_elf32_bfd_is_local_label_name \
9506 mips_elf_is_local_label_name
9507#define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9508#define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9509#define bfd_elf32_bfd_link_hash_table_create \
103186c6
MM
9510 _bfd_mips_elf_link_hash_table_create
9511#define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
252b5132
RH
9512#define bfd_elf32_bfd_copy_private_bfd_data \
9513 _bfd_mips_elf_copy_private_bfd_data
9514#define bfd_elf32_bfd_merge_private_bfd_data \
9515 _bfd_mips_elf_merge_private_bfd_data
9516#define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9517#define bfd_elf32_bfd_print_private_bfd_data \
9518 _bfd_mips_elf_print_private_bfd_data
252b5132 9519#include "elf32-target.h"
e364195d
UC
9520
9521/* Support for traditional mips targets */
9522
9523#define INCLUDED_TARGET_FILE /* More a type of flag */
9524
9525#undef TARGET_LITTLE_SYM
9526#undef TARGET_LITTLE_NAME
9527#undef TARGET_BIG_SYM
9528#undef TARGET_BIG_NAME
9529
9530#define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
9531#define TARGET_LITTLE_NAME "elf32-tradlittlemips"
9532#define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
9533#define TARGET_BIG_NAME "elf32-tradbigmips"
9534
9535/* Include the target file again for this target */
9536#include "elf32-target.h"
This page took 0.695232 seconds and 4 git commands to generate.