Add support to readelf to display NetBSD auxv notes in core files.
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
82704155 2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
4c2af04f 31#include "splay-tree.h"
e0001a05
NC
32#include "xtensa-isa.h"
33#include "xtensa-config.h"
34
43cd72b9
BW
35#define XTENSA_NO_NOP_REMOVAL 0
36
e0001a05
NC
37/* Local helper functions. */
38
f0e6fdb2 39static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 40static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 41static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 43static bfd_boolean do_fix_for_relocatable_link
7fa3d080 44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 45static void do_fix_for_final_link
7fa3d080 46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
47
48/* Local functions to handle Xtensa configurability. */
49
7fa3d080
BW
50static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53static xtensa_opcode get_const16_opcode (void);
54static xtensa_opcode get_l32r_opcode (void);
55static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56static int get_relocation_opnd (xtensa_opcode, int);
57static int get_relocation_slot (int);
e0001a05 58static xtensa_opcode get_relocation_opcode
7fa3d080 59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 60static bfd_boolean is_l32r_relocation
7fa3d080
BW
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62static bfd_boolean is_alt_relocation (int);
63static bfd_boolean is_operand_relocation (int);
43cd72b9 64static bfd_size_type insn_decode_len
7fa3d080 65 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 66static xtensa_opcode insn_decode_opcode
7fa3d080 67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 68static bfd_boolean check_branch_target_aligned
7fa3d080 69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 70static bfd_boolean check_loop_aligned
7fa3d080
BW
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 73static bfd_size_type get_asm_simplify_size
7fa3d080 74 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
75
76/* Functions for link-time code simplifications. */
77
43cd72b9 78static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 79 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 80static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
84
85/* Access to internal relocations, section contents and symbols. */
86
87static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
88 (bfd *, asection *, bfd_boolean);
89static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92static void pin_contents (asection *, bfd_byte *);
93static void release_contents (asection *, bfd_byte *);
94static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
95
96/* Miscellaneous utility functions. */
97
f0e6fdb2
BW
98static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 100static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 101static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
102 (bfd *, unsigned long);
103static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 107static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 108static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 109static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
110static int internal_reloc_compare (const void *, const void *);
111static int internal_reloc_matches (const void *, const void *);
51c8ebc1 112static asection *xtensa_get_property_section (asection *, const char *);
7fa3d080 113static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
114
115/* Other functions called directly by the linker. */
116
117typedef void (*deps_callback_t)
7fa3d080 118 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 119extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
121
122
43cd72b9
BW
123/* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
7fa3d080 127
43cd72b9
BW
128int elf32xtensa_size_opt;
129
130
131/* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
e0001a05 134
7fa3d080 135typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 136
43cd72b9 137
43cd72b9
BW
138/* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143xtensa_isa xtensa_default_isa;
144
145
e0001a05
NC
146/* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150static bfd_boolean relaxing_section = FALSE;
151
43cd72b9
BW
152/* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155int elf32xtensa_no_literal_movement = 1;
156
8255c61b
MF
157/* Place property records for a section into individual property section
158 with xt.prop. prefix. */
159
160bfd_boolean elf32xtensa_separate_props = FALSE;
161
b0dddeec
AM
162/* Rename one of the generic section flags to better document how it
163 is used here. */
164/* Whether relocations have been processed. */
165#define reloc_done sec_flg0
e0001a05
NC
166\f
167static reloc_howto_type elf_howto_table[] =
168{
6346d5ca 169 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
e0001a05 170 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 171 FALSE, 0, 0, FALSE),
e0001a05
NC
172 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
173 bfd_elf_xtensa_reloc, "R_XTENSA_32",
174 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 175
e0001a05
NC
176 /* Replace a 32-bit value with a value from the runtime linker (only
177 used by linker-generated stub functions). The r_addend value is
178 special: 1 means to substitute a pointer to the runtime linker's
179 dynamic resolver function; 2 means to substitute the link map for
180 the shared object. */
181 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
182 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
183
e0001a05
NC
184 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 186 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
187 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 189 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
190 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 192 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
193 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
194 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
195 FALSE, 0, 0xffffffff, FALSE),
196
e0001a05 197 EMPTY_HOWTO (7),
e5f131d1
BW
198
199 /* Old relocations for backward compatibility. */
e0001a05 200 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 201 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 202 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 203 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 204 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
205 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
206
e0001a05
NC
207 /* Assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
210 /* Relax assembly auto-expansion. */
211 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
212 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
213
e0001a05 214 EMPTY_HOWTO (13),
1bbb5f21
BW
215
216 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
217 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
218 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 219
e0001a05
NC
220 /* GNU extension to record C++ vtable hierarchy. */
221 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
07d6d2b8 222 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 223 FALSE, 0, 0, FALSE),
e0001a05
NC
224 /* GNU extension to record C++ vtable member usage. */
225 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
07d6d2b8 226 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 227 FALSE, 0, 0, FALSE),
43cd72b9
BW
228
229 /* Relocations for supporting difference of symbols. */
1058c753 230 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
1058c753 232 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
e5f131d1 233 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
1058c753 234 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
236
237 /* General immediate operand relocations. */
238 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 258 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 260 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 262 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 264 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 266 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
268
269 /* "Alternate" relocations. The meaning of these is opcode-specific. */
270 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 290 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 292 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 294 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 296 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 298 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 299 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
300
301 /* TLS relocations. */
302 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
304 FALSE, 0, 0xffffffff, FALSE),
305 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
307 FALSE, 0, 0xffffffff, FALSE),
308 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
310 FALSE, 0, 0xffffffff, FALSE),
311 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
313 FALSE, 0, 0xffffffff, FALSE),
314 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
316 FALSE, 0, 0, FALSE),
317 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
319 FALSE, 0, 0, FALSE),
320 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
322 FALSE, 0, 0, FALSE),
e0001a05
NC
323};
324
43cd72b9 325#if DEBUG_GEN_RELOC
e0001a05
NC
326#define TRACE(str) \
327 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
328#else
329#define TRACE(str)
330#endif
331
332static reloc_howto_type *
7fa3d080
BW
333elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
334 bfd_reloc_code_real_type code)
e0001a05
NC
335{
336 switch (code)
337 {
338 case BFD_RELOC_NONE:
339 TRACE ("BFD_RELOC_NONE");
340 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
341
342 case BFD_RELOC_32:
343 TRACE ("BFD_RELOC_32");
344 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
345
1bbb5f21
BW
346 case BFD_RELOC_32_PCREL:
347 TRACE ("BFD_RELOC_32_PCREL");
348 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
349
43cd72b9
BW
350 case BFD_RELOC_XTENSA_DIFF8:
351 TRACE ("BFD_RELOC_XTENSA_DIFF8");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
353
354 case BFD_RELOC_XTENSA_DIFF16:
355 TRACE ("BFD_RELOC_XTENSA_DIFF16");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
357
358 case BFD_RELOC_XTENSA_DIFF32:
359 TRACE ("BFD_RELOC_XTENSA_DIFF32");
360 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
361
e0001a05
NC
362 case BFD_RELOC_XTENSA_RTLD:
363 TRACE ("BFD_RELOC_XTENSA_RTLD");
364 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
365
366 case BFD_RELOC_XTENSA_GLOB_DAT:
367 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
368 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
369
370 case BFD_RELOC_XTENSA_JMP_SLOT:
371 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
372 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
373
374 case BFD_RELOC_XTENSA_RELATIVE:
375 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
376 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
377
378 case BFD_RELOC_XTENSA_PLT:
379 TRACE ("BFD_RELOC_XTENSA_PLT");
380 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
381
382 case BFD_RELOC_XTENSA_OP0:
383 TRACE ("BFD_RELOC_XTENSA_OP0");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
385
386 case BFD_RELOC_XTENSA_OP1:
387 TRACE ("BFD_RELOC_XTENSA_OP1");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
389
390 case BFD_RELOC_XTENSA_OP2:
391 TRACE ("BFD_RELOC_XTENSA_OP2");
392 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
393
394 case BFD_RELOC_XTENSA_ASM_EXPAND:
395 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
397
398 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
399 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
400 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
401
402 case BFD_RELOC_VTABLE_INHERIT:
403 TRACE ("BFD_RELOC_VTABLE_INHERIT");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
405
406 case BFD_RELOC_VTABLE_ENTRY:
407 TRACE ("BFD_RELOC_VTABLE_ENTRY");
408 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
409
28dbbc02
BW
410 case BFD_RELOC_XTENSA_TLSDESC_FN:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
413
414 case BFD_RELOC_XTENSA_TLSDESC_ARG:
415 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
417
418 case BFD_RELOC_XTENSA_TLS_DTPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_TPOFF:
423 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
425
426 case BFD_RELOC_XTENSA_TLS_FUNC:
427 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
429
430 case BFD_RELOC_XTENSA_TLS_ARG:
431 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
433
434 case BFD_RELOC_XTENSA_TLS_CALL:
435 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
436 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
437
e0001a05 438 default:
43cd72b9
BW
439 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
440 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
441 {
442 unsigned n = (R_XTENSA_SLOT0_OP +
443 (code - BFD_RELOC_XTENSA_SLOT0_OP));
444 return &elf_howto_table[n];
445 }
446
447 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
448 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
449 {
450 unsigned n = (R_XTENSA_SLOT0_ALT +
451 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
452 return &elf_howto_table[n];
453 }
454
e0001a05
NC
455 break;
456 }
457
f3185997 458 /* xgettext:c-format */
e8f5af78 459 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
f3185997 460 bfd_set_error (bfd_error_bad_value);
e0001a05
NC
461 TRACE ("Unknown");
462 return NULL;
463}
464
157090f7
AM
465static reloc_howto_type *
466elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
467 const char *r_name)
468{
469 unsigned int i;
470
471 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
472 if (elf_howto_table[i].name != NULL
473 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
474 return &elf_howto_table[i];
475
476 return NULL;
477}
478
e0001a05
NC
479
480/* Given an ELF "rela" relocation, find the corresponding howto and record
481 it in the BFD internal arelent representation of the relocation. */
482
f3185997 483static bfd_boolean
0aa13fee 484elf_xtensa_info_to_howto_rela (bfd *abfd,
7fa3d080
BW
485 arelent *cache_ptr,
486 Elf_Internal_Rela *dst)
e0001a05
NC
487{
488 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
489
5860e3f8
NC
490 if (r_type >= (unsigned int) R_XTENSA_max)
491 {
695344c0 492 /* xgettext:c-format */
0aa13fee
AM
493 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
494 abfd, r_type);
f3185997
NC
495 bfd_set_error (bfd_error_bad_value);
496 return FALSE;
5860e3f8 497 }
e0001a05 498 cache_ptr->howto = &elf_howto_table[r_type];
f3185997 499 return TRUE;
e0001a05
NC
500}
501
502\f
503/* Functions for the Xtensa ELF linker. */
504
505/* The name of the dynamic interpreter. This is put in the .interp
506 section. */
507
508#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
509
510/* The size in bytes of an entry in the procedure linkage table.
511 (This does _not_ include the space for the literals associated with
512 the PLT entry.) */
513
514#define PLT_ENTRY_SIZE 16
515
516/* For _really_ large PLTs, we may need to alternate between literals
517 and code to keep the literals within the 256K range of the L32R
518 instructions in the code. It's unlikely that anyone would ever need
519 such a big PLT, but an arbitrary limit on the PLT size would be bad.
520 Thus, we split the PLT into chunks. Since there's very little
521 overhead (2 extra literals) for each chunk, the chunk size is kept
522 small so that the code for handling multiple chunks get used and
523 tested regularly. With 254 entries, there are 1K of literals for
524 each chunk, and that seems like a nice round number. */
525
526#define PLT_ENTRIES_PER_CHUNK 254
527
528/* PLT entries are actually used as stub functions for lazy symbol
529 resolution. Once the symbol is resolved, the stub function is never
530 invoked. Note: the 32-byte frame size used here cannot be changed
531 without a corresponding change in the runtime linker. */
532
f7e16c2a 533static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
e0001a05 534{
f7e16c2a
MF
535 {
536 0x6c, 0x10, 0x04, /* entry sp, 32 */
537 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
538 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
539 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
540 0x0a, 0x80, 0x00, /* jx a8 */
541 0 /* unused */
542 },
543 {
544 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
545 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
546 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
547 0x0a, 0x80, 0x00, /* jx a8 */
548 0 /* unused */
549 }
e0001a05
NC
550};
551
f7e16c2a 552static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
e0001a05 553{
f7e16c2a
MF
554 {
555 0x36, 0x41, 0x00, /* entry sp, 32 */
556 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
557 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
558 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
559 0xa0, 0x08, 0x00, /* jx a8 */
560 0 /* unused */
561 },
562 {
563 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
564 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
565 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
566 0xa0, 0x08, 0x00, /* jx a8 */
567 0 /* unused */
568 }
e0001a05
NC
569};
570
28dbbc02
BW
571/* The size of the thread control block. */
572#define TCB_SIZE 8
573
574struct elf_xtensa_link_hash_entry
575{
576 struct elf_link_hash_entry elf;
577
578 bfd_signed_vma tlsfunc_refcount;
579
580#define GOT_UNKNOWN 0
581#define GOT_NORMAL 1
582#define GOT_TLS_GD 2 /* global or local dynamic */
583#define GOT_TLS_IE 4 /* initial or local exec */
584#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
585 unsigned char tls_type;
586};
587
588#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
589
590struct elf_xtensa_obj_tdata
591{
592 struct elf_obj_tdata root;
593
594 /* tls_type for each local got entry. */
595 char *local_got_tls_type;
596
597 bfd_signed_vma *local_tlsfunc_refcounts;
598};
599
600#define elf_xtensa_tdata(abfd) \
601 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
602
603#define elf_xtensa_local_got_tls_type(abfd) \
604 (elf_xtensa_tdata (abfd)->local_got_tls_type)
605
606#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
607 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
608
609#define is_xtensa_elf(bfd) \
610 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
611 && elf_tdata (bfd) != NULL \
4dfe6ac6 612 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
613
614static bfd_boolean
615elf_xtensa_mkobject (bfd *abfd)
616{
617 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 618 XTENSA_ELF_DATA);
28dbbc02
BW
619}
620
f0e6fdb2
BW
621/* Xtensa ELF linker hash table. */
622
623struct elf_xtensa_link_hash_table
624{
625 struct elf_link_hash_table elf;
626
627 /* Short-cuts to get to dynamic linker sections. */
f0e6fdb2
BW
628 asection *sgotloc;
629 asection *spltlittbl;
630
631 /* Total count of PLT relocations seen during check_relocs.
632 The actual PLT code must be split into multiple sections and all
633 the sections have to be created before size_dynamic_sections,
634 where we figure out the exact number of PLT entries that will be
635 needed. It is OK if this count is an overestimate, e.g., some
636 relocations may be removed by GC. */
637 int plt_reloc_count;
28dbbc02
BW
638
639 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
640};
641
642/* Get the Xtensa ELF linker hash table from a link_info structure. */
643
644#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
645 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
646 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 647
28dbbc02
BW
648/* Create an entry in an Xtensa ELF linker hash table. */
649
650static struct bfd_hash_entry *
651elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
652 struct bfd_hash_table *table,
653 const char *string)
654{
655 /* Allocate the structure if it has not already been allocated by a
656 subclass. */
657 if (entry == NULL)
658 {
659 entry = bfd_hash_allocate (table,
660 sizeof (struct elf_xtensa_link_hash_entry));
661 if (entry == NULL)
662 return entry;
663 }
664
665 /* Call the allocation method of the superclass. */
666 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
667 if (entry != NULL)
668 {
669 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
670 eh->tlsfunc_refcount = 0;
671 eh->tls_type = GOT_UNKNOWN;
672 }
673
674 return entry;
675}
676
f0e6fdb2
BW
677/* Create an Xtensa ELF linker hash table. */
678
679static struct bfd_link_hash_table *
680elf_xtensa_link_hash_table_create (bfd *abfd)
681{
28dbbc02 682 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
683 struct elf_xtensa_link_hash_table *ret;
684 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
685
7bf52ea2 686 ret = bfd_zmalloc (amt);
f0e6fdb2
BW
687 if (ret == NULL)
688 return NULL;
689
690 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 691 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
692 sizeof (struct elf_xtensa_link_hash_entry),
693 XTENSA_ELF_DATA))
f0e6fdb2
BW
694 {
695 free (ret);
696 return NULL;
697 }
698
28dbbc02
BW
699 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
700 for it later. */
701 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
702 TRUE, FALSE, FALSE);
703 tlsbase->root.type = bfd_link_hash_new;
704 tlsbase->root.u.undef.abfd = NULL;
705 tlsbase->non_elf = 0;
706 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
707 ret->tlsbase->tls_type = GOT_UNKNOWN;
708
f0e6fdb2
BW
709 return &ret->elf.root;
710}
571b5725 711
28dbbc02
BW
712/* Copy the extra info we tack onto an elf_link_hash_entry. */
713
714static void
715elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
716 struct elf_link_hash_entry *dir,
717 struct elf_link_hash_entry *ind)
718{
719 struct elf_xtensa_link_hash_entry *edir, *eind;
720
721 edir = elf_xtensa_hash_entry (dir);
722 eind = elf_xtensa_hash_entry (ind);
723
724 if (ind->root.type == bfd_link_hash_indirect)
725 {
726 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
727 eind->tlsfunc_refcount = 0;
728
729 if (dir->got.refcount <= 0)
730 {
731 edir->tls_type = eind->tls_type;
732 eind->tls_type = GOT_UNKNOWN;
733 }
734 }
735
736 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
737}
738
571b5725 739static inline bfd_boolean
4608f3d9 740elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 741 struct bfd_link_info *info)
571b5725
BW
742{
743 /* Check if we should do dynamic things to this symbol. The
744 "ignore_protected" argument need not be set, because Xtensa code
745 does not require special handling of STV_PROTECTED to make function
746 pointer comparisons work properly. The PLT addresses are never
747 used for function pointers. */
748
749 return _bfd_elf_dynamic_symbol_p (h, info, 0);
750}
751
e0001a05
NC
752\f
753static int
7fa3d080 754property_table_compare (const void *ap, const void *bp)
e0001a05
NC
755{
756 const property_table_entry *a = (const property_table_entry *) ap;
757 const property_table_entry *b = (const property_table_entry *) bp;
758
43cd72b9
BW
759 if (a->address == b->address)
760 {
43cd72b9
BW
761 if (a->size != b->size)
762 return (a->size - b->size);
763
764 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
765 return ((b->flags & XTENSA_PROP_ALIGN)
766 - (a->flags & XTENSA_PROP_ALIGN));
767
768 if ((a->flags & XTENSA_PROP_ALIGN)
769 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
770 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
771 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
772 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
68ffbac6 773
43cd72b9
BW
774 if ((a->flags & XTENSA_PROP_UNREACHABLE)
775 != (b->flags & XTENSA_PROP_UNREACHABLE))
776 return ((b->flags & XTENSA_PROP_UNREACHABLE)
777 - (a->flags & XTENSA_PROP_UNREACHABLE));
778
779 return (a->flags - b->flags);
780 }
781
782 return (a->address - b->address);
783}
784
785
786static int
7fa3d080 787property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
788{
789 const property_table_entry *a = (const property_table_entry *) ap;
790 const property_table_entry *b = (const property_table_entry *) bp;
791
792 /* Check if one entry overlaps with the other. */
e0001a05
NC
793 if ((b->address >= a->address && b->address < (a->address + a->size))
794 || (a->address >= b->address && a->address < (b->address + b->size)))
795 return 0;
796
797 return (a->address - b->address);
798}
799
800
43cd72b9
BW
801/* Get the literal table or property table entries for the given
802 section. Sets TABLE_P and returns the number of entries. On
803 error, returns a negative value. */
e0001a05 804
4b8e28c7 805int
7fa3d080
BW
806xtensa_read_table_entries (bfd *abfd,
807 asection *section,
808 property_table_entry **table_p,
809 const char *sec_name,
810 bfd_boolean output_addr)
e0001a05
NC
811{
812 asection *table_section;
e0001a05
NC
813 bfd_size_type table_size = 0;
814 bfd_byte *table_data;
815 property_table_entry *blocks;
e4115460 816 int blk, block_count;
e0001a05 817 bfd_size_type num_records;
bcc2cc8e
BW
818 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
819 bfd_vma section_addr, off;
43cd72b9 820 flagword predef_flags;
bcc2cc8e 821 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
822
823 if (!section
824 || !(section->flags & SEC_ALLOC)
825 || (section->flags & SEC_DEBUGGING))
826 {
827 *table_p = NULL;
828 return 0;
829 }
e0001a05 830
74869ac7 831 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 832 if (table_section)
eea6121a 833 table_size = table_section->size;
43cd72b9 834
68ffbac6 835 if (table_size == 0)
e0001a05
NC
836 {
837 *table_p = NULL;
838 return 0;
839 }
840
43cd72b9
BW
841 predef_flags = xtensa_get_property_predef_flags (table_section);
842 table_entry_size = 12;
843 if (predef_flags)
844 table_entry_size -= 4;
845
846 num_records = table_size / table_entry_size;
e0001a05
NC
847 table_data = retrieve_contents (abfd, table_section, TRUE);
848 blocks = (property_table_entry *)
849 bfd_malloc (num_records * sizeof (property_table_entry));
850 block_count = 0;
43cd72b9
BW
851
852 if (output_addr)
853 section_addr = section->output_section->vma + section->output_offset;
854 else
855 section_addr = section->vma;
3ba3bc8c 856
e0001a05 857 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 858 if (internal_relocs && !table_section->reloc_done)
e0001a05 859 {
bcc2cc8e
BW
860 qsort (internal_relocs, table_section->reloc_count,
861 sizeof (Elf_Internal_Rela), internal_reloc_compare);
862 irel = internal_relocs;
863 }
864 else
865 irel = NULL;
866
867 section_limit = bfd_get_section_limit (abfd, section);
868 rel_end = internal_relocs + table_section->reloc_count;
869
68ffbac6 870 for (off = 0; off < table_size; off += table_entry_size)
bcc2cc8e
BW
871 {
872 bfd_vma address = bfd_get_32 (abfd, table_data + off);
873
874 /* Skip any relocations before the current offset. This should help
875 avoid confusion caused by unexpected relocations for the preceding
876 table entry. */
877 while (irel &&
878 (irel->r_offset < off
879 || (irel->r_offset == off
880 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
881 {
882 irel += 1;
883 if (irel >= rel_end)
884 irel = 0;
885 }
e0001a05 886
bcc2cc8e 887 if (irel && irel->r_offset == off)
e0001a05 888 {
bcc2cc8e
BW
889 bfd_vma sym_off;
890 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
891 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 892
bcc2cc8e 893 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
894 continue;
895
bcc2cc8e
BW
896 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
897 BFD_ASSERT (sym_off == 0);
898 address += (section_addr + sym_off + irel->r_addend);
e0001a05 899 }
bcc2cc8e 900 else
e0001a05 901 {
bcc2cc8e
BW
902 if (address < section_addr
903 || address >= section_addr + section_limit)
904 continue;
e0001a05 905 }
bcc2cc8e
BW
906
907 blocks[block_count].address = address;
908 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
909 if (predef_flags)
910 blocks[block_count].flags = predef_flags;
911 else
912 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
913 block_count++;
e0001a05
NC
914 }
915
916 release_contents (table_section, table_data);
917 release_internal_relocs (table_section, internal_relocs);
918
43cd72b9 919 if (block_count > 0)
e0001a05
NC
920 {
921 /* Now sort them into address order for easy reference. */
922 qsort (blocks, block_count, sizeof (property_table_entry),
923 property_table_compare);
e4115460
BW
924
925 /* Check that the table contents are valid. Problems may occur,
07d6d2b8 926 for example, if an unrelocated object file is stripped. */
e4115460
BW
927 for (blk = 1; blk < block_count; blk++)
928 {
929 /* The only circumstance where two entries may legitimately
930 have the same address is when one of them is a zero-size
931 placeholder to mark a place where fill can be inserted.
932 The zero-size entry should come first. */
933 if (blocks[blk - 1].address == blocks[blk].address &&
934 blocks[blk - 1].size != 0)
935 {
695344c0 936 /* xgettext:c-format */
871b3ab2 937 _bfd_error_handler (_("%pB(%pA): invalid property table"),
4eca0228 938 abfd, section);
e4115460
BW
939 bfd_set_error (bfd_error_bad_value);
940 free (blocks);
941 return -1;
942 }
943 }
e0001a05 944 }
43cd72b9 945
e0001a05
NC
946 *table_p = blocks;
947 return block_count;
948}
949
950
7fa3d080
BW
951static property_table_entry *
952elf_xtensa_find_property_entry (property_table_entry *property_table,
953 int property_table_size,
954 bfd_vma addr)
e0001a05
NC
955{
956 property_table_entry entry;
43cd72b9 957 property_table_entry *rv;
e0001a05 958
43cd72b9
BW
959 if (property_table_size == 0)
960 return NULL;
e0001a05
NC
961
962 entry.address = addr;
963 entry.size = 1;
43cd72b9 964 entry.flags = 0;
e0001a05 965
43cd72b9
BW
966 rv = bsearch (&entry, property_table, property_table_size,
967 sizeof (property_table_entry), property_table_matches);
968 return rv;
969}
970
971
972static bfd_boolean
7fa3d080
BW
973elf_xtensa_in_literal_pool (property_table_entry *lit_table,
974 int lit_table_size,
975 bfd_vma addr)
43cd72b9
BW
976{
977 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
978 return TRUE;
979
980 return FALSE;
981}
982
983\f
984/* Look through the relocs for a section during the first phase, and
985 calculate needed space in the dynamic reloc sections. */
986
987static bfd_boolean
7fa3d080
BW
988elf_xtensa_check_relocs (bfd *abfd,
989 struct bfd_link_info *info,
990 asection *sec,
991 const Elf_Internal_Rela *relocs)
e0001a05 992{
f0e6fdb2 993 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
994 Elf_Internal_Shdr *symtab_hdr;
995 struct elf_link_hash_entry **sym_hashes;
996 const Elf_Internal_Rela *rel;
997 const Elf_Internal_Rela *rel_end;
e0001a05 998
0e1862bb 999 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
1000 return TRUE;
1001
28dbbc02
BW
1002 BFD_ASSERT (is_xtensa_elf (abfd));
1003
f0e6fdb2 1004 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1005 if (htab == NULL)
1006 return FALSE;
1007
e0001a05
NC
1008 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1009 sym_hashes = elf_sym_hashes (abfd);
1010
e0001a05
NC
1011 rel_end = relocs + sec->reloc_count;
1012 for (rel = relocs; rel < rel_end; rel++)
1013 {
1014 unsigned int r_type;
d42c267e 1015 unsigned r_symndx;
28dbbc02
BW
1016 struct elf_link_hash_entry *h = NULL;
1017 struct elf_xtensa_link_hash_entry *eh;
1018 int tls_type, old_tls_type;
1019 bfd_boolean is_got = FALSE;
1020 bfd_boolean is_plt = FALSE;
1021 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1022
1023 r_symndx = ELF32_R_SYM (rel->r_info);
1024 r_type = ELF32_R_TYPE (rel->r_info);
1025
1026 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1027 {
695344c0 1028 /* xgettext:c-format */
871b3ab2 1029 _bfd_error_handler (_("%pB: bad symbol index: %d"),
4eca0228 1030 abfd, r_symndx);
e0001a05
NC
1031 return FALSE;
1032 }
1033
28dbbc02 1034 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1035 {
1036 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037 while (h->root.type == bfd_link_hash_indirect
1038 || h->root.type == bfd_link_hash_warning)
1039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1040 }
28dbbc02 1041 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1042
1043 switch (r_type)
1044 {
28dbbc02 1045 case R_XTENSA_TLSDESC_FN:
0e1862bb 1046 if (bfd_link_pic (info))
28dbbc02
BW
1047 {
1048 tls_type = GOT_TLS_GD;
1049 is_got = TRUE;
1050 is_tlsfunc = TRUE;
1051 }
1052 else
1053 tls_type = GOT_TLS_IE;
1054 break;
e0001a05 1055
28dbbc02 1056 case R_XTENSA_TLSDESC_ARG:
0e1862bb 1057 if (bfd_link_pic (info))
e0001a05 1058 {
28dbbc02
BW
1059 tls_type = GOT_TLS_GD;
1060 is_got = TRUE;
1061 }
1062 else
1063 {
1064 tls_type = GOT_TLS_IE;
1065 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1066 is_got = TRUE;
e0001a05
NC
1067 }
1068 break;
1069
28dbbc02 1070 case R_XTENSA_TLS_DTPOFF:
0e1862bb 1071 if (bfd_link_pic (info))
28dbbc02
BW
1072 tls_type = GOT_TLS_GD;
1073 else
1074 tls_type = GOT_TLS_IE;
1075 break;
1076
1077 case R_XTENSA_TLS_TPOFF:
1078 tls_type = GOT_TLS_IE;
0e1862bb 1079 if (bfd_link_pic (info))
28dbbc02 1080 info->flags |= DF_STATIC_TLS;
0e1862bb 1081 if (bfd_link_pic (info) || h)
28dbbc02
BW
1082 is_got = TRUE;
1083 break;
1084
1085 case R_XTENSA_32:
1086 tls_type = GOT_NORMAL;
1087 is_got = TRUE;
1088 break;
1089
e0001a05 1090 case R_XTENSA_PLT:
28dbbc02
BW
1091 tls_type = GOT_NORMAL;
1092 is_plt = TRUE;
1093 break;
e0001a05 1094
28dbbc02
BW
1095 case R_XTENSA_GNU_VTINHERIT:
1096 /* This relocation describes the C++ object vtable hierarchy.
1097 Reconstruct it for later use during GC. */
1098 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1099 return FALSE;
1100 continue;
1101
1102 case R_XTENSA_GNU_VTENTRY:
1103 /* This relocation describes which C++ vtable entries are actually
1104 used. Record for later use during GC. */
a0ea3a14 1105 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
28dbbc02
BW
1106 return FALSE;
1107 continue;
1108
1109 default:
1110 /* Nothing to do for any other relocations. */
1111 continue;
1112 }
1113
1114 if (h)
1115 {
1116 if (is_plt)
e0001a05 1117 {
b45329f9
BW
1118 if (h->plt.refcount <= 0)
1119 {
1120 h->needs_plt = 1;
1121 h->plt.refcount = 1;
1122 }
1123 else
1124 h->plt.refcount += 1;
e0001a05
NC
1125
1126 /* Keep track of the total PLT relocation count even if we
1127 don't yet know whether the dynamic sections will be
1128 created. */
f0e6fdb2 1129 htab->plt_reloc_count += 1;
e0001a05
NC
1130
1131 if (elf_hash_table (info)->dynamic_sections_created)
1132 {
f0e6fdb2 1133 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1134 return FALSE;
1135 }
1136 }
28dbbc02 1137 else if (is_got)
b45329f9
BW
1138 {
1139 if (h->got.refcount <= 0)
1140 h->got.refcount = 1;
1141 else
1142 h->got.refcount += 1;
1143 }
28dbbc02
BW
1144
1145 if (is_tlsfunc)
1146 eh->tlsfunc_refcount += 1;
e0001a05 1147
28dbbc02
BW
1148 old_tls_type = eh->tls_type;
1149 }
1150 else
1151 {
1152 /* Allocate storage the first time. */
1153 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1154 {
28dbbc02
BW
1155 bfd_size_type size = symtab_hdr->sh_info;
1156 void *mem;
e0001a05 1157
28dbbc02
BW
1158 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1159 if (mem == NULL)
1160 return FALSE;
1161 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1162
28dbbc02
BW
1163 mem = bfd_zalloc (abfd, size);
1164 if (mem == NULL)
1165 return FALSE;
1166 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1167
1168 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1169 if (mem == NULL)
1170 return FALSE;
1171 elf_xtensa_local_tlsfunc_refcounts (abfd)
1172 = (bfd_signed_vma *) mem;
e0001a05 1173 }
e0001a05 1174
28dbbc02
BW
1175 /* This is a global offset table entry for a local symbol. */
1176 if (is_got || is_plt)
1177 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1178
28dbbc02
BW
1179 if (is_tlsfunc)
1180 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1181
28dbbc02
BW
1182 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1183 }
1184
1185 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1186 tls_type |= old_tls_type;
1187 /* If a TLS symbol is accessed using IE at least once,
1188 there is no point to use a dynamic model for it. */
1189 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1190 && ((old_tls_type & GOT_TLS_GD) == 0
1191 || (tls_type & GOT_TLS_IE) == 0))
1192 {
1193 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1194 tls_type = old_tls_type;
1195 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1196 tls_type |= old_tls_type;
1197 else
1198 {
4eca0228 1199 _bfd_error_handler
695344c0 1200 /* xgettext:c-format */
871b3ab2 1201 (_("%pB: `%s' accessed both as normal and thread local symbol"),
28dbbc02
BW
1202 abfd,
1203 h ? h->root.root.string : "<local>");
1204 return FALSE;
1205 }
1206 }
1207
1208 if (old_tls_type != tls_type)
1209 {
1210 if (eh)
1211 eh->tls_type = tls_type;
1212 else
1213 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1214 }
1215 }
1216
e0001a05
NC
1217 return TRUE;
1218}
1219
1220
95147441
BW
1221static void
1222elf_xtensa_make_sym_local (struct bfd_link_info *info,
07d6d2b8 1223 struct elf_link_hash_entry *h)
95147441 1224{
0e1862bb 1225 if (bfd_link_pic (info))
95147441
BW
1226 {
1227 if (h->plt.refcount > 0)
07d6d2b8 1228 {
95147441
BW
1229 /* For shared objects, there's no need for PLT entries for local
1230 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
07d6d2b8
AM
1231 if (h->got.refcount < 0)
1232 h->got.refcount = 0;
1233 h->got.refcount += h->plt.refcount;
1234 h->plt.refcount = 0;
1235 }
95147441
BW
1236 }
1237 else
1238 {
1239 /* Don't need any dynamic relocations at all. */
1240 h->plt.refcount = 0;
1241 h->got.refcount = 0;
1242 }
1243}
1244
1245
1246static void
1247elf_xtensa_hide_symbol (struct bfd_link_info *info,
07d6d2b8
AM
1248 struct elf_link_hash_entry *h,
1249 bfd_boolean force_local)
95147441
BW
1250{
1251 /* For a shared link, move the plt refcount to the got refcount to leave
1252 space for RELATIVE relocs. */
1253 elf_xtensa_make_sym_local (info, h);
1254
1255 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1256}
1257
1258
e0001a05
NC
1259/* Return the section that should be marked against GC for a given
1260 relocation. */
1261
1262static asection *
7fa3d080 1263elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1264 struct bfd_link_info *info,
7fa3d080
BW
1265 Elf_Internal_Rela *rel,
1266 struct elf_link_hash_entry *h,
1267 Elf_Internal_Sym *sym)
e0001a05 1268{
e1e5c0b5
BW
1269 /* Property sections are marked "KEEP" in the linker scripts, but they
1270 should not cause other sections to be marked. (This approach relies
1271 on elf_xtensa_discard_info to remove property table entries that
1272 describe discarded sections. Alternatively, it might be more
1273 efficient to avoid using "KEEP" in the linker scripts and instead use
1274 the gc_mark_extra_sections hook to mark only the property sections
1275 that describe marked sections. That alternative does not work well
1276 with the current property table sections, which do not correspond
1277 one-to-one with the sections they describe, but that should be fixed
1278 someday.) */
1279 if (xtensa_is_property_section (sec))
1280 return NULL;
1281
07adf181
AM
1282 if (h != NULL)
1283 switch (ELF32_R_TYPE (rel->r_info))
1284 {
1285 case R_XTENSA_GNU_VTINHERIT:
1286 case R_XTENSA_GNU_VTENTRY:
1287 return NULL;
1288 }
1289
1290 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1291}
1292
7fa3d080 1293
e0001a05
NC
1294/* Create all the dynamic sections. */
1295
1296static bfd_boolean
7fa3d080 1297elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1298{
f0e6fdb2 1299 struct elf_xtensa_link_hash_table *htab;
e901de89 1300 flagword flags, noalloc_flags;
f0e6fdb2
BW
1301
1302 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1303 if (htab == NULL)
1304 return FALSE;
e0001a05
NC
1305
1306 /* First do all the standard stuff. */
1307 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1308 return FALSE;
1309
1310 /* Create any extra PLT sections in case check_relocs has already
1311 been called on all the non-dynamic input files. */
f0e6fdb2 1312 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1313 return FALSE;
1314
e901de89
BW
1315 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1316 | SEC_LINKER_CREATED | SEC_READONLY);
1317 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1318
1319 /* Mark the ".got.plt" section READONLY. */
ce558b89
AM
1320 if (htab->elf.sgotplt == NULL
1321 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
e0001a05
NC
1322 return FALSE;
1323
e901de89 1324 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3d4d4302
AM
1325 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1326 flags);
f0e6fdb2
BW
1327 if (htab->sgotloc == NULL
1328 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1329 return FALSE;
1330
e0001a05 1331 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3d4d4302
AM
1332 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1333 noalloc_flags);
f0e6fdb2
BW
1334 if (htab->spltlittbl == NULL
1335 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1336 return FALSE;
1337
1338 return TRUE;
1339}
1340
1341
1342static bfd_boolean
f0e6fdb2 1343add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1344{
f0e6fdb2 1345 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1346 int chunk;
1347
1348 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1349 ".got.plt" sections. */
1350 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1351 {
1352 char *sname;
1353 flagword flags;
1354 asection *s;
1355
1356 /* Stop when we find a section has already been created. */
f0e6fdb2 1357 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1358 break;
1359
1360 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1361 | SEC_LINKER_CREATED | SEC_READONLY);
1362
1363 sname = (char *) bfd_malloc (10);
1364 sprintf (sname, ".plt.%u", chunk);
3d4d4302 1365 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1366 if (s == NULL
e0001a05
NC
1367 || ! bfd_set_section_alignment (dynobj, s, 2))
1368 return FALSE;
1369
1370 sname = (char *) bfd_malloc (14);
1371 sprintf (sname, ".got.plt.%u", chunk);
3d4d4302 1372 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
e0001a05 1373 if (s == NULL
e0001a05
NC
1374 || ! bfd_set_section_alignment (dynobj, s, 2))
1375 return FALSE;
1376 }
1377
1378 return TRUE;
1379}
1380
1381
1382/* Adjust a symbol defined by a dynamic object and referenced by a
1383 regular object. The current definition is in some section of the
1384 dynamic object, but we're not including those sections. We have to
1385 change the definition to something the rest of the link can
1386 understand. */
1387
1388static bfd_boolean
7fa3d080
BW
1389elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1390 struct elf_link_hash_entry *h)
e0001a05
NC
1391{
1392 /* If this is a weak symbol, and there is a real definition, the
1393 processor independent code will have arranged for us to see the
1394 real definition first, and we can just use the same value. */
60d67dc8 1395 if (h->is_weakalias)
e0001a05 1396 {
60d67dc8
AM
1397 struct elf_link_hash_entry *def = weakdef (h);
1398 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1399 h->root.u.def.section = def->root.u.def.section;
1400 h->root.u.def.value = def->root.u.def.value;
e0001a05
NC
1401 return TRUE;
1402 }
1403
1404 /* This is a reference to a symbol defined by a dynamic object. The
1405 reference must go through the GOT, so there's no need for COPY relocs,
1406 .dynbss, etc. */
1407
1408 return TRUE;
1409}
1410
1411
e0001a05 1412static bfd_boolean
f1ab2340 1413elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1414{
f1ab2340
BW
1415 struct bfd_link_info *info;
1416 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1417 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1418
f1ab2340
BW
1419 if (h->root.type == bfd_link_hash_indirect)
1420 return TRUE;
e0001a05 1421
f1ab2340
BW
1422 info = (struct bfd_link_info *) arg;
1423 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1424 if (htab == NULL)
1425 return FALSE;
e0001a05 1426
28dbbc02
BW
1427 /* If we saw any use of an IE model for this symbol, we can then optimize
1428 away GOT entries for any TLSDESC_FN relocs. */
1429 if ((eh->tls_type & GOT_TLS_IE) != 0)
1430 {
1431 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1432 h->got.refcount -= eh->tlsfunc_refcount;
1433 }
e0001a05 1434
28dbbc02 1435 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1436 elf_xtensa_make_sym_local (info, h);
e0001a05 1437
c451bb34
MF
1438 if (! elf_xtensa_dynamic_symbol_p (h, info)
1439 && h->root.type == bfd_link_hash_undefweak)
1440 return TRUE;
1441
f1ab2340 1442 if (h->plt.refcount > 0)
ce558b89 1443 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1444
1445 if (h->got.refcount > 0)
ce558b89 1446 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1447
1448 return TRUE;
1449}
1450
1451
1452static void
f0e6fdb2 1453elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1454{
f0e6fdb2 1455 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1456 bfd *i;
1457
f0e6fdb2 1458 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1459 if (htab == NULL)
1460 return;
f0e6fdb2 1461
c72f2fb2 1462 for (i = info->input_bfds; i; i = i->link.next)
e0001a05
NC
1463 {
1464 bfd_signed_vma *local_got_refcounts;
1465 bfd_size_type j, cnt;
1466 Elf_Internal_Shdr *symtab_hdr;
1467
1468 local_got_refcounts = elf_local_got_refcounts (i);
1469 if (!local_got_refcounts)
1470 continue;
1471
1472 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1473 cnt = symtab_hdr->sh_info;
1474
1475 for (j = 0; j < cnt; ++j)
1476 {
28dbbc02
BW
1477 /* If we saw any use of an IE model for this symbol, we can
1478 then optimize away GOT entries for any TLSDESC_FN relocs. */
1479 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1480 {
1481 bfd_signed_vma *tlsfunc_refcount
1482 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1483 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1484 local_got_refcounts[j] -= *tlsfunc_refcount;
1485 }
1486
e0001a05 1487 if (local_got_refcounts[j] > 0)
ce558b89
AM
1488 htab->elf.srelgot->size += (local_got_refcounts[j]
1489 * sizeof (Elf32_External_Rela));
e0001a05
NC
1490 }
1491 }
1492}
1493
1494
1495/* Set the sizes of the dynamic sections. */
1496
1497static bfd_boolean
7fa3d080
BW
1498elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1499 struct bfd_link_info *info)
e0001a05 1500{
f0e6fdb2 1501 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1502 bfd *dynobj, *abfd;
1503 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1504 bfd_boolean relplt, relgot;
1505 int plt_entries, plt_chunks, chunk;
1506
1507 plt_entries = 0;
1508 plt_chunks = 0;
e0001a05 1509
f0e6fdb2 1510 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1511 if (htab == NULL)
1512 return FALSE;
1513
e0001a05
NC
1514 dynobj = elf_hash_table (info)->dynobj;
1515 if (dynobj == NULL)
1516 abort ();
ce558b89
AM
1517 srelgot = htab->elf.srelgot;
1518 srelplt = htab->elf.srelplt;
e0001a05
NC
1519
1520 if (elf_hash_table (info)->dynamic_sections_created)
1521 {
ce558b89
AM
1522 BFD_ASSERT (htab->elf.srelgot != NULL
1523 && htab->elf.srelplt != NULL
1524 && htab->elf.sgot != NULL
f0e6fdb2
BW
1525 && htab->spltlittbl != NULL
1526 && htab->sgotloc != NULL);
1527
e0001a05 1528 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 1529 if (bfd_link_executable (info) && !info->nointerp)
e0001a05 1530 {
3d4d4302 1531 s = bfd_get_linker_section (dynobj, ".interp");
e0001a05
NC
1532 if (s == NULL)
1533 abort ();
eea6121a 1534 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1535 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1536 }
1537
1538 /* Allocate room for one word in ".got". */
ce558b89 1539 htab->elf.sgot->size = 4;
e0001a05 1540
f1ab2340
BW
1541 /* Allocate space in ".rela.got" for literals that reference global
1542 symbols and space in ".rela.plt" for literals that have PLT
1543 entries. */
e0001a05 1544 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1545 elf_xtensa_allocate_dynrelocs,
7fa3d080 1546 (void *) info);
e0001a05 1547
e0001a05
NC
1548 /* If we are generating a shared object, we also need space in
1549 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1550 reference local symbols. */
0e1862bb 1551 if (bfd_link_pic (info))
f0e6fdb2 1552 elf_xtensa_allocate_local_got_size (info);
e0001a05 1553
e0001a05
NC
1554 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1555 each PLT entry, we need the PLT code plus a 4-byte literal.
1556 For each chunk of ".plt", we also need two more 4-byte
1557 literals, two corresponding entries in ".rela.got", and an
1558 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1559 spltlittbl = htab->spltlittbl;
eea6121a 1560 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1561 plt_chunks =
1562 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1563
1564 /* Iterate over all the PLT chunks, including any extra sections
1565 created earlier because the initial count of PLT relocations
1566 was an overestimate. */
1567 for (chunk = 0;
f0e6fdb2 1568 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1569 chunk++)
1570 {
1571 int chunk_entries;
1572
f0e6fdb2
BW
1573 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1574 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1575
1576 if (chunk < plt_chunks - 1)
1577 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1578 else if (chunk == plt_chunks - 1)
1579 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1580 else
1581 chunk_entries = 0;
1582
1583 if (chunk_entries != 0)
1584 {
eea6121a
AM
1585 sgotplt->size = 4 * (chunk_entries + 2);
1586 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1587 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1588 spltlittbl->size += 8;
e0001a05
NC
1589 }
1590 else
1591 {
eea6121a
AM
1592 sgotplt->size = 0;
1593 splt->size = 0;
e0001a05
NC
1594 }
1595 }
e901de89
BW
1596
1597 /* Allocate space in ".got.loc" to match the total size of all the
1598 literal tables. */
f0e6fdb2 1599 sgotloc = htab->sgotloc;
eea6121a 1600 sgotloc->size = spltlittbl->size;
c72f2fb2 1601 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
e901de89
BW
1602 {
1603 if (abfd->flags & DYNAMIC)
1604 continue;
1605 for (s = abfd->sections; s != NULL; s = s->next)
1606 {
dbaa2011 1607 if (! discarded_section (s)
b536dc1e
BW
1608 && xtensa_is_littable_section (s)
1609 && s != spltlittbl)
eea6121a 1610 sgotloc->size += s->size;
e901de89
BW
1611 }
1612 }
e0001a05
NC
1613 }
1614
1615 /* Allocate memory for dynamic sections. */
1616 relplt = FALSE;
1617 relgot = FALSE;
1618 for (s = dynobj->sections; s != NULL; s = s->next)
1619 {
1620 const char *name;
e0001a05
NC
1621
1622 if ((s->flags & SEC_LINKER_CREATED) == 0)
1623 continue;
1624
1625 /* It's OK to base decisions on the section name, because none
1626 of the dynobj section names depend upon the input files. */
1627 name = bfd_get_section_name (dynobj, s);
1628
0112cd26 1629 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1630 {
c456f082 1631 if (s->size != 0)
e0001a05 1632 {
c456f082
AM
1633 if (strcmp (name, ".rela.plt") == 0)
1634 relplt = TRUE;
1635 else if (strcmp (name, ".rela.got") == 0)
1636 relgot = TRUE;
1637
1638 /* We use the reloc_count field as a counter if we need
1639 to copy relocs into the output file. */
1640 s->reloc_count = 0;
e0001a05
NC
1641 }
1642 }
0112cd26
NC
1643 else if (! CONST_STRNEQ (name, ".plt.")
1644 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1645 && strcmp (name, ".got") != 0
e0001a05
NC
1646 && strcmp (name, ".plt") != 0
1647 && strcmp (name, ".got.plt") != 0
e901de89
BW
1648 && strcmp (name, ".xt.lit.plt") != 0
1649 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1650 {
1651 /* It's not one of our sections, so don't allocate space. */
1652 continue;
1653 }
1654
c456f082
AM
1655 if (s->size == 0)
1656 {
1657 /* If we don't need this section, strip it from the output
1658 file. We must create the ".plt*" and ".got.plt*"
1659 sections in create_dynamic_sections and/or check_relocs
1660 based on a conservative estimate of the PLT relocation
1661 count, because the sections must be created before the
1662 linker maps input sections to output sections. The
1663 linker does that before size_dynamic_sections, where we
1664 compute the exact size of the PLT, so there may be more
1665 of these sections than are actually needed. */
1666 s->flags |= SEC_EXCLUDE;
1667 }
1668 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1669 {
1670 /* Allocate memory for the section contents. */
eea6121a 1671 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1672 if (s->contents == NULL)
e0001a05
NC
1673 return FALSE;
1674 }
1675 }
1676
1677 if (elf_hash_table (info)->dynamic_sections_created)
1678 {
1679 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1680 known until finish_dynamic_sections, but we need to get the relocs
1681 in place before they are sorted. */
e0001a05
NC
1682 for (chunk = 0; chunk < plt_chunks; chunk++)
1683 {
1684 Elf_Internal_Rela irela;
1685 bfd_byte *loc;
1686
1687 irela.r_offset = 0;
1688 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1689 irela.r_addend = 0;
1690
1691 loc = (srelgot->contents
1692 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1693 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1694 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1695 loc + sizeof (Elf32_External_Rela));
1696 srelgot->reloc_count += 2;
1697 }
1698
1699 /* Add some entries to the .dynamic section. We fill in the
1700 values later, in elf_xtensa_finish_dynamic_sections, but we
1701 must add the entries now so that we get the correct size for
1702 the .dynamic section. The DT_DEBUG entry is filled in by the
1703 dynamic linker and used by the debugger. */
1704#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1705 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1706
0e1862bb 1707 if (bfd_link_executable (info))
e0001a05
NC
1708 {
1709 if (!add_dynamic_entry (DT_DEBUG, 0))
1710 return FALSE;
1711 }
1712
1713 if (relplt)
1714 {
c243ad3b 1715 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1716 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1717 || !add_dynamic_entry (DT_JMPREL, 0))
1718 return FALSE;
1719 }
1720
1721 if (relgot)
1722 {
1723 if (!add_dynamic_entry (DT_RELA, 0)
1724 || !add_dynamic_entry (DT_RELASZ, 0)
1725 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1726 return FALSE;
1727 }
1728
c243ad3b
BW
1729 if (!add_dynamic_entry (DT_PLTGOT, 0)
1730 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1731 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1732 return FALSE;
1733 }
1734#undef add_dynamic_entry
1735
1736 return TRUE;
1737}
1738
28dbbc02
BW
1739static bfd_boolean
1740elf_xtensa_always_size_sections (bfd *output_bfd,
1741 struct bfd_link_info *info)
1742{
1743 struct elf_xtensa_link_hash_table *htab;
1744 asection *tls_sec;
1745
1746 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1747 if (htab == NULL)
1748 return FALSE;
1749
28dbbc02
BW
1750 tls_sec = htab->elf.tls_sec;
1751
1752 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1753 {
1754 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1755 struct bfd_link_hash_entry *bh = &tlsbase->root;
1756 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1757
1758 tlsbase->type = STT_TLS;
1759 if (!(_bfd_generic_link_add_one_symbol
1760 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1761 tls_sec, 0, NULL, FALSE,
1762 bed->collect, &bh)))
1763 return FALSE;
1764 tlsbase->def_regular = 1;
1765 tlsbase->other = STV_HIDDEN;
1766 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1767 }
1768
1769 return TRUE;
1770}
1771
e0001a05 1772\f
28dbbc02
BW
1773/* Return the base VMA address which should be subtracted from real addresses
1774 when resolving @dtpoff relocation.
1775 This is PT_TLS segment p_vaddr. */
1776
1777static bfd_vma
1778dtpoff_base (struct bfd_link_info *info)
1779{
1780 /* If tls_sec is NULL, we should have signalled an error already. */
1781 if (elf_hash_table (info)->tls_sec == NULL)
1782 return 0;
1783 return elf_hash_table (info)->tls_sec->vma;
1784}
1785
1786/* Return the relocation value for @tpoff relocation
1787 if STT_TLS virtual address is ADDRESS. */
1788
1789static bfd_vma
1790tpoff (struct bfd_link_info *info, bfd_vma address)
1791{
1792 struct elf_link_hash_table *htab = elf_hash_table (info);
1793 bfd_vma base;
1794
1795 /* If tls_sec is NULL, we should have signalled an error already. */
1796 if (htab->tls_sec == NULL)
1797 return 0;
1798 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1799 return address - htab->tls_sec->vma + base;
1800}
1801
e0001a05
NC
1802/* Perform the specified relocation. The instruction at (contents + address)
1803 is modified to set one operand to represent the value in "relocation". The
1804 operand position is determined by the relocation type recorded in the
1805 howto. */
1806
1807#define CALL_SEGMENT_BITS (30)
7fa3d080 1808#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1809
1810static bfd_reloc_status_type
7fa3d080
BW
1811elf_xtensa_do_reloc (reloc_howto_type *howto,
1812 bfd *abfd,
1813 asection *input_section,
1814 bfd_vma relocation,
1815 bfd_byte *contents,
1816 bfd_vma address,
1817 bfd_boolean is_weak_undef,
1818 char **error_message)
e0001a05 1819{
43cd72b9 1820 xtensa_format fmt;
e0001a05 1821 xtensa_opcode opcode;
e0001a05 1822 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1823 static xtensa_insnbuf ibuff = NULL;
1824 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1825 bfd_vma self_address;
43cd72b9
BW
1826 bfd_size_type input_size;
1827 int opnd, slot;
e0001a05
NC
1828 uint32 newval;
1829
43cd72b9
BW
1830 if (!ibuff)
1831 {
1832 ibuff = xtensa_insnbuf_alloc (isa);
1833 sbuff = xtensa_insnbuf_alloc (isa);
1834 }
1835
1836 input_size = bfd_get_section_limit (abfd, input_section);
1837
1bbb5f21
BW
1838 /* Calculate the PC address for this instruction. */
1839 self_address = (input_section->output_section->vma
1840 + input_section->output_offset
1841 + address);
1842
e0001a05
NC
1843 switch (howto->type)
1844 {
1845 case R_XTENSA_NONE:
43cd72b9
BW
1846 case R_XTENSA_DIFF8:
1847 case R_XTENSA_DIFF16:
1848 case R_XTENSA_DIFF32:
28dbbc02
BW
1849 case R_XTENSA_TLS_FUNC:
1850 case R_XTENSA_TLS_ARG:
1851 case R_XTENSA_TLS_CALL:
e0001a05
NC
1852 return bfd_reloc_ok;
1853
1854 case R_XTENSA_ASM_EXPAND:
1855 if (!is_weak_undef)
1856 {
1857 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1858 opcode = get_expanded_call_opcode (contents + address,
1859 input_size - address, 0);
e0001a05
NC
1860 if (is_windowed_call_opcode (opcode))
1861 {
43cd72b9 1862 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 1863 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1864 {
1865 *error_message = "windowed longcall crosses 1GB boundary; "
1866 "return may fail";
1867 return bfd_reloc_dangerous;
1868 }
1869 }
1870 }
1871 return bfd_reloc_ok;
1872
1873 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1874 {
07d6d2b8 1875 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1876 bfd_reloc_status_type retval =
1877 elf_xtensa_do_asm_simplify (contents, address, input_size,
1878 error_message);
e0001a05 1879 if (retval != bfd_reloc_ok)
43cd72b9 1880 return bfd_reloc_dangerous;
e0001a05
NC
1881
1882 /* The CALL needs to be relocated. Continue below for that part. */
1883 address += 3;
c46082c8 1884 self_address += 3;
43cd72b9 1885 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1886 }
1887 break;
1888
1889 case R_XTENSA_32:
e0001a05
NC
1890 {
1891 bfd_vma x;
1892 x = bfd_get_32 (abfd, contents + address);
1893 x = x + relocation;
1894 bfd_put_32 (abfd, x, contents + address);
1895 }
1896 return bfd_reloc_ok;
1bbb5f21
BW
1897
1898 case R_XTENSA_32_PCREL:
1899 bfd_put_32 (abfd, relocation - self_address, contents + address);
1900 return bfd_reloc_ok;
28dbbc02
BW
1901
1902 case R_XTENSA_PLT:
1903 case R_XTENSA_TLSDESC_FN:
1904 case R_XTENSA_TLSDESC_ARG:
1905 case R_XTENSA_TLS_DTPOFF:
1906 case R_XTENSA_TLS_TPOFF:
1907 bfd_put_32 (abfd, relocation, contents + address);
1908 return bfd_reloc_ok;
e0001a05
NC
1909 }
1910
43cd72b9
BW
1911 /* Only instruction slot-specific relocations handled below.... */
1912 slot = get_relocation_slot (howto->type);
1913 if (slot == XTENSA_UNDEFINED)
e0001a05 1914 {
43cd72b9 1915 *error_message = "unexpected relocation";
e0001a05
NC
1916 return bfd_reloc_dangerous;
1917 }
1918
43cd72b9
BW
1919 /* Read the instruction into a buffer and decode the opcode. */
1920 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1921 input_size - address);
1922 fmt = xtensa_format_decode (isa, ibuff);
1923 if (fmt == XTENSA_UNDEFINED)
e0001a05 1924 {
43cd72b9 1925 *error_message = "cannot decode instruction format";
e0001a05
NC
1926 return bfd_reloc_dangerous;
1927 }
1928
43cd72b9 1929 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1930
43cd72b9
BW
1931 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1932 if (opcode == XTENSA_UNDEFINED)
e0001a05 1933 {
43cd72b9 1934 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1935 return bfd_reloc_dangerous;
1936 }
1937
43cd72b9
BW
1938 /* Check for opcode-specific "alternate" relocations. */
1939 if (is_alt_relocation (howto->type))
1940 {
1941 if (opcode == get_l32r_opcode ())
1942 {
1943 /* Handle the special-case of non-PC-relative L32R instructions. */
1944 bfd *output_bfd = input_section->output_section->owner;
1945 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1946 if (!lit4_sec)
1947 {
1948 *error_message = "relocation references missing .lit4 section";
1949 return bfd_reloc_dangerous;
1950 }
1951 self_address = ((lit4_sec->vma & ~0xfff)
1952 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1953 newval = relocation;
1954 opnd = 1;
1955 }
1956 else if (opcode == get_const16_opcode ())
1957 {
00863b8e
MF
1958 /* ALT used for high 16 bits.
1959 Ignore 32-bit overflow. */
1960 newval = (relocation >> 16) & 0xffff;
43cd72b9
BW
1961 opnd = 1;
1962 }
1963 else
1964 {
1965 /* No other "alternate" relocations currently defined. */
1966 *error_message = "unexpected relocation";
1967 return bfd_reloc_dangerous;
1968 }
1969 }
1970 else /* Not an "alternate" relocation.... */
1971 {
1972 if (opcode == get_const16_opcode ())
1973 {
1974 newval = relocation & 0xffff;
1975 opnd = 1;
1976 }
1977 else
1978 {
1979 /* ...normal PC-relative relocation.... */
1980
1981 /* Determine which operand is being relocated. */
1982 opnd = get_relocation_opnd (opcode, howto->type);
1983 if (opnd == XTENSA_UNDEFINED)
1984 {
1985 *error_message = "unexpected relocation";
1986 return bfd_reloc_dangerous;
1987 }
1988
1989 if (!howto->pc_relative)
1990 {
1991 *error_message = "expected PC-relative relocation";
1992 return bfd_reloc_dangerous;
1993 }
e0001a05 1994
43cd72b9
BW
1995 newval = relocation;
1996 }
1997 }
e0001a05 1998
43cd72b9
BW
1999 /* Apply the relocation. */
2000 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2001 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2002 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2003 sbuff, newval))
e0001a05 2004 {
2db662be
BW
2005 const char *opname = xtensa_opcode_name (isa, opcode);
2006 const char *msg;
2007
2008 msg = "cannot encode";
2009 if (is_direct_call_opcode (opcode))
2010 {
2011 if ((relocation & 0x3) != 0)
2012 msg = "misaligned call target";
2013 else
2014 msg = "call target out of range";
2015 }
2016 else if (opcode == get_l32r_opcode ())
2017 {
2018 if ((relocation & 0x3) != 0)
2019 msg = "misaligned literal target";
2020 else if (is_alt_relocation (howto->type))
2021 msg = "literal target out of range (too many literals)";
2022 else if (self_address > relocation)
2023 msg = "literal target out of range (try using text-section-literals)";
2024 else
2025 msg = "literal placed after use";
2026 }
2027
2028 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2029 return bfd_reloc_dangerous;
2030 }
2031
43cd72b9 2032 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2033 if (is_direct_call_opcode (opcode)
2034 && is_windowed_call_opcode (opcode))
2035 {
43cd72b9 2036 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 2037 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2038 {
43cd72b9
BW
2039 *error_message =
2040 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2041 return bfd_reloc_dangerous;
2042 }
2043 }
2044
43cd72b9
BW
2045 /* Write the modified instruction back out of the buffer. */
2046 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2047 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2048 input_size - address);
e0001a05
NC
2049 return bfd_reloc_ok;
2050}
2051
2052
2db662be 2053static char *
7fa3d080 2054vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2055{
2056 /* To reduce the size of the memory leak,
2057 we only use a single message buffer. */
2058 static bfd_size_type alloc_size = 0;
2059 static char *message = NULL;
2060 bfd_size_type orig_len, len = 0;
2061 bfd_boolean is_append;
1651e569 2062 va_list ap;
e0001a05 2063
1651e569 2064 va_start (ap, arglen);
68ffbac6
L
2065
2066 is_append = (origmsg == message);
e0001a05
NC
2067
2068 orig_len = strlen (origmsg);
2069 len = orig_len + strlen (fmt) + arglen + 20;
2070 if (len > alloc_size)
2071 {
515ef31d 2072 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2073 alloc_size = len;
2074 }
515ef31d
NC
2075 if (message != NULL)
2076 {
2077 if (!is_append)
2078 memcpy (message, origmsg, orig_len);
2079 vsprintf (message + orig_len, fmt, ap);
2080 }
1651e569 2081 va_end (ap);
e0001a05
NC
2082 return message;
2083}
2084
2085
e0001a05
NC
2086/* This function is registered as the "special_function" in the
2087 Xtensa howto for handling simplify operations.
2088 bfd_perform_relocation / bfd_install_relocation use it to
2089 perform (install) the specified relocation. Since this replaces the code
2090 in bfd_perform_relocation, it is basically an Xtensa-specific,
2091 stripped-down version of bfd_perform_relocation. */
2092
2093static bfd_reloc_status_type
7fa3d080
BW
2094bfd_elf_xtensa_reloc (bfd *abfd,
2095 arelent *reloc_entry,
2096 asymbol *symbol,
2097 void *data,
2098 asection *input_section,
2099 bfd *output_bfd,
2100 char **error_message)
e0001a05
NC
2101{
2102 bfd_vma relocation;
2103 bfd_reloc_status_type flag;
2104 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2105 bfd_vma output_base = 0;
2106 reloc_howto_type *howto = reloc_entry->howto;
2107 asection *reloc_target_output_section;
2108 bfd_boolean is_weak_undef;
2109
dd1a320b
BW
2110 if (!xtensa_default_isa)
2111 xtensa_default_isa = xtensa_isa_init (0, 0);
2112
1049f94e 2113 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2114 output, and the reloc is against an external symbol, the resulting
2115 reloc will also be against the same symbol. In such a case, we
2116 don't want to change anything about the way the reloc is handled,
2117 since it will all be done at final link time. This test is similar
2118 to what bfd_elf_generic_reloc does except that it lets relocs with
2119 howto->partial_inplace go through even if the addend is non-zero.
2120 (The real problem is that partial_inplace is set for XTENSA_32
2121 relocs to begin with, but that's a long story and there's little we
2122 can do about it now....) */
2123
7fa3d080 2124 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2125 {
2126 reloc_entry->address += input_section->output_offset;
2127 return bfd_reloc_ok;
2128 }
2129
2130 /* Is the address of the relocation really within the section? */
07515404 2131 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2132 return bfd_reloc_outofrange;
2133
4cc11e76 2134 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2135 initial relocation command value. */
2136
2137 /* Get symbol value. (Common symbols are special.) */
2138 if (bfd_is_com_section (symbol->section))
2139 relocation = 0;
2140 else
2141 relocation = symbol->value;
2142
2143 reloc_target_output_section = symbol->section->output_section;
2144
2145 /* Convert input-section-relative symbol value to absolute. */
2146 if ((output_bfd && !howto->partial_inplace)
2147 || reloc_target_output_section == NULL)
2148 output_base = 0;
2149 else
2150 output_base = reloc_target_output_section->vma;
2151
2152 relocation += output_base + symbol->section->output_offset;
2153
2154 /* Add in supplied addend. */
2155 relocation += reloc_entry->addend;
2156
2157 /* Here the variable relocation holds the final address of the
2158 symbol we are relocating against, plus any addend. */
2159 if (output_bfd)
2160 {
2161 if (!howto->partial_inplace)
2162 {
2163 /* This is a partial relocation, and we want to apply the relocation
2164 to the reloc entry rather than the raw data. Everything except
2165 relocations against section symbols has already been handled
2166 above. */
43cd72b9 2167
e0001a05
NC
2168 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2169 reloc_entry->addend = relocation;
2170 reloc_entry->address += input_section->output_offset;
2171 return bfd_reloc_ok;
2172 }
2173 else
2174 {
2175 reloc_entry->address += input_section->output_offset;
2176 reloc_entry->addend = 0;
2177 }
2178 }
2179
2180 is_weak_undef = (bfd_is_und_section (symbol->section)
2181 && (symbol->flags & BSF_WEAK) != 0);
2182 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2183 (bfd_byte *) data, (bfd_vma) octets,
2184 is_weak_undef, error_message);
2185
2186 if (flag == bfd_reloc_dangerous)
2187 {
2188 /* Add the symbol name to the error message. */
2189 if (! *error_message)
2190 *error_message = "";
2191 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2192 strlen (symbol->name) + 17,
70961b9d
AM
2193 symbol->name,
2194 (unsigned long) reloc_entry->addend);
e0001a05
NC
2195 }
2196
2197 return flag;
2198}
2199
2200
2201/* Set up an entry in the procedure linkage table. */
2202
2203static bfd_vma
f0e6fdb2 2204elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2205 bfd *output_bfd,
2206 unsigned reloc_index)
e0001a05
NC
2207{
2208 asection *splt, *sgotplt;
2209 bfd_vma plt_base, got_base;
92b3f008 2210 bfd_vma code_offset, lit_offset, abi_offset;
e0001a05
NC
2211 int chunk;
2212
2213 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2214 splt = elf_xtensa_get_plt_section (info, chunk);
2215 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2216 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2217
2218 plt_base = splt->output_section->vma + splt->output_offset;
2219 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2220
2221 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2222 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2223
2224 /* Fill in the literal entry. This is the offset of the dynamic
2225 relocation entry. */
2226 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2227 sgotplt->contents + lit_offset);
2228
2229 /* Fill in the entry in the procedure linkage table. */
2230 memcpy (splt->contents + code_offset,
2231 (bfd_big_endian (output_bfd)
f7e16c2a
MF
2232 ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
2233 : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
e0001a05 2234 PLT_ENTRY_SIZE);
92b3f008 2235 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
e0001a05 2236 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
92b3f008
MF
2237 plt_base + code_offset + abi_offset),
2238 splt->contents + code_offset + abi_offset + 1);
e0001a05 2239 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
92b3f008
MF
2240 plt_base + code_offset + abi_offset + 3),
2241 splt->contents + code_offset + abi_offset + 4);
e0001a05 2242 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
92b3f008
MF
2243 plt_base + code_offset + abi_offset + 6),
2244 splt->contents + code_offset + abi_offset + 7);
e0001a05
NC
2245
2246 return plt_base + code_offset;
2247}
2248
2249
28dbbc02
BW
2250static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2251
2252static bfd_boolean
2253replace_tls_insn (Elf_Internal_Rela *rel,
2254 bfd *abfd,
2255 asection *input_section,
2256 bfd_byte *contents,
2257 bfd_boolean is_ld_model,
2258 char **error_message)
2259{
2260 static xtensa_insnbuf ibuff = NULL;
2261 static xtensa_insnbuf sbuff = NULL;
2262 xtensa_isa isa = xtensa_default_isa;
2263 xtensa_format fmt;
2264 xtensa_opcode old_op, new_op;
2265 bfd_size_type input_size;
2266 int r_type;
2267 unsigned dest_reg, src_reg;
2268
2269 if (ibuff == NULL)
2270 {
2271 ibuff = xtensa_insnbuf_alloc (isa);
2272 sbuff = xtensa_insnbuf_alloc (isa);
2273 }
2274
2275 input_size = bfd_get_section_limit (abfd, input_section);
2276
2277 /* Read the instruction into a buffer and decode the opcode. */
2278 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2279 input_size - rel->r_offset);
2280 fmt = xtensa_format_decode (isa, ibuff);
2281 if (fmt == XTENSA_UNDEFINED)
2282 {
2283 *error_message = "cannot decode instruction format";
2284 return FALSE;
2285 }
2286
2287 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2288 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2289
2290 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2291 if (old_op == XTENSA_UNDEFINED)
2292 {
2293 *error_message = "cannot decode instruction opcode";
2294 return FALSE;
2295 }
2296
2297 r_type = ELF32_R_TYPE (rel->r_info);
2298 switch (r_type)
2299 {
2300 case R_XTENSA_TLS_FUNC:
2301 case R_XTENSA_TLS_ARG:
2302 if (old_op != get_l32r_opcode ()
2303 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2304 sbuff, &dest_reg) != 0)
2305 {
2306 *error_message = "cannot extract L32R destination for TLS access";
2307 return FALSE;
2308 }
2309 break;
2310
2311 case R_XTENSA_TLS_CALL:
2312 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2313 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2314 sbuff, &src_reg) != 0)
2315 {
2316 *error_message = "cannot extract CALLXn operands for TLS access";
2317 return FALSE;
2318 }
2319 break;
2320
2321 default:
2322 abort ();
2323 }
2324
2325 if (is_ld_model)
2326 {
2327 switch (r_type)
2328 {
2329 case R_XTENSA_TLS_FUNC:
2330 case R_XTENSA_TLS_ARG:
2331 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2332 versions of Xtensa). */
2333 new_op = xtensa_opcode_lookup (isa, "nop");
2334 if (new_op == XTENSA_UNDEFINED)
2335 {
2336 new_op = xtensa_opcode_lookup (isa, "or");
2337 if (new_op == XTENSA_UNDEFINED
2338 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2339 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2340 sbuff, 1) != 0
2341 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2342 sbuff, 1) != 0
2343 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2344 sbuff, 1) != 0)
2345 {
2346 *error_message = "cannot encode OR for TLS access";
2347 return FALSE;
2348 }
2349 }
2350 else
2351 {
2352 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2353 {
2354 *error_message = "cannot encode NOP for TLS access";
2355 return FALSE;
2356 }
2357 }
2358 break;
2359
2360 case R_XTENSA_TLS_CALL:
2361 /* Read THREADPTR into the CALLX's return value register. */
2362 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2363 if (new_op == XTENSA_UNDEFINED
2364 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2365 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2366 sbuff, dest_reg + 2) != 0)
2367 {
2368 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2369 return FALSE;
2370 }
2371 break;
2372 }
2373 }
2374 else
2375 {
2376 switch (r_type)
2377 {
2378 case R_XTENSA_TLS_FUNC:
2379 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2380 if (new_op == XTENSA_UNDEFINED
2381 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2382 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2383 sbuff, dest_reg) != 0)
2384 {
2385 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2386 return FALSE;
2387 }
2388 break;
2389
2390 case R_XTENSA_TLS_ARG:
2391 /* Nothing to do. Keep the original L32R instruction. */
2392 return TRUE;
2393
2394 case R_XTENSA_TLS_CALL:
2395 /* Add the CALLX's src register (holding the THREADPTR value)
2396 to the first argument register (holding the offset) and put
2397 the result in the CALLX's return value register. */
2398 new_op = xtensa_opcode_lookup (isa, "add");
2399 if (new_op == XTENSA_UNDEFINED
2400 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2401 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2402 sbuff, dest_reg + 2) != 0
2403 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2404 sbuff, dest_reg + 2) != 0
2405 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2406 sbuff, src_reg) != 0)
2407 {
2408 *error_message = "cannot encode ADD for TLS access";
2409 return FALSE;
2410 }
2411 break;
2412 }
2413 }
2414
2415 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2416 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
07d6d2b8 2417 input_size - rel->r_offset);
28dbbc02
BW
2418
2419 return TRUE;
2420}
2421
2422
2423#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2424 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2425 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2426 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2427 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2428 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2429 || (R_TYPE) == R_XTENSA_TLS_ARG \
2430 || (R_TYPE) == R_XTENSA_TLS_CALL)
2431
e0001a05 2432/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2433 both relocatable and final links. */
e0001a05
NC
2434
2435static bfd_boolean
7fa3d080
BW
2436elf_xtensa_relocate_section (bfd *output_bfd,
2437 struct bfd_link_info *info,
2438 bfd *input_bfd,
2439 asection *input_section,
2440 bfd_byte *contents,
2441 Elf_Internal_Rela *relocs,
2442 Elf_Internal_Sym *local_syms,
2443 asection **local_sections)
e0001a05 2444{
f0e6fdb2 2445 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2446 Elf_Internal_Shdr *symtab_hdr;
2447 Elf_Internal_Rela *rel;
2448 Elf_Internal_Rela *relend;
2449 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2450 property_table_entry *lit_table = 0;
2451 int ltblsize = 0;
28dbbc02 2452 char *local_got_tls_types;
e0001a05 2453 char *error_message = NULL;
43cd72b9 2454 bfd_size_type input_size;
28dbbc02 2455 int tls_type;
e0001a05 2456
43cd72b9
BW
2457 if (!xtensa_default_isa)
2458 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2459
7af5d5c4
AM
2460 if (!is_xtensa_elf (input_bfd))
2461 {
2462 bfd_set_error (bfd_error_wrong_format);
2463 return FALSE;
2464 }
28dbbc02 2465
f0e6fdb2 2466 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2467 if (htab == NULL)
2468 return FALSE;
2469
e0001a05
NC
2470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2471 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2472 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2473
88d65ad6
BW
2474 if (elf_hash_table (info)->dynamic_sections_created)
2475 {
2476 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2477 &lit_table, XTENSA_LIT_SEC_NAME,
2478 TRUE);
88d65ad6
BW
2479 if (ltblsize < 0)
2480 return FALSE;
2481 }
2482
43cd72b9
BW
2483 input_size = bfd_get_section_limit (input_bfd, input_section);
2484
e0001a05
NC
2485 rel = relocs;
2486 relend = relocs + input_section->reloc_count;
2487 for (; rel < relend; rel++)
2488 {
2489 int r_type;
2490 reloc_howto_type *howto;
2491 unsigned long r_symndx;
2492 struct elf_link_hash_entry *h;
2493 Elf_Internal_Sym *sym;
28dbbc02
BW
2494 char sym_type;
2495 const char *name;
e0001a05
NC
2496 asection *sec;
2497 bfd_vma relocation;
2498 bfd_reloc_status_type r;
2499 bfd_boolean is_weak_undef;
2500 bfd_boolean unresolved_reloc;
9b8c98a4 2501 bfd_boolean warned;
28dbbc02 2502 bfd_boolean dynamic_symbol;
e0001a05
NC
2503
2504 r_type = ELF32_R_TYPE (rel->r_info);
2505 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2506 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2507 continue;
2508
2509 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2510 {
2511 bfd_set_error (bfd_error_bad_value);
2512 return FALSE;
2513 }
2514 howto = &elf_howto_table[r_type];
2515
2516 r_symndx = ELF32_R_SYM (rel->r_info);
2517
ab96bf03
AM
2518 h = NULL;
2519 sym = NULL;
2520 sec = NULL;
2521 is_weak_undef = FALSE;
2522 unresolved_reloc = FALSE;
2523 warned = FALSE;
2524
0e1862bb 2525 if (howto->partial_inplace && !bfd_link_relocatable (info))
ab96bf03
AM
2526 {
2527 /* Because R_XTENSA_32 was made partial_inplace to fix some
2528 problems with DWARF info in partial links, there may be
2529 an addend stored in the contents. Take it out of there
2530 and move it back into the addend field of the reloc. */
2531 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2532 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2533 }
2534
2535 if (r_symndx < symtab_hdr->sh_info)
2536 {
2537 sym = local_syms + r_symndx;
28dbbc02 2538 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2539 sec = local_sections[r_symndx];
2540 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2541 }
2542 else
2543 {
62d887d4
L
2544 bfd_boolean ignored;
2545
ab96bf03
AM
2546 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2547 r_symndx, symtab_hdr, sym_hashes,
2548 h, sec, relocation,
62d887d4 2549 unresolved_reloc, warned, ignored);
ab96bf03
AM
2550
2551 if (relocation == 0
2552 && !unresolved_reloc
2553 && h->root.type == bfd_link_hash_undefweak)
2554 is_weak_undef = TRUE;
28dbbc02
BW
2555
2556 sym_type = h->type;
ab96bf03
AM
2557 }
2558
dbaa2011 2559 if (sec != NULL && discarded_section (sec))
e4067dbb 2560 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 2561 rel, 1, relend, howto, 0, contents);
ab96bf03 2562
0e1862bb 2563 if (bfd_link_relocatable (info))
e0001a05 2564 {
7aa09196
SA
2565 bfd_vma dest_addr;
2566 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2567
43cd72b9 2568 /* This is a relocatable link.
e0001a05
NC
2569 1) If the reloc is against a section symbol, adjust
2570 according to the output section.
2571 2) If there is a new target for this relocation,
2572 the new target will be in the same output section.
2573 We adjust the relocation by the output section
2574 difference. */
2575
2576 if (relaxing_section)
2577 {
2578 /* Check if this references a section in another input file. */
43cd72b9
BW
2579 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2580 contents))
2581 return FALSE;
e0001a05
NC
2582 }
2583
7aa09196
SA
2584 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2585 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2586
43cd72b9 2587 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2588 {
91d6fa6a 2589 error_message = NULL;
e0001a05
NC
2590 /* Convert ASM_SIMPLIFY into the simpler relocation
2591 so that they never escape a relaxing link. */
43cd72b9
BW
2592 r = contract_asm_expansion (contents, input_size, rel,
2593 &error_message);
2594 if (r != bfd_reloc_ok)
1a72702b
AM
2595 (*info->callbacks->reloc_dangerous)
2596 (info, error_message,
2597 input_bfd, input_section, rel->r_offset);
2598
e0001a05
NC
2599 r_type = ELF32_R_TYPE (rel->r_info);
2600 }
2601
1049f94e 2602 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2603 anything unless the reloc is against a section symbol,
2604 in which case we have to adjust according to where the
2605 section symbol winds up in the output section. */
2606 if (r_symndx < symtab_hdr->sh_info)
2607 {
2608 sym = local_syms + r_symndx;
2609 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2610 {
2611 sec = local_sections[r_symndx];
2612 rel->r_addend += sec->output_offset + sym->st_value;
2613 }
2614 }
2615
2616 /* If there is an addend with a partial_inplace howto,
2617 then move the addend to the contents. This is a hack
1049f94e 2618 to work around problems with DWARF in relocatable links
e0001a05
NC
2619 with some previous version of BFD. Now we can't easily get
2620 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2621 r = bfd_reloc_ok;
2622 howto = &elf_howto_table[r_type];
2623 if (howto->partial_inplace && rel->r_addend)
2624 {
2625 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2626 rel->r_addend, contents,
2627 rel->r_offset, FALSE,
2628 &error_message);
2629 rel->r_addend = 0;
2630 }
2631 else
e0001a05 2632 {
7aa09196
SA
2633 /* Put the correct bits in the target instruction, even
2634 though the relocation will still be present in the output
2635 file. This makes disassembly clearer, as well as
2636 allowing loadable kernel modules to work without needing
2637 relocations on anything other than calls and l32r's. */
2638
2639 /* If it is not in the same section, there is nothing we can do. */
2640 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2641 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2642 {
2643 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2644 dest_addr, contents,
e0001a05
NC
2645 rel->r_offset, FALSE,
2646 &error_message);
e0001a05
NC
2647 }
2648 }
7aa09196 2649 if (r != bfd_reloc_ok)
1a72702b
AM
2650 (*info->callbacks->reloc_dangerous)
2651 (info, error_message,
2652 input_bfd, input_section, rel->r_offset);
e0001a05 2653
1049f94e 2654 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2655 continue;
2656 }
2657
2658 /* This is a final link. */
2659
e0001a05
NC
2660 if (relaxing_section)
2661 {
2662 /* Check if this references a section in another input file. */
43cd72b9
BW
2663 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2664 &relocation);
e0001a05
NC
2665 }
2666
2667 /* Sanity check the address. */
43cd72b9 2668 if (rel->r_offset >= input_size
e0001a05
NC
2669 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2670 {
4eca0228 2671 _bfd_error_handler
695344c0 2672 /* xgettext:c-format */
2dcf00ce
AM
2673 (_("%pB(%pA+%#" PRIx64 "): "
2674 "relocation offset out of range (size=%#" PRIx64 ")"),
2675 input_bfd, input_section, (uint64_t) rel->r_offset,
2676 (uint64_t) input_size);
e0001a05
NC
2677 bfd_set_error (bfd_error_bad_value);
2678 return FALSE;
2679 }
2680
28dbbc02
BW
2681 if (h != NULL)
2682 name = h->root.root.string;
2683 else
e0001a05 2684 {
28dbbc02
BW
2685 name = (bfd_elf_string_from_elf_section
2686 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2687 if (name == NULL || *name == '\0')
2688 name = bfd_section_name (input_bfd, sec);
2689 }
e0001a05 2690
cf35638d 2691 if (r_symndx != STN_UNDEF
28dbbc02
BW
2692 && r_type != R_XTENSA_NONE
2693 && (h == NULL
2694 || h->root.type == bfd_link_hash_defined
2695 || h->root.type == bfd_link_hash_defweak)
2696 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2697 {
4eca0228 2698 _bfd_error_handler
28dbbc02 2699 ((sym_type == STT_TLS
695344c0 2700 /* xgettext:c-format */
2dcf00ce 2701 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
695344c0 2702 /* xgettext:c-format */
2dcf00ce 2703 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
28dbbc02
BW
2704 input_bfd,
2705 input_section,
2dcf00ce 2706 (uint64_t) rel->r_offset,
28dbbc02
BW
2707 howto->name,
2708 name);
2709 }
2710
2711 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2712
2713 tls_type = GOT_UNKNOWN;
2714 if (h)
2715 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2716 else if (local_got_tls_types)
2717 tls_type = local_got_tls_types [r_symndx];
2718
2719 switch (r_type)
2720 {
2721 case R_XTENSA_32:
2722 case R_XTENSA_PLT:
2723 if (elf_hash_table (info)->dynamic_sections_created
2724 && (input_section->flags & SEC_ALLOC) != 0
0e1862bb 2725 && (dynamic_symbol || bfd_link_pic (info)))
e0001a05
NC
2726 {
2727 Elf_Internal_Rela outrel;
2728 bfd_byte *loc;
2729 asection *srel;
2730
2731 if (dynamic_symbol && r_type == R_XTENSA_PLT)
ce558b89 2732 srel = htab->elf.srelplt;
e0001a05 2733 else
ce558b89 2734 srel = htab->elf.srelgot;
e0001a05
NC
2735
2736 BFD_ASSERT (srel != NULL);
2737
2738 outrel.r_offset =
2739 _bfd_elf_section_offset (output_bfd, info,
2740 input_section, rel->r_offset);
2741
2742 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2743 memset (&outrel, 0, sizeof outrel);
2744 else
2745 {
f0578e28
BW
2746 outrel.r_offset += (input_section->output_section->vma
2747 + input_section->output_offset);
e0001a05 2748
88d65ad6
BW
2749 /* Complain if the relocation is in a read-only section
2750 and not in a literal pool. */
2751 if ((input_section->flags & SEC_READONLY) != 0
2752 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2753 outrel.r_offset))
88d65ad6
BW
2754 {
2755 error_message =
2756 _("dynamic relocation in read-only section");
1a72702b
AM
2757 (*info->callbacks->reloc_dangerous)
2758 (info, error_message,
2759 input_bfd, input_section, rel->r_offset);
88d65ad6
BW
2760 }
2761
e0001a05
NC
2762 if (dynamic_symbol)
2763 {
2764 outrel.r_addend = rel->r_addend;
2765 rel->r_addend = 0;
2766
2767 if (r_type == R_XTENSA_32)
2768 {
2769 outrel.r_info =
2770 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2771 relocation = 0;
2772 }
2773 else /* r_type == R_XTENSA_PLT */
2774 {
2775 outrel.r_info =
2776 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2777
2778 /* Create the PLT entry and set the initial
2779 contents of the literal entry to the address of
2780 the PLT entry. */
43cd72b9 2781 relocation =
f0e6fdb2 2782 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2783 srel->reloc_count);
2784 }
2785 unresolved_reloc = FALSE;
2786 }
c451bb34 2787 else if (!is_weak_undef)
e0001a05
NC
2788 {
2789 /* Generate a RELATIVE relocation. */
2790 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2791 outrel.r_addend = 0;
2792 }
c451bb34
MF
2793 else
2794 {
2795 continue;
2796 }
e0001a05
NC
2797 }
2798
2799 loc = (srel->contents
2800 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2801 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2802 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2803 <= srel->size);
e0001a05 2804 }
d9ab3f29
BW
2805 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2806 {
2807 /* This should only happen for non-PIC code, which is not
2808 supposed to be used on systems with dynamic linking.
2809 Just ignore these relocations. */
2810 continue;
2811 }
28dbbc02
BW
2812 break;
2813
2814 case R_XTENSA_TLS_TPOFF:
2815 /* Switch to LE model for local symbols in an executable. */
0e1862bb 2816 if (! bfd_link_pic (info) && ! dynamic_symbol)
28dbbc02
BW
2817 {
2818 relocation = tpoff (info, relocation);
2819 break;
2820 }
2821 /* fall through */
2822
2823 case R_XTENSA_TLSDESC_FN:
2824 case R_XTENSA_TLSDESC_ARG:
2825 {
2826 if (r_type == R_XTENSA_TLSDESC_FN)
2827 {
0e1862bb 2828 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
28dbbc02
BW
2829 r_type = R_XTENSA_NONE;
2830 }
2831 else if (r_type == R_XTENSA_TLSDESC_ARG)
2832 {
0e1862bb 2833 if (bfd_link_pic (info))
28dbbc02
BW
2834 {
2835 if ((tls_type & GOT_TLS_IE) != 0)
2836 r_type = R_XTENSA_TLS_TPOFF;
2837 }
2838 else
2839 {
2840 r_type = R_XTENSA_TLS_TPOFF;
2841 if (! dynamic_symbol)
2842 {
2843 relocation = tpoff (info, relocation);
2844 break;
2845 }
2846 }
2847 }
2848
2849 if (r_type == R_XTENSA_NONE)
2850 /* Nothing to do here; skip to the next reloc. */
2851 continue;
2852
2853 if (! elf_hash_table (info)->dynamic_sections_created)
2854 {
2855 error_message =
2856 _("TLS relocation invalid without dynamic sections");
1a72702b
AM
2857 (*info->callbacks->reloc_dangerous)
2858 (info, error_message,
2859 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2860 }
2861 else
2862 {
2863 Elf_Internal_Rela outrel;
2864 bfd_byte *loc;
ce558b89 2865 asection *srel = htab->elf.srelgot;
28dbbc02
BW
2866 int indx;
2867
2868 outrel.r_offset = (input_section->output_section->vma
2869 + input_section->output_offset
2870 + rel->r_offset);
2871
2872 /* Complain if the relocation is in a read-only section
2873 and not in a literal pool. */
2874 if ((input_section->flags & SEC_READONLY) != 0
2875 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2876 outrel.r_offset))
2877 {
2878 error_message =
2879 _("dynamic relocation in read-only section");
1a72702b
AM
2880 (*info->callbacks->reloc_dangerous)
2881 (info, error_message,
2882 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2883 }
2884
2885 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2886 if (indx == 0)
2887 outrel.r_addend = relocation - dtpoff_base (info);
2888 else
2889 outrel.r_addend = 0;
2890 rel->r_addend = 0;
2891
2892 outrel.r_info = ELF32_R_INFO (indx, r_type);
2893 relocation = 0;
2894 unresolved_reloc = FALSE;
2895
2896 BFD_ASSERT (srel);
2897 loc = (srel->contents
2898 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2899 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2900 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2901 <= srel->size);
2902 }
2903 }
2904 break;
2905
2906 case R_XTENSA_TLS_DTPOFF:
0e1862bb 2907 if (! bfd_link_pic (info))
28dbbc02
BW
2908 /* Switch from LD model to LE model. */
2909 relocation = tpoff (info, relocation);
2910 else
2911 relocation -= dtpoff_base (info);
2912 break;
2913
2914 case R_XTENSA_TLS_FUNC:
2915 case R_XTENSA_TLS_ARG:
2916 case R_XTENSA_TLS_CALL:
2917 /* Check if optimizing to IE or LE model. */
2918 if ((tls_type & GOT_TLS_IE) != 0)
2919 {
2920 bfd_boolean is_ld_model =
2921 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2922 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2923 is_ld_model, &error_message))
1a72702b
AM
2924 (*info->callbacks->reloc_dangerous)
2925 (info, error_message,
2926 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2927
2928 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2929 {
2930 /* Skip subsequent relocations on the same instruction. */
2931 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2932 rel++;
2933 }
2934 }
2935 continue;
2936
2937 default:
2938 if (elf_hash_table (info)->dynamic_sections_created
2939 && dynamic_symbol && (is_operand_relocation (r_type)
2940 || r_type == R_XTENSA_32_PCREL))
2941 {
2942 error_message =
2943 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2944 strlen (name) + 2, name);
1a72702b
AM
2945 (*info->callbacks->reloc_dangerous)
2946 (info, error_message, input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2947 continue;
2948 }
2949 break;
e0001a05
NC
2950 }
2951
2952 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2953 because such sections are not SEC_ALLOC and thus ld.so will
2954 not process them. */
2955 if (unresolved_reloc
2956 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
2957 && h->def_dynamic)
2958 && _bfd_elf_section_offset (output_bfd, info, input_section,
2959 rel->r_offset) != (bfd_vma) -1)
bf1747de 2960 {
4eca0228 2961 _bfd_error_handler
695344c0 2962 /* xgettext:c-format */
2dcf00ce
AM
2963 (_("%pB(%pA+%#" PRIx64 "): "
2964 "unresolvable %s relocation against symbol `%s'"),
bf1747de
BW
2965 input_bfd,
2966 input_section,
2dcf00ce 2967 (uint64_t) rel->r_offset,
bf1747de 2968 howto->name,
28dbbc02 2969 name);
bf1747de
BW
2970 return FALSE;
2971 }
e0001a05 2972
28dbbc02
BW
2973 /* TLS optimizations may have changed r_type; update "howto". */
2974 howto = &elf_howto_table[r_type];
2975
e0001a05
NC
2976 /* There's no point in calling bfd_perform_relocation here.
2977 Just go directly to our "special function". */
2978 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2979 relocation + rel->r_addend,
2980 contents, rel->r_offset, is_weak_undef,
2981 &error_message);
43cd72b9 2982
9b8c98a4 2983 if (r != bfd_reloc_ok && !warned)
e0001a05 2984 {
43cd72b9 2985 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2986 BFD_ASSERT (error_message != NULL);
e0001a05 2987
28dbbc02
BW
2988 if (rel->r_addend == 0)
2989 error_message = vsprint_msg (error_message, ": %s",
2990 strlen (name) + 2, name);
e0001a05 2991 else
28dbbc02
BW
2992 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2993 strlen (name) + 22,
2994 name, (int) rel->r_addend);
43cd72b9 2995
1a72702b
AM
2996 (*info->callbacks->reloc_dangerous)
2997 (info, error_message, input_bfd, input_section, rel->r_offset);
e0001a05
NC
2998 }
2999 }
3000
88d65ad6
BW
3001 if (lit_table)
3002 free (lit_table);
3003
3ba3bc8c
BW
3004 input_section->reloc_done = TRUE;
3005
e0001a05
NC
3006 return TRUE;
3007}
3008
3009
3010/* Finish up dynamic symbol handling. There's not much to do here since
3011 the PLT and GOT entries are all set up by relocate_section. */
3012
3013static bfd_boolean
7fa3d080
BW
3014elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3015 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3016 struct elf_link_hash_entry *h,
3017 Elf_Internal_Sym *sym)
e0001a05 3018{
bf1747de 3019 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3020 {
3021 /* Mark the symbol as undefined, rather than as defined in
3022 the .plt section. Leave the value alone. */
3023 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3024 /* If the symbol is weak, we do need to clear the value.
3025 Otherwise, the PLT entry would provide a definition for
3026 the symbol even if the symbol wasn't defined anywhere,
3027 and so the symbol would never be NULL. */
3028 if (!h->ref_regular_nonweak)
3029 sym->st_value = 0;
e0001a05
NC
3030 }
3031
3032 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9637f6ef 3033 if (h == elf_hash_table (info)->hdynamic
22edb2f1 3034 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3035 sym->st_shndx = SHN_ABS;
3036
3037 return TRUE;
3038}
3039
3040
3041/* Combine adjacent literal table entries in the output. Adjacent
3042 entries within each input section may have been removed during
3043 relaxation, but we repeat the process here, even though it's too late
3044 to shrink the output section, because it's important to minimize the
3045 number of literal table entries to reduce the start-up work for the
3046 runtime linker. Returns the number of remaining table entries or -1
3047 on error. */
3048
3049static int
7fa3d080
BW
3050elf_xtensa_combine_prop_entries (bfd *output_bfd,
3051 asection *sxtlit,
3052 asection *sgotloc)
e0001a05 3053{
e0001a05
NC
3054 bfd_byte *contents;
3055 property_table_entry *table;
e901de89 3056 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3057 bfd_vma offset;
3058 int n, m, num;
3059
eea6121a 3060 section_size = sxtlit->size;
e0001a05
NC
3061 BFD_ASSERT (section_size % 8 == 0);
3062 num = section_size / 8;
3063
eea6121a 3064 sgotloc_size = sgotloc->size;
e901de89 3065 if (sgotloc_size != section_size)
b536dc1e 3066 {
4eca0228 3067 _bfd_error_handler
43cd72b9 3068 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3069 return -1;
3070 }
e901de89 3071
eea6121a
AM
3072 table = bfd_malloc (num * sizeof (property_table_entry));
3073 if (table == 0)
e0001a05
NC
3074 return -1;
3075
3076 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3077 propagates to the output section, where it doesn't really apply and
eea6121a 3078 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3079 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3080
eea6121a
AM
3081 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3082 {
3083 if (contents != 0)
3084 free (contents);
3085 free (table);
3086 return -1;
3087 }
e0001a05
NC
3088
3089 /* There should never be any relocations left at this point, so this
3090 is quite a bit easier than what is done during relaxation. */
3091
3092 /* Copy the raw contents into a property table array and sort it. */
3093 offset = 0;
3094 for (n = 0; n < num; n++)
3095 {
3096 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3097 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3098 offset += 8;
3099 }
3100 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3101
3102 for (n = 0; n < num; n++)
3103 {
91d6fa6a 3104 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3105
3106 if (table[n].size == 0)
91d6fa6a
NC
3107 remove_entry = TRUE;
3108 else if (n > 0
3109 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3110 {
3111 table[n-1].size += table[n].size;
91d6fa6a 3112 remove_entry = TRUE;
e0001a05
NC
3113 }
3114
91d6fa6a 3115 if (remove_entry)
e0001a05
NC
3116 {
3117 for (m = n; m < num - 1; m++)
3118 {
3119 table[m].address = table[m+1].address;
3120 table[m].size = table[m+1].size;
3121 }
3122
3123 n--;
3124 num--;
3125 }
3126 }
3127
3128 /* Copy the data back to the raw contents. */
3129 offset = 0;
3130 for (n = 0; n < num; n++)
3131 {
3132 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3133 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3134 offset += 8;
3135 }
3136
3137 /* Clear the removed bytes. */
3138 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3139 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3140
e901de89
BW
3141 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3142 section_size))
e0001a05
NC
3143 return -1;
3144
e901de89
BW
3145 /* Copy the contents to ".got.loc". */
3146 memcpy (sgotloc->contents, contents, section_size);
3147
e0001a05 3148 free (contents);
b614a702 3149 free (table);
e0001a05
NC
3150 return num;
3151}
3152
3153
3154/* Finish up the dynamic sections. */
3155
3156static bfd_boolean
7fa3d080
BW
3157elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3158 struct bfd_link_info *info)
e0001a05 3159{
f0e6fdb2 3160 struct elf_xtensa_link_hash_table *htab;
e0001a05 3161 bfd *dynobj;
f82863d7 3162 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
e0001a05 3163 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3164 int num_xtlit_entries = 0;
e0001a05
NC
3165
3166 if (! elf_hash_table (info)->dynamic_sections_created)
3167 return TRUE;
3168
f0e6fdb2 3169 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3170 if (htab == NULL)
3171 return FALSE;
3172
e0001a05 3173 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3174 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
e0001a05
NC
3175 BFD_ASSERT (sdyn != NULL);
3176
3177 /* Set the first entry in the global offset table to the address of
3178 the dynamic section. */
ce558b89 3179 sgot = htab->elf.sgot;
e0001a05
NC
3180 if (sgot)
3181 {
eea6121a 3182 BFD_ASSERT (sgot->size == 4);
e0001a05 3183 if (sdyn == NULL)
7fa3d080 3184 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3185 else
3186 bfd_put_32 (output_bfd,
3187 sdyn->output_section->vma + sdyn->output_offset,
3188 sgot->contents);
3189 }
3190
ce558b89 3191 srelplt = htab->elf.srelplt;
f82863d7 3192 srelgot = htab->elf.srelgot;
7fa3d080 3193 if (srelplt && srelplt->size != 0)
e0001a05 3194 {
f82863d7 3195 asection *sgotplt, *spltlittbl;
e0001a05
NC
3196 int chunk, plt_chunks, plt_entries;
3197 Elf_Internal_Rela irela;
3198 bfd_byte *loc;
3199 unsigned rtld_reloc;
3200
f0e6fdb2
BW
3201 spltlittbl = htab->spltlittbl;
3202 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3203
3204 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3205 of them follow immediately after.... */
3206 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3207 {
3208 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3209 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3210 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3211 break;
3212 }
3213 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3214
eea6121a 3215 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3216 plt_chunks =
3217 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3218
3219 for (chunk = 0; chunk < plt_chunks; chunk++)
3220 {
3221 int chunk_entries = 0;
3222
f0e6fdb2 3223 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3224 BFD_ASSERT (sgotplt != NULL);
3225
3226 /* Emit special RTLD relocations for the first two entries in
3227 each chunk of the .got.plt section. */
3228
3229 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3230 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3231 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3232 irela.r_offset = (sgotplt->output_section->vma
3233 + sgotplt->output_offset);
3234 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3235 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3236 rtld_reloc += 1;
3237 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3238
3239 /* Next literal immediately follows the first. */
3240 loc += sizeof (Elf32_External_Rela);
3241 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3242 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3243 irela.r_offset = (sgotplt->output_section->vma
3244 + sgotplt->output_offset + 4);
3245 /* Tell rtld to set value to object's link map. */
3246 irela.r_addend = 2;
3247 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3248 rtld_reloc += 1;
3249 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3250
3251 /* Fill in the literal table. */
3252 if (chunk < plt_chunks - 1)
3253 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3254 else
3255 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3256
eea6121a 3257 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3258 bfd_put_32 (output_bfd,
3259 sgotplt->output_section->vma + sgotplt->output_offset,
3260 spltlittbl->contents + (chunk * 8) + 0);
3261 bfd_put_32 (output_bfd,
3262 8 + (chunk_entries * 4),
3263 spltlittbl->contents + (chunk * 8) + 4);
3264 }
3265
e0001a05
NC
3266 /* The .xt.lit.plt section has just been modified. This must
3267 happen before the code below which combines adjacent literal
3268 table entries, and the .xt.lit.plt contents have to be forced to
3269 the output here. */
3270 if (! bfd_set_section_contents (output_bfd,
3271 spltlittbl->output_section,
3272 spltlittbl->contents,
3273 spltlittbl->output_offset,
eea6121a 3274 spltlittbl->size))
e0001a05
NC
3275 return FALSE;
3276 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3277 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3278 }
3279
f82863d7
MF
3280 /* All the dynamic relocations have been emitted at this point.
3281 Make sure the relocation sections are the correct size. */
3282 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3283 * srelgot->reloc_count))
3284 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3285 * srelplt->reloc_count)))
3286 abort ();
3287
e0001a05 3288 /* Combine adjacent literal table entries. */
0e1862bb 3289 BFD_ASSERT (! bfd_link_relocatable (info));
e901de89 3290 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3291 sgotloc = htab->sgotloc;
d9ab3f29
BW
3292 BFD_ASSERT (sgotloc);
3293 if (sxtlit)
3294 {
3295 num_xtlit_entries =
3296 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3297 if (num_xtlit_entries < 0)
3298 return FALSE;
3299 }
e0001a05
NC
3300
3301 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3302 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3303 for (; dyncon < dynconend; dyncon++)
3304 {
3305 Elf_Internal_Dyn dyn;
e0001a05
NC
3306
3307 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3308
3309 switch (dyn.d_tag)
3310 {
3311 default:
3312 break;
3313
3314 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3315 dyn.d_un.d_val = num_xtlit_entries;
3316 break;
3317
3318 case DT_XTENSA_GOT_LOC_OFF:
4ade44b7
AM
3319 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3320 + htab->sgotloc->output_offset);
f0e6fdb2
BW
3321 break;
3322
e0001a05 3323 case DT_PLTGOT:
ce558b89
AM
3324 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3325 + htab->elf.sgot->output_offset);
f0e6fdb2
BW
3326 break;
3327
e0001a05 3328 case DT_JMPREL:
ce558b89
AM
3329 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3330 + htab->elf.srelplt->output_offset);
e0001a05
NC
3331 break;
3332
3333 case DT_PLTRELSZ:
ce558b89 3334 dyn.d_un.d_val = htab->elf.srelplt->size;
e0001a05 3335 break;
e0001a05
NC
3336 }
3337
3338 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3339 }
3340
3341 return TRUE;
3342}
3343
3344\f
3345/* Functions for dealing with the e_flags field. */
3346
3347/* Merge backend specific data from an object file to the output
3348 object file when linking. */
3349
3350static bfd_boolean
50e03d47 3351elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
e0001a05 3352{
50e03d47 3353 bfd *obfd = info->output_bfd;
e0001a05
NC
3354 unsigned out_mach, in_mach;
3355 flagword out_flag, in_flag;
3356
cc643b88 3357 /* Check if we have the same endianness. */
50e03d47 3358 if (!_bfd_generic_verify_endian_match (ibfd, info))
e0001a05
NC
3359 return FALSE;
3360
3361 /* Don't even pretend to support mixed-format linking. */
3362 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3363 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3364 return FALSE;
3365
3366 out_flag = elf_elfheader (obfd)->e_flags;
3367 in_flag = elf_elfheader (ibfd)->e_flags;
3368
3369 out_mach = out_flag & EF_XTENSA_MACH;
3370 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3371 if (out_mach != in_mach)
e0001a05 3372 {
4eca0228 3373 _bfd_error_handler
695344c0 3374 /* xgettext:c-format */
38f14ab8 3375 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
d003868e 3376 ibfd, out_mach, in_mach);
e0001a05
NC
3377 bfd_set_error (bfd_error_wrong_format);
3378 return FALSE;
3379 }
3380
3381 if (! elf_flags_init (obfd))
3382 {
3383 elf_flags_init (obfd) = TRUE;
3384 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3385
e0001a05
NC
3386 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3387 && bfd_get_arch_info (obfd)->the_default)
3388 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3389 bfd_get_mach (ibfd));
43cd72b9 3390
e0001a05
NC
3391 return TRUE;
3392 }
3393
68ffbac6 3394 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
43cd72b9 3395 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3396
68ffbac6 3397 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
43cd72b9 3398 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3399
3400 return TRUE;
3401}
3402
3403
3404static bfd_boolean
7fa3d080 3405elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3406{
3407 BFD_ASSERT (!elf_flags_init (abfd)
3408 || elf_elfheader (abfd)->e_flags == flags);
3409
3410 elf_elfheader (abfd)->e_flags |= flags;
3411 elf_flags_init (abfd) = TRUE;
3412
3413 return TRUE;
3414}
3415
3416
e0001a05 3417static bfd_boolean
7fa3d080 3418elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3419{
3420 FILE *f = (FILE *) farg;
3421 flagword e_flags = elf_elfheader (abfd)->e_flags;
3422
3423 fprintf (f, "\nXtensa header:\n");
43cd72b9 3424 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3425 fprintf (f, "\nMachine = Base\n");
3426 else
3427 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3428
3429 fprintf (f, "Insn tables = %s\n",
3430 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3431
3432 fprintf (f, "Literal tables = %s\n",
3433 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3434
3435 return _bfd_elf_print_private_bfd_data (abfd, farg);
3436}
3437
3438
3439/* Set the right machine number for an Xtensa ELF file. */
3440
3441static bfd_boolean
7fa3d080 3442elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3443{
3444 int mach;
3445 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3446
3447 switch (arch)
3448 {
3449 case E_XTENSA_MACH:
3450 mach = bfd_mach_xtensa;
3451 break;
3452 default:
3453 return FALSE;
3454 }
3455
3456 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3457 return TRUE;
3458}
3459
3460
3461/* The final processing done just before writing out an Xtensa ELF object
3462 file. This gets the Xtensa architecture right based on the machine
3463 number. */
3464
3465static void
7fa3d080
BW
3466elf_xtensa_final_write_processing (bfd *abfd,
3467 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3468{
3469 int mach;
3470 unsigned long val;
3471
3472 switch (mach = bfd_get_mach (abfd))
3473 {
3474 case bfd_mach_xtensa:
3475 val = E_XTENSA_MACH;
3476 break;
3477 default:
3478 return;
3479 }
3480
3481 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3482 elf_elfheader (abfd)->e_flags |= val;
3483}
3484
3485
3486static enum elf_reloc_type_class
7e612e98
AM
3487elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3488 const asection *rel_sec ATTRIBUTE_UNUSED,
3489 const Elf_Internal_Rela *rela)
e0001a05
NC
3490{
3491 switch ((int) ELF32_R_TYPE (rela->r_info))
3492 {
3493 case R_XTENSA_RELATIVE:
3494 return reloc_class_relative;
3495 case R_XTENSA_JMP_SLOT:
3496 return reloc_class_plt;
3497 default:
3498 return reloc_class_normal;
3499 }
3500}
3501
3502\f
3503static bfd_boolean
7fa3d080
BW
3504elf_xtensa_discard_info_for_section (bfd *abfd,
3505 struct elf_reloc_cookie *cookie,
3506 struct bfd_link_info *info,
3507 asection *sec)
e0001a05
NC
3508{
3509 bfd_byte *contents;
e0001a05 3510 bfd_vma offset, actual_offset;
1d25768e
BW
3511 bfd_size_type removed_bytes = 0;
3512 bfd_size_type entry_size;
e0001a05
NC
3513
3514 if (sec->output_section
3515 && bfd_is_abs_section (sec->output_section))
3516 return FALSE;
3517
1d25768e
BW
3518 if (xtensa_is_proptable_section (sec))
3519 entry_size = 12;
3520 else
3521 entry_size = 8;
3522
a3ef2d63 3523 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3524 return FALSE;
3525
e0001a05
NC
3526 contents = retrieve_contents (abfd, sec, info->keep_memory);
3527 if (!contents)
3528 return FALSE;
3529
3530 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3531 if (!cookie->rels)
3532 {
3533 release_contents (sec, contents);
3534 return FALSE;
3535 }
3536
1d25768e
BW
3537 /* Sort the relocations. They should already be in order when
3538 relaxation is enabled, but it might not be. */
3539 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3540 internal_reloc_compare);
3541
e0001a05
NC
3542 cookie->rel = cookie->rels;
3543 cookie->relend = cookie->rels + sec->reloc_count;
3544
a3ef2d63 3545 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3546 {
3547 actual_offset = offset - removed_bytes;
3548
3549 /* The ...symbol_deleted_p function will skip over relocs but it
3550 won't adjust their offsets, so do that here. */
3551 while (cookie->rel < cookie->relend
3552 && cookie->rel->r_offset < offset)
3553 {
3554 cookie->rel->r_offset -= removed_bytes;
3555 cookie->rel++;
3556 }
3557
3558 while (cookie->rel < cookie->relend
3559 && cookie->rel->r_offset == offset)
3560 {
c152c796 3561 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3562 {
3563 /* Remove the table entry. (If the reloc type is NONE, then
3564 the entry has already been merged with another and deleted
3565 during relaxation.) */
3566 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3567 {
3568 /* Shift the contents up. */
a3ef2d63 3569 if (offset + entry_size < sec->size)
e0001a05 3570 memmove (&contents[actual_offset],
1d25768e 3571 &contents[actual_offset + entry_size],
a3ef2d63 3572 sec->size - offset - entry_size);
1d25768e 3573 removed_bytes += entry_size;
e0001a05
NC
3574 }
3575
3576 /* Remove this relocation. */
3577 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3578 }
3579
3580 /* Adjust the relocation offset for previous removals. This
3581 should not be done before calling ...symbol_deleted_p
3582 because it might mess up the offset comparisons there.
3583 Make sure the offset doesn't underflow in the case where
3584 the first entry is removed. */
3585 if (cookie->rel->r_offset >= removed_bytes)
3586 cookie->rel->r_offset -= removed_bytes;
3587 else
3588 cookie->rel->r_offset = 0;
3589
3590 cookie->rel++;
3591 }
3592 }
3593
3594 if (removed_bytes != 0)
3595 {
3596 /* Adjust any remaining relocs (shouldn't be any). */
3597 for (; cookie->rel < cookie->relend; cookie->rel++)
3598 {
3599 if (cookie->rel->r_offset >= removed_bytes)
3600 cookie->rel->r_offset -= removed_bytes;
3601 else
3602 cookie->rel->r_offset = 0;
3603 }
3604
3605 /* Clear the removed bytes. */
a3ef2d63 3606 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3607
3608 pin_contents (sec, contents);
3609 pin_internal_relocs (sec, cookie->rels);
3610
eea6121a 3611 /* Shrink size. */
a3ef2d63
BW
3612 if (sec->rawsize == 0)
3613 sec->rawsize = sec->size;
3614 sec->size -= removed_bytes;
b536dc1e
BW
3615
3616 if (xtensa_is_littable_section (sec))
3617 {
f0e6fdb2
BW
3618 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3619 if (sgotloc)
3620 sgotloc->size -= removed_bytes;
b536dc1e 3621 }
e0001a05
NC
3622 }
3623 else
3624 {
3625 release_contents (sec, contents);
3626 release_internal_relocs (sec, cookie->rels);
3627 }
3628
3629 return (removed_bytes != 0);
3630}
3631
3632
3633static bfd_boolean
7fa3d080
BW
3634elf_xtensa_discard_info (bfd *abfd,
3635 struct elf_reloc_cookie *cookie,
3636 struct bfd_link_info *info)
e0001a05
NC
3637{
3638 asection *sec;
3639 bfd_boolean changed = FALSE;
3640
3641 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3642 {
3643 if (xtensa_is_property_section (sec))
3644 {
3645 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3646 changed = TRUE;
3647 }
3648 }
3649
3650 return changed;
3651}
3652
3653
3654static bfd_boolean
7fa3d080 3655elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3656{
3657 return xtensa_is_property_section (sec);
3658}
3659
a77dc2cc
BW
3660
3661static unsigned int
3662elf_xtensa_action_discarded (asection *sec)
3663{
3664 if (strcmp (".xt_except_table", sec->name) == 0)
3665 return 0;
3666
3667 if (strcmp (".xt_except_desc", sec->name) == 0)
3668 return 0;
3669
3670 return _bfd_elf_default_action_discarded (sec);
3671}
3672
e0001a05
NC
3673\f
3674/* Support for core dump NOTE sections. */
3675
3676static bfd_boolean
7fa3d080 3677elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3678{
3679 int offset;
eea6121a 3680 unsigned int size;
e0001a05
NC
3681
3682 /* The size for Xtensa is variable, so don't try to recognize the format
3683 based on the size. Just assume this is GNU/Linux. */
3684
3685 /* pr_cursig */
228e534f 3686 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
e0001a05
NC
3687
3688 /* pr_pid */
228e534f 3689 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3690
3691 /* pr_reg */
3692 offset = 72;
eea6121a 3693 size = note->descsz - offset - 4;
e0001a05
NC
3694
3695 /* Make a ".reg/999" section. */
3696 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3697 size, note->descpos + offset);
e0001a05
NC
3698}
3699
3700
3701static bfd_boolean
7fa3d080 3702elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3703{
3704 switch (note->descsz)
3705 {
3706 default:
3707 return FALSE;
3708
3709 case 128: /* GNU/Linux elf_prpsinfo */
228e534f 3710 elf_tdata (abfd)->core->program
e0001a05 3711 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
228e534f 3712 elf_tdata (abfd)->core->command
e0001a05
NC
3713 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3714 }
3715
3716 /* Note that for some reason, a spurious space is tacked
3717 onto the end of the args in some (at least one anyway)
3718 implementations, so strip it off if it exists. */
3719
3720 {
228e534f 3721 char *command = elf_tdata (abfd)->core->command;
e0001a05
NC
3722 int n = strlen (command);
3723
3724 if (0 < n && command[n - 1] == ' ')
3725 command[n - 1] = '\0';
3726 }
3727
3728 return TRUE;
3729}
3730
3731\f
3732/* Generic Xtensa configurability stuff. */
3733
3734static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3735static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3736static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3737static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3738static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3739static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3740static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3741static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3742
3743static void
7fa3d080 3744init_call_opcodes (void)
e0001a05
NC
3745{
3746 if (callx0_op == XTENSA_UNDEFINED)
3747 {
3748 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3749 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3750 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3751 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3752 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3753 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3754 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3755 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3756 }
3757}
3758
3759
3760static bfd_boolean
7fa3d080 3761is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3762{
3763 init_call_opcodes ();
3764 return (opcode == callx0_op
3765 || opcode == callx4_op
3766 || opcode == callx8_op
3767 || opcode == callx12_op);
3768}
3769
3770
3771static bfd_boolean
7fa3d080 3772is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3773{
3774 init_call_opcodes ();
3775 return (opcode == call0_op
3776 || opcode == call4_op
3777 || opcode == call8_op
3778 || opcode == call12_op);
3779}
3780
3781
3782static bfd_boolean
7fa3d080 3783is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3784{
3785 init_call_opcodes ();
3786 return (opcode == call4_op
3787 || opcode == call8_op
3788 || opcode == call12_op
3789 || opcode == callx4_op
3790 || opcode == callx8_op
3791 || opcode == callx12_op);
3792}
3793
3794
28dbbc02
BW
3795static bfd_boolean
3796get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3797{
3798 unsigned dst = (unsigned) -1;
3799
3800 init_call_opcodes ();
3801 if (opcode == callx0_op)
3802 dst = 0;
3803 else if (opcode == callx4_op)
3804 dst = 4;
3805 else if (opcode == callx8_op)
3806 dst = 8;
3807 else if (opcode == callx12_op)
3808 dst = 12;
3809
3810 if (dst == (unsigned) -1)
3811 return FALSE;
3812
3813 *pdst = dst;
3814 return TRUE;
3815}
3816
3817
43cd72b9
BW
3818static xtensa_opcode
3819get_const16_opcode (void)
3820{
3821 static bfd_boolean done_lookup = FALSE;
3822 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3823 if (!done_lookup)
3824 {
3825 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3826 done_lookup = TRUE;
3827 }
3828 return const16_opcode;
3829}
3830
3831
e0001a05
NC
3832static xtensa_opcode
3833get_l32r_opcode (void)
3834{
3835 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3836 static bfd_boolean done_lookup = FALSE;
3837
3838 if (!done_lookup)
e0001a05
NC
3839 {
3840 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3841 done_lookup = TRUE;
e0001a05
NC
3842 }
3843 return l32r_opcode;
3844}
3845
3846
3847static bfd_vma
7fa3d080 3848l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3849{
3850 bfd_vma offset;
3851
3852 offset = addr - ((pc+3) & -4);
3853 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3854 offset = (signed int) offset >> 2;
3855 BFD_ASSERT ((signed int) offset >> 16 == -1);
3856 return offset;
3857}
3858
3859
e0001a05 3860static int
7fa3d080 3861get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3862{
43cd72b9
BW
3863 xtensa_isa isa = xtensa_default_isa;
3864 int last_immed, last_opnd, opi;
3865
3866 if (opcode == XTENSA_UNDEFINED)
3867 return XTENSA_UNDEFINED;
3868
3869 /* Find the last visible PC-relative immediate operand for the opcode.
3870 If there are no PC-relative immediates, then choose the last visible
3871 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3872 last_immed = XTENSA_UNDEFINED;
3873 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3874 for (opi = last_opnd - 1; opi >= 0; opi--)
3875 {
3876 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3877 continue;
3878 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3879 {
3880 last_immed = opi;
3881 break;
3882 }
3883 if (last_immed == XTENSA_UNDEFINED
3884 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3885 last_immed = opi;
3886 }
3887 if (last_immed < 0)
3888 return XTENSA_UNDEFINED;
3889
3890 /* If the operand number was specified in an old-style relocation,
3891 check for consistency with the operand computed above. */
3892 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3893 {
3894 int reloc_opnd = r_type - R_XTENSA_OP0;
3895 if (reloc_opnd != last_immed)
3896 return XTENSA_UNDEFINED;
3897 }
3898
3899 return last_immed;
3900}
3901
3902
3903int
7fa3d080 3904get_relocation_slot (int r_type)
43cd72b9
BW
3905{
3906 switch (r_type)
3907 {
3908 case R_XTENSA_OP0:
3909 case R_XTENSA_OP1:
3910 case R_XTENSA_OP2:
3911 return 0;
3912
3913 default:
3914 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3915 return r_type - R_XTENSA_SLOT0_OP;
3916 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3917 return r_type - R_XTENSA_SLOT0_ALT;
3918 break;
3919 }
3920
3921 return XTENSA_UNDEFINED;
e0001a05
NC
3922}
3923
3924
3925/* Get the opcode for a relocation. */
3926
3927static xtensa_opcode
7fa3d080
BW
3928get_relocation_opcode (bfd *abfd,
3929 asection *sec,
3930 bfd_byte *contents,
3931 Elf_Internal_Rela *irel)
e0001a05
NC
3932{
3933 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3934 static xtensa_insnbuf sbuff = NULL;
e0001a05 3935 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3936 xtensa_format fmt;
3937 int slot;
e0001a05
NC
3938
3939 if (contents == NULL)
3940 return XTENSA_UNDEFINED;
3941
43cd72b9 3942 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3943 return XTENSA_UNDEFINED;
3944
3945 if (ibuff == NULL)
43cd72b9
BW
3946 {
3947 ibuff = xtensa_insnbuf_alloc (isa);
3948 sbuff = xtensa_insnbuf_alloc (isa);
3949 }
3950
e0001a05 3951 /* Decode the instruction. */
43cd72b9
BW
3952 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3953 sec->size - irel->r_offset);
3954 fmt = xtensa_format_decode (isa, ibuff);
3955 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3956 if (slot == XTENSA_UNDEFINED)
3957 return XTENSA_UNDEFINED;
3958 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3959 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3960}
3961
3962
3963bfd_boolean
7fa3d080
BW
3964is_l32r_relocation (bfd *abfd,
3965 asection *sec,
3966 bfd_byte *contents,
3967 Elf_Internal_Rela *irel)
e0001a05
NC
3968{
3969 xtensa_opcode opcode;
43cd72b9 3970 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3971 return FALSE;
43cd72b9 3972 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3973 return (opcode == get_l32r_opcode ());
3974}
3975
e0001a05 3976
43cd72b9 3977static bfd_size_type
7fa3d080
BW
3978get_asm_simplify_size (bfd_byte *contents,
3979 bfd_size_type content_len,
3980 bfd_size_type offset)
e0001a05 3981{
43cd72b9 3982 bfd_size_type insnlen, size = 0;
e0001a05 3983
43cd72b9
BW
3984 /* Decode the size of the next two instructions. */
3985 insnlen = insn_decode_len (contents, content_len, offset);
3986 if (insnlen == 0)
3987 return 0;
e0001a05 3988
43cd72b9 3989 size += insnlen;
68ffbac6 3990
43cd72b9
BW
3991 insnlen = insn_decode_len (contents, content_len, offset + size);
3992 if (insnlen == 0)
3993 return 0;
e0001a05 3994
43cd72b9
BW
3995 size += insnlen;
3996 return size;
3997}
e0001a05 3998
43cd72b9
BW
3999
4000bfd_boolean
7fa3d080 4001is_alt_relocation (int r_type)
43cd72b9
BW
4002{
4003 return (r_type >= R_XTENSA_SLOT0_ALT
4004 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4005}
4006
4007
43cd72b9 4008bfd_boolean
7fa3d080 4009is_operand_relocation (int r_type)
e0001a05 4010{
43cd72b9
BW
4011 switch (r_type)
4012 {
4013 case R_XTENSA_OP0:
4014 case R_XTENSA_OP1:
4015 case R_XTENSA_OP2:
4016 return TRUE;
e0001a05 4017
43cd72b9
BW
4018 default:
4019 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4020 return TRUE;
4021 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4022 return TRUE;
4023 break;
4024 }
e0001a05 4025
43cd72b9 4026 return FALSE;
e0001a05
NC
4027}
4028
68ffbac6 4029
43cd72b9 4030#define MIN_INSN_LENGTH 2
e0001a05 4031
43cd72b9
BW
4032/* Return 0 if it fails to decode. */
4033
4034bfd_size_type
7fa3d080
BW
4035insn_decode_len (bfd_byte *contents,
4036 bfd_size_type content_len,
4037 bfd_size_type offset)
e0001a05 4038{
43cd72b9
BW
4039 int insn_len;
4040 xtensa_isa isa = xtensa_default_isa;
4041 xtensa_format fmt;
4042 static xtensa_insnbuf ibuff = NULL;
e0001a05 4043
43cd72b9
BW
4044 if (offset + MIN_INSN_LENGTH > content_len)
4045 return 0;
e0001a05 4046
43cd72b9
BW
4047 if (ibuff == NULL)
4048 ibuff = xtensa_insnbuf_alloc (isa);
4049 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4050 content_len - offset);
4051 fmt = xtensa_format_decode (isa, ibuff);
4052 if (fmt == XTENSA_UNDEFINED)
4053 return 0;
4054 insn_len = xtensa_format_length (isa, fmt);
4055 if (insn_len == XTENSA_UNDEFINED)
4056 return 0;
4057 return insn_len;
e0001a05
NC
4058}
4059
4060
43cd72b9
BW
4061/* Decode the opcode for a single slot instruction.
4062 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4063
43cd72b9 4064xtensa_opcode
7fa3d080
BW
4065insn_decode_opcode (bfd_byte *contents,
4066 bfd_size_type content_len,
4067 bfd_size_type offset,
4068 int slot)
e0001a05 4069{
e0001a05 4070 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4071 xtensa_format fmt;
4072 static xtensa_insnbuf insnbuf = NULL;
4073 static xtensa_insnbuf slotbuf = NULL;
4074
4075 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4076 return XTENSA_UNDEFINED;
4077
4078 if (insnbuf == NULL)
43cd72b9
BW
4079 {
4080 insnbuf = xtensa_insnbuf_alloc (isa);
4081 slotbuf = xtensa_insnbuf_alloc (isa);
4082 }
4083
4084 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4085 content_len - offset);
4086 fmt = xtensa_format_decode (isa, insnbuf);
4087 if (fmt == XTENSA_UNDEFINED)
e0001a05 4088 return XTENSA_UNDEFINED;
43cd72b9
BW
4089
4090 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4091 return XTENSA_UNDEFINED;
e0001a05 4092
43cd72b9
BW
4093 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4094 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4095}
e0001a05 4096
e0001a05 4097
43cd72b9
BW
4098/* The offset is the offset in the contents.
4099 The address is the address of that offset. */
e0001a05 4100
43cd72b9 4101static bfd_boolean
7fa3d080
BW
4102check_branch_target_aligned (bfd_byte *contents,
4103 bfd_size_type content_length,
4104 bfd_vma offset,
4105 bfd_vma address)
43cd72b9
BW
4106{
4107 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4108 if (insn_len == 0)
4109 return FALSE;
4110 return check_branch_target_aligned_address (address, insn_len);
4111}
e0001a05 4112
e0001a05 4113
43cd72b9 4114static bfd_boolean
7fa3d080
BW
4115check_loop_aligned (bfd_byte *contents,
4116 bfd_size_type content_length,
4117 bfd_vma offset,
4118 bfd_vma address)
e0001a05 4119{
43cd72b9 4120 bfd_size_type loop_len, insn_len;
64b607e6 4121 xtensa_opcode opcode;
e0001a05 4122
64b607e6
BW
4123 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4124 if (opcode == XTENSA_UNDEFINED
4125 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4126 {
4127 BFD_ASSERT (FALSE);
4128 return FALSE;
4129 }
68ffbac6 4130
43cd72b9 4131 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4132 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4133 if (loop_len == 0 || insn_len == 0)
4134 {
4135 BFD_ASSERT (FALSE);
4136 return FALSE;
4137 }
e0001a05 4138
43cd72b9
BW
4139 return check_branch_target_aligned_address (address + loop_len, insn_len);
4140}
e0001a05 4141
e0001a05
NC
4142
4143static bfd_boolean
7fa3d080 4144check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4145{
43cd72b9
BW
4146 if (len == 8)
4147 return (addr % 8 == 0);
4148 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4149}
4150
43cd72b9
BW
4151\f
4152/* Instruction widening and narrowing. */
e0001a05 4153
7fa3d080
BW
4154/* When FLIX is available we need to access certain instructions only
4155 when they are 16-bit or 24-bit instructions. This table caches
4156 information about such instructions by walking through all the
4157 opcodes and finding the smallest single-slot format into which each
4158 can be encoded. */
4159
4160static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4161
4162
7fa3d080
BW
4163static void
4164init_op_single_format_table (void)
e0001a05 4165{
7fa3d080
BW
4166 xtensa_isa isa = xtensa_default_isa;
4167 xtensa_insnbuf ibuf;
4168 xtensa_opcode opcode;
4169 xtensa_format fmt;
4170 int num_opcodes;
4171
4172 if (op_single_fmt_table)
4173 return;
4174
4175 ibuf = xtensa_insnbuf_alloc (isa);
4176 num_opcodes = xtensa_isa_num_opcodes (isa);
4177
4178 op_single_fmt_table = (xtensa_format *)
4179 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4180 for (opcode = 0; opcode < num_opcodes; opcode++)
4181 {
4182 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4183 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4184 {
4185 if (xtensa_format_num_slots (isa, fmt) == 1
4186 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4187 {
4188 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4189 int fmt_length = xtensa_format_length (isa, fmt);
4190 if (old_fmt == XTENSA_UNDEFINED
4191 || fmt_length < xtensa_format_length (isa, old_fmt))
4192 op_single_fmt_table[opcode] = fmt;
4193 }
4194 }
4195 }
4196 xtensa_insnbuf_free (isa, ibuf);
4197}
4198
4199
4200static xtensa_format
4201get_single_format (xtensa_opcode opcode)
4202{
4203 init_op_single_format_table ();
4204 return op_single_fmt_table[opcode];
4205}
e0001a05 4206
e0001a05 4207
43cd72b9
BW
4208/* For the set of narrowable instructions we do NOT include the
4209 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4210 involved during linker relaxation that may require these to
4211 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4212 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4213
7fa3d080
BW
4214struct string_pair
4215{
4216 const char *wide;
4217 const char *narrow;
4218};
4219
43cd72b9 4220struct string_pair narrowable[] =
e0001a05 4221{
43cd72b9
BW
4222 { "add", "add.n" },
4223 { "addi", "addi.n" },
4224 { "addmi", "addi.n" },
4225 { "l32i", "l32i.n" },
4226 { "movi", "movi.n" },
4227 { "ret", "ret.n" },
4228 { "retw", "retw.n" },
4229 { "s32i", "s32i.n" },
4230 { "or", "mov.n" } /* special case only when op1 == op2 */
4231};
e0001a05 4232
43cd72b9 4233struct string_pair widenable[] =
e0001a05 4234{
43cd72b9
BW
4235 { "add", "add.n" },
4236 { "addi", "addi.n" },
4237 { "addmi", "addi.n" },
4238 { "beqz", "beqz.n" },
4239 { "bnez", "bnez.n" },
4240 { "l32i", "l32i.n" },
4241 { "movi", "movi.n" },
4242 { "ret", "ret.n" },
4243 { "retw", "retw.n" },
4244 { "s32i", "s32i.n" },
4245 { "or", "mov.n" } /* special case only when op1 == op2 */
4246};
e0001a05
NC
4247
4248
64b607e6
BW
4249/* Check if an instruction can be "narrowed", i.e., changed from a standard
4250 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4251 return the instruction buffer holding the narrow instruction. Otherwise,
4252 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4253 but require some special case operand checks in some cases. */
4254
64b607e6
BW
4255static xtensa_insnbuf
4256can_narrow_instruction (xtensa_insnbuf slotbuf,
4257 xtensa_format fmt,
4258 xtensa_opcode opcode)
e0001a05 4259{
43cd72b9 4260 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4261 xtensa_format o_fmt;
4262 unsigned opi;
e0001a05 4263
43cd72b9
BW
4264 static xtensa_insnbuf o_insnbuf = NULL;
4265 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4266
64b607e6 4267 if (o_insnbuf == NULL)
43cd72b9 4268 {
43cd72b9
BW
4269 o_insnbuf = xtensa_insnbuf_alloc (isa);
4270 o_slotbuf = xtensa_insnbuf_alloc (isa);
4271 }
e0001a05 4272
64b607e6 4273 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4274 {
4275 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4276
43cd72b9
BW
4277 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4278 {
4279 uint32 value, newval;
4280 int i, operand_count, o_operand_count;
4281 xtensa_opcode o_opcode;
e0001a05 4282
43cd72b9
BW
4283 /* Address does not matter in this case. We might need to
4284 fix it to handle branches/jumps. */
4285 bfd_vma self_address = 0;
e0001a05 4286
43cd72b9
BW
4287 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4288 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4289 return 0;
43cd72b9
BW
4290 o_fmt = get_single_format (o_opcode);
4291 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4292 return 0;
e0001a05 4293
43cd72b9
BW
4294 if (xtensa_format_length (isa, fmt) != 3
4295 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4296 return 0;
e0001a05 4297
43cd72b9
BW
4298 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4299 operand_count = xtensa_opcode_num_operands (isa, opcode);
4300 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4301
43cd72b9 4302 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4303 return 0;
e0001a05 4304
43cd72b9
BW
4305 if (!is_or)
4306 {
4307 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4308 return 0;
43cd72b9
BW
4309 }
4310 else
4311 {
4312 uint32 rawval0, rawval1, rawval2;
e0001a05 4313
64b607e6
BW
4314 if (o_operand_count + 1 != operand_count
4315 || xtensa_operand_get_field (isa, opcode, 0,
4316 fmt, 0, slotbuf, &rawval0) != 0
4317 || xtensa_operand_get_field (isa, opcode, 1,
4318 fmt, 0, slotbuf, &rawval1) != 0
4319 || xtensa_operand_get_field (isa, opcode, 2,
4320 fmt, 0, slotbuf, &rawval2) != 0
4321 || rawval1 != rawval2
4322 || rawval0 == rawval1 /* it is a nop */)
4323 return 0;
43cd72b9 4324 }
e0001a05 4325
43cd72b9
BW
4326 for (i = 0; i < o_operand_count; ++i)
4327 {
4328 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4329 slotbuf, &value)
4330 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4331 return 0;
e0001a05 4332
43cd72b9
BW
4333 /* PC-relative branches need adjustment, but
4334 the PC-rel operand will always have a relocation. */
4335 newval = value;
4336 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4337 self_address)
4338 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4339 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4340 o_slotbuf, newval))
64b607e6 4341 return 0;
43cd72b9 4342 }
e0001a05 4343
64b607e6
BW
4344 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4345 return 0;
e0001a05 4346
64b607e6 4347 return o_insnbuf;
43cd72b9
BW
4348 }
4349 }
64b607e6 4350 return 0;
43cd72b9 4351}
e0001a05 4352
e0001a05 4353
64b607e6
BW
4354/* Attempt to narrow an instruction. If the narrowing is valid, perform
4355 the action in-place directly into the contents and return TRUE. Otherwise,
4356 the return value is FALSE and the contents are not modified. */
e0001a05 4357
43cd72b9 4358static bfd_boolean
64b607e6
BW
4359narrow_instruction (bfd_byte *contents,
4360 bfd_size_type content_length,
4361 bfd_size_type offset)
e0001a05 4362{
43cd72b9 4363 xtensa_opcode opcode;
64b607e6 4364 bfd_size_type insn_len;
43cd72b9 4365 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4366 xtensa_format fmt;
4367 xtensa_insnbuf o_insnbuf;
e0001a05 4368
43cd72b9
BW
4369 static xtensa_insnbuf insnbuf = NULL;
4370 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4371
43cd72b9
BW
4372 if (insnbuf == NULL)
4373 {
4374 insnbuf = xtensa_insnbuf_alloc (isa);
4375 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4376 }
e0001a05 4377
43cd72b9 4378 BFD_ASSERT (offset < content_length);
2c8c90bc 4379
43cd72b9 4380 if (content_length < 2)
e0001a05
NC
4381 return FALSE;
4382
64b607e6 4383 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4384 These have all been specified in the assembler aleady. */
4385 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4386 content_length - offset);
4387 fmt = xtensa_format_decode (isa, insnbuf);
4388 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4389 return FALSE;
4390
43cd72b9 4391 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4392 return FALSE;
4393
43cd72b9
BW
4394 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4395 if (opcode == XTENSA_UNDEFINED)
e0001a05 4396 return FALSE;
43cd72b9
BW
4397 insn_len = xtensa_format_length (isa, fmt);
4398 if (insn_len > content_length)
4399 return FALSE;
4400
64b607e6
BW
4401 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4402 if (o_insnbuf)
4403 {
4404 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4405 content_length - offset);
4406 return TRUE;
4407 }
4408
4409 return FALSE;
4410}
4411
4412
4413/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4414 "density" instruction to a standard 3-byte instruction. If it is valid,
4415 return the instruction buffer holding the wide instruction. Otherwise,
4416 return 0. The set of valid widenings are specified by a string table
4417 but require some special case operand checks in some cases. */
4418
4419static xtensa_insnbuf
4420can_widen_instruction (xtensa_insnbuf slotbuf,
4421 xtensa_format fmt,
4422 xtensa_opcode opcode)
4423{
4424 xtensa_isa isa = xtensa_default_isa;
4425 xtensa_format o_fmt;
4426 unsigned opi;
4427
4428 static xtensa_insnbuf o_insnbuf = NULL;
4429 static xtensa_insnbuf o_slotbuf = NULL;
4430
4431 if (o_insnbuf == NULL)
4432 {
4433 o_insnbuf = xtensa_insnbuf_alloc (isa);
4434 o_slotbuf = xtensa_insnbuf_alloc (isa);
4435 }
4436
4437 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4438 {
43cd72b9
BW
4439 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4440 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4441 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4442
43cd72b9
BW
4443 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4444 {
4445 uint32 value, newval;
4446 int i, operand_count, o_operand_count, check_operand_count;
4447 xtensa_opcode o_opcode;
e0001a05 4448
43cd72b9
BW
4449 /* Address does not matter in this case. We might need to fix it
4450 to handle branches/jumps. */
4451 bfd_vma self_address = 0;
e0001a05 4452
43cd72b9
BW
4453 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4454 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4455 return 0;
43cd72b9
BW
4456 o_fmt = get_single_format (o_opcode);
4457 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4458 return 0;
e0001a05 4459
43cd72b9
BW
4460 if (xtensa_format_length (isa, fmt) != 2
4461 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4462 return 0;
e0001a05 4463
43cd72b9
BW
4464 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4465 operand_count = xtensa_opcode_num_operands (isa, opcode);
4466 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4467 check_operand_count = o_operand_count;
e0001a05 4468
43cd72b9 4469 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4470 return 0;
e0001a05 4471
43cd72b9
BW
4472 if (!is_or)
4473 {
4474 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4475 return 0;
43cd72b9
BW
4476 }
4477 else
4478 {
4479 uint32 rawval0, rawval1;
4480
64b607e6
BW
4481 if (o_operand_count != operand_count + 1
4482 || xtensa_operand_get_field (isa, opcode, 0,
4483 fmt, 0, slotbuf, &rawval0) != 0
4484 || xtensa_operand_get_field (isa, opcode, 1,
4485 fmt, 0, slotbuf, &rawval1) != 0
4486 || rawval0 == rawval1 /* it is a nop */)
4487 return 0;
43cd72b9
BW
4488 }
4489 if (is_branch)
4490 check_operand_count--;
4491
64b607e6 4492 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4493 {
4494 int new_i = i;
4495 if (is_or && i == o_operand_count - 1)
4496 new_i = i - 1;
4497 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4498 slotbuf, &value)
4499 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4500 return 0;
43cd72b9
BW
4501
4502 /* PC-relative branches need adjustment, but
4503 the PC-rel operand will always have a relocation. */
4504 newval = value;
4505 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4506 self_address)
4507 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4508 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4509 o_slotbuf, newval))
64b607e6 4510 return 0;
43cd72b9
BW
4511 }
4512
4513 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4514 return 0;
43cd72b9 4515
64b607e6 4516 return o_insnbuf;
43cd72b9
BW
4517 }
4518 }
64b607e6
BW
4519 return 0;
4520}
4521
68ffbac6 4522
64b607e6
BW
4523/* Attempt to widen an instruction. If the widening is valid, perform
4524 the action in-place directly into the contents and return TRUE. Otherwise,
4525 the return value is FALSE and the contents are not modified. */
4526
4527static bfd_boolean
4528widen_instruction (bfd_byte *contents,
4529 bfd_size_type content_length,
4530 bfd_size_type offset)
4531{
4532 xtensa_opcode opcode;
4533 bfd_size_type insn_len;
4534 xtensa_isa isa = xtensa_default_isa;
4535 xtensa_format fmt;
4536 xtensa_insnbuf o_insnbuf;
4537
4538 static xtensa_insnbuf insnbuf = NULL;
4539 static xtensa_insnbuf slotbuf = NULL;
4540
4541 if (insnbuf == NULL)
4542 {
4543 insnbuf = xtensa_insnbuf_alloc (isa);
4544 slotbuf = xtensa_insnbuf_alloc (isa);
4545 }
4546
4547 BFD_ASSERT (offset < content_length);
4548
4549 if (content_length < 2)
4550 return FALSE;
4551
4552 /* We will hand-code a few of these for a little while.
4553 These have all been specified in the assembler aleady. */
4554 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4555 content_length - offset);
4556 fmt = xtensa_format_decode (isa, insnbuf);
4557 if (xtensa_format_num_slots (isa, fmt) != 1)
4558 return FALSE;
4559
4560 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4561 return FALSE;
4562
4563 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4564 if (opcode == XTENSA_UNDEFINED)
4565 return FALSE;
4566 insn_len = xtensa_format_length (isa, fmt);
4567 if (insn_len > content_length)
4568 return FALSE;
4569
4570 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4571 if (o_insnbuf)
4572 {
4573 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4574 content_length - offset);
4575 return TRUE;
4576 }
43cd72b9 4577 return FALSE;
e0001a05
NC
4578}
4579
43cd72b9
BW
4580\f
4581/* Code for transforming CALLs at link-time. */
e0001a05 4582
43cd72b9 4583static bfd_reloc_status_type
7fa3d080
BW
4584elf_xtensa_do_asm_simplify (bfd_byte *contents,
4585 bfd_vma address,
4586 bfd_vma content_length,
4587 char **error_message)
e0001a05 4588{
43cd72b9
BW
4589 static xtensa_insnbuf insnbuf = NULL;
4590 static xtensa_insnbuf slotbuf = NULL;
4591 xtensa_format core_format = XTENSA_UNDEFINED;
4592 xtensa_opcode opcode;
4593 xtensa_opcode direct_call_opcode;
4594 xtensa_isa isa = xtensa_default_isa;
4595 bfd_byte *chbuf = contents + address;
4596 int opn;
e0001a05 4597
43cd72b9 4598 if (insnbuf == NULL)
e0001a05 4599 {
43cd72b9
BW
4600 insnbuf = xtensa_insnbuf_alloc (isa);
4601 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4602 }
e0001a05 4603
43cd72b9
BW
4604 if (content_length < address)
4605 {
38f14ab8 4606 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
43cd72b9
BW
4607 return bfd_reloc_other;
4608 }
e0001a05 4609
43cd72b9
BW
4610 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4611 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4612 if (direct_call_opcode == XTENSA_UNDEFINED)
4613 {
38f14ab8 4614 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
43cd72b9
BW
4615 return bfd_reloc_other;
4616 }
68ffbac6 4617
43cd72b9
BW
4618 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4619 core_format = xtensa_format_lookup (isa, "x24");
4620 opcode = xtensa_opcode_lookup (isa, "or");
4621 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
68ffbac6 4622 for (opn = 0; opn < 3; opn++)
43cd72b9
BW
4623 {
4624 uint32 regno = 1;
4625 xtensa_operand_encode (isa, opcode, opn, &regno);
4626 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4627 slotbuf, regno);
4628 }
4629 xtensa_format_encode (isa, core_format, insnbuf);
4630 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4631 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4632
43cd72b9
BW
4633 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4634 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4635 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4636
43cd72b9
BW
4637 xtensa_format_encode (isa, core_format, insnbuf);
4638 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4639 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4640 content_length - address - 3);
e0001a05 4641
43cd72b9
BW
4642 return bfd_reloc_ok;
4643}
e0001a05 4644
e0001a05 4645
43cd72b9 4646static bfd_reloc_status_type
7fa3d080
BW
4647contract_asm_expansion (bfd_byte *contents,
4648 bfd_vma content_length,
4649 Elf_Internal_Rela *irel,
4650 char **error_message)
43cd72b9
BW
4651{
4652 bfd_reloc_status_type retval =
4653 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4654 error_message);
e0001a05 4655
43cd72b9
BW
4656 if (retval != bfd_reloc_ok)
4657 return bfd_reloc_dangerous;
e0001a05 4658
43cd72b9
BW
4659 /* Update the irel->r_offset field so that the right immediate and
4660 the right instruction are modified during the relocation. */
4661 irel->r_offset += 3;
4662 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4663 return bfd_reloc_ok;
4664}
e0001a05 4665
e0001a05 4666
43cd72b9 4667static xtensa_opcode
7fa3d080 4668swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4669{
43cd72b9 4670 init_call_opcodes ();
e0001a05 4671
43cd72b9
BW
4672 if (opcode == callx0_op) return call0_op;
4673 if (opcode == callx4_op) return call4_op;
4674 if (opcode == callx8_op) return call8_op;
4675 if (opcode == callx12_op) return call12_op;
e0001a05 4676
43cd72b9
BW
4677 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4678 return XTENSA_UNDEFINED;
4679}
e0001a05 4680
e0001a05 4681
43cd72b9
BW
4682/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4683 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4684 If not, return XTENSA_UNDEFINED. */
e0001a05 4685
43cd72b9
BW
4686#define L32R_TARGET_REG_OPERAND 0
4687#define CONST16_TARGET_REG_OPERAND 0
4688#define CALLN_SOURCE_OPERAND 0
e0001a05 4689
68ffbac6 4690static xtensa_opcode
7fa3d080 4691get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4692{
43cd72b9
BW
4693 static xtensa_insnbuf insnbuf = NULL;
4694 static xtensa_insnbuf slotbuf = NULL;
4695 xtensa_format fmt;
4696 xtensa_opcode opcode;
4697 xtensa_isa isa = xtensa_default_isa;
4698 uint32 regno, const16_regno, call_regno;
4699 int offset = 0;
e0001a05 4700
43cd72b9 4701 if (insnbuf == NULL)
e0001a05 4702 {
43cd72b9
BW
4703 insnbuf = xtensa_insnbuf_alloc (isa);
4704 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4705 }
43cd72b9
BW
4706
4707 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4708 fmt = xtensa_format_decode (isa, insnbuf);
4709 if (fmt == XTENSA_UNDEFINED
4710 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4711 return XTENSA_UNDEFINED;
4712
4713 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4714 if (opcode == XTENSA_UNDEFINED)
4715 return XTENSA_UNDEFINED;
4716
4717 if (opcode == get_l32r_opcode ())
e0001a05 4718 {
43cd72b9
BW
4719 if (p_uses_l32r)
4720 *p_uses_l32r = TRUE;
4721 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4722 fmt, 0, slotbuf, &regno)
4723 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4724 &regno))
4725 return XTENSA_UNDEFINED;
e0001a05 4726 }
43cd72b9 4727 else if (opcode == get_const16_opcode ())
e0001a05 4728 {
43cd72b9
BW
4729 if (p_uses_l32r)
4730 *p_uses_l32r = FALSE;
4731 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4732 fmt, 0, slotbuf, &regno)
4733 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4734 &regno))
4735 return XTENSA_UNDEFINED;
4736
4737 /* Check that the next instruction is also CONST16. */
4738 offset += xtensa_format_length (isa, fmt);
4739 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4740 fmt = xtensa_format_decode (isa, insnbuf);
4741 if (fmt == XTENSA_UNDEFINED
4742 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4743 return XTENSA_UNDEFINED;
4744 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4745 if (opcode != get_const16_opcode ())
4746 return XTENSA_UNDEFINED;
4747
4748 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4749 fmt, 0, slotbuf, &const16_regno)
4750 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4751 &const16_regno)
4752 || const16_regno != regno)
4753 return XTENSA_UNDEFINED;
e0001a05 4754 }
43cd72b9
BW
4755 else
4756 return XTENSA_UNDEFINED;
e0001a05 4757
43cd72b9
BW
4758 /* Next instruction should be an CALLXn with operand 0 == regno. */
4759 offset += xtensa_format_length (isa, fmt);
4760 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4761 fmt = xtensa_format_decode (isa, insnbuf);
4762 if (fmt == XTENSA_UNDEFINED
4763 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4764 return XTENSA_UNDEFINED;
4765 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
68ffbac6 4766 if (opcode == XTENSA_UNDEFINED
43cd72b9
BW
4767 || !is_indirect_call_opcode (opcode))
4768 return XTENSA_UNDEFINED;
e0001a05 4769
43cd72b9
BW
4770 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4771 fmt, 0, slotbuf, &call_regno)
4772 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4773 &call_regno))
4774 return XTENSA_UNDEFINED;
e0001a05 4775
43cd72b9
BW
4776 if (call_regno != regno)
4777 return XTENSA_UNDEFINED;
e0001a05 4778
43cd72b9
BW
4779 return opcode;
4780}
e0001a05 4781
43cd72b9
BW
4782\f
4783/* Data structures used during relaxation. */
e0001a05 4784
43cd72b9 4785/* r_reloc: relocation values. */
e0001a05 4786
43cd72b9
BW
4787/* Through the relaxation process, we need to keep track of the values
4788 that will result from evaluating relocations. The standard ELF
4789 relocation structure is not sufficient for this purpose because we're
4790 operating on multiple input files at once, so we need to know which
4791 input file a relocation refers to. The r_reloc structure thus
4792 records both the input file (bfd) and ELF relocation.
e0001a05 4793
43cd72b9
BW
4794 For efficiency, an r_reloc also contains a "target_offset" field to
4795 cache the target-section-relative offset value that is represented by
4796 the relocation.
68ffbac6 4797
43cd72b9
BW
4798 The r_reloc also contains a virtual offset that allows multiple
4799 inserted literals to be placed at the same "address" with
4800 different offsets. */
e0001a05 4801
43cd72b9 4802typedef struct r_reloc_struct r_reloc;
e0001a05 4803
43cd72b9 4804struct r_reloc_struct
e0001a05 4805{
43cd72b9
BW
4806 bfd *abfd;
4807 Elf_Internal_Rela rela;
e0001a05 4808 bfd_vma target_offset;
43cd72b9 4809 bfd_vma virtual_offset;
e0001a05
NC
4810};
4811
e0001a05 4812
43cd72b9
BW
4813/* The r_reloc structure is included by value in literal_value, but not
4814 every literal_value has an associated relocation -- some are simple
4815 constants. In such cases, we set all the fields in the r_reloc
4816 struct to zero. The r_reloc_is_const function should be used to
4817 detect this case. */
e0001a05 4818
43cd72b9 4819static bfd_boolean
7fa3d080 4820r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4821{
43cd72b9 4822 return (r_rel->abfd == NULL);
e0001a05
NC
4823}
4824
4825
43cd72b9 4826static bfd_vma
7fa3d080 4827r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4828{
43cd72b9
BW
4829 bfd_vma target_offset;
4830 unsigned long r_symndx;
e0001a05 4831
43cd72b9
BW
4832 BFD_ASSERT (!r_reloc_is_const (r_rel));
4833 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4834 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4835 return (target_offset + r_rel->rela.r_addend);
4836}
e0001a05 4837
e0001a05 4838
43cd72b9 4839static struct elf_link_hash_entry *
7fa3d080 4840r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4841{
43cd72b9
BW
4842 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4843 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4844}
e0001a05 4845
43cd72b9
BW
4846
4847static asection *
7fa3d080 4848r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4849{
4850 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4851 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4852}
e0001a05
NC
4853
4854
4855static bfd_boolean
7fa3d080 4856r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4857{
43cd72b9
BW
4858 asection *sec;
4859 if (r_rel == NULL)
e0001a05 4860 return FALSE;
e0001a05 4861
43cd72b9
BW
4862 sec = r_reloc_get_section (r_rel);
4863 if (sec == bfd_abs_section_ptr
4864 || sec == bfd_com_section_ptr
4865 || sec == bfd_und_section_ptr)
4866 return FALSE;
4867 return TRUE;
e0001a05
NC
4868}
4869
4870
7fa3d080
BW
4871static void
4872r_reloc_init (r_reloc *r_rel,
4873 bfd *abfd,
4874 Elf_Internal_Rela *irel,
4875 bfd_byte *contents,
4876 bfd_size_type content_length)
4877{
4878 int r_type;
4879 reloc_howto_type *howto;
4880
4881 if (irel)
4882 {
4883 r_rel->rela = *irel;
4884 r_rel->abfd = abfd;
4885 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4886 r_rel->virtual_offset = 0;
4887 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4888 howto = &elf_howto_table[r_type];
4889 if (howto->partial_inplace)
4890 {
4891 bfd_vma inplace_val;
4892 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4893
4894 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4895 r_rel->target_offset += inplace_val;
4896 }
4897 }
4898 else
4899 memset (r_rel, 0, sizeof (r_reloc));
4900}
4901
4902
43cd72b9
BW
4903#if DEBUG
4904
e0001a05 4905static void
7fa3d080 4906print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4907{
43cd72b9
BW
4908 if (r_reloc_is_defined (r_rel))
4909 {
4910 asection *sec = r_reloc_get_section (r_rel);
4911 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4912 }
4913 else if (r_reloc_get_hash_entry (r_rel))
4914 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4915 else
4916 fprintf (fp, " ?? + ");
e0001a05 4917
43cd72b9
BW
4918 fprintf_vma (fp, r_rel->target_offset);
4919 if (r_rel->virtual_offset)
4920 {
4921 fprintf (fp, " + ");
4922 fprintf_vma (fp, r_rel->virtual_offset);
4923 }
68ffbac6 4924
43cd72b9
BW
4925 fprintf (fp, ")");
4926}
e0001a05 4927
43cd72b9 4928#endif /* DEBUG */
e0001a05 4929
43cd72b9
BW
4930\f
4931/* source_reloc: relocations that reference literals. */
e0001a05 4932
43cd72b9
BW
4933/* To determine whether literals can be coalesced, we need to first
4934 record all the relocations that reference the literals. The
4935 source_reloc structure below is used for this purpose. The
4936 source_reloc entries are kept in a per-literal-section array, sorted
4937 by offset within the literal section (i.e., target offset).
e0001a05 4938
43cd72b9
BW
4939 The source_sec and r_rel.rela.r_offset fields identify the source of
4940 the relocation. The r_rel field records the relocation value, i.e.,
4941 the offset of the literal being referenced. The opnd field is needed
4942 to determine the range of the immediate field to which the relocation
4943 applies, so we can determine whether another literal with the same
4944 value is within range. The is_null field is true when the relocation
4945 is being removed (e.g., when an L32R is being removed due to a CALLX
4946 that is converted to a direct CALL). */
e0001a05 4947
43cd72b9
BW
4948typedef struct source_reloc_struct source_reloc;
4949
4950struct source_reloc_struct
e0001a05 4951{
43cd72b9
BW
4952 asection *source_sec;
4953 r_reloc r_rel;
4954 xtensa_opcode opcode;
4955 int opnd;
4956 bfd_boolean is_null;
4957 bfd_boolean is_abs_literal;
4958};
e0001a05 4959
e0001a05 4960
e0001a05 4961static void
7fa3d080
BW
4962init_source_reloc (source_reloc *reloc,
4963 asection *source_sec,
4964 const r_reloc *r_rel,
4965 xtensa_opcode opcode,
4966 int opnd,
4967 bfd_boolean is_abs_literal)
e0001a05 4968{
43cd72b9
BW
4969 reloc->source_sec = source_sec;
4970 reloc->r_rel = *r_rel;
4971 reloc->opcode = opcode;
4972 reloc->opnd = opnd;
4973 reloc->is_null = FALSE;
4974 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4975}
4976
e0001a05 4977
43cd72b9
BW
4978/* Find the source_reloc for a particular source offset and relocation
4979 type. Note that the array is sorted by _target_ offset, so this is
4980 just a linear search. */
e0001a05 4981
43cd72b9 4982static source_reloc *
7fa3d080
BW
4983find_source_reloc (source_reloc *src_relocs,
4984 int src_count,
4985 asection *sec,
4986 Elf_Internal_Rela *irel)
e0001a05 4987{
43cd72b9 4988 int i;
e0001a05 4989
43cd72b9
BW
4990 for (i = 0; i < src_count; i++)
4991 {
4992 if (src_relocs[i].source_sec == sec
4993 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4994 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4995 == ELF32_R_TYPE (irel->r_info)))
4996 return &src_relocs[i];
4997 }
e0001a05 4998
43cd72b9 4999 return NULL;
e0001a05
NC
5000}
5001
5002
43cd72b9 5003static int
7fa3d080 5004source_reloc_compare (const void *ap, const void *bp)
e0001a05 5005{
43cd72b9
BW
5006 const source_reloc *a = (const source_reloc *) ap;
5007 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5008
43cd72b9
BW
5009 if (a->r_rel.target_offset != b->r_rel.target_offset)
5010 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5011
43cd72b9
BW
5012 /* We don't need to sort on these criteria for correctness,
5013 but enforcing a more strict ordering prevents unstable qsort
5014 from behaving differently with different implementations.
5015 Without the code below we get correct but different results
5016 on Solaris 2.7 and 2.8. We would like to always produce the
5017 same results no matter the host. */
5018
5019 if ((!a->is_null) - (!b->is_null))
5020 return ((!a->is_null) - (!b->is_null));
5021 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5022}
5023
43cd72b9
BW
5024\f
5025/* Literal values and value hash tables. */
e0001a05 5026
43cd72b9
BW
5027/* Literals with the same value can be coalesced. The literal_value
5028 structure records the value of a literal: the "r_rel" field holds the
5029 information from the relocation on the literal (if there is one) and
5030 the "value" field holds the contents of the literal word itself.
e0001a05 5031
43cd72b9
BW
5032 The value_map structure records a literal value along with the
5033 location of a literal holding that value. The value_map hash table
5034 is indexed by the literal value, so that we can quickly check if a
5035 particular literal value has been seen before and is thus a candidate
5036 for coalescing. */
e0001a05 5037
43cd72b9
BW
5038typedef struct literal_value_struct literal_value;
5039typedef struct value_map_struct value_map;
5040typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5041
43cd72b9 5042struct literal_value_struct
e0001a05 5043{
68ffbac6 5044 r_reloc r_rel;
43cd72b9
BW
5045 unsigned long value;
5046 bfd_boolean is_abs_literal;
5047};
5048
5049struct value_map_struct
5050{
5051 literal_value val; /* The literal value. */
5052 r_reloc loc; /* Location of the literal. */
5053 value_map *next;
5054};
5055
5056struct value_map_hash_table_struct
5057{
5058 unsigned bucket_count;
5059 value_map **buckets;
5060 unsigned count;
5061 bfd_boolean has_last_loc;
5062 r_reloc last_loc;
5063};
5064
5065
e0001a05 5066static void
7fa3d080
BW
5067init_literal_value (literal_value *lit,
5068 const r_reloc *r_rel,
5069 unsigned long value,
5070 bfd_boolean is_abs_literal)
e0001a05 5071{
43cd72b9
BW
5072 lit->r_rel = *r_rel;
5073 lit->value = value;
5074 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5075}
5076
5077
43cd72b9 5078static bfd_boolean
7fa3d080
BW
5079literal_value_equal (const literal_value *src1,
5080 const literal_value *src2,
5081 bfd_boolean final_static_link)
e0001a05 5082{
43cd72b9 5083 struct elf_link_hash_entry *h1, *h2;
e0001a05 5084
68ffbac6 5085 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
43cd72b9 5086 return FALSE;
e0001a05 5087
43cd72b9
BW
5088 if (r_reloc_is_const (&src1->r_rel))
5089 return (src1->value == src2->value);
e0001a05 5090
43cd72b9
BW
5091 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5092 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5093 return FALSE;
e0001a05 5094
43cd72b9
BW
5095 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5096 return FALSE;
68ffbac6 5097
43cd72b9
BW
5098 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5099 return FALSE;
5100
5101 if (src1->value != src2->value)
5102 return FALSE;
68ffbac6 5103
43cd72b9
BW
5104 /* Now check for the same section (if defined) or the same elf_hash
5105 (if undefined or weak). */
5106 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5107 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5108 if (r_reloc_is_defined (&src1->r_rel)
5109 && (final_static_link
5110 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5111 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5112 {
5113 if (r_reloc_get_section (&src1->r_rel)
5114 != r_reloc_get_section (&src2->r_rel))
5115 return FALSE;
5116 }
5117 else
5118 {
5119 /* Require that the hash entries (i.e., symbols) be identical. */
5120 if (h1 != h2 || h1 == 0)
5121 return FALSE;
5122 }
5123
5124 if (src1->is_abs_literal != src2->is_abs_literal)
5125 return FALSE;
5126
5127 return TRUE;
e0001a05
NC
5128}
5129
e0001a05 5130
43cd72b9
BW
5131/* Must be power of 2. */
5132#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5133
43cd72b9 5134static value_map_hash_table *
7fa3d080 5135value_map_hash_table_init (void)
43cd72b9
BW
5136{
5137 value_map_hash_table *values;
e0001a05 5138
43cd72b9
BW
5139 values = (value_map_hash_table *)
5140 bfd_zmalloc (sizeof (value_map_hash_table));
5141 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5142 values->count = 0;
5143 values->buckets = (value_map **)
5144 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
68ffbac6 5145 if (values->buckets == NULL)
43cd72b9
BW
5146 {
5147 free (values);
5148 return NULL;
5149 }
5150 values->has_last_loc = FALSE;
5151
5152 return values;
5153}
5154
5155
5156static void
7fa3d080 5157value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5158{
43cd72b9
BW
5159 free (table->buckets);
5160 free (table);
5161}
5162
5163
5164static unsigned
7fa3d080 5165hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5166{
5167 return (val >> 2) + (val >> 10);
5168}
5169
5170
5171static unsigned
7fa3d080 5172literal_value_hash (const literal_value *src)
43cd72b9
BW
5173{
5174 unsigned hash_val;
e0001a05 5175
43cd72b9
BW
5176 hash_val = hash_bfd_vma (src->value);
5177 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5178 {
43cd72b9
BW
5179 void *sec_or_hash;
5180
5181 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5182 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5183 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
68ffbac6 5184
43cd72b9
BW
5185 /* Now check for the same section and the same elf_hash. */
5186 if (r_reloc_is_defined (&src->r_rel))
5187 sec_or_hash = r_reloc_get_section (&src->r_rel);
5188 else
5189 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5190 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5191 }
43cd72b9
BW
5192 return hash_val;
5193}
e0001a05 5194
e0001a05 5195
43cd72b9 5196/* Check if the specified literal_value has been seen before. */
e0001a05 5197
43cd72b9 5198static value_map *
7fa3d080
BW
5199value_map_get_cached_value (value_map_hash_table *map,
5200 const literal_value *val,
5201 bfd_boolean final_static_link)
43cd72b9
BW
5202{
5203 value_map *map_e;
5204 value_map *bucket;
5205 unsigned idx;
5206
5207 idx = literal_value_hash (val);
5208 idx = idx & (map->bucket_count - 1);
5209 bucket = map->buckets[idx];
5210 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5211 {
43cd72b9
BW
5212 if (literal_value_equal (&map_e->val, val, final_static_link))
5213 return map_e;
5214 }
5215 return NULL;
5216}
e0001a05 5217
e0001a05 5218
43cd72b9
BW
5219/* Record a new literal value. It is illegal to call this if VALUE
5220 already has an entry here. */
5221
5222static value_map *
7fa3d080
BW
5223add_value_map (value_map_hash_table *map,
5224 const literal_value *val,
5225 const r_reloc *loc,
5226 bfd_boolean final_static_link)
43cd72b9
BW
5227{
5228 value_map **bucket_p;
5229 unsigned idx;
5230
5231 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5232 if (val_e == NULL)
5233 {
5234 bfd_set_error (bfd_error_no_memory);
5235 return NULL;
e0001a05
NC
5236 }
5237
43cd72b9
BW
5238 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5239 val_e->val = *val;
5240 val_e->loc = *loc;
5241
5242 idx = literal_value_hash (val);
5243 idx = idx & (map->bucket_count - 1);
5244 bucket_p = &map->buckets[idx];
5245
5246 val_e->next = *bucket_p;
5247 *bucket_p = val_e;
5248 map->count++;
5249 /* FIXME: Consider resizing the hash table if we get too many entries. */
68ffbac6 5250
43cd72b9 5251 return val_e;
e0001a05
NC
5252}
5253
43cd72b9
BW
5254\f
5255/* Lists of text actions (ta_) for narrowing, widening, longcall
5256 conversion, space fill, code & literal removal, etc. */
5257
5258/* The following text actions are generated:
5259
07d6d2b8
AM
5260 "ta_remove_insn" remove an instruction or instructions
5261 "ta_remove_longcall" convert longcall to call
43cd72b9 5262 "ta_convert_longcall" convert longcall to nop/call
07d6d2b8
AM
5263 "ta_narrow_insn" narrow a wide instruction
5264 "ta_widen" widen a narrow instruction
5265 "ta_fill" add fill or remove fill
43cd72b9
BW
5266 removed < 0 is a fill; branches to the fill address will be
5267 changed to address + fill size (e.g., address - removed)
5268 removed >= 0 branches to the fill address will stay unchanged
07d6d2b8 5269 "ta_remove_literal" remove a literal; this action is
43cd72b9 5270 indicated when a literal is removed
07d6d2b8
AM
5271 or replaced.
5272 "ta_add_literal" insert a new literal; this action is
5273 indicated when a literal has been moved.
5274 It may use a virtual_offset because
43cd72b9 5275 multiple literals can be placed at the
07d6d2b8 5276 same location.
43cd72b9
BW
5277
5278 For each of these text actions, we also record the number of bytes
5279 removed by performing the text action. In the case of a "ta_widen"
5280 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5281
5282typedef struct text_action_struct text_action;
5283typedef struct text_action_list_struct text_action_list;
5284typedef enum text_action_enum_t text_action_t;
5285
5286enum text_action_enum_t
5287{
5288 ta_none,
07d6d2b8
AM
5289 ta_remove_insn, /* removed = -size */
5290 ta_remove_longcall, /* removed = -size */
5291 ta_convert_longcall, /* removed = 0 */
5292 ta_narrow_insn, /* removed = -1 */
5293 ta_widen_insn, /* removed = +1 */
5294 ta_fill, /* removed = +size */
43cd72b9
BW
5295 ta_remove_literal,
5296 ta_add_literal
5297};
e0001a05 5298
e0001a05 5299
43cd72b9
BW
5300/* Structure for a text action record. */
5301struct text_action_struct
e0001a05 5302{
43cd72b9
BW
5303 text_action_t action;
5304 asection *sec; /* Optional */
5305 bfd_vma offset;
5306 bfd_vma virtual_offset; /* Zero except for adding literals. */
5307 int removed_bytes;
5308 literal_value value; /* Only valid when adding literals. */
43cd72b9 5309};
e0001a05 5310
071aa5c9
MF
5311struct removal_by_action_entry_struct
5312{
5313 bfd_vma offset;
5314 int removed;
5315 int eq_removed;
5316 int eq_removed_before_fill;
5317};
5318typedef struct removal_by_action_entry_struct removal_by_action_entry;
5319
5320struct removal_by_action_map_struct
5321{
5322 unsigned n_entries;
5323 removal_by_action_entry *entry;
5324};
5325typedef struct removal_by_action_map_struct removal_by_action_map;
5326
e0001a05 5327
43cd72b9
BW
5328/* List of all of the actions taken on a text section. */
5329struct text_action_list_struct
5330{
4c2af04f
MF
5331 unsigned count;
5332 splay_tree tree;
071aa5c9 5333 removal_by_action_map map;
43cd72b9 5334};
e0001a05 5335
e0001a05 5336
7fa3d080
BW
5337static text_action *
5338find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9 5339{
4c2af04f 5340 text_action a;
43cd72b9
BW
5341
5342 /* It is not necessary to fill at the end of a section. */
5343 if (sec->size == offset)
5344 return NULL;
5345
4c2af04f
MF
5346 a.offset = offset;
5347 a.action = ta_fill;
5348
5349 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5350 if (node)
5351 return (text_action *)node->value;
43cd72b9
BW
5352 return NULL;
5353}
5354
5355
5356static int
7fa3d080
BW
5357compute_removed_action_diff (const text_action *ta,
5358 asection *sec,
5359 bfd_vma offset,
5360 int removed,
5361 int removable_space)
43cd72b9
BW
5362{
5363 int new_removed;
5364 int current_removed = 0;
5365
7fa3d080 5366 if (ta)
43cd72b9
BW
5367 current_removed = ta->removed_bytes;
5368
5369 BFD_ASSERT (ta == NULL || ta->offset == offset);
5370 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5371
5372 /* It is not necessary to fill at the end of a section. Clean this up. */
5373 if (sec->size == offset)
5374 new_removed = removable_space - 0;
5375 else
5376 {
5377 int space;
5378 int added = -removed - current_removed;
5379 /* Ignore multiples of the section alignment. */
5380 added = ((1 << sec->alignment_power) - 1) & added;
5381 new_removed = (-added);
5382
5383 /* Modify for removable. */
5384 space = removable_space - new_removed;
5385 new_removed = (removable_space
5386 - (((1 << sec->alignment_power) - 1) & space));
5387 }
5388 return (new_removed - current_removed);
5389}
5390
5391
7fa3d080
BW
5392static void
5393adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5394{
5395 ta->removed_bytes += fill_diff;
5396}
5397
5398
4c2af04f
MF
5399static int
5400text_action_compare (splay_tree_key a, splay_tree_key b)
5401{
5402 text_action *pa = (text_action *)a;
5403 text_action *pb = (text_action *)b;
5404 static const int action_priority[] =
5405 {
5406 [ta_fill] = 0,
5407 [ta_none] = 1,
5408 [ta_convert_longcall] = 2,
5409 [ta_narrow_insn] = 3,
5410 [ta_remove_insn] = 4,
5411 [ta_remove_longcall] = 5,
5412 [ta_remove_literal] = 6,
5413 [ta_widen_insn] = 7,
5414 [ta_add_literal] = 8,
5415 };
5416
5417 if (pa->offset == pb->offset)
5418 {
5419 if (pa->action == pb->action)
5420 return 0;
5421 return action_priority[pa->action] - action_priority[pb->action];
5422 }
5423 else
5424 return pa->offset < pb->offset ? -1 : 1;
5425}
5426
5427static text_action *
5428action_first (text_action_list *action_list)
5429{
5430 splay_tree_node node = splay_tree_min (action_list->tree);
5431 return node ? (text_action *)node->value : NULL;
5432}
5433
5434static text_action *
5435action_next (text_action_list *action_list, text_action *action)
5436{
5437 splay_tree_node node = splay_tree_successor (action_list->tree,
5438 (splay_tree_key)action);
5439 return node ? (text_action *)node->value : NULL;
5440}
5441
43cd72b9
BW
5442/* Add a modification action to the text. For the case of adding or
5443 removing space, modify any current fill and assume that
5444 "unreachable_space" bytes can be freely contracted. Note that a
5445 negative removed value is a fill. */
5446
68ffbac6 5447static void
7fa3d080
BW
5448text_action_add (text_action_list *l,
5449 text_action_t action,
5450 asection *sec,
5451 bfd_vma offset,
5452 int removed)
43cd72b9 5453{
43cd72b9 5454 text_action *ta;
4c2af04f 5455 text_action a;
43cd72b9
BW
5456
5457 /* It is not necessary to fill at the end of a section. */
5458 if (action == ta_fill && sec->size == offset)
5459 return;
5460
5461 /* It is not necessary to fill 0 bytes. */
5462 if (action == ta_fill && removed == 0)
5463 return;
5464
4c2af04f
MF
5465 a.action = action;
5466 a.offset = offset;
5467
5468 if (action == ta_fill)
43cd72b9 5469 {
4c2af04f 5470 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
68ffbac6 5471
4c2af04f 5472 if (node)
43cd72b9 5473 {
4c2af04f
MF
5474 ta = (text_action *)node->value;
5475 ta->removed_bytes += removed;
5476 return;
43cd72b9
BW
5477 }
5478 }
4c2af04f
MF
5479 else
5480 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
43cd72b9 5481
43cd72b9
BW
5482 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5483 ta->action = action;
5484 ta->sec = sec;
5485 ta->offset = offset;
5486 ta->removed_bytes = removed;
4c2af04f
MF
5487 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5488 ++l->count;
43cd72b9
BW
5489}
5490
5491
5492static void
7fa3d080
BW
5493text_action_add_literal (text_action_list *l,
5494 text_action_t action,
5495 const r_reloc *loc,
5496 const literal_value *value,
5497 int removed)
43cd72b9 5498{
43cd72b9
BW
5499 text_action *ta;
5500 asection *sec = r_reloc_get_section (loc);
5501 bfd_vma offset = loc->target_offset;
5502 bfd_vma virtual_offset = loc->virtual_offset;
5503
5504 BFD_ASSERT (action == ta_add_literal);
5505
43cd72b9
BW
5506 /* Create a new record and fill it up. */
5507 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5508 ta->action = action;
5509 ta->sec = sec;
5510 ta->offset = offset;
5511 ta->virtual_offset = virtual_offset;
5512 ta->value = *value;
5513 ta->removed_bytes = removed;
4c2af04f
MF
5514
5515 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5516 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5517 ++l->count;
43cd72b9
BW
5518}
5519
5520
03669f1c
BW
5521/* Find the total offset adjustment for the relaxations specified by
5522 text_actions, beginning from a particular starting action. This is
5523 typically used from offset_with_removed_text to search an entire list of
5524 actions, but it may also be called directly when adjusting adjacent offsets
5525 so that each search may begin where the previous one left off. */
5526
5527static int
4c2af04f
MF
5528removed_by_actions (text_action_list *action_list,
5529 text_action **p_start_action,
03669f1c
BW
5530 bfd_vma offset,
5531 bfd_boolean before_fill)
43cd72b9
BW
5532{
5533 text_action *r;
5534 int removed = 0;
5535
03669f1c 5536 r = *p_start_action;
4c2af04f
MF
5537 if (r)
5538 {
5539 splay_tree_node node = splay_tree_lookup (action_list->tree,
5540 (splay_tree_key)r);
5541 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5542 }
5543
03669f1c 5544 while (r)
43cd72b9 5545 {
03669f1c
BW
5546 if (r->offset > offset)
5547 break;
5548
5549 if (r->offset == offset
5550 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5551 break;
5552
5553 removed += r->removed_bytes;
5554
4c2af04f 5555 r = action_next (action_list, r);
43cd72b9
BW
5556 }
5557
03669f1c
BW
5558 *p_start_action = r;
5559 return removed;
5560}
5561
5562
68ffbac6 5563static bfd_vma
03669f1c
BW
5564offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5565{
4c2af04f
MF
5566 text_action *r = action_first (action_list);
5567
5568 return offset - removed_by_actions (action_list, &r, offset, FALSE);
43cd72b9
BW
5569}
5570
5571
03e94c08
BW
5572static unsigned
5573action_list_count (text_action_list *action_list)
5574{
4c2af04f 5575 return action_list->count;
03e94c08
BW
5576}
5577
4c2af04f
MF
5578typedef struct map_action_fn_context_struct map_action_fn_context;
5579struct map_action_fn_context_struct
071aa5c9 5580{
4c2af04f 5581 int removed;
071aa5c9
MF
5582 removal_by_action_map map;
5583 bfd_boolean eq_complete;
4c2af04f 5584};
071aa5c9 5585
4c2af04f
MF
5586static int
5587map_action_fn (splay_tree_node node, void *p)
5588{
5589 map_action_fn_context *ctx = p;
5590 text_action *r = (text_action *)node->value;
5591 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
071aa5c9 5592
4c2af04f 5593 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
071aa5c9 5594 {
4c2af04f
MF
5595 --ientry;
5596 }
5597 else
5598 {
5599 ++ctx->map.n_entries;
5600 ctx->eq_complete = FALSE;
5601 ientry->offset = r->offset;
5602 ientry->eq_removed_before_fill = ctx->removed;
5603 }
071aa5c9 5604
4c2af04f
MF
5605 if (!ctx->eq_complete)
5606 {
5607 if (r->action != ta_fill || r->removed_bytes >= 0)
071aa5c9 5608 {
4c2af04f
MF
5609 ientry->eq_removed = ctx->removed;
5610 ctx->eq_complete = TRUE;
071aa5c9
MF
5611 }
5612 else
4c2af04f
MF
5613 ientry->eq_removed = ctx->removed + r->removed_bytes;
5614 }
071aa5c9 5615
4c2af04f
MF
5616 ctx->removed += r->removed_bytes;
5617 ientry->removed = ctx->removed;
5618 return 0;
5619}
071aa5c9 5620
4c2af04f
MF
5621static void
5622map_removal_by_action (text_action_list *action_list)
5623{
5624 map_action_fn_context ctx;
5625
5626 ctx.removed = 0;
5627 ctx.map.n_entries = 0;
5628 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5629 sizeof (removal_by_action_entry));
5630 ctx.eq_complete = FALSE;
5631
5632 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5633 action_list->map = ctx.map;
071aa5c9
MF
5634}
5635
5636static int
5637removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5638 bfd_boolean before_fill)
5639{
5640 unsigned a, b;
5641
5642 if (!action_list->map.entry)
5643 map_removal_by_action (action_list);
5644
5645 if (!action_list->map.n_entries)
5646 return 0;
5647
5648 a = 0;
5649 b = action_list->map.n_entries;
5650
5651 while (b - a > 1)
5652 {
5653 unsigned c = (a + b) / 2;
5654
5655 if (action_list->map.entry[c].offset <= offset)
5656 a = c;
5657 else
5658 b = c;
5659 }
5660
5661 if (action_list->map.entry[a].offset < offset)
5662 {
5663 return action_list->map.entry[a].removed;
5664 }
5665 else if (action_list->map.entry[a].offset == offset)
5666 {
5667 return before_fill ?
5668 action_list->map.entry[a].eq_removed_before_fill :
5669 action_list->map.entry[a].eq_removed;
5670 }
5671 else
5672 {
5673 return 0;
5674 }
5675}
5676
5677static bfd_vma
5678offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5679{
5680 int removed = removed_by_actions_map (action_list, offset, FALSE);
5681 return offset - removed;
5682}
5683
03e94c08 5684
43cd72b9
BW
5685/* The find_insn_action routine will only find non-fill actions. */
5686
7fa3d080
BW
5687static text_action *
5688find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9 5689{
4c2af04f 5690 static const text_action_t action[] =
43cd72b9 5691 {
4c2af04f
MF
5692 ta_convert_longcall,
5693 ta_remove_longcall,
5694 ta_widen_insn,
5695 ta_narrow_insn,
5696 ta_remove_insn,
5697 };
5698 text_action a;
5699 unsigned i;
5700
5701 a.offset = offset;
5702 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5703 {
5704 splay_tree_node node;
5705
5706 a.action = action[i];
5707 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5708 if (node)
5709 return (text_action *)node->value;
43cd72b9
BW
5710 }
5711 return NULL;
5712}
5713
5714
5715#if DEBUG
5716
5717static void
4c2af04f
MF
5718print_action (FILE *fp, text_action *r)
5719{
5720 const char *t = "unknown";
5721 switch (r->action)
5722 {
5723 case ta_remove_insn:
5724 t = "remove_insn"; break;
5725 case ta_remove_longcall:
5726 t = "remove_longcall"; break;
5727 case ta_convert_longcall:
5728 t = "convert_longcall"; break;
5729 case ta_narrow_insn:
5730 t = "narrow_insn"; break;
5731 case ta_widen_insn:
5732 t = "widen_insn"; break;
5733 case ta_fill:
5734 t = "fill"; break;
5735 case ta_none:
5736 t = "none"; break;
5737 case ta_remove_literal:
5738 t = "remove_literal"; break;
5739 case ta_add_literal:
5740 t = "add_literal"; break;
5741 }
5742
5743 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5744 r->sec->owner->filename,
5745 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5746}
5747
5748static int
5749print_action_list_fn (splay_tree_node node, void *p)
43cd72b9 5750{
4c2af04f 5751 text_action *r = (text_action *)node->value;
43cd72b9 5752
4c2af04f
MF
5753 print_action (p, r);
5754 return 0;
5755}
43cd72b9 5756
4c2af04f
MF
5757static void
5758print_action_list (FILE *fp, text_action_list *action_list)
5759{
5760 fprintf (fp, "Text Action\n");
5761 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
43cd72b9
BW
5762}
5763
5764#endif /* DEBUG */
5765
5766\f
5767/* Lists of literals being coalesced or removed. */
5768
5769/* In the usual case, the literal identified by "from" is being
5770 coalesced with another literal identified by "to". If the literal is
5771 unused and is being removed altogether, "to.abfd" will be NULL.
5772 The removed_literal entries are kept on a per-section list, sorted
5773 by the "from" offset field. */
5774
5775typedef struct removed_literal_struct removed_literal;
3439c466 5776typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
43cd72b9
BW
5777typedef struct removed_literal_list_struct removed_literal_list;
5778
5779struct removed_literal_struct
5780{
5781 r_reloc from;
5782 r_reloc to;
5783 removed_literal *next;
5784};
5785
3439c466
MF
5786struct removed_literal_map_entry_struct
5787{
5788 bfd_vma addr;
5789 removed_literal *literal;
5790};
5791
43cd72b9
BW
5792struct removed_literal_list_struct
5793{
5794 removed_literal *head;
5795 removed_literal *tail;
3439c466
MF
5796
5797 unsigned n_map;
5798 removed_literal_map_entry *map;
43cd72b9
BW
5799};
5800
5801
43cd72b9
BW
5802/* Record that the literal at "from" is being removed. If "to" is not
5803 NULL, the "from" literal is being coalesced with the "to" literal. */
5804
5805static void
7fa3d080
BW
5806add_removed_literal (removed_literal_list *removed_list,
5807 const r_reloc *from,
5808 const r_reloc *to)
43cd72b9
BW
5809{
5810 removed_literal *r, *new_r, *next_r;
5811
5812 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5813
5814 new_r->from = *from;
5815 if (to)
5816 new_r->to = *to;
5817 else
5818 new_r->to.abfd = NULL;
5819 new_r->next = NULL;
68ffbac6 5820
43cd72b9 5821 r = removed_list->head;
68ffbac6 5822 if (r == NULL)
43cd72b9
BW
5823 {
5824 removed_list->head = new_r;
5825 removed_list->tail = new_r;
5826 }
5827 /* Special check for common case of append. */
5828 else if (removed_list->tail->from.target_offset < from->target_offset)
5829 {
5830 removed_list->tail->next = new_r;
5831 removed_list->tail = new_r;
5832 }
5833 else
5834 {
68ffbac6 5835 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5836 {
5837 r = r->next;
5838 }
5839 next_r = r->next;
5840 r->next = new_r;
5841 new_r->next = next_r;
5842 if (next_r == NULL)
5843 removed_list->tail = new_r;
5844 }
5845}
5846
3439c466
MF
5847static void
5848map_removed_literal (removed_literal_list *removed_list)
5849{
5850 unsigned n_map = 0;
5851 unsigned i;
5852 removed_literal_map_entry *map = NULL;
5853 removed_literal *r = removed_list->head;
5854
5855 for (i = 0; r; ++i, r = r->next)
5856 {
5857 if (i == n_map)
5858 {
5859 n_map = (n_map * 2) + 2;
5860 map = bfd_realloc (map, n_map * sizeof (*map));
5861 }
5862 map[i].addr = r->from.target_offset;
5863 map[i].literal = r;
5864 }
5865 removed_list->map = map;
5866 removed_list->n_map = i;
5867}
5868
5869static int
5870removed_literal_compare (const void *a, const void *b)
5871{
5872 const removed_literal_map_entry *pa = a;
5873 const removed_literal_map_entry *pb = b;
5874
5875 if (pa->addr == pb->addr)
5876 return 0;
5877 else
5878 return pa->addr < pb->addr ? -1 : 1;
5879}
43cd72b9
BW
5880
5881/* Check if the list of removed literals contains an entry for the
5882 given address. Return the entry if found. */
5883
5884static removed_literal *
7fa3d080 5885find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9 5886{
3439c466
MF
5887 removed_literal_map_entry *p;
5888 removed_literal *r = NULL;
5889
5890 if (removed_list->map == NULL)
5891 map_removed_literal (removed_list);
5892
5893 p = bsearch (&addr, removed_list->map, removed_list->n_map,
5894 sizeof (*removed_list->map), removed_literal_compare);
5895 if (p)
5896 {
5897 while (p != removed_list->map && (p - 1)->addr == addr)
5898 --p;
5899 r = p->literal;
5900 }
5901 return r;
43cd72b9
BW
5902}
5903
5904
5905#if DEBUG
5906
5907static void
7fa3d080 5908print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5909{
5910 removed_literal *r;
5911 r = removed_list->head;
5912 if (r)
5913 fprintf (fp, "Removed Literals\n");
5914 for (; r != NULL; r = r->next)
5915 {
5916 print_r_reloc (fp, &r->from);
5917 fprintf (fp, " => ");
5918 if (r->to.abfd == NULL)
5919 fprintf (fp, "REMOVED");
5920 else
5921 print_r_reloc (fp, &r->to);
5922 fprintf (fp, "\n");
5923 }
5924}
5925
5926#endif /* DEBUG */
5927
5928\f
5929/* Per-section data for relaxation. */
5930
5931typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5932
5933struct xtensa_relax_info_struct
5934{
5935 bfd_boolean is_relaxable_literal_section;
5936 bfd_boolean is_relaxable_asm_section;
5937 int visited; /* Number of times visited. */
5938
5939 source_reloc *src_relocs; /* Array[src_count]. */
5940 int src_count;
5941 int src_next; /* Next src_relocs entry to assign. */
5942
5943 removed_literal_list removed_list;
5944 text_action_list action_list;
5945
5946 reloc_bfd_fix *fix_list;
5947 reloc_bfd_fix *fix_array;
5948 unsigned fix_array_count;
5949
5950 /* Support for expanding the reloc array that is stored
5951 in the section structure. If the relocations have been
5952 reallocated, the newly allocated relocations will be referenced
5953 here along with the actual size allocated. The relocation
5954 count will always be found in the section structure. */
68ffbac6 5955 Elf_Internal_Rela *allocated_relocs;
43cd72b9
BW
5956 unsigned relocs_count;
5957 unsigned allocated_relocs_count;
5958};
5959
5960struct elf_xtensa_section_data
5961{
5962 struct bfd_elf_section_data elf;
5963 xtensa_relax_info relax_info;
5964};
5965
43cd72b9
BW
5966
5967static bfd_boolean
7fa3d080 5968elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5969{
f592407e
AM
5970 if (!sec->used_by_bfd)
5971 {
5972 struct elf_xtensa_section_data *sdata;
5973 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5974
f592407e
AM
5975 sdata = bfd_zalloc (abfd, amt);
5976 if (sdata == NULL)
5977 return FALSE;
5978 sec->used_by_bfd = sdata;
5979 }
43cd72b9
BW
5980
5981 return _bfd_elf_new_section_hook (abfd, sec);
5982}
5983
5984
7fa3d080
BW
5985static xtensa_relax_info *
5986get_xtensa_relax_info (asection *sec)
5987{
5988 struct elf_xtensa_section_data *section_data;
5989
5990 /* No info available if no section or if it is an output section. */
5991 if (!sec || sec == sec->output_section)
5992 return NULL;
5993
5994 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5995 return &section_data->relax_info;
5996}
5997
5998
43cd72b9 5999static void
7fa3d080 6000init_xtensa_relax_info (asection *sec)
43cd72b9
BW
6001{
6002 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6003
6004 relax_info->is_relaxable_literal_section = FALSE;
6005 relax_info->is_relaxable_asm_section = FALSE;
6006 relax_info->visited = 0;
6007
6008 relax_info->src_relocs = NULL;
6009 relax_info->src_count = 0;
6010 relax_info->src_next = 0;
6011
6012 relax_info->removed_list.head = NULL;
6013 relax_info->removed_list.tail = NULL;
6014
4c2af04f
MF
6015 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6016 NULL, NULL);
071aa5c9
MF
6017 relax_info->action_list.map.n_entries = 0;
6018 relax_info->action_list.map.entry = NULL;
6019
43cd72b9
BW
6020 relax_info->fix_list = NULL;
6021 relax_info->fix_array = NULL;
6022 relax_info->fix_array_count = 0;
6023
68ffbac6 6024 relax_info->allocated_relocs = NULL;
43cd72b9
BW
6025 relax_info->relocs_count = 0;
6026 relax_info->allocated_relocs_count = 0;
6027}
6028
43cd72b9
BW
6029\f
6030/* Coalescing literals may require a relocation to refer to a section in
6031 a different input file, but the standard relocation information
6032 cannot express that. Instead, the reloc_bfd_fix structures are used
6033 to "fix" the relocations that refer to sections in other input files.
6034 These structures are kept on per-section lists. The "src_type" field
6035 records the relocation type in case there are multiple relocations on
6036 the same location. FIXME: This is ugly; an alternative might be to
6037 add new symbols with the "owner" field to some other input file. */
6038
6039struct reloc_bfd_fix_struct
6040{
6041 asection *src_sec;
6042 bfd_vma src_offset;
6043 unsigned src_type; /* Relocation type. */
68ffbac6 6044
43cd72b9
BW
6045 asection *target_sec;
6046 bfd_vma target_offset;
6047 bfd_boolean translated;
68ffbac6 6048
43cd72b9
BW
6049 reloc_bfd_fix *next;
6050};
6051
6052
43cd72b9 6053static reloc_bfd_fix *
7fa3d080
BW
6054reloc_bfd_fix_init (asection *src_sec,
6055 bfd_vma src_offset,
6056 unsigned src_type,
7fa3d080
BW
6057 asection *target_sec,
6058 bfd_vma target_offset,
6059 bfd_boolean translated)
43cd72b9
BW
6060{
6061 reloc_bfd_fix *fix;
6062
6063 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6064 fix->src_sec = src_sec;
6065 fix->src_offset = src_offset;
6066 fix->src_type = src_type;
43cd72b9
BW
6067 fix->target_sec = target_sec;
6068 fix->target_offset = target_offset;
6069 fix->translated = translated;
6070
6071 return fix;
6072}
6073
6074
6075static void
7fa3d080 6076add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
6077{
6078 xtensa_relax_info *relax_info;
6079
6080 relax_info = get_xtensa_relax_info (src_sec);
6081 fix->next = relax_info->fix_list;
6082 relax_info->fix_list = fix;
6083}
6084
6085
6086static int
7fa3d080 6087fix_compare (const void *ap, const void *bp)
43cd72b9
BW
6088{
6089 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6090 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6091
6092 if (a->src_offset != b->src_offset)
6093 return (a->src_offset - b->src_offset);
6094 return (a->src_type - b->src_type);
6095}
6096
6097
6098static void
7fa3d080 6099cache_fix_array (asection *sec)
43cd72b9
BW
6100{
6101 unsigned i, count = 0;
6102 reloc_bfd_fix *r;
6103 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6104
6105 if (relax_info == NULL)
6106 return;
6107 if (relax_info->fix_list == NULL)
6108 return;
6109
6110 for (r = relax_info->fix_list; r != NULL; r = r->next)
6111 count++;
6112
6113 relax_info->fix_array =
6114 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6115 relax_info->fix_array_count = count;
6116
6117 r = relax_info->fix_list;
6118 for (i = 0; i < count; i++, r = r->next)
6119 {
6120 relax_info->fix_array[count - 1 - i] = *r;
6121 relax_info->fix_array[count - 1 - i].next = NULL;
6122 }
6123
6124 qsort (relax_info->fix_array, relax_info->fix_array_count,
6125 sizeof (reloc_bfd_fix), fix_compare);
6126}
6127
6128
6129static reloc_bfd_fix *
7fa3d080 6130get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6131{
6132 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6133 reloc_bfd_fix *rv;
6134 reloc_bfd_fix key;
6135
6136 if (relax_info == NULL)
6137 return NULL;
6138 if (relax_info->fix_list == NULL)
6139 return NULL;
6140
6141 if (relax_info->fix_array == NULL)
6142 cache_fix_array (sec);
6143
6144 key.src_offset = offset;
6145 key.src_type = type;
6146 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6147 sizeof (reloc_bfd_fix), fix_compare);
6148 return rv;
6149}
6150
6151\f
6152/* Section caching. */
6153
6154typedef struct section_cache_struct section_cache_t;
6155
6156struct section_cache_struct
6157{
6158 asection *sec;
6159
6160 bfd_byte *contents; /* Cache of the section contents. */
6161 bfd_size_type content_length;
6162
6163 property_table_entry *ptbl; /* Cache of the section property table. */
6164 unsigned pte_count;
6165
6166 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6167 unsigned reloc_count;
6168};
6169
6170
7fa3d080
BW
6171static void
6172init_section_cache (section_cache_t *sec_cache)
6173{
6174 memset (sec_cache, 0, sizeof (*sec_cache));
6175}
43cd72b9
BW
6176
6177
6178static void
65e911f9 6179free_section_cache (section_cache_t *sec_cache)
43cd72b9 6180{
7fa3d080
BW
6181 if (sec_cache->sec)
6182 {
6183 release_contents (sec_cache->sec, sec_cache->contents);
6184 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6185 if (sec_cache->ptbl)
6186 free (sec_cache->ptbl);
7fa3d080 6187 }
43cd72b9
BW
6188}
6189
6190
6191static bfd_boolean
7fa3d080
BW
6192section_cache_section (section_cache_t *sec_cache,
6193 asection *sec,
6194 struct bfd_link_info *link_info)
43cd72b9
BW
6195{
6196 bfd *abfd;
6197 property_table_entry *prop_table = NULL;
6198 int ptblsize = 0;
6199 bfd_byte *contents = NULL;
6200 Elf_Internal_Rela *internal_relocs = NULL;
6201 bfd_size_type sec_size;
6202
6203 if (sec == NULL)
6204 return FALSE;
6205 if (sec == sec_cache->sec)
6206 return TRUE;
6207
6208 abfd = sec->owner;
6209 sec_size = bfd_get_section_limit (abfd, sec);
6210
6211 /* Get the contents. */
6212 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6213 if (contents == NULL && sec_size != 0)
6214 goto err;
6215
6216 /* Get the relocations. */
6217 internal_relocs = retrieve_internal_relocs (abfd, sec,
6218 link_info->keep_memory);
6219
6220 /* Get the entry table. */
6221 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6222 XTENSA_PROP_SEC_NAME, FALSE);
6223 if (ptblsize < 0)
6224 goto err;
6225
6226 /* Fill in the new section cache. */
65e911f9
AM
6227 free_section_cache (sec_cache);
6228 init_section_cache (sec_cache);
43cd72b9
BW
6229
6230 sec_cache->sec = sec;
6231 sec_cache->contents = contents;
6232 sec_cache->content_length = sec_size;
6233 sec_cache->relocs = internal_relocs;
6234 sec_cache->reloc_count = sec->reloc_count;
6235 sec_cache->pte_count = ptblsize;
6236 sec_cache->ptbl = prop_table;
6237
6238 return TRUE;
6239
6240 err:
6241 release_contents (sec, contents);
6242 release_internal_relocs (sec, internal_relocs);
6243 if (prop_table)
6244 free (prop_table);
6245 return FALSE;
6246}
6247
43cd72b9
BW
6248\f
6249/* Extended basic blocks. */
6250
6251/* An ebb_struct represents an Extended Basic Block. Within this
6252 range, we guarantee that all instructions are decodable, the
6253 property table entries are contiguous, and no property table
6254 specifies a segment that cannot have instructions moved. This
6255 structure contains caches of the contents, property table and
6256 relocations for the specified section for easy use. The range is
6257 specified by ranges of indices for the byte offset, property table
6258 offsets and relocation offsets. These must be consistent. */
6259
6260typedef struct ebb_struct ebb_t;
6261
6262struct ebb_struct
6263{
6264 asection *sec;
6265
6266 bfd_byte *contents; /* Cache of the section contents. */
6267 bfd_size_type content_length;
6268
6269 property_table_entry *ptbl; /* Cache of the section property table. */
6270 unsigned pte_count;
6271
6272 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6273 unsigned reloc_count;
6274
6275 bfd_vma start_offset; /* Offset in section. */
6276 unsigned start_ptbl_idx; /* Offset in the property table. */
6277 unsigned start_reloc_idx; /* Offset in the relocations. */
6278
6279 bfd_vma end_offset;
6280 unsigned end_ptbl_idx;
6281 unsigned end_reloc_idx;
6282
6283 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6284
6285 /* The unreachable property table at the end of this set of blocks;
6286 NULL if the end is not an unreachable block. */
6287 property_table_entry *ends_unreachable;
6288};
6289
6290
6291enum ebb_target_enum
6292{
6293 EBB_NO_ALIGN = 0,
6294 EBB_DESIRE_TGT_ALIGN,
6295 EBB_REQUIRE_TGT_ALIGN,
6296 EBB_REQUIRE_LOOP_ALIGN,
6297 EBB_REQUIRE_ALIGN
6298};
6299
6300
6301/* proposed_action_struct is similar to the text_action_struct except
6302 that is represents a potential transformation, not one that will
6303 occur. We build a list of these for an extended basic block
6304 and use them to compute the actual actions desired. We must be
6305 careful that the entire set of actual actions we perform do not
6306 break any relocations that would fit if the actions were not
6307 performed. */
6308
6309typedef struct proposed_action_struct proposed_action;
6310
6311struct proposed_action_struct
6312{
6313 enum ebb_target_enum align_type; /* for the target alignment */
6314 bfd_vma alignment_pow;
6315 text_action_t action;
6316 bfd_vma offset;
6317 int removed_bytes;
6318 bfd_boolean do_action; /* If false, then we will not perform the action. */
6319};
6320
6321
6322/* The ebb_constraint_struct keeps a set of proposed actions for an
6323 extended basic block. */
6324
6325typedef struct ebb_constraint_struct ebb_constraint;
6326
6327struct ebb_constraint_struct
6328{
6329 ebb_t ebb;
6330 bfd_boolean start_movable;
6331
6332 /* Bytes of extra space at the beginning if movable. */
6333 int start_extra_space;
6334
6335 enum ebb_target_enum start_align;
6336
6337 bfd_boolean end_movable;
6338
6339 /* Bytes of extra space at the end if movable. */
6340 int end_extra_space;
6341
6342 unsigned action_count;
6343 unsigned action_allocated;
6344
6345 /* Array of proposed actions. */
6346 proposed_action *actions;
6347
6348 /* Action alignments -- one for each proposed action. */
6349 enum ebb_target_enum *action_aligns;
6350};
6351
6352
43cd72b9 6353static void
7fa3d080 6354init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6355{
6356 memset (c, 0, sizeof (ebb_constraint));
6357}
6358
6359
6360static void
7fa3d080 6361free_ebb_constraint (ebb_constraint *c)
43cd72b9 6362{
7fa3d080 6363 if (c->actions)
43cd72b9
BW
6364 free (c->actions);
6365}
6366
6367
6368static void
7fa3d080
BW
6369init_ebb (ebb_t *ebb,
6370 asection *sec,
6371 bfd_byte *contents,
6372 bfd_size_type content_length,
6373 property_table_entry *prop_table,
6374 unsigned ptblsize,
6375 Elf_Internal_Rela *internal_relocs,
6376 unsigned reloc_count)
43cd72b9
BW
6377{
6378 memset (ebb, 0, sizeof (ebb_t));
6379 ebb->sec = sec;
6380 ebb->contents = contents;
6381 ebb->content_length = content_length;
6382 ebb->ptbl = prop_table;
6383 ebb->pte_count = ptblsize;
6384 ebb->relocs = internal_relocs;
6385 ebb->reloc_count = reloc_count;
6386 ebb->start_offset = 0;
6387 ebb->end_offset = ebb->content_length - 1;
6388 ebb->start_ptbl_idx = 0;
6389 ebb->end_ptbl_idx = ptblsize;
6390 ebb->start_reloc_idx = 0;
6391 ebb->end_reloc_idx = reloc_count;
6392}
6393
6394
6395/* Extend the ebb to all decodable contiguous sections. The algorithm
6396 for building a basic block around an instruction is to push it
6397 forward until we hit the end of a section, an unreachable block or
6398 a block that cannot be transformed. Then we push it backwards
6399 searching for similar conditions. */
6400
7fa3d080
BW
6401static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6402static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6403static bfd_size_type insn_block_decodable_len
6404 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6405
43cd72b9 6406static bfd_boolean
7fa3d080 6407extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6408{
6409 if (!extend_ebb_bounds_forward (ebb))
6410 return FALSE;
6411 if (!extend_ebb_bounds_backward (ebb))
6412 return FALSE;
6413 return TRUE;
6414}
6415
6416
6417static bfd_boolean
7fa3d080 6418extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6419{
6420 property_table_entry *the_entry, *new_entry;
6421
6422 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6423
6424 /* Stop when (1) we cannot decode an instruction, (2) we are at
6425 the end of the property tables, (3) we hit a non-contiguous property
6426 table entry, (4) we hit a NO_TRANSFORM region. */
6427
6428 while (1)
6429 {
6430 bfd_vma entry_end;
6431 bfd_size_type insn_block_len;
6432
6433 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6434 insn_block_len =
6435 insn_block_decodable_len (ebb->contents, ebb->content_length,
6436 ebb->end_offset,
6437 entry_end - ebb->end_offset);
6438 if (insn_block_len != (entry_end - ebb->end_offset))
6439 {
4eca0228 6440 _bfd_error_handler
695344c0 6441 /* xgettext:c-format */
2dcf00ce 6442 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
d42c267e 6443 "possible configuration mismatch"),
2dcf00ce
AM
6444 ebb->sec->owner, ebb->sec,
6445 (uint64_t) (ebb->end_offset + insn_block_len));
43cd72b9
BW
6446 return FALSE;
6447 }
6448 ebb->end_offset += insn_block_len;
6449
6450 if (ebb->end_offset == ebb->sec->size)
6451 ebb->ends_section = TRUE;
6452
6453 /* Update the reloc counter. */
6454 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6455 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6456 < ebb->end_offset))
6457 {
6458 ebb->end_reloc_idx++;
6459 }
6460
6461 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6462 return TRUE;
6463
6464 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6465 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6466 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6467 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6468 break;
6469
6470 if (the_entry->address + the_entry->size != new_entry->address)
6471 break;
6472
6473 the_entry = new_entry;
6474 ebb->end_ptbl_idx++;
6475 }
6476
6477 /* Quick check for an unreachable or end of file just at the end. */
6478 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6479 {
6480 if (ebb->end_offset == ebb->content_length)
6481 ebb->ends_section = TRUE;
6482 }
6483 else
6484 {
6485 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6486 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6487 && the_entry->address + the_entry->size == new_entry->address)
6488 ebb->ends_unreachable = new_entry;
6489 }
6490
6491 /* Any other ending requires exact alignment. */
6492 return TRUE;
6493}
6494
6495
6496static bfd_boolean
7fa3d080 6497extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6498{
6499 property_table_entry *the_entry, *new_entry;
6500
6501 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6502
6503 /* Stop when (1) we cannot decode the instructions in the current entry.
6504 (2) we are at the beginning of the property tables, (3) we hit a
6505 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6506
6507 while (1)
6508 {
6509 bfd_vma block_begin;
6510 bfd_size_type insn_block_len;
6511
6512 block_begin = the_entry->address - ebb->sec->vma;
6513 insn_block_len =
6514 insn_block_decodable_len (ebb->contents, ebb->content_length,
6515 block_begin,
6516 ebb->start_offset - block_begin);
6517 if (insn_block_len != ebb->start_offset - block_begin)
6518 {
4eca0228 6519 _bfd_error_handler
695344c0 6520 /* xgettext:c-format */
2dcf00ce 6521 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
d42c267e 6522 "possible configuration mismatch"),
2dcf00ce
AM
6523 ebb->sec->owner, ebb->sec,
6524 (uint64_t) (ebb->end_offset + insn_block_len));
43cd72b9
BW
6525 return FALSE;
6526 }
6527 ebb->start_offset -= insn_block_len;
6528
6529 /* Update the reloc counter. */
6530 while (ebb->start_reloc_idx > 0
6531 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6532 >= ebb->start_offset))
6533 {
6534 ebb->start_reloc_idx--;
6535 }
6536
6537 if (ebb->start_ptbl_idx == 0)
6538 return TRUE;
6539
6540 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6541 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6542 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6543 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6544 return TRUE;
6545 if (new_entry->address + new_entry->size != the_entry->address)
6546 return TRUE;
6547
6548 the_entry = new_entry;
6549 ebb->start_ptbl_idx--;
6550 }
6551 return TRUE;
6552}
6553
6554
6555static bfd_size_type
7fa3d080
BW
6556insn_block_decodable_len (bfd_byte *contents,
6557 bfd_size_type content_len,
6558 bfd_vma block_offset,
6559 bfd_size_type block_len)
43cd72b9
BW
6560{
6561 bfd_vma offset = block_offset;
6562
6563 while (offset < block_offset + block_len)
6564 {
6565 bfd_size_type insn_len = 0;
6566
6567 insn_len = insn_decode_len (contents, content_len, offset);
6568 if (insn_len == 0)
6569 return (offset - block_offset);
6570 offset += insn_len;
6571 }
6572 return (offset - block_offset);
6573}
6574
6575
6576static void
7fa3d080 6577ebb_propose_action (ebb_constraint *c,
7fa3d080 6578 enum ebb_target_enum align_type,
288f74fa 6579 bfd_vma alignment_pow,
7fa3d080
BW
6580 text_action_t action,
6581 bfd_vma offset,
6582 int removed_bytes,
6583 bfd_boolean do_action)
43cd72b9 6584{
b08b5071 6585 proposed_action *act;
43cd72b9 6586
43cd72b9
BW
6587 if (c->action_allocated <= c->action_count)
6588 {
b08b5071 6589 unsigned new_allocated, i;
823fc61f 6590 proposed_action *new_actions;
b08b5071
BW
6591
6592 new_allocated = (c->action_count + 2) * 2;
823fc61f 6593 new_actions = (proposed_action *)
43cd72b9
BW
6594 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6595
6596 for (i = 0; i < c->action_count; i++)
6597 new_actions[i] = c->actions[i];
7fa3d080 6598 if (c->actions)
43cd72b9
BW
6599 free (c->actions);
6600 c->actions = new_actions;
6601 c->action_allocated = new_allocated;
6602 }
b08b5071
BW
6603
6604 act = &c->actions[c->action_count];
6605 act->align_type = align_type;
6606 act->alignment_pow = alignment_pow;
6607 act->action = action;
6608 act->offset = offset;
6609 act->removed_bytes = removed_bytes;
6610 act->do_action = do_action;
6611
43cd72b9
BW
6612 c->action_count++;
6613}
6614
6615\f
6616/* Access to internal relocations, section contents and symbols. */
6617
6618/* During relaxation, we need to modify relocations, section contents,
6619 and symbol definitions, and we need to keep the original values from
6620 being reloaded from the input files, i.e., we need to "pin" the
6621 modified values in memory. We also want to continue to observe the
6622 setting of the "keep-memory" flag. The following functions wrap the
6623 standard BFD functions to take care of this for us. */
6624
6625static Elf_Internal_Rela *
7fa3d080 6626retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6627{
6628 Elf_Internal_Rela *internal_relocs;
6629
6630 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6631 return NULL;
6632
6633 internal_relocs = elf_section_data (sec)->relocs;
6634 if (internal_relocs == NULL)
6635 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6636 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6637 return internal_relocs;
6638}
6639
6640
6641static void
7fa3d080 6642pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6643{
6644 elf_section_data (sec)->relocs = internal_relocs;
6645}
6646
6647
6648static void
7fa3d080 6649release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6650{
6651 if (internal_relocs
6652 && elf_section_data (sec)->relocs != internal_relocs)
6653 free (internal_relocs);
6654}
6655
6656
6657static bfd_byte *
7fa3d080 6658retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6659{
6660 bfd_byte *contents;
6661 bfd_size_type sec_size;
6662
6663 sec_size = bfd_get_section_limit (abfd, sec);
6664 contents = elf_section_data (sec)->this_hdr.contents;
68ffbac6 6665
43cd72b9
BW
6666 if (contents == NULL && sec_size != 0)
6667 {
6668 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6669 {
7fa3d080 6670 if (contents)
43cd72b9
BW
6671 free (contents);
6672 return NULL;
6673 }
68ffbac6 6674 if (keep_memory)
43cd72b9
BW
6675 elf_section_data (sec)->this_hdr.contents = contents;
6676 }
6677 return contents;
6678}
6679
6680
6681static void
7fa3d080 6682pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6683{
6684 elf_section_data (sec)->this_hdr.contents = contents;
6685}
6686
6687
6688static void
7fa3d080 6689release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6690{
6691 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6692 free (contents);
6693}
6694
6695
6696static Elf_Internal_Sym *
7fa3d080 6697retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6698{
6699 Elf_Internal_Shdr *symtab_hdr;
6700 Elf_Internal_Sym *isymbuf;
6701 size_t locsymcount;
6702
6703 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6704 locsymcount = symtab_hdr->sh_info;
6705
6706 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6707 if (isymbuf == NULL && locsymcount != 0)
6708 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6709 NULL, NULL, NULL);
6710
6711 /* Save the symbols for this input file so they won't be read again. */
6712 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6713 symtab_hdr->contents = (unsigned char *) isymbuf;
6714
6715 return isymbuf;
6716}
6717
6718\f
6719/* Code for link-time relaxation. */
6720
6721/* Initialization for relaxation: */
7fa3d080 6722static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6723static bfd_boolean find_relaxable_sections
7fa3d080 6724 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6725static bfd_boolean collect_source_relocs
7fa3d080 6726 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6727static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6728 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6729 bfd_boolean *);
43cd72b9 6730static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6731 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6732static bfd_boolean compute_text_actions
7fa3d080
BW
6733 (bfd *, asection *, struct bfd_link_info *);
6734static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6735static bfd_boolean compute_ebb_actions (ebb_constraint *);
b2b326d2 6736typedef struct reloc_range_list_struct reloc_range_list;
43cd72b9 6737static bfd_boolean check_section_ebb_pcrels_fit
b2b326d2
MF
6738 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6739 reloc_range_list *, const ebb_constraint *,
cb337148 6740 const xtensa_opcode *);
7fa3d080 6741static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6742static void text_action_add_proposed
7fa3d080 6743 (text_action_list *, const ebb_constraint *, asection *);
43cd72b9
BW
6744
6745/* First pass: */
6746static bfd_boolean compute_removed_literals
7fa3d080 6747 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6748static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6749 (asection *, Elf_Internal_Rela *, bfd_vma);
68ffbac6 6750static bfd_boolean is_removable_literal
99ded152
BW
6751 (const source_reloc *, int, const source_reloc *, int, asection *,
6752 property_table_entry *, int);
43cd72b9 6753static bfd_boolean remove_dead_literal
7fa3d080 6754 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
68ffbac6 6755 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
7fa3d080
BW
6756static bfd_boolean identify_literal_placement
6757 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6758 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6759 source_reloc *, property_table_entry *, int, section_cache_t *,
6760 bfd_boolean);
6761static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6762static bfd_boolean coalesce_shared_literal
7fa3d080 6763 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6764static bfd_boolean move_shared_literal
7fa3d080
BW
6765 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6766 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6767
6768/* Second pass: */
7fa3d080
BW
6769static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6770static bfd_boolean translate_section_fixes (asection *);
6771static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6772static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6773static void shrink_dynamic_reloc_sections
7fa3d080 6774 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6775static bfd_boolean move_literal
7fa3d080
BW
6776 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6777 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6778static bfd_boolean relax_property_section
7fa3d080 6779 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6780
6781/* Third pass: */
7fa3d080 6782static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6783
6784
68ffbac6 6785static bfd_boolean
7fa3d080
BW
6786elf_xtensa_relax_section (bfd *abfd,
6787 asection *sec,
6788 struct bfd_link_info *link_info,
6789 bfd_boolean *again)
43cd72b9
BW
6790{
6791 static value_map_hash_table *values = NULL;
6792 static bfd_boolean relocations_analyzed = FALSE;
6793 xtensa_relax_info *relax_info;
6794
6795 if (!relocations_analyzed)
6796 {
6797 /* Do some overall initialization for relaxation. */
6798 values = value_map_hash_table_init ();
6799 if (values == NULL)
6800 return FALSE;
6801 relaxing_section = TRUE;
6802 if (!analyze_relocations (link_info))
6803 return FALSE;
6804 relocations_analyzed = TRUE;
6805 }
6806 *again = FALSE;
6807
6808 /* Don't mess with linker-created sections. */
6809 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6810 return TRUE;
6811
6812 relax_info = get_xtensa_relax_info (sec);
6813 BFD_ASSERT (relax_info != NULL);
6814
6815 switch (relax_info->visited)
6816 {
6817 case 0:
6818 /* Note: It would be nice to fold this pass into
6819 analyze_relocations, but it is important for this step that the
6820 sections be examined in link order. */
6821 if (!compute_removed_literals (abfd, sec, link_info, values))
6822 return FALSE;
6823 *again = TRUE;
6824 break;
6825
6826 case 1:
6827 if (values)
6828 value_map_hash_table_delete (values);
6829 values = NULL;
6830 if (!relax_section (abfd, sec, link_info))
6831 return FALSE;
6832 *again = TRUE;
6833 break;
6834
6835 case 2:
6836 if (!relax_section_symbols (abfd, sec))
6837 return FALSE;
6838 break;
6839 }
6840
6841 relax_info->visited++;
6842 return TRUE;
6843}
6844
6845\f
6846/* Initialization for relaxation. */
6847
6848/* This function is called once at the start of relaxation. It scans
6849 all the input sections and marks the ones that are relaxable (i.e.,
6850 literal sections with L32R relocations against them), and then
6851 collects source_reloc information for all the relocations against
6852 those relaxable sections. During this process, it also detects
6853 longcalls, i.e., calls relaxed by the assembler into indirect
6854 calls, that can be optimized back into direct calls. Within each
6855 extended basic block (ebb) containing an optimized longcall, it
6856 computes a set of "text actions" that can be performed to remove
6857 the L32R associated with the longcall while optionally preserving
6858 branch target alignments. */
6859
6860static bfd_boolean
7fa3d080 6861analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6862{
6863 bfd *abfd;
6864 asection *sec;
6865 bfd_boolean is_relaxable = FALSE;
6866
6867 /* Initialize the per-section relaxation info. */
c72f2fb2 6868 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6869 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6870 {
6871 init_xtensa_relax_info (sec);
6872 }
6873
6874 /* Mark relaxable sections (and count relocations against each one). */
c72f2fb2 6875 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6876 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6877 {
6878 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6879 return FALSE;
6880 }
6881
6882 /* Bail out if there are no relaxable sections. */
6883 if (!is_relaxable)
6884 return TRUE;
6885
6886 /* Allocate space for source_relocs. */
c72f2fb2 6887 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6888 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6889 {
6890 xtensa_relax_info *relax_info;
6891
6892 relax_info = get_xtensa_relax_info (sec);
6893 if (relax_info->is_relaxable_literal_section
6894 || relax_info->is_relaxable_asm_section)
6895 {
6896 relax_info->src_relocs = (source_reloc *)
6897 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6898 }
25c6282a
BW
6899 else
6900 relax_info->src_count = 0;
43cd72b9
BW
6901 }
6902
6903 /* Collect info on relocations against each relaxable section. */
c72f2fb2 6904 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6905 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6906 {
6907 if (!collect_source_relocs (abfd, sec, link_info))
6908 return FALSE;
6909 }
6910
6911 /* Compute the text actions. */
c72f2fb2 6912 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6913 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6914 {
6915 if (!compute_text_actions (abfd, sec, link_info))
6916 return FALSE;
6917 }
6918
6919 return TRUE;
6920}
6921
6922
6923/* Find all the sections that might be relaxed. The motivation for
6924 this pass is that collect_source_relocs() needs to record _all_ the
6925 relocations that target each relaxable section. That is expensive
6926 and unnecessary unless the target section is actually going to be
6927 relaxed. This pass identifies all such sections by checking if
6928 they have L32Rs pointing to them. In the process, the total number
6929 of relocations targeting each section is also counted so that we
6930 know how much space to allocate for source_relocs against each
6931 relaxable literal section. */
6932
6933static bfd_boolean
7fa3d080
BW
6934find_relaxable_sections (bfd *abfd,
6935 asection *sec,
6936 struct bfd_link_info *link_info,
6937 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6938{
6939 Elf_Internal_Rela *internal_relocs;
6940 bfd_byte *contents;
6941 bfd_boolean ok = TRUE;
6942 unsigned i;
6943 xtensa_relax_info *source_relax_info;
25c6282a 6944 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6945
6946 internal_relocs = retrieve_internal_relocs (abfd, sec,
6947 link_info->keep_memory);
68ffbac6 6948 if (internal_relocs == NULL)
43cd72b9
BW
6949 return ok;
6950
6951 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6952 if (contents == NULL && sec->size != 0)
6953 {
6954 ok = FALSE;
6955 goto error_return;
6956 }
6957
6958 source_relax_info = get_xtensa_relax_info (sec);
68ffbac6 6959 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6960 {
6961 Elf_Internal_Rela *irel = &internal_relocs[i];
6962 r_reloc r_rel;
6963 asection *target_sec;
6964 xtensa_relax_info *target_relax_info;
6965
6966 /* If this section has not already been marked as "relaxable", and
6967 if it contains any ASM_EXPAND relocations (marking expanded
6968 longcalls) that can be optimized into direct calls, then mark
6969 the section as "relaxable". */
6970 if (source_relax_info
6971 && !source_relax_info->is_relaxable_asm_section
6972 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6973 {
6974 bfd_boolean is_reachable = FALSE;
6975 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6976 link_info, &is_reachable)
6977 && is_reachable)
6978 {
6979 source_relax_info->is_relaxable_asm_section = TRUE;
6980 *is_relaxable_p = TRUE;
6981 }
6982 }
6983
6984 r_reloc_init (&r_rel, abfd, irel, contents,
6985 bfd_get_section_limit (abfd, sec));
6986
6987 target_sec = r_reloc_get_section (&r_rel);
6988 target_relax_info = get_xtensa_relax_info (target_sec);
6989 if (!target_relax_info)
6990 continue;
6991
6992 /* Count PC-relative operand relocations against the target section.
07d6d2b8 6993 Note: The conditions tested here must match the conditions under
43cd72b9 6994 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6995 is_l32r_reloc = FALSE;
6996 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6997 {
6998 xtensa_opcode opcode =
6999 get_relocation_opcode (abfd, sec, contents, irel);
7000 if (opcode != XTENSA_UNDEFINED)
7001 {
7002 is_l32r_reloc = (opcode == get_l32r_opcode ());
7003 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7004 || is_l32r_reloc)
7005 target_relax_info->src_count++;
7006 }
7007 }
43cd72b9 7008
25c6282a 7009 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
7010 {
7011 /* Mark the target section as relaxable. */
7012 target_relax_info->is_relaxable_literal_section = TRUE;
7013 *is_relaxable_p = TRUE;
7014 }
7015 }
7016
7017 error_return:
7018 release_contents (sec, contents);
7019 release_internal_relocs (sec, internal_relocs);
7020 return ok;
7021}
7022
7023
7024/* Record _all_ the relocations that point to relaxable sections, and
7025 get rid of ASM_EXPAND relocs by either converting them to
7026 ASM_SIMPLIFY or by removing them. */
7027
7028static bfd_boolean
7fa3d080
BW
7029collect_source_relocs (bfd *abfd,
7030 asection *sec,
7031 struct bfd_link_info *link_info)
43cd72b9
BW
7032{
7033 Elf_Internal_Rela *internal_relocs;
7034 bfd_byte *contents;
7035 bfd_boolean ok = TRUE;
7036 unsigned i;
7037 bfd_size_type sec_size;
7038
68ffbac6 7039 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 7040 link_info->keep_memory);
68ffbac6 7041 if (internal_relocs == NULL)
43cd72b9
BW
7042 return ok;
7043
7044 sec_size = bfd_get_section_limit (abfd, sec);
7045 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7046 if (contents == NULL && sec_size != 0)
7047 {
7048 ok = FALSE;
7049 goto error_return;
7050 }
7051
7052 /* Record relocations against relaxable literal sections. */
68ffbac6 7053 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7054 {
7055 Elf_Internal_Rela *irel = &internal_relocs[i];
7056 r_reloc r_rel;
7057 asection *target_sec;
7058 xtensa_relax_info *target_relax_info;
7059
7060 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7061
7062 target_sec = r_reloc_get_section (&r_rel);
7063 target_relax_info = get_xtensa_relax_info (target_sec);
7064
7065 if (target_relax_info
7066 && (target_relax_info->is_relaxable_literal_section
7067 || target_relax_info->is_relaxable_asm_section))
7068 {
7069 xtensa_opcode opcode = XTENSA_UNDEFINED;
7070 int opnd = -1;
7071 bfd_boolean is_abs_literal = FALSE;
7072
7073 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7074 {
7075 /* None of the current alternate relocs are PC-relative,
7076 and only PC-relative relocs matter here. However, we
7077 still need to record the opcode for literal
7078 coalescing. */
7079 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7080 if (opcode == get_l32r_opcode ())
7081 {
7082 is_abs_literal = TRUE;
7083 opnd = 1;
7084 }
7085 else
7086 opcode = XTENSA_UNDEFINED;
7087 }
7088 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7089 {
7090 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7091 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7092 }
7093
7094 if (opcode != XTENSA_UNDEFINED)
7095 {
7096 int src_next = target_relax_info->src_next++;
7097 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7098
7099 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7100 is_abs_literal);
7101 }
7102 }
7103 }
7104
7105 /* Now get rid of ASM_EXPAND relocations. At this point, the
7106 src_relocs array for the target literal section may still be
7107 incomplete, but it must at least contain the entries for the L32R
7108 relocations associated with ASM_EXPANDs because they were just
7109 added in the preceding loop over the relocations. */
7110
68ffbac6 7111 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7112 {
7113 Elf_Internal_Rela *irel = &internal_relocs[i];
7114 bfd_boolean is_reachable;
7115
7116 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7117 &is_reachable))
7118 continue;
7119
7120 if (is_reachable)
7121 {
7122 Elf_Internal_Rela *l32r_irel;
7123 r_reloc r_rel;
7124 asection *target_sec;
7125 xtensa_relax_info *target_relax_info;
7126
7127 /* Mark the source_reloc for the L32R so that it will be
7128 removed in compute_removed_literals(), along with the
7129 associated literal. */
7130 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7131 irel, internal_relocs);
7132 if (l32r_irel == NULL)
7133 continue;
7134
7135 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7136
7137 target_sec = r_reloc_get_section (&r_rel);
7138 target_relax_info = get_xtensa_relax_info (target_sec);
7139
7140 if (target_relax_info
7141 && (target_relax_info->is_relaxable_literal_section
7142 || target_relax_info->is_relaxable_asm_section))
7143 {
7144 source_reloc *s_reloc;
7145
7146 /* Search the source_relocs for the entry corresponding to
7147 the l32r_irel. Note: The src_relocs array is not yet
7148 sorted, but it wouldn't matter anyway because we're
7149 searching by source offset instead of target offset. */
68ffbac6 7150 s_reloc = find_source_reloc (target_relax_info->src_relocs,
43cd72b9
BW
7151 target_relax_info->src_next,
7152 sec, l32r_irel);
7153 BFD_ASSERT (s_reloc);
7154 s_reloc->is_null = TRUE;
7155 }
7156
7157 /* Convert this reloc to ASM_SIMPLIFY. */
7158 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7159 R_XTENSA_ASM_SIMPLIFY);
7160 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7161
7162 pin_internal_relocs (sec, internal_relocs);
7163 }
7164 else
7165 {
7166 /* It is resolvable but doesn't reach. We resolve now
7167 by eliminating the relocation -- the call will remain
7168 expanded into L32R/CALLX. */
7169 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7170 pin_internal_relocs (sec, internal_relocs);
7171 }
7172 }
7173
7174 error_return:
7175 release_contents (sec, contents);
7176 release_internal_relocs (sec, internal_relocs);
7177 return ok;
7178}
7179
7180
7181/* Return TRUE if the asm expansion can be resolved. Generally it can
7182 be resolved on a final link or when a partial link locates it in the
7183 same section as the target. Set "is_reachable" flag if the target of
7184 the call is within the range of a direct call, given the current VMA
7185 for this section and the target section. */
7186
7187bfd_boolean
7fa3d080
BW
7188is_resolvable_asm_expansion (bfd *abfd,
7189 asection *sec,
7190 bfd_byte *contents,
7191 Elf_Internal_Rela *irel,
7192 struct bfd_link_info *link_info,
7193 bfd_boolean *is_reachable_p)
43cd72b9
BW
7194{
7195 asection *target_sec;
eed62915
MF
7196 asection *s;
7197 bfd_vma first_vma;
7198 bfd_vma last_vma;
7199 unsigned int first_align;
7200 unsigned int adjust;
43cd72b9
BW
7201 bfd_vma target_offset;
7202 r_reloc r_rel;
7203 xtensa_opcode opcode, direct_call_opcode;
7204 bfd_vma self_address;
7205 bfd_vma dest_address;
7206 bfd_boolean uses_l32r;
7207 bfd_size_type sec_size;
7208
7209 *is_reachable_p = FALSE;
7210
7211 if (contents == NULL)
7212 return FALSE;
7213
68ffbac6 7214 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
43cd72b9
BW
7215 return FALSE;
7216
7217 sec_size = bfd_get_section_limit (abfd, sec);
7218 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7219 sec_size - irel->r_offset, &uses_l32r);
7220 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7221 if (!uses_l32r)
7222 return FALSE;
68ffbac6 7223
43cd72b9
BW
7224 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7225 if (direct_call_opcode == XTENSA_UNDEFINED)
7226 return FALSE;
7227
7228 /* Check and see that the target resolves. */
7229 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7230 if (!r_reloc_is_defined (&r_rel))
7231 return FALSE;
7232
7233 target_sec = r_reloc_get_section (&r_rel);
7234 target_offset = r_rel.target_offset;
7235
7236 /* If the target is in a shared library, then it doesn't reach. This
7237 isn't supposed to come up because the compiler should never generate
7238 non-PIC calls on systems that use shared libraries, but the linker
7239 shouldn't crash regardless. */
7240 if (!target_sec->output_section)
7241 return FALSE;
68ffbac6 7242
43cd72b9
BW
7243 /* For relocatable sections, we can only simplify when the output
7244 section of the target is the same as the output section of the
7245 source. */
0e1862bb 7246 if (bfd_link_relocatable (link_info)
43cd72b9
BW
7247 && (target_sec->output_section != sec->output_section
7248 || is_reloc_sym_weak (abfd, irel)))
7249 return FALSE;
7250
331ed130
SA
7251 if (target_sec->output_section != sec->output_section)
7252 {
7253 /* If the two sections are sufficiently far away that relaxation
7254 might take the call out of range, we can't simplify. For
7255 example, a positive displacement call into another memory
7256 could get moved to a lower address due to literal removal,
7257 but the destination won't move, and so the displacment might
7258 get larger.
7259
7260 If the displacement is negative, assume the destination could
7261 move as far back as the start of the output section. The
7262 self_address will be at least as far into the output section
7263 as it is prior to relaxation.
7264
7265 If the displacement is postive, assume the destination will be in
7266 it's pre-relaxed location (because relaxation only makes sections
7267 smaller). The self_address could go all the way to the beginning
7268 of the output section. */
7269
7270 dest_address = target_sec->output_section->vma;
7271 self_address = sec->output_section->vma;
7272
7273 if (sec->output_section->vma > target_sec->output_section->vma)
7274 self_address += sec->output_offset + irel->r_offset + 3;
7275 else
7276 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7277 /* Call targets should be four-byte aligned. */
7278 dest_address = (dest_address + 3) & ~3;
7279 }
7280 else
7281 {
7282
7283 self_address = (sec->output_section->vma
7284 + sec->output_offset + irel->r_offset + 3);
7285 dest_address = (target_sec->output_section->vma
7286 + target_sec->output_offset + target_offset);
7287 }
68ffbac6 7288
eed62915
MF
7289 /* Adjust addresses with alignments for the worst case to see if call insn
7290 can fit. Don't relax l32r + callx to call if the target can be out of
7291 range due to alignment.
7292 Caller and target addresses are highest and lowest address.
7293 Search all sections between caller and target, looking for max alignment.
7294 The adjustment is max alignment bytes. If the alignment at the lowest
7295 address is less than the adjustment, apply the adjustment to highest
7296 address. */
7297
7298 /* Start from lowest address.
7299 Lowest address aligmnet is from input section.
7300 Initial alignment (adjust) is from input section. */
7301 if (dest_address > self_address)
7302 {
7303 s = sec->output_section;
7304 last_vma = dest_address;
7305 first_align = sec->alignment_power;
7306 adjust = target_sec->alignment_power;
7307 }
7308 else
7309 {
7310 s = target_sec->output_section;
7311 last_vma = self_address;
7312 first_align = target_sec->alignment_power;
7313 adjust = sec->alignment_power;
7314 }
7315
7316 first_vma = s->vma;
7317
7318 /* Find the largest alignment in output section list. */
7319 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7320 {
7321 if (s->alignment_power > adjust)
7322 adjust = s->alignment_power;
7323 }
7324
7325 if (adjust > first_align)
7326 {
7327 /* Alignment may enlarge the range, adjust highest address. */
7328 adjust = 1 << adjust;
7329 if (dest_address > self_address)
7330 {
7331 dest_address += adjust;
7332 }
7333 else
7334 {
7335 self_address += adjust;
7336 }
7337 }
7338
43cd72b9
BW
7339 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7340 self_address, dest_address);
7341
7342 if ((self_address >> CALL_SEGMENT_BITS) !=
7343 (dest_address >> CALL_SEGMENT_BITS))
7344 return FALSE;
7345
7346 return TRUE;
7347}
7348
7349
7350static Elf_Internal_Rela *
7fa3d080
BW
7351find_associated_l32r_irel (bfd *abfd,
7352 asection *sec,
7353 bfd_byte *contents,
7354 Elf_Internal_Rela *other_irel,
7355 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7356{
7357 unsigned i;
e0001a05 7358
68ffbac6 7359 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7360 {
7361 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7362
43cd72b9
BW
7363 if (irel == other_irel)
7364 continue;
7365 if (irel->r_offset != other_irel->r_offset)
7366 continue;
7367 if (is_l32r_relocation (abfd, sec, contents, irel))
7368 return irel;
7369 }
7370
7371 return NULL;
e0001a05
NC
7372}
7373
7374
cb337148
BW
7375static xtensa_opcode *
7376build_reloc_opcodes (bfd *abfd,
7377 asection *sec,
7378 bfd_byte *contents,
7379 Elf_Internal_Rela *internal_relocs)
7380{
7381 unsigned i;
7382 xtensa_opcode *reloc_opcodes =
7383 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7384 for (i = 0; i < sec->reloc_count; i++)
7385 {
7386 Elf_Internal_Rela *irel = &internal_relocs[i];
7387 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7388 }
7389 return reloc_opcodes;
7390}
7391
b2b326d2
MF
7392struct reloc_range_struct
7393{
7394 bfd_vma addr;
7395 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7396 /* Original irel index in the array of relocations for a section. */
7397 unsigned irel_index;
7398};
7399typedef struct reloc_range_struct reloc_range;
7400
7401typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7402struct reloc_range_list_entry_struct
7403{
7404 reloc_range_list_entry *next;
7405 reloc_range_list_entry *prev;
7406 Elf_Internal_Rela *irel;
7407 xtensa_opcode opcode;
7408 int opnum;
7409};
7410
7411struct reloc_range_list_struct
7412{
7413 /* The rest of the structure is only meaningful when ok is TRUE. */
7414 bfd_boolean ok;
7415
7416 unsigned n_range; /* Number of range markers. */
7417 reloc_range *range; /* Sorted range markers. */
7418
7419 unsigned first; /* Index of a first range element in the list. */
7420 unsigned last; /* One past index of a last range element in the list. */
7421
7422 unsigned n_list; /* Number of list elements. */
7423 reloc_range_list_entry *reloc; /* */
7424 reloc_range_list_entry list_root;
7425};
7426
7427static int
7428reloc_range_compare (const void *a, const void *b)
7429{
7430 const reloc_range *ra = a;
7431 const reloc_range *rb = b;
7432
7433 if (ra->addr != rb->addr)
7434 return ra->addr < rb->addr ? -1 : 1;
7435 if (ra->add != rb->add)
7436 return ra->add ? -1 : 1;
7437 return 0;
7438}
7439
7440static void
7441build_reloc_ranges (bfd *abfd, asection *sec,
7442 bfd_byte *contents,
7443 Elf_Internal_Rela *internal_relocs,
7444 xtensa_opcode *reloc_opcodes,
7445 reloc_range_list *list)
7446{
7447 unsigned i;
7448 size_t n = 0;
7449 size_t max_n = 0;
7450 reloc_range *ranges = NULL;
7451 reloc_range_list_entry *reloc =
7452 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7453
7454 memset (list, 0, sizeof (*list));
7455 list->ok = TRUE;
7456
7457 for (i = 0; i < sec->reloc_count; i++)
7458 {
7459 Elf_Internal_Rela *irel = &internal_relocs[i];
7460 int r_type = ELF32_R_TYPE (irel->r_info);
7461 reloc_howto_type *howto = &elf_howto_table[r_type];
7462 r_reloc r_rel;
7463
7464 if (r_type == R_XTENSA_ASM_SIMPLIFY
7465 || r_type == R_XTENSA_32_PCREL
7466 || !howto->pc_relative)
7467 continue;
7468
7469 r_reloc_init (&r_rel, abfd, irel, contents,
7470 bfd_get_section_limit (abfd, sec));
7471
7472 if (r_reloc_get_section (&r_rel) != sec)
7473 continue;
7474
7475 if (n + 2 > max_n)
7476 {
7477 max_n = (max_n + 2) * 2;
7478 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7479 }
7480
7481 ranges[n].addr = irel->r_offset;
7482 ranges[n + 1].addr = r_rel.target_offset;
7483
7484 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7485 ranges[n + 1].add = !ranges[n].add;
7486
7487 ranges[n].irel_index = i;
7488 ranges[n + 1].irel_index = i;
7489
7490 n += 2;
7491
7492 reloc[i].irel = irel;
7493
7494 /* Every relocation won't possibly be checked in the optimized version of
07d6d2b8 7495 check_section_ebb_pcrels_fit, so this needs to be done here. */
b2b326d2
MF
7496 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7497 {
7498 /* None of the current alternate relocs are PC-relative,
7499 and only PC-relative relocs matter here. */
7500 }
7501 else
7502 {
7503 xtensa_opcode opcode;
7504 int opnum;
7505
7506 if (reloc_opcodes)
7507 opcode = reloc_opcodes[i];
7508 else
7509 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7510
7511 if (opcode == XTENSA_UNDEFINED)
7512 {
7513 list->ok = FALSE;
7514 break;
7515 }
7516
7517 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7518 if (opnum == XTENSA_UNDEFINED)
7519 {
7520 list->ok = FALSE;
7521 break;
7522 }
7523
7524 /* Record relocation opcode and opnum as we've calculated them
7525 anyway and they won't change. */
7526 reloc[i].opcode = opcode;
7527 reloc[i].opnum = opnum;
7528 }
7529 }
7530
7531 if (list->ok)
7532 {
7533 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7534 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7535
7536 list->n_range = n;
7537 list->range = ranges;
7538 list->reloc = reloc;
7539 list->list_root.prev = &list->list_root;
7540 list->list_root.next = &list->list_root;
7541 }
7542 else
7543 {
7544 free (ranges);
7545 free (reloc);
7546 }
7547}
7548
7549static void reloc_range_list_append (reloc_range_list *list,
7550 unsigned irel_index)
7551{
7552 reloc_range_list_entry *entry = list->reloc + irel_index;
7553
7554 entry->prev = list->list_root.prev;
7555 entry->next = &list->list_root;
7556 entry->prev->next = entry;
7557 entry->next->prev = entry;
7558 ++list->n_list;
7559}
7560
7561static void reloc_range_list_remove (reloc_range_list *list,
7562 unsigned irel_index)
7563{
7564 reloc_range_list_entry *entry = list->reloc + irel_index;
7565
7566 entry->next->prev = entry->prev;
7567 entry->prev->next = entry->next;
7568 --list->n_list;
7569}
7570
7571/* Update relocation list object so that it lists all relocations that cross
7572 [first; last] range. Range bounds should not decrease with successive
7573 invocations. */
7574static void reloc_range_list_update_range (reloc_range_list *list,
7575 bfd_vma first, bfd_vma last)
7576{
7577 /* This should not happen: EBBs are iterated from lower addresses to higher.
7578 But even if that happens there's no need to break: just flush current list
7579 and start from scratch. */
7580 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7581 (list->first > 0 && list->range[list->first - 1].addr >= first))
7582 {
7583 list->first = 0;
7584 list->last = 0;
7585 list->n_list = 0;
7586 list->list_root.next = &list->list_root;
7587 list->list_root.prev = &list->list_root;
7588 fprintf (stderr, "%s: move backwards requested\n", __func__);
7589 }
7590
7591 for (; list->last < list->n_range &&
7592 list->range[list->last].addr <= last; ++list->last)
7593 if (list->range[list->last].add)
7594 reloc_range_list_append (list, list->range[list->last].irel_index);
7595
7596 for (; list->first < list->n_range &&
7597 list->range[list->first].addr < first; ++list->first)
7598 if (!list->range[list->first].add)
7599 reloc_range_list_remove (list, list->range[list->first].irel_index);
7600}
7601
7602static void free_reloc_range_list (reloc_range_list *list)
7603{
7604 free (list->range);
7605 free (list->reloc);
7606}
cb337148 7607
43cd72b9
BW
7608/* The compute_text_actions function will build a list of potential
7609 transformation actions for code in the extended basic block of each
7610 longcall that is optimized to a direct call. From this list we
7611 generate a set of actions to actually perform that optimizes for
7612 space and, if not using size_opt, maintains branch target
7613 alignments.
e0001a05 7614
43cd72b9
BW
7615 These actions to be performed are placed on a per-section list.
7616 The actual changes are performed by relax_section() in the second
7617 pass. */
7618
7619bfd_boolean
7fa3d080
BW
7620compute_text_actions (bfd *abfd,
7621 asection *sec,
7622 struct bfd_link_info *link_info)
e0001a05 7623{
cb337148 7624 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7625 xtensa_relax_info *relax_info;
e0001a05 7626 bfd_byte *contents;
43cd72b9 7627 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7628 bfd_boolean ok = TRUE;
7629 unsigned i;
43cd72b9
BW
7630 property_table_entry *prop_table = 0;
7631 int ptblsize = 0;
7632 bfd_size_type sec_size;
b2b326d2 7633 reloc_range_list relevant_relocs;
43cd72b9 7634
43cd72b9
BW
7635 relax_info = get_xtensa_relax_info (sec);
7636 BFD_ASSERT (relax_info);
25c6282a
BW
7637 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7638
7639 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7640 if (!relax_info->is_relaxable_asm_section)
7641 return ok;
e0001a05
NC
7642
7643 internal_relocs = retrieve_internal_relocs (abfd, sec,
7644 link_info->keep_memory);
e0001a05 7645
43cd72b9
BW
7646 if (internal_relocs)
7647 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7648 internal_reloc_compare);
7649
7650 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7651 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7652 if (contents == NULL && sec_size != 0)
e0001a05
NC
7653 {
7654 ok = FALSE;
7655 goto error_return;
7656 }
7657
43cd72b9
BW
7658 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7659 XTENSA_PROP_SEC_NAME, FALSE);
7660 if (ptblsize < 0)
7661 {
7662 ok = FALSE;
7663 goto error_return;
7664 }
7665
b2b326d2
MF
7666 /* Precompute the opcode for each relocation. */
7667 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7668
7669 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7670 &relevant_relocs);
7671
43cd72b9 7672 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7673 {
7674 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7675 bfd_vma r_offset;
7676 property_table_entry *the_entry;
7677 int ptbl_idx;
7678 ebb_t *ebb;
7679 ebb_constraint ebb_table;
7680 bfd_size_type simplify_size;
7681
7682 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7683 continue;
7684 r_offset = irel->r_offset;
e0001a05 7685
43cd72b9
BW
7686 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7687 if (simplify_size == 0)
7688 {
4eca0228 7689 _bfd_error_handler
695344c0 7690 /* xgettext:c-format */
2dcf00ce 7691 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
d42c267e
AM
7692 "XTENSA_ASM_SIMPLIFY relocation; "
7693 "possible configuration mismatch"),
2dcf00ce 7694 sec->owner, sec, (uint64_t) r_offset);
43cd72b9
BW
7695 continue;
7696 }
e0001a05 7697
43cd72b9
BW
7698 /* If the instruction table is not around, then don't do this
7699 relaxation. */
7700 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7701 sec->vma + irel->r_offset);
7702 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7703 {
7704 text_action_add (&relax_info->action_list,
7705 ta_convert_longcall, sec, r_offset,
7706 0);
7707 continue;
7708 }
7709
7710 /* If the next longcall happens to be at the same address as an
7711 unreachable section of size 0, then skip forward. */
7712 ptbl_idx = the_entry - prop_table;
7713 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7714 && the_entry->size == 0
7715 && ptbl_idx + 1 < ptblsize
7716 && (prop_table[ptbl_idx + 1].address
7717 == prop_table[ptbl_idx].address))
7718 {
7719 ptbl_idx++;
7720 the_entry++;
7721 }
e0001a05 7722
99ded152 7723 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7724 /* NO_REORDER is OK */
7725 continue;
e0001a05 7726
43cd72b9
BW
7727 init_ebb_constraint (&ebb_table);
7728 ebb = &ebb_table.ebb;
7729 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7730 internal_relocs, sec->reloc_count);
7731 ebb->start_offset = r_offset + simplify_size;
7732 ebb->end_offset = r_offset + simplify_size;
7733 ebb->start_ptbl_idx = ptbl_idx;
7734 ebb->end_ptbl_idx = ptbl_idx;
7735 ebb->start_reloc_idx = i;
7736 ebb->end_reloc_idx = i;
7737
7738 if (!extend_ebb_bounds (ebb)
7739 || !compute_ebb_proposed_actions (&ebb_table)
7740 || !compute_ebb_actions (&ebb_table)
7741 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
b2b326d2
MF
7742 internal_relocs,
7743 &relevant_relocs,
7744 &ebb_table, reloc_opcodes)
43cd72b9 7745 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7746 {
43cd72b9
BW
7747 /* If anything goes wrong or we get unlucky and something does
7748 not fit, with our plan because of expansion between
7749 critical branches, just convert to a NOP. */
7750
7751 text_action_add (&relax_info->action_list,
7752 ta_convert_longcall, sec, r_offset, 0);
7753 i = ebb_table.ebb.end_reloc_idx;
7754 free_ebb_constraint (&ebb_table);
7755 continue;
e0001a05 7756 }
43cd72b9
BW
7757
7758 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7759
7760 /* Update the index so we do not go looking at the relocations
7761 we have already processed. */
7762 i = ebb_table.ebb.end_reloc_idx;
7763 free_ebb_constraint (&ebb_table);
e0001a05
NC
7764 }
7765
b2b326d2
MF
7766 free_reloc_range_list (&relevant_relocs);
7767
43cd72b9 7768#if DEBUG
4c2af04f 7769 if (action_list_count (&relax_info->action_list))
43cd72b9
BW
7770 print_action_list (stderr, &relax_info->action_list);
7771#endif
7772
7773error_return:
e0001a05
NC
7774 release_contents (sec, contents);
7775 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7776 if (prop_table)
7777 free (prop_table);
cb337148
BW
7778 if (reloc_opcodes)
7779 free (reloc_opcodes);
43cd72b9 7780
e0001a05
NC
7781 return ok;
7782}
7783
7784
64b607e6
BW
7785/* Do not widen an instruction if it is preceeded by a
7786 loop opcode. It might cause misalignment. */
7787
7788static bfd_boolean
7789prev_instr_is_a_loop (bfd_byte *contents,
7790 bfd_size_type content_length,
7791 bfd_size_type offset)
7792{
7793 xtensa_opcode prev_opcode;
7794
7795 if (offset < 3)
7796 return FALSE;
7797 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7798 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
68ffbac6 7799}
64b607e6
BW
7800
7801
43cd72b9 7802/* Find all of the possible actions for an extended basic block. */
e0001a05 7803
43cd72b9 7804bfd_boolean
7fa3d080 7805compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7806{
43cd72b9
BW
7807 const ebb_t *ebb = &ebb_table->ebb;
7808 unsigned rel_idx = ebb->start_reloc_idx;
7809 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7810 bfd_vma offset = 0;
7811 xtensa_isa isa = xtensa_default_isa;
7812 xtensa_format fmt;
7813 static xtensa_insnbuf insnbuf = NULL;
7814 static xtensa_insnbuf slotbuf = NULL;
7815
7816 if (insnbuf == NULL)
7817 {
7818 insnbuf = xtensa_insnbuf_alloc (isa);
7819 slotbuf = xtensa_insnbuf_alloc (isa);
7820 }
e0001a05 7821
43cd72b9
BW
7822 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7823 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7824
43cd72b9 7825 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7826 {
64b607e6 7827 bfd_vma start_offset, end_offset;
43cd72b9 7828 bfd_size_type insn_len;
e0001a05 7829
43cd72b9
BW
7830 start_offset = entry->address - ebb->sec->vma;
7831 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7832
43cd72b9
BW
7833 if (entry == start_entry)
7834 start_offset = ebb->start_offset;
7835 if (entry == end_entry)
7836 end_offset = ebb->end_offset;
7837 offset = start_offset;
e0001a05 7838
43cd72b9
BW
7839 if (offset == entry->address - ebb->sec->vma
7840 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7841 {
7842 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7843 BFD_ASSERT (offset != end_offset);
7844 if (offset == end_offset)
7845 return FALSE;
e0001a05 7846
43cd72b9
BW
7847 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7848 offset);
68ffbac6 7849 if (insn_len == 0)
64b607e6
BW
7850 goto decode_error;
7851
43cd72b9
BW
7852 if (check_branch_target_aligned_address (offset, insn_len))
7853 align_type = EBB_REQUIRE_TGT_ALIGN;
7854
7855 ebb_propose_action (ebb_table, align_type, 0,
7856 ta_none, offset, 0, TRUE);
7857 }
7858
7859 while (offset != end_offset)
e0001a05 7860 {
43cd72b9 7861 Elf_Internal_Rela *irel;
e0001a05 7862 xtensa_opcode opcode;
e0001a05 7863
43cd72b9
BW
7864 while (rel_idx < ebb->end_reloc_idx
7865 && (ebb->relocs[rel_idx].r_offset < offset
7866 || (ebb->relocs[rel_idx].r_offset == offset
7867 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7868 != R_XTENSA_ASM_SIMPLIFY))))
7869 rel_idx++;
7870
7871 /* Check for longcall. */
7872 irel = &ebb->relocs[rel_idx];
7873 if (irel->r_offset == offset
7874 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7875 {
7876 bfd_size_type simplify_size;
e0001a05 7877
68ffbac6 7878 simplify_size = get_asm_simplify_size (ebb->contents,
43cd72b9
BW
7879 ebb->content_length,
7880 irel->r_offset);
7881 if (simplify_size == 0)
64b607e6 7882 goto decode_error;
43cd72b9
BW
7883
7884 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7885 ta_convert_longcall, offset, 0, TRUE);
68ffbac6 7886
43cd72b9
BW
7887 offset += simplify_size;
7888 continue;
7889 }
e0001a05 7890
64b607e6
BW
7891 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7892 goto decode_error;
7893 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7894 ebb->content_length - offset);
7895 fmt = xtensa_format_decode (isa, insnbuf);
7896 if (fmt == XTENSA_UNDEFINED)
7897 goto decode_error;
7898 insn_len = xtensa_format_length (isa, fmt);
7899 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7900 goto decode_error;
7901
7902 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7903 {
64b607e6
BW
7904 offset += insn_len;
7905 continue;
43cd72b9 7906 }
64b607e6
BW
7907
7908 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7909 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7910 if (opcode == XTENSA_UNDEFINED)
7911 goto decode_error;
7912
43cd72b9 7913 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7914 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7915 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7916 {
7917 /* Add an instruction narrow action. */
7918 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7919 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7920 }
99ded152 7921 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7922 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7923 && ! prev_instr_is_a_loop (ebb->contents,
7924 ebb->content_length, offset))
43cd72b9
BW
7925 {
7926 /* Add an instruction widen action. */
7927 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7928 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7929 }
64b607e6 7930 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7931 {
7932 /* Check for branch targets. */
7933 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7934 ta_none, offset, 0, TRUE);
43cd72b9
BW
7935 }
7936
7937 offset += insn_len;
e0001a05
NC
7938 }
7939 }
7940
43cd72b9
BW
7941 if (ebb->ends_unreachable)
7942 {
7943 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7944 ta_fill, ebb->end_offset, 0, TRUE);
7945 }
e0001a05 7946
43cd72b9 7947 return TRUE;
64b607e6
BW
7948
7949 decode_error:
4eca0228 7950 _bfd_error_handler
695344c0 7951 /* xgettext:c-format */
2dcf00ce 7952 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
d42c267e 7953 "possible configuration mismatch"),
2dcf00ce 7954 ebb->sec->owner, ebb->sec, (uint64_t) offset);
64b607e6 7955 return FALSE;
43cd72b9
BW
7956}
7957
7958
7959/* After all of the information has collected about the
7960 transformations possible in an EBB, compute the appropriate actions
7961 here in compute_ebb_actions. We still must check later to make
7962 sure that the actions do not break any relocations. The algorithm
7963 used here is pretty greedy. Basically, it removes as many no-ops
7964 as possible so that the end of the EBB has the same alignment
7965 characteristics as the original. First, it uses narrowing, then
7966 fill space at the end of the EBB, and finally widenings. If that
7967 does not work, it tries again with one fewer no-op removed. The
7968 optimization will only be performed if all of the branch targets
7969 that were aligned before transformation are also aligned after the
7970 transformation.
7971
7972 When the size_opt flag is set, ignore the branch target alignments,
7973 narrow all wide instructions, and remove all no-ops unless the end
7974 of the EBB prevents it. */
7975
7976bfd_boolean
7fa3d080 7977compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7978{
7979 unsigned i = 0;
7980 unsigned j;
7981 int removed_bytes = 0;
7982 ebb_t *ebb = &ebb_table->ebb;
7983 unsigned seg_idx_start = 0;
7984 unsigned seg_idx_end = 0;
7985
7986 /* We perform this like the assembler relaxation algorithm: Start by
7987 assuming all instructions are narrow and all no-ops removed; then
7988 walk through.... */
7989
7990 /* For each segment of this that has a solid constraint, check to
7991 see if there are any combinations that will keep the constraint.
7992 If so, use it. */
7993 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7994 {
43cd72b9
BW
7995 bfd_boolean requires_text_end_align = FALSE;
7996 unsigned longcall_count = 0;
7997 unsigned longcall_convert_count = 0;
7998 unsigned narrowable_count = 0;
7999 unsigned narrowable_convert_count = 0;
8000 unsigned widenable_count = 0;
8001 unsigned widenable_convert_count = 0;
e0001a05 8002
43cd72b9
BW
8003 proposed_action *action = NULL;
8004 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 8005
43cd72b9 8006 seg_idx_start = seg_idx_end;
e0001a05 8007
43cd72b9
BW
8008 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8009 {
8010 action = &ebb_table->actions[i];
8011 if (action->action == ta_convert_longcall)
8012 longcall_count++;
8013 if (action->action == ta_narrow_insn)
8014 narrowable_count++;
8015 if (action->action == ta_widen_insn)
8016 widenable_count++;
8017 if (action->action == ta_fill)
8018 break;
8019 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8020 break;
8021 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8022 && !elf32xtensa_size_opt)
8023 break;
8024 }
8025 seg_idx_end = i;
e0001a05 8026
43cd72b9
BW
8027 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8028 requires_text_end_align = TRUE;
e0001a05 8029
43cd72b9
BW
8030 if (elf32xtensa_size_opt && !requires_text_end_align
8031 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8032 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8033 {
8034 longcall_convert_count = longcall_count;
8035 narrowable_convert_count = narrowable_count;
8036 widenable_convert_count = 0;
8037 }
8038 else
8039 {
8040 /* There is a constraint. Convert the max number of longcalls. */
8041 narrowable_convert_count = 0;
8042 longcall_convert_count = 0;
8043 widenable_convert_count = 0;
e0001a05 8044
43cd72b9 8045 for (j = 0; j < longcall_count; j++)
e0001a05 8046 {
43cd72b9
BW
8047 int removed = (longcall_count - j) * 3 & (align - 1);
8048 unsigned desire_narrow = (align - removed) & (align - 1);
8049 unsigned desire_widen = removed;
8050 if (desire_narrow <= narrowable_count)
8051 {
8052 narrowable_convert_count = desire_narrow;
8053 narrowable_convert_count +=
8054 (align * ((narrowable_count - narrowable_convert_count)
8055 / align));
8056 longcall_convert_count = (longcall_count - j);
8057 widenable_convert_count = 0;
8058 break;
8059 }
8060 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8061 {
8062 narrowable_convert_count = 0;
8063 longcall_convert_count = longcall_count - j;
8064 widenable_convert_count = desire_widen;
8065 break;
8066 }
8067 }
8068 }
e0001a05 8069
43cd72b9
BW
8070 /* Now the number of conversions are saved. Do them. */
8071 for (i = seg_idx_start; i < seg_idx_end; i++)
8072 {
8073 action = &ebb_table->actions[i];
8074 switch (action->action)
8075 {
8076 case ta_convert_longcall:
8077 if (longcall_convert_count != 0)
8078 {
8079 action->action = ta_remove_longcall;
8080 action->do_action = TRUE;
8081 action->removed_bytes += 3;
8082 longcall_convert_count--;
8083 }
8084 break;
8085 case ta_narrow_insn:
8086 if (narrowable_convert_count != 0)
8087 {
8088 action->do_action = TRUE;
8089 action->removed_bytes += 1;
8090 narrowable_convert_count--;
8091 }
8092 break;
8093 case ta_widen_insn:
8094 if (widenable_convert_count != 0)
8095 {
8096 action->do_action = TRUE;
8097 action->removed_bytes -= 1;
8098 widenable_convert_count--;
8099 }
8100 break;
8101 default:
8102 break;
e0001a05 8103 }
43cd72b9
BW
8104 }
8105 }
e0001a05 8106
43cd72b9
BW
8107 /* Now we move on to some local opts. Try to remove each of the
8108 remaining longcalls. */
e0001a05 8109
43cd72b9
BW
8110 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8111 {
8112 removed_bytes = 0;
8113 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8114 {
43cd72b9
BW
8115 int old_removed_bytes = removed_bytes;
8116 proposed_action *action = &ebb_table->actions[i];
8117
8118 if (action->do_action && action->action == ta_convert_longcall)
8119 {
8120 bfd_boolean bad_alignment = FALSE;
8121 removed_bytes += 3;
8122 for (j = i + 1; j < ebb_table->action_count; j++)
8123 {
8124 proposed_action *new_action = &ebb_table->actions[j];
8125 bfd_vma offset = new_action->offset;
8126 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8127 {
8128 if (!check_branch_target_aligned
8129 (ebb_table->ebb.contents,
8130 ebb_table->ebb.content_length,
8131 offset, offset - removed_bytes))
8132 {
8133 bad_alignment = TRUE;
8134 break;
8135 }
8136 }
8137 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8138 {
8139 if (!check_loop_aligned (ebb_table->ebb.contents,
8140 ebb_table->ebb.content_length,
8141 offset,
8142 offset - removed_bytes))
8143 {
8144 bad_alignment = TRUE;
8145 break;
8146 }
8147 }
8148 if (new_action->action == ta_narrow_insn
8149 && !new_action->do_action
8150 && ebb_table->ebb.sec->alignment_power == 2)
8151 {
8152 /* Narrow an instruction and we are done. */
8153 new_action->do_action = TRUE;
8154 new_action->removed_bytes += 1;
8155 bad_alignment = FALSE;
8156 break;
8157 }
8158 if (new_action->action == ta_widen_insn
8159 && new_action->do_action
8160 && ebb_table->ebb.sec->alignment_power == 2)
8161 {
8162 /* Narrow an instruction and we are done. */
8163 new_action->do_action = FALSE;
8164 new_action->removed_bytes += 1;
8165 bad_alignment = FALSE;
8166 break;
8167 }
5c5d6806
BW
8168 if (new_action->do_action)
8169 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
8170 }
8171 if (!bad_alignment)
8172 {
8173 action->removed_bytes += 3;
8174 action->action = ta_remove_longcall;
8175 action->do_action = TRUE;
8176 }
8177 }
8178 removed_bytes = old_removed_bytes;
8179 if (action->do_action)
8180 removed_bytes += action->removed_bytes;
e0001a05
NC
8181 }
8182 }
8183
43cd72b9
BW
8184 removed_bytes = 0;
8185 for (i = 0; i < ebb_table->action_count; ++i)
8186 {
8187 proposed_action *action = &ebb_table->actions[i];
8188 if (action->do_action)
8189 removed_bytes += action->removed_bytes;
8190 }
8191
8192 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8193 && ebb->ends_unreachable)
8194 {
8195 proposed_action *action;
8196 int br;
8197 int extra_space;
8198
8199 BFD_ASSERT (ebb_table->action_count != 0);
8200 action = &ebb_table->actions[ebb_table->action_count - 1];
8201 BFD_ASSERT (action->action == ta_fill);
8202 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8203
4b8e28c7 8204 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
43cd72b9
BW
8205 br = action->removed_bytes + removed_bytes + extra_space;
8206 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8207
8208 action->removed_bytes = extra_space - br;
8209 }
8210 return TRUE;
e0001a05
NC
8211}
8212
8213
03e94c08
BW
8214/* The xlate_map is a sorted array of address mappings designed to
8215 answer the offset_with_removed_text() query with a binary search instead
8216 of a linear search through the section's action_list. */
8217
8218typedef struct xlate_map_entry xlate_map_entry_t;
8219typedef struct xlate_map xlate_map_t;
8220
8221struct xlate_map_entry
8222{
0854d504
MF
8223 bfd_vma orig_address;
8224 bfd_vma new_address;
03e94c08
BW
8225 unsigned size;
8226};
8227
8228struct xlate_map
8229{
8230 unsigned entry_count;
8231 xlate_map_entry_t *entry;
8232};
8233
8234
68ffbac6 8235static int
03e94c08
BW
8236xlate_compare (const void *a_v, const void *b_v)
8237{
8238 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8239 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8240 if (a->orig_address < b->orig_address)
8241 return -1;
8242 if (a->orig_address > (b->orig_address + b->size - 1))
8243 return 1;
8244 return 0;
8245}
8246
8247
8248static bfd_vma
8249xlate_offset_with_removed_text (const xlate_map_t *map,
8250 text_action_list *action_list,
8251 bfd_vma offset)
8252{
03e94c08
BW
8253 void *r;
8254 xlate_map_entry_t *e;
0854d504 8255 struct xlate_map_entry se;
03e94c08
BW
8256
8257 if (map == NULL)
8258 return offset_with_removed_text (action_list, offset);
8259
8260 if (map->entry_count == 0)
8261 return offset;
8262
0854d504
MF
8263 se.orig_address = offset;
8264 r = bsearch (&se, map->entry, map->entry_count,
03e94c08
BW
8265 sizeof (xlate_map_entry_t), &xlate_compare);
8266 e = (xlate_map_entry_t *) r;
68ffbac6 8267
0854d504
MF
8268 /* There could be a jump past the end of the section,
8269 allow it using the last xlate map entry to translate its address. */
8270 if (e == NULL)
8271 {
8272 e = map->entry + map->entry_count - 1;
8273 if (xlate_compare (&se, e) <= 0)
8274 e = NULL;
8275 }
03e94c08
BW
8276 BFD_ASSERT (e != NULL);
8277 if (e == NULL)
8278 return offset;
8279 return e->new_address - e->orig_address + offset;
8280}
8281
4c2af04f
MF
8282typedef struct xlate_map_context_struct xlate_map_context;
8283struct xlate_map_context_struct
8284{
8285 xlate_map_t *map;
8286 xlate_map_entry_t *current_entry;
8287 int removed;
8288};
8289
8290static int
8291xlate_map_fn (splay_tree_node node, void *p)
8292{
8293 text_action *r = (text_action *)node->value;
8294 xlate_map_context *ctx = p;
8295 unsigned orig_size = 0;
8296
8297 switch (r->action)
8298 {
8299 case ta_none:
8300 case ta_remove_insn:
8301 case ta_convert_longcall:
8302 case ta_remove_literal:
8303 case ta_add_literal:
8304 break;
8305 case ta_remove_longcall:
8306 orig_size = 6;
8307 break;
8308 case ta_narrow_insn:
8309 orig_size = 3;
8310 break;
8311 case ta_widen_insn:
8312 orig_size = 2;
8313 break;
8314 case ta_fill:
8315 break;
8316 }
8317 ctx->current_entry->size =
8318 r->offset + orig_size - ctx->current_entry->orig_address;
8319 if (ctx->current_entry->size != 0)
8320 {
8321 ctx->current_entry++;
8322 ctx->map->entry_count++;
8323 }
8324 ctx->current_entry->orig_address = r->offset + orig_size;
8325 ctx->removed += r->removed_bytes;
8326 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8327 ctx->current_entry->size = 0;
8328 return 0;
8329}
03e94c08
BW
8330
8331/* Build a binary searchable offset translation map from a section's
8332 action list. */
8333
8334static xlate_map_t *
8335build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8336{
03e94c08
BW
8337 text_action_list *action_list = &relax_info->action_list;
8338 unsigned num_actions = 0;
4c2af04f 8339 xlate_map_context ctx;
03e94c08 8340
4c2af04f
MF
8341 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8342
8343 if (ctx.map == NULL)
03e94c08
BW
8344 return NULL;
8345
8346 num_actions = action_list_count (action_list);
4c2af04f 8347 ctx.map->entry = (xlate_map_entry_t *)
03e94c08 8348 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
4c2af04f 8349 if (ctx.map->entry == NULL)
03e94c08 8350 {
4c2af04f 8351 free (ctx.map);
03e94c08
BW
8352 return NULL;
8353 }
4c2af04f 8354 ctx.map->entry_count = 0;
68ffbac6 8355
4c2af04f
MF
8356 ctx.removed = 0;
8357 ctx.current_entry = &ctx.map->entry[0];
03e94c08 8358
4c2af04f
MF
8359 ctx.current_entry->orig_address = 0;
8360 ctx.current_entry->new_address = 0;
8361 ctx.current_entry->size = 0;
03e94c08 8362
4c2af04f 8363 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
03e94c08 8364
4c2af04f
MF
8365 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8366 - ctx.current_entry->orig_address);
8367 if (ctx.current_entry->size != 0)
8368 ctx.map->entry_count++;
03e94c08 8369
4c2af04f 8370 return ctx.map;
03e94c08
BW
8371}
8372
8373
8374/* Free an offset translation map. */
8375
68ffbac6 8376static void
03e94c08
BW
8377free_xlate_map (xlate_map_t *map)
8378{
8379 if (map && map->entry)
8380 free (map->entry);
8381 if (map)
8382 free (map);
8383}
8384
8385
43cd72b9
BW
8386/* Use check_section_ebb_pcrels_fit to make sure that all of the
8387 relocations in a section will fit if a proposed set of actions
8388 are performed. */
e0001a05 8389
43cd72b9 8390static bfd_boolean
7fa3d080
BW
8391check_section_ebb_pcrels_fit (bfd *abfd,
8392 asection *sec,
8393 bfd_byte *contents,
8394 Elf_Internal_Rela *internal_relocs,
b2b326d2 8395 reloc_range_list *relevant_relocs,
cb337148
BW
8396 const ebb_constraint *constraint,
8397 const xtensa_opcode *reloc_opcodes)
e0001a05 8398{
43cd72b9 8399 unsigned i, j;
b2b326d2 8400 unsigned n = sec->reloc_count;
43cd72b9 8401 Elf_Internal_Rela *irel;
03e94c08
BW
8402 xlate_map_t *xmap = NULL;
8403 bfd_boolean ok = TRUE;
43cd72b9 8404 xtensa_relax_info *relax_info;
b2b326d2 8405 reloc_range_list_entry *entry = NULL;
e0001a05 8406
43cd72b9 8407 relax_info = get_xtensa_relax_info (sec);
e0001a05 8408
03e94c08
BW
8409 if (relax_info && sec->reloc_count > 100)
8410 {
8411 xmap = build_xlate_map (sec, relax_info);
8412 /* NULL indicates out of memory, but the slow version
8413 can still be used. */
8414 }
8415
b2b326d2
MF
8416 if (relevant_relocs && constraint->action_count)
8417 {
8418 if (!relevant_relocs->ok)
8419 {
8420 ok = FALSE;
8421 n = 0;
8422 }
8423 else
8424 {
8425 bfd_vma min_offset, max_offset;
8426 min_offset = max_offset = constraint->actions[0].offset;
8427
8428 for (i = 1; i < constraint->action_count; ++i)
8429 {
8430 proposed_action *action = &constraint->actions[i];
8431 bfd_vma offset = action->offset;
8432
8433 if (offset < min_offset)
8434 min_offset = offset;
8435 if (offset > max_offset)
8436 max_offset = offset;
8437 }
8438 reloc_range_list_update_range (relevant_relocs, min_offset,
8439 max_offset);
8440 n = relevant_relocs->n_list;
8441 entry = &relevant_relocs->list_root;
8442 }
8443 }
8444 else
8445 {
8446 relevant_relocs = NULL;
8447 }
8448
8449 for (i = 0; i < n; i++)
43cd72b9
BW
8450 {
8451 r_reloc r_rel;
8452 bfd_vma orig_self_offset, orig_target_offset;
8453 bfd_vma self_offset, target_offset;
8454 int r_type;
8455 reloc_howto_type *howto;
8456 int self_removed_bytes, target_removed_bytes;
e0001a05 8457
b2b326d2
MF
8458 if (relevant_relocs)
8459 {
8460 entry = entry->next;
8461 irel = entry->irel;
8462 }
8463 else
8464 {
8465 irel = internal_relocs + i;
8466 }
43cd72b9 8467 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 8468
43cd72b9
BW
8469 howto = &elf_howto_table[r_type];
8470 /* We maintain the required invariant: PC-relative relocations
8471 that fit before linking must fit after linking. Thus we only
8472 need to deal with relocations to the same section that are
8473 PC-relative. */
1bbb5f21
BW
8474 if (r_type == R_XTENSA_ASM_SIMPLIFY
8475 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
8476 || !howto->pc_relative)
8477 continue;
e0001a05 8478
43cd72b9
BW
8479 r_reloc_init (&r_rel, abfd, irel, contents,
8480 bfd_get_section_limit (abfd, sec));
e0001a05 8481
43cd72b9
BW
8482 if (r_reloc_get_section (&r_rel) != sec)
8483 continue;
e0001a05 8484
43cd72b9
BW
8485 orig_self_offset = irel->r_offset;
8486 orig_target_offset = r_rel.target_offset;
e0001a05 8487
43cd72b9
BW
8488 self_offset = orig_self_offset;
8489 target_offset = orig_target_offset;
8490
8491 if (relax_info)
8492 {
03e94c08
BW
8493 self_offset =
8494 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8495 orig_self_offset);
8496 target_offset =
8497 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8498 orig_target_offset);
43cd72b9
BW
8499 }
8500
8501 self_removed_bytes = 0;
8502 target_removed_bytes = 0;
8503
8504 for (j = 0; j < constraint->action_count; ++j)
8505 {
8506 proposed_action *action = &constraint->actions[j];
8507 bfd_vma offset = action->offset;
8508 int removed_bytes = action->removed_bytes;
8509 if (offset < orig_self_offset
8510 || (offset == orig_self_offset && action->action == ta_fill
8511 && action->removed_bytes < 0))
8512 self_removed_bytes += removed_bytes;
8513 if (offset < orig_target_offset
8514 || (offset == orig_target_offset && action->action == ta_fill
8515 && action->removed_bytes < 0))
8516 target_removed_bytes += removed_bytes;
8517 }
8518 self_offset -= self_removed_bytes;
8519 target_offset -= target_removed_bytes;
8520
8521 /* Try to encode it. Get the operand and check. */
8522 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8523 {
8524 /* None of the current alternate relocs are PC-relative,
8525 and only PC-relative relocs matter here. */
8526 }
8527 else
8528 {
8529 xtensa_opcode opcode;
8530 int opnum;
8531
b2b326d2 8532 if (relevant_relocs)
03e94c08 8533 {
b2b326d2
MF
8534 opcode = entry->opcode;
8535 opnum = entry->opnum;
03e94c08 8536 }
b2b326d2 8537 else
03e94c08 8538 {
b2b326d2
MF
8539 if (reloc_opcodes)
8540 opcode = reloc_opcodes[relevant_relocs ?
8541 (unsigned)(entry - relevant_relocs->reloc) : i];
8542 else
8543 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8544 if (opcode == XTENSA_UNDEFINED)
8545 {
8546 ok = FALSE;
8547 break;
8548 }
8549
8550 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8551 if (opnum == XTENSA_UNDEFINED)
8552 {
8553 ok = FALSE;
8554 break;
8555 }
03e94c08 8556 }
43cd72b9
BW
8557
8558 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8559 {
8560 ok = FALSE;
8561 break;
8562 }
43cd72b9
BW
8563 }
8564 }
8565
03e94c08
BW
8566 if (xmap)
8567 free_xlate_map (xmap);
8568
8569 return ok;
43cd72b9
BW
8570}
8571
8572
8573static bfd_boolean
7fa3d080 8574check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8575{
8576 int removed = 0;
8577 unsigned i;
8578
8579 for (i = 0; i < constraint->action_count; i++)
8580 {
8581 const proposed_action *action = &constraint->actions[i];
8582 if (action->do_action)
8583 removed += action->removed_bytes;
8584 }
8585 if (removed < 0)
e0001a05
NC
8586 return FALSE;
8587
8588 return TRUE;
8589}
8590
8591
43cd72b9 8592void
7fa3d080
BW
8593text_action_add_proposed (text_action_list *l,
8594 const ebb_constraint *ebb_table,
8595 asection *sec)
e0001a05
NC
8596{
8597 unsigned i;
8598
43cd72b9 8599 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8600 {
43cd72b9 8601 proposed_action *action = &ebb_table->actions[i];
e0001a05 8602
43cd72b9 8603 if (!action->do_action)
e0001a05 8604 continue;
43cd72b9
BW
8605 switch (action->action)
8606 {
8607 case ta_remove_insn:
8608 case ta_remove_longcall:
8609 case ta_convert_longcall:
8610 case ta_narrow_insn:
8611 case ta_widen_insn:
8612 case ta_fill:
8613 case ta_remove_literal:
8614 text_action_add (l, action->action, sec, action->offset,
8615 action->removed_bytes);
8616 break;
8617 case ta_none:
8618 break;
8619 default:
8620 BFD_ASSERT (0);
8621 break;
8622 }
e0001a05 8623 }
43cd72b9 8624}
e0001a05 8625
43cd72b9
BW
8626
8627int
4b8e28c7 8628xtensa_compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8629{
8630 int fill_extra_space;
8631
8632 if (!entry)
8633 return 0;
8634
8635 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8636 return 0;
8637
8638 fill_extra_space = entry->size;
8639 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8640 {
8641 /* Fill bytes for alignment:
8642 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8643 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8644 int nsm = (1 << pow) - 1;
8645 bfd_vma addr = entry->address + entry->size;
8646 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8647 fill_extra_space += align_fill;
8648 }
8649 return fill_extra_space;
e0001a05
NC
8650}
8651
43cd72b9 8652\f
e0001a05
NC
8653/* First relaxation pass. */
8654
43cd72b9
BW
8655/* If the section contains relaxable literals, check each literal to
8656 see if it has the same value as another literal that has already
8657 been seen, either in the current section or a previous one. If so,
8658 add an entry to the per-section list of removed literals. The
e0001a05
NC
8659 actual changes are deferred until the next pass. */
8660
68ffbac6 8661static bfd_boolean
7fa3d080
BW
8662compute_removed_literals (bfd *abfd,
8663 asection *sec,
8664 struct bfd_link_info *link_info,
8665 value_map_hash_table *values)
e0001a05
NC
8666{
8667 xtensa_relax_info *relax_info;
8668 bfd_byte *contents;
8669 Elf_Internal_Rela *internal_relocs;
43cd72b9 8670 source_reloc *src_relocs, *rel;
e0001a05 8671 bfd_boolean ok = TRUE;
43cd72b9
BW
8672 property_table_entry *prop_table = NULL;
8673 int ptblsize;
8674 int i, prev_i;
8675 bfd_boolean last_loc_is_prev = FALSE;
8676 bfd_vma last_target_offset = 0;
8677 section_cache_t target_sec_cache;
8678 bfd_size_type sec_size;
8679
8680 init_section_cache (&target_sec_cache);
e0001a05
NC
8681
8682 /* Do nothing if it is not a relaxable literal section. */
8683 relax_info = get_xtensa_relax_info (sec);
8684 BFD_ASSERT (relax_info);
e0001a05
NC
8685 if (!relax_info->is_relaxable_literal_section)
8686 return ok;
8687
68ffbac6 8688 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
8689 link_info->keep_memory);
8690
43cd72b9 8691 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8692 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8693 if (contents == NULL && sec_size != 0)
e0001a05
NC
8694 {
8695 ok = FALSE;
8696 goto error_return;
8697 }
8698
8699 /* Sort the source_relocs by target offset. */
8700 src_relocs = relax_info->src_relocs;
8701 qsort (src_relocs, relax_info->src_count,
8702 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8703 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8704 internal_reloc_compare);
e0001a05 8705
43cd72b9
BW
8706 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8707 XTENSA_PROP_SEC_NAME, FALSE);
8708 if (ptblsize < 0)
8709 {
8710 ok = FALSE;
8711 goto error_return;
8712 }
8713
8714 prev_i = -1;
e0001a05
NC
8715 for (i = 0; i < relax_info->src_count; i++)
8716 {
e0001a05 8717 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8718
8719 rel = &src_relocs[i];
43cd72b9
BW
8720 if (get_l32r_opcode () != rel->opcode)
8721 continue;
e0001a05
NC
8722 irel = get_irel_at_offset (sec, internal_relocs,
8723 rel->r_rel.target_offset);
8724
43cd72b9
BW
8725 /* If the relocation on this is not a simple R_XTENSA_32 or
8726 R_XTENSA_PLT then do not consider it. This may happen when
8727 the difference of two symbols is used in a literal. */
8728 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8729 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8730 continue;
8731
e0001a05
NC
8732 /* If the target_offset for this relocation is the same as the
8733 previous relocation, then we've already considered whether the
8734 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8735 if (i != 0 && prev_i != -1
8736 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8737 continue;
43cd72b9
BW
8738 prev_i = i;
8739
68ffbac6 8740 if (last_loc_is_prev &&
43cd72b9
BW
8741 last_target_offset + 4 != rel->r_rel.target_offset)
8742 last_loc_is_prev = FALSE;
e0001a05
NC
8743
8744 /* Check if the relocation was from an L32R that is being removed
8745 because a CALLX was converted to a direct CALL, and check if
8746 there are no other relocations to the literal. */
68ffbac6 8747 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
99ded152 8748 sec, prop_table, ptblsize))
e0001a05 8749 {
43cd72b9
BW
8750 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8751 irel, rel, prop_table, ptblsize))
e0001a05 8752 {
43cd72b9
BW
8753 ok = FALSE;
8754 goto error_return;
e0001a05 8755 }
43cd72b9 8756 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8757 continue;
8758 }
8759
43cd72b9 8760 if (!identify_literal_placement (abfd, sec, contents, link_info,
68ffbac6
L
8761 values,
8762 &last_loc_is_prev, irel,
43cd72b9
BW
8763 relax_info->src_count - i, rel,
8764 prop_table, ptblsize,
8765 &target_sec_cache, rel->is_abs_literal))
e0001a05 8766 {
43cd72b9
BW
8767 ok = FALSE;
8768 goto error_return;
8769 }
8770 last_target_offset = rel->r_rel.target_offset;
8771 }
e0001a05 8772
43cd72b9
BW
8773#if DEBUG
8774 print_removed_literals (stderr, &relax_info->removed_list);
8775 print_action_list (stderr, &relax_info->action_list);
8776#endif /* DEBUG */
8777
8778error_return:
65e911f9
AM
8779 if (prop_table)
8780 free (prop_table);
8781 free_section_cache (&target_sec_cache);
43cd72b9
BW
8782
8783 release_contents (sec, contents);
8784 release_internal_relocs (sec, internal_relocs);
8785 return ok;
8786}
8787
8788
8789static Elf_Internal_Rela *
7fa3d080
BW
8790get_irel_at_offset (asection *sec,
8791 Elf_Internal_Rela *internal_relocs,
8792 bfd_vma offset)
43cd72b9
BW
8793{
8794 unsigned i;
8795 Elf_Internal_Rela *irel;
8796 unsigned r_type;
8797 Elf_Internal_Rela key;
8798
68ffbac6 8799 if (!internal_relocs)
43cd72b9
BW
8800 return NULL;
8801
8802 key.r_offset = offset;
8803 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8804 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8805 if (!irel)
8806 return NULL;
8807
8808 /* bsearch does not guarantee which will be returned if there are
8809 multiple matches. We need the first that is not an alignment. */
8810 i = irel - internal_relocs;
8811 while (i > 0)
8812 {
8813 if (internal_relocs[i-1].r_offset != offset)
8814 break;
8815 i--;
8816 }
8817 for ( ; i < sec->reloc_count; i++)
8818 {
8819 irel = &internal_relocs[i];
8820 r_type = ELF32_R_TYPE (irel->r_info);
8821 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8822 return irel;
8823 }
8824
8825 return NULL;
8826}
8827
8828
8829bfd_boolean
7fa3d080
BW
8830is_removable_literal (const source_reloc *rel,
8831 int i,
8832 const source_reloc *src_relocs,
99ded152
BW
8833 int src_count,
8834 asection *sec,
8835 property_table_entry *prop_table,
8836 int ptblsize)
43cd72b9
BW
8837{
8838 const source_reloc *curr_rel;
99ded152
BW
8839 property_table_entry *entry;
8840
43cd72b9
BW
8841 if (!rel->is_null)
8842 return FALSE;
68ffbac6
L
8843
8844 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
99ded152
BW
8845 sec->vma + rel->r_rel.target_offset);
8846 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8847 return FALSE;
8848
43cd72b9
BW
8849 for (++i; i < src_count; ++i)
8850 {
8851 curr_rel = &src_relocs[i];
8852 /* If all others have the same target offset.... */
8853 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8854 return TRUE;
8855
8856 if (!curr_rel->is_null
8857 && !xtensa_is_property_section (curr_rel->source_sec)
8858 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8859 return FALSE;
8860 }
8861 return TRUE;
8862}
8863
8864
68ffbac6 8865bfd_boolean
7fa3d080
BW
8866remove_dead_literal (bfd *abfd,
8867 asection *sec,
8868 struct bfd_link_info *link_info,
8869 Elf_Internal_Rela *internal_relocs,
8870 Elf_Internal_Rela *irel,
8871 source_reloc *rel,
8872 property_table_entry *prop_table,
8873 int ptblsize)
43cd72b9
BW
8874{
8875 property_table_entry *entry;
8876 xtensa_relax_info *relax_info;
8877
8878 relax_info = get_xtensa_relax_info (sec);
8879 if (!relax_info)
8880 return FALSE;
8881
8882 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8883 sec->vma + rel->r_rel.target_offset);
8884
8885 /* Mark the unused literal so that it will be removed. */
8886 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8887
8888 text_action_add (&relax_info->action_list,
8889 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8890
8891 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8892 if (sec->alignment_power > 2)
43cd72b9
BW
8893 {
8894 int fill_extra_space;
8895 bfd_vma entry_sec_offset;
8896 text_action *fa;
8897 property_table_entry *the_add_entry;
8898 int removed_diff;
8899
8900 if (entry)
8901 entry_sec_offset = entry->address - sec->vma + entry->size;
8902 else
8903 entry_sec_offset = rel->r_rel.target_offset + 4;
8904
8905 /* If the literal range is at the end of the section,
8906 do not add fill. */
8907 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8908 entry_sec_offset);
4b8e28c7 8909 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
43cd72b9
BW
8910
8911 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8912 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8913 -4, fill_extra_space);
8914 if (fa)
8915 adjust_fill_action (fa, removed_diff);
8916 else
8917 text_action_add (&relax_info->action_list,
8918 ta_fill, sec, entry_sec_offset, removed_diff);
8919 }
8920
8921 /* Zero out the relocation on this literal location. */
8922 if (irel)
8923 {
8924 if (elf_hash_table (link_info)->dynamic_sections_created)
8925 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8926
8927 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8928 pin_internal_relocs (sec, internal_relocs);
8929 }
8930
8931 /* Do not modify "last_loc_is_prev". */
8932 return TRUE;
8933}
8934
8935
68ffbac6 8936bfd_boolean
7fa3d080
BW
8937identify_literal_placement (bfd *abfd,
8938 asection *sec,
8939 bfd_byte *contents,
8940 struct bfd_link_info *link_info,
8941 value_map_hash_table *values,
8942 bfd_boolean *last_loc_is_prev_p,
8943 Elf_Internal_Rela *irel,
8944 int remaining_src_rels,
8945 source_reloc *rel,
8946 property_table_entry *prop_table,
8947 int ptblsize,
8948 section_cache_t *target_sec_cache,
8949 bfd_boolean is_abs_literal)
43cd72b9
BW
8950{
8951 literal_value val;
8952 value_map *val_map;
8953 xtensa_relax_info *relax_info;
8954 bfd_boolean literal_placed = FALSE;
8955 r_reloc r_rel;
8956 unsigned long value;
8957 bfd_boolean final_static_link;
8958 bfd_size_type sec_size;
8959
8960 relax_info = get_xtensa_relax_info (sec);
8961 if (!relax_info)
8962 return FALSE;
8963
8964 sec_size = bfd_get_section_limit (abfd, sec);
8965
8966 final_static_link =
0e1862bb 8967 (!bfd_link_relocatable (link_info)
43cd72b9
BW
8968 && !elf_hash_table (link_info)->dynamic_sections_created);
8969
8970 /* The placement algorithm first checks to see if the literal is
8971 already in the value map. If so and the value map is reachable
8972 from all uses, then the literal is moved to that location. If
8973 not, then we identify the last location where a fresh literal was
8974 placed. If the literal can be safely moved there, then we do so.
8975 If not, then we assume that the literal is not to move and leave
8976 the literal where it is, marking it as the last literal
8977 location. */
8978
8979 /* Find the literal value. */
8980 value = 0;
8981 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8982 if (!irel)
8983 {
8984 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8985 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8986 }
8987 init_literal_value (&val, &r_rel, value, is_abs_literal);
8988
8989 /* Check if we've seen another literal with the same value that
8990 is in the same output section. */
8991 val_map = value_map_get_cached_value (values, &val, final_static_link);
8992
8993 if (val_map
8994 && (r_reloc_get_section (&val_map->loc)->output_section
8995 == sec->output_section)
8996 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8997 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8998 {
8999 /* No change to last_loc_is_prev. */
9000 literal_placed = TRUE;
9001 }
9002
9003 /* For relocatable links, do not try to move literals. To do it
9004 correctly might increase the number of relocations in an input
9005 section making the default relocatable linking fail. */
0e1862bb 9006 if (!bfd_link_relocatable (link_info) && !literal_placed
43cd72b9
BW
9007 && values->has_last_loc && !(*last_loc_is_prev_p))
9008 {
9009 asection *target_sec = r_reloc_get_section (&values->last_loc);
9010 if (target_sec && target_sec->output_section == sec->output_section)
9011 {
9012 /* Increment the virtual offset. */
9013 r_reloc try_loc = values->last_loc;
9014 try_loc.virtual_offset += 4;
9015
9016 /* There is a last loc that was in the same output section. */
9017 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9018 && move_shared_literal (sec, link_info, rel,
68ffbac6 9019 prop_table, ptblsize,
43cd72b9 9020 &try_loc, &val, target_sec_cache))
e0001a05 9021 {
43cd72b9
BW
9022 values->last_loc.virtual_offset += 4;
9023 literal_placed = TRUE;
9024 if (!val_map)
9025 val_map = add_value_map (values, &val, &try_loc,
9026 final_static_link);
9027 else
9028 val_map->loc = try_loc;
e0001a05
NC
9029 }
9030 }
43cd72b9
BW
9031 }
9032
9033 if (!literal_placed)
9034 {
9035 /* Nothing worked, leave the literal alone but update the last loc. */
9036 values->has_last_loc = TRUE;
9037 values->last_loc = rel->r_rel;
9038 if (!val_map)
9039 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 9040 else
43cd72b9
BW
9041 val_map->loc = rel->r_rel;
9042 *last_loc_is_prev_p = TRUE;
e0001a05
NC
9043 }
9044
43cd72b9 9045 return TRUE;
e0001a05
NC
9046}
9047
9048
9049/* Check if the original relocations (presumably on L32R instructions)
9050 identified by reloc[0..N] can be changed to reference the literal
9051 identified by r_rel. If r_rel is out of range for any of the
9052 original relocations, then we don't want to coalesce the original
9053 literal with the one at r_rel. We only check reloc[0..N], where the
9054 offsets are all the same as for reloc[0] (i.e., they're all
9055 referencing the same literal) and where N is also bounded by the
9056 number of remaining entries in the "reloc" array. The "reloc" array
9057 is sorted by target offset so we know all the entries for the same
9058 literal will be contiguous. */
9059
9060static bfd_boolean
7fa3d080
BW
9061relocations_reach (source_reloc *reloc,
9062 int remaining_relocs,
9063 const r_reloc *r_rel)
e0001a05
NC
9064{
9065 bfd_vma from_offset, source_address, dest_address;
9066 asection *sec;
9067 int i;
9068
9069 if (!r_reloc_is_defined (r_rel))
9070 return FALSE;
9071
9072 sec = r_reloc_get_section (r_rel);
9073 from_offset = reloc[0].r_rel.target_offset;
9074
9075 for (i = 0; i < remaining_relocs; i++)
9076 {
9077 if (reloc[i].r_rel.target_offset != from_offset)
9078 break;
9079
9080 /* Ignore relocations that have been removed. */
9081 if (reloc[i].is_null)
9082 continue;
9083
9084 /* The original and new output section for these must be the same
07d6d2b8 9085 in order to coalesce. */
e0001a05
NC
9086 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9087 != sec->output_section)
9088 return FALSE;
9089
d638e0ac
BW
9090 /* Absolute literals in the same output section can always be
9091 combined. */
9092 if (reloc[i].is_abs_literal)
9093 continue;
9094
43cd72b9
BW
9095 /* A literal with no PC-relative relocations can be moved anywhere. */
9096 if (reloc[i].opnd != -1)
e0001a05
NC
9097 {
9098 /* Otherwise, check to see that it fits. */
9099 source_address = (reloc[i].source_sec->output_section->vma
9100 + reloc[i].source_sec->output_offset
9101 + reloc[i].r_rel.rela.r_offset);
9102 dest_address = (sec->output_section->vma
9103 + sec->output_offset
9104 + r_rel->target_offset);
9105
43cd72b9
BW
9106 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9107 source_address, dest_address))
e0001a05
NC
9108 return FALSE;
9109 }
9110 }
9111
9112 return TRUE;
9113}
9114
9115
43cd72b9
BW
9116/* Move a literal to another literal location because it is
9117 the same as the other literal value. */
e0001a05 9118
68ffbac6 9119static bfd_boolean
7fa3d080
BW
9120coalesce_shared_literal (asection *sec,
9121 source_reloc *rel,
9122 property_table_entry *prop_table,
9123 int ptblsize,
9124 value_map *val_map)
e0001a05 9125{
43cd72b9
BW
9126 property_table_entry *entry;
9127 text_action *fa;
9128 property_table_entry *the_add_entry;
9129 int removed_diff;
9130 xtensa_relax_info *relax_info;
9131
9132 relax_info = get_xtensa_relax_info (sec);
9133 if (!relax_info)
9134 return FALSE;
9135
9136 entry = elf_xtensa_find_property_entry
9137 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 9138 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
9139 return TRUE;
9140
9141 /* Mark that the literal will be coalesced. */
9142 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9143
9144 text_action_add (&relax_info->action_list,
9145 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9146
9147 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 9148 if (sec->alignment_power > 2)
e0001a05 9149 {
43cd72b9
BW
9150 int fill_extra_space;
9151 bfd_vma entry_sec_offset;
9152
9153 if (entry)
9154 entry_sec_offset = entry->address - sec->vma + entry->size;
9155 else
9156 entry_sec_offset = rel->r_rel.target_offset + 4;
9157
9158 /* If the literal range is at the end of the section,
9159 do not add fill. */
9160 fill_extra_space = 0;
9161 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9162 entry_sec_offset);
9163 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9164 fill_extra_space = the_add_entry->size;
9165
9166 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9167 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9168 -4, fill_extra_space);
9169 if (fa)
9170 adjust_fill_action (fa, removed_diff);
9171 else
9172 text_action_add (&relax_info->action_list,
9173 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 9174 }
43cd72b9
BW
9175
9176 return TRUE;
9177}
9178
9179
9180/* Move a literal to another location. This may actually increase the
9181 total amount of space used because of alignments so we need to do
9182 this carefully. Also, it may make a branch go out of range. */
9183
68ffbac6 9184static bfd_boolean
7fa3d080
BW
9185move_shared_literal (asection *sec,
9186 struct bfd_link_info *link_info,
9187 source_reloc *rel,
9188 property_table_entry *prop_table,
9189 int ptblsize,
9190 const r_reloc *target_loc,
9191 const literal_value *lit_value,
9192 section_cache_t *target_sec_cache)
43cd72b9
BW
9193{
9194 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9195 text_action *fa, *target_fa;
9196 int removed_diff;
9197 xtensa_relax_info *relax_info, *target_relax_info;
9198 asection *target_sec;
9199 ebb_t *ebb;
9200 ebb_constraint ebb_table;
9201 bfd_boolean relocs_fit;
9202
9203 /* If this routine always returns FALSE, the literals that cannot be
9204 coalesced will not be moved. */
9205 if (elf32xtensa_no_literal_movement)
9206 return FALSE;
9207
9208 relax_info = get_xtensa_relax_info (sec);
9209 if (!relax_info)
9210 return FALSE;
9211
9212 target_sec = r_reloc_get_section (target_loc);
9213 target_relax_info = get_xtensa_relax_info (target_sec);
9214
9215 /* Literals to undefined sections may not be moved because they
9216 must report an error. */
9217 if (bfd_is_und_section (target_sec))
9218 return FALSE;
9219
9220 src_entry = elf_xtensa_find_property_entry
9221 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9222
9223 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9224 return FALSE;
9225
9226 target_entry = elf_xtensa_find_property_entry
68ffbac6 9227 (target_sec_cache->ptbl, target_sec_cache->pte_count,
43cd72b9
BW
9228 target_sec->vma + target_loc->target_offset);
9229
9230 if (!target_entry)
9231 return FALSE;
9232
9233 /* Make sure that we have not broken any branches. */
9234 relocs_fit = FALSE;
9235
9236 init_ebb_constraint (&ebb_table);
9237 ebb = &ebb_table.ebb;
68ffbac6 9238 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
43cd72b9
BW
9239 target_sec_cache->content_length,
9240 target_sec_cache->ptbl, target_sec_cache->pte_count,
9241 target_sec_cache->relocs, target_sec_cache->reloc_count);
9242
9243 /* Propose to add 4 bytes + worst-case alignment size increase to
9244 destination. */
9245 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9246 ta_fill, target_loc->target_offset,
9247 -4 - (1 << target_sec->alignment_power), TRUE);
9248
9249 /* Check all of the PC-relative relocations to make sure they still fit. */
68ffbac6 9250 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
43cd72b9 9251 target_sec_cache->contents,
b2b326d2 9252 target_sec_cache->relocs, NULL,
cb337148 9253 &ebb_table, NULL);
43cd72b9 9254
68ffbac6 9255 if (!relocs_fit)
43cd72b9
BW
9256 return FALSE;
9257
9258 text_action_add_literal (&target_relax_info->action_list,
9259 ta_add_literal, target_loc, lit_value, -4);
9260
68ffbac6 9261 if (target_sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
9262 {
9263 /* May need to add or remove some fill to maintain alignment. */
9264 int fill_extra_space;
9265 bfd_vma entry_sec_offset;
9266
68ffbac6 9267 entry_sec_offset =
43cd72b9
BW
9268 target_entry->address - target_sec->vma + target_entry->size;
9269
9270 /* If the literal range is at the end of the section,
9271 do not add fill. */
9272 fill_extra_space = 0;
9273 the_add_entry =
9274 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9275 target_sec_cache->pte_count,
9276 entry_sec_offset);
9277 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9278 fill_extra_space = the_add_entry->size;
9279
9280 target_fa = find_fill_action (&target_relax_info->action_list,
9281 target_sec, entry_sec_offset);
9282 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9283 entry_sec_offset, 4,
9284 fill_extra_space);
9285 if (target_fa)
9286 adjust_fill_action (target_fa, removed_diff);
9287 else
9288 text_action_add (&target_relax_info->action_list,
9289 ta_fill, target_sec, entry_sec_offset, removed_diff);
9290 }
9291
9292 /* Mark that the literal will be moved to the new location. */
9293 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9294
9295 /* Remove the literal. */
9296 text_action_add (&relax_info->action_list,
9297 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9298
9299 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 9300 if (sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
9301 {
9302 int fill_extra_space;
9303 bfd_vma entry_sec_offset;
9304
9305 if (src_entry)
9306 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9307 else
9308 entry_sec_offset = rel->r_rel.target_offset+4;
9309
9310 /* If the literal range is at the end of the section,
9311 do not add fill. */
9312 fill_extra_space = 0;
9313 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9314 entry_sec_offset);
9315 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9316 fill_extra_space = the_add_entry->size;
9317
9318 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9319 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9320 -4, fill_extra_space);
9321 if (fa)
9322 adjust_fill_action (fa, removed_diff);
9323 else
9324 text_action_add (&relax_info->action_list,
9325 ta_fill, sec, entry_sec_offset, removed_diff);
9326 }
9327
9328 return TRUE;
e0001a05
NC
9329}
9330
9331\f
9332/* Second relaxation pass. */
9333
4c2af04f
MF
9334static int
9335action_remove_bytes_fn (splay_tree_node node, void *p)
9336{
9337 bfd_size_type *final_size = p;
9338 text_action *action = (text_action *)node->value;
9339
9340 *final_size -= action->removed_bytes;
9341 return 0;
9342}
9343
e0001a05
NC
9344/* Modify all of the relocations to point to the right spot, and if this
9345 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 9346 section size. */
e0001a05 9347
43cd72b9 9348bfd_boolean
7fa3d080 9349relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
9350{
9351 Elf_Internal_Rela *internal_relocs;
9352 xtensa_relax_info *relax_info;
9353 bfd_byte *contents;
9354 bfd_boolean ok = TRUE;
9355 unsigned i;
43cd72b9
BW
9356 bfd_boolean rv = FALSE;
9357 bfd_boolean virtual_action;
9358 bfd_size_type sec_size;
e0001a05 9359
43cd72b9 9360 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9361 relax_info = get_xtensa_relax_info (sec);
9362 BFD_ASSERT (relax_info);
9363
43cd72b9
BW
9364 /* First translate any of the fixes that have been added already. */
9365 translate_section_fixes (sec);
9366
e0001a05
NC
9367 /* Handle property sections (e.g., literal tables) specially. */
9368 if (xtensa_is_property_section (sec))
9369 {
9370 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9371 return relax_property_section (abfd, sec, link_info);
9372 }
9373
68ffbac6 9374 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 9375 link_info->keep_memory);
4c2af04f 9376 if (!internal_relocs && !action_list_count (&relax_info->action_list))
7aa09196
SA
9377 return TRUE;
9378
43cd72b9
BW
9379 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9380 if (contents == NULL && sec_size != 0)
9381 {
9382 ok = FALSE;
9383 goto error_return;
9384 }
9385
9386 if (internal_relocs)
9387 {
9388 for (i = 0; i < sec->reloc_count; i++)
9389 {
9390 Elf_Internal_Rela *irel;
9391 xtensa_relax_info *target_relax_info;
9392 bfd_vma source_offset, old_source_offset;
9393 r_reloc r_rel;
9394 unsigned r_type;
9395 asection *target_sec;
9396
9397 /* Locally change the source address.
9398 Translate the target to the new target address.
9399 If it points to this section and has been removed,
9400 NULLify it.
9401 Write it back. */
9402
9403 irel = &internal_relocs[i];
9404 source_offset = irel->r_offset;
9405 old_source_offset = source_offset;
9406
9407 r_type = ELF32_R_TYPE (irel->r_info);
9408 r_reloc_init (&r_rel, abfd, irel, contents,
9409 bfd_get_section_limit (abfd, sec));
9410
9411 /* If this section could have changed then we may need to
9412 change the relocation's offset. */
9413
9414 if (relax_info->is_relaxable_literal_section
9415 || relax_info->is_relaxable_asm_section)
9416 {
9b7f5d20
BW
9417 pin_internal_relocs (sec, internal_relocs);
9418
43cd72b9
BW
9419 if (r_type != R_XTENSA_NONE
9420 && find_removed_literal (&relax_info->removed_list,
9421 irel->r_offset))
9422 {
9423 /* Remove this relocation. */
9424 if (elf_hash_table (link_info)->dynamic_sections_created)
9425 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9426 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
071aa5c9 9427 irel->r_offset = offset_with_removed_text_map
43cd72b9 9428 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
9429 continue;
9430 }
9431
9432 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9433 {
9434 text_action *action =
9435 find_insn_action (&relax_info->action_list,
9436 irel->r_offset);
9437 if (action && (action->action == ta_convert_longcall
9438 || action->action == ta_remove_longcall))
9439 {
9440 bfd_reloc_status_type retval;
9441 char *error_message = NULL;
9442
9443 retval = contract_asm_expansion (contents, sec_size,
9444 irel, &error_message);
9445 if (retval != bfd_reloc_ok)
9446 {
9447 (*link_info->callbacks->reloc_dangerous)
9448 (link_info, error_message, abfd, sec,
9449 irel->r_offset);
9450 goto error_return;
9451 }
9452 /* Update the action so that the code that moves
9453 the contents will do the right thing. */
4c2af04f 9454 /* ta_remove_longcall and ta_remove_insn actions are
07d6d2b8 9455 grouped together in the tree as well as
4c2af04f
MF
9456 ta_convert_longcall and ta_none, so that changes below
9457 can be done w/o removing and reinserting action into
9458 the tree. */
9459
43cd72b9
BW
9460 if (action->action == ta_remove_longcall)
9461 action->action = ta_remove_insn;
9462 else
9463 action->action = ta_none;
9464 /* Refresh the info in the r_rel. */
9465 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9466 r_type = ELF32_R_TYPE (irel->r_info);
9467 }
9468 }
9469
071aa5c9 9470 source_offset = offset_with_removed_text_map
43cd72b9
BW
9471 (&relax_info->action_list, irel->r_offset);
9472 irel->r_offset = source_offset;
9473 }
9474
9475 /* If the target section could have changed then
9476 we may need to change the relocation's target offset. */
9477
9478 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 9479
ae326da8
BW
9480 /* For a reference to a discarded section from a DWARF section,
9481 i.e., where action_discarded is PRETEND, the symbol will
9482 eventually be modified to refer to the kept section (at least if
9483 the kept and discarded sections are the same size). Anticipate
9484 that here and adjust things accordingly. */
9485 if (! elf_xtensa_ignore_discarded_relocs (sec)
9486 && elf_xtensa_action_discarded (sec) == PRETEND
dbaa2011 9487 && sec->sec_info_type != SEC_INFO_TYPE_STABS
ae326da8 9488 && target_sec != NULL
dbaa2011 9489 && discarded_section (target_sec))
ae326da8
BW
9490 {
9491 /* It would be natural to call _bfd_elf_check_kept_section
9492 here, but it's not exported from elflink.c. It's also a
9493 fairly expensive check. Adjusting the relocations to the
9494 discarded section is fairly harmless; it will only adjust
9495 some addends and difference values. If it turns out that
9496 _bfd_elf_check_kept_section fails later, it won't matter,
9497 so just compare the section names to find the right group
9498 member. */
9499 asection *kept = target_sec->kept_section;
9500 if (kept != NULL)
9501 {
9502 if ((kept->flags & SEC_GROUP) != 0)
9503 {
9504 asection *first = elf_next_in_group (kept);
9505 asection *s = first;
9506
9507 kept = NULL;
9508 while (s != NULL)
9509 {
9510 if (strcmp (s->name, target_sec->name) == 0)
9511 {
9512 kept = s;
9513 break;
9514 }
9515 s = elf_next_in_group (s);
9516 if (s == first)
9517 break;
9518 }
9519 }
9520 }
9521 if (kept != NULL
9522 && ((target_sec->rawsize != 0
9523 ? target_sec->rawsize : target_sec->size)
9524 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9525 target_sec = kept;
9526 }
9527
9528 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9529 if (target_relax_info
9530 && (target_relax_info->is_relaxable_literal_section
9531 || target_relax_info->is_relaxable_asm_section))
9532 {
9533 r_reloc new_reloc;
9b7f5d20 9534 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9535
9536 if (r_type == R_XTENSA_DIFF8
9537 || r_type == R_XTENSA_DIFF16
9538 || r_type == R_XTENSA_DIFF32)
9539 {
1058c753
VA
9540 bfd_signed_vma diff_value = 0;
9541 bfd_vma new_end_offset, diff_mask = 0;
43cd72b9
BW
9542
9543 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9544 {
9545 (*link_info->callbacks->reloc_dangerous)
9546 (link_info, _("invalid relocation address"),
9547 abfd, sec, old_source_offset);
9548 goto error_return;
9549 }
9550
9551 switch (r_type)
9552 {
9553 case R_XTENSA_DIFF8:
9554 diff_value =
1058c753 9555 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9556 break;
9557 case R_XTENSA_DIFF16:
9558 diff_value =
1058c753 9559 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9560 break;
9561 case R_XTENSA_DIFF32:
9562 diff_value =
1058c753 9563 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9564 break;
9565 }
9566
071aa5c9 9567 new_end_offset = offset_with_removed_text_map
43cd72b9
BW
9568 (&target_relax_info->action_list,
9569 r_rel.target_offset + diff_value);
9570 diff_value = new_end_offset - new_reloc.target_offset;
9571
9572 switch (r_type)
9573 {
9574 case R_XTENSA_DIFF8:
1058c753
VA
9575 diff_mask = 0x7f;
9576 bfd_put_signed_8 (abfd, diff_value,
43cd72b9
BW
9577 &contents[old_source_offset]);
9578 break;
9579 case R_XTENSA_DIFF16:
1058c753
VA
9580 diff_mask = 0x7fff;
9581 bfd_put_signed_16 (abfd, diff_value,
43cd72b9
BW
9582 &contents[old_source_offset]);
9583 break;
9584 case R_XTENSA_DIFF32:
1058c753
VA
9585 diff_mask = 0x7fffffff;
9586 bfd_put_signed_32 (abfd, diff_value,
43cd72b9
BW
9587 &contents[old_source_offset]);
9588 break;
9589 }
9590
1058c753
VA
9591 /* Check for overflow. Sign bits must be all zeroes or all ones */
9592 if ((diff_value & ~diff_mask) != 0 &&
9593 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
43cd72b9
BW
9594 {
9595 (*link_info->callbacks->reloc_dangerous)
9596 (link_info, _("overflow after relaxation"),
9597 abfd, sec, old_source_offset);
9598 goto error_return;
9599 }
9600
9601 pin_contents (sec, contents);
9602 }
dc96b90a
BW
9603
9604 /* If the relocation still references a section in the same
9605 input file, modify the relocation directly instead of
9606 adding a "fix" record. */
9607 if (target_sec->owner == abfd)
9608 {
9609 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9610 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9611 irel->r_addend = new_reloc.rela.r_addend;
9612 pin_internal_relocs (sec, internal_relocs);
9613 }
9b7f5d20
BW
9614 else
9615 {
dc96b90a
BW
9616 bfd_vma addend_displacement;
9617 reloc_bfd_fix *fix;
9618
9619 addend_displacement =
9620 new_reloc.target_offset + new_reloc.virtual_offset;
9621 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9622 target_sec,
9623 addend_displacement, TRUE);
9624 add_fix (sec, fix);
9b7f5d20 9625 }
43cd72b9 9626 }
43cd72b9
BW
9627 }
9628 }
9629
9630 if ((relax_info->is_relaxable_literal_section
9631 || relax_info->is_relaxable_asm_section)
4c2af04f 9632 && action_list_count (&relax_info->action_list))
43cd72b9
BW
9633 {
9634 /* Walk through the planned actions and build up a table
9635 of move, copy and fill records. Use the move, copy and
9636 fill records to perform the actions once. */
9637
43cd72b9
BW
9638 bfd_size_type final_size, copy_size, orig_insn_size;
9639 bfd_byte *scratch = NULL;
9640 bfd_byte *dup_contents = NULL;
a3ef2d63 9641 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9642 bfd_vma orig_dot = 0;
9643 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9644 orig dot in physical memory. */
9645 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9646 bfd_vma dup_dot = 0;
9647
4c2af04f 9648 text_action *action;
43cd72b9
BW
9649
9650 final_size = sec->size;
43cd72b9 9651
4c2af04f
MF
9652 splay_tree_foreach (relax_info->action_list.tree,
9653 action_remove_bytes_fn, &final_size);
43cd72b9
BW
9654 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9655 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9656
9657 /* The dot is the current fill location. */
9658#if DEBUG
9659 print_action_list (stderr, &relax_info->action_list);
9660#endif
9661
4c2af04f
MF
9662 for (action = action_first (&relax_info->action_list); action;
9663 action = action_next (&relax_info->action_list, action))
43cd72b9
BW
9664 {
9665 virtual_action = FALSE;
9666 if (action->offset > orig_dot)
9667 {
9668 orig_dot += orig_dot_copied;
9669 orig_dot_copied = 0;
9670 orig_dot_vo = 0;
9671 /* Out of the virtual world. */
9672 }
9673
9674 if (action->offset > orig_dot)
9675 {
9676 copy_size = action->offset - orig_dot;
9677 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9678 orig_dot += copy_size;
9679 dup_dot += copy_size;
9680 BFD_ASSERT (action->offset == orig_dot);
9681 }
9682 else if (action->offset < orig_dot)
9683 {
9684 if (action->action == ta_fill
9685 && action->offset - action->removed_bytes == orig_dot)
9686 {
9687 /* This is OK because the fill only effects the dup_dot. */
9688 }
9689 else if (action->action == ta_add_literal)
9690 {
9691 /* TBD. Might need to handle this. */
9692 }
9693 }
9694 if (action->offset == orig_dot)
9695 {
9696 if (action->virtual_offset > orig_dot_vo)
9697 {
9698 if (orig_dot_vo == 0)
9699 {
9700 /* Need to copy virtual_offset bytes. Probably four. */
9701 copy_size = action->virtual_offset - orig_dot_vo;
9702 memmove (&dup_contents[dup_dot],
9703 &contents[orig_dot], copy_size);
9704 orig_dot_copied = copy_size;
9705 dup_dot += copy_size;
9706 }
9707 virtual_action = TRUE;
68ffbac6 9708 }
43cd72b9
BW
9709 else
9710 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9711 }
9712 switch (action->action)
9713 {
9714 case ta_remove_literal:
9715 case ta_remove_insn:
9716 BFD_ASSERT (action->removed_bytes >= 0);
9717 orig_dot += action->removed_bytes;
9718 break;
9719
9720 case ta_narrow_insn:
9721 orig_insn_size = 3;
9722 copy_size = 2;
9723 memmove (scratch, &contents[orig_dot], orig_insn_size);
9724 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9725 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9726 BFD_ASSERT (rv);
9727 memmove (&dup_contents[dup_dot], scratch, copy_size);
9728 orig_dot += orig_insn_size;
9729 dup_dot += copy_size;
9730 break;
9731
9732 case ta_fill:
9733 if (action->removed_bytes >= 0)
9734 orig_dot += action->removed_bytes;
9735 else
9736 {
9737 /* Already zeroed in dup_contents. Just bump the
9738 counters. */
9739 dup_dot += (-action->removed_bytes);
9740 }
9741 break;
9742
9743 case ta_none:
9744 BFD_ASSERT (action->removed_bytes == 0);
9745 break;
9746
9747 case ta_convert_longcall:
9748 case ta_remove_longcall:
9749 /* These will be removed or converted before we get here. */
9750 BFD_ASSERT (0);
9751 break;
9752
9753 case ta_widen_insn:
9754 orig_insn_size = 2;
9755 copy_size = 3;
9756 memmove (scratch, &contents[orig_dot], orig_insn_size);
9757 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9758 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9759 BFD_ASSERT (rv);
9760 memmove (&dup_contents[dup_dot], scratch, copy_size);
9761 orig_dot += orig_insn_size;
9762 dup_dot += copy_size;
9763 break;
9764
9765 case ta_add_literal:
9766 orig_insn_size = 0;
9767 copy_size = 4;
9768 BFD_ASSERT (action->removed_bytes == -4);
9769 /* TBD -- place the literal value here and insert
9770 into the table. */
9771 memset (&dup_contents[dup_dot], 0, 4);
9772 pin_internal_relocs (sec, internal_relocs);
9773 pin_contents (sec, contents);
9774
9775 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9776 relax_info, &internal_relocs, &action->value))
9777 goto error_return;
9778
68ffbac6 9779 if (virtual_action)
43cd72b9
BW
9780 orig_dot_vo += copy_size;
9781
9782 orig_dot += orig_insn_size;
9783 dup_dot += copy_size;
9784 break;
9785
9786 default:
9787 /* Not implemented yet. */
9788 BFD_ASSERT (0);
9789 break;
9790 }
9791
43cd72b9
BW
9792 BFD_ASSERT (dup_dot <= final_size);
9793 BFD_ASSERT (orig_dot <= orig_size);
9794 }
9795
9796 orig_dot += orig_dot_copied;
9797 orig_dot_copied = 0;
9798
9799 if (orig_dot != orig_size)
9800 {
9801 copy_size = orig_size - orig_dot;
9802 BFD_ASSERT (orig_size > orig_dot);
9803 BFD_ASSERT (dup_dot + copy_size == final_size);
9804 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9805 orig_dot += copy_size;
9806 dup_dot += copy_size;
9807 }
9808 BFD_ASSERT (orig_size == orig_dot);
9809 BFD_ASSERT (final_size == dup_dot);
9810
9811 /* Move the dup_contents back. */
9812 if (final_size > orig_size)
9813 {
9814 /* Contents need to be reallocated. Swap the dup_contents into
9815 contents. */
9816 sec->contents = dup_contents;
9817 free (contents);
9818 contents = dup_contents;
9819 pin_contents (sec, contents);
9820 }
9821 else
9822 {
9823 BFD_ASSERT (final_size <= orig_size);
9824 memset (contents, 0, orig_size);
9825 memcpy (contents, dup_contents, final_size);
9826 free (dup_contents);
9827 }
9828 free (scratch);
9829 pin_contents (sec, contents);
9830
a3ef2d63
BW
9831 if (sec->rawsize == 0)
9832 sec->rawsize = sec->size;
43cd72b9
BW
9833 sec->size = final_size;
9834 }
9835
9836 error_return:
9837 release_internal_relocs (sec, internal_relocs);
9838 release_contents (sec, contents);
9839 return ok;
9840}
9841
9842
68ffbac6 9843static bfd_boolean
7fa3d080 9844translate_section_fixes (asection *sec)
43cd72b9
BW
9845{
9846 xtensa_relax_info *relax_info;
9847 reloc_bfd_fix *r;
9848
9849 relax_info = get_xtensa_relax_info (sec);
9850 if (!relax_info)
9851 return TRUE;
9852
9853 for (r = relax_info->fix_list; r != NULL; r = r->next)
9854 if (!translate_reloc_bfd_fix (r))
9855 return FALSE;
e0001a05 9856
43cd72b9
BW
9857 return TRUE;
9858}
e0001a05 9859
e0001a05 9860
43cd72b9
BW
9861/* Translate a fix given the mapping in the relax info for the target
9862 section. If it has already been translated, no work is required. */
e0001a05 9863
68ffbac6 9864static bfd_boolean
7fa3d080 9865translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9866{
9867 reloc_bfd_fix new_fix;
9868 asection *sec;
9869 xtensa_relax_info *relax_info;
9870 removed_literal *removed;
9871 bfd_vma new_offset, target_offset;
e0001a05 9872
43cd72b9
BW
9873 if (fix->translated)
9874 return TRUE;
e0001a05 9875
43cd72b9
BW
9876 sec = fix->target_sec;
9877 target_offset = fix->target_offset;
e0001a05 9878
43cd72b9
BW
9879 relax_info = get_xtensa_relax_info (sec);
9880 if (!relax_info)
9881 {
9882 fix->translated = TRUE;
9883 return TRUE;
9884 }
e0001a05 9885
43cd72b9 9886 new_fix = *fix;
e0001a05 9887
43cd72b9
BW
9888 /* The fix does not need to be translated if the section cannot change. */
9889 if (!relax_info->is_relaxable_literal_section
9890 && !relax_info->is_relaxable_asm_section)
9891 {
9892 fix->translated = TRUE;
9893 return TRUE;
9894 }
e0001a05 9895
43cd72b9
BW
9896 /* If the literal has been moved and this relocation was on an
9897 opcode, then the relocation should move to the new literal
9898 location. Otherwise, the relocation should move within the
9899 section. */
9900
9901 removed = FALSE;
9902 if (is_operand_relocation (fix->src_type))
9903 {
9904 /* Check if the original relocation is against a literal being
9905 removed. */
9906 removed = find_removed_literal (&relax_info->removed_list,
9907 target_offset);
e0001a05
NC
9908 }
9909
68ffbac6 9910 if (removed)
e0001a05 9911 {
43cd72b9 9912 asection *new_sec;
e0001a05 9913
43cd72b9
BW
9914 /* The fact that there is still a relocation to this literal indicates
9915 that the literal is being coalesced, not simply removed. */
9916 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9917
43cd72b9
BW
9918 /* This was moved to some other address (possibly another section). */
9919 new_sec = r_reloc_get_section (&removed->to);
68ffbac6 9920 if (new_sec != sec)
e0001a05 9921 {
43cd72b9
BW
9922 sec = new_sec;
9923 relax_info = get_xtensa_relax_info (sec);
68ffbac6 9924 if (!relax_info ||
43cd72b9
BW
9925 (!relax_info->is_relaxable_literal_section
9926 && !relax_info->is_relaxable_asm_section))
e0001a05 9927 {
43cd72b9
BW
9928 target_offset = removed->to.target_offset;
9929 new_fix.target_sec = new_sec;
9930 new_fix.target_offset = target_offset;
9931 new_fix.translated = TRUE;
9932 *fix = new_fix;
9933 return TRUE;
e0001a05 9934 }
e0001a05 9935 }
43cd72b9
BW
9936 target_offset = removed->to.target_offset;
9937 new_fix.target_sec = new_sec;
e0001a05 9938 }
43cd72b9
BW
9939
9940 /* The target address may have been moved within its section. */
9941 new_offset = offset_with_removed_text (&relax_info->action_list,
9942 target_offset);
9943
9944 new_fix.target_offset = new_offset;
9945 new_fix.target_offset = new_offset;
9946 new_fix.translated = TRUE;
9947 *fix = new_fix;
9948 return TRUE;
e0001a05
NC
9949}
9950
9951
9952/* Fix up a relocation to take account of removed literals. */
9953
9b7f5d20
BW
9954static asection *
9955translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9956{
e0001a05
NC
9957 xtensa_relax_info *relax_info;
9958 removed_literal *removed;
9b7f5d20 9959 bfd_vma target_offset, base_offset;
e0001a05
NC
9960
9961 *new_rel = *orig_rel;
9962
9963 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9964 return sec ;
e0001a05
NC
9965
9966 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9967 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9968 || relax_info->is_relaxable_asm_section));
e0001a05 9969
43cd72b9
BW
9970 target_offset = orig_rel->target_offset;
9971
9972 removed = FALSE;
9973 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9974 {
9975 /* Check if the original relocation is against a literal being
9976 removed. */
9977 removed = find_removed_literal (&relax_info->removed_list,
9978 target_offset);
9979 }
9980 if (removed && removed->to.abfd)
e0001a05
NC
9981 {
9982 asection *new_sec;
9983
9984 /* The fact that there is still a relocation to this literal indicates
9985 that the literal is being coalesced, not simply removed. */
9986 BFD_ASSERT (removed->to.abfd != NULL);
9987
43cd72b9
BW
9988 /* This was moved to some other address
9989 (possibly in another section). */
e0001a05
NC
9990 *new_rel = removed->to;
9991 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9992 if (new_sec != sec)
e0001a05
NC
9993 {
9994 sec = new_sec;
9995 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9996 if (!relax_info
9997 || (!relax_info->is_relaxable_literal_section
9998 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9999 return sec;
e0001a05 10000 }
43cd72b9 10001 target_offset = new_rel->target_offset;
e0001a05
NC
10002 }
10003
9b7f5d20
BW
10004 /* Find the base offset of the reloc symbol, excluding any addend from the
10005 reloc or from the section contents (for a partial_inplace reloc). Then
10006 find the adjusted values of the offsets due to relaxation. The base
10007 offset is needed to determine the change to the reloc's addend; the reloc
10008 addend should not be adjusted due to relaxations located before the base
10009 offset. */
10010
10011 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9b7f5d20
BW
10012 if (base_offset <= target_offset)
10013 {
071aa5c9
MF
10014 int base_removed = removed_by_actions_map (&relax_info->action_list,
10015 base_offset, FALSE);
10016 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10017 target_offset, FALSE) -
10018 base_removed;
10019
9b7f5d20
BW
10020 new_rel->target_offset = target_offset - base_removed - addend_removed;
10021 new_rel->rela.r_addend -= addend_removed;
10022 }
10023 else
10024 {
10025 /* Handle a negative addend. The base offset comes first. */
071aa5c9
MF
10026 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10027 target_offset, FALSE);
10028 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10029 base_offset, FALSE) -
10030 tgt_removed;
10031
9b7f5d20
BW
10032 new_rel->target_offset = target_offset - tgt_removed;
10033 new_rel->rela.r_addend += addend_removed;
10034 }
e0001a05 10035
9b7f5d20 10036 return sec;
e0001a05
NC
10037}
10038
10039
10040/* For dynamic links, there may be a dynamic relocation for each
10041 literal. The number of dynamic relocations must be computed in
10042 size_dynamic_sections, which occurs before relaxation. When a
10043 literal is removed, this function checks if there is a corresponding
10044 dynamic relocation and shrinks the size of the appropriate dynamic
10045 relocation section accordingly. At this point, the contents of the
10046 dynamic relocation sections have not yet been filled in, so there's
10047 nothing else that needs to be done. */
10048
10049static void
7fa3d080
BW
10050shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10051 bfd *abfd,
10052 asection *input_section,
10053 Elf_Internal_Rela *rel)
e0001a05 10054{
f0e6fdb2 10055 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
10056 Elf_Internal_Shdr *symtab_hdr;
10057 struct elf_link_hash_entry **sym_hashes;
10058 unsigned long r_symndx;
10059 int r_type;
10060 struct elf_link_hash_entry *h;
10061 bfd_boolean dynamic_symbol;
10062
f0e6fdb2 10063 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10064 if (htab == NULL)
10065 return;
10066
e0001a05
NC
10067 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10068 sym_hashes = elf_sym_hashes (abfd);
10069
10070 r_type = ELF32_R_TYPE (rel->r_info);
10071 r_symndx = ELF32_R_SYM (rel->r_info);
10072
10073 if (r_symndx < symtab_hdr->sh_info)
10074 h = NULL;
10075 else
10076 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10077
4608f3d9 10078 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
10079
10080 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10081 && (input_section->flags & SEC_ALLOC) != 0
c451bb34 10082 && (dynamic_symbol || bfd_link_pic (info))
5d3a462f 10083 && (!h || h->root.type != bfd_link_hash_undefweak
2487ef07
MF
10084 || (dynamic_symbol
10085 && (bfd_link_dll (info) || info->export_dynamic))))
e0001a05 10086 {
e0001a05
NC
10087 asection *srel;
10088 bfd_boolean is_plt = FALSE;
10089
e0001a05
NC
10090 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10091 {
ce558b89 10092 srel = htab->elf.srelplt;
e0001a05
NC
10093 is_plt = TRUE;
10094 }
10095 else
ce558b89 10096 srel = htab->elf.srelgot;
e0001a05
NC
10097
10098 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 10099 BFD_ASSERT (srel != NULL);
eea6121a
AM
10100 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10101 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
10102
10103 if (is_plt)
10104 {
10105 asection *splt, *sgotplt, *srelgot;
10106 int reloc_index, chunk;
10107
10108 /* Find the PLT reloc index of the entry being removed. This
10109 is computed from the size of ".rela.plt". It is needed to
10110 figure out which PLT chunk to resize. Usually "last index
10111 = size - 1" since the index starts at zero, but in this
10112 context, the size has just been decremented so there's no
10113 need to subtract one. */
eea6121a 10114 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
10115
10116 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
10117 splt = elf_xtensa_get_plt_section (info, chunk);
10118 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
10119 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10120
10121 /* Check if an entire PLT chunk has just been eliminated. */
10122 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10123 {
10124 /* The two magic GOT entries for that chunk can go away. */
ce558b89 10125 srelgot = htab->elf.srelgot;
e0001a05
NC
10126 BFD_ASSERT (srelgot != NULL);
10127 srelgot->reloc_count -= 2;
eea6121a
AM
10128 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10129 sgotplt->size -= 8;
e0001a05
NC
10130
10131 /* There should be only one entry left (and it will be
10132 removed below). */
eea6121a
AM
10133 BFD_ASSERT (sgotplt->size == 4);
10134 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
10135 }
10136
eea6121a
AM
10137 BFD_ASSERT (sgotplt->size >= 4);
10138 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 10139
eea6121a
AM
10140 sgotplt->size -= 4;
10141 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
10142 }
10143 }
10144}
10145
10146
43cd72b9
BW
10147/* Take an r_rel and move it to another section. This usually
10148 requires extending the interal_relocation array and pinning it. If
10149 the original r_rel is from the same BFD, we can complete this here.
10150 Otherwise, we add a fix record to let the final link fix the
10151 appropriate address. Contents and internal relocations for the
10152 section must be pinned after calling this routine. */
10153
10154static bfd_boolean
7fa3d080
BW
10155move_literal (bfd *abfd,
10156 struct bfd_link_info *link_info,
10157 asection *sec,
10158 bfd_vma offset,
10159 bfd_byte *contents,
10160 xtensa_relax_info *relax_info,
10161 Elf_Internal_Rela **internal_relocs_p,
10162 const literal_value *lit)
43cd72b9
BW
10163{
10164 Elf_Internal_Rela *new_relocs = NULL;
10165 size_t new_relocs_count = 0;
10166 Elf_Internal_Rela this_rela;
10167 const r_reloc *r_rel;
10168
10169 r_rel = &lit->r_rel;
10170 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10171
10172 if (r_reloc_is_const (r_rel))
10173 bfd_put_32 (abfd, lit->value, contents + offset);
10174 else
10175 {
10176 int r_type;
10177 unsigned i;
43cd72b9
BW
10178 reloc_bfd_fix *fix;
10179 unsigned insert_at;
10180
10181 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
10182
10183 /* This is the difficult case. We have to create a fix up. */
10184 this_rela.r_offset = offset;
10185 this_rela.r_info = ELF32_R_INFO (0, r_type);
10186 this_rela.r_addend =
10187 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10188 bfd_put_32 (abfd, lit->value, contents + offset);
10189
10190 /* Currently, we cannot move relocations during a relocatable link. */
0e1862bb 10191 BFD_ASSERT (!bfd_link_relocatable (link_info));
0f5f1638 10192 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
10193 r_reloc_get_section (r_rel),
10194 r_rel->target_offset + r_rel->virtual_offset,
10195 FALSE);
10196 /* We also need to mark that relocations are needed here. */
10197 sec->flags |= SEC_RELOC;
10198
10199 translate_reloc_bfd_fix (fix);
10200 /* This fix has not yet been translated. */
10201 add_fix (sec, fix);
10202
10203 /* Add the relocation. If we have already allocated our own
10204 space for the relocations and we have room for more, then use
10205 it. Otherwise, allocate new space and move the literals. */
10206 insert_at = sec->reloc_count;
10207 for (i = 0; i < sec->reloc_count; ++i)
10208 {
10209 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10210 {
10211 insert_at = i;
10212 break;
10213 }
10214 }
10215
10216 if (*internal_relocs_p != relax_info->allocated_relocs
10217 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10218 {
10219 BFD_ASSERT (relax_info->allocated_relocs == NULL
10220 || sec->reloc_count == relax_info->relocs_count);
10221
68ffbac6 10222 if (relax_info->allocated_relocs_count == 0)
43cd72b9
BW
10223 new_relocs_count = (sec->reloc_count + 2) * 2;
10224 else
10225 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10226
10227 new_relocs = (Elf_Internal_Rela *)
10228 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10229 if (!new_relocs)
10230 return FALSE;
10231
10232 /* We could handle this more quickly by finding the split point. */
10233 if (insert_at != 0)
10234 memcpy (new_relocs, *internal_relocs_p,
10235 insert_at * sizeof (Elf_Internal_Rela));
10236
10237 new_relocs[insert_at] = this_rela;
10238
10239 if (insert_at != sec->reloc_count)
10240 memcpy (new_relocs + insert_at + 1,
10241 (*internal_relocs_p) + insert_at,
68ffbac6 10242 (sec->reloc_count - insert_at)
43cd72b9
BW
10243 * sizeof (Elf_Internal_Rela));
10244
10245 if (*internal_relocs_p != relax_info->allocated_relocs)
10246 {
10247 /* The first time we re-allocate, we can only free the
10248 old relocs if they were allocated with bfd_malloc.
10249 This is not true when keep_memory is in effect. */
10250 if (!link_info->keep_memory)
10251 free (*internal_relocs_p);
10252 }
10253 else
10254 free (*internal_relocs_p);
10255 relax_info->allocated_relocs = new_relocs;
10256 relax_info->allocated_relocs_count = new_relocs_count;
10257 elf_section_data (sec)->relocs = new_relocs;
10258 sec->reloc_count++;
10259 relax_info->relocs_count = sec->reloc_count;
10260 *internal_relocs_p = new_relocs;
10261 }
10262 else
10263 {
10264 if (insert_at != sec->reloc_count)
10265 {
10266 unsigned idx;
10267 for (idx = sec->reloc_count; idx > insert_at; idx--)
10268 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10269 }
10270 (*internal_relocs_p)[insert_at] = this_rela;
10271 sec->reloc_count++;
10272 if (relax_info->allocated_relocs)
10273 relax_info->relocs_count = sec->reloc_count;
10274 }
10275 }
10276 return TRUE;
10277}
10278
10279
e0001a05
NC
10280/* This is similar to relax_section except that when a target is moved,
10281 we shift addresses up. We also need to modify the size. This
10282 algorithm does NOT allow for relocations into the middle of the
10283 property sections. */
10284
43cd72b9 10285static bfd_boolean
7fa3d080
BW
10286relax_property_section (bfd *abfd,
10287 asection *sec,
10288 struct bfd_link_info *link_info)
e0001a05
NC
10289{
10290 Elf_Internal_Rela *internal_relocs;
10291 bfd_byte *contents;
1d25768e 10292 unsigned i;
e0001a05 10293 bfd_boolean ok = TRUE;
43cd72b9
BW
10294 bfd_boolean is_full_prop_section;
10295 size_t last_zfill_target_offset = 0;
10296 asection *last_zfill_target_sec = NULL;
10297 bfd_size_type sec_size;
1d25768e 10298 bfd_size_type entry_size;
e0001a05 10299
43cd72b9 10300 sec_size = bfd_get_section_limit (abfd, sec);
68ffbac6 10301 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
10302 link_info->keep_memory);
10303 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10304 if (contents == NULL && sec_size != 0)
e0001a05
NC
10305 {
10306 ok = FALSE;
10307 goto error_return;
10308 }
10309
1d25768e
BW
10310 is_full_prop_section = xtensa_is_proptable_section (sec);
10311 if (is_full_prop_section)
10312 entry_size = 12;
10313 else
10314 entry_size = 8;
43cd72b9
BW
10315
10316 if (internal_relocs)
e0001a05 10317 {
43cd72b9 10318 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10319 {
10320 Elf_Internal_Rela *irel;
10321 xtensa_relax_info *target_relax_info;
e0001a05
NC
10322 unsigned r_type;
10323 asection *target_sec;
43cd72b9
BW
10324 literal_value val;
10325 bfd_byte *size_p, *flags_p;
e0001a05
NC
10326
10327 /* Locally change the source address.
10328 Translate the target to the new target address.
10329 If it points to this section and has been removed, MOVE IT.
10330 Also, don't forget to modify the associated SIZE at
10331 (offset + 4). */
10332
10333 irel = &internal_relocs[i];
10334 r_type = ELF32_R_TYPE (irel->r_info);
10335 if (r_type == R_XTENSA_NONE)
10336 continue;
10337
43cd72b9
BW
10338 /* Find the literal value. */
10339 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10340 size_p = &contents[irel->r_offset + 4];
10341 flags_p = NULL;
10342 if (is_full_prop_section)
1d25768e
BW
10343 flags_p = &contents[irel->r_offset + 8];
10344 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 10345
43cd72b9 10346 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
10347 target_relax_info = get_xtensa_relax_info (target_sec);
10348
10349 if (target_relax_info
43cd72b9
BW
10350 && (target_relax_info->is_relaxable_literal_section
10351 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
10352 {
10353 /* Translate the relocation's destination. */
03669f1c
BW
10354 bfd_vma old_offset = val.r_rel.target_offset;
10355 bfd_vma new_offset;
e0001a05 10356 long old_size, new_size;
071aa5c9
MF
10357 int removed_by_old_offset =
10358 removed_by_actions_map (&target_relax_info->action_list,
10359 old_offset, FALSE);
10360 new_offset = old_offset - removed_by_old_offset;
e0001a05
NC
10361
10362 /* Assert that we are not out of bounds. */
43cd72b9 10363 old_size = bfd_get_32 (abfd, size_p);
03669f1c 10364 new_size = old_size;
43cd72b9
BW
10365
10366 if (old_size == 0)
10367 {
10368 /* Only the first zero-sized unreachable entry is
10369 allowed to expand. In this case the new offset
10370 should be the offset before the fill and the new
10371 size is the expansion size. For other zero-sized
10372 entries the resulting size should be zero with an
10373 offset before or after the fill address depending
10374 on whether the expanding unreachable entry
10375 preceeds it. */
03669f1c
BW
10376 if (last_zfill_target_sec == 0
10377 || last_zfill_target_sec != target_sec
10378 || last_zfill_target_offset != old_offset)
43cd72b9 10379 {
03669f1c
BW
10380 bfd_vma new_end_offset = new_offset;
10381
10382 /* Recompute the new_offset, but this time don't
10383 include any fill inserted by relaxation. */
071aa5c9
MF
10384 removed_by_old_offset =
10385 removed_by_actions_map (&target_relax_info->action_list,
10386 old_offset, TRUE);
10387 new_offset = old_offset - removed_by_old_offset;
43cd72b9
BW
10388
10389 /* If it is not unreachable and we have not yet
10390 seen an unreachable at this address, place it
10391 before the fill address. */
03669f1c
BW
10392 if (flags_p && (bfd_get_32 (abfd, flags_p)
10393 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 10394 {
03669f1c
BW
10395 new_size = new_end_offset - new_offset;
10396
43cd72b9 10397 last_zfill_target_sec = target_sec;
03669f1c 10398 last_zfill_target_offset = old_offset;
43cd72b9
BW
10399 }
10400 }
10401 }
10402 else
071aa5c9
MF
10403 {
10404 int removed_by_old_offset_size =
10405 removed_by_actions_map (&target_relax_info->action_list,
10406 old_offset + old_size, TRUE);
10407 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10408 }
43cd72b9 10409
e0001a05
NC
10410 if (new_size != old_size)
10411 {
10412 bfd_put_32 (abfd, new_size, size_p);
10413 pin_contents (sec, contents);
10414 }
43cd72b9 10415
03669f1c 10416 if (new_offset != old_offset)
e0001a05 10417 {
03669f1c 10418 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
10419 irel->r_addend += diff;
10420 pin_internal_relocs (sec, internal_relocs);
10421 }
10422 }
10423 }
10424 }
10425
10426 /* Combine adjacent property table entries. This is also done in
10427 finish_dynamic_sections() but at that point it's too late to
10428 reclaim the space in the output section, so we do this twice. */
10429
0e1862bb 10430 if (internal_relocs && (!bfd_link_relocatable (link_info)
1d25768e 10431 || xtensa_is_littable_section (sec)))
e0001a05
NC
10432 {
10433 Elf_Internal_Rela *last_irel = NULL;
1d25768e 10434 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 10435 int removed_bytes = 0;
1d25768e 10436 bfd_vma offset;
43cd72b9
BW
10437 flagword predef_flags;
10438
43cd72b9 10439 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 10440
1d25768e 10441 /* Walk over memory and relocations at the same time.
07d6d2b8 10442 This REQUIRES that the internal_relocs be sorted by offset. */
e0001a05
NC
10443 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10444 internal_reloc_compare);
e0001a05
NC
10445
10446 pin_internal_relocs (sec, internal_relocs);
10447 pin_contents (sec, contents);
10448
1d25768e
BW
10449 next_rel = internal_relocs;
10450 rel_end = internal_relocs + sec->reloc_count;
10451
a3ef2d63 10452 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 10453
a3ef2d63 10454 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 10455 {
1d25768e 10456 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 10457 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 10458 bfd_boolean remove_this_rel;
43cd72b9 10459 flagword flags;
e0001a05 10460
1d25768e
BW
10461 /* Find the first relocation for the entry at the current offset.
10462 Adjust the offsets of any extra relocations for the previous
10463 entry. */
10464 offset_rel = NULL;
10465 if (next_rel)
10466 {
10467 for (irel = next_rel; irel < rel_end; irel++)
10468 {
10469 if ((irel->r_offset == offset
10470 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10471 || irel->r_offset > offset)
10472 {
10473 offset_rel = irel;
10474 break;
10475 }
10476 irel->r_offset -= removed_bytes;
1d25768e
BW
10477 }
10478 }
e0001a05 10479
1d25768e
BW
10480 /* Find the next relocation (if there are any left). */
10481 extra_rel = NULL;
10482 if (offset_rel)
e0001a05 10483 {
1d25768e 10484 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 10485 {
1d25768e
BW
10486 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10487 {
10488 extra_rel = irel;
10489 break;
10490 }
e0001a05 10491 }
e0001a05
NC
10492 }
10493
1d25768e
BW
10494 /* Check if there are relocations on the current entry. There
10495 should usually be a relocation on the offset field. If there
10496 are relocations on the size or flags, then we can't optimize
10497 this entry. Also, find the next relocation to examine on the
10498 next iteration. */
10499 if (offset_rel)
e0001a05 10500 {
1d25768e 10501 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 10502 {
1d25768e
BW
10503 next_rel = offset_rel;
10504 /* There are no relocations on the current entry, but we
10505 might still be able to remove it if the size is zero. */
10506 offset_rel = NULL;
10507 }
10508 else if (offset_rel->r_offset > offset
10509 || (extra_rel
10510 && extra_rel->r_offset < offset + entry_size))
10511 {
10512 /* There is a relocation on the size or flags, so we can't
10513 do anything with this entry. Continue with the next. */
10514 next_rel = offset_rel;
10515 continue;
10516 }
10517 else
10518 {
10519 BFD_ASSERT (offset_rel->r_offset == offset);
10520 offset_rel->r_offset -= removed_bytes;
10521 next_rel = offset_rel + 1;
e0001a05 10522 }
e0001a05 10523 }
1d25768e
BW
10524 else
10525 next_rel = NULL;
e0001a05 10526
1d25768e 10527 remove_this_rel = FALSE;
e0001a05
NC
10528 bytes_to_remove = 0;
10529 actual_offset = offset - removed_bytes;
10530 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10531
68ffbac6 10532 if (is_full_prop_section)
43cd72b9
BW
10533 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10534 else
10535 flags = predef_flags;
10536
1d25768e
BW
10537 if (size == 0
10538 && (flags & XTENSA_PROP_ALIGN) == 0
10539 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 10540 {
43cd72b9
BW
10541 /* Always remove entries with zero size and no alignment. */
10542 bytes_to_remove = entry_size;
1d25768e
BW
10543 if (offset_rel)
10544 remove_this_rel = TRUE;
e0001a05 10545 }
1d25768e
BW
10546 else if (offset_rel
10547 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10548 {
1d25768e 10549 if (last_irel)
e0001a05 10550 {
1d25768e
BW
10551 flagword old_flags;
10552 bfd_vma old_size =
10553 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10554 bfd_vma old_address =
10555 (last_irel->r_addend
10556 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10557 bfd_vma new_address =
10558 (offset_rel->r_addend
10559 + bfd_get_32 (abfd, &contents[actual_offset]));
68ffbac6 10560 if (is_full_prop_section)
1d25768e
BW
10561 old_flags = bfd_get_32
10562 (abfd, &contents[last_irel->r_offset + 8]);
10563 else
10564 old_flags = predef_flags;
10565
10566 if ((ELF32_R_SYM (offset_rel->r_info)
10567 == ELF32_R_SYM (last_irel->r_info))
10568 && old_address + old_size == new_address
10569 && old_flags == flags
10570 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10571 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10572 {
1d25768e
BW
10573 /* Fix the old size. */
10574 bfd_put_32 (abfd, old_size + size,
10575 &contents[last_irel->r_offset + 4]);
10576 bytes_to_remove = entry_size;
10577 remove_this_rel = TRUE;
e0001a05
NC
10578 }
10579 else
1d25768e 10580 last_irel = offset_rel;
e0001a05 10581 }
1d25768e
BW
10582 else
10583 last_irel = offset_rel;
e0001a05
NC
10584 }
10585
1d25768e 10586 if (remove_this_rel)
e0001a05 10587 {
1d25768e 10588 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10589 offset_rel->r_offset = 0;
e0001a05
NC
10590 }
10591
10592 if (bytes_to_remove != 0)
10593 {
10594 removed_bytes += bytes_to_remove;
a3ef2d63 10595 if (offset + bytes_to_remove < sec->size)
e0001a05 10596 memmove (&contents[actual_offset],
43cd72b9 10597 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10598 sec->size - offset - bytes_to_remove);
e0001a05
NC
10599 }
10600 }
10601
43cd72b9 10602 if (removed_bytes)
e0001a05 10603 {
1d25768e
BW
10604 /* Fix up any extra relocations on the last entry. */
10605 for (irel = next_rel; irel < rel_end; irel++)
10606 irel->r_offset -= removed_bytes;
10607
e0001a05 10608 /* Clear the removed bytes. */
a3ef2d63 10609 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10610
a3ef2d63
BW
10611 if (sec->rawsize == 0)
10612 sec->rawsize = sec->size;
10613 sec->size -= removed_bytes;
e901de89
BW
10614
10615 if (xtensa_is_littable_section (sec))
10616 {
f0e6fdb2
BW
10617 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10618 if (sgotloc)
10619 sgotloc->size -= removed_bytes;
e901de89 10620 }
e0001a05
NC
10621 }
10622 }
e901de89 10623
e0001a05
NC
10624 error_return:
10625 release_internal_relocs (sec, internal_relocs);
10626 release_contents (sec, contents);
10627 return ok;
10628}
10629
10630\f
10631/* Third relaxation pass. */
10632
10633/* Change symbol values to account for removed literals. */
10634
43cd72b9 10635bfd_boolean
7fa3d080 10636relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10637{
10638 xtensa_relax_info *relax_info;
10639 unsigned int sec_shndx;
10640 Elf_Internal_Shdr *symtab_hdr;
10641 Elf_Internal_Sym *isymbuf;
10642 unsigned i, num_syms, num_locals;
10643
10644 relax_info = get_xtensa_relax_info (sec);
10645 BFD_ASSERT (relax_info);
10646
43cd72b9
BW
10647 if (!relax_info->is_relaxable_literal_section
10648 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10649 return TRUE;
10650
10651 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10652
10653 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10654 isymbuf = retrieve_local_syms (abfd);
10655
10656 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10657 num_locals = symtab_hdr->sh_info;
10658
10659 /* Adjust the local symbols defined in this section. */
10660 for (i = 0; i < num_locals; i++)
10661 {
10662 Elf_Internal_Sym *isym = &isymbuf[i];
10663
10664 if (isym->st_shndx == sec_shndx)
10665 {
03669f1c 10666 bfd_vma orig_addr = isym->st_value;
071aa5c9
MF
10667 int removed = removed_by_actions_map (&relax_info->action_list,
10668 orig_addr, FALSE);
43cd72b9 10669
071aa5c9 10670 isym->st_value -= removed;
03669f1c
BW
10671 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10672 isym->st_size -=
071aa5c9
MF
10673 removed_by_actions_map (&relax_info->action_list,
10674 orig_addr + isym->st_size, FALSE) -
10675 removed;
e0001a05
NC
10676 }
10677 }
10678
10679 /* Now adjust the global symbols defined in this section. */
10680 for (i = 0; i < (num_syms - num_locals); i++)
10681 {
10682 struct elf_link_hash_entry *sym_hash;
10683
10684 sym_hash = elf_sym_hashes (abfd)[i];
10685
10686 if (sym_hash->root.type == bfd_link_hash_warning)
10687 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10688
10689 if ((sym_hash->root.type == bfd_link_hash_defined
10690 || sym_hash->root.type == bfd_link_hash_defweak)
10691 && sym_hash->root.u.def.section == sec)
10692 {
03669f1c 10693 bfd_vma orig_addr = sym_hash->root.u.def.value;
071aa5c9
MF
10694 int removed = removed_by_actions_map (&relax_info->action_list,
10695 orig_addr, FALSE);
43cd72b9 10696
071aa5c9 10697 sym_hash->root.u.def.value -= removed;
43cd72b9 10698
03669f1c
BW
10699 if (sym_hash->type == STT_FUNC)
10700 sym_hash->size -=
071aa5c9
MF
10701 removed_by_actions_map (&relax_info->action_list,
10702 orig_addr + sym_hash->size, FALSE) -
10703 removed;
e0001a05
NC
10704 }
10705 }
10706
10707 return TRUE;
10708}
10709
10710\f
10711/* "Fix" handling functions, called while performing relocations. */
10712
43cd72b9 10713static bfd_boolean
7fa3d080
BW
10714do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10715 bfd *input_bfd,
10716 asection *input_section,
10717 bfd_byte *contents)
e0001a05
NC
10718{
10719 r_reloc r_rel;
10720 asection *sec, *old_sec;
10721 bfd_vma old_offset;
10722 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10723 reloc_bfd_fix *fix;
10724
10725 if (r_type == R_XTENSA_NONE)
43cd72b9 10726 return TRUE;
e0001a05 10727
43cd72b9
BW
10728 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10729 if (!fix)
10730 return TRUE;
e0001a05 10731
43cd72b9
BW
10732 r_reloc_init (&r_rel, input_bfd, rel, contents,
10733 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10734 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10735 old_offset = r_rel.target_offset;
10736
10737 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10738 {
43cd72b9
BW
10739 if (r_type != R_XTENSA_ASM_EXPAND)
10740 {
4eca0228 10741 _bfd_error_handler
695344c0 10742 /* xgettext:c-format */
2dcf00ce
AM
10743 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10744 input_bfd, input_section, (uint64_t) rel->r_offset,
43cd72b9
BW
10745 elf_howto_table[r_type].name);
10746 return FALSE;
10747 }
e0001a05
NC
10748 /* Leave it be. Resolution will happen in a later stage. */
10749 }
10750 else
10751 {
10752 sec = fix->target_sec;
10753 rel->r_addend += ((sec->output_offset + fix->target_offset)
10754 - (old_sec->output_offset + old_offset));
10755 }
43cd72b9 10756 return TRUE;
e0001a05
NC
10757}
10758
10759
10760static void
7fa3d080
BW
10761do_fix_for_final_link (Elf_Internal_Rela *rel,
10762 bfd *input_bfd,
10763 asection *input_section,
10764 bfd_byte *contents,
10765 bfd_vma *relocationp)
e0001a05
NC
10766{
10767 asection *sec;
10768 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10769 reloc_bfd_fix *fix;
43cd72b9 10770 bfd_vma fixup_diff;
e0001a05
NC
10771
10772 if (r_type == R_XTENSA_NONE)
10773 return;
10774
43cd72b9
BW
10775 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10776 if (!fix)
e0001a05
NC
10777 return;
10778
10779 sec = fix->target_sec;
43cd72b9
BW
10780
10781 fixup_diff = rel->r_addend;
10782 if (elf_howto_table[fix->src_type].partial_inplace)
10783 {
10784 bfd_vma inplace_val;
10785 BFD_ASSERT (fix->src_offset
10786 < bfd_get_section_limit (input_bfd, input_section));
10787 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10788 fixup_diff += inplace_val;
10789 }
10790
e0001a05
NC
10791 *relocationp = (sec->output_section->vma
10792 + sec->output_offset
43cd72b9 10793 + fix->target_offset - fixup_diff);
e0001a05
NC
10794}
10795
10796\f
10797/* Miscellaneous utility functions.... */
10798
10799static asection *
f0e6fdb2 10800elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10801{
f0e6fdb2 10802 bfd *dynobj;
0bae9e9e 10803 char plt_name[17];
e0001a05
NC
10804
10805 if (chunk == 0)
ce558b89 10806 return elf_hash_table (info)->splt;
e0001a05 10807
f0e6fdb2 10808 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10809 sprintf (plt_name, ".plt.%u", chunk);
3d4d4302 10810 return bfd_get_linker_section (dynobj, plt_name);
e0001a05
NC
10811}
10812
10813
10814static asection *
f0e6fdb2 10815elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10816{
f0e6fdb2 10817 bfd *dynobj;
0bae9e9e 10818 char got_name[21];
e0001a05
NC
10819
10820 if (chunk == 0)
ce558b89 10821 return elf_hash_table (info)->sgotplt;
e0001a05 10822
f0e6fdb2 10823 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10824 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10825 return bfd_get_linker_section (dynobj, got_name);
e0001a05
NC
10826}
10827
10828
10829/* Get the input section for a given symbol index.
10830 If the symbol is:
10831 . a section symbol, return the section;
10832 . a common symbol, return the common section;
10833 . an undefined symbol, return the undefined section;
10834 . an indirect symbol, follow the links;
10835 . an absolute value, return the absolute section. */
10836
10837static asection *
7fa3d080 10838get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10839{
10840 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10841 asection *target_sec = NULL;
43cd72b9 10842 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10843 {
10844 Elf_Internal_Sym *isymbuf;
10845 unsigned int section_index;
10846
10847 isymbuf = retrieve_local_syms (abfd);
10848 section_index = isymbuf[r_symndx].st_shndx;
10849
10850 if (section_index == SHN_UNDEF)
10851 target_sec = bfd_und_section_ptr;
e0001a05
NC
10852 else if (section_index == SHN_ABS)
10853 target_sec = bfd_abs_section_ptr;
10854 else if (section_index == SHN_COMMON)
10855 target_sec = bfd_com_section_ptr;
43cd72b9 10856 else
cb33740c 10857 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10858 }
10859 else
10860 {
10861 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10862 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10863
10864 while (h->root.type == bfd_link_hash_indirect
07d6d2b8
AM
10865 || h->root.type == bfd_link_hash_warning)
10866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
e0001a05
NC
10867
10868 switch (h->root.type)
10869 {
10870 case bfd_link_hash_defined:
10871 case bfd_link_hash_defweak:
10872 target_sec = h->root.u.def.section;
10873 break;
10874 case bfd_link_hash_common:
10875 target_sec = bfd_com_section_ptr;
10876 break;
10877 case bfd_link_hash_undefined:
10878 case bfd_link_hash_undefweak:
10879 target_sec = bfd_und_section_ptr;
10880 break;
10881 default: /* New indirect warning. */
10882 target_sec = bfd_und_section_ptr;
10883 break;
10884 }
10885 }
10886 return target_sec;
10887}
10888
10889
10890static struct elf_link_hash_entry *
7fa3d080 10891get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10892{
10893 unsigned long indx;
10894 struct elf_link_hash_entry *h;
10895 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10896
10897 if (r_symndx < symtab_hdr->sh_info)
10898 return NULL;
43cd72b9 10899
e0001a05
NC
10900 indx = r_symndx - symtab_hdr->sh_info;
10901 h = elf_sym_hashes (abfd)[indx];
10902 while (h->root.type == bfd_link_hash_indirect
10903 || h->root.type == bfd_link_hash_warning)
10904 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10905 return h;
10906}
10907
10908
10909/* Get the section-relative offset for a symbol number. */
10910
10911static bfd_vma
7fa3d080 10912get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10913{
10914 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10915 bfd_vma offset = 0;
10916
43cd72b9 10917 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10918 {
10919 Elf_Internal_Sym *isymbuf;
10920 isymbuf = retrieve_local_syms (abfd);
10921 offset = isymbuf[r_symndx].st_value;
10922 }
10923 else
10924 {
10925 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10926 struct elf_link_hash_entry *h =
10927 elf_sym_hashes (abfd)[indx];
10928
10929 while (h->root.type == bfd_link_hash_indirect
07d6d2b8 10930 || h->root.type == bfd_link_hash_warning)
e0001a05
NC
10931 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10932 if (h->root.type == bfd_link_hash_defined
07d6d2b8 10933 || h->root.type == bfd_link_hash_defweak)
e0001a05
NC
10934 offset = h->root.u.def.value;
10935 }
10936 return offset;
10937}
10938
10939
10940static bfd_boolean
7fa3d080 10941is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10942{
10943 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10944 struct elf_link_hash_entry *h;
10945
10946 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10947 if (h && h->root.type == bfd_link_hash_defweak)
10948 return TRUE;
10949 return FALSE;
10950}
10951
10952
10953static bfd_boolean
7fa3d080
BW
10954pcrel_reloc_fits (xtensa_opcode opc,
10955 int opnd,
10956 bfd_vma self_address,
10957 bfd_vma dest_address)
e0001a05 10958{
43cd72b9
BW
10959 xtensa_isa isa = xtensa_default_isa;
10960 uint32 valp = dest_address;
10961 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10962 || xtensa_operand_encode (isa, opc, opnd, &valp))
10963 return FALSE;
10964 return TRUE;
e0001a05
NC
10965}
10966
10967
68ffbac6 10968static bfd_boolean
7fa3d080 10969xtensa_is_property_section (asection *sec)
e0001a05 10970{
1d25768e
BW
10971 if (xtensa_is_insntable_section (sec)
10972 || xtensa_is_littable_section (sec)
10973 || xtensa_is_proptable_section (sec))
b614a702 10974 return TRUE;
e901de89 10975
1d25768e
BW
10976 return FALSE;
10977}
10978
10979
68ffbac6 10980static bfd_boolean
1d25768e
BW
10981xtensa_is_insntable_section (asection *sec)
10982{
10983 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10984 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10985 return TRUE;
10986
e901de89
BW
10987 return FALSE;
10988}
10989
10990
68ffbac6 10991static bfd_boolean
7fa3d080 10992xtensa_is_littable_section (asection *sec)
e901de89 10993{
1d25768e
BW
10994 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10995 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10996 return TRUE;
e901de89 10997
1d25768e
BW
10998 return FALSE;
10999}
11000
11001
68ffbac6 11002static bfd_boolean
1d25768e
BW
11003xtensa_is_proptable_section (asection *sec)
11004{
11005 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11006 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 11007 return TRUE;
e0001a05 11008
e901de89 11009 return FALSE;
e0001a05
NC
11010}
11011
11012
43cd72b9 11013static int
7fa3d080 11014internal_reloc_compare (const void *ap, const void *bp)
e0001a05 11015{
43cd72b9
BW
11016 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11017 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11018
11019 if (a->r_offset != b->r_offset)
11020 return (a->r_offset - b->r_offset);
11021
11022 /* We don't need to sort on these criteria for correctness,
11023 but enforcing a more strict ordering prevents unstable qsort
11024 from behaving differently with different implementations.
11025 Without the code below we get correct but different results
11026 on Solaris 2.7 and 2.8. We would like to always produce the
11027 same results no matter the host. */
11028
11029 if (a->r_info != b->r_info)
11030 return (a->r_info - b->r_info);
11031
11032 return (a->r_addend - b->r_addend);
e0001a05
NC
11033}
11034
11035
11036static int
7fa3d080 11037internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
11038{
11039 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11040 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11041
43cd72b9
BW
11042 /* Check if one entry overlaps with the other; this shouldn't happen
11043 except when searching for a match. */
e0001a05
NC
11044 return (a->r_offset - b->r_offset);
11045}
11046
11047
74869ac7
BW
11048/* Predicate function used to look up a section in a particular group. */
11049
11050static bfd_boolean
11051match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11052{
11053 const char *gname = inf;
11054 const char *group_name = elf_group_name (sec);
68ffbac6 11055
74869ac7
BW
11056 return (group_name == gname
11057 || (group_name != NULL
11058 && gname != NULL
11059 && strcmp (group_name, gname) == 0));
11060}
11061
11062
8255c61b
MF
11063static char *
11064xtensa_add_names (const char *base, const char *suffix)
11065{
11066 if (suffix)
11067 {
11068 size_t base_len = strlen (base);
11069 size_t suffix_len = strlen (suffix);
11070 char *str = bfd_malloc (base_len + suffix_len + 1);
11071
11072 memcpy (str, base, base_len);
11073 memcpy (str + base_len, suffix, suffix_len + 1);
11074 return str;
11075 }
11076 else
11077 {
11078 return strdup (base);
11079 }
11080}
11081
1d25768e
BW
11082static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11083
51c8ebc1 11084static char *
8255c61b
MF
11085xtensa_property_section_name (asection *sec, const char *base_name,
11086 bfd_boolean separate_sections)
e0001a05 11087{
74869ac7
BW
11088 const char *suffix, *group_name;
11089 char *prop_sec_name;
74869ac7
BW
11090
11091 group_name = elf_group_name (sec);
11092 if (group_name)
11093 {
11094 suffix = strrchr (sec->name, '.');
11095 if (suffix == sec->name)
11096 suffix = 0;
8255c61b 11097 prop_sec_name = xtensa_add_names (base_name, suffix);
74869ac7
BW
11098 }
11099 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 11100 {
43cd72b9 11101 char *linkonce_kind = 0;
b614a702 11102
68ffbac6 11103 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 11104 linkonce_kind = "x.";
68ffbac6 11105 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 11106 linkonce_kind = "p.";
43cd72b9
BW
11107 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11108 linkonce_kind = "prop.";
e0001a05 11109 else
b614a702
BW
11110 abort ();
11111
43cd72b9
BW
11112 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11113 + strlen (linkonce_kind) + 1);
b614a702 11114 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 11115 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
11116
11117 suffix = sec->name + linkonce_len;
096c35a7 11118 /* For backward compatibility, replace "t." instead of inserting
07d6d2b8 11119 the new linkonce_kind (but not for "prop" sections). */
0112cd26 11120 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
07d6d2b8 11121 suffix += 2;
43cd72b9 11122 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
11123 }
11124 else
8255c61b
MF
11125 {
11126 prop_sec_name = xtensa_add_names (base_name,
11127 separate_sections ? sec->name : NULL);
11128 }
74869ac7 11129
51c8ebc1
BW
11130 return prop_sec_name;
11131}
11132
11133
11134static asection *
8255c61b
MF
11135xtensa_get_separate_property_section (asection *sec, const char *base_name,
11136 bfd_boolean separate_section)
51c8ebc1
BW
11137{
11138 char *prop_sec_name;
11139 asection *prop_sec;
11140
8255c61b
MF
11141 prop_sec_name = xtensa_property_section_name (sec, base_name,
11142 separate_section);
51c8ebc1
BW
11143 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11144 match_section_group,
11145 (void *) elf_group_name (sec));
11146 free (prop_sec_name);
11147 return prop_sec;
11148}
11149
8255c61b
MF
11150static asection *
11151xtensa_get_property_section (asection *sec, const char *base_name)
11152{
11153 asection *prop_sec;
11154
11155 /* Try individual property section first. */
11156 prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
11157
11158 /* Refer to a common property section if individual is not present. */
11159 if (!prop_sec)
11160 prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
11161
11162 return prop_sec;
11163}
11164
51c8ebc1
BW
11165
11166asection *
11167xtensa_make_property_section (asection *sec, const char *base_name)
11168{
11169 char *prop_sec_name;
11170 asection *prop_sec;
11171
74869ac7 11172 /* Check if the section already exists. */
8255c61b
MF
11173 prop_sec_name = xtensa_property_section_name (sec, base_name,
11174 elf32xtensa_separate_props);
74869ac7
BW
11175 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11176 match_section_group,
51c8ebc1 11177 (void *) elf_group_name (sec));
74869ac7
BW
11178 /* If not, create it. */
11179 if (! prop_sec)
11180 {
11181 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11182 flags |= (bfd_get_section_flags (sec->owner, sec)
11183 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11184
11185 prop_sec = bfd_make_section_anyway_with_flags
11186 (sec->owner, strdup (prop_sec_name), flags);
11187 if (! prop_sec)
11188 return 0;
b614a702 11189
51c8ebc1 11190 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
11191 }
11192
74869ac7
BW
11193 free (prop_sec_name);
11194 return prop_sec;
e0001a05
NC
11195}
11196
43cd72b9
BW
11197
11198flagword
7fa3d080 11199xtensa_get_property_predef_flags (asection *sec)
43cd72b9 11200{
1d25768e 11201 if (xtensa_is_insntable_section (sec))
43cd72b9 11202 return (XTENSA_PROP_INSN
99ded152 11203 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
11204 | XTENSA_PROP_INSN_NO_REORDER);
11205
11206 if (xtensa_is_littable_section (sec))
11207 return (XTENSA_PROP_LITERAL
99ded152 11208 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
11209 | XTENSA_PROP_INSN_NO_REORDER);
11210
11211 return 0;
11212}
11213
e0001a05
NC
11214\f
11215/* Other functions called directly by the linker. */
11216
11217bfd_boolean
7fa3d080
BW
11218xtensa_callback_required_dependence (bfd *abfd,
11219 asection *sec,
11220 struct bfd_link_info *link_info,
11221 deps_callback_t callback,
11222 void *closure)
e0001a05
NC
11223{
11224 Elf_Internal_Rela *internal_relocs;
11225 bfd_byte *contents;
11226 unsigned i;
11227 bfd_boolean ok = TRUE;
43cd72b9
BW
11228 bfd_size_type sec_size;
11229
11230 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
11231
11232 /* ".plt*" sections have no explicit relocations but they contain L32R
11233 instructions that reference the corresponding ".got.plt*" sections. */
11234 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 11235 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
11236 {
11237 asection *sgotplt;
11238
11239 /* Find the corresponding ".got.plt*" section. */
11240 if (sec->name[4] == '\0')
ce558b89 11241 sgotplt = elf_hash_table (link_info)->sgotplt;
e0001a05
NC
11242 else
11243 {
11244 char got_name[14];
11245 int chunk = 0;
11246
11247 BFD_ASSERT (sec->name[4] == '.');
11248 chunk = strtol (&sec->name[5], NULL, 10);
11249
11250 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 11251 sgotplt = bfd_get_linker_section (sec->owner, got_name);
e0001a05
NC
11252 }
11253 BFD_ASSERT (sgotplt);
11254
11255 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11256 section referencing a literal at the very beginning of
11257 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 11258 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
11259 }
11260
13161072
BW
11261 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11262 when building uclibc, which runs "ld -b binary /dev/null". */
11263 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11264 return ok;
11265
68ffbac6 11266 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
11267 link_info->keep_memory);
11268 if (internal_relocs == NULL
43cd72b9 11269 || sec->reloc_count == 0)
e0001a05
NC
11270 return ok;
11271
11272 /* Cache the contents for the duration of this scan. */
11273 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 11274 if (contents == NULL && sec_size != 0)
e0001a05
NC
11275 {
11276 ok = FALSE;
11277 goto error_return;
11278 }
11279
43cd72b9
BW
11280 if (!xtensa_default_isa)
11281 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 11282
43cd72b9 11283 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
11284 {
11285 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 11286 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
11287 {
11288 r_reloc l32r_rel;
11289 asection *target_sec;
11290 bfd_vma target_offset;
43cd72b9
BW
11291
11292 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
11293 target_sec = NULL;
11294 target_offset = 0;
11295 /* L32Rs must be local to the input file. */
11296 if (r_reloc_is_defined (&l32r_rel))
11297 {
11298 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 11299 target_offset = l32r_rel.target_offset;
e0001a05
NC
11300 }
11301 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11302 closure);
11303 }
11304 }
11305
11306 error_return:
11307 release_internal_relocs (sec, internal_relocs);
11308 release_contents (sec, contents);
11309 return ok;
11310}
11311
2f89ff8d
L
11312/* The default literal sections should always be marked as "code" (i.e.,
11313 SHF_EXECINSTR). This is particularly important for the Linux kernel
11314 module loader so that the literals are not placed after the text. */
b35d266b 11315static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 11316{
0112cd26
NC
11317 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11318 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
07d6d2b8
AM
11319 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11320 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11321 { NULL, 0, 0, 0, 0 }
7f4d3958 11322};
e0001a05 11323\f
ae95ffa6 11324#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05 11325#ifndef ELF_ARCH
6d00b590 11326#define TARGET_LITTLE_SYM xtensa_elf32_le_vec
e0001a05 11327#define TARGET_LITTLE_NAME "elf32-xtensa-le"
6d00b590 11328#define TARGET_BIG_SYM xtensa_elf32_be_vec
e0001a05
NC
11329#define TARGET_BIG_NAME "elf32-xtensa-be"
11330#define ELF_ARCH bfd_arch_xtensa
11331
4af0a1d8
BW
11332#define ELF_MACHINE_CODE EM_XTENSA
11333#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05 11334
f7e16c2a 11335#define ELF_MAXPAGESIZE 0x1000
e0001a05
NC
11336#endif /* ELF_ARCH */
11337
11338#define elf_backend_can_gc_sections 1
11339#define elf_backend_can_refcount 1
11340#define elf_backend_plt_readonly 1
11341#define elf_backend_got_header_size 4
11342#define elf_backend_want_dynbss 0
11343#define elf_backend_want_got_plt 1
64f52338 11344#define elf_backend_dtrel_excludes_plt 1
e0001a05
NC
11345
11346#define elf_info_to_howto elf_xtensa_info_to_howto_rela
11347
28dbbc02
BW
11348#define bfd_elf32_mkobject elf_xtensa_mkobject
11349
e0001a05
NC
11350#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11351#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11352#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11353#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11354#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
11355#define bfd_elf32_bfd_reloc_name_lookup \
11356 elf_xtensa_reloc_name_lookup
e0001a05 11357#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 11358#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
11359
11360#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11361#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
11362#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11363#define elf_backend_discard_info elf_xtensa_discard_info
11364#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11365#define elf_backend_final_write_processing elf_xtensa_final_write_processing
11366#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11367#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11368#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
e0001a05
NC
11369#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11370#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 11371#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
11372#define elf_backend_object_p elf_xtensa_object_p
11373#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11374#define elf_backend_relocate_section elf_xtensa_relocate_section
11375#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 11376#define elf_backend_always_size_sections elf_xtensa_always_size_sections
d00dd7dc 11377#define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
29ef7005 11378#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 11379#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 11380#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
11381
11382#include "elf32-target.h"
This page took 1.569797 seconds and 4 git commands to generate.