Commit | Line | Data |
---|---|---|
e0001a05 NC |
1 | /* Xtensa-specific support for 32-bit ELF. |
2 | Copyright 2003 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or | |
7 | modify it under the terms of the GNU General Public License as | |
8 | published by the Free Software Foundation; either version 2 of the | |
9 | License, or (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, but | |
12 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | |
19 | 02111-1307, USA. */ | |
20 | ||
21 | #include "bfd.h" | |
22 | #include "sysdep.h" | |
23 | ||
24 | #ifdef ANSI_PROTOTYPES | |
25 | #include <stdarg.h> | |
26 | #else | |
27 | #include <varargs.h> | |
28 | #endif | |
29 | #include <strings.h> | |
30 | ||
31 | #include "bfdlink.h" | |
32 | #include "libbfd.h" | |
33 | #include "elf-bfd.h" | |
34 | #include "elf/xtensa.h" | |
35 | #include "xtensa-isa.h" | |
36 | #include "xtensa-config.h" | |
37 | ||
38 | /* Main interface functions. */ | |
39 | static void elf_xtensa_info_to_howto_rela | |
40 | PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); | |
41 | static reloc_howto_type *elf_xtensa_reloc_type_lookup | |
42 | PARAMS ((bfd *abfd, bfd_reloc_code_real_type code)); | |
43 | extern int xtensa_read_table_entries | |
44 | PARAMS ((bfd *, asection *, property_table_entry **, const char *)); | |
45 | static bfd_boolean elf_xtensa_check_relocs | |
46 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
47 | const Elf_Internal_Rela *)); | |
48 | static void elf_xtensa_hide_symbol | |
49 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean)); | |
e0001a05 NC |
50 | static asection *elf_xtensa_gc_mark_hook |
51 | PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *, | |
52 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
53 | static bfd_boolean elf_xtensa_gc_sweep_hook | |
54 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
55 | const Elf_Internal_Rela *)); | |
56 | static bfd_boolean elf_xtensa_create_dynamic_sections | |
57 | PARAMS ((bfd *, struct bfd_link_info *)); | |
58 | static bfd_boolean elf_xtensa_adjust_dynamic_symbol | |
59 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); | |
60 | static bfd_boolean elf_xtensa_size_dynamic_sections | |
61 | PARAMS ((bfd *, struct bfd_link_info *)); | |
62 | static bfd_boolean elf_xtensa_modify_segment_map | |
c84fca4d | 63 | PARAMS ((bfd *, struct bfd_link_info *)); |
e0001a05 NC |
64 | static bfd_boolean elf_xtensa_relocate_section |
65 | PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, | |
66 | Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); | |
67 | static bfd_boolean elf_xtensa_relax_section | |
68 | PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *again)); | |
69 | static bfd_boolean elf_xtensa_finish_dynamic_symbol | |
70 | PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, | |
71 | Elf_Internal_Sym *)); | |
72 | static bfd_boolean elf_xtensa_finish_dynamic_sections | |
73 | PARAMS ((bfd *, struct bfd_link_info *)); | |
74 | static bfd_boolean elf_xtensa_merge_private_bfd_data | |
75 | PARAMS ((bfd *, bfd *)); | |
76 | static bfd_boolean elf_xtensa_set_private_flags | |
77 | PARAMS ((bfd *, flagword)); | |
78 | extern flagword elf_xtensa_get_private_bfd_flags | |
79 | PARAMS ((bfd *)); | |
80 | static bfd_boolean elf_xtensa_print_private_bfd_data | |
81 | PARAMS ((bfd *, PTR)); | |
82 | static bfd_boolean elf_xtensa_object_p | |
83 | PARAMS ((bfd *)); | |
84 | static void elf_xtensa_final_write_processing | |
85 | PARAMS ((bfd *, bfd_boolean)); | |
86 | static enum elf_reloc_type_class elf_xtensa_reloc_type_class | |
87 | PARAMS ((const Elf_Internal_Rela *)); | |
88 | static bfd_boolean elf_xtensa_discard_info | |
89 | PARAMS ((bfd *, struct elf_reloc_cookie *, struct bfd_link_info *)); | |
90 | static bfd_boolean elf_xtensa_ignore_discarded_relocs | |
91 | PARAMS ((asection *)); | |
92 | static bfd_boolean elf_xtensa_grok_prstatus | |
93 | PARAMS ((bfd *, Elf_Internal_Note *)); | |
94 | static bfd_boolean elf_xtensa_grok_psinfo | |
95 | PARAMS ((bfd *, Elf_Internal_Note *)); | |
96 | static bfd_boolean elf_xtensa_new_section_hook | |
97 | PARAMS ((bfd *, asection *)); | |
98 | ||
99 | ||
100 | /* Local helper functions. */ | |
101 | ||
571b5725 BW |
102 | static bfd_boolean xtensa_elf_dynamic_symbol_p |
103 | PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *)); | |
e0001a05 NC |
104 | static int property_table_compare |
105 | PARAMS ((const PTR, const PTR)); | |
106 | static bfd_boolean elf_xtensa_in_literal_pool | |
107 | PARAMS ((property_table_entry *, int, bfd_vma)); | |
108 | static void elf_xtensa_make_sym_local | |
109 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); | |
110 | static bfd_boolean add_extra_plt_sections | |
111 | PARAMS ((bfd *, int)); | |
112 | static bfd_boolean elf_xtensa_fix_refcounts | |
113 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
114 | static bfd_boolean elf_xtensa_allocate_plt_size | |
115 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
116 | static bfd_boolean elf_xtensa_allocate_got_size | |
117 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
118 | static void elf_xtensa_allocate_local_got_size | |
119 | PARAMS ((struct bfd_link_info *, asection *)); | |
120 | static bfd_reloc_status_type elf_xtensa_do_reloc | |
121 | PARAMS ((reloc_howto_type *, bfd *, asection *, bfd_vma, bfd_byte *, | |
122 | bfd_vma, bfd_boolean, char **)); | |
123 | static char * vsprint_msg | |
124 | VPARAMS ((const char *, const char *, int, ...)); | |
125 | static char *build_encoding_error_message | |
126 | PARAMS ((xtensa_opcode, xtensa_encode_result)); | |
127 | static bfd_reloc_status_type bfd_elf_xtensa_reloc | |
128 | PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); | |
1049f94e | 129 | static void do_fix_for_relocatable_link |
e0001a05 NC |
130 | PARAMS ((Elf_Internal_Rela *, bfd *, asection *)); |
131 | static void do_fix_for_final_link | |
132 | PARAMS ((Elf_Internal_Rela *, asection *, bfd_vma *)); | |
e0001a05 NC |
133 | static bfd_vma elf_xtensa_create_plt_entry |
134 | PARAMS ((bfd *, bfd *, unsigned)); | |
135 | static int elf_xtensa_combine_prop_entries | |
e901de89 | 136 | PARAMS ((bfd *, asection *, asection *)); |
e0001a05 NC |
137 | static bfd_boolean elf_xtensa_discard_info_for_section |
138 | PARAMS ((bfd *, struct elf_reloc_cookie *, struct bfd_link_info *, | |
139 | asection *)); | |
140 | ||
141 | /* Local functions to handle Xtensa configurability. */ | |
142 | ||
143 | static void init_call_opcodes | |
144 | PARAMS ((void)); | |
145 | static bfd_boolean is_indirect_call_opcode | |
146 | PARAMS ((xtensa_opcode)); | |
147 | static bfd_boolean is_direct_call_opcode | |
148 | PARAMS ((xtensa_opcode)); | |
149 | static bfd_boolean is_windowed_call_opcode | |
150 | PARAMS ((xtensa_opcode)); | |
151 | static xtensa_opcode get_l32r_opcode | |
152 | PARAMS ((void)); | |
153 | static bfd_vma l32r_offset | |
154 | PARAMS ((bfd_vma, bfd_vma)); | |
155 | static int get_relocation_opnd | |
156 | PARAMS ((Elf_Internal_Rela *)); | |
157 | static xtensa_opcode get_relocation_opcode | |
158 | PARAMS ((asection *, bfd_byte *, Elf_Internal_Rela *)); | |
159 | static bfd_boolean is_l32r_relocation | |
160 | PARAMS ((asection *, bfd_byte *, Elf_Internal_Rela *)); | |
161 | ||
162 | /* Functions for link-time code simplifications. */ | |
163 | ||
164 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify | |
165 | PARAMS ((bfd_byte *, bfd_vma, bfd_vma)); | |
166 | static bfd_reloc_status_type contract_asm_expansion | |
167 | PARAMS ((bfd_byte *, bfd_vma, Elf_Internal_Rela *)); | |
168 | static xtensa_opcode swap_callx_for_call_opcode | |
169 | PARAMS ((xtensa_opcode)); | |
170 | static xtensa_opcode get_expanded_call_opcode | |
171 | PARAMS ((bfd_byte *, int)); | |
172 | ||
173 | /* Access to internal relocations, section contents and symbols. */ | |
174 | ||
175 | static Elf_Internal_Rela *retrieve_internal_relocs | |
176 | PARAMS ((bfd *, asection *, bfd_boolean)); | |
177 | static void pin_internal_relocs | |
178 | PARAMS ((asection *, Elf_Internal_Rela *)); | |
179 | static void release_internal_relocs | |
180 | PARAMS ((asection *, Elf_Internal_Rela *)); | |
181 | static bfd_byte *retrieve_contents | |
182 | PARAMS ((bfd *, asection *, bfd_boolean)); | |
183 | static void pin_contents | |
184 | PARAMS ((asection *, bfd_byte *)); | |
185 | static void release_contents | |
186 | PARAMS ((asection *, bfd_byte *)); | |
187 | static Elf_Internal_Sym *retrieve_local_syms | |
188 | PARAMS ((bfd *)); | |
189 | ||
190 | /* Miscellaneous utility functions. */ | |
191 | ||
192 | static asection *elf_xtensa_get_plt_section | |
193 | PARAMS ((bfd *, int)); | |
194 | static asection *elf_xtensa_get_gotplt_section | |
195 | PARAMS ((bfd *, int)); | |
196 | static asection *get_elf_r_symndx_section | |
197 | PARAMS ((bfd *, unsigned long)); | |
198 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry | |
199 | PARAMS ((bfd *, unsigned long)); | |
200 | static bfd_vma get_elf_r_symndx_offset | |
201 | PARAMS ((bfd *, unsigned long)); | |
202 | static bfd_boolean pcrel_reloc_fits | |
203 | PARAMS ((xtensa_operand, bfd_vma, bfd_vma)); | |
204 | static bfd_boolean xtensa_is_property_section | |
205 | PARAMS ((asection *)); | |
e901de89 BW |
206 | static bfd_boolean xtensa_is_littable_section |
207 | PARAMS ((asection *)); | |
e0001a05 NC |
208 | static bfd_boolean is_literal_section |
209 | PARAMS ((asection *)); | |
210 | static int internal_reloc_compare | |
211 | PARAMS ((const PTR, const PTR)); | |
e0001a05 | 212 | extern char *xtensa_get_property_section_name |
b614a702 | 213 | PARAMS ((asection *, const char *)); |
e0001a05 NC |
214 | |
215 | /* Other functions called directly by the linker. */ | |
216 | ||
217 | typedef void (*deps_callback_t) | |
218 | PARAMS ((asection *, bfd_vma, asection *, bfd_vma, PTR)); | |
219 | extern bfd_boolean xtensa_callback_required_dependence | |
220 | PARAMS ((bfd *, asection *, struct bfd_link_info *, | |
221 | deps_callback_t, PTR)); | |
222 | ||
223 | ||
224 | typedef struct xtensa_relax_info_struct xtensa_relax_info; | |
225 | ||
226 | ||
227 | /* Total count of PLT relocations seen during check_relocs. | |
228 | The actual PLT code must be split into multiple sections and all | |
229 | the sections have to be created before size_dynamic_sections, | |
230 | where we figure out the exact number of PLT entries that will be | |
b536dc1e | 231 | needed. It is OK if this count is an overestimate, e.g., some |
e0001a05 NC |
232 | relocations may be removed by GC. */ |
233 | ||
234 | static int plt_reloc_count = 0; | |
235 | ||
236 | ||
237 | /* When this is true, relocations may have been modified to refer to | |
238 | symbols from other input files. The per-section list of "fix" | |
239 | records needs to be checked when resolving relocations. */ | |
240 | ||
241 | static bfd_boolean relaxing_section = FALSE; | |
242 | ||
243 | \f | |
244 | static reloc_howto_type elf_howto_table[] = | |
245 | { | |
246 | HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
247 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", | |
248 | FALSE, 0x00000000, 0x00000000, FALSE), | |
249 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
250 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
251 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
252 | /* Replace a 32-bit value with a value from the runtime linker (only | |
253 | used by linker-generated stub functions). The r_addend value is | |
254 | special: 1 means to substitute a pointer to the runtime linker's | |
255 | dynamic resolver function; 2 means to substitute the link map for | |
256 | the shared object. */ | |
257 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
258 | NULL, "R_XTENSA_RTLD", | |
259 | FALSE, 0x00000000, 0x00000000, FALSE), | |
260 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
261 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
262 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
263 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
264 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
265 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
266 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
267 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
268 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
269 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
270 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
271 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
272 | EMPTY_HOWTO (7), | |
273 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
274 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", | |
275 | FALSE, 0x00000000, 0x00000000, TRUE), | |
276 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
277 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", | |
278 | FALSE, 0x00000000, 0x00000000, TRUE), | |
279 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
280 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", | |
281 | FALSE, 0x00000000, 0x00000000, TRUE), | |
282 | /* Assembly auto-expansion. */ | |
283 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
284 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", | |
285 | FALSE, 0x00000000, 0x00000000, FALSE), | |
286 | /* Relax assembly auto-expansion. */ | |
287 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
288 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", | |
289 | FALSE, 0x00000000, 0x00000000, TRUE), | |
290 | EMPTY_HOWTO (13), | |
291 | EMPTY_HOWTO (14), | |
292 | /* GNU extension to record C++ vtable hierarchy. */ | |
293 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
294 | NULL, "R_XTENSA_GNU_VTINHERIT", | |
295 | FALSE, 0x00000000, 0x00000000, FALSE), | |
296 | /* GNU extension to record C++ vtable member usage. */ | |
297 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
298 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", | |
299 | FALSE, 0x00000000, 0x00000000, FALSE) | |
300 | }; | |
301 | ||
302 | #ifdef DEBUG_GEN_RELOC | |
303 | #define TRACE(str) \ | |
304 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
305 | #else | |
306 | #define TRACE(str) | |
307 | #endif | |
308 | ||
309 | static reloc_howto_type * | |
310 | elf_xtensa_reloc_type_lookup (abfd, code) | |
311 | bfd *abfd ATTRIBUTE_UNUSED; | |
312 | bfd_reloc_code_real_type code; | |
313 | { | |
314 | switch (code) | |
315 | { | |
316 | case BFD_RELOC_NONE: | |
317 | TRACE ("BFD_RELOC_NONE"); | |
318 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
319 | ||
320 | case BFD_RELOC_32: | |
321 | TRACE ("BFD_RELOC_32"); | |
322 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
323 | ||
324 | case BFD_RELOC_XTENSA_RTLD: | |
325 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
326 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
327 | ||
328 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
329 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
330 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
331 | ||
332 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
333 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
334 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
335 | ||
336 | case BFD_RELOC_XTENSA_RELATIVE: | |
337 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
338 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
339 | ||
340 | case BFD_RELOC_XTENSA_PLT: | |
341 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
342 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
343 | ||
344 | case BFD_RELOC_XTENSA_OP0: | |
345 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
346 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
347 | ||
348 | case BFD_RELOC_XTENSA_OP1: | |
349 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
350 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
351 | ||
352 | case BFD_RELOC_XTENSA_OP2: | |
353 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
354 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
355 | ||
356 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
357 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
358 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
359 | ||
360 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
361 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
362 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
363 | ||
364 | case BFD_RELOC_VTABLE_INHERIT: | |
365 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
366 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
367 | ||
368 | case BFD_RELOC_VTABLE_ENTRY: | |
369 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
370 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
371 | ||
372 | default: | |
373 | break; | |
374 | } | |
375 | ||
376 | TRACE ("Unknown"); | |
377 | return NULL; | |
378 | } | |
379 | ||
380 | ||
381 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
382 | it in the BFD internal arelent representation of the relocation. */ | |
383 | ||
384 | static void | |
385 | elf_xtensa_info_to_howto_rela (abfd, cache_ptr, dst) | |
386 | bfd *abfd ATTRIBUTE_UNUSED; | |
387 | arelent *cache_ptr; | |
388 | Elf_Internal_Rela *dst; | |
389 | { | |
390 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
391 | ||
392 | BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max); | |
393 | cache_ptr->howto = &elf_howto_table[r_type]; | |
394 | } | |
395 | ||
396 | \f | |
397 | /* Functions for the Xtensa ELF linker. */ | |
398 | ||
399 | /* The name of the dynamic interpreter. This is put in the .interp | |
400 | section. */ | |
401 | ||
402 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
403 | ||
404 | /* The size in bytes of an entry in the procedure linkage table. | |
405 | (This does _not_ include the space for the literals associated with | |
406 | the PLT entry.) */ | |
407 | ||
408 | #define PLT_ENTRY_SIZE 16 | |
409 | ||
410 | /* For _really_ large PLTs, we may need to alternate between literals | |
411 | and code to keep the literals within the 256K range of the L32R | |
412 | instructions in the code. It's unlikely that anyone would ever need | |
413 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
414 | Thus, we split the PLT into chunks. Since there's very little | |
415 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
416 | small so that the code for handling multiple chunks get used and | |
417 | tested regularly. With 254 entries, there are 1K of literals for | |
418 | each chunk, and that seems like a nice round number. */ | |
419 | ||
420 | #define PLT_ENTRIES_PER_CHUNK 254 | |
421 | ||
422 | /* PLT entries are actually used as stub functions for lazy symbol | |
423 | resolution. Once the symbol is resolved, the stub function is never | |
424 | invoked. Note: the 32-byte frame size used here cannot be changed | |
425 | without a corresponding change in the runtime linker. */ | |
426 | ||
427 | static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] = | |
428 | { | |
429 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ | |
430 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
431 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
432 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
433 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
434 | 0 /* unused */ | |
435 | }; | |
436 | ||
437 | static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] = | |
438 | { | |
439 | 0x36, 0x41, 0x00, /* entry sp, 32 */ | |
440 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
441 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
442 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
443 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
444 | 0 /* unused */ | |
445 | }; | |
446 | ||
571b5725 BW |
447 | |
448 | static inline bfd_boolean | |
449 | xtensa_elf_dynamic_symbol_p (h, info) | |
450 | struct elf_link_hash_entry *h; | |
451 | struct bfd_link_info *info; | |
452 | { | |
453 | /* Check if we should do dynamic things to this symbol. The | |
454 | "ignore_protected" argument need not be set, because Xtensa code | |
455 | does not require special handling of STV_PROTECTED to make function | |
456 | pointer comparisons work properly. The PLT addresses are never | |
457 | used for function pointers. */ | |
458 | ||
459 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
460 | } | |
461 | ||
e0001a05 NC |
462 | \f |
463 | static int | |
464 | property_table_compare (ap, bp) | |
465 | const PTR ap; | |
466 | const PTR bp; | |
467 | { | |
468 | const property_table_entry *a = (const property_table_entry *) ap; | |
469 | const property_table_entry *b = (const property_table_entry *) bp; | |
470 | ||
471 | /* Check if one entry overlaps with the other; this shouldn't happen | |
472 | except when searching for a match. */ | |
473 | if ((b->address >= a->address && b->address < (a->address + a->size)) | |
474 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
475 | return 0; | |
476 | ||
477 | return (a->address - b->address); | |
478 | } | |
479 | ||
480 | ||
481 | /* Get the literal table or instruction table entries for the given | |
482 | section. Sets TABLE_P and returns the number of entries. On error, | |
483 | returns a negative value. */ | |
484 | ||
485 | int | |
486 | xtensa_read_table_entries (abfd, section, table_p, sec_name) | |
487 | bfd *abfd; | |
488 | asection *section; | |
489 | property_table_entry **table_p; | |
490 | const char *sec_name; | |
491 | { | |
492 | asection *table_section; | |
493 | char *table_section_name; | |
494 | bfd_size_type table_size = 0; | |
495 | bfd_byte *table_data; | |
496 | property_table_entry *blocks; | |
497 | int block_count; | |
498 | bfd_size_type num_records; | |
499 | Elf_Internal_Rela *internal_relocs; | |
500 | ||
501 | table_section_name = | |
b614a702 | 502 | xtensa_get_property_section_name (section, sec_name); |
e0001a05 | 503 | table_section = bfd_get_section_by_name (abfd, table_section_name); |
b614a702 | 504 | free (table_section_name); |
e0001a05 NC |
505 | if (table_section != NULL) |
506 | table_size = bfd_get_section_size_before_reloc (table_section); | |
507 | ||
508 | if (table_size == 0) | |
509 | { | |
510 | *table_p = NULL; | |
511 | return 0; | |
512 | } | |
513 | ||
7aaa0689 | 514 | num_records = table_size / 8; |
e0001a05 NC |
515 | table_data = retrieve_contents (abfd, table_section, TRUE); |
516 | blocks = (property_table_entry *) | |
517 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
518 | block_count = 0; | |
519 | ||
520 | /* If the file has not yet been relocated, process the relocations | |
521 | and sort out the table entries that apply to the specified section. */ | |
522 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); | |
523 | if (internal_relocs) | |
524 | { | |
525 | unsigned i; | |
526 | ||
527 | for (i = 0; i < table_section->reloc_count; i++) | |
528 | { | |
529 | Elf_Internal_Rela *rel = &internal_relocs[i]; | |
530 | unsigned long r_symndx; | |
531 | ||
532 | if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE) | |
533 | continue; | |
534 | ||
535 | BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32); | |
536 | r_symndx = ELF32_R_SYM (rel->r_info); | |
537 | ||
538 | if (get_elf_r_symndx_section (abfd, r_symndx) == section) | |
539 | { | |
540 | bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx); | |
541 | blocks[block_count].address = | |
542 | (section->vma + sym_off + rel->r_addend | |
543 | + bfd_get_32 (abfd, table_data + rel->r_offset)); | |
544 | blocks[block_count].size = | |
545 | bfd_get_32 (abfd, table_data + rel->r_offset + 4); | |
546 | block_count++; | |
547 | } | |
548 | } | |
549 | } | |
550 | else | |
551 | { | |
552 | /* No relocations. Presumably the file has been relocated | |
553 | and the addresses are already in the table. */ | |
554 | bfd_vma off; | |
555 | ||
7aaa0689 | 556 | for (off = 0; off < table_size; off += 8) |
e0001a05 NC |
557 | { |
558 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
559 | ||
560 | if (address >= section->vma | |
561 | && address < ( section->vma + section->_raw_size)) | |
562 | { | |
563 | blocks[block_count].address = address; | |
564 | blocks[block_count].size = | |
565 | bfd_get_32 (abfd, table_data + off + 4); | |
566 | block_count++; | |
567 | } | |
568 | } | |
569 | } | |
570 | ||
571 | release_contents (table_section, table_data); | |
572 | release_internal_relocs (table_section, internal_relocs); | |
573 | ||
574 | if (block_count > 0) | |
575 | { | |
576 | /* Now sort them into address order for easy reference. */ | |
577 | qsort (blocks, block_count, sizeof (property_table_entry), | |
578 | property_table_compare); | |
579 | } | |
580 | ||
581 | *table_p = blocks; | |
582 | return block_count; | |
583 | } | |
584 | ||
585 | ||
586 | static bfd_boolean | |
587 | elf_xtensa_in_literal_pool (lit_table, lit_table_size, addr) | |
588 | property_table_entry *lit_table; | |
589 | int lit_table_size; | |
590 | bfd_vma addr; | |
591 | { | |
592 | property_table_entry entry; | |
593 | ||
594 | if (lit_table_size == 0) | |
595 | return FALSE; | |
596 | ||
597 | entry.address = addr; | |
598 | entry.size = 1; | |
599 | ||
600 | if (bsearch (&entry, lit_table, lit_table_size, | |
601 | sizeof (property_table_entry), property_table_compare)) | |
602 | return TRUE; | |
603 | ||
604 | return FALSE; | |
605 | } | |
606 | ||
607 | \f | |
608 | /* Look through the relocs for a section during the first phase, and | |
609 | calculate needed space in the dynamic reloc sections. */ | |
610 | ||
611 | static bfd_boolean | |
612 | elf_xtensa_check_relocs (abfd, info, sec, relocs) | |
613 | bfd *abfd; | |
614 | struct bfd_link_info *info; | |
615 | asection *sec; | |
616 | const Elf_Internal_Rela *relocs; | |
617 | { | |
618 | Elf_Internal_Shdr *symtab_hdr; | |
619 | struct elf_link_hash_entry **sym_hashes; | |
620 | const Elf_Internal_Rela *rel; | |
621 | const Elf_Internal_Rela *rel_end; | |
622 | property_table_entry *lit_table; | |
623 | int ltblsize; | |
624 | ||
1049f94e | 625 | if (info->relocatable) |
e0001a05 NC |
626 | return TRUE; |
627 | ||
628 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
629 | sym_hashes = elf_sym_hashes (abfd); | |
630 | ||
631 | ltblsize = xtensa_read_table_entries (abfd, sec, &lit_table, | |
632 | XTENSA_LIT_SEC_NAME); | |
633 | if (ltblsize < 0) | |
634 | return FALSE; | |
635 | ||
636 | rel_end = relocs + sec->reloc_count; | |
637 | for (rel = relocs; rel < rel_end; rel++) | |
638 | { | |
639 | unsigned int r_type; | |
640 | unsigned long r_symndx; | |
641 | struct elf_link_hash_entry *h; | |
642 | ||
643 | r_symndx = ELF32_R_SYM (rel->r_info); | |
644 | r_type = ELF32_R_TYPE (rel->r_info); | |
645 | ||
646 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
647 | { | |
648 | (*_bfd_error_handler) (_("%s: bad symbol index: %d"), | |
649 | bfd_archive_filename (abfd), | |
650 | r_symndx); | |
651 | return FALSE; | |
652 | } | |
653 | ||
654 | if (r_symndx < symtab_hdr->sh_info) | |
655 | h = NULL; | |
656 | else | |
657 | { | |
658 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
659 | while (h->root.type == bfd_link_hash_indirect | |
660 | || h->root.type == bfd_link_hash_warning) | |
661 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
662 | } | |
663 | ||
664 | switch (r_type) | |
665 | { | |
666 | case R_XTENSA_32: | |
667 | if (h == NULL) | |
668 | goto local_literal; | |
669 | ||
670 | if ((sec->flags & SEC_ALLOC) != 0) | |
671 | { | |
672 | if ((sec->flags & SEC_READONLY) != 0 | |
673 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
674 | sec->vma + rel->r_offset)) | |
675 | h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF; | |
676 | ||
677 | if (h->got.refcount <= 0) | |
678 | h->got.refcount = 1; | |
679 | else | |
680 | h->got.refcount += 1; | |
681 | } | |
682 | break; | |
683 | ||
684 | case R_XTENSA_PLT: | |
685 | /* If this relocation is against a local symbol, then it's | |
686 | exactly the same as a normal local GOT entry. */ | |
687 | if (h == NULL) | |
688 | goto local_literal; | |
689 | ||
690 | if ((sec->flags & SEC_ALLOC) != 0) | |
691 | { | |
692 | if ((sec->flags & SEC_READONLY) != 0 | |
693 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
694 | sec->vma + rel->r_offset)) | |
695 | h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF; | |
696 | ||
697 | if (h->plt.refcount <= 0) | |
698 | { | |
699 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; | |
700 | h->plt.refcount = 1; | |
701 | } | |
702 | else | |
703 | h->plt.refcount += 1; | |
704 | ||
705 | /* Keep track of the total PLT relocation count even if we | |
706 | don't yet know whether the dynamic sections will be | |
707 | created. */ | |
708 | plt_reloc_count += 1; | |
709 | ||
710 | if (elf_hash_table (info)->dynamic_sections_created) | |
711 | { | |
712 | if (!add_extra_plt_sections (elf_hash_table (info)->dynobj, | |
713 | plt_reloc_count)) | |
714 | return FALSE; | |
715 | } | |
716 | } | |
717 | break; | |
718 | ||
719 | local_literal: | |
720 | if ((sec->flags & SEC_ALLOC) != 0) | |
721 | { | |
722 | bfd_signed_vma *local_got_refcounts; | |
723 | ||
724 | /* This is a global offset table entry for a local symbol. */ | |
725 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
726 | if (local_got_refcounts == NULL) | |
727 | { | |
728 | bfd_size_type size; | |
729 | ||
730 | size = symtab_hdr->sh_info; | |
731 | size *= sizeof (bfd_signed_vma); | |
732 | local_got_refcounts = ((bfd_signed_vma *) | |
733 | bfd_zalloc (abfd, size)); | |
734 | if (local_got_refcounts == NULL) | |
735 | return FALSE; | |
736 | elf_local_got_refcounts (abfd) = local_got_refcounts; | |
737 | } | |
738 | local_got_refcounts[r_symndx] += 1; | |
739 | ||
740 | /* If the relocation is not inside the GOT, the DF_TEXTREL | |
741 | flag needs to be set. */ | |
742 | if (info->shared | |
743 | && (sec->flags & SEC_READONLY) != 0 | |
744 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
745 | sec->vma + rel->r_offset)) | |
746 | info->flags |= DF_TEXTREL; | |
747 | } | |
748 | break; | |
749 | ||
750 | case R_XTENSA_OP0: | |
751 | case R_XTENSA_OP1: | |
752 | case R_XTENSA_OP2: | |
753 | case R_XTENSA_ASM_EXPAND: | |
754 | case R_XTENSA_ASM_SIMPLIFY: | |
755 | /* Nothing to do for these. */ | |
756 | break; | |
757 | ||
758 | case R_XTENSA_GNU_VTINHERIT: | |
759 | /* This relocation describes the C++ object vtable hierarchy. | |
760 | Reconstruct it for later use during GC. */ | |
761 | if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
762 | return FALSE; | |
763 | break; | |
764 | ||
765 | case R_XTENSA_GNU_VTENTRY: | |
766 | /* This relocation describes which C++ vtable entries are actually | |
767 | used. Record for later use during GC. */ | |
768 | if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
769 | return FALSE; | |
770 | break; | |
771 | ||
772 | default: | |
773 | break; | |
774 | } | |
775 | } | |
776 | ||
777 | free (lit_table); | |
778 | return TRUE; | |
779 | } | |
780 | ||
781 | ||
782 | static void | |
783 | elf_xtensa_hide_symbol (info, h, force_local) | |
784 | struct bfd_link_info *info; | |
785 | struct elf_link_hash_entry *h; | |
786 | bfd_boolean force_local; | |
787 | { | |
788 | /* For a shared link, move the plt refcount to the got refcount to leave | |
789 | space for RELATIVE relocs. */ | |
790 | elf_xtensa_make_sym_local (info, h); | |
791 | ||
792 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
793 | } | |
794 | ||
795 | ||
e0001a05 NC |
796 | /* Return the section that should be marked against GC for a given |
797 | relocation. */ | |
798 | ||
799 | static asection * | |
800 | elf_xtensa_gc_mark_hook (sec, info, rel, h, sym) | |
801 | asection *sec; | |
802 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
803 | Elf_Internal_Rela *rel; | |
804 | struct elf_link_hash_entry *h; | |
805 | Elf_Internal_Sym *sym; | |
806 | { | |
807 | if (h != NULL) | |
808 | { | |
809 | switch (ELF32_R_TYPE (rel->r_info)) | |
810 | { | |
811 | case R_XTENSA_GNU_VTINHERIT: | |
812 | case R_XTENSA_GNU_VTENTRY: | |
813 | break; | |
814 | ||
815 | default: | |
816 | switch (h->root.type) | |
817 | { | |
818 | case bfd_link_hash_defined: | |
819 | case bfd_link_hash_defweak: | |
820 | return h->root.u.def.section; | |
821 | ||
822 | case bfd_link_hash_common: | |
823 | return h->root.u.c.p->section; | |
824 | ||
825 | default: | |
826 | break; | |
827 | } | |
828 | } | |
829 | } | |
830 | else | |
831 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); | |
832 | ||
833 | return NULL; | |
834 | } | |
835 | ||
836 | /* Update the GOT & PLT entry reference counts | |
837 | for the section being removed. */ | |
838 | ||
839 | static bfd_boolean | |
840 | elf_xtensa_gc_sweep_hook (abfd, info, sec, relocs) | |
841 | bfd *abfd; | |
842 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
843 | asection *sec; | |
844 | const Elf_Internal_Rela *relocs; | |
845 | { | |
846 | Elf_Internal_Shdr *symtab_hdr; | |
847 | struct elf_link_hash_entry **sym_hashes; | |
848 | bfd_signed_vma *local_got_refcounts; | |
849 | const Elf_Internal_Rela *rel, *relend; | |
850 | ||
851 | if ((sec->flags & SEC_ALLOC) == 0) | |
852 | return TRUE; | |
853 | ||
854 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
855 | sym_hashes = elf_sym_hashes (abfd); | |
856 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
857 | ||
858 | relend = relocs + sec->reloc_count; | |
859 | for (rel = relocs; rel < relend; rel++) | |
860 | { | |
861 | unsigned long r_symndx; | |
862 | unsigned int r_type; | |
863 | struct elf_link_hash_entry *h = NULL; | |
864 | ||
865 | r_symndx = ELF32_R_SYM (rel->r_info); | |
866 | if (r_symndx >= symtab_hdr->sh_info) | |
867 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
868 | ||
869 | r_type = ELF32_R_TYPE (rel->r_info); | |
870 | switch (r_type) | |
871 | { | |
872 | case R_XTENSA_32: | |
873 | if (h == NULL) | |
874 | goto local_literal; | |
875 | if (h->got.refcount > 0) | |
876 | h->got.refcount--; | |
877 | break; | |
878 | ||
879 | case R_XTENSA_PLT: | |
880 | if (h == NULL) | |
881 | goto local_literal; | |
882 | if (h->plt.refcount > 0) | |
883 | h->plt.refcount--; | |
884 | break; | |
885 | ||
886 | local_literal: | |
887 | if (local_got_refcounts[r_symndx] > 0) | |
888 | local_got_refcounts[r_symndx] -= 1; | |
889 | break; | |
890 | ||
891 | default: | |
892 | break; | |
893 | } | |
894 | } | |
895 | ||
896 | return TRUE; | |
897 | } | |
898 | ||
899 | ||
900 | /* Create all the dynamic sections. */ | |
901 | ||
902 | static bfd_boolean | |
903 | elf_xtensa_create_dynamic_sections (dynobj, info) | |
904 | bfd *dynobj; | |
905 | struct bfd_link_info *info; | |
906 | { | |
e901de89 | 907 | flagword flags, noalloc_flags; |
e0001a05 NC |
908 | asection *s; |
909 | ||
910 | /* First do all the standard stuff. */ | |
911 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
912 | return FALSE; | |
913 | ||
914 | /* Create any extra PLT sections in case check_relocs has already | |
915 | been called on all the non-dynamic input files. */ | |
916 | if (!add_extra_plt_sections (dynobj, plt_reloc_count)) | |
917 | return FALSE; | |
918 | ||
e901de89 BW |
919 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
920 | | SEC_LINKER_CREATED | SEC_READONLY); | |
921 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
922 | |
923 | /* Mark the ".got.plt" section READONLY. */ | |
924 | s = bfd_get_section_by_name (dynobj, ".got.plt"); | |
925 | if (s == NULL | |
926 | || ! bfd_set_section_flags (dynobj, s, flags)) | |
927 | return FALSE; | |
928 | ||
929 | /* Create ".rela.got". */ | |
930 | s = bfd_make_section (dynobj, ".rela.got"); | |
931 | if (s == NULL | |
932 | || ! bfd_set_section_flags (dynobj, s, flags) | |
933 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
934 | return FALSE; | |
935 | ||
e901de89 BW |
936 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
937 | s = bfd_make_section (dynobj, ".got.loc"); | |
938 | if (s == NULL | |
939 | || ! bfd_set_section_flags (dynobj, s, flags) | |
940 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
941 | return FALSE; | |
942 | ||
e0001a05 NC |
943 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
944 | s = bfd_make_section (dynobj, ".xt.lit.plt"); | |
945 | if (s == NULL | |
e901de89 | 946 | || ! bfd_set_section_flags (dynobj, s, noalloc_flags) |
e0001a05 NC |
947 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
948 | return FALSE; | |
949 | ||
950 | return TRUE; | |
951 | } | |
952 | ||
953 | ||
954 | static bfd_boolean | |
955 | add_extra_plt_sections (dynobj, count) | |
956 | bfd *dynobj; | |
957 | int count; | |
958 | { | |
959 | int chunk; | |
960 | ||
961 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
962 | ".got.plt" sections. */ | |
963 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
964 | { | |
965 | char *sname; | |
966 | flagword flags; | |
967 | asection *s; | |
968 | ||
969 | /* Stop when we find a section has already been created. */ | |
970 | if (elf_xtensa_get_plt_section (dynobj, chunk)) | |
971 | break; | |
972 | ||
973 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
974 | | SEC_LINKER_CREATED | SEC_READONLY); | |
975 | ||
976 | sname = (char *) bfd_malloc (10); | |
977 | sprintf (sname, ".plt.%u", chunk); | |
978 | s = bfd_make_section (dynobj, sname); | |
979 | if (s == NULL | |
980 | || ! bfd_set_section_flags (dynobj, s, flags | SEC_CODE) | |
981 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
982 | return FALSE; | |
983 | ||
984 | sname = (char *) bfd_malloc (14); | |
985 | sprintf (sname, ".got.plt.%u", chunk); | |
986 | s = bfd_make_section (dynobj, sname); | |
987 | if (s == NULL | |
988 | || ! bfd_set_section_flags (dynobj, s, flags) | |
989 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
990 | return FALSE; | |
991 | } | |
992 | ||
993 | return TRUE; | |
994 | } | |
995 | ||
996 | ||
997 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
998 | regular object. The current definition is in some section of the | |
999 | dynamic object, but we're not including those sections. We have to | |
1000 | change the definition to something the rest of the link can | |
1001 | understand. */ | |
1002 | ||
1003 | static bfd_boolean | |
1004 | elf_xtensa_adjust_dynamic_symbol (info, h) | |
1005 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
1006 | struct elf_link_hash_entry *h; | |
1007 | { | |
1008 | /* If this is a weak symbol, and there is a real definition, the | |
1009 | processor independent code will have arranged for us to see the | |
1010 | real definition first, and we can just use the same value. */ | |
1011 | if (h->weakdef != NULL) | |
1012 | { | |
1013 | BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined | |
1014 | || h->weakdef->root.type == bfd_link_hash_defweak); | |
1015 | h->root.u.def.section = h->weakdef->root.u.def.section; | |
1016 | h->root.u.def.value = h->weakdef->root.u.def.value; | |
1017 | return TRUE; | |
1018 | } | |
1019 | ||
1020 | /* This is a reference to a symbol defined by a dynamic object. The | |
1021 | reference must go through the GOT, so there's no need for COPY relocs, | |
1022 | .dynbss, etc. */ | |
1023 | ||
1024 | return TRUE; | |
1025 | } | |
1026 | ||
1027 | ||
1028 | static void | |
1029 | elf_xtensa_make_sym_local (info, h) | |
1030 | struct bfd_link_info *info; | |
1031 | struct elf_link_hash_entry *h; | |
1032 | { | |
1033 | if (info->shared) | |
1034 | { | |
1035 | if (h->plt.refcount > 0) | |
1036 | { | |
1037 | /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */ | |
1038 | if (h->got.refcount < 0) | |
1039 | h->got.refcount = 0; | |
1040 | h->got.refcount += h->plt.refcount; | |
1041 | h->plt.refcount = 0; | |
1042 | } | |
1043 | } | |
1044 | else | |
1045 | { | |
1046 | /* Don't need any dynamic relocations at all. */ | |
1047 | h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF; | |
1048 | h->plt.refcount = 0; | |
1049 | h->got.refcount = 0; | |
1050 | } | |
1051 | } | |
1052 | ||
1053 | ||
1054 | static bfd_boolean | |
1055 | elf_xtensa_fix_refcounts (h, arg) | |
1056 | struct elf_link_hash_entry *h; | |
1057 | PTR arg; | |
1058 | { | |
1059 | struct bfd_link_info *info = (struct bfd_link_info *) arg; | |
1060 | ||
1061 | if (h->root.type == bfd_link_hash_warning) | |
1062 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1063 | ||
571b5725 | 1064 | if (! xtensa_elf_dynamic_symbol_p (h, info)) |
e0001a05 NC |
1065 | elf_xtensa_make_sym_local (info, h); |
1066 | ||
1067 | /* If the symbol has a relocation outside the GOT, set the | |
1068 | DF_TEXTREL flag. */ | |
1069 | if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) != 0) | |
1070 | info->flags |= DF_TEXTREL; | |
1071 | ||
1072 | return TRUE; | |
1073 | } | |
1074 | ||
1075 | ||
1076 | static bfd_boolean | |
1077 | elf_xtensa_allocate_plt_size (h, arg) | |
1078 | struct elf_link_hash_entry *h; | |
1079 | PTR arg; | |
1080 | { | |
1081 | asection *srelplt = (asection *) arg; | |
1082 | ||
1083 | if (h->root.type == bfd_link_hash_warning) | |
1084 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1085 | ||
1086 | if (h->plt.refcount > 0) | |
1087 | srelplt->_raw_size += (h->plt.refcount * sizeof (Elf32_External_Rela)); | |
1088 | ||
1089 | return TRUE; | |
1090 | } | |
1091 | ||
1092 | ||
1093 | static bfd_boolean | |
1094 | elf_xtensa_allocate_got_size (h, arg) | |
1095 | struct elf_link_hash_entry *h; | |
1096 | PTR arg; | |
1097 | { | |
1098 | asection *srelgot = (asection *) arg; | |
1099 | ||
1100 | if (h->root.type == bfd_link_hash_warning) | |
1101 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1102 | ||
1103 | if (h->got.refcount > 0) | |
1104 | srelgot->_raw_size += (h->got.refcount * sizeof (Elf32_External_Rela)); | |
1105 | ||
1106 | return TRUE; | |
1107 | } | |
1108 | ||
1109 | ||
1110 | static void | |
1111 | elf_xtensa_allocate_local_got_size (info, srelgot) | |
1112 | struct bfd_link_info *info; | |
1113 | asection *srelgot; | |
1114 | { | |
1115 | bfd *i; | |
1116 | ||
1117 | for (i = info->input_bfds; i; i = i->link_next) | |
1118 | { | |
1119 | bfd_signed_vma *local_got_refcounts; | |
1120 | bfd_size_type j, cnt; | |
1121 | Elf_Internal_Shdr *symtab_hdr; | |
1122 | ||
1123 | local_got_refcounts = elf_local_got_refcounts (i); | |
1124 | if (!local_got_refcounts) | |
1125 | continue; | |
1126 | ||
1127 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1128 | cnt = symtab_hdr->sh_info; | |
1129 | ||
1130 | for (j = 0; j < cnt; ++j) | |
1131 | { | |
1132 | if (local_got_refcounts[j] > 0) | |
1133 | srelgot->_raw_size += (local_got_refcounts[j] | |
1134 | * sizeof (Elf32_External_Rela)); | |
1135 | } | |
1136 | } | |
1137 | } | |
1138 | ||
1139 | ||
1140 | /* Set the sizes of the dynamic sections. */ | |
1141 | ||
1142 | static bfd_boolean | |
1143 | elf_xtensa_size_dynamic_sections (output_bfd, info) | |
1144 | bfd *output_bfd ATTRIBUTE_UNUSED; | |
1145 | struct bfd_link_info *info; | |
1146 | { | |
e901de89 BW |
1147 | bfd *dynobj, *abfd; |
1148 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1149 | bfd_boolean relplt, relgot; |
1150 | int plt_entries, plt_chunks, chunk; | |
1151 | ||
1152 | plt_entries = 0; | |
1153 | plt_chunks = 0; | |
1154 | srelgot = 0; | |
1155 | ||
1156 | dynobj = elf_hash_table (info)->dynobj; | |
1157 | if (dynobj == NULL) | |
1158 | abort (); | |
1159 | ||
1160 | if (elf_hash_table (info)->dynamic_sections_created) | |
1161 | { | |
1162 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 1163 | if (info->executable) |
e0001a05 NC |
1164 | { |
1165 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1166 | if (s == NULL) | |
1167 | abort (); | |
1168 | s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; | |
1169 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; | |
1170 | } | |
1171 | ||
1172 | /* Allocate room for one word in ".got". */ | |
1173 | s = bfd_get_section_by_name (dynobj, ".got"); | |
1174 | if (s == NULL) | |
1175 | abort (); | |
1176 | s->_raw_size = 4; | |
1177 | ||
1178 | /* Adjust refcounts for symbols that we now know are not "dynamic". */ | |
1179 | elf_link_hash_traverse (elf_hash_table (info), | |
1180 | elf_xtensa_fix_refcounts, | |
1181 | (PTR) info); | |
1182 | ||
1183 | /* Allocate space in ".rela.got" for literals that reference | |
1184 | global symbols. */ | |
1185 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); | |
1186 | if (srelgot == NULL) | |
1187 | abort (); | |
1188 | elf_link_hash_traverse (elf_hash_table (info), | |
1189 | elf_xtensa_allocate_got_size, | |
1190 | (PTR) srelgot); | |
1191 | ||
1192 | /* If we are generating a shared object, we also need space in | |
1193 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1194 | reference local symbols. */ | |
1195 | if (info->shared) | |
1196 | elf_xtensa_allocate_local_got_size (info, srelgot); | |
1197 | ||
1198 | /* Allocate space in ".rela.plt" for literals that have PLT entries. */ | |
1199 | srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
1200 | if (srelplt == NULL) | |
1201 | abort (); | |
1202 | elf_link_hash_traverse (elf_hash_table (info), | |
1203 | elf_xtensa_allocate_plt_size, | |
1204 | (PTR) srelplt); | |
1205 | ||
1206 | /* Allocate space in ".plt" to match the size of ".rela.plt". For | |
1207 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1208 | For each chunk of ".plt", we also need two more 4-byte | |
1209 | literals, two corresponding entries in ".rela.got", and an | |
1210 | 8-byte entry in ".xt.lit.plt". */ | |
1211 | spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt"); | |
1212 | if (spltlittbl == NULL) | |
1213 | abort (); | |
1214 | ||
1215 | plt_entries = srelplt->_raw_size / sizeof (Elf32_External_Rela); | |
1216 | plt_chunks = | |
1217 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1218 | ||
1219 | /* Iterate over all the PLT chunks, including any extra sections | |
1220 | created earlier because the initial count of PLT relocations | |
1221 | was an overestimate. */ | |
1222 | for (chunk = 0; | |
1223 | (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL; | |
1224 | chunk++) | |
1225 | { | |
1226 | int chunk_entries; | |
1227 | ||
1228 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
1229 | if (sgotplt == NULL) | |
1230 | abort (); | |
1231 | ||
1232 | if (chunk < plt_chunks - 1) | |
1233 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1234 | else if (chunk == plt_chunks - 1) | |
1235 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1236 | else | |
1237 | chunk_entries = 0; | |
1238 | ||
1239 | if (chunk_entries != 0) | |
1240 | { | |
1241 | sgotplt->_raw_size = 4 * (chunk_entries + 2); | |
1242 | splt->_raw_size = PLT_ENTRY_SIZE * chunk_entries; | |
1243 | srelgot->_raw_size += 2 * sizeof (Elf32_External_Rela); | |
1244 | spltlittbl->_raw_size += 8; | |
1245 | } | |
1246 | else | |
1247 | { | |
1248 | sgotplt->_raw_size = 0; | |
1249 | splt->_raw_size = 0; | |
1250 | } | |
1251 | } | |
e901de89 BW |
1252 | |
1253 | /* Allocate space in ".got.loc" to match the total size of all the | |
1254 | literal tables. */ | |
1255 | sgotloc = bfd_get_section_by_name (dynobj, ".got.loc"); | |
1256 | if (sgotloc == NULL) | |
1257 | abort (); | |
1258 | sgotloc->_raw_size = spltlittbl->_raw_size; | |
1259 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
1260 | { | |
1261 | if (abfd->flags & DYNAMIC) | |
1262 | continue; | |
1263 | for (s = abfd->sections; s != NULL; s = s->next) | |
1264 | { | |
b536dc1e BW |
1265 | if (! elf_discarded_section (s) |
1266 | && xtensa_is_littable_section (s) | |
1267 | && s != spltlittbl) | |
e901de89 BW |
1268 | sgotloc->_raw_size += s->_raw_size; |
1269 | } | |
1270 | } | |
e0001a05 NC |
1271 | } |
1272 | ||
1273 | /* Allocate memory for dynamic sections. */ | |
1274 | relplt = FALSE; | |
1275 | relgot = FALSE; | |
1276 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1277 | { | |
1278 | const char *name; | |
1279 | bfd_boolean strip; | |
1280 | ||
1281 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1282 | continue; | |
1283 | ||
1284 | /* It's OK to base decisions on the section name, because none | |
1285 | of the dynobj section names depend upon the input files. */ | |
1286 | name = bfd_get_section_name (dynobj, s); | |
1287 | ||
1288 | strip = FALSE; | |
1289 | ||
1290 | if (strncmp (name, ".rela", 5) == 0) | |
1291 | { | |
1292 | if (strcmp (name, ".rela.plt") == 0) | |
1293 | relplt = TRUE; | |
1294 | else if (strcmp (name, ".rela.got") == 0) | |
1295 | relgot = TRUE; | |
1296 | ||
1297 | /* We use the reloc_count field as a counter if we need | |
1298 | to copy relocs into the output file. */ | |
1299 | s->reloc_count = 0; | |
1300 | } | |
1301 | else if (strncmp (name, ".plt.", 5) == 0 | |
1302 | || strncmp (name, ".got.plt.", 9) == 0) | |
1303 | { | |
1304 | if (s->_raw_size == 0) | |
1305 | { | |
1306 | /* If we don't need this section, strip it from the output | |
1307 | file. We must create the ".plt*" and ".got.plt*" | |
1308 | sections in create_dynamic_sections and/or check_relocs | |
1309 | based on a conservative estimate of the PLT relocation | |
1310 | count, because the sections must be created before the | |
1311 | linker maps input sections to output sections. The | |
1312 | linker does that before size_dynamic_sections, where we | |
1313 | compute the exact size of the PLT, so there may be more | |
1314 | of these sections than are actually needed. */ | |
1315 | strip = TRUE; | |
1316 | } | |
1317 | } | |
1318 | else if (strcmp (name, ".got") != 0 | |
1319 | && strcmp (name, ".plt") != 0 | |
1320 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1321 | && strcmp (name, ".xt.lit.plt") != 0 |
1322 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1323 | { |
1324 | /* It's not one of our sections, so don't allocate space. */ | |
1325 | continue; | |
1326 | } | |
1327 | ||
1328 | if (strip) | |
1329 | _bfd_strip_section_from_output (info, s); | |
1330 | else | |
1331 | { | |
1332 | /* Allocate memory for the section contents. */ | |
1333 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); | |
1334 | if (s->contents == NULL && s->_raw_size != 0) | |
1335 | return FALSE; | |
1336 | } | |
1337 | } | |
1338 | ||
1339 | if (elf_hash_table (info)->dynamic_sections_created) | |
1340 | { | |
1341 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1342 | known until finish_dynamic_sections, but we need to get the relocs | |
1343 | in place before they are sorted. */ | |
1344 | if (srelgot == NULL) | |
1345 | abort (); | |
1346 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
1347 | { | |
1348 | Elf_Internal_Rela irela; | |
1349 | bfd_byte *loc; | |
1350 | ||
1351 | irela.r_offset = 0; | |
1352 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1353 | irela.r_addend = 0; | |
1354 | ||
1355 | loc = (srelgot->contents | |
1356 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1357 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1358 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1359 | loc + sizeof (Elf32_External_Rela)); | |
1360 | srelgot->reloc_count += 2; | |
1361 | } | |
1362 | ||
1363 | /* Add some entries to the .dynamic section. We fill in the | |
1364 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1365 | must add the entries now so that we get the correct size for | |
1366 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1367 | dynamic linker and used by the debugger. */ | |
1368 | #define add_dynamic_entry(TAG, VAL) \ | |
1369 | bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL)) | |
1370 | ||
1371 | if (! info->shared) | |
1372 | { | |
1373 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1374 | return FALSE; | |
1375 | } | |
1376 | ||
1377 | if (relplt) | |
1378 | { | |
1379 | if (!add_dynamic_entry (DT_PLTGOT, 0) | |
1380 | || !add_dynamic_entry (DT_PLTRELSZ, 0) | |
1381 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1382 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1383 | return FALSE; | |
1384 | } | |
1385 | ||
1386 | if (relgot) | |
1387 | { | |
1388 | if (!add_dynamic_entry (DT_RELA, 0) | |
1389 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1390 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
1391 | return FALSE; | |
1392 | } | |
1393 | ||
1394 | if ((info->flags & DF_TEXTREL) != 0) | |
1395 | { | |
1396 | if (!add_dynamic_entry (DT_TEXTREL, 0)) | |
1397 | return FALSE; | |
1398 | } | |
1399 | ||
1400 | if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) | |
1401 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) | |
1402 | return FALSE; | |
1403 | } | |
1404 | #undef add_dynamic_entry | |
1405 | ||
1406 | return TRUE; | |
1407 | } | |
1408 | ||
1409 | \f | |
1410 | /* Remove any PT_LOAD segments with no allocated sections. Prior to | |
1411 | binutils 2.13, this function used to remove the non-SEC_ALLOC | |
1412 | sections from PT_LOAD segments, but that task has now been moved | |
1413 | into elf.c. We still need this function to remove any empty | |
1414 | segments that result, but there's nothing Xtensa-specific about | |
1415 | this and it probably ought to be moved into elf.c as well. */ | |
1416 | ||
1417 | static bfd_boolean | |
c84fca4d | 1418 | elf_xtensa_modify_segment_map (abfd, info) |
e0001a05 | 1419 | bfd *abfd; |
c84fca4d | 1420 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
e0001a05 NC |
1421 | { |
1422 | struct elf_segment_map **m_p; | |
1423 | ||
1424 | m_p = &elf_tdata (abfd)->segment_map; | |
1425 | while (*m_p != NULL) | |
1426 | { | |
1427 | if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0) | |
1428 | *m_p = (*m_p)->next; | |
1429 | else | |
1430 | m_p = &(*m_p)->next; | |
1431 | } | |
1432 | return TRUE; | |
1433 | } | |
1434 | ||
1435 | \f | |
1436 | /* Perform the specified relocation. The instruction at (contents + address) | |
1437 | is modified to set one operand to represent the value in "relocation". The | |
1438 | operand position is determined by the relocation type recorded in the | |
1439 | howto. */ | |
1440 | ||
1441 | #define CALL_SEGMENT_BITS (30) | |
1442 | #define CALL_SEGMENT_SIZE (1<<CALL_SEGMENT_BITS) | |
1443 | ||
1444 | static bfd_reloc_status_type | |
1445 | elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
1446 | contents, address, is_weak_undef, error_message) | |
1447 | reloc_howto_type *howto; | |
1448 | bfd *abfd; | |
1449 | asection *input_section; | |
1450 | bfd_vma relocation; | |
1451 | bfd_byte *contents; | |
1452 | bfd_vma address; | |
1453 | bfd_boolean is_weak_undef; | |
1454 | char **error_message; | |
1455 | { | |
1456 | xtensa_opcode opcode; | |
1457 | xtensa_operand operand; | |
1458 | xtensa_encode_result encode_result; | |
1459 | xtensa_isa isa = xtensa_default_isa; | |
1460 | xtensa_insnbuf ibuff; | |
1461 | bfd_vma self_address; | |
1462 | int opnd; | |
1463 | uint32 newval; | |
1464 | ||
1465 | switch (howto->type) | |
1466 | { | |
1467 | case R_XTENSA_NONE: | |
1468 | return bfd_reloc_ok; | |
1469 | ||
1470 | case R_XTENSA_ASM_EXPAND: | |
1471 | if (!is_weak_undef) | |
1472 | { | |
1473 | /* Check for windowed CALL across a 1GB boundary. */ | |
1474 | xtensa_opcode opcode = | |
1475 | get_expanded_call_opcode (contents + address, | |
1476 | input_section->_raw_size - address); | |
1477 | if (is_windowed_call_opcode (opcode)) | |
1478 | { | |
1479 | self_address = (input_section->output_section->vma | |
1480 | + input_section->output_offset | |
1481 | + address); | |
1482 | if ((self_address >> CALL_SEGMENT_BITS) != | |
1483 | (relocation >> CALL_SEGMENT_BITS)) | |
1484 | { | |
1485 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1486 | "return may fail"; | |
1487 | return bfd_reloc_dangerous; | |
1488 | } | |
1489 | } | |
1490 | } | |
1491 | return bfd_reloc_ok; | |
1492 | ||
1493 | case R_XTENSA_ASM_SIMPLIFY: | |
1494 | { | |
1495 | /* Convert the L32R/CALLX to CALL. */ | |
1496 | bfd_reloc_status_type retval = | |
1497 | elf_xtensa_do_asm_simplify (contents, address, | |
1498 | input_section->_raw_size); | |
1499 | if (retval != bfd_reloc_ok) | |
1500 | return retval; | |
1501 | ||
1502 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1503 | address += 3; | |
1504 | howto = &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
1505 | } | |
1506 | break; | |
1507 | ||
1508 | case R_XTENSA_32: | |
1509 | case R_XTENSA_PLT: | |
1510 | { | |
1511 | bfd_vma x; | |
1512 | x = bfd_get_32 (abfd, contents + address); | |
1513 | x = x + relocation; | |
1514 | bfd_put_32 (abfd, x, contents + address); | |
1515 | } | |
1516 | return bfd_reloc_ok; | |
1517 | } | |
1518 | ||
1519 | /* Read the instruction into a buffer and decode the opcode. */ | |
1520 | ibuff = xtensa_insnbuf_alloc (isa); | |
1521 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address); | |
1522 | opcode = xtensa_decode_insn (isa, ibuff); | |
1523 | ||
1524 | /* Determine which operand is being relocated. */ | |
1525 | if (opcode == XTENSA_UNDEFINED) | |
1526 | { | |
1527 | *error_message = "cannot decode instruction"; | |
1528 | return bfd_reloc_dangerous; | |
1529 | } | |
1530 | ||
1531 | if (howto->type < R_XTENSA_OP0 || howto->type > R_XTENSA_OP2) | |
1532 | { | |
1533 | *error_message = "unexpected relocation"; | |
1534 | return bfd_reloc_dangerous; | |
1535 | } | |
1536 | ||
1537 | opnd = howto->type - R_XTENSA_OP0; | |
1538 | ||
1539 | /* Calculate the PC address for this instruction. */ | |
1540 | if (!howto->pc_relative) | |
1541 | { | |
1542 | *error_message = "expected PC-relative relocation"; | |
1543 | return bfd_reloc_dangerous; | |
1544 | } | |
1545 | ||
1546 | self_address = (input_section->output_section->vma | |
1547 | + input_section->output_offset | |
1548 | + address); | |
1549 | ||
1550 | /* Apply the relocation. */ | |
1551 | operand = xtensa_get_operand (isa, opcode, opnd); | |
1552 | newval = xtensa_operand_do_reloc (operand, relocation, self_address); | |
1553 | encode_result = xtensa_operand_encode (operand, &newval); | |
1554 | xtensa_operand_set_field (operand, ibuff, newval); | |
1555 | ||
1556 | /* Write the modified instruction back out of the buffer. */ | |
1557 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address); | |
1558 | free (ibuff); | |
1559 | ||
1560 | if (encode_result != xtensa_encode_result_ok) | |
1561 | { | |
1562 | char *message = build_encoding_error_message (opcode, encode_result); | |
1563 | *error_message = message; | |
1564 | return bfd_reloc_dangerous; | |
1565 | } | |
1566 | ||
1567 | /* Final check for call. */ | |
1568 | if (is_direct_call_opcode (opcode) | |
1569 | && is_windowed_call_opcode (opcode)) | |
1570 | { | |
1571 | if ((self_address >> CALL_SEGMENT_BITS) != | |
1572 | (relocation >> CALL_SEGMENT_BITS)) | |
1573 | { | |
1574 | *error_message = "windowed call crosses 1GB boundary; " | |
1575 | "return may fail"; | |
1576 | return bfd_reloc_dangerous; | |
1577 | } | |
1578 | } | |
1579 | ||
1580 | return bfd_reloc_ok; | |
1581 | } | |
1582 | ||
1583 | ||
1584 | static char * | |
1585 | vsprint_msg VPARAMS ((const char *origmsg, const char *fmt, int arglen, ...)) | |
1586 | { | |
1587 | /* To reduce the size of the memory leak, | |
1588 | we only use a single message buffer. */ | |
1589 | static bfd_size_type alloc_size = 0; | |
1590 | static char *message = NULL; | |
1591 | bfd_size_type orig_len, len = 0; | |
1592 | bfd_boolean is_append; | |
1593 | ||
1594 | VA_OPEN (ap, arglen); | |
1595 | VA_FIXEDARG (ap, const char *, origmsg); | |
1596 | ||
1597 | is_append = (origmsg == message); | |
1598 | ||
1599 | orig_len = strlen (origmsg); | |
1600 | len = orig_len + strlen (fmt) + arglen + 20; | |
1601 | if (len > alloc_size) | |
1602 | { | |
1603 | message = (char *) bfd_realloc (message, len); | |
1604 | alloc_size = len; | |
1605 | } | |
1606 | if (!is_append) | |
1607 | memcpy (message, origmsg, orig_len); | |
1608 | vsprintf (message + orig_len, fmt, ap); | |
1609 | VA_CLOSE (ap); | |
1610 | return message; | |
1611 | } | |
1612 | ||
1613 | ||
1614 | static char * | |
1615 | build_encoding_error_message (opcode, encode_result) | |
1616 | xtensa_opcode opcode; | |
1617 | xtensa_encode_result encode_result; | |
1618 | { | |
1619 | const char *opname = xtensa_opcode_name (xtensa_default_isa, opcode); | |
1620 | const char *msg = NULL; | |
1621 | ||
1622 | switch (encode_result) | |
1623 | { | |
1624 | case xtensa_encode_result_ok: | |
1625 | msg = "unexpected valid encoding"; | |
1626 | break; | |
1627 | case xtensa_encode_result_align: | |
1628 | msg = "misaligned encoding"; | |
1629 | break; | |
1630 | case xtensa_encode_result_not_in_table: | |
1631 | msg = "encoding not in lookup table"; | |
1632 | break; | |
1633 | case xtensa_encode_result_too_low: | |
1634 | msg = "encoding out of range: too low"; | |
1635 | break; | |
1636 | case xtensa_encode_result_too_high: | |
1637 | msg = "encoding out of range: too high"; | |
1638 | break; | |
1639 | case xtensa_encode_result_not_ok: | |
1640 | default: | |
1641 | msg = "could not encode"; | |
1642 | break; | |
1643 | } | |
1644 | ||
1645 | if (is_direct_call_opcode (opcode) | |
1646 | && (encode_result == xtensa_encode_result_too_low | |
1647 | || encode_result == xtensa_encode_result_too_high)) | |
1648 | ||
1649 | msg = "direct call out of range"; | |
1650 | ||
1651 | else if (opcode == get_l32r_opcode ()) | |
1652 | { | |
1653 | /* L32Rs have the strange interaction with encoding in that they | |
1654 | have an unsigned immediate field, so libisa returns "too high" | |
1655 | when the absolute value is out of range and never returns "too | |
1656 | low", but I leave the "too low" message in case anything | |
1657 | changes. */ | |
1658 | if (encode_result == xtensa_encode_result_too_low) | |
1659 | msg = "literal out of range"; | |
1660 | else if (encode_result == xtensa_encode_result_too_high) | |
1661 | msg = "literal placed after use"; | |
1662 | } | |
1663 | ||
1664 | return vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
1665 | } | |
1666 | ||
1667 | ||
1668 | /* This function is registered as the "special_function" in the | |
1669 | Xtensa howto for handling simplify operations. | |
1670 | bfd_perform_relocation / bfd_install_relocation use it to | |
1671 | perform (install) the specified relocation. Since this replaces the code | |
1672 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
1673 | stripped-down version of bfd_perform_relocation. */ | |
1674 | ||
1675 | static bfd_reloc_status_type | |
1676 | bfd_elf_xtensa_reloc (abfd, reloc_entry, symbol, data, input_section, | |
1677 | output_bfd, error_message) | |
1678 | bfd *abfd; | |
1679 | arelent *reloc_entry; | |
1680 | asymbol *symbol; | |
1681 | PTR data; | |
1682 | asection *input_section; | |
1683 | bfd *output_bfd; | |
1684 | char **error_message; | |
1685 | { | |
1686 | bfd_vma relocation; | |
1687 | bfd_reloc_status_type flag; | |
1688 | bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); | |
1689 | bfd_vma output_base = 0; | |
1690 | reloc_howto_type *howto = reloc_entry->howto; | |
1691 | asection *reloc_target_output_section; | |
1692 | bfd_boolean is_weak_undef; | |
1693 | ||
1049f94e | 1694 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
1695 | output, and the reloc is against an external symbol, the resulting |
1696 | reloc will also be against the same symbol. In such a case, we | |
1697 | don't want to change anything about the way the reloc is handled, | |
1698 | since it will all be done at final link time. This test is similar | |
1699 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
1700 | howto->partial_inplace go through even if the addend is non-zero. | |
1701 | (The real problem is that partial_inplace is set for XTENSA_32 | |
1702 | relocs to begin with, but that's a long story and there's little we | |
1703 | can do about it now....) */ | |
1704 | ||
1705 | if (output_bfd != (bfd *) NULL | |
1706 | && (symbol->flags & BSF_SECTION_SYM) == 0) | |
1707 | { | |
1708 | reloc_entry->address += input_section->output_offset; | |
1709 | return bfd_reloc_ok; | |
1710 | } | |
1711 | ||
1712 | /* Is the address of the relocation really within the section? */ | |
1713 | if (reloc_entry->address > (input_section->_cooked_size | |
1714 | / bfd_octets_per_byte (abfd))) | |
1715 | return bfd_reloc_outofrange; | |
1716 | ||
4cc11e76 | 1717 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
1718 | initial relocation command value. */ |
1719 | ||
1720 | /* Get symbol value. (Common symbols are special.) */ | |
1721 | if (bfd_is_com_section (symbol->section)) | |
1722 | relocation = 0; | |
1723 | else | |
1724 | relocation = symbol->value; | |
1725 | ||
1726 | reloc_target_output_section = symbol->section->output_section; | |
1727 | ||
1728 | /* Convert input-section-relative symbol value to absolute. */ | |
1729 | if ((output_bfd && !howto->partial_inplace) | |
1730 | || reloc_target_output_section == NULL) | |
1731 | output_base = 0; | |
1732 | else | |
1733 | output_base = reloc_target_output_section->vma; | |
1734 | ||
1735 | relocation += output_base + symbol->section->output_offset; | |
1736 | ||
1737 | /* Add in supplied addend. */ | |
1738 | relocation += reloc_entry->addend; | |
1739 | ||
1740 | /* Here the variable relocation holds the final address of the | |
1741 | symbol we are relocating against, plus any addend. */ | |
1742 | if (output_bfd) | |
1743 | { | |
1744 | if (!howto->partial_inplace) | |
1745 | { | |
1746 | /* This is a partial relocation, and we want to apply the relocation | |
1747 | to the reloc entry rather than the raw data. Everything except | |
1748 | relocations against section symbols has already been handled | |
1749 | above. */ | |
1750 | ||
1751 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); | |
1752 | reloc_entry->addend = relocation; | |
1753 | reloc_entry->address += input_section->output_offset; | |
1754 | return bfd_reloc_ok; | |
1755 | } | |
1756 | else | |
1757 | { | |
1758 | reloc_entry->address += input_section->output_offset; | |
1759 | reloc_entry->addend = 0; | |
1760 | } | |
1761 | } | |
1762 | ||
1763 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
1764 | && (symbol->flags & BSF_WEAK) != 0); | |
1765 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
1766 | (bfd_byte *) data, (bfd_vma) octets, | |
1767 | is_weak_undef, error_message); | |
1768 | ||
1769 | if (flag == bfd_reloc_dangerous) | |
1770 | { | |
1771 | /* Add the symbol name to the error message. */ | |
1772 | if (! *error_message) | |
1773 | *error_message = ""; | |
1774 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
1775 | strlen (symbol->name) + 17, | |
1776 | symbol->name, reloc_entry->addend); | |
1777 | } | |
1778 | ||
1779 | return flag; | |
1780 | } | |
1781 | ||
1782 | ||
1783 | /* Set up an entry in the procedure linkage table. */ | |
1784 | ||
1785 | static bfd_vma | |
1786 | elf_xtensa_create_plt_entry (dynobj, output_bfd, reloc_index) | |
1787 | bfd *dynobj; | |
1788 | bfd *output_bfd; | |
1789 | unsigned reloc_index; | |
1790 | { | |
1791 | asection *splt, *sgotplt; | |
1792 | bfd_vma plt_base, got_base; | |
1793 | bfd_vma code_offset, lit_offset; | |
1794 | int chunk; | |
1795 | ||
1796 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
1797 | splt = elf_xtensa_get_plt_section (dynobj, chunk); | |
1798 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
1799 | BFD_ASSERT (splt != NULL && sgotplt != NULL); | |
1800 | ||
1801 | plt_base = splt->output_section->vma + splt->output_offset; | |
1802 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
1803 | ||
1804 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
1805 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
1806 | ||
1807 | /* Fill in the literal entry. This is the offset of the dynamic | |
1808 | relocation entry. */ | |
1809 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
1810 | sgotplt->contents + lit_offset); | |
1811 | ||
1812 | /* Fill in the entry in the procedure linkage table. */ | |
1813 | memcpy (splt->contents + code_offset, | |
1814 | (bfd_big_endian (output_bfd) | |
1815 | ? elf_xtensa_be_plt_entry | |
1816 | : elf_xtensa_le_plt_entry), | |
1817 | PLT_ENTRY_SIZE); | |
1818 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, | |
1819 | plt_base + code_offset + 3), | |
1820 | splt->contents + code_offset + 4); | |
1821 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, | |
1822 | plt_base + code_offset + 6), | |
1823 | splt->contents + code_offset + 7); | |
1824 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, | |
1825 | plt_base + code_offset + 9), | |
1826 | splt->contents + code_offset + 10); | |
1827 | ||
1828 | return plt_base + code_offset; | |
1829 | } | |
1830 | ||
1831 | ||
e0001a05 | 1832 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 1833 | both relocatable and final links. */ |
e0001a05 NC |
1834 | |
1835 | static bfd_boolean | |
1836 | elf_xtensa_relocate_section (output_bfd, info, input_bfd, | |
1837 | input_section, contents, relocs, | |
1838 | local_syms, local_sections) | |
1839 | bfd *output_bfd; | |
1840 | struct bfd_link_info *info; | |
1841 | bfd *input_bfd; | |
1842 | asection *input_section; | |
1843 | bfd_byte *contents; | |
1844 | Elf_Internal_Rela *relocs; | |
1845 | Elf_Internal_Sym *local_syms; | |
1846 | asection **local_sections; | |
1847 | { | |
1848 | Elf_Internal_Shdr *symtab_hdr; | |
1849 | Elf_Internal_Rela *rel; | |
1850 | Elf_Internal_Rela *relend; | |
1851 | struct elf_link_hash_entry **sym_hashes; | |
1852 | asection *srelgot, *srelplt; | |
1853 | bfd *dynobj; | |
1854 | char *error_message = NULL; | |
1855 | ||
1856 | if (xtensa_default_isa == NULL) | |
1857 | xtensa_isa_init (); | |
1858 | ||
1859 | dynobj = elf_hash_table (info)->dynobj; | |
1860 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
1861 | sym_hashes = elf_sym_hashes (input_bfd); | |
1862 | ||
1863 | srelgot = NULL; | |
1864 | srelplt = NULL; | |
1865 | if (dynobj != NULL) | |
1866 | { | |
1867 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got");; | |
1868 | srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
1869 | } | |
1870 | ||
1871 | rel = relocs; | |
1872 | relend = relocs + input_section->reloc_count; | |
1873 | for (; rel < relend; rel++) | |
1874 | { | |
1875 | int r_type; | |
1876 | reloc_howto_type *howto; | |
1877 | unsigned long r_symndx; | |
1878 | struct elf_link_hash_entry *h; | |
1879 | Elf_Internal_Sym *sym; | |
1880 | asection *sec; | |
1881 | bfd_vma relocation; | |
1882 | bfd_reloc_status_type r; | |
1883 | bfd_boolean is_weak_undef; | |
1884 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 1885 | bfd_boolean warned; |
e0001a05 NC |
1886 | |
1887 | r_type = ELF32_R_TYPE (rel->r_info); | |
1888 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
1889 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
1890 | continue; | |
1891 | ||
1892 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
1893 | { | |
1894 | bfd_set_error (bfd_error_bad_value); | |
1895 | return FALSE; | |
1896 | } | |
1897 | howto = &elf_howto_table[r_type]; | |
1898 | ||
1899 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1900 | ||
1049f94e | 1901 | if (info->relocatable) |
e0001a05 | 1902 | { |
1049f94e | 1903 | /* This is a relocatable link. |
e0001a05 NC |
1904 | 1) If the reloc is against a section symbol, adjust |
1905 | according to the output section. | |
1906 | 2) If there is a new target for this relocation, | |
1907 | the new target will be in the same output section. | |
1908 | We adjust the relocation by the output section | |
1909 | difference. */ | |
1910 | ||
1911 | if (relaxing_section) | |
1912 | { | |
1913 | /* Check if this references a section in another input file. */ | |
1049f94e | 1914 | do_fix_for_relocatable_link (rel, input_bfd, input_section); |
e0001a05 NC |
1915 | r_type = ELF32_R_TYPE (rel->r_info); |
1916 | } | |
1917 | ||
1918 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
1919 | { | |
1920 | /* Convert ASM_SIMPLIFY into the simpler relocation | |
1921 | so that they never escape a relaxing link. */ | |
1922 | contract_asm_expansion (contents, input_section->_raw_size, rel); | |
1923 | r_type = ELF32_R_TYPE (rel->r_info); | |
1924 | } | |
1925 | ||
1049f94e | 1926 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
1927 | anything unless the reloc is against a section symbol, |
1928 | in which case we have to adjust according to where the | |
1929 | section symbol winds up in the output section. */ | |
1930 | if (r_symndx < symtab_hdr->sh_info) | |
1931 | { | |
1932 | sym = local_syms + r_symndx; | |
1933 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
1934 | { | |
1935 | sec = local_sections[r_symndx]; | |
1936 | rel->r_addend += sec->output_offset + sym->st_value; | |
1937 | } | |
1938 | } | |
1939 | ||
1940 | /* If there is an addend with a partial_inplace howto, | |
1941 | then move the addend to the contents. This is a hack | |
1049f94e | 1942 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
1943 | with some previous version of BFD. Now we can't easily get |
1944 | rid of the hack without breaking backward compatibility.... */ | |
1945 | if (rel->r_addend) | |
1946 | { | |
1947 | howto = &elf_howto_table[r_type]; | |
1948 | if (howto->partial_inplace) | |
1949 | { | |
1950 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
1951 | rel->r_addend, contents, | |
1952 | rel->r_offset, FALSE, | |
1953 | &error_message); | |
1954 | if (r != bfd_reloc_ok) | |
1955 | { | |
1956 | if (!((*info->callbacks->reloc_dangerous) | |
1957 | (info, error_message, input_bfd, input_section, | |
1958 | rel->r_offset))) | |
1959 | return FALSE; | |
1960 | } | |
1961 | rel->r_addend = 0; | |
1962 | } | |
1963 | } | |
1964 | ||
1049f94e | 1965 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
1966 | continue; |
1967 | } | |
1968 | ||
1969 | /* This is a final link. */ | |
1970 | ||
1971 | h = NULL; | |
1972 | sym = NULL; | |
1973 | sec = NULL; | |
1974 | is_weak_undef = FALSE; | |
1975 | unresolved_reloc = FALSE; | |
9b8c98a4 | 1976 | warned = FALSE; |
e0001a05 NC |
1977 | |
1978 | if (howto->partial_inplace) | |
1979 | { | |
1980 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
1981 | problems with DWARF info in partial links, there may be | |
1982 | an addend stored in the contents. Take it out of there | |
1983 | and move it back into the addend field of the reloc. */ | |
1984 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
1985 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
1986 | } | |
1987 | ||
1988 | if (r_symndx < symtab_hdr->sh_info) | |
1989 | { | |
1990 | sym = local_syms + r_symndx; | |
1991 | sec = local_sections[r_symndx]; | |
8517fae7 | 1992 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
e0001a05 NC |
1993 | } |
1994 | else | |
1995 | { | |
560e09e9 NC |
1996 | RELOC_FOR_GLOBAL_SYMBOL (h, sym_hashes, r_symndx, |
1997 | symtab_hdr, relocation, sec, | |
1998 | unresolved_reloc, info, | |
1999 | warned); | |
2000 | ||
2001 | if (relocation == 0 | |
2002 | && !unresolved_reloc | |
2003 | && h->root.type == bfd_link_hash_undefweak) | |
e0001a05 | 2004 | is_weak_undef = TRUE; |
e0001a05 NC |
2005 | } |
2006 | ||
2007 | if (relaxing_section) | |
2008 | { | |
2009 | /* Check if this references a section in another input file. */ | |
2010 | do_fix_for_final_link (rel, input_section, &relocation); | |
2011 | ||
2012 | /* Update some already cached values. */ | |
2013 | r_type = ELF32_R_TYPE (rel->r_info); | |
2014 | howto = &elf_howto_table[r_type]; | |
2015 | } | |
2016 | ||
2017 | /* Sanity check the address. */ | |
2018 | if (rel->r_offset >= input_section->_raw_size | |
2019 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) | |
2020 | { | |
2021 | bfd_set_error (bfd_error_bad_value); | |
2022 | return FALSE; | |
2023 | } | |
2024 | ||
2025 | /* Generate dynamic relocations. */ | |
2026 | if (elf_hash_table (info)->dynamic_sections_created) | |
2027 | { | |
571b5725 | 2028 | bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info); |
e0001a05 NC |
2029 | |
2030 | if (dynamic_symbol && (r_type == R_XTENSA_OP0 | |
2031 | || r_type == R_XTENSA_OP1 | |
2032 | || r_type == R_XTENSA_OP2)) | |
2033 | { | |
2034 | /* This is an error. The symbol's real value won't be known | |
2035 | until runtime and it's likely to be out of range anyway. */ | |
2036 | const char *name = h->root.root.string; | |
2037 | error_message = vsprint_msg ("invalid relocation for dynamic " | |
2038 | "symbol", ": %s", | |
2039 | strlen (name) + 2, name); | |
2040 | if (!((*info->callbacks->reloc_dangerous) | |
2041 | (info, error_message, input_bfd, input_section, | |
2042 | rel->r_offset))) | |
2043 | return FALSE; | |
2044 | } | |
2045 | else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
2046 | && (input_section->flags & SEC_ALLOC) != 0 | |
2047 | && (dynamic_symbol || info->shared)) | |
2048 | { | |
2049 | Elf_Internal_Rela outrel; | |
2050 | bfd_byte *loc; | |
2051 | asection *srel; | |
2052 | ||
2053 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
2054 | srel = srelplt; | |
2055 | else | |
2056 | srel = srelgot; | |
2057 | ||
2058 | BFD_ASSERT (srel != NULL); | |
2059 | ||
2060 | outrel.r_offset = | |
2061 | _bfd_elf_section_offset (output_bfd, info, | |
2062 | input_section, rel->r_offset); | |
2063 | ||
2064 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2065 | memset (&outrel, 0, sizeof outrel); | |
2066 | else | |
2067 | { | |
f0578e28 BW |
2068 | outrel.r_offset += (input_section->output_section->vma |
2069 | + input_section->output_offset); | |
e0001a05 NC |
2070 | |
2071 | if (dynamic_symbol) | |
2072 | { | |
2073 | outrel.r_addend = rel->r_addend; | |
2074 | rel->r_addend = 0; | |
2075 | ||
2076 | if (r_type == R_XTENSA_32) | |
2077 | { | |
2078 | outrel.r_info = | |
2079 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2080 | relocation = 0; | |
2081 | } | |
2082 | else /* r_type == R_XTENSA_PLT */ | |
2083 | { | |
2084 | outrel.r_info = | |
2085 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2086 | ||
2087 | /* Create the PLT entry and set the initial | |
2088 | contents of the literal entry to the address of | |
2089 | the PLT entry. */ | |
2090 | relocation = | |
2091 | elf_xtensa_create_plt_entry (dynobj, output_bfd, | |
2092 | srel->reloc_count); | |
2093 | } | |
2094 | unresolved_reloc = FALSE; | |
2095 | } | |
2096 | else | |
2097 | { | |
2098 | /* Generate a RELATIVE relocation. */ | |
2099 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2100 | outrel.r_addend = 0; | |
2101 | } | |
2102 | } | |
2103 | ||
2104 | loc = (srel->contents | |
2105 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2106 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2107 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
2108 | <= srel->_cooked_size); | |
2109 | } | |
2110 | } | |
2111 | ||
2112 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
2113 | because such sections are not SEC_ALLOC and thus ld.so will | |
2114 | not process them. */ | |
2115 | if (unresolved_reloc | |
2116 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
2117 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)) | |
2118 | (*_bfd_error_handler) | |
2119 | (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"), | |
2120 | bfd_archive_filename (input_bfd), | |
2121 | bfd_get_section_name (input_bfd, input_section), | |
2122 | (long) rel->r_offset, | |
2123 | h->root.root.string); | |
2124 | ||
2125 | /* There's no point in calling bfd_perform_relocation here. | |
2126 | Just go directly to our "special function". */ | |
2127 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2128 | relocation + rel->r_addend, | |
2129 | contents, rel->r_offset, is_weak_undef, | |
2130 | &error_message); | |
2131 | ||
9b8c98a4 | 2132 | if (r != bfd_reloc_ok && !warned) |
e0001a05 NC |
2133 | { |
2134 | const char *name; | |
2135 | ||
2136 | BFD_ASSERT (r == bfd_reloc_dangerous); | |
2137 | BFD_ASSERT (error_message != (char *) NULL); | |
2138 | ||
2139 | if (h != NULL) | |
2140 | name = h->root.root.string; | |
2141 | else | |
2142 | { | |
2143 | name = bfd_elf_string_from_elf_section | |
2144 | (input_bfd, symtab_hdr->sh_link, sym->st_name); | |
2145 | if (name && *name == '\0') | |
2146 | name = bfd_section_name (input_bfd, sec); | |
2147 | } | |
2148 | if (name) | |
2149 | error_message = vsprint_msg (error_message, ": %s", | |
2150 | strlen (name), name); | |
2151 | if (!((*info->callbacks->reloc_dangerous) | |
2152 | (info, error_message, input_bfd, input_section, | |
2153 | rel->r_offset))) | |
2154 | return FALSE; | |
2155 | } | |
2156 | } | |
2157 | ||
2158 | return TRUE; | |
2159 | } | |
2160 | ||
2161 | ||
2162 | /* Finish up dynamic symbol handling. There's not much to do here since | |
2163 | the PLT and GOT entries are all set up by relocate_section. */ | |
2164 | ||
2165 | static bfd_boolean | |
2166 | elf_xtensa_finish_dynamic_symbol (output_bfd, info, h, sym) | |
2167 | bfd *output_bfd ATTRIBUTE_UNUSED; | |
2168 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
2169 | struct elf_link_hash_entry *h; | |
2170 | Elf_Internal_Sym *sym; | |
2171 | { | |
2172 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 | |
2173 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2174 | { | |
2175 | /* Mark the symbol as undefined, rather than as defined in | |
2176 | the .plt section. Leave the value alone. */ | |
2177 | sym->st_shndx = SHN_UNDEF; | |
2178 | } | |
2179 | ||
2180 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
2181 | if (strcmp (h->root.root.string, "_DYNAMIC") == 0 | |
2182 | || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) | |
2183 | sym->st_shndx = SHN_ABS; | |
2184 | ||
2185 | return TRUE; | |
2186 | } | |
2187 | ||
2188 | ||
2189 | /* Combine adjacent literal table entries in the output. Adjacent | |
2190 | entries within each input section may have been removed during | |
2191 | relaxation, but we repeat the process here, even though it's too late | |
2192 | to shrink the output section, because it's important to minimize the | |
2193 | number of literal table entries to reduce the start-up work for the | |
2194 | runtime linker. Returns the number of remaining table entries or -1 | |
2195 | on error. */ | |
2196 | ||
2197 | static int | |
e901de89 | 2198 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc) |
e0001a05 | 2199 | bfd *output_bfd; |
e901de89 BW |
2200 | asection *sxtlit; |
2201 | asection *sgotloc; | |
e0001a05 | 2202 | { |
e0001a05 NC |
2203 | bfd_byte *contents; |
2204 | property_table_entry *table; | |
e901de89 | 2205 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
2206 | bfd_vma offset; |
2207 | int n, m, num; | |
2208 | ||
e901de89 BW |
2209 | section_size = (sxtlit->_cooked_size != 0 |
2210 | ? sxtlit->_cooked_size : sxtlit->_raw_size); | |
e0001a05 NC |
2211 | BFD_ASSERT (section_size % 8 == 0); |
2212 | num = section_size / 8; | |
2213 | ||
e901de89 BW |
2214 | sgotloc_size = (sgotloc->_cooked_size != 0 |
2215 | ? sgotloc->_cooked_size : sgotloc->_raw_size); | |
2216 | if (sgotloc_size != section_size) | |
b536dc1e BW |
2217 | { |
2218 | (*_bfd_error_handler) | |
2219 | ("internal inconsistency in size of .got.loc section"); | |
2220 | return -1; | |
2221 | } | |
e901de89 | 2222 | |
e0001a05 NC |
2223 | contents = (bfd_byte *) bfd_malloc (section_size); |
2224 | table = (property_table_entry *) | |
2225 | bfd_malloc (num * sizeof (property_table_entry)); | |
2226 | if (contents == 0 || table == 0) | |
2227 | return -1; | |
2228 | ||
2229 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
2230 | propagates to the output section, where it doesn't really apply and | |
2231 | where it breaks the following call to bfd_get_section_contents. */ | |
e901de89 | 2232 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 2233 | |
e901de89 BW |
2234 | if (! bfd_get_section_contents (output_bfd, sxtlit, contents, 0, |
2235 | section_size)) | |
e0001a05 NC |
2236 | return -1; |
2237 | ||
2238 | /* There should never be any relocations left at this point, so this | |
2239 | is quite a bit easier than what is done during relaxation. */ | |
2240 | ||
2241 | /* Copy the raw contents into a property table array and sort it. */ | |
2242 | offset = 0; | |
2243 | for (n = 0; n < num; n++) | |
2244 | { | |
2245 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
2246 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
2247 | offset += 8; | |
2248 | } | |
2249 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
2250 | ||
2251 | for (n = 0; n < num; n++) | |
2252 | { | |
2253 | bfd_boolean remove = FALSE; | |
2254 | ||
2255 | if (table[n].size == 0) | |
2256 | remove = TRUE; | |
2257 | else if (n > 0 && | |
2258 | (table[n-1].address + table[n-1].size == table[n].address)) | |
2259 | { | |
2260 | table[n-1].size += table[n].size; | |
2261 | remove = TRUE; | |
2262 | } | |
2263 | ||
2264 | if (remove) | |
2265 | { | |
2266 | for (m = n; m < num - 1; m++) | |
2267 | { | |
2268 | table[m].address = table[m+1].address; | |
2269 | table[m].size = table[m+1].size; | |
2270 | } | |
2271 | ||
2272 | n--; | |
2273 | num--; | |
2274 | } | |
2275 | } | |
2276 | ||
2277 | /* Copy the data back to the raw contents. */ | |
2278 | offset = 0; | |
2279 | for (n = 0; n < num; n++) | |
2280 | { | |
2281 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
2282 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
2283 | offset += 8; | |
2284 | } | |
2285 | ||
2286 | /* Clear the removed bytes. */ | |
2287 | if ((bfd_size_type) (num * 8) < section_size) | |
2288 | { | |
2289 | memset (&contents[num * 8], 0, section_size - num * 8); | |
e901de89 | 2290 | sxtlit->_cooked_size = num * 8; |
e0001a05 NC |
2291 | } |
2292 | ||
e901de89 BW |
2293 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
2294 | section_size)) | |
e0001a05 NC |
2295 | return -1; |
2296 | ||
e901de89 BW |
2297 | /* Copy the contents to ".got.loc". */ |
2298 | memcpy (sgotloc->contents, contents, section_size); | |
2299 | ||
e0001a05 | 2300 | free (contents); |
b614a702 | 2301 | free (table); |
e0001a05 NC |
2302 | return num; |
2303 | } | |
2304 | ||
2305 | ||
2306 | /* Finish up the dynamic sections. */ | |
2307 | ||
2308 | static bfd_boolean | |
2309 | elf_xtensa_finish_dynamic_sections (output_bfd, info) | |
2310 | bfd *output_bfd; | |
2311 | struct bfd_link_info *info; | |
2312 | { | |
2313 | bfd *dynobj; | |
e901de89 | 2314 | asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc; |
e0001a05 NC |
2315 | Elf32_External_Dyn *dyncon, *dynconend; |
2316 | int num_xtlit_entries; | |
2317 | ||
2318 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2319 | return TRUE; | |
2320 | ||
2321 | dynobj = elf_hash_table (info)->dynobj; | |
2322 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2323 | BFD_ASSERT (sdyn != NULL); | |
2324 | ||
2325 | /* Set the first entry in the global offset table to the address of | |
2326 | the dynamic section. */ | |
2327 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
2328 | if (sgot) | |
2329 | { | |
2330 | BFD_ASSERT (sgot->_raw_size == 4); | |
2331 | if (sdyn == NULL) | |
2332 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); | |
2333 | else | |
2334 | bfd_put_32 (output_bfd, | |
2335 | sdyn->output_section->vma + sdyn->output_offset, | |
2336 | sgot->contents); | |
2337 | } | |
2338 | ||
2339 | srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
2340 | if (srelplt != NULL && srelplt->_raw_size != 0) | |
2341 | { | |
2342 | asection *sgotplt, *srelgot, *spltlittbl; | |
2343 | int chunk, plt_chunks, plt_entries; | |
2344 | Elf_Internal_Rela irela; | |
2345 | bfd_byte *loc; | |
2346 | unsigned rtld_reloc; | |
2347 | ||
2348 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got");; | |
2349 | BFD_ASSERT (srelgot != NULL); | |
2350 | ||
2351 | spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt"); | |
2352 | BFD_ASSERT (spltlittbl != NULL); | |
2353 | ||
2354 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
2355 | of them follow immediately after.... */ | |
2356 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
2357 | { | |
2358 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
2359 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2360 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
2361 | break; | |
2362 | } | |
2363 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
2364 | ||
2365 | plt_entries = (srelplt->_raw_size / sizeof (Elf32_External_Rela)); | |
2366 | plt_chunks = | |
2367 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
2368 | ||
2369 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
2370 | { | |
2371 | int chunk_entries = 0; | |
2372 | ||
2373 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
2374 | BFD_ASSERT (sgotplt != NULL); | |
2375 | ||
2376 | /* Emit special RTLD relocations for the first two entries in | |
2377 | each chunk of the .got.plt section. */ | |
2378 | ||
2379 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
2380 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2381 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
2382 | irela.r_offset = (sgotplt->output_section->vma | |
2383 | + sgotplt->output_offset); | |
2384 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
2385 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
2386 | rtld_reloc += 1; | |
2387 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
2388 | ||
2389 | /* Next literal immediately follows the first. */ | |
2390 | loc += sizeof (Elf32_External_Rela); | |
2391 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2392 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
2393 | irela.r_offset = (sgotplt->output_section->vma | |
2394 | + sgotplt->output_offset + 4); | |
2395 | /* Tell rtld to set value to object's link map. */ | |
2396 | irela.r_addend = 2; | |
2397 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
2398 | rtld_reloc += 1; | |
2399 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
2400 | ||
2401 | /* Fill in the literal table. */ | |
2402 | if (chunk < plt_chunks - 1) | |
2403 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
2404 | else | |
2405 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
2406 | ||
2407 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->_cooked_size); | |
2408 | bfd_put_32 (output_bfd, | |
2409 | sgotplt->output_section->vma + sgotplt->output_offset, | |
2410 | spltlittbl->contents + (chunk * 8) + 0); | |
2411 | bfd_put_32 (output_bfd, | |
2412 | 8 + (chunk_entries * 4), | |
2413 | spltlittbl->contents + (chunk * 8) + 4); | |
2414 | } | |
2415 | ||
2416 | /* All the dynamic relocations have been emitted at this point. | |
2417 | Make sure the relocation sections are the correct size. */ | |
2418 | if (srelgot->_cooked_size != (sizeof (Elf32_External_Rela) | |
2419 | * srelgot->reloc_count) | |
2420 | || srelplt->_cooked_size != (sizeof (Elf32_External_Rela) | |
2421 | * srelplt->reloc_count)) | |
2422 | abort (); | |
2423 | ||
2424 | /* The .xt.lit.plt section has just been modified. This must | |
2425 | happen before the code below which combines adjacent literal | |
2426 | table entries, and the .xt.lit.plt contents have to be forced to | |
2427 | the output here. */ | |
2428 | if (! bfd_set_section_contents (output_bfd, | |
2429 | spltlittbl->output_section, | |
2430 | spltlittbl->contents, | |
2431 | spltlittbl->output_offset, | |
2432 | spltlittbl->_raw_size)) | |
2433 | return FALSE; | |
2434 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
2435 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
2436 | } | |
2437 | ||
2438 | /* Combine adjacent literal table entries. */ | |
1049f94e | 2439 | BFD_ASSERT (! info->relocatable); |
e901de89 BW |
2440 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
2441 | sgotloc = bfd_get_section_by_name (dynobj, ".got.loc"); | |
b536dc1e | 2442 | BFD_ASSERT (sxtlit && sgotloc); |
e901de89 BW |
2443 | num_xtlit_entries = |
2444 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
e0001a05 NC |
2445 | if (num_xtlit_entries < 0) |
2446 | return FALSE; | |
2447 | ||
2448 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
2449 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size); | |
2450 | for (; dyncon < dynconend; dyncon++) | |
2451 | { | |
2452 | Elf_Internal_Dyn dyn; | |
2453 | const char *name; | |
2454 | asection *s; | |
2455 | ||
2456 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
2457 | ||
2458 | switch (dyn.d_tag) | |
2459 | { | |
2460 | default: | |
2461 | break; | |
2462 | ||
2463 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
2464 | dyn.d_un.d_val = num_xtlit_entries; |
2465 | break; | |
2466 | ||
2467 | case DT_XTENSA_GOT_LOC_OFF: | |
e901de89 | 2468 | name = ".got.loc"; |
e0001a05 NC |
2469 | goto get_vma; |
2470 | case DT_PLTGOT: | |
2471 | name = ".got"; | |
2472 | goto get_vma; | |
2473 | case DT_JMPREL: | |
2474 | name = ".rela.plt"; | |
2475 | get_vma: | |
2476 | s = bfd_get_section_by_name (output_bfd, name); | |
2477 | BFD_ASSERT (s); | |
2478 | dyn.d_un.d_ptr = s->vma; | |
2479 | break; | |
2480 | ||
2481 | case DT_PLTRELSZ: | |
2482 | s = bfd_get_section_by_name (output_bfd, ".rela.plt"); | |
2483 | BFD_ASSERT (s); | |
2484 | dyn.d_un.d_val = (s->_cooked_size ? s->_cooked_size : s->_raw_size); | |
2485 | break; | |
2486 | ||
2487 | case DT_RELASZ: | |
2488 | /* Adjust RELASZ to not include JMPREL. This matches what | |
2489 | glibc expects and what is done for several other ELF | |
2490 | targets (e.g., i386, alpha), but the "correct" behavior | |
2491 | seems to be unresolved. Since the linker script arranges | |
2492 | for .rela.plt to follow all other relocation sections, we | |
2493 | don't have to worry about changing the DT_RELA entry. */ | |
2494 | s = bfd_get_section_by_name (output_bfd, ".rela.plt"); | |
2495 | if (s) | |
2496 | { | |
2497 | dyn.d_un.d_val -= | |
2498 | (s->_cooked_size ? s->_cooked_size : s->_raw_size); | |
2499 | } | |
2500 | break; | |
2501 | } | |
2502 | ||
2503 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2504 | } | |
2505 | ||
2506 | return TRUE; | |
2507 | } | |
2508 | ||
2509 | \f | |
2510 | /* Functions for dealing with the e_flags field. */ | |
2511 | ||
2512 | /* Merge backend specific data from an object file to the output | |
2513 | object file when linking. */ | |
2514 | ||
2515 | static bfd_boolean | |
2516 | elf_xtensa_merge_private_bfd_data (ibfd, obfd) | |
2517 | bfd *ibfd; | |
2518 | bfd *obfd; | |
2519 | { | |
2520 | unsigned out_mach, in_mach; | |
2521 | flagword out_flag, in_flag; | |
2522 | ||
2523 | /* Check if we have the same endianess. */ | |
2524 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | |
2525 | return FALSE; | |
2526 | ||
2527 | /* Don't even pretend to support mixed-format linking. */ | |
2528 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
2529 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
2530 | return FALSE; | |
2531 | ||
2532 | out_flag = elf_elfheader (obfd)->e_flags; | |
2533 | in_flag = elf_elfheader (ibfd)->e_flags; | |
2534 | ||
2535 | out_mach = out_flag & EF_XTENSA_MACH; | |
2536 | in_mach = in_flag & EF_XTENSA_MACH; | |
2537 | if (out_mach != in_mach) | |
2538 | { | |
2539 | (*_bfd_error_handler) | |
b536dc1e | 2540 | ("%s: incompatible machine type. Output is 0x%x. Input is 0x%x", |
e0001a05 NC |
2541 | bfd_archive_filename (ibfd), out_mach, in_mach); |
2542 | bfd_set_error (bfd_error_wrong_format); | |
2543 | return FALSE; | |
2544 | } | |
2545 | ||
2546 | if (! elf_flags_init (obfd)) | |
2547 | { | |
2548 | elf_flags_init (obfd) = TRUE; | |
2549 | elf_elfheader (obfd)->e_flags = in_flag; | |
2550 | ||
2551 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
2552 | && bfd_get_arch_info (obfd)->the_default) | |
2553 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
2554 | bfd_get_mach (ibfd)); | |
2555 | ||
2556 | return TRUE; | |
2557 | } | |
2558 | ||
2559 | if ((out_flag & EF_XTENSA_XT_INSN) != | |
2560 | (in_flag & EF_XTENSA_XT_INSN)) | |
2561 | elf_elfheader(obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); | |
2562 | ||
2563 | if ((out_flag & EF_XTENSA_XT_LIT) != | |
2564 | (in_flag & EF_XTENSA_XT_LIT)) | |
2565 | elf_elfheader(obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); | |
2566 | ||
2567 | return TRUE; | |
2568 | } | |
2569 | ||
2570 | ||
2571 | static bfd_boolean | |
2572 | elf_xtensa_set_private_flags (abfd, flags) | |
2573 | bfd *abfd; | |
2574 | flagword flags; | |
2575 | { | |
2576 | BFD_ASSERT (!elf_flags_init (abfd) | |
2577 | || elf_elfheader (abfd)->e_flags == flags); | |
2578 | ||
2579 | elf_elfheader (abfd)->e_flags |= flags; | |
2580 | elf_flags_init (abfd) = TRUE; | |
2581 | ||
2582 | return TRUE; | |
2583 | } | |
2584 | ||
2585 | ||
2586 | extern flagword | |
2587 | elf_xtensa_get_private_bfd_flags (abfd) | |
2588 | bfd *abfd; | |
2589 | { | |
2590 | return elf_elfheader (abfd)->e_flags; | |
2591 | } | |
2592 | ||
2593 | ||
2594 | static bfd_boolean | |
2595 | elf_xtensa_print_private_bfd_data (abfd, farg) | |
2596 | bfd *abfd; | |
2597 | PTR farg; | |
2598 | { | |
2599 | FILE *f = (FILE *) farg; | |
2600 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
2601 | ||
2602 | fprintf (f, "\nXtensa header:\n"); | |
2603 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) | |
2604 | fprintf (f, "\nMachine = Base\n"); | |
2605 | else | |
2606 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
2607 | ||
2608 | fprintf (f, "Insn tables = %s\n", | |
2609 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
2610 | ||
2611 | fprintf (f, "Literal tables = %s\n", | |
2612 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
2613 | ||
2614 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
2615 | } | |
2616 | ||
2617 | ||
2618 | /* Set the right machine number for an Xtensa ELF file. */ | |
2619 | ||
2620 | static bfd_boolean | |
2621 | elf_xtensa_object_p (abfd) | |
2622 | bfd *abfd; | |
2623 | { | |
2624 | int mach; | |
2625 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
2626 | ||
2627 | switch (arch) | |
2628 | { | |
2629 | case E_XTENSA_MACH: | |
2630 | mach = bfd_mach_xtensa; | |
2631 | break; | |
2632 | default: | |
2633 | return FALSE; | |
2634 | } | |
2635 | ||
2636 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
2637 | return TRUE; | |
2638 | } | |
2639 | ||
2640 | ||
2641 | /* The final processing done just before writing out an Xtensa ELF object | |
2642 | file. This gets the Xtensa architecture right based on the machine | |
2643 | number. */ | |
2644 | ||
2645 | static void | |
2646 | elf_xtensa_final_write_processing (abfd, linker) | |
2647 | bfd *abfd; | |
2648 | bfd_boolean linker ATTRIBUTE_UNUSED; | |
2649 | { | |
2650 | int mach; | |
2651 | unsigned long val; | |
2652 | ||
2653 | switch (mach = bfd_get_mach (abfd)) | |
2654 | { | |
2655 | case bfd_mach_xtensa: | |
2656 | val = E_XTENSA_MACH; | |
2657 | break; | |
2658 | default: | |
2659 | return; | |
2660 | } | |
2661 | ||
2662 | elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH); | |
2663 | elf_elfheader (abfd)->e_flags |= val; | |
2664 | } | |
2665 | ||
2666 | ||
2667 | static enum elf_reloc_type_class | |
2668 | elf_xtensa_reloc_type_class (rela) | |
2669 | const Elf_Internal_Rela *rela; | |
2670 | { | |
2671 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
2672 | { | |
2673 | case R_XTENSA_RELATIVE: | |
2674 | return reloc_class_relative; | |
2675 | case R_XTENSA_JMP_SLOT: | |
2676 | return reloc_class_plt; | |
2677 | default: | |
2678 | return reloc_class_normal; | |
2679 | } | |
2680 | } | |
2681 | ||
2682 | \f | |
2683 | static bfd_boolean | |
2684 | elf_xtensa_discard_info_for_section (abfd, cookie, info, sec) | |
2685 | bfd *abfd; | |
2686 | struct elf_reloc_cookie *cookie; | |
2687 | struct bfd_link_info *info; | |
2688 | asection *sec; | |
2689 | { | |
2690 | bfd_byte *contents; | |
2691 | bfd_vma section_size; | |
2692 | bfd_vma offset, actual_offset; | |
2693 | size_t removed_bytes = 0; | |
2694 | ||
2695 | section_size = (sec->_cooked_size ? sec->_cooked_size : sec->_raw_size); | |
2696 | if (section_size == 0 || section_size % 8 != 0) | |
2697 | return FALSE; | |
2698 | ||
2699 | if (sec->output_section | |
2700 | && bfd_is_abs_section (sec->output_section)) | |
2701 | return FALSE; | |
2702 | ||
2703 | contents = retrieve_contents (abfd, sec, info->keep_memory); | |
2704 | if (!contents) | |
2705 | return FALSE; | |
2706 | ||
2707 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
2708 | if (!cookie->rels) | |
2709 | { | |
2710 | release_contents (sec, contents); | |
2711 | return FALSE; | |
2712 | } | |
2713 | ||
2714 | cookie->rel = cookie->rels; | |
2715 | cookie->relend = cookie->rels + sec->reloc_count; | |
2716 | ||
2717 | for (offset = 0; offset < section_size; offset += 8) | |
2718 | { | |
2719 | actual_offset = offset - removed_bytes; | |
2720 | ||
2721 | /* The ...symbol_deleted_p function will skip over relocs but it | |
2722 | won't adjust their offsets, so do that here. */ | |
2723 | while (cookie->rel < cookie->relend | |
2724 | && cookie->rel->r_offset < offset) | |
2725 | { | |
2726 | cookie->rel->r_offset -= removed_bytes; | |
2727 | cookie->rel++; | |
2728 | } | |
2729 | ||
2730 | while (cookie->rel < cookie->relend | |
2731 | && cookie->rel->r_offset == offset) | |
2732 | { | |
2733 | if (_bfd_elf32_reloc_symbol_deleted_p (offset, cookie)) | |
2734 | { | |
2735 | /* Remove the table entry. (If the reloc type is NONE, then | |
2736 | the entry has already been merged with another and deleted | |
2737 | during relaxation.) */ | |
2738 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
2739 | { | |
2740 | /* Shift the contents up. */ | |
2741 | if (offset + 8 < section_size) | |
2742 | memmove (&contents[actual_offset], | |
2743 | &contents[actual_offset+8], | |
2744 | section_size - offset - 8); | |
2745 | removed_bytes += 8; | |
2746 | } | |
2747 | ||
2748 | /* Remove this relocation. */ | |
2749 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
2750 | } | |
2751 | ||
2752 | /* Adjust the relocation offset for previous removals. This | |
2753 | should not be done before calling ...symbol_deleted_p | |
2754 | because it might mess up the offset comparisons there. | |
2755 | Make sure the offset doesn't underflow in the case where | |
2756 | the first entry is removed. */ | |
2757 | if (cookie->rel->r_offset >= removed_bytes) | |
2758 | cookie->rel->r_offset -= removed_bytes; | |
2759 | else | |
2760 | cookie->rel->r_offset = 0; | |
2761 | ||
2762 | cookie->rel++; | |
2763 | } | |
2764 | } | |
2765 | ||
2766 | if (removed_bytes != 0) | |
2767 | { | |
2768 | /* Adjust any remaining relocs (shouldn't be any). */ | |
2769 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
2770 | { | |
2771 | if (cookie->rel->r_offset >= removed_bytes) | |
2772 | cookie->rel->r_offset -= removed_bytes; | |
2773 | else | |
2774 | cookie->rel->r_offset = 0; | |
2775 | } | |
2776 | ||
2777 | /* Clear the removed bytes. */ | |
2778 | memset (&contents[section_size - removed_bytes], 0, removed_bytes); | |
2779 | ||
2780 | pin_contents (sec, contents); | |
2781 | pin_internal_relocs (sec, cookie->rels); | |
2782 | ||
2783 | sec->_cooked_size = section_size - removed_bytes; | |
2784 | /* Also shrink _raw_size. See comments in relax_property_section. */ | |
2785 | sec->_raw_size = sec->_cooked_size; | |
b536dc1e BW |
2786 | |
2787 | if (xtensa_is_littable_section (sec)) | |
2788 | { | |
2789 | bfd *dynobj = elf_hash_table (info)->dynobj; | |
2790 | if (dynobj) | |
2791 | { | |
2792 | asection *sgotloc = | |
2793 | bfd_get_section_by_name (dynobj, ".got.loc"); | |
2794 | if (sgotloc) | |
2795 | { | |
2796 | bfd_size_type sgotloc_size = | |
2797 | (sgotloc->_cooked_size ? sgotloc->_cooked_size | |
2798 | : sgotloc->_raw_size); | |
2799 | sgotloc->_cooked_size = sgotloc_size - removed_bytes; | |
2800 | sgotloc->_raw_size = sgotloc_size - removed_bytes; | |
2801 | } | |
2802 | } | |
2803 | } | |
e0001a05 NC |
2804 | } |
2805 | else | |
2806 | { | |
2807 | release_contents (sec, contents); | |
2808 | release_internal_relocs (sec, cookie->rels); | |
2809 | } | |
2810 | ||
2811 | return (removed_bytes != 0); | |
2812 | } | |
2813 | ||
2814 | ||
2815 | static bfd_boolean | |
2816 | elf_xtensa_discard_info (abfd, cookie, info) | |
2817 | bfd *abfd; | |
2818 | struct elf_reloc_cookie *cookie; | |
2819 | struct bfd_link_info *info; | |
2820 | { | |
2821 | asection *sec; | |
2822 | bfd_boolean changed = FALSE; | |
2823 | ||
2824 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
2825 | { | |
2826 | if (xtensa_is_property_section (sec)) | |
2827 | { | |
2828 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
2829 | changed = TRUE; | |
2830 | } | |
2831 | } | |
2832 | ||
2833 | return changed; | |
2834 | } | |
2835 | ||
2836 | ||
2837 | static bfd_boolean | |
2838 | elf_xtensa_ignore_discarded_relocs (sec) | |
2839 | asection *sec; | |
2840 | { | |
2841 | return xtensa_is_property_section (sec); | |
2842 | } | |
2843 | ||
2844 | \f | |
2845 | /* Support for core dump NOTE sections. */ | |
2846 | ||
2847 | static bfd_boolean | |
2848 | elf_xtensa_grok_prstatus (abfd, note) | |
2849 | bfd *abfd; | |
2850 | Elf_Internal_Note *note; | |
2851 | { | |
2852 | int offset; | |
2853 | unsigned int raw_size; | |
2854 | ||
2855 | /* The size for Xtensa is variable, so don't try to recognize the format | |
2856 | based on the size. Just assume this is GNU/Linux. */ | |
2857 | ||
2858 | /* pr_cursig */ | |
2859 | elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); | |
2860 | ||
2861 | /* pr_pid */ | |
2862 | elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); | |
2863 | ||
2864 | /* pr_reg */ | |
2865 | offset = 72; | |
2866 | raw_size = note->descsz - offset - 4; | |
2867 | ||
2868 | /* Make a ".reg/999" section. */ | |
2869 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
2870 | raw_size, note->descpos + offset); | |
2871 | } | |
2872 | ||
2873 | ||
2874 | static bfd_boolean | |
2875 | elf_xtensa_grok_psinfo (abfd, note) | |
2876 | bfd *abfd; | |
2877 | Elf_Internal_Note *note; | |
2878 | { | |
2879 | switch (note->descsz) | |
2880 | { | |
2881 | default: | |
2882 | return FALSE; | |
2883 | ||
2884 | case 128: /* GNU/Linux elf_prpsinfo */ | |
2885 | elf_tdata (abfd)->core_program | |
2886 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); | |
2887 | elf_tdata (abfd)->core_command | |
2888 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); | |
2889 | } | |
2890 | ||
2891 | /* Note that for some reason, a spurious space is tacked | |
2892 | onto the end of the args in some (at least one anyway) | |
2893 | implementations, so strip it off if it exists. */ | |
2894 | ||
2895 | { | |
2896 | char *command = elf_tdata (abfd)->core_command; | |
2897 | int n = strlen (command); | |
2898 | ||
2899 | if (0 < n && command[n - 1] == ' ') | |
2900 | command[n - 1] = '\0'; | |
2901 | } | |
2902 | ||
2903 | return TRUE; | |
2904 | } | |
2905 | ||
2906 | \f | |
2907 | /* Generic Xtensa configurability stuff. */ | |
2908 | ||
2909 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
2910 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
2911 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
2912 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
2913 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
2914 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
2915 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
2916 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
2917 | ||
2918 | static void | |
2919 | init_call_opcodes () | |
2920 | { | |
2921 | if (callx0_op == XTENSA_UNDEFINED) | |
2922 | { | |
2923 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
2924 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
2925 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
2926 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
2927 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
2928 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
2929 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
2930 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
2931 | } | |
2932 | } | |
2933 | ||
2934 | ||
2935 | static bfd_boolean | |
2936 | is_indirect_call_opcode (opcode) | |
2937 | xtensa_opcode opcode; | |
2938 | { | |
2939 | init_call_opcodes (); | |
2940 | return (opcode == callx0_op | |
2941 | || opcode == callx4_op | |
2942 | || opcode == callx8_op | |
2943 | || opcode == callx12_op); | |
2944 | } | |
2945 | ||
2946 | ||
2947 | static bfd_boolean | |
2948 | is_direct_call_opcode (opcode) | |
2949 | xtensa_opcode opcode; | |
2950 | { | |
2951 | init_call_opcodes (); | |
2952 | return (opcode == call0_op | |
2953 | || opcode == call4_op | |
2954 | || opcode == call8_op | |
2955 | || opcode == call12_op); | |
2956 | } | |
2957 | ||
2958 | ||
2959 | static bfd_boolean | |
2960 | is_windowed_call_opcode (opcode) | |
2961 | xtensa_opcode opcode; | |
2962 | { | |
2963 | init_call_opcodes (); | |
2964 | return (opcode == call4_op | |
2965 | || opcode == call8_op | |
2966 | || opcode == call12_op | |
2967 | || opcode == callx4_op | |
2968 | || opcode == callx8_op | |
2969 | || opcode == callx12_op); | |
2970 | } | |
2971 | ||
2972 | ||
2973 | static xtensa_opcode | |
2974 | get_l32r_opcode (void) | |
2975 | { | |
2976 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
2977 | if (l32r_opcode == XTENSA_UNDEFINED) | |
2978 | { | |
2979 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
2980 | BFD_ASSERT (l32r_opcode != XTENSA_UNDEFINED); | |
2981 | } | |
2982 | return l32r_opcode; | |
2983 | } | |
2984 | ||
2985 | ||
2986 | static bfd_vma | |
2987 | l32r_offset (addr, pc) | |
2988 | bfd_vma addr; | |
2989 | bfd_vma pc; | |
2990 | { | |
2991 | bfd_vma offset; | |
2992 | ||
2993 | offset = addr - ((pc+3) & -4); | |
2994 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
2995 | offset = (signed int) offset >> 2; | |
2996 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
2997 | return offset; | |
2998 | } | |
2999 | ||
3000 | ||
3001 | /* Get the operand number for a PC-relative relocation. | |
3002 | If the relocation is not a PC-relative one, return (-1). */ | |
3003 | ||
3004 | static int | |
3005 | get_relocation_opnd (irel) | |
3006 | Elf_Internal_Rela *irel; | |
3007 | { | |
3008 | if (ELF32_R_TYPE (irel->r_info) < R_XTENSA_OP0 | |
3009 | || ELF32_R_TYPE (irel->r_info) >= R_XTENSA_max) | |
3010 | return -1; | |
3011 | return ELF32_R_TYPE (irel->r_info) - R_XTENSA_OP0; | |
3012 | } | |
3013 | ||
3014 | ||
3015 | /* Get the opcode for a relocation. */ | |
3016 | ||
3017 | static xtensa_opcode | |
3018 | get_relocation_opcode (sec, contents, irel) | |
3019 | asection *sec; | |
3020 | bfd_byte *contents; | |
3021 | Elf_Internal_Rela *irel; | |
3022 | { | |
3023 | static xtensa_insnbuf ibuff = NULL; | |
3024 | xtensa_isa isa = xtensa_default_isa; | |
3025 | ||
3026 | if (get_relocation_opnd (irel) == -1) | |
3027 | return XTENSA_UNDEFINED; | |
3028 | ||
3029 | if (contents == NULL) | |
3030 | return XTENSA_UNDEFINED; | |
3031 | ||
3032 | if (sec->_raw_size <= irel->r_offset) | |
3033 | return XTENSA_UNDEFINED; | |
3034 | ||
3035 | if (ibuff == NULL) | |
3036 | ibuff = xtensa_insnbuf_alloc (isa); | |
3037 | ||
3038 | /* Decode the instruction. */ | |
3039 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset]); | |
3040 | return xtensa_decode_insn (isa, ibuff); | |
3041 | } | |
3042 | ||
3043 | ||
3044 | bfd_boolean | |
3045 | is_l32r_relocation (sec, contents, irel) | |
3046 | asection *sec; | |
3047 | bfd_byte *contents; | |
3048 | Elf_Internal_Rela *irel; | |
3049 | { | |
3050 | xtensa_opcode opcode; | |
3051 | ||
3052 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_OP1) | |
3053 | return FALSE; | |
3054 | ||
3055 | opcode = get_relocation_opcode (sec, contents, irel); | |
3056 | return (opcode == get_l32r_opcode ()); | |
3057 | } | |
3058 | ||
3059 | \f | |
3060 | /* Code for transforming CALLs at link-time. */ | |
3061 | ||
3062 | static bfd_reloc_status_type | |
3063 | elf_xtensa_do_asm_simplify (contents, address, content_length) | |
3064 | bfd_byte *contents; | |
3065 | bfd_vma address; | |
3066 | bfd_vma content_length; | |
3067 | { | |
3068 | static xtensa_insnbuf insnbuf = NULL; | |
3069 | xtensa_opcode opcode; | |
3070 | xtensa_operand operand; | |
3071 | xtensa_opcode direct_call_opcode; | |
3072 | xtensa_isa isa = xtensa_default_isa; | |
3073 | bfd_byte *chbuf = contents + address; | |
3074 | int opn; | |
3075 | ||
3076 | if (insnbuf == NULL) | |
3077 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3078 | ||
3079 | if (content_length < address) | |
3080 | { | |
3081 | (*_bfd_error_handler) | |
b536dc1e | 3082 | ("Attempt to convert L32R/CALLX to CALL failed"); |
e0001a05 NC |
3083 | return bfd_reloc_other; |
3084 | } | |
3085 | ||
3086 | opcode = get_expanded_call_opcode (chbuf, content_length - address); | |
3087 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
3088 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
3089 | { | |
3090 | (*_bfd_error_handler) | |
b536dc1e | 3091 | ("Attempt to convert L32R/CALLX to CALL failed"); |
e0001a05 NC |
3092 | return bfd_reloc_other; |
3093 | } | |
3094 | ||
3095 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ | |
3096 | opcode = xtensa_opcode_lookup (isa, "or"); | |
3097 | xtensa_encode_insn (isa, opcode, insnbuf); | |
3098 | for (opn = 0; opn < 3; opn++) | |
3099 | { | |
3100 | operand = xtensa_get_operand (isa, opcode, opn); | |
3101 | xtensa_operand_set_field (operand, insnbuf, 1); | |
3102 | } | |
3103 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf); | |
3104 | ||
3105 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ | |
3106 | xtensa_encode_insn (isa, direct_call_opcode, insnbuf); | |
3107 | operand = xtensa_get_operand (isa, opcode, 0); | |
3108 | xtensa_operand_set_field (operand, insnbuf, 0); | |
3109 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3); | |
3110 | ||
3111 | return bfd_reloc_ok; | |
3112 | } | |
3113 | ||
3114 | ||
3115 | static bfd_reloc_status_type | |
3116 | contract_asm_expansion (contents, content_length, irel) | |
3117 | bfd_byte *contents; | |
3118 | bfd_vma content_length; | |
3119 | Elf_Internal_Rela *irel; | |
3120 | { | |
3121 | bfd_reloc_status_type retval = | |
3122 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length); | |
3123 | ||
3124 | if (retval != bfd_reloc_ok) | |
3125 | return retval; | |
3126 | ||
3127 | /* Update the irel->r_offset field so that the right immediate and | |
3128 | the right instruction are modified during the relocation. */ | |
3129 | irel->r_offset += 3; | |
3130 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_OP0); | |
3131 | return bfd_reloc_ok; | |
3132 | } | |
3133 | ||
3134 | ||
3135 | static xtensa_opcode | |
3136 | swap_callx_for_call_opcode (opcode) | |
3137 | xtensa_opcode opcode; | |
3138 | { | |
3139 | init_call_opcodes (); | |
3140 | ||
3141 | if (opcode == callx0_op) return call0_op; | |
3142 | if (opcode == callx4_op) return call4_op; | |
3143 | if (opcode == callx8_op) return call8_op; | |
3144 | if (opcode == callx12_op) return call12_op; | |
3145 | ||
3146 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ | |
3147 | return XTENSA_UNDEFINED; | |
3148 | } | |
3149 | ||
3150 | ||
3151 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" sequence, and | |
3152 | if so, return the CALLX opcode. If not, return XTENSA_UNDEFINED. */ | |
3153 | ||
3154 | #define L32R_TARGET_REG_OPERAND 0 | |
3155 | #define CALLN_SOURCE_OPERAND 0 | |
3156 | ||
3157 | static xtensa_opcode | |
3158 | get_expanded_call_opcode (buf, bufsize) | |
3159 | bfd_byte *buf; | |
3160 | int bufsize; | |
3161 | { | |
3162 | static xtensa_insnbuf insnbuf = NULL; | |
3163 | xtensa_opcode opcode; | |
3164 | xtensa_operand operand; | |
3165 | xtensa_isa isa = xtensa_default_isa; | |
3166 | uint32 regno, call_regno; | |
3167 | ||
3168 | /* Buffer must be at least 6 bytes. */ | |
3169 | if (bufsize < 6) | |
3170 | return XTENSA_UNDEFINED; | |
3171 | ||
3172 | if (insnbuf == NULL) | |
3173 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3174 | ||
3175 | xtensa_insnbuf_from_chars (isa, insnbuf, buf); | |
3176 | opcode = xtensa_decode_insn (isa, insnbuf); | |
3177 | ||
3178 | if (opcode != get_l32r_opcode ()) | |
3179 | return XTENSA_UNDEFINED; | |
3180 | ||
3181 | operand = xtensa_get_operand (isa, opcode, L32R_TARGET_REG_OPERAND); | |
3182 | regno = xtensa_operand_decode | |
3183 | (operand, xtensa_operand_get_field (operand, insnbuf)); | |
3184 | ||
3185 | /* Next instruction should be an CALLXn with operand 0 == regno. */ | |
3186 | xtensa_insnbuf_from_chars (isa, insnbuf, | |
3187 | buf + xtensa_insn_length (isa, opcode)); | |
3188 | opcode = xtensa_decode_insn (isa, insnbuf); | |
3189 | ||
3190 | if (!is_indirect_call_opcode (opcode)) | |
3191 | return XTENSA_UNDEFINED; | |
3192 | ||
3193 | operand = xtensa_get_operand (isa, opcode, CALLN_SOURCE_OPERAND); | |
3194 | call_regno = xtensa_operand_decode | |
3195 | (operand, xtensa_operand_get_field (operand, insnbuf)); | |
3196 | if (call_regno != regno) | |
3197 | return XTENSA_UNDEFINED; | |
3198 | ||
3199 | return opcode; | |
3200 | } | |
3201 | ||
3202 | \f | |
3203 | /* Data structures used during relaxation. */ | |
3204 | ||
3205 | /* r_reloc: relocation values. */ | |
3206 | ||
3207 | /* Through the relaxation process, we need to keep track of the values | |
3208 | that will result from evaluating relocations. The standard ELF | |
3209 | relocation structure is not sufficient for this purpose because we're | |
3210 | operating on multiple input files at once, so we need to know which | |
3211 | input file a relocation refers to. The r_reloc structure thus | |
3212 | records both the input file (bfd) and ELF relocation. | |
3213 | ||
3214 | For efficiency, an r_reloc also contains a "target_offset" field to | |
3215 | cache the target-section-relative offset value that is represented by | |
3216 | the relocation. */ | |
3217 | ||
3218 | typedef struct r_reloc_struct r_reloc; | |
3219 | ||
3220 | struct r_reloc_struct | |
3221 | { | |
3222 | bfd *abfd; | |
3223 | Elf_Internal_Rela rela; | |
3224 | bfd_vma target_offset; | |
3225 | }; | |
3226 | ||
3227 | static bfd_boolean r_reloc_is_const | |
3228 | PARAMS ((const r_reloc *)); | |
3229 | static void r_reloc_init | |
3230 | PARAMS ((r_reloc *, bfd *, Elf_Internal_Rela *)); | |
3231 | static bfd_vma r_reloc_get_target_offset | |
3232 | PARAMS ((const r_reloc *)); | |
3233 | static asection *r_reloc_get_section | |
3234 | PARAMS ((const r_reloc *)); | |
3235 | static bfd_boolean r_reloc_is_defined | |
3236 | PARAMS ((const r_reloc *)); | |
3237 | static struct elf_link_hash_entry *r_reloc_get_hash_entry | |
3238 | PARAMS ((const r_reloc *)); | |
3239 | ||
3240 | ||
3241 | /* The r_reloc structure is included by value in literal_value, but not | |
3242 | every literal_value has an associated relocation -- some are simple | |
3243 | constants. In such cases, we set all the fields in the r_reloc | |
3244 | struct to zero. The r_reloc_is_const function should be used to | |
3245 | detect this case. */ | |
3246 | ||
3247 | static bfd_boolean | |
3248 | r_reloc_is_const (r_rel) | |
3249 | const r_reloc *r_rel; | |
3250 | { | |
3251 | return (r_rel->abfd == NULL); | |
3252 | } | |
3253 | ||
3254 | ||
3255 | static void | |
3256 | r_reloc_init (r_rel, abfd, irel) | |
3257 | r_reloc *r_rel; | |
3258 | bfd *abfd; | |
3259 | Elf_Internal_Rela *irel; | |
3260 | { | |
3261 | if (irel != NULL) | |
3262 | { | |
3263 | r_rel->rela = *irel; | |
3264 | r_rel->abfd = abfd; | |
3265 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
3266 | } | |
3267 | else | |
3268 | memset (r_rel, 0, sizeof (r_reloc)); | |
3269 | } | |
3270 | ||
3271 | ||
3272 | static bfd_vma | |
3273 | r_reloc_get_target_offset (r_rel) | |
3274 | const r_reloc *r_rel; | |
3275 | { | |
3276 | bfd_vma target_offset; | |
3277 | unsigned long r_symndx; | |
3278 | ||
3279 | BFD_ASSERT (!r_reloc_is_const (r_rel)); | |
3280 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
3281 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
3282 | return (target_offset + r_rel->rela.r_addend); | |
3283 | } | |
3284 | ||
3285 | ||
3286 | static struct elf_link_hash_entry * | |
3287 | r_reloc_get_hash_entry (r_rel) | |
3288 | const r_reloc *r_rel; | |
3289 | { | |
3290 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
3291 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
3292 | } | |
3293 | ||
3294 | ||
3295 | static asection * | |
3296 | r_reloc_get_section (r_rel) | |
3297 | const r_reloc *r_rel; | |
3298 | { | |
3299 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
3300 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
3301 | } | |
3302 | ||
3303 | ||
3304 | static bfd_boolean | |
3305 | r_reloc_is_defined (r_rel) | |
3306 | const r_reloc *r_rel; | |
3307 | { | |
3308 | asection *sec = r_reloc_get_section (r_rel); | |
3309 | if (sec == bfd_abs_section_ptr | |
3310 | || sec == bfd_com_section_ptr | |
3311 | || sec == bfd_und_section_ptr) | |
3312 | return FALSE; | |
3313 | return TRUE; | |
3314 | } | |
3315 | ||
3316 | \f | |
3317 | /* source_reloc: relocations that reference literal sections. */ | |
3318 | ||
3319 | /* To determine whether literals can be coalesced, we need to first | |
3320 | record all the relocations that reference the literals. The | |
3321 | source_reloc structure below is used for this purpose. The | |
3322 | source_reloc entries are kept in a per-literal-section array, sorted | |
3323 | by offset within the literal section (i.e., target offset). | |
3324 | ||
3325 | The source_sec and r_rel.rela.r_offset fields identify the source of | |
3326 | the relocation. The r_rel field records the relocation value, i.e., | |
3327 | the offset of the literal being referenced. The opnd field is needed | |
3328 | to determine the range of the immediate field to which the relocation | |
3329 | applies, so we can determine whether another literal with the same | |
3330 | value is within range. The is_null field is true when the relocation | |
3331 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
3332 | that is converted to a direct CALL). */ | |
3333 | ||
3334 | typedef struct source_reloc_struct source_reloc; | |
3335 | ||
3336 | struct source_reloc_struct | |
3337 | { | |
3338 | asection *source_sec; | |
3339 | r_reloc r_rel; | |
3340 | xtensa_operand opnd; | |
3341 | bfd_boolean is_null; | |
3342 | }; | |
3343 | ||
3344 | ||
3345 | static void init_source_reloc | |
3346 | PARAMS ((source_reloc *, asection *, const r_reloc *, xtensa_operand)); | |
3347 | static source_reloc *find_source_reloc | |
3348 | PARAMS ((source_reloc *, int, asection *, Elf_Internal_Rela *)); | |
3349 | static int source_reloc_compare | |
3350 | PARAMS ((const PTR, const PTR)); | |
3351 | ||
3352 | ||
3353 | static void | |
3354 | init_source_reloc (reloc, source_sec, r_rel, opnd) | |
3355 | source_reloc *reloc; | |
3356 | asection *source_sec; | |
3357 | const r_reloc *r_rel; | |
3358 | xtensa_operand opnd; | |
3359 | { | |
3360 | reloc->source_sec = source_sec; | |
3361 | reloc->r_rel = *r_rel; | |
3362 | reloc->opnd = opnd; | |
3363 | reloc->is_null = FALSE; | |
3364 | } | |
3365 | ||
3366 | ||
3367 | /* Find the source_reloc for a particular source offset and relocation | |
3368 | type. Note that the array is sorted by _target_ offset, so this is | |
3369 | just a linear search. */ | |
3370 | ||
3371 | static source_reloc * | |
3372 | find_source_reloc (src_relocs, src_count, sec, irel) | |
3373 | source_reloc *src_relocs; | |
3374 | int src_count; | |
3375 | asection *sec; | |
3376 | Elf_Internal_Rela *irel; | |
3377 | { | |
3378 | int i; | |
3379 | ||
3380 | for (i = 0; i < src_count; i++) | |
3381 | { | |
3382 | if (src_relocs[i].source_sec == sec | |
3383 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
3384 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
3385 | == ELF32_R_TYPE (irel->r_info))) | |
3386 | return &src_relocs[i]; | |
3387 | } | |
3388 | ||
3389 | return NULL; | |
3390 | } | |
3391 | ||
3392 | ||
3393 | static int | |
3394 | source_reloc_compare (ap, bp) | |
3395 | const PTR ap; | |
3396 | const PTR bp; | |
3397 | { | |
3398 | const source_reloc *a = (const source_reloc *) ap; | |
3399 | const source_reloc *b = (const source_reloc *) bp; | |
3400 | ||
3401 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
3402 | } | |
3403 | ||
3404 | \f | |
3405 | /* Literal values and value hash tables. */ | |
3406 | ||
3407 | /* Literals with the same value can be coalesced. The literal_value | |
3408 | structure records the value of a literal: the "r_rel" field holds the | |
3409 | information from the relocation on the literal (if there is one) and | |
3410 | the "value" field holds the contents of the literal word itself. | |
3411 | ||
3412 | The value_map structure records a literal value along with the | |
3413 | location of a literal holding that value. The value_map hash table | |
3414 | is indexed by the literal value, so that we can quickly check if a | |
3415 | particular literal value has been seen before and is thus a candidate | |
3416 | for coalescing. */ | |
3417 | ||
3418 | typedef struct literal_value_struct literal_value; | |
3419 | typedef struct value_map_struct value_map; | |
3420 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
3421 | ||
3422 | struct literal_value_struct | |
3423 | { | |
3424 | r_reloc r_rel; | |
3425 | unsigned long value; | |
3426 | }; | |
3427 | ||
3428 | struct value_map_struct | |
3429 | { | |
3430 | literal_value val; /* The literal value. */ | |
3431 | r_reloc loc; /* Location of the literal. */ | |
3432 | value_map *next; | |
3433 | }; | |
3434 | ||
3435 | struct value_map_hash_table_struct | |
3436 | { | |
3437 | unsigned bucket_count; | |
3438 | value_map **buckets; | |
3439 | unsigned count; | |
3440 | }; | |
3441 | ||
3442 | ||
3443 | static bfd_boolean is_same_value | |
3444 | PARAMS ((const literal_value *, const literal_value *)); | |
3445 | static value_map_hash_table *value_map_hash_table_init | |
3446 | PARAMS ((void)); | |
3447 | static unsigned hash_literal_value | |
3448 | PARAMS ((const literal_value *)); | |
3449 | static unsigned hash_bfd_vma | |
3450 | PARAMS ((bfd_vma)); | |
3451 | static value_map *get_cached_value | |
3452 | PARAMS ((value_map_hash_table *, const literal_value *)); | |
3453 | static value_map *add_value_map | |
3454 | PARAMS ((value_map_hash_table *, const literal_value *, const r_reloc *)); | |
3455 | ||
3456 | ||
3457 | static bfd_boolean | |
3458 | is_same_value (src1, src2) | |
3459 | const literal_value *src1; | |
3460 | const literal_value *src2; | |
3461 | { | |
3462 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) | |
3463 | return FALSE; | |
3464 | ||
3465 | if (r_reloc_is_const (&src1->r_rel)) | |
3466 | return (src1->value == src2->value); | |
3467 | ||
3468 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) | |
3469 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
3470 | return FALSE; | |
3471 | ||
3472 | if (r_reloc_get_target_offset (&src1->r_rel) | |
3473 | != r_reloc_get_target_offset (&src2->r_rel)) | |
3474 | return FALSE; | |
3475 | ||
3476 | if (src1->value != src2->value) | |
3477 | return FALSE; | |
3478 | ||
3479 | /* Now check for the same section and the same elf_hash. */ | |
3480 | if (r_reloc_is_defined (&src1->r_rel)) | |
3481 | { | |
3482 | if (r_reloc_get_section (&src1->r_rel) | |
3483 | != r_reloc_get_section (&src2->r_rel)) | |
3484 | return FALSE; | |
3485 | } | |
3486 | else | |
3487 | { | |
3488 | if (r_reloc_get_hash_entry (&src1->r_rel) | |
3489 | != r_reloc_get_hash_entry (&src2->r_rel)) | |
3490 | return FALSE; | |
3491 | ||
3492 | if (r_reloc_get_hash_entry (&src1->r_rel) == 0) | |
3493 | return FALSE; | |
3494 | } | |
3495 | ||
3496 | return TRUE; | |
3497 | } | |
3498 | ||
3499 | ||
3500 | /* Must be power of 2. */ | |
3501 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
3502 | ||
3503 | static value_map_hash_table * | |
3504 | value_map_hash_table_init () | |
3505 | { | |
3506 | value_map_hash_table *values; | |
3507 | ||
3508 | values = (value_map_hash_table *) | |
3509 | bfd_malloc (sizeof (value_map_hash_table)); | |
3510 | ||
3511 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
3512 | values->count = 0; | |
3513 | values->buckets = (value_map **) | |
3514 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
3515 | ||
3516 | return values; | |
3517 | } | |
3518 | ||
3519 | ||
3520 | static unsigned | |
3521 | hash_bfd_vma (val) | |
3522 | bfd_vma val; | |
3523 | { | |
3524 | return (val >> 2) + (val >> 10); | |
3525 | } | |
3526 | ||
3527 | ||
3528 | static unsigned | |
3529 | hash_literal_value (src) | |
3530 | const literal_value *src; | |
3531 | { | |
3532 | unsigned hash_val; | |
560e09e9 | 3533 | |
e0001a05 NC |
3534 | if (r_reloc_is_const (&src->r_rel)) |
3535 | return hash_bfd_vma (src->value); | |
3536 | ||
3537 | hash_val = (hash_bfd_vma (r_reloc_get_target_offset (&src->r_rel)) | |
3538 | + hash_bfd_vma (src->value)); | |
3539 | ||
3540 | /* Now check for the same section and the same elf_hash. */ | |
3541 | if (r_reloc_is_defined (&src->r_rel)) | |
560e09e9 | 3542 | hash_val += hash_bfd_vma ((bfd_vma) (unsigned) r_reloc_get_section (&src->r_rel)); |
e0001a05 | 3543 | else |
560e09e9 | 3544 | hash_val += hash_bfd_vma ((bfd_vma) (unsigned) r_reloc_get_hash_entry (&src->r_rel)); |
e0001a05 NC |
3545 | |
3546 | return hash_val; | |
3547 | } | |
3548 | ||
3549 | ||
3550 | /* Check if the specified literal_value has been seen before. */ | |
3551 | ||
3552 | static value_map * | |
3553 | get_cached_value (map, val) | |
3554 | value_map_hash_table *map; | |
3555 | const literal_value *val; | |
3556 | { | |
3557 | value_map *map_e; | |
3558 | value_map *bucket; | |
3559 | unsigned idx; | |
3560 | ||
3561 | idx = hash_literal_value (val); | |
3562 | idx = idx & (map->bucket_count - 1); | |
3563 | bucket = map->buckets[idx]; | |
3564 | for (map_e = bucket; map_e; map_e = map_e->next) | |
3565 | { | |
3566 | if (is_same_value (&map_e->val, val)) | |
3567 | return map_e; | |
3568 | } | |
3569 | return NULL; | |
3570 | } | |
3571 | ||
3572 | ||
3573 | /* Record a new literal value. It is illegal to call this if VALUE | |
3574 | already has an entry here. */ | |
3575 | ||
3576 | static value_map * | |
3577 | add_value_map (map, val, loc) | |
3578 | value_map_hash_table *map; | |
3579 | const literal_value *val; | |
3580 | const r_reloc *loc; | |
3581 | { | |
3582 | value_map **bucket_p; | |
3583 | unsigned idx; | |
3584 | ||
3585 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
3586 | ||
3587 | BFD_ASSERT (get_cached_value (map, val) == NULL); | |
3588 | val_e->val = *val; | |
3589 | val_e->loc = *loc; | |
3590 | ||
3591 | idx = hash_literal_value (val); | |
3592 | idx = idx & (map->bucket_count - 1); | |
3593 | bucket_p = &map->buckets[idx]; | |
3594 | ||
3595 | val_e->next = *bucket_p; | |
3596 | *bucket_p = val_e; | |
3597 | map->count++; | |
3598 | /* FIXME: consider resizing the hash table if we get too many entries */ | |
3599 | ||
3600 | return val_e; | |
3601 | } | |
3602 | ||
3603 | \f | |
3604 | /* Lists of literals being coalesced or removed. */ | |
3605 | ||
3606 | /* In the usual case, the literal identified by "from" is being | |
3607 | coalesced with another literal identified by "to". If the literal is | |
3608 | unused and is being removed altogether, "to.abfd" will be NULL. | |
3609 | The removed_literal entries are kept on a per-section list, sorted | |
3610 | by the "from" offset field. */ | |
3611 | ||
3612 | typedef struct removed_literal_struct removed_literal; | |
3613 | typedef struct removed_literal_list_struct removed_literal_list; | |
3614 | ||
3615 | struct removed_literal_struct | |
3616 | { | |
3617 | r_reloc from; | |
3618 | r_reloc to; | |
3619 | removed_literal *next; | |
3620 | }; | |
3621 | ||
3622 | struct removed_literal_list_struct | |
3623 | { | |
3624 | removed_literal *head; | |
3625 | removed_literal *tail; | |
3626 | }; | |
3627 | ||
3628 | ||
3629 | static void add_removed_literal | |
3630 | PARAMS ((removed_literal_list *, const r_reloc *, const r_reloc *)); | |
3631 | static removed_literal *find_removed_literal | |
3632 | PARAMS ((removed_literal_list *, bfd_vma)); | |
3633 | static bfd_vma offset_with_removed_literals | |
3634 | PARAMS ((removed_literal_list *, bfd_vma)); | |
3635 | ||
3636 | ||
3637 | /* Record that the literal at "from" is being removed. If "to" is not | |
3638 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
3639 | ||
3640 | static void | |
3641 | add_removed_literal (removed_list, from, to) | |
3642 | removed_literal_list *removed_list; | |
3643 | const r_reloc *from; | |
3644 | const r_reloc *to; | |
3645 | { | |
3646 | removed_literal *r, *new_r, *next_r; | |
3647 | ||
3648 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
3649 | ||
3650 | new_r->from = *from; | |
3651 | if (to) | |
3652 | new_r->to = *to; | |
3653 | else | |
3654 | new_r->to.abfd = NULL; | |
3655 | new_r->next = NULL; | |
3656 | ||
3657 | r = removed_list->head; | |
3658 | if (r == NULL) | |
3659 | { | |
3660 | removed_list->head = new_r; | |
3661 | removed_list->tail = new_r; | |
3662 | } | |
3663 | /* Special check for common case of append. */ | |
3664 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
3665 | { | |
3666 | removed_list->tail->next = new_r; | |
3667 | removed_list->tail = new_r; | |
3668 | } | |
3669 | else | |
3670 | { | |
3671 | while (r->from.target_offset < from->target_offset | |
3672 | && r->next != NULL) | |
3673 | { | |
3674 | r = r->next; | |
3675 | } | |
3676 | next_r = r->next; | |
3677 | r->next = new_r; | |
3678 | new_r->next = next_r; | |
3679 | if (next_r == NULL) | |
3680 | removed_list->tail = new_r; | |
3681 | } | |
3682 | } | |
3683 | ||
3684 | ||
3685 | /* Check if the list of removed literals contains an entry for the | |
3686 | given address. Return the entry if found. */ | |
3687 | ||
3688 | static removed_literal * | |
3689 | find_removed_literal (removed_list, addr) | |
3690 | removed_literal_list *removed_list; | |
3691 | bfd_vma addr; | |
3692 | { | |
3693 | removed_literal *r = removed_list->head; | |
3694 | while (r && r->from.target_offset < addr) | |
3695 | r = r->next; | |
3696 | if (r && r->from.target_offset == addr) | |
3697 | return r; | |
3698 | return NULL; | |
3699 | } | |
3700 | ||
3701 | ||
3702 | /* Adjust an offset in a section to compensate for literals that are | |
3703 | being removed. Search the list of removed literals and subtract | |
3704 | 4 bytes for every removed literal prior to the given address. */ | |
3705 | ||
3706 | static bfd_vma | |
3707 | offset_with_removed_literals (removed_list, addr) | |
3708 | removed_literal_list *removed_list; | |
3709 | bfd_vma addr; | |
3710 | { | |
3711 | removed_literal *r = removed_list->head; | |
3712 | unsigned num_bytes = 0; | |
3713 | ||
3714 | if (r == NULL) | |
3715 | return addr; | |
3716 | ||
3717 | while (r && r->from.target_offset <= addr) | |
3718 | { | |
3719 | num_bytes += 4; | |
3720 | r = r->next; | |
3721 | } | |
3722 | if (num_bytes > addr) | |
3723 | return 0; | |
3724 | return (addr - num_bytes); | |
3725 | } | |
3726 | ||
3727 | \f | |
3728 | /* Coalescing literals may require a relocation to refer to a section in | |
3729 | a different input file, but the standard relocation information | |
3730 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
3731 | to "fix" the relocations that refer to sections in other input files. | |
3732 | These structures are kept on per-section lists. The "src_type" field | |
3733 | records the relocation type in case there are multiple relocations on | |
3734 | the same location. FIXME: This is ugly; an alternative might be to | |
3735 | add new symbols with the "owner" field to some other input file. */ | |
3736 | ||
3737 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
3738 | ||
3739 | struct reloc_bfd_fix_struct | |
3740 | { | |
3741 | asection *src_sec; | |
3742 | bfd_vma src_offset; | |
3743 | unsigned src_type; /* Relocation type. */ | |
3744 | ||
3745 | bfd *target_abfd; | |
3746 | asection *target_sec; | |
3747 | bfd_vma target_offset; | |
3748 | ||
3749 | reloc_bfd_fix *next; | |
3750 | }; | |
3751 | ||
3752 | ||
3753 | static reloc_bfd_fix *reloc_bfd_fix_init | |
3754 | PARAMS ((asection *, bfd_vma, unsigned, bfd *, asection *, bfd_vma)); | |
3755 | static reloc_bfd_fix *get_bfd_fix | |
3756 | PARAMS ((reloc_bfd_fix *, asection *, bfd_vma, unsigned)); | |
3757 | ||
3758 | ||
3759 | static reloc_bfd_fix * | |
3760 | reloc_bfd_fix_init (src_sec, src_offset, src_type, | |
3761 | target_abfd, target_sec, target_offset) | |
3762 | asection *src_sec; | |
3763 | bfd_vma src_offset; | |
3764 | unsigned src_type; | |
3765 | bfd *target_abfd; | |
3766 | asection *target_sec; | |
3767 | bfd_vma target_offset; | |
3768 | { | |
3769 | reloc_bfd_fix *fix; | |
3770 | ||
3771 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
3772 | fix->src_sec = src_sec; | |
3773 | fix->src_offset = src_offset; | |
3774 | fix->src_type = src_type; | |
3775 | fix->target_abfd = target_abfd; | |
3776 | fix->target_sec = target_sec; | |
3777 | fix->target_offset = target_offset; | |
3778 | ||
3779 | return fix; | |
3780 | } | |
3781 | ||
3782 | ||
3783 | static reloc_bfd_fix * | |
3784 | get_bfd_fix (fix_list, sec, offset, type) | |
3785 | reloc_bfd_fix *fix_list; | |
3786 | asection *sec; | |
3787 | bfd_vma offset; | |
3788 | unsigned type; | |
3789 | { | |
3790 | reloc_bfd_fix *r; | |
3791 | ||
3792 | for (r = fix_list; r != NULL; r = r->next) | |
3793 | { | |
3794 | if (r->src_sec == sec | |
3795 | && r->src_offset == offset | |
3796 | && r->src_type == type) | |
3797 | return r; | |
3798 | } | |
3799 | return NULL; | |
3800 | } | |
3801 | ||
3802 | \f | |
3803 | /* Per-section data for relaxation. */ | |
3804 | ||
3805 | struct xtensa_relax_info_struct | |
3806 | { | |
3807 | bfd_boolean is_relaxable_literal_section; | |
3808 | int visited; /* Number of times visited. */ | |
3809 | ||
3810 | source_reloc *src_relocs; /* Array[src_count]. */ | |
3811 | int src_count; | |
3812 | int src_next; /* Next src_relocs entry to assign. */ | |
3813 | ||
3814 | removed_literal_list removed_list; | |
3815 | ||
3816 | reloc_bfd_fix *fix_list; | |
3817 | }; | |
3818 | ||
3819 | struct elf_xtensa_section_data | |
3820 | { | |
3821 | struct bfd_elf_section_data elf; | |
3822 | xtensa_relax_info relax_info; | |
3823 | }; | |
3824 | ||
3825 | static void init_xtensa_relax_info | |
3826 | PARAMS ((asection *)); | |
3827 | static xtensa_relax_info *get_xtensa_relax_info | |
3828 | PARAMS ((asection *)); | |
3829 | static void add_fix | |
3830 | PARAMS ((asection *, reloc_bfd_fix *)); | |
3831 | ||
3832 | ||
3833 | static bfd_boolean | |
3834 | elf_xtensa_new_section_hook (abfd, sec) | |
3835 | bfd *abfd; | |
3836 | asection *sec; | |
3837 | { | |
3838 | struct elf_xtensa_section_data *sdata; | |
3839 | bfd_size_type amt = sizeof (*sdata); | |
3840 | ||
3841 | sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt); | |
3842 | if (sdata == NULL) | |
3843 | return FALSE; | |
3844 | sec->used_by_bfd = (PTR) sdata; | |
3845 | ||
3846 | return _bfd_elf_new_section_hook (abfd, sec); | |
3847 | } | |
3848 | ||
3849 | ||
3850 | static void | |
3851 | init_xtensa_relax_info (sec) | |
3852 | asection *sec; | |
3853 | { | |
3854 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
3855 | ||
3856 | relax_info->is_relaxable_literal_section = FALSE; | |
3857 | relax_info->visited = 0; | |
3858 | ||
3859 | relax_info->src_relocs = NULL; | |
3860 | relax_info->src_count = 0; | |
3861 | relax_info->src_next = 0; | |
3862 | ||
3863 | relax_info->removed_list.head = NULL; | |
3864 | relax_info->removed_list.tail = NULL; | |
3865 | ||
3866 | relax_info->fix_list = NULL; | |
3867 | } | |
3868 | ||
3869 | ||
3870 | static xtensa_relax_info * | |
3871 | get_xtensa_relax_info (sec) | |
3872 | asection *sec; | |
3873 | { | |
3874 | struct elf_xtensa_section_data *section_data; | |
3875 | ||
3876 | /* No info available if no section or if it is an output section. */ | |
3877 | if (!sec || sec == sec->output_section) | |
3878 | return NULL; | |
3879 | ||
3880 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
3881 | return §ion_data->relax_info; | |
3882 | } | |
3883 | ||
3884 | ||
3885 | static void | |
3886 | add_fix (src_sec, fix) | |
3887 | asection *src_sec; | |
3888 | reloc_bfd_fix *fix; | |
3889 | { | |
3890 | xtensa_relax_info *relax_info; | |
3891 | ||
3892 | relax_info = get_xtensa_relax_info (src_sec); | |
3893 | fix->next = relax_info->fix_list; | |
3894 | relax_info->fix_list = fix; | |
3895 | } | |
3896 | ||
3897 | \f | |
3898 | /* Access to internal relocations, section contents and symbols. */ | |
3899 | ||
3900 | /* During relaxation, we need to modify relocations, section contents, | |
3901 | and symbol definitions, and we need to keep the original values from | |
3902 | being reloaded from the input files, i.e., we need to "pin" the | |
3903 | modified values in memory. We also want to continue to observe the | |
3904 | setting of the "keep-memory" flag. The following functions wrap the | |
3905 | standard BFD functions to take care of this for us. */ | |
3906 | ||
3907 | static Elf_Internal_Rela * | |
3908 | retrieve_internal_relocs (abfd, sec, keep_memory) | |
3909 | bfd *abfd; | |
3910 | asection *sec; | |
3911 | bfd_boolean keep_memory; | |
3912 | { | |
3913 | Elf_Internal_Rela *internal_relocs; | |
3914 | ||
3915 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
3916 | return NULL; | |
3917 | ||
3918 | internal_relocs = elf_section_data (sec)->relocs; | |
3919 | if (internal_relocs == NULL) | |
45d6a902 | 3920 | internal_relocs = (_bfd_elf_link_read_relocs |
e0001a05 NC |
3921 | (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL, |
3922 | keep_memory)); | |
3923 | return internal_relocs; | |
3924 | } | |
3925 | ||
3926 | ||
3927 | static void | |
3928 | pin_internal_relocs (sec, internal_relocs) | |
3929 | asection *sec; | |
3930 | Elf_Internal_Rela *internal_relocs; | |
3931 | { | |
3932 | elf_section_data (sec)->relocs = internal_relocs; | |
3933 | } | |
3934 | ||
3935 | ||
3936 | static void | |
3937 | release_internal_relocs (sec, internal_relocs) | |
3938 | asection *sec; | |
3939 | Elf_Internal_Rela *internal_relocs; | |
3940 | { | |
3941 | if (internal_relocs | |
3942 | && elf_section_data (sec)->relocs != internal_relocs) | |
3943 | free (internal_relocs); | |
3944 | } | |
3945 | ||
3946 | ||
3947 | static bfd_byte * | |
3948 | retrieve_contents (abfd, sec, keep_memory) | |
3949 | bfd *abfd; | |
3950 | asection *sec; | |
3951 | bfd_boolean keep_memory; | |
3952 | { | |
3953 | bfd_byte *contents; | |
3954 | ||
3955 | contents = elf_section_data (sec)->this_hdr.contents; | |
3956 | ||
3957 | if (contents == NULL && sec->_raw_size != 0) | |
3958 | { | |
3959 | contents = (bfd_byte *) bfd_malloc (sec->_raw_size); | |
3960 | if (contents != NULL) | |
3961 | { | |
3962 | if (! bfd_get_section_contents (abfd, sec, contents, | |
3963 | (file_ptr) 0, sec->_raw_size)) | |
3964 | { | |
3965 | free (contents); | |
3966 | return NULL; | |
3967 | } | |
3968 | if (keep_memory) | |
3969 | elf_section_data (sec)->this_hdr.contents = contents; | |
3970 | } | |
3971 | } | |
3972 | return contents; | |
3973 | } | |
3974 | ||
3975 | ||
3976 | static void | |
3977 | pin_contents (sec, contents) | |
3978 | asection *sec; | |
3979 | bfd_byte *contents; | |
3980 | { | |
3981 | elf_section_data (sec)->this_hdr.contents = contents; | |
3982 | } | |
3983 | ||
3984 | ||
3985 | static void | |
3986 | release_contents (sec, contents) | |
3987 | asection *sec; | |
3988 | bfd_byte *contents; | |
3989 | { | |
3990 | if (contents && | |
3991 | elf_section_data (sec)->this_hdr.contents != contents) | |
3992 | free (contents); | |
3993 | } | |
3994 | ||
3995 | ||
3996 | static Elf_Internal_Sym * | |
3997 | retrieve_local_syms (input_bfd) | |
3998 | bfd *input_bfd; | |
3999 | { | |
4000 | Elf_Internal_Shdr *symtab_hdr; | |
4001 | Elf_Internal_Sym *isymbuf; | |
4002 | size_t locsymcount; | |
4003 | ||
4004 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
4005 | locsymcount = symtab_hdr->sh_info; | |
4006 | ||
4007 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
4008 | if (isymbuf == NULL && locsymcount != 0) | |
4009 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
4010 | NULL, NULL, NULL); | |
4011 | ||
4012 | /* Save the symbols for this input file so they won't be read again. */ | |
4013 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
4014 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
4015 | ||
4016 | return isymbuf; | |
4017 | } | |
4018 | ||
4019 | \f | |
4020 | /* Code for link-time relaxation. */ | |
4021 | ||
4022 | /* Local helper functions. */ | |
4023 | static bfd_boolean analyze_relocations | |
4024 | PARAMS ((struct bfd_link_info *)); | |
4025 | static bfd_boolean find_relaxable_sections | |
4026 | PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *)); | |
4027 | static bfd_boolean collect_source_relocs | |
4028 | PARAMS ((bfd *, asection *, struct bfd_link_info *)); | |
4029 | static bfd_boolean is_resolvable_asm_expansion | |
4030 | PARAMS ((bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, | |
4031 | struct bfd_link_info *, bfd_boolean *)); | |
4032 | static bfd_boolean remove_literals | |
4033 | PARAMS ((bfd *, asection *, struct bfd_link_info *, value_map_hash_table *)); | |
4034 | static bfd_boolean relax_section | |
4035 | PARAMS ((bfd *, asection *, struct bfd_link_info *)); | |
4036 | static bfd_boolean relax_property_section | |
4037 | PARAMS ((bfd *, asection *, struct bfd_link_info *)); | |
4038 | static bfd_boolean relax_section_symbols | |
4039 | PARAMS ((bfd *, asection *)); | |
4040 | static bfd_boolean relocations_reach | |
4041 | PARAMS ((source_reloc *, int, const r_reloc *)); | |
4042 | static void translate_reloc | |
4043 | PARAMS ((const r_reloc *, r_reloc *)); | |
4044 | static Elf_Internal_Rela *get_irel_at_offset | |
4045 | PARAMS ((asection *, Elf_Internal_Rela *, bfd_vma)); | |
4046 | static Elf_Internal_Rela *find_associated_l32r_irel | |
4047 | PARAMS ((asection *, bfd_byte *, Elf_Internal_Rela *, | |
4048 | Elf_Internal_Rela *)); | |
4049 | static void shrink_dynamic_reloc_sections | |
4050 | PARAMS ((struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *)); | |
4051 | ||
4052 | ||
4053 | static bfd_boolean | |
4054 | elf_xtensa_relax_section (abfd, sec, link_info, again) | |
4055 | bfd *abfd; | |
4056 | asection *sec; | |
4057 | struct bfd_link_info *link_info; | |
4058 | bfd_boolean *again; | |
4059 | { | |
4060 | static value_map_hash_table *values = NULL; | |
4061 | xtensa_relax_info *relax_info; | |
4062 | ||
4063 | if (!values) | |
4064 | { | |
4065 | /* Do some overall initialization for relaxation. */ | |
4066 | values = value_map_hash_table_init (); | |
4067 | relaxing_section = TRUE; | |
4068 | if (!analyze_relocations (link_info)) | |
4069 | return FALSE; | |
4070 | } | |
4071 | *again = FALSE; | |
4072 | ||
4073 | /* Don't mess with linker-created sections. */ | |
4074 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
4075 | return TRUE; | |
4076 | ||
4077 | relax_info = get_xtensa_relax_info (sec); | |
4078 | BFD_ASSERT (relax_info != NULL); | |
4079 | ||
4080 | switch (relax_info->visited) | |
4081 | { | |
4082 | case 0: | |
4083 | /* Note: It would be nice to fold this pass into | |
4084 | analyze_relocations, but it is important for this step that the | |
4085 | sections be examined in link order. */ | |
4086 | if (!remove_literals (abfd, sec, link_info, values)) | |
4087 | return FALSE; | |
4088 | *again = TRUE; | |
4089 | break; | |
4090 | ||
4091 | case 1: | |
4092 | if (!relax_section (abfd, sec, link_info)) | |
4093 | return FALSE; | |
4094 | *again = TRUE; | |
4095 | break; | |
4096 | ||
4097 | case 2: | |
4098 | if (!relax_section_symbols (abfd, sec)) | |
4099 | return FALSE; | |
4100 | break; | |
4101 | } | |
4102 | ||
4103 | relax_info->visited++; | |
4104 | return TRUE; | |
4105 | } | |
4106 | ||
4107 | /* Initialization for relaxation. */ | |
4108 | ||
4109 | /* This function is called once at the start of relaxation. It scans | |
4110 | all the input sections and marks the ones that are relaxable (i.e., | |
4111 | literal sections with L32R relocations against them). It then | |
4112 | collect source_reloc information for all the relocations against | |
4113 | those relaxable sections. */ | |
4114 | ||
4115 | static bfd_boolean | |
4116 | analyze_relocations (link_info) | |
4117 | struct bfd_link_info *link_info; | |
4118 | { | |
4119 | bfd *abfd; | |
4120 | asection *sec; | |
4121 | bfd_boolean is_relaxable = FALSE; | |
4122 | ||
4123 | /* Initialize the per-section relaxation info. */ | |
4124 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
4125 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
4126 | { | |
4127 | init_xtensa_relax_info (sec); | |
4128 | } | |
4129 | ||
4130 | /* Mark relaxable sections (and count relocations against each one). */ | |
4131 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
4132 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
4133 | { | |
4134 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
4135 | return FALSE; | |
4136 | } | |
4137 | ||
4138 | /* Bail out if there are no relaxable sections. */ | |
4139 | if (!is_relaxable) | |
4140 | return TRUE; | |
4141 | ||
4142 | /* Allocate space for source_relocs. */ | |
4143 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
4144 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
4145 | { | |
4146 | xtensa_relax_info *relax_info; | |
4147 | ||
4148 | relax_info = get_xtensa_relax_info (sec); | |
4149 | if (relax_info->is_relaxable_literal_section) | |
4150 | { | |
4151 | relax_info->src_relocs = (source_reloc *) | |
4152 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
4153 | } | |
4154 | } | |
4155 | ||
4156 | /* Collect info on relocations against each relaxable section. */ | |
4157 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
4158 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
4159 | { | |
4160 | if (!collect_source_relocs (abfd, sec, link_info)) | |
4161 | return FALSE; | |
4162 | } | |
4163 | ||
4164 | return TRUE; | |
4165 | } | |
4166 | ||
4167 | ||
4168 | /* Find all the literal sections that might be relaxed. The motivation | |
4169 | for this pass is that collect_source_relocs() needs to record _all_ | |
4170 | the relocations that target each relaxable section. That is | |
4171 | expensive and unnecessary unless the target section is actually going | |
4172 | to be relaxed. This pass identifies all such sections by checking if | |
4173 | they have L32Rs pointing to them. In the process, the total number | |
4cc11e76 | 4174 | of relocations targeting each section is also counted so that we |
e0001a05 NC |
4175 | know how much space to allocate for source_relocs against each |
4176 | relaxable literal section. */ | |
4177 | ||
4178 | static bfd_boolean | |
4179 | find_relaxable_sections (abfd, sec, link_info, is_relaxable_p) | |
4180 | bfd *abfd; | |
4181 | asection *sec; | |
4182 | struct bfd_link_info *link_info; | |
4183 | bfd_boolean *is_relaxable_p; | |
4184 | { | |
4185 | Elf_Internal_Rela *internal_relocs; | |
4186 | bfd_byte *contents; | |
4187 | bfd_boolean ok = TRUE; | |
4188 | unsigned i; | |
4189 | ||
4190 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
4191 | link_info->keep_memory); | |
4192 | if (internal_relocs == NULL) | |
4193 | return ok; | |
4194 | ||
4195 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
4196 | if (contents == NULL && sec->_raw_size != 0) | |
4197 | { | |
4198 | ok = FALSE; | |
4199 | goto error_return; | |
4200 | } | |
4201 | ||
4202 | for (i = 0; i < sec->reloc_count; i++) | |
4203 | { | |
4204 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
4205 | r_reloc r_rel; | |
4206 | asection *target_sec; | |
4207 | xtensa_relax_info *target_relax_info; | |
4208 | ||
4209 | r_reloc_init (&r_rel, abfd, irel); | |
4210 | ||
4211 | target_sec = r_reloc_get_section (&r_rel); | |
4212 | target_relax_info = get_xtensa_relax_info (target_sec); | |
4213 | if (!target_relax_info) | |
4214 | continue; | |
4215 | ||
4216 | /* Count relocations against the target section. */ | |
4217 | target_relax_info->src_count++; | |
4218 | ||
4219 | if (is_literal_section (target_sec) | |
4220 | && is_l32r_relocation (sec, contents, irel) | |
4221 | && r_reloc_is_defined (&r_rel)) | |
4222 | { | |
4223 | /* Mark the target section as relaxable. */ | |
4224 | target_relax_info->is_relaxable_literal_section = TRUE; | |
4225 | *is_relaxable_p = TRUE; | |
4226 | } | |
4227 | } | |
4228 | ||
4229 | error_return: | |
4230 | release_contents (sec, contents); | |
4231 | release_internal_relocs (sec, internal_relocs); | |
4232 | return ok; | |
4233 | } | |
4234 | ||
4235 | ||
4236 | /* Record _all_ the relocations that point to relaxable literal | |
4237 | sections, and get rid of ASM_EXPAND relocs by either converting them | |
4238 | to ASM_SIMPLIFY or by removing them. */ | |
4239 | ||
4240 | static bfd_boolean | |
4241 | collect_source_relocs (abfd, sec, link_info) | |
4242 | bfd *abfd; | |
4243 | asection *sec; | |
4244 | struct bfd_link_info *link_info; | |
4245 | { | |
4246 | Elf_Internal_Rela *internal_relocs; | |
4247 | bfd_byte *contents; | |
4248 | bfd_boolean ok = TRUE; | |
4249 | unsigned i; | |
4250 | ||
4251 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
4252 | link_info->keep_memory); | |
4253 | if (internal_relocs == NULL) | |
4254 | return ok; | |
4255 | ||
4256 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
4257 | if (contents == NULL && sec->_raw_size != 0) | |
4258 | { | |
4259 | ok = FALSE; | |
4260 | goto error_return; | |
4261 | } | |
4262 | ||
4263 | /* Record relocations against relaxable literal sections. */ | |
4264 | for (i = 0; i < sec->reloc_count; i++) | |
4265 | { | |
4266 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
4267 | r_reloc r_rel; | |
4268 | asection *target_sec; | |
4269 | xtensa_relax_info *target_relax_info; | |
4270 | ||
4271 | r_reloc_init (&r_rel, abfd, irel); | |
4272 | ||
4273 | target_sec = r_reloc_get_section (&r_rel); | |
4274 | target_relax_info = get_xtensa_relax_info (target_sec); | |
4275 | ||
4276 | if (target_relax_info | |
4277 | && target_relax_info->is_relaxable_literal_section) | |
4278 | { | |
4279 | xtensa_opcode opcode; | |
4280 | xtensa_operand opnd; | |
4281 | source_reloc *s_reloc; | |
4282 | int src_next; | |
4283 | ||
4284 | src_next = target_relax_info->src_next++; | |
4285 | s_reloc = &target_relax_info->src_relocs[src_next]; | |
4286 | ||
4287 | opcode = get_relocation_opcode (sec, contents, irel); | |
4288 | if (opcode == XTENSA_UNDEFINED) | |
4289 | opnd = NULL; | |
4290 | else | |
4291 | opnd = xtensa_get_operand (xtensa_default_isa, opcode, | |
4292 | get_relocation_opnd (irel)); | |
4293 | ||
4294 | init_source_reloc (s_reloc, sec, &r_rel, opnd); | |
4295 | } | |
4296 | } | |
4297 | ||
4298 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
4299 | src_relocs array for the target literal section may still be | |
4300 | incomplete, but it must at least contain the entries for the L32R | |
4301 | relocations associated with ASM_EXPANDs because they were just | |
4302 | added in the preceding loop over the relocations. */ | |
4303 | ||
4304 | for (i = 0; i < sec->reloc_count; i++) | |
4305 | { | |
4306 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
4307 | bfd_boolean is_reachable; | |
4308 | ||
4309 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
4310 | &is_reachable)) | |
4311 | continue; | |
4312 | ||
4313 | if (is_reachable) | |
4314 | { | |
4315 | Elf_Internal_Rela *l32r_irel; | |
4316 | r_reloc r_rel; | |
4317 | asection *target_sec; | |
4318 | xtensa_relax_info *target_relax_info; | |
4319 | ||
4320 | /* Mark the source_reloc for the L32R so that it will be | |
4321 | removed in remove_literals(), along with the associated | |
4322 | literal. */ | |
4323 | l32r_irel = find_associated_l32r_irel (sec, contents, | |
4324 | irel, internal_relocs); | |
4325 | if (l32r_irel == NULL) | |
4326 | continue; | |
4327 | ||
4328 | r_reloc_init (&r_rel, abfd, l32r_irel); | |
4329 | ||
4330 | target_sec = r_reloc_get_section (&r_rel); | |
4331 | target_relax_info = get_xtensa_relax_info (target_sec); | |
4332 | ||
4333 | if (target_relax_info | |
4334 | && target_relax_info->is_relaxable_literal_section) | |
4335 | { | |
4336 | source_reloc *s_reloc; | |
4337 | ||
4338 | /* Search the source_relocs for the entry corresponding to | |
4339 | the l32r_irel. Note: The src_relocs array is not yet | |
4340 | sorted, but it wouldn't matter anyway because we're | |
4341 | searching by source offset instead of target offset. */ | |
4342 | s_reloc = find_source_reloc (target_relax_info->src_relocs, | |
4343 | target_relax_info->src_next, | |
4344 | sec, l32r_irel); | |
4345 | BFD_ASSERT (s_reloc); | |
4346 | s_reloc->is_null = TRUE; | |
4347 | } | |
4348 | ||
4349 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
4350 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
4351 | R_XTENSA_ASM_SIMPLIFY); | |
4352 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
4353 | ||
4354 | pin_internal_relocs (sec, internal_relocs); | |
4355 | } | |
4356 | else | |
4357 | { | |
4358 | /* It is resolvable but doesn't reach. We resolve now | |
4359 | by eliminating the relocation -- the call will remain | |
4360 | expanded into L32R/CALLX. */ | |
4361 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
4362 | pin_internal_relocs (sec, internal_relocs); | |
4363 | } | |
4364 | } | |
4365 | ||
4366 | error_return: | |
4367 | release_contents (sec, contents); | |
4368 | release_internal_relocs (sec, internal_relocs); | |
4369 | return ok; | |
4370 | } | |
4371 | ||
4372 | ||
4373 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
4374 | be resolved on a final link or when a partial link locates it in the | |
4375 | same section as the target. Set "is_reachable" flag if the target of | |
4376 | the call is within the range of a direct call, given the current VMA | |
4377 | for this section and the target section. */ | |
4378 | ||
4379 | bfd_boolean | |
4380 | is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
4381 | is_reachable_p) | |
4382 | bfd *abfd; | |
4383 | asection *sec; | |
4384 | bfd_byte *contents; | |
4385 | Elf_Internal_Rela *irel; | |
4386 | struct bfd_link_info *link_info; | |
4387 | bfd_boolean *is_reachable_p; | |
4388 | { | |
4389 | asection *target_sec; | |
4390 | bfd_vma target_offset; | |
4391 | r_reloc r_rel; | |
4392 | xtensa_opcode opcode, direct_call_opcode; | |
4393 | bfd_vma self_address; | |
4394 | bfd_vma dest_address; | |
4395 | ||
4396 | *is_reachable_p = FALSE; | |
4397 | ||
4398 | if (contents == NULL) | |
4399 | return FALSE; | |
4400 | ||
4401 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) | |
4402 | return FALSE; | |
4403 | ||
4404 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
4405 | sec->_raw_size - irel->r_offset); | |
4406 | ||
4407 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
4408 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
4409 | return FALSE; | |
4410 | ||
4411 | /* Check and see that the target resolves. */ | |
4412 | r_reloc_init (&r_rel, abfd, irel); | |
4413 | if (!r_reloc_is_defined (&r_rel)) | |
4414 | return FALSE; | |
4415 | ||
4416 | target_sec = r_reloc_get_section (&r_rel); | |
4417 | target_offset = r_reloc_get_target_offset (&r_rel); | |
4418 | ||
4419 | /* If the target is in a shared library, then it doesn't reach. This | |
4420 | isn't supposed to come up because the compiler should never generate | |
4421 | non-PIC calls on systems that use shared libraries, but the linker | |
4422 | shouldn't crash regardless. */ | |
4423 | if (!target_sec->output_section) | |
4424 | return FALSE; | |
4425 | ||
1049f94e | 4426 | /* For relocatable sections, we can only simplify when the output |
e0001a05 NC |
4427 | section of the target is the same as the output section of the |
4428 | source. */ | |
1049f94e | 4429 | if (link_info->relocatable |
e0001a05 NC |
4430 | && (target_sec->output_section != sec->output_section)) |
4431 | return FALSE; | |
4432 | ||
4433 | self_address = (sec->output_section->vma | |
4434 | + sec->output_offset + irel->r_offset + 3); | |
4435 | dest_address = (target_sec->output_section->vma | |
4436 | + target_sec->output_offset + target_offset); | |
4437 | ||
4438 | *is_reachable_p = pcrel_reloc_fits | |
4439 | (xtensa_get_operand (xtensa_default_isa, direct_call_opcode, 0), | |
4440 | self_address, dest_address); | |
4441 | ||
4442 | if ((self_address >> CALL_SEGMENT_BITS) != | |
4443 | (dest_address >> CALL_SEGMENT_BITS)) | |
4444 | return FALSE; | |
4445 | ||
4446 | return TRUE; | |
4447 | } | |
4448 | ||
4449 | ||
4450 | static Elf_Internal_Rela * | |
4451 | find_associated_l32r_irel (sec, contents, other_irel, internal_relocs) | |
4452 | asection *sec; | |
4453 | bfd_byte *contents; | |
4454 | Elf_Internal_Rela *other_irel; | |
4455 | Elf_Internal_Rela *internal_relocs; | |
4456 | { | |
4457 | unsigned i; | |
4458 | ||
4459 | for (i = 0; i < sec->reloc_count; i++) | |
4460 | { | |
4461 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
4462 | ||
4463 | if (irel == other_irel) | |
4464 | continue; | |
4465 | if (irel->r_offset != other_irel->r_offset) | |
4466 | continue; | |
4467 | if (is_l32r_relocation (sec, contents, irel)) | |
4468 | return irel; | |
4469 | } | |
4470 | ||
4471 | return NULL; | |
4472 | } | |
4473 | ||
4474 | /* First relaxation pass. */ | |
4475 | ||
4476 | /* If the section is relaxable (i.e., a literal section), check each | |
4477 | literal to see if it has the same value as another literal that has | |
4478 | already been seen, either in the current section or a previous one. | |
4479 | If so, add an entry to the per-section list of removed literals. The | |
4480 | actual changes are deferred until the next pass. */ | |
4481 | ||
4482 | static bfd_boolean | |
4483 | remove_literals (abfd, sec, link_info, values) | |
4484 | bfd *abfd; | |
4485 | asection *sec; | |
4486 | struct bfd_link_info *link_info; | |
4487 | value_map_hash_table *values; | |
4488 | { | |
4489 | xtensa_relax_info *relax_info; | |
4490 | bfd_byte *contents; | |
4491 | Elf_Internal_Rela *internal_relocs; | |
4492 | source_reloc *src_relocs; | |
4493 | bfd_boolean ok = TRUE; | |
4494 | int i; | |
4495 | ||
4496 | /* Do nothing if it is not a relaxable literal section. */ | |
4497 | relax_info = get_xtensa_relax_info (sec); | |
4498 | BFD_ASSERT (relax_info); | |
4499 | ||
4500 | if (!relax_info->is_relaxable_literal_section) | |
4501 | return ok; | |
4502 | ||
4503 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
4504 | link_info->keep_memory); | |
4505 | ||
4506 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
4507 | if (contents == NULL && sec->_raw_size != 0) | |
4508 | { | |
4509 | ok = FALSE; | |
4510 | goto error_return; | |
4511 | } | |
4512 | ||
4513 | /* Sort the source_relocs by target offset. */ | |
4514 | src_relocs = relax_info->src_relocs; | |
4515 | qsort (src_relocs, relax_info->src_count, | |
4516 | sizeof (source_reloc), source_reloc_compare); | |
4517 | ||
4518 | for (i = 0; i < relax_info->src_count; i++) | |
4519 | { | |
4520 | source_reloc *rel; | |
4521 | Elf_Internal_Rela *irel = NULL; | |
4522 | literal_value val; | |
4523 | value_map *val_map; | |
4524 | ||
4525 | rel = &src_relocs[i]; | |
4526 | irel = get_irel_at_offset (sec, internal_relocs, | |
4527 | rel->r_rel.target_offset); | |
4528 | ||
4529 | /* If the target_offset for this relocation is the same as the | |
4530 | previous relocation, then we've already considered whether the | |
4531 | literal can be coalesced. Skip to the next one.... */ | |
4532 | if (i != 0 && (src_relocs[i-1].r_rel.target_offset | |
4533 | == rel->r_rel.target_offset)) | |
4534 | continue; | |
4535 | ||
4536 | /* Check if the relocation was from an L32R that is being removed | |
4537 | because a CALLX was converted to a direct CALL, and check if | |
4538 | there are no other relocations to the literal. */ | |
4539 | if (rel->is_null | |
4540 | && (i == relax_info->src_count - 1 | |
4541 | || (src_relocs[i+1].r_rel.target_offset | |
4542 | != rel->r_rel.target_offset))) | |
4543 | { | |
4544 | /* Mark the unused literal so that it will be removed. */ | |
4545 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
4546 | ||
4547 | /* Zero out the relocation on this literal location. */ | |
4548 | if (irel) | |
4549 | { | |
4550 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
4551 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
4552 | ||
4553 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
4554 | } | |
4555 | ||
4556 | continue; | |
4557 | } | |
4558 | ||
4559 | /* Find the literal value. */ | |
4560 | r_reloc_init (&val.r_rel, abfd, irel); | |
4561 | BFD_ASSERT (rel->r_rel.target_offset < sec->_raw_size); | |
4562 | val.value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); | |
4563 | ||
4564 | /* Check if we've seen another literal with the same value. */ | |
4565 | val_map = get_cached_value (values, &val); | |
4566 | if (val_map != NULL) | |
4567 | { | |
4568 | /* First check that THIS and all the other relocs to this | |
4569 | literal will FIT if we move them to the new address. */ | |
4570 | ||
4571 | if (relocations_reach (rel, relax_info->src_count - i, | |
4572 | &val_map->loc)) | |
4573 | { | |
4574 | /* Mark that the literal will be coalesced. */ | |
4575 | add_removed_literal (&relax_info->removed_list, | |
4576 | &rel->r_rel, &val_map->loc); | |
4577 | } | |
4578 | else | |
4579 | { | |
4580 | /* Relocations do not reach -- do not remove this literal. */ | |
4581 | val_map->loc = rel->r_rel; | |
4582 | } | |
4583 | } | |
4584 | else | |
4585 | { | |
4586 | /* This is the first time we've seen this literal value. */ | |
4587 | BFD_ASSERT (sec == r_reloc_get_section (&rel->r_rel)); | |
4588 | add_value_map (values, &val, &rel->r_rel); | |
4589 | } | |
4590 | } | |
4591 | ||
4592 | error_return: | |
4593 | release_contents (sec, contents); | |
4594 | release_internal_relocs (sec, internal_relocs); | |
4595 | return ok; | |
4596 | } | |
4597 | ||
4598 | ||
4599 | /* Check if the original relocations (presumably on L32R instructions) | |
4600 | identified by reloc[0..N] can be changed to reference the literal | |
4601 | identified by r_rel. If r_rel is out of range for any of the | |
4602 | original relocations, then we don't want to coalesce the original | |
4603 | literal with the one at r_rel. We only check reloc[0..N], where the | |
4604 | offsets are all the same as for reloc[0] (i.e., they're all | |
4605 | referencing the same literal) and where N is also bounded by the | |
4606 | number of remaining entries in the "reloc" array. The "reloc" array | |
4607 | is sorted by target offset so we know all the entries for the same | |
4608 | literal will be contiguous. */ | |
4609 | ||
4610 | static bfd_boolean | |
4611 | relocations_reach (reloc, remaining_relocs, r_rel) | |
4612 | source_reloc *reloc; | |
4613 | int remaining_relocs; | |
4614 | const r_reloc *r_rel; | |
4615 | { | |
4616 | bfd_vma from_offset, source_address, dest_address; | |
4617 | asection *sec; | |
4618 | int i; | |
4619 | ||
4620 | if (!r_reloc_is_defined (r_rel)) | |
4621 | return FALSE; | |
4622 | ||
4623 | sec = r_reloc_get_section (r_rel); | |
4624 | from_offset = reloc[0].r_rel.target_offset; | |
4625 | ||
4626 | for (i = 0; i < remaining_relocs; i++) | |
4627 | { | |
4628 | if (reloc[i].r_rel.target_offset != from_offset) | |
4629 | break; | |
4630 | ||
4631 | /* Ignore relocations that have been removed. */ | |
4632 | if (reloc[i].is_null) | |
4633 | continue; | |
4634 | ||
4635 | /* The original and new output section for these must be the same | |
4636 | in order to coalesce. */ | |
4637 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section | |
4638 | != sec->output_section) | |
4639 | return FALSE; | |
4640 | ||
4641 | /* A NULL operand means it is not a PC-relative relocation, so | |
4642 | the literal can be moved anywhere. */ | |
4643 | if (reloc[i].opnd) | |
4644 | { | |
4645 | /* Otherwise, check to see that it fits. */ | |
4646 | source_address = (reloc[i].source_sec->output_section->vma | |
4647 | + reloc[i].source_sec->output_offset | |
4648 | + reloc[i].r_rel.rela.r_offset); | |
4649 | dest_address = (sec->output_section->vma | |
4650 | + sec->output_offset | |
4651 | + r_rel->target_offset); | |
4652 | ||
4653 | if (!pcrel_reloc_fits (reloc[i].opnd, source_address, dest_address)) | |
4654 | return FALSE; | |
4655 | } | |
4656 | } | |
4657 | ||
4658 | return TRUE; | |
4659 | } | |
4660 | ||
4661 | ||
4662 | /* WARNING: linear search here. If the relocation are in order by | |
4663 | address, we can use a faster binary search. ALSO, we assume that | |
4664 | there is only 1 non-NONE relocation per address. */ | |
4665 | ||
4666 | static Elf_Internal_Rela * | |
4667 | get_irel_at_offset (sec, internal_relocs, offset) | |
4668 | asection *sec; | |
4669 | Elf_Internal_Rela *internal_relocs; | |
4670 | bfd_vma offset; | |
4671 | { | |
4672 | unsigned i; | |
4673 | if (!internal_relocs) | |
4674 | return NULL; | |
4675 | for (i = 0; i < sec->reloc_count; i++) | |
4676 | { | |
4677 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
4678 | if (irel->r_offset == offset | |
4679 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) | |
4680 | return irel; | |
4681 | } | |
4682 | return NULL; | |
4683 | } | |
4684 | ||
4685 | \f | |
4686 | /* Second relaxation pass. */ | |
4687 | ||
4688 | /* Modify all of the relocations to point to the right spot, and if this | |
4689 | is a relaxable section, delete the unwanted literals and fix the | |
4690 | cooked_size. */ | |
4691 | ||
4692 | bfd_boolean | |
4693 | relax_section (abfd, sec, link_info) | |
4694 | bfd *abfd; | |
4695 | asection *sec; | |
4696 | struct bfd_link_info *link_info; | |
4697 | { | |
4698 | Elf_Internal_Rela *internal_relocs; | |
4699 | xtensa_relax_info *relax_info; | |
4700 | bfd_byte *contents; | |
4701 | bfd_boolean ok = TRUE; | |
4702 | unsigned i; | |
4703 | ||
4704 | relax_info = get_xtensa_relax_info (sec); | |
4705 | BFD_ASSERT (relax_info); | |
4706 | ||
4707 | /* Handle property sections (e.g., literal tables) specially. */ | |
4708 | if (xtensa_is_property_section (sec)) | |
4709 | { | |
4710 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
4711 | return relax_property_section (abfd, sec, link_info); | |
4712 | } | |
4713 | ||
4714 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
4715 | link_info->keep_memory); | |
4716 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
4717 | if (contents == NULL && sec->_raw_size != 0) | |
4718 | { | |
4719 | ok = FALSE; | |
4720 | goto error_return; | |
4721 | } | |
4722 | ||
4723 | if (internal_relocs) | |
4724 | { | |
4725 | for (i = 0; i < sec->reloc_count; i++) | |
4726 | { | |
4727 | Elf_Internal_Rela *irel; | |
4728 | xtensa_relax_info *target_relax_info; | |
4729 | bfd_vma source_offset; | |
4730 | r_reloc r_rel; | |
4731 | unsigned r_type; | |
4732 | asection *target_sec; | |
4733 | ||
4734 | /* Locally change the source address. | |
4735 | Translate the target to the new target address. | |
4736 | If it points to this section and has been removed, | |
4737 | NULLify it. | |
4738 | Write it back. */ | |
4739 | ||
4740 | irel = &internal_relocs[i]; | |
4741 | source_offset = irel->r_offset; | |
4742 | ||
4743 | r_type = ELF32_R_TYPE (irel->r_info); | |
4744 | r_reloc_init (&r_rel, abfd, irel); | |
4745 | ||
4746 | if (relax_info->is_relaxable_literal_section) | |
4747 | { | |
4748 | if (r_type != R_XTENSA_NONE | |
4749 | && find_removed_literal (&relax_info->removed_list, | |
4750 | irel->r_offset)) | |
4751 | { | |
4752 | /* Remove this relocation. */ | |
4753 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
4754 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
4755 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
4756 | irel->r_offset = offset_with_removed_literals | |
4757 | (&relax_info->removed_list, irel->r_offset); | |
4758 | continue; | |
4759 | } | |
4760 | source_offset = | |
4761 | offset_with_removed_literals (&relax_info->removed_list, | |
4762 | irel->r_offset); | |
4763 | irel->r_offset = source_offset; | |
4764 | } | |
4765 | ||
4766 | target_sec = r_reloc_get_section (&r_rel); | |
4767 | target_relax_info = get_xtensa_relax_info (target_sec); | |
4768 | ||
4769 | if (target_relax_info | |
4770 | && target_relax_info->is_relaxable_literal_section) | |
4771 | { | |
4772 | r_reloc new_rel; | |
4773 | reloc_bfd_fix *fix; | |
4774 | ||
4775 | translate_reloc (&r_rel, &new_rel); | |
4776 | ||
4777 | /* FIXME: If the relocation still references a section in | |
4778 | the same input file, the relocation should be modified | |
4779 | directly instead of adding a "fix" record. */ | |
4780 | ||
4781 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0, | |
4782 | r_reloc_get_section (&new_rel), | |
4783 | new_rel.target_offset); | |
4784 | add_fix (sec, fix); | |
4785 | } | |
4786 | ||
4787 | pin_internal_relocs (sec, internal_relocs); | |
4788 | } | |
4789 | } | |
4790 | ||
4791 | if (relax_info->is_relaxable_literal_section) | |
4792 | { | |
4793 | /* Walk through the contents and delete literals that are not needed | |
4794 | anymore. */ | |
4795 | ||
4796 | unsigned long size = sec->_cooked_size; | |
4797 | unsigned long removed = 0; | |
4798 | ||
4799 | removed_literal *reloc = relax_info->removed_list.head; | |
4800 | for (; reloc; reloc = reloc->next) | |
4801 | { | |
4802 | unsigned long upper = sec->_raw_size; | |
4803 | bfd_vma start = reloc->from.target_offset + 4; | |
4804 | if (reloc->next) | |
4805 | upper = reloc->next->from.target_offset; | |
4806 | if (upper - start != 0) | |
4807 | { | |
4808 | BFD_ASSERT (start <= upper); | |
4809 | memmove (contents + start - removed - 4, | |
4810 | contents + start, | |
4811 | upper - start ); | |
4812 | pin_contents (sec, contents); | |
4813 | } | |
4814 | removed += 4; | |
4815 | size -= 4; | |
4816 | } | |
4817 | ||
4818 | /* Change the section size. */ | |
4819 | sec->_cooked_size = size; | |
4820 | /* Also shrink _raw_size. (The code in relocate_section that | |
4821 | checks that relocations are within the section must use | |
4822 | _raw_size because of the way the stabs sections are relaxed; | |
4823 | shrinking _raw_size means that these checks will not be | |
4824 | unnecessarily lax.) */ | |
4825 | sec->_raw_size = size; | |
4826 | } | |
4827 | ||
4828 | error_return: | |
4829 | release_internal_relocs (sec, internal_relocs); | |
4830 | release_contents (sec, contents); | |
4831 | return ok; | |
4832 | } | |
4833 | ||
4834 | ||
4835 | /* Fix up a relocation to take account of removed literals. */ | |
4836 | ||
4837 | static void | |
4838 | translate_reloc (orig_rel, new_rel) | |
4839 | const r_reloc *orig_rel; | |
4840 | r_reloc *new_rel; | |
4841 | { | |
4842 | asection *sec; | |
4843 | xtensa_relax_info *relax_info; | |
4844 | removed_literal *removed; | |
4845 | unsigned long new_offset; | |
4846 | ||
4847 | *new_rel = *orig_rel; | |
4848 | ||
4849 | if (!r_reloc_is_defined (orig_rel)) | |
4850 | return; | |
4851 | sec = r_reloc_get_section (orig_rel); | |
4852 | ||
4853 | relax_info = get_xtensa_relax_info (sec); | |
4854 | BFD_ASSERT (relax_info); | |
4855 | ||
4856 | if (!relax_info->is_relaxable_literal_section) | |
4857 | return; | |
4858 | ||
4859 | /* Check if the original relocation is against a literal being removed. */ | |
4860 | removed = find_removed_literal (&relax_info->removed_list, | |
4861 | orig_rel->target_offset); | |
4862 | if (removed) | |
4863 | { | |
4864 | asection *new_sec; | |
4865 | ||
4866 | /* The fact that there is still a relocation to this literal indicates | |
4867 | that the literal is being coalesced, not simply removed. */ | |
4868 | BFD_ASSERT (removed->to.abfd != NULL); | |
4869 | ||
4870 | /* This was moved to some other address (possibly in another section). */ | |
4871 | *new_rel = removed->to; | |
4872 | new_sec = r_reloc_get_section (new_rel); | |
4873 | if (new_sec != sec) | |
4874 | { | |
4875 | sec = new_sec; | |
4876 | relax_info = get_xtensa_relax_info (sec); | |
4877 | if (!relax_info || !relax_info->is_relaxable_literal_section) | |
4878 | return; | |
4879 | } | |
4880 | } | |
4881 | ||
4882 | /* ...and the target address may have been moved within its section. */ | |
4883 | new_offset = offset_with_removed_literals (&relax_info->removed_list, | |
4884 | new_rel->target_offset); | |
4885 | ||
4886 | /* Modify the offset and addend. */ | |
4887 | new_rel->target_offset = new_offset; | |
4888 | new_rel->rela.r_addend += (new_offset - new_rel->target_offset); | |
4889 | } | |
4890 | ||
4891 | ||
4892 | /* For dynamic links, there may be a dynamic relocation for each | |
4893 | literal. The number of dynamic relocations must be computed in | |
4894 | size_dynamic_sections, which occurs before relaxation. When a | |
4895 | literal is removed, this function checks if there is a corresponding | |
4896 | dynamic relocation and shrinks the size of the appropriate dynamic | |
4897 | relocation section accordingly. At this point, the contents of the | |
4898 | dynamic relocation sections have not yet been filled in, so there's | |
4899 | nothing else that needs to be done. */ | |
4900 | ||
4901 | static void | |
4902 | shrink_dynamic_reloc_sections (info, abfd, input_section, rel) | |
4903 | struct bfd_link_info *info; | |
4904 | bfd *abfd; | |
4905 | asection *input_section; | |
4906 | Elf_Internal_Rela *rel; | |
4907 | { | |
4908 | Elf_Internal_Shdr *symtab_hdr; | |
4909 | struct elf_link_hash_entry **sym_hashes; | |
4910 | unsigned long r_symndx; | |
4911 | int r_type; | |
4912 | struct elf_link_hash_entry *h; | |
4913 | bfd_boolean dynamic_symbol; | |
4914 | ||
4915 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
4916 | sym_hashes = elf_sym_hashes (abfd); | |
4917 | ||
4918 | r_type = ELF32_R_TYPE (rel->r_info); | |
4919 | r_symndx = ELF32_R_SYM (rel->r_info); | |
4920 | ||
4921 | if (r_symndx < symtab_hdr->sh_info) | |
4922 | h = NULL; | |
4923 | else | |
4924 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
4925 | ||
571b5725 | 4926 | dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info); |
e0001a05 NC |
4927 | |
4928 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
4929 | && (input_section->flags & SEC_ALLOC) != 0 | |
4930 | && (dynamic_symbol || info->shared)) | |
4931 | { | |
4932 | bfd *dynobj; | |
4933 | const char *srel_name; | |
4934 | asection *srel; | |
4935 | bfd_boolean is_plt = FALSE; | |
4936 | ||
4937 | dynobj = elf_hash_table (info)->dynobj; | |
4938 | BFD_ASSERT (dynobj != NULL); | |
4939 | ||
4940 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
4941 | { | |
4942 | srel_name = ".rela.plt"; | |
4943 | is_plt = TRUE; | |
4944 | } | |
4945 | else | |
4946 | srel_name = ".rela.got"; | |
4947 | ||
4948 | /* Reduce size of the .rela.* section by one reloc. */ | |
4949 | srel = bfd_get_section_by_name (dynobj, srel_name); | |
4950 | BFD_ASSERT (srel != NULL); | |
4951 | BFD_ASSERT (srel->_cooked_size >= sizeof (Elf32_External_Rela)); | |
4952 | srel->_cooked_size -= sizeof (Elf32_External_Rela); | |
4953 | ||
4954 | /* Also shrink _raw_size. (This seems wrong but other bfd code seems | |
4955 | to assume that linker-created sections will never be relaxed and | |
4956 | hence _raw_size must always equal _cooked_size.) */ | |
4957 | srel->_raw_size = srel->_cooked_size; | |
4958 | ||
4959 | if (is_plt) | |
4960 | { | |
4961 | asection *splt, *sgotplt, *srelgot; | |
4962 | int reloc_index, chunk; | |
4963 | ||
4964 | /* Find the PLT reloc index of the entry being removed. This | |
4965 | is computed from the size of ".rela.plt". It is needed to | |
4966 | figure out which PLT chunk to resize. Usually "last index | |
4967 | = size - 1" since the index starts at zero, but in this | |
4968 | context, the size has just been decremented so there's no | |
4969 | need to subtract one. */ | |
4970 | reloc_index = srel->_cooked_size / sizeof (Elf32_External_Rela); | |
4971 | ||
4972 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
4973 | splt = elf_xtensa_get_plt_section (dynobj, chunk); | |
4974 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
4975 | BFD_ASSERT (splt != NULL && sgotplt != NULL); | |
4976 | ||
4977 | /* Check if an entire PLT chunk has just been eliminated. */ | |
4978 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
4979 | { | |
4980 | /* The two magic GOT entries for that chunk can go away. */ | |
4981 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); | |
4982 | BFD_ASSERT (srelgot != NULL); | |
4983 | srelgot->reloc_count -= 2; | |
4984 | srelgot->_cooked_size -= 2 * sizeof (Elf32_External_Rela); | |
4985 | /* Shrink _raw_size (see comment above). */ | |
4986 | srelgot->_raw_size = srelgot->_cooked_size; | |
4987 | ||
4988 | sgotplt->_cooked_size -= 8; | |
4989 | ||
4990 | /* There should be only one entry left (and it will be | |
4991 | removed below). */ | |
4992 | BFD_ASSERT (sgotplt->_cooked_size == 4); | |
4993 | BFD_ASSERT (splt->_cooked_size == PLT_ENTRY_SIZE); | |
4994 | } | |
4995 | ||
4996 | BFD_ASSERT (sgotplt->_cooked_size >= 4); | |
4997 | BFD_ASSERT (splt->_cooked_size >= PLT_ENTRY_SIZE); | |
4998 | ||
4999 | sgotplt->_cooked_size -= 4; | |
5000 | splt->_cooked_size -= PLT_ENTRY_SIZE; | |
5001 | ||
5002 | /* Shrink _raw_sizes (see comment above). */ | |
5003 | sgotplt->_raw_size = sgotplt->_cooked_size; | |
5004 | splt->_raw_size = splt->_cooked_size; | |
5005 | } | |
5006 | } | |
5007 | } | |
5008 | ||
5009 | ||
5010 | /* This is similar to relax_section except that when a target is moved, | |
5011 | we shift addresses up. We also need to modify the size. This | |
5012 | algorithm does NOT allow for relocations into the middle of the | |
5013 | property sections. */ | |
5014 | ||
5015 | static bfd_boolean | |
5016 | relax_property_section (abfd, sec, link_info) | |
5017 | bfd *abfd; | |
5018 | asection *sec; | |
5019 | struct bfd_link_info *link_info; | |
5020 | { | |
5021 | Elf_Internal_Rela *internal_relocs; | |
5022 | bfd_byte *contents; | |
5023 | unsigned i, nexti; | |
5024 | bfd_boolean ok = TRUE; | |
5025 | ||
5026 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
5027 | link_info->keep_memory); | |
5028 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
5029 | if (contents == NULL && sec->_raw_size != 0) | |
5030 | { | |
5031 | ok = FALSE; | |
5032 | goto error_return; | |
5033 | } | |
5034 | ||
5035 | if (internal_relocs) | |
5036 | { | |
5037 | for (i = 0; i < sec->reloc_count; i++) | |
5038 | { | |
5039 | Elf_Internal_Rela *irel; | |
5040 | xtensa_relax_info *target_relax_info; | |
5041 | r_reloc r_rel; | |
5042 | unsigned r_type; | |
5043 | asection *target_sec; | |
5044 | ||
5045 | /* Locally change the source address. | |
5046 | Translate the target to the new target address. | |
5047 | If it points to this section and has been removed, MOVE IT. | |
5048 | Also, don't forget to modify the associated SIZE at | |
5049 | (offset + 4). */ | |
5050 | ||
5051 | irel = &internal_relocs[i]; | |
5052 | r_type = ELF32_R_TYPE (irel->r_info); | |
5053 | if (r_type == R_XTENSA_NONE) | |
5054 | continue; | |
5055 | ||
5056 | r_reloc_init (&r_rel, abfd, irel); | |
5057 | ||
5058 | target_sec = r_reloc_get_section (&r_rel); | |
5059 | target_relax_info = get_xtensa_relax_info (target_sec); | |
5060 | ||
5061 | if (target_relax_info | |
5062 | && target_relax_info->is_relaxable_literal_section) | |
5063 | { | |
5064 | /* Translate the relocation's destination. */ | |
5065 | bfd_vma new_offset; | |
5066 | bfd_vma new_end_offset; | |
5067 | bfd_byte *size_p; | |
5068 | long old_size, new_size; | |
5069 | ||
5070 | new_offset = | |
5071 | offset_with_removed_literals (&target_relax_info->removed_list, | |
5072 | r_rel.target_offset); | |
5073 | ||
5074 | /* Assert that we are not out of bounds. */ | |
5075 | size_p = &contents[irel->r_offset + 4]; | |
5076 | old_size = bfd_get_32 (abfd, &contents[irel->r_offset + 4]); | |
5077 | ||
5078 | new_end_offset = | |
5079 | offset_with_removed_literals (&target_relax_info->removed_list, | |
5080 | r_rel.target_offset + old_size); | |
5081 | ||
5082 | new_size = new_end_offset - new_offset; | |
5083 | if (new_size != old_size) | |
5084 | { | |
5085 | bfd_put_32 (abfd, new_size, size_p); | |
5086 | pin_contents (sec, contents); | |
5087 | } | |
5088 | ||
5089 | if (new_offset != r_rel.target_offset) | |
5090 | { | |
5091 | bfd_vma diff = new_offset - r_rel.target_offset; | |
5092 | irel->r_addend += diff; | |
5093 | pin_internal_relocs (sec, internal_relocs); | |
5094 | } | |
5095 | } | |
5096 | } | |
5097 | } | |
5098 | ||
5099 | /* Combine adjacent property table entries. This is also done in | |
5100 | finish_dynamic_sections() but at that point it's too late to | |
5101 | reclaim the space in the output section, so we do this twice. */ | |
5102 | ||
5103 | if (internal_relocs) | |
5104 | { | |
5105 | Elf_Internal_Rela *last_irel = NULL; | |
5106 | int removed_bytes = 0; | |
5107 | bfd_vma offset, last_irel_offset; | |
5108 | bfd_vma section_size; | |
5109 | ||
5110 | /* Walk over memory and irels at the same time. | |
5111 | This REQUIRES that the internal_relocs be sorted by offset. */ | |
5112 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
5113 | internal_reloc_compare); | |
5114 | nexti = 0; /* Index into internal_relocs. */ | |
5115 | ||
5116 | pin_internal_relocs (sec, internal_relocs); | |
5117 | pin_contents (sec, contents); | |
5118 | ||
5119 | last_irel_offset = (bfd_vma) -1; | |
5120 | section_size = (sec->_cooked_size ? sec->_cooked_size : sec->_raw_size); | |
5121 | BFD_ASSERT (section_size % 8 == 0); | |
5122 | ||
5123 | for (offset = 0; offset < section_size; offset += 8) | |
5124 | { | |
5125 | Elf_Internal_Rela *irel, *next_irel; | |
5126 | bfd_vma bytes_to_remove, size, actual_offset; | |
5127 | bfd_boolean remove_this_irel; | |
5128 | ||
5129 | irel = NULL; | |
5130 | next_irel = NULL; | |
5131 | ||
5132 | /* Find the next two relocations (if there are that many left), | |
5133 | skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is | |
5134 | the starting reloc index. After these two loops, "i" | |
5135 | is the index of the first non-NONE reloc past that starting | |
5136 | index, and "nexti" is the index for the next non-NONE reloc | |
5137 | after "i". */ | |
5138 | ||
5139 | for (i = nexti; i < sec->reloc_count; i++) | |
5140 | { | |
5141 | if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE) | |
5142 | { | |
5143 | irel = &internal_relocs[i]; | |
5144 | break; | |
5145 | } | |
5146 | internal_relocs[i].r_offset -= removed_bytes; | |
5147 | } | |
5148 | ||
5149 | for (nexti = i + 1; nexti < sec->reloc_count; nexti++) | |
5150 | { | |
5151 | if (ELF32_R_TYPE (internal_relocs[nexti].r_info) | |
5152 | != R_XTENSA_NONE) | |
5153 | { | |
5154 | next_irel = &internal_relocs[nexti]; | |
5155 | break; | |
5156 | } | |
5157 | internal_relocs[nexti].r_offset -= removed_bytes; | |
5158 | } | |
5159 | ||
5160 | remove_this_irel = FALSE; | |
5161 | bytes_to_remove = 0; | |
5162 | actual_offset = offset - removed_bytes; | |
5163 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
5164 | ||
5165 | /* Check that the irels are sorted by offset, | |
5166 | with only one per address. */ | |
5167 | BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset); | |
5168 | BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset); | |
5169 | ||
5170 | /* Make sure there isn't a reloc on the size field. */ | |
5171 | if (irel && irel->r_offset == offset + 4) | |
5172 | { | |
5173 | irel->r_offset -= removed_bytes; | |
5174 | last_irel_offset = irel->r_offset; | |
5175 | } | |
5176 | else if (next_irel && next_irel->r_offset == offset + 4) | |
5177 | { | |
5178 | nexti += 1; | |
5179 | irel->r_offset -= removed_bytes; | |
5180 | next_irel->r_offset -= removed_bytes; | |
5181 | last_irel_offset = next_irel->r_offset; | |
5182 | } | |
5183 | else if (size == 0) | |
5184 | { | |
5185 | /* Always remove entries with zero size. */ | |
5186 | bytes_to_remove = 8; | |
5187 | if (irel && irel->r_offset == offset) | |
5188 | { | |
5189 | remove_this_irel = TRUE; | |
5190 | ||
5191 | irel->r_offset -= removed_bytes; | |
5192 | last_irel_offset = irel->r_offset; | |
5193 | } | |
5194 | } | |
5195 | else if (irel && irel->r_offset == offset) | |
5196 | { | |
5197 | if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32) | |
5198 | { | |
5199 | if (last_irel) | |
5200 | { | |
5201 | bfd_vma old_size = | |
5202 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); | |
5203 | bfd_vma old_address = | |
5204 | (last_irel->r_addend | |
5205 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); | |
5206 | bfd_vma new_address = | |
5207 | (irel->r_addend | |
5208 | + bfd_get_32 (abfd, &contents[actual_offset])); | |
5209 | ||
5210 | if ((ELF32_R_SYM (irel->r_info) == | |
5211 | ELF32_R_SYM (last_irel->r_info)) | |
5212 | && (old_address + old_size == new_address)) | |
5213 | { | |
5214 | /* fix the old size */ | |
5215 | bfd_put_32 (abfd, old_size + size, | |
5216 | &contents[last_irel->r_offset + 4]); | |
5217 | bytes_to_remove = 8; | |
5218 | remove_this_irel = TRUE; | |
5219 | } | |
5220 | else | |
5221 | last_irel = irel; | |
5222 | } | |
5223 | else | |
5224 | last_irel = irel; | |
5225 | } | |
5226 | ||
5227 | irel->r_offset -= removed_bytes; | |
5228 | last_irel_offset = irel->r_offset; | |
5229 | } | |
5230 | ||
5231 | if (remove_this_irel) | |
5232 | { | |
5233 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
5234 | irel->r_offset -= bytes_to_remove; | |
5235 | } | |
5236 | ||
5237 | if (bytes_to_remove != 0) | |
5238 | { | |
5239 | removed_bytes += bytes_to_remove; | |
5240 | if (offset + 8 < section_size) | |
5241 | memmove (&contents[actual_offset], | |
5242 | &contents[actual_offset+8], | |
5243 | section_size - offset - 8); | |
5244 | } | |
5245 | } | |
5246 | ||
5247 | if (removed_bytes) | |
5248 | { | |
5249 | /* Clear the removed bytes. */ | |
5250 | memset (&contents[section_size - removed_bytes], 0, removed_bytes); | |
5251 | ||
5252 | sec->_cooked_size = section_size - removed_bytes; | |
5253 | /* Also shrink _raw_size. (The code in relocate_section that | |
5254 | checks that relocations are within the section must use | |
5255 | _raw_size because of the way the stabs sections are | |
5256 | relaxed; shrinking _raw_size means that these checks will | |
5257 | not be unnecessarily lax.) */ | |
5258 | sec->_raw_size = sec->_cooked_size; | |
e901de89 BW |
5259 | |
5260 | if (xtensa_is_littable_section (sec)) | |
5261 | { | |
5262 | bfd *dynobj = elf_hash_table (link_info)->dynobj; | |
5263 | if (dynobj) | |
5264 | { | |
5265 | asection *sgotloc = | |
5266 | bfd_get_section_by_name (dynobj, ".got.loc"); | |
5267 | if (sgotloc) | |
5268 | { | |
5269 | bfd_size_type sgotloc_size = | |
5270 | (sgotloc->_cooked_size ? sgotloc->_cooked_size | |
5271 | : sgotloc->_raw_size); | |
5272 | sgotloc->_cooked_size = sgotloc_size - removed_bytes; | |
5273 | sgotloc->_raw_size = sgotloc_size - removed_bytes; | |
5274 | } | |
5275 | } | |
5276 | } | |
e0001a05 NC |
5277 | } |
5278 | } | |
e901de89 | 5279 | |
e0001a05 NC |
5280 | error_return: |
5281 | release_internal_relocs (sec, internal_relocs); | |
5282 | release_contents (sec, contents); | |
5283 | return ok; | |
5284 | } | |
5285 | ||
5286 | \f | |
5287 | /* Third relaxation pass. */ | |
5288 | ||
5289 | /* Change symbol values to account for removed literals. */ | |
5290 | ||
5291 | bfd_boolean | |
5292 | relax_section_symbols (abfd, sec) | |
5293 | bfd *abfd; | |
5294 | asection *sec; | |
5295 | { | |
5296 | xtensa_relax_info *relax_info; | |
5297 | unsigned int sec_shndx; | |
5298 | Elf_Internal_Shdr *symtab_hdr; | |
5299 | Elf_Internal_Sym *isymbuf; | |
5300 | unsigned i, num_syms, num_locals; | |
5301 | ||
5302 | relax_info = get_xtensa_relax_info (sec); | |
5303 | BFD_ASSERT (relax_info); | |
5304 | ||
5305 | if (!relax_info->is_relaxable_literal_section) | |
5306 | return TRUE; | |
5307 | ||
5308 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
5309 | ||
5310 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5311 | isymbuf = retrieve_local_syms (abfd); | |
5312 | ||
5313 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
5314 | num_locals = symtab_hdr->sh_info; | |
5315 | ||
5316 | /* Adjust the local symbols defined in this section. */ | |
5317 | for (i = 0; i < num_locals; i++) | |
5318 | { | |
5319 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
5320 | ||
5321 | if (isym->st_shndx == sec_shndx) | |
5322 | { | |
5323 | bfd_vma new_address = offset_with_removed_literals | |
5324 | (&relax_info->removed_list, isym->st_value); | |
5325 | if (new_address != isym->st_value) | |
5326 | isym->st_value = new_address; | |
5327 | } | |
5328 | } | |
5329 | ||
5330 | /* Now adjust the global symbols defined in this section. */ | |
5331 | for (i = 0; i < (num_syms - num_locals); i++) | |
5332 | { | |
5333 | struct elf_link_hash_entry *sym_hash; | |
5334 | ||
5335 | sym_hash = elf_sym_hashes (abfd)[i]; | |
5336 | ||
5337 | if (sym_hash->root.type == bfd_link_hash_warning) | |
5338 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
5339 | ||
5340 | if ((sym_hash->root.type == bfd_link_hash_defined | |
5341 | || sym_hash->root.type == bfd_link_hash_defweak) | |
5342 | && sym_hash->root.u.def.section == sec) | |
5343 | { | |
5344 | bfd_vma new_address = offset_with_removed_literals | |
5345 | (&relax_info->removed_list, sym_hash->root.u.def.value); | |
5346 | if (new_address != sym_hash->root.u.def.value) | |
5347 | sym_hash->root.u.def.value = new_address; | |
5348 | } | |
5349 | } | |
5350 | ||
5351 | return TRUE; | |
5352 | } | |
5353 | ||
5354 | \f | |
5355 | /* "Fix" handling functions, called while performing relocations. */ | |
5356 | ||
5357 | static void | |
1049f94e | 5358 | do_fix_for_relocatable_link (rel, input_bfd, input_section) |
e0001a05 NC |
5359 | Elf_Internal_Rela *rel; |
5360 | bfd *input_bfd; | |
5361 | asection *input_section; | |
5362 | { | |
5363 | r_reloc r_rel; | |
5364 | asection *sec, *old_sec; | |
5365 | bfd_vma old_offset; | |
5366 | int r_type = ELF32_R_TYPE (rel->r_info); | |
5367 | reloc_bfd_fix *fix_list; | |
5368 | reloc_bfd_fix *fix; | |
5369 | ||
5370 | if (r_type == R_XTENSA_NONE) | |
5371 | return; | |
5372 | ||
5373 | fix_list = (get_xtensa_relax_info (input_section))->fix_list; | |
5374 | if (fix_list == NULL) | |
5375 | return; | |
5376 | ||
5377 | fix = get_bfd_fix (fix_list, input_section, rel->r_offset, r_type); | |
5378 | if (fix == NULL) | |
5379 | return; | |
5380 | ||
5381 | r_reloc_init (&r_rel, input_bfd, rel); | |
5382 | old_sec = r_reloc_get_section (&r_rel); | |
5383 | old_offset = r_reloc_get_target_offset (&r_rel); | |
5384 | ||
5385 | if (old_sec == NULL || !r_reloc_is_defined (&r_rel)) | |
5386 | { | |
5387 | BFD_ASSERT (r_type == R_XTENSA_ASM_EXPAND); | |
5388 | /* Leave it be. Resolution will happen in a later stage. */ | |
5389 | } | |
5390 | else | |
5391 | { | |
5392 | sec = fix->target_sec; | |
5393 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
5394 | - (old_sec->output_offset + old_offset)); | |
5395 | } | |
5396 | } | |
5397 | ||
5398 | ||
5399 | static void | |
5400 | do_fix_for_final_link (rel, input_section, relocationp) | |
5401 | Elf_Internal_Rela *rel; | |
5402 | asection *input_section; | |
5403 | bfd_vma *relocationp; | |
5404 | { | |
5405 | asection *sec; | |
5406 | int r_type = ELF32_R_TYPE (rel->r_info); | |
5407 | reloc_bfd_fix *fix_list; | |
5408 | reloc_bfd_fix *fix; | |
5409 | ||
5410 | if (r_type == R_XTENSA_NONE) | |
5411 | return; | |
5412 | ||
5413 | fix_list = (get_xtensa_relax_info (input_section))->fix_list; | |
5414 | if (fix_list == NULL) | |
5415 | return; | |
5416 | ||
5417 | fix = get_bfd_fix (fix_list, input_section, rel->r_offset, r_type); | |
5418 | if (fix == NULL) | |
5419 | return; | |
5420 | ||
5421 | sec = fix->target_sec; | |
5422 | *relocationp = (sec->output_section->vma | |
5423 | + sec->output_offset | |
5424 | + fix->target_offset - rel->r_addend); | |
5425 | } | |
5426 | ||
5427 | \f | |
5428 | /* Miscellaneous utility functions.... */ | |
5429 | ||
5430 | static asection * | |
5431 | elf_xtensa_get_plt_section (dynobj, chunk) | |
5432 | bfd *dynobj; | |
5433 | int chunk; | |
5434 | { | |
5435 | char plt_name[10]; | |
5436 | ||
5437 | if (chunk == 0) | |
5438 | return bfd_get_section_by_name (dynobj, ".plt"); | |
5439 | ||
5440 | sprintf (plt_name, ".plt.%u", chunk); | |
5441 | return bfd_get_section_by_name (dynobj, plt_name); | |
5442 | } | |
5443 | ||
5444 | ||
5445 | static asection * | |
5446 | elf_xtensa_get_gotplt_section (dynobj, chunk) | |
5447 | bfd *dynobj; | |
5448 | int chunk; | |
5449 | { | |
5450 | char got_name[14]; | |
5451 | ||
5452 | if (chunk == 0) | |
5453 | return bfd_get_section_by_name (dynobj, ".got.plt"); | |
5454 | ||
5455 | sprintf (got_name, ".got.plt.%u", chunk); | |
5456 | return bfd_get_section_by_name (dynobj, got_name); | |
5457 | } | |
5458 | ||
5459 | ||
5460 | /* Get the input section for a given symbol index. | |
5461 | If the symbol is: | |
5462 | . a section symbol, return the section; | |
5463 | . a common symbol, return the common section; | |
5464 | . an undefined symbol, return the undefined section; | |
5465 | . an indirect symbol, follow the links; | |
5466 | . an absolute value, return the absolute section. */ | |
5467 | ||
5468 | static asection * | |
5469 | get_elf_r_symndx_section (abfd, r_symndx) | |
5470 | bfd *abfd; | |
5471 | unsigned long r_symndx; | |
5472 | { | |
5473 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5474 | asection *target_sec = NULL; | |
5475 | if (r_symndx < symtab_hdr->sh_info) | |
5476 | { | |
5477 | Elf_Internal_Sym *isymbuf; | |
5478 | unsigned int section_index; | |
5479 | ||
5480 | isymbuf = retrieve_local_syms (abfd); | |
5481 | section_index = isymbuf[r_symndx].st_shndx; | |
5482 | ||
5483 | if (section_index == SHN_UNDEF) | |
5484 | target_sec = bfd_und_section_ptr; | |
5485 | else if (section_index > 0 && section_index < SHN_LORESERVE) | |
5486 | target_sec = bfd_section_from_elf_index (abfd, section_index); | |
5487 | else if (section_index == SHN_ABS) | |
5488 | target_sec = bfd_abs_section_ptr; | |
5489 | else if (section_index == SHN_COMMON) | |
5490 | target_sec = bfd_com_section_ptr; | |
5491 | else | |
5492 | /* Who knows? */ | |
5493 | target_sec = NULL; | |
5494 | } | |
5495 | else | |
5496 | { | |
5497 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
5498 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
5499 | ||
5500 | while (h->root.type == bfd_link_hash_indirect | |
5501 | || h->root.type == bfd_link_hash_warning) | |
5502 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5503 | ||
5504 | switch (h->root.type) | |
5505 | { | |
5506 | case bfd_link_hash_defined: | |
5507 | case bfd_link_hash_defweak: | |
5508 | target_sec = h->root.u.def.section; | |
5509 | break; | |
5510 | case bfd_link_hash_common: | |
5511 | target_sec = bfd_com_section_ptr; | |
5512 | break; | |
5513 | case bfd_link_hash_undefined: | |
5514 | case bfd_link_hash_undefweak: | |
5515 | target_sec = bfd_und_section_ptr; | |
5516 | break; | |
5517 | default: /* New indirect warning. */ | |
5518 | target_sec = bfd_und_section_ptr; | |
5519 | break; | |
5520 | } | |
5521 | } | |
5522 | return target_sec; | |
5523 | } | |
5524 | ||
5525 | ||
5526 | static struct elf_link_hash_entry * | |
5527 | get_elf_r_symndx_hash_entry (abfd, r_symndx) | |
5528 | bfd *abfd; | |
5529 | unsigned long r_symndx; | |
5530 | { | |
5531 | unsigned long indx; | |
5532 | struct elf_link_hash_entry *h; | |
5533 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5534 | ||
5535 | if (r_symndx < symtab_hdr->sh_info) | |
5536 | return NULL; | |
5537 | ||
5538 | indx = r_symndx - symtab_hdr->sh_info; | |
5539 | h = elf_sym_hashes (abfd)[indx]; | |
5540 | while (h->root.type == bfd_link_hash_indirect | |
5541 | || h->root.type == bfd_link_hash_warning) | |
5542 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5543 | return h; | |
5544 | } | |
5545 | ||
5546 | ||
5547 | /* Get the section-relative offset for a symbol number. */ | |
5548 | ||
5549 | static bfd_vma | |
5550 | get_elf_r_symndx_offset (abfd, r_symndx) | |
5551 | bfd *abfd; | |
5552 | unsigned long r_symndx; | |
5553 | { | |
5554 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5555 | bfd_vma offset = 0; | |
5556 | ||
5557 | if (r_symndx < symtab_hdr->sh_info) | |
5558 | { | |
5559 | Elf_Internal_Sym *isymbuf; | |
5560 | isymbuf = retrieve_local_syms (abfd); | |
5561 | offset = isymbuf[r_symndx].st_value; | |
5562 | } | |
5563 | else | |
5564 | { | |
5565 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
5566 | struct elf_link_hash_entry *h = | |
5567 | elf_sym_hashes (abfd)[indx]; | |
5568 | ||
5569 | while (h->root.type == bfd_link_hash_indirect | |
5570 | || h->root.type == bfd_link_hash_warning) | |
5571 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5572 | if (h->root.type == bfd_link_hash_defined | |
5573 | || h->root.type == bfd_link_hash_defweak) | |
5574 | offset = h->root.u.def.value; | |
5575 | } | |
5576 | return offset; | |
5577 | } | |
5578 | ||
5579 | ||
5580 | static bfd_boolean | |
5581 | pcrel_reloc_fits (opnd, self_address, dest_address) | |
5582 | xtensa_operand opnd; | |
5583 | bfd_vma self_address; | |
5584 | bfd_vma dest_address; | |
5585 | { | |
5586 | uint32 new_address = | |
5587 | xtensa_operand_do_reloc (opnd, dest_address, self_address); | |
5588 | return (xtensa_operand_encode (opnd, &new_address) | |
5589 | == xtensa_encode_result_ok); | |
5590 | } | |
5591 | ||
5592 | ||
b614a702 BW |
5593 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
5594 | static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1; | |
5595 | static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1; | |
5596 | ||
5597 | ||
e0001a05 NC |
5598 | static bfd_boolean |
5599 | xtensa_is_property_section (sec) | |
5600 | asection *sec; | |
5601 | { | |
b614a702 BW |
5602 | if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0 |
5603 | || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0) | |
5604 | return TRUE; | |
e901de89 | 5605 | |
b614a702 BW |
5606 | if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0 |
5607 | && (sec->name[linkonce_len] == 'x' | |
5608 | || sec->name[linkonce_len] == 'p') | |
5609 | && sec->name[linkonce_len + 1] == '.') | |
e901de89 BW |
5610 | return TRUE; |
5611 | ||
e901de89 BW |
5612 | return FALSE; |
5613 | } | |
5614 | ||
5615 | ||
5616 | static bfd_boolean | |
5617 | xtensa_is_littable_section (sec) | |
5618 | asection *sec; | |
5619 | { | |
b614a702 BW |
5620 | if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0) |
5621 | return TRUE; | |
e901de89 | 5622 | |
b614a702 BW |
5623 | if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0 |
5624 | && sec->name[linkonce_len] == 'p' | |
5625 | && sec->name[linkonce_len + 1] == '.') | |
e901de89 | 5626 | return TRUE; |
e0001a05 | 5627 | |
e901de89 | 5628 | return FALSE; |
e0001a05 NC |
5629 | } |
5630 | ||
5631 | ||
5632 | static bfd_boolean | |
5633 | is_literal_section (sec) | |
5634 | asection *sec; | |
5635 | { | |
5636 | /* FIXME: the current definition of this leaves a lot to be desired.... */ | |
5637 | if (sec == NULL || sec->name == NULL) | |
5638 | return FALSE; | |
5639 | return (strstr (sec->name, "literal") != NULL); | |
5640 | } | |
5641 | ||
5642 | ||
5643 | static int | |
5644 | internal_reloc_compare (ap, bp) | |
5645 | const PTR ap; | |
5646 | const PTR bp; | |
5647 | { | |
5648 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
5649 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
5650 | ||
5651 | return (a->r_offset - b->r_offset); | |
5652 | } | |
5653 | ||
5654 | ||
e0001a05 | 5655 | char * |
b614a702 | 5656 | xtensa_get_property_section_name (sec, base_name) |
e0001a05 | 5657 | asection *sec; |
b614a702 | 5658 | const char *base_name; |
e0001a05 | 5659 | { |
b614a702 | 5660 | if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) |
e0001a05 | 5661 | { |
b614a702 BW |
5662 | char *prop_sec_name; |
5663 | const char *suffix; | |
5664 | char linkonce_kind = 0; | |
5665 | ||
5666 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) | |
5667 | linkonce_kind = 'x'; | |
5668 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) | |
5669 | linkonce_kind = 'p'; | |
e0001a05 | 5670 | else |
b614a702 BW |
5671 | abort (); |
5672 | ||
5673 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) + 1); | |
5674 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); | |
5675 | prop_sec_name[linkonce_len] = linkonce_kind; | |
5676 | prop_sec_name[linkonce_len + 1] = '.'; | |
5677 | ||
5678 | suffix = sec->name + linkonce_len; | |
5679 | while (*suffix) | |
e0001a05 | 5680 | { |
b614a702 BW |
5681 | suffix += 1; |
5682 | if (suffix[-1] == '.') | |
5683 | break; | |
e0001a05 | 5684 | } |
b614a702 BW |
5685 | strcpy (prop_sec_name + linkonce_len + 2, suffix); |
5686 | ||
5687 | return prop_sec_name; | |
e0001a05 NC |
5688 | } |
5689 | ||
b614a702 | 5690 | return strdup (base_name); |
e0001a05 NC |
5691 | } |
5692 | ||
5693 | \f | |
5694 | /* Other functions called directly by the linker. */ | |
5695 | ||
5696 | bfd_boolean | |
5697 | xtensa_callback_required_dependence (abfd, sec, link_info, callback, closure) | |
5698 | bfd *abfd; | |
5699 | asection *sec; | |
5700 | struct bfd_link_info *link_info; | |
5701 | deps_callback_t callback; | |
5702 | PTR closure; | |
5703 | { | |
5704 | Elf_Internal_Rela *internal_relocs; | |
5705 | bfd_byte *contents; | |
5706 | unsigned i; | |
5707 | bfd_boolean ok = TRUE; | |
5708 | ||
5709 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
5710 | instructions that reference the corresponding ".got.plt*" sections. */ | |
5711 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
5712 | && strncmp (sec->name, ".plt", 4) == 0) | |
5713 | { | |
5714 | asection *sgotplt; | |
5715 | ||
5716 | /* Find the corresponding ".got.plt*" section. */ | |
5717 | if (sec->name[4] == '\0') | |
5718 | sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt"); | |
5719 | else | |
5720 | { | |
5721 | char got_name[14]; | |
5722 | int chunk = 0; | |
5723 | ||
5724 | BFD_ASSERT (sec->name[4] == '.'); | |
5725 | chunk = strtol (&sec->name[5], NULL, 10); | |
5726 | ||
5727 | sprintf (got_name, ".got.plt.%u", chunk); | |
5728 | sgotplt = bfd_get_section_by_name (sec->owner, got_name); | |
5729 | } | |
5730 | BFD_ASSERT (sgotplt); | |
5731 | ||
5732 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
5733 | section referencing a literal at the very beginning of | |
5734 | ".got.plt". This is very close to the real dependence, anyway. */ | |
5735 | (*callback) (sec, sec->_raw_size, sgotplt, 0, closure); | |
5736 | } | |
5737 | ||
5738 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
5739 | link_info->keep_memory); | |
5740 | if (internal_relocs == NULL | |
5741 | || sec->reloc_count == 0) | |
5742 | return ok; | |
5743 | ||
5744 | /* Cache the contents for the duration of this scan. */ | |
5745 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
5746 | if (contents == NULL && sec->_raw_size != 0) | |
5747 | { | |
5748 | ok = FALSE; | |
5749 | goto error_return; | |
5750 | } | |
5751 | ||
5752 | if (xtensa_default_isa == NULL) | |
5753 | xtensa_isa_init (); | |
5754 | ||
5755 | for (i = 0; i < sec->reloc_count; i++) | |
5756 | { | |
5757 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
5758 | if (is_l32r_relocation (sec, contents, irel)) | |
5759 | { | |
5760 | r_reloc l32r_rel; | |
5761 | asection *target_sec; | |
5762 | bfd_vma target_offset; | |
5763 | ||
5764 | r_reloc_init (&l32r_rel, abfd, irel); | |
5765 | target_sec = NULL; | |
5766 | target_offset = 0; | |
5767 | /* L32Rs must be local to the input file. */ | |
5768 | if (r_reloc_is_defined (&l32r_rel)) | |
5769 | { | |
5770 | target_sec = r_reloc_get_section (&l32r_rel); | |
5771 | target_offset = r_reloc_get_target_offset (&l32r_rel); | |
5772 | } | |
5773 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
5774 | closure); | |
5775 | } | |
5776 | } | |
5777 | ||
5778 | error_return: | |
5779 | release_internal_relocs (sec, internal_relocs); | |
5780 | release_contents (sec, contents); | |
5781 | return ok; | |
5782 | } | |
5783 | ||
2f89ff8d L |
5784 | /* The default literal sections should always be marked as "code" (i.e., |
5785 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
5786 | module loader so that the literals are not placed after the text. */ | |
5787 | static struct bfd_elf_special_section const elf_xtensa_special_sections[]= | |
5788 | { | |
7dcb9820 AM |
5789 | { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
5790 | { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
5791 | { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
5792 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d L |
5793 | }; |
5794 | ||
e0001a05 NC |
5795 | \f |
5796 | #ifndef ELF_ARCH | |
5797 | #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec | |
5798 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" | |
5799 | #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec | |
5800 | #define TARGET_BIG_NAME "elf32-xtensa-be" | |
5801 | #define ELF_ARCH bfd_arch_xtensa | |
5802 | ||
5803 | /* The new EM_XTENSA value will be recognized beginning in the Xtensa T1040 | |
5804 | release. However, we still have to generate files with the EM_XTENSA_OLD | |
5805 | value so that pre-T1040 tools can read the files. As soon as we stop | |
5806 | caring about pre-T1040 tools, the following two values should be | |
5807 | swapped. At the same time, any other code that uses EM_XTENSA_OLD | |
5808 | (e.g., prep_headers() in elf.c) should be changed to use EM_XTENSA. */ | |
5809 | #define ELF_MACHINE_CODE EM_XTENSA_OLD | |
5810 | #define ELF_MACHINE_ALT1 EM_XTENSA | |
5811 | ||
5812 | #if XCHAL_HAVE_MMU | |
5813 | #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE) | |
5814 | #else /* !XCHAL_HAVE_MMU */ | |
5815 | #define ELF_MAXPAGESIZE 1 | |
5816 | #endif /* !XCHAL_HAVE_MMU */ | |
5817 | #endif /* ELF_ARCH */ | |
5818 | ||
5819 | #define elf_backend_can_gc_sections 1 | |
5820 | #define elf_backend_can_refcount 1 | |
5821 | #define elf_backend_plt_readonly 1 | |
5822 | #define elf_backend_got_header_size 4 | |
5823 | #define elf_backend_want_dynbss 0 | |
5824 | #define elf_backend_want_got_plt 1 | |
5825 | ||
5826 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
5827 | ||
5828 | #define bfd_elf32_bfd_final_link bfd_elf32_bfd_final_link | |
5829 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data | |
5830 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
5831 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
5832 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
5833 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
5834 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags | |
5835 | ||
5836 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
5837 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
5838 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
5839 | #define elf_backend_discard_info elf_xtensa_discard_info | |
5840 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
5841 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
5842 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
5843 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
5844 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
5845 | #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook | |
5846 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus | |
5847 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
5848 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol | |
5849 | #define elf_backend_modify_segment_map elf_xtensa_modify_segment_map | |
5850 | #define elf_backend_object_p elf_xtensa_object_p | |
5851 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
5852 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
5853 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
2f89ff8d | 5854 | #define elf_backend_special_sections elf_xtensa_special_sections |
e0001a05 NC |
5855 | |
5856 | #include "elf32-target.h" |