Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* Xtensa-specific support for 32-bit ELF. |
4dfe6ac6 | 2 | Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 |
aa820537 | 3 | Free Software Foundation, Inc. |
e0001a05 NC |
4 | |
5 | This file is part of BFD, the Binary File Descriptor library. | |
6 | ||
7 | This program is free software; you can redistribute it and/or | |
8 | modify it under the terms of the GNU General Public License as | |
cd123cb7 | 9 | published by the Free Software Foundation; either version 3 of the |
e0001a05 NC |
10 | License, or (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, but | |
13 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 | General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
3e110533 | 19 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
53e09e0a | 20 | 02110-1301, USA. */ |
e0001a05 | 21 | |
e0001a05 | 22 | #include "sysdep.h" |
3db64b00 | 23 | #include "bfd.h" |
e0001a05 | 24 | |
e0001a05 | 25 | #include <stdarg.h> |
e0001a05 NC |
26 | #include <strings.h> |
27 | ||
28 | #include "bfdlink.h" | |
29 | #include "libbfd.h" | |
30 | #include "elf-bfd.h" | |
31 | #include "elf/xtensa.h" | |
32 | #include "xtensa-isa.h" | |
33 | #include "xtensa-config.h" | |
34 | ||
43cd72b9 BW |
35 | #define XTENSA_NO_NOP_REMOVAL 0 |
36 | ||
e0001a05 NC |
37 | /* Local helper functions. */ |
38 | ||
f0e6fdb2 | 39 | static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int); |
2db662be | 40 | static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); |
e0001a05 | 41 | static bfd_reloc_status_type bfd_elf_xtensa_reloc |
7fa3d080 | 42 | (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
43cd72b9 | 43 | static bfd_boolean do_fix_for_relocatable_link |
7fa3d080 | 44 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); |
e0001a05 | 45 | static void do_fix_for_final_link |
7fa3d080 | 46 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); |
e0001a05 NC |
47 | |
48 | /* Local functions to handle Xtensa configurability. */ | |
49 | ||
7fa3d080 BW |
50 | static bfd_boolean is_indirect_call_opcode (xtensa_opcode); |
51 | static bfd_boolean is_direct_call_opcode (xtensa_opcode); | |
52 | static bfd_boolean is_windowed_call_opcode (xtensa_opcode); | |
53 | static xtensa_opcode get_const16_opcode (void); | |
54 | static xtensa_opcode get_l32r_opcode (void); | |
55 | static bfd_vma l32r_offset (bfd_vma, bfd_vma); | |
56 | static int get_relocation_opnd (xtensa_opcode, int); | |
57 | static int get_relocation_slot (int); | |
e0001a05 | 58 | static xtensa_opcode get_relocation_opcode |
7fa3d080 | 59 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
e0001a05 | 60 | static bfd_boolean is_l32r_relocation |
7fa3d080 BW |
61 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
62 | static bfd_boolean is_alt_relocation (int); | |
63 | static bfd_boolean is_operand_relocation (int); | |
43cd72b9 | 64 | static bfd_size_type insn_decode_len |
7fa3d080 | 65 | (bfd_byte *, bfd_size_type, bfd_size_type); |
43cd72b9 | 66 | static xtensa_opcode insn_decode_opcode |
7fa3d080 | 67 | (bfd_byte *, bfd_size_type, bfd_size_type, int); |
43cd72b9 | 68 | static bfd_boolean check_branch_target_aligned |
7fa3d080 | 69 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
43cd72b9 | 70 | static bfd_boolean check_loop_aligned |
7fa3d080 BW |
71 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
72 | static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); | |
43cd72b9 | 73 | static bfd_size_type get_asm_simplify_size |
7fa3d080 | 74 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0001a05 NC |
75 | |
76 | /* Functions for link-time code simplifications. */ | |
77 | ||
43cd72b9 | 78 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify |
7fa3d080 | 79 | (bfd_byte *, bfd_vma, bfd_vma, char **); |
e0001a05 | 80 | static bfd_reloc_status_type contract_asm_expansion |
7fa3d080 BW |
81 | (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); |
82 | static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); | |
83 | static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); | |
e0001a05 NC |
84 | |
85 | /* Access to internal relocations, section contents and symbols. */ | |
86 | ||
87 | static Elf_Internal_Rela *retrieve_internal_relocs | |
7fa3d080 BW |
88 | (bfd *, asection *, bfd_boolean); |
89 | static void pin_internal_relocs (asection *, Elf_Internal_Rela *); | |
90 | static void release_internal_relocs (asection *, Elf_Internal_Rela *); | |
91 | static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); | |
92 | static void pin_contents (asection *, bfd_byte *); | |
93 | static void release_contents (asection *, bfd_byte *); | |
94 | static Elf_Internal_Sym *retrieve_local_syms (bfd *); | |
e0001a05 NC |
95 | |
96 | /* Miscellaneous utility functions. */ | |
97 | ||
f0e6fdb2 BW |
98 | static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); |
99 | static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); | |
7fa3d080 | 100 | static asection *get_elf_r_symndx_section (bfd *, unsigned long); |
e0001a05 | 101 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry |
7fa3d080 BW |
102 | (bfd *, unsigned long); |
103 | static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); | |
104 | static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); | |
105 | static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); | |
106 | static bfd_boolean xtensa_is_property_section (asection *); | |
1d25768e | 107 | static bfd_boolean xtensa_is_insntable_section (asection *); |
7fa3d080 | 108 | static bfd_boolean xtensa_is_littable_section (asection *); |
1d25768e | 109 | static bfd_boolean xtensa_is_proptable_section (asection *); |
7fa3d080 BW |
110 | static int internal_reloc_compare (const void *, const void *); |
111 | static int internal_reloc_matches (const void *, const void *); | |
51c8ebc1 BW |
112 | static asection *xtensa_get_property_section (asection *, const char *); |
113 | extern asection *xtensa_make_property_section (asection *, const char *); | |
7fa3d080 | 114 | static flagword xtensa_get_property_predef_flags (asection *); |
e0001a05 NC |
115 | |
116 | /* Other functions called directly by the linker. */ | |
117 | ||
118 | typedef void (*deps_callback_t) | |
7fa3d080 | 119 | (asection *, bfd_vma, asection *, bfd_vma, void *); |
e0001a05 | 120 | extern bfd_boolean xtensa_callback_required_dependence |
7fa3d080 | 121 | (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); |
e0001a05 NC |
122 | |
123 | ||
43cd72b9 BW |
124 | /* Globally visible flag for choosing size optimization of NOP removal |
125 | instead of branch-target-aware minimization for NOP removal. | |
126 | When nonzero, narrow all instructions and remove all NOPs possible | |
127 | around longcall expansions. */ | |
7fa3d080 | 128 | |
43cd72b9 BW |
129 | int elf32xtensa_size_opt; |
130 | ||
131 | ||
132 | /* The "new_section_hook" is used to set up a per-section | |
133 | "xtensa_relax_info" data structure with additional information used | |
134 | during relaxation. */ | |
e0001a05 | 135 | |
7fa3d080 | 136 | typedef struct xtensa_relax_info_struct xtensa_relax_info; |
e0001a05 | 137 | |
43cd72b9 | 138 | |
43cd72b9 BW |
139 | /* The GNU tools do not easily allow extending interfaces to pass around |
140 | the pointer to the Xtensa ISA information, so instead we add a global | |
141 | variable here (in BFD) that can be used by any of the tools that need | |
142 | this information. */ | |
143 | ||
144 | xtensa_isa xtensa_default_isa; | |
145 | ||
146 | ||
e0001a05 NC |
147 | /* When this is true, relocations may have been modified to refer to |
148 | symbols from other input files. The per-section list of "fix" | |
149 | records needs to be checked when resolving relocations. */ | |
150 | ||
151 | static bfd_boolean relaxing_section = FALSE; | |
152 | ||
43cd72b9 BW |
153 | /* When this is true, during final links, literals that cannot be |
154 | coalesced and their relocations may be moved to other sections. */ | |
155 | ||
156 | int elf32xtensa_no_literal_movement = 1; | |
157 | ||
b0dddeec AM |
158 | /* Rename one of the generic section flags to better document how it |
159 | is used here. */ | |
160 | /* Whether relocations have been processed. */ | |
161 | #define reloc_done sec_flg0 | |
e0001a05 NC |
162 | \f |
163 | static reloc_howto_type elf_howto_table[] = | |
164 | { | |
165 | HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
166 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", | |
e5f131d1 | 167 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
168 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
169 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
170 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
e5f131d1 | 171 | |
e0001a05 NC |
172 | /* Replace a 32-bit value with a value from the runtime linker (only |
173 | used by linker-generated stub functions). The r_addend value is | |
174 | special: 1 means to substitute a pointer to the runtime linker's | |
175 | dynamic resolver function; 2 means to substitute the link map for | |
176 | the shared object. */ | |
177 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
e5f131d1 BW |
178 | NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE), |
179 | ||
e0001a05 NC |
180 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
181 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
e5f131d1 | 182 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
183 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
184 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
e5f131d1 | 185 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
186 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
187 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
e5f131d1 | 188 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
189 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
190 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
e5f131d1 BW |
191 | FALSE, 0, 0xffffffff, FALSE), |
192 | ||
e0001a05 | 193 | EMPTY_HOWTO (7), |
e5f131d1 BW |
194 | |
195 | /* Old relocations for backward compatibility. */ | |
e0001a05 | 196 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 197 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE), |
e0001a05 | 198 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 199 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE), |
e0001a05 | 200 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 BW |
201 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE), |
202 | ||
e0001a05 NC |
203 | /* Assembly auto-expansion. */ |
204 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 205 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE), |
e0001a05 NC |
206 | /* Relax assembly auto-expansion. */ |
207 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 BW |
208 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE), |
209 | ||
e0001a05 | 210 | EMPTY_HOWTO (13), |
1bbb5f21 BW |
211 | |
212 | HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, | |
213 | bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL", | |
214 | FALSE, 0, 0xffffffff, TRUE), | |
e5f131d1 | 215 | |
e0001a05 NC |
216 | /* GNU extension to record C++ vtable hierarchy. */ |
217 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
218 | NULL, "R_XTENSA_GNU_VTINHERIT", | |
e5f131d1 | 219 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
220 | /* GNU extension to record C++ vtable member usage. */ |
221 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
222 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", | |
e5f131d1 | 223 | FALSE, 0, 0, FALSE), |
43cd72b9 BW |
224 | |
225 | /* Relocations for supporting difference of symbols. */ | |
226 | HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, | |
e5f131d1 | 227 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE), |
43cd72b9 | 228 | HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, |
e5f131d1 | 229 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE), |
43cd72b9 | 230 | HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
e5f131d1 | 231 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE), |
43cd72b9 BW |
232 | |
233 | /* General immediate operand relocations. */ | |
234 | HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 235 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 236 | HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 237 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 238 | HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 239 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 240 | HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 241 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 242 | HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 243 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 244 | HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 245 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 246 | HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 247 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 248 | HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 249 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 250 | HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 251 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 252 | HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 253 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 254 | HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 255 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 256 | HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 257 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 258 | HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 259 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 260 | HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 261 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 262 | HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 263 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE), |
43cd72b9 BW |
264 | |
265 | /* "Alternate" relocations. The meaning of these is opcode-specific. */ | |
266 | HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 267 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 268 | HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 269 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 270 | HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 271 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 272 | HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 273 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 274 | HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 275 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 276 | HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 277 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 278 | HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 279 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 280 | HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 281 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 282 | HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 283 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 284 | HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 285 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 286 | HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 287 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 288 | HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 289 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 290 | HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 291 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 292 | HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 293 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 294 | HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 295 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE), |
28dbbc02 BW |
296 | |
297 | /* TLS relocations. */ | |
298 | HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
299 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN", | |
300 | FALSE, 0, 0xffffffff, FALSE), | |
301 | HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
302 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG", | |
303 | FALSE, 0, 0xffffffff, FALSE), | |
304 | HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
305 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF", | |
306 | FALSE, 0, 0xffffffff, FALSE), | |
307 | HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
308 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF", | |
309 | FALSE, 0, 0xffffffff, FALSE), | |
310 | HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
311 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC", | |
312 | FALSE, 0, 0, FALSE), | |
313 | HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
314 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG", | |
315 | FALSE, 0, 0, FALSE), | |
316 | HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
317 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL", | |
318 | FALSE, 0, 0, FALSE), | |
e0001a05 NC |
319 | }; |
320 | ||
43cd72b9 | 321 | #if DEBUG_GEN_RELOC |
e0001a05 NC |
322 | #define TRACE(str) \ |
323 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
324 | #else | |
325 | #define TRACE(str) | |
326 | #endif | |
327 | ||
328 | static reloc_howto_type * | |
7fa3d080 BW |
329 | elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
330 | bfd_reloc_code_real_type code) | |
e0001a05 NC |
331 | { |
332 | switch (code) | |
333 | { | |
334 | case BFD_RELOC_NONE: | |
335 | TRACE ("BFD_RELOC_NONE"); | |
336 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
337 | ||
338 | case BFD_RELOC_32: | |
339 | TRACE ("BFD_RELOC_32"); | |
340 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
341 | ||
1bbb5f21 BW |
342 | case BFD_RELOC_32_PCREL: |
343 | TRACE ("BFD_RELOC_32_PCREL"); | |
344 | return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ]; | |
345 | ||
43cd72b9 BW |
346 | case BFD_RELOC_XTENSA_DIFF8: |
347 | TRACE ("BFD_RELOC_XTENSA_DIFF8"); | |
348 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; | |
349 | ||
350 | case BFD_RELOC_XTENSA_DIFF16: | |
351 | TRACE ("BFD_RELOC_XTENSA_DIFF16"); | |
352 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; | |
353 | ||
354 | case BFD_RELOC_XTENSA_DIFF32: | |
355 | TRACE ("BFD_RELOC_XTENSA_DIFF32"); | |
356 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; | |
357 | ||
e0001a05 NC |
358 | case BFD_RELOC_XTENSA_RTLD: |
359 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
360 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
361 | ||
362 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
363 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
364 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
365 | ||
366 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
367 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
368 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
369 | ||
370 | case BFD_RELOC_XTENSA_RELATIVE: | |
371 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
372 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
373 | ||
374 | case BFD_RELOC_XTENSA_PLT: | |
375 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
376 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
377 | ||
378 | case BFD_RELOC_XTENSA_OP0: | |
379 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
380 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
381 | ||
382 | case BFD_RELOC_XTENSA_OP1: | |
383 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
384 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
385 | ||
386 | case BFD_RELOC_XTENSA_OP2: | |
387 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
388 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
389 | ||
390 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
391 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
392 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
393 | ||
394 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
395 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
396 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
397 | ||
398 | case BFD_RELOC_VTABLE_INHERIT: | |
399 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
400 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
401 | ||
402 | case BFD_RELOC_VTABLE_ENTRY: | |
403 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
404 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
405 | ||
28dbbc02 BW |
406 | case BFD_RELOC_XTENSA_TLSDESC_FN: |
407 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN"); | |
408 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ]; | |
409 | ||
410 | case BFD_RELOC_XTENSA_TLSDESC_ARG: | |
411 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG"); | |
412 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ]; | |
413 | ||
414 | case BFD_RELOC_XTENSA_TLS_DTPOFF: | |
415 | TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF"); | |
416 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ]; | |
417 | ||
418 | case BFD_RELOC_XTENSA_TLS_TPOFF: | |
419 | TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF"); | |
420 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ]; | |
421 | ||
422 | case BFD_RELOC_XTENSA_TLS_FUNC: | |
423 | TRACE ("BFD_RELOC_XTENSA_TLS_FUNC"); | |
424 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ]; | |
425 | ||
426 | case BFD_RELOC_XTENSA_TLS_ARG: | |
427 | TRACE ("BFD_RELOC_XTENSA_TLS_ARG"); | |
428 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ]; | |
429 | ||
430 | case BFD_RELOC_XTENSA_TLS_CALL: | |
431 | TRACE ("BFD_RELOC_XTENSA_TLS_CALL"); | |
432 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ]; | |
433 | ||
e0001a05 | 434 | default: |
43cd72b9 BW |
435 | if (code >= BFD_RELOC_XTENSA_SLOT0_OP |
436 | && code <= BFD_RELOC_XTENSA_SLOT14_OP) | |
437 | { | |
438 | unsigned n = (R_XTENSA_SLOT0_OP + | |
439 | (code - BFD_RELOC_XTENSA_SLOT0_OP)); | |
440 | return &elf_howto_table[n]; | |
441 | } | |
442 | ||
443 | if (code >= BFD_RELOC_XTENSA_SLOT0_ALT | |
444 | && code <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
445 | { | |
446 | unsigned n = (R_XTENSA_SLOT0_ALT + | |
447 | (code - BFD_RELOC_XTENSA_SLOT0_ALT)); | |
448 | return &elf_howto_table[n]; | |
449 | } | |
450 | ||
e0001a05 NC |
451 | break; |
452 | } | |
453 | ||
454 | TRACE ("Unknown"); | |
455 | return NULL; | |
456 | } | |
457 | ||
157090f7 AM |
458 | static reloc_howto_type * |
459 | elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, | |
460 | const char *r_name) | |
461 | { | |
462 | unsigned int i; | |
463 | ||
464 | for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) | |
465 | if (elf_howto_table[i].name != NULL | |
466 | && strcasecmp (elf_howto_table[i].name, r_name) == 0) | |
467 | return &elf_howto_table[i]; | |
468 | ||
469 | return NULL; | |
470 | } | |
471 | ||
e0001a05 NC |
472 | |
473 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
474 | it in the BFD internal arelent representation of the relocation. */ | |
475 | ||
476 | static void | |
7fa3d080 BW |
477 | elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, |
478 | arelent *cache_ptr, | |
479 | Elf_Internal_Rela *dst) | |
e0001a05 NC |
480 | { |
481 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
482 | ||
483 | BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max); | |
484 | cache_ptr->howto = &elf_howto_table[r_type]; | |
485 | } | |
486 | ||
487 | \f | |
488 | /* Functions for the Xtensa ELF linker. */ | |
489 | ||
490 | /* The name of the dynamic interpreter. This is put in the .interp | |
491 | section. */ | |
492 | ||
493 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
494 | ||
495 | /* The size in bytes of an entry in the procedure linkage table. | |
496 | (This does _not_ include the space for the literals associated with | |
497 | the PLT entry.) */ | |
498 | ||
499 | #define PLT_ENTRY_SIZE 16 | |
500 | ||
501 | /* For _really_ large PLTs, we may need to alternate between literals | |
502 | and code to keep the literals within the 256K range of the L32R | |
503 | instructions in the code. It's unlikely that anyone would ever need | |
504 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
505 | Thus, we split the PLT into chunks. Since there's very little | |
506 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
507 | small so that the code for handling multiple chunks get used and | |
508 | tested regularly. With 254 entries, there are 1K of literals for | |
509 | each chunk, and that seems like a nice round number. */ | |
510 | ||
511 | #define PLT_ENTRIES_PER_CHUNK 254 | |
512 | ||
513 | /* PLT entries are actually used as stub functions for lazy symbol | |
514 | resolution. Once the symbol is resolved, the stub function is never | |
515 | invoked. Note: the 32-byte frame size used here cannot be changed | |
516 | without a corresponding change in the runtime linker. */ | |
517 | ||
518 | static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] = | |
519 | { | |
520 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ | |
521 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
522 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
523 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
524 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
525 | 0 /* unused */ | |
526 | }; | |
527 | ||
528 | static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] = | |
529 | { | |
530 | 0x36, 0x41, 0x00, /* entry sp, 32 */ | |
531 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
532 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
533 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
534 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
535 | 0 /* unused */ | |
536 | }; | |
537 | ||
28dbbc02 BW |
538 | /* The size of the thread control block. */ |
539 | #define TCB_SIZE 8 | |
540 | ||
541 | struct elf_xtensa_link_hash_entry | |
542 | { | |
543 | struct elf_link_hash_entry elf; | |
544 | ||
545 | bfd_signed_vma tlsfunc_refcount; | |
546 | ||
547 | #define GOT_UNKNOWN 0 | |
548 | #define GOT_NORMAL 1 | |
549 | #define GOT_TLS_GD 2 /* global or local dynamic */ | |
550 | #define GOT_TLS_IE 4 /* initial or local exec */ | |
551 | #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE) | |
552 | unsigned char tls_type; | |
553 | }; | |
554 | ||
555 | #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent)) | |
556 | ||
557 | struct elf_xtensa_obj_tdata | |
558 | { | |
559 | struct elf_obj_tdata root; | |
560 | ||
561 | /* tls_type for each local got entry. */ | |
562 | char *local_got_tls_type; | |
563 | ||
564 | bfd_signed_vma *local_tlsfunc_refcounts; | |
565 | }; | |
566 | ||
567 | #define elf_xtensa_tdata(abfd) \ | |
568 | ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any) | |
569 | ||
570 | #define elf_xtensa_local_got_tls_type(abfd) \ | |
571 | (elf_xtensa_tdata (abfd)->local_got_tls_type) | |
572 | ||
573 | #define elf_xtensa_local_tlsfunc_refcounts(abfd) \ | |
574 | (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts) | |
575 | ||
576 | #define is_xtensa_elf(bfd) \ | |
577 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
578 | && elf_tdata (bfd) != NULL \ | |
4dfe6ac6 | 579 | && elf_object_id (bfd) == XTENSA_ELF_DATA) |
28dbbc02 BW |
580 | |
581 | static bfd_boolean | |
582 | elf_xtensa_mkobject (bfd *abfd) | |
583 | { | |
584 | return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata), | |
4dfe6ac6 | 585 | XTENSA_ELF_DATA); |
28dbbc02 BW |
586 | } |
587 | ||
f0e6fdb2 BW |
588 | /* Xtensa ELF linker hash table. */ |
589 | ||
590 | struct elf_xtensa_link_hash_table | |
591 | { | |
592 | struct elf_link_hash_table elf; | |
593 | ||
594 | /* Short-cuts to get to dynamic linker sections. */ | |
595 | asection *sgot; | |
596 | asection *sgotplt; | |
597 | asection *srelgot; | |
598 | asection *splt; | |
599 | asection *srelplt; | |
600 | asection *sgotloc; | |
601 | asection *spltlittbl; | |
602 | ||
603 | /* Total count of PLT relocations seen during check_relocs. | |
604 | The actual PLT code must be split into multiple sections and all | |
605 | the sections have to be created before size_dynamic_sections, | |
606 | where we figure out the exact number of PLT entries that will be | |
607 | needed. It is OK if this count is an overestimate, e.g., some | |
608 | relocations may be removed by GC. */ | |
609 | int plt_reloc_count; | |
28dbbc02 BW |
610 | |
611 | struct elf_xtensa_link_hash_entry *tlsbase; | |
f0e6fdb2 BW |
612 | }; |
613 | ||
614 | /* Get the Xtensa ELF linker hash table from a link_info structure. */ | |
615 | ||
616 | #define elf_xtensa_hash_table(p) \ | |
4dfe6ac6 NC |
617 | (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
618 | == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL) | |
f0e6fdb2 | 619 | |
28dbbc02 BW |
620 | /* Create an entry in an Xtensa ELF linker hash table. */ |
621 | ||
622 | static struct bfd_hash_entry * | |
623 | elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry, | |
624 | struct bfd_hash_table *table, | |
625 | const char *string) | |
626 | { | |
627 | /* Allocate the structure if it has not already been allocated by a | |
628 | subclass. */ | |
629 | if (entry == NULL) | |
630 | { | |
631 | entry = bfd_hash_allocate (table, | |
632 | sizeof (struct elf_xtensa_link_hash_entry)); | |
633 | if (entry == NULL) | |
634 | return entry; | |
635 | } | |
636 | ||
637 | /* Call the allocation method of the superclass. */ | |
638 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | |
639 | if (entry != NULL) | |
640 | { | |
641 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry); | |
642 | eh->tlsfunc_refcount = 0; | |
643 | eh->tls_type = GOT_UNKNOWN; | |
644 | } | |
645 | ||
646 | return entry; | |
647 | } | |
648 | ||
f0e6fdb2 BW |
649 | /* Create an Xtensa ELF linker hash table. */ |
650 | ||
651 | static struct bfd_link_hash_table * | |
652 | elf_xtensa_link_hash_table_create (bfd *abfd) | |
653 | { | |
28dbbc02 | 654 | struct elf_link_hash_entry *tlsbase; |
f0e6fdb2 BW |
655 | struct elf_xtensa_link_hash_table *ret; |
656 | bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table); | |
657 | ||
658 | ret = bfd_malloc (amt); | |
659 | if (ret == NULL) | |
660 | return NULL; | |
661 | ||
662 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, | |
28dbbc02 | 663 | elf_xtensa_link_hash_newfunc, |
4dfe6ac6 NC |
664 | sizeof (struct elf_xtensa_link_hash_entry), |
665 | XTENSA_ELF_DATA)) | |
f0e6fdb2 BW |
666 | { |
667 | free (ret); | |
668 | return NULL; | |
669 | } | |
670 | ||
671 | ret->sgot = NULL; | |
672 | ret->sgotplt = NULL; | |
673 | ret->srelgot = NULL; | |
674 | ret->splt = NULL; | |
675 | ret->srelplt = NULL; | |
676 | ret->sgotloc = NULL; | |
677 | ret->spltlittbl = NULL; | |
678 | ||
679 | ret->plt_reloc_count = 0; | |
680 | ||
28dbbc02 BW |
681 | /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking |
682 | for it later. */ | |
683 | tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_", | |
684 | TRUE, FALSE, FALSE); | |
685 | tlsbase->root.type = bfd_link_hash_new; | |
686 | tlsbase->root.u.undef.abfd = NULL; | |
687 | tlsbase->non_elf = 0; | |
688 | ret->tlsbase = elf_xtensa_hash_entry (tlsbase); | |
689 | ret->tlsbase->tls_type = GOT_UNKNOWN; | |
690 | ||
f0e6fdb2 BW |
691 | return &ret->elf.root; |
692 | } | |
571b5725 | 693 | |
28dbbc02 BW |
694 | /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
695 | ||
696 | static void | |
697 | elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info, | |
698 | struct elf_link_hash_entry *dir, | |
699 | struct elf_link_hash_entry *ind) | |
700 | { | |
701 | struct elf_xtensa_link_hash_entry *edir, *eind; | |
702 | ||
703 | edir = elf_xtensa_hash_entry (dir); | |
704 | eind = elf_xtensa_hash_entry (ind); | |
705 | ||
706 | if (ind->root.type == bfd_link_hash_indirect) | |
707 | { | |
708 | edir->tlsfunc_refcount += eind->tlsfunc_refcount; | |
709 | eind->tlsfunc_refcount = 0; | |
710 | ||
711 | if (dir->got.refcount <= 0) | |
712 | { | |
713 | edir->tls_type = eind->tls_type; | |
714 | eind->tls_type = GOT_UNKNOWN; | |
715 | } | |
716 | } | |
717 | ||
718 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | |
719 | } | |
720 | ||
571b5725 | 721 | static inline bfd_boolean |
4608f3d9 | 722 | elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h, |
7fa3d080 | 723 | struct bfd_link_info *info) |
571b5725 BW |
724 | { |
725 | /* Check if we should do dynamic things to this symbol. The | |
726 | "ignore_protected" argument need not be set, because Xtensa code | |
727 | does not require special handling of STV_PROTECTED to make function | |
728 | pointer comparisons work properly. The PLT addresses are never | |
729 | used for function pointers. */ | |
730 | ||
731 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
732 | } | |
733 | ||
e0001a05 NC |
734 | \f |
735 | static int | |
7fa3d080 | 736 | property_table_compare (const void *ap, const void *bp) |
e0001a05 NC |
737 | { |
738 | const property_table_entry *a = (const property_table_entry *) ap; | |
739 | const property_table_entry *b = (const property_table_entry *) bp; | |
740 | ||
43cd72b9 BW |
741 | if (a->address == b->address) |
742 | { | |
43cd72b9 BW |
743 | if (a->size != b->size) |
744 | return (a->size - b->size); | |
745 | ||
746 | if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) | |
747 | return ((b->flags & XTENSA_PROP_ALIGN) | |
748 | - (a->flags & XTENSA_PROP_ALIGN)); | |
749 | ||
750 | if ((a->flags & XTENSA_PROP_ALIGN) | |
751 | && (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
752 | != GET_XTENSA_PROP_ALIGNMENT (b->flags))) | |
753 | return (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
754 | - GET_XTENSA_PROP_ALIGNMENT (b->flags)); | |
755 | ||
756 | if ((a->flags & XTENSA_PROP_UNREACHABLE) | |
757 | != (b->flags & XTENSA_PROP_UNREACHABLE)) | |
758 | return ((b->flags & XTENSA_PROP_UNREACHABLE) | |
759 | - (a->flags & XTENSA_PROP_UNREACHABLE)); | |
760 | ||
761 | return (a->flags - b->flags); | |
762 | } | |
763 | ||
764 | return (a->address - b->address); | |
765 | } | |
766 | ||
767 | ||
768 | static int | |
7fa3d080 | 769 | property_table_matches (const void *ap, const void *bp) |
43cd72b9 BW |
770 | { |
771 | const property_table_entry *a = (const property_table_entry *) ap; | |
772 | const property_table_entry *b = (const property_table_entry *) bp; | |
773 | ||
774 | /* Check if one entry overlaps with the other. */ | |
e0001a05 NC |
775 | if ((b->address >= a->address && b->address < (a->address + a->size)) |
776 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
777 | return 0; | |
778 | ||
779 | return (a->address - b->address); | |
780 | } | |
781 | ||
782 | ||
43cd72b9 BW |
783 | /* Get the literal table or property table entries for the given |
784 | section. Sets TABLE_P and returns the number of entries. On | |
785 | error, returns a negative value. */ | |
e0001a05 | 786 | |
7fa3d080 BW |
787 | static int |
788 | xtensa_read_table_entries (bfd *abfd, | |
789 | asection *section, | |
790 | property_table_entry **table_p, | |
791 | const char *sec_name, | |
792 | bfd_boolean output_addr) | |
e0001a05 NC |
793 | { |
794 | asection *table_section; | |
e0001a05 NC |
795 | bfd_size_type table_size = 0; |
796 | bfd_byte *table_data; | |
797 | property_table_entry *blocks; | |
e4115460 | 798 | int blk, block_count; |
e0001a05 | 799 | bfd_size_type num_records; |
bcc2cc8e BW |
800 | Elf_Internal_Rela *internal_relocs, *irel, *rel_end; |
801 | bfd_vma section_addr, off; | |
43cd72b9 | 802 | flagword predef_flags; |
bcc2cc8e | 803 | bfd_size_type table_entry_size, section_limit; |
43cd72b9 BW |
804 | |
805 | if (!section | |
806 | || !(section->flags & SEC_ALLOC) | |
807 | || (section->flags & SEC_DEBUGGING)) | |
808 | { | |
809 | *table_p = NULL; | |
810 | return 0; | |
811 | } | |
e0001a05 | 812 | |
74869ac7 | 813 | table_section = xtensa_get_property_section (section, sec_name); |
43cd72b9 | 814 | if (table_section) |
eea6121a | 815 | table_size = table_section->size; |
43cd72b9 | 816 | |
e0001a05 NC |
817 | if (table_size == 0) |
818 | { | |
819 | *table_p = NULL; | |
820 | return 0; | |
821 | } | |
822 | ||
43cd72b9 BW |
823 | predef_flags = xtensa_get_property_predef_flags (table_section); |
824 | table_entry_size = 12; | |
825 | if (predef_flags) | |
826 | table_entry_size -= 4; | |
827 | ||
828 | num_records = table_size / table_entry_size; | |
e0001a05 NC |
829 | table_data = retrieve_contents (abfd, table_section, TRUE); |
830 | blocks = (property_table_entry *) | |
831 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
832 | block_count = 0; | |
43cd72b9 BW |
833 | |
834 | if (output_addr) | |
835 | section_addr = section->output_section->vma + section->output_offset; | |
836 | else | |
837 | section_addr = section->vma; | |
3ba3bc8c | 838 | |
e0001a05 | 839 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); |
3ba3bc8c | 840 | if (internal_relocs && !table_section->reloc_done) |
e0001a05 | 841 | { |
bcc2cc8e BW |
842 | qsort (internal_relocs, table_section->reloc_count, |
843 | sizeof (Elf_Internal_Rela), internal_reloc_compare); | |
844 | irel = internal_relocs; | |
845 | } | |
846 | else | |
847 | irel = NULL; | |
848 | ||
849 | section_limit = bfd_get_section_limit (abfd, section); | |
850 | rel_end = internal_relocs + table_section->reloc_count; | |
851 | ||
852 | for (off = 0; off < table_size; off += table_entry_size) | |
853 | { | |
854 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
855 | ||
856 | /* Skip any relocations before the current offset. This should help | |
857 | avoid confusion caused by unexpected relocations for the preceding | |
858 | table entry. */ | |
859 | while (irel && | |
860 | (irel->r_offset < off | |
861 | || (irel->r_offset == off | |
862 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE))) | |
863 | { | |
864 | irel += 1; | |
865 | if (irel >= rel_end) | |
866 | irel = 0; | |
867 | } | |
e0001a05 | 868 | |
bcc2cc8e | 869 | if (irel && irel->r_offset == off) |
e0001a05 | 870 | { |
bcc2cc8e BW |
871 | bfd_vma sym_off; |
872 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); | |
873 | BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32); | |
e0001a05 | 874 | |
bcc2cc8e | 875 | if (get_elf_r_symndx_section (abfd, r_symndx) != section) |
e0001a05 NC |
876 | continue; |
877 | ||
bcc2cc8e BW |
878 | sym_off = get_elf_r_symndx_offset (abfd, r_symndx); |
879 | BFD_ASSERT (sym_off == 0); | |
880 | address += (section_addr + sym_off + irel->r_addend); | |
e0001a05 | 881 | } |
bcc2cc8e | 882 | else |
e0001a05 | 883 | { |
bcc2cc8e BW |
884 | if (address < section_addr |
885 | || address >= section_addr + section_limit) | |
886 | continue; | |
e0001a05 | 887 | } |
bcc2cc8e BW |
888 | |
889 | blocks[block_count].address = address; | |
890 | blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4); | |
891 | if (predef_flags) | |
892 | blocks[block_count].flags = predef_flags; | |
893 | else | |
894 | blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8); | |
895 | block_count++; | |
e0001a05 NC |
896 | } |
897 | ||
898 | release_contents (table_section, table_data); | |
899 | release_internal_relocs (table_section, internal_relocs); | |
900 | ||
43cd72b9 | 901 | if (block_count > 0) |
e0001a05 NC |
902 | { |
903 | /* Now sort them into address order for easy reference. */ | |
904 | qsort (blocks, block_count, sizeof (property_table_entry), | |
905 | property_table_compare); | |
e4115460 BW |
906 | |
907 | /* Check that the table contents are valid. Problems may occur, | |
908 | for example, if an unrelocated object file is stripped. */ | |
909 | for (blk = 1; blk < block_count; blk++) | |
910 | { | |
911 | /* The only circumstance where two entries may legitimately | |
912 | have the same address is when one of them is a zero-size | |
913 | placeholder to mark a place where fill can be inserted. | |
914 | The zero-size entry should come first. */ | |
915 | if (blocks[blk - 1].address == blocks[blk].address && | |
916 | blocks[blk - 1].size != 0) | |
917 | { | |
918 | (*_bfd_error_handler) (_("%B(%A): invalid property table"), | |
919 | abfd, section); | |
920 | bfd_set_error (bfd_error_bad_value); | |
921 | free (blocks); | |
922 | return -1; | |
923 | } | |
924 | } | |
e0001a05 | 925 | } |
43cd72b9 | 926 | |
e0001a05 NC |
927 | *table_p = blocks; |
928 | return block_count; | |
929 | } | |
930 | ||
931 | ||
7fa3d080 BW |
932 | static property_table_entry * |
933 | elf_xtensa_find_property_entry (property_table_entry *property_table, | |
934 | int property_table_size, | |
935 | bfd_vma addr) | |
e0001a05 NC |
936 | { |
937 | property_table_entry entry; | |
43cd72b9 | 938 | property_table_entry *rv; |
e0001a05 | 939 | |
43cd72b9 BW |
940 | if (property_table_size == 0) |
941 | return NULL; | |
e0001a05 NC |
942 | |
943 | entry.address = addr; | |
944 | entry.size = 1; | |
43cd72b9 | 945 | entry.flags = 0; |
e0001a05 | 946 | |
43cd72b9 BW |
947 | rv = bsearch (&entry, property_table, property_table_size, |
948 | sizeof (property_table_entry), property_table_matches); | |
949 | return rv; | |
950 | } | |
951 | ||
952 | ||
953 | static bfd_boolean | |
7fa3d080 BW |
954 | elf_xtensa_in_literal_pool (property_table_entry *lit_table, |
955 | int lit_table_size, | |
956 | bfd_vma addr) | |
43cd72b9 BW |
957 | { |
958 | if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) | |
e0001a05 NC |
959 | return TRUE; |
960 | ||
961 | return FALSE; | |
962 | } | |
963 | ||
964 | \f | |
965 | /* Look through the relocs for a section during the first phase, and | |
966 | calculate needed space in the dynamic reloc sections. */ | |
967 | ||
968 | static bfd_boolean | |
7fa3d080 BW |
969 | elf_xtensa_check_relocs (bfd *abfd, |
970 | struct bfd_link_info *info, | |
971 | asection *sec, | |
972 | const Elf_Internal_Rela *relocs) | |
e0001a05 | 973 | { |
f0e6fdb2 | 974 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
975 | Elf_Internal_Shdr *symtab_hdr; |
976 | struct elf_link_hash_entry **sym_hashes; | |
977 | const Elf_Internal_Rela *rel; | |
978 | const Elf_Internal_Rela *rel_end; | |
e0001a05 | 979 | |
28dbbc02 | 980 | if (info->relocatable || (sec->flags & SEC_ALLOC) == 0) |
e0001a05 NC |
981 | return TRUE; |
982 | ||
28dbbc02 BW |
983 | BFD_ASSERT (is_xtensa_elf (abfd)); |
984 | ||
f0e6fdb2 | 985 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
986 | if (htab == NULL) |
987 | return FALSE; | |
988 | ||
e0001a05 NC |
989 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
990 | sym_hashes = elf_sym_hashes (abfd); | |
991 | ||
e0001a05 NC |
992 | rel_end = relocs + sec->reloc_count; |
993 | for (rel = relocs; rel < rel_end; rel++) | |
994 | { | |
995 | unsigned int r_type; | |
996 | unsigned long r_symndx; | |
28dbbc02 BW |
997 | struct elf_link_hash_entry *h = NULL; |
998 | struct elf_xtensa_link_hash_entry *eh; | |
999 | int tls_type, old_tls_type; | |
1000 | bfd_boolean is_got = FALSE; | |
1001 | bfd_boolean is_plt = FALSE; | |
1002 | bfd_boolean is_tlsfunc = FALSE; | |
e0001a05 NC |
1003 | |
1004 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1005 | r_type = ELF32_R_TYPE (rel->r_info); | |
1006 | ||
1007 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
1008 | { | |
d003868e AM |
1009 | (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
1010 | abfd, r_symndx); | |
e0001a05 NC |
1011 | return FALSE; |
1012 | } | |
1013 | ||
28dbbc02 | 1014 | if (r_symndx >= symtab_hdr->sh_info) |
e0001a05 NC |
1015 | { |
1016 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1017 | while (h->root.type == bfd_link_hash_indirect | |
1018 | || h->root.type == bfd_link_hash_warning) | |
1019 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1020 | } | |
28dbbc02 | 1021 | eh = elf_xtensa_hash_entry (h); |
e0001a05 NC |
1022 | |
1023 | switch (r_type) | |
1024 | { | |
28dbbc02 BW |
1025 | case R_XTENSA_TLSDESC_FN: |
1026 | if (info->shared) | |
1027 | { | |
1028 | tls_type = GOT_TLS_GD; | |
1029 | is_got = TRUE; | |
1030 | is_tlsfunc = TRUE; | |
1031 | } | |
1032 | else | |
1033 | tls_type = GOT_TLS_IE; | |
1034 | break; | |
e0001a05 | 1035 | |
28dbbc02 BW |
1036 | case R_XTENSA_TLSDESC_ARG: |
1037 | if (info->shared) | |
e0001a05 | 1038 | { |
28dbbc02 BW |
1039 | tls_type = GOT_TLS_GD; |
1040 | is_got = TRUE; | |
1041 | } | |
1042 | else | |
1043 | { | |
1044 | tls_type = GOT_TLS_IE; | |
1045 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) | |
1046 | is_got = TRUE; | |
e0001a05 NC |
1047 | } |
1048 | break; | |
1049 | ||
28dbbc02 BW |
1050 | case R_XTENSA_TLS_DTPOFF: |
1051 | if (info->shared) | |
1052 | tls_type = GOT_TLS_GD; | |
1053 | else | |
1054 | tls_type = GOT_TLS_IE; | |
1055 | break; | |
1056 | ||
1057 | case R_XTENSA_TLS_TPOFF: | |
1058 | tls_type = GOT_TLS_IE; | |
1059 | if (info->shared) | |
1060 | info->flags |= DF_STATIC_TLS; | |
1061 | if (info->shared || h) | |
1062 | is_got = TRUE; | |
1063 | break; | |
1064 | ||
1065 | case R_XTENSA_32: | |
1066 | tls_type = GOT_NORMAL; | |
1067 | is_got = TRUE; | |
1068 | break; | |
1069 | ||
e0001a05 | 1070 | case R_XTENSA_PLT: |
28dbbc02 BW |
1071 | tls_type = GOT_NORMAL; |
1072 | is_plt = TRUE; | |
1073 | break; | |
e0001a05 | 1074 | |
28dbbc02 BW |
1075 | case R_XTENSA_GNU_VTINHERIT: |
1076 | /* This relocation describes the C++ object vtable hierarchy. | |
1077 | Reconstruct it for later use during GC. */ | |
1078 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
1079 | return FALSE; | |
1080 | continue; | |
1081 | ||
1082 | case R_XTENSA_GNU_VTENTRY: | |
1083 | /* This relocation describes which C++ vtable entries are actually | |
1084 | used. Record for later use during GC. */ | |
1085 | BFD_ASSERT (h != NULL); | |
1086 | if (h != NULL | |
1087 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
1088 | return FALSE; | |
1089 | continue; | |
1090 | ||
1091 | default: | |
1092 | /* Nothing to do for any other relocations. */ | |
1093 | continue; | |
1094 | } | |
1095 | ||
1096 | if (h) | |
1097 | { | |
1098 | if (is_plt) | |
e0001a05 | 1099 | { |
b45329f9 BW |
1100 | if (h->plt.refcount <= 0) |
1101 | { | |
1102 | h->needs_plt = 1; | |
1103 | h->plt.refcount = 1; | |
1104 | } | |
1105 | else | |
1106 | h->plt.refcount += 1; | |
e0001a05 NC |
1107 | |
1108 | /* Keep track of the total PLT relocation count even if we | |
1109 | don't yet know whether the dynamic sections will be | |
1110 | created. */ | |
f0e6fdb2 | 1111 | htab->plt_reloc_count += 1; |
e0001a05 NC |
1112 | |
1113 | if (elf_hash_table (info)->dynamic_sections_created) | |
1114 | { | |
f0e6fdb2 | 1115 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1116 | return FALSE; |
1117 | } | |
1118 | } | |
28dbbc02 | 1119 | else if (is_got) |
b45329f9 BW |
1120 | { |
1121 | if (h->got.refcount <= 0) | |
1122 | h->got.refcount = 1; | |
1123 | else | |
1124 | h->got.refcount += 1; | |
1125 | } | |
28dbbc02 BW |
1126 | |
1127 | if (is_tlsfunc) | |
1128 | eh->tlsfunc_refcount += 1; | |
e0001a05 | 1129 | |
28dbbc02 BW |
1130 | old_tls_type = eh->tls_type; |
1131 | } | |
1132 | else | |
1133 | { | |
1134 | /* Allocate storage the first time. */ | |
1135 | if (elf_local_got_refcounts (abfd) == NULL) | |
e0001a05 | 1136 | { |
28dbbc02 BW |
1137 | bfd_size_type size = symtab_hdr->sh_info; |
1138 | void *mem; | |
e0001a05 | 1139 | |
28dbbc02 BW |
1140 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); |
1141 | if (mem == NULL) | |
1142 | return FALSE; | |
1143 | elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem; | |
e0001a05 | 1144 | |
28dbbc02 BW |
1145 | mem = bfd_zalloc (abfd, size); |
1146 | if (mem == NULL) | |
1147 | return FALSE; | |
1148 | elf_xtensa_local_got_tls_type (abfd) = (char *) mem; | |
1149 | ||
1150 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); | |
1151 | if (mem == NULL) | |
1152 | return FALSE; | |
1153 | elf_xtensa_local_tlsfunc_refcounts (abfd) | |
1154 | = (bfd_signed_vma *) mem; | |
e0001a05 | 1155 | } |
e0001a05 | 1156 | |
28dbbc02 BW |
1157 | /* This is a global offset table entry for a local symbol. */ |
1158 | if (is_got || is_plt) | |
1159 | elf_local_got_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1160 | |
28dbbc02 BW |
1161 | if (is_tlsfunc) |
1162 | elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1163 | |
28dbbc02 BW |
1164 | old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx]; |
1165 | } | |
1166 | ||
1167 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) | |
1168 | tls_type |= old_tls_type; | |
1169 | /* If a TLS symbol is accessed using IE at least once, | |
1170 | there is no point to use a dynamic model for it. */ | |
1171 | else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN | |
1172 | && ((old_tls_type & GOT_TLS_GD) == 0 | |
1173 | || (tls_type & GOT_TLS_IE) == 0)) | |
1174 | { | |
1175 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD)) | |
1176 | tls_type = old_tls_type; | |
1177 | else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD)) | |
1178 | tls_type |= old_tls_type; | |
1179 | else | |
1180 | { | |
1181 | (*_bfd_error_handler) | |
1182 | (_("%B: `%s' accessed both as normal and thread local symbol"), | |
1183 | abfd, | |
1184 | h ? h->root.root.string : "<local>"); | |
1185 | return FALSE; | |
1186 | } | |
1187 | } | |
1188 | ||
1189 | if (old_tls_type != tls_type) | |
1190 | { | |
1191 | if (eh) | |
1192 | eh->tls_type = tls_type; | |
1193 | else | |
1194 | elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type; | |
e0001a05 NC |
1195 | } |
1196 | } | |
1197 | ||
e0001a05 NC |
1198 | return TRUE; |
1199 | } | |
1200 | ||
1201 | ||
95147441 BW |
1202 | static void |
1203 | elf_xtensa_make_sym_local (struct bfd_link_info *info, | |
1204 | struct elf_link_hash_entry *h) | |
1205 | { | |
1206 | if (info->shared) | |
1207 | { | |
1208 | if (h->plt.refcount > 0) | |
1209 | { | |
1210 | /* For shared objects, there's no need for PLT entries for local | |
1211 | symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */ | |
1212 | if (h->got.refcount < 0) | |
1213 | h->got.refcount = 0; | |
1214 | h->got.refcount += h->plt.refcount; | |
1215 | h->plt.refcount = 0; | |
1216 | } | |
1217 | } | |
1218 | else | |
1219 | { | |
1220 | /* Don't need any dynamic relocations at all. */ | |
1221 | h->plt.refcount = 0; | |
1222 | h->got.refcount = 0; | |
1223 | } | |
1224 | } | |
1225 | ||
1226 | ||
1227 | static void | |
1228 | elf_xtensa_hide_symbol (struct bfd_link_info *info, | |
1229 | struct elf_link_hash_entry *h, | |
1230 | bfd_boolean force_local) | |
1231 | { | |
1232 | /* For a shared link, move the plt refcount to the got refcount to leave | |
1233 | space for RELATIVE relocs. */ | |
1234 | elf_xtensa_make_sym_local (info, h); | |
1235 | ||
1236 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
1237 | } | |
1238 | ||
1239 | ||
e0001a05 NC |
1240 | /* Return the section that should be marked against GC for a given |
1241 | relocation. */ | |
1242 | ||
1243 | static asection * | |
7fa3d080 | 1244 | elf_xtensa_gc_mark_hook (asection *sec, |
07adf181 | 1245 | struct bfd_link_info *info, |
7fa3d080 BW |
1246 | Elf_Internal_Rela *rel, |
1247 | struct elf_link_hash_entry *h, | |
1248 | Elf_Internal_Sym *sym) | |
e0001a05 | 1249 | { |
e1e5c0b5 BW |
1250 | /* Property sections are marked "KEEP" in the linker scripts, but they |
1251 | should not cause other sections to be marked. (This approach relies | |
1252 | on elf_xtensa_discard_info to remove property table entries that | |
1253 | describe discarded sections. Alternatively, it might be more | |
1254 | efficient to avoid using "KEEP" in the linker scripts and instead use | |
1255 | the gc_mark_extra_sections hook to mark only the property sections | |
1256 | that describe marked sections. That alternative does not work well | |
1257 | with the current property table sections, which do not correspond | |
1258 | one-to-one with the sections they describe, but that should be fixed | |
1259 | someday.) */ | |
1260 | if (xtensa_is_property_section (sec)) | |
1261 | return NULL; | |
1262 | ||
07adf181 AM |
1263 | if (h != NULL) |
1264 | switch (ELF32_R_TYPE (rel->r_info)) | |
1265 | { | |
1266 | case R_XTENSA_GNU_VTINHERIT: | |
1267 | case R_XTENSA_GNU_VTENTRY: | |
1268 | return NULL; | |
1269 | } | |
1270 | ||
1271 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | |
e0001a05 NC |
1272 | } |
1273 | ||
7fa3d080 | 1274 | |
e0001a05 NC |
1275 | /* Update the GOT & PLT entry reference counts |
1276 | for the section being removed. */ | |
1277 | ||
1278 | static bfd_boolean | |
7fa3d080 | 1279 | elf_xtensa_gc_sweep_hook (bfd *abfd, |
28dbbc02 | 1280 | struct bfd_link_info *info, |
7fa3d080 BW |
1281 | asection *sec, |
1282 | const Elf_Internal_Rela *relocs) | |
e0001a05 NC |
1283 | { |
1284 | Elf_Internal_Shdr *symtab_hdr; | |
1285 | struct elf_link_hash_entry **sym_hashes; | |
e0001a05 | 1286 | const Elf_Internal_Rela *rel, *relend; |
28dbbc02 BW |
1287 | struct elf_xtensa_link_hash_table *htab; |
1288 | ||
1289 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1290 | if (htab == NULL) |
1291 | return FALSE; | |
e0001a05 | 1292 | |
7dda2462 TG |
1293 | if (info->relocatable) |
1294 | return TRUE; | |
1295 | ||
e0001a05 NC |
1296 | if ((sec->flags & SEC_ALLOC) == 0) |
1297 | return TRUE; | |
1298 | ||
1299 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1300 | sym_hashes = elf_sym_hashes (abfd); | |
e0001a05 NC |
1301 | |
1302 | relend = relocs + sec->reloc_count; | |
1303 | for (rel = relocs; rel < relend; rel++) | |
1304 | { | |
1305 | unsigned long r_symndx; | |
1306 | unsigned int r_type; | |
1307 | struct elf_link_hash_entry *h = NULL; | |
28dbbc02 BW |
1308 | struct elf_xtensa_link_hash_entry *eh; |
1309 | bfd_boolean is_got = FALSE; | |
1310 | bfd_boolean is_plt = FALSE; | |
1311 | bfd_boolean is_tlsfunc = FALSE; | |
e0001a05 NC |
1312 | |
1313 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1314 | if (r_symndx >= symtab_hdr->sh_info) | |
3eb128b2 AM |
1315 | { |
1316 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1317 | while (h->root.type == bfd_link_hash_indirect | |
1318 | || h->root.type == bfd_link_hash_warning) | |
1319 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1320 | } | |
28dbbc02 | 1321 | eh = elf_xtensa_hash_entry (h); |
e0001a05 NC |
1322 | |
1323 | r_type = ELF32_R_TYPE (rel->r_info); | |
1324 | switch (r_type) | |
1325 | { | |
28dbbc02 BW |
1326 | case R_XTENSA_TLSDESC_FN: |
1327 | if (info->shared) | |
1328 | { | |
1329 | is_got = TRUE; | |
1330 | is_tlsfunc = TRUE; | |
1331 | } | |
e0001a05 NC |
1332 | break; |
1333 | ||
28dbbc02 BW |
1334 | case R_XTENSA_TLSDESC_ARG: |
1335 | if (info->shared) | |
1336 | is_got = TRUE; | |
1337 | else | |
1338 | { | |
1339 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) | |
1340 | is_got = TRUE; | |
1341 | } | |
e0001a05 NC |
1342 | break; |
1343 | ||
28dbbc02 BW |
1344 | case R_XTENSA_TLS_TPOFF: |
1345 | if (info->shared || h) | |
1346 | is_got = TRUE; | |
e0001a05 NC |
1347 | break; |
1348 | ||
28dbbc02 BW |
1349 | case R_XTENSA_32: |
1350 | is_got = TRUE; | |
e0001a05 | 1351 | break; |
28dbbc02 BW |
1352 | |
1353 | case R_XTENSA_PLT: | |
1354 | is_plt = TRUE; | |
1355 | break; | |
1356 | ||
1357 | default: | |
1358 | continue; | |
1359 | } | |
1360 | ||
1361 | if (h) | |
1362 | { | |
1363 | if (is_plt) | |
1364 | { | |
1365 | if (h->plt.refcount > 0) | |
1366 | h->plt.refcount--; | |
1367 | } | |
1368 | else if (is_got) | |
1369 | { | |
1370 | if (h->got.refcount > 0) | |
1371 | h->got.refcount--; | |
1372 | } | |
1373 | if (is_tlsfunc) | |
1374 | { | |
1375 | if (eh->tlsfunc_refcount > 0) | |
1376 | eh->tlsfunc_refcount--; | |
1377 | } | |
1378 | } | |
1379 | else | |
1380 | { | |
1381 | if (is_got || is_plt) | |
1382 | { | |
1383 | bfd_signed_vma *got_refcount | |
1384 | = &elf_local_got_refcounts (abfd) [r_symndx]; | |
1385 | if (*got_refcount > 0) | |
1386 | *got_refcount -= 1; | |
1387 | } | |
1388 | if (is_tlsfunc) | |
1389 | { | |
1390 | bfd_signed_vma *tlsfunc_refcount | |
1391 | = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx]; | |
1392 | if (*tlsfunc_refcount > 0) | |
1393 | *tlsfunc_refcount -= 1; | |
1394 | } | |
e0001a05 NC |
1395 | } |
1396 | } | |
1397 | ||
1398 | return TRUE; | |
1399 | } | |
1400 | ||
1401 | ||
1402 | /* Create all the dynamic sections. */ | |
1403 | ||
1404 | static bfd_boolean | |
7fa3d080 | 1405 | elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
e0001a05 | 1406 | { |
f0e6fdb2 | 1407 | struct elf_xtensa_link_hash_table *htab; |
e901de89 | 1408 | flagword flags, noalloc_flags; |
f0e6fdb2 BW |
1409 | |
1410 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1411 | if (htab == NULL) |
1412 | return FALSE; | |
e0001a05 NC |
1413 | |
1414 | /* First do all the standard stuff. */ | |
1415 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
1416 | return FALSE; | |
f0e6fdb2 BW |
1417 | htab->splt = bfd_get_section_by_name (dynobj, ".plt"); |
1418 | htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
1419 | htab->sgot = bfd_get_section_by_name (dynobj, ".got"); | |
1420 | htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); | |
64e77c6d | 1421 | htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); |
e0001a05 NC |
1422 | |
1423 | /* Create any extra PLT sections in case check_relocs has already | |
1424 | been called on all the non-dynamic input files. */ | |
f0e6fdb2 | 1425 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1426 | return FALSE; |
1427 | ||
e901de89 BW |
1428 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1429 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1430 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
1431 | |
1432 | /* Mark the ".got.plt" section READONLY. */ | |
f0e6fdb2 BW |
1433 | if (htab->sgotplt == NULL |
1434 | || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags)) | |
e0001a05 NC |
1435 | return FALSE; |
1436 | ||
e901de89 | 1437 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
f0e6fdb2 BW |
1438 | htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags); |
1439 | if (htab->sgotloc == NULL | |
1440 | || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2)) | |
e901de89 BW |
1441 | return FALSE; |
1442 | ||
e0001a05 | 1443 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
f0e6fdb2 BW |
1444 | htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt", |
1445 | noalloc_flags); | |
1446 | if (htab->spltlittbl == NULL | |
1447 | || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2)) | |
e0001a05 NC |
1448 | return FALSE; |
1449 | ||
1450 | return TRUE; | |
1451 | } | |
1452 | ||
1453 | ||
1454 | static bfd_boolean | |
f0e6fdb2 | 1455 | add_extra_plt_sections (struct bfd_link_info *info, int count) |
e0001a05 | 1456 | { |
f0e6fdb2 | 1457 | bfd *dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
1458 | int chunk; |
1459 | ||
1460 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
1461 | ".got.plt" sections. */ | |
1462 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
1463 | { | |
1464 | char *sname; | |
1465 | flagword flags; | |
1466 | asection *s; | |
1467 | ||
1468 | /* Stop when we find a section has already been created. */ | |
f0e6fdb2 | 1469 | if (elf_xtensa_get_plt_section (info, chunk)) |
e0001a05 NC |
1470 | break; |
1471 | ||
1472 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
1473 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1474 | ||
1475 | sname = (char *) bfd_malloc (10); | |
1476 | sprintf (sname, ".plt.%u", chunk); | |
ba05963f | 1477 | s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE); |
e0001a05 | 1478 | if (s == NULL |
e0001a05 NC |
1479 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1480 | return FALSE; | |
1481 | ||
1482 | sname = (char *) bfd_malloc (14); | |
1483 | sprintf (sname, ".got.plt.%u", chunk); | |
3496cb2a | 1484 | s = bfd_make_section_with_flags (dynobj, sname, flags); |
e0001a05 | 1485 | if (s == NULL |
e0001a05 NC |
1486 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1487 | return FALSE; | |
1488 | } | |
1489 | ||
1490 | return TRUE; | |
1491 | } | |
1492 | ||
1493 | ||
1494 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1495 | regular object. The current definition is in some section of the | |
1496 | dynamic object, but we're not including those sections. We have to | |
1497 | change the definition to something the rest of the link can | |
1498 | understand. */ | |
1499 | ||
1500 | static bfd_boolean | |
7fa3d080 BW |
1501 | elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1502 | struct elf_link_hash_entry *h) | |
e0001a05 NC |
1503 | { |
1504 | /* If this is a weak symbol, and there is a real definition, the | |
1505 | processor independent code will have arranged for us to see the | |
1506 | real definition first, and we can just use the same value. */ | |
7fa3d080 | 1507 | if (h->u.weakdef) |
e0001a05 | 1508 | { |
f6e332e6 AM |
1509 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
1510 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
1511 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
1512 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
e0001a05 NC |
1513 | return TRUE; |
1514 | } | |
1515 | ||
1516 | /* This is a reference to a symbol defined by a dynamic object. The | |
1517 | reference must go through the GOT, so there's no need for COPY relocs, | |
1518 | .dynbss, etc. */ | |
1519 | ||
1520 | return TRUE; | |
1521 | } | |
1522 | ||
1523 | ||
e0001a05 | 1524 | static bfd_boolean |
f1ab2340 | 1525 | elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg) |
e0001a05 | 1526 | { |
f1ab2340 BW |
1527 | struct bfd_link_info *info; |
1528 | struct elf_xtensa_link_hash_table *htab; | |
28dbbc02 | 1529 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h); |
e0001a05 | 1530 | |
f1ab2340 BW |
1531 | if (h->root.type == bfd_link_hash_indirect) |
1532 | return TRUE; | |
e0001a05 NC |
1533 | |
1534 | if (h->root.type == bfd_link_hash_warning) | |
1535 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1536 | ||
f1ab2340 BW |
1537 | info = (struct bfd_link_info *) arg; |
1538 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1539 | if (htab == NULL) |
1540 | return FALSE; | |
e0001a05 | 1541 | |
28dbbc02 BW |
1542 | /* If we saw any use of an IE model for this symbol, we can then optimize |
1543 | away GOT entries for any TLSDESC_FN relocs. */ | |
1544 | if ((eh->tls_type & GOT_TLS_IE) != 0) | |
1545 | { | |
1546 | BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount); | |
1547 | h->got.refcount -= eh->tlsfunc_refcount; | |
1548 | } | |
e0001a05 | 1549 | |
28dbbc02 | 1550 | if (! elf_xtensa_dynamic_symbol_p (h, info)) |
95147441 | 1551 | elf_xtensa_make_sym_local (info, h); |
e0001a05 | 1552 | |
f1ab2340 BW |
1553 | if (h->plt.refcount > 0) |
1554 | htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1555 | |
1556 | if (h->got.refcount > 0) | |
f1ab2340 | 1557 | htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1558 | |
1559 | return TRUE; | |
1560 | } | |
1561 | ||
1562 | ||
1563 | static void | |
f0e6fdb2 | 1564 | elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) |
e0001a05 | 1565 | { |
f0e6fdb2 | 1566 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
1567 | bfd *i; |
1568 | ||
f0e6fdb2 | 1569 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1570 | if (htab == NULL) |
1571 | return; | |
f0e6fdb2 | 1572 | |
e0001a05 NC |
1573 | for (i = info->input_bfds; i; i = i->link_next) |
1574 | { | |
1575 | bfd_signed_vma *local_got_refcounts; | |
1576 | bfd_size_type j, cnt; | |
1577 | Elf_Internal_Shdr *symtab_hdr; | |
1578 | ||
1579 | local_got_refcounts = elf_local_got_refcounts (i); | |
1580 | if (!local_got_refcounts) | |
1581 | continue; | |
1582 | ||
1583 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1584 | cnt = symtab_hdr->sh_info; | |
1585 | ||
1586 | for (j = 0; j < cnt; ++j) | |
1587 | { | |
28dbbc02 BW |
1588 | /* If we saw any use of an IE model for this symbol, we can |
1589 | then optimize away GOT entries for any TLSDESC_FN relocs. */ | |
1590 | if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0) | |
1591 | { | |
1592 | bfd_signed_vma *tlsfunc_refcount | |
1593 | = &elf_xtensa_local_tlsfunc_refcounts (i) [j]; | |
1594 | BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount); | |
1595 | local_got_refcounts[j] -= *tlsfunc_refcount; | |
1596 | } | |
1597 | ||
e0001a05 | 1598 | if (local_got_refcounts[j] > 0) |
f0e6fdb2 BW |
1599 | htab->srelgot->size += (local_got_refcounts[j] |
1600 | * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1601 | } |
1602 | } | |
1603 | } | |
1604 | ||
1605 | ||
1606 | /* Set the sizes of the dynamic sections. */ | |
1607 | ||
1608 | static bfd_boolean | |
7fa3d080 BW |
1609 | elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1610 | struct bfd_link_info *info) | |
e0001a05 | 1611 | { |
f0e6fdb2 | 1612 | struct elf_xtensa_link_hash_table *htab; |
e901de89 BW |
1613 | bfd *dynobj, *abfd; |
1614 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1615 | bfd_boolean relplt, relgot; |
1616 | int plt_entries, plt_chunks, chunk; | |
1617 | ||
1618 | plt_entries = 0; | |
1619 | plt_chunks = 0; | |
e0001a05 | 1620 | |
f0e6fdb2 | 1621 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1622 | if (htab == NULL) |
1623 | return FALSE; | |
1624 | ||
e0001a05 NC |
1625 | dynobj = elf_hash_table (info)->dynobj; |
1626 | if (dynobj == NULL) | |
1627 | abort (); | |
f0e6fdb2 BW |
1628 | srelgot = htab->srelgot; |
1629 | srelplt = htab->srelplt; | |
e0001a05 NC |
1630 | |
1631 | if (elf_hash_table (info)->dynamic_sections_created) | |
1632 | { | |
f0e6fdb2 BW |
1633 | BFD_ASSERT (htab->srelgot != NULL |
1634 | && htab->srelplt != NULL | |
1635 | && htab->sgot != NULL | |
1636 | && htab->spltlittbl != NULL | |
1637 | && htab->sgotloc != NULL); | |
1638 | ||
e0001a05 | 1639 | /* Set the contents of the .interp section to the interpreter. */ |
893c4fe2 | 1640 | if (info->executable) |
e0001a05 NC |
1641 | { |
1642 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1643 | if (s == NULL) | |
1644 | abort (); | |
eea6121a | 1645 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
e0001a05 NC |
1646 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1647 | } | |
1648 | ||
1649 | /* Allocate room for one word in ".got". */ | |
f0e6fdb2 | 1650 | htab->sgot->size = 4; |
e0001a05 | 1651 | |
f1ab2340 BW |
1652 | /* Allocate space in ".rela.got" for literals that reference global |
1653 | symbols and space in ".rela.plt" for literals that have PLT | |
1654 | entries. */ | |
e0001a05 | 1655 | elf_link_hash_traverse (elf_hash_table (info), |
f1ab2340 | 1656 | elf_xtensa_allocate_dynrelocs, |
7fa3d080 | 1657 | (void *) info); |
e0001a05 | 1658 | |
e0001a05 NC |
1659 | /* If we are generating a shared object, we also need space in |
1660 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1661 | reference local symbols. */ | |
1662 | if (info->shared) | |
f0e6fdb2 | 1663 | elf_xtensa_allocate_local_got_size (info); |
e0001a05 | 1664 | |
e0001a05 NC |
1665 | /* Allocate space in ".plt" to match the size of ".rela.plt". For |
1666 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1667 | For each chunk of ".plt", we also need two more 4-byte | |
1668 | literals, two corresponding entries in ".rela.got", and an | |
1669 | 8-byte entry in ".xt.lit.plt". */ | |
f0e6fdb2 | 1670 | spltlittbl = htab->spltlittbl; |
eea6121a | 1671 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
1672 | plt_chunks = |
1673 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1674 | ||
1675 | /* Iterate over all the PLT chunks, including any extra sections | |
1676 | created earlier because the initial count of PLT relocations | |
1677 | was an overestimate. */ | |
1678 | for (chunk = 0; | |
f0e6fdb2 | 1679 | (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; |
e0001a05 NC |
1680 | chunk++) |
1681 | { | |
1682 | int chunk_entries; | |
1683 | ||
f0e6fdb2 BW |
1684 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
1685 | BFD_ASSERT (sgotplt != NULL); | |
e0001a05 NC |
1686 | |
1687 | if (chunk < plt_chunks - 1) | |
1688 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1689 | else if (chunk == plt_chunks - 1) | |
1690 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1691 | else | |
1692 | chunk_entries = 0; | |
1693 | ||
1694 | if (chunk_entries != 0) | |
1695 | { | |
eea6121a AM |
1696 | sgotplt->size = 4 * (chunk_entries + 2); |
1697 | splt->size = PLT_ENTRY_SIZE * chunk_entries; | |
1698 | srelgot->size += 2 * sizeof (Elf32_External_Rela); | |
1699 | spltlittbl->size += 8; | |
e0001a05 NC |
1700 | } |
1701 | else | |
1702 | { | |
eea6121a AM |
1703 | sgotplt->size = 0; |
1704 | splt->size = 0; | |
e0001a05 NC |
1705 | } |
1706 | } | |
e901de89 BW |
1707 | |
1708 | /* Allocate space in ".got.loc" to match the total size of all the | |
1709 | literal tables. */ | |
f0e6fdb2 | 1710 | sgotloc = htab->sgotloc; |
eea6121a | 1711 | sgotloc->size = spltlittbl->size; |
e901de89 BW |
1712 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) |
1713 | { | |
1714 | if (abfd->flags & DYNAMIC) | |
1715 | continue; | |
1716 | for (s = abfd->sections; s != NULL; s = s->next) | |
1717 | { | |
b536dc1e BW |
1718 | if (! elf_discarded_section (s) |
1719 | && xtensa_is_littable_section (s) | |
1720 | && s != spltlittbl) | |
eea6121a | 1721 | sgotloc->size += s->size; |
e901de89 BW |
1722 | } |
1723 | } | |
e0001a05 NC |
1724 | } |
1725 | ||
1726 | /* Allocate memory for dynamic sections. */ | |
1727 | relplt = FALSE; | |
1728 | relgot = FALSE; | |
1729 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1730 | { | |
1731 | const char *name; | |
e0001a05 NC |
1732 | |
1733 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1734 | continue; | |
1735 | ||
1736 | /* It's OK to base decisions on the section name, because none | |
1737 | of the dynobj section names depend upon the input files. */ | |
1738 | name = bfd_get_section_name (dynobj, s); | |
1739 | ||
0112cd26 | 1740 | if (CONST_STRNEQ (name, ".rela")) |
e0001a05 | 1741 | { |
c456f082 | 1742 | if (s->size != 0) |
e0001a05 | 1743 | { |
c456f082 AM |
1744 | if (strcmp (name, ".rela.plt") == 0) |
1745 | relplt = TRUE; | |
1746 | else if (strcmp (name, ".rela.got") == 0) | |
1747 | relgot = TRUE; | |
1748 | ||
1749 | /* We use the reloc_count field as a counter if we need | |
1750 | to copy relocs into the output file. */ | |
1751 | s->reloc_count = 0; | |
e0001a05 NC |
1752 | } |
1753 | } | |
0112cd26 NC |
1754 | else if (! CONST_STRNEQ (name, ".plt.") |
1755 | && ! CONST_STRNEQ (name, ".got.plt.") | |
c456f082 | 1756 | && strcmp (name, ".got") != 0 |
e0001a05 NC |
1757 | && strcmp (name, ".plt") != 0 |
1758 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1759 | && strcmp (name, ".xt.lit.plt") != 0 |
1760 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1761 | { |
1762 | /* It's not one of our sections, so don't allocate space. */ | |
1763 | continue; | |
1764 | } | |
1765 | ||
c456f082 AM |
1766 | if (s->size == 0) |
1767 | { | |
1768 | /* If we don't need this section, strip it from the output | |
1769 | file. We must create the ".plt*" and ".got.plt*" | |
1770 | sections in create_dynamic_sections and/or check_relocs | |
1771 | based on a conservative estimate of the PLT relocation | |
1772 | count, because the sections must be created before the | |
1773 | linker maps input sections to output sections. The | |
1774 | linker does that before size_dynamic_sections, where we | |
1775 | compute the exact size of the PLT, so there may be more | |
1776 | of these sections than are actually needed. */ | |
1777 | s->flags |= SEC_EXCLUDE; | |
1778 | } | |
1779 | else if ((s->flags & SEC_HAS_CONTENTS) != 0) | |
e0001a05 NC |
1780 | { |
1781 | /* Allocate memory for the section contents. */ | |
eea6121a | 1782 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1783 | if (s->contents == NULL) |
e0001a05 NC |
1784 | return FALSE; |
1785 | } | |
1786 | } | |
1787 | ||
1788 | if (elf_hash_table (info)->dynamic_sections_created) | |
1789 | { | |
1790 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1791 | known until finish_dynamic_sections, but we need to get the relocs | |
1792 | in place before they are sorted. */ | |
e0001a05 NC |
1793 | for (chunk = 0; chunk < plt_chunks; chunk++) |
1794 | { | |
1795 | Elf_Internal_Rela irela; | |
1796 | bfd_byte *loc; | |
1797 | ||
1798 | irela.r_offset = 0; | |
1799 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1800 | irela.r_addend = 0; | |
1801 | ||
1802 | loc = (srelgot->contents | |
1803 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1804 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1805 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1806 | loc + sizeof (Elf32_External_Rela)); | |
1807 | srelgot->reloc_count += 2; | |
1808 | } | |
1809 | ||
1810 | /* Add some entries to the .dynamic section. We fill in the | |
1811 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1812 | must add the entries now so that we get the correct size for | |
1813 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1814 | dynamic linker and used by the debugger. */ | |
1815 | #define add_dynamic_entry(TAG, VAL) \ | |
5a580b3a | 1816 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
e0001a05 | 1817 | |
ba05963f | 1818 | if (info->executable) |
e0001a05 NC |
1819 | { |
1820 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1821 | return FALSE; | |
1822 | } | |
1823 | ||
1824 | if (relplt) | |
1825 | { | |
c243ad3b | 1826 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
e0001a05 NC |
1827 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) |
1828 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1829 | return FALSE; | |
1830 | } | |
1831 | ||
1832 | if (relgot) | |
1833 | { | |
1834 | if (!add_dynamic_entry (DT_RELA, 0) | |
1835 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1836 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
1837 | return FALSE; | |
1838 | } | |
1839 | ||
c243ad3b BW |
1840 | if (!add_dynamic_entry (DT_PLTGOT, 0) |
1841 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) | |
e0001a05 NC |
1842 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) |
1843 | return FALSE; | |
1844 | } | |
1845 | #undef add_dynamic_entry | |
1846 | ||
1847 | return TRUE; | |
1848 | } | |
1849 | ||
28dbbc02 BW |
1850 | static bfd_boolean |
1851 | elf_xtensa_always_size_sections (bfd *output_bfd, | |
1852 | struct bfd_link_info *info) | |
1853 | { | |
1854 | struct elf_xtensa_link_hash_table *htab; | |
1855 | asection *tls_sec; | |
1856 | ||
1857 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1858 | if (htab == NULL) |
1859 | return FALSE; | |
1860 | ||
28dbbc02 BW |
1861 | tls_sec = htab->elf.tls_sec; |
1862 | ||
1863 | if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0) | |
1864 | { | |
1865 | struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf; | |
1866 | struct bfd_link_hash_entry *bh = &tlsbase->root; | |
1867 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
1868 | ||
1869 | tlsbase->type = STT_TLS; | |
1870 | if (!(_bfd_generic_link_add_one_symbol | |
1871 | (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, | |
1872 | tls_sec, 0, NULL, FALSE, | |
1873 | bed->collect, &bh))) | |
1874 | return FALSE; | |
1875 | tlsbase->def_regular = 1; | |
1876 | tlsbase->other = STV_HIDDEN; | |
1877 | (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); | |
1878 | } | |
1879 | ||
1880 | return TRUE; | |
1881 | } | |
1882 | ||
e0001a05 | 1883 | \f |
28dbbc02 BW |
1884 | /* Return the base VMA address which should be subtracted from real addresses |
1885 | when resolving @dtpoff relocation. | |
1886 | This is PT_TLS segment p_vaddr. */ | |
1887 | ||
1888 | static bfd_vma | |
1889 | dtpoff_base (struct bfd_link_info *info) | |
1890 | { | |
1891 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1892 | if (elf_hash_table (info)->tls_sec == NULL) | |
1893 | return 0; | |
1894 | return elf_hash_table (info)->tls_sec->vma; | |
1895 | } | |
1896 | ||
1897 | /* Return the relocation value for @tpoff relocation | |
1898 | if STT_TLS virtual address is ADDRESS. */ | |
1899 | ||
1900 | static bfd_vma | |
1901 | tpoff (struct bfd_link_info *info, bfd_vma address) | |
1902 | { | |
1903 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
1904 | bfd_vma base; | |
1905 | ||
1906 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1907 | if (htab->tls_sec == NULL) | |
1908 | return 0; | |
1909 | base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); | |
1910 | return address - htab->tls_sec->vma + base; | |
1911 | } | |
1912 | ||
e0001a05 NC |
1913 | /* Perform the specified relocation. The instruction at (contents + address) |
1914 | is modified to set one operand to represent the value in "relocation". The | |
1915 | operand position is determined by the relocation type recorded in the | |
1916 | howto. */ | |
1917 | ||
1918 | #define CALL_SEGMENT_BITS (30) | |
7fa3d080 | 1919 | #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) |
e0001a05 NC |
1920 | |
1921 | static bfd_reloc_status_type | |
7fa3d080 BW |
1922 | elf_xtensa_do_reloc (reloc_howto_type *howto, |
1923 | bfd *abfd, | |
1924 | asection *input_section, | |
1925 | bfd_vma relocation, | |
1926 | bfd_byte *contents, | |
1927 | bfd_vma address, | |
1928 | bfd_boolean is_weak_undef, | |
1929 | char **error_message) | |
e0001a05 | 1930 | { |
43cd72b9 | 1931 | xtensa_format fmt; |
e0001a05 | 1932 | xtensa_opcode opcode; |
e0001a05 | 1933 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
1934 | static xtensa_insnbuf ibuff = NULL; |
1935 | static xtensa_insnbuf sbuff = NULL; | |
1bbb5f21 | 1936 | bfd_vma self_address; |
43cd72b9 BW |
1937 | bfd_size_type input_size; |
1938 | int opnd, slot; | |
e0001a05 NC |
1939 | uint32 newval; |
1940 | ||
43cd72b9 BW |
1941 | if (!ibuff) |
1942 | { | |
1943 | ibuff = xtensa_insnbuf_alloc (isa); | |
1944 | sbuff = xtensa_insnbuf_alloc (isa); | |
1945 | } | |
1946 | ||
1947 | input_size = bfd_get_section_limit (abfd, input_section); | |
1948 | ||
1bbb5f21 BW |
1949 | /* Calculate the PC address for this instruction. */ |
1950 | self_address = (input_section->output_section->vma | |
1951 | + input_section->output_offset | |
1952 | + address); | |
1953 | ||
e0001a05 NC |
1954 | switch (howto->type) |
1955 | { | |
1956 | case R_XTENSA_NONE: | |
43cd72b9 BW |
1957 | case R_XTENSA_DIFF8: |
1958 | case R_XTENSA_DIFF16: | |
1959 | case R_XTENSA_DIFF32: | |
28dbbc02 BW |
1960 | case R_XTENSA_TLS_FUNC: |
1961 | case R_XTENSA_TLS_ARG: | |
1962 | case R_XTENSA_TLS_CALL: | |
e0001a05 NC |
1963 | return bfd_reloc_ok; |
1964 | ||
1965 | case R_XTENSA_ASM_EXPAND: | |
1966 | if (!is_weak_undef) | |
1967 | { | |
1968 | /* Check for windowed CALL across a 1GB boundary. */ | |
91d6fa6a NC |
1969 | opcode = get_expanded_call_opcode (contents + address, |
1970 | input_size - address, 0); | |
e0001a05 NC |
1971 | if (is_windowed_call_opcode (opcode)) |
1972 | { | |
43cd72b9 BW |
1973 | if ((self_address >> CALL_SEGMENT_BITS) |
1974 | != (relocation >> CALL_SEGMENT_BITS)) | |
e0001a05 NC |
1975 | { |
1976 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1977 | "return may fail"; | |
1978 | return bfd_reloc_dangerous; | |
1979 | } | |
1980 | } | |
1981 | } | |
1982 | return bfd_reloc_ok; | |
1983 | ||
1984 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 | 1985 | { |
e0001a05 | 1986 | /* Convert the L32R/CALLX to CALL. */ |
43cd72b9 BW |
1987 | bfd_reloc_status_type retval = |
1988 | elf_xtensa_do_asm_simplify (contents, address, input_size, | |
1989 | error_message); | |
e0001a05 | 1990 | if (retval != bfd_reloc_ok) |
43cd72b9 | 1991 | return bfd_reloc_dangerous; |
e0001a05 NC |
1992 | |
1993 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1994 | address += 3; | |
c46082c8 | 1995 | self_address += 3; |
43cd72b9 | 1996 | howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; |
e0001a05 NC |
1997 | } |
1998 | break; | |
1999 | ||
2000 | case R_XTENSA_32: | |
e0001a05 NC |
2001 | { |
2002 | bfd_vma x; | |
2003 | x = bfd_get_32 (abfd, contents + address); | |
2004 | x = x + relocation; | |
2005 | bfd_put_32 (abfd, x, contents + address); | |
2006 | } | |
2007 | return bfd_reloc_ok; | |
1bbb5f21 BW |
2008 | |
2009 | case R_XTENSA_32_PCREL: | |
2010 | bfd_put_32 (abfd, relocation - self_address, contents + address); | |
2011 | return bfd_reloc_ok; | |
28dbbc02 BW |
2012 | |
2013 | case R_XTENSA_PLT: | |
2014 | case R_XTENSA_TLSDESC_FN: | |
2015 | case R_XTENSA_TLSDESC_ARG: | |
2016 | case R_XTENSA_TLS_DTPOFF: | |
2017 | case R_XTENSA_TLS_TPOFF: | |
2018 | bfd_put_32 (abfd, relocation, contents + address); | |
2019 | return bfd_reloc_ok; | |
e0001a05 NC |
2020 | } |
2021 | ||
43cd72b9 BW |
2022 | /* Only instruction slot-specific relocations handled below.... */ |
2023 | slot = get_relocation_slot (howto->type); | |
2024 | if (slot == XTENSA_UNDEFINED) | |
e0001a05 | 2025 | { |
43cd72b9 | 2026 | *error_message = "unexpected relocation"; |
e0001a05 NC |
2027 | return bfd_reloc_dangerous; |
2028 | } | |
2029 | ||
43cd72b9 BW |
2030 | /* Read the instruction into a buffer and decode the opcode. */ |
2031 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address, | |
2032 | input_size - address); | |
2033 | fmt = xtensa_format_decode (isa, ibuff); | |
2034 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 2035 | { |
43cd72b9 | 2036 | *error_message = "cannot decode instruction format"; |
e0001a05 NC |
2037 | return bfd_reloc_dangerous; |
2038 | } | |
2039 | ||
43cd72b9 | 2040 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
e0001a05 | 2041 | |
43cd72b9 BW |
2042 | opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); |
2043 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 2044 | { |
43cd72b9 | 2045 | *error_message = "cannot decode instruction opcode"; |
e0001a05 NC |
2046 | return bfd_reloc_dangerous; |
2047 | } | |
2048 | ||
43cd72b9 BW |
2049 | /* Check for opcode-specific "alternate" relocations. */ |
2050 | if (is_alt_relocation (howto->type)) | |
2051 | { | |
2052 | if (opcode == get_l32r_opcode ()) | |
2053 | { | |
2054 | /* Handle the special-case of non-PC-relative L32R instructions. */ | |
2055 | bfd *output_bfd = input_section->output_section->owner; | |
2056 | asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); | |
2057 | if (!lit4_sec) | |
2058 | { | |
2059 | *error_message = "relocation references missing .lit4 section"; | |
2060 | return bfd_reloc_dangerous; | |
2061 | } | |
2062 | self_address = ((lit4_sec->vma & ~0xfff) | |
2063 | + 0x40000 - 3); /* -3 to compensate for do_reloc */ | |
2064 | newval = relocation; | |
2065 | opnd = 1; | |
2066 | } | |
2067 | else if (opcode == get_const16_opcode ()) | |
2068 | { | |
2069 | /* ALT used for high 16 bits. */ | |
2070 | newval = relocation >> 16; | |
2071 | opnd = 1; | |
2072 | } | |
2073 | else | |
2074 | { | |
2075 | /* No other "alternate" relocations currently defined. */ | |
2076 | *error_message = "unexpected relocation"; | |
2077 | return bfd_reloc_dangerous; | |
2078 | } | |
2079 | } | |
2080 | else /* Not an "alternate" relocation.... */ | |
2081 | { | |
2082 | if (opcode == get_const16_opcode ()) | |
2083 | { | |
2084 | newval = relocation & 0xffff; | |
2085 | opnd = 1; | |
2086 | } | |
2087 | else | |
2088 | { | |
2089 | /* ...normal PC-relative relocation.... */ | |
2090 | ||
2091 | /* Determine which operand is being relocated. */ | |
2092 | opnd = get_relocation_opnd (opcode, howto->type); | |
2093 | if (opnd == XTENSA_UNDEFINED) | |
2094 | { | |
2095 | *error_message = "unexpected relocation"; | |
2096 | return bfd_reloc_dangerous; | |
2097 | } | |
2098 | ||
2099 | if (!howto->pc_relative) | |
2100 | { | |
2101 | *error_message = "expected PC-relative relocation"; | |
2102 | return bfd_reloc_dangerous; | |
2103 | } | |
e0001a05 | 2104 | |
43cd72b9 BW |
2105 | newval = relocation; |
2106 | } | |
2107 | } | |
e0001a05 | 2108 | |
43cd72b9 BW |
2109 | /* Apply the relocation. */ |
2110 | if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) | |
2111 | || xtensa_operand_encode (isa, opcode, opnd, &newval) | |
2112 | || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, | |
2113 | sbuff, newval)) | |
e0001a05 | 2114 | { |
2db662be BW |
2115 | const char *opname = xtensa_opcode_name (isa, opcode); |
2116 | const char *msg; | |
2117 | ||
2118 | msg = "cannot encode"; | |
2119 | if (is_direct_call_opcode (opcode)) | |
2120 | { | |
2121 | if ((relocation & 0x3) != 0) | |
2122 | msg = "misaligned call target"; | |
2123 | else | |
2124 | msg = "call target out of range"; | |
2125 | } | |
2126 | else if (opcode == get_l32r_opcode ()) | |
2127 | { | |
2128 | if ((relocation & 0x3) != 0) | |
2129 | msg = "misaligned literal target"; | |
2130 | else if (is_alt_relocation (howto->type)) | |
2131 | msg = "literal target out of range (too many literals)"; | |
2132 | else if (self_address > relocation) | |
2133 | msg = "literal target out of range (try using text-section-literals)"; | |
2134 | else | |
2135 | msg = "literal placed after use"; | |
2136 | } | |
2137 | ||
2138 | *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
e0001a05 NC |
2139 | return bfd_reloc_dangerous; |
2140 | } | |
2141 | ||
43cd72b9 | 2142 | /* Check for calls across 1GB boundaries. */ |
e0001a05 NC |
2143 | if (is_direct_call_opcode (opcode) |
2144 | && is_windowed_call_opcode (opcode)) | |
2145 | { | |
43cd72b9 BW |
2146 | if ((self_address >> CALL_SEGMENT_BITS) |
2147 | != (relocation >> CALL_SEGMENT_BITS)) | |
e0001a05 | 2148 | { |
43cd72b9 BW |
2149 | *error_message = |
2150 | "windowed call crosses 1GB boundary; return may fail"; | |
e0001a05 NC |
2151 | return bfd_reloc_dangerous; |
2152 | } | |
2153 | } | |
2154 | ||
43cd72b9 BW |
2155 | /* Write the modified instruction back out of the buffer. */ |
2156 | xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); | |
2157 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address, | |
2158 | input_size - address); | |
e0001a05 NC |
2159 | return bfd_reloc_ok; |
2160 | } | |
2161 | ||
2162 | ||
2db662be | 2163 | static char * |
7fa3d080 | 2164 | vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) |
e0001a05 NC |
2165 | { |
2166 | /* To reduce the size of the memory leak, | |
2167 | we only use a single message buffer. */ | |
2168 | static bfd_size_type alloc_size = 0; | |
2169 | static char *message = NULL; | |
2170 | bfd_size_type orig_len, len = 0; | |
2171 | bfd_boolean is_append; | |
2172 | ||
2173 | VA_OPEN (ap, arglen); | |
2174 | VA_FIXEDARG (ap, const char *, origmsg); | |
2175 | ||
2176 | is_append = (origmsg == message); | |
2177 | ||
2178 | orig_len = strlen (origmsg); | |
2179 | len = orig_len + strlen (fmt) + arglen + 20; | |
2180 | if (len > alloc_size) | |
2181 | { | |
515ef31d | 2182 | message = (char *) bfd_realloc_or_free (message, len); |
e0001a05 NC |
2183 | alloc_size = len; |
2184 | } | |
515ef31d NC |
2185 | if (message != NULL) |
2186 | { | |
2187 | if (!is_append) | |
2188 | memcpy (message, origmsg, orig_len); | |
2189 | vsprintf (message + orig_len, fmt, ap); | |
2190 | } | |
e0001a05 NC |
2191 | VA_CLOSE (ap); |
2192 | return message; | |
2193 | } | |
2194 | ||
2195 | ||
e0001a05 NC |
2196 | /* This function is registered as the "special_function" in the |
2197 | Xtensa howto for handling simplify operations. | |
2198 | bfd_perform_relocation / bfd_install_relocation use it to | |
2199 | perform (install) the specified relocation. Since this replaces the code | |
2200 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
2201 | stripped-down version of bfd_perform_relocation. */ | |
2202 | ||
2203 | static bfd_reloc_status_type | |
7fa3d080 BW |
2204 | bfd_elf_xtensa_reloc (bfd *abfd, |
2205 | arelent *reloc_entry, | |
2206 | asymbol *symbol, | |
2207 | void *data, | |
2208 | asection *input_section, | |
2209 | bfd *output_bfd, | |
2210 | char **error_message) | |
e0001a05 NC |
2211 | { |
2212 | bfd_vma relocation; | |
2213 | bfd_reloc_status_type flag; | |
2214 | bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); | |
2215 | bfd_vma output_base = 0; | |
2216 | reloc_howto_type *howto = reloc_entry->howto; | |
2217 | asection *reloc_target_output_section; | |
2218 | bfd_boolean is_weak_undef; | |
2219 | ||
dd1a320b BW |
2220 | if (!xtensa_default_isa) |
2221 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
2222 | ||
1049f94e | 2223 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
2224 | output, and the reloc is against an external symbol, the resulting |
2225 | reloc will also be against the same symbol. In such a case, we | |
2226 | don't want to change anything about the way the reloc is handled, | |
2227 | since it will all be done at final link time. This test is similar | |
2228 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
2229 | howto->partial_inplace go through even if the addend is non-zero. | |
2230 | (The real problem is that partial_inplace is set for XTENSA_32 | |
2231 | relocs to begin with, but that's a long story and there's little we | |
2232 | can do about it now....) */ | |
2233 | ||
7fa3d080 | 2234 | if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) |
e0001a05 NC |
2235 | { |
2236 | reloc_entry->address += input_section->output_offset; | |
2237 | return bfd_reloc_ok; | |
2238 | } | |
2239 | ||
2240 | /* Is the address of the relocation really within the section? */ | |
07515404 | 2241 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
e0001a05 NC |
2242 | return bfd_reloc_outofrange; |
2243 | ||
4cc11e76 | 2244 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
2245 | initial relocation command value. */ |
2246 | ||
2247 | /* Get symbol value. (Common symbols are special.) */ | |
2248 | if (bfd_is_com_section (symbol->section)) | |
2249 | relocation = 0; | |
2250 | else | |
2251 | relocation = symbol->value; | |
2252 | ||
2253 | reloc_target_output_section = symbol->section->output_section; | |
2254 | ||
2255 | /* Convert input-section-relative symbol value to absolute. */ | |
2256 | if ((output_bfd && !howto->partial_inplace) | |
2257 | || reloc_target_output_section == NULL) | |
2258 | output_base = 0; | |
2259 | else | |
2260 | output_base = reloc_target_output_section->vma; | |
2261 | ||
2262 | relocation += output_base + symbol->section->output_offset; | |
2263 | ||
2264 | /* Add in supplied addend. */ | |
2265 | relocation += reloc_entry->addend; | |
2266 | ||
2267 | /* Here the variable relocation holds the final address of the | |
2268 | symbol we are relocating against, plus any addend. */ | |
2269 | if (output_bfd) | |
2270 | { | |
2271 | if (!howto->partial_inplace) | |
2272 | { | |
2273 | /* This is a partial relocation, and we want to apply the relocation | |
2274 | to the reloc entry rather than the raw data. Everything except | |
2275 | relocations against section symbols has already been handled | |
2276 | above. */ | |
43cd72b9 | 2277 | |
e0001a05 NC |
2278 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); |
2279 | reloc_entry->addend = relocation; | |
2280 | reloc_entry->address += input_section->output_offset; | |
2281 | return bfd_reloc_ok; | |
2282 | } | |
2283 | else | |
2284 | { | |
2285 | reloc_entry->address += input_section->output_offset; | |
2286 | reloc_entry->addend = 0; | |
2287 | } | |
2288 | } | |
2289 | ||
2290 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
2291 | && (symbol->flags & BSF_WEAK) != 0); | |
2292 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
2293 | (bfd_byte *) data, (bfd_vma) octets, | |
2294 | is_weak_undef, error_message); | |
2295 | ||
2296 | if (flag == bfd_reloc_dangerous) | |
2297 | { | |
2298 | /* Add the symbol name to the error message. */ | |
2299 | if (! *error_message) | |
2300 | *error_message = ""; | |
2301 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
2302 | strlen (symbol->name) + 17, | |
70961b9d AM |
2303 | symbol->name, |
2304 | (unsigned long) reloc_entry->addend); | |
e0001a05 NC |
2305 | } |
2306 | ||
2307 | return flag; | |
2308 | } | |
2309 | ||
2310 | ||
2311 | /* Set up an entry in the procedure linkage table. */ | |
2312 | ||
2313 | static bfd_vma | |
f0e6fdb2 | 2314 | elf_xtensa_create_plt_entry (struct bfd_link_info *info, |
7fa3d080 BW |
2315 | bfd *output_bfd, |
2316 | unsigned reloc_index) | |
e0001a05 NC |
2317 | { |
2318 | asection *splt, *sgotplt; | |
2319 | bfd_vma plt_base, got_base; | |
2320 | bfd_vma code_offset, lit_offset; | |
2321 | int chunk; | |
2322 | ||
2323 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
2324 | splt = elf_xtensa_get_plt_section (info, chunk); |
2325 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
2326 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
2327 | ||
2328 | plt_base = splt->output_section->vma + splt->output_offset; | |
2329 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
2330 | ||
2331 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
2332 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
2333 | ||
2334 | /* Fill in the literal entry. This is the offset of the dynamic | |
2335 | relocation entry. */ | |
2336 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
2337 | sgotplt->contents + lit_offset); | |
2338 | ||
2339 | /* Fill in the entry in the procedure linkage table. */ | |
2340 | memcpy (splt->contents + code_offset, | |
2341 | (bfd_big_endian (output_bfd) | |
2342 | ? elf_xtensa_be_plt_entry | |
2343 | : elf_xtensa_le_plt_entry), | |
2344 | PLT_ENTRY_SIZE); | |
2345 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, | |
2346 | plt_base + code_offset + 3), | |
2347 | splt->contents + code_offset + 4); | |
2348 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, | |
2349 | plt_base + code_offset + 6), | |
2350 | splt->contents + code_offset + 7); | |
2351 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, | |
2352 | plt_base + code_offset + 9), | |
2353 | splt->contents + code_offset + 10); | |
2354 | ||
2355 | return plt_base + code_offset; | |
2356 | } | |
2357 | ||
2358 | ||
28dbbc02 BW |
2359 | static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *); |
2360 | ||
2361 | static bfd_boolean | |
2362 | replace_tls_insn (Elf_Internal_Rela *rel, | |
2363 | bfd *abfd, | |
2364 | asection *input_section, | |
2365 | bfd_byte *contents, | |
2366 | bfd_boolean is_ld_model, | |
2367 | char **error_message) | |
2368 | { | |
2369 | static xtensa_insnbuf ibuff = NULL; | |
2370 | static xtensa_insnbuf sbuff = NULL; | |
2371 | xtensa_isa isa = xtensa_default_isa; | |
2372 | xtensa_format fmt; | |
2373 | xtensa_opcode old_op, new_op; | |
2374 | bfd_size_type input_size; | |
2375 | int r_type; | |
2376 | unsigned dest_reg, src_reg; | |
2377 | ||
2378 | if (ibuff == NULL) | |
2379 | { | |
2380 | ibuff = xtensa_insnbuf_alloc (isa); | |
2381 | sbuff = xtensa_insnbuf_alloc (isa); | |
2382 | } | |
2383 | ||
2384 | input_size = bfd_get_section_limit (abfd, input_section); | |
2385 | ||
2386 | /* Read the instruction into a buffer and decode the opcode. */ | |
2387 | xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset, | |
2388 | input_size - rel->r_offset); | |
2389 | fmt = xtensa_format_decode (isa, ibuff); | |
2390 | if (fmt == XTENSA_UNDEFINED) | |
2391 | { | |
2392 | *error_message = "cannot decode instruction format"; | |
2393 | return FALSE; | |
2394 | } | |
2395 | ||
2396 | BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1); | |
2397 | xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff); | |
2398 | ||
2399 | old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff); | |
2400 | if (old_op == XTENSA_UNDEFINED) | |
2401 | { | |
2402 | *error_message = "cannot decode instruction opcode"; | |
2403 | return FALSE; | |
2404 | } | |
2405 | ||
2406 | r_type = ELF32_R_TYPE (rel->r_info); | |
2407 | switch (r_type) | |
2408 | { | |
2409 | case R_XTENSA_TLS_FUNC: | |
2410 | case R_XTENSA_TLS_ARG: | |
2411 | if (old_op != get_l32r_opcode () | |
2412 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2413 | sbuff, &dest_reg) != 0) | |
2414 | { | |
2415 | *error_message = "cannot extract L32R destination for TLS access"; | |
2416 | return FALSE; | |
2417 | } | |
2418 | break; | |
2419 | ||
2420 | case R_XTENSA_TLS_CALL: | |
2421 | if (! get_indirect_call_dest_reg (old_op, &dest_reg) | |
2422 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2423 | sbuff, &src_reg) != 0) | |
2424 | { | |
2425 | *error_message = "cannot extract CALLXn operands for TLS access"; | |
2426 | return FALSE; | |
2427 | } | |
2428 | break; | |
2429 | ||
2430 | default: | |
2431 | abort (); | |
2432 | } | |
2433 | ||
2434 | if (is_ld_model) | |
2435 | { | |
2436 | switch (r_type) | |
2437 | { | |
2438 | case R_XTENSA_TLS_FUNC: | |
2439 | case R_XTENSA_TLS_ARG: | |
2440 | /* Change the instruction to a NOP (or "OR a1, a1, a1" for older | |
2441 | versions of Xtensa). */ | |
2442 | new_op = xtensa_opcode_lookup (isa, "nop"); | |
2443 | if (new_op == XTENSA_UNDEFINED) | |
2444 | { | |
2445 | new_op = xtensa_opcode_lookup (isa, "or"); | |
2446 | if (new_op == XTENSA_UNDEFINED | |
2447 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2448 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2449 | sbuff, 1) != 0 | |
2450 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2451 | sbuff, 1) != 0 | |
2452 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2453 | sbuff, 1) != 0) | |
2454 | { | |
2455 | *error_message = "cannot encode OR for TLS access"; | |
2456 | return FALSE; | |
2457 | } | |
2458 | } | |
2459 | else | |
2460 | { | |
2461 | if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0) | |
2462 | { | |
2463 | *error_message = "cannot encode NOP for TLS access"; | |
2464 | return FALSE; | |
2465 | } | |
2466 | } | |
2467 | break; | |
2468 | ||
2469 | case R_XTENSA_TLS_CALL: | |
2470 | /* Read THREADPTR into the CALLX's return value register. */ | |
2471 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2472 | if (new_op == XTENSA_UNDEFINED | |
2473 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2474 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2475 | sbuff, dest_reg + 2) != 0) | |
2476 | { | |
2477 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2478 | return FALSE; | |
2479 | } | |
2480 | break; | |
2481 | } | |
2482 | } | |
2483 | else | |
2484 | { | |
2485 | switch (r_type) | |
2486 | { | |
2487 | case R_XTENSA_TLS_FUNC: | |
2488 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2489 | if (new_op == XTENSA_UNDEFINED | |
2490 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2491 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2492 | sbuff, dest_reg) != 0) | |
2493 | { | |
2494 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2495 | return FALSE; | |
2496 | } | |
2497 | break; | |
2498 | ||
2499 | case R_XTENSA_TLS_ARG: | |
2500 | /* Nothing to do. Keep the original L32R instruction. */ | |
2501 | return TRUE; | |
2502 | ||
2503 | case R_XTENSA_TLS_CALL: | |
2504 | /* Add the CALLX's src register (holding the THREADPTR value) | |
2505 | to the first argument register (holding the offset) and put | |
2506 | the result in the CALLX's return value register. */ | |
2507 | new_op = xtensa_opcode_lookup (isa, "add"); | |
2508 | if (new_op == XTENSA_UNDEFINED | |
2509 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2510 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2511 | sbuff, dest_reg + 2) != 0 | |
2512 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2513 | sbuff, dest_reg + 2) != 0 | |
2514 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2515 | sbuff, src_reg) != 0) | |
2516 | { | |
2517 | *error_message = "cannot encode ADD for TLS access"; | |
2518 | return FALSE; | |
2519 | } | |
2520 | break; | |
2521 | } | |
2522 | } | |
2523 | ||
2524 | xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff); | |
2525 | xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset, | |
2526 | input_size - rel->r_offset); | |
2527 | ||
2528 | return TRUE; | |
2529 | } | |
2530 | ||
2531 | ||
2532 | #define IS_XTENSA_TLS_RELOC(R_TYPE) \ | |
2533 | ((R_TYPE) == R_XTENSA_TLSDESC_FN \ | |
2534 | || (R_TYPE) == R_XTENSA_TLSDESC_ARG \ | |
2535 | || (R_TYPE) == R_XTENSA_TLS_DTPOFF \ | |
2536 | || (R_TYPE) == R_XTENSA_TLS_TPOFF \ | |
2537 | || (R_TYPE) == R_XTENSA_TLS_FUNC \ | |
2538 | || (R_TYPE) == R_XTENSA_TLS_ARG \ | |
2539 | || (R_TYPE) == R_XTENSA_TLS_CALL) | |
2540 | ||
e0001a05 | 2541 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 2542 | both relocatable and final links. */ |
e0001a05 NC |
2543 | |
2544 | static bfd_boolean | |
7fa3d080 BW |
2545 | elf_xtensa_relocate_section (bfd *output_bfd, |
2546 | struct bfd_link_info *info, | |
2547 | bfd *input_bfd, | |
2548 | asection *input_section, | |
2549 | bfd_byte *contents, | |
2550 | Elf_Internal_Rela *relocs, | |
2551 | Elf_Internal_Sym *local_syms, | |
2552 | asection **local_sections) | |
e0001a05 | 2553 | { |
f0e6fdb2 | 2554 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
2555 | Elf_Internal_Shdr *symtab_hdr; |
2556 | Elf_Internal_Rela *rel; | |
2557 | Elf_Internal_Rela *relend; | |
2558 | struct elf_link_hash_entry **sym_hashes; | |
88d65ad6 BW |
2559 | property_table_entry *lit_table = 0; |
2560 | int ltblsize = 0; | |
28dbbc02 | 2561 | char *local_got_tls_types; |
e0001a05 | 2562 | char *error_message = NULL; |
43cd72b9 | 2563 | bfd_size_type input_size; |
28dbbc02 | 2564 | int tls_type; |
e0001a05 | 2565 | |
43cd72b9 BW |
2566 | if (!xtensa_default_isa) |
2567 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 2568 | |
28dbbc02 BW |
2569 | BFD_ASSERT (is_xtensa_elf (input_bfd)); |
2570 | ||
f0e6fdb2 | 2571 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
2572 | if (htab == NULL) |
2573 | return FALSE; | |
2574 | ||
e0001a05 NC |
2575 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
2576 | sym_hashes = elf_sym_hashes (input_bfd); | |
28dbbc02 | 2577 | local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd); |
e0001a05 | 2578 | |
88d65ad6 BW |
2579 | if (elf_hash_table (info)->dynamic_sections_created) |
2580 | { | |
2581 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, | |
43cd72b9 BW |
2582 | &lit_table, XTENSA_LIT_SEC_NAME, |
2583 | TRUE); | |
88d65ad6 BW |
2584 | if (ltblsize < 0) |
2585 | return FALSE; | |
2586 | } | |
2587 | ||
43cd72b9 BW |
2588 | input_size = bfd_get_section_limit (input_bfd, input_section); |
2589 | ||
e0001a05 NC |
2590 | rel = relocs; |
2591 | relend = relocs + input_section->reloc_count; | |
2592 | for (; rel < relend; rel++) | |
2593 | { | |
2594 | int r_type; | |
2595 | reloc_howto_type *howto; | |
2596 | unsigned long r_symndx; | |
2597 | struct elf_link_hash_entry *h; | |
2598 | Elf_Internal_Sym *sym; | |
28dbbc02 BW |
2599 | char sym_type; |
2600 | const char *name; | |
e0001a05 NC |
2601 | asection *sec; |
2602 | bfd_vma relocation; | |
2603 | bfd_reloc_status_type r; | |
2604 | bfd_boolean is_weak_undef; | |
2605 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 2606 | bfd_boolean warned; |
28dbbc02 | 2607 | bfd_boolean dynamic_symbol; |
e0001a05 NC |
2608 | |
2609 | r_type = ELF32_R_TYPE (rel->r_info); | |
2610 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
2611 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
2612 | continue; | |
2613 | ||
2614 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
2615 | { | |
2616 | bfd_set_error (bfd_error_bad_value); | |
2617 | return FALSE; | |
2618 | } | |
2619 | howto = &elf_howto_table[r_type]; | |
2620 | ||
2621 | r_symndx = ELF32_R_SYM (rel->r_info); | |
2622 | ||
ab96bf03 AM |
2623 | h = NULL; |
2624 | sym = NULL; | |
2625 | sec = NULL; | |
2626 | is_weak_undef = FALSE; | |
2627 | unresolved_reloc = FALSE; | |
2628 | warned = FALSE; | |
2629 | ||
2630 | if (howto->partial_inplace && !info->relocatable) | |
2631 | { | |
2632 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
2633 | problems with DWARF info in partial links, there may be | |
2634 | an addend stored in the contents. Take it out of there | |
2635 | and move it back into the addend field of the reloc. */ | |
2636 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2637 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
2638 | } | |
2639 | ||
2640 | if (r_symndx < symtab_hdr->sh_info) | |
2641 | { | |
2642 | sym = local_syms + r_symndx; | |
28dbbc02 | 2643 | sym_type = ELF32_ST_TYPE (sym->st_info); |
ab96bf03 AM |
2644 | sec = local_sections[r_symndx]; |
2645 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
2646 | } | |
2647 | else | |
2648 | { | |
2649 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, | |
2650 | r_symndx, symtab_hdr, sym_hashes, | |
2651 | h, sec, relocation, | |
2652 | unresolved_reloc, warned); | |
2653 | ||
2654 | if (relocation == 0 | |
2655 | && !unresolved_reloc | |
2656 | && h->root.type == bfd_link_hash_undefweak) | |
2657 | is_weak_undef = TRUE; | |
28dbbc02 BW |
2658 | |
2659 | sym_type = h->type; | |
ab96bf03 AM |
2660 | } |
2661 | ||
2662 | if (sec != NULL && elf_discarded_section (sec)) | |
2663 | { | |
2664 | /* For relocs against symbols from removed linkonce sections, | |
2665 | or sections discarded by a linker script, we just want the | |
2666 | section contents zeroed. Avoid any special processing. */ | |
2667 | _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); | |
2668 | rel->r_info = 0; | |
2669 | rel->r_addend = 0; | |
2670 | continue; | |
2671 | } | |
2672 | ||
1049f94e | 2673 | if (info->relocatable) |
e0001a05 | 2674 | { |
43cd72b9 | 2675 | /* This is a relocatable link. |
e0001a05 NC |
2676 | 1) If the reloc is against a section symbol, adjust |
2677 | according to the output section. | |
2678 | 2) If there is a new target for this relocation, | |
2679 | the new target will be in the same output section. | |
2680 | We adjust the relocation by the output section | |
2681 | difference. */ | |
2682 | ||
2683 | if (relaxing_section) | |
2684 | { | |
2685 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2686 | if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, |
2687 | contents)) | |
2688 | return FALSE; | |
e0001a05 NC |
2689 | } |
2690 | ||
43cd72b9 | 2691 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
e0001a05 | 2692 | { |
91d6fa6a | 2693 | error_message = NULL; |
e0001a05 NC |
2694 | /* Convert ASM_SIMPLIFY into the simpler relocation |
2695 | so that they never escape a relaxing link. */ | |
43cd72b9 BW |
2696 | r = contract_asm_expansion (contents, input_size, rel, |
2697 | &error_message); | |
2698 | if (r != bfd_reloc_ok) | |
2699 | { | |
2700 | if (!((*info->callbacks->reloc_dangerous) | |
2701 | (info, error_message, input_bfd, input_section, | |
2702 | rel->r_offset))) | |
2703 | return FALSE; | |
2704 | } | |
e0001a05 NC |
2705 | r_type = ELF32_R_TYPE (rel->r_info); |
2706 | } | |
2707 | ||
1049f94e | 2708 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
2709 | anything unless the reloc is against a section symbol, |
2710 | in which case we have to adjust according to where the | |
2711 | section symbol winds up in the output section. */ | |
2712 | if (r_symndx < symtab_hdr->sh_info) | |
2713 | { | |
2714 | sym = local_syms + r_symndx; | |
2715 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2716 | { | |
2717 | sec = local_sections[r_symndx]; | |
2718 | rel->r_addend += sec->output_offset + sym->st_value; | |
2719 | } | |
2720 | } | |
2721 | ||
2722 | /* If there is an addend with a partial_inplace howto, | |
2723 | then move the addend to the contents. This is a hack | |
1049f94e | 2724 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
2725 | with some previous version of BFD. Now we can't easily get |
2726 | rid of the hack without breaking backward compatibility.... */ | |
2727 | if (rel->r_addend) | |
2728 | { | |
2729 | howto = &elf_howto_table[r_type]; | |
2730 | if (howto->partial_inplace) | |
2731 | { | |
2732 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2733 | rel->r_addend, contents, | |
2734 | rel->r_offset, FALSE, | |
2735 | &error_message); | |
2736 | if (r != bfd_reloc_ok) | |
2737 | { | |
2738 | if (!((*info->callbacks->reloc_dangerous) | |
2739 | (info, error_message, input_bfd, input_section, | |
2740 | rel->r_offset))) | |
2741 | return FALSE; | |
2742 | } | |
2743 | rel->r_addend = 0; | |
2744 | } | |
2745 | } | |
2746 | ||
1049f94e | 2747 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
2748 | continue; |
2749 | } | |
2750 | ||
2751 | /* This is a final link. */ | |
2752 | ||
e0001a05 NC |
2753 | if (relaxing_section) |
2754 | { | |
2755 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2756 | do_fix_for_final_link (rel, input_bfd, input_section, contents, |
2757 | &relocation); | |
e0001a05 NC |
2758 | } |
2759 | ||
2760 | /* Sanity check the address. */ | |
43cd72b9 | 2761 | if (rel->r_offset >= input_size |
e0001a05 NC |
2762 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
2763 | { | |
43cd72b9 BW |
2764 | (*_bfd_error_handler) |
2765 | (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"), | |
2766 | input_bfd, input_section, rel->r_offset, input_size); | |
e0001a05 NC |
2767 | bfd_set_error (bfd_error_bad_value); |
2768 | return FALSE; | |
2769 | } | |
2770 | ||
28dbbc02 BW |
2771 | if (h != NULL) |
2772 | name = h->root.root.string; | |
2773 | else | |
e0001a05 | 2774 | { |
28dbbc02 BW |
2775 | name = (bfd_elf_string_from_elf_section |
2776 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | |
2777 | if (name == NULL || *name == '\0') | |
2778 | name = bfd_section_name (input_bfd, sec); | |
2779 | } | |
e0001a05 | 2780 | |
28dbbc02 BW |
2781 | if (r_symndx != 0 |
2782 | && r_type != R_XTENSA_NONE | |
2783 | && (h == NULL | |
2784 | || h->root.type == bfd_link_hash_defined | |
2785 | || h->root.type == bfd_link_hash_defweak) | |
2786 | && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS)) | |
2787 | { | |
2788 | (*_bfd_error_handler) | |
2789 | ((sym_type == STT_TLS | |
2790 | ? _("%B(%A+0x%lx): %s used with TLS symbol %s") | |
2791 | : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), | |
2792 | input_bfd, | |
2793 | input_section, | |
2794 | (long) rel->r_offset, | |
2795 | howto->name, | |
2796 | name); | |
2797 | } | |
2798 | ||
2799 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); | |
2800 | ||
2801 | tls_type = GOT_UNKNOWN; | |
2802 | if (h) | |
2803 | tls_type = elf_xtensa_hash_entry (h)->tls_type; | |
2804 | else if (local_got_tls_types) | |
2805 | tls_type = local_got_tls_types [r_symndx]; | |
2806 | ||
2807 | switch (r_type) | |
2808 | { | |
2809 | case R_XTENSA_32: | |
2810 | case R_XTENSA_PLT: | |
2811 | if (elf_hash_table (info)->dynamic_sections_created | |
2812 | && (input_section->flags & SEC_ALLOC) != 0 | |
2813 | && (dynamic_symbol || info->shared)) | |
e0001a05 NC |
2814 | { |
2815 | Elf_Internal_Rela outrel; | |
2816 | bfd_byte *loc; | |
2817 | asection *srel; | |
2818 | ||
2819 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
f0e6fdb2 | 2820 | srel = htab->srelplt; |
e0001a05 | 2821 | else |
f0e6fdb2 | 2822 | srel = htab->srelgot; |
e0001a05 NC |
2823 | |
2824 | BFD_ASSERT (srel != NULL); | |
2825 | ||
2826 | outrel.r_offset = | |
2827 | _bfd_elf_section_offset (output_bfd, info, | |
2828 | input_section, rel->r_offset); | |
2829 | ||
2830 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2831 | memset (&outrel, 0, sizeof outrel); | |
2832 | else | |
2833 | { | |
f0578e28 BW |
2834 | outrel.r_offset += (input_section->output_section->vma |
2835 | + input_section->output_offset); | |
e0001a05 | 2836 | |
88d65ad6 BW |
2837 | /* Complain if the relocation is in a read-only section |
2838 | and not in a literal pool. */ | |
2839 | if ((input_section->flags & SEC_READONLY) != 0 | |
2840 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
3ba3bc8c | 2841 | outrel.r_offset)) |
88d65ad6 BW |
2842 | { |
2843 | error_message = | |
2844 | _("dynamic relocation in read-only section"); | |
2845 | if (!((*info->callbacks->reloc_dangerous) | |
2846 | (info, error_message, input_bfd, input_section, | |
2847 | rel->r_offset))) | |
2848 | return FALSE; | |
2849 | } | |
2850 | ||
e0001a05 NC |
2851 | if (dynamic_symbol) |
2852 | { | |
2853 | outrel.r_addend = rel->r_addend; | |
2854 | rel->r_addend = 0; | |
2855 | ||
2856 | if (r_type == R_XTENSA_32) | |
2857 | { | |
2858 | outrel.r_info = | |
2859 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2860 | relocation = 0; | |
2861 | } | |
2862 | else /* r_type == R_XTENSA_PLT */ | |
2863 | { | |
2864 | outrel.r_info = | |
2865 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2866 | ||
2867 | /* Create the PLT entry and set the initial | |
2868 | contents of the literal entry to the address of | |
2869 | the PLT entry. */ | |
43cd72b9 | 2870 | relocation = |
f0e6fdb2 | 2871 | elf_xtensa_create_plt_entry (info, output_bfd, |
e0001a05 NC |
2872 | srel->reloc_count); |
2873 | } | |
2874 | unresolved_reloc = FALSE; | |
2875 | } | |
2876 | else | |
2877 | { | |
2878 | /* Generate a RELATIVE relocation. */ | |
2879 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2880 | outrel.r_addend = 0; | |
2881 | } | |
2882 | } | |
2883 | ||
2884 | loc = (srel->contents | |
2885 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2886 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2887 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
eea6121a | 2888 | <= srel->size); |
e0001a05 | 2889 | } |
d9ab3f29 BW |
2890 | else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol) |
2891 | { | |
2892 | /* This should only happen for non-PIC code, which is not | |
2893 | supposed to be used on systems with dynamic linking. | |
2894 | Just ignore these relocations. */ | |
2895 | continue; | |
2896 | } | |
28dbbc02 BW |
2897 | break; |
2898 | ||
2899 | case R_XTENSA_TLS_TPOFF: | |
2900 | /* Switch to LE model for local symbols in an executable. */ | |
2901 | if (! info->shared && ! dynamic_symbol) | |
2902 | { | |
2903 | relocation = tpoff (info, relocation); | |
2904 | break; | |
2905 | } | |
2906 | /* fall through */ | |
2907 | ||
2908 | case R_XTENSA_TLSDESC_FN: | |
2909 | case R_XTENSA_TLSDESC_ARG: | |
2910 | { | |
2911 | if (r_type == R_XTENSA_TLSDESC_FN) | |
2912 | { | |
2913 | if (! info->shared || (tls_type & GOT_TLS_IE) != 0) | |
2914 | r_type = R_XTENSA_NONE; | |
2915 | } | |
2916 | else if (r_type == R_XTENSA_TLSDESC_ARG) | |
2917 | { | |
2918 | if (info->shared) | |
2919 | { | |
2920 | if ((tls_type & GOT_TLS_IE) != 0) | |
2921 | r_type = R_XTENSA_TLS_TPOFF; | |
2922 | } | |
2923 | else | |
2924 | { | |
2925 | r_type = R_XTENSA_TLS_TPOFF; | |
2926 | if (! dynamic_symbol) | |
2927 | { | |
2928 | relocation = tpoff (info, relocation); | |
2929 | break; | |
2930 | } | |
2931 | } | |
2932 | } | |
2933 | ||
2934 | if (r_type == R_XTENSA_NONE) | |
2935 | /* Nothing to do here; skip to the next reloc. */ | |
2936 | continue; | |
2937 | ||
2938 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2939 | { | |
2940 | error_message = | |
2941 | _("TLS relocation invalid without dynamic sections"); | |
2942 | if (!((*info->callbacks->reloc_dangerous) | |
2943 | (info, error_message, input_bfd, input_section, | |
2944 | rel->r_offset))) | |
2945 | return FALSE; | |
2946 | } | |
2947 | else | |
2948 | { | |
2949 | Elf_Internal_Rela outrel; | |
2950 | bfd_byte *loc; | |
2951 | asection *srel = htab->srelgot; | |
2952 | int indx; | |
2953 | ||
2954 | outrel.r_offset = (input_section->output_section->vma | |
2955 | + input_section->output_offset | |
2956 | + rel->r_offset); | |
2957 | ||
2958 | /* Complain if the relocation is in a read-only section | |
2959 | and not in a literal pool. */ | |
2960 | if ((input_section->flags & SEC_READONLY) != 0 | |
2961 | && ! elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
2962 | outrel.r_offset)) | |
2963 | { | |
2964 | error_message = | |
2965 | _("dynamic relocation in read-only section"); | |
2966 | if (!((*info->callbacks->reloc_dangerous) | |
2967 | (info, error_message, input_bfd, input_section, | |
2968 | rel->r_offset))) | |
2969 | return FALSE; | |
2970 | } | |
2971 | ||
2972 | indx = h && h->dynindx != -1 ? h->dynindx : 0; | |
2973 | if (indx == 0) | |
2974 | outrel.r_addend = relocation - dtpoff_base (info); | |
2975 | else | |
2976 | outrel.r_addend = 0; | |
2977 | rel->r_addend = 0; | |
2978 | ||
2979 | outrel.r_info = ELF32_R_INFO (indx, r_type); | |
2980 | relocation = 0; | |
2981 | unresolved_reloc = FALSE; | |
2982 | ||
2983 | BFD_ASSERT (srel); | |
2984 | loc = (srel->contents | |
2985 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2986 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2987 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
2988 | <= srel->size); | |
2989 | } | |
2990 | } | |
2991 | break; | |
2992 | ||
2993 | case R_XTENSA_TLS_DTPOFF: | |
2994 | if (! info->shared) | |
2995 | /* Switch from LD model to LE model. */ | |
2996 | relocation = tpoff (info, relocation); | |
2997 | else | |
2998 | relocation -= dtpoff_base (info); | |
2999 | break; | |
3000 | ||
3001 | case R_XTENSA_TLS_FUNC: | |
3002 | case R_XTENSA_TLS_ARG: | |
3003 | case R_XTENSA_TLS_CALL: | |
3004 | /* Check if optimizing to IE or LE model. */ | |
3005 | if ((tls_type & GOT_TLS_IE) != 0) | |
3006 | { | |
3007 | bfd_boolean is_ld_model = | |
3008 | (h && elf_xtensa_hash_entry (h) == htab->tlsbase); | |
3009 | if (! replace_tls_insn (rel, input_bfd, input_section, contents, | |
3010 | is_ld_model, &error_message)) | |
3011 | { | |
3012 | if (!((*info->callbacks->reloc_dangerous) | |
3013 | (info, error_message, input_bfd, input_section, | |
3014 | rel->r_offset))) | |
3015 | return FALSE; | |
3016 | } | |
3017 | ||
3018 | if (r_type != R_XTENSA_TLS_ARG || is_ld_model) | |
3019 | { | |
3020 | /* Skip subsequent relocations on the same instruction. */ | |
3021 | while (rel + 1 < relend && rel[1].r_offset == rel->r_offset) | |
3022 | rel++; | |
3023 | } | |
3024 | } | |
3025 | continue; | |
3026 | ||
3027 | default: | |
3028 | if (elf_hash_table (info)->dynamic_sections_created | |
3029 | && dynamic_symbol && (is_operand_relocation (r_type) | |
3030 | || r_type == R_XTENSA_32_PCREL)) | |
3031 | { | |
3032 | error_message = | |
3033 | vsprint_msg ("invalid relocation for dynamic symbol", ": %s", | |
3034 | strlen (name) + 2, name); | |
3035 | if (!((*info->callbacks->reloc_dangerous) | |
3036 | (info, error_message, input_bfd, input_section, | |
3037 | rel->r_offset))) | |
3038 | return FALSE; | |
3039 | continue; | |
3040 | } | |
3041 | break; | |
e0001a05 NC |
3042 | } |
3043 | ||
3044 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
3045 | because such sections are not SEC_ALLOC and thus ld.so will | |
3046 | not process them. */ | |
3047 | if (unresolved_reloc | |
3048 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
f5385ebf | 3049 | && h->def_dynamic)) |
bf1747de BW |
3050 | { |
3051 | (*_bfd_error_handler) | |
3052 | (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), | |
3053 | input_bfd, | |
3054 | input_section, | |
3055 | (long) rel->r_offset, | |
3056 | howto->name, | |
28dbbc02 | 3057 | name); |
bf1747de BW |
3058 | return FALSE; |
3059 | } | |
e0001a05 | 3060 | |
28dbbc02 BW |
3061 | /* TLS optimizations may have changed r_type; update "howto". */ |
3062 | howto = &elf_howto_table[r_type]; | |
3063 | ||
e0001a05 NC |
3064 | /* There's no point in calling bfd_perform_relocation here. |
3065 | Just go directly to our "special function". */ | |
3066 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
3067 | relocation + rel->r_addend, | |
3068 | contents, rel->r_offset, is_weak_undef, | |
3069 | &error_message); | |
43cd72b9 | 3070 | |
9b8c98a4 | 3071 | if (r != bfd_reloc_ok && !warned) |
e0001a05 | 3072 | { |
43cd72b9 | 3073 | BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); |
7fa3d080 | 3074 | BFD_ASSERT (error_message != NULL); |
e0001a05 | 3075 | |
28dbbc02 BW |
3076 | if (rel->r_addend == 0) |
3077 | error_message = vsprint_msg (error_message, ": %s", | |
3078 | strlen (name) + 2, name); | |
e0001a05 | 3079 | else |
28dbbc02 BW |
3080 | error_message = vsprint_msg (error_message, ": (%s+0x%x)", |
3081 | strlen (name) + 22, | |
3082 | name, (int) rel->r_addend); | |
43cd72b9 | 3083 | |
e0001a05 NC |
3084 | if (!((*info->callbacks->reloc_dangerous) |
3085 | (info, error_message, input_bfd, input_section, | |
3086 | rel->r_offset))) | |
3087 | return FALSE; | |
3088 | } | |
3089 | } | |
3090 | ||
88d65ad6 BW |
3091 | if (lit_table) |
3092 | free (lit_table); | |
3093 | ||
3ba3bc8c BW |
3094 | input_section->reloc_done = TRUE; |
3095 | ||
e0001a05 NC |
3096 | return TRUE; |
3097 | } | |
3098 | ||
3099 | ||
3100 | /* Finish up dynamic symbol handling. There's not much to do here since | |
3101 | the PLT and GOT entries are all set up by relocate_section. */ | |
3102 | ||
3103 | static bfd_boolean | |
7fa3d080 BW |
3104 | elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, |
3105 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
3106 | struct elf_link_hash_entry *h, | |
3107 | Elf_Internal_Sym *sym) | |
e0001a05 | 3108 | { |
bf1747de | 3109 | if (h->needs_plt && !h->def_regular) |
e0001a05 NC |
3110 | { |
3111 | /* Mark the symbol as undefined, rather than as defined in | |
3112 | the .plt section. Leave the value alone. */ | |
3113 | sym->st_shndx = SHN_UNDEF; | |
bf1747de BW |
3114 | /* If the symbol is weak, we do need to clear the value. |
3115 | Otherwise, the PLT entry would provide a definition for | |
3116 | the symbol even if the symbol wasn't defined anywhere, | |
3117 | and so the symbol would never be NULL. */ | |
3118 | if (!h->ref_regular_nonweak) | |
3119 | sym->st_value = 0; | |
e0001a05 NC |
3120 | } |
3121 | ||
3122 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
3123 | if (strcmp (h->root.root.string, "_DYNAMIC") == 0 | |
22edb2f1 | 3124 | || h == elf_hash_table (info)->hgot) |
e0001a05 NC |
3125 | sym->st_shndx = SHN_ABS; |
3126 | ||
3127 | return TRUE; | |
3128 | } | |
3129 | ||
3130 | ||
3131 | /* Combine adjacent literal table entries in the output. Adjacent | |
3132 | entries within each input section may have been removed during | |
3133 | relaxation, but we repeat the process here, even though it's too late | |
3134 | to shrink the output section, because it's important to minimize the | |
3135 | number of literal table entries to reduce the start-up work for the | |
3136 | runtime linker. Returns the number of remaining table entries or -1 | |
3137 | on error. */ | |
3138 | ||
3139 | static int | |
7fa3d080 BW |
3140 | elf_xtensa_combine_prop_entries (bfd *output_bfd, |
3141 | asection *sxtlit, | |
3142 | asection *sgotloc) | |
e0001a05 | 3143 | { |
e0001a05 NC |
3144 | bfd_byte *contents; |
3145 | property_table_entry *table; | |
e901de89 | 3146 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
3147 | bfd_vma offset; |
3148 | int n, m, num; | |
3149 | ||
eea6121a | 3150 | section_size = sxtlit->size; |
e0001a05 NC |
3151 | BFD_ASSERT (section_size % 8 == 0); |
3152 | num = section_size / 8; | |
3153 | ||
eea6121a | 3154 | sgotloc_size = sgotloc->size; |
e901de89 | 3155 | if (sgotloc_size != section_size) |
b536dc1e BW |
3156 | { |
3157 | (*_bfd_error_handler) | |
43cd72b9 | 3158 | (_("internal inconsistency in size of .got.loc section")); |
b536dc1e BW |
3159 | return -1; |
3160 | } | |
e901de89 | 3161 | |
eea6121a AM |
3162 | table = bfd_malloc (num * sizeof (property_table_entry)); |
3163 | if (table == 0) | |
e0001a05 NC |
3164 | return -1; |
3165 | ||
3166 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
3167 | propagates to the output section, where it doesn't really apply and | |
eea6121a | 3168 | where it breaks the following call to bfd_malloc_and_get_section. */ |
e901de89 | 3169 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 3170 | |
eea6121a AM |
3171 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
3172 | { | |
3173 | if (contents != 0) | |
3174 | free (contents); | |
3175 | free (table); | |
3176 | return -1; | |
3177 | } | |
e0001a05 NC |
3178 | |
3179 | /* There should never be any relocations left at this point, so this | |
3180 | is quite a bit easier than what is done during relaxation. */ | |
3181 | ||
3182 | /* Copy the raw contents into a property table array and sort it. */ | |
3183 | offset = 0; | |
3184 | for (n = 0; n < num; n++) | |
3185 | { | |
3186 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
3187 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
3188 | offset += 8; | |
3189 | } | |
3190 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
3191 | ||
3192 | for (n = 0; n < num; n++) | |
3193 | { | |
91d6fa6a | 3194 | bfd_boolean remove_entry = FALSE; |
e0001a05 NC |
3195 | |
3196 | if (table[n].size == 0) | |
91d6fa6a NC |
3197 | remove_entry = TRUE; |
3198 | else if (n > 0 | |
3199 | && (table[n-1].address + table[n-1].size == table[n].address)) | |
e0001a05 NC |
3200 | { |
3201 | table[n-1].size += table[n].size; | |
91d6fa6a | 3202 | remove_entry = TRUE; |
e0001a05 NC |
3203 | } |
3204 | ||
91d6fa6a | 3205 | if (remove_entry) |
e0001a05 NC |
3206 | { |
3207 | for (m = n; m < num - 1; m++) | |
3208 | { | |
3209 | table[m].address = table[m+1].address; | |
3210 | table[m].size = table[m+1].size; | |
3211 | } | |
3212 | ||
3213 | n--; | |
3214 | num--; | |
3215 | } | |
3216 | } | |
3217 | ||
3218 | /* Copy the data back to the raw contents. */ | |
3219 | offset = 0; | |
3220 | for (n = 0; n < num; n++) | |
3221 | { | |
3222 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
3223 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
3224 | offset += 8; | |
3225 | } | |
3226 | ||
3227 | /* Clear the removed bytes. */ | |
3228 | if ((bfd_size_type) (num * 8) < section_size) | |
b54d4b07 | 3229 | memset (&contents[num * 8], 0, section_size - num * 8); |
e0001a05 | 3230 | |
e901de89 BW |
3231 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
3232 | section_size)) | |
e0001a05 NC |
3233 | return -1; |
3234 | ||
e901de89 BW |
3235 | /* Copy the contents to ".got.loc". */ |
3236 | memcpy (sgotloc->contents, contents, section_size); | |
3237 | ||
e0001a05 | 3238 | free (contents); |
b614a702 | 3239 | free (table); |
e0001a05 NC |
3240 | return num; |
3241 | } | |
3242 | ||
3243 | ||
3244 | /* Finish up the dynamic sections. */ | |
3245 | ||
3246 | static bfd_boolean | |
7fa3d080 BW |
3247 | elf_xtensa_finish_dynamic_sections (bfd *output_bfd, |
3248 | struct bfd_link_info *info) | |
e0001a05 | 3249 | { |
f0e6fdb2 | 3250 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 | 3251 | bfd *dynobj; |
e901de89 | 3252 | asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc; |
e0001a05 | 3253 | Elf32_External_Dyn *dyncon, *dynconend; |
d9ab3f29 | 3254 | int num_xtlit_entries = 0; |
e0001a05 NC |
3255 | |
3256 | if (! elf_hash_table (info)->dynamic_sections_created) | |
3257 | return TRUE; | |
3258 | ||
f0e6fdb2 | 3259 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
3260 | if (htab == NULL) |
3261 | return FALSE; | |
3262 | ||
e0001a05 NC |
3263 | dynobj = elf_hash_table (info)->dynobj; |
3264 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
3265 | BFD_ASSERT (sdyn != NULL); | |
3266 | ||
3267 | /* Set the first entry in the global offset table to the address of | |
3268 | the dynamic section. */ | |
f0e6fdb2 | 3269 | sgot = htab->sgot; |
e0001a05 NC |
3270 | if (sgot) |
3271 | { | |
eea6121a | 3272 | BFD_ASSERT (sgot->size == 4); |
e0001a05 | 3273 | if (sdyn == NULL) |
7fa3d080 | 3274 | bfd_put_32 (output_bfd, 0, sgot->contents); |
e0001a05 NC |
3275 | else |
3276 | bfd_put_32 (output_bfd, | |
3277 | sdyn->output_section->vma + sdyn->output_offset, | |
3278 | sgot->contents); | |
3279 | } | |
3280 | ||
f0e6fdb2 | 3281 | srelplt = htab->srelplt; |
7fa3d080 | 3282 | if (srelplt && srelplt->size != 0) |
e0001a05 NC |
3283 | { |
3284 | asection *sgotplt, *srelgot, *spltlittbl; | |
3285 | int chunk, plt_chunks, plt_entries; | |
3286 | Elf_Internal_Rela irela; | |
3287 | bfd_byte *loc; | |
3288 | unsigned rtld_reloc; | |
3289 | ||
f0e6fdb2 BW |
3290 | srelgot = htab->srelgot; |
3291 | spltlittbl = htab->spltlittbl; | |
3292 | BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); | |
e0001a05 NC |
3293 | |
3294 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
3295 | of them follow immediately after.... */ | |
3296 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
3297 | { | |
3298 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3299 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3300 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
3301 | break; | |
3302 | } | |
3303 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
3304 | ||
eea6121a | 3305 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
3306 | plt_chunks = |
3307 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
3308 | ||
3309 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
3310 | { | |
3311 | int chunk_entries = 0; | |
3312 | ||
f0e6fdb2 | 3313 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
e0001a05 NC |
3314 | BFD_ASSERT (sgotplt != NULL); |
3315 | ||
3316 | /* Emit special RTLD relocations for the first two entries in | |
3317 | each chunk of the .got.plt section. */ | |
3318 | ||
3319 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3320 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3321 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3322 | irela.r_offset = (sgotplt->output_section->vma | |
3323 | + sgotplt->output_offset); | |
3324 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
3325 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3326 | rtld_reloc += 1; | |
3327 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3328 | ||
3329 | /* Next literal immediately follows the first. */ | |
3330 | loc += sizeof (Elf32_External_Rela); | |
3331 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3332 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3333 | irela.r_offset = (sgotplt->output_section->vma | |
3334 | + sgotplt->output_offset + 4); | |
3335 | /* Tell rtld to set value to object's link map. */ | |
3336 | irela.r_addend = 2; | |
3337 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3338 | rtld_reloc += 1; | |
3339 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3340 | ||
3341 | /* Fill in the literal table. */ | |
3342 | if (chunk < plt_chunks - 1) | |
3343 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
3344 | else | |
3345 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
3346 | ||
eea6121a | 3347 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
e0001a05 NC |
3348 | bfd_put_32 (output_bfd, |
3349 | sgotplt->output_section->vma + sgotplt->output_offset, | |
3350 | spltlittbl->contents + (chunk * 8) + 0); | |
3351 | bfd_put_32 (output_bfd, | |
3352 | 8 + (chunk_entries * 4), | |
3353 | spltlittbl->contents + (chunk * 8) + 4); | |
3354 | } | |
3355 | ||
3356 | /* All the dynamic relocations have been emitted at this point. | |
3357 | Make sure the relocation sections are the correct size. */ | |
eea6121a AM |
3358 | if (srelgot->size != (sizeof (Elf32_External_Rela) |
3359 | * srelgot->reloc_count) | |
3360 | || srelplt->size != (sizeof (Elf32_External_Rela) | |
3361 | * srelplt->reloc_count)) | |
e0001a05 NC |
3362 | abort (); |
3363 | ||
3364 | /* The .xt.lit.plt section has just been modified. This must | |
3365 | happen before the code below which combines adjacent literal | |
3366 | table entries, and the .xt.lit.plt contents have to be forced to | |
3367 | the output here. */ | |
3368 | if (! bfd_set_section_contents (output_bfd, | |
3369 | spltlittbl->output_section, | |
3370 | spltlittbl->contents, | |
3371 | spltlittbl->output_offset, | |
eea6121a | 3372 | spltlittbl->size)) |
e0001a05 NC |
3373 | return FALSE; |
3374 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
3375 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
3376 | } | |
3377 | ||
3378 | /* Combine adjacent literal table entries. */ | |
1049f94e | 3379 | BFD_ASSERT (! info->relocatable); |
e901de89 | 3380 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
f0e6fdb2 | 3381 | sgotloc = htab->sgotloc; |
d9ab3f29 BW |
3382 | BFD_ASSERT (sgotloc); |
3383 | if (sxtlit) | |
3384 | { | |
3385 | num_xtlit_entries = | |
3386 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
3387 | if (num_xtlit_entries < 0) | |
3388 | return FALSE; | |
3389 | } | |
e0001a05 NC |
3390 | |
3391 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
eea6121a | 3392 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
e0001a05 NC |
3393 | for (; dyncon < dynconend; dyncon++) |
3394 | { | |
3395 | Elf_Internal_Dyn dyn; | |
e0001a05 NC |
3396 | |
3397 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
3398 | ||
3399 | switch (dyn.d_tag) | |
3400 | { | |
3401 | default: | |
3402 | break; | |
3403 | ||
3404 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
3405 | dyn.d_un.d_val = num_xtlit_entries; |
3406 | break; | |
3407 | ||
3408 | case DT_XTENSA_GOT_LOC_OFF: | |
e29297b7 | 3409 | dyn.d_un.d_ptr = htab->sgotloc->output_section->vma; |
f0e6fdb2 BW |
3410 | break; |
3411 | ||
e0001a05 | 3412 | case DT_PLTGOT: |
e29297b7 | 3413 | dyn.d_un.d_ptr = htab->sgot->output_section->vma; |
f0e6fdb2 BW |
3414 | break; |
3415 | ||
e0001a05 | 3416 | case DT_JMPREL: |
e29297b7 | 3417 | dyn.d_un.d_ptr = htab->srelplt->output_section->vma; |
e0001a05 NC |
3418 | break; |
3419 | ||
3420 | case DT_PLTRELSZ: | |
e29297b7 | 3421 | dyn.d_un.d_val = htab->srelplt->output_section->size; |
e0001a05 NC |
3422 | break; |
3423 | ||
3424 | case DT_RELASZ: | |
3425 | /* Adjust RELASZ to not include JMPREL. This matches what | |
3426 | glibc expects and what is done for several other ELF | |
3427 | targets (e.g., i386, alpha), but the "correct" behavior | |
3428 | seems to be unresolved. Since the linker script arranges | |
3429 | for .rela.plt to follow all other relocation sections, we | |
3430 | don't have to worry about changing the DT_RELA entry. */ | |
f0e6fdb2 | 3431 | if (htab->srelplt) |
e29297b7 | 3432 | dyn.d_un.d_val -= htab->srelplt->output_section->size; |
e0001a05 NC |
3433 | break; |
3434 | } | |
3435 | ||
3436 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
3437 | } | |
3438 | ||
3439 | return TRUE; | |
3440 | } | |
3441 | ||
3442 | \f | |
3443 | /* Functions for dealing with the e_flags field. */ | |
3444 | ||
3445 | /* Merge backend specific data from an object file to the output | |
3446 | object file when linking. */ | |
3447 | ||
3448 | static bfd_boolean | |
7fa3d080 | 3449 | elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
e0001a05 NC |
3450 | { |
3451 | unsigned out_mach, in_mach; | |
3452 | flagword out_flag, in_flag; | |
3453 | ||
3454 | /* Check if we have the same endianess. */ | |
3455 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | |
3456 | return FALSE; | |
3457 | ||
3458 | /* Don't even pretend to support mixed-format linking. */ | |
3459 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
3460 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
3461 | return FALSE; | |
3462 | ||
3463 | out_flag = elf_elfheader (obfd)->e_flags; | |
3464 | in_flag = elf_elfheader (ibfd)->e_flags; | |
3465 | ||
3466 | out_mach = out_flag & EF_XTENSA_MACH; | |
3467 | in_mach = in_flag & EF_XTENSA_MACH; | |
43cd72b9 | 3468 | if (out_mach != in_mach) |
e0001a05 NC |
3469 | { |
3470 | (*_bfd_error_handler) | |
43cd72b9 | 3471 | (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"), |
d003868e | 3472 | ibfd, out_mach, in_mach); |
e0001a05 NC |
3473 | bfd_set_error (bfd_error_wrong_format); |
3474 | return FALSE; | |
3475 | } | |
3476 | ||
3477 | if (! elf_flags_init (obfd)) | |
3478 | { | |
3479 | elf_flags_init (obfd) = TRUE; | |
3480 | elf_elfheader (obfd)->e_flags = in_flag; | |
43cd72b9 | 3481 | |
e0001a05 NC |
3482 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
3483 | && bfd_get_arch_info (obfd)->the_default) | |
3484 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
3485 | bfd_get_mach (ibfd)); | |
43cd72b9 | 3486 | |
e0001a05 NC |
3487 | return TRUE; |
3488 | } | |
3489 | ||
43cd72b9 BW |
3490 | if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) |
3491 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); | |
e0001a05 | 3492 | |
43cd72b9 BW |
3493 | if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) |
3494 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); | |
e0001a05 NC |
3495 | |
3496 | return TRUE; | |
3497 | } | |
3498 | ||
3499 | ||
3500 | static bfd_boolean | |
7fa3d080 | 3501 | elf_xtensa_set_private_flags (bfd *abfd, flagword flags) |
e0001a05 NC |
3502 | { |
3503 | BFD_ASSERT (!elf_flags_init (abfd) | |
3504 | || elf_elfheader (abfd)->e_flags == flags); | |
3505 | ||
3506 | elf_elfheader (abfd)->e_flags |= flags; | |
3507 | elf_flags_init (abfd) = TRUE; | |
3508 | ||
3509 | return TRUE; | |
3510 | } | |
3511 | ||
3512 | ||
e0001a05 | 3513 | static bfd_boolean |
7fa3d080 | 3514 | elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) |
e0001a05 NC |
3515 | { |
3516 | FILE *f = (FILE *) farg; | |
3517 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
3518 | ||
3519 | fprintf (f, "\nXtensa header:\n"); | |
43cd72b9 | 3520 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) |
e0001a05 NC |
3521 | fprintf (f, "\nMachine = Base\n"); |
3522 | else | |
3523 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
3524 | ||
3525 | fprintf (f, "Insn tables = %s\n", | |
3526 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
3527 | ||
3528 | fprintf (f, "Literal tables = %s\n", | |
3529 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
3530 | ||
3531 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
3532 | } | |
3533 | ||
3534 | ||
3535 | /* Set the right machine number for an Xtensa ELF file. */ | |
3536 | ||
3537 | static bfd_boolean | |
7fa3d080 | 3538 | elf_xtensa_object_p (bfd *abfd) |
e0001a05 NC |
3539 | { |
3540 | int mach; | |
3541 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
3542 | ||
3543 | switch (arch) | |
3544 | { | |
3545 | case E_XTENSA_MACH: | |
3546 | mach = bfd_mach_xtensa; | |
3547 | break; | |
3548 | default: | |
3549 | return FALSE; | |
3550 | } | |
3551 | ||
3552 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
3553 | return TRUE; | |
3554 | } | |
3555 | ||
3556 | ||
3557 | /* The final processing done just before writing out an Xtensa ELF object | |
3558 | file. This gets the Xtensa architecture right based on the machine | |
3559 | number. */ | |
3560 | ||
3561 | static void | |
7fa3d080 BW |
3562 | elf_xtensa_final_write_processing (bfd *abfd, |
3563 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
e0001a05 NC |
3564 | { |
3565 | int mach; | |
3566 | unsigned long val; | |
3567 | ||
3568 | switch (mach = bfd_get_mach (abfd)) | |
3569 | { | |
3570 | case bfd_mach_xtensa: | |
3571 | val = E_XTENSA_MACH; | |
3572 | break; | |
3573 | default: | |
3574 | return; | |
3575 | } | |
3576 | ||
3577 | elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH); | |
3578 | elf_elfheader (abfd)->e_flags |= val; | |
3579 | } | |
3580 | ||
3581 | ||
3582 | static enum elf_reloc_type_class | |
7fa3d080 | 3583 | elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela) |
e0001a05 NC |
3584 | { |
3585 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
3586 | { | |
3587 | case R_XTENSA_RELATIVE: | |
3588 | return reloc_class_relative; | |
3589 | case R_XTENSA_JMP_SLOT: | |
3590 | return reloc_class_plt; | |
3591 | default: | |
3592 | return reloc_class_normal; | |
3593 | } | |
3594 | } | |
3595 | ||
3596 | \f | |
3597 | static bfd_boolean | |
7fa3d080 BW |
3598 | elf_xtensa_discard_info_for_section (bfd *abfd, |
3599 | struct elf_reloc_cookie *cookie, | |
3600 | struct bfd_link_info *info, | |
3601 | asection *sec) | |
e0001a05 NC |
3602 | { |
3603 | bfd_byte *contents; | |
e0001a05 | 3604 | bfd_vma offset, actual_offset; |
1d25768e BW |
3605 | bfd_size_type removed_bytes = 0; |
3606 | bfd_size_type entry_size; | |
e0001a05 NC |
3607 | |
3608 | if (sec->output_section | |
3609 | && bfd_is_abs_section (sec->output_section)) | |
3610 | return FALSE; | |
3611 | ||
1d25768e BW |
3612 | if (xtensa_is_proptable_section (sec)) |
3613 | entry_size = 12; | |
3614 | else | |
3615 | entry_size = 8; | |
3616 | ||
a3ef2d63 | 3617 | if (sec->size == 0 || sec->size % entry_size != 0) |
1d25768e BW |
3618 | return FALSE; |
3619 | ||
e0001a05 NC |
3620 | contents = retrieve_contents (abfd, sec, info->keep_memory); |
3621 | if (!contents) | |
3622 | return FALSE; | |
3623 | ||
3624 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
3625 | if (!cookie->rels) | |
3626 | { | |
3627 | release_contents (sec, contents); | |
3628 | return FALSE; | |
3629 | } | |
3630 | ||
1d25768e BW |
3631 | /* Sort the relocations. They should already be in order when |
3632 | relaxation is enabled, but it might not be. */ | |
3633 | qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
3634 | internal_reloc_compare); | |
3635 | ||
e0001a05 NC |
3636 | cookie->rel = cookie->rels; |
3637 | cookie->relend = cookie->rels + sec->reloc_count; | |
3638 | ||
a3ef2d63 | 3639 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 NC |
3640 | { |
3641 | actual_offset = offset - removed_bytes; | |
3642 | ||
3643 | /* The ...symbol_deleted_p function will skip over relocs but it | |
3644 | won't adjust their offsets, so do that here. */ | |
3645 | while (cookie->rel < cookie->relend | |
3646 | && cookie->rel->r_offset < offset) | |
3647 | { | |
3648 | cookie->rel->r_offset -= removed_bytes; | |
3649 | cookie->rel++; | |
3650 | } | |
3651 | ||
3652 | while (cookie->rel < cookie->relend | |
3653 | && cookie->rel->r_offset == offset) | |
3654 | { | |
c152c796 | 3655 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
e0001a05 NC |
3656 | { |
3657 | /* Remove the table entry. (If the reloc type is NONE, then | |
3658 | the entry has already been merged with another and deleted | |
3659 | during relaxation.) */ | |
3660 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
3661 | { | |
3662 | /* Shift the contents up. */ | |
a3ef2d63 | 3663 | if (offset + entry_size < sec->size) |
e0001a05 | 3664 | memmove (&contents[actual_offset], |
1d25768e | 3665 | &contents[actual_offset + entry_size], |
a3ef2d63 | 3666 | sec->size - offset - entry_size); |
1d25768e | 3667 | removed_bytes += entry_size; |
e0001a05 NC |
3668 | } |
3669 | ||
3670 | /* Remove this relocation. */ | |
3671 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
3672 | } | |
3673 | ||
3674 | /* Adjust the relocation offset for previous removals. This | |
3675 | should not be done before calling ...symbol_deleted_p | |
3676 | because it might mess up the offset comparisons there. | |
3677 | Make sure the offset doesn't underflow in the case where | |
3678 | the first entry is removed. */ | |
3679 | if (cookie->rel->r_offset >= removed_bytes) | |
3680 | cookie->rel->r_offset -= removed_bytes; | |
3681 | else | |
3682 | cookie->rel->r_offset = 0; | |
3683 | ||
3684 | cookie->rel++; | |
3685 | } | |
3686 | } | |
3687 | ||
3688 | if (removed_bytes != 0) | |
3689 | { | |
3690 | /* Adjust any remaining relocs (shouldn't be any). */ | |
3691 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
3692 | { | |
3693 | if (cookie->rel->r_offset >= removed_bytes) | |
3694 | cookie->rel->r_offset -= removed_bytes; | |
3695 | else | |
3696 | cookie->rel->r_offset = 0; | |
3697 | } | |
3698 | ||
3699 | /* Clear the removed bytes. */ | |
a3ef2d63 | 3700 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 NC |
3701 | |
3702 | pin_contents (sec, contents); | |
3703 | pin_internal_relocs (sec, cookie->rels); | |
3704 | ||
eea6121a | 3705 | /* Shrink size. */ |
a3ef2d63 BW |
3706 | if (sec->rawsize == 0) |
3707 | sec->rawsize = sec->size; | |
3708 | sec->size -= removed_bytes; | |
b536dc1e BW |
3709 | |
3710 | if (xtensa_is_littable_section (sec)) | |
3711 | { | |
f0e6fdb2 BW |
3712 | asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; |
3713 | if (sgotloc) | |
3714 | sgotloc->size -= removed_bytes; | |
b536dc1e | 3715 | } |
e0001a05 NC |
3716 | } |
3717 | else | |
3718 | { | |
3719 | release_contents (sec, contents); | |
3720 | release_internal_relocs (sec, cookie->rels); | |
3721 | } | |
3722 | ||
3723 | return (removed_bytes != 0); | |
3724 | } | |
3725 | ||
3726 | ||
3727 | static bfd_boolean | |
7fa3d080 BW |
3728 | elf_xtensa_discard_info (bfd *abfd, |
3729 | struct elf_reloc_cookie *cookie, | |
3730 | struct bfd_link_info *info) | |
e0001a05 NC |
3731 | { |
3732 | asection *sec; | |
3733 | bfd_boolean changed = FALSE; | |
3734 | ||
3735 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
3736 | { | |
3737 | if (xtensa_is_property_section (sec)) | |
3738 | { | |
3739 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
3740 | changed = TRUE; | |
3741 | } | |
3742 | } | |
3743 | ||
3744 | return changed; | |
3745 | } | |
3746 | ||
3747 | ||
3748 | static bfd_boolean | |
7fa3d080 | 3749 | elf_xtensa_ignore_discarded_relocs (asection *sec) |
e0001a05 NC |
3750 | { |
3751 | return xtensa_is_property_section (sec); | |
3752 | } | |
3753 | ||
a77dc2cc BW |
3754 | |
3755 | static unsigned int | |
3756 | elf_xtensa_action_discarded (asection *sec) | |
3757 | { | |
3758 | if (strcmp (".xt_except_table", sec->name) == 0) | |
3759 | return 0; | |
3760 | ||
3761 | if (strcmp (".xt_except_desc", sec->name) == 0) | |
3762 | return 0; | |
3763 | ||
3764 | return _bfd_elf_default_action_discarded (sec); | |
3765 | } | |
3766 | ||
e0001a05 NC |
3767 | \f |
3768 | /* Support for core dump NOTE sections. */ | |
3769 | ||
3770 | static bfd_boolean | |
7fa3d080 | 3771 | elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3772 | { |
3773 | int offset; | |
eea6121a | 3774 | unsigned int size; |
e0001a05 NC |
3775 | |
3776 | /* The size for Xtensa is variable, so don't try to recognize the format | |
3777 | based on the size. Just assume this is GNU/Linux. */ | |
3778 | ||
3779 | /* pr_cursig */ | |
3780 | elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); | |
3781 | ||
3782 | /* pr_pid */ | |
3783 | elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); | |
3784 | ||
3785 | /* pr_reg */ | |
3786 | offset = 72; | |
eea6121a | 3787 | size = note->descsz - offset - 4; |
e0001a05 NC |
3788 | |
3789 | /* Make a ".reg/999" section. */ | |
3790 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
eea6121a | 3791 | size, note->descpos + offset); |
e0001a05 NC |
3792 | } |
3793 | ||
3794 | ||
3795 | static bfd_boolean | |
7fa3d080 | 3796 | elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3797 | { |
3798 | switch (note->descsz) | |
3799 | { | |
3800 | default: | |
3801 | return FALSE; | |
3802 | ||
3803 | case 128: /* GNU/Linux elf_prpsinfo */ | |
3804 | elf_tdata (abfd)->core_program | |
3805 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); | |
3806 | elf_tdata (abfd)->core_command | |
3807 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); | |
3808 | } | |
3809 | ||
3810 | /* Note that for some reason, a spurious space is tacked | |
3811 | onto the end of the args in some (at least one anyway) | |
3812 | implementations, so strip it off if it exists. */ | |
3813 | ||
3814 | { | |
3815 | char *command = elf_tdata (abfd)->core_command; | |
3816 | int n = strlen (command); | |
3817 | ||
3818 | if (0 < n && command[n - 1] == ' ') | |
3819 | command[n - 1] = '\0'; | |
3820 | } | |
3821 | ||
3822 | return TRUE; | |
3823 | } | |
3824 | ||
3825 | \f | |
3826 | /* Generic Xtensa configurability stuff. */ | |
3827 | ||
3828 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
3829 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
3830 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
3831 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
3832 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
3833 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
3834 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
3835 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
3836 | ||
3837 | static void | |
7fa3d080 | 3838 | init_call_opcodes (void) |
e0001a05 NC |
3839 | { |
3840 | if (callx0_op == XTENSA_UNDEFINED) | |
3841 | { | |
3842 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
3843 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
3844 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
3845 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
3846 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
3847 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
3848 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
3849 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
3850 | } | |
3851 | } | |
3852 | ||
3853 | ||
3854 | static bfd_boolean | |
7fa3d080 | 3855 | is_indirect_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3856 | { |
3857 | init_call_opcodes (); | |
3858 | return (opcode == callx0_op | |
3859 | || opcode == callx4_op | |
3860 | || opcode == callx8_op | |
3861 | || opcode == callx12_op); | |
3862 | } | |
3863 | ||
3864 | ||
3865 | static bfd_boolean | |
7fa3d080 | 3866 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3867 | { |
3868 | init_call_opcodes (); | |
3869 | return (opcode == call0_op | |
3870 | || opcode == call4_op | |
3871 | || opcode == call8_op | |
3872 | || opcode == call12_op); | |
3873 | } | |
3874 | ||
3875 | ||
3876 | static bfd_boolean | |
7fa3d080 | 3877 | is_windowed_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3878 | { |
3879 | init_call_opcodes (); | |
3880 | return (opcode == call4_op | |
3881 | || opcode == call8_op | |
3882 | || opcode == call12_op | |
3883 | || opcode == callx4_op | |
3884 | || opcode == callx8_op | |
3885 | || opcode == callx12_op); | |
3886 | } | |
3887 | ||
3888 | ||
28dbbc02 BW |
3889 | static bfd_boolean |
3890 | get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst) | |
3891 | { | |
3892 | unsigned dst = (unsigned) -1; | |
3893 | ||
3894 | init_call_opcodes (); | |
3895 | if (opcode == callx0_op) | |
3896 | dst = 0; | |
3897 | else if (opcode == callx4_op) | |
3898 | dst = 4; | |
3899 | else if (opcode == callx8_op) | |
3900 | dst = 8; | |
3901 | else if (opcode == callx12_op) | |
3902 | dst = 12; | |
3903 | ||
3904 | if (dst == (unsigned) -1) | |
3905 | return FALSE; | |
3906 | ||
3907 | *pdst = dst; | |
3908 | return TRUE; | |
3909 | } | |
3910 | ||
3911 | ||
43cd72b9 BW |
3912 | static xtensa_opcode |
3913 | get_const16_opcode (void) | |
3914 | { | |
3915 | static bfd_boolean done_lookup = FALSE; | |
3916 | static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; | |
3917 | if (!done_lookup) | |
3918 | { | |
3919 | const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); | |
3920 | done_lookup = TRUE; | |
3921 | } | |
3922 | return const16_opcode; | |
3923 | } | |
3924 | ||
3925 | ||
e0001a05 NC |
3926 | static xtensa_opcode |
3927 | get_l32r_opcode (void) | |
3928 | { | |
3929 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
43cd72b9 BW |
3930 | static bfd_boolean done_lookup = FALSE; |
3931 | ||
3932 | if (!done_lookup) | |
e0001a05 NC |
3933 | { |
3934 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
43cd72b9 | 3935 | done_lookup = TRUE; |
e0001a05 NC |
3936 | } |
3937 | return l32r_opcode; | |
3938 | } | |
3939 | ||
3940 | ||
3941 | static bfd_vma | |
7fa3d080 | 3942 | l32r_offset (bfd_vma addr, bfd_vma pc) |
e0001a05 NC |
3943 | { |
3944 | bfd_vma offset; | |
3945 | ||
3946 | offset = addr - ((pc+3) & -4); | |
3947 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
3948 | offset = (signed int) offset >> 2; | |
3949 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
3950 | return offset; | |
3951 | } | |
3952 | ||
3953 | ||
e0001a05 | 3954 | static int |
7fa3d080 | 3955 | get_relocation_opnd (xtensa_opcode opcode, int r_type) |
e0001a05 | 3956 | { |
43cd72b9 BW |
3957 | xtensa_isa isa = xtensa_default_isa; |
3958 | int last_immed, last_opnd, opi; | |
3959 | ||
3960 | if (opcode == XTENSA_UNDEFINED) | |
3961 | return XTENSA_UNDEFINED; | |
3962 | ||
3963 | /* Find the last visible PC-relative immediate operand for the opcode. | |
3964 | If there are no PC-relative immediates, then choose the last visible | |
3965 | immediate; otherwise, fail and return XTENSA_UNDEFINED. */ | |
3966 | last_immed = XTENSA_UNDEFINED; | |
3967 | last_opnd = xtensa_opcode_num_operands (isa, opcode); | |
3968 | for (opi = last_opnd - 1; opi >= 0; opi--) | |
3969 | { | |
3970 | if (xtensa_operand_is_visible (isa, opcode, opi) == 0) | |
3971 | continue; | |
3972 | if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) | |
3973 | { | |
3974 | last_immed = opi; | |
3975 | break; | |
3976 | } | |
3977 | if (last_immed == XTENSA_UNDEFINED | |
3978 | && xtensa_operand_is_register (isa, opcode, opi) == 0) | |
3979 | last_immed = opi; | |
3980 | } | |
3981 | if (last_immed < 0) | |
3982 | return XTENSA_UNDEFINED; | |
3983 | ||
3984 | /* If the operand number was specified in an old-style relocation, | |
3985 | check for consistency with the operand computed above. */ | |
3986 | if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) | |
3987 | { | |
3988 | int reloc_opnd = r_type - R_XTENSA_OP0; | |
3989 | if (reloc_opnd != last_immed) | |
3990 | return XTENSA_UNDEFINED; | |
3991 | } | |
3992 | ||
3993 | return last_immed; | |
3994 | } | |
3995 | ||
3996 | ||
3997 | int | |
7fa3d080 | 3998 | get_relocation_slot (int r_type) |
43cd72b9 BW |
3999 | { |
4000 | switch (r_type) | |
4001 | { | |
4002 | case R_XTENSA_OP0: | |
4003 | case R_XTENSA_OP1: | |
4004 | case R_XTENSA_OP2: | |
4005 | return 0; | |
4006 | ||
4007 | default: | |
4008 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
4009 | return r_type - R_XTENSA_SLOT0_OP; | |
4010 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
4011 | return r_type - R_XTENSA_SLOT0_ALT; | |
4012 | break; | |
4013 | } | |
4014 | ||
4015 | return XTENSA_UNDEFINED; | |
e0001a05 NC |
4016 | } |
4017 | ||
4018 | ||
4019 | /* Get the opcode for a relocation. */ | |
4020 | ||
4021 | static xtensa_opcode | |
7fa3d080 BW |
4022 | get_relocation_opcode (bfd *abfd, |
4023 | asection *sec, | |
4024 | bfd_byte *contents, | |
4025 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
4026 | { |
4027 | static xtensa_insnbuf ibuff = NULL; | |
43cd72b9 | 4028 | static xtensa_insnbuf sbuff = NULL; |
e0001a05 | 4029 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4030 | xtensa_format fmt; |
4031 | int slot; | |
e0001a05 NC |
4032 | |
4033 | if (contents == NULL) | |
4034 | return XTENSA_UNDEFINED; | |
4035 | ||
43cd72b9 | 4036 | if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) |
e0001a05 NC |
4037 | return XTENSA_UNDEFINED; |
4038 | ||
4039 | if (ibuff == NULL) | |
43cd72b9 BW |
4040 | { |
4041 | ibuff = xtensa_insnbuf_alloc (isa); | |
4042 | sbuff = xtensa_insnbuf_alloc (isa); | |
4043 | } | |
4044 | ||
e0001a05 | 4045 | /* Decode the instruction. */ |
43cd72b9 BW |
4046 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], |
4047 | sec->size - irel->r_offset); | |
4048 | fmt = xtensa_format_decode (isa, ibuff); | |
4049 | slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); | |
4050 | if (slot == XTENSA_UNDEFINED) | |
4051 | return XTENSA_UNDEFINED; | |
4052 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); | |
4053 | return xtensa_opcode_decode (isa, fmt, slot, sbuff); | |
e0001a05 NC |
4054 | } |
4055 | ||
4056 | ||
4057 | bfd_boolean | |
7fa3d080 BW |
4058 | is_l32r_relocation (bfd *abfd, |
4059 | asection *sec, | |
4060 | bfd_byte *contents, | |
4061 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
4062 | { |
4063 | xtensa_opcode opcode; | |
43cd72b9 | 4064 | if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
e0001a05 | 4065 | return FALSE; |
43cd72b9 | 4066 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
e0001a05 NC |
4067 | return (opcode == get_l32r_opcode ()); |
4068 | } | |
4069 | ||
e0001a05 | 4070 | |
43cd72b9 | 4071 | static bfd_size_type |
7fa3d080 BW |
4072 | get_asm_simplify_size (bfd_byte *contents, |
4073 | bfd_size_type content_len, | |
4074 | bfd_size_type offset) | |
e0001a05 | 4075 | { |
43cd72b9 | 4076 | bfd_size_type insnlen, size = 0; |
e0001a05 | 4077 | |
43cd72b9 BW |
4078 | /* Decode the size of the next two instructions. */ |
4079 | insnlen = insn_decode_len (contents, content_len, offset); | |
4080 | if (insnlen == 0) | |
4081 | return 0; | |
e0001a05 | 4082 | |
43cd72b9 | 4083 | size += insnlen; |
e0001a05 | 4084 | |
43cd72b9 BW |
4085 | insnlen = insn_decode_len (contents, content_len, offset + size); |
4086 | if (insnlen == 0) | |
4087 | return 0; | |
e0001a05 | 4088 | |
43cd72b9 BW |
4089 | size += insnlen; |
4090 | return size; | |
4091 | } | |
e0001a05 | 4092 | |
43cd72b9 BW |
4093 | |
4094 | bfd_boolean | |
7fa3d080 | 4095 | is_alt_relocation (int r_type) |
43cd72b9 BW |
4096 | { |
4097 | return (r_type >= R_XTENSA_SLOT0_ALT | |
4098 | && r_type <= R_XTENSA_SLOT14_ALT); | |
e0001a05 NC |
4099 | } |
4100 | ||
4101 | ||
43cd72b9 | 4102 | bfd_boolean |
7fa3d080 | 4103 | is_operand_relocation (int r_type) |
e0001a05 | 4104 | { |
43cd72b9 BW |
4105 | switch (r_type) |
4106 | { | |
4107 | case R_XTENSA_OP0: | |
4108 | case R_XTENSA_OP1: | |
4109 | case R_XTENSA_OP2: | |
4110 | return TRUE; | |
e0001a05 | 4111 | |
43cd72b9 BW |
4112 | default: |
4113 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
4114 | return TRUE; | |
4115 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
4116 | return TRUE; | |
4117 | break; | |
4118 | } | |
e0001a05 | 4119 | |
43cd72b9 | 4120 | return FALSE; |
e0001a05 NC |
4121 | } |
4122 | ||
43cd72b9 BW |
4123 | |
4124 | #define MIN_INSN_LENGTH 2 | |
e0001a05 | 4125 | |
43cd72b9 BW |
4126 | /* Return 0 if it fails to decode. */ |
4127 | ||
4128 | bfd_size_type | |
7fa3d080 BW |
4129 | insn_decode_len (bfd_byte *contents, |
4130 | bfd_size_type content_len, | |
4131 | bfd_size_type offset) | |
e0001a05 | 4132 | { |
43cd72b9 BW |
4133 | int insn_len; |
4134 | xtensa_isa isa = xtensa_default_isa; | |
4135 | xtensa_format fmt; | |
4136 | static xtensa_insnbuf ibuff = NULL; | |
e0001a05 | 4137 | |
43cd72b9 BW |
4138 | if (offset + MIN_INSN_LENGTH > content_len) |
4139 | return 0; | |
e0001a05 | 4140 | |
43cd72b9 BW |
4141 | if (ibuff == NULL) |
4142 | ibuff = xtensa_insnbuf_alloc (isa); | |
4143 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
4144 | content_len - offset); | |
4145 | fmt = xtensa_format_decode (isa, ibuff); | |
4146 | if (fmt == XTENSA_UNDEFINED) | |
4147 | return 0; | |
4148 | insn_len = xtensa_format_length (isa, fmt); | |
4149 | if (insn_len == XTENSA_UNDEFINED) | |
4150 | return 0; | |
4151 | return insn_len; | |
e0001a05 NC |
4152 | } |
4153 | ||
4154 | ||
43cd72b9 BW |
4155 | /* Decode the opcode for a single slot instruction. |
4156 | Return 0 if it fails to decode or the instruction is multi-slot. */ | |
e0001a05 | 4157 | |
43cd72b9 | 4158 | xtensa_opcode |
7fa3d080 BW |
4159 | insn_decode_opcode (bfd_byte *contents, |
4160 | bfd_size_type content_len, | |
4161 | bfd_size_type offset, | |
4162 | int slot) | |
e0001a05 | 4163 | { |
e0001a05 | 4164 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4165 | xtensa_format fmt; |
4166 | static xtensa_insnbuf insnbuf = NULL; | |
4167 | static xtensa_insnbuf slotbuf = NULL; | |
4168 | ||
4169 | if (offset + MIN_INSN_LENGTH > content_len) | |
e0001a05 NC |
4170 | return XTENSA_UNDEFINED; |
4171 | ||
4172 | if (insnbuf == NULL) | |
43cd72b9 BW |
4173 | { |
4174 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4175 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4176 | } | |
4177 | ||
4178 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4179 | content_len - offset); | |
4180 | fmt = xtensa_format_decode (isa, insnbuf); | |
4181 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 4182 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
4183 | |
4184 | if (slot >= xtensa_format_num_slots (isa, fmt)) | |
e0001a05 | 4185 | return XTENSA_UNDEFINED; |
e0001a05 | 4186 | |
43cd72b9 BW |
4187 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
4188 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
4189 | } | |
e0001a05 | 4190 | |
e0001a05 | 4191 | |
43cd72b9 BW |
4192 | /* The offset is the offset in the contents. |
4193 | The address is the address of that offset. */ | |
e0001a05 | 4194 | |
43cd72b9 | 4195 | static bfd_boolean |
7fa3d080 BW |
4196 | check_branch_target_aligned (bfd_byte *contents, |
4197 | bfd_size_type content_length, | |
4198 | bfd_vma offset, | |
4199 | bfd_vma address) | |
43cd72b9 BW |
4200 | { |
4201 | bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); | |
4202 | if (insn_len == 0) | |
4203 | return FALSE; | |
4204 | return check_branch_target_aligned_address (address, insn_len); | |
4205 | } | |
e0001a05 | 4206 | |
e0001a05 | 4207 | |
43cd72b9 | 4208 | static bfd_boolean |
7fa3d080 BW |
4209 | check_loop_aligned (bfd_byte *contents, |
4210 | bfd_size_type content_length, | |
4211 | bfd_vma offset, | |
4212 | bfd_vma address) | |
e0001a05 | 4213 | { |
43cd72b9 | 4214 | bfd_size_type loop_len, insn_len; |
64b607e6 | 4215 | xtensa_opcode opcode; |
e0001a05 | 4216 | |
64b607e6 BW |
4217 | opcode = insn_decode_opcode (contents, content_length, offset, 0); |
4218 | if (opcode == XTENSA_UNDEFINED | |
4219 | || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) | |
4220 | { | |
4221 | BFD_ASSERT (FALSE); | |
4222 | return FALSE; | |
4223 | } | |
4224 | ||
43cd72b9 | 4225 | loop_len = insn_decode_len (contents, content_length, offset); |
43cd72b9 | 4226 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); |
64b607e6 BW |
4227 | if (loop_len == 0 || insn_len == 0) |
4228 | { | |
4229 | BFD_ASSERT (FALSE); | |
4230 | return FALSE; | |
4231 | } | |
e0001a05 | 4232 | |
43cd72b9 BW |
4233 | return check_branch_target_aligned_address (address + loop_len, insn_len); |
4234 | } | |
e0001a05 | 4235 | |
e0001a05 NC |
4236 | |
4237 | static bfd_boolean | |
7fa3d080 | 4238 | check_branch_target_aligned_address (bfd_vma addr, int len) |
e0001a05 | 4239 | { |
43cd72b9 BW |
4240 | if (len == 8) |
4241 | return (addr % 8 == 0); | |
4242 | return ((addr >> 2) == ((addr + len - 1) >> 2)); | |
e0001a05 NC |
4243 | } |
4244 | ||
43cd72b9 BW |
4245 | \f |
4246 | /* Instruction widening and narrowing. */ | |
e0001a05 | 4247 | |
7fa3d080 BW |
4248 | /* When FLIX is available we need to access certain instructions only |
4249 | when they are 16-bit or 24-bit instructions. This table caches | |
4250 | information about such instructions by walking through all the | |
4251 | opcodes and finding the smallest single-slot format into which each | |
4252 | can be encoded. */ | |
4253 | ||
4254 | static xtensa_format *op_single_fmt_table = NULL; | |
e0001a05 NC |
4255 | |
4256 | ||
7fa3d080 BW |
4257 | static void |
4258 | init_op_single_format_table (void) | |
e0001a05 | 4259 | { |
7fa3d080 BW |
4260 | xtensa_isa isa = xtensa_default_isa; |
4261 | xtensa_insnbuf ibuf; | |
4262 | xtensa_opcode opcode; | |
4263 | xtensa_format fmt; | |
4264 | int num_opcodes; | |
4265 | ||
4266 | if (op_single_fmt_table) | |
4267 | return; | |
4268 | ||
4269 | ibuf = xtensa_insnbuf_alloc (isa); | |
4270 | num_opcodes = xtensa_isa_num_opcodes (isa); | |
4271 | ||
4272 | op_single_fmt_table = (xtensa_format *) | |
4273 | bfd_malloc (sizeof (xtensa_format) * num_opcodes); | |
4274 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
4275 | { | |
4276 | op_single_fmt_table[opcode] = XTENSA_UNDEFINED; | |
4277 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
4278 | { | |
4279 | if (xtensa_format_num_slots (isa, fmt) == 1 | |
4280 | && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) | |
4281 | { | |
4282 | xtensa_opcode old_fmt = op_single_fmt_table[opcode]; | |
4283 | int fmt_length = xtensa_format_length (isa, fmt); | |
4284 | if (old_fmt == XTENSA_UNDEFINED | |
4285 | || fmt_length < xtensa_format_length (isa, old_fmt)) | |
4286 | op_single_fmt_table[opcode] = fmt; | |
4287 | } | |
4288 | } | |
4289 | } | |
4290 | xtensa_insnbuf_free (isa, ibuf); | |
4291 | } | |
4292 | ||
4293 | ||
4294 | static xtensa_format | |
4295 | get_single_format (xtensa_opcode opcode) | |
4296 | { | |
4297 | init_op_single_format_table (); | |
4298 | return op_single_fmt_table[opcode]; | |
4299 | } | |
e0001a05 | 4300 | |
e0001a05 | 4301 | |
43cd72b9 BW |
4302 | /* For the set of narrowable instructions we do NOT include the |
4303 | narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities | |
4304 | involved during linker relaxation that may require these to | |
4305 | re-expand in some conditions. Also, the narrowing "or" -> mov.n | |
4306 | requires special case code to ensure it only works when op1 == op2. */ | |
e0001a05 | 4307 | |
7fa3d080 BW |
4308 | struct string_pair |
4309 | { | |
4310 | const char *wide; | |
4311 | const char *narrow; | |
4312 | }; | |
4313 | ||
43cd72b9 | 4314 | struct string_pair narrowable[] = |
e0001a05 | 4315 | { |
43cd72b9 BW |
4316 | { "add", "add.n" }, |
4317 | { "addi", "addi.n" }, | |
4318 | { "addmi", "addi.n" }, | |
4319 | { "l32i", "l32i.n" }, | |
4320 | { "movi", "movi.n" }, | |
4321 | { "ret", "ret.n" }, | |
4322 | { "retw", "retw.n" }, | |
4323 | { "s32i", "s32i.n" }, | |
4324 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4325 | }; | |
e0001a05 | 4326 | |
43cd72b9 | 4327 | struct string_pair widenable[] = |
e0001a05 | 4328 | { |
43cd72b9 BW |
4329 | { "add", "add.n" }, |
4330 | { "addi", "addi.n" }, | |
4331 | { "addmi", "addi.n" }, | |
4332 | { "beqz", "beqz.n" }, | |
4333 | { "bnez", "bnez.n" }, | |
4334 | { "l32i", "l32i.n" }, | |
4335 | { "movi", "movi.n" }, | |
4336 | { "ret", "ret.n" }, | |
4337 | { "retw", "retw.n" }, | |
4338 | { "s32i", "s32i.n" }, | |
4339 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4340 | }; | |
e0001a05 NC |
4341 | |
4342 | ||
64b607e6 BW |
4343 | /* Check if an instruction can be "narrowed", i.e., changed from a standard |
4344 | 3-byte instruction to a 2-byte "density" instruction. If it is valid, | |
4345 | return the instruction buffer holding the narrow instruction. Otherwise, | |
4346 | return 0. The set of valid narrowing are specified by a string table | |
43cd72b9 BW |
4347 | but require some special case operand checks in some cases. */ |
4348 | ||
64b607e6 BW |
4349 | static xtensa_insnbuf |
4350 | can_narrow_instruction (xtensa_insnbuf slotbuf, | |
4351 | xtensa_format fmt, | |
4352 | xtensa_opcode opcode) | |
e0001a05 | 4353 | { |
43cd72b9 | 4354 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4355 | xtensa_format o_fmt; |
4356 | unsigned opi; | |
e0001a05 | 4357 | |
43cd72b9 BW |
4358 | static xtensa_insnbuf o_insnbuf = NULL; |
4359 | static xtensa_insnbuf o_slotbuf = NULL; | |
e0001a05 | 4360 | |
64b607e6 | 4361 | if (o_insnbuf == NULL) |
43cd72b9 | 4362 | { |
43cd72b9 BW |
4363 | o_insnbuf = xtensa_insnbuf_alloc (isa); |
4364 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4365 | } | |
e0001a05 | 4366 | |
64b607e6 | 4367 | for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) |
43cd72b9 BW |
4368 | { |
4369 | bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); | |
e0001a05 | 4370 | |
43cd72b9 BW |
4371 | if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) |
4372 | { | |
4373 | uint32 value, newval; | |
4374 | int i, operand_count, o_operand_count; | |
4375 | xtensa_opcode o_opcode; | |
e0001a05 | 4376 | |
43cd72b9 BW |
4377 | /* Address does not matter in this case. We might need to |
4378 | fix it to handle branches/jumps. */ | |
4379 | bfd_vma self_address = 0; | |
e0001a05 | 4380 | |
43cd72b9 BW |
4381 | o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); |
4382 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4383 | return 0; |
43cd72b9 BW |
4384 | o_fmt = get_single_format (o_opcode); |
4385 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4386 | return 0; |
e0001a05 | 4387 | |
43cd72b9 BW |
4388 | if (xtensa_format_length (isa, fmt) != 3 |
4389 | || xtensa_format_length (isa, o_fmt) != 2) | |
64b607e6 | 4390 | return 0; |
e0001a05 | 4391 | |
43cd72b9 BW |
4392 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4393 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4394 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
e0001a05 | 4395 | |
43cd72b9 | 4396 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4397 | return 0; |
e0001a05 | 4398 | |
43cd72b9 BW |
4399 | if (!is_or) |
4400 | { | |
4401 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4402 | return 0; |
43cd72b9 BW |
4403 | } |
4404 | else | |
4405 | { | |
4406 | uint32 rawval0, rawval1, rawval2; | |
e0001a05 | 4407 | |
64b607e6 BW |
4408 | if (o_operand_count + 1 != operand_count |
4409 | || xtensa_operand_get_field (isa, opcode, 0, | |
4410 | fmt, 0, slotbuf, &rawval0) != 0 | |
4411 | || xtensa_operand_get_field (isa, opcode, 1, | |
4412 | fmt, 0, slotbuf, &rawval1) != 0 | |
4413 | || xtensa_operand_get_field (isa, opcode, 2, | |
4414 | fmt, 0, slotbuf, &rawval2) != 0 | |
4415 | || rawval1 != rawval2 | |
4416 | || rawval0 == rawval1 /* it is a nop */) | |
4417 | return 0; | |
43cd72b9 | 4418 | } |
e0001a05 | 4419 | |
43cd72b9 BW |
4420 | for (i = 0; i < o_operand_count; ++i) |
4421 | { | |
4422 | if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, | |
4423 | slotbuf, &value) | |
4424 | || xtensa_operand_decode (isa, opcode, i, &value)) | |
64b607e6 | 4425 | return 0; |
e0001a05 | 4426 | |
43cd72b9 BW |
4427 | /* PC-relative branches need adjustment, but |
4428 | the PC-rel operand will always have a relocation. */ | |
4429 | newval = value; | |
4430 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4431 | self_address) | |
4432 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4433 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4434 | o_slotbuf, newval)) | |
64b607e6 | 4435 | return 0; |
43cd72b9 | 4436 | } |
e0001a05 | 4437 | |
64b607e6 BW |
4438 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) |
4439 | return 0; | |
e0001a05 | 4440 | |
64b607e6 | 4441 | return o_insnbuf; |
43cd72b9 BW |
4442 | } |
4443 | } | |
64b607e6 | 4444 | return 0; |
43cd72b9 | 4445 | } |
e0001a05 | 4446 | |
e0001a05 | 4447 | |
64b607e6 BW |
4448 | /* Attempt to narrow an instruction. If the narrowing is valid, perform |
4449 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4450 | the return value is FALSE and the contents are not modified. */ | |
e0001a05 | 4451 | |
43cd72b9 | 4452 | static bfd_boolean |
64b607e6 BW |
4453 | narrow_instruction (bfd_byte *contents, |
4454 | bfd_size_type content_length, | |
4455 | bfd_size_type offset) | |
e0001a05 | 4456 | { |
43cd72b9 | 4457 | xtensa_opcode opcode; |
64b607e6 | 4458 | bfd_size_type insn_len; |
43cd72b9 | 4459 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4460 | xtensa_format fmt; |
4461 | xtensa_insnbuf o_insnbuf; | |
e0001a05 | 4462 | |
43cd72b9 BW |
4463 | static xtensa_insnbuf insnbuf = NULL; |
4464 | static xtensa_insnbuf slotbuf = NULL; | |
e0001a05 | 4465 | |
43cd72b9 BW |
4466 | if (insnbuf == NULL) |
4467 | { | |
4468 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4469 | slotbuf = xtensa_insnbuf_alloc (isa); | |
43cd72b9 | 4470 | } |
e0001a05 | 4471 | |
43cd72b9 | 4472 | BFD_ASSERT (offset < content_length); |
2c8c90bc | 4473 | |
43cd72b9 | 4474 | if (content_length < 2) |
e0001a05 NC |
4475 | return FALSE; |
4476 | ||
64b607e6 | 4477 | /* We will hand-code a few of these for a little while. |
43cd72b9 BW |
4478 | These have all been specified in the assembler aleady. */ |
4479 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4480 | content_length - offset); | |
4481 | fmt = xtensa_format_decode (isa, insnbuf); | |
4482 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
e0001a05 NC |
4483 | return FALSE; |
4484 | ||
43cd72b9 | 4485 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
e0001a05 NC |
4486 | return FALSE; |
4487 | ||
43cd72b9 BW |
4488 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4489 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 4490 | return FALSE; |
43cd72b9 BW |
4491 | insn_len = xtensa_format_length (isa, fmt); |
4492 | if (insn_len > content_length) | |
4493 | return FALSE; | |
4494 | ||
64b607e6 BW |
4495 | o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); |
4496 | if (o_insnbuf) | |
4497 | { | |
4498 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4499 | content_length - offset); | |
4500 | return TRUE; | |
4501 | } | |
4502 | ||
4503 | return FALSE; | |
4504 | } | |
4505 | ||
4506 | ||
4507 | /* Check if an instruction can be "widened", i.e., changed from a 2-byte | |
4508 | "density" instruction to a standard 3-byte instruction. If it is valid, | |
4509 | return the instruction buffer holding the wide instruction. Otherwise, | |
4510 | return 0. The set of valid widenings are specified by a string table | |
4511 | but require some special case operand checks in some cases. */ | |
4512 | ||
4513 | static xtensa_insnbuf | |
4514 | can_widen_instruction (xtensa_insnbuf slotbuf, | |
4515 | xtensa_format fmt, | |
4516 | xtensa_opcode opcode) | |
4517 | { | |
4518 | xtensa_isa isa = xtensa_default_isa; | |
4519 | xtensa_format o_fmt; | |
4520 | unsigned opi; | |
4521 | ||
4522 | static xtensa_insnbuf o_insnbuf = NULL; | |
4523 | static xtensa_insnbuf o_slotbuf = NULL; | |
4524 | ||
4525 | if (o_insnbuf == NULL) | |
4526 | { | |
4527 | o_insnbuf = xtensa_insnbuf_alloc (isa); | |
4528 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4529 | } | |
4530 | ||
4531 | for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) | |
e0001a05 | 4532 | { |
43cd72b9 BW |
4533 | bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); |
4534 | bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 | |
4535 | || strcmp ("bnez", widenable[opi].wide) == 0); | |
e0001a05 | 4536 | |
43cd72b9 BW |
4537 | if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) |
4538 | { | |
4539 | uint32 value, newval; | |
4540 | int i, operand_count, o_operand_count, check_operand_count; | |
4541 | xtensa_opcode o_opcode; | |
e0001a05 | 4542 | |
43cd72b9 BW |
4543 | /* Address does not matter in this case. We might need to fix it |
4544 | to handle branches/jumps. */ | |
4545 | bfd_vma self_address = 0; | |
e0001a05 | 4546 | |
43cd72b9 BW |
4547 | o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); |
4548 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4549 | return 0; |
43cd72b9 BW |
4550 | o_fmt = get_single_format (o_opcode); |
4551 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4552 | return 0; |
e0001a05 | 4553 | |
43cd72b9 BW |
4554 | if (xtensa_format_length (isa, fmt) != 2 |
4555 | || xtensa_format_length (isa, o_fmt) != 3) | |
64b607e6 | 4556 | return 0; |
e0001a05 | 4557 | |
43cd72b9 BW |
4558 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4559 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4560 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
4561 | check_operand_count = o_operand_count; | |
e0001a05 | 4562 | |
43cd72b9 | 4563 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4564 | return 0; |
e0001a05 | 4565 | |
43cd72b9 BW |
4566 | if (!is_or) |
4567 | { | |
4568 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4569 | return 0; |
43cd72b9 BW |
4570 | } |
4571 | else | |
4572 | { | |
4573 | uint32 rawval0, rawval1; | |
4574 | ||
64b607e6 BW |
4575 | if (o_operand_count != operand_count + 1 |
4576 | || xtensa_operand_get_field (isa, opcode, 0, | |
4577 | fmt, 0, slotbuf, &rawval0) != 0 | |
4578 | || xtensa_operand_get_field (isa, opcode, 1, | |
4579 | fmt, 0, slotbuf, &rawval1) != 0 | |
4580 | || rawval0 == rawval1 /* it is a nop */) | |
4581 | return 0; | |
43cd72b9 BW |
4582 | } |
4583 | if (is_branch) | |
4584 | check_operand_count--; | |
4585 | ||
64b607e6 | 4586 | for (i = 0; i < check_operand_count; i++) |
43cd72b9 BW |
4587 | { |
4588 | int new_i = i; | |
4589 | if (is_or && i == o_operand_count - 1) | |
4590 | new_i = i - 1; | |
4591 | if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, | |
4592 | slotbuf, &value) | |
4593 | || xtensa_operand_decode (isa, opcode, new_i, &value)) | |
64b607e6 | 4594 | return 0; |
43cd72b9 BW |
4595 | |
4596 | /* PC-relative branches need adjustment, but | |
4597 | the PC-rel operand will always have a relocation. */ | |
4598 | newval = value; | |
4599 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4600 | self_address) | |
4601 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4602 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4603 | o_slotbuf, newval)) | |
64b607e6 | 4604 | return 0; |
43cd72b9 BW |
4605 | } |
4606 | ||
4607 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) | |
64b607e6 | 4608 | return 0; |
43cd72b9 | 4609 | |
64b607e6 | 4610 | return o_insnbuf; |
43cd72b9 BW |
4611 | } |
4612 | } | |
64b607e6 BW |
4613 | return 0; |
4614 | } | |
4615 | ||
4616 | ||
4617 | /* Attempt to widen an instruction. If the widening is valid, perform | |
4618 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4619 | the return value is FALSE and the contents are not modified. */ | |
4620 | ||
4621 | static bfd_boolean | |
4622 | widen_instruction (bfd_byte *contents, | |
4623 | bfd_size_type content_length, | |
4624 | bfd_size_type offset) | |
4625 | { | |
4626 | xtensa_opcode opcode; | |
4627 | bfd_size_type insn_len; | |
4628 | xtensa_isa isa = xtensa_default_isa; | |
4629 | xtensa_format fmt; | |
4630 | xtensa_insnbuf o_insnbuf; | |
4631 | ||
4632 | static xtensa_insnbuf insnbuf = NULL; | |
4633 | static xtensa_insnbuf slotbuf = NULL; | |
4634 | ||
4635 | if (insnbuf == NULL) | |
4636 | { | |
4637 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4638 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4639 | } | |
4640 | ||
4641 | BFD_ASSERT (offset < content_length); | |
4642 | ||
4643 | if (content_length < 2) | |
4644 | return FALSE; | |
4645 | ||
4646 | /* We will hand-code a few of these for a little while. | |
4647 | These have all been specified in the assembler aleady. */ | |
4648 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4649 | content_length - offset); | |
4650 | fmt = xtensa_format_decode (isa, insnbuf); | |
4651 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
4652 | return FALSE; | |
4653 | ||
4654 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) | |
4655 | return FALSE; | |
4656 | ||
4657 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4658 | if (opcode == XTENSA_UNDEFINED) | |
4659 | return FALSE; | |
4660 | insn_len = xtensa_format_length (isa, fmt); | |
4661 | if (insn_len > content_length) | |
4662 | return FALSE; | |
4663 | ||
4664 | o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); | |
4665 | if (o_insnbuf) | |
4666 | { | |
4667 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4668 | content_length - offset); | |
4669 | return TRUE; | |
4670 | } | |
43cd72b9 | 4671 | return FALSE; |
e0001a05 NC |
4672 | } |
4673 | ||
43cd72b9 BW |
4674 | \f |
4675 | /* Code for transforming CALLs at link-time. */ | |
e0001a05 | 4676 | |
43cd72b9 | 4677 | static bfd_reloc_status_type |
7fa3d080 BW |
4678 | elf_xtensa_do_asm_simplify (bfd_byte *contents, |
4679 | bfd_vma address, | |
4680 | bfd_vma content_length, | |
4681 | char **error_message) | |
e0001a05 | 4682 | { |
43cd72b9 BW |
4683 | static xtensa_insnbuf insnbuf = NULL; |
4684 | static xtensa_insnbuf slotbuf = NULL; | |
4685 | xtensa_format core_format = XTENSA_UNDEFINED; | |
4686 | xtensa_opcode opcode; | |
4687 | xtensa_opcode direct_call_opcode; | |
4688 | xtensa_isa isa = xtensa_default_isa; | |
4689 | bfd_byte *chbuf = contents + address; | |
4690 | int opn; | |
e0001a05 | 4691 | |
43cd72b9 | 4692 | if (insnbuf == NULL) |
e0001a05 | 4693 | { |
43cd72b9 BW |
4694 | insnbuf = xtensa_insnbuf_alloc (isa); |
4695 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4696 | } |
e0001a05 | 4697 | |
43cd72b9 BW |
4698 | if (content_length < address) |
4699 | { | |
4700 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
4701 | return bfd_reloc_other; | |
4702 | } | |
e0001a05 | 4703 | |
43cd72b9 BW |
4704 | opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); |
4705 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
4706 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
4707 | { | |
4708 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
4709 | return bfd_reloc_other; | |
4710 | } | |
4711 | ||
4712 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ | |
4713 | core_format = xtensa_format_lookup (isa, "x24"); | |
4714 | opcode = xtensa_opcode_lookup (isa, "or"); | |
4715 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); | |
4716 | for (opn = 0; opn < 3; opn++) | |
4717 | { | |
4718 | uint32 regno = 1; | |
4719 | xtensa_operand_encode (isa, opcode, opn, ®no); | |
4720 | xtensa_operand_set_field (isa, opcode, opn, core_format, 0, | |
4721 | slotbuf, regno); | |
4722 | } | |
4723 | xtensa_format_encode (isa, core_format, insnbuf); | |
4724 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4725 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); | |
e0001a05 | 4726 | |
43cd72b9 BW |
4727 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ |
4728 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); | |
4729 | xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); | |
e0001a05 | 4730 | |
43cd72b9 BW |
4731 | xtensa_format_encode (isa, core_format, insnbuf); |
4732 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4733 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, | |
4734 | content_length - address - 3); | |
e0001a05 | 4735 | |
43cd72b9 BW |
4736 | return bfd_reloc_ok; |
4737 | } | |
e0001a05 | 4738 | |
e0001a05 | 4739 | |
43cd72b9 | 4740 | static bfd_reloc_status_type |
7fa3d080 BW |
4741 | contract_asm_expansion (bfd_byte *contents, |
4742 | bfd_vma content_length, | |
4743 | Elf_Internal_Rela *irel, | |
4744 | char **error_message) | |
43cd72b9 BW |
4745 | { |
4746 | bfd_reloc_status_type retval = | |
4747 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, | |
4748 | error_message); | |
e0001a05 | 4749 | |
43cd72b9 BW |
4750 | if (retval != bfd_reloc_ok) |
4751 | return bfd_reloc_dangerous; | |
e0001a05 | 4752 | |
43cd72b9 BW |
4753 | /* Update the irel->r_offset field so that the right immediate and |
4754 | the right instruction are modified during the relocation. */ | |
4755 | irel->r_offset += 3; | |
4756 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); | |
4757 | return bfd_reloc_ok; | |
4758 | } | |
e0001a05 | 4759 | |
e0001a05 | 4760 | |
43cd72b9 | 4761 | static xtensa_opcode |
7fa3d080 | 4762 | swap_callx_for_call_opcode (xtensa_opcode opcode) |
e0001a05 | 4763 | { |
43cd72b9 | 4764 | init_call_opcodes (); |
e0001a05 | 4765 | |
43cd72b9 BW |
4766 | if (opcode == callx0_op) return call0_op; |
4767 | if (opcode == callx4_op) return call4_op; | |
4768 | if (opcode == callx8_op) return call8_op; | |
4769 | if (opcode == callx12_op) return call12_op; | |
e0001a05 | 4770 | |
43cd72b9 BW |
4771 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ |
4772 | return XTENSA_UNDEFINED; | |
4773 | } | |
e0001a05 | 4774 | |
e0001a05 | 4775 | |
43cd72b9 BW |
4776 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; |
4777 | CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. | |
4778 | If not, return XTENSA_UNDEFINED. */ | |
e0001a05 | 4779 | |
43cd72b9 BW |
4780 | #define L32R_TARGET_REG_OPERAND 0 |
4781 | #define CONST16_TARGET_REG_OPERAND 0 | |
4782 | #define CALLN_SOURCE_OPERAND 0 | |
e0001a05 | 4783 | |
43cd72b9 | 4784 | static xtensa_opcode |
7fa3d080 | 4785 | get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) |
e0001a05 | 4786 | { |
43cd72b9 BW |
4787 | static xtensa_insnbuf insnbuf = NULL; |
4788 | static xtensa_insnbuf slotbuf = NULL; | |
4789 | xtensa_format fmt; | |
4790 | xtensa_opcode opcode; | |
4791 | xtensa_isa isa = xtensa_default_isa; | |
4792 | uint32 regno, const16_regno, call_regno; | |
4793 | int offset = 0; | |
e0001a05 | 4794 | |
43cd72b9 | 4795 | if (insnbuf == NULL) |
e0001a05 | 4796 | { |
43cd72b9 BW |
4797 | insnbuf = xtensa_insnbuf_alloc (isa); |
4798 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4799 | } |
43cd72b9 BW |
4800 | |
4801 | xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); | |
4802 | fmt = xtensa_format_decode (isa, insnbuf); | |
4803 | if (fmt == XTENSA_UNDEFINED | |
4804 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4805 | return XTENSA_UNDEFINED; | |
4806 | ||
4807 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4808 | if (opcode == XTENSA_UNDEFINED) | |
4809 | return XTENSA_UNDEFINED; | |
4810 | ||
4811 | if (opcode == get_l32r_opcode ()) | |
e0001a05 | 4812 | { |
43cd72b9 BW |
4813 | if (p_uses_l32r) |
4814 | *p_uses_l32r = TRUE; | |
4815 | if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4816 | fmt, 0, slotbuf, ®no) | |
4817 | || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4818 | ®no)) | |
4819 | return XTENSA_UNDEFINED; | |
e0001a05 | 4820 | } |
43cd72b9 | 4821 | else if (opcode == get_const16_opcode ()) |
e0001a05 | 4822 | { |
43cd72b9 BW |
4823 | if (p_uses_l32r) |
4824 | *p_uses_l32r = FALSE; | |
4825 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4826 | fmt, 0, slotbuf, ®no) | |
4827 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4828 | ®no)) | |
4829 | return XTENSA_UNDEFINED; | |
4830 | ||
4831 | /* Check that the next instruction is also CONST16. */ | |
4832 | offset += xtensa_format_length (isa, fmt); | |
4833 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4834 | fmt = xtensa_format_decode (isa, insnbuf); | |
4835 | if (fmt == XTENSA_UNDEFINED | |
4836 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4837 | return XTENSA_UNDEFINED; | |
4838 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4839 | if (opcode != get_const16_opcode ()) | |
4840 | return XTENSA_UNDEFINED; | |
4841 | ||
4842 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4843 | fmt, 0, slotbuf, &const16_regno) | |
4844 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4845 | &const16_regno) | |
4846 | || const16_regno != regno) | |
4847 | return XTENSA_UNDEFINED; | |
e0001a05 | 4848 | } |
43cd72b9 BW |
4849 | else |
4850 | return XTENSA_UNDEFINED; | |
e0001a05 | 4851 | |
43cd72b9 BW |
4852 | /* Next instruction should be an CALLXn with operand 0 == regno. */ |
4853 | offset += xtensa_format_length (isa, fmt); | |
4854 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4855 | fmt = xtensa_format_decode (isa, insnbuf); | |
4856 | if (fmt == XTENSA_UNDEFINED | |
4857 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4858 | return XTENSA_UNDEFINED; | |
4859 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4860 | if (opcode == XTENSA_UNDEFINED | |
4861 | || !is_indirect_call_opcode (opcode)) | |
4862 | return XTENSA_UNDEFINED; | |
e0001a05 | 4863 | |
43cd72b9 BW |
4864 | if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, |
4865 | fmt, 0, slotbuf, &call_regno) | |
4866 | || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, | |
4867 | &call_regno)) | |
4868 | return XTENSA_UNDEFINED; | |
e0001a05 | 4869 | |
43cd72b9 BW |
4870 | if (call_regno != regno) |
4871 | return XTENSA_UNDEFINED; | |
e0001a05 | 4872 | |
43cd72b9 BW |
4873 | return opcode; |
4874 | } | |
e0001a05 | 4875 | |
43cd72b9 BW |
4876 | \f |
4877 | /* Data structures used during relaxation. */ | |
e0001a05 | 4878 | |
43cd72b9 | 4879 | /* r_reloc: relocation values. */ |
e0001a05 | 4880 | |
43cd72b9 BW |
4881 | /* Through the relaxation process, we need to keep track of the values |
4882 | that will result from evaluating relocations. The standard ELF | |
4883 | relocation structure is not sufficient for this purpose because we're | |
4884 | operating on multiple input files at once, so we need to know which | |
4885 | input file a relocation refers to. The r_reloc structure thus | |
4886 | records both the input file (bfd) and ELF relocation. | |
e0001a05 | 4887 | |
43cd72b9 BW |
4888 | For efficiency, an r_reloc also contains a "target_offset" field to |
4889 | cache the target-section-relative offset value that is represented by | |
4890 | the relocation. | |
4891 | ||
4892 | The r_reloc also contains a virtual offset that allows multiple | |
4893 | inserted literals to be placed at the same "address" with | |
4894 | different offsets. */ | |
e0001a05 | 4895 | |
43cd72b9 | 4896 | typedef struct r_reloc_struct r_reloc; |
e0001a05 | 4897 | |
43cd72b9 | 4898 | struct r_reloc_struct |
e0001a05 | 4899 | { |
43cd72b9 BW |
4900 | bfd *abfd; |
4901 | Elf_Internal_Rela rela; | |
e0001a05 | 4902 | bfd_vma target_offset; |
43cd72b9 | 4903 | bfd_vma virtual_offset; |
e0001a05 NC |
4904 | }; |
4905 | ||
e0001a05 | 4906 | |
43cd72b9 BW |
4907 | /* The r_reloc structure is included by value in literal_value, but not |
4908 | every literal_value has an associated relocation -- some are simple | |
4909 | constants. In such cases, we set all the fields in the r_reloc | |
4910 | struct to zero. The r_reloc_is_const function should be used to | |
4911 | detect this case. */ | |
e0001a05 | 4912 | |
43cd72b9 | 4913 | static bfd_boolean |
7fa3d080 | 4914 | r_reloc_is_const (const r_reloc *r_rel) |
e0001a05 | 4915 | { |
43cd72b9 | 4916 | return (r_rel->abfd == NULL); |
e0001a05 NC |
4917 | } |
4918 | ||
4919 | ||
43cd72b9 | 4920 | static bfd_vma |
7fa3d080 | 4921 | r_reloc_get_target_offset (const r_reloc *r_rel) |
e0001a05 | 4922 | { |
43cd72b9 BW |
4923 | bfd_vma target_offset; |
4924 | unsigned long r_symndx; | |
e0001a05 | 4925 | |
43cd72b9 BW |
4926 | BFD_ASSERT (!r_reloc_is_const (r_rel)); |
4927 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4928 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
4929 | return (target_offset + r_rel->rela.r_addend); | |
4930 | } | |
e0001a05 | 4931 | |
e0001a05 | 4932 | |
43cd72b9 | 4933 | static struct elf_link_hash_entry * |
7fa3d080 | 4934 | r_reloc_get_hash_entry (const r_reloc *r_rel) |
e0001a05 | 4935 | { |
43cd72b9 BW |
4936 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4937 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
4938 | } | |
e0001a05 | 4939 | |
43cd72b9 BW |
4940 | |
4941 | static asection * | |
7fa3d080 | 4942 | r_reloc_get_section (const r_reloc *r_rel) |
43cd72b9 BW |
4943 | { |
4944 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4945 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
4946 | } | |
e0001a05 NC |
4947 | |
4948 | ||
4949 | static bfd_boolean | |
7fa3d080 | 4950 | r_reloc_is_defined (const r_reloc *r_rel) |
e0001a05 | 4951 | { |
43cd72b9 BW |
4952 | asection *sec; |
4953 | if (r_rel == NULL) | |
e0001a05 | 4954 | return FALSE; |
e0001a05 | 4955 | |
43cd72b9 BW |
4956 | sec = r_reloc_get_section (r_rel); |
4957 | if (sec == bfd_abs_section_ptr | |
4958 | || sec == bfd_com_section_ptr | |
4959 | || sec == bfd_und_section_ptr) | |
4960 | return FALSE; | |
4961 | return TRUE; | |
e0001a05 NC |
4962 | } |
4963 | ||
4964 | ||
7fa3d080 BW |
4965 | static void |
4966 | r_reloc_init (r_reloc *r_rel, | |
4967 | bfd *abfd, | |
4968 | Elf_Internal_Rela *irel, | |
4969 | bfd_byte *contents, | |
4970 | bfd_size_type content_length) | |
4971 | { | |
4972 | int r_type; | |
4973 | reloc_howto_type *howto; | |
4974 | ||
4975 | if (irel) | |
4976 | { | |
4977 | r_rel->rela = *irel; | |
4978 | r_rel->abfd = abfd; | |
4979 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
4980 | r_rel->virtual_offset = 0; | |
4981 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
4982 | howto = &elf_howto_table[r_type]; | |
4983 | if (howto->partial_inplace) | |
4984 | { | |
4985 | bfd_vma inplace_val; | |
4986 | BFD_ASSERT (r_rel->rela.r_offset < content_length); | |
4987 | ||
4988 | inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); | |
4989 | r_rel->target_offset += inplace_val; | |
4990 | } | |
4991 | } | |
4992 | else | |
4993 | memset (r_rel, 0, sizeof (r_reloc)); | |
4994 | } | |
4995 | ||
4996 | ||
43cd72b9 BW |
4997 | #if DEBUG |
4998 | ||
e0001a05 | 4999 | static void |
7fa3d080 | 5000 | print_r_reloc (FILE *fp, const r_reloc *r_rel) |
e0001a05 | 5001 | { |
43cd72b9 BW |
5002 | if (r_reloc_is_defined (r_rel)) |
5003 | { | |
5004 | asection *sec = r_reloc_get_section (r_rel); | |
5005 | fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); | |
5006 | } | |
5007 | else if (r_reloc_get_hash_entry (r_rel)) | |
5008 | fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); | |
5009 | else | |
5010 | fprintf (fp, " ?? + "); | |
e0001a05 | 5011 | |
43cd72b9 BW |
5012 | fprintf_vma (fp, r_rel->target_offset); |
5013 | if (r_rel->virtual_offset) | |
5014 | { | |
5015 | fprintf (fp, " + "); | |
5016 | fprintf_vma (fp, r_rel->virtual_offset); | |
5017 | } | |
5018 | ||
5019 | fprintf (fp, ")"); | |
5020 | } | |
e0001a05 | 5021 | |
43cd72b9 | 5022 | #endif /* DEBUG */ |
e0001a05 | 5023 | |
43cd72b9 BW |
5024 | \f |
5025 | /* source_reloc: relocations that reference literals. */ | |
e0001a05 | 5026 | |
43cd72b9 BW |
5027 | /* To determine whether literals can be coalesced, we need to first |
5028 | record all the relocations that reference the literals. The | |
5029 | source_reloc structure below is used for this purpose. The | |
5030 | source_reloc entries are kept in a per-literal-section array, sorted | |
5031 | by offset within the literal section (i.e., target offset). | |
e0001a05 | 5032 | |
43cd72b9 BW |
5033 | The source_sec and r_rel.rela.r_offset fields identify the source of |
5034 | the relocation. The r_rel field records the relocation value, i.e., | |
5035 | the offset of the literal being referenced. The opnd field is needed | |
5036 | to determine the range of the immediate field to which the relocation | |
5037 | applies, so we can determine whether another literal with the same | |
5038 | value is within range. The is_null field is true when the relocation | |
5039 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
5040 | that is converted to a direct CALL). */ | |
e0001a05 | 5041 | |
43cd72b9 BW |
5042 | typedef struct source_reloc_struct source_reloc; |
5043 | ||
5044 | struct source_reloc_struct | |
e0001a05 | 5045 | { |
43cd72b9 BW |
5046 | asection *source_sec; |
5047 | r_reloc r_rel; | |
5048 | xtensa_opcode opcode; | |
5049 | int opnd; | |
5050 | bfd_boolean is_null; | |
5051 | bfd_boolean is_abs_literal; | |
5052 | }; | |
e0001a05 | 5053 | |
e0001a05 | 5054 | |
e0001a05 | 5055 | static void |
7fa3d080 BW |
5056 | init_source_reloc (source_reloc *reloc, |
5057 | asection *source_sec, | |
5058 | const r_reloc *r_rel, | |
5059 | xtensa_opcode opcode, | |
5060 | int opnd, | |
5061 | bfd_boolean is_abs_literal) | |
e0001a05 | 5062 | { |
43cd72b9 BW |
5063 | reloc->source_sec = source_sec; |
5064 | reloc->r_rel = *r_rel; | |
5065 | reloc->opcode = opcode; | |
5066 | reloc->opnd = opnd; | |
5067 | reloc->is_null = FALSE; | |
5068 | reloc->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5069 | } |
5070 | ||
e0001a05 | 5071 | |
43cd72b9 BW |
5072 | /* Find the source_reloc for a particular source offset and relocation |
5073 | type. Note that the array is sorted by _target_ offset, so this is | |
5074 | just a linear search. */ | |
e0001a05 | 5075 | |
43cd72b9 | 5076 | static source_reloc * |
7fa3d080 BW |
5077 | find_source_reloc (source_reloc *src_relocs, |
5078 | int src_count, | |
5079 | asection *sec, | |
5080 | Elf_Internal_Rela *irel) | |
e0001a05 | 5081 | { |
43cd72b9 | 5082 | int i; |
e0001a05 | 5083 | |
43cd72b9 BW |
5084 | for (i = 0; i < src_count; i++) |
5085 | { | |
5086 | if (src_relocs[i].source_sec == sec | |
5087 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
5088 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
5089 | == ELF32_R_TYPE (irel->r_info))) | |
5090 | return &src_relocs[i]; | |
5091 | } | |
e0001a05 | 5092 | |
43cd72b9 | 5093 | return NULL; |
e0001a05 NC |
5094 | } |
5095 | ||
5096 | ||
43cd72b9 | 5097 | static int |
7fa3d080 | 5098 | source_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 5099 | { |
43cd72b9 BW |
5100 | const source_reloc *a = (const source_reloc *) ap; |
5101 | const source_reloc *b = (const source_reloc *) bp; | |
e0001a05 | 5102 | |
43cd72b9 BW |
5103 | if (a->r_rel.target_offset != b->r_rel.target_offset) |
5104 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
e0001a05 | 5105 | |
43cd72b9 BW |
5106 | /* We don't need to sort on these criteria for correctness, |
5107 | but enforcing a more strict ordering prevents unstable qsort | |
5108 | from behaving differently with different implementations. | |
5109 | Without the code below we get correct but different results | |
5110 | on Solaris 2.7 and 2.8. We would like to always produce the | |
5111 | same results no matter the host. */ | |
5112 | ||
5113 | if ((!a->is_null) - (!b->is_null)) | |
5114 | return ((!a->is_null) - (!b->is_null)); | |
5115 | return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); | |
e0001a05 NC |
5116 | } |
5117 | ||
43cd72b9 BW |
5118 | \f |
5119 | /* Literal values and value hash tables. */ | |
e0001a05 | 5120 | |
43cd72b9 BW |
5121 | /* Literals with the same value can be coalesced. The literal_value |
5122 | structure records the value of a literal: the "r_rel" field holds the | |
5123 | information from the relocation on the literal (if there is one) and | |
5124 | the "value" field holds the contents of the literal word itself. | |
e0001a05 | 5125 | |
43cd72b9 BW |
5126 | The value_map structure records a literal value along with the |
5127 | location of a literal holding that value. The value_map hash table | |
5128 | is indexed by the literal value, so that we can quickly check if a | |
5129 | particular literal value has been seen before and is thus a candidate | |
5130 | for coalescing. */ | |
e0001a05 | 5131 | |
43cd72b9 BW |
5132 | typedef struct literal_value_struct literal_value; |
5133 | typedef struct value_map_struct value_map; | |
5134 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
e0001a05 | 5135 | |
43cd72b9 | 5136 | struct literal_value_struct |
e0001a05 | 5137 | { |
43cd72b9 BW |
5138 | r_reloc r_rel; |
5139 | unsigned long value; | |
5140 | bfd_boolean is_abs_literal; | |
5141 | }; | |
5142 | ||
5143 | struct value_map_struct | |
5144 | { | |
5145 | literal_value val; /* The literal value. */ | |
5146 | r_reloc loc; /* Location of the literal. */ | |
5147 | value_map *next; | |
5148 | }; | |
5149 | ||
5150 | struct value_map_hash_table_struct | |
5151 | { | |
5152 | unsigned bucket_count; | |
5153 | value_map **buckets; | |
5154 | unsigned count; | |
5155 | bfd_boolean has_last_loc; | |
5156 | r_reloc last_loc; | |
5157 | }; | |
5158 | ||
5159 | ||
e0001a05 | 5160 | static void |
7fa3d080 BW |
5161 | init_literal_value (literal_value *lit, |
5162 | const r_reloc *r_rel, | |
5163 | unsigned long value, | |
5164 | bfd_boolean is_abs_literal) | |
e0001a05 | 5165 | { |
43cd72b9 BW |
5166 | lit->r_rel = *r_rel; |
5167 | lit->value = value; | |
5168 | lit->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5169 | } |
5170 | ||
5171 | ||
43cd72b9 | 5172 | static bfd_boolean |
7fa3d080 BW |
5173 | literal_value_equal (const literal_value *src1, |
5174 | const literal_value *src2, | |
5175 | bfd_boolean final_static_link) | |
e0001a05 | 5176 | { |
43cd72b9 | 5177 | struct elf_link_hash_entry *h1, *h2; |
e0001a05 | 5178 | |
43cd72b9 BW |
5179 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
5180 | return FALSE; | |
e0001a05 | 5181 | |
43cd72b9 BW |
5182 | if (r_reloc_is_const (&src1->r_rel)) |
5183 | return (src1->value == src2->value); | |
e0001a05 | 5184 | |
43cd72b9 BW |
5185 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) |
5186 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
5187 | return FALSE; | |
e0001a05 | 5188 | |
43cd72b9 BW |
5189 | if (src1->r_rel.target_offset != src2->r_rel.target_offset) |
5190 | return FALSE; | |
5191 | ||
5192 | if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) | |
5193 | return FALSE; | |
5194 | ||
5195 | if (src1->value != src2->value) | |
5196 | return FALSE; | |
5197 | ||
5198 | /* Now check for the same section (if defined) or the same elf_hash | |
5199 | (if undefined or weak). */ | |
5200 | h1 = r_reloc_get_hash_entry (&src1->r_rel); | |
5201 | h2 = r_reloc_get_hash_entry (&src2->r_rel); | |
5202 | if (r_reloc_is_defined (&src1->r_rel) | |
5203 | && (final_static_link | |
5204 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) | |
5205 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) | |
5206 | { | |
5207 | if (r_reloc_get_section (&src1->r_rel) | |
5208 | != r_reloc_get_section (&src2->r_rel)) | |
5209 | return FALSE; | |
5210 | } | |
5211 | else | |
5212 | { | |
5213 | /* Require that the hash entries (i.e., symbols) be identical. */ | |
5214 | if (h1 != h2 || h1 == 0) | |
5215 | return FALSE; | |
5216 | } | |
5217 | ||
5218 | if (src1->is_abs_literal != src2->is_abs_literal) | |
5219 | return FALSE; | |
5220 | ||
5221 | return TRUE; | |
e0001a05 NC |
5222 | } |
5223 | ||
e0001a05 | 5224 | |
43cd72b9 BW |
5225 | /* Must be power of 2. */ |
5226 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
e0001a05 | 5227 | |
43cd72b9 | 5228 | static value_map_hash_table * |
7fa3d080 | 5229 | value_map_hash_table_init (void) |
43cd72b9 BW |
5230 | { |
5231 | value_map_hash_table *values; | |
e0001a05 | 5232 | |
43cd72b9 BW |
5233 | values = (value_map_hash_table *) |
5234 | bfd_zmalloc (sizeof (value_map_hash_table)); | |
5235 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
5236 | values->count = 0; | |
5237 | values->buckets = (value_map **) | |
5238 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
5239 | if (values->buckets == NULL) | |
5240 | { | |
5241 | free (values); | |
5242 | return NULL; | |
5243 | } | |
5244 | values->has_last_loc = FALSE; | |
5245 | ||
5246 | return values; | |
5247 | } | |
5248 | ||
5249 | ||
5250 | static void | |
7fa3d080 | 5251 | value_map_hash_table_delete (value_map_hash_table *table) |
e0001a05 | 5252 | { |
43cd72b9 BW |
5253 | free (table->buckets); |
5254 | free (table); | |
5255 | } | |
5256 | ||
5257 | ||
5258 | static unsigned | |
7fa3d080 | 5259 | hash_bfd_vma (bfd_vma val) |
43cd72b9 BW |
5260 | { |
5261 | return (val >> 2) + (val >> 10); | |
5262 | } | |
5263 | ||
5264 | ||
5265 | static unsigned | |
7fa3d080 | 5266 | literal_value_hash (const literal_value *src) |
43cd72b9 BW |
5267 | { |
5268 | unsigned hash_val; | |
e0001a05 | 5269 | |
43cd72b9 BW |
5270 | hash_val = hash_bfd_vma (src->value); |
5271 | if (!r_reloc_is_const (&src->r_rel)) | |
e0001a05 | 5272 | { |
43cd72b9 BW |
5273 | void *sec_or_hash; |
5274 | ||
5275 | hash_val += hash_bfd_vma (src->is_abs_literal * 1000); | |
5276 | hash_val += hash_bfd_vma (src->r_rel.target_offset); | |
5277 | hash_val += hash_bfd_vma (src->r_rel.virtual_offset); | |
5278 | ||
5279 | /* Now check for the same section and the same elf_hash. */ | |
5280 | if (r_reloc_is_defined (&src->r_rel)) | |
5281 | sec_or_hash = r_reloc_get_section (&src->r_rel); | |
5282 | else | |
5283 | sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); | |
f60ca5e3 | 5284 | hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); |
e0001a05 | 5285 | } |
43cd72b9 BW |
5286 | return hash_val; |
5287 | } | |
e0001a05 | 5288 | |
e0001a05 | 5289 | |
43cd72b9 | 5290 | /* Check if the specified literal_value has been seen before. */ |
e0001a05 | 5291 | |
43cd72b9 | 5292 | static value_map * |
7fa3d080 BW |
5293 | value_map_get_cached_value (value_map_hash_table *map, |
5294 | const literal_value *val, | |
5295 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5296 | { |
5297 | value_map *map_e; | |
5298 | value_map *bucket; | |
5299 | unsigned idx; | |
5300 | ||
5301 | idx = literal_value_hash (val); | |
5302 | idx = idx & (map->bucket_count - 1); | |
5303 | bucket = map->buckets[idx]; | |
5304 | for (map_e = bucket; map_e; map_e = map_e->next) | |
e0001a05 | 5305 | { |
43cd72b9 BW |
5306 | if (literal_value_equal (&map_e->val, val, final_static_link)) |
5307 | return map_e; | |
5308 | } | |
5309 | return NULL; | |
5310 | } | |
e0001a05 | 5311 | |
e0001a05 | 5312 | |
43cd72b9 BW |
5313 | /* Record a new literal value. It is illegal to call this if VALUE |
5314 | already has an entry here. */ | |
5315 | ||
5316 | static value_map * | |
7fa3d080 BW |
5317 | add_value_map (value_map_hash_table *map, |
5318 | const literal_value *val, | |
5319 | const r_reloc *loc, | |
5320 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5321 | { |
5322 | value_map **bucket_p; | |
5323 | unsigned idx; | |
5324 | ||
5325 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
5326 | if (val_e == NULL) | |
5327 | { | |
5328 | bfd_set_error (bfd_error_no_memory); | |
5329 | return NULL; | |
e0001a05 NC |
5330 | } |
5331 | ||
43cd72b9 BW |
5332 | BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); |
5333 | val_e->val = *val; | |
5334 | val_e->loc = *loc; | |
5335 | ||
5336 | idx = literal_value_hash (val); | |
5337 | idx = idx & (map->bucket_count - 1); | |
5338 | bucket_p = &map->buckets[idx]; | |
5339 | ||
5340 | val_e->next = *bucket_p; | |
5341 | *bucket_p = val_e; | |
5342 | map->count++; | |
5343 | /* FIXME: Consider resizing the hash table if we get too many entries. */ | |
5344 | ||
5345 | return val_e; | |
e0001a05 NC |
5346 | } |
5347 | ||
43cd72b9 BW |
5348 | \f |
5349 | /* Lists of text actions (ta_) for narrowing, widening, longcall | |
5350 | conversion, space fill, code & literal removal, etc. */ | |
5351 | ||
5352 | /* The following text actions are generated: | |
5353 | ||
5354 | "ta_remove_insn" remove an instruction or instructions | |
5355 | "ta_remove_longcall" convert longcall to call | |
5356 | "ta_convert_longcall" convert longcall to nop/call | |
5357 | "ta_narrow_insn" narrow a wide instruction | |
5358 | "ta_widen" widen a narrow instruction | |
5359 | "ta_fill" add fill or remove fill | |
5360 | removed < 0 is a fill; branches to the fill address will be | |
5361 | changed to address + fill size (e.g., address - removed) | |
5362 | removed >= 0 branches to the fill address will stay unchanged | |
5363 | "ta_remove_literal" remove a literal; this action is | |
5364 | indicated when a literal is removed | |
5365 | or replaced. | |
5366 | "ta_add_literal" insert a new literal; this action is | |
5367 | indicated when a literal has been moved. | |
5368 | It may use a virtual_offset because | |
5369 | multiple literals can be placed at the | |
5370 | same location. | |
5371 | ||
5372 | For each of these text actions, we also record the number of bytes | |
5373 | removed by performing the text action. In the case of a "ta_widen" | |
5374 | or a "ta_fill" that adds space, the removed_bytes will be negative. */ | |
5375 | ||
5376 | typedef struct text_action_struct text_action; | |
5377 | typedef struct text_action_list_struct text_action_list; | |
5378 | typedef enum text_action_enum_t text_action_t; | |
5379 | ||
5380 | enum text_action_enum_t | |
5381 | { | |
5382 | ta_none, | |
5383 | ta_remove_insn, /* removed = -size */ | |
5384 | ta_remove_longcall, /* removed = -size */ | |
5385 | ta_convert_longcall, /* removed = 0 */ | |
5386 | ta_narrow_insn, /* removed = -1 */ | |
5387 | ta_widen_insn, /* removed = +1 */ | |
5388 | ta_fill, /* removed = +size */ | |
5389 | ta_remove_literal, | |
5390 | ta_add_literal | |
5391 | }; | |
e0001a05 | 5392 | |
e0001a05 | 5393 | |
43cd72b9 BW |
5394 | /* Structure for a text action record. */ |
5395 | struct text_action_struct | |
e0001a05 | 5396 | { |
43cd72b9 BW |
5397 | text_action_t action; |
5398 | asection *sec; /* Optional */ | |
5399 | bfd_vma offset; | |
5400 | bfd_vma virtual_offset; /* Zero except for adding literals. */ | |
5401 | int removed_bytes; | |
5402 | literal_value value; /* Only valid when adding literals. */ | |
e0001a05 | 5403 | |
43cd72b9 BW |
5404 | text_action *next; |
5405 | }; | |
e0001a05 | 5406 | |
e0001a05 | 5407 | |
43cd72b9 BW |
5408 | /* List of all of the actions taken on a text section. */ |
5409 | struct text_action_list_struct | |
5410 | { | |
5411 | text_action *head; | |
5412 | }; | |
e0001a05 | 5413 | |
e0001a05 | 5414 | |
7fa3d080 BW |
5415 | static text_action * |
5416 | find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) | |
43cd72b9 BW |
5417 | { |
5418 | text_action **m_p; | |
5419 | ||
5420 | /* It is not necessary to fill at the end of a section. */ | |
5421 | if (sec->size == offset) | |
5422 | return NULL; | |
5423 | ||
7fa3d080 | 5424 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
5425 | { |
5426 | text_action *t = *m_p; | |
5427 | /* When the action is another fill at the same address, | |
5428 | just increase the size. */ | |
5429 | if (t->offset == offset && t->action == ta_fill) | |
5430 | return t; | |
5431 | } | |
5432 | return NULL; | |
5433 | } | |
5434 | ||
5435 | ||
5436 | static int | |
7fa3d080 BW |
5437 | compute_removed_action_diff (const text_action *ta, |
5438 | asection *sec, | |
5439 | bfd_vma offset, | |
5440 | int removed, | |
5441 | int removable_space) | |
43cd72b9 BW |
5442 | { |
5443 | int new_removed; | |
5444 | int current_removed = 0; | |
5445 | ||
7fa3d080 | 5446 | if (ta) |
43cd72b9 BW |
5447 | current_removed = ta->removed_bytes; |
5448 | ||
5449 | BFD_ASSERT (ta == NULL || ta->offset == offset); | |
5450 | BFD_ASSERT (ta == NULL || ta->action == ta_fill); | |
5451 | ||
5452 | /* It is not necessary to fill at the end of a section. Clean this up. */ | |
5453 | if (sec->size == offset) | |
5454 | new_removed = removable_space - 0; | |
5455 | else | |
5456 | { | |
5457 | int space; | |
5458 | int added = -removed - current_removed; | |
5459 | /* Ignore multiples of the section alignment. */ | |
5460 | added = ((1 << sec->alignment_power) - 1) & added; | |
5461 | new_removed = (-added); | |
5462 | ||
5463 | /* Modify for removable. */ | |
5464 | space = removable_space - new_removed; | |
5465 | new_removed = (removable_space | |
5466 | - (((1 << sec->alignment_power) - 1) & space)); | |
5467 | } | |
5468 | return (new_removed - current_removed); | |
5469 | } | |
5470 | ||
5471 | ||
7fa3d080 BW |
5472 | static void |
5473 | adjust_fill_action (text_action *ta, int fill_diff) | |
43cd72b9 BW |
5474 | { |
5475 | ta->removed_bytes += fill_diff; | |
5476 | } | |
5477 | ||
5478 | ||
5479 | /* Add a modification action to the text. For the case of adding or | |
5480 | removing space, modify any current fill and assume that | |
5481 | "unreachable_space" bytes can be freely contracted. Note that a | |
5482 | negative removed value is a fill. */ | |
5483 | ||
5484 | static void | |
7fa3d080 BW |
5485 | text_action_add (text_action_list *l, |
5486 | text_action_t action, | |
5487 | asection *sec, | |
5488 | bfd_vma offset, | |
5489 | int removed) | |
43cd72b9 BW |
5490 | { |
5491 | text_action **m_p; | |
5492 | text_action *ta; | |
5493 | ||
5494 | /* It is not necessary to fill at the end of a section. */ | |
5495 | if (action == ta_fill && sec->size == offset) | |
5496 | return; | |
5497 | ||
5498 | /* It is not necessary to fill 0 bytes. */ | |
5499 | if (action == ta_fill && removed == 0) | |
5500 | return; | |
5501 | ||
7fa3d080 | 5502 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
5503 | { |
5504 | text_action *t = *m_p; | |
658ff993 SA |
5505 | |
5506 | if (action == ta_fill) | |
43cd72b9 | 5507 | { |
658ff993 SA |
5508 | /* When the action is another fill at the same address, |
5509 | just increase the size. */ | |
5510 | if (t->offset == offset && t->action == ta_fill) | |
5511 | { | |
5512 | t->removed_bytes += removed; | |
5513 | return; | |
5514 | } | |
5515 | /* Fills need to happen before widens so that we don't | |
5516 | insert fill bytes into the instruction stream. */ | |
5517 | if (t->offset == offset && t->action == ta_widen_insn) | |
5518 | break; | |
43cd72b9 BW |
5519 | } |
5520 | } | |
5521 | ||
5522 | /* Create a new record and fill it up. */ | |
5523 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
5524 | ta->action = action; | |
5525 | ta->sec = sec; | |
5526 | ta->offset = offset; | |
5527 | ta->removed_bytes = removed; | |
5528 | ta->next = (*m_p); | |
5529 | *m_p = ta; | |
5530 | } | |
5531 | ||
5532 | ||
5533 | static void | |
7fa3d080 BW |
5534 | text_action_add_literal (text_action_list *l, |
5535 | text_action_t action, | |
5536 | const r_reloc *loc, | |
5537 | const literal_value *value, | |
5538 | int removed) | |
43cd72b9 BW |
5539 | { |
5540 | text_action **m_p; | |
5541 | text_action *ta; | |
5542 | asection *sec = r_reloc_get_section (loc); | |
5543 | bfd_vma offset = loc->target_offset; | |
5544 | bfd_vma virtual_offset = loc->virtual_offset; | |
5545 | ||
5546 | BFD_ASSERT (action == ta_add_literal); | |
5547 | ||
5548 | for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next) | |
5549 | { | |
5550 | if ((*m_p)->offset > offset | |
5551 | && ((*m_p)->offset != offset | |
5552 | || (*m_p)->virtual_offset > virtual_offset)) | |
5553 | break; | |
5554 | } | |
5555 | ||
5556 | /* Create a new record and fill it up. */ | |
5557 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
5558 | ta->action = action; | |
5559 | ta->sec = sec; | |
5560 | ta->offset = offset; | |
5561 | ta->virtual_offset = virtual_offset; | |
5562 | ta->value = *value; | |
5563 | ta->removed_bytes = removed; | |
5564 | ta->next = (*m_p); | |
5565 | *m_p = ta; | |
5566 | } | |
5567 | ||
5568 | ||
03669f1c BW |
5569 | /* Find the total offset adjustment for the relaxations specified by |
5570 | text_actions, beginning from a particular starting action. This is | |
5571 | typically used from offset_with_removed_text to search an entire list of | |
5572 | actions, but it may also be called directly when adjusting adjacent offsets | |
5573 | so that each search may begin where the previous one left off. */ | |
5574 | ||
5575 | static int | |
5576 | removed_by_actions (text_action **p_start_action, | |
5577 | bfd_vma offset, | |
5578 | bfd_boolean before_fill) | |
43cd72b9 BW |
5579 | { |
5580 | text_action *r; | |
5581 | int removed = 0; | |
5582 | ||
03669f1c BW |
5583 | r = *p_start_action; |
5584 | while (r) | |
43cd72b9 | 5585 | { |
03669f1c BW |
5586 | if (r->offset > offset) |
5587 | break; | |
5588 | ||
5589 | if (r->offset == offset | |
5590 | && (before_fill || r->action != ta_fill || r->removed_bytes >= 0)) | |
5591 | break; | |
5592 | ||
5593 | removed += r->removed_bytes; | |
5594 | ||
5595 | r = r->next; | |
43cd72b9 BW |
5596 | } |
5597 | ||
03669f1c BW |
5598 | *p_start_action = r; |
5599 | return removed; | |
5600 | } | |
5601 | ||
5602 | ||
5603 | static bfd_vma | |
5604 | offset_with_removed_text (text_action_list *action_list, bfd_vma offset) | |
5605 | { | |
5606 | text_action *r = action_list->head; | |
5607 | return offset - removed_by_actions (&r, offset, FALSE); | |
43cd72b9 BW |
5608 | } |
5609 | ||
5610 | ||
03e94c08 BW |
5611 | static unsigned |
5612 | action_list_count (text_action_list *action_list) | |
5613 | { | |
5614 | text_action *r = action_list->head; | |
5615 | unsigned count = 0; | |
5616 | for (r = action_list->head; r != NULL; r = r->next) | |
5617 | { | |
5618 | count++; | |
5619 | } | |
5620 | return count; | |
5621 | } | |
5622 | ||
5623 | ||
43cd72b9 BW |
5624 | /* The find_insn_action routine will only find non-fill actions. */ |
5625 | ||
7fa3d080 BW |
5626 | static text_action * |
5627 | find_insn_action (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 BW |
5628 | { |
5629 | text_action *t; | |
5630 | for (t = action_list->head; t; t = t->next) | |
5631 | { | |
5632 | if (t->offset == offset) | |
5633 | { | |
5634 | switch (t->action) | |
5635 | { | |
5636 | case ta_none: | |
5637 | case ta_fill: | |
5638 | break; | |
5639 | case ta_remove_insn: | |
5640 | case ta_remove_longcall: | |
5641 | case ta_convert_longcall: | |
5642 | case ta_narrow_insn: | |
5643 | case ta_widen_insn: | |
5644 | return t; | |
5645 | case ta_remove_literal: | |
5646 | case ta_add_literal: | |
5647 | BFD_ASSERT (0); | |
5648 | break; | |
5649 | } | |
5650 | } | |
5651 | } | |
5652 | return NULL; | |
5653 | } | |
5654 | ||
5655 | ||
5656 | #if DEBUG | |
5657 | ||
5658 | static void | |
7fa3d080 | 5659 | print_action_list (FILE *fp, text_action_list *action_list) |
43cd72b9 BW |
5660 | { |
5661 | text_action *r; | |
5662 | ||
5663 | fprintf (fp, "Text Action\n"); | |
5664 | for (r = action_list->head; r != NULL; r = r->next) | |
5665 | { | |
5666 | const char *t = "unknown"; | |
5667 | switch (r->action) | |
5668 | { | |
5669 | case ta_remove_insn: | |
5670 | t = "remove_insn"; break; | |
5671 | case ta_remove_longcall: | |
5672 | t = "remove_longcall"; break; | |
5673 | case ta_convert_longcall: | |
c46082c8 | 5674 | t = "convert_longcall"; break; |
43cd72b9 BW |
5675 | case ta_narrow_insn: |
5676 | t = "narrow_insn"; break; | |
5677 | case ta_widen_insn: | |
5678 | t = "widen_insn"; break; | |
5679 | case ta_fill: | |
5680 | t = "fill"; break; | |
5681 | case ta_none: | |
5682 | t = "none"; break; | |
5683 | case ta_remove_literal: | |
5684 | t = "remove_literal"; break; | |
5685 | case ta_add_literal: | |
5686 | t = "add_literal"; break; | |
5687 | } | |
5688 | ||
5689 | fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", | |
5690 | r->sec->owner->filename, | |
5691 | r->sec->name, r->offset, t, r->removed_bytes); | |
5692 | } | |
5693 | } | |
5694 | ||
5695 | #endif /* DEBUG */ | |
5696 | ||
5697 | \f | |
5698 | /* Lists of literals being coalesced or removed. */ | |
5699 | ||
5700 | /* In the usual case, the literal identified by "from" is being | |
5701 | coalesced with another literal identified by "to". If the literal is | |
5702 | unused and is being removed altogether, "to.abfd" will be NULL. | |
5703 | The removed_literal entries are kept on a per-section list, sorted | |
5704 | by the "from" offset field. */ | |
5705 | ||
5706 | typedef struct removed_literal_struct removed_literal; | |
5707 | typedef struct removed_literal_list_struct removed_literal_list; | |
5708 | ||
5709 | struct removed_literal_struct | |
5710 | { | |
5711 | r_reloc from; | |
5712 | r_reloc to; | |
5713 | removed_literal *next; | |
5714 | }; | |
5715 | ||
5716 | struct removed_literal_list_struct | |
5717 | { | |
5718 | removed_literal *head; | |
5719 | removed_literal *tail; | |
5720 | }; | |
5721 | ||
5722 | ||
43cd72b9 BW |
5723 | /* Record that the literal at "from" is being removed. If "to" is not |
5724 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
5725 | ||
5726 | static void | |
7fa3d080 BW |
5727 | add_removed_literal (removed_literal_list *removed_list, |
5728 | const r_reloc *from, | |
5729 | const r_reloc *to) | |
43cd72b9 BW |
5730 | { |
5731 | removed_literal *r, *new_r, *next_r; | |
5732 | ||
5733 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
5734 | ||
5735 | new_r->from = *from; | |
5736 | if (to) | |
5737 | new_r->to = *to; | |
5738 | else | |
5739 | new_r->to.abfd = NULL; | |
5740 | new_r->next = NULL; | |
5741 | ||
5742 | r = removed_list->head; | |
5743 | if (r == NULL) | |
5744 | { | |
5745 | removed_list->head = new_r; | |
5746 | removed_list->tail = new_r; | |
5747 | } | |
5748 | /* Special check for common case of append. */ | |
5749 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
5750 | { | |
5751 | removed_list->tail->next = new_r; | |
5752 | removed_list->tail = new_r; | |
5753 | } | |
5754 | else | |
5755 | { | |
7fa3d080 | 5756 | while (r->from.target_offset < from->target_offset && r->next) |
43cd72b9 BW |
5757 | { |
5758 | r = r->next; | |
5759 | } | |
5760 | next_r = r->next; | |
5761 | r->next = new_r; | |
5762 | new_r->next = next_r; | |
5763 | if (next_r == NULL) | |
5764 | removed_list->tail = new_r; | |
5765 | } | |
5766 | } | |
5767 | ||
5768 | ||
5769 | /* Check if the list of removed literals contains an entry for the | |
5770 | given address. Return the entry if found. */ | |
5771 | ||
5772 | static removed_literal * | |
7fa3d080 | 5773 | find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) |
43cd72b9 BW |
5774 | { |
5775 | removed_literal *r = removed_list->head; | |
5776 | while (r && r->from.target_offset < addr) | |
5777 | r = r->next; | |
5778 | if (r && r->from.target_offset == addr) | |
5779 | return r; | |
5780 | return NULL; | |
5781 | } | |
5782 | ||
5783 | ||
5784 | #if DEBUG | |
5785 | ||
5786 | static void | |
7fa3d080 | 5787 | print_removed_literals (FILE *fp, removed_literal_list *removed_list) |
43cd72b9 BW |
5788 | { |
5789 | removed_literal *r; | |
5790 | r = removed_list->head; | |
5791 | if (r) | |
5792 | fprintf (fp, "Removed Literals\n"); | |
5793 | for (; r != NULL; r = r->next) | |
5794 | { | |
5795 | print_r_reloc (fp, &r->from); | |
5796 | fprintf (fp, " => "); | |
5797 | if (r->to.abfd == NULL) | |
5798 | fprintf (fp, "REMOVED"); | |
5799 | else | |
5800 | print_r_reloc (fp, &r->to); | |
5801 | fprintf (fp, "\n"); | |
5802 | } | |
5803 | } | |
5804 | ||
5805 | #endif /* DEBUG */ | |
5806 | ||
5807 | \f | |
5808 | /* Per-section data for relaxation. */ | |
5809 | ||
5810 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
5811 | ||
5812 | struct xtensa_relax_info_struct | |
5813 | { | |
5814 | bfd_boolean is_relaxable_literal_section; | |
5815 | bfd_boolean is_relaxable_asm_section; | |
5816 | int visited; /* Number of times visited. */ | |
5817 | ||
5818 | source_reloc *src_relocs; /* Array[src_count]. */ | |
5819 | int src_count; | |
5820 | int src_next; /* Next src_relocs entry to assign. */ | |
5821 | ||
5822 | removed_literal_list removed_list; | |
5823 | text_action_list action_list; | |
5824 | ||
5825 | reloc_bfd_fix *fix_list; | |
5826 | reloc_bfd_fix *fix_array; | |
5827 | unsigned fix_array_count; | |
5828 | ||
5829 | /* Support for expanding the reloc array that is stored | |
5830 | in the section structure. If the relocations have been | |
5831 | reallocated, the newly allocated relocations will be referenced | |
5832 | here along with the actual size allocated. The relocation | |
5833 | count will always be found in the section structure. */ | |
5834 | Elf_Internal_Rela *allocated_relocs; | |
5835 | unsigned relocs_count; | |
5836 | unsigned allocated_relocs_count; | |
5837 | }; | |
5838 | ||
5839 | struct elf_xtensa_section_data | |
5840 | { | |
5841 | struct bfd_elf_section_data elf; | |
5842 | xtensa_relax_info relax_info; | |
5843 | }; | |
5844 | ||
43cd72b9 BW |
5845 | |
5846 | static bfd_boolean | |
7fa3d080 | 5847 | elf_xtensa_new_section_hook (bfd *abfd, asection *sec) |
43cd72b9 | 5848 | { |
f592407e AM |
5849 | if (!sec->used_by_bfd) |
5850 | { | |
5851 | struct elf_xtensa_section_data *sdata; | |
5852 | bfd_size_type amt = sizeof (*sdata); | |
43cd72b9 | 5853 | |
f592407e AM |
5854 | sdata = bfd_zalloc (abfd, amt); |
5855 | if (sdata == NULL) | |
5856 | return FALSE; | |
5857 | sec->used_by_bfd = sdata; | |
5858 | } | |
43cd72b9 BW |
5859 | |
5860 | return _bfd_elf_new_section_hook (abfd, sec); | |
5861 | } | |
5862 | ||
5863 | ||
7fa3d080 BW |
5864 | static xtensa_relax_info * |
5865 | get_xtensa_relax_info (asection *sec) | |
5866 | { | |
5867 | struct elf_xtensa_section_data *section_data; | |
5868 | ||
5869 | /* No info available if no section or if it is an output section. */ | |
5870 | if (!sec || sec == sec->output_section) | |
5871 | return NULL; | |
5872 | ||
5873 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
5874 | return §ion_data->relax_info; | |
5875 | } | |
5876 | ||
5877 | ||
43cd72b9 | 5878 | static void |
7fa3d080 | 5879 | init_xtensa_relax_info (asection *sec) |
43cd72b9 BW |
5880 | { |
5881 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5882 | ||
5883 | relax_info->is_relaxable_literal_section = FALSE; | |
5884 | relax_info->is_relaxable_asm_section = FALSE; | |
5885 | relax_info->visited = 0; | |
5886 | ||
5887 | relax_info->src_relocs = NULL; | |
5888 | relax_info->src_count = 0; | |
5889 | relax_info->src_next = 0; | |
5890 | ||
5891 | relax_info->removed_list.head = NULL; | |
5892 | relax_info->removed_list.tail = NULL; | |
5893 | ||
5894 | relax_info->action_list.head = NULL; | |
5895 | ||
5896 | relax_info->fix_list = NULL; | |
5897 | relax_info->fix_array = NULL; | |
5898 | relax_info->fix_array_count = 0; | |
5899 | ||
5900 | relax_info->allocated_relocs = NULL; | |
5901 | relax_info->relocs_count = 0; | |
5902 | relax_info->allocated_relocs_count = 0; | |
5903 | } | |
5904 | ||
43cd72b9 BW |
5905 | \f |
5906 | /* Coalescing literals may require a relocation to refer to a section in | |
5907 | a different input file, but the standard relocation information | |
5908 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
5909 | to "fix" the relocations that refer to sections in other input files. | |
5910 | These structures are kept on per-section lists. The "src_type" field | |
5911 | records the relocation type in case there are multiple relocations on | |
5912 | the same location. FIXME: This is ugly; an alternative might be to | |
5913 | add new symbols with the "owner" field to some other input file. */ | |
5914 | ||
5915 | struct reloc_bfd_fix_struct | |
5916 | { | |
5917 | asection *src_sec; | |
5918 | bfd_vma src_offset; | |
5919 | unsigned src_type; /* Relocation type. */ | |
5920 | ||
43cd72b9 BW |
5921 | asection *target_sec; |
5922 | bfd_vma target_offset; | |
5923 | bfd_boolean translated; | |
5924 | ||
5925 | reloc_bfd_fix *next; | |
5926 | }; | |
5927 | ||
5928 | ||
43cd72b9 | 5929 | static reloc_bfd_fix * |
7fa3d080 BW |
5930 | reloc_bfd_fix_init (asection *src_sec, |
5931 | bfd_vma src_offset, | |
5932 | unsigned src_type, | |
7fa3d080 BW |
5933 | asection *target_sec, |
5934 | bfd_vma target_offset, | |
5935 | bfd_boolean translated) | |
43cd72b9 BW |
5936 | { |
5937 | reloc_bfd_fix *fix; | |
5938 | ||
5939 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
5940 | fix->src_sec = src_sec; | |
5941 | fix->src_offset = src_offset; | |
5942 | fix->src_type = src_type; | |
43cd72b9 BW |
5943 | fix->target_sec = target_sec; |
5944 | fix->target_offset = target_offset; | |
5945 | fix->translated = translated; | |
5946 | ||
5947 | return fix; | |
5948 | } | |
5949 | ||
5950 | ||
5951 | static void | |
7fa3d080 | 5952 | add_fix (asection *src_sec, reloc_bfd_fix *fix) |
43cd72b9 BW |
5953 | { |
5954 | xtensa_relax_info *relax_info; | |
5955 | ||
5956 | relax_info = get_xtensa_relax_info (src_sec); | |
5957 | fix->next = relax_info->fix_list; | |
5958 | relax_info->fix_list = fix; | |
5959 | } | |
5960 | ||
5961 | ||
5962 | static int | |
7fa3d080 | 5963 | fix_compare (const void *ap, const void *bp) |
43cd72b9 BW |
5964 | { |
5965 | const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; | |
5966 | const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; | |
5967 | ||
5968 | if (a->src_offset != b->src_offset) | |
5969 | return (a->src_offset - b->src_offset); | |
5970 | return (a->src_type - b->src_type); | |
5971 | } | |
5972 | ||
5973 | ||
5974 | static void | |
7fa3d080 | 5975 | cache_fix_array (asection *sec) |
43cd72b9 BW |
5976 | { |
5977 | unsigned i, count = 0; | |
5978 | reloc_bfd_fix *r; | |
5979 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5980 | ||
5981 | if (relax_info == NULL) | |
5982 | return; | |
5983 | if (relax_info->fix_list == NULL) | |
5984 | return; | |
5985 | ||
5986 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
5987 | count++; | |
5988 | ||
5989 | relax_info->fix_array = | |
5990 | (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); | |
5991 | relax_info->fix_array_count = count; | |
5992 | ||
5993 | r = relax_info->fix_list; | |
5994 | for (i = 0; i < count; i++, r = r->next) | |
5995 | { | |
5996 | relax_info->fix_array[count - 1 - i] = *r; | |
5997 | relax_info->fix_array[count - 1 - i].next = NULL; | |
5998 | } | |
5999 | ||
6000 | qsort (relax_info->fix_array, relax_info->fix_array_count, | |
6001 | sizeof (reloc_bfd_fix), fix_compare); | |
6002 | } | |
6003 | ||
6004 | ||
6005 | static reloc_bfd_fix * | |
7fa3d080 | 6006 | get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) |
43cd72b9 BW |
6007 | { |
6008 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6009 | reloc_bfd_fix *rv; | |
6010 | reloc_bfd_fix key; | |
6011 | ||
6012 | if (relax_info == NULL) | |
6013 | return NULL; | |
6014 | if (relax_info->fix_list == NULL) | |
6015 | return NULL; | |
6016 | ||
6017 | if (relax_info->fix_array == NULL) | |
6018 | cache_fix_array (sec); | |
6019 | ||
6020 | key.src_offset = offset; | |
6021 | key.src_type = type; | |
6022 | rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, | |
6023 | sizeof (reloc_bfd_fix), fix_compare); | |
6024 | return rv; | |
6025 | } | |
6026 | ||
6027 | \f | |
6028 | /* Section caching. */ | |
6029 | ||
6030 | typedef struct section_cache_struct section_cache_t; | |
6031 | ||
6032 | struct section_cache_struct | |
6033 | { | |
6034 | asection *sec; | |
6035 | ||
6036 | bfd_byte *contents; /* Cache of the section contents. */ | |
6037 | bfd_size_type content_length; | |
6038 | ||
6039 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6040 | unsigned pte_count; | |
6041 | ||
6042 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6043 | unsigned reloc_count; | |
6044 | }; | |
6045 | ||
6046 | ||
7fa3d080 BW |
6047 | static void |
6048 | init_section_cache (section_cache_t *sec_cache) | |
6049 | { | |
6050 | memset (sec_cache, 0, sizeof (*sec_cache)); | |
6051 | } | |
43cd72b9 BW |
6052 | |
6053 | ||
6054 | static void | |
7fa3d080 | 6055 | clear_section_cache (section_cache_t *sec_cache) |
43cd72b9 | 6056 | { |
7fa3d080 BW |
6057 | if (sec_cache->sec) |
6058 | { | |
6059 | release_contents (sec_cache->sec, sec_cache->contents); | |
6060 | release_internal_relocs (sec_cache->sec, sec_cache->relocs); | |
6061 | if (sec_cache->ptbl) | |
6062 | free (sec_cache->ptbl); | |
6063 | memset (sec_cache, 0, sizeof (sec_cache)); | |
6064 | } | |
43cd72b9 BW |
6065 | } |
6066 | ||
6067 | ||
6068 | static bfd_boolean | |
7fa3d080 BW |
6069 | section_cache_section (section_cache_t *sec_cache, |
6070 | asection *sec, | |
6071 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6072 | { |
6073 | bfd *abfd; | |
6074 | property_table_entry *prop_table = NULL; | |
6075 | int ptblsize = 0; | |
6076 | bfd_byte *contents = NULL; | |
6077 | Elf_Internal_Rela *internal_relocs = NULL; | |
6078 | bfd_size_type sec_size; | |
6079 | ||
6080 | if (sec == NULL) | |
6081 | return FALSE; | |
6082 | if (sec == sec_cache->sec) | |
6083 | return TRUE; | |
6084 | ||
6085 | abfd = sec->owner; | |
6086 | sec_size = bfd_get_section_limit (abfd, sec); | |
6087 | ||
6088 | /* Get the contents. */ | |
6089 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6090 | if (contents == NULL && sec_size != 0) | |
6091 | goto err; | |
6092 | ||
6093 | /* Get the relocations. */ | |
6094 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6095 | link_info->keep_memory); | |
6096 | ||
6097 | /* Get the entry table. */ | |
6098 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, | |
6099 | XTENSA_PROP_SEC_NAME, FALSE); | |
6100 | if (ptblsize < 0) | |
6101 | goto err; | |
6102 | ||
6103 | /* Fill in the new section cache. */ | |
6104 | clear_section_cache (sec_cache); | |
6105 | memset (sec_cache, 0, sizeof (sec_cache)); | |
6106 | ||
6107 | sec_cache->sec = sec; | |
6108 | sec_cache->contents = contents; | |
6109 | sec_cache->content_length = sec_size; | |
6110 | sec_cache->relocs = internal_relocs; | |
6111 | sec_cache->reloc_count = sec->reloc_count; | |
6112 | sec_cache->pte_count = ptblsize; | |
6113 | sec_cache->ptbl = prop_table; | |
6114 | ||
6115 | return TRUE; | |
6116 | ||
6117 | err: | |
6118 | release_contents (sec, contents); | |
6119 | release_internal_relocs (sec, internal_relocs); | |
6120 | if (prop_table) | |
6121 | free (prop_table); | |
6122 | return FALSE; | |
6123 | } | |
6124 | ||
43cd72b9 BW |
6125 | \f |
6126 | /* Extended basic blocks. */ | |
6127 | ||
6128 | /* An ebb_struct represents an Extended Basic Block. Within this | |
6129 | range, we guarantee that all instructions are decodable, the | |
6130 | property table entries are contiguous, and no property table | |
6131 | specifies a segment that cannot have instructions moved. This | |
6132 | structure contains caches of the contents, property table and | |
6133 | relocations for the specified section for easy use. The range is | |
6134 | specified by ranges of indices for the byte offset, property table | |
6135 | offsets and relocation offsets. These must be consistent. */ | |
6136 | ||
6137 | typedef struct ebb_struct ebb_t; | |
6138 | ||
6139 | struct ebb_struct | |
6140 | { | |
6141 | asection *sec; | |
6142 | ||
6143 | bfd_byte *contents; /* Cache of the section contents. */ | |
6144 | bfd_size_type content_length; | |
6145 | ||
6146 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6147 | unsigned pte_count; | |
6148 | ||
6149 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6150 | unsigned reloc_count; | |
6151 | ||
6152 | bfd_vma start_offset; /* Offset in section. */ | |
6153 | unsigned start_ptbl_idx; /* Offset in the property table. */ | |
6154 | unsigned start_reloc_idx; /* Offset in the relocations. */ | |
6155 | ||
6156 | bfd_vma end_offset; | |
6157 | unsigned end_ptbl_idx; | |
6158 | unsigned end_reloc_idx; | |
6159 | ||
6160 | bfd_boolean ends_section; /* Is this the last ebb in a section? */ | |
6161 | ||
6162 | /* The unreachable property table at the end of this set of blocks; | |
6163 | NULL if the end is not an unreachable block. */ | |
6164 | property_table_entry *ends_unreachable; | |
6165 | }; | |
6166 | ||
6167 | ||
6168 | enum ebb_target_enum | |
6169 | { | |
6170 | EBB_NO_ALIGN = 0, | |
6171 | EBB_DESIRE_TGT_ALIGN, | |
6172 | EBB_REQUIRE_TGT_ALIGN, | |
6173 | EBB_REQUIRE_LOOP_ALIGN, | |
6174 | EBB_REQUIRE_ALIGN | |
6175 | }; | |
6176 | ||
6177 | ||
6178 | /* proposed_action_struct is similar to the text_action_struct except | |
6179 | that is represents a potential transformation, not one that will | |
6180 | occur. We build a list of these for an extended basic block | |
6181 | and use them to compute the actual actions desired. We must be | |
6182 | careful that the entire set of actual actions we perform do not | |
6183 | break any relocations that would fit if the actions were not | |
6184 | performed. */ | |
6185 | ||
6186 | typedef struct proposed_action_struct proposed_action; | |
6187 | ||
6188 | struct proposed_action_struct | |
6189 | { | |
6190 | enum ebb_target_enum align_type; /* for the target alignment */ | |
6191 | bfd_vma alignment_pow; | |
6192 | text_action_t action; | |
6193 | bfd_vma offset; | |
6194 | int removed_bytes; | |
6195 | bfd_boolean do_action; /* If false, then we will not perform the action. */ | |
6196 | }; | |
6197 | ||
6198 | ||
6199 | /* The ebb_constraint_struct keeps a set of proposed actions for an | |
6200 | extended basic block. */ | |
6201 | ||
6202 | typedef struct ebb_constraint_struct ebb_constraint; | |
6203 | ||
6204 | struct ebb_constraint_struct | |
6205 | { | |
6206 | ebb_t ebb; | |
6207 | bfd_boolean start_movable; | |
6208 | ||
6209 | /* Bytes of extra space at the beginning if movable. */ | |
6210 | int start_extra_space; | |
6211 | ||
6212 | enum ebb_target_enum start_align; | |
6213 | ||
6214 | bfd_boolean end_movable; | |
6215 | ||
6216 | /* Bytes of extra space at the end if movable. */ | |
6217 | int end_extra_space; | |
6218 | ||
6219 | unsigned action_count; | |
6220 | unsigned action_allocated; | |
6221 | ||
6222 | /* Array of proposed actions. */ | |
6223 | proposed_action *actions; | |
6224 | ||
6225 | /* Action alignments -- one for each proposed action. */ | |
6226 | enum ebb_target_enum *action_aligns; | |
6227 | }; | |
6228 | ||
6229 | ||
43cd72b9 | 6230 | static void |
7fa3d080 | 6231 | init_ebb_constraint (ebb_constraint *c) |
43cd72b9 BW |
6232 | { |
6233 | memset (c, 0, sizeof (ebb_constraint)); | |
6234 | } | |
6235 | ||
6236 | ||
6237 | static void | |
7fa3d080 | 6238 | free_ebb_constraint (ebb_constraint *c) |
43cd72b9 | 6239 | { |
7fa3d080 | 6240 | if (c->actions) |
43cd72b9 BW |
6241 | free (c->actions); |
6242 | } | |
6243 | ||
6244 | ||
6245 | static void | |
7fa3d080 BW |
6246 | init_ebb (ebb_t *ebb, |
6247 | asection *sec, | |
6248 | bfd_byte *contents, | |
6249 | bfd_size_type content_length, | |
6250 | property_table_entry *prop_table, | |
6251 | unsigned ptblsize, | |
6252 | Elf_Internal_Rela *internal_relocs, | |
6253 | unsigned reloc_count) | |
43cd72b9 BW |
6254 | { |
6255 | memset (ebb, 0, sizeof (ebb_t)); | |
6256 | ebb->sec = sec; | |
6257 | ebb->contents = contents; | |
6258 | ebb->content_length = content_length; | |
6259 | ebb->ptbl = prop_table; | |
6260 | ebb->pte_count = ptblsize; | |
6261 | ebb->relocs = internal_relocs; | |
6262 | ebb->reloc_count = reloc_count; | |
6263 | ebb->start_offset = 0; | |
6264 | ebb->end_offset = ebb->content_length - 1; | |
6265 | ebb->start_ptbl_idx = 0; | |
6266 | ebb->end_ptbl_idx = ptblsize; | |
6267 | ebb->start_reloc_idx = 0; | |
6268 | ebb->end_reloc_idx = reloc_count; | |
6269 | } | |
6270 | ||
6271 | ||
6272 | /* Extend the ebb to all decodable contiguous sections. The algorithm | |
6273 | for building a basic block around an instruction is to push it | |
6274 | forward until we hit the end of a section, an unreachable block or | |
6275 | a block that cannot be transformed. Then we push it backwards | |
6276 | searching for similar conditions. */ | |
6277 | ||
7fa3d080 BW |
6278 | static bfd_boolean extend_ebb_bounds_forward (ebb_t *); |
6279 | static bfd_boolean extend_ebb_bounds_backward (ebb_t *); | |
6280 | static bfd_size_type insn_block_decodable_len | |
6281 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); | |
6282 | ||
43cd72b9 | 6283 | static bfd_boolean |
7fa3d080 | 6284 | extend_ebb_bounds (ebb_t *ebb) |
43cd72b9 BW |
6285 | { |
6286 | if (!extend_ebb_bounds_forward (ebb)) | |
6287 | return FALSE; | |
6288 | if (!extend_ebb_bounds_backward (ebb)) | |
6289 | return FALSE; | |
6290 | return TRUE; | |
6291 | } | |
6292 | ||
6293 | ||
6294 | static bfd_boolean | |
7fa3d080 | 6295 | extend_ebb_bounds_forward (ebb_t *ebb) |
43cd72b9 BW |
6296 | { |
6297 | property_table_entry *the_entry, *new_entry; | |
6298 | ||
6299 | the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
6300 | ||
6301 | /* Stop when (1) we cannot decode an instruction, (2) we are at | |
6302 | the end of the property tables, (3) we hit a non-contiguous property | |
6303 | table entry, (4) we hit a NO_TRANSFORM region. */ | |
6304 | ||
6305 | while (1) | |
6306 | { | |
6307 | bfd_vma entry_end; | |
6308 | bfd_size_type insn_block_len; | |
6309 | ||
6310 | entry_end = the_entry->address - ebb->sec->vma + the_entry->size; | |
6311 | insn_block_len = | |
6312 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6313 | ebb->end_offset, | |
6314 | entry_end - ebb->end_offset); | |
6315 | if (insn_block_len != (entry_end - ebb->end_offset)) | |
6316 | { | |
6317 | (*_bfd_error_handler) | |
6318 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
6319 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
6320 | return FALSE; | |
6321 | } | |
6322 | ebb->end_offset += insn_block_len; | |
6323 | ||
6324 | if (ebb->end_offset == ebb->sec->size) | |
6325 | ebb->ends_section = TRUE; | |
6326 | ||
6327 | /* Update the reloc counter. */ | |
6328 | while (ebb->end_reloc_idx + 1 < ebb->reloc_count | |
6329 | && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset | |
6330 | < ebb->end_offset)) | |
6331 | { | |
6332 | ebb->end_reloc_idx++; | |
6333 | } | |
6334 | ||
6335 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6336 | return TRUE; | |
6337 | ||
6338 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6339 | if (((new_entry->flags & XTENSA_PROP_INSN) == 0) | |
99ded152 | 6340 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6341 | || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6342 | break; | |
6343 | ||
6344 | if (the_entry->address + the_entry->size != new_entry->address) | |
6345 | break; | |
6346 | ||
6347 | the_entry = new_entry; | |
6348 | ebb->end_ptbl_idx++; | |
6349 | } | |
6350 | ||
6351 | /* Quick check for an unreachable or end of file just at the end. */ | |
6352 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6353 | { | |
6354 | if (ebb->end_offset == ebb->content_length) | |
6355 | ebb->ends_section = TRUE; | |
6356 | } | |
6357 | else | |
6358 | { | |
6359 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6360 | if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 | |
6361 | && the_entry->address + the_entry->size == new_entry->address) | |
6362 | ebb->ends_unreachable = new_entry; | |
6363 | } | |
6364 | ||
6365 | /* Any other ending requires exact alignment. */ | |
6366 | return TRUE; | |
6367 | } | |
6368 | ||
6369 | ||
6370 | static bfd_boolean | |
7fa3d080 | 6371 | extend_ebb_bounds_backward (ebb_t *ebb) |
43cd72b9 BW |
6372 | { |
6373 | property_table_entry *the_entry, *new_entry; | |
6374 | ||
6375 | the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; | |
6376 | ||
6377 | /* Stop when (1) we cannot decode the instructions in the current entry. | |
6378 | (2) we are at the beginning of the property tables, (3) we hit a | |
6379 | non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ | |
6380 | ||
6381 | while (1) | |
6382 | { | |
6383 | bfd_vma block_begin; | |
6384 | bfd_size_type insn_block_len; | |
6385 | ||
6386 | block_begin = the_entry->address - ebb->sec->vma; | |
6387 | insn_block_len = | |
6388 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6389 | block_begin, | |
6390 | ebb->start_offset - block_begin); | |
6391 | if (insn_block_len != ebb->start_offset - block_begin) | |
6392 | { | |
6393 | (*_bfd_error_handler) | |
6394 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
6395 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
6396 | return FALSE; | |
6397 | } | |
6398 | ebb->start_offset -= insn_block_len; | |
6399 | ||
6400 | /* Update the reloc counter. */ | |
6401 | while (ebb->start_reloc_idx > 0 | |
6402 | && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset | |
6403 | >= ebb->start_offset)) | |
6404 | { | |
6405 | ebb->start_reloc_idx--; | |
6406 | } | |
6407 | ||
6408 | if (ebb->start_ptbl_idx == 0) | |
6409 | return TRUE; | |
6410 | ||
6411 | new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; | |
6412 | if ((new_entry->flags & XTENSA_PROP_INSN) == 0 | |
99ded152 | 6413 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6414 | || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6415 | return TRUE; | |
6416 | if (new_entry->address + new_entry->size != the_entry->address) | |
6417 | return TRUE; | |
6418 | ||
6419 | the_entry = new_entry; | |
6420 | ebb->start_ptbl_idx--; | |
6421 | } | |
6422 | return TRUE; | |
6423 | } | |
6424 | ||
6425 | ||
6426 | static bfd_size_type | |
7fa3d080 BW |
6427 | insn_block_decodable_len (bfd_byte *contents, |
6428 | bfd_size_type content_len, | |
6429 | bfd_vma block_offset, | |
6430 | bfd_size_type block_len) | |
43cd72b9 BW |
6431 | { |
6432 | bfd_vma offset = block_offset; | |
6433 | ||
6434 | while (offset < block_offset + block_len) | |
6435 | { | |
6436 | bfd_size_type insn_len = 0; | |
6437 | ||
6438 | insn_len = insn_decode_len (contents, content_len, offset); | |
6439 | if (insn_len == 0) | |
6440 | return (offset - block_offset); | |
6441 | offset += insn_len; | |
6442 | } | |
6443 | return (offset - block_offset); | |
6444 | } | |
6445 | ||
6446 | ||
6447 | static void | |
7fa3d080 | 6448 | ebb_propose_action (ebb_constraint *c, |
7fa3d080 | 6449 | enum ebb_target_enum align_type, |
288f74fa | 6450 | bfd_vma alignment_pow, |
7fa3d080 BW |
6451 | text_action_t action, |
6452 | bfd_vma offset, | |
6453 | int removed_bytes, | |
6454 | bfd_boolean do_action) | |
43cd72b9 | 6455 | { |
b08b5071 | 6456 | proposed_action *act; |
43cd72b9 | 6457 | |
43cd72b9 BW |
6458 | if (c->action_allocated <= c->action_count) |
6459 | { | |
b08b5071 | 6460 | unsigned new_allocated, i; |
823fc61f | 6461 | proposed_action *new_actions; |
b08b5071 BW |
6462 | |
6463 | new_allocated = (c->action_count + 2) * 2; | |
823fc61f | 6464 | new_actions = (proposed_action *) |
43cd72b9 BW |
6465 | bfd_zmalloc (sizeof (proposed_action) * new_allocated); |
6466 | ||
6467 | for (i = 0; i < c->action_count; i++) | |
6468 | new_actions[i] = c->actions[i]; | |
7fa3d080 | 6469 | if (c->actions) |
43cd72b9 BW |
6470 | free (c->actions); |
6471 | c->actions = new_actions; | |
6472 | c->action_allocated = new_allocated; | |
6473 | } | |
b08b5071 BW |
6474 | |
6475 | act = &c->actions[c->action_count]; | |
6476 | act->align_type = align_type; | |
6477 | act->alignment_pow = alignment_pow; | |
6478 | act->action = action; | |
6479 | act->offset = offset; | |
6480 | act->removed_bytes = removed_bytes; | |
6481 | act->do_action = do_action; | |
6482 | ||
43cd72b9 BW |
6483 | c->action_count++; |
6484 | } | |
6485 | ||
6486 | \f | |
6487 | /* Access to internal relocations, section contents and symbols. */ | |
6488 | ||
6489 | /* During relaxation, we need to modify relocations, section contents, | |
6490 | and symbol definitions, and we need to keep the original values from | |
6491 | being reloaded from the input files, i.e., we need to "pin" the | |
6492 | modified values in memory. We also want to continue to observe the | |
6493 | setting of the "keep-memory" flag. The following functions wrap the | |
6494 | standard BFD functions to take care of this for us. */ | |
6495 | ||
6496 | static Elf_Internal_Rela * | |
7fa3d080 | 6497 | retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6498 | { |
6499 | Elf_Internal_Rela *internal_relocs; | |
6500 | ||
6501 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6502 | return NULL; | |
6503 | ||
6504 | internal_relocs = elf_section_data (sec)->relocs; | |
6505 | if (internal_relocs == NULL) | |
6506 | internal_relocs = (_bfd_elf_link_read_relocs | |
7fa3d080 | 6507 | (abfd, sec, NULL, NULL, keep_memory)); |
43cd72b9 BW |
6508 | return internal_relocs; |
6509 | } | |
6510 | ||
6511 | ||
6512 | static void | |
7fa3d080 | 6513 | pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6514 | { |
6515 | elf_section_data (sec)->relocs = internal_relocs; | |
6516 | } | |
6517 | ||
6518 | ||
6519 | static void | |
7fa3d080 | 6520 | release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6521 | { |
6522 | if (internal_relocs | |
6523 | && elf_section_data (sec)->relocs != internal_relocs) | |
6524 | free (internal_relocs); | |
6525 | } | |
6526 | ||
6527 | ||
6528 | static bfd_byte * | |
7fa3d080 | 6529 | retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6530 | { |
6531 | bfd_byte *contents; | |
6532 | bfd_size_type sec_size; | |
6533 | ||
6534 | sec_size = bfd_get_section_limit (abfd, sec); | |
6535 | contents = elf_section_data (sec)->this_hdr.contents; | |
6536 | ||
6537 | if (contents == NULL && sec_size != 0) | |
6538 | { | |
6539 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
6540 | { | |
7fa3d080 | 6541 | if (contents) |
43cd72b9 BW |
6542 | free (contents); |
6543 | return NULL; | |
6544 | } | |
6545 | if (keep_memory) | |
6546 | elf_section_data (sec)->this_hdr.contents = contents; | |
6547 | } | |
6548 | return contents; | |
6549 | } | |
6550 | ||
6551 | ||
6552 | static void | |
7fa3d080 | 6553 | pin_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6554 | { |
6555 | elf_section_data (sec)->this_hdr.contents = contents; | |
6556 | } | |
6557 | ||
6558 | ||
6559 | static void | |
7fa3d080 | 6560 | release_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6561 | { |
6562 | if (contents && elf_section_data (sec)->this_hdr.contents != contents) | |
6563 | free (contents); | |
6564 | } | |
6565 | ||
6566 | ||
6567 | static Elf_Internal_Sym * | |
7fa3d080 | 6568 | retrieve_local_syms (bfd *input_bfd) |
43cd72b9 BW |
6569 | { |
6570 | Elf_Internal_Shdr *symtab_hdr; | |
6571 | Elf_Internal_Sym *isymbuf; | |
6572 | size_t locsymcount; | |
6573 | ||
6574 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
6575 | locsymcount = symtab_hdr->sh_info; | |
6576 | ||
6577 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
6578 | if (isymbuf == NULL && locsymcount != 0) | |
6579 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
6580 | NULL, NULL, NULL); | |
6581 | ||
6582 | /* Save the symbols for this input file so they won't be read again. */ | |
6583 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
6584 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
6585 | ||
6586 | return isymbuf; | |
6587 | } | |
6588 | ||
6589 | \f | |
6590 | /* Code for link-time relaxation. */ | |
6591 | ||
6592 | /* Initialization for relaxation: */ | |
7fa3d080 | 6593 | static bfd_boolean analyze_relocations (struct bfd_link_info *); |
43cd72b9 | 6594 | static bfd_boolean find_relaxable_sections |
7fa3d080 | 6595 | (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); |
43cd72b9 | 6596 | static bfd_boolean collect_source_relocs |
7fa3d080 | 6597 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 | 6598 | static bfd_boolean is_resolvable_asm_expansion |
7fa3d080 BW |
6599 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, |
6600 | bfd_boolean *); | |
43cd72b9 | 6601 | static Elf_Internal_Rela *find_associated_l32r_irel |
7fa3d080 | 6602 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); |
43cd72b9 | 6603 | static bfd_boolean compute_text_actions |
7fa3d080 BW |
6604 | (bfd *, asection *, struct bfd_link_info *); |
6605 | static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); | |
6606 | static bfd_boolean compute_ebb_actions (ebb_constraint *); | |
43cd72b9 | 6607 | static bfd_boolean check_section_ebb_pcrels_fit |
cb337148 BW |
6608 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *, |
6609 | const xtensa_opcode *); | |
7fa3d080 | 6610 | static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); |
43cd72b9 | 6611 | static void text_action_add_proposed |
7fa3d080 BW |
6612 | (text_action_list *, const ebb_constraint *, asection *); |
6613 | static int compute_fill_extra_space (property_table_entry *); | |
43cd72b9 BW |
6614 | |
6615 | /* First pass: */ | |
6616 | static bfd_boolean compute_removed_literals | |
7fa3d080 | 6617 | (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); |
43cd72b9 | 6618 | static Elf_Internal_Rela *get_irel_at_offset |
7fa3d080 | 6619 | (asection *, Elf_Internal_Rela *, bfd_vma); |
43cd72b9 | 6620 | static bfd_boolean is_removable_literal |
99ded152 BW |
6621 | (const source_reloc *, int, const source_reloc *, int, asection *, |
6622 | property_table_entry *, int); | |
43cd72b9 | 6623 | static bfd_boolean remove_dead_literal |
7fa3d080 BW |
6624 | (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, |
6625 | Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); | |
6626 | static bfd_boolean identify_literal_placement | |
6627 | (bfd *, asection *, bfd_byte *, struct bfd_link_info *, | |
6628 | value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, | |
6629 | source_reloc *, property_table_entry *, int, section_cache_t *, | |
6630 | bfd_boolean); | |
6631 | static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); | |
43cd72b9 | 6632 | static bfd_boolean coalesce_shared_literal |
7fa3d080 | 6633 | (asection *, source_reloc *, property_table_entry *, int, value_map *); |
43cd72b9 | 6634 | static bfd_boolean move_shared_literal |
7fa3d080 BW |
6635 | (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, |
6636 | int, const r_reloc *, const literal_value *, section_cache_t *); | |
43cd72b9 BW |
6637 | |
6638 | /* Second pass: */ | |
7fa3d080 BW |
6639 | static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); |
6640 | static bfd_boolean translate_section_fixes (asection *); | |
6641 | static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); | |
9b7f5d20 | 6642 | static asection *translate_reloc (const r_reloc *, r_reloc *, asection *); |
43cd72b9 | 6643 | static void shrink_dynamic_reloc_sections |
7fa3d080 | 6644 | (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); |
43cd72b9 | 6645 | static bfd_boolean move_literal |
7fa3d080 BW |
6646 | (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, |
6647 | xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); | |
43cd72b9 | 6648 | static bfd_boolean relax_property_section |
7fa3d080 | 6649 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 BW |
6650 | |
6651 | /* Third pass: */ | |
7fa3d080 | 6652 | static bfd_boolean relax_section_symbols (bfd *, asection *); |
43cd72b9 BW |
6653 | |
6654 | ||
6655 | static bfd_boolean | |
7fa3d080 BW |
6656 | elf_xtensa_relax_section (bfd *abfd, |
6657 | asection *sec, | |
6658 | struct bfd_link_info *link_info, | |
6659 | bfd_boolean *again) | |
43cd72b9 BW |
6660 | { |
6661 | static value_map_hash_table *values = NULL; | |
6662 | static bfd_boolean relocations_analyzed = FALSE; | |
6663 | xtensa_relax_info *relax_info; | |
6664 | ||
6665 | if (!relocations_analyzed) | |
6666 | { | |
6667 | /* Do some overall initialization for relaxation. */ | |
6668 | values = value_map_hash_table_init (); | |
6669 | if (values == NULL) | |
6670 | return FALSE; | |
6671 | relaxing_section = TRUE; | |
6672 | if (!analyze_relocations (link_info)) | |
6673 | return FALSE; | |
6674 | relocations_analyzed = TRUE; | |
6675 | } | |
6676 | *again = FALSE; | |
6677 | ||
6678 | /* Don't mess with linker-created sections. */ | |
6679 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6680 | return TRUE; | |
6681 | ||
6682 | relax_info = get_xtensa_relax_info (sec); | |
6683 | BFD_ASSERT (relax_info != NULL); | |
6684 | ||
6685 | switch (relax_info->visited) | |
6686 | { | |
6687 | case 0: | |
6688 | /* Note: It would be nice to fold this pass into | |
6689 | analyze_relocations, but it is important for this step that the | |
6690 | sections be examined in link order. */ | |
6691 | if (!compute_removed_literals (abfd, sec, link_info, values)) | |
6692 | return FALSE; | |
6693 | *again = TRUE; | |
6694 | break; | |
6695 | ||
6696 | case 1: | |
6697 | if (values) | |
6698 | value_map_hash_table_delete (values); | |
6699 | values = NULL; | |
6700 | if (!relax_section (abfd, sec, link_info)) | |
6701 | return FALSE; | |
6702 | *again = TRUE; | |
6703 | break; | |
6704 | ||
6705 | case 2: | |
6706 | if (!relax_section_symbols (abfd, sec)) | |
6707 | return FALSE; | |
6708 | break; | |
6709 | } | |
6710 | ||
6711 | relax_info->visited++; | |
6712 | return TRUE; | |
6713 | } | |
6714 | ||
6715 | \f | |
6716 | /* Initialization for relaxation. */ | |
6717 | ||
6718 | /* This function is called once at the start of relaxation. It scans | |
6719 | all the input sections and marks the ones that are relaxable (i.e., | |
6720 | literal sections with L32R relocations against them), and then | |
6721 | collects source_reloc information for all the relocations against | |
6722 | those relaxable sections. During this process, it also detects | |
6723 | longcalls, i.e., calls relaxed by the assembler into indirect | |
6724 | calls, that can be optimized back into direct calls. Within each | |
6725 | extended basic block (ebb) containing an optimized longcall, it | |
6726 | computes a set of "text actions" that can be performed to remove | |
6727 | the L32R associated with the longcall while optionally preserving | |
6728 | branch target alignments. */ | |
6729 | ||
6730 | static bfd_boolean | |
7fa3d080 | 6731 | analyze_relocations (struct bfd_link_info *link_info) |
43cd72b9 BW |
6732 | { |
6733 | bfd *abfd; | |
6734 | asection *sec; | |
6735 | bfd_boolean is_relaxable = FALSE; | |
6736 | ||
6737 | /* Initialize the per-section relaxation info. */ | |
6738 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6739 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6740 | { | |
6741 | init_xtensa_relax_info (sec); | |
6742 | } | |
6743 | ||
6744 | /* Mark relaxable sections (and count relocations against each one). */ | |
6745 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6746 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6747 | { | |
6748 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
6749 | return FALSE; | |
6750 | } | |
6751 | ||
6752 | /* Bail out if there are no relaxable sections. */ | |
6753 | if (!is_relaxable) | |
6754 | return TRUE; | |
6755 | ||
6756 | /* Allocate space for source_relocs. */ | |
6757 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6758 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6759 | { | |
6760 | xtensa_relax_info *relax_info; | |
6761 | ||
6762 | relax_info = get_xtensa_relax_info (sec); | |
6763 | if (relax_info->is_relaxable_literal_section | |
6764 | || relax_info->is_relaxable_asm_section) | |
6765 | { | |
6766 | relax_info->src_relocs = (source_reloc *) | |
6767 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
6768 | } | |
25c6282a BW |
6769 | else |
6770 | relax_info->src_count = 0; | |
43cd72b9 BW |
6771 | } |
6772 | ||
6773 | /* Collect info on relocations against each relaxable section. */ | |
6774 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6775 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6776 | { | |
6777 | if (!collect_source_relocs (abfd, sec, link_info)) | |
6778 | return FALSE; | |
6779 | } | |
6780 | ||
6781 | /* Compute the text actions. */ | |
6782 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
6783 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
6784 | { | |
6785 | if (!compute_text_actions (abfd, sec, link_info)) | |
6786 | return FALSE; | |
6787 | } | |
6788 | ||
6789 | return TRUE; | |
6790 | } | |
6791 | ||
6792 | ||
6793 | /* Find all the sections that might be relaxed. The motivation for | |
6794 | this pass is that collect_source_relocs() needs to record _all_ the | |
6795 | relocations that target each relaxable section. That is expensive | |
6796 | and unnecessary unless the target section is actually going to be | |
6797 | relaxed. This pass identifies all such sections by checking if | |
6798 | they have L32Rs pointing to them. In the process, the total number | |
6799 | of relocations targeting each section is also counted so that we | |
6800 | know how much space to allocate for source_relocs against each | |
6801 | relaxable literal section. */ | |
6802 | ||
6803 | static bfd_boolean | |
7fa3d080 BW |
6804 | find_relaxable_sections (bfd *abfd, |
6805 | asection *sec, | |
6806 | struct bfd_link_info *link_info, | |
6807 | bfd_boolean *is_relaxable_p) | |
43cd72b9 BW |
6808 | { |
6809 | Elf_Internal_Rela *internal_relocs; | |
6810 | bfd_byte *contents; | |
6811 | bfd_boolean ok = TRUE; | |
6812 | unsigned i; | |
6813 | xtensa_relax_info *source_relax_info; | |
25c6282a | 6814 | bfd_boolean is_l32r_reloc; |
43cd72b9 BW |
6815 | |
6816 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6817 | link_info->keep_memory); | |
6818 | if (internal_relocs == NULL) | |
6819 | return ok; | |
6820 | ||
6821 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6822 | if (contents == NULL && sec->size != 0) | |
6823 | { | |
6824 | ok = FALSE; | |
6825 | goto error_return; | |
6826 | } | |
6827 | ||
6828 | source_relax_info = get_xtensa_relax_info (sec); | |
6829 | for (i = 0; i < sec->reloc_count; i++) | |
6830 | { | |
6831 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6832 | r_reloc r_rel; | |
6833 | asection *target_sec; | |
6834 | xtensa_relax_info *target_relax_info; | |
6835 | ||
6836 | /* If this section has not already been marked as "relaxable", and | |
6837 | if it contains any ASM_EXPAND relocations (marking expanded | |
6838 | longcalls) that can be optimized into direct calls, then mark | |
6839 | the section as "relaxable". */ | |
6840 | if (source_relax_info | |
6841 | && !source_relax_info->is_relaxable_asm_section | |
6842 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) | |
6843 | { | |
6844 | bfd_boolean is_reachable = FALSE; | |
6845 | if (is_resolvable_asm_expansion (abfd, sec, contents, irel, | |
6846 | link_info, &is_reachable) | |
6847 | && is_reachable) | |
6848 | { | |
6849 | source_relax_info->is_relaxable_asm_section = TRUE; | |
6850 | *is_relaxable_p = TRUE; | |
6851 | } | |
6852 | } | |
6853 | ||
6854 | r_reloc_init (&r_rel, abfd, irel, contents, | |
6855 | bfd_get_section_limit (abfd, sec)); | |
6856 | ||
6857 | target_sec = r_reloc_get_section (&r_rel); | |
6858 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6859 | if (!target_relax_info) | |
6860 | continue; | |
6861 | ||
6862 | /* Count PC-relative operand relocations against the target section. | |
6863 | Note: The conditions tested here must match the conditions under | |
6864 | which init_source_reloc is called in collect_source_relocs(). */ | |
25c6282a BW |
6865 | is_l32r_reloc = FALSE; |
6866 | if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
6867 | { | |
6868 | xtensa_opcode opcode = | |
6869 | get_relocation_opcode (abfd, sec, contents, irel); | |
6870 | if (opcode != XTENSA_UNDEFINED) | |
6871 | { | |
6872 | is_l32r_reloc = (opcode == get_l32r_opcode ()); | |
6873 | if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) | |
6874 | || is_l32r_reloc) | |
6875 | target_relax_info->src_count++; | |
6876 | } | |
6877 | } | |
43cd72b9 | 6878 | |
25c6282a | 6879 | if (is_l32r_reloc && r_reloc_is_defined (&r_rel)) |
43cd72b9 BW |
6880 | { |
6881 | /* Mark the target section as relaxable. */ | |
6882 | target_relax_info->is_relaxable_literal_section = TRUE; | |
6883 | *is_relaxable_p = TRUE; | |
6884 | } | |
6885 | } | |
6886 | ||
6887 | error_return: | |
6888 | release_contents (sec, contents); | |
6889 | release_internal_relocs (sec, internal_relocs); | |
6890 | return ok; | |
6891 | } | |
6892 | ||
6893 | ||
6894 | /* Record _all_ the relocations that point to relaxable sections, and | |
6895 | get rid of ASM_EXPAND relocs by either converting them to | |
6896 | ASM_SIMPLIFY or by removing them. */ | |
6897 | ||
6898 | static bfd_boolean | |
7fa3d080 BW |
6899 | collect_source_relocs (bfd *abfd, |
6900 | asection *sec, | |
6901 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6902 | { |
6903 | Elf_Internal_Rela *internal_relocs; | |
6904 | bfd_byte *contents; | |
6905 | bfd_boolean ok = TRUE; | |
6906 | unsigned i; | |
6907 | bfd_size_type sec_size; | |
6908 | ||
6909 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6910 | link_info->keep_memory); | |
6911 | if (internal_relocs == NULL) | |
6912 | return ok; | |
6913 | ||
6914 | sec_size = bfd_get_section_limit (abfd, sec); | |
6915 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6916 | if (contents == NULL && sec_size != 0) | |
6917 | { | |
6918 | ok = FALSE; | |
6919 | goto error_return; | |
6920 | } | |
6921 | ||
6922 | /* Record relocations against relaxable literal sections. */ | |
6923 | for (i = 0; i < sec->reloc_count; i++) | |
6924 | { | |
6925 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6926 | r_reloc r_rel; | |
6927 | asection *target_sec; | |
6928 | xtensa_relax_info *target_relax_info; | |
6929 | ||
6930 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
6931 | ||
6932 | target_sec = r_reloc_get_section (&r_rel); | |
6933 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6934 | ||
6935 | if (target_relax_info | |
6936 | && (target_relax_info->is_relaxable_literal_section | |
6937 | || target_relax_info->is_relaxable_asm_section)) | |
6938 | { | |
6939 | xtensa_opcode opcode = XTENSA_UNDEFINED; | |
6940 | int opnd = -1; | |
6941 | bfd_boolean is_abs_literal = FALSE; | |
6942 | ||
6943 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
6944 | { | |
6945 | /* None of the current alternate relocs are PC-relative, | |
6946 | and only PC-relative relocs matter here. However, we | |
6947 | still need to record the opcode for literal | |
6948 | coalescing. */ | |
6949 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6950 | if (opcode == get_l32r_opcode ()) | |
6951 | { | |
6952 | is_abs_literal = TRUE; | |
6953 | opnd = 1; | |
6954 | } | |
6955 | else | |
6956 | opcode = XTENSA_UNDEFINED; | |
6957 | } | |
6958 | else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
6959 | { | |
6960 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6961 | opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
6962 | } | |
6963 | ||
6964 | if (opcode != XTENSA_UNDEFINED) | |
6965 | { | |
6966 | int src_next = target_relax_info->src_next++; | |
6967 | source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; | |
6968 | ||
6969 | init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, | |
6970 | is_abs_literal); | |
6971 | } | |
6972 | } | |
6973 | } | |
6974 | ||
6975 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
6976 | src_relocs array for the target literal section may still be | |
6977 | incomplete, but it must at least contain the entries for the L32R | |
6978 | relocations associated with ASM_EXPANDs because they were just | |
6979 | added in the preceding loop over the relocations. */ | |
6980 | ||
6981 | for (i = 0; i < sec->reloc_count; i++) | |
6982 | { | |
6983 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6984 | bfd_boolean is_reachable; | |
6985 | ||
6986 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
6987 | &is_reachable)) | |
6988 | continue; | |
6989 | ||
6990 | if (is_reachable) | |
6991 | { | |
6992 | Elf_Internal_Rela *l32r_irel; | |
6993 | r_reloc r_rel; | |
6994 | asection *target_sec; | |
6995 | xtensa_relax_info *target_relax_info; | |
6996 | ||
6997 | /* Mark the source_reloc for the L32R so that it will be | |
6998 | removed in compute_removed_literals(), along with the | |
6999 | associated literal. */ | |
7000 | l32r_irel = find_associated_l32r_irel (abfd, sec, contents, | |
7001 | irel, internal_relocs); | |
7002 | if (l32r_irel == NULL) | |
7003 | continue; | |
7004 | ||
7005 | r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); | |
7006 | ||
7007 | target_sec = r_reloc_get_section (&r_rel); | |
7008 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7009 | ||
7010 | if (target_relax_info | |
7011 | && (target_relax_info->is_relaxable_literal_section | |
7012 | || target_relax_info->is_relaxable_asm_section)) | |
7013 | { | |
7014 | source_reloc *s_reloc; | |
7015 | ||
7016 | /* Search the source_relocs for the entry corresponding to | |
7017 | the l32r_irel. Note: The src_relocs array is not yet | |
7018 | sorted, but it wouldn't matter anyway because we're | |
7019 | searching by source offset instead of target offset. */ | |
7020 | s_reloc = find_source_reloc (target_relax_info->src_relocs, | |
7021 | target_relax_info->src_next, | |
7022 | sec, l32r_irel); | |
7023 | BFD_ASSERT (s_reloc); | |
7024 | s_reloc->is_null = TRUE; | |
7025 | } | |
7026 | ||
7027 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
7028 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
7029 | R_XTENSA_ASM_SIMPLIFY); | |
7030 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7031 | ||
7032 | pin_internal_relocs (sec, internal_relocs); | |
7033 | } | |
7034 | else | |
7035 | { | |
7036 | /* It is resolvable but doesn't reach. We resolve now | |
7037 | by eliminating the relocation -- the call will remain | |
7038 | expanded into L32R/CALLX. */ | |
7039 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7040 | pin_internal_relocs (sec, internal_relocs); | |
7041 | } | |
7042 | } | |
7043 | ||
7044 | error_return: | |
7045 | release_contents (sec, contents); | |
7046 | release_internal_relocs (sec, internal_relocs); | |
7047 | return ok; | |
7048 | } | |
7049 | ||
7050 | ||
7051 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
7052 | be resolved on a final link or when a partial link locates it in the | |
7053 | same section as the target. Set "is_reachable" flag if the target of | |
7054 | the call is within the range of a direct call, given the current VMA | |
7055 | for this section and the target section. */ | |
7056 | ||
7057 | bfd_boolean | |
7fa3d080 BW |
7058 | is_resolvable_asm_expansion (bfd *abfd, |
7059 | asection *sec, | |
7060 | bfd_byte *contents, | |
7061 | Elf_Internal_Rela *irel, | |
7062 | struct bfd_link_info *link_info, | |
7063 | bfd_boolean *is_reachable_p) | |
43cd72b9 BW |
7064 | { |
7065 | asection *target_sec; | |
7066 | bfd_vma target_offset; | |
7067 | r_reloc r_rel; | |
7068 | xtensa_opcode opcode, direct_call_opcode; | |
7069 | bfd_vma self_address; | |
7070 | bfd_vma dest_address; | |
7071 | bfd_boolean uses_l32r; | |
7072 | bfd_size_type sec_size; | |
7073 | ||
7074 | *is_reachable_p = FALSE; | |
7075 | ||
7076 | if (contents == NULL) | |
7077 | return FALSE; | |
7078 | ||
7079 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) | |
7080 | return FALSE; | |
7081 | ||
7082 | sec_size = bfd_get_section_limit (abfd, sec); | |
7083 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
7084 | sec_size - irel->r_offset, &uses_l32r); | |
7085 | /* Optimization of longcalls that use CONST16 is not yet implemented. */ | |
7086 | if (!uses_l32r) | |
7087 | return FALSE; | |
7088 | ||
7089 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
7090 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
7091 | return FALSE; | |
7092 | ||
7093 | /* Check and see that the target resolves. */ | |
7094 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7095 | if (!r_reloc_is_defined (&r_rel)) | |
7096 | return FALSE; | |
7097 | ||
7098 | target_sec = r_reloc_get_section (&r_rel); | |
7099 | target_offset = r_rel.target_offset; | |
7100 | ||
7101 | /* If the target is in a shared library, then it doesn't reach. This | |
7102 | isn't supposed to come up because the compiler should never generate | |
7103 | non-PIC calls on systems that use shared libraries, but the linker | |
7104 | shouldn't crash regardless. */ | |
7105 | if (!target_sec->output_section) | |
7106 | return FALSE; | |
7107 | ||
7108 | /* For relocatable sections, we can only simplify when the output | |
7109 | section of the target is the same as the output section of the | |
7110 | source. */ | |
7111 | if (link_info->relocatable | |
7112 | && (target_sec->output_section != sec->output_section | |
7113 | || is_reloc_sym_weak (abfd, irel))) | |
7114 | return FALSE; | |
7115 | ||
7116 | self_address = (sec->output_section->vma | |
7117 | + sec->output_offset + irel->r_offset + 3); | |
7118 | dest_address = (target_sec->output_section->vma | |
7119 | + target_sec->output_offset + target_offset); | |
7120 | ||
7121 | *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, | |
7122 | self_address, dest_address); | |
7123 | ||
7124 | if ((self_address >> CALL_SEGMENT_BITS) != | |
7125 | (dest_address >> CALL_SEGMENT_BITS)) | |
7126 | return FALSE; | |
7127 | ||
7128 | return TRUE; | |
7129 | } | |
7130 | ||
7131 | ||
7132 | static Elf_Internal_Rela * | |
7fa3d080 BW |
7133 | find_associated_l32r_irel (bfd *abfd, |
7134 | asection *sec, | |
7135 | bfd_byte *contents, | |
7136 | Elf_Internal_Rela *other_irel, | |
7137 | Elf_Internal_Rela *internal_relocs) | |
43cd72b9 BW |
7138 | { |
7139 | unsigned i; | |
e0001a05 | 7140 | |
43cd72b9 BW |
7141 | for (i = 0; i < sec->reloc_count; i++) |
7142 | { | |
7143 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
e0001a05 | 7144 | |
43cd72b9 BW |
7145 | if (irel == other_irel) |
7146 | continue; | |
7147 | if (irel->r_offset != other_irel->r_offset) | |
7148 | continue; | |
7149 | if (is_l32r_relocation (abfd, sec, contents, irel)) | |
7150 | return irel; | |
7151 | } | |
7152 | ||
7153 | return NULL; | |
e0001a05 NC |
7154 | } |
7155 | ||
7156 | ||
cb337148 BW |
7157 | static xtensa_opcode * |
7158 | build_reloc_opcodes (bfd *abfd, | |
7159 | asection *sec, | |
7160 | bfd_byte *contents, | |
7161 | Elf_Internal_Rela *internal_relocs) | |
7162 | { | |
7163 | unsigned i; | |
7164 | xtensa_opcode *reloc_opcodes = | |
7165 | (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); | |
7166 | for (i = 0; i < sec->reloc_count; i++) | |
7167 | { | |
7168 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7169 | reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); | |
7170 | } | |
7171 | return reloc_opcodes; | |
7172 | } | |
7173 | ||
7174 | ||
43cd72b9 BW |
7175 | /* The compute_text_actions function will build a list of potential |
7176 | transformation actions for code in the extended basic block of each | |
7177 | longcall that is optimized to a direct call. From this list we | |
7178 | generate a set of actions to actually perform that optimizes for | |
7179 | space and, if not using size_opt, maintains branch target | |
7180 | alignments. | |
e0001a05 | 7181 | |
43cd72b9 BW |
7182 | These actions to be performed are placed on a per-section list. |
7183 | The actual changes are performed by relax_section() in the second | |
7184 | pass. */ | |
7185 | ||
7186 | bfd_boolean | |
7fa3d080 BW |
7187 | compute_text_actions (bfd *abfd, |
7188 | asection *sec, | |
7189 | struct bfd_link_info *link_info) | |
e0001a05 | 7190 | { |
cb337148 | 7191 | xtensa_opcode *reloc_opcodes = NULL; |
43cd72b9 | 7192 | xtensa_relax_info *relax_info; |
e0001a05 | 7193 | bfd_byte *contents; |
43cd72b9 | 7194 | Elf_Internal_Rela *internal_relocs; |
e0001a05 NC |
7195 | bfd_boolean ok = TRUE; |
7196 | unsigned i; | |
43cd72b9 BW |
7197 | property_table_entry *prop_table = 0; |
7198 | int ptblsize = 0; | |
7199 | bfd_size_type sec_size; | |
43cd72b9 | 7200 | |
43cd72b9 BW |
7201 | relax_info = get_xtensa_relax_info (sec); |
7202 | BFD_ASSERT (relax_info); | |
25c6282a BW |
7203 | BFD_ASSERT (relax_info->src_next == relax_info->src_count); |
7204 | ||
7205 | /* Do nothing if the section contains no optimized longcalls. */ | |
43cd72b9 BW |
7206 | if (!relax_info->is_relaxable_asm_section) |
7207 | return ok; | |
e0001a05 NC |
7208 | |
7209 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7210 | link_info->keep_memory); | |
e0001a05 | 7211 | |
43cd72b9 BW |
7212 | if (internal_relocs) |
7213 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
7214 | internal_reloc_compare); | |
7215 | ||
7216 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 | 7217 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 7218 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
7219 | { |
7220 | ok = FALSE; | |
7221 | goto error_return; | |
7222 | } | |
7223 | ||
43cd72b9 BW |
7224 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
7225 | XTENSA_PROP_SEC_NAME, FALSE); | |
7226 | if (ptblsize < 0) | |
7227 | { | |
7228 | ok = FALSE; | |
7229 | goto error_return; | |
7230 | } | |
7231 | ||
7232 | for (i = 0; i < sec->reloc_count; i++) | |
e0001a05 NC |
7233 | { |
7234 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 BW |
7235 | bfd_vma r_offset; |
7236 | property_table_entry *the_entry; | |
7237 | int ptbl_idx; | |
7238 | ebb_t *ebb; | |
7239 | ebb_constraint ebb_table; | |
7240 | bfd_size_type simplify_size; | |
7241 | ||
7242 | if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) | |
7243 | continue; | |
7244 | r_offset = irel->r_offset; | |
e0001a05 | 7245 | |
43cd72b9 BW |
7246 | simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); |
7247 | if (simplify_size == 0) | |
7248 | { | |
7249 | (*_bfd_error_handler) | |
7250 | (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"), | |
7251 | sec->owner, sec, r_offset); | |
7252 | continue; | |
7253 | } | |
e0001a05 | 7254 | |
43cd72b9 BW |
7255 | /* If the instruction table is not around, then don't do this |
7256 | relaxation. */ | |
7257 | the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7258 | sec->vma + irel->r_offset); | |
7259 | if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) | |
7260 | { | |
7261 | text_action_add (&relax_info->action_list, | |
7262 | ta_convert_longcall, sec, r_offset, | |
7263 | 0); | |
7264 | continue; | |
7265 | } | |
7266 | ||
7267 | /* If the next longcall happens to be at the same address as an | |
7268 | unreachable section of size 0, then skip forward. */ | |
7269 | ptbl_idx = the_entry - prop_table; | |
7270 | while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) | |
7271 | && the_entry->size == 0 | |
7272 | && ptbl_idx + 1 < ptblsize | |
7273 | && (prop_table[ptbl_idx + 1].address | |
7274 | == prop_table[ptbl_idx].address)) | |
7275 | { | |
7276 | ptbl_idx++; | |
7277 | the_entry++; | |
7278 | } | |
e0001a05 | 7279 | |
99ded152 | 7280 | if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM) |
43cd72b9 BW |
7281 | /* NO_REORDER is OK */ |
7282 | continue; | |
e0001a05 | 7283 | |
43cd72b9 BW |
7284 | init_ebb_constraint (&ebb_table); |
7285 | ebb = &ebb_table.ebb; | |
7286 | init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, | |
7287 | internal_relocs, sec->reloc_count); | |
7288 | ebb->start_offset = r_offset + simplify_size; | |
7289 | ebb->end_offset = r_offset + simplify_size; | |
7290 | ebb->start_ptbl_idx = ptbl_idx; | |
7291 | ebb->end_ptbl_idx = ptbl_idx; | |
7292 | ebb->start_reloc_idx = i; | |
7293 | ebb->end_reloc_idx = i; | |
7294 | ||
cb337148 BW |
7295 | /* Precompute the opcode for each relocation. */ |
7296 | if (reloc_opcodes == NULL) | |
7297 | reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, | |
7298 | internal_relocs); | |
7299 | ||
43cd72b9 BW |
7300 | if (!extend_ebb_bounds (ebb) |
7301 | || !compute_ebb_proposed_actions (&ebb_table) | |
7302 | || !compute_ebb_actions (&ebb_table) | |
7303 | || !check_section_ebb_pcrels_fit (abfd, sec, contents, | |
cb337148 BW |
7304 | internal_relocs, &ebb_table, |
7305 | reloc_opcodes) | |
43cd72b9 | 7306 | || !check_section_ebb_reduces (&ebb_table)) |
e0001a05 | 7307 | { |
43cd72b9 BW |
7308 | /* If anything goes wrong or we get unlucky and something does |
7309 | not fit, with our plan because of expansion between | |
7310 | critical branches, just convert to a NOP. */ | |
7311 | ||
7312 | text_action_add (&relax_info->action_list, | |
7313 | ta_convert_longcall, sec, r_offset, 0); | |
7314 | i = ebb_table.ebb.end_reloc_idx; | |
7315 | free_ebb_constraint (&ebb_table); | |
7316 | continue; | |
e0001a05 | 7317 | } |
43cd72b9 BW |
7318 | |
7319 | text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); | |
7320 | ||
7321 | /* Update the index so we do not go looking at the relocations | |
7322 | we have already processed. */ | |
7323 | i = ebb_table.ebb.end_reloc_idx; | |
7324 | free_ebb_constraint (&ebb_table); | |
e0001a05 NC |
7325 | } |
7326 | ||
43cd72b9 | 7327 | #if DEBUG |
7fa3d080 | 7328 | if (relax_info->action_list.head) |
43cd72b9 BW |
7329 | print_action_list (stderr, &relax_info->action_list); |
7330 | #endif | |
7331 | ||
7332 | error_return: | |
e0001a05 NC |
7333 | release_contents (sec, contents); |
7334 | release_internal_relocs (sec, internal_relocs); | |
43cd72b9 BW |
7335 | if (prop_table) |
7336 | free (prop_table); | |
cb337148 BW |
7337 | if (reloc_opcodes) |
7338 | free (reloc_opcodes); | |
43cd72b9 | 7339 | |
e0001a05 NC |
7340 | return ok; |
7341 | } | |
7342 | ||
7343 | ||
64b607e6 BW |
7344 | /* Do not widen an instruction if it is preceeded by a |
7345 | loop opcode. It might cause misalignment. */ | |
7346 | ||
7347 | static bfd_boolean | |
7348 | prev_instr_is_a_loop (bfd_byte *contents, | |
7349 | bfd_size_type content_length, | |
7350 | bfd_size_type offset) | |
7351 | { | |
7352 | xtensa_opcode prev_opcode; | |
7353 | ||
7354 | if (offset < 3) | |
7355 | return FALSE; | |
7356 | prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); | |
7357 | return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); | |
7358 | } | |
7359 | ||
7360 | ||
43cd72b9 | 7361 | /* Find all of the possible actions for an extended basic block. */ |
e0001a05 | 7362 | |
43cd72b9 | 7363 | bfd_boolean |
7fa3d080 | 7364 | compute_ebb_proposed_actions (ebb_constraint *ebb_table) |
e0001a05 | 7365 | { |
43cd72b9 BW |
7366 | const ebb_t *ebb = &ebb_table->ebb; |
7367 | unsigned rel_idx = ebb->start_reloc_idx; | |
7368 | property_table_entry *entry, *start_entry, *end_entry; | |
64b607e6 BW |
7369 | bfd_vma offset = 0; |
7370 | xtensa_isa isa = xtensa_default_isa; | |
7371 | xtensa_format fmt; | |
7372 | static xtensa_insnbuf insnbuf = NULL; | |
7373 | static xtensa_insnbuf slotbuf = NULL; | |
7374 | ||
7375 | if (insnbuf == NULL) | |
7376 | { | |
7377 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7378 | slotbuf = xtensa_insnbuf_alloc (isa); | |
7379 | } | |
e0001a05 | 7380 | |
43cd72b9 BW |
7381 | start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
7382 | end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
e0001a05 | 7383 | |
43cd72b9 | 7384 | for (entry = start_entry; entry <= end_entry; entry++) |
e0001a05 | 7385 | { |
64b607e6 | 7386 | bfd_vma start_offset, end_offset; |
43cd72b9 | 7387 | bfd_size_type insn_len; |
e0001a05 | 7388 | |
43cd72b9 BW |
7389 | start_offset = entry->address - ebb->sec->vma; |
7390 | end_offset = entry->address + entry->size - ebb->sec->vma; | |
e0001a05 | 7391 | |
43cd72b9 BW |
7392 | if (entry == start_entry) |
7393 | start_offset = ebb->start_offset; | |
7394 | if (entry == end_entry) | |
7395 | end_offset = ebb->end_offset; | |
7396 | offset = start_offset; | |
e0001a05 | 7397 | |
43cd72b9 BW |
7398 | if (offset == entry->address - ebb->sec->vma |
7399 | && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) | |
7400 | { | |
7401 | enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; | |
7402 | BFD_ASSERT (offset != end_offset); | |
7403 | if (offset == end_offset) | |
7404 | return FALSE; | |
e0001a05 | 7405 | |
43cd72b9 BW |
7406 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
7407 | offset); | |
43cd72b9 | 7408 | if (insn_len == 0) |
64b607e6 BW |
7409 | goto decode_error; |
7410 | ||
43cd72b9 BW |
7411 | if (check_branch_target_aligned_address (offset, insn_len)) |
7412 | align_type = EBB_REQUIRE_TGT_ALIGN; | |
7413 | ||
7414 | ebb_propose_action (ebb_table, align_type, 0, | |
7415 | ta_none, offset, 0, TRUE); | |
7416 | } | |
7417 | ||
7418 | while (offset != end_offset) | |
e0001a05 | 7419 | { |
43cd72b9 | 7420 | Elf_Internal_Rela *irel; |
e0001a05 | 7421 | xtensa_opcode opcode; |
e0001a05 | 7422 | |
43cd72b9 BW |
7423 | while (rel_idx < ebb->end_reloc_idx |
7424 | && (ebb->relocs[rel_idx].r_offset < offset | |
7425 | || (ebb->relocs[rel_idx].r_offset == offset | |
7426 | && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) | |
7427 | != R_XTENSA_ASM_SIMPLIFY)))) | |
7428 | rel_idx++; | |
7429 | ||
7430 | /* Check for longcall. */ | |
7431 | irel = &ebb->relocs[rel_idx]; | |
7432 | if (irel->r_offset == offset | |
7433 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) | |
7434 | { | |
7435 | bfd_size_type simplify_size; | |
e0001a05 | 7436 | |
43cd72b9 BW |
7437 | simplify_size = get_asm_simplify_size (ebb->contents, |
7438 | ebb->content_length, | |
7439 | irel->r_offset); | |
7440 | if (simplify_size == 0) | |
64b607e6 | 7441 | goto decode_error; |
43cd72b9 BW |
7442 | |
7443 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7444 | ta_convert_longcall, offset, 0, TRUE); | |
7445 | ||
7446 | offset += simplify_size; | |
7447 | continue; | |
7448 | } | |
e0001a05 | 7449 | |
64b607e6 BW |
7450 | if (offset + MIN_INSN_LENGTH > ebb->content_length) |
7451 | goto decode_error; | |
7452 | xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], | |
7453 | ebb->content_length - offset); | |
7454 | fmt = xtensa_format_decode (isa, insnbuf); | |
7455 | if (fmt == XTENSA_UNDEFINED) | |
7456 | goto decode_error; | |
7457 | insn_len = xtensa_format_length (isa, fmt); | |
7458 | if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) | |
7459 | goto decode_error; | |
7460 | ||
7461 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
43cd72b9 | 7462 | { |
64b607e6 BW |
7463 | offset += insn_len; |
7464 | continue; | |
43cd72b9 | 7465 | } |
64b607e6 BW |
7466 | |
7467 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
7468 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
7469 | if (opcode == XTENSA_UNDEFINED) | |
7470 | goto decode_error; | |
7471 | ||
43cd72b9 | 7472 | if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 |
99ded152 | 7473 | && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 | 7474 | && can_narrow_instruction (slotbuf, fmt, opcode) != 0) |
43cd72b9 BW |
7475 | { |
7476 | /* Add an instruction narrow action. */ | |
7477 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7478 | ta_narrow_insn, offset, 0, FALSE); | |
43cd72b9 | 7479 | } |
99ded152 | 7480 | else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 BW |
7481 | && can_widen_instruction (slotbuf, fmt, opcode) != 0 |
7482 | && ! prev_instr_is_a_loop (ebb->contents, | |
7483 | ebb->content_length, offset)) | |
43cd72b9 BW |
7484 | { |
7485 | /* Add an instruction widen action. */ | |
7486 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7487 | ta_widen_insn, offset, 0, FALSE); | |
43cd72b9 | 7488 | } |
64b607e6 | 7489 | else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) |
43cd72b9 BW |
7490 | { |
7491 | /* Check for branch targets. */ | |
7492 | ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, | |
7493 | ta_none, offset, 0, TRUE); | |
43cd72b9 BW |
7494 | } |
7495 | ||
7496 | offset += insn_len; | |
e0001a05 NC |
7497 | } |
7498 | } | |
7499 | ||
43cd72b9 BW |
7500 | if (ebb->ends_unreachable) |
7501 | { | |
7502 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7503 | ta_fill, ebb->end_offset, 0, TRUE); | |
7504 | } | |
e0001a05 | 7505 | |
43cd72b9 | 7506 | return TRUE; |
64b607e6 BW |
7507 | |
7508 | decode_error: | |
7509 | (*_bfd_error_handler) | |
7510 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
7511 | ebb->sec->owner, ebb->sec, offset); | |
7512 | return FALSE; | |
43cd72b9 BW |
7513 | } |
7514 | ||
7515 | ||
7516 | /* After all of the information has collected about the | |
7517 | transformations possible in an EBB, compute the appropriate actions | |
7518 | here in compute_ebb_actions. We still must check later to make | |
7519 | sure that the actions do not break any relocations. The algorithm | |
7520 | used here is pretty greedy. Basically, it removes as many no-ops | |
7521 | as possible so that the end of the EBB has the same alignment | |
7522 | characteristics as the original. First, it uses narrowing, then | |
7523 | fill space at the end of the EBB, and finally widenings. If that | |
7524 | does not work, it tries again with one fewer no-op removed. The | |
7525 | optimization will only be performed if all of the branch targets | |
7526 | that were aligned before transformation are also aligned after the | |
7527 | transformation. | |
7528 | ||
7529 | When the size_opt flag is set, ignore the branch target alignments, | |
7530 | narrow all wide instructions, and remove all no-ops unless the end | |
7531 | of the EBB prevents it. */ | |
7532 | ||
7533 | bfd_boolean | |
7fa3d080 | 7534 | compute_ebb_actions (ebb_constraint *ebb_table) |
43cd72b9 BW |
7535 | { |
7536 | unsigned i = 0; | |
7537 | unsigned j; | |
7538 | int removed_bytes = 0; | |
7539 | ebb_t *ebb = &ebb_table->ebb; | |
7540 | unsigned seg_idx_start = 0; | |
7541 | unsigned seg_idx_end = 0; | |
7542 | ||
7543 | /* We perform this like the assembler relaxation algorithm: Start by | |
7544 | assuming all instructions are narrow and all no-ops removed; then | |
7545 | walk through.... */ | |
7546 | ||
7547 | /* For each segment of this that has a solid constraint, check to | |
7548 | see if there are any combinations that will keep the constraint. | |
7549 | If so, use it. */ | |
7550 | for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) | |
e0001a05 | 7551 | { |
43cd72b9 BW |
7552 | bfd_boolean requires_text_end_align = FALSE; |
7553 | unsigned longcall_count = 0; | |
7554 | unsigned longcall_convert_count = 0; | |
7555 | unsigned narrowable_count = 0; | |
7556 | unsigned narrowable_convert_count = 0; | |
7557 | unsigned widenable_count = 0; | |
7558 | unsigned widenable_convert_count = 0; | |
e0001a05 | 7559 | |
43cd72b9 BW |
7560 | proposed_action *action = NULL; |
7561 | int align = (1 << ebb_table->ebb.sec->alignment_power); | |
e0001a05 | 7562 | |
43cd72b9 | 7563 | seg_idx_start = seg_idx_end; |
e0001a05 | 7564 | |
43cd72b9 BW |
7565 | for (i = seg_idx_start; i < ebb_table->action_count; i++) |
7566 | { | |
7567 | action = &ebb_table->actions[i]; | |
7568 | if (action->action == ta_convert_longcall) | |
7569 | longcall_count++; | |
7570 | if (action->action == ta_narrow_insn) | |
7571 | narrowable_count++; | |
7572 | if (action->action == ta_widen_insn) | |
7573 | widenable_count++; | |
7574 | if (action->action == ta_fill) | |
7575 | break; | |
7576 | if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
7577 | break; | |
7578 | if (action->align_type == EBB_REQUIRE_TGT_ALIGN | |
7579 | && !elf32xtensa_size_opt) | |
7580 | break; | |
7581 | } | |
7582 | seg_idx_end = i; | |
e0001a05 | 7583 | |
43cd72b9 BW |
7584 | if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) |
7585 | requires_text_end_align = TRUE; | |
e0001a05 | 7586 | |
43cd72b9 BW |
7587 | if (elf32xtensa_size_opt && !requires_text_end_align |
7588 | && action->align_type != EBB_REQUIRE_LOOP_ALIGN | |
7589 | && action->align_type != EBB_REQUIRE_TGT_ALIGN) | |
7590 | { | |
7591 | longcall_convert_count = longcall_count; | |
7592 | narrowable_convert_count = narrowable_count; | |
7593 | widenable_convert_count = 0; | |
7594 | } | |
7595 | else | |
7596 | { | |
7597 | /* There is a constraint. Convert the max number of longcalls. */ | |
7598 | narrowable_convert_count = 0; | |
7599 | longcall_convert_count = 0; | |
7600 | widenable_convert_count = 0; | |
e0001a05 | 7601 | |
43cd72b9 | 7602 | for (j = 0; j < longcall_count; j++) |
e0001a05 | 7603 | { |
43cd72b9 BW |
7604 | int removed = (longcall_count - j) * 3 & (align - 1); |
7605 | unsigned desire_narrow = (align - removed) & (align - 1); | |
7606 | unsigned desire_widen = removed; | |
7607 | if (desire_narrow <= narrowable_count) | |
7608 | { | |
7609 | narrowable_convert_count = desire_narrow; | |
7610 | narrowable_convert_count += | |
7611 | (align * ((narrowable_count - narrowable_convert_count) | |
7612 | / align)); | |
7613 | longcall_convert_count = (longcall_count - j); | |
7614 | widenable_convert_count = 0; | |
7615 | break; | |
7616 | } | |
7617 | if (desire_widen <= widenable_count && !elf32xtensa_size_opt) | |
7618 | { | |
7619 | narrowable_convert_count = 0; | |
7620 | longcall_convert_count = longcall_count - j; | |
7621 | widenable_convert_count = desire_widen; | |
7622 | break; | |
7623 | } | |
7624 | } | |
7625 | } | |
e0001a05 | 7626 | |
43cd72b9 BW |
7627 | /* Now the number of conversions are saved. Do them. */ |
7628 | for (i = seg_idx_start; i < seg_idx_end; i++) | |
7629 | { | |
7630 | action = &ebb_table->actions[i]; | |
7631 | switch (action->action) | |
7632 | { | |
7633 | case ta_convert_longcall: | |
7634 | if (longcall_convert_count != 0) | |
7635 | { | |
7636 | action->action = ta_remove_longcall; | |
7637 | action->do_action = TRUE; | |
7638 | action->removed_bytes += 3; | |
7639 | longcall_convert_count--; | |
7640 | } | |
7641 | break; | |
7642 | case ta_narrow_insn: | |
7643 | if (narrowable_convert_count != 0) | |
7644 | { | |
7645 | action->do_action = TRUE; | |
7646 | action->removed_bytes += 1; | |
7647 | narrowable_convert_count--; | |
7648 | } | |
7649 | break; | |
7650 | case ta_widen_insn: | |
7651 | if (widenable_convert_count != 0) | |
7652 | { | |
7653 | action->do_action = TRUE; | |
7654 | action->removed_bytes -= 1; | |
7655 | widenable_convert_count--; | |
7656 | } | |
7657 | break; | |
7658 | default: | |
7659 | break; | |
e0001a05 | 7660 | } |
43cd72b9 BW |
7661 | } |
7662 | } | |
e0001a05 | 7663 | |
43cd72b9 BW |
7664 | /* Now we move on to some local opts. Try to remove each of the |
7665 | remaining longcalls. */ | |
e0001a05 | 7666 | |
43cd72b9 BW |
7667 | if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) |
7668 | { | |
7669 | removed_bytes = 0; | |
7670 | for (i = 0; i < ebb_table->action_count; i++) | |
e0001a05 | 7671 | { |
43cd72b9 BW |
7672 | int old_removed_bytes = removed_bytes; |
7673 | proposed_action *action = &ebb_table->actions[i]; | |
7674 | ||
7675 | if (action->do_action && action->action == ta_convert_longcall) | |
7676 | { | |
7677 | bfd_boolean bad_alignment = FALSE; | |
7678 | removed_bytes += 3; | |
7679 | for (j = i + 1; j < ebb_table->action_count; j++) | |
7680 | { | |
7681 | proposed_action *new_action = &ebb_table->actions[j]; | |
7682 | bfd_vma offset = new_action->offset; | |
7683 | if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) | |
7684 | { | |
7685 | if (!check_branch_target_aligned | |
7686 | (ebb_table->ebb.contents, | |
7687 | ebb_table->ebb.content_length, | |
7688 | offset, offset - removed_bytes)) | |
7689 | { | |
7690 | bad_alignment = TRUE; | |
7691 | break; | |
7692 | } | |
7693 | } | |
7694 | if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
7695 | { | |
7696 | if (!check_loop_aligned (ebb_table->ebb.contents, | |
7697 | ebb_table->ebb.content_length, | |
7698 | offset, | |
7699 | offset - removed_bytes)) | |
7700 | { | |
7701 | bad_alignment = TRUE; | |
7702 | break; | |
7703 | } | |
7704 | } | |
7705 | if (new_action->action == ta_narrow_insn | |
7706 | && !new_action->do_action | |
7707 | && ebb_table->ebb.sec->alignment_power == 2) | |
7708 | { | |
7709 | /* Narrow an instruction and we are done. */ | |
7710 | new_action->do_action = TRUE; | |
7711 | new_action->removed_bytes += 1; | |
7712 | bad_alignment = FALSE; | |
7713 | break; | |
7714 | } | |
7715 | if (new_action->action == ta_widen_insn | |
7716 | && new_action->do_action | |
7717 | && ebb_table->ebb.sec->alignment_power == 2) | |
7718 | { | |
7719 | /* Narrow an instruction and we are done. */ | |
7720 | new_action->do_action = FALSE; | |
7721 | new_action->removed_bytes += 1; | |
7722 | bad_alignment = FALSE; | |
7723 | break; | |
7724 | } | |
5c5d6806 BW |
7725 | if (new_action->do_action) |
7726 | removed_bytes += new_action->removed_bytes; | |
43cd72b9 BW |
7727 | } |
7728 | if (!bad_alignment) | |
7729 | { | |
7730 | action->removed_bytes += 3; | |
7731 | action->action = ta_remove_longcall; | |
7732 | action->do_action = TRUE; | |
7733 | } | |
7734 | } | |
7735 | removed_bytes = old_removed_bytes; | |
7736 | if (action->do_action) | |
7737 | removed_bytes += action->removed_bytes; | |
e0001a05 NC |
7738 | } |
7739 | } | |
7740 | ||
43cd72b9 BW |
7741 | removed_bytes = 0; |
7742 | for (i = 0; i < ebb_table->action_count; ++i) | |
7743 | { | |
7744 | proposed_action *action = &ebb_table->actions[i]; | |
7745 | if (action->do_action) | |
7746 | removed_bytes += action->removed_bytes; | |
7747 | } | |
7748 | ||
7749 | if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 | |
7750 | && ebb->ends_unreachable) | |
7751 | { | |
7752 | proposed_action *action; | |
7753 | int br; | |
7754 | int extra_space; | |
7755 | ||
7756 | BFD_ASSERT (ebb_table->action_count != 0); | |
7757 | action = &ebb_table->actions[ebb_table->action_count - 1]; | |
7758 | BFD_ASSERT (action->action == ta_fill); | |
7759 | BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); | |
7760 | ||
7761 | extra_space = compute_fill_extra_space (ebb->ends_unreachable); | |
7762 | br = action->removed_bytes + removed_bytes + extra_space; | |
7763 | br = br & ((1 << ebb->sec->alignment_power ) - 1); | |
7764 | ||
7765 | action->removed_bytes = extra_space - br; | |
7766 | } | |
7767 | return TRUE; | |
e0001a05 NC |
7768 | } |
7769 | ||
7770 | ||
03e94c08 BW |
7771 | /* The xlate_map is a sorted array of address mappings designed to |
7772 | answer the offset_with_removed_text() query with a binary search instead | |
7773 | of a linear search through the section's action_list. */ | |
7774 | ||
7775 | typedef struct xlate_map_entry xlate_map_entry_t; | |
7776 | typedef struct xlate_map xlate_map_t; | |
7777 | ||
7778 | struct xlate_map_entry | |
7779 | { | |
7780 | unsigned orig_address; | |
7781 | unsigned new_address; | |
7782 | unsigned size; | |
7783 | }; | |
7784 | ||
7785 | struct xlate_map | |
7786 | { | |
7787 | unsigned entry_count; | |
7788 | xlate_map_entry_t *entry; | |
7789 | }; | |
7790 | ||
7791 | ||
7792 | static int | |
7793 | xlate_compare (const void *a_v, const void *b_v) | |
7794 | { | |
7795 | const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; | |
7796 | const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; | |
7797 | if (a->orig_address < b->orig_address) | |
7798 | return -1; | |
7799 | if (a->orig_address > (b->orig_address + b->size - 1)) | |
7800 | return 1; | |
7801 | return 0; | |
7802 | } | |
7803 | ||
7804 | ||
7805 | static bfd_vma | |
7806 | xlate_offset_with_removed_text (const xlate_map_t *map, | |
7807 | text_action_list *action_list, | |
7808 | bfd_vma offset) | |
7809 | { | |
7810 | xlate_map_entry_t tmp; | |
7811 | void *r; | |
7812 | xlate_map_entry_t *e; | |
7813 | ||
7814 | if (map == NULL) | |
7815 | return offset_with_removed_text (action_list, offset); | |
7816 | ||
7817 | if (map->entry_count == 0) | |
7818 | return offset; | |
7819 | ||
7820 | tmp.orig_address = offset; | |
7821 | tmp.new_address = offset; | |
7822 | tmp.size = 1; | |
7823 | ||
7824 | r = bsearch (&offset, map->entry, map->entry_count, | |
7825 | sizeof (xlate_map_entry_t), &xlate_compare); | |
7826 | e = (xlate_map_entry_t *) r; | |
7827 | ||
7828 | BFD_ASSERT (e != NULL); | |
7829 | if (e == NULL) | |
7830 | return offset; | |
7831 | return e->new_address - e->orig_address + offset; | |
7832 | } | |
7833 | ||
7834 | ||
7835 | /* Build a binary searchable offset translation map from a section's | |
7836 | action list. */ | |
7837 | ||
7838 | static xlate_map_t * | |
7839 | build_xlate_map (asection *sec, xtensa_relax_info *relax_info) | |
7840 | { | |
7841 | xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); | |
7842 | text_action_list *action_list = &relax_info->action_list; | |
7843 | unsigned num_actions = 0; | |
7844 | text_action *r; | |
7845 | int removed; | |
7846 | xlate_map_entry_t *current_entry; | |
7847 | ||
7848 | if (map == NULL) | |
7849 | return NULL; | |
7850 | ||
7851 | num_actions = action_list_count (action_list); | |
7852 | map->entry = (xlate_map_entry_t *) | |
7853 | bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); | |
7854 | if (map->entry == NULL) | |
7855 | { | |
7856 | free (map); | |
7857 | return NULL; | |
7858 | } | |
7859 | map->entry_count = 0; | |
7860 | ||
7861 | removed = 0; | |
7862 | current_entry = &map->entry[0]; | |
7863 | ||
7864 | current_entry->orig_address = 0; | |
7865 | current_entry->new_address = 0; | |
7866 | current_entry->size = 0; | |
7867 | ||
7868 | for (r = action_list->head; r != NULL; r = r->next) | |
7869 | { | |
7870 | unsigned orig_size = 0; | |
7871 | switch (r->action) | |
7872 | { | |
7873 | case ta_none: | |
7874 | case ta_remove_insn: | |
7875 | case ta_convert_longcall: | |
7876 | case ta_remove_literal: | |
7877 | case ta_add_literal: | |
7878 | break; | |
7879 | case ta_remove_longcall: | |
7880 | orig_size = 6; | |
7881 | break; | |
7882 | case ta_narrow_insn: | |
7883 | orig_size = 3; | |
7884 | break; | |
7885 | case ta_widen_insn: | |
7886 | orig_size = 2; | |
7887 | break; | |
7888 | case ta_fill: | |
7889 | break; | |
7890 | } | |
7891 | current_entry->size = | |
7892 | r->offset + orig_size - current_entry->orig_address; | |
7893 | if (current_entry->size != 0) | |
7894 | { | |
7895 | current_entry++; | |
7896 | map->entry_count++; | |
7897 | } | |
7898 | current_entry->orig_address = r->offset + orig_size; | |
7899 | removed += r->removed_bytes; | |
7900 | current_entry->new_address = r->offset + orig_size - removed; | |
7901 | current_entry->size = 0; | |
7902 | } | |
7903 | ||
7904 | current_entry->size = (bfd_get_section_limit (sec->owner, sec) | |
7905 | - current_entry->orig_address); | |
7906 | if (current_entry->size != 0) | |
7907 | map->entry_count++; | |
7908 | ||
7909 | return map; | |
7910 | } | |
7911 | ||
7912 | ||
7913 | /* Free an offset translation map. */ | |
7914 | ||
7915 | static void | |
7916 | free_xlate_map (xlate_map_t *map) | |
7917 | { | |
7918 | if (map && map->entry) | |
7919 | free (map->entry); | |
7920 | if (map) | |
7921 | free (map); | |
7922 | } | |
7923 | ||
7924 | ||
43cd72b9 BW |
7925 | /* Use check_section_ebb_pcrels_fit to make sure that all of the |
7926 | relocations in a section will fit if a proposed set of actions | |
7927 | are performed. */ | |
e0001a05 | 7928 | |
43cd72b9 | 7929 | static bfd_boolean |
7fa3d080 BW |
7930 | check_section_ebb_pcrels_fit (bfd *abfd, |
7931 | asection *sec, | |
7932 | bfd_byte *contents, | |
7933 | Elf_Internal_Rela *internal_relocs, | |
cb337148 BW |
7934 | const ebb_constraint *constraint, |
7935 | const xtensa_opcode *reloc_opcodes) | |
e0001a05 | 7936 | { |
43cd72b9 BW |
7937 | unsigned i, j; |
7938 | Elf_Internal_Rela *irel; | |
03e94c08 BW |
7939 | xlate_map_t *xmap = NULL; |
7940 | bfd_boolean ok = TRUE; | |
43cd72b9 | 7941 | xtensa_relax_info *relax_info; |
e0001a05 | 7942 | |
43cd72b9 | 7943 | relax_info = get_xtensa_relax_info (sec); |
e0001a05 | 7944 | |
03e94c08 BW |
7945 | if (relax_info && sec->reloc_count > 100) |
7946 | { | |
7947 | xmap = build_xlate_map (sec, relax_info); | |
7948 | /* NULL indicates out of memory, but the slow version | |
7949 | can still be used. */ | |
7950 | } | |
7951 | ||
43cd72b9 BW |
7952 | for (i = 0; i < sec->reloc_count; i++) |
7953 | { | |
7954 | r_reloc r_rel; | |
7955 | bfd_vma orig_self_offset, orig_target_offset; | |
7956 | bfd_vma self_offset, target_offset; | |
7957 | int r_type; | |
7958 | reloc_howto_type *howto; | |
7959 | int self_removed_bytes, target_removed_bytes; | |
e0001a05 | 7960 | |
43cd72b9 BW |
7961 | irel = &internal_relocs[i]; |
7962 | r_type = ELF32_R_TYPE (irel->r_info); | |
e0001a05 | 7963 | |
43cd72b9 BW |
7964 | howto = &elf_howto_table[r_type]; |
7965 | /* We maintain the required invariant: PC-relative relocations | |
7966 | that fit before linking must fit after linking. Thus we only | |
7967 | need to deal with relocations to the same section that are | |
7968 | PC-relative. */ | |
1bbb5f21 BW |
7969 | if (r_type == R_XTENSA_ASM_SIMPLIFY |
7970 | || r_type == R_XTENSA_32_PCREL | |
43cd72b9 BW |
7971 | || !howto->pc_relative) |
7972 | continue; | |
e0001a05 | 7973 | |
43cd72b9 BW |
7974 | r_reloc_init (&r_rel, abfd, irel, contents, |
7975 | bfd_get_section_limit (abfd, sec)); | |
e0001a05 | 7976 | |
43cd72b9 BW |
7977 | if (r_reloc_get_section (&r_rel) != sec) |
7978 | continue; | |
e0001a05 | 7979 | |
43cd72b9 BW |
7980 | orig_self_offset = irel->r_offset; |
7981 | orig_target_offset = r_rel.target_offset; | |
e0001a05 | 7982 | |
43cd72b9 BW |
7983 | self_offset = orig_self_offset; |
7984 | target_offset = orig_target_offset; | |
7985 | ||
7986 | if (relax_info) | |
7987 | { | |
03e94c08 BW |
7988 | self_offset = |
7989 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
7990 | orig_self_offset); | |
7991 | target_offset = | |
7992 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
7993 | orig_target_offset); | |
43cd72b9 BW |
7994 | } |
7995 | ||
7996 | self_removed_bytes = 0; | |
7997 | target_removed_bytes = 0; | |
7998 | ||
7999 | for (j = 0; j < constraint->action_count; ++j) | |
8000 | { | |
8001 | proposed_action *action = &constraint->actions[j]; | |
8002 | bfd_vma offset = action->offset; | |
8003 | int removed_bytes = action->removed_bytes; | |
8004 | if (offset < orig_self_offset | |
8005 | || (offset == orig_self_offset && action->action == ta_fill | |
8006 | && action->removed_bytes < 0)) | |
8007 | self_removed_bytes += removed_bytes; | |
8008 | if (offset < orig_target_offset | |
8009 | || (offset == orig_target_offset && action->action == ta_fill | |
8010 | && action->removed_bytes < 0)) | |
8011 | target_removed_bytes += removed_bytes; | |
8012 | } | |
8013 | self_offset -= self_removed_bytes; | |
8014 | target_offset -= target_removed_bytes; | |
8015 | ||
8016 | /* Try to encode it. Get the operand and check. */ | |
8017 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
8018 | { | |
8019 | /* None of the current alternate relocs are PC-relative, | |
8020 | and only PC-relative relocs matter here. */ | |
8021 | } | |
8022 | else | |
8023 | { | |
8024 | xtensa_opcode opcode; | |
8025 | int opnum; | |
8026 | ||
cb337148 BW |
8027 | if (reloc_opcodes) |
8028 | opcode = reloc_opcodes[i]; | |
8029 | else | |
8030 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
43cd72b9 | 8031 | if (opcode == XTENSA_UNDEFINED) |
03e94c08 BW |
8032 | { |
8033 | ok = FALSE; | |
8034 | break; | |
8035 | } | |
43cd72b9 BW |
8036 | |
8037 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
8038 | if (opnum == XTENSA_UNDEFINED) | |
03e94c08 BW |
8039 | { |
8040 | ok = FALSE; | |
8041 | break; | |
8042 | } | |
43cd72b9 BW |
8043 | |
8044 | if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) | |
03e94c08 BW |
8045 | { |
8046 | ok = FALSE; | |
8047 | break; | |
8048 | } | |
43cd72b9 BW |
8049 | } |
8050 | } | |
8051 | ||
03e94c08 BW |
8052 | if (xmap) |
8053 | free_xlate_map (xmap); | |
8054 | ||
8055 | return ok; | |
43cd72b9 BW |
8056 | } |
8057 | ||
8058 | ||
8059 | static bfd_boolean | |
7fa3d080 | 8060 | check_section_ebb_reduces (const ebb_constraint *constraint) |
43cd72b9 BW |
8061 | { |
8062 | int removed = 0; | |
8063 | unsigned i; | |
8064 | ||
8065 | for (i = 0; i < constraint->action_count; i++) | |
8066 | { | |
8067 | const proposed_action *action = &constraint->actions[i]; | |
8068 | if (action->do_action) | |
8069 | removed += action->removed_bytes; | |
8070 | } | |
8071 | if (removed < 0) | |
e0001a05 NC |
8072 | return FALSE; |
8073 | ||
8074 | return TRUE; | |
8075 | } | |
8076 | ||
8077 | ||
43cd72b9 | 8078 | void |
7fa3d080 BW |
8079 | text_action_add_proposed (text_action_list *l, |
8080 | const ebb_constraint *ebb_table, | |
8081 | asection *sec) | |
e0001a05 NC |
8082 | { |
8083 | unsigned i; | |
8084 | ||
43cd72b9 | 8085 | for (i = 0; i < ebb_table->action_count; i++) |
e0001a05 | 8086 | { |
43cd72b9 | 8087 | proposed_action *action = &ebb_table->actions[i]; |
e0001a05 | 8088 | |
43cd72b9 | 8089 | if (!action->do_action) |
e0001a05 | 8090 | continue; |
43cd72b9 BW |
8091 | switch (action->action) |
8092 | { | |
8093 | case ta_remove_insn: | |
8094 | case ta_remove_longcall: | |
8095 | case ta_convert_longcall: | |
8096 | case ta_narrow_insn: | |
8097 | case ta_widen_insn: | |
8098 | case ta_fill: | |
8099 | case ta_remove_literal: | |
8100 | text_action_add (l, action->action, sec, action->offset, | |
8101 | action->removed_bytes); | |
8102 | break; | |
8103 | case ta_none: | |
8104 | break; | |
8105 | default: | |
8106 | BFD_ASSERT (0); | |
8107 | break; | |
8108 | } | |
e0001a05 | 8109 | } |
43cd72b9 | 8110 | } |
e0001a05 | 8111 | |
43cd72b9 BW |
8112 | |
8113 | int | |
7fa3d080 | 8114 | compute_fill_extra_space (property_table_entry *entry) |
43cd72b9 BW |
8115 | { |
8116 | int fill_extra_space; | |
8117 | ||
8118 | if (!entry) | |
8119 | return 0; | |
8120 | ||
8121 | if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) | |
8122 | return 0; | |
8123 | ||
8124 | fill_extra_space = entry->size; | |
8125 | if ((entry->flags & XTENSA_PROP_ALIGN) != 0) | |
8126 | { | |
8127 | /* Fill bytes for alignment: | |
8128 | (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ | |
8129 | int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); | |
8130 | int nsm = (1 << pow) - 1; | |
8131 | bfd_vma addr = entry->address + entry->size; | |
8132 | bfd_vma align_fill = nsm - ((addr + nsm) & nsm); | |
8133 | fill_extra_space += align_fill; | |
8134 | } | |
8135 | return fill_extra_space; | |
e0001a05 NC |
8136 | } |
8137 | ||
43cd72b9 | 8138 | \f |
e0001a05 NC |
8139 | /* First relaxation pass. */ |
8140 | ||
43cd72b9 BW |
8141 | /* If the section contains relaxable literals, check each literal to |
8142 | see if it has the same value as another literal that has already | |
8143 | been seen, either in the current section or a previous one. If so, | |
8144 | add an entry to the per-section list of removed literals. The | |
e0001a05 NC |
8145 | actual changes are deferred until the next pass. */ |
8146 | ||
8147 | static bfd_boolean | |
7fa3d080 BW |
8148 | compute_removed_literals (bfd *abfd, |
8149 | asection *sec, | |
8150 | struct bfd_link_info *link_info, | |
8151 | value_map_hash_table *values) | |
e0001a05 NC |
8152 | { |
8153 | xtensa_relax_info *relax_info; | |
8154 | bfd_byte *contents; | |
8155 | Elf_Internal_Rela *internal_relocs; | |
43cd72b9 | 8156 | source_reloc *src_relocs, *rel; |
e0001a05 | 8157 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
8158 | property_table_entry *prop_table = NULL; |
8159 | int ptblsize; | |
8160 | int i, prev_i; | |
8161 | bfd_boolean last_loc_is_prev = FALSE; | |
8162 | bfd_vma last_target_offset = 0; | |
8163 | section_cache_t target_sec_cache; | |
8164 | bfd_size_type sec_size; | |
8165 | ||
8166 | init_section_cache (&target_sec_cache); | |
e0001a05 NC |
8167 | |
8168 | /* Do nothing if it is not a relaxable literal section. */ | |
8169 | relax_info = get_xtensa_relax_info (sec); | |
8170 | BFD_ASSERT (relax_info); | |
e0001a05 NC |
8171 | if (!relax_info->is_relaxable_literal_section) |
8172 | return ok; | |
8173 | ||
8174 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
8175 | link_info->keep_memory); | |
8176 | ||
43cd72b9 | 8177 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 | 8178 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 8179 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
8180 | { |
8181 | ok = FALSE; | |
8182 | goto error_return; | |
8183 | } | |
8184 | ||
8185 | /* Sort the source_relocs by target offset. */ | |
8186 | src_relocs = relax_info->src_relocs; | |
8187 | qsort (src_relocs, relax_info->src_count, | |
8188 | sizeof (source_reloc), source_reloc_compare); | |
43cd72b9 BW |
8189 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
8190 | internal_reloc_compare); | |
e0001a05 | 8191 | |
43cd72b9 BW |
8192 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
8193 | XTENSA_PROP_SEC_NAME, FALSE); | |
8194 | if (ptblsize < 0) | |
8195 | { | |
8196 | ok = FALSE; | |
8197 | goto error_return; | |
8198 | } | |
8199 | ||
8200 | prev_i = -1; | |
e0001a05 NC |
8201 | for (i = 0; i < relax_info->src_count; i++) |
8202 | { | |
e0001a05 | 8203 | Elf_Internal_Rela *irel = NULL; |
e0001a05 NC |
8204 | |
8205 | rel = &src_relocs[i]; | |
43cd72b9 BW |
8206 | if (get_l32r_opcode () != rel->opcode) |
8207 | continue; | |
e0001a05 NC |
8208 | irel = get_irel_at_offset (sec, internal_relocs, |
8209 | rel->r_rel.target_offset); | |
8210 | ||
43cd72b9 BW |
8211 | /* If the relocation on this is not a simple R_XTENSA_32 or |
8212 | R_XTENSA_PLT then do not consider it. This may happen when | |
8213 | the difference of two symbols is used in a literal. */ | |
8214 | if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 | |
8215 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) | |
8216 | continue; | |
8217 | ||
e0001a05 NC |
8218 | /* If the target_offset for this relocation is the same as the |
8219 | previous relocation, then we've already considered whether the | |
8220 | literal can be coalesced. Skip to the next one.... */ | |
43cd72b9 BW |
8221 | if (i != 0 && prev_i != -1 |
8222 | && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) | |
e0001a05 | 8223 | continue; |
43cd72b9 BW |
8224 | prev_i = i; |
8225 | ||
8226 | if (last_loc_is_prev && | |
8227 | last_target_offset + 4 != rel->r_rel.target_offset) | |
8228 | last_loc_is_prev = FALSE; | |
e0001a05 NC |
8229 | |
8230 | /* Check if the relocation was from an L32R that is being removed | |
8231 | because a CALLX was converted to a direct CALL, and check if | |
8232 | there are no other relocations to the literal. */ | |
99ded152 BW |
8233 | if (is_removable_literal (rel, i, src_relocs, relax_info->src_count, |
8234 | sec, prop_table, ptblsize)) | |
e0001a05 | 8235 | { |
43cd72b9 BW |
8236 | if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, |
8237 | irel, rel, prop_table, ptblsize)) | |
e0001a05 | 8238 | { |
43cd72b9 BW |
8239 | ok = FALSE; |
8240 | goto error_return; | |
e0001a05 | 8241 | } |
43cd72b9 | 8242 | last_target_offset = rel->r_rel.target_offset; |
e0001a05 NC |
8243 | continue; |
8244 | } | |
8245 | ||
43cd72b9 BW |
8246 | if (!identify_literal_placement (abfd, sec, contents, link_info, |
8247 | values, | |
8248 | &last_loc_is_prev, irel, | |
8249 | relax_info->src_count - i, rel, | |
8250 | prop_table, ptblsize, | |
8251 | &target_sec_cache, rel->is_abs_literal)) | |
e0001a05 | 8252 | { |
43cd72b9 BW |
8253 | ok = FALSE; |
8254 | goto error_return; | |
8255 | } | |
8256 | last_target_offset = rel->r_rel.target_offset; | |
8257 | } | |
e0001a05 | 8258 | |
43cd72b9 BW |
8259 | #if DEBUG |
8260 | print_removed_literals (stderr, &relax_info->removed_list); | |
8261 | print_action_list (stderr, &relax_info->action_list); | |
8262 | #endif /* DEBUG */ | |
8263 | ||
8264 | error_return: | |
8265 | if (prop_table) free (prop_table); | |
8266 | clear_section_cache (&target_sec_cache); | |
8267 | ||
8268 | release_contents (sec, contents); | |
8269 | release_internal_relocs (sec, internal_relocs); | |
8270 | return ok; | |
8271 | } | |
8272 | ||
8273 | ||
8274 | static Elf_Internal_Rela * | |
7fa3d080 BW |
8275 | get_irel_at_offset (asection *sec, |
8276 | Elf_Internal_Rela *internal_relocs, | |
8277 | bfd_vma offset) | |
43cd72b9 BW |
8278 | { |
8279 | unsigned i; | |
8280 | Elf_Internal_Rela *irel; | |
8281 | unsigned r_type; | |
8282 | Elf_Internal_Rela key; | |
8283 | ||
8284 | if (!internal_relocs) | |
8285 | return NULL; | |
8286 | ||
8287 | key.r_offset = offset; | |
8288 | irel = bsearch (&key, internal_relocs, sec->reloc_count, | |
8289 | sizeof (Elf_Internal_Rela), internal_reloc_matches); | |
8290 | if (!irel) | |
8291 | return NULL; | |
8292 | ||
8293 | /* bsearch does not guarantee which will be returned if there are | |
8294 | multiple matches. We need the first that is not an alignment. */ | |
8295 | i = irel - internal_relocs; | |
8296 | while (i > 0) | |
8297 | { | |
8298 | if (internal_relocs[i-1].r_offset != offset) | |
8299 | break; | |
8300 | i--; | |
8301 | } | |
8302 | for ( ; i < sec->reloc_count; i++) | |
8303 | { | |
8304 | irel = &internal_relocs[i]; | |
8305 | r_type = ELF32_R_TYPE (irel->r_info); | |
8306 | if (irel->r_offset == offset && r_type != R_XTENSA_NONE) | |
8307 | return irel; | |
8308 | } | |
8309 | ||
8310 | return NULL; | |
8311 | } | |
8312 | ||
8313 | ||
8314 | bfd_boolean | |
7fa3d080 BW |
8315 | is_removable_literal (const source_reloc *rel, |
8316 | int i, | |
8317 | const source_reloc *src_relocs, | |
99ded152 BW |
8318 | int src_count, |
8319 | asection *sec, | |
8320 | property_table_entry *prop_table, | |
8321 | int ptblsize) | |
43cd72b9 BW |
8322 | { |
8323 | const source_reloc *curr_rel; | |
99ded152 BW |
8324 | property_table_entry *entry; |
8325 | ||
43cd72b9 BW |
8326 | if (!rel->is_null) |
8327 | return FALSE; | |
8328 | ||
99ded152 BW |
8329 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, |
8330 | sec->vma + rel->r_rel.target_offset); | |
8331 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) | |
8332 | return FALSE; | |
8333 | ||
43cd72b9 BW |
8334 | for (++i; i < src_count; ++i) |
8335 | { | |
8336 | curr_rel = &src_relocs[i]; | |
8337 | /* If all others have the same target offset.... */ | |
8338 | if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) | |
8339 | return TRUE; | |
8340 | ||
8341 | if (!curr_rel->is_null | |
8342 | && !xtensa_is_property_section (curr_rel->source_sec) | |
8343 | && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) | |
8344 | return FALSE; | |
8345 | } | |
8346 | return TRUE; | |
8347 | } | |
8348 | ||
8349 | ||
8350 | bfd_boolean | |
7fa3d080 BW |
8351 | remove_dead_literal (bfd *abfd, |
8352 | asection *sec, | |
8353 | struct bfd_link_info *link_info, | |
8354 | Elf_Internal_Rela *internal_relocs, | |
8355 | Elf_Internal_Rela *irel, | |
8356 | source_reloc *rel, | |
8357 | property_table_entry *prop_table, | |
8358 | int ptblsize) | |
43cd72b9 BW |
8359 | { |
8360 | property_table_entry *entry; | |
8361 | xtensa_relax_info *relax_info; | |
8362 | ||
8363 | relax_info = get_xtensa_relax_info (sec); | |
8364 | if (!relax_info) | |
8365 | return FALSE; | |
8366 | ||
8367 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8368 | sec->vma + rel->r_rel.target_offset); | |
8369 | ||
8370 | /* Mark the unused literal so that it will be removed. */ | |
8371 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
8372 | ||
8373 | text_action_add (&relax_info->action_list, | |
8374 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8375 | ||
8376 | /* If the section is 4-byte aligned, do not add fill. */ | |
8377 | if (sec->alignment_power > 2) | |
8378 | { | |
8379 | int fill_extra_space; | |
8380 | bfd_vma entry_sec_offset; | |
8381 | text_action *fa; | |
8382 | property_table_entry *the_add_entry; | |
8383 | int removed_diff; | |
8384 | ||
8385 | if (entry) | |
8386 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
8387 | else | |
8388 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
8389 | ||
8390 | /* If the literal range is at the end of the section, | |
8391 | do not add fill. */ | |
8392 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8393 | entry_sec_offset); | |
8394 | fill_extra_space = compute_fill_extra_space (the_add_entry); | |
8395 | ||
8396 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8397 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8398 | -4, fill_extra_space); | |
8399 | if (fa) | |
8400 | adjust_fill_action (fa, removed_diff); | |
8401 | else | |
8402 | text_action_add (&relax_info->action_list, | |
8403 | ta_fill, sec, entry_sec_offset, removed_diff); | |
8404 | } | |
8405 | ||
8406 | /* Zero out the relocation on this literal location. */ | |
8407 | if (irel) | |
8408 | { | |
8409 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
8410 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
8411 | ||
8412 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8413 | pin_internal_relocs (sec, internal_relocs); | |
8414 | } | |
8415 | ||
8416 | /* Do not modify "last_loc_is_prev". */ | |
8417 | return TRUE; | |
8418 | } | |
8419 | ||
8420 | ||
8421 | bfd_boolean | |
7fa3d080 BW |
8422 | identify_literal_placement (bfd *abfd, |
8423 | asection *sec, | |
8424 | bfd_byte *contents, | |
8425 | struct bfd_link_info *link_info, | |
8426 | value_map_hash_table *values, | |
8427 | bfd_boolean *last_loc_is_prev_p, | |
8428 | Elf_Internal_Rela *irel, | |
8429 | int remaining_src_rels, | |
8430 | source_reloc *rel, | |
8431 | property_table_entry *prop_table, | |
8432 | int ptblsize, | |
8433 | section_cache_t *target_sec_cache, | |
8434 | bfd_boolean is_abs_literal) | |
43cd72b9 BW |
8435 | { |
8436 | literal_value val; | |
8437 | value_map *val_map; | |
8438 | xtensa_relax_info *relax_info; | |
8439 | bfd_boolean literal_placed = FALSE; | |
8440 | r_reloc r_rel; | |
8441 | unsigned long value; | |
8442 | bfd_boolean final_static_link; | |
8443 | bfd_size_type sec_size; | |
8444 | ||
8445 | relax_info = get_xtensa_relax_info (sec); | |
8446 | if (!relax_info) | |
8447 | return FALSE; | |
8448 | ||
8449 | sec_size = bfd_get_section_limit (abfd, sec); | |
8450 | ||
8451 | final_static_link = | |
8452 | (!link_info->relocatable | |
8453 | && !elf_hash_table (link_info)->dynamic_sections_created); | |
8454 | ||
8455 | /* The placement algorithm first checks to see if the literal is | |
8456 | already in the value map. If so and the value map is reachable | |
8457 | from all uses, then the literal is moved to that location. If | |
8458 | not, then we identify the last location where a fresh literal was | |
8459 | placed. If the literal can be safely moved there, then we do so. | |
8460 | If not, then we assume that the literal is not to move and leave | |
8461 | the literal where it is, marking it as the last literal | |
8462 | location. */ | |
8463 | ||
8464 | /* Find the literal value. */ | |
8465 | value = 0; | |
8466 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
8467 | if (!irel) | |
8468 | { | |
8469 | BFD_ASSERT (rel->r_rel.target_offset < sec_size); | |
8470 | value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); | |
8471 | } | |
8472 | init_literal_value (&val, &r_rel, value, is_abs_literal); | |
8473 | ||
8474 | /* Check if we've seen another literal with the same value that | |
8475 | is in the same output section. */ | |
8476 | val_map = value_map_get_cached_value (values, &val, final_static_link); | |
8477 | ||
8478 | if (val_map | |
8479 | && (r_reloc_get_section (&val_map->loc)->output_section | |
8480 | == sec->output_section) | |
8481 | && relocations_reach (rel, remaining_src_rels, &val_map->loc) | |
8482 | && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) | |
8483 | { | |
8484 | /* No change to last_loc_is_prev. */ | |
8485 | literal_placed = TRUE; | |
8486 | } | |
8487 | ||
8488 | /* For relocatable links, do not try to move literals. To do it | |
8489 | correctly might increase the number of relocations in an input | |
8490 | section making the default relocatable linking fail. */ | |
8491 | if (!link_info->relocatable && !literal_placed | |
8492 | && values->has_last_loc && !(*last_loc_is_prev_p)) | |
8493 | { | |
8494 | asection *target_sec = r_reloc_get_section (&values->last_loc); | |
8495 | if (target_sec && target_sec->output_section == sec->output_section) | |
8496 | { | |
8497 | /* Increment the virtual offset. */ | |
8498 | r_reloc try_loc = values->last_loc; | |
8499 | try_loc.virtual_offset += 4; | |
8500 | ||
8501 | /* There is a last loc that was in the same output section. */ | |
8502 | if (relocations_reach (rel, remaining_src_rels, &try_loc) | |
8503 | && move_shared_literal (sec, link_info, rel, | |
8504 | prop_table, ptblsize, | |
8505 | &try_loc, &val, target_sec_cache)) | |
e0001a05 | 8506 | { |
43cd72b9 BW |
8507 | values->last_loc.virtual_offset += 4; |
8508 | literal_placed = TRUE; | |
8509 | if (!val_map) | |
8510 | val_map = add_value_map (values, &val, &try_loc, | |
8511 | final_static_link); | |
8512 | else | |
8513 | val_map->loc = try_loc; | |
e0001a05 NC |
8514 | } |
8515 | } | |
43cd72b9 BW |
8516 | } |
8517 | ||
8518 | if (!literal_placed) | |
8519 | { | |
8520 | /* Nothing worked, leave the literal alone but update the last loc. */ | |
8521 | values->has_last_loc = TRUE; | |
8522 | values->last_loc = rel->r_rel; | |
8523 | if (!val_map) | |
8524 | val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); | |
e0001a05 | 8525 | else |
43cd72b9 BW |
8526 | val_map->loc = rel->r_rel; |
8527 | *last_loc_is_prev_p = TRUE; | |
e0001a05 NC |
8528 | } |
8529 | ||
43cd72b9 | 8530 | return TRUE; |
e0001a05 NC |
8531 | } |
8532 | ||
8533 | ||
8534 | /* Check if the original relocations (presumably on L32R instructions) | |
8535 | identified by reloc[0..N] can be changed to reference the literal | |
8536 | identified by r_rel. If r_rel is out of range for any of the | |
8537 | original relocations, then we don't want to coalesce the original | |
8538 | literal with the one at r_rel. We only check reloc[0..N], where the | |
8539 | offsets are all the same as for reloc[0] (i.e., they're all | |
8540 | referencing the same literal) and where N is also bounded by the | |
8541 | number of remaining entries in the "reloc" array. The "reloc" array | |
8542 | is sorted by target offset so we know all the entries for the same | |
8543 | literal will be contiguous. */ | |
8544 | ||
8545 | static bfd_boolean | |
7fa3d080 BW |
8546 | relocations_reach (source_reloc *reloc, |
8547 | int remaining_relocs, | |
8548 | const r_reloc *r_rel) | |
e0001a05 NC |
8549 | { |
8550 | bfd_vma from_offset, source_address, dest_address; | |
8551 | asection *sec; | |
8552 | int i; | |
8553 | ||
8554 | if (!r_reloc_is_defined (r_rel)) | |
8555 | return FALSE; | |
8556 | ||
8557 | sec = r_reloc_get_section (r_rel); | |
8558 | from_offset = reloc[0].r_rel.target_offset; | |
8559 | ||
8560 | for (i = 0; i < remaining_relocs; i++) | |
8561 | { | |
8562 | if (reloc[i].r_rel.target_offset != from_offset) | |
8563 | break; | |
8564 | ||
8565 | /* Ignore relocations that have been removed. */ | |
8566 | if (reloc[i].is_null) | |
8567 | continue; | |
8568 | ||
8569 | /* The original and new output section for these must be the same | |
8570 | in order to coalesce. */ | |
8571 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section | |
8572 | != sec->output_section) | |
8573 | return FALSE; | |
8574 | ||
d638e0ac BW |
8575 | /* Absolute literals in the same output section can always be |
8576 | combined. */ | |
8577 | if (reloc[i].is_abs_literal) | |
8578 | continue; | |
8579 | ||
43cd72b9 BW |
8580 | /* A literal with no PC-relative relocations can be moved anywhere. */ |
8581 | if (reloc[i].opnd != -1) | |
e0001a05 NC |
8582 | { |
8583 | /* Otherwise, check to see that it fits. */ | |
8584 | source_address = (reloc[i].source_sec->output_section->vma | |
8585 | + reloc[i].source_sec->output_offset | |
8586 | + reloc[i].r_rel.rela.r_offset); | |
8587 | dest_address = (sec->output_section->vma | |
8588 | + sec->output_offset | |
8589 | + r_rel->target_offset); | |
8590 | ||
43cd72b9 BW |
8591 | if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, |
8592 | source_address, dest_address)) | |
e0001a05 NC |
8593 | return FALSE; |
8594 | } | |
8595 | } | |
8596 | ||
8597 | return TRUE; | |
8598 | } | |
8599 | ||
8600 | ||
43cd72b9 BW |
8601 | /* Move a literal to another literal location because it is |
8602 | the same as the other literal value. */ | |
e0001a05 | 8603 | |
43cd72b9 | 8604 | static bfd_boolean |
7fa3d080 BW |
8605 | coalesce_shared_literal (asection *sec, |
8606 | source_reloc *rel, | |
8607 | property_table_entry *prop_table, | |
8608 | int ptblsize, | |
8609 | value_map *val_map) | |
e0001a05 | 8610 | { |
43cd72b9 BW |
8611 | property_table_entry *entry; |
8612 | text_action *fa; | |
8613 | property_table_entry *the_add_entry; | |
8614 | int removed_diff; | |
8615 | xtensa_relax_info *relax_info; | |
8616 | ||
8617 | relax_info = get_xtensa_relax_info (sec); | |
8618 | if (!relax_info) | |
8619 | return FALSE; | |
8620 | ||
8621 | entry = elf_xtensa_find_property_entry | |
8622 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
99ded152 | 8623 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) |
43cd72b9 BW |
8624 | return TRUE; |
8625 | ||
8626 | /* Mark that the literal will be coalesced. */ | |
8627 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); | |
8628 | ||
8629 | text_action_add (&relax_info->action_list, | |
8630 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8631 | ||
8632 | /* If the section is 4-byte aligned, do not add fill. */ | |
8633 | if (sec->alignment_power > 2) | |
e0001a05 | 8634 | { |
43cd72b9 BW |
8635 | int fill_extra_space; |
8636 | bfd_vma entry_sec_offset; | |
8637 | ||
8638 | if (entry) | |
8639 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
8640 | else | |
8641 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
8642 | ||
8643 | /* If the literal range is at the end of the section, | |
8644 | do not add fill. */ | |
8645 | fill_extra_space = 0; | |
8646 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8647 | entry_sec_offset); | |
8648 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
8649 | fill_extra_space = the_add_entry->size; | |
8650 | ||
8651 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8652 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8653 | -4, fill_extra_space); | |
8654 | if (fa) | |
8655 | adjust_fill_action (fa, removed_diff); | |
8656 | else | |
8657 | text_action_add (&relax_info->action_list, | |
8658 | ta_fill, sec, entry_sec_offset, removed_diff); | |
e0001a05 | 8659 | } |
43cd72b9 BW |
8660 | |
8661 | return TRUE; | |
8662 | } | |
8663 | ||
8664 | ||
8665 | /* Move a literal to another location. This may actually increase the | |
8666 | total amount of space used because of alignments so we need to do | |
8667 | this carefully. Also, it may make a branch go out of range. */ | |
8668 | ||
8669 | static bfd_boolean | |
7fa3d080 BW |
8670 | move_shared_literal (asection *sec, |
8671 | struct bfd_link_info *link_info, | |
8672 | source_reloc *rel, | |
8673 | property_table_entry *prop_table, | |
8674 | int ptblsize, | |
8675 | const r_reloc *target_loc, | |
8676 | const literal_value *lit_value, | |
8677 | section_cache_t *target_sec_cache) | |
43cd72b9 BW |
8678 | { |
8679 | property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; | |
8680 | text_action *fa, *target_fa; | |
8681 | int removed_diff; | |
8682 | xtensa_relax_info *relax_info, *target_relax_info; | |
8683 | asection *target_sec; | |
8684 | ebb_t *ebb; | |
8685 | ebb_constraint ebb_table; | |
8686 | bfd_boolean relocs_fit; | |
8687 | ||
8688 | /* If this routine always returns FALSE, the literals that cannot be | |
8689 | coalesced will not be moved. */ | |
8690 | if (elf32xtensa_no_literal_movement) | |
8691 | return FALSE; | |
8692 | ||
8693 | relax_info = get_xtensa_relax_info (sec); | |
8694 | if (!relax_info) | |
8695 | return FALSE; | |
8696 | ||
8697 | target_sec = r_reloc_get_section (target_loc); | |
8698 | target_relax_info = get_xtensa_relax_info (target_sec); | |
8699 | ||
8700 | /* Literals to undefined sections may not be moved because they | |
8701 | must report an error. */ | |
8702 | if (bfd_is_und_section (target_sec)) | |
8703 | return FALSE; | |
8704 | ||
8705 | src_entry = elf_xtensa_find_property_entry | |
8706 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
8707 | ||
8708 | if (!section_cache_section (target_sec_cache, target_sec, link_info)) | |
8709 | return FALSE; | |
8710 | ||
8711 | target_entry = elf_xtensa_find_property_entry | |
8712 | (target_sec_cache->ptbl, target_sec_cache->pte_count, | |
8713 | target_sec->vma + target_loc->target_offset); | |
8714 | ||
8715 | if (!target_entry) | |
8716 | return FALSE; | |
8717 | ||
8718 | /* Make sure that we have not broken any branches. */ | |
8719 | relocs_fit = FALSE; | |
8720 | ||
8721 | init_ebb_constraint (&ebb_table); | |
8722 | ebb = &ebb_table.ebb; | |
8723 | init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, | |
8724 | target_sec_cache->content_length, | |
8725 | target_sec_cache->ptbl, target_sec_cache->pte_count, | |
8726 | target_sec_cache->relocs, target_sec_cache->reloc_count); | |
8727 | ||
8728 | /* Propose to add 4 bytes + worst-case alignment size increase to | |
8729 | destination. */ | |
8730 | ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, | |
8731 | ta_fill, target_loc->target_offset, | |
8732 | -4 - (1 << target_sec->alignment_power), TRUE); | |
8733 | ||
8734 | /* Check all of the PC-relative relocations to make sure they still fit. */ | |
8735 | relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, | |
8736 | target_sec_cache->contents, | |
8737 | target_sec_cache->relocs, | |
cb337148 | 8738 | &ebb_table, NULL); |
43cd72b9 BW |
8739 | |
8740 | if (!relocs_fit) | |
8741 | return FALSE; | |
8742 | ||
8743 | text_action_add_literal (&target_relax_info->action_list, | |
8744 | ta_add_literal, target_loc, lit_value, -4); | |
8745 | ||
8746 | if (target_sec->alignment_power > 2 && target_entry != src_entry) | |
8747 | { | |
8748 | /* May need to add or remove some fill to maintain alignment. */ | |
8749 | int fill_extra_space; | |
8750 | bfd_vma entry_sec_offset; | |
8751 | ||
8752 | entry_sec_offset = | |
8753 | target_entry->address - target_sec->vma + target_entry->size; | |
8754 | ||
8755 | /* If the literal range is at the end of the section, | |
8756 | do not add fill. */ | |
8757 | fill_extra_space = 0; | |
8758 | the_add_entry = | |
8759 | elf_xtensa_find_property_entry (target_sec_cache->ptbl, | |
8760 | target_sec_cache->pte_count, | |
8761 | entry_sec_offset); | |
8762 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
8763 | fill_extra_space = the_add_entry->size; | |
8764 | ||
8765 | target_fa = find_fill_action (&target_relax_info->action_list, | |
8766 | target_sec, entry_sec_offset); | |
8767 | removed_diff = compute_removed_action_diff (target_fa, target_sec, | |
8768 | entry_sec_offset, 4, | |
8769 | fill_extra_space); | |
8770 | if (target_fa) | |
8771 | adjust_fill_action (target_fa, removed_diff); | |
8772 | else | |
8773 | text_action_add (&target_relax_info->action_list, | |
8774 | ta_fill, target_sec, entry_sec_offset, removed_diff); | |
8775 | } | |
8776 | ||
8777 | /* Mark that the literal will be moved to the new location. */ | |
8778 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); | |
8779 | ||
8780 | /* Remove the literal. */ | |
8781 | text_action_add (&relax_info->action_list, | |
8782 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8783 | ||
8784 | /* If the section is 4-byte aligned, do not add fill. */ | |
8785 | if (sec->alignment_power > 2 && target_entry != src_entry) | |
8786 | { | |
8787 | int fill_extra_space; | |
8788 | bfd_vma entry_sec_offset; | |
8789 | ||
8790 | if (src_entry) | |
8791 | entry_sec_offset = src_entry->address - sec->vma + src_entry->size; | |
8792 | else | |
8793 | entry_sec_offset = rel->r_rel.target_offset+4; | |
8794 | ||
8795 | /* If the literal range is at the end of the section, | |
8796 | do not add fill. */ | |
8797 | fill_extra_space = 0; | |
8798 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8799 | entry_sec_offset); | |
8800 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
8801 | fill_extra_space = the_add_entry->size; | |
8802 | ||
8803 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8804 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8805 | -4, fill_extra_space); | |
8806 | if (fa) | |
8807 | adjust_fill_action (fa, removed_diff); | |
8808 | else | |
8809 | text_action_add (&relax_info->action_list, | |
8810 | ta_fill, sec, entry_sec_offset, removed_diff); | |
8811 | } | |
8812 | ||
8813 | return TRUE; | |
e0001a05 NC |
8814 | } |
8815 | ||
8816 | \f | |
8817 | /* Second relaxation pass. */ | |
8818 | ||
8819 | /* Modify all of the relocations to point to the right spot, and if this | |
8820 | is a relaxable section, delete the unwanted literals and fix the | |
43cd72b9 | 8821 | section size. */ |
e0001a05 | 8822 | |
43cd72b9 | 8823 | bfd_boolean |
7fa3d080 | 8824 | relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) |
e0001a05 NC |
8825 | { |
8826 | Elf_Internal_Rela *internal_relocs; | |
8827 | xtensa_relax_info *relax_info; | |
8828 | bfd_byte *contents; | |
8829 | bfd_boolean ok = TRUE; | |
8830 | unsigned i; | |
43cd72b9 BW |
8831 | bfd_boolean rv = FALSE; |
8832 | bfd_boolean virtual_action; | |
8833 | bfd_size_type sec_size; | |
e0001a05 | 8834 | |
43cd72b9 | 8835 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
8836 | relax_info = get_xtensa_relax_info (sec); |
8837 | BFD_ASSERT (relax_info); | |
8838 | ||
43cd72b9 BW |
8839 | /* First translate any of the fixes that have been added already. */ |
8840 | translate_section_fixes (sec); | |
8841 | ||
e0001a05 NC |
8842 | /* Handle property sections (e.g., literal tables) specially. */ |
8843 | if (xtensa_is_property_section (sec)) | |
8844 | { | |
8845 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
8846 | return relax_property_section (abfd, sec, link_info); | |
8847 | } | |
8848 | ||
43cd72b9 BW |
8849 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
8850 | link_info->keep_memory); | |
8851 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
8852 | if (contents == NULL && sec_size != 0) | |
8853 | { | |
8854 | ok = FALSE; | |
8855 | goto error_return; | |
8856 | } | |
8857 | ||
8858 | if (internal_relocs) | |
8859 | { | |
8860 | for (i = 0; i < sec->reloc_count; i++) | |
8861 | { | |
8862 | Elf_Internal_Rela *irel; | |
8863 | xtensa_relax_info *target_relax_info; | |
8864 | bfd_vma source_offset, old_source_offset; | |
8865 | r_reloc r_rel; | |
8866 | unsigned r_type; | |
8867 | asection *target_sec; | |
8868 | ||
8869 | /* Locally change the source address. | |
8870 | Translate the target to the new target address. | |
8871 | If it points to this section and has been removed, | |
8872 | NULLify it. | |
8873 | Write it back. */ | |
8874 | ||
8875 | irel = &internal_relocs[i]; | |
8876 | source_offset = irel->r_offset; | |
8877 | old_source_offset = source_offset; | |
8878 | ||
8879 | r_type = ELF32_R_TYPE (irel->r_info); | |
8880 | r_reloc_init (&r_rel, abfd, irel, contents, | |
8881 | bfd_get_section_limit (abfd, sec)); | |
8882 | ||
8883 | /* If this section could have changed then we may need to | |
8884 | change the relocation's offset. */ | |
8885 | ||
8886 | if (relax_info->is_relaxable_literal_section | |
8887 | || relax_info->is_relaxable_asm_section) | |
8888 | { | |
9b7f5d20 BW |
8889 | pin_internal_relocs (sec, internal_relocs); |
8890 | ||
43cd72b9 BW |
8891 | if (r_type != R_XTENSA_NONE |
8892 | && find_removed_literal (&relax_info->removed_list, | |
8893 | irel->r_offset)) | |
8894 | { | |
8895 | /* Remove this relocation. */ | |
8896 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
8897 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
8898 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8899 | irel->r_offset = offset_with_removed_text | |
8900 | (&relax_info->action_list, irel->r_offset); | |
43cd72b9 BW |
8901 | continue; |
8902 | } | |
8903 | ||
8904 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
8905 | { | |
8906 | text_action *action = | |
8907 | find_insn_action (&relax_info->action_list, | |
8908 | irel->r_offset); | |
8909 | if (action && (action->action == ta_convert_longcall | |
8910 | || action->action == ta_remove_longcall)) | |
8911 | { | |
8912 | bfd_reloc_status_type retval; | |
8913 | char *error_message = NULL; | |
8914 | ||
8915 | retval = contract_asm_expansion (contents, sec_size, | |
8916 | irel, &error_message); | |
8917 | if (retval != bfd_reloc_ok) | |
8918 | { | |
8919 | (*link_info->callbacks->reloc_dangerous) | |
8920 | (link_info, error_message, abfd, sec, | |
8921 | irel->r_offset); | |
8922 | goto error_return; | |
8923 | } | |
8924 | /* Update the action so that the code that moves | |
8925 | the contents will do the right thing. */ | |
8926 | if (action->action == ta_remove_longcall) | |
8927 | action->action = ta_remove_insn; | |
8928 | else | |
8929 | action->action = ta_none; | |
8930 | /* Refresh the info in the r_rel. */ | |
8931 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
8932 | r_type = ELF32_R_TYPE (irel->r_info); | |
8933 | } | |
8934 | } | |
8935 | ||
8936 | source_offset = offset_with_removed_text | |
8937 | (&relax_info->action_list, irel->r_offset); | |
8938 | irel->r_offset = source_offset; | |
8939 | } | |
8940 | ||
8941 | /* If the target section could have changed then | |
8942 | we may need to change the relocation's target offset. */ | |
8943 | ||
8944 | target_sec = r_reloc_get_section (&r_rel); | |
43cd72b9 | 8945 | |
ae326da8 BW |
8946 | /* For a reference to a discarded section from a DWARF section, |
8947 | i.e., where action_discarded is PRETEND, the symbol will | |
8948 | eventually be modified to refer to the kept section (at least if | |
8949 | the kept and discarded sections are the same size). Anticipate | |
8950 | that here and adjust things accordingly. */ | |
8951 | if (! elf_xtensa_ignore_discarded_relocs (sec) | |
8952 | && elf_xtensa_action_discarded (sec) == PRETEND | |
8953 | && sec->sec_info_type != ELF_INFO_TYPE_STABS | |
8954 | && target_sec != NULL | |
8955 | && elf_discarded_section (target_sec)) | |
8956 | { | |
8957 | /* It would be natural to call _bfd_elf_check_kept_section | |
8958 | here, but it's not exported from elflink.c. It's also a | |
8959 | fairly expensive check. Adjusting the relocations to the | |
8960 | discarded section is fairly harmless; it will only adjust | |
8961 | some addends and difference values. If it turns out that | |
8962 | _bfd_elf_check_kept_section fails later, it won't matter, | |
8963 | so just compare the section names to find the right group | |
8964 | member. */ | |
8965 | asection *kept = target_sec->kept_section; | |
8966 | if (kept != NULL) | |
8967 | { | |
8968 | if ((kept->flags & SEC_GROUP) != 0) | |
8969 | { | |
8970 | asection *first = elf_next_in_group (kept); | |
8971 | asection *s = first; | |
8972 | ||
8973 | kept = NULL; | |
8974 | while (s != NULL) | |
8975 | { | |
8976 | if (strcmp (s->name, target_sec->name) == 0) | |
8977 | { | |
8978 | kept = s; | |
8979 | break; | |
8980 | } | |
8981 | s = elf_next_in_group (s); | |
8982 | if (s == first) | |
8983 | break; | |
8984 | } | |
8985 | } | |
8986 | } | |
8987 | if (kept != NULL | |
8988 | && ((target_sec->rawsize != 0 | |
8989 | ? target_sec->rawsize : target_sec->size) | |
8990 | == (kept->rawsize != 0 ? kept->rawsize : kept->size))) | |
8991 | target_sec = kept; | |
8992 | } | |
8993 | ||
8994 | target_relax_info = get_xtensa_relax_info (target_sec); | |
43cd72b9 BW |
8995 | if (target_relax_info |
8996 | && (target_relax_info->is_relaxable_literal_section | |
8997 | || target_relax_info->is_relaxable_asm_section)) | |
8998 | { | |
8999 | r_reloc new_reloc; | |
9b7f5d20 | 9000 | target_sec = translate_reloc (&r_rel, &new_reloc, target_sec); |
43cd72b9 BW |
9001 | |
9002 | if (r_type == R_XTENSA_DIFF8 | |
9003 | || r_type == R_XTENSA_DIFF16 | |
9004 | || r_type == R_XTENSA_DIFF32) | |
9005 | { | |
9006 | bfd_vma diff_value = 0, new_end_offset, diff_mask = 0; | |
9007 | ||
9008 | if (bfd_get_section_limit (abfd, sec) < old_source_offset) | |
9009 | { | |
9010 | (*link_info->callbacks->reloc_dangerous) | |
9011 | (link_info, _("invalid relocation address"), | |
9012 | abfd, sec, old_source_offset); | |
9013 | goto error_return; | |
9014 | } | |
9015 | ||
9016 | switch (r_type) | |
9017 | { | |
9018 | case R_XTENSA_DIFF8: | |
9019 | diff_value = | |
9020 | bfd_get_8 (abfd, &contents[old_source_offset]); | |
9021 | break; | |
9022 | case R_XTENSA_DIFF16: | |
9023 | diff_value = | |
9024 | bfd_get_16 (abfd, &contents[old_source_offset]); | |
9025 | break; | |
9026 | case R_XTENSA_DIFF32: | |
9027 | diff_value = | |
9028 | bfd_get_32 (abfd, &contents[old_source_offset]); | |
9029 | break; | |
9030 | } | |
9031 | ||
9032 | new_end_offset = offset_with_removed_text | |
9033 | (&target_relax_info->action_list, | |
9034 | r_rel.target_offset + diff_value); | |
9035 | diff_value = new_end_offset - new_reloc.target_offset; | |
9036 | ||
9037 | switch (r_type) | |
9038 | { | |
9039 | case R_XTENSA_DIFF8: | |
9040 | diff_mask = 0xff; | |
9041 | bfd_put_8 (abfd, diff_value, | |
9042 | &contents[old_source_offset]); | |
9043 | break; | |
9044 | case R_XTENSA_DIFF16: | |
9045 | diff_mask = 0xffff; | |
9046 | bfd_put_16 (abfd, diff_value, | |
9047 | &contents[old_source_offset]); | |
9048 | break; | |
9049 | case R_XTENSA_DIFF32: | |
9050 | diff_mask = 0xffffffff; | |
9051 | bfd_put_32 (abfd, diff_value, | |
9052 | &contents[old_source_offset]); | |
9053 | break; | |
9054 | } | |
9055 | ||
9056 | /* Check for overflow. */ | |
9057 | if ((diff_value & ~diff_mask) != 0) | |
9058 | { | |
9059 | (*link_info->callbacks->reloc_dangerous) | |
9060 | (link_info, _("overflow after relaxation"), | |
9061 | abfd, sec, old_source_offset); | |
9062 | goto error_return; | |
9063 | } | |
9064 | ||
9065 | pin_contents (sec, contents); | |
9066 | } | |
dc96b90a BW |
9067 | |
9068 | /* If the relocation still references a section in the same | |
9069 | input file, modify the relocation directly instead of | |
9070 | adding a "fix" record. */ | |
9071 | if (target_sec->owner == abfd) | |
9072 | { | |
9073 | unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info); | |
9074 | irel->r_info = ELF32_R_INFO (r_symndx, r_type); | |
9075 | irel->r_addend = new_reloc.rela.r_addend; | |
9076 | pin_internal_relocs (sec, internal_relocs); | |
9077 | } | |
9b7f5d20 BW |
9078 | else |
9079 | { | |
dc96b90a BW |
9080 | bfd_vma addend_displacement; |
9081 | reloc_bfd_fix *fix; | |
9082 | ||
9083 | addend_displacement = | |
9084 | new_reloc.target_offset + new_reloc.virtual_offset; | |
9085 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, | |
9086 | target_sec, | |
9087 | addend_displacement, TRUE); | |
9088 | add_fix (sec, fix); | |
9b7f5d20 | 9089 | } |
43cd72b9 | 9090 | } |
43cd72b9 BW |
9091 | } |
9092 | } | |
9093 | ||
9094 | if ((relax_info->is_relaxable_literal_section | |
9095 | || relax_info->is_relaxable_asm_section) | |
9096 | && relax_info->action_list.head) | |
9097 | { | |
9098 | /* Walk through the planned actions and build up a table | |
9099 | of move, copy and fill records. Use the move, copy and | |
9100 | fill records to perform the actions once. */ | |
9101 | ||
43cd72b9 BW |
9102 | int removed = 0; |
9103 | bfd_size_type final_size, copy_size, orig_insn_size; | |
9104 | bfd_byte *scratch = NULL; | |
9105 | bfd_byte *dup_contents = NULL; | |
a3ef2d63 | 9106 | bfd_size_type orig_size = sec->size; |
43cd72b9 BW |
9107 | bfd_vma orig_dot = 0; |
9108 | bfd_vma orig_dot_copied = 0; /* Byte copied already from | |
9109 | orig dot in physical memory. */ | |
9110 | bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ | |
9111 | bfd_vma dup_dot = 0; | |
9112 | ||
9113 | text_action *action = relax_info->action_list.head; | |
9114 | ||
9115 | final_size = sec->size; | |
9116 | for (action = relax_info->action_list.head; action; | |
9117 | action = action->next) | |
9118 | { | |
9119 | final_size -= action->removed_bytes; | |
9120 | } | |
9121 | ||
9122 | scratch = (bfd_byte *) bfd_zmalloc (final_size); | |
9123 | dup_contents = (bfd_byte *) bfd_zmalloc (final_size); | |
9124 | ||
9125 | /* The dot is the current fill location. */ | |
9126 | #if DEBUG | |
9127 | print_action_list (stderr, &relax_info->action_list); | |
9128 | #endif | |
9129 | ||
9130 | for (action = relax_info->action_list.head; action; | |
9131 | action = action->next) | |
9132 | { | |
9133 | virtual_action = FALSE; | |
9134 | if (action->offset > orig_dot) | |
9135 | { | |
9136 | orig_dot += orig_dot_copied; | |
9137 | orig_dot_copied = 0; | |
9138 | orig_dot_vo = 0; | |
9139 | /* Out of the virtual world. */ | |
9140 | } | |
9141 | ||
9142 | if (action->offset > orig_dot) | |
9143 | { | |
9144 | copy_size = action->offset - orig_dot; | |
9145 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9146 | orig_dot += copy_size; | |
9147 | dup_dot += copy_size; | |
9148 | BFD_ASSERT (action->offset == orig_dot); | |
9149 | } | |
9150 | else if (action->offset < orig_dot) | |
9151 | { | |
9152 | if (action->action == ta_fill | |
9153 | && action->offset - action->removed_bytes == orig_dot) | |
9154 | { | |
9155 | /* This is OK because the fill only effects the dup_dot. */ | |
9156 | } | |
9157 | else if (action->action == ta_add_literal) | |
9158 | { | |
9159 | /* TBD. Might need to handle this. */ | |
9160 | } | |
9161 | } | |
9162 | if (action->offset == orig_dot) | |
9163 | { | |
9164 | if (action->virtual_offset > orig_dot_vo) | |
9165 | { | |
9166 | if (orig_dot_vo == 0) | |
9167 | { | |
9168 | /* Need to copy virtual_offset bytes. Probably four. */ | |
9169 | copy_size = action->virtual_offset - orig_dot_vo; | |
9170 | memmove (&dup_contents[dup_dot], | |
9171 | &contents[orig_dot], copy_size); | |
9172 | orig_dot_copied = copy_size; | |
9173 | dup_dot += copy_size; | |
9174 | } | |
9175 | virtual_action = TRUE; | |
9176 | } | |
9177 | else | |
9178 | BFD_ASSERT (action->virtual_offset <= orig_dot_vo); | |
9179 | } | |
9180 | switch (action->action) | |
9181 | { | |
9182 | case ta_remove_literal: | |
9183 | case ta_remove_insn: | |
9184 | BFD_ASSERT (action->removed_bytes >= 0); | |
9185 | orig_dot += action->removed_bytes; | |
9186 | break; | |
9187 | ||
9188 | case ta_narrow_insn: | |
9189 | orig_insn_size = 3; | |
9190 | copy_size = 2; | |
9191 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9192 | BFD_ASSERT (action->removed_bytes == 1); | |
64b607e6 | 9193 | rv = narrow_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9194 | BFD_ASSERT (rv); |
9195 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9196 | orig_dot += orig_insn_size; | |
9197 | dup_dot += copy_size; | |
9198 | break; | |
9199 | ||
9200 | case ta_fill: | |
9201 | if (action->removed_bytes >= 0) | |
9202 | orig_dot += action->removed_bytes; | |
9203 | else | |
9204 | { | |
9205 | /* Already zeroed in dup_contents. Just bump the | |
9206 | counters. */ | |
9207 | dup_dot += (-action->removed_bytes); | |
9208 | } | |
9209 | break; | |
9210 | ||
9211 | case ta_none: | |
9212 | BFD_ASSERT (action->removed_bytes == 0); | |
9213 | break; | |
9214 | ||
9215 | case ta_convert_longcall: | |
9216 | case ta_remove_longcall: | |
9217 | /* These will be removed or converted before we get here. */ | |
9218 | BFD_ASSERT (0); | |
9219 | break; | |
9220 | ||
9221 | case ta_widen_insn: | |
9222 | orig_insn_size = 2; | |
9223 | copy_size = 3; | |
9224 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9225 | BFD_ASSERT (action->removed_bytes == -1); | |
64b607e6 | 9226 | rv = widen_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9227 | BFD_ASSERT (rv); |
9228 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9229 | orig_dot += orig_insn_size; | |
9230 | dup_dot += copy_size; | |
9231 | break; | |
9232 | ||
9233 | case ta_add_literal: | |
9234 | orig_insn_size = 0; | |
9235 | copy_size = 4; | |
9236 | BFD_ASSERT (action->removed_bytes == -4); | |
9237 | /* TBD -- place the literal value here and insert | |
9238 | into the table. */ | |
9239 | memset (&dup_contents[dup_dot], 0, 4); | |
9240 | pin_internal_relocs (sec, internal_relocs); | |
9241 | pin_contents (sec, contents); | |
9242 | ||
9243 | if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, | |
9244 | relax_info, &internal_relocs, &action->value)) | |
9245 | goto error_return; | |
9246 | ||
9247 | if (virtual_action) | |
9248 | orig_dot_vo += copy_size; | |
9249 | ||
9250 | orig_dot += orig_insn_size; | |
9251 | dup_dot += copy_size; | |
9252 | break; | |
9253 | ||
9254 | default: | |
9255 | /* Not implemented yet. */ | |
9256 | BFD_ASSERT (0); | |
9257 | break; | |
9258 | } | |
9259 | ||
43cd72b9 BW |
9260 | removed += action->removed_bytes; |
9261 | BFD_ASSERT (dup_dot <= final_size); | |
9262 | BFD_ASSERT (orig_dot <= orig_size); | |
9263 | } | |
9264 | ||
9265 | orig_dot += orig_dot_copied; | |
9266 | orig_dot_copied = 0; | |
9267 | ||
9268 | if (orig_dot != orig_size) | |
9269 | { | |
9270 | copy_size = orig_size - orig_dot; | |
9271 | BFD_ASSERT (orig_size > orig_dot); | |
9272 | BFD_ASSERT (dup_dot + copy_size == final_size); | |
9273 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9274 | orig_dot += copy_size; | |
9275 | dup_dot += copy_size; | |
9276 | } | |
9277 | BFD_ASSERT (orig_size == orig_dot); | |
9278 | BFD_ASSERT (final_size == dup_dot); | |
9279 | ||
9280 | /* Move the dup_contents back. */ | |
9281 | if (final_size > orig_size) | |
9282 | { | |
9283 | /* Contents need to be reallocated. Swap the dup_contents into | |
9284 | contents. */ | |
9285 | sec->contents = dup_contents; | |
9286 | free (contents); | |
9287 | contents = dup_contents; | |
9288 | pin_contents (sec, contents); | |
9289 | } | |
9290 | else | |
9291 | { | |
9292 | BFD_ASSERT (final_size <= orig_size); | |
9293 | memset (contents, 0, orig_size); | |
9294 | memcpy (contents, dup_contents, final_size); | |
9295 | free (dup_contents); | |
9296 | } | |
9297 | free (scratch); | |
9298 | pin_contents (sec, contents); | |
9299 | ||
a3ef2d63 BW |
9300 | if (sec->rawsize == 0) |
9301 | sec->rawsize = sec->size; | |
43cd72b9 BW |
9302 | sec->size = final_size; |
9303 | } | |
9304 | ||
9305 | error_return: | |
9306 | release_internal_relocs (sec, internal_relocs); | |
9307 | release_contents (sec, contents); | |
9308 | return ok; | |
9309 | } | |
9310 | ||
9311 | ||
9312 | static bfd_boolean | |
7fa3d080 | 9313 | translate_section_fixes (asection *sec) |
43cd72b9 BW |
9314 | { |
9315 | xtensa_relax_info *relax_info; | |
9316 | reloc_bfd_fix *r; | |
9317 | ||
9318 | relax_info = get_xtensa_relax_info (sec); | |
9319 | if (!relax_info) | |
9320 | return TRUE; | |
9321 | ||
9322 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
9323 | if (!translate_reloc_bfd_fix (r)) | |
9324 | return FALSE; | |
e0001a05 | 9325 | |
43cd72b9 BW |
9326 | return TRUE; |
9327 | } | |
e0001a05 | 9328 | |
e0001a05 | 9329 | |
43cd72b9 BW |
9330 | /* Translate a fix given the mapping in the relax info for the target |
9331 | section. If it has already been translated, no work is required. */ | |
e0001a05 | 9332 | |
43cd72b9 | 9333 | static bfd_boolean |
7fa3d080 | 9334 | translate_reloc_bfd_fix (reloc_bfd_fix *fix) |
43cd72b9 BW |
9335 | { |
9336 | reloc_bfd_fix new_fix; | |
9337 | asection *sec; | |
9338 | xtensa_relax_info *relax_info; | |
9339 | removed_literal *removed; | |
9340 | bfd_vma new_offset, target_offset; | |
e0001a05 | 9341 | |
43cd72b9 BW |
9342 | if (fix->translated) |
9343 | return TRUE; | |
e0001a05 | 9344 | |
43cd72b9 BW |
9345 | sec = fix->target_sec; |
9346 | target_offset = fix->target_offset; | |
e0001a05 | 9347 | |
43cd72b9 BW |
9348 | relax_info = get_xtensa_relax_info (sec); |
9349 | if (!relax_info) | |
9350 | { | |
9351 | fix->translated = TRUE; | |
9352 | return TRUE; | |
9353 | } | |
e0001a05 | 9354 | |
43cd72b9 | 9355 | new_fix = *fix; |
e0001a05 | 9356 | |
43cd72b9 BW |
9357 | /* The fix does not need to be translated if the section cannot change. */ |
9358 | if (!relax_info->is_relaxable_literal_section | |
9359 | && !relax_info->is_relaxable_asm_section) | |
9360 | { | |
9361 | fix->translated = TRUE; | |
9362 | return TRUE; | |
9363 | } | |
e0001a05 | 9364 | |
43cd72b9 BW |
9365 | /* If the literal has been moved and this relocation was on an |
9366 | opcode, then the relocation should move to the new literal | |
9367 | location. Otherwise, the relocation should move within the | |
9368 | section. */ | |
9369 | ||
9370 | removed = FALSE; | |
9371 | if (is_operand_relocation (fix->src_type)) | |
9372 | { | |
9373 | /* Check if the original relocation is against a literal being | |
9374 | removed. */ | |
9375 | removed = find_removed_literal (&relax_info->removed_list, | |
9376 | target_offset); | |
e0001a05 NC |
9377 | } |
9378 | ||
43cd72b9 | 9379 | if (removed) |
e0001a05 | 9380 | { |
43cd72b9 | 9381 | asection *new_sec; |
e0001a05 | 9382 | |
43cd72b9 BW |
9383 | /* The fact that there is still a relocation to this literal indicates |
9384 | that the literal is being coalesced, not simply removed. */ | |
9385 | BFD_ASSERT (removed->to.abfd != NULL); | |
e0001a05 | 9386 | |
43cd72b9 BW |
9387 | /* This was moved to some other address (possibly another section). */ |
9388 | new_sec = r_reloc_get_section (&removed->to); | |
9389 | if (new_sec != sec) | |
e0001a05 | 9390 | { |
43cd72b9 BW |
9391 | sec = new_sec; |
9392 | relax_info = get_xtensa_relax_info (sec); | |
9393 | if (!relax_info || | |
9394 | (!relax_info->is_relaxable_literal_section | |
9395 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 | 9396 | { |
43cd72b9 BW |
9397 | target_offset = removed->to.target_offset; |
9398 | new_fix.target_sec = new_sec; | |
9399 | new_fix.target_offset = target_offset; | |
9400 | new_fix.translated = TRUE; | |
9401 | *fix = new_fix; | |
9402 | return TRUE; | |
e0001a05 | 9403 | } |
e0001a05 | 9404 | } |
43cd72b9 BW |
9405 | target_offset = removed->to.target_offset; |
9406 | new_fix.target_sec = new_sec; | |
e0001a05 | 9407 | } |
43cd72b9 BW |
9408 | |
9409 | /* The target address may have been moved within its section. */ | |
9410 | new_offset = offset_with_removed_text (&relax_info->action_list, | |
9411 | target_offset); | |
9412 | ||
9413 | new_fix.target_offset = new_offset; | |
9414 | new_fix.target_offset = new_offset; | |
9415 | new_fix.translated = TRUE; | |
9416 | *fix = new_fix; | |
9417 | return TRUE; | |
e0001a05 NC |
9418 | } |
9419 | ||
9420 | ||
9421 | /* Fix up a relocation to take account of removed literals. */ | |
9422 | ||
9b7f5d20 BW |
9423 | static asection * |
9424 | translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec) | |
e0001a05 | 9425 | { |
e0001a05 NC |
9426 | xtensa_relax_info *relax_info; |
9427 | removed_literal *removed; | |
9b7f5d20 BW |
9428 | bfd_vma target_offset, base_offset; |
9429 | text_action *act; | |
e0001a05 NC |
9430 | |
9431 | *new_rel = *orig_rel; | |
9432 | ||
9433 | if (!r_reloc_is_defined (orig_rel)) | |
9b7f5d20 | 9434 | return sec ; |
e0001a05 NC |
9435 | |
9436 | relax_info = get_xtensa_relax_info (sec); | |
9b7f5d20 BW |
9437 | BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section |
9438 | || relax_info->is_relaxable_asm_section)); | |
e0001a05 | 9439 | |
43cd72b9 BW |
9440 | target_offset = orig_rel->target_offset; |
9441 | ||
9442 | removed = FALSE; | |
9443 | if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) | |
9444 | { | |
9445 | /* Check if the original relocation is against a literal being | |
9446 | removed. */ | |
9447 | removed = find_removed_literal (&relax_info->removed_list, | |
9448 | target_offset); | |
9449 | } | |
9450 | if (removed && removed->to.abfd) | |
e0001a05 NC |
9451 | { |
9452 | asection *new_sec; | |
9453 | ||
9454 | /* The fact that there is still a relocation to this literal indicates | |
9455 | that the literal is being coalesced, not simply removed. */ | |
9456 | BFD_ASSERT (removed->to.abfd != NULL); | |
9457 | ||
43cd72b9 BW |
9458 | /* This was moved to some other address |
9459 | (possibly in another section). */ | |
e0001a05 NC |
9460 | *new_rel = removed->to; |
9461 | new_sec = r_reloc_get_section (new_rel); | |
43cd72b9 | 9462 | if (new_sec != sec) |
e0001a05 NC |
9463 | { |
9464 | sec = new_sec; | |
9465 | relax_info = get_xtensa_relax_info (sec); | |
43cd72b9 BW |
9466 | if (!relax_info |
9467 | || (!relax_info->is_relaxable_literal_section | |
9468 | && !relax_info->is_relaxable_asm_section)) | |
9b7f5d20 | 9469 | return sec; |
e0001a05 | 9470 | } |
43cd72b9 | 9471 | target_offset = new_rel->target_offset; |
e0001a05 NC |
9472 | } |
9473 | ||
9b7f5d20 BW |
9474 | /* Find the base offset of the reloc symbol, excluding any addend from the |
9475 | reloc or from the section contents (for a partial_inplace reloc). Then | |
9476 | find the adjusted values of the offsets due to relaxation. The base | |
9477 | offset is needed to determine the change to the reloc's addend; the reloc | |
9478 | addend should not be adjusted due to relaxations located before the base | |
9479 | offset. */ | |
9480 | ||
9481 | base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend; | |
9482 | act = relax_info->action_list.head; | |
9483 | if (base_offset <= target_offset) | |
9484 | { | |
9485 | int base_removed = removed_by_actions (&act, base_offset, FALSE); | |
9486 | int addend_removed = removed_by_actions (&act, target_offset, FALSE); | |
9487 | new_rel->target_offset = target_offset - base_removed - addend_removed; | |
9488 | new_rel->rela.r_addend -= addend_removed; | |
9489 | } | |
9490 | else | |
9491 | { | |
9492 | /* Handle a negative addend. The base offset comes first. */ | |
9493 | int tgt_removed = removed_by_actions (&act, target_offset, FALSE); | |
9494 | int addend_removed = removed_by_actions (&act, base_offset, FALSE); | |
9495 | new_rel->target_offset = target_offset - tgt_removed; | |
9496 | new_rel->rela.r_addend += addend_removed; | |
9497 | } | |
e0001a05 | 9498 | |
9b7f5d20 | 9499 | return sec; |
e0001a05 NC |
9500 | } |
9501 | ||
9502 | ||
9503 | /* For dynamic links, there may be a dynamic relocation for each | |
9504 | literal. The number of dynamic relocations must be computed in | |
9505 | size_dynamic_sections, which occurs before relaxation. When a | |
9506 | literal is removed, this function checks if there is a corresponding | |
9507 | dynamic relocation and shrinks the size of the appropriate dynamic | |
9508 | relocation section accordingly. At this point, the contents of the | |
9509 | dynamic relocation sections have not yet been filled in, so there's | |
9510 | nothing else that needs to be done. */ | |
9511 | ||
9512 | static void | |
7fa3d080 BW |
9513 | shrink_dynamic_reloc_sections (struct bfd_link_info *info, |
9514 | bfd *abfd, | |
9515 | asection *input_section, | |
9516 | Elf_Internal_Rela *rel) | |
e0001a05 | 9517 | { |
f0e6fdb2 | 9518 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
9519 | Elf_Internal_Shdr *symtab_hdr; |
9520 | struct elf_link_hash_entry **sym_hashes; | |
9521 | unsigned long r_symndx; | |
9522 | int r_type; | |
9523 | struct elf_link_hash_entry *h; | |
9524 | bfd_boolean dynamic_symbol; | |
9525 | ||
f0e6fdb2 | 9526 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
9527 | if (htab == NULL) |
9528 | return; | |
9529 | ||
e0001a05 NC |
9530 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
9531 | sym_hashes = elf_sym_hashes (abfd); | |
9532 | ||
9533 | r_type = ELF32_R_TYPE (rel->r_info); | |
9534 | r_symndx = ELF32_R_SYM (rel->r_info); | |
9535 | ||
9536 | if (r_symndx < symtab_hdr->sh_info) | |
9537 | h = NULL; | |
9538 | else | |
9539 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
9540 | ||
4608f3d9 | 9541 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); |
e0001a05 NC |
9542 | |
9543 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
9544 | && (input_section->flags & SEC_ALLOC) != 0 | |
9545 | && (dynamic_symbol || info->shared)) | |
9546 | { | |
e0001a05 NC |
9547 | asection *srel; |
9548 | bfd_boolean is_plt = FALSE; | |
9549 | ||
e0001a05 NC |
9550 | if (dynamic_symbol && r_type == R_XTENSA_PLT) |
9551 | { | |
f0e6fdb2 | 9552 | srel = htab->srelplt; |
e0001a05 NC |
9553 | is_plt = TRUE; |
9554 | } | |
9555 | else | |
f0e6fdb2 | 9556 | srel = htab->srelgot; |
e0001a05 NC |
9557 | |
9558 | /* Reduce size of the .rela.* section by one reloc. */ | |
e0001a05 | 9559 | BFD_ASSERT (srel != NULL); |
eea6121a AM |
9560 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
9561 | srel->size -= sizeof (Elf32_External_Rela); | |
e0001a05 NC |
9562 | |
9563 | if (is_plt) | |
9564 | { | |
9565 | asection *splt, *sgotplt, *srelgot; | |
9566 | int reloc_index, chunk; | |
9567 | ||
9568 | /* Find the PLT reloc index of the entry being removed. This | |
9569 | is computed from the size of ".rela.plt". It is needed to | |
9570 | figure out which PLT chunk to resize. Usually "last index | |
9571 | = size - 1" since the index starts at zero, but in this | |
9572 | context, the size has just been decremented so there's no | |
9573 | need to subtract one. */ | |
eea6121a | 9574 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
9575 | |
9576 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
9577 | splt = elf_xtensa_get_plt_section (info, chunk); |
9578 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
9579 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
9580 | ||
9581 | /* Check if an entire PLT chunk has just been eliminated. */ | |
9582 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
9583 | { | |
9584 | /* The two magic GOT entries for that chunk can go away. */ | |
f0e6fdb2 | 9585 | srelgot = htab->srelgot; |
e0001a05 NC |
9586 | BFD_ASSERT (srelgot != NULL); |
9587 | srelgot->reloc_count -= 2; | |
eea6121a AM |
9588 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
9589 | sgotplt->size -= 8; | |
e0001a05 NC |
9590 | |
9591 | /* There should be only one entry left (and it will be | |
9592 | removed below). */ | |
eea6121a AM |
9593 | BFD_ASSERT (sgotplt->size == 4); |
9594 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); | |
e0001a05 NC |
9595 | } |
9596 | ||
eea6121a AM |
9597 | BFD_ASSERT (sgotplt->size >= 4); |
9598 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); | |
e0001a05 | 9599 | |
eea6121a AM |
9600 | sgotplt->size -= 4; |
9601 | splt->size -= PLT_ENTRY_SIZE; | |
e0001a05 NC |
9602 | } |
9603 | } | |
9604 | } | |
9605 | ||
9606 | ||
43cd72b9 BW |
9607 | /* Take an r_rel and move it to another section. This usually |
9608 | requires extending the interal_relocation array and pinning it. If | |
9609 | the original r_rel is from the same BFD, we can complete this here. | |
9610 | Otherwise, we add a fix record to let the final link fix the | |
9611 | appropriate address. Contents and internal relocations for the | |
9612 | section must be pinned after calling this routine. */ | |
9613 | ||
9614 | static bfd_boolean | |
7fa3d080 BW |
9615 | move_literal (bfd *abfd, |
9616 | struct bfd_link_info *link_info, | |
9617 | asection *sec, | |
9618 | bfd_vma offset, | |
9619 | bfd_byte *contents, | |
9620 | xtensa_relax_info *relax_info, | |
9621 | Elf_Internal_Rela **internal_relocs_p, | |
9622 | const literal_value *lit) | |
43cd72b9 BW |
9623 | { |
9624 | Elf_Internal_Rela *new_relocs = NULL; | |
9625 | size_t new_relocs_count = 0; | |
9626 | Elf_Internal_Rela this_rela; | |
9627 | const r_reloc *r_rel; | |
9628 | ||
9629 | r_rel = &lit->r_rel; | |
9630 | BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); | |
9631 | ||
9632 | if (r_reloc_is_const (r_rel)) | |
9633 | bfd_put_32 (abfd, lit->value, contents + offset); | |
9634 | else | |
9635 | { | |
9636 | int r_type; | |
9637 | unsigned i; | |
9638 | asection *target_sec; | |
9639 | reloc_bfd_fix *fix; | |
9640 | unsigned insert_at; | |
9641 | ||
9642 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
9643 | target_sec = r_reloc_get_section (r_rel); | |
9644 | ||
9645 | /* This is the difficult case. We have to create a fix up. */ | |
9646 | this_rela.r_offset = offset; | |
9647 | this_rela.r_info = ELF32_R_INFO (0, r_type); | |
9648 | this_rela.r_addend = | |
9649 | r_rel->target_offset - r_reloc_get_target_offset (r_rel); | |
9650 | bfd_put_32 (abfd, lit->value, contents + offset); | |
9651 | ||
9652 | /* Currently, we cannot move relocations during a relocatable link. */ | |
9653 | BFD_ASSERT (!link_info->relocatable); | |
0f5f1638 | 9654 | fix = reloc_bfd_fix_init (sec, offset, r_type, |
43cd72b9 BW |
9655 | r_reloc_get_section (r_rel), |
9656 | r_rel->target_offset + r_rel->virtual_offset, | |
9657 | FALSE); | |
9658 | /* We also need to mark that relocations are needed here. */ | |
9659 | sec->flags |= SEC_RELOC; | |
9660 | ||
9661 | translate_reloc_bfd_fix (fix); | |
9662 | /* This fix has not yet been translated. */ | |
9663 | add_fix (sec, fix); | |
9664 | ||
9665 | /* Add the relocation. If we have already allocated our own | |
9666 | space for the relocations and we have room for more, then use | |
9667 | it. Otherwise, allocate new space and move the literals. */ | |
9668 | insert_at = sec->reloc_count; | |
9669 | for (i = 0; i < sec->reloc_count; ++i) | |
9670 | { | |
9671 | if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) | |
9672 | { | |
9673 | insert_at = i; | |
9674 | break; | |
9675 | } | |
9676 | } | |
9677 | ||
9678 | if (*internal_relocs_p != relax_info->allocated_relocs | |
9679 | || sec->reloc_count + 1 > relax_info->allocated_relocs_count) | |
9680 | { | |
9681 | BFD_ASSERT (relax_info->allocated_relocs == NULL | |
9682 | || sec->reloc_count == relax_info->relocs_count); | |
9683 | ||
9684 | if (relax_info->allocated_relocs_count == 0) | |
9685 | new_relocs_count = (sec->reloc_count + 2) * 2; | |
9686 | else | |
9687 | new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; | |
9688 | ||
9689 | new_relocs = (Elf_Internal_Rela *) | |
9690 | bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); | |
9691 | if (!new_relocs) | |
9692 | return FALSE; | |
9693 | ||
9694 | /* We could handle this more quickly by finding the split point. */ | |
9695 | if (insert_at != 0) | |
9696 | memcpy (new_relocs, *internal_relocs_p, | |
9697 | insert_at * sizeof (Elf_Internal_Rela)); | |
9698 | ||
9699 | new_relocs[insert_at] = this_rela; | |
9700 | ||
9701 | if (insert_at != sec->reloc_count) | |
9702 | memcpy (new_relocs + insert_at + 1, | |
9703 | (*internal_relocs_p) + insert_at, | |
9704 | (sec->reloc_count - insert_at) | |
9705 | * sizeof (Elf_Internal_Rela)); | |
9706 | ||
9707 | if (*internal_relocs_p != relax_info->allocated_relocs) | |
9708 | { | |
9709 | /* The first time we re-allocate, we can only free the | |
9710 | old relocs if they were allocated with bfd_malloc. | |
9711 | This is not true when keep_memory is in effect. */ | |
9712 | if (!link_info->keep_memory) | |
9713 | free (*internal_relocs_p); | |
9714 | } | |
9715 | else | |
9716 | free (*internal_relocs_p); | |
9717 | relax_info->allocated_relocs = new_relocs; | |
9718 | relax_info->allocated_relocs_count = new_relocs_count; | |
9719 | elf_section_data (sec)->relocs = new_relocs; | |
9720 | sec->reloc_count++; | |
9721 | relax_info->relocs_count = sec->reloc_count; | |
9722 | *internal_relocs_p = new_relocs; | |
9723 | } | |
9724 | else | |
9725 | { | |
9726 | if (insert_at != sec->reloc_count) | |
9727 | { | |
9728 | unsigned idx; | |
9729 | for (idx = sec->reloc_count; idx > insert_at; idx--) | |
9730 | (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; | |
9731 | } | |
9732 | (*internal_relocs_p)[insert_at] = this_rela; | |
9733 | sec->reloc_count++; | |
9734 | if (relax_info->allocated_relocs) | |
9735 | relax_info->relocs_count = sec->reloc_count; | |
9736 | } | |
9737 | } | |
9738 | return TRUE; | |
9739 | } | |
9740 | ||
9741 | ||
e0001a05 NC |
9742 | /* This is similar to relax_section except that when a target is moved, |
9743 | we shift addresses up. We also need to modify the size. This | |
9744 | algorithm does NOT allow for relocations into the middle of the | |
9745 | property sections. */ | |
9746 | ||
43cd72b9 | 9747 | static bfd_boolean |
7fa3d080 BW |
9748 | relax_property_section (bfd *abfd, |
9749 | asection *sec, | |
9750 | struct bfd_link_info *link_info) | |
e0001a05 NC |
9751 | { |
9752 | Elf_Internal_Rela *internal_relocs; | |
9753 | bfd_byte *contents; | |
1d25768e | 9754 | unsigned i; |
e0001a05 | 9755 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
9756 | bfd_boolean is_full_prop_section; |
9757 | size_t last_zfill_target_offset = 0; | |
9758 | asection *last_zfill_target_sec = NULL; | |
9759 | bfd_size_type sec_size; | |
1d25768e | 9760 | bfd_size_type entry_size; |
e0001a05 | 9761 | |
43cd72b9 | 9762 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
9763 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
9764 | link_info->keep_memory); | |
9765 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 9766 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
9767 | { |
9768 | ok = FALSE; | |
9769 | goto error_return; | |
9770 | } | |
9771 | ||
1d25768e BW |
9772 | is_full_prop_section = xtensa_is_proptable_section (sec); |
9773 | if (is_full_prop_section) | |
9774 | entry_size = 12; | |
9775 | else | |
9776 | entry_size = 8; | |
43cd72b9 BW |
9777 | |
9778 | if (internal_relocs) | |
e0001a05 | 9779 | { |
43cd72b9 | 9780 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
9781 | { |
9782 | Elf_Internal_Rela *irel; | |
9783 | xtensa_relax_info *target_relax_info; | |
e0001a05 NC |
9784 | unsigned r_type; |
9785 | asection *target_sec; | |
43cd72b9 BW |
9786 | literal_value val; |
9787 | bfd_byte *size_p, *flags_p; | |
e0001a05 NC |
9788 | |
9789 | /* Locally change the source address. | |
9790 | Translate the target to the new target address. | |
9791 | If it points to this section and has been removed, MOVE IT. | |
9792 | Also, don't forget to modify the associated SIZE at | |
9793 | (offset + 4). */ | |
9794 | ||
9795 | irel = &internal_relocs[i]; | |
9796 | r_type = ELF32_R_TYPE (irel->r_info); | |
9797 | if (r_type == R_XTENSA_NONE) | |
9798 | continue; | |
9799 | ||
43cd72b9 BW |
9800 | /* Find the literal value. */ |
9801 | r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); | |
9802 | size_p = &contents[irel->r_offset + 4]; | |
9803 | flags_p = NULL; | |
9804 | if (is_full_prop_section) | |
1d25768e BW |
9805 | flags_p = &contents[irel->r_offset + 8]; |
9806 | BFD_ASSERT (irel->r_offset + entry_size <= sec_size); | |
e0001a05 | 9807 | |
43cd72b9 | 9808 | target_sec = r_reloc_get_section (&val.r_rel); |
e0001a05 NC |
9809 | target_relax_info = get_xtensa_relax_info (target_sec); |
9810 | ||
9811 | if (target_relax_info | |
43cd72b9 BW |
9812 | && (target_relax_info->is_relaxable_literal_section |
9813 | || target_relax_info->is_relaxable_asm_section )) | |
e0001a05 NC |
9814 | { |
9815 | /* Translate the relocation's destination. */ | |
03669f1c BW |
9816 | bfd_vma old_offset = val.r_rel.target_offset; |
9817 | bfd_vma new_offset; | |
e0001a05 | 9818 | long old_size, new_size; |
03669f1c BW |
9819 | text_action *act = target_relax_info->action_list.head; |
9820 | new_offset = old_offset - | |
9821 | removed_by_actions (&act, old_offset, FALSE); | |
e0001a05 NC |
9822 | |
9823 | /* Assert that we are not out of bounds. */ | |
43cd72b9 | 9824 | old_size = bfd_get_32 (abfd, size_p); |
03669f1c | 9825 | new_size = old_size; |
43cd72b9 BW |
9826 | |
9827 | if (old_size == 0) | |
9828 | { | |
9829 | /* Only the first zero-sized unreachable entry is | |
9830 | allowed to expand. In this case the new offset | |
9831 | should be the offset before the fill and the new | |
9832 | size is the expansion size. For other zero-sized | |
9833 | entries the resulting size should be zero with an | |
9834 | offset before or after the fill address depending | |
9835 | on whether the expanding unreachable entry | |
9836 | preceeds it. */ | |
03669f1c BW |
9837 | if (last_zfill_target_sec == 0 |
9838 | || last_zfill_target_sec != target_sec | |
9839 | || last_zfill_target_offset != old_offset) | |
43cd72b9 | 9840 | { |
03669f1c BW |
9841 | bfd_vma new_end_offset = new_offset; |
9842 | ||
9843 | /* Recompute the new_offset, but this time don't | |
9844 | include any fill inserted by relaxation. */ | |
9845 | act = target_relax_info->action_list.head; | |
9846 | new_offset = old_offset - | |
9847 | removed_by_actions (&act, old_offset, TRUE); | |
43cd72b9 BW |
9848 | |
9849 | /* If it is not unreachable and we have not yet | |
9850 | seen an unreachable at this address, place it | |
9851 | before the fill address. */ | |
03669f1c BW |
9852 | if (flags_p && (bfd_get_32 (abfd, flags_p) |
9853 | & XTENSA_PROP_UNREACHABLE) != 0) | |
43cd72b9 | 9854 | { |
03669f1c BW |
9855 | new_size = new_end_offset - new_offset; |
9856 | ||
43cd72b9 | 9857 | last_zfill_target_sec = target_sec; |
03669f1c | 9858 | last_zfill_target_offset = old_offset; |
43cd72b9 BW |
9859 | } |
9860 | } | |
9861 | } | |
9862 | else | |
03669f1c BW |
9863 | new_size -= |
9864 | removed_by_actions (&act, old_offset + old_size, TRUE); | |
43cd72b9 | 9865 | |
e0001a05 NC |
9866 | if (new_size != old_size) |
9867 | { | |
9868 | bfd_put_32 (abfd, new_size, size_p); | |
9869 | pin_contents (sec, contents); | |
9870 | } | |
43cd72b9 | 9871 | |
03669f1c | 9872 | if (new_offset != old_offset) |
e0001a05 | 9873 | { |
03669f1c | 9874 | bfd_vma diff = new_offset - old_offset; |
e0001a05 NC |
9875 | irel->r_addend += diff; |
9876 | pin_internal_relocs (sec, internal_relocs); | |
9877 | } | |
9878 | } | |
9879 | } | |
9880 | } | |
9881 | ||
9882 | /* Combine adjacent property table entries. This is also done in | |
9883 | finish_dynamic_sections() but at that point it's too late to | |
9884 | reclaim the space in the output section, so we do this twice. */ | |
9885 | ||
43cd72b9 | 9886 | if (internal_relocs && (!link_info->relocatable |
1d25768e | 9887 | || xtensa_is_littable_section (sec))) |
e0001a05 NC |
9888 | { |
9889 | Elf_Internal_Rela *last_irel = NULL; | |
1d25768e | 9890 | Elf_Internal_Rela *irel, *next_rel, *rel_end; |
e0001a05 | 9891 | int removed_bytes = 0; |
1d25768e | 9892 | bfd_vma offset; |
43cd72b9 BW |
9893 | flagword predef_flags; |
9894 | ||
43cd72b9 | 9895 | predef_flags = xtensa_get_property_predef_flags (sec); |
e0001a05 | 9896 | |
1d25768e | 9897 | /* Walk over memory and relocations at the same time. |
e0001a05 NC |
9898 | This REQUIRES that the internal_relocs be sorted by offset. */ |
9899 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
9900 | internal_reloc_compare); | |
e0001a05 NC |
9901 | |
9902 | pin_internal_relocs (sec, internal_relocs); | |
9903 | pin_contents (sec, contents); | |
9904 | ||
1d25768e BW |
9905 | next_rel = internal_relocs; |
9906 | rel_end = internal_relocs + sec->reloc_count; | |
9907 | ||
a3ef2d63 | 9908 | BFD_ASSERT (sec->size % entry_size == 0); |
e0001a05 | 9909 | |
a3ef2d63 | 9910 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 | 9911 | { |
1d25768e | 9912 | Elf_Internal_Rela *offset_rel, *extra_rel; |
e0001a05 | 9913 | bfd_vma bytes_to_remove, size, actual_offset; |
1d25768e | 9914 | bfd_boolean remove_this_rel; |
43cd72b9 | 9915 | flagword flags; |
e0001a05 | 9916 | |
1d25768e BW |
9917 | /* Find the first relocation for the entry at the current offset. |
9918 | Adjust the offsets of any extra relocations for the previous | |
9919 | entry. */ | |
9920 | offset_rel = NULL; | |
9921 | if (next_rel) | |
9922 | { | |
9923 | for (irel = next_rel; irel < rel_end; irel++) | |
9924 | { | |
9925 | if ((irel->r_offset == offset | |
9926 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) | |
9927 | || irel->r_offset > offset) | |
9928 | { | |
9929 | offset_rel = irel; | |
9930 | break; | |
9931 | } | |
9932 | irel->r_offset -= removed_bytes; | |
1d25768e BW |
9933 | } |
9934 | } | |
e0001a05 | 9935 | |
1d25768e BW |
9936 | /* Find the next relocation (if there are any left). */ |
9937 | extra_rel = NULL; | |
9938 | if (offset_rel) | |
e0001a05 | 9939 | { |
1d25768e | 9940 | for (irel = offset_rel + 1; irel < rel_end; irel++) |
e0001a05 | 9941 | { |
1d25768e BW |
9942 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) |
9943 | { | |
9944 | extra_rel = irel; | |
9945 | break; | |
9946 | } | |
e0001a05 | 9947 | } |
e0001a05 NC |
9948 | } |
9949 | ||
1d25768e BW |
9950 | /* Check if there are relocations on the current entry. There |
9951 | should usually be a relocation on the offset field. If there | |
9952 | are relocations on the size or flags, then we can't optimize | |
9953 | this entry. Also, find the next relocation to examine on the | |
9954 | next iteration. */ | |
9955 | if (offset_rel) | |
e0001a05 | 9956 | { |
1d25768e | 9957 | if (offset_rel->r_offset >= offset + entry_size) |
e0001a05 | 9958 | { |
1d25768e BW |
9959 | next_rel = offset_rel; |
9960 | /* There are no relocations on the current entry, but we | |
9961 | might still be able to remove it if the size is zero. */ | |
9962 | offset_rel = NULL; | |
9963 | } | |
9964 | else if (offset_rel->r_offset > offset | |
9965 | || (extra_rel | |
9966 | && extra_rel->r_offset < offset + entry_size)) | |
9967 | { | |
9968 | /* There is a relocation on the size or flags, so we can't | |
9969 | do anything with this entry. Continue with the next. */ | |
9970 | next_rel = offset_rel; | |
9971 | continue; | |
9972 | } | |
9973 | else | |
9974 | { | |
9975 | BFD_ASSERT (offset_rel->r_offset == offset); | |
9976 | offset_rel->r_offset -= removed_bytes; | |
9977 | next_rel = offset_rel + 1; | |
e0001a05 | 9978 | } |
e0001a05 | 9979 | } |
1d25768e BW |
9980 | else |
9981 | next_rel = NULL; | |
e0001a05 | 9982 | |
1d25768e | 9983 | remove_this_rel = FALSE; |
e0001a05 NC |
9984 | bytes_to_remove = 0; |
9985 | actual_offset = offset - removed_bytes; | |
9986 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
9987 | ||
43cd72b9 BW |
9988 | if (is_full_prop_section) |
9989 | flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); | |
9990 | else | |
9991 | flags = predef_flags; | |
9992 | ||
1d25768e BW |
9993 | if (size == 0 |
9994 | && (flags & XTENSA_PROP_ALIGN) == 0 | |
9995 | && (flags & XTENSA_PROP_UNREACHABLE) == 0) | |
e0001a05 | 9996 | { |
43cd72b9 BW |
9997 | /* Always remove entries with zero size and no alignment. */ |
9998 | bytes_to_remove = entry_size; | |
1d25768e BW |
9999 | if (offset_rel) |
10000 | remove_this_rel = TRUE; | |
e0001a05 | 10001 | } |
1d25768e BW |
10002 | else if (offset_rel |
10003 | && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32) | |
e0001a05 | 10004 | { |
1d25768e | 10005 | if (last_irel) |
e0001a05 | 10006 | { |
1d25768e BW |
10007 | flagword old_flags; |
10008 | bfd_vma old_size = | |
10009 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); | |
10010 | bfd_vma old_address = | |
10011 | (last_irel->r_addend | |
10012 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); | |
10013 | bfd_vma new_address = | |
10014 | (offset_rel->r_addend | |
10015 | + bfd_get_32 (abfd, &contents[actual_offset])); | |
10016 | if (is_full_prop_section) | |
10017 | old_flags = bfd_get_32 | |
10018 | (abfd, &contents[last_irel->r_offset + 8]); | |
10019 | else | |
10020 | old_flags = predef_flags; | |
10021 | ||
10022 | if ((ELF32_R_SYM (offset_rel->r_info) | |
10023 | == ELF32_R_SYM (last_irel->r_info)) | |
10024 | && old_address + old_size == new_address | |
10025 | && old_flags == flags | |
10026 | && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 | |
10027 | && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) | |
e0001a05 | 10028 | { |
1d25768e BW |
10029 | /* Fix the old size. */ |
10030 | bfd_put_32 (abfd, old_size + size, | |
10031 | &contents[last_irel->r_offset + 4]); | |
10032 | bytes_to_remove = entry_size; | |
10033 | remove_this_rel = TRUE; | |
e0001a05 NC |
10034 | } |
10035 | else | |
1d25768e | 10036 | last_irel = offset_rel; |
e0001a05 | 10037 | } |
1d25768e BW |
10038 | else |
10039 | last_irel = offset_rel; | |
e0001a05 NC |
10040 | } |
10041 | ||
1d25768e | 10042 | if (remove_this_rel) |
e0001a05 | 10043 | { |
1d25768e | 10044 | offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
3df502ae | 10045 | offset_rel->r_offset = 0; |
e0001a05 NC |
10046 | } |
10047 | ||
10048 | if (bytes_to_remove != 0) | |
10049 | { | |
10050 | removed_bytes += bytes_to_remove; | |
a3ef2d63 | 10051 | if (offset + bytes_to_remove < sec->size) |
e0001a05 | 10052 | memmove (&contents[actual_offset], |
43cd72b9 | 10053 | &contents[actual_offset + bytes_to_remove], |
a3ef2d63 | 10054 | sec->size - offset - bytes_to_remove); |
e0001a05 NC |
10055 | } |
10056 | } | |
10057 | ||
43cd72b9 | 10058 | if (removed_bytes) |
e0001a05 | 10059 | { |
1d25768e BW |
10060 | /* Fix up any extra relocations on the last entry. */ |
10061 | for (irel = next_rel; irel < rel_end; irel++) | |
10062 | irel->r_offset -= removed_bytes; | |
10063 | ||
e0001a05 | 10064 | /* Clear the removed bytes. */ |
a3ef2d63 | 10065 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 | 10066 | |
a3ef2d63 BW |
10067 | if (sec->rawsize == 0) |
10068 | sec->rawsize = sec->size; | |
10069 | sec->size -= removed_bytes; | |
e901de89 BW |
10070 | |
10071 | if (xtensa_is_littable_section (sec)) | |
10072 | { | |
f0e6fdb2 BW |
10073 | asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; |
10074 | if (sgotloc) | |
10075 | sgotloc->size -= removed_bytes; | |
e901de89 | 10076 | } |
e0001a05 NC |
10077 | } |
10078 | } | |
e901de89 | 10079 | |
e0001a05 NC |
10080 | error_return: |
10081 | release_internal_relocs (sec, internal_relocs); | |
10082 | release_contents (sec, contents); | |
10083 | return ok; | |
10084 | } | |
10085 | ||
10086 | \f | |
10087 | /* Third relaxation pass. */ | |
10088 | ||
10089 | /* Change symbol values to account for removed literals. */ | |
10090 | ||
43cd72b9 | 10091 | bfd_boolean |
7fa3d080 | 10092 | relax_section_symbols (bfd *abfd, asection *sec) |
e0001a05 NC |
10093 | { |
10094 | xtensa_relax_info *relax_info; | |
10095 | unsigned int sec_shndx; | |
10096 | Elf_Internal_Shdr *symtab_hdr; | |
10097 | Elf_Internal_Sym *isymbuf; | |
10098 | unsigned i, num_syms, num_locals; | |
10099 | ||
10100 | relax_info = get_xtensa_relax_info (sec); | |
10101 | BFD_ASSERT (relax_info); | |
10102 | ||
43cd72b9 BW |
10103 | if (!relax_info->is_relaxable_literal_section |
10104 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
10105 | return TRUE; |
10106 | ||
10107 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
10108 | ||
10109 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10110 | isymbuf = retrieve_local_syms (abfd); | |
10111 | ||
10112 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
10113 | num_locals = symtab_hdr->sh_info; | |
10114 | ||
10115 | /* Adjust the local symbols defined in this section. */ | |
10116 | for (i = 0; i < num_locals; i++) | |
10117 | { | |
10118 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
10119 | ||
10120 | if (isym->st_shndx == sec_shndx) | |
10121 | { | |
03669f1c BW |
10122 | text_action *act = relax_info->action_list.head; |
10123 | bfd_vma orig_addr = isym->st_value; | |
43cd72b9 | 10124 | |
03669f1c | 10125 | isym->st_value -= removed_by_actions (&act, orig_addr, FALSE); |
43cd72b9 | 10126 | |
03669f1c BW |
10127 | if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) |
10128 | isym->st_size -= | |
10129 | removed_by_actions (&act, orig_addr + isym->st_size, FALSE); | |
e0001a05 NC |
10130 | } |
10131 | } | |
10132 | ||
10133 | /* Now adjust the global symbols defined in this section. */ | |
10134 | for (i = 0; i < (num_syms - num_locals); i++) | |
10135 | { | |
10136 | struct elf_link_hash_entry *sym_hash; | |
10137 | ||
10138 | sym_hash = elf_sym_hashes (abfd)[i]; | |
10139 | ||
10140 | if (sym_hash->root.type == bfd_link_hash_warning) | |
10141 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
10142 | ||
10143 | if ((sym_hash->root.type == bfd_link_hash_defined | |
10144 | || sym_hash->root.type == bfd_link_hash_defweak) | |
10145 | && sym_hash->root.u.def.section == sec) | |
10146 | { | |
03669f1c BW |
10147 | text_action *act = relax_info->action_list.head; |
10148 | bfd_vma orig_addr = sym_hash->root.u.def.value; | |
43cd72b9 | 10149 | |
03669f1c BW |
10150 | sym_hash->root.u.def.value -= |
10151 | removed_by_actions (&act, orig_addr, FALSE); | |
43cd72b9 | 10152 | |
03669f1c BW |
10153 | if (sym_hash->type == STT_FUNC) |
10154 | sym_hash->size -= | |
10155 | removed_by_actions (&act, orig_addr + sym_hash->size, FALSE); | |
e0001a05 NC |
10156 | } |
10157 | } | |
10158 | ||
10159 | return TRUE; | |
10160 | } | |
10161 | ||
10162 | \f | |
10163 | /* "Fix" handling functions, called while performing relocations. */ | |
10164 | ||
43cd72b9 | 10165 | static bfd_boolean |
7fa3d080 BW |
10166 | do_fix_for_relocatable_link (Elf_Internal_Rela *rel, |
10167 | bfd *input_bfd, | |
10168 | asection *input_section, | |
10169 | bfd_byte *contents) | |
e0001a05 NC |
10170 | { |
10171 | r_reloc r_rel; | |
10172 | asection *sec, *old_sec; | |
10173 | bfd_vma old_offset; | |
10174 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 NC |
10175 | reloc_bfd_fix *fix; |
10176 | ||
10177 | if (r_type == R_XTENSA_NONE) | |
43cd72b9 | 10178 | return TRUE; |
e0001a05 | 10179 | |
43cd72b9 BW |
10180 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10181 | if (!fix) | |
10182 | return TRUE; | |
e0001a05 | 10183 | |
43cd72b9 BW |
10184 | r_reloc_init (&r_rel, input_bfd, rel, contents, |
10185 | bfd_get_section_limit (input_bfd, input_section)); | |
e0001a05 | 10186 | old_sec = r_reloc_get_section (&r_rel); |
43cd72b9 BW |
10187 | old_offset = r_rel.target_offset; |
10188 | ||
10189 | if (!old_sec || !r_reloc_is_defined (&r_rel)) | |
e0001a05 | 10190 | { |
43cd72b9 BW |
10191 | if (r_type != R_XTENSA_ASM_EXPAND) |
10192 | { | |
10193 | (*_bfd_error_handler) | |
10194 | (_("%B(%A+0x%lx): unexpected fix for %s relocation"), | |
10195 | input_bfd, input_section, rel->r_offset, | |
10196 | elf_howto_table[r_type].name); | |
10197 | return FALSE; | |
10198 | } | |
e0001a05 NC |
10199 | /* Leave it be. Resolution will happen in a later stage. */ |
10200 | } | |
10201 | else | |
10202 | { | |
10203 | sec = fix->target_sec; | |
10204 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
10205 | - (old_sec->output_offset + old_offset)); | |
10206 | } | |
43cd72b9 | 10207 | return TRUE; |
e0001a05 NC |
10208 | } |
10209 | ||
10210 | ||
10211 | static void | |
7fa3d080 BW |
10212 | do_fix_for_final_link (Elf_Internal_Rela *rel, |
10213 | bfd *input_bfd, | |
10214 | asection *input_section, | |
10215 | bfd_byte *contents, | |
10216 | bfd_vma *relocationp) | |
e0001a05 NC |
10217 | { |
10218 | asection *sec; | |
10219 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 | 10220 | reloc_bfd_fix *fix; |
43cd72b9 | 10221 | bfd_vma fixup_diff; |
e0001a05 NC |
10222 | |
10223 | if (r_type == R_XTENSA_NONE) | |
10224 | return; | |
10225 | ||
43cd72b9 BW |
10226 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10227 | if (!fix) | |
e0001a05 NC |
10228 | return; |
10229 | ||
10230 | sec = fix->target_sec; | |
43cd72b9 BW |
10231 | |
10232 | fixup_diff = rel->r_addend; | |
10233 | if (elf_howto_table[fix->src_type].partial_inplace) | |
10234 | { | |
10235 | bfd_vma inplace_val; | |
10236 | BFD_ASSERT (fix->src_offset | |
10237 | < bfd_get_section_limit (input_bfd, input_section)); | |
10238 | inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); | |
10239 | fixup_diff += inplace_val; | |
10240 | } | |
10241 | ||
e0001a05 NC |
10242 | *relocationp = (sec->output_section->vma |
10243 | + sec->output_offset | |
43cd72b9 | 10244 | + fix->target_offset - fixup_diff); |
e0001a05 NC |
10245 | } |
10246 | ||
10247 | \f | |
10248 | /* Miscellaneous utility functions.... */ | |
10249 | ||
10250 | static asection * | |
f0e6fdb2 | 10251 | elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10252 | { |
f0e6fdb2 BW |
10253 | struct elf_xtensa_link_hash_table *htab; |
10254 | bfd *dynobj; | |
e0001a05 NC |
10255 | char plt_name[10]; |
10256 | ||
10257 | if (chunk == 0) | |
f0e6fdb2 BW |
10258 | { |
10259 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
10260 | if (htab == NULL) |
10261 | return NULL; | |
10262 | ||
f0e6fdb2 BW |
10263 | return htab->splt; |
10264 | } | |
e0001a05 | 10265 | |
f0e6fdb2 | 10266 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
10267 | sprintf (plt_name, ".plt.%u", chunk); |
10268 | return bfd_get_section_by_name (dynobj, plt_name); | |
10269 | } | |
10270 | ||
10271 | ||
10272 | static asection * | |
f0e6fdb2 | 10273 | elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10274 | { |
f0e6fdb2 BW |
10275 | struct elf_xtensa_link_hash_table *htab; |
10276 | bfd *dynobj; | |
e0001a05 NC |
10277 | char got_name[14]; |
10278 | ||
10279 | if (chunk == 0) | |
f0e6fdb2 BW |
10280 | { |
10281 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
10282 | if (htab == NULL) |
10283 | return NULL; | |
f0e6fdb2 BW |
10284 | return htab->sgotplt; |
10285 | } | |
e0001a05 | 10286 | |
f0e6fdb2 | 10287 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
10288 | sprintf (got_name, ".got.plt.%u", chunk); |
10289 | return bfd_get_section_by_name (dynobj, got_name); | |
10290 | } | |
10291 | ||
10292 | ||
10293 | /* Get the input section for a given symbol index. | |
10294 | If the symbol is: | |
10295 | . a section symbol, return the section; | |
10296 | . a common symbol, return the common section; | |
10297 | . an undefined symbol, return the undefined section; | |
10298 | . an indirect symbol, follow the links; | |
10299 | . an absolute value, return the absolute section. */ | |
10300 | ||
10301 | static asection * | |
7fa3d080 | 10302 | get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10303 | { |
10304 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10305 | asection *target_sec = NULL; | |
43cd72b9 | 10306 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
10307 | { |
10308 | Elf_Internal_Sym *isymbuf; | |
10309 | unsigned int section_index; | |
10310 | ||
10311 | isymbuf = retrieve_local_syms (abfd); | |
10312 | section_index = isymbuf[r_symndx].st_shndx; | |
10313 | ||
10314 | if (section_index == SHN_UNDEF) | |
10315 | target_sec = bfd_und_section_ptr; | |
e0001a05 NC |
10316 | else if (section_index == SHN_ABS) |
10317 | target_sec = bfd_abs_section_ptr; | |
10318 | else if (section_index == SHN_COMMON) | |
10319 | target_sec = bfd_com_section_ptr; | |
43cd72b9 | 10320 | else |
cb33740c | 10321 | target_sec = bfd_section_from_elf_index (abfd, section_index); |
e0001a05 NC |
10322 | } |
10323 | else | |
10324 | { | |
10325 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
10326 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
10327 | ||
10328 | while (h->root.type == bfd_link_hash_indirect | |
10329 | || h->root.type == bfd_link_hash_warning) | |
10330 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10331 | ||
10332 | switch (h->root.type) | |
10333 | { | |
10334 | case bfd_link_hash_defined: | |
10335 | case bfd_link_hash_defweak: | |
10336 | target_sec = h->root.u.def.section; | |
10337 | break; | |
10338 | case bfd_link_hash_common: | |
10339 | target_sec = bfd_com_section_ptr; | |
10340 | break; | |
10341 | case bfd_link_hash_undefined: | |
10342 | case bfd_link_hash_undefweak: | |
10343 | target_sec = bfd_und_section_ptr; | |
10344 | break; | |
10345 | default: /* New indirect warning. */ | |
10346 | target_sec = bfd_und_section_ptr; | |
10347 | break; | |
10348 | } | |
10349 | } | |
10350 | return target_sec; | |
10351 | } | |
10352 | ||
10353 | ||
10354 | static struct elf_link_hash_entry * | |
7fa3d080 | 10355 | get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10356 | { |
10357 | unsigned long indx; | |
10358 | struct elf_link_hash_entry *h; | |
10359 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10360 | ||
10361 | if (r_symndx < symtab_hdr->sh_info) | |
10362 | return NULL; | |
43cd72b9 | 10363 | |
e0001a05 NC |
10364 | indx = r_symndx - symtab_hdr->sh_info; |
10365 | h = elf_sym_hashes (abfd)[indx]; | |
10366 | while (h->root.type == bfd_link_hash_indirect | |
10367 | || h->root.type == bfd_link_hash_warning) | |
10368 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10369 | return h; | |
10370 | } | |
10371 | ||
10372 | ||
10373 | /* Get the section-relative offset for a symbol number. */ | |
10374 | ||
10375 | static bfd_vma | |
7fa3d080 | 10376 | get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10377 | { |
10378 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10379 | bfd_vma offset = 0; | |
10380 | ||
43cd72b9 | 10381 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
10382 | { |
10383 | Elf_Internal_Sym *isymbuf; | |
10384 | isymbuf = retrieve_local_syms (abfd); | |
10385 | offset = isymbuf[r_symndx].st_value; | |
10386 | } | |
10387 | else | |
10388 | { | |
10389 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
10390 | struct elf_link_hash_entry *h = | |
10391 | elf_sym_hashes (abfd)[indx]; | |
10392 | ||
10393 | while (h->root.type == bfd_link_hash_indirect | |
10394 | || h->root.type == bfd_link_hash_warning) | |
10395 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10396 | if (h->root.type == bfd_link_hash_defined | |
10397 | || h->root.type == bfd_link_hash_defweak) | |
10398 | offset = h->root.u.def.value; | |
10399 | } | |
10400 | return offset; | |
10401 | } | |
10402 | ||
10403 | ||
10404 | static bfd_boolean | |
7fa3d080 | 10405 | is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) |
43cd72b9 BW |
10406 | { |
10407 | unsigned long r_symndx = ELF32_R_SYM (rel->r_info); | |
10408 | struct elf_link_hash_entry *h; | |
10409 | ||
10410 | h = get_elf_r_symndx_hash_entry (abfd, r_symndx); | |
10411 | if (h && h->root.type == bfd_link_hash_defweak) | |
10412 | return TRUE; | |
10413 | return FALSE; | |
10414 | } | |
10415 | ||
10416 | ||
10417 | static bfd_boolean | |
7fa3d080 BW |
10418 | pcrel_reloc_fits (xtensa_opcode opc, |
10419 | int opnd, | |
10420 | bfd_vma self_address, | |
10421 | bfd_vma dest_address) | |
e0001a05 | 10422 | { |
43cd72b9 BW |
10423 | xtensa_isa isa = xtensa_default_isa; |
10424 | uint32 valp = dest_address; | |
10425 | if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) | |
10426 | || xtensa_operand_encode (isa, opc, opnd, &valp)) | |
10427 | return FALSE; | |
10428 | return TRUE; | |
e0001a05 NC |
10429 | } |
10430 | ||
10431 | ||
10432 | static bfd_boolean | |
7fa3d080 | 10433 | xtensa_is_property_section (asection *sec) |
e0001a05 | 10434 | { |
1d25768e BW |
10435 | if (xtensa_is_insntable_section (sec) |
10436 | || xtensa_is_littable_section (sec) | |
10437 | || xtensa_is_proptable_section (sec)) | |
b614a702 | 10438 | return TRUE; |
e901de89 | 10439 | |
1d25768e BW |
10440 | return FALSE; |
10441 | } | |
10442 | ||
10443 | ||
10444 | static bfd_boolean | |
10445 | xtensa_is_insntable_section (asection *sec) | |
10446 | { | |
10447 | if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) | |
10448 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.x.")) | |
e901de89 BW |
10449 | return TRUE; |
10450 | ||
e901de89 BW |
10451 | return FALSE; |
10452 | } | |
10453 | ||
10454 | ||
10455 | static bfd_boolean | |
7fa3d080 | 10456 | xtensa_is_littable_section (asection *sec) |
e901de89 | 10457 | { |
1d25768e BW |
10458 | if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME) |
10459 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.p.")) | |
b614a702 | 10460 | return TRUE; |
e901de89 | 10461 | |
1d25768e BW |
10462 | return FALSE; |
10463 | } | |
10464 | ||
10465 | ||
10466 | static bfd_boolean | |
10467 | xtensa_is_proptable_section (asection *sec) | |
10468 | { | |
10469 | if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME) | |
10470 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop.")) | |
e901de89 | 10471 | return TRUE; |
e0001a05 | 10472 | |
e901de89 | 10473 | return FALSE; |
e0001a05 NC |
10474 | } |
10475 | ||
10476 | ||
43cd72b9 | 10477 | static int |
7fa3d080 | 10478 | internal_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 10479 | { |
43cd72b9 BW |
10480 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
10481 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
10482 | ||
10483 | if (a->r_offset != b->r_offset) | |
10484 | return (a->r_offset - b->r_offset); | |
10485 | ||
10486 | /* We don't need to sort on these criteria for correctness, | |
10487 | but enforcing a more strict ordering prevents unstable qsort | |
10488 | from behaving differently with different implementations. | |
10489 | Without the code below we get correct but different results | |
10490 | on Solaris 2.7 and 2.8. We would like to always produce the | |
10491 | same results no matter the host. */ | |
10492 | ||
10493 | if (a->r_info != b->r_info) | |
10494 | return (a->r_info - b->r_info); | |
10495 | ||
10496 | return (a->r_addend - b->r_addend); | |
e0001a05 NC |
10497 | } |
10498 | ||
10499 | ||
10500 | static int | |
7fa3d080 | 10501 | internal_reloc_matches (const void *ap, const void *bp) |
e0001a05 NC |
10502 | { |
10503 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
10504 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
10505 | ||
43cd72b9 BW |
10506 | /* Check if one entry overlaps with the other; this shouldn't happen |
10507 | except when searching for a match. */ | |
e0001a05 NC |
10508 | return (a->r_offset - b->r_offset); |
10509 | } | |
10510 | ||
10511 | ||
74869ac7 BW |
10512 | /* Predicate function used to look up a section in a particular group. */ |
10513 | ||
10514 | static bfd_boolean | |
10515 | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) | |
10516 | { | |
10517 | const char *gname = inf; | |
10518 | const char *group_name = elf_group_name (sec); | |
10519 | ||
10520 | return (group_name == gname | |
10521 | || (group_name != NULL | |
10522 | && gname != NULL | |
10523 | && strcmp (group_name, gname) == 0)); | |
10524 | } | |
10525 | ||
10526 | ||
1d25768e BW |
10527 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
10528 | ||
51c8ebc1 BW |
10529 | static char * |
10530 | xtensa_property_section_name (asection *sec, const char *base_name) | |
e0001a05 | 10531 | { |
74869ac7 BW |
10532 | const char *suffix, *group_name; |
10533 | char *prop_sec_name; | |
74869ac7 BW |
10534 | |
10535 | group_name = elf_group_name (sec); | |
10536 | if (group_name) | |
10537 | { | |
10538 | suffix = strrchr (sec->name, '.'); | |
10539 | if (suffix == sec->name) | |
10540 | suffix = 0; | |
10541 | prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1 | |
10542 | + (suffix ? strlen (suffix) : 0)); | |
10543 | strcpy (prop_sec_name, base_name); | |
10544 | if (suffix) | |
10545 | strcat (prop_sec_name, suffix); | |
10546 | } | |
10547 | else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) | |
e0001a05 | 10548 | { |
43cd72b9 | 10549 | char *linkonce_kind = 0; |
b614a702 BW |
10550 | |
10551 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) | |
7db48a12 | 10552 | linkonce_kind = "x."; |
b614a702 | 10553 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) |
7db48a12 | 10554 | linkonce_kind = "p."; |
43cd72b9 BW |
10555 | else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) |
10556 | linkonce_kind = "prop."; | |
e0001a05 | 10557 | else |
b614a702 BW |
10558 | abort (); |
10559 | ||
43cd72b9 BW |
10560 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) |
10561 | + strlen (linkonce_kind) + 1); | |
b614a702 | 10562 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); |
43cd72b9 | 10563 | strcpy (prop_sec_name + linkonce_len, linkonce_kind); |
b614a702 BW |
10564 | |
10565 | suffix = sec->name + linkonce_len; | |
096c35a7 | 10566 | /* For backward compatibility, replace "t." instead of inserting |
43cd72b9 | 10567 | the new linkonce_kind (but not for "prop" sections). */ |
0112cd26 | 10568 | if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.') |
43cd72b9 BW |
10569 | suffix += 2; |
10570 | strcat (prop_sec_name + linkonce_len, suffix); | |
74869ac7 BW |
10571 | } |
10572 | else | |
10573 | prop_sec_name = strdup (base_name); | |
10574 | ||
51c8ebc1 BW |
10575 | return prop_sec_name; |
10576 | } | |
10577 | ||
10578 | ||
10579 | static asection * | |
10580 | xtensa_get_property_section (asection *sec, const char *base_name) | |
10581 | { | |
10582 | char *prop_sec_name; | |
10583 | asection *prop_sec; | |
10584 | ||
10585 | prop_sec_name = xtensa_property_section_name (sec, base_name); | |
10586 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, | |
10587 | match_section_group, | |
10588 | (void *) elf_group_name (sec)); | |
10589 | free (prop_sec_name); | |
10590 | return prop_sec; | |
10591 | } | |
10592 | ||
10593 | ||
10594 | asection * | |
10595 | xtensa_make_property_section (asection *sec, const char *base_name) | |
10596 | { | |
10597 | char *prop_sec_name; | |
10598 | asection *prop_sec; | |
10599 | ||
74869ac7 | 10600 | /* Check if the section already exists. */ |
51c8ebc1 | 10601 | prop_sec_name = xtensa_property_section_name (sec, base_name); |
74869ac7 BW |
10602 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, |
10603 | match_section_group, | |
51c8ebc1 | 10604 | (void *) elf_group_name (sec)); |
74869ac7 BW |
10605 | /* If not, create it. */ |
10606 | if (! prop_sec) | |
10607 | { | |
10608 | flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY); | |
10609 | flags |= (bfd_get_section_flags (sec->owner, sec) | |
10610 | & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)); | |
10611 | ||
10612 | prop_sec = bfd_make_section_anyway_with_flags | |
10613 | (sec->owner, strdup (prop_sec_name), flags); | |
10614 | if (! prop_sec) | |
10615 | return 0; | |
b614a702 | 10616 | |
51c8ebc1 | 10617 | elf_group_name (prop_sec) = elf_group_name (sec); |
e0001a05 NC |
10618 | } |
10619 | ||
74869ac7 BW |
10620 | free (prop_sec_name); |
10621 | return prop_sec; | |
e0001a05 NC |
10622 | } |
10623 | ||
43cd72b9 BW |
10624 | |
10625 | flagword | |
7fa3d080 | 10626 | xtensa_get_property_predef_flags (asection *sec) |
43cd72b9 | 10627 | { |
1d25768e | 10628 | if (xtensa_is_insntable_section (sec)) |
43cd72b9 | 10629 | return (XTENSA_PROP_INSN |
99ded152 | 10630 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
10631 | | XTENSA_PROP_INSN_NO_REORDER); |
10632 | ||
10633 | if (xtensa_is_littable_section (sec)) | |
10634 | return (XTENSA_PROP_LITERAL | |
99ded152 | 10635 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
10636 | | XTENSA_PROP_INSN_NO_REORDER); |
10637 | ||
10638 | return 0; | |
10639 | } | |
10640 | ||
e0001a05 NC |
10641 | \f |
10642 | /* Other functions called directly by the linker. */ | |
10643 | ||
10644 | bfd_boolean | |
7fa3d080 BW |
10645 | xtensa_callback_required_dependence (bfd *abfd, |
10646 | asection *sec, | |
10647 | struct bfd_link_info *link_info, | |
10648 | deps_callback_t callback, | |
10649 | void *closure) | |
e0001a05 NC |
10650 | { |
10651 | Elf_Internal_Rela *internal_relocs; | |
10652 | bfd_byte *contents; | |
10653 | unsigned i; | |
10654 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
10655 | bfd_size_type sec_size; |
10656 | ||
10657 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 NC |
10658 | |
10659 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
10660 | instructions that reference the corresponding ".got.plt*" sections. */ | |
10661 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
0112cd26 | 10662 | && CONST_STRNEQ (sec->name, ".plt")) |
e0001a05 NC |
10663 | { |
10664 | asection *sgotplt; | |
10665 | ||
10666 | /* Find the corresponding ".got.plt*" section. */ | |
10667 | if (sec->name[4] == '\0') | |
10668 | sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt"); | |
10669 | else | |
10670 | { | |
10671 | char got_name[14]; | |
10672 | int chunk = 0; | |
10673 | ||
10674 | BFD_ASSERT (sec->name[4] == '.'); | |
10675 | chunk = strtol (&sec->name[5], NULL, 10); | |
10676 | ||
10677 | sprintf (got_name, ".got.plt.%u", chunk); | |
10678 | sgotplt = bfd_get_section_by_name (sec->owner, got_name); | |
10679 | } | |
10680 | BFD_ASSERT (sgotplt); | |
10681 | ||
10682 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
10683 | section referencing a literal at the very beginning of | |
10684 | ".got.plt". This is very close to the real dependence, anyway. */ | |
43cd72b9 | 10685 | (*callback) (sec, sec_size, sgotplt, 0, closure); |
e0001a05 NC |
10686 | } |
10687 | ||
13161072 BW |
10688 | /* Only ELF files are supported for Xtensa. Check here to avoid a segfault |
10689 | when building uclibc, which runs "ld -b binary /dev/null". */ | |
10690 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
10691 | return ok; | |
10692 | ||
e0001a05 NC |
10693 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
10694 | link_info->keep_memory); | |
10695 | if (internal_relocs == NULL | |
43cd72b9 | 10696 | || sec->reloc_count == 0) |
e0001a05 NC |
10697 | return ok; |
10698 | ||
10699 | /* Cache the contents for the duration of this scan. */ | |
10700 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 10701 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
10702 | { |
10703 | ok = FALSE; | |
10704 | goto error_return; | |
10705 | } | |
10706 | ||
43cd72b9 BW |
10707 | if (!xtensa_default_isa) |
10708 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 10709 | |
43cd72b9 | 10710 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
10711 | { |
10712 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 | 10713 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
e0001a05 NC |
10714 | { |
10715 | r_reloc l32r_rel; | |
10716 | asection *target_sec; | |
10717 | bfd_vma target_offset; | |
43cd72b9 BW |
10718 | |
10719 | r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); | |
e0001a05 NC |
10720 | target_sec = NULL; |
10721 | target_offset = 0; | |
10722 | /* L32Rs must be local to the input file. */ | |
10723 | if (r_reloc_is_defined (&l32r_rel)) | |
10724 | { | |
10725 | target_sec = r_reloc_get_section (&l32r_rel); | |
43cd72b9 | 10726 | target_offset = l32r_rel.target_offset; |
e0001a05 NC |
10727 | } |
10728 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
10729 | closure); | |
10730 | } | |
10731 | } | |
10732 | ||
10733 | error_return: | |
10734 | release_internal_relocs (sec, internal_relocs); | |
10735 | release_contents (sec, contents); | |
10736 | return ok; | |
10737 | } | |
10738 | ||
2f89ff8d L |
10739 | /* The default literal sections should always be marked as "code" (i.e., |
10740 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
10741 | module loader so that the literals are not placed after the text. */ | |
b35d266b | 10742 | static const struct bfd_elf_special_section elf_xtensa_special_sections[] = |
2f89ff8d | 10743 | { |
0112cd26 NC |
10744 | { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
10745 | { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
10746 | { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
2caa7ca0 | 10747 | { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, |
0112cd26 | 10748 | { NULL, 0, 0, 0, 0 } |
7f4d3958 | 10749 | }; |
e0001a05 NC |
10750 | \f |
10751 | #ifndef ELF_ARCH | |
10752 | #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec | |
10753 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" | |
10754 | #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec | |
10755 | #define TARGET_BIG_NAME "elf32-xtensa-be" | |
10756 | #define ELF_ARCH bfd_arch_xtensa | |
10757 | ||
4af0a1d8 BW |
10758 | #define ELF_MACHINE_CODE EM_XTENSA |
10759 | #define ELF_MACHINE_ALT1 EM_XTENSA_OLD | |
e0001a05 NC |
10760 | |
10761 | #if XCHAL_HAVE_MMU | |
10762 | #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE) | |
10763 | #else /* !XCHAL_HAVE_MMU */ | |
10764 | #define ELF_MAXPAGESIZE 1 | |
10765 | #endif /* !XCHAL_HAVE_MMU */ | |
10766 | #endif /* ELF_ARCH */ | |
10767 | ||
10768 | #define elf_backend_can_gc_sections 1 | |
10769 | #define elf_backend_can_refcount 1 | |
10770 | #define elf_backend_plt_readonly 1 | |
10771 | #define elf_backend_got_header_size 4 | |
10772 | #define elf_backend_want_dynbss 0 | |
10773 | #define elf_backend_want_got_plt 1 | |
10774 | ||
10775 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
10776 | ||
28dbbc02 BW |
10777 | #define bfd_elf32_mkobject elf_xtensa_mkobject |
10778 | ||
e0001a05 NC |
10779 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
10780 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
10781 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
10782 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
10783 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
157090f7 AM |
10784 | #define bfd_elf32_bfd_reloc_name_lookup \ |
10785 | elf_xtensa_reloc_name_lookup | |
e0001a05 | 10786 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags |
f0e6fdb2 | 10787 | #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create |
e0001a05 NC |
10788 | |
10789 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
10790 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
10791 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
10792 | #define elf_backend_discard_info elf_xtensa_discard_info | |
10793 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
10794 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
10795 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
10796 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
10797 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
10798 | #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook | |
10799 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus | |
10800 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
95147441 | 10801 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol |
e0001a05 NC |
10802 | #define elf_backend_object_p elf_xtensa_object_p |
10803 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
10804 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
10805 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
28dbbc02 | 10806 | #define elf_backend_always_size_sections elf_xtensa_always_size_sections |
74541ad4 AM |
10807 | #define elf_backend_omit_section_dynsym \ |
10808 | ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) | |
29ef7005 | 10809 | #define elf_backend_special_sections elf_xtensa_special_sections |
a77dc2cc | 10810 | #define elf_backend_action_discarded elf_xtensa_action_discarded |
28dbbc02 | 10811 | #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol |
e0001a05 NC |
10812 | |
10813 | #include "elf32-target.h" |