bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
f592407e 2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05
NC
20
21#include "bfd.h"
22#include "sysdep.h"
23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
7fa3d080 38static bfd_boolean add_extra_plt_sections (bfd *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
7fa3d080
BW
97static asection *elf_xtensa_get_plt_section (bfd *, int);
98static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
106static bfd_boolean xtensa_is_littable_section (asection *);
107static int internal_reloc_compare (const void *, const void *);
108static int internal_reloc_matches (const void *, const void *);
109extern char *xtensa_get_property_section_name (asection *, const char *);
110static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
111
112/* Other functions called directly by the linker. */
113
114typedef void (*deps_callback_t)
7fa3d080 115 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 116extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
118
119
43cd72b9
BW
120/* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
7fa3d080 124
43cd72b9
BW
125int elf32xtensa_size_opt;
126
127
128/* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
e0001a05 131
7fa3d080 132typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 133
43cd72b9 134
e0001a05
NC
135/* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
b536dc1e 139 needed. It is OK if this count is an overestimate, e.g., some
e0001a05
NC
140 relocations may be removed by GC. */
141
142static int plt_reloc_count = 0;
143
144
43cd72b9
BW
145/* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
149
150xtensa_isa xtensa_default_isa;
151
152
e0001a05
NC
153/* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
156
157static bfd_boolean relaxing_section = FALSE;
158
43cd72b9
BW
159/* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
161
162int elf32xtensa_no_literal_movement = 1;
163
e0001a05
NC
164\f
165static reloc_howto_type elf_howto_table[] =
166{
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
43cd72b9
BW
220 FALSE, 0x00000000, 0x00000000, FALSE),
221
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
279
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
e0001a05
NC
326};
327
43cd72b9 328#if DEBUG_GEN_RELOC
e0001a05
NC
329#define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331#else
332#define TRACE(str)
333#endif
334
335static reloc_howto_type *
7fa3d080
BW
336elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
e0001a05
NC
338{
339 switch (code)
340 {
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
344
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
348
43cd72b9
BW
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
352
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
356
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
360
e0001a05
NC
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
364
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
368
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
372
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
376
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
380
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
384
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
388
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
392
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
396
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
400
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
404
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
408
409 default:
43cd72b9
BW
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
412 {
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
416 }
417
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
420 {
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
424 }
425
e0001a05
NC
426 break;
427 }
428
429 TRACE ("Unknown");
430 return NULL;
431}
432
433
434/* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
436
437static void
7fa3d080
BW
438elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
e0001a05
NC
441{
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
443
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
446}
447
448\f
449/* Functions for the Xtensa ELF linker. */
450
451/* The name of the dynamic interpreter. This is put in the .interp
452 section. */
453
454#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
455
456/* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
459
460#define PLT_ENTRY_SIZE 16
461
462/* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
471
472#define PLT_ENTRIES_PER_CHUNK 254
473
474/* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
478
479static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
480{
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
487};
488
489static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
490{
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
497};
498
571b5725
BW
499
500static inline bfd_boolean
7fa3d080
BW
501xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
571b5725
BW
503{
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
509
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
511}
512
e0001a05
NC
513\f
514static int
7fa3d080 515property_table_compare (const void *ap, const void *bp)
e0001a05
NC
516{
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
519
43cd72b9
BW
520 if (a->address == b->address)
521 {
43cd72b9
BW
522 if (a->size != b->size)
523 return (a->size - b->size);
524
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
528
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
534
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
539
540 return (a->flags - b->flags);
541 }
542
543 return (a->address - b->address);
544}
545
546
547static int
7fa3d080 548property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
549{
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
552
553 /* Check if one entry overlaps with the other. */
e0001a05
NC
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
557
558 return (a->address - b->address);
559}
560
561
43cd72b9
BW
562/* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
e0001a05 565
7fa3d080
BW
566static int
567xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
e0001a05
NC
572{
573 asection *table_section;
574 char *table_section_name;
575 bfd_size_type table_size = 0;
576 bfd_byte *table_data;
577 property_table_entry *blocks;
e4115460 578 int blk, block_count;
e0001a05
NC
579 bfd_size_type num_records;
580 Elf_Internal_Rela *internal_relocs;
3ba3bc8c 581 bfd_vma section_addr;
43cd72b9
BW
582 flagword predef_flags;
583 bfd_size_type table_entry_size;
584
585 if (!section
586 || !(section->flags & SEC_ALLOC)
587 || (section->flags & SEC_DEBUGGING))
588 {
589 *table_p = NULL;
590 return 0;
591 }
e0001a05 592
43cd72b9 593 table_section_name = xtensa_get_property_section_name (section, sec_name);
e0001a05 594 table_section = bfd_get_section_by_name (abfd, table_section_name);
b614a702 595 free (table_section_name);
43cd72b9 596 if (table_section)
eea6121a 597 table_size = table_section->size;
43cd72b9 598
e0001a05
NC
599 if (table_size == 0)
600 {
601 *table_p = NULL;
602 return 0;
603 }
604
43cd72b9
BW
605 predef_flags = xtensa_get_property_predef_flags (table_section);
606 table_entry_size = 12;
607 if (predef_flags)
608 table_entry_size -= 4;
609
610 num_records = table_size / table_entry_size;
e0001a05
NC
611 table_data = retrieve_contents (abfd, table_section, TRUE);
612 blocks = (property_table_entry *)
613 bfd_malloc (num_records * sizeof (property_table_entry));
614 block_count = 0;
43cd72b9
BW
615
616 if (output_addr)
617 section_addr = section->output_section->vma + section->output_offset;
618 else
619 section_addr = section->vma;
3ba3bc8c 620
e0001a05
NC
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 624 if (internal_relocs && !table_section->reloc_done)
e0001a05
NC
625 {
626 unsigned i;
627
628 for (i = 0; i < table_section->reloc_count; i++)
629 {
630 Elf_Internal_Rela *rel = &internal_relocs[i];
631 unsigned long r_symndx;
632
633 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
634 continue;
635
636 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
637 r_symndx = ELF32_R_SYM (rel->r_info);
638
639 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
640 {
641 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
43cd72b9 642 BFD_ASSERT (sym_off == 0);
e0001a05 643 blocks[block_count].address =
3ba3bc8c 644 (section_addr + sym_off + rel->r_addend
e0001a05
NC
645 + bfd_get_32 (abfd, table_data + rel->r_offset));
646 blocks[block_count].size =
647 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
43cd72b9
BW
648 if (predef_flags)
649 blocks[block_count].flags = predef_flags;
650 else
651 blocks[block_count].flags =
652 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
e0001a05
NC
653 block_count++;
654 }
655 }
656 }
657 else
658 {
3ba3bc8c
BW
659 /* The file has already been relocated and the addresses are
660 already in the table. */
e0001a05 661 bfd_vma off;
43cd72b9 662 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
e0001a05 663
43cd72b9 664 for (off = 0; off < table_size; off += table_entry_size)
e0001a05
NC
665 {
666 bfd_vma address = bfd_get_32 (abfd, table_data + off);
667
3ba3bc8c 668 if (address >= section_addr
43cd72b9 669 && address < section_addr + section_limit)
e0001a05
NC
670 {
671 blocks[block_count].address = address;
672 blocks[block_count].size =
673 bfd_get_32 (abfd, table_data + off + 4);
43cd72b9
BW
674 if (predef_flags)
675 blocks[block_count].flags = predef_flags;
676 else
677 blocks[block_count].flags =
678 bfd_get_32 (abfd, table_data + off + 8);
e0001a05
NC
679 block_count++;
680 }
681 }
682 }
683
684 release_contents (table_section, table_data);
685 release_internal_relocs (table_section, internal_relocs);
686
43cd72b9 687 if (block_count > 0)
e0001a05
NC
688 {
689 /* Now sort them into address order for easy reference. */
690 qsort (blocks, block_count, sizeof (property_table_entry),
691 property_table_compare);
e4115460
BW
692
693 /* Check that the table contents are valid. Problems may occur,
694 for example, if an unrelocated object file is stripped. */
695 for (blk = 1; blk < block_count; blk++)
696 {
697 /* The only circumstance where two entries may legitimately
698 have the same address is when one of them is a zero-size
699 placeholder to mark a place where fill can be inserted.
700 The zero-size entry should come first. */
701 if (blocks[blk - 1].address == blocks[blk].address &&
702 blocks[blk - 1].size != 0)
703 {
704 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
705 abfd, section);
706 bfd_set_error (bfd_error_bad_value);
707 free (blocks);
708 return -1;
709 }
710 }
e0001a05 711 }
43cd72b9 712
e0001a05
NC
713 *table_p = blocks;
714 return block_count;
715}
716
717
7fa3d080
BW
718static property_table_entry *
719elf_xtensa_find_property_entry (property_table_entry *property_table,
720 int property_table_size,
721 bfd_vma addr)
e0001a05
NC
722{
723 property_table_entry entry;
43cd72b9 724 property_table_entry *rv;
e0001a05 725
43cd72b9
BW
726 if (property_table_size == 0)
727 return NULL;
e0001a05
NC
728
729 entry.address = addr;
730 entry.size = 1;
43cd72b9 731 entry.flags = 0;
e0001a05 732
43cd72b9
BW
733 rv = bsearch (&entry, property_table, property_table_size,
734 sizeof (property_table_entry), property_table_matches);
735 return rv;
736}
737
738
739static bfd_boolean
7fa3d080
BW
740elf_xtensa_in_literal_pool (property_table_entry *lit_table,
741 int lit_table_size,
742 bfd_vma addr)
43cd72b9
BW
743{
744 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
745 return TRUE;
746
747 return FALSE;
748}
749
750\f
751/* Look through the relocs for a section during the first phase, and
752 calculate needed space in the dynamic reloc sections. */
753
754static bfd_boolean
7fa3d080
BW
755elf_xtensa_check_relocs (bfd *abfd,
756 struct bfd_link_info *info,
757 asection *sec,
758 const Elf_Internal_Rela *relocs)
e0001a05
NC
759{
760 Elf_Internal_Shdr *symtab_hdr;
761 struct elf_link_hash_entry **sym_hashes;
762 const Elf_Internal_Rela *rel;
763 const Elf_Internal_Rela *rel_end;
e0001a05 764
1049f94e 765 if (info->relocatable)
e0001a05
NC
766 return TRUE;
767
768 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
769 sym_hashes = elf_sym_hashes (abfd);
770
e0001a05
NC
771 rel_end = relocs + sec->reloc_count;
772 for (rel = relocs; rel < rel_end; rel++)
773 {
774 unsigned int r_type;
775 unsigned long r_symndx;
776 struct elf_link_hash_entry *h;
777
778 r_symndx = ELF32_R_SYM (rel->r_info);
779 r_type = ELF32_R_TYPE (rel->r_info);
780
781 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
782 {
d003868e
AM
783 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
784 abfd, r_symndx);
e0001a05
NC
785 return FALSE;
786 }
787
788 if (r_symndx < symtab_hdr->sh_info)
789 h = NULL;
790 else
791 {
792 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
793 while (h->root.type == bfd_link_hash_indirect
794 || h->root.type == bfd_link_hash_warning)
795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
796 }
797
798 switch (r_type)
799 {
800 case R_XTENSA_32:
801 if (h == NULL)
802 goto local_literal;
803
804 if ((sec->flags & SEC_ALLOC) != 0)
805 {
e0001a05
NC
806 if (h->got.refcount <= 0)
807 h->got.refcount = 1;
808 else
809 h->got.refcount += 1;
810 }
811 break;
812
813 case R_XTENSA_PLT:
814 /* If this relocation is against a local symbol, then it's
815 exactly the same as a normal local GOT entry. */
816 if (h == NULL)
817 goto local_literal;
818
819 if ((sec->flags & SEC_ALLOC) != 0)
820 {
e0001a05
NC
821 if (h->plt.refcount <= 0)
822 {
f5385ebf 823 h->needs_plt = 1;
e0001a05
NC
824 h->plt.refcount = 1;
825 }
826 else
827 h->plt.refcount += 1;
828
829 /* Keep track of the total PLT relocation count even if we
830 don't yet know whether the dynamic sections will be
831 created. */
832 plt_reloc_count += 1;
833
834 if (elf_hash_table (info)->dynamic_sections_created)
835 {
836 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
837 plt_reloc_count))
838 return FALSE;
839 }
840 }
841 break;
842
843 local_literal:
844 if ((sec->flags & SEC_ALLOC) != 0)
845 {
846 bfd_signed_vma *local_got_refcounts;
847
848 /* This is a global offset table entry for a local symbol. */
849 local_got_refcounts = elf_local_got_refcounts (abfd);
850 if (local_got_refcounts == NULL)
851 {
852 bfd_size_type size;
853
854 size = symtab_hdr->sh_info;
855 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
856 local_got_refcounts =
857 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
858 if (local_got_refcounts == NULL)
859 return FALSE;
860 elf_local_got_refcounts (abfd) = local_got_refcounts;
861 }
862 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
863 }
864 break;
865
866 case R_XTENSA_OP0:
867 case R_XTENSA_OP1:
868 case R_XTENSA_OP2:
43cd72b9
BW
869 case R_XTENSA_SLOT0_OP:
870 case R_XTENSA_SLOT1_OP:
871 case R_XTENSA_SLOT2_OP:
872 case R_XTENSA_SLOT3_OP:
873 case R_XTENSA_SLOT4_OP:
874 case R_XTENSA_SLOT5_OP:
875 case R_XTENSA_SLOT6_OP:
876 case R_XTENSA_SLOT7_OP:
877 case R_XTENSA_SLOT8_OP:
878 case R_XTENSA_SLOT9_OP:
879 case R_XTENSA_SLOT10_OP:
880 case R_XTENSA_SLOT11_OP:
881 case R_XTENSA_SLOT12_OP:
882 case R_XTENSA_SLOT13_OP:
883 case R_XTENSA_SLOT14_OP:
884 case R_XTENSA_SLOT0_ALT:
885 case R_XTENSA_SLOT1_ALT:
886 case R_XTENSA_SLOT2_ALT:
887 case R_XTENSA_SLOT3_ALT:
888 case R_XTENSA_SLOT4_ALT:
889 case R_XTENSA_SLOT5_ALT:
890 case R_XTENSA_SLOT6_ALT:
891 case R_XTENSA_SLOT7_ALT:
892 case R_XTENSA_SLOT8_ALT:
893 case R_XTENSA_SLOT9_ALT:
894 case R_XTENSA_SLOT10_ALT:
895 case R_XTENSA_SLOT11_ALT:
896 case R_XTENSA_SLOT12_ALT:
897 case R_XTENSA_SLOT13_ALT:
898 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
899 case R_XTENSA_ASM_EXPAND:
900 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
901 case R_XTENSA_DIFF8:
902 case R_XTENSA_DIFF16:
903 case R_XTENSA_DIFF32:
e0001a05
NC
904 /* Nothing to do for these. */
905 break;
906
907 case R_XTENSA_GNU_VTINHERIT:
908 /* This relocation describes the C++ object vtable hierarchy.
909 Reconstruct it for later use during GC. */
c152c796 910 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
911 return FALSE;
912 break;
913
914 case R_XTENSA_GNU_VTENTRY:
915 /* This relocation describes which C++ vtable entries are actually
916 used. Record for later use during GC. */
c152c796 917 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
918 return FALSE;
919 break;
920
921 default:
922 break;
923 }
924 }
925
e0001a05
NC
926 return TRUE;
927}
928
929
930static void
7fa3d080
BW
931elf_xtensa_make_sym_local (struct bfd_link_info *info,
932 struct elf_link_hash_entry *h)
933{
934 if (info->shared)
935 {
936 if (h->plt.refcount > 0)
937 {
938 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
939 if (h->got.refcount < 0)
940 h->got.refcount = 0;
941 h->got.refcount += h->plt.refcount;
942 h->plt.refcount = 0;
943 }
944 }
945 else
946 {
947 /* Don't need any dynamic relocations at all. */
948 h->plt.refcount = 0;
949 h->got.refcount = 0;
950 }
951}
952
953
954static void
955elf_xtensa_hide_symbol (struct bfd_link_info *info,
956 struct elf_link_hash_entry *h,
957 bfd_boolean force_local)
e0001a05
NC
958{
959 /* For a shared link, move the plt refcount to the got refcount to leave
960 space for RELATIVE relocs. */
961 elf_xtensa_make_sym_local (info, h);
962
963 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
964}
965
966
e0001a05
NC
967/* Return the section that should be marked against GC for a given
968 relocation. */
969
970static asection *
7fa3d080
BW
971elf_xtensa_gc_mark_hook (asection *sec,
972 struct bfd_link_info *info ATTRIBUTE_UNUSED,
973 Elf_Internal_Rela *rel,
974 struct elf_link_hash_entry *h,
975 Elf_Internal_Sym *sym)
e0001a05 976{
7fa3d080 977 if (h)
e0001a05
NC
978 {
979 switch (ELF32_R_TYPE (rel->r_info))
980 {
981 case R_XTENSA_GNU_VTINHERIT:
982 case R_XTENSA_GNU_VTENTRY:
983 break;
984
985 default:
986 switch (h->root.type)
987 {
988 case bfd_link_hash_defined:
989 case bfd_link_hash_defweak:
990 return h->root.u.def.section;
991
992 case bfd_link_hash_common:
993 return h->root.u.c.p->section;
994
995 default:
996 break;
997 }
998 }
999 }
1000 else
1001 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1002
1003 return NULL;
1004}
1005
7fa3d080 1006
e0001a05
NC
1007/* Update the GOT & PLT entry reference counts
1008 for the section being removed. */
1009
1010static bfd_boolean
7fa3d080
BW
1011elf_xtensa_gc_sweep_hook (bfd *abfd,
1012 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1013 asection *sec,
1014 const Elf_Internal_Rela *relocs)
e0001a05
NC
1015{
1016 Elf_Internal_Shdr *symtab_hdr;
1017 struct elf_link_hash_entry **sym_hashes;
1018 bfd_signed_vma *local_got_refcounts;
1019 const Elf_Internal_Rela *rel, *relend;
1020
1021 if ((sec->flags & SEC_ALLOC) == 0)
1022 return TRUE;
1023
1024 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1025 sym_hashes = elf_sym_hashes (abfd);
1026 local_got_refcounts = elf_local_got_refcounts (abfd);
1027
1028 relend = relocs + sec->reloc_count;
1029 for (rel = relocs; rel < relend; rel++)
1030 {
1031 unsigned long r_symndx;
1032 unsigned int r_type;
1033 struct elf_link_hash_entry *h = NULL;
1034
1035 r_symndx = ELF32_R_SYM (rel->r_info);
1036 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1037 {
1038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1042 }
e0001a05
NC
1043
1044 r_type = ELF32_R_TYPE (rel->r_info);
1045 switch (r_type)
1046 {
1047 case R_XTENSA_32:
1048 if (h == NULL)
1049 goto local_literal;
1050 if (h->got.refcount > 0)
1051 h->got.refcount--;
1052 break;
1053
1054 case R_XTENSA_PLT:
1055 if (h == NULL)
1056 goto local_literal;
1057 if (h->plt.refcount > 0)
1058 h->plt.refcount--;
1059 break;
1060
1061 local_literal:
1062 if (local_got_refcounts[r_symndx] > 0)
1063 local_got_refcounts[r_symndx] -= 1;
1064 break;
1065
1066 default:
1067 break;
1068 }
1069 }
1070
1071 return TRUE;
1072}
1073
1074
1075/* Create all the dynamic sections. */
1076
1077static bfd_boolean
7fa3d080 1078elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1079{
e901de89 1080 flagword flags, noalloc_flags;
e0001a05
NC
1081 asection *s;
1082
1083 /* First do all the standard stuff. */
1084 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1085 return FALSE;
1086
1087 /* Create any extra PLT sections in case check_relocs has already
1088 been called on all the non-dynamic input files. */
1089 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1090 return FALSE;
1091
e901de89
BW
1092 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1093 | SEC_LINKER_CREATED | SEC_READONLY);
1094 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1095
1096 /* Mark the ".got.plt" section READONLY. */
1097 s = bfd_get_section_by_name (dynobj, ".got.plt");
1098 if (s == NULL
1099 || ! bfd_set_section_flags (dynobj, s, flags))
1100 return FALSE;
1101
1102 /* Create ".rela.got". */
3496cb2a 1103 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
e0001a05 1104 if (s == NULL
e0001a05
NC
1105 || ! bfd_set_section_alignment (dynobj, s, 2))
1106 return FALSE;
1107
e901de89 1108 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3496cb2a 1109 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
e901de89 1110 if (s == NULL
e901de89
BW
1111 || ! bfd_set_section_alignment (dynobj, s, 2))
1112 return FALSE;
1113
e0001a05 1114 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3496cb2a
L
1115 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1116 noalloc_flags);
e0001a05 1117 if (s == NULL
e0001a05
NC
1118 || ! bfd_set_section_alignment (dynobj, s, 2))
1119 return FALSE;
1120
1121 return TRUE;
1122}
1123
1124
1125static bfd_boolean
7fa3d080 1126add_extra_plt_sections (bfd *dynobj, int count)
e0001a05
NC
1127{
1128 int chunk;
1129
1130 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1131 ".got.plt" sections. */
1132 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1133 {
1134 char *sname;
1135 flagword flags;
1136 asection *s;
1137
1138 /* Stop when we find a section has already been created. */
1139 if (elf_xtensa_get_plt_section (dynobj, chunk))
1140 break;
1141
1142 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1143 | SEC_LINKER_CREATED | SEC_READONLY);
1144
1145 sname = (char *) bfd_malloc (10);
1146 sprintf (sname, ".plt.%u", chunk);
3496cb2a
L
1147 s = bfd_make_section_with_flags (dynobj, sname,
1148 flags | SEC_CODE);
e0001a05 1149 if (s == NULL
e0001a05
NC
1150 || ! bfd_set_section_alignment (dynobj, s, 2))
1151 return FALSE;
1152
1153 sname = (char *) bfd_malloc (14);
1154 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1155 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1156 if (s == NULL
e0001a05
NC
1157 || ! bfd_set_section_alignment (dynobj, s, 2))
1158 return FALSE;
1159 }
1160
1161 return TRUE;
1162}
1163
1164
1165/* Adjust a symbol defined by a dynamic object and referenced by a
1166 regular object. The current definition is in some section of the
1167 dynamic object, but we're not including those sections. We have to
1168 change the definition to something the rest of the link can
1169 understand. */
1170
1171static bfd_boolean
7fa3d080
BW
1172elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1173 struct elf_link_hash_entry *h)
e0001a05
NC
1174{
1175 /* If this is a weak symbol, and there is a real definition, the
1176 processor independent code will have arranged for us to see the
1177 real definition first, and we can just use the same value. */
7fa3d080 1178 if (h->u.weakdef)
e0001a05 1179 {
f6e332e6
AM
1180 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1181 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1182 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1183 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1184 return TRUE;
1185 }
1186
1187 /* This is a reference to a symbol defined by a dynamic object. The
1188 reference must go through the GOT, so there's no need for COPY relocs,
1189 .dynbss, etc. */
1190
1191 return TRUE;
1192}
1193
1194
e0001a05 1195static bfd_boolean
7fa3d080 1196elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1197{
1198 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1199
1200 if (h->root.type == bfd_link_hash_warning)
1201 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1202
571b5725 1203 if (! xtensa_elf_dynamic_symbol_p (h, info))
e0001a05
NC
1204 elf_xtensa_make_sym_local (info, h);
1205
e0001a05
NC
1206 return TRUE;
1207}
1208
1209
1210static bfd_boolean
7fa3d080 1211elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1212{
1213 asection *srelplt = (asection *) arg;
1214
1215 if (h->root.type == bfd_link_hash_warning)
1216 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1217
1218 if (h->plt.refcount > 0)
eea6121a 1219 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1220
1221 return TRUE;
1222}
1223
1224
1225static bfd_boolean
7fa3d080 1226elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1227{
1228 asection *srelgot = (asection *) arg;
1229
1230 if (h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1232
1233 if (h->got.refcount > 0)
eea6121a 1234 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1235
1236 return TRUE;
1237}
1238
1239
1240static void
7fa3d080
BW
1241elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1242 asection *srelgot)
e0001a05
NC
1243{
1244 bfd *i;
1245
1246 for (i = info->input_bfds; i; i = i->link_next)
1247 {
1248 bfd_signed_vma *local_got_refcounts;
1249 bfd_size_type j, cnt;
1250 Elf_Internal_Shdr *symtab_hdr;
1251
1252 local_got_refcounts = elf_local_got_refcounts (i);
1253 if (!local_got_refcounts)
1254 continue;
1255
1256 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1257 cnt = symtab_hdr->sh_info;
1258
1259 for (j = 0; j < cnt; ++j)
1260 {
1261 if (local_got_refcounts[j] > 0)
eea6121a
AM
1262 srelgot->size += (local_got_refcounts[j]
1263 * sizeof (Elf32_External_Rela));
e0001a05
NC
1264 }
1265 }
1266}
1267
1268
1269/* Set the sizes of the dynamic sections. */
1270
1271static bfd_boolean
7fa3d080
BW
1272elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1273 struct bfd_link_info *info)
e0001a05 1274{
e901de89
BW
1275 bfd *dynobj, *abfd;
1276 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1277 bfd_boolean relplt, relgot;
1278 int plt_entries, plt_chunks, chunk;
1279
1280 plt_entries = 0;
1281 plt_chunks = 0;
1282 srelgot = 0;
1283
1284 dynobj = elf_hash_table (info)->dynobj;
1285 if (dynobj == NULL)
1286 abort ();
1287
1288 if (elf_hash_table (info)->dynamic_sections_created)
1289 {
1290 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1291 if (info->executable)
e0001a05
NC
1292 {
1293 s = bfd_get_section_by_name (dynobj, ".interp");
1294 if (s == NULL)
1295 abort ();
eea6121a 1296 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1297 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1298 }
1299
1300 /* Allocate room for one word in ".got". */
1301 s = bfd_get_section_by_name (dynobj, ".got");
1302 if (s == NULL)
1303 abort ();
eea6121a 1304 s->size = 4;
e0001a05
NC
1305
1306 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1307 elf_link_hash_traverse (elf_hash_table (info),
1308 elf_xtensa_fix_refcounts,
7fa3d080 1309 (void *) info);
e0001a05
NC
1310
1311 /* Allocate space in ".rela.got" for literals that reference
1312 global symbols. */
1313 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1314 if (srelgot == NULL)
1315 abort ();
1316 elf_link_hash_traverse (elf_hash_table (info),
1317 elf_xtensa_allocate_got_size,
7fa3d080 1318 (void *) srelgot);
e0001a05
NC
1319
1320 /* If we are generating a shared object, we also need space in
1321 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1322 reference local symbols. */
1323 if (info->shared)
1324 elf_xtensa_allocate_local_got_size (info, srelgot);
1325
1326 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1327 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1328 if (srelplt == NULL)
1329 abort ();
1330 elf_link_hash_traverse (elf_hash_table (info),
1331 elf_xtensa_allocate_plt_size,
7fa3d080 1332 (void *) srelplt);
e0001a05
NC
1333
1334 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1335 each PLT entry, we need the PLT code plus a 4-byte literal.
1336 For each chunk of ".plt", we also need two more 4-byte
1337 literals, two corresponding entries in ".rela.got", and an
1338 8-byte entry in ".xt.lit.plt". */
1339 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1340 if (spltlittbl == NULL)
1341 abort ();
1342
eea6121a 1343 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1344 plt_chunks =
1345 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1346
1347 /* Iterate over all the PLT chunks, including any extra sections
1348 created earlier because the initial count of PLT relocations
1349 was an overestimate. */
1350 for (chunk = 0;
1351 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1352 chunk++)
1353 {
1354 int chunk_entries;
1355
1356 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1357 if (sgotplt == NULL)
1358 abort ();
1359
1360 if (chunk < plt_chunks - 1)
1361 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1362 else if (chunk == plt_chunks - 1)
1363 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1364 else
1365 chunk_entries = 0;
1366
1367 if (chunk_entries != 0)
1368 {
eea6121a
AM
1369 sgotplt->size = 4 * (chunk_entries + 2);
1370 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1371 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1372 spltlittbl->size += 8;
e0001a05
NC
1373 }
1374 else
1375 {
eea6121a
AM
1376 sgotplt->size = 0;
1377 splt->size = 0;
e0001a05
NC
1378 }
1379 }
e901de89
BW
1380
1381 /* Allocate space in ".got.loc" to match the total size of all the
1382 literal tables. */
1383 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1384 if (sgotloc == NULL)
1385 abort ();
eea6121a 1386 sgotloc->size = spltlittbl->size;
e901de89
BW
1387 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1388 {
1389 if (abfd->flags & DYNAMIC)
1390 continue;
1391 for (s = abfd->sections; s != NULL; s = s->next)
1392 {
b536dc1e
BW
1393 if (! elf_discarded_section (s)
1394 && xtensa_is_littable_section (s)
1395 && s != spltlittbl)
eea6121a 1396 sgotloc->size += s->size;
e901de89
BW
1397 }
1398 }
e0001a05
NC
1399 }
1400
1401 /* Allocate memory for dynamic sections. */
1402 relplt = FALSE;
1403 relgot = FALSE;
1404 for (s = dynobj->sections; s != NULL; s = s->next)
1405 {
1406 const char *name;
e0001a05
NC
1407
1408 if ((s->flags & SEC_LINKER_CREATED) == 0)
1409 continue;
1410
1411 /* It's OK to base decisions on the section name, because none
1412 of the dynobj section names depend upon the input files. */
1413 name = bfd_get_section_name (dynobj, s);
1414
e0001a05
NC
1415 if (strncmp (name, ".rela", 5) == 0)
1416 {
c456f082 1417 if (s->size != 0)
e0001a05 1418 {
c456f082
AM
1419 if (strcmp (name, ".rela.plt") == 0)
1420 relplt = TRUE;
1421 else if (strcmp (name, ".rela.got") == 0)
1422 relgot = TRUE;
1423
1424 /* We use the reloc_count field as a counter if we need
1425 to copy relocs into the output file. */
1426 s->reloc_count = 0;
e0001a05
NC
1427 }
1428 }
c456f082
AM
1429 else if (strncmp (name, ".plt.", 5) != 0
1430 && strncmp (name, ".got.plt.", 9) != 0
1431 && strcmp (name, ".got") != 0
e0001a05
NC
1432 && strcmp (name, ".plt") != 0
1433 && strcmp (name, ".got.plt") != 0
e901de89
BW
1434 && strcmp (name, ".xt.lit.plt") != 0
1435 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1436 {
1437 /* It's not one of our sections, so don't allocate space. */
1438 continue;
1439 }
1440
c456f082
AM
1441 if (s->size == 0)
1442 {
1443 /* If we don't need this section, strip it from the output
1444 file. We must create the ".plt*" and ".got.plt*"
1445 sections in create_dynamic_sections and/or check_relocs
1446 based on a conservative estimate of the PLT relocation
1447 count, because the sections must be created before the
1448 linker maps input sections to output sections. The
1449 linker does that before size_dynamic_sections, where we
1450 compute the exact size of the PLT, so there may be more
1451 of these sections than are actually needed. */
1452 s->flags |= SEC_EXCLUDE;
1453 }
1454 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1455 {
1456 /* Allocate memory for the section contents. */
eea6121a 1457 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1458 if (s->contents == NULL)
e0001a05
NC
1459 return FALSE;
1460 }
1461 }
1462
1463 if (elf_hash_table (info)->dynamic_sections_created)
1464 {
1465 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1466 known until finish_dynamic_sections, but we need to get the relocs
1467 in place before they are sorted. */
1468 if (srelgot == NULL)
1469 abort ();
1470 for (chunk = 0; chunk < plt_chunks; chunk++)
1471 {
1472 Elf_Internal_Rela irela;
1473 bfd_byte *loc;
1474
1475 irela.r_offset = 0;
1476 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1477 irela.r_addend = 0;
1478
1479 loc = (srelgot->contents
1480 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1481 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1482 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1483 loc + sizeof (Elf32_External_Rela));
1484 srelgot->reloc_count += 2;
1485 }
1486
1487 /* Add some entries to the .dynamic section. We fill in the
1488 values later, in elf_xtensa_finish_dynamic_sections, but we
1489 must add the entries now so that we get the correct size for
1490 the .dynamic section. The DT_DEBUG entry is filled in by the
1491 dynamic linker and used by the debugger. */
1492#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1493 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05
NC
1494
1495 if (! info->shared)
1496 {
1497 if (!add_dynamic_entry (DT_DEBUG, 0))
1498 return FALSE;
1499 }
1500
1501 if (relplt)
1502 {
1503 if (!add_dynamic_entry (DT_PLTGOT, 0)
1504 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1505 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1506 || !add_dynamic_entry (DT_JMPREL, 0))
1507 return FALSE;
1508 }
1509
1510 if (relgot)
1511 {
1512 if (!add_dynamic_entry (DT_RELA, 0)
1513 || !add_dynamic_entry (DT_RELASZ, 0)
1514 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1515 return FALSE;
1516 }
1517
e0001a05
NC
1518 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1519 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1520 return FALSE;
1521 }
1522#undef add_dynamic_entry
1523
1524 return TRUE;
1525}
1526
1527\f
1528/* Remove any PT_LOAD segments with no allocated sections. Prior to
1529 binutils 2.13, this function used to remove the non-SEC_ALLOC
1530 sections from PT_LOAD segments, but that task has now been moved
1531 into elf.c. We still need this function to remove any empty
1532 segments that result, but there's nothing Xtensa-specific about
1533 this and it probably ought to be moved into elf.c as well. */
1534
1535static bfd_boolean
7fa3d080
BW
1536elf_xtensa_modify_segment_map (bfd *abfd,
1537 struct bfd_link_info *info ATTRIBUTE_UNUSED)
e0001a05
NC
1538{
1539 struct elf_segment_map **m_p;
1540
1541 m_p = &elf_tdata (abfd)->segment_map;
7fa3d080 1542 while (*m_p)
e0001a05
NC
1543 {
1544 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1545 *m_p = (*m_p)->next;
1546 else
1547 m_p = &(*m_p)->next;
1548 }
1549 return TRUE;
1550}
1551
1552\f
1553/* Perform the specified relocation. The instruction at (contents + address)
1554 is modified to set one operand to represent the value in "relocation". The
1555 operand position is determined by the relocation type recorded in the
1556 howto. */
1557
1558#define CALL_SEGMENT_BITS (30)
7fa3d080 1559#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1560
1561static bfd_reloc_status_type
7fa3d080
BW
1562elf_xtensa_do_reloc (reloc_howto_type *howto,
1563 bfd *abfd,
1564 asection *input_section,
1565 bfd_vma relocation,
1566 bfd_byte *contents,
1567 bfd_vma address,
1568 bfd_boolean is_weak_undef,
1569 char **error_message)
e0001a05 1570{
43cd72b9 1571 xtensa_format fmt;
e0001a05 1572 xtensa_opcode opcode;
e0001a05 1573 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1574 static xtensa_insnbuf ibuff = NULL;
1575 static xtensa_insnbuf sbuff = NULL;
1576 bfd_vma self_address = 0;
1577 bfd_size_type input_size;
1578 int opnd, slot;
e0001a05
NC
1579 uint32 newval;
1580
43cd72b9
BW
1581 if (!ibuff)
1582 {
1583 ibuff = xtensa_insnbuf_alloc (isa);
1584 sbuff = xtensa_insnbuf_alloc (isa);
1585 }
1586
1587 input_size = bfd_get_section_limit (abfd, input_section);
1588
e0001a05
NC
1589 switch (howto->type)
1590 {
1591 case R_XTENSA_NONE:
43cd72b9
BW
1592 case R_XTENSA_DIFF8:
1593 case R_XTENSA_DIFF16:
1594 case R_XTENSA_DIFF32:
e0001a05
NC
1595 return bfd_reloc_ok;
1596
1597 case R_XTENSA_ASM_EXPAND:
1598 if (!is_weak_undef)
1599 {
1600 /* Check for windowed CALL across a 1GB boundary. */
1601 xtensa_opcode opcode =
1602 get_expanded_call_opcode (contents + address,
43cd72b9 1603 input_size - address, 0);
e0001a05
NC
1604 if (is_windowed_call_opcode (opcode))
1605 {
1606 self_address = (input_section->output_section->vma
1607 + input_section->output_offset
1608 + address);
43cd72b9
BW
1609 if ((self_address >> CALL_SEGMENT_BITS)
1610 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1611 {
1612 *error_message = "windowed longcall crosses 1GB boundary; "
1613 "return may fail";
1614 return bfd_reloc_dangerous;
1615 }
1616 }
1617 }
1618 return bfd_reloc_ok;
1619
1620 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1621 {
e0001a05 1622 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1623 bfd_reloc_status_type retval =
1624 elf_xtensa_do_asm_simplify (contents, address, input_size,
1625 error_message);
e0001a05 1626 if (retval != bfd_reloc_ok)
43cd72b9 1627 return bfd_reloc_dangerous;
e0001a05
NC
1628
1629 /* The CALL needs to be relocated. Continue below for that part. */
1630 address += 3;
43cd72b9 1631 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1632 }
1633 break;
1634
1635 case R_XTENSA_32:
1636 case R_XTENSA_PLT:
1637 {
1638 bfd_vma x;
1639 x = bfd_get_32 (abfd, contents + address);
1640 x = x + relocation;
1641 bfd_put_32 (abfd, x, contents + address);
1642 }
1643 return bfd_reloc_ok;
1644 }
1645
43cd72b9
BW
1646 /* Only instruction slot-specific relocations handled below.... */
1647 slot = get_relocation_slot (howto->type);
1648 if (slot == XTENSA_UNDEFINED)
e0001a05 1649 {
43cd72b9 1650 *error_message = "unexpected relocation";
e0001a05
NC
1651 return bfd_reloc_dangerous;
1652 }
1653
43cd72b9
BW
1654 /* Read the instruction into a buffer and decode the opcode. */
1655 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1656 input_size - address);
1657 fmt = xtensa_format_decode (isa, ibuff);
1658 if (fmt == XTENSA_UNDEFINED)
e0001a05 1659 {
43cd72b9 1660 *error_message = "cannot decode instruction format";
e0001a05
NC
1661 return bfd_reloc_dangerous;
1662 }
1663
43cd72b9 1664 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1665
43cd72b9
BW
1666 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1667 if (opcode == XTENSA_UNDEFINED)
e0001a05 1668 {
43cd72b9 1669 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1670 return bfd_reloc_dangerous;
1671 }
1672
43cd72b9
BW
1673 /* Check for opcode-specific "alternate" relocations. */
1674 if (is_alt_relocation (howto->type))
1675 {
1676 if (opcode == get_l32r_opcode ())
1677 {
1678 /* Handle the special-case of non-PC-relative L32R instructions. */
1679 bfd *output_bfd = input_section->output_section->owner;
1680 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1681 if (!lit4_sec)
1682 {
1683 *error_message = "relocation references missing .lit4 section";
1684 return bfd_reloc_dangerous;
1685 }
1686 self_address = ((lit4_sec->vma & ~0xfff)
1687 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1688 newval = relocation;
1689 opnd = 1;
1690 }
1691 else if (opcode == get_const16_opcode ())
1692 {
1693 /* ALT used for high 16 bits. */
1694 newval = relocation >> 16;
1695 opnd = 1;
1696 }
1697 else
1698 {
1699 /* No other "alternate" relocations currently defined. */
1700 *error_message = "unexpected relocation";
1701 return bfd_reloc_dangerous;
1702 }
1703 }
1704 else /* Not an "alternate" relocation.... */
1705 {
1706 if (opcode == get_const16_opcode ())
1707 {
1708 newval = relocation & 0xffff;
1709 opnd = 1;
1710 }
1711 else
1712 {
1713 /* ...normal PC-relative relocation.... */
1714
1715 /* Determine which operand is being relocated. */
1716 opnd = get_relocation_opnd (opcode, howto->type);
1717 if (opnd == XTENSA_UNDEFINED)
1718 {
1719 *error_message = "unexpected relocation";
1720 return bfd_reloc_dangerous;
1721 }
1722
1723 if (!howto->pc_relative)
1724 {
1725 *error_message = "expected PC-relative relocation";
1726 return bfd_reloc_dangerous;
1727 }
e0001a05 1728
43cd72b9
BW
1729 /* Calculate the PC address for this instruction. */
1730 self_address = (input_section->output_section->vma
1731 + input_section->output_offset
1732 + address);
e0001a05 1733
43cd72b9
BW
1734 newval = relocation;
1735 }
1736 }
e0001a05 1737
43cd72b9
BW
1738 /* Apply the relocation. */
1739 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1740 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1741 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1742 sbuff, newval))
e0001a05 1743 {
2db662be
BW
1744 const char *opname = xtensa_opcode_name (isa, opcode);
1745 const char *msg;
1746
1747 msg = "cannot encode";
1748 if (is_direct_call_opcode (opcode))
1749 {
1750 if ((relocation & 0x3) != 0)
1751 msg = "misaligned call target";
1752 else
1753 msg = "call target out of range";
1754 }
1755 else if (opcode == get_l32r_opcode ())
1756 {
1757 if ((relocation & 0x3) != 0)
1758 msg = "misaligned literal target";
1759 else if (is_alt_relocation (howto->type))
1760 msg = "literal target out of range (too many literals)";
1761 else if (self_address > relocation)
1762 msg = "literal target out of range (try using text-section-literals)";
1763 else
1764 msg = "literal placed after use";
1765 }
1766
1767 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1768 return bfd_reloc_dangerous;
1769 }
1770
43cd72b9 1771 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1772 if (is_direct_call_opcode (opcode)
1773 && is_windowed_call_opcode (opcode))
1774 {
43cd72b9
BW
1775 if ((self_address >> CALL_SEGMENT_BITS)
1776 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1777 {
43cd72b9
BW
1778 *error_message =
1779 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1780 return bfd_reloc_dangerous;
1781 }
1782 }
1783
43cd72b9
BW
1784 /* Write the modified instruction back out of the buffer. */
1785 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1786 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1787 input_size - address);
e0001a05
NC
1788 return bfd_reloc_ok;
1789}
1790
1791
2db662be 1792static char *
7fa3d080 1793vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1794{
1795 /* To reduce the size of the memory leak,
1796 we only use a single message buffer. */
1797 static bfd_size_type alloc_size = 0;
1798 static char *message = NULL;
1799 bfd_size_type orig_len, len = 0;
1800 bfd_boolean is_append;
1801
1802 VA_OPEN (ap, arglen);
1803 VA_FIXEDARG (ap, const char *, origmsg);
1804
1805 is_append = (origmsg == message);
1806
1807 orig_len = strlen (origmsg);
1808 len = orig_len + strlen (fmt) + arglen + 20;
1809 if (len > alloc_size)
1810 {
1811 message = (char *) bfd_realloc (message, len);
1812 alloc_size = len;
1813 }
1814 if (!is_append)
1815 memcpy (message, origmsg, orig_len);
1816 vsprintf (message + orig_len, fmt, ap);
1817 VA_CLOSE (ap);
1818 return message;
1819}
1820
1821
e0001a05
NC
1822/* This function is registered as the "special_function" in the
1823 Xtensa howto for handling simplify operations.
1824 bfd_perform_relocation / bfd_install_relocation use it to
1825 perform (install) the specified relocation. Since this replaces the code
1826 in bfd_perform_relocation, it is basically an Xtensa-specific,
1827 stripped-down version of bfd_perform_relocation. */
1828
1829static bfd_reloc_status_type
7fa3d080
BW
1830bfd_elf_xtensa_reloc (bfd *abfd,
1831 arelent *reloc_entry,
1832 asymbol *symbol,
1833 void *data,
1834 asection *input_section,
1835 bfd *output_bfd,
1836 char **error_message)
e0001a05
NC
1837{
1838 bfd_vma relocation;
1839 bfd_reloc_status_type flag;
1840 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1841 bfd_vma output_base = 0;
1842 reloc_howto_type *howto = reloc_entry->howto;
1843 asection *reloc_target_output_section;
1844 bfd_boolean is_weak_undef;
1845
dd1a320b
BW
1846 if (!xtensa_default_isa)
1847 xtensa_default_isa = xtensa_isa_init (0, 0);
1848
1049f94e 1849 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1850 output, and the reloc is against an external symbol, the resulting
1851 reloc will also be against the same symbol. In such a case, we
1852 don't want to change anything about the way the reloc is handled,
1853 since it will all be done at final link time. This test is similar
1854 to what bfd_elf_generic_reloc does except that it lets relocs with
1855 howto->partial_inplace go through even if the addend is non-zero.
1856 (The real problem is that partial_inplace is set for XTENSA_32
1857 relocs to begin with, but that's a long story and there's little we
1858 can do about it now....) */
1859
7fa3d080 1860 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1861 {
1862 reloc_entry->address += input_section->output_offset;
1863 return bfd_reloc_ok;
1864 }
1865
1866 /* Is the address of the relocation really within the section? */
07515404 1867 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1868 return bfd_reloc_outofrange;
1869
4cc11e76 1870 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1871 initial relocation command value. */
1872
1873 /* Get symbol value. (Common symbols are special.) */
1874 if (bfd_is_com_section (symbol->section))
1875 relocation = 0;
1876 else
1877 relocation = symbol->value;
1878
1879 reloc_target_output_section = symbol->section->output_section;
1880
1881 /* Convert input-section-relative symbol value to absolute. */
1882 if ((output_bfd && !howto->partial_inplace)
1883 || reloc_target_output_section == NULL)
1884 output_base = 0;
1885 else
1886 output_base = reloc_target_output_section->vma;
1887
1888 relocation += output_base + symbol->section->output_offset;
1889
1890 /* Add in supplied addend. */
1891 relocation += reloc_entry->addend;
1892
1893 /* Here the variable relocation holds the final address of the
1894 symbol we are relocating against, plus any addend. */
1895 if (output_bfd)
1896 {
1897 if (!howto->partial_inplace)
1898 {
1899 /* This is a partial relocation, and we want to apply the relocation
1900 to the reloc entry rather than the raw data. Everything except
1901 relocations against section symbols has already been handled
1902 above. */
43cd72b9 1903
e0001a05
NC
1904 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1905 reloc_entry->addend = relocation;
1906 reloc_entry->address += input_section->output_offset;
1907 return bfd_reloc_ok;
1908 }
1909 else
1910 {
1911 reloc_entry->address += input_section->output_offset;
1912 reloc_entry->addend = 0;
1913 }
1914 }
1915
1916 is_weak_undef = (bfd_is_und_section (symbol->section)
1917 && (symbol->flags & BSF_WEAK) != 0);
1918 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1919 (bfd_byte *) data, (bfd_vma) octets,
1920 is_weak_undef, error_message);
1921
1922 if (flag == bfd_reloc_dangerous)
1923 {
1924 /* Add the symbol name to the error message. */
1925 if (! *error_message)
1926 *error_message = "";
1927 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1928 strlen (symbol->name) + 17,
70961b9d
AM
1929 symbol->name,
1930 (unsigned long) reloc_entry->addend);
e0001a05
NC
1931 }
1932
1933 return flag;
1934}
1935
1936
1937/* Set up an entry in the procedure linkage table. */
1938
1939static bfd_vma
7fa3d080
BW
1940elf_xtensa_create_plt_entry (bfd *dynobj,
1941 bfd *output_bfd,
1942 unsigned reloc_index)
e0001a05
NC
1943{
1944 asection *splt, *sgotplt;
1945 bfd_vma plt_base, got_base;
1946 bfd_vma code_offset, lit_offset;
1947 int chunk;
1948
1949 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1950 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1951 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1952 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1953
1954 plt_base = splt->output_section->vma + splt->output_offset;
1955 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1956
1957 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1958 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1959
1960 /* Fill in the literal entry. This is the offset of the dynamic
1961 relocation entry. */
1962 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1963 sgotplt->contents + lit_offset);
1964
1965 /* Fill in the entry in the procedure linkage table. */
1966 memcpy (splt->contents + code_offset,
1967 (bfd_big_endian (output_bfd)
1968 ? elf_xtensa_be_plt_entry
1969 : elf_xtensa_le_plt_entry),
1970 PLT_ENTRY_SIZE);
1971 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1972 plt_base + code_offset + 3),
1973 splt->contents + code_offset + 4);
1974 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1975 plt_base + code_offset + 6),
1976 splt->contents + code_offset + 7);
1977 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1978 plt_base + code_offset + 9),
1979 splt->contents + code_offset + 10);
1980
1981 return plt_base + code_offset;
1982}
1983
1984
e0001a05 1985/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1986 both relocatable and final links. */
e0001a05
NC
1987
1988static bfd_boolean
7fa3d080
BW
1989elf_xtensa_relocate_section (bfd *output_bfd,
1990 struct bfd_link_info *info,
1991 bfd *input_bfd,
1992 asection *input_section,
1993 bfd_byte *contents,
1994 Elf_Internal_Rela *relocs,
1995 Elf_Internal_Sym *local_syms,
1996 asection **local_sections)
e0001a05
NC
1997{
1998 Elf_Internal_Shdr *symtab_hdr;
1999 Elf_Internal_Rela *rel;
2000 Elf_Internal_Rela *relend;
2001 struct elf_link_hash_entry **sym_hashes;
2002 asection *srelgot, *srelplt;
2003 bfd *dynobj;
88d65ad6
BW
2004 property_table_entry *lit_table = 0;
2005 int ltblsize = 0;
e0001a05 2006 char *error_message = NULL;
43cd72b9 2007 bfd_size_type input_size;
e0001a05 2008
43cd72b9
BW
2009 if (!xtensa_default_isa)
2010 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05
NC
2011
2012 dynobj = elf_hash_table (info)->dynobj;
2013 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2014 sym_hashes = elf_sym_hashes (input_bfd);
2015
2016 srelgot = NULL;
2017 srelplt = NULL;
7fa3d080 2018 if (dynobj)
e0001a05
NC
2019 {
2020 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2021 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2022 }
2023
88d65ad6
BW
2024 if (elf_hash_table (info)->dynamic_sections_created)
2025 {
2026 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2027 &lit_table, XTENSA_LIT_SEC_NAME,
2028 TRUE);
88d65ad6
BW
2029 if (ltblsize < 0)
2030 return FALSE;
2031 }
2032
43cd72b9
BW
2033 input_size = bfd_get_section_limit (input_bfd, input_section);
2034
e0001a05
NC
2035 rel = relocs;
2036 relend = relocs + input_section->reloc_count;
2037 for (; rel < relend; rel++)
2038 {
2039 int r_type;
2040 reloc_howto_type *howto;
2041 unsigned long r_symndx;
2042 struct elf_link_hash_entry *h;
2043 Elf_Internal_Sym *sym;
2044 asection *sec;
2045 bfd_vma relocation;
2046 bfd_reloc_status_type r;
2047 bfd_boolean is_weak_undef;
2048 bfd_boolean unresolved_reloc;
9b8c98a4 2049 bfd_boolean warned;
e0001a05
NC
2050
2051 r_type = ELF32_R_TYPE (rel->r_info);
2052 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2053 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2054 continue;
2055
2056 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2057 {
2058 bfd_set_error (bfd_error_bad_value);
2059 return FALSE;
2060 }
2061 howto = &elf_howto_table[r_type];
2062
2063 r_symndx = ELF32_R_SYM (rel->r_info);
2064
1049f94e 2065 if (info->relocatable)
e0001a05 2066 {
43cd72b9 2067 /* This is a relocatable link.
e0001a05
NC
2068 1) If the reloc is against a section symbol, adjust
2069 according to the output section.
2070 2) If there is a new target for this relocation,
2071 the new target will be in the same output section.
2072 We adjust the relocation by the output section
2073 difference. */
2074
2075 if (relaxing_section)
2076 {
2077 /* Check if this references a section in another input file. */
43cd72b9
BW
2078 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2079 contents))
2080 return FALSE;
e0001a05
NC
2081 r_type = ELF32_R_TYPE (rel->r_info);
2082 }
2083
43cd72b9 2084 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2085 {
43cd72b9 2086 char *error_message = NULL;
e0001a05
NC
2087 /* Convert ASM_SIMPLIFY into the simpler relocation
2088 so that they never escape a relaxing link. */
43cd72b9
BW
2089 r = contract_asm_expansion (contents, input_size, rel,
2090 &error_message);
2091 if (r != bfd_reloc_ok)
2092 {
2093 if (!((*info->callbacks->reloc_dangerous)
2094 (info, error_message, input_bfd, input_section,
2095 rel->r_offset)))
2096 return FALSE;
2097 }
e0001a05
NC
2098 r_type = ELF32_R_TYPE (rel->r_info);
2099 }
2100
1049f94e 2101 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2102 anything unless the reloc is against a section symbol,
2103 in which case we have to adjust according to where the
2104 section symbol winds up in the output section. */
2105 if (r_symndx < symtab_hdr->sh_info)
2106 {
2107 sym = local_syms + r_symndx;
2108 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2109 {
2110 sec = local_sections[r_symndx];
2111 rel->r_addend += sec->output_offset + sym->st_value;
2112 }
2113 }
2114
2115 /* If there is an addend with a partial_inplace howto,
2116 then move the addend to the contents. This is a hack
1049f94e 2117 to work around problems with DWARF in relocatable links
e0001a05
NC
2118 with some previous version of BFD. Now we can't easily get
2119 rid of the hack without breaking backward compatibility.... */
2120 if (rel->r_addend)
2121 {
2122 howto = &elf_howto_table[r_type];
2123 if (howto->partial_inplace)
2124 {
2125 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2126 rel->r_addend, contents,
2127 rel->r_offset, FALSE,
2128 &error_message);
2129 if (r != bfd_reloc_ok)
2130 {
2131 if (!((*info->callbacks->reloc_dangerous)
2132 (info, error_message, input_bfd, input_section,
2133 rel->r_offset)))
2134 return FALSE;
2135 }
2136 rel->r_addend = 0;
2137 }
2138 }
2139
1049f94e 2140 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2141 continue;
2142 }
2143
2144 /* This is a final link. */
2145
2146 h = NULL;
2147 sym = NULL;
2148 sec = NULL;
2149 is_weak_undef = FALSE;
2150 unresolved_reloc = FALSE;
9b8c98a4 2151 warned = FALSE;
e0001a05
NC
2152
2153 if (howto->partial_inplace)
2154 {
2155 /* Because R_XTENSA_32 was made partial_inplace to fix some
2156 problems with DWARF info in partial links, there may be
2157 an addend stored in the contents. Take it out of there
2158 and move it back into the addend field of the reloc. */
2159 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2160 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2161 }
2162
2163 if (r_symndx < symtab_hdr->sh_info)
2164 {
2165 sym = local_syms + r_symndx;
2166 sec = local_sections[r_symndx];
8517fae7 2167 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
e0001a05
NC
2168 }
2169 else
2170 {
b2a8e766
AM
2171 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2172 r_symndx, symtab_hdr, sym_hashes,
2173 h, sec, relocation,
2174 unresolved_reloc, warned);
560e09e9
NC
2175
2176 if (relocation == 0
2177 && !unresolved_reloc
2178 && h->root.type == bfd_link_hash_undefweak)
e0001a05 2179 is_weak_undef = TRUE;
e0001a05
NC
2180 }
2181
2182 if (relaxing_section)
2183 {
2184 /* Check if this references a section in another input file. */
43cd72b9
BW
2185 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2186 &relocation);
e0001a05
NC
2187
2188 /* Update some already cached values. */
2189 r_type = ELF32_R_TYPE (rel->r_info);
2190 howto = &elf_howto_table[r_type];
2191 }
2192
2193 /* Sanity check the address. */
43cd72b9 2194 if (rel->r_offset >= input_size
e0001a05
NC
2195 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2196 {
43cd72b9
BW
2197 (*_bfd_error_handler)
2198 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2199 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2200 bfd_set_error (bfd_error_bad_value);
2201 return FALSE;
2202 }
2203
2204 /* Generate dynamic relocations. */
2205 if (elf_hash_table (info)->dynamic_sections_created)
2206 {
571b5725 2207 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05 2208
43cd72b9 2209 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2210 {
2211 /* This is an error. The symbol's real value won't be known
2212 until runtime and it's likely to be out of range anyway. */
2213 const char *name = h->root.root.string;
2214 error_message = vsprint_msg ("invalid relocation for dynamic "
2215 "symbol", ": %s",
2216 strlen (name) + 2, name);
2217 if (!((*info->callbacks->reloc_dangerous)
2218 (info, error_message, input_bfd, input_section,
2219 rel->r_offset)))
2220 return FALSE;
2221 }
2222 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2223 && (input_section->flags & SEC_ALLOC) != 0
2224 && (dynamic_symbol || info->shared))
2225 {
2226 Elf_Internal_Rela outrel;
2227 bfd_byte *loc;
2228 asection *srel;
2229
2230 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2231 srel = srelplt;
2232 else
2233 srel = srelgot;
2234
2235 BFD_ASSERT (srel != NULL);
2236
2237 outrel.r_offset =
2238 _bfd_elf_section_offset (output_bfd, info,
2239 input_section, rel->r_offset);
2240
2241 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2242 memset (&outrel, 0, sizeof outrel);
2243 else
2244 {
f0578e28
BW
2245 outrel.r_offset += (input_section->output_section->vma
2246 + input_section->output_offset);
e0001a05 2247
88d65ad6
BW
2248 /* Complain if the relocation is in a read-only section
2249 and not in a literal pool. */
2250 if ((input_section->flags & SEC_READONLY) != 0
2251 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2252 outrel.r_offset))
88d65ad6
BW
2253 {
2254 error_message =
2255 _("dynamic relocation in read-only section");
2256 if (!((*info->callbacks->reloc_dangerous)
2257 (info, error_message, input_bfd, input_section,
2258 rel->r_offset)))
2259 return FALSE;
2260 }
2261
e0001a05
NC
2262 if (dynamic_symbol)
2263 {
2264 outrel.r_addend = rel->r_addend;
2265 rel->r_addend = 0;
2266
2267 if (r_type == R_XTENSA_32)
2268 {
2269 outrel.r_info =
2270 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2271 relocation = 0;
2272 }
2273 else /* r_type == R_XTENSA_PLT */
2274 {
2275 outrel.r_info =
2276 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2277
2278 /* Create the PLT entry and set the initial
2279 contents of the literal entry to the address of
2280 the PLT entry. */
43cd72b9 2281 relocation =
e0001a05
NC
2282 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2283 srel->reloc_count);
2284 }
2285 unresolved_reloc = FALSE;
2286 }
2287 else
2288 {
2289 /* Generate a RELATIVE relocation. */
2290 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2291 outrel.r_addend = 0;
2292 }
2293 }
2294
2295 loc = (srel->contents
2296 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2297 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2298 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2299 <= srel->size);
e0001a05
NC
2300 }
2301 }
2302
2303 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2304 because such sections are not SEC_ALLOC and thus ld.so will
2305 not process them. */
2306 if (unresolved_reloc
2307 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2308 && h->def_dynamic))
e0001a05 2309 (*_bfd_error_handler)
843fe662 2310 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
d003868e
AM
2311 input_bfd,
2312 input_section,
e0001a05 2313 (long) rel->r_offset,
843fe662 2314 howto->name,
e0001a05
NC
2315 h->root.root.string);
2316
2317 /* There's no point in calling bfd_perform_relocation here.
2318 Just go directly to our "special function". */
2319 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2320 relocation + rel->r_addend,
2321 contents, rel->r_offset, is_weak_undef,
2322 &error_message);
43cd72b9 2323
9b8c98a4 2324 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2325 {
2326 const char *name;
2327
43cd72b9 2328 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2329 BFD_ASSERT (error_message != NULL);
e0001a05 2330
7fa3d080 2331 if (h)
e0001a05
NC
2332 name = h->root.root.string;
2333 else
2334 {
2335 name = bfd_elf_string_from_elf_section
2336 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2337 if (name && *name == '\0')
2338 name = bfd_section_name (input_bfd, sec);
2339 }
2340 if (name)
43cd72b9
BW
2341 {
2342 if (rel->r_addend == 0)
2343 error_message = vsprint_msg (error_message, ": %s",
2344 strlen (name) + 2, name);
2345 else
2346 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2347 strlen (name) + 22,
0fd3a477 2348 name, (int)rel->r_addend);
43cd72b9
BW
2349 }
2350
e0001a05
NC
2351 if (!((*info->callbacks->reloc_dangerous)
2352 (info, error_message, input_bfd, input_section,
2353 rel->r_offset)))
2354 return FALSE;
2355 }
2356 }
2357
88d65ad6
BW
2358 if (lit_table)
2359 free (lit_table);
2360
3ba3bc8c
BW
2361 input_section->reloc_done = TRUE;
2362
e0001a05
NC
2363 return TRUE;
2364}
2365
2366
2367/* Finish up dynamic symbol handling. There's not much to do here since
2368 the PLT and GOT entries are all set up by relocate_section. */
2369
2370static bfd_boolean
7fa3d080
BW
2371elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2372 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2373 struct elf_link_hash_entry *h,
2374 Elf_Internal_Sym *sym)
e0001a05 2375{
f5385ebf
AM
2376 if (h->needs_plt
2377 && !h->def_regular)
e0001a05
NC
2378 {
2379 /* Mark the symbol as undefined, rather than as defined in
2380 the .plt section. Leave the value alone. */
2381 sym->st_shndx = SHN_UNDEF;
2382 }
2383
2384 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2385 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2386 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2387 sym->st_shndx = SHN_ABS;
2388
2389 return TRUE;
2390}
2391
2392
2393/* Combine adjacent literal table entries in the output. Adjacent
2394 entries within each input section may have been removed during
2395 relaxation, but we repeat the process here, even though it's too late
2396 to shrink the output section, because it's important to minimize the
2397 number of literal table entries to reduce the start-up work for the
2398 runtime linker. Returns the number of remaining table entries or -1
2399 on error. */
2400
2401static int
7fa3d080
BW
2402elf_xtensa_combine_prop_entries (bfd *output_bfd,
2403 asection *sxtlit,
2404 asection *sgotloc)
e0001a05 2405{
e0001a05
NC
2406 bfd_byte *contents;
2407 property_table_entry *table;
e901de89 2408 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2409 bfd_vma offset;
2410 int n, m, num;
2411
eea6121a 2412 section_size = sxtlit->size;
e0001a05
NC
2413 BFD_ASSERT (section_size % 8 == 0);
2414 num = section_size / 8;
2415
eea6121a 2416 sgotloc_size = sgotloc->size;
e901de89 2417 if (sgotloc_size != section_size)
b536dc1e
BW
2418 {
2419 (*_bfd_error_handler)
43cd72b9 2420 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2421 return -1;
2422 }
e901de89 2423
eea6121a
AM
2424 table = bfd_malloc (num * sizeof (property_table_entry));
2425 if (table == 0)
e0001a05
NC
2426 return -1;
2427
2428 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2429 propagates to the output section, where it doesn't really apply and
eea6121a 2430 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2431 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2432
eea6121a
AM
2433 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2434 {
2435 if (contents != 0)
2436 free (contents);
2437 free (table);
2438 return -1;
2439 }
e0001a05
NC
2440
2441 /* There should never be any relocations left at this point, so this
2442 is quite a bit easier than what is done during relaxation. */
2443
2444 /* Copy the raw contents into a property table array and sort it. */
2445 offset = 0;
2446 for (n = 0; n < num; n++)
2447 {
2448 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2449 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2450 offset += 8;
2451 }
2452 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2453
2454 for (n = 0; n < num; n++)
2455 {
2456 bfd_boolean remove = FALSE;
2457
2458 if (table[n].size == 0)
2459 remove = TRUE;
2460 else if (n > 0 &&
2461 (table[n-1].address + table[n-1].size == table[n].address))
2462 {
2463 table[n-1].size += table[n].size;
2464 remove = TRUE;
2465 }
2466
2467 if (remove)
2468 {
2469 for (m = n; m < num - 1; m++)
2470 {
2471 table[m].address = table[m+1].address;
2472 table[m].size = table[m+1].size;
2473 }
2474
2475 n--;
2476 num--;
2477 }
2478 }
2479
2480 /* Copy the data back to the raw contents. */
2481 offset = 0;
2482 for (n = 0; n < num; n++)
2483 {
2484 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2485 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2486 offset += 8;
2487 }
2488
2489 /* Clear the removed bytes. */
2490 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2491 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2492
e901de89
BW
2493 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2494 section_size))
e0001a05
NC
2495 return -1;
2496
e901de89
BW
2497 /* Copy the contents to ".got.loc". */
2498 memcpy (sgotloc->contents, contents, section_size);
2499
e0001a05 2500 free (contents);
b614a702 2501 free (table);
e0001a05
NC
2502 return num;
2503}
2504
2505
2506/* Finish up the dynamic sections. */
2507
2508static bfd_boolean
7fa3d080
BW
2509elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2510 struct bfd_link_info *info)
e0001a05
NC
2511{
2512 bfd *dynobj;
e901de89 2513 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2514 Elf32_External_Dyn *dyncon, *dynconend;
2515 int num_xtlit_entries;
2516
2517 if (! elf_hash_table (info)->dynamic_sections_created)
2518 return TRUE;
2519
2520 dynobj = elf_hash_table (info)->dynobj;
2521 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2522 BFD_ASSERT (sdyn != NULL);
2523
2524 /* Set the first entry in the global offset table to the address of
2525 the dynamic section. */
2526 sgot = bfd_get_section_by_name (dynobj, ".got");
2527 if (sgot)
2528 {
eea6121a 2529 BFD_ASSERT (sgot->size == 4);
e0001a05 2530 if (sdyn == NULL)
7fa3d080 2531 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2532 else
2533 bfd_put_32 (output_bfd,
2534 sdyn->output_section->vma + sdyn->output_offset,
2535 sgot->contents);
2536 }
2537
2538 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
7fa3d080 2539 if (srelplt && srelplt->size != 0)
e0001a05
NC
2540 {
2541 asection *sgotplt, *srelgot, *spltlittbl;
2542 int chunk, plt_chunks, plt_entries;
2543 Elf_Internal_Rela irela;
2544 bfd_byte *loc;
2545 unsigned rtld_reloc;
2546
2547 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2548 BFD_ASSERT (srelgot != NULL);
2549
2550 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2551 BFD_ASSERT (spltlittbl != NULL);
2552
2553 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2554 of them follow immediately after.... */
2555 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2556 {
2557 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2558 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2559 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2560 break;
2561 }
2562 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2563
eea6121a 2564 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2565 plt_chunks =
2566 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2567
2568 for (chunk = 0; chunk < plt_chunks; chunk++)
2569 {
2570 int chunk_entries = 0;
2571
2572 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2573 BFD_ASSERT (sgotplt != NULL);
2574
2575 /* Emit special RTLD relocations for the first two entries in
2576 each chunk of the .got.plt section. */
2577
2578 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2579 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2580 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2581 irela.r_offset = (sgotplt->output_section->vma
2582 + sgotplt->output_offset);
2583 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2584 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2585 rtld_reloc += 1;
2586 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2587
2588 /* Next literal immediately follows the first. */
2589 loc += sizeof (Elf32_External_Rela);
2590 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2591 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2592 irela.r_offset = (sgotplt->output_section->vma
2593 + sgotplt->output_offset + 4);
2594 /* Tell rtld to set value to object's link map. */
2595 irela.r_addend = 2;
2596 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2597 rtld_reloc += 1;
2598 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2599
2600 /* Fill in the literal table. */
2601 if (chunk < plt_chunks - 1)
2602 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2603 else
2604 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2605
eea6121a 2606 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2607 bfd_put_32 (output_bfd,
2608 sgotplt->output_section->vma + sgotplt->output_offset,
2609 spltlittbl->contents + (chunk * 8) + 0);
2610 bfd_put_32 (output_bfd,
2611 8 + (chunk_entries * 4),
2612 spltlittbl->contents + (chunk * 8) + 4);
2613 }
2614
2615 /* All the dynamic relocations have been emitted at this point.
2616 Make sure the relocation sections are the correct size. */
eea6121a
AM
2617 if (srelgot->size != (sizeof (Elf32_External_Rela)
2618 * srelgot->reloc_count)
2619 || srelplt->size != (sizeof (Elf32_External_Rela)
2620 * srelplt->reloc_count))
e0001a05
NC
2621 abort ();
2622
2623 /* The .xt.lit.plt section has just been modified. This must
2624 happen before the code below which combines adjacent literal
2625 table entries, and the .xt.lit.plt contents have to be forced to
2626 the output here. */
2627 if (! bfd_set_section_contents (output_bfd,
2628 spltlittbl->output_section,
2629 spltlittbl->contents,
2630 spltlittbl->output_offset,
eea6121a 2631 spltlittbl->size))
e0001a05
NC
2632 return FALSE;
2633 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2634 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2635 }
2636
2637 /* Combine adjacent literal table entries. */
1049f94e 2638 BFD_ASSERT (! info->relocatable);
e901de89
BW
2639 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2640 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
b536dc1e 2641 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2642 num_xtlit_entries =
2643 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2644 if (num_xtlit_entries < 0)
2645 return FALSE;
2646
2647 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2648 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2649 for (; dyncon < dynconend; dyncon++)
2650 {
2651 Elf_Internal_Dyn dyn;
2652 const char *name;
2653 asection *s;
2654
2655 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2656
2657 switch (dyn.d_tag)
2658 {
2659 default:
2660 break;
2661
2662 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2663 dyn.d_un.d_val = num_xtlit_entries;
2664 break;
2665
2666 case DT_XTENSA_GOT_LOC_OFF:
e901de89 2667 name = ".got.loc";
e0001a05
NC
2668 goto get_vma;
2669 case DT_PLTGOT:
2670 name = ".got";
2671 goto get_vma;
2672 case DT_JMPREL:
2673 name = ".rela.plt";
2674 get_vma:
2675 s = bfd_get_section_by_name (output_bfd, name);
2676 BFD_ASSERT (s);
2677 dyn.d_un.d_ptr = s->vma;
2678 break;
2679
2680 case DT_PLTRELSZ:
2681 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2682 BFD_ASSERT (s);
eea6121a 2683 dyn.d_un.d_val = s->size;
e0001a05
NC
2684 break;
2685
2686 case DT_RELASZ:
2687 /* Adjust RELASZ to not include JMPREL. This matches what
2688 glibc expects and what is done for several other ELF
2689 targets (e.g., i386, alpha), but the "correct" behavior
2690 seems to be unresolved. Since the linker script arranges
2691 for .rela.plt to follow all other relocation sections, we
2692 don't have to worry about changing the DT_RELA entry. */
2693 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2694 if (s)
eea6121a 2695 dyn.d_un.d_val -= s->size;
e0001a05
NC
2696 break;
2697 }
2698
2699 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2700 }
2701
2702 return TRUE;
2703}
2704
2705\f
2706/* Functions for dealing with the e_flags field. */
2707
2708/* Merge backend specific data from an object file to the output
2709 object file when linking. */
2710
2711static bfd_boolean
7fa3d080 2712elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2713{
2714 unsigned out_mach, in_mach;
2715 flagword out_flag, in_flag;
2716
2717 /* Check if we have the same endianess. */
2718 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2719 return FALSE;
2720
2721 /* Don't even pretend to support mixed-format linking. */
2722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2724 return FALSE;
2725
2726 out_flag = elf_elfheader (obfd)->e_flags;
2727 in_flag = elf_elfheader (ibfd)->e_flags;
2728
2729 out_mach = out_flag & EF_XTENSA_MACH;
2730 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2731 if (out_mach != in_mach)
e0001a05
NC
2732 {
2733 (*_bfd_error_handler)
43cd72b9 2734 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2735 ibfd, out_mach, in_mach);
e0001a05
NC
2736 bfd_set_error (bfd_error_wrong_format);
2737 return FALSE;
2738 }
2739
2740 if (! elf_flags_init (obfd))
2741 {
2742 elf_flags_init (obfd) = TRUE;
2743 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2744
e0001a05
NC
2745 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2746 && bfd_get_arch_info (obfd)->the_default)
2747 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2748 bfd_get_mach (ibfd));
43cd72b9 2749
e0001a05
NC
2750 return TRUE;
2751 }
2752
43cd72b9
BW
2753 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2754 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2755
43cd72b9
BW
2756 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2757 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2758
2759 return TRUE;
2760}
2761
2762
2763static bfd_boolean
7fa3d080 2764elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2765{
2766 BFD_ASSERT (!elf_flags_init (abfd)
2767 || elf_elfheader (abfd)->e_flags == flags);
2768
2769 elf_elfheader (abfd)->e_flags |= flags;
2770 elf_flags_init (abfd) = TRUE;
2771
2772 return TRUE;
2773}
2774
2775
e0001a05 2776static bfd_boolean
7fa3d080 2777elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2778{
2779 FILE *f = (FILE *) farg;
2780 flagword e_flags = elf_elfheader (abfd)->e_flags;
2781
2782 fprintf (f, "\nXtensa header:\n");
43cd72b9 2783 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2784 fprintf (f, "\nMachine = Base\n");
2785 else
2786 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2787
2788 fprintf (f, "Insn tables = %s\n",
2789 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2790
2791 fprintf (f, "Literal tables = %s\n",
2792 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2793
2794 return _bfd_elf_print_private_bfd_data (abfd, farg);
2795}
2796
2797
2798/* Set the right machine number for an Xtensa ELF file. */
2799
2800static bfd_boolean
7fa3d080 2801elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2802{
2803 int mach;
2804 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2805
2806 switch (arch)
2807 {
2808 case E_XTENSA_MACH:
2809 mach = bfd_mach_xtensa;
2810 break;
2811 default:
2812 return FALSE;
2813 }
2814
2815 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2816 return TRUE;
2817}
2818
2819
2820/* The final processing done just before writing out an Xtensa ELF object
2821 file. This gets the Xtensa architecture right based on the machine
2822 number. */
2823
2824static void
7fa3d080
BW
2825elf_xtensa_final_write_processing (bfd *abfd,
2826 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2827{
2828 int mach;
2829 unsigned long val;
2830
2831 switch (mach = bfd_get_mach (abfd))
2832 {
2833 case bfd_mach_xtensa:
2834 val = E_XTENSA_MACH;
2835 break;
2836 default:
2837 return;
2838 }
2839
2840 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2841 elf_elfheader (abfd)->e_flags |= val;
2842}
2843
2844
2845static enum elf_reloc_type_class
7fa3d080 2846elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2847{
2848 switch ((int) ELF32_R_TYPE (rela->r_info))
2849 {
2850 case R_XTENSA_RELATIVE:
2851 return reloc_class_relative;
2852 case R_XTENSA_JMP_SLOT:
2853 return reloc_class_plt;
2854 default:
2855 return reloc_class_normal;
2856 }
2857}
2858
2859\f
2860static bfd_boolean
7fa3d080
BW
2861elf_xtensa_discard_info_for_section (bfd *abfd,
2862 struct elf_reloc_cookie *cookie,
2863 struct bfd_link_info *info,
2864 asection *sec)
e0001a05
NC
2865{
2866 bfd_byte *contents;
2867 bfd_vma section_size;
2868 bfd_vma offset, actual_offset;
2869 size_t removed_bytes = 0;
2870
eea6121a 2871 section_size = sec->size;
e0001a05
NC
2872 if (section_size == 0 || section_size % 8 != 0)
2873 return FALSE;
2874
2875 if (sec->output_section
2876 && bfd_is_abs_section (sec->output_section))
2877 return FALSE;
2878
2879 contents = retrieve_contents (abfd, sec, info->keep_memory);
2880 if (!contents)
2881 return FALSE;
2882
2883 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2884 if (!cookie->rels)
2885 {
2886 release_contents (sec, contents);
2887 return FALSE;
2888 }
2889
2890 cookie->rel = cookie->rels;
2891 cookie->relend = cookie->rels + sec->reloc_count;
2892
2893 for (offset = 0; offset < section_size; offset += 8)
2894 {
2895 actual_offset = offset - removed_bytes;
2896
2897 /* The ...symbol_deleted_p function will skip over relocs but it
2898 won't adjust their offsets, so do that here. */
2899 while (cookie->rel < cookie->relend
2900 && cookie->rel->r_offset < offset)
2901 {
2902 cookie->rel->r_offset -= removed_bytes;
2903 cookie->rel++;
2904 }
2905
2906 while (cookie->rel < cookie->relend
2907 && cookie->rel->r_offset == offset)
2908 {
c152c796 2909 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2910 {
2911 /* Remove the table entry. (If the reloc type is NONE, then
2912 the entry has already been merged with another and deleted
2913 during relaxation.) */
2914 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2915 {
2916 /* Shift the contents up. */
2917 if (offset + 8 < section_size)
2918 memmove (&contents[actual_offset],
2919 &contents[actual_offset+8],
2920 section_size - offset - 8);
2921 removed_bytes += 8;
2922 }
2923
2924 /* Remove this relocation. */
2925 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2926 }
2927
2928 /* Adjust the relocation offset for previous removals. This
2929 should not be done before calling ...symbol_deleted_p
2930 because it might mess up the offset comparisons there.
2931 Make sure the offset doesn't underflow in the case where
2932 the first entry is removed. */
2933 if (cookie->rel->r_offset >= removed_bytes)
2934 cookie->rel->r_offset -= removed_bytes;
2935 else
2936 cookie->rel->r_offset = 0;
2937
2938 cookie->rel++;
2939 }
2940 }
2941
2942 if (removed_bytes != 0)
2943 {
2944 /* Adjust any remaining relocs (shouldn't be any). */
2945 for (; cookie->rel < cookie->relend; cookie->rel++)
2946 {
2947 if (cookie->rel->r_offset >= removed_bytes)
2948 cookie->rel->r_offset -= removed_bytes;
2949 else
2950 cookie->rel->r_offset = 0;
2951 }
2952
2953 /* Clear the removed bytes. */
2954 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2955
2956 pin_contents (sec, contents);
2957 pin_internal_relocs (sec, cookie->rels);
2958
eea6121a
AM
2959 /* Shrink size. */
2960 sec->size = section_size - removed_bytes;
b536dc1e
BW
2961
2962 if (xtensa_is_littable_section (sec))
2963 {
2964 bfd *dynobj = elf_hash_table (info)->dynobj;
2965 if (dynobj)
2966 {
2967 asection *sgotloc =
2968 bfd_get_section_by_name (dynobj, ".got.loc");
2969 if (sgotloc)
eea6121a 2970 sgotloc->size -= removed_bytes;
b536dc1e
BW
2971 }
2972 }
e0001a05
NC
2973 }
2974 else
2975 {
2976 release_contents (sec, contents);
2977 release_internal_relocs (sec, cookie->rels);
2978 }
2979
2980 return (removed_bytes != 0);
2981}
2982
2983
2984static bfd_boolean
7fa3d080
BW
2985elf_xtensa_discard_info (bfd *abfd,
2986 struct elf_reloc_cookie *cookie,
2987 struct bfd_link_info *info)
e0001a05
NC
2988{
2989 asection *sec;
2990 bfd_boolean changed = FALSE;
2991
2992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2993 {
2994 if (xtensa_is_property_section (sec))
2995 {
2996 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2997 changed = TRUE;
2998 }
2999 }
3000
3001 return changed;
3002}
3003
3004
3005static bfd_boolean
7fa3d080 3006elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3007{
3008 return xtensa_is_property_section (sec);
3009}
3010
3011\f
3012/* Support for core dump NOTE sections. */
3013
3014static bfd_boolean
7fa3d080 3015elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3016{
3017 int offset;
eea6121a 3018 unsigned int size;
e0001a05
NC
3019
3020 /* The size for Xtensa is variable, so don't try to recognize the format
3021 based on the size. Just assume this is GNU/Linux. */
3022
3023 /* pr_cursig */
3024 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3025
3026 /* pr_pid */
3027 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3028
3029 /* pr_reg */
3030 offset = 72;
eea6121a 3031 size = note->descsz - offset - 4;
e0001a05
NC
3032
3033 /* Make a ".reg/999" section. */
3034 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3035 size, note->descpos + offset);
e0001a05
NC
3036}
3037
3038
3039static bfd_boolean
7fa3d080 3040elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3041{
3042 switch (note->descsz)
3043 {
3044 default:
3045 return FALSE;
3046
3047 case 128: /* GNU/Linux elf_prpsinfo */
3048 elf_tdata (abfd)->core_program
3049 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3050 elf_tdata (abfd)->core_command
3051 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3052 }
3053
3054 /* Note that for some reason, a spurious space is tacked
3055 onto the end of the args in some (at least one anyway)
3056 implementations, so strip it off if it exists. */
3057
3058 {
3059 char *command = elf_tdata (abfd)->core_command;
3060 int n = strlen (command);
3061
3062 if (0 < n && command[n - 1] == ' ')
3063 command[n - 1] = '\0';
3064 }
3065
3066 return TRUE;
3067}
3068
3069\f
3070/* Generic Xtensa configurability stuff. */
3071
3072static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3073static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3074static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3075static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3076static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3077static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3078static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3079static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3080
3081static void
7fa3d080 3082init_call_opcodes (void)
e0001a05
NC
3083{
3084 if (callx0_op == XTENSA_UNDEFINED)
3085 {
3086 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3087 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3088 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3089 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3090 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3091 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3092 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3093 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3094 }
3095}
3096
3097
3098static bfd_boolean
7fa3d080 3099is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3100{
3101 init_call_opcodes ();
3102 return (opcode == callx0_op
3103 || opcode == callx4_op
3104 || opcode == callx8_op
3105 || opcode == callx12_op);
3106}
3107
3108
3109static bfd_boolean
7fa3d080 3110is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3111{
3112 init_call_opcodes ();
3113 return (opcode == call0_op
3114 || opcode == call4_op
3115 || opcode == call8_op
3116 || opcode == call12_op);
3117}
3118
3119
3120static bfd_boolean
7fa3d080 3121is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3122{
3123 init_call_opcodes ();
3124 return (opcode == call4_op
3125 || opcode == call8_op
3126 || opcode == call12_op
3127 || opcode == callx4_op
3128 || opcode == callx8_op
3129 || opcode == callx12_op);
3130}
3131
3132
43cd72b9
BW
3133static xtensa_opcode
3134get_const16_opcode (void)
3135{
3136 static bfd_boolean done_lookup = FALSE;
3137 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3138 if (!done_lookup)
3139 {
3140 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3141 done_lookup = TRUE;
3142 }
3143 return const16_opcode;
3144}
3145
3146
e0001a05
NC
3147static xtensa_opcode
3148get_l32r_opcode (void)
3149{
3150 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3151 static bfd_boolean done_lookup = FALSE;
3152
3153 if (!done_lookup)
e0001a05
NC
3154 {
3155 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3156 done_lookup = TRUE;
e0001a05
NC
3157 }
3158 return l32r_opcode;
3159}
3160
3161
3162static bfd_vma
7fa3d080 3163l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3164{
3165 bfd_vma offset;
3166
3167 offset = addr - ((pc+3) & -4);
3168 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3169 offset = (signed int) offset >> 2;
3170 BFD_ASSERT ((signed int) offset >> 16 == -1);
3171 return offset;
3172}
3173
3174
e0001a05 3175static int
7fa3d080 3176get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3177{
43cd72b9
BW
3178 xtensa_isa isa = xtensa_default_isa;
3179 int last_immed, last_opnd, opi;
3180
3181 if (opcode == XTENSA_UNDEFINED)
3182 return XTENSA_UNDEFINED;
3183
3184 /* Find the last visible PC-relative immediate operand for the opcode.
3185 If there are no PC-relative immediates, then choose the last visible
3186 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3187 last_immed = XTENSA_UNDEFINED;
3188 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3189 for (opi = last_opnd - 1; opi >= 0; opi--)
3190 {
3191 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3192 continue;
3193 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3194 {
3195 last_immed = opi;
3196 break;
3197 }
3198 if (last_immed == XTENSA_UNDEFINED
3199 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3200 last_immed = opi;
3201 }
3202 if (last_immed < 0)
3203 return XTENSA_UNDEFINED;
3204
3205 /* If the operand number was specified in an old-style relocation,
3206 check for consistency with the operand computed above. */
3207 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3208 {
3209 int reloc_opnd = r_type - R_XTENSA_OP0;
3210 if (reloc_opnd != last_immed)
3211 return XTENSA_UNDEFINED;
3212 }
3213
3214 return last_immed;
3215}
3216
3217
3218int
7fa3d080 3219get_relocation_slot (int r_type)
43cd72b9
BW
3220{
3221 switch (r_type)
3222 {
3223 case R_XTENSA_OP0:
3224 case R_XTENSA_OP1:
3225 case R_XTENSA_OP2:
3226 return 0;
3227
3228 default:
3229 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3230 return r_type - R_XTENSA_SLOT0_OP;
3231 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3232 return r_type - R_XTENSA_SLOT0_ALT;
3233 break;
3234 }
3235
3236 return XTENSA_UNDEFINED;
e0001a05
NC
3237}
3238
3239
3240/* Get the opcode for a relocation. */
3241
3242static xtensa_opcode
7fa3d080
BW
3243get_relocation_opcode (bfd *abfd,
3244 asection *sec,
3245 bfd_byte *contents,
3246 Elf_Internal_Rela *irel)
e0001a05
NC
3247{
3248 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3249 static xtensa_insnbuf sbuff = NULL;
e0001a05 3250 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3251 xtensa_format fmt;
3252 int slot;
e0001a05
NC
3253
3254 if (contents == NULL)
3255 return XTENSA_UNDEFINED;
3256
43cd72b9 3257 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3258 return XTENSA_UNDEFINED;
3259
3260 if (ibuff == NULL)
43cd72b9
BW
3261 {
3262 ibuff = xtensa_insnbuf_alloc (isa);
3263 sbuff = xtensa_insnbuf_alloc (isa);
3264 }
3265
e0001a05 3266 /* Decode the instruction. */
43cd72b9
BW
3267 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3268 sec->size - irel->r_offset);
3269 fmt = xtensa_format_decode (isa, ibuff);
3270 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3271 if (slot == XTENSA_UNDEFINED)
3272 return XTENSA_UNDEFINED;
3273 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3274 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3275}
3276
3277
3278bfd_boolean
7fa3d080
BW
3279is_l32r_relocation (bfd *abfd,
3280 asection *sec,
3281 bfd_byte *contents,
3282 Elf_Internal_Rela *irel)
e0001a05
NC
3283{
3284 xtensa_opcode opcode;
43cd72b9 3285 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3286 return FALSE;
43cd72b9 3287 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3288 return (opcode == get_l32r_opcode ());
3289}
3290
e0001a05 3291
43cd72b9 3292static bfd_size_type
7fa3d080
BW
3293get_asm_simplify_size (bfd_byte *contents,
3294 bfd_size_type content_len,
3295 bfd_size_type offset)
e0001a05 3296{
43cd72b9 3297 bfd_size_type insnlen, size = 0;
e0001a05 3298
43cd72b9
BW
3299 /* Decode the size of the next two instructions. */
3300 insnlen = insn_decode_len (contents, content_len, offset);
3301 if (insnlen == 0)
3302 return 0;
e0001a05 3303
43cd72b9 3304 size += insnlen;
e0001a05 3305
43cd72b9
BW
3306 insnlen = insn_decode_len (contents, content_len, offset + size);
3307 if (insnlen == 0)
3308 return 0;
e0001a05 3309
43cd72b9
BW
3310 size += insnlen;
3311 return size;
3312}
e0001a05 3313
43cd72b9
BW
3314
3315bfd_boolean
7fa3d080 3316is_alt_relocation (int r_type)
43cd72b9
BW
3317{
3318 return (r_type >= R_XTENSA_SLOT0_ALT
3319 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3320}
3321
3322
43cd72b9 3323bfd_boolean
7fa3d080 3324is_operand_relocation (int r_type)
e0001a05 3325{
43cd72b9
BW
3326 switch (r_type)
3327 {
3328 case R_XTENSA_OP0:
3329 case R_XTENSA_OP1:
3330 case R_XTENSA_OP2:
3331 return TRUE;
e0001a05 3332
43cd72b9
BW
3333 default:
3334 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3335 return TRUE;
3336 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3337 return TRUE;
3338 break;
3339 }
e0001a05 3340
43cd72b9 3341 return FALSE;
e0001a05
NC
3342}
3343
43cd72b9
BW
3344
3345#define MIN_INSN_LENGTH 2
e0001a05 3346
43cd72b9
BW
3347/* Return 0 if it fails to decode. */
3348
3349bfd_size_type
7fa3d080
BW
3350insn_decode_len (bfd_byte *contents,
3351 bfd_size_type content_len,
3352 bfd_size_type offset)
e0001a05 3353{
43cd72b9
BW
3354 int insn_len;
3355 xtensa_isa isa = xtensa_default_isa;
3356 xtensa_format fmt;
3357 static xtensa_insnbuf ibuff = NULL;
e0001a05 3358
43cd72b9
BW
3359 if (offset + MIN_INSN_LENGTH > content_len)
3360 return 0;
e0001a05 3361
43cd72b9
BW
3362 if (ibuff == NULL)
3363 ibuff = xtensa_insnbuf_alloc (isa);
3364 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3365 content_len - offset);
3366 fmt = xtensa_format_decode (isa, ibuff);
3367 if (fmt == XTENSA_UNDEFINED)
3368 return 0;
3369 insn_len = xtensa_format_length (isa, fmt);
3370 if (insn_len == XTENSA_UNDEFINED)
3371 return 0;
3372 return insn_len;
e0001a05
NC
3373}
3374
3375
43cd72b9
BW
3376/* Decode the opcode for a single slot instruction.
3377 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3378
43cd72b9 3379xtensa_opcode
7fa3d080
BW
3380insn_decode_opcode (bfd_byte *contents,
3381 bfd_size_type content_len,
3382 bfd_size_type offset,
3383 int slot)
e0001a05 3384{
e0001a05 3385 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3386 xtensa_format fmt;
3387 static xtensa_insnbuf insnbuf = NULL;
3388 static xtensa_insnbuf slotbuf = NULL;
3389
3390 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3391 return XTENSA_UNDEFINED;
3392
3393 if (insnbuf == NULL)
43cd72b9
BW
3394 {
3395 insnbuf = xtensa_insnbuf_alloc (isa);
3396 slotbuf = xtensa_insnbuf_alloc (isa);
3397 }
3398
3399 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3400 content_len - offset);
3401 fmt = xtensa_format_decode (isa, insnbuf);
3402 if (fmt == XTENSA_UNDEFINED)
e0001a05 3403 return XTENSA_UNDEFINED;
43cd72b9
BW
3404
3405 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3406 return XTENSA_UNDEFINED;
e0001a05 3407
43cd72b9
BW
3408 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3409 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3410}
e0001a05 3411
e0001a05 3412
43cd72b9
BW
3413/* The offset is the offset in the contents.
3414 The address is the address of that offset. */
e0001a05 3415
43cd72b9 3416static bfd_boolean
7fa3d080
BW
3417check_branch_target_aligned (bfd_byte *contents,
3418 bfd_size_type content_length,
3419 bfd_vma offset,
3420 bfd_vma address)
43cd72b9
BW
3421{
3422 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3423 if (insn_len == 0)
3424 return FALSE;
3425 return check_branch_target_aligned_address (address, insn_len);
3426}
e0001a05 3427
e0001a05 3428
43cd72b9 3429static bfd_boolean
7fa3d080
BW
3430check_loop_aligned (bfd_byte *contents,
3431 bfd_size_type content_length,
3432 bfd_vma offset,
3433 bfd_vma address)
e0001a05 3434{
43cd72b9 3435 bfd_size_type loop_len, insn_len;
64b607e6 3436 xtensa_opcode opcode;
e0001a05 3437
64b607e6
BW
3438 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3439 if (opcode == XTENSA_UNDEFINED
3440 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3441 {
3442 BFD_ASSERT (FALSE);
3443 return FALSE;
3444 }
3445
43cd72b9 3446 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 3447 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
3448 if (loop_len == 0 || insn_len == 0)
3449 {
3450 BFD_ASSERT (FALSE);
3451 return FALSE;
3452 }
e0001a05 3453
43cd72b9
BW
3454 return check_branch_target_aligned_address (address + loop_len, insn_len);
3455}
e0001a05 3456
e0001a05
NC
3457
3458static bfd_boolean
7fa3d080 3459check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3460{
43cd72b9
BW
3461 if (len == 8)
3462 return (addr % 8 == 0);
3463 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3464}
3465
43cd72b9
BW
3466\f
3467/* Instruction widening and narrowing. */
e0001a05 3468
7fa3d080
BW
3469/* When FLIX is available we need to access certain instructions only
3470 when they are 16-bit or 24-bit instructions. This table caches
3471 information about such instructions by walking through all the
3472 opcodes and finding the smallest single-slot format into which each
3473 can be encoded. */
3474
3475static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3476
3477
7fa3d080
BW
3478static void
3479init_op_single_format_table (void)
e0001a05 3480{
7fa3d080
BW
3481 xtensa_isa isa = xtensa_default_isa;
3482 xtensa_insnbuf ibuf;
3483 xtensa_opcode opcode;
3484 xtensa_format fmt;
3485 int num_opcodes;
3486
3487 if (op_single_fmt_table)
3488 return;
3489
3490 ibuf = xtensa_insnbuf_alloc (isa);
3491 num_opcodes = xtensa_isa_num_opcodes (isa);
3492
3493 op_single_fmt_table = (xtensa_format *)
3494 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3495 for (opcode = 0; opcode < num_opcodes; opcode++)
3496 {
3497 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3498 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3499 {
3500 if (xtensa_format_num_slots (isa, fmt) == 1
3501 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3502 {
3503 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3504 int fmt_length = xtensa_format_length (isa, fmt);
3505 if (old_fmt == XTENSA_UNDEFINED
3506 || fmt_length < xtensa_format_length (isa, old_fmt))
3507 op_single_fmt_table[opcode] = fmt;
3508 }
3509 }
3510 }
3511 xtensa_insnbuf_free (isa, ibuf);
3512}
3513
3514
3515static xtensa_format
3516get_single_format (xtensa_opcode opcode)
3517{
3518 init_op_single_format_table ();
3519 return op_single_fmt_table[opcode];
3520}
e0001a05 3521
e0001a05 3522
43cd72b9
BW
3523/* For the set of narrowable instructions we do NOT include the
3524 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3525 involved during linker relaxation that may require these to
3526 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3527 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3528
7fa3d080
BW
3529struct string_pair
3530{
3531 const char *wide;
3532 const char *narrow;
3533};
3534
43cd72b9 3535struct string_pair narrowable[] =
e0001a05 3536{
43cd72b9
BW
3537 { "add", "add.n" },
3538 { "addi", "addi.n" },
3539 { "addmi", "addi.n" },
3540 { "l32i", "l32i.n" },
3541 { "movi", "movi.n" },
3542 { "ret", "ret.n" },
3543 { "retw", "retw.n" },
3544 { "s32i", "s32i.n" },
3545 { "or", "mov.n" } /* special case only when op1 == op2 */
3546};
e0001a05 3547
43cd72b9 3548struct string_pair widenable[] =
e0001a05 3549{
43cd72b9
BW
3550 { "add", "add.n" },
3551 { "addi", "addi.n" },
3552 { "addmi", "addi.n" },
3553 { "beqz", "beqz.n" },
3554 { "bnez", "bnez.n" },
3555 { "l32i", "l32i.n" },
3556 { "movi", "movi.n" },
3557 { "ret", "ret.n" },
3558 { "retw", "retw.n" },
3559 { "s32i", "s32i.n" },
3560 { "or", "mov.n" } /* special case only when op1 == op2 */
3561};
e0001a05
NC
3562
3563
64b607e6
BW
3564/* Check if an instruction can be "narrowed", i.e., changed from a standard
3565 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3566 return the instruction buffer holding the narrow instruction. Otherwise,
3567 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
3568 but require some special case operand checks in some cases. */
3569
64b607e6
BW
3570static xtensa_insnbuf
3571can_narrow_instruction (xtensa_insnbuf slotbuf,
3572 xtensa_format fmt,
3573 xtensa_opcode opcode)
e0001a05 3574{
43cd72b9 3575 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3576 xtensa_format o_fmt;
3577 unsigned opi;
e0001a05 3578
43cd72b9
BW
3579 static xtensa_insnbuf o_insnbuf = NULL;
3580 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3581
64b607e6 3582 if (o_insnbuf == NULL)
43cd72b9 3583 {
43cd72b9
BW
3584 o_insnbuf = xtensa_insnbuf_alloc (isa);
3585 o_slotbuf = xtensa_insnbuf_alloc (isa);
3586 }
e0001a05 3587
64b607e6 3588 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
3589 {
3590 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3591
43cd72b9
BW
3592 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3593 {
3594 uint32 value, newval;
3595 int i, operand_count, o_operand_count;
3596 xtensa_opcode o_opcode;
e0001a05 3597
43cd72b9
BW
3598 /* Address does not matter in this case. We might need to
3599 fix it to handle branches/jumps. */
3600 bfd_vma self_address = 0;
e0001a05 3601
43cd72b9
BW
3602 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3603 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3604 return 0;
43cd72b9
BW
3605 o_fmt = get_single_format (o_opcode);
3606 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3607 return 0;
e0001a05 3608
43cd72b9
BW
3609 if (xtensa_format_length (isa, fmt) != 3
3610 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 3611 return 0;
e0001a05 3612
43cd72b9
BW
3613 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3614 operand_count = xtensa_opcode_num_operands (isa, opcode);
3615 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3616
43cd72b9 3617 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3618 return 0;
e0001a05 3619
43cd72b9
BW
3620 if (!is_or)
3621 {
3622 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3623 return 0;
43cd72b9
BW
3624 }
3625 else
3626 {
3627 uint32 rawval0, rawval1, rawval2;
e0001a05 3628
64b607e6
BW
3629 if (o_operand_count + 1 != operand_count
3630 || xtensa_operand_get_field (isa, opcode, 0,
3631 fmt, 0, slotbuf, &rawval0) != 0
3632 || xtensa_operand_get_field (isa, opcode, 1,
3633 fmt, 0, slotbuf, &rawval1) != 0
3634 || xtensa_operand_get_field (isa, opcode, 2,
3635 fmt, 0, slotbuf, &rawval2) != 0
3636 || rawval1 != rawval2
3637 || rawval0 == rawval1 /* it is a nop */)
3638 return 0;
43cd72b9 3639 }
e0001a05 3640
43cd72b9
BW
3641 for (i = 0; i < o_operand_count; ++i)
3642 {
3643 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3644 slotbuf, &value)
3645 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 3646 return 0;
e0001a05 3647
43cd72b9
BW
3648 /* PC-relative branches need adjustment, but
3649 the PC-rel operand will always have a relocation. */
3650 newval = value;
3651 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3652 self_address)
3653 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3654 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3655 o_slotbuf, newval))
64b607e6 3656 return 0;
43cd72b9 3657 }
e0001a05 3658
64b607e6
BW
3659 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3660 return 0;
e0001a05 3661
64b607e6 3662 return o_insnbuf;
43cd72b9
BW
3663 }
3664 }
64b607e6 3665 return 0;
43cd72b9 3666}
e0001a05 3667
e0001a05 3668
64b607e6
BW
3669/* Attempt to narrow an instruction. If the narrowing is valid, perform
3670 the action in-place directly into the contents and return TRUE. Otherwise,
3671 the return value is FALSE and the contents are not modified. */
e0001a05 3672
43cd72b9 3673static bfd_boolean
64b607e6
BW
3674narrow_instruction (bfd_byte *contents,
3675 bfd_size_type content_length,
3676 bfd_size_type offset)
e0001a05 3677{
43cd72b9 3678 xtensa_opcode opcode;
64b607e6 3679 bfd_size_type insn_len;
43cd72b9 3680 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3681 xtensa_format fmt;
3682 xtensa_insnbuf o_insnbuf;
e0001a05 3683
43cd72b9
BW
3684 static xtensa_insnbuf insnbuf = NULL;
3685 static xtensa_insnbuf slotbuf = NULL;
e0001a05 3686
43cd72b9
BW
3687 if (insnbuf == NULL)
3688 {
3689 insnbuf = xtensa_insnbuf_alloc (isa);
3690 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 3691 }
e0001a05 3692
43cd72b9 3693 BFD_ASSERT (offset < content_length);
2c8c90bc 3694
43cd72b9 3695 if (content_length < 2)
e0001a05
NC
3696 return FALSE;
3697
64b607e6 3698 /* We will hand-code a few of these for a little while.
43cd72b9
BW
3699 These have all been specified in the assembler aleady. */
3700 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3701 content_length - offset);
3702 fmt = xtensa_format_decode (isa, insnbuf);
3703 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3704 return FALSE;
3705
43cd72b9 3706 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3707 return FALSE;
3708
43cd72b9
BW
3709 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3710 if (opcode == XTENSA_UNDEFINED)
e0001a05 3711 return FALSE;
43cd72b9
BW
3712 insn_len = xtensa_format_length (isa, fmt);
3713 if (insn_len > content_length)
3714 return FALSE;
3715
64b607e6
BW
3716 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3717 if (o_insnbuf)
3718 {
3719 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3720 content_length - offset);
3721 return TRUE;
3722 }
3723
3724 return FALSE;
3725}
3726
3727
3728/* Check if an instruction can be "widened", i.e., changed from a 2-byte
3729 "density" instruction to a standard 3-byte instruction. If it is valid,
3730 return the instruction buffer holding the wide instruction. Otherwise,
3731 return 0. The set of valid widenings are specified by a string table
3732 but require some special case operand checks in some cases. */
3733
3734static xtensa_insnbuf
3735can_widen_instruction (xtensa_insnbuf slotbuf,
3736 xtensa_format fmt,
3737 xtensa_opcode opcode)
3738{
3739 xtensa_isa isa = xtensa_default_isa;
3740 xtensa_format o_fmt;
3741 unsigned opi;
3742
3743 static xtensa_insnbuf o_insnbuf = NULL;
3744 static xtensa_insnbuf o_slotbuf = NULL;
3745
3746 if (o_insnbuf == NULL)
3747 {
3748 o_insnbuf = xtensa_insnbuf_alloc (isa);
3749 o_slotbuf = xtensa_insnbuf_alloc (isa);
3750 }
3751
3752 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 3753 {
43cd72b9
BW
3754 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3755 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3756 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3757
43cd72b9
BW
3758 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3759 {
3760 uint32 value, newval;
3761 int i, operand_count, o_operand_count, check_operand_count;
3762 xtensa_opcode o_opcode;
e0001a05 3763
43cd72b9
BW
3764 /* Address does not matter in this case. We might need to fix it
3765 to handle branches/jumps. */
3766 bfd_vma self_address = 0;
e0001a05 3767
43cd72b9
BW
3768 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3769 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3770 return 0;
43cd72b9
BW
3771 o_fmt = get_single_format (o_opcode);
3772 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3773 return 0;
e0001a05 3774
43cd72b9
BW
3775 if (xtensa_format_length (isa, fmt) != 2
3776 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 3777 return 0;
e0001a05 3778
43cd72b9
BW
3779 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3780 operand_count = xtensa_opcode_num_operands (isa, opcode);
3781 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3782 check_operand_count = o_operand_count;
e0001a05 3783
43cd72b9 3784 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3785 return 0;
e0001a05 3786
43cd72b9
BW
3787 if (!is_or)
3788 {
3789 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3790 return 0;
43cd72b9
BW
3791 }
3792 else
3793 {
3794 uint32 rawval0, rawval1;
3795
64b607e6
BW
3796 if (o_operand_count != operand_count + 1
3797 || xtensa_operand_get_field (isa, opcode, 0,
3798 fmt, 0, slotbuf, &rawval0) != 0
3799 || xtensa_operand_get_field (isa, opcode, 1,
3800 fmt, 0, slotbuf, &rawval1) != 0
3801 || rawval0 == rawval1 /* it is a nop */)
3802 return 0;
43cd72b9
BW
3803 }
3804 if (is_branch)
3805 check_operand_count--;
3806
64b607e6 3807 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
3808 {
3809 int new_i = i;
3810 if (is_or && i == o_operand_count - 1)
3811 new_i = i - 1;
3812 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3813 slotbuf, &value)
3814 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 3815 return 0;
43cd72b9
BW
3816
3817 /* PC-relative branches need adjustment, but
3818 the PC-rel operand will always have a relocation. */
3819 newval = value;
3820 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3821 self_address)
3822 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3823 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3824 o_slotbuf, newval))
64b607e6 3825 return 0;
43cd72b9
BW
3826 }
3827
3828 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 3829 return 0;
43cd72b9 3830
64b607e6 3831 return o_insnbuf;
43cd72b9
BW
3832 }
3833 }
64b607e6
BW
3834 return 0;
3835}
3836
3837
3838/* Attempt to widen an instruction. If the widening is valid, perform
3839 the action in-place directly into the contents and return TRUE. Otherwise,
3840 the return value is FALSE and the contents are not modified. */
3841
3842static bfd_boolean
3843widen_instruction (bfd_byte *contents,
3844 bfd_size_type content_length,
3845 bfd_size_type offset)
3846{
3847 xtensa_opcode opcode;
3848 bfd_size_type insn_len;
3849 xtensa_isa isa = xtensa_default_isa;
3850 xtensa_format fmt;
3851 xtensa_insnbuf o_insnbuf;
3852
3853 static xtensa_insnbuf insnbuf = NULL;
3854 static xtensa_insnbuf slotbuf = NULL;
3855
3856 if (insnbuf == NULL)
3857 {
3858 insnbuf = xtensa_insnbuf_alloc (isa);
3859 slotbuf = xtensa_insnbuf_alloc (isa);
3860 }
3861
3862 BFD_ASSERT (offset < content_length);
3863
3864 if (content_length < 2)
3865 return FALSE;
3866
3867 /* We will hand-code a few of these for a little while.
3868 These have all been specified in the assembler aleady. */
3869 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3870 content_length - offset);
3871 fmt = xtensa_format_decode (isa, insnbuf);
3872 if (xtensa_format_num_slots (isa, fmt) != 1)
3873 return FALSE;
3874
3875 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3876 return FALSE;
3877
3878 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3879 if (opcode == XTENSA_UNDEFINED)
3880 return FALSE;
3881 insn_len = xtensa_format_length (isa, fmt);
3882 if (insn_len > content_length)
3883 return FALSE;
3884
3885 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3886 if (o_insnbuf)
3887 {
3888 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3889 content_length - offset);
3890 return TRUE;
3891 }
43cd72b9 3892 return FALSE;
e0001a05
NC
3893}
3894
43cd72b9
BW
3895\f
3896/* Code for transforming CALLs at link-time. */
e0001a05 3897
43cd72b9 3898static bfd_reloc_status_type
7fa3d080
BW
3899elf_xtensa_do_asm_simplify (bfd_byte *contents,
3900 bfd_vma address,
3901 bfd_vma content_length,
3902 char **error_message)
e0001a05 3903{
43cd72b9
BW
3904 static xtensa_insnbuf insnbuf = NULL;
3905 static xtensa_insnbuf slotbuf = NULL;
3906 xtensa_format core_format = XTENSA_UNDEFINED;
3907 xtensa_opcode opcode;
3908 xtensa_opcode direct_call_opcode;
3909 xtensa_isa isa = xtensa_default_isa;
3910 bfd_byte *chbuf = contents + address;
3911 int opn;
e0001a05 3912
43cd72b9 3913 if (insnbuf == NULL)
e0001a05 3914 {
43cd72b9
BW
3915 insnbuf = xtensa_insnbuf_alloc (isa);
3916 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3917 }
e0001a05 3918
43cd72b9
BW
3919 if (content_length < address)
3920 {
3921 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3922 return bfd_reloc_other;
3923 }
e0001a05 3924
43cd72b9
BW
3925 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3926 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3927 if (direct_call_opcode == XTENSA_UNDEFINED)
3928 {
3929 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3930 return bfd_reloc_other;
3931 }
3932
3933 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3934 core_format = xtensa_format_lookup (isa, "x24");
3935 opcode = xtensa_opcode_lookup (isa, "or");
3936 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3937 for (opn = 0; opn < 3; opn++)
3938 {
3939 uint32 regno = 1;
3940 xtensa_operand_encode (isa, opcode, opn, &regno);
3941 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3942 slotbuf, regno);
3943 }
3944 xtensa_format_encode (isa, core_format, insnbuf);
3945 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3946 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3947
43cd72b9
BW
3948 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3949 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3950 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3951
43cd72b9
BW
3952 xtensa_format_encode (isa, core_format, insnbuf);
3953 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3954 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3955 content_length - address - 3);
e0001a05 3956
43cd72b9
BW
3957 return bfd_reloc_ok;
3958}
e0001a05 3959
e0001a05 3960
43cd72b9 3961static bfd_reloc_status_type
7fa3d080
BW
3962contract_asm_expansion (bfd_byte *contents,
3963 bfd_vma content_length,
3964 Elf_Internal_Rela *irel,
3965 char **error_message)
43cd72b9
BW
3966{
3967 bfd_reloc_status_type retval =
3968 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3969 error_message);
e0001a05 3970
43cd72b9
BW
3971 if (retval != bfd_reloc_ok)
3972 return bfd_reloc_dangerous;
e0001a05 3973
43cd72b9
BW
3974 /* Update the irel->r_offset field so that the right immediate and
3975 the right instruction are modified during the relocation. */
3976 irel->r_offset += 3;
3977 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3978 return bfd_reloc_ok;
3979}
e0001a05 3980
e0001a05 3981
43cd72b9 3982static xtensa_opcode
7fa3d080 3983swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3984{
43cd72b9 3985 init_call_opcodes ();
e0001a05 3986
43cd72b9
BW
3987 if (opcode == callx0_op) return call0_op;
3988 if (opcode == callx4_op) return call4_op;
3989 if (opcode == callx8_op) return call8_op;
3990 if (opcode == callx12_op) return call12_op;
e0001a05 3991
43cd72b9
BW
3992 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3993 return XTENSA_UNDEFINED;
3994}
e0001a05 3995
e0001a05 3996
43cd72b9
BW
3997/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3998 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3999 If not, return XTENSA_UNDEFINED. */
e0001a05 4000
43cd72b9
BW
4001#define L32R_TARGET_REG_OPERAND 0
4002#define CONST16_TARGET_REG_OPERAND 0
4003#define CALLN_SOURCE_OPERAND 0
e0001a05 4004
43cd72b9 4005static xtensa_opcode
7fa3d080 4006get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4007{
43cd72b9
BW
4008 static xtensa_insnbuf insnbuf = NULL;
4009 static xtensa_insnbuf slotbuf = NULL;
4010 xtensa_format fmt;
4011 xtensa_opcode opcode;
4012 xtensa_isa isa = xtensa_default_isa;
4013 uint32 regno, const16_regno, call_regno;
4014 int offset = 0;
e0001a05 4015
43cd72b9 4016 if (insnbuf == NULL)
e0001a05 4017 {
43cd72b9
BW
4018 insnbuf = xtensa_insnbuf_alloc (isa);
4019 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4020 }
43cd72b9
BW
4021
4022 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4023 fmt = xtensa_format_decode (isa, insnbuf);
4024 if (fmt == XTENSA_UNDEFINED
4025 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4026 return XTENSA_UNDEFINED;
4027
4028 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4029 if (opcode == XTENSA_UNDEFINED)
4030 return XTENSA_UNDEFINED;
4031
4032 if (opcode == get_l32r_opcode ())
e0001a05 4033 {
43cd72b9
BW
4034 if (p_uses_l32r)
4035 *p_uses_l32r = TRUE;
4036 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4037 fmt, 0, slotbuf, &regno)
4038 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4039 &regno))
4040 return XTENSA_UNDEFINED;
e0001a05 4041 }
43cd72b9 4042 else if (opcode == get_const16_opcode ())
e0001a05 4043 {
43cd72b9
BW
4044 if (p_uses_l32r)
4045 *p_uses_l32r = FALSE;
4046 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4047 fmt, 0, slotbuf, &regno)
4048 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4049 &regno))
4050 return XTENSA_UNDEFINED;
4051
4052 /* Check that the next instruction is also CONST16. */
4053 offset += xtensa_format_length (isa, fmt);
4054 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4055 fmt = xtensa_format_decode (isa, insnbuf);
4056 if (fmt == XTENSA_UNDEFINED
4057 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4058 return XTENSA_UNDEFINED;
4059 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4060 if (opcode != get_const16_opcode ())
4061 return XTENSA_UNDEFINED;
4062
4063 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4064 fmt, 0, slotbuf, &const16_regno)
4065 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4066 &const16_regno)
4067 || const16_regno != regno)
4068 return XTENSA_UNDEFINED;
e0001a05 4069 }
43cd72b9
BW
4070 else
4071 return XTENSA_UNDEFINED;
e0001a05 4072
43cd72b9
BW
4073 /* Next instruction should be an CALLXn with operand 0 == regno. */
4074 offset += xtensa_format_length (isa, fmt);
4075 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4076 fmt = xtensa_format_decode (isa, insnbuf);
4077 if (fmt == XTENSA_UNDEFINED
4078 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4079 return XTENSA_UNDEFINED;
4080 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4081 if (opcode == XTENSA_UNDEFINED
4082 || !is_indirect_call_opcode (opcode))
4083 return XTENSA_UNDEFINED;
e0001a05 4084
43cd72b9
BW
4085 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4086 fmt, 0, slotbuf, &call_regno)
4087 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4088 &call_regno))
4089 return XTENSA_UNDEFINED;
e0001a05 4090
43cd72b9
BW
4091 if (call_regno != regno)
4092 return XTENSA_UNDEFINED;
e0001a05 4093
43cd72b9
BW
4094 return opcode;
4095}
e0001a05 4096
43cd72b9
BW
4097\f
4098/* Data structures used during relaxation. */
e0001a05 4099
43cd72b9 4100/* r_reloc: relocation values. */
e0001a05 4101
43cd72b9
BW
4102/* Through the relaxation process, we need to keep track of the values
4103 that will result from evaluating relocations. The standard ELF
4104 relocation structure is not sufficient for this purpose because we're
4105 operating on multiple input files at once, so we need to know which
4106 input file a relocation refers to. The r_reloc structure thus
4107 records both the input file (bfd) and ELF relocation.
e0001a05 4108
43cd72b9
BW
4109 For efficiency, an r_reloc also contains a "target_offset" field to
4110 cache the target-section-relative offset value that is represented by
4111 the relocation.
4112
4113 The r_reloc also contains a virtual offset that allows multiple
4114 inserted literals to be placed at the same "address" with
4115 different offsets. */
e0001a05 4116
43cd72b9 4117typedef struct r_reloc_struct r_reloc;
e0001a05 4118
43cd72b9 4119struct r_reloc_struct
e0001a05 4120{
43cd72b9
BW
4121 bfd *abfd;
4122 Elf_Internal_Rela rela;
e0001a05 4123 bfd_vma target_offset;
43cd72b9 4124 bfd_vma virtual_offset;
e0001a05
NC
4125};
4126
e0001a05 4127
43cd72b9
BW
4128/* The r_reloc structure is included by value in literal_value, but not
4129 every literal_value has an associated relocation -- some are simple
4130 constants. In such cases, we set all the fields in the r_reloc
4131 struct to zero. The r_reloc_is_const function should be used to
4132 detect this case. */
e0001a05 4133
43cd72b9 4134static bfd_boolean
7fa3d080 4135r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4136{
43cd72b9 4137 return (r_rel->abfd == NULL);
e0001a05
NC
4138}
4139
4140
43cd72b9 4141static bfd_vma
7fa3d080 4142r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4143{
43cd72b9
BW
4144 bfd_vma target_offset;
4145 unsigned long r_symndx;
e0001a05 4146
43cd72b9
BW
4147 BFD_ASSERT (!r_reloc_is_const (r_rel));
4148 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4149 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4150 return (target_offset + r_rel->rela.r_addend);
4151}
e0001a05 4152
e0001a05 4153
43cd72b9 4154static struct elf_link_hash_entry *
7fa3d080 4155r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4156{
43cd72b9
BW
4157 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4158 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4159}
e0001a05 4160
43cd72b9
BW
4161
4162static asection *
7fa3d080 4163r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4164{
4165 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4166 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4167}
e0001a05
NC
4168
4169
4170static bfd_boolean
7fa3d080 4171r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4172{
43cd72b9
BW
4173 asection *sec;
4174 if (r_rel == NULL)
e0001a05 4175 return FALSE;
e0001a05 4176
43cd72b9
BW
4177 sec = r_reloc_get_section (r_rel);
4178 if (sec == bfd_abs_section_ptr
4179 || sec == bfd_com_section_ptr
4180 || sec == bfd_und_section_ptr)
4181 return FALSE;
4182 return TRUE;
e0001a05
NC
4183}
4184
4185
7fa3d080
BW
4186static void
4187r_reloc_init (r_reloc *r_rel,
4188 bfd *abfd,
4189 Elf_Internal_Rela *irel,
4190 bfd_byte *contents,
4191 bfd_size_type content_length)
4192{
4193 int r_type;
4194 reloc_howto_type *howto;
4195
4196 if (irel)
4197 {
4198 r_rel->rela = *irel;
4199 r_rel->abfd = abfd;
4200 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4201 r_rel->virtual_offset = 0;
4202 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4203 howto = &elf_howto_table[r_type];
4204 if (howto->partial_inplace)
4205 {
4206 bfd_vma inplace_val;
4207 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4208
4209 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4210 r_rel->target_offset += inplace_val;
4211 }
4212 }
4213 else
4214 memset (r_rel, 0, sizeof (r_reloc));
4215}
4216
4217
43cd72b9
BW
4218#if DEBUG
4219
e0001a05 4220static void
7fa3d080 4221print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4222{
43cd72b9
BW
4223 if (r_reloc_is_defined (r_rel))
4224 {
4225 asection *sec = r_reloc_get_section (r_rel);
4226 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4227 }
4228 else if (r_reloc_get_hash_entry (r_rel))
4229 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4230 else
4231 fprintf (fp, " ?? + ");
e0001a05 4232
43cd72b9
BW
4233 fprintf_vma (fp, r_rel->target_offset);
4234 if (r_rel->virtual_offset)
4235 {
4236 fprintf (fp, " + ");
4237 fprintf_vma (fp, r_rel->virtual_offset);
4238 }
4239
4240 fprintf (fp, ")");
4241}
e0001a05 4242
43cd72b9 4243#endif /* DEBUG */
e0001a05 4244
43cd72b9
BW
4245\f
4246/* source_reloc: relocations that reference literals. */
e0001a05 4247
43cd72b9
BW
4248/* To determine whether literals can be coalesced, we need to first
4249 record all the relocations that reference the literals. The
4250 source_reloc structure below is used for this purpose. The
4251 source_reloc entries are kept in a per-literal-section array, sorted
4252 by offset within the literal section (i.e., target offset).
e0001a05 4253
43cd72b9
BW
4254 The source_sec and r_rel.rela.r_offset fields identify the source of
4255 the relocation. The r_rel field records the relocation value, i.e.,
4256 the offset of the literal being referenced. The opnd field is needed
4257 to determine the range of the immediate field to which the relocation
4258 applies, so we can determine whether another literal with the same
4259 value is within range. The is_null field is true when the relocation
4260 is being removed (e.g., when an L32R is being removed due to a CALLX
4261 that is converted to a direct CALL). */
e0001a05 4262
43cd72b9
BW
4263typedef struct source_reloc_struct source_reloc;
4264
4265struct source_reloc_struct
e0001a05 4266{
43cd72b9
BW
4267 asection *source_sec;
4268 r_reloc r_rel;
4269 xtensa_opcode opcode;
4270 int opnd;
4271 bfd_boolean is_null;
4272 bfd_boolean is_abs_literal;
4273};
e0001a05 4274
e0001a05 4275
e0001a05 4276static void
7fa3d080
BW
4277init_source_reloc (source_reloc *reloc,
4278 asection *source_sec,
4279 const r_reloc *r_rel,
4280 xtensa_opcode opcode,
4281 int opnd,
4282 bfd_boolean is_abs_literal)
e0001a05 4283{
43cd72b9
BW
4284 reloc->source_sec = source_sec;
4285 reloc->r_rel = *r_rel;
4286 reloc->opcode = opcode;
4287 reloc->opnd = opnd;
4288 reloc->is_null = FALSE;
4289 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4290}
4291
e0001a05 4292
43cd72b9
BW
4293/* Find the source_reloc for a particular source offset and relocation
4294 type. Note that the array is sorted by _target_ offset, so this is
4295 just a linear search. */
e0001a05 4296
43cd72b9 4297static source_reloc *
7fa3d080
BW
4298find_source_reloc (source_reloc *src_relocs,
4299 int src_count,
4300 asection *sec,
4301 Elf_Internal_Rela *irel)
e0001a05 4302{
43cd72b9 4303 int i;
e0001a05 4304
43cd72b9
BW
4305 for (i = 0; i < src_count; i++)
4306 {
4307 if (src_relocs[i].source_sec == sec
4308 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4309 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4310 == ELF32_R_TYPE (irel->r_info)))
4311 return &src_relocs[i];
4312 }
e0001a05 4313
43cd72b9 4314 return NULL;
e0001a05
NC
4315}
4316
4317
43cd72b9 4318static int
7fa3d080 4319source_reloc_compare (const void *ap, const void *bp)
e0001a05 4320{
43cd72b9
BW
4321 const source_reloc *a = (const source_reloc *) ap;
4322 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4323
43cd72b9
BW
4324 if (a->r_rel.target_offset != b->r_rel.target_offset)
4325 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4326
43cd72b9
BW
4327 /* We don't need to sort on these criteria for correctness,
4328 but enforcing a more strict ordering prevents unstable qsort
4329 from behaving differently with different implementations.
4330 Without the code below we get correct but different results
4331 on Solaris 2.7 and 2.8. We would like to always produce the
4332 same results no matter the host. */
4333
4334 if ((!a->is_null) - (!b->is_null))
4335 return ((!a->is_null) - (!b->is_null));
4336 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4337}
4338
43cd72b9
BW
4339\f
4340/* Literal values and value hash tables. */
e0001a05 4341
43cd72b9
BW
4342/* Literals with the same value can be coalesced. The literal_value
4343 structure records the value of a literal: the "r_rel" field holds the
4344 information from the relocation on the literal (if there is one) and
4345 the "value" field holds the contents of the literal word itself.
e0001a05 4346
43cd72b9
BW
4347 The value_map structure records a literal value along with the
4348 location of a literal holding that value. The value_map hash table
4349 is indexed by the literal value, so that we can quickly check if a
4350 particular literal value has been seen before and is thus a candidate
4351 for coalescing. */
e0001a05 4352
43cd72b9
BW
4353typedef struct literal_value_struct literal_value;
4354typedef struct value_map_struct value_map;
4355typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4356
43cd72b9 4357struct literal_value_struct
e0001a05 4358{
43cd72b9
BW
4359 r_reloc r_rel;
4360 unsigned long value;
4361 bfd_boolean is_abs_literal;
4362};
4363
4364struct value_map_struct
4365{
4366 literal_value val; /* The literal value. */
4367 r_reloc loc; /* Location of the literal. */
4368 value_map *next;
4369};
4370
4371struct value_map_hash_table_struct
4372{
4373 unsigned bucket_count;
4374 value_map **buckets;
4375 unsigned count;
4376 bfd_boolean has_last_loc;
4377 r_reloc last_loc;
4378};
4379
4380
e0001a05 4381static void
7fa3d080
BW
4382init_literal_value (literal_value *lit,
4383 const r_reloc *r_rel,
4384 unsigned long value,
4385 bfd_boolean is_abs_literal)
e0001a05 4386{
43cd72b9
BW
4387 lit->r_rel = *r_rel;
4388 lit->value = value;
4389 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4390}
4391
4392
43cd72b9 4393static bfd_boolean
7fa3d080
BW
4394literal_value_equal (const literal_value *src1,
4395 const literal_value *src2,
4396 bfd_boolean final_static_link)
e0001a05 4397{
43cd72b9 4398 struct elf_link_hash_entry *h1, *h2;
e0001a05 4399
43cd72b9
BW
4400 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4401 return FALSE;
e0001a05 4402
43cd72b9
BW
4403 if (r_reloc_is_const (&src1->r_rel))
4404 return (src1->value == src2->value);
e0001a05 4405
43cd72b9
BW
4406 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4407 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4408 return FALSE;
e0001a05 4409
43cd72b9
BW
4410 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4411 return FALSE;
4412
4413 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4414 return FALSE;
4415
4416 if (src1->value != src2->value)
4417 return FALSE;
4418
4419 /* Now check for the same section (if defined) or the same elf_hash
4420 (if undefined or weak). */
4421 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4422 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4423 if (r_reloc_is_defined (&src1->r_rel)
4424 && (final_static_link
4425 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4426 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4427 {
4428 if (r_reloc_get_section (&src1->r_rel)
4429 != r_reloc_get_section (&src2->r_rel))
4430 return FALSE;
4431 }
4432 else
4433 {
4434 /* Require that the hash entries (i.e., symbols) be identical. */
4435 if (h1 != h2 || h1 == 0)
4436 return FALSE;
4437 }
4438
4439 if (src1->is_abs_literal != src2->is_abs_literal)
4440 return FALSE;
4441
4442 return TRUE;
e0001a05
NC
4443}
4444
e0001a05 4445
43cd72b9
BW
4446/* Must be power of 2. */
4447#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4448
43cd72b9 4449static value_map_hash_table *
7fa3d080 4450value_map_hash_table_init (void)
43cd72b9
BW
4451{
4452 value_map_hash_table *values;
e0001a05 4453
43cd72b9
BW
4454 values = (value_map_hash_table *)
4455 bfd_zmalloc (sizeof (value_map_hash_table));
4456 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4457 values->count = 0;
4458 values->buckets = (value_map **)
4459 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4460 if (values->buckets == NULL)
4461 {
4462 free (values);
4463 return NULL;
4464 }
4465 values->has_last_loc = FALSE;
4466
4467 return values;
4468}
4469
4470
4471static void
7fa3d080 4472value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4473{
43cd72b9
BW
4474 free (table->buckets);
4475 free (table);
4476}
4477
4478
4479static unsigned
7fa3d080 4480hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4481{
4482 return (val >> 2) + (val >> 10);
4483}
4484
4485
4486static unsigned
7fa3d080 4487literal_value_hash (const literal_value *src)
43cd72b9
BW
4488{
4489 unsigned hash_val;
e0001a05 4490
43cd72b9
BW
4491 hash_val = hash_bfd_vma (src->value);
4492 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4493 {
43cd72b9
BW
4494 void *sec_or_hash;
4495
4496 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4497 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4498 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4499
4500 /* Now check for the same section and the same elf_hash. */
4501 if (r_reloc_is_defined (&src->r_rel))
4502 sec_or_hash = r_reloc_get_section (&src->r_rel);
4503 else
4504 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4505 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4506 }
43cd72b9
BW
4507 return hash_val;
4508}
e0001a05 4509
e0001a05 4510
43cd72b9 4511/* Check if the specified literal_value has been seen before. */
e0001a05 4512
43cd72b9 4513static value_map *
7fa3d080
BW
4514value_map_get_cached_value (value_map_hash_table *map,
4515 const literal_value *val,
4516 bfd_boolean final_static_link)
43cd72b9
BW
4517{
4518 value_map *map_e;
4519 value_map *bucket;
4520 unsigned idx;
4521
4522 idx = literal_value_hash (val);
4523 idx = idx & (map->bucket_count - 1);
4524 bucket = map->buckets[idx];
4525 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4526 {
43cd72b9
BW
4527 if (literal_value_equal (&map_e->val, val, final_static_link))
4528 return map_e;
4529 }
4530 return NULL;
4531}
e0001a05 4532
e0001a05 4533
43cd72b9
BW
4534/* Record a new literal value. It is illegal to call this if VALUE
4535 already has an entry here. */
4536
4537static value_map *
7fa3d080
BW
4538add_value_map (value_map_hash_table *map,
4539 const literal_value *val,
4540 const r_reloc *loc,
4541 bfd_boolean final_static_link)
43cd72b9
BW
4542{
4543 value_map **bucket_p;
4544 unsigned idx;
4545
4546 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4547 if (val_e == NULL)
4548 {
4549 bfd_set_error (bfd_error_no_memory);
4550 return NULL;
e0001a05
NC
4551 }
4552
43cd72b9
BW
4553 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4554 val_e->val = *val;
4555 val_e->loc = *loc;
4556
4557 idx = literal_value_hash (val);
4558 idx = idx & (map->bucket_count - 1);
4559 bucket_p = &map->buckets[idx];
4560
4561 val_e->next = *bucket_p;
4562 *bucket_p = val_e;
4563 map->count++;
4564 /* FIXME: Consider resizing the hash table if we get too many entries. */
4565
4566 return val_e;
e0001a05
NC
4567}
4568
43cd72b9
BW
4569\f
4570/* Lists of text actions (ta_) for narrowing, widening, longcall
4571 conversion, space fill, code & literal removal, etc. */
4572
4573/* The following text actions are generated:
4574
4575 "ta_remove_insn" remove an instruction or instructions
4576 "ta_remove_longcall" convert longcall to call
4577 "ta_convert_longcall" convert longcall to nop/call
4578 "ta_narrow_insn" narrow a wide instruction
4579 "ta_widen" widen a narrow instruction
4580 "ta_fill" add fill or remove fill
4581 removed < 0 is a fill; branches to the fill address will be
4582 changed to address + fill size (e.g., address - removed)
4583 removed >= 0 branches to the fill address will stay unchanged
4584 "ta_remove_literal" remove a literal; this action is
4585 indicated when a literal is removed
4586 or replaced.
4587 "ta_add_literal" insert a new literal; this action is
4588 indicated when a literal has been moved.
4589 It may use a virtual_offset because
4590 multiple literals can be placed at the
4591 same location.
4592
4593 For each of these text actions, we also record the number of bytes
4594 removed by performing the text action. In the case of a "ta_widen"
4595 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4596
4597typedef struct text_action_struct text_action;
4598typedef struct text_action_list_struct text_action_list;
4599typedef enum text_action_enum_t text_action_t;
4600
4601enum text_action_enum_t
4602{
4603 ta_none,
4604 ta_remove_insn, /* removed = -size */
4605 ta_remove_longcall, /* removed = -size */
4606 ta_convert_longcall, /* removed = 0 */
4607 ta_narrow_insn, /* removed = -1 */
4608 ta_widen_insn, /* removed = +1 */
4609 ta_fill, /* removed = +size */
4610 ta_remove_literal,
4611 ta_add_literal
4612};
e0001a05 4613
e0001a05 4614
43cd72b9
BW
4615/* Structure for a text action record. */
4616struct text_action_struct
e0001a05 4617{
43cd72b9
BW
4618 text_action_t action;
4619 asection *sec; /* Optional */
4620 bfd_vma offset;
4621 bfd_vma virtual_offset; /* Zero except for adding literals. */
4622 int removed_bytes;
4623 literal_value value; /* Only valid when adding literals. */
e0001a05 4624
43cd72b9
BW
4625 text_action *next;
4626};
e0001a05 4627
e0001a05 4628
43cd72b9
BW
4629/* List of all of the actions taken on a text section. */
4630struct text_action_list_struct
4631{
4632 text_action *head;
4633};
e0001a05 4634
e0001a05 4635
7fa3d080
BW
4636static text_action *
4637find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4638{
4639 text_action **m_p;
4640
4641 /* It is not necessary to fill at the end of a section. */
4642 if (sec->size == offset)
4643 return NULL;
4644
7fa3d080 4645 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4646 {
4647 text_action *t = *m_p;
4648 /* When the action is another fill at the same address,
4649 just increase the size. */
4650 if (t->offset == offset && t->action == ta_fill)
4651 return t;
4652 }
4653 return NULL;
4654}
4655
4656
4657static int
7fa3d080
BW
4658compute_removed_action_diff (const text_action *ta,
4659 asection *sec,
4660 bfd_vma offset,
4661 int removed,
4662 int removable_space)
43cd72b9
BW
4663{
4664 int new_removed;
4665 int current_removed = 0;
4666
7fa3d080 4667 if (ta)
43cd72b9
BW
4668 current_removed = ta->removed_bytes;
4669
4670 BFD_ASSERT (ta == NULL || ta->offset == offset);
4671 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4672
4673 /* It is not necessary to fill at the end of a section. Clean this up. */
4674 if (sec->size == offset)
4675 new_removed = removable_space - 0;
4676 else
4677 {
4678 int space;
4679 int added = -removed - current_removed;
4680 /* Ignore multiples of the section alignment. */
4681 added = ((1 << sec->alignment_power) - 1) & added;
4682 new_removed = (-added);
4683
4684 /* Modify for removable. */
4685 space = removable_space - new_removed;
4686 new_removed = (removable_space
4687 - (((1 << sec->alignment_power) - 1) & space));
4688 }
4689 return (new_removed - current_removed);
4690}
4691
4692
7fa3d080
BW
4693static void
4694adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4695{
4696 ta->removed_bytes += fill_diff;
4697}
4698
4699
4700/* Add a modification action to the text. For the case of adding or
4701 removing space, modify any current fill and assume that
4702 "unreachable_space" bytes can be freely contracted. Note that a
4703 negative removed value is a fill. */
4704
4705static void
7fa3d080
BW
4706text_action_add (text_action_list *l,
4707 text_action_t action,
4708 asection *sec,
4709 bfd_vma offset,
4710 int removed)
43cd72b9
BW
4711{
4712 text_action **m_p;
4713 text_action *ta;
4714
4715 /* It is not necessary to fill at the end of a section. */
4716 if (action == ta_fill && sec->size == offset)
4717 return;
4718
4719 /* It is not necessary to fill 0 bytes. */
4720 if (action == ta_fill && removed == 0)
4721 return;
4722
7fa3d080 4723 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4724 {
4725 text_action *t = *m_p;
4726 /* When the action is another fill at the same address,
4727 just increase the size. */
4728 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4729 {
4730 t->removed_bytes += removed;
4731 return;
4732 }
4733 }
4734
4735 /* Create a new record and fill it up. */
4736 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4737 ta->action = action;
4738 ta->sec = sec;
4739 ta->offset = offset;
4740 ta->removed_bytes = removed;
4741 ta->next = (*m_p);
4742 *m_p = ta;
4743}
4744
4745
4746static void
7fa3d080
BW
4747text_action_add_literal (text_action_list *l,
4748 text_action_t action,
4749 const r_reloc *loc,
4750 const literal_value *value,
4751 int removed)
43cd72b9
BW
4752{
4753 text_action **m_p;
4754 text_action *ta;
4755 asection *sec = r_reloc_get_section (loc);
4756 bfd_vma offset = loc->target_offset;
4757 bfd_vma virtual_offset = loc->virtual_offset;
4758
4759 BFD_ASSERT (action == ta_add_literal);
4760
4761 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4762 {
4763 if ((*m_p)->offset > offset
4764 && ((*m_p)->offset != offset
4765 || (*m_p)->virtual_offset > virtual_offset))
4766 break;
4767 }
4768
4769 /* Create a new record and fill it up. */
4770 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4771 ta->action = action;
4772 ta->sec = sec;
4773 ta->offset = offset;
4774 ta->virtual_offset = virtual_offset;
4775 ta->value = *value;
4776 ta->removed_bytes = removed;
4777 ta->next = (*m_p);
4778 *m_p = ta;
4779}
4780
4781
7fa3d080
BW
4782static bfd_vma
4783offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4784{
4785 text_action *r;
4786 int removed = 0;
4787
4788 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4789 {
4790 if (r->offset < offset
4791 || (r->action == ta_fill && r->removed_bytes < 0))
4792 removed += r->removed_bytes;
4793 }
4794
4795 return (offset - removed);
4796}
4797
4798
03e94c08
BW
4799static unsigned
4800action_list_count (text_action_list *action_list)
4801{
4802 text_action *r = action_list->head;
4803 unsigned count = 0;
4804 for (r = action_list->head; r != NULL; r = r->next)
4805 {
4806 count++;
4807 }
4808 return count;
4809}
4810
4811
7fa3d080
BW
4812static bfd_vma
4813offset_with_removed_text_before_fill (text_action_list *action_list,
4814 bfd_vma offset)
43cd72b9
BW
4815{
4816 text_action *r;
4817 int removed = 0;
4818
4819 for (r = action_list->head; r && r->offset < offset; r = r->next)
4820 removed += r->removed_bytes;
4821
4822 return (offset - removed);
4823}
4824
4825
4826/* The find_insn_action routine will only find non-fill actions. */
4827
7fa3d080
BW
4828static text_action *
4829find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4830{
4831 text_action *t;
4832 for (t = action_list->head; t; t = t->next)
4833 {
4834 if (t->offset == offset)
4835 {
4836 switch (t->action)
4837 {
4838 case ta_none:
4839 case ta_fill:
4840 break;
4841 case ta_remove_insn:
4842 case ta_remove_longcall:
4843 case ta_convert_longcall:
4844 case ta_narrow_insn:
4845 case ta_widen_insn:
4846 return t;
4847 case ta_remove_literal:
4848 case ta_add_literal:
4849 BFD_ASSERT (0);
4850 break;
4851 }
4852 }
4853 }
4854 return NULL;
4855}
4856
4857
4858#if DEBUG
4859
4860static void
7fa3d080 4861print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4862{
4863 text_action *r;
4864
4865 fprintf (fp, "Text Action\n");
4866 for (r = action_list->head; r != NULL; r = r->next)
4867 {
4868 const char *t = "unknown";
4869 switch (r->action)
4870 {
4871 case ta_remove_insn:
4872 t = "remove_insn"; break;
4873 case ta_remove_longcall:
4874 t = "remove_longcall"; break;
4875 case ta_convert_longcall:
4876 t = "remove_longcall"; break;
4877 case ta_narrow_insn:
4878 t = "narrow_insn"; break;
4879 case ta_widen_insn:
4880 t = "widen_insn"; break;
4881 case ta_fill:
4882 t = "fill"; break;
4883 case ta_none:
4884 t = "none"; break;
4885 case ta_remove_literal:
4886 t = "remove_literal"; break;
4887 case ta_add_literal:
4888 t = "add_literal"; break;
4889 }
4890
4891 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4892 r->sec->owner->filename,
4893 r->sec->name, r->offset, t, r->removed_bytes);
4894 }
4895}
4896
4897#endif /* DEBUG */
4898
4899\f
4900/* Lists of literals being coalesced or removed. */
4901
4902/* In the usual case, the literal identified by "from" is being
4903 coalesced with another literal identified by "to". If the literal is
4904 unused and is being removed altogether, "to.abfd" will be NULL.
4905 The removed_literal entries are kept on a per-section list, sorted
4906 by the "from" offset field. */
4907
4908typedef struct removed_literal_struct removed_literal;
4909typedef struct removed_literal_list_struct removed_literal_list;
4910
4911struct removed_literal_struct
4912{
4913 r_reloc from;
4914 r_reloc to;
4915 removed_literal *next;
4916};
4917
4918struct removed_literal_list_struct
4919{
4920 removed_literal *head;
4921 removed_literal *tail;
4922};
4923
4924
43cd72b9
BW
4925/* Record that the literal at "from" is being removed. If "to" is not
4926 NULL, the "from" literal is being coalesced with the "to" literal. */
4927
4928static void
7fa3d080
BW
4929add_removed_literal (removed_literal_list *removed_list,
4930 const r_reloc *from,
4931 const r_reloc *to)
43cd72b9
BW
4932{
4933 removed_literal *r, *new_r, *next_r;
4934
4935 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4936
4937 new_r->from = *from;
4938 if (to)
4939 new_r->to = *to;
4940 else
4941 new_r->to.abfd = NULL;
4942 new_r->next = NULL;
4943
4944 r = removed_list->head;
4945 if (r == NULL)
4946 {
4947 removed_list->head = new_r;
4948 removed_list->tail = new_r;
4949 }
4950 /* Special check for common case of append. */
4951 else if (removed_list->tail->from.target_offset < from->target_offset)
4952 {
4953 removed_list->tail->next = new_r;
4954 removed_list->tail = new_r;
4955 }
4956 else
4957 {
7fa3d080 4958 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4959 {
4960 r = r->next;
4961 }
4962 next_r = r->next;
4963 r->next = new_r;
4964 new_r->next = next_r;
4965 if (next_r == NULL)
4966 removed_list->tail = new_r;
4967 }
4968}
4969
4970
4971/* Check if the list of removed literals contains an entry for the
4972 given address. Return the entry if found. */
4973
4974static removed_literal *
7fa3d080 4975find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4976{
4977 removed_literal *r = removed_list->head;
4978 while (r && r->from.target_offset < addr)
4979 r = r->next;
4980 if (r && r->from.target_offset == addr)
4981 return r;
4982 return NULL;
4983}
4984
4985
4986#if DEBUG
4987
4988static void
7fa3d080 4989print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4990{
4991 removed_literal *r;
4992 r = removed_list->head;
4993 if (r)
4994 fprintf (fp, "Removed Literals\n");
4995 for (; r != NULL; r = r->next)
4996 {
4997 print_r_reloc (fp, &r->from);
4998 fprintf (fp, " => ");
4999 if (r->to.abfd == NULL)
5000 fprintf (fp, "REMOVED");
5001 else
5002 print_r_reloc (fp, &r->to);
5003 fprintf (fp, "\n");
5004 }
5005}
5006
5007#endif /* DEBUG */
5008
5009\f
5010/* Per-section data for relaxation. */
5011
5012typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5013
5014struct xtensa_relax_info_struct
5015{
5016 bfd_boolean is_relaxable_literal_section;
5017 bfd_boolean is_relaxable_asm_section;
5018 int visited; /* Number of times visited. */
5019
5020 source_reloc *src_relocs; /* Array[src_count]. */
5021 int src_count;
5022 int src_next; /* Next src_relocs entry to assign. */
5023
5024 removed_literal_list removed_list;
5025 text_action_list action_list;
5026
5027 reloc_bfd_fix *fix_list;
5028 reloc_bfd_fix *fix_array;
5029 unsigned fix_array_count;
5030
5031 /* Support for expanding the reloc array that is stored
5032 in the section structure. If the relocations have been
5033 reallocated, the newly allocated relocations will be referenced
5034 here along with the actual size allocated. The relocation
5035 count will always be found in the section structure. */
5036 Elf_Internal_Rela *allocated_relocs;
5037 unsigned relocs_count;
5038 unsigned allocated_relocs_count;
5039};
5040
5041struct elf_xtensa_section_data
5042{
5043 struct bfd_elf_section_data elf;
5044 xtensa_relax_info relax_info;
5045};
5046
43cd72b9
BW
5047
5048static bfd_boolean
7fa3d080 5049elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5050{
f592407e
AM
5051 if (!sec->used_by_bfd)
5052 {
5053 struct elf_xtensa_section_data *sdata;
5054 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5055
f592407e
AM
5056 sdata = bfd_zalloc (abfd, amt);
5057 if (sdata == NULL)
5058 return FALSE;
5059 sec->used_by_bfd = sdata;
5060 }
43cd72b9
BW
5061
5062 return _bfd_elf_new_section_hook (abfd, sec);
5063}
5064
5065
7fa3d080
BW
5066static xtensa_relax_info *
5067get_xtensa_relax_info (asection *sec)
5068{
5069 struct elf_xtensa_section_data *section_data;
5070
5071 /* No info available if no section or if it is an output section. */
5072 if (!sec || sec == sec->output_section)
5073 return NULL;
5074
5075 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5076 return &section_data->relax_info;
5077}
5078
5079
43cd72b9 5080static void
7fa3d080 5081init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5082{
5083 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5084
5085 relax_info->is_relaxable_literal_section = FALSE;
5086 relax_info->is_relaxable_asm_section = FALSE;
5087 relax_info->visited = 0;
5088
5089 relax_info->src_relocs = NULL;
5090 relax_info->src_count = 0;
5091 relax_info->src_next = 0;
5092
5093 relax_info->removed_list.head = NULL;
5094 relax_info->removed_list.tail = NULL;
5095
5096 relax_info->action_list.head = NULL;
5097
5098 relax_info->fix_list = NULL;
5099 relax_info->fix_array = NULL;
5100 relax_info->fix_array_count = 0;
5101
5102 relax_info->allocated_relocs = NULL;
5103 relax_info->relocs_count = 0;
5104 relax_info->allocated_relocs_count = 0;
5105}
5106
43cd72b9
BW
5107\f
5108/* Coalescing literals may require a relocation to refer to a section in
5109 a different input file, but the standard relocation information
5110 cannot express that. Instead, the reloc_bfd_fix structures are used
5111 to "fix" the relocations that refer to sections in other input files.
5112 These structures are kept on per-section lists. The "src_type" field
5113 records the relocation type in case there are multiple relocations on
5114 the same location. FIXME: This is ugly; an alternative might be to
5115 add new symbols with the "owner" field to some other input file. */
5116
5117struct reloc_bfd_fix_struct
5118{
5119 asection *src_sec;
5120 bfd_vma src_offset;
5121 unsigned src_type; /* Relocation type. */
5122
5123 bfd *target_abfd;
5124 asection *target_sec;
5125 bfd_vma target_offset;
5126 bfd_boolean translated;
5127
5128 reloc_bfd_fix *next;
5129};
5130
5131
43cd72b9 5132static reloc_bfd_fix *
7fa3d080
BW
5133reloc_bfd_fix_init (asection *src_sec,
5134 bfd_vma src_offset,
5135 unsigned src_type,
5136 bfd *target_abfd,
5137 asection *target_sec,
5138 bfd_vma target_offset,
5139 bfd_boolean translated)
43cd72b9
BW
5140{
5141 reloc_bfd_fix *fix;
5142
5143 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5144 fix->src_sec = src_sec;
5145 fix->src_offset = src_offset;
5146 fix->src_type = src_type;
5147 fix->target_abfd = target_abfd;
5148 fix->target_sec = target_sec;
5149 fix->target_offset = target_offset;
5150 fix->translated = translated;
5151
5152 return fix;
5153}
5154
5155
5156static void
7fa3d080 5157add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5158{
5159 xtensa_relax_info *relax_info;
5160
5161 relax_info = get_xtensa_relax_info (src_sec);
5162 fix->next = relax_info->fix_list;
5163 relax_info->fix_list = fix;
5164}
5165
5166
5167static int
7fa3d080 5168fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5169{
5170 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5171 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5172
5173 if (a->src_offset != b->src_offset)
5174 return (a->src_offset - b->src_offset);
5175 return (a->src_type - b->src_type);
5176}
5177
5178
5179static void
7fa3d080 5180cache_fix_array (asection *sec)
43cd72b9
BW
5181{
5182 unsigned i, count = 0;
5183 reloc_bfd_fix *r;
5184 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5185
5186 if (relax_info == NULL)
5187 return;
5188 if (relax_info->fix_list == NULL)
5189 return;
5190
5191 for (r = relax_info->fix_list; r != NULL; r = r->next)
5192 count++;
5193
5194 relax_info->fix_array =
5195 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5196 relax_info->fix_array_count = count;
5197
5198 r = relax_info->fix_list;
5199 for (i = 0; i < count; i++, r = r->next)
5200 {
5201 relax_info->fix_array[count - 1 - i] = *r;
5202 relax_info->fix_array[count - 1 - i].next = NULL;
5203 }
5204
5205 qsort (relax_info->fix_array, relax_info->fix_array_count,
5206 sizeof (reloc_bfd_fix), fix_compare);
5207}
5208
5209
5210static reloc_bfd_fix *
7fa3d080 5211get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5212{
5213 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5214 reloc_bfd_fix *rv;
5215 reloc_bfd_fix key;
5216
5217 if (relax_info == NULL)
5218 return NULL;
5219 if (relax_info->fix_list == NULL)
5220 return NULL;
5221
5222 if (relax_info->fix_array == NULL)
5223 cache_fix_array (sec);
5224
5225 key.src_offset = offset;
5226 key.src_type = type;
5227 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5228 sizeof (reloc_bfd_fix), fix_compare);
5229 return rv;
5230}
5231
5232\f
5233/* Section caching. */
5234
5235typedef struct section_cache_struct section_cache_t;
5236
5237struct section_cache_struct
5238{
5239 asection *sec;
5240
5241 bfd_byte *contents; /* Cache of the section contents. */
5242 bfd_size_type content_length;
5243
5244 property_table_entry *ptbl; /* Cache of the section property table. */
5245 unsigned pte_count;
5246
5247 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5248 unsigned reloc_count;
5249};
5250
5251
7fa3d080
BW
5252static void
5253init_section_cache (section_cache_t *sec_cache)
5254{
5255 memset (sec_cache, 0, sizeof (*sec_cache));
5256}
43cd72b9
BW
5257
5258
5259static void
7fa3d080 5260clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5261{
7fa3d080
BW
5262 if (sec_cache->sec)
5263 {
5264 release_contents (sec_cache->sec, sec_cache->contents);
5265 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5266 if (sec_cache->ptbl)
5267 free (sec_cache->ptbl);
5268 memset (sec_cache, 0, sizeof (sec_cache));
5269 }
43cd72b9
BW
5270}
5271
5272
5273static bfd_boolean
7fa3d080
BW
5274section_cache_section (section_cache_t *sec_cache,
5275 asection *sec,
5276 struct bfd_link_info *link_info)
43cd72b9
BW
5277{
5278 bfd *abfd;
5279 property_table_entry *prop_table = NULL;
5280 int ptblsize = 0;
5281 bfd_byte *contents = NULL;
5282 Elf_Internal_Rela *internal_relocs = NULL;
5283 bfd_size_type sec_size;
5284
5285 if (sec == NULL)
5286 return FALSE;
5287 if (sec == sec_cache->sec)
5288 return TRUE;
5289
5290 abfd = sec->owner;
5291 sec_size = bfd_get_section_limit (abfd, sec);
5292
5293 /* Get the contents. */
5294 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5295 if (contents == NULL && sec_size != 0)
5296 goto err;
5297
5298 /* Get the relocations. */
5299 internal_relocs = retrieve_internal_relocs (abfd, sec,
5300 link_info->keep_memory);
5301
5302 /* Get the entry table. */
5303 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5304 XTENSA_PROP_SEC_NAME, FALSE);
5305 if (ptblsize < 0)
5306 goto err;
5307
5308 /* Fill in the new section cache. */
5309 clear_section_cache (sec_cache);
5310 memset (sec_cache, 0, sizeof (sec_cache));
5311
5312 sec_cache->sec = sec;
5313 sec_cache->contents = contents;
5314 sec_cache->content_length = sec_size;
5315 sec_cache->relocs = internal_relocs;
5316 sec_cache->reloc_count = sec->reloc_count;
5317 sec_cache->pte_count = ptblsize;
5318 sec_cache->ptbl = prop_table;
5319
5320 return TRUE;
5321
5322 err:
5323 release_contents (sec, contents);
5324 release_internal_relocs (sec, internal_relocs);
5325 if (prop_table)
5326 free (prop_table);
5327 return FALSE;
5328}
5329
43cd72b9
BW
5330\f
5331/* Extended basic blocks. */
5332
5333/* An ebb_struct represents an Extended Basic Block. Within this
5334 range, we guarantee that all instructions are decodable, the
5335 property table entries are contiguous, and no property table
5336 specifies a segment that cannot have instructions moved. This
5337 structure contains caches of the contents, property table and
5338 relocations for the specified section for easy use. The range is
5339 specified by ranges of indices for the byte offset, property table
5340 offsets and relocation offsets. These must be consistent. */
5341
5342typedef struct ebb_struct ebb_t;
5343
5344struct ebb_struct
5345{
5346 asection *sec;
5347
5348 bfd_byte *contents; /* Cache of the section contents. */
5349 bfd_size_type content_length;
5350
5351 property_table_entry *ptbl; /* Cache of the section property table. */
5352 unsigned pte_count;
5353
5354 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5355 unsigned reloc_count;
5356
5357 bfd_vma start_offset; /* Offset in section. */
5358 unsigned start_ptbl_idx; /* Offset in the property table. */
5359 unsigned start_reloc_idx; /* Offset in the relocations. */
5360
5361 bfd_vma end_offset;
5362 unsigned end_ptbl_idx;
5363 unsigned end_reloc_idx;
5364
5365 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5366
5367 /* The unreachable property table at the end of this set of blocks;
5368 NULL if the end is not an unreachable block. */
5369 property_table_entry *ends_unreachable;
5370};
5371
5372
5373enum ebb_target_enum
5374{
5375 EBB_NO_ALIGN = 0,
5376 EBB_DESIRE_TGT_ALIGN,
5377 EBB_REQUIRE_TGT_ALIGN,
5378 EBB_REQUIRE_LOOP_ALIGN,
5379 EBB_REQUIRE_ALIGN
5380};
5381
5382
5383/* proposed_action_struct is similar to the text_action_struct except
5384 that is represents a potential transformation, not one that will
5385 occur. We build a list of these for an extended basic block
5386 and use them to compute the actual actions desired. We must be
5387 careful that the entire set of actual actions we perform do not
5388 break any relocations that would fit if the actions were not
5389 performed. */
5390
5391typedef struct proposed_action_struct proposed_action;
5392
5393struct proposed_action_struct
5394{
5395 enum ebb_target_enum align_type; /* for the target alignment */
5396 bfd_vma alignment_pow;
5397 text_action_t action;
5398 bfd_vma offset;
5399 int removed_bytes;
5400 bfd_boolean do_action; /* If false, then we will not perform the action. */
5401};
5402
5403
5404/* The ebb_constraint_struct keeps a set of proposed actions for an
5405 extended basic block. */
5406
5407typedef struct ebb_constraint_struct ebb_constraint;
5408
5409struct ebb_constraint_struct
5410{
5411 ebb_t ebb;
5412 bfd_boolean start_movable;
5413
5414 /* Bytes of extra space at the beginning if movable. */
5415 int start_extra_space;
5416
5417 enum ebb_target_enum start_align;
5418
5419 bfd_boolean end_movable;
5420
5421 /* Bytes of extra space at the end if movable. */
5422 int end_extra_space;
5423
5424 unsigned action_count;
5425 unsigned action_allocated;
5426
5427 /* Array of proposed actions. */
5428 proposed_action *actions;
5429
5430 /* Action alignments -- one for each proposed action. */
5431 enum ebb_target_enum *action_aligns;
5432};
5433
5434
43cd72b9 5435static void
7fa3d080 5436init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5437{
5438 memset (c, 0, sizeof (ebb_constraint));
5439}
5440
5441
5442static void
7fa3d080 5443free_ebb_constraint (ebb_constraint *c)
43cd72b9 5444{
7fa3d080 5445 if (c->actions)
43cd72b9
BW
5446 free (c->actions);
5447}
5448
5449
5450static void
7fa3d080
BW
5451init_ebb (ebb_t *ebb,
5452 asection *sec,
5453 bfd_byte *contents,
5454 bfd_size_type content_length,
5455 property_table_entry *prop_table,
5456 unsigned ptblsize,
5457 Elf_Internal_Rela *internal_relocs,
5458 unsigned reloc_count)
43cd72b9
BW
5459{
5460 memset (ebb, 0, sizeof (ebb_t));
5461 ebb->sec = sec;
5462 ebb->contents = contents;
5463 ebb->content_length = content_length;
5464 ebb->ptbl = prop_table;
5465 ebb->pte_count = ptblsize;
5466 ebb->relocs = internal_relocs;
5467 ebb->reloc_count = reloc_count;
5468 ebb->start_offset = 0;
5469 ebb->end_offset = ebb->content_length - 1;
5470 ebb->start_ptbl_idx = 0;
5471 ebb->end_ptbl_idx = ptblsize;
5472 ebb->start_reloc_idx = 0;
5473 ebb->end_reloc_idx = reloc_count;
5474}
5475
5476
5477/* Extend the ebb to all decodable contiguous sections. The algorithm
5478 for building a basic block around an instruction is to push it
5479 forward until we hit the end of a section, an unreachable block or
5480 a block that cannot be transformed. Then we push it backwards
5481 searching for similar conditions. */
5482
7fa3d080
BW
5483static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5484static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5485static bfd_size_type insn_block_decodable_len
5486 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5487
43cd72b9 5488static bfd_boolean
7fa3d080 5489extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5490{
5491 if (!extend_ebb_bounds_forward (ebb))
5492 return FALSE;
5493 if (!extend_ebb_bounds_backward (ebb))
5494 return FALSE;
5495 return TRUE;
5496}
5497
5498
5499static bfd_boolean
7fa3d080 5500extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5501{
5502 property_table_entry *the_entry, *new_entry;
5503
5504 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5505
5506 /* Stop when (1) we cannot decode an instruction, (2) we are at
5507 the end of the property tables, (3) we hit a non-contiguous property
5508 table entry, (4) we hit a NO_TRANSFORM region. */
5509
5510 while (1)
5511 {
5512 bfd_vma entry_end;
5513 bfd_size_type insn_block_len;
5514
5515 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5516 insn_block_len =
5517 insn_block_decodable_len (ebb->contents, ebb->content_length,
5518 ebb->end_offset,
5519 entry_end - ebb->end_offset);
5520 if (insn_block_len != (entry_end - ebb->end_offset))
5521 {
5522 (*_bfd_error_handler)
5523 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5524 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5525 return FALSE;
5526 }
5527 ebb->end_offset += insn_block_len;
5528
5529 if (ebb->end_offset == ebb->sec->size)
5530 ebb->ends_section = TRUE;
5531
5532 /* Update the reloc counter. */
5533 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5534 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5535 < ebb->end_offset))
5536 {
5537 ebb->end_reloc_idx++;
5538 }
5539
5540 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5541 return TRUE;
5542
5543 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5544 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5545 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5546 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5547 break;
5548
5549 if (the_entry->address + the_entry->size != new_entry->address)
5550 break;
5551
5552 the_entry = new_entry;
5553 ebb->end_ptbl_idx++;
5554 }
5555
5556 /* Quick check for an unreachable or end of file just at the end. */
5557 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5558 {
5559 if (ebb->end_offset == ebb->content_length)
5560 ebb->ends_section = TRUE;
5561 }
5562 else
5563 {
5564 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5565 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5566 && the_entry->address + the_entry->size == new_entry->address)
5567 ebb->ends_unreachable = new_entry;
5568 }
5569
5570 /* Any other ending requires exact alignment. */
5571 return TRUE;
5572}
5573
5574
5575static bfd_boolean
7fa3d080 5576extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5577{
5578 property_table_entry *the_entry, *new_entry;
5579
5580 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5581
5582 /* Stop when (1) we cannot decode the instructions in the current entry.
5583 (2) we are at the beginning of the property tables, (3) we hit a
5584 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5585
5586 while (1)
5587 {
5588 bfd_vma block_begin;
5589 bfd_size_type insn_block_len;
5590
5591 block_begin = the_entry->address - ebb->sec->vma;
5592 insn_block_len =
5593 insn_block_decodable_len (ebb->contents, ebb->content_length,
5594 block_begin,
5595 ebb->start_offset - block_begin);
5596 if (insn_block_len != ebb->start_offset - block_begin)
5597 {
5598 (*_bfd_error_handler)
5599 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5600 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5601 return FALSE;
5602 }
5603 ebb->start_offset -= insn_block_len;
5604
5605 /* Update the reloc counter. */
5606 while (ebb->start_reloc_idx > 0
5607 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5608 >= ebb->start_offset))
5609 {
5610 ebb->start_reloc_idx--;
5611 }
5612
5613 if (ebb->start_ptbl_idx == 0)
5614 return TRUE;
5615
5616 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5617 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5618 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5619 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5620 return TRUE;
5621 if (new_entry->address + new_entry->size != the_entry->address)
5622 return TRUE;
5623
5624 the_entry = new_entry;
5625 ebb->start_ptbl_idx--;
5626 }
5627 return TRUE;
5628}
5629
5630
5631static bfd_size_type
7fa3d080
BW
5632insn_block_decodable_len (bfd_byte *contents,
5633 bfd_size_type content_len,
5634 bfd_vma block_offset,
5635 bfd_size_type block_len)
43cd72b9
BW
5636{
5637 bfd_vma offset = block_offset;
5638
5639 while (offset < block_offset + block_len)
5640 {
5641 bfd_size_type insn_len = 0;
5642
5643 insn_len = insn_decode_len (contents, content_len, offset);
5644 if (insn_len == 0)
5645 return (offset - block_offset);
5646 offset += insn_len;
5647 }
5648 return (offset - block_offset);
5649}
5650
5651
5652static void
7fa3d080 5653ebb_propose_action (ebb_constraint *c,
7fa3d080 5654 enum ebb_target_enum align_type,
288f74fa 5655 bfd_vma alignment_pow,
7fa3d080
BW
5656 text_action_t action,
5657 bfd_vma offset,
5658 int removed_bytes,
5659 bfd_boolean do_action)
43cd72b9 5660{
b08b5071 5661 proposed_action *act;
43cd72b9 5662
43cd72b9
BW
5663 if (c->action_allocated <= c->action_count)
5664 {
b08b5071 5665 unsigned new_allocated, i;
823fc61f 5666 proposed_action *new_actions;
b08b5071
BW
5667
5668 new_allocated = (c->action_count + 2) * 2;
823fc61f 5669 new_actions = (proposed_action *)
43cd72b9
BW
5670 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5671
5672 for (i = 0; i < c->action_count; i++)
5673 new_actions[i] = c->actions[i];
7fa3d080 5674 if (c->actions)
43cd72b9
BW
5675 free (c->actions);
5676 c->actions = new_actions;
5677 c->action_allocated = new_allocated;
5678 }
b08b5071
BW
5679
5680 act = &c->actions[c->action_count];
5681 act->align_type = align_type;
5682 act->alignment_pow = alignment_pow;
5683 act->action = action;
5684 act->offset = offset;
5685 act->removed_bytes = removed_bytes;
5686 act->do_action = do_action;
5687
43cd72b9
BW
5688 c->action_count++;
5689}
5690
5691\f
5692/* Access to internal relocations, section contents and symbols. */
5693
5694/* During relaxation, we need to modify relocations, section contents,
5695 and symbol definitions, and we need to keep the original values from
5696 being reloaded from the input files, i.e., we need to "pin" the
5697 modified values in memory. We also want to continue to observe the
5698 setting of the "keep-memory" flag. The following functions wrap the
5699 standard BFD functions to take care of this for us. */
5700
5701static Elf_Internal_Rela *
7fa3d080 5702retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5703{
5704 Elf_Internal_Rela *internal_relocs;
5705
5706 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5707 return NULL;
5708
5709 internal_relocs = elf_section_data (sec)->relocs;
5710 if (internal_relocs == NULL)
5711 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5712 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5713 return internal_relocs;
5714}
5715
5716
5717static void
7fa3d080 5718pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5719{
5720 elf_section_data (sec)->relocs = internal_relocs;
5721}
5722
5723
5724static void
7fa3d080 5725release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5726{
5727 if (internal_relocs
5728 && elf_section_data (sec)->relocs != internal_relocs)
5729 free (internal_relocs);
5730}
5731
5732
5733static bfd_byte *
7fa3d080 5734retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5735{
5736 bfd_byte *contents;
5737 bfd_size_type sec_size;
5738
5739 sec_size = bfd_get_section_limit (abfd, sec);
5740 contents = elf_section_data (sec)->this_hdr.contents;
5741
5742 if (contents == NULL && sec_size != 0)
5743 {
5744 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5745 {
7fa3d080 5746 if (contents)
43cd72b9
BW
5747 free (contents);
5748 return NULL;
5749 }
5750 if (keep_memory)
5751 elf_section_data (sec)->this_hdr.contents = contents;
5752 }
5753 return contents;
5754}
5755
5756
5757static void
7fa3d080 5758pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5759{
5760 elf_section_data (sec)->this_hdr.contents = contents;
5761}
5762
5763
5764static void
7fa3d080 5765release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5766{
5767 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5768 free (contents);
5769}
5770
5771
5772static Elf_Internal_Sym *
7fa3d080 5773retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5774{
5775 Elf_Internal_Shdr *symtab_hdr;
5776 Elf_Internal_Sym *isymbuf;
5777 size_t locsymcount;
5778
5779 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5780 locsymcount = symtab_hdr->sh_info;
5781
5782 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5783 if (isymbuf == NULL && locsymcount != 0)
5784 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5785 NULL, NULL, NULL);
5786
5787 /* Save the symbols for this input file so they won't be read again. */
5788 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5789 symtab_hdr->contents = (unsigned char *) isymbuf;
5790
5791 return isymbuf;
5792}
5793
5794\f
5795/* Code for link-time relaxation. */
5796
5797/* Initialization for relaxation: */
7fa3d080 5798static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5799static bfd_boolean find_relaxable_sections
7fa3d080 5800 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5801static bfd_boolean collect_source_relocs
7fa3d080 5802 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5803static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5804 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5805 bfd_boolean *);
43cd72b9 5806static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5807 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5808static bfd_boolean compute_text_actions
7fa3d080
BW
5809 (bfd *, asection *, struct bfd_link_info *);
5810static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5811static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5812static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
5813 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5814 const xtensa_opcode *);
7fa3d080 5815static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5816static void text_action_add_proposed
7fa3d080
BW
5817 (text_action_list *, const ebb_constraint *, asection *);
5818static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5819
5820/* First pass: */
5821static bfd_boolean compute_removed_literals
7fa3d080 5822 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5823static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5824 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5825static bfd_boolean is_removable_literal
7fa3d080 5826 (const source_reloc *, int, const source_reloc *, int);
43cd72b9 5827static bfd_boolean remove_dead_literal
7fa3d080
BW
5828 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5829 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5830static bfd_boolean identify_literal_placement
5831 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5832 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5833 source_reloc *, property_table_entry *, int, section_cache_t *,
5834 bfd_boolean);
5835static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5836static bfd_boolean coalesce_shared_literal
7fa3d080 5837 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5838static bfd_boolean move_shared_literal
7fa3d080
BW
5839 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5840 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5841
5842/* Second pass: */
7fa3d080
BW
5843static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5844static bfd_boolean translate_section_fixes (asection *);
5845static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5846static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5847static void shrink_dynamic_reloc_sections
7fa3d080 5848 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5849static bfd_boolean move_literal
7fa3d080
BW
5850 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5851 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5852static bfd_boolean relax_property_section
7fa3d080 5853 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5854
5855/* Third pass: */
7fa3d080 5856static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5857
5858
5859static bfd_boolean
7fa3d080
BW
5860elf_xtensa_relax_section (bfd *abfd,
5861 asection *sec,
5862 struct bfd_link_info *link_info,
5863 bfd_boolean *again)
43cd72b9
BW
5864{
5865 static value_map_hash_table *values = NULL;
5866 static bfd_boolean relocations_analyzed = FALSE;
5867 xtensa_relax_info *relax_info;
5868
5869 if (!relocations_analyzed)
5870 {
5871 /* Do some overall initialization for relaxation. */
5872 values = value_map_hash_table_init ();
5873 if (values == NULL)
5874 return FALSE;
5875 relaxing_section = TRUE;
5876 if (!analyze_relocations (link_info))
5877 return FALSE;
5878 relocations_analyzed = TRUE;
5879 }
5880 *again = FALSE;
5881
5882 /* Don't mess with linker-created sections. */
5883 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5884 return TRUE;
5885
5886 relax_info = get_xtensa_relax_info (sec);
5887 BFD_ASSERT (relax_info != NULL);
5888
5889 switch (relax_info->visited)
5890 {
5891 case 0:
5892 /* Note: It would be nice to fold this pass into
5893 analyze_relocations, but it is important for this step that the
5894 sections be examined in link order. */
5895 if (!compute_removed_literals (abfd, sec, link_info, values))
5896 return FALSE;
5897 *again = TRUE;
5898 break;
5899
5900 case 1:
5901 if (values)
5902 value_map_hash_table_delete (values);
5903 values = NULL;
5904 if (!relax_section (abfd, sec, link_info))
5905 return FALSE;
5906 *again = TRUE;
5907 break;
5908
5909 case 2:
5910 if (!relax_section_symbols (abfd, sec))
5911 return FALSE;
5912 break;
5913 }
5914
5915 relax_info->visited++;
5916 return TRUE;
5917}
5918
5919\f
5920/* Initialization for relaxation. */
5921
5922/* This function is called once at the start of relaxation. It scans
5923 all the input sections and marks the ones that are relaxable (i.e.,
5924 literal sections with L32R relocations against them), and then
5925 collects source_reloc information for all the relocations against
5926 those relaxable sections. During this process, it also detects
5927 longcalls, i.e., calls relaxed by the assembler into indirect
5928 calls, that can be optimized back into direct calls. Within each
5929 extended basic block (ebb) containing an optimized longcall, it
5930 computes a set of "text actions" that can be performed to remove
5931 the L32R associated with the longcall while optionally preserving
5932 branch target alignments. */
5933
5934static bfd_boolean
7fa3d080 5935analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5936{
5937 bfd *abfd;
5938 asection *sec;
5939 bfd_boolean is_relaxable = FALSE;
5940
5941 /* Initialize the per-section relaxation info. */
5942 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5943 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5944 {
5945 init_xtensa_relax_info (sec);
5946 }
5947
5948 /* Mark relaxable sections (and count relocations against each one). */
5949 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5951 {
5952 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5953 return FALSE;
5954 }
5955
5956 /* Bail out if there are no relaxable sections. */
5957 if (!is_relaxable)
5958 return TRUE;
5959
5960 /* Allocate space for source_relocs. */
5961 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5962 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5963 {
5964 xtensa_relax_info *relax_info;
5965
5966 relax_info = get_xtensa_relax_info (sec);
5967 if (relax_info->is_relaxable_literal_section
5968 || relax_info->is_relaxable_asm_section)
5969 {
5970 relax_info->src_relocs = (source_reloc *)
5971 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5972 }
5973 }
5974
5975 /* Collect info on relocations against each relaxable section. */
5976 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5977 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5978 {
5979 if (!collect_source_relocs (abfd, sec, link_info))
5980 return FALSE;
5981 }
5982
5983 /* Compute the text actions. */
5984 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5985 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5986 {
5987 if (!compute_text_actions (abfd, sec, link_info))
5988 return FALSE;
5989 }
5990
5991 return TRUE;
5992}
5993
5994
5995/* Find all the sections that might be relaxed. The motivation for
5996 this pass is that collect_source_relocs() needs to record _all_ the
5997 relocations that target each relaxable section. That is expensive
5998 and unnecessary unless the target section is actually going to be
5999 relaxed. This pass identifies all such sections by checking if
6000 they have L32Rs pointing to them. In the process, the total number
6001 of relocations targeting each section is also counted so that we
6002 know how much space to allocate for source_relocs against each
6003 relaxable literal section. */
6004
6005static bfd_boolean
7fa3d080
BW
6006find_relaxable_sections (bfd *abfd,
6007 asection *sec,
6008 struct bfd_link_info *link_info,
6009 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6010{
6011 Elf_Internal_Rela *internal_relocs;
6012 bfd_byte *contents;
6013 bfd_boolean ok = TRUE;
6014 unsigned i;
6015 xtensa_relax_info *source_relax_info;
6016
6017 internal_relocs = retrieve_internal_relocs (abfd, sec,
6018 link_info->keep_memory);
6019 if (internal_relocs == NULL)
6020 return ok;
6021
6022 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6023 if (contents == NULL && sec->size != 0)
6024 {
6025 ok = FALSE;
6026 goto error_return;
6027 }
6028
6029 source_relax_info = get_xtensa_relax_info (sec);
6030 for (i = 0; i < sec->reloc_count; i++)
6031 {
6032 Elf_Internal_Rela *irel = &internal_relocs[i];
6033 r_reloc r_rel;
6034 asection *target_sec;
6035 xtensa_relax_info *target_relax_info;
6036
6037 /* If this section has not already been marked as "relaxable", and
6038 if it contains any ASM_EXPAND relocations (marking expanded
6039 longcalls) that can be optimized into direct calls, then mark
6040 the section as "relaxable". */
6041 if (source_relax_info
6042 && !source_relax_info->is_relaxable_asm_section
6043 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6044 {
6045 bfd_boolean is_reachable = FALSE;
6046 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6047 link_info, &is_reachable)
6048 && is_reachable)
6049 {
6050 source_relax_info->is_relaxable_asm_section = TRUE;
6051 *is_relaxable_p = TRUE;
6052 }
6053 }
6054
6055 r_reloc_init (&r_rel, abfd, irel, contents,
6056 bfd_get_section_limit (abfd, sec));
6057
6058 target_sec = r_reloc_get_section (&r_rel);
6059 target_relax_info = get_xtensa_relax_info (target_sec);
6060 if (!target_relax_info)
6061 continue;
6062
6063 /* Count PC-relative operand relocations against the target section.
6064 Note: The conditions tested here must match the conditions under
6065 which init_source_reloc is called in collect_source_relocs(). */
6066 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6067 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6068 || is_l32r_relocation (abfd, sec, contents, irel)))
6069 target_relax_info->src_count++;
6070
6071 if (is_l32r_relocation (abfd, sec, contents, irel)
6072 && r_reloc_is_defined (&r_rel))
6073 {
6074 /* Mark the target section as relaxable. */
6075 target_relax_info->is_relaxable_literal_section = TRUE;
6076 *is_relaxable_p = TRUE;
6077 }
6078 }
6079
6080 error_return:
6081 release_contents (sec, contents);
6082 release_internal_relocs (sec, internal_relocs);
6083 return ok;
6084}
6085
6086
6087/* Record _all_ the relocations that point to relaxable sections, and
6088 get rid of ASM_EXPAND relocs by either converting them to
6089 ASM_SIMPLIFY or by removing them. */
6090
6091static bfd_boolean
7fa3d080
BW
6092collect_source_relocs (bfd *abfd,
6093 asection *sec,
6094 struct bfd_link_info *link_info)
43cd72b9
BW
6095{
6096 Elf_Internal_Rela *internal_relocs;
6097 bfd_byte *contents;
6098 bfd_boolean ok = TRUE;
6099 unsigned i;
6100 bfd_size_type sec_size;
6101
6102 internal_relocs = retrieve_internal_relocs (abfd, sec,
6103 link_info->keep_memory);
6104 if (internal_relocs == NULL)
6105 return ok;
6106
6107 sec_size = bfd_get_section_limit (abfd, sec);
6108 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6109 if (contents == NULL && sec_size != 0)
6110 {
6111 ok = FALSE;
6112 goto error_return;
6113 }
6114
6115 /* Record relocations against relaxable literal sections. */
6116 for (i = 0; i < sec->reloc_count; i++)
6117 {
6118 Elf_Internal_Rela *irel = &internal_relocs[i];
6119 r_reloc r_rel;
6120 asection *target_sec;
6121 xtensa_relax_info *target_relax_info;
6122
6123 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6124
6125 target_sec = r_reloc_get_section (&r_rel);
6126 target_relax_info = get_xtensa_relax_info (target_sec);
6127
6128 if (target_relax_info
6129 && (target_relax_info->is_relaxable_literal_section
6130 || target_relax_info->is_relaxable_asm_section))
6131 {
6132 xtensa_opcode opcode = XTENSA_UNDEFINED;
6133 int opnd = -1;
6134 bfd_boolean is_abs_literal = FALSE;
6135
6136 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6137 {
6138 /* None of the current alternate relocs are PC-relative,
6139 and only PC-relative relocs matter here. However, we
6140 still need to record the opcode for literal
6141 coalescing. */
6142 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6143 if (opcode == get_l32r_opcode ())
6144 {
6145 is_abs_literal = TRUE;
6146 opnd = 1;
6147 }
6148 else
6149 opcode = XTENSA_UNDEFINED;
6150 }
6151 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6152 {
6153 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6154 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6155 }
6156
6157 if (opcode != XTENSA_UNDEFINED)
6158 {
6159 int src_next = target_relax_info->src_next++;
6160 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6161
6162 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6163 is_abs_literal);
6164 }
6165 }
6166 }
6167
6168 /* Now get rid of ASM_EXPAND relocations. At this point, the
6169 src_relocs array for the target literal section may still be
6170 incomplete, but it must at least contain the entries for the L32R
6171 relocations associated with ASM_EXPANDs because they were just
6172 added in the preceding loop over the relocations. */
6173
6174 for (i = 0; i < sec->reloc_count; i++)
6175 {
6176 Elf_Internal_Rela *irel = &internal_relocs[i];
6177 bfd_boolean is_reachable;
6178
6179 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6180 &is_reachable))
6181 continue;
6182
6183 if (is_reachable)
6184 {
6185 Elf_Internal_Rela *l32r_irel;
6186 r_reloc r_rel;
6187 asection *target_sec;
6188 xtensa_relax_info *target_relax_info;
6189
6190 /* Mark the source_reloc for the L32R so that it will be
6191 removed in compute_removed_literals(), along with the
6192 associated literal. */
6193 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6194 irel, internal_relocs);
6195 if (l32r_irel == NULL)
6196 continue;
6197
6198 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6199
6200 target_sec = r_reloc_get_section (&r_rel);
6201 target_relax_info = get_xtensa_relax_info (target_sec);
6202
6203 if (target_relax_info
6204 && (target_relax_info->is_relaxable_literal_section
6205 || target_relax_info->is_relaxable_asm_section))
6206 {
6207 source_reloc *s_reloc;
6208
6209 /* Search the source_relocs for the entry corresponding to
6210 the l32r_irel. Note: The src_relocs array is not yet
6211 sorted, but it wouldn't matter anyway because we're
6212 searching by source offset instead of target offset. */
6213 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6214 target_relax_info->src_next,
6215 sec, l32r_irel);
6216 BFD_ASSERT (s_reloc);
6217 s_reloc->is_null = TRUE;
6218 }
6219
6220 /* Convert this reloc to ASM_SIMPLIFY. */
6221 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6222 R_XTENSA_ASM_SIMPLIFY);
6223 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6224
6225 pin_internal_relocs (sec, internal_relocs);
6226 }
6227 else
6228 {
6229 /* It is resolvable but doesn't reach. We resolve now
6230 by eliminating the relocation -- the call will remain
6231 expanded into L32R/CALLX. */
6232 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6233 pin_internal_relocs (sec, internal_relocs);
6234 }
6235 }
6236
6237 error_return:
6238 release_contents (sec, contents);
6239 release_internal_relocs (sec, internal_relocs);
6240 return ok;
6241}
6242
6243
6244/* Return TRUE if the asm expansion can be resolved. Generally it can
6245 be resolved on a final link or when a partial link locates it in the
6246 same section as the target. Set "is_reachable" flag if the target of
6247 the call is within the range of a direct call, given the current VMA
6248 for this section and the target section. */
6249
6250bfd_boolean
7fa3d080
BW
6251is_resolvable_asm_expansion (bfd *abfd,
6252 asection *sec,
6253 bfd_byte *contents,
6254 Elf_Internal_Rela *irel,
6255 struct bfd_link_info *link_info,
6256 bfd_boolean *is_reachable_p)
43cd72b9
BW
6257{
6258 asection *target_sec;
6259 bfd_vma target_offset;
6260 r_reloc r_rel;
6261 xtensa_opcode opcode, direct_call_opcode;
6262 bfd_vma self_address;
6263 bfd_vma dest_address;
6264 bfd_boolean uses_l32r;
6265 bfd_size_type sec_size;
6266
6267 *is_reachable_p = FALSE;
6268
6269 if (contents == NULL)
6270 return FALSE;
6271
6272 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6273 return FALSE;
6274
6275 sec_size = bfd_get_section_limit (abfd, sec);
6276 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6277 sec_size - irel->r_offset, &uses_l32r);
6278 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6279 if (!uses_l32r)
6280 return FALSE;
6281
6282 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6283 if (direct_call_opcode == XTENSA_UNDEFINED)
6284 return FALSE;
6285
6286 /* Check and see that the target resolves. */
6287 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6288 if (!r_reloc_is_defined (&r_rel))
6289 return FALSE;
6290
6291 target_sec = r_reloc_get_section (&r_rel);
6292 target_offset = r_rel.target_offset;
6293
6294 /* If the target is in a shared library, then it doesn't reach. This
6295 isn't supposed to come up because the compiler should never generate
6296 non-PIC calls on systems that use shared libraries, but the linker
6297 shouldn't crash regardless. */
6298 if (!target_sec->output_section)
6299 return FALSE;
6300
6301 /* For relocatable sections, we can only simplify when the output
6302 section of the target is the same as the output section of the
6303 source. */
6304 if (link_info->relocatable
6305 && (target_sec->output_section != sec->output_section
6306 || is_reloc_sym_weak (abfd, irel)))
6307 return FALSE;
6308
6309 self_address = (sec->output_section->vma
6310 + sec->output_offset + irel->r_offset + 3);
6311 dest_address = (target_sec->output_section->vma
6312 + target_sec->output_offset + target_offset);
6313
6314 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6315 self_address, dest_address);
6316
6317 if ((self_address >> CALL_SEGMENT_BITS) !=
6318 (dest_address >> CALL_SEGMENT_BITS))
6319 return FALSE;
6320
6321 return TRUE;
6322}
6323
6324
6325static Elf_Internal_Rela *
7fa3d080
BW
6326find_associated_l32r_irel (bfd *abfd,
6327 asection *sec,
6328 bfd_byte *contents,
6329 Elf_Internal_Rela *other_irel,
6330 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6331{
6332 unsigned i;
e0001a05 6333
43cd72b9
BW
6334 for (i = 0; i < sec->reloc_count; i++)
6335 {
6336 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6337
43cd72b9
BW
6338 if (irel == other_irel)
6339 continue;
6340 if (irel->r_offset != other_irel->r_offset)
6341 continue;
6342 if (is_l32r_relocation (abfd, sec, contents, irel))
6343 return irel;
6344 }
6345
6346 return NULL;
e0001a05
NC
6347}
6348
6349
cb337148
BW
6350static xtensa_opcode *
6351build_reloc_opcodes (bfd *abfd,
6352 asection *sec,
6353 bfd_byte *contents,
6354 Elf_Internal_Rela *internal_relocs)
6355{
6356 unsigned i;
6357 xtensa_opcode *reloc_opcodes =
6358 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6359 for (i = 0; i < sec->reloc_count; i++)
6360 {
6361 Elf_Internal_Rela *irel = &internal_relocs[i];
6362 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6363 }
6364 return reloc_opcodes;
6365}
6366
6367
43cd72b9
BW
6368/* The compute_text_actions function will build a list of potential
6369 transformation actions for code in the extended basic block of each
6370 longcall that is optimized to a direct call. From this list we
6371 generate a set of actions to actually perform that optimizes for
6372 space and, if not using size_opt, maintains branch target
6373 alignments.
e0001a05 6374
43cd72b9
BW
6375 These actions to be performed are placed on a per-section list.
6376 The actual changes are performed by relax_section() in the second
6377 pass. */
6378
6379bfd_boolean
7fa3d080
BW
6380compute_text_actions (bfd *abfd,
6381 asection *sec,
6382 struct bfd_link_info *link_info)
e0001a05 6383{
cb337148 6384 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 6385 xtensa_relax_info *relax_info;
e0001a05 6386 bfd_byte *contents;
43cd72b9 6387 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6388 bfd_boolean ok = TRUE;
6389 unsigned i;
43cd72b9
BW
6390 property_table_entry *prop_table = 0;
6391 int ptblsize = 0;
6392 bfd_size_type sec_size;
6393 static bfd_boolean no_insn_move = FALSE;
6394
6395 if (no_insn_move)
6396 return ok;
6397
6398 /* Do nothing if the section contains no optimized longcalls. */
6399 relax_info = get_xtensa_relax_info (sec);
6400 BFD_ASSERT (relax_info);
6401 if (!relax_info->is_relaxable_asm_section)
6402 return ok;
e0001a05
NC
6403
6404 internal_relocs = retrieve_internal_relocs (abfd, sec,
6405 link_info->keep_memory);
e0001a05 6406
43cd72b9
BW
6407 if (internal_relocs)
6408 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6409 internal_reloc_compare);
6410
6411 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6412 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6413 if (contents == NULL && sec_size != 0)
e0001a05
NC
6414 {
6415 ok = FALSE;
6416 goto error_return;
6417 }
6418
43cd72b9
BW
6419 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6420 XTENSA_PROP_SEC_NAME, FALSE);
6421 if (ptblsize < 0)
6422 {
6423 ok = FALSE;
6424 goto error_return;
6425 }
6426
6427 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6428 {
6429 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6430 bfd_vma r_offset;
6431 property_table_entry *the_entry;
6432 int ptbl_idx;
6433 ebb_t *ebb;
6434 ebb_constraint ebb_table;
6435 bfd_size_type simplify_size;
6436
6437 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6438 continue;
6439 r_offset = irel->r_offset;
e0001a05 6440
43cd72b9
BW
6441 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6442 if (simplify_size == 0)
6443 {
6444 (*_bfd_error_handler)
6445 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6446 sec->owner, sec, r_offset);
6447 continue;
6448 }
e0001a05 6449
43cd72b9
BW
6450 /* If the instruction table is not around, then don't do this
6451 relaxation. */
6452 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6453 sec->vma + irel->r_offset);
6454 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6455 {
6456 text_action_add (&relax_info->action_list,
6457 ta_convert_longcall, sec, r_offset,
6458 0);
6459 continue;
6460 }
6461
6462 /* If the next longcall happens to be at the same address as an
6463 unreachable section of size 0, then skip forward. */
6464 ptbl_idx = the_entry - prop_table;
6465 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6466 && the_entry->size == 0
6467 && ptbl_idx + 1 < ptblsize
6468 && (prop_table[ptbl_idx + 1].address
6469 == prop_table[ptbl_idx].address))
6470 {
6471 ptbl_idx++;
6472 the_entry++;
6473 }
e0001a05 6474
43cd72b9
BW
6475 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6476 /* NO_REORDER is OK */
6477 continue;
e0001a05 6478
43cd72b9
BW
6479 init_ebb_constraint (&ebb_table);
6480 ebb = &ebb_table.ebb;
6481 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6482 internal_relocs, sec->reloc_count);
6483 ebb->start_offset = r_offset + simplify_size;
6484 ebb->end_offset = r_offset + simplify_size;
6485 ebb->start_ptbl_idx = ptbl_idx;
6486 ebb->end_ptbl_idx = ptbl_idx;
6487 ebb->start_reloc_idx = i;
6488 ebb->end_reloc_idx = i;
6489
cb337148
BW
6490 /* Precompute the opcode for each relocation. */
6491 if (reloc_opcodes == NULL)
6492 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6493 internal_relocs);
6494
43cd72b9
BW
6495 if (!extend_ebb_bounds (ebb)
6496 || !compute_ebb_proposed_actions (&ebb_table)
6497 || !compute_ebb_actions (&ebb_table)
6498 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
6499 internal_relocs, &ebb_table,
6500 reloc_opcodes)
43cd72b9 6501 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6502 {
43cd72b9
BW
6503 /* If anything goes wrong or we get unlucky and something does
6504 not fit, with our plan because of expansion between
6505 critical branches, just convert to a NOP. */
6506
6507 text_action_add (&relax_info->action_list,
6508 ta_convert_longcall, sec, r_offset, 0);
6509 i = ebb_table.ebb.end_reloc_idx;
6510 free_ebb_constraint (&ebb_table);
6511 continue;
e0001a05 6512 }
43cd72b9
BW
6513
6514 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6515
6516 /* Update the index so we do not go looking at the relocations
6517 we have already processed. */
6518 i = ebb_table.ebb.end_reloc_idx;
6519 free_ebb_constraint (&ebb_table);
e0001a05
NC
6520 }
6521
43cd72b9 6522#if DEBUG
7fa3d080 6523 if (relax_info->action_list.head)
43cd72b9
BW
6524 print_action_list (stderr, &relax_info->action_list);
6525#endif
6526
6527error_return:
e0001a05
NC
6528 release_contents (sec, contents);
6529 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6530 if (prop_table)
6531 free (prop_table);
cb337148
BW
6532 if (reloc_opcodes)
6533 free (reloc_opcodes);
43cd72b9 6534
e0001a05
NC
6535 return ok;
6536}
6537
6538
64b607e6
BW
6539/* Do not widen an instruction if it is preceeded by a
6540 loop opcode. It might cause misalignment. */
6541
6542static bfd_boolean
6543prev_instr_is_a_loop (bfd_byte *contents,
6544 bfd_size_type content_length,
6545 bfd_size_type offset)
6546{
6547 xtensa_opcode prev_opcode;
6548
6549 if (offset < 3)
6550 return FALSE;
6551 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6552 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6553}
6554
6555
43cd72b9 6556/* Find all of the possible actions for an extended basic block. */
e0001a05 6557
43cd72b9 6558bfd_boolean
7fa3d080 6559compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6560{
43cd72b9
BW
6561 const ebb_t *ebb = &ebb_table->ebb;
6562 unsigned rel_idx = ebb->start_reloc_idx;
6563 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
6564 bfd_vma offset = 0;
6565 xtensa_isa isa = xtensa_default_isa;
6566 xtensa_format fmt;
6567 static xtensa_insnbuf insnbuf = NULL;
6568 static xtensa_insnbuf slotbuf = NULL;
6569
6570 if (insnbuf == NULL)
6571 {
6572 insnbuf = xtensa_insnbuf_alloc (isa);
6573 slotbuf = xtensa_insnbuf_alloc (isa);
6574 }
e0001a05 6575
43cd72b9
BW
6576 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6577 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6578
43cd72b9 6579 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6580 {
64b607e6 6581 bfd_vma start_offset, end_offset;
43cd72b9 6582 bfd_size_type insn_len;
e0001a05 6583
43cd72b9
BW
6584 start_offset = entry->address - ebb->sec->vma;
6585 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6586
43cd72b9
BW
6587 if (entry == start_entry)
6588 start_offset = ebb->start_offset;
6589 if (entry == end_entry)
6590 end_offset = ebb->end_offset;
6591 offset = start_offset;
e0001a05 6592
43cd72b9
BW
6593 if (offset == entry->address - ebb->sec->vma
6594 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6595 {
6596 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6597 BFD_ASSERT (offset != end_offset);
6598 if (offset == end_offset)
6599 return FALSE;
e0001a05 6600
43cd72b9
BW
6601 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6602 offset);
43cd72b9 6603 if (insn_len == 0)
64b607e6
BW
6604 goto decode_error;
6605
43cd72b9
BW
6606 if (check_branch_target_aligned_address (offset, insn_len))
6607 align_type = EBB_REQUIRE_TGT_ALIGN;
6608
6609 ebb_propose_action (ebb_table, align_type, 0,
6610 ta_none, offset, 0, TRUE);
6611 }
6612
6613 while (offset != end_offset)
e0001a05 6614 {
43cd72b9 6615 Elf_Internal_Rela *irel;
e0001a05 6616 xtensa_opcode opcode;
e0001a05 6617
43cd72b9
BW
6618 while (rel_idx < ebb->end_reloc_idx
6619 && (ebb->relocs[rel_idx].r_offset < offset
6620 || (ebb->relocs[rel_idx].r_offset == offset
6621 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6622 != R_XTENSA_ASM_SIMPLIFY))))
6623 rel_idx++;
6624
6625 /* Check for longcall. */
6626 irel = &ebb->relocs[rel_idx];
6627 if (irel->r_offset == offset
6628 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6629 {
6630 bfd_size_type simplify_size;
e0001a05 6631
43cd72b9
BW
6632 simplify_size = get_asm_simplify_size (ebb->contents,
6633 ebb->content_length,
6634 irel->r_offset);
6635 if (simplify_size == 0)
64b607e6 6636 goto decode_error;
43cd72b9
BW
6637
6638 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6639 ta_convert_longcall, offset, 0, TRUE);
6640
6641 offset += simplify_size;
6642 continue;
6643 }
e0001a05 6644
64b607e6
BW
6645 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6646 goto decode_error;
6647 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6648 ebb->content_length - offset);
6649 fmt = xtensa_format_decode (isa, insnbuf);
6650 if (fmt == XTENSA_UNDEFINED)
6651 goto decode_error;
6652 insn_len = xtensa_format_length (isa, fmt);
6653 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6654 goto decode_error;
6655
6656 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 6657 {
64b607e6
BW
6658 offset += insn_len;
6659 continue;
43cd72b9 6660 }
64b607e6
BW
6661
6662 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6663 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6664 if (opcode == XTENSA_UNDEFINED)
6665 goto decode_error;
6666
43cd72b9
BW
6667 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6668 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
64b607e6 6669 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
6670 {
6671 /* Add an instruction narrow action. */
6672 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6673 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 6674 }
64b607e6
BW
6675 else if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6676 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6677 && ! prev_instr_is_a_loop (ebb->contents,
6678 ebb->content_length, offset))
43cd72b9
BW
6679 {
6680 /* Add an instruction widen action. */
6681 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6682 ta_widen_insn, offset, 0, FALSE);
43cd72b9 6683 }
64b607e6 6684 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
6685 {
6686 /* Check for branch targets. */
6687 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6688 ta_none, offset, 0, TRUE);
43cd72b9
BW
6689 }
6690
6691 offset += insn_len;
e0001a05
NC
6692 }
6693 }
6694
43cd72b9
BW
6695 if (ebb->ends_unreachable)
6696 {
6697 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6698 ta_fill, ebb->end_offset, 0, TRUE);
6699 }
e0001a05 6700
43cd72b9 6701 return TRUE;
64b607e6
BW
6702
6703 decode_error:
6704 (*_bfd_error_handler)
6705 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6706 ebb->sec->owner, ebb->sec, offset);
6707 return FALSE;
43cd72b9
BW
6708}
6709
6710
6711/* After all of the information has collected about the
6712 transformations possible in an EBB, compute the appropriate actions
6713 here in compute_ebb_actions. We still must check later to make
6714 sure that the actions do not break any relocations. The algorithm
6715 used here is pretty greedy. Basically, it removes as many no-ops
6716 as possible so that the end of the EBB has the same alignment
6717 characteristics as the original. First, it uses narrowing, then
6718 fill space at the end of the EBB, and finally widenings. If that
6719 does not work, it tries again with one fewer no-op removed. The
6720 optimization will only be performed if all of the branch targets
6721 that were aligned before transformation are also aligned after the
6722 transformation.
6723
6724 When the size_opt flag is set, ignore the branch target alignments,
6725 narrow all wide instructions, and remove all no-ops unless the end
6726 of the EBB prevents it. */
6727
6728bfd_boolean
7fa3d080 6729compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6730{
6731 unsigned i = 0;
6732 unsigned j;
6733 int removed_bytes = 0;
6734 ebb_t *ebb = &ebb_table->ebb;
6735 unsigned seg_idx_start = 0;
6736 unsigned seg_idx_end = 0;
6737
6738 /* We perform this like the assembler relaxation algorithm: Start by
6739 assuming all instructions are narrow and all no-ops removed; then
6740 walk through.... */
6741
6742 /* For each segment of this that has a solid constraint, check to
6743 see if there are any combinations that will keep the constraint.
6744 If so, use it. */
6745 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6746 {
43cd72b9
BW
6747 bfd_boolean requires_text_end_align = FALSE;
6748 unsigned longcall_count = 0;
6749 unsigned longcall_convert_count = 0;
6750 unsigned narrowable_count = 0;
6751 unsigned narrowable_convert_count = 0;
6752 unsigned widenable_count = 0;
6753 unsigned widenable_convert_count = 0;
e0001a05 6754
43cd72b9
BW
6755 proposed_action *action = NULL;
6756 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6757
43cd72b9 6758 seg_idx_start = seg_idx_end;
e0001a05 6759
43cd72b9
BW
6760 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6761 {
6762 action = &ebb_table->actions[i];
6763 if (action->action == ta_convert_longcall)
6764 longcall_count++;
6765 if (action->action == ta_narrow_insn)
6766 narrowable_count++;
6767 if (action->action == ta_widen_insn)
6768 widenable_count++;
6769 if (action->action == ta_fill)
6770 break;
6771 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6772 break;
6773 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6774 && !elf32xtensa_size_opt)
6775 break;
6776 }
6777 seg_idx_end = i;
e0001a05 6778
43cd72b9
BW
6779 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6780 requires_text_end_align = TRUE;
e0001a05 6781
43cd72b9
BW
6782 if (elf32xtensa_size_opt && !requires_text_end_align
6783 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6784 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6785 {
6786 longcall_convert_count = longcall_count;
6787 narrowable_convert_count = narrowable_count;
6788 widenable_convert_count = 0;
6789 }
6790 else
6791 {
6792 /* There is a constraint. Convert the max number of longcalls. */
6793 narrowable_convert_count = 0;
6794 longcall_convert_count = 0;
6795 widenable_convert_count = 0;
e0001a05 6796
43cd72b9 6797 for (j = 0; j < longcall_count; j++)
e0001a05 6798 {
43cd72b9
BW
6799 int removed = (longcall_count - j) * 3 & (align - 1);
6800 unsigned desire_narrow = (align - removed) & (align - 1);
6801 unsigned desire_widen = removed;
6802 if (desire_narrow <= narrowable_count)
6803 {
6804 narrowable_convert_count = desire_narrow;
6805 narrowable_convert_count +=
6806 (align * ((narrowable_count - narrowable_convert_count)
6807 / align));
6808 longcall_convert_count = (longcall_count - j);
6809 widenable_convert_count = 0;
6810 break;
6811 }
6812 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6813 {
6814 narrowable_convert_count = 0;
6815 longcall_convert_count = longcall_count - j;
6816 widenable_convert_count = desire_widen;
6817 break;
6818 }
6819 }
6820 }
e0001a05 6821
43cd72b9
BW
6822 /* Now the number of conversions are saved. Do them. */
6823 for (i = seg_idx_start; i < seg_idx_end; i++)
6824 {
6825 action = &ebb_table->actions[i];
6826 switch (action->action)
6827 {
6828 case ta_convert_longcall:
6829 if (longcall_convert_count != 0)
6830 {
6831 action->action = ta_remove_longcall;
6832 action->do_action = TRUE;
6833 action->removed_bytes += 3;
6834 longcall_convert_count--;
6835 }
6836 break;
6837 case ta_narrow_insn:
6838 if (narrowable_convert_count != 0)
6839 {
6840 action->do_action = TRUE;
6841 action->removed_bytes += 1;
6842 narrowable_convert_count--;
6843 }
6844 break;
6845 case ta_widen_insn:
6846 if (widenable_convert_count != 0)
6847 {
6848 action->do_action = TRUE;
6849 action->removed_bytes -= 1;
6850 widenable_convert_count--;
6851 }
6852 break;
6853 default:
6854 break;
e0001a05 6855 }
43cd72b9
BW
6856 }
6857 }
e0001a05 6858
43cd72b9
BW
6859 /* Now we move on to some local opts. Try to remove each of the
6860 remaining longcalls. */
e0001a05 6861
43cd72b9
BW
6862 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6863 {
6864 removed_bytes = 0;
6865 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6866 {
43cd72b9
BW
6867 int old_removed_bytes = removed_bytes;
6868 proposed_action *action = &ebb_table->actions[i];
6869
6870 if (action->do_action && action->action == ta_convert_longcall)
6871 {
6872 bfd_boolean bad_alignment = FALSE;
6873 removed_bytes += 3;
6874 for (j = i + 1; j < ebb_table->action_count; j++)
6875 {
6876 proposed_action *new_action = &ebb_table->actions[j];
6877 bfd_vma offset = new_action->offset;
6878 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6879 {
6880 if (!check_branch_target_aligned
6881 (ebb_table->ebb.contents,
6882 ebb_table->ebb.content_length,
6883 offset, offset - removed_bytes))
6884 {
6885 bad_alignment = TRUE;
6886 break;
6887 }
6888 }
6889 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6890 {
6891 if (!check_loop_aligned (ebb_table->ebb.contents,
6892 ebb_table->ebb.content_length,
6893 offset,
6894 offset - removed_bytes))
6895 {
6896 bad_alignment = TRUE;
6897 break;
6898 }
6899 }
6900 if (new_action->action == ta_narrow_insn
6901 && !new_action->do_action
6902 && ebb_table->ebb.sec->alignment_power == 2)
6903 {
6904 /* Narrow an instruction and we are done. */
6905 new_action->do_action = TRUE;
6906 new_action->removed_bytes += 1;
6907 bad_alignment = FALSE;
6908 break;
6909 }
6910 if (new_action->action == ta_widen_insn
6911 && new_action->do_action
6912 && ebb_table->ebb.sec->alignment_power == 2)
6913 {
6914 /* Narrow an instruction and we are done. */
6915 new_action->do_action = FALSE;
6916 new_action->removed_bytes += 1;
6917 bad_alignment = FALSE;
6918 break;
6919 }
6920 }
6921 if (!bad_alignment)
6922 {
6923 action->removed_bytes += 3;
6924 action->action = ta_remove_longcall;
6925 action->do_action = TRUE;
6926 }
6927 }
6928 removed_bytes = old_removed_bytes;
6929 if (action->do_action)
6930 removed_bytes += action->removed_bytes;
e0001a05
NC
6931 }
6932 }
6933
43cd72b9
BW
6934 removed_bytes = 0;
6935 for (i = 0; i < ebb_table->action_count; ++i)
6936 {
6937 proposed_action *action = &ebb_table->actions[i];
6938 if (action->do_action)
6939 removed_bytes += action->removed_bytes;
6940 }
6941
6942 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6943 && ebb->ends_unreachable)
6944 {
6945 proposed_action *action;
6946 int br;
6947 int extra_space;
6948
6949 BFD_ASSERT (ebb_table->action_count != 0);
6950 action = &ebb_table->actions[ebb_table->action_count - 1];
6951 BFD_ASSERT (action->action == ta_fill);
6952 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6953
6954 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6955 br = action->removed_bytes + removed_bytes + extra_space;
6956 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6957
6958 action->removed_bytes = extra_space - br;
6959 }
6960 return TRUE;
e0001a05
NC
6961}
6962
6963
03e94c08
BW
6964/* The xlate_map is a sorted array of address mappings designed to
6965 answer the offset_with_removed_text() query with a binary search instead
6966 of a linear search through the section's action_list. */
6967
6968typedef struct xlate_map_entry xlate_map_entry_t;
6969typedef struct xlate_map xlate_map_t;
6970
6971struct xlate_map_entry
6972{
6973 unsigned orig_address;
6974 unsigned new_address;
6975 unsigned size;
6976};
6977
6978struct xlate_map
6979{
6980 unsigned entry_count;
6981 xlate_map_entry_t *entry;
6982};
6983
6984
6985static int
6986xlate_compare (const void *a_v, const void *b_v)
6987{
6988 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6989 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6990 if (a->orig_address < b->orig_address)
6991 return -1;
6992 if (a->orig_address > (b->orig_address + b->size - 1))
6993 return 1;
6994 return 0;
6995}
6996
6997
6998static bfd_vma
6999xlate_offset_with_removed_text (const xlate_map_t *map,
7000 text_action_list *action_list,
7001 bfd_vma offset)
7002{
7003 xlate_map_entry_t tmp;
7004 void *r;
7005 xlate_map_entry_t *e;
7006
7007 if (map == NULL)
7008 return offset_with_removed_text (action_list, offset);
7009
7010 if (map->entry_count == 0)
7011 return offset;
7012
7013 tmp.orig_address = offset;
7014 tmp.new_address = offset;
7015 tmp.size = 1;
7016
7017 r = bsearch (&offset, map->entry, map->entry_count,
7018 sizeof (xlate_map_entry_t), &xlate_compare);
7019 e = (xlate_map_entry_t *) r;
7020
7021 BFD_ASSERT (e != NULL);
7022 if (e == NULL)
7023 return offset;
7024 return e->new_address - e->orig_address + offset;
7025}
7026
7027
7028/* Build a binary searchable offset translation map from a section's
7029 action list. */
7030
7031static xlate_map_t *
7032build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7033{
7034 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7035 text_action_list *action_list = &relax_info->action_list;
7036 unsigned num_actions = 0;
7037 text_action *r;
7038 int removed;
7039 xlate_map_entry_t *current_entry;
7040
7041 if (map == NULL)
7042 return NULL;
7043
7044 num_actions = action_list_count (action_list);
7045 map->entry = (xlate_map_entry_t *)
7046 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7047 if (map->entry == NULL)
7048 {
7049 free (map);
7050 return NULL;
7051 }
7052 map->entry_count = 0;
7053
7054 removed = 0;
7055 current_entry = &map->entry[0];
7056
7057 current_entry->orig_address = 0;
7058 current_entry->new_address = 0;
7059 current_entry->size = 0;
7060
7061 for (r = action_list->head; r != NULL; r = r->next)
7062 {
7063 unsigned orig_size = 0;
7064 switch (r->action)
7065 {
7066 case ta_none:
7067 case ta_remove_insn:
7068 case ta_convert_longcall:
7069 case ta_remove_literal:
7070 case ta_add_literal:
7071 break;
7072 case ta_remove_longcall:
7073 orig_size = 6;
7074 break;
7075 case ta_narrow_insn:
7076 orig_size = 3;
7077 break;
7078 case ta_widen_insn:
7079 orig_size = 2;
7080 break;
7081 case ta_fill:
7082 break;
7083 }
7084 current_entry->size =
7085 r->offset + orig_size - current_entry->orig_address;
7086 if (current_entry->size != 0)
7087 {
7088 current_entry++;
7089 map->entry_count++;
7090 }
7091 current_entry->orig_address = r->offset + orig_size;
7092 removed += r->removed_bytes;
7093 current_entry->new_address = r->offset + orig_size - removed;
7094 current_entry->size = 0;
7095 }
7096
7097 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7098 - current_entry->orig_address);
7099 if (current_entry->size != 0)
7100 map->entry_count++;
7101
7102 return map;
7103}
7104
7105
7106/* Free an offset translation map. */
7107
7108static void
7109free_xlate_map (xlate_map_t *map)
7110{
7111 if (map && map->entry)
7112 free (map->entry);
7113 if (map)
7114 free (map);
7115}
7116
7117
43cd72b9
BW
7118/* Use check_section_ebb_pcrels_fit to make sure that all of the
7119 relocations in a section will fit if a proposed set of actions
7120 are performed. */
e0001a05 7121
43cd72b9 7122static bfd_boolean
7fa3d080
BW
7123check_section_ebb_pcrels_fit (bfd *abfd,
7124 asection *sec,
7125 bfd_byte *contents,
7126 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7127 const ebb_constraint *constraint,
7128 const xtensa_opcode *reloc_opcodes)
e0001a05 7129{
43cd72b9
BW
7130 unsigned i, j;
7131 Elf_Internal_Rela *irel;
03e94c08
BW
7132 xlate_map_t *xmap = NULL;
7133 bfd_boolean ok = TRUE;
43cd72b9 7134 xtensa_relax_info *relax_info;
e0001a05 7135
43cd72b9 7136 relax_info = get_xtensa_relax_info (sec);
e0001a05 7137
03e94c08
BW
7138 if (relax_info && sec->reloc_count > 100)
7139 {
7140 xmap = build_xlate_map (sec, relax_info);
7141 /* NULL indicates out of memory, but the slow version
7142 can still be used. */
7143 }
7144
43cd72b9
BW
7145 for (i = 0; i < sec->reloc_count; i++)
7146 {
7147 r_reloc r_rel;
7148 bfd_vma orig_self_offset, orig_target_offset;
7149 bfd_vma self_offset, target_offset;
7150 int r_type;
7151 reloc_howto_type *howto;
7152 int self_removed_bytes, target_removed_bytes;
e0001a05 7153
43cd72b9
BW
7154 irel = &internal_relocs[i];
7155 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7156
43cd72b9
BW
7157 howto = &elf_howto_table[r_type];
7158 /* We maintain the required invariant: PC-relative relocations
7159 that fit before linking must fit after linking. Thus we only
7160 need to deal with relocations to the same section that are
7161 PC-relative. */
7162 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7163 || !howto->pc_relative)
7164 continue;
e0001a05 7165
43cd72b9
BW
7166 r_reloc_init (&r_rel, abfd, irel, contents,
7167 bfd_get_section_limit (abfd, sec));
e0001a05 7168
43cd72b9
BW
7169 if (r_reloc_get_section (&r_rel) != sec)
7170 continue;
e0001a05 7171
43cd72b9
BW
7172 orig_self_offset = irel->r_offset;
7173 orig_target_offset = r_rel.target_offset;
e0001a05 7174
43cd72b9
BW
7175 self_offset = orig_self_offset;
7176 target_offset = orig_target_offset;
7177
7178 if (relax_info)
7179 {
03e94c08
BW
7180 self_offset =
7181 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7182 orig_self_offset);
7183 target_offset =
7184 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7185 orig_target_offset);
43cd72b9
BW
7186 }
7187
7188 self_removed_bytes = 0;
7189 target_removed_bytes = 0;
7190
7191 for (j = 0; j < constraint->action_count; ++j)
7192 {
7193 proposed_action *action = &constraint->actions[j];
7194 bfd_vma offset = action->offset;
7195 int removed_bytes = action->removed_bytes;
7196 if (offset < orig_self_offset
7197 || (offset == orig_self_offset && action->action == ta_fill
7198 && action->removed_bytes < 0))
7199 self_removed_bytes += removed_bytes;
7200 if (offset < orig_target_offset
7201 || (offset == orig_target_offset && action->action == ta_fill
7202 && action->removed_bytes < 0))
7203 target_removed_bytes += removed_bytes;
7204 }
7205 self_offset -= self_removed_bytes;
7206 target_offset -= target_removed_bytes;
7207
7208 /* Try to encode it. Get the operand and check. */
7209 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7210 {
7211 /* None of the current alternate relocs are PC-relative,
7212 and only PC-relative relocs matter here. */
7213 }
7214 else
7215 {
7216 xtensa_opcode opcode;
7217 int opnum;
7218
cb337148
BW
7219 if (reloc_opcodes)
7220 opcode = reloc_opcodes[i];
7221 else
7222 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 7223 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7224 {
7225 ok = FALSE;
7226 break;
7227 }
43cd72b9
BW
7228
7229 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7230 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7231 {
7232 ok = FALSE;
7233 break;
7234 }
43cd72b9
BW
7235
7236 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7237 {
7238 ok = FALSE;
7239 break;
7240 }
43cd72b9
BW
7241 }
7242 }
7243
03e94c08
BW
7244 if (xmap)
7245 free_xlate_map (xmap);
7246
7247 return ok;
43cd72b9
BW
7248}
7249
7250
7251static bfd_boolean
7fa3d080 7252check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7253{
7254 int removed = 0;
7255 unsigned i;
7256
7257 for (i = 0; i < constraint->action_count; i++)
7258 {
7259 const proposed_action *action = &constraint->actions[i];
7260 if (action->do_action)
7261 removed += action->removed_bytes;
7262 }
7263 if (removed < 0)
e0001a05
NC
7264 return FALSE;
7265
7266 return TRUE;
7267}
7268
7269
43cd72b9 7270void
7fa3d080
BW
7271text_action_add_proposed (text_action_list *l,
7272 const ebb_constraint *ebb_table,
7273 asection *sec)
e0001a05
NC
7274{
7275 unsigned i;
7276
43cd72b9 7277 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7278 {
43cd72b9 7279 proposed_action *action = &ebb_table->actions[i];
e0001a05 7280
43cd72b9 7281 if (!action->do_action)
e0001a05 7282 continue;
43cd72b9
BW
7283 switch (action->action)
7284 {
7285 case ta_remove_insn:
7286 case ta_remove_longcall:
7287 case ta_convert_longcall:
7288 case ta_narrow_insn:
7289 case ta_widen_insn:
7290 case ta_fill:
7291 case ta_remove_literal:
7292 text_action_add (l, action->action, sec, action->offset,
7293 action->removed_bytes);
7294 break;
7295 case ta_none:
7296 break;
7297 default:
7298 BFD_ASSERT (0);
7299 break;
7300 }
e0001a05 7301 }
43cd72b9 7302}
e0001a05 7303
43cd72b9
BW
7304
7305int
7fa3d080 7306compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7307{
7308 int fill_extra_space;
7309
7310 if (!entry)
7311 return 0;
7312
7313 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7314 return 0;
7315
7316 fill_extra_space = entry->size;
7317 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7318 {
7319 /* Fill bytes for alignment:
7320 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7321 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7322 int nsm = (1 << pow) - 1;
7323 bfd_vma addr = entry->address + entry->size;
7324 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7325 fill_extra_space += align_fill;
7326 }
7327 return fill_extra_space;
e0001a05
NC
7328}
7329
43cd72b9 7330\f
e0001a05
NC
7331/* First relaxation pass. */
7332
43cd72b9
BW
7333/* If the section contains relaxable literals, check each literal to
7334 see if it has the same value as another literal that has already
7335 been seen, either in the current section or a previous one. If so,
7336 add an entry to the per-section list of removed literals. The
e0001a05
NC
7337 actual changes are deferred until the next pass. */
7338
7339static bfd_boolean
7fa3d080
BW
7340compute_removed_literals (bfd *abfd,
7341 asection *sec,
7342 struct bfd_link_info *link_info,
7343 value_map_hash_table *values)
e0001a05
NC
7344{
7345 xtensa_relax_info *relax_info;
7346 bfd_byte *contents;
7347 Elf_Internal_Rela *internal_relocs;
43cd72b9 7348 source_reloc *src_relocs, *rel;
e0001a05 7349 bfd_boolean ok = TRUE;
43cd72b9
BW
7350 property_table_entry *prop_table = NULL;
7351 int ptblsize;
7352 int i, prev_i;
7353 bfd_boolean last_loc_is_prev = FALSE;
7354 bfd_vma last_target_offset = 0;
7355 section_cache_t target_sec_cache;
7356 bfd_size_type sec_size;
7357
7358 init_section_cache (&target_sec_cache);
e0001a05
NC
7359
7360 /* Do nothing if it is not a relaxable literal section. */
7361 relax_info = get_xtensa_relax_info (sec);
7362 BFD_ASSERT (relax_info);
e0001a05
NC
7363 if (!relax_info->is_relaxable_literal_section)
7364 return ok;
7365
7366 internal_relocs = retrieve_internal_relocs (abfd, sec,
7367 link_info->keep_memory);
7368
43cd72b9 7369 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7370 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7371 if (contents == NULL && sec_size != 0)
e0001a05
NC
7372 {
7373 ok = FALSE;
7374 goto error_return;
7375 }
7376
7377 /* Sort the source_relocs by target offset. */
7378 src_relocs = relax_info->src_relocs;
7379 qsort (src_relocs, relax_info->src_count,
7380 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7381 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7382 internal_reloc_compare);
e0001a05 7383
43cd72b9
BW
7384 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7385 XTENSA_PROP_SEC_NAME, FALSE);
7386 if (ptblsize < 0)
7387 {
7388 ok = FALSE;
7389 goto error_return;
7390 }
7391
7392 prev_i = -1;
e0001a05
NC
7393 for (i = 0; i < relax_info->src_count; i++)
7394 {
e0001a05 7395 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7396
7397 rel = &src_relocs[i];
43cd72b9
BW
7398 if (get_l32r_opcode () != rel->opcode)
7399 continue;
e0001a05
NC
7400 irel = get_irel_at_offset (sec, internal_relocs,
7401 rel->r_rel.target_offset);
7402
43cd72b9
BW
7403 /* If the relocation on this is not a simple R_XTENSA_32 or
7404 R_XTENSA_PLT then do not consider it. This may happen when
7405 the difference of two symbols is used in a literal. */
7406 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7407 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7408 continue;
7409
e0001a05
NC
7410 /* If the target_offset for this relocation is the same as the
7411 previous relocation, then we've already considered whether the
7412 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7413 if (i != 0 && prev_i != -1
7414 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7415 continue;
43cd72b9
BW
7416 prev_i = i;
7417
7418 if (last_loc_is_prev &&
7419 last_target_offset + 4 != rel->r_rel.target_offset)
7420 last_loc_is_prev = FALSE;
e0001a05
NC
7421
7422 /* Check if the relocation was from an L32R that is being removed
7423 because a CALLX was converted to a direct CALL, and check if
7424 there are no other relocations to the literal. */
43cd72b9 7425 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
e0001a05 7426 {
43cd72b9
BW
7427 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7428 irel, rel, prop_table, ptblsize))
e0001a05 7429 {
43cd72b9
BW
7430 ok = FALSE;
7431 goto error_return;
e0001a05 7432 }
43cd72b9 7433 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7434 continue;
7435 }
7436
43cd72b9
BW
7437 if (!identify_literal_placement (abfd, sec, contents, link_info,
7438 values,
7439 &last_loc_is_prev, irel,
7440 relax_info->src_count - i, rel,
7441 prop_table, ptblsize,
7442 &target_sec_cache, rel->is_abs_literal))
e0001a05 7443 {
43cd72b9
BW
7444 ok = FALSE;
7445 goto error_return;
7446 }
7447 last_target_offset = rel->r_rel.target_offset;
7448 }
e0001a05 7449
43cd72b9
BW
7450#if DEBUG
7451 print_removed_literals (stderr, &relax_info->removed_list);
7452 print_action_list (stderr, &relax_info->action_list);
7453#endif /* DEBUG */
7454
7455error_return:
7456 if (prop_table) free (prop_table);
7457 clear_section_cache (&target_sec_cache);
7458
7459 release_contents (sec, contents);
7460 release_internal_relocs (sec, internal_relocs);
7461 return ok;
7462}
7463
7464
7465static Elf_Internal_Rela *
7fa3d080
BW
7466get_irel_at_offset (asection *sec,
7467 Elf_Internal_Rela *internal_relocs,
7468 bfd_vma offset)
43cd72b9
BW
7469{
7470 unsigned i;
7471 Elf_Internal_Rela *irel;
7472 unsigned r_type;
7473 Elf_Internal_Rela key;
7474
7475 if (!internal_relocs)
7476 return NULL;
7477
7478 key.r_offset = offset;
7479 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7480 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7481 if (!irel)
7482 return NULL;
7483
7484 /* bsearch does not guarantee which will be returned if there are
7485 multiple matches. We need the first that is not an alignment. */
7486 i = irel - internal_relocs;
7487 while (i > 0)
7488 {
7489 if (internal_relocs[i-1].r_offset != offset)
7490 break;
7491 i--;
7492 }
7493 for ( ; i < sec->reloc_count; i++)
7494 {
7495 irel = &internal_relocs[i];
7496 r_type = ELF32_R_TYPE (irel->r_info);
7497 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7498 return irel;
7499 }
7500
7501 return NULL;
7502}
7503
7504
7505bfd_boolean
7fa3d080
BW
7506is_removable_literal (const source_reloc *rel,
7507 int i,
7508 const source_reloc *src_relocs,
7509 int src_count)
43cd72b9
BW
7510{
7511 const source_reloc *curr_rel;
7512 if (!rel->is_null)
7513 return FALSE;
7514
7515 for (++i; i < src_count; ++i)
7516 {
7517 curr_rel = &src_relocs[i];
7518 /* If all others have the same target offset.... */
7519 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7520 return TRUE;
7521
7522 if (!curr_rel->is_null
7523 && !xtensa_is_property_section (curr_rel->source_sec)
7524 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7525 return FALSE;
7526 }
7527 return TRUE;
7528}
7529
7530
7531bfd_boolean
7fa3d080
BW
7532remove_dead_literal (bfd *abfd,
7533 asection *sec,
7534 struct bfd_link_info *link_info,
7535 Elf_Internal_Rela *internal_relocs,
7536 Elf_Internal_Rela *irel,
7537 source_reloc *rel,
7538 property_table_entry *prop_table,
7539 int ptblsize)
43cd72b9
BW
7540{
7541 property_table_entry *entry;
7542 xtensa_relax_info *relax_info;
7543
7544 relax_info = get_xtensa_relax_info (sec);
7545 if (!relax_info)
7546 return FALSE;
7547
7548 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7549 sec->vma + rel->r_rel.target_offset);
7550
7551 /* Mark the unused literal so that it will be removed. */
7552 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7553
7554 text_action_add (&relax_info->action_list,
7555 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7556
7557 /* If the section is 4-byte aligned, do not add fill. */
7558 if (sec->alignment_power > 2)
7559 {
7560 int fill_extra_space;
7561 bfd_vma entry_sec_offset;
7562 text_action *fa;
7563 property_table_entry *the_add_entry;
7564 int removed_diff;
7565
7566 if (entry)
7567 entry_sec_offset = entry->address - sec->vma + entry->size;
7568 else
7569 entry_sec_offset = rel->r_rel.target_offset + 4;
7570
7571 /* If the literal range is at the end of the section,
7572 do not add fill. */
7573 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7574 entry_sec_offset);
7575 fill_extra_space = compute_fill_extra_space (the_add_entry);
7576
7577 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7578 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7579 -4, fill_extra_space);
7580 if (fa)
7581 adjust_fill_action (fa, removed_diff);
7582 else
7583 text_action_add (&relax_info->action_list,
7584 ta_fill, sec, entry_sec_offset, removed_diff);
7585 }
7586
7587 /* Zero out the relocation on this literal location. */
7588 if (irel)
7589 {
7590 if (elf_hash_table (link_info)->dynamic_sections_created)
7591 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7592
7593 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7594 pin_internal_relocs (sec, internal_relocs);
7595 }
7596
7597 /* Do not modify "last_loc_is_prev". */
7598 return TRUE;
7599}
7600
7601
7602bfd_boolean
7fa3d080
BW
7603identify_literal_placement (bfd *abfd,
7604 asection *sec,
7605 bfd_byte *contents,
7606 struct bfd_link_info *link_info,
7607 value_map_hash_table *values,
7608 bfd_boolean *last_loc_is_prev_p,
7609 Elf_Internal_Rela *irel,
7610 int remaining_src_rels,
7611 source_reloc *rel,
7612 property_table_entry *prop_table,
7613 int ptblsize,
7614 section_cache_t *target_sec_cache,
7615 bfd_boolean is_abs_literal)
43cd72b9
BW
7616{
7617 literal_value val;
7618 value_map *val_map;
7619 xtensa_relax_info *relax_info;
7620 bfd_boolean literal_placed = FALSE;
7621 r_reloc r_rel;
7622 unsigned long value;
7623 bfd_boolean final_static_link;
7624 bfd_size_type sec_size;
7625
7626 relax_info = get_xtensa_relax_info (sec);
7627 if (!relax_info)
7628 return FALSE;
7629
7630 sec_size = bfd_get_section_limit (abfd, sec);
7631
7632 final_static_link =
7633 (!link_info->relocatable
7634 && !elf_hash_table (link_info)->dynamic_sections_created);
7635
7636 /* The placement algorithm first checks to see if the literal is
7637 already in the value map. If so and the value map is reachable
7638 from all uses, then the literal is moved to that location. If
7639 not, then we identify the last location where a fresh literal was
7640 placed. If the literal can be safely moved there, then we do so.
7641 If not, then we assume that the literal is not to move and leave
7642 the literal where it is, marking it as the last literal
7643 location. */
7644
7645 /* Find the literal value. */
7646 value = 0;
7647 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7648 if (!irel)
7649 {
7650 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7651 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7652 }
7653 init_literal_value (&val, &r_rel, value, is_abs_literal);
7654
7655 /* Check if we've seen another literal with the same value that
7656 is in the same output section. */
7657 val_map = value_map_get_cached_value (values, &val, final_static_link);
7658
7659 if (val_map
7660 && (r_reloc_get_section (&val_map->loc)->output_section
7661 == sec->output_section)
7662 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7663 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7664 {
7665 /* No change to last_loc_is_prev. */
7666 literal_placed = TRUE;
7667 }
7668
7669 /* For relocatable links, do not try to move literals. To do it
7670 correctly might increase the number of relocations in an input
7671 section making the default relocatable linking fail. */
7672 if (!link_info->relocatable && !literal_placed
7673 && values->has_last_loc && !(*last_loc_is_prev_p))
7674 {
7675 asection *target_sec = r_reloc_get_section (&values->last_loc);
7676 if (target_sec && target_sec->output_section == sec->output_section)
7677 {
7678 /* Increment the virtual offset. */
7679 r_reloc try_loc = values->last_loc;
7680 try_loc.virtual_offset += 4;
7681
7682 /* There is a last loc that was in the same output section. */
7683 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7684 && move_shared_literal (sec, link_info, rel,
7685 prop_table, ptblsize,
7686 &try_loc, &val, target_sec_cache))
e0001a05 7687 {
43cd72b9
BW
7688 values->last_loc.virtual_offset += 4;
7689 literal_placed = TRUE;
7690 if (!val_map)
7691 val_map = add_value_map (values, &val, &try_loc,
7692 final_static_link);
7693 else
7694 val_map->loc = try_loc;
e0001a05
NC
7695 }
7696 }
43cd72b9
BW
7697 }
7698
7699 if (!literal_placed)
7700 {
7701 /* Nothing worked, leave the literal alone but update the last loc. */
7702 values->has_last_loc = TRUE;
7703 values->last_loc = rel->r_rel;
7704 if (!val_map)
7705 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7706 else
43cd72b9
BW
7707 val_map->loc = rel->r_rel;
7708 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7709 }
7710
43cd72b9 7711 return TRUE;
e0001a05
NC
7712}
7713
7714
7715/* Check if the original relocations (presumably on L32R instructions)
7716 identified by reloc[0..N] can be changed to reference the literal
7717 identified by r_rel. If r_rel is out of range for any of the
7718 original relocations, then we don't want to coalesce the original
7719 literal with the one at r_rel. We only check reloc[0..N], where the
7720 offsets are all the same as for reloc[0] (i.e., they're all
7721 referencing the same literal) and where N is also bounded by the
7722 number of remaining entries in the "reloc" array. The "reloc" array
7723 is sorted by target offset so we know all the entries for the same
7724 literal will be contiguous. */
7725
7726static bfd_boolean
7fa3d080
BW
7727relocations_reach (source_reloc *reloc,
7728 int remaining_relocs,
7729 const r_reloc *r_rel)
e0001a05
NC
7730{
7731 bfd_vma from_offset, source_address, dest_address;
7732 asection *sec;
7733 int i;
7734
7735 if (!r_reloc_is_defined (r_rel))
7736 return FALSE;
7737
7738 sec = r_reloc_get_section (r_rel);
7739 from_offset = reloc[0].r_rel.target_offset;
7740
7741 for (i = 0; i < remaining_relocs; i++)
7742 {
7743 if (reloc[i].r_rel.target_offset != from_offset)
7744 break;
7745
7746 /* Ignore relocations that have been removed. */
7747 if (reloc[i].is_null)
7748 continue;
7749
7750 /* The original and new output section for these must be the same
7751 in order to coalesce. */
7752 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7753 != sec->output_section)
7754 return FALSE;
7755
d638e0ac
BW
7756 /* Absolute literals in the same output section can always be
7757 combined. */
7758 if (reloc[i].is_abs_literal)
7759 continue;
7760
43cd72b9
BW
7761 /* A literal with no PC-relative relocations can be moved anywhere. */
7762 if (reloc[i].opnd != -1)
e0001a05
NC
7763 {
7764 /* Otherwise, check to see that it fits. */
7765 source_address = (reloc[i].source_sec->output_section->vma
7766 + reloc[i].source_sec->output_offset
7767 + reloc[i].r_rel.rela.r_offset);
7768 dest_address = (sec->output_section->vma
7769 + sec->output_offset
7770 + r_rel->target_offset);
7771
43cd72b9
BW
7772 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7773 source_address, dest_address))
e0001a05
NC
7774 return FALSE;
7775 }
7776 }
7777
7778 return TRUE;
7779}
7780
7781
43cd72b9
BW
7782/* Move a literal to another literal location because it is
7783 the same as the other literal value. */
e0001a05 7784
43cd72b9 7785static bfd_boolean
7fa3d080
BW
7786coalesce_shared_literal (asection *sec,
7787 source_reloc *rel,
7788 property_table_entry *prop_table,
7789 int ptblsize,
7790 value_map *val_map)
e0001a05 7791{
43cd72b9
BW
7792 property_table_entry *entry;
7793 text_action *fa;
7794 property_table_entry *the_add_entry;
7795 int removed_diff;
7796 xtensa_relax_info *relax_info;
7797
7798 relax_info = get_xtensa_relax_info (sec);
7799 if (!relax_info)
7800 return FALSE;
7801
7802 entry = elf_xtensa_find_property_entry
7803 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7804 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7805 return TRUE;
7806
7807 /* Mark that the literal will be coalesced. */
7808 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7809
7810 text_action_add (&relax_info->action_list,
7811 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7812
7813 /* If the section is 4-byte aligned, do not add fill. */
7814 if (sec->alignment_power > 2)
e0001a05 7815 {
43cd72b9
BW
7816 int fill_extra_space;
7817 bfd_vma entry_sec_offset;
7818
7819 if (entry)
7820 entry_sec_offset = entry->address - sec->vma + entry->size;
7821 else
7822 entry_sec_offset = rel->r_rel.target_offset + 4;
7823
7824 /* If the literal range is at the end of the section,
7825 do not add fill. */
7826 fill_extra_space = 0;
7827 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7828 entry_sec_offset);
7829 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7830 fill_extra_space = the_add_entry->size;
7831
7832 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7833 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7834 -4, fill_extra_space);
7835 if (fa)
7836 adjust_fill_action (fa, removed_diff);
7837 else
7838 text_action_add (&relax_info->action_list,
7839 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7840 }
43cd72b9
BW
7841
7842 return TRUE;
7843}
7844
7845
7846/* Move a literal to another location. This may actually increase the
7847 total amount of space used because of alignments so we need to do
7848 this carefully. Also, it may make a branch go out of range. */
7849
7850static bfd_boolean
7fa3d080
BW
7851move_shared_literal (asection *sec,
7852 struct bfd_link_info *link_info,
7853 source_reloc *rel,
7854 property_table_entry *prop_table,
7855 int ptblsize,
7856 const r_reloc *target_loc,
7857 const literal_value *lit_value,
7858 section_cache_t *target_sec_cache)
43cd72b9
BW
7859{
7860 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7861 text_action *fa, *target_fa;
7862 int removed_diff;
7863 xtensa_relax_info *relax_info, *target_relax_info;
7864 asection *target_sec;
7865 ebb_t *ebb;
7866 ebb_constraint ebb_table;
7867 bfd_boolean relocs_fit;
7868
7869 /* If this routine always returns FALSE, the literals that cannot be
7870 coalesced will not be moved. */
7871 if (elf32xtensa_no_literal_movement)
7872 return FALSE;
7873
7874 relax_info = get_xtensa_relax_info (sec);
7875 if (!relax_info)
7876 return FALSE;
7877
7878 target_sec = r_reloc_get_section (target_loc);
7879 target_relax_info = get_xtensa_relax_info (target_sec);
7880
7881 /* Literals to undefined sections may not be moved because they
7882 must report an error. */
7883 if (bfd_is_und_section (target_sec))
7884 return FALSE;
7885
7886 src_entry = elf_xtensa_find_property_entry
7887 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7888
7889 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7890 return FALSE;
7891
7892 target_entry = elf_xtensa_find_property_entry
7893 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7894 target_sec->vma + target_loc->target_offset);
7895
7896 if (!target_entry)
7897 return FALSE;
7898
7899 /* Make sure that we have not broken any branches. */
7900 relocs_fit = FALSE;
7901
7902 init_ebb_constraint (&ebb_table);
7903 ebb = &ebb_table.ebb;
7904 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7905 target_sec_cache->content_length,
7906 target_sec_cache->ptbl, target_sec_cache->pte_count,
7907 target_sec_cache->relocs, target_sec_cache->reloc_count);
7908
7909 /* Propose to add 4 bytes + worst-case alignment size increase to
7910 destination. */
7911 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7912 ta_fill, target_loc->target_offset,
7913 -4 - (1 << target_sec->alignment_power), TRUE);
7914
7915 /* Check all of the PC-relative relocations to make sure they still fit. */
7916 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7917 target_sec_cache->contents,
7918 target_sec_cache->relocs,
cb337148 7919 &ebb_table, NULL);
43cd72b9
BW
7920
7921 if (!relocs_fit)
7922 return FALSE;
7923
7924 text_action_add_literal (&target_relax_info->action_list,
7925 ta_add_literal, target_loc, lit_value, -4);
7926
7927 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7928 {
7929 /* May need to add or remove some fill to maintain alignment. */
7930 int fill_extra_space;
7931 bfd_vma entry_sec_offset;
7932
7933 entry_sec_offset =
7934 target_entry->address - target_sec->vma + target_entry->size;
7935
7936 /* If the literal range is at the end of the section,
7937 do not add fill. */
7938 fill_extra_space = 0;
7939 the_add_entry =
7940 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7941 target_sec_cache->pte_count,
7942 entry_sec_offset);
7943 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7944 fill_extra_space = the_add_entry->size;
7945
7946 target_fa = find_fill_action (&target_relax_info->action_list,
7947 target_sec, entry_sec_offset);
7948 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7949 entry_sec_offset, 4,
7950 fill_extra_space);
7951 if (target_fa)
7952 adjust_fill_action (target_fa, removed_diff);
7953 else
7954 text_action_add (&target_relax_info->action_list,
7955 ta_fill, target_sec, entry_sec_offset, removed_diff);
7956 }
7957
7958 /* Mark that the literal will be moved to the new location. */
7959 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7960
7961 /* Remove the literal. */
7962 text_action_add (&relax_info->action_list,
7963 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7964
7965 /* If the section is 4-byte aligned, do not add fill. */
7966 if (sec->alignment_power > 2 && target_entry != src_entry)
7967 {
7968 int fill_extra_space;
7969 bfd_vma entry_sec_offset;
7970
7971 if (src_entry)
7972 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7973 else
7974 entry_sec_offset = rel->r_rel.target_offset+4;
7975
7976 /* If the literal range is at the end of the section,
7977 do not add fill. */
7978 fill_extra_space = 0;
7979 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7980 entry_sec_offset);
7981 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7982 fill_extra_space = the_add_entry->size;
7983
7984 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7985 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7986 -4, fill_extra_space);
7987 if (fa)
7988 adjust_fill_action (fa, removed_diff);
7989 else
7990 text_action_add (&relax_info->action_list,
7991 ta_fill, sec, entry_sec_offset, removed_diff);
7992 }
7993
7994 return TRUE;
e0001a05
NC
7995}
7996
7997\f
7998/* Second relaxation pass. */
7999
8000/* Modify all of the relocations to point to the right spot, and if this
8001 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8002 section size. */
e0001a05 8003
43cd72b9 8004bfd_boolean
7fa3d080 8005relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8006{
8007 Elf_Internal_Rela *internal_relocs;
8008 xtensa_relax_info *relax_info;
8009 bfd_byte *contents;
8010 bfd_boolean ok = TRUE;
8011 unsigned i;
43cd72b9
BW
8012 bfd_boolean rv = FALSE;
8013 bfd_boolean virtual_action;
8014 bfd_size_type sec_size;
e0001a05 8015
43cd72b9 8016 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8017 relax_info = get_xtensa_relax_info (sec);
8018 BFD_ASSERT (relax_info);
8019
43cd72b9
BW
8020 /* First translate any of the fixes that have been added already. */
8021 translate_section_fixes (sec);
8022
e0001a05
NC
8023 /* Handle property sections (e.g., literal tables) specially. */
8024 if (xtensa_is_property_section (sec))
8025 {
8026 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8027 return relax_property_section (abfd, sec, link_info);
8028 }
8029
43cd72b9
BW
8030 internal_relocs = retrieve_internal_relocs (abfd, sec,
8031 link_info->keep_memory);
8032 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8033 if (contents == NULL && sec_size != 0)
8034 {
8035 ok = FALSE;
8036 goto error_return;
8037 }
8038
8039 if (internal_relocs)
8040 {
8041 for (i = 0; i < sec->reloc_count; i++)
8042 {
8043 Elf_Internal_Rela *irel;
8044 xtensa_relax_info *target_relax_info;
8045 bfd_vma source_offset, old_source_offset;
8046 r_reloc r_rel;
8047 unsigned r_type;
8048 asection *target_sec;
8049
8050 /* Locally change the source address.
8051 Translate the target to the new target address.
8052 If it points to this section and has been removed,
8053 NULLify it.
8054 Write it back. */
8055
8056 irel = &internal_relocs[i];
8057 source_offset = irel->r_offset;
8058 old_source_offset = source_offset;
8059
8060 r_type = ELF32_R_TYPE (irel->r_info);
8061 r_reloc_init (&r_rel, abfd, irel, contents,
8062 bfd_get_section_limit (abfd, sec));
8063
8064 /* If this section could have changed then we may need to
8065 change the relocation's offset. */
8066
8067 if (relax_info->is_relaxable_literal_section
8068 || relax_info->is_relaxable_asm_section)
8069 {
8070 if (r_type != R_XTENSA_NONE
8071 && find_removed_literal (&relax_info->removed_list,
8072 irel->r_offset))
8073 {
8074 /* Remove this relocation. */
8075 if (elf_hash_table (link_info)->dynamic_sections_created)
8076 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8077 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8078 irel->r_offset = offset_with_removed_text
8079 (&relax_info->action_list, irel->r_offset);
8080 pin_internal_relocs (sec, internal_relocs);
8081 continue;
8082 }
8083
8084 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8085 {
8086 text_action *action =
8087 find_insn_action (&relax_info->action_list,
8088 irel->r_offset);
8089 if (action && (action->action == ta_convert_longcall
8090 || action->action == ta_remove_longcall))
8091 {
8092 bfd_reloc_status_type retval;
8093 char *error_message = NULL;
8094
8095 retval = contract_asm_expansion (contents, sec_size,
8096 irel, &error_message);
8097 if (retval != bfd_reloc_ok)
8098 {
8099 (*link_info->callbacks->reloc_dangerous)
8100 (link_info, error_message, abfd, sec,
8101 irel->r_offset);
8102 goto error_return;
8103 }
8104 /* Update the action so that the code that moves
8105 the contents will do the right thing. */
8106 if (action->action == ta_remove_longcall)
8107 action->action = ta_remove_insn;
8108 else
8109 action->action = ta_none;
8110 /* Refresh the info in the r_rel. */
8111 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8112 r_type = ELF32_R_TYPE (irel->r_info);
8113 }
8114 }
8115
8116 source_offset = offset_with_removed_text
8117 (&relax_info->action_list, irel->r_offset);
8118 irel->r_offset = source_offset;
8119 }
8120
8121 /* If the target section could have changed then
8122 we may need to change the relocation's target offset. */
8123
8124 target_sec = r_reloc_get_section (&r_rel);
8125 target_relax_info = get_xtensa_relax_info (target_sec);
8126
8127 if (target_relax_info
8128 && (target_relax_info->is_relaxable_literal_section
8129 || target_relax_info->is_relaxable_asm_section))
8130 {
8131 r_reloc new_reloc;
8132 reloc_bfd_fix *fix;
8133 bfd_vma addend_displacement;
8134
8135 translate_reloc (&r_rel, &new_reloc);
8136
8137 if (r_type == R_XTENSA_DIFF8
8138 || r_type == R_XTENSA_DIFF16
8139 || r_type == R_XTENSA_DIFF32)
8140 {
8141 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8142
8143 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8144 {
8145 (*link_info->callbacks->reloc_dangerous)
8146 (link_info, _("invalid relocation address"),
8147 abfd, sec, old_source_offset);
8148 goto error_return;
8149 }
8150
8151 switch (r_type)
8152 {
8153 case R_XTENSA_DIFF8:
8154 diff_value =
8155 bfd_get_8 (abfd, &contents[old_source_offset]);
8156 break;
8157 case R_XTENSA_DIFF16:
8158 diff_value =
8159 bfd_get_16 (abfd, &contents[old_source_offset]);
8160 break;
8161 case R_XTENSA_DIFF32:
8162 diff_value =
8163 bfd_get_32 (abfd, &contents[old_source_offset]);
8164 break;
8165 }
8166
8167 new_end_offset = offset_with_removed_text
8168 (&target_relax_info->action_list,
8169 r_rel.target_offset + diff_value);
8170 diff_value = new_end_offset - new_reloc.target_offset;
8171
8172 switch (r_type)
8173 {
8174 case R_XTENSA_DIFF8:
8175 diff_mask = 0xff;
8176 bfd_put_8 (abfd, diff_value,
8177 &contents[old_source_offset]);
8178 break;
8179 case R_XTENSA_DIFF16:
8180 diff_mask = 0xffff;
8181 bfd_put_16 (abfd, diff_value,
8182 &contents[old_source_offset]);
8183 break;
8184 case R_XTENSA_DIFF32:
8185 diff_mask = 0xffffffff;
8186 bfd_put_32 (abfd, diff_value,
8187 &contents[old_source_offset]);
8188 break;
8189 }
8190
8191 /* Check for overflow. */
8192 if ((diff_value & ~diff_mask) != 0)
8193 {
8194 (*link_info->callbacks->reloc_dangerous)
8195 (link_info, _("overflow after relaxation"),
8196 abfd, sec, old_source_offset);
8197 goto error_return;
8198 }
8199
8200 pin_contents (sec, contents);
8201 }
8202
8203 /* FIXME: If the relocation still references a section in
8204 the same input file, the relocation should be modified
8205 directly instead of adding a "fix" record. */
8206
8207 addend_displacement =
8208 new_reloc.target_offset + new_reloc.virtual_offset;
8209
8210 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8211 r_reloc_get_section (&new_reloc),
8212 addend_displacement, TRUE);
8213 add_fix (sec, fix);
8214 }
8215
8216 pin_internal_relocs (sec, internal_relocs);
8217 }
8218 }
8219
8220 if ((relax_info->is_relaxable_literal_section
8221 || relax_info->is_relaxable_asm_section)
8222 && relax_info->action_list.head)
8223 {
8224 /* Walk through the planned actions and build up a table
8225 of move, copy and fill records. Use the move, copy and
8226 fill records to perform the actions once. */
8227
8228 bfd_size_type size = sec->size;
8229 int removed = 0;
8230 bfd_size_type final_size, copy_size, orig_insn_size;
8231 bfd_byte *scratch = NULL;
8232 bfd_byte *dup_contents = NULL;
8233 bfd_size_type orig_size = size;
8234 bfd_vma orig_dot = 0;
8235 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8236 orig dot in physical memory. */
8237 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8238 bfd_vma dup_dot = 0;
8239
8240 text_action *action = relax_info->action_list.head;
8241
8242 final_size = sec->size;
8243 for (action = relax_info->action_list.head; action;
8244 action = action->next)
8245 {
8246 final_size -= action->removed_bytes;
8247 }
8248
8249 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8250 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8251
8252 /* The dot is the current fill location. */
8253#if DEBUG
8254 print_action_list (stderr, &relax_info->action_list);
8255#endif
8256
8257 for (action = relax_info->action_list.head; action;
8258 action = action->next)
8259 {
8260 virtual_action = FALSE;
8261 if (action->offset > orig_dot)
8262 {
8263 orig_dot += orig_dot_copied;
8264 orig_dot_copied = 0;
8265 orig_dot_vo = 0;
8266 /* Out of the virtual world. */
8267 }
8268
8269 if (action->offset > orig_dot)
8270 {
8271 copy_size = action->offset - orig_dot;
8272 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8273 orig_dot += copy_size;
8274 dup_dot += copy_size;
8275 BFD_ASSERT (action->offset == orig_dot);
8276 }
8277 else if (action->offset < orig_dot)
8278 {
8279 if (action->action == ta_fill
8280 && action->offset - action->removed_bytes == orig_dot)
8281 {
8282 /* This is OK because the fill only effects the dup_dot. */
8283 }
8284 else if (action->action == ta_add_literal)
8285 {
8286 /* TBD. Might need to handle this. */
8287 }
8288 }
8289 if (action->offset == orig_dot)
8290 {
8291 if (action->virtual_offset > orig_dot_vo)
8292 {
8293 if (orig_dot_vo == 0)
8294 {
8295 /* Need to copy virtual_offset bytes. Probably four. */
8296 copy_size = action->virtual_offset - orig_dot_vo;
8297 memmove (&dup_contents[dup_dot],
8298 &contents[orig_dot], copy_size);
8299 orig_dot_copied = copy_size;
8300 dup_dot += copy_size;
8301 }
8302 virtual_action = TRUE;
8303 }
8304 else
8305 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8306 }
8307 switch (action->action)
8308 {
8309 case ta_remove_literal:
8310 case ta_remove_insn:
8311 BFD_ASSERT (action->removed_bytes >= 0);
8312 orig_dot += action->removed_bytes;
8313 break;
8314
8315 case ta_narrow_insn:
8316 orig_insn_size = 3;
8317 copy_size = 2;
8318 memmove (scratch, &contents[orig_dot], orig_insn_size);
8319 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 8320 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
8321 BFD_ASSERT (rv);
8322 memmove (&dup_contents[dup_dot], scratch, copy_size);
8323 orig_dot += orig_insn_size;
8324 dup_dot += copy_size;
8325 break;
8326
8327 case ta_fill:
8328 if (action->removed_bytes >= 0)
8329 orig_dot += action->removed_bytes;
8330 else
8331 {
8332 /* Already zeroed in dup_contents. Just bump the
8333 counters. */
8334 dup_dot += (-action->removed_bytes);
8335 }
8336 break;
8337
8338 case ta_none:
8339 BFD_ASSERT (action->removed_bytes == 0);
8340 break;
8341
8342 case ta_convert_longcall:
8343 case ta_remove_longcall:
8344 /* These will be removed or converted before we get here. */
8345 BFD_ASSERT (0);
8346 break;
8347
8348 case ta_widen_insn:
8349 orig_insn_size = 2;
8350 copy_size = 3;
8351 memmove (scratch, &contents[orig_dot], orig_insn_size);
8352 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 8353 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
8354 BFD_ASSERT (rv);
8355 memmove (&dup_contents[dup_dot], scratch, copy_size);
8356 orig_dot += orig_insn_size;
8357 dup_dot += copy_size;
8358 break;
8359
8360 case ta_add_literal:
8361 orig_insn_size = 0;
8362 copy_size = 4;
8363 BFD_ASSERT (action->removed_bytes == -4);
8364 /* TBD -- place the literal value here and insert
8365 into the table. */
8366 memset (&dup_contents[dup_dot], 0, 4);
8367 pin_internal_relocs (sec, internal_relocs);
8368 pin_contents (sec, contents);
8369
8370 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8371 relax_info, &internal_relocs, &action->value))
8372 goto error_return;
8373
8374 if (virtual_action)
8375 orig_dot_vo += copy_size;
8376
8377 orig_dot += orig_insn_size;
8378 dup_dot += copy_size;
8379 break;
8380
8381 default:
8382 /* Not implemented yet. */
8383 BFD_ASSERT (0);
8384 break;
8385 }
8386
8387 size -= action->removed_bytes;
8388 removed += action->removed_bytes;
8389 BFD_ASSERT (dup_dot <= final_size);
8390 BFD_ASSERT (orig_dot <= orig_size);
8391 }
8392
8393 orig_dot += orig_dot_copied;
8394 orig_dot_copied = 0;
8395
8396 if (orig_dot != orig_size)
8397 {
8398 copy_size = orig_size - orig_dot;
8399 BFD_ASSERT (orig_size > orig_dot);
8400 BFD_ASSERT (dup_dot + copy_size == final_size);
8401 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8402 orig_dot += copy_size;
8403 dup_dot += copy_size;
8404 }
8405 BFD_ASSERT (orig_size == orig_dot);
8406 BFD_ASSERT (final_size == dup_dot);
8407
8408 /* Move the dup_contents back. */
8409 if (final_size > orig_size)
8410 {
8411 /* Contents need to be reallocated. Swap the dup_contents into
8412 contents. */
8413 sec->contents = dup_contents;
8414 free (contents);
8415 contents = dup_contents;
8416 pin_contents (sec, contents);
8417 }
8418 else
8419 {
8420 BFD_ASSERT (final_size <= orig_size);
8421 memset (contents, 0, orig_size);
8422 memcpy (contents, dup_contents, final_size);
8423 free (dup_contents);
8424 }
8425 free (scratch);
8426 pin_contents (sec, contents);
8427
8428 sec->size = final_size;
8429 }
8430
8431 error_return:
8432 release_internal_relocs (sec, internal_relocs);
8433 release_contents (sec, contents);
8434 return ok;
8435}
8436
8437
8438static bfd_boolean
7fa3d080 8439translate_section_fixes (asection *sec)
43cd72b9
BW
8440{
8441 xtensa_relax_info *relax_info;
8442 reloc_bfd_fix *r;
8443
8444 relax_info = get_xtensa_relax_info (sec);
8445 if (!relax_info)
8446 return TRUE;
8447
8448 for (r = relax_info->fix_list; r != NULL; r = r->next)
8449 if (!translate_reloc_bfd_fix (r))
8450 return FALSE;
e0001a05 8451
43cd72b9
BW
8452 return TRUE;
8453}
e0001a05 8454
e0001a05 8455
43cd72b9
BW
8456/* Translate a fix given the mapping in the relax info for the target
8457 section. If it has already been translated, no work is required. */
e0001a05 8458
43cd72b9 8459static bfd_boolean
7fa3d080 8460translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8461{
8462 reloc_bfd_fix new_fix;
8463 asection *sec;
8464 xtensa_relax_info *relax_info;
8465 removed_literal *removed;
8466 bfd_vma new_offset, target_offset;
e0001a05 8467
43cd72b9
BW
8468 if (fix->translated)
8469 return TRUE;
e0001a05 8470
43cd72b9
BW
8471 sec = fix->target_sec;
8472 target_offset = fix->target_offset;
e0001a05 8473
43cd72b9
BW
8474 relax_info = get_xtensa_relax_info (sec);
8475 if (!relax_info)
8476 {
8477 fix->translated = TRUE;
8478 return TRUE;
8479 }
e0001a05 8480
43cd72b9 8481 new_fix = *fix;
e0001a05 8482
43cd72b9
BW
8483 /* The fix does not need to be translated if the section cannot change. */
8484 if (!relax_info->is_relaxable_literal_section
8485 && !relax_info->is_relaxable_asm_section)
8486 {
8487 fix->translated = TRUE;
8488 return TRUE;
8489 }
e0001a05 8490
43cd72b9
BW
8491 /* If the literal has been moved and this relocation was on an
8492 opcode, then the relocation should move to the new literal
8493 location. Otherwise, the relocation should move within the
8494 section. */
8495
8496 removed = FALSE;
8497 if (is_operand_relocation (fix->src_type))
8498 {
8499 /* Check if the original relocation is against a literal being
8500 removed. */
8501 removed = find_removed_literal (&relax_info->removed_list,
8502 target_offset);
e0001a05
NC
8503 }
8504
43cd72b9 8505 if (removed)
e0001a05 8506 {
43cd72b9 8507 asection *new_sec;
e0001a05 8508
43cd72b9
BW
8509 /* The fact that there is still a relocation to this literal indicates
8510 that the literal is being coalesced, not simply removed. */
8511 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8512
43cd72b9
BW
8513 /* This was moved to some other address (possibly another section). */
8514 new_sec = r_reloc_get_section (&removed->to);
8515 if (new_sec != sec)
e0001a05 8516 {
43cd72b9
BW
8517 sec = new_sec;
8518 relax_info = get_xtensa_relax_info (sec);
8519 if (!relax_info ||
8520 (!relax_info->is_relaxable_literal_section
8521 && !relax_info->is_relaxable_asm_section))
e0001a05 8522 {
43cd72b9
BW
8523 target_offset = removed->to.target_offset;
8524 new_fix.target_sec = new_sec;
8525 new_fix.target_offset = target_offset;
8526 new_fix.translated = TRUE;
8527 *fix = new_fix;
8528 return TRUE;
e0001a05 8529 }
e0001a05 8530 }
43cd72b9
BW
8531 target_offset = removed->to.target_offset;
8532 new_fix.target_sec = new_sec;
e0001a05 8533 }
43cd72b9
BW
8534
8535 /* The target address may have been moved within its section. */
8536 new_offset = offset_with_removed_text (&relax_info->action_list,
8537 target_offset);
8538
8539 new_fix.target_offset = new_offset;
8540 new_fix.target_offset = new_offset;
8541 new_fix.translated = TRUE;
8542 *fix = new_fix;
8543 return TRUE;
e0001a05
NC
8544}
8545
8546
8547/* Fix up a relocation to take account of removed literals. */
8548
8549static void
7fa3d080 8550translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8551{
8552 asection *sec;
8553 xtensa_relax_info *relax_info;
8554 removed_literal *removed;
43cd72b9 8555 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8556
8557 *new_rel = *orig_rel;
8558
8559 if (!r_reloc_is_defined (orig_rel))
8560 return;
8561 sec = r_reloc_get_section (orig_rel);
8562
8563 relax_info = get_xtensa_relax_info (sec);
8564 BFD_ASSERT (relax_info);
8565
43cd72b9
BW
8566 if (!relax_info->is_relaxable_literal_section
8567 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8568 return;
8569
43cd72b9
BW
8570 target_offset = orig_rel->target_offset;
8571
8572 removed = FALSE;
8573 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8574 {
8575 /* Check if the original relocation is against a literal being
8576 removed. */
8577 removed = find_removed_literal (&relax_info->removed_list,
8578 target_offset);
8579 }
8580 if (removed && removed->to.abfd)
e0001a05
NC
8581 {
8582 asection *new_sec;
8583
8584 /* The fact that there is still a relocation to this literal indicates
8585 that the literal is being coalesced, not simply removed. */
8586 BFD_ASSERT (removed->to.abfd != NULL);
8587
43cd72b9
BW
8588 /* This was moved to some other address
8589 (possibly in another section). */
e0001a05
NC
8590 *new_rel = removed->to;
8591 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8592 if (new_sec != sec)
e0001a05
NC
8593 {
8594 sec = new_sec;
8595 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8596 if (!relax_info
8597 || (!relax_info->is_relaxable_literal_section
8598 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8599 return;
8600 }
43cd72b9 8601 target_offset = new_rel->target_offset;
e0001a05
NC
8602 }
8603
8604 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8605 new_offset = offset_with_removed_text (&relax_info->action_list,
8606 target_offset);
e0001a05
NC
8607
8608 /* Modify the offset and addend. */
43cd72b9 8609 removed_bytes = target_offset - new_offset;
e0001a05 8610 new_rel->target_offset = new_offset;
43cd72b9 8611 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8612}
8613
8614
8615/* For dynamic links, there may be a dynamic relocation for each
8616 literal. The number of dynamic relocations must be computed in
8617 size_dynamic_sections, which occurs before relaxation. When a
8618 literal is removed, this function checks if there is a corresponding
8619 dynamic relocation and shrinks the size of the appropriate dynamic
8620 relocation section accordingly. At this point, the contents of the
8621 dynamic relocation sections have not yet been filled in, so there's
8622 nothing else that needs to be done. */
8623
8624static void
7fa3d080
BW
8625shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8626 bfd *abfd,
8627 asection *input_section,
8628 Elf_Internal_Rela *rel)
e0001a05
NC
8629{
8630 Elf_Internal_Shdr *symtab_hdr;
8631 struct elf_link_hash_entry **sym_hashes;
8632 unsigned long r_symndx;
8633 int r_type;
8634 struct elf_link_hash_entry *h;
8635 bfd_boolean dynamic_symbol;
8636
8637 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8638 sym_hashes = elf_sym_hashes (abfd);
8639
8640 r_type = ELF32_R_TYPE (rel->r_info);
8641 r_symndx = ELF32_R_SYM (rel->r_info);
8642
8643 if (r_symndx < symtab_hdr->sh_info)
8644 h = NULL;
8645 else
8646 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8647
571b5725 8648 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05
NC
8649
8650 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8651 && (input_section->flags & SEC_ALLOC) != 0
8652 && (dynamic_symbol || info->shared))
8653 {
8654 bfd *dynobj;
8655 const char *srel_name;
8656 asection *srel;
8657 bfd_boolean is_plt = FALSE;
8658
8659 dynobj = elf_hash_table (info)->dynobj;
8660 BFD_ASSERT (dynobj != NULL);
8661
8662 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8663 {
8664 srel_name = ".rela.plt";
8665 is_plt = TRUE;
8666 }
8667 else
8668 srel_name = ".rela.got";
8669
8670 /* Reduce size of the .rela.* section by one reloc. */
8671 srel = bfd_get_section_by_name (dynobj, srel_name);
8672 BFD_ASSERT (srel != NULL);
eea6121a
AM
8673 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8674 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8675
8676 if (is_plt)
8677 {
8678 asection *splt, *sgotplt, *srelgot;
8679 int reloc_index, chunk;
8680
8681 /* Find the PLT reloc index of the entry being removed. This
8682 is computed from the size of ".rela.plt". It is needed to
8683 figure out which PLT chunk to resize. Usually "last index
8684 = size - 1" since the index starts at zero, but in this
8685 context, the size has just been decremented so there's no
8686 need to subtract one. */
eea6121a 8687 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8688
8689 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8690 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8691 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8692 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8693
8694 /* Check if an entire PLT chunk has just been eliminated. */
8695 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8696 {
8697 /* The two magic GOT entries for that chunk can go away. */
8698 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8699 BFD_ASSERT (srelgot != NULL);
8700 srelgot->reloc_count -= 2;
eea6121a
AM
8701 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8702 sgotplt->size -= 8;
e0001a05
NC
8703
8704 /* There should be only one entry left (and it will be
8705 removed below). */
eea6121a
AM
8706 BFD_ASSERT (sgotplt->size == 4);
8707 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8708 }
8709
eea6121a
AM
8710 BFD_ASSERT (sgotplt->size >= 4);
8711 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8712
eea6121a
AM
8713 sgotplt->size -= 4;
8714 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8715 }
8716 }
8717}
8718
8719
43cd72b9
BW
8720/* Take an r_rel and move it to another section. This usually
8721 requires extending the interal_relocation array and pinning it. If
8722 the original r_rel is from the same BFD, we can complete this here.
8723 Otherwise, we add a fix record to let the final link fix the
8724 appropriate address. Contents and internal relocations for the
8725 section must be pinned after calling this routine. */
8726
8727static bfd_boolean
7fa3d080
BW
8728move_literal (bfd *abfd,
8729 struct bfd_link_info *link_info,
8730 asection *sec,
8731 bfd_vma offset,
8732 bfd_byte *contents,
8733 xtensa_relax_info *relax_info,
8734 Elf_Internal_Rela **internal_relocs_p,
8735 const literal_value *lit)
43cd72b9
BW
8736{
8737 Elf_Internal_Rela *new_relocs = NULL;
8738 size_t new_relocs_count = 0;
8739 Elf_Internal_Rela this_rela;
8740 const r_reloc *r_rel;
8741
8742 r_rel = &lit->r_rel;
8743 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8744
8745 if (r_reloc_is_const (r_rel))
8746 bfd_put_32 (abfd, lit->value, contents + offset);
8747 else
8748 {
8749 int r_type;
8750 unsigned i;
8751 asection *target_sec;
8752 reloc_bfd_fix *fix;
8753 unsigned insert_at;
8754
8755 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8756 target_sec = r_reloc_get_section (r_rel);
8757
8758 /* This is the difficult case. We have to create a fix up. */
8759 this_rela.r_offset = offset;
8760 this_rela.r_info = ELF32_R_INFO (0, r_type);
8761 this_rela.r_addend =
8762 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8763 bfd_put_32 (abfd, lit->value, contents + offset);
8764
8765 /* Currently, we cannot move relocations during a relocatable link. */
8766 BFD_ASSERT (!link_info->relocatable);
8767 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8768 r_reloc_get_section (r_rel),
8769 r_rel->target_offset + r_rel->virtual_offset,
8770 FALSE);
8771 /* We also need to mark that relocations are needed here. */
8772 sec->flags |= SEC_RELOC;
8773
8774 translate_reloc_bfd_fix (fix);
8775 /* This fix has not yet been translated. */
8776 add_fix (sec, fix);
8777
8778 /* Add the relocation. If we have already allocated our own
8779 space for the relocations and we have room for more, then use
8780 it. Otherwise, allocate new space and move the literals. */
8781 insert_at = sec->reloc_count;
8782 for (i = 0; i < sec->reloc_count; ++i)
8783 {
8784 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8785 {
8786 insert_at = i;
8787 break;
8788 }
8789 }
8790
8791 if (*internal_relocs_p != relax_info->allocated_relocs
8792 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8793 {
8794 BFD_ASSERT (relax_info->allocated_relocs == NULL
8795 || sec->reloc_count == relax_info->relocs_count);
8796
8797 if (relax_info->allocated_relocs_count == 0)
8798 new_relocs_count = (sec->reloc_count + 2) * 2;
8799 else
8800 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8801
8802 new_relocs = (Elf_Internal_Rela *)
8803 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8804 if (!new_relocs)
8805 return FALSE;
8806
8807 /* We could handle this more quickly by finding the split point. */
8808 if (insert_at != 0)
8809 memcpy (new_relocs, *internal_relocs_p,
8810 insert_at * sizeof (Elf_Internal_Rela));
8811
8812 new_relocs[insert_at] = this_rela;
8813
8814 if (insert_at != sec->reloc_count)
8815 memcpy (new_relocs + insert_at + 1,
8816 (*internal_relocs_p) + insert_at,
8817 (sec->reloc_count - insert_at)
8818 * sizeof (Elf_Internal_Rela));
8819
8820 if (*internal_relocs_p != relax_info->allocated_relocs)
8821 {
8822 /* The first time we re-allocate, we can only free the
8823 old relocs if they were allocated with bfd_malloc.
8824 This is not true when keep_memory is in effect. */
8825 if (!link_info->keep_memory)
8826 free (*internal_relocs_p);
8827 }
8828 else
8829 free (*internal_relocs_p);
8830 relax_info->allocated_relocs = new_relocs;
8831 relax_info->allocated_relocs_count = new_relocs_count;
8832 elf_section_data (sec)->relocs = new_relocs;
8833 sec->reloc_count++;
8834 relax_info->relocs_count = sec->reloc_count;
8835 *internal_relocs_p = new_relocs;
8836 }
8837 else
8838 {
8839 if (insert_at != sec->reloc_count)
8840 {
8841 unsigned idx;
8842 for (idx = sec->reloc_count; idx > insert_at; idx--)
8843 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8844 }
8845 (*internal_relocs_p)[insert_at] = this_rela;
8846 sec->reloc_count++;
8847 if (relax_info->allocated_relocs)
8848 relax_info->relocs_count = sec->reloc_count;
8849 }
8850 }
8851 return TRUE;
8852}
8853
8854
e0001a05
NC
8855/* This is similar to relax_section except that when a target is moved,
8856 we shift addresses up. We also need to modify the size. This
8857 algorithm does NOT allow for relocations into the middle of the
8858 property sections. */
8859
43cd72b9 8860static bfd_boolean
7fa3d080
BW
8861relax_property_section (bfd *abfd,
8862 asection *sec,
8863 struct bfd_link_info *link_info)
e0001a05
NC
8864{
8865 Elf_Internal_Rela *internal_relocs;
8866 bfd_byte *contents;
8867 unsigned i, nexti;
8868 bfd_boolean ok = TRUE;
43cd72b9
BW
8869 bfd_boolean is_full_prop_section;
8870 size_t last_zfill_target_offset = 0;
8871 asection *last_zfill_target_sec = NULL;
8872 bfd_size_type sec_size;
e0001a05 8873
43cd72b9 8874 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8875 internal_relocs = retrieve_internal_relocs (abfd, sec,
8876 link_info->keep_memory);
8877 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8878 if (contents == NULL && sec_size != 0)
e0001a05
NC
8879 {
8880 ok = FALSE;
8881 goto error_return;
8882 }
8883
43cd72b9
BW
8884 is_full_prop_section =
8885 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8886 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8887 sizeof ".gnu.linkonce.prop." - 1) == 0));
8888
8889 if (internal_relocs)
e0001a05 8890 {
43cd72b9 8891 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8892 {
8893 Elf_Internal_Rela *irel;
8894 xtensa_relax_info *target_relax_info;
e0001a05
NC
8895 unsigned r_type;
8896 asection *target_sec;
43cd72b9
BW
8897 literal_value val;
8898 bfd_byte *size_p, *flags_p;
e0001a05
NC
8899
8900 /* Locally change the source address.
8901 Translate the target to the new target address.
8902 If it points to this section and has been removed, MOVE IT.
8903 Also, don't forget to modify the associated SIZE at
8904 (offset + 4). */
8905
8906 irel = &internal_relocs[i];
8907 r_type = ELF32_R_TYPE (irel->r_info);
8908 if (r_type == R_XTENSA_NONE)
8909 continue;
8910
43cd72b9
BW
8911 /* Find the literal value. */
8912 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8913 size_p = &contents[irel->r_offset + 4];
8914 flags_p = NULL;
8915 if (is_full_prop_section)
8916 {
8917 flags_p = &contents[irel->r_offset + 8];
8918 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8919 }
8920 else
8921 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
e0001a05 8922
43cd72b9 8923 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8924 target_relax_info = get_xtensa_relax_info (target_sec);
8925
8926 if (target_relax_info
43cd72b9
BW
8927 && (target_relax_info->is_relaxable_literal_section
8928 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8929 {
8930 /* Translate the relocation's destination. */
43cd72b9 8931 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8932 long old_size, new_size;
8933
43cd72b9
BW
8934 new_offset = offset_with_removed_text
8935 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8936
8937 /* Assert that we are not out of bounds. */
43cd72b9
BW
8938 old_size = bfd_get_32 (abfd, size_p);
8939
8940 if (old_size == 0)
8941 {
8942 /* Only the first zero-sized unreachable entry is
8943 allowed to expand. In this case the new offset
8944 should be the offset before the fill and the new
8945 size is the expansion size. For other zero-sized
8946 entries the resulting size should be zero with an
8947 offset before or after the fill address depending
8948 on whether the expanding unreachable entry
8949 preceeds it. */
8950 if (last_zfill_target_sec
8951 && last_zfill_target_sec == target_sec
8952 && last_zfill_target_offset == val.r_rel.target_offset)
8953 new_end_offset = new_offset;
8954 else
8955 {
8956 new_end_offset = new_offset;
8957 new_offset = offset_with_removed_text_before_fill
8958 (&target_relax_info->action_list,
8959 val.r_rel.target_offset);
8960
8961 /* If it is not unreachable and we have not yet
8962 seen an unreachable at this address, place it
8963 before the fill address. */
8964 if (!flags_p
8965 || (bfd_get_32 (abfd, flags_p)
8966 & XTENSA_PROP_UNREACHABLE) == 0)
8967 new_end_offset = new_offset;
8968 else
8969 {
8970 last_zfill_target_sec = target_sec;
8971 last_zfill_target_offset = val.r_rel.target_offset;
8972 }
8973 }
8974 }
8975 else
8976 {
8977 new_end_offset = offset_with_removed_text_before_fill
8978 (&target_relax_info->action_list,
8979 val.r_rel.target_offset + old_size);
8980 }
e0001a05 8981
e0001a05 8982 new_size = new_end_offset - new_offset;
43cd72b9 8983
e0001a05
NC
8984 if (new_size != old_size)
8985 {
8986 bfd_put_32 (abfd, new_size, size_p);
8987 pin_contents (sec, contents);
8988 }
43cd72b9
BW
8989
8990 if (new_offset != val.r_rel.target_offset)
e0001a05 8991 {
43cd72b9 8992 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
8993 irel->r_addend += diff;
8994 pin_internal_relocs (sec, internal_relocs);
8995 }
8996 }
8997 }
8998 }
8999
9000 /* Combine adjacent property table entries. This is also done in
9001 finish_dynamic_sections() but at that point it's too late to
9002 reclaim the space in the output section, so we do this twice. */
9003
43cd72b9
BW
9004 if (internal_relocs && (!link_info->relocatable
9005 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
e0001a05
NC
9006 {
9007 Elf_Internal_Rela *last_irel = NULL;
9008 int removed_bytes = 0;
9009 bfd_vma offset, last_irel_offset;
9010 bfd_vma section_size;
43cd72b9
BW
9011 bfd_size_type entry_size;
9012 flagword predef_flags;
9013
9014 if (is_full_prop_section)
9015 entry_size = 12;
9016 else
9017 entry_size = 8;
9018
9019 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05
NC
9020
9021 /* Walk over memory and irels at the same time.
9022 This REQUIRES that the internal_relocs be sorted by offset. */
9023 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9024 internal_reloc_compare);
9025 nexti = 0; /* Index into internal_relocs. */
9026
9027 pin_internal_relocs (sec, internal_relocs);
9028 pin_contents (sec, contents);
9029
9030 last_irel_offset = (bfd_vma) -1;
eea6121a 9031 section_size = sec->size;
43cd72b9 9032 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 9033
43cd72b9 9034 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
9035 {
9036 Elf_Internal_Rela *irel, *next_irel;
9037 bfd_vma bytes_to_remove, size, actual_offset;
9038 bfd_boolean remove_this_irel;
43cd72b9 9039 flagword flags;
e0001a05
NC
9040
9041 irel = NULL;
9042 next_irel = NULL;
9043
9044 /* Find the next two relocations (if there are that many left),
9045 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
9046 the starting reloc index. After these two loops, "i"
9047 is the index of the first non-NONE reloc past that starting
9048 index, and "nexti" is the index for the next non-NONE reloc
9049 after "i". */
9050
9051 for (i = nexti; i < sec->reloc_count; i++)
9052 {
9053 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
9054 {
9055 irel = &internal_relocs[i];
9056 break;
9057 }
9058 internal_relocs[i].r_offset -= removed_bytes;
9059 }
9060
9061 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
9062 {
9063 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
9064 != R_XTENSA_NONE)
9065 {
9066 next_irel = &internal_relocs[nexti];
9067 break;
9068 }
9069 internal_relocs[nexti].r_offset -= removed_bytes;
9070 }
9071
9072 remove_this_irel = FALSE;
9073 bytes_to_remove = 0;
9074 actual_offset = offset - removed_bytes;
9075 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9076
43cd72b9
BW
9077 if (is_full_prop_section)
9078 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9079 else
9080 flags = predef_flags;
9081
e0001a05
NC
9082 /* Check that the irels are sorted by offset,
9083 with only one per address. */
9084 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
9085 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
9086
43cd72b9
BW
9087 /* Make sure there aren't relocs on the size or flag fields. */
9088 if ((irel && irel->r_offset == offset + 4)
9089 || (is_full_prop_section
9090 && irel && irel->r_offset == offset + 8))
e0001a05
NC
9091 {
9092 irel->r_offset -= removed_bytes;
9093 last_irel_offset = irel->r_offset;
9094 }
43cd72b9
BW
9095 else if (next_irel && (next_irel->r_offset == offset + 4
9096 || (is_full_prop_section
9097 && next_irel->r_offset == offset + 8)))
e0001a05
NC
9098 {
9099 nexti += 1;
9100 irel->r_offset -= removed_bytes;
9101 next_irel->r_offset -= removed_bytes;
9102 last_irel_offset = next_irel->r_offset;
9103 }
43cd72b9
BW
9104 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9105 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9106 {
43cd72b9
BW
9107 /* Always remove entries with zero size and no alignment. */
9108 bytes_to_remove = entry_size;
e0001a05
NC
9109 if (irel && irel->r_offset == offset)
9110 {
9111 remove_this_irel = TRUE;
9112
9113 irel->r_offset -= removed_bytes;
9114 last_irel_offset = irel->r_offset;
9115 }
9116 }
9117 else if (irel && irel->r_offset == offset)
9118 {
9119 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9120 {
9121 if (last_irel)
9122 {
43cd72b9
BW
9123 flagword old_flags;
9124 bfd_vma old_size =
e0001a05 9125 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
43cd72b9
BW
9126 bfd_vma old_address =
9127 (last_irel->r_addend
e0001a05 9128 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
43cd72b9
BW
9129 bfd_vma new_address =
9130 (irel->r_addend
e0001a05 9131 + bfd_get_32 (abfd, &contents[actual_offset]));
43cd72b9
BW
9132 if (is_full_prop_section)
9133 old_flags = bfd_get_32
9134 (abfd, &contents[last_irel->r_offset + 8]);
9135 else
9136 old_flags = predef_flags;
9137
9138 if ((ELF32_R_SYM (irel->r_info)
9139 == ELF32_R_SYM (last_irel->r_info))
9140 && old_address + old_size == new_address
9141 && old_flags == flags
9142 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9143 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9144 {
43cd72b9 9145 /* Fix the old size. */
e0001a05
NC
9146 bfd_put_32 (abfd, old_size + size,
9147 &contents[last_irel->r_offset + 4]);
43cd72b9 9148 bytes_to_remove = entry_size;
e0001a05
NC
9149 remove_this_irel = TRUE;
9150 }
9151 else
9152 last_irel = irel;
9153 }
9154 else
9155 last_irel = irel;
9156 }
9157
9158 irel->r_offset -= removed_bytes;
9159 last_irel_offset = irel->r_offset;
9160 }
9161
9162 if (remove_this_irel)
9163 {
9164 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9165 irel->r_offset -= bytes_to_remove;
9166 }
9167
9168 if (bytes_to_remove != 0)
9169 {
9170 removed_bytes += bytes_to_remove;
43cd72b9 9171 if (offset + bytes_to_remove < section_size)
e0001a05 9172 memmove (&contents[actual_offset],
43cd72b9
BW
9173 &contents[actual_offset + bytes_to_remove],
9174 section_size - offset - bytes_to_remove);
e0001a05
NC
9175 }
9176 }
9177
43cd72b9 9178 if (removed_bytes)
e0001a05
NC
9179 {
9180 /* Clear the removed bytes. */
9181 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9182
eea6121a 9183 sec->size = section_size - removed_bytes;
e901de89
BW
9184
9185 if (xtensa_is_littable_section (sec))
9186 {
9187 bfd *dynobj = elf_hash_table (link_info)->dynobj;
9188 if (dynobj)
9189 {
9190 asection *sgotloc =
9191 bfd_get_section_by_name (dynobj, ".got.loc");
9192 if (sgotloc)
eea6121a 9193 sgotloc->size -= removed_bytes;
e901de89
BW
9194 }
9195 }
e0001a05
NC
9196 }
9197 }
e901de89 9198
e0001a05
NC
9199 error_return:
9200 release_internal_relocs (sec, internal_relocs);
9201 release_contents (sec, contents);
9202 return ok;
9203}
9204
9205\f
9206/* Third relaxation pass. */
9207
9208/* Change symbol values to account for removed literals. */
9209
43cd72b9 9210bfd_boolean
7fa3d080 9211relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9212{
9213 xtensa_relax_info *relax_info;
9214 unsigned int sec_shndx;
9215 Elf_Internal_Shdr *symtab_hdr;
9216 Elf_Internal_Sym *isymbuf;
9217 unsigned i, num_syms, num_locals;
9218
9219 relax_info = get_xtensa_relax_info (sec);
9220 BFD_ASSERT (relax_info);
9221
43cd72b9
BW
9222 if (!relax_info->is_relaxable_literal_section
9223 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9224 return TRUE;
9225
9226 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9227
9228 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9229 isymbuf = retrieve_local_syms (abfd);
9230
9231 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9232 num_locals = symtab_hdr->sh_info;
9233
9234 /* Adjust the local symbols defined in this section. */
9235 for (i = 0; i < num_locals; i++)
9236 {
9237 Elf_Internal_Sym *isym = &isymbuf[i];
9238
9239 if (isym->st_shndx == sec_shndx)
9240 {
43cd72b9
BW
9241 bfd_vma new_address = offset_with_removed_text
9242 (&relax_info->action_list, isym->st_value);
9243 bfd_vma new_size = isym->st_size;
9244
9245 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9246 {
9247 bfd_vma new_end = offset_with_removed_text
9248 (&relax_info->action_list, isym->st_value + isym->st_size);
9249 new_size = new_end - new_address;
9250 }
9251
9252 isym->st_value = new_address;
9253 isym->st_size = new_size;
e0001a05
NC
9254 }
9255 }
9256
9257 /* Now adjust the global symbols defined in this section. */
9258 for (i = 0; i < (num_syms - num_locals); i++)
9259 {
9260 struct elf_link_hash_entry *sym_hash;
9261
9262 sym_hash = elf_sym_hashes (abfd)[i];
9263
9264 if (sym_hash->root.type == bfd_link_hash_warning)
9265 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9266
9267 if ((sym_hash->root.type == bfd_link_hash_defined
9268 || sym_hash->root.type == bfd_link_hash_defweak)
9269 && sym_hash->root.u.def.section == sec)
9270 {
43cd72b9
BW
9271 bfd_vma new_address = offset_with_removed_text
9272 (&relax_info->action_list, sym_hash->root.u.def.value);
9273 bfd_vma new_size = sym_hash->size;
9274
9275 if (sym_hash->type == STT_FUNC)
9276 {
9277 bfd_vma new_end = offset_with_removed_text
9278 (&relax_info->action_list,
9279 sym_hash->root.u.def.value + sym_hash->size);
9280 new_size = new_end - new_address;
9281 }
9282
9283 sym_hash->root.u.def.value = new_address;
9284 sym_hash->size = new_size;
e0001a05
NC
9285 }
9286 }
9287
9288 return TRUE;
9289}
9290
9291\f
9292/* "Fix" handling functions, called while performing relocations. */
9293
43cd72b9 9294static bfd_boolean
7fa3d080
BW
9295do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9296 bfd *input_bfd,
9297 asection *input_section,
9298 bfd_byte *contents)
e0001a05
NC
9299{
9300 r_reloc r_rel;
9301 asection *sec, *old_sec;
9302 bfd_vma old_offset;
9303 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9304 reloc_bfd_fix *fix;
9305
9306 if (r_type == R_XTENSA_NONE)
43cd72b9 9307 return TRUE;
e0001a05 9308
43cd72b9
BW
9309 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9310 if (!fix)
9311 return TRUE;
e0001a05 9312
43cd72b9
BW
9313 r_reloc_init (&r_rel, input_bfd, rel, contents,
9314 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9315 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9316 old_offset = r_rel.target_offset;
9317
9318 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9319 {
43cd72b9
BW
9320 if (r_type != R_XTENSA_ASM_EXPAND)
9321 {
9322 (*_bfd_error_handler)
9323 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9324 input_bfd, input_section, rel->r_offset,
9325 elf_howto_table[r_type].name);
9326 return FALSE;
9327 }
e0001a05
NC
9328 /* Leave it be. Resolution will happen in a later stage. */
9329 }
9330 else
9331 {
9332 sec = fix->target_sec;
9333 rel->r_addend += ((sec->output_offset + fix->target_offset)
9334 - (old_sec->output_offset + old_offset));
9335 }
43cd72b9 9336 return TRUE;
e0001a05
NC
9337}
9338
9339
9340static void
7fa3d080
BW
9341do_fix_for_final_link (Elf_Internal_Rela *rel,
9342 bfd *input_bfd,
9343 asection *input_section,
9344 bfd_byte *contents,
9345 bfd_vma *relocationp)
e0001a05
NC
9346{
9347 asection *sec;
9348 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9349 reloc_bfd_fix *fix;
43cd72b9 9350 bfd_vma fixup_diff;
e0001a05
NC
9351
9352 if (r_type == R_XTENSA_NONE)
9353 return;
9354
43cd72b9
BW
9355 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9356 if (!fix)
e0001a05
NC
9357 return;
9358
9359 sec = fix->target_sec;
43cd72b9
BW
9360
9361 fixup_diff = rel->r_addend;
9362 if (elf_howto_table[fix->src_type].partial_inplace)
9363 {
9364 bfd_vma inplace_val;
9365 BFD_ASSERT (fix->src_offset
9366 < bfd_get_section_limit (input_bfd, input_section));
9367 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9368 fixup_diff += inplace_val;
9369 }
9370
e0001a05
NC
9371 *relocationp = (sec->output_section->vma
9372 + sec->output_offset
43cd72b9 9373 + fix->target_offset - fixup_diff);
e0001a05
NC
9374}
9375
9376\f
9377/* Miscellaneous utility functions.... */
9378
9379static asection *
7fa3d080 9380elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
e0001a05
NC
9381{
9382 char plt_name[10];
9383
9384 if (chunk == 0)
9385 return bfd_get_section_by_name (dynobj, ".plt");
9386
9387 sprintf (plt_name, ".plt.%u", chunk);
9388 return bfd_get_section_by_name (dynobj, plt_name);
9389}
9390
9391
9392static asection *
7fa3d080 9393elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
e0001a05
NC
9394{
9395 char got_name[14];
9396
9397 if (chunk == 0)
9398 return bfd_get_section_by_name (dynobj, ".got.plt");
9399
9400 sprintf (got_name, ".got.plt.%u", chunk);
9401 return bfd_get_section_by_name (dynobj, got_name);
9402}
9403
9404
9405/* Get the input section for a given symbol index.
9406 If the symbol is:
9407 . a section symbol, return the section;
9408 . a common symbol, return the common section;
9409 . an undefined symbol, return the undefined section;
9410 . an indirect symbol, follow the links;
9411 . an absolute value, return the absolute section. */
9412
9413static asection *
7fa3d080 9414get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9415{
9416 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9417 asection *target_sec = NULL;
43cd72b9 9418 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9419 {
9420 Elf_Internal_Sym *isymbuf;
9421 unsigned int section_index;
9422
9423 isymbuf = retrieve_local_syms (abfd);
9424 section_index = isymbuf[r_symndx].st_shndx;
9425
9426 if (section_index == SHN_UNDEF)
9427 target_sec = bfd_und_section_ptr;
9428 else if (section_index > 0 && section_index < SHN_LORESERVE)
9429 target_sec = bfd_section_from_elf_index (abfd, section_index);
9430 else if (section_index == SHN_ABS)
9431 target_sec = bfd_abs_section_ptr;
9432 else if (section_index == SHN_COMMON)
9433 target_sec = bfd_com_section_ptr;
43cd72b9 9434 else
e0001a05
NC
9435 /* Who knows? */
9436 target_sec = NULL;
9437 }
9438 else
9439 {
9440 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9441 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9442
9443 while (h->root.type == bfd_link_hash_indirect
9444 || h->root.type == bfd_link_hash_warning)
9445 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9446
9447 switch (h->root.type)
9448 {
9449 case bfd_link_hash_defined:
9450 case bfd_link_hash_defweak:
9451 target_sec = h->root.u.def.section;
9452 break;
9453 case bfd_link_hash_common:
9454 target_sec = bfd_com_section_ptr;
9455 break;
9456 case bfd_link_hash_undefined:
9457 case bfd_link_hash_undefweak:
9458 target_sec = bfd_und_section_ptr;
9459 break;
9460 default: /* New indirect warning. */
9461 target_sec = bfd_und_section_ptr;
9462 break;
9463 }
9464 }
9465 return target_sec;
9466}
9467
9468
9469static struct elf_link_hash_entry *
7fa3d080 9470get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9471{
9472 unsigned long indx;
9473 struct elf_link_hash_entry *h;
9474 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9475
9476 if (r_symndx < symtab_hdr->sh_info)
9477 return NULL;
43cd72b9 9478
e0001a05
NC
9479 indx = r_symndx - symtab_hdr->sh_info;
9480 h = elf_sym_hashes (abfd)[indx];
9481 while (h->root.type == bfd_link_hash_indirect
9482 || h->root.type == bfd_link_hash_warning)
9483 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9484 return h;
9485}
9486
9487
9488/* Get the section-relative offset for a symbol number. */
9489
9490static bfd_vma
7fa3d080 9491get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9492{
9493 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9494 bfd_vma offset = 0;
9495
43cd72b9 9496 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9497 {
9498 Elf_Internal_Sym *isymbuf;
9499 isymbuf = retrieve_local_syms (abfd);
9500 offset = isymbuf[r_symndx].st_value;
9501 }
9502 else
9503 {
9504 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9505 struct elf_link_hash_entry *h =
9506 elf_sym_hashes (abfd)[indx];
9507
9508 while (h->root.type == bfd_link_hash_indirect
9509 || h->root.type == bfd_link_hash_warning)
9510 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9511 if (h->root.type == bfd_link_hash_defined
9512 || h->root.type == bfd_link_hash_defweak)
9513 offset = h->root.u.def.value;
9514 }
9515 return offset;
9516}
9517
9518
9519static bfd_boolean
7fa3d080 9520is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9521{
9522 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9523 struct elf_link_hash_entry *h;
9524
9525 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9526 if (h && h->root.type == bfd_link_hash_defweak)
9527 return TRUE;
9528 return FALSE;
9529}
9530
9531
9532static bfd_boolean
7fa3d080
BW
9533pcrel_reloc_fits (xtensa_opcode opc,
9534 int opnd,
9535 bfd_vma self_address,
9536 bfd_vma dest_address)
e0001a05 9537{
43cd72b9
BW
9538 xtensa_isa isa = xtensa_default_isa;
9539 uint32 valp = dest_address;
9540 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9541 || xtensa_operand_encode (isa, opc, opnd, &valp))
9542 return FALSE;
9543 return TRUE;
e0001a05
NC
9544}
9545
9546
b614a702
BW
9547static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9548static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9549static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
43cd72b9 9550static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
b614a702
BW
9551
9552
e0001a05 9553static bfd_boolean
7fa3d080 9554xtensa_is_property_section (asection *sec)
e0001a05 9555{
b614a702 9556 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
43cd72b9
BW
9557 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9558 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
b614a702 9559 return TRUE;
e901de89 9560
b614a702 9561 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
43cd72b9
BW
9562 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9563 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9564 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
e901de89
BW
9565 return TRUE;
9566
e901de89
BW
9567 return FALSE;
9568}
9569
9570
9571static bfd_boolean
7fa3d080 9572xtensa_is_littable_section (asection *sec)
e901de89 9573{
b614a702
BW
9574 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9575 return TRUE;
e901de89 9576
b614a702
BW
9577 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9578 && sec->name[linkonce_len] == 'p'
9579 && sec->name[linkonce_len + 1] == '.')
e901de89 9580 return TRUE;
e0001a05 9581
e901de89 9582 return FALSE;
e0001a05
NC
9583}
9584
9585
43cd72b9 9586static int
7fa3d080 9587internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9588{
43cd72b9
BW
9589 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9590 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9591
9592 if (a->r_offset != b->r_offset)
9593 return (a->r_offset - b->r_offset);
9594
9595 /* We don't need to sort on these criteria for correctness,
9596 but enforcing a more strict ordering prevents unstable qsort
9597 from behaving differently with different implementations.
9598 Without the code below we get correct but different results
9599 on Solaris 2.7 and 2.8. We would like to always produce the
9600 same results no matter the host. */
9601
9602 if (a->r_info != b->r_info)
9603 return (a->r_info - b->r_info);
9604
9605 return (a->r_addend - b->r_addend);
e0001a05
NC
9606}
9607
9608
9609static int
7fa3d080 9610internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9611{
9612 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9613 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9614
43cd72b9
BW
9615 /* Check if one entry overlaps with the other; this shouldn't happen
9616 except when searching for a match. */
e0001a05
NC
9617 return (a->r_offset - b->r_offset);
9618}
9619
9620
e0001a05 9621char *
7fa3d080 9622xtensa_get_property_section_name (asection *sec, const char *base_name)
e0001a05 9623{
b614a702 9624 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9625 {
b614a702
BW
9626 char *prop_sec_name;
9627 const char *suffix;
43cd72b9 9628 char *linkonce_kind = 0;
b614a702
BW
9629
9630 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9631 linkonce_kind = "x.";
b614a702 9632 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9633 linkonce_kind = "p.";
43cd72b9
BW
9634 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9635 linkonce_kind = "prop.";
e0001a05 9636 else
b614a702
BW
9637 abort ();
9638
43cd72b9
BW
9639 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9640 + strlen (linkonce_kind) + 1);
b614a702 9641 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9642 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9643
9644 suffix = sec->name + linkonce_len;
096c35a7 9645 /* For backward compatibility, replace "t." instead of inserting
43cd72b9
BW
9646 the new linkonce_kind (but not for "prop" sections). */
9647 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9648 suffix += 2;
9649 strcat (prop_sec_name + linkonce_len, suffix);
b614a702
BW
9650
9651 return prop_sec_name;
e0001a05
NC
9652 }
9653
b614a702 9654 return strdup (base_name);
e0001a05
NC
9655}
9656
43cd72b9
BW
9657
9658flagword
7fa3d080 9659xtensa_get_property_predef_flags (asection *sec)
43cd72b9
BW
9660{
9661 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9662 || strncmp (sec->name, ".gnu.linkonce.x.",
9663 sizeof ".gnu.linkonce.x." - 1) == 0)
9664 return (XTENSA_PROP_INSN
9665 | XTENSA_PROP_INSN_NO_TRANSFORM
9666 | XTENSA_PROP_INSN_NO_REORDER);
9667
9668 if (xtensa_is_littable_section (sec))
9669 return (XTENSA_PROP_LITERAL
9670 | XTENSA_PROP_INSN_NO_TRANSFORM
9671 | XTENSA_PROP_INSN_NO_REORDER);
9672
9673 return 0;
9674}
9675
e0001a05
NC
9676\f
9677/* Other functions called directly by the linker. */
9678
9679bfd_boolean
7fa3d080
BW
9680xtensa_callback_required_dependence (bfd *abfd,
9681 asection *sec,
9682 struct bfd_link_info *link_info,
9683 deps_callback_t callback,
9684 void *closure)
e0001a05
NC
9685{
9686 Elf_Internal_Rela *internal_relocs;
9687 bfd_byte *contents;
9688 unsigned i;
9689 bfd_boolean ok = TRUE;
43cd72b9
BW
9690 bfd_size_type sec_size;
9691
9692 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9693
9694 /* ".plt*" sections have no explicit relocations but they contain L32R
9695 instructions that reference the corresponding ".got.plt*" sections. */
9696 if ((sec->flags & SEC_LINKER_CREATED) != 0
9697 && strncmp (sec->name, ".plt", 4) == 0)
9698 {
9699 asection *sgotplt;
9700
9701 /* Find the corresponding ".got.plt*" section. */
9702 if (sec->name[4] == '\0')
9703 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9704 else
9705 {
9706 char got_name[14];
9707 int chunk = 0;
9708
9709 BFD_ASSERT (sec->name[4] == '.');
9710 chunk = strtol (&sec->name[5], NULL, 10);
9711
9712 sprintf (got_name, ".got.plt.%u", chunk);
9713 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9714 }
9715 BFD_ASSERT (sgotplt);
9716
9717 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9718 section referencing a literal at the very beginning of
9719 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9720 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9721 }
9722
9723 internal_relocs = retrieve_internal_relocs (abfd, sec,
9724 link_info->keep_memory);
9725 if (internal_relocs == NULL
43cd72b9 9726 || sec->reloc_count == 0)
e0001a05
NC
9727 return ok;
9728
9729 /* Cache the contents for the duration of this scan. */
9730 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9731 if (contents == NULL && sec_size != 0)
e0001a05
NC
9732 {
9733 ok = FALSE;
9734 goto error_return;
9735 }
9736
43cd72b9
BW
9737 if (!xtensa_default_isa)
9738 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9739
43cd72b9 9740 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9741 {
9742 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9743 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9744 {
9745 r_reloc l32r_rel;
9746 asection *target_sec;
9747 bfd_vma target_offset;
43cd72b9
BW
9748
9749 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9750 target_sec = NULL;
9751 target_offset = 0;
9752 /* L32Rs must be local to the input file. */
9753 if (r_reloc_is_defined (&l32r_rel))
9754 {
9755 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9756 target_offset = l32r_rel.target_offset;
e0001a05
NC
9757 }
9758 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9759 closure);
9760 }
9761 }
9762
9763 error_return:
9764 release_internal_relocs (sec, internal_relocs);
9765 release_contents (sec, contents);
9766 return ok;
9767}
9768
2f89ff8d
L
9769/* The default literal sections should always be marked as "code" (i.e.,
9770 SHF_EXECINSTR). This is particularly important for the Linux kernel
9771 module loader so that the literals are not placed after the text. */
b35d266b 9772static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9773{
7dcb9820 9774 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958 9775 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958
L
9776 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9777 { NULL, 0, 0, 0, 0 }
9778};
e0001a05
NC
9779\f
9780#ifndef ELF_ARCH
9781#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9782#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9783#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9784#define TARGET_BIG_NAME "elf32-xtensa-be"
9785#define ELF_ARCH bfd_arch_xtensa
9786
4af0a1d8
BW
9787#define ELF_MACHINE_CODE EM_XTENSA
9788#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9789
9790#if XCHAL_HAVE_MMU
9791#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9792#else /* !XCHAL_HAVE_MMU */
9793#define ELF_MAXPAGESIZE 1
9794#endif /* !XCHAL_HAVE_MMU */
9795#endif /* ELF_ARCH */
9796
9797#define elf_backend_can_gc_sections 1
9798#define elf_backend_can_refcount 1
9799#define elf_backend_plt_readonly 1
9800#define elf_backend_got_header_size 4
9801#define elf_backend_want_dynbss 0
9802#define elf_backend_want_got_plt 1
9803
9804#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9805
e0001a05
NC
9806#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9807#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9808#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9809#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9810#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9811#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9812
9813#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9814#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9815#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9816#define elf_backend_discard_info elf_xtensa_discard_info
9817#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9818#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9819#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9820#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9821#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9822#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9823#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9824#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9825#define elf_backend_hide_symbol elf_xtensa_hide_symbol
9826#define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9827#define elf_backend_object_p elf_xtensa_object_p
9828#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9829#define elf_backend_relocate_section elf_xtensa_relocate_section
9830#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
29ef7005 9831#define elf_backend_special_sections elf_xtensa_special_sections
e0001a05
NC
9832
9833#include "elf32-target.h"
This page took 0.722679 seconds and 4 git commands to generate.