Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
b90efa5b 2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
f0e6fdb2 38static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
f0e6fdb2
BW
97static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 106static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 107static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 108static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
109static int internal_reloc_compare (const void *, const void *);
110static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
111static asection *xtensa_get_property_section (asection *, const char *);
112extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 113static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
114
115/* Other functions called directly by the linker. */
116
117typedef void (*deps_callback_t)
7fa3d080 118 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 119extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
121
122
43cd72b9
BW
123/* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
7fa3d080 127
43cd72b9
BW
128int elf32xtensa_size_opt;
129
130
131/* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
e0001a05 134
7fa3d080 135typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 136
43cd72b9 137
43cd72b9
BW
138/* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143xtensa_isa xtensa_default_isa;
144
145
e0001a05
NC
146/* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150static bfd_boolean relaxing_section = FALSE;
151
43cd72b9
BW
152/* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155int elf32xtensa_no_literal_movement = 1;
156
b0dddeec
AM
157/* Rename one of the generic section flags to better document how it
158 is used here. */
159/* Whether relocations have been processed. */
160#define reloc_done sec_flg0
e0001a05
NC
161\f
162static reloc_howto_type elf_howto_table[] =
163{
164 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 166 FALSE, 0, 0, FALSE),
e0001a05
NC
167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 170
e0001a05
NC
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178
e0001a05
NC
179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 181 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 184 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 187 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
190 FALSE, 0, 0xffffffff, FALSE),
191
e0001a05 192 EMPTY_HOWTO (7),
e5f131d1
BW
193
194 /* Old relocations for backward compatibility. */
e0001a05 195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201
e0001a05
NC
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208
e0001a05 209 EMPTY_HOWTO (13),
1bbb5f21
BW
210
211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 214
e0001a05
NC
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 218 FALSE, 0, 0, FALSE),
e0001a05
NC
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 222 FALSE, 0, 0, FALSE),
43cd72b9
BW
223
224 /* Relocations for supporting difference of symbols. */
1058c753 225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
e5f131d1 226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
1058c753 227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
e5f131d1 228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
1058c753 229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
e5f131d1 230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
231
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
263
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
295
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 FALSE, 0, 0xffffffff, FALSE),
309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 FALSE, 0, 0, FALSE),
315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 FALSE, 0, 0, FALSE),
e0001a05
NC
318};
319
43cd72b9 320#if DEBUG_GEN_RELOC
e0001a05
NC
321#define TRACE(str) \
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323#else
324#define TRACE(str)
325#endif
326
327static reloc_howto_type *
7fa3d080
BW
328elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 bfd_reloc_code_real_type code)
e0001a05
NC
330{
331 switch (code)
332 {
333 case BFD_RELOC_NONE:
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336
337 case BFD_RELOC_32:
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340
1bbb5f21
BW
341 case BFD_RELOC_32_PCREL:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344
43cd72b9
BW
345 case BFD_RELOC_XTENSA_DIFF8:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348
349 case BFD_RELOC_XTENSA_DIFF16:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352
353 case BFD_RELOC_XTENSA_DIFF32:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356
e0001a05
NC
357 case BFD_RELOC_XTENSA_RTLD:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360
361 case BFD_RELOC_XTENSA_GLOB_DAT:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364
365 case BFD_RELOC_XTENSA_JMP_SLOT:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368
369 case BFD_RELOC_XTENSA_RELATIVE:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372
373 case BFD_RELOC_XTENSA_PLT:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376
377 case BFD_RELOC_XTENSA_OP0:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380
381 case BFD_RELOC_XTENSA_OP1:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384
385 case BFD_RELOC_XTENSA_OP2:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388
389 case BFD_RELOC_XTENSA_ASM_EXPAND:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396
397 case BFD_RELOC_VTABLE_INHERIT:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400
401 case BFD_RELOC_VTABLE_ENTRY:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404
28dbbc02
BW
405 case BFD_RELOC_XTENSA_TLSDESC_FN:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408
409 case BFD_RELOC_XTENSA_TLSDESC_ARG:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412
413 case BFD_RELOC_XTENSA_TLS_DTPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_TPOFF:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420
421 case BFD_RELOC_XTENSA_TLS_FUNC:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424
425 case BFD_RELOC_XTENSA_TLS_ARG:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428
429 case BFD_RELOC_XTENSA_TLS_CALL:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432
e0001a05 433 default:
43cd72b9
BW
434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 {
437 unsigned n = (R_XTENSA_SLOT0_OP +
438 (code - BFD_RELOC_XTENSA_SLOT0_OP));
439 return &elf_howto_table[n];
440 }
441
442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 {
445 unsigned n = (R_XTENSA_SLOT0_ALT +
446 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 return &elf_howto_table[n];
448 }
449
e0001a05
NC
450 break;
451 }
452
453 TRACE ("Unknown");
454 return NULL;
455}
456
157090f7
AM
457static reloc_howto_type *
458elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
459 const char *r_name)
460{
461 unsigned int i;
462
463 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
464 if (elf_howto_table[i].name != NULL
465 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
466 return &elf_howto_table[i];
467
468 return NULL;
469}
470
e0001a05
NC
471
472/* Given an ELF "rela" relocation, find the corresponding howto and record
473 it in the BFD internal arelent representation of the relocation. */
474
475static void
7fa3d080
BW
476elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
477 arelent *cache_ptr,
478 Elf_Internal_Rela *dst)
e0001a05
NC
479{
480 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
481
5860e3f8
NC
482 if (r_type >= (unsigned int) R_XTENSA_max)
483 {
484 _bfd_error_handler (_("%A: invalid XTENSA reloc number: %d"), abfd, r_type);
485 r_type = 0;
486 }
e0001a05
NC
487 cache_ptr->howto = &elf_howto_table[r_type];
488}
489
490\f
491/* Functions for the Xtensa ELF linker. */
492
493/* The name of the dynamic interpreter. This is put in the .interp
494 section. */
495
496#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
497
498/* The size in bytes of an entry in the procedure linkage table.
499 (This does _not_ include the space for the literals associated with
500 the PLT entry.) */
501
502#define PLT_ENTRY_SIZE 16
503
504/* For _really_ large PLTs, we may need to alternate between literals
505 and code to keep the literals within the 256K range of the L32R
506 instructions in the code. It's unlikely that anyone would ever need
507 such a big PLT, but an arbitrary limit on the PLT size would be bad.
508 Thus, we split the PLT into chunks. Since there's very little
509 overhead (2 extra literals) for each chunk, the chunk size is kept
510 small so that the code for handling multiple chunks get used and
511 tested regularly. With 254 entries, there are 1K of literals for
512 each chunk, and that seems like a nice round number. */
513
514#define PLT_ENTRIES_PER_CHUNK 254
515
516/* PLT entries are actually used as stub functions for lazy symbol
517 resolution. Once the symbol is resolved, the stub function is never
518 invoked. Note: the 32-byte frame size used here cannot be changed
519 without a corresponding change in the runtime linker. */
520
521static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
522{
523 0x6c, 0x10, 0x04, /* entry sp, 32 */
524 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
525 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
526 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
527 0x0a, 0x80, 0x00, /* jx a8 */
528 0 /* unused */
529};
530
531static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
532{
533 0x36, 0x41, 0x00, /* entry sp, 32 */
534 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
535 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
536 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
537 0xa0, 0x08, 0x00, /* jx a8 */
538 0 /* unused */
539};
540
28dbbc02
BW
541/* The size of the thread control block. */
542#define TCB_SIZE 8
543
544struct elf_xtensa_link_hash_entry
545{
546 struct elf_link_hash_entry elf;
547
548 bfd_signed_vma tlsfunc_refcount;
549
550#define GOT_UNKNOWN 0
551#define GOT_NORMAL 1
552#define GOT_TLS_GD 2 /* global or local dynamic */
553#define GOT_TLS_IE 4 /* initial or local exec */
554#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
555 unsigned char tls_type;
556};
557
558#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
559
560struct elf_xtensa_obj_tdata
561{
562 struct elf_obj_tdata root;
563
564 /* tls_type for each local got entry. */
565 char *local_got_tls_type;
566
567 bfd_signed_vma *local_tlsfunc_refcounts;
568};
569
570#define elf_xtensa_tdata(abfd) \
571 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
572
573#define elf_xtensa_local_got_tls_type(abfd) \
574 (elf_xtensa_tdata (abfd)->local_got_tls_type)
575
576#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
577 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
578
579#define is_xtensa_elf(bfd) \
580 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
581 && elf_tdata (bfd) != NULL \
4dfe6ac6 582 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
583
584static bfd_boolean
585elf_xtensa_mkobject (bfd *abfd)
586{
587 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 588 XTENSA_ELF_DATA);
28dbbc02
BW
589}
590
f0e6fdb2
BW
591/* Xtensa ELF linker hash table. */
592
593struct elf_xtensa_link_hash_table
594{
595 struct elf_link_hash_table elf;
596
597 /* Short-cuts to get to dynamic linker sections. */
598 asection *sgot;
599 asection *sgotplt;
600 asection *srelgot;
601 asection *splt;
602 asection *srelplt;
603 asection *sgotloc;
604 asection *spltlittbl;
605
606 /* Total count of PLT relocations seen during check_relocs.
607 The actual PLT code must be split into multiple sections and all
608 the sections have to be created before size_dynamic_sections,
609 where we figure out the exact number of PLT entries that will be
610 needed. It is OK if this count is an overestimate, e.g., some
611 relocations may be removed by GC. */
612 int plt_reloc_count;
28dbbc02
BW
613
614 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
615};
616
617/* Get the Xtensa ELF linker hash table from a link_info structure. */
618
619#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
620 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
621 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 622
28dbbc02
BW
623/* Create an entry in an Xtensa ELF linker hash table. */
624
625static struct bfd_hash_entry *
626elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
627 struct bfd_hash_table *table,
628 const char *string)
629{
630 /* Allocate the structure if it has not already been allocated by a
631 subclass. */
632 if (entry == NULL)
633 {
634 entry = bfd_hash_allocate (table,
635 sizeof (struct elf_xtensa_link_hash_entry));
636 if (entry == NULL)
637 return entry;
638 }
639
640 /* Call the allocation method of the superclass. */
641 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
642 if (entry != NULL)
643 {
644 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
645 eh->tlsfunc_refcount = 0;
646 eh->tls_type = GOT_UNKNOWN;
647 }
648
649 return entry;
650}
651
f0e6fdb2
BW
652/* Create an Xtensa ELF linker hash table. */
653
654static struct bfd_link_hash_table *
655elf_xtensa_link_hash_table_create (bfd *abfd)
656{
28dbbc02 657 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
658 struct elf_xtensa_link_hash_table *ret;
659 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
660
7bf52ea2 661 ret = bfd_zmalloc (amt);
f0e6fdb2
BW
662 if (ret == NULL)
663 return NULL;
664
665 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 666 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
667 sizeof (struct elf_xtensa_link_hash_entry),
668 XTENSA_ELF_DATA))
f0e6fdb2
BW
669 {
670 free (ret);
671 return NULL;
672 }
673
28dbbc02
BW
674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
675 for it later. */
676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
677 TRUE, FALSE, FALSE);
678 tlsbase->root.type = bfd_link_hash_new;
679 tlsbase->root.u.undef.abfd = NULL;
680 tlsbase->non_elf = 0;
681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682 ret->tlsbase->tls_type = GOT_UNKNOWN;
683
f0e6fdb2
BW
684 return &ret->elf.root;
685}
571b5725 686
28dbbc02
BW
687/* Copy the extra info we tack onto an elf_link_hash_entry. */
688
689static void
690elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 struct elf_link_hash_entry *dir,
692 struct elf_link_hash_entry *ind)
693{
694 struct elf_xtensa_link_hash_entry *edir, *eind;
695
696 edir = elf_xtensa_hash_entry (dir);
697 eind = elf_xtensa_hash_entry (ind);
698
699 if (ind->root.type == bfd_link_hash_indirect)
700 {
701 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702 eind->tlsfunc_refcount = 0;
703
704 if (dir->got.refcount <= 0)
705 {
706 edir->tls_type = eind->tls_type;
707 eind->tls_type = GOT_UNKNOWN;
708 }
709 }
710
711 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
712}
713
571b5725 714static inline bfd_boolean
4608f3d9 715elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 716 struct bfd_link_info *info)
571b5725
BW
717{
718 /* Check if we should do dynamic things to this symbol. The
719 "ignore_protected" argument need not be set, because Xtensa code
720 does not require special handling of STV_PROTECTED to make function
721 pointer comparisons work properly. The PLT addresses are never
722 used for function pointers. */
723
724 return _bfd_elf_dynamic_symbol_p (h, info, 0);
725}
726
e0001a05
NC
727\f
728static int
7fa3d080 729property_table_compare (const void *ap, const void *bp)
e0001a05
NC
730{
731 const property_table_entry *a = (const property_table_entry *) ap;
732 const property_table_entry *b = (const property_table_entry *) bp;
733
43cd72b9
BW
734 if (a->address == b->address)
735 {
43cd72b9
BW
736 if (a->size != b->size)
737 return (a->size - b->size);
738
739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 return ((b->flags & XTENSA_PROP_ALIGN)
741 - (a->flags & XTENSA_PROP_ALIGN));
742
743 if ((a->flags & XTENSA_PROP_ALIGN)
744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
68ffbac6 748
43cd72b9
BW
749 if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 != (b->flags & XTENSA_PROP_UNREACHABLE))
751 return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 - (a->flags & XTENSA_PROP_UNREACHABLE));
753
754 return (a->flags - b->flags);
755 }
756
757 return (a->address - b->address);
758}
759
760
761static int
7fa3d080 762property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
763{
764 const property_table_entry *a = (const property_table_entry *) ap;
765 const property_table_entry *b = (const property_table_entry *) bp;
766
767 /* Check if one entry overlaps with the other. */
e0001a05
NC
768 if ((b->address >= a->address && b->address < (a->address + a->size))
769 || (a->address >= b->address && a->address < (b->address + b->size)))
770 return 0;
771
772 return (a->address - b->address);
773}
774
775
43cd72b9
BW
776/* Get the literal table or property table entries for the given
777 section. Sets TABLE_P and returns the number of entries. On
778 error, returns a negative value. */
e0001a05 779
7fa3d080
BW
780static int
781xtensa_read_table_entries (bfd *abfd,
782 asection *section,
783 property_table_entry **table_p,
784 const char *sec_name,
785 bfd_boolean output_addr)
e0001a05
NC
786{
787 asection *table_section;
e0001a05
NC
788 bfd_size_type table_size = 0;
789 bfd_byte *table_data;
790 property_table_entry *blocks;
e4115460 791 int blk, block_count;
e0001a05 792 bfd_size_type num_records;
bcc2cc8e
BW
793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794 bfd_vma section_addr, off;
43cd72b9 795 flagword predef_flags;
bcc2cc8e 796 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
797
798 if (!section
799 || !(section->flags & SEC_ALLOC)
800 || (section->flags & SEC_DEBUGGING))
801 {
802 *table_p = NULL;
803 return 0;
804 }
e0001a05 805
74869ac7 806 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 807 if (table_section)
eea6121a 808 table_size = table_section->size;
43cd72b9 809
68ffbac6 810 if (table_size == 0)
e0001a05
NC
811 {
812 *table_p = NULL;
813 return 0;
814 }
815
43cd72b9
BW
816 predef_flags = xtensa_get_property_predef_flags (table_section);
817 table_entry_size = 12;
818 if (predef_flags)
819 table_entry_size -= 4;
820
821 num_records = table_size / table_entry_size;
e0001a05
NC
822 table_data = retrieve_contents (abfd, table_section, TRUE);
823 blocks = (property_table_entry *)
824 bfd_malloc (num_records * sizeof (property_table_entry));
825 block_count = 0;
43cd72b9
BW
826
827 if (output_addr)
828 section_addr = section->output_section->vma + section->output_offset;
829 else
830 section_addr = section->vma;
3ba3bc8c 831
e0001a05 832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 833 if (internal_relocs && !table_section->reloc_done)
e0001a05 834 {
bcc2cc8e
BW
835 qsort (internal_relocs, table_section->reloc_count,
836 sizeof (Elf_Internal_Rela), internal_reloc_compare);
837 irel = internal_relocs;
838 }
839 else
840 irel = NULL;
841
842 section_limit = bfd_get_section_limit (abfd, section);
843 rel_end = internal_relocs + table_section->reloc_count;
844
68ffbac6 845 for (off = 0; off < table_size; off += table_entry_size)
bcc2cc8e
BW
846 {
847 bfd_vma address = bfd_get_32 (abfd, table_data + off);
848
849 /* Skip any relocations before the current offset. This should help
850 avoid confusion caused by unexpected relocations for the preceding
851 table entry. */
852 while (irel &&
853 (irel->r_offset < off
854 || (irel->r_offset == off
855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
856 {
857 irel += 1;
858 if (irel >= rel_end)
859 irel = 0;
860 }
e0001a05 861
bcc2cc8e 862 if (irel && irel->r_offset == off)
e0001a05 863 {
bcc2cc8e
BW
864 bfd_vma sym_off;
865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 867
bcc2cc8e 868 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
869 continue;
870
bcc2cc8e
BW
871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 BFD_ASSERT (sym_off == 0);
873 address += (section_addr + sym_off + irel->r_addend);
e0001a05 874 }
bcc2cc8e 875 else
e0001a05 876 {
bcc2cc8e
BW
877 if (address < section_addr
878 || address >= section_addr + section_limit)
879 continue;
e0001a05 880 }
bcc2cc8e
BW
881
882 blocks[block_count].address = address;
883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
884 if (predef_flags)
885 blocks[block_count].flags = predef_flags;
886 else
887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
888 block_count++;
e0001a05
NC
889 }
890
891 release_contents (table_section, table_data);
892 release_internal_relocs (table_section, internal_relocs);
893
43cd72b9 894 if (block_count > 0)
e0001a05
NC
895 {
896 /* Now sort them into address order for easy reference. */
897 qsort (blocks, block_count, sizeof (property_table_entry),
898 property_table_compare);
e4115460
BW
899
900 /* Check that the table contents are valid. Problems may occur,
901 for example, if an unrelocated object file is stripped. */
902 for (blk = 1; blk < block_count; blk++)
903 {
904 /* The only circumstance where two entries may legitimately
905 have the same address is when one of them is a zero-size
906 placeholder to mark a place where fill can be inserted.
907 The zero-size entry should come first. */
908 if (blocks[blk - 1].address == blocks[blk].address &&
909 blocks[blk - 1].size != 0)
910 {
911 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
912 abfd, section);
913 bfd_set_error (bfd_error_bad_value);
914 free (blocks);
915 return -1;
916 }
917 }
e0001a05 918 }
43cd72b9 919
e0001a05
NC
920 *table_p = blocks;
921 return block_count;
922}
923
924
7fa3d080
BW
925static property_table_entry *
926elf_xtensa_find_property_entry (property_table_entry *property_table,
927 int property_table_size,
928 bfd_vma addr)
e0001a05
NC
929{
930 property_table_entry entry;
43cd72b9 931 property_table_entry *rv;
e0001a05 932
43cd72b9
BW
933 if (property_table_size == 0)
934 return NULL;
e0001a05
NC
935
936 entry.address = addr;
937 entry.size = 1;
43cd72b9 938 entry.flags = 0;
e0001a05 939
43cd72b9
BW
940 rv = bsearch (&entry, property_table, property_table_size,
941 sizeof (property_table_entry), property_table_matches);
942 return rv;
943}
944
945
946static bfd_boolean
7fa3d080
BW
947elf_xtensa_in_literal_pool (property_table_entry *lit_table,
948 int lit_table_size,
949 bfd_vma addr)
43cd72b9
BW
950{
951 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
952 return TRUE;
953
954 return FALSE;
955}
956
957\f
958/* Look through the relocs for a section during the first phase, and
959 calculate needed space in the dynamic reloc sections. */
960
961static bfd_boolean
7fa3d080
BW
962elf_xtensa_check_relocs (bfd *abfd,
963 struct bfd_link_info *info,
964 asection *sec,
965 const Elf_Internal_Rela *relocs)
e0001a05 966{
f0e6fdb2 967 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
968 Elf_Internal_Shdr *symtab_hdr;
969 struct elf_link_hash_entry **sym_hashes;
970 const Elf_Internal_Rela *rel;
971 const Elf_Internal_Rela *rel_end;
e0001a05 972
28dbbc02 973 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
974 return TRUE;
975
28dbbc02
BW
976 BFD_ASSERT (is_xtensa_elf (abfd));
977
f0e6fdb2 978 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
979 if (htab == NULL)
980 return FALSE;
981
e0001a05
NC
982 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
983 sym_hashes = elf_sym_hashes (abfd);
984
e0001a05
NC
985 rel_end = relocs + sec->reloc_count;
986 for (rel = relocs; rel < rel_end; rel++)
987 {
988 unsigned int r_type;
989 unsigned long r_symndx;
28dbbc02
BW
990 struct elf_link_hash_entry *h = NULL;
991 struct elf_xtensa_link_hash_entry *eh;
992 int tls_type, old_tls_type;
993 bfd_boolean is_got = FALSE;
994 bfd_boolean is_plt = FALSE;
995 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
996
997 r_symndx = ELF32_R_SYM (rel->r_info);
998 r_type = ELF32_R_TYPE (rel->r_info);
999
1000 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1001 {
d003868e
AM
1002 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1003 abfd, r_symndx);
e0001a05
NC
1004 return FALSE;
1005 }
1006
28dbbc02 1007 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1008 {
1009 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1010 while (h->root.type == bfd_link_hash_indirect
1011 || h->root.type == bfd_link_hash_warning)
1012 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
1013
1014 /* PR15323, ref flags aren't set for references in the same
1015 object. */
1016 h->root.non_ir_ref = 1;
e0001a05 1017 }
28dbbc02 1018 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1019
1020 switch (r_type)
1021 {
28dbbc02
BW
1022 case R_XTENSA_TLSDESC_FN:
1023 if (info->shared)
1024 {
1025 tls_type = GOT_TLS_GD;
1026 is_got = TRUE;
1027 is_tlsfunc = TRUE;
1028 }
1029 else
1030 tls_type = GOT_TLS_IE;
1031 break;
e0001a05 1032
28dbbc02
BW
1033 case R_XTENSA_TLSDESC_ARG:
1034 if (info->shared)
e0001a05 1035 {
28dbbc02
BW
1036 tls_type = GOT_TLS_GD;
1037 is_got = TRUE;
1038 }
1039 else
1040 {
1041 tls_type = GOT_TLS_IE;
1042 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1043 is_got = TRUE;
e0001a05
NC
1044 }
1045 break;
1046
28dbbc02
BW
1047 case R_XTENSA_TLS_DTPOFF:
1048 if (info->shared)
1049 tls_type = GOT_TLS_GD;
1050 else
1051 tls_type = GOT_TLS_IE;
1052 break;
1053
1054 case R_XTENSA_TLS_TPOFF:
1055 tls_type = GOT_TLS_IE;
1056 if (info->shared)
1057 info->flags |= DF_STATIC_TLS;
1058 if (info->shared || h)
1059 is_got = TRUE;
1060 break;
1061
1062 case R_XTENSA_32:
1063 tls_type = GOT_NORMAL;
1064 is_got = TRUE;
1065 break;
1066
e0001a05 1067 case R_XTENSA_PLT:
28dbbc02
BW
1068 tls_type = GOT_NORMAL;
1069 is_plt = TRUE;
1070 break;
e0001a05 1071
28dbbc02
BW
1072 case R_XTENSA_GNU_VTINHERIT:
1073 /* This relocation describes the C++ object vtable hierarchy.
1074 Reconstruct it for later use during GC. */
1075 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1076 return FALSE;
1077 continue;
1078
1079 case R_XTENSA_GNU_VTENTRY:
1080 /* This relocation describes which C++ vtable entries are actually
1081 used. Record for later use during GC. */
1082 BFD_ASSERT (h != NULL);
1083 if (h != NULL
1084 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1085 return FALSE;
1086 continue;
1087
1088 default:
1089 /* Nothing to do for any other relocations. */
1090 continue;
1091 }
1092
1093 if (h)
1094 {
1095 if (is_plt)
e0001a05 1096 {
b45329f9
BW
1097 if (h->plt.refcount <= 0)
1098 {
1099 h->needs_plt = 1;
1100 h->plt.refcount = 1;
1101 }
1102 else
1103 h->plt.refcount += 1;
e0001a05
NC
1104
1105 /* Keep track of the total PLT relocation count even if we
1106 don't yet know whether the dynamic sections will be
1107 created. */
f0e6fdb2 1108 htab->plt_reloc_count += 1;
e0001a05
NC
1109
1110 if (elf_hash_table (info)->dynamic_sections_created)
1111 {
f0e6fdb2 1112 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1113 return FALSE;
1114 }
1115 }
28dbbc02 1116 else if (is_got)
b45329f9
BW
1117 {
1118 if (h->got.refcount <= 0)
1119 h->got.refcount = 1;
1120 else
1121 h->got.refcount += 1;
1122 }
28dbbc02
BW
1123
1124 if (is_tlsfunc)
1125 eh->tlsfunc_refcount += 1;
e0001a05 1126
28dbbc02
BW
1127 old_tls_type = eh->tls_type;
1128 }
1129 else
1130 {
1131 /* Allocate storage the first time. */
1132 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1133 {
28dbbc02
BW
1134 bfd_size_type size = symtab_hdr->sh_info;
1135 void *mem;
e0001a05 1136
28dbbc02
BW
1137 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1138 if (mem == NULL)
1139 return FALSE;
1140 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1141
28dbbc02
BW
1142 mem = bfd_zalloc (abfd, size);
1143 if (mem == NULL)
1144 return FALSE;
1145 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1146
1147 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1148 if (mem == NULL)
1149 return FALSE;
1150 elf_xtensa_local_tlsfunc_refcounts (abfd)
1151 = (bfd_signed_vma *) mem;
e0001a05 1152 }
e0001a05 1153
28dbbc02
BW
1154 /* This is a global offset table entry for a local symbol. */
1155 if (is_got || is_plt)
1156 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1157
28dbbc02
BW
1158 if (is_tlsfunc)
1159 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1160
28dbbc02
BW
1161 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1162 }
1163
1164 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1165 tls_type |= old_tls_type;
1166 /* If a TLS symbol is accessed using IE at least once,
1167 there is no point to use a dynamic model for it. */
1168 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1169 && ((old_tls_type & GOT_TLS_GD) == 0
1170 || (tls_type & GOT_TLS_IE) == 0))
1171 {
1172 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1173 tls_type = old_tls_type;
1174 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1175 tls_type |= old_tls_type;
1176 else
1177 {
1178 (*_bfd_error_handler)
1179 (_("%B: `%s' accessed both as normal and thread local symbol"),
1180 abfd,
1181 h ? h->root.root.string : "<local>");
1182 return FALSE;
1183 }
1184 }
1185
1186 if (old_tls_type != tls_type)
1187 {
1188 if (eh)
1189 eh->tls_type = tls_type;
1190 else
1191 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1192 }
1193 }
1194
e0001a05
NC
1195 return TRUE;
1196}
1197
1198
95147441
BW
1199static void
1200elf_xtensa_make_sym_local (struct bfd_link_info *info,
1201 struct elf_link_hash_entry *h)
1202{
1203 if (info->shared)
1204 {
1205 if (h->plt.refcount > 0)
1206 {
1207 /* For shared objects, there's no need for PLT entries for local
1208 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1209 if (h->got.refcount < 0)
1210 h->got.refcount = 0;
1211 h->got.refcount += h->plt.refcount;
1212 h->plt.refcount = 0;
1213 }
1214 }
1215 else
1216 {
1217 /* Don't need any dynamic relocations at all. */
1218 h->plt.refcount = 0;
1219 h->got.refcount = 0;
1220 }
1221}
1222
1223
1224static void
1225elf_xtensa_hide_symbol (struct bfd_link_info *info,
1226 struct elf_link_hash_entry *h,
1227 bfd_boolean force_local)
1228{
1229 /* For a shared link, move the plt refcount to the got refcount to leave
1230 space for RELATIVE relocs. */
1231 elf_xtensa_make_sym_local (info, h);
1232
1233 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1234}
1235
1236
e0001a05
NC
1237/* Return the section that should be marked against GC for a given
1238 relocation. */
1239
1240static asection *
7fa3d080 1241elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1242 struct bfd_link_info *info,
7fa3d080
BW
1243 Elf_Internal_Rela *rel,
1244 struct elf_link_hash_entry *h,
1245 Elf_Internal_Sym *sym)
e0001a05 1246{
e1e5c0b5
BW
1247 /* Property sections are marked "KEEP" in the linker scripts, but they
1248 should not cause other sections to be marked. (This approach relies
1249 on elf_xtensa_discard_info to remove property table entries that
1250 describe discarded sections. Alternatively, it might be more
1251 efficient to avoid using "KEEP" in the linker scripts and instead use
1252 the gc_mark_extra_sections hook to mark only the property sections
1253 that describe marked sections. That alternative does not work well
1254 with the current property table sections, which do not correspond
1255 one-to-one with the sections they describe, but that should be fixed
1256 someday.) */
1257 if (xtensa_is_property_section (sec))
1258 return NULL;
1259
07adf181
AM
1260 if (h != NULL)
1261 switch (ELF32_R_TYPE (rel->r_info))
1262 {
1263 case R_XTENSA_GNU_VTINHERIT:
1264 case R_XTENSA_GNU_VTENTRY:
1265 return NULL;
1266 }
1267
1268 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1269}
1270
7fa3d080 1271
e0001a05
NC
1272/* Update the GOT & PLT entry reference counts
1273 for the section being removed. */
1274
1275static bfd_boolean
7fa3d080 1276elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1277 struct bfd_link_info *info,
7fa3d080
BW
1278 asection *sec,
1279 const Elf_Internal_Rela *relocs)
e0001a05
NC
1280{
1281 Elf_Internal_Shdr *symtab_hdr;
1282 struct elf_link_hash_entry **sym_hashes;
e0001a05 1283 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1284 struct elf_xtensa_link_hash_table *htab;
1285
1286 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1287 if (htab == NULL)
1288 return FALSE;
e0001a05 1289
7dda2462
TG
1290 if (info->relocatable)
1291 return TRUE;
1292
e0001a05
NC
1293 if ((sec->flags & SEC_ALLOC) == 0)
1294 return TRUE;
1295
1296 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1297 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1298
1299 relend = relocs + sec->reloc_count;
1300 for (rel = relocs; rel < relend; rel++)
1301 {
1302 unsigned long r_symndx;
1303 unsigned int r_type;
1304 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1305 struct elf_xtensa_link_hash_entry *eh;
1306 bfd_boolean is_got = FALSE;
1307 bfd_boolean is_plt = FALSE;
1308 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1309
1310 r_symndx = ELF32_R_SYM (rel->r_info);
1311 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1312 {
1313 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1314 while (h->root.type == bfd_link_hash_indirect
1315 || h->root.type == bfd_link_hash_warning)
1316 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1317 }
28dbbc02 1318 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1319
1320 r_type = ELF32_R_TYPE (rel->r_info);
1321 switch (r_type)
1322 {
28dbbc02
BW
1323 case R_XTENSA_TLSDESC_FN:
1324 if (info->shared)
1325 {
1326 is_got = TRUE;
1327 is_tlsfunc = TRUE;
1328 }
e0001a05
NC
1329 break;
1330
28dbbc02
BW
1331 case R_XTENSA_TLSDESC_ARG:
1332 if (info->shared)
1333 is_got = TRUE;
1334 else
1335 {
1336 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1337 is_got = TRUE;
1338 }
e0001a05
NC
1339 break;
1340
28dbbc02
BW
1341 case R_XTENSA_TLS_TPOFF:
1342 if (info->shared || h)
1343 is_got = TRUE;
e0001a05
NC
1344 break;
1345
28dbbc02
BW
1346 case R_XTENSA_32:
1347 is_got = TRUE;
e0001a05 1348 break;
28dbbc02
BW
1349
1350 case R_XTENSA_PLT:
1351 is_plt = TRUE;
1352 break;
1353
1354 default:
1355 continue;
1356 }
1357
1358 if (h)
1359 {
1360 if (is_plt)
1361 {
1362 if (h->plt.refcount > 0)
1363 h->plt.refcount--;
1364 }
1365 else if (is_got)
1366 {
1367 if (h->got.refcount > 0)
1368 h->got.refcount--;
1369 }
1370 if (is_tlsfunc)
1371 {
1372 if (eh->tlsfunc_refcount > 0)
1373 eh->tlsfunc_refcount--;
1374 }
1375 }
1376 else
1377 {
1378 if (is_got || is_plt)
1379 {
1380 bfd_signed_vma *got_refcount
1381 = &elf_local_got_refcounts (abfd) [r_symndx];
1382 if (*got_refcount > 0)
1383 *got_refcount -= 1;
1384 }
1385 if (is_tlsfunc)
1386 {
1387 bfd_signed_vma *tlsfunc_refcount
1388 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1389 if (*tlsfunc_refcount > 0)
1390 *tlsfunc_refcount -= 1;
1391 }
e0001a05
NC
1392 }
1393 }
1394
1395 return TRUE;
1396}
1397
1398
1399/* Create all the dynamic sections. */
1400
1401static bfd_boolean
7fa3d080 1402elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1403{
f0e6fdb2 1404 struct elf_xtensa_link_hash_table *htab;
e901de89 1405 flagword flags, noalloc_flags;
f0e6fdb2
BW
1406
1407 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1408 if (htab == NULL)
1409 return FALSE;
e0001a05
NC
1410
1411 /* First do all the standard stuff. */
1412 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1413 return FALSE;
3d4d4302
AM
1414 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1415 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1416 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1417 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1418 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
e0001a05
NC
1419
1420 /* Create any extra PLT sections in case check_relocs has already
1421 been called on all the non-dynamic input files. */
f0e6fdb2 1422 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1423 return FALSE;
1424
e901de89
BW
1425 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1426 | SEC_LINKER_CREATED | SEC_READONLY);
1427 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1428
1429 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1430 if (htab->sgotplt == NULL
1431 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1432 return FALSE;
1433
e901de89 1434 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3d4d4302
AM
1435 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1436 flags);
f0e6fdb2
BW
1437 if (htab->sgotloc == NULL
1438 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1439 return FALSE;
1440
e0001a05 1441 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3d4d4302
AM
1442 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1443 noalloc_flags);
f0e6fdb2
BW
1444 if (htab->spltlittbl == NULL
1445 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1446 return FALSE;
1447
1448 return TRUE;
1449}
1450
1451
1452static bfd_boolean
f0e6fdb2 1453add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1454{
f0e6fdb2 1455 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1456 int chunk;
1457
1458 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1459 ".got.plt" sections. */
1460 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1461 {
1462 char *sname;
1463 flagword flags;
1464 asection *s;
1465
1466 /* Stop when we find a section has already been created. */
f0e6fdb2 1467 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1468 break;
1469
1470 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1471 | SEC_LINKER_CREATED | SEC_READONLY);
1472
1473 sname = (char *) bfd_malloc (10);
1474 sprintf (sname, ".plt.%u", chunk);
3d4d4302 1475 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1476 if (s == NULL
e0001a05
NC
1477 || ! bfd_set_section_alignment (dynobj, s, 2))
1478 return FALSE;
1479
1480 sname = (char *) bfd_malloc (14);
1481 sprintf (sname, ".got.plt.%u", chunk);
3d4d4302 1482 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
e0001a05 1483 if (s == NULL
e0001a05
NC
1484 || ! bfd_set_section_alignment (dynobj, s, 2))
1485 return FALSE;
1486 }
1487
1488 return TRUE;
1489}
1490
1491
1492/* Adjust a symbol defined by a dynamic object and referenced by a
1493 regular object. The current definition is in some section of the
1494 dynamic object, but we're not including those sections. We have to
1495 change the definition to something the rest of the link can
1496 understand. */
1497
1498static bfd_boolean
7fa3d080
BW
1499elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1500 struct elf_link_hash_entry *h)
e0001a05
NC
1501{
1502 /* If this is a weak symbol, and there is a real definition, the
1503 processor independent code will have arranged for us to see the
1504 real definition first, and we can just use the same value. */
7fa3d080 1505 if (h->u.weakdef)
e0001a05 1506 {
f6e332e6
AM
1507 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1508 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1509 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1510 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1511 return TRUE;
1512 }
1513
1514 /* This is a reference to a symbol defined by a dynamic object. The
1515 reference must go through the GOT, so there's no need for COPY relocs,
1516 .dynbss, etc. */
1517
1518 return TRUE;
1519}
1520
1521
e0001a05 1522static bfd_boolean
f1ab2340 1523elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1524{
f1ab2340
BW
1525 struct bfd_link_info *info;
1526 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1527 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1528
f1ab2340
BW
1529 if (h->root.type == bfd_link_hash_indirect)
1530 return TRUE;
e0001a05 1531
f1ab2340
BW
1532 info = (struct bfd_link_info *) arg;
1533 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1534 if (htab == NULL)
1535 return FALSE;
e0001a05 1536
28dbbc02
BW
1537 /* If we saw any use of an IE model for this symbol, we can then optimize
1538 away GOT entries for any TLSDESC_FN relocs. */
1539 if ((eh->tls_type & GOT_TLS_IE) != 0)
1540 {
1541 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1542 h->got.refcount -= eh->tlsfunc_refcount;
1543 }
e0001a05 1544
28dbbc02 1545 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1546 elf_xtensa_make_sym_local (info, h);
e0001a05 1547
f1ab2340
BW
1548 if (h->plt.refcount > 0)
1549 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1550
1551 if (h->got.refcount > 0)
f1ab2340 1552 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1553
1554 return TRUE;
1555}
1556
1557
1558static void
f0e6fdb2 1559elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1560{
f0e6fdb2 1561 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1562 bfd *i;
1563
f0e6fdb2 1564 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1565 if (htab == NULL)
1566 return;
f0e6fdb2 1567
c72f2fb2 1568 for (i = info->input_bfds; i; i = i->link.next)
e0001a05
NC
1569 {
1570 bfd_signed_vma *local_got_refcounts;
1571 bfd_size_type j, cnt;
1572 Elf_Internal_Shdr *symtab_hdr;
1573
1574 local_got_refcounts = elf_local_got_refcounts (i);
1575 if (!local_got_refcounts)
1576 continue;
1577
1578 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1579 cnt = symtab_hdr->sh_info;
1580
1581 for (j = 0; j < cnt; ++j)
1582 {
28dbbc02
BW
1583 /* If we saw any use of an IE model for this symbol, we can
1584 then optimize away GOT entries for any TLSDESC_FN relocs. */
1585 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1586 {
1587 bfd_signed_vma *tlsfunc_refcount
1588 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1589 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1590 local_got_refcounts[j] -= *tlsfunc_refcount;
1591 }
1592
e0001a05 1593 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1594 htab->srelgot->size += (local_got_refcounts[j]
1595 * sizeof (Elf32_External_Rela));
e0001a05
NC
1596 }
1597 }
1598}
1599
1600
1601/* Set the sizes of the dynamic sections. */
1602
1603static bfd_boolean
7fa3d080
BW
1604elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1605 struct bfd_link_info *info)
e0001a05 1606{
f0e6fdb2 1607 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1608 bfd *dynobj, *abfd;
1609 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1610 bfd_boolean relplt, relgot;
1611 int plt_entries, plt_chunks, chunk;
1612
1613 plt_entries = 0;
1614 plt_chunks = 0;
e0001a05 1615
f0e6fdb2 1616 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1617 if (htab == NULL)
1618 return FALSE;
1619
e0001a05
NC
1620 dynobj = elf_hash_table (info)->dynobj;
1621 if (dynobj == NULL)
1622 abort ();
f0e6fdb2
BW
1623 srelgot = htab->srelgot;
1624 srelplt = htab->srelplt;
e0001a05
NC
1625
1626 if (elf_hash_table (info)->dynamic_sections_created)
1627 {
f0e6fdb2
BW
1628 BFD_ASSERT (htab->srelgot != NULL
1629 && htab->srelplt != NULL
1630 && htab->sgot != NULL
1631 && htab->spltlittbl != NULL
1632 && htab->sgotloc != NULL);
1633
e0001a05 1634 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1635 if (info->executable)
e0001a05 1636 {
3d4d4302 1637 s = bfd_get_linker_section (dynobj, ".interp");
e0001a05
NC
1638 if (s == NULL)
1639 abort ();
eea6121a 1640 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1641 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1642 }
1643
1644 /* Allocate room for one word in ".got". */
f0e6fdb2 1645 htab->sgot->size = 4;
e0001a05 1646
f1ab2340
BW
1647 /* Allocate space in ".rela.got" for literals that reference global
1648 symbols and space in ".rela.plt" for literals that have PLT
1649 entries. */
e0001a05 1650 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1651 elf_xtensa_allocate_dynrelocs,
7fa3d080 1652 (void *) info);
e0001a05 1653
e0001a05
NC
1654 /* If we are generating a shared object, we also need space in
1655 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1656 reference local symbols. */
1657 if (info->shared)
f0e6fdb2 1658 elf_xtensa_allocate_local_got_size (info);
e0001a05 1659
e0001a05
NC
1660 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1661 each PLT entry, we need the PLT code plus a 4-byte literal.
1662 For each chunk of ".plt", we also need two more 4-byte
1663 literals, two corresponding entries in ".rela.got", and an
1664 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1665 spltlittbl = htab->spltlittbl;
eea6121a 1666 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1667 plt_chunks =
1668 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1669
1670 /* Iterate over all the PLT chunks, including any extra sections
1671 created earlier because the initial count of PLT relocations
1672 was an overestimate. */
1673 for (chunk = 0;
f0e6fdb2 1674 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1675 chunk++)
1676 {
1677 int chunk_entries;
1678
f0e6fdb2
BW
1679 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1680 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1681
1682 if (chunk < plt_chunks - 1)
1683 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1684 else if (chunk == plt_chunks - 1)
1685 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1686 else
1687 chunk_entries = 0;
1688
1689 if (chunk_entries != 0)
1690 {
eea6121a
AM
1691 sgotplt->size = 4 * (chunk_entries + 2);
1692 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1693 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1694 spltlittbl->size += 8;
e0001a05
NC
1695 }
1696 else
1697 {
eea6121a
AM
1698 sgotplt->size = 0;
1699 splt->size = 0;
e0001a05
NC
1700 }
1701 }
e901de89
BW
1702
1703 /* Allocate space in ".got.loc" to match the total size of all the
1704 literal tables. */
f0e6fdb2 1705 sgotloc = htab->sgotloc;
eea6121a 1706 sgotloc->size = spltlittbl->size;
c72f2fb2 1707 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
e901de89
BW
1708 {
1709 if (abfd->flags & DYNAMIC)
1710 continue;
1711 for (s = abfd->sections; s != NULL; s = s->next)
1712 {
dbaa2011 1713 if (! discarded_section (s)
b536dc1e
BW
1714 && xtensa_is_littable_section (s)
1715 && s != spltlittbl)
eea6121a 1716 sgotloc->size += s->size;
e901de89
BW
1717 }
1718 }
e0001a05
NC
1719 }
1720
1721 /* Allocate memory for dynamic sections. */
1722 relplt = FALSE;
1723 relgot = FALSE;
1724 for (s = dynobj->sections; s != NULL; s = s->next)
1725 {
1726 const char *name;
e0001a05
NC
1727
1728 if ((s->flags & SEC_LINKER_CREATED) == 0)
1729 continue;
1730
1731 /* It's OK to base decisions on the section name, because none
1732 of the dynobj section names depend upon the input files. */
1733 name = bfd_get_section_name (dynobj, s);
1734
0112cd26 1735 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1736 {
c456f082 1737 if (s->size != 0)
e0001a05 1738 {
c456f082
AM
1739 if (strcmp (name, ".rela.plt") == 0)
1740 relplt = TRUE;
1741 else if (strcmp (name, ".rela.got") == 0)
1742 relgot = TRUE;
1743
1744 /* We use the reloc_count field as a counter if we need
1745 to copy relocs into the output file. */
1746 s->reloc_count = 0;
e0001a05
NC
1747 }
1748 }
0112cd26
NC
1749 else if (! CONST_STRNEQ (name, ".plt.")
1750 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1751 && strcmp (name, ".got") != 0
e0001a05
NC
1752 && strcmp (name, ".plt") != 0
1753 && strcmp (name, ".got.plt") != 0
e901de89
BW
1754 && strcmp (name, ".xt.lit.plt") != 0
1755 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1756 {
1757 /* It's not one of our sections, so don't allocate space. */
1758 continue;
1759 }
1760
c456f082
AM
1761 if (s->size == 0)
1762 {
1763 /* If we don't need this section, strip it from the output
1764 file. We must create the ".plt*" and ".got.plt*"
1765 sections in create_dynamic_sections and/or check_relocs
1766 based on a conservative estimate of the PLT relocation
1767 count, because the sections must be created before the
1768 linker maps input sections to output sections. The
1769 linker does that before size_dynamic_sections, where we
1770 compute the exact size of the PLT, so there may be more
1771 of these sections than are actually needed. */
1772 s->flags |= SEC_EXCLUDE;
1773 }
1774 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1775 {
1776 /* Allocate memory for the section contents. */
eea6121a 1777 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1778 if (s->contents == NULL)
e0001a05
NC
1779 return FALSE;
1780 }
1781 }
1782
1783 if (elf_hash_table (info)->dynamic_sections_created)
1784 {
1785 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1786 known until finish_dynamic_sections, but we need to get the relocs
1787 in place before they are sorted. */
e0001a05
NC
1788 for (chunk = 0; chunk < plt_chunks; chunk++)
1789 {
1790 Elf_Internal_Rela irela;
1791 bfd_byte *loc;
1792
1793 irela.r_offset = 0;
1794 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1795 irela.r_addend = 0;
1796
1797 loc = (srelgot->contents
1798 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1799 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1800 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1801 loc + sizeof (Elf32_External_Rela));
1802 srelgot->reloc_count += 2;
1803 }
1804
1805 /* Add some entries to the .dynamic section. We fill in the
1806 values later, in elf_xtensa_finish_dynamic_sections, but we
1807 must add the entries now so that we get the correct size for
1808 the .dynamic section. The DT_DEBUG entry is filled in by the
1809 dynamic linker and used by the debugger. */
1810#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1811 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1812
ba05963f 1813 if (info->executable)
e0001a05
NC
1814 {
1815 if (!add_dynamic_entry (DT_DEBUG, 0))
1816 return FALSE;
1817 }
1818
1819 if (relplt)
1820 {
c243ad3b 1821 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1822 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1823 || !add_dynamic_entry (DT_JMPREL, 0))
1824 return FALSE;
1825 }
1826
1827 if (relgot)
1828 {
1829 if (!add_dynamic_entry (DT_RELA, 0)
1830 || !add_dynamic_entry (DT_RELASZ, 0)
1831 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1832 return FALSE;
1833 }
1834
c243ad3b
BW
1835 if (!add_dynamic_entry (DT_PLTGOT, 0)
1836 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1837 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1838 return FALSE;
1839 }
1840#undef add_dynamic_entry
1841
1842 return TRUE;
1843}
1844
28dbbc02
BW
1845static bfd_boolean
1846elf_xtensa_always_size_sections (bfd *output_bfd,
1847 struct bfd_link_info *info)
1848{
1849 struct elf_xtensa_link_hash_table *htab;
1850 asection *tls_sec;
1851
1852 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1853 if (htab == NULL)
1854 return FALSE;
1855
28dbbc02
BW
1856 tls_sec = htab->elf.tls_sec;
1857
1858 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1859 {
1860 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1861 struct bfd_link_hash_entry *bh = &tlsbase->root;
1862 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1863
1864 tlsbase->type = STT_TLS;
1865 if (!(_bfd_generic_link_add_one_symbol
1866 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1867 tls_sec, 0, NULL, FALSE,
1868 bed->collect, &bh)))
1869 return FALSE;
1870 tlsbase->def_regular = 1;
1871 tlsbase->other = STV_HIDDEN;
1872 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1873 }
1874
1875 return TRUE;
1876}
1877
e0001a05 1878\f
28dbbc02
BW
1879/* Return the base VMA address which should be subtracted from real addresses
1880 when resolving @dtpoff relocation.
1881 This is PT_TLS segment p_vaddr. */
1882
1883static bfd_vma
1884dtpoff_base (struct bfd_link_info *info)
1885{
1886 /* If tls_sec is NULL, we should have signalled an error already. */
1887 if (elf_hash_table (info)->tls_sec == NULL)
1888 return 0;
1889 return elf_hash_table (info)->tls_sec->vma;
1890}
1891
1892/* Return the relocation value for @tpoff relocation
1893 if STT_TLS virtual address is ADDRESS. */
1894
1895static bfd_vma
1896tpoff (struct bfd_link_info *info, bfd_vma address)
1897{
1898 struct elf_link_hash_table *htab = elf_hash_table (info);
1899 bfd_vma base;
1900
1901 /* If tls_sec is NULL, we should have signalled an error already. */
1902 if (htab->tls_sec == NULL)
1903 return 0;
1904 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1905 return address - htab->tls_sec->vma + base;
1906}
1907
e0001a05
NC
1908/* Perform the specified relocation. The instruction at (contents + address)
1909 is modified to set one operand to represent the value in "relocation". The
1910 operand position is determined by the relocation type recorded in the
1911 howto. */
1912
1913#define CALL_SEGMENT_BITS (30)
7fa3d080 1914#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1915
1916static bfd_reloc_status_type
7fa3d080
BW
1917elf_xtensa_do_reloc (reloc_howto_type *howto,
1918 bfd *abfd,
1919 asection *input_section,
1920 bfd_vma relocation,
1921 bfd_byte *contents,
1922 bfd_vma address,
1923 bfd_boolean is_weak_undef,
1924 char **error_message)
e0001a05 1925{
43cd72b9 1926 xtensa_format fmt;
e0001a05 1927 xtensa_opcode opcode;
e0001a05 1928 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1929 static xtensa_insnbuf ibuff = NULL;
1930 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1931 bfd_vma self_address;
43cd72b9
BW
1932 bfd_size_type input_size;
1933 int opnd, slot;
e0001a05
NC
1934 uint32 newval;
1935
43cd72b9
BW
1936 if (!ibuff)
1937 {
1938 ibuff = xtensa_insnbuf_alloc (isa);
1939 sbuff = xtensa_insnbuf_alloc (isa);
1940 }
1941
1942 input_size = bfd_get_section_limit (abfd, input_section);
1943
1bbb5f21
BW
1944 /* Calculate the PC address for this instruction. */
1945 self_address = (input_section->output_section->vma
1946 + input_section->output_offset
1947 + address);
1948
e0001a05
NC
1949 switch (howto->type)
1950 {
1951 case R_XTENSA_NONE:
43cd72b9
BW
1952 case R_XTENSA_DIFF8:
1953 case R_XTENSA_DIFF16:
1954 case R_XTENSA_DIFF32:
28dbbc02
BW
1955 case R_XTENSA_TLS_FUNC:
1956 case R_XTENSA_TLS_ARG:
1957 case R_XTENSA_TLS_CALL:
e0001a05
NC
1958 return bfd_reloc_ok;
1959
1960 case R_XTENSA_ASM_EXPAND:
1961 if (!is_weak_undef)
1962 {
1963 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1964 opcode = get_expanded_call_opcode (contents + address,
1965 input_size - address, 0);
e0001a05
NC
1966 if (is_windowed_call_opcode (opcode))
1967 {
43cd72b9 1968 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 1969 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1970 {
1971 *error_message = "windowed longcall crosses 1GB boundary; "
1972 "return may fail";
1973 return bfd_reloc_dangerous;
1974 }
1975 }
1976 }
1977 return bfd_reloc_ok;
1978
1979 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1980 {
e0001a05 1981 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1982 bfd_reloc_status_type retval =
1983 elf_xtensa_do_asm_simplify (contents, address, input_size,
1984 error_message);
e0001a05 1985 if (retval != bfd_reloc_ok)
43cd72b9 1986 return bfd_reloc_dangerous;
e0001a05
NC
1987
1988 /* The CALL needs to be relocated. Continue below for that part. */
1989 address += 3;
c46082c8 1990 self_address += 3;
43cd72b9 1991 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1992 }
1993 break;
1994
1995 case R_XTENSA_32:
e0001a05
NC
1996 {
1997 bfd_vma x;
1998 x = bfd_get_32 (abfd, contents + address);
1999 x = x + relocation;
2000 bfd_put_32 (abfd, x, contents + address);
2001 }
2002 return bfd_reloc_ok;
1bbb5f21
BW
2003
2004 case R_XTENSA_32_PCREL:
2005 bfd_put_32 (abfd, relocation - self_address, contents + address);
2006 return bfd_reloc_ok;
28dbbc02
BW
2007
2008 case R_XTENSA_PLT:
2009 case R_XTENSA_TLSDESC_FN:
2010 case R_XTENSA_TLSDESC_ARG:
2011 case R_XTENSA_TLS_DTPOFF:
2012 case R_XTENSA_TLS_TPOFF:
2013 bfd_put_32 (abfd, relocation, contents + address);
2014 return bfd_reloc_ok;
e0001a05
NC
2015 }
2016
43cd72b9
BW
2017 /* Only instruction slot-specific relocations handled below.... */
2018 slot = get_relocation_slot (howto->type);
2019 if (slot == XTENSA_UNDEFINED)
e0001a05 2020 {
43cd72b9 2021 *error_message = "unexpected relocation";
e0001a05
NC
2022 return bfd_reloc_dangerous;
2023 }
2024
43cd72b9
BW
2025 /* Read the instruction into a buffer and decode the opcode. */
2026 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2027 input_size - address);
2028 fmt = xtensa_format_decode (isa, ibuff);
2029 if (fmt == XTENSA_UNDEFINED)
e0001a05 2030 {
43cd72b9 2031 *error_message = "cannot decode instruction format";
e0001a05
NC
2032 return bfd_reloc_dangerous;
2033 }
2034
43cd72b9 2035 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2036
43cd72b9
BW
2037 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2038 if (opcode == XTENSA_UNDEFINED)
e0001a05 2039 {
43cd72b9 2040 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2041 return bfd_reloc_dangerous;
2042 }
2043
43cd72b9
BW
2044 /* Check for opcode-specific "alternate" relocations. */
2045 if (is_alt_relocation (howto->type))
2046 {
2047 if (opcode == get_l32r_opcode ())
2048 {
2049 /* Handle the special-case of non-PC-relative L32R instructions. */
2050 bfd *output_bfd = input_section->output_section->owner;
2051 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2052 if (!lit4_sec)
2053 {
2054 *error_message = "relocation references missing .lit4 section";
2055 return bfd_reloc_dangerous;
2056 }
2057 self_address = ((lit4_sec->vma & ~0xfff)
2058 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2059 newval = relocation;
2060 opnd = 1;
2061 }
2062 else if (opcode == get_const16_opcode ())
2063 {
2064 /* ALT used for high 16 bits. */
2065 newval = relocation >> 16;
2066 opnd = 1;
2067 }
2068 else
2069 {
2070 /* No other "alternate" relocations currently defined. */
2071 *error_message = "unexpected relocation";
2072 return bfd_reloc_dangerous;
2073 }
2074 }
2075 else /* Not an "alternate" relocation.... */
2076 {
2077 if (opcode == get_const16_opcode ())
2078 {
2079 newval = relocation & 0xffff;
2080 opnd = 1;
2081 }
2082 else
2083 {
2084 /* ...normal PC-relative relocation.... */
2085
2086 /* Determine which operand is being relocated. */
2087 opnd = get_relocation_opnd (opcode, howto->type);
2088 if (opnd == XTENSA_UNDEFINED)
2089 {
2090 *error_message = "unexpected relocation";
2091 return bfd_reloc_dangerous;
2092 }
2093
2094 if (!howto->pc_relative)
2095 {
2096 *error_message = "expected PC-relative relocation";
2097 return bfd_reloc_dangerous;
2098 }
e0001a05 2099
43cd72b9
BW
2100 newval = relocation;
2101 }
2102 }
e0001a05 2103
43cd72b9
BW
2104 /* Apply the relocation. */
2105 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2106 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2107 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2108 sbuff, newval))
e0001a05 2109 {
2db662be
BW
2110 const char *opname = xtensa_opcode_name (isa, opcode);
2111 const char *msg;
2112
2113 msg = "cannot encode";
2114 if (is_direct_call_opcode (opcode))
2115 {
2116 if ((relocation & 0x3) != 0)
2117 msg = "misaligned call target";
2118 else
2119 msg = "call target out of range";
2120 }
2121 else if (opcode == get_l32r_opcode ())
2122 {
2123 if ((relocation & 0x3) != 0)
2124 msg = "misaligned literal target";
2125 else if (is_alt_relocation (howto->type))
2126 msg = "literal target out of range (too many literals)";
2127 else if (self_address > relocation)
2128 msg = "literal target out of range (try using text-section-literals)";
2129 else
2130 msg = "literal placed after use";
2131 }
2132
2133 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2134 return bfd_reloc_dangerous;
2135 }
2136
43cd72b9 2137 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2138 if (is_direct_call_opcode (opcode)
2139 && is_windowed_call_opcode (opcode))
2140 {
43cd72b9 2141 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 2142 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2143 {
43cd72b9
BW
2144 *error_message =
2145 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2146 return bfd_reloc_dangerous;
2147 }
2148 }
2149
43cd72b9
BW
2150 /* Write the modified instruction back out of the buffer. */
2151 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2152 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2153 input_size - address);
e0001a05
NC
2154 return bfd_reloc_ok;
2155}
2156
2157
2db662be 2158static char *
7fa3d080 2159vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2160{
2161 /* To reduce the size of the memory leak,
2162 we only use a single message buffer. */
2163 static bfd_size_type alloc_size = 0;
2164 static char *message = NULL;
2165 bfd_size_type orig_len, len = 0;
2166 bfd_boolean is_append;
1651e569 2167 va_list ap;
e0001a05 2168
1651e569 2169 va_start (ap, arglen);
68ffbac6
L
2170
2171 is_append = (origmsg == message);
e0001a05
NC
2172
2173 orig_len = strlen (origmsg);
2174 len = orig_len + strlen (fmt) + arglen + 20;
2175 if (len > alloc_size)
2176 {
515ef31d 2177 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2178 alloc_size = len;
2179 }
515ef31d
NC
2180 if (message != NULL)
2181 {
2182 if (!is_append)
2183 memcpy (message, origmsg, orig_len);
2184 vsprintf (message + orig_len, fmt, ap);
2185 }
1651e569 2186 va_end (ap);
e0001a05
NC
2187 return message;
2188}
2189
2190
e0001a05
NC
2191/* This function is registered as the "special_function" in the
2192 Xtensa howto for handling simplify operations.
2193 bfd_perform_relocation / bfd_install_relocation use it to
2194 perform (install) the specified relocation. Since this replaces the code
2195 in bfd_perform_relocation, it is basically an Xtensa-specific,
2196 stripped-down version of bfd_perform_relocation. */
2197
2198static bfd_reloc_status_type
7fa3d080
BW
2199bfd_elf_xtensa_reloc (bfd *abfd,
2200 arelent *reloc_entry,
2201 asymbol *symbol,
2202 void *data,
2203 asection *input_section,
2204 bfd *output_bfd,
2205 char **error_message)
e0001a05
NC
2206{
2207 bfd_vma relocation;
2208 bfd_reloc_status_type flag;
2209 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2210 bfd_vma output_base = 0;
2211 reloc_howto_type *howto = reloc_entry->howto;
2212 asection *reloc_target_output_section;
2213 bfd_boolean is_weak_undef;
2214
dd1a320b
BW
2215 if (!xtensa_default_isa)
2216 xtensa_default_isa = xtensa_isa_init (0, 0);
2217
1049f94e 2218 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2219 output, and the reloc is against an external symbol, the resulting
2220 reloc will also be against the same symbol. In such a case, we
2221 don't want to change anything about the way the reloc is handled,
2222 since it will all be done at final link time. This test is similar
2223 to what bfd_elf_generic_reloc does except that it lets relocs with
2224 howto->partial_inplace go through even if the addend is non-zero.
2225 (The real problem is that partial_inplace is set for XTENSA_32
2226 relocs to begin with, but that's a long story and there's little we
2227 can do about it now....) */
2228
7fa3d080 2229 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2230 {
2231 reloc_entry->address += input_section->output_offset;
2232 return bfd_reloc_ok;
2233 }
2234
2235 /* Is the address of the relocation really within the section? */
07515404 2236 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2237 return bfd_reloc_outofrange;
2238
4cc11e76 2239 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2240 initial relocation command value. */
2241
2242 /* Get symbol value. (Common symbols are special.) */
2243 if (bfd_is_com_section (symbol->section))
2244 relocation = 0;
2245 else
2246 relocation = symbol->value;
2247
2248 reloc_target_output_section = symbol->section->output_section;
2249
2250 /* Convert input-section-relative symbol value to absolute. */
2251 if ((output_bfd && !howto->partial_inplace)
2252 || reloc_target_output_section == NULL)
2253 output_base = 0;
2254 else
2255 output_base = reloc_target_output_section->vma;
2256
2257 relocation += output_base + symbol->section->output_offset;
2258
2259 /* Add in supplied addend. */
2260 relocation += reloc_entry->addend;
2261
2262 /* Here the variable relocation holds the final address of the
2263 symbol we are relocating against, plus any addend. */
2264 if (output_bfd)
2265 {
2266 if (!howto->partial_inplace)
2267 {
2268 /* This is a partial relocation, and we want to apply the relocation
2269 to the reloc entry rather than the raw data. Everything except
2270 relocations against section symbols has already been handled
2271 above. */
43cd72b9 2272
e0001a05
NC
2273 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2274 reloc_entry->addend = relocation;
2275 reloc_entry->address += input_section->output_offset;
2276 return bfd_reloc_ok;
2277 }
2278 else
2279 {
2280 reloc_entry->address += input_section->output_offset;
2281 reloc_entry->addend = 0;
2282 }
2283 }
2284
2285 is_weak_undef = (bfd_is_und_section (symbol->section)
2286 && (symbol->flags & BSF_WEAK) != 0);
2287 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2288 (bfd_byte *) data, (bfd_vma) octets,
2289 is_weak_undef, error_message);
2290
2291 if (flag == bfd_reloc_dangerous)
2292 {
2293 /* Add the symbol name to the error message. */
2294 if (! *error_message)
2295 *error_message = "";
2296 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2297 strlen (symbol->name) + 17,
70961b9d
AM
2298 symbol->name,
2299 (unsigned long) reloc_entry->addend);
e0001a05
NC
2300 }
2301
2302 return flag;
2303}
2304
2305
2306/* Set up an entry in the procedure linkage table. */
2307
2308static bfd_vma
f0e6fdb2 2309elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2310 bfd *output_bfd,
2311 unsigned reloc_index)
e0001a05
NC
2312{
2313 asection *splt, *sgotplt;
2314 bfd_vma plt_base, got_base;
2315 bfd_vma code_offset, lit_offset;
2316 int chunk;
2317
2318 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2319 splt = elf_xtensa_get_plt_section (info, chunk);
2320 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2321 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2322
2323 plt_base = splt->output_section->vma + splt->output_offset;
2324 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2325
2326 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2327 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2328
2329 /* Fill in the literal entry. This is the offset of the dynamic
2330 relocation entry. */
2331 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2332 sgotplt->contents + lit_offset);
2333
2334 /* Fill in the entry in the procedure linkage table. */
2335 memcpy (splt->contents + code_offset,
2336 (bfd_big_endian (output_bfd)
2337 ? elf_xtensa_be_plt_entry
2338 : elf_xtensa_le_plt_entry),
2339 PLT_ENTRY_SIZE);
2340 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2341 plt_base + code_offset + 3),
2342 splt->contents + code_offset + 4);
2343 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2344 plt_base + code_offset + 6),
2345 splt->contents + code_offset + 7);
2346 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2347 plt_base + code_offset + 9),
2348 splt->contents + code_offset + 10);
2349
2350 return plt_base + code_offset;
2351}
2352
2353
28dbbc02
BW
2354static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2355
2356static bfd_boolean
2357replace_tls_insn (Elf_Internal_Rela *rel,
2358 bfd *abfd,
2359 asection *input_section,
2360 bfd_byte *contents,
2361 bfd_boolean is_ld_model,
2362 char **error_message)
2363{
2364 static xtensa_insnbuf ibuff = NULL;
2365 static xtensa_insnbuf sbuff = NULL;
2366 xtensa_isa isa = xtensa_default_isa;
2367 xtensa_format fmt;
2368 xtensa_opcode old_op, new_op;
2369 bfd_size_type input_size;
2370 int r_type;
2371 unsigned dest_reg, src_reg;
2372
2373 if (ibuff == NULL)
2374 {
2375 ibuff = xtensa_insnbuf_alloc (isa);
2376 sbuff = xtensa_insnbuf_alloc (isa);
2377 }
2378
2379 input_size = bfd_get_section_limit (abfd, input_section);
2380
2381 /* Read the instruction into a buffer and decode the opcode. */
2382 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2383 input_size - rel->r_offset);
2384 fmt = xtensa_format_decode (isa, ibuff);
2385 if (fmt == XTENSA_UNDEFINED)
2386 {
2387 *error_message = "cannot decode instruction format";
2388 return FALSE;
2389 }
2390
2391 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2392 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2393
2394 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2395 if (old_op == XTENSA_UNDEFINED)
2396 {
2397 *error_message = "cannot decode instruction opcode";
2398 return FALSE;
2399 }
2400
2401 r_type = ELF32_R_TYPE (rel->r_info);
2402 switch (r_type)
2403 {
2404 case R_XTENSA_TLS_FUNC:
2405 case R_XTENSA_TLS_ARG:
2406 if (old_op != get_l32r_opcode ()
2407 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2408 sbuff, &dest_reg) != 0)
2409 {
2410 *error_message = "cannot extract L32R destination for TLS access";
2411 return FALSE;
2412 }
2413 break;
2414
2415 case R_XTENSA_TLS_CALL:
2416 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2417 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2418 sbuff, &src_reg) != 0)
2419 {
2420 *error_message = "cannot extract CALLXn operands for TLS access";
2421 return FALSE;
2422 }
2423 break;
2424
2425 default:
2426 abort ();
2427 }
2428
2429 if (is_ld_model)
2430 {
2431 switch (r_type)
2432 {
2433 case R_XTENSA_TLS_FUNC:
2434 case R_XTENSA_TLS_ARG:
2435 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2436 versions of Xtensa). */
2437 new_op = xtensa_opcode_lookup (isa, "nop");
2438 if (new_op == XTENSA_UNDEFINED)
2439 {
2440 new_op = xtensa_opcode_lookup (isa, "or");
2441 if (new_op == XTENSA_UNDEFINED
2442 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2443 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2444 sbuff, 1) != 0
2445 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2446 sbuff, 1) != 0
2447 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2448 sbuff, 1) != 0)
2449 {
2450 *error_message = "cannot encode OR for TLS access";
2451 return FALSE;
2452 }
2453 }
2454 else
2455 {
2456 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2457 {
2458 *error_message = "cannot encode NOP for TLS access";
2459 return FALSE;
2460 }
2461 }
2462 break;
2463
2464 case R_XTENSA_TLS_CALL:
2465 /* Read THREADPTR into the CALLX's return value register. */
2466 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2467 if (new_op == XTENSA_UNDEFINED
2468 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2469 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2470 sbuff, dest_reg + 2) != 0)
2471 {
2472 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2473 return FALSE;
2474 }
2475 break;
2476 }
2477 }
2478 else
2479 {
2480 switch (r_type)
2481 {
2482 case R_XTENSA_TLS_FUNC:
2483 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2484 if (new_op == XTENSA_UNDEFINED
2485 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2486 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2487 sbuff, dest_reg) != 0)
2488 {
2489 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2490 return FALSE;
2491 }
2492 break;
2493
2494 case R_XTENSA_TLS_ARG:
2495 /* Nothing to do. Keep the original L32R instruction. */
2496 return TRUE;
2497
2498 case R_XTENSA_TLS_CALL:
2499 /* Add the CALLX's src register (holding the THREADPTR value)
2500 to the first argument register (holding the offset) and put
2501 the result in the CALLX's return value register. */
2502 new_op = xtensa_opcode_lookup (isa, "add");
2503 if (new_op == XTENSA_UNDEFINED
2504 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2505 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2506 sbuff, dest_reg + 2) != 0
2507 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2508 sbuff, dest_reg + 2) != 0
2509 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2510 sbuff, src_reg) != 0)
2511 {
2512 *error_message = "cannot encode ADD for TLS access";
2513 return FALSE;
2514 }
2515 break;
2516 }
2517 }
2518
2519 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2520 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2521 input_size - rel->r_offset);
2522
2523 return TRUE;
2524}
2525
2526
2527#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2528 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2529 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2530 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2531 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2532 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2533 || (R_TYPE) == R_XTENSA_TLS_ARG \
2534 || (R_TYPE) == R_XTENSA_TLS_CALL)
2535
e0001a05 2536/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2537 both relocatable and final links. */
e0001a05
NC
2538
2539static bfd_boolean
7fa3d080
BW
2540elf_xtensa_relocate_section (bfd *output_bfd,
2541 struct bfd_link_info *info,
2542 bfd *input_bfd,
2543 asection *input_section,
2544 bfd_byte *contents,
2545 Elf_Internal_Rela *relocs,
2546 Elf_Internal_Sym *local_syms,
2547 asection **local_sections)
e0001a05 2548{
f0e6fdb2 2549 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2550 Elf_Internal_Shdr *symtab_hdr;
2551 Elf_Internal_Rela *rel;
2552 Elf_Internal_Rela *relend;
2553 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2554 property_table_entry *lit_table = 0;
2555 int ltblsize = 0;
28dbbc02 2556 char *local_got_tls_types;
e0001a05 2557 char *error_message = NULL;
43cd72b9 2558 bfd_size_type input_size;
28dbbc02 2559 int tls_type;
e0001a05 2560
43cd72b9
BW
2561 if (!xtensa_default_isa)
2562 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2563
28dbbc02
BW
2564 BFD_ASSERT (is_xtensa_elf (input_bfd));
2565
f0e6fdb2 2566 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2567 if (htab == NULL)
2568 return FALSE;
2569
e0001a05
NC
2570 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2571 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2572 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2573
88d65ad6
BW
2574 if (elf_hash_table (info)->dynamic_sections_created)
2575 {
2576 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2577 &lit_table, XTENSA_LIT_SEC_NAME,
2578 TRUE);
88d65ad6
BW
2579 if (ltblsize < 0)
2580 return FALSE;
2581 }
2582
43cd72b9
BW
2583 input_size = bfd_get_section_limit (input_bfd, input_section);
2584
e0001a05
NC
2585 rel = relocs;
2586 relend = relocs + input_section->reloc_count;
2587 for (; rel < relend; rel++)
2588 {
2589 int r_type;
2590 reloc_howto_type *howto;
2591 unsigned long r_symndx;
2592 struct elf_link_hash_entry *h;
2593 Elf_Internal_Sym *sym;
28dbbc02
BW
2594 char sym_type;
2595 const char *name;
e0001a05
NC
2596 asection *sec;
2597 bfd_vma relocation;
2598 bfd_reloc_status_type r;
2599 bfd_boolean is_weak_undef;
2600 bfd_boolean unresolved_reloc;
9b8c98a4 2601 bfd_boolean warned;
28dbbc02 2602 bfd_boolean dynamic_symbol;
e0001a05
NC
2603
2604 r_type = ELF32_R_TYPE (rel->r_info);
2605 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2606 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2607 continue;
2608
2609 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2610 {
2611 bfd_set_error (bfd_error_bad_value);
2612 return FALSE;
2613 }
2614 howto = &elf_howto_table[r_type];
2615
2616 r_symndx = ELF32_R_SYM (rel->r_info);
2617
ab96bf03
AM
2618 h = NULL;
2619 sym = NULL;
2620 sec = NULL;
2621 is_weak_undef = FALSE;
2622 unresolved_reloc = FALSE;
2623 warned = FALSE;
2624
2625 if (howto->partial_inplace && !info->relocatable)
2626 {
2627 /* Because R_XTENSA_32 was made partial_inplace to fix some
2628 problems with DWARF info in partial links, there may be
2629 an addend stored in the contents. Take it out of there
2630 and move it back into the addend field of the reloc. */
2631 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2632 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2633 }
2634
2635 if (r_symndx < symtab_hdr->sh_info)
2636 {
2637 sym = local_syms + r_symndx;
28dbbc02 2638 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2639 sec = local_sections[r_symndx];
2640 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2641 }
2642 else
2643 {
62d887d4
L
2644 bfd_boolean ignored;
2645
ab96bf03
AM
2646 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2647 r_symndx, symtab_hdr, sym_hashes,
2648 h, sec, relocation,
62d887d4 2649 unresolved_reloc, warned, ignored);
ab96bf03
AM
2650
2651 if (relocation == 0
2652 && !unresolved_reloc
2653 && h->root.type == bfd_link_hash_undefweak)
2654 is_weak_undef = TRUE;
28dbbc02
BW
2655
2656 sym_type = h->type;
ab96bf03
AM
2657 }
2658
dbaa2011 2659 if (sec != NULL && discarded_section (sec))
e4067dbb 2660 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 2661 rel, 1, relend, howto, 0, contents);
ab96bf03 2662
1049f94e 2663 if (info->relocatable)
e0001a05 2664 {
7aa09196
SA
2665 bfd_vma dest_addr;
2666 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2667
43cd72b9 2668 /* This is a relocatable link.
e0001a05
NC
2669 1) If the reloc is against a section symbol, adjust
2670 according to the output section.
2671 2) If there is a new target for this relocation,
2672 the new target will be in the same output section.
2673 We adjust the relocation by the output section
2674 difference. */
2675
2676 if (relaxing_section)
2677 {
2678 /* Check if this references a section in another input file. */
43cd72b9
BW
2679 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2680 contents))
2681 return FALSE;
e0001a05
NC
2682 }
2683
7aa09196
SA
2684 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2685 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2686
43cd72b9 2687 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2688 {
91d6fa6a 2689 error_message = NULL;
e0001a05
NC
2690 /* Convert ASM_SIMPLIFY into the simpler relocation
2691 so that they never escape a relaxing link. */
43cd72b9
BW
2692 r = contract_asm_expansion (contents, input_size, rel,
2693 &error_message);
2694 if (r != bfd_reloc_ok)
2695 {
2696 if (!((*info->callbacks->reloc_dangerous)
2697 (info, error_message, input_bfd, input_section,
2698 rel->r_offset)))
2699 return FALSE;
2700 }
e0001a05
NC
2701 r_type = ELF32_R_TYPE (rel->r_info);
2702 }
2703
1049f94e 2704 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2705 anything unless the reloc is against a section symbol,
2706 in which case we have to adjust according to where the
2707 section symbol winds up in the output section. */
2708 if (r_symndx < symtab_hdr->sh_info)
2709 {
2710 sym = local_syms + r_symndx;
2711 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2712 {
2713 sec = local_sections[r_symndx];
2714 rel->r_addend += sec->output_offset + sym->st_value;
2715 }
2716 }
2717
2718 /* If there is an addend with a partial_inplace howto,
2719 then move the addend to the contents. This is a hack
1049f94e 2720 to work around problems with DWARF in relocatable links
e0001a05
NC
2721 with some previous version of BFD. Now we can't easily get
2722 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2723 r = bfd_reloc_ok;
2724 howto = &elf_howto_table[r_type];
2725 if (howto->partial_inplace && rel->r_addend)
2726 {
2727 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2728 rel->r_addend, contents,
2729 rel->r_offset, FALSE,
2730 &error_message);
2731 rel->r_addend = 0;
2732 }
2733 else
e0001a05 2734 {
7aa09196
SA
2735 /* Put the correct bits in the target instruction, even
2736 though the relocation will still be present in the output
2737 file. This makes disassembly clearer, as well as
2738 allowing loadable kernel modules to work without needing
2739 relocations on anything other than calls and l32r's. */
2740
2741 /* If it is not in the same section, there is nothing we can do. */
2742 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2743 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2744 {
2745 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2746 dest_addr, contents,
e0001a05
NC
2747 rel->r_offset, FALSE,
2748 &error_message);
e0001a05
NC
2749 }
2750 }
7aa09196
SA
2751 if (r != bfd_reloc_ok)
2752 {
2753 if (!((*info->callbacks->reloc_dangerous)
2754 (info, error_message, input_bfd, input_section,
2755 rel->r_offset)))
2756 return FALSE;
2757 }
e0001a05 2758
1049f94e 2759 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2760 continue;
2761 }
2762
2763 /* This is a final link. */
2764
e0001a05
NC
2765 if (relaxing_section)
2766 {
2767 /* Check if this references a section in another input file. */
43cd72b9
BW
2768 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2769 &relocation);
e0001a05
NC
2770 }
2771
2772 /* Sanity check the address. */
43cd72b9 2773 if (rel->r_offset >= input_size
e0001a05
NC
2774 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2775 {
43cd72b9
BW
2776 (*_bfd_error_handler)
2777 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2778 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2779 bfd_set_error (bfd_error_bad_value);
2780 return FALSE;
2781 }
2782
28dbbc02
BW
2783 if (h != NULL)
2784 name = h->root.root.string;
2785 else
e0001a05 2786 {
28dbbc02
BW
2787 name = (bfd_elf_string_from_elf_section
2788 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2789 if (name == NULL || *name == '\0')
2790 name = bfd_section_name (input_bfd, sec);
2791 }
e0001a05 2792
cf35638d 2793 if (r_symndx != STN_UNDEF
28dbbc02
BW
2794 && r_type != R_XTENSA_NONE
2795 && (h == NULL
2796 || h->root.type == bfd_link_hash_defined
2797 || h->root.type == bfd_link_hash_defweak)
2798 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2799 {
2800 (*_bfd_error_handler)
2801 ((sym_type == STT_TLS
2802 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2803 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2804 input_bfd,
2805 input_section,
2806 (long) rel->r_offset,
2807 howto->name,
2808 name);
2809 }
2810
2811 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2812
2813 tls_type = GOT_UNKNOWN;
2814 if (h)
2815 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2816 else if (local_got_tls_types)
2817 tls_type = local_got_tls_types [r_symndx];
2818
2819 switch (r_type)
2820 {
2821 case R_XTENSA_32:
2822 case R_XTENSA_PLT:
2823 if (elf_hash_table (info)->dynamic_sections_created
2824 && (input_section->flags & SEC_ALLOC) != 0
2825 && (dynamic_symbol || info->shared))
e0001a05
NC
2826 {
2827 Elf_Internal_Rela outrel;
2828 bfd_byte *loc;
2829 asection *srel;
2830
2831 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2832 srel = htab->srelplt;
e0001a05 2833 else
f0e6fdb2 2834 srel = htab->srelgot;
e0001a05
NC
2835
2836 BFD_ASSERT (srel != NULL);
2837
2838 outrel.r_offset =
2839 _bfd_elf_section_offset (output_bfd, info,
2840 input_section, rel->r_offset);
2841
2842 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2843 memset (&outrel, 0, sizeof outrel);
2844 else
2845 {
f0578e28
BW
2846 outrel.r_offset += (input_section->output_section->vma
2847 + input_section->output_offset);
e0001a05 2848
88d65ad6
BW
2849 /* Complain if the relocation is in a read-only section
2850 and not in a literal pool. */
2851 if ((input_section->flags & SEC_READONLY) != 0
2852 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2853 outrel.r_offset))
88d65ad6
BW
2854 {
2855 error_message =
2856 _("dynamic relocation in read-only section");
2857 if (!((*info->callbacks->reloc_dangerous)
2858 (info, error_message, input_bfd, input_section,
2859 rel->r_offset)))
2860 return FALSE;
2861 }
2862
e0001a05
NC
2863 if (dynamic_symbol)
2864 {
2865 outrel.r_addend = rel->r_addend;
2866 rel->r_addend = 0;
2867
2868 if (r_type == R_XTENSA_32)
2869 {
2870 outrel.r_info =
2871 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2872 relocation = 0;
2873 }
2874 else /* r_type == R_XTENSA_PLT */
2875 {
2876 outrel.r_info =
2877 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2878
2879 /* Create the PLT entry and set the initial
2880 contents of the literal entry to the address of
2881 the PLT entry. */
43cd72b9 2882 relocation =
f0e6fdb2 2883 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2884 srel->reloc_count);
2885 }
2886 unresolved_reloc = FALSE;
2887 }
2888 else
2889 {
2890 /* Generate a RELATIVE relocation. */
2891 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2892 outrel.r_addend = 0;
2893 }
2894 }
2895
2896 loc = (srel->contents
2897 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2898 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2899 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2900 <= srel->size);
e0001a05 2901 }
d9ab3f29
BW
2902 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2903 {
2904 /* This should only happen for non-PIC code, which is not
2905 supposed to be used on systems with dynamic linking.
2906 Just ignore these relocations. */
2907 continue;
2908 }
28dbbc02
BW
2909 break;
2910
2911 case R_XTENSA_TLS_TPOFF:
2912 /* Switch to LE model for local symbols in an executable. */
2913 if (! info->shared && ! dynamic_symbol)
2914 {
2915 relocation = tpoff (info, relocation);
2916 break;
2917 }
2918 /* fall through */
2919
2920 case R_XTENSA_TLSDESC_FN:
2921 case R_XTENSA_TLSDESC_ARG:
2922 {
2923 if (r_type == R_XTENSA_TLSDESC_FN)
2924 {
2925 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2926 r_type = R_XTENSA_NONE;
2927 }
2928 else if (r_type == R_XTENSA_TLSDESC_ARG)
2929 {
2930 if (info->shared)
2931 {
2932 if ((tls_type & GOT_TLS_IE) != 0)
2933 r_type = R_XTENSA_TLS_TPOFF;
2934 }
2935 else
2936 {
2937 r_type = R_XTENSA_TLS_TPOFF;
2938 if (! dynamic_symbol)
2939 {
2940 relocation = tpoff (info, relocation);
2941 break;
2942 }
2943 }
2944 }
2945
2946 if (r_type == R_XTENSA_NONE)
2947 /* Nothing to do here; skip to the next reloc. */
2948 continue;
2949
2950 if (! elf_hash_table (info)->dynamic_sections_created)
2951 {
2952 error_message =
2953 _("TLS relocation invalid without dynamic sections");
2954 if (!((*info->callbacks->reloc_dangerous)
2955 (info, error_message, input_bfd, input_section,
2956 rel->r_offset)))
2957 return FALSE;
2958 }
2959 else
2960 {
2961 Elf_Internal_Rela outrel;
2962 bfd_byte *loc;
2963 asection *srel = htab->srelgot;
2964 int indx;
2965
2966 outrel.r_offset = (input_section->output_section->vma
2967 + input_section->output_offset
2968 + rel->r_offset);
2969
2970 /* Complain if the relocation is in a read-only section
2971 and not in a literal pool. */
2972 if ((input_section->flags & SEC_READONLY) != 0
2973 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2974 outrel.r_offset))
2975 {
2976 error_message =
2977 _("dynamic relocation in read-only section");
2978 if (!((*info->callbacks->reloc_dangerous)
2979 (info, error_message, input_bfd, input_section,
2980 rel->r_offset)))
2981 return FALSE;
2982 }
2983
2984 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2985 if (indx == 0)
2986 outrel.r_addend = relocation - dtpoff_base (info);
2987 else
2988 outrel.r_addend = 0;
2989 rel->r_addend = 0;
2990
2991 outrel.r_info = ELF32_R_INFO (indx, r_type);
2992 relocation = 0;
2993 unresolved_reloc = FALSE;
2994
2995 BFD_ASSERT (srel);
2996 loc = (srel->contents
2997 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2998 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2999 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
3000 <= srel->size);
3001 }
3002 }
3003 break;
3004
3005 case R_XTENSA_TLS_DTPOFF:
3006 if (! info->shared)
3007 /* Switch from LD model to LE model. */
3008 relocation = tpoff (info, relocation);
3009 else
3010 relocation -= dtpoff_base (info);
3011 break;
3012
3013 case R_XTENSA_TLS_FUNC:
3014 case R_XTENSA_TLS_ARG:
3015 case R_XTENSA_TLS_CALL:
3016 /* Check if optimizing to IE or LE model. */
3017 if ((tls_type & GOT_TLS_IE) != 0)
3018 {
3019 bfd_boolean is_ld_model =
3020 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3021 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3022 is_ld_model, &error_message))
3023 {
3024 if (!((*info->callbacks->reloc_dangerous)
3025 (info, error_message, input_bfd, input_section,
3026 rel->r_offset)))
3027 return FALSE;
3028 }
3029
3030 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3031 {
3032 /* Skip subsequent relocations on the same instruction. */
3033 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3034 rel++;
3035 }
3036 }
3037 continue;
3038
3039 default:
3040 if (elf_hash_table (info)->dynamic_sections_created
3041 && dynamic_symbol && (is_operand_relocation (r_type)
3042 || r_type == R_XTENSA_32_PCREL))
3043 {
3044 error_message =
3045 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3046 strlen (name) + 2, name);
3047 if (!((*info->callbacks->reloc_dangerous)
3048 (info, error_message, input_bfd, input_section,
3049 rel->r_offset)))
3050 return FALSE;
3051 continue;
3052 }
3053 break;
e0001a05
NC
3054 }
3055
3056 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3057 because such sections are not SEC_ALLOC and thus ld.so will
3058 not process them. */
3059 if (unresolved_reloc
3060 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
3061 && h->def_dynamic)
3062 && _bfd_elf_section_offset (output_bfd, info, input_section,
3063 rel->r_offset) != (bfd_vma) -1)
bf1747de
BW
3064 {
3065 (*_bfd_error_handler)
3066 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3067 input_bfd,
3068 input_section,
3069 (long) rel->r_offset,
3070 howto->name,
28dbbc02 3071 name);
bf1747de
BW
3072 return FALSE;
3073 }
e0001a05 3074
28dbbc02
BW
3075 /* TLS optimizations may have changed r_type; update "howto". */
3076 howto = &elf_howto_table[r_type];
3077
e0001a05
NC
3078 /* There's no point in calling bfd_perform_relocation here.
3079 Just go directly to our "special function". */
3080 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3081 relocation + rel->r_addend,
3082 contents, rel->r_offset, is_weak_undef,
3083 &error_message);
43cd72b9 3084
9b8c98a4 3085 if (r != bfd_reloc_ok && !warned)
e0001a05 3086 {
43cd72b9 3087 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3088 BFD_ASSERT (error_message != NULL);
e0001a05 3089
28dbbc02
BW
3090 if (rel->r_addend == 0)
3091 error_message = vsprint_msg (error_message, ": %s",
3092 strlen (name) + 2, name);
e0001a05 3093 else
28dbbc02
BW
3094 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3095 strlen (name) + 22,
3096 name, (int) rel->r_addend);
43cd72b9 3097
e0001a05
NC
3098 if (!((*info->callbacks->reloc_dangerous)
3099 (info, error_message, input_bfd, input_section,
3100 rel->r_offset)))
3101 return FALSE;
3102 }
3103 }
3104
88d65ad6
BW
3105 if (lit_table)
3106 free (lit_table);
3107
3ba3bc8c
BW
3108 input_section->reloc_done = TRUE;
3109
e0001a05
NC
3110 return TRUE;
3111}
3112
3113
3114/* Finish up dynamic symbol handling. There's not much to do here since
3115 the PLT and GOT entries are all set up by relocate_section. */
3116
3117static bfd_boolean
7fa3d080
BW
3118elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3119 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3120 struct elf_link_hash_entry *h,
3121 Elf_Internal_Sym *sym)
e0001a05 3122{
bf1747de 3123 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3124 {
3125 /* Mark the symbol as undefined, rather than as defined in
3126 the .plt section. Leave the value alone. */
3127 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3128 /* If the symbol is weak, we do need to clear the value.
3129 Otherwise, the PLT entry would provide a definition for
3130 the symbol even if the symbol wasn't defined anywhere,
3131 and so the symbol would never be NULL. */
3132 if (!h->ref_regular_nonweak)
3133 sym->st_value = 0;
e0001a05
NC
3134 }
3135
3136 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9637f6ef 3137 if (h == elf_hash_table (info)->hdynamic
22edb2f1 3138 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3139 sym->st_shndx = SHN_ABS;
3140
3141 return TRUE;
3142}
3143
3144
3145/* Combine adjacent literal table entries in the output. Adjacent
3146 entries within each input section may have been removed during
3147 relaxation, but we repeat the process here, even though it's too late
3148 to shrink the output section, because it's important to minimize the
3149 number of literal table entries to reduce the start-up work for the
3150 runtime linker. Returns the number of remaining table entries or -1
3151 on error. */
3152
3153static int
7fa3d080
BW
3154elf_xtensa_combine_prop_entries (bfd *output_bfd,
3155 asection *sxtlit,
3156 asection *sgotloc)
e0001a05 3157{
e0001a05
NC
3158 bfd_byte *contents;
3159 property_table_entry *table;
e901de89 3160 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3161 bfd_vma offset;
3162 int n, m, num;
3163
eea6121a 3164 section_size = sxtlit->size;
e0001a05
NC
3165 BFD_ASSERT (section_size % 8 == 0);
3166 num = section_size / 8;
3167
eea6121a 3168 sgotloc_size = sgotloc->size;
e901de89 3169 if (sgotloc_size != section_size)
b536dc1e
BW
3170 {
3171 (*_bfd_error_handler)
43cd72b9 3172 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3173 return -1;
3174 }
e901de89 3175
eea6121a
AM
3176 table = bfd_malloc (num * sizeof (property_table_entry));
3177 if (table == 0)
e0001a05
NC
3178 return -1;
3179
3180 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3181 propagates to the output section, where it doesn't really apply and
eea6121a 3182 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3183 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3184
eea6121a
AM
3185 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3186 {
3187 if (contents != 0)
3188 free (contents);
3189 free (table);
3190 return -1;
3191 }
e0001a05
NC
3192
3193 /* There should never be any relocations left at this point, so this
3194 is quite a bit easier than what is done during relaxation. */
3195
3196 /* Copy the raw contents into a property table array and sort it. */
3197 offset = 0;
3198 for (n = 0; n < num; n++)
3199 {
3200 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3201 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3202 offset += 8;
3203 }
3204 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3205
3206 for (n = 0; n < num; n++)
3207 {
91d6fa6a 3208 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3209
3210 if (table[n].size == 0)
91d6fa6a
NC
3211 remove_entry = TRUE;
3212 else if (n > 0
3213 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3214 {
3215 table[n-1].size += table[n].size;
91d6fa6a 3216 remove_entry = TRUE;
e0001a05
NC
3217 }
3218
91d6fa6a 3219 if (remove_entry)
e0001a05
NC
3220 {
3221 for (m = n; m < num - 1; m++)
3222 {
3223 table[m].address = table[m+1].address;
3224 table[m].size = table[m+1].size;
3225 }
3226
3227 n--;
3228 num--;
3229 }
3230 }
3231
3232 /* Copy the data back to the raw contents. */
3233 offset = 0;
3234 for (n = 0; n < num; n++)
3235 {
3236 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3237 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3238 offset += 8;
3239 }
3240
3241 /* Clear the removed bytes. */
3242 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3243 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3244
e901de89
BW
3245 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3246 section_size))
e0001a05
NC
3247 return -1;
3248
e901de89
BW
3249 /* Copy the contents to ".got.loc". */
3250 memcpy (sgotloc->contents, contents, section_size);
3251
e0001a05 3252 free (contents);
b614a702 3253 free (table);
e0001a05
NC
3254 return num;
3255}
3256
3257
3258/* Finish up the dynamic sections. */
3259
3260static bfd_boolean
7fa3d080
BW
3261elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3262 struct bfd_link_info *info)
e0001a05 3263{
f0e6fdb2 3264 struct elf_xtensa_link_hash_table *htab;
e0001a05 3265 bfd *dynobj;
e901de89 3266 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3267 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3268 int num_xtlit_entries = 0;
e0001a05
NC
3269
3270 if (! elf_hash_table (info)->dynamic_sections_created)
3271 return TRUE;
3272
f0e6fdb2 3273 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3274 if (htab == NULL)
3275 return FALSE;
3276
e0001a05 3277 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3278 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
e0001a05
NC
3279 BFD_ASSERT (sdyn != NULL);
3280
3281 /* Set the first entry in the global offset table to the address of
3282 the dynamic section. */
f0e6fdb2 3283 sgot = htab->sgot;
e0001a05
NC
3284 if (sgot)
3285 {
eea6121a 3286 BFD_ASSERT (sgot->size == 4);
e0001a05 3287 if (sdyn == NULL)
7fa3d080 3288 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3289 else
3290 bfd_put_32 (output_bfd,
3291 sdyn->output_section->vma + sdyn->output_offset,
3292 sgot->contents);
3293 }
3294
f0e6fdb2 3295 srelplt = htab->srelplt;
7fa3d080 3296 if (srelplt && srelplt->size != 0)
e0001a05
NC
3297 {
3298 asection *sgotplt, *srelgot, *spltlittbl;
3299 int chunk, plt_chunks, plt_entries;
3300 Elf_Internal_Rela irela;
3301 bfd_byte *loc;
3302 unsigned rtld_reloc;
3303
f0e6fdb2
BW
3304 srelgot = htab->srelgot;
3305 spltlittbl = htab->spltlittbl;
3306 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3307
3308 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3309 of them follow immediately after.... */
3310 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3311 {
3312 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3313 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3314 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3315 break;
3316 }
3317 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3318
eea6121a 3319 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3320 plt_chunks =
3321 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3322
3323 for (chunk = 0; chunk < plt_chunks; chunk++)
3324 {
3325 int chunk_entries = 0;
3326
f0e6fdb2 3327 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3328 BFD_ASSERT (sgotplt != NULL);
3329
3330 /* Emit special RTLD relocations for the first two entries in
3331 each chunk of the .got.plt section. */
3332
3333 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3334 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3335 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3336 irela.r_offset = (sgotplt->output_section->vma
3337 + sgotplt->output_offset);
3338 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3339 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3340 rtld_reloc += 1;
3341 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3342
3343 /* Next literal immediately follows the first. */
3344 loc += sizeof (Elf32_External_Rela);
3345 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3346 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3347 irela.r_offset = (sgotplt->output_section->vma
3348 + sgotplt->output_offset + 4);
3349 /* Tell rtld to set value to object's link map. */
3350 irela.r_addend = 2;
3351 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3352 rtld_reloc += 1;
3353 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3354
3355 /* Fill in the literal table. */
3356 if (chunk < plt_chunks - 1)
3357 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3358 else
3359 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3360
eea6121a 3361 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3362 bfd_put_32 (output_bfd,
3363 sgotplt->output_section->vma + sgotplt->output_offset,
3364 spltlittbl->contents + (chunk * 8) + 0);
3365 bfd_put_32 (output_bfd,
3366 8 + (chunk_entries * 4),
3367 spltlittbl->contents + (chunk * 8) + 4);
3368 }
3369
3370 /* All the dynamic relocations have been emitted at this point.
3371 Make sure the relocation sections are the correct size. */
eea6121a
AM
3372 if (srelgot->size != (sizeof (Elf32_External_Rela)
3373 * srelgot->reloc_count)
3374 || srelplt->size != (sizeof (Elf32_External_Rela)
3375 * srelplt->reloc_count))
e0001a05
NC
3376 abort ();
3377
3378 /* The .xt.lit.plt section has just been modified. This must
3379 happen before the code below which combines adjacent literal
3380 table entries, and the .xt.lit.plt contents have to be forced to
3381 the output here. */
3382 if (! bfd_set_section_contents (output_bfd,
3383 spltlittbl->output_section,
3384 spltlittbl->contents,
3385 spltlittbl->output_offset,
eea6121a 3386 spltlittbl->size))
e0001a05
NC
3387 return FALSE;
3388 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3389 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3390 }
3391
3392 /* Combine adjacent literal table entries. */
1049f94e 3393 BFD_ASSERT (! info->relocatable);
e901de89 3394 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3395 sgotloc = htab->sgotloc;
d9ab3f29
BW
3396 BFD_ASSERT (sgotloc);
3397 if (sxtlit)
3398 {
3399 num_xtlit_entries =
3400 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3401 if (num_xtlit_entries < 0)
3402 return FALSE;
3403 }
e0001a05
NC
3404
3405 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3406 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3407 for (; dyncon < dynconend; dyncon++)
3408 {
3409 Elf_Internal_Dyn dyn;
e0001a05
NC
3410
3411 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3412
3413 switch (dyn.d_tag)
3414 {
3415 default:
3416 break;
3417
3418 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3419 dyn.d_un.d_val = num_xtlit_entries;
3420 break;
3421
3422 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 3423 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
3424 break;
3425
e0001a05 3426 case DT_PLTGOT:
e29297b7 3427 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
3428 break;
3429
e0001a05 3430 case DT_JMPREL:
e29297b7 3431 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
3432 break;
3433
3434 case DT_PLTRELSZ:
e29297b7 3435 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
3436 break;
3437
3438 case DT_RELASZ:
3439 /* Adjust RELASZ to not include JMPREL. This matches what
3440 glibc expects and what is done for several other ELF
3441 targets (e.g., i386, alpha), but the "correct" behavior
3442 seems to be unresolved. Since the linker script arranges
3443 for .rela.plt to follow all other relocation sections, we
3444 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 3445 if (htab->srelplt)
e29297b7 3446 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
3447 break;
3448 }
3449
3450 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3451 }
3452
3453 return TRUE;
3454}
3455
3456\f
3457/* Functions for dealing with the e_flags field. */
3458
3459/* Merge backend specific data from an object file to the output
3460 object file when linking. */
3461
3462static bfd_boolean
7fa3d080 3463elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
3464{
3465 unsigned out_mach, in_mach;
3466 flagword out_flag, in_flag;
3467
cc643b88 3468 /* Check if we have the same endianness. */
e0001a05
NC
3469 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3470 return FALSE;
3471
3472 /* Don't even pretend to support mixed-format linking. */
3473 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3474 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3475 return FALSE;
3476
3477 out_flag = elf_elfheader (obfd)->e_flags;
3478 in_flag = elf_elfheader (ibfd)->e_flags;
3479
3480 out_mach = out_flag & EF_XTENSA_MACH;
3481 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3482 if (out_mach != in_mach)
e0001a05
NC
3483 {
3484 (*_bfd_error_handler)
43cd72b9 3485 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3486 ibfd, out_mach, in_mach);
e0001a05
NC
3487 bfd_set_error (bfd_error_wrong_format);
3488 return FALSE;
3489 }
3490
3491 if (! elf_flags_init (obfd))
3492 {
3493 elf_flags_init (obfd) = TRUE;
3494 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3495
e0001a05
NC
3496 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3497 && bfd_get_arch_info (obfd)->the_default)
3498 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3499 bfd_get_mach (ibfd));
43cd72b9 3500
e0001a05
NC
3501 return TRUE;
3502 }
3503
68ffbac6 3504 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
43cd72b9 3505 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3506
68ffbac6 3507 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
43cd72b9 3508 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3509
3510 return TRUE;
3511}
3512
3513
3514static bfd_boolean
7fa3d080 3515elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3516{
3517 BFD_ASSERT (!elf_flags_init (abfd)
3518 || elf_elfheader (abfd)->e_flags == flags);
3519
3520 elf_elfheader (abfd)->e_flags |= flags;
3521 elf_flags_init (abfd) = TRUE;
3522
3523 return TRUE;
3524}
3525
3526
e0001a05 3527static bfd_boolean
7fa3d080 3528elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3529{
3530 FILE *f = (FILE *) farg;
3531 flagword e_flags = elf_elfheader (abfd)->e_flags;
3532
3533 fprintf (f, "\nXtensa header:\n");
43cd72b9 3534 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3535 fprintf (f, "\nMachine = Base\n");
3536 else
3537 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3538
3539 fprintf (f, "Insn tables = %s\n",
3540 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3541
3542 fprintf (f, "Literal tables = %s\n",
3543 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3544
3545 return _bfd_elf_print_private_bfd_data (abfd, farg);
3546}
3547
3548
3549/* Set the right machine number for an Xtensa ELF file. */
3550
3551static bfd_boolean
7fa3d080 3552elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3553{
3554 int mach;
3555 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3556
3557 switch (arch)
3558 {
3559 case E_XTENSA_MACH:
3560 mach = bfd_mach_xtensa;
3561 break;
3562 default:
3563 return FALSE;
3564 }
3565
3566 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3567 return TRUE;
3568}
3569
3570
3571/* The final processing done just before writing out an Xtensa ELF object
3572 file. This gets the Xtensa architecture right based on the machine
3573 number. */
3574
3575static void
7fa3d080
BW
3576elf_xtensa_final_write_processing (bfd *abfd,
3577 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3578{
3579 int mach;
3580 unsigned long val;
3581
3582 switch (mach = bfd_get_mach (abfd))
3583 {
3584 case bfd_mach_xtensa:
3585 val = E_XTENSA_MACH;
3586 break;
3587 default:
3588 return;
3589 }
3590
3591 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3592 elf_elfheader (abfd)->e_flags |= val;
3593}
3594
3595
3596static enum elf_reloc_type_class
7e612e98
AM
3597elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3598 const asection *rel_sec ATTRIBUTE_UNUSED,
3599 const Elf_Internal_Rela *rela)
e0001a05
NC
3600{
3601 switch ((int) ELF32_R_TYPE (rela->r_info))
3602 {
3603 case R_XTENSA_RELATIVE:
3604 return reloc_class_relative;
3605 case R_XTENSA_JMP_SLOT:
3606 return reloc_class_plt;
3607 default:
3608 return reloc_class_normal;
3609 }
3610}
3611
3612\f
3613static bfd_boolean
7fa3d080
BW
3614elf_xtensa_discard_info_for_section (bfd *abfd,
3615 struct elf_reloc_cookie *cookie,
3616 struct bfd_link_info *info,
3617 asection *sec)
e0001a05
NC
3618{
3619 bfd_byte *contents;
e0001a05 3620 bfd_vma offset, actual_offset;
1d25768e
BW
3621 bfd_size_type removed_bytes = 0;
3622 bfd_size_type entry_size;
e0001a05
NC
3623
3624 if (sec->output_section
3625 && bfd_is_abs_section (sec->output_section))
3626 return FALSE;
3627
1d25768e
BW
3628 if (xtensa_is_proptable_section (sec))
3629 entry_size = 12;
3630 else
3631 entry_size = 8;
3632
a3ef2d63 3633 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3634 return FALSE;
3635
e0001a05
NC
3636 contents = retrieve_contents (abfd, sec, info->keep_memory);
3637 if (!contents)
3638 return FALSE;
3639
3640 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3641 if (!cookie->rels)
3642 {
3643 release_contents (sec, contents);
3644 return FALSE;
3645 }
3646
1d25768e
BW
3647 /* Sort the relocations. They should already be in order when
3648 relaxation is enabled, but it might not be. */
3649 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3650 internal_reloc_compare);
3651
e0001a05
NC
3652 cookie->rel = cookie->rels;
3653 cookie->relend = cookie->rels + sec->reloc_count;
3654
a3ef2d63 3655 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3656 {
3657 actual_offset = offset - removed_bytes;
3658
3659 /* The ...symbol_deleted_p function will skip over relocs but it
3660 won't adjust their offsets, so do that here. */
3661 while (cookie->rel < cookie->relend
3662 && cookie->rel->r_offset < offset)
3663 {
3664 cookie->rel->r_offset -= removed_bytes;
3665 cookie->rel++;
3666 }
3667
3668 while (cookie->rel < cookie->relend
3669 && cookie->rel->r_offset == offset)
3670 {
c152c796 3671 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3672 {
3673 /* Remove the table entry. (If the reloc type is NONE, then
3674 the entry has already been merged with another and deleted
3675 during relaxation.) */
3676 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3677 {
3678 /* Shift the contents up. */
a3ef2d63 3679 if (offset + entry_size < sec->size)
e0001a05 3680 memmove (&contents[actual_offset],
1d25768e 3681 &contents[actual_offset + entry_size],
a3ef2d63 3682 sec->size - offset - entry_size);
1d25768e 3683 removed_bytes += entry_size;
e0001a05
NC
3684 }
3685
3686 /* Remove this relocation. */
3687 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3688 }
3689
3690 /* Adjust the relocation offset for previous removals. This
3691 should not be done before calling ...symbol_deleted_p
3692 because it might mess up the offset comparisons there.
3693 Make sure the offset doesn't underflow in the case where
3694 the first entry is removed. */
3695 if (cookie->rel->r_offset >= removed_bytes)
3696 cookie->rel->r_offset -= removed_bytes;
3697 else
3698 cookie->rel->r_offset = 0;
3699
3700 cookie->rel++;
3701 }
3702 }
3703
3704 if (removed_bytes != 0)
3705 {
3706 /* Adjust any remaining relocs (shouldn't be any). */
3707 for (; cookie->rel < cookie->relend; cookie->rel++)
3708 {
3709 if (cookie->rel->r_offset >= removed_bytes)
3710 cookie->rel->r_offset -= removed_bytes;
3711 else
3712 cookie->rel->r_offset = 0;
3713 }
3714
3715 /* Clear the removed bytes. */
a3ef2d63 3716 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3717
3718 pin_contents (sec, contents);
3719 pin_internal_relocs (sec, cookie->rels);
3720
eea6121a 3721 /* Shrink size. */
a3ef2d63
BW
3722 if (sec->rawsize == 0)
3723 sec->rawsize = sec->size;
3724 sec->size -= removed_bytes;
b536dc1e
BW
3725
3726 if (xtensa_is_littable_section (sec))
3727 {
f0e6fdb2
BW
3728 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3729 if (sgotloc)
3730 sgotloc->size -= removed_bytes;
b536dc1e 3731 }
e0001a05
NC
3732 }
3733 else
3734 {
3735 release_contents (sec, contents);
3736 release_internal_relocs (sec, cookie->rels);
3737 }
3738
3739 return (removed_bytes != 0);
3740}
3741
3742
3743static bfd_boolean
7fa3d080
BW
3744elf_xtensa_discard_info (bfd *abfd,
3745 struct elf_reloc_cookie *cookie,
3746 struct bfd_link_info *info)
e0001a05
NC
3747{
3748 asection *sec;
3749 bfd_boolean changed = FALSE;
3750
3751 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3752 {
3753 if (xtensa_is_property_section (sec))
3754 {
3755 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3756 changed = TRUE;
3757 }
3758 }
3759
3760 return changed;
3761}
3762
3763
3764static bfd_boolean
7fa3d080 3765elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3766{
3767 return xtensa_is_property_section (sec);
3768}
3769
a77dc2cc
BW
3770
3771static unsigned int
3772elf_xtensa_action_discarded (asection *sec)
3773{
3774 if (strcmp (".xt_except_table", sec->name) == 0)
3775 return 0;
3776
3777 if (strcmp (".xt_except_desc", sec->name) == 0)
3778 return 0;
3779
3780 return _bfd_elf_default_action_discarded (sec);
3781}
3782
e0001a05
NC
3783\f
3784/* Support for core dump NOTE sections. */
3785
3786static bfd_boolean
7fa3d080 3787elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3788{
3789 int offset;
eea6121a 3790 unsigned int size;
e0001a05
NC
3791
3792 /* The size for Xtensa is variable, so don't try to recognize the format
3793 based on the size. Just assume this is GNU/Linux. */
3794
3795 /* pr_cursig */
228e534f 3796 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
e0001a05
NC
3797
3798 /* pr_pid */
228e534f 3799 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3800
3801 /* pr_reg */
3802 offset = 72;
eea6121a 3803 size = note->descsz - offset - 4;
e0001a05
NC
3804
3805 /* Make a ".reg/999" section. */
3806 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3807 size, note->descpos + offset);
e0001a05
NC
3808}
3809
3810
3811static bfd_boolean
7fa3d080 3812elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3813{
3814 switch (note->descsz)
3815 {
3816 default:
3817 return FALSE;
3818
3819 case 128: /* GNU/Linux elf_prpsinfo */
228e534f 3820 elf_tdata (abfd)->core->program
e0001a05 3821 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
228e534f 3822 elf_tdata (abfd)->core->command
e0001a05
NC
3823 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3824 }
3825
3826 /* Note that for some reason, a spurious space is tacked
3827 onto the end of the args in some (at least one anyway)
3828 implementations, so strip it off if it exists. */
3829
3830 {
228e534f 3831 char *command = elf_tdata (abfd)->core->command;
e0001a05
NC
3832 int n = strlen (command);
3833
3834 if (0 < n && command[n - 1] == ' ')
3835 command[n - 1] = '\0';
3836 }
3837
3838 return TRUE;
3839}
3840
3841\f
3842/* Generic Xtensa configurability stuff. */
3843
3844static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3845static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3846static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3847static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3848static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3849static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3850static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3851static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3852
3853static void
7fa3d080 3854init_call_opcodes (void)
e0001a05
NC
3855{
3856 if (callx0_op == XTENSA_UNDEFINED)
3857 {
3858 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3859 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3860 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3861 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3862 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3863 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3864 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3865 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3866 }
3867}
3868
3869
3870static bfd_boolean
7fa3d080 3871is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3872{
3873 init_call_opcodes ();
3874 return (opcode == callx0_op
3875 || opcode == callx4_op
3876 || opcode == callx8_op
3877 || opcode == callx12_op);
3878}
3879
3880
3881static bfd_boolean
7fa3d080 3882is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3883{
3884 init_call_opcodes ();
3885 return (opcode == call0_op
3886 || opcode == call4_op
3887 || opcode == call8_op
3888 || opcode == call12_op);
3889}
3890
3891
3892static bfd_boolean
7fa3d080 3893is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3894{
3895 init_call_opcodes ();
3896 return (opcode == call4_op
3897 || opcode == call8_op
3898 || opcode == call12_op
3899 || opcode == callx4_op
3900 || opcode == callx8_op
3901 || opcode == callx12_op);
3902}
3903
3904
28dbbc02
BW
3905static bfd_boolean
3906get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3907{
3908 unsigned dst = (unsigned) -1;
3909
3910 init_call_opcodes ();
3911 if (opcode == callx0_op)
3912 dst = 0;
3913 else if (opcode == callx4_op)
3914 dst = 4;
3915 else if (opcode == callx8_op)
3916 dst = 8;
3917 else if (opcode == callx12_op)
3918 dst = 12;
3919
3920 if (dst == (unsigned) -1)
3921 return FALSE;
3922
3923 *pdst = dst;
3924 return TRUE;
3925}
3926
3927
43cd72b9
BW
3928static xtensa_opcode
3929get_const16_opcode (void)
3930{
3931 static bfd_boolean done_lookup = FALSE;
3932 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3933 if (!done_lookup)
3934 {
3935 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3936 done_lookup = TRUE;
3937 }
3938 return const16_opcode;
3939}
3940
3941
e0001a05
NC
3942static xtensa_opcode
3943get_l32r_opcode (void)
3944{
3945 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3946 static bfd_boolean done_lookup = FALSE;
3947
3948 if (!done_lookup)
e0001a05
NC
3949 {
3950 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3951 done_lookup = TRUE;
e0001a05
NC
3952 }
3953 return l32r_opcode;
3954}
3955
3956
3957static bfd_vma
7fa3d080 3958l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3959{
3960 bfd_vma offset;
3961
3962 offset = addr - ((pc+3) & -4);
3963 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3964 offset = (signed int) offset >> 2;
3965 BFD_ASSERT ((signed int) offset >> 16 == -1);
3966 return offset;
3967}
3968
3969
e0001a05 3970static int
7fa3d080 3971get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3972{
43cd72b9
BW
3973 xtensa_isa isa = xtensa_default_isa;
3974 int last_immed, last_opnd, opi;
3975
3976 if (opcode == XTENSA_UNDEFINED)
3977 return XTENSA_UNDEFINED;
3978
3979 /* Find the last visible PC-relative immediate operand for the opcode.
3980 If there are no PC-relative immediates, then choose the last visible
3981 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3982 last_immed = XTENSA_UNDEFINED;
3983 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3984 for (opi = last_opnd - 1; opi >= 0; opi--)
3985 {
3986 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3987 continue;
3988 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3989 {
3990 last_immed = opi;
3991 break;
3992 }
3993 if (last_immed == XTENSA_UNDEFINED
3994 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3995 last_immed = opi;
3996 }
3997 if (last_immed < 0)
3998 return XTENSA_UNDEFINED;
3999
4000 /* If the operand number was specified in an old-style relocation,
4001 check for consistency with the operand computed above. */
4002 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4003 {
4004 int reloc_opnd = r_type - R_XTENSA_OP0;
4005 if (reloc_opnd != last_immed)
4006 return XTENSA_UNDEFINED;
4007 }
4008
4009 return last_immed;
4010}
4011
4012
4013int
7fa3d080 4014get_relocation_slot (int r_type)
43cd72b9
BW
4015{
4016 switch (r_type)
4017 {
4018 case R_XTENSA_OP0:
4019 case R_XTENSA_OP1:
4020 case R_XTENSA_OP2:
4021 return 0;
4022
4023 default:
4024 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4025 return r_type - R_XTENSA_SLOT0_OP;
4026 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4027 return r_type - R_XTENSA_SLOT0_ALT;
4028 break;
4029 }
4030
4031 return XTENSA_UNDEFINED;
e0001a05
NC
4032}
4033
4034
4035/* Get the opcode for a relocation. */
4036
4037static xtensa_opcode
7fa3d080
BW
4038get_relocation_opcode (bfd *abfd,
4039 asection *sec,
4040 bfd_byte *contents,
4041 Elf_Internal_Rela *irel)
e0001a05
NC
4042{
4043 static xtensa_insnbuf ibuff = NULL;
43cd72b9 4044 static xtensa_insnbuf sbuff = NULL;
e0001a05 4045 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4046 xtensa_format fmt;
4047 int slot;
e0001a05
NC
4048
4049 if (contents == NULL)
4050 return XTENSA_UNDEFINED;
4051
43cd72b9 4052 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4053 return XTENSA_UNDEFINED;
4054
4055 if (ibuff == NULL)
43cd72b9
BW
4056 {
4057 ibuff = xtensa_insnbuf_alloc (isa);
4058 sbuff = xtensa_insnbuf_alloc (isa);
4059 }
4060
e0001a05 4061 /* Decode the instruction. */
43cd72b9
BW
4062 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4063 sec->size - irel->r_offset);
4064 fmt = xtensa_format_decode (isa, ibuff);
4065 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4066 if (slot == XTENSA_UNDEFINED)
4067 return XTENSA_UNDEFINED;
4068 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4069 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4070}
4071
4072
4073bfd_boolean
7fa3d080
BW
4074is_l32r_relocation (bfd *abfd,
4075 asection *sec,
4076 bfd_byte *contents,
4077 Elf_Internal_Rela *irel)
e0001a05
NC
4078{
4079 xtensa_opcode opcode;
43cd72b9 4080 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4081 return FALSE;
43cd72b9 4082 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4083 return (opcode == get_l32r_opcode ());
4084}
4085
e0001a05 4086
43cd72b9 4087static bfd_size_type
7fa3d080
BW
4088get_asm_simplify_size (bfd_byte *contents,
4089 bfd_size_type content_len,
4090 bfd_size_type offset)
e0001a05 4091{
43cd72b9 4092 bfd_size_type insnlen, size = 0;
e0001a05 4093
43cd72b9
BW
4094 /* Decode the size of the next two instructions. */
4095 insnlen = insn_decode_len (contents, content_len, offset);
4096 if (insnlen == 0)
4097 return 0;
e0001a05 4098
43cd72b9 4099 size += insnlen;
68ffbac6 4100
43cd72b9
BW
4101 insnlen = insn_decode_len (contents, content_len, offset + size);
4102 if (insnlen == 0)
4103 return 0;
e0001a05 4104
43cd72b9
BW
4105 size += insnlen;
4106 return size;
4107}
e0001a05 4108
43cd72b9
BW
4109
4110bfd_boolean
7fa3d080 4111is_alt_relocation (int r_type)
43cd72b9
BW
4112{
4113 return (r_type >= R_XTENSA_SLOT0_ALT
4114 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4115}
4116
4117
43cd72b9 4118bfd_boolean
7fa3d080 4119is_operand_relocation (int r_type)
e0001a05 4120{
43cd72b9
BW
4121 switch (r_type)
4122 {
4123 case R_XTENSA_OP0:
4124 case R_XTENSA_OP1:
4125 case R_XTENSA_OP2:
4126 return TRUE;
e0001a05 4127
43cd72b9
BW
4128 default:
4129 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4130 return TRUE;
4131 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4132 return TRUE;
4133 break;
4134 }
e0001a05 4135
43cd72b9 4136 return FALSE;
e0001a05
NC
4137}
4138
68ffbac6 4139
43cd72b9 4140#define MIN_INSN_LENGTH 2
e0001a05 4141
43cd72b9
BW
4142/* Return 0 if it fails to decode. */
4143
4144bfd_size_type
7fa3d080
BW
4145insn_decode_len (bfd_byte *contents,
4146 bfd_size_type content_len,
4147 bfd_size_type offset)
e0001a05 4148{
43cd72b9
BW
4149 int insn_len;
4150 xtensa_isa isa = xtensa_default_isa;
4151 xtensa_format fmt;
4152 static xtensa_insnbuf ibuff = NULL;
e0001a05 4153
43cd72b9
BW
4154 if (offset + MIN_INSN_LENGTH > content_len)
4155 return 0;
e0001a05 4156
43cd72b9
BW
4157 if (ibuff == NULL)
4158 ibuff = xtensa_insnbuf_alloc (isa);
4159 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4160 content_len - offset);
4161 fmt = xtensa_format_decode (isa, ibuff);
4162 if (fmt == XTENSA_UNDEFINED)
4163 return 0;
4164 insn_len = xtensa_format_length (isa, fmt);
4165 if (insn_len == XTENSA_UNDEFINED)
4166 return 0;
4167 return insn_len;
e0001a05
NC
4168}
4169
4170
43cd72b9
BW
4171/* Decode the opcode for a single slot instruction.
4172 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4173
43cd72b9 4174xtensa_opcode
7fa3d080
BW
4175insn_decode_opcode (bfd_byte *contents,
4176 bfd_size_type content_len,
4177 bfd_size_type offset,
4178 int slot)
e0001a05 4179{
e0001a05 4180 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4181 xtensa_format fmt;
4182 static xtensa_insnbuf insnbuf = NULL;
4183 static xtensa_insnbuf slotbuf = NULL;
4184
4185 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4186 return XTENSA_UNDEFINED;
4187
4188 if (insnbuf == NULL)
43cd72b9
BW
4189 {
4190 insnbuf = xtensa_insnbuf_alloc (isa);
4191 slotbuf = xtensa_insnbuf_alloc (isa);
4192 }
4193
4194 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4195 content_len - offset);
4196 fmt = xtensa_format_decode (isa, insnbuf);
4197 if (fmt == XTENSA_UNDEFINED)
e0001a05 4198 return XTENSA_UNDEFINED;
43cd72b9
BW
4199
4200 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4201 return XTENSA_UNDEFINED;
e0001a05 4202
43cd72b9
BW
4203 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4204 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4205}
e0001a05 4206
e0001a05 4207
43cd72b9
BW
4208/* The offset is the offset in the contents.
4209 The address is the address of that offset. */
e0001a05 4210
43cd72b9 4211static bfd_boolean
7fa3d080
BW
4212check_branch_target_aligned (bfd_byte *contents,
4213 bfd_size_type content_length,
4214 bfd_vma offset,
4215 bfd_vma address)
43cd72b9
BW
4216{
4217 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4218 if (insn_len == 0)
4219 return FALSE;
4220 return check_branch_target_aligned_address (address, insn_len);
4221}
e0001a05 4222
e0001a05 4223
43cd72b9 4224static bfd_boolean
7fa3d080
BW
4225check_loop_aligned (bfd_byte *contents,
4226 bfd_size_type content_length,
4227 bfd_vma offset,
4228 bfd_vma address)
e0001a05 4229{
43cd72b9 4230 bfd_size_type loop_len, insn_len;
64b607e6 4231 xtensa_opcode opcode;
e0001a05 4232
64b607e6
BW
4233 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4234 if (opcode == XTENSA_UNDEFINED
4235 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4236 {
4237 BFD_ASSERT (FALSE);
4238 return FALSE;
4239 }
68ffbac6 4240
43cd72b9 4241 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4242 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4243 if (loop_len == 0 || insn_len == 0)
4244 {
4245 BFD_ASSERT (FALSE);
4246 return FALSE;
4247 }
e0001a05 4248
43cd72b9
BW
4249 return check_branch_target_aligned_address (address + loop_len, insn_len);
4250}
e0001a05 4251
e0001a05
NC
4252
4253static bfd_boolean
7fa3d080 4254check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4255{
43cd72b9
BW
4256 if (len == 8)
4257 return (addr % 8 == 0);
4258 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4259}
4260
43cd72b9
BW
4261\f
4262/* Instruction widening and narrowing. */
e0001a05 4263
7fa3d080
BW
4264/* When FLIX is available we need to access certain instructions only
4265 when they are 16-bit or 24-bit instructions. This table caches
4266 information about such instructions by walking through all the
4267 opcodes and finding the smallest single-slot format into which each
4268 can be encoded. */
4269
4270static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4271
4272
7fa3d080
BW
4273static void
4274init_op_single_format_table (void)
e0001a05 4275{
7fa3d080
BW
4276 xtensa_isa isa = xtensa_default_isa;
4277 xtensa_insnbuf ibuf;
4278 xtensa_opcode opcode;
4279 xtensa_format fmt;
4280 int num_opcodes;
4281
4282 if (op_single_fmt_table)
4283 return;
4284
4285 ibuf = xtensa_insnbuf_alloc (isa);
4286 num_opcodes = xtensa_isa_num_opcodes (isa);
4287
4288 op_single_fmt_table = (xtensa_format *)
4289 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4290 for (opcode = 0; opcode < num_opcodes; opcode++)
4291 {
4292 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4293 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4294 {
4295 if (xtensa_format_num_slots (isa, fmt) == 1
4296 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4297 {
4298 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4299 int fmt_length = xtensa_format_length (isa, fmt);
4300 if (old_fmt == XTENSA_UNDEFINED
4301 || fmt_length < xtensa_format_length (isa, old_fmt))
4302 op_single_fmt_table[opcode] = fmt;
4303 }
4304 }
4305 }
4306 xtensa_insnbuf_free (isa, ibuf);
4307}
4308
4309
4310static xtensa_format
4311get_single_format (xtensa_opcode opcode)
4312{
4313 init_op_single_format_table ();
4314 return op_single_fmt_table[opcode];
4315}
e0001a05 4316
e0001a05 4317
43cd72b9
BW
4318/* For the set of narrowable instructions we do NOT include the
4319 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4320 involved during linker relaxation that may require these to
4321 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4322 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4323
7fa3d080
BW
4324struct string_pair
4325{
4326 const char *wide;
4327 const char *narrow;
4328};
4329
43cd72b9 4330struct string_pair narrowable[] =
e0001a05 4331{
43cd72b9
BW
4332 { "add", "add.n" },
4333 { "addi", "addi.n" },
4334 { "addmi", "addi.n" },
4335 { "l32i", "l32i.n" },
4336 { "movi", "movi.n" },
4337 { "ret", "ret.n" },
4338 { "retw", "retw.n" },
4339 { "s32i", "s32i.n" },
4340 { "or", "mov.n" } /* special case only when op1 == op2 */
4341};
e0001a05 4342
43cd72b9 4343struct string_pair widenable[] =
e0001a05 4344{
43cd72b9
BW
4345 { "add", "add.n" },
4346 { "addi", "addi.n" },
4347 { "addmi", "addi.n" },
4348 { "beqz", "beqz.n" },
4349 { "bnez", "bnez.n" },
4350 { "l32i", "l32i.n" },
4351 { "movi", "movi.n" },
4352 { "ret", "ret.n" },
4353 { "retw", "retw.n" },
4354 { "s32i", "s32i.n" },
4355 { "or", "mov.n" } /* special case only when op1 == op2 */
4356};
e0001a05
NC
4357
4358
64b607e6
BW
4359/* Check if an instruction can be "narrowed", i.e., changed from a standard
4360 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4361 return the instruction buffer holding the narrow instruction. Otherwise,
4362 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4363 but require some special case operand checks in some cases. */
4364
64b607e6
BW
4365static xtensa_insnbuf
4366can_narrow_instruction (xtensa_insnbuf slotbuf,
4367 xtensa_format fmt,
4368 xtensa_opcode opcode)
e0001a05 4369{
43cd72b9 4370 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4371 xtensa_format o_fmt;
4372 unsigned opi;
e0001a05 4373
43cd72b9
BW
4374 static xtensa_insnbuf o_insnbuf = NULL;
4375 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4376
64b607e6 4377 if (o_insnbuf == NULL)
43cd72b9 4378 {
43cd72b9
BW
4379 o_insnbuf = xtensa_insnbuf_alloc (isa);
4380 o_slotbuf = xtensa_insnbuf_alloc (isa);
4381 }
e0001a05 4382
64b607e6 4383 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4384 {
4385 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4386
43cd72b9
BW
4387 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4388 {
4389 uint32 value, newval;
4390 int i, operand_count, o_operand_count;
4391 xtensa_opcode o_opcode;
e0001a05 4392
43cd72b9
BW
4393 /* Address does not matter in this case. We might need to
4394 fix it to handle branches/jumps. */
4395 bfd_vma self_address = 0;
e0001a05 4396
43cd72b9
BW
4397 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4398 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4399 return 0;
43cd72b9
BW
4400 o_fmt = get_single_format (o_opcode);
4401 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4402 return 0;
e0001a05 4403
43cd72b9
BW
4404 if (xtensa_format_length (isa, fmt) != 3
4405 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4406 return 0;
e0001a05 4407
43cd72b9
BW
4408 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4409 operand_count = xtensa_opcode_num_operands (isa, opcode);
4410 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4411
43cd72b9 4412 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4413 return 0;
e0001a05 4414
43cd72b9
BW
4415 if (!is_or)
4416 {
4417 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4418 return 0;
43cd72b9
BW
4419 }
4420 else
4421 {
4422 uint32 rawval0, rawval1, rawval2;
e0001a05 4423
64b607e6
BW
4424 if (o_operand_count + 1 != operand_count
4425 || xtensa_operand_get_field (isa, opcode, 0,
4426 fmt, 0, slotbuf, &rawval0) != 0
4427 || xtensa_operand_get_field (isa, opcode, 1,
4428 fmt, 0, slotbuf, &rawval1) != 0
4429 || xtensa_operand_get_field (isa, opcode, 2,
4430 fmt, 0, slotbuf, &rawval2) != 0
4431 || rawval1 != rawval2
4432 || rawval0 == rawval1 /* it is a nop */)
4433 return 0;
43cd72b9 4434 }
e0001a05 4435
43cd72b9
BW
4436 for (i = 0; i < o_operand_count; ++i)
4437 {
4438 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4439 slotbuf, &value)
4440 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4441 return 0;
e0001a05 4442
43cd72b9
BW
4443 /* PC-relative branches need adjustment, but
4444 the PC-rel operand will always have a relocation. */
4445 newval = value;
4446 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4447 self_address)
4448 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4449 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4450 o_slotbuf, newval))
64b607e6 4451 return 0;
43cd72b9 4452 }
e0001a05 4453
64b607e6
BW
4454 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4455 return 0;
e0001a05 4456
64b607e6 4457 return o_insnbuf;
43cd72b9
BW
4458 }
4459 }
64b607e6 4460 return 0;
43cd72b9 4461}
e0001a05 4462
e0001a05 4463
64b607e6
BW
4464/* Attempt to narrow an instruction. If the narrowing is valid, perform
4465 the action in-place directly into the contents and return TRUE. Otherwise,
4466 the return value is FALSE and the contents are not modified. */
e0001a05 4467
43cd72b9 4468static bfd_boolean
64b607e6
BW
4469narrow_instruction (bfd_byte *contents,
4470 bfd_size_type content_length,
4471 bfd_size_type offset)
e0001a05 4472{
43cd72b9 4473 xtensa_opcode opcode;
64b607e6 4474 bfd_size_type insn_len;
43cd72b9 4475 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4476 xtensa_format fmt;
4477 xtensa_insnbuf o_insnbuf;
e0001a05 4478
43cd72b9
BW
4479 static xtensa_insnbuf insnbuf = NULL;
4480 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4481
43cd72b9
BW
4482 if (insnbuf == NULL)
4483 {
4484 insnbuf = xtensa_insnbuf_alloc (isa);
4485 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4486 }
e0001a05 4487
43cd72b9 4488 BFD_ASSERT (offset < content_length);
2c8c90bc 4489
43cd72b9 4490 if (content_length < 2)
e0001a05
NC
4491 return FALSE;
4492
64b607e6 4493 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4494 These have all been specified in the assembler aleady. */
4495 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4496 content_length - offset);
4497 fmt = xtensa_format_decode (isa, insnbuf);
4498 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4499 return FALSE;
4500
43cd72b9 4501 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4502 return FALSE;
4503
43cd72b9
BW
4504 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4505 if (opcode == XTENSA_UNDEFINED)
e0001a05 4506 return FALSE;
43cd72b9
BW
4507 insn_len = xtensa_format_length (isa, fmt);
4508 if (insn_len > content_length)
4509 return FALSE;
4510
64b607e6
BW
4511 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4512 if (o_insnbuf)
4513 {
4514 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4515 content_length - offset);
4516 return TRUE;
4517 }
4518
4519 return FALSE;
4520}
4521
4522
4523/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4524 "density" instruction to a standard 3-byte instruction. If it is valid,
4525 return the instruction buffer holding the wide instruction. Otherwise,
4526 return 0. The set of valid widenings are specified by a string table
4527 but require some special case operand checks in some cases. */
4528
4529static xtensa_insnbuf
4530can_widen_instruction (xtensa_insnbuf slotbuf,
4531 xtensa_format fmt,
4532 xtensa_opcode opcode)
4533{
4534 xtensa_isa isa = xtensa_default_isa;
4535 xtensa_format o_fmt;
4536 unsigned opi;
4537
4538 static xtensa_insnbuf o_insnbuf = NULL;
4539 static xtensa_insnbuf o_slotbuf = NULL;
4540
4541 if (o_insnbuf == NULL)
4542 {
4543 o_insnbuf = xtensa_insnbuf_alloc (isa);
4544 o_slotbuf = xtensa_insnbuf_alloc (isa);
4545 }
4546
4547 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4548 {
43cd72b9
BW
4549 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4550 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4551 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4552
43cd72b9
BW
4553 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4554 {
4555 uint32 value, newval;
4556 int i, operand_count, o_operand_count, check_operand_count;
4557 xtensa_opcode o_opcode;
e0001a05 4558
43cd72b9
BW
4559 /* Address does not matter in this case. We might need to fix it
4560 to handle branches/jumps. */
4561 bfd_vma self_address = 0;
e0001a05 4562
43cd72b9
BW
4563 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4564 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4565 return 0;
43cd72b9
BW
4566 o_fmt = get_single_format (o_opcode);
4567 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4568 return 0;
e0001a05 4569
43cd72b9
BW
4570 if (xtensa_format_length (isa, fmt) != 2
4571 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4572 return 0;
e0001a05 4573
43cd72b9
BW
4574 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4575 operand_count = xtensa_opcode_num_operands (isa, opcode);
4576 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4577 check_operand_count = o_operand_count;
e0001a05 4578
43cd72b9 4579 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4580 return 0;
e0001a05 4581
43cd72b9
BW
4582 if (!is_or)
4583 {
4584 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4585 return 0;
43cd72b9
BW
4586 }
4587 else
4588 {
4589 uint32 rawval0, rawval1;
4590
64b607e6
BW
4591 if (o_operand_count != operand_count + 1
4592 || xtensa_operand_get_field (isa, opcode, 0,
4593 fmt, 0, slotbuf, &rawval0) != 0
4594 || xtensa_operand_get_field (isa, opcode, 1,
4595 fmt, 0, slotbuf, &rawval1) != 0
4596 || rawval0 == rawval1 /* it is a nop */)
4597 return 0;
43cd72b9
BW
4598 }
4599 if (is_branch)
4600 check_operand_count--;
4601
64b607e6 4602 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4603 {
4604 int new_i = i;
4605 if (is_or && i == o_operand_count - 1)
4606 new_i = i - 1;
4607 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4608 slotbuf, &value)
4609 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4610 return 0;
43cd72b9
BW
4611
4612 /* PC-relative branches need adjustment, but
4613 the PC-rel operand will always have a relocation. */
4614 newval = value;
4615 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4616 self_address)
4617 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4618 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4619 o_slotbuf, newval))
64b607e6 4620 return 0;
43cd72b9
BW
4621 }
4622
4623 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4624 return 0;
43cd72b9 4625
64b607e6 4626 return o_insnbuf;
43cd72b9
BW
4627 }
4628 }
64b607e6
BW
4629 return 0;
4630}
4631
68ffbac6 4632
64b607e6
BW
4633/* Attempt to widen an instruction. If the widening is valid, perform
4634 the action in-place directly into the contents and return TRUE. Otherwise,
4635 the return value is FALSE and the contents are not modified. */
4636
4637static bfd_boolean
4638widen_instruction (bfd_byte *contents,
4639 bfd_size_type content_length,
4640 bfd_size_type offset)
4641{
4642 xtensa_opcode opcode;
4643 bfd_size_type insn_len;
4644 xtensa_isa isa = xtensa_default_isa;
4645 xtensa_format fmt;
4646 xtensa_insnbuf o_insnbuf;
4647
4648 static xtensa_insnbuf insnbuf = NULL;
4649 static xtensa_insnbuf slotbuf = NULL;
4650
4651 if (insnbuf == NULL)
4652 {
4653 insnbuf = xtensa_insnbuf_alloc (isa);
4654 slotbuf = xtensa_insnbuf_alloc (isa);
4655 }
4656
4657 BFD_ASSERT (offset < content_length);
4658
4659 if (content_length < 2)
4660 return FALSE;
4661
4662 /* We will hand-code a few of these for a little while.
4663 These have all been specified in the assembler aleady. */
4664 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4665 content_length - offset);
4666 fmt = xtensa_format_decode (isa, insnbuf);
4667 if (xtensa_format_num_slots (isa, fmt) != 1)
4668 return FALSE;
4669
4670 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4671 return FALSE;
4672
4673 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4674 if (opcode == XTENSA_UNDEFINED)
4675 return FALSE;
4676 insn_len = xtensa_format_length (isa, fmt);
4677 if (insn_len > content_length)
4678 return FALSE;
4679
4680 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4681 if (o_insnbuf)
4682 {
4683 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4684 content_length - offset);
4685 return TRUE;
4686 }
43cd72b9 4687 return FALSE;
e0001a05
NC
4688}
4689
43cd72b9
BW
4690\f
4691/* Code for transforming CALLs at link-time. */
e0001a05 4692
43cd72b9 4693static bfd_reloc_status_type
7fa3d080
BW
4694elf_xtensa_do_asm_simplify (bfd_byte *contents,
4695 bfd_vma address,
4696 bfd_vma content_length,
4697 char **error_message)
e0001a05 4698{
43cd72b9
BW
4699 static xtensa_insnbuf insnbuf = NULL;
4700 static xtensa_insnbuf slotbuf = NULL;
4701 xtensa_format core_format = XTENSA_UNDEFINED;
4702 xtensa_opcode opcode;
4703 xtensa_opcode direct_call_opcode;
4704 xtensa_isa isa = xtensa_default_isa;
4705 bfd_byte *chbuf = contents + address;
4706 int opn;
e0001a05 4707
43cd72b9 4708 if (insnbuf == NULL)
e0001a05 4709 {
43cd72b9
BW
4710 insnbuf = xtensa_insnbuf_alloc (isa);
4711 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4712 }
e0001a05 4713
43cd72b9
BW
4714 if (content_length < address)
4715 {
4716 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4717 return bfd_reloc_other;
4718 }
e0001a05 4719
43cd72b9
BW
4720 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4721 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4722 if (direct_call_opcode == XTENSA_UNDEFINED)
4723 {
4724 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4725 return bfd_reloc_other;
4726 }
68ffbac6 4727
43cd72b9
BW
4728 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4729 core_format = xtensa_format_lookup (isa, "x24");
4730 opcode = xtensa_opcode_lookup (isa, "or");
4731 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
68ffbac6 4732 for (opn = 0; opn < 3; opn++)
43cd72b9
BW
4733 {
4734 uint32 regno = 1;
4735 xtensa_operand_encode (isa, opcode, opn, &regno);
4736 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4737 slotbuf, regno);
4738 }
4739 xtensa_format_encode (isa, core_format, insnbuf);
4740 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4741 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4742
43cd72b9
BW
4743 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4744 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4745 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4746
43cd72b9
BW
4747 xtensa_format_encode (isa, core_format, insnbuf);
4748 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4749 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4750 content_length - address - 3);
e0001a05 4751
43cd72b9
BW
4752 return bfd_reloc_ok;
4753}
e0001a05 4754
e0001a05 4755
43cd72b9 4756static bfd_reloc_status_type
7fa3d080
BW
4757contract_asm_expansion (bfd_byte *contents,
4758 bfd_vma content_length,
4759 Elf_Internal_Rela *irel,
4760 char **error_message)
43cd72b9
BW
4761{
4762 bfd_reloc_status_type retval =
4763 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4764 error_message);
e0001a05 4765
43cd72b9
BW
4766 if (retval != bfd_reloc_ok)
4767 return bfd_reloc_dangerous;
e0001a05 4768
43cd72b9
BW
4769 /* Update the irel->r_offset field so that the right immediate and
4770 the right instruction are modified during the relocation. */
4771 irel->r_offset += 3;
4772 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4773 return bfd_reloc_ok;
4774}
e0001a05 4775
e0001a05 4776
43cd72b9 4777static xtensa_opcode
7fa3d080 4778swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4779{
43cd72b9 4780 init_call_opcodes ();
e0001a05 4781
43cd72b9
BW
4782 if (opcode == callx0_op) return call0_op;
4783 if (opcode == callx4_op) return call4_op;
4784 if (opcode == callx8_op) return call8_op;
4785 if (opcode == callx12_op) return call12_op;
e0001a05 4786
43cd72b9
BW
4787 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4788 return XTENSA_UNDEFINED;
4789}
e0001a05 4790
e0001a05 4791
43cd72b9
BW
4792/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4793 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4794 If not, return XTENSA_UNDEFINED. */
e0001a05 4795
43cd72b9
BW
4796#define L32R_TARGET_REG_OPERAND 0
4797#define CONST16_TARGET_REG_OPERAND 0
4798#define CALLN_SOURCE_OPERAND 0
e0001a05 4799
68ffbac6 4800static xtensa_opcode
7fa3d080 4801get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4802{
43cd72b9
BW
4803 static xtensa_insnbuf insnbuf = NULL;
4804 static xtensa_insnbuf slotbuf = NULL;
4805 xtensa_format fmt;
4806 xtensa_opcode opcode;
4807 xtensa_isa isa = xtensa_default_isa;
4808 uint32 regno, const16_regno, call_regno;
4809 int offset = 0;
e0001a05 4810
43cd72b9 4811 if (insnbuf == NULL)
e0001a05 4812 {
43cd72b9
BW
4813 insnbuf = xtensa_insnbuf_alloc (isa);
4814 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4815 }
43cd72b9
BW
4816
4817 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4818 fmt = xtensa_format_decode (isa, insnbuf);
4819 if (fmt == XTENSA_UNDEFINED
4820 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4821 return XTENSA_UNDEFINED;
4822
4823 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4824 if (opcode == XTENSA_UNDEFINED)
4825 return XTENSA_UNDEFINED;
4826
4827 if (opcode == get_l32r_opcode ())
e0001a05 4828 {
43cd72b9
BW
4829 if (p_uses_l32r)
4830 *p_uses_l32r = TRUE;
4831 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4832 fmt, 0, slotbuf, &regno)
4833 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4834 &regno))
4835 return XTENSA_UNDEFINED;
e0001a05 4836 }
43cd72b9 4837 else if (opcode == get_const16_opcode ())
e0001a05 4838 {
43cd72b9
BW
4839 if (p_uses_l32r)
4840 *p_uses_l32r = FALSE;
4841 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4842 fmt, 0, slotbuf, &regno)
4843 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4844 &regno))
4845 return XTENSA_UNDEFINED;
4846
4847 /* Check that the next instruction is also CONST16. */
4848 offset += xtensa_format_length (isa, fmt);
4849 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4850 fmt = xtensa_format_decode (isa, insnbuf);
4851 if (fmt == XTENSA_UNDEFINED
4852 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4853 return XTENSA_UNDEFINED;
4854 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4855 if (opcode != get_const16_opcode ())
4856 return XTENSA_UNDEFINED;
4857
4858 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4859 fmt, 0, slotbuf, &const16_regno)
4860 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4861 &const16_regno)
4862 || const16_regno != regno)
4863 return XTENSA_UNDEFINED;
e0001a05 4864 }
43cd72b9
BW
4865 else
4866 return XTENSA_UNDEFINED;
e0001a05 4867
43cd72b9
BW
4868 /* Next instruction should be an CALLXn with operand 0 == regno. */
4869 offset += xtensa_format_length (isa, fmt);
4870 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4871 fmt = xtensa_format_decode (isa, insnbuf);
4872 if (fmt == XTENSA_UNDEFINED
4873 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4874 return XTENSA_UNDEFINED;
4875 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
68ffbac6 4876 if (opcode == XTENSA_UNDEFINED
43cd72b9
BW
4877 || !is_indirect_call_opcode (opcode))
4878 return XTENSA_UNDEFINED;
e0001a05 4879
43cd72b9
BW
4880 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4881 fmt, 0, slotbuf, &call_regno)
4882 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4883 &call_regno))
4884 return XTENSA_UNDEFINED;
e0001a05 4885
43cd72b9
BW
4886 if (call_regno != regno)
4887 return XTENSA_UNDEFINED;
e0001a05 4888
43cd72b9
BW
4889 return opcode;
4890}
e0001a05 4891
43cd72b9
BW
4892\f
4893/* Data structures used during relaxation. */
e0001a05 4894
43cd72b9 4895/* r_reloc: relocation values. */
e0001a05 4896
43cd72b9
BW
4897/* Through the relaxation process, we need to keep track of the values
4898 that will result from evaluating relocations. The standard ELF
4899 relocation structure is not sufficient for this purpose because we're
4900 operating on multiple input files at once, so we need to know which
4901 input file a relocation refers to. The r_reloc structure thus
4902 records both the input file (bfd) and ELF relocation.
e0001a05 4903
43cd72b9
BW
4904 For efficiency, an r_reloc also contains a "target_offset" field to
4905 cache the target-section-relative offset value that is represented by
4906 the relocation.
68ffbac6 4907
43cd72b9
BW
4908 The r_reloc also contains a virtual offset that allows multiple
4909 inserted literals to be placed at the same "address" with
4910 different offsets. */
e0001a05 4911
43cd72b9 4912typedef struct r_reloc_struct r_reloc;
e0001a05 4913
43cd72b9 4914struct r_reloc_struct
e0001a05 4915{
43cd72b9
BW
4916 bfd *abfd;
4917 Elf_Internal_Rela rela;
e0001a05 4918 bfd_vma target_offset;
43cd72b9 4919 bfd_vma virtual_offset;
e0001a05
NC
4920};
4921
e0001a05 4922
43cd72b9
BW
4923/* The r_reloc structure is included by value in literal_value, but not
4924 every literal_value has an associated relocation -- some are simple
4925 constants. In such cases, we set all the fields in the r_reloc
4926 struct to zero. The r_reloc_is_const function should be used to
4927 detect this case. */
e0001a05 4928
43cd72b9 4929static bfd_boolean
7fa3d080 4930r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4931{
43cd72b9 4932 return (r_rel->abfd == NULL);
e0001a05
NC
4933}
4934
4935
43cd72b9 4936static bfd_vma
7fa3d080 4937r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4938{
43cd72b9
BW
4939 bfd_vma target_offset;
4940 unsigned long r_symndx;
e0001a05 4941
43cd72b9
BW
4942 BFD_ASSERT (!r_reloc_is_const (r_rel));
4943 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4944 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4945 return (target_offset + r_rel->rela.r_addend);
4946}
e0001a05 4947
e0001a05 4948
43cd72b9 4949static struct elf_link_hash_entry *
7fa3d080 4950r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4951{
43cd72b9
BW
4952 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4953 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4954}
e0001a05 4955
43cd72b9
BW
4956
4957static asection *
7fa3d080 4958r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4959{
4960 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4961 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4962}
e0001a05
NC
4963
4964
4965static bfd_boolean
7fa3d080 4966r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4967{
43cd72b9
BW
4968 asection *sec;
4969 if (r_rel == NULL)
e0001a05 4970 return FALSE;
e0001a05 4971
43cd72b9
BW
4972 sec = r_reloc_get_section (r_rel);
4973 if (sec == bfd_abs_section_ptr
4974 || sec == bfd_com_section_ptr
4975 || sec == bfd_und_section_ptr)
4976 return FALSE;
4977 return TRUE;
e0001a05
NC
4978}
4979
4980
7fa3d080
BW
4981static void
4982r_reloc_init (r_reloc *r_rel,
4983 bfd *abfd,
4984 Elf_Internal_Rela *irel,
4985 bfd_byte *contents,
4986 bfd_size_type content_length)
4987{
4988 int r_type;
4989 reloc_howto_type *howto;
4990
4991 if (irel)
4992 {
4993 r_rel->rela = *irel;
4994 r_rel->abfd = abfd;
4995 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4996 r_rel->virtual_offset = 0;
4997 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4998 howto = &elf_howto_table[r_type];
4999 if (howto->partial_inplace)
5000 {
5001 bfd_vma inplace_val;
5002 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5003
5004 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5005 r_rel->target_offset += inplace_val;
5006 }
5007 }
5008 else
5009 memset (r_rel, 0, sizeof (r_reloc));
5010}
5011
5012
43cd72b9
BW
5013#if DEBUG
5014
e0001a05 5015static void
7fa3d080 5016print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 5017{
43cd72b9
BW
5018 if (r_reloc_is_defined (r_rel))
5019 {
5020 asection *sec = r_reloc_get_section (r_rel);
5021 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5022 }
5023 else if (r_reloc_get_hash_entry (r_rel))
5024 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5025 else
5026 fprintf (fp, " ?? + ");
e0001a05 5027
43cd72b9
BW
5028 fprintf_vma (fp, r_rel->target_offset);
5029 if (r_rel->virtual_offset)
5030 {
5031 fprintf (fp, " + ");
5032 fprintf_vma (fp, r_rel->virtual_offset);
5033 }
68ffbac6 5034
43cd72b9
BW
5035 fprintf (fp, ")");
5036}
e0001a05 5037
43cd72b9 5038#endif /* DEBUG */
e0001a05 5039
43cd72b9
BW
5040\f
5041/* source_reloc: relocations that reference literals. */
e0001a05 5042
43cd72b9
BW
5043/* To determine whether literals can be coalesced, we need to first
5044 record all the relocations that reference the literals. The
5045 source_reloc structure below is used for this purpose. The
5046 source_reloc entries are kept in a per-literal-section array, sorted
5047 by offset within the literal section (i.e., target offset).
e0001a05 5048
43cd72b9
BW
5049 The source_sec and r_rel.rela.r_offset fields identify the source of
5050 the relocation. The r_rel field records the relocation value, i.e.,
5051 the offset of the literal being referenced. The opnd field is needed
5052 to determine the range of the immediate field to which the relocation
5053 applies, so we can determine whether another literal with the same
5054 value is within range. The is_null field is true when the relocation
5055 is being removed (e.g., when an L32R is being removed due to a CALLX
5056 that is converted to a direct CALL). */
e0001a05 5057
43cd72b9
BW
5058typedef struct source_reloc_struct source_reloc;
5059
5060struct source_reloc_struct
e0001a05 5061{
43cd72b9
BW
5062 asection *source_sec;
5063 r_reloc r_rel;
5064 xtensa_opcode opcode;
5065 int opnd;
5066 bfd_boolean is_null;
5067 bfd_boolean is_abs_literal;
5068};
e0001a05 5069
e0001a05 5070
e0001a05 5071static void
7fa3d080
BW
5072init_source_reloc (source_reloc *reloc,
5073 asection *source_sec,
5074 const r_reloc *r_rel,
5075 xtensa_opcode opcode,
5076 int opnd,
5077 bfd_boolean is_abs_literal)
e0001a05 5078{
43cd72b9
BW
5079 reloc->source_sec = source_sec;
5080 reloc->r_rel = *r_rel;
5081 reloc->opcode = opcode;
5082 reloc->opnd = opnd;
5083 reloc->is_null = FALSE;
5084 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5085}
5086
e0001a05 5087
43cd72b9
BW
5088/* Find the source_reloc for a particular source offset and relocation
5089 type. Note that the array is sorted by _target_ offset, so this is
5090 just a linear search. */
e0001a05 5091
43cd72b9 5092static source_reloc *
7fa3d080
BW
5093find_source_reloc (source_reloc *src_relocs,
5094 int src_count,
5095 asection *sec,
5096 Elf_Internal_Rela *irel)
e0001a05 5097{
43cd72b9 5098 int i;
e0001a05 5099
43cd72b9
BW
5100 for (i = 0; i < src_count; i++)
5101 {
5102 if (src_relocs[i].source_sec == sec
5103 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5104 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5105 == ELF32_R_TYPE (irel->r_info)))
5106 return &src_relocs[i];
5107 }
e0001a05 5108
43cd72b9 5109 return NULL;
e0001a05
NC
5110}
5111
5112
43cd72b9 5113static int
7fa3d080 5114source_reloc_compare (const void *ap, const void *bp)
e0001a05 5115{
43cd72b9
BW
5116 const source_reloc *a = (const source_reloc *) ap;
5117 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5118
43cd72b9
BW
5119 if (a->r_rel.target_offset != b->r_rel.target_offset)
5120 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5121
43cd72b9
BW
5122 /* We don't need to sort on these criteria for correctness,
5123 but enforcing a more strict ordering prevents unstable qsort
5124 from behaving differently with different implementations.
5125 Without the code below we get correct but different results
5126 on Solaris 2.7 and 2.8. We would like to always produce the
5127 same results no matter the host. */
5128
5129 if ((!a->is_null) - (!b->is_null))
5130 return ((!a->is_null) - (!b->is_null));
5131 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5132}
5133
43cd72b9
BW
5134\f
5135/* Literal values and value hash tables. */
e0001a05 5136
43cd72b9
BW
5137/* Literals with the same value can be coalesced. The literal_value
5138 structure records the value of a literal: the "r_rel" field holds the
5139 information from the relocation on the literal (if there is one) and
5140 the "value" field holds the contents of the literal word itself.
e0001a05 5141
43cd72b9
BW
5142 The value_map structure records a literal value along with the
5143 location of a literal holding that value. The value_map hash table
5144 is indexed by the literal value, so that we can quickly check if a
5145 particular literal value has been seen before and is thus a candidate
5146 for coalescing. */
e0001a05 5147
43cd72b9
BW
5148typedef struct literal_value_struct literal_value;
5149typedef struct value_map_struct value_map;
5150typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5151
43cd72b9 5152struct literal_value_struct
e0001a05 5153{
68ffbac6 5154 r_reloc r_rel;
43cd72b9
BW
5155 unsigned long value;
5156 bfd_boolean is_abs_literal;
5157};
5158
5159struct value_map_struct
5160{
5161 literal_value val; /* The literal value. */
5162 r_reloc loc; /* Location of the literal. */
5163 value_map *next;
5164};
5165
5166struct value_map_hash_table_struct
5167{
5168 unsigned bucket_count;
5169 value_map **buckets;
5170 unsigned count;
5171 bfd_boolean has_last_loc;
5172 r_reloc last_loc;
5173};
5174
5175
e0001a05 5176static void
7fa3d080
BW
5177init_literal_value (literal_value *lit,
5178 const r_reloc *r_rel,
5179 unsigned long value,
5180 bfd_boolean is_abs_literal)
e0001a05 5181{
43cd72b9
BW
5182 lit->r_rel = *r_rel;
5183 lit->value = value;
5184 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5185}
5186
5187
43cd72b9 5188static bfd_boolean
7fa3d080
BW
5189literal_value_equal (const literal_value *src1,
5190 const literal_value *src2,
5191 bfd_boolean final_static_link)
e0001a05 5192{
43cd72b9 5193 struct elf_link_hash_entry *h1, *h2;
e0001a05 5194
68ffbac6 5195 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
43cd72b9 5196 return FALSE;
e0001a05 5197
43cd72b9
BW
5198 if (r_reloc_is_const (&src1->r_rel))
5199 return (src1->value == src2->value);
e0001a05 5200
43cd72b9
BW
5201 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5202 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5203 return FALSE;
e0001a05 5204
43cd72b9
BW
5205 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5206 return FALSE;
68ffbac6 5207
43cd72b9
BW
5208 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5209 return FALSE;
5210
5211 if (src1->value != src2->value)
5212 return FALSE;
68ffbac6 5213
43cd72b9
BW
5214 /* Now check for the same section (if defined) or the same elf_hash
5215 (if undefined or weak). */
5216 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5217 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5218 if (r_reloc_is_defined (&src1->r_rel)
5219 && (final_static_link
5220 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5221 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5222 {
5223 if (r_reloc_get_section (&src1->r_rel)
5224 != r_reloc_get_section (&src2->r_rel))
5225 return FALSE;
5226 }
5227 else
5228 {
5229 /* Require that the hash entries (i.e., symbols) be identical. */
5230 if (h1 != h2 || h1 == 0)
5231 return FALSE;
5232 }
5233
5234 if (src1->is_abs_literal != src2->is_abs_literal)
5235 return FALSE;
5236
5237 return TRUE;
e0001a05
NC
5238}
5239
e0001a05 5240
43cd72b9
BW
5241/* Must be power of 2. */
5242#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5243
43cd72b9 5244static value_map_hash_table *
7fa3d080 5245value_map_hash_table_init (void)
43cd72b9
BW
5246{
5247 value_map_hash_table *values;
e0001a05 5248
43cd72b9
BW
5249 values = (value_map_hash_table *)
5250 bfd_zmalloc (sizeof (value_map_hash_table));
5251 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5252 values->count = 0;
5253 values->buckets = (value_map **)
5254 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
68ffbac6 5255 if (values->buckets == NULL)
43cd72b9
BW
5256 {
5257 free (values);
5258 return NULL;
5259 }
5260 values->has_last_loc = FALSE;
5261
5262 return values;
5263}
5264
5265
5266static void
7fa3d080 5267value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5268{
43cd72b9
BW
5269 free (table->buckets);
5270 free (table);
5271}
5272
5273
5274static unsigned
7fa3d080 5275hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5276{
5277 return (val >> 2) + (val >> 10);
5278}
5279
5280
5281static unsigned
7fa3d080 5282literal_value_hash (const literal_value *src)
43cd72b9
BW
5283{
5284 unsigned hash_val;
e0001a05 5285
43cd72b9
BW
5286 hash_val = hash_bfd_vma (src->value);
5287 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5288 {
43cd72b9
BW
5289 void *sec_or_hash;
5290
5291 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5292 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5293 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
68ffbac6 5294
43cd72b9
BW
5295 /* Now check for the same section and the same elf_hash. */
5296 if (r_reloc_is_defined (&src->r_rel))
5297 sec_or_hash = r_reloc_get_section (&src->r_rel);
5298 else
5299 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5300 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5301 }
43cd72b9
BW
5302 return hash_val;
5303}
e0001a05 5304
e0001a05 5305
43cd72b9 5306/* Check if the specified literal_value has been seen before. */
e0001a05 5307
43cd72b9 5308static value_map *
7fa3d080
BW
5309value_map_get_cached_value (value_map_hash_table *map,
5310 const literal_value *val,
5311 bfd_boolean final_static_link)
43cd72b9
BW
5312{
5313 value_map *map_e;
5314 value_map *bucket;
5315 unsigned idx;
5316
5317 idx = literal_value_hash (val);
5318 idx = idx & (map->bucket_count - 1);
5319 bucket = map->buckets[idx];
5320 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5321 {
43cd72b9
BW
5322 if (literal_value_equal (&map_e->val, val, final_static_link))
5323 return map_e;
5324 }
5325 return NULL;
5326}
e0001a05 5327
e0001a05 5328
43cd72b9
BW
5329/* Record a new literal value. It is illegal to call this if VALUE
5330 already has an entry here. */
5331
5332static value_map *
7fa3d080
BW
5333add_value_map (value_map_hash_table *map,
5334 const literal_value *val,
5335 const r_reloc *loc,
5336 bfd_boolean final_static_link)
43cd72b9
BW
5337{
5338 value_map **bucket_p;
5339 unsigned idx;
5340
5341 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5342 if (val_e == NULL)
5343 {
5344 bfd_set_error (bfd_error_no_memory);
5345 return NULL;
e0001a05
NC
5346 }
5347
43cd72b9
BW
5348 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5349 val_e->val = *val;
5350 val_e->loc = *loc;
5351
5352 idx = literal_value_hash (val);
5353 idx = idx & (map->bucket_count - 1);
5354 bucket_p = &map->buckets[idx];
5355
5356 val_e->next = *bucket_p;
5357 *bucket_p = val_e;
5358 map->count++;
5359 /* FIXME: Consider resizing the hash table if we get too many entries. */
68ffbac6 5360
43cd72b9 5361 return val_e;
e0001a05
NC
5362}
5363
43cd72b9
BW
5364\f
5365/* Lists of text actions (ta_) for narrowing, widening, longcall
5366 conversion, space fill, code & literal removal, etc. */
5367
5368/* The following text actions are generated:
5369
5370 "ta_remove_insn" remove an instruction or instructions
5371 "ta_remove_longcall" convert longcall to call
5372 "ta_convert_longcall" convert longcall to nop/call
5373 "ta_narrow_insn" narrow a wide instruction
5374 "ta_widen" widen a narrow instruction
5375 "ta_fill" add fill or remove fill
5376 removed < 0 is a fill; branches to the fill address will be
5377 changed to address + fill size (e.g., address - removed)
5378 removed >= 0 branches to the fill address will stay unchanged
5379 "ta_remove_literal" remove a literal; this action is
5380 indicated when a literal is removed
5381 or replaced.
5382 "ta_add_literal" insert a new literal; this action is
5383 indicated when a literal has been moved.
5384 It may use a virtual_offset because
5385 multiple literals can be placed at the
5386 same location.
5387
5388 For each of these text actions, we also record the number of bytes
5389 removed by performing the text action. In the case of a "ta_widen"
5390 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5391
5392typedef struct text_action_struct text_action;
5393typedef struct text_action_list_struct text_action_list;
5394typedef enum text_action_enum_t text_action_t;
5395
5396enum text_action_enum_t
5397{
5398 ta_none,
5399 ta_remove_insn, /* removed = -size */
5400 ta_remove_longcall, /* removed = -size */
5401 ta_convert_longcall, /* removed = 0 */
5402 ta_narrow_insn, /* removed = -1 */
5403 ta_widen_insn, /* removed = +1 */
5404 ta_fill, /* removed = +size */
5405 ta_remove_literal,
5406 ta_add_literal
5407};
e0001a05 5408
e0001a05 5409
43cd72b9
BW
5410/* Structure for a text action record. */
5411struct text_action_struct
e0001a05 5412{
43cd72b9
BW
5413 text_action_t action;
5414 asection *sec; /* Optional */
5415 bfd_vma offset;
5416 bfd_vma virtual_offset; /* Zero except for adding literals. */
5417 int removed_bytes;
5418 literal_value value; /* Only valid when adding literals. */
e0001a05 5419
43cd72b9
BW
5420 text_action *next;
5421};
e0001a05 5422
e0001a05 5423
43cd72b9
BW
5424/* List of all of the actions taken on a text section. */
5425struct text_action_list_struct
5426{
5427 text_action *head;
5428};
e0001a05 5429
e0001a05 5430
7fa3d080
BW
5431static text_action *
5432find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
5433{
5434 text_action **m_p;
5435
5436 /* It is not necessary to fill at the end of a section. */
5437 if (sec->size == offset)
5438 return NULL;
5439
7fa3d080 5440 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5441 {
5442 text_action *t = *m_p;
5443 /* When the action is another fill at the same address,
5444 just increase the size. */
5445 if (t->offset == offset && t->action == ta_fill)
5446 return t;
5447 }
5448 return NULL;
5449}
5450
5451
5452static int
7fa3d080
BW
5453compute_removed_action_diff (const text_action *ta,
5454 asection *sec,
5455 bfd_vma offset,
5456 int removed,
5457 int removable_space)
43cd72b9
BW
5458{
5459 int new_removed;
5460 int current_removed = 0;
5461
7fa3d080 5462 if (ta)
43cd72b9
BW
5463 current_removed = ta->removed_bytes;
5464
5465 BFD_ASSERT (ta == NULL || ta->offset == offset);
5466 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5467
5468 /* It is not necessary to fill at the end of a section. Clean this up. */
5469 if (sec->size == offset)
5470 new_removed = removable_space - 0;
5471 else
5472 {
5473 int space;
5474 int added = -removed - current_removed;
5475 /* Ignore multiples of the section alignment. */
5476 added = ((1 << sec->alignment_power) - 1) & added;
5477 new_removed = (-added);
5478
5479 /* Modify for removable. */
5480 space = removable_space - new_removed;
5481 new_removed = (removable_space
5482 - (((1 << sec->alignment_power) - 1) & space));
5483 }
5484 return (new_removed - current_removed);
5485}
5486
5487
7fa3d080
BW
5488static void
5489adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5490{
5491 ta->removed_bytes += fill_diff;
5492}
5493
5494
5495/* Add a modification action to the text. For the case of adding or
5496 removing space, modify any current fill and assume that
5497 "unreachable_space" bytes can be freely contracted. Note that a
5498 negative removed value is a fill. */
5499
68ffbac6 5500static void
7fa3d080
BW
5501text_action_add (text_action_list *l,
5502 text_action_t action,
5503 asection *sec,
5504 bfd_vma offset,
5505 int removed)
43cd72b9
BW
5506{
5507 text_action **m_p;
5508 text_action *ta;
5509
5510 /* It is not necessary to fill at the end of a section. */
5511 if (action == ta_fill && sec->size == offset)
5512 return;
5513
5514 /* It is not necessary to fill 0 bytes. */
5515 if (action == ta_fill && removed == 0)
5516 return;
5517
7fa3d080 5518 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5519 {
5520 text_action *t = *m_p;
68ffbac6
L
5521
5522 if (action == ta_fill)
43cd72b9 5523 {
658ff993
SA
5524 /* When the action is another fill at the same address,
5525 just increase the size. */
5526 if (t->offset == offset && t->action == ta_fill)
5527 {
5528 t->removed_bytes += removed;
5529 return;
5530 }
5531 /* Fills need to happen before widens so that we don't
5532 insert fill bytes into the instruction stream. */
5533 if (t->offset == offset && t->action == ta_widen_insn)
5534 break;
43cd72b9
BW
5535 }
5536 }
5537
5538 /* Create a new record and fill it up. */
5539 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5540 ta->action = action;
5541 ta->sec = sec;
5542 ta->offset = offset;
5543 ta->removed_bytes = removed;
5544 ta->next = (*m_p);
5545 *m_p = ta;
5546}
5547
5548
5549static void
7fa3d080
BW
5550text_action_add_literal (text_action_list *l,
5551 text_action_t action,
5552 const r_reloc *loc,
5553 const literal_value *value,
5554 int removed)
43cd72b9
BW
5555{
5556 text_action **m_p;
5557 text_action *ta;
5558 asection *sec = r_reloc_get_section (loc);
5559 bfd_vma offset = loc->target_offset;
5560 bfd_vma virtual_offset = loc->virtual_offset;
5561
5562 BFD_ASSERT (action == ta_add_literal);
5563
5564 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5565 {
5566 if ((*m_p)->offset > offset
5567 && ((*m_p)->offset != offset
5568 || (*m_p)->virtual_offset > virtual_offset))
5569 break;
5570 }
5571
5572 /* Create a new record and fill it up. */
5573 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5574 ta->action = action;
5575 ta->sec = sec;
5576 ta->offset = offset;
5577 ta->virtual_offset = virtual_offset;
5578 ta->value = *value;
5579 ta->removed_bytes = removed;
5580 ta->next = (*m_p);
5581 *m_p = ta;
5582}
5583
5584
03669f1c
BW
5585/* Find the total offset adjustment for the relaxations specified by
5586 text_actions, beginning from a particular starting action. This is
5587 typically used from offset_with_removed_text to search an entire list of
5588 actions, but it may also be called directly when adjusting adjacent offsets
5589 so that each search may begin where the previous one left off. */
5590
5591static int
5592removed_by_actions (text_action **p_start_action,
5593 bfd_vma offset,
5594 bfd_boolean before_fill)
43cd72b9
BW
5595{
5596 text_action *r;
5597 int removed = 0;
5598
03669f1c
BW
5599 r = *p_start_action;
5600 while (r)
43cd72b9 5601 {
03669f1c
BW
5602 if (r->offset > offset)
5603 break;
5604
5605 if (r->offset == offset
5606 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5607 break;
5608
5609 removed += r->removed_bytes;
5610
5611 r = r->next;
43cd72b9
BW
5612 }
5613
03669f1c
BW
5614 *p_start_action = r;
5615 return removed;
5616}
5617
5618
68ffbac6 5619static bfd_vma
03669f1c
BW
5620offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5621{
5622 text_action *r = action_list->head;
5623 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
5624}
5625
5626
03e94c08
BW
5627static unsigned
5628action_list_count (text_action_list *action_list)
5629{
5630 text_action *r = action_list->head;
5631 unsigned count = 0;
5632 for (r = action_list->head; r != NULL; r = r->next)
5633 {
5634 count++;
5635 }
5636 return count;
5637}
5638
5639
43cd72b9
BW
5640/* The find_insn_action routine will only find non-fill actions. */
5641
7fa3d080
BW
5642static text_action *
5643find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
5644{
5645 text_action *t;
5646 for (t = action_list->head; t; t = t->next)
5647 {
5648 if (t->offset == offset)
5649 {
5650 switch (t->action)
5651 {
5652 case ta_none:
5653 case ta_fill:
5654 break;
5655 case ta_remove_insn:
5656 case ta_remove_longcall:
5657 case ta_convert_longcall:
5658 case ta_narrow_insn:
5659 case ta_widen_insn:
5660 return t;
5661 case ta_remove_literal:
5662 case ta_add_literal:
5663 BFD_ASSERT (0);
5664 break;
5665 }
5666 }
5667 }
5668 return NULL;
5669}
5670
5671
5672#if DEBUG
5673
5674static void
7fa3d080 5675print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
5676{
5677 text_action *r;
5678
5679 fprintf (fp, "Text Action\n");
5680 for (r = action_list->head; r != NULL; r = r->next)
5681 {
5682 const char *t = "unknown";
5683 switch (r->action)
5684 {
5685 case ta_remove_insn:
5686 t = "remove_insn"; break;
5687 case ta_remove_longcall:
5688 t = "remove_longcall"; break;
5689 case ta_convert_longcall:
c46082c8 5690 t = "convert_longcall"; break;
43cd72b9
BW
5691 case ta_narrow_insn:
5692 t = "narrow_insn"; break;
5693 case ta_widen_insn:
5694 t = "widen_insn"; break;
5695 case ta_fill:
5696 t = "fill"; break;
5697 case ta_none:
5698 t = "none"; break;
5699 case ta_remove_literal:
5700 t = "remove_literal"; break;
5701 case ta_add_literal:
5702 t = "add_literal"; break;
5703 }
5704
5705 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5706 r->sec->owner->filename,
9ccb8af9 5707 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
43cd72b9
BW
5708 }
5709}
5710
5711#endif /* DEBUG */
5712
5713\f
5714/* Lists of literals being coalesced or removed. */
5715
5716/* In the usual case, the literal identified by "from" is being
5717 coalesced with another literal identified by "to". If the literal is
5718 unused and is being removed altogether, "to.abfd" will be NULL.
5719 The removed_literal entries are kept on a per-section list, sorted
5720 by the "from" offset field. */
5721
5722typedef struct removed_literal_struct removed_literal;
5723typedef struct removed_literal_list_struct removed_literal_list;
5724
5725struct removed_literal_struct
5726{
5727 r_reloc from;
5728 r_reloc to;
5729 removed_literal *next;
5730};
5731
5732struct removed_literal_list_struct
5733{
5734 removed_literal *head;
5735 removed_literal *tail;
5736};
5737
5738
43cd72b9
BW
5739/* Record that the literal at "from" is being removed. If "to" is not
5740 NULL, the "from" literal is being coalesced with the "to" literal. */
5741
5742static void
7fa3d080
BW
5743add_removed_literal (removed_literal_list *removed_list,
5744 const r_reloc *from,
5745 const r_reloc *to)
43cd72b9
BW
5746{
5747 removed_literal *r, *new_r, *next_r;
5748
5749 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5750
5751 new_r->from = *from;
5752 if (to)
5753 new_r->to = *to;
5754 else
5755 new_r->to.abfd = NULL;
5756 new_r->next = NULL;
68ffbac6 5757
43cd72b9 5758 r = removed_list->head;
68ffbac6 5759 if (r == NULL)
43cd72b9
BW
5760 {
5761 removed_list->head = new_r;
5762 removed_list->tail = new_r;
5763 }
5764 /* Special check for common case of append. */
5765 else if (removed_list->tail->from.target_offset < from->target_offset)
5766 {
5767 removed_list->tail->next = new_r;
5768 removed_list->tail = new_r;
5769 }
5770 else
5771 {
68ffbac6 5772 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5773 {
5774 r = r->next;
5775 }
5776 next_r = r->next;
5777 r->next = new_r;
5778 new_r->next = next_r;
5779 if (next_r == NULL)
5780 removed_list->tail = new_r;
5781 }
5782}
5783
5784
5785/* Check if the list of removed literals contains an entry for the
5786 given address. Return the entry if found. */
5787
5788static removed_literal *
7fa3d080 5789find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
5790{
5791 removed_literal *r = removed_list->head;
5792 while (r && r->from.target_offset < addr)
5793 r = r->next;
5794 if (r && r->from.target_offset == addr)
5795 return r;
5796 return NULL;
5797}
5798
5799
5800#if DEBUG
5801
5802static void
7fa3d080 5803print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5804{
5805 removed_literal *r;
5806 r = removed_list->head;
5807 if (r)
5808 fprintf (fp, "Removed Literals\n");
5809 for (; r != NULL; r = r->next)
5810 {
5811 print_r_reloc (fp, &r->from);
5812 fprintf (fp, " => ");
5813 if (r->to.abfd == NULL)
5814 fprintf (fp, "REMOVED");
5815 else
5816 print_r_reloc (fp, &r->to);
5817 fprintf (fp, "\n");
5818 }
5819}
5820
5821#endif /* DEBUG */
5822
5823\f
5824/* Per-section data for relaxation. */
5825
5826typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5827
5828struct xtensa_relax_info_struct
5829{
5830 bfd_boolean is_relaxable_literal_section;
5831 bfd_boolean is_relaxable_asm_section;
5832 int visited; /* Number of times visited. */
5833
5834 source_reloc *src_relocs; /* Array[src_count]. */
5835 int src_count;
5836 int src_next; /* Next src_relocs entry to assign. */
5837
5838 removed_literal_list removed_list;
5839 text_action_list action_list;
5840
5841 reloc_bfd_fix *fix_list;
5842 reloc_bfd_fix *fix_array;
5843 unsigned fix_array_count;
5844
5845 /* Support for expanding the reloc array that is stored
5846 in the section structure. If the relocations have been
5847 reallocated, the newly allocated relocations will be referenced
5848 here along with the actual size allocated. The relocation
5849 count will always be found in the section structure. */
68ffbac6 5850 Elf_Internal_Rela *allocated_relocs;
43cd72b9
BW
5851 unsigned relocs_count;
5852 unsigned allocated_relocs_count;
5853};
5854
5855struct elf_xtensa_section_data
5856{
5857 struct bfd_elf_section_data elf;
5858 xtensa_relax_info relax_info;
5859};
5860
43cd72b9
BW
5861
5862static bfd_boolean
7fa3d080 5863elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5864{
f592407e
AM
5865 if (!sec->used_by_bfd)
5866 {
5867 struct elf_xtensa_section_data *sdata;
5868 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5869
f592407e
AM
5870 sdata = bfd_zalloc (abfd, amt);
5871 if (sdata == NULL)
5872 return FALSE;
5873 sec->used_by_bfd = sdata;
5874 }
43cd72b9
BW
5875
5876 return _bfd_elf_new_section_hook (abfd, sec);
5877}
5878
5879
7fa3d080
BW
5880static xtensa_relax_info *
5881get_xtensa_relax_info (asection *sec)
5882{
5883 struct elf_xtensa_section_data *section_data;
5884
5885 /* No info available if no section or if it is an output section. */
5886 if (!sec || sec == sec->output_section)
5887 return NULL;
5888
5889 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5890 return &section_data->relax_info;
5891}
5892
5893
43cd72b9 5894static void
7fa3d080 5895init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5896{
5897 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5898
5899 relax_info->is_relaxable_literal_section = FALSE;
5900 relax_info->is_relaxable_asm_section = FALSE;
5901 relax_info->visited = 0;
5902
5903 relax_info->src_relocs = NULL;
5904 relax_info->src_count = 0;
5905 relax_info->src_next = 0;
5906
5907 relax_info->removed_list.head = NULL;
5908 relax_info->removed_list.tail = NULL;
5909
5910 relax_info->action_list.head = NULL;
5911
5912 relax_info->fix_list = NULL;
5913 relax_info->fix_array = NULL;
5914 relax_info->fix_array_count = 0;
5915
68ffbac6 5916 relax_info->allocated_relocs = NULL;
43cd72b9
BW
5917 relax_info->relocs_count = 0;
5918 relax_info->allocated_relocs_count = 0;
5919}
5920
43cd72b9
BW
5921\f
5922/* Coalescing literals may require a relocation to refer to a section in
5923 a different input file, but the standard relocation information
5924 cannot express that. Instead, the reloc_bfd_fix structures are used
5925 to "fix" the relocations that refer to sections in other input files.
5926 These structures are kept on per-section lists. The "src_type" field
5927 records the relocation type in case there are multiple relocations on
5928 the same location. FIXME: This is ugly; an alternative might be to
5929 add new symbols with the "owner" field to some other input file. */
5930
5931struct reloc_bfd_fix_struct
5932{
5933 asection *src_sec;
5934 bfd_vma src_offset;
5935 unsigned src_type; /* Relocation type. */
68ffbac6 5936
43cd72b9
BW
5937 asection *target_sec;
5938 bfd_vma target_offset;
5939 bfd_boolean translated;
68ffbac6 5940
43cd72b9
BW
5941 reloc_bfd_fix *next;
5942};
5943
5944
43cd72b9 5945static reloc_bfd_fix *
7fa3d080
BW
5946reloc_bfd_fix_init (asection *src_sec,
5947 bfd_vma src_offset,
5948 unsigned src_type,
7fa3d080
BW
5949 asection *target_sec,
5950 bfd_vma target_offset,
5951 bfd_boolean translated)
43cd72b9
BW
5952{
5953 reloc_bfd_fix *fix;
5954
5955 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5956 fix->src_sec = src_sec;
5957 fix->src_offset = src_offset;
5958 fix->src_type = src_type;
43cd72b9
BW
5959 fix->target_sec = target_sec;
5960 fix->target_offset = target_offset;
5961 fix->translated = translated;
5962
5963 return fix;
5964}
5965
5966
5967static void
7fa3d080 5968add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5969{
5970 xtensa_relax_info *relax_info;
5971
5972 relax_info = get_xtensa_relax_info (src_sec);
5973 fix->next = relax_info->fix_list;
5974 relax_info->fix_list = fix;
5975}
5976
5977
5978static int
7fa3d080 5979fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5980{
5981 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5982 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5983
5984 if (a->src_offset != b->src_offset)
5985 return (a->src_offset - b->src_offset);
5986 return (a->src_type - b->src_type);
5987}
5988
5989
5990static void
7fa3d080 5991cache_fix_array (asection *sec)
43cd72b9
BW
5992{
5993 unsigned i, count = 0;
5994 reloc_bfd_fix *r;
5995 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5996
5997 if (relax_info == NULL)
5998 return;
5999 if (relax_info->fix_list == NULL)
6000 return;
6001
6002 for (r = relax_info->fix_list; r != NULL; r = r->next)
6003 count++;
6004
6005 relax_info->fix_array =
6006 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6007 relax_info->fix_array_count = count;
6008
6009 r = relax_info->fix_list;
6010 for (i = 0; i < count; i++, r = r->next)
6011 {
6012 relax_info->fix_array[count - 1 - i] = *r;
6013 relax_info->fix_array[count - 1 - i].next = NULL;
6014 }
6015
6016 qsort (relax_info->fix_array, relax_info->fix_array_count,
6017 sizeof (reloc_bfd_fix), fix_compare);
6018}
6019
6020
6021static reloc_bfd_fix *
7fa3d080 6022get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6023{
6024 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6025 reloc_bfd_fix *rv;
6026 reloc_bfd_fix key;
6027
6028 if (relax_info == NULL)
6029 return NULL;
6030 if (relax_info->fix_list == NULL)
6031 return NULL;
6032
6033 if (relax_info->fix_array == NULL)
6034 cache_fix_array (sec);
6035
6036 key.src_offset = offset;
6037 key.src_type = type;
6038 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6039 sizeof (reloc_bfd_fix), fix_compare);
6040 return rv;
6041}
6042
6043\f
6044/* Section caching. */
6045
6046typedef struct section_cache_struct section_cache_t;
6047
6048struct section_cache_struct
6049{
6050 asection *sec;
6051
6052 bfd_byte *contents; /* Cache of the section contents. */
6053 bfd_size_type content_length;
6054
6055 property_table_entry *ptbl; /* Cache of the section property table. */
6056 unsigned pte_count;
6057
6058 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6059 unsigned reloc_count;
6060};
6061
6062
7fa3d080
BW
6063static void
6064init_section_cache (section_cache_t *sec_cache)
6065{
6066 memset (sec_cache, 0, sizeof (*sec_cache));
6067}
43cd72b9
BW
6068
6069
6070static void
65e911f9 6071free_section_cache (section_cache_t *sec_cache)
43cd72b9 6072{
7fa3d080
BW
6073 if (sec_cache->sec)
6074 {
6075 release_contents (sec_cache->sec, sec_cache->contents);
6076 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6077 if (sec_cache->ptbl)
6078 free (sec_cache->ptbl);
7fa3d080 6079 }
43cd72b9
BW
6080}
6081
6082
6083static bfd_boolean
7fa3d080
BW
6084section_cache_section (section_cache_t *sec_cache,
6085 asection *sec,
6086 struct bfd_link_info *link_info)
43cd72b9
BW
6087{
6088 bfd *abfd;
6089 property_table_entry *prop_table = NULL;
6090 int ptblsize = 0;
6091 bfd_byte *contents = NULL;
6092 Elf_Internal_Rela *internal_relocs = NULL;
6093 bfd_size_type sec_size;
6094
6095 if (sec == NULL)
6096 return FALSE;
6097 if (sec == sec_cache->sec)
6098 return TRUE;
6099
6100 abfd = sec->owner;
6101 sec_size = bfd_get_section_limit (abfd, sec);
6102
6103 /* Get the contents. */
6104 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6105 if (contents == NULL && sec_size != 0)
6106 goto err;
6107
6108 /* Get the relocations. */
6109 internal_relocs = retrieve_internal_relocs (abfd, sec,
6110 link_info->keep_memory);
6111
6112 /* Get the entry table. */
6113 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6114 XTENSA_PROP_SEC_NAME, FALSE);
6115 if (ptblsize < 0)
6116 goto err;
6117
6118 /* Fill in the new section cache. */
65e911f9
AM
6119 free_section_cache (sec_cache);
6120 init_section_cache (sec_cache);
43cd72b9
BW
6121
6122 sec_cache->sec = sec;
6123 sec_cache->contents = contents;
6124 sec_cache->content_length = sec_size;
6125 sec_cache->relocs = internal_relocs;
6126 sec_cache->reloc_count = sec->reloc_count;
6127 sec_cache->pte_count = ptblsize;
6128 sec_cache->ptbl = prop_table;
6129
6130 return TRUE;
6131
6132 err:
6133 release_contents (sec, contents);
6134 release_internal_relocs (sec, internal_relocs);
6135 if (prop_table)
6136 free (prop_table);
6137 return FALSE;
6138}
6139
43cd72b9
BW
6140\f
6141/* Extended basic blocks. */
6142
6143/* An ebb_struct represents an Extended Basic Block. Within this
6144 range, we guarantee that all instructions are decodable, the
6145 property table entries are contiguous, and no property table
6146 specifies a segment that cannot have instructions moved. This
6147 structure contains caches of the contents, property table and
6148 relocations for the specified section for easy use. The range is
6149 specified by ranges of indices for the byte offset, property table
6150 offsets and relocation offsets. These must be consistent. */
6151
6152typedef struct ebb_struct ebb_t;
6153
6154struct ebb_struct
6155{
6156 asection *sec;
6157
6158 bfd_byte *contents; /* Cache of the section contents. */
6159 bfd_size_type content_length;
6160
6161 property_table_entry *ptbl; /* Cache of the section property table. */
6162 unsigned pte_count;
6163
6164 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6165 unsigned reloc_count;
6166
6167 bfd_vma start_offset; /* Offset in section. */
6168 unsigned start_ptbl_idx; /* Offset in the property table. */
6169 unsigned start_reloc_idx; /* Offset in the relocations. */
6170
6171 bfd_vma end_offset;
6172 unsigned end_ptbl_idx;
6173 unsigned end_reloc_idx;
6174
6175 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6176
6177 /* The unreachable property table at the end of this set of blocks;
6178 NULL if the end is not an unreachable block. */
6179 property_table_entry *ends_unreachable;
6180};
6181
6182
6183enum ebb_target_enum
6184{
6185 EBB_NO_ALIGN = 0,
6186 EBB_DESIRE_TGT_ALIGN,
6187 EBB_REQUIRE_TGT_ALIGN,
6188 EBB_REQUIRE_LOOP_ALIGN,
6189 EBB_REQUIRE_ALIGN
6190};
6191
6192
6193/* proposed_action_struct is similar to the text_action_struct except
6194 that is represents a potential transformation, not one that will
6195 occur. We build a list of these for an extended basic block
6196 and use them to compute the actual actions desired. We must be
6197 careful that the entire set of actual actions we perform do not
6198 break any relocations that would fit if the actions were not
6199 performed. */
6200
6201typedef struct proposed_action_struct proposed_action;
6202
6203struct proposed_action_struct
6204{
6205 enum ebb_target_enum align_type; /* for the target alignment */
6206 bfd_vma alignment_pow;
6207 text_action_t action;
6208 bfd_vma offset;
6209 int removed_bytes;
6210 bfd_boolean do_action; /* If false, then we will not perform the action. */
6211};
6212
6213
6214/* The ebb_constraint_struct keeps a set of proposed actions for an
6215 extended basic block. */
6216
6217typedef struct ebb_constraint_struct ebb_constraint;
6218
6219struct ebb_constraint_struct
6220{
6221 ebb_t ebb;
6222 bfd_boolean start_movable;
6223
6224 /* Bytes of extra space at the beginning if movable. */
6225 int start_extra_space;
6226
6227 enum ebb_target_enum start_align;
6228
6229 bfd_boolean end_movable;
6230
6231 /* Bytes of extra space at the end if movable. */
6232 int end_extra_space;
6233
6234 unsigned action_count;
6235 unsigned action_allocated;
6236
6237 /* Array of proposed actions. */
6238 proposed_action *actions;
6239
6240 /* Action alignments -- one for each proposed action. */
6241 enum ebb_target_enum *action_aligns;
6242};
6243
6244
43cd72b9 6245static void
7fa3d080 6246init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6247{
6248 memset (c, 0, sizeof (ebb_constraint));
6249}
6250
6251
6252static void
7fa3d080 6253free_ebb_constraint (ebb_constraint *c)
43cd72b9 6254{
7fa3d080 6255 if (c->actions)
43cd72b9
BW
6256 free (c->actions);
6257}
6258
6259
6260static void
7fa3d080
BW
6261init_ebb (ebb_t *ebb,
6262 asection *sec,
6263 bfd_byte *contents,
6264 bfd_size_type content_length,
6265 property_table_entry *prop_table,
6266 unsigned ptblsize,
6267 Elf_Internal_Rela *internal_relocs,
6268 unsigned reloc_count)
43cd72b9
BW
6269{
6270 memset (ebb, 0, sizeof (ebb_t));
6271 ebb->sec = sec;
6272 ebb->contents = contents;
6273 ebb->content_length = content_length;
6274 ebb->ptbl = prop_table;
6275 ebb->pte_count = ptblsize;
6276 ebb->relocs = internal_relocs;
6277 ebb->reloc_count = reloc_count;
6278 ebb->start_offset = 0;
6279 ebb->end_offset = ebb->content_length - 1;
6280 ebb->start_ptbl_idx = 0;
6281 ebb->end_ptbl_idx = ptblsize;
6282 ebb->start_reloc_idx = 0;
6283 ebb->end_reloc_idx = reloc_count;
6284}
6285
6286
6287/* Extend the ebb to all decodable contiguous sections. The algorithm
6288 for building a basic block around an instruction is to push it
6289 forward until we hit the end of a section, an unreachable block or
6290 a block that cannot be transformed. Then we push it backwards
6291 searching for similar conditions. */
6292
7fa3d080
BW
6293static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6294static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6295static bfd_size_type insn_block_decodable_len
6296 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6297
43cd72b9 6298static bfd_boolean
7fa3d080 6299extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6300{
6301 if (!extend_ebb_bounds_forward (ebb))
6302 return FALSE;
6303 if (!extend_ebb_bounds_backward (ebb))
6304 return FALSE;
6305 return TRUE;
6306}
6307
6308
6309static bfd_boolean
7fa3d080 6310extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6311{
6312 property_table_entry *the_entry, *new_entry;
6313
6314 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6315
6316 /* Stop when (1) we cannot decode an instruction, (2) we are at
6317 the end of the property tables, (3) we hit a non-contiguous property
6318 table entry, (4) we hit a NO_TRANSFORM region. */
6319
6320 while (1)
6321 {
6322 bfd_vma entry_end;
6323 bfd_size_type insn_block_len;
6324
6325 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6326 insn_block_len =
6327 insn_block_decodable_len (ebb->contents, ebb->content_length,
6328 ebb->end_offset,
6329 entry_end - ebb->end_offset);
6330 if (insn_block_len != (entry_end - ebb->end_offset))
6331 {
6332 (*_bfd_error_handler)
6333 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6334 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6335 return FALSE;
6336 }
6337 ebb->end_offset += insn_block_len;
6338
6339 if (ebb->end_offset == ebb->sec->size)
6340 ebb->ends_section = TRUE;
6341
6342 /* Update the reloc counter. */
6343 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6344 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6345 < ebb->end_offset))
6346 {
6347 ebb->end_reloc_idx++;
6348 }
6349
6350 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6351 return TRUE;
6352
6353 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6354 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6355 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6356 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6357 break;
6358
6359 if (the_entry->address + the_entry->size != new_entry->address)
6360 break;
6361
6362 the_entry = new_entry;
6363 ebb->end_ptbl_idx++;
6364 }
6365
6366 /* Quick check for an unreachable or end of file just at the end. */
6367 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6368 {
6369 if (ebb->end_offset == ebb->content_length)
6370 ebb->ends_section = TRUE;
6371 }
6372 else
6373 {
6374 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6375 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6376 && the_entry->address + the_entry->size == new_entry->address)
6377 ebb->ends_unreachable = new_entry;
6378 }
6379
6380 /* Any other ending requires exact alignment. */
6381 return TRUE;
6382}
6383
6384
6385static bfd_boolean
7fa3d080 6386extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6387{
6388 property_table_entry *the_entry, *new_entry;
6389
6390 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6391
6392 /* Stop when (1) we cannot decode the instructions in the current entry.
6393 (2) we are at the beginning of the property tables, (3) we hit a
6394 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6395
6396 while (1)
6397 {
6398 bfd_vma block_begin;
6399 bfd_size_type insn_block_len;
6400
6401 block_begin = the_entry->address - ebb->sec->vma;
6402 insn_block_len =
6403 insn_block_decodable_len (ebb->contents, ebb->content_length,
6404 block_begin,
6405 ebb->start_offset - block_begin);
6406 if (insn_block_len != ebb->start_offset - block_begin)
6407 {
6408 (*_bfd_error_handler)
6409 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6410 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6411 return FALSE;
6412 }
6413 ebb->start_offset -= insn_block_len;
6414
6415 /* Update the reloc counter. */
6416 while (ebb->start_reloc_idx > 0
6417 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6418 >= ebb->start_offset))
6419 {
6420 ebb->start_reloc_idx--;
6421 }
6422
6423 if (ebb->start_ptbl_idx == 0)
6424 return TRUE;
6425
6426 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6427 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6428 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6429 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6430 return TRUE;
6431 if (new_entry->address + new_entry->size != the_entry->address)
6432 return TRUE;
6433
6434 the_entry = new_entry;
6435 ebb->start_ptbl_idx--;
6436 }
6437 return TRUE;
6438}
6439
6440
6441static bfd_size_type
7fa3d080
BW
6442insn_block_decodable_len (bfd_byte *contents,
6443 bfd_size_type content_len,
6444 bfd_vma block_offset,
6445 bfd_size_type block_len)
43cd72b9
BW
6446{
6447 bfd_vma offset = block_offset;
6448
6449 while (offset < block_offset + block_len)
6450 {
6451 bfd_size_type insn_len = 0;
6452
6453 insn_len = insn_decode_len (contents, content_len, offset);
6454 if (insn_len == 0)
6455 return (offset - block_offset);
6456 offset += insn_len;
6457 }
6458 return (offset - block_offset);
6459}
6460
6461
6462static void
7fa3d080 6463ebb_propose_action (ebb_constraint *c,
7fa3d080 6464 enum ebb_target_enum align_type,
288f74fa 6465 bfd_vma alignment_pow,
7fa3d080
BW
6466 text_action_t action,
6467 bfd_vma offset,
6468 int removed_bytes,
6469 bfd_boolean do_action)
43cd72b9 6470{
b08b5071 6471 proposed_action *act;
43cd72b9 6472
43cd72b9
BW
6473 if (c->action_allocated <= c->action_count)
6474 {
b08b5071 6475 unsigned new_allocated, i;
823fc61f 6476 proposed_action *new_actions;
b08b5071
BW
6477
6478 new_allocated = (c->action_count + 2) * 2;
823fc61f 6479 new_actions = (proposed_action *)
43cd72b9
BW
6480 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6481
6482 for (i = 0; i < c->action_count; i++)
6483 new_actions[i] = c->actions[i];
7fa3d080 6484 if (c->actions)
43cd72b9
BW
6485 free (c->actions);
6486 c->actions = new_actions;
6487 c->action_allocated = new_allocated;
6488 }
b08b5071
BW
6489
6490 act = &c->actions[c->action_count];
6491 act->align_type = align_type;
6492 act->alignment_pow = alignment_pow;
6493 act->action = action;
6494 act->offset = offset;
6495 act->removed_bytes = removed_bytes;
6496 act->do_action = do_action;
6497
43cd72b9
BW
6498 c->action_count++;
6499}
6500
6501\f
6502/* Access to internal relocations, section contents and symbols. */
6503
6504/* During relaxation, we need to modify relocations, section contents,
6505 and symbol definitions, and we need to keep the original values from
6506 being reloaded from the input files, i.e., we need to "pin" the
6507 modified values in memory. We also want to continue to observe the
6508 setting of the "keep-memory" flag. The following functions wrap the
6509 standard BFD functions to take care of this for us. */
6510
6511static Elf_Internal_Rela *
7fa3d080 6512retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6513{
6514 Elf_Internal_Rela *internal_relocs;
6515
6516 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6517 return NULL;
6518
6519 internal_relocs = elf_section_data (sec)->relocs;
6520 if (internal_relocs == NULL)
6521 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6522 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6523 return internal_relocs;
6524}
6525
6526
6527static void
7fa3d080 6528pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6529{
6530 elf_section_data (sec)->relocs = internal_relocs;
6531}
6532
6533
6534static void
7fa3d080 6535release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6536{
6537 if (internal_relocs
6538 && elf_section_data (sec)->relocs != internal_relocs)
6539 free (internal_relocs);
6540}
6541
6542
6543static bfd_byte *
7fa3d080 6544retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6545{
6546 bfd_byte *contents;
6547 bfd_size_type sec_size;
6548
6549 sec_size = bfd_get_section_limit (abfd, sec);
6550 contents = elf_section_data (sec)->this_hdr.contents;
68ffbac6 6551
43cd72b9
BW
6552 if (contents == NULL && sec_size != 0)
6553 {
6554 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6555 {
7fa3d080 6556 if (contents)
43cd72b9
BW
6557 free (contents);
6558 return NULL;
6559 }
68ffbac6 6560 if (keep_memory)
43cd72b9
BW
6561 elf_section_data (sec)->this_hdr.contents = contents;
6562 }
6563 return contents;
6564}
6565
6566
6567static void
7fa3d080 6568pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6569{
6570 elf_section_data (sec)->this_hdr.contents = contents;
6571}
6572
6573
6574static void
7fa3d080 6575release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6576{
6577 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6578 free (contents);
6579}
6580
6581
6582static Elf_Internal_Sym *
7fa3d080 6583retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6584{
6585 Elf_Internal_Shdr *symtab_hdr;
6586 Elf_Internal_Sym *isymbuf;
6587 size_t locsymcount;
6588
6589 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6590 locsymcount = symtab_hdr->sh_info;
6591
6592 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6593 if (isymbuf == NULL && locsymcount != 0)
6594 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6595 NULL, NULL, NULL);
6596
6597 /* Save the symbols for this input file so they won't be read again. */
6598 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6599 symtab_hdr->contents = (unsigned char *) isymbuf;
6600
6601 return isymbuf;
6602}
6603
6604\f
6605/* Code for link-time relaxation. */
6606
6607/* Initialization for relaxation: */
7fa3d080 6608static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6609static bfd_boolean find_relaxable_sections
7fa3d080 6610 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6611static bfd_boolean collect_source_relocs
7fa3d080 6612 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6613static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6614 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6615 bfd_boolean *);
43cd72b9 6616static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6617 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6618static bfd_boolean compute_text_actions
7fa3d080
BW
6619 (bfd *, asection *, struct bfd_link_info *);
6620static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6621static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 6622static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
6623 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6624 const xtensa_opcode *);
7fa3d080 6625static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6626static void text_action_add_proposed
7fa3d080
BW
6627 (text_action_list *, const ebb_constraint *, asection *);
6628static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6629
6630/* First pass: */
6631static bfd_boolean compute_removed_literals
7fa3d080 6632 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6633static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6634 (asection *, Elf_Internal_Rela *, bfd_vma);
68ffbac6 6635static bfd_boolean is_removable_literal
99ded152
BW
6636 (const source_reloc *, int, const source_reloc *, int, asection *,
6637 property_table_entry *, int);
43cd72b9 6638static bfd_boolean remove_dead_literal
7fa3d080 6639 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
68ffbac6 6640 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
7fa3d080
BW
6641static bfd_boolean identify_literal_placement
6642 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6643 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6644 source_reloc *, property_table_entry *, int, section_cache_t *,
6645 bfd_boolean);
6646static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6647static bfd_boolean coalesce_shared_literal
7fa3d080 6648 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6649static bfd_boolean move_shared_literal
7fa3d080
BW
6650 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6651 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6652
6653/* Second pass: */
7fa3d080
BW
6654static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6655static bfd_boolean translate_section_fixes (asection *);
6656static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6657static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6658static void shrink_dynamic_reloc_sections
7fa3d080 6659 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6660static bfd_boolean move_literal
7fa3d080
BW
6661 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6662 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6663static bfd_boolean relax_property_section
7fa3d080 6664 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6665
6666/* Third pass: */
7fa3d080 6667static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6668
6669
68ffbac6 6670static bfd_boolean
7fa3d080
BW
6671elf_xtensa_relax_section (bfd *abfd,
6672 asection *sec,
6673 struct bfd_link_info *link_info,
6674 bfd_boolean *again)
43cd72b9
BW
6675{
6676 static value_map_hash_table *values = NULL;
6677 static bfd_boolean relocations_analyzed = FALSE;
6678 xtensa_relax_info *relax_info;
6679
6680 if (!relocations_analyzed)
6681 {
6682 /* Do some overall initialization for relaxation. */
6683 values = value_map_hash_table_init ();
6684 if (values == NULL)
6685 return FALSE;
6686 relaxing_section = TRUE;
6687 if (!analyze_relocations (link_info))
6688 return FALSE;
6689 relocations_analyzed = TRUE;
6690 }
6691 *again = FALSE;
6692
6693 /* Don't mess with linker-created sections. */
6694 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6695 return TRUE;
6696
6697 relax_info = get_xtensa_relax_info (sec);
6698 BFD_ASSERT (relax_info != NULL);
6699
6700 switch (relax_info->visited)
6701 {
6702 case 0:
6703 /* Note: It would be nice to fold this pass into
6704 analyze_relocations, but it is important for this step that the
6705 sections be examined in link order. */
6706 if (!compute_removed_literals (abfd, sec, link_info, values))
6707 return FALSE;
6708 *again = TRUE;
6709 break;
6710
6711 case 1:
6712 if (values)
6713 value_map_hash_table_delete (values);
6714 values = NULL;
6715 if (!relax_section (abfd, sec, link_info))
6716 return FALSE;
6717 *again = TRUE;
6718 break;
6719
6720 case 2:
6721 if (!relax_section_symbols (abfd, sec))
6722 return FALSE;
6723 break;
6724 }
6725
6726 relax_info->visited++;
6727 return TRUE;
6728}
6729
6730\f
6731/* Initialization for relaxation. */
6732
6733/* This function is called once at the start of relaxation. It scans
6734 all the input sections and marks the ones that are relaxable (i.e.,
6735 literal sections with L32R relocations against them), and then
6736 collects source_reloc information for all the relocations against
6737 those relaxable sections. During this process, it also detects
6738 longcalls, i.e., calls relaxed by the assembler into indirect
6739 calls, that can be optimized back into direct calls. Within each
6740 extended basic block (ebb) containing an optimized longcall, it
6741 computes a set of "text actions" that can be performed to remove
6742 the L32R associated with the longcall while optionally preserving
6743 branch target alignments. */
6744
6745static bfd_boolean
7fa3d080 6746analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6747{
6748 bfd *abfd;
6749 asection *sec;
6750 bfd_boolean is_relaxable = FALSE;
6751
6752 /* Initialize the per-section relaxation info. */
c72f2fb2 6753 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6754 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6755 {
6756 init_xtensa_relax_info (sec);
6757 }
6758
6759 /* Mark relaxable sections (and count relocations against each one). */
c72f2fb2 6760 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6761 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6762 {
6763 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6764 return FALSE;
6765 }
6766
6767 /* Bail out if there are no relaxable sections. */
6768 if (!is_relaxable)
6769 return TRUE;
6770
6771 /* Allocate space for source_relocs. */
c72f2fb2 6772 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6773 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6774 {
6775 xtensa_relax_info *relax_info;
6776
6777 relax_info = get_xtensa_relax_info (sec);
6778 if (relax_info->is_relaxable_literal_section
6779 || relax_info->is_relaxable_asm_section)
6780 {
6781 relax_info->src_relocs = (source_reloc *)
6782 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6783 }
25c6282a
BW
6784 else
6785 relax_info->src_count = 0;
43cd72b9
BW
6786 }
6787
6788 /* Collect info on relocations against each relaxable section. */
c72f2fb2 6789 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6790 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6791 {
6792 if (!collect_source_relocs (abfd, sec, link_info))
6793 return FALSE;
6794 }
6795
6796 /* Compute the text actions. */
c72f2fb2 6797 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6798 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6799 {
6800 if (!compute_text_actions (abfd, sec, link_info))
6801 return FALSE;
6802 }
6803
6804 return TRUE;
6805}
6806
6807
6808/* Find all the sections that might be relaxed. The motivation for
6809 this pass is that collect_source_relocs() needs to record _all_ the
6810 relocations that target each relaxable section. That is expensive
6811 and unnecessary unless the target section is actually going to be
6812 relaxed. This pass identifies all such sections by checking if
6813 they have L32Rs pointing to them. In the process, the total number
6814 of relocations targeting each section is also counted so that we
6815 know how much space to allocate for source_relocs against each
6816 relaxable literal section. */
6817
6818static bfd_boolean
7fa3d080
BW
6819find_relaxable_sections (bfd *abfd,
6820 asection *sec,
6821 struct bfd_link_info *link_info,
6822 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6823{
6824 Elf_Internal_Rela *internal_relocs;
6825 bfd_byte *contents;
6826 bfd_boolean ok = TRUE;
6827 unsigned i;
6828 xtensa_relax_info *source_relax_info;
25c6282a 6829 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6830
6831 internal_relocs = retrieve_internal_relocs (abfd, sec,
6832 link_info->keep_memory);
68ffbac6 6833 if (internal_relocs == NULL)
43cd72b9
BW
6834 return ok;
6835
6836 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6837 if (contents == NULL && sec->size != 0)
6838 {
6839 ok = FALSE;
6840 goto error_return;
6841 }
6842
6843 source_relax_info = get_xtensa_relax_info (sec);
68ffbac6 6844 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6845 {
6846 Elf_Internal_Rela *irel = &internal_relocs[i];
6847 r_reloc r_rel;
6848 asection *target_sec;
6849 xtensa_relax_info *target_relax_info;
6850
6851 /* If this section has not already been marked as "relaxable", and
6852 if it contains any ASM_EXPAND relocations (marking expanded
6853 longcalls) that can be optimized into direct calls, then mark
6854 the section as "relaxable". */
6855 if (source_relax_info
6856 && !source_relax_info->is_relaxable_asm_section
6857 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6858 {
6859 bfd_boolean is_reachable = FALSE;
6860 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6861 link_info, &is_reachable)
6862 && is_reachable)
6863 {
6864 source_relax_info->is_relaxable_asm_section = TRUE;
6865 *is_relaxable_p = TRUE;
6866 }
6867 }
6868
6869 r_reloc_init (&r_rel, abfd, irel, contents,
6870 bfd_get_section_limit (abfd, sec));
6871
6872 target_sec = r_reloc_get_section (&r_rel);
6873 target_relax_info = get_xtensa_relax_info (target_sec);
6874 if (!target_relax_info)
6875 continue;
6876
6877 /* Count PC-relative operand relocations against the target section.
6878 Note: The conditions tested here must match the conditions under
6879 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6880 is_l32r_reloc = FALSE;
6881 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6882 {
6883 xtensa_opcode opcode =
6884 get_relocation_opcode (abfd, sec, contents, irel);
6885 if (opcode != XTENSA_UNDEFINED)
6886 {
6887 is_l32r_reloc = (opcode == get_l32r_opcode ());
6888 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6889 || is_l32r_reloc)
6890 target_relax_info->src_count++;
6891 }
6892 }
43cd72b9 6893
25c6282a 6894 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6895 {
6896 /* Mark the target section as relaxable. */
6897 target_relax_info->is_relaxable_literal_section = TRUE;
6898 *is_relaxable_p = TRUE;
6899 }
6900 }
6901
6902 error_return:
6903 release_contents (sec, contents);
6904 release_internal_relocs (sec, internal_relocs);
6905 return ok;
6906}
6907
6908
6909/* Record _all_ the relocations that point to relaxable sections, and
6910 get rid of ASM_EXPAND relocs by either converting them to
6911 ASM_SIMPLIFY or by removing them. */
6912
6913static bfd_boolean
7fa3d080
BW
6914collect_source_relocs (bfd *abfd,
6915 asection *sec,
6916 struct bfd_link_info *link_info)
43cd72b9
BW
6917{
6918 Elf_Internal_Rela *internal_relocs;
6919 bfd_byte *contents;
6920 bfd_boolean ok = TRUE;
6921 unsigned i;
6922 bfd_size_type sec_size;
6923
68ffbac6 6924 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 6925 link_info->keep_memory);
68ffbac6 6926 if (internal_relocs == NULL)
43cd72b9
BW
6927 return ok;
6928
6929 sec_size = bfd_get_section_limit (abfd, sec);
6930 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6931 if (contents == NULL && sec_size != 0)
6932 {
6933 ok = FALSE;
6934 goto error_return;
6935 }
6936
6937 /* Record relocations against relaxable literal sections. */
68ffbac6 6938 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6939 {
6940 Elf_Internal_Rela *irel = &internal_relocs[i];
6941 r_reloc r_rel;
6942 asection *target_sec;
6943 xtensa_relax_info *target_relax_info;
6944
6945 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6946
6947 target_sec = r_reloc_get_section (&r_rel);
6948 target_relax_info = get_xtensa_relax_info (target_sec);
6949
6950 if (target_relax_info
6951 && (target_relax_info->is_relaxable_literal_section
6952 || target_relax_info->is_relaxable_asm_section))
6953 {
6954 xtensa_opcode opcode = XTENSA_UNDEFINED;
6955 int opnd = -1;
6956 bfd_boolean is_abs_literal = FALSE;
6957
6958 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6959 {
6960 /* None of the current alternate relocs are PC-relative,
6961 and only PC-relative relocs matter here. However, we
6962 still need to record the opcode for literal
6963 coalescing. */
6964 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6965 if (opcode == get_l32r_opcode ())
6966 {
6967 is_abs_literal = TRUE;
6968 opnd = 1;
6969 }
6970 else
6971 opcode = XTENSA_UNDEFINED;
6972 }
6973 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6974 {
6975 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6976 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6977 }
6978
6979 if (opcode != XTENSA_UNDEFINED)
6980 {
6981 int src_next = target_relax_info->src_next++;
6982 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6983
6984 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6985 is_abs_literal);
6986 }
6987 }
6988 }
6989
6990 /* Now get rid of ASM_EXPAND relocations. At this point, the
6991 src_relocs array for the target literal section may still be
6992 incomplete, but it must at least contain the entries for the L32R
6993 relocations associated with ASM_EXPANDs because they were just
6994 added in the preceding loop over the relocations. */
6995
68ffbac6 6996 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6997 {
6998 Elf_Internal_Rela *irel = &internal_relocs[i];
6999 bfd_boolean is_reachable;
7000
7001 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7002 &is_reachable))
7003 continue;
7004
7005 if (is_reachable)
7006 {
7007 Elf_Internal_Rela *l32r_irel;
7008 r_reloc r_rel;
7009 asection *target_sec;
7010 xtensa_relax_info *target_relax_info;
7011
7012 /* Mark the source_reloc for the L32R so that it will be
7013 removed in compute_removed_literals(), along with the
7014 associated literal. */
7015 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7016 irel, internal_relocs);
7017 if (l32r_irel == NULL)
7018 continue;
7019
7020 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7021
7022 target_sec = r_reloc_get_section (&r_rel);
7023 target_relax_info = get_xtensa_relax_info (target_sec);
7024
7025 if (target_relax_info
7026 && (target_relax_info->is_relaxable_literal_section
7027 || target_relax_info->is_relaxable_asm_section))
7028 {
7029 source_reloc *s_reloc;
7030
7031 /* Search the source_relocs for the entry corresponding to
7032 the l32r_irel. Note: The src_relocs array is not yet
7033 sorted, but it wouldn't matter anyway because we're
7034 searching by source offset instead of target offset. */
68ffbac6 7035 s_reloc = find_source_reloc (target_relax_info->src_relocs,
43cd72b9
BW
7036 target_relax_info->src_next,
7037 sec, l32r_irel);
7038 BFD_ASSERT (s_reloc);
7039 s_reloc->is_null = TRUE;
7040 }
7041
7042 /* Convert this reloc to ASM_SIMPLIFY. */
7043 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7044 R_XTENSA_ASM_SIMPLIFY);
7045 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7046
7047 pin_internal_relocs (sec, internal_relocs);
7048 }
7049 else
7050 {
7051 /* It is resolvable but doesn't reach. We resolve now
7052 by eliminating the relocation -- the call will remain
7053 expanded into L32R/CALLX. */
7054 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7055 pin_internal_relocs (sec, internal_relocs);
7056 }
7057 }
7058
7059 error_return:
7060 release_contents (sec, contents);
7061 release_internal_relocs (sec, internal_relocs);
7062 return ok;
7063}
7064
7065
7066/* Return TRUE if the asm expansion can be resolved. Generally it can
7067 be resolved on a final link or when a partial link locates it in the
7068 same section as the target. Set "is_reachable" flag if the target of
7069 the call is within the range of a direct call, given the current VMA
7070 for this section and the target section. */
7071
7072bfd_boolean
7fa3d080
BW
7073is_resolvable_asm_expansion (bfd *abfd,
7074 asection *sec,
7075 bfd_byte *contents,
7076 Elf_Internal_Rela *irel,
7077 struct bfd_link_info *link_info,
7078 bfd_boolean *is_reachable_p)
43cd72b9
BW
7079{
7080 asection *target_sec;
7081 bfd_vma target_offset;
7082 r_reloc r_rel;
7083 xtensa_opcode opcode, direct_call_opcode;
7084 bfd_vma self_address;
7085 bfd_vma dest_address;
7086 bfd_boolean uses_l32r;
7087 bfd_size_type sec_size;
7088
7089 *is_reachable_p = FALSE;
7090
7091 if (contents == NULL)
7092 return FALSE;
7093
68ffbac6 7094 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
43cd72b9
BW
7095 return FALSE;
7096
7097 sec_size = bfd_get_section_limit (abfd, sec);
7098 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7099 sec_size - irel->r_offset, &uses_l32r);
7100 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7101 if (!uses_l32r)
7102 return FALSE;
68ffbac6 7103
43cd72b9
BW
7104 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7105 if (direct_call_opcode == XTENSA_UNDEFINED)
7106 return FALSE;
7107
7108 /* Check and see that the target resolves. */
7109 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7110 if (!r_reloc_is_defined (&r_rel))
7111 return FALSE;
7112
7113 target_sec = r_reloc_get_section (&r_rel);
7114 target_offset = r_rel.target_offset;
7115
7116 /* If the target is in a shared library, then it doesn't reach. This
7117 isn't supposed to come up because the compiler should never generate
7118 non-PIC calls on systems that use shared libraries, but the linker
7119 shouldn't crash regardless. */
7120 if (!target_sec->output_section)
7121 return FALSE;
68ffbac6 7122
43cd72b9
BW
7123 /* For relocatable sections, we can only simplify when the output
7124 section of the target is the same as the output section of the
7125 source. */
7126 if (link_info->relocatable
7127 && (target_sec->output_section != sec->output_section
7128 || is_reloc_sym_weak (abfd, irel)))
7129 return FALSE;
7130
331ed130
SA
7131 if (target_sec->output_section != sec->output_section)
7132 {
7133 /* If the two sections are sufficiently far away that relaxation
7134 might take the call out of range, we can't simplify. For
7135 example, a positive displacement call into another memory
7136 could get moved to a lower address due to literal removal,
7137 but the destination won't move, and so the displacment might
7138 get larger.
7139
7140 If the displacement is negative, assume the destination could
7141 move as far back as the start of the output section. The
7142 self_address will be at least as far into the output section
7143 as it is prior to relaxation.
7144
7145 If the displacement is postive, assume the destination will be in
7146 it's pre-relaxed location (because relaxation only makes sections
7147 smaller). The self_address could go all the way to the beginning
7148 of the output section. */
7149
7150 dest_address = target_sec->output_section->vma;
7151 self_address = sec->output_section->vma;
7152
7153 if (sec->output_section->vma > target_sec->output_section->vma)
7154 self_address += sec->output_offset + irel->r_offset + 3;
7155 else
7156 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7157 /* Call targets should be four-byte aligned. */
7158 dest_address = (dest_address + 3) & ~3;
7159 }
7160 else
7161 {
7162
7163 self_address = (sec->output_section->vma
7164 + sec->output_offset + irel->r_offset + 3);
7165 dest_address = (target_sec->output_section->vma
7166 + target_sec->output_offset + target_offset);
7167 }
68ffbac6 7168
43cd72b9
BW
7169 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7170 self_address, dest_address);
7171
7172 if ((self_address >> CALL_SEGMENT_BITS) !=
7173 (dest_address >> CALL_SEGMENT_BITS))
7174 return FALSE;
7175
7176 return TRUE;
7177}
7178
7179
7180static Elf_Internal_Rela *
7fa3d080
BW
7181find_associated_l32r_irel (bfd *abfd,
7182 asection *sec,
7183 bfd_byte *contents,
7184 Elf_Internal_Rela *other_irel,
7185 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7186{
7187 unsigned i;
e0001a05 7188
68ffbac6 7189 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7190 {
7191 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7192
43cd72b9
BW
7193 if (irel == other_irel)
7194 continue;
7195 if (irel->r_offset != other_irel->r_offset)
7196 continue;
7197 if (is_l32r_relocation (abfd, sec, contents, irel))
7198 return irel;
7199 }
7200
7201 return NULL;
e0001a05
NC
7202}
7203
7204
cb337148
BW
7205static xtensa_opcode *
7206build_reloc_opcodes (bfd *abfd,
7207 asection *sec,
7208 bfd_byte *contents,
7209 Elf_Internal_Rela *internal_relocs)
7210{
7211 unsigned i;
7212 xtensa_opcode *reloc_opcodes =
7213 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7214 for (i = 0; i < sec->reloc_count; i++)
7215 {
7216 Elf_Internal_Rela *irel = &internal_relocs[i];
7217 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7218 }
7219 return reloc_opcodes;
7220}
7221
7222
43cd72b9
BW
7223/* The compute_text_actions function will build a list of potential
7224 transformation actions for code in the extended basic block of each
7225 longcall that is optimized to a direct call. From this list we
7226 generate a set of actions to actually perform that optimizes for
7227 space and, if not using size_opt, maintains branch target
7228 alignments.
e0001a05 7229
43cd72b9
BW
7230 These actions to be performed are placed on a per-section list.
7231 The actual changes are performed by relax_section() in the second
7232 pass. */
7233
7234bfd_boolean
7fa3d080
BW
7235compute_text_actions (bfd *abfd,
7236 asection *sec,
7237 struct bfd_link_info *link_info)
e0001a05 7238{
cb337148 7239 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7240 xtensa_relax_info *relax_info;
e0001a05 7241 bfd_byte *contents;
43cd72b9 7242 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7243 bfd_boolean ok = TRUE;
7244 unsigned i;
43cd72b9
BW
7245 property_table_entry *prop_table = 0;
7246 int ptblsize = 0;
7247 bfd_size_type sec_size;
43cd72b9 7248
43cd72b9
BW
7249 relax_info = get_xtensa_relax_info (sec);
7250 BFD_ASSERT (relax_info);
25c6282a
BW
7251 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7252
7253 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7254 if (!relax_info->is_relaxable_asm_section)
7255 return ok;
e0001a05
NC
7256
7257 internal_relocs = retrieve_internal_relocs (abfd, sec,
7258 link_info->keep_memory);
e0001a05 7259
43cd72b9
BW
7260 if (internal_relocs)
7261 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7262 internal_reloc_compare);
7263
7264 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7265 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7266 if (contents == NULL && sec_size != 0)
e0001a05
NC
7267 {
7268 ok = FALSE;
7269 goto error_return;
7270 }
7271
43cd72b9
BW
7272 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7273 XTENSA_PROP_SEC_NAME, FALSE);
7274 if (ptblsize < 0)
7275 {
7276 ok = FALSE;
7277 goto error_return;
7278 }
7279
7280 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7281 {
7282 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7283 bfd_vma r_offset;
7284 property_table_entry *the_entry;
7285 int ptbl_idx;
7286 ebb_t *ebb;
7287 ebb_constraint ebb_table;
7288 bfd_size_type simplify_size;
7289
7290 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7291 continue;
7292 r_offset = irel->r_offset;
e0001a05 7293
43cd72b9
BW
7294 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7295 if (simplify_size == 0)
7296 {
7297 (*_bfd_error_handler)
7298 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7299 sec->owner, sec, r_offset);
7300 continue;
7301 }
e0001a05 7302
43cd72b9
BW
7303 /* If the instruction table is not around, then don't do this
7304 relaxation. */
7305 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7306 sec->vma + irel->r_offset);
7307 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7308 {
7309 text_action_add (&relax_info->action_list,
7310 ta_convert_longcall, sec, r_offset,
7311 0);
7312 continue;
7313 }
7314
7315 /* If the next longcall happens to be at the same address as an
7316 unreachable section of size 0, then skip forward. */
7317 ptbl_idx = the_entry - prop_table;
7318 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7319 && the_entry->size == 0
7320 && ptbl_idx + 1 < ptblsize
7321 && (prop_table[ptbl_idx + 1].address
7322 == prop_table[ptbl_idx].address))
7323 {
7324 ptbl_idx++;
7325 the_entry++;
7326 }
e0001a05 7327
99ded152 7328 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7329 /* NO_REORDER is OK */
7330 continue;
e0001a05 7331
43cd72b9
BW
7332 init_ebb_constraint (&ebb_table);
7333 ebb = &ebb_table.ebb;
7334 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7335 internal_relocs, sec->reloc_count);
7336 ebb->start_offset = r_offset + simplify_size;
7337 ebb->end_offset = r_offset + simplify_size;
7338 ebb->start_ptbl_idx = ptbl_idx;
7339 ebb->end_ptbl_idx = ptbl_idx;
7340 ebb->start_reloc_idx = i;
7341 ebb->end_reloc_idx = i;
7342
cb337148
BW
7343 /* Precompute the opcode for each relocation. */
7344 if (reloc_opcodes == NULL)
7345 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7346 internal_relocs);
7347
43cd72b9
BW
7348 if (!extend_ebb_bounds (ebb)
7349 || !compute_ebb_proposed_actions (&ebb_table)
7350 || !compute_ebb_actions (&ebb_table)
7351 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
7352 internal_relocs, &ebb_table,
7353 reloc_opcodes)
43cd72b9 7354 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7355 {
43cd72b9
BW
7356 /* If anything goes wrong or we get unlucky and something does
7357 not fit, with our plan because of expansion between
7358 critical branches, just convert to a NOP. */
7359
7360 text_action_add (&relax_info->action_list,
7361 ta_convert_longcall, sec, r_offset, 0);
7362 i = ebb_table.ebb.end_reloc_idx;
7363 free_ebb_constraint (&ebb_table);
7364 continue;
e0001a05 7365 }
43cd72b9
BW
7366
7367 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7368
7369 /* Update the index so we do not go looking at the relocations
7370 we have already processed. */
7371 i = ebb_table.ebb.end_reloc_idx;
7372 free_ebb_constraint (&ebb_table);
e0001a05
NC
7373 }
7374
43cd72b9 7375#if DEBUG
7fa3d080 7376 if (relax_info->action_list.head)
43cd72b9
BW
7377 print_action_list (stderr, &relax_info->action_list);
7378#endif
7379
7380error_return:
e0001a05
NC
7381 release_contents (sec, contents);
7382 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7383 if (prop_table)
7384 free (prop_table);
cb337148
BW
7385 if (reloc_opcodes)
7386 free (reloc_opcodes);
43cd72b9 7387
e0001a05
NC
7388 return ok;
7389}
7390
7391
64b607e6
BW
7392/* Do not widen an instruction if it is preceeded by a
7393 loop opcode. It might cause misalignment. */
7394
7395static bfd_boolean
7396prev_instr_is_a_loop (bfd_byte *contents,
7397 bfd_size_type content_length,
7398 bfd_size_type offset)
7399{
7400 xtensa_opcode prev_opcode;
7401
7402 if (offset < 3)
7403 return FALSE;
7404 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7405 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
68ffbac6 7406}
64b607e6
BW
7407
7408
43cd72b9 7409/* Find all of the possible actions for an extended basic block. */
e0001a05 7410
43cd72b9 7411bfd_boolean
7fa3d080 7412compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7413{
43cd72b9
BW
7414 const ebb_t *ebb = &ebb_table->ebb;
7415 unsigned rel_idx = ebb->start_reloc_idx;
7416 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7417 bfd_vma offset = 0;
7418 xtensa_isa isa = xtensa_default_isa;
7419 xtensa_format fmt;
7420 static xtensa_insnbuf insnbuf = NULL;
7421 static xtensa_insnbuf slotbuf = NULL;
7422
7423 if (insnbuf == NULL)
7424 {
7425 insnbuf = xtensa_insnbuf_alloc (isa);
7426 slotbuf = xtensa_insnbuf_alloc (isa);
7427 }
e0001a05 7428
43cd72b9
BW
7429 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7430 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7431
43cd72b9 7432 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7433 {
64b607e6 7434 bfd_vma start_offset, end_offset;
43cd72b9 7435 bfd_size_type insn_len;
e0001a05 7436
43cd72b9
BW
7437 start_offset = entry->address - ebb->sec->vma;
7438 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7439
43cd72b9
BW
7440 if (entry == start_entry)
7441 start_offset = ebb->start_offset;
7442 if (entry == end_entry)
7443 end_offset = ebb->end_offset;
7444 offset = start_offset;
e0001a05 7445
43cd72b9
BW
7446 if (offset == entry->address - ebb->sec->vma
7447 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7448 {
7449 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7450 BFD_ASSERT (offset != end_offset);
7451 if (offset == end_offset)
7452 return FALSE;
e0001a05 7453
43cd72b9
BW
7454 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7455 offset);
68ffbac6 7456 if (insn_len == 0)
64b607e6
BW
7457 goto decode_error;
7458
43cd72b9
BW
7459 if (check_branch_target_aligned_address (offset, insn_len))
7460 align_type = EBB_REQUIRE_TGT_ALIGN;
7461
7462 ebb_propose_action (ebb_table, align_type, 0,
7463 ta_none, offset, 0, TRUE);
7464 }
7465
7466 while (offset != end_offset)
e0001a05 7467 {
43cd72b9 7468 Elf_Internal_Rela *irel;
e0001a05 7469 xtensa_opcode opcode;
e0001a05 7470
43cd72b9
BW
7471 while (rel_idx < ebb->end_reloc_idx
7472 && (ebb->relocs[rel_idx].r_offset < offset
7473 || (ebb->relocs[rel_idx].r_offset == offset
7474 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7475 != R_XTENSA_ASM_SIMPLIFY))))
7476 rel_idx++;
7477
7478 /* Check for longcall. */
7479 irel = &ebb->relocs[rel_idx];
7480 if (irel->r_offset == offset
7481 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7482 {
7483 bfd_size_type simplify_size;
e0001a05 7484
68ffbac6 7485 simplify_size = get_asm_simplify_size (ebb->contents,
43cd72b9
BW
7486 ebb->content_length,
7487 irel->r_offset);
7488 if (simplify_size == 0)
64b607e6 7489 goto decode_error;
43cd72b9
BW
7490
7491 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7492 ta_convert_longcall, offset, 0, TRUE);
68ffbac6 7493
43cd72b9
BW
7494 offset += simplify_size;
7495 continue;
7496 }
e0001a05 7497
64b607e6
BW
7498 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7499 goto decode_error;
7500 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7501 ebb->content_length - offset);
7502 fmt = xtensa_format_decode (isa, insnbuf);
7503 if (fmt == XTENSA_UNDEFINED)
7504 goto decode_error;
7505 insn_len = xtensa_format_length (isa, fmt);
7506 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7507 goto decode_error;
7508
7509 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7510 {
64b607e6
BW
7511 offset += insn_len;
7512 continue;
43cd72b9 7513 }
64b607e6
BW
7514
7515 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7516 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7517 if (opcode == XTENSA_UNDEFINED)
7518 goto decode_error;
7519
43cd72b9 7520 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7521 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7522 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7523 {
7524 /* Add an instruction narrow action. */
7525 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7526 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7527 }
99ded152 7528 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7529 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7530 && ! prev_instr_is_a_loop (ebb->contents,
7531 ebb->content_length, offset))
43cd72b9
BW
7532 {
7533 /* Add an instruction widen action. */
7534 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7535 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7536 }
64b607e6 7537 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7538 {
7539 /* Check for branch targets. */
7540 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7541 ta_none, offset, 0, TRUE);
43cd72b9
BW
7542 }
7543
7544 offset += insn_len;
e0001a05
NC
7545 }
7546 }
7547
43cd72b9
BW
7548 if (ebb->ends_unreachable)
7549 {
7550 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7551 ta_fill, ebb->end_offset, 0, TRUE);
7552 }
e0001a05 7553
43cd72b9 7554 return TRUE;
64b607e6
BW
7555
7556 decode_error:
7557 (*_bfd_error_handler)
7558 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7559 ebb->sec->owner, ebb->sec, offset);
7560 return FALSE;
43cd72b9
BW
7561}
7562
7563
7564/* After all of the information has collected about the
7565 transformations possible in an EBB, compute the appropriate actions
7566 here in compute_ebb_actions. We still must check later to make
7567 sure that the actions do not break any relocations. The algorithm
7568 used here is pretty greedy. Basically, it removes as many no-ops
7569 as possible so that the end of the EBB has the same alignment
7570 characteristics as the original. First, it uses narrowing, then
7571 fill space at the end of the EBB, and finally widenings. If that
7572 does not work, it tries again with one fewer no-op removed. The
7573 optimization will only be performed if all of the branch targets
7574 that were aligned before transformation are also aligned after the
7575 transformation.
7576
7577 When the size_opt flag is set, ignore the branch target alignments,
7578 narrow all wide instructions, and remove all no-ops unless the end
7579 of the EBB prevents it. */
7580
7581bfd_boolean
7fa3d080 7582compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7583{
7584 unsigned i = 0;
7585 unsigned j;
7586 int removed_bytes = 0;
7587 ebb_t *ebb = &ebb_table->ebb;
7588 unsigned seg_idx_start = 0;
7589 unsigned seg_idx_end = 0;
7590
7591 /* We perform this like the assembler relaxation algorithm: Start by
7592 assuming all instructions are narrow and all no-ops removed; then
7593 walk through.... */
7594
7595 /* For each segment of this that has a solid constraint, check to
7596 see if there are any combinations that will keep the constraint.
7597 If so, use it. */
7598 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7599 {
43cd72b9
BW
7600 bfd_boolean requires_text_end_align = FALSE;
7601 unsigned longcall_count = 0;
7602 unsigned longcall_convert_count = 0;
7603 unsigned narrowable_count = 0;
7604 unsigned narrowable_convert_count = 0;
7605 unsigned widenable_count = 0;
7606 unsigned widenable_convert_count = 0;
e0001a05 7607
43cd72b9
BW
7608 proposed_action *action = NULL;
7609 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 7610
43cd72b9 7611 seg_idx_start = seg_idx_end;
e0001a05 7612
43cd72b9
BW
7613 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7614 {
7615 action = &ebb_table->actions[i];
7616 if (action->action == ta_convert_longcall)
7617 longcall_count++;
7618 if (action->action == ta_narrow_insn)
7619 narrowable_count++;
7620 if (action->action == ta_widen_insn)
7621 widenable_count++;
7622 if (action->action == ta_fill)
7623 break;
7624 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7625 break;
7626 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7627 && !elf32xtensa_size_opt)
7628 break;
7629 }
7630 seg_idx_end = i;
e0001a05 7631
43cd72b9
BW
7632 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7633 requires_text_end_align = TRUE;
e0001a05 7634
43cd72b9
BW
7635 if (elf32xtensa_size_opt && !requires_text_end_align
7636 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7637 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7638 {
7639 longcall_convert_count = longcall_count;
7640 narrowable_convert_count = narrowable_count;
7641 widenable_convert_count = 0;
7642 }
7643 else
7644 {
7645 /* There is a constraint. Convert the max number of longcalls. */
7646 narrowable_convert_count = 0;
7647 longcall_convert_count = 0;
7648 widenable_convert_count = 0;
e0001a05 7649
43cd72b9 7650 for (j = 0; j < longcall_count; j++)
e0001a05 7651 {
43cd72b9
BW
7652 int removed = (longcall_count - j) * 3 & (align - 1);
7653 unsigned desire_narrow = (align - removed) & (align - 1);
7654 unsigned desire_widen = removed;
7655 if (desire_narrow <= narrowable_count)
7656 {
7657 narrowable_convert_count = desire_narrow;
7658 narrowable_convert_count +=
7659 (align * ((narrowable_count - narrowable_convert_count)
7660 / align));
7661 longcall_convert_count = (longcall_count - j);
7662 widenable_convert_count = 0;
7663 break;
7664 }
7665 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7666 {
7667 narrowable_convert_count = 0;
7668 longcall_convert_count = longcall_count - j;
7669 widenable_convert_count = desire_widen;
7670 break;
7671 }
7672 }
7673 }
e0001a05 7674
43cd72b9
BW
7675 /* Now the number of conversions are saved. Do them. */
7676 for (i = seg_idx_start; i < seg_idx_end; i++)
7677 {
7678 action = &ebb_table->actions[i];
7679 switch (action->action)
7680 {
7681 case ta_convert_longcall:
7682 if (longcall_convert_count != 0)
7683 {
7684 action->action = ta_remove_longcall;
7685 action->do_action = TRUE;
7686 action->removed_bytes += 3;
7687 longcall_convert_count--;
7688 }
7689 break;
7690 case ta_narrow_insn:
7691 if (narrowable_convert_count != 0)
7692 {
7693 action->do_action = TRUE;
7694 action->removed_bytes += 1;
7695 narrowable_convert_count--;
7696 }
7697 break;
7698 case ta_widen_insn:
7699 if (widenable_convert_count != 0)
7700 {
7701 action->do_action = TRUE;
7702 action->removed_bytes -= 1;
7703 widenable_convert_count--;
7704 }
7705 break;
7706 default:
7707 break;
e0001a05 7708 }
43cd72b9
BW
7709 }
7710 }
e0001a05 7711
43cd72b9
BW
7712 /* Now we move on to some local opts. Try to remove each of the
7713 remaining longcalls. */
e0001a05 7714
43cd72b9
BW
7715 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7716 {
7717 removed_bytes = 0;
7718 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7719 {
43cd72b9
BW
7720 int old_removed_bytes = removed_bytes;
7721 proposed_action *action = &ebb_table->actions[i];
7722
7723 if (action->do_action && action->action == ta_convert_longcall)
7724 {
7725 bfd_boolean bad_alignment = FALSE;
7726 removed_bytes += 3;
7727 for (j = i + 1; j < ebb_table->action_count; j++)
7728 {
7729 proposed_action *new_action = &ebb_table->actions[j];
7730 bfd_vma offset = new_action->offset;
7731 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7732 {
7733 if (!check_branch_target_aligned
7734 (ebb_table->ebb.contents,
7735 ebb_table->ebb.content_length,
7736 offset, offset - removed_bytes))
7737 {
7738 bad_alignment = TRUE;
7739 break;
7740 }
7741 }
7742 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7743 {
7744 if (!check_loop_aligned (ebb_table->ebb.contents,
7745 ebb_table->ebb.content_length,
7746 offset,
7747 offset - removed_bytes))
7748 {
7749 bad_alignment = TRUE;
7750 break;
7751 }
7752 }
7753 if (new_action->action == ta_narrow_insn
7754 && !new_action->do_action
7755 && ebb_table->ebb.sec->alignment_power == 2)
7756 {
7757 /* Narrow an instruction and we are done. */
7758 new_action->do_action = TRUE;
7759 new_action->removed_bytes += 1;
7760 bad_alignment = FALSE;
7761 break;
7762 }
7763 if (new_action->action == ta_widen_insn
7764 && new_action->do_action
7765 && ebb_table->ebb.sec->alignment_power == 2)
7766 {
7767 /* Narrow an instruction and we are done. */
7768 new_action->do_action = FALSE;
7769 new_action->removed_bytes += 1;
7770 bad_alignment = FALSE;
7771 break;
7772 }
5c5d6806
BW
7773 if (new_action->do_action)
7774 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
7775 }
7776 if (!bad_alignment)
7777 {
7778 action->removed_bytes += 3;
7779 action->action = ta_remove_longcall;
7780 action->do_action = TRUE;
7781 }
7782 }
7783 removed_bytes = old_removed_bytes;
7784 if (action->do_action)
7785 removed_bytes += action->removed_bytes;
e0001a05
NC
7786 }
7787 }
7788
43cd72b9
BW
7789 removed_bytes = 0;
7790 for (i = 0; i < ebb_table->action_count; ++i)
7791 {
7792 proposed_action *action = &ebb_table->actions[i];
7793 if (action->do_action)
7794 removed_bytes += action->removed_bytes;
7795 }
7796
7797 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7798 && ebb->ends_unreachable)
7799 {
7800 proposed_action *action;
7801 int br;
7802 int extra_space;
7803
7804 BFD_ASSERT (ebb_table->action_count != 0);
7805 action = &ebb_table->actions[ebb_table->action_count - 1];
7806 BFD_ASSERT (action->action == ta_fill);
7807 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7808
7809 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7810 br = action->removed_bytes + removed_bytes + extra_space;
7811 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7812
7813 action->removed_bytes = extra_space - br;
7814 }
7815 return TRUE;
e0001a05
NC
7816}
7817
7818
03e94c08
BW
7819/* The xlate_map is a sorted array of address mappings designed to
7820 answer the offset_with_removed_text() query with a binary search instead
7821 of a linear search through the section's action_list. */
7822
7823typedef struct xlate_map_entry xlate_map_entry_t;
7824typedef struct xlate_map xlate_map_t;
7825
7826struct xlate_map_entry
7827{
7828 unsigned orig_address;
7829 unsigned new_address;
7830 unsigned size;
7831};
7832
7833struct xlate_map
7834{
7835 unsigned entry_count;
7836 xlate_map_entry_t *entry;
7837};
7838
7839
68ffbac6 7840static int
03e94c08
BW
7841xlate_compare (const void *a_v, const void *b_v)
7842{
7843 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7844 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7845 if (a->orig_address < b->orig_address)
7846 return -1;
7847 if (a->orig_address > (b->orig_address + b->size - 1))
7848 return 1;
7849 return 0;
7850}
7851
7852
7853static bfd_vma
7854xlate_offset_with_removed_text (const xlate_map_t *map,
7855 text_action_list *action_list,
7856 bfd_vma offset)
7857{
03e94c08
BW
7858 void *r;
7859 xlate_map_entry_t *e;
7860
7861 if (map == NULL)
7862 return offset_with_removed_text (action_list, offset);
7863
7864 if (map->entry_count == 0)
7865 return offset;
7866
03e94c08
BW
7867 r = bsearch (&offset, map->entry, map->entry_count,
7868 sizeof (xlate_map_entry_t), &xlate_compare);
7869 e = (xlate_map_entry_t *) r;
68ffbac6 7870
03e94c08
BW
7871 BFD_ASSERT (e != NULL);
7872 if (e == NULL)
7873 return offset;
7874 return e->new_address - e->orig_address + offset;
7875}
7876
7877
7878/* Build a binary searchable offset translation map from a section's
7879 action list. */
7880
7881static xlate_map_t *
7882build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7883{
7884 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7885 text_action_list *action_list = &relax_info->action_list;
7886 unsigned num_actions = 0;
7887 text_action *r;
7888 int removed;
7889 xlate_map_entry_t *current_entry;
7890
7891 if (map == NULL)
7892 return NULL;
7893
7894 num_actions = action_list_count (action_list);
68ffbac6 7895 map->entry = (xlate_map_entry_t *)
03e94c08
BW
7896 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7897 if (map->entry == NULL)
7898 {
7899 free (map);
7900 return NULL;
7901 }
7902 map->entry_count = 0;
68ffbac6 7903
03e94c08
BW
7904 removed = 0;
7905 current_entry = &map->entry[0];
7906
7907 current_entry->orig_address = 0;
7908 current_entry->new_address = 0;
7909 current_entry->size = 0;
7910
7911 for (r = action_list->head; r != NULL; r = r->next)
7912 {
7913 unsigned orig_size = 0;
7914 switch (r->action)
7915 {
7916 case ta_none:
7917 case ta_remove_insn:
7918 case ta_convert_longcall:
7919 case ta_remove_literal:
7920 case ta_add_literal:
7921 break;
7922 case ta_remove_longcall:
7923 orig_size = 6;
7924 break;
7925 case ta_narrow_insn:
7926 orig_size = 3;
7927 break;
7928 case ta_widen_insn:
7929 orig_size = 2;
7930 break;
7931 case ta_fill:
7932 break;
7933 }
7934 current_entry->size =
7935 r->offset + orig_size - current_entry->orig_address;
7936 if (current_entry->size != 0)
7937 {
7938 current_entry++;
7939 map->entry_count++;
7940 }
7941 current_entry->orig_address = r->offset + orig_size;
7942 removed += r->removed_bytes;
7943 current_entry->new_address = r->offset + orig_size - removed;
7944 current_entry->size = 0;
7945 }
7946
7947 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7948 - current_entry->orig_address);
7949 if (current_entry->size != 0)
7950 map->entry_count++;
7951
7952 return map;
7953}
7954
7955
7956/* Free an offset translation map. */
7957
68ffbac6 7958static void
03e94c08
BW
7959free_xlate_map (xlate_map_t *map)
7960{
7961 if (map && map->entry)
7962 free (map->entry);
7963 if (map)
7964 free (map);
7965}
7966
7967
43cd72b9
BW
7968/* Use check_section_ebb_pcrels_fit to make sure that all of the
7969 relocations in a section will fit if a proposed set of actions
7970 are performed. */
e0001a05 7971
43cd72b9 7972static bfd_boolean
7fa3d080
BW
7973check_section_ebb_pcrels_fit (bfd *abfd,
7974 asection *sec,
7975 bfd_byte *contents,
7976 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7977 const ebb_constraint *constraint,
7978 const xtensa_opcode *reloc_opcodes)
e0001a05 7979{
43cd72b9
BW
7980 unsigned i, j;
7981 Elf_Internal_Rela *irel;
03e94c08
BW
7982 xlate_map_t *xmap = NULL;
7983 bfd_boolean ok = TRUE;
43cd72b9 7984 xtensa_relax_info *relax_info;
e0001a05 7985
43cd72b9 7986 relax_info = get_xtensa_relax_info (sec);
e0001a05 7987
03e94c08
BW
7988 if (relax_info && sec->reloc_count > 100)
7989 {
7990 xmap = build_xlate_map (sec, relax_info);
7991 /* NULL indicates out of memory, but the slow version
7992 can still be used. */
7993 }
7994
43cd72b9
BW
7995 for (i = 0; i < sec->reloc_count; i++)
7996 {
7997 r_reloc r_rel;
7998 bfd_vma orig_self_offset, orig_target_offset;
7999 bfd_vma self_offset, target_offset;
8000 int r_type;
8001 reloc_howto_type *howto;
8002 int self_removed_bytes, target_removed_bytes;
e0001a05 8003
43cd72b9
BW
8004 irel = &internal_relocs[i];
8005 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 8006
43cd72b9
BW
8007 howto = &elf_howto_table[r_type];
8008 /* We maintain the required invariant: PC-relative relocations
8009 that fit before linking must fit after linking. Thus we only
8010 need to deal with relocations to the same section that are
8011 PC-relative. */
1bbb5f21
BW
8012 if (r_type == R_XTENSA_ASM_SIMPLIFY
8013 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
8014 || !howto->pc_relative)
8015 continue;
e0001a05 8016
43cd72b9
BW
8017 r_reloc_init (&r_rel, abfd, irel, contents,
8018 bfd_get_section_limit (abfd, sec));
e0001a05 8019
43cd72b9
BW
8020 if (r_reloc_get_section (&r_rel) != sec)
8021 continue;
e0001a05 8022
43cd72b9
BW
8023 orig_self_offset = irel->r_offset;
8024 orig_target_offset = r_rel.target_offset;
e0001a05 8025
43cd72b9
BW
8026 self_offset = orig_self_offset;
8027 target_offset = orig_target_offset;
8028
8029 if (relax_info)
8030 {
03e94c08
BW
8031 self_offset =
8032 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8033 orig_self_offset);
8034 target_offset =
8035 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8036 orig_target_offset);
43cd72b9
BW
8037 }
8038
8039 self_removed_bytes = 0;
8040 target_removed_bytes = 0;
8041
8042 for (j = 0; j < constraint->action_count; ++j)
8043 {
8044 proposed_action *action = &constraint->actions[j];
8045 bfd_vma offset = action->offset;
8046 int removed_bytes = action->removed_bytes;
8047 if (offset < orig_self_offset
8048 || (offset == orig_self_offset && action->action == ta_fill
8049 && action->removed_bytes < 0))
8050 self_removed_bytes += removed_bytes;
8051 if (offset < orig_target_offset
8052 || (offset == orig_target_offset && action->action == ta_fill
8053 && action->removed_bytes < 0))
8054 target_removed_bytes += removed_bytes;
8055 }
8056 self_offset -= self_removed_bytes;
8057 target_offset -= target_removed_bytes;
8058
8059 /* Try to encode it. Get the operand and check. */
8060 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8061 {
8062 /* None of the current alternate relocs are PC-relative,
8063 and only PC-relative relocs matter here. */
8064 }
8065 else
8066 {
8067 xtensa_opcode opcode;
8068 int opnum;
8069
cb337148
BW
8070 if (reloc_opcodes)
8071 opcode = reloc_opcodes[i];
8072 else
8073 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 8074 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
8075 {
8076 ok = FALSE;
8077 break;
8078 }
43cd72b9
BW
8079
8080 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8081 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
8082 {
8083 ok = FALSE;
8084 break;
8085 }
43cd72b9
BW
8086
8087 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8088 {
8089 ok = FALSE;
8090 break;
8091 }
43cd72b9
BW
8092 }
8093 }
8094
03e94c08
BW
8095 if (xmap)
8096 free_xlate_map (xmap);
8097
8098 return ok;
43cd72b9
BW
8099}
8100
8101
8102static bfd_boolean
7fa3d080 8103check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8104{
8105 int removed = 0;
8106 unsigned i;
8107
8108 for (i = 0; i < constraint->action_count; i++)
8109 {
8110 const proposed_action *action = &constraint->actions[i];
8111 if (action->do_action)
8112 removed += action->removed_bytes;
8113 }
8114 if (removed < 0)
e0001a05
NC
8115 return FALSE;
8116
8117 return TRUE;
8118}
8119
8120
43cd72b9 8121void
7fa3d080
BW
8122text_action_add_proposed (text_action_list *l,
8123 const ebb_constraint *ebb_table,
8124 asection *sec)
e0001a05
NC
8125{
8126 unsigned i;
8127
43cd72b9 8128 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8129 {
43cd72b9 8130 proposed_action *action = &ebb_table->actions[i];
e0001a05 8131
43cd72b9 8132 if (!action->do_action)
e0001a05 8133 continue;
43cd72b9
BW
8134 switch (action->action)
8135 {
8136 case ta_remove_insn:
8137 case ta_remove_longcall:
8138 case ta_convert_longcall:
8139 case ta_narrow_insn:
8140 case ta_widen_insn:
8141 case ta_fill:
8142 case ta_remove_literal:
8143 text_action_add (l, action->action, sec, action->offset,
8144 action->removed_bytes);
8145 break;
8146 case ta_none:
8147 break;
8148 default:
8149 BFD_ASSERT (0);
8150 break;
8151 }
e0001a05 8152 }
43cd72b9 8153}
e0001a05 8154
43cd72b9
BW
8155
8156int
7fa3d080 8157compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8158{
8159 int fill_extra_space;
8160
8161 if (!entry)
8162 return 0;
8163
8164 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8165 return 0;
8166
8167 fill_extra_space = entry->size;
8168 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8169 {
8170 /* Fill bytes for alignment:
8171 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8172 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8173 int nsm = (1 << pow) - 1;
8174 bfd_vma addr = entry->address + entry->size;
8175 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8176 fill_extra_space += align_fill;
8177 }
8178 return fill_extra_space;
e0001a05
NC
8179}
8180
43cd72b9 8181\f
e0001a05
NC
8182/* First relaxation pass. */
8183
43cd72b9
BW
8184/* If the section contains relaxable literals, check each literal to
8185 see if it has the same value as another literal that has already
8186 been seen, either in the current section or a previous one. If so,
8187 add an entry to the per-section list of removed literals. The
e0001a05
NC
8188 actual changes are deferred until the next pass. */
8189
68ffbac6 8190static bfd_boolean
7fa3d080
BW
8191compute_removed_literals (bfd *abfd,
8192 asection *sec,
8193 struct bfd_link_info *link_info,
8194 value_map_hash_table *values)
e0001a05
NC
8195{
8196 xtensa_relax_info *relax_info;
8197 bfd_byte *contents;
8198 Elf_Internal_Rela *internal_relocs;
43cd72b9 8199 source_reloc *src_relocs, *rel;
e0001a05 8200 bfd_boolean ok = TRUE;
43cd72b9
BW
8201 property_table_entry *prop_table = NULL;
8202 int ptblsize;
8203 int i, prev_i;
8204 bfd_boolean last_loc_is_prev = FALSE;
8205 bfd_vma last_target_offset = 0;
8206 section_cache_t target_sec_cache;
8207 bfd_size_type sec_size;
8208
8209 init_section_cache (&target_sec_cache);
e0001a05
NC
8210
8211 /* Do nothing if it is not a relaxable literal section. */
8212 relax_info = get_xtensa_relax_info (sec);
8213 BFD_ASSERT (relax_info);
e0001a05
NC
8214 if (!relax_info->is_relaxable_literal_section)
8215 return ok;
8216
68ffbac6 8217 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
8218 link_info->keep_memory);
8219
43cd72b9 8220 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8221 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8222 if (contents == NULL && sec_size != 0)
e0001a05
NC
8223 {
8224 ok = FALSE;
8225 goto error_return;
8226 }
8227
8228 /* Sort the source_relocs by target offset. */
8229 src_relocs = relax_info->src_relocs;
8230 qsort (src_relocs, relax_info->src_count,
8231 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8232 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8233 internal_reloc_compare);
e0001a05 8234
43cd72b9
BW
8235 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8236 XTENSA_PROP_SEC_NAME, FALSE);
8237 if (ptblsize < 0)
8238 {
8239 ok = FALSE;
8240 goto error_return;
8241 }
8242
8243 prev_i = -1;
e0001a05
NC
8244 for (i = 0; i < relax_info->src_count; i++)
8245 {
e0001a05 8246 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8247
8248 rel = &src_relocs[i];
43cd72b9
BW
8249 if (get_l32r_opcode () != rel->opcode)
8250 continue;
e0001a05
NC
8251 irel = get_irel_at_offset (sec, internal_relocs,
8252 rel->r_rel.target_offset);
8253
43cd72b9
BW
8254 /* If the relocation on this is not a simple R_XTENSA_32 or
8255 R_XTENSA_PLT then do not consider it. This may happen when
8256 the difference of two symbols is used in a literal. */
8257 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8258 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8259 continue;
8260
e0001a05
NC
8261 /* If the target_offset for this relocation is the same as the
8262 previous relocation, then we've already considered whether the
8263 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8264 if (i != 0 && prev_i != -1
8265 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8266 continue;
43cd72b9
BW
8267 prev_i = i;
8268
68ffbac6 8269 if (last_loc_is_prev &&
43cd72b9
BW
8270 last_target_offset + 4 != rel->r_rel.target_offset)
8271 last_loc_is_prev = FALSE;
e0001a05
NC
8272
8273 /* Check if the relocation was from an L32R that is being removed
8274 because a CALLX was converted to a direct CALL, and check if
8275 there are no other relocations to the literal. */
68ffbac6 8276 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
99ded152 8277 sec, prop_table, ptblsize))
e0001a05 8278 {
43cd72b9
BW
8279 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8280 irel, rel, prop_table, ptblsize))
e0001a05 8281 {
43cd72b9
BW
8282 ok = FALSE;
8283 goto error_return;
e0001a05 8284 }
43cd72b9 8285 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8286 continue;
8287 }
8288
43cd72b9 8289 if (!identify_literal_placement (abfd, sec, contents, link_info,
68ffbac6
L
8290 values,
8291 &last_loc_is_prev, irel,
43cd72b9
BW
8292 relax_info->src_count - i, rel,
8293 prop_table, ptblsize,
8294 &target_sec_cache, rel->is_abs_literal))
e0001a05 8295 {
43cd72b9
BW
8296 ok = FALSE;
8297 goto error_return;
8298 }
8299 last_target_offset = rel->r_rel.target_offset;
8300 }
e0001a05 8301
43cd72b9
BW
8302#if DEBUG
8303 print_removed_literals (stderr, &relax_info->removed_list);
8304 print_action_list (stderr, &relax_info->action_list);
8305#endif /* DEBUG */
8306
8307error_return:
65e911f9
AM
8308 if (prop_table)
8309 free (prop_table);
8310 free_section_cache (&target_sec_cache);
43cd72b9
BW
8311
8312 release_contents (sec, contents);
8313 release_internal_relocs (sec, internal_relocs);
8314 return ok;
8315}
8316
8317
8318static Elf_Internal_Rela *
7fa3d080
BW
8319get_irel_at_offset (asection *sec,
8320 Elf_Internal_Rela *internal_relocs,
8321 bfd_vma offset)
43cd72b9
BW
8322{
8323 unsigned i;
8324 Elf_Internal_Rela *irel;
8325 unsigned r_type;
8326 Elf_Internal_Rela key;
8327
68ffbac6 8328 if (!internal_relocs)
43cd72b9
BW
8329 return NULL;
8330
8331 key.r_offset = offset;
8332 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8333 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8334 if (!irel)
8335 return NULL;
8336
8337 /* bsearch does not guarantee which will be returned if there are
8338 multiple matches. We need the first that is not an alignment. */
8339 i = irel - internal_relocs;
8340 while (i > 0)
8341 {
8342 if (internal_relocs[i-1].r_offset != offset)
8343 break;
8344 i--;
8345 }
8346 for ( ; i < sec->reloc_count; i++)
8347 {
8348 irel = &internal_relocs[i];
8349 r_type = ELF32_R_TYPE (irel->r_info);
8350 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8351 return irel;
8352 }
8353
8354 return NULL;
8355}
8356
8357
8358bfd_boolean
7fa3d080
BW
8359is_removable_literal (const source_reloc *rel,
8360 int i,
8361 const source_reloc *src_relocs,
99ded152
BW
8362 int src_count,
8363 asection *sec,
8364 property_table_entry *prop_table,
8365 int ptblsize)
43cd72b9
BW
8366{
8367 const source_reloc *curr_rel;
99ded152
BW
8368 property_table_entry *entry;
8369
43cd72b9
BW
8370 if (!rel->is_null)
8371 return FALSE;
68ffbac6
L
8372
8373 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
99ded152
BW
8374 sec->vma + rel->r_rel.target_offset);
8375 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8376 return FALSE;
8377
43cd72b9
BW
8378 for (++i; i < src_count; ++i)
8379 {
8380 curr_rel = &src_relocs[i];
8381 /* If all others have the same target offset.... */
8382 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8383 return TRUE;
8384
8385 if (!curr_rel->is_null
8386 && !xtensa_is_property_section (curr_rel->source_sec)
8387 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8388 return FALSE;
8389 }
8390 return TRUE;
8391}
8392
8393
68ffbac6 8394bfd_boolean
7fa3d080
BW
8395remove_dead_literal (bfd *abfd,
8396 asection *sec,
8397 struct bfd_link_info *link_info,
8398 Elf_Internal_Rela *internal_relocs,
8399 Elf_Internal_Rela *irel,
8400 source_reloc *rel,
8401 property_table_entry *prop_table,
8402 int ptblsize)
43cd72b9
BW
8403{
8404 property_table_entry *entry;
8405 xtensa_relax_info *relax_info;
8406
8407 relax_info = get_xtensa_relax_info (sec);
8408 if (!relax_info)
8409 return FALSE;
8410
8411 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8412 sec->vma + rel->r_rel.target_offset);
8413
8414 /* Mark the unused literal so that it will be removed. */
8415 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8416
8417 text_action_add (&relax_info->action_list,
8418 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8419
8420 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8421 if (sec->alignment_power > 2)
43cd72b9
BW
8422 {
8423 int fill_extra_space;
8424 bfd_vma entry_sec_offset;
8425 text_action *fa;
8426 property_table_entry *the_add_entry;
8427 int removed_diff;
8428
8429 if (entry)
8430 entry_sec_offset = entry->address - sec->vma + entry->size;
8431 else
8432 entry_sec_offset = rel->r_rel.target_offset + 4;
8433
8434 /* If the literal range is at the end of the section,
8435 do not add fill. */
8436 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8437 entry_sec_offset);
8438 fill_extra_space = compute_fill_extra_space (the_add_entry);
8439
8440 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8441 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8442 -4, fill_extra_space);
8443 if (fa)
8444 adjust_fill_action (fa, removed_diff);
8445 else
8446 text_action_add (&relax_info->action_list,
8447 ta_fill, sec, entry_sec_offset, removed_diff);
8448 }
8449
8450 /* Zero out the relocation on this literal location. */
8451 if (irel)
8452 {
8453 if (elf_hash_table (link_info)->dynamic_sections_created)
8454 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8455
8456 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8457 pin_internal_relocs (sec, internal_relocs);
8458 }
8459
8460 /* Do not modify "last_loc_is_prev". */
8461 return TRUE;
8462}
8463
8464
68ffbac6 8465bfd_boolean
7fa3d080
BW
8466identify_literal_placement (bfd *abfd,
8467 asection *sec,
8468 bfd_byte *contents,
8469 struct bfd_link_info *link_info,
8470 value_map_hash_table *values,
8471 bfd_boolean *last_loc_is_prev_p,
8472 Elf_Internal_Rela *irel,
8473 int remaining_src_rels,
8474 source_reloc *rel,
8475 property_table_entry *prop_table,
8476 int ptblsize,
8477 section_cache_t *target_sec_cache,
8478 bfd_boolean is_abs_literal)
43cd72b9
BW
8479{
8480 literal_value val;
8481 value_map *val_map;
8482 xtensa_relax_info *relax_info;
8483 bfd_boolean literal_placed = FALSE;
8484 r_reloc r_rel;
8485 unsigned long value;
8486 bfd_boolean final_static_link;
8487 bfd_size_type sec_size;
8488
8489 relax_info = get_xtensa_relax_info (sec);
8490 if (!relax_info)
8491 return FALSE;
8492
8493 sec_size = bfd_get_section_limit (abfd, sec);
8494
8495 final_static_link =
8496 (!link_info->relocatable
8497 && !elf_hash_table (link_info)->dynamic_sections_created);
8498
8499 /* The placement algorithm first checks to see if the literal is
8500 already in the value map. If so and the value map is reachable
8501 from all uses, then the literal is moved to that location. If
8502 not, then we identify the last location where a fresh literal was
8503 placed. If the literal can be safely moved there, then we do so.
8504 If not, then we assume that the literal is not to move and leave
8505 the literal where it is, marking it as the last literal
8506 location. */
8507
8508 /* Find the literal value. */
8509 value = 0;
8510 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8511 if (!irel)
8512 {
8513 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8514 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8515 }
8516 init_literal_value (&val, &r_rel, value, is_abs_literal);
8517
8518 /* Check if we've seen another literal with the same value that
8519 is in the same output section. */
8520 val_map = value_map_get_cached_value (values, &val, final_static_link);
8521
8522 if (val_map
8523 && (r_reloc_get_section (&val_map->loc)->output_section
8524 == sec->output_section)
8525 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8526 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8527 {
8528 /* No change to last_loc_is_prev. */
8529 literal_placed = TRUE;
8530 }
8531
8532 /* For relocatable links, do not try to move literals. To do it
8533 correctly might increase the number of relocations in an input
8534 section making the default relocatable linking fail. */
68ffbac6 8535 if (!link_info->relocatable && !literal_placed
43cd72b9
BW
8536 && values->has_last_loc && !(*last_loc_is_prev_p))
8537 {
8538 asection *target_sec = r_reloc_get_section (&values->last_loc);
8539 if (target_sec && target_sec->output_section == sec->output_section)
8540 {
8541 /* Increment the virtual offset. */
8542 r_reloc try_loc = values->last_loc;
8543 try_loc.virtual_offset += 4;
8544
8545 /* There is a last loc that was in the same output section. */
8546 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8547 && move_shared_literal (sec, link_info, rel,
68ffbac6 8548 prop_table, ptblsize,
43cd72b9 8549 &try_loc, &val, target_sec_cache))
e0001a05 8550 {
43cd72b9
BW
8551 values->last_loc.virtual_offset += 4;
8552 literal_placed = TRUE;
8553 if (!val_map)
8554 val_map = add_value_map (values, &val, &try_loc,
8555 final_static_link);
8556 else
8557 val_map->loc = try_loc;
e0001a05
NC
8558 }
8559 }
43cd72b9
BW
8560 }
8561
8562 if (!literal_placed)
8563 {
8564 /* Nothing worked, leave the literal alone but update the last loc. */
8565 values->has_last_loc = TRUE;
8566 values->last_loc = rel->r_rel;
8567 if (!val_map)
8568 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 8569 else
43cd72b9
BW
8570 val_map->loc = rel->r_rel;
8571 *last_loc_is_prev_p = TRUE;
e0001a05
NC
8572 }
8573
43cd72b9 8574 return TRUE;
e0001a05
NC
8575}
8576
8577
8578/* Check if the original relocations (presumably on L32R instructions)
8579 identified by reloc[0..N] can be changed to reference the literal
8580 identified by r_rel. If r_rel is out of range for any of the
8581 original relocations, then we don't want to coalesce the original
8582 literal with the one at r_rel. We only check reloc[0..N], where the
8583 offsets are all the same as for reloc[0] (i.e., they're all
8584 referencing the same literal) and where N is also bounded by the
8585 number of remaining entries in the "reloc" array. The "reloc" array
8586 is sorted by target offset so we know all the entries for the same
8587 literal will be contiguous. */
8588
8589static bfd_boolean
7fa3d080
BW
8590relocations_reach (source_reloc *reloc,
8591 int remaining_relocs,
8592 const r_reloc *r_rel)
e0001a05
NC
8593{
8594 bfd_vma from_offset, source_address, dest_address;
8595 asection *sec;
8596 int i;
8597
8598 if (!r_reloc_is_defined (r_rel))
8599 return FALSE;
8600
8601 sec = r_reloc_get_section (r_rel);
8602 from_offset = reloc[0].r_rel.target_offset;
8603
8604 for (i = 0; i < remaining_relocs; i++)
8605 {
8606 if (reloc[i].r_rel.target_offset != from_offset)
8607 break;
8608
8609 /* Ignore relocations that have been removed. */
8610 if (reloc[i].is_null)
8611 continue;
8612
8613 /* The original and new output section for these must be the same
8614 in order to coalesce. */
8615 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8616 != sec->output_section)
8617 return FALSE;
8618
d638e0ac
BW
8619 /* Absolute literals in the same output section can always be
8620 combined. */
8621 if (reloc[i].is_abs_literal)
8622 continue;
8623
43cd72b9
BW
8624 /* A literal with no PC-relative relocations can be moved anywhere. */
8625 if (reloc[i].opnd != -1)
e0001a05
NC
8626 {
8627 /* Otherwise, check to see that it fits. */
8628 source_address = (reloc[i].source_sec->output_section->vma
8629 + reloc[i].source_sec->output_offset
8630 + reloc[i].r_rel.rela.r_offset);
8631 dest_address = (sec->output_section->vma
8632 + sec->output_offset
8633 + r_rel->target_offset);
8634
43cd72b9
BW
8635 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8636 source_address, dest_address))
e0001a05
NC
8637 return FALSE;
8638 }
8639 }
8640
8641 return TRUE;
8642}
8643
8644
43cd72b9
BW
8645/* Move a literal to another literal location because it is
8646 the same as the other literal value. */
e0001a05 8647
68ffbac6 8648static bfd_boolean
7fa3d080
BW
8649coalesce_shared_literal (asection *sec,
8650 source_reloc *rel,
8651 property_table_entry *prop_table,
8652 int ptblsize,
8653 value_map *val_map)
e0001a05 8654{
43cd72b9
BW
8655 property_table_entry *entry;
8656 text_action *fa;
8657 property_table_entry *the_add_entry;
8658 int removed_diff;
8659 xtensa_relax_info *relax_info;
8660
8661 relax_info = get_xtensa_relax_info (sec);
8662 if (!relax_info)
8663 return FALSE;
8664
8665 entry = elf_xtensa_find_property_entry
8666 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 8667 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
8668 return TRUE;
8669
8670 /* Mark that the literal will be coalesced. */
8671 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8672
8673 text_action_add (&relax_info->action_list,
8674 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8675
8676 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8677 if (sec->alignment_power > 2)
e0001a05 8678 {
43cd72b9
BW
8679 int fill_extra_space;
8680 bfd_vma entry_sec_offset;
8681
8682 if (entry)
8683 entry_sec_offset = entry->address - sec->vma + entry->size;
8684 else
8685 entry_sec_offset = rel->r_rel.target_offset + 4;
8686
8687 /* If the literal range is at the end of the section,
8688 do not add fill. */
8689 fill_extra_space = 0;
8690 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8691 entry_sec_offset);
8692 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8693 fill_extra_space = the_add_entry->size;
8694
8695 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8696 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8697 -4, fill_extra_space);
8698 if (fa)
8699 adjust_fill_action (fa, removed_diff);
8700 else
8701 text_action_add (&relax_info->action_list,
8702 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 8703 }
43cd72b9
BW
8704
8705 return TRUE;
8706}
8707
8708
8709/* Move a literal to another location. This may actually increase the
8710 total amount of space used because of alignments so we need to do
8711 this carefully. Also, it may make a branch go out of range. */
8712
68ffbac6 8713static bfd_boolean
7fa3d080
BW
8714move_shared_literal (asection *sec,
8715 struct bfd_link_info *link_info,
8716 source_reloc *rel,
8717 property_table_entry *prop_table,
8718 int ptblsize,
8719 const r_reloc *target_loc,
8720 const literal_value *lit_value,
8721 section_cache_t *target_sec_cache)
43cd72b9
BW
8722{
8723 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8724 text_action *fa, *target_fa;
8725 int removed_diff;
8726 xtensa_relax_info *relax_info, *target_relax_info;
8727 asection *target_sec;
8728 ebb_t *ebb;
8729 ebb_constraint ebb_table;
8730 bfd_boolean relocs_fit;
8731
8732 /* If this routine always returns FALSE, the literals that cannot be
8733 coalesced will not be moved. */
8734 if (elf32xtensa_no_literal_movement)
8735 return FALSE;
8736
8737 relax_info = get_xtensa_relax_info (sec);
8738 if (!relax_info)
8739 return FALSE;
8740
8741 target_sec = r_reloc_get_section (target_loc);
8742 target_relax_info = get_xtensa_relax_info (target_sec);
8743
8744 /* Literals to undefined sections may not be moved because they
8745 must report an error. */
8746 if (bfd_is_und_section (target_sec))
8747 return FALSE;
8748
8749 src_entry = elf_xtensa_find_property_entry
8750 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8751
8752 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8753 return FALSE;
8754
8755 target_entry = elf_xtensa_find_property_entry
68ffbac6 8756 (target_sec_cache->ptbl, target_sec_cache->pte_count,
43cd72b9
BW
8757 target_sec->vma + target_loc->target_offset);
8758
8759 if (!target_entry)
8760 return FALSE;
8761
8762 /* Make sure that we have not broken any branches. */
8763 relocs_fit = FALSE;
8764
8765 init_ebb_constraint (&ebb_table);
8766 ebb = &ebb_table.ebb;
68ffbac6 8767 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
43cd72b9
BW
8768 target_sec_cache->content_length,
8769 target_sec_cache->ptbl, target_sec_cache->pte_count,
8770 target_sec_cache->relocs, target_sec_cache->reloc_count);
8771
8772 /* Propose to add 4 bytes + worst-case alignment size increase to
8773 destination. */
8774 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8775 ta_fill, target_loc->target_offset,
8776 -4 - (1 << target_sec->alignment_power), TRUE);
8777
8778 /* Check all of the PC-relative relocations to make sure they still fit. */
68ffbac6 8779 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
43cd72b9
BW
8780 target_sec_cache->contents,
8781 target_sec_cache->relocs,
cb337148 8782 &ebb_table, NULL);
43cd72b9 8783
68ffbac6 8784 if (!relocs_fit)
43cd72b9
BW
8785 return FALSE;
8786
8787 text_action_add_literal (&target_relax_info->action_list,
8788 ta_add_literal, target_loc, lit_value, -4);
8789
68ffbac6 8790 if (target_sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
8791 {
8792 /* May need to add or remove some fill to maintain alignment. */
8793 int fill_extra_space;
8794 bfd_vma entry_sec_offset;
8795
68ffbac6 8796 entry_sec_offset =
43cd72b9
BW
8797 target_entry->address - target_sec->vma + target_entry->size;
8798
8799 /* If the literal range is at the end of the section,
8800 do not add fill. */
8801 fill_extra_space = 0;
8802 the_add_entry =
8803 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8804 target_sec_cache->pte_count,
8805 entry_sec_offset);
8806 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8807 fill_extra_space = the_add_entry->size;
8808
8809 target_fa = find_fill_action (&target_relax_info->action_list,
8810 target_sec, entry_sec_offset);
8811 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8812 entry_sec_offset, 4,
8813 fill_extra_space);
8814 if (target_fa)
8815 adjust_fill_action (target_fa, removed_diff);
8816 else
8817 text_action_add (&target_relax_info->action_list,
8818 ta_fill, target_sec, entry_sec_offset, removed_diff);
8819 }
8820
8821 /* Mark that the literal will be moved to the new location. */
8822 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8823
8824 /* Remove the literal. */
8825 text_action_add (&relax_info->action_list,
8826 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8827
8828 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8829 if (sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
8830 {
8831 int fill_extra_space;
8832 bfd_vma entry_sec_offset;
8833
8834 if (src_entry)
8835 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8836 else
8837 entry_sec_offset = rel->r_rel.target_offset+4;
8838
8839 /* If the literal range is at the end of the section,
8840 do not add fill. */
8841 fill_extra_space = 0;
8842 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8843 entry_sec_offset);
8844 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8845 fill_extra_space = the_add_entry->size;
8846
8847 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8848 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8849 -4, fill_extra_space);
8850 if (fa)
8851 adjust_fill_action (fa, removed_diff);
8852 else
8853 text_action_add (&relax_info->action_list,
8854 ta_fill, sec, entry_sec_offset, removed_diff);
8855 }
8856
8857 return TRUE;
e0001a05
NC
8858}
8859
8860\f
8861/* Second relaxation pass. */
8862
8863/* Modify all of the relocations to point to the right spot, and if this
8864 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8865 section size. */
e0001a05 8866
43cd72b9 8867bfd_boolean
7fa3d080 8868relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8869{
8870 Elf_Internal_Rela *internal_relocs;
8871 xtensa_relax_info *relax_info;
8872 bfd_byte *contents;
8873 bfd_boolean ok = TRUE;
8874 unsigned i;
43cd72b9
BW
8875 bfd_boolean rv = FALSE;
8876 bfd_boolean virtual_action;
8877 bfd_size_type sec_size;
e0001a05 8878
43cd72b9 8879 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8880 relax_info = get_xtensa_relax_info (sec);
8881 BFD_ASSERT (relax_info);
8882
43cd72b9
BW
8883 /* First translate any of the fixes that have been added already. */
8884 translate_section_fixes (sec);
8885
e0001a05
NC
8886 /* Handle property sections (e.g., literal tables) specially. */
8887 if (xtensa_is_property_section (sec))
8888 {
8889 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8890 return relax_property_section (abfd, sec, link_info);
8891 }
8892
68ffbac6 8893 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 8894 link_info->keep_memory);
7aa09196
SA
8895 if (!internal_relocs && !relax_info->action_list.head)
8896 return TRUE;
8897
43cd72b9
BW
8898 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8899 if (contents == NULL && sec_size != 0)
8900 {
8901 ok = FALSE;
8902 goto error_return;
8903 }
8904
8905 if (internal_relocs)
8906 {
8907 for (i = 0; i < sec->reloc_count; i++)
8908 {
8909 Elf_Internal_Rela *irel;
8910 xtensa_relax_info *target_relax_info;
8911 bfd_vma source_offset, old_source_offset;
8912 r_reloc r_rel;
8913 unsigned r_type;
8914 asection *target_sec;
8915
8916 /* Locally change the source address.
8917 Translate the target to the new target address.
8918 If it points to this section and has been removed,
8919 NULLify it.
8920 Write it back. */
8921
8922 irel = &internal_relocs[i];
8923 source_offset = irel->r_offset;
8924 old_source_offset = source_offset;
8925
8926 r_type = ELF32_R_TYPE (irel->r_info);
8927 r_reloc_init (&r_rel, abfd, irel, contents,
8928 bfd_get_section_limit (abfd, sec));
8929
8930 /* If this section could have changed then we may need to
8931 change the relocation's offset. */
8932
8933 if (relax_info->is_relaxable_literal_section
8934 || relax_info->is_relaxable_asm_section)
8935 {
9b7f5d20
BW
8936 pin_internal_relocs (sec, internal_relocs);
8937
43cd72b9
BW
8938 if (r_type != R_XTENSA_NONE
8939 && find_removed_literal (&relax_info->removed_list,
8940 irel->r_offset))
8941 {
8942 /* Remove this relocation. */
8943 if (elf_hash_table (link_info)->dynamic_sections_created)
8944 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8945 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8946 irel->r_offset = offset_with_removed_text
8947 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8948 continue;
8949 }
8950
8951 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8952 {
8953 text_action *action =
8954 find_insn_action (&relax_info->action_list,
8955 irel->r_offset);
8956 if (action && (action->action == ta_convert_longcall
8957 || action->action == ta_remove_longcall))
8958 {
8959 bfd_reloc_status_type retval;
8960 char *error_message = NULL;
8961
8962 retval = contract_asm_expansion (contents, sec_size,
8963 irel, &error_message);
8964 if (retval != bfd_reloc_ok)
8965 {
8966 (*link_info->callbacks->reloc_dangerous)
8967 (link_info, error_message, abfd, sec,
8968 irel->r_offset);
8969 goto error_return;
8970 }
8971 /* Update the action so that the code that moves
8972 the contents will do the right thing. */
8973 if (action->action == ta_remove_longcall)
8974 action->action = ta_remove_insn;
8975 else
8976 action->action = ta_none;
8977 /* Refresh the info in the r_rel. */
8978 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8979 r_type = ELF32_R_TYPE (irel->r_info);
8980 }
8981 }
8982
8983 source_offset = offset_with_removed_text
8984 (&relax_info->action_list, irel->r_offset);
8985 irel->r_offset = source_offset;
8986 }
8987
8988 /* If the target section could have changed then
8989 we may need to change the relocation's target offset. */
8990
8991 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8992
ae326da8
BW
8993 /* For a reference to a discarded section from a DWARF section,
8994 i.e., where action_discarded is PRETEND, the symbol will
8995 eventually be modified to refer to the kept section (at least if
8996 the kept and discarded sections are the same size). Anticipate
8997 that here and adjust things accordingly. */
8998 if (! elf_xtensa_ignore_discarded_relocs (sec)
8999 && elf_xtensa_action_discarded (sec) == PRETEND
dbaa2011 9000 && sec->sec_info_type != SEC_INFO_TYPE_STABS
ae326da8 9001 && target_sec != NULL
dbaa2011 9002 && discarded_section (target_sec))
ae326da8
BW
9003 {
9004 /* It would be natural to call _bfd_elf_check_kept_section
9005 here, but it's not exported from elflink.c. It's also a
9006 fairly expensive check. Adjusting the relocations to the
9007 discarded section is fairly harmless; it will only adjust
9008 some addends and difference values. If it turns out that
9009 _bfd_elf_check_kept_section fails later, it won't matter,
9010 so just compare the section names to find the right group
9011 member. */
9012 asection *kept = target_sec->kept_section;
9013 if (kept != NULL)
9014 {
9015 if ((kept->flags & SEC_GROUP) != 0)
9016 {
9017 asection *first = elf_next_in_group (kept);
9018 asection *s = first;
9019
9020 kept = NULL;
9021 while (s != NULL)
9022 {
9023 if (strcmp (s->name, target_sec->name) == 0)
9024 {
9025 kept = s;
9026 break;
9027 }
9028 s = elf_next_in_group (s);
9029 if (s == first)
9030 break;
9031 }
9032 }
9033 }
9034 if (kept != NULL
9035 && ((target_sec->rawsize != 0
9036 ? target_sec->rawsize : target_sec->size)
9037 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9038 target_sec = kept;
9039 }
9040
9041 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9042 if (target_relax_info
9043 && (target_relax_info->is_relaxable_literal_section
9044 || target_relax_info->is_relaxable_asm_section))
9045 {
9046 r_reloc new_reloc;
9b7f5d20 9047 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9048
9049 if (r_type == R_XTENSA_DIFF8
9050 || r_type == R_XTENSA_DIFF16
9051 || r_type == R_XTENSA_DIFF32)
9052 {
1058c753
VA
9053 bfd_signed_vma diff_value = 0;
9054 bfd_vma new_end_offset, diff_mask = 0;
43cd72b9
BW
9055
9056 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9057 {
9058 (*link_info->callbacks->reloc_dangerous)
9059 (link_info, _("invalid relocation address"),
9060 abfd, sec, old_source_offset);
9061 goto error_return;
9062 }
9063
9064 switch (r_type)
9065 {
9066 case R_XTENSA_DIFF8:
9067 diff_value =
1058c753 9068 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9069 break;
9070 case R_XTENSA_DIFF16:
9071 diff_value =
1058c753 9072 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9073 break;
9074 case R_XTENSA_DIFF32:
9075 diff_value =
1058c753 9076 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9077 break;
9078 }
9079
9080 new_end_offset = offset_with_removed_text
9081 (&target_relax_info->action_list,
9082 r_rel.target_offset + diff_value);
9083 diff_value = new_end_offset - new_reloc.target_offset;
9084
9085 switch (r_type)
9086 {
9087 case R_XTENSA_DIFF8:
1058c753
VA
9088 diff_mask = 0x7f;
9089 bfd_put_signed_8 (abfd, diff_value,
43cd72b9
BW
9090 &contents[old_source_offset]);
9091 break;
9092 case R_XTENSA_DIFF16:
1058c753
VA
9093 diff_mask = 0x7fff;
9094 bfd_put_signed_16 (abfd, diff_value,
43cd72b9
BW
9095 &contents[old_source_offset]);
9096 break;
9097 case R_XTENSA_DIFF32:
1058c753
VA
9098 diff_mask = 0x7fffffff;
9099 bfd_put_signed_32 (abfd, diff_value,
43cd72b9
BW
9100 &contents[old_source_offset]);
9101 break;
9102 }
9103
1058c753
VA
9104 /* Check for overflow. Sign bits must be all zeroes or all ones */
9105 if ((diff_value & ~diff_mask) != 0 &&
9106 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
43cd72b9
BW
9107 {
9108 (*link_info->callbacks->reloc_dangerous)
9109 (link_info, _("overflow after relaxation"),
9110 abfd, sec, old_source_offset);
9111 goto error_return;
9112 }
9113
9114 pin_contents (sec, contents);
9115 }
dc96b90a
BW
9116
9117 /* If the relocation still references a section in the same
9118 input file, modify the relocation directly instead of
9119 adding a "fix" record. */
9120 if (target_sec->owner == abfd)
9121 {
9122 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9123 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9124 irel->r_addend = new_reloc.rela.r_addend;
9125 pin_internal_relocs (sec, internal_relocs);
9126 }
9b7f5d20
BW
9127 else
9128 {
dc96b90a
BW
9129 bfd_vma addend_displacement;
9130 reloc_bfd_fix *fix;
9131
9132 addend_displacement =
9133 new_reloc.target_offset + new_reloc.virtual_offset;
9134 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9135 target_sec,
9136 addend_displacement, TRUE);
9137 add_fix (sec, fix);
9b7f5d20 9138 }
43cd72b9 9139 }
43cd72b9
BW
9140 }
9141 }
9142
9143 if ((relax_info->is_relaxable_literal_section
9144 || relax_info->is_relaxable_asm_section)
9145 && relax_info->action_list.head)
9146 {
9147 /* Walk through the planned actions and build up a table
9148 of move, copy and fill records. Use the move, copy and
9149 fill records to perform the actions once. */
9150
43cd72b9
BW
9151 int removed = 0;
9152 bfd_size_type final_size, copy_size, orig_insn_size;
9153 bfd_byte *scratch = NULL;
9154 bfd_byte *dup_contents = NULL;
a3ef2d63 9155 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9156 bfd_vma orig_dot = 0;
9157 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9158 orig dot in physical memory. */
9159 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9160 bfd_vma dup_dot = 0;
9161
9162 text_action *action = relax_info->action_list.head;
9163
9164 final_size = sec->size;
9165 for (action = relax_info->action_list.head; action;
9166 action = action->next)
9167 {
9168 final_size -= action->removed_bytes;
9169 }
9170
9171 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9172 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9173
9174 /* The dot is the current fill location. */
9175#if DEBUG
9176 print_action_list (stderr, &relax_info->action_list);
9177#endif
9178
9179 for (action = relax_info->action_list.head; action;
9180 action = action->next)
9181 {
9182 virtual_action = FALSE;
9183 if (action->offset > orig_dot)
9184 {
9185 orig_dot += orig_dot_copied;
9186 orig_dot_copied = 0;
9187 orig_dot_vo = 0;
9188 /* Out of the virtual world. */
9189 }
9190
9191 if (action->offset > orig_dot)
9192 {
9193 copy_size = action->offset - orig_dot;
9194 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9195 orig_dot += copy_size;
9196 dup_dot += copy_size;
9197 BFD_ASSERT (action->offset == orig_dot);
9198 }
9199 else if (action->offset < orig_dot)
9200 {
9201 if (action->action == ta_fill
9202 && action->offset - action->removed_bytes == orig_dot)
9203 {
9204 /* This is OK because the fill only effects the dup_dot. */
9205 }
9206 else if (action->action == ta_add_literal)
9207 {
9208 /* TBD. Might need to handle this. */
9209 }
9210 }
9211 if (action->offset == orig_dot)
9212 {
9213 if (action->virtual_offset > orig_dot_vo)
9214 {
9215 if (orig_dot_vo == 0)
9216 {
9217 /* Need to copy virtual_offset bytes. Probably four. */
9218 copy_size = action->virtual_offset - orig_dot_vo;
9219 memmove (&dup_contents[dup_dot],
9220 &contents[orig_dot], copy_size);
9221 orig_dot_copied = copy_size;
9222 dup_dot += copy_size;
9223 }
9224 virtual_action = TRUE;
68ffbac6 9225 }
43cd72b9
BW
9226 else
9227 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9228 }
9229 switch (action->action)
9230 {
9231 case ta_remove_literal:
9232 case ta_remove_insn:
9233 BFD_ASSERT (action->removed_bytes >= 0);
9234 orig_dot += action->removed_bytes;
9235 break;
9236
9237 case ta_narrow_insn:
9238 orig_insn_size = 3;
9239 copy_size = 2;
9240 memmove (scratch, &contents[orig_dot], orig_insn_size);
9241 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9242 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9243 BFD_ASSERT (rv);
9244 memmove (&dup_contents[dup_dot], scratch, copy_size);
9245 orig_dot += orig_insn_size;
9246 dup_dot += copy_size;
9247 break;
9248
9249 case ta_fill:
9250 if (action->removed_bytes >= 0)
9251 orig_dot += action->removed_bytes;
9252 else
9253 {
9254 /* Already zeroed in dup_contents. Just bump the
9255 counters. */
9256 dup_dot += (-action->removed_bytes);
9257 }
9258 break;
9259
9260 case ta_none:
9261 BFD_ASSERT (action->removed_bytes == 0);
9262 break;
9263
9264 case ta_convert_longcall:
9265 case ta_remove_longcall:
9266 /* These will be removed or converted before we get here. */
9267 BFD_ASSERT (0);
9268 break;
9269
9270 case ta_widen_insn:
9271 orig_insn_size = 2;
9272 copy_size = 3;
9273 memmove (scratch, &contents[orig_dot], orig_insn_size);
9274 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9275 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9276 BFD_ASSERT (rv);
9277 memmove (&dup_contents[dup_dot], scratch, copy_size);
9278 orig_dot += orig_insn_size;
9279 dup_dot += copy_size;
9280 break;
9281
9282 case ta_add_literal:
9283 orig_insn_size = 0;
9284 copy_size = 4;
9285 BFD_ASSERT (action->removed_bytes == -4);
9286 /* TBD -- place the literal value here and insert
9287 into the table. */
9288 memset (&dup_contents[dup_dot], 0, 4);
9289 pin_internal_relocs (sec, internal_relocs);
9290 pin_contents (sec, contents);
9291
9292 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9293 relax_info, &internal_relocs, &action->value))
9294 goto error_return;
9295
68ffbac6 9296 if (virtual_action)
43cd72b9
BW
9297 orig_dot_vo += copy_size;
9298
9299 orig_dot += orig_insn_size;
9300 dup_dot += copy_size;
9301 break;
9302
9303 default:
9304 /* Not implemented yet. */
9305 BFD_ASSERT (0);
9306 break;
9307 }
9308
43cd72b9
BW
9309 removed += action->removed_bytes;
9310 BFD_ASSERT (dup_dot <= final_size);
9311 BFD_ASSERT (orig_dot <= orig_size);
9312 }
9313
9314 orig_dot += orig_dot_copied;
9315 orig_dot_copied = 0;
9316
9317 if (orig_dot != orig_size)
9318 {
9319 copy_size = orig_size - orig_dot;
9320 BFD_ASSERT (orig_size > orig_dot);
9321 BFD_ASSERT (dup_dot + copy_size == final_size);
9322 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9323 orig_dot += copy_size;
9324 dup_dot += copy_size;
9325 }
9326 BFD_ASSERT (orig_size == orig_dot);
9327 BFD_ASSERT (final_size == dup_dot);
9328
9329 /* Move the dup_contents back. */
9330 if (final_size > orig_size)
9331 {
9332 /* Contents need to be reallocated. Swap the dup_contents into
9333 contents. */
9334 sec->contents = dup_contents;
9335 free (contents);
9336 contents = dup_contents;
9337 pin_contents (sec, contents);
9338 }
9339 else
9340 {
9341 BFD_ASSERT (final_size <= orig_size);
9342 memset (contents, 0, orig_size);
9343 memcpy (contents, dup_contents, final_size);
9344 free (dup_contents);
9345 }
9346 free (scratch);
9347 pin_contents (sec, contents);
9348
a3ef2d63
BW
9349 if (sec->rawsize == 0)
9350 sec->rawsize = sec->size;
43cd72b9
BW
9351 sec->size = final_size;
9352 }
9353
9354 error_return:
9355 release_internal_relocs (sec, internal_relocs);
9356 release_contents (sec, contents);
9357 return ok;
9358}
9359
9360
68ffbac6 9361static bfd_boolean
7fa3d080 9362translate_section_fixes (asection *sec)
43cd72b9
BW
9363{
9364 xtensa_relax_info *relax_info;
9365 reloc_bfd_fix *r;
9366
9367 relax_info = get_xtensa_relax_info (sec);
9368 if (!relax_info)
9369 return TRUE;
9370
9371 for (r = relax_info->fix_list; r != NULL; r = r->next)
9372 if (!translate_reloc_bfd_fix (r))
9373 return FALSE;
e0001a05 9374
43cd72b9
BW
9375 return TRUE;
9376}
e0001a05 9377
e0001a05 9378
43cd72b9
BW
9379/* Translate a fix given the mapping in the relax info for the target
9380 section. If it has already been translated, no work is required. */
e0001a05 9381
68ffbac6 9382static bfd_boolean
7fa3d080 9383translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9384{
9385 reloc_bfd_fix new_fix;
9386 asection *sec;
9387 xtensa_relax_info *relax_info;
9388 removed_literal *removed;
9389 bfd_vma new_offset, target_offset;
e0001a05 9390
43cd72b9
BW
9391 if (fix->translated)
9392 return TRUE;
e0001a05 9393
43cd72b9
BW
9394 sec = fix->target_sec;
9395 target_offset = fix->target_offset;
e0001a05 9396
43cd72b9
BW
9397 relax_info = get_xtensa_relax_info (sec);
9398 if (!relax_info)
9399 {
9400 fix->translated = TRUE;
9401 return TRUE;
9402 }
e0001a05 9403
43cd72b9 9404 new_fix = *fix;
e0001a05 9405
43cd72b9
BW
9406 /* The fix does not need to be translated if the section cannot change. */
9407 if (!relax_info->is_relaxable_literal_section
9408 && !relax_info->is_relaxable_asm_section)
9409 {
9410 fix->translated = TRUE;
9411 return TRUE;
9412 }
e0001a05 9413
43cd72b9
BW
9414 /* If the literal has been moved and this relocation was on an
9415 opcode, then the relocation should move to the new literal
9416 location. Otherwise, the relocation should move within the
9417 section. */
9418
9419 removed = FALSE;
9420 if (is_operand_relocation (fix->src_type))
9421 {
9422 /* Check if the original relocation is against a literal being
9423 removed. */
9424 removed = find_removed_literal (&relax_info->removed_list,
9425 target_offset);
e0001a05
NC
9426 }
9427
68ffbac6 9428 if (removed)
e0001a05 9429 {
43cd72b9 9430 asection *new_sec;
e0001a05 9431
43cd72b9
BW
9432 /* The fact that there is still a relocation to this literal indicates
9433 that the literal is being coalesced, not simply removed. */
9434 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9435
43cd72b9
BW
9436 /* This was moved to some other address (possibly another section). */
9437 new_sec = r_reloc_get_section (&removed->to);
68ffbac6 9438 if (new_sec != sec)
e0001a05 9439 {
43cd72b9
BW
9440 sec = new_sec;
9441 relax_info = get_xtensa_relax_info (sec);
68ffbac6 9442 if (!relax_info ||
43cd72b9
BW
9443 (!relax_info->is_relaxable_literal_section
9444 && !relax_info->is_relaxable_asm_section))
e0001a05 9445 {
43cd72b9
BW
9446 target_offset = removed->to.target_offset;
9447 new_fix.target_sec = new_sec;
9448 new_fix.target_offset = target_offset;
9449 new_fix.translated = TRUE;
9450 *fix = new_fix;
9451 return TRUE;
e0001a05 9452 }
e0001a05 9453 }
43cd72b9
BW
9454 target_offset = removed->to.target_offset;
9455 new_fix.target_sec = new_sec;
e0001a05 9456 }
43cd72b9
BW
9457
9458 /* The target address may have been moved within its section. */
9459 new_offset = offset_with_removed_text (&relax_info->action_list,
9460 target_offset);
9461
9462 new_fix.target_offset = new_offset;
9463 new_fix.target_offset = new_offset;
9464 new_fix.translated = TRUE;
9465 *fix = new_fix;
9466 return TRUE;
e0001a05
NC
9467}
9468
9469
9470/* Fix up a relocation to take account of removed literals. */
9471
9b7f5d20
BW
9472static asection *
9473translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9474{
e0001a05
NC
9475 xtensa_relax_info *relax_info;
9476 removed_literal *removed;
9b7f5d20
BW
9477 bfd_vma target_offset, base_offset;
9478 text_action *act;
e0001a05
NC
9479
9480 *new_rel = *orig_rel;
9481
9482 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9483 return sec ;
e0001a05
NC
9484
9485 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9486 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9487 || relax_info->is_relaxable_asm_section));
e0001a05 9488
43cd72b9
BW
9489 target_offset = orig_rel->target_offset;
9490
9491 removed = FALSE;
9492 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9493 {
9494 /* Check if the original relocation is against a literal being
9495 removed. */
9496 removed = find_removed_literal (&relax_info->removed_list,
9497 target_offset);
9498 }
9499 if (removed && removed->to.abfd)
e0001a05
NC
9500 {
9501 asection *new_sec;
9502
9503 /* The fact that there is still a relocation to this literal indicates
9504 that the literal is being coalesced, not simply removed. */
9505 BFD_ASSERT (removed->to.abfd != NULL);
9506
43cd72b9
BW
9507 /* This was moved to some other address
9508 (possibly in another section). */
e0001a05
NC
9509 *new_rel = removed->to;
9510 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9511 if (new_sec != sec)
e0001a05
NC
9512 {
9513 sec = new_sec;
9514 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9515 if (!relax_info
9516 || (!relax_info->is_relaxable_literal_section
9517 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9518 return sec;
e0001a05 9519 }
43cd72b9 9520 target_offset = new_rel->target_offset;
e0001a05
NC
9521 }
9522
9b7f5d20
BW
9523 /* Find the base offset of the reloc symbol, excluding any addend from the
9524 reloc or from the section contents (for a partial_inplace reloc). Then
9525 find the adjusted values of the offsets due to relaxation. The base
9526 offset is needed to determine the change to the reloc's addend; the reloc
9527 addend should not be adjusted due to relaxations located before the base
9528 offset. */
9529
9530 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9531 act = relax_info->action_list.head;
9532 if (base_offset <= target_offset)
9533 {
9534 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9535 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9536 new_rel->target_offset = target_offset - base_removed - addend_removed;
9537 new_rel->rela.r_addend -= addend_removed;
9538 }
9539 else
9540 {
9541 /* Handle a negative addend. The base offset comes first. */
9542 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9543 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9544 new_rel->target_offset = target_offset - tgt_removed;
9545 new_rel->rela.r_addend += addend_removed;
9546 }
e0001a05 9547
9b7f5d20 9548 return sec;
e0001a05
NC
9549}
9550
9551
9552/* For dynamic links, there may be a dynamic relocation for each
9553 literal. The number of dynamic relocations must be computed in
9554 size_dynamic_sections, which occurs before relaxation. When a
9555 literal is removed, this function checks if there is a corresponding
9556 dynamic relocation and shrinks the size of the appropriate dynamic
9557 relocation section accordingly. At this point, the contents of the
9558 dynamic relocation sections have not yet been filled in, so there's
9559 nothing else that needs to be done. */
9560
9561static void
7fa3d080
BW
9562shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9563 bfd *abfd,
9564 asection *input_section,
9565 Elf_Internal_Rela *rel)
e0001a05 9566{
f0e6fdb2 9567 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
9568 Elf_Internal_Shdr *symtab_hdr;
9569 struct elf_link_hash_entry **sym_hashes;
9570 unsigned long r_symndx;
9571 int r_type;
9572 struct elf_link_hash_entry *h;
9573 bfd_boolean dynamic_symbol;
9574
f0e6fdb2 9575 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
9576 if (htab == NULL)
9577 return;
9578
e0001a05
NC
9579 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9580 sym_hashes = elf_sym_hashes (abfd);
9581
9582 r_type = ELF32_R_TYPE (rel->r_info);
9583 r_symndx = ELF32_R_SYM (rel->r_info);
9584
9585 if (r_symndx < symtab_hdr->sh_info)
9586 h = NULL;
9587 else
9588 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9589
4608f3d9 9590 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
9591
9592 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9593 && (input_section->flags & SEC_ALLOC) != 0
9594 && (dynamic_symbol || info->shared))
9595 {
e0001a05
NC
9596 asection *srel;
9597 bfd_boolean is_plt = FALSE;
9598
e0001a05
NC
9599 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9600 {
f0e6fdb2 9601 srel = htab->srelplt;
e0001a05
NC
9602 is_plt = TRUE;
9603 }
9604 else
f0e6fdb2 9605 srel = htab->srelgot;
e0001a05
NC
9606
9607 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 9608 BFD_ASSERT (srel != NULL);
eea6121a
AM
9609 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9610 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
9611
9612 if (is_plt)
9613 {
9614 asection *splt, *sgotplt, *srelgot;
9615 int reloc_index, chunk;
9616
9617 /* Find the PLT reloc index of the entry being removed. This
9618 is computed from the size of ".rela.plt". It is needed to
9619 figure out which PLT chunk to resize. Usually "last index
9620 = size - 1" since the index starts at zero, but in this
9621 context, the size has just been decremented so there's no
9622 need to subtract one. */
eea6121a 9623 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
9624
9625 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
9626 splt = elf_xtensa_get_plt_section (info, chunk);
9627 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
9628 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9629
9630 /* Check if an entire PLT chunk has just been eliminated. */
9631 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9632 {
9633 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 9634 srelgot = htab->srelgot;
e0001a05
NC
9635 BFD_ASSERT (srelgot != NULL);
9636 srelgot->reloc_count -= 2;
eea6121a
AM
9637 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9638 sgotplt->size -= 8;
e0001a05
NC
9639
9640 /* There should be only one entry left (and it will be
9641 removed below). */
eea6121a
AM
9642 BFD_ASSERT (sgotplt->size == 4);
9643 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
9644 }
9645
eea6121a
AM
9646 BFD_ASSERT (sgotplt->size >= 4);
9647 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 9648
eea6121a
AM
9649 sgotplt->size -= 4;
9650 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
9651 }
9652 }
9653}
9654
9655
43cd72b9
BW
9656/* Take an r_rel and move it to another section. This usually
9657 requires extending the interal_relocation array and pinning it. If
9658 the original r_rel is from the same BFD, we can complete this here.
9659 Otherwise, we add a fix record to let the final link fix the
9660 appropriate address. Contents and internal relocations for the
9661 section must be pinned after calling this routine. */
9662
9663static bfd_boolean
7fa3d080
BW
9664move_literal (bfd *abfd,
9665 struct bfd_link_info *link_info,
9666 asection *sec,
9667 bfd_vma offset,
9668 bfd_byte *contents,
9669 xtensa_relax_info *relax_info,
9670 Elf_Internal_Rela **internal_relocs_p,
9671 const literal_value *lit)
43cd72b9
BW
9672{
9673 Elf_Internal_Rela *new_relocs = NULL;
9674 size_t new_relocs_count = 0;
9675 Elf_Internal_Rela this_rela;
9676 const r_reloc *r_rel;
9677
9678 r_rel = &lit->r_rel;
9679 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9680
9681 if (r_reloc_is_const (r_rel))
9682 bfd_put_32 (abfd, lit->value, contents + offset);
9683 else
9684 {
9685 int r_type;
9686 unsigned i;
43cd72b9
BW
9687 reloc_bfd_fix *fix;
9688 unsigned insert_at;
9689
9690 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
9691
9692 /* This is the difficult case. We have to create a fix up. */
9693 this_rela.r_offset = offset;
9694 this_rela.r_info = ELF32_R_INFO (0, r_type);
9695 this_rela.r_addend =
9696 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9697 bfd_put_32 (abfd, lit->value, contents + offset);
9698
9699 /* Currently, we cannot move relocations during a relocatable link. */
9700 BFD_ASSERT (!link_info->relocatable);
0f5f1638 9701 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
9702 r_reloc_get_section (r_rel),
9703 r_rel->target_offset + r_rel->virtual_offset,
9704 FALSE);
9705 /* We also need to mark that relocations are needed here. */
9706 sec->flags |= SEC_RELOC;
9707
9708 translate_reloc_bfd_fix (fix);
9709 /* This fix has not yet been translated. */
9710 add_fix (sec, fix);
9711
9712 /* Add the relocation. If we have already allocated our own
9713 space for the relocations and we have room for more, then use
9714 it. Otherwise, allocate new space and move the literals. */
9715 insert_at = sec->reloc_count;
9716 for (i = 0; i < sec->reloc_count; ++i)
9717 {
9718 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9719 {
9720 insert_at = i;
9721 break;
9722 }
9723 }
9724
9725 if (*internal_relocs_p != relax_info->allocated_relocs
9726 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9727 {
9728 BFD_ASSERT (relax_info->allocated_relocs == NULL
9729 || sec->reloc_count == relax_info->relocs_count);
9730
68ffbac6 9731 if (relax_info->allocated_relocs_count == 0)
43cd72b9
BW
9732 new_relocs_count = (sec->reloc_count + 2) * 2;
9733 else
9734 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9735
9736 new_relocs = (Elf_Internal_Rela *)
9737 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9738 if (!new_relocs)
9739 return FALSE;
9740
9741 /* We could handle this more quickly by finding the split point. */
9742 if (insert_at != 0)
9743 memcpy (new_relocs, *internal_relocs_p,
9744 insert_at * sizeof (Elf_Internal_Rela));
9745
9746 new_relocs[insert_at] = this_rela;
9747
9748 if (insert_at != sec->reloc_count)
9749 memcpy (new_relocs + insert_at + 1,
9750 (*internal_relocs_p) + insert_at,
68ffbac6 9751 (sec->reloc_count - insert_at)
43cd72b9
BW
9752 * sizeof (Elf_Internal_Rela));
9753
9754 if (*internal_relocs_p != relax_info->allocated_relocs)
9755 {
9756 /* The first time we re-allocate, we can only free the
9757 old relocs if they were allocated with bfd_malloc.
9758 This is not true when keep_memory is in effect. */
9759 if (!link_info->keep_memory)
9760 free (*internal_relocs_p);
9761 }
9762 else
9763 free (*internal_relocs_p);
9764 relax_info->allocated_relocs = new_relocs;
9765 relax_info->allocated_relocs_count = new_relocs_count;
9766 elf_section_data (sec)->relocs = new_relocs;
9767 sec->reloc_count++;
9768 relax_info->relocs_count = sec->reloc_count;
9769 *internal_relocs_p = new_relocs;
9770 }
9771 else
9772 {
9773 if (insert_at != sec->reloc_count)
9774 {
9775 unsigned idx;
9776 for (idx = sec->reloc_count; idx > insert_at; idx--)
9777 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9778 }
9779 (*internal_relocs_p)[insert_at] = this_rela;
9780 sec->reloc_count++;
9781 if (relax_info->allocated_relocs)
9782 relax_info->relocs_count = sec->reloc_count;
9783 }
9784 }
9785 return TRUE;
9786}
9787
9788
e0001a05
NC
9789/* This is similar to relax_section except that when a target is moved,
9790 we shift addresses up. We also need to modify the size. This
9791 algorithm does NOT allow for relocations into the middle of the
9792 property sections. */
9793
43cd72b9 9794static bfd_boolean
7fa3d080
BW
9795relax_property_section (bfd *abfd,
9796 asection *sec,
9797 struct bfd_link_info *link_info)
e0001a05
NC
9798{
9799 Elf_Internal_Rela *internal_relocs;
9800 bfd_byte *contents;
1d25768e 9801 unsigned i;
e0001a05 9802 bfd_boolean ok = TRUE;
43cd72b9
BW
9803 bfd_boolean is_full_prop_section;
9804 size_t last_zfill_target_offset = 0;
9805 asection *last_zfill_target_sec = NULL;
9806 bfd_size_type sec_size;
1d25768e 9807 bfd_size_type entry_size;
e0001a05 9808
43cd72b9 9809 sec_size = bfd_get_section_limit (abfd, sec);
68ffbac6 9810 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
9811 link_info->keep_memory);
9812 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9813 if (contents == NULL && sec_size != 0)
e0001a05
NC
9814 {
9815 ok = FALSE;
9816 goto error_return;
9817 }
9818
1d25768e
BW
9819 is_full_prop_section = xtensa_is_proptable_section (sec);
9820 if (is_full_prop_section)
9821 entry_size = 12;
9822 else
9823 entry_size = 8;
43cd72b9
BW
9824
9825 if (internal_relocs)
e0001a05 9826 {
43cd72b9 9827 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9828 {
9829 Elf_Internal_Rela *irel;
9830 xtensa_relax_info *target_relax_info;
e0001a05
NC
9831 unsigned r_type;
9832 asection *target_sec;
43cd72b9
BW
9833 literal_value val;
9834 bfd_byte *size_p, *flags_p;
e0001a05
NC
9835
9836 /* Locally change the source address.
9837 Translate the target to the new target address.
9838 If it points to this section and has been removed, MOVE IT.
9839 Also, don't forget to modify the associated SIZE at
9840 (offset + 4). */
9841
9842 irel = &internal_relocs[i];
9843 r_type = ELF32_R_TYPE (irel->r_info);
9844 if (r_type == R_XTENSA_NONE)
9845 continue;
9846
43cd72b9
BW
9847 /* Find the literal value. */
9848 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9849 size_p = &contents[irel->r_offset + 4];
9850 flags_p = NULL;
9851 if (is_full_prop_section)
1d25768e
BW
9852 flags_p = &contents[irel->r_offset + 8];
9853 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 9854
43cd72b9 9855 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
9856 target_relax_info = get_xtensa_relax_info (target_sec);
9857
9858 if (target_relax_info
43cd72b9
BW
9859 && (target_relax_info->is_relaxable_literal_section
9860 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9861 {
9862 /* Translate the relocation's destination. */
03669f1c
BW
9863 bfd_vma old_offset = val.r_rel.target_offset;
9864 bfd_vma new_offset;
e0001a05 9865 long old_size, new_size;
03669f1c
BW
9866 text_action *act = target_relax_info->action_list.head;
9867 new_offset = old_offset -
9868 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9869
9870 /* Assert that we are not out of bounds. */
43cd72b9 9871 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9872 new_size = old_size;
43cd72b9
BW
9873
9874 if (old_size == 0)
9875 {
9876 /* Only the first zero-sized unreachable entry is
9877 allowed to expand. In this case the new offset
9878 should be the offset before the fill and the new
9879 size is the expansion size. For other zero-sized
9880 entries the resulting size should be zero with an
9881 offset before or after the fill address depending
9882 on whether the expanding unreachable entry
9883 preceeds it. */
03669f1c
BW
9884 if (last_zfill_target_sec == 0
9885 || last_zfill_target_sec != target_sec
9886 || last_zfill_target_offset != old_offset)
43cd72b9 9887 {
03669f1c
BW
9888 bfd_vma new_end_offset = new_offset;
9889
9890 /* Recompute the new_offset, but this time don't
9891 include any fill inserted by relaxation. */
9892 act = target_relax_info->action_list.head;
9893 new_offset = old_offset -
9894 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9895
9896 /* If it is not unreachable and we have not yet
9897 seen an unreachable at this address, place it
9898 before the fill address. */
03669f1c
BW
9899 if (flags_p && (bfd_get_32 (abfd, flags_p)
9900 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9901 {
03669f1c
BW
9902 new_size = new_end_offset - new_offset;
9903
43cd72b9 9904 last_zfill_target_sec = target_sec;
03669f1c 9905 last_zfill_target_offset = old_offset;
43cd72b9
BW
9906 }
9907 }
9908 }
9909 else
03669f1c
BW
9910 new_size -=
9911 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9912
e0001a05
NC
9913 if (new_size != old_size)
9914 {
9915 bfd_put_32 (abfd, new_size, size_p);
9916 pin_contents (sec, contents);
9917 }
43cd72b9 9918
03669f1c 9919 if (new_offset != old_offset)
e0001a05 9920 {
03669f1c 9921 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9922 irel->r_addend += diff;
9923 pin_internal_relocs (sec, internal_relocs);
9924 }
9925 }
9926 }
9927 }
9928
9929 /* Combine adjacent property table entries. This is also done in
9930 finish_dynamic_sections() but at that point it's too late to
9931 reclaim the space in the output section, so we do this twice. */
9932
43cd72b9 9933 if (internal_relocs && (!link_info->relocatable
1d25768e 9934 || xtensa_is_littable_section (sec)))
e0001a05
NC
9935 {
9936 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9937 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9938 int removed_bytes = 0;
1d25768e 9939 bfd_vma offset;
43cd72b9
BW
9940 flagword predef_flags;
9941
43cd72b9 9942 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9943
1d25768e 9944 /* Walk over memory and relocations at the same time.
e0001a05
NC
9945 This REQUIRES that the internal_relocs be sorted by offset. */
9946 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9947 internal_reloc_compare);
e0001a05
NC
9948
9949 pin_internal_relocs (sec, internal_relocs);
9950 pin_contents (sec, contents);
9951
1d25768e
BW
9952 next_rel = internal_relocs;
9953 rel_end = internal_relocs + sec->reloc_count;
9954
a3ef2d63 9955 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9956
a3ef2d63 9957 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9958 {
1d25768e 9959 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9960 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9961 bfd_boolean remove_this_rel;
43cd72b9 9962 flagword flags;
e0001a05 9963
1d25768e
BW
9964 /* Find the first relocation for the entry at the current offset.
9965 Adjust the offsets of any extra relocations for the previous
9966 entry. */
9967 offset_rel = NULL;
9968 if (next_rel)
9969 {
9970 for (irel = next_rel; irel < rel_end; irel++)
9971 {
9972 if ((irel->r_offset == offset
9973 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9974 || irel->r_offset > offset)
9975 {
9976 offset_rel = irel;
9977 break;
9978 }
9979 irel->r_offset -= removed_bytes;
1d25768e
BW
9980 }
9981 }
e0001a05 9982
1d25768e
BW
9983 /* Find the next relocation (if there are any left). */
9984 extra_rel = NULL;
9985 if (offset_rel)
e0001a05 9986 {
1d25768e 9987 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9988 {
1d25768e
BW
9989 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9990 {
9991 extra_rel = irel;
9992 break;
9993 }
e0001a05 9994 }
e0001a05
NC
9995 }
9996
1d25768e
BW
9997 /* Check if there are relocations on the current entry. There
9998 should usually be a relocation on the offset field. If there
9999 are relocations on the size or flags, then we can't optimize
10000 this entry. Also, find the next relocation to examine on the
10001 next iteration. */
10002 if (offset_rel)
e0001a05 10003 {
1d25768e 10004 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 10005 {
1d25768e
BW
10006 next_rel = offset_rel;
10007 /* There are no relocations on the current entry, but we
10008 might still be able to remove it if the size is zero. */
10009 offset_rel = NULL;
10010 }
10011 else if (offset_rel->r_offset > offset
10012 || (extra_rel
10013 && extra_rel->r_offset < offset + entry_size))
10014 {
10015 /* There is a relocation on the size or flags, so we can't
10016 do anything with this entry. Continue with the next. */
10017 next_rel = offset_rel;
10018 continue;
10019 }
10020 else
10021 {
10022 BFD_ASSERT (offset_rel->r_offset == offset);
10023 offset_rel->r_offset -= removed_bytes;
10024 next_rel = offset_rel + 1;
e0001a05 10025 }
e0001a05 10026 }
1d25768e
BW
10027 else
10028 next_rel = NULL;
e0001a05 10029
1d25768e 10030 remove_this_rel = FALSE;
e0001a05
NC
10031 bytes_to_remove = 0;
10032 actual_offset = offset - removed_bytes;
10033 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10034
68ffbac6 10035 if (is_full_prop_section)
43cd72b9
BW
10036 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10037 else
10038 flags = predef_flags;
10039
1d25768e
BW
10040 if (size == 0
10041 && (flags & XTENSA_PROP_ALIGN) == 0
10042 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 10043 {
43cd72b9
BW
10044 /* Always remove entries with zero size and no alignment. */
10045 bytes_to_remove = entry_size;
1d25768e
BW
10046 if (offset_rel)
10047 remove_this_rel = TRUE;
e0001a05 10048 }
1d25768e
BW
10049 else if (offset_rel
10050 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10051 {
1d25768e 10052 if (last_irel)
e0001a05 10053 {
1d25768e
BW
10054 flagword old_flags;
10055 bfd_vma old_size =
10056 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10057 bfd_vma old_address =
10058 (last_irel->r_addend
10059 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10060 bfd_vma new_address =
10061 (offset_rel->r_addend
10062 + bfd_get_32 (abfd, &contents[actual_offset]));
68ffbac6 10063 if (is_full_prop_section)
1d25768e
BW
10064 old_flags = bfd_get_32
10065 (abfd, &contents[last_irel->r_offset + 8]);
10066 else
10067 old_flags = predef_flags;
10068
10069 if ((ELF32_R_SYM (offset_rel->r_info)
10070 == ELF32_R_SYM (last_irel->r_info))
10071 && old_address + old_size == new_address
10072 && old_flags == flags
10073 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10074 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10075 {
1d25768e
BW
10076 /* Fix the old size. */
10077 bfd_put_32 (abfd, old_size + size,
10078 &contents[last_irel->r_offset + 4]);
10079 bytes_to_remove = entry_size;
10080 remove_this_rel = TRUE;
e0001a05
NC
10081 }
10082 else
1d25768e 10083 last_irel = offset_rel;
e0001a05 10084 }
1d25768e
BW
10085 else
10086 last_irel = offset_rel;
e0001a05
NC
10087 }
10088
1d25768e 10089 if (remove_this_rel)
e0001a05 10090 {
1d25768e 10091 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10092 offset_rel->r_offset = 0;
e0001a05
NC
10093 }
10094
10095 if (bytes_to_remove != 0)
10096 {
10097 removed_bytes += bytes_to_remove;
a3ef2d63 10098 if (offset + bytes_to_remove < sec->size)
e0001a05 10099 memmove (&contents[actual_offset],
43cd72b9 10100 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10101 sec->size - offset - bytes_to_remove);
e0001a05
NC
10102 }
10103 }
10104
43cd72b9 10105 if (removed_bytes)
e0001a05 10106 {
1d25768e
BW
10107 /* Fix up any extra relocations on the last entry. */
10108 for (irel = next_rel; irel < rel_end; irel++)
10109 irel->r_offset -= removed_bytes;
10110
e0001a05 10111 /* Clear the removed bytes. */
a3ef2d63 10112 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10113
a3ef2d63
BW
10114 if (sec->rawsize == 0)
10115 sec->rawsize = sec->size;
10116 sec->size -= removed_bytes;
e901de89
BW
10117
10118 if (xtensa_is_littable_section (sec))
10119 {
f0e6fdb2
BW
10120 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10121 if (sgotloc)
10122 sgotloc->size -= removed_bytes;
e901de89 10123 }
e0001a05
NC
10124 }
10125 }
e901de89 10126
e0001a05
NC
10127 error_return:
10128 release_internal_relocs (sec, internal_relocs);
10129 release_contents (sec, contents);
10130 return ok;
10131}
10132
10133\f
10134/* Third relaxation pass. */
10135
10136/* Change symbol values to account for removed literals. */
10137
43cd72b9 10138bfd_boolean
7fa3d080 10139relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10140{
10141 xtensa_relax_info *relax_info;
10142 unsigned int sec_shndx;
10143 Elf_Internal_Shdr *symtab_hdr;
10144 Elf_Internal_Sym *isymbuf;
10145 unsigned i, num_syms, num_locals;
10146
10147 relax_info = get_xtensa_relax_info (sec);
10148 BFD_ASSERT (relax_info);
10149
43cd72b9
BW
10150 if (!relax_info->is_relaxable_literal_section
10151 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10152 return TRUE;
10153
10154 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10155
10156 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10157 isymbuf = retrieve_local_syms (abfd);
10158
10159 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10160 num_locals = symtab_hdr->sh_info;
10161
10162 /* Adjust the local symbols defined in this section. */
10163 for (i = 0; i < num_locals; i++)
10164 {
10165 Elf_Internal_Sym *isym = &isymbuf[i];
10166
10167 if (isym->st_shndx == sec_shndx)
10168 {
03669f1c
BW
10169 text_action *act = relax_info->action_list.head;
10170 bfd_vma orig_addr = isym->st_value;
43cd72b9 10171
03669f1c 10172 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10173
03669f1c
BW
10174 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10175 isym->st_size -=
10176 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
10177 }
10178 }
10179
10180 /* Now adjust the global symbols defined in this section. */
10181 for (i = 0; i < (num_syms - num_locals); i++)
10182 {
10183 struct elf_link_hash_entry *sym_hash;
10184
10185 sym_hash = elf_sym_hashes (abfd)[i];
10186
10187 if (sym_hash->root.type == bfd_link_hash_warning)
10188 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10189
10190 if ((sym_hash->root.type == bfd_link_hash_defined
10191 || sym_hash->root.type == bfd_link_hash_defweak)
10192 && sym_hash->root.u.def.section == sec)
10193 {
03669f1c
BW
10194 text_action *act = relax_info->action_list.head;
10195 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 10196
03669f1c
BW
10197 sym_hash->root.u.def.value -=
10198 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10199
03669f1c
BW
10200 if (sym_hash->type == STT_FUNC)
10201 sym_hash->size -=
10202 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
10203 }
10204 }
10205
10206 return TRUE;
10207}
10208
10209\f
10210/* "Fix" handling functions, called while performing relocations. */
10211
43cd72b9 10212static bfd_boolean
7fa3d080
BW
10213do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10214 bfd *input_bfd,
10215 asection *input_section,
10216 bfd_byte *contents)
e0001a05
NC
10217{
10218 r_reloc r_rel;
10219 asection *sec, *old_sec;
10220 bfd_vma old_offset;
10221 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10222 reloc_bfd_fix *fix;
10223
10224 if (r_type == R_XTENSA_NONE)
43cd72b9 10225 return TRUE;
e0001a05 10226
43cd72b9
BW
10227 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10228 if (!fix)
10229 return TRUE;
e0001a05 10230
43cd72b9
BW
10231 r_reloc_init (&r_rel, input_bfd, rel, contents,
10232 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10233 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10234 old_offset = r_rel.target_offset;
10235
10236 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10237 {
43cd72b9
BW
10238 if (r_type != R_XTENSA_ASM_EXPAND)
10239 {
10240 (*_bfd_error_handler)
10241 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10242 input_bfd, input_section, rel->r_offset,
10243 elf_howto_table[r_type].name);
10244 return FALSE;
10245 }
e0001a05
NC
10246 /* Leave it be. Resolution will happen in a later stage. */
10247 }
10248 else
10249 {
10250 sec = fix->target_sec;
10251 rel->r_addend += ((sec->output_offset + fix->target_offset)
10252 - (old_sec->output_offset + old_offset));
10253 }
43cd72b9 10254 return TRUE;
e0001a05
NC
10255}
10256
10257
10258static void
7fa3d080
BW
10259do_fix_for_final_link (Elf_Internal_Rela *rel,
10260 bfd *input_bfd,
10261 asection *input_section,
10262 bfd_byte *contents,
10263 bfd_vma *relocationp)
e0001a05
NC
10264{
10265 asection *sec;
10266 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10267 reloc_bfd_fix *fix;
43cd72b9 10268 bfd_vma fixup_diff;
e0001a05
NC
10269
10270 if (r_type == R_XTENSA_NONE)
10271 return;
10272
43cd72b9
BW
10273 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10274 if (!fix)
e0001a05
NC
10275 return;
10276
10277 sec = fix->target_sec;
43cd72b9
BW
10278
10279 fixup_diff = rel->r_addend;
10280 if (elf_howto_table[fix->src_type].partial_inplace)
10281 {
10282 bfd_vma inplace_val;
10283 BFD_ASSERT (fix->src_offset
10284 < bfd_get_section_limit (input_bfd, input_section));
10285 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10286 fixup_diff += inplace_val;
10287 }
10288
e0001a05
NC
10289 *relocationp = (sec->output_section->vma
10290 + sec->output_offset
43cd72b9 10291 + fix->target_offset - fixup_diff);
e0001a05
NC
10292}
10293
10294\f
10295/* Miscellaneous utility functions.... */
10296
10297static asection *
f0e6fdb2 10298elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10299{
f0e6fdb2
BW
10300 struct elf_xtensa_link_hash_table *htab;
10301 bfd *dynobj;
e0001a05
NC
10302 char plt_name[10];
10303
10304 if (chunk == 0)
f0e6fdb2
BW
10305 {
10306 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10307 if (htab == NULL)
10308 return NULL;
10309
f0e6fdb2
BW
10310 return htab->splt;
10311 }
e0001a05 10312
f0e6fdb2 10313 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10314 sprintf (plt_name, ".plt.%u", chunk);
3d4d4302 10315 return bfd_get_linker_section (dynobj, plt_name);
e0001a05
NC
10316}
10317
10318
10319static asection *
f0e6fdb2 10320elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10321{
f0e6fdb2
BW
10322 struct elf_xtensa_link_hash_table *htab;
10323 bfd *dynobj;
e0001a05
NC
10324 char got_name[14];
10325
10326 if (chunk == 0)
f0e6fdb2
BW
10327 {
10328 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10329 if (htab == NULL)
10330 return NULL;
f0e6fdb2
BW
10331 return htab->sgotplt;
10332 }
e0001a05 10333
f0e6fdb2 10334 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10335 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10336 return bfd_get_linker_section (dynobj, got_name);
e0001a05
NC
10337}
10338
10339
10340/* Get the input section for a given symbol index.
10341 If the symbol is:
10342 . a section symbol, return the section;
10343 . a common symbol, return the common section;
10344 . an undefined symbol, return the undefined section;
10345 . an indirect symbol, follow the links;
10346 . an absolute value, return the absolute section. */
10347
10348static asection *
7fa3d080 10349get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10350{
10351 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10352 asection *target_sec = NULL;
43cd72b9 10353 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10354 {
10355 Elf_Internal_Sym *isymbuf;
10356 unsigned int section_index;
10357
10358 isymbuf = retrieve_local_syms (abfd);
10359 section_index = isymbuf[r_symndx].st_shndx;
10360
10361 if (section_index == SHN_UNDEF)
10362 target_sec = bfd_und_section_ptr;
e0001a05
NC
10363 else if (section_index == SHN_ABS)
10364 target_sec = bfd_abs_section_ptr;
10365 else if (section_index == SHN_COMMON)
10366 target_sec = bfd_com_section_ptr;
43cd72b9 10367 else
cb33740c 10368 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10369 }
10370 else
10371 {
10372 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10373 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10374
10375 while (h->root.type == bfd_link_hash_indirect
10376 || h->root.type == bfd_link_hash_warning)
10377 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10378
10379 switch (h->root.type)
10380 {
10381 case bfd_link_hash_defined:
10382 case bfd_link_hash_defweak:
10383 target_sec = h->root.u.def.section;
10384 break;
10385 case bfd_link_hash_common:
10386 target_sec = bfd_com_section_ptr;
10387 break;
10388 case bfd_link_hash_undefined:
10389 case bfd_link_hash_undefweak:
10390 target_sec = bfd_und_section_ptr;
10391 break;
10392 default: /* New indirect warning. */
10393 target_sec = bfd_und_section_ptr;
10394 break;
10395 }
10396 }
10397 return target_sec;
10398}
10399
10400
10401static struct elf_link_hash_entry *
7fa3d080 10402get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10403{
10404 unsigned long indx;
10405 struct elf_link_hash_entry *h;
10406 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10407
10408 if (r_symndx < symtab_hdr->sh_info)
10409 return NULL;
43cd72b9 10410
e0001a05
NC
10411 indx = r_symndx - symtab_hdr->sh_info;
10412 h = elf_sym_hashes (abfd)[indx];
10413 while (h->root.type == bfd_link_hash_indirect
10414 || h->root.type == bfd_link_hash_warning)
10415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10416 return h;
10417}
10418
10419
10420/* Get the section-relative offset for a symbol number. */
10421
10422static bfd_vma
7fa3d080 10423get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10424{
10425 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10426 bfd_vma offset = 0;
10427
43cd72b9 10428 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10429 {
10430 Elf_Internal_Sym *isymbuf;
10431 isymbuf = retrieve_local_syms (abfd);
10432 offset = isymbuf[r_symndx].st_value;
10433 }
10434 else
10435 {
10436 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10437 struct elf_link_hash_entry *h =
10438 elf_sym_hashes (abfd)[indx];
10439
10440 while (h->root.type == bfd_link_hash_indirect
10441 || h->root.type == bfd_link_hash_warning)
10442 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10443 if (h->root.type == bfd_link_hash_defined
10444 || h->root.type == bfd_link_hash_defweak)
10445 offset = h->root.u.def.value;
10446 }
10447 return offset;
10448}
10449
10450
10451static bfd_boolean
7fa3d080 10452is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10453{
10454 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10455 struct elf_link_hash_entry *h;
10456
10457 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10458 if (h && h->root.type == bfd_link_hash_defweak)
10459 return TRUE;
10460 return FALSE;
10461}
10462
10463
10464static bfd_boolean
7fa3d080
BW
10465pcrel_reloc_fits (xtensa_opcode opc,
10466 int opnd,
10467 bfd_vma self_address,
10468 bfd_vma dest_address)
e0001a05 10469{
43cd72b9
BW
10470 xtensa_isa isa = xtensa_default_isa;
10471 uint32 valp = dest_address;
10472 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10473 || xtensa_operand_encode (isa, opc, opnd, &valp))
10474 return FALSE;
10475 return TRUE;
e0001a05
NC
10476}
10477
10478
68ffbac6 10479static bfd_boolean
7fa3d080 10480xtensa_is_property_section (asection *sec)
e0001a05 10481{
1d25768e
BW
10482 if (xtensa_is_insntable_section (sec)
10483 || xtensa_is_littable_section (sec)
10484 || xtensa_is_proptable_section (sec))
b614a702 10485 return TRUE;
e901de89 10486
1d25768e
BW
10487 return FALSE;
10488}
10489
10490
68ffbac6 10491static bfd_boolean
1d25768e
BW
10492xtensa_is_insntable_section (asection *sec)
10493{
10494 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10495 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10496 return TRUE;
10497
e901de89
BW
10498 return FALSE;
10499}
10500
10501
68ffbac6 10502static bfd_boolean
7fa3d080 10503xtensa_is_littable_section (asection *sec)
e901de89 10504{
1d25768e
BW
10505 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10506 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10507 return TRUE;
e901de89 10508
1d25768e
BW
10509 return FALSE;
10510}
10511
10512
68ffbac6 10513static bfd_boolean
1d25768e
BW
10514xtensa_is_proptable_section (asection *sec)
10515{
10516 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10517 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 10518 return TRUE;
e0001a05 10519
e901de89 10520 return FALSE;
e0001a05
NC
10521}
10522
10523
43cd72b9 10524static int
7fa3d080 10525internal_reloc_compare (const void *ap, const void *bp)
e0001a05 10526{
43cd72b9
BW
10527 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10528 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10529
10530 if (a->r_offset != b->r_offset)
10531 return (a->r_offset - b->r_offset);
10532
10533 /* We don't need to sort on these criteria for correctness,
10534 but enforcing a more strict ordering prevents unstable qsort
10535 from behaving differently with different implementations.
10536 Without the code below we get correct but different results
10537 on Solaris 2.7 and 2.8. We would like to always produce the
10538 same results no matter the host. */
10539
10540 if (a->r_info != b->r_info)
10541 return (a->r_info - b->r_info);
10542
10543 return (a->r_addend - b->r_addend);
e0001a05
NC
10544}
10545
10546
10547static int
7fa3d080 10548internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
10549{
10550 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10551 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10552
43cd72b9
BW
10553 /* Check if one entry overlaps with the other; this shouldn't happen
10554 except when searching for a match. */
e0001a05
NC
10555 return (a->r_offset - b->r_offset);
10556}
10557
10558
74869ac7
BW
10559/* Predicate function used to look up a section in a particular group. */
10560
10561static bfd_boolean
10562match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10563{
10564 const char *gname = inf;
10565 const char *group_name = elf_group_name (sec);
68ffbac6 10566
74869ac7
BW
10567 return (group_name == gname
10568 || (group_name != NULL
10569 && gname != NULL
10570 && strcmp (group_name, gname) == 0));
10571}
10572
10573
1d25768e
BW
10574static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10575
51c8ebc1
BW
10576static char *
10577xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 10578{
74869ac7
BW
10579 const char *suffix, *group_name;
10580 char *prop_sec_name;
74869ac7
BW
10581
10582 group_name = elf_group_name (sec);
10583 if (group_name)
10584 {
10585 suffix = strrchr (sec->name, '.');
10586 if (suffix == sec->name)
10587 suffix = 0;
10588 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10589 + (suffix ? strlen (suffix) : 0));
10590 strcpy (prop_sec_name, base_name);
10591 if (suffix)
10592 strcat (prop_sec_name, suffix);
10593 }
10594 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 10595 {
43cd72b9 10596 char *linkonce_kind = 0;
b614a702 10597
68ffbac6 10598 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 10599 linkonce_kind = "x.";
68ffbac6 10600 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 10601 linkonce_kind = "p.";
43cd72b9
BW
10602 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10603 linkonce_kind = "prop.";
e0001a05 10604 else
b614a702
BW
10605 abort ();
10606
43cd72b9
BW
10607 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10608 + strlen (linkonce_kind) + 1);
b614a702 10609 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 10610 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
10611
10612 suffix = sec->name + linkonce_len;
096c35a7 10613 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 10614 the new linkonce_kind (but not for "prop" sections). */
0112cd26 10615 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
10616 suffix += 2;
10617 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
10618 }
10619 else
10620 prop_sec_name = strdup (base_name);
10621
51c8ebc1
BW
10622 return prop_sec_name;
10623}
10624
10625
10626static asection *
10627xtensa_get_property_section (asection *sec, const char *base_name)
10628{
10629 char *prop_sec_name;
10630 asection *prop_sec;
10631
10632 prop_sec_name = xtensa_property_section_name (sec, base_name);
10633 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10634 match_section_group,
10635 (void *) elf_group_name (sec));
10636 free (prop_sec_name);
10637 return prop_sec;
10638}
10639
10640
10641asection *
10642xtensa_make_property_section (asection *sec, const char *base_name)
10643{
10644 char *prop_sec_name;
10645 asection *prop_sec;
10646
74869ac7 10647 /* Check if the section already exists. */
51c8ebc1 10648 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
10649 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10650 match_section_group,
51c8ebc1 10651 (void *) elf_group_name (sec));
74869ac7
BW
10652 /* If not, create it. */
10653 if (! prop_sec)
10654 {
10655 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10656 flags |= (bfd_get_section_flags (sec->owner, sec)
10657 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10658
10659 prop_sec = bfd_make_section_anyway_with_flags
10660 (sec->owner, strdup (prop_sec_name), flags);
10661 if (! prop_sec)
10662 return 0;
b614a702 10663
51c8ebc1 10664 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
10665 }
10666
74869ac7
BW
10667 free (prop_sec_name);
10668 return prop_sec;
e0001a05
NC
10669}
10670
43cd72b9
BW
10671
10672flagword
7fa3d080 10673xtensa_get_property_predef_flags (asection *sec)
43cd72b9 10674{
1d25768e 10675 if (xtensa_is_insntable_section (sec))
43cd72b9 10676 return (XTENSA_PROP_INSN
99ded152 10677 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10678 | XTENSA_PROP_INSN_NO_REORDER);
10679
10680 if (xtensa_is_littable_section (sec))
10681 return (XTENSA_PROP_LITERAL
99ded152 10682 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10683 | XTENSA_PROP_INSN_NO_REORDER);
10684
10685 return 0;
10686}
10687
e0001a05
NC
10688\f
10689/* Other functions called directly by the linker. */
10690
10691bfd_boolean
7fa3d080
BW
10692xtensa_callback_required_dependence (bfd *abfd,
10693 asection *sec,
10694 struct bfd_link_info *link_info,
10695 deps_callback_t callback,
10696 void *closure)
e0001a05
NC
10697{
10698 Elf_Internal_Rela *internal_relocs;
10699 bfd_byte *contents;
10700 unsigned i;
10701 bfd_boolean ok = TRUE;
43cd72b9
BW
10702 bfd_size_type sec_size;
10703
10704 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
10705
10706 /* ".plt*" sections have no explicit relocations but they contain L32R
10707 instructions that reference the corresponding ".got.plt*" sections. */
10708 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 10709 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
10710 {
10711 asection *sgotplt;
10712
10713 /* Find the corresponding ".got.plt*" section. */
10714 if (sec->name[4] == '\0')
3d4d4302 10715 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
e0001a05
NC
10716 else
10717 {
10718 char got_name[14];
10719 int chunk = 0;
10720
10721 BFD_ASSERT (sec->name[4] == '.');
10722 chunk = strtol (&sec->name[5], NULL, 10);
10723
10724 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10725 sgotplt = bfd_get_linker_section (sec->owner, got_name);
e0001a05
NC
10726 }
10727 BFD_ASSERT (sgotplt);
10728
10729 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10730 section referencing a literal at the very beginning of
10731 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 10732 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
10733 }
10734
13161072
BW
10735 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10736 when building uclibc, which runs "ld -b binary /dev/null". */
10737 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10738 return ok;
10739
68ffbac6 10740 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
10741 link_info->keep_memory);
10742 if (internal_relocs == NULL
43cd72b9 10743 || sec->reloc_count == 0)
e0001a05
NC
10744 return ok;
10745
10746 /* Cache the contents for the duration of this scan. */
10747 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10748 if (contents == NULL && sec_size != 0)
e0001a05
NC
10749 {
10750 ok = FALSE;
10751 goto error_return;
10752 }
10753
43cd72b9
BW
10754 if (!xtensa_default_isa)
10755 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 10756
43cd72b9 10757 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10758 {
10759 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 10760 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
10761 {
10762 r_reloc l32r_rel;
10763 asection *target_sec;
10764 bfd_vma target_offset;
43cd72b9
BW
10765
10766 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
10767 target_sec = NULL;
10768 target_offset = 0;
10769 /* L32Rs must be local to the input file. */
10770 if (r_reloc_is_defined (&l32r_rel))
10771 {
10772 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 10773 target_offset = l32r_rel.target_offset;
e0001a05
NC
10774 }
10775 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10776 closure);
10777 }
10778 }
10779
10780 error_return:
10781 release_internal_relocs (sec, internal_relocs);
10782 release_contents (sec, contents);
10783 return ok;
10784}
10785
2f89ff8d
L
10786/* The default literal sections should always be marked as "code" (i.e.,
10787 SHF_EXECINSTR). This is particularly important for the Linux kernel
10788 module loader so that the literals are not placed after the text. */
b35d266b 10789static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 10790{
0112cd26
NC
10791 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10792 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10793 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 10794 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 10795 { NULL, 0, 0, 0, 0 }
7f4d3958 10796};
e0001a05 10797\f
ae95ffa6 10798#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05 10799#ifndef ELF_ARCH
6d00b590 10800#define TARGET_LITTLE_SYM xtensa_elf32_le_vec
e0001a05 10801#define TARGET_LITTLE_NAME "elf32-xtensa-le"
6d00b590 10802#define TARGET_BIG_SYM xtensa_elf32_be_vec
e0001a05
NC
10803#define TARGET_BIG_NAME "elf32-xtensa-be"
10804#define ELF_ARCH bfd_arch_xtensa
10805
4af0a1d8
BW
10806#define ELF_MACHINE_CODE EM_XTENSA
10807#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
10808
10809#if XCHAL_HAVE_MMU
10810#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10811#else /* !XCHAL_HAVE_MMU */
10812#define ELF_MAXPAGESIZE 1
10813#endif /* !XCHAL_HAVE_MMU */
10814#endif /* ELF_ARCH */
10815
10816#define elf_backend_can_gc_sections 1
10817#define elf_backend_can_refcount 1
10818#define elf_backend_plt_readonly 1
10819#define elf_backend_got_header_size 4
10820#define elf_backend_want_dynbss 0
10821#define elf_backend_want_got_plt 1
10822
10823#define elf_info_to_howto elf_xtensa_info_to_howto_rela
10824
28dbbc02
BW
10825#define bfd_elf32_mkobject elf_xtensa_mkobject
10826
e0001a05
NC
10827#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10828#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10829#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10830#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10831#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
10832#define bfd_elf32_bfd_reloc_name_lookup \
10833 elf_xtensa_reloc_name_lookup
e0001a05 10834#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 10835#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
10836
10837#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10838#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
10839#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10840#define elf_backend_discard_info elf_xtensa_discard_info
10841#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10842#define elf_backend_final_write_processing elf_xtensa_final_write_processing
10843#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10844#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10845#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10846#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10847#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10848#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 10849#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
10850#define elf_backend_object_p elf_xtensa_object_p
10851#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10852#define elf_backend_relocate_section elf_xtensa_relocate_section
10853#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 10854#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
10855#define elf_backend_omit_section_dynsym \
10856 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 10857#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 10858#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 10859#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
10860
10861#include "elf32-target.h"
This page took 1.192399 seconds and 4 git commands to generate.