* hppa-dis.c (print_insn_hppa): Don't print '%' before register names.
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
3eb128b2 2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05
NC
20
21#include "bfd.h"
22#include "sysdep.h"
23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
7fa3d080 38static bfd_boolean add_extra_plt_sections (bfd *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
7fa3d080
BW
97static asection *elf_xtensa_get_plt_section (bfd *, int);
98static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
106static bfd_boolean xtensa_is_littable_section (asection *);
107static int internal_reloc_compare (const void *, const void *);
108static int internal_reloc_matches (const void *, const void *);
109extern char *xtensa_get_property_section_name (asection *, const char *);
110static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
111
112/* Other functions called directly by the linker. */
113
114typedef void (*deps_callback_t)
7fa3d080 115 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 116extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
118
119
43cd72b9
BW
120/* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
7fa3d080 124
43cd72b9
BW
125int elf32xtensa_size_opt;
126
127
128/* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
e0001a05 131
7fa3d080 132typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 133
43cd72b9 134
e0001a05
NC
135/* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
b536dc1e 139 needed. It is OK if this count is an overestimate, e.g., some
e0001a05
NC
140 relocations may be removed by GC. */
141
142static int plt_reloc_count = 0;
143
144
43cd72b9
BW
145/* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
149
150xtensa_isa xtensa_default_isa;
151
152
e0001a05
NC
153/* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
156
157static bfd_boolean relaxing_section = FALSE;
158
43cd72b9
BW
159/* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
161
162int elf32xtensa_no_literal_movement = 1;
163
e0001a05
NC
164\f
165static reloc_howto_type elf_howto_table[] =
166{
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
43cd72b9
BW
220 FALSE, 0x00000000, 0x00000000, FALSE),
221
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
279
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
e0001a05
NC
326};
327
43cd72b9 328#if DEBUG_GEN_RELOC
e0001a05
NC
329#define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331#else
332#define TRACE(str)
333#endif
334
335static reloc_howto_type *
7fa3d080
BW
336elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
e0001a05
NC
338{
339 switch (code)
340 {
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
344
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
348
43cd72b9
BW
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
352
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
356
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
360
e0001a05
NC
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
364
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
368
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
372
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
376
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
380
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
384
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
388
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
392
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
396
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
400
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
404
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
408
409 default:
43cd72b9
BW
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
412 {
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
416 }
417
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
420 {
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
424 }
425
e0001a05
NC
426 break;
427 }
428
429 TRACE ("Unknown");
430 return NULL;
431}
432
433
434/* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
436
437static void
7fa3d080
BW
438elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
e0001a05
NC
441{
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
443
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
446}
447
448\f
449/* Functions for the Xtensa ELF linker. */
450
451/* The name of the dynamic interpreter. This is put in the .interp
452 section. */
453
454#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
455
456/* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
459
460#define PLT_ENTRY_SIZE 16
461
462/* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
471
472#define PLT_ENTRIES_PER_CHUNK 254
473
474/* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
478
479static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
480{
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
487};
488
489static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
490{
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
497};
498
571b5725
BW
499
500static inline bfd_boolean
7fa3d080
BW
501xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
571b5725
BW
503{
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
509
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
511}
512
e0001a05
NC
513\f
514static int
7fa3d080 515property_table_compare (const void *ap, const void *bp)
e0001a05
NC
516{
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
519
43cd72b9
BW
520 if (a->address == b->address)
521 {
43cd72b9
BW
522 if (a->size != b->size)
523 return (a->size - b->size);
524
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
528
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
534
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
539
540 return (a->flags - b->flags);
541 }
542
543 return (a->address - b->address);
544}
545
546
547static int
7fa3d080 548property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
549{
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
552
553 /* Check if one entry overlaps with the other. */
e0001a05
NC
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
557
558 return (a->address - b->address);
559}
560
561
43cd72b9
BW
562/* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
e0001a05 565
7fa3d080
BW
566static int
567xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
e0001a05
NC
572{
573 asection *table_section;
574 char *table_section_name;
575 bfd_size_type table_size = 0;
576 bfd_byte *table_data;
577 property_table_entry *blocks;
e4115460 578 int blk, block_count;
e0001a05
NC
579 bfd_size_type num_records;
580 Elf_Internal_Rela *internal_relocs;
3ba3bc8c 581 bfd_vma section_addr;
43cd72b9
BW
582 flagword predef_flags;
583 bfd_size_type table_entry_size;
584
585 if (!section
586 || !(section->flags & SEC_ALLOC)
587 || (section->flags & SEC_DEBUGGING))
588 {
589 *table_p = NULL;
590 return 0;
591 }
e0001a05 592
43cd72b9 593 table_section_name = xtensa_get_property_section_name (section, sec_name);
e0001a05 594 table_section = bfd_get_section_by_name (abfd, table_section_name);
b614a702 595 free (table_section_name);
43cd72b9 596 if (table_section)
eea6121a 597 table_size = table_section->size;
43cd72b9 598
e0001a05
NC
599 if (table_size == 0)
600 {
601 *table_p = NULL;
602 return 0;
603 }
604
43cd72b9
BW
605 predef_flags = xtensa_get_property_predef_flags (table_section);
606 table_entry_size = 12;
607 if (predef_flags)
608 table_entry_size -= 4;
609
610 num_records = table_size / table_entry_size;
e0001a05
NC
611 table_data = retrieve_contents (abfd, table_section, TRUE);
612 blocks = (property_table_entry *)
613 bfd_malloc (num_records * sizeof (property_table_entry));
614 block_count = 0;
43cd72b9
BW
615
616 if (output_addr)
617 section_addr = section->output_section->vma + section->output_offset;
618 else
619 section_addr = section->vma;
3ba3bc8c 620
e0001a05
NC
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 624 if (internal_relocs && !table_section->reloc_done)
e0001a05
NC
625 {
626 unsigned i;
627
628 for (i = 0; i < table_section->reloc_count; i++)
629 {
630 Elf_Internal_Rela *rel = &internal_relocs[i];
631 unsigned long r_symndx;
632
633 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
634 continue;
635
636 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
637 r_symndx = ELF32_R_SYM (rel->r_info);
638
639 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
640 {
641 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
43cd72b9
BW
642 BFD_ASSERT (sym_off == 0);
643 BFD_ASSERT (rel->r_addend == 0);
e0001a05 644 blocks[block_count].address =
3ba3bc8c 645 (section_addr + sym_off + rel->r_addend
e0001a05
NC
646 + bfd_get_32 (abfd, table_data + rel->r_offset));
647 blocks[block_count].size =
648 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
43cd72b9
BW
649 if (predef_flags)
650 blocks[block_count].flags = predef_flags;
651 else
652 blocks[block_count].flags =
653 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
e0001a05
NC
654 block_count++;
655 }
656 }
657 }
658 else
659 {
3ba3bc8c
BW
660 /* The file has already been relocated and the addresses are
661 already in the table. */
e0001a05 662 bfd_vma off;
43cd72b9 663 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
e0001a05 664
43cd72b9 665 for (off = 0; off < table_size; off += table_entry_size)
e0001a05
NC
666 {
667 bfd_vma address = bfd_get_32 (abfd, table_data + off);
668
3ba3bc8c 669 if (address >= section_addr
43cd72b9 670 && address < section_addr + section_limit)
e0001a05
NC
671 {
672 blocks[block_count].address = address;
673 blocks[block_count].size =
674 bfd_get_32 (abfd, table_data + off + 4);
43cd72b9
BW
675 if (predef_flags)
676 blocks[block_count].flags = predef_flags;
677 else
678 blocks[block_count].flags =
679 bfd_get_32 (abfd, table_data + off + 8);
e0001a05
NC
680 block_count++;
681 }
682 }
683 }
684
685 release_contents (table_section, table_data);
686 release_internal_relocs (table_section, internal_relocs);
687
43cd72b9 688 if (block_count > 0)
e0001a05
NC
689 {
690 /* Now sort them into address order for easy reference. */
691 qsort (blocks, block_count, sizeof (property_table_entry),
692 property_table_compare);
e4115460
BW
693
694 /* Check that the table contents are valid. Problems may occur,
695 for example, if an unrelocated object file is stripped. */
696 for (blk = 1; blk < block_count; blk++)
697 {
698 /* The only circumstance where two entries may legitimately
699 have the same address is when one of them is a zero-size
700 placeholder to mark a place where fill can be inserted.
701 The zero-size entry should come first. */
702 if (blocks[blk - 1].address == blocks[blk].address &&
703 blocks[blk - 1].size != 0)
704 {
705 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
706 abfd, section);
707 bfd_set_error (bfd_error_bad_value);
708 free (blocks);
709 return -1;
710 }
711 }
e0001a05 712 }
43cd72b9 713
e0001a05
NC
714 *table_p = blocks;
715 return block_count;
716}
717
718
7fa3d080
BW
719static property_table_entry *
720elf_xtensa_find_property_entry (property_table_entry *property_table,
721 int property_table_size,
722 bfd_vma addr)
e0001a05
NC
723{
724 property_table_entry entry;
43cd72b9 725 property_table_entry *rv;
e0001a05 726
43cd72b9
BW
727 if (property_table_size == 0)
728 return NULL;
e0001a05
NC
729
730 entry.address = addr;
731 entry.size = 1;
43cd72b9 732 entry.flags = 0;
e0001a05 733
43cd72b9
BW
734 rv = bsearch (&entry, property_table, property_table_size,
735 sizeof (property_table_entry), property_table_matches);
736 return rv;
737}
738
739
740static bfd_boolean
7fa3d080
BW
741elf_xtensa_in_literal_pool (property_table_entry *lit_table,
742 int lit_table_size,
743 bfd_vma addr)
43cd72b9
BW
744{
745 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
746 return TRUE;
747
748 return FALSE;
749}
750
751\f
752/* Look through the relocs for a section during the first phase, and
753 calculate needed space in the dynamic reloc sections. */
754
755static bfd_boolean
7fa3d080
BW
756elf_xtensa_check_relocs (bfd *abfd,
757 struct bfd_link_info *info,
758 asection *sec,
759 const Elf_Internal_Rela *relocs)
e0001a05
NC
760{
761 Elf_Internal_Shdr *symtab_hdr;
762 struct elf_link_hash_entry **sym_hashes;
763 const Elf_Internal_Rela *rel;
764 const Elf_Internal_Rela *rel_end;
e0001a05 765
1049f94e 766 if (info->relocatable)
e0001a05
NC
767 return TRUE;
768
769 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
770 sym_hashes = elf_sym_hashes (abfd);
771
e0001a05
NC
772 rel_end = relocs + sec->reloc_count;
773 for (rel = relocs; rel < rel_end; rel++)
774 {
775 unsigned int r_type;
776 unsigned long r_symndx;
777 struct elf_link_hash_entry *h;
778
779 r_symndx = ELF32_R_SYM (rel->r_info);
780 r_type = ELF32_R_TYPE (rel->r_info);
781
782 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
783 {
d003868e
AM
784 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
785 abfd, r_symndx);
e0001a05
NC
786 return FALSE;
787 }
788
789 if (r_symndx < symtab_hdr->sh_info)
790 h = NULL;
791 else
792 {
793 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
794 while (h->root.type == bfd_link_hash_indirect
795 || h->root.type == bfd_link_hash_warning)
796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
797 }
798
799 switch (r_type)
800 {
801 case R_XTENSA_32:
802 if (h == NULL)
803 goto local_literal;
804
805 if ((sec->flags & SEC_ALLOC) != 0)
806 {
e0001a05
NC
807 if (h->got.refcount <= 0)
808 h->got.refcount = 1;
809 else
810 h->got.refcount += 1;
811 }
812 break;
813
814 case R_XTENSA_PLT:
815 /* If this relocation is against a local symbol, then it's
816 exactly the same as a normal local GOT entry. */
817 if (h == NULL)
818 goto local_literal;
819
820 if ((sec->flags & SEC_ALLOC) != 0)
821 {
e0001a05
NC
822 if (h->plt.refcount <= 0)
823 {
f5385ebf 824 h->needs_plt = 1;
e0001a05
NC
825 h->plt.refcount = 1;
826 }
827 else
828 h->plt.refcount += 1;
829
830 /* Keep track of the total PLT relocation count even if we
831 don't yet know whether the dynamic sections will be
832 created. */
833 plt_reloc_count += 1;
834
835 if (elf_hash_table (info)->dynamic_sections_created)
836 {
837 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
838 plt_reloc_count))
839 return FALSE;
840 }
841 }
842 break;
843
844 local_literal:
845 if ((sec->flags & SEC_ALLOC) != 0)
846 {
847 bfd_signed_vma *local_got_refcounts;
848
849 /* This is a global offset table entry for a local symbol. */
850 local_got_refcounts = elf_local_got_refcounts (abfd);
851 if (local_got_refcounts == NULL)
852 {
853 bfd_size_type size;
854
855 size = symtab_hdr->sh_info;
856 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
857 local_got_refcounts =
858 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
859 if (local_got_refcounts == NULL)
860 return FALSE;
861 elf_local_got_refcounts (abfd) = local_got_refcounts;
862 }
863 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
864 }
865 break;
866
867 case R_XTENSA_OP0:
868 case R_XTENSA_OP1:
869 case R_XTENSA_OP2:
43cd72b9
BW
870 case R_XTENSA_SLOT0_OP:
871 case R_XTENSA_SLOT1_OP:
872 case R_XTENSA_SLOT2_OP:
873 case R_XTENSA_SLOT3_OP:
874 case R_XTENSA_SLOT4_OP:
875 case R_XTENSA_SLOT5_OP:
876 case R_XTENSA_SLOT6_OP:
877 case R_XTENSA_SLOT7_OP:
878 case R_XTENSA_SLOT8_OP:
879 case R_XTENSA_SLOT9_OP:
880 case R_XTENSA_SLOT10_OP:
881 case R_XTENSA_SLOT11_OP:
882 case R_XTENSA_SLOT12_OP:
883 case R_XTENSA_SLOT13_OP:
884 case R_XTENSA_SLOT14_OP:
885 case R_XTENSA_SLOT0_ALT:
886 case R_XTENSA_SLOT1_ALT:
887 case R_XTENSA_SLOT2_ALT:
888 case R_XTENSA_SLOT3_ALT:
889 case R_XTENSA_SLOT4_ALT:
890 case R_XTENSA_SLOT5_ALT:
891 case R_XTENSA_SLOT6_ALT:
892 case R_XTENSA_SLOT7_ALT:
893 case R_XTENSA_SLOT8_ALT:
894 case R_XTENSA_SLOT9_ALT:
895 case R_XTENSA_SLOT10_ALT:
896 case R_XTENSA_SLOT11_ALT:
897 case R_XTENSA_SLOT12_ALT:
898 case R_XTENSA_SLOT13_ALT:
899 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
900 case R_XTENSA_ASM_EXPAND:
901 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
902 case R_XTENSA_DIFF8:
903 case R_XTENSA_DIFF16:
904 case R_XTENSA_DIFF32:
e0001a05
NC
905 /* Nothing to do for these. */
906 break;
907
908 case R_XTENSA_GNU_VTINHERIT:
909 /* This relocation describes the C++ object vtable hierarchy.
910 Reconstruct it for later use during GC. */
c152c796 911 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
912 return FALSE;
913 break;
914
915 case R_XTENSA_GNU_VTENTRY:
916 /* This relocation describes which C++ vtable entries are actually
917 used. Record for later use during GC. */
c152c796 918 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
919 return FALSE;
920 break;
921
922 default:
923 break;
924 }
925 }
926
e0001a05
NC
927 return TRUE;
928}
929
930
931static void
7fa3d080
BW
932elf_xtensa_make_sym_local (struct bfd_link_info *info,
933 struct elf_link_hash_entry *h)
934{
935 if (info->shared)
936 {
937 if (h->plt.refcount > 0)
938 {
939 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
940 if (h->got.refcount < 0)
941 h->got.refcount = 0;
942 h->got.refcount += h->plt.refcount;
943 h->plt.refcount = 0;
944 }
945 }
946 else
947 {
948 /* Don't need any dynamic relocations at all. */
949 h->plt.refcount = 0;
950 h->got.refcount = 0;
951 }
952}
953
954
955static void
956elf_xtensa_hide_symbol (struct bfd_link_info *info,
957 struct elf_link_hash_entry *h,
958 bfd_boolean force_local)
e0001a05
NC
959{
960 /* For a shared link, move the plt refcount to the got refcount to leave
961 space for RELATIVE relocs. */
962 elf_xtensa_make_sym_local (info, h);
963
964 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
965}
966
967
e0001a05
NC
968/* Return the section that should be marked against GC for a given
969 relocation. */
970
971static asection *
7fa3d080
BW
972elf_xtensa_gc_mark_hook (asection *sec,
973 struct bfd_link_info *info ATTRIBUTE_UNUSED,
974 Elf_Internal_Rela *rel,
975 struct elf_link_hash_entry *h,
976 Elf_Internal_Sym *sym)
e0001a05 977{
7fa3d080 978 if (h)
e0001a05
NC
979 {
980 switch (ELF32_R_TYPE (rel->r_info))
981 {
982 case R_XTENSA_GNU_VTINHERIT:
983 case R_XTENSA_GNU_VTENTRY:
984 break;
985
986 default:
987 switch (h->root.type)
988 {
989 case bfd_link_hash_defined:
990 case bfd_link_hash_defweak:
991 return h->root.u.def.section;
992
993 case bfd_link_hash_common:
994 return h->root.u.c.p->section;
995
996 default:
997 break;
998 }
999 }
1000 }
1001 else
1002 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1003
1004 return NULL;
1005}
1006
7fa3d080 1007
e0001a05
NC
1008/* Update the GOT & PLT entry reference counts
1009 for the section being removed. */
1010
1011static bfd_boolean
7fa3d080
BW
1012elf_xtensa_gc_sweep_hook (bfd *abfd,
1013 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1014 asection *sec,
1015 const Elf_Internal_Rela *relocs)
e0001a05
NC
1016{
1017 Elf_Internal_Shdr *symtab_hdr;
1018 struct elf_link_hash_entry **sym_hashes;
1019 bfd_signed_vma *local_got_refcounts;
1020 const Elf_Internal_Rela *rel, *relend;
1021
1022 if ((sec->flags & SEC_ALLOC) == 0)
1023 return TRUE;
1024
1025 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1026 sym_hashes = elf_sym_hashes (abfd);
1027 local_got_refcounts = elf_local_got_refcounts (abfd);
1028
1029 relend = relocs + sec->reloc_count;
1030 for (rel = relocs; rel < relend; rel++)
1031 {
1032 unsigned long r_symndx;
1033 unsigned int r_type;
1034 struct elf_link_hash_entry *h = NULL;
1035
1036 r_symndx = ELF32_R_SYM (rel->r_info);
1037 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1038 {
1039 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1040 while (h->root.type == bfd_link_hash_indirect
1041 || h->root.type == bfd_link_hash_warning)
1042 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1043 }
e0001a05
NC
1044
1045 r_type = ELF32_R_TYPE (rel->r_info);
1046 switch (r_type)
1047 {
1048 case R_XTENSA_32:
1049 if (h == NULL)
1050 goto local_literal;
1051 if (h->got.refcount > 0)
1052 h->got.refcount--;
1053 break;
1054
1055 case R_XTENSA_PLT:
1056 if (h == NULL)
1057 goto local_literal;
1058 if (h->plt.refcount > 0)
1059 h->plt.refcount--;
1060 break;
1061
1062 local_literal:
1063 if (local_got_refcounts[r_symndx] > 0)
1064 local_got_refcounts[r_symndx] -= 1;
1065 break;
1066
1067 default:
1068 break;
1069 }
1070 }
1071
1072 return TRUE;
1073}
1074
1075
1076/* Create all the dynamic sections. */
1077
1078static bfd_boolean
7fa3d080 1079elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1080{
e901de89 1081 flagword flags, noalloc_flags;
e0001a05
NC
1082 asection *s;
1083
1084 /* First do all the standard stuff. */
1085 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1086 return FALSE;
1087
1088 /* Create any extra PLT sections in case check_relocs has already
1089 been called on all the non-dynamic input files. */
1090 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1091 return FALSE;
1092
e901de89
BW
1093 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1094 | SEC_LINKER_CREATED | SEC_READONLY);
1095 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1096
1097 /* Mark the ".got.plt" section READONLY. */
1098 s = bfd_get_section_by_name (dynobj, ".got.plt");
1099 if (s == NULL
1100 || ! bfd_set_section_flags (dynobj, s, flags))
1101 return FALSE;
1102
1103 /* Create ".rela.got". */
3496cb2a 1104 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
e0001a05 1105 if (s == NULL
e0001a05
NC
1106 || ! bfd_set_section_alignment (dynobj, s, 2))
1107 return FALSE;
1108
e901de89 1109 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3496cb2a 1110 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
e901de89 1111 if (s == NULL
e901de89
BW
1112 || ! bfd_set_section_alignment (dynobj, s, 2))
1113 return FALSE;
1114
e0001a05 1115 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3496cb2a
L
1116 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1117 noalloc_flags);
e0001a05 1118 if (s == NULL
e0001a05
NC
1119 || ! bfd_set_section_alignment (dynobj, s, 2))
1120 return FALSE;
1121
1122 return TRUE;
1123}
1124
1125
1126static bfd_boolean
7fa3d080 1127add_extra_plt_sections (bfd *dynobj, int count)
e0001a05
NC
1128{
1129 int chunk;
1130
1131 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1132 ".got.plt" sections. */
1133 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1134 {
1135 char *sname;
1136 flagword flags;
1137 asection *s;
1138
1139 /* Stop when we find a section has already been created. */
1140 if (elf_xtensa_get_plt_section (dynobj, chunk))
1141 break;
1142
1143 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1144 | SEC_LINKER_CREATED | SEC_READONLY);
1145
1146 sname = (char *) bfd_malloc (10);
1147 sprintf (sname, ".plt.%u", chunk);
3496cb2a
L
1148 s = bfd_make_section_with_flags (dynobj, sname,
1149 flags | SEC_CODE);
e0001a05 1150 if (s == NULL
e0001a05
NC
1151 || ! bfd_set_section_alignment (dynobj, s, 2))
1152 return FALSE;
1153
1154 sname = (char *) bfd_malloc (14);
1155 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1156 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1157 if (s == NULL
e0001a05
NC
1158 || ! bfd_set_section_alignment (dynobj, s, 2))
1159 return FALSE;
1160 }
1161
1162 return TRUE;
1163}
1164
1165
1166/* Adjust a symbol defined by a dynamic object and referenced by a
1167 regular object. The current definition is in some section of the
1168 dynamic object, but we're not including those sections. We have to
1169 change the definition to something the rest of the link can
1170 understand. */
1171
1172static bfd_boolean
7fa3d080
BW
1173elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1174 struct elf_link_hash_entry *h)
e0001a05
NC
1175{
1176 /* If this is a weak symbol, and there is a real definition, the
1177 processor independent code will have arranged for us to see the
1178 real definition first, and we can just use the same value. */
7fa3d080 1179 if (h->u.weakdef)
e0001a05 1180 {
f6e332e6
AM
1181 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1182 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1183 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1184 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1185 return TRUE;
1186 }
1187
1188 /* This is a reference to a symbol defined by a dynamic object. The
1189 reference must go through the GOT, so there's no need for COPY relocs,
1190 .dynbss, etc. */
1191
1192 return TRUE;
1193}
1194
1195
e0001a05 1196static bfd_boolean
7fa3d080 1197elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1198{
1199 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1200
1201 if (h->root.type == bfd_link_hash_warning)
1202 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1203
571b5725 1204 if (! xtensa_elf_dynamic_symbol_p (h, info))
e0001a05
NC
1205 elf_xtensa_make_sym_local (info, h);
1206
e0001a05
NC
1207 return TRUE;
1208}
1209
1210
1211static bfd_boolean
7fa3d080 1212elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1213{
1214 asection *srelplt = (asection *) arg;
1215
1216 if (h->root.type == bfd_link_hash_warning)
1217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1218
1219 if (h->plt.refcount > 0)
eea6121a 1220 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1221
1222 return TRUE;
1223}
1224
1225
1226static bfd_boolean
7fa3d080 1227elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1228{
1229 asection *srelgot = (asection *) arg;
1230
1231 if (h->root.type == bfd_link_hash_warning)
1232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1233
1234 if (h->got.refcount > 0)
eea6121a 1235 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1236
1237 return TRUE;
1238}
1239
1240
1241static void
7fa3d080
BW
1242elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1243 asection *srelgot)
e0001a05
NC
1244{
1245 bfd *i;
1246
1247 for (i = info->input_bfds; i; i = i->link_next)
1248 {
1249 bfd_signed_vma *local_got_refcounts;
1250 bfd_size_type j, cnt;
1251 Elf_Internal_Shdr *symtab_hdr;
1252
1253 local_got_refcounts = elf_local_got_refcounts (i);
1254 if (!local_got_refcounts)
1255 continue;
1256
1257 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1258 cnt = symtab_hdr->sh_info;
1259
1260 for (j = 0; j < cnt; ++j)
1261 {
1262 if (local_got_refcounts[j] > 0)
eea6121a
AM
1263 srelgot->size += (local_got_refcounts[j]
1264 * sizeof (Elf32_External_Rela));
e0001a05
NC
1265 }
1266 }
1267}
1268
1269
1270/* Set the sizes of the dynamic sections. */
1271
1272static bfd_boolean
7fa3d080
BW
1273elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1274 struct bfd_link_info *info)
e0001a05 1275{
e901de89
BW
1276 bfd *dynobj, *abfd;
1277 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1278 bfd_boolean relplt, relgot;
1279 int plt_entries, plt_chunks, chunk;
1280
1281 plt_entries = 0;
1282 plt_chunks = 0;
1283 srelgot = 0;
1284
1285 dynobj = elf_hash_table (info)->dynobj;
1286 if (dynobj == NULL)
1287 abort ();
1288
1289 if (elf_hash_table (info)->dynamic_sections_created)
1290 {
1291 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1292 if (info->executable)
e0001a05
NC
1293 {
1294 s = bfd_get_section_by_name (dynobj, ".interp");
1295 if (s == NULL)
1296 abort ();
eea6121a 1297 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1298 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1299 }
1300
1301 /* Allocate room for one word in ".got". */
1302 s = bfd_get_section_by_name (dynobj, ".got");
1303 if (s == NULL)
1304 abort ();
eea6121a 1305 s->size = 4;
e0001a05
NC
1306
1307 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1308 elf_link_hash_traverse (elf_hash_table (info),
1309 elf_xtensa_fix_refcounts,
7fa3d080 1310 (void *) info);
e0001a05
NC
1311
1312 /* Allocate space in ".rela.got" for literals that reference
1313 global symbols. */
1314 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1315 if (srelgot == NULL)
1316 abort ();
1317 elf_link_hash_traverse (elf_hash_table (info),
1318 elf_xtensa_allocate_got_size,
7fa3d080 1319 (void *) srelgot);
e0001a05
NC
1320
1321 /* If we are generating a shared object, we also need space in
1322 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1323 reference local symbols. */
1324 if (info->shared)
1325 elf_xtensa_allocate_local_got_size (info, srelgot);
1326
1327 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1328 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1329 if (srelplt == NULL)
1330 abort ();
1331 elf_link_hash_traverse (elf_hash_table (info),
1332 elf_xtensa_allocate_plt_size,
7fa3d080 1333 (void *) srelplt);
e0001a05
NC
1334
1335 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1336 each PLT entry, we need the PLT code plus a 4-byte literal.
1337 For each chunk of ".plt", we also need two more 4-byte
1338 literals, two corresponding entries in ".rela.got", and an
1339 8-byte entry in ".xt.lit.plt". */
1340 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1341 if (spltlittbl == NULL)
1342 abort ();
1343
eea6121a 1344 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1345 plt_chunks =
1346 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1347
1348 /* Iterate over all the PLT chunks, including any extra sections
1349 created earlier because the initial count of PLT relocations
1350 was an overestimate. */
1351 for (chunk = 0;
1352 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1353 chunk++)
1354 {
1355 int chunk_entries;
1356
1357 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1358 if (sgotplt == NULL)
1359 abort ();
1360
1361 if (chunk < plt_chunks - 1)
1362 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1363 else if (chunk == plt_chunks - 1)
1364 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1365 else
1366 chunk_entries = 0;
1367
1368 if (chunk_entries != 0)
1369 {
eea6121a
AM
1370 sgotplt->size = 4 * (chunk_entries + 2);
1371 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1372 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1373 spltlittbl->size += 8;
e0001a05
NC
1374 }
1375 else
1376 {
eea6121a
AM
1377 sgotplt->size = 0;
1378 splt->size = 0;
e0001a05
NC
1379 }
1380 }
e901de89
BW
1381
1382 /* Allocate space in ".got.loc" to match the total size of all the
1383 literal tables. */
1384 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1385 if (sgotloc == NULL)
1386 abort ();
eea6121a 1387 sgotloc->size = spltlittbl->size;
e901de89
BW
1388 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1389 {
1390 if (abfd->flags & DYNAMIC)
1391 continue;
1392 for (s = abfd->sections; s != NULL; s = s->next)
1393 {
b536dc1e
BW
1394 if (! elf_discarded_section (s)
1395 && xtensa_is_littable_section (s)
1396 && s != spltlittbl)
eea6121a 1397 sgotloc->size += s->size;
e901de89
BW
1398 }
1399 }
e0001a05
NC
1400 }
1401
1402 /* Allocate memory for dynamic sections. */
1403 relplt = FALSE;
1404 relgot = FALSE;
1405 for (s = dynobj->sections; s != NULL; s = s->next)
1406 {
1407 const char *name;
e0001a05
NC
1408
1409 if ((s->flags & SEC_LINKER_CREATED) == 0)
1410 continue;
1411
1412 /* It's OK to base decisions on the section name, because none
1413 of the dynobj section names depend upon the input files. */
1414 name = bfd_get_section_name (dynobj, s);
1415
e0001a05
NC
1416 if (strncmp (name, ".rela", 5) == 0)
1417 {
c456f082 1418 if (s->size != 0)
e0001a05 1419 {
c456f082
AM
1420 if (strcmp (name, ".rela.plt") == 0)
1421 relplt = TRUE;
1422 else if (strcmp (name, ".rela.got") == 0)
1423 relgot = TRUE;
1424
1425 /* We use the reloc_count field as a counter if we need
1426 to copy relocs into the output file. */
1427 s->reloc_count = 0;
e0001a05
NC
1428 }
1429 }
c456f082
AM
1430 else if (strncmp (name, ".plt.", 5) != 0
1431 && strncmp (name, ".got.plt.", 9) != 0
1432 && strcmp (name, ".got") != 0
e0001a05
NC
1433 && strcmp (name, ".plt") != 0
1434 && strcmp (name, ".got.plt") != 0
e901de89
BW
1435 && strcmp (name, ".xt.lit.plt") != 0
1436 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1437 {
1438 /* It's not one of our sections, so don't allocate space. */
1439 continue;
1440 }
1441
c456f082
AM
1442 if (s->size == 0)
1443 {
1444 /* If we don't need this section, strip it from the output
1445 file. We must create the ".plt*" and ".got.plt*"
1446 sections in create_dynamic_sections and/or check_relocs
1447 based on a conservative estimate of the PLT relocation
1448 count, because the sections must be created before the
1449 linker maps input sections to output sections. The
1450 linker does that before size_dynamic_sections, where we
1451 compute the exact size of the PLT, so there may be more
1452 of these sections than are actually needed. */
1453 s->flags |= SEC_EXCLUDE;
1454 }
1455 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1456 {
1457 /* Allocate memory for the section contents. */
eea6121a 1458 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1459 if (s->contents == NULL)
e0001a05
NC
1460 return FALSE;
1461 }
1462 }
1463
1464 if (elf_hash_table (info)->dynamic_sections_created)
1465 {
1466 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1467 known until finish_dynamic_sections, but we need to get the relocs
1468 in place before they are sorted. */
1469 if (srelgot == NULL)
1470 abort ();
1471 for (chunk = 0; chunk < plt_chunks; chunk++)
1472 {
1473 Elf_Internal_Rela irela;
1474 bfd_byte *loc;
1475
1476 irela.r_offset = 0;
1477 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1478 irela.r_addend = 0;
1479
1480 loc = (srelgot->contents
1481 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1482 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1483 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1484 loc + sizeof (Elf32_External_Rela));
1485 srelgot->reloc_count += 2;
1486 }
1487
1488 /* Add some entries to the .dynamic section. We fill in the
1489 values later, in elf_xtensa_finish_dynamic_sections, but we
1490 must add the entries now so that we get the correct size for
1491 the .dynamic section. The DT_DEBUG entry is filled in by the
1492 dynamic linker and used by the debugger. */
1493#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1494 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05
NC
1495
1496 if (! info->shared)
1497 {
1498 if (!add_dynamic_entry (DT_DEBUG, 0))
1499 return FALSE;
1500 }
1501
1502 if (relplt)
1503 {
1504 if (!add_dynamic_entry (DT_PLTGOT, 0)
1505 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1506 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1507 || !add_dynamic_entry (DT_JMPREL, 0))
1508 return FALSE;
1509 }
1510
1511 if (relgot)
1512 {
1513 if (!add_dynamic_entry (DT_RELA, 0)
1514 || !add_dynamic_entry (DT_RELASZ, 0)
1515 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1516 return FALSE;
1517 }
1518
e0001a05
NC
1519 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1520 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1521 return FALSE;
1522 }
1523#undef add_dynamic_entry
1524
1525 return TRUE;
1526}
1527
1528\f
1529/* Remove any PT_LOAD segments with no allocated sections. Prior to
1530 binutils 2.13, this function used to remove the non-SEC_ALLOC
1531 sections from PT_LOAD segments, but that task has now been moved
1532 into elf.c. We still need this function to remove any empty
1533 segments that result, but there's nothing Xtensa-specific about
1534 this and it probably ought to be moved into elf.c as well. */
1535
1536static bfd_boolean
7fa3d080
BW
1537elf_xtensa_modify_segment_map (bfd *abfd,
1538 struct bfd_link_info *info ATTRIBUTE_UNUSED)
e0001a05
NC
1539{
1540 struct elf_segment_map **m_p;
1541
1542 m_p = &elf_tdata (abfd)->segment_map;
7fa3d080 1543 while (*m_p)
e0001a05
NC
1544 {
1545 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1546 *m_p = (*m_p)->next;
1547 else
1548 m_p = &(*m_p)->next;
1549 }
1550 return TRUE;
1551}
1552
1553\f
1554/* Perform the specified relocation. The instruction at (contents + address)
1555 is modified to set one operand to represent the value in "relocation". The
1556 operand position is determined by the relocation type recorded in the
1557 howto. */
1558
1559#define CALL_SEGMENT_BITS (30)
7fa3d080 1560#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1561
1562static bfd_reloc_status_type
7fa3d080
BW
1563elf_xtensa_do_reloc (reloc_howto_type *howto,
1564 bfd *abfd,
1565 asection *input_section,
1566 bfd_vma relocation,
1567 bfd_byte *contents,
1568 bfd_vma address,
1569 bfd_boolean is_weak_undef,
1570 char **error_message)
e0001a05 1571{
43cd72b9 1572 xtensa_format fmt;
e0001a05 1573 xtensa_opcode opcode;
e0001a05 1574 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1575 static xtensa_insnbuf ibuff = NULL;
1576 static xtensa_insnbuf sbuff = NULL;
1577 bfd_vma self_address = 0;
1578 bfd_size_type input_size;
1579 int opnd, slot;
e0001a05
NC
1580 uint32 newval;
1581
43cd72b9
BW
1582 if (!ibuff)
1583 {
1584 ibuff = xtensa_insnbuf_alloc (isa);
1585 sbuff = xtensa_insnbuf_alloc (isa);
1586 }
1587
1588 input_size = bfd_get_section_limit (abfd, input_section);
1589
e0001a05
NC
1590 switch (howto->type)
1591 {
1592 case R_XTENSA_NONE:
43cd72b9
BW
1593 case R_XTENSA_DIFF8:
1594 case R_XTENSA_DIFF16:
1595 case R_XTENSA_DIFF32:
e0001a05
NC
1596 return bfd_reloc_ok;
1597
1598 case R_XTENSA_ASM_EXPAND:
1599 if (!is_weak_undef)
1600 {
1601 /* Check for windowed CALL across a 1GB boundary. */
1602 xtensa_opcode opcode =
1603 get_expanded_call_opcode (contents + address,
43cd72b9 1604 input_size - address, 0);
e0001a05
NC
1605 if (is_windowed_call_opcode (opcode))
1606 {
1607 self_address = (input_section->output_section->vma
1608 + input_section->output_offset
1609 + address);
43cd72b9
BW
1610 if ((self_address >> CALL_SEGMENT_BITS)
1611 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1612 {
1613 *error_message = "windowed longcall crosses 1GB boundary; "
1614 "return may fail";
1615 return bfd_reloc_dangerous;
1616 }
1617 }
1618 }
1619 return bfd_reloc_ok;
1620
1621 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1622 {
e0001a05 1623 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1624 bfd_reloc_status_type retval =
1625 elf_xtensa_do_asm_simplify (contents, address, input_size,
1626 error_message);
e0001a05 1627 if (retval != bfd_reloc_ok)
43cd72b9 1628 return bfd_reloc_dangerous;
e0001a05
NC
1629
1630 /* The CALL needs to be relocated. Continue below for that part. */
1631 address += 3;
43cd72b9 1632 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1633 }
1634 break;
1635
1636 case R_XTENSA_32:
1637 case R_XTENSA_PLT:
1638 {
1639 bfd_vma x;
1640 x = bfd_get_32 (abfd, contents + address);
1641 x = x + relocation;
1642 bfd_put_32 (abfd, x, contents + address);
1643 }
1644 return bfd_reloc_ok;
1645 }
1646
43cd72b9
BW
1647 /* Only instruction slot-specific relocations handled below.... */
1648 slot = get_relocation_slot (howto->type);
1649 if (slot == XTENSA_UNDEFINED)
e0001a05 1650 {
43cd72b9 1651 *error_message = "unexpected relocation";
e0001a05
NC
1652 return bfd_reloc_dangerous;
1653 }
1654
43cd72b9
BW
1655 /* Read the instruction into a buffer and decode the opcode. */
1656 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1657 input_size - address);
1658 fmt = xtensa_format_decode (isa, ibuff);
1659 if (fmt == XTENSA_UNDEFINED)
e0001a05 1660 {
43cd72b9 1661 *error_message = "cannot decode instruction format";
e0001a05
NC
1662 return bfd_reloc_dangerous;
1663 }
1664
43cd72b9 1665 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1666
43cd72b9
BW
1667 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1668 if (opcode == XTENSA_UNDEFINED)
e0001a05 1669 {
43cd72b9 1670 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1671 return bfd_reloc_dangerous;
1672 }
1673
43cd72b9
BW
1674 /* Check for opcode-specific "alternate" relocations. */
1675 if (is_alt_relocation (howto->type))
1676 {
1677 if (opcode == get_l32r_opcode ())
1678 {
1679 /* Handle the special-case of non-PC-relative L32R instructions. */
1680 bfd *output_bfd = input_section->output_section->owner;
1681 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1682 if (!lit4_sec)
1683 {
1684 *error_message = "relocation references missing .lit4 section";
1685 return bfd_reloc_dangerous;
1686 }
1687 self_address = ((lit4_sec->vma & ~0xfff)
1688 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1689 newval = relocation;
1690 opnd = 1;
1691 }
1692 else if (opcode == get_const16_opcode ())
1693 {
1694 /* ALT used for high 16 bits. */
1695 newval = relocation >> 16;
1696 opnd = 1;
1697 }
1698 else
1699 {
1700 /* No other "alternate" relocations currently defined. */
1701 *error_message = "unexpected relocation";
1702 return bfd_reloc_dangerous;
1703 }
1704 }
1705 else /* Not an "alternate" relocation.... */
1706 {
1707 if (opcode == get_const16_opcode ())
1708 {
1709 newval = relocation & 0xffff;
1710 opnd = 1;
1711 }
1712 else
1713 {
1714 /* ...normal PC-relative relocation.... */
1715
1716 /* Determine which operand is being relocated. */
1717 opnd = get_relocation_opnd (opcode, howto->type);
1718 if (opnd == XTENSA_UNDEFINED)
1719 {
1720 *error_message = "unexpected relocation";
1721 return bfd_reloc_dangerous;
1722 }
1723
1724 if (!howto->pc_relative)
1725 {
1726 *error_message = "expected PC-relative relocation";
1727 return bfd_reloc_dangerous;
1728 }
e0001a05 1729
43cd72b9
BW
1730 /* Calculate the PC address for this instruction. */
1731 self_address = (input_section->output_section->vma
1732 + input_section->output_offset
1733 + address);
e0001a05 1734
43cd72b9
BW
1735 newval = relocation;
1736 }
1737 }
e0001a05 1738
43cd72b9
BW
1739 /* Apply the relocation. */
1740 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1741 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1742 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1743 sbuff, newval))
e0001a05 1744 {
2db662be
BW
1745 const char *opname = xtensa_opcode_name (isa, opcode);
1746 const char *msg;
1747
1748 msg = "cannot encode";
1749 if (is_direct_call_opcode (opcode))
1750 {
1751 if ((relocation & 0x3) != 0)
1752 msg = "misaligned call target";
1753 else
1754 msg = "call target out of range";
1755 }
1756 else if (opcode == get_l32r_opcode ())
1757 {
1758 if ((relocation & 0x3) != 0)
1759 msg = "misaligned literal target";
1760 else if (is_alt_relocation (howto->type))
1761 msg = "literal target out of range (too many literals)";
1762 else if (self_address > relocation)
1763 msg = "literal target out of range (try using text-section-literals)";
1764 else
1765 msg = "literal placed after use";
1766 }
1767
1768 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1769 return bfd_reloc_dangerous;
1770 }
1771
43cd72b9 1772 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1773 if (is_direct_call_opcode (opcode)
1774 && is_windowed_call_opcode (opcode))
1775 {
43cd72b9
BW
1776 if ((self_address >> CALL_SEGMENT_BITS)
1777 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1778 {
43cd72b9
BW
1779 *error_message =
1780 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1781 return bfd_reloc_dangerous;
1782 }
1783 }
1784
43cd72b9
BW
1785 /* Write the modified instruction back out of the buffer. */
1786 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1787 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1788 input_size - address);
e0001a05
NC
1789 return bfd_reloc_ok;
1790}
1791
1792
2db662be 1793static char *
7fa3d080 1794vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1795{
1796 /* To reduce the size of the memory leak,
1797 we only use a single message buffer. */
1798 static bfd_size_type alloc_size = 0;
1799 static char *message = NULL;
1800 bfd_size_type orig_len, len = 0;
1801 bfd_boolean is_append;
1802
1803 VA_OPEN (ap, arglen);
1804 VA_FIXEDARG (ap, const char *, origmsg);
1805
1806 is_append = (origmsg == message);
1807
1808 orig_len = strlen (origmsg);
1809 len = orig_len + strlen (fmt) + arglen + 20;
1810 if (len > alloc_size)
1811 {
1812 message = (char *) bfd_realloc (message, len);
1813 alloc_size = len;
1814 }
1815 if (!is_append)
1816 memcpy (message, origmsg, orig_len);
1817 vsprintf (message + orig_len, fmt, ap);
1818 VA_CLOSE (ap);
1819 return message;
1820}
1821
1822
e0001a05
NC
1823/* This function is registered as the "special_function" in the
1824 Xtensa howto for handling simplify operations.
1825 bfd_perform_relocation / bfd_install_relocation use it to
1826 perform (install) the specified relocation. Since this replaces the code
1827 in bfd_perform_relocation, it is basically an Xtensa-specific,
1828 stripped-down version of bfd_perform_relocation. */
1829
1830static bfd_reloc_status_type
7fa3d080
BW
1831bfd_elf_xtensa_reloc (bfd *abfd,
1832 arelent *reloc_entry,
1833 asymbol *symbol,
1834 void *data,
1835 asection *input_section,
1836 bfd *output_bfd,
1837 char **error_message)
e0001a05
NC
1838{
1839 bfd_vma relocation;
1840 bfd_reloc_status_type flag;
1841 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1842 bfd_vma output_base = 0;
1843 reloc_howto_type *howto = reloc_entry->howto;
1844 asection *reloc_target_output_section;
1845 bfd_boolean is_weak_undef;
1846
dd1a320b
BW
1847 if (!xtensa_default_isa)
1848 xtensa_default_isa = xtensa_isa_init (0, 0);
1849
1049f94e 1850 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1851 output, and the reloc is against an external symbol, the resulting
1852 reloc will also be against the same symbol. In such a case, we
1853 don't want to change anything about the way the reloc is handled,
1854 since it will all be done at final link time. This test is similar
1855 to what bfd_elf_generic_reloc does except that it lets relocs with
1856 howto->partial_inplace go through even if the addend is non-zero.
1857 (The real problem is that partial_inplace is set for XTENSA_32
1858 relocs to begin with, but that's a long story and there's little we
1859 can do about it now....) */
1860
7fa3d080 1861 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1862 {
1863 reloc_entry->address += input_section->output_offset;
1864 return bfd_reloc_ok;
1865 }
1866
1867 /* Is the address of the relocation really within the section? */
07515404 1868 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1869 return bfd_reloc_outofrange;
1870
4cc11e76 1871 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1872 initial relocation command value. */
1873
1874 /* Get symbol value. (Common symbols are special.) */
1875 if (bfd_is_com_section (symbol->section))
1876 relocation = 0;
1877 else
1878 relocation = symbol->value;
1879
1880 reloc_target_output_section = symbol->section->output_section;
1881
1882 /* Convert input-section-relative symbol value to absolute. */
1883 if ((output_bfd && !howto->partial_inplace)
1884 || reloc_target_output_section == NULL)
1885 output_base = 0;
1886 else
1887 output_base = reloc_target_output_section->vma;
1888
1889 relocation += output_base + symbol->section->output_offset;
1890
1891 /* Add in supplied addend. */
1892 relocation += reloc_entry->addend;
1893
1894 /* Here the variable relocation holds the final address of the
1895 symbol we are relocating against, plus any addend. */
1896 if (output_bfd)
1897 {
1898 if (!howto->partial_inplace)
1899 {
1900 /* This is a partial relocation, and we want to apply the relocation
1901 to the reloc entry rather than the raw data. Everything except
1902 relocations against section symbols has already been handled
1903 above. */
43cd72b9 1904
e0001a05
NC
1905 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1906 reloc_entry->addend = relocation;
1907 reloc_entry->address += input_section->output_offset;
1908 return bfd_reloc_ok;
1909 }
1910 else
1911 {
1912 reloc_entry->address += input_section->output_offset;
1913 reloc_entry->addend = 0;
1914 }
1915 }
1916
1917 is_weak_undef = (bfd_is_und_section (symbol->section)
1918 && (symbol->flags & BSF_WEAK) != 0);
1919 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1920 (bfd_byte *) data, (bfd_vma) octets,
1921 is_weak_undef, error_message);
1922
1923 if (flag == bfd_reloc_dangerous)
1924 {
1925 /* Add the symbol name to the error message. */
1926 if (! *error_message)
1927 *error_message = "";
1928 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1929 strlen (symbol->name) + 17,
70961b9d
AM
1930 symbol->name,
1931 (unsigned long) reloc_entry->addend);
e0001a05
NC
1932 }
1933
1934 return flag;
1935}
1936
1937
1938/* Set up an entry in the procedure linkage table. */
1939
1940static bfd_vma
7fa3d080
BW
1941elf_xtensa_create_plt_entry (bfd *dynobj,
1942 bfd *output_bfd,
1943 unsigned reloc_index)
e0001a05
NC
1944{
1945 asection *splt, *sgotplt;
1946 bfd_vma plt_base, got_base;
1947 bfd_vma code_offset, lit_offset;
1948 int chunk;
1949
1950 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1951 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1952 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1953 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1954
1955 plt_base = splt->output_section->vma + splt->output_offset;
1956 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1957
1958 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1959 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1960
1961 /* Fill in the literal entry. This is the offset of the dynamic
1962 relocation entry. */
1963 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1964 sgotplt->contents + lit_offset);
1965
1966 /* Fill in the entry in the procedure linkage table. */
1967 memcpy (splt->contents + code_offset,
1968 (bfd_big_endian (output_bfd)
1969 ? elf_xtensa_be_plt_entry
1970 : elf_xtensa_le_plt_entry),
1971 PLT_ENTRY_SIZE);
1972 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1973 plt_base + code_offset + 3),
1974 splt->contents + code_offset + 4);
1975 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1976 plt_base + code_offset + 6),
1977 splt->contents + code_offset + 7);
1978 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1979 plt_base + code_offset + 9),
1980 splt->contents + code_offset + 10);
1981
1982 return plt_base + code_offset;
1983}
1984
1985
e0001a05 1986/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1987 both relocatable and final links. */
e0001a05
NC
1988
1989static bfd_boolean
7fa3d080
BW
1990elf_xtensa_relocate_section (bfd *output_bfd,
1991 struct bfd_link_info *info,
1992 bfd *input_bfd,
1993 asection *input_section,
1994 bfd_byte *contents,
1995 Elf_Internal_Rela *relocs,
1996 Elf_Internal_Sym *local_syms,
1997 asection **local_sections)
e0001a05
NC
1998{
1999 Elf_Internal_Shdr *symtab_hdr;
2000 Elf_Internal_Rela *rel;
2001 Elf_Internal_Rela *relend;
2002 struct elf_link_hash_entry **sym_hashes;
2003 asection *srelgot, *srelplt;
2004 bfd *dynobj;
88d65ad6
BW
2005 property_table_entry *lit_table = 0;
2006 int ltblsize = 0;
e0001a05 2007 char *error_message = NULL;
43cd72b9 2008 bfd_size_type input_size;
e0001a05 2009
43cd72b9
BW
2010 if (!xtensa_default_isa)
2011 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05
NC
2012
2013 dynobj = elf_hash_table (info)->dynobj;
2014 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2015 sym_hashes = elf_sym_hashes (input_bfd);
2016
2017 srelgot = NULL;
2018 srelplt = NULL;
7fa3d080 2019 if (dynobj)
e0001a05
NC
2020 {
2021 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2022 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2023 }
2024
88d65ad6
BW
2025 if (elf_hash_table (info)->dynamic_sections_created)
2026 {
2027 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2028 &lit_table, XTENSA_LIT_SEC_NAME,
2029 TRUE);
88d65ad6
BW
2030 if (ltblsize < 0)
2031 return FALSE;
2032 }
2033
43cd72b9
BW
2034 input_size = bfd_get_section_limit (input_bfd, input_section);
2035
e0001a05
NC
2036 rel = relocs;
2037 relend = relocs + input_section->reloc_count;
2038 for (; rel < relend; rel++)
2039 {
2040 int r_type;
2041 reloc_howto_type *howto;
2042 unsigned long r_symndx;
2043 struct elf_link_hash_entry *h;
2044 Elf_Internal_Sym *sym;
2045 asection *sec;
2046 bfd_vma relocation;
2047 bfd_reloc_status_type r;
2048 bfd_boolean is_weak_undef;
2049 bfd_boolean unresolved_reloc;
9b8c98a4 2050 bfd_boolean warned;
e0001a05
NC
2051
2052 r_type = ELF32_R_TYPE (rel->r_info);
2053 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2054 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2055 continue;
2056
2057 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2058 {
2059 bfd_set_error (bfd_error_bad_value);
2060 return FALSE;
2061 }
2062 howto = &elf_howto_table[r_type];
2063
2064 r_symndx = ELF32_R_SYM (rel->r_info);
2065
1049f94e 2066 if (info->relocatable)
e0001a05 2067 {
43cd72b9 2068 /* This is a relocatable link.
e0001a05
NC
2069 1) If the reloc is against a section symbol, adjust
2070 according to the output section.
2071 2) If there is a new target for this relocation,
2072 the new target will be in the same output section.
2073 We adjust the relocation by the output section
2074 difference. */
2075
2076 if (relaxing_section)
2077 {
2078 /* Check if this references a section in another input file. */
43cd72b9
BW
2079 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2080 contents))
2081 return FALSE;
e0001a05
NC
2082 r_type = ELF32_R_TYPE (rel->r_info);
2083 }
2084
43cd72b9 2085 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2086 {
43cd72b9 2087 char *error_message = NULL;
e0001a05
NC
2088 /* Convert ASM_SIMPLIFY into the simpler relocation
2089 so that they never escape a relaxing link. */
43cd72b9
BW
2090 r = contract_asm_expansion (contents, input_size, rel,
2091 &error_message);
2092 if (r != bfd_reloc_ok)
2093 {
2094 if (!((*info->callbacks->reloc_dangerous)
2095 (info, error_message, input_bfd, input_section,
2096 rel->r_offset)))
2097 return FALSE;
2098 }
e0001a05
NC
2099 r_type = ELF32_R_TYPE (rel->r_info);
2100 }
2101
1049f94e 2102 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2103 anything unless the reloc is against a section symbol,
2104 in which case we have to adjust according to where the
2105 section symbol winds up in the output section. */
2106 if (r_symndx < symtab_hdr->sh_info)
2107 {
2108 sym = local_syms + r_symndx;
2109 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2110 {
2111 sec = local_sections[r_symndx];
2112 rel->r_addend += sec->output_offset + sym->st_value;
2113 }
2114 }
2115
2116 /* If there is an addend with a partial_inplace howto,
2117 then move the addend to the contents. This is a hack
1049f94e 2118 to work around problems with DWARF in relocatable links
e0001a05
NC
2119 with some previous version of BFD. Now we can't easily get
2120 rid of the hack without breaking backward compatibility.... */
2121 if (rel->r_addend)
2122 {
2123 howto = &elf_howto_table[r_type];
2124 if (howto->partial_inplace)
2125 {
2126 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2127 rel->r_addend, contents,
2128 rel->r_offset, FALSE,
2129 &error_message);
2130 if (r != bfd_reloc_ok)
2131 {
2132 if (!((*info->callbacks->reloc_dangerous)
2133 (info, error_message, input_bfd, input_section,
2134 rel->r_offset)))
2135 return FALSE;
2136 }
2137 rel->r_addend = 0;
2138 }
2139 }
2140
1049f94e 2141 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2142 continue;
2143 }
2144
2145 /* This is a final link. */
2146
2147 h = NULL;
2148 sym = NULL;
2149 sec = NULL;
2150 is_weak_undef = FALSE;
2151 unresolved_reloc = FALSE;
9b8c98a4 2152 warned = FALSE;
e0001a05
NC
2153
2154 if (howto->partial_inplace)
2155 {
2156 /* Because R_XTENSA_32 was made partial_inplace to fix some
2157 problems with DWARF info in partial links, there may be
2158 an addend stored in the contents. Take it out of there
2159 and move it back into the addend field of the reloc. */
2160 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2161 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2162 }
2163
2164 if (r_symndx < symtab_hdr->sh_info)
2165 {
2166 sym = local_syms + r_symndx;
2167 sec = local_sections[r_symndx];
8517fae7 2168 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
e0001a05
NC
2169 }
2170 else
2171 {
b2a8e766
AM
2172 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2173 r_symndx, symtab_hdr, sym_hashes,
2174 h, sec, relocation,
2175 unresolved_reloc, warned);
560e09e9
NC
2176
2177 if (relocation == 0
2178 && !unresolved_reloc
2179 && h->root.type == bfd_link_hash_undefweak)
e0001a05 2180 is_weak_undef = TRUE;
e0001a05
NC
2181 }
2182
2183 if (relaxing_section)
2184 {
2185 /* Check if this references a section in another input file. */
43cd72b9
BW
2186 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2187 &relocation);
e0001a05
NC
2188
2189 /* Update some already cached values. */
2190 r_type = ELF32_R_TYPE (rel->r_info);
2191 howto = &elf_howto_table[r_type];
2192 }
2193
2194 /* Sanity check the address. */
43cd72b9 2195 if (rel->r_offset >= input_size
e0001a05
NC
2196 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2197 {
43cd72b9
BW
2198 (*_bfd_error_handler)
2199 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2200 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2201 bfd_set_error (bfd_error_bad_value);
2202 return FALSE;
2203 }
2204
2205 /* Generate dynamic relocations. */
2206 if (elf_hash_table (info)->dynamic_sections_created)
2207 {
571b5725 2208 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05 2209
43cd72b9 2210 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2211 {
2212 /* This is an error. The symbol's real value won't be known
2213 until runtime and it's likely to be out of range anyway. */
2214 const char *name = h->root.root.string;
2215 error_message = vsprint_msg ("invalid relocation for dynamic "
2216 "symbol", ": %s",
2217 strlen (name) + 2, name);
2218 if (!((*info->callbacks->reloc_dangerous)
2219 (info, error_message, input_bfd, input_section,
2220 rel->r_offset)))
2221 return FALSE;
2222 }
2223 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2224 && (input_section->flags & SEC_ALLOC) != 0
2225 && (dynamic_symbol || info->shared))
2226 {
2227 Elf_Internal_Rela outrel;
2228 bfd_byte *loc;
2229 asection *srel;
2230
2231 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2232 srel = srelplt;
2233 else
2234 srel = srelgot;
2235
2236 BFD_ASSERT (srel != NULL);
2237
2238 outrel.r_offset =
2239 _bfd_elf_section_offset (output_bfd, info,
2240 input_section, rel->r_offset);
2241
2242 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2243 memset (&outrel, 0, sizeof outrel);
2244 else
2245 {
f0578e28
BW
2246 outrel.r_offset += (input_section->output_section->vma
2247 + input_section->output_offset);
e0001a05 2248
88d65ad6
BW
2249 /* Complain if the relocation is in a read-only section
2250 and not in a literal pool. */
2251 if ((input_section->flags & SEC_READONLY) != 0
2252 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2253 outrel.r_offset))
88d65ad6
BW
2254 {
2255 error_message =
2256 _("dynamic relocation in read-only section");
2257 if (!((*info->callbacks->reloc_dangerous)
2258 (info, error_message, input_bfd, input_section,
2259 rel->r_offset)))
2260 return FALSE;
2261 }
2262
e0001a05
NC
2263 if (dynamic_symbol)
2264 {
2265 outrel.r_addend = rel->r_addend;
2266 rel->r_addend = 0;
2267
2268 if (r_type == R_XTENSA_32)
2269 {
2270 outrel.r_info =
2271 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2272 relocation = 0;
2273 }
2274 else /* r_type == R_XTENSA_PLT */
2275 {
2276 outrel.r_info =
2277 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2278
2279 /* Create the PLT entry and set the initial
2280 contents of the literal entry to the address of
2281 the PLT entry. */
43cd72b9 2282 relocation =
e0001a05
NC
2283 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2284 srel->reloc_count);
2285 }
2286 unresolved_reloc = FALSE;
2287 }
2288 else
2289 {
2290 /* Generate a RELATIVE relocation. */
2291 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2292 outrel.r_addend = 0;
2293 }
2294 }
2295
2296 loc = (srel->contents
2297 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2298 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2299 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2300 <= srel->size);
e0001a05
NC
2301 }
2302 }
2303
2304 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2305 because such sections are not SEC_ALLOC and thus ld.so will
2306 not process them. */
2307 if (unresolved_reloc
2308 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2309 && h->def_dynamic))
e0001a05 2310 (*_bfd_error_handler)
d003868e
AM
2311 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2312 input_bfd,
2313 input_section,
e0001a05
NC
2314 (long) rel->r_offset,
2315 h->root.root.string);
2316
2317 /* There's no point in calling bfd_perform_relocation here.
2318 Just go directly to our "special function". */
2319 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2320 relocation + rel->r_addend,
2321 contents, rel->r_offset, is_weak_undef,
2322 &error_message);
43cd72b9 2323
9b8c98a4 2324 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2325 {
2326 const char *name;
2327
43cd72b9 2328 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2329 BFD_ASSERT (error_message != NULL);
e0001a05 2330
7fa3d080 2331 if (h)
e0001a05
NC
2332 name = h->root.root.string;
2333 else
2334 {
2335 name = bfd_elf_string_from_elf_section
2336 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2337 if (name && *name == '\0')
2338 name = bfd_section_name (input_bfd, sec);
2339 }
2340 if (name)
43cd72b9
BW
2341 {
2342 if (rel->r_addend == 0)
2343 error_message = vsprint_msg (error_message, ": %s",
2344 strlen (name) + 2, name);
2345 else
2346 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2347 strlen (name) + 22,
0fd3a477 2348 name, (int)rel->r_addend);
43cd72b9
BW
2349 }
2350
e0001a05
NC
2351 if (!((*info->callbacks->reloc_dangerous)
2352 (info, error_message, input_bfd, input_section,
2353 rel->r_offset)))
2354 return FALSE;
2355 }
2356 }
2357
88d65ad6
BW
2358 if (lit_table)
2359 free (lit_table);
2360
3ba3bc8c
BW
2361 input_section->reloc_done = TRUE;
2362
e0001a05
NC
2363 return TRUE;
2364}
2365
2366
2367/* Finish up dynamic symbol handling. There's not much to do here since
2368 the PLT and GOT entries are all set up by relocate_section. */
2369
2370static bfd_boolean
7fa3d080
BW
2371elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2372 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2373 struct elf_link_hash_entry *h,
2374 Elf_Internal_Sym *sym)
e0001a05 2375{
f5385ebf
AM
2376 if (h->needs_plt
2377 && !h->def_regular)
e0001a05
NC
2378 {
2379 /* Mark the symbol as undefined, rather than as defined in
2380 the .plt section. Leave the value alone. */
2381 sym->st_shndx = SHN_UNDEF;
2382 }
2383
2384 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2385 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2386 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2387 sym->st_shndx = SHN_ABS;
2388
2389 return TRUE;
2390}
2391
2392
2393/* Combine adjacent literal table entries in the output. Adjacent
2394 entries within each input section may have been removed during
2395 relaxation, but we repeat the process here, even though it's too late
2396 to shrink the output section, because it's important to minimize the
2397 number of literal table entries to reduce the start-up work for the
2398 runtime linker. Returns the number of remaining table entries or -1
2399 on error. */
2400
2401static int
7fa3d080
BW
2402elf_xtensa_combine_prop_entries (bfd *output_bfd,
2403 asection *sxtlit,
2404 asection *sgotloc)
e0001a05 2405{
e0001a05
NC
2406 bfd_byte *contents;
2407 property_table_entry *table;
e901de89 2408 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2409 bfd_vma offset;
2410 int n, m, num;
2411
eea6121a 2412 section_size = sxtlit->size;
e0001a05
NC
2413 BFD_ASSERT (section_size % 8 == 0);
2414 num = section_size / 8;
2415
eea6121a 2416 sgotloc_size = sgotloc->size;
e901de89 2417 if (sgotloc_size != section_size)
b536dc1e
BW
2418 {
2419 (*_bfd_error_handler)
43cd72b9 2420 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2421 return -1;
2422 }
e901de89 2423
eea6121a
AM
2424 table = bfd_malloc (num * sizeof (property_table_entry));
2425 if (table == 0)
e0001a05
NC
2426 return -1;
2427
2428 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2429 propagates to the output section, where it doesn't really apply and
eea6121a 2430 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2431 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2432
eea6121a
AM
2433 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2434 {
2435 if (contents != 0)
2436 free (contents);
2437 free (table);
2438 return -1;
2439 }
e0001a05
NC
2440
2441 /* There should never be any relocations left at this point, so this
2442 is quite a bit easier than what is done during relaxation. */
2443
2444 /* Copy the raw contents into a property table array and sort it. */
2445 offset = 0;
2446 for (n = 0; n < num; n++)
2447 {
2448 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2449 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2450 offset += 8;
2451 }
2452 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2453
2454 for (n = 0; n < num; n++)
2455 {
2456 bfd_boolean remove = FALSE;
2457
2458 if (table[n].size == 0)
2459 remove = TRUE;
2460 else if (n > 0 &&
2461 (table[n-1].address + table[n-1].size == table[n].address))
2462 {
2463 table[n-1].size += table[n].size;
2464 remove = TRUE;
2465 }
2466
2467 if (remove)
2468 {
2469 for (m = n; m < num - 1; m++)
2470 {
2471 table[m].address = table[m+1].address;
2472 table[m].size = table[m+1].size;
2473 }
2474
2475 n--;
2476 num--;
2477 }
2478 }
2479
2480 /* Copy the data back to the raw contents. */
2481 offset = 0;
2482 for (n = 0; n < num; n++)
2483 {
2484 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2485 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2486 offset += 8;
2487 }
2488
2489 /* Clear the removed bytes. */
2490 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2491 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2492
e901de89
BW
2493 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2494 section_size))
e0001a05
NC
2495 return -1;
2496
e901de89
BW
2497 /* Copy the contents to ".got.loc". */
2498 memcpy (sgotloc->contents, contents, section_size);
2499
e0001a05 2500 free (contents);
b614a702 2501 free (table);
e0001a05
NC
2502 return num;
2503}
2504
2505
2506/* Finish up the dynamic sections. */
2507
2508static bfd_boolean
7fa3d080
BW
2509elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2510 struct bfd_link_info *info)
e0001a05
NC
2511{
2512 bfd *dynobj;
e901de89 2513 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2514 Elf32_External_Dyn *dyncon, *dynconend;
2515 int num_xtlit_entries;
2516
2517 if (! elf_hash_table (info)->dynamic_sections_created)
2518 return TRUE;
2519
2520 dynobj = elf_hash_table (info)->dynobj;
2521 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2522 BFD_ASSERT (sdyn != NULL);
2523
2524 /* Set the first entry in the global offset table to the address of
2525 the dynamic section. */
2526 sgot = bfd_get_section_by_name (dynobj, ".got");
2527 if (sgot)
2528 {
eea6121a 2529 BFD_ASSERT (sgot->size == 4);
e0001a05 2530 if (sdyn == NULL)
7fa3d080 2531 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2532 else
2533 bfd_put_32 (output_bfd,
2534 sdyn->output_section->vma + sdyn->output_offset,
2535 sgot->contents);
2536 }
2537
2538 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
7fa3d080 2539 if (srelplt && srelplt->size != 0)
e0001a05
NC
2540 {
2541 asection *sgotplt, *srelgot, *spltlittbl;
2542 int chunk, plt_chunks, plt_entries;
2543 Elf_Internal_Rela irela;
2544 bfd_byte *loc;
2545 unsigned rtld_reloc;
2546
2547 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2548 BFD_ASSERT (srelgot != NULL);
2549
2550 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2551 BFD_ASSERT (spltlittbl != NULL);
2552
2553 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2554 of them follow immediately after.... */
2555 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2556 {
2557 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2558 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2559 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2560 break;
2561 }
2562 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2563
eea6121a 2564 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2565 plt_chunks =
2566 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2567
2568 for (chunk = 0; chunk < plt_chunks; chunk++)
2569 {
2570 int chunk_entries = 0;
2571
2572 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2573 BFD_ASSERT (sgotplt != NULL);
2574
2575 /* Emit special RTLD relocations for the first two entries in
2576 each chunk of the .got.plt section. */
2577
2578 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2579 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2580 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2581 irela.r_offset = (sgotplt->output_section->vma
2582 + sgotplt->output_offset);
2583 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2584 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2585 rtld_reloc += 1;
2586 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2587
2588 /* Next literal immediately follows the first. */
2589 loc += sizeof (Elf32_External_Rela);
2590 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2591 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2592 irela.r_offset = (sgotplt->output_section->vma
2593 + sgotplt->output_offset + 4);
2594 /* Tell rtld to set value to object's link map. */
2595 irela.r_addend = 2;
2596 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2597 rtld_reloc += 1;
2598 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2599
2600 /* Fill in the literal table. */
2601 if (chunk < plt_chunks - 1)
2602 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2603 else
2604 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2605
eea6121a 2606 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2607 bfd_put_32 (output_bfd,
2608 sgotplt->output_section->vma + sgotplt->output_offset,
2609 spltlittbl->contents + (chunk * 8) + 0);
2610 bfd_put_32 (output_bfd,
2611 8 + (chunk_entries * 4),
2612 spltlittbl->contents + (chunk * 8) + 4);
2613 }
2614
2615 /* All the dynamic relocations have been emitted at this point.
2616 Make sure the relocation sections are the correct size. */
eea6121a
AM
2617 if (srelgot->size != (sizeof (Elf32_External_Rela)
2618 * srelgot->reloc_count)
2619 || srelplt->size != (sizeof (Elf32_External_Rela)
2620 * srelplt->reloc_count))
e0001a05
NC
2621 abort ();
2622
2623 /* The .xt.lit.plt section has just been modified. This must
2624 happen before the code below which combines adjacent literal
2625 table entries, and the .xt.lit.plt contents have to be forced to
2626 the output here. */
2627 if (! bfd_set_section_contents (output_bfd,
2628 spltlittbl->output_section,
2629 spltlittbl->contents,
2630 spltlittbl->output_offset,
eea6121a 2631 spltlittbl->size))
e0001a05
NC
2632 return FALSE;
2633 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2634 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2635 }
2636
2637 /* Combine adjacent literal table entries. */
1049f94e 2638 BFD_ASSERT (! info->relocatable);
e901de89
BW
2639 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2640 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
b536dc1e 2641 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2642 num_xtlit_entries =
2643 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2644 if (num_xtlit_entries < 0)
2645 return FALSE;
2646
2647 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2648 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2649 for (; dyncon < dynconend; dyncon++)
2650 {
2651 Elf_Internal_Dyn dyn;
2652 const char *name;
2653 asection *s;
2654
2655 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2656
2657 switch (dyn.d_tag)
2658 {
2659 default:
2660 break;
2661
2662 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2663 dyn.d_un.d_val = num_xtlit_entries;
2664 break;
2665
2666 case DT_XTENSA_GOT_LOC_OFF:
e901de89 2667 name = ".got.loc";
e0001a05
NC
2668 goto get_vma;
2669 case DT_PLTGOT:
2670 name = ".got";
2671 goto get_vma;
2672 case DT_JMPREL:
2673 name = ".rela.plt";
2674 get_vma:
2675 s = bfd_get_section_by_name (output_bfd, name);
2676 BFD_ASSERT (s);
2677 dyn.d_un.d_ptr = s->vma;
2678 break;
2679
2680 case DT_PLTRELSZ:
2681 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2682 BFD_ASSERT (s);
eea6121a 2683 dyn.d_un.d_val = s->size;
e0001a05
NC
2684 break;
2685
2686 case DT_RELASZ:
2687 /* Adjust RELASZ to not include JMPREL. This matches what
2688 glibc expects and what is done for several other ELF
2689 targets (e.g., i386, alpha), but the "correct" behavior
2690 seems to be unresolved. Since the linker script arranges
2691 for .rela.plt to follow all other relocation sections, we
2692 don't have to worry about changing the DT_RELA entry. */
2693 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2694 if (s)
eea6121a 2695 dyn.d_un.d_val -= s->size;
e0001a05
NC
2696 break;
2697 }
2698
2699 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2700 }
2701
2702 return TRUE;
2703}
2704
2705\f
2706/* Functions for dealing with the e_flags field. */
2707
2708/* Merge backend specific data from an object file to the output
2709 object file when linking. */
2710
2711static bfd_boolean
7fa3d080 2712elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2713{
2714 unsigned out_mach, in_mach;
2715 flagword out_flag, in_flag;
2716
2717 /* Check if we have the same endianess. */
2718 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2719 return FALSE;
2720
2721 /* Don't even pretend to support mixed-format linking. */
2722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2724 return FALSE;
2725
2726 out_flag = elf_elfheader (obfd)->e_flags;
2727 in_flag = elf_elfheader (ibfd)->e_flags;
2728
2729 out_mach = out_flag & EF_XTENSA_MACH;
2730 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2731 if (out_mach != in_mach)
e0001a05
NC
2732 {
2733 (*_bfd_error_handler)
43cd72b9 2734 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2735 ibfd, out_mach, in_mach);
e0001a05
NC
2736 bfd_set_error (bfd_error_wrong_format);
2737 return FALSE;
2738 }
2739
2740 if (! elf_flags_init (obfd))
2741 {
2742 elf_flags_init (obfd) = TRUE;
2743 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2744
e0001a05
NC
2745 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2746 && bfd_get_arch_info (obfd)->the_default)
2747 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2748 bfd_get_mach (ibfd));
43cd72b9 2749
e0001a05
NC
2750 return TRUE;
2751 }
2752
43cd72b9
BW
2753 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2754 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2755
43cd72b9
BW
2756 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2757 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2758
2759 return TRUE;
2760}
2761
2762
2763static bfd_boolean
7fa3d080 2764elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2765{
2766 BFD_ASSERT (!elf_flags_init (abfd)
2767 || elf_elfheader (abfd)->e_flags == flags);
2768
2769 elf_elfheader (abfd)->e_flags |= flags;
2770 elf_flags_init (abfd) = TRUE;
2771
2772 return TRUE;
2773}
2774
2775
e0001a05 2776static bfd_boolean
7fa3d080 2777elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2778{
2779 FILE *f = (FILE *) farg;
2780 flagword e_flags = elf_elfheader (abfd)->e_flags;
2781
2782 fprintf (f, "\nXtensa header:\n");
43cd72b9 2783 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2784 fprintf (f, "\nMachine = Base\n");
2785 else
2786 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2787
2788 fprintf (f, "Insn tables = %s\n",
2789 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2790
2791 fprintf (f, "Literal tables = %s\n",
2792 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2793
2794 return _bfd_elf_print_private_bfd_data (abfd, farg);
2795}
2796
2797
2798/* Set the right machine number for an Xtensa ELF file. */
2799
2800static bfd_boolean
7fa3d080 2801elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2802{
2803 int mach;
2804 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2805
2806 switch (arch)
2807 {
2808 case E_XTENSA_MACH:
2809 mach = bfd_mach_xtensa;
2810 break;
2811 default:
2812 return FALSE;
2813 }
2814
2815 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2816 return TRUE;
2817}
2818
2819
2820/* The final processing done just before writing out an Xtensa ELF object
2821 file. This gets the Xtensa architecture right based on the machine
2822 number. */
2823
2824static void
7fa3d080
BW
2825elf_xtensa_final_write_processing (bfd *abfd,
2826 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2827{
2828 int mach;
2829 unsigned long val;
2830
2831 switch (mach = bfd_get_mach (abfd))
2832 {
2833 case bfd_mach_xtensa:
2834 val = E_XTENSA_MACH;
2835 break;
2836 default:
2837 return;
2838 }
2839
2840 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2841 elf_elfheader (abfd)->e_flags |= val;
2842}
2843
2844
2845static enum elf_reloc_type_class
7fa3d080 2846elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2847{
2848 switch ((int) ELF32_R_TYPE (rela->r_info))
2849 {
2850 case R_XTENSA_RELATIVE:
2851 return reloc_class_relative;
2852 case R_XTENSA_JMP_SLOT:
2853 return reloc_class_plt;
2854 default:
2855 return reloc_class_normal;
2856 }
2857}
2858
2859\f
2860static bfd_boolean
7fa3d080
BW
2861elf_xtensa_discard_info_for_section (bfd *abfd,
2862 struct elf_reloc_cookie *cookie,
2863 struct bfd_link_info *info,
2864 asection *sec)
e0001a05
NC
2865{
2866 bfd_byte *contents;
2867 bfd_vma section_size;
2868 bfd_vma offset, actual_offset;
2869 size_t removed_bytes = 0;
2870
eea6121a 2871 section_size = sec->size;
e0001a05
NC
2872 if (section_size == 0 || section_size % 8 != 0)
2873 return FALSE;
2874
2875 if (sec->output_section
2876 && bfd_is_abs_section (sec->output_section))
2877 return FALSE;
2878
2879 contents = retrieve_contents (abfd, sec, info->keep_memory);
2880 if (!contents)
2881 return FALSE;
2882
2883 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2884 if (!cookie->rels)
2885 {
2886 release_contents (sec, contents);
2887 return FALSE;
2888 }
2889
2890 cookie->rel = cookie->rels;
2891 cookie->relend = cookie->rels + sec->reloc_count;
2892
2893 for (offset = 0; offset < section_size; offset += 8)
2894 {
2895 actual_offset = offset - removed_bytes;
2896
2897 /* The ...symbol_deleted_p function will skip over relocs but it
2898 won't adjust their offsets, so do that here. */
2899 while (cookie->rel < cookie->relend
2900 && cookie->rel->r_offset < offset)
2901 {
2902 cookie->rel->r_offset -= removed_bytes;
2903 cookie->rel++;
2904 }
2905
2906 while (cookie->rel < cookie->relend
2907 && cookie->rel->r_offset == offset)
2908 {
c152c796 2909 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2910 {
2911 /* Remove the table entry. (If the reloc type is NONE, then
2912 the entry has already been merged with another and deleted
2913 during relaxation.) */
2914 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2915 {
2916 /* Shift the contents up. */
2917 if (offset + 8 < section_size)
2918 memmove (&contents[actual_offset],
2919 &contents[actual_offset+8],
2920 section_size - offset - 8);
2921 removed_bytes += 8;
2922 }
2923
2924 /* Remove this relocation. */
2925 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2926 }
2927
2928 /* Adjust the relocation offset for previous removals. This
2929 should not be done before calling ...symbol_deleted_p
2930 because it might mess up the offset comparisons there.
2931 Make sure the offset doesn't underflow in the case where
2932 the first entry is removed. */
2933 if (cookie->rel->r_offset >= removed_bytes)
2934 cookie->rel->r_offset -= removed_bytes;
2935 else
2936 cookie->rel->r_offset = 0;
2937
2938 cookie->rel++;
2939 }
2940 }
2941
2942 if (removed_bytes != 0)
2943 {
2944 /* Adjust any remaining relocs (shouldn't be any). */
2945 for (; cookie->rel < cookie->relend; cookie->rel++)
2946 {
2947 if (cookie->rel->r_offset >= removed_bytes)
2948 cookie->rel->r_offset -= removed_bytes;
2949 else
2950 cookie->rel->r_offset = 0;
2951 }
2952
2953 /* Clear the removed bytes. */
2954 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2955
2956 pin_contents (sec, contents);
2957 pin_internal_relocs (sec, cookie->rels);
2958
eea6121a
AM
2959 /* Shrink size. */
2960 sec->size = section_size - removed_bytes;
b536dc1e
BW
2961
2962 if (xtensa_is_littable_section (sec))
2963 {
2964 bfd *dynobj = elf_hash_table (info)->dynobj;
2965 if (dynobj)
2966 {
2967 asection *sgotloc =
2968 bfd_get_section_by_name (dynobj, ".got.loc");
2969 if (sgotloc)
eea6121a 2970 sgotloc->size -= removed_bytes;
b536dc1e
BW
2971 }
2972 }
e0001a05
NC
2973 }
2974 else
2975 {
2976 release_contents (sec, contents);
2977 release_internal_relocs (sec, cookie->rels);
2978 }
2979
2980 return (removed_bytes != 0);
2981}
2982
2983
2984static bfd_boolean
7fa3d080
BW
2985elf_xtensa_discard_info (bfd *abfd,
2986 struct elf_reloc_cookie *cookie,
2987 struct bfd_link_info *info)
e0001a05
NC
2988{
2989 asection *sec;
2990 bfd_boolean changed = FALSE;
2991
2992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2993 {
2994 if (xtensa_is_property_section (sec))
2995 {
2996 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2997 changed = TRUE;
2998 }
2999 }
3000
3001 return changed;
3002}
3003
3004
3005static bfd_boolean
7fa3d080 3006elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3007{
3008 return xtensa_is_property_section (sec);
3009}
3010
3011\f
3012/* Support for core dump NOTE sections. */
3013
3014static bfd_boolean
7fa3d080 3015elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3016{
3017 int offset;
eea6121a 3018 unsigned int size;
e0001a05
NC
3019
3020 /* The size for Xtensa is variable, so don't try to recognize the format
3021 based on the size. Just assume this is GNU/Linux. */
3022
3023 /* pr_cursig */
3024 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3025
3026 /* pr_pid */
3027 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3028
3029 /* pr_reg */
3030 offset = 72;
eea6121a 3031 size = note->descsz - offset - 4;
e0001a05
NC
3032
3033 /* Make a ".reg/999" section. */
3034 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3035 size, note->descpos + offset);
e0001a05
NC
3036}
3037
3038
3039static bfd_boolean
7fa3d080 3040elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3041{
3042 switch (note->descsz)
3043 {
3044 default:
3045 return FALSE;
3046
3047 case 128: /* GNU/Linux elf_prpsinfo */
3048 elf_tdata (abfd)->core_program
3049 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3050 elf_tdata (abfd)->core_command
3051 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3052 }
3053
3054 /* Note that for some reason, a spurious space is tacked
3055 onto the end of the args in some (at least one anyway)
3056 implementations, so strip it off if it exists. */
3057
3058 {
3059 char *command = elf_tdata (abfd)->core_command;
3060 int n = strlen (command);
3061
3062 if (0 < n && command[n - 1] == ' ')
3063 command[n - 1] = '\0';
3064 }
3065
3066 return TRUE;
3067}
3068
3069\f
3070/* Generic Xtensa configurability stuff. */
3071
3072static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3073static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3074static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3075static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3076static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3077static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3078static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3079static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3080
3081static void
7fa3d080 3082init_call_opcodes (void)
e0001a05
NC
3083{
3084 if (callx0_op == XTENSA_UNDEFINED)
3085 {
3086 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3087 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3088 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3089 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3090 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3091 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3092 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3093 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3094 }
3095}
3096
3097
3098static bfd_boolean
7fa3d080 3099is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3100{
3101 init_call_opcodes ();
3102 return (opcode == callx0_op
3103 || opcode == callx4_op
3104 || opcode == callx8_op
3105 || opcode == callx12_op);
3106}
3107
3108
3109static bfd_boolean
7fa3d080 3110is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3111{
3112 init_call_opcodes ();
3113 return (opcode == call0_op
3114 || opcode == call4_op
3115 || opcode == call8_op
3116 || opcode == call12_op);
3117}
3118
3119
3120static bfd_boolean
7fa3d080 3121is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3122{
3123 init_call_opcodes ();
3124 return (opcode == call4_op
3125 || opcode == call8_op
3126 || opcode == call12_op
3127 || opcode == callx4_op
3128 || opcode == callx8_op
3129 || opcode == callx12_op);
3130}
3131
3132
43cd72b9
BW
3133static xtensa_opcode
3134get_const16_opcode (void)
3135{
3136 static bfd_boolean done_lookup = FALSE;
3137 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3138 if (!done_lookup)
3139 {
3140 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3141 done_lookup = TRUE;
3142 }
3143 return const16_opcode;
3144}
3145
3146
e0001a05
NC
3147static xtensa_opcode
3148get_l32r_opcode (void)
3149{
3150 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3151 static bfd_boolean done_lookup = FALSE;
3152
3153 if (!done_lookup)
e0001a05
NC
3154 {
3155 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3156 done_lookup = TRUE;
e0001a05
NC
3157 }
3158 return l32r_opcode;
3159}
3160
3161
3162static bfd_vma
7fa3d080 3163l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3164{
3165 bfd_vma offset;
3166
3167 offset = addr - ((pc+3) & -4);
3168 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3169 offset = (signed int) offset >> 2;
3170 BFD_ASSERT ((signed int) offset >> 16 == -1);
3171 return offset;
3172}
3173
3174
e0001a05 3175static int
7fa3d080 3176get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3177{
43cd72b9
BW
3178 xtensa_isa isa = xtensa_default_isa;
3179 int last_immed, last_opnd, opi;
3180
3181 if (opcode == XTENSA_UNDEFINED)
3182 return XTENSA_UNDEFINED;
3183
3184 /* Find the last visible PC-relative immediate operand for the opcode.
3185 If there are no PC-relative immediates, then choose the last visible
3186 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3187 last_immed = XTENSA_UNDEFINED;
3188 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3189 for (opi = last_opnd - 1; opi >= 0; opi--)
3190 {
3191 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3192 continue;
3193 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3194 {
3195 last_immed = opi;
3196 break;
3197 }
3198 if (last_immed == XTENSA_UNDEFINED
3199 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3200 last_immed = opi;
3201 }
3202 if (last_immed < 0)
3203 return XTENSA_UNDEFINED;
3204
3205 /* If the operand number was specified in an old-style relocation,
3206 check for consistency with the operand computed above. */
3207 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3208 {
3209 int reloc_opnd = r_type - R_XTENSA_OP0;
3210 if (reloc_opnd != last_immed)
3211 return XTENSA_UNDEFINED;
3212 }
3213
3214 return last_immed;
3215}
3216
3217
3218int
7fa3d080 3219get_relocation_slot (int r_type)
43cd72b9
BW
3220{
3221 switch (r_type)
3222 {
3223 case R_XTENSA_OP0:
3224 case R_XTENSA_OP1:
3225 case R_XTENSA_OP2:
3226 return 0;
3227
3228 default:
3229 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3230 return r_type - R_XTENSA_SLOT0_OP;
3231 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3232 return r_type - R_XTENSA_SLOT0_ALT;
3233 break;
3234 }
3235
3236 return XTENSA_UNDEFINED;
e0001a05
NC
3237}
3238
3239
3240/* Get the opcode for a relocation. */
3241
3242static xtensa_opcode
7fa3d080
BW
3243get_relocation_opcode (bfd *abfd,
3244 asection *sec,
3245 bfd_byte *contents,
3246 Elf_Internal_Rela *irel)
e0001a05
NC
3247{
3248 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3249 static xtensa_insnbuf sbuff = NULL;
e0001a05 3250 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3251 xtensa_format fmt;
3252 int slot;
e0001a05
NC
3253
3254 if (contents == NULL)
3255 return XTENSA_UNDEFINED;
3256
43cd72b9 3257 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3258 return XTENSA_UNDEFINED;
3259
3260 if (ibuff == NULL)
43cd72b9
BW
3261 {
3262 ibuff = xtensa_insnbuf_alloc (isa);
3263 sbuff = xtensa_insnbuf_alloc (isa);
3264 }
3265
e0001a05 3266 /* Decode the instruction. */
43cd72b9
BW
3267 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3268 sec->size - irel->r_offset);
3269 fmt = xtensa_format_decode (isa, ibuff);
3270 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3271 if (slot == XTENSA_UNDEFINED)
3272 return XTENSA_UNDEFINED;
3273 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3274 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3275}
3276
3277
3278bfd_boolean
7fa3d080
BW
3279is_l32r_relocation (bfd *abfd,
3280 asection *sec,
3281 bfd_byte *contents,
3282 Elf_Internal_Rela *irel)
e0001a05
NC
3283{
3284 xtensa_opcode opcode;
43cd72b9 3285 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3286 return FALSE;
43cd72b9 3287 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3288 return (opcode == get_l32r_opcode ());
3289}
3290
e0001a05 3291
43cd72b9 3292static bfd_size_type
7fa3d080
BW
3293get_asm_simplify_size (bfd_byte *contents,
3294 bfd_size_type content_len,
3295 bfd_size_type offset)
e0001a05 3296{
43cd72b9 3297 bfd_size_type insnlen, size = 0;
e0001a05 3298
43cd72b9
BW
3299 /* Decode the size of the next two instructions. */
3300 insnlen = insn_decode_len (contents, content_len, offset);
3301 if (insnlen == 0)
3302 return 0;
e0001a05 3303
43cd72b9 3304 size += insnlen;
e0001a05 3305
43cd72b9
BW
3306 insnlen = insn_decode_len (contents, content_len, offset + size);
3307 if (insnlen == 0)
3308 return 0;
e0001a05 3309
43cd72b9
BW
3310 size += insnlen;
3311 return size;
3312}
e0001a05 3313
43cd72b9
BW
3314
3315bfd_boolean
7fa3d080 3316is_alt_relocation (int r_type)
43cd72b9
BW
3317{
3318 return (r_type >= R_XTENSA_SLOT0_ALT
3319 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3320}
3321
3322
43cd72b9 3323bfd_boolean
7fa3d080 3324is_operand_relocation (int r_type)
e0001a05 3325{
43cd72b9
BW
3326 switch (r_type)
3327 {
3328 case R_XTENSA_OP0:
3329 case R_XTENSA_OP1:
3330 case R_XTENSA_OP2:
3331 return TRUE;
e0001a05 3332
43cd72b9
BW
3333 default:
3334 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3335 return TRUE;
3336 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3337 return TRUE;
3338 break;
3339 }
e0001a05 3340
43cd72b9 3341 return FALSE;
e0001a05
NC
3342}
3343
43cd72b9
BW
3344
3345#define MIN_INSN_LENGTH 2
e0001a05 3346
43cd72b9
BW
3347/* Return 0 if it fails to decode. */
3348
3349bfd_size_type
7fa3d080
BW
3350insn_decode_len (bfd_byte *contents,
3351 bfd_size_type content_len,
3352 bfd_size_type offset)
e0001a05 3353{
43cd72b9
BW
3354 int insn_len;
3355 xtensa_isa isa = xtensa_default_isa;
3356 xtensa_format fmt;
3357 static xtensa_insnbuf ibuff = NULL;
e0001a05 3358
43cd72b9
BW
3359 if (offset + MIN_INSN_LENGTH > content_len)
3360 return 0;
e0001a05 3361
43cd72b9
BW
3362 if (ibuff == NULL)
3363 ibuff = xtensa_insnbuf_alloc (isa);
3364 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3365 content_len - offset);
3366 fmt = xtensa_format_decode (isa, ibuff);
3367 if (fmt == XTENSA_UNDEFINED)
3368 return 0;
3369 insn_len = xtensa_format_length (isa, fmt);
3370 if (insn_len == XTENSA_UNDEFINED)
3371 return 0;
3372 return insn_len;
e0001a05
NC
3373}
3374
3375
43cd72b9
BW
3376/* Decode the opcode for a single slot instruction.
3377 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3378
43cd72b9 3379xtensa_opcode
7fa3d080
BW
3380insn_decode_opcode (bfd_byte *contents,
3381 bfd_size_type content_len,
3382 bfd_size_type offset,
3383 int slot)
e0001a05 3384{
e0001a05 3385 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3386 xtensa_format fmt;
3387 static xtensa_insnbuf insnbuf = NULL;
3388 static xtensa_insnbuf slotbuf = NULL;
3389
3390 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3391 return XTENSA_UNDEFINED;
3392
3393 if (insnbuf == NULL)
43cd72b9
BW
3394 {
3395 insnbuf = xtensa_insnbuf_alloc (isa);
3396 slotbuf = xtensa_insnbuf_alloc (isa);
3397 }
3398
3399 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3400 content_len - offset);
3401 fmt = xtensa_format_decode (isa, insnbuf);
3402 if (fmt == XTENSA_UNDEFINED)
e0001a05 3403 return XTENSA_UNDEFINED;
43cd72b9
BW
3404
3405 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3406 return XTENSA_UNDEFINED;
e0001a05 3407
43cd72b9
BW
3408 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3409 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3410}
e0001a05 3411
e0001a05 3412
43cd72b9
BW
3413/* The offset is the offset in the contents.
3414 The address is the address of that offset. */
e0001a05 3415
43cd72b9 3416static bfd_boolean
7fa3d080
BW
3417check_branch_target_aligned (bfd_byte *contents,
3418 bfd_size_type content_length,
3419 bfd_vma offset,
3420 bfd_vma address)
43cd72b9
BW
3421{
3422 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3423 if (insn_len == 0)
3424 return FALSE;
3425 return check_branch_target_aligned_address (address, insn_len);
3426}
e0001a05 3427
e0001a05 3428
43cd72b9 3429static bfd_boolean
7fa3d080
BW
3430check_loop_aligned (bfd_byte *contents,
3431 bfd_size_type content_length,
3432 bfd_vma offset,
3433 bfd_vma address)
e0001a05 3434{
43cd72b9
BW
3435 bfd_size_type loop_len, insn_len;
3436 xtensa_opcode opcode =
3437 insn_decode_opcode (contents, content_length, offset, 0);
3438 BFD_ASSERT (opcode != XTENSA_UNDEFINED);
3439 if (opcode != XTENSA_UNDEFINED)
3440 return FALSE;
3441 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa, opcode));
3442 if (!xtensa_opcode_is_loop (xtensa_default_isa, opcode))
3443 return FALSE;
e0001a05 3444
43cd72b9
BW
3445 loop_len = insn_decode_len (contents, content_length, offset);
3446 BFD_ASSERT (loop_len != 0);
3447 if (loop_len == 0)
3448 return FALSE;
3449
3450 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3451 BFD_ASSERT (insn_len != 0);
3452 if (insn_len == 0)
3453 return FALSE;
e0001a05 3454
43cd72b9
BW
3455 return check_branch_target_aligned_address (address + loop_len, insn_len);
3456}
e0001a05 3457
e0001a05
NC
3458
3459static bfd_boolean
7fa3d080 3460check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3461{
43cd72b9
BW
3462 if (len == 8)
3463 return (addr % 8 == 0);
3464 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3465}
3466
43cd72b9
BW
3467\f
3468/* Instruction widening and narrowing. */
e0001a05 3469
7fa3d080
BW
3470/* When FLIX is available we need to access certain instructions only
3471 when they are 16-bit or 24-bit instructions. This table caches
3472 information about such instructions by walking through all the
3473 opcodes and finding the smallest single-slot format into which each
3474 can be encoded. */
3475
3476static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3477
3478
7fa3d080
BW
3479static void
3480init_op_single_format_table (void)
e0001a05 3481{
7fa3d080
BW
3482 xtensa_isa isa = xtensa_default_isa;
3483 xtensa_insnbuf ibuf;
3484 xtensa_opcode opcode;
3485 xtensa_format fmt;
3486 int num_opcodes;
3487
3488 if (op_single_fmt_table)
3489 return;
3490
3491 ibuf = xtensa_insnbuf_alloc (isa);
3492 num_opcodes = xtensa_isa_num_opcodes (isa);
3493
3494 op_single_fmt_table = (xtensa_format *)
3495 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3496 for (opcode = 0; opcode < num_opcodes; opcode++)
3497 {
3498 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3499 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3500 {
3501 if (xtensa_format_num_slots (isa, fmt) == 1
3502 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3503 {
3504 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3505 int fmt_length = xtensa_format_length (isa, fmt);
3506 if (old_fmt == XTENSA_UNDEFINED
3507 || fmt_length < xtensa_format_length (isa, old_fmt))
3508 op_single_fmt_table[opcode] = fmt;
3509 }
3510 }
3511 }
3512 xtensa_insnbuf_free (isa, ibuf);
3513}
3514
3515
3516static xtensa_format
3517get_single_format (xtensa_opcode opcode)
3518{
3519 init_op_single_format_table ();
3520 return op_single_fmt_table[opcode];
3521}
e0001a05 3522
e0001a05 3523
43cd72b9
BW
3524/* For the set of narrowable instructions we do NOT include the
3525 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3526 involved during linker relaxation that may require these to
3527 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3528 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3529
7fa3d080
BW
3530struct string_pair
3531{
3532 const char *wide;
3533 const char *narrow;
3534};
3535
43cd72b9 3536struct string_pair narrowable[] =
e0001a05 3537{
43cd72b9
BW
3538 { "add", "add.n" },
3539 { "addi", "addi.n" },
3540 { "addmi", "addi.n" },
3541 { "l32i", "l32i.n" },
3542 { "movi", "movi.n" },
3543 { "ret", "ret.n" },
3544 { "retw", "retw.n" },
3545 { "s32i", "s32i.n" },
3546 { "or", "mov.n" } /* special case only when op1 == op2 */
3547};
e0001a05 3548
43cd72b9 3549struct string_pair widenable[] =
e0001a05 3550{
43cd72b9
BW
3551 { "add", "add.n" },
3552 { "addi", "addi.n" },
3553 { "addmi", "addi.n" },
3554 { "beqz", "beqz.n" },
3555 { "bnez", "bnez.n" },
3556 { "l32i", "l32i.n" },
3557 { "movi", "movi.n" },
3558 { "ret", "ret.n" },
3559 { "retw", "retw.n" },
3560 { "s32i", "s32i.n" },
3561 { "or", "mov.n" } /* special case only when op1 == op2 */
3562};
e0001a05
NC
3563
3564
43cd72b9
BW
3565/* Attempt to narrow an instruction. Return true if the narrowing is
3566 valid. If the do_it parameter is non-zero, then perform the action
3567 in-place directly into the contents. Otherwise, do not modify the
3568 contents. The set of valid narrowing are specified by a string table
3569 but require some special case operand checks in some cases. */
3570
e0001a05 3571static bfd_boolean
7fa3d080
BW
3572narrow_instruction (bfd_byte *contents,
3573 bfd_size_type content_length,
3574 bfd_size_type offset,
3575 bfd_boolean do_it)
e0001a05 3576{
43cd72b9
BW
3577 xtensa_opcode opcode;
3578 bfd_size_type insn_len, opi;
3579 xtensa_isa isa = xtensa_default_isa;
3580 xtensa_format fmt, o_fmt;
e0001a05 3581
43cd72b9
BW
3582 static xtensa_insnbuf insnbuf = NULL;
3583 static xtensa_insnbuf slotbuf = NULL;
3584 static xtensa_insnbuf o_insnbuf = NULL;
3585 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3586
43cd72b9
BW
3587 if (insnbuf == NULL)
3588 {
3589 insnbuf = xtensa_insnbuf_alloc (isa);
3590 slotbuf = xtensa_insnbuf_alloc (isa);
3591 o_insnbuf = xtensa_insnbuf_alloc (isa);
3592 o_slotbuf = xtensa_insnbuf_alloc (isa);
3593 }
e0001a05 3594
43cd72b9 3595 BFD_ASSERT (offset < content_length);
e0001a05 3596
43cd72b9
BW
3597 if (content_length < 2)
3598 return FALSE;
e0001a05 3599
43cd72b9
BW
3600 /* We will hand-code a few of these for a little while.
3601 These have all been specified in the assembler aleady. */
3602 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3603 content_length - offset);
3604 fmt = xtensa_format_decode (isa, insnbuf);
3605 if (xtensa_format_num_slots (isa, fmt) != 1)
3606 return FALSE;
e0001a05 3607
43cd72b9
BW
3608 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3609 return FALSE;
e0001a05 3610
43cd72b9
BW
3611 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3612 if (opcode == XTENSA_UNDEFINED)
3613 return FALSE;
3614 insn_len = xtensa_format_length (isa, fmt);
3615 if (insn_len > content_length)
3616 return FALSE;
e0001a05 3617
43cd72b9
BW
3618 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); ++opi)
3619 {
3620 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3621
43cd72b9
BW
3622 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3623 {
3624 uint32 value, newval;
3625 int i, operand_count, o_operand_count;
3626 xtensa_opcode o_opcode;
e0001a05 3627
43cd72b9
BW
3628 /* Address does not matter in this case. We might need to
3629 fix it to handle branches/jumps. */
3630 bfd_vma self_address = 0;
e0001a05 3631
43cd72b9
BW
3632 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3633 if (o_opcode == XTENSA_UNDEFINED)
3634 return FALSE;
3635 o_fmt = get_single_format (o_opcode);
3636 if (o_fmt == XTENSA_UNDEFINED)
3637 return FALSE;
e0001a05 3638
43cd72b9
BW
3639 if (xtensa_format_length (isa, fmt) != 3
3640 || xtensa_format_length (isa, o_fmt) != 2)
3641 return FALSE;
e0001a05 3642
43cd72b9
BW
3643 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3644 operand_count = xtensa_opcode_num_operands (isa, opcode);
3645 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3646
43cd72b9
BW
3647 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3648 return FALSE;
e0001a05 3649
43cd72b9
BW
3650 if (!is_or)
3651 {
3652 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3653 return FALSE;
3654 }
3655 else
3656 {
3657 uint32 rawval0, rawval1, rawval2;
e0001a05 3658
43cd72b9
BW
3659 if (o_operand_count + 1 != operand_count)
3660 return FALSE;
3661 if (xtensa_operand_get_field (isa, opcode, 0,
3662 fmt, 0, slotbuf, &rawval0) != 0)
3663 return FALSE;
3664 if (xtensa_operand_get_field (isa, opcode, 1,
3665 fmt, 0, slotbuf, &rawval1) != 0)
3666 return FALSE;
3667 if (xtensa_operand_get_field (isa, opcode, 2,
3668 fmt, 0, slotbuf, &rawval2) != 0)
3669 return FALSE;
e0001a05 3670
43cd72b9
BW
3671 if (rawval1 != rawval2)
3672 return FALSE;
3673 if (rawval0 == rawval1) /* it is a nop */
3674 return FALSE;
3675 }
e0001a05 3676
43cd72b9
BW
3677 for (i = 0; i < o_operand_count; ++i)
3678 {
3679 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3680 slotbuf, &value)
3681 || xtensa_operand_decode (isa, opcode, i, &value))
3682 return FALSE;
e0001a05 3683
43cd72b9
BW
3684 /* PC-relative branches need adjustment, but
3685 the PC-rel operand will always have a relocation. */
3686 newval = value;
3687 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3688 self_address)
3689 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3690 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3691 o_slotbuf, newval))
3692 return FALSE;
3693 }
e0001a05 3694
43cd72b9
BW
3695 if (xtensa_format_set_slot (isa, o_fmt, 0,
3696 o_insnbuf, o_slotbuf) != 0)
3697 return FALSE;
e0001a05 3698
43cd72b9
BW
3699 if (do_it)
3700 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3701 content_length - offset);
3702 return TRUE;
3703 }
3704 }
3705 return FALSE;
3706}
e0001a05 3707
e0001a05 3708
43cd72b9
BW
3709/* Attempt to widen an instruction. Return true if the widening is
3710 valid. If the do_it parameter is non-zero, then the action should
3711 be performed inplace into the contents. Otherwise, do not modify
3712 the contents. The set of valid widenings are specified by a string
3713 table but require some special case operand checks in some
3714 cases. */
e0001a05 3715
43cd72b9 3716static bfd_boolean
7fa3d080
BW
3717widen_instruction (bfd_byte *contents,
3718 bfd_size_type content_length,
3719 bfd_size_type offset,
3720 bfd_boolean do_it)
e0001a05 3721{
43cd72b9
BW
3722 xtensa_opcode opcode;
3723 bfd_size_type insn_len, opi;
3724 xtensa_isa isa = xtensa_default_isa;
3725 xtensa_format fmt, o_fmt;
e0001a05 3726
43cd72b9
BW
3727 static xtensa_insnbuf insnbuf = NULL;
3728 static xtensa_insnbuf slotbuf = NULL;
3729 static xtensa_insnbuf o_insnbuf = NULL;
3730 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3731
43cd72b9
BW
3732 if (insnbuf == NULL)
3733 {
3734 insnbuf = xtensa_insnbuf_alloc (isa);
3735 slotbuf = xtensa_insnbuf_alloc (isa);
3736 o_insnbuf = xtensa_insnbuf_alloc (isa);
3737 o_slotbuf = xtensa_insnbuf_alloc (isa);
3738 }
e0001a05 3739
43cd72b9 3740 BFD_ASSERT (offset < content_length);
2c8c90bc 3741
43cd72b9 3742 if (content_length < 2)
e0001a05
NC
3743 return FALSE;
3744
43cd72b9
BW
3745 /* We will hand code a few of these for a little while.
3746 These have all been specified in the assembler aleady. */
3747 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3748 content_length - offset);
3749 fmt = xtensa_format_decode (isa, insnbuf);
3750 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3751 return FALSE;
3752
43cd72b9 3753 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3754 return FALSE;
3755
43cd72b9
BW
3756 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3757 if (opcode == XTENSA_UNDEFINED)
e0001a05 3758 return FALSE;
43cd72b9
BW
3759 insn_len = xtensa_format_length (isa, fmt);
3760 if (insn_len > content_length)
3761 return FALSE;
3762
3763 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); ++opi)
e0001a05 3764 {
43cd72b9
BW
3765 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3766 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3767 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3768
43cd72b9
BW
3769 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3770 {
3771 uint32 value, newval;
3772 int i, operand_count, o_operand_count, check_operand_count;
3773 xtensa_opcode o_opcode;
e0001a05 3774
43cd72b9
BW
3775 /* Address does not matter in this case. We might need to fix it
3776 to handle branches/jumps. */
3777 bfd_vma self_address = 0;
e0001a05 3778
43cd72b9
BW
3779 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3780 if (o_opcode == XTENSA_UNDEFINED)
3781 return FALSE;
3782 o_fmt = get_single_format (o_opcode);
3783 if (o_fmt == XTENSA_UNDEFINED)
3784 return FALSE;
e0001a05 3785
43cd72b9
BW
3786 if (xtensa_format_length (isa, fmt) != 2
3787 || xtensa_format_length (isa, o_fmt) != 3)
3788 return FALSE;
e0001a05 3789
43cd72b9
BW
3790 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3791 operand_count = xtensa_opcode_num_operands (isa, opcode);
3792 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3793 check_operand_count = o_operand_count;
e0001a05 3794
43cd72b9
BW
3795 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3796 return FALSE;
e0001a05 3797
43cd72b9
BW
3798 if (!is_or)
3799 {
3800 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3801 return FALSE;
3802 }
3803 else
3804 {
3805 uint32 rawval0, rawval1;
3806
3807 if (o_operand_count != operand_count + 1)
3808 return FALSE;
3809 if (xtensa_operand_get_field (isa, opcode, 0,
3810 fmt, 0, slotbuf, &rawval0) != 0)
3811 return FALSE;
3812 if (xtensa_operand_get_field (isa, opcode, 1,
3813 fmt, 0, slotbuf, &rawval1) != 0)
3814 return FALSE;
3815 if (rawval0 == rawval1) /* it is a nop */
3816 return FALSE;
3817 }
3818 if (is_branch)
3819 check_operand_count--;
3820
3821 for (i = 0; i < check_operand_count; ++i)
3822 {
3823 int new_i = i;
3824 if (is_or && i == o_operand_count - 1)
3825 new_i = i - 1;
3826 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3827 slotbuf, &value)
3828 || xtensa_operand_decode (isa, opcode, new_i, &value))
3829 return FALSE;
3830
3831 /* PC-relative branches need adjustment, but
3832 the PC-rel operand will always have a relocation. */
3833 newval = value;
3834 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3835 self_address)
3836 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3837 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3838 o_slotbuf, newval))
3839 return FALSE;
3840 }
3841
3842 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3843 return FALSE;
3844
3845 if (do_it)
3846 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3847 content_length - offset);
3848 return TRUE;
3849 }
3850 }
3851 return FALSE;
e0001a05
NC
3852}
3853
43cd72b9
BW
3854\f
3855/* Code for transforming CALLs at link-time. */
e0001a05 3856
43cd72b9 3857static bfd_reloc_status_type
7fa3d080
BW
3858elf_xtensa_do_asm_simplify (bfd_byte *contents,
3859 bfd_vma address,
3860 bfd_vma content_length,
3861 char **error_message)
e0001a05 3862{
43cd72b9
BW
3863 static xtensa_insnbuf insnbuf = NULL;
3864 static xtensa_insnbuf slotbuf = NULL;
3865 xtensa_format core_format = XTENSA_UNDEFINED;
3866 xtensa_opcode opcode;
3867 xtensa_opcode direct_call_opcode;
3868 xtensa_isa isa = xtensa_default_isa;
3869 bfd_byte *chbuf = contents + address;
3870 int opn;
e0001a05 3871
43cd72b9 3872 if (insnbuf == NULL)
e0001a05 3873 {
43cd72b9
BW
3874 insnbuf = xtensa_insnbuf_alloc (isa);
3875 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3876 }
e0001a05 3877
43cd72b9
BW
3878 if (content_length < address)
3879 {
3880 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3881 return bfd_reloc_other;
3882 }
e0001a05 3883
43cd72b9
BW
3884 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3885 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3886 if (direct_call_opcode == XTENSA_UNDEFINED)
3887 {
3888 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3889 return bfd_reloc_other;
3890 }
3891
3892 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3893 core_format = xtensa_format_lookup (isa, "x24");
3894 opcode = xtensa_opcode_lookup (isa, "or");
3895 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3896 for (opn = 0; opn < 3; opn++)
3897 {
3898 uint32 regno = 1;
3899 xtensa_operand_encode (isa, opcode, opn, &regno);
3900 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3901 slotbuf, regno);
3902 }
3903 xtensa_format_encode (isa, core_format, insnbuf);
3904 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3905 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3906
43cd72b9
BW
3907 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3908 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3909 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3910
43cd72b9
BW
3911 xtensa_format_encode (isa, core_format, insnbuf);
3912 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3913 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3914 content_length - address - 3);
e0001a05 3915
43cd72b9
BW
3916 return bfd_reloc_ok;
3917}
e0001a05 3918
e0001a05 3919
43cd72b9 3920static bfd_reloc_status_type
7fa3d080
BW
3921contract_asm_expansion (bfd_byte *contents,
3922 bfd_vma content_length,
3923 Elf_Internal_Rela *irel,
3924 char **error_message)
43cd72b9
BW
3925{
3926 bfd_reloc_status_type retval =
3927 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3928 error_message);
e0001a05 3929
43cd72b9
BW
3930 if (retval != bfd_reloc_ok)
3931 return bfd_reloc_dangerous;
e0001a05 3932
43cd72b9
BW
3933 /* Update the irel->r_offset field so that the right immediate and
3934 the right instruction are modified during the relocation. */
3935 irel->r_offset += 3;
3936 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3937 return bfd_reloc_ok;
3938}
e0001a05 3939
e0001a05 3940
43cd72b9 3941static xtensa_opcode
7fa3d080 3942swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3943{
43cd72b9 3944 init_call_opcodes ();
e0001a05 3945
43cd72b9
BW
3946 if (opcode == callx0_op) return call0_op;
3947 if (opcode == callx4_op) return call4_op;
3948 if (opcode == callx8_op) return call8_op;
3949 if (opcode == callx12_op) return call12_op;
e0001a05 3950
43cd72b9
BW
3951 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3952 return XTENSA_UNDEFINED;
3953}
e0001a05 3954
e0001a05 3955
43cd72b9
BW
3956/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3957 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3958 If not, return XTENSA_UNDEFINED. */
e0001a05 3959
43cd72b9
BW
3960#define L32R_TARGET_REG_OPERAND 0
3961#define CONST16_TARGET_REG_OPERAND 0
3962#define CALLN_SOURCE_OPERAND 0
e0001a05 3963
43cd72b9 3964static xtensa_opcode
7fa3d080 3965get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3966{
43cd72b9
BW
3967 static xtensa_insnbuf insnbuf = NULL;
3968 static xtensa_insnbuf slotbuf = NULL;
3969 xtensa_format fmt;
3970 xtensa_opcode opcode;
3971 xtensa_isa isa = xtensa_default_isa;
3972 uint32 regno, const16_regno, call_regno;
3973 int offset = 0;
e0001a05 3974
43cd72b9 3975 if (insnbuf == NULL)
e0001a05 3976 {
43cd72b9
BW
3977 insnbuf = xtensa_insnbuf_alloc (isa);
3978 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3979 }
43cd72b9
BW
3980
3981 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3982 fmt = xtensa_format_decode (isa, insnbuf);
3983 if (fmt == XTENSA_UNDEFINED
3984 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3985 return XTENSA_UNDEFINED;
3986
3987 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3988 if (opcode == XTENSA_UNDEFINED)
3989 return XTENSA_UNDEFINED;
3990
3991 if (opcode == get_l32r_opcode ())
e0001a05 3992 {
43cd72b9
BW
3993 if (p_uses_l32r)
3994 *p_uses_l32r = TRUE;
3995 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3996 fmt, 0, slotbuf, &regno)
3997 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3998 &regno))
3999 return XTENSA_UNDEFINED;
e0001a05 4000 }
43cd72b9 4001 else if (opcode == get_const16_opcode ())
e0001a05 4002 {
43cd72b9
BW
4003 if (p_uses_l32r)
4004 *p_uses_l32r = FALSE;
4005 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4006 fmt, 0, slotbuf, &regno)
4007 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4008 &regno))
4009 return XTENSA_UNDEFINED;
4010
4011 /* Check that the next instruction is also CONST16. */
4012 offset += xtensa_format_length (isa, fmt);
4013 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4014 fmt = xtensa_format_decode (isa, insnbuf);
4015 if (fmt == XTENSA_UNDEFINED
4016 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4017 return XTENSA_UNDEFINED;
4018 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4019 if (opcode != get_const16_opcode ())
4020 return XTENSA_UNDEFINED;
4021
4022 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4023 fmt, 0, slotbuf, &const16_regno)
4024 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4025 &const16_regno)
4026 || const16_regno != regno)
4027 return XTENSA_UNDEFINED;
e0001a05 4028 }
43cd72b9
BW
4029 else
4030 return XTENSA_UNDEFINED;
e0001a05 4031
43cd72b9
BW
4032 /* Next instruction should be an CALLXn with operand 0 == regno. */
4033 offset += xtensa_format_length (isa, fmt);
4034 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4035 fmt = xtensa_format_decode (isa, insnbuf);
4036 if (fmt == XTENSA_UNDEFINED
4037 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4038 return XTENSA_UNDEFINED;
4039 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4040 if (opcode == XTENSA_UNDEFINED
4041 || !is_indirect_call_opcode (opcode))
4042 return XTENSA_UNDEFINED;
e0001a05 4043
43cd72b9
BW
4044 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4045 fmt, 0, slotbuf, &call_regno)
4046 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4047 &call_regno))
4048 return XTENSA_UNDEFINED;
e0001a05 4049
43cd72b9
BW
4050 if (call_regno != regno)
4051 return XTENSA_UNDEFINED;
e0001a05 4052
43cd72b9
BW
4053 return opcode;
4054}
e0001a05 4055
43cd72b9
BW
4056\f
4057/* Data structures used during relaxation. */
e0001a05 4058
43cd72b9 4059/* r_reloc: relocation values. */
e0001a05 4060
43cd72b9
BW
4061/* Through the relaxation process, we need to keep track of the values
4062 that will result from evaluating relocations. The standard ELF
4063 relocation structure is not sufficient for this purpose because we're
4064 operating on multiple input files at once, so we need to know which
4065 input file a relocation refers to. The r_reloc structure thus
4066 records both the input file (bfd) and ELF relocation.
e0001a05 4067
43cd72b9
BW
4068 For efficiency, an r_reloc also contains a "target_offset" field to
4069 cache the target-section-relative offset value that is represented by
4070 the relocation.
4071
4072 The r_reloc also contains a virtual offset that allows multiple
4073 inserted literals to be placed at the same "address" with
4074 different offsets. */
e0001a05 4075
43cd72b9 4076typedef struct r_reloc_struct r_reloc;
e0001a05 4077
43cd72b9 4078struct r_reloc_struct
e0001a05 4079{
43cd72b9
BW
4080 bfd *abfd;
4081 Elf_Internal_Rela rela;
e0001a05 4082 bfd_vma target_offset;
43cd72b9 4083 bfd_vma virtual_offset;
e0001a05
NC
4084};
4085
e0001a05 4086
43cd72b9
BW
4087/* The r_reloc structure is included by value in literal_value, but not
4088 every literal_value has an associated relocation -- some are simple
4089 constants. In such cases, we set all the fields in the r_reloc
4090 struct to zero. The r_reloc_is_const function should be used to
4091 detect this case. */
e0001a05 4092
43cd72b9 4093static bfd_boolean
7fa3d080 4094r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4095{
43cd72b9 4096 return (r_rel->abfd == NULL);
e0001a05
NC
4097}
4098
4099
43cd72b9 4100static bfd_vma
7fa3d080 4101r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4102{
43cd72b9
BW
4103 bfd_vma target_offset;
4104 unsigned long r_symndx;
e0001a05 4105
43cd72b9
BW
4106 BFD_ASSERT (!r_reloc_is_const (r_rel));
4107 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4108 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4109 return (target_offset + r_rel->rela.r_addend);
4110}
e0001a05 4111
e0001a05 4112
43cd72b9 4113static struct elf_link_hash_entry *
7fa3d080 4114r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4115{
43cd72b9
BW
4116 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4117 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4118}
e0001a05 4119
43cd72b9
BW
4120
4121static asection *
7fa3d080 4122r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4123{
4124 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4125 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4126}
e0001a05
NC
4127
4128
4129static bfd_boolean
7fa3d080 4130r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4131{
43cd72b9
BW
4132 asection *sec;
4133 if (r_rel == NULL)
e0001a05 4134 return FALSE;
e0001a05 4135
43cd72b9
BW
4136 sec = r_reloc_get_section (r_rel);
4137 if (sec == bfd_abs_section_ptr
4138 || sec == bfd_com_section_ptr
4139 || sec == bfd_und_section_ptr)
4140 return FALSE;
4141 return TRUE;
e0001a05
NC
4142}
4143
4144
7fa3d080
BW
4145static void
4146r_reloc_init (r_reloc *r_rel,
4147 bfd *abfd,
4148 Elf_Internal_Rela *irel,
4149 bfd_byte *contents,
4150 bfd_size_type content_length)
4151{
4152 int r_type;
4153 reloc_howto_type *howto;
4154
4155 if (irel)
4156 {
4157 r_rel->rela = *irel;
4158 r_rel->abfd = abfd;
4159 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4160 r_rel->virtual_offset = 0;
4161 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4162 howto = &elf_howto_table[r_type];
4163 if (howto->partial_inplace)
4164 {
4165 bfd_vma inplace_val;
4166 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4167
4168 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4169 r_rel->target_offset += inplace_val;
4170 }
4171 }
4172 else
4173 memset (r_rel, 0, sizeof (r_reloc));
4174}
4175
4176
43cd72b9
BW
4177#if DEBUG
4178
e0001a05 4179static void
7fa3d080 4180print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4181{
43cd72b9
BW
4182 if (r_reloc_is_defined (r_rel))
4183 {
4184 asection *sec = r_reloc_get_section (r_rel);
4185 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4186 }
4187 else if (r_reloc_get_hash_entry (r_rel))
4188 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4189 else
4190 fprintf (fp, " ?? + ");
e0001a05 4191
43cd72b9
BW
4192 fprintf_vma (fp, r_rel->target_offset);
4193 if (r_rel->virtual_offset)
4194 {
4195 fprintf (fp, " + ");
4196 fprintf_vma (fp, r_rel->virtual_offset);
4197 }
4198
4199 fprintf (fp, ")");
4200}
e0001a05 4201
43cd72b9 4202#endif /* DEBUG */
e0001a05 4203
43cd72b9
BW
4204\f
4205/* source_reloc: relocations that reference literals. */
e0001a05 4206
43cd72b9
BW
4207/* To determine whether literals can be coalesced, we need to first
4208 record all the relocations that reference the literals. The
4209 source_reloc structure below is used for this purpose. The
4210 source_reloc entries are kept in a per-literal-section array, sorted
4211 by offset within the literal section (i.e., target offset).
e0001a05 4212
43cd72b9
BW
4213 The source_sec and r_rel.rela.r_offset fields identify the source of
4214 the relocation. The r_rel field records the relocation value, i.e.,
4215 the offset of the literal being referenced. The opnd field is needed
4216 to determine the range of the immediate field to which the relocation
4217 applies, so we can determine whether another literal with the same
4218 value is within range. The is_null field is true when the relocation
4219 is being removed (e.g., when an L32R is being removed due to a CALLX
4220 that is converted to a direct CALL). */
e0001a05 4221
43cd72b9
BW
4222typedef struct source_reloc_struct source_reloc;
4223
4224struct source_reloc_struct
e0001a05 4225{
43cd72b9
BW
4226 asection *source_sec;
4227 r_reloc r_rel;
4228 xtensa_opcode opcode;
4229 int opnd;
4230 bfd_boolean is_null;
4231 bfd_boolean is_abs_literal;
4232};
e0001a05 4233
e0001a05 4234
e0001a05 4235static void
7fa3d080
BW
4236init_source_reloc (source_reloc *reloc,
4237 asection *source_sec,
4238 const r_reloc *r_rel,
4239 xtensa_opcode opcode,
4240 int opnd,
4241 bfd_boolean is_abs_literal)
e0001a05 4242{
43cd72b9
BW
4243 reloc->source_sec = source_sec;
4244 reloc->r_rel = *r_rel;
4245 reloc->opcode = opcode;
4246 reloc->opnd = opnd;
4247 reloc->is_null = FALSE;
4248 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4249}
4250
e0001a05 4251
43cd72b9
BW
4252/* Find the source_reloc for a particular source offset and relocation
4253 type. Note that the array is sorted by _target_ offset, so this is
4254 just a linear search. */
e0001a05 4255
43cd72b9 4256static source_reloc *
7fa3d080
BW
4257find_source_reloc (source_reloc *src_relocs,
4258 int src_count,
4259 asection *sec,
4260 Elf_Internal_Rela *irel)
e0001a05 4261{
43cd72b9 4262 int i;
e0001a05 4263
43cd72b9
BW
4264 for (i = 0; i < src_count; i++)
4265 {
4266 if (src_relocs[i].source_sec == sec
4267 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4268 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4269 == ELF32_R_TYPE (irel->r_info)))
4270 return &src_relocs[i];
4271 }
e0001a05 4272
43cd72b9 4273 return NULL;
e0001a05
NC
4274}
4275
4276
43cd72b9 4277static int
7fa3d080 4278source_reloc_compare (const void *ap, const void *bp)
e0001a05 4279{
43cd72b9
BW
4280 const source_reloc *a = (const source_reloc *) ap;
4281 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4282
43cd72b9
BW
4283 if (a->r_rel.target_offset != b->r_rel.target_offset)
4284 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4285
43cd72b9
BW
4286 /* We don't need to sort on these criteria for correctness,
4287 but enforcing a more strict ordering prevents unstable qsort
4288 from behaving differently with different implementations.
4289 Without the code below we get correct but different results
4290 on Solaris 2.7 and 2.8. We would like to always produce the
4291 same results no matter the host. */
4292
4293 if ((!a->is_null) - (!b->is_null))
4294 return ((!a->is_null) - (!b->is_null));
4295 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4296}
4297
43cd72b9
BW
4298\f
4299/* Literal values and value hash tables. */
e0001a05 4300
43cd72b9
BW
4301/* Literals with the same value can be coalesced. The literal_value
4302 structure records the value of a literal: the "r_rel" field holds the
4303 information from the relocation on the literal (if there is one) and
4304 the "value" field holds the contents of the literal word itself.
e0001a05 4305
43cd72b9
BW
4306 The value_map structure records a literal value along with the
4307 location of a literal holding that value. The value_map hash table
4308 is indexed by the literal value, so that we can quickly check if a
4309 particular literal value has been seen before and is thus a candidate
4310 for coalescing. */
e0001a05 4311
43cd72b9
BW
4312typedef struct literal_value_struct literal_value;
4313typedef struct value_map_struct value_map;
4314typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4315
43cd72b9 4316struct literal_value_struct
e0001a05 4317{
43cd72b9
BW
4318 r_reloc r_rel;
4319 unsigned long value;
4320 bfd_boolean is_abs_literal;
4321};
4322
4323struct value_map_struct
4324{
4325 literal_value val; /* The literal value. */
4326 r_reloc loc; /* Location of the literal. */
4327 value_map *next;
4328};
4329
4330struct value_map_hash_table_struct
4331{
4332 unsigned bucket_count;
4333 value_map **buckets;
4334 unsigned count;
4335 bfd_boolean has_last_loc;
4336 r_reloc last_loc;
4337};
4338
4339
e0001a05 4340static void
7fa3d080
BW
4341init_literal_value (literal_value *lit,
4342 const r_reloc *r_rel,
4343 unsigned long value,
4344 bfd_boolean is_abs_literal)
e0001a05 4345{
43cd72b9
BW
4346 lit->r_rel = *r_rel;
4347 lit->value = value;
4348 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4349}
4350
4351
43cd72b9 4352static bfd_boolean
7fa3d080
BW
4353literal_value_equal (const literal_value *src1,
4354 const literal_value *src2,
4355 bfd_boolean final_static_link)
e0001a05 4356{
43cd72b9 4357 struct elf_link_hash_entry *h1, *h2;
e0001a05 4358
43cd72b9
BW
4359 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4360 return FALSE;
e0001a05 4361
43cd72b9
BW
4362 if (r_reloc_is_const (&src1->r_rel))
4363 return (src1->value == src2->value);
e0001a05 4364
43cd72b9
BW
4365 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4366 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4367 return FALSE;
e0001a05 4368
43cd72b9
BW
4369 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4370 return FALSE;
4371
4372 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4373 return FALSE;
4374
4375 if (src1->value != src2->value)
4376 return FALSE;
4377
4378 /* Now check for the same section (if defined) or the same elf_hash
4379 (if undefined or weak). */
4380 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4381 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4382 if (r_reloc_is_defined (&src1->r_rel)
4383 && (final_static_link
4384 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4385 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4386 {
4387 if (r_reloc_get_section (&src1->r_rel)
4388 != r_reloc_get_section (&src2->r_rel))
4389 return FALSE;
4390 }
4391 else
4392 {
4393 /* Require that the hash entries (i.e., symbols) be identical. */
4394 if (h1 != h2 || h1 == 0)
4395 return FALSE;
4396 }
4397
4398 if (src1->is_abs_literal != src2->is_abs_literal)
4399 return FALSE;
4400
4401 return TRUE;
e0001a05
NC
4402}
4403
e0001a05 4404
43cd72b9
BW
4405/* Must be power of 2. */
4406#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4407
43cd72b9 4408static value_map_hash_table *
7fa3d080 4409value_map_hash_table_init (void)
43cd72b9
BW
4410{
4411 value_map_hash_table *values;
e0001a05 4412
43cd72b9
BW
4413 values = (value_map_hash_table *)
4414 bfd_zmalloc (sizeof (value_map_hash_table));
4415 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4416 values->count = 0;
4417 values->buckets = (value_map **)
4418 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4419 if (values->buckets == NULL)
4420 {
4421 free (values);
4422 return NULL;
4423 }
4424 values->has_last_loc = FALSE;
4425
4426 return values;
4427}
4428
4429
4430static void
7fa3d080 4431value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4432{
43cd72b9
BW
4433 free (table->buckets);
4434 free (table);
4435}
4436
4437
4438static unsigned
7fa3d080 4439hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4440{
4441 return (val >> 2) + (val >> 10);
4442}
4443
4444
4445static unsigned
7fa3d080 4446literal_value_hash (const literal_value *src)
43cd72b9
BW
4447{
4448 unsigned hash_val;
e0001a05 4449
43cd72b9
BW
4450 hash_val = hash_bfd_vma (src->value);
4451 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4452 {
43cd72b9
BW
4453 void *sec_or_hash;
4454
4455 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4456 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4457 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4458
4459 /* Now check for the same section and the same elf_hash. */
4460 if (r_reloc_is_defined (&src->r_rel))
4461 sec_or_hash = r_reloc_get_section (&src->r_rel);
4462 else
4463 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4464 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4465 }
43cd72b9
BW
4466 return hash_val;
4467}
e0001a05 4468
e0001a05 4469
43cd72b9 4470/* Check if the specified literal_value has been seen before. */
e0001a05 4471
43cd72b9 4472static value_map *
7fa3d080
BW
4473value_map_get_cached_value (value_map_hash_table *map,
4474 const literal_value *val,
4475 bfd_boolean final_static_link)
43cd72b9
BW
4476{
4477 value_map *map_e;
4478 value_map *bucket;
4479 unsigned idx;
4480
4481 idx = literal_value_hash (val);
4482 idx = idx & (map->bucket_count - 1);
4483 bucket = map->buckets[idx];
4484 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4485 {
43cd72b9
BW
4486 if (literal_value_equal (&map_e->val, val, final_static_link))
4487 return map_e;
4488 }
4489 return NULL;
4490}
e0001a05 4491
e0001a05 4492
43cd72b9
BW
4493/* Record a new literal value. It is illegal to call this if VALUE
4494 already has an entry here. */
4495
4496static value_map *
7fa3d080
BW
4497add_value_map (value_map_hash_table *map,
4498 const literal_value *val,
4499 const r_reloc *loc,
4500 bfd_boolean final_static_link)
43cd72b9
BW
4501{
4502 value_map **bucket_p;
4503 unsigned idx;
4504
4505 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4506 if (val_e == NULL)
4507 {
4508 bfd_set_error (bfd_error_no_memory);
4509 return NULL;
e0001a05
NC
4510 }
4511
43cd72b9
BW
4512 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4513 val_e->val = *val;
4514 val_e->loc = *loc;
4515
4516 idx = literal_value_hash (val);
4517 idx = idx & (map->bucket_count - 1);
4518 bucket_p = &map->buckets[idx];
4519
4520 val_e->next = *bucket_p;
4521 *bucket_p = val_e;
4522 map->count++;
4523 /* FIXME: Consider resizing the hash table if we get too many entries. */
4524
4525 return val_e;
e0001a05
NC
4526}
4527
43cd72b9
BW
4528\f
4529/* Lists of text actions (ta_) for narrowing, widening, longcall
4530 conversion, space fill, code & literal removal, etc. */
4531
4532/* The following text actions are generated:
4533
4534 "ta_remove_insn" remove an instruction or instructions
4535 "ta_remove_longcall" convert longcall to call
4536 "ta_convert_longcall" convert longcall to nop/call
4537 "ta_narrow_insn" narrow a wide instruction
4538 "ta_widen" widen a narrow instruction
4539 "ta_fill" add fill or remove fill
4540 removed < 0 is a fill; branches to the fill address will be
4541 changed to address + fill size (e.g., address - removed)
4542 removed >= 0 branches to the fill address will stay unchanged
4543 "ta_remove_literal" remove a literal; this action is
4544 indicated when a literal is removed
4545 or replaced.
4546 "ta_add_literal" insert a new literal; this action is
4547 indicated when a literal has been moved.
4548 It may use a virtual_offset because
4549 multiple literals can be placed at the
4550 same location.
4551
4552 For each of these text actions, we also record the number of bytes
4553 removed by performing the text action. In the case of a "ta_widen"
4554 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4555
4556typedef struct text_action_struct text_action;
4557typedef struct text_action_list_struct text_action_list;
4558typedef enum text_action_enum_t text_action_t;
4559
4560enum text_action_enum_t
4561{
4562 ta_none,
4563 ta_remove_insn, /* removed = -size */
4564 ta_remove_longcall, /* removed = -size */
4565 ta_convert_longcall, /* removed = 0 */
4566 ta_narrow_insn, /* removed = -1 */
4567 ta_widen_insn, /* removed = +1 */
4568 ta_fill, /* removed = +size */
4569 ta_remove_literal,
4570 ta_add_literal
4571};
e0001a05 4572
e0001a05 4573
43cd72b9
BW
4574/* Structure for a text action record. */
4575struct text_action_struct
e0001a05 4576{
43cd72b9
BW
4577 text_action_t action;
4578 asection *sec; /* Optional */
4579 bfd_vma offset;
4580 bfd_vma virtual_offset; /* Zero except for adding literals. */
4581 int removed_bytes;
4582 literal_value value; /* Only valid when adding literals. */
e0001a05 4583
43cd72b9
BW
4584 text_action *next;
4585};
e0001a05 4586
e0001a05 4587
43cd72b9
BW
4588/* List of all of the actions taken on a text section. */
4589struct text_action_list_struct
4590{
4591 text_action *head;
4592};
e0001a05 4593
e0001a05 4594
7fa3d080
BW
4595static text_action *
4596find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4597{
4598 text_action **m_p;
4599
4600 /* It is not necessary to fill at the end of a section. */
4601 if (sec->size == offset)
4602 return NULL;
4603
7fa3d080 4604 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4605 {
4606 text_action *t = *m_p;
4607 /* When the action is another fill at the same address,
4608 just increase the size. */
4609 if (t->offset == offset && t->action == ta_fill)
4610 return t;
4611 }
4612 return NULL;
4613}
4614
4615
4616static int
7fa3d080
BW
4617compute_removed_action_diff (const text_action *ta,
4618 asection *sec,
4619 bfd_vma offset,
4620 int removed,
4621 int removable_space)
43cd72b9
BW
4622{
4623 int new_removed;
4624 int current_removed = 0;
4625
7fa3d080 4626 if (ta)
43cd72b9
BW
4627 current_removed = ta->removed_bytes;
4628
4629 BFD_ASSERT (ta == NULL || ta->offset == offset);
4630 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4631
4632 /* It is not necessary to fill at the end of a section. Clean this up. */
4633 if (sec->size == offset)
4634 new_removed = removable_space - 0;
4635 else
4636 {
4637 int space;
4638 int added = -removed - current_removed;
4639 /* Ignore multiples of the section alignment. */
4640 added = ((1 << sec->alignment_power) - 1) & added;
4641 new_removed = (-added);
4642
4643 /* Modify for removable. */
4644 space = removable_space - new_removed;
4645 new_removed = (removable_space
4646 - (((1 << sec->alignment_power) - 1) & space));
4647 }
4648 return (new_removed - current_removed);
4649}
4650
4651
7fa3d080
BW
4652static void
4653adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4654{
4655 ta->removed_bytes += fill_diff;
4656}
4657
4658
4659/* Add a modification action to the text. For the case of adding or
4660 removing space, modify any current fill and assume that
4661 "unreachable_space" bytes can be freely contracted. Note that a
4662 negative removed value is a fill. */
4663
4664static void
7fa3d080
BW
4665text_action_add (text_action_list *l,
4666 text_action_t action,
4667 asection *sec,
4668 bfd_vma offset,
4669 int removed)
43cd72b9
BW
4670{
4671 text_action **m_p;
4672 text_action *ta;
4673
4674 /* It is not necessary to fill at the end of a section. */
4675 if (action == ta_fill && sec->size == offset)
4676 return;
4677
4678 /* It is not necessary to fill 0 bytes. */
4679 if (action == ta_fill && removed == 0)
4680 return;
4681
7fa3d080 4682 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4683 {
4684 text_action *t = *m_p;
4685 /* When the action is another fill at the same address,
4686 just increase the size. */
4687 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4688 {
4689 t->removed_bytes += removed;
4690 return;
4691 }
4692 }
4693
4694 /* Create a new record and fill it up. */
4695 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4696 ta->action = action;
4697 ta->sec = sec;
4698 ta->offset = offset;
4699 ta->removed_bytes = removed;
4700 ta->next = (*m_p);
4701 *m_p = ta;
4702}
4703
4704
4705static void
7fa3d080
BW
4706text_action_add_literal (text_action_list *l,
4707 text_action_t action,
4708 const r_reloc *loc,
4709 const literal_value *value,
4710 int removed)
43cd72b9
BW
4711{
4712 text_action **m_p;
4713 text_action *ta;
4714 asection *sec = r_reloc_get_section (loc);
4715 bfd_vma offset = loc->target_offset;
4716 bfd_vma virtual_offset = loc->virtual_offset;
4717
4718 BFD_ASSERT (action == ta_add_literal);
4719
4720 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4721 {
4722 if ((*m_p)->offset > offset
4723 && ((*m_p)->offset != offset
4724 || (*m_p)->virtual_offset > virtual_offset))
4725 break;
4726 }
4727
4728 /* Create a new record and fill it up. */
4729 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4730 ta->action = action;
4731 ta->sec = sec;
4732 ta->offset = offset;
4733 ta->virtual_offset = virtual_offset;
4734 ta->value = *value;
4735 ta->removed_bytes = removed;
4736 ta->next = (*m_p);
4737 *m_p = ta;
4738}
4739
4740
7fa3d080
BW
4741static bfd_vma
4742offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4743{
4744 text_action *r;
4745 int removed = 0;
4746
4747 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4748 {
4749 if (r->offset < offset
4750 || (r->action == ta_fill && r->removed_bytes < 0))
4751 removed += r->removed_bytes;
4752 }
4753
4754 return (offset - removed);
4755}
4756
4757
7fa3d080
BW
4758static bfd_vma
4759offset_with_removed_text_before_fill (text_action_list *action_list,
4760 bfd_vma offset)
43cd72b9
BW
4761{
4762 text_action *r;
4763 int removed = 0;
4764
4765 for (r = action_list->head; r && r->offset < offset; r = r->next)
4766 removed += r->removed_bytes;
4767
4768 return (offset - removed);
4769}
4770
4771
4772/* The find_insn_action routine will only find non-fill actions. */
4773
7fa3d080
BW
4774static text_action *
4775find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4776{
4777 text_action *t;
4778 for (t = action_list->head; t; t = t->next)
4779 {
4780 if (t->offset == offset)
4781 {
4782 switch (t->action)
4783 {
4784 case ta_none:
4785 case ta_fill:
4786 break;
4787 case ta_remove_insn:
4788 case ta_remove_longcall:
4789 case ta_convert_longcall:
4790 case ta_narrow_insn:
4791 case ta_widen_insn:
4792 return t;
4793 case ta_remove_literal:
4794 case ta_add_literal:
4795 BFD_ASSERT (0);
4796 break;
4797 }
4798 }
4799 }
4800 return NULL;
4801}
4802
4803
4804#if DEBUG
4805
4806static void
7fa3d080 4807print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4808{
4809 text_action *r;
4810
4811 fprintf (fp, "Text Action\n");
4812 for (r = action_list->head; r != NULL; r = r->next)
4813 {
4814 const char *t = "unknown";
4815 switch (r->action)
4816 {
4817 case ta_remove_insn:
4818 t = "remove_insn"; break;
4819 case ta_remove_longcall:
4820 t = "remove_longcall"; break;
4821 case ta_convert_longcall:
4822 t = "remove_longcall"; break;
4823 case ta_narrow_insn:
4824 t = "narrow_insn"; break;
4825 case ta_widen_insn:
4826 t = "widen_insn"; break;
4827 case ta_fill:
4828 t = "fill"; break;
4829 case ta_none:
4830 t = "none"; break;
4831 case ta_remove_literal:
4832 t = "remove_literal"; break;
4833 case ta_add_literal:
4834 t = "add_literal"; break;
4835 }
4836
4837 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4838 r->sec->owner->filename,
4839 r->sec->name, r->offset, t, r->removed_bytes);
4840 }
4841}
4842
4843#endif /* DEBUG */
4844
4845\f
4846/* Lists of literals being coalesced or removed. */
4847
4848/* In the usual case, the literal identified by "from" is being
4849 coalesced with another literal identified by "to". If the literal is
4850 unused and is being removed altogether, "to.abfd" will be NULL.
4851 The removed_literal entries are kept on a per-section list, sorted
4852 by the "from" offset field. */
4853
4854typedef struct removed_literal_struct removed_literal;
4855typedef struct removed_literal_list_struct removed_literal_list;
4856
4857struct removed_literal_struct
4858{
4859 r_reloc from;
4860 r_reloc to;
4861 removed_literal *next;
4862};
4863
4864struct removed_literal_list_struct
4865{
4866 removed_literal *head;
4867 removed_literal *tail;
4868};
4869
4870
43cd72b9
BW
4871/* Record that the literal at "from" is being removed. If "to" is not
4872 NULL, the "from" literal is being coalesced with the "to" literal. */
4873
4874static void
7fa3d080
BW
4875add_removed_literal (removed_literal_list *removed_list,
4876 const r_reloc *from,
4877 const r_reloc *to)
43cd72b9
BW
4878{
4879 removed_literal *r, *new_r, *next_r;
4880
4881 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4882
4883 new_r->from = *from;
4884 if (to)
4885 new_r->to = *to;
4886 else
4887 new_r->to.abfd = NULL;
4888 new_r->next = NULL;
4889
4890 r = removed_list->head;
4891 if (r == NULL)
4892 {
4893 removed_list->head = new_r;
4894 removed_list->tail = new_r;
4895 }
4896 /* Special check for common case of append. */
4897 else if (removed_list->tail->from.target_offset < from->target_offset)
4898 {
4899 removed_list->tail->next = new_r;
4900 removed_list->tail = new_r;
4901 }
4902 else
4903 {
7fa3d080 4904 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4905 {
4906 r = r->next;
4907 }
4908 next_r = r->next;
4909 r->next = new_r;
4910 new_r->next = next_r;
4911 if (next_r == NULL)
4912 removed_list->tail = new_r;
4913 }
4914}
4915
4916
4917/* Check if the list of removed literals contains an entry for the
4918 given address. Return the entry if found. */
4919
4920static removed_literal *
7fa3d080 4921find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4922{
4923 removed_literal *r = removed_list->head;
4924 while (r && r->from.target_offset < addr)
4925 r = r->next;
4926 if (r && r->from.target_offset == addr)
4927 return r;
4928 return NULL;
4929}
4930
4931
4932#if DEBUG
4933
4934static void
7fa3d080 4935print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4936{
4937 removed_literal *r;
4938 r = removed_list->head;
4939 if (r)
4940 fprintf (fp, "Removed Literals\n");
4941 for (; r != NULL; r = r->next)
4942 {
4943 print_r_reloc (fp, &r->from);
4944 fprintf (fp, " => ");
4945 if (r->to.abfd == NULL)
4946 fprintf (fp, "REMOVED");
4947 else
4948 print_r_reloc (fp, &r->to);
4949 fprintf (fp, "\n");
4950 }
4951}
4952
4953#endif /* DEBUG */
4954
4955\f
4956/* Per-section data for relaxation. */
4957
4958typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4959
4960struct xtensa_relax_info_struct
4961{
4962 bfd_boolean is_relaxable_literal_section;
4963 bfd_boolean is_relaxable_asm_section;
4964 int visited; /* Number of times visited. */
4965
4966 source_reloc *src_relocs; /* Array[src_count]. */
4967 int src_count;
4968 int src_next; /* Next src_relocs entry to assign. */
4969
4970 removed_literal_list removed_list;
4971 text_action_list action_list;
4972
4973 reloc_bfd_fix *fix_list;
4974 reloc_bfd_fix *fix_array;
4975 unsigned fix_array_count;
4976
4977 /* Support for expanding the reloc array that is stored
4978 in the section structure. If the relocations have been
4979 reallocated, the newly allocated relocations will be referenced
4980 here along with the actual size allocated. The relocation
4981 count will always be found in the section structure. */
4982 Elf_Internal_Rela *allocated_relocs;
4983 unsigned relocs_count;
4984 unsigned allocated_relocs_count;
4985};
4986
4987struct elf_xtensa_section_data
4988{
4989 struct bfd_elf_section_data elf;
4990 xtensa_relax_info relax_info;
4991};
4992
43cd72b9
BW
4993
4994static bfd_boolean
7fa3d080 4995elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9
BW
4996{
4997 struct elf_xtensa_section_data *sdata;
4998 bfd_size_type amt = sizeof (*sdata);
4999
5000 sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt);
5001 if (sdata == NULL)
5002 return FALSE;
7fa3d080 5003 sec->used_by_bfd = (void *) sdata;
43cd72b9
BW
5004
5005 return _bfd_elf_new_section_hook (abfd, sec);
5006}
5007
5008
7fa3d080
BW
5009static xtensa_relax_info *
5010get_xtensa_relax_info (asection *sec)
5011{
5012 struct elf_xtensa_section_data *section_data;
5013
5014 /* No info available if no section or if it is an output section. */
5015 if (!sec || sec == sec->output_section)
5016 return NULL;
5017
5018 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5019 return &section_data->relax_info;
5020}
5021
5022
43cd72b9 5023static void
7fa3d080 5024init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5025{
5026 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5027
5028 relax_info->is_relaxable_literal_section = FALSE;
5029 relax_info->is_relaxable_asm_section = FALSE;
5030 relax_info->visited = 0;
5031
5032 relax_info->src_relocs = NULL;
5033 relax_info->src_count = 0;
5034 relax_info->src_next = 0;
5035
5036 relax_info->removed_list.head = NULL;
5037 relax_info->removed_list.tail = NULL;
5038
5039 relax_info->action_list.head = NULL;
5040
5041 relax_info->fix_list = NULL;
5042 relax_info->fix_array = NULL;
5043 relax_info->fix_array_count = 0;
5044
5045 relax_info->allocated_relocs = NULL;
5046 relax_info->relocs_count = 0;
5047 relax_info->allocated_relocs_count = 0;
5048}
5049
43cd72b9
BW
5050\f
5051/* Coalescing literals may require a relocation to refer to a section in
5052 a different input file, but the standard relocation information
5053 cannot express that. Instead, the reloc_bfd_fix structures are used
5054 to "fix" the relocations that refer to sections in other input files.
5055 These structures are kept on per-section lists. The "src_type" field
5056 records the relocation type in case there are multiple relocations on
5057 the same location. FIXME: This is ugly; an alternative might be to
5058 add new symbols with the "owner" field to some other input file. */
5059
5060struct reloc_bfd_fix_struct
5061{
5062 asection *src_sec;
5063 bfd_vma src_offset;
5064 unsigned src_type; /* Relocation type. */
5065
5066 bfd *target_abfd;
5067 asection *target_sec;
5068 bfd_vma target_offset;
5069 bfd_boolean translated;
5070
5071 reloc_bfd_fix *next;
5072};
5073
5074
43cd72b9 5075static reloc_bfd_fix *
7fa3d080
BW
5076reloc_bfd_fix_init (asection *src_sec,
5077 bfd_vma src_offset,
5078 unsigned src_type,
5079 bfd *target_abfd,
5080 asection *target_sec,
5081 bfd_vma target_offset,
5082 bfd_boolean translated)
43cd72b9
BW
5083{
5084 reloc_bfd_fix *fix;
5085
5086 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5087 fix->src_sec = src_sec;
5088 fix->src_offset = src_offset;
5089 fix->src_type = src_type;
5090 fix->target_abfd = target_abfd;
5091 fix->target_sec = target_sec;
5092 fix->target_offset = target_offset;
5093 fix->translated = translated;
5094
5095 return fix;
5096}
5097
5098
5099static void
7fa3d080 5100add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5101{
5102 xtensa_relax_info *relax_info;
5103
5104 relax_info = get_xtensa_relax_info (src_sec);
5105 fix->next = relax_info->fix_list;
5106 relax_info->fix_list = fix;
5107}
5108
5109
5110static int
7fa3d080 5111fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5112{
5113 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5114 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5115
5116 if (a->src_offset != b->src_offset)
5117 return (a->src_offset - b->src_offset);
5118 return (a->src_type - b->src_type);
5119}
5120
5121
5122static void
7fa3d080 5123cache_fix_array (asection *sec)
43cd72b9
BW
5124{
5125 unsigned i, count = 0;
5126 reloc_bfd_fix *r;
5127 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5128
5129 if (relax_info == NULL)
5130 return;
5131 if (relax_info->fix_list == NULL)
5132 return;
5133
5134 for (r = relax_info->fix_list; r != NULL; r = r->next)
5135 count++;
5136
5137 relax_info->fix_array =
5138 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5139 relax_info->fix_array_count = count;
5140
5141 r = relax_info->fix_list;
5142 for (i = 0; i < count; i++, r = r->next)
5143 {
5144 relax_info->fix_array[count - 1 - i] = *r;
5145 relax_info->fix_array[count - 1 - i].next = NULL;
5146 }
5147
5148 qsort (relax_info->fix_array, relax_info->fix_array_count,
5149 sizeof (reloc_bfd_fix), fix_compare);
5150}
5151
5152
5153static reloc_bfd_fix *
7fa3d080 5154get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5155{
5156 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5157 reloc_bfd_fix *rv;
5158 reloc_bfd_fix key;
5159
5160 if (relax_info == NULL)
5161 return NULL;
5162 if (relax_info->fix_list == NULL)
5163 return NULL;
5164
5165 if (relax_info->fix_array == NULL)
5166 cache_fix_array (sec);
5167
5168 key.src_offset = offset;
5169 key.src_type = type;
5170 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5171 sizeof (reloc_bfd_fix), fix_compare);
5172 return rv;
5173}
5174
5175\f
5176/* Section caching. */
5177
5178typedef struct section_cache_struct section_cache_t;
5179
5180struct section_cache_struct
5181{
5182 asection *sec;
5183
5184 bfd_byte *contents; /* Cache of the section contents. */
5185 bfd_size_type content_length;
5186
5187 property_table_entry *ptbl; /* Cache of the section property table. */
5188 unsigned pte_count;
5189
5190 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5191 unsigned reloc_count;
5192};
5193
5194
7fa3d080
BW
5195static void
5196init_section_cache (section_cache_t *sec_cache)
5197{
5198 memset (sec_cache, 0, sizeof (*sec_cache));
5199}
43cd72b9
BW
5200
5201
5202static void
7fa3d080 5203clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5204{
7fa3d080
BW
5205 if (sec_cache->sec)
5206 {
5207 release_contents (sec_cache->sec, sec_cache->contents);
5208 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5209 if (sec_cache->ptbl)
5210 free (sec_cache->ptbl);
5211 memset (sec_cache, 0, sizeof (sec_cache));
5212 }
43cd72b9
BW
5213}
5214
5215
5216static bfd_boolean
7fa3d080
BW
5217section_cache_section (section_cache_t *sec_cache,
5218 asection *sec,
5219 struct bfd_link_info *link_info)
43cd72b9
BW
5220{
5221 bfd *abfd;
5222 property_table_entry *prop_table = NULL;
5223 int ptblsize = 0;
5224 bfd_byte *contents = NULL;
5225 Elf_Internal_Rela *internal_relocs = NULL;
5226 bfd_size_type sec_size;
5227
5228 if (sec == NULL)
5229 return FALSE;
5230 if (sec == sec_cache->sec)
5231 return TRUE;
5232
5233 abfd = sec->owner;
5234 sec_size = bfd_get_section_limit (abfd, sec);
5235
5236 /* Get the contents. */
5237 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5238 if (contents == NULL && sec_size != 0)
5239 goto err;
5240
5241 /* Get the relocations. */
5242 internal_relocs = retrieve_internal_relocs (abfd, sec,
5243 link_info->keep_memory);
5244
5245 /* Get the entry table. */
5246 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5247 XTENSA_PROP_SEC_NAME, FALSE);
5248 if (ptblsize < 0)
5249 goto err;
5250
5251 /* Fill in the new section cache. */
5252 clear_section_cache (sec_cache);
5253 memset (sec_cache, 0, sizeof (sec_cache));
5254
5255 sec_cache->sec = sec;
5256 sec_cache->contents = contents;
5257 sec_cache->content_length = sec_size;
5258 sec_cache->relocs = internal_relocs;
5259 sec_cache->reloc_count = sec->reloc_count;
5260 sec_cache->pte_count = ptblsize;
5261 sec_cache->ptbl = prop_table;
5262
5263 return TRUE;
5264
5265 err:
5266 release_contents (sec, contents);
5267 release_internal_relocs (sec, internal_relocs);
5268 if (prop_table)
5269 free (prop_table);
5270 return FALSE;
5271}
5272
43cd72b9
BW
5273\f
5274/* Extended basic blocks. */
5275
5276/* An ebb_struct represents an Extended Basic Block. Within this
5277 range, we guarantee that all instructions are decodable, the
5278 property table entries are contiguous, and no property table
5279 specifies a segment that cannot have instructions moved. This
5280 structure contains caches of the contents, property table and
5281 relocations for the specified section for easy use. The range is
5282 specified by ranges of indices for the byte offset, property table
5283 offsets and relocation offsets. These must be consistent. */
5284
5285typedef struct ebb_struct ebb_t;
5286
5287struct ebb_struct
5288{
5289 asection *sec;
5290
5291 bfd_byte *contents; /* Cache of the section contents. */
5292 bfd_size_type content_length;
5293
5294 property_table_entry *ptbl; /* Cache of the section property table. */
5295 unsigned pte_count;
5296
5297 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5298 unsigned reloc_count;
5299
5300 bfd_vma start_offset; /* Offset in section. */
5301 unsigned start_ptbl_idx; /* Offset in the property table. */
5302 unsigned start_reloc_idx; /* Offset in the relocations. */
5303
5304 bfd_vma end_offset;
5305 unsigned end_ptbl_idx;
5306 unsigned end_reloc_idx;
5307
5308 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5309
5310 /* The unreachable property table at the end of this set of blocks;
5311 NULL if the end is not an unreachable block. */
5312 property_table_entry *ends_unreachable;
5313};
5314
5315
5316enum ebb_target_enum
5317{
5318 EBB_NO_ALIGN = 0,
5319 EBB_DESIRE_TGT_ALIGN,
5320 EBB_REQUIRE_TGT_ALIGN,
5321 EBB_REQUIRE_LOOP_ALIGN,
5322 EBB_REQUIRE_ALIGN
5323};
5324
5325
5326/* proposed_action_struct is similar to the text_action_struct except
5327 that is represents a potential transformation, not one that will
5328 occur. We build a list of these for an extended basic block
5329 and use them to compute the actual actions desired. We must be
5330 careful that the entire set of actual actions we perform do not
5331 break any relocations that would fit if the actions were not
5332 performed. */
5333
5334typedef struct proposed_action_struct proposed_action;
5335
5336struct proposed_action_struct
5337{
5338 enum ebb_target_enum align_type; /* for the target alignment */
5339 bfd_vma alignment_pow;
5340 text_action_t action;
5341 bfd_vma offset;
5342 int removed_bytes;
5343 bfd_boolean do_action; /* If false, then we will not perform the action. */
5344};
5345
5346
5347/* The ebb_constraint_struct keeps a set of proposed actions for an
5348 extended basic block. */
5349
5350typedef struct ebb_constraint_struct ebb_constraint;
5351
5352struct ebb_constraint_struct
5353{
5354 ebb_t ebb;
5355 bfd_boolean start_movable;
5356
5357 /* Bytes of extra space at the beginning if movable. */
5358 int start_extra_space;
5359
5360 enum ebb_target_enum start_align;
5361
5362 bfd_boolean end_movable;
5363
5364 /* Bytes of extra space at the end if movable. */
5365 int end_extra_space;
5366
5367 unsigned action_count;
5368 unsigned action_allocated;
5369
5370 /* Array of proposed actions. */
5371 proposed_action *actions;
5372
5373 /* Action alignments -- one for each proposed action. */
5374 enum ebb_target_enum *action_aligns;
5375};
5376
5377
43cd72b9 5378static void
7fa3d080 5379init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5380{
5381 memset (c, 0, sizeof (ebb_constraint));
5382}
5383
5384
5385static void
7fa3d080 5386free_ebb_constraint (ebb_constraint *c)
43cd72b9 5387{
7fa3d080 5388 if (c->actions)
43cd72b9
BW
5389 free (c->actions);
5390}
5391
5392
5393static void
7fa3d080
BW
5394init_ebb (ebb_t *ebb,
5395 asection *sec,
5396 bfd_byte *contents,
5397 bfd_size_type content_length,
5398 property_table_entry *prop_table,
5399 unsigned ptblsize,
5400 Elf_Internal_Rela *internal_relocs,
5401 unsigned reloc_count)
43cd72b9
BW
5402{
5403 memset (ebb, 0, sizeof (ebb_t));
5404 ebb->sec = sec;
5405 ebb->contents = contents;
5406 ebb->content_length = content_length;
5407 ebb->ptbl = prop_table;
5408 ebb->pte_count = ptblsize;
5409 ebb->relocs = internal_relocs;
5410 ebb->reloc_count = reloc_count;
5411 ebb->start_offset = 0;
5412 ebb->end_offset = ebb->content_length - 1;
5413 ebb->start_ptbl_idx = 0;
5414 ebb->end_ptbl_idx = ptblsize;
5415 ebb->start_reloc_idx = 0;
5416 ebb->end_reloc_idx = reloc_count;
5417}
5418
5419
5420/* Extend the ebb to all decodable contiguous sections. The algorithm
5421 for building a basic block around an instruction is to push it
5422 forward until we hit the end of a section, an unreachable block or
5423 a block that cannot be transformed. Then we push it backwards
5424 searching for similar conditions. */
5425
7fa3d080
BW
5426static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5427static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5428static bfd_size_type insn_block_decodable_len
5429 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5430
43cd72b9 5431static bfd_boolean
7fa3d080 5432extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5433{
5434 if (!extend_ebb_bounds_forward (ebb))
5435 return FALSE;
5436 if (!extend_ebb_bounds_backward (ebb))
5437 return FALSE;
5438 return TRUE;
5439}
5440
5441
5442static bfd_boolean
7fa3d080 5443extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5444{
5445 property_table_entry *the_entry, *new_entry;
5446
5447 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5448
5449 /* Stop when (1) we cannot decode an instruction, (2) we are at
5450 the end of the property tables, (3) we hit a non-contiguous property
5451 table entry, (4) we hit a NO_TRANSFORM region. */
5452
5453 while (1)
5454 {
5455 bfd_vma entry_end;
5456 bfd_size_type insn_block_len;
5457
5458 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5459 insn_block_len =
5460 insn_block_decodable_len (ebb->contents, ebb->content_length,
5461 ebb->end_offset,
5462 entry_end - ebb->end_offset);
5463 if (insn_block_len != (entry_end - ebb->end_offset))
5464 {
5465 (*_bfd_error_handler)
5466 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5467 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5468 return FALSE;
5469 }
5470 ebb->end_offset += insn_block_len;
5471
5472 if (ebb->end_offset == ebb->sec->size)
5473 ebb->ends_section = TRUE;
5474
5475 /* Update the reloc counter. */
5476 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5477 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5478 < ebb->end_offset))
5479 {
5480 ebb->end_reloc_idx++;
5481 }
5482
5483 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5484 return TRUE;
5485
5486 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5487 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5488 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5489 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5490 break;
5491
5492 if (the_entry->address + the_entry->size != new_entry->address)
5493 break;
5494
5495 the_entry = new_entry;
5496 ebb->end_ptbl_idx++;
5497 }
5498
5499 /* Quick check for an unreachable or end of file just at the end. */
5500 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5501 {
5502 if (ebb->end_offset == ebb->content_length)
5503 ebb->ends_section = TRUE;
5504 }
5505 else
5506 {
5507 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5508 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5509 && the_entry->address + the_entry->size == new_entry->address)
5510 ebb->ends_unreachable = new_entry;
5511 }
5512
5513 /* Any other ending requires exact alignment. */
5514 return TRUE;
5515}
5516
5517
5518static bfd_boolean
7fa3d080 5519extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5520{
5521 property_table_entry *the_entry, *new_entry;
5522
5523 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5524
5525 /* Stop when (1) we cannot decode the instructions in the current entry.
5526 (2) we are at the beginning of the property tables, (3) we hit a
5527 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5528
5529 while (1)
5530 {
5531 bfd_vma block_begin;
5532 bfd_size_type insn_block_len;
5533
5534 block_begin = the_entry->address - ebb->sec->vma;
5535 insn_block_len =
5536 insn_block_decodable_len (ebb->contents, ebb->content_length,
5537 block_begin,
5538 ebb->start_offset - block_begin);
5539 if (insn_block_len != ebb->start_offset - block_begin)
5540 {
5541 (*_bfd_error_handler)
5542 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5543 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5544 return FALSE;
5545 }
5546 ebb->start_offset -= insn_block_len;
5547
5548 /* Update the reloc counter. */
5549 while (ebb->start_reloc_idx > 0
5550 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5551 >= ebb->start_offset))
5552 {
5553 ebb->start_reloc_idx--;
5554 }
5555
5556 if (ebb->start_ptbl_idx == 0)
5557 return TRUE;
5558
5559 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5560 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5561 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5562 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5563 return TRUE;
5564 if (new_entry->address + new_entry->size != the_entry->address)
5565 return TRUE;
5566
5567 the_entry = new_entry;
5568 ebb->start_ptbl_idx--;
5569 }
5570 return TRUE;
5571}
5572
5573
5574static bfd_size_type
7fa3d080
BW
5575insn_block_decodable_len (bfd_byte *contents,
5576 bfd_size_type content_len,
5577 bfd_vma block_offset,
5578 bfd_size_type block_len)
43cd72b9
BW
5579{
5580 bfd_vma offset = block_offset;
5581
5582 while (offset < block_offset + block_len)
5583 {
5584 bfd_size_type insn_len = 0;
5585
5586 insn_len = insn_decode_len (contents, content_len, offset);
5587 if (insn_len == 0)
5588 return (offset - block_offset);
5589 offset += insn_len;
5590 }
5591 return (offset - block_offset);
5592}
5593
5594
5595static void
7fa3d080 5596ebb_propose_action (ebb_constraint *c,
7fa3d080 5597 enum ebb_target_enum align_type,
288f74fa 5598 bfd_vma alignment_pow,
7fa3d080
BW
5599 text_action_t action,
5600 bfd_vma offset,
5601 int removed_bytes,
5602 bfd_boolean do_action)
43cd72b9 5603{
b08b5071 5604 proposed_action *act;
43cd72b9 5605
43cd72b9
BW
5606 if (c->action_allocated <= c->action_count)
5607 {
b08b5071 5608 unsigned new_allocated, i;
823fc61f 5609 proposed_action *new_actions;
b08b5071
BW
5610
5611 new_allocated = (c->action_count + 2) * 2;
823fc61f 5612 new_actions = (proposed_action *)
43cd72b9
BW
5613 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5614
5615 for (i = 0; i < c->action_count; i++)
5616 new_actions[i] = c->actions[i];
7fa3d080 5617 if (c->actions)
43cd72b9
BW
5618 free (c->actions);
5619 c->actions = new_actions;
5620 c->action_allocated = new_allocated;
5621 }
b08b5071
BW
5622
5623 act = &c->actions[c->action_count];
5624 act->align_type = align_type;
5625 act->alignment_pow = alignment_pow;
5626 act->action = action;
5627 act->offset = offset;
5628 act->removed_bytes = removed_bytes;
5629 act->do_action = do_action;
5630
43cd72b9
BW
5631 c->action_count++;
5632}
5633
5634\f
5635/* Access to internal relocations, section contents and symbols. */
5636
5637/* During relaxation, we need to modify relocations, section contents,
5638 and symbol definitions, and we need to keep the original values from
5639 being reloaded from the input files, i.e., we need to "pin" the
5640 modified values in memory. We also want to continue to observe the
5641 setting of the "keep-memory" flag. The following functions wrap the
5642 standard BFD functions to take care of this for us. */
5643
5644static Elf_Internal_Rela *
7fa3d080 5645retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5646{
5647 Elf_Internal_Rela *internal_relocs;
5648
5649 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5650 return NULL;
5651
5652 internal_relocs = elf_section_data (sec)->relocs;
5653 if (internal_relocs == NULL)
5654 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5655 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5656 return internal_relocs;
5657}
5658
5659
5660static void
7fa3d080 5661pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5662{
5663 elf_section_data (sec)->relocs = internal_relocs;
5664}
5665
5666
5667static void
7fa3d080 5668release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5669{
5670 if (internal_relocs
5671 && elf_section_data (sec)->relocs != internal_relocs)
5672 free (internal_relocs);
5673}
5674
5675
5676static bfd_byte *
7fa3d080 5677retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5678{
5679 bfd_byte *contents;
5680 bfd_size_type sec_size;
5681
5682 sec_size = bfd_get_section_limit (abfd, sec);
5683 contents = elf_section_data (sec)->this_hdr.contents;
5684
5685 if (contents == NULL && sec_size != 0)
5686 {
5687 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5688 {
7fa3d080 5689 if (contents)
43cd72b9
BW
5690 free (contents);
5691 return NULL;
5692 }
5693 if (keep_memory)
5694 elf_section_data (sec)->this_hdr.contents = contents;
5695 }
5696 return contents;
5697}
5698
5699
5700static void
7fa3d080 5701pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5702{
5703 elf_section_data (sec)->this_hdr.contents = contents;
5704}
5705
5706
5707static void
7fa3d080 5708release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5709{
5710 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5711 free (contents);
5712}
5713
5714
5715static Elf_Internal_Sym *
7fa3d080 5716retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5717{
5718 Elf_Internal_Shdr *symtab_hdr;
5719 Elf_Internal_Sym *isymbuf;
5720 size_t locsymcount;
5721
5722 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5723 locsymcount = symtab_hdr->sh_info;
5724
5725 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5726 if (isymbuf == NULL && locsymcount != 0)
5727 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5728 NULL, NULL, NULL);
5729
5730 /* Save the symbols for this input file so they won't be read again. */
5731 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5732 symtab_hdr->contents = (unsigned char *) isymbuf;
5733
5734 return isymbuf;
5735}
5736
5737\f
5738/* Code for link-time relaxation. */
5739
5740/* Initialization for relaxation: */
7fa3d080 5741static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5742static bfd_boolean find_relaxable_sections
7fa3d080 5743 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5744static bfd_boolean collect_source_relocs
7fa3d080 5745 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5746static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5747 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5748 bfd_boolean *);
43cd72b9 5749static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5750 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5751static bfd_boolean compute_text_actions
7fa3d080
BW
5752 (bfd *, asection *, struct bfd_link_info *);
5753static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5754static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5755static bfd_boolean check_section_ebb_pcrels_fit
7fa3d080
BW
5756 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *);
5757static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5758static void text_action_add_proposed
7fa3d080
BW
5759 (text_action_list *, const ebb_constraint *, asection *);
5760static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5761
5762/* First pass: */
5763static bfd_boolean compute_removed_literals
7fa3d080 5764 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5765static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5766 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5767static bfd_boolean is_removable_literal
7fa3d080 5768 (const source_reloc *, int, const source_reloc *, int);
43cd72b9 5769static bfd_boolean remove_dead_literal
7fa3d080
BW
5770 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5771 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5772static bfd_boolean identify_literal_placement
5773 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5774 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5775 source_reloc *, property_table_entry *, int, section_cache_t *,
5776 bfd_boolean);
5777static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5778static bfd_boolean coalesce_shared_literal
7fa3d080 5779 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5780static bfd_boolean move_shared_literal
7fa3d080
BW
5781 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5782 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5783
5784/* Second pass: */
7fa3d080
BW
5785static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5786static bfd_boolean translate_section_fixes (asection *);
5787static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5788static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5789static void shrink_dynamic_reloc_sections
7fa3d080 5790 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5791static bfd_boolean move_literal
7fa3d080
BW
5792 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5793 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5794static bfd_boolean relax_property_section
7fa3d080 5795 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5796
5797/* Third pass: */
7fa3d080 5798static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5799
5800
5801static bfd_boolean
7fa3d080
BW
5802elf_xtensa_relax_section (bfd *abfd,
5803 asection *sec,
5804 struct bfd_link_info *link_info,
5805 bfd_boolean *again)
43cd72b9
BW
5806{
5807 static value_map_hash_table *values = NULL;
5808 static bfd_boolean relocations_analyzed = FALSE;
5809 xtensa_relax_info *relax_info;
5810
5811 if (!relocations_analyzed)
5812 {
5813 /* Do some overall initialization for relaxation. */
5814 values = value_map_hash_table_init ();
5815 if (values == NULL)
5816 return FALSE;
5817 relaxing_section = TRUE;
5818 if (!analyze_relocations (link_info))
5819 return FALSE;
5820 relocations_analyzed = TRUE;
5821 }
5822 *again = FALSE;
5823
5824 /* Don't mess with linker-created sections. */
5825 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5826 return TRUE;
5827
5828 relax_info = get_xtensa_relax_info (sec);
5829 BFD_ASSERT (relax_info != NULL);
5830
5831 switch (relax_info->visited)
5832 {
5833 case 0:
5834 /* Note: It would be nice to fold this pass into
5835 analyze_relocations, but it is important for this step that the
5836 sections be examined in link order. */
5837 if (!compute_removed_literals (abfd, sec, link_info, values))
5838 return FALSE;
5839 *again = TRUE;
5840 break;
5841
5842 case 1:
5843 if (values)
5844 value_map_hash_table_delete (values);
5845 values = NULL;
5846 if (!relax_section (abfd, sec, link_info))
5847 return FALSE;
5848 *again = TRUE;
5849 break;
5850
5851 case 2:
5852 if (!relax_section_symbols (abfd, sec))
5853 return FALSE;
5854 break;
5855 }
5856
5857 relax_info->visited++;
5858 return TRUE;
5859}
5860
5861\f
5862/* Initialization for relaxation. */
5863
5864/* This function is called once at the start of relaxation. It scans
5865 all the input sections and marks the ones that are relaxable (i.e.,
5866 literal sections with L32R relocations against them), and then
5867 collects source_reloc information for all the relocations against
5868 those relaxable sections. During this process, it also detects
5869 longcalls, i.e., calls relaxed by the assembler into indirect
5870 calls, that can be optimized back into direct calls. Within each
5871 extended basic block (ebb) containing an optimized longcall, it
5872 computes a set of "text actions" that can be performed to remove
5873 the L32R associated with the longcall while optionally preserving
5874 branch target alignments. */
5875
5876static bfd_boolean
7fa3d080 5877analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5878{
5879 bfd *abfd;
5880 asection *sec;
5881 bfd_boolean is_relaxable = FALSE;
5882
5883 /* Initialize the per-section relaxation info. */
5884 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5885 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5886 {
5887 init_xtensa_relax_info (sec);
5888 }
5889
5890 /* Mark relaxable sections (and count relocations against each one). */
5891 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5892 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5893 {
5894 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5895 return FALSE;
5896 }
5897
5898 /* Bail out if there are no relaxable sections. */
5899 if (!is_relaxable)
5900 return TRUE;
5901
5902 /* Allocate space for source_relocs. */
5903 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5904 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5905 {
5906 xtensa_relax_info *relax_info;
5907
5908 relax_info = get_xtensa_relax_info (sec);
5909 if (relax_info->is_relaxable_literal_section
5910 || relax_info->is_relaxable_asm_section)
5911 {
5912 relax_info->src_relocs = (source_reloc *)
5913 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5914 }
5915 }
5916
5917 /* Collect info on relocations against each relaxable section. */
5918 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5919 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5920 {
5921 if (!collect_source_relocs (abfd, sec, link_info))
5922 return FALSE;
5923 }
5924
5925 /* Compute the text actions. */
5926 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5927 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5928 {
5929 if (!compute_text_actions (abfd, sec, link_info))
5930 return FALSE;
5931 }
5932
5933 return TRUE;
5934}
5935
5936
5937/* Find all the sections that might be relaxed. The motivation for
5938 this pass is that collect_source_relocs() needs to record _all_ the
5939 relocations that target each relaxable section. That is expensive
5940 and unnecessary unless the target section is actually going to be
5941 relaxed. This pass identifies all such sections by checking if
5942 they have L32Rs pointing to them. In the process, the total number
5943 of relocations targeting each section is also counted so that we
5944 know how much space to allocate for source_relocs against each
5945 relaxable literal section. */
5946
5947static bfd_boolean
7fa3d080
BW
5948find_relaxable_sections (bfd *abfd,
5949 asection *sec,
5950 struct bfd_link_info *link_info,
5951 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5952{
5953 Elf_Internal_Rela *internal_relocs;
5954 bfd_byte *contents;
5955 bfd_boolean ok = TRUE;
5956 unsigned i;
5957 xtensa_relax_info *source_relax_info;
5958
5959 internal_relocs = retrieve_internal_relocs (abfd, sec,
5960 link_info->keep_memory);
5961 if (internal_relocs == NULL)
5962 return ok;
5963
5964 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5965 if (contents == NULL && sec->size != 0)
5966 {
5967 ok = FALSE;
5968 goto error_return;
5969 }
5970
5971 source_relax_info = get_xtensa_relax_info (sec);
5972 for (i = 0; i < sec->reloc_count; i++)
5973 {
5974 Elf_Internal_Rela *irel = &internal_relocs[i];
5975 r_reloc r_rel;
5976 asection *target_sec;
5977 xtensa_relax_info *target_relax_info;
5978
5979 /* If this section has not already been marked as "relaxable", and
5980 if it contains any ASM_EXPAND relocations (marking expanded
5981 longcalls) that can be optimized into direct calls, then mark
5982 the section as "relaxable". */
5983 if (source_relax_info
5984 && !source_relax_info->is_relaxable_asm_section
5985 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
5986 {
5987 bfd_boolean is_reachable = FALSE;
5988 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
5989 link_info, &is_reachable)
5990 && is_reachable)
5991 {
5992 source_relax_info->is_relaxable_asm_section = TRUE;
5993 *is_relaxable_p = TRUE;
5994 }
5995 }
5996
5997 r_reloc_init (&r_rel, abfd, irel, contents,
5998 bfd_get_section_limit (abfd, sec));
5999
6000 target_sec = r_reloc_get_section (&r_rel);
6001 target_relax_info = get_xtensa_relax_info (target_sec);
6002 if (!target_relax_info)
6003 continue;
6004
6005 /* Count PC-relative operand relocations against the target section.
6006 Note: The conditions tested here must match the conditions under
6007 which init_source_reloc is called in collect_source_relocs(). */
6008 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6009 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6010 || is_l32r_relocation (abfd, sec, contents, irel)))
6011 target_relax_info->src_count++;
6012
6013 if (is_l32r_relocation (abfd, sec, contents, irel)
6014 && r_reloc_is_defined (&r_rel))
6015 {
6016 /* Mark the target section as relaxable. */
6017 target_relax_info->is_relaxable_literal_section = TRUE;
6018 *is_relaxable_p = TRUE;
6019 }
6020 }
6021
6022 error_return:
6023 release_contents (sec, contents);
6024 release_internal_relocs (sec, internal_relocs);
6025 return ok;
6026}
6027
6028
6029/* Record _all_ the relocations that point to relaxable sections, and
6030 get rid of ASM_EXPAND relocs by either converting them to
6031 ASM_SIMPLIFY or by removing them. */
6032
6033static bfd_boolean
7fa3d080
BW
6034collect_source_relocs (bfd *abfd,
6035 asection *sec,
6036 struct bfd_link_info *link_info)
43cd72b9
BW
6037{
6038 Elf_Internal_Rela *internal_relocs;
6039 bfd_byte *contents;
6040 bfd_boolean ok = TRUE;
6041 unsigned i;
6042 bfd_size_type sec_size;
6043
6044 internal_relocs = retrieve_internal_relocs (abfd, sec,
6045 link_info->keep_memory);
6046 if (internal_relocs == NULL)
6047 return ok;
6048
6049 sec_size = bfd_get_section_limit (abfd, sec);
6050 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6051 if (contents == NULL && sec_size != 0)
6052 {
6053 ok = FALSE;
6054 goto error_return;
6055 }
6056
6057 /* Record relocations against relaxable literal sections. */
6058 for (i = 0; i < sec->reloc_count; i++)
6059 {
6060 Elf_Internal_Rela *irel = &internal_relocs[i];
6061 r_reloc r_rel;
6062 asection *target_sec;
6063 xtensa_relax_info *target_relax_info;
6064
6065 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6066
6067 target_sec = r_reloc_get_section (&r_rel);
6068 target_relax_info = get_xtensa_relax_info (target_sec);
6069
6070 if (target_relax_info
6071 && (target_relax_info->is_relaxable_literal_section
6072 || target_relax_info->is_relaxable_asm_section))
6073 {
6074 xtensa_opcode opcode = XTENSA_UNDEFINED;
6075 int opnd = -1;
6076 bfd_boolean is_abs_literal = FALSE;
6077
6078 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6079 {
6080 /* None of the current alternate relocs are PC-relative,
6081 and only PC-relative relocs matter here. However, we
6082 still need to record the opcode for literal
6083 coalescing. */
6084 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6085 if (opcode == get_l32r_opcode ())
6086 {
6087 is_abs_literal = TRUE;
6088 opnd = 1;
6089 }
6090 else
6091 opcode = XTENSA_UNDEFINED;
6092 }
6093 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6094 {
6095 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6096 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6097 }
6098
6099 if (opcode != XTENSA_UNDEFINED)
6100 {
6101 int src_next = target_relax_info->src_next++;
6102 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6103
6104 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6105 is_abs_literal);
6106 }
6107 }
6108 }
6109
6110 /* Now get rid of ASM_EXPAND relocations. At this point, the
6111 src_relocs array for the target literal section may still be
6112 incomplete, but it must at least contain the entries for the L32R
6113 relocations associated with ASM_EXPANDs because they were just
6114 added in the preceding loop over the relocations. */
6115
6116 for (i = 0; i < sec->reloc_count; i++)
6117 {
6118 Elf_Internal_Rela *irel = &internal_relocs[i];
6119 bfd_boolean is_reachable;
6120
6121 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6122 &is_reachable))
6123 continue;
6124
6125 if (is_reachable)
6126 {
6127 Elf_Internal_Rela *l32r_irel;
6128 r_reloc r_rel;
6129 asection *target_sec;
6130 xtensa_relax_info *target_relax_info;
6131
6132 /* Mark the source_reloc for the L32R so that it will be
6133 removed in compute_removed_literals(), along with the
6134 associated literal. */
6135 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6136 irel, internal_relocs);
6137 if (l32r_irel == NULL)
6138 continue;
6139
6140 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6141
6142 target_sec = r_reloc_get_section (&r_rel);
6143 target_relax_info = get_xtensa_relax_info (target_sec);
6144
6145 if (target_relax_info
6146 && (target_relax_info->is_relaxable_literal_section
6147 || target_relax_info->is_relaxable_asm_section))
6148 {
6149 source_reloc *s_reloc;
6150
6151 /* Search the source_relocs for the entry corresponding to
6152 the l32r_irel. Note: The src_relocs array is not yet
6153 sorted, but it wouldn't matter anyway because we're
6154 searching by source offset instead of target offset. */
6155 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6156 target_relax_info->src_next,
6157 sec, l32r_irel);
6158 BFD_ASSERT (s_reloc);
6159 s_reloc->is_null = TRUE;
6160 }
6161
6162 /* Convert this reloc to ASM_SIMPLIFY. */
6163 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6164 R_XTENSA_ASM_SIMPLIFY);
6165 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6166
6167 pin_internal_relocs (sec, internal_relocs);
6168 }
6169 else
6170 {
6171 /* It is resolvable but doesn't reach. We resolve now
6172 by eliminating the relocation -- the call will remain
6173 expanded into L32R/CALLX. */
6174 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6175 pin_internal_relocs (sec, internal_relocs);
6176 }
6177 }
6178
6179 error_return:
6180 release_contents (sec, contents);
6181 release_internal_relocs (sec, internal_relocs);
6182 return ok;
6183}
6184
6185
6186/* Return TRUE if the asm expansion can be resolved. Generally it can
6187 be resolved on a final link or when a partial link locates it in the
6188 same section as the target. Set "is_reachable" flag if the target of
6189 the call is within the range of a direct call, given the current VMA
6190 for this section and the target section. */
6191
6192bfd_boolean
7fa3d080
BW
6193is_resolvable_asm_expansion (bfd *abfd,
6194 asection *sec,
6195 bfd_byte *contents,
6196 Elf_Internal_Rela *irel,
6197 struct bfd_link_info *link_info,
6198 bfd_boolean *is_reachable_p)
43cd72b9
BW
6199{
6200 asection *target_sec;
6201 bfd_vma target_offset;
6202 r_reloc r_rel;
6203 xtensa_opcode opcode, direct_call_opcode;
6204 bfd_vma self_address;
6205 bfd_vma dest_address;
6206 bfd_boolean uses_l32r;
6207 bfd_size_type sec_size;
6208
6209 *is_reachable_p = FALSE;
6210
6211 if (contents == NULL)
6212 return FALSE;
6213
6214 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6215 return FALSE;
6216
6217 sec_size = bfd_get_section_limit (abfd, sec);
6218 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6219 sec_size - irel->r_offset, &uses_l32r);
6220 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6221 if (!uses_l32r)
6222 return FALSE;
6223
6224 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6225 if (direct_call_opcode == XTENSA_UNDEFINED)
6226 return FALSE;
6227
6228 /* Check and see that the target resolves. */
6229 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6230 if (!r_reloc_is_defined (&r_rel))
6231 return FALSE;
6232
6233 target_sec = r_reloc_get_section (&r_rel);
6234 target_offset = r_rel.target_offset;
6235
6236 /* If the target is in a shared library, then it doesn't reach. This
6237 isn't supposed to come up because the compiler should never generate
6238 non-PIC calls on systems that use shared libraries, but the linker
6239 shouldn't crash regardless. */
6240 if (!target_sec->output_section)
6241 return FALSE;
6242
6243 /* For relocatable sections, we can only simplify when the output
6244 section of the target is the same as the output section of the
6245 source. */
6246 if (link_info->relocatable
6247 && (target_sec->output_section != sec->output_section
6248 || is_reloc_sym_weak (abfd, irel)))
6249 return FALSE;
6250
6251 self_address = (sec->output_section->vma
6252 + sec->output_offset + irel->r_offset + 3);
6253 dest_address = (target_sec->output_section->vma
6254 + target_sec->output_offset + target_offset);
6255
6256 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6257 self_address, dest_address);
6258
6259 if ((self_address >> CALL_SEGMENT_BITS) !=
6260 (dest_address >> CALL_SEGMENT_BITS))
6261 return FALSE;
6262
6263 return TRUE;
6264}
6265
6266
6267static Elf_Internal_Rela *
7fa3d080
BW
6268find_associated_l32r_irel (bfd *abfd,
6269 asection *sec,
6270 bfd_byte *contents,
6271 Elf_Internal_Rela *other_irel,
6272 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6273{
6274 unsigned i;
e0001a05 6275
43cd72b9
BW
6276 for (i = 0; i < sec->reloc_count; i++)
6277 {
6278 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6279
43cd72b9
BW
6280 if (irel == other_irel)
6281 continue;
6282 if (irel->r_offset != other_irel->r_offset)
6283 continue;
6284 if (is_l32r_relocation (abfd, sec, contents, irel))
6285 return irel;
6286 }
6287
6288 return NULL;
e0001a05
NC
6289}
6290
6291
43cd72b9
BW
6292/* The compute_text_actions function will build a list of potential
6293 transformation actions for code in the extended basic block of each
6294 longcall that is optimized to a direct call. From this list we
6295 generate a set of actions to actually perform that optimizes for
6296 space and, if not using size_opt, maintains branch target
6297 alignments.
e0001a05 6298
43cd72b9
BW
6299 These actions to be performed are placed on a per-section list.
6300 The actual changes are performed by relax_section() in the second
6301 pass. */
6302
6303bfd_boolean
7fa3d080
BW
6304compute_text_actions (bfd *abfd,
6305 asection *sec,
6306 struct bfd_link_info *link_info)
e0001a05 6307{
43cd72b9 6308 xtensa_relax_info *relax_info;
e0001a05 6309 bfd_byte *contents;
43cd72b9 6310 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6311 bfd_boolean ok = TRUE;
6312 unsigned i;
43cd72b9
BW
6313 property_table_entry *prop_table = 0;
6314 int ptblsize = 0;
6315 bfd_size_type sec_size;
6316 static bfd_boolean no_insn_move = FALSE;
6317
6318 if (no_insn_move)
6319 return ok;
6320
6321 /* Do nothing if the section contains no optimized longcalls. */
6322 relax_info = get_xtensa_relax_info (sec);
6323 BFD_ASSERT (relax_info);
6324 if (!relax_info->is_relaxable_asm_section)
6325 return ok;
e0001a05
NC
6326
6327 internal_relocs = retrieve_internal_relocs (abfd, sec,
6328 link_info->keep_memory);
e0001a05 6329
43cd72b9
BW
6330 if (internal_relocs)
6331 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6332 internal_reloc_compare);
6333
6334 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6335 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6336 if (contents == NULL && sec_size != 0)
e0001a05
NC
6337 {
6338 ok = FALSE;
6339 goto error_return;
6340 }
6341
43cd72b9
BW
6342 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6343 XTENSA_PROP_SEC_NAME, FALSE);
6344 if (ptblsize < 0)
6345 {
6346 ok = FALSE;
6347 goto error_return;
6348 }
6349
6350 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6351 {
6352 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6353 bfd_vma r_offset;
6354 property_table_entry *the_entry;
6355 int ptbl_idx;
6356 ebb_t *ebb;
6357 ebb_constraint ebb_table;
6358 bfd_size_type simplify_size;
6359
6360 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6361 continue;
6362 r_offset = irel->r_offset;
e0001a05 6363
43cd72b9
BW
6364 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6365 if (simplify_size == 0)
6366 {
6367 (*_bfd_error_handler)
6368 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6369 sec->owner, sec, r_offset);
6370 continue;
6371 }
e0001a05 6372
43cd72b9
BW
6373 /* If the instruction table is not around, then don't do this
6374 relaxation. */
6375 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6376 sec->vma + irel->r_offset);
6377 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6378 {
6379 text_action_add (&relax_info->action_list,
6380 ta_convert_longcall, sec, r_offset,
6381 0);
6382 continue;
6383 }
6384
6385 /* If the next longcall happens to be at the same address as an
6386 unreachable section of size 0, then skip forward. */
6387 ptbl_idx = the_entry - prop_table;
6388 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6389 && the_entry->size == 0
6390 && ptbl_idx + 1 < ptblsize
6391 && (prop_table[ptbl_idx + 1].address
6392 == prop_table[ptbl_idx].address))
6393 {
6394 ptbl_idx++;
6395 the_entry++;
6396 }
e0001a05 6397
43cd72b9
BW
6398 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6399 /* NO_REORDER is OK */
6400 continue;
e0001a05 6401
43cd72b9
BW
6402 init_ebb_constraint (&ebb_table);
6403 ebb = &ebb_table.ebb;
6404 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6405 internal_relocs, sec->reloc_count);
6406 ebb->start_offset = r_offset + simplify_size;
6407 ebb->end_offset = r_offset + simplify_size;
6408 ebb->start_ptbl_idx = ptbl_idx;
6409 ebb->end_ptbl_idx = ptbl_idx;
6410 ebb->start_reloc_idx = i;
6411 ebb->end_reloc_idx = i;
6412
6413 if (!extend_ebb_bounds (ebb)
6414 || !compute_ebb_proposed_actions (&ebb_table)
6415 || !compute_ebb_actions (&ebb_table)
6416 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6417 internal_relocs, &ebb_table)
6418 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6419 {
43cd72b9
BW
6420 /* If anything goes wrong or we get unlucky and something does
6421 not fit, with our plan because of expansion between
6422 critical branches, just convert to a NOP. */
6423
6424 text_action_add (&relax_info->action_list,
6425 ta_convert_longcall, sec, r_offset, 0);
6426 i = ebb_table.ebb.end_reloc_idx;
6427 free_ebb_constraint (&ebb_table);
6428 continue;
e0001a05 6429 }
43cd72b9
BW
6430
6431 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6432
6433 /* Update the index so we do not go looking at the relocations
6434 we have already processed. */
6435 i = ebb_table.ebb.end_reloc_idx;
6436 free_ebb_constraint (&ebb_table);
e0001a05
NC
6437 }
6438
43cd72b9 6439#if DEBUG
7fa3d080 6440 if (relax_info->action_list.head)
43cd72b9
BW
6441 print_action_list (stderr, &relax_info->action_list);
6442#endif
6443
6444error_return:
e0001a05
NC
6445 release_contents (sec, contents);
6446 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6447 if (prop_table)
6448 free (prop_table);
6449
e0001a05
NC
6450 return ok;
6451}
6452
6453
43cd72b9 6454/* Find all of the possible actions for an extended basic block. */
e0001a05 6455
43cd72b9 6456bfd_boolean
7fa3d080 6457compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6458{
43cd72b9
BW
6459 const ebb_t *ebb = &ebb_table->ebb;
6460 unsigned rel_idx = ebb->start_reloc_idx;
6461 property_table_entry *entry, *start_entry, *end_entry;
e0001a05 6462
43cd72b9
BW
6463 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6464 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6465
43cd72b9 6466 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6467 {
43cd72b9
BW
6468 bfd_vma offset, start_offset, end_offset;
6469 bfd_size_type insn_len;
e0001a05 6470
43cd72b9
BW
6471 start_offset = entry->address - ebb->sec->vma;
6472 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6473
43cd72b9
BW
6474 if (entry == start_entry)
6475 start_offset = ebb->start_offset;
6476 if (entry == end_entry)
6477 end_offset = ebb->end_offset;
6478 offset = start_offset;
e0001a05 6479
43cd72b9
BW
6480 if (offset == entry->address - ebb->sec->vma
6481 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6482 {
6483 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6484 BFD_ASSERT (offset != end_offset);
6485 if (offset == end_offset)
6486 return FALSE;
e0001a05 6487
43cd72b9
BW
6488 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6489 offset);
6490
6491 /* Propose no actions for a section with an undecodable offset. */
6492 if (insn_len == 0)
6493 {
6494 (*_bfd_error_handler)
6495 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6496 ebb->sec->owner, ebb->sec, offset);
6497 return FALSE;
6498 }
6499 if (check_branch_target_aligned_address (offset, insn_len))
6500 align_type = EBB_REQUIRE_TGT_ALIGN;
6501
6502 ebb_propose_action (ebb_table, align_type, 0,
6503 ta_none, offset, 0, TRUE);
6504 }
6505
6506 while (offset != end_offset)
e0001a05 6507 {
43cd72b9 6508 Elf_Internal_Rela *irel;
e0001a05 6509 xtensa_opcode opcode;
e0001a05 6510
43cd72b9
BW
6511 while (rel_idx < ebb->end_reloc_idx
6512 && (ebb->relocs[rel_idx].r_offset < offset
6513 || (ebb->relocs[rel_idx].r_offset == offset
6514 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6515 != R_XTENSA_ASM_SIMPLIFY))))
6516 rel_idx++;
6517
6518 /* Check for longcall. */
6519 irel = &ebb->relocs[rel_idx];
6520 if (irel->r_offset == offset
6521 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6522 {
6523 bfd_size_type simplify_size;
e0001a05 6524
43cd72b9
BW
6525 simplify_size = get_asm_simplify_size (ebb->contents,
6526 ebb->content_length,
6527 irel->r_offset);
6528 if (simplify_size == 0)
6529 {
6530 (*_bfd_error_handler)
6531 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6532 ebb->sec->owner, ebb->sec, offset);
6533 return FALSE;
6534 }
6535
6536 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6537 ta_convert_longcall, offset, 0, TRUE);
6538
6539 offset += simplify_size;
6540 continue;
6541 }
e0001a05 6542
43cd72b9
BW
6543 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6544 offset);
6545 /* If the instruction is undecodable, then report an error. */
6546 if (insn_len == 0)
6547 {
6548 (*_bfd_error_handler)
6549 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6550 ebb->sec->owner, ebb->sec, offset);
6551 return FALSE;
6552 }
6553
6554 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6555 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6556 && narrow_instruction (ebb->contents, ebb->content_length,
6557 offset, FALSE))
6558 {
6559 /* Add an instruction narrow action. */
6560 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6561 ta_narrow_insn, offset, 0, FALSE);
6562 offset += insn_len;
6563 continue;
6564 }
6565 if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6566 && widen_instruction (ebb->contents, ebb->content_length,
6567 offset, FALSE))
6568 {
6569 /* Add an instruction widen action. */
6570 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6571 ta_widen_insn, offset, 0, FALSE);
6572 offset += insn_len;
6573 continue;
6574 }
6575 opcode = insn_decode_opcode (ebb->contents, ebb->content_length,
6576 offset, 0);
6577 if (xtensa_opcode_is_loop (xtensa_default_isa, opcode))
6578 {
6579 /* Check for branch targets. */
6580 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6581 ta_none, offset, 0, TRUE);
6582 offset += insn_len;
6583 continue;
6584 }
6585
6586 offset += insn_len;
e0001a05
NC
6587 }
6588 }
6589
43cd72b9
BW
6590 if (ebb->ends_unreachable)
6591 {
6592 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6593 ta_fill, ebb->end_offset, 0, TRUE);
6594 }
e0001a05 6595
43cd72b9
BW
6596 return TRUE;
6597}
6598
6599
6600/* After all of the information has collected about the
6601 transformations possible in an EBB, compute the appropriate actions
6602 here in compute_ebb_actions. We still must check later to make
6603 sure that the actions do not break any relocations. The algorithm
6604 used here is pretty greedy. Basically, it removes as many no-ops
6605 as possible so that the end of the EBB has the same alignment
6606 characteristics as the original. First, it uses narrowing, then
6607 fill space at the end of the EBB, and finally widenings. If that
6608 does not work, it tries again with one fewer no-op removed. The
6609 optimization will only be performed if all of the branch targets
6610 that were aligned before transformation are also aligned after the
6611 transformation.
6612
6613 When the size_opt flag is set, ignore the branch target alignments,
6614 narrow all wide instructions, and remove all no-ops unless the end
6615 of the EBB prevents it. */
6616
6617bfd_boolean
7fa3d080 6618compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6619{
6620 unsigned i = 0;
6621 unsigned j;
6622 int removed_bytes = 0;
6623 ebb_t *ebb = &ebb_table->ebb;
6624 unsigned seg_idx_start = 0;
6625 unsigned seg_idx_end = 0;
6626
6627 /* We perform this like the assembler relaxation algorithm: Start by
6628 assuming all instructions are narrow and all no-ops removed; then
6629 walk through.... */
6630
6631 /* For each segment of this that has a solid constraint, check to
6632 see if there are any combinations that will keep the constraint.
6633 If so, use it. */
6634 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6635 {
43cd72b9
BW
6636 bfd_boolean requires_text_end_align = FALSE;
6637 unsigned longcall_count = 0;
6638 unsigned longcall_convert_count = 0;
6639 unsigned narrowable_count = 0;
6640 unsigned narrowable_convert_count = 0;
6641 unsigned widenable_count = 0;
6642 unsigned widenable_convert_count = 0;
e0001a05 6643
43cd72b9
BW
6644 proposed_action *action = NULL;
6645 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6646
43cd72b9 6647 seg_idx_start = seg_idx_end;
e0001a05 6648
43cd72b9
BW
6649 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6650 {
6651 action = &ebb_table->actions[i];
6652 if (action->action == ta_convert_longcall)
6653 longcall_count++;
6654 if (action->action == ta_narrow_insn)
6655 narrowable_count++;
6656 if (action->action == ta_widen_insn)
6657 widenable_count++;
6658 if (action->action == ta_fill)
6659 break;
6660 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6661 break;
6662 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6663 && !elf32xtensa_size_opt)
6664 break;
6665 }
6666 seg_idx_end = i;
e0001a05 6667
43cd72b9
BW
6668 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6669 requires_text_end_align = TRUE;
e0001a05 6670
43cd72b9
BW
6671 if (elf32xtensa_size_opt && !requires_text_end_align
6672 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6673 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6674 {
6675 longcall_convert_count = longcall_count;
6676 narrowable_convert_count = narrowable_count;
6677 widenable_convert_count = 0;
6678 }
6679 else
6680 {
6681 /* There is a constraint. Convert the max number of longcalls. */
6682 narrowable_convert_count = 0;
6683 longcall_convert_count = 0;
6684 widenable_convert_count = 0;
e0001a05 6685
43cd72b9 6686 for (j = 0; j < longcall_count; j++)
e0001a05 6687 {
43cd72b9
BW
6688 int removed = (longcall_count - j) * 3 & (align - 1);
6689 unsigned desire_narrow = (align - removed) & (align - 1);
6690 unsigned desire_widen = removed;
6691 if (desire_narrow <= narrowable_count)
6692 {
6693 narrowable_convert_count = desire_narrow;
6694 narrowable_convert_count +=
6695 (align * ((narrowable_count - narrowable_convert_count)
6696 / align));
6697 longcall_convert_count = (longcall_count - j);
6698 widenable_convert_count = 0;
6699 break;
6700 }
6701 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6702 {
6703 narrowable_convert_count = 0;
6704 longcall_convert_count = longcall_count - j;
6705 widenable_convert_count = desire_widen;
6706 break;
6707 }
6708 }
6709 }
e0001a05 6710
43cd72b9
BW
6711 /* Now the number of conversions are saved. Do them. */
6712 for (i = seg_idx_start; i < seg_idx_end; i++)
6713 {
6714 action = &ebb_table->actions[i];
6715 switch (action->action)
6716 {
6717 case ta_convert_longcall:
6718 if (longcall_convert_count != 0)
6719 {
6720 action->action = ta_remove_longcall;
6721 action->do_action = TRUE;
6722 action->removed_bytes += 3;
6723 longcall_convert_count--;
6724 }
6725 break;
6726 case ta_narrow_insn:
6727 if (narrowable_convert_count != 0)
6728 {
6729 action->do_action = TRUE;
6730 action->removed_bytes += 1;
6731 narrowable_convert_count--;
6732 }
6733 break;
6734 case ta_widen_insn:
6735 if (widenable_convert_count != 0)
6736 {
6737 action->do_action = TRUE;
6738 action->removed_bytes -= 1;
6739 widenable_convert_count--;
6740 }
6741 break;
6742 default:
6743 break;
e0001a05 6744 }
43cd72b9
BW
6745 }
6746 }
e0001a05 6747
43cd72b9
BW
6748 /* Now we move on to some local opts. Try to remove each of the
6749 remaining longcalls. */
e0001a05 6750
43cd72b9
BW
6751 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6752 {
6753 removed_bytes = 0;
6754 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6755 {
43cd72b9
BW
6756 int old_removed_bytes = removed_bytes;
6757 proposed_action *action = &ebb_table->actions[i];
6758
6759 if (action->do_action && action->action == ta_convert_longcall)
6760 {
6761 bfd_boolean bad_alignment = FALSE;
6762 removed_bytes += 3;
6763 for (j = i + 1; j < ebb_table->action_count; j++)
6764 {
6765 proposed_action *new_action = &ebb_table->actions[j];
6766 bfd_vma offset = new_action->offset;
6767 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6768 {
6769 if (!check_branch_target_aligned
6770 (ebb_table->ebb.contents,
6771 ebb_table->ebb.content_length,
6772 offset, offset - removed_bytes))
6773 {
6774 bad_alignment = TRUE;
6775 break;
6776 }
6777 }
6778 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6779 {
6780 if (!check_loop_aligned (ebb_table->ebb.contents,
6781 ebb_table->ebb.content_length,
6782 offset,
6783 offset - removed_bytes))
6784 {
6785 bad_alignment = TRUE;
6786 break;
6787 }
6788 }
6789 if (new_action->action == ta_narrow_insn
6790 && !new_action->do_action
6791 && ebb_table->ebb.sec->alignment_power == 2)
6792 {
6793 /* Narrow an instruction and we are done. */
6794 new_action->do_action = TRUE;
6795 new_action->removed_bytes += 1;
6796 bad_alignment = FALSE;
6797 break;
6798 }
6799 if (new_action->action == ta_widen_insn
6800 && new_action->do_action
6801 && ebb_table->ebb.sec->alignment_power == 2)
6802 {
6803 /* Narrow an instruction and we are done. */
6804 new_action->do_action = FALSE;
6805 new_action->removed_bytes += 1;
6806 bad_alignment = FALSE;
6807 break;
6808 }
6809 }
6810 if (!bad_alignment)
6811 {
6812 action->removed_bytes += 3;
6813 action->action = ta_remove_longcall;
6814 action->do_action = TRUE;
6815 }
6816 }
6817 removed_bytes = old_removed_bytes;
6818 if (action->do_action)
6819 removed_bytes += action->removed_bytes;
e0001a05
NC
6820 }
6821 }
6822
43cd72b9
BW
6823 removed_bytes = 0;
6824 for (i = 0; i < ebb_table->action_count; ++i)
6825 {
6826 proposed_action *action = &ebb_table->actions[i];
6827 if (action->do_action)
6828 removed_bytes += action->removed_bytes;
6829 }
6830
6831 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6832 && ebb->ends_unreachable)
6833 {
6834 proposed_action *action;
6835 int br;
6836 int extra_space;
6837
6838 BFD_ASSERT (ebb_table->action_count != 0);
6839 action = &ebb_table->actions[ebb_table->action_count - 1];
6840 BFD_ASSERT (action->action == ta_fill);
6841 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6842
6843 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6844 br = action->removed_bytes + removed_bytes + extra_space;
6845 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6846
6847 action->removed_bytes = extra_space - br;
6848 }
6849 return TRUE;
e0001a05
NC
6850}
6851
6852
43cd72b9
BW
6853/* Use check_section_ebb_pcrels_fit to make sure that all of the
6854 relocations in a section will fit if a proposed set of actions
6855 are performed. */
e0001a05 6856
43cd72b9 6857static bfd_boolean
7fa3d080
BW
6858check_section_ebb_pcrels_fit (bfd *abfd,
6859 asection *sec,
6860 bfd_byte *contents,
6861 Elf_Internal_Rela *internal_relocs,
6862 const ebb_constraint *constraint)
e0001a05 6863{
43cd72b9
BW
6864 unsigned i, j;
6865 Elf_Internal_Rela *irel;
6866 xtensa_relax_info *relax_info;
e0001a05 6867
43cd72b9 6868 relax_info = get_xtensa_relax_info (sec);
e0001a05 6869
43cd72b9
BW
6870 for (i = 0; i < sec->reloc_count; i++)
6871 {
6872 r_reloc r_rel;
6873 bfd_vma orig_self_offset, orig_target_offset;
6874 bfd_vma self_offset, target_offset;
6875 int r_type;
6876 reloc_howto_type *howto;
6877 int self_removed_bytes, target_removed_bytes;
e0001a05 6878
43cd72b9
BW
6879 irel = &internal_relocs[i];
6880 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 6881
43cd72b9
BW
6882 howto = &elf_howto_table[r_type];
6883 /* We maintain the required invariant: PC-relative relocations
6884 that fit before linking must fit after linking. Thus we only
6885 need to deal with relocations to the same section that are
6886 PC-relative. */
6887 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
6888 || !howto->pc_relative)
6889 continue;
e0001a05 6890
43cd72b9
BW
6891 r_reloc_init (&r_rel, abfd, irel, contents,
6892 bfd_get_section_limit (abfd, sec));
e0001a05 6893
43cd72b9
BW
6894 if (r_reloc_get_section (&r_rel) != sec)
6895 continue;
e0001a05 6896
43cd72b9
BW
6897 orig_self_offset = irel->r_offset;
6898 orig_target_offset = r_rel.target_offset;
e0001a05 6899
43cd72b9
BW
6900 self_offset = orig_self_offset;
6901 target_offset = orig_target_offset;
6902
6903 if (relax_info)
6904 {
6905 self_offset = offset_with_removed_text (&relax_info->action_list,
6906 orig_self_offset);
6907 target_offset = offset_with_removed_text (&relax_info->action_list,
6908 orig_target_offset);
6909 }
6910
6911 self_removed_bytes = 0;
6912 target_removed_bytes = 0;
6913
6914 for (j = 0; j < constraint->action_count; ++j)
6915 {
6916 proposed_action *action = &constraint->actions[j];
6917 bfd_vma offset = action->offset;
6918 int removed_bytes = action->removed_bytes;
6919 if (offset < orig_self_offset
6920 || (offset == orig_self_offset && action->action == ta_fill
6921 && action->removed_bytes < 0))
6922 self_removed_bytes += removed_bytes;
6923 if (offset < orig_target_offset
6924 || (offset == orig_target_offset && action->action == ta_fill
6925 && action->removed_bytes < 0))
6926 target_removed_bytes += removed_bytes;
6927 }
6928 self_offset -= self_removed_bytes;
6929 target_offset -= target_removed_bytes;
6930
6931 /* Try to encode it. Get the operand and check. */
6932 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6933 {
6934 /* None of the current alternate relocs are PC-relative,
6935 and only PC-relative relocs matter here. */
6936 }
6937 else
6938 {
6939 xtensa_opcode opcode;
6940 int opnum;
6941
6942 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6943 if (opcode == XTENSA_UNDEFINED)
6944 return FALSE;
6945
6946 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6947 if (opnum == XTENSA_UNDEFINED)
6948 return FALSE;
6949
6950 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
6951 return FALSE;
6952 }
6953 }
6954
6955 return TRUE;
6956}
6957
6958
6959static bfd_boolean
7fa3d080 6960check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
6961{
6962 int removed = 0;
6963 unsigned i;
6964
6965 for (i = 0; i < constraint->action_count; i++)
6966 {
6967 const proposed_action *action = &constraint->actions[i];
6968 if (action->do_action)
6969 removed += action->removed_bytes;
6970 }
6971 if (removed < 0)
e0001a05
NC
6972 return FALSE;
6973
6974 return TRUE;
6975}
6976
6977
43cd72b9 6978void
7fa3d080
BW
6979text_action_add_proposed (text_action_list *l,
6980 const ebb_constraint *ebb_table,
6981 asection *sec)
e0001a05
NC
6982{
6983 unsigned i;
6984
43cd72b9 6985 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6986 {
43cd72b9 6987 proposed_action *action = &ebb_table->actions[i];
e0001a05 6988
43cd72b9 6989 if (!action->do_action)
e0001a05 6990 continue;
43cd72b9
BW
6991 switch (action->action)
6992 {
6993 case ta_remove_insn:
6994 case ta_remove_longcall:
6995 case ta_convert_longcall:
6996 case ta_narrow_insn:
6997 case ta_widen_insn:
6998 case ta_fill:
6999 case ta_remove_literal:
7000 text_action_add (l, action->action, sec, action->offset,
7001 action->removed_bytes);
7002 break;
7003 case ta_none:
7004 break;
7005 default:
7006 BFD_ASSERT (0);
7007 break;
7008 }
e0001a05 7009 }
43cd72b9 7010}
e0001a05 7011
43cd72b9
BW
7012
7013int
7fa3d080 7014compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7015{
7016 int fill_extra_space;
7017
7018 if (!entry)
7019 return 0;
7020
7021 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7022 return 0;
7023
7024 fill_extra_space = entry->size;
7025 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7026 {
7027 /* Fill bytes for alignment:
7028 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7029 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7030 int nsm = (1 << pow) - 1;
7031 bfd_vma addr = entry->address + entry->size;
7032 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7033 fill_extra_space += align_fill;
7034 }
7035 return fill_extra_space;
e0001a05
NC
7036}
7037
43cd72b9 7038\f
e0001a05
NC
7039/* First relaxation pass. */
7040
43cd72b9
BW
7041/* If the section contains relaxable literals, check each literal to
7042 see if it has the same value as another literal that has already
7043 been seen, either in the current section or a previous one. If so,
7044 add an entry to the per-section list of removed literals. The
e0001a05
NC
7045 actual changes are deferred until the next pass. */
7046
7047static bfd_boolean
7fa3d080
BW
7048compute_removed_literals (bfd *abfd,
7049 asection *sec,
7050 struct bfd_link_info *link_info,
7051 value_map_hash_table *values)
e0001a05
NC
7052{
7053 xtensa_relax_info *relax_info;
7054 bfd_byte *contents;
7055 Elf_Internal_Rela *internal_relocs;
43cd72b9 7056 source_reloc *src_relocs, *rel;
e0001a05 7057 bfd_boolean ok = TRUE;
43cd72b9
BW
7058 property_table_entry *prop_table = NULL;
7059 int ptblsize;
7060 int i, prev_i;
7061 bfd_boolean last_loc_is_prev = FALSE;
7062 bfd_vma last_target_offset = 0;
7063 section_cache_t target_sec_cache;
7064 bfd_size_type sec_size;
7065
7066 init_section_cache (&target_sec_cache);
e0001a05
NC
7067
7068 /* Do nothing if it is not a relaxable literal section. */
7069 relax_info = get_xtensa_relax_info (sec);
7070 BFD_ASSERT (relax_info);
e0001a05
NC
7071 if (!relax_info->is_relaxable_literal_section)
7072 return ok;
7073
7074 internal_relocs = retrieve_internal_relocs (abfd, sec,
7075 link_info->keep_memory);
7076
43cd72b9 7077 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7078 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7079 if (contents == NULL && sec_size != 0)
e0001a05
NC
7080 {
7081 ok = FALSE;
7082 goto error_return;
7083 }
7084
7085 /* Sort the source_relocs by target offset. */
7086 src_relocs = relax_info->src_relocs;
7087 qsort (src_relocs, relax_info->src_count,
7088 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7089 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7090 internal_reloc_compare);
e0001a05 7091
43cd72b9
BW
7092 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7093 XTENSA_PROP_SEC_NAME, FALSE);
7094 if (ptblsize < 0)
7095 {
7096 ok = FALSE;
7097 goto error_return;
7098 }
7099
7100 prev_i = -1;
e0001a05
NC
7101 for (i = 0; i < relax_info->src_count; i++)
7102 {
e0001a05 7103 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7104
7105 rel = &src_relocs[i];
43cd72b9
BW
7106 if (get_l32r_opcode () != rel->opcode)
7107 continue;
e0001a05
NC
7108 irel = get_irel_at_offset (sec, internal_relocs,
7109 rel->r_rel.target_offset);
7110
43cd72b9
BW
7111 /* If the relocation on this is not a simple R_XTENSA_32 or
7112 R_XTENSA_PLT then do not consider it. This may happen when
7113 the difference of two symbols is used in a literal. */
7114 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7115 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7116 continue;
7117
e0001a05
NC
7118 /* If the target_offset for this relocation is the same as the
7119 previous relocation, then we've already considered whether the
7120 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7121 if (i != 0 && prev_i != -1
7122 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7123 continue;
43cd72b9
BW
7124 prev_i = i;
7125
7126 if (last_loc_is_prev &&
7127 last_target_offset + 4 != rel->r_rel.target_offset)
7128 last_loc_is_prev = FALSE;
e0001a05
NC
7129
7130 /* Check if the relocation was from an L32R that is being removed
7131 because a CALLX was converted to a direct CALL, and check if
7132 there are no other relocations to the literal. */
43cd72b9 7133 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
e0001a05 7134 {
43cd72b9
BW
7135 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7136 irel, rel, prop_table, ptblsize))
e0001a05 7137 {
43cd72b9
BW
7138 ok = FALSE;
7139 goto error_return;
e0001a05 7140 }
43cd72b9 7141 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7142 continue;
7143 }
7144
43cd72b9
BW
7145 if (!identify_literal_placement (abfd, sec, contents, link_info,
7146 values,
7147 &last_loc_is_prev, irel,
7148 relax_info->src_count - i, rel,
7149 prop_table, ptblsize,
7150 &target_sec_cache, rel->is_abs_literal))
e0001a05 7151 {
43cd72b9
BW
7152 ok = FALSE;
7153 goto error_return;
7154 }
7155 last_target_offset = rel->r_rel.target_offset;
7156 }
e0001a05 7157
43cd72b9
BW
7158#if DEBUG
7159 print_removed_literals (stderr, &relax_info->removed_list);
7160 print_action_list (stderr, &relax_info->action_list);
7161#endif /* DEBUG */
7162
7163error_return:
7164 if (prop_table) free (prop_table);
7165 clear_section_cache (&target_sec_cache);
7166
7167 release_contents (sec, contents);
7168 release_internal_relocs (sec, internal_relocs);
7169 return ok;
7170}
7171
7172
7173static Elf_Internal_Rela *
7fa3d080
BW
7174get_irel_at_offset (asection *sec,
7175 Elf_Internal_Rela *internal_relocs,
7176 bfd_vma offset)
43cd72b9
BW
7177{
7178 unsigned i;
7179 Elf_Internal_Rela *irel;
7180 unsigned r_type;
7181 Elf_Internal_Rela key;
7182
7183 if (!internal_relocs)
7184 return NULL;
7185
7186 key.r_offset = offset;
7187 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7188 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7189 if (!irel)
7190 return NULL;
7191
7192 /* bsearch does not guarantee which will be returned if there are
7193 multiple matches. We need the first that is not an alignment. */
7194 i = irel - internal_relocs;
7195 while (i > 0)
7196 {
7197 if (internal_relocs[i-1].r_offset != offset)
7198 break;
7199 i--;
7200 }
7201 for ( ; i < sec->reloc_count; i++)
7202 {
7203 irel = &internal_relocs[i];
7204 r_type = ELF32_R_TYPE (irel->r_info);
7205 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7206 return irel;
7207 }
7208
7209 return NULL;
7210}
7211
7212
7213bfd_boolean
7fa3d080
BW
7214is_removable_literal (const source_reloc *rel,
7215 int i,
7216 const source_reloc *src_relocs,
7217 int src_count)
43cd72b9
BW
7218{
7219 const source_reloc *curr_rel;
7220 if (!rel->is_null)
7221 return FALSE;
7222
7223 for (++i; i < src_count; ++i)
7224 {
7225 curr_rel = &src_relocs[i];
7226 /* If all others have the same target offset.... */
7227 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7228 return TRUE;
7229
7230 if (!curr_rel->is_null
7231 && !xtensa_is_property_section (curr_rel->source_sec)
7232 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7233 return FALSE;
7234 }
7235 return TRUE;
7236}
7237
7238
7239bfd_boolean
7fa3d080
BW
7240remove_dead_literal (bfd *abfd,
7241 asection *sec,
7242 struct bfd_link_info *link_info,
7243 Elf_Internal_Rela *internal_relocs,
7244 Elf_Internal_Rela *irel,
7245 source_reloc *rel,
7246 property_table_entry *prop_table,
7247 int ptblsize)
43cd72b9
BW
7248{
7249 property_table_entry *entry;
7250 xtensa_relax_info *relax_info;
7251
7252 relax_info = get_xtensa_relax_info (sec);
7253 if (!relax_info)
7254 return FALSE;
7255
7256 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7257 sec->vma + rel->r_rel.target_offset);
7258
7259 /* Mark the unused literal so that it will be removed. */
7260 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7261
7262 text_action_add (&relax_info->action_list,
7263 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7264
7265 /* If the section is 4-byte aligned, do not add fill. */
7266 if (sec->alignment_power > 2)
7267 {
7268 int fill_extra_space;
7269 bfd_vma entry_sec_offset;
7270 text_action *fa;
7271 property_table_entry *the_add_entry;
7272 int removed_diff;
7273
7274 if (entry)
7275 entry_sec_offset = entry->address - sec->vma + entry->size;
7276 else
7277 entry_sec_offset = rel->r_rel.target_offset + 4;
7278
7279 /* If the literal range is at the end of the section,
7280 do not add fill. */
7281 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7282 entry_sec_offset);
7283 fill_extra_space = compute_fill_extra_space (the_add_entry);
7284
7285 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7286 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7287 -4, fill_extra_space);
7288 if (fa)
7289 adjust_fill_action (fa, removed_diff);
7290 else
7291 text_action_add (&relax_info->action_list,
7292 ta_fill, sec, entry_sec_offset, removed_diff);
7293 }
7294
7295 /* Zero out the relocation on this literal location. */
7296 if (irel)
7297 {
7298 if (elf_hash_table (link_info)->dynamic_sections_created)
7299 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7300
7301 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7302 pin_internal_relocs (sec, internal_relocs);
7303 }
7304
7305 /* Do not modify "last_loc_is_prev". */
7306 return TRUE;
7307}
7308
7309
7310bfd_boolean
7fa3d080
BW
7311identify_literal_placement (bfd *abfd,
7312 asection *sec,
7313 bfd_byte *contents,
7314 struct bfd_link_info *link_info,
7315 value_map_hash_table *values,
7316 bfd_boolean *last_loc_is_prev_p,
7317 Elf_Internal_Rela *irel,
7318 int remaining_src_rels,
7319 source_reloc *rel,
7320 property_table_entry *prop_table,
7321 int ptblsize,
7322 section_cache_t *target_sec_cache,
7323 bfd_boolean is_abs_literal)
43cd72b9
BW
7324{
7325 literal_value val;
7326 value_map *val_map;
7327 xtensa_relax_info *relax_info;
7328 bfd_boolean literal_placed = FALSE;
7329 r_reloc r_rel;
7330 unsigned long value;
7331 bfd_boolean final_static_link;
7332 bfd_size_type sec_size;
7333
7334 relax_info = get_xtensa_relax_info (sec);
7335 if (!relax_info)
7336 return FALSE;
7337
7338 sec_size = bfd_get_section_limit (abfd, sec);
7339
7340 final_static_link =
7341 (!link_info->relocatable
7342 && !elf_hash_table (link_info)->dynamic_sections_created);
7343
7344 /* The placement algorithm first checks to see if the literal is
7345 already in the value map. If so and the value map is reachable
7346 from all uses, then the literal is moved to that location. If
7347 not, then we identify the last location where a fresh literal was
7348 placed. If the literal can be safely moved there, then we do so.
7349 If not, then we assume that the literal is not to move and leave
7350 the literal where it is, marking it as the last literal
7351 location. */
7352
7353 /* Find the literal value. */
7354 value = 0;
7355 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7356 if (!irel)
7357 {
7358 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7359 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7360 }
7361 init_literal_value (&val, &r_rel, value, is_abs_literal);
7362
7363 /* Check if we've seen another literal with the same value that
7364 is in the same output section. */
7365 val_map = value_map_get_cached_value (values, &val, final_static_link);
7366
7367 if (val_map
7368 && (r_reloc_get_section (&val_map->loc)->output_section
7369 == sec->output_section)
7370 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7371 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7372 {
7373 /* No change to last_loc_is_prev. */
7374 literal_placed = TRUE;
7375 }
7376
7377 /* For relocatable links, do not try to move literals. To do it
7378 correctly might increase the number of relocations in an input
7379 section making the default relocatable linking fail. */
7380 if (!link_info->relocatable && !literal_placed
7381 && values->has_last_loc && !(*last_loc_is_prev_p))
7382 {
7383 asection *target_sec = r_reloc_get_section (&values->last_loc);
7384 if (target_sec && target_sec->output_section == sec->output_section)
7385 {
7386 /* Increment the virtual offset. */
7387 r_reloc try_loc = values->last_loc;
7388 try_loc.virtual_offset += 4;
7389
7390 /* There is a last loc that was in the same output section. */
7391 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7392 && move_shared_literal (sec, link_info, rel,
7393 prop_table, ptblsize,
7394 &try_loc, &val, target_sec_cache))
e0001a05 7395 {
43cd72b9
BW
7396 values->last_loc.virtual_offset += 4;
7397 literal_placed = TRUE;
7398 if (!val_map)
7399 val_map = add_value_map (values, &val, &try_loc,
7400 final_static_link);
7401 else
7402 val_map->loc = try_loc;
e0001a05
NC
7403 }
7404 }
43cd72b9
BW
7405 }
7406
7407 if (!literal_placed)
7408 {
7409 /* Nothing worked, leave the literal alone but update the last loc. */
7410 values->has_last_loc = TRUE;
7411 values->last_loc = rel->r_rel;
7412 if (!val_map)
7413 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7414 else
43cd72b9
BW
7415 val_map->loc = rel->r_rel;
7416 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7417 }
7418
43cd72b9 7419 return TRUE;
e0001a05
NC
7420}
7421
7422
7423/* Check if the original relocations (presumably on L32R instructions)
7424 identified by reloc[0..N] can be changed to reference the literal
7425 identified by r_rel. If r_rel is out of range for any of the
7426 original relocations, then we don't want to coalesce the original
7427 literal with the one at r_rel. We only check reloc[0..N], where the
7428 offsets are all the same as for reloc[0] (i.e., they're all
7429 referencing the same literal) and where N is also bounded by the
7430 number of remaining entries in the "reloc" array. The "reloc" array
7431 is sorted by target offset so we know all the entries for the same
7432 literal will be contiguous. */
7433
7434static bfd_boolean
7fa3d080
BW
7435relocations_reach (source_reloc *reloc,
7436 int remaining_relocs,
7437 const r_reloc *r_rel)
e0001a05
NC
7438{
7439 bfd_vma from_offset, source_address, dest_address;
7440 asection *sec;
7441 int i;
7442
7443 if (!r_reloc_is_defined (r_rel))
7444 return FALSE;
7445
7446 sec = r_reloc_get_section (r_rel);
7447 from_offset = reloc[0].r_rel.target_offset;
7448
7449 for (i = 0; i < remaining_relocs; i++)
7450 {
7451 if (reloc[i].r_rel.target_offset != from_offset)
7452 break;
7453
7454 /* Ignore relocations that have been removed. */
7455 if (reloc[i].is_null)
7456 continue;
7457
7458 /* The original and new output section for these must be the same
7459 in order to coalesce. */
7460 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7461 != sec->output_section)
7462 return FALSE;
7463
43cd72b9
BW
7464 /* A literal with no PC-relative relocations can be moved anywhere. */
7465 if (reloc[i].opnd != -1)
e0001a05
NC
7466 {
7467 /* Otherwise, check to see that it fits. */
7468 source_address = (reloc[i].source_sec->output_section->vma
7469 + reloc[i].source_sec->output_offset
7470 + reloc[i].r_rel.rela.r_offset);
7471 dest_address = (sec->output_section->vma
7472 + sec->output_offset
7473 + r_rel->target_offset);
7474
43cd72b9
BW
7475 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7476 source_address, dest_address))
e0001a05
NC
7477 return FALSE;
7478 }
7479 }
7480
7481 return TRUE;
7482}
7483
7484
43cd72b9
BW
7485/* Move a literal to another literal location because it is
7486 the same as the other literal value. */
e0001a05 7487
43cd72b9 7488static bfd_boolean
7fa3d080
BW
7489coalesce_shared_literal (asection *sec,
7490 source_reloc *rel,
7491 property_table_entry *prop_table,
7492 int ptblsize,
7493 value_map *val_map)
e0001a05 7494{
43cd72b9
BW
7495 property_table_entry *entry;
7496 text_action *fa;
7497 property_table_entry *the_add_entry;
7498 int removed_diff;
7499 xtensa_relax_info *relax_info;
7500
7501 relax_info = get_xtensa_relax_info (sec);
7502 if (!relax_info)
7503 return FALSE;
7504
7505 entry = elf_xtensa_find_property_entry
7506 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7507 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7508 return TRUE;
7509
7510 /* Mark that the literal will be coalesced. */
7511 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7512
7513 text_action_add (&relax_info->action_list,
7514 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7515
7516 /* If the section is 4-byte aligned, do not add fill. */
7517 if (sec->alignment_power > 2)
e0001a05 7518 {
43cd72b9
BW
7519 int fill_extra_space;
7520 bfd_vma entry_sec_offset;
7521
7522 if (entry)
7523 entry_sec_offset = entry->address - sec->vma + entry->size;
7524 else
7525 entry_sec_offset = rel->r_rel.target_offset + 4;
7526
7527 /* If the literal range is at the end of the section,
7528 do not add fill. */
7529 fill_extra_space = 0;
7530 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7531 entry_sec_offset);
7532 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7533 fill_extra_space = the_add_entry->size;
7534
7535 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7536 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7537 -4, fill_extra_space);
7538 if (fa)
7539 adjust_fill_action (fa, removed_diff);
7540 else
7541 text_action_add (&relax_info->action_list,
7542 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7543 }
43cd72b9
BW
7544
7545 return TRUE;
7546}
7547
7548
7549/* Move a literal to another location. This may actually increase the
7550 total amount of space used because of alignments so we need to do
7551 this carefully. Also, it may make a branch go out of range. */
7552
7553static bfd_boolean
7fa3d080
BW
7554move_shared_literal (asection *sec,
7555 struct bfd_link_info *link_info,
7556 source_reloc *rel,
7557 property_table_entry *prop_table,
7558 int ptblsize,
7559 const r_reloc *target_loc,
7560 const literal_value *lit_value,
7561 section_cache_t *target_sec_cache)
43cd72b9
BW
7562{
7563 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7564 text_action *fa, *target_fa;
7565 int removed_diff;
7566 xtensa_relax_info *relax_info, *target_relax_info;
7567 asection *target_sec;
7568 ebb_t *ebb;
7569 ebb_constraint ebb_table;
7570 bfd_boolean relocs_fit;
7571
7572 /* If this routine always returns FALSE, the literals that cannot be
7573 coalesced will not be moved. */
7574 if (elf32xtensa_no_literal_movement)
7575 return FALSE;
7576
7577 relax_info = get_xtensa_relax_info (sec);
7578 if (!relax_info)
7579 return FALSE;
7580
7581 target_sec = r_reloc_get_section (target_loc);
7582 target_relax_info = get_xtensa_relax_info (target_sec);
7583
7584 /* Literals to undefined sections may not be moved because they
7585 must report an error. */
7586 if (bfd_is_und_section (target_sec))
7587 return FALSE;
7588
7589 src_entry = elf_xtensa_find_property_entry
7590 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7591
7592 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7593 return FALSE;
7594
7595 target_entry = elf_xtensa_find_property_entry
7596 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7597 target_sec->vma + target_loc->target_offset);
7598
7599 if (!target_entry)
7600 return FALSE;
7601
7602 /* Make sure that we have not broken any branches. */
7603 relocs_fit = FALSE;
7604
7605 init_ebb_constraint (&ebb_table);
7606 ebb = &ebb_table.ebb;
7607 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7608 target_sec_cache->content_length,
7609 target_sec_cache->ptbl, target_sec_cache->pte_count,
7610 target_sec_cache->relocs, target_sec_cache->reloc_count);
7611
7612 /* Propose to add 4 bytes + worst-case alignment size increase to
7613 destination. */
7614 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7615 ta_fill, target_loc->target_offset,
7616 -4 - (1 << target_sec->alignment_power), TRUE);
7617
7618 /* Check all of the PC-relative relocations to make sure they still fit. */
7619 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7620 target_sec_cache->contents,
7621 target_sec_cache->relocs,
7622 &ebb_table);
7623
7624 if (!relocs_fit)
7625 return FALSE;
7626
7627 text_action_add_literal (&target_relax_info->action_list,
7628 ta_add_literal, target_loc, lit_value, -4);
7629
7630 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7631 {
7632 /* May need to add or remove some fill to maintain alignment. */
7633 int fill_extra_space;
7634 bfd_vma entry_sec_offset;
7635
7636 entry_sec_offset =
7637 target_entry->address - target_sec->vma + target_entry->size;
7638
7639 /* If the literal range is at the end of the section,
7640 do not add fill. */
7641 fill_extra_space = 0;
7642 the_add_entry =
7643 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7644 target_sec_cache->pte_count,
7645 entry_sec_offset);
7646 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7647 fill_extra_space = the_add_entry->size;
7648
7649 target_fa = find_fill_action (&target_relax_info->action_list,
7650 target_sec, entry_sec_offset);
7651 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7652 entry_sec_offset, 4,
7653 fill_extra_space);
7654 if (target_fa)
7655 adjust_fill_action (target_fa, removed_diff);
7656 else
7657 text_action_add (&target_relax_info->action_list,
7658 ta_fill, target_sec, entry_sec_offset, removed_diff);
7659 }
7660
7661 /* Mark that the literal will be moved to the new location. */
7662 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7663
7664 /* Remove the literal. */
7665 text_action_add (&relax_info->action_list,
7666 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7667
7668 /* If the section is 4-byte aligned, do not add fill. */
7669 if (sec->alignment_power > 2 && target_entry != src_entry)
7670 {
7671 int fill_extra_space;
7672 bfd_vma entry_sec_offset;
7673
7674 if (src_entry)
7675 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7676 else
7677 entry_sec_offset = rel->r_rel.target_offset+4;
7678
7679 /* If the literal range is at the end of the section,
7680 do not add fill. */
7681 fill_extra_space = 0;
7682 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7683 entry_sec_offset);
7684 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7685 fill_extra_space = the_add_entry->size;
7686
7687 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7688 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7689 -4, fill_extra_space);
7690 if (fa)
7691 adjust_fill_action (fa, removed_diff);
7692 else
7693 text_action_add (&relax_info->action_list,
7694 ta_fill, sec, entry_sec_offset, removed_diff);
7695 }
7696
7697 return TRUE;
e0001a05
NC
7698}
7699
7700\f
7701/* Second relaxation pass. */
7702
7703/* Modify all of the relocations to point to the right spot, and if this
7704 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 7705 section size. */
e0001a05 7706
43cd72b9 7707bfd_boolean
7fa3d080 7708relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
7709{
7710 Elf_Internal_Rela *internal_relocs;
7711 xtensa_relax_info *relax_info;
7712 bfd_byte *contents;
7713 bfd_boolean ok = TRUE;
7714 unsigned i;
43cd72b9
BW
7715 bfd_boolean rv = FALSE;
7716 bfd_boolean virtual_action;
7717 bfd_size_type sec_size;
e0001a05 7718
43cd72b9 7719 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
7720 relax_info = get_xtensa_relax_info (sec);
7721 BFD_ASSERT (relax_info);
7722
43cd72b9
BW
7723 /* First translate any of the fixes that have been added already. */
7724 translate_section_fixes (sec);
7725
e0001a05
NC
7726 /* Handle property sections (e.g., literal tables) specially. */
7727 if (xtensa_is_property_section (sec))
7728 {
7729 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7730 return relax_property_section (abfd, sec, link_info);
7731 }
7732
43cd72b9
BW
7733 internal_relocs = retrieve_internal_relocs (abfd, sec,
7734 link_info->keep_memory);
7735 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7736 if (contents == NULL && sec_size != 0)
7737 {
7738 ok = FALSE;
7739 goto error_return;
7740 }
7741
7742 if (internal_relocs)
7743 {
7744 for (i = 0; i < sec->reloc_count; i++)
7745 {
7746 Elf_Internal_Rela *irel;
7747 xtensa_relax_info *target_relax_info;
7748 bfd_vma source_offset, old_source_offset;
7749 r_reloc r_rel;
7750 unsigned r_type;
7751 asection *target_sec;
7752
7753 /* Locally change the source address.
7754 Translate the target to the new target address.
7755 If it points to this section and has been removed,
7756 NULLify it.
7757 Write it back. */
7758
7759 irel = &internal_relocs[i];
7760 source_offset = irel->r_offset;
7761 old_source_offset = source_offset;
7762
7763 r_type = ELF32_R_TYPE (irel->r_info);
7764 r_reloc_init (&r_rel, abfd, irel, contents,
7765 bfd_get_section_limit (abfd, sec));
7766
7767 /* If this section could have changed then we may need to
7768 change the relocation's offset. */
7769
7770 if (relax_info->is_relaxable_literal_section
7771 || relax_info->is_relaxable_asm_section)
7772 {
7773 if (r_type != R_XTENSA_NONE
7774 && find_removed_literal (&relax_info->removed_list,
7775 irel->r_offset))
7776 {
7777 /* Remove this relocation. */
7778 if (elf_hash_table (link_info)->dynamic_sections_created)
7779 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7780 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7781 irel->r_offset = offset_with_removed_text
7782 (&relax_info->action_list, irel->r_offset);
7783 pin_internal_relocs (sec, internal_relocs);
7784 continue;
7785 }
7786
7787 if (r_type == R_XTENSA_ASM_SIMPLIFY)
7788 {
7789 text_action *action =
7790 find_insn_action (&relax_info->action_list,
7791 irel->r_offset);
7792 if (action && (action->action == ta_convert_longcall
7793 || action->action == ta_remove_longcall))
7794 {
7795 bfd_reloc_status_type retval;
7796 char *error_message = NULL;
7797
7798 retval = contract_asm_expansion (contents, sec_size,
7799 irel, &error_message);
7800 if (retval != bfd_reloc_ok)
7801 {
7802 (*link_info->callbacks->reloc_dangerous)
7803 (link_info, error_message, abfd, sec,
7804 irel->r_offset);
7805 goto error_return;
7806 }
7807 /* Update the action so that the code that moves
7808 the contents will do the right thing. */
7809 if (action->action == ta_remove_longcall)
7810 action->action = ta_remove_insn;
7811 else
7812 action->action = ta_none;
7813 /* Refresh the info in the r_rel. */
7814 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7815 r_type = ELF32_R_TYPE (irel->r_info);
7816 }
7817 }
7818
7819 source_offset = offset_with_removed_text
7820 (&relax_info->action_list, irel->r_offset);
7821 irel->r_offset = source_offset;
7822 }
7823
7824 /* If the target section could have changed then
7825 we may need to change the relocation's target offset. */
7826
7827 target_sec = r_reloc_get_section (&r_rel);
7828 target_relax_info = get_xtensa_relax_info (target_sec);
7829
7830 if (target_relax_info
7831 && (target_relax_info->is_relaxable_literal_section
7832 || target_relax_info->is_relaxable_asm_section))
7833 {
7834 r_reloc new_reloc;
7835 reloc_bfd_fix *fix;
7836 bfd_vma addend_displacement;
7837
7838 translate_reloc (&r_rel, &new_reloc);
7839
7840 if (r_type == R_XTENSA_DIFF8
7841 || r_type == R_XTENSA_DIFF16
7842 || r_type == R_XTENSA_DIFF32)
7843 {
7844 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
7845
7846 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
7847 {
7848 (*link_info->callbacks->reloc_dangerous)
7849 (link_info, _("invalid relocation address"),
7850 abfd, sec, old_source_offset);
7851 goto error_return;
7852 }
7853
7854 switch (r_type)
7855 {
7856 case R_XTENSA_DIFF8:
7857 diff_value =
7858 bfd_get_8 (abfd, &contents[old_source_offset]);
7859 break;
7860 case R_XTENSA_DIFF16:
7861 diff_value =
7862 bfd_get_16 (abfd, &contents[old_source_offset]);
7863 break;
7864 case R_XTENSA_DIFF32:
7865 diff_value =
7866 bfd_get_32 (abfd, &contents[old_source_offset]);
7867 break;
7868 }
7869
7870 new_end_offset = offset_with_removed_text
7871 (&target_relax_info->action_list,
7872 r_rel.target_offset + diff_value);
7873 diff_value = new_end_offset - new_reloc.target_offset;
7874
7875 switch (r_type)
7876 {
7877 case R_XTENSA_DIFF8:
7878 diff_mask = 0xff;
7879 bfd_put_8 (abfd, diff_value,
7880 &contents[old_source_offset]);
7881 break;
7882 case R_XTENSA_DIFF16:
7883 diff_mask = 0xffff;
7884 bfd_put_16 (abfd, diff_value,
7885 &contents[old_source_offset]);
7886 break;
7887 case R_XTENSA_DIFF32:
7888 diff_mask = 0xffffffff;
7889 bfd_put_32 (abfd, diff_value,
7890 &contents[old_source_offset]);
7891 break;
7892 }
7893
7894 /* Check for overflow. */
7895 if ((diff_value & ~diff_mask) != 0)
7896 {
7897 (*link_info->callbacks->reloc_dangerous)
7898 (link_info, _("overflow after relaxation"),
7899 abfd, sec, old_source_offset);
7900 goto error_return;
7901 }
7902
7903 pin_contents (sec, contents);
7904 }
7905
7906 /* FIXME: If the relocation still references a section in
7907 the same input file, the relocation should be modified
7908 directly instead of adding a "fix" record. */
7909
7910 addend_displacement =
7911 new_reloc.target_offset + new_reloc.virtual_offset;
7912
7913 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
7914 r_reloc_get_section (&new_reloc),
7915 addend_displacement, TRUE);
7916 add_fix (sec, fix);
7917 }
7918
7919 pin_internal_relocs (sec, internal_relocs);
7920 }
7921 }
7922
7923 if ((relax_info->is_relaxable_literal_section
7924 || relax_info->is_relaxable_asm_section)
7925 && relax_info->action_list.head)
7926 {
7927 /* Walk through the planned actions and build up a table
7928 of move, copy and fill records. Use the move, copy and
7929 fill records to perform the actions once. */
7930
7931 bfd_size_type size = sec->size;
7932 int removed = 0;
7933 bfd_size_type final_size, copy_size, orig_insn_size;
7934 bfd_byte *scratch = NULL;
7935 bfd_byte *dup_contents = NULL;
7936 bfd_size_type orig_size = size;
7937 bfd_vma orig_dot = 0;
7938 bfd_vma orig_dot_copied = 0; /* Byte copied already from
7939 orig dot in physical memory. */
7940 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
7941 bfd_vma dup_dot = 0;
7942
7943 text_action *action = relax_info->action_list.head;
7944
7945 final_size = sec->size;
7946 for (action = relax_info->action_list.head; action;
7947 action = action->next)
7948 {
7949 final_size -= action->removed_bytes;
7950 }
7951
7952 scratch = (bfd_byte *) bfd_zmalloc (final_size);
7953 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
7954
7955 /* The dot is the current fill location. */
7956#if DEBUG
7957 print_action_list (stderr, &relax_info->action_list);
7958#endif
7959
7960 for (action = relax_info->action_list.head; action;
7961 action = action->next)
7962 {
7963 virtual_action = FALSE;
7964 if (action->offset > orig_dot)
7965 {
7966 orig_dot += orig_dot_copied;
7967 orig_dot_copied = 0;
7968 orig_dot_vo = 0;
7969 /* Out of the virtual world. */
7970 }
7971
7972 if (action->offset > orig_dot)
7973 {
7974 copy_size = action->offset - orig_dot;
7975 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
7976 orig_dot += copy_size;
7977 dup_dot += copy_size;
7978 BFD_ASSERT (action->offset == orig_dot);
7979 }
7980 else if (action->offset < orig_dot)
7981 {
7982 if (action->action == ta_fill
7983 && action->offset - action->removed_bytes == orig_dot)
7984 {
7985 /* This is OK because the fill only effects the dup_dot. */
7986 }
7987 else if (action->action == ta_add_literal)
7988 {
7989 /* TBD. Might need to handle this. */
7990 }
7991 }
7992 if (action->offset == orig_dot)
7993 {
7994 if (action->virtual_offset > orig_dot_vo)
7995 {
7996 if (orig_dot_vo == 0)
7997 {
7998 /* Need to copy virtual_offset bytes. Probably four. */
7999 copy_size = action->virtual_offset - orig_dot_vo;
8000 memmove (&dup_contents[dup_dot],
8001 &contents[orig_dot], copy_size);
8002 orig_dot_copied = copy_size;
8003 dup_dot += copy_size;
8004 }
8005 virtual_action = TRUE;
8006 }
8007 else
8008 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8009 }
8010 switch (action->action)
8011 {
8012 case ta_remove_literal:
8013 case ta_remove_insn:
8014 BFD_ASSERT (action->removed_bytes >= 0);
8015 orig_dot += action->removed_bytes;
8016 break;
8017
8018 case ta_narrow_insn:
8019 orig_insn_size = 3;
8020 copy_size = 2;
8021 memmove (scratch, &contents[orig_dot], orig_insn_size);
8022 BFD_ASSERT (action->removed_bytes == 1);
8023 rv = narrow_instruction (scratch, final_size, 0, TRUE);
8024 BFD_ASSERT (rv);
8025 memmove (&dup_contents[dup_dot], scratch, copy_size);
8026 orig_dot += orig_insn_size;
8027 dup_dot += copy_size;
8028 break;
8029
8030 case ta_fill:
8031 if (action->removed_bytes >= 0)
8032 orig_dot += action->removed_bytes;
8033 else
8034 {
8035 /* Already zeroed in dup_contents. Just bump the
8036 counters. */
8037 dup_dot += (-action->removed_bytes);
8038 }
8039 break;
8040
8041 case ta_none:
8042 BFD_ASSERT (action->removed_bytes == 0);
8043 break;
8044
8045 case ta_convert_longcall:
8046 case ta_remove_longcall:
8047 /* These will be removed or converted before we get here. */
8048 BFD_ASSERT (0);
8049 break;
8050
8051 case ta_widen_insn:
8052 orig_insn_size = 2;
8053 copy_size = 3;
8054 memmove (scratch, &contents[orig_dot], orig_insn_size);
8055 BFD_ASSERT (action->removed_bytes == -1);
8056 rv = widen_instruction (scratch, final_size, 0, TRUE);
8057 BFD_ASSERT (rv);
8058 memmove (&dup_contents[dup_dot], scratch, copy_size);
8059 orig_dot += orig_insn_size;
8060 dup_dot += copy_size;
8061 break;
8062
8063 case ta_add_literal:
8064 orig_insn_size = 0;
8065 copy_size = 4;
8066 BFD_ASSERT (action->removed_bytes == -4);
8067 /* TBD -- place the literal value here and insert
8068 into the table. */
8069 memset (&dup_contents[dup_dot], 0, 4);
8070 pin_internal_relocs (sec, internal_relocs);
8071 pin_contents (sec, contents);
8072
8073 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8074 relax_info, &internal_relocs, &action->value))
8075 goto error_return;
8076
8077 if (virtual_action)
8078 orig_dot_vo += copy_size;
8079
8080 orig_dot += orig_insn_size;
8081 dup_dot += copy_size;
8082 break;
8083
8084 default:
8085 /* Not implemented yet. */
8086 BFD_ASSERT (0);
8087 break;
8088 }
8089
8090 size -= action->removed_bytes;
8091 removed += action->removed_bytes;
8092 BFD_ASSERT (dup_dot <= final_size);
8093 BFD_ASSERT (orig_dot <= orig_size);
8094 }
8095
8096 orig_dot += orig_dot_copied;
8097 orig_dot_copied = 0;
8098
8099 if (orig_dot != orig_size)
8100 {
8101 copy_size = orig_size - orig_dot;
8102 BFD_ASSERT (orig_size > orig_dot);
8103 BFD_ASSERT (dup_dot + copy_size == final_size);
8104 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8105 orig_dot += copy_size;
8106 dup_dot += copy_size;
8107 }
8108 BFD_ASSERT (orig_size == orig_dot);
8109 BFD_ASSERT (final_size == dup_dot);
8110
8111 /* Move the dup_contents back. */
8112 if (final_size > orig_size)
8113 {
8114 /* Contents need to be reallocated. Swap the dup_contents into
8115 contents. */
8116 sec->contents = dup_contents;
8117 free (contents);
8118 contents = dup_contents;
8119 pin_contents (sec, contents);
8120 }
8121 else
8122 {
8123 BFD_ASSERT (final_size <= orig_size);
8124 memset (contents, 0, orig_size);
8125 memcpy (contents, dup_contents, final_size);
8126 free (dup_contents);
8127 }
8128 free (scratch);
8129 pin_contents (sec, contents);
8130
8131 sec->size = final_size;
8132 }
8133
8134 error_return:
8135 release_internal_relocs (sec, internal_relocs);
8136 release_contents (sec, contents);
8137 return ok;
8138}
8139
8140
8141static bfd_boolean
7fa3d080 8142translate_section_fixes (asection *sec)
43cd72b9
BW
8143{
8144 xtensa_relax_info *relax_info;
8145 reloc_bfd_fix *r;
8146
8147 relax_info = get_xtensa_relax_info (sec);
8148 if (!relax_info)
8149 return TRUE;
8150
8151 for (r = relax_info->fix_list; r != NULL; r = r->next)
8152 if (!translate_reloc_bfd_fix (r))
8153 return FALSE;
e0001a05 8154
43cd72b9
BW
8155 return TRUE;
8156}
e0001a05 8157
e0001a05 8158
43cd72b9
BW
8159/* Translate a fix given the mapping in the relax info for the target
8160 section. If it has already been translated, no work is required. */
e0001a05 8161
43cd72b9 8162static bfd_boolean
7fa3d080 8163translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8164{
8165 reloc_bfd_fix new_fix;
8166 asection *sec;
8167 xtensa_relax_info *relax_info;
8168 removed_literal *removed;
8169 bfd_vma new_offset, target_offset;
e0001a05 8170
43cd72b9
BW
8171 if (fix->translated)
8172 return TRUE;
e0001a05 8173
43cd72b9
BW
8174 sec = fix->target_sec;
8175 target_offset = fix->target_offset;
e0001a05 8176
43cd72b9
BW
8177 relax_info = get_xtensa_relax_info (sec);
8178 if (!relax_info)
8179 {
8180 fix->translated = TRUE;
8181 return TRUE;
8182 }
e0001a05 8183
43cd72b9 8184 new_fix = *fix;
e0001a05 8185
43cd72b9
BW
8186 /* The fix does not need to be translated if the section cannot change. */
8187 if (!relax_info->is_relaxable_literal_section
8188 && !relax_info->is_relaxable_asm_section)
8189 {
8190 fix->translated = TRUE;
8191 return TRUE;
8192 }
e0001a05 8193
43cd72b9
BW
8194 /* If the literal has been moved and this relocation was on an
8195 opcode, then the relocation should move to the new literal
8196 location. Otherwise, the relocation should move within the
8197 section. */
8198
8199 removed = FALSE;
8200 if (is_operand_relocation (fix->src_type))
8201 {
8202 /* Check if the original relocation is against a literal being
8203 removed. */
8204 removed = find_removed_literal (&relax_info->removed_list,
8205 target_offset);
e0001a05
NC
8206 }
8207
43cd72b9 8208 if (removed)
e0001a05 8209 {
43cd72b9 8210 asection *new_sec;
e0001a05 8211
43cd72b9
BW
8212 /* The fact that there is still a relocation to this literal indicates
8213 that the literal is being coalesced, not simply removed. */
8214 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8215
43cd72b9
BW
8216 /* This was moved to some other address (possibly another section). */
8217 new_sec = r_reloc_get_section (&removed->to);
8218 if (new_sec != sec)
e0001a05 8219 {
43cd72b9
BW
8220 sec = new_sec;
8221 relax_info = get_xtensa_relax_info (sec);
8222 if (!relax_info ||
8223 (!relax_info->is_relaxable_literal_section
8224 && !relax_info->is_relaxable_asm_section))
e0001a05 8225 {
43cd72b9
BW
8226 target_offset = removed->to.target_offset;
8227 new_fix.target_sec = new_sec;
8228 new_fix.target_offset = target_offset;
8229 new_fix.translated = TRUE;
8230 *fix = new_fix;
8231 return TRUE;
e0001a05 8232 }
e0001a05 8233 }
43cd72b9
BW
8234 target_offset = removed->to.target_offset;
8235 new_fix.target_sec = new_sec;
e0001a05 8236 }
43cd72b9
BW
8237
8238 /* The target address may have been moved within its section. */
8239 new_offset = offset_with_removed_text (&relax_info->action_list,
8240 target_offset);
8241
8242 new_fix.target_offset = new_offset;
8243 new_fix.target_offset = new_offset;
8244 new_fix.translated = TRUE;
8245 *fix = new_fix;
8246 return TRUE;
e0001a05
NC
8247}
8248
8249
8250/* Fix up a relocation to take account of removed literals. */
8251
8252static void
7fa3d080 8253translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8254{
8255 asection *sec;
8256 xtensa_relax_info *relax_info;
8257 removed_literal *removed;
43cd72b9 8258 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8259
8260 *new_rel = *orig_rel;
8261
8262 if (!r_reloc_is_defined (orig_rel))
8263 return;
8264 sec = r_reloc_get_section (orig_rel);
8265
8266 relax_info = get_xtensa_relax_info (sec);
8267 BFD_ASSERT (relax_info);
8268
43cd72b9
BW
8269 if (!relax_info->is_relaxable_literal_section
8270 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8271 return;
8272
43cd72b9
BW
8273 target_offset = orig_rel->target_offset;
8274
8275 removed = FALSE;
8276 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8277 {
8278 /* Check if the original relocation is against a literal being
8279 removed. */
8280 removed = find_removed_literal (&relax_info->removed_list,
8281 target_offset);
8282 }
8283 if (removed && removed->to.abfd)
e0001a05
NC
8284 {
8285 asection *new_sec;
8286
8287 /* The fact that there is still a relocation to this literal indicates
8288 that the literal is being coalesced, not simply removed. */
8289 BFD_ASSERT (removed->to.abfd != NULL);
8290
43cd72b9
BW
8291 /* This was moved to some other address
8292 (possibly in another section). */
e0001a05
NC
8293 *new_rel = removed->to;
8294 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8295 if (new_sec != sec)
e0001a05
NC
8296 {
8297 sec = new_sec;
8298 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8299 if (!relax_info
8300 || (!relax_info->is_relaxable_literal_section
8301 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8302 return;
8303 }
43cd72b9 8304 target_offset = new_rel->target_offset;
e0001a05
NC
8305 }
8306
8307 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8308 new_offset = offset_with_removed_text (&relax_info->action_list,
8309 target_offset);
e0001a05
NC
8310
8311 /* Modify the offset and addend. */
43cd72b9 8312 removed_bytes = target_offset - new_offset;
e0001a05 8313 new_rel->target_offset = new_offset;
43cd72b9 8314 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8315}
8316
8317
8318/* For dynamic links, there may be a dynamic relocation for each
8319 literal. The number of dynamic relocations must be computed in
8320 size_dynamic_sections, which occurs before relaxation. When a
8321 literal is removed, this function checks if there is a corresponding
8322 dynamic relocation and shrinks the size of the appropriate dynamic
8323 relocation section accordingly. At this point, the contents of the
8324 dynamic relocation sections have not yet been filled in, so there's
8325 nothing else that needs to be done. */
8326
8327static void
7fa3d080
BW
8328shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8329 bfd *abfd,
8330 asection *input_section,
8331 Elf_Internal_Rela *rel)
e0001a05
NC
8332{
8333 Elf_Internal_Shdr *symtab_hdr;
8334 struct elf_link_hash_entry **sym_hashes;
8335 unsigned long r_symndx;
8336 int r_type;
8337 struct elf_link_hash_entry *h;
8338 bfd_boolean dynamic_symbol;
8339
8340 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8341 sym_hashes = elf_sym_hashes (abfd);
8342
8343 r_type = ELF32_R_TYPE (rel->r_info);
8344 r_symndx = ELF32_R_SYM (rel->r_info);
8345
8346 if (r_symndx < symtab_hdr->sh_info)
8347 h = NULL;
8348 else
8349 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8350
571b5725 8351 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05
NC
8352
8353 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8354 && (input_section->flags & SEC_ALLOC) != 0
8355 && (dynamic_symbol || info->shared))
8356 {
8357 bfd *dynobj;
8358 const char *srel_name;
8359 asection *srel;
8360 bfd_boolean is_plt = FALSE;
8361
8362 dynobj = elf_hash_table (info)->dynobj;
8363 BFD_ASSERT (dynobj != NULL);
8364
8365 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8366 {
8367 srel_name = ".rela.plt";
8368 is_plt = TRUE;
8369 }
8370 else
8371 srel_name = ".rela.got";
8372
8373 /* Reduce size of the .rela.* section by one reloc. */
8374 srel = bfd_get_section_by_name (dynobj, srel_name);
8375 BFD_ASSERT (srel != NULL);
eea6121a
AM
8376 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8377 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8378
8379 if (is_plt)
8380 {
8381 asection *splt, *sgotplt, *srelgot;
8382 int reloc_index, chunk;
8383
8384 /* Find the PLT reloc index of the entry being removed. This
8385 is computed from the size of ".rela.plt". It is needed to
8386 figure out which PLT chunk to resize. Usually "last index
8387 = size - 1" since the index starts at zero, but in this
8388 context, the size has just been decremented so there's no
8389 need to subtract one. */
eea6121a 8390 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8391
8392 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8393 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8394 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8395 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8396
8397 /* Check if an entire PLT chunk has just been eliminated. */
8398 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8399 {
8400 /* The two magic GOT entries for that chunk can go away. */
8401 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8402 BFD_ASSERT (srelgot != NULL);
8403 srelgot->reloc_count -= 2;
eea6121a
AM
8404 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8405 sgotplt->size -= 8;
e0001a05
NC
8406
8407 /* There should be only one entry left (and it will be
8408 removed below). */
eea6121a
AM
8409 BFD_ASSERT (sgotplt->size == 4);
8410 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8411 }
8412
eea6121a
AM
8413 BFD_ASSERT (sgotplt->size >= 4);
8414 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8415
eea6121a
AM
8416 sgotplt->size -= 4;
8417 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8418 }
8419 }
8420}
8421
8422
43cd72b9
BW
8423/* Take an r_rel and move it to another section. This usually
8424 requires extending the interal_relocation array and pinning it. If
8425 the original r_rel is from the same BFD, we can complete this here.
8426 Otherwise, we add a fix record to let the final link fix the
8427 appropriate address. Contents and internal relocations for the
8428 section must be pinned after calling this routine. */
8429
8430static bfd_boolean
7fa3d080
BW
8431move_literal (bfd *abfd,
8432 struct bfd_link_info *link_info,
8433 asection *sec,
8434 bfd_vma offset,
8435 bfd_byte *contents,
8436 xtensa_relax_info *relax_info,
8437 Elf_Internal_Rela **internal_relocs_p,
8438 const literal_value *lit)
43cd72b9
BW
8439{
8440 Elf_Internal_Rela *new_relocs = NULL;
8441 size_t new_relocs_count = 0;
8442 Elf_Internal_Rela this_rela;
8443 const r_reloc *r_rel;
8444
8445 r_rel = &lit->r_rel;
8446 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8447
8448 if (r_reloc_is_const (r_rel))
8449 bfd_put_32 (abfd, lit->value, contents + offset);
8450 else
8451 {
8452 int r_type;
8453 unsigned i;
8454 asection *target_sec;
8455 reloc_bfd_fix *fix;
8456 unsigned insert_at;
8457
8458 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8459 target_sec = r_reloc_get_section (r_rel);
8460
8461 /* This is the difficult case. We have to create a fix up. */
8462 this_rela.r_offset = offset;
8463 this_rela.r_info = ELF32_R_INFO (0, r_type);
8464 this_rela.r_addend =
8465 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8466 bfd_put_32 (abfd, lit->value, contents + offset);
8467
8468 /* Currently, we cannot move relocations during a relocatable link. */
8469 BFD_ASSERT (!link_info->relocatable);
8470 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8471 r_reloc_get_section (r_rel),
8472 r_rel->target_offset + r_rel->virtual_offset,
8473 FALSE);
8474 /* We also need to mark that relocations are needed here. */
8475 sec->flags |= SEC_RELOC;
8476
8477 translate_reloc_bfd_fix (fix);
8478 /* This fix has not yet been translated. */
8479 add_fix (sec, fix);
8480
8481 /* Add the relocation. If we have already allocated our own
8482 space for the relocations and we have room for more, then use
8483 it. Otherwise, allocate new space and move the literals. */
8484 insert_at = sec->reloc_count;
8485 for (i = 0; i < sec->reloc_count; ++i)
8486 {
8487 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8488 {
8489 insert_at = i;
8490 break;
8491 }
8492 }
8493
8494 if (*internal_relocs_p != relax_info->allocated_relocs
8495 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8496 {
8497 BFD_ASSERT (relax_info->allocated_relocs == NULL
8498 || sec->reloc_count == relax_info->relocs_count);
8499
8500 if (relax_info->allocated_relocs_count == 0)
8501 new_relocs_count = (sec->reloc_count + 2) * 2;
8502 else
8503 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8504
8505 new_relocs = (Elf_Internal_Rela *)
8506 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8507 if (!new_relocs)
8508 return FALSE;
8509
8510 /* We could handle this more quickly by finding the split point. */
8511 if (insert_at != 0)
8512 memcpy (new_relocs, *internal_relocs_p,
8513 insert_at * sizeof (Elf_Internal_Rela));
8514
8515 new_relocs[insert_at] = this_rela;
8516
8517 if (insert_at != sec->reloc_count)
8518 memcpy (new_relocs + insert_at + 1,
8519 (*internal_relocs_p) + insert_at,
8520 (sec->reloc_count - insert_at)
8521 * sizeof (Elf_Internal_Rela));
8522
8523 if (*internal_relocs_p != relax_info->allocated_relocs)
8524 {
8525 /* The first time we re-allocate, we can only free the
8526 old relocs if they were allocated with bfd_malloc.
8527 This is not true when keep_memory is in effect. */
8528 if (!link_info->keep_memory)
8529 free (*internal_relocs_p);
8530 }
8531 else
8532 free (*internal_relocs_p);
8533 relax_info->allocated_relocs = new_relocs;
8534 relax_info->allocated_relocs_count = new_relocs_count;
8535 elf_section_data (sec)->relocs = new_relocs;
8536 sec->reloc_count++;
8537 relax_info->relocs_count = sec->reloc_count;
8538 *internal_relocs_p = new_relocs;
8539 }
8540 else
8541 {
8542 if (insert_at != sec->reloc_count)
8543 {
8544 unsigned idx;
8545 for (idx = sec->reloc_count; idx > insert_at; idx--)
8546 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8547 }
8548 (*internal_relocs_p)[insert_at] = this_rela;
8549 sec->reloc_count++;
8550 if (relax_info->allocated_relocs)
8551 relax_info->relocs_count = sec->reloc_count;
8552 }
8553 }
8554 return TRUE;
8555}
8556
8557
e0001a05
NC
8558/* This is similar to relax_section except that when a target is moved,
8559 we shift addresses up. We also need to modify the size. This
8560 algorithm does NOT allow for relocations into the middle of the
8561 property sections. */
8562
43cd72b9 8563static bfd_boolean
7fa3d080
BW
8564relax_property_section (bfd *abfd,
8565 asection *sec,
8566 struct bfd_link_info *link_info)
e0001a05
NC
8567{
8568 Elf_Internal_Rela *internal_relocs;
8569 bfd_byte *contents;
8570 unsigned i, nexti;
8571 bfd_boolean ok = TRUE;
43cd72b9
BW
8572 bfd_boolean is_full_prop_section;
8573 size_t last_zfill_target_offset = 0;
8574 asection *last_zfill_target_sec = NULL;
8575 bfd_size_type sec_size;
e0001a05 8576
43cd72b9 8577 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8578 internal_relocs = retrieve_internal_relocs (abfd, sec,
8579 link_info->keep_memory);
8580 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8581 if (contents == NULL && sec_size != 0)
e0001a05
NC
8582 {
8583 ok = FALSE;
8584 goto error_return;
8585 }
8586
43cd72b9
BW
8587 is_full_prop_section =
8588 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8589 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8590 sizeof ".gnu.linkonce.prop." - 1) == 0));
8591
8592 if (internal_relocs)
e0001a05 8593 {
43cd72b9 8594 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8595 {
8596 Elf_Internal_Rela *irel;
8597 xtensa_relax_info *target_relax_info;
e0001a05
NC
8598 unsigned r_type;
8599 asection *target_sec;
43cd72b9
BW
8600 literal_value val;
8601 bfd_byte *size_p, *flags_p;
e0001a05
NC
8602
8603 /* Locally change the source address.
8604 Translate the target to the new target address.
8605 If it points to this section and has been removed, MOVE IT.
8606 Also, don't forget to modify the associated SIZE at
8607 (offset + 4). */
8608
8609 irel = &internal_relocs[i];
8610 r_type = ELF32_R_TYPE (irel->r_info);
8611 if (r_type == R_XTENSA_NONE)
8612 continue;
8613
43cd72b9
BW
8614 /* Find the literal value. */
8615 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8616 size_p = &contents[irel->r_offset + 4];
8617 flags_p = NULL;
8618 if (is_full_prop_section)
8619 {
8620 flags_p = &contents[irel->r_offset + 8];
8621 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8622 }
8623 else
8624 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
e0001a05 8625
43cd72b9 8626 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8627 target_relax_info = get_xtensa_relax_info (target_sec);
8628
8629 if (target_relax_info
43cd72b9
BW
8630 && (target_relax_info->is_relaxable_literal_section
8631 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8632 {
8633 /* Translate the relocation's destination. */
43cd72b9 8634 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8635 long old_size, new_size;
8636
43cd72b9
BW
8637 new_offset = offset_with_removed_text
8638 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8639
8640 /* Assert that we are not out of bounds. */
43cd72b9
BW
8641 old_size = bfd_get_32 (abfd, size_p);
8642
8643 if (old_size == 0)
8644 {
8645 /* Only the first zero-sized unreachable entry is
8646 allowed to expand. In this case the new offset
8647 should be the offset before the fill and the new
8648 size is the expansion size. For other zero-sized
8649 entries the resulting size should be zero with an
8650 offset before or after the fill address depending
8651 on whether the expanding unreachable entry
8652 preceeds it. */
8653 if (last_zfill_target_sec
8654 && last_zfill_target_sec == target_sec
8655 && last_zfill_target_offset == val.r_rel.target_offset)
8656 new_end_offset = new_offset;
8657 else
8658 {
8659 new_end_offset = new_offset;
8660 new_offset = offset_with_removed_text_before_fill
8661 (&target_relax_info->action_list,
8662 val.r_rel.target_offset);
8663
8664 /* If it is not unreachable and we have not yet
8665 seen an unreachable at this address, place it
8666 before the fill address. */
8667 if (!flags_p
8668 || (bfd_get_32 (abfd, flags_p)
8669 & XTENSA_PROP_UNREACHABLE) == 0)
8670 new_end_offset = new_offset;
8671 else
8672 {
8673 last_zfill_target_sec = target_sec;
8674 last_zfill_target_offset = val.r_rel.target_offset;
8675 }
8676 }
8677 }
8678 else
8679 {
8680 new_end_offset = offset_with_removed_text_before_fill
8681 (&target_relax_info->action_list,
8682 val.r_rel.target_offset + old_size);
8683 }
e0001a05 8684
e0001a05 8685 new_size = new_end_offset - new_offset;
43cd72b9 8686
e0001a05
NC
8687 if (new_size != old_size)
8688 {
8689 bfd_put_32 (abfd, new_size, size_p);
8690 pin_contents (sec, contents);
8691 }
43cd72b9
BW
8692
8693 if (new_offset != val.r_rel.target_offset)
e0001a05 8694 {
43cd72b9 8695 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
8696 irel->r_addend += diff;
8697 pin_internal_relocs (sec, internal_relocs);
8698 }
8699 }
8700 }
8701 }
8702
8703 /* Combine adjacent property table entries. This is also done in
8704 finish_dynamic_sections() but at that point it's too late to
8705 reclaim the space in the output section, so we do this twice. */
8706
43cd72b9
BW
8707 if (internal_relocs && (!link_info->relocatable
8708 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
e0001a05
NC
8709 {
8710 Elf_Internal_Rela *last_irel = NULL;
8711 int removed_bytes = 0;
8712 bfd_vma offset, last_irel_offset;
8713 bfd_vma section_size;
43cd72b9
BW
8714 bfd_size_type entry_size;
8715 flagword predef_flags;
8716
8717 if (is_full_prop_section)
8718 entry_size = 12;
8719 else
8720 entry_size = 8;
8721
8722 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05
NC
8723
8724 /* Walk over memory and irels at the same time.
8725 This REQUIRES that the internal_relocs be sorted by offset. */
8726 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8727 internal_reloc_compare);
8728 nexti = 0; /* Index into internal_relocs. */
8729
8730 pin_internal_relocs (sec, internal_relocs);
8731 pin_contents (sec, contents);
8732
8733 last_irel_offset = (bfd_vma) -1;
eea6121a 8734 section_size = sec->size;
43cd72b9 8735 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 8736
43cd72b9 8737 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
8738 {
8739 Elf_Internal_Rela *irel, *next_irel;
8740 bfd_vma bytes_to_remove, size, actual_offset;
8741 bfd_boolean remove_this_irel;
43cd72b9 8742 flagword flags;
e0001a05
NC
8743
8744 irel = NULL;
8745 next_irel = NULL;
8746
8747 /* Find the next two relocations (if there are that many left),
8748 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8749 the starting reloc index. After these two loops, "i"
8750 is the index of the first non-NONE reloc past that starting
8751 index, and "nexti" is the index for the next non-NONE reloc
8752 after "i". */
8753
8754 for (i = nexti; i < sec->reloc_count; i++)
8755 {
8756 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
8757 {
8758 irel = &internal_relocs[i];
8759 break;
8760 }
8761 internal_relocs[i].r_offset -= removed_bytes;
8762 }
8763
8764 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
8765 {
8766 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
8767 != R_XTENSA_NONE)
8768 {
8769 next_irel = &internal_relocs[nexti];
8770 break;
8771 }
8772 internal_relocs[nexti].r_offset -= removed_bytes;
8773 }
8774
8775 remove_this_irel = FALSE;
8776 bytes_to_remove = 0;
8777 actual_offset = offset - removed_bytes;
8778 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
8779
43cd72b9
BW
8780 if (is_full_prop_section)
8781 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
8782 else
8783 flags = predef_flags;
8784
e0001a05
NC
8785 /* Check that the irels are sorted by offset,
8786 with only one per address. */
8787 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
8788 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
8789
43cd72b9
BW
8790 /* Make sure there aren't relocs on the size or flag fields. */
8791 if ((irel && irel->r_offset == offset + 4)
8792 || (is_full_prop_section
8793 && irel && irel->r_offset == offset + 8))
e0001a05
NC
8794 {
8795 irel->r_offset -= removed_bytes;
8796 last_irel_offset = irel->r_offset;
8797 }
43cd72b9
BW
8798 else if (next_irel && (next_irel->r_offset == offset + 4
8799 || (is_full_prop_section
8800 && next_irel->r_offset == offset + 8)))
e0001a05
NC
8801 {
8802 nexti += 1;
8803 irel->r_offset -= removed_bytes;
8804 next_irel->r_offset -= removed_bytes;
8805 last_irel_offset = next_irel->r_offset;
8806 }
43cd72b9
BW
8807 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
8808 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 8809 {
43cd72b9
BW
8810 /* Always remove entries with zero size and no alignment. */
8811 bytes_to_remove = entry_size;
e0001a05
NC
8812 if (irel && irel->r_offset == offset)
8813 {
8814 remove_this_irel = TRUE;
8815
8816 irel->r_offset -= removed_bytes;
8817 last_irel_offset = irel->r_offset;
8818 }
8819 }
8820 else if (irel && irel->r_offset == offset)
8821 {
8822 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
8823 {
8824 if (last_irel)
8825 {
43cd72b9
BW
8826 flagword old_flags;
8827 bfd_vma old_size =
e0001a05 8828 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
43cd72b9
BW
8829 bfd_vma old_address =
8830 (last_irel->r_addend
e0001a05 8831 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
43cd72b9
BW
8832 bfd_vma new_address =
8833 (irel->r_addend
e0001a05 8834 + bfd_get_32 (abfd, &contents[actual_offset]));
43cd72b9
BW
8835 if (is_full_prop_section)
8836 old_flags = bfd_get_32
8837 (abfd, &contents[last_irel->r_offset + 8]);
8838 else
8839 old_flags = predef_flags;
8840
8841 if ((ELF32_R_SYM (irel->r_info)
8842 == ELF32_R_SYM (last_irel->r_info))
8843 && old_address + old_size == new_address
8844 && old_flags == flags
8845 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
8846 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 8847 {
43cd72b9 8848 /* Fix the old size. */
e0001a05
NC
8849 bfd_put_32 (abfd, old_size + size,
8850 &contents[last_irel->r_offset + 4]);
43cd72b9 8851 bytes_to_remove = entry_size;
e0001a05
NC
8852 remove_this_irel = TRUE;
8853 }
8854 else
8855 last_irel = irel;
8856 }
8857 else
8858 last_irel = irel;
8859 }
8860
8861 irel->r_offset -= removed_bytes;
8862 last_irel_offset = irel->r_offset;
8863 }
8864
8865 if (remove_this_irel)
8866 {
8867 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8868 irel->r_offset -= bytes_to_remove;
8869 }
8870
8871 if (bytes_to_remove != 0)
8872 {
8873 removed_bytes += bytes_to_remove;
43cd72b9 8874 if (offset + bytes_to_remove < section_size)
e0001a05 8875 memmove (&contents[actual_offset],
43cd72b9
BW
8876 &contents[actual_offset + bytes_to_remove],
8877 section_size - offset - bytes_to_remove);
e0001a05
NC
8878 }
8879 }
8880
43cd72b9 8881 if (removed_bytes)
e0001a05
NC
8882 {
8883 /* Clear the removed bytes. */
8884 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
8885
eea6121a 8886 sec->size = section_size - removed_bytes;
e901de89
BW
8887
8888 if (xtensa_is_littable_section (sec))
8889 {
8890 bfd *dynobj = elf_hash_table (link_info)->dynobj;
8891 if (dynobj)
8892 {
8893 asection *sgotloc =
8894 bfd_get_section_by_name (dynobj, ".got.loc");
8895 if (sgotloc)
eea6121a 8896 sgotloc->size -= removed_bytes;
e901de89
BW
8897 }
8898 }
e0001a05
NC
8899 }
8900 }
e901de89 8901
e0001a05
NC
8902 error_return:
8903 release_internal_relocs (sec, internal_relocs);
8904 release_contents (sec, contents);
8905 return ok;
8906}
8907
8908\f
8909/* Third relaxation pass. */
8910
8911/* Change symbol values to account for removed literals. */
8912
43cd72b9 8913bfd_boolean
7fa3d080 8914relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
8915{
8916 xtensa_relax_info *relax_info;
8917 unsigned int sec_shndx;
8918 Elf_Internal_Shdr *symtab_hdr;
8919 Elf_Internal_Sym *isymbuf;
8920 unsigned i, num_syms, num_locals;
8921
8922 relax_info = get_xtensa_relax_info (sec);
8923 BFD_ASSERT (relax_info);
8924
43cd72b9
BW
8925 if (!relax_info->is_relaxable_literal_section
8926 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8927 return TRUE;
8928
8929 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8930
8931 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8932 isymbuf = retrieve_local_syms (abfd);
8933
8934 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
8935 num_locals = symtab_hdr->sh_info;
8936
8937 /* Adjust the local symbols defined in this section. */
8938 for (i = 0; i < num_locals; i++)
8939 {
8940 Elf_Internal_Sym *isym = &isymbuf[i];
8941
8942 if (isym->st_shndx == sec_shndx)
8943 {
43cd72b9
BW
8944 bfd_vma new_address = offset_with_removed_text
8945 (&relax_info->action_list, isym->st_value);
8946 bfd_vma new_size = isym->st_size;
8947
8948 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
8949 {
8950 bfd_vma new_end = offset_with_removed_text
8951 (&relax_info->action_list, isym->st_value + isym->st_size);
8952 new_size = new_end - new_address;
8953 }
8954
8955 isym->st_value = new_address;
8956 isym->st_size = new_size;
e0001a05
NC
8957 }
8958 }
8959
8960 /* Now adjust the global symbols defined in this section. */
8961 for (i = 0; i < (num_syms - num_locals); i++)
8962 {
8963 struct elf_link_hash_entry *sym_hash;
8964
8965 sym_hash = elf_sym_hashes (abfd)[i];
8966
8967 if (sym_hash->root.type == bfd_link_hash_warning)
8968 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
8969
8970 if ((sym_hash->root.type == bfd_link_hash_defined
8971 || sym_hash->root.type == bfd_link_hash_defweak)
8972 && sym_hash->root.u.def.section == sec)
8973 {
43cd72b9
BW
8974 bfd_vma new_address = offset_with_removed_text
8975 (&relax_info->action_list, sym_hash->root.u.def.value);
8976 bfd_vma new_size = sym_hash->size;
8977
8978 if (sym_hash->type == STT_FUNC)
8979 {
8980 bfd_vma new_end = offset_with_removed_text
8981 (&relax_info->action_list,
8982 sym_hash->root.u.def.value + sym_hash->size);
8983 new_size = new_end - new_address;
8984 }
8985
8986 sym_hash->root.u.def.value = new_address;
8987 sym_hash->size = new_size;
e0001a05
NC
8988 }
8989 }
8990
8991 return TRUE;
8992}
8993
8994\f
8995/* "Fix" handling functions, called while performing relocations. */
8996
43cd72b9 8997static bfd_boolean
7fa3d080
BW
8998do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
8999 bfd *input_bfd,
9000 asection *input_section,
9001 bfd_byte *contents)
e0001a05
NC
9002{
9003 r_reloc r_rel;
9004 asection *sec, *old_sec;
9005 bfd_vma old_offset;
9006 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9007 reloc_bfd_fix *fix;
9008
9009 if (r_type == R_XTENSA_NONE)
43cd72b9 9010 return TRUE;
e0001a05 9011
43cd72b9
BW
9012 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9013 if (!fix)
9014 return TRUE;
e0001a05 9015
43cd72b9
BW
9016 r_reloc_init (&r_rel, input_bfd, rel, contents,
9017 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9018 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9019 old_offset = r_rel.target_offset;
9020
9021 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9022 {
43cd72b9
BW
9023 if (r_type != R_XTENSA_ASM_EXPAND)
9024 {
9025 (*_bfd_error_handler)
9026 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9027 input_bfd, input_section, rel->r_offset,
9028 elf_howto_table[r_type].name);
9029 return FALSE;
9030 }
e0001a05
NC
9031 /* Leave it be. Resolution will happen in a later stage. */
9032 }
9033 else
9034 {
9035 sec = fix->target_sec;
9036 rel->r_addend += ((sec->output_offset + fix->target_offset)
9037 - (old_sec->output_offset + old_offset));
9038 }
43cd72b9 9039 return TRUE;
e0001a05
NC
9040}
9041
9042
9043static void
7fa3d080
BW
9044do_fix_for_final_link (Elf_Internal_Rela *rel,
9045 bfd *input_bfd,
9046 asection *input_section,
9047 bfd_byte *contents,
9048 bfd_vma *relocationp)
e0001a05
NC
9049{
9050 asection *sec;
9051 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9052 reloc_bfd_fix *fix;
43cd72b9 9053 bfd_vma fixup_diff;
e0001a05
NC
9054
9055 if (r_type == R_XTENSA_NONE)
9056 return;
9057
43cd72b9
BW
9058 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9059 if (!fix)
e0001a05
NC
9060 return;
9061
9062 sec = fix->target_sec;
43cd72b9
BW
9063
9064 fixup_diff = rel->r_addend;
9065 if (elf_howto_table[fix->src_type].partial_inplace)
9066 {
9067 bfd_vma inplace_val;
9068 BFD_ASSERT (fix->src_offset
9069 < bfd_get_section_limit (input_bfd, input_section));
9070 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9071 fixup_diff += inplace_val;
9072 }
9073
e0001a05
NC
9074 *relocationp = (sec->output_section->vma
9075 + sec->output_offset
43cd72b9 9076 + fix->target_offset - fixup_diff);
e0001a05
NC
9077}
9078
9079\f
9080/* Miscellaneous utility functions.... */
9081
9082static asection *
7fa3d080 9083elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
e0001a05
NC
9084{
9085 char plt_name[10];
9086
9087 if (chunk == 0)
9088 return bfd_get_section_by_name (dynobj, ".plt");
9089
9090 sprintf (plt_name, ".plt.%u", chunk);
9091 return bfd_get_section_by_name (dynobj, plt_name);
9092}
9093
9094
9095static asection *
7fa3d080 9096elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
e0001a05
NC
9097{
9098 char got_name[14];
9099
9100 if (chunk == 0)
9101 return bfd_get_section_by_name (dynobj, ".got.plt");
9102
9103 sprintf (got_name, ".got.plt.%u", chunk);
9104 return bfd_get_section_by_name (dynobj, got_name);
9105}
9106
9107
9108/* Get the input section for a given symbol index.
9109 If the symbol is:
9110 . a section symbol, return the section;
9111 . a common symbol, return the common section;
9112 . an undefined symbol, return the undefined section;
9113 . an indirect symbol, follow the links;
9114 . an absolute value, return the absolute section. */
9115
9116static asection *
7fa3d080 9117get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9118{
9119 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9120 asection *target_sec = NULL;
43cd72b9 9121 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9122 {
9123 Elf_Internal_Sym *isymbuf;
9124 unsigned int section_index;
9125
9126 isymbuf = retrieve_local_syms (abfd);
9127 section_index = isymbuf[r_symndx].st_shndx;
9128
9129 if (section_index == SHN_UNDEF)
9130 target_sec = bfd_und_section_ptr;
9131 else if (section_index > 0 && section_index < SHN_LORESERVE)
9132 target_sec = bfd_section_from_elf_index (abfd, section_index);
9133 else if (section_index == SHN_ABS)
9134 target_sec = bfd_abs_section_ptr;
9135 else if (section_index == SHN_COMMON)
9136 target_sec = bfd_com_section_ptr;
43cd72b9 9137 else
e0001a05
NC
9138 /* Who knows? */
9139 target_sec = NULL;
9140 }
9141 else
9142 {
9143 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9144 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9145
9146 while (h->root.type == bfd_link_hash_indirect
9147 || h->root.type == bfd_link_hash_warning)
9148 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9149
9150 switch (h->root.type)
9151 {
9152 case bfd_link_hash_defined:
9153 case bfd_link_hash_defweak:
9154 target_sec = h->root.u.def.section;
9155 break;
9156 case bfd_link_hash_common:
9157 target_sec = bfd_com_section_ptr;
9158 break;
9159 case bfd_link_hash_undefined:
9160 case bfd_link_hash_undefweak:
9161 target_sec = bfd_und_section_ptr;
9162 break;
9163 default: /* New indirect warning. */
9164 target_sec = bfd_und_section_ptr;
9165 break;
9166 }
9167 }
9168 return target_sec;
9169}
9170
9171
9172static struct elf_link_hash_entry *
7fa3d080 9173get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9174{
9175 unsigned long indx;
9176 struct elf_link_hash_entry *h;
9177 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9178
9179 if (r_symndx < symtab_hdr->sh_info)
9180 return NULL;
43cd72b9 9181
e0001a05
NC
9182 indx = r_symndx - symtab_hdr->sh_info;
9183 h = elf_sym_hashes (abfd)[indx];
9184 while (h->root.type == bfd_link_hash_indirect
9185 || h->root.type == bfd_link_hash_warning)
9186 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9187 return h;
9188}
9189
9190
9191/* Get the section-relative offset for a symbol number. */
9192
9193static bfd_vma
7fa3d080 9194get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9195{
9196 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9197 bfd_vma offset = 0;
9198
43cd72b9 9199 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9200 {
9201 Elf_Internal_Sym *isymbuf;
9202 isymbuf = retrieve_local_syms (abfd);
9203 offset = isymbuf[r_symndx].st_value;
9204 }
9205 else
9206 {
9207 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9208 struct elf_link_hash_entry *h =
9209 elf_sym_hashes (abfd)[indx];
9210
9211 while (h->root.type == bfd_link_hash_indirect
9212 || h->root.type == bfd_link_hash_warning)
9213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9214 if (h->root.type == bfd_link_hash_defined
9215 || h->root.type == bfd_link_hash_defweak)
9216 offset = h->root.u.def.value;
9217 }
9218 return offset;
9219}
9220
9221
9222static bfd_boolean
7fa3d080 9223is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9224{
9225 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9226 struct elf_link_hash_entry *h;
9227
9228 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9229 if (h && h->root.type == bfd_link_hash_defweak)
9230 return TRUE;
9231 return FALSE;
9232}
9233
9234
9235static bfd_boolean
7fa3d080
BW
9236pcrel_reloc_fits (xtensa_opcode opc,
9237 int opnd,
9238 bfd_vma self_address,
9239 bfd_vma dest_address)
e0001a05 9240{
43cd72b9
BW
9241 xtensa_isa isa = xtensa_default_isa;
9242 uint32 valp = dest_address;
9243 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9244 || xtensa_operand_encode (isa, opc, opnd, &valp))
9245 return FALSE;
9246 return TRUE;
e0001a05
NC
9247}
9248
9249
b614a702
BW
9250static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9251static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9252static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
43cd72b9 9253static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
b614a702
BW
9254
9255
e0001a05 9256static bfd_boolean
7fa3d080 9257xtensa_is_property_section (asection *sec)
e0001a05 9258{
b614a702 9259 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
43cd72b9
BW
9260 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9261 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
b614a702 9262 return TRUE;
e901de89 9263
b614a702 9264 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
43cd72b9
BW
9265 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9266 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9267 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
e901de89
BW
9268 return TRUE;
9269
e901de89
BW
9270 return FALSE;
9271}
9272
9273
9274static bfd_boolean
7fa3d080 9275xtensa_is_littable_section (asection *sec)
e901de89 9276{
b614a702
BW
9277 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9278 return TRUE;
e901de89 9279
b614a702
BW
9280 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9281 && sec->name[linkonce_len] == 'p'
9282 && sec->name[linkonce_len + 1] == '.')
e901de89 9283 return TRUE;
e0001a05 9284
e901de89 9285 return FALSE;
e0001a05
NC
9286}
9287
9288
43cd72b9 9289static int
7fa3d080 9290internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9291{
43cd72b9
BW
9292 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9293 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9294
9295 if (a->r_offset != b->r_offset)
9296 return (a->r_offset - b->r_offset);
9297
9298 /* We don't need to sort on these criteria for correctness,
9299 but enforcing a more strict ordering prevents unstable qsort
9300 from behaving differently with different implementations.
9301 Without the code below we get correct but different results
9302 on Solaris 2.7 and 2.8. We would like to always produce the
9303 same results no matter the host. */
9304
9305 if (a->r_info != b->r_info)
9306 return (a->r_info - b->r_info);
9307
9308 return (a->r_addend - b->r_addend);
e0001a05
NC
9309}
9310
9311
9312static int
7fa3d080 9313internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9314{
9315 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9316 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9317
43cd72b9
BW
9318 /* Check if one entry overlaps with the other; this shouldn't happen
9319 except when searching for a match. */
e0001a05
NC
9320 return (a->r_offset - b->r_offset);
9321}
9322
9323
e0001a05 9324char *
7fa3d080 9325xtensa_get_property_section_name (asection *sec, const char *base_name)
e0001a05 9326{
b614a702 9327 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9328 {
b614a702
BW
9329 char *prop_sec_name;
9330 const char *suffix;
43cd72b9 9331 char *linkonce_kind = 0;
b614a702
BW
9332
9333 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9334 linkonce_kind = "x.";
b614a702 9335 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9336 linkonce_kind = "p.";
43cd72b9
BW
9337 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9338 linkonce_kind = "prop.";
e0001a05 9339 else
b614a702
BW
9340 abort ();
9341
43cd72b9
BW
9342 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9343 + strlen (linkonce_kind) + 1);
b614a702 9344 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9345 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9346
9347 suffix = sec->name + linkonce_len;
096c35a7 9348 /* For backward compatibility, replace "t." instead of inserting
43cd72b9
BW
9349 the new linkonce_kind (but not for "prop" sections). */
9350 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9351 suffix += 2;
9352 strcat (prop_sec_name + linkonce_len, suffix);
b614a702
BW
9353
9354 return prop_sec_name;
e0001a05
NC
9355 }
9356
b614a702 9357 return strdup (base_name);
e0001a05
NC
9358}
9359
43cd72b9
BW
9360
9361flagword
7fa3d080 9362xtensa_get_property_predef_flags (asection *sec)
43cd72b9
BW
9363{
9364 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9365 || strncmp (sec->name, ".gnu.linkonce.x.",
9366 sizeof ".gnu.linkonce.x." - 1) == 0)
9367 return (XTENSA_PROP_INSN
9368 | XTENSA_PROP_INSN_NO_TRANSFORM
9369 | XTENSA_PROP_INSN_NO_REORDER);
9370
9371 if (xtensa_is_littable_section (sec))
9372 return (XTENSA_PROP_LITERAL
9373 | XTENSA_PROP_INSN_NO_TRANSFORM
9374 | XTENSA_PROP_INSN_NO_REORDER);
9375
9376 return 0;
9377}
9378
e0001a05
NC
9379\f
9380/* Other functions called directly by the linker. */
9381
9382bfd_boolean
7fa3d080
BW
9383xtensa_callback_required_dependence (bfd *abfd,
9384 asection *sec,
9385 struct bfd_link_info *link_info,
9386 deps_callback_t callback,
9387 void *closure)
e0001a05
NC
9388{
9389 Elf_Internal_Rela *internal_relocs;
9390 bfd_byte *contents;
9391 unsigned i;
9392 bfd_boolean ok = TRUE;
43cd72b9
BW
9393 bfd_size_type sec_size;
9394
9395 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9396
9397 /* ".plt*" sections have no explicit relocations but they contain L32R
9398 instructions that reference the corresponding ".got.plt*" sections. */
9399 if ((sec->flags & SEC_LINKER_CREATED) != 0
9400 && strncmp (sec->name, ".plt", 4) == 0)
9401 {
9402 asection *sgotplt;
9403
9404 /* Find the corresponding ".got.plt*" section. */
9405 if (sec->name[4] == '\0')
9406 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9407 else
9408 {
9409 char got_name[14];
9410 int chunk = 0;
9411
9412 BFD_ASSERT (sec->name[4] == '.');
9413 chunk = strtol (&sec->name[5], NULL, 10);
9414
9415 sprintf (got_name, ".got.plt.%u", chunk);
9416 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9417 }
9418 BFD_ASSERT (sgotplt);
9419
9420 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9421 section referencing a literal at the very beginning of
9422 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9423 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9424 }
9425
9426 internal_relocs = retrieve_internal_relocs (abfd, sec,
9427 link_info->keep_memory);
9428 if (internal_relocs == NULL
43cd72b9 9429 || sec->reloc_count == 0)
e0001a05
NC
9430 return ok;
9431
9432 /* Cache the contents for the duration of this scan. */
9433 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9434 if (contents == NULL && sec_size != 0)
e0001a05
NC
9435 {
9436 ok = FALSE;
9437 goto error_return;
9438 }
9439
43cd72b9
BW
9440 if (!xtensa_default_isa)
9441 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9442
43cd72b9 9443 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9444 {
9445 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9446 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9447 {
9448 r_reloc l32r_rel;
9449 asection *target_sec;
9450 bfd_vma target_offset;
43cd72b9
BW
9451
9452 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9453 target_sec = NULL;
9454 target_offset = 0;
9455 /* L32Rs must be local to the input file. */
9456 if (r_reloc_is_defined (&l32r_rel))
9457 {
9458 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9459 target_offset = l32r_rel.target_offset;
e0001a05
NC
9460 }
9461 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9462 closure);
9463 }
9464 }
9465
9466 error_return:
9467 release_internal_relocs (sec, internal_relocs);
9468 release_contents (sec, contents);
9469 return ok;
9470}
9471
2f89ff8d
L
9472/* The default literal sections should always be marked as "code" (i.e.,
9473 SHF_EXECINSTR). This is particularly important for the Linux kernel
9474 module loader so that the literals are not placed after the text. */
b35d266b 9475static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9476{
7dcb9820 9477 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958 9478 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
7f4d3958
L
9479 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9480 { NULL, 0, 0, 0, 0 }
9481};
e0001a05
NC
9482\f
9483#ifndef ELF_ARCH
9484#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9485#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9486#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9487#define TARGET_BIG_NAME "elf32-xtensa-be"
9488#define ELF_ARCH bfd_arch_xtensa
9489
9490/* The new EM_XTENSA value will be recognized beginning in the Xtensa T1040
9491 release. However, we still have to generate files with the EM_XTENSA_OLD
9492 value so that pre-T1040 tools can read the files. As soon as we stop
9493 caring about pre-T1040 tools, the following two values should be
9494 swapped. At the same time, any other code that uses EM_XTENSA_OLD
43cd72b9 9495 should be changed to use EM_XTENSA. */
e0001a05
NC
9496#define ELF_MACHINE_CODE EM_XTENSA_OLD
9497#define ELF_MACHINE_ALT1 EM_XTENSA
9498
9499#if XCHAL_HAVE_MMU
9500#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9501#else /* !XCHAL_HAVE_MMU */
9502#define ELF_MAXPAGESIZE 1
9503#endif /* !XCHAL_HAVE_MMU */
9504#endif /* ELF_ARCH */
9505
9506#define elf_backend_can_gc_sections 1
9507#define elf_backend_can_refcount 1
9508#define elf_backend_plt_readonly 1
9509#define elf_backend_got_header_size 4
9510#define elf_backend_want_dynbss 0
9511#define elf_backend_want_got_plt 1
9512
9513#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9514
e0001a05
NC
9515#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9516#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9517#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9518#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9519#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9520#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9521
9522#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9523#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9524#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9525#define elf_backend_discard_info elf_xtensa_discard_info
9526#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9527#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9528#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9529#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9530#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9531#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9532#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9533#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9534#define elf_backend_hide_symbol elf_xtensa_hide_symbol
9535#define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9536#define elf_backend_object_p elf_xtensa_object_p
9537#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9538#define elf_backend_relocate_section elf_xtensa_relocate_section
9539#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
29ef7005 9540#define elf_backend_special_sections elf_xtensa_special_sections
e0001a05
NC
9541
9542#include "elf32-target.h"
This page took 0.579931 seconds and 4 git commands to generate.