Add initial Intel K1OM support.
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
cc643b88 2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
aa820537 3 Free Software Foundation, Inc.
e0001a05
NC
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
cd123cb7 9 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
10 License, or (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 20 02110-1301, USA. */
e0001a05 21
e0001a05 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
e0001a05 24
e0001a05 25#include <stdarg.h>
e0001a05
NC
26#include <strings.h>
27
28#include "bfdlink.h"
29#include "libbfd.h"
30#include "elf-bfd.h"
31#include "elf/xtensa.h"
32#include "xtensa-isa.h"
33#include "xtensa-config.h"
34
43cd72b9
BW
35#define XTENSA_NO_NOP_REMOVAL 0
36
e0001a05
NC
37/* Local helper functions. */
38
f0e6fdb2 39static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 40static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 41static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 43static bfd_boolean do_fix_for_relocatable_link
7fa3d080 44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 45static void do_fix_for_final_link
7fa3d080 46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
47
48/* Local functions to handle Xtensa configurability. */
49
7fa3d080
BW
50static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53static xtensa_opcode get_const16_opcode (void);
54static xtensa_opcode get_l32r_opcode (void);
55static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56static int get_relocation_opnd (xtensa_opcode, int);
57static int get_relocation_slot (int);
e0001a05 58static xtensa_opcode get_relocation_opcode
7fa3d080 59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 60static bfd_boolean is_l32r_relocation
7fa3d080
BW
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62static bfd_boolean is_alt_relocation (int);
63static bfd_boolean is_operand_relocation (int);
43cd72b9 64static bfd_size_type insn_decode_len
7fa3d080 65 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 66static xtensa_opcode insn_decode_opcode
7fa3d080 67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 68static bfd_boolean check_branch_target_aligned
7fa3d080 69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 70static bfd_boolean check_loop_aligned
7fa3d080
BW
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 73static bfd_size_type get_asm_simplify_size
7fa3d080 74 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
75
76/* Functions for link-time code simplifications. */
77
43cd72b9 78static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 79 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 80static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
84
85/* Access to internal relocations, section contents and symbols. */
86
87static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
88 (bfd *, asection *, bfd_boolean);
89static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92static void pin_contents (asection *, bfd_byte *);
93static void release_contents (asection *, bfd_byte *);
94static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
95
96/* Miscellaneous utility functions. */
97
f0e6fdb2
BW
98static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 100static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 101static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
102 (bfd *, unsigned long);
103static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 107static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 108static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 109static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
110static int internal_reloc_compare (const void *, const void *);
111static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
112static asection *xtensa_get_property_section (asection *, const char *);
113extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 114static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
115
116/* Other functions called directly by the linker. */
117
118typedef void (*deps_callback_t)
7fa3d080 119 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 120extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
122
123
43cd72b9
BW
124/* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
7fa3d080 128
43cd72b9
BW
129int elf32xtensa_size_opt;
130
131
132/* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
e0001a05 135
7fa3d080 136typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 137
43cd72b9 138
43cd72b9
BW
139/* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144xtensa_isa xtensa_default_isa;
145
146
e0001a05
NC
147/* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151static bfd_boolean relaxing_section = FALSE;
152
43cd72b9
BW
153/* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156int elf32xtensa_no_literal_movement = 1;
157
b0dddeec
AM
158/* Rename one of the generic section flags to better document how it
159 is used here. */
160/* Whether relocations have been processed. */
161#define reloc_done sec_flg0
e0001a05
NC
162\f
163static reloc_howto_type elf_howto_table[] =
164{
165 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 167 FALSE, 0, 0, FALSE),
e0001a05
NC
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 171
e0001a05
NC
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
179
e0001a05
NC
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 182 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 185 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 188 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
191 FALSE, 0, 0xffffffff, FALSE),
192
e0001a05 193 EMPTY_HOWTO (7),
e5f131d1
BW
194
195 /* Old relocations for backward compatibility. */
e0001a05 196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
202
e0001a05
NC
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
209
e0001a05 210 EMPTY_HOWTO (13),
1bbb5f21
BW
211
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 215
e0001a05
NC
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 219 FALSE, 0, 0, FALSE),
e0001a05
NC
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 223 FALSE, 0, 0, FALSE),
43cd72b9
BW
224
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
264
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
296
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 FALSE, 0, 0, FALSE),
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 FALSE, 0, 0, FALSE),
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 FALSE, 0, 0, FALSE),
e0001a05
NC
319};
320
43cd72b9 321#if DEBUG_GEN_RELOC
e0001a05
NC
322#define TRACE(str) \
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324#else
325#define TRACE(str)
326#endif
327
328static reloc_howto_type *
7fa3d080
BW
329elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
e0001a05
NC
331{
332 switch (code)
333 {
334 case BFD_RELOC_NONE:
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
337
338 case BFD_RELOC_32:
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
341
1bbb5f21
BW
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
345
43cd72b9
BW
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
349
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
353
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
357
e0001a05
NC
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
361
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
365
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
369
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
373
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
377
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
381
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
385
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
389
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
393
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
397
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
401
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
405
28dbbc02
BW
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
413
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
425
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
429
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
433
e0001a05 434 default:
43cd72b9
BW
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
437 {
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
441 }
442
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
445 {
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
449 }
450
e0001a05
NC
451 break;
452 }
453
454 TRACE ("Unknown");
455 return NULL;
456}
457
157090f7
AM
458static reloc_howto_type *
459elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
460 const char *r_name)
461{
462 unsigned int i;
463
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
468
469 return NULL;
470}
471
e0001a05
NC
472
473/* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
475
476static void
7fa3d080
BW
477elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 arelent *cache_ptr,
479 Elf_Internal_Rela *dst)
e0001a05
NC
480{
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
482
483 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
484 cache_ptr->howto = &elf_howto_table[r_type];
485}
486
487\f
488/* Functions for the Xtensa ELF linker. */
489
490/* The name of the dynamic interpreter. This is put in the .interp
491 section. */
492
493#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
494
495/* The size in bytes of an entry in the procedure linkage table.
496 (This does _not_ include the space for the literals associated with
497 the PLT entry.) */
498
499#define PLT_ENTRY_SIZE 16
500
501/* For _really_ large PLTs, we may need to alternate between literals
502 and code to keep the literals within the 256K range of the L32R
503 instructions in the code. It's unlikely that anyone would ever need
504 such a big PLT, but an arbitrary limit on the PLT size would be bad.
505 Thus, we split the PLT into chunks. Since there's very little
506 overhead (2 extra literals) for each chunk, the chunk size is kept
507 small so that the code for handling multiple chunks get used and
508 tested regularly. With 254 entries, there are 1K of literals for
509 each chunk, and that seems like a nice round number. */
510
511#define PLT_ENTRIES_PER_CHUNK 254
512
513/* PLT entries are actually used as stub functions for lazy symbol
514 resolution. Once the symbol is resolved, the stub function is never
515 invoked. Note: the 32-byte frame size used here cannot be changed
516 without a corresponding change in the runtime linker. */
517
518static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
519{
520 0x6c, 0x10, 0x04, /* entry sp, 32 */
521 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
522 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
523 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
524 0x0a, 0x80, 0x00, /* jx a8 */
525 0 /* unused */
526};
527
528static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
529{
530 0x36, 0x41, 0x00, /* entry sp, 32 */
531 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
532 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
533 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
534 0xa0, 0x08, 0x00, /* jx a8 */
535 0 /* unused */
536};
537
28dbbc02
BW
538/* The size of the thread control block. */
539#define TCB_SIZE 8
540
541struct elf_xtensa_link_hash_entry
542{
543 struct elf_link_hash_entry elf;
544
545 bfd_signed_vma tlsfunc_refcount;
546
547#define GOT_UNKNOWN 0
548#define GOT_NORMAL 1
549#define GOT_TLS_GD 2 /* global or local dynamic */
550#define GOT_TLS_IE 4 /* initial or local exec */
551#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
552 unsigned char tls_type;
553};
554
555#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
556
557struct elf_xtensa_obj_tdata
558{
559 struct elf_obj_tdata root;
560
561 /* tls_type for each local got entry. */
562 char *local_got_tls_type;
563
564 bfd_signed_vma *local_tlsfunc_refcounts;
565};
566
567#define elf_xtensa_tdata(abfd) \
568 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
569
570#define elf_xtensa_local_got_tls_type(abfd) \
571 (elf_xtensa_tdata (abfd)->local_got_tls_type)
572
573#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
574 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
575
576#define is_xtensa_elf(bfd) \
577 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
578 && elf_tdata (bfd) != NULL \
4dfe6ac6 579 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
580
581static bfd_boolean
582elf_xtensa_mkobject (bfd *abfd)
583{
584 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 585 XTENSA_ELF_DATA);
28dbbc02
BW
586}
587
f0e6fdb2
BW
588/* Xtensa ELF linker hash table. */
589
590struct elf_xtensa_link_hash_table
591{
592 struct elf_link_hash_table elf;
593
594 /* Short-cuts to get to dynamic linker sections. */
595 asection *sgot;
596 asection *sgotplt;
597 asection *srelgot;
598 asection *splt;
599 asection *srelplt;
600 asection *sgotloc;
601 asection *spltlittbl;
602
603 /* Total count of PLT relocations seen during check_relocs.
604 The actual PLT code must be split into multiple sections and all
605 the sections have to be created before size_dynamic_sections,
606 where we figure out the exact number of PLT entries that will be
607 needed. It is OK if this count is an overestimate, e.g., some
608 relocations may be removed by GC. */
609 int plt_reloc_count;
28dbbc02
BW
610
611 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
612};
613
614/* Get the Xtensa ELF linker hash table from a link_info structure. */
615
616#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
617 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
618 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 619
28dbbc02
BW
620/* Create an entry in an Xtensa ELF linker hash table. */
621
622static struct bfd_hash_entry *
623elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
624 struct bfd_hash_table *table,
625 const char *string)
626{
627 /* Allocate the structure if it has not already been allocated by a
628 subclass. */
629 if (entry == NULL)
630 {
631 entry = bfd_hash_allocate (table,
632 sizeof (struct elf_xtensa_link_hash_entry));
633 if (entry == NULL)
634 return entry;
635 }
636
637 /* Call the allocation method of the superclass. */
638 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
639 if (entry != NULL)
640 {
641 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
642 eh->tlsfunc_refcount = 0;
643 eh->tls_type = GOT_UNKNOWN;
644 }
645
646 return entry;
647}
648
f0e6fdb2
BW
649/* Create an Xtensa ELF linker hash table. */
650
651static struct bfd_link_hash_table *
652elf_xtensa_link_hash_table_create (bfd *abfd)
653{
28dbbc02 654 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
655 struct elf_xtensa_link_hash_table *ret;
656 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
657
658 ret = bfd_malloc (amt);
659 if (ret == NULL)
660 return NULL;
661
662 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 663 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
664 sizeof (struct elf_xtensa_link_hash_entry),
665 XTENSA_ELF_DATA))
f0e6fdb2
BW
666 {
667 free (ret);
668 return NULL;
669 }
670
671 ret->sgot = NULL;
672 ret->sgotplt = NULL;
673 ret->srelgot = NULL;
674 ret->splt = NULL;
675 ret->srelplt = NULL;
676 ret->sgotloc = NULL;
677 ret->spltlittbl = NULL;
678
679 ret->plt_reloc_count = 0;
680
28dbbc02
BW
681 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
682 for it later. */
683 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
684 TRUE, FALSE, FALSE);
685 tlsbase->root.type = bfd_link_hash_new;
686 tlsbase->root.u.undef.abfd = NULL;
687 tlsbase->non_elf = 0;
688 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
689 ret->tlsbase->tls_type = GOT_UNKNOWN;
690
f0e6fdb2
BW
691 return &ret->elf.root;
692}
571b5725 693
28dbbc02
BW
694/* Copy the extra info we tack onto an elf_link_hash_entry. */
695
696static void
697elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
698 struct elf_link_hash_entry *dir,
699 struct elf_link_hash_entry *ind)
700{
701 struct elf_xtensa_link_hash_entry *edir, *eind;
702
703 edir = elf_xtensa_hash_entry (dir);
704 eind = elf_xtensa_hash_entry (ind);
705
706 if (ind->root.type == bfd_link_hash_indirect)
707 {
708 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
709 eind->tlsfunc_refcount = 0;
710
711 if (dir->got.refcount <= 0)
712 {
713 edir->tls_type = eind->tls_type;
714 eind->tls_type = GOT_UNKNOWN;
715 }
716 }
717
718 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
719}
720
571b5725 721static inline bfd_boolean
4608f3d9 722elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 723 struct bfd_link_info *info)
571b5725
BW
724{
725 /* Check if we should do dynamic things to this symbol. The
726 "ignore_protected" argument need not be set, because Xtensa code
727 does not require special handling of STV_PROTECTED to make function
728 pointer comparisons work properly. The PLT addresses are never
729 used for function pointers. */
730
731 return _bfd_elf_dynamic_symbol_p (h, info, 0);
732}
733
e0001a05
NC
734\f
735static int
7fa3d080 736property_table_compare (const void *ap, const void *bp)
e0001a05
NC
737{
738 const property_table_entry *a = (const property_table_entry *) ap;
739 const property_table_entry *b = (const property_table_entry *) bp;
740
43cd72b9
BW
741 if (a->address == b->address)
742 {
43cd72b9
BW
743 if (a->size != b->size)
744 return (a->size - b->size);
745
746 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
747 return ((b->flags & XTENSA_PROP_ALIGN)
748 - (a->flags & XTENSA_PROP_ALIGN));
749
750 if ((a->flags & XTENSA_PROP_ALIGN)
751 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
752 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
753 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
754 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
755
756 if ((a->flags & XTENSA_PROP_UNREACHABLE)
757 != (b->flags & XTENSA_PROP_UNREACHABLE))
758 return ((b->flags & XTENSA_PROP_UNREACHABLE)
759 - (a->flags & XTENSA_PROP_UNREACHABLE));
760
761 return (a->flags - b->flags);
762 }
763
764 return (a->address - b->address);
765}
766
767
768static int
7fa3d080 769property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
770{
771 const property_table_entry *a = (const property_table_entry *) ap;
772 const property_table_entry *b = (const property_table_entry *) bp;
773
774 /* Check if one entry overlaps with the other. */
e0001a05
NC
775 if ((b->address >= a->address && b->address < (a->address + a->size))
776 || (a->address >= b->address && a->address < (b->address + b->size)))
777 return 0;
778
779 return (a->address - b->address);
780}
781
782
43cd72b9
BW
783/* Get the literal table or property table entries for the given
784 section. Sets TABLE_P and returns the number of entries. On
785 error, returns a negative value. */
e0001a05 786
7fa3d080
BW
787static int
788xtensa_read_table_entries (bfd *abfd,
789 asection *section,
790 property_table_entry **table_p,
791 const char *sec_name,
792 bfd_boolean output_addr)
e0001a05
NC
793{
794 asection *table_section;
e0001a05
NC
795 bfd_size_type table_size = 0;
796 bfd_byte *table_data;
797 property_table_entry *blocks;
e4115460 798 int blk, block_count;
e0001a05 799 bfd_size_type num_records;
bcc2cc8e
BW
800 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
801 bfd_vma section_addr, off;
43cd72b9 802 flagword predef_flags;
bcc2cc8e 803 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
804
805 if (!section
806 || !(section->flags & SEC_ALLOC)
807 || (section->flags & SEC_DEBUGGING))
808 {
809 *table_p = NULL;
810 return 0;
811 }
e0001a05 812
74869ac7 813 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 814 if (table_section)
eea6121a 815 table_size = table_section->size;
43cd72b9 816
e0001a05
NC
817 if (table_size == 0)
818 {
819 *table_p = NULL;
820 return 0;
821 }
822
43cd72b9
BW
823 predef_flags = xtensa_get_property_predef_flags (table_section);
824 table_entry_size = 12;
825 if (predef_flags)
826 table_entry_size -= 4;
827
828 num_records = table_size / table_entry_size;
e0001a05
NC
829 table_data = retrieve_contents (abfd, table_section, TRUE);
830 blocks = (property_table_entry *)
831 bfd_malloc (num_records * sizeof (property_table_entry));
832 block_count = 0;
43cd72b9
BW
833
834 if (output_addr)
835 section_addr = section->output_section->vma + section->output_offset;
836 else
837 section_addr = section->vma;
3ba3bc8c 838
e0001a05 839 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 840 if (internal_relocs && !table_section->reloc_done)
e0001a05 841 {
bcc2cc8e
BW
842 qsort (internal_relocs, table_section->reloc_count,
843 sizeof (Elf_Internal_Rela), internal_reloc_compare);
844 irel = internal_relocs;
845 }
846 else
847 irel = NULL;
848
849 section_limit = bfd_get_section_limit (abfd, section);
850 rel_end = internal_relocs + table_section->reloc_count;
851
852 for (off = 0; off < table_size; off += table_entry_size)
853 {
854 bfd_vma address = bfd_get_32 (abfd, table_data + off);
855
856 /* Skip any relocations before the current offset. This should help
857 avoid confusion caused by unexpected relocations for the preceding
858 table entry. */
859 while (irel &&
860 (irel->r_offset < off
861 || (irel->r_offset == off
862 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
863 {
864 irel += 1;
865 if (irel >= rel_end)
866 irel = 0;
867 }
e0001a05 868
bcc2cc8e 869 if (irel && irel->r_offset == off)
e0001a05 870 {
bcc2cc8e
BW
871 bfd_vma sym_off;
872 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
873 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 874
bcc2cc8e 875 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
876 continue;
877
bcc2cc8e
BW
878 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
879 BFD_ASSERT (sym_off == 0);
880 address += (section_addr + sym_off + irel->r_addend);
e0001a05 881 }
bcc2cc8e 882 else
e0001a05 883 {
bcc2cc8e
BW
884 if (address < section_addr
885 || address >= section_addr + section_limit)
886 continue;
e0001a05 887 }
bcc2cc8e
BW
888
889 blocks[block_count].address = address;
890 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
891 if (predef_flags)
892 blocks[block_count].flags = predef_flags;
893 else
894 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
895 block_count++;
e0001a05
NC
896 }
897
898 release_contents (table_section, table_data);
899 release_internal_relocs (table_section, internal_relocs);
900
43cd72b9 901 if (block_count > 0)
e0001a05
NC
902 {
903 /* Now sort them into address order for easy reference. */
904 qsort (blocks, block_count, sizeof (property_table_entry),
905 property_table_compare);
e4115460
BW
906
907 /* Check that the table contents are valid. Problems may occur,
908 for example, if an unrelocated object file is stripped. */
909 for (blk = 1; blk < block_count; blk++)
910 {
911 /* The only circumstance where two entries may legitimately
912 have the same address is when one of them is a zero-size
913 placeholder to mark a place where fill can be inserted.
914 The zero-size entry should come first. */
915 if (blocks[blk - 1].address == blocks[blk].address &&
916 blocks[blk - 1].size != 0)
917 {
918 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
919 abfd, section);
920 bfd_set_error (bfd_error_bad_value);
921 free (blocks);
922 return -1;
923 }
924 }
e0001a05 925 }
43cd72b9 926
e0001a05
NC
927 *table_p = blocks;
928 return block_count;
929}
930
931
7fa3d080
BW
932static property_table_entry *
933elf_xtensa_find_property_entry (property_table_entry *property_table,
934 int property_table_size,
935 bfd_vma addr)
e0001a05
NC
936{
937 property_table_entry entry;
43cd72b9 938 property_table_entry *rv;
e0001a05 939
43cd72b9
BW
940 if (property_table_size == 0)
941 return NULL;
e0001a05
NC
942
943 entry.address = addr;
944 entry.size = 1;
43cd72b9 945 entry.flags = 0;
e0001a05 946
43cd72b9
BW
947 rv = bsearch (&entry, property_table, property_table_size,
948 sizeof (property_table_entry), property_table_matches);
949 return rv;
950}
951
952
953static bfd_boolean
7fa3d080
BW
954elf_xtensa_in_literal_pool (property_table_entry *lit_table,
955 int lit_table_size,
956 bfd_vma addr)
43cd72b9
BW
957{
958 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
959 return TRUE;
960
961 return FALSE;
962}
963
964\f
965/* Look through the relocs for a section during the first phase, and
966 calculate needed space in the dynamic reloc sections. */
967
968static bfd_boolean
7fa3d080
BW
969elf_xtensa_check_relocs (bfd *abfd,
970 struct bfd_link_info *info,
971 asection *sec,
972 const Elf_Internal_Rela *relocs)
e0001a05 973{
f0e6fdb2 974 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
975 Elf_Internal_Shdr *symtab_hdr;
976 struct elf_link_hash_entry **sym_hashes;
977 const Elf_Internal_Rela *rel;
978 const Elf_Internal_Rela *rel_end;
e0001a05 979
28dbbc02 980 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
981 return TRUE;
982
28dbbc02
BW
983 BFD_ASSERT (is_xtensa_elf (abfd));
984
f0e6fdb2 985 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
986 if (htab == NULL)
987 return FALSE;
988
e0001a05
NC
989 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
990 sym_hashes = elf_sym_hashes (abfd);
991
e0001a05
NC
992 rel_end = relocs + sec->reloc_count;
993 for (rel = relocs; rel < rel_end; rel++)
994 {
995 unsigned int r_type;
996 unsigned long r_symndx;
28dbbc02
BW
997 struct elf_link_hash_entry *h = NULL;
998 struct elf_xtensa_link_hash_entry *eh;
999 int tls_type, old_tls_type;
1000 bfd_boolean is_got = FALSE;
1001 bfd_boolean is_plt = FALSE;
1002 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1003
1004 r_symndx = ELF32_R_SYM (rel->r_info);
1005 r_type = ELF32_R_TYPE (rel->r_info);
1006
1007 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1008 {
d003868e
AM
1009 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1010 abfd, r_symndx);
e0001a05
NC
1011 return FALSE;
1012 }
1013
28dbbc02 1014 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1015 {
1016 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1017 while (h->root.type == bfd_link_hash_indirect
1018 || h->root.type == bfd_link_hash_warning)
1019 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1020 }
28dbbc02 1021 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1022
1023 switch (r_type)
1024 {
28dbbc02
BW
1025 case R_XTENSA_TLSDESC_FN:
1026 if (info->shared)
1027 {
1028 tls_type = GOT_TLS_GD;
1029 is_got = TRUE;
1030 is_tlsfunc = TRUE;
1031 }
1032 else
1033 tls_type = GOT_TLS_IE;
1034 break;
e0001a05 1035
28dbbc02
BW
1036 case R_XTENSA_TLSDESC_ARG:
1037 if (info->shared)
e0001a05 1038 {
28dbbc02
BW
1039 tls_type = GOT_TLS_GD;
1040 is_got = TRUE;
1041 }
1042 else
1043 {
1044 tls_type = GOT_TLS_IE;
1045 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1046 is_got = TRUE;
e0001a05
NC
1047 }
1048 break;
1049
28dbbc02
BW
1050 case R_XTENSA_TLS_DTPOFF:
1051 if (info->shared)
1052 tls_type = GOT_TLS_GD;
1053 else
1054 tls_type = GOT_TLS_IE;
1055 break;
1056
1057 case R_XTENSA_TLS_TPOFF:
1058 tls_type = GOT_TLS_IE;
1059 if (info->shared)
1060 info->flags |= DF_STATIC_TLS;
1061 if (info->shared || h)
1062 is_got = TRUE;
1063 break;
1064
1065 case R_XTENSA_32:
1066 tls_type = GOT_NORMAL;
1067 is_got = TRUE;
1068 break;
1069
e0001a05 1070 case R_XTENSA_PLT:
28dbbc02
BW
1071 tls_type = GOT_NORMAL;
1072 is_plt = TRUE;
1073 break;
e0001a05 1074
28dbbc02
BW
1075 case R_XTENSA_GNU_VTINHERIT:
1076 /* This relocation describes the C++ object vtable hierarchy.
1077 Reconstruct it for later use during GC. */
1078 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1079 return FALSE;
1080 continue;
1081
1082 case R_XTENSA_GNU_VTENTRY:
1083 /* This relocation describes which C++ vtable entries are actually
1084 used. Record for later use during GC. */
1085 BFD_ASSERT (h != NULL);
1086 if (h != NULL
1087 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1088 return FALSE;
1089 continue;
1090
1091 default:
1092 /* Nothing to do for any other relocations. */
1093 continue;
1094 }
1095
1096 if (h)
1097 {
1098 if (is_plt)
e0001a05 1099 {
b45329f9
BW
1100 if (h->plt.refcount <= 0)
1101 {
1102 h->needs_plt = 1;
1103 h->plt.refcount = 1;
1104 }
1105 else
1106 h->plt.refcount += 1;
e0001a05
NC
1107
1108 /* Keep track of the total PLT relocation count even if we
1109 don't yet know whether the dynamic sections will be
1110 created. */
f0e6fdb2 1111 htab->plt_reloc_count += 1;
e0001a05
NC
1112
1113 if (elf_hash_table (info)->dynamic_sections_created)
1114 {
f0e6fdb2 1115 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1116 return FALSE;
1117 }
1118 }
28dbbc02 1119 else if (is_got)
b45329f9
BW
1120 {
1121 if (h->got.refcount <= 0)
1122 h->got.refcount = 1;
1123 else
1124 h->got.refcount += 1;
1125 }
28dbbc02
BW
1126
1127 if (is_tlsfunc)
1128 eh->tlsfunc_refcount += 1;
e0001a05 1129
28dbbc02
BW
1130 old_tls_type = eh->tls_type;
1131 }
1132 else
1133 {
1134 /* Allocate storage the first time. */
1135 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1136 {
28dbbc02
BW
1137 bfd_size_type size = symtab_hdr->sh_info;
1138 void *mem;
e0001a05 1139
28dbbc02
BW
1140 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1141 if (mem == NULL)
1142 return FALSE;
1143 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1144
28dbbc02
BW
1145 mem = bfd_zalloc (abfd, size);
1146 if (mem == NULL)
1147 return FALSE;
1148 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1149
1150 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1151 if (mem == NULL)
1152 return FALSE;
1153 elf_xtensa_local_tlsfunc_refcounts (abfd)
1154 = (bfd_signed_vma *) mem;
e0001a05 1155 }
e0001a05 1156
28dbbc02
BW
1157 /* This is a global offset table entry for a local symbol. */
1158 if (is_got || is_plt)
1159 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1160
28dbbc02
BW
1161 if (is_tlsfunc)
1162 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1163
28dbbc02
BW
1164 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1165 }
1166
1167 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1168 tls_type |= old_tls_type;
1169 /* If a TLS symbol is accessed using IE at least once,
1170 there is no point to use a dynamic model for it. */
1171 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1172 && ((old_tls_type & GOT_TLS_GD) == 0
1173 || (tls_type & GOT_TLS_IE) == 0))
1174 {
1175 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1176 tls_type = old_tls_type;
1177 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1178 tls_type |= old_tls_type;
1179 else
1180 {
1181 (*_bfd_error_handler)
1182 (_("%B: `%s' accessed both as normal and thread local symbol"),
1183 abfd,
1184 h ? h->root.root.string : "<local>");
1185 return FALSE;
1186 }
1187 }
1188
1189 if (old_tls_type != tls_type)
1190 {
1191 if (eh)
1192 eh->tls_type = tls_type;
1193 else
1194 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1195 }
1196 }
1197
e0001a05
NC
1198 return TRUE;
1199}
1200
1201
95147441
BW
1202static void
1203elf_xtensa_make_sym_local (struct bfd_link_info *info,
1204 struct elf_link_hash_entry *h)
1205{
1206 if (info->shared)
1207 {
1208 if (h->plt.refcount > 0)
1209 {
1210 /* For shared objects, there's no need for PLT entries for local
1211 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1212 if (h->got.refcount < 0)
1213 h->got.refcount = 0;
1214 h->got.refcount += h->plt.refcount;
1215 h->plt.refcount = 0;
1216 }
1217 }
1218 else
1219 {
1220 /* Don't need any dynamic relocations at all. */
1221 h->plt.refcount = 0;
1222 h->got.refcount = 0;
1223 }
1224}
1225
1226
1227static void
1228elf_xtensa_hide_symbol (struct bfd_link_info *info,
1229 struct elf_link_hash_entry *h,
1230 bfd_boolean force_local)
1231{
1232 /* For a shared link, move the plt refcount to the got refcount to leave
1233 space for RELATIVE relocs. */
1234 elf_xtensa_make_sym_local (info, h);
1235
1236 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1237}
1238
1239
e0001a05
NC
1240/* Return the section that should be marked against GC for a given
1241 relocation. */
1242
1243static asection *
7fa3d080 1244elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1245 struct bfd_link_info *info,
7fa3d080
BW
1246 Elf_Internal_Rela *rel,
1247 struct elf_link_hash_entry *h,
1248 Elf_Internal_Sym *sym)
e0001a05 1249{
e1e5c0b5
BW
1250 /* Property sections are marked "KEEP" in the linker scripts, but they
1251 should not cause other sections to be marked. (This approach relies
1252 on elf_xtensa_discard_info to remove property table entries that
1253 describe discarded sections. Alternatively, it might be more
1254 efficient to avoid using "KEEP" in the linker scripts and instead use
1255 the gc_mark_extra_sections hook to mark only the property sections
1256 that describe marked sections. That alternative does not work well
1257 with the current property table sections, which do not correspond
1258 one-to-one with the sections they describe, but that should be fixed
1259 someday.) */
1260 if (xtensa_is_property_section (sec))
1261 return NULL;
1262
07adf181
AM
1263 if (h != NULL)
1264 switch (ELF32_R_TYPE (rel->r_info))
1265 {
1266 case R_XTENSA_GNU_VTINHERIT:
1267 case R_XTENSA_GNU_VTENTRY:
1268 return NULL;
1269 }
1270
1271 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1272}
1273
7fa3d080 1274
e0001a05
NC
1275/* Update the GOT & PLT entry reference counts
1276 for the section being removed. */
1277
1278static bfd_boolean
7fa3d080 1279elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1280 struct bfd_link_info *info,
7fa3d080
BW
1281 asection *sec,
1282 const Elf_Internal_Rela *relocs)
e0001a05
NC
1283{
1284 Elf_Internal_Shdr *symtab_hdr;
1285 struct elf_link_hash_entry **sym_hashes;
e0001a05 1286 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1287 struct elf_xtensa_link_hash_table *htab;
1288
1289 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1290 if (htab == NULL)
1291 return FALSE;
e0001a05 1292
7dda2462
TG
1293 if (info->relocatable)
1294 return TRUE;
1295
e0001a05
NC
1296 if ((sec->flags & SEC_ALLOC) == 0)
1297 return TRUE;
1298
1299 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1300 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1301
1302 relend = relocs + sec->reloc_count;
1303 for (rel = relocs; rel < relend; rel++)
1304 {
1305 unsigned long r_symndx;
1306 unsigned int r_type;
1307 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1308 struct elf_xtensa_link_hash_entry *eh;
1309 bfd_boolean is_got = FALSE;
1310 bfd_boolean is_plt = FALSE;
1311 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1312
1313 r_symndx = ELF32_R_SYM (rel->r_info);
1314 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1315 {
1316 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1317 while (h->root.type == bfd_link_hash_indirect
1318 || h->root.type == bfd_link_hash_warning)
1319 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1320 }
28dbbc02 1321 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1322
1323 r_type = ELF32_R_TYPE (rel->r_info);
1324 switch (r_type)
1325 {
28dbbc02
BW
1326 case R_XTENSA_TLSDESC_FN:
1327 if (info->shared)
1328 {
1329 is_got = TRUE;
1330 is_tlsfunc = TRUE;
1331 }
e0001a05
NC
1332 break;
1333
28dbbc02
BW
1334 case R_XTENSA_TLSDESC_ARG:
1335 if (info->shared)
1336 is_got = TRUE;
1337 else
1338 {
1339 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1340 is_got = TRUE;
1341 }
e0001a05
NC
1342 break;
1343
28dbbc02
BW
1344 case R_XTENSA_TLS_TPOFF:
1345 if (info->shared || h)
1346 is_got = TRUE;
e0001a05
NC
1347 break;
1348
28dbbc02
BW
1349 case R_XTENSA_32:
1350 is_got = TRUE;
e0001a05 1351 break;
28dbbc02
BW
1352
1353 case R_XTENSA_PLT:
1354 is_plt = TRUE;
1355 break;
1356
1357 default:
1358 continue;
1359 }
1360
1361 if (h)
1362 {
1363 if (is_plt)
1364 {
1365 if (h->plt.refcount > 0)
1366 h->plt.refcount--;
1367 }
1368 else if (is_got)
1369 {
1370 if (h->got.refcount > 0)
1371 h->got.refcount--;
1372 }
1373 if (is_tlsfunc)
1374 {
1375 if (eh->tlsfunc_refcount > 0)
1376 eh->tlsfunc_refcount--;
1377 }
1378 }
1379 else
1380 {
1381 if (is_got || is_plt)
1382 {
1383 bfd_signed_vma *got_refcount
1384 = &elf_local_got_refcounts (abfd) [r_symndx];
1385 if (*got_refcount > 0)
1386 *got_refcount -= 1;
1387 }
1388 if (is_tlsfunc)
1389 {
1390 bfd_signed_vma *tlsfunc_refcount
1391 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1392 if (*tlsfunc_refcount > 0)
1393 *tlsfunc_refcount -= 1;
1394 }
e0001a05
NC
1395 }
1396 }
1397
1398 return TRUE;
1399}
1400
1401
1402/* Create all the dynamic sections. */
1403
1404static bfd_boolean
7fa3d080 1405elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1406{
f0e6fdb2 1407 struct elf_xtensa_link_hash_table *htab;
e901de89 1408 flagword flags, noalloc_flags;
f0e6fdb2
BW
1409
1410 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1411 if (htab == NULL)
1412 return FALSE;
e0001a05
NC
1413
1414 /* First do all the standard stuff. */
1415 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1416 return FALSE;
f0e6fdb2
BW
1417 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1418 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1419 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1420 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
64e77c6d 1421 htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
e0001a05
NC
1422
1423 /* Create any extra PLT sections in case check_relocs has already
1424 been called on all the non-dynamic input files. */
f0e6fdb2 1425 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1426 return FALSE;
1427
e901de89
BW
1428 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1429 | SEC_LINKER_CREATED | SEC_READONLY);
1430 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1431
1432 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1433 if (htab->sgotplt == NULL
1434 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1435 return FALSE;
1436
e901de89 1437 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1438 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1439 if (htab->sgotloc == NULL
1440 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1441 return FALSE;
1442
e0001a05 1443 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1444 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1445 noalloc_flags);
1446 if (htab->spltlittbl == NULL
1447 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1448 return FALSE;
1449
1450 return TRUE;
1451}
1452
1453
1454static bfd_boolean
f0e6fdb2 1455add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1456{
f0e6fdb2 1457 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1458 int chunk;
1459
1460 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1461 ".got.plt" sections. */
1462 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1463 {
1464 char *sname;
1465 flagword flags;
1466 asection *s;
1467
1468 /* Stop when we find a section has already been created. */
f0e6fdb2 1469 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1470 break;
1471
1472 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1473 | SEC_LINKER_CREATED | SEC_READONLY);
1474
1475 sname = (char *) bfd_malloc (10);
1476 sprintf (sname, ".plt.%u", chunk);
ba05963f 1477 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1478 if (s == NULL
e0001a05
NC
1479 || ! bfd_set_section_alignment (dynobj, s, 2))
1480 return FALSE;
1481
1482 sname = (char *) bfd_malloc (14);
1483 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1484 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1485 if (s == NULL
e0001a05
NC
1486 || ! bfd_set_section_alignment (dynobj, s, 2))
1487 return FALSE;
1488 }
1489
1490 return TRUE;
1491}
1492
1493
1494/* Adjust a symbol defined by a dynamic object and referenced by a
1495 regular object. The current definition is in some section of the
1496 dynamic object, but we're not including those sections. We have to
1497 change the definition to something the rest of the link can
1498 understand. */
1499
1500static bfd_boolean
7fa3d080
BW
1501elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1502 struct elf_link_hash_entry *h)
e0001a05
NC
1503{
1504 /* If this is a weak symbol, and there is a real definition, the
1505 processor independent code will have arranged for us to see the
1506 real definition first, and we can just use the same value. */
7fa3d080 1507 if (h->u.weakdef)
e0001a05 1508 {
f6e332e6
AM
1509 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1510 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1511 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1512 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1513 return TRUE;
1514 }
1515
1516 /* This is a reference to a symbol defined by a dynamic object. The
1517 reference must go through the GOT, so there's no need for COPY relocs,
1518 .dynbss, etc. */
1519
1520 return TRUE;
1521}
1522
1523
e0001a05 1524static bfd_boolean
f1ab2340 1525elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1526{
f1ab2340
BW
1527 struct bfd_link_info *info;
1528 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1529 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1530
f1ab2340
BW
1531 if (h->root.type == bfd_link_hash_indirect)
1532 return TRUE;
e0001a05 1533
f1ab2340
BW
1534 info = (struct bfd_link_info *) arg;
1535 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1536 if (htab == NULL)
1537 return FALSE;
e0001a05 1538
28dbbc02
BW
1539 /* If we saw any use of an IE model for this symbol, we can then optimize
1540 away GOT entries for any TLSDESC_FN relocs. */
1541 if ((eh->tls_type & GOT_TLS_IE) != 0)
1542 {
1543 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1544 h->got.refcount -= eh->tlsfunc_refcount;
1545 }
e0001a05 1546
28dbbc02 1547 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1548 elf_xtensa_make_sym_local (info, h);
e0001a05 1549
f1ab2340
BW
1550 if (h->plt.refcount > 0)
1551 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1552
1553 if (h->got.refcount > 0)
f1ab2340 1554 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1555
1556 return TRUE;
1557}
1558
1559
1560static void
f0e6fdb2 1561elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1562{
f0e6fdb2 1563 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1564 bfd *i;
1565
f0e6fdb2 1566 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1567 if (htab == NULL)
1568 return;
f0e6fdb2 1569
e0001a05
NC
1570 for (i = info->input_bfds; i; i = i->link_next)
1571 {
1572 bfd_signed_vma *local_got_refcounts;
1573 bfd_size_type j, cnt;
1574 Elf_Internal_Shdr *symtab_hdr;
1575
1576 local_got_refcounts = elf_local_got_refcounts (i);
1577 if (!local_got_refcounts)
1578 continue;
1579
1580 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1581 cnt = symtab_hdr->sh_info;
1582
1583 for (j = 0; j < cnt; ++j)
1584 {
28dbbc02
BW
1585 /* If we saw any use of an IE model for this symbol, we can
1586 then optimize away GOT entries for any TLSDESC_FN relocs. */
1587 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1588 {
1589 bfd_signed_vma *tlsfunc_refcount
1590 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1591 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1592 local_got_refcounts[j] -= *tlsfunc_refcount;
1593 }
1594
e0001a05 1595 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1596 htab->srelgot->size += (local_got_refcounts[j]
1597 * sizeof (Elf32_External_Rela));
e0001a05
NC
1598 }
1599 }
1600}
1601
1602
1603/* Set the sizes of the dynamic sections. */
1604
1605static bfd_boolean
7fa3d080
BW
1606elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1607 struct bfd_link_info *info)
e0001a05 1608{
f0e6fdb2 1609 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1610 bfd *dynobj, *abfd;
1611 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1612 bfd_boolean relplt, relgot;
1613 int plt_entries, plt_chunks, chunk;
1614
1615 plt_entries = 0;
1616 plt_chunks = 0;
e0001a05 1617
f0e6fdb2 1618 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1619 if (htab == NULL)
1620 return FALSE;
1621
e0001a05
NC
1622 dynobj = elf_hash_table (info)->dynobj;
1623 if (dynobj == NULL)
1624 abort ();
f0e6fdb2
BW
1625 srelgot = htab->srelgot;
1626 srelplt = htab->srelplt;
e0001a05
NC
1627
1628 if (elf_hash_table (info)->dynamic_sections_created)
1629 {
f0e6fdb2
BW
1630 BFD_ASSERT (htab->srelgot != NULL
1631 && htab->srelplt != NULL
1632 && htab->sgot != NULL
1633 && htab->spltlittbl != NULL
1634 && htab->sgotloc != NULL);
1635
e0001a05 1636 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1637 if (info->executable)
e0001a05
NC
1638 {
1639 s = bfd_get_section_by_name (dynobj, ".interp");
1640 if (s == NULL)
1641 abort ();
eea6121a 1642 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1643 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1644 }
1645
1646 /* Allocate room for one word in ".got". */
f0e6fdb2 1647 htab->sgot->size = 4;
e0001a05 1648
f1ab2340
BW
1649 /* Allocate space in ".rela.got" for literals that reference global
1650 symbols and space in ".rela.plt" for literals that have PLT
1651 entries. */
e0001a05 1652 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1653 elf_xtensa_allocate_dynrelocs,
7fa3d080 1654 (void *) info);
e0001a05 1655
e0001a05
NC
1656 /* If we are generating a shared object, we also need space in
1657 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1658 reference local symbols. */
1659 if (info->shared)
f0e6fdb2 1660 elf_xtensa_allocate_local_got_size (info);
e0001a05 1661
e0001a05
NC
1662 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1663 each PLT entry, we need the PLT code plus a 4-byte literal.
1664 For each chunk of ".plt", we also need two more 4-byte
1665 literals, two corresponding entries in ".rela.got", and an
1666 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1667 spltlittbl = htab->spltlittbl;
eea6121a 1668 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1669 plt_chunks =
1670 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1671
1672 /* Iterate over all the PLT chunks, including any extra sections
1673 created earlier because the initial count of PLT relocations
1674 was an overestimate. */
1675 for (chunk = 0;
f0e6fdb2 1676 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1677 chunk++)
1678 {
1679 int chunk_entries;
1680
f0e6fdb2
BW
1681 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1682 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1683
1684 if (chunk < plt_chunks - 1)
1685 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1686 else if (chunk == plt_chunks - 1)
1687 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1688 else
1689 chunk_entries = 0;
1690
1691 if (chunk_entries != 0)
1692 {
eea6121a
AM
1693 sgotplt->size = 4 * (chunk_entries + 2);
1694 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1695 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1696 spltlittbl->size += 8;
e0001a05
NC
1697 }
1698 else
1699 {
eea6121a
AM
1700 sgotplt->size = 0;
1701 splt->size = 0;
e0001a05
NC
1702 }
1703 }
e901de89
BW
1704
1705 /* Allocate space in ".got.loc" to match the total size of all the
1706 literal tables. */
f0e6fdb2 1707 sgotloc = htab->sgotloc;
eea6121a 1708 sgotloc->size = spltlittbl->size;
e901de89
BW
1709 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1710 {
1711 if (abfd->flags & DYNAMIC)
1712 continue;
1713 for (s = abfd->sections; s != NULL; s = s->next)
1714 {
b536dc1e
BW
1715 if (! elf_discarded_section (s)
1716 && xtensa_is_littable_section (s)
1717 && s != spltlittbl)
eea6121a 1718 sgotloc->size += s->size;
e901de89
BW
1719 }
1720 }
e0001a05
NC
1721 }
1722
1723 /* Allocate memory for dynamic sections. */
1724 relplt = FALSE;
1725 relgot = FALSE;
1726 for (s = dynobj->sections; s != NULL; s = s->next)
1727 {
1728 const char *name;
e0001a05
NC
1729
1730 if ((s->flags & SEC_LINKER_CREATED) == 0)
1731 continue;
1732
1733 /* It's OK to base decisions on the section name, because none
1734 of the dynobj section names depend upon the input files. */
1735 name = bfd_get_section_name (dynobj, s);
1736
0112cd26 1737 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1738 {
c456f082 1739 if (s->size != 0)
e0001a05 1740 {
c456f082
AM
1741 if (strcmp (name, ".rela.plt") == 0)
1742 relplt = TRUE;
1743 else if (strcmp (name, ".rela.got") == 0)
1744 relgot = TRUE;
1745
1746 /* We use the reloc_count field as a counter if we need
1747 to copy relocs into the output file. */
1748 s->reloc_count = 0;
e0001a05
NC
1749 }
1750 }
0112cd26
NC
1751 else if (! CONST_STRNEQ (name, ".plt.")
1752 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1753 && strcmp (name, ".got") != 0
e0001a05
NC
1754 && strcmp (name, ".plt") != 0
1755 && strcmp (name, ".got.plt") != 0
e901de89
BW
1756 && strcmp (name, ".xt.lit.plt") != 0
1757 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1758 {
1759 /* It's not one of our sections, so don't allocate space. */
1760 continue;
1761 }
1762
c456f082
AM
1763 if (s->size == 0)
1764 {
1765 /* If we don't need this section, strip it from the output
1766 file. We must create the ".plt*" and ".got.plt*"
1767 sections in create_dynamic_sections and/or check_relocs
1768 based on a conservative estimate of the PLT relocation
1769 count, because the sections must be created before the
1770 linker maps input sections to output sections. The
1771 linker does that before size_dynamic_sections, where we
1772 compute the exact size of the PLT, so there may be more
1773 of these sections than are actually needed. */
1774 s->flags |= SEC_EXCLUDE;
1775 }
1776 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1777 {
1778 /* Allocate memory for the section contents. */
eea6121a 1779 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1780 if (s->contents == NULL)
e0001a05
NC
1781 return FALSE;
1782 }
1783 }
1784
1785 if (elf_hash_table (info)->dynamic_sections_created)
1786 {
1787 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1788 known until finish_dynamic_sections, but we need to get the relocs
1789 in place before they are sorted. */
e0001a05
NC
1790 for (chunk = 0; chunk < plt_chunks; chunk++)
1791 {
1792 Elf_Internal_Rela irela;
1793 bfd_byte *loc;
1794
1795 irela.r_offset = 0;
1796 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1797 irela.r_addend = 0;
1798
1799 loc = (srelgot->contents
1800 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1801 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1802 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1803 loc + sizeof (Elf32_External_Rela));
1804 srelgot->reloc_count += 2;
1805 }
1806
1807 /* Add some entries to the .dynamic section. We fill in the
1808 values later, in elf_xtensa_finish_dynamic_sections, but we
1809 must add the entries now so that we get the correct size for
1810 the .dynamic section. The DT_DEBUG entry is filled in by the
1811 dynamic linker and used by the debugger. */
1812#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1813 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1814
ba05963f 1815 if (info->executable)
e0001a05
NC
1816 {
1817 if (!add_dynamic_entry (DT_DEBUG, 0))
1818 return FALSE;
1819 }
1820
1821 if (relplt)
1822 {
c243ad3b 1823 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1824 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1825 || !add_dynamic_entry (DT_JMPREL, 0))
1826 return FALSE;
1827 }
1828
1829 if (relgot)
1830 {
1831 if (!add_dynamic_entry (DT_RELA, 0)
1832 || !add_dynamic_entry (DT_RELASZ, 0)
1833 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1834 return FALSE;
1835 }
1836
c243ad3b
BW
1837 if (!add_dynamic_entry (DT_PLTGOT, 0)
1838 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1839 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1840 return FALSE;
1841 }
1842#undef add_dynamic_entry
1843
1844 return TRUE;
1845}
1846
28dbbc02
BW
1847static bfd_boolean
1848elf_xtensa_always_size_sections (bfd *output_bfd,
1849 struct bfd_link_info *info)
1850{
1851 struct elf_xtensa_link_hash_table *htab;
1852 asection *tls_sec;
1853
1854 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1855 if (htab == NULL)
1856 return FALSE;
1857
28dbbc02
BW
1858 tls_sec = htab->elf.tls_sec;
1859
1860 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1861 {
1862 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1863 struct bfd_link_hash_entry *bh = &tlsbase->root;
1864 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1865
1866 tlsbase->type = STT_TLS;
1867 if (!(_bfd_generic_link_add_one_symbol
1868 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1869 tls_sec, 0, NULL, FALSE,
1870 bed->collect, &bh)))
1871 return FALSE;
1872 tlsbase->def_regular = 1;
1873 tlsbase->other = STV_HIDDEN;
1874 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1875 }
1876
1877 return TRUE;
1878}
1879
e0001a05 1880\f
28dbbc02
BW
1881/* Return the base VMA address which should be subtracted from real addresses
1882 when resolving @dtpoff relocation.
1883 This is PT_TLS segment p_vaddr. */
1884
1885static bfd_vma
1886dtpoff_base (struct bfd_link_info *info)
1887{
1888 /* If tls_sec is NULL, we should have signalled an error already. */
1889 if (elf_hash_table (info)->tls_sec == NULL)
1890 return 0;
1891 return elf_hash_table (info)->tls_sec->vma;
1892}
1893
1894/* Return the relocation value for @tpoff relocation
1895 if STT_TLS virtual address is ADDRESS. */
1896
1897static bfd_vma
1898tpoff (struct bfd_link_info *info, bfd_vma address)
1899{
1900 struct elf_link_hash_table *htab = elf_hash_table (info);
1901 bfd_vma base;
1902
1903 /* If tls_sec is NULL, we should have signalled an error already. */
1904 if (htab->tls_sec == NULL)
1905 return 0;
1906 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1907 return address - htab->tls_sec->vma + base;
1908}
1909
e0001a05
NC
1910/* Perform the specified relocation. The instruction at (contents + address)
1911 is modified to set one operand to represent the value in "relocation". The
1912 operand position is determined by the relocation type recorded in the
1913 howto. */
1914
1915#define CALL_SEGMENT_BITS (30)
7fa3d080 1916#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1917
1918static bfd_reloc_status_type
7fa3d080
BW
1919elf_xtensa_do_reloc (reloc_howto_type *howto,
1920 bfd *abfd,
1921 asection *input_section,
1922 bfd_vma relocation,
1923 bfd_byte *contents,
1924 bfd_vma address,
1925 bfd_boolean is_weak_undef,
1926 char **error_message)
e0001a05 1927{
43cd72b9 1928 xtensa_format fmt;
e0001a05 1929 xtensa_opcode opcode;
e0001a05 1930 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1931 static xtensa_insnbuf ibuff = NULL;
1932 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1933 bfd_vma self_address;
43cd72b9
BW
1934 bfd_size_type input_size;
1935 int opnd, slot;
e0001a05
NC
1936 uint32 newval;
1937
43cd72b9
BW
1938 if (!ibuff)
1939 {
1940 ibuff = xtensa_insnbuf_alloc (isa);
1941 sbuff = xtensa_insnbuf_alloc (isa);
1942 }
1943
1944 input_size = bfd_get_section_limit (abfd, input_section);
1945
1bbb5f21
BW
1946 /* Calculate the PC address for this instruction. */
1947 self_address = (input_section->output_section->vma
1948 + input_section->output_offset
1949 + address);
1950
e0001a05
NC
1951 switch (howto->type)
1952 {
1953 case R_XTENSA_NONE:
43cd72b9
BW
1954 case R_XTENSA_DIFF8:
1955 case R_XTENSA_DIFF16:
1956 case R_XTENSA_DIFF32:
28dbbc02
BW
1957 case R_XTENSA_TLS_FUNC:
1958 case R_XTENSA_TLS_ARG:
1959 case R_XTENSA_TLS_CALL:
e0001a05
NC
1960 return bfd_reloc_ok;
1961
1962 case R_XTENSA_ASM_EXPAND:
1963 if (!is_weak_undef)
1964 {
1965 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1966 opcode = get_expanded_call_opcode (contents + address,
1967 input_size - address, 0);
e0001a05
NC
1968 if (is_windowed_call_opcode (opcode))
1969 {
43cd72b9
BW
1970 if ((self_address >> CALL_SEGMENT_BITS)
1971 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1972 {
1973 *error_message = "windowed longcall crosses 1GB boundary; "
1974 "return may fail";
1975 return bfd_reloc_dangerous;
1976 }
1977 }
1978 }
1979 return bfd_reloc_ok;
1980
1981 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1982 {
e0001a05 1983 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1984 bfd_reloc_status_type retval =
1985 elf_xtensa_do_asm_simplify (contents, address, input_size,
1986 error_message);
e0001a05 1987 if (retval != bfd_reloc_ok)
43cd72b9 1988 return bfd_reloc_dangerous;
e0001a05
NC
1989
1990 /* The CALL needs to be relocated. Continue below for that part. */
1991 address += 3;
c46082c8 1992 self_address += 3;
43cd72b9 1993 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1994 }
1995 break;
1996
1997 case R_XTENSA_32:
e0001a05
NC
1998 {
1999 bfd_vma x;
2000 x = bfd_get_32 (abfd, contents + address);
2001 x = x + relocation;
2002 bfd_put_32 (abfd, x, contents + address);
2003 }
2004 return bfd_reloc_ok;
1bbb5f21
BW
2005
2006 case R_XTENSA_32_PCREL:
2007 bfd_put_32 (abfd, relocation - self_address, contents + address);
2008 return bfd_reloc_ok;
28dbbc02
BW
2009
2010 case R_XTENSA_PLT:
2011 case R_XTENSA_TLSDESC_FN:
2012 case R_XTENSA_TLSDESC_ARG:
2013 case R_XTENSA_TLS_DTPOFF:
2014 case R_XTENSA_TLS_TPOFF:
2015 bfd_put_32 (abfd, relocation, contents + address);
2016 return bfd_reloc_ok;
e0001a05
NC
2017 }
2018
43cd72b9
BW
2019 /* Only instruction slot-specific relocations handled below.... */
2020 slot = get_relocation_slot (howto->type);
2021 if (slot == XTENSA_UNDEFINED)
e0001a05 2022 {
43cd72b9 2023 *error_message = "unexpected relocation";
e0001a05
NC
2024 return bfd_reloc_dangerous;
2025 }
2026
43cd72b9
BW
2027 /* Read the instruction into a buffer and decode the opcode. */
2028 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2029 input_size - address);
2030 fmt = xtensa_format_decode (isa, ibuff);
2031 if (fmt == XTENSA_UNDEFINED)
e0001a05 2032 {
43cd72b9 2033 *error_message = "cannot decode instruction format";
e0001a05
NC
2034 return bfd_reloc_dangerous;
2035 }
2036
43cd72b9 2037 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2038
43cd72b9
BW
2039 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2040 if (opcode == XTENSA_UNDEFINED)
e0001a05 2041 {
43cd72b9 2042 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2043 return bfd_reloc_dangerous;
2044 }
2045
43cd72b9
BW
2046 /* Check for opcode-specific "alternate" relocations. */
2047 if (is_alt_relocation (howto->type))
2048 {
2049 if (opcode == get_l32r_opcode ())
2050 {
2051 /* Handle the special-case of non-PC-relative L32R instructions. */
2052 bfd *output_bfd = input_section->output_section->owner;
2053 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2054 if (!lit4_sec)
2055 {
2056 *error_message = "relocation references missing .lit4 section";
2057 return bfd_reloc_dangerous;
2058 }
2059 self_address = ((lit4_sec->vma & ~0xfff)
2060 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2061 newval = relocation;
2062 opnd = 1;
2063 }
2064 else if (opcode == get_const16_opcode ())
2065 {
2066 /* ALT used for high 16 bits. */
2067 newval = relocation >> 16;
2068 opnd = 1;
2069 }
2070 else
2071 {
2072 /* No other "alternate" relocations currently defined. */
2073 *error_message = "unexpected relocation";
2074 return bfd_reloc_dangerous;
2075 }
2076 }
2077 else /* Not an "alternate" relocation.... */
2078 {
2079 if (opcode == get_const16_opcode ())
2080 {
2081 newval = relocation & 0xffff;
2082 opnd = 1;
2083 }
2084 else
2085 {
2086 /* ...normal PC-relative relocation.... */
2087
2088 /* Determine which operand is being relocated. */
2089 opnd = get_relocation_opnd (opcode, howto->type);
2090 if (opnd == XTENSA_UNDEFINED)
2091 {
2092 *error_message = "unexpected relocation";
2093 return bfd_reloc_dangerous;
2094 }
2095
2096 if (!howto->pc_relative)
2097 {
2098 *error_message = "expected PC-relative relocation";
2099 return bfd_reloc_dangerous;
2100 }
e0001a05 2101
43cd72b9
BW
2102 newval = relocation;
2103 }
2104 }
e0001a05 2105
43cd72b9
BW
2106 /* Apply the relocation. */
2107 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2108 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2109 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2110 sbuff, newval))
e0001a05 2111 {
2db662be
BW
2112 const char *opname = xtensa_opcode_name (isa, opcode);
2113 const char *msg;
2114
2115 msg = "cannot encode";
2116 if (is_direct_call_opcode (opcode))
2117 {
2118 if ((relocation & 0x3) != 0)
2119 msg = "misaligned call target";
2120 else
2121 msg = "call target out of range";
2122 }
2123 else if (opcode == get_l32r_opcode ())
2124 {
2125 if ((relocation & 0x3) != 0)
2126 msg = "misaligned literal target";
2127 else if (is_alt_relocation (howto->type))
2128 msg = "literal target out of range (too many literals)";
2129 else if (self_address > relocation)
2130 msg = "literal target out of range (try using text-section-literals)";
2131 else
2132 msg = "literal placed after use";
2133 }
2134
2135 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2136 return bfd_reloc_dangerous;
2137 }
2138
43cd72b9 2139 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2140 if (is_direct_call_opcode (opcode)
2141 && is_windowed_call_opcode (opcode))
2142 {
43cd72b9
BW
2143 if ((self_address >> CALL_SEGMENT_BITS)
2144 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2145 {
43cd72b9
BW
2146 *error_message =
2147 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2148 return bfd_reloc_dangerous;
2149 }
2150 }
2151
43cd72b9
BW
2152 /* Write the modified instruction back out of the buffer. */
2153 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2154 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2155 input_size - address);
e0001a05
NC
2156 return bfd_reloc_ok;
2157}
2158
2159
2db662be 2160static char *
7fa3d080 2161vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2162{
2163 /* To reduce the size of the memory leak,
2164 we only use a single message buffer. */
2165 static bfd_size_type alloc_size = 0;
2166 static char *message = NULL;
2167 bfd_size_type orig_len, len = 0;
2168 bfd_boolean is_append;
2169
2170 VA_OPEN (ap, arglen);
2171 VA_FIXEDARG (ap, const char *, origmsg);
2172
2173 is_append = (origmsg == message);
2174
2175 orig_len = strlen (origmsg);
2176 len = orig_len + strlen (fmt) + arglen + 20;
2177 if (len > alloc_size)
2178 {
515ef31d 2179 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2180 alloc_size = len;
2181 }
515ef31d
NC
2182 if (message != NULL)
2183 {
2184 if (!is_append)
2185 memcpy (message, origmsg, orig_len);
2186 vsprintf (message + orig_len, fmt, ap);
2187 }
e0001a05
NC
2188 VA_CLOSE (ap);
2189 return message;
2190}
2191
2192
e0001a05
NC
2193/* This function is registered as the "special_function" in the
2194 Xtensa howto for handling simplify operations.
2195 bfd_perform_relocation / bfd_install_relocation use it to
2196 perform (install) the specified relocation. Since this replaces the code
2197 in bfd_perform_relocation, it is basically an Xtensa-specific,
2198 stripped-down version of bfd_perform_relocation. */
2199
2200static bfd_reloc_status_type
7fa3d080
BW
2201bfd_elf_xtensa_reloc (bfd *abfd,
2202 arelent *reloc_entry,
2203 asymbol *symbol,
2204 void *data,
2205 asection *input_section,
2206 bfd *output_bfd,
2207 char **error_message)
e0001a05
NC
2208{
2209 bfd_vma relocation;
2210 bfd_reloc_status_type flag;
2211 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2212 bfd_vma output_base = 0;
2213 reloc_howto_type *howto = reloc_entry->howto;
2214 asection *reloc_target_output_section;
2215 bfd_boolean is_weak_undef;
2216
dd1a320b
BW
2217 if (!xtensa_default_isa)
2218 xtensa_default_isa = xtensa_isa_init (0, 0);
2219
1049f94e 2220 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2221 output, and the reloc is against an external symbol, the resulting
2222 reloc will also be against the same symbol. In such a case, we
2223 don't want to change anything about the way the reloc is handled,
2224 since it will all be done at final link time. This test is similar
2225 to what bfd_elf_generic_reloc does except that it lets relocs with
2226 howto->partial_inplace go through even if the addend is non-zero.
2227 (The real problem is that partial_inplace is set for XTENSA_32
2228 relocs to begin with, but that's a long story and there's little we
2229 can do about it now....) */
2230
7fa3d080 2231 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2232 {
2233 reloc_entry->address += input_section->output_offset;
2234 return bfd_reloc_ok;
2235 }
2236
2237 /* Is the address of the relocation really within the section? */
07515404 2238 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2239 return bfd_reloc_outofrange;
2240
4cc11e76 2241 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2242 initial relocation command value. */
2243
2244 /* Get symbol value. (Common symbols are special.) */
2245 if (bfd_is_com_section (symbol->section))
2246 relocation = 0;
2247 else
2248 relocation = symbol->value;
2249
2250 reloc_target_output_section = symbol->section->output_section;
2251
2252 /* Convert input-section-relative symbol value to absolute. */
2253 if ((output_bfd && !howto->partial_inplace)
2254 || reloc_target_output_section == NULL)
2255 output_base = 0;
2256 else
2257 output_base = reloc_target_output_section->vma;
2258
2259 relocation += output_base + symbol->section->output_offset;
2260
2261 /* Add in supplied addend. */
2262 relocation += reloc_entry->addend;
2263
2264 /* Here the variable relocation holds the final address of the
2265 symbol we are relocating against, plus any addend. */
2266 if (output_bfd)
2267 {
2268 if (!howto->partial_inplace)
2269 {
2270 /* This is a partial relocation, and we want to apply the relocation
2271 to the reloc entry rather than the raw data. Everything except
2272 relocations against section symbols has already been handled
2273 above. */
43cd72b9 2274
e0001a05
NC
2275 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2276 reloc_entry->addend = relocation;
2277 reloc_entry->address += input_section->output_offset;
2278 return bfd_reloc_ok;
2279 }
2280 else
2281 {
2282 reloc_entry->address += input_section->output_offset;
2283 reloc_entry->addend = 0;
2284 }
2285 }
2286
2287 is_weak_undef = (bfd_is_und_section (symbol->section)
2288 && (symbol->flags & BSF_WEAK) != 0);
2289 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2290 (bfd_byte *) data, (bfd_vma) octets,
2291 is_weak_undef, error_message);
2292
2293 if (flag == bfd_reloc_dangerous)
2294 {
2295 /* Add the symbol name to the error message. */
2296 if (! *error_message)
2297 *error_message = "";
2298 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2299 strlen (symbol->name) + 17,
70961b9d
AM
2300 symbol->name,
2301 (unsigned long) reloc_entry->addend);
e0001a05
NC
2302 }
2303
2304 return flag;
2305}
2306
2307
2308/* Set up an entry in the procedure linkage table. */
2309
2310static bfd_vma
f0e6fdb2 2311elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2312 bfd *output_bfd,
2313 unsigned reloc_index)
e0001a05
NC
2314{
2315 asection *splt, *sgotplt;
2316 bfd_vma plt_base, got_base;
2317 bfd_vma code_offset, lit_offset;
2318 int chunk;
2319
2320 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2321 splt = elf_xtensa_get_plt_section (info, chunk);
2322 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2323 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2324
2325 plt_base = splt->output_section->vma + splt->output_offset;
2326 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2327
2328 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2329 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2330
2331 /* Fill in the literal entry. This is the offset of the dynamic
2332 relocation entry. */
2333 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2334 sgotplt->contents + lit_offset);
2335
2336 /* Fill in the entry in the procedure linkage table. */
2337 memcpy (splt->contents + code_offset,
2338 (bfd_big_endian (output_bfd)
2339 ? elf_xtensa_be_plt_entry
2340 : elf_xtensa_le_plt_entry),
2341 PLT_ENTRY_SIZE);
2342 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2343 plt_base + code_offset + 3),
2344 splt->contents + code_offset + 4);
2345 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2346 plt_base + code_offset + 6),
2347 splt->contents + code_offset + 7);
2348 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2349 plt_base + code_offset + 9),
2350 splt->contents + code_offset + 10);
2351
2352 return plt_base + code_offset;
2353}
2354
2355
28dbbc02
BW
2356static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2357
2358static bfd_boolean
2359replace_tls_insn (Elf_Internal_Rela *rel,
2360 bfd *abfd,
2361 asection *input_section,
2362 bfd_byte *contents,
2363 bfd_boolean is_ld_model,
2364 char **error_message)
2365{
2366 static xtensa_insnbuf ibuff = NULL;
2367 static xtensa_insnbuf sbuff = NULL;
2368 xtensa_isa isa = xtensa_default_isa;
2369 xtensa_format fmt;
2370 xtensa_opcode old_op, new_op;
2371 bfd_size_type input_size;
2372 int r_type;
2373 unsigned dest_reg, src_reg;
2374
2375 if (ibuff == NULL)
2376 {
2377 ibuff = xtensa_insnbuf_alloc (isa);
2378 sbuff = xtensa_insnbuf_alloc (isa);
2379 }
2380
2381 input_size = bfd_get_section_limit (abfd, input_section);
2382
2383 /* Read the instruction into a buffer and decode the opcode. */
2384 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2385 input_size - rel->r_offset);
2386 fmt = xtensa_format_decode (isa, ibuff);
2387 if (fmt == XTENSA_UNDEFINED)
2388 {
2389 *error_message = "cannot decode instruction format";
2390 return FALSE;
2391 }
2392
2393 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2394 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2395
2396 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2397 if (old_op == XTENSA_UNDEFINED)
2398 {
2399 *error_message = "cannot decode instruction opcode";
2400 return FALSE;
2401 }
2402
2403 r_type = ELF32_R_TYPE (rel->r_info);
2404 switch (r_type)
2405 {
2406 case R_XTENSA_TLS_FUNC:
2407 case R_XTENSA_TLS_ARG:
2408 if (old_op != get_l32r_opcode ()
2409 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2410 sbuff, &dest_reg) != 0)
2411 {
2412 *error_message = "cannot extract L32R destination for TLS access";
2413 return FALSE;
2414 }
2415 break;
2416
2417 case R_XTENSA_TLS_CALL:
2418 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2419 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2420 sbuff, &src_reg) != 0)
2421 {
2422 *error_message = "cannot extract CALLXn operands for TLS access";
2423 return FALSE;
2424 }
2425 break;
2426
2427 default:
2428 abort ();
2429 }
2430
2431 if (is_ld_model)
2432 {
2433 switch (r_type)
2434 {
2435 case R_XTENSA_TLS_FUNC:
2436 case R_XTENSA_TLS_ARG:
2437 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2438 versions of Xtensa). */
2439 new_op = xtensa_opcode_lookup (isa, "nop");
2440 if (new_op == XTENSA_UNDEFINED)
2441 {
2442 new_op = xtensa_opcode_lookup (isa, "or");
2443 if (new_op == XTENSA_UNDEFINED
2444 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2445 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2446 sbuff, 1) != 0
2447 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2448 sbuff, 1) != 0
2449 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2450 sbuff, 1) != 0)
2451 {
2452 *error_message = "cannot encode OR for TLS access";
2453 return FALSE;
2454 }
2455 }
2456 else
2457 {
2458 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2459 {
2460 *error_message = "cannot encode NOP for TLS access";
2461 return FALSE;
2462 }
2463 }
2464 break;
2465
2466 case R_XTENSA_TLS_CALL:
2467 /* Read THREADPTR into the CALLX's return value register. */
2468 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2469 if (new_op == XTENSA_UNDEFINED
2470 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2471 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2472 sbuff, dest_reg + 2) != 0)
2473 {
2474 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2475 return FALSE;
2476 }
2477 break;
2478 }
2479 }
2480 else
2481 {
2482 switch (r_type)
2483 {
2484 case R_XTENSA_TLS_FUNC:
2485 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2486 if (new_op == XTENSA_UNDEFINED
2487 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2488 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2489 sbuff, dest_reg) != 0)
2490 {
2491 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2492 return FALSE;
2493 }
2494 break;
2495
2496 case R_XTENSA_TLS_ARG:
2497 /* Nothing to do. Keep the original L32R instruction. */
2498 return TRUE;
2499
2500 case R_XTENSA_TLS_CALL:
2501 /* Add the CALLX's src register (holding the THREADPTR value)
2502 to the first argument register (holding the offset) and put
2503 the result in the CALLX's return value register. */
2504 new_op = xtensa_opcode_lookup (isa, "add");
2505 if (new_op == XTENSA_UNDEFINED
2506 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2507 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2508 sbuff, dest_reg + 2) != 0
2509 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2510 sbuff, dest_reg + 2) != 0
2511 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2512 sbuff, src_reg) != 0)
2513 {
2514 *error_message = "cannot encode ADD for TLS access";
2515 return FALSE;
2516 }
2517 break;
2518 }
2519 }
2520
2521 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2522 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2523 input_size - rel->r_offset);
2524
2525 return TRUE;
2526}
2527
2528
2529#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2530 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2531 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2532 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2533 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2534 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2535 || (R_TYPE) == R_XTENSA_TLS_ARG \
2536 || (R_TYPE) == R_XTENSA_TLS_CALL)
2537
e0001a05 2538/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2539 both relocatable and final links. */
e0001a05
NC
2540
2541static bfd_boolean
7fa3d080
BW
2542elf_xtensa_relocate_section (bfd *output_bfd,
2543 struct bfd_link_info *info,
2544 bfd *input_bfd,
2545 asection *input_section,
2546 bfd_byte *contents,
2547 Elf_Internal_Rela *relocs,
2548 Elf_Internal_Sym *local_syms,
2549 asection **local_sections)
e0001a05 2550{
f0e6fdb2 2551 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2552 Elf_Internal_Shdr *symtab_hdr;
2553 Elf_Internal_Rela *rel;
2554 Elf_Internal_Rela *relend;
2555 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2556 property_table_entry *lit_table = 0;
2557 int ltblsize = 0;
28dbbc02 2558 char *local_got_tls_types;
e0001a05 2559 char *error_message = NULL;
43cd72b9 2560 bfd_size_type input_size;
28dbbc02 2561 int tls_type;
e0001a05 2562
43cd72b9
BW
2563 if (!xtensa_default_isa)
2564 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2565
28dbbc02
BW
2566 BFD_ASSERT (is_xtensa_elf (input_bfd));
2567
f0e6fdb2 2568 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2569 if (htab == NULL)
2570 return FALSE;
2571
e0001a05
NC
2572 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2573 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2574 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2575
88d65ad6
BW
2576 if (elf_hash_table (info)->dynamic_sections_created)
2577 {
2578 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2579 &lit_table, XTENSA_LIT_SEC_NAME,
2580 TRUE);
88d65ad6
BW
2581 if (ltblsize < 0)
2582 return FALSE;
2583 }
2584
43cd72b9
BW
2585 input_size = bfd_get_section_limit (input_bfd, input_section);
2586
e0001a05
NC
2587 rel = relocs;
2588 relend = relocs + input_section->reloc_count;
2589 for (; rel < relend; rel++)
2590 {
2591 int r_type;
2592 reloc_howto_type *howto;
2593 unsigned long r_symndx;
2594 struct elf_link_hash_entry *h;
2595 Elf_Internal_Sym *sym;
28dbbc02
BW
2596 char sym_type;
2597 const char *name;
e0001a05
NC
2598 asection *sec;
2599 bfd_vma relocation;
2600 bfd_reloc_status_type r;
2601 bfd_boolean is_weak_undef;
2602 bfd_boolean unresolved_reloc;
9b8c98a4 2603 bfd_boolean warned;
28dbbc02 2604 bfd_boolean dynamic_symbol;
e0001a05
NC
2605
2606 r_type = ELF32_R_TYPE (rel->r_info);
2607 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2608 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2609 continue;
2610
2611 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2612 {
2613 bfd_set_error (bfd_error_bad_value);
2614 return FALSE;
2615 }
2616 howto = &elf_howto_table[r_type];
2617
2618 r_symndx = ELF32_R_SYM (rel->r_info);
2619
ab96bf03
AM
2620 h = NULL;
2621 sym = NULL;
2622 sec = NULL;
2623 is_weak_undef = FALSE;
2624 unresolved_reloc = FALSE;
2625 warned = FALSE;
2626
2627 if (howto->partial_inplace && !info->relocatable)
2628 {
2629 /* Because R_XTENSA_32 was made partial_inplace to fix some
2630 problems with DWARF info in partial links, there may be
2631 an addend stored in the contents. Take it out of there
2632 and move it back into the addend field of the reloc. */
2633 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2634 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2635 }
2636
2637 if (r_symndx < symtab_hdr->sh_info)
2638 {
2639 sym = local_syms + r_symndx;
28dbbc02 2640 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2641 sec = local_sections[r_symndx];
2642 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2643 }
2644 else
2645 {
2646 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2647 r_symndx, symtab_hdr, sym_hashes,
2648 h, sec, relocation,
2649 unresolved_reloc, warned);
2650
2651 if (relocation == 0
2652 && !unresolved_reloc
2653 && h->root.type == bfd_link_hash_undefweak)
2654 is_weak_undef = TRUE;
28dbbc02
BW
2655
2656 sym_type = h->type;
ab96bf03
AM
2657 }
2658
2659 if (sec != NULL && elf_discarded_section (sec))
e4067dbb
DJ
2660 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2661 rel, relend, howto, contents);
ab96bf03 2662
1049f94e 2663 if (info->relocatable)
e0001a05 2664 {
7aa09196
SA
2665 bfd_vma dest_addr;
2666 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2667
43cd72b9 2668 /* This is a relocatable link.
e0001a05
NC
2669 1) If the reloc is against a section symbol, adjust
2670 according to the output section.
2671 2) If there is a new target for this relocation,
2672 the new target will be in the same output section.
2673 We adjust the relocation by the output section
2674 difference. */
2675
2676 if (relaxing_section)
2677 {
2678 /* Check if this references a section in another input file. */
43cd72b9
BW
2679 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2680 contents))
2681 return FALSE;
e0001a05
NC
2682 }
2683
7aa09196
SA
2684 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2685 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2686
43cd72b9 2687 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2688 {
91d6fa6a 2689 error_message = NULL;
e0001a05
NC
2690 /* Convert ASM_SIMPLIFY into the simpler relocation
2691 so that they never escape a relaxing link. */
43cd72b9
BW
2692 r = contract_asm_expansion (contents, input_size, rel,
2693 &error_message);
2694 if (r != bfd_reloc_ok)
2695 {
2696 if (!((*info->callbacks->reloc_dangerous)
2697 (info, error_message, input_bfd, input_section,
2698 rel->r_offset)))
2699 return FALSE;
2700 }
e0001a05
NC
2701 r_type = ELF32_R_TYPE (rel->r_info);
2702 }
2703
1049f94e 2704 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2705 anything unless the reloc is against a section symbol,
2706 in which case we have to adjust according to where the
2707 section symbol winds up in the output section. */
2708 if (r_symndx < symtab_hdr->sh_info)
2709 {
2710 sym = local_syms + r_symndx;
2711 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2712 {
2713 sec = local_sections[r_symndx];
2714 rel->r_addend += sec->output_offset + sym->st_value;
2715 }
2716 }
2717
2718 /* If there is an addend with a partial_inplace howto,
2719 then move the addend to the contents. This is a hack
1049f94e 2720 to work around problems with DWARF in relocatable links
e0001a05
NC
2721 with some previous version of BFD. Now we can't easily get
2722 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2723 r = bfd_reloc_ok;
2724 howto = &elf_howto_table[r_type];
2725 if (howto->partial_inplace && rel->r_addend)
2726 {
2727 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2728 rel->r_addend, contents,
2729 rel->r_offset, FALSE,
2730 &error_message);
2731 rel->r_addend = 0;
2732 }
2733 else
e0001a05 2734 {
7aa09196
SA
2735 /* Put the correct bits in the target instruction, even
2736 though the relocation will still be present in the output
2737 file. This makes disassembly clearer, as well as
2738 allowing loadable kernel modules to work without needing
2739 relocations on anything other than calls and l32r's. */
2740
2741 /* If it is not in the same section, there is nothing we can do. */
2742 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2743 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2744 {
2745 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2746 dest_addr, contents,
e0001a05
NC
2747 rel->r_offset, FALSE,
2748 &error_message);
e0001a05
NC
2749 }
2750 }
7aa09196
SA
2751 if (r != bfd_reloc_ok)
2752 {
2753 if (!((*info->callbacks->reloc_dangerous)
2754 (info, error_message, input_bfd, input_section,
2755 rel->r_offset)))
2756 return FALSE;
2757 }
e0001a05 2758
1049f94e 2759 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2760 continue;
2761 }
2762
2763 /* This is a final link. */
2764
e0001a05
NC
2765 if (relaxing_section)
2766 {
2767 /* Check if this references a section in another input file. */
43cd72b9
BW
2768 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2769 &relocation);
e0001a05
NC
2770 }
2771
2772 /* Sanity check the address. */
43cd72b9 2773 if (rel->r_offset >= input_size
e0001a05
NC
2774 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2775 {
43cd72b9
BW
2776 (*_bfd_error_handler)
2777 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2778 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2779 bfd_set_error (bfd_error_bad_value);
2780 return FALSE;
2781 }
2782
28dbbc02
BW
2783 if (h != NULL)
2784 name = h->root.root.string;
2785 else
e0001a05 2786 {
28dbbc02
BW
2787 name = (bfd_elf_string_from_elf_section
2788 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2789 if (name == NULL || *name == '\0')
2790 name = bfd_section_name (input_bfd, sec);
2791 }
e0001a05 2792
cf35638d 2793 if (r_symndx != STN_UNDEF
28dbbc02
BW
2794 && r_type != R_XTENSA_NONE
2795 && (h == NULL
2796 || h->root.type == bfd_link_hash_defined
2797 || h->root.type == bfd_link_hash_defweak)
2798 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2799 {
2800 (*_bfd_error_handler)
2801 ((sym_type == STT_TLS
2802 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2803 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2804 input_bfd,
2805 input_section,
2806 (long) rel->r_offset,
2807 howto->name,
2808 name);
2809 }
2810
2811 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2812
2813 tls_type = GOT_UNKNOWN;
2814 if (h)
2815 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2816 else if (local_got_tls_types)
2817 tls_type = local_got_tls_types [r_symndx];
2818
2819 switch (r_type)
2820 {
2821 case R_XTENSA_32:
2822 case R_XTENSA_PLT:
2823 if (elf_hash_table (info)->dynamic_sections_created
2824 && (input_section->flags & SEC_ALLOC) != 0
2825 && (dynamic_symbol || info->shared))
e0001a05
NC
2826 {
2827 Elf_Internal_Rela outrel;
2828 bfd_byte *loc;
2829 asection *srel;
2830
2831 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2832 srel = htab->srelplt;
e0001a05 2833 else
f0e6fdb2 2834 srel = htab->srelgot;
e0001a05
NC
2835
2836 BFD_ASSERT (srel != NULL);
2837
2838 outrel.r_offset =
2839 _bfd_elf_section_offset (output_bfd, info,
2840 input_section, rel->r_offset);
2841
2842 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2843 memset (&outrel, 0, sizeof outrel);
2844 else
2845 {
f0578e28
BW
2846 outrel.r_offset += (input_section->output_section->vma
2847 + input_section->output_offset);
e0001a05 2848
88d65ad6
BW
2849 /* Complain if the relocation is in a read-only section
2850 and not in a literal pool. */
2851 if ((input_section->flags & SEC_READONLY) != 0
2852 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2853 outrel.r_offset))
88d65ad6
BW
2854 {
2855 error_message =
2856 _("dynamic relocation in read-only section");
2857 if (!((*info->callbacks->reloc_dangerous)
2858 (info, error_message, input_bfd, input_section,
2859 rel->r_offset)))
2860 return FALSE;
2861 }
2862
e0001a05
NC
2863 if (dynamic_symbol)
2864 {
2865 outrel.r_addend = rel->r_addend;
2866 rel->r_addend = 0;
2867
2868 if (r_type == R_XTENSA_32)
2869 {
2870 outrel.r_info =
2871 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2872 relocation = 0;
2873 }
2874 else /* r_type == R_XTENSA_PLT */
2875 {
2876 outrel.r_info =
2877 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2878
2879 /* Create the PLT entry and set the initial
2880 contents of the literal entry to the address of
2881 the PLT entry. */
43cd72b9 2882 relocation =
f0e6fdb2 2883 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2884 srel->reloc_count);
2885 }
2886 unresolved_reloc = FALSE;
2887 }
2888 else
2889 {
2890 /* Generate a RELATIVE relocation. */
2891 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2892 outrel.r_addend = 0;
2893 }
2894 }
2895
2896 loc = (srel->contents
2897 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2898 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2899 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2900 <= srel->size);
e0001a05 2901 }
d9ab3f29
BW
2902 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2903 {
2904 /* This should only happen for non-PIC code, which is not
2905 supposed to be used on systems with dynamic linking.
2906 Just ignore these relocations. */
2907 continue;
2908 }
28dbbc02
BW
2909 break;
2910
2911 case R_XTENSA_TLS_TPOFF:
2912 /* Switch to LE model for local symbols in an executable. */
2913 if (! info->shared && ! dynamic_symbol)
2914 {
2915 relocation = tpoff (info, relocation);
2916 break;
2917 }
2918 /* fall through */
2919
2920 case R_XTENSA_TLSDESC_FN:
2921 case R_XTENSA_TLSDESC_ARG:
2922 {
2923 if (r_type == R_XTENSA_TLSDESC_FN)
2924 {
2925 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2926 r_type = R_XTENSA_NONE;
2927 }
2928 else if (r_type == R_XTENSA_TLSDESC_ARG)
2929 {
2930 if (info->shared)
2931 {
2932 if ((tls_type & GOT_TLS_IE) != 0)
2933 r_type = R_XTENSA_TLS_TPOFF;
2934 }
2935 else
2936 {
2937 r_type = R_XTENSA_TLS_TPOFF;
2938 if (! dynamic_symbol)
2939 {
2940 relocation = tpoff (info, relocation);
2941 break;
2942 }
2943 }
2944 }
2945
2946 if (r_type == R_XTENSA_NONE)
2947 /* Nothing to do here; skip to the next reloc. */
2948 continue;
2949
2950 if (! elf_hash_table (info)->dynamic_sections_created)
2951 {
2952 error_message =
2953 _("TLS relocation invalid without dynamic sections");
2954 if (!((*info->callbacks->reloc_dangerous)
2955 (info, error_message, input_bfd, input_section,
2956 rel->r_offset)))
2957 return FALSE;
2958 }
2959 else
2960 {
2961 Elf_Internal_Rela outrel;
2962 bfd_byte *loc;
2963 asection *srel = htab->srelgot;
2964 int indx;
2965
2966 outrel.r_offset = (input_section->output_section->vma
2967 + input_section->output_offset
2968 + rel->r_offset);
2969
2970 /* Complain if the relocation is in a read-only section
2971 and not in a literal pool. */
2972 if ((input_section->flags & SEC_READONLY) != 0
2973 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2974 outrel.r_offset))
2975 {
2976 error_message =
2977 _("dynamic relocation in read-only section");
2978 if (!((*info->callbacks->reloc_dangerous)
2979 (info, error_message, input_bfd, input_section,
2980 rel->r_offset)))
2981 return FALSE;
2982 }
2983
2984 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2985 if (indx == 0)
2986 outrel.r_addend = relocation - dtpoff_base (info);
2987 else
2988 outrel.r_addend = 0;
2989 rel->r_addend = 0;
2990
2991 outrel.r_info = ELF32_R_INFO (indx, r_type);
2992 relocation = 0;
2993 unresolved_reloc = FALSE;
2994
2995 BFD_ASSERT (srel);
2996 loc = (srel->contents
2997 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2998 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2999 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
3000 <= srel->size);
3001 }
3002 }
3003 break;
3004
3005 case R_XTENSA_TLS_DTPOFF:
3006 if (! info->shared)
3007 /* Switch from LD model to LE model. */
3008 relocation = tpoff (info, relocation);
3009 else
3010 relocation -= dtpoff_base (info);
3011 break;
3012
3013 case R_XTENSA_TLS_FUNC:
3014 case R_XTENSA_TLS_ARG:
3015 case R_XTENSA_TLS_CALL:
3016 /* Check if optimizing to IE or LE model. */
3017 if ((tls_type & GOT_TLS_IE) != 0)
3018 {
3019 bfd_boolean is_ld_model =
3020 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3021 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3022 is_ld_model, &error_message))
3023 {
3024 if (!((*info->callbacks->reloc_dangerous)
3025 (info, error_message, input_bfd, input_section,
3026 rel->r_offset)))
3027 return FALSE;
3028 }
3029
3030 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3031 {
3032 /* Skip subsequent relocations on the same instruction. */
3033 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3034 rel++;
3035 }
3036 }
3037 continue;
3038
3039 default:
3040 if (elf_hash_table (info)->dynamic_sections_created
3041 && dynamic_symbol && (is_operand_relocation (r_type)
3042 || r_type == R_XTENSA_32_PCREL))
3043 {
3044 error_message =
3045 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3046 strlen (name) + 2, name);
3047 if (!((*info->callbacks->reloc_dangerous)
3048 (info, error_message, input_bfd, input_section,
3049 rel->r_offset)))
3050 return FALSE;
3051 continue;
3052 }
3053 break;
e0001a05
NC
3054 }
3055
3056 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3057 because such sections are not SEC_ALLOC and thus ld.so will
3058 not process them. */
3059 if (unresolved_reloc
3060 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 3061 && h->def_dynamic))
bf1747de
BW
3062 {
3063 (*_bfd_error_handler)
3064 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3065 input_bfd,
3066 input_section,
3067 (long) rel->r_offset,
3068 howto->name,
28dbbc02 3069 name);
bf1747de
BW
3070 return FALSE;
3071 }
e0001a05 3072
28dbbc02
BW
3073 /* TLS optimizations may have changed r_type; update "howto". */
3074 howto = &elf_howto_table[r_type];
3075
e0001a05
NC
3076 /* There's no point in calling bfd_perform_relocation here.
3077 Just go directly to our "special function". */
3078 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3079 relocation + rel->r_addend,
3080 contents, rel->r_offset, is_weak_undef,
3081 &error_message);
43cd72b9 3082
9b8c98a4 3083 if (r != bfd_reloc_ok && !warned)
e0001a05 3084 {
43cd72b9 3085 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3086 BFD_ASSERT (error_message != NULL);
e0001a05 3087
28dbbc02
BW
3088 if (rel->r_addend == 0)
3089 error_message = vsprint_msg (error_message, ": %s",
3090 strlen (name) + 2, name);
e0001a05 3091 else
28dbbc02
BW
3092 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3093 strlen (name) + 22,
3094 name, (int) rel->r_addend);
43cd72b9 3095
e0001a05
NC
3096 if (!((*info->callbacks->reloc_dangerous)
3097 (info, error_message, input_bfd, input_section,
3098 rel->r_offset)))
3099 return FALSE;
3100 }
3101 }
3102
88d65ad6
BW
3103 if (lit_table)
3104 free (lit_table);
3105
3ba3bc8c
BW
3106 input_section->reloc_done = TRUE;
3107
e0001a05
NC
3108 return TRUE;
3109}
3110
3111
3112/* Finish up dynamic symbol handling. There's not much to do here since
3113 the PLT and GOT entries are all set up by relocate_section. */
3114
3115static bfd_boolean
7fa3d080
BW
3116elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3117 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3118 struct elf_link_hash_entry *h,
3119 Elf_Internal_Sym *sym)
e0001a05 3120{
bf1747de 3121 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3122 {
3123 /* Mark the symbol as undefined, rather than as defined in
3124 the .plt section. Leave the value alone. */
3125 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3126 /* If the symbol is weak, we do need to clear the value.
3127 Otherwise, the PLT entry would provide a definition for
3128 the symbol even if the symbol wasn't defined anywhere,
3129 and so the symbol would never be NULL. */
3130 if (!h->ref_regular_nonweak)
3131 sym->st_value = 0;
e0001a05
NC
3132 }
3133
3134 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3135 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 3136 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3137 sym->st_shndx = SHN_ABS;
3138
3139 return TRUE;
3140}
3141
3142
3143/* Combine adjacent literal table entries in the output. Adjacent
3144 entries within each input section may have been removed during
3145 relaxation, but we repeat the process here, even though it's too late
3146 to shrink the output section, because it's important to minimize the
3147 number of literal table entries to reduce the start-up work for the
3148 runtime linker. Returns the number of remaining table entries or -1
3149 on error. */
3150
3151static int
7fa3d080
BW
3152elf_xtensa_combine_prop_entries (bfd *output_bfd,
3153 asection *sxtlit,
3154 asection *sgotloc)
e0001a05 3155{
e0001a05
NC
3156 bfd_byte *contents;
3157 property_table_entry *table;
e901de89 3158 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3159 bfd_vma offset;
3160 int n, m, num;
3161
eea6121a 3162 section_size = sxtlit->size;
e0001a05
NC
3163 BFD_ASSERT (section_size % 8 == 0);
3164 num = section_size / 8;
3165
eea6121a 3166 sgotloc_size = sgotloc->size;
e901de89 3167 if (sgotloc_size != section_size)
b536dc1e
BW
3168 {
3169 (*_bfd_error_handler)
43cd72b9 3170 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3171 return -1;
3172 }
e901de89 3173
eea6121a
AM
3174 table = bfd_malloc (num * sizeof (property_table_entry));
3175 if (table == 0)
e0001a05
NC
3176 return -1;
3177
3178 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3179 propagates to the output section, where it doesn't really apply and
eea6121a 3180 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3181 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3182
eea6121a
AM
3183 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3184 {
3185 if (contents != 0)
3186 free (contents);
3187 free (table);
3188 return -1;
3189 }
e0001a05
NC
3190
3191 /* There should never be any relocations left at this point, so this
3192 is quite a bit easier than what is done during relaxation. */
3193
3194 /* Copy the raw contents into a property table array and sort it. */
3195 offset = 0;
3196 for (n = 0; n < num; n++)
3197 {
3198 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3199 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3200 offset += 8;
3201 }
3202 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3203
3204 for (n = 0; n < num; n++)
3205 {
91d6fa6a 3206 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3207
3208 if (table[n].size == 0)
91d6fa6a
NC
3209 remove_entry = TRUE;
3210 else if (n > 0
3211 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3212 {
3213 table[n-1].size += table[n].size;
91d6fa6a 3214 remove_entry = TRUE;
e0001a05
NC
3215 }
3216
91d6fa6a 3217 if (remove_entry)
e0001a05
NC
3218 {
3219 for (m = n; m < num - 1; m++)
3220 {
3221 table[m].address = table[m+1].address;
3222 table[m].size = table[m+1].size;
3223 }
3224
3225 n--;
3226 num--;
3227 }
3228 }
3229
3230 /* Copy the data back to the raw contents. */
3231 offset = 0;
3232 for (n = 0; n < num; n++)
3233 {
3234 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3235 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3236 offset += 8;
3237 }
3238
3239 /* Clear the removed bytes. */
3240 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3241 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3242
e901de89
BW
3243 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3244 section_size))
e0001a05
NC
3245 return -1;
3246
e901de89
BW
3247 /* Copy the contents to ".got.loc". */
3248 memcpy (sgotloc->contents, contents, section_size);
3249
e0001a05 3250 free (contents);
b614a702 3251 free (table);
e0001a05
NC
3252 return num;
3253}
3254
3255
3256/* Finish up the dynamic sections. */
3257
3258static bfd_boolean
7fa3d080
BW
3259elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3260 struct bfd_link_info *info)
e0001a05 3261{
f0e6fdb2 3262 struct elf_xtensa_link_hash_table *htab;
e0001a05 3263 bfd *dynobj;
e901de89 3264 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3265 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3266 int num_xtlit_entries = 0;
e0001a05
NC
3267
3268 if (! elf_hash_table (info)->dynamic_sections_created)
3269 return TRUE;
3270
f0e6fdb2 3271 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3272 if (htab == NULL)
3273 return FALSE;
3274
e0001a05
NC
3275 dynobj = elf_hash_table (info)->dynobj;
3276 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3277 BFD_ASSERT (sdyn != NULL);
3278
3279 /* Set the first entry in the global offset table to the address of
3280 the dynamic section. */
f0e6fdb2 3281 sgot = htab->sgot;
e0001a05
NC
3282 if (sgot)
3283 {
eea6121a 3284 BFD_ASSERT (sgot->size == 4);
e0001a05 3285 if (sdyn == NULL)
7fa3d080 3286 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3287 else
3288 bfd_put_32 (output_bfd,
3289 sdyn->output_section->vma + sdyn->output_offset,
3290 sgot->contents);
3291 }
3292
f0e6fdb2 3293 srelplt = htab->srelplt;
7fa3d080 3294 if (srelplt && srelplt->size != 0)
e0001a05
NC
3295 {
3296 asection *sgotplt, *srelgot, *spltlittbl;
3297 int chunk, plt_chunks, plt_entries;
3298 Elf_Internal_Rela irela;
3299 bfd_byte *loc;
3300 unsigned rtld_reloc;
3301
f0e6fdb2
BW
3302 srelgot = htab->srelgot;
3303 spltlittbl = htab->spltlittbl;
3304 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3305
3306 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3307 of them follow immediately after.... */
3308 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3309 {
3310 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3311 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3312 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3313 break;
3314 }
3315 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3316
eea6121a 3317 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3318 plt_chunks =
3319 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3320
3321 for (chunk = 0; chunk < plt_chunks; chunk++)
3322 {
3323 int chunk_entries = 0;
3324
f0e6fdb2 3325 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3326 BFD_ASSERT (sgotplt != NULL);
3327
3328 /* Emit special RTLD relocations for the first two entries in
3329 each chunk of the .got.plt section. */
3330
3331 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3332 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3333 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3334 irela.r_offset = (sgotplt->output_section->vma
3335 + sgotplt->output_offset);
3336 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3337 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3338 rtld_reloc += 1;
3339 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3340
3341 /* Next literal immediately follows the first. */
3342 loc += sizeof (Elf32_External_Rela);
3343 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3344 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3345 irela.r_offset = (sgotplt->output_section->vma
3346 + sgotplt->output_offset + 4);
3347 /* Tell rtld to set value to object's link map. */
3348 irela.r_addend = 2;
3349 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3350 rtld_reloc += 1;
3351 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3352
3353 /* Fill in the literal table. */
3354 if (chunk < plt_chunks - 1)
3355 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3356 else
3357 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3358
eea6121a 3359 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3360 bfd_put_32 (output_bfd,
3361 sgotplt->output_section->vma + sgotplt->output_offset,
3362 spltlittbl->contents + (chunk * 8) + 0);
3363 bfd_put_32 (output_bfd,
3364 8 + (chunk_entries * 4),
3365 spltlittbl->contents + (chunk * 8) + 4);
3366 }
3367
3368 /* All the dynamic relocations have been emitted at this point.
3369 Make sure the relocation sections are the correct size. */
eea6121a
AM
3370 if (srelgot->size != (sizeof (Elf32_External_Rela)
3371 * srelgot->reloc_count)
3372 || srelplt->size != (sizeof (Elf32_External_Rela)
3373 * srelplt->reloc_count))
e0001a05
NC
3374 abort ();
3375
3376 /* The .xt.lit.plt section has just been modified. This must
3377 happen before the code below which combines adjacent literal
3378 table entries, and the .xt.lit.plt contents have to be forced to
3379 the output here. */
3380 if (! bfd_set_section_contents (output_bfd,
3381 spltlittbl->output_section,
3382 spltlittbl->contents,
3383 spltlittbl->output_offset,
eea6121a 3384 spltlittbl->size))
e0001a05
NC
3385 return FALSE;
3386 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3387 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3388 }
3389
3390 /* Combine adjacent literal table entries. */
1049f94e 3391 BFD_ASSERT (! info->relocatable);
e901de89 3392 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3393 sgotloc = htab->sgotloc;
d9ab3f29
BW
3394 BFD_ASSERT (sgotloc);
3395 if (sxtlit)
3396 {
3397 num_xtlit_entries =
3398 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3399 if (num_xtlit_entries < 0)
3400 return FALSE;
3401 }
e0001a05
NC
3402
3403 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3404 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3405 for (; dyncon < dynconend; dyncon++)
3406 {
3407 Elf_Internal_Dyn dyn;
e0001a05
NC
3408
3409 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3410
3411 switch (dyn.d_tag)
3412 {
3413 default:
3414 break;
3415
3416 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3417 dyn.d_un.d_val = num_xtlit_entries;
3418 break;
3419
3420 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 3421 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
3422 break;
3423
e0001a05 3424 case DT_PLTGOT:
e29297b7 3425 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
3426 break;
3427
e0001a05 3428 case DT_JMPREL:
e29297b7 3429 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
3430 break;
3431
3432 case DT_PLTRELSZ:
e29297b7 3433 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
3434 break;
3435
3436 case DT_RELASZ:
3437 /* Adjust RELASZ to not include JMPREL. This matches what
3438 glibc expects and what is done for several other ELF
3439 targets (e.g., i386, alpha), but the "correct" behavior
3440 seems to be unresolved. Since the linker script arranges
3441 for .rela.plt to follow all other relocation sections, we
3442 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 3443 if (htab->srelplt)
e29297b7 3444 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
3445 break;
3446 }
3447
3448 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3449 }
3450
3451 return TRUE;
3452}
3453
3454\f
3455/* Functions for dealing with the e_flags field. */
3456
3457/* Merge backend specific data from an object file to the output
3458 object file when linking. */
3459
3460static bfd_boolean
7fa3d080 3461elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
3462{
3463 unsigned out_mach, in_mach;
3464 flagword out_flag, in_flag;
3465
cc643b88 3466 /* Check if we have the same endianness. */
e0001a05
NC
3467 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3468 return FALSE;
3469
3470 /* Don't even pretend to support mixed-format linking. */
3471 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3472 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3473 return FALSE;
3474
3475 out_flag = elf_elfheader (obfd)->e_flags;
3476 in_flag = elf_elfheader (ibfd)->e_flags;
3477
3478 out_mach = out_flag & EF_XTENSA_MACH;
3479 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3480 if (out_mach != in_mach)
e0001a05
NC
3481 {
3482 (*_bfd_error_handler)
43cd72b9 3483 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3484 ibfd, out_mach, in_mach);
e0001a05
NC
3485 bfd_set_error (bfd_error_wrong_format);
3486 return FALSE;
3487 }
3488
3489 if (! elf_flags_init (obfd))
3490 {
3491 elf_flags_init (obfd) = TRUE;
3492 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3493
e0001a05
NC
3494 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3495 && bfd_get_arch_info (obfd)->the_default)
3496 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3497 bfd_get_mach (ibfd));
43cd72b9 3498
e0001a05
NC
3499 return TRUE;
3500 }
3501
43cd72b9
BW
3502 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3503 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3504
43cd72b9
BW
3505 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3506 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3507
3508 return TRUE;
3509}
3510
3511
3512static bfd_boolean
7fa3d080 3513elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3514{
3515 BFD_ASSERT (!elf_flags_init (abfd)
3516 || elf_elfheader (abfd)->e_flags == flags);
3517
3518 elf_elfheader (abfd)->e_flags |= flags;
3519 elf_flags_init (abfd) = TRUE;
3520
3521 return TRUE;
3522}
3523
3524
e0001a05 3525static bfd_boolean
7fa3d080 3526elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3527{
3528 FILE *f = (FILE *) farg;
3529 flagword e_flags = elf_elfheader (abfd)->e_flags;
3530
3531 fprintf (f, "\nXtensa header:\n");
43cd72b9 3532 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3533 fprintf (f, "\nMachine = Base\n");
3534 else
3535 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3536
3537 fprintf (f, "Insn tables = %s\n",
3538 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3539
3540 fprintf (f, "Literal tables = %s\n",
3541 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3542
3543 return _bfd_elf_print_private_bfd_data (abfd, farg);
3544}
3545
3546
3547/* Set the right machine number for an Xtensa ELF file. */
3548
3549static bfd_boolean
7fa3d080 3550elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3551{
3552 int mach;
3553 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3554
3555 switch (arch)
3556 {
3557 case E_XTENSA_MACH:
3558 mach = bfd_mach_xtensa;
3559 break;
3560 default:
3561 return FALSE;
3562 }
3563
3564 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3565 return TRUE;
3566}
3567
3568
3569/* The final processing done just before writing out an Xtensa ELF object
3570 file. This gets the Xtensa architecture right based on the machine
3571 number. */
3572
3573static void
7fa3d080
BW
3574elf_xtensa_final_write_processing (bfd *abfd,
3575 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3576{
3577 int mach;
3578 unsigned long val;
3579
3580 switch (mach = bfd_get_mach (abfd))
3581 {
3582 case bfd_mach_xtensa:
3583 val = E_XTENSA_MACH;
3584 break;
3585 default:
3586 return;
3587 }
3588
3589 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3590 elf_elfheader (abfd)->e_flags |= val;
3591}
3592
3593
3594static enum elf_reloc_type_class
7fa3d080 3595elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
3596{
3597 switch ((int) ELF32_R_TYPE (rela->r_info))
3598 {
3599 case R_XTENSA_RELATIVE:
3600 return reloc_class_relative;
3601 case R_XTENSA_JMP_SLOT:
3602 return reloc_class_plt;
3603 default:
3604 return reloc_class_normal;
3605 }
3606}
3607
3608\f
3609static bfd_boolean
7fa3d080
BW
3610elf_xtensa_discard_info_for_section (bfd *abfd,
3611 struct elf_reloc_cookie *cookie,
3612 struct bfd_link_info *info,
3613 asection *sec)
e0001a05
NC
3614{
3615 bfd_byte *contents;
e0001a05 3616 bfd_vma offset, actual_offset;
1d25768e
BW
3617 bfd_size_type removed_bytes = 0;
3618 bfd_size_type entry_size;
e0001a05
NC
3619
3620 if (sec->output_section
3621 && bfd_is_abs_section (sec->output_section))
3622 return FALSE;
3623
1d25768e
BW
3624 if (xtensa_is_proptable_section (sec))
3625 entry_size = 12;
3626 else
3627 entry_size = 8;
3628
a3ef2d63 3629 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3630 return FALSE;
3631
e0001a05
NC
3632 contents = retrieve_contents (abfd, sec, info->keep_memory);
3633 if (!contents)
3634 return FALSE;
3635
3636 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3637 if (!cookie->rels)
3638 {
3639 release_contents (sec, contents);
3640 return FALSE;
3641 }
3642
1d25768e
BW
3643 /* Sort the relocations. They should already be in order when
3644 relaxation is enabled, but it might not be. */
3645 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3646 internal_reloc_compare);
3647
e0001a05
NC
3648 cookie->rel = cookie->rels;
3649 cookie->relend = cookie->rels + sec->reloc_count;
3650
a3ef2d63 3651 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3652 {
3653 actual_offset = offset - removed_bytes;
3654
3655 /* The ...symbol_deleted_p function will skip over relocs but it
3656 won't adjust their offsets, so do that here. */
3657 while (cookie->rel < cookie->relend
3658 && cookie->rel->r_offset < offset)
3659 {
3660 cookie->rel->r_offset -= removed_bytes;
3661 cookie->rel++;
3662 }
3663
3664 while (cookie->rel < cookie->relend
3665 && cookie->rel->r_offset == offset)
3666 {
c152c796 3667 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3668 {
3669 /* Remove the table entry. (If the reloc type is NONE, then
3670 the entry has already been merged with another and deleted
3671 during relaxation.) */
3672 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3673 {
3674 /* Shift the contents up. */
a3ef2d63 3675 if (offset + entry_size < sec->size)
e0001a05 3676 memmove (&contents[actual_offset],
1d25768e 3677 &contents[actual_offset + entry_size],
a3ef2d63 3678 sec->size - offset - entry_size);
1d25768e 3679 removed_bytes += entry_size;
e0001a05
NC
3680 }
3681
3682 /* Remove this relocation. */
3683 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3684 }
3685
3686 /* Adjust the relocation offset for previous removals. This
3687 should not be done before calling ...symbol_deleted_p
3688 because it might mess up the offset comparisons there.
3689 Make sure the offset doesn't underflow in the case where
3690 the first entry is removed. */
3691 if (cookie->rel->r_offset >= removed_bytes)
3692 cookie->rel->r_offset -= removed_bytes;
3693 else
3694 cookie->rel->r_offset = 0;
3695
3696 cookie->rel++;
3697 }
3698 }
3699
3700 if (removed_bytes != 0)
3701 {
3702 /* Adjust any remaining relocs (shouldn't be any). */
3703 for (; cookie->rel < cookie->relend; cookie->rel++)
3704 {
3705 if (cookie->rel->r_offset >= removed_bytes)
3706 cookie->rel->r_offset -= removed_bytes;
3707 else
3708 cookie->rel->r_offset = 0;
3709 }
3710
3711 /* Clear the removed bytes. */
a3ef2d63 3712 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3713
3714 pin_contents (sec, contents);
3715 pin_internal_relocs (sec, cookie->rels);
3716
eea6121a 3717 /* Shrink size. */
a3ef2d63
BW
3718 if (sec->rawsize == 0)
3719 sec->rawsize = sec->size;
3720 sec->size -= removed_bytes;
b536dc1e
BW
3721
3722 if (xtensa_is_littable_section (sec))
3723 {
f0e6fdb2
BW
3724 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3725 if (sgotloc)
3726 sgotloc->size -= removed_bytes;
b536dc1e 3727 }
e0001a05
NC
3728 }
3729 else
3730 {
3731 release_contents (sec, contents);
3732 release_internal_relocs (sec, cookie->rels);
3733 }
3734
3735 return (removed_bytes != 0);
3736}
3737
3738
3739static bfd_boolean
7fa3d080
BW
3740elf_xtensa_discard_info (bfd *abfd,
3741 struct elf_reloc_cookie *cookie,
3742 struct bfd_link_info *info)
e0001a05
NC
3743{
3744 asection *sec;
3745 bfd_boolean changed = FALSE;
3746
3747 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3748 {
3749 if (xtensa_is_property_section (sec))
3750 {
3751 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3752 changed = TRUE;
3753 }
3754 }
3755
3756 return changed;
3757}
3758
3759
3760static bfd_boolean
7fa3d080 3761elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3762{
3763 return xtensa_is_property_section (sec);
3764}
3765
a77dc2cc
BW
3766
3767static unsigned int
3768elf_xtensa_action_discarded (asection *sec)
3769{
3770 if (strcmp (".xt_except_table", sec->name) == 0)
3771 return 0;
3772
3773 if (strcmp (".xt_except_desc", sec->name) == 0)
3774 return 0;
3775
3776 return _bfd_elf_default_action_discarded (sec);
3777}
3778
e0001a05
NC
3779\f
3780/* Support for core dump NOTE sections. */
3781
3782static bfd_boolean
7fa3d080 3783elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3784{
3785 int offset;
eea6121a 3786 unsigned int size;
e0001a05
NC
3787
3788 /* The size for Xtensa is variable, so don't try to recognize the format
3789 based on the size. Just assume this is GNU/Linux. */
3790
3791 /* pr_cursig */
3792 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3793
3794 /* pr_pid */
261b8d08 3795 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3796
3797 /* pr_reg */
3798 offset = 72;
eea6121a 3799 size = note->descsz - offset - 4;
e0001a05
NC
3800
3801 /* Make a ".reg/999" section. */
3802 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3803 size, note->descpos + offset);
e0001a05
NC
3804}
3805
3806
3807static bfd_boolean
7fa3d080 3808elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3809{
3810 switch (note->descsz)
3811 {
3812 default:
3813 return FALSE;
3814
3815 case 128: /* GNU/Linux elf_prpsinfo */
3816 elf_tdata (abfd)->core_program
3817 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3818 elf_tdata (abfd)->core_command
3819 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3820 }
3821
3822 /* Note that for some reason, a spurious space is tacked
3823 onto the end of the args in some (at least one anyway)
3824 implementations, so strip it off if it exists. */
3825
3826 {
3827 char *command = elf_tdata (abfd)->core_command;
3828 int n = strlen (command);
3829
3830 if (0 < n && command[n - 1] == ' ')
3831 command[n - 1] = '\0';
3832 }
3833
3834 return TRUE;
3835}
3836
3837\f
3838/* Generic Xtensa configurability stuff. */
3839
3840static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3841static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3842static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3843static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3844static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3845static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3846static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3847static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3848
3849static void
7fa3d080 3850init_call_opcodes (void)
e0001a05
NC
3851{
3852 if (callx0_op == XTENSA_UNDEFINED)
3853 {
3854 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3855 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3856 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3857 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3858 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3859 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3860 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3861 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3862 }
3863}
3864
3865
3866static bfd_boolean
7fa3d080 3867is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3868{
3869 init_call_opcodes ();
3870 return (opcode == callx0_op
3871 || opcode == callx4_op
3872 || opcode == callx8_op
3873 || opcode == callx12_op);
3874}
3875
3876
3877static bfd_boolean
7fa3d080 3878is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3879{
3880 init_call_opcodes ();
3881 return (opcode == call0_op
3882 || opcode == call4_op
3883 || opcode == call8_op
3884 || opcode == call12_op);
3885}
3886
3887
3888static bfd_boolean
7fa3d080 3889is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3890{
3891 init_call_opcodes ();
3892 return (opcode == call4_op
3893 || opcode == call8_op
3894 || opcode == call12_op
3895 || opcode == callx4_op
3896 || opcode == callx8_op
3897 || opcode == callx12_op);
3898}
3899
3900
28dbbc02
BW
3901static bfd_boolean
3902get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3903{
3904 unsigned dst = (unsigned) -1;
3905
3906 init_call_opcodes ();
3907 if (opcode == callx0_op)
3908 dst = 0;
3909 else if (opcode == callx4_op)
3910 dst = 4;
3911 else if (opcode == callx8_op)
3912 dst = 8;
3913 else if (opcode == callx12_op)
3914 dst = 12;
3915
3916 if (dst == (unsigned) -1)
3917 return FALSE;
3918
3919 *pdst = dst;
3920 return TRUE;
3921}
3922
3923
43cd72b9
BW
3924static xtensa_opcode
3925get_const16_opcode (void)
3926{
3927 static bfd_boolean done_lookup = FALSE;
3928 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3929 if (!done_lookup)
3930 {
3931 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3932 done_lookup = TRUE;
3933 }
3934 return const16_opcode;
3935}
3936
3937
e0001a05
NC
3938static xtensa_opcode
3939get_l32r_opcode (void)
3940{
3941 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3942 static bfd_boolean done_lookup = FALSE;
3943
3944 if (!done_lookup)
e0001a05
NC
3945 {
3946 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3947 done_lookup = TRUE;
e0001a05
NC
3948 }
3949 return l32r_opcode;
3950}
3951
3952
3953static bfd_vma
7fa3d080 3954l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3955{
3956 bfd_vma offset;
3957
3958 offset = addr - ((pc+3) & -4);
3959 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3960 offset = (signed int) offset >> 2;
3961 BFD_ASSERT ((signed int) offset >> 16 == -1);
3962 return offset;
3963}
3964
3965
e0001a05 3966static int
7fa3d080 3967get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3968{
43cd72b9
BW
3969 xtensa_isa isa = xtensa_default_isa;
3970 int last_immed, last_opnd, opi;
3971
3972 if (opcode == XTENSA_UNDEFINED)
3973 return XTENSA_UNDEFINED;
3974
3975 /* Find the last visible PC-relative immediate operand for the opcode.
3976 If there are no PC-relative immediates, then choose the last visible
3977 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3978 last_immed = XTENSA_UNDEFINED;
3979 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3980 for (opi = last_opnd - 1; opi >= 0; opi--)
3981 {
3982 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3983 continue;
3984 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3985 {
3986 last_immed = opi;
3987 break;
3988 }
3989 if (last_immed == XTENSA_UNDEFINED
3990 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3991 last_immed = opi;
3992 }
3993 if (last_immed < 0)
3994 return XTENSA_UNDEFINED;
3995
3996 /* If the operand number was specified in an old-style relocation,
3997 check for consistency with the operand computed above. */
3998 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3999 {
4000 int reloc_opnd = r_type - R_XTENSA_OP0;
4001 if (reloc_opnd != last_immed)
4002 return XTENSA_UNDEFINED;
4003 }
4004
4005 return last_immed;
4006}
4007
4008
4009int
7fa3d080 4010get_relocation_slot (int r_type)
43cd72b9
BW
4011{
4012 switch (r_type)
4013 {
4014 case R_XTENSA_OP0:
4015 case R_XTENSA_OP1:
4016 case R_XTENSA_OP2:
4017 return 0;
4018
4019 default:
4020 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4021 return r_type - R_XTENSA_SLOT0_OP;
4022 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4023 return r_type - R_XTENSA_SLOT0_ALT;
4024 break;
4025 }
4026
4027 return XTENSA_UNDEFINED;
e0001a05
NC
4028}
4029
4030
4031/* Get the opcode for a relocation. */
4032
4033static xtensa_opcode
7fa3d080
BW
4034get_relocation_opcode (bfd *abfd,
4035 asection *sec,
4036 bfd_byte *contents,
4037 Elf_Internal_Rela *irel)
e0001a05
NC
4038{
4039 static xtensa_insnbuf ibuff = NULL;
43cd72b9 4040 static xtensa_insnbuf sbuff = NULL;
e0001a05 4041 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4042 xtensa_format fmt;
4043 int slot;
e0001a05
NC
4044
4045 if (contents == NULL)
4046 return XTENSA_UNDEFINED;
4047
43cd72b9 4048 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4049 return XTENSA_UNDEFINED;
4050
4051 if (ibuff == NULL)
43cd72b9
BW
4052 {
4053 ibuff = xtensa_insnbuf_alloc (isa);
4054 sbuff = xtensa_insnbuf_alloc (isa);
4055 }
4056
e0001a05 4057 /* Decode the instruction. */
43cd72b9
BW
4058 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4059 sec->size - irel->r_offset);
4060 fmt = xtensa_format_decode (isa, ibuff);
4061 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4062 if (slot == XTENSA_UNDEFINED)
4063 return XTENSA_UNDEFINED;
4064 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4065 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4066}
4067
4068
4069bfd_boolean
7fa3d080
BW
4070is_l32r_relocation (bfd *abfd,
4071 asection *sec,
4072 bfd_byte *contents,
4073 Elf_Internal_Rela *irel)
e0001a05
NC
4074{
4075 xtensa_opcode opcode;
43cd72b9 4076 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4077 return FALSE;
43cd72b9 4078 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4079 return (opcode == get_l32r_opcode ());
4080}
4081
e0001a05 4082
43cd72b9 4083static bfd_size_type
7fa3d080
BW
4084get_asm_simplify_size (bfd_byte *contents,
4085 bfd_size_type content_len,
4086 bfd_size_type offset)
e0001a05 4087{
43cd72b9 4088 bfd_size_type insnlen, size = 0;
e0001a05 4089
43cd72b9
BW
4090 /* Decode the size of the next two instructions. */
4091 insnlen = insn_decode_len (contents, content_len, offset);
4092 if (insnlen == 0)
4093 return 0;
e0001a05 4094
43cd72b9 4095 size += insnlen;
e0001a05 4096
43cd72b9
BW
4097 insnlen = insn_decode_len (contents, content_len, offset + size);
4098 if (insnlen == 0)
4099 return 0;
e0001a05 4100
43cd72b9
BW
4101 size += insnlen;
4102 return size;
4103}
e0001a05 4104
43cd72b9
BW
4105
4106bfd_boolean
7fa3d080 4107is_alt_relocation (int r_type)
43cd72b9
BW
4108{
4109 return (r_type >= R_XTENSA_SLOT0_ALT
4110 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4111}
4112
4113
43cd72b9 4114bfd_boolean
7fa3d080 4115is_operand_relocation (int r_type)
e0001a05 4116{
43cd72b9
BW
4117 switch (r_type)
4118 {
4119 case R_XTENSA_OP0:
4120 case R_XTENSA_OP1:
4121 case R_XTENSA_OP2:
4122 return TRUE;
e0001a05 4123
43cd72b9
BW
4124 default:
4125 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4126 return TRUE;
4127 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4128 return TRUE;
4129 break;
4130 }
e0001a05 4131
43cd72b9 4132 return FALSE;
e0001a05
NC
4133}
4134
43cd72b9
BW
4135
4136#define MIN_INSN_LENGTH 2
e0001a05 4137
43cd72b9
BW
4138/* Return 0 if it fails to decode. */
4139
4140bfd_size_type
7fa3d080
BW
4141insn_decode_len (bfd_byte *contents,
4142 bfd_size_type content_len,
4143 bfd_size_type offset)
e0001a05 4144{
43cd72b9
BW
4145 int insn_len;
4146 xtensa_isa isa = xtensa_default_isa;
4147 xtensa_format fmt;
4148 static xtensa_insnbuf ibuff = NULL;
e0001a05 4149
43cd72b9
BW
4150 if (offset + MIN_INSN_LENGTH > content_len)
4151 return 0;
e0001a05 4152
43cd72b9
BW
4153 if (ibuff == NULL)
4154 ibuff = xtensa_insnbuf_alloc (isa);
4155 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4156 content_len - offset);
4157 fmt = xtensa_format_decode (isa, ibuff);
4158 if (fmt == XTENSA_UNDEFINED)
4159 return 0;
4160 insn_len = xtensa_format_length (isa, fmt);
4161 if (insn_len == XTENSA_UNDEFINED)
4162 return 0;
4163 return insn_len;
e0001a05
NC
4164}
4165
4166
43cd72b9
BW
4167/* Decode the opcode for a single slot instruction.
4168 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4169
43cd72b9 4170xtensa_opcode
7fa3d080
BW
4171insn_decode_opcode (bfd_byte *contents,
4172 bfd_size_type content_len,
4173 bfd_size_type offset,
4174 int slot)
e0001a05 4175{
e0001a05 4176 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4177 xtensa_format fmt;
4178 static xtensa_insnbuf insnbuf = NULL;
4179 static xtensa_insnbuf slotbuf = NULL;
4180
4181 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4182 return XTENSA_UNDEFINED;
4183
4184 if (insnbuf == NULL)
43cd72b9
BW
4185 {
4186 insnbuf = xtensa_insnbuf_alloc (isa);
4187 slotbuf = xtensa_insnbuf_alloc (isa);
4188 }
4189
4190 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4191 content_len - offset);
4192 fmt = xtensa_format_decode (isa, insnbuf);
4193 if (fmt == XTENSA_UNDEFINED)
e0001a05 4194 return XTENSA_UNDEFINED;
43cd72b9
BW
4195
4196 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4197 return XTENSA_UNDEFINED;
e0001a05 4198
43cd72b9
BW
4199 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4200 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4201}
e0001a05 4202
e0001a05 4203
43cd72b9
BW
4204/* The offset is the offset in the contents.
4205 The address is the address of that offset. */
e0001a05 4206
43cd72b9 4207static bfd_boolean
7fa3d080
BW
4208check_branch_target_aligned (bfd_byte *contents,
4209 bfd_size_type content_length,
4210 bfd_vma offset,
4211 bfd_vma address)
43cd72b9
BW
4212{
4213 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4214 if (insn_len == 0)
4215 return FALSE;
4216 return check_branch_target_aligned_address (address, insn_len);
4217}
e0001a05 4218
e0001a05 4219
43cd72b9 4220static bfd_boolean
7fa3d080
BW
4221check_loop_aligned (bfd_byte *contents,
4222 bfd_size_type content_length,
4223 bfd_vma offset,
4224 bfd_vma address)
e0001a05 4225{
43cd72b9 4226 bfd_size_type loop_len, insn_len;
64b607e6 4227 xtensa_opcode opcode;
e0001a05 4228
64b607e6
BW
4229 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4230 if (opcode == XTENSA_UNDEFINED
4231 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4232 {
4233 BFD_ASSERT (FALSE);
4234 return FALSE;
4235 }
4236
43cd72b9 4237 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4238 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4239 if (loop_len == 0 || insn_len == 0)
4240 {
4241 BFD_ASSERT (FALSE);
4242 return FALSE;
4243 }
e0001a05 4244
43cd72b9
BW
4245 return check_branch_target_aligned_address (address + loop_len, insn_len);
4246}
e0001a05 4247
e0001a05
NC
4248
4249static bfd_boolean
7fa3d080 4250check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4251{
43cd72b9
BW
4252 if (len == 8)
4253 return (addr % 8 == 0);
4254 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4255}
4256
43cd72b9
BW
4257\f
4258/* Instruction widening and narrowing. */
e0001a05 4259
7fa3d080
BW
4260/* When FLIX is available we need to access certain instructions only
4261 when they are 16-bit or 24-bit instructions. This table caches
4262 information about such instructions by walking through all the
4263 opcodes and finding the smallest single-slot format into which each
4264 can be encoded. */
4265
4266static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4267
4268
7fa3d080
BW
4269static void
4270init_op_single_format_table (void)
e0001a05 4271{
7fa3d080
BW
4272 xtensa_isa isa = xtensa_default_isa;
4273 xtensa_insnbuf ibuf;
4274 xtensa_opcode opcode;
4275 xtensa_format fmt;
4276 int num_opcodes;
4277
4278 if (op_single_fmt_table)
4279 return;
4280
4281 ibuf = xtensa_insnbuf_alloc (isa);
4282 num_opcodes = xtensa_isa_num_opcodes (isa);
4283
4284 op_single_fmt_table = (xtensa_format *)
4285 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4286 for (opcode = 0; opcode < num_opcodes; opcode++)
4287 {
4288 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4289 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4290 {
4291 if (xtensa_format_num_slots (isa, fmt) == 1
4292 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4293 {
4294 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4295 int fmt_length = xtensa_format_length (isa, fmt);
4296 if (old_fmt == XTENSA_UNDEFINED
4297 || fmt_length < xtensa_format_length (isa, old_fmt))
4298 op_single_fmt_table[opcode] = fmt;
4299 }
4300 }
4301 }
4302 xtensa_insnbuf_free (isa, ibuf);
4303}
4304
4305
4306static xtensa_format
4307get_single_format (xtensa_opcode opcode)
4308{
4309 init_op_single_format_table ();
4310 return op_single_fmt_table[opcode];
4311}
e0001a05 4312
e0001a05 4313
43cd72b9
BW
4314/* For the set of narrowable instructions we do NOT include the
4315 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4316 involved during linker relaxation that may require these to
4317 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4318 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4319
7fa3d080
BW
4320struct string_pair
4321{
4322 const char *wide;
4323 const char *narrow;
4324};
4325
43cd72b9 4326struct string_pair narrowable[] =
e0001a05 4327{
43cd72b9
BW
4328 { "add", "add.n" },
4329 { "addi", "addi.n" },
4330 { "addmi", "addi.n" },
4331 { "l32i", "l32i.n" },
4332 { "movi", "movi.n" },
4333 { "ret", "ret.n" },
4334 { "retw", "retw.n" },
4335 { "s32i", "s32i.n" },
4336 { "or", "mov.n" } /* special case only when op1 == op2 */
4337};
e0001a05 4338
43cd72b9 4339struct string_pair widenable[] =
e0001a05 4340{
43cd72b9
BW
4341 { "add", "add.n" },
4342 { "addi", "addi.n" },
4343 { "addmi", "addi.n" },
4344 { "beqz", "beqz.n" },
4345 { "bnez", "bnez.n" },
4346 { "l32i", "l32i.n" },
4347 { "movi", "movi.n" },
4348 { "ret", "ret.n" },
4349 { "retw", "retw.n" },
4350 { "s32i", "s32i.n" },
4351 { "or", "mov.n" } /* special case only when op1 == op2 */
4352};
e0001a05
NC
4353
4354
64b607e6
BW
4355/* Check if an instruction can be "narrowed", i.e., changed from a standard
4356 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4357 return the instruction buffer holding the narrow instruction. Otherwise,
4358 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4359 but require some special case operand checks in some cases. */
4360
64b607e6
BW
4361static xtensa_insnbuf
4362can_narrow_instruction (xtensa_insnbuf slotbuf,
4363 xtensa_format fmt,
4364 xtensa_opcode opcode)
e0001a05 4365{
43cd72b9 4366 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4367 xtensa_format o_fmt;
4368 unsigned opi;
e0001a05 4369
43cd72b9
BW
4370 static xtensa_insnbuf o_insnbuf = NULL;
4371 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4372
64b607e6 4373 if (o_insnbuf == NULL)
43cd72b9 4374 {
43cd72b9
BW
4375 o_insnbuf = xtensa_insnbuf_alloc (isa);
4376 o_slotbuf = xtensa_insnbuf_alloc (isa);
4377 }
e0001a05 4378
64b607e6 4379 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4380 {
4381 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4382
43cd72b9
BW
4383 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4384 {
4385 uint32 value, newval;
4386 int i, operand_count, o_operand_count;
4387 xtensa_opcode o_opcode;
e0001a05 4388
43cd72b9
BW
4389 /* Address does not matter in this case. We might need to
4390 fix it to handle branches/jumps. */
4391 bfd_vma self_address = 0;
e0001a05 4392
43cd72b9
BW
4393 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4394 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4395 return 0;
43cd72b9
BW
4396 o_fmt = get_single_format (o_opcode);
4397 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4398 return 0;
e0001a05 4399
43cd72b9
BW
4400 if (xtensa_format_length (isa, fmt) != 3
4401 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4402 return 0;
e0001a05 4403
43cd72b9
BW
4404 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4405 operand_count = xtensa_opcode_num_operands (isa, opcode);
4406 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4407
43cd72b9 4408 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4409 return 0;
e0001a05 4410
43cd72b9
BW
4411 if (!is_or)
4412 {
4413 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4414 return 0;
43cd72b9
BW
4415 }
4416 else
4417 {
4418 uint32 rawval0, rawval1, rawval2;
e0001a05 4419
64b607e6
BW
4420 if (o_operand_count + 1 != operand_count
4421 || xtensa_operand_get_field (isa, opcode, 0,
4422 fmt, 0, slotbuf, &rawval0) != 0
4423 || xtensa_operand_get_field (isa, opcode, 1,
4424 fmt, 0, slotbuf, &rawval1) != 0
4425 || xtensa_operand_get_field (isa, opcode, 2,
4426 fmt, 0, slotbuf, &rawval2) != 0
4427 || rawval1 != rawval2
4428 || rawval0 == rawval1 /* it is a nop */)
4429 return 0;
43cd72b9 4430 }
e0001a05 4431
43cd72b9
BW
4432 for (i = 0; i < o_operand_count; ++i)
4433 {
4434 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4435 slotbuf, &value)
4436 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4437 return 0;
e0001a05 4438
43cd72b9
BW
4439 /* PC-relative branches need adjustment, but
4440 the PC-rel operand will always have a relocation. */
4441 newval = value;
4442 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4443 self_address)
4444 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4445 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4446 o_slotbuf, newval))
64b607e6 4447 return 0;
43cd72b9 4448 }
e0001a05 4449
64b607e6
BW
4450 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4451 return 0;
e0001a05 4452
64b607e6 4453 return o_insnbuf;
43cd72b9
BW
4454 }
4455 }
64b607e6 4456 return 0;
43cd72b9 4457}
e0001a05 4458
e0001a05 4459
64b607e6
BW
4460/* Attempt to narrow an instruction. If the narrowing is valid, perform
4461 the action in-place directly into the contents and return TRUE. Otherwise,
4462 the return value is FALSE and the contents are not modified. */
e0001a05 4463
43cd72b9 4464static bfd_boolean
64b607e6
BW
4465narrow_instruction (bfd_byte *contents,
4466 bfd_size_type content_length,
4467 bfd_size_type offset)
e0001a05 4468{
43cd72b9 4469 xtensa_opcode opcode;
64b607e6 4470 bfd_size_type insn_len;
43cd72b9 4471 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4472 xtensa_format fmt;
4473 xtensa_insnbuf o_insnbuf;
e0001a05 4474
43cd72b9
BW
4475 static xtensa_insnbuf insnbuf = NULL;
4476 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4477
43cd72b9
BW
4478 if (insnbuf == NULL)
4479 {
4480 insnbuf = xtensa_insnbuf_alloc (isa);
4481 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4482 }
e0001a05 4483
43cd72b9 4484 BFD_ASSERT (offset < content_length);
2c8c90bc 4485
43cd72b9 4486 if (content_length < 2)
e0001a05
NC
4487 return FALSE;
4488
64b607e6 4489 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4490 These have all been specified in the assembler aleady. */
4491 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4492 content_length - offset);
4493 fmt = xtensa_format_decode (isa, insnbuf);
4494 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4495 return FALSE;
4496
43cd72b9 4497 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4498 return FALSE;
4499
43cd72b9
BW
4500 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4501 if (opcode == XTENSA_UNDEFINED)
e0001a05 4502 return FALSE;
43cd72b9
BW
4503 insn_len = xtensa_format_length (isa, fmt);
4504 if (insn_len > content_length)
4505 return FALSE;
4506
64b607e6
BW
4507 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4508 if (o_insnbuf)
4509 {
4510 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4511 content_length - offset);
4512 return TRUE;
4513 }
4514
4515 return FALSE;
4516}
4517
4518
4519/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4520 "density" instruction to a standard 3-byte instruction. If it is valid,
4521 return the instruction buffer holding the wide instruction. Otherwise,
4522 return 0. The set of valid widenings are specified by a string table
4523 but require some special case operand checks in some cases. */
4524
4525static xtensa_insnbuf
4526can_widen_instruction (xtensa_insnbuf slotbuf,
4527 xtensa_format fmt,
4528 xtensa_opcode opcode)
4529{
4530 xtensa_isa isa = xtensa_default_isa;
4531 xtensa_format o_fmt;
4532 unsigned opi;
4533
4534 static xtensa_insnbuf o_insnbuf = NULL;
4535 static xtensa_insnbuf o_slotbuf = NULL;
4536
4537 if (o_insnbuf == NULL)
4538 {
4539 o_insnbuf = xtensa_insnbuf_alloc (isa);
4540 o_slotbuf = xtensa_insnbuf_alloc (isa);
4541 }
4542
4543 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4544 {
43cd72b9
BW
4545 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4546 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4547 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4548
43cd72b9
BW
4549 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4550 {
4551 uint32 value, newval;
4552 int i, operand_count, o_operand_count, check_operand_count;
4553 xtensa_opcode o_opcode;
e0001a05 4554
43cd72b9
BW
4555 /* Address does not matter in this case. We might need to fix it
4556 to handle branches/jumps. */
4557 bfd_vma self_address = 0;
e0001a05 4558
43cd72b9
BW
4559 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4560 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4561 return 0;
43cd72b9
BW
4562 o_fmt = get_single_format (o_opcode);
4563 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4564 return 0;
e0001a05 4565
43cd72b9
BW
4566 if (xtensa_format_length (isa, fmt) != 2
4567 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4568 return 0;
e0001a05 4569
43cd72b9
BW
4570 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4571 operand_count = xtensa_opcode_num_operands (isa, opcode);
4572 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4573 check_operand_count = o_operand_count;
e0001a05 4574
43cd72b9 4575 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4576 return 0;
e0001a05 4577
43cd72b9
BW
4578 if (!is_or)
4579 {
4580 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4581 return 0;
43cd72b9
BW
4582 }
4583 else
4584 {
4585 uint32 rawval0, rawval1;
4586
64b607e6
BW
4587 if (o_operand_count != operand_count + 1
4588 || xtensa_operand_get_field (isa, opcode, 0,
4589 fmt, 0, slotbuf, &rawval0) != 0
4590 || xtensa_operand_get_field (isa, opcode, 1,
4591 fmt, 0, slotbuf, &rawval1) != 0
4592 || rawval0 == rawval1 /* it is a nop */)
4593 return 0;
43cd72b9
BW
4594 }
4595 if (is_branch)
4596 check_operand_count--;
4597
64b607e6 4598 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4599 {
4600 int new_i = i;
4601 if (is_or && i == o_operand_count - 1)
4602 new_i = i - 1;
4603 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4604 slotbuf, &value)
4605 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4606 return 0;
43cd72b9
BW
4607
4608 /* PC-relative branches need adjustment, but
4609 the PC-rel operand will always have a relocation. */
4610 newval = value;
4611 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4612 self_address)
4613 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4614 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4615 o_slotbuf, newval))
64b607e6 4616 return 0;
43cd72b9
BW
4617 }
4618
4619 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4620 return 0;
43cd72b9 4621
64b607e6 4622 return o_insnbuf;
43cd72b9
BW
4623 }
4624 }
64b607e6
BW
4625 return 0;
4626}
4627
4628
4629/* Attempt to widen an instruction. If the widening is valid, perform
4630 the action in-place directly into the contents and return TRUE. Otherwise,
4631 the return value is FALSE and the contents are not modified. */
4632
4633static bfd_boolean
4634widen_instruction (bfd_byte *contents,
4635 bfd_size_type content_length,
4636 bfd_size_type offset)
4637{
4638 xtensa_opcode opcode;
4639 bfd_size_type insn_len;
4640 xtensa_isa isa = xtensa_default_isa;
4641 xtensa_format fmt;
4642 xtensa_insnbuf o_insnbuf;
4643
4644 static xtensa_insnbuf insnbuf = NULL;
4645 static xtensa_insnbuf slotbuf = NULL;
4646
4647 if (insnbuf == NULL)
4648 {
4649 insnbuf = xtensa_insnbuf_alloc (isa);
4650 slotbuf = xtensa_insnbuf_alloc (isa);
4651 }
4652
4653 BFD_ASSERT (offset < content_length);
4654
4655 if (content_length < 2)
4656 return FALSE;
4657
4658 /* We will hand-code a few of these for a little while.
4659 These have all been specified in the assembler aleady. */
4660 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4661 content_length - offset);
4662 fmt = xtensa_format_decode (isa, insnbuf);
4663 if (xtensa_format_num_slots (isa, fmt) != 1)
4664 return FALSE;
4665
4666 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4667 return FALSE;
4668
4669 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4670 if (opcode == XTENSA_UNDEFINED)
4671 return FALSE;
4672 insn_len = xtensa_format_length (isa, fmt);
4673 if (insn_len > content_length)
4674 return FALSE;
4675
4676 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4677 if (o_insnbuf)
4678 {
4679 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4680 content_length - offset);
4681 return TRUE;
4682 }
43cd72b9 4683 return FALSE;
e0001a05
NC
4684}
4685
43cd72b9
BW
4686\f
4687/* Code for transforming CALLs at link-time. */
e0001a05 4688
43cd72b9 4689static bfd_reloc_status_type
7fa3d080
BW
4690elf_xtensa_do_asm_simplify (bfd_byte *contents,
4691 bfd_vma address,
4692 bfd_vma content_length,
4693 char **error_message)
e0001a05 4694{
43cd72b9
BW
4695 static xtensa_insnbuf insnbuf = NULL;
4696 static xtensa_insnbuf slotbuf = NULL;
4697 xtensa_format core_format = XTENSA_UNDEFINED;
4698 xtensa_opcode opcode;
4699 xtensa_opcode direct_call_opcode;
4700 xtensa_isa isa = xtensa_default_isa;
4701 bfd_byte *chbuf = contents + address;
4702 int opn;
e0001a05 4703
43cd72b9 4704 if (insnbuf == NULL)
e0001a05 4705 {
43cd72b9
BW
4706 insnbuf = xtensa_insnbuf_alloc (isa);
4707 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4708 }
e0001a05 4709
43cd72b9
BW
4710 if (content_length < address)
4711 {
4712 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4713 return bfd_reloc_other;
4714 }
e0001a05 4715
43cd72b9
BW
4716 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4717 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4718 if (direct_call_opcode == XTENSA_UNDEFINED)
4719 {
4720 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4721 return bfd_reloc_other;
4722 }
4723
4724 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4725 core_format = xtensa_format_lookup (isa, "x24");
4726 opcode = xtensa_opcode_lookup (isa, "or");
4727 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4728 for (opn = 0; opn < 3; opn++)
4729 {
4730 uint32 regno = 1;
4731 xtensa_operand_encode (isa, opcode, opn, &regno);
4732 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4733 slotbuf, regno);
4734 }
4735 xtensa_format_encode (isa, core_format, insnbuf);
4736 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4737 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4738
43cd72b9
BW
4739 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4740 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4741 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4742
43cd72b9
BW
4743 xtensa_format_encode (isa, core_format, insnbuf);
4744 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4745 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4746 content_length - address - 3);
e0001a05 4747
43cd72b9
BW
4748 return bfd_reloc_ok;
4749}
e0001a05 4750
e0001a05 4751
43cd72b9 4752static bfd_reloc_status_type
7fa3d080
BW
4753contract_asm_expansion (bfd_byte *contents,
4754 bfd_vma content_length,
4755 Elf_Internal_Rela *irel,
4756 char **error_message)
43cd72b9
BW
4757{
4758 bfd_reloc_status_type retval =
4759 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4760 error_message);
e0001a05 4761
43cd72b9
BW
4762 if (retval != bfd_reloc_ok)
4763 return bfd_reloc_dangerous;
e0001a05 4764
43cd72b9
BW
4765 /* Update the irel->r_offset field so that the right immediate and
4766 the right instruction are modified during the relocation. */
4767 irel->r_offset += 3;
4768 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4769 return bfd_reloc_ok;
4770}
e0001a05 4771
e0001a05 4772
43cd72b9 4773static xtensa_opcode
7fa3d080 4774swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4775{
43cd72b9 4776 init_call_opcodes ();
e0001a05 4777
43cd72b9
BW
4778 if (opcode == callx0_op) return call0_op;
4779 if (opcode == callx4_op) return call4_op;
4780 if (opcode == callx8_op) return call8_op;
4781 if (opcode == callx12_op) return call12_op;
e0001a05 4782
43cd72b9
BW
4783 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4784 return XTENSA_UNDEFINED;
4785}
e0001a05 4786
e0001a05 4787
43cd72b9
BW
4788/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4789 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4790 If not, return XTENSA_UNDEFINED. */
e0001a05 4791
43cd72b9
BW
4792#define L32R_TARGET_REG_OPERAND 0
4793#define CONST16_TARGET_REG_OPERAND 0
4794#define CALLN_SOURCE_OPERAND 0
e0001a05 4795
43cd72b9 4796static xtensa_opcode
7fa3d080 4797get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4798{
43cd72b9
BW
4799 static xtensa_insnbuf insnbuf = NULL;
4800 static xtensa_insnbuf slotbuf = NULL;
4801 xtensa_format fmt;
4802 xtensa_opcode opcode;
4803 xtensa_isa isa = xtensa_default_isa;
4804 uint32 regno, const16_regno, call_regno;
4805 int offset = 0;
e0001a05 4806
43cd72b9 4807 if (insnbuf == NULL)
e0001a05 4808 {
43cd72b9
BW
4809 insnbuf = xtensa_insnbuf_alloc (isa);
4810 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4811 }
43cd72b9
BW
4812
4813 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4814 fmt = xtensa_format_decode (isa, insnbuf);
4815 if (fmt == XTENSA_UNDEFINED
4816 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4817 return XTENSA_UNDEFINED;
4818
4819 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4820 if (opcode == XTENSA_UNDEFINED)
4821 return XTENSA_UNDEFINED;
4822
4823 if (opcode == get_l32r_opcode ())
e0001a05 4824 {
43cd72b9
BW
4825 if (p_uses_l32r)
4826 *p_uses_l32r = TRUE;
4827 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4828 fmt, 0, slotbuf, &regno)
4829 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4830 &regno))
4831 return XTENSA_UNDEFINED;
e0001a05 4832 }
43cd72b9 4833 else if (opcode == get_const16_opcode ())
e0001a05 4834 {
43cd72b9
BW
4835 if (p_uses_l32r)
4836 *p_uses_l32r = FALSE;
4837 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4838 fmt, 0, slotbuf, &regno)
4839 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4840 &regno))
4841 return XTENSA_UNDEFINED;
4842
4843 /* Check that the next instruction is also CONST16. */
4844 offset += xtensa_format_length (isa, fmt);
4845 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4846 fmt = xtensa_format_decode (isa, insnbuf);
4847 if (fmt == XTENSA_UNDEFINED
4848 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4849 return XTENSA_UNDEFINED;
4850 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4851 if (opcode != get_const16_opcode ())
4852 return XTENSA_UNDEFINED;
4853
4854 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4855 fmt, 0, slotbuf, &const16_regno)
4856 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4857 &const16_regno)
4858 || const16_regno != regno)
4859 return XTENSA_UNDEFINED;
e0001a05 4860 }
43cd72b9
BW
4861 else
4862 return XTENSA_UNDEFINED;
e0001a05 4863
43cd72b9
BW
4864 /* Next instruction should be an CALLXn with operand 0 == regno. */
4865 offset += xtensa_format_length (isa, fmt);
4866 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4867 fmt = xtensa_format_decode (isa, insnbuf);
4868 if (fmt == XTENSA_UNDEFINED
4869 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4870 return XTENSA_UNDEFINED;
4871 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4872 if (opcode == XTENSA_UNDEFINED
4873 || !is_indirect_call_opcode (opcode))
4874 return XTENSA_UNDEFINED;
e0001a05 4875
43cd72b9
BW
4876 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4877 fmt, 0, slotbuf, &call_regno)
4878 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4879 &call_regno))
4880 return XTENSA_UNDEFINED;
e0001a05 4881
43cd72b9
BW
4882 if (call_regno != regno)
4883 return XTENSA_UNDEFINED;
e0001a05 4884
43cd72b9
BW
4885 return opcode;
4886}
e0001a05 4887
43cd72b9
BW
4888\f
4889/* Data structures used during relaxation. */
e0001a05 4890
43cd72b9 4891/* r_reloc: relocation values. */
e0001a05 4892
43cd72b9
BW
4893/* Through the relaxation process, we need to keep track of the values
4894 that will result from evaluating relocations. The standard ELF
4895 relocation structure is not sufficient for this purpose because we're
4896 operating on multiple input files at once, so we need to know which
4897 input file a relocation refers to. The r_reloc structure thus
4898 records both the input file (bfd) and ELF relocation.
e0001a05 4899
43cd72b9
BW
4900 For efficiency, an r_reloc also contains a "target_offset" field to
4901 cache the target-section-relative offset value that is represented by
4902 the relocation.
4903
4904 The r_reloc also contains a virtual offset that allows multiple
4905 inserted literals to be placed at the same "address" with
4906 different offsets. */
e0001a05 4907
43cd72b9 4908typedef struct r_reloc_struct r_reloc;
e0001a05 4909
43cd72b9 4910struct r_reloc_struct
e0001a05 4911{
43cd72b9
BW
4912 bfd *abfd;
4913 Elf_Internal_Rela rela;
e0001a05 4914 bfd_vma target_offset;
43cd72b9 4915 bfd_vma virtual_offset;
e0001a05
NC
4916};
4917
e0001a05 4918
43cd72b9
BW
4919/* The r_reloc structure is included by value in literal_value, but not
4920 every literal_value has an associated relocation -- some are simple
4921 constants. In such cases, we set all the fields in the r_reloc
4922 struct to zero. The r_reloc_is_const function should be used to
4923 detect this case. */
e0001a05 4924
43cd72b9 4925static bfd_boolean
7fa3d080 4926r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4927{
43cd72b9 4928 return (r_rel->abfd == NULL);
e0001a05
NC
4929}
4930
4931
43cd72b9 4932static bfd_vma
7fa3d080 4933r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4934{
43cd72b9
BW
4935 bfd_vma target_offset;
4936 unsigned long r_symndx;
e0001a05 4937
43cd72b9
BW
4938 BFD_ASSERT (!r_reloc_is_const (r_rel));
4939 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4940 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4941 return (target_offset + r_rel->rela.r_addend);
4942}
e0001a05 4943
e0001a05 4944
43cd72b9 4945static struct elf_link_hash_entry *
7fa3d080 4946r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4947{
43cd72b9
BW
4948 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4949 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4950}
e0001a05 4951
43cd72b9
BW
4952
4953static asection *
7fa3d080 4954r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4955{
4956 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4957 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4958}
e0001a05
NC
4959
4960
4961static bfd_boolean
7fa3d080 4962r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4963{
43cd72b9
BW
4964 asection *sec;
4965 if (r_rel == NULL)
e0001a05 4966 return FALSE;
e0001a05 4967
43cd72b9
BW
4968 sec = r_reloc_get_section (r_rel);
4969 if (sec == bfd_abs_section_ptr
4970 || sec == bfd_com_section_ptr
4971 || sec == bfd_und_section_ptr)
4972 return FALSE;
4973 return TRUE;
e0001a05
NC
4974}
4975
4976
7fa3d080
BW
4977static void
4978r_reloc_init (r_reloc *r_rel,
4979 bfd *abfd,
4980 Elf_Internal_Rela *irel,
4981 bfd_byte *contents,
4982 bfd_size_type content_length)
4983{
4984 int r_type;
4985 reloc_howto_type *howto;
4986
4987 if (irel)
4988 {
4989 r_rel->rela = *irel;
4990 r_rel->abfd = abfd;
4991 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4992 r_rel->virtual_offset = 0;
4993 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4994 howto = &elf_howto_table[r_type];
4995 if (howto->partial_inplace)
4996 {
4997 bfd_vma inplace_val;
4998 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4999
5000 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5001 r_rel->target_offset += inplace_val;
5002 }
5003 }
5004 else
5005 memset (r_rel, 0, sizeof (r_reloc));
5006}
5007
5008
43cd72b9
BW
5009#if DEBUG
5010
e0001a05 5011static void
7fa3d080 5012print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 5013{
43cd72b9
BW
5014 if (r_reloc_is_defined (r_rel))
5015 {
5016 asection *sec = r_reloc_get_section (r_rel);
5017 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5018 }
5019 else if (r_reloc_get_hash_entry (r_rel))
5020 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5021 else
5022 fprintf (fp, " ?? + ");
e0001a05 5023
43cd72b9
BW
5024 fprintf_vma (fp, r_rel->target_offset);
5025 if (r_rel->virtual_offset)
5026 {
5027 fprintf (fp, " + ");
5028 fprintf_vma (fp, r_rel->virtual_offset);
5029 }
5030
5031 fprintf (fp, ")");
5032}
e0001a05 5033
43cd72b9 5034#endif /* DEBUG */
e0001a05 5035
43cd72b9
BW
5036\f
5037/* source_reloc: relocations that reference literals. */
e0001a05 5038
43cd72b9
BW
5039/* To determine whether literals can be coalesced, we need to first
5040 record all the relocations that reference the literals. The
5041 source_reloc structure below is used for this purpose. The
5042 source_reloc entries are kept in a per-literal-section array, sorted
5043 by offset within the literal section (i.e., target offset).
e0001a05 5044
43cd72b9
BW
5045 The source_sec and r_rel.rela.r_offset fields identify the source of
5046 the relocation. The r_rel field records the relocation value, i.e.,
5047 the offset of the literal being referenced. The opnd field is needed
5048 to determine the range of the immediate field to which the relocation
5049 applies, so we can determine whether another literal with the same
5050 value is within range. The is_null field is true when the relocation
5051 is being removed (e.g., when an L32R is being removed due to a CALLX
5052 that is converted to a direct CALL). */
e0001a05 5053
43cd72b9
BW
5054typedef struct source_reloc_struct source_reloc;
5055
5056struct source_reloc_struct
e0001a05 5057{
43cd72b9
BW
5058 asection *source_sec;
5059 r_reloc r_rel;
5060 xtensa_opcode opcode;
5061 int opnd;
5062 bfd_boolean is_null;
5063 bfd_boolean is_abs_literal;
5064};
e0001a05 5065
e0001a05 5066
e0001a05 5067static void
7fa3d080
BW
5068init_source_reloc (source_reloc *reloc,
5069 asection *source_sec,
5070 const r_reloc *r_rel,
5071 xtensa_opcode opcode,
5072 int opnd,
5073 bfd_boolean is_abs_literal)
e0001a05 5074{
43cd72b9
BW
5075 reloc->source_sec = source_sec;
5076 reloc->r_rel = *r_rel;
5077 reloc->opcode = opcode;
5078 reloc->opnd = opnd;
5079 reloc->is_null = FALSE;
5080 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5081}
5082
e0001a05 5083
43cd72b9
BW
5084/* Find the source_reloc for a particular source offset and relocation
5085 type. Note that the array is sorted by _target_ offset, so this is
5086 just a linear search. */
e0001a05 5087
43cd72b9 5088static source_reloc *
7fa3d080
BW
5089find_source_reloc (source_reloc *src_relocs,
5090 int src_count,
5091 asection *sec,
5092 Elf_Internal_Rela *irel)
e0001a05 5093{
43cd72b9 5094 int i;
e0001a05 5095
43cd72b9
BW
5096 for (i = 0; i < src_count; i++)
5097 {
5098 if (src_relocs[i].source_sec == sec
5099 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5100 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5101 == ELF32_R_TYPE (irel->r_info)))
5102 return &src_relocs[i];
5103 }
e0001a05 5104
43cd72b9 5105 return NULL;
e0001a05
NC
5106}
5107
5108
43cd72b9 5109static int
7fa3d080 5110source_reloc_compare (const void *ap, const void *bp)
e0001a05 5111{
43cd72b9
BW
5112 const source_reloc *a = (const source_reloc *) ap;
5113 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5114
43cd72b9
BW
5115 if (a->r_rel.target_offset != b->r_rel.target_offset)
5116 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5117
43cd72b9
BW
5118 /* We don't need to sort on these criteria for correctness,
5119 but enforcing a more strict ordering prevents unstable qsort
5120 from behaving differently with different implementations.
5121 Without the code below we get correct but different results
5122 on Solaris 2.7 and 2.8. We would like to always produce the
5123 same results no matter the host. */
5124
5125 if ((!a->is_null) - (!b->is_null))
5126 return ((!a->is_null) - (!b->is_null));
5127 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5128}
5129
43cd72b9
BW
5130\f
5131/* Literal values and value hash tables. */
e0001a05 5132
43cd72b9
BW
5133/* Literals with the same value can be coalesced. The literal_value
5134 structure records the value of a literal: the "r_rel" field holds the
5135 information from the relocation on the literal (if there is one) and
5136 the "value" field holds the contents of the literal word itself.
e0001a05 5137
43cd72b9
BW
5138 The value_map structure records a literal value along with the
5139 location of a literal holding that value. The value_map hash table
5140 is indexed by the literal value, so that we can quickly check if a
5141 particular literal value has been seen before and is thus a candidate
5142 for coalescing. */
e0001a05 5143
43cd72b9
BW
5144typedef struct literal_value_struct literal_value;
5145typedef struct value_map_struct value_map;
5146typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5147
43cd72b9 5148struct literal_value_struct
e0001a05 5149{
43cd72b9
BW
5150 r_reloc r_rel;
5151 unsigned long value;
5152 bfd_boolean is_abs_literal;
5153};
5154
5155struct value_map_struct
5156{
5157 literal_value val; /* The literal value. */
5158 r_reloc loc; /* Location of the literal. */
5159 value_map *next;
5160};
5161
5162struct value_map_hash_table_struct
5163{
5164 unsigned bucket_count;
5165 value_map **buckets;
5166 unsigned count;
5167 bfd_boolean has_last_loc;
5168 r_reloc last_loc;
5169};
5170
5171
e0001a05 5172static void
7fa3d080
BW
5173init_literal_value (literal_value *lit,
5174 const r_reloc *r_rel,
5175 unsigned long value,
5176 bfd_boolean is_abs_literal)
e0001a05 5177{
43cd72b9
BW
5178 lit->r_rel = *r_rel;
5179 lit->value = value;
5180 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5181}
5182
5183
43cd72b9 5184static bfd_boolean
7fa3d080
BW
5185literal_value_equal (const literal_value *src1,
5186 const literal_value *src2,
5187 bfd_boolean final_static_link)
e0001a05 5188{
43cd72b9 5189 struct elf_link_hash_entry *h1, *h2;
e0001a05 5190
43cd72b9
BW
5191 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5192 return FALSE;
e0001a05 5193
43cd72b9
BW
5194 if (r_reloc_is_const (&src1->r_rel))
5195 return (src1->value == src2->value);
e0001a05 5196
43cd72b9
BW
5197 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5198 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5199 return FALSE;
e0001a05 5200
43cd72b9
BW
5201 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5202 return FALSE;
5203
5204 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5205 return FALSE;
5206
5207 if (src1->value != src2->value)
5208 return FALSE;
5209
5210 /* Now check for the same section (if defined) or the same elf_hash
5211 (if undefined or weak). */
5212 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5213 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5214 if (r_reloc_is_defined (&src1->r_rel)
5215 && (final_static_link
5216 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5217 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5218 {
5219 if (r_reloc_get_section (&src1->r_rel)
5220 != r_reloc_get_section (&src2->r_rel))
5221 return FALSE;
5222 }
5223 else
5224 {
5225 /* Require that the hash entries (i.e., symbols) be identical. */
5226 if (h1 != h2 || h1 == 0)
5227 return FALSE;
5228 }
5229
5230 if (src1->is_abs_literal != src2->is_abs_literal)
5231 return FALSE;
5232
5233 return TRUE;
e0001a05
NC
5234}
5235
e0001a05 5236
43cd72b9
BW
5237/* Must be power of 2. */
5238#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5239
43cd72b9 5240static value_map_hash_table *
7fa3d080 5241value_map_hash_table_init (void)
43cd72b9
BW
5242{
5243 value_map_hash_table *values;
e0001a05 5244
43cd72b9
BW
5245 values = (value_map_hash_table *)
5246 bfd_zmalloc (sizeof (value_map_hash_table));
5247 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5248 values->count = 0;
5249 values->buckets = (value_map **)
5250 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5251 if (values->buckets == NULL)
5252 {
5253 free (values);
5254 return NULL;
5255 }
5256 values->has_last_loc = FALSE;
5257
5258 return values;
5259}
5260
5261
5262static void
7fa3d080 5263value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5264{
43cd72b9
BW
5265 free (table->buckets);
5266 free (table);
5267}
5268
5269
5270static unsigned
7fa3d080 5271hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5272{
5273 return (val >> 2) + (val >> 10);
5274}
5275
5276
5277static unsigned
7fa3d080 5278literal_value_hash (const literal_value *src)
43cd72b9
BW
5279{
5280 unsigned hash_val;
e0001a05 5281
43cd72b9
BW
5282 hash_val = hash_bfd_vma (src->value);
5283 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5284 {
43cd72b9
BW
5285 void *sec_or_hash;
5286
5287 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5288 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5289 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5290
5291 /* Now check for the same section and the same elf_hash. */
5292 if (r_reloc_is_defined (&src->r_rel))
5293 sec_or_hash = r_reloc_get_section (&src->r_rel);
5294 else
5295 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5296 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5297 }
43cd72b9
BW
5298 return hash_val;
5299}
e0001a05 5300
e0001a05 5301
43cd72b9 5302/* Check if the specified literal_value has been seen before. */
e0001a05 5303
43cd72b9 5304static value_map *
7fa3d080
BW
5305value_map_get_cached_value (value_map_hash_table *map,
5306 const literal_value *val,
5307 bfd_boolean final_static_link)
43cd72b9
BW
5308{
5309 value_map *map_e;
5310 value_map *bucket;
5311 unsigned idx;
5312
5313 idx = literal_value_hash (val);
5314 idx = idx & (map->bucket_count - 1);
5315 bucket = map->buckets[idx];
5316 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5317 {
43cd72b9
BW
5318 if (literal_value_equal (&map_e->val, val, final_static_link))
5319 return map_e;
5320 }
5321 return NULL;
5322}
e0001a05 5323
e0001a05 5324
43cd72b9
BW
5325/* Record a new literal value. It is illegal to call this if VALUE
5326 already has an entry here. */
5327
5328static value_map *
7fa3d080
BW
5329add_value_map (value_map_hash_table *map,
5330 const literal_value *val,
5331 const r_reloc *loc,
5332 bfd_boolean final_static_link)
43cd72b9
BW
5333{
5334 value_map **bucket_p;
5335 unsigned idx;
5336
5337 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5338 if (val_e == NULL)
5339 {
5340 bfd_set_error (bfd_error_no_memory);
5341 return NULL;
e0001a05
NC
5342 }
5343
43cd72b9
BW
5344 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5345 val_e->val = *val;
5346 val_e->loc = *loc;
5347
5348 idx = literal_value_hash (val);
5349 idx = idx & (map->bucket_count - 1);
5350 bucket_p = &map->buckets[idx];
5351
5352 val_e->next = *bucket_p;
5353 *bucket_p = val_e;
5354 map->count++;
5355 /* FIXME: Consider resizing the hash table if we get too many entries. */
5356
5357 return val_e;
e0001a05
NC
5358}
5359
43cd72b9
BW
5360\f
5361/* Lists of text actions (ta_) for narrowing, widening, longcall
5362 conversion, space fill, code & literal removal, etc. */
5363
5364/* The following text actions are generated:
5365
5366 "ta_remove_insn" remove an instruction or instructions
5367 "ta_remove_longcall" convert longcall to call
5368 "ta_convert_longcall" convert longcall to nop/call
5369 "ta_narrow_insn" narrow a wide instruction
5370 "ta_widen" widen a narrow instruction
5371 "ta_fill" add fill or remove fill
5372 removed < 0 is a fill; branches to the fill address will be
5373 changed to address + fill size (e.g., address - removed)
5374 removed >= 0 branches to the fill address will stay unchanged
5375 "ta_remove_literal" remove a literal; this action is
5376 indicated when a literal is removed
5377 or replaced.
5378 "ta_add_literal" insert a new literal; this action is
5379 indicated when a literal has been moved.
5380 It may use a virtual_offset because
5381 multiple literals can be placed at the
5382 same location.
5383
5384 For each of these text actions, we also record the number of bytes
5385 removed by performing the text action. In the case of a "ta_widen"
5386 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5387
5388typedef struct text_action_struct text_action;
5389typedef struct text_action_list_struct text_action_list;
5390typedef enum text_action_enum_t text_action_t;
5391
5392enum text_action_enum_t
5393{
5394 ta_none,
5395 ta_remove_insn, /* removed = -size */
5396 ta_remove_longcall, /* removed = -size */
5397 ta_convert_longcall, /* removed = 0 */
5398 ta_narrow_insn, /* removed = -1 */
5399 ta_widen_insn, /* removed = +1 */
5400 ta_fill, /* removed = +size */
5401 ta_remove_literal,
5402 ta_add_literal
5403};
e0001a05 5404
e0001a05 5405
43cd72b9
BW
5406/* Structure for a text action record. */
5407struct text_action_struct
e0001a05 5408{
43cd72b9
BW
5409 text_action_t action;
5410 asection *sec; /* Optional */
5411 bfd_vma offset;
5412 bfd_vma virtual_offset; /* Zero except for adding literals. */
5413 int removed_bytes;
5414 literal_value value; /* Only valid when adding literals. */
e0001a05 5415
43cd72b9
BW
5416 text_action *next;
5417};
e0001a05 5418
e0001a05 5419
43cd72b9
BW
5420/* List of all of the actions taken on a text section. */
5421struct text_action_list_struct
5422{
5423 text_action *head;
5424};
e0001a05 5425
e0001a05 5426
7fa3d080
BW
5427static text_action *
5428find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
5429{
5430 text_action **m_p;
5431
5432 /* It is not necessary to fill at the end of a section. */
5433 if (sec->size == offset)
5434 return NULL;
5435
7fa3d080 5436 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5437 {
5438 text_action *t = *m_p;
5439 /* When the action is another fill at the same address,
5440 just increase the size. */
5441 if (t->offset == offset && t->action == ta_fill)
5442 return t;
5443 }
5444 return NULL;
5445}
5446
5447
5448static int
7fa3d080
BW
5449compute_removed_action_diff (const text_action *ta,
5450 asection *sec,
5451 bfd_vma offset,
5452 int removed,
5453 int removable_space)
43cd72b9
BW
5454{
5455 int new_removed;
5456 int current_removed = 0;
5457
7fa3d080 5458 if (ta)
43cd72b9
BW
5459 current_removed = ta->removed_bytes;
5460
5461 BFD_ASSERT (ta == NULL || ta->offset == offset);
5462 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5463
5464 /* It is not necessary to fill at the end of a section. Clean this up. */
5465 if (sec->size == offset)
5466 new_removed = removable_space - 0;
5467 else
5468 {
5469 int space;
5470 int added = -removed - current_removed;
5471 /* Ignore multiples of the section alignment. */
5472 added = ((1 << sec->alignment_power) - 1) & added;
5473 new_removed = (-added);
5474
5475 /* Modify for removable. */
5476 space = removable_space - new_removed;
5477 new_removed = (removable_space
5478 - (((1 << sec->alignment_power) - 1) & space));
5479 }
5480 return (new_removed - current_removed);
5481}
5482
5483
7fa3d080
BW
5484static void
5485adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5486{
5487 ta->removed_bytes += fill_diff;
5488}
5489
5490
5491/* Add a modification action to the text. For the case of adding or
5492 removing space, modify any current fill and assume that
5493 "unreachable_space" bytes can be freely contracted. Note that a
5494 negative removed value is a fill. */
5495
5496static void
7fa3d080
BW
5497text_action_add (text_action_list *l,
5498 text_action_t action,
5499 asection *sec,
5500 bfd_vma offset,
5501 int removed)
43cd72b9
BW
5502{
5503 text_action **m_p;
5504 text_action *ta;
5505
5506 /* It is not necessary to fill at the end of a section. */
5507 if (action == ta_fill && sec->size == offset)
5508 return;
5509
5510 /* It is not necessary to fill 0 bytes. */
5511 if (action == ta_fill && removed == 0)
5512 return;
5513
7fa3d080 5514 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5515 {
5516 text_action *t = *m_p;
658ff993
SA
5517
5518 if (action == ta_fill)
43cd72b9 5519 {
658ff993
SA
5520 /* When the action is another fill at the same address,
5521 just increase the size. */
5522 if (t->offset == offset && t->action == ta_fill)
5523 {
5524 t->removed_bytes += removed;
5525 return;
5526 }
5527 /* Fills need to happen before widens so that we don't
5528 insert fill bytes into the instruction stream. */
5529 if (t->offset == offset && t->action == ta_widen_insn)
5530 break;
43cd72b9
BW
5531 }
5532 }
5533
5534 /* Create a new record and fill it up. */
5535 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5536 ta->action = action;
5537 ta->sec = sec;
5538 ta->offset = offset;
5539 ta->removed_bytes = removed;
5540 ta->next = (*m_p);
5541 *m_p = ta;
5542}
5543
5544
5545static void
7fa3d080
BW
5546text_action_add_literal (text_action_list *l,
5547 text_action_t action,
5548 const r_reloc *loc,
5549 const literal_value *value,
5550 int removed)
43cd72b9
BW
5551{
5552 text_action **m_p;
5553 text_action *ta;
5554 asection *sec = r_reloc_get_section (loc);
5555 bfd_vma offset = loc->target_offset;
5556 bfd_vma virtual_offset = loc->virtual_offset;
5557
5558 BFD_ASSERT (action == ta_add_literal);
5559
5560 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5561 {
5562 if ((*m_p)->offset > offset
5563 && ((*m_p)->offset != offset
5564 || (*m_p)->virtual_offset > virtual_offset))
5565 break;
5566 }
5567
5568 /* Create a new record and fill it up. */
5569 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5570 ta->action = action;
5571 ta->sec = sec;
5572 ta->offset = offset;
5573 ta->virtual_offset = virtual_offset;
5574 ta->value = *value;
5575 ta->removed_bytes = removed;
5576 ta->next = (*m_p);
5577 *m_p = ta;
5578}
5579
5580
03669f1c
BW
5581/* Find the total offset adjustment for the relaxations specified by
5582 text_actions, beginning from a particular starting action. This is
5583 typically used from offset_with_removed_text to search an entire list of
5584 actions, but it may also be called directly when adjusting adjacent offsets
5585 so that each search may begin where the previous one left off. */
5586
5587static int
5588removed_by_actions (text_action **p_start_action,
5589 bfd_vma offset,
5590 bfd_boolean before_fill)
43cd72b9
BW
5591{
5592 text_action *r;
5593 int removed = 0;
5594
03669f1c
BW
5595 r = *p_start_action;
5596 while (r)
43cd72b9 5597 {
03669f1c
BW
5598 if (r->offset > offset)
5599 break;
5600
5601 if (r->offset == offset
5602 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5603 break;
5604
5605 removed += r->removed_bytes;
5606
5607 r = r->next;
43cd72b9
BW
5608 }
5609
03669f1c
BW
5610 *p_start_action = r;
5611 return removed;
5612}
5613
5614
5615static bfd_vma
5616offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5617{
5618 text_action *r = action_list->head;
5619 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
5620}
5621
5622
03e94c08
BW
5623static unsigned
5624action_list_count (text_action_list *action_list)
5625{
5626 text_action *r = action_list->head;
5627 unsigned count = 0;
5628 for (r = action_list->head; r != NULL; r = r->next)
5629 {
5630 count++;
5631 }
5632 return count;
5633}
5634
5635
43cd72b9
BW
5636/* The find_insn_action routine will only find non-fill actions. */
5637
7fa3d080
BW
5638static text_action *
5639find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
5640{
5641 text_action *t;
5642 for (t = action_list->head; t; t = t->next)
5643 {
5644 if (t->offset == offset)
5645 {
5646 switch (t->action)
5647 {
5648 case ta_none:
5649 case ta_fill:
5650 break;
5651 case ta_remove_insn:
5652 case ta_remove_longcall:
5653 case ta_convert_longcall:
5654 case ta_narrow_insn:
5655 case ta_widen_insn:
5656 return t;
5657 case ta_remove_literal:
5658 case ta_add_literal:
5659 BFD_ASSERT (0);
5660 break;
5661 }
5662 }
5663 }
5664 return NULL;
5665}
5666
5667
5668#if DEBUG
5669
5670static void
7fa3d080 5671print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
5672{
5673 text_action *r;
5674
5675 fprintf (fp, "Text Action\n");
5676 for (r = action_list->head; r != NULL; r = r->next)
5677 {
5678 const char *t = "unknown";
5679 switch (r->action)
5680 {
5681 case ta_remove_insn:
5682 t = "remove_insn"; break;
5683 case ta_remove_longcall:
5684 t = "remove_longcall"; break;
5685 case ta_convert_longcall:
c46082c8 5686 t = "convert_longcall"; break;
43cd72b9
BW
5687 case ta_narrow_insn:
5688 t = "narrow_insn"; break;
5689 case ta_widen_insn:
5690 t = "widen_insn"; break;
5691 case ta_fill:
5692 t = "fill"; break;
5693 case ta_none:
5694 t = "none"; break;
5695 case ta_remove_literal:
5696 t = "remove_literal"; break;
5697 case ta_add_literal:
5698 t = "add_literal"; break;
5699 }
5700
5701 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5702 r->sec->owner->filename,
9ccb8af9 5703 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
43cd72b9
BW
5704 }
5705}
5706
5707#endif /* DEBUG */
5708
5709\f
5710/* Lists of literals being coalesced or removed. */
5711
5712/* In the usual case, the literal identified by "from" is being
5713 coalesced with another literal identified by "to". If the literal is
5714 unused and is being removed altogether, "to.abfd" will be NULL.
5715 The removed_literal entries are kept on a per-section list, sorted
5716 by the "from" offset field. */
5717
5718typedef struct removed_literal_struct removed_literal;
5719typedef struct removed_literal_list_struct removed_literal_list;
5720
5721struct removed_literal_struct
5722{
5723 r_reloc from;
5724 r_reloc to;
5725 removed_literal *next;
5726};
5727
5728struct removed_literal_list_struct
5729{
5730 removed_literal *head;
5731 removed_literal *tail;
5732};
5733
5734
43cd72b9
BW
5735/* Record that the literal at "from" is being removed. If "to" is not
5736 NULL, the "from" literal is being coalesced with the "to" literal. */
5737
5738static void
7fa3d080
BW
5739add_removed_literal (removed_literal_list *removed_list,
5740 const r_reloc *from,
5741 const r_reloc *to)
43cd72b9
BW
5742{
5743 removed_literal *r, *new_r, *next_r;
5744
5745 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5746
5747 new_r->from = *from;
5748 if (to)
5749 new_r->to = *to;
5750 else
5751 new_r->to.abfd = NULL;
5752 new_r->next = NULL;
5753
5754 r = removed_list->head;
5755 if (r == NULL)
5756 {
5757 removed_list->head = new_r;
5758 removed_list->tail = new_r;
5759 }
5760 /* Special check for common case of append. */
5761 else if (removed_list->tail->from.target_offset < from->target_offset)
5762 {
5763 removed_list->tail->next = new_r;
5764 removed_list->tail = new_r;
5765 }
5766 else
5767 {
7fa3d080 5768 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5769 {
5770 r = r->next;
5771 }
5772 next_r = r->next;
5773 r->next = new_r;
5774 new_r->next = next_r;
5775 if (next_r == NULL)
5776 removed_list->tail = new_r;
5777 }
5778}
5779
5780
5781/* Check if the list of removed literals contains an entry for the
5782 given address. Return the entry if found. */
5783
5784static removed_literal *
7fa3d080 5785find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
5786{
5787 removed_literal *r = removed_list->head;
5788 while (r && r->from.target_offset < addr)
5789 r = r->next;
5790 if (r && r->from.target_offset == addr)
5791 return r;
5792 return NULL;
5793}
5794
5795
5796#if DEBUG
5797
5798static void
7fa3d080 5799print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5800{
5801 removed_literal *r;
5802 r = removed_list->head;
5803 if (r)
5804 fprintf (fp, "Removed Literals\n");
5805 for (; r != NULL; r = r->next)
5806 {
5807 print_r_reloc (fp, &r->from);
5808 fprintf (fp, " => ");
5809 if (r->to.abfd == NULL)
5810 fprintf (fp, "REMOVED");
5811 else
5812 print_r_reloc (fp, &r->to);
5813 fprintf (fp, "\n");
5814 }
5815}
5816
5817#endif /* DEBUG */
5818
5819\f
5820/* Per-section data for relaxation. */
5821
5822typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5823
5824struct xtensa_relax_info_struct
5825{
5826 bfd_boolean is_relaxable_literal_section;
5827 bfd_boolean is_relaxable_asm_section;
5828 int visited; /* Number of times visited. */
5829
5830 source_reloc *src_relocs; /* Array[src_count]. */
5831 int src_count;
5832 int src_next; /* Next src_relocs entry to assign. */
5833
5834 removed_literal_list removed_list;
5835 text_action_list action_list;
5836
5837 reloc_bfd_fix *fix_list;
5838 reloc_bfd_fix *fix_array;
5839 unsigned fix_array_count;
5840
5841 /* Support for expanding the reloc array that is stored
5842 in the section structure. If the relocations have been
5843 reallocated, the newly allocated relocations will be referenced
5844 here along with the actual size allocated. The relocation
5845 count will always be found in the section structure. */
5846 Elf_Internal_Rela *allocated_relocs;
5847 unsigned relocs_count;
5848 unsigned allocated_relocs_count;
5849};
5850
5851struct elf_xtensa_section_data
5852{
5853 struct bfd_elf_section_data elf;
5854 xtensa_relax_info relax_info;
5855};
5856
43cd72b9
BW
5857
5858static bfd_boolean
7fa3d080 5859elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5860{
f592407e
AM
5861 if (!sec->used_by_bfd)
5862 {
5863 struct elf_xtensa_section_data *sdata;
5864 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5865
f592407e
AM
5866 sdata = bfd_zalloc (abfd, amt);
5867 if (sdata == NULL)
5868 return FALSE;
5869 sec->used_by_bfd = sdata;
5870 }
43cd72b9
BW
5871
5872 return _bfd_elf_new_section_hook (abfd, sec);
5873}
5874
5875
7fa3d080
BW
5876static xtensa_relax_info *
5877get_xtensa_relax_info (asection *sec)
5878{
5879 struct elf_xtensa_section_data *section_data;
5880
5881 /* No info available if no section or if it is an output section. */
5882 if (!sec || sec == sec->output_section)
5883 return NULL;
5884
5885 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5886 return &section_data->relax_info;
5887}
5888
5889
43cd72b9 5890static void
7fa3d080 5891init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5892{
5893 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5894
5895 relax_info->is_relaxable_literal_section = FALSE;
5896 relax_info->is_relaxable_asm_section = FALSE;
5897 relax_info->visited = 0;
5898
5899 relax_info->src_relocs = NULL;
5900 relax_info->src_count = 0;
5901 relax_info->src_next = 0;
5902
5903 relax_info->removed_list.head = NULL;
5904 relax_info->removed_list.tail = NULL;
5905
5906 relax_info->action_list.head = NULL;
5907
5908 relax_info->fix_list = NULL;
5909 relax_info->fix_array = NULL;
5910 relax_info->fix_array_count = 0;
5911
5912 relax_info->allocated_relocs = NULL;
5913 relax_info->relocs_count = 0;
5914 relax_info->allocated_relocs_count = 0;
5915}
5916
43cd72b9
BW
5917\f
5918/* Coalescing literals may require a relocation to refer to a section in
5919 a different input file, but the standard relocation information
5920 cannot express that. Instead, the reloc_bfd_fix structures are used
5921 to "fix" the relocations that refer to sections in other input files.
5922 These structures are kept on per-section lists. The "src_type" field
5923 records the relocation type in case there are multiple relocations on
5924 the same location. FIXME: This is ugly; an alternative might be to
5925 add new symbols with the "owner" field to some other input file. */
5926
5927struct reloc_bfd_fix_struct
5928{
5929 asection *src_sec;
5930 bfd_vma src_offset;
5931 unsigned src_type; /* Relocation type. */
5932
43cd72b9
BW
5933 asection *target_sec;
5934 bfd_vma target_offset;
5935 bfd_boolean translated;
5936
5937 reloc_bfd_fix *next;
5938};
5939
5940
43cd72b9 5941static reloc_bfd_fix *
7fa3d080
BW
5942reloc_bfd_fix_init (asection *src_sec,
5943 bfd_vma src_offset,
5944 unsigned src_type,
7fa3d080
BW
5945 asection *target_sec,
5946 bfd_vma target_offset,
5947 bfd_boolean translated)
43cd72b9
BW
5948{
5949 reloc_bfd_fix *fix;
5950
5951 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5952 fix->src_sec = src_sec;
5953 fix->src_offset = src_offset;
5954 fix->src_type = src_type;
43cd72b9
BW
5955 fix->target_sec = target_sec;
5956 fix->target_offset = target_offset;
5957 fix->translated = translated;
5958
5959 return fix;
5960}
5961
5962
5963static void
7fa3d080 5964add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5965{
5966 xtensa_relax_info *relax_info;
5967
5968 relax_info = get_xtensa_relax_info (src_sec);
5969 fix->next = relax_info->fix_list;
5970 relax_info->fix_list = fix;
5971}
5972
5973
5974static int
7fa3d080 5975fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5976{
5977 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5978 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5979
5980 if (a->src_offset != b->src_offset)
5981 return (a->src_offset - b->src_offset);
5982 return (a->src_type - b->src_type);
5983}
5984
5985
5986static void
7fa3d080 5987cache_fix_array (asection *sec)
43cd72b9
BW
5988{
5989 unsigned i, count = 0;
5990 reloc_bfd_fix *r;
5991 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5992
5993 if (relax_info == NULL)
5994 return;
5995 if (relax_info->fix_list == NULL)
5996 return;
5997
5998 for (r = relax_info->fix_list; r != NULL; r = r->next)
5999 count++;
6000
6001 relax_info->fix_array =
6002 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6003 relax_info->fix_array_count = count;
6004
6005 r = relax_info->fix_list;
6006 for (i = 0; i < count; i++, r = r->next)
6007 {
6008 relax_info->fix_array[count - 1 - i] = *r;
6009 relax_info->fix_array[count - 1 - i].next = NULL;
6010 }
6011
6012 qsort (relax_info->fix_array, relax_info->fix_array_count,
6013 sizeof (reloc_bfd_fix), fix_compare);
6014}
6015
6016
6017static reloc_bfd_fix *
7fa3d080 6018get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6019{
6020 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6021 reloc_bfd_fix *rv;
6022 reloc_bfd_fix key;
6023
6024 if (relax_info == NULL)
6025 return NULL;
6026 if (relax_info->fix_list == NULL)
6027 return NULL;
6028
6029 if (relax_info->fix_array == NULL)
6030 cache_fix_array (sec);
6031
6032 key.src_offset = offset;
6033 key.src_type = type;
6034 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6035 sizeof (reloc_bfd_fix), fix_compare);
6036 return rv;
6037}
6038
6039\f
6040/* Section caching. */
6041
6042typedef struct section_cache_struct section_cache_t;
6043
6044struct section_cache_struct
6045{
6046 asection *sec;
6047
6048 bfd_byte *contents; /* Cache of the section contents. */
6049 bfd_size_type content_length;
6050
6051 property_table_entry *ptbl; /* Cache of the section property table. */
6052 unsigned pte_count;
6053
6054 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6055 unsigned reloc_count;
6056};
6057
6058
7fa3d080
BW
6059static void
6060init_section_cache (section_cache_t *sec_cache)
6061{
6062 memset (sec_cache, 0, sizeof (*sec_cache));
6063}
43cd72b9
BW
6064
6065
6066static void
7fa3d080 6067clear_section_cache (section_cache_t *sec_cache)
43cd72b9 6068{
7fa3d080
BW
6069 if (sec_cache->sec)
6070 {
6071 release_contents (sec_cache->sec, sec_cache->contents);
6072 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6073 if (sec_cache->ptbl)
6074 free (sec_cache->ptbl);
6075 memset (sec_cache, 0, sizeof (sec_cache));
6076 }
43cd72b9
BW
6077}
6078
6079
6080static bfd_boolean
7fa3d080
BW
6081section_cache_section (section_cache_t *sec_cache,
6082 asection *sec,
6083 struct bfd_link_info *link_info)
43cd72b9
BW
6084{
6085 bfd *abfd;
6086 property_table_entry *prop_table = NULL;
6087 int ptblsize = 0;
6088 bfd_byte *contents = NULL;
6089 Elf_Internal_Rela *internal_relocs = NULL;
6090 bfd_size_type sec_size;
6091
6092 if (sec == NULL)
6093 return FALSE;
6094 if (sec == sec_cache->sec)
6095 return TRUE;
6096
6097 abfd = sec->owner;
6098 sec_size = bfd_get_section_limit (abfd, sec);
6099
6100 /* Get the contents. */
6101 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6102 if (contents == NULL && sec_size != 0)
6103 goto err;
6104
6105 /* Get the relocations. */
6106 internal_relocs = retrieve_internal_relocs (abfd, sec,
6107 link_info->keep_memory);
6108
6109 /* Get the entry table. */
6110 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6111 XTENSA_PROP_SEC_NAME, FALSE);
6112 if (ptblsize < 0)
6113 goto err;
6114
6115 /* Fill in the new section cache. */
6116 clear_section_cache (sec_cache);
6117 memset (sec_cache, 0, sizeof (sec_cache));
6118
6119 sec_cache->sec = sec;
6120 sec_cache->contents = contents;
6121 sec_cache->content_length = sec_size;
6122 sec_cache->relocs = internal_relocs;
6123 sec_cache->reloc_count = sec->reloc_count;
6124 sec_cache->pte_count = ptblsize;
6125 sec_cache->ptbl = prop_table;
6126
6127 return TRUE;
6128
6129 err:
6130 release_contents (sec, contents);
6131 release_internal_relocs (sec, internal_relocs);
6132 if (prop_table)
6133 free (prop_table);
6134 return FALSE;
6135}
6136
43cd72b9
BW
6137\f
6138/* Extended basic blocks. */
6139
6140/* An ebb_struct represents an Extended Basic Block. Within this
6141 range, we guarantee that all instructions are decodable, the
6142 property table entries are contiguous, and no property table
6143 specifies a segment that cannot have instructions moved. This
6144 structure contains caches of the contents, property table and
6145 relocations for the specified section for easy use. The range is
6146 specified by ranges of indices for the byte offset, property table
6147 offsets and relocation offsets. These must be consistent. */
6148
6149typedef struct ebb_struct ebb_t;
6150
6151struct ebb_struct
6152{
6153 asection *sec;
6154
6155 bfd_byte *contents; /* Cache of the section contents. */
6156 bfd_size_type content_length;
6157
6158 property_table_entry *ptbl; /* Cache of the section property table. */
6159 unsigned pte_count;
6160
6161 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6162 unsigned reloc_count;
6163
6164 bfd_vma start_offset; /* Offset in section. */
6165 unsigned start_ptbl_idx; /* Offset in the property table. */
6166 unsigned start_reloc_idx; /* Offset in the relocations. */
6167
6168 bfd_vma end_offset;
6169 unsigned end_ptbl_idx;
6170 unsigned end_reloc_idx;
6171
6172 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6173
6174 /* The unreachable property table at the end of this set of blocks;
6175 NULL if the end is not an unreachable block. */
6176 property_table_entry *ends_unreachable;
6177};
6178
6179
6180enum ebb_target_enum
6181{
6182 EBB_NO_ALIGN = 0,
6183 EBB_DESIRE_TGT_ALIGN,
6184 EBB_REQUIRE_TGT_ALIGN,
6185 EBB_REQUIRE_LOOP_ALIGN,
6186 EBB_REQUIRE_ALIGN
6187};
6188
6189
6190/* proposed_action_struct is similar to the text_action_struct except
6191 that is represents a potential transformation, not one that will
6192 occur. We build a list of these for an extended basic block
6193 and use them to compute the actual actions desired. We must be
6194 careful that the entire set of actual actions we perform do not
6195 break any relocations that would fit if the actions were not
6196 performed. */
6197
6198typedef struct proposed_action_struct proposed_action;
6199
6200struct proposed_action_struct
6201{
6202 enum ebb_target_enum align_type; /* for the target alignment */
6203 bfd_vma alignment_pow;
6204 text_action_t action;
6205 bfd_vma offset;
6206 int removed_bytes;
6207 bfd_boolean do_action; /* If false, then we will not perform the action. */
6208};
6209
6210
6211/* The ebb_constraint_struct keeps a set of proposed actions for an
6212 extended basic block. */
6213
6214typedef struct ebb_constraint_struct ebb_constraint;
6215
6216struct ebb_constraint_struct
6217{
6218 ebb_t ebb;
6219 bfd_boolean start_movable;
6220
6221 /* Bytes of extra space at the beginning if movable. */
6222 int start_extra_space;
6223
6224 enum ebb_target_enum start_align;
6225
6226 bfd_boolean end_movable;
6227
6228 /* Bytes of extra space at the end if movable. */
6229 int end_extra_space;
6230
6231 unsigned action_count;
6232 unsigned action_allocated;
6233
6234 /* Array of proposed actions. */
6235 proposed_action *actions;
6236
6237 /* Action alignments -- one for each proposed action. */
6238 enum ebb_target_enum *action_aligns;
6239};
6240
6241
43cd72b9 6242static void
7fa3d080 6243init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6244{
6245 memset (c, 0, sizeof (ebb_constraint));
6246}
6247
6248
6249static void
7fa3d080 6250free_ebb_constraint (ebb_constraint *c)
43cd72b9 6251{
7fa3d080 6252 if (c->actions)
43cd72b9
BW
6253 free (c->actions);
6254}
6255
6256
6257static void
7fa3d080
BW
6258init_ebb (ebb_t *ebb,
6259 asection *sec,
6260 bfd_byte *contents,
6261 bfd_size_type content_length,
6262 property_table_entry *prop_table,
6263 unsigned ptblsize,
6264 Elf_Internal_Rela *internal_relocs,
6265 unsigned reloc_count)
43cd72b9
BW
6266{
6267 memset (ebb, 0, sizeof (ebb_t));
6268 ebb->sec = sec;
6269 ebb->contents = contents;
6270 ebb->content_length = content_length;
6271 ebb->ptbl = prop_table;
6272 ebb->pte_count = ptblsize;
6273 ebb->relocs = internal_relocs;
6274 ebb->reloc_count = reloc_count;
6275 ebb->start_offset = 0;
6276 ebb->end_offset = ebb->content_length - 1;
6277 ebb->start_ptbl_idx = 0;
6278 ebb->end_ptbl_idx = ptblsize;
6279 ebb->start_reloc_idx = 0;
6280 ebb->end_reloc_idx = reloc_count;
6281}
6282
6283
6284/* Extend the ebb to all decodable contiguous sections. The algorithm
6285 for building a basic block around an instruction is to push it
6286 forward until we hit the end of a section, an unreachable block or
6287 a block that cannot be transformed. Then we push it backwards
6288 searching for similar conditions. */
6289
7fa3d080
BW
6290static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6291static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6292static bfd_size_type insn_block_decodable_len
6293 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6294
43cd72b9 6295static bfd_boolean
7fa3d080 6296extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6297{
6298 if (!extend_ebb_bounds_forward (ebb))
6299 return FALSE;
6300 if (!extend_ebb_bounds_backward (ebb))
6301 return FALSE;
6302 return TRUE;
6303}
6304
6305
6306static bfd_boolean
7fa3d080 6307extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6308{
6309 property_table_entry *the_entry, *new_entry;
6310
6311 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6312
6313 /* Stop when (1) we cannot decode an instruction, (2) we are at
6314 the end of the property tables, (3) we hit a non-contiguous property
6315 table entry, (4) we hit a NO_TRANSFORM region. */
6316
6317 while (1)
6318 {
6319 bfd_vma entry_end;
6320 bfd_size_type insn_block_len;
6321
6322 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6323 insn_block_len =
6324 insn_block_decodable_len (ebb->contents, ebb->content_length,
6325 ebb->end_offset,
6326 entry_end - ebb->end_offset);
6327 if (insn_block_len != (entry_end - ebb->end_offset))
6328 {
6329 (*_bfd_error_handler)
6330 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6331 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6332 return FALSE;
6333 }
6334 ebb->end_offset += insn_block_len;
6335
6336 if (ebb->end_offset == ebb->sec->size)
6337 ebb->ends_section = TRUE;
6338
6339 /* Update the reloc counter. */
6340 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6341 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6342 < ebb->end_offset))
6343 {
6344 ebb->end_reloc_idx++;
6345 }
6346
6347 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6348 return TRUE;
6349
6350 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6351 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6352 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6353 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6354 break;
6355
6356 if (the_entry->address + the_entry->size != new_entry->address)
6357 break;
6358
6359 the_entry = new_entry;
6360 ebb->end_ptbl_idx++;
6361 }
6362
6363 /* Quick check for an unreachable or end of file just at the end. */
6364 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6365 {
6366 if (ebb->end_offset == ebb->content_length)
6367 ebb->ends_section = TRUE;
6368 }
6369 else
6370 {
6371 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6372 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6373 && the_entry->address + the_entry->size == new_entry->address)
6374 ebb->ends_unreachable = new_entry;
6375 }
6376
6377 /* Any other ending requires exact alignment. */
6378 return TRUE;
6379}
6380
6381
6382static bfd_boolean
7fa3d080 6383extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6384{
6385 property_table_entry *the_entry, *new_entry;
6386
6387 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6388
6389 /* Stop when (1) we cannot decode the instructions in the current entry.
6390 (2) we are at the beginning of the property tables, (3) we hit a
6391 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6392
6393 while (1)
6394 {
6395 bfd_vma block_begin;
6396 bfd_size_type insn_block_len;
6397
6398 block_begin = the_entry->address - ebb->sec->vma;
6399 insn_block_len =
6400 insn_block_decodable_len (ebb->contents, ebb->content_length,
6401 block_begin,
6402 ebb->start_offset - block_begin);
6403 if (insn_block_len != ebb->start_offset - block_begin)
6404 {
6405 (*_bfd_error_handler)
6406 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6407 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6408 return FALSE;
6409 }
6410 ebb->start_offset -= insn_block_len;
6411
6412 /* Update the reloc counter. */
6413 while (ebb->start_reloc_idx > 0
6414 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6415 >= ebb->start_offset))
6416 {
6417 ebb->start_reloc_idx--;
6418 }
6419
6420 if (ebb->start_ptbl_idx == 0)
6421 return TRUE;
6422
6423 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6424 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6425 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6426 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6427 return TRUE;
6428 if (new_entry->address + new_entry->size != the_entry->address)
6429 return TRUE;
6430
6431 the_entry = new_entry;
6432 ebb->start_ptbl_idx--;
6433 }
6434 return TRUE;
6435}
6436
6437
6438static bfd_size_type
7fa3d080
BW
6439insn_block_decodable_len (bfd_byte *contents,
6440 bfd_size_type content_len,
6441 bfd_vma block_offset,
6442 bfd_size_type block_len)
43cd72b9
BW
6443{
6444 bfd_vma offset = block_offset;
6445
6446 while (offset < block_offset + block_len)
6447 {
6448 bfd_size_type insn_len = 0;
6449
6450 insn_len = insn_decode_len (contents, content_len, offset);
6451 if (insn_len == 0)
6452 return (offset - block_offset);
6453 offset += insn_len;
6454 }
6455 return (offset - block_offset);
6456}
6457
6458
6459static void
7fa3d080 6460ebb_propose_action (ebb_constraint *c,
7fa3d080 6461 enum ebb_target_enum align_type,
288f74fa 6462 bfd_vma alignment_pow,
7fa3d080
BW
6463 text_action_t action,
6464 bfd_vma offset,
6465 int removed_bytes,
6466 bfd_boolean do_action)
43cd72b9 6467{
b08b5071 6468 proposed_action *act;
43cd72b9 6469
43cd72b9
BW
6470 if (c->action_allocated <= c->action_count)
6471 {
b08b5071 6472 unsigned new_allocated, i;
823fc61f 6473 proposed_action *new_actions;
b08b5071
BW
6474
6475 new_allocated = (c->action_count + 2) * 2;
823fc61f 6476 new_actions = (proposed_action *)
43cd72b9
BW
6477 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6478
6479 for (i = 0; i < c->action_count; i++)
6480 new_actions[i] = c->actions[i];
7fa3d080 6481 if (c->actions)
43cd72b9
BW
6482 free (c->actions);
6483 c->actions = new_actions;
6484 c->action_allocated = new_allocated;
6485 }
b08b5071
BW
6486
6487 act = &c->actions[c->action_count];
6488 act->align_type = align_type;
6489 act->alignment_pow = alignment_pow;
6490 act->action = action;
6491 act->offset = offset;
6492 act->removed_bytes = removed_bytes;
6493 act->do_action = do_action;
6494
43cd72b9
BW
6495 c->action_count++;
6496}
6497
6498\f
6499/* Access to internal relocations, section contents and symbols. */
6500
6501/* During relaxation, we need to modify relocations, section contents,
6502 and symbol definitions, and we need to keep the original values from
6503 being reloaded from the input files, i.e., we need to "pin" the
6504 modified values in memory. We also want to continue to observe the
6505 setting of the "keep-memory" flag. The following functions wrap the
6506 standard BFD functions to take care of this for us. */
6507
6508static Elf_Internal_Rela *
7fa3d080 6509retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6510{
6511 Elf_Internal_Rela *internal_relocs;
6512
6513 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6514 return NULL;
6515
6516 internal_relocs = elf_section_data (sec)->relocs;
6517 if (internal_relocs == NULL)
6518 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6519 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6520 return internal_relocs;
6521}
6522
6523
6524static void
7fa3d080 6525pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6526{
6527 elf_section_data (sec)->relocs = internal_relocs;
6528}
6529
6530
6531static void
7fa3d080 6532release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6533{
6534 if (internal_relocs
6535 && elf_section_data (sec)->relocs != internal_relocs)
6536 free (internal_relocs);
6537}
6538
6539
6540static bfd_byte *
7fa3d080 6541retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6542{
6543 bfd_byte *contents;
6544 bfd_size_type sec_size;
6545
6546 sec_size = bfd_get_section_limit (abfd, sec);
6547 contents = elf_section_data (sec)->this_hdr.contents;
6548
6549 if (contents == NULL && sec_size != 0)
6550 {
6551 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6552 {
7fa3d080 6553 if (contents)
43cd72b9
BW
6554 free (contents);
6555 return NULL;
6556 }
6557 if (keep_memory)
6558 elf_section_data (sec)->this_hdr.contents = contents;
6559 }
6560 return contents;
6561}
6562
6563
6564static void
7fa3d080 6565pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6566{
6567 elf_section_data (sec)->this_hdr.contents = contents;
6568}
6569
6570
6571static void
7fa3d080 6572release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6573{
6574 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6575 free (contents);
6576}
6577
6578
6579static Elf_Internal_Sym *
7fa3d080 6580retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6581{
6582 Elf_Internal_Shdr *symtab_hdr;
6583 Elf_Internal_Sym *isymbuf;
6584 size_t locsymcount;
6585
6586 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6587 locsymcount = symtab_hdr->sh_info;
6588
6589 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6590 if (isymbuf == NULL && locsymcount != 0)
6591 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6592 NULL, NULL, NULL);
6593
6594 /* Save the symbols for this input file so they won't be read again. */
6595 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6596 symtab_hdr->contents = (unsigned char *) isymbuf;
6597
6598 return isymbuf;
6599}
6600
6601\f
6602/* Code for link-time relaxation. */
6603
6604/* Initialization for relaxation: */
7fa3d080 6605static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6606static bfd_boolean find_relaxable_sections
7fa3d080 6607 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6608static bfd_boolean collect_source_relocs
7fa3d080 6609 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6610static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6611 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6612 bfd_boolean *);
43cd72b9 6613static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6614 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6615static bfd_boolean compute_text_actions
7fa3d080
BW
6616 (bfd *, asection *, struct bfd_link_info *);
6617static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6618static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 6619static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
6620 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6621 const xtensa_opcode *);
7fa3d080 6622static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6623static void text_action_add_proposed
7fa3d080
BW
6624 (text_action_list *, const ebb_constraint *, asection *);
6625static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6626
6627/* First pass: */
6628static bfd_boolean compute_removed_literals
7fa3d080 6629 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6630static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6631 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 6632static bfd_boolean is_removable_literal
99ded152
BW
6633 (const source_reloc *, int, const source_reloc *, int, asection *,
6634 property_table_entry *, int);
43cd72b9 6635static bfd_boolean remove_dead_literal
7fa3d080
BW
6636 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6637 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6638static bfd_boolean identify_literal_placement
6639 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6640 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6641 source_reloc *, property_table_entry *, int, section_cache_t *,
6642 bfd_boolean);
6643static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6644static bfd_boolean coalesce_shared_literal
7fa3d080 6645 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6646static bfd_boolean move_shared_literal
7fa3d080
BW
6647 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6648 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6649
6650/* Second pass: */
7fa3d080
BW
6651static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6652static bfd_boolean translate_section_fixes (asection *);
6653static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6654static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6655static void shrink_dynamic_reloc_sections
7fa3d080 6656 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6657static bfd_boolean move_literal
7fa3d080
BW
6658 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6659 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6660static bfd_boolean relax_property_section
7fa3d080 6661 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6662
6663/* Third pass: */
7fa3d080 6664static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6665
6666
6667static bfd_boolean
7fa3d080
BW
6668elf_xtensa_relax_section (bfd *abfd,
6669 asection *sec,
6670 struct bfd_link_info *link_info,
6671 bfd_boolean *again)
43cd72b9
BW
6672{
6673 static value_map_hash_table *values = NULL;
6674 static bfd_boolean relocations_analyzed = FALSE;
6675 xtensa_relax_info *relax_info;
6676
6677 if (!relocations_analyzed)
6678 {
6679 /* Do some overall initialization for relaxation. */
6680 values = value_map_hash_table_init ();
6681 if (values == NULL)
6682 return FALSE;
6683 relaxing_section = TRUE;
6684 if (!analyze_relocations (link_info))
6685 return FALSE;
6686 relocations_analyzed = TRUE;
6687 }
6688 *again = FALSE;
6689
6690 /* Don't mess with linker-created sections. */
6691 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6692 return TRUE;
6693
6694 relax_info = get_xtensa_relax_info (sec);
6695 BFD_ASSERT (relax_info != NULL);
6696
6697 switch (relax_info->visited)
6698 {
6699 case 0:
6700 /* Note: It would be nice to fold this pass into
6701 analyze_relocations, but it is important for this step that the
6702 sections be examined in link order. */
6703 if (!compute_removed_literals (abfd, sec, link_info, values))
6704 return FALSE;
6705 *again = TRUE;
6706 break;
6707
6708 case 1:
6709 if (values)
6710 value_map_hash_table_delete (values);
6711 values = NULL;
6712 if (!relax_section (abfd, sec, link_info))
6713 return FALSE;
6714 *again = TRUE;
6715 break;
6716
6717 case 2:
6718 if (!relax_section_symbols (abfd, sec))
6719 return FALSE;
6720 break;
6721 }
6722
6723 relax_info->visited++;
6724 return TRUE;
6725}
6726
6727\f
6728/* Initialization for relaxation. */
6729
6730/* This function is called once at the start of relaxation. It scans
6731 all the input sections and marks the ones that are relaxable (i.e.,
6732 literal sections with L32R relocations against them), and then
6733 collects source_reloc information for all the relocations against
6734 those relaxable sections. During this process, it also detects
6735 longcalls, i.e., calls relaxed by the assembler into indirect
6736 calls, that can be optimized back into direct calls. Within each
6737 extended basic block (ebb) containing an optimized longcall, it
6738 computes a set of "text actions" that can be performed to remove
6739 the L32R associated with the longcall while optionally preserving
6740 branch target alignments. */
6741
6742static bfd_boolean
7fa3d080 6743analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6744{
6745 bfd *abfd;
6746 asection *sec;
6747 bfd_boolean is_relaxable = FALSE;
6748
6749 /* Initialize the per-section relaxation info. */
6750 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6751 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6752 {
6753 init_xtensa_relax_info (sec);
6754 }
6755
6756 /* Mark relaxable sections (and count relocations against each one). */
6757 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6758 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6759 {
6760 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6761 return FALSE;
6762 }
6763
6764 /* Bail out if there are no relaxable sections. */
6765 if (!is_relaxable)
6766 return TRUE;
6767
6768 /* Allocate space for source_relocs. */
6769 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6770 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6771 {
6772 xtensa_relax_info *relax_info;
6773
6774 relax_info = get_xtensa_relax_info (sec);
6775 if (relax_info->is_relaxable_literal_section
6776 || relax_info->is_relaxable_asm_section)
6777 {
6778 relax_info->src_relocs = (source_reloc *)
6779 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6780 }
25c6282a
BW
6781 else
6782 relax_info->src_count = 0;
43cd72b9
BW
6783 }
6784
6785 /* Collect info on relocations against each relaxable section. */
6786 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6787 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6788 {
6789 if (!collect_source_relocs (abfd, sec, link_info))
6790 return FALSE;
6791 }
6792
6793 /* Compute the text actions. */
6794 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6795 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6796 {
6797 if (!compute_text_actions (abfd, sec, link_info))
6798 return FALSE;
6799 }
6800
6801 return TRUE;
6802}
6803
6804
6805/* Find all the sections that might be relaxed. The motivation for
6806 this pass is that collect_source_relocs() needs to record _all_ the
6807 relocations that target each relaxable section. That is expensive
6808 and unnecessary unless the target section is actually going to be
6809 relaxed. This pass identifies all such sections by checking if
6810 they have L32Rs pointing to them. In the process, the total number
6811 of relocations targeting each section is also counted so that we
6812 know how much space to allocate for source_relocs against each
6813 relaxable literal section. */
6814
6815static bfd_boolean
7fa3d080
BW
6816find_relaxable_sections (bfd *abfd,
6817 asection *sec,
6818 struct bfd_link_info *link_info,
6819 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6820{
6821 Elf_Internal_Rela *internal_relocs;
6822 bfd_byte *contents;
6823 bfd_boolean ok = TRUE;
6824 unsigned i;
6825 xtensa_relax_info *source_relax_info;
25c6282a 6826 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6827
6828 internal_relocs = retrieve_internal_relocs (abfd, sec,
6829 link_info->keep_memory);
6830 if (internal_relocs == NULL)
6831 return ok;
6832
6833 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6834 if (contents == NULL && sec->size != 0)
6835 {
6836 ok = FALSE;
6837 goto error_return;
6838 }
6839
6840 source_relax_info = get_xtensa_relax_info (sec);
6841 for (i = 0; i < sec->reloc_count; i++)
6842 {
6843 Elf_Internal_Rela *irel = &internal_relocs[i];
6844 r_reloc r_rel;
6845 asection *target_sec;
6846 xtensa_relax_info *target_relax_info;
6847
6848 /* If this section has not already been marked as "relaxable", and
6849 if it contains any ASM_EXPAND relocations (marking expanded
6850 longcalls) that can be optimized into direct calls, then mark
6851 the section as "relaxable". */
6852 if (source_relax_info
6853 && !source_relax_info->is_relaxable_asm_section
6854 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6855 {
6856 bfd_boolean is_reachable = FALSE;
6857 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6858 link_info, &is_reachable)
6859 && is_reachable)
6860 {
6861 source_relax_info->is_relaxable_asm_section = TRUE;
6862 *is_relaxable_p = TRUE;
6863 }
6864 }
6865
6866 r_reloc_init (&r_rel, abfd, irel, contents,
6867 bfd_get_section_limit (abfd, sec));
6868
6869 target_sec = r_reloc_get_section (&r_rel);
6870 target_relax_info = get_xtensa_relax_info (target_sec);
6871 if (!target_relax_info)
6872 continue;
6873
6874 /* Count PC-relative operand relocations against the target section.
6875 Note: The conditions tested here must match the conditions under
6876 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6877 is_l32r_reloc = FALSE;
6878 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6879 {
6880 xtensa_opcode opcode =
6881 get_relocation_opcode (abfd, sec, contents, irel);
6882 if (opcode != XTENSA_UNDEFINED)
6883 {
6884 is_l32r_reloc = (opcode == get_l32r_opcode ());
6885 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6886 || is_l32r_reloc)
6887 target_relax_info->src_count++;
6888 }
6889 }
43cd72b9 6890
25c6282a 6891 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6892 {
6893 /* Mark the target section as relaxable. */
6894 target_relax_info->is_relaxable_literal_section = TRUE;
6895 *is_relaxable_p = TRUE;
6896 }
6897 }
6898
6899 error_return:
6900 release_contents (sec, contents);
6901 release_internal_relocs (sec, internal_relocs);
6902 return ok;
6903}
6904
6905
6906/* Record _all_ the relocations that point to relaxable sections, and
6907 get rid of ASM_EXPAND relocs by either converting them to
6908 ASM_SIMPLIFY or by removing them. */
6909
6910static bfd_boolean
7fa3d080
BW
6911collect_source_relocs (bfd *abfd,
6912 asection *sec,
6913 struct bfd_link_info *link_info)
43cd72b9
BW
6914{
6915 Elf_Internal_Rela *internal_relocs;
6916 bfd_byte *contents;
6917 bfd_boolean ok = TRUE;
6918 unsigned i;
6919 bfd_size_type sec_size;
6920
6921 internal_relocs = retrieve_internal_relocs (abfd, sec,
6922 link_info->keep_memory);
6923 if (internal_relocs == NULL)
6924 return ok;
6925
6926 sec_size = bfd_get_section_limit (abfd, sec);
6927 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6928 if (contents == NULL && sec_size != 0)
6929 {
6930 ok = FALSE;
6931 goto error_return;
6932 }
6933
6934 /* Record relocations against relaxable literal sections. */
6935 for (i = 0; i < sec->reloc_count; i++)
6936 {
6937 Elf_Internal_Rela *irel = &internal_relocs[i];
6938 r_reloc r_rel;
6939 asection *target_sec;
6940 xtensa_relax_info *target_relax_info;
6941
6942 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6943
6944 target_sec = r_reloc_get_section (&r_rel);
6945 target_relax_info = get_xtensa_relax_info (target_sec);
6946
6947 if (target_relax_info
6948 && (target_relax_info->is_relaxable_literal_section
6949 || target_relax_info->is_relaxable_asm_section))
6950 {
6951 xtensa_opcode opcode = XTENSA_UNDEFINED;
6952 int opnd = -1;
6953 bfd_boolean is_abs_literal = FALSE;
6954
6955 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6956 {
6957 /* None of the current alternate relocs are PC-relative,
6958 and only PC-relative relocs matter here. However, we
6959 still need to record the opcode for literal
6960 coalescing. */
6961 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6962 if (opcode == get_l32r_opcode ())
6963 {
6964 is_abs_literal = TRUE;
6965 opnd = 1;
6966 }
6967 else
6968 opcode = XTENSA_UNDEFINED;
6969 }
6970 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6971 {
6972 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6973 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6974 }
6975
6976 if (opcode != XTENSA_UNDEFINED)
6977 {
6978 int src_next = target_relax_info->src_next++;
6979 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6980
6981 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6982 is_abs_literal);
6983 }
6984 }
6985 }
6986
6987 /* Now get rid of ASM_EXPAND relocations. At this point, the
6988 src_relocs array for the target literal section may still be
6989 incomplete, but it must at least contain the entries for the L32R
6990 relocations associated with ASM_EXPANDs because they were just
6991 added in the preceding loop over the relocations. */
6992
6993 for (i = 0; i < sec->reloc_count; i++)
6994 {
6995 Elf_Internal_Rela *irel = &internal_relocs[i];
6996 bfd_boolean is_reachable;
6997
6998 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6999 &is_reachable))
7000 continue;
7001
7002 if (is_reachable)
7003 {
7004 Elf_Internal_Rela *l32r_irel;
7005 r_reloc r_rel;
7006 asection *target_sec;
7007 xtensa_relax_info *target_relax_info;
7008
7009 /* Mark the source_reloc for the L32R so that it will be
7010 removed in compute_removed_literals(), along with the
7011 associated literal. */
7012 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7013 irel, internal_relocs);
7014 if (l32r_irel == NULL)
7015 continue;
7016
7017 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7018
7019 target_sec = r_reloc_get_section (&r_rel);
7020 target_relax_info = get_xtensa_relax_info (target_sec);
7021
7022 if (target_relax_info
7023 && (target_relax_info->is_relaxable_literal_section
7024 || target_relax_info->is_relaxable_asm_section))
7025 {
7026 source_reloc *s_reloc;
7027
7028 /* Search the source_relocs for the entry corresponding to
7029 the l32r_irel. Note: The src_relocs array is not yet
7030 sorted, but it wouldn't matter anyway because we're
7031 searching by source offset instead of target offset. */
7032 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7033 target_relax_info->src_next,
7034 sec, l32r_irel);
7035 BFD_ASSERT (s_reloc);
7036 s_reloc->is_null = TRUE;
7037 }
7038
7039 /* Convert this reloc to ASM_SIMPLIFY. */
7040 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7041 R_XTENSA_ASM_SIMPLIFY);
7042 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7043
7044 pin_internal_relocs (sec, internal_relocs);
7045 }
7046 else
7047 {
7048 /* It is resolvable but doesn't reach. We resolve now
7049 by eliminating the relocation -- the call will remain
7050 expanded into L32R/CALLX. */
7051 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7052 pin_internal_relocs (sec, internal_relocs);
7053 }
7054 }
7055
7056 error_return:
7057 release_contents (sec, contents);
7058 release_internal_relocs (sec, internal_relocs);
7059 return ok;
7060}
7061
7062
7063/* Return TRUE if the asm expansion can be resolved. Generally it can
7064 be resolved on a final link or when a partial link locates it in the
7065 same section as the target. Set "is_reachable" flag if the target of
7066 the call is within the range of a direct call, given the current VMA
7067 for this section and the target section. */
7068
7069bfd_boolean
7fa3d080
BW
7070is_resolvable_asm_expansion (bfd *abfd,
7071 asection *sec,
7072 bfd_byte *contents,
7073 Elf_Internal_Rela *irel,
7074 struct bfd_link_info *link_info,
7075 bfd_boolean *is_reachable_p)
43cd72b9
BW
7076{
7077 asection *target_sec;
7078 bfd_vma target_offset;
7079 r_reloc r_rel;
7080 xtensa_opcode opcode, direct_call_opcode;
7081 bfd_vma self_address;
7082 bfd_vma dest_address;
7083 bfd_boolean uses_l32r;
7084 bfd_size_type sec_size;
7085
7086 *is_reachable_p = FALSE;
7087
7088 if (contents == NULL)
7089 return FALSE;
7090
7091 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7092 return FALSE;
7093
7094 sec_size = bfd_get_section_limit (abfd, sec);
7095 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7096 sec_size - irel->r_offset, &uses_l32r);
7097 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7098 if (!uses_l32r)
7099 return FALSE;
7100
7101 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7102 if (direct_call_opcode == XTENSA_UNDEFINED)
7103 return FALSE;
7104
7105 /* Check and see that the target resolves. */
7106 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7107 if (!r_reloc_is_defined (&r_rel))
7108 return FALSE;
7109
7110 target_sec = r_reloc_get_section (&r_rel);
7111 target_offset = r_rel.target_offset;
7112
7113 /* If the target is in a shared library, then it doesn't reach. This
7114 isn't supposed to come up because the compiler should never generate
7115 non-PIC calls on systems that use shared libraries, but the linker
7116 shouldn't crash regardless. */
7117 if (!target_sec->output_section)
7118 return FALSE;
7119
7120 /* For relocatable sections, we can only simplify when the output
7121 section of the target is the same as the output section of the
7122 source. */
7123 if (link_info->relocatable
7124 && (target_sec->output_section != sec->output_section
7125 || is_reloc_sym_weak (abfd, irel)))
7126 return FALSE;
7127
7128 self_address = (sec->output_section->vma
7129 + sec->output_offset + irel->r_offset + 3);
7130 dest_address = (target_sec->output_section->vma
7131 + target_sec->output_offset + target_offset);
7132
7133 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7134 self_address, dest_address);
7135
7136 if ((self_address >> CALL_SEGMENT_BITS) !=
7137 (dest_address >> CALL_SEGMENT_BITS))
7138 return FALSE;
7139
7140 return TRUE;
7141}
7142
7143
7144static Elf_Internal_Rela *
7fa3d080
BW
7145find_associated_l32r_irel (bfd *abfd,
7146 asection *sec,
7147 bfd_byte *contents,
7148 Elf_Internal_Rela *other_irel,
7149 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7150{
7151 unsigned i;
e0001a05 7152
43cd72b9
BW
7153 for (i = 0; i < sec->reloc_count; i++)
7154 {
7155 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7156
43cd72b9
BW
7157 if (irel == other_irel)
7158 continue;
7159 if (irel->r_offset != other_irel->r_offset)
7160 continue;
7161 if (is_l32r_relocation (abfd, sec, contents, irel))
7162 return irel;
7163 }
7164
7165 return NULL;
e0001a05
NC
7166}
7167
7168
cb337148
BW
7169static xtensa_opcode *
7170build_reloc_opcodes (bfd *abfd,
7171 asection *sec,
7172 bfd_byte *contents,
7173 Elf_Internal_Rela *internal_relocs)
7174{
7175 unsigned i;
7176 xtensa_opcode *reloc_opcodes =
7177 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7178 for (i = 0; i < sec->reloc_count; i++)
7179 {
7180 Elf_Internal_Rela *irel = &internal_relocs[i];
7181 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7182 }
7183 return reloc_opcodes;
7184}
7185
7186
43cd72b9
BW
7187/* The compute_text_actions function will build a list of potential
7188 transformation actions for code in the extended basic block of each
7189 longcall that is optimized to a direct call. From this list we
7190 generate a set of actions to actually perform that optimizes for
7191 space and, if not using size_opt, maintains branch target
7192 alignments.
e0001a05 7193
43cd72b9
BW
7194 These actions to be performed are placed on a per-section list.
7195 The actual changes are performed by relax_section() in the second
7196 pass. */
7197
7198bfd_boolean
7fa3d080
BW
7199compute_text_actions (bfd *abfd,
7200 asection *sec,
7201 struct bfd_link_info *link_info)
e0001a05 7202{
cb337148 7203 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7204 xtensa_relax_info *relax_info;
e0001a05 7205 bfd_byte *contents;
43cd72b9 7206 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7207 bfd_boolean ok = TRUE;
7208 unsigned i;
43cd72b9
BW
7209 property_table_entry *prop_table = 0;
7210 int ptblsize = 0;
7211 bfd_size_type sec_size;
43cd72b9 7212
43cd72b9
BW
7213 relax_info = get_xtensa_relax_info (sec);
7214 BFD_ASSERT (relax_info);
25c6282a
BW
7215 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7216
7217 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7218 if (!relax_info->is_relaxable_asm_section)
7219 return ok;
e0001a05
NC
7220
7221 internal_relocs = retrieve_internal_relocs (abfd, sec,
7222 link_info->keep_memory);
e0001a05 7223
43cd72b9
BW
7224 if (internal_relocs)
7225 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7226 internal_reloc_compare);
7227
7228 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7229 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7230 if (contents == NULL && sec_size != 0)
e0001a05
NC
7231 {
7232 ok = FALSE;
7233 goto error_return;
7234 }
7235
43cd72b9
BW
7236 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7237 XTENSA_PROP_SEC_NAME, FALSE);
7238 if (ptblsize < 0)
7239 {
7240 ok = FALSE;
7241 goto error_return;
7242 }
7243
7244 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7245 {
7246 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7247 bfd_vma r_offset;
7248 property_table_entry *the_entry;
7249 int ptbl_idx;
7250 ebb_t *ebb;
7251 ebb_constraint ebb_table;
7252 bfd_size_type simplify_size;
7253
7254 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7255 continue;
7256 r_offset = irel->r_offset;
e0001a05 7257
43cd72b9
BW
7258 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7259 if (simplify_size == 0)
7260 {
7261 (*_bfd_error_handler)
7262 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7263 sec->owner, sec, r_offset);
7264 continue;
7265 }
e0001a05 7266
43cd72b9
BW
7267 /* If the instruction table is not around, then don't do this
7268 relaxation. */
7269 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7270 sec->vma + irel->r_offset);
7271 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7272 {
7273 text_action_add (&relax_info->action_list,
7274 ta_convert_longcall, sec, r_offset,
7275 0);
7276 continue;
7277 }
7278
7279 /* If the next longcall happens to be at the same address as an
7280 unreachable section of size 0, then skip forward. */
7281 ptbl_idx = the_entry - prop_table;
7282 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7283 && the_entry->size == 0
7284 && ptbl_idx + 1 < ptblsize
7285 && (prop_table[ptbl_idx + 1].address
7286 == prop_table[ptbl_idx].address))
7287 {
7288 ptbl_idx++;
7289 the_entry++;
7290 }
e0001a05 7291
99ded152 7292 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7293 /* NO_REORDER is OK */
7294 continue;
e0001a05 7295
43cd72b9
BW
7296 init_ebb_constraint (&ebb_table);
7297 ebb = &ebb_table.ebb;
7298 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7299 internal_relocs, sec->reloc_count);
7300 ebb->start_offset = r_offset + simplify_size;
7301 ebb->end_offset = r_offset + simplify_size;
7302 ebb->start_ptbl_idx = ptbl_idx;
7303 ebb->end_ptbl_idx = ptbl_idx;
7304 ebb->start_reloc_idx = i;
7305 ebb->end_reloc_idx = i;
7306
cb337148
BW
7307 /* Precompute the opcode for each relocation. */
7308 if (reloc_opcodes == NULL)
7309 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7310 internal_relocs);
7311
43cd72b9
BW
7312 if (!extend_ebb_bounds (ebb)
7313 || !compute_ebb_proposed_actions (&ebb_table)
7314 || !compute_ebb_actions (&ebb_table)
7315 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
7316 internal_relocs, &ebb_table,
7317 reloc_opcodes)
43cd72b9 7318 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7319 {
43cd72b9
BW
7320 /* If anything goes wrong or we get unlucky and something does
7321 not fit, with our plan because of expansion between
7322 critical branches, just convert to a NOP. */
7323
7324 text_action_add (&relax_info->action_list,
7325 ta_convert_longcall, sec, r_offset, 0);
7326 i = ebb_table.ebb.end_reloc_idx;
7327 free_ebb_constraint (&ebb_table);
7328 continue;
e0001a05 7329 }
43cd72b9
BW
7330
7331 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7332
7333 /* Update the index so we do not go looking at the relocations
7334 we have already processed. */
7335 i = ebb_table.ebb.end_reloc_idx;
7336 free_ebb_constraint (&ebb_table);
e0001a05
NC
7337 }
7338
43cd72b9 7339#if DEBUG
7fa3d080 7340 if (relax_info->action_list.head)
43cd72b9
BW
7341 print_action_list (stderr, &relax_info->action_list);
7342#endif
7343
7344error_return:
e0001a05
NC
7345 release_contents (sec, contents);
7346 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7347 if (prop_table)
7348 free (prop_table);
cb337148
BW
7349 if (reloc_opcodes)
7350 free (reloc_opcodes);
43cd72b9 7351
e0001a05
NC
7352 return ok;
7353}
7354
7355
64b607e6
BW
7356/* Do not widen an instruction if it is preceeded by a
7357 loop opcode. It might cause misalignment. */
7358
7359static bfd_boolean
7360prev_instr_is_a_loop (bfd_byte *contents,
7361 bfd_size_type content_length,
7362 bfd_size_type offset)
7363{
7364 xtensa_opcode prev_opcode;
7365
7366 if (offset < 3)
7367 return FALSE;
7368 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7369 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7370}
7371
7372
43cd72b9 7373/* Find all of the possible actions for an extended basic block. */
e0001a05 7374
43cd72b9 7375bfd_boolean
7fa3d080 7376compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7377{
43cd72b9
BW
7378 const ebb_t *ebb = &ebb_table->ebb;
7379 unsigned rel_idx = ebb->start_reloc_idx;
7380 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7381 bfd_vma offset = 0;
7382 xtensa_isa isa = xtensa_default_isa;
7383 xtensa_format fmt;
7384 static xtensa_insnbuf insnbuf = NULL;
7385 static xtensa_insnbuf slotbuf = NULL;
7386
7387 if (insnbuf == NULL)
7388 {
7389 insnbuf = xtensa_insnbuf_alloc (isa);
7390 slotbuf = xtensa_insnbuf_alloc (isa);
7391 }
e0001a05 7392
43cd72b9
BW
7393 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7394 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7395
43cd72b9 7396 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7397 {
64b607e6 7398 bfd_vma start_offset, end_offset;
43cd72b9 7399 bfd_size_type insn_len;
e0001a05 7400
43cd72b9
BW
7401 start_offset = entry->address - ebb->sec->vma;
7402 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7403
43cd72b9
BW
7404 if (entry == start_entry)
7405 start_offset = ebb->start_offset;
7406 if (entry == end_entry)
7407 end_offset = ebb->end_offset;
7408 offset = start_offset;
e0001a05 7409
43cd72b9
BW
7410 if (offset == entry->address - ebb->sec->vma
7411 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7412 {
7413 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7414 BFD_ASSERT (offset != end_offset);
7415 if (offset == end_offset)
7416 return FALSE;
e0001a05 7417
43cd72b9
BW
7418 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7419 offset);
43cd72b9 7420 if (insn_len == 0)
64b607e6
BW
7421 goto decode_error;
7422
43cd72b9
BW
7423 if (check_branch_target_aligned_address (offset, insn_len))
7424 align_type = EBB_REQUIRE_TGT_ALIGN;
7425
7426 ebb_propose_action (ebb_table, align_type, 0,
7427 ta_none, offset, 0, TRUE);
7428 }
7429
7430 while (offset != end_offset)
e0001a05 7431 {
43cd72b9 7432 Elf_Internal_Rela *irel;
e0001a05 7433 xtensa_opcode opcode;
e0001a05 7434
43cd72b9
BW
7435 while (rel_idx < ebb->end_reloc_idx
7436 && (ebb->relocs[rel_idx].r_offset < offset
7437 || (ebb->relocs[rel_idx].r_offset == offset
7438 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7439 != R_XTENSA_ASM_SIMPLIFY))))
7440 rel_idx++;
7441
7442 /* Check for longcall. */
7443 irel = &ebb->relocs[rel_idx];
7444 if (irel->r_offset == offset
7445 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7446 {
7447 bfd_size_type simplify_size;
e0001a05 7448
43cd72b9
BW
7449 simplify_size = get_asm_simplify_size (ebb->contents,
7450 ebb->content_length,
7451 irel->r_offset);
7452 if (simplify_size == 0)
64b607e6 7453 goto decode_error;
43cd72b9
BW
7454
7455 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7456 ta_convert_longcall, offset, 0, TRUE);
7457
7458 offset += simplify_size;
7459 continue;
7460 }
e0001a05 7461
64b607e6
BW
7462 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7463 goto decode_error;
7464 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7465 ebb->content_length - offset);
7466 fmt = xtensa_format_decode (isa, insnbuf);
7467 if (fmt == XTENSA_UNDEFINED)
7468 goto decode_error;
7469 insn_len = xtensa_format_length (isa, fmt);
7470 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7471 goto decode_error;
7472
7473 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7474 {
64b607e6
BW
7475 offset += insn_len;
7476 continue;
43cd72b9 7477 }
64b607e6
BW
7478
7479 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7480 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7481 if (opcode == XTENSA_UNDEFINED)
7482 goto decode_error;
7483
43cd72b9 7484 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7485 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7486 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7487 {
7488 /* Add an instruction narrow action. */
7489 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7490 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7491 }
99ded152 7492 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7493 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7494 && ! prev_instr_is_a_loop (ebb->contents,
7495 ebb->content_length, offset))
43cd72b9
BW
7496 {
7497 /* Add an instruction widen action. */
7498 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7499 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7500 }
64b607e6 7501 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7502 {
7503 /* Check for branch targets. */
7504 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7505 ta_none, offset, 0, TRUE);
43cd72b9
BW
7506 }
7507
7508 offset += insn_len;
e0001a05
NC
7509 }
7510 }
7511
43cd72b9
BW
7512 if (ebb->ends_unreachable)
7513 {
7514 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7515 ta_fill, ebb->end_offset, 0, TRUE);
7516 }
e0001a05 7517
43cd72b9 7518 return TRUE;
64b607e6
BW
7519
7520 decode_error:
7521 (*_bfd_error_handler)
7522 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7523 ebb->sec->owner, ebb->sec, offset);
7524 return FALSE;
43cd72b9
BW
7525}
7526
7527
7528/* After all of the information has collected about the
7529 transformations possible in an EBB, compute the appropriate actions
7530 here in compute_ebb_actions. We still must check later to make
7531 sure that the actions do not break any relocations. The algorithm
7532 used here is pretty greedy. Basically, it removes as many no-ops
7533 as possible so that the end of the EBB has the same alignment
7534 characteristics as the original. First, it uses narrowing, then
7535 fill space at the end of the EBB, and finally widenings. If that
7536 does not work, it tries again with one fewer no-op removed. The
7537 optimization will only be performed if all of the branch targets
7538 that were aligned before transformation are also aligned after the
7539 transformation.
7540
7541 When the size_opt flag is set, ignore the branch target alignments,
7542 narrow all wide instructions, and remove all no-ops unless the end
7543 of the EBB prevents it. */
7544
7545bfd_boolean
7fa3d080 7546compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7547{
7548 unsigned i = 0;
7549 unsigned j;
7550 int removed_bytes = 0;
7551 ebb_t *ebb = &ebb_table->ebb;
7552 unsigned seg_idx_start = 0;
7553 unsigned seg_idx_end = 0;
7554
7555 /* We perform this like the assembler relaxation algorithm: Start by
7556 assuming all instructions are narrow and all no-ops removed; then
7557 walk through.... */
7558
7559 /* For each segment of this that has a solid constraint, check to
7560 see if there are any combinations that will keep the constraint.
7561 If so, use it. */
7562 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7563 {
43cd72b9
BW
7564 bfd_boolean requires_text_end_align = FALSE;
7565 unsigned longcall_count = 0;
7566 unsigned longcall_convert_count = 0;
7567 unsigned narrowable_count = 0;
7568 unsigned narrowable_convert_count = 0;
7569 unsigned widenable_count = 0;
7570 unsigned widenable_convert_count = 0;
e0001a05 7571
43cd72b9
BW
7572 proposed_action *action = NULL;
7573 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 7574
43cd72b9 7575 seg_idx_start = seg_idx_end;
e0001a05 7576
43cd72b9
BW
7577 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7578 {
7579 action = &ebb_table->actions[i];
7580 if (action->action == ta_convert_longcall)
7581 longcall_count++;
7582 if (action->action == ta_narrow_insn)
7583 narrowable_count++;
7584 if (action->action == ta_widen_insn)
7585 widenable_count++;
7586 if (action->action == ta_fill)
7587 break;
7588 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7589 break;
7590 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7591 && !elf32xtensa_size_opt)
7592 break;
7593 }
7594 seg_idx_end = i;
e0001a05 7595
43cd72b9
BW
7596 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7597 requires_text_end_align = TRUE;
e0001a05 7598
43cd72b9
BW
7599 if (elf32xtensa_size_opt && !requires_text_end_align
7600 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7601 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7602 {
7603 longcall_convert_count = longcall_count;
7604 narrowable_convert_count = narrowable_count;
7605 widenable_convert_count = 0;
7606 }
7607 else
7608 {
7609 /* There is a constraint. Convert the max number of longcalls. */
7610 narrowable_convert_count = 0;
7611 longcall_convert_count = 0;
7612 widenable_convert_count = 0;
e0001a05 7613
43cd72b9 7614 for (j = 0; j < longcall_count; j++)
e0001a05 7615 {
43cd72b9
BW
7616 int removed = (longcall_count - j) * 3 & (align - 1);
7617 unsigned desire_narrow = (align - removed) & (align - 1);
7618 unsigned desire_widen = removed;
7619 if (desire_narrow <= narrowable_count)
7620 {
7621 narrowable_convert_count = desire_narrow;
7622 narrowable_convert_count +=
7623 (align * ((narrowable_count - narrowable_convert_count)
7624 / align));
7625 longcall_convert_count = (longcall_count - j);
7626 widenable_convert_count = 0;
7627 break;
7628 }
7629 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7630 {
7631 narrowable_convert_count = 0;
7632 longcall_convert_count = longcall_count - j;
7633 widenable_convert_count = desire_widen;
7634 break;
7635 }
7636 }
7637 }
e0001a05 7638
43cd72b9
BW
7639 /* Now the number of conversions are saved. Do them. */
7640 for (i = seg_idx_start; i < seg_idx_end; i++)
7641 {
7642 action = &ebb_table->actions[i];
7643 switch (action->action)
7644 {
7645 case ta_convert_longcall:
7646 if (longcall_convert_count != 0)
7647 {
7648 action->action = ta_remove_longcall;
7649 action->do_action = TRUE;
7650 action->removed_bytes += 3;
7651 longcall_convert_count--;
7652 }
7653 break;
7654 case ta_narrow_insn:
7655 if (narrowable_convert_count != 0)
7656 {
7657 action->do_action = TRUE;
7658 action->removed_bytes += 1;
7659 narrowable_convert_count--;
7660 }
7661 break;
7662 case ta_widen_insn:
7663 if (widenable_convert_count != 0)
7664 {
7665 action->do_action = TRUE;
7666 action->removed_bytes -= 1;
7667 widenable_convert_count--;
7668 }
7669 break;
7670 default:
7671 break;
e0001a05 7672 }
43cd72b9
BW
7673 }
7674 }
e0001a05 7675
43cd72b9
BW
7676 /* Now we move on to some local opts. Try to remove each of the
7677 remaining longcalls. */
e0001a05 7678
43cd72b9
BW
7679 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7680 {
7681 removed_bytes = 0;
7682 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7683 {
43cd72b9
BW
7684 int old_removed_bytes = removed_bytes;
7685 proposed_action *action = &ebb_table->actions[i];
7686
7687 if (action->do_action && action->action == ta_convert_longcall)
7688 {
7689 bfd_boolean bad_alignment = FALSE;
7690 removed_bytes += 3;
7691 for (j = i + 1; j < ebb_table->action_count; j++)
7692 {
7693 proposed_action *new_action = &ebb_table->actions[j];
7694 bfd_vma offset = new_action->offset;
7695 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7696 {
7697 if (!check_branch_target_aligned
7698 (ebb_table->ebb.contents,
7699 ebb_table->ebb.content_length,
7700 offset, offset - removed_bytes))
7701 {
7702 bad_alignment = TRUE;
7703 break;
7704 }
7705 }
7706 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7707 {
7708 if (!check_loop_aligned (ebb_table->ebb.contents,
7709 ebb_table->ebb.content_length,
7710 offset,
7711 offset - removed_bytes))
7712 {
7713 bad_alignment = TRUE;
7714 break;
7715 }
7716 }
7717 if (new_action->action == ta_narrow_insn
7718 && !new_action->do_action
7719 && ebb_table->ebb.sec->alignment_power == 2)
7720 {
7721 /* Narrow an instruction and we are done. */
7722 new_action->do_action = TRUE;
7723 new_action->removed_bytes += 1;
7724 bad_alignment = FALSE;
7725 break;
7726 }
7727 if (new_action->action == ta_widen_insn
7728 && new_action->do_action
7729 && ebb_table->ebb.sec->alignment_power == 2)
7730 {
7731 /* Narrow an instruction and we are done. */
7732 new_action->do_action = FALSE;
7733 new_action->removed_bytes += 1;
7734 bad_alignment = FALSE;
7735 break;
7736 }
5c5d6806
BW
7737 if (new_action->do_action)
7738 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
7739 }
7740 if (!bad_alignment)
7741 {
7742 action->removed_bytes += 3;
7743 action->action = ta_remove_longcall;
7744 action->do_action = TRUE;
7745 }
7746 }
7747 removed_bytes = old_removed_bytes;
7748 if (action->do_action)
7749 removed_bytes += action->removed_bytes;
e0001a05
NC
7750 }
7751 }
7752
43cd72b9
BW
7753 removed_bytes = 0;
7754 for (i = 0; i < ebb_table->action_count; ++i)
7755 {
7756 proposed_action *action = &ebb_table->actions[i];
7757 if (action->do_action)
7758 removed_bytes += action->removed_bytes;
7759 }
7760
7761 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7762 && ebb->ends_unreachable)
7763 {
7764 proposed_action *action;
7765 int br;
7766 int extra_space;
7767
7768 BFD_ASSERT (ebb_table->action_count != 0);
7769 action = &ebb_table->actions[ebb_table->action_count - 1];
7770 BFD_ASSERT (action->action == ta_fill);
7771 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7772
7773 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7774 br = action->removed_bytes + removed_bytes + extra_space;
7775 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7776
7777 action->removed_bytes = extra_space - br;
7778 }
7779 return TRUE;
e0001a05
NC
7780}
7781
7782
03e94c08
BW
7783/* The xlate_map is a sorted array of address mappings designed to
7784 answer the offset_with_removed_text() query with a binary search instead
7785 of a linear search through the section's action_list. */
7786
7787typedef struct xlate_map_entry xlate_map_entry_t;
7788typedef struct xlate_map xlate_map_t;
7789
7790struct xlate_map_entry
7791{
7792 unsigned orig_address;
7793 unsigned new_address;
7794 unsigned size;
7795};
7796
7797struct xlate_map
7798{
7799 unsigned entry_count;
7800 xlate_map_entry_t *entry;
7801};
7802
7803
7804static int
7805xlate_compare (const void *a_v, const void *b_v)
7806{
7807 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7808 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7809 if (a->orig_address < b->orig_address)
7810 return -1;
7811 if (a->orig_address > (b->orig_address + b->size - 1))
7812 return 1;
7813 return 0;
7814}
7815
7816
7817static bfd_vma
7818xlate_offset_with_removed_text (const xlate_map_t *map,
7819 text_action_list *action_list,
7820 bfd_vma offset)
7821{
03e94c08
BW
7822 void *r;
7823 xlate_map_entry_t *e;
7824
7825 if (map == NULL)
7826 return offset_with_removed_text (action_list, offset);
7827
7828 if (map->entry_count == 0)
7829 return offset;
7830
03e94c08
BW
7831 r = bsearch (&offset, map->entry, map->entry_count,
7832 sizeof (xlate_map_entry_t), &xlate_compare);
7833 e = (xlate_map_entry_t *) r;
7834
7835 BFD_ASSERT (e != NULL);
7836 if (e == NULL)
7837 return offset;
7838 return e->new_address - e->orig_address + offset;
7839}
7840
7841
7842/* Build a binary searchable offset translation map from a section's
7843 action list. */
7844
7845static xlate_map_t *
7846build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7847{
7848 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7849 text_action_list *action_list = &relax_info->action_list;
7850 unsigned num_actions = 0;
7851 text_action *r;
7852 int removed;
7853 xlate_map_entry_t *current_entry;
7854
7855 if (map == NULL)
7856 return NULL;
7857
7858 num_actions = action_list_count (action_list);
7859 map->entry = (xlate_map_entry_t *)
7860 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7861 if (map->entry == NULL)
7862 {
7863 free (map);
7864 return NULL;
7865 }
7866 map->entry_count = 0;
7867
7868 removed = 0;
7869 current_entry = &map->entry[0];
7870
7871 current_entry->orig_address = 0;
7872 current_entry->new_address = 0;
7873 current_entry->size = 0;
7874
7875 for (r = action_list->head; r != NULL; r = r->next)
7876 {
7877 unsigned orig_size = 0;
7878 switch (r->action)
7879 {
7880 case ta_none:
7881 case ta_remove_insn:
7882 case ta_convert_longcall:
7883 case ta_remove_literal:
7884 case ta_add_literal:
7885 break;
7886 case ta_remove_longcall:
7887 orig_size = 6;
7888 break;
7889 case ta_narrow_insn:
7890 orig_size = 3;
7891 break;
7892 case ta_widen_insn:
7893 orig_size = 2;
7894 break;
7895 case ta_fill:
7896 break;
7897 }
7898 current_entry->size =
7899 r->offset + orig_size - current_entry->orig_address;
7900 if (current_entry->size != 0)
7901 {
7902 current_entry++;
7903 map->entry_count++;
7904 }
7905 current_entry->orig_address = r->offset + orig_size;
7906 removed += r->removed_bytes;
7907 current_entry->new_address = r->offset + orig_size - removed;
7908 current_entry->size = 0;
7909 }
7910
7911 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7912 - current_entry->orig_address);
7913 if (current_entry->size != 0)
7914 map->entry_count++;
7915
7916 return map;
7917}
7918
7919
7920/* Free an offset translation map. */
7921
7922static void
7923free_xlate_map (xlate_map_t *map)
7924{
7925 if (map && map->entry)
7926 free (map->entry);
7927 if (map)
7928 free (map);
7929}
7930
7931
43cd72b9
BW
7932/* Use check_section_ebb_pcrels_fit to make sure that all of the
7933 relocations in a section will fit if a proposed set of actions
7934 are performed. */
e0001a05 7935
43cd72b9 7936static bfd_boolean
7fa3d080
BW
7937check_section_ebb_pcrels_fit (bfd *abfd,
7938 asection *sec,
7939 bfd_byte *contents,
7940 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7941 const ebb_constraint *constraint,
7942 const xtensa_opcode *reloc_opcodes)
e0001a05 7943{
43cd72b9
BW
7944 unsigned i, j;
7945 Elf_Internal_Rela *irel;
03e94c08
BW
7946 xlate_map_t *xmap = NULL;
7947 bfd_boolean ok = TRUE;
43cd72b9 7948 xtensa_relax_info *relax_info;
e0001a05 7949
43cd72b9 7950 relax_info = get_xtensa_relax_info (sec);
e0001a05 7951
03e94c08
BW
7952 if (relax_info && sec->reloc_count > 100)
7953 {
7954 xmap = build_xlate_map (sec, relax_info);
7955 /* NULL indicates out of memory, but the slow version
7956 can still be used. */
7957 }
7958
43cd72b9
BW
7959 for (i = 0; i < sec->reloc_count; i++)
7960 {
7961 r_reloc r_rel;
7962 bfd_vma orig_self_offset, orig_target_offset;
7963 bfd_vma self_offset, target_offset;
7964 int r_type;
7965 reloc_howto_type *howto;
7966 int self_removed_bytes, target_removed_bytes;
e0001a05 7967
43cd72b9
BW
7968 irel = &internal_relocs[i];
7969 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7970
43cd72b9
BW
7971 howto = &elf_howto_table[r_type];
7972 /* We maintain the required invariant: PC-relative relocations
7973 that fit before linking must fit after linking. Thus we only
7974 need to deal with relocations to the same section that are
7975 PC-relative. */
1bbb5f21
BW
7976 if (r_type == R_XTENSA_ASM_SIMPLIFY
7977 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7978 || !howto->pc_relative)
7979 continue;
e0001a05 7980
43cd72b9
BW
7981 r_reloc_init (&r_rel, abfd, irel, contents,
7982 bfd_get_section_limit (abfd, sec));
e0001a05 7983
43cd72b9
BW
7984 if (r_reloc_get_section (&r_rel) != sec)
7985 continue;
e0001a05 7986
43cd72b9
BW
7987 orig_self_offset = irel->r_offset;
7988 orig_target_offset = r_rel.target_offset;
e0001a05 7989
43cd72b9
BW
7990 self_offset = orig_self_offset;
7991 target_offset = orig_target_offset;
7992
7993 if (relax_info)
7994 {
03e94c08
BW
7995 self_offset =
7996 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7997 orig_self_offset);
7998 target_offset =
7999 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8000 orig_target_offset);
43cd72b9
BW
8001 }
8002
8003 self_removed_bytes = 0;
8004 target_removed_bytes = 0;
8005
8006 for (j = 0; j < constraint->action_count; ++j)
8007 {
8008 proposed_action *action = &constraint->actions[j];
8009 bfd_vma offset = action->offset;
8010 int removed_bytes = action->removed_bytes;
8011 if (offset < orig_self_offset
8012 || (offset == orig_self_offset && action->action == ta_fill
8013 && action->removed_bytes < 0))
8014 self_removed_bytes += removed_bytes;
8015 if (offset < orig_target_offset
8016 || (offset == orig_target_offset && action->action == ta_fill
8017 && action->removed_bytes < 0))
8018 target_removed_bytes += removed_bytes;
8019 }
8020 self_offset -= self_removed_bytes;
8021 target_offset -= target_removed_bytes;
8022
8023 /* Try to encode it. Get the operand and check. */
8024 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8025 {
8026 /* None of the current alternate relocs are PC-relative,
8027 and only PC-relative relocs matter here. */
8028 }
8029 else
8030 {
8031 xtensa_opcode opcode;
8032 int opnum;
8033
cb337148
BW
8034 if (reloc_opcodes)
8035 opcode = reloc_opcodes[i];
8036 else
8037 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 8038 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
8039 {
8040 ok = FALSE;
8041 break;
8042 }
43cd72b9
BW
8043
8044 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8045 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
8046 {
8047 ok = FALSE;
8048 break;
8049 }
43cd72b9
BW
8050
8051 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8052 {
8053 ok = FALSE;
8054 break;
8055 }
43cd72b9
BW
8056 }
8057 }
8058
03e94c08
BW
8059 if (xmap)
8060 free_xlate_map (xmap);
8061
8062 return ok;
43cd72b9
BW
8063}
8064
8065
8066static bfd_boolean
7fa3d080 8067check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8068{
8069 int removed = 0;
8070 unsigned i;
8071
8072 for (i = 0; i < constraint->action_count; i++)
8073 {
8074 const proposed_action *action = &constraint->actions[i];
8075 if (action->do_action)
8076 removed += action->removed_bytes;
8077 }
8078 if (removed < 0)
e0001a05
NC
8079 return FALSE;
8080
8081 return TRUE;
8082}
8083
8084
43cd72b9 8085void
7fa3d080
BW
8086text_action_add_proposed (text_action_list *l,
8087 const ebb_constraint *ebb_table,
8088 asection *sec)
e0001a05
NC
8089{
8090 unsigned i;
8091
43cd72b9 8092 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8093 {
43cd72b9 8094 proposed_action *action = &ebb_table->actions[i];
e0001a05 8095
43cd72b9 8096 if (!action->do_action)
e0001a05 8097 continue;
43cd72b9
BW
8098 switch (action->action)
8099 {
8100 case ta_remove_insn:
8101 case ta_remove_longcall:
8102 case ta_convert_longcall:
8103 case ta_narrow_insn:
8104 case ta_widen_insn:
8105 case ta_fill:
8106 case ta_remove_literal:
8107 text_action_add (l, action->action, sec, action->offset,
8108 action->removed_bytes);
8109 break;
8110 case ta_none:
8111 break;
8112 default:
8113 BFD_ASSERT (0);
8114 break;
8115 }
e0001a05 8116 }
43cd72b9 8117}
e0001a05 8118
43cd72b9
BW
8119
8120int
7fa3d080 8121compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8122{
8123 int fill_extra_space;
8124
8125 if (!entry)
8126 return 0;
8127
8128 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8129 return 0;
8130
8131 fill_extra_space = entry->size;
8132 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8133 {
8134 /* Fill bytes for alignment:
8135 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8136 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8137 int nsm = (1 << pow) - 1;
8138 bfd_vma addr = entry->address + entry->size;
8139 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8140 fill_extra_space += align_fill;
8141 }
8142 return fill_extra_space;
e0001a05
NC
8143}
8144
43cd72b9 8145\f
e0001a05
NC
8146/* First relaxation pass. */
8147
43cd72b9
BW
8148/* If the section contains relaxable literals, check each literal to
8149 see if it has the same value as another literal that has already
8150 been seen, either in the current section or a previous one. If so,
8151 add an entry to the per-section list of removed literals. The
e0001a05
NC
8152 actual changes are deferred until the next pass. */
8153
8154static bfd_boolean
7fa3d080
BW
8155compute_removed_literals (bfd *abfd,
8156 asection *sec,
8157 struct bfd_link_info *link_info,
8158 value_map_hash_table *values)
e0001a05
NC
8159{
8160 xtensa_relax_info *relax_info;
8161 bfd_byte *contents;
8162 Elf_Internal_Rela *internal_relocs;
43cd72b9 8163 source_reloc *src_relocs, *rel;
e0001a05 8164 bfd_boolean ok = TRUE;
43cd72b9
BW
8165 property_table_entry *prop_table = NULL;
8166 int ptblsize;
8167 int i, prev_i;
8168 bfd_boolean last_loc_is_prev = FALSE;
8169 bfd_vma last_target_offset = 0;
8170 section_cache_t target_sec_cache;
8171 bfd_size_type sec_size;
8172
8173 init_section_cache (&target_sec_cache);
e0001a05
NC
8174
8175 /* Do nothing if it is not a relaxable literal section. */
8176 relax_info = get_xtensa_relax_info (sec);
8177 BFD_ASSERT (relax_info);
e0001a05
NC
8178 if (!relax_info->is_relaxable_literal_section)
8179 return ok;
8180
8181 internal_relocs = retrieve_internal_relocs (abfd, sec,
8182 link_info->keep_memory);
8183
43cd72b9 8184 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8185 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8186 if (contents == NULL && sec_size != 0)
e0001a05
NC
8187 {
8188 ok = FALSE;
8189 goto error_return;
8190 }
8191
8192 /* Sort the source_relocs by target offset. */
8193 src_relocs = relax_info->src_relocs;
8194 qsort (src_relocs, relax_info->src_count,
8195 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8196 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8197 internal_reloc_compare);
e0001a05 8198
43cd72b9
BW
8199 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8200 XTENSA_PROP_SEC_NAME, FALSE);
8201 if (ptblsize < 0)
8202 {
8203 ok = FALSE;
8204 goto error_return;
8205 }
8206
8207 prev_i = -1;
e0001a05
NC
8208 for (i = 0; i < relax_info->src_count; i++)
8209 {
e0001a05 8210 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8211
8212 rel = &src_relocs[i];
43cd72b9
BW
8213 if (get_l32r_opcode () != rel->opcode)
8214 continue;
e0001a05
NC
8215 irel = get_irel_at_offset (sec, internal_relocs,
8216 rel->r_rel.target_offset);
8217
43cd72b9
BW
8218 /* If the relocation on this is not a simple R_XTENSA_32 or
8219 R_XTENSA_PLT then do not consider it. This may happen when
8220 the difference of two symbols is used in a literal. */
8221 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8222 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8223 continue;
8224
e0001a05
NC
8225 /* If the target_offset for this relocation is the same as the
8226 previous relocation, then we've already considered whether the
8227 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8228 if (i != 0 && prev_i != -1
8229 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8230 continue;
43cd72b9
BW
8231 prev_i = i;
8232
8233 if (last_loc_is_prev &&
8234 last_target_offset + 4 != rel->r_rel.target_offset)
8235 last_loc_is_prev = FALSE;
e0001a05
NC
8236
8237 /* Check if the relocation was from an L32R that is being removed
8238 because a CALLX was converted to a direct CALL, and check if
8239 there are no other relocations to the literal. */
99ded152
BW
8240 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8241 sec, prop_table, ptblsize))
e0001a05 8242 {
43cd72b9
BW
8243 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8244 irel, rel, prop_table, ptblsize))
e0001a05 8245 {
43cd72b9
BW
8246 ok = FALSE;
8247 goto error_return;
e0001a05 8248 }
43cd72b9 8249 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8250 continue;
8251 }
8252
43cd72b9
BW
8253 if (!identify_literal_placement (abfd, sec, contents, link_info,
8254 values,
8255 &last_loc_is_prev, irel,
8256 relax_info->src_count - i, rel,
8257 prop_table, ptblsize,
8258 &target_sec_cache, rel->is_abs_literal))
e0001a05 8259 {
43cd72b9
BW
8260 ok = FALSE;
8261 goto error_return;
8262 }
8263 last_target_offset = rel->r_rel.target_offset;
8264 }
e0001a05 8265
43cd72b9
BW
8266#if DEBUG
8267 print_removed_literals (stderr, &relax_info->removed_list);
8268 print_action_list (stderr, &relax_info->action_list);
8269#endif /* DEBUG */
8270
8271error_return:
8272 if (prop_table) free (prop_table);
8273 clear_section_cache (&target_sec_cache);
8274
8275 release_contents (sec, contents);
8276 release_internal_relocs (sec, internal_relocs);
8277 return ok;
8278}
8279
8280
8281static Elf_Internal_Rela *
7fa3d080
BW
8282get_irel_at_offset (asection *sec,
8283 Elf_Internal_Rela *internal_relocs,
8284 bfd_vma offset)
43cd72b9
BW
8285{
8286 unsigned i;
8287 Elf_Internal_Rela *irel;
8288 unsigned r_type;
8289 Elf_Internal_Rela key;
8290
8291 if (!internal_relocs)
8292 return NULL;
8293
8294 key.r_offset = offset;
8295 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8296 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8297 if (!irel)
8298 return NULL;
8299
8300 /* bsearch does not guarantee which will be returned if there are
8301 multiple matches. We need the first that is not an alignment. */
8302 i = irel - internal_relocs;
8303 while (i > 0)
8304 {
8305 if (internal_relocs[i-1].r_offset != offset)
8306 break;
8307 i--;
8308 }
8309 for ( ; i < sec->reloc_count; i++)
8310 {
8311 irel = &internal_relocs[i];
8312 r_type = ELF32_R_TYPE (irel->r_info);
8313 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8314 return irel;
8315 }
8316
8317 return NULL;
8318}
8319
8320
8321bfd_boolean
7fa3d080
BW
8322is_removable_literal (const source_reloc *rel,
8323 int i,
8324 const source_reloc *src_relocs,
99ded152
BW
8325 int src_count,
8326 asection *sec,
8327 property_table_entry *prop_table,
8328 int ptblsize)
43cd72b9
BW
8329{
8330 const source_reloc *curr_rel;
99ded152
BW
8331 property_table_entry *entry;
8332
43cd72b9
BW
8333 if (!rel->is_null)
8334 return FALSE;
8335
99ded152
BW
8336 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8337 sec->vma + rel->r_rel.target_offset);
8338 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8339 return FALSE;
8340
43cd72b9
BW
8341 for (++i; i < src_count; ++i)
8342 {
8343 curr_rel = &src_relocs[i];
8344 /* If all others have the same target offset.... */
8345 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8346 return TRUE;
8347
8348 if (!curr_rel->is_null
8349 && !xtensa_is_property_section (curr_rel->source_sec)
8350 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8351 return FALSE;
8352 }
8353 return TRUE;
8354}
8355
8356
8357bfd_boolean
7fa3d080
BW
8358remove_dead_literal (bfd *abfd,
8359 asection *sec,
8360 struct bfd_link_info *link_info,
8361 Elf_Internal_Rela *internal_relocs,
8362 Elf_Internal_Rela *irel,
8363 source_reloc *rel,
8364 property_table_entry *prop_table,
8365 int ptblsize)
43cd72b9
BW
8366{
8367 property_table_entry *entry;
8368 xtensa_relax_info *relax_info;
8369
8370 relax_info = get_xtensa_relax_info (sec);
8371 if (!relax_info)
8372 return FALSE;
8373
8374 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8375 sec->vma + rel->r_rel.target_offset);
8376
8377 /* Mark the unused literal so that it will be removed. */
8378 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8379
8380 text_action_add (&relax_info->action_list,
8381 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8382
8383 /* If the section is 4-byte aligned, do not add fill. */
8384 if (sec->alignment_power > 2)
8385 {
8386 int fill_extra_space;
8387 bfd_vma entry_sec_offset;
8388 text_action *fa;
8389 property_table_entry *the_add_entry;
8390 int removed_diff;
8391
8392 if (entry)
8393 entry_sec_offset = entry->address - sec->vma + entry->size;
8394 else
8395 entry_sec_offset = rel->r_rel.target_offset + 4;
8396
8397 /* If the literal range is at the end of the section,
8398 do not add fill. */
8399 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8400 entry_sec_offset);
8401 fill_extra_space = compute_fill_extra_space (the_add_entry);
8402
8403 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8404 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8405 -4, fill_extra_space);
8406 if (fa)
8407 adjust_fill_action (fa, removed_diff);
8408 else
8409 text_action_add (&relax_info->action_list,
8410 ta_fill, sec, entry_sec_offset, removed_diff);
8411 }
8412
8413 /* Zero out the relocation on this literal location. */
8414 if (irel)
8415 {
8416 if (elf_hash_table (link_info)->dynamic_sections_created)
8417 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8418
8419 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8420 pin_internal_relocs (sec, internal_relocs);
8421 }
8422
8423 /* Do not modify "last_loc_is_prev". */
8424 return TRUE;
8425}
8426
8427
8428bfd_boolean
7fa3d080
BW
8429identify_literal_placement (bfd *abfd,
8430 asection *sec,
8431 bfd_byte *contents,
8432 struct bfd_link_info *link_info,
8433 value_map_hash_table *values,
8434 bfd_boolean *last_loc_is_prev_p,
8435 Elf_Internal_Rela *irel,
8436 int remaining_src_rels,
8437 source_reloc *rel,
8438 property_table_entry *prop_table,
8439 int ptblsize,
8440 section_cache_t *target_sec_cache,
8441 bfd_boolean is_abs_literal)
43cd72b9
BW
8442{
8443 literal_value val;
8444 value_map *val_map;
8445 xtensa_relax_info *relax_info;
8446 bfd_boolean literal_placed = FALSE;
8447 r_reloc r_rel;
8448 unsigned long value;
8449 bfd_boolean final_static_link;
8450 bfd_size_type sec_size;
8451
8452 relax_info = get_xtensa_relax_info (sec);
8453 if (!relax_info)
8454 return FALSE;
8455
8456 sec_size = bfd_get_section_limit (abfd, sec);
8457
8458 final_static_link =
8459 (!link_info->relocatable
8460 && !elf_hash_table (link_info)->dynamic_sections_created);
8461
8462 /* The placement algorithm first checks to see if the literal is
8463 already in the value map. If so and the value map is reachable
8464 from all uses, then the literal is moved to that location. If
8465 not, then we identify the last location where a fresh literal was
8466 placed. If the literal can be safely moved there, then we do so.
8467 If not, then we assume that the literal is not to move and leave
8468 the literal where it is, marking it as the last literal
8469 location. */
8470
8471 /* Find the literal value. */
8472 value = 0;
8473 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8474 if (!irel)
8475 {
8476 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8477 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8478 }
8479 init_literal_value (&val, &r_rel, value, is_abs_literal);
8480
8481 /* Check if we've seen another literal with the same value that
8482 is in the same output section. */
8483 val_map = value_map_get_cached_value (values, &val, final_static_link);
8484
8485 if (val_map
8486 && (r_reloc_get_section (&val_map->loc)->output_section
8487 == sec->output_section)
8488 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8489 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8490 {
8491 /* No change to last_loc_is_prev. */
8492 literal_placed = TRUE;
8493 }
8494
8495 /* For relocatable links, do not try to move literals. To do it
8496 correctly might increase the number of relocations in an input
8497 section making the default relocatable linking fail. */
8498 if (!link_info->relocatable && !literal_placed
8499 && values->has_last_loc && !(*last_loc_is_prev_p))
8500 {
8501 asection *target_sec = r_reloc_get_section (&values->last_loc);
8502 if (target_sec && target_sec->output_section == sec->output_section)
8503 {
8504 /* Increment the virtual offset. */
8505 r_reloc try_loc = values->last_loc;
8506 try_loc.virtual_offset += 4;
8507
8508 /* There is a last loc that was in the same output section. */
8509 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8510 && move_shared_literal (sec, link_info, rel,
8511 prop_table, ptblsize,
8512 &try_loc, &val, target_sec_cache))
e0001a05 8513 {
43cd72b9
BW
8514 values->last_loc.virtual_offset += 4;
8515 literal_placed = TRUE;
8516 if (!val_map)
8517 val_map = add_value_map (values, &val, &try_loc,
8518 final_static_link);
8519 else
8520 val_map->loc = try_loc;
e0001a05
NC
8521 }
8522 }
43cd72b9
BW
8523 }
8524
8525 if (!literal_placed)
8526 {
8527 /* Nothing worked, leave the literal alone but update the last loc. */
8528 values->has_last_loc = TRUE;
8529 values->last_loc = rel->r_rel;
8530 if (!val_map)
8531 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 8532 else
43cd72b9
BW
8533 val_map->loc = rel->r_rel;
8534 *last_loc_is_prev_p = TRUE;
e0001a05
NC
8535 }
8536
43cd72b9 8537 return TRUE;
e0001a05
NC
8538}
8539
8540
8541/* Check if the original relocations (presumably on L32R instructions)
8542 identified by reloc[0..N] can be changed to reference the literal
8543 identified by r_rel. If r_rel is out of range for any of the
8544 original relocations, then we don't want to coalesce the original
8545 literal with the one at r_rel. We only check reloc[0..N], where the
8546 offsets are all the same as for reloc[0] (i.e., they're all
8547 referencing the same literal) and where N is also bounded by the
8548 number of remaining entries in the "reloc" array. The "reloc" array
8549 is sorted by target offset so we know all the entries for the same
8550 literal will be contiguous. */
8551
8552static bfd_boolean
7fa3d080
BW
8553relocations_reach (source_reloc *reloc,
8554 int remaining_relocs,
8555 const r_reloc *r_rel)
e0001a05
NC
8556{
8557 bfd_vma from_offset, source_address, dest_address;
8558 asection *sec;
8559 int i;
8560
8561 if (!r_reloc_is_defined (r_rel))
8562 return FALSE;
8563
8564 sec = r_reloc_get_section (r_rel);
8565 from_offset = reloc[0].r_rel.target_offset;
8566
8567 for (i = 0; i < remaining_relocs; i++)
8568 {
8569 if (reloc[i].r_rel.target_offset != from_offset)
8570 break;
8571
8572 /* Ignore relocations that have been removed. */
8573 if (reloc[i].is_null)
8574 continue;
8575
8576 /* The original and new output section for these must be the same
8577 in order to coalesce. */
8578 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8579 != sec->output_section)
8580 return FALSE;
8581
d638e0ac
BW
8582 /* Absolute literals in the same output section can always be
8583 combined. */
8584 if (reloc[i].is_abs_literal)
8585 continue;
8586
43cd72b9
BW
8587 /* A literal with no PC-relative relocations can be moved anywhere. */
8588 if (reloc[i].opnd != -1)
e0001a05
NC
8589 {
8590 /* Otherwise, check to see that it fits. */
8591 source_address = (reloc[i].source_sec->output_section->vma
8592 + reloc[i].source_sec->output_offset
8593 + reloc[i].r_rel.rela.r_offset);
8594 dest_address = (sec->output_section->vma
8595 + sec->output_offset
8596 + r_rel->target_offset);
8597
43cd72b9
BW
8598 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8599 source_address, dest_address))
e0001a05
NC
8600 return FALSE;
8601 }
8602 }
8603
8604 return TRUE;
8605}
8606
8607
43cd72b9
BW
8608/* Move a literal to another literal location because it is
8609 the same as the other literal value. */
e0001a05 8610
43cd72b9 8611static bfd_boolean
7fa3d080
BW
8612coalesce_shared_literal (asection *sec,
8613 source_reloc *rel,
8614 property_table_entry *prop_table,
8615 int ptblsize,
8616 value_map *val_map)
e0001a05 8617{
43cd72b9
BW
8618 property_table_entry *entry;
8619 text_action *fa;
8620 property_table_entry *the_add_entry;
8621 int removed_diff;
8622 xtensa_relax_info *relax_info;
8623
8624 relax_info = get_xtensa_relax_info (sec);
8625 if (!relax_info)
8626 return FALSE;
8627
8628 entry = elf_xtensa_find_property_entry
8629 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 8630 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
8631 return TRUE;
8632
8633 /* Mark that the literal will be coalesced. */
8634 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8635
8636 text_action_add (&relax_info->action_list,
8637 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8638
8639 /* If the section is 4-byte aligned, do not add fill. */
8640 if (sec->alignment_power > 2)
e0001a05 8641 {
43cd72b9
BW
8642 int fill_extra_space;
8643 bfd_vma entry_sec_offset;
8644
8645 if (entry)
8646 entry_sec_offset = entry->address - sec->vma + entry->size;
8647 else
8648 entry_sec_offset = rel->r_rel.target_offset + 4;
8649
8650 /* If the literal range is at the end of the section,
8651 do not add fill. */
8652 fill_extra_space = 0;
8653 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8654 entry_sec_offset);
8655 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8656 fill_extra_space = the_add_entry->size;
8657
8658 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8659 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8660 -4, fill_extra_space);
8661 if (fa)
8662 adjust_fill_action (fa, removed_diff);
8663 else
8664 text_action_add (&relax_info->action_list,
8665 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 8666 }
43cd72b9
BW
8667
8668 return TRUE;
8669}
8670
8671
8672/* Move a literal to another location. This may actually increase the
8673 total amount of space used because of alignments so we need to do
8674 this carefully. Also, it may make a branch go out of range. */
8675
8676static bfd_boolean
7fa3d080
BW
8677move_shared_literal (asection *sec,
8678 struct bfd_link_info *link_info,
8679 source_reloc *rel,
8680 property_table_entry *prop_table,
8681 int ptblsize,
8682 const r_reloc *target_loc,
8683 const literal_value *lit_value,
8684 section_cache_t *target_sec_cache)
43cd72b9
BW
8685{
8686 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8687 text_action *fa, *target_fa;
8688 int removed_diff;
8689 xtensa_relax_info *relax_info, *target_relax_info;
8690 asection *target_sec;
8691 ebb_t *ebb;
8692 ebb_constraint ebb_table;
8693 bfd_boolean relocs_fit;
8694
8695 /* If this routine always returns FALSE, the literals that cannot be
8696 coalesced will not be moved. */
8697 if (elf32xtensa_no_literal_movement)
8698 return FALSE;
8699
8700 relax_info = get_xtensa_relax_info (sec);
8701 if (!relax_info)
8702 return FALSE;
8703
8704 target_sec = r_reloc_get_section (target_loc);
8705 target_relax_info = get_xtensa_relax_info (target_sec);
8706
8707 /* Literals to undefined sections may not be moved because they
8708 must report an error. */
8709 if (bfd_is_und_section (target_sec))
8710 return FALSE;
8711
8712 src_entry = elf_xtensa_find_property_entry
8713 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8714
8715 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8716 return FALSE;
8717
8718 target_entry = elf_xtensa_find_property_entry
8719 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8720 target_sec->vma + target_loc->target_offset);
8721
8722 if (!target_entry)
8723 return FALSE;
8724
8725 /* Make sure that we have not broken any branches. */
8726 relocs_fit = FALSE;
8727
8728 init_ebb_constraint (&ebb_table);
8729 ebb = &ebb_table.ebb;
8730 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8731 target_sec_cache->content_length,
8732 target_sec_cache->ptbl, target_sec_cache->pte_count,
8733 target_sec_cache->relocs, target_sec_cache->reloc_count);
8734
8735 /* Propose to add 4 bytes + worst-case alignment size increase to
8736 destination. */
8737 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8738 ta_fill, target_loc->target_offset,
8739 -4 - (1 << target_sec->alignment_power), TRUE);
8740
8741 /* Check all of the PC-relative relocations to make sure they still fit. */
8742 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8743 target_sec_cache->contents,
8744 target_sec_cache->relocs,
cb337148 8745 &ebb_table, NULL);
43cd72b9
BW
8746
8747 if (!relocs_fit)
8748 return FALSE;
8749
8750 text_action_add_literal (&target_relax_info->action_list,
8751 ta_add_literal, target_loc, lit_value, -4);
8752
8753 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8754 {
8755 /* May need to add or remove some fill to maintain alignment. */
8756 int fill_extra_space;
8757 bfd_vma entry_sec_offset;
8758
8759 entry_sec_offset =
8760 target_entry->address - target_sec->vma + target_entry->size;
8761
8762 /* If the literal range is at the end of the section,
8763 do not add fill. */
8764 fill_extra_space = 0;
8765 the_add_entry =
8766 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8767 target_sec_cache->pte_count,
8768 entry_sec_offset);
8769 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8770 fill_extra_space = the_add_entry->size;
8771
8772 target_fa = find_fill_action (&target_relax_info->action_list,
8773 target_sec, entry_sec_offset);
8774 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8775 entry_sec_offset, 4,
8776 fill_extra_space);
8777 if (target_fa)
8778 adjust_fill_action (target_fa, removed_diff);
8779 else
8780 text_action_add (&target_relax_info->action_list,
8781 ta_fill, target_sec, entry_sec_offset, removed_diff);
8782 }
8783
8784 /* Mark that the literal will be moved to the new location. */
8785 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8786
8787 /* Remove the literal. */
8788 text_action_add (&relax_info->action_list,
8789 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8790
8791 /* If the section is 4-byte aligned, do not add fill. */
8792 if (sec->alignment_power > 2 && target_entry != src_entry)
8793 {
8794 int fill_extra_space;
8795 bfd_vma entry_sec_offset;
8796
8797 if (src_entry)
8798 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8799 else
8800 entry_sec_offset = rel->r_rel.target_offset+4;
8801
8802 /* If the literal range is at the end of the section,
8803 do not add fill. */
8804 fill_extra_space = 0;
8805 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8806 entry_sec_offset);
8807 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8808 fill_extra_space = the_add_entry->size;
8809
8810 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8811 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8812 -4, fill_extra_space);
8813 if (fa)
8814 adjust_fill_action (fa, removed_diff);
8815 else
8816 text_action_add (&relax_info->action_list,
8817 ta_fill, sec, entry_sec_offset, removed_diff);
8818 }
8819
8820 return TRUE;
e0001a05
NC
8821}
8822
8823\f
8824/* Second relaxation pass. */
8825
8826/* Modify all of the relocations to point to the right spot, and if this
8827 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8828 section size. */
e0001a05 8829
43cd72b9 8830bfd_boolean
7fa3d080 8831relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8832{
8833 Elf_Internal_Rela *internal_relocs;
8834 xtensa_relax_info *relax_info;
8835 bfd_byte *contents;
8836 bfd_boolean ok = TRUE;
8837 unsigned i;
43cd72b9
BW
8838 bfd_boolean rv = FALSE;
8839 bfd_boolean virtual_action;
8840 bfd_size_type sec_size;
e0001a05 8841
43cd72b9 8842 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8843 relax_info = get_xtensa_relax_info (sec);
8844 BFD_ASSERT (relax_info);
8845
43cd72b9
BW
8846 /* First translate any of the fixes that have been added already. */
8847 translate_section_fixes (sec);
8848
e0001a05
NC
8849 /* Handle property sections (e.g., literal tables) specially. */
8850 if (xtensa_is_property_section (sec))
8851 {
8852 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8853 return relax_property_section (abfd, sec, link_info);
8854 }
8855
43cd72b9
BW
8856 internal_relocs = retrieve_internal_relocs (abfd, sec,
8857 link_info->keep_memory);
7aa09196
SA
8858 if (!internal_relocs && !relax_info->action_list.head)
8859 return TRUE;
8860
43cd72b9
BW
8861 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8862 if (contents == NULL && sec_size != 0)
8863 {
8864 ok = FALSE;
8865 goto error_return;
8866 }
8867
8868 if (internal_relocs)
8869 {
8870 for (i = 0; i < sec->reloc_count; i++)
8871 {
8872 Elf_Internal_Rela *irel;
8873 xtensa_relax_info *target_relax_info;
8874 bfd_vma source_offset, old_source_offset;
8875 r_reloc r_rel;
8876 unsigned r_type;
8877 asection *target_sec;
8878
8879 /* Locally change the source address.
8880 Translate the target to the new target address.
8881 If it points to this section and has been removed,
8882 NULLify it.
8883 Write it back. */
8884
8885 irel = &internal_relocs[i];
8886 source_offset = irel->r_offset;
8887 old_source_offset = source_offset;
8888
8889 r_type = ELF32_R_TYPE (irel->r_info);
8890 r_reloc_init (&r_rel, abfd, irel, contents,
8891 bfd_get_section_limit (abfd, sec));
8892
8893 /* If this section could have changed then we may need to
8894 change the relocation's offset. */
8895
8896 if (relax_info->is_relaxable_literal_section
8897 || relax_info->is_relaxable_asm_section)
8898 {
9b7f5d20
BW
8899 pin_internal_relocs (sec, internal_relocs);
8900
43cd72b9
BW
8901 if (r_type != R_XTENSA_NONE
8902 && find_removed_literal (&relax_info->removed_list,
8903 irel->r_offset))
8904 {
8905 /* Remove this relocation. */
8906 if (elf_hash_table (link_info)->dynamic_sections_created)
8907 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8908 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8909 irel->r_offset = offset_with_removed_text
8910 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8911 continue;
8912 }
8913
8914 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8915 {
8916 text_action *action =
8917 find_insn_action (&relax_info->action_list,
8918 irel->r_offset);
8919 if (action && (action->action == ta_convert_longcall
8920 || action->action == ta_remove_longcall))
8921 {
8922 bfd_reloc_status_type retval;
8923 char *error_message = NULL;
8924
8925 retval = contract_asm_expansion (contents, sec_size,
8926 irel, &error_message);
8927 if (retval != bfd_reloc_ok)
8928 {
8929 (*link_info->callbacks->reloc_dangerous)
8930 (link_info, error_message, abfd, sec,
8931 irel->r_offset);
8932 goto error_return;
8933 }
8934 /* Update the action so that the code that moves
8935 the contents will do the right thing. */
8936 if (action->action == ta_remove_longcall)
8937 action->action = ta_remove_insn;
8938 else
8939 action->action = ta_none;
8940 /* Refresh the info in the r_rel. */
8941 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8942 r_type = ELF32_R_TYPE (irel->r_info);
8943 }
8944 }
8945
8946 source_offset = offset_with_removed_text
8947 (&relax_info->action_list, irel->r_offset);
8948 irel->r_offset = source_offset;
8949 }
8950
8951 /* If the target section could have changed then
8952 we may need to change the relocation's target offset. */
8953
8954 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8955
ae326da8
BW
8956 /* For a reference to a discarded section from a DWARF section,
8957 i.e., where action_discarded is PRETEND, the symbol will
8958 eventually be modified to refer to the kept section (at least if
8959 the kept and discarded sections are the same size). Anticipate
8960 that here and adjust things accordingly. */
8961 if (! elf_xtensa_ignore_discarded_relocs (sec)
8962 && elf_xtensa_action_discarded (sec) == PRETEND
8963 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8964 && target_sec != NULL
8965 && elf_discarded_section (target_sec))
8966 {
8967 /* It would be natural to call _bfd_elf_check_kept_section
8968 here, but it's not exported from elflink.c. It's also a
8969 fairly expensive check. Adjusting the relocations to the
8970 discarded section is fairly harmless; it will only adjust
8971 some addends and difference values. If it turns out that
8972 _bfd_elf_check_kept_section fails later, it won't matter,
8973 so just compare the section names to find the right group
8974 member. */
8975 asection *kept = target_sec->kept_section;
8976 if (kept != NULL)
8977 {
8978 if ((kept->flags & SEC_GROUP) != 0)
8979 {
8980 asection *first = elf_next_in_group (kept);
8981 asection *s = first;
8982
8983 kept = NULL;
8984 while (s != NULL)
8985 {
8986 if (strcmp (s->name, target_sec->name) == 0)
8987 {
8988 kept = s;
8989 break;
8990 }
8991 s = elf_next_in_group (s);
8992 if (s == first)
8993 break;
8994 }
8995 }
8996 }
8997 if (kept != NULL
8998 && ((target_sec->rawsize != 0
8999 ? target_sec->rawsize : target_sec->size)
9000 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9001 target_sec = kept;
9002 }
9003
9004 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9005 if (target_relax_info
9006 && (target_relax_info->is_relaxable_literal_section
9007 || target_relax_info->is_relaxable_asm_section))
9008 {
9009 r_reloc new_reloc;
9b7f5d20 9010 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9011
9012 if (r_type == R_XTENSA_DIFF8
9013 || r_type == R_XTENSA_DIFF16
9014 || r_type == R_XTENSA_DIFF32)
9015 {
9016 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
9017
9018 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9019 {
9020 (*link_info->callbacks->reloc_dangerous)
9021 (link_info, _("invalid relocation address"),
9022 abfd, sec, old_source_offset);
9023 goto error_return;
9024 }
9025
9026 switch (r_type)
9027 {
9028 case R_XTENSA_DIFF8:
9029 diff_value =
9030 bfd_get_8 (abfd, &contents[old_source_offset]);
9031 break;
9032 case R_XTENSA_DIFF16:
9033 diff_value =
9034 bfd_get_16 (abfd, &contents[old_source_offset]);
9035 break;
9036 case R_XTENSA_DIFF32:
9037 diff_value =
9038 bfd_get_32 (abfd, &contents[old_source_offset]);
9039 break;
9040 }
9041
9042 new_end_offset = offset_with_removed_text
9043 (&target_relax_info->action_list,
9044 r_rel.target_offset + diff_value);
9045 diff_value = new_end_offset - new_reloc.target_offset;
9046
9047 switch (r_type)
9048 {
9049 case R_XTENSA_DIFF8:
9050 diff_mask = 0xff;
9051 bfd_put_8 (abfd, diff_value,
9052 &contents[old_source_offset]);
9053 break;
9054 case R_XTENSA_DIFF16:
9055 diff_mask = 0xffff;
9056 bfd_put_16 (abfd, diff_value,
9057 &contents[old_source_offset]);
9058 break;
9059 case R_XTENSA_DIFF32:
9060 diff_mask = 0xffffffff;
9061 bfd_put_32 (abfd, diff_value,
9062 &contents[old_source_offset]);
9063 break;
9064 }
9065
9066 /* Check for overflow. */
9067 if ((diff_value & ~diff_mask) != 0)
9068 {
9069 (*link_info->callbacks->reloc_dangerous)
9070 (link_info, _("overflow after relaxation"),
9071 abfd, sec, old_source_offset);
9072 goto error_return;
9073 }
9074
9075 pin_contents (sec, contents);
9076 }
dc96b90a
BW
9077
9078 /* If the relocation still references a section in the same
9079 input file, modify the relocation directly instead of
9080 adding a "fix" record. */
9081 if (target_sec->owner == abfd)
9082 {
9083 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9084 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9085 irel->r_addend = new_reloc.rela.r_addend;
9086 pin_internal_relocs (sec, internal_relocs);
9087 }
9b7f5d20
BW
9088 else
9089 {
dc96b90a
BW
9090 bfd_vma addend_displacement;
9091 reloc_bfd_fix *fix;
9092
9093 addend_displacement =
9094 new_reloc.target_offset + new_reloc.virtual_offset;
9095 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9096 target_sec,
9097 addend_displacement, TRUE);
9098 add_fix (sec, fix);
9b7f5d20 9099 }
43cd72b9 9100 }
43cd72b9
BW
9101 }
9102 }
9103
9104 if ((relax_info->is_relaxable_literal_section
9105 || relax_info->is_relaxable_asm_section)
9106 && relax_info->action_list.head)
9107 {
9108 /* Walk through the planned actions and build up a table
9109 of move, copy and fill records. Use the move, copy and
9110 fill records to perform the actions once. */
9111
43cd72b9
BW
9112 int removed = 0;
9113 bfd_size_type final_size, copy_size, orig_insn_size;
9114 bfd_byte *scratch = NULL;
9115 bfd_byte *dup_contents = NULL;
a3ef2d63 9116 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9117 bfd_vma orig_dot = 0;
9118 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9119 orig dot in physical memory. */
9120 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9121 bfd_vma dup_dot = 0;
9122
9123 text_action *action = relax_info->action_list.head;
9124
9125 final_size = sec->size;
9126 for (action = relax_info->action_list.head; action;
9127 action = action->next)
9128 {
9129 final_size -= action->removed_bytes;
9130 }
9131
9132 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9133 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9134
9135 /* The dot is the current fill location. */
9136#if DEBUG
9137 print_action_list (stderr, &relax_info->action_list);
9138#endif
9139
9140 for (action = relax_info->action_list.head; action;
9141 action = action->next)
9142 {
9143 virtual_action = FALSE;
9144 if (action->offset > orig_dot)
9145 {
9146 orig_dot += orig_dot_copied;
9147 orig_dot_copied = 0;
9148 orig_dot_vo = 0;
9149 /* Out of the virtual world. */
9150 }
9151
9152 if (action->offset > orig_dot)
9153 {
9154 copy_size = action->offset - orig_dot;
9155 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9156 orig_dot += copy_size;
9157 dup_dot += copy_size;
9158 BFD_ASSERT (action->offset == orig_dot);
9159 }
9160 else if (action->offset < orig_dot)
9161 {
9162 if (action->action == ta_fill
9163 && action->offset - action->removed_bytes == orig_dot)
9164 {
9165 /* This is OK because the fill only effects the dup_dot. */
9166 }
9167 else if (action->action == ta_add_literal)
9168 {
9169 /* TBD. Might need to handle this. */
9170 }
9171 }
9172 if (action->offset == orig_dot)
9173 {
9174 if (action->virtual_offset > orig_dot_vo)
9175 {
9176 if (orig_dot_vo == 0)
9177 {
9178 /* Need to copy virtual_offset bytes. Probably four. */
9179 copy_size = action->virtual_offset - orig_dot_vo;
9180 memmove (&dup_contents[dup_dot],
9181 &contents[orig_dot], copy_size);
9182 orig_dot_copied = copy_size;
9183 dup_dot += copy_size;
9184 }
9185 virtual_action = TRUE;
9186 }
9187 else
9188 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9189 }
9190 switch (action->action)
9191 {
9192 case ta_remove_literal:
9193 case ta_remove_insn:
9194 BFD_ASSERT (action->removed_bytes >= 0);
9195 orig_dot += action->removed_bytes;
9196 break;
9197
9198 case ta_narrow_insn:
9199 orig_insn_size = 3;
9200 copy_size = 2;
9201 memmove (scratch, &contents[orig_dot], orig_insn_size);
9202 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9203 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9204 BFD_ASSERT (rv);
9205 memmove (&dup_contents[dup_dot], scratch, copy_size);
9206 orig_dot += orig_insn_size;
9207 dup_dot += copy_size;
9208 break;
9209
9210 case ta_fill:
9211 if (action->removed_bytes >= 0)
9212 orig_dot += action->removed_bytes;
9213 else
9214 {
9215 /* Already zeroed in dup_contents. Just bump the
9216 counters. */
9217 dup_dot += (-action->removed_bytes);
9218 }
9219 break;
9220
9221 case ta_none:
9222 BFD_ASSERT (action->removed_bytes == 0);
9223 break;
9224
9225 case ta_convert_longcall:
9226 case ta_remove_longcall:
9227 /* These will be removed or converted before we get here. */
9228 BFD_ASSERT (0);
9229 break;
9230
9231 case ta_widen_insn:
9232 orig_insn_size = 2;
9233 copy_size = 3;
9234 memmove (scratch, &contents[orig_dot], orig_insn_size);
9235 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9236 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9237 BFD_ASSERT (rv);
9238 memmove (&dup_contents[dup_dot], scratch, copy_size);
9239 orig_dot += orig_insn_size;
9240 dup_dot += copy_size;
9241 break;
9242
9243 case ta_add_literal:
9244 orig_insn_size = 0;
9245 copy_size = 4;
9246 BFD_ASSERT (action->removed_bytes == -4);
9247 /* TBD -- place the literal value here and insert
9248 into the table. */
9249 memset (&dup_contents[dup_dot], 0, 4);
9250 pin_internal_relocs (sec, internal_relocs);
9251 pin_contents (sec, contents);
9252
9253 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9254 relax_info, &internal_relocs, &action->value))
9255 goto error_return;
9256
9257 if (virtual_action)
9258 orig_dot_vo += copy_size;
9259
9260 orig_dot += orig_insn_size;
9261 dup_dot += copy_size;
9262 break;
9263
9264 default:
9265 /* Not implemented yet. */
9266 BFD_ASSERT (0);
9267 break;
9268 }
9269
43cd72b9
BW
9270 removed += action->removed_bytes;
9271 BFD_ASSERT (dup_dot <= final_size);
9272 BFD_ASSERT (orig_dot <= orig_size);
9273 }
9274
9275 orig_dot += orig_dot_copied;
9276 orig_dot_copied = 0;
9277
9278 if (orig_dot != orig_size)
9279 {
9280 copy_size = orig_size - orig_dot;
9281 BFD_ASSERT (orig_size > orig_dot);
9282 BFD_ASSERT (dup_dot + copy_size == final_size);
9283 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9284 orig_dot += copy_size;
9285 dup_dot += copy_size;
9286 }
9287 BFD_ASSERT (orig_size == orig_dot);
9288 BFD_ASSERT (final_size == dup_dot);
9289
9290 /* Move the dup_contents back. */
9291 if (final_size > orig_size)
9292 {
9293 /* Contents need to be reallocated. Swap the dup_contents into
9294 contents. */
9295 sec->contents = dup_contents;
9296 free (contents);
9297 contents = dup_contents;
9298 pin_contents (sec, contents);
9299 }
9300 else
9301 {
9302 BFD_ASSERT (final_size <= orig_size);
9303 memset (contents, 0, orig_size);
9304 memcpy (contents, dup_contents, final_size);
9305 free (dup_contents);
9306 }
9307 free (scratch);
9308 pin_contents (sec, contents);
9309
a3ef2d63
BW
9310 if (sec->rawsize == 0)
9311 sec->rawsize = sec->size;
43cd72b9
BW
9312 sec->size = final_size;
9313 }
9314
9315 error_return:
9316 release_internal_relocs (sec, internal_relocs);
9317 release_contents (sec, contents);
9318 return ok;
9319}
9320
9321
9322static bfd_boolean
7fa3d080 9323translate_section_fixes (asection *sec)
43cd72b9
BW
9324{
9325 xtensa_relax_info *relax_info;
9326 reloc_bfd_fix *r;
9327
9328 relax_info = get_xtensa_relax_info (sec);
9329 if (!relax_info)
9330 return TRUE;
9331
9332 for (r = relax_info->fix_list; r != NULL; r = r->next)
9333 if (!translate_reloc_bfd_fix (r))
9334 return FALSE;
e0001a05 9335
43cd72b9
BW
9336 return TRUE;
9337}
e0001a05 9338
e0001a05 9339
43cd72b9
BW
9340/* Translate a fix given the mapping in the relax info for the target
9341 section. If it has already been translated, no work is required. */
e0001a05 9342
43cd72b9 9343static bfd_boolean
7fa3d080 9344translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9345{
9346 reloc_bfd_fix new_fix;
9347 asection *sec;
9348 xtensa_relax_info *relax_info;
9349 removed_literal *removed;
9350 bfd_vma new_offset, target_offset;
e0001a05 9351
43cd72b9
BW
9352 if (fix->translated)
9353 return TRUE;
e0001a05 9354
43cd72b9
BW
9355 sec = fix->target_sec;
9356 target_offset = fix->target_offset;
e0001a05 9357
43cd72b9
BW
9358 relax_info = get_xtensa_relax_info (sec);
9359 if (!relax_info)
9360 {
9361 fix->translated = TRUE;
9362 return TRUE;
9363 }
e0001a05 9364
43cd72b9 9365 new_fix = *fix;
e0001a05 9366
43cd72b9
BW
9367 /* The fix does not need to be translated if the section cannot change. */
9368 if (!relax_info->is_relaxable_literal_section
9369 && !relax_info->is_relaxable_asm_section)
9370 {
9371 fix->translated = TRUE;
9372 return TRUE;
9373 }
e0001a05 9374
43cd72b9
BW
9375 /* If the literal has been moved and this relocation was on an
9376 opcode, then the relocation should move to the new literal
9377 location. Otherwise, the relocation should move within the
9378 section. */
9379
9380 removed = FALSE;
9381 if (is_operand_relocation (fix->src_type))
9382 {
9383 /* Check if the original relocation is against a literal being
9384 removed. */
9385 removed = find_removed_literal (&relax_info->removed_list,
9386 target_offset);
e0001a05
NC
9387 }
9388
43cd72b9 9389 if (removed)
e0001a05 9390 {
43cd72b9 9391 asection *new_sec;
e0001a05 9392
43cd72b9
BW
9393 /* The fact that there is still a relocation to this literal indicates
9394 that the literal is being coalesced, not simply removed. */
9395 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9396
43cd72b9
BW
9397 /* This was moved to some other address (possibly another section). */
9398 new_sec = r_reloc_get_section (&removed->to);
9399 if (new_sec != sec)
e0001a05 9400 {
43cd72b9
BW
9401 sec = new_sec;
9402 relax_info = get_xtensa_relax_info (sec);
9403 if (!relax_info ||
9404 (!relax_info->is_relaxable_literal_section
9405 && !relax_info->is_relaxable_asm_section))
e0001a05 9406 {
43cd72b9
BW
9407 target_offset = removed->to.target_offset;
9408 new_fix.target_sec = new_sec;
9409 new_fix.target_offset = target_offset;
9410 new_fix.translated = TRUE;
9411 *fix = new_fix;
9412 return TRUE;
e0001a05 9413 }
e0001a05 9414 }
43cd72b9
BW
9415 target_offset = removed->to.target_offset;
9416 new_fix.target_sec = new_sec;
e0001a05 9417 }
43cd72b9
BW
9418
9419 /* The target address may have been moved within its section. */
9420 new_offset = offset_with_removed_text (&relax_info->action_list,
9421 target_offset);
9422
9423 new_fix.target_offset = new_offset;
9424 new_fix.target_offset = new_offset;
9425 new_fix.translated = TRUE;
9426 *fix = new_fix;
9427 return TRUE;
e0001a05
NC
9428}
9429
9430
9431/* Fix up a relocation to take account of removed literals. */
9432
9b7f5d20
BW
9433static asection *
9434translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9435{
e0001a05
NC
9436 xtensa_relax_info *relax_info;
9437 removed_literal *removed;
9b7f5d20
BW
9438 bfd_vma target_offset, base_offset;
9439 text_action *act;
e0001a05
NC
9440
9441 *new_rel = *orig_rel;
9442
9443 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9444 return sec ;
e0001a05
NC
9445
9446 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9447 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9448 || relax_info->is_relaxable_asm_section));
e0001a05 9449
43cd72b9
BW
9450 target_offset = orig_rel->target_offset;
9451
9452 removed = FALSE;
9453 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9454 {
9455 /* Check if the original relocation is against a literal being
9456 removed. */
9457 removed = find_removed_literal (&relax_info->removed_list,
9458 target_offset);
9459 }
9460 if (removed && removed->to.abfd)
e0001a05
NC
9461 {
9462 asection *new_sec;
9463
9464 /* The fact that there is still a relocation to this literal indicates
9465 that the literal is being coalesced, not simply removed. */
9466 BFD_ASSERT (removed->to.abfd != NULL);
9467
43cd72b9
BW
9468 /* This was moved to some other address
9469 (possibly in another section). */
e0001a05
NC
9470 *new_rel = removed->to;
9471 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9472 if (new_sec != sec)
e0001a05
NC
9473 {
9474 sec = new_sec;
9475 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9476 if (!relax_info
9477 || (!relax_info->is_relaxable_literal_section
9478 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9479 return sec;
e0001a05 9480 }
43cd72b9 9481 target_offset = new_rel->target_offset;
e0001a05
NC
9482 }
9483
9b7f5d20
BW
9484 /* Find the base offset of the reloc symbol, excluding any addend from the
9485 reloc or from the section contents (for a partial_inplace reloc). Then
9486 find the adjusted values of the offsets due to relaxation. The base
9487 offset is needed to determine the change to the reloc's addend; the reloc
9488 addend should not be adjusted due to relaxations located before the base
9489 offset. */
9490
9491 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9492 act = relax_info->action_list.head;
9493 if (base_offset <= target_offset)
9494 {
9495 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9496 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9497 new_rel->target_offset = target_offset - base_removed - addend_removed;
9498 new_rel->rela.r_addend -= addend_removed;
9499 }
9500 else
9501 {
9502 /* Handle a negative addend. The base offset comes first. */
9503 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9504 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9505 new_rel->target_offset = target_offset - tgt_removed;
9506 new_rel->rela.r_addend += addend_removed;
9507 }
e0001a05 9508
9b7f5d20 9509 return sec;
e0001a05
NC
9510}
9511
9512
9513/* For dynamic links, there may be a dynamic relocation for each
9514 literal. The number of dynamic relocations must be computed in
9515 size_dynamic_sections, which occurs before relaxation. When a
9516 literal is removed, this function checks if there is a corresponding
9517 dynamic relocation and shrinks the size of the appropriate dynamic
9518 relocation section accordingly. At this point, the contents of the
9519 dynamic relocation sections have not yet been filled in, so there's
9520 nothing else that needs to be done. */
9521
9522static void
7fa3d080
BW
9523shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9524 bfd *abfd,
9525 asection *input_section,
9526 Elf_Internal_Rela *rel)
e0001a05 9527{
f0e6fdb2 9528 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
9529 Elf_Internal_Shdr *symtab_hdr;
9530 struct elf_link_hash_entry **sym_hashes;
9531 unsigned long r_symndx;
9532 int r_type;
9533 struct elf_link_hash_entry *h;
9534 bfd_boolean dynamic_symbol;
9535
f0e6fdb2 9536 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
9537 if (htab == NULL)
9538 return;
9539
e0001a05
NC
9540 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9541 sym_hashes = elf_sym_hashes (abfd);
9542
9543 r_type = ELF32_R_TYPE (rel->r_info);
9544 r_symndx = ELF32_R_SYM (rel->r_info);
9545
9546 if (r_symndx < symtab_hdr->sh_info)
9547 h = NULL;
9548 else
9549 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9550
4608f3d9 9551 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
9552
9553 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9554 && (input_section->flags & SEC_ALLOC) != 0
9555 && (dynamic_symbol || info->shared))
9556 {
e0001a05
NC
9557 asection *srel;
9558 bfd_boolean is_plt = FALSE;
9559
e0001a05
NC
9560 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9561 {
f0e6fdb2 9562 srel = htab->srelplt;
e0001a05
NC
9563 is_plt = TRUE;
9564 }
9565 else
f0e6fdb2 9566 srel = htab->srelgot;
e0001a05
NC
9567
9568 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 9569 BFD_ASSERT (srel != NULL);
eea6121a
AM
9570 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9571 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
9572
9573 if (is_plt)
9574 {
9575 asection *splt, *sgotplt, *srelgot;
9576 int reloc_index, chunk;
9577
9578 /* Find the PLT reloc index of the entry being removed. This
9579 is computed from the size of ".rela.plt". It is needed to
9580 figure out which PLT chunk to resize. Usually "last index
9581 = size - 1" since the index starts at zero, but in this
9582 context, the size has just been decremented so there's no
9583 need to subtract one. */
eea6121a 9584 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
9585
9586 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
9587 splt = elf_xtensa_get_plt_section (info, chunk);
9588 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
9589 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9590
9591 /* Check if an entire PLT chunk has just been eliminated. */
9592 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9593 {
9594 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 9595 srelgot = htab->srelgot;
e0001a05
NC
9596 BFD_ASSERT (srelgot != NULL);
9597 srelgot->reloc_count -= 2;
eea6121a
AM
9598 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9599 sgotplt->size -= 8;
e0001a05
NC
9600
9601 /* There should be only one entry left (and it will be
9602 removed below). */
eea6121a
AM
9603 BFD_ASSERT (sgotplt->size == 4);
9604 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
9605 }
9606
eea6121a
AM
9607 BFD_ASSERT (sgotplt->size >= 4);
9608 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 9609
eea6121a
AM
9610 sgotplt->size -= 4;
9611 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
9612 }
9613 }
9614}
9615
9616
43cd72b9
BW
9617/* Take an r_rel and move it to another section. This usually
9618 requires extending the interal_relocation array and pinning it. If
9619 the original r_rel is from the same BFD, we can complete this here.
9620 Otherwise, we add a fix record to let the final link fix the
9621 appropriate address. Contents and internal relocations for the
9622 section must be pinned after calling this routine. */
9623
9624static bfd_boolean
7fa3d080
BW
9625move_literal (bfd *abfd,
9626 struct bfd_link_info *link_info,
9627 asection *sec,
9628 bfd_vma offset,
9629 bfd_byte *contents,
9630 xtensa_relax_info *relax_info,
9631 Elf_Internal_Rela **internal_relocs_p,
9632 const literal_value *lit)
43cd72b9
BW
9633{
9634 Elf_Internal_Rela *new_relocs = NULL;
9635 size_t new_relocs_count = 0;
9636 Elf_Internal_Rela this_rela;
9637 const r_reloc *r_rel;
9638
9639 r_rel = &lit->r_rel;
9640 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9641
9642 if (r_reloc_is_const (r_rel))
9643 bfd_put_32 (abfd, lit->value, contents + offset);
9644 else
9645 {
9646 int r_type;
9647 unsigned i;
43cd72b9
BW
9648 reloc_bfd_fix *fix;
9649 unsigned insert_at;
9650
9651 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
9652
9653 /* This is the difficult case. We have to create a fix up. */
9654 this_rela.r_offset = offset;
9655 this_rela.r_info = ELF32_R_INFO (0, r_type);
9656 this_rela.r_addend =
9657 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9658 bfd_put_32 (abfd, lit->value, contents + offset);
9659
9660 /* Currently, we cannot move relocations during a relocatable link. */
9661 BFD_ASSERT (!link_info->relocatable);
0f5f1638 9662 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
9663 r_reloc_get_section (r_rel),
9664 r_rel->target_offset + r_rel->virtual_offset,
9665 FALSE);
9666 /* We also need to mark that relocations are needed here. */
9667 sec->flags |= SEC_RELOC;
9668
9669 translate_reloc_bfd_fix (fix);
9670 /* This fix has not yet been translated. */
9671 add_fix (sec, fix);
9672
9673 /* Add the relocation. If we have already allocated our own
9674 space for the relocations and we have room for more, then use
9675 it. Otherwise, allocate new space and move the literals. */
9676 insert_at = sec->reloc_count;
9677 for (i = 0; i < sec->reloc_count; ++i)
9678 {
9679 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9680 {
9681 insert_at = i;
9682 break;
9683 }
9684 }
9685
9686 if (*internal_relocs_p != relax_info->allocated_relocs
9687 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9688 {
9689 BFD_ASSERT (relax_info->allocated_relocs == NULL
9690 || sec->reloc_count == relax_info->relocs_count);
9691
9692 if (relax_info->allocated_relocs_count == 0)
9693 new_relocs_count = (sec->reloc_count + 2) * 2;
9694 else
9695 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9696
9697 new_relocs = (Elf_Internal_Rela *)
9698 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9699 if (!new_relocs)
9700 return FALSE;
9701
9702 /* We could handle this more quickly by finding the split point. */
9703 if (insert_at != 0)
9704 memcpy (new_relocs, *internal_relocs_p,
9705 insert_at * sizeof (Elf_Internal_Rela));
9706
9707 new_relocs[insert_at] = this_rela;
9708
9709 if (insert_at != sec->reloc_count)
9710 memcpy (new_relocs + insert_at + 1,
9711 (*internal_relocs_p) + insert_at,
9712 (sec->reloc_count - insert_at)
9713 * sizeof (Elf_Internal_Rela));
9714
9715 if (*internal_relocs_p != relax_info->allocated_relocs)
9716 {
9717 /* The first time we re-allocate, we can only free the
9718 old relocs if they were allocated with bfd_malloc.
9719 This is not true when keep_memory is in effect. */
9720 if (!link_info->keep_memory)
9721 free (*internal_relocs_p);
9722 }
9723 else
9724 free (*internal_relocs_p);
9725 relax_info->allocated_relocs = new_relocs;
9726 relax_info->allocated_relocs_count = new_relocs_count;
9727 elf_section_data (sec)->relocs = new_relocs;
9728 sec->reloc_count++;
9729 relax_info->relocs_count = sec->reloc_count;
9730 *internal_relocs_p = new_relocs;
9731 }
9732 else
9733 {
9734 if (insert_at != sec->reloc_count)
9735 {
9736 unsigned idx;
9737 for (idx = sec->reloc_count; idx > insert_at; idx--)
9738 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9739 }
9740 (*internal_relocs_p)[insert_at] = this_rela;
9741 sec->reloc_count++;
9742 if (relax_info->allocated_relocs)
9743 relax_info->relocs_count = sec->reloc_count;
9744 }
9745 }
9746 return TRUE;
9747}
9748
9749
e0001a05
NC
9750/* This is similar to relax_section except that when a target is moved,
9751 we shift addresses up. We also need to modify the size. This
9752 algorithm does NOT allow for relocations into the middle of the
9753 property sections. */
9754
43cd72b9 9755static bfd_boolean
7fa3d080
BW
9756relax_property_section (bfd *abfd,
9757 asection *sec,
9758 struct bfd_link_info *link_info)
e0001a05
NC
9759{
9760 Elf_Internal_Rela *internal_relocs;
9761 bfd_byte *contents;
1d25768e 9762 unsigned i;
e0001a05 9763 bfd_boolean ok = TRUE;
43cd72b9
BW
9764 bfd_boolean is_full_prop_section;
9765 size_t last_zfill_target_offset = 0;
9766 asection *last_zfill_target_sec = NULL;
9767 bfd_size_type sec_size;
1d25768e 9768 bfd_size_type entry_size;
e0001a05 9769
43cd72b9 9770 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9771 internal_relocs = retrieve_internal_relocs (abfd, sec,
9772 link_info->keep_memory);
9773 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9774 if (contents == NULL && sec_size != 0)
e0001a05
NC
9775 {
9776 ok = FALSE;
9777 goto error_return;
9778 }
9779
1d25768e
BW
9780 is_full_prop_section = xtensa_is_proptable_section (sec);
9781 if (is_full_prop_section)
9782 entry_size = 12;
9783 else
9784 entry_size = 8;
43cd72b9
BW
9785
9786 if (internal_relocs)
e0001a05 9787 {
43cd72b9 9788 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9789 {
9790 Elf_Internal_Rela *irel;
9791 xtensa_relax_info *target_relax_info;
e0001a05
NC
9792 unsigned r_type;
9793 asection *target_sec;
43cd72b9
BW
9794 literal_value val;
9795 bfd_byte *size_p, *flags_p;
e0001a05
NC
9796
9797 /* Locally change the source address.
9798 Translate the target to the new target address.
9799 If it points to this section and has been removed, MOVE IT.
9800 Also, don't forget to modify the associated SIZE at
9801 (offset + 4). */
9802
9803 irel = &internal_relocs[i];
9804 r_type = ELF32_R_TYPE (irel->r_info);
9805 if (r_type == R_XTENSA_NONE)
9806 continue;
9807
43cd72b9
BW
9808 /* Find the literal value. */
9809 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9810 size_p = &contents[irel->r_offset + 4];
9811 flags_p = NULL;
9812 if (is_full_prop_section)
1d25768e
BW
9813 flags_p = &contents[irel->r_offset + 8];
9814 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 9815
43cd72b9 9816 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
9817 target_relax_info = get_xtensa_relax_info (target_sec);
9818
9819 if (target_relax_info
43cd72b9
BW
9820 && (target_relax_info->is_relaxable_literal_section
9821 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9822 {
9823 /* Translate the relocation's destination. */
03669f1c
BW
9824 bfd_vma old_offset = val.r_rel.target_offset;
9825 bfd_vma new_offset;
e0001a05 9826 long old_size, new_size;
03669f1c
BW
9827 text_action *act = target_relax_info->action_list.head;
9828 new_offset = old_offset -
9829 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9830
9831 /* Assert that we are not out of bounds. */
43cd72b9 9832 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9833 new_size = old_size;
43cd72b9
BW
9834
9835 if (old_size == 0)
9836 {
9837 /* Only the first zero-sized unreachable entry is
9838 allowed to expand. In this case the new offset
9839 should be the offset before the fill and the new
9840 size is the expansion size. For other zero-sized
9841 entries the resulting size should be zero with an
9842 offset before or after the fill address depending
9843 on whether the expanding unreachable entry
9844 preceeds it. */
03669f1c
BW
9845 if (last_zfill_target_sec == 0
9846 || last_zfill_target_sec != target_sec
9847 || last_zfill_target_offset != old_offset)
43cd72b9 9848 {
03669f1c
BW
9849 bfd_vma new_end_offset = new_offset;
9850
9851 /* Recompute the new_offset, but this time don't
9852 include any fill inserted by relaxation. */
9853 act = target_relax_info->action_list.head;
9854 new_offset = old_offset -
9855 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9856
9857 /* If it is not unreachable and we have not yet
9858 seen an unreachable at this address, place it
9859 before the fill address. */
03669f1c
BW
9860 if (flags_p && (bfd_get_32 (abfd, flags_p)
9861 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9862 {
03669f1c
BW
9863 new_size = new_end_offset - new_offset;
9864
43cd72b9 9865 last_zfill_target_sec = target_sec;
03669f1c 9866 last_zfill_target_offset = old_offset;
43cd72b9
BW
9867 }
9868 }
9869 }
9870 else
03669f1c
BW
9871 new_size -=
9872 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9873
e0001a05
NC
9874 if (new_size != old_size)
9875 {
9876 bfd_put_32 (abfd, new_size, size_p);
9877 pin_contents (sec, contents);
9878 }
43cd72b9 9879
03669f1c 9880 if (new_offset != old_offset)
e0001a05 9881 {
03669f1c 9882 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9883 irel->r_addend += diff;
9884 pin_internal_relocs (sec, internal_relocs);
9885 }
9886 }
9887 }
9888 }
9889
9890 /* Combine adjacent property table entries. This is also done in
9891 finish_dynamic_sections() but at that point it's too late to
9892 reclaim the space in the output section, so we do this twice. */
9893
43cd72b9 9894 if (internal_relocs && (!link_info->relocatable
1d25768e 9895 || xtensa_is_littable_section (sec)))
e0001a05
NC
9896 {
9897 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9898 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9899 int removed_bytes = 0;
1d25768e 9900 bfd_vma offset;
43cd72b9
BW
9901 flagword predef_flags;
9902
43cd72b9 9903 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9904
1d25768e 9905 /* Walk over memory and relocations at the same time.
e0001a05
NC
9906 This REQUIRES that the internal_relocs be sorted by offset. */
9907 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9908 internal_reloc_compare);
e0001a05
NC
9909
9910 pin_internal_relocs (sec, internal_relocs);
9911 pin_contents (sec, contents);
9912
1d25768e
BW
9913 next_rel = internal_relocs;
9914 rel_end = internal_relocs + sec->reloc_count;
9915
a3ef2d63 9916 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9917
a3ef2d63 9918 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9919 {
1d25768e 9920 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9921 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9922 bfd_boolean remove_this_rel;
43cd72b9 9923 flagword flags;
e0001a05 9924
1d25768e
BW
9925 /* Find the first relocation for the entry at the current offset.
9926 Adjust the offsets of any extra relocations for the previous
9927 entry. */
9928 offset_rel = NULL;
9929 if (next_rel)
9930 {
9931 for (irel = next_rel; irel < rel_end; irel++)
9932 {
9933 if ((irel->r_offset == offset
9934 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9935 || irel->r_offset > offset)
9936 {
9937 offset_rel = irel;
9938 break;
9939 }
9940 irel->r_offset -= removed_bytes;
1d25768e
BW
9941 }
9942 }
e0001a05 9943
1d25768e
BW
9944 /* Find the next relocation (if there are any left). */
9945 extra_rel = NULL;
9946 if (offset_rel)
e0001a05 9947 {
1d25768e 9948 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9949 {
1d25768e
BW
9950 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9951 {
9952 extra_rel = irel;
9953 break;
9954 }
e0001a05 9955 }
e0001a05
NC
9956 }
9957
1d25768e
BW
9958 /* Check if there are relocations on the current entry. There
9959 should usually be a relocation on the offset field. If there
9960 are relocations on the size or flags, then we can't optimize
9961 this entry. Also, find the next relocation to examine on the
9962 next iteration. */
9963 if (offset_rel)
e0001a05 9964 {
1d25768e 9965 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9966 {
1d25768e
BW
9967 next_rel = offset_rel;
9968 /* There are no relocations on the current entry, but we
9969 might still be able to remove it if the size is zero. */
9970 offset_rel = NULL;
9971 }
9972 else if (offset_rel->r_offset > offset
9973 || (extra_rel
9974 && extra_rel->r_offset < offset + entry_size))
9975 {
9976 /* There is a relocation on the size or flags, so we can't
9977 do anything with this entry. Continue with the next. */
9978 next_rel = offset_rel;
9979 continue;
9980 }
9981 else
9982 {
9983 BFD_ASSERT (offset_rel->r_offset == offset);
9984 offset_rel->r_offset -= removed_bytes;
9985 next_rel = offset_rel + 1;
e0001a05 9986 }
e0001a05 9987 }
1d25768e
BW
9988 else
9989 next_rel = NULL;
e0001a05 9990
1d25768e 9991 remove_this_rel = FALSE;
e0001a05
NC
9992 bytes_to_remove = 0;
9993 actual_offset = offset - removed_bytes;
9994 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9995
43cd72b9
BW
9996 if (is_full_prop_section)
9997 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9998 else
9999 flags = predef_flags;
10000
1d25768e
BW
10001 if (size == 0
10002 && (flags & XTENSA_PROP_ALIGN) == 0
10003 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 10004 {
43cd72b9
BW
10005 /* Always remove entries with zero size and no alignment. */
10006 bytes_to_remove = entry_size;
1d25768e
BW
10007 if (offset_rel)
10008 remove_this_rel = TRUE;
e0001a05 10009 }
1d25768e
BW
10010 else if (offset_rel
10011 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10012 {
1d25768e 10013 if (last_irel)
e0001a05 10014 {
1d25768e
BW
10015 flagword old_flags;
10016 bfd_vma old_size =
10017 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10018 bfd_vma old_address =
10019 (last_irel->r_addend
10020 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10021 bfd_vma new_address =
10022 (offset_rel->r_addend
10023 + bfd_get_32 (abfd, &contents[actual_offset]));
10024 if (is_full_prop_section)
10025 old_flags = bfd_get_32
10026 (abfd, &contents[last_irel->r_offset + 8]);
10027 else
10028 old_flags = predef_flags;
10029
10030 if ((ELF32_R_SYM (offset_rel->r_info)
10031 == ELF32_R_SYM (last_irel->r_info))
10032 && old_address + old_size == new_address
10033 && old_flags == flags
10034 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10035 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10036 {
1d25768e
BW
10037 /* Fix the old size. */
10038 bfd_put_32 (abfd, old_size + size,
10039 &contents[last_irel->r_offset + 4]);
10040 bytes_to_remove = entry_size;
10041 remove_this_rel = TRUE;
e0001a05
NC
10042 }
10043 else
1d25768e 10044 last_irel = offset_rel;
e0001a05 10045 }
1d25768e
BW
10046 else
10047 last_irel = offset_rel;
e0001a05
NC
10048 }
10049
1d25768e 10050 if (remove_this_rel)
e0001a05 10051 {
1d25768e 10052 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10053 offset_rel->r_offset = 0;
e0001a05
NC
10054 }
10055
10056 if (bytes_to_remove != 0)
10057 {
10058 removed_bytes += bytes_to_remove;
a3ef2d63 10059 if (offset + bytes_to_remove < sec->size)
e0001a05 10060 memmove (&contents[actual_offset],
43cd72b9 10061 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10062 sec->size - offset - bytes_to_remove);
e0001a05
NC
10063 }
10064 }
10065
43cd72b9 10066 if (removed_bytes)
e0001a05 10067 {
1d25768e
BW
10068 /* Fix up any extra relocations on the last entry. */
10069 for (irel = next_rel; irel < rel_end; irel++)
10070 irel->r_offset -= removed_bytes;
10071
e0001a05 10072 /* Clear the removed bytes. */
a3ef2d63 10073 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10074
a3ef2d63
BW
10075 if (sec->rawsize == 0)
10076 sec->rawsize = sec->size;
10077 sec->size -= removed_bytes;
e901de89
BW
10078
10079 if (xtensa_is_littable_section (sec))
10080 {
f0e6fdb2
BW
10081 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10082 if (sgotloc)
10083 sgotloc->size -= removed_bytes;
e901de89 10084 }
e0001a05
NC
10085 }
10086 }
e901de89 10087
e0001a05
NC
10088 error_return:
10089 release_internal_relocs (sec, internal_relocs);
10090 release_contents (sec, contents);
10091 return ok;
10092}
10093
10094\f
10095/* Third relaxation pass. */
10096
10097/* Change symbol values to account for removed literals. */
10098
43cd72b9 10099bfd_boolean
7fa3d080 10100relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10101{
10102 xtensa_relax_info *relax_info;
10103 unsigned int sec_shndx;
10104 Elf_Internal_Shdr *symtab_hdr;
10105 Elf_Internal_Sym *isymbuf;
10106 unsigned i, num_syms, num_locals;
10107
10108 relax_info = get_xtensa_relax_info (sec);
10109 BFD_ASSERT (relax_info);
10110
43cd72b9
BW
10111 if (!relax_info->is_relaxable_literal_section
10112 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10113 return TRUE;
10114
10115 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10116
10117 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10118 isymbuf = retrieve_local_syms (abfd);
10119
10120 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10121 num_locals = symtab_hdr->sh_info;
10122
10123 /* Adjust the local symbols defined in this section. */
10124 for (i = 0; i < num_locals; i++)
10125 {
10126 Elf_Internal_Sym *isym = &isymbuf[i];
10127
10128 if (isym->st_shndx == sec_shndx)
10129 {
03669f1c
BW
10130 text_action *act = relax_info->action_list.head;
10131 bfd_vma orig_addr = isym->st_value;
43cd72b9 10132
03669f1c 10133 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10134
03669f1c
BW
10135 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10136 isym->st_size -=
10137 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
10138 }
10139 }
10140
10141 /* Now adjust the global symbols defined in this section. */
10142 for (i = 0; i < (num_syms - num_locals); i++)
10143 {
10144 struct elf_link_hash_entry *sym_hash;
10145
10146 sym_hash = elf_sym_hashes (abfd)[i];
10147
10148 if (sym_hash->root.type == bfd_link_hash_warning)
10149 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10150
10151 if ((sym_hash->root.type == bfd_link_hash_defined
10152 || sym_hash->root.type == bfd_link_hash_defweak)
10153 && sym_hash->root.u.def.section == sec)
10154 {
03669f1c
BW
10155 text_action *act = relax_info->action_list.head;
10156 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 10157
03669f1c
BW
10158 sym_hash->root.u.def.value -=
10159 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10160
03669f1c
BW
10161 if (sym_hash->type == STT_FUNC)
10162 sym_hash->size -=
10163 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
10164 }
10165 }
10166
10167 return TRUE;
10168}
10169
10170\f
10171/* "Fix" handling functions, called while performing relocations. */
10172
43cd72b9 10173static bfd_boolean
7fa3d080
BW
10174do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10175 bfd *input_bfd,
10176 asection *input_section,
10177 bfd_byte *contents)
e0001a05
NC
10178{
10179 r_reloc r_rel;
10180 asection *sec, *old_sec;
10181 bfd_vma old_offset;
10182 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10183 reloc_bfd_fix *fix;
10184
10185 if (r_type == R_XTENSA_NONE)
43cd72b9 10186 return TRUE;
e0001a05 10187
43cd72b9
BW
10188 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10189 if (!fix)
10190 return TRUE;
e0001a05 10191
43cd72b9
BW
10192 r_reloc_init (&r_rel, input_bfd, rel, contents,
10193 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10194 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10195 old_offset = r_rel.target_offset;
10196
10197 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10198 {
43cd72b9
BW
10199 if (r_type != R_XTENSA_ASM_EXPAND)
10200 {
10201 (*_bfd_error_handler)
10202 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10203 input_bfd, input_section, rel->r_offset,
10204 elf_howto_table[r_type].name);
10205 return FALSE;
10206 }
e0001a05
NC
10207 /* Leave it be. Resolution will happen in a later stage. */
10208 }
10209 else
10210 {
10211 sec = fix->target_sec;
10212 rel->r_addend += ((sec->output_offset + fix->target_offset)
10213 - (old_sec->output_offset + old_offset));
10214 }
43cd72b9 10215 return TRUE;
e0001a05
NC
10216}
10217
10218
10219static void
7fa3d080
BW
10220do_fix_for_final_link (Elf_Internal_Rela *rel,
10221 bfd *input_bfd,
10222 asection *input_section,
10223 bfd_byte *contents,
10224 bfd_vma *relocationp)
e0001a05
NC
10225{
10226 asection *sec;
10227 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10228 reloc_bfd_fix *fix;
43cd72b9 10229 bfd_vma fixup_diff;
e0001a05
NC
10230
10231 if (r_type == R_XTENSA_NONE)
10232 return;
10233
43cd72b9
BW
10234 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10235 if (!fix)
e0001a05
NC
10236 return;
10237
10238 sec = fix->target_sec;
43cd72b9
BW
10239
10240 fixup_diff = rel->r_addend;
10241 if (elf_howto_table[fix->src_type].partial_inplace)
10242 {
10243 bfd_vma inplace_val;
10244 BFD_ASSERT (fix->src_offset
10245 < bfd_get_section_limit (input_bfd, input_section));
10246 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10247 fixup_diff += inplace_val;
10248 }
10249
e0001a05
NC
10250 *relocationp = (sec->output_section->vma
10251 + sec->output_offset
43cd72b9 10252 + fix->target_offset - fixup_diff);
e0001a05
NC
10253}
10254
10255\f
10256/* Miscellaneous utility functions.... */
10257
10258static asection *
f0e6fdb2 10259elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10260{
f0e6fdb2
BW
10261 struct elf_xtensa_link_hash_table *htab;
10262 bfd *dynobj;
e0001a05
NC
10263 char plt_name[10];
10264
10265 if (chunk == 0)
f0e6fdb2
BW
10266 {
10267 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10268 if (htab == NULL)
10269 return NULL;
10270
f0e6fdb2
BW
10271 return htab->splt;
10272 }
e0001a05 10273
f0e6fdb2 10274 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
10275 sprintf (plt_name, ".plt.%u", chunk);
10276 return bfd_get_section_by_name (dynobj, plt_name);
10277}
10278
10279
10280static asection *
f0e6fdb2 10281elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10282{
f0e6fdb2
BW
10283 struct elf_xtensa_link_hash_table *htab;
10284 bfd *dynobj;
e0001a05
NC
10285 char got_name[14];
10286
10287 if (chunk == 0)
f0e6fdb2
BW
10288 {
10289 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10290 if (htab == NULL)
10291 return NULL;
f0e6fdb2
BW
10292 return htab->sgotplt;
10293 }
e0001a05 10294
f0e6fdb2 10295 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
10296 sprintf (got_name, ".got.plt.%u", chunk);
10297 return bfd_get_section_by_name (dynobj, got_name);
10298}
10299
10300
10301/* Get the input section for a given symbol index.
10302 If the symbol is:
10303 . a section symbol, return the section;
10304 . a common symbol, return the common section;
10305 . an undefined symbol, return the undefined section;
10306 . an indirect symbol, follow the links;
10307 . an absolute value, return the absolute section. */
10308
10309static asection *
7fa3d080 10310get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10311{
10312 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10313 asection *target_sec = NULL;
43cd72b9 10314 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10315 {
10316 Elf_Internal_Sym *isymbuf;
10317 unsigned int section_index;
10318
10319 isymbuf = retrieve_local_syms (abfd);
10320 section_index = isymbuf[r_symndx].st_shndx;
10321
10322 if (section_index == SHN_UNDEF)
10323 target_sec = bfd_und_section_ptr;
e0001a05
NC
10324 else if (section_index == SHN_ABS)
10325 target_sec = bfd_abs_section_ptr;
10326 else if (section_index == SHN_COMMON)
10327 target_sec = bfd_com_section_ptr;
43cd72b9 10328 else
cb33740c 10329 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10330 }
10331 else
10332 {
10333 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10334 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10335
10336 while (h->root.type == bfd_link_hash_indirect
10337 || h->root.type == bfd_link_hash_warning)
10338 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10339
10340 switch (h->root.type)
10341 {
10342 case bfd_link_hash_defined:
10343 case bfd_link_hash_defweak:
10344 target_sec = h->root.u.def.section;
10345 break;
10346 case bfd_link_hash_common:
10347 target_sec = bfd_com_section_ptr;
10348 break;
10349 case bfd_link_hash_undefined:
10350 case bfd_link_hash_undefweak:
10351 target_sec = bfd_und_section_ptr;
10352 break;
10353 default: /* New indirect warning. */
10354 target_sec = bfd_und_section_ptr;
10355 break;
10356 }
10357 }
10358 return target_sec;
10359}
10360
10361
10362static struct elf_link_hash_entry *
7fa3d080 10363get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10364{
10365 unsigned long indx;
10366 struct elf_link_hash_entry *h;
10367 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10368
10369 if (r_symndx < symtab_hdr->sh_info)
10370 return NULL;
43cd72b9 10371
e0001a05
NC
10372 indx = r_symndx - symtab_hdr->sh_info;
10373 h = elf_sym_hashes (abfd)[indx];
10374 while (h->root.type == bfd_link_hash_indirect
10375 || h->root.type == bfd_link_hash_warning)
10376 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10377 return h;
10378}
10379
10380
10381/* Get the section-relative offset for a symbol number. */
10382
10383static bfd_vma
7fa3d080 10384get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10385{
10386 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10387 bfd_vma offset = 0;
10388
43cd72b9 10389 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10390 {
10391 Elf_Internal_Sym *isymbuf;
10392 isymbuf = retrieve_local_syms (abfd);
10393 offset = isymbuf[r_symndx].st_value;
10394 }
10395 else
10396 {
10397 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10398 struct elf_link_hash_entry *h =
10399 elf_sym_hashes (abfd)[indx];
10400
10401 while (h->root.type == bfd_link_hash_indirect
10402 || h->root.type == bfd_link_hash_warning)
10403 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10404 if (h->root.type == bfd_link_hash_defined
10405 || h->root.type == bfd_link_hash_defweak)
10406 offset = h->root.u.def.value;
10407 }
10408 return offset;
10409}
10410
10411
10412static bfd_boolean
7fa3d080 10413is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10414{
10415 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10416 struct elf_link_hash_entry *h;
10417
10418 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10419 if (h && h->root.type == bfd_link_hash_defweak)
10420 return TRUE;
10421 return FALSE;
10422}
10423
10424
10425static bfd_boolean
7fa3d080
BW
10426pcrel_reloc_fits (xtensa_opcode opc,
10427 int opnd,
10428 bfd_vma self_address,
10429 bfd_vma dest_address)
e0001a05 10430{
43cd72b9
BW
10431 xtensa_isa isa = xtensa_default_isa;
10432 uint32 valp = dest_address;
10433 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10434 || xtensa_operand_encode (isa, opc, opnd, &valp))
10435 return FALSE;
10436 return TRUE;
e0001a05
NC
10437}
10438
10439
10440static bfd_boolean
7fa3d080 10441xtensa_is_property_section (asection *sec)
e0001a05 10442{
1d25768e
BW
10443 if (xtensa_is_insntable_section (sec)
10444 || xtensa_is_littable_section (sec)
10445 || xtensa_is_proptable_section (sec))
b614a702 10446 return TRUE;
e901de89 10447
1d25768e
BW
10448 return FALSE;
10449}
10450
10451
10452static bfd_boolean
10453xtensa_is_insntable_section (asection *sec)
10454{
10455 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10456 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10457 return TRUE;
10458
e901de89
BW
10459 return FALSE;
10460}
10461
10462
10463static bfd_boolean
7fa3d080 10464xtensa_is_littable_section (asection *sec)
e901de89 10465{
1d25768e
BW
10466 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10467 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10468 return TRUE;
e901de89 10469
1d25768e
BW
10470 return FALSE;
10471}
10472
10473
10474static bfd_boolean
10475xtensa_is_proptable_section (asection *sec)
10476{
10477 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10478 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 10479 return TRUE;
e0001a05 10480
e901de89 10481 return FALSE;
e0001a05
NC
10482}
10483
10484
43cd72b9 10485static int
7fa3d080 10486internal_reloc_compare (const void *ap, const void *bp)
e0001a05 10487{
43cd72b9
BW
10488 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10489 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10490
10491 if (a->r_offset != b->r_offset)
10492 return (a->r_offset - b->r_offset);
10493
10494 /* We don't need to sort on these criteria for correctness,
10495 but enforcing a more strict ordering prevents unstable qsort
10496 from behaving differently with different implementations.
10497 Without the code below we get correct but different results
10498 on Solaris 2.7 and 2.8. We would like to always produce the
10499 same results no matter the host. */
10500
10501 if (a->r_info != b->r_info)
10502 return (a->r_info - b->r_info);
10503
10504 return (a->r_addend - b->r_addend);
e0001a05
NC
10505}
10506
10507
10508static int
7fa3d080 10509internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
10510{
10511 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10512 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10513
43cd72b9
BW
10514 /* Check if one entry overlaps with the other; this shouldn't happen
10515 except when searching for a match. */
e0001a05
NC
10516 return (a->r_offset - b->r_offset);
10517}
10518
10519
74869ac7
BW
10520/* Predicate function used to look up a section in a particular group. */
10521
10522static bfd_boolean
10523match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10524{
10525 const char *gname = inf;
10526 const char *group_name = elf_group_name (sec);
10527
10528 return (group_name == gname
10529 || (group_name != NULL
10530 && gname != NULL
10531 && strcmp (group_name, gname) == 0));
10532}
10533
10534
1d25768e
BW
10535static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10536
51c8ebc1
BW
10537static char *
10538xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 10539{
74869ac7
BW
10540 const char *suffix, *group_name;
10541 char *prop_sec_name;
74869ac7
BW
10542
10543 group_name = elf_group_name (sec);
10544 if (group_name)
10545 {
10546 suffix = strrchr (sec->name, '.');
10547 if (suffix == sec->name)
10548 suffix = 0;
10549 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10550 + (suffix ? strlen (suffix) : 0));
10551 strcpy (prop_sec_name, base_name);
10552 if (suffix)
10553 strcat (prop_sec_name, suffix);
10554 }
10555 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 10556 {
43cd72b9 10557 char *linkonce_kind = 0;
b614a702
BW
10558
10559 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 10560 linkonce_kind = "x.";
b614a702 10561 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 10562 linkonce_kind = "p.";
43cd72b9
BW
10563 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10564 linkonce_kind = "prop.";
e0001a05 10565 else
b614a702
BW
10566 abort ();
10567
43cd72b9
BW
10568 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10569 + strlen (linkonce_kind) + 1);
b614a702 10570 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 10571 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
10572
10573 suffix = sec->name + linkonce_len;
096c35a7 10574 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 10575 the new linkonce_kind (but not for "prop" sections). */
0112cd26 10576 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
10577 suffix += 2;
10578 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
10579 }
10580 else
10581 prop_sec_name = strdup (base_name);
10582
51c8ebc1
BW
10583 return prop_sec_name;
10584}
10585
10586
10587static asection *
10588xtensa_get_property_section (asection *sec, const char *base_name)
10589{
10590 char *prop_sec_name;
10591 asection *prop_sec;
10592
10593 prop_sec_name = xtensa_property_section_name (sec, base_name);
10594 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10595 match_section_group,
10596 (void *) elf_group_name (sec));
10597 free (prop_sec_name);
10598 return prop_sec;
10599}
10600
10601
10602asection *
10603xtensa_make_property_section (asection *sec, const char *base_name)
10604{
10605 char *prop_sec_name;
10606 asection *prop_sec;
10607
74869ac7 10608 /* Check if the section already exists. */
51c8ebc1 10609 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
10610 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10611 match_section_group,
51c8ebc1 10612 (void *) elf_group_name (sec));
74869ac7
BW
10613 /* If not, create it. */
10614 if (! prop_sec)
10615 {
10616 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10617 flags |= (bfd_get_section_flags (sec->owner, sec)
10618 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10619
10620 prop_sec = bfd_make_section_anyway_with_flags
10621 (sec->owner, strdup (prop_sec_name), flags);
10622 if (! prop_sec)
10623 return 0;
b614a702 10624
51c8ebc1 10625 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
10626 }
10627
74869ac7
BW
10628 free (prop_sec_name);
10629 return prop_sec;
e0001a05
NC
10630}
10631
43cd72b9
BW
10632
10633flagword
7fa3d080 10634xtensa_get_property_predef_flags (asection *sec)
43cd72b9 10635{
1d25768e 10636 if (xtensa_is_insntable_section (sec))
43cd72b9 10637 return (XTENSA_PROP_INSN
99ded152 10638 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10639 | XTENSA_PROP_INSN_NO_REORDER);
10640
10641 if (xtensa_is_littable_section (sec))
10642 return (XTENSA_PROP_LITERAL
99ded152 10643 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10644 | XTENSA_PROP_INSN_NO_REORDER);
10645
10646 return 0;
10647}
10648
e0001a05
NC
10649\f
10650/* Other functions called directly by the linker. */
10651
10652bfd_boolean
7fa3d080
BW
10653xtensa_callback_required_dependence (bfd *abfd,
10654 asection *sec,
10655 struct bfd_link_info *link_info,
10656 deps_callback_t callback,
10657 void *closure)
e0001a05
NC
10658{
10659 Elf_Internal_Rela *internal_relocs;
10660 bfd_byte *contents;
10661 unsigned i;
10662 bfd_boolean ok = TRUE;
43cd72b9
BW
10663 bfd_size_type sec_size;
10664
10665 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
10666
10667 /* ".plt*" sections have no explicit relocations but they contain L32R
10668 instructions that reference the corresponding ".got.plt*" sections. */
10669 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 10670 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
10671 {
10672 asection *sgotplt;
10673
10674 /* Find the corresponding ".got.plt*" section. */
10675 if (sec->name[4] == '\0')
10676 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
10677 else
10678 {
10679 char got_name[14];
10680 int chunk = 0;
10681
10682 BFD_ASSERT (sec->name[4] == '.');
10683 chunk = strtol (&sec->name[5], NULL, 10);
10684
10685 sprintf (got_name, ".got.plt.%u", chunk);
10686 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
10687 }
10688 BFD_ASSERT (sgotplt);
10689
10690 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10691 section referencing a literal at the very beginning of
10692 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 10693 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
10694 }
10695
13161072
BW
10696 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10697 when building uclibc, which runs "ld -b binary /dev/null". */
10698 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10699 return ok;
10700
e0001a05
NC
10701 internal_relocs = retrieve_internal_relocs (abfd, sec,
10702 link_info->keep_memory);
10703 if (internal_relocs == NULL
43cd72b9 10704 || sec->reloc_count == 0)
e0001a05
NC
10705 return ok;
10706
10707 /* Cache the contents for the duration of this scan. */
10708 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10709 if (contents == NULL && sec_size != 0)
e0001a05
NC
10710 {
10711 ok = FALSE;
10712 goto error_return;
10713 }
10714
43cd72b9
BW
10715 if (!xtensa_default_isa)
10716 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 10717
43cd72b9 10718 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10719 {
10720 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 10721 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
10722 {
10723 r_reloc l32r_rel;
10724 asection *target_sec;
10725 bfd_vma target_offset;
43cd72b9
BW
10726
10727 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
10728 target_sec = NULL;
10729 target_offset = 0;
10730 /* L32Rs must be local to the input file. */
10731 if (r_reloc_is_defined (&l32r_rel))
10732 {
10733 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 10734 target_offset = l32r_rel.target_offset;
e0001a05
NC
10735 }
10736 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10737 closure);
10738 }
10739 }
10740
10741 error_return:
10742 release_internal_relocs (sec, internal_relocs);
10743 release_contents (sec, contents);
10744 return ok;
10745}
10746
2f89ff8d
L
10747/* The default literal sections should always be marked as "code" (i.e.,
10748 SHF_EXECINSTR). This is particularly important for the Linux kernel
10749 module loader so that the literals are not placed after the text. */
b35d266b 10750static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 10751{
0112cd26
NC
10752 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10753 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10754 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 10755 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 10756 { NULL, 0, 0, 0, 0 }
7f4d3958 10757};
e0001a05 10758\f
ae95ffa6 10759#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05
NC
10760#ifndef ELF_ARCH
10761#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10762#define TARGET_LITTLE_NAME "elf32-xtensa-le"
10763#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10764#define TARGET_BIG_NAME "elf32-xtensa-be"
10765#define ELF_ARCH bfd_arch_xtensa
10766
4af0a1d8
BW
10767#define ELF_MACHINE_CODE EM_XTENSA
10768#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
10769
10770#if XCHAL_HAVE_MMU
10771#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10772#else /* !XCHAL_HAVE_MMU */
10773#define ELF_MAXPAGESIZE 1
10774#endif /* !XCHAL_HAVE_MMU */
10775#endif /* ELF_ARCH */
10776
10777#define elf_backend_can_gc_sections 1
10778#define elf_backend_can_refcount 1
10779#define elf_backend_plt_readonly 1
10780#define elf_backend_got_header_size 4
10781#define elf_backend_want_dynbss 0
10782#define elf_backend_want_got_plt 1
10783
10784#define elf_info_to_howto elf_xtensa_info_to_howto_rela
10785
28dbbc02
BW
10786#define bfd_elf32_mkobject elf_xtensa_mkobject
10787
e0001a05
NC
10788#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10789#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10790#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10791#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10792#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
10793#define bfd_elf32_bfd_reloc_name_lookup \
10794 elf_xtensa_reloc_name_lookup
e0001a05 10795#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 10796#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
10797
10798#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10799#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
10800#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10801#define elf_backend_discard_info elf_xtensa_discard_info
10802#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10803#define elf_backend_final_write_processing elf_xtensa_final_write_processing
10804#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10805#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10806#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10807#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10808#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10809#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 10810#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
10811#define elf_backend_object_p elf_xtensa_object_p
10812#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10813#define elf_backend_relocate_section elf_xtensa_relocate_section
10814#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 10815#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
10816#define elf_backend_omit_section_dynsym \
10817 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 10818#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 10819#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 10820#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
10821
10822#include "elf32-target.h"
This page took 1.011602 seconds and 4 git commands to generate.