Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* Xtensa-specific support for 32-bit ELF. |
b2a8e766 | 2 | Copyright 2003, 2004 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or | |
7 | modify it under the terms of the GNU General Public License as | |
8 | published by the Free Software Foundation; either version 2 of the | |
9 | License, or (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, but | |
12 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | |
19 | 02111-1307, USA. */ | |
20 | ||
21 | #include "bfd.h" | |
22 | #include "sysdep.h" | |
23 | ||
24 | #ifdef ANSI_PROTOTYPES | |
25 | #include <stdarg.h> | |
26 | #else | |
27 | #include <varargs.h> | |
28 | #endif | |
29 | #include <strings.h> | |
30 | ||
31 | #include "bfdlink.h" | |
32 | #include "libbfd.h" | |
33 | #include "elf-bfd.h" | |
34 | #include "elf/xtensa.h" | |
35 | #include "xtensa-isa.h" | |
36 | #include "xtensa-config.h" | |
37 | ||
38 | /* Main interface functions. */ | |
39 | static void elf_xtensa_info_to_howto_rela | |
40 | PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); | |
41 | static reloc_howto_type *elf_xtensa_reloc_type_lookup | |
42 | PARAMS ((bfd *abfd, bfd_reloc_code_real_type code)); | |
43 | extern int xtensa_read_table_entries | |
44 | PARAMS ((bfd *, asection *, property_table_entry **, const char *)); | |
45 | static bfd_boolean elf_xtensa_check_relocs | |
46 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
47 | const Elf_Internal_Rela *)); | |
48 | static void elf_xtensa_hide_symbol | |
49 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean)); | |
e0001a05 NC |
50 | static asection *elf_xtensa_gc_mark_hook |
51 | PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *, | |
52 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
53 | static bfd_boolean elf_xtensa_gc_sweep_hook | |
54 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
55 | const Elf_Internal_Rela *)); | |
56 | static bfd_boolean elf_xtensa_create_dynamic_sections | |
57 | PARAMS ((bfd *, struct bfd_link_info *)); | |
58 | static bfd_boolean elf_xtensa_adjust_dynamic_symbol | |
59 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); | |
60 | static bfd_boolean elf_xtensa_size_dynamic_sections | |
61 | PARAMS ((bfd *, struct bfd_link_info *)); | |
62 | static bfd_boolean elf_xtensa_modify_segment_map | |
c84fca4d | 63 | PARAMS ((bfd *, struct bfd_link_info *)); |
e0001a05 NC |
64 | static bfd_boolean elf_xtensa_relocate_section |
65 | PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, | |
66 | Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); | |
67 | static bfd_boolean elf_xtensa_relax_section | |
68 | PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *again)); | |
69 | static bfd_boolean elf_xtensa_finish_dynamic_symbol | |
70 | PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, | |
71 | Elf_Internal_Sym *)); | |
72 | static bfd_boolean elf_xtensa_finish_dynamic_sections | |
73 | PARAMS ((bfd *, struct bfd_link_info *)); | |
74 | static bfd_boolean elf_xtensa_merge_private_bfd_data | |
75 | PARAMS ((bfd *, bfd *)); | |
76 | static bfd_boolean elf_xtensa_set_private_flags | |
77 | PARAMS ((bfd *, flagword)); | |
78 | extern flagword elf_xtensa_get_private_bfd_flags | |
79 | PARAMS ((bfd *)); | |
80 | static bfd_boolean elf_xtensa_print_private_bfd_data | |
81 | PARAMS ((bfd *, PTR)); | |
82 | static bfd_boolean elf_xtensa_object_p | |
83 | PARAMS ((bfd *)); | |
84 | static void elf_xtensa_final_write_processing | |
85 | PARAMS ((bfd *, bfd_boolean)); | |
86 | static enum elf_reloc_type_class elf_xtensa_reloc_type_class | |
87 | PARAMS ((const Elf_Internal_Rela *)); | |
88 | static bfd_boolean elf_xtensa_discard_info | |
89 | PARAMS ((bfd *, struct elf_reloc_cookie *, struct bfd_link_info *)); | |
90 | static bfd_boolean elf_xtensa_ignore_discarded_relocs | |
91 | PARAMS ((asection *)); | |
92 | static bfd_boolean elf_xtensa_grok_prstatus | |
93 | PARAMS ((bfd *, Elf_Internal_Note *)); | |
94 | static bfd_boolean elf_xtensa_grok_psinfo | |
95 | PARAMS ((bfd *, Elf_Internal_Note *)); | |
96 | static bfd_boolean elf_xtensa_new_section_hook | |
97 | PARAMS ((bfd *, asection *)); | |
98 | ||
99 | ||
100 | /* Local helper functions. */ | |
101 | ||
571b5725 BW |
102 | static bfd_boolean xtensa_elf_dynamic_symbol_p |
103 | PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *)); | |
e0001a05 NC |
104 | static int property_table_compare |
105 | PARAMS ((const PTR, const PTR)); | |
106 | static bfd_boolean elf_xtensa_in_literal_pool | |
107 | PARAMS ((property_table_entry *, int, bfd_vma)); | |
108 | static void elf_xtensa_make_sym_local | |
109 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); | |
110 | static bfd_boolean add_extra_plt_sections | |
111 | PARAMS ((bfd *, int)); | |
112 | static bfd_boolean elf_xtensa_fix_refcounts | |
113 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
114 | static bfd_boolean elf_xtensa_allocate_plt_size | |
115 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
116 | static bfd_boolean elf_xtensa_allocate_got_size | |
117 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
118 | static void elf_xtensa_allocate_local_got_size | |
119 | PARAMS ((struct bfd_link_info *, asection *)); | |
120 | static bfd_reloc_status_type elf_xtensa_do_reloc | |
121 | PARAMS ((reloc_howto_type *, bfd *, asection *, bfd_vma, bfd_byte *, | |
122 | bfd_vma, bfd_boolean, char **)); | |
123 | static char * vsprint_msg | |
124 | VPARAMS ((const char *, const char *, int, ...)); | |
125 | static char *build_encoding_error_message | |
126 | PARAMS ((xtensa_opcode, xtensa_encode_result)); | |
127 | static bfd_reloc_status_type bfd_elf_xtensa_reloc | |
128 | PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); | |
1049f94e | 129 | static void do_fix_for_relocatable_link |
e0001a05 NC |
130 | PARAMS ((Elf_Internal_Rela *, bfd *, asection *)); |
131 | static void do_fix_for_final_link | |
132 | PARAMS ((Elf_Internal_Rela *, asection *, bfd_vma *)); | |
e0001a05 NC |
133 | static bfd_vma elf_xtensa_create_plt_entry |
134 | PARAMS ((bfd *, bfd *, unsigned)); | |
135 | static int elf_xtensa_combine_prop_entries | |
e901de89 | 136 | PARAMS ((bfd *, asection *, asection *)); |
e0001a05 NC |
137 | static bfd_boolean elf_xtensa_discard_info_for_section |
138 | PARAMS ((bfd *, struct elf_reloc_cookie *, struct bfd_link_info *, | |
139 | asection *)); | |
140 | ||
141 | /* Local functions to handle Xtensa configurability. */ | |
142 | ||
143 | static void init_call_opcodes | |
144 | PARAMS ((void)); | |
145 | static bfd_boolean is_indirect_call_opcode | |
146 | PARAMS ((xtensa_opcode)); | |
147 | static bfd_boolean is_direct_call_opcode | |
148 | PARAMS ((xtensa_opcode)); | |
149 | static bfd_boolean is_windowed_call_opcode | |
150 | PARAMS ((xtensa_opcode)); | |
151 | static xtensa_opcode get_l32r_opcode | |
152 | PARAMS ((void)); | |
153 | static bfd_vma l32r_offset | |
154 | PARAMS ((bfd_vma, bfd_vma)); | |
155 | static int get_relocation_opnd | |
156 | PARAMS ((Elf_Internal_Rela *)); | |
157 | static xtensa_opcode get_relocation_opcode | |
158 | PARAMS ((asection *, bfd_byte *, Elf_Internal_Rela *)); | |
159 | static bfd_boolean is_l32r_relocation | |
160 | PARAMS ((asection *, bfd_byte *, Elf_Internal_Rela *)); | |
161 | ||
162 | /* Functions for link-time code simplifications. */ | |
163 | ||
164 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify | |
165 | PARAMS ((bfd_byte *, bfd_vma, bfd_vma)); | |
166 | static bfd_reloc_status_type contract_asm_expansion | |
167 | PARAMS ((bfd_byte *, bfd_vma, Elf_Internal_Rela *)); | |
168 | static xtensa_opcode swap_callx_for_call_opcode | |
169 | PARAMS ((xtensa_opcode)); | |
170 | static xtensa_opcode get_expanded_call_opcode | |
171 | PARAMS ((bfd_byte *, int)); | |
172 | ||
173 | /* Access to internal relocations, section contents and symbols. */ | |
174 | ||
175 | static Elf_Internal_Rela *retrieve_internal_relocs | |
176 | PARAMS ((bfd *, asection *, bfd_boolean)); | |
177 | static void pin_internal_relocs | |
178 | PARAMS ((asection *, Elf_Internal_Rela *)); | |
179 | static void release_internal_relocs | |
180 | PARAMS ((asection *, Elf_Internal_Rela *)); | |
181 | static bfd_byte *retrieve_contents | |
182 | PARAMS ((bfd *, asection *, bfd_boolean)); | |
183 | static void pin_contents | |
184 | PARAMS ((asection *, bfd_byte *)); | |
185 | static void release_contents | |
186 | PARAMS ((asection *, bfd_byte *)); | |
187 | static Elf_Internal_Sym *retrieve_local_syms | |
188 | PARAMS ((bfd *)); | |
189 | ||
190 | /* Miscellaneous utility functions. */ | |
191 | ||
192 | static asection *elf_xtensa_get_plt_section | |
193 | PARAMS ((bfd *, int)); | |
194 | static asection *elf_xtensa_get_gotplt_section | |
195 | PARAMS ((bfd *, int)); | |
196 | static asection *get_elf_r_symndx_section | |
197 | PARAMS ((bfd *, unsigned long)); | |
198 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry | |
199 | PARAMS ((bfd *, unsigned long)); | |
200 | static bfd_vma get_elf_r_symndx_offset | |
201 | PARAMS ((bfd *, unsigned long)); | |
202 | static bfd_boolean pcrel_reloc_fits | |
203 | PARAMS ((xtensa_operand, bfd_vma, bfd_vma)); | |
204 | static bfd_boolean xtensa_is_property_section | |
205 | PARAMS ((asection *)); | |
e901de89 BW |
206 | static bfd_boolean xtensa_is_littable_section |
207 | PARAMS ((asection *)); | |
e0001a05 NC |
208 | static bfd_boolean is_literal_section |
209 | PARAMS ((asection *)); | |
210 | static int internal_reloc_compare | |
211 | PARAMS ((const PTR, const PTR)); | |
e0001a05 | 212 | extern char *xtensa_get_property_section_name |
b614a702 | 213 | PARAMS ((asection *, const char *)); |
e0001a05 NC |
214 | |
215 | /* Other functions called directly by the linker. */ | |
216 | ||
217 | typedef void (*deps_callback_t) | |
218 | PARAMS ((asection *, bfd_vma, asection *, bfd_vma, PTR)); | |
219 | extern bfd_boolean xtensa_callback_required_dependence | |
220 | PARAMS ((bfd *, asection *, struct bfd_link_info *, | |
221 | deps_callback_t, PTR)); | |
222 | ||
223 | ||
224 | typedef struct xtensa_relax_info_struct xtensa_relax_info; | |
225 | ||
226 | ||
227 | /* Total count of PLT relocations seen during check_relocs. | |
228 | The actual PLT code must be split into multiple sections and all | |
229 | the sections have to be created before size_dynamic_sections, | |
230 | where we figure out the exact number of PLT entries that will be | |
b536dc1e | 231 | needed. It is OK if this count is an overestimate, e.g., some |
e0001a05 NC |
232 | relocations may be removed by GC. */ |
233 | ||
234 | static int plt_reloc_count = 0; | |
235 | ||
236 | ||
237 | /* When this is true, relocations may have been modified to refer to | |
238 | symbols from other input files. The per-section list of "fix" | |
239 | records needs to be checked when resolving relocations. */ | |
240 | ||
241 | static bfd_boolean relaxing_section = FALSE; | |
242 | ||
243 | \f | |
244 | static reloc_howto_type elf_howto_table[] = | |
245 | { | |
246 | HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
247 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", | |
248 | FALSE, 0x00000000, 0x00000000, FALSE), | |
249 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
250 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
251 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
252 | /* Replace a 32-bit value with a value from the runtime linker (only | |
253 | used by linker-generated stub functions). The r_addend value is | |
254 | special: 1 means to substitute a pointer to the runtime linker's | |
255 | dynamic resolver function; 2 means to substitute the link map for | |
256 | the shared object. */ | |
257 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
258 | NULL, "R_XTENSA_RTLD", | |
259 | FALSE, 0x00000000, 0x00000000, FALSE), | |
260 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
261 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
262 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
263 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
264 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
265 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
266 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
267 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
268 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
269 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
270 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
271 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
272 | EMPTY_HOWTO (7), | |
273 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
274 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", | |
275 | FALSE, 0x00000000, 0x00000000, TRUE), | |
276 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
277 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", | |
278 | FALSE, 0x00000000, 0x00000000, TRUE), | |
279 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
280 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", | |
281 | FALSE, 0x00000000, 0x00000000, TRUE), | |
282 | /* Assembly auto-expansion. */ | |
283 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
284 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", | |
285 | FALSE, 0x00000000, 0x00000000, FALSE), | |
286 | /* Relax assembly auto-expansion. */ | |
287 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
288 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", | |
289 | FALSE, 0x00000000, 0x00000000, TRUE), | |
290 | EMPTY_HOWTO (13), | |
291 | EMPTY_HOWTO (14), | |
292 | /* GNU extension to record C++ vtable hierarchy. */ | |
293 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
294 | NULL, "R_XTENSA_GNU_VTINHERIT", | |
295 | FALSE, 0x00000000, 0x00000000, FALSE), | |
296 | /* GNU extension to record C++ vtable member usage. */ | |
297 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
298 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", | |
299 | FALSE, 0x00000000, 0x00000000, FALSE) | |
300 | }; | |
301 | ||
302 | #ifdef DEBUG_GEN_RELOC | |
303 | #define TRACE(str) \ | |
304 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
305 | #else | |
306 | #define TRACE(str) | |
307 | #endif | |
308 | ||
309 | static reloc_howto_type * | |
310 | elf_xtensa_reloc_type_lookup (abfd, code) | |
311 | bfd *abfd ATTRIBUTE_UNUSED; | |
312 | bfd_reloc_code_real_type code; | |
313 | { | |
314 | switch (code) | |
315 | { | |
316 | case BFD_RELOC_NONE: | |
317 | TRACE ("BFD_RELOC_NONE"); | |
318 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
319 | ||
320 | case BFD_RELOC_32: | |
321 | TRACE ("BFD_RELOC_32"); | |
322 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
323 | ||
324 | case BFD_RELOC_XTENSA_RTLD: | |
325 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
326 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
327 | ||
328 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
329 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
330 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
331 | ||
332 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
333 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
334 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
335 | ||
336 | case BFD_RELOC_XTENSA_RELATIVE: | |
337 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
338 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
339 | ||
340 | case BFD_RELOC_XTENSA_PLT: | |
341 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
342 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
343 | ||
344 | case BFD_RELOC_XTENSA_OP0: | |
345 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
346 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
347 | ||
348 | case BFD_RELOC_XTENSA_OP1: | |
349 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
350 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
351 | ||
352 | case BFD_RELOC_XTENSA_OP2: | |
353 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
354 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
355 | ||
356 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
357 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
358 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
359 | ||
360 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
361 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
362 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
363 | ||
364 | case BFD_RELOC_VTABLE_INHERIT: | |
365 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
366 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
367 | ||
368 | case BFD_RELOC_VTABLE_ENTRY: | |
369 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
370 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
371 | ||
372 | default: | |
373 | break; | |
374 | } | |
375 | ||
376 | TRACE ("Unknown"); | |
377 | return NULL; | |
378 | } | |
379 | ||
380 | ||
381 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
382 | it in the BFD internal arelent representation of the relocation. */ | |
383 | ||
384 | static void | |
385 | elf_xtensa_info_to_howto_rela (abfd, cache_ptr, dst) | |
386 | bfd *abfd ATTRIBUTE_UNUSED; | |
387 | arelent *cache_ptr; | |
388 | Elf_Internal_Rela *dst; | |
389 | { | |
390 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
391 | ||
392 | BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max); | |
393 | cache_ptr->howto = &elf_howto_table[r_type]; | |
394 | } | |
395 | ||
396 | \f | |
397 | /* Functions for the Xtensa ELF linker. */ | |
398 | ||
399 | /* The name of the dynamic interpreter. This is put in the .interp | |
400 | section. */ | |
401 | ||
402 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
403 | ||
404 | /* The size in bytes of an entry in the procedure linkage table. | |
405 | (This does _not_ include the space for the literals associated with | |
406 | the PLT entry.) */ | |
407 | ||
408 | #define PLT_ENTRY_SIZE 16 | |
409 | ||
410 | /* For _really_ large PLTs, we may need to alternate between literals | |
411 | and code to keep the literals within the 256K range of the L32R | |
412 | instructions in the code. It's unlikely that anyone would ever need | |
413 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
414 | Thus, we split the PLT into chunks. Since there's very little | |
415 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
416 | small so that the code for handling multiple chunks get used and | |
417 | tested regularly. With 254 entries, there are 1K of literals for | |
418 | each chunk, and that seems like a nice round number. */ | |
419 | ||
420 | #define PLT_ENTRIES_PER_CHUNK 254 | |
421 | ||
422 | /* PLT entries are actually used as stub functions for lazy symbol | |
423 | resolution. Once the symbol is resolved, the stub function is never | |
424 | invoked. Note: the 32-byte frame size used here cannot be changed | |
425 | without a corresponding change in the runtime linker. */ | |
426 | ||
427 | static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] = | |
428 | { | |
429 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ | |
430 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
431 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
432 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
433 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
434 | 0 /* unused */ | |
435 | }; | |
436 | ||
437 | static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] = | |
438 | { | |
439 | 0x36, 0x41, 0x00, /* entry sp, 32 */ | |
440 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
441 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
442 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
443 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
444 | 0 /* unused */ | |
445 | }; | |
446 | ||
571b5725 BW |
447 | |
448 | static inline bfd_boolean | |
449 | xtensa_elf_dynamic_symbol_p (h, info) | |
450 | struct elf_link_hash_entry *h; | |
451 | struct bfd_link_info *info; | |
452 | { | |
453 | /* Check if we should do dynamic things to this symbol. The | |
454 | "ignore_protected" argument need not be set, because Xtensa code | |
455 | does not require special handling of STV_PROTECTED to make function | |
456 | pointer comparisons work properly. The PLT addresses are never | |
457 | used for function pointers. */ | |
458 | ||
459 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
460 | } | |
461 | ||
e0001a05 NC |
462 | \f |
463 | static int | |
464 | property_table_compare (ap, bp) | |
465 | const PTR ap; | |
466 | const PTR bp; | |
467 | { | |
468 | const property_table_entry *a = (const property_table_entry *) ap; | |
469 | const property_table_entry *b = (const property_table_entry *) bp; | |
470 | ||
471 | /* Check if one entry overlaps with the other; this shouldn't happen | |
472 | except when searching for a match. */ | |
473 | if ((b->address >= a->address && b->address < (a->address + a->size)) | |
474 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
475 | return 0; | |
476 | ||
477 | return (a->address - b->address); | |
478 | } | |
479 | ||
480 | ||
481 | /* Get the literal table or instruction table entries for the given | |
482 | section. Sets TABLE_P and returns the number of entries. On error, | |
483 | returns a negative value. */ | |
484 | ||
485 | int | |
486 | xtensa_read_table_entries (abfd, section, table_p, sec_name) | |
487 | bfd *abfd; | |
488 | asection *section; | |
489 | property_table_entry **table_p; | |
490 | const char *sec_name; | |
491 | { | |
492 | asection *table_section; | |
493 | char *table_section_name; | |
494 | bfd_size_type table_size = 0; | |
495 | bfd_byte *table_data; | |
496 | property_table_entry *blocks; | |
497 | int block_count; | |
498 | bfd_size_type num_records; | |
499 | Elf_Internal_Rela *internal_relocs; | |
3ba3bc8c | 500 | bfd_vma section_addr; |
e0001a05 NC |
501 | |
502 | table_section_name = | |
b614a702 | 503 | xtensa_get_property_section_name (section, sec_name); |
e0001a05 | 504 | table_section = bfd_get_section_by_name (abfd, table_section_name); |
b614a702 | 505 | free (table_section_name); |
e0001a05 | 506 | if (table_section != NULL) |
eea6121a | 507 | table_size = table_section->size; |
e0001a05 NC |
508 | |
509 | if (table_size == 0) | |
510 | { | |
511 | *table_p = NULL; | |
512 | return 0; | |
513 | } | |
514 | ||
7aaa0689 | 515 | num_records = table_size / 8; |
e0001a05 NC |
516 | table_data = retrieve_contents (abfd, table_section, TRUE); |
517 | blocks = (property_table_entry *) | |
518 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
519 | block_count = 0; | |
520 | ||
3ba3bc8c BW |
521 | section_addr = section->output_section->vma + section->output_offset; |
522 | ||
e0001a05 NC |
523 | /* If the file has not yet been relocated, process the relocations |
524 | and sort out the table entries that apply to the specified section. */ | |
525 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); | |
3ba3bc8c | 526 | if (internal_relocs && !table_section->reloc_done) |
e0001a05 NC |
527 | { |
528 | unsigned i; | |
529 | ||
530 | for (i = 0; i < table_section->reloc_count; i++) | |
531 | { | |
532 | Elf_Internal_Rela *rel = &internal_relocs[i]; | |
533 | unsigned long r_symndx; | |
534 | ||
535 | if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE) | |
536 | continue; | |
537 | ||
538 | BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32); | |
539 | r_symndx = ELF32_R_SYM (rel->r_info); | |
540 | ||
541 | if (get_elf_r_symndx_section (abfd, r_symndx) == section) | |
542 | { | |
543 | bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx); | |
544 | blocks[block_count].address = | |
3ba3bc8c | 545 | (section_addr + sym_off + rel->r_addend |
e0001a05 NC |
546 | + bfd_get_32 (abfd, table_data + rel->r_offset)); |
547 | blocks[block_count].size = | |
548 | bfd_get_32 (abfd, table_data + rel->r_offset + 4); | |
549 | block_count++; | |
550 | } | |
551 | } | |
552 | } | |
553 | else | |
554 | { | |
3ba3bc8c BW |
555 | /* The file has already been relocated and the addresses are |
556 | already in the table. */ | |
e0001a05 NC |
557 | bfd_vma off; |
558 | ||
7aaa0689 | 559 | for (off = 0; off < table_size; off += 8) |
e0001a05 NC |
560 | { |
561 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
562 | ||
3ba3bc8c | 563 | if (address >= section_addr |
eea6121a | 564 | && address < section_addr + section->size) |
e0001a05 NC |
565 | { |
566 | blocks[block_count].address = address; | |
567 | blocks[block_count].size = | |
568 | bfd_get_32 (abfd, table_data + off + 4); | |
569 | block_count++; | |
570 | } | |
571 | } | |
572 | } | |
573 | ||
574 | release_contents (table_section, table_data); | |
575 | release_internal_relocs (table_section, internal_relocs); | |
576 | ||
577 | if (block_count > 0) | |
578 | { | |
579 | /* Now sort them into address order for easy reference. */ | |
580 | qsort (blocks, block_count, sizeof (property_table_entry), | |
581 | property_table_compare); | |
582 | } | |
583 | ||
584 | *table_p = blocks; | |
585 | return block_count; | |
586 | } | |
587 | ||
588 | ||
589 | static bfd_boolean | |
590 | elf_xtensa_in_literal_pool (lit_table, lit_table_size, addr) | |
591 | property_table_entry *lit_table; | |
592 | int lit_table_size; | |
593 | bfd_vma addr; | |
594 | { | |
595 | property_table_entry entry; | |
596 | ||
597 | if (lit_table_size == 0) | |
598 | return FALSE; | |
599 | ||
600 | entry.address = addr; | |
601 | entry.size = 1; | |
602 | ||
603 | if (bsearch (&entry, lit_table, lit_table_size, | |
604 | sizeof (property_table_entry), property_table_compare)) | |
605 | return TRUE; | |
606 | ||
607 | return FALSE; | |
608 | } | |
609 | ||
610 | \f | |
611 | /* Look through the relocs for a section during the first phase, and | |
612 | calculate needed space in the dynamic reloc sections. */ | |
613 | ||
614 | static bfd_boolean | |
615 | elf_xtensa_check_relocs (abfd, info, sec, relocs) | |
616 | bfd *abfd; | |
617 | struct bfd_link_info *info; | |
618 | asection *sec; | |
619 | const Elf_Internal_Rela *relocs; | |
620 | { | |
621 | Elf_Internal_Shdr *symtab_hdr; | |
622 | struct elf_link_hash_entry **sym_hashes; | |
623 | const Elf_Internal_Rela *rel; | |
624 | const Elf_Internal_Rela *rel_end; | |
e0001a05 | 625 | |
1049f94e | 626 | if (info->relocatable) |
e0001a05 NC |
627 | return TRUE; |
628 | ||
629 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
630 | sym_hashes = elf_sym_hashes (abfd); | |
631 | ||
e0001a05 NC |
632 | rel_end = relocs + sec->reloc_count; |
633 | for (rel = relocs; rel < rel_end; rel++) | |
634 | { | |
635 | unsigned int r_type; | |
636 | unsigned long r_symndx; | |
637 | struct elf_link_hash_entry *h; | |
638 | ||
639 | r_symndx = ELF32_R_SYM (rel->r_info); | |
640 | r_type = ELF32_R_TYPE (rel->r_info); | |
641 | ||
642 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
643 | { | |
d003868e AM |
644 | (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
645 | abfd, r_symndx); | |
e0001a05 NC |
646 | return FALSE; |
647 | } | |
648 | ||
649 | if (r_symndx < symtab_hdr->sh_info) | |
650 | h = NULL; | |
651 | else | |
652 | { | |
653 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
654 | while (h->root.type == bfd_link_hash_indirect | |
655 | || h->root.type == bfd_link_hash_warning) | |
656 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
657 | } | |
658 | ||
659 | switch (r_type) | |
660 | { | |
661 | case R_XTENSA_32: | |
662 | if (h == NULL) | |
663 | goto local_literal; | |
664 | ||
665 | if ((sec->flags & SEC_ALLOC) != 0) | |
666 | { | |
e0001a05 NC |
667 | if (h->got.refcount <= 0) |
668 | h->got.refcount = 1; | |
669 | else | |
670 | h->got.refcount += 1; | |
671 | } | |
672 | break; | |
673 | ||
674 | case R_XTENSA_PLT: | |
675 | /* If this relocation is against a local symbol, then it's | |
676 | exactly the same as a normal local GOT entry. */ | |
677 | if (h == NULL) | |
678 | goto local_literal; | |
679 | ||
680 | if ((sec->flags & SEC_ALLOC) != 0) | |
681 | { | |
e0001a05 NC |
682 | if (h->plt.refcount <= 0) |
683 | { | |
684 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; | |
685 | h->plt.refcount = 1; | |
686 | } | |
687 | else | |
688 | h->plt.refcount += 1; | |
689 | ||
690 | /* Keep track of the total PLT relocation count even if we | |
691 | don't yet know whether the dynamic sections will be | |
692 | created. */ | |
693 | plt_reloc_count += 1; | |
694 | ||
695 | if (elf_hash_table (info)->dynamic_sections_created) | |
696 | { | |
697 | if (!add_extra_plt_sections (elf_hash_table (info)->dynobj, | |
698 | plt_reloc_count)) | |
699 | return FALSE; | |
700 | } | |
701 | } | |
702 | break; | |
703 | ||
704 | local_literal: | |
705 | if ((sec->flags & SEC_ALLOC) != 0) | |
706 | { | |
707 | bfd_signed_vma *local_got_refcounts; | |
708 | ||
709 | /* This is a global offset table entry for a local symbol. */ | |
710 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
711 | if (local_got_refcounts == NULL) | |
712 | { | |
713 | bfd_size_type size; | |
714 | ||
715 | size = symtab_hdr->sh_info; | |
716 | size *= sizeof (bfd_signed_vma); | |
717 | local_got_refcounts = ((bfd_signed_vma *) | |
718 | bfd_zalloc (abfd, size)); | |
719 | if (local_got_refcounts == NULL) | |
720 | return FALSE; | |
721 | elf_local_got_refcounts (abfd) = local_got_refcounts; | |
722 | } | |
723 | local_got_refcounts[r_symndx] += 1; | |
e0001a05 NC |
724 | } |
725 | break; | |
726 | ||
727 | case R_XTENSA_OP0: | |
728 | case R_XTENSA_OP1: | |
729 | case R_XTENSA_OP2: | |
730 | case R_XTENSA_ASM_EXPAND: | |
731 | case R_XTENSA_ASM_SIMPLIFY: | |
732 | /* Nothing to do for these. */ | |
733 | break; | |
734 | ||
735 | case R_XTENSA_GNU_VTINHERIT: | |
736 | /* This relocation describes the C++ object vtable hierarchy. | |
737 | Reconstruct it for later use during GC. */ | |
c152c796 | 738 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
e0001a05 NC |
739 | return FALSE; |
740 | break; | |
741 | ||
742 | case R_XTENSA_GNU_VTENTRY: | |
743 | /* This relocation describes which C++ vtable entries are actually | |
744 | used. Record for later use during GC. */ | |
c152c796 | 745 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
e0001a05 NC |
746 | return FALSE; |
747 | break; | |
748 | ||
749 | default: | |
750 | break; | |
751 | } | |
752 | } | |
753 | ||
e0001a05 NC |
754 | return TRUE; |
755 | } | |
756 | ||
757 | ||
758 | static void | |
759 | elf_xtensa_hide_symbol (info, h, force_local) | |
760 | struct bfd_link_info *info; | |
761 | struct elf_link_hash_entry *h; | |
762 | bfd_boolean force_local; | |
763 | { | |
764 | /* For a shared link, move the plt refcount to the got refcount to leave | |
765 | space for RELATIVE relocs. */ | |
766 | elf_xtensa_make_sym_local (info, h); | |
767 | ||
768 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
769 | } | |
770 | ||
771 | ||
e0001a05 NC |
772 | /* Return the section that should be marked against GC for a given |
773 | relocation. */ | |
774 | ||
775 | static asection * | |
776 | elf_xtensa_gc_mark_hook (sec, info, rel, h, sym) | |
777 | asection *sec; | |
778 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
779 | Elf_Internal_Rela *rel; | |
780 | struct elf_link_hash_entry *h; | |
781 | Elf_Internal_Sym *sym; | |
782 | { | |
783 | if (h != NULL) | |
784 | { | |
785 | switch (ELF32_R_TYPE (rel->r_info)) | |
786 | { | |
787 | case R_XTENSA_GNU_VTINHERIT: | |
788 | case R_XTENSA_GNU_VTENTRY: | |
789 | break; | |
790 | ||
791 | default: | |
792 | switch (h->root.type) | |
793 | { | |
794 | case bfd_link_hash_defined: | |
795 | case bfd_link_hash_defweak: | |
796 | return h->root.u.def.section; | |
797 | ||
798 | case bfd_link_hash_common: | |
799 | return h->root.u.c.p->section; | |
800 | ||
801 | default: | |
802 | break; | |
803 | } | |
804 | } | |
805 | } | |
806 | else | |
807 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); | |
808 | ||
809 | return NULL; | |
810 | } | |
811 | ||
812 | /* Update the GOT & PLT entry reference counts | |
813 | for the section being removed. */ | |
814 | ||
815 | static bfd_boolean | |
816 | elf_xtensa_gc_sweep_hook (abfd, info, sec, relocs) | |
817 | bfd *abfd; | |
818 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
819 | asection *sec; | |
820 | const Elf_Internal_Rela *relocs; | |
821 | { | |
822 | Elf_Internal_Shdr *symtab_hdr; | |
823 | struct elf_link_hash_entry **sym_hashes; | |
824 | bfd_signed_vma *local_got_refcounts; | |
825 | const Elf_Internal_Rela *rel, *relend; | |
826 | ||
827 | if ((sec->flags & SEC_ALLOC) == 0) | |
828 | return TRUE; | |
829 | ||
830 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
831 | sym_hashes = elf_sym_hashes (abfd); | |
832 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
833 | ||
834 | relend = relocs + sec->reloc_count; | |
835 | for (rel = relocs; rel < relend; rel++) | |
836 | { | |
837 | unsigned long r_symndx; | |
838 | unsigned int r_type; | |
839 | struct elf_link_hash_entry *h = NULL; | |
840 | ||
841 | r_symndx = ELF32_R_SYM (rel->r_info); | |
842 | if (r_symndx >= symtab_hdr->sh_info) | |
843 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
844 | ||
845 | r_type = ELF32_R_TYPE (rel->r_info); | |
846 | switch (r_type) | |
847 | { | |
848 | case R_XTENSA_32: | |
849 | if (h == NULL) | |
850 | goto local_literal; | |
851 | if (h->got.refcount > 0) | |
852 | h->got.refcount--; | |
853 | break; | |
854 | ||
855 | case R_XTENSA_PLT: | |
856 | if (h == NULL) | |
857 | goto local_literal; | |
858 | if (h->plt.refcount > 0) | |
859 | h->plt.refcount--; | |
860 | break; | |
861 | ||
862 | local_literal: | |
863 | if (local_got_refcounts[r_symndx] > 0) | |
864 | local_got_refcounts[r_symndx] -= 1; | |
865 | break; | |
866 | ||
867 | default: | |
868 | break; | |
869 | } | |
870 | } | |
871 | ||
872 | return TRUE; | |
873 | } | |
874 | ||
875 | ||
876 | /* Create all the dynamic sections. */ | |
877 | ||
878 | static bfd_boolean | |
879 | elf_xtensa_create_dynamic_sections (dynobj, info) | |
880 | bfd *dynobj; | |
881 | struct bfd_link_info *info; | |
882 | { | |
e901de89 | 883 | flagword flags, noalloc_flags; |
e0001a05 NC |
884 | asection *s; |
885 | ||
886 | /* First do all the standard stuff. */ | |
887 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
888 | return FALSE; | |
889 | ||
890 | /* Create any extra PLT sections in case check_relocs has already | |
891 | been called on all the non-dynamic input files. */ | |
892 | if (!add_extra_plt_sections (dynobj, plt_reloc_count)) | |
893 | return FALSE; | |
894 | ||
e901de89 BW |
895 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
896 | | SEC_LINKER_CREATED | SEC_READONLY); | |
897 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
898 | |
899 | /* Mark the ".got.plt" section READONLY. */ | |
900 | s = bfd_get_section_by_name (dynobj, ".got.plt"); | |
901 | if (s == NULL | |
902 | || ! bfd_set_section_flags (dynobj, s, flags)) | |
903 | return FALSE; | |
904 | ||
905 | /* Create ".rela.got". */ | |
906 | s = bfd_make_section (dynobj, ".rela.got"); | |
907 | if (s == NULL | |
908 | || ! bfd_set_section_flags (dynobj, s, flags) | |
909 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
910 | return FALSE; | |
911 | ||
e901de89 BW |
912 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
913 | s = bfd_make_section (dynobj, ".got.loc"); | |
914 | if (s == NULL | |
915 | || ! bfd_set_section_flags (dynobj, s, flags) | |
916 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
917 | return FALSE; | |
918 | ||
e0001a05 NC |
919 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
920 | s = bfd_make_section (dynobj, ".xt.lit.plt"); | |
921 | if (s == NULL | |
e901de89 | 922 | || ! bfd_set_section_flags (dynobj, s, noalloc_flags) |
e0001a05 NC |
923 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
924 | return FALSE; | |
925 | ||
926 | return TRUE; | |
927 | } | |
928 | ||
929 | ||
930 | static bfd_boolean | |
931 | add_extra_plt_sections (dynobj, count) | |
932 | bfd *dynobj; | |
933 | int count; | |
934 | { | |
935 | int chunk; | |
936 | ||
937 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
938 | ".got.plt" sections. */ | |
939 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
940 | { | |
941 | char *sname; | |
942 | flagword flags; | |
943 | asection *s; | |
944 | ||
945 | /* Stop when we find a section has already been created. */ | |
946 | if (elf_xtensa_get_plt_section (dynobj, chunk)) | |
947 | break; | |
948 | ||
949 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
950 | | SEC_LINKER_CREATED | SEC_READONLY); | |
951 | ||
952 | sname = (char *) bfd_malloc (10); | |
953 | sprintf (sname, ".plt.%u", chunk); | |
954 | s = bfd_make_section (dynobj, sname); | |
955 | if (s == NULL | |
956 | || ! bfd_set_section_flags (dynobj, s, flags | SEC_CODE) | |
957 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
958 | return FALSE; | |
959 | ||
960 | sname = (char *) bfd_malloc (14); | |
961 | sprintf (sname, ".got.plt.%u", chunk); | |
962 | s = bfd_make_section (dynobj, sname); | |
963 | if (s == NULL | |
964 | || ! bfd_set_section_flags (dynobj, s, flags) | |
965 | || ! bfd_set_section_alignment (dynobj, s, 2)) | |
966 | return FALSE; | |
967 | } | |
968 | ||
969 | return TRUE; | |
970 | } | |
971 | ||
972 | ||
973 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
974 | regular object. The current definition is in some section of the | |
975 | dynamic object, but we're not including those sections. We have to | |
976 | change the definition to something the rest of the link can | |
977 | understand. */ | |
978 | ||
979 | static bfd_boolean | |
980 | elf_xtensa_adjust_dynamic_symbol (info, h) | |
981 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
982 | struct elf_link_hash_entry *h; | |
983 | { | |
984 | /* If this is a weak symbol, and there is a real definition, the | |
985 | processor independent code will have arranged for us to see the | |
986 | real definition first, and we can just use the same value. */ | |
987 | if (h->weakdef != NULL) | |
988 | { | |
989 | BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined | |
990 | || h->weakdef->root.type == bfd_link_hash_defweak); | |
991 | h->root.u.def.section = h->weakdef->root.u.def.section; | |
992 | h->root.u.def.value = h->weakdef->root.u.def.value; | |
993 | return TRUE; | |
994 | } | |
995 | ||
996 | /* This is a reference to a symbol defined by a dynamic object. The | |
997 | reference must go through the GOT, so there's no need for COPY relocs, | |
998 | .dynbss, etc. */ | |
999 | ||
1000 | return TRUE; | |
1001 | } | |
1002 | ||
1003 | ||
1004 | static void | |
1005 | elf_xtensa_make_sym_local (info, h) | |
1006 | struct bfd_link_info *info; | |
1007 | struct elf_link_hash_entry *h; | |
1008 | { | |
1009 | if (info->shared) | |
1010 | { | |
1011 | if (h->plt.refcount > 0) | |
1012 | { | |
1013 | /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */ | |
1014 | if (h->got.refcount < 0) | |
1015 | h->got.refcount = 0; | |
1016 | h->got.refcount += h->plt.refcount; | |
1017 | h->plt.refcount = 0; | |
1018 | } | |
1019 | } | |
1020 | else | |
1021 | { | |
1022 | /* Don't need any dynamic relocations at all. */ | |
e0001a05 NC |
1023 | h->plt.refcount = 0; |
1024 | h->got.refcount = 0; | |
1025 | } | |
1026 | } | |
1027 | ||
1028 | ||
1029 | static bfd_boolean | |
1030 | elf_xtensa_fix_refcounts (h, arg) | |
1031 | struct elf_link_hash_entry *h; | |
1032 | PTR arg; | |
1033 | { | |
1034 | struct bfd_link_info *info = (struct bfd_link_info *) arg; | |
1035 | ||
1036 | if (h->root.type == bfd_link_hash_warning) | |
1037 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1038 | ||
571b5725 | 1039 | if (! xtensa_elf_dynamic_symbol_p (h, info)) |
e0001a05 NC |
1040 | elf_xtensa_make_sym_local (info, h); |
1041 | ||
e0001a05 NC |
1042 | return TRUE; |
1043 | } | |
1044 | ||
1045 | ||
1046 | static bfd_boolean | |
1047 | elf_xtensa_allocate_plt_size (h, arg) | |
1048 | struct elf_link_hash_entry *h; | |
1049 | PTR arg; | |
1050 | { | |
1051 | asection *srelplt = (asection *) arg; | |
1052 | ||
1053 | if (h->root.type == bfd_link_hash_warning) | |
1054 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1055 | ||
1056 | if (h->plt.refcount > 0) | |
eea6121a | 1057 | srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1058 | |
1059 | return TRUE; | |
1060 | } | |
1061 | ||
1062 | ||
1063 | static bfd_boolean | |
1064 | elf_xtensa_allocate_got_size (h, arg) | |
1065 | struct elf_link_hash_entry *h; | |
1066 | PTR arg; | |
1067 | { | |
1068 | asection *srelgot = (asection *) arg; | |
1069 | ||
1070 | if (h->root.type == bfd_link_hash_warning) | |
1071 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1072 | ||
1073 | if (h->got.refcount > 0) | |
eea6121a | 1074 | srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1075 | |
1076 | return TRUE; | |
1077 | } | |
1078 | ||
1079 | ||
1080 | static void | |
1081 | elf_xtensa_allocate_local_got_size (info, srelgot) | |
1082 | struct bfd_link_info *info; | |
1083 | asection *srelgot; | |
1084 | { | |
1085 | bfd *i; | |
1086 | ||
1087 | for (i = info->input_bfds; i; i = i->link_next) | |
1088 | { | |
1089 | bfd_signed_vma *local_got_refcounts; | |
1090 | bfd_size_type j, cnt; | |
1091 | Elf_Internal_Shdr *symtab_hdr; | |
1092 | ||
1093 | local_got_refcounts = elf_local_got_refcounts (i); | |
1094 | if (!local_got_refcounts) | |
1095 | continue; | |
1096 | ||
1097 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1098 | cnt = symtab_hdr->sh_info; | |
1099 | ||
1100 | for (j = 0; j < cnt; ++j) | |
1101 | { | |
1102 | if (local_got_refcounts[j] > 0) | |
eea6121a AM |
1103 | srelgot->size += (local_got_refcounts[j] |
1104 | * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1105 | } |
1106 | } | |
1107 | } | |
1108 | ||
1109 | ||
1110 | /* Set the sizes of the dynamic sections. */ | |
1111 | ||
1112 | static bfd_boolean | |
1113 | elf_xtensa_size_dynamic_sections (output_bfd, info) | |
1114 | bfd *output_bfd ATTRIBUTE_UNUSED; | |
1115 | struct bfd_link_info *info; | |
1116 | { | |
e901de89 BW |
1117 | bfd *dynobj, *abfd; |
1118 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1119 | bfd_boolean relplt, relgot; |
1120 | int plt_entries, plt_chunks, chunk; | |
1121 | ||
1122 | plt_entries = 0; | |
1123 | plt_chunks = 0; | |
1124 | srelgot = 0; | |
1125 | ||
1126 | dynobj = elf_hash_table (info)->dynobj; | |
1127 | if (dynobj == NULL) | |
1128 | abort (); | |
1129 | ||
1130 | if (elf_hash_table (info)->dynamic_sections_created) | |
1131 | { | |
1132 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 1133 | if (info->executable) |
e0001a05 NC |
1134 | { |
1135 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1136 | if (s == NULL) | |
1137 | abort (); | |
eea6121a | 1138 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
e0001a05 NC |
1139 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1140 | } | |
1141 | ||
1142 | /* Allocate room for one word in ".got". */ | |
1143 | s = bfd_get_section_by_name (dynobj, ".got"); | |
1144 | if (s == NULL) | |
1145 | abort (); | |
eea6121a | 1146 | s->size = 4; |
e0001a05 NC |
1147 | |
1148 | /* Adjust refcounts for symbols that we now know are not "dynamic". */ | |
1149 | elf_link_hash_traverse (elf_hash_table (info), | |
1150 | elf_xtensa_fix_refcounts, | |
1151 | (PTR) info); | |
1152 | ||
1153 | /* Allocate space in ".rela.got" for literals that reference | |
1154 | global symbols. */ | |
1155 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); | |
1156 | if (srelgot == NULL) | |
1157 | abort (); | |
1158 | elf_link_hash_traverse (elf_hash_table (info), | |
1159 | elf_xtensa_allocate_got_size, | |
1160 | (PTR) srelgot); | |
1161 | ||
1162 | /* If we are generating a shared object, we also need space in | |
1163 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1164 | reference local symbols. */ | |
1165 | if (info->shared) | |
1166 | elf_xtensa_allocate_local_got_size (info, srelgot); | |
1167 | ||
1168 | /* Allocate space in ".rela.plt" for literals that have PLT entries. */ | |
1169 | srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
1170 | if (srelplt == NULL) | |
1171 | abort (); | |
1172 | elf_link_hash_traverse (elf_hash_table (info), | |
1173 | elf_xtensa_allocate_plt_size, | |
1174 | (PTR) srelplt); | |
1175 | ||
1176 | /* Allocate space in ".plt" to match the size of ".rela.plt". For | |
1177 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1178 | For each chunk of ".plt", we also need two more 4-byte | |
1179 | literals, two corresponding entries in ".rela.got", and an | |
1180 | 8-byte entry in ".xt.lit.plt". */ | |
1181 | spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt"); | |
1182 | if (spltlittbl == NULL) | |
1183 | abort (); | |
1184 | ||
eea6121a | 1185 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
1186 | plt_chunks = |
1187 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1188 | ||
1189 | /* Iterate over all the PLT chunks, including any extra sections | |
1190 | created earlier because the initial count of PLT relocations | |
1191 | was an overestimate. */ | |
1192 | for (chunk = 0; | |
1193 | (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL; | |
1194 | chunk++) | |
1195 | { | |
1196 | int chunk_entries; | |
1197 | ||
1198 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
1199 | if (sgotplt == NULL) | |
1200 | abort (); | |
1201 | ||
1202 | if (chunk < plt_chunks - 1) | |
1203 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1204 | else if (chunk == plt_chunks - 1) | |
1205 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1206 | else | |
1207 | chunk_entries = 0; | |
1208 | ||
1209 | if (chunk_entries != 0) | |
1210 | { | |
eea6121a AM |
1211 | sgotplt->size = 4 * (chunk_entries + 2); |
1212 | splt->size = PLT_ENTRY_SIZE * chunk_entries; | |
1213 | srelgot->size += 2 * sizeof (Elf32_External_Rela); | |
1214 | spltlittbl->size += 8; | |
e0001a05 NC |
1215 | } |
1216 | else | |
1217 | { | |
eea6121a AM |
1218 | sgotplt->size = 0; |
1219 | splt->size = 0; | |
e0001a05 NC |
1220 | } |
1221 | } | |
e901de89 BW |
1222 | |
1223 | /* Allocate space in ".got.loc" to match the total size of all the | |
1224 | literal tables. */ | |
1225 | sgotloc = bfd_get_section_by_name (dynobj, ".got.loc"); | |
1226 | if (sgotloc == NULL) | |
1227 | abort (); | |
eea6121a | 1228 | sgotloc->size = spltlittbl->size; |
e901de89 BW |
1229 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) |
1230 | { | |
1231 | if (abfd->flags & DYNAMIC) | |
1232 | continue; | |
1233 | for (s = abfd->sections; s != NULL; s = s->next) | |
1234 | { | |
b536dc1e BW |
1235 | if (! elf_discarded_section (s) |
1236 | && xtensa_is_littable_section (s) | |
1237 | && s != spltlittbl) | |
eea6121a | 1238 | sgotloc->size += s->size; |
e901de89 BW |
1239 | } |
1240 | } | |
e0001a05 NC |
1241 | } |
1242 | ||
1243 | /* Allocate memory for dynamic sections. */ | |
1244 | relplt = FALSE; | |
1245 | relgot = FALSE; | |
1246 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1247 | { | |
1248 | const char *name; | |
1249 | bfd_boolean strip; | |
1250 | ||
1251 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1252 | continue; | |
1253 | ||
1254 | /* It's OK to base decisions on the section name, because none | |
1255 | of the dynobj section names depend upon the input files. */ | |
1256 | name = bfd_get_section_name (dynobj, s); | |
1257 | ||
1258 | strip = FALSE; | |
1259 | ||
1260 | if (strncmp (name, ".rela", 5) == 0) | |
1261 | { | |
1262 | if (strcmp (name, ".rela.plt") == 0) | |
1263 | relplt = TRUE; | |
1264 | else if (strcmp (name, ".rela.got") == 0) | |
1265 | relgot = TRUE; | |
1266 | ||
1267 | /* We use the reloc_count field as a counter if we need | |
1268 | to copy relocs into the output file. */ | |
1269 | s->reloc_count = 0; | |
1270 | } | |
1271 | else if (strncmp (name, ".plt.", 5) == 0 | |
1272 | || strncmp (name, ".got.plt.", 9) == 0) | |
1273 | { | |
eea6121a | 1274 | if (s->size == 0) |
e0001a05 NC |
1275 | { |
1276 | /* If we don't need this section, strip it from the output | |
1277 | file. We must create the ".plt*" and ".got.plt*" | |
1278 | sections in create_dynamic_sections and/or check_relocs | |
1279 | based on a conservative estimate of the PLT relocation | |
1280 | count, because the sections must be created before the | |
1281 | linker maps input sections to output sections. The | |
1282 | linker does that before size_dynamic_sections, where we | |
1283 | compute the exact size of the PLT, so there may be more | |
1284 | of these sections than are actually needed. */ | |
1285 | strip = TRUE; | |
1286 | } | |
1287 | } | |
1288 | else if (strcmp (name, ".got") != 0 | |
1289 | && strcmp (name, ".plt") != 0 | |
1290 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1291 | && strcmp (name, ".xt.lit.plt") != 0 |
1292 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1293 | { |
1294 | /* It's not one of our sections, so don't allocate space. */ | |
1295 | continue; | |
1296 | } | |
1297 | ||
1298 | if (strip) | |
1299 | _bfd_strip_section_from_output (info, s); | |
1300 | else | |
1301 | { | |
1302 | /* Allocate memory for the section contents. */ | |
eea6121a AM |
1303 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
1304 | if (s->contents == NULL && s->size != 0) | |
e0001a05 NC |
1305 | return FALSE; |
1306 | } | |
1307 | } | |
1308 | ||
1309 | if (elf_hash_table (info)->dynamic_sections_created) | |
1310 | { | |
1311 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1312 | known until finish_dynamic_sections, but we need to get the relocs | |
1313 | in place before they are sorted. */ | |
1314 | if (srelgot == NULL) | |
1315 | abort (); | |
1316 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
1317 | { | |
1318 | Elf_Internal_Rela irela; | |
1319 | bfd_byte *loc; | |
1320 | ||
1321 | irela.r_offset = 0; | |
1322 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1323 | irela.r_addend = 0; | |
1324 | ||
1325 | loc = (srelgot->contents | |
1326 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1327 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1328 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1329 | loc + sizeof (Elf32_External_Rela)); | |
1330 | srelgot->reloc_count += 2; | |
1331 | } | |
1332 | ||
1333 | /* Add some entries to the .dynamic section. We fill in the | |
1334 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1335 | must add the entries now so that we get the correct size for | |
1336 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1337 | dynamic linker and used by the debugger. */ | |
1338 | #define add_dynamic_entry(TAG, VAL) \ | |
5a580b3a | 1339 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
e0001a05 NC |
1340 | |
1341 | if (! info->shared) | |
1342 | { | |
1343 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1344 | return FALSE; | |
1345 | } | |
1346 | ||
1347 | if (relplt) | |
1348 | { | |
1349 | if (!add_dynamic_entry (DT_PLTGOT, 0) | |
1350 | || !add_dynamic_entry (DT_PLTRELSZ, 0) | |
1351 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1352 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1353 | return FALSE; | |
1354 | } | |
1355 | ||
1356 | if (relgot) | |
1357 | { | |
1358 | if (!add_dynamic_entry (DT_RELA, 0) | |
1359 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1360 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
1361 | return FALSE; | |
1362 | } | |
1363 | ||
e0001a05 NC |
1364 | if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) |
1365 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) | |
1366 | return FALSE; | |
1367 | } | |
1368 | #undef add_dynamic_entry | |
1369 | ||
1370 | return TRUE; | |
1371 | } | |
1372 | ||
1373 | \f | |
1374 | /* Remove any PT_LOAD segments with no allocated sections. Prior to | |
1375 | binutils 2.13, this function used to remove the non-SEC_ALLOC | |
1376 | sections from PT_LOAD segments, but that task has now been moved | |
1377 | into elf.c. We still need this function to remove any empty | |
1378 | segments that result, but there's nothing Xtensa-specific about | |
1379 | this and it probably ought to be moved into elf.c as well. */ | |
1380 | ||
1381 | static bfd_boolean | |
c84fca4d | 1382 | elf_xtensa_modify_segment_map (abfd, info) |
e0001a05 | 1383 | bfd *abfd; |
c84fca4d | 1384 | struct bfd_link_info *info ATTRIBUTE_UNUSED; |
e0001a05 NC |
1385 | { |
1386 | struct elf_segment_map **m_p; | |
1387 | ||
1388 | m_p = &elf_tdata (abfd)->segment_map; | |
1389 | while (*m_p != NULL) | |
1390 | { | |
1391 | if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0) | |
1392 | *m_p = (*m_p)->next; | |
1393 | else | |
1394 | m_p = &(*m_p)->next; | |
1395 | } | |
1396 | return TRUE; | |
1397 | } | |
1398 | ||
1399 | \f | |
1400 | /* Perform the specified relocation. The instruction at (contents + address) | |
1401 | is modified to set one operand to represent the value in "relocation". The | |
1402 | operand position is determined by the relocation type recorded in the | |
1403 | howto. */ | |
1404 | ||
1405 | #define CALL_SEGMENT_BITS (30) | |
1406 | #define CALL_SEGMENT_SIZE (1<<CALL_SEGMENT_BITS) | |
1407 | ||
1408 | static bfd_reloc_status_type | |
1409 | elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
1410 | contents, address, is_weak_undef, error_message) | |
1411 | reloc_howto_type *howto; | |
1412 | bfd *abfd; | |
1413 | asection *input_section; | |
1414 | bfd_vma relocation; | |
1415 | bfd_byte *contents; | |
1416 | bfd_vma address; | |
1417 | bfd_boolean is_weak_undef; | |
1418 | char **error_message; | |
1419 | { | |
1420 | xtensa_opcode opcode; | |
1421 | xtensa_operand operand; | |
1422 | xtensa_encode_result encode_result; | |
1423 | xtensa_isa isa = xtensa_default_isa; | |
1424 | xtensa_insnbuf ibuff; | |
1425 | bfd_vma self_address; | |
1426 | int opnd; | |
1427 | uint32 newval; | |
1428 | ||
1429 | switch (howto->type) | |
1430 | { | |
1431 | case R_XTENSA_NONE: | |
1432 | return bfd_reloc_ok; | |
1433 | ||
1434 | case R_XTENSA_ASM_EXPAND: | |
1435 | if (!is_weak_undef) | |
1436 | { | |
1437 | /* Check for windowed CALL across a 1GB boundary. */ | |
1438 | xtensa_opcode opcode = | |
1439 | get_expanded_call_opcode (contents + address, | |
eea6121a | 1440 | input_section->size - address); |
e0001a05 NC |
1441 | if (is_windowed_call_opcode (opcode)) |
1442 | { | |
1443 | self_address = (input_section->output_section->vma | |
1444 | + input_section->output_offset | |
1445 | + address); | |
1446 | if ((self_address >> CALL_SEGMENT_BITS) != | |
1447 | (relocation >> CALL_SEGMENT_BITS)) | |
1448 | { | |
1449 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1450 | "return may fail"; | |
1451 | return bfd_reloc_dangerous; | |
1452 | } | |
1453 | } | |
1454 | } | |
1455 | return bfd_reloc_ok; | |
1456 | ||
1457 | case R_XTENSA_ASM_SIMPLIFY: | |
1458 | { | |
1459 | /* Convert the L32R/CALLX to CALL. */ | |
1460 | bfd_reloc_status_type retval = | |
eea6121a | 1461 | elf_xtensa_do_asm_simplify (contents, address, input_section->size); |
e0001a05 NC |
1462 | if (retval != bfd_reloc_ok) |
1463 | return retval; | |
1464 | ||
1465 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1466 | address += 3; | |
1467 | howto = &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
1468 | } | |
1469 | break; | |
1470 | ||
1471 | case R_XTENSA_32: | |
1472 | case R_XTENSA_PLT: | |
1473 | { | |
1474 | bfd_vma x; | |
1475 | x = bfd_get_32 (abfd, contents + address); | |
1476 | x = x + relocation; | |
1477 | bfd_put_32 (abfd, x, contents + address); | |
1478 | } | |
1479 | return bfd_reloc_ok; | |
1480 | } | |
1481 | ||
1482 | /* Read the instruction into a buffer and decode the opcode. */ | |
1483 | ibuff = xtensa_insnbuf_alloc (isa); | |
1484 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address); | |
1485 | opcode = xtensa_decode_insn (isa, ibuff); | |
1486 | ||
1487 | /* Determine which operand is being relocated. */ | |
1488 | if (opcode == XTENSA_UNDEFINED) | |
1489 | { | |
1490 | *error_message = "cannot decode instruction"; | |
1491 | return bfd_reloc_dangerous; | |
1492 | } | |
1493 | ||
1494 | if (howto->type < R_XTENSA_OP0 || howto->type > R_XTENSA_OP2) | |
1495 | { | |
1496 | *error_message = "unexpected relocation"; | |
1497 | return bfd_reloc_dangerous; | |
1498 | } | |
1499 | ||
1500 | opnd = howto->type - R_XTENSA_OP0; | |
1501 | ||
1502 | /* Calculate the PC address for this instruction. */ | |
1503 | if (!howto->pc_relative) | |
1504 | { | |
1505 | *error_message = "expected PC-relative relocation"; | |
1506 | return bfd_reloc_dangerous; | |
1507 | } | |
1508 | ||
1509 | self_address = (input_section->output_section->vma | |
1510 | + input_section->output_offset | |
1511 | + address); | |
1512 | ||
1513 | /* Apply the relocation. */ | |
1514 | operand = xtensa_get_operand (isa, opcode, opnd); | |
1515 | newval = xtensa_operand_do_reloc (operand, relocation, self_address); | |
1516 | encode_result = xtensa_operand_encode (operand, &newval); | |
1517 | xtensa_operand_set_field (operand, ibuff, newval); | |
1518 | ||
1519 | /* Write the modified instruction back out of the buffer. */ | |
1520 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address); | |
1521 | free (ibuff); | |
1522 | ||
1523 | if (encode_result != xtensa_encode_result_ok) | |
1524 | { | |
1525 | char *message = build_encoding_error_message (opcode, encode_result); | |
1526 | *error_message = message; | |
1527 | return bfd_reloc_dangerous; | |
1528 | } | |
1529 | ||
1530 | /* Final check for call. */ | |
1531 | if (is_direct_call_opcode (opcode) | |
1532 | && is_windowed_call_opcode (opcode)) | |
1533 | { | |
1534 | if ((self_address >> CALL_SEGMENT_BITS) != | |
1535 | (relocation >> CALL_SEGMENT_BITS)) | |
1536 | { | |
1537 | *error_message = "windowed call crosses 1GB boundary; " | |
1538 | "return may fail"; | |
1539 | return bfd_reloc_dangerous; | |
1540 | } | |
1541 | } | |
1542 | ||
1543 | return bfd_reloc_ok; | |
1544 | } | |
1545 | ||
1546 | ||
1547 | static char * | |
1548 | vsprint_msg VPARAMS ((const char *origmsg, const char *fmt, int arglen, ...)) | |
1549 | { | |
1550 | /* To reduce the size of the memory leak, | |
1551 | we only use a single message buffer. */ | |
1552 | static bfd_size_type alloc_size = 0; | |
1553 | static char *message = NULL; | |
1554 | bfd_size_type orig_len, len = 0; | |
1555 | bfd_boolean is_append; | |
1556 | ||
1557 | VA_OPEN (ap, arglen); | |
1558 | VA_FIXEDARG (ap, const char *, origmsg); | |
1559 | ||
1560 | is_append = (origmsg == message); | |
1561 | ||
1562 | orig_len = strlen (origmsg); | |
1563 | len = orig_len + strlen (fmt) + arglen + 20; | |
1564 | if (len > alloc_size) | |
1565 | { | |
1566 | message = (char *) bfd_realloc (message, len); | |
1567 | alloc_size = len; | |
1568 | } | |
1569 | if (!is_append) | |
1570 | memcpy (message, origmsg, orig_len); | |
1571 | vsprintf (message + orig_len, fmt, ap); | |
1572 | VA_CLOSE (ap); | |
1573 | return message; | |
1574 | } | |
1575 | ||
1576 | ||
1577 | static char * | |
1578 | build_encoding_error_message (opcode, encode_result) | |
1579 | xtensa_opcode opcode; | |
1580 | xtensa_encode_result encode_result; | |
1581 | { | |
1582 | const char *opname = xtensa_opcode_name (xtensa_default_isa, opcode); | |
1583 | const char *msg = NULL; | |
1584 | ||
1585 | switch (encode_result) | |
1586 | { | |
1587 | case xtensa_encode_result_ok: | |
1588 | msg = "unexpected valid encoding"; | |
1589 | break; | |
1590 | case xtensa_encode_result_align: | |
1591 | msg = "misaligned encoding"; | |
1592 | break; | |
1593 | case xtensa_encode_result_not_in_table: | |
1594 | msg = "encoding not in lookup table"; | |
1595 | break; | |
1596 | case xtensa_encode_result_too_low: | |
1597 | msg = "encoding out of range: too low"; | |
1598 | break; | |
1599 | case xtensa_encode_result_too_high: | |
1600 | msg = "encoding out of range: too high"; | |
1601 | break; | |
1602 | case xtensa_encode_result_not_ok: | |
1603 | default: | |
1604 | msg = "could not encode"; | |
1605 | break; | |
1606 | } | |
1607 | ||
1608 | if (is_direct_call_opcode (opcode) | |
1609 | && (encode_result == xtensa_encode_result_too_low | |
1610 | || encode_result == xtensa_encode_result_too_high)) | |
1611 | ||
1612 | msg = "direct call out of range"; | |
1613 | ||
1614 | else if (opcode == get_l32r_opcode ()) | |
1615 | { | |
1616 | /* L32Rs have the strange interaction with encoding in that they | |
1617 | have an unsigned immediate field, so libisa returns "too high" | |
1618 | when the absolute value is out of range and never returns "too | |
1619 | low", but I leave the "too low" message in case anything | |
1620 | changes. */ | |
1621 | if (encode_result == xtensa_encode_result_too_low) | |
1622 | msg = "literal out of range"; | |
1623 | else if (encode_result == xtensa_encode_result_too_high) | |
1624 | msg = "literal placed after use"; | |
1625 | } | |
1626 | ||
1627 | return vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
1628 | } | |
1629 | ||
1630 | ||
1631 | /* This function is registered as the "special_function" in the | |
1632 | Xtensa howto for handling simplify operations. | |
1633 | bfd_perform_relocation / bfd_install_relocation use it to | |
1634 | perform (install) the specified relocation. Since this replaces the code | |
1635 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
1636 | stripped-down version of bfd_perform_relocation. */ | |
1637 | ||
1638 | static bfd_reloc_status_type | |
1639 | bfd_elf_xtensa_reloc (abfd, reloc_entry, symbol, data, input_section, | |
1640 | output_bfd, error_message) | |
1641 | bfd *abfd; | |
1642 | arelent *reloc_entry; | |
1643 | asymbol *symbol; | |
1644 | PTR data; | |
1645 | asection *input_section; | |
1646 | bfd *output_bfd; | |
1647 | char **error_message; | |
1648 | { | |
1649 | bfd_vma relocation; | |
1650 | bfd_reloc_status_type flag; | |
1651 | bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); | |
1652 | bfd_vma output_base = 0; | |
1653 | reloc_howto_type *howto = reloc_entry->howto; | |
1654 | asection *reloc_target_output_section; | |
1655 | bfd_boolean is_weak_undef; | |
1656 | ||
1049f94e | 1657 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
1658 | output, and the reloc is against an external symbol, the resulting |
1659 | reloc will also be against the same symbol. In such a case, we | |
1660 | don't want to change anything about the way the reloc is handled, | |
1661 | since it will all be done at final link time. This test is similar | |
1662 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
1663 | howto->partial_inplace go through even if the addend is non-zero. | |
1664 | (The real problem is that partial_inplace is set for XTENSA_32 | |
1665 | relocs to begin with, but that's a long story and there's little we | |
1666 | can do about it now....) */ | |
1667 | ||
1668 | if (output_bfd != (bfd *) NULL | |
1669 | && (symbol->flags & BSF_SECTION_SYM) == 0) | |
1670 | { | |
1671 | reloc_entry->address += input_section->output_offset; | |
1672 | return bfd_reloc_ok; | |
1673 | } | |
1674 | ||
1675 | /* Is the address of the relocation really within the section? */ | |
07515404 | 1676 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
e0001a05 NC |
1677 | return bfd_reloc_outofrange; |
1678 | ||
4cc11e76 | 1679 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
1680 | initial relocation command value. */ |
1681 | ||
1682 | /* Get symbol value. (Common symbols are special.) */ | |
1683 | if (bfd_is_com_section (symbol->section)) | |
1684 | relocation = 0; | |
1685 | else | |
1686 | relocation = symbol->value; | |
1687 | ||
1688 | reloc_target_output_section = symbol->section->output_section; | |
1689 | ||
1690 | /* Convert input-section-relative symbol value to absolute. */ | |
1691 | if ((output_bfd && !howto->partial_inplace) | |
1692 | || reloc_target_output_section == NULL) | |
1693 | output_base = 0; | |
1694 | else | |
1695 | output_base = reloc_target_output_section->vma; | |
1696 | ||
1697 | relocation += output_base + symbol->section->output_offset; | |
1698 | ||
1699 | /* Add in supplied addend. */ | |
1700 | relocation += reloc_entry->addend; | |
1701 | ||
1702 | /* Here the variable relocation holds the final address of the | |
1703 | symbol we are relocating against, plus any addend. */ | |
1704 | if (output_bfd) | |
1705 | { | |
1706 | if (!howto->partial_inplace) | |
1707 | { | |
1708 | /* This is a partial relocation, and we want to apply the relocation | |
1709 | to the reloc entry rather than the raw data. Everything except | |
1710 | relocations against section symbols has already been handled | |
1711 | above. */ | |
1712 | ||
1713 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); | |
1714 | reloc_entry->addend = relocation; | |
1715 | reloc_entry->address += input_section->output_offset; | |
1716 | return bfd_reloc_ok; | |
1717 | } | |
1718 | else | |
1719 | { | |
1720 | reloc_entry->address += input_section->output_offset; | |
1721 | reloc_entry->addend = 0; | |
1722 | } | |
1723 | } | |
1724 | ||
1725 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
1726 | && (symbol->flags & BSF_WEAK) != 0); | |
1727 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
1728 | (bfd_byte *) data, (bfd_vma) octets, | |
1729 | is_weak_undef, error_message); | |
1730 | ||
1731 | if (flag == bfd_reloc_dangerous) | |
1732 | { | |
1733 | /* Add the symbol name to the error message. */ | |
1734 | if (! *error_message) | |
1735 | *error_message = ""; | |
1736 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
1737 | strlen (symbol->name) + 17, | |
1738 | symbol->name, reloc_entry->addend); | |
1739 | } | |
1740 | ||
1741 | return flag; | |
1742 | } | |
1743 | ||
1744 | ||
1745 | /* Set up an entry in the procedure linkage table. */ | |
1746 | ||
1747 | static bfd_vma | |
1748 | elf_xtensa_create_plt_entry (dynobj, output_bfd, reloc_index) | |
1749 | bfd *dynobj; | |
1750 | bfd *output_bfd; | |
1751 | unsigned reloc_index; | |
1752 | { | |
1753 | asection *splt, *sgotplt; | |
1754 | bfd_vma plt_base, got_base; | |
1755 | bfd_vma code_offset, lit_offset; | |
1756 | int chunk; | |
1757 | ||
1758 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
1759 | splt = elf_xtensa_get_plt_section (dynobj, chunk); | |
1760 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
1761 | BFD_ASSERT (splt != NULL && sgotplt != NULL); | |
1762 | ||
1763 | plt_base = splt->output_section->vma + splt->output_offset; | |
1764 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
1765 | ||
1766 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
1767 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
1768 | ||
1769 | /* Fill in the literal entry. This is the offset of the dynamic | |
1770 | relocation entry. */ | |
1771 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
1772 | sgotplt->contents + lit_offset); | |
1773 | ||
1774 | /* Fill in the entry in the procedure linkage table. */ | |
1775 | memcpy (splt->contents + code_offset, | |
1776 | (bfd_big_endian (output_bfd) | |
1777 | ? elf_xtensa_be_plt_entry | |
1778 | : elf_xtensa_le_plt_entry), | |
1779 | PLT_ENTRY_SIZE); | |
1780 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, | |
1781 | plt_base + code_offset + 3), | |
1782 | splt->contents + code_offset + 4); | |
1783 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, | |
1784 | plt_base + code_offset + 6), | |
1785 | splt->contents + code_offset + 7); | |
1786 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, | |
1787 | plt_base + code_offset + 9), | |
1788 | splt->contents + code_offset + 10); | |
1789 | ||
1790 | return plt_base + code_offset; | |
1791 | } | |
1792 | ||
1793 | ||
e0001a05 | 1794 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 1795 | both relocatable and final links. */ |
e0001a05 NC |
1796 | |
1797 | static bfd_boolean | |
1798 | elf_xtensa_relocate_section (output_bfd, info, input_bfd, | |
1799 | input_section, contents, relocs, | |
1800 | local_syms, local_sections) | |
1801 | bfd *output_bfd; | |
1802 | struct bfd_link_info *info; | |
1803 | bfd *input_bfd; | |
1804 | asection *input_section; | |
1805 | bfd_byte *contents; | |
1806 | Elf_Internal_Rela *relocs; | |
1807 | Elf_Internal_Sym *local_syms; | |
1808 | asection **local_sections; | |
1809 | { | |
1810 | Elf_Internal_Shdr *symtab_hdr; | |
1811 | Elf_Internal_Rela *rel; | |
1812 | Elf_Internal_Rela *relend; | |
1813 | struct elf_link_hash_entry **sym_hashes; | |
1814 | asection *srelgot, *srelplt; | |
1815 | bfd *dynobj; | |
88d65ad6 BW |
1816 | property_table_entry *lit_table = 0; |
1817 | int ltblsize = 0; | |
e0001a05 NC |
1818 | char *error_message = NULL; |
1819 | ||
1820 | if (xtensa_default_isa == NULL) | |
1821 | xtensa_isa_init (); | |
1822 | ||
1823 | dynobj = elf_hash_table (info)->dynobj; | |
1824 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
1825 | sym_hashes = elf_sym_hashes (input_bfd); | |
1826 | ||
1827 | srelgot = NULL; | |
1828 | srelplt = NULL; | |
1829 | if (dynobj != NULL) | |
1830 | { | |
1831 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got");; | |
1832 | srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
1833 | } | |
1834 | ||
88d65ad6 BW |
1835 | if (elf_hash_table (info)->dynamic_sections_created) |
1836 | { | |
1837 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, | |
1838 | &lit_table, XTENSA_LIT_SEC_NAME); | |
1839 | if (ltblsize < 0) | |
1840 | return FALSE; | |
1841 | } | |
1842 | ||
e0001a05 NC |
1843 | rel = relocs; |
1844 | relend = relocs + input_section->reloc_count; | |
1845 | for (; rel < relend; rel++) | |
1846 | { | |
1847 | int r_type; | |
1848 | reloc_howto_type *howto; | |
1849 | unsigned long r_symndx; | |
1850 | struct elf_link_hash_entry *h; | |
1851 | Elf_Internal_Sym *sym; | |
1852 | asection *sec; | |
1853 | bfd_vma relocation; | |
1854 | bfd_reloc_status_type r; | |
1855 | bfd_boolean is_weak_undef; | |
1856 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 1857 | bfd_boolean warned; |
e0001a05 NC |
1858 | |
1859 | r_type = ELF32_R_TYPE (rel->r_info); | |
1860 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
1861 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
1862 | continue; | |
1863 | ||
1864 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
1865 | { | |
1866 | bfd_set_error (bfd_error_bad_value); | |
1867 | return FALSE; | |
1868 | } | |
1869 | howto = &elf_howto_table[r_type]; | |
1870 | ||
1871 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1872 | ||
1049f94e | 1873 | if (info->relocatable) |
e0001a05 | 1874 | { |
1049f94e | 1875 | /* This is a relocatable link. |
e0001a05 NC |
1876 | 1) If the reloc is against a section symbol, adjust |
1877 | according to the output section. | |
1878 | 2) If there is a new target for this relocation, | |
1879 | the new target will be in the same output section. | |
1880 | We adjust the relocation by the output section | |
1881 | difference. */ | |
1882 | ||
1883 | if (relaxing_section) | |
1884 | { | |
1885 | /* Check if this references a section in another input file. */ | |
1049f94e | 1886 | do_fix_for_relocatable_link (rel, input_bfd, input_section); |
e0001a05 NC |
1887 | r_type = ELF32_R_TYPE (rel->r_info); |
1888 | } | |
1889 | ||
1890 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
1891 | { | |
1892 | /* Convert ASM_SIMPLIFY into the simpler relocation | |
1893 | so that they never escape a relaxing link. */ | |
eea6121a | 1894 | contract_asm_expansion (contents, input_section->size, rel); |
e0001a05 NC |
1895 | r_type = ELF32_R_TYPE (rel->r_info); |
1896 | } | |
1897 | ||
1049f94e | 1898 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
1899 | anything unless the reloc is against a section symbol, |
1900 | in which case we have to adjust according to where the | |
1901 | section symbol winds up in the output section. */ | |
1902 | if (r_symndx < symtab_hdr->sh_info) | |
1903 | { | |
1904 | sym = local_syms + r_symndx; | |
1905 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
1906 | { | |
1907 | sec = local_sections[r_symndx]; | |
1908 | rel->r_addend += sec->output_offset + sym->st_value; | |
1909 | } | |
1910 | } | |
1911 | ||
1912 | /* If there is an addend with a partial_inplace howto, | |
1913 | then move the addend to the contents. This is a hack | |
1049f94e | 1914 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
1915 | with some previous version of BFD. Now we can't easily get |
1916 | rid of the hack without breaking backward compatibility.... */ | |
1917 | if (rel->r_addend) | |
1918 | { | |
1919 | howto = &elf_howto_table[r_type]; | |
1920 | if (howto->partial_inplace) | |
1921 | { | |
1922 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
1923 | rel->r_addend, contents, | |
1924 | rel->r_offset, FALSE, | |
1925 | &error_message); | |
1926 | if (r != bfd_reloc_ok) | |
1927 | { | |
1928 | if (!((*info->callbacks->reloc_dangerous) | |
1929 | (info, error_message, input_bfd, input_section, | |
1930 | rel->r_offset))) | |
1931 | return FALSE; | |
1932 | } | |
1933 | rel->r_addend = 0; | |
1934 | } | |
1935 | } | |
1936 | ||
1049f94e | 1937 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
1938 | continue; |
1939 | } | |
1940 | ||
1941 | /* This is a final link. */ | |
1942 | ||
1943 | h = NULL; | |
1944 | sym = NULL; | |
1945 | sec = NULL; | |
1946 | is_weak_undef = FALSE; | |
1947 | unresolved_reloc = FALSE; | |
9b8c98a4 | 1948 | warned = FALSE; |
e0001a05 NC |
1949 | |
1950 | if (howto->partial_inplace) | |
1951 | { | |
1952 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
1953 | problems with DWARF info in partial links, there may be | |
1954 | an addend stored in the contents. Take it out of there | |
1955 | and move it back into the addend field of the reloc. */ | |
1956 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
1957 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
1958 | } | |
1959 | ||
1960 | if (r_symndx < symtab_hdr->sh_info) | |
1961 | { | |
1962 | sym = local_syms + r_symndx; | |
1963 | sec = local_sections[r_symndx]; | |
8517fae7 | 1964 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
e0001a05 NC |
1965 | } |
1966 | else | |
1967 | { | |
b2a8e766 AM |
1968 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
1969 | r_symndx, symtab_hdr, sym_hashes, | |
1970 | h, sec, relocation, | |
1971 | unresolved_reloc, warned); | |
560e09e9 NC |
1972 | |
1973 | if (relocation == 0 | |
1974 | && !unresolved_reloc | |
1975 | && h->root.type == bfd_link_hash_undefweak) | |
e0001a05 | 1976 | is_weak_undef = TRUE; |
e0001a05 NC |
1977 | } |
1978 | ||
1979 | if (relaxing_section) | |
1980 | { | |
1981 | /* Check if this references a section in another input file. */ | |
1982 | do_fix_for_final_link (rel, input_section, &relocation); | |
1983 | ||
1984 | /* Update some already cached values. */ | |
1985 | r_type = ELF32_R_TYPE (rel->r_info); | |
1986 | howto = &elf_howto_table[r_type]; | |
1987 | } | |
1988 | ||
1989 | /* Sanity check the address. */ | |
bff5f93a | 1990 | if (rel->r_offset >= bfd_get_section_limit (input_bfd, input_section) |
e0001a05 NC |
1991 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
1992 | { | |
1993 | bfd_set_error (bfd_error_bad_value); | |
1994 | return FALSE; | |
1995 | } | |
1996 | ||
1997 | /* Generate dynamic relocations. */ | |
1998 | if (elf_hash_table (info)->dynamic_sections_created) | |
1999 | { | |
571b5725 | 2000 | bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info); |
e0001a05 NC |
2001 | |
2002 | if (dynamic_symbol && (r_type == R_XTENSA_OP0 | |
2003 | || r_type == R_XTENSA_OP1 | |
2004 | || r_type == R_XTENSA_OP2)) | |
2005 | { | |
2006 | /* This is an error. The symbol's real value won't be known | |
2007 | until runtime and it's likely to be out of range anyway. */ | |
2008 | const char *name = h->root.root.string; | |
2009 | error_message = vsprint_msg ("invalid relocation for dynamic " | |
2010 | "symbol", ": %s", | |
2011 | strlen (name) + 2, name); | |
2012 | if (!((*info->callbacks->reloc_dangerous) | |
2013 | (info, error_message, input_bfd, input_section, | |
2014 | rel->r_offset))) | |
2015 | return FALSE; | |
2016 | } | |
2017 | else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
2018 | && (input_section->flags & SEC_ALLOC) != 0 | |
2019 | && (dynamic_symbol || info->shared)) | |
2020 | { | |
2021 | Elf_Internal_Rela outrel; | |
2022 | bfd_byte *loc; | |
2023 | asection *srel; | |
2024 | ||
2025 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
2026 | srel = srelplt; | |
2027 | else | |
2028 | srel = srelgot; | |
2029 | ||
2030 | BFD_ASSERT (srel != NULL); | |
2031 | ||
2032 | outrel.r_offset = | |
2033 | _bfd_elf_section_offset (output_bfd, info, | |
2034 | input_section, rel->r_offset); | |
2035 | ||
2036 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2037 | memset (&outrel, 0, sizeof outrel); | |
2038 | else | |
2039 | { | |
f0578e28 BW |
2040 | outrel.r_offset += (input_section->output_section->vma |
2041 | + input_section->output_offset); | |
e0001a05 | 2042 | |
88d65ad6 BW |
2043 | /* Complain if the relocation is in a read-only section |
2044 | and not in a literal pool. */ | |
2045 | if ((input_section->flags & SEC_READONLY) != 0 | |
2046 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
3ba3bc8c | 2047 | outrel.r_offset)) |
88d65ad6 BW |
2048 | { |
2049 | error_message = | |
2050 | _("dynamic relocation in read-only section"); | |
2051 | if (!((*info->callbacks->reloc_dangerous) | |
2052 | (info, error_message, input_bfd, input_section, | |
2053 | rel->r_offset))) | |
2054 | return FALSE; | |
2055 | } | |
2056 | ||
e0001a05 NC |
2057 | if (dynamic_symbol) |
2058 | { | |
2059 | outrel.r_addend = rel->r_addend; | |
2060 | rel->r_addend = 0; | |
2061 | ||
2062 | if (r_type == R_XTENSA_32) | |
2063 | { | |
2064 | outrel.r_info = | |
2065 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2066 | relocation = 0; | |
2067 | } | |
2068 | else /* r_type == R_XTENSA_PLT */ | |
2069 | { | |
2070 | outrel.r_info = | |
2071 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2072 | ||
2073 | /* Create the PLT entry and set the initial | |
2074 | contents of the literal entry to the address of | |
2075 | the PLT entry. */ | |
2076 | relocation = | |
2077 | elf_xtensa_create_plt_entry (dynobj, output_bfd, | |
2078 | srel->reloc_count); | |
2079 | } | |
2080 | unresolved_reloc = FALSE; | |
2081 | } | |
2082 | else | |
2083 | { | |
2084 | /* Generate a RELATIVE relocation. */ | |
2085 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2086 | outrel.r_addend = 0; | |
2087 | } | |
2088 | } | |
2089 | ||
2090 | loc = (srel->contents | |
2091 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2092 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2093 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
eea6121a | 2094 | <= srel->size); |
e0001a05 NC |
2095 | } |
2096 | } | |
2097 | ||
2098 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
2099 | because such sections are not SEC_ALLOC and thus ld.so will | |
2100 | not process them. */ | |
2101 | if (unresolved_reloc | |
2102 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
2103 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)) | |
2104 | (*_bfd_error_handler) | |
d003868e AM |
2105 | (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"), |
2106 | input_bfd, | |
2107 | input_section, | |
e0001a05 NC |
2108 | (long) rel->r_offset, |
2109 | h->root.root.string); | |
2110 | ||
2111 | /* There's no point in calling bfd_perform_relocation here. | |
2112 | Just go directly to our "special function". */ | |
2113 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2114 | relocation + rel->r_addend, | |
2115 | contents, rel->r_offset, is_weak_undef, | |
2116 | &error_message); | |
2117 | ||
9b8c98a4 | 2118 | if (r != bfd_reloc_ok && !warned) |
e0001a05 NC |
2119 | { |
2120 | const char *name; | |
2121 | ||
2122 | BFD_ASSERT (r == bfd_reloc_dangerous); | |
2123 | BFD_ASSERT (error_message != (char *) NULL); | |
2124 | ||
2125 | if (h != NULL) | |
2126 | name = h->root.root.string; | |
2127 | else | |
2128 | { | |
2129 | name = bfd_elf_string_from_elf_section | |
2130 | (input_bfd, symtab_hdr->sh_link, sym->st_name); | |
2131 | if (name && *name == '\0') | |
2132 | name = bfd_section_name (input_bfd, sec); | |
2133 | } | |
2134 | if (name) | |
2135 | error_message = vsprint_msg (error_message, ": %s", | |
2136 | strlen (name), name); | |
2137 | if (!((*info->callbacks->reloc_dangerous) | |
2138 | (info, error_message, input_bfd, input_section, | |
2139 | rel->r_offset))) | |
2140 | return FALSE; | |
2141 | } | |
2142 | } | |
2143 | ||
88d65ad6 BW |
2144 | if (lit_table) |
2145 | free (lit_table); | |
2146 | ||
3ba3bc8c BW |
2147 | input_section->reloc_done = TRUE; |
2148 | ||
e0001a05 NC |
2149 | return TRUE; |
2150 | } | |
2151 | ||
2152 | ||
2153 | /* Finish up dynamic symbol handling. There's not much to do here since | |
2154 | the PLT and GOT entries are all set up by relocate_section. */ | |
2155 | ||
2156 | static bfd_boolean | |
2157 | elf_xtensa_finish_dynamic_symbol (output_bfd, info, h, sym) | |
2158 | bfd *output_bfd ATTRIBUTE_UNUSED; | |
2159 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
2160 | struct elf_link_hash_entry *h; | |
2161 | Elf_Internal_Sym *sym; | |
2162 | { | |
2163 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 | |
2164 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2165 | { | |
2166 | /* Mark the symbol as undefined, rather than as defined in | |
2167 | the .plt section. Leave the value alone. */ | |
2168 | sym->st_shndx = SHN_UNDEF; | |
2169 | } | |
2170 | ||
2171 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
2172 | if (strcmp (h->root.root.string, "_DYNAMIC") == 0 | |
2173 | || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) | |
2174 | sym->st_shndx = SHN_ABS; | |
2175 | ||
2176 | return TRUE; | |
2177 | } | |
2178 | ||
2179 | ||
2180 | /* Combine adjacent literal table entries in the output. Adjacent | |
2181 | entries within each input section may have been removed during | |
2182 | relaxation, but we repeat the process here, even though it's too late | |
2183 | to shrink the output section, because it's important to minimize the | |
2184 | number of literal table entries to reduce the start-up work for the | |
2185 | runtime linker. Returns the number of remaining table entries or -1 | |
2186 | on error. */ | |
2187 | ||
2188 | static int | |
e901de89 | 2189 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc) |
e0001a05 | 2190 | bfd *output_bfd; |
e901de89 BW |
2191 | asection *sxtlit; |
2192 | asection *sgotloc; | |
e0001a05 | 2193 | { |
e0001a05 NC |
2194 | bfd_byte *contents; |
2195 | property_table_entry *table; | |
e901de89 | 2196 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
2197 | bfd_vma offset; |
2198 | int n, m, num; | |
2199 | ||
eea6121a | 2200 | section_size = sxtlit->size; |
e0001a05 NC |
2201 | BFD_ASSERT (section_size % 8 == 0); |
2202 | num = section_size / 8; | |
2203 | ||
eea6121a | 2204 | sgotloc_size = sgotloc->size; |
e901de89 | 2205 | if (sgotloc_size != section_size) |
b536dc1e BW |
2206 | { |
2207 | (*_bfd_error_handler) | |
2208 | ("internal inconsistency in size of .got.loc section"); | |
2209 | return -1; | |
2210 | } | |
e901de89 | 2211 | |
eea6121a AM |
2212 | table = bfd_malloc (num * sizeof (property_table_entry)); |
2213 | if (table == 0) | |
e0001a05 NC |
2214 | return -1; |
2215 | ||
2216 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
2217 | propagates to the output section, where it doesn't really apply and | |
eea6121a | 2218 | where it breaks the following call to bfd_malloc_and_get_section. */ |
e901de89 | 2219 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 2220 | |
eea6121a AM |
2221 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
2222 | { | |
2223 | if (contents != 0) | |
2224 | free (contents); | |
2225 | free (table); | |
2226 | return -1; | |
2227 | } | |
e0001a05 NC |
2228 | |
2229 | /* There should never be any relocations left at this point, so this | |
2230 | is quite a bit easier than what is done during relaxation. */ | |
2231 | ||
2232 | /* Copy the raw contents into a property table array and sort it. */ | |
2233 | offset = 0; | |
2234 | for (n = 0; n < num; n++) | |
2235 | { | |
2236 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
2237 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
2238 | offset += 8; | |
2239 | } | |
2240 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
2241 | ||
2242 | for (n = 0; n < num; n++) | |
2243 | { | |
2244 | bfd_boolean remove = FALSE; | |
2245 | ||
2246 | if (table[n].size == 0) | |
2247 | remove = TRUE; | |
2248 | else if (n > 0 && | |
2249 | (table[n-1].address + table[n-1].size == table[n].address)) | |
2250 | { | |
2251 | table[n-1].size += table[n].size; | |
2252 | remove = TRUE; | |
2253 | } | |
2254 | ||
2255 | if (remove) | |
2256 | { | |
2257 | for (m = n; m < num - 1; m++) | |
2258 | { | |
2259 | table[m].address = table[m+1].address; | |
2260 | table[m].size = table[m+1].size; | |
2261 | } | |
2262 | ||
2263 | n--; | |
2264 | num--; | |
2265 | } | |
2266 | } | |
2267 | ||
2268 | /* Copy the data back to the raw contents. */ | |
2269 | offset = 0; | |
2270 | for (n = 0; n < num; n++) | |
2271 | { | |
2272 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
2273 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
2274 | offset += 8; | |
2275 | } | |
2276 | ||
2277 | /* Clear the removed bytes. */ | |
2278 | if ((bfd_size_type) (num * 8) < section_size) | |
b54d4b07 | 2279 | memset (&contents[num * 8], 0, section_size - num * 8); |
e0001a05 | 2280 | |
e901de89 BW |
2281 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
2282 | section_size)) | |
e0001a05 NC |
2283 | return -1; |
2284 | ||
e901de89 BW |
2285 | /* Copy the contents to ".got.loc". */ |
2286 | memcpy (sgotloc->contents, contents, section_size); | |
2287 | ||
e0001a05 | 2288 | free (contents); |
b614a702 | 2289 | free (table); |
e0001a05 NC |
2290 | return num; |
2291 | } | |
2292 | ||
2293 | ||
2294 | /* Finish up the dynamic sections. */ | |
2295 | ||
2296 | static bfd_boolean | |
2297 | elf_xtensa_finish_dynamic_sections (output_bfd, info) | |
2298 | bfd *output_bfd; | |
2299 | struct bfd_link_info *info; | |
2300 | { | |
2301 | bfd *dynobj; | |
e901de89 | 2302 | asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc; |
e0001a05 NC |
2303 | Elf32_External_Dyn *dyncon, *dynconend; |
2304 | int num_xtlit_entries; | |
2305 | ||
2306 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2307 | return TRUE; | |
2308 | ||
2309 | dynobj = elf_hash_table (info)->dynobj; | |
2310 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2311 | BFD_ASSERT (sdyn != NULL); | |
2312 | ||
2313 | /* Set the first entry in the global offset table to the address of | |
2314 | the dynamic section. */ | |
2315 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
2316 | if (sgot) | |
2317 | { | |
eea6121a | 2318 | BFD_ASSERT (sgot->size == 4); |
e0001a05 NC |
2319 | if (sdyn == NULL) |
2320 | bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); | |
2321 | else | |
2322 | bfd_put_32 (output_bfd, | |
2323 | sdyn->output_section->vma + sdyn->output_offset, | |
2324 | sgot->contents); | |
2325 | } | |
2326 | ||
2327 | srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
eea6121a | 2328 | if (srelplt != NULL && srelplt->size != 0) |
e0001a05 NC |
2329 | { |
2330 | asection *sgotplt, *srelgot, *spltlittbl; | |
2331 | int chunk, plt_chunks, plt_entries; | |
2332 | Elf_Internal_Rela irela; | |
2333 | bfd_byte *loc; | |
2334 | unsigned rtld_reloc; | |
2335 | ||
2336 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got");; | |
2337 | BFD_ASSERT (srelgot != NULL); | |
2338 | ||
2339 | spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt"); | |
2340 | BFD_ASSERT (spltlittbl != NULL); | |
2341 | ||
2342 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
2343 | of them follow immediately after.... */ | |
2344 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
2345 | { | |
2346 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
2347 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2348 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
2349 | break; | |
2350 | } | |
2351 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
2352 | ||
eea6121a | 2353 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
2354 | plt_chunks = |
2355 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
2356 | ||
2357 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
2358 | { | |
2359 | int chunk_entries = 0; | |
2360 | ||
2361 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
2362 | BFD_ASSERT (sgotplt != NULL); | |
2363 | ||
2364 | /* Emit special RTLD relocations for the first two entries in | |
2365 | each chunk of the .got.plt section. */ | |
2366 | ||
2367 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
2368 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2369 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
2370 | irela.r_offset = (sgotplt->output_section->vma | |
2371 | + sgotplt->output_offset); | |
2372 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
2373 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
2374 | rtld_reloc += 1; | |
2375 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
2376 | ||
2377 | /* Next literal immediately follows the first. */ | |
2378 | loc += sizeof (Elf32_External_Rela); | |
2379 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2380 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
2381 | irela.r_offset = (sgotplt->output_section->vma | |
2382 | + sgotplt->output_offset + 4); | |
2383 | /* Tell rtld to set value to object's link map. */ | |
2384 | irela.r_addend = 2; | |
2385 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
2386 | rtld_reloc += 1; | |
2387 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
2388 | ||
2389 | /* Fill in the literal table. */ | |
2390 | if (chunk < plt_chunks - 1) | |
2391 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
2392 | else | |
2393 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
2394 | ||
eea6121a | 2395 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
e0001a05 NC |
2396 | bfd_put_32 (output_bfd, |
2397 | sgotplt->output_section->vma + sgotplt->output_offset, | |
2398 | spltlittbl->contents + (chunk * 8) + 0); | |
2399 | bfd_put_32 (output_bfd, | |
2400 | 8 + (chunk_entries * 4), | |
2401 | spltlittbl->contents + (chunk * 8) + 4); | |
2402 | } | |
2403 | ||
2404 | /* All the dynamic relocations have been emitted at this point. | |
2405 | Make sure the relocation sections are the correct size. */ | |
eea6121a AM |
2406 | if (srelgot->size != (sizeof (Elf32_External_Rela) |
2407 | * srelgot->reloc_count) | |
2408 | || srelplt->size != (sizeof (Elf32_External_Rela) | |
2409 | * srelplt->reloc_count)) | |
e0001a05 NC |
2410 | abort (); |
2411 | ||
2412 | /* The .xt.lit.plt section has just been modified. This must | |
2413 | happen before the code below which combines adjacent literal | |
2414 | table entries, and the .xt.lit.plt contents have to be forced to | |
2415 | the output here. */ | |
2416 | if (! bfd_set_section_contents (output_bfd, | |
2417 | spltlittbl->output_section, | |
2418 | spltlittbl->contents, | |
2419 | spltlittbl->output_offset, | |
eea6121a | 2420 | spltlittbl->size)) |
e0001a05 NC |
2421 | return FALSE; |
2422 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
2423 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
2424 | } | |
2425 | ||
2426 | /* Combine adjacent literal table entries. */ | |
1049f94e | 2427 | BFD_ASSERT (! info->relocatable); |
e901de89 BW |
2428 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
2429 | sgotloc = bfd_get_section_by_name (dynobj, ".got.loc"); | |
b536dc1e | 2430 | BFD_ASSERT (sxtlit && sgotloc); |
e901de89 BW |
2431 | num_xtlit_entries = |
2432 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
e0001a05 NC |
2433 | if (num_xtlit_entries < 0) |
2434 | return FALSE; | |
2435 | ||
2436 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
eea6121a | 2437 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
e0001a05 NC |
2438 | for (; dyncon < dynconend; dyncon++) |
2439 | { | |
2440 | Elf_Internal_Dyn dyn; | |
2441 | const char *name; | |
2442 | asection *s; | |
2443 | ||
2444 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
2445 | ||
2446 | switch (dyn.d_tag) | |
2447 | { | |
2448 | default: | |
2449 | break; | |
2450 | ||
2451 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
2452 | dyn.d_un.d_val = num_xtlit_entries; |
2453 | break; | |
2454 | ||
2455 | case DT_XTENSA_GOT_LOC_OFF: | |
e901de89 | 2456 | name = ".got.loc"; |
e0001a05 NC |
2457 | goto get_vma; |
2458 | case DT_PLTGOT: | |
2459 | name = ".got"; | |
2460 | goto get_vma; | |
2461 | case DT_JMPREL: | |
2462 | name = ".rela.plt"; | |
2463 | get_vma: | |
2464 | s = bfd_get_section_by_name (output_bfd, name); | |
2465 | BFD_ASSERT (s); | |
2466 | dyn.d_un.d_ptr = s->vma; | |
2467 | break; | |
2468 | ||
2469 | case DT_PLTRELSZ: | |
2470 | s = bfd_get_section_by_name (output_bfd, ".rela.plt"); | |
2471 | BFD_ASSERT (s); | |
eea6121a | 2472 | dyn.d_un.d_val = s->size; |
e0001a05 NC |
2473 | break; |
2474 | ||
2475 | case DT_RELASZ: | |
2476 | /* Adjust RELASZ to not include JMPREL. This matches what | |
2477 | glibc expects and what is done for several other ELF | |
2478 | targets (e.g., i386, alpha), but the "correct" behavior | |
2479 | seems to be unresolved. Since the linker script arranges | |
2480 | for .rela.plt to follow all other relocation sections, we | |
2481 | don't have to worry about changing the DT_RELA entry. */ | |
2482 | s = bfd_get_section_by_name (output_bfd, ".rela.plt"); | |
2483 | if (s) | |
eea6121a | 2484 | dyn.d_un.d_val -= s->size; |
e0001a05 NC |
2485 | break; |
2486 | } | |
2487 | ||
2488 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2489 | } | |
2490 | ||
2491 | return TRUE; | |
2492 | } | |
2493 | ||
2494 | \f | |
2495 | /* Functions for dealing with the e_flags field. */ | |
2496 | ||
2497 | /* Merge backend specific data from an object file to the output | |
2498 | object file when linking. */ | |
2499 | ||
2500 | static bfd_boolean | |
2501 | elf_xtensa_merge_private_bfd_data (ibfd, obfd) | |
2502 | bfd *ibfd; | |
2503 | bfd *obfd; | |
2504 | { | |
2505 | unsigned out_mach, in_mach; | |
2506 | flagword out_flag, in_flag; | |
2507 | ||
2508 | /* Check if we have the same endianess. */ | |
2509 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | |
2510 | return FALSE; | |
2511 | ||
2512 | /* Don't even pretend to support mixed-format linking. */ | |
2513 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
2514 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
2515 | return FALSE; | |
2516 | ||
2517 | out_flag = elf_elfheader (obfd)->e_flags; | |
2518 | in_flag = elf_elfheader (ibfd)->e_flags; | |
2519 | ||
2520 | out_mach = out_flag & EF_XTENSA_MACH; | |
2521 | in_mach = in_flag & EF_XTENSA_MACH; | |
2522 | if (out_mach != in_mach) | |
2523 | { | |
2524 | (*_bfd_error_handler) | |
d003868e AM |
2525 | ("%B: incompatible machine type. Output is 0x%x. Input is 0x%x", |
2526 | ibfd, out_mach, in_mach); | |
e0001a05 NC |
2527 | bfd_set_error (bfd_error_wrong_format); |
2528 | return FALSE; | |
2529 | } | |
2530 | ||
2531 | if (! elf_flags_init (obfd)) | |
2532 | { | |
2533 | elf_flags_init (obfd) = TRUE; | |
2534 | elf_elfheader (obfd)->e_flags = in_flag; | |
2535 | ||
2536 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
2537 | && bfd_get_arch_info (obfd)->the_default) | |
2538 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
2539 | bfd_get_mach (ibfd)); | |
2540 | ||
2541 | return TRUE; | |
2542 | } | |
2543 | ||
2544 | if ((out_flag & EF_XTENSA_XT_INSN) != | |
2545 | (in_flag & EF_XTENSA_XT_INSN)) | |
2546 | elf_elfheader(obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); | |
2547 | ||
2548 | if ((out_flag & EF_XTENSA_XT_LIT) != | |
2549 | (in_flag & EF_XTENSA_XT_LIT)) | |
2550 | elf_elfheader(obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); | |
2551 | ||
2552 | return TRUE; | |
2553 | } | |
2554 | ||
2555 | ||
2556 | static bfd_boolean | |
2557 | elf_xtensa_set_private_flags (abfd, flags) | |
2558 | bfd *abfd; | |
2559 | flagword flags; | |
2560 | { | |
2561 | BFD_ASSERT (!elf_flags_init (abfd) | |
2562 | || elf_elfheader (abfd)->e_flags == flags); | |
2563 | ||
2564 | elf_elfheader (abfd)->e_flags |= flags; | |
2565 | elf_flags_init (abfd) = TRUE; | |
2566 | ||
2567 | return TRUE; | |
2568 | } | |
2569 | ||
2570 | ||
2571 | extern flagword | |
2572 | elf_xtensa_get_private_bfd_flags (abfd) | |
2573 | bfd *abfd; | |
2574 | { | |
2575 | return elf_elfheader (abfd)->e_flags; | |
2576 | } | |
2577 | ||
2578 | ||
2579 | static bfd_boolean | |
2580 | elf_xtensa_print_private_bfd_data (abfd, farg) | |
2581 | bfd *abfd; | |
2582 | PTR farg; | |
2583 | { | |
2584 | FILE *f = (FILE *) farg; | |
2585 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
2586 | ||
2587 | fprintf (f, "\nXtensa header:\n"); | |
2588 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) | |
2589 | fprintf (f, "\nMachine = Base\n"); | |
2590 | else | |
2591 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
2592 | ||
2593 | fprintf (f, "Insn tables = %s\n", | |
2594 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
2595 | ||
2596 | fprintf (f, "Literal tables = %s\n", | |
2597 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
2598 | ||
2599 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
2600 | } | |
2601 | ||
2602 | ||
2603 | /* Set the right machine number for an Xtensa ELF file. */ | |
2604 | ||
2605 | static bfd_boolean | |
2606 | elf_xtensa_object_p (abfd) | |
2607 | bfd *abfd; | |
2608 | { | |
2609 | int mach; | |
2610 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
2611 | ||
2612 | switch (arch) | |
2613 | { | |
2614 | case E_XTENSA_MACH: | |
2615 | mach = bfd_mach_xtensa; | |
2616 | break; | |
2617 | default: | |
2618 | return FALSE; | |
2619 | } | |
2620 | ||
2621 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
2622 | return TRUE; | |
2623 | } | |
2624 | ||
2625 | ||
2626 | /* The final processing done just before writing out an Xtensa ELF object | |
2627 | file. This gets the Xtensa architecture right based on the machine | |
2628 | number. */ | |
2629 | ||
2630 | static void | |
2631 | elf_xtensa_final_write_processing (abfd, linker) | |
2632 | bfd *abfd; | |
2633 | bfd_boolean linker ATTRIBUTE_UNUSED; | |
2634 | { | |
2635 | int mach; | |
2636 | unsigned long val; | |
2637 | ||
2638 | switch (mach = bfd_get_mach (abfd)) | |
2639 | { | |
2640 | case bfd_mach_xtensa: | |
2641 | val = E_XTENSA_MACH; | |
2642 | break; | |
2643 | default: | |
2644 | return; | |
2645 | } | |
2646 | ||
2647 | elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH); | |
2648 | elf_elfheader (abfd)->e_flags |= val; | |
2649 | } | |
2650 | ||
2651 | ||
2652 | static enum elf_reloc_type_class | |
2653 | elf_xtensa_reloc_type_class (rela) | |
2654 | const Elf_Internal_Rela *rela; | |
2655 | { | |
2656 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
2657 | { | |
2658 | case R_XTENSA_RELATIVE: | |
2659 | return reloc_class_relative; | |
2660 | case R_XTENSA_JMP_SLOT: | |
2661 | return reloc_class_plt; | |
2662 | default: | |
2663 | return reloc_class_normal; | |
2664 | } | |
2665 | } | |
2666 | ||
2667 | \f | |
2668 | static bfd_boolean | |
2669 | elf_xtensa_discard_info_for_section (abfd, cookie, info, sec) | |
2670 | bfd *abfd; | |
2671 | struct elf_reloc_cookie *cookie; | |
2672 | struct bfd_link_info *info; | |
2673 | asection *sec; | |
2674 | { | |
2675 | bfd_byte *contents; | |
2676 | bfd_vma section_size; | |
2677 | bfd_vma offset, actual_offset; | |
2678 | size_t removed_bytes = 0; | |
2679 | ||
eea6121a | 2680 | section_size = sec->size; |
e0001a05 NC |
2681 | if (section_size == 0 || section_size % 8 != 0) |
2682 | return FALSE; | |
2683 | ||
2684 | if (sec->output_section | |
2685 | && bfd_is_abs_section (sec->output_section)) | |
2686 | return FALSE; | |
2687 | ||
2688 | contents = retrieve_contents (abfd, sec, info->keep_memory); | |
2689 | if (!contents) | |
2690 | return FALSE; | |
2691 | ||
2692 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
2693 | if (!cookie->rels) | |
2694 | { | |
2695 | release_contents (sec, contents); | |
2696 | return FALSE; | |
2697 | } | |
2698 | ||
2699 | cookie->rel = cookie->rels; | |
2700 | cookie->relend = cookie->rels + sec->reloc_count; | |
2701 | ||
2702 | for (offset = 0; offset < section_size; offset += 8) | |
2703 | { | |
2704 | actual_offset = offset - removed_bytes; | |
2705 | ||
2706 | /* The ...symbol_deleted_p function will skip over relocs but it | |
2707 | won't adjust their offsets, so do that here. */ | |
2708 | while (cookie->rel < cookie->relend | |
2709 | && cookie->rel->r_offset < offset) | |
2710 | { | |
2711 | cookie->rel->r_offset -= removed_bytes; | |
2712 | cookie->rel++; | |
2713 | } | |
2714 | ||
2715 | while (cookie->rel < cookie->relend | |
2716 | && cookie->rel->r_offset == offset) | |
2717 | { | |
c152c796 | 2718 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
e0001a05 NC |
2719 | { |
2720 | /* Remove the table entry. (If the reloc type is NONE, then | |
2721 | the entry has already been merged with another and deleted | |
2722 | during relaxation.) */ | |
2723 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
2724 | { | |
2725 | /* Shift the contents up. */ | |
2726 | if (offset + 8 < section_size) | |
2727 | memmove (&contents[actual_offset], | |
2728 | &contents[actual_offset+8], | |
2729 | section_size - offset - 8); | |
2730 | removed_bytes += 8; | |
2731 | } | |
2732 | ||
2733 | /* Remove this relocation. */ | |
2734 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
2735 | } | |
2736 | ||
2737 | /* Adjust the relocation offset for previous removals. This | |
2738 | should not be done before calling ...symbol_deleted_p | |
2739 | because it might mess up the offset comparisons there. | |
2740 | Make sure the offset doesn't underflow in the case where | |
2741 | the first entry is removed. */ | |
2742 | if (cookie->rel->r_offset >= removed_bytes) | |
2743 | cookie->rel->r_offset -= removed_bytes; | |
2744 | else | |
2745 | cookie->rel->r_offset = 0; | |
2746 | ||
2747 | cookie->rel++; | |
2748 | } | |
2749 | } | |
2750 | ||
2751 | if (removed_bytes != 0) | |
2752 | { | |
2753 | /* Adjust any remaining relocs (shouldn't be any). */ | |
2754 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
2755 | { | |
2756 | if (cookie->rel->r_offset >= removed_bytes) | |
2757 | cookie->rel->r_offset -= removed_bytes; | |
2758 | else | |
2759 | cookie->rel->r_offset = 0; | |
2760 | } | |
2761 | ||
2762 | /* Clear the removed bytes. */ | |
2763 | memset (&contents[section_size - removed_bytes], 0, removed_bytes); | |
2764 | ||
2765 | pin_contents (sec, contents); | |
2766 | pin_internal_relocs (sec, cookie->rels); | |
2767 | ||
eea6121a AM |
2768 | /* Shrink size. */ |
2769 | sec->size = section_size - removed_bytes; | |
b536dc1e BW |
2770 | |
2771 | if (xtensa_is_littable_section (sec)) | |
2772 | { | |
2773 | bfd *dynobj = elf_hash_table (info)->dynobj; | |
2774 | if (dynobj) | |
2775 | { | |
2776 | asection *sgotloc = | |
2777 | bfd_get_section_by_name (dynobj, ".got.loc"); | |
2778 | if (sgotloc) | |
eea6121a | 2779 | sgotloc->size -= removed_bytes; |
b536dc1e BW |
2780 | } |
2781 | } | |
e0001a05 NC |
2782 | } |
2783 | else | |
2784 | { | |
2785 | release_contents (sec, contents); | |
2786 | release_internal_relocs (sec, cookie->rels); | |
2787 | } | |
2788 | ||
2789 | return (removed_bytes != 0); | |
2790 | } | |
2791 | ||
2792 | ||
2793 | static bfd_boolean | |
2794 | elf_xtensa_discard_info (abfd, cookie, info) | |
2795 | bfd *abfd; | |
2796 | struct elf_reloc_cookie *cookie; | |
2797 | struct bfd_link_info *info; | |
2798 | { | |
2799 | asection *sec; | |
2800 | bfd_boolean changed = FALSE; | |
2801 | ||
2802 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
2803 | { | |
2804 | if (xtensa_is_property_section (sec)) | |
2805 | { | |
2806 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
2807 | changed = TRUE; | |
2808 | } | |
2809 | } | |
2810 | ||
2811 | return changed; | |
2812 | } | |
2813 | ||
2814 | ||
2815 | static bfd_boolean | |
2816 | elf_xtensa_ignore_discarded_relocs (sec) | |
2817 | asection *sec; | |
2818 | { | |
2819 | return xtensa_is_property_section (sec); | |
2820 | } | |
2821 | ||
2822 | \f | |
2823 | /* Support for core dump NOTE sections. */ | |
2824 | ||
2825 | static bfd_boolean | |
2826 | elf_xtensa_grok_prstatus (abfd, note) | |
2827 | bfd *abfd; | |
2828 | Elf_Internal_Note *note; | |
2829 | { | |
2830 | int offset; | |
eea6121a | 2831 | unsigned int size; |
e0001a05 NC |
2832 | |
2833 | /* The size for Xtensa is variable, so don't try to recognize the format | |
2834 | based on the size. Just assume this is GNU/Linux. */ | |
2835 | ||
2836 | /* pr_cursig */ | |
2837 | elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); | |
2838 | ||
2839 | /* pr_pid */ | |
2840 | elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); | |
2841 | ||
2842 | /* pr_reg */ | |
2843 | offset = 72; | |
eea6121a | 2844 | size = note->descsz - offset - 4; |
e0001a05 NC |
2845 | |
2846 | /* Make a ".reg/999" section. */ | |
2847 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
eea6121a | 2848 | size, note->descpos + offset); |
e0001a05 NC |
2849 | } |
2850 | ||
2851 | ||
2852 | static bfd_boolean | |
2853 | elf_xtensa_grok_psinfo (abfd, note) | |
2854 | bfd *abfd; | |
2855 | Elf_Internal_Note *note; | |
2856 | { | |
2857 | switch (note->descsz) | |
2858 | { | |
2859 | default: | |
2860 | return FALSE; | |
2861 | ||
2862 | case 128: /* GNU/Linux elf_prpsinfo */ | |
2863 | elf_tdata (abfd)->core_program | |
2864 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); | |
2865 | elf_tdata (abfd)->core_command | |
2866 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); | |
2867 | } | |
2868 | ||
2869 | /* Note that for some reason, a spurious space is tacked | |
2870 | onto the end of the args in some (at least one anyway) | |
2871 | implementations, so strip it off if it exists. */ | |
2872 | ||
2873 | { | |
2874 | char *command = elf_tdata (abfd)->core_command; | |
2875 | int n = strlen (command); | |
2876 | ||
2877 | if (0 < n && command[n - 1] == ' ') | |
2878 | command[n - 1] = '\0'; | |
2879 | } | |
2880 | ||
2881 | return TRUE; | |
2882 | } | |
2883 | ||
2884 | \f | |
2885 | /* Generic Xtensa configurability stuff. */ | |
2886 | ||
2887 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
2888 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
2889 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
2890 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
2891 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
2892 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
2893 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
2894 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
2895 | ||
2896 | static void | |
2897 | init_call_opcodes () | |
2898 | { | |
2899 | if (callx0_op == XTENSA_UNDEFINED) | |
2900 | { | |
2901 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
2902 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
2903 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
2904 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
2905 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
2906 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
2907 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
2908 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
2909 | } | |
2910 | } | |
2911 | ||
2912 | ||
2913 | static bfd_boolean | |
2914 | is_indirect_call_opcode (opcode) | |
2915 | xtensa_opcode opcode; | |
2916 | { | |
2917 | init_call_opcodes (); | |
2918 | return (opcode == callx0_op | |
2919 | || opcode == callx4_op | |
2920 | || opcode == callx8_op | |
2921 | || opcode == callx12_op); | |
2922 | } | |
2923 | ||
2924 | ||
2925 | static bfd_boolean | |
2926 | is_direct_call_opcode (opcode) | |
2927 | xtensa_opcode opcode; | |
2928 | { | |
2929 | init_call_opcodes (); | |
2930 | return (opcode == call0_op | |
2931 | || opcode == call4_op | |
2932 | || opcode == call8_op | |
2933 | || opcode == call12_op); | |
2934 | } | |
2935 | ||
2936 | ||
2937 | static bfd_boolean | |
2938 | is_windowed_call_opcode (opcode) | |
2939 | xtensa_opcode opcode; | |
2940 | { | |
2941 | init_call_opcodes (); | |
2942 | return (opcode == call4_op | |
2943 | || opcode == call8_op | |
2944 | || opcode == call12_op | |
2945 | || opcode == callx4_op | |
2946 | || opcode == callx8_op | |
2947 | || opcode == callx12_op); | |
2948 | } | |
2949 | ||
2950 | ||
2951 | static xtensa_opcode | |
2952 | get_l32r_opcode (void) | |
2953 | { | |
2954 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
2955 | if (l32r_opcode == XTENSA_UNDEFINED) | |
2956 | { | |
2957 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
2958 | BFD_ASSERT (l32r_opcode != XTENSA_UNDEFINED); | |
2959 | } | |
2960 | return l32r_opcode; | |
2961 | } | |
2962 | ||
2963 | ||
2964 | static bfd_vma | |
2965 | l32r_offset (addr, pc) | |
2966 | bfd_vma addr; | |
2967 | bfd_vma pc; | |
2968 | { | |
2969 | bfd_vma offset; | |
2970 | ||
2971 | offset = addr - ((pc+3) & -4); | |
2972 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
2973 | offset = (signed int) offset >> 2; | |
2974 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
2975 | return offset; | |
2976 | } | |
2977 | ||
2978 | ||
2979 | /* Get the operand number for a PC-relative relocation. | |
2980 | If the relocation is not a PC-relative one, return (-1). */ | |
2981 | ||
2982 | static int | |
2983 | get_relocation_opnd (irel) | |
2984 | Elf_Internal_Rela *irel; | |
2985 | { | |
2986 | if (ELF32_R_TYPE (irel->r_info) < R_XTENSA_OP0 | |
2987 | || ELF32_R_TYPE (irel->r_info) >= R_XTENSA_max) | |
2988 | return -1; | |
2989 | return ELF32_R_TYPE (irel->r_info) - R_XTENSA_OP0; | |
2990 | } | |
2991 | ||
2992 | ||
2993 | /* Get the opcode for a relocation. */ | |
2994 | ||
2995 | static xtensa_opcode | |
2996 | get_relocation_opcode (sec, contents, irel) | |
2997 | asection *sec; | |
2998 | bfd_byte *contents; | |
2999 | Elf_Internal_Rela *irel; | |
3000 | { | |
3001 | static xtensa_insnbuf ibuff = NULL; | |
3002 | xtensa_isa isa = xtensa_default_isa; | |
3003 | ||
3004 | if (get_relocation_opnd (irel) == -1) | |
3005 | return XTENSA_UNDEFINED; | |
3006 | ||
3007 | if (contents == NULL) | |
3008 | return XTENSA_UNDEFINED; | |
3009 | ||
eea6121a | 3010 | if (sec->size <= irel->r_offset) |
e0001a05 NC |
3011 | return XTENSA_UNDEFINED; |
3012 | ||
3013 | if (ibuff == NULL) | |
3014 | ibuff = xtensa_insnbuf_alloc (isa); | |
3015 | ||
3016 | /* Decode the instruction. */ | |
3017 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset]); | |
3018 | return xtensa_decode_insn (isa, ibuff); | |
3019 | } | |
3020 | ||
3021 | ||
3022 | bfd_boolean | |
3023 | is_l32r_relocation (sec, contents, irel) | |
3024 | asection *sec; | |
3025 | bfd_byte *contents; | |
3026 | Elf_Internal_Rela *irel; | |
3027 | { | |
3028 | xtensa_opcode opcode; | |
3029 | ||
3030 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_OP1) | |
3031 | return FALSE; | |
3032 | ||
3033 | opcode = get_relocation_opcode (sec, contents, irel); | |
3034 | return (opcode == get_l32r_opcode ()); | |
3035 | } | |
3036 | ||
3037 | \f | |
3038 | /* Code for transforming CALLs at link-time. */ | |
3039 | ||
3040 | static bfd_reloc_status_type | |
3041 | elf_xtensa_do_asm_simplify (contents, address, content_length) | |
3042 | bfd_byte *contents; | |
3043 | bfd_vma address; | |
3044 | bfd_vma content_length; | |
3045 | { | |
3046 | static xtensa_insnbuf insnbuf = NULL; | |
3047 | xtensa_opcode opcode; | |
3048 | xtensa_operand operand; | |
3049 | xtensa_opcode direct_call_opcode; | |
3050 | xtensa_isa isa = xtensa_default_isa; | |
3051 | bfd_byte *chbuf = contents + address; | |
3052 | int opn; | |
3053 | ||
3054 | if (insnbuf == NULL) | |
3055 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3056 | ||
3057 | if (content_length < address) | |
3058 | { | |
3059 | (*_bfd_error_handler) | |
b536dc1e | 3060 | ("Attempt to convert L32R/CALLX to CALL failed"); |
e0001a05 NC |
3061 | return bfd_reloc_other; |
3062 | } | |
3063 | ||
3064 | opcode = get_expanded_call_opcode (chbuf, content_length - address); | |
3065 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
3066 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
3067 | { | |
3068 | (*_bfd_error_handler) | |
b536dc1e | 3069 | ("Attempt to convert L32R/CALLX to CALL failed"); |
e0001a05 NC |
3070 | return bfd_reloc_other; |
3071 | } | |
3072 | ||
3073 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ | |
3074 | opcode = xtensa_opcode_lookup (isa, "or"); | |
3075 | xtensa_encode_insn (isa, opcode, insnbuf); | |
3076 | for (opn = 0; opn < 3; opn++) | |
3077 | { | |
3078 | operand = xtensa_get_operand (isa, opcode, opn); | |
3079 | xtensa_operand_set_field (operand, insnbuf, 1); | |
3080 | } | |
3081 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf); | |
3082 | ||
3083 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ | |
3084 | xtensa_encode_insn (isa, direct_call_opcode, insnbuf); | |
3085 | operand = xtensa_get_operand (isa, opcode, 0); | |
3086 | xtensa_operand_set_field (operand, insnbuf, 0); | |
3087 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3); | |
3088 | ||
3089 | return bfd_reloc_ok; | |
3090 | } | |
3091 | ||
3092 | ||
3093 | static bfd_reloc_status_type | |
3094 | contract_asm_expansion (contents, content_length, irel) | |
3095 | bfd_byte *contents; | |
3096 | bfd_vma content_length; | |
3097 | Elf_Internal_Rela *irel; | |
3098 | { | |
3099 | bfd_reloc_status_type retval = | |
3100 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length); | |
3101 | ||
3102 | if (retval != bfd_reloc_ok) | |
3103 | return retval; | |
3104 | ||
3105 | /* Update the irel->r_offset field so that the right immediate and | |
3106 | the right instruction are modified during the relocation. */ | |
3107 | irel->r_offset += 3; | |
3108 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_OP0); | |
3109 | return bfd_reloc_ok; | |
3110 | } | |
3111 | ||
3112 | ||
3113 | static xtensa_opcode | |
3114 | swap_callx_for_call_opcode (opcode) | |
3115 | xtensa_opcode opcode; | |
3116 | { | |
3117 | init_call_opcodes (); | |
3118 | ||
3119 | if (opcode == callx0_op) return call0_op; | |
3120 | if (opcode == callx4_op) return call4_op; | |
3121 | if (opcode == callx8_op) return call8_op; | |
3122 | if (opcode == callx12_op) return call12_op; | |
3123 | ||
3124 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ | |
3125 | return XTENSA_UNDEFINED; | |
3126 | } | |
3127 | ||
3128 | ||
3129 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" sequence, and | |
3130 | if so, return the CALLX opcode. If not, return XTENSA_UNDEFINED. */ | |
3131 | ||
3132 | #define L32R_TARGET_REG_OPERAND 0 | |
3133 | #define CALLN_SOURCE_OPERAND 0 | |
3134 | ||
3135 | static xtensa_opcode | |
3136 | get_expanded_call_opcode (buf, bufsize) | |
3137 | bfd_byte *buf; | |
3138 | int bufsize; | |
3139 | { | |
3140 | static xtensa_insnbuf insnbuf = NULL; | |
3141 | xtensa_opcode opcode; | |
3142 | xtensa_operand operand; | |
3143 | xtensa_isa isa = xtensa_default_isa; | |
3144 | uint32 regno, call_regno; | |
3145 | ||
3146 | /* Buffer must be at least 6 bytes. */ | |
3147 | if (bufsize < 6) | |
3148 | return XTENSA_UNDEFINED; | |
3149 | ||
3150 | if (insnbuf == NULL) | |
3151 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3152 | ||
3153 | xtensa_insnbuf_from_chars (isa, insnbuf, buf); | |
3154 | opcode = xtensa_decode_insn (isa, insnbuf); | |
3155 | ||
3156 | if (opcode != get_l32r_opcode ()) | |
3157 | return XTENSA_UNDEFINED; | |
3158 | ||
3159 | operand = xtensa_get_operand (isa, opcode, L32R_TARGET_REG_OPERAND); | |
3160 | regno = xtensa_operand_decode | |
3161 | (operand, xtensa_operand_get_field (operand, insnbuf)); | |
3162 | ||
3163 | /* Next instruction should be an CALLXn with operand 0 == regno. */ | |
3164 | xtensa_insnbuf_from_chars (isa, insnbuf, | |
3165 | buf + xtensa_insn_length (isa, opcode)); | |
3166 | opcode = xtensa_decode_insn (isa, insnbuf); | |
3167 | ||
3168 | if (!is_indirect_call_opcode (opcode)) | |
3169 | return XTENSA_UNDEFINED; | |
3170 | ||
3171 | operand = xtensa_get_operand (isa, opcode, CALLN_SOURCE_OPERAND); | |
3172 | call_regno = xtensa_operand_decode | |
3173 | (operand, xtensa_operand_get_field (operand, insnbuf)); | |
3174 | if (call_regno != regno) | |
3175 | return XTENSA_UNDEFINED; | |
3176 | ||
3177 | return opcode; | |
3178 | } | |
3179 | ||
3180 | \f | |
3181 | /* Data structures used during relaxation. */ | |
3182 | ||
3183 | /* r_reloc: relocation values. */ | |
3184 | ||
3185 | /* Through the relaxation process, we need to keep track of the values | |
3186 | that will result from evaluating relocations. The standard ELF | |
3187 | relocation structure is not sufficient for this purpose because we're | |
3188 | operating on multiple input files at once, so we need to know which | |
3189 | input file a relocation refers to. The r_reloc structure thus | |
3190 | records both the input file (bfd) and ELF relocation. | |
3191 | ||
3192 | For efficiency, an r_reloc also contains a "target_offset" field to | |
3193 | cache the target-section-relative offset value that is represented by | |
3194 | the relocation. */ | |
3195 | ||
3196 | typedef struct r_reloc_struct r_reloc; | |
3197 | ||
3198 | struct r_reloc_struct | |
3199 | { | |
3200 | bfd *abfd; | |
3201 | Elf_Internal_Rela rela; | |
3202 | bfd_vma target_offset; | |
3203 | }; | |
3204 | ||
3205 | static bfd_boolean r_reloc_is_const | |
3206 | PARAMS ((const r_reloc *)); | |
3207 | static void r_reloc_init | |
3208 | PARAMS ((r_reloc *, bfd *, Elf_Internal_Rela *)); | |
3209 | static bfd_vma r_reloc_get_target_offset | |
3210 | PARAMS ((const r_reloc *)); | |
3211 | static asection *r_reloc_get_section | |
3212 | PARAMS ((const r_reloc *)); | |
3213 | static bfd_boolean r_reloc_is_defined | |
3214 | PARAMS ((const r_reloc *)); | |
3215 | static struct elf_link_hash_entry *r_reloc_get_hash_entry | |
3216 | PARAMS ((const r_reloc *)); | |
3217 | ||
3218 | ||
3219 | /* The r_reloc structure is included by value in literal_value, but not | |
3220 | every literal_value has an associated relocation -- some are simple | |
3221 | constants. In such cases, we set all the fields in the r_reloc | |
3222 | struct to zero. The r_reloc_is_const function should be used to | |
3223 | detect this case. */ | |
3224 | ||
3225 | static bfd_boolean | |
3226 | r_reloc_is_const (r_rel) | |
3227 | const r_reloc *r_rel; | |
3228 | { | |
3229 | return (r_rel->abfd == NULL); | |
3230 | } | |
3231 | ||
3232 | ||
3233 | static void | |
3234 | r_reloc_init (r_rel, abfd, irel) | |
3235 | r_reloc *r_rel; | |
3236 | bfd *abfd; | |
3237 | Elf_Internal_Rela *irel; | |
3238 | { | |
3239 | if (irel != NULL) | |
3240 | { | |
3241 | r_rel->rela = *irel; | |
3242 | r_rel->abfd = abfd; | |
3243 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
3244 | } | |
3245 | else | |
3246 | memset (r_rel, 0, sizeof (r_reloc)); | |
3247 | } | |
3248 | ||
3249 | ||
3250 | static bfd_vma | |
3251 | r_reloc_get_target_offset (r_rel) | |
3252 | const r_reloc *r_rel; | |
3253 | { | |
3254 | bfd_vma target_offset; | |
3255 | unsigned long r_symndx; | |
3256 | ||
3257 | BFD_ASSERT (!r_reloc_is_const (r_rel)); | |
3258 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
3259 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
3260 | return (target_offset + r_rel->rela.r_addend); | |
3261 | } | |
3262 | ||
3263 | ||
3264 | static struct elf_link_hash_entry * | |
3265 | r_reloc_get_hash_entry (r_rel) | |
3266 | const r_reloc *r_rel; | |
3267 | { | |
3268 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
3269 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
3270 | } | |
3271 | ||
3272 | ||
3273 | static asection * | |
3274 | r_reloc_get_section (r_rel) | |
3275 | const r_reloc *r_rel; | |
3276 | { | |
3277 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
3278 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
3279 | } | |
3280 | ||
3281 | ||
3282 | static bfd_boolean | |
3283 | r_reloc_is_defined (r_rel) | |
3284 | const r_reloc *r_rel; | |
3285 | { | |
3286 | asection *sec = r_reloc_get_section (r_rel); | |
3287 | if (sec == bfd_abs_section_ptr | |
3288 | || sec == bfd_com_section_ptr | |
3289 | || sec == bfd_und_section_ptr) | |
3290 | return FALSE; | |
3291 | return TRUE; | |
3292 | } | |
3293 | ||
3294 | \f | |
3295 | /* source_reloc: relocations that reference literal sections. */ | |
3296 | ||
3297 | /* To determine whether literals can be coalesced, we need to first | |
3298 | record all the relocations that reference the literals. The | |
3299 | source_reloc structure below is used for this purpose. The | |
3300 | source_reloc entries are kept in a per-literal-section array, sorted | |
3301 | by offset within the literal section (i.e., target offset). | |
3302 | ||
3303 | The source_sec and r_rel.rela.r_offset fields identify the source of | |
3304 | the relocation. The r_rel field records the relocation value, i.e., | |
3305 | the offset of the literal being referenced. The opnd field is needed | |
3306 | to determine the range of the immediate field to which the relocation | |
3307 | applies, so we can determine whether another literal with the same | |
3308 | value is within range. The is_null field is true when the relocation | |
3309 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
3310 | that is converted to a direct CALL). */ | |
3311 | ||
3312 | typedef struct source_reloc_struct source_reloc; | |
3313 | ||
3314 | struct source_reloc_struct | |
3315 | { | |
3316 | asection *source_sec; | |
3317 | r_reloc r_rel; | |
3318 | xtensa_operand opnd; | |
3319 | bfd_boolean is_null; | |
3320 | }; | |
3321 | ||
3322 | ||
3323 | static void init_source_reloc | |
3324 | PARAMS ((source_reloc *, asection *, const r_reloc *, xtensa_operand)); | |
3325 | static source_reloc *find_source_reloc | |
3326 | PARAMS ((source_reloc *, int, asection *, Elf_Internal_Rela *)); | |
3327 | static int source_reloc_compare | |
3328 | PARAMS ((const PTR, const PTR)); | |
3329 | ||
3330 | ||
3331 | static void | |
3332 | init_source_reloc (reloc, source_sec, r_rel, opnd) | |
3333 | source_reloc *reloc; | |
3334 | asection *source_sec; | |
3335 | const r_reloc *r_rel; | |
3336 | xtensa_operand opnd; | |
3337 | { | |
3338 | reloc->source_sec = source_sec; | |
3339 | reloc->r_rel = *r_rel; | |
3340 | reloc->opnd = opnd; | |
3341 | reloc->is_null = FALSE; | |
3342 | } | |
3343 | ||
3344 | ||
3345 | /* Find the source_reloc for a particular source offset and relocation | |
3346 | type. Note that the array is sorted by _target_ offset, so this is | |
3347 | just a linear search. */ | |
3348 | ||
3349 | static source_reloc * | |
3350 | find_source_reloc (src_relocs, src_count, sec, irel) | |
3351 | source_reloc *src_relocs; | |
3352 | int src_count; | |
3353 | asection *sec; | |
3354 | Elf_Internal_Rela *irel; | |
3355 | { | |
3356 | int i; | |
3357 | ||
3358 | for (i = 0; i < src_count; i++) | |
3359 | { | |
3360 | if (src_relocs[i].source_sec == sec | |
3361 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
3362 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
3363 | == ELF32_R_TYPE (irel->r_info))) | |
3364 | return &src_relocs[i]; | |
3365 | } | |
3366 | ||
3367 | return NULL; | |
3368 | } | |
3369 | ||
3370 | ||
3371 | static int | |
3372 | source_reloc_compare (ap, bp) | |
3373 | const PTR ap; | |
3374 | const PTR bp; | |
3375 | { | |
3376 | const source_reloc *a = (const source_reloc *) ap; | |
3377 | const source_reloc *b = (const source_reloc *) bp; | |
3378 | ||
3379 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
3380 | } | |
3381 | ||
3382 | \f | |
3383 | /* Literal values and value hash tables. */ | |
3384 | ||
3385 | /* Literals with the same value can be coalesced. The literal_value | |
3386 | structure records the value of a literal: the "r_rel" field holds the | |
3387 | information from the relocation on the literal (if there is one) and | |
3388 | the "value" field holds the contents of the literal word itself. | |
3389 | ||
3390 | The value_map structure records a literal value along with the | |
3391 | location of a literal holding that value. The value_map hash table | |
3392 | is indexed by the literal value, so that we can quickly check if a | |
3393 | particular literal value has been seen before and is thus a candidate | |
3394 | for coalescing. */ | |
3395 | ||
3396 | typedef struct literal_value_struct literal_value; | |
3397 | typedef struct value_map_struct value_map; | |
3398 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
3399 | ||
3400 | struct literal_value_struct | |
3401 | { | |
3402 | r_reloc r_rel; | |
3403 | unsigned long value; | |
3404 | }; | |
3405 | ||
3406 | struct value_map_struct | |
3407 | { | |
3408 | literal_value val; /* The literal value. */ | |
3409 | r_reloc loc; /* Location of the literal. */ | |
3410 | value_map *next; | |
3411 | }; | |
3412 | ||
3413 | struct value_map_hash_table_struct | |
3414 | { | |
3415 | unsigned bucket_count; | |
3416 | value_map **buckets; | |
3417 | unsigned count; | |
3418 | }; | |
3419 | ||
3420 | ||
3421 | static bfd_boolean is_same_value | |
2c8c90bc | 3422 | PARAMS ((const literal_value *, const literal_value *, bfd_boolean)); |
e0001a05 NC |
3423 | static value_map_hash_table *value_map_hash_table_init |
3424 | PARAMS ((void)); | |
3425 | static unsigned hash_literal_value | |
3426 | PARAMS ((const literal_value *)); | |
3427 | static unsigned hash_bfd_vma | |
3428 | PARAMS ((bfd_vma)); | |
3429 | static value_map *get_cached_value | |
2c8c90bc | 3430 | PARAMS ((value_map_hash_table *, const literal_value *, bfd_boolean)); |
e0001a05 | 3431 | static value_map *add_value_map |
2c8c90bc BW |
3432 | PARAMS ((value_map_hash_table *, const literal_value *, const r_reloc *, |
3433 | bfd_boolean)); | |
e0001a05 NC |
3434 | |
3435 | ||
3436 | static bfd_boolean | |
2c8c90bc | 3437 | is_same_value (src1, src2, final_static_link) |
e0001a05 NC |
3438 | const literal_value *src1; |
3439 | const literal_value *src2; | |
2c8c90bc | 3440 | bfd_boolean final_static_link; |
e0001a05 | 3441 | { |
2c8c90bc BW |
3442 | struct elf_link_hash_entry *h1, *h2; |
3443 | ||
e0001a05 NC |
3444 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
3445 | return FALSE; | |
3446 | ||
3447 | if (r_reloc_is_const (&src1->r_rel)) | |
3448 | return (src1->value == src2->value); | |
3449 | ||
3450 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) | |
3451 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
3452 | return FALSE; | |
3453 | ||
3454 | if (r_reloc_get_target_offset (&src1->r_rel) | |
3455 | != r_reloc_get_target_offset (&src2->r_rel)) | |
3456 | return FALSE; | |
3457 | ||
3458 | if (src1->value != src2->value) | |
3459 | return FALSE; | |
3460 | ||
2c8c90bc BW |
3461 | /* Now check for the same section (if defined) or the same elf_hash |
3462 | (if undefined or weak). */ | |
3463 | h1 = r_reloc_get_hash_entry (&src1->r_rel); | |
3464 | h2 = r_reloc_get_hash_entry (&src2->r_rel); | |
3465 | if (r_reloc_is_defined (&src1->r_rel) | |
3466 | && (final_static_link | |
3467 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) | |
3468 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) | |
e0001a05 NC |
3469 | { |
3470 | if (r_reloc_get_section (&src1->r_rel) | |
3471 | != r_reloc_get_section (&src2->r_rel)) | |
3472 | return FALSE; | |
3473 | } | |
3474 | else | |
3475 | { | |
2c8c90bc BW |
3476 | /* Require that the hash entries (i.e., symbols) be identical. */ |
3477 | if (h1 != h2 || h1 == 0) | |
e0001a05 NC |
3478 | return FALSE; |
3479 | } | |
3480 | ||
3481 | return TRUE; | |
3482 | } | |
3483 | ||
3484 | ||
3485 | /* Must be power of 2. */ | |
3486 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
3487 | ||
3488 | static value_map_hash_table * | |
3489 | value_map_hash_table_init () | |
3490 | { | |
3491 | value_map_hash_table *values; | |
3492 | ||
3493 | values = (value_map_hash_table *) | |
3494 | bfd_malloc (sizeof (value_map_hash_table)); | |
3495 | ||
3496 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
3497 | values->count = 0; | |
3498 | values->buckets = (value_map **) | |
3499 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
3500 | ||
3501 | return values; | |
3502 | } | |
3503 | ||
3504 | ||
3505 | static unsigned | |
3506 | hash_bfd_vma (val) | |
3507 | bfd_vma val; | |
3508 | { | |
3509 | return (val >> 2) + (val >> 10); | |
3510 | } | |
3511 | ||
3512 | ||
3513 | static unsigned | |
3514 | hash_literal_value (src) | |
3515 | const literal_value *src; | |
3516 | { | |
3517 | unsigned hash_val; | |
560e09e9 | 3518 | |
e0001a05 NC |
3519 | if (r_reloc_is_const (&src->r_rel)) |
3520 | return hash_bfd_vma (src->value); | |
3521 | ||
3522 | hash_val = (hash_bfd_vma (r_reloc_get_target_offset (&src->r_rel)) | |
3523 | + hash_bfd_vma (src->value)); | |
3524 | ||
3525 | /* Now check for the same section and the same elf_hash. */ | |
3526 | if (r_reloc_is_defined (&src->r_rel)) | |
560e09e9 | 3527 | hash_val += hash_bfd_vma ((bfd_vma) (unsigned) r_reloc_get_section (&src->r_rel)); |
e0001a05 | 3528 | else |
560e09e9 | 3529 | hash_val += hash_bfd_vma ((bfd_vma) (unsigned) r_reloc_get_hash_entry (&src->r_rel)); |
e0001a05 NC |
3530 | |
3531 | return hash_val; | |
3532 | } | |
3533 | ||
3534 | ||
3535 | /* Check if the specified literal_value has been seen before. */ | |
3536 | ||
3537 | static value_map * | |
2c8c90bc | 3538 | get_cached_value (map, val, final_static_link) |
e0001a05 NC |
3539 | value_map_hash_table *map; |
3540 | const literal_value *val; | |
2c8c90bc | 3541 | bfd_boolean final_static_link; |
e0001a05 NC |
3542 | { |
3543 | value_map *map_e; | |
3544 | value_map *bucket; | |
3545 | unsigned idx; | |
3546 | ||
3547 | idx = hash_literal_value (val); | |
3548 | idx = idx & (map->bucket_count - 1); | |
3549 | bucket = map->buckets[idx]; | |
3550 | for (map_e = bucket; map_e; map_e = map_e->next) | |
3551 | { | |
2c8c90bc | 3552 | if (is_same_value (&map_e->val, val, final_static_link)) |
e0001a05 NC |
3553 | return map_e; |
3554 | } | |
3555 | return NULL; | |
3556 | } | |
3557 | ||
3558 | ||
3559 | /* Record a new literal value. It is illegal to call this if VALUE | |
3560 | already has an entry here. */ | |
3561 | ||
3562 | static value_map * | |
2c8c90bc | 3563 | add_value_map (map, val, loc, final_static_link) |
e0001a05 NC |
3564 | value_map_hash_table *map; |
3565 | const literal_value *val; | |
3566 | const r_reloc *loc; | |
2c8c90bc | 3567 | bfd_boolean final_static_link; |
e0001a05 NC |
3568 | { |
3569 | value_map **bucket_p; | |
3570 | unsigned idx; | |
3571 | ||
3572 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
3573 | ||
2c8c90bc | 3574 | BFD_ASSERT (get_cached_value (map, val, final_static_link) == NULL); |
e0001a05 NC |
3575 | val_e->val = *val; |
3576 | val_e->loc = *loc; | |
3577 | ||
3578 | idx = hash_literal_value (val); | |
3579 | idx = idx & (map->bucket_count - 1); | |
3580 | bucket_p = &map->buckets[idx]; | |
3581 | ||
3582 | val_e->next = *bucket_p; | |
3583 | *bucket_p = val_e; | |
3584 | map->count++; | |
3585 | /* FIXME: consider resizing the hash table if we get too many entries */ | |
3586 | ||
3587 | return val_e; | |
3588 | } | |
3589 | ||
3590 | \f | |
3591 | /* Lists of literals being coalesced or removed. */ | |
3592 | ||
3593 | /* In the usual case, the literal identified by "from" is being | |
3594 | coalesced with another literal identified by "to". If the literal is | |
3595 | unused and is being removed altogether, "to.abfd" will be NULL. | |
3596 | The removed_literal entries are kept on a per-section list, sorted | |
3597 | by the "from" offset field. */ | |
3598 | ||
3599 | typedef struct removed_literal_struct removed_literal; | |
3600 | typedef struct removed_literal_list_struct removed_literal_list; | |
3601 | ||
3602 | struct removed_literal_struct | |
3603 | { | |
3604 | r_reloc from; | |
3605 | r_reloc to; | |
3606 | removed_literal *next; | |
3607 | }; | |
3608 | ||
3609 | struct removed_literal_list_struct | |
3610 | { | |
3611 | removed_literal *head; | |
3612 | removed_literal *tail; | |
3613 | }; | |
3614 | ||
3615 | ||
3616 | static void add_removed_literal | |
3617 | PARAMS ((removed_literal_list *, const r_reloc *, const r_reloc *)); | |
3618 | static removed_literal *find_removed_literal | |
3619 | PARAMS ((removed_literal_list *, bfd_vma)); | |
3620 | static bfd_vma offset_with_removed_literals | |
3621 | PARAMS ((removed_literal_list *, bfd_vma)); | |
3622 | ||
3623 | ||
3624 | /* Record that the literal at "from" is being removed. If "to" is not | |
3625 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
3626 | ||
3627 | static void | |
3628 | add_removed_literal (removed_list, from, to) | |
3629 | removed_literal_list *removed_list; | |
3630 | const r_reloc *from; | |
3631 | const r_reloc *to; | |
3632 | { | |
3633 | removed_literal *r, *new_r, *next_r; | |
3634 | ||
3635 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
3636 | ||
3637 | new_r->from = *from; | |
3638 | if (to) | |
3639 | new_r->to = *to; | |
3640 | else | |
3641 | new_r->to.abfd = NULL; | |
3642 | new_r->next = NULL; | |
3643 | ||
3644 | r = removed_list->head; | |
3645 | if (r == NULL) | |
3646 | { | |
3647 | removed_list->head = new_r; | |
3648 | removed_list->tail = new_r; | |
3649 | } | |
3650 | /* Special check for common case of append. */ | |
3651 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
3652 | { | |
3653 | removed_list->tail->next = new_r; | |
3654 | removed_list->tail = new_r; | |
3655 | } | |
3656 | else | |
3657 | { | |
3658 | while (r->from.target_offset < from->target_offset | |
3659 | && r->next != NULL) | |
3660 | { | |
3661 | r = r->next; | |
3662 | } | |
3663 | next_r = r->next; | |
3664 | r->next = new_r; | |
3665 | new_r->next = next_r; | |
3666 | if (next_r == NULL) | |
3667 | removed_list->tail = new_r; | |
3668 | } | |
3669 | } | |
3670 | ||
3671 | ||
3672 | /* Check if the list of removed literals contains an entry for the | |
3673 | given address. Return the entry if found. */ | |
3674 | ||
3675 | static removed_literal * | |
3676 | find_removed_literal (removed_list, addr) | |
3677 | removed_literal_list *removed_list; | |
3678 | bfd_vma addr; | |
3679 | { | |
3680 | removed_literal *r = removed_list->head; | |
3681 | while (r && r->from.target_offset < addr) | |
3682 | r = r->next; | |
3683 | if (r && r->from.target_offset == addr) | |
3684 | return r; | |
3685 | return NULL; | |
3686 | } | |
3687 | ||
3688 | ||
3689 | /* Adjust an offset in a section to compensate for literals that are | |
3690 | being removed. Search the list of removed literals and subtract | |
3691 | 4 bytes for every removed literal prior to the given address. */ | |
3692 | ||
3693 | static bfd_vma | |
3694 | offset_with_removed_literals (removed_list, addr) | |
3695 | removed_literal_list *removed_list; | |
3696 | bfd_vma addr; | |
3697 | { | |
3698 | removed_literal *r = removed_list->head; | |
3699 | unsigned num_bytes = 0; | |
3700 | ||
3701 | if (r == NULL) | |
3702 | return addr; | |
3703 | ||
3704 | while (r && r->from.target_offset <= addr) | |
3705 | { | |
3706 | num_bytes += 4; | |
3707 | r = r->next; | |
3708 | } | |
3709 | if (num_bytes > addr) | |
3710 | return 0; | |
3711 | return (addr - num_bytes); | |
3712 | } | |
3713 | ||
3714 | \f | |
3715 | /* Coalescing literals may require a relocation to refer to a section in | |
3716 | a different input file, but the standard relocation information | |
3717 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
3718 | to "fix" the relocations that refer to sections in other input files. | |
3719 | These structures are kept on per-section lists. The "src_type" field | |
3720 | records the relocation type in case there are multiple relocations on | |
3721 | the same location. FIXME: This is ugly; an alternative might be to | |
3722 | add new symbols with the "owner" field to some other input file. */ | |
3723 | ||
3724 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
3725 | ||
3726 | struct reloc_bfd_fix_struct | |
3727 | { | |
3728 | asection *src_sec; | |
3729 | bfd_vma src_offset; | |
3730 | unsigned src_type; /* Relocation type. */ | |
3731 | ||
3732 | bfd *target_abfd; | |
3733 | asection *target_sec; | |
3734 | bfd_vma target_offset; | |
3735 | ||
3736 | reloc_bfd_fix *next; | |
3737 | }; | |
3738 | ||
3739 | ||
3740 | static reloc_bfd_fix *reloc_bfd_fix_init | |
3741 | PARAMS ((asection *, bfd_vma, unsigned, bfd *, asection *, bfd_vma)); | |
3742 | static reloc_bfd_fix *get_bfd_fix | |
3743 | PARAMS ((reloc_bfd_fix *, asection *, bfd_vma, unsigned)); | |
3744 | ||
3745 | ||
3746 | static reloc_bfd_fix * | |
3747 | reloc_bfd_fix_init (src_sec, src_offset, src_type, | |
3748 | target_abfd, target_sec, target_offset) | |
3749 | asection *src_sec; | |
3750 | bfd_vma src_offset; | |
3751 | unsigned src_type; | |
3752 | bfd *target_abfd; | |
3753 | asection *target_sec; | |
3754 | bfd_vma target_offset; | |
3755 | { | |
3756 | reloc_bfd_fix *fix; | |
3757 | ||
3758 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
3759 | fix->src_sec = src_sec; | |
3760 | fix->src_offset = src_offset; | |
3761 | fix->src_type = src_type; | |
3762 | fix->target_abfd = target_abfd; | |
3763 | fix->target_sec = target_sec; | |
3764 | fix->target_offset = target_offset; | |
3765 | ||
3766 | return fix; | |
3767 | } | |
3768 | ||
3769 | ||
3770 | static reloc_bfd_fix * | |
3771 | get_bfd_fix (fix_list, sec, offset, type) | |
3772 | reloc_bfd_fix *fix_list; | |
3773 | asection *sec; | |
3774 | bfd_vma offset; | |
3775 | unsigned type; | |
3776 | { | |
3777 | reloc_bfd_fix *r; | |
3778 | ||
3779 | for (r = fix_list; r != NULL; r = r->next) | |
3780 | { | |
3781 | if (r->src_sec == sec | |
3782 | && r->src_offset == offset | |
3783 | && r->src_type == type) | |
3784 | return r; | |
3785 | } | |
3786 | return NULL; | |
3787 | } | |
3788 | ||
3789 | \f | |
3790 | /* Per-section data for relaxation. */ | |
3791 | ||
3792 | struct xtensa_relax_info_struct | |
3793 | { | |
3794 | bfd_boolean is_relaxable_literal_section; | |
3795 | int visited; /* Number of times visited. */ | |
3796 | ||
3797 | source_reloc *src_relocs; /* Array[src_count]. */ | |
3798 | int src_count; | |
3799 | int src_next; /* Next src_relocs entry to assign. */ | |
3800 | ||
3801 | removed_literal_list removed_list; | |
3802 | ||
3803 | reloc_bfd_fix *fix_list; | |
3804 | }; | |
3805 | ||
3806 | struct elf_xtensa_section_data | |
3807 | { | |
3808 | struct bfd_elf_section_data elf; | |
3809 | xtensa_relax_info relax_info; | |
3810 | }; | |
3811 | ||
3812 | static void init_xtensa_relax_info | |
3813 | PARAMS ((asection *)); | |
3814 | static xtensa_relax_info *get_xtensa_relax_info | |
3815 | PARAMS ((asection *)); | |
3816 | static void add_fix | |
3817 | PARAMS ((asection *, reloc_bfd_fix *)); | |
3818 | ||
3819 | ||
3820 | static bfd_boolean | |
3821 | elf_xtensa_new_section_hook (abfd, sec) | |
3822 | bfd *abfd; | |
3823 | asection *sec; | |
3824 | { | |
3825 | struct elf_xtensa_section_data *sdata; | |
3826 | bfd_size_type amt = sizeof (*sdata); | |
3827 | ||
3828 | sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt); | |
3829 | if (sdata == NULL) | |
3830 | return FALSE; | |
3831 | sec->used_by_bfd = (PTR) sdata; | |
3832 | ||
3833 | return _bfd_elf_new_section_hook (abfd, sec); | |
3834 | } | |
3835 | ||
3836 | ||
3837 | static void | |
3838 | init_xtensa_relax_info (sec) | |
3839 | asection *sec; | |
3840 | { | |
3841 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
3842 | ||
3843 | relax_info->is_relaxable_literal_section = FALSE; | |
3844 | relax_info->visited = 0; | |
3845 | ||
3846 | relax_info->src_relocs = NULL; | |
3847 | relax_info->src_count = 0; | |
3848 | relax_info->src_next = 0; | |
3849 | ||
3850 | relax_info->removed_list.head = NULL; | |
3851 | relax_info->removed_list.tail = NULL; | |
3852 | ||
3853 | relax_info->fix_list = NULL; | |
3854 | } | |
3855 | ||
3856 | ||
3857 | static xtensa_relax_info * | |
3858 | get_xtensa_relax_info (sec) | |
3859 | asection *sec; | |
3860 | { | |
3861 | struct elf_xtensa_section_data *section_data; | |
3862 | ||
3863 | /* No info available if no section or if it is an output section. */ | |
3864 | if (!sec || sec == sec->output_section) | |
3865 | return NULL; | |
3866 | ||
3867 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
3868 | return §ion_data->relax_info; | |
3869 | } | |
3870 | ||
3871 | ||
3872 | static void | |
3873 | add_fix (src_sec, fix) | |
3874 | asection *src_sec; | |
3875 | reloc_bfd_fix *fix; | |
3876 | { | |
3877 | xtensa_relax_info *relax_info; | |
3878 | ||
3879 | relax_info = get_xtensa_relax_info (src_sec); | |
3880 | fix->next = relax_info->fix_list; | |
3881 | relax_info->fix_list = fix; | |
3882 | } | |
3883 | ||
3884 | \f | |
3885 | /* Access to internal relocations, section contents and symbols. */ | |
3886 | ||
3887 | /* During relaxation, we need to modify relocations, section contents, | |
3888 | and symbol definitions, and we need to keep the original values from | |
3889 | being reloaded from the input files, i.e., we need to "pin" the | |
3890 | modified values in memory. We also want to continue to observe the | |
3891 | setting of the "keep-memory" flag. The following functions wrap the | |
3892 | standard BFD functions to take care of this for us. */ | |
3893 | ||
3894 | static Elf_Internal_Rela * | |
3895 | retrieve_internal_relocs (abfd, sec, keep_memory) | |
3896 | bfd *abfd; | |
3897 | asection *sec; | |
3898 | bfd_boolean keep_memory; | |
3899 | { | |
3900 | Elf_Internal_Rela *internal_relocs; | |
3901 | ||
3902 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
3903 | return NULL; | |
3904 | ||
3905 | internal_relocs = elf_section_data (sec)->relocs; | |
3906 | if (internal_relocs == NULL) | |
45d6a902 | 3907 | internal_relocs = (_bfd_elf_link_read_relocs |
e0001a05 NC |
3908 | (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL, |
3909 | keep_memory)); | |
3910 | return internal_relocs; | |
3911 | } | |
3912 | ||
3913 | ||
3914 | static void | |
3915 | pin_internal_relocs (sec, internal_relocs) | |
3916 | asection *sec; | |
3917 | Elf_Internal_Rela *internal_relocs; | |
3918 | { | |
3919 | elf_section_data (sec)->relocs = internal_relocs; | |
3920 | } | |
3921 | ||
3922 | ||
3923 | static void | |
3924 | release_internal_relocs (sec, internal_relocs) | |
3925 | asection *sec; | |
3926 | Elf_Internal_Rela *internal_relocs; | |
3927 | { | |
3928 | if (internal_relocs | |
3929 | && elf_section_data (sec)->relocs != internal_relocs) | |
3930 | free (internal_relocs); | |
3931 | } | |
3932 | ||
3933 | ||
3934 | static bfd_byte * | |
3935 | retrieve_contents (abfd, sec, keep_memory) | |
3936 | bfd *abfd; | |
3937 | asection *sec; | |
3938 | bfd_boolean keep_memory; | |
3939 | { | |
3940 | bfd_byte *contents; | |
3941 | ||
3942 | contents = elf_section_data (sec)->this_hdr.contents; | |
3943 | ||
eea6121a | 3944 | if (contents == NULL && sec->size != 0) |
e0001a05 | 3945 | { |
eea6121a | 3946 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
e0001a05 | 3947 | { |
eea6121a AM |
3948 | if (contents != NULL) |
3949 | free (contents); | |
3950 | return NULL; | |
e0001a05 | 3951 | } |
eea6121a AM |
3952 | if (keep_memory) |
3953 | elf_section_data (sec)->this_hdr.contents = contents; | |
e0001a05 NC |
3954 | } |
3955 | return contents; | |
3956 | } | |
3957 | ||
3958 | ||
3959 | static void | |
3960 | pin_contents (sec, contents) | |
3961 | asection *sec; | |
3962 | bfd_byte *contents; | |
3963 | { | |
3964 | elf_section_data (sec)->this_hdr.contents = contents; | |
3965 | } | |
3966 | ||
3967 | ||
3968 | static void | |
3969 | release_contents (sec, contents) | |
3970 | asection *sec; | |
3971 | bfd_byte *contents; | |
3972 | { | |
3973 | if (contents && | |
3974 | elf_section_data (sec)->this_hdr.contents != contents) | |
3975 | free (contents); | |
3976 | } | |
3977 | ||
3978 | ||
3979 | static Elf_Internal_Sym * | |
3980 | retrieve_local_syms (input_bfd) | |
3981 | bfd *input_bfd; | |
3982 | { | |
3983 | Elf_Internal_Shdr *symtab_hdr; | |
3984 | Elf_Internal_Sym *isymbuf; | |
3985 | size_t locsymcount; | |
3986 | ||
3987 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3988 | locsymcount = symtab_hdr->sh_info; | |
3989 | ||
3990 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
3991 | if (isymbuf == NULL && locsymcount != 0) | |
3992 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
3993 | NULL, NULL, NULL); | |
3994 | ||
3995 | /* Save the symbols for this input file so they won't be read again. */ | |
3996 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
3997 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
3998 | ||
3999 | return isymbuf; | |
4000 | } | |
4001 | ||
4002 | \f | |
4003 | /* Code for link-time relaxation. */ | |
4004 | ||
4005 | /* Local helper functions. */ | |
4006 | static bfd_boolean analyze_relocations | |
4007 | PARAMS ((struct bfd_link_info *)); | |
4008 | static bfd_boolean find_relaxable_sections | |
4009 | PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *)); | |
4010 | static bfd_boolean collect_source_relocs | |
4011 | PARAMS ((bfd *, asection *, struct bfd_link_info *)); | |
4012 | static bfd_boolean is_resolvable_asm_expansion | |
4013 | PARAMS ((bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, | |
4014 | struct bfd_link_info *, bfd_boolean *)); | |
4015 | static bfd_boolean remove_literals | |
4016 | PARAMS ((bfd *, asection *, struct bfd_link_info *, value_map_hash_table *)); | |
4017 | static bfd_boolean relax_section | |
4018 | PARAMS ((bfd *, asection *, struct bfd_link_info *)); | |
4019 | static bfd_boolean relax_property_section | |
4020 | PARAMS ((bfd *, asection *, struct bfd_link_info *)); | |
4021 | static bfd_boolean relax_section_symbols | |
4022 | PARAMS ((bfd *, asection *)); | |
4023 | static bfd_boolean relocations_reach | |
4024 | PARAMS ((source_reloc *, int, const r_reloc *)); | |
4025 | static void translate_reloc | |
4026 | PARAMS ((const r_reloc *, r_reloc *)); | |
4027 | static Elf_Internal_Rela *get_irel_at_offset | |
4028 | PARAMS ((asection *, Elf_Internal_Rela *, bfd_vma)); | |
4029 | static Elf_Internal_Rela *find_associated_l32r_irel | |
4030 | PARAMS ((asection *, bfd_byte *, Elf_Internal_Rela *, | |
4031 | Elf_Internal_Rela *)); | |
4032 | static void shrink_dynamic_reloc_sections | |
4033 | PARAMS ((struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *)); | |
4034 | ||
4035 | ||
4036 | static bfd_boolean | |
4037 | elf_xtensa_relax_section (abfd, sec, link_info, again) | |
4038 | bfd *abfd; | |
4039 | asection *sec; | |
4040 | struct bfd_link_info *link_info; | |
4041 | bfd_boolean *again; | |
4042 | { | |
4043 | static value_map_hash_table *values = NULL; | |
4044 | xtensa_relax_info *relax_info; | |
4045 | ||
4046 | if (!values) | |
4047 | { | |
4048 | /* Do some overall initialization for relaxation. */ | |
4049 | values = value_map_hash_table_init (); | |
4050 | relaxing_section = TRUE; | |
4051 | if (!analyze_relocations (link_info)) | |
4052 | return FALSE; | |
4053 | } | |
4054 | *again = FALSE; | |
4055 | ||
4056 | /* Don't mess with linker-created sections. */ | |
4057 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
4058 | return TRUE; | |
4059 | ||
4060 | relax_info = get_xtensa_relax_info (sec); | |
4061 | BFD_ASSERT (relax_info != NULL); | |
4062 | ||
4063 | switch (relax_info->visited) | |
4064 | { | |
4065 | case 0: | |
4066 | /* Note: It would be nice to fold this pass into | |
4067 | analyze_relocations, but it is important for this step that the | |
4068 | sections be examined in link order. */ | |
4069 | if (!remove_literals (abfd, sec, link_info, values)) | |
4070 | return FALSE; | |
4071 | *again = TRUE; | |
4072 | break; | |
4073 | ||
4074 | case 1: | |
4075 | if (!relax_section (abfd, sec, link_info)) | |
4076 | return FALSE; | |
4077 | *again = TRUE; | |
4078 | break; | |
4079 | ||
4080 | case 2: | |
4081 | if (!relax_section_symbols (abfd, sec)) | |
4082 | return FALSE; | |
4083 | break; | |
4084 | } | |
4085 | ||
4086 | relax_info->visited++; | |
4087 | return TRUE; | |
4088 | } | |
4089 | ||
4090 | /* Initialization for relaxation. */ | |
4091 | ||
4092 | /* This function is called once at the start of relaxation. It scans | |
4093 | all the input sections and marks the ones that are relaxable (i.e., | |
4094 | literal sections with L32R relocations against them). It then | |
4095 | collect source_reloc information for all the relocations against | |
4096 | those relaxable sections. */ | |
4097 | ||
4098 | static bfd_boolean | |
4099 | analyze_relocations (link_info) | |
4100 | struct bfd_link_info *link_info; | |
4101 | { | |
4102 | bfd *abfd; | |
4103 | asection *sec; | |
4104 | bfd_boolean is_relaxable = FALSE; | |
4105 | ||
4106 | /* Initialize the per-section relaxation info. */ | |
4107 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
4108 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
4109 | { | |
4110 | init_xtensa_relax_info (sec); | |
4111 | } | |
4112 | ||
4113 | /* Mark relaxable sections (and count relocations against each one). */ | |
4114 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
4115 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
4116 | { | |
4117 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
4118 | return FALSE; | |
4119 | } | |
4120 | ||
4121 | /* Bail out if there are no relaxable sections. */ | |
4122 | if (!is_relaxable) | |
4123 | return TRUE; | |
4124 | ||
4125 | /* Allocate space for source_relocs. */ | |
4126 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
4127 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
4128 | { | |
4129 | xtensa_relax_info *relax_info; | |
4130 | ||
4131 | relax_info = get_xtensa_relax_info (sec); | |
4132 | if (relax_info->is_relaxable_literal_section) | |
4133 | { | |
4134 | relax_info->src_relocs = (source_reloc *) | |
4135 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
4136 | } | |
4137 | } | |
4138 | ||
4139 | /* Collect info on relocations against each relaxable section. */ | |
4140 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
4141 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
4142 | { | |
4143 | if (!collect_source_relocs (abfd, sec, link_info)) | |
4144 | return FALSE; | |
4145 | } | |
4146 | ||
4147 | return TRUE; | |
4148 | } | |
4149 | ||
4150 | ||
4151 | /* Find all the literal sections that might be relaxed. The motivation | |
4152 | for this pass is that collect_source_relocs() needs to record _all_ | |
4153 | the relocations that target each relaxable section. That is | |
4154 | expensive and unnecessary unless the target section is actually going | |
4155 | to be relaxed. This pass identifies all such sections by checking if | |
4156 | they have L32Rs pointing to them. In the process, the total number | |
4cc11e76 | 4157 | of relocations targeting each section is also counted so that we |
e0001a05 NC |
4158 | know how much space to allocate for source_relocs against each |
4159 | relaxable literal section. */ | |
4160 | ||
4161 | static bfd_boolean | |
4162 | find_relaxable_sections (abfd, sec, link_info, is_relaxable_p) | |
4163 | bfd *abfd; | |
4164 | asection *sec; | |
4165 | struct bfd_link_info *link_info; | |
4166 | bfd_boolean *is_relaxable_p; | |
4167 | { | |
4168 | Elf_Internal_Rela *internal_relocs; | |
4169 | bfd_byte *contents; | |
4170 | bfd_boolean ok = TRUE; | |
4171 | unsigned i; | |
4172 | ||
4173 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
4174 | link_info->keep_memory); | |
4175 | if (internal_relocs == NULL) | |
4176 | return ok; | |
4177 | ||
4178 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
eea6121a | 4179 | if (contents == NULL && sec->size != 0) |
e0001a05 NC |
4180 | { |
4181 | ok = FALSE; | |
4182 | goto error_return; | |
4183 | } | |
4184 | ||
4185 | for (i = 0; i < sec->reloc_count; i++) | |
4186 | { | |
4187 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
4188 | r_reloc r_rel; | |
4189 | asection *target_sec; | |
4190 | xtensa_relax_info *target_relax_info; | |
4191 | ||
4192 | r_reloc_init (&r_rel, abfd, irel); | |
4193 | ||
4194 | target_sec = r_reloc_get_section (&r_rel); | |
4195 | target_relax_info = get_xtensa_relax_info (target_sec); | |
4196 | if (!target_relax_info) | |
4197 | continue; | |
4198 | ||
4199 | /* Count relocations against the target section. */ | |
4200 | target_relax_info->src_count++; | |
4201 | ||
4202 | if (is_literal_section (target_sec) | |
4203 | && is_l32r_relocation (sec, contents, irel) | |
4204 | && r_reloc_is_defined (&r_rel)) | |
4205 | { | |
4206 | /* Mark the target section as relaxable. */ | |
4207 | target_relax_info->is_relaxable_literal_section = TRUE; | |
4208 | *is_relaxable_p = TRUE; | |
4209 | } | |
4210 | } | |
4211 | ||
4212 | error_return: | |
4213 | release_contents (sec, contents); | |
4214 | release_internal_relocs (sec, internal_relocs); | |
4215 | return ok; | |
4216 | } | |
4217 | ||
4218 | ||
4219 | /* Record _all_ the relocations that point to relaxable literal | |
4220 | sections, and get rid of ASM_EXPAND relocs by either converting them | |
4221 | to ASM_SIMPLIFY or by removing them. */ | |
4222 | ||
4223 | static bfd_boolean | |
4224 | collect_source_relocs (abfd, sec, link_info) | |
4225 | bfd *abfd; | |
4226 | asection *sec; | |
4227 | struct bfd_link_info *link_info; | |
4228 | { | |
4229 | Elf_Internal_Rela *internal_relocs; | |
4230 | bfd_byte *contents; | |
4231 | bfd_boolean ok = TRUE; | |
4232 | unsigned i; | |
4233 | ||
4234 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
4235 | link_info->keep_memory); | |
4236 | if (internal_relocs == NULL) | |
4237 | return ok; | |
4238 | ||
4239 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
eea6121a | 4240 | if (contents == NULL && sec->size != 0) |
e0001a05 NC |
4241 | { |
4242 | ok = FALSE; | |
4243 | goto error_return; | |
4244 | } | |
4245 | ||
4246 | /* Record relocations against relaxable literal sections. */ | |
4247 | for (i = 0; i < sec->reloc_count; i++) | |
4248 | { | |
4249 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
4250 | r_reloc r_rel; | |
4251 | asection *target_sec; | |
4252 | xtensa_relax_info *target_relax_info; | |
4253 | ||
4254 | r_reloc_init (&r_rel, abfd, irel); | |
4255 | ||
4256 | target_sec = r_reloc_get_section (&r_rel); | |
4257 | target_relax_info = get_xtensa_relax_info (target_sec); | |
4258 | ||
4259 | if (target_relax_info | |
4260 | && target_relax_info->is_relaxable_literal_section) | |
4261 | { | |
4262 | xtensa_opcode opcode; | |
4263 | xtensa_operand opnd; | |
4264 | source_reloc *s_reloc; | |
4265 | int src_next; | |
4266 | ||
4267 | src_next = target_relax_info->src_next++; | |
4268 | s_reloc = &target_relax_info->src_relocs[src_next]; | |
4269 | ||
4270 | opcode = get_relocation_opcode (sec, contents, irel); | |
4271 | if (opcode == XTENSA_UNDEFINED) | |
4272 | opnd = NULL; | |
4273 | else | |
4274 | opnd = xtensa_get_operand (xtensa_default_isa, opcode, | |
4275 | get_relocation_opnd (irel)); | |
4276 | ||
4277 | init_source_reloc (s_reloc, sec, &r_rel, opnd); | |
4278 | } | |
4279 | } | |
4280 | ||
4281 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
4282 | src_relocs array for the target literal section may still be | |
4283 | incomplete, but it must at least contain the entries for the L32R | |
4284 | relocations associated with ASM_EXPANDs because they were just | |
4285 | added in the preceding loop over the relocations. */ | |
4286 | ||
4287 | for (i = 0; i < sec->reloc_count; i++) | |
4288 | { | |
4289 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
4290 | bfd_boolean is_reachable; | |
4291 | ||
4292 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
4293 | &is_reachable)) | |
4294 | continue; | |
4295 | ||
4296 | if (is_reachable) | |
4297 | { | |
4298 | Elf_Internal_Rela *l32r_irel; | |
4299 | r_reloc r_rel; | |
4300 | asection *target_sec; | |
4301 | xtensa_relax_info *target_relax_info; | |
4302 | ||
4303 | /* Mark the source_reloc for the L32R so that it will be | |
4304 | removed in remove_literals(), along with the associated | |
4305 | literal. */ | |
4306 | l32r_irel = find_associated_l32r_irel (sec, contents, | |
4307 | irel, internal_relocs); | |
4308 | if (l32r_irel == NULL) | |
4309 | continue; | |
4310 | ||
4311 | r_reloc_init (&r_rel, abfd, l32r_irel); | |
4312 | ||
4313 | target_sec = r_reloc_get_section (&r_rel); | |
4314 | target_relax_info = get_xtensa_relax_info (target_sec); | |
4315 | ||
4316 | if (target_relax_info | |
4317 | && target_relax_info->is_relaxable_literal_section) | |
4318 | { | |
4319 | source_reloc *s_reloc; | |
4320 | ||
4321 | /* Search the source_relocs for the entry corresponding to | |
4322 | the l32r_irel. Note: The src_relocs array is not yet | |
4323 | sorted, but it wouldn't matter anyway because we're | |
4324 | searching by source offset instead of target offset. */ | |
4325 | s_reloc = find_source_reloc (target_relax_info->src_relocs, | |
4326 | target_relax_info->src_next, | |
4327 | sec, l32r_irel); | |
4328 | BFD_ASSERT (s_reloc); | |
4329 | s_reloc->is_null = TRUE; | |
4330 | } | |
4331 | ||
4332 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
4333 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
4334 | R_XTENSA_ASM_SIMPLIFY); | |
4335 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
4336 | ||
4337 | pin_internal_relocs (sec, internal_relocs); | |
4338 | } | |
4339 | else | |
4340 | { | |
4341 | /* It is resolvable but doesn't reach. We resolve now | |
4342 | by eliminating the relocation -- the call will remain | |
4343 | expanded into L32R/CALLX. */ | |
4344 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
4345 | pin_internal_relocs (sec, internal_relocs); | |
4346 | } | |
4347 | } | |
4348 | ||
4349 | error_return: | |
4350 | release_contents (sec, contents); | |
4351 | release_internal_relocs (sec, internal_relocs); | |
4352 | return ok; | |
4353 | } | |
4354 | ||
4355 | ||
4356 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
4357 | be resolved on a final link or when a partial link locates it in the | |
4358 | same section as the target. Set "is_reachable" flag if the target of | |
4359 | the call is within the range of a direct call, given the current VMA | |
4360 | for this section and the target section. */ | |
4361 | ||
4362 | bfd_boolean | |
4363 | is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
4364 | is_reachable_p) | |
4365 | bfd *abfd; | |
4366 | asection *sec; | |
4367 | bfd_byte *contents; | |
4368 | Elf_Internal_Rela *irel; | |
4369 | struct bfd_link_info *link_info; | |
4370 | bfd_boolean *is_reachable_p; | |
4371 | { | |
4372 | asection *target_sec; | |
4373 | bfd_vma target_offset; | |
4374 | r_reloc r_rel; | |
4375 | xtensa_opcode opcode, direct_call_opcode; | |
4376 | bfd_vma self_address; | |
4377 | bfd_vma dest_address; | |
4378 | ||
4379 | *is_reachable_p = FALSE; | |
4380 | ||
4381 | if (contents == NULL) | |
4382 | return FALSE; | |
4383 | ||
4384 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) | |
4385 | return FALSE; | |
4386 | ||
4387 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
eea6121a | 4388 | sec->size - irel->r_offset); |
e0001a05 NC |
4389 | |
4390 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
4391 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
4392 | return FALSE; | |
4393 | ||
4394 | /* Check and see that the target resolves. */ | |
4395 | r_reloc_init (&r_rel, abfd, irel); | |
4396 | if (!r_reloc_is_defined (&r_rel)) | |
4397 | return FALSE; | |
4398 | ||
4399 | target_sec = r_reloc_get_section (&r_rel); | |
4400 | target_offset = r_reloc_get_target_offset (&r_rel); | |
4401 | ||
4402 | /* If the target is in a shared library, then it doesn't reach. This | |
4403 | isn't supposed to come up because the compiler should never generate | |
4404 | non-PIC calls on systems that use shared libraries, but the linker | |
4405 | shouldn't crash regardless. */ | |
4406 | if (!target_sec->output_section) | |
4407 | return FALSE; | |
4408 | ||
1049f94e | 4409 | /* For relocatable sections, we can only simplify when the output |
e0001a05 NC |
4410 | section of the target is the same as the output section of the |
4411 | source. */ | |
1049f94e | 4412 | if (link_info->relocatable |
e0001a05 NC |
4413 | && (target_sec->output_section != sec->output_section)) |
4414 | return FALSE; | |
4415 | ||
4416 | self_address = (sec->output_section->vma | |
4417 | + sec->output_offset + irel->r_offset + 3); | |
4418 | dest_address = (target_sec->output_section->vma | |
4419 | + target_sec->output_offset + target_offset); | |
4420 | ||
4421 | *is_reachable_p = pcrel_reloc_fits | |
4422 | (xtensa_get_operand (xtensa_default_isa, direct_call_opcode, 0), | |
4423 | self_address, dest_address); | |
4424 | ||
4425 | if ((self_address >> CALL_SEGMENT_BITS) != | |
4426 | (dest_address >> CALL_SEGMENT_BITS)) | |
4427 | return FALSE; | |
4428 | ||
4429 | return TRUE; | |
4430 | } | |
4431 | ||
4432 | ||
4433 | static Elf_Internal_Rela * | |
4434 | find_associated_l32r_irel (sec, contents, other_irel, internal_relocs) | |
4435 | asection *sec; | |
4436 | bfd_byte *contents; | |
4437 | Elf_Internal_Rela *other_irel; | |
4438 | Elf_Internal_Rela *internal_relocs; | |
4439 | { | |
4440 | unsigned i; | |
4441 | ||
4442 | for (i = 0; i < sec->reloc_count; i++) | |
4443 | { | |
4444 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
4445 | ||
4446 | if (irel == other_irel) | |
4447 | continue; | |
4448 | if (irel->r_offset != other_irel->r_offset) | |
4449 | continue; | |
4450 | if (is_l32r_relocation (sec, contents, irel)) | |
4451 | return irel; | |
4452 | } | |
4453 | ||
4454 | return NULL; | |
4455 | } | |
4456 | ||
4457 | /* First relaxation pass. */ | |
4458 | ||
4459 | /* If the section is relaxable (i.e., a literal section), check each | |
4460 | literal to see if it has the same value as another literal that has | |
4461 | already been seen, either in the current section or a previous one. | |
4462 | If so, add an entry to the per-section list of removed literals. The | |
4463 | actual changes are deferred until the next pass. */ | |
4464 | ||
4465 | static bfd_boolean | |
4466 | remove_literals (abfd, sec, link_info, values) | |
4467 | bfd *abfd; | |
4468 | asection *sec; | |
4469 | struct bfd_link_info *link_info; | |
4470 | value_map_hash_table *values; | |
4471 | { | |
4472 | xtensa_relax_info *relax_info; | |
4473 | bfd_byte *contents; | |
4474 | Elf_Internal_Rela *internal_relocs; | |
4475 | source_reloc *src_relocs; | |
2c8c90bc | 4476 | bfd_boolean final_static_link; |
e0001a05 NC |
4477 | bfd_boolean ok = TRUE; |
4478 | int i; | |
4479 | ||
4480 | /* Do nothing if it is not a relaxable literal section. */ | |
4481 | relax_info = get_xtensa_relax_info (sec); | |
4482 | BFD_ASSERT (relax_info); | |
4483 | ||
4484 | if (!relax_info->is_relaxable_literal_section) | |
4485 | return ok; | |
4486 | ||
4487 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
4488 | link_info->keep_memory); | |
4489 | ||
4490 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
eea6121a | 4491 | if (contents == NULL && sec->size != 0) |
e0001a05 NC |
4492 | { |
4493 | ok = FALSE; | |
4494 | goto error_return; | |
4495 | } | |
4496 | ||
2c8c90bc BW |
4497 | final_static_link = |
4498 | (!link_info->relocatable | |
4499 | && !elf_hash_table (link_info)->dynamic_sections_created); | |
4500 | ||
e0001a05 NC |
4501 | /* Sort the source_relocs by target offset. */ |
4502 | src_relocs = relax_info->src_relocs; | |
4503 | qsort (src_relocs, relax_info->src_count, | |
4504 | sizeof (source_reloc), source_reloc_compare); | |
4505 | ||
4506 | for (i = 0; i < relax_info->src_count; i++) | |
4507 | { | |
4508 | source_reloc *rel; | |
4509 | Elf_Internal_Rela *irel = NULL; | |
4510 | literal_value val; | |
4511 | value_map *val_map; | |
4512 | ||
4513 | rel = &src_relocs[i]; | |
4514 | irel = get_irel_at_offset (sec, internal_relocs, | |
4515 | rel->r_rel.target_offset); | |
4516 | ||
4517 | /* If the target_offset for this relocation is the same as the | |
4518 | previous relocation, then we've already considered whether the | |
4519 | literal can be coalesced. Skip to the next one.... */ | |
4520 | if (i != 0 && (src_relocs[i-1].r_rel.target_offset | |
4521 | == rel->r_rel.target_offset)) | |
4522 | continue; | |
4523 | ||
4524 | /* Check if the relocation was from an L32R that is being removed | |
4525 | because a CALLX was converted to a direct CALL, and check if | |
4526 | there are no other relocations to the literal. */ | |
4527 | if (rel->is_null | |
4528 | && (i == relax_info->src_count - 1 | |
4529 | || (src_relocs[i+1].r_rel.target_offset | |
4530 | != rel->r_rel.target_offset))) | |
4531 | { | |
4532 | /* Mark the unused literal so that it will be removed. */ | |
4533 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
4534 | ||
4535 | /* Zero out the relocation on this literal location. */ | |
4536 | if (irel) | |
4537 | { | |
4538 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
4539 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
4540 | ||
4541 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
4542 | } | |
4543 | ||
4544 | continue; | |
4545 | } | |
4546 | ||
4547 | /* Find the literal value. */ | |
4548 | r_reloc_init (&val.r_rel, abfd, irel); | |
eea6121a | 4549 | BFD_ASSERT (rel->r_rel.target_offset < sec->size); |
e0001a05 NC |
4550 | val.value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); |
4551 | ||
4552 | /* Check if we've seen another literal with the same value. */ | |
2c8c90bc | 4553 | val_map = get_cached_value (values, &val, final_static_link); |
e0001a05 NC |
4554 | if (val_map != NULL) |
4555 | { | |
4556 | /* First check that THIS and all the other relocs to this | |
4557 | literal will FIT if we move them to the new address. */ | |
4558 | ||
4559 | if (relocations_reach (rel, relax_info->src_count - i, | |
4560 | &val_map->loc)) | |
4561 | { | |
4562 | /* Mark that the literal will be coalesced. */ | |
4563 | add_removed_literal (&relax_info->removed_list, | |
4564 | &rel->r_rel, &val_map->loc); | |
4565 | } | |
4566 | else | |
4567 | { | |
4568 | /* Relocations do not reach -- do not remove this literal. */ | |
4569 | val_map->loc = rel->r_rel; | |
4570 | } | |
4571 | } | |
4572 | else | |
4573 | { | |
4574 | /* This is the first time we've seen this literal value. */ | |
4575 | BFD_ASSERT (sec == r_reloc_get_section (&rel->r_rel)); | |
2c8c90bc | 4576 | add_value_map (values, &val, &rel->r_rel, final_static_link); |
e0001a05 NC |
4577 | } |
4578 | } | |
4579 | ||
4580 | error_return: | |
4581 | release_contents (sec, contents); | |
4582 | release_internal_relocs (sec, internal_relocs); | |
4583 | return ok; | |
4584 | } | |
4585 | ||
4586 | ||
4587 | /* Check if the original relocations (presumably on L32R instructions) | |
4588 | identified by reloc[0..N] can be changed to reference the literal | |
4589 | identified by r_rel. If r_rel is out of range for any of the | |
4590 | original relocations, then we don't want to coalesce the original | |
4591 | literal with the one at r_rel. We only check reloc[0..N], where the | |
4592 | offsets are all the same as for reloc[0] (i.e., they're all | |
4593 | referencing the same literal) and where N is also bounded by the | |
4594 | number of remaining entries in the "reloc" array. The "reloc" array | |
4595 | is sorted by target offset so we know all the entries for the same | |
4596 | literal will be contiguous. */ | |
4597 | ||
4598 | static bfd_boolean | |
4599 | relocations_reach (reloc, remaining_relocs, r_rel) | |
4600 | source_reloc *reloc; | |
4601 | int remaining_relocs; | |
4602 | const r_reloc *r_rel; | |
4603 | { | |
4604 | bfd_vma from_offset, source_address, dest_address; | |
4605 | asection *sec; | |
4606 | int i; | |
4607 | ||
4608 | if (!r_reloc_is_defined (r_rel)) | |
4609 | return FALSE; | |
4610 | ||
4611 | sec = r_reloc_get_section (r_rel); | |
4612 | from_offset = reloc[0].r_rel.target_offset; | |
4613 | ||
4614 | for (i = 0; i < remaining_relocs; i++) | |
4615 | { | |
4616 | if (reloc[i].r_rel.target_offset != from_offset) | |
4617 | break; | |
4618 | ||
4619 | /* Ignore relocations that have been removed. */ | |
4620 | if (reloc[i].is_null) | |
4621 | continue; | |
4622 | ||
4623 | /* The original and new output section for these must be the same | |
4624 | in order to coalesce. */ | |
4625 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section | |
4626 | != sec->output_section) | |
4627 | return FALSE; | |
4628 | ||
4629 | /* A NULL operand means it is not a PC-relative relocation, so | |
4630 | the literal can be moved anywhere. */ | |
4631 | if (reloc[i].opnd) | |
4632 | { | |
4633 | /* Otherwise, check to see that it fits. */ | |
4634 | source_address = (reloc[i].source_sec->output_section->vma | |
4635 | + reloc[i].source_sec->output_offset | |
4636 | + reloc[i].r_rel.rela.r_offset); | |
4637 | dest_address = (sec->output_section->vma | |
4638 | + sec->output_offset | |
4639 | + r_rel->target_offset); | |
4640 | ||
4641 | if (!pcrel_reloc_fits (reloc[i].opnd, source_address, dest_address)) | |
4642 | return FALSE; | |
4643 | } | |
4644 | } | |
4645 | ||
4646 | return TRUE; | |
4647 | } | |
4648 | ||
4649 | ||
4650 | /* WARNING: linear search here. If the relocation are in order by | |
4651 | address, we can use a faster binary search. ALSO, we assume that | |
4652 | there is only 1 non-NONE relocation per address. */ | |
4653 | ||
4654 | static Elf_Internal_Rela * | |
4655 | get_irel_at_offset (sec, internal_relocs, offset) | |
4656 | asection *sec; | |
4657 | Elf_Internal_Rela *internal_relocs; | |
4658 | bfd_vma offset; | |
4659 | { | |
4660 | unsigned i; | |
4661 | if (!internal_relocs) | |
4662 | return NULL; | |
4663 | for (i = 0; i < sec->reloc_count; i++) | |
4664 | { | |
4665 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
4666 | if (irel->r_offset == offset | |
4667 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) | |
4668 | return irel; | |
4669 | } | |
4670 | return NULL; | |
4671 | } | |
4672 | ||
4673 | \f | |
4674 | /* Second relaxation pass. */ | |
4675 | ||
4676 | /* Modify all of the relocations to point to the right spot, and if this | |
4677 | is a relaxable section, delete the unwanted literals and fix the | |
4678 | cooked_size. */ | |
4679 | ||
4680 | bfd_boolean | |
4681 | relax_section (abfd, sec, link_info) | |
4682 | bfd *abfd; | |
4683 | asection *sec; | |
4684 | struct bfd_link_info *link_info; | |
4685 | { | |
4686 | Elf_Internal_Rela *internal_relocs; | |
4687 | xtensa_relax_info *relax_info; | |
4688 | bfd_byte *contents; | |
4689 | bfd_boolean ok = TRUE; | |
4690 | unsigned i; | |
4691 | ||
4692 | relax_info = get_xtensa_relax_info (sec); | |
4693 | BFD_ASSERT (relax_info); | |
4694 | ||
4695 | /* Handle property sections (e.g., literal tables) specially. */ | |
4696 | if (xtensa_is_property_section (sec)) | |
4697 | { | |
4698 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
4699 | return relax_property_section (abfd, sec, link_info); | |
4700 | } | |
4701 | ||
4702 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
4703 | link_info->keep_memory); | |
4704 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
eea6121a | 4705 | if (contents == NULL && sec->size != 0) |
e0001a05 NC |
4706 | { |
4707 | ok = FALSE; | |
4708 | goto error_return; | |
4709 | } | |
4710 | ||
4711 | if (internal_relocs) | |
4712 | { | |
4713 | for (i = 0; i < sec->reloc_count; i++) | |
4714 | { | |
4715 | Elf_Internal_Rela *irel; | |
4716 | xtensa_relax_info *target_relax_info; | |
4717 | bfd_vma source_offset; | |
4718 | r_reloc r_rel; | |
4719 | unsigned r_type; | |
4720 | asection *target_sec; | |
4721 | ||
4722 | /* Locally change the source address. | |
4723 | Translate the target to the new target address. | |
4724 | If it points to this section and has been removed, | |
4725 | NULLify it. | |
4726 | Write it back. */ | |
4727 | ||
4728 | irel = &internal_relocs[i]; | |
4729 | source_offset = irel->r_offset; | |
4730 | ||
4731 | r_type = ELF32_R_TYPE (irel->r_info); | |
4732 | r_reloc_init (&r_rel, abfd, irel); | |
4733 | ||
4734 | if (relax_info->is_relaxable_literal_section) | |
4735 | { | |
4736 | if (r_type != R_XTENSA_NONE | |
4737 | && find_removed_literal (&relax_info->removed_list, | |
4738 | irel->r_offset)) | |
4739 | { | |
4740 | /* Remove this relocation. */ | |
4741 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
4742 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
4743 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
4744 | irel->r_offset = offset_with_removed_literals | |
4745 | (&relax_info->removed_list, irel->r_offset); | |
4746 | continue; | |
4747 | } | |
4748 | source_offset = | |
4749 | offset_with_removed_literals (&relax_info->removed_list, | |
4750 | irel->r_offset); | |
4751 | irel->r_offset = source_offset; | |
4752 | } | |
4753 | ||
4754 | target_sec = r_reloc_get_section (&r_rel); | |
4755 | target_relax_info = get_xtensa_relax_info (target_sec); | |
4756 | ||
4757 | if (target_relax_info | |
4758 | && target_relax_info->is_relaxable_literal_section) | |
4759 | { | |
4760 | r_reloc new_rel; | |
4761 | reloc_bfd_fix *fix; | |
4762 | ||
4763 | translate_reloc (&r_rel, &new_rel); | |
4764 | ||
4765 | /* FIXME: If the relocation still references a section in | |
4766 | the same input file, the relocation should be modified | |
4767 | directly instead of adding a "fix" record. */ | |
4768 | ||
4769 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0, | |
4770 | r_reloc_get_section (&new_rel), | |
4771 | new_rel.target_offset); | |
4772 | add_fix (sec, fix); | |
4773 | } | |
4774 | ||
4775 | pin_internal_relocs (sec, internal_relocs); | |
4776 | } | |
4777 | } | |
4778 | ||
4779 | if (relax_info->is_relaxable_literal_section) | |
4780 | { | |
4781 | /* Walk through the contents and delete literals that are not needed | |
4782 | anymore. */ | |
4783 | ||
eea6121a | 4784 | unsigned long size = sec->size; |
e0001a05 NC |
4785 | unsigned long removed = 0; |
4786 | ||
4787 | removed_literal *reloc = relax_info->removed_list.head; | |
4788 | for (; reloc; reloc = reloc->next) | |
4789 | { | |
eea6121a | 4790 | unsigned long upper = sec->size; |
e0001a05 NC |
4791 | bfd_vma start = reloc->from.target_offset + 4; |
4792 | if (reloc->next) | |
4793 | upper = reloc->next->from.target_offset; | |
4794 | if (upper - start != 0) | |
4795 | { | |
4796 | BFD_ASSERT (start <= upper); | |
4797 | memmove (contents + start - removed - 4, | |
4798 | contents + start, | |
4799 | upper - start ); | |
4800 | pin_contents (sec, contents); | |
4801 | } | |
4802 | removed += 4; | |
4803 | size -= 4; | |
4804 | } | |
4805 | ||
4806 | /* Change the section size. */ | |
eea6121a | 4807 | sec->size = size; |
e0001a05 NC |
4808 | } |
4809 | ||
4810 | error_return: | |
4811 | release_internal_relocs (sec, internal_relocs); | |
4812 | release_contents (sec, contents); | |
4813 | return ok; | |
4814 | } | |
4815 | ||
4816 | ||
4817 | /* Fix up a relocation to take account of removed literals. */ | |
4818 | ||
4819 | static void | |
4820 | translate_reloc (orig_rel, new_rel) | |
4821 | const r_reloc *orig_rel; | |
4822 | r_reloc *new_rel; | |
4823 | { | |
4824 | asection *sec; | |
4825 | xtensa_relax_info *relax_info; | |
4826 | removed_literal *removed; | |
4827 | unsigned long new_offset; | |
4828 | ||
4829 | *new_rel = *orig_rel; | |
4830 | ||
4831 | if (!r_reloc_is_defined (orig_rel)) | |
4832 | return; | |
4833 | sec = r_reloc_get_section (orig_rel); | |
4834 | ||
4835 | relax_info = get_xtensa_relax_info (sec); | |
4836 | BFD_ASSERT (relax_info); | |
4837 | ||
4838 | if (!relax_info->is_relaxable_literal_section) | |
4839 | return; | |
4840 | ||
4841 | /* Check if the original relocation is against a literal being removed. */ | |
4842 | removed = find_removed_literal (&relax_info->removed_list, | |
4843 | orig_rel->target_offset); | |
4844 | if (removed) | |
4845 | { | |
4846 | asection *new_sec; | |
4847 | ||
4848 | /* The fact that there is still a relocation to this literal indicates | |
4849 | that the literal is being coalesced, not simply removed. */ | |
4850 | BFD_ASSERT (removed->to.abfd != NULL); | |
4851 | ||
4852 | /* This was moved to some other address (possibly in another section). */ | |
4853 | *new_rel = removed->to; | |
4854 | new_sec = r_reloc_get_section (new_rel); | |
4855 | if (new_sec != sec) | |
4856 | { | |
4857 | sec = new_sec; | |
4858 | relax_info = get_xtensa_relax_info (sec); | |
4859 | if (!relax_info || !relax_info->is_relaxable_literal_section) | |
4860 | return; | |
4861 | } | |
4862 | } | |
4863 | ||
4864 | /* ...and the target address may have been moved within its section. */ | |
4865 | new_offset = offset_with_removed_literals (&relax_info->removed_list, | |
4866 | new_rel->target_offset); | |
4867 | ||
4868 | /* Modify the offset and addend. */ | |
4869 | new_rel->target_offset = new_offset; | |
4870 | new_rel->rela.r_addend += (new_offset - new_rel->target_offset); | |
4871 | } | |
4872 | ||
4873 | ||
4874 | /* For dynamic links, there may be a dynamic relocation for each | |
4875 | literal. The number of dynamic relocations must be computed in | |
4876 | size_dynamic_sections, which occurs before relaxation. When a | |
4877 | literal is removed, this function checks if there is a corresponding | |
4878 | dynamic relocation and shrinks the size of the appropriate dynamic | |
4879 | relocation section accordingly. At this point, the contents of the | |
4880 | dynamic relocation sections have not yet been filled in, so there's | |
4881 | nothing else that needs to be done. */ | |
4882 | ||
4883 | static void | |
4884 | shrink_dynamic_reloc_sections (info, abfd, input_section, rel) | |
4885 | struct bfd_link_info *info; | |
4886 | bfd *abfd; | |
4887 | asection *input_section; | |
4888 | Elf_Internal_Rela *rel; | |
4889 | { | |
4890 | Elf_Internal_Shdr *symtab_hdr; | |
4891 | struct elf_link_hash_entry **sym_hashes; | |
4892 | unsigned long r_symndx; | |
4893 | int r_type; | |
4894 | struct elf_link_hash_entry *h; | |
4895 | bfd_boolean dynamic_symbol; | |
4896 | ||
4897 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
4898 | sym_hashes = elf_sym_hashes (abfd); | |
4899 | ||
4900 | r_type = ELF32_R_TYPE (rel->r_info); | |
4901 | r_symndx = ELF32_R_SYM (rel->r_info); | |
4902 | ||
4903 | if (r_symndx < symtab_hdr->sh_info) | |
4904 | h = NULL; | |
4905 | else | |
4906 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
4907 | ||
571b5725 | 4908 | dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info); |
e0001a05 NC |
4909 | |
4910 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
4911 | && (input_section->flags & SEC_ALLOC) != 0 | |
4912 | && (dynamic_symbol || info->shared)) | |
4913 | { | |
4914 | bfd *dynobj; | |
4915 | const char *srel_name; | |
4916 | asection *srel; | |
4917 | bfd_boolean is_plt = FALSE; | |
4918 | ||
4919 | dynobj = elf_hash_table (info)->dynobj; | |
4920 | BFD_ASSERT (dynobj != NULL); | |
4921 | ||
4922 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
4923 | { | |
4924 | srel_name = ".rela.plt"; | |
4925 | is_plt = TRUE; | |
4926 | } | |
4927 | else | |
4928 | srel_name = ".rela.got"; | |
4929 | ||
4930 | /* Reduce size of the .rela.* section by one reloc. */ | |
4931 | srel = bfd_get_section_by_name (dynobj, srel_name); | |
4932 | BFD_ASSERT (srel != NULL); | |
eea6121a AM |
4933 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
4934 | srel->size -= sizeof (Elf32_External_Rela); | |
e0001a05 NC |
4935 | |
4936 | if (is_plt) | |
4937 | { | |
4938 | asection *splt, *sgotplt, *srelgot; | |
4939 | int reloc_index, chunk; | |
4940 | ||
4941 | /* Find the PLT reloc index of the entry being removed. This | |
4942 | is computed from the size of ".rela.plt". It is needed to | |
4943 | figure out which PLT chunk to resize. Usually "last index | |
4944 | = size - 1" since the index starts at zero, but in this | |
4945 | context, the size has just been decremented so there's no | |
4946 | need to subtract one. */ | |
eea6121a | 4947 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
4948 | |
4949 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
4950 | splt = elf_xtensa_get_plt_section (dynobj, chunk); | |
4951 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
4952 | BFD_ASSERT (splt != NULL && sgotplt != NULL); | |
4953 | ||
4954 | /* Check if an entire PLT chunk has just been eliminated. */ | |
4955 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
4956 | { | |
4957 | /* The two magic GOT entries for that chunk can go away. */ | |
4958 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); | |
4959 | BFD_ASSERT (srelgot != NULL); | |
4960 | srelgot->reloc_count -= 2; | |
eea6121a AM |
4961 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
4962 | sgotplt->size -= 8; | |
e0001a05 NC |
4963 | |
4964 | /* There should be only one entry left (and it will be | |
4965 | removed below). */ | |
eea6121a AM |
4966 | BFD_ASSERT (sgotplt->size == 4); |
4967 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); | |
e0001a05 NC |
4968 | } |
4969 | ||
eea6121a AM |
4970 | BFD_ASSERT (sgotplt->size >= 4); |
4971 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); | |
e0001a05 | 4972 | |
eea6121a AM |
4973 | sgotplt->size -= 4; |
4974 | splt->size -= PLT_ENTRY_SIZE; | |
e0001a05 NC |
4975 | } |
4976 | } | |
4977 | } | |
4978 | ||
4979 | ||
4980 | /* This is similar to relax_section except that when a target is moved, | |
4981 | we shift addresses up. We also need to modify the size. This | |
4982 | algorithm does NOT allow for relocations into the middle of the | |
4983 | property sections. */ | |
4984 | ||
4985 | static bfd_boolean | |
4986 | relax_property_section (abfd, sec, link_info) | |
4987 | bfd *abfd; | |
4988 | asection *sec; | |
4989 | struct bfd_link_info *link_info; | |
4990 | { | |
4991 | Elf_Internal_Rela *internal_relocs; | |
4992 | bfd_byte *contents; | |
4993 | unsigned i, nexti; | |
4994 | bfd_boolean ok = TRUE; | |
4995 | ||
4996 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
4997 | link_info->keep_memory); | |
4998 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
eea6121a | 4999 | if (contents == NULL && sec->size != 0) |
e0001a05 NC |
5000 | { |
5001 | ok = FALSE; | |
5002 | goto error_return; | |
5003 | } | |
5004 | ||
5005 | if (internal_relocs) | |
5006 | { | |
5007 | for (i = 0; i < sec->reloc_count; i++) | |
5008 | { | |
5009 | Elf_Internal_Rela *irel; | |
5010 | xtensa_relax_info *target_relax_info; | |
5011 | r_reloc r_rel; | |
5012 | unsigned r_type; | |
5013 | asection *target_sec; | |
5014 | ||
5015 | /* Locally change the source address. | |
5016 | Translate the target to the new target address. | |
5017 | If it points to this section and has been removed, MOVE IT. | |
5018 | Also, don't forget to modify the associated SIZE at | |
5019 | (offset + 4). */ | |
5020 | ||
5021 | irel = &internal_relocs[i]; | |
5022 | r_type = ELF32_R_TYPE (irel->r_info); | |
5023 | if (r_type == R_XTENSA_NONE) | |
5024 | continue; | |
5025 | ||
5026 | r_reloc_init (&r_rel, abfd, irel); | |
5027 | ||
5028 | target_sec = r_reloc_get_section (&r_rel); | |
5029 | target_relax_info = get_xtensa_relax_info (target_sec); | |
5030 | ||
5031 | if (target_relax_info | |
5032 | && target_relax_info->is_relaxable_literal_section) | |
5033 | { | |
5034 | /* Translate the relocation's destination. */ | |
5035 | bfd_vma new_offset; | |
5036 | bfd_vma new_end_offset; | |
5037 | bfd_byte *size_p; | |
5038 | long old_size, new_size; | |
5039 | ||
5040 | new_offset = | |
5041 | offset_with_removed_literals (&target_relax_info->removed_list, | |
5042 | r_rel.target_offset); | |
5043 | ||
5044 | /* Assert that we are not out of bounds. */ | |
5045 | size_p = &contents[irel->r_offset + 4]; | |
5046 | old_size = bfd_get_32 (abfd, &contents[irel->r_offset + 4]); | |
5047 | ||
5048 | new_end_offset = | |
5049 | offset_with_removed_literals (&target_relax_info->removed_list, | |
5050 | r_rel.target_offset + old_size); | |
5051 | ||
5052 | new_size = new_end_offset - new_offset; | |
5053 | if (new_size != old_size) | |
5054 | { | |
5055 | bfd_put_32 (abfd, new_size, size_p); | |
5056 | pin_contents (sec, contents); | |
5057 | } | |
5058 | ||
5059 | if (new_offset != r_rel.target_offset) | |
5060 | { | |
5061 | bfd_vma diff = new_offset - r_rel.target_offset; | |
5062 | irel->r_addend += diff; | |
5063 | pin_internal_relocs (sec, internal_relocs); | |
5064 | } | |
5065 | } | |
5066 | } | |
5067 | } | |
5068 | ||
5069 | /* Combine adjacent property table entries. This is also done in | |
5070 | finish_dynamic_sections() but at that point it's too late to | |
5071 | reclaim the space in the output section, so we do this twice. */ | |
5072 | ||
5073 | if (internal_relocs) | |
5074 | { | |
5075 | Elf_Internal_Rela *last_irel = NULL; | |
5076 | int removed_bytes = 0; | |
5077 | bfd_vma offset, last_irel_offset; | |
5078 | bfd_vma section_size; | |
5079 | ||
5080 | /* Walk over memory and irels at the same time. | |
5081 | This REQUIRES that the internal_relocs be sorted by offset. */ | |
5082 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
5083 | internal_reloc_compare); | |
5084 | nexti = 0; /* Index into internal_relocs. */ | |
5085 | ||
5086 | pin_internal_relocs (sec, internal_relocs); | |
5087 | pin_contents (sec, contents); | |
5088 | ||
5089 | last_irel_offset = (bfd_vma) -1; | |
eea6121a | 5090 | section_size = sec->size; |
e0001a05 NC |
5091 | BFD_ASSERT (section_size % 8 == 0); |
5092 | ||
5093 | for (offset = 0; offset < section_size; offset += 8) | |
5094 | { | |
5095 | Elf_Internal_Rela *irel, *next_irel; | |
5096 | bfd_vma bytes_to_remove, size, actual_offset; | |
5097 | bfd_boolean remove_this_irel; | |
5098 | ||
5099 | irel = NULL; | |
5100 | next_irel = NULL; | |
5101 | ||
5102 | /* Find the next two relocations (if there are that many left), | |
5103 | skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is | |
5104 | the starting reloc index. After these two loops, "i" | |
5105 | is the index of the first non-NONE reloc past that starting | |
5106 | index, and "nexti" is the index for the next non-NONE reloc | |
5107 | after "i". */ | |
5108 | ||
5109 | for (i = nexti; i < sec->reloc_count; i++) | |
5110 | { | |
5111 | if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE) | |
5112 | { | |
5113 | irel = &internal_relocs[i]; | |
5114 | break; | |
5115 | } | |
5116 | internal_relocs[i].r_offset -= removed_bytes; | |
5117 | } | |
5118 | ||
5119 | for (nexti = i + 1; nexti < sec->reloc_count; nexti++) | |
5120 | { | |
5121 | if (ELF32_R_TYPE (internal_relocs[nexti].r_info) | |
5122 | != R_XTENSA_NONE) | |
5123 | { | |
5124 | next_irel = &internal_relocs[nexti]; | |
5125 | break; | |
5126 | } | |
5127 | internal_relocs[nexti].r_offset -= removed_bytes; | |
5128 | } | |
5129 | ||
5130 | remove_this_irel = FALSE; | |
5131 | bytes_to_remove = 0; | |
5132 | actual_offset = offset - removed_bytes; | |
5133 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
5134 | ||
5135 | /* Check that the irels are sorted by offset, | |
5136 | with only one per address. */ | |
5137 | BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset); | |
5138 | BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset); | |
5139 | ||
5140 | /* Make sure there isn't a reloc on the size field. */ | |
5141 | if (irel && irel->r_offset == offset + 4) | |
5142 | { | |
5143 | irel->r_offset -= removed_bytes; | |
5144 | last_irel_offset = irel->r_offset; | |
5145 | } | |
5146 | else if (next_irel && next_irel->r_offset == offset + 4) | |
5147 | { | |
5148 | nexti += 1; | |
5149 | irel->r_offset -= removed_bytes; | |
5150 | next_irel->r_offset -= removed_bytes; | |
5151 | last_irel_offset = next_irel->r_offset; | |
5152 | } | |
5153 | else if (size == 0) | |
5154 | { | |
5155 | /* Always remove entries with zero size. */ | |
5156 | bytes_to_remove = 8; | |
5157 | if (irel && irel->r_offset == offset) | |
5158 | { | |
5159 | remove_this_irel = TRUE; | |
5160 | ||
5161 | irel->r_offset -= removed_bytes; | |
5162 | last_irel_offset = irel->r_offset; | |
5163 | } | |
5164 | } | |
5165 | else if (irel && irel->r_offset == offset) | |
5166 | { | |
5167 | if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32) | |
5168 | { | |
5169 | if (last_irel) | |
5170 | { | |
5171 | bfd_vma old_size = | |
5172 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); | |
5173 | bfd_vma old_address = | |
5174 | (last_irel->r_addend | |
5175 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); | |
5176 | bfd_vma new_address = | |
5177 | (irel->r_addend | |
5178 | + bfd_get_32 (abfd, &contents[actual_offset])); | |
5179 | ||
5180 | if ((ELF32_R_SYM (irel->r_info) == | |
5181 | ELF32_R_SYM (last_irel->r_info)) | |
5182 | && (old_address + old_size == new_address)) | |
5183 | { | |
5184 | /* fix the old size */ | |
5185 | bfd_put_32 (abfd, old_size + size, | |
5186 | &contents[last_irel->r_offset + 4]); | |
5187 | bytes_to_remove = 8; | |
5188 | remove_this_irel = TRUE; | |
5189 | } | |
5190 | else | |
5191 | last_irel = irel; | |
5192 | } | |
5193 | else | |
5194 | last_irel = irel; | |
5195 | } | |
5196 | ||
5197 | irel->r_offset -= removed_bytes; | |
5198 | last_irel_offset = irel->r_offset; | |
5199 | } | |
5200 | ||
5201 | if (remove_this_irel) | |
5202 | { | |
5203 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
5204 | irel->r_offset -= bytes_to_remove; | |
5205 | } | |
5206 | ||
5207 | if (bytes_to_remove != 0) | |
5208 | { | |
5209 | removed_bytes += bytes_to_remove; | |
5210 | if (offset + 8 < section_size) | |
5211 | memmove (&contents[actual_offset], | |
5212 | &contents[actual_offset+8], | |
5213 | section_size - offset - 8); | |
5214 | } | |
5215 | } | |
5216 | ||
5217 | if (removed_bytes) | |
5218 | { | |
5219 | /* Clear the removed bytes. */ | |
5220 | memset (&contents[section_size - removed_bytes], 0, removed_bytes); | |
5221 | ||
eea6121a | 5222 | sec->size = section_size - removed_bytes; |
e901de89 BW |
5223 | |
5224 | if (xtensa_is_littable_section (sec)) | |
5225 | { | |
5226 | bfd *dynobj = elf_hash_table (link_info)->dynobj; | |
5227 | if (dynobj) | |
5228 | { | |
5229 | asection *sgotloc = | |
5230 | bfd_get_section_by_name (dynobj, ".got.loc"); | |
5231 | if (sgotloc) | |
eea6121a | 5232 | sgotloc->size -= removed_bytes; |
e901de89 BW |
5233 | } |
5234 | } | |
e0001a05 NC |
5235 | } |
5236 | } | |
e901de89 | 5237 | |
e0001a05 NC |
5238 | error_return: |
5239 | release_internal_relocs (sec, internal_relocs); | |
5240 | release_contents (sec, contents); | |
5241 | return ok; | |
5242 | } | |
5243 | ||
5244 | \f | |
5245 | /* Third relaxation pass. */ | |
5246 | ||
5247 | /* Change symbol values to account for removed literals. */ | |
5248 | ||
5249 | bfd_boolean | |
5250 | relax_section_symbols (abfd, sec) | |
5251 | bfd *abfd; | |
5252 | asection *sec; | |
5253 | { | |
5254 | xtensa_relax_info *relax_info; | |
5255 | unsigned int sec_shndx; | |
5256 | Elf_Internal_Shdr *symtab_hdr; | |
5257 | Elf_Internal_Sym *isymbuf; | |
5258 | unsigned i, num_syms, num_locals; | |
5259 | ||
5260 | relax_info = get_xtensa_relax_info (sec); | |
5261 | BFD_ASSERT (relax_info); | |
5262 | ||
5263 | if (!relax_info->is_relaxable_literal_section) | |
5264 | return TRUE; | |
5265 | ||
5266 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
5267 | ||
5268 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5269 | isymbuf = retrieve_local_syms (abfd); | |
5270 | ||
5271 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
5272 | num_locals = symtab_hdr->sh_info; | |
5273 | ||
5274 | /* Adjust the local symbols defined in this section. */ | |
5275 | for (i = 0; i < num_locals; i++) | |
5276 | { | |
5277 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
5278 | ||
5279 | if (isym->st_shndx == sec_shndx) | |
5280 | { | |
5281 | bfd_vma new_address = offset_with_removed_literals | |
5282 | (&relax_info->removed_list, isym->st_value); | |
5283 | if (new_address != isym->st_value) | |
5284 | isym->st_value = new_address; | |
5285 | } | |
5286 | } | |
5287 | ||
5288 | /* Now adjust the global symbols defined in this section. */ | |
5289 | for (i = 0; i < (num_syms - num_locals); i++) | |
5290 | { | |
5291 | struct elf_link_hash_entry *sym_hash; | |
5292 | ||
5293 | sym_hash = elf_sym_hashes (abfd)[i]; | |
5294 | ||
5295 | if (sym_hash->root.type == bfd_link_hash_warning) | |
5296 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
5297 | ||
5298 | if ((sym_hash->root.type == bfd_link_hash_defined | |
5299 | || sym_hash->root.type == bfd_link_hash_defweak) | |
5300 | && sym_hash->root.u.def.section == sec) | |
5301 | { | |
5302 | bfd_vma new_address = offset_with_removed_literals | |
5303 | (&relax_info->removed_list, sym_hash->root.u.def.value); | |
5304 | if (new_address != sym_hash->root.u.def.value) | |
5305 | sym_hash->root.u.def.value = new_address; | |
5306 | } | |
5307 | } | |
5308 | ||
5309 | return TRUE; | |
5310 | } | |
5311 | ||
5312 | \f | |
5313 | /* "Fix" handling functions, called while performing relocations. */ | |
5314 | ||
5315 | static void | |
1049f94e | 5316 | do_fix_for_relocatable_link (rel, input_bfd, input_section) |
e0001a05 NC |
5317 | Elf_Internal_Rela *rel; |
5318 | bfd *input_bfd; | |
5319 | asection *input_section; | |
5320 | { | |
5321 | r_reloc r_rel; | |
5322 | asection *sec, *old_sec; | |
5323 | bfd_vma old_offset; | |
5324 | int r_type = ELF32_R_TYPE (rel->r_info); | |
5325 | reloc_bfd_fix *fix_list; | |
5326 | reloc_bfd_fix *fix; | |
5327 | ||
5328 | if (r_type == R_XTENSA_NONE) | |
5329 | return; | |
5330 | ||
5331 | fix_list = (get_xtensa_relax_info (input_section))->fix_list; | |
5332 | if (fix_list == NULL) | |
5333 | return; | |
5334 | ||
5335 | fix = get_bfd_fix (fix_list, input_section, rel->r_offset, r_type); | |
5336 | if (fix == NULL) | |
5337 | return; | |
5338 | ||
5339 | r_reloc_init (&r_rel, input_bfd, rel); | |
5340 | old_sec = r_reloc_get_section (&r_rel); | |
5341 | old_offset = r_reloc_get_target_offset (&r_rel); | |
5342 | ||
5343 | if (old_sec == NULL || !r_reloc_is_defined (&r_rel)) | |
5344 | { | |
5345 | BFD_ASSERT (r_type == R_XTENSA_ASM_EXPAND); | |
5346 | /* Leave it be. Resolution will happen in a later stage. */ | |
5347 | } | |
5348 | else | |
5349 | { | |
5350 | sec = fix->target_sec; | |
5351 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
5352 | - (old_sec->output_offset + old_offset)); | |
5353 | } | |
5354 | } | |
5355 | ||
5356 | ||
5357 | static void | |
5358 | do_fix_for_final_link (rel, input_section, relocationp) | |
5359 | Elf_Internal_Rela *rel; | |
5360 | asection *input_section; | |
5361 | bfd_vma *relocationp; | |
5362 | { | |
5363 | asection *sec; | |
5364 | int r_type = ELF32_R_TYPE (rel->r_info); | |
5365 | reloc_bfd_fix *fix_list; | |
5366 | reloc_bfd_fix *fix; | |
5367 | ||
5368 | if (r_type == R_XTENSA_NONE) | |
5369 | return; | |
5370 | ||
5371 | fix_list = (get_xtensa_relax_info (input_section))->fix_list; | |
5372 | if (fix_list == NULL) | |
5373 | return; | |
5374 | ||
5375 | fix = get_bfd_fix (fix_list, input_section, rel->r_offset, r_type); | |
5376 | if (fix == NULL) | |
5377 | return; | |
5378 | ||
5379 | sec = fix->target_sec; | |
5380 | *relocationp = (sec->output_section->vma | |
5381 | + sec->output_offset | |
5382 | + fix->target_offset - rel->r_addend); | |
5383 | } | |
5384 | ||
5385 | \f | |
5386 | /* Miscellaneous utility functions.... */ | |
5387 | ||
5388 | static asection * | |
5389 | elf_xtensa_get_plt_section (dynobj, chunk) | |
5390 | bfd *dynobj; | |
5391 | int chunk; | |
5392 | { | |
5393 | char plt_name[10]; | |
5394 | ||
5395 | if (chunk == 0) | |
5396 | return bfd_get_section_by_name (dynobj, ".plt"); | |
5397 | ||
5398 | sprintf (plt_name, ".plt.%u", chunk); | |
5399 | return bfd_get_section_by_name (dynobj, plt_name); | |
5400 | } | |
5401 | ||
5402 | ||
5403 | static asection * | |
5404 | elf_xtensa_get_gotplt_section (dynobj, chunk) | |
5405 | bfd *dynobj; | |
5406 | int chunk; | |
5407 | { | |
5408 | char got_name[14]; | |
5409 | ||
5410 | if (chunk == 0) | |
5411 | return bfd_get_section_by_name (dynobj, ".got.plt"); | |
5412 | ||
5413 | sprintf (got_name, ".got.plt.%u", chunk); | |
5414 | return bfd_get_section_by_name (dynobj, got_name); | |
5415 | } | |
5416 | ||
5417 | ||
5418 | /* Get the input section for a given symbol index. | |
5419 | If the symbol is: | |
5420 | . a section symbol, return the section; | |
5421 | . a common symbol, return the common section; | |
5422 | . an undefined symbol, return the undefined section; | |
5423 | . an indirect symbol, follow the links; | |
5424 | . an absolute value, return the absolute section. */ | |
5425 | ||
5426 | static asection * | |
5427 | get_elf_r_symndx_section (abfd, r_symndx) | |
5428 | bfd *abfd; | |
5429 | unsigned long r_symndx; | |
5430 | { | |
5431 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5432 | asection *target_sec = NULL; | |
5433 | if (r_symndx < symtab_hdr->sh_info) | |
5434 | { | |
5435 | Elf_Internal_Sym *isymbuf; | |
5436 | unsigned int section_index; | |
5437 | ||
5438 | isymbuf = retrieve_local_syms (abfd); | |
5439 | section_index = isymbuf[r_symndx].st_shndx; | |
5440 | ||
5441 | if (section_index == SHN_UNDEF) | |
5442 | target_sec = bfd_und_section_ptr; | |
5443 | else if (section_index > 0 && section_index < SHN_LORESERVE) | |
5444 | target_sec = bfd_section_from_elf_index (abfd, section_index); | |
5445 | else if (section_index == SHN_ABS) | |
5446 | target_sec = bfd_abs_section_ptr; | |
5447 | else if (section_index == SHN_COMMON) | |
5448 | target_sec = bfd_com_section_ptr; | |
5449 | else | |
5450 | /* Who knows? */ | |
5451 | target_sec = NULL; | |
5452 | } | |
5453 | else | |
5454 | { | |
5455 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
5456 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
5457 | ||
5458 | while (h->root.type == bfd_link_hash_indirect | |
5459 | || h->root.type == bfd_link_hash_warning) | |
5460 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5461 | ||
5462 | switch (h->root.type) | |
5463 | { | |
5464 | case bfd_link_hash_defined: | |
5465 | case bfd_link_hash_defweak: | |
5466 | target_sec = h->root.u.def.section; | |
5467 | break; | |
5468 | case bfd_link_hash_common: | |
5469 | target_sec = bfd_com_section_ptr; | |
5470 | break; | |
5471 | case bfd_link_hash_undefined: | |
5472 | case bfd_link_hash_undefweak: | |
5473 | target_sec = bfd_und_section_ptr; | |
5474 | break; | |
5475 | default: /* New indirect warning. */ | |
5476 | target_sec = bfd_und_section_ptr; | |
5477 | break; | |
5478 | } | |
5479 | } | |
5480 | return target_sec; | |
5481 | } | |
5482 | ||
5483 | ||
5484 | static struct elf_link_hash_entry * | |
5485 | get_elf_r_symndx_hash_entry (abfd, r_symndx) | |
5486 | bfd *abfd; | |
5487 | unsigned long r_symndx; | |
5488 | { | |
5489 | unsigned long indx; | |
5490 | struct elf_link_hash_entry *h; | |
5491 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5492 | ||
5493 | if (r_symndx < symtab_hdr->sh_info) | |
5494 | return NULL; | |
5495 | ||
5496 | indx = r_symndx - symtab_hdr->sh_info; | |
5497 | h = elf_sym_hashes (abfd)[indx]; | |
5498 | while (h->root.type == bfd_link_hash_indirect | |
5499 | || h->root.type == bfd_link_hash_warning) | |
5500 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5501 | return h; | |
5502 | } | |
5503 | ||
5504 | ||
5505 | /* Get the section-relative offset for a symbol number. */ | |
5506 | ||
5507 | static bfd_vma | |
5508 | get_elf_r_symndx_offset (abfd, r_symndx) | |
5509 | bfd *abfd; | |
5510 | unsigned long r_symndx; | |
5511 | { | |
5512 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5513 | bfd_vma offset = 0; | |
5514 | ||
5515 | if (r_symndx < symtab_hdr->sh_info) | |
5516 | { | |
5517 | Elf_Internal_Sym *isymbuf; | |
5518 | isymbuf = retrieve_local_syms (abfd); | |
5519 | offset = isymbuf[r_symndx].st_value; | |
5520 | } | |
5521 | else | |
5522 | { | |
5523 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
5524 | struct elf_link_hash_entry *h = | |
5525 | elf_sym_hashes (abfd)[indx]; | |
5526 | ||
5527 | while (h->root.type == bfd_link_hash_indirect | |
5528 | || h->root.type == bfd_link_hash_warning) | |
5529 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5530 | if (h->root.type == bfd_link_hash_defined | |
5531 | || h->root.type == bfd_link_hash_defweak) | |
5532 | offset = h->root.u.def.value; | |
5533 | } | |
5534 | return offset; | |
5535 | } | |
5536 | ||
5537 | ||
5538 | static bfd_boolean | |
5539 | pcrel_reloc_fits (opnd, self_address, dest_address) | |
5540 | xtensa_operand opnd; | |
5541 | bfd_vma self_address; | |
5542 | bfd_vma dest_address; | |
5543 | { | |
5544 | uint32 new_address = | |
5545 | xtensa_operand_do_reloc (opnd, dest_address, self_address); | |
5546 | return (xtensa_operand_encode (opnd, &new_address) | |
5547 | == xtensa_encode_result_ok); | |
5548 | } | |
5549 | ||
5550 | ||
b614a702 BW |
5551 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
5552 | static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1; | |
5553 | static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1; | |
5554 | ||
5555 | ||
e0001a05 NC |
5556 | static bfd_boolean |
5557 | xtensa_is_property_section (sec) | |
5558 | asection *sec; | |
5559 | { | |
b614a702 BW |
5560 | if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0 |
5561 | || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0) | |
5562 | return TRUE; | |
e901de89 | 5563 | |
b614a702 BW |
5564 | if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0 |
5565 | && (sec->name[linkonce_len] == 'x' | |
5566 | || sec->name[linkonce_len] == 'p') | |
5567 | && sec->name[linkonce_len + 1] == '.') | |
e901de89 BW |
5568 | return TRUE; |
5569 | ||
e901de89 BW |
5570 | return FALSE; |
5571 | } | |
5572 | ||
5573 | ||
5574 | static bfd_boolean | |
5575 | xtensa_is_littable_section (sec) | |
5576 | asection *sec; | |
5577 | { | |
b614a702 BW |
5578 | if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0) |
5579 | return TRUE; | |
e901de89 | 5580 | |
b614a702 BW |
5581 | if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0 |
5582 | && sec->name[linkonce_len] == 'p' | |
5583 | && sec->name[linkonce_len + 1] == '.') | |
e901de89 | 5584 | return TRUE; |
e0001a05 | 5585 | |
e901de89 | 5586 | return FALSE; |
e0001a05 NC |
5587 | } |
5588 | ||
5589 | ||
5590 | static bfd_boolean | |
5591 | is_literal_section (sec) | |
5592 | asection *sec; | |
5593 | { | |
5594 | /* FIXME: the current definition of this leaves a lot to be desired.... */ | |
5595 | if (sec == NULL || sec->name == NULL) | |
5596 | return FALSE; | |
5597 | return (strstr (sec->name, "literal") != NULL); | |
5598 | } | |
5599 | ||
5600 | ||
5601 | static int | |
5602 | internal_reloc_compare (ap, bp) | |
5603 | const PTR ap; | |
5604 | const PTR bp; | |
5605 | { | |
5606 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
5607 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
5608 | ||
5609 | return (a->r_offset - b->r_offset); | |
5610 | } | |
5611 | ||
5612 | ||
e0001a05 | 5613 | char * |
b614a702 | 5614 | xtensa_get_property_section_name (sec, base_name) |
e0001a05 | 5615 | asection *sec; |
b614a702 | 5616 | const char *base_name; |
e0001a05 | 5617 | { |
b614a702 | 5618 | if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) |
e0001a05 | 5619 | { |
b614a702 BW |
5620 | char *prop_sec_name; |
5621 | const char *suffix; | |
5622 | char linkonce_kind = 0; | |
5623 | ||
5624 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) | |
5625 | linkonce_kind = 'x'; | |
5626 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) | |
5627 | linkonce_kind = 'p'; | |
e0001a05 | 5628 | else |
b614a702 BW |
5629 | abort (); |
5630 | ||
5631 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) + 1); | |
5632 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); | |
5633 | prop_sec_name[linkonce_len] = linkonce_kind; | |
5634 | prop_sec_name[linkonce_len + 1] = '.'; | |
5635 | ||
5636 | suffix = sec->name + linkonce_len; | |
096c35a7 BW |
5637 | /* For backward compatibility, replace "t." instead of inserting |
5638 | the new linkonce_kind. */ | |
5639 | if (strncmp (suffix, "t.", 2) == 0) | |
5640 | suffix += 2; | |
b614a702 BW |
5641 | strcpy (prop_sec_name + linkonce_len + 2, suffix); |
5642 | ||
5643 | return prop_sec_name; | |
e0001a05 NC |
5644 | } |
5645 | ||
b614a702 | 5646 | return strdup (base_name); |
e0001a05 NC |
5647 | } |
5648 | ||
5649 | \f | |
5650 | /* Other functions called directly by the linker. */ | |
5651 | ||
5652 | bfd_boolean | |
5653 | xtensa_callback_required_dependence (abfd, sec, link_info, callback, closure) | |
5654 | bfd *abfd; | |
5655 | asection *sec; | |
5656 | struct bfd_link_info *link_info; | |
5657 | deps_callback_t callback; | |
5658 | PTR closure; | |
5659 | { | |
5660 | Elf_Internal_Rela *internal_relocs; | |
5661 | bfd_byte *contents; | |
5662 | unsigned i; | |
5663 | bfd_boolean ok = TRUE; | |
5664 | ||
5665 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
5666 | instructions that reference the corresponding ".got.plt*" sections. */ | |
5667 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
5668 | && strncmp (sec->name, ".plt", 4) == 0) | |
5669 | { | |
5670 | asection *sgotplt; | |
5671 | ||
5672 | /* Find the corresponding ".got.plt*" section. */ | |
5673 | if (sec->name[4] == '\0') | |
5674 | sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt"); | |
5675 | else | |
5676 | { | |
5677 | char got_name[14]; | |
5678 | int chunk = 0; | |
5679 | ||
5680 | BFD_ASSERT (sec->name[4] == '.'); | |
5681 | chunk = strtol (&sec->name[5], NULL, 10); | |
5682 | ||
5683 | sprintf (got_name, ".got.plt.%u", chunk); | |
5684 | sgotplt = bfd_get_section_by_name (sec->owner, got_name); | |
5685 | } | |
5686 | BFD_ASSERT (sgotplt); | |
5687 | ||
5688 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
5689 | section referencing a literal at the very beginning of | |
5690 | ".got.plt". This is very close to the real dependence, anyway. */ | |
eea6121a | 5691 | (*callback) (sec, sec->size, sgotplt, 0, closure); |
e0001a05 NC |
5692 | } |
5693 | ||
5694 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
5695 | link_info->keep_memory); | |
5696 | if (internal_relocs == NULL | |
5697 | || sec->reloc_count == 0) | |
5698 | return ok; | |
5699 | ||
5700 | /* Cache the contents for the duration of this scan. */ | |
5701 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
eea6121a | 5702 | if (contents == NULL && sec->size != 0) |
e0001a05 NC |
5703 | { |
5704 | ok = FALSE; | |
5705 | goto error_return; | |
5706 | } | |
5707 | ||
5708 | if (xtensa_default_isa == NULL) | |
5709 | xtensa_isa_init (); | |
5710 | ||
5711 | for (i = 0; i < sec->reloc_count; i++) | |
5712 | { | |
5713 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
5714 | if (is_l32r_relocation (sec, contents, irel)) | |
5715 | { | |
5716 | r_reloc l32r_rel; | |
5717 | asection *target_sec; | |
5718 | bfd_vma target_offset; | |
5719 | ||
5720 | r_reloc_init (&l32r_rel, abfd, irel); | |
5721 | target_sec = NULL; | |
5722 | target_offset = 0; | |
5723 | /* L32Rs must be local to the input file. */ | |
5724 | if (r_reloc_is_defined (&l32r_rel)) | |
5725 | { | |
5726 | target_sec = r_reloc_get_section (&l32r_rel); | |
5727 | target_offset = r_reloc_get_target_offset (&l32r_rel); | |
5728 | } | |
5729 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
5730 | closure); | |
5731 | } | |
5732 | } | |
5733 | ||
5734 | error_return: | |
5735 | release_internal_relocs (sec, internal_relocs); | |
5736 | release_contents (sec, contents); | |
5737 | return ok; | |
5738 | } | |
5739 | ||
2f89ff8d L |
5740 | /* The default literal sections should always be marked as "code" (i.e., |
5741 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
5742 | module loader so that the literals are not placed after the text. */ | |
5743 | static struct bfd_elf_special_section const elf_xtensa_special_sections[]= | |
5744 | { | |
7dcb9820 AM |
5745 | { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
5746 | { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
5747 | { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
5748 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d L |
5749 | }; |
5750 | ||
e0001a05 NC |
5751 | \f |
5752 | #ifndef ELF_ARCH | |
5753 | #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec | |
5754 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" | |
5755 | #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec | |
5756 | #define TARGET_BIG_NAME "elf32-xtensa-be" | |
5757 | #define ELF_ARCH bfd_arch_xtensa | |
5758 | ||
5759 | /* The new EM_XTENSA value will be recognized beginning in the Xtensa T1040 | |
5760 | release. However, we still have to generate files with the EM_XTENSA_OLD | |
5761 | value so that pre-T1040 tools can read the files. As soon as we stop | |
5762 | caring about pre-T1040 tools, the following two values should be | |
5763 | swapped. At the same time, any other code that uses EM_XTENSA_OLD | |
5764 | (e.g., prep_headers() in elf.c) should be changed to use EM_XTENSA. */ | |
5765 | #define ELF_MACHINE_CODE EM_XTENSA_OLD | |
5766 | #define ELF_MACHINE_ALT1 EM_XTENSA | |
5767 | ||
5768 | #if XCHAL_HAVE_MMU | |
5769 | #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE) | |
5770 | #else /* !XCHAL_HAVE_MMU */ | |
5771 | #define ELF_MAXPAGESIZE 1 | |
5772 | #endif /* !XCHAL_HAVE_MMU */ | |
5773 | #endif /* ELF_ARCH */ | |
5774 | ||
5775 | #define elf_backend_can_gc_sections 1 | |
5776 | #define elf_backend_can_refcount 1 | |
5777 | #define elf_backend_plt_readonly 1 | |
5778 | #define elf_backend_got_header_size 4 | |
5779 | #define elf_backend_want_dynbss 0 | |
5780 | #define elf_backend_want_got_plt 1 | |
5781 | ||
5782 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
5783 | ||
e0001a05 NC |
5784 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
5785 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
5786 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
5787 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
5788 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
5789 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags | |
5790 | ||
5791 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
5792 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
5793 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
5794 | #define elf_backend_discard_info elf_xtensa_discard_info | |
5795 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
5796 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
5797 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
5798 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
5799 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
5800 | #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook | |
5801 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus | |
5802 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
5803 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol | |
5804 | #define elf_backend_modify_segment_map elf_xtensa_modify_segment_map | |
5805 | #define elf_backend_object_p elf_xtensa_object_p | |
5806 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
5807 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
5808 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
2f89ff8d | 5809 | #define elf_backend_special_sections elf_xtensa_special_sections |
e0001a05 NC |
5810 | |
5811 | #include "elf32-target.h" |