Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* Xtensa-specific support for 32-bit ELF. |
4b95cf5c | 2 | Copyright (C) 2003-2014 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or | |
7 | modify it under the terms of the GNU General Public License as | |
cd123cb7 | 8 | published by the Free Software Foundation; either version 3 of the |
e0001a05 NC |
9 | License, or (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, but | |
12 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
3e110533 | 18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
53e09e0a | 19 | 02110-1301, USA. */ |
e0001a05 | 20 | |
e0001a05 | 21 | #include "sysdep.h" |
3db64b00 | 22 | #include "bfd.h" |
e0001a05 | 23 | |
e0001a05 | 24 | #include <stdarg.h> |
e0001a05 NC |
25 | #include <strings.h> |
26 | ||
27 | #include "bfdlink.h" | |
28 | #include "libbfd.h" | |
29 | #include "elf-bfd.h" | |
30 | #include "elf/xtensa.h" | |
31 | #include "xtensa-isa.h" | |
32 | #include "xtensa-config.h" | |
33 | ||
43cd72b9 BW |
34 | #define XTENSA_NO_NOP_REMOVAL 0 |
35 | ||
e0001a05 NC |
36 | /* Local helper functions. */ |
37 | ||
f0e6fdb2 | 38 | static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int); |
2db662be | 39 | static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); |
e0001a05 | 40 | static bfd_reloc_status_type bfd_elf_xtensa_reloc |
7fa3d080 | 41 | (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
43cd72b9 | 42 | static bfd_boolean do_fix_for_relocatable_link |
7fa3d080 | 43 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); |
e0001a05 | 44 | static void do_fix_for_final_link |
7fa3d080 | 45 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); |
e0001a05 NC |
46 | |
47 | /* Local functions to handle Xtensa configurability. */ | |
48 | ||
7fa3d080 BW |
49 | static bfd_boolean is_indirect_call_opcode (xtensa_opcode); |
50 | static bfd_boolean is_direct_call_opcode (xtensa_opcode); | |
51 | static bfd_boolean is_windowed_call_opcode (xtensa_opcode); | |
52 | static xtensa_opcode get_const16_opcode (void); | |
53 | static xtensa_opcode get_l32r_opcode (void); | |
54 | static bfd_vma l32r_offset (bfd_vma, bfd_vma); | |
55 | static int get_relocation_opnd (xtensa_opcode, int); | |
56 | static int get_relocation_slot (int); | |
e0001a05 | 57 | static xtensa_opcode get_relocation_opcode |
7fa3d080 | 58 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
e0001a05 | 59 | static bfd_boolean is_l32r_relocation |
7fa3d080 BW |
60 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
61 | static bfd_boolean is_alt_relocation (int); | |
62 | static bfd_boolean is_operand_relocation (int); | |
43cd72b9 | 63 | static bfd_size_type insn_decode_len |
7fa3d080 | 64 | (bfd_byte *, bfd_size_type, bfd_size_type); |
43cd72b9 | 65 | static xtensa_opcode insn_decode_opcode |
7fa3d080 | 66 | (bfd_byte *, bfd_size_type, bfd_size_type, int); |
43cd72b9 | 67 | static bfd_boolean check_branch_target_aligned |
7fa3d080 | 68 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
43cd72b9 | 69 | static bfd_boolean check_loop_aligned |
7fa3d080 BW |
70 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
71 | static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); | |
43cd72b9 | 72 | static bfd_size_type get_asm_simplify_size |
7fa3d080 | 73 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0001a05 NC |
74 | |
75 | /* Functions for link-time code simplifications. */ | |
76 | ||
43cd72b9 | 77 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify |
7fa3d080 | 78 | (bfd_byte *, bfd_vma, bfd_vma, char **); |
e0001a05 | 79 | static bfd_reloc_status_type contract_asm_expansion |
7fa3d080 BW |
80 | (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); |
81 | static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); | |
82 | static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); | |
e0001a05 NC |
83 | |
84 | /* Access to internal relocations, section contents and symbols. */ | |
85 | ||
86 | static Elf_Internal_Rela *retrieve_internal_relocs | |
7fa3d080 BW |
87 | (bfd *, asection *, bfd_boolean); |
88 | static void pin_internal_relocs (asection *, Elf_Internal_Rela *); | |
89 | static void release_internal_relocs (asection *, Elf_Internal_Rela *); | |
90 | static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); | |
91 | static void pin_contents (asection *, bfd_byte *); | |
92 | static void release_contents (asection *, bfd_byte *); | |
93 | static Elf_Internal_Sym *retrieve_local_syms (bfd *); | |
e0001a05 NC |
94 | |
95 | /* Miscellaneous utility functions. */ | |
96 | ||
f0e6fdb2 BW |
97 | static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); |
98 | static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); | |
7fa3d080 | 99 | static asection *get_elf_r_symndx_section (bfd *, unsigned long); |
e0001a05 | 100 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry |
7fa3d080 BW |
101 | (bfd *, unsigned long); |
102 | static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); | |
103 | static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); | |
104 | static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); | |
105 | static bfd_boolean xtensa_is_property_section (asection *); | |
1d25768e | 106 | static bfd_boolean xtensa_is_insntable_section (asection *); |
7fa3d080 | 107 | static bfd_boolean xtensa_is_littable_section (asection *); |
1d25768e | 108 | static bfd_boolean xtensa_is_proptable_section (asection *); |
7fa3d080 BW |
109 | static int internal_reloc_compare (const void *, const void *); |
110 | static int internal_reloc_matches (const void *, const void *); | |
51c8ebc1 BW |
111 | static asection *xtensa_get_property_section (asection *, const char *); |
112 | extern asection *xtensa_make_property_section (asection *, const char *); | |
7fa3d080 | 113 | static flagword xtensa_get_property_predef_flags (asection *); |
e0001a05 NC |
114 | |
115 | /* Other functions called directly by the linker. */ | |
116 | ||
117 | typedef void (*deps_callback_t) | |
7fa3d080 | 118 | (asection *, bfd_vma, asection *, bfd_vma, void *); |
e0001a05 | 119 | extern bfd_boolean xtensa_callback_required_dependence |
7fa3d080 | 120 | (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); |
e0001a05 NC |
121 | |
122 | ||
43cd72b9 BW |
123 | /* Globally visible flag for choosing size optimization of NOP removal |
124 | instead of branch-target-aware minimization for NOP removal. | |
125 | When nonzero, narrow all instructions and remove all NOPs possible | |
126 | around longcall expansions. */ | |
7fa3d080 | 127 | |
43cd72b9 BW |
128 | int elf32xtensa_size_opt; |
129 | ||
130 | ||
131 | /* The "new_section_hook" is used to set up a per-section | |
132 | "xtensa_relax_info" data structure with additional information used | |
133 | during relaxation. */ | |
e0001a05 | 134 | |
7fa3d080 | 135 | typedef struct xtensa_relax_info_struct xtensa_relax_info; |
e0001a05 | 136 | |
43cd72b9 | 137 | |
43cd72b9 BW |
138 | /* The GNU tools do not easily allow extending interfaces to pass around |
139 | the pointer to the Xtensa ISA information, so instead we add a global | |
140 | variable here (in BFD) that can be used by any of the tools that need | |
141 | this information. */ | |
142 | ||
143 | xtensa_isa xtensa_default_isa; | |
144 | ||
145 | ||
e0001a05 NC |
146 | /* When this is true, relocations may have been modified to refer to |
147 | symbols from other input files. The per-section list of "fix" | |
148 | records needs to be checked when resolving relocations. */ | |
149 | ||
150 | static bfd_boolean relaxing_section = FALSE; | |
151 | ||
43cd72b9 BW |
152 | /* When this is true, during final links, literals that cannot be |
153 | coalesced and their relocations may be moved to other sections. */ | |
154 | ||
155 | int elf32xtensa_no_literal_movement = 1; | |
156 | ||
b0dddeec AM |
157 | /* Rename one of the generic section flags to better document how it |
158 | is used here. */ | |
159 | /* Whether relocations have been processed. */ | |
160 | #define reloc_done sec_flg0 | |
e0001a05 NC |
161 | \f |
162 | static reloc_howto_type elf_howto_table[] = | |
163 | { | |
164 | HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
165 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", | |
e5f131d1 | 166 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
167 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
168 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
169 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
e5f131d1 | 170 | |
e0001a05 NC |
171 | /* Replace a 32-bit value with a value from the runtime linker (only |
172 | used by linker-generated stub functions). The r_addend value is | |
173 | special: 1 means to substitute a pointer to the runtime linker's | |
174 | dynamic resolver function; 2 means to substitute the link map for | |
175 | the shared object. */ | |
176 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
e5f131d1 BW |
177 | NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE), |
178 | ||
e0001a05 NC |
179 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
180 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
e5f131d1 | 181 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
182 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
183 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
e5f131d1 | 184 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
185 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
186 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
e5f131d1 | 187 | FALSE, 0, 0xffffffff, FALSE), |
e0001a05 NC |
188 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
189 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
e5f131d1 BW |
190 | FALSE, 0, 0xffffffff, FALSE), |
191 | ||
e0001a05 | 192 | EMPTY_HOWTO (7), |
e5f131d1 BW |
193 | |
194 | /* Old relocations for backward compatibility. */ | |
e0001a05 | 195 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 196 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE), |
e0001a05 | 197 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 198 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE), |
e0001a05 | 199 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 BW |
200 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE), |
201 | ||
e0001a05 NC |
202 | /* Assembly auto-expansion. */ |
203 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 204 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE), |
e0001a05 NC |
205 | /* Relax assembly auto-expansion. */ |
206 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 BW |
207 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE), |
208 | ||
e0001a05 | 209 | EMPTY_HOWTO (13), |
1bbb5f21 BW |
210 | |
211 | HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, | |
212 | bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL", | |
213 | FALSE, 0, 0xffffffff, TRUE), | |
e5f131d1 | 214 | |
e0001a05 NC |
215 | /* GNU extension to record C++ vtable hierarchy. */ |
216 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
217 | NULL, "R_XTENSA_GNU_VTINHERIT", | |
e5f131d1 | 218 | FALSE, 0, 0, FALSE), |
e0001a05 NC |
219 | /* GNU extension to record C++ vtable member usage. */ |
220 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
221 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", | |
e5f131d1 | 222 | FALSE, 0, 0, FALSE), |
43cd72b9 BW |
223 | |
224 | /* Relocations for supporting difference of symbols. */ | |
1058c753 | 225 | HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 226 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE), |
1058c753 | 227 | HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 228 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE), |
1058c753 | 229 | HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
e5f131d1 | 230 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE), |
43cd72b9 BW |
231 | |
232 | /* General immediate operand relocations. */ | |
233 | HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 234 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 235 | HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 236 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 237 | HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 238 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 239 | HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 240 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 241 | HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 242 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 243 | HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 244 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 245 | HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 246 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 247 | HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 248 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 249 | HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 250 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 251 | HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 252 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 253 | HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 254 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 255 | HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 256 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 257 | HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 258 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 259 | HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 260 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE), |
43cd72b9 | 261 | HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 262 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE), |
43cd72b9 BW |
263 | |
264 | /* "Alternate" relocations. The meaning of these is opcode-specific. */ | |
265 | HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
e5f131d1 | 266 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 267 | HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 268 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 269 | HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 270 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 271 | HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 272 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 273 | HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 274 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 275 | HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 276 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 277 | HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 278 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 279 | HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 280 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 281 | HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 282 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 283 | HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 284 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 285 | HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 286 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 287 | HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 288 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 289 | HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 290 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 291 | HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 292 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE), |
43cd72b9 | 293 | HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, |
e5f131d1 | 294 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE), |
28dbbc02 BW |
295 | |
296 | /* TLS relocations. */ | |
297 | HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
298 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN", | |
299 | FALSE, 0, 0xffffffff, FALSE), | |
300 | HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
301 | bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG", | |
302 | FALSE, 0, 0xffffffff, FALSE), | |
303 | HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
304 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF", | |
305 | FALSE, 0, 0xffffffff, FALSE), | |
306 | HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
307 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF", | |
308 | FALSE, 0, 0xffffffff, FALSE), | |
309 | HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
310 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC", | |
311 | FALSE, 0, 0, FALSE), | |
312 | HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
313 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG", | |
314 | FALSE, 0, 0, FALSE), | |
315 | HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
316 | bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL", | |
317 | FALSE, 0, 0, FALSE), | |
e0001a05 NC |
318 | }; |
319 | ||
43cd72b9 | 320 | #if DEBUG_GEN_RELOC |
e0001a05 NC |
321 | #define TRACE(str) \ |
322 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
323 | #else | |
324 | #define TRACE(str) | |
325 | #endif | |
326 | ||
327 | static reloc_howto_type * | |
7fa3d080 BW |
328 | elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
329 | bfd_reloc_code_real_type code) | |
e0001a05 NC |
330 | { |
331 | switch (code) | |
332 | { | |
333 | case BFD_RELOC_NONE: | |
334 | TRACE ("BFD_RELOC_NONE"); | |
335 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
336 | ||
337 | case BFD_RELOC_32: | |
338 | TRACE ("BFD_RELOC_32"); | |
339 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
340 | ||
1bbb5f21 BW |
341 | case BFD_RELOC_32_PCREL: |
342 | TRACE ("BFD_RELOC_32_PCREL"); | |
343 | return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ]; | |
344 | ||
43cd72b9 BW |
345 | case BFD_RELOC_XTENSA_DIFF8: |
346 | TRACE ("BFD_RELOC_XTENSA_DIFF8"); | |
347 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; | |
348 | ||
349 | case BFD_RELOC_XTENSA_DIFF16: | |
350 | TRACE ("BFD_RELOC_XTENSA_DIFF16"); | |
351 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; | |
352 | ||
353 | case BFD_RELOC_XTENSA_DIFF32: | |
354 | TRACE ("BFD_RELOC_XTENSA_DIFF32"); | |
355 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; | |
356 | ||
e0001a05 NC |
357 | case BFD_RELOC_XTENSA_RTLD: |
358 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
359 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
360 | ||
361 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
362 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
363 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
364 | ||
365 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
366 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
367 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
368 | ||
369 | case BFD_RELOC_XTENSA_RELATIVE: | |
370 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
371 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
372 | ||
373 | case BFD_RELOC_XTENSA_PLT: | |
374 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
375 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
376 | ||
377 | case BFD_RELOC_XTENSA_OP0: | |
378 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
379 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
380 | ||
381 | case BFD_RELOC_XTENSA_OP1: | |
382 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
383 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
384 | ||
385 | case BFD_RELOC_XTENSA_OP2: | |
386 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
387 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
388 | ||
389 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
390 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
391 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
392 | ||
393 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
394 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
395 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
396 | ||
397 | case BFD_RELOC_VTABLE_INHERIT: | |
398 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
399 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
400 | ||
401 | case BFD_RELOC_VTABLE_ENTRY: | |
402 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
403 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
404 | ||
28dbbc02 BW |
405 | case BFD_RELOC_XTENSA_TLSDESC_FN: |
406 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN"); | |
407 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ]; | |
408 | ||
409 | case BFD_RELOC_XTENSA_TLSDESC_ARG: | |
410 | TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG"); | |
411 | return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ]; | |
412 | ||
413 | case BFD_RELOC_XTENSA_TLS_DTPOFF: | |
414 | TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF"); | |
415 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ]; | |
416 | ||
417 | case BFD_RELOC_XTENSA_TLS_TPOFF: | |
418 | TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF"); | |
419 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ]; | |
420 | ||
421 | case BFD_RELOC_XTENSA_TLS_FUNC: | |
422 | TRACE ("BFD_RELOC_XTENSA_TLS_FUNC"); | |
423 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ]; | |
424 | ||
425 | case BFD_RELOC_XTENSA_TLS_ARG: | |
426 | TRACE ("BFD_RELOC_XTENSA_TLS_ARG"); | |
427 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ]; | |
428 | ||
429 | case BFD_RELOC_XTENSA_TLS_CALL: | |
430 | TRACE ("BFD_RELOC_XTENSA_TLS_CALL"); | |
431 | return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ]; | |
432 | ||
e0001a05 | 433 | default: |
43cd72b9 BW |
434 | if (code >= BFD_RELOC_XTENSA_SLOT0_OP |
435 | && code <= BFD_RELOC_XTENSA_SLOT14_OP) | |
436 | { | |
437 | unsigned n = (R_XTENSA_SLOT0_OP + | |
438 | (code - BFD_RELOC_XTENSA_SLOT0_OP)); | |
439 | return &elf_howto_table[n]; | |
440 | } | |
441 | ||
442 | if (code >= BFD_RELOC_XTENSA_SLOT0_ALT | |
443 | && code <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
444 | { | |
445 | unsigned n = (R_XTENSA_SLOT0_ALT + | |
446 | (code - BFD_RELOC_XTENSA_SLOT0_ALT)); | |
447 | return &elf_howto_table[n]; | |
448 | } | |
449 | ||
e0001a05 NC |
450 | break; |
451 | } | |
452 | ||
453 | TRACE ("Unknown"); | |
454 | return NULL; | |
455 | } | |
456 | ||
157090f7 AM |
457 | static reloc_howto_type * |
458 | elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, | |
459 | const char *r_name) | |
460 | { | |
461 | unsigned int i; | |
462 | ||
463 | for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) | |
464 | if (elf_howto_table[i].name != NULL | |
465 | && strcasecmp (elf_howto_table[i].name, r_name) == 0) | |
466 | return &elf_howto_table[i]; | |
467 | ||
468 | return NULL; | |
469 | } | |
470 | ||
e0001a05 NC |
471 | |
472 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
473 | it in the BFD internal arelent representation of the relocation. */ | |
474 | ||
475 | static void | |
7fa3d080 BW |
476 | elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, |
477 | arelent *cache_ptr, | |
478 | Elf_Internal_Rela *dst) | |
e0001a05 NC |
479 | { |
480 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
481 | ||
482 | BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max); | |
483 | cache_ptr->howto = &elf_howto_table[r_type]; | |
484 | } | |
485 | ||
486 | \f | |
487 | /* Functions for the Xtensa ELF linker. */ | |
488 | ||
489 | /* The name of the dynamic interpreter. This is put in the .interp | |
490 | section. */ | |
491 | ||
492 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
493 | ||
494 | /* The size in bytes of an entry in the procedure linkage table. | |
495 | (This does _not_ include the space for the literals associated with | |
496 | the PLT entry.) */ | |
497 | ||
498 | #define PLT_ENTRY_SIZE 16 | |
499 | ||
500 | /* For _really_ large PLTs, we may need to alternate between literals | |
501 | and code to keep the literals within the 256K range of the L32R | |
502 | instructions in the code. It's unlikely that anyone would ever need | |
503 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
504 | Thus, we split the PLT into chunks. Since there's very little | |
505 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
506 | small so that the code for handling multiple chunks get used and | |
507 | tested regularly. With 254 entries, there are 1K of literals for | |
508 | each chunk, and that seems like a nice round number. */ | |
509 | ||
510 | #define PLT_ENTRIES_PER_CHUNK 254 | |
511 | ||
512 | /* PLT entries are actually used as stub functions for lazy symbol | |
513 | resolution. Once the symbol is resolved, the stub function is never | |
514 | invoked. Note: the 32-byte frame size used here cannot be changed | |
515 | without a corresponding change in the runtime linker. */ | |
516 | ||
517 | static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] = | |
518 | { | |
519 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ | |
520 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
521 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
522 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
523 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
524 | 0 /* unused */ | |
525 | }; | |
526 | ||
527 | static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] = | |
528 | { | |
529 | 0x36, 0x41, 0x00, /* entry sp, 32 */ | |
530 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
531 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
532 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
533 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
534 | 0 /* unused */ | |
535 | }; | |
536 | ||
28dbbc02 BW |
537 | /* The size of the thread control block. */ |
538 | #define TCB_SIZE 8 | |
539 | ||
540 | struct elf_xtensa_link_hash_entry | |
541 | { | |
542 | struct elf_link_hash_entry elf; | |
543 | ||
544 | bfd_signed_vma tlsfunc_refcount; | |
545 | ||
546 | #define GOT_UNKNOWN 0 | |
547 | #define GOT_NORMAL 1 | |
548 | #define GOT_TLS_GD 2 /* global or local dynamic */ | |
549 | #define GOT_TLS_IE 4 /* initial or local exec */ | |
550 | #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE) | |
551 | unsigned char tls_type; | |
552 | }; | |
553 | ||
554 | #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent)) | |
555 | ||
556 | struct elf_xtensa_obj_tdata | |
557 | { | |
558 | struct elf_obj_tdata root; | |
559 | ||
560 | /* tls_type for each local got entry. */ | |
561 | char *local_got_tls_type; | |
562 | ||
563 | bfd_signed_vma *local_tlsfunc_refcounts; | |
564 | }; | |
565 | ||
566 | #define elf_xtensa_tdata(abfd) \ | |
567 | ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any) | |
568 | ||
569 | #define elf_xtensa_local_got_tls_type(abfd) \ | |
570 | (elf_xtensa_tdata (abfd)->local_got_tls_type) | |
571 | ||
572 | #define elf_xtensa_local_tlsfunc_refcounts(abfd) \ | |
573 | (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts) | |
574 | ||
575 | #define is_xtensa_elf(bfd) \ | |
576 | (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ | |
577 | && elf_tdata (bfd) != NULL \ | |
4dfe6ac6 | 578 | && elf_object_id (bfd) == XTENSA_ELF_DATA) |
28dbbc02 BW |
579 | |
580 | static bfd_boolean | |
581 | elf_xtensa_mkobject (bfd *abfd) | |
582 | { | |
583 | return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata), | |
4dfe6ac6 | 584 | XTENSA_ELF_DATA); |
28dbbc02 BW |
585 | } |
586 | ||
f0e6fdb2 BW |
587 | /* Xtensa ELF linker hash table. */ |
588 | ||
589 | struct elf_xtensa_link_hash_table | |
590 | { | |
591 | struct elf_link_hash_table elf; | |
592 | ||
593 | /* Short-cuts to get to dynamic linker sections. */ | |
594 | asection *sgot; | |
595 | asection *sgotplt; | |
596 | asection *srelgot; | |
597 | asection *splt; | |
598 | asection *srelplt; | |
599 | asection *sgotloc; | |
600 | asection *spltlittbl; | |
601 | ||
602 | /* Total count of PLT relocations seen during check_relocs. | |
603 | The actual PLT code must be split into multiple sections and all | |
604 | the sections have to be created before size_dynamic_sections, | |
605 | where we figure out the exact number of PLT entries that will be | |
606 | needed. It is OK if this count is an overestimate, e.g., some | |
607 | relocations may be removed by GC. */ | |
608 | int plt_reloc_count; | |
28dbbc02 BW |
609 | |
610 | struct elf_xtensa_link_hash_entry *tlsbase; | |
f0e6fdb2 BW |
611 | }; |
612 | ||
613 | /* Get the Xtensa ELF linker hash table from a link_info structure. */ | |
614 | ||
615 | #define elf_xtensa_hash_table(p) \ | |
4dfe6ac6 NC |
616 | (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
617 | == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL) | |
f0e6fdb2 | 618 | |
28dbbc02 BW |
619 | /* Create an entry in an Xtensa ELF linker hash table. */ |
620 | ||
621 | static struct bfd_hash_entry * | |
622 | elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry, | |
623 | struct bfd_hash_table *table, | |
624 | const char *string) | |
625 | { | |
626 | /* Allocate the structure if it has not already been allocated by a | |
627 | subclass. */ | |
628 | if (entry == NULL) | |
629 | { | |
630 | entry = bfd_hash_allocate (table, | |
631 | sizeof (struct elf_xtensa_link_hash_entry)); | |
632 | if (entry == NULL) | |
633 | return entry; | |
634 | } | |
635 | ||
636 | /* Call the allocation method of the superclass. */ | |
637 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | |
638 | if (entry != NULL) | |
639 | { | |
640 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry); | |
641 | eh->tlsfunc_refcount = 0; | |
642 | eh->tls_type = GOT_UNKNOWN; | |
643 | } | |
644 | ||
645 | return entry; | |
646 | } | |
647 | ||
f0e6fdb2 BW |
648 | /* Create an Xtensa ELF linker hash table. */ |
649 | ||
650 | static struct bfd_link_hash_table * | |
651 | elf_xtensa_link_hash_table_create (bfd *abfd) | |
652 | { | |
28dbbc02 | 653 | struct elf_link_hash_entry *tlsbase; |
f0e6fdb2 BW |
654 | struct elf_xtensa_link_hash_table *ret; |
655 | bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table); | |
656 | ||
7bf52ea2 | 657 | ret = bfd_zmalloc (amt); |
f0e6fdb2 BW |
658 | if (ret == NULL) |
659 | return NULL; | |
660 | ||
661 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, | |
28dbbc02 | 662 | elf_xtensa_link_hash_newfunc, |
4dfe6ac6 NC |
663 | sizeof (struct elf_xtensa_link_hash_entry), |
664 | XTENSA_ELF_DATA)) | |
f0e6fdb2 BW |
665 | { |
666 | free (ret); | |
667 | return NULL; | |
668 | } | |
669 | ||
28dbbc02 BW |
670 | /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking |
671 | for it later. */ | |
672 | tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_", | |
673 | TRUE, FALSE, FALSE); | |
674 | tlsbase->root.type = bfd_link_hash_new; | |
675 | tlsbase->root.u.undef.abfd = NULL; | |
676 | tlsbase->non_elf = 0; | |
677 | ret->tlsbase = elf_xtensa_hash_entry (tlsbase); | |
678 | ret->tlsbase->tls_type = GOT_UNKNOWN; | |
679 | ||
f0e6fdb2 BW |
680 | return &ret->elf.root; |
681 | } | |
571b5725 | 682 | |
28dbbc02 BW |
683 | /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
684 | ||
685 | static void | |
686 | elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info, | |
687 | struct elf_link_hash_entry *dir, | |
688 | struct elf_link_hash_entry *ind) | |
689 | { | |
690 | struct elf_xtensa_link_hash_entry *edir, *eind; | |
691 | ||
692 | edir = elf_xtensa_hash_entry (dir); | |
693 | eind = elf_xtensa_hash_entry (ind); | |
694 | ||
695 | if (ind->root.type == bfd_link_hash_indirect) | |
696 | { | |
697 | edir->tlsfunc_refcount += eind->tlsfunc_refcount; | |
698 | eind->tlsfunc_refcount = 0; | |
699 | ||
700 | if (dir->got.refcount <= 0) | |
701 | { | |
702 | edir->tls_type = eind->tls_type; | |
703 | eind->tls_type = GOT_UNKNOWN; | |
704 | } | |
705 | } | |
706 | ||
707 | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | |
708 | } | |
709 | ||
571b5725 | 710 | static inline bfd_boolean |
4608f3d9 | 711 | elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h, |
7fa3d080 | 712 | struct bfd_link_info *info) |
571b5725 BW |
713 | { |
714 | /* Check if we should do dynamic things to this symbol. The | |
715 | "ignore_protected" argument need not be set, because Xtensa code | |
716 | does not require special handling of STV_PROTECTED to make function | |
717 | pointer comparisons work properly. The PLT addresses are never | |
718 | used for function pointers. */ | |
719 | ||
720 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
721 | } | |
722 | ||
e0001a05 NC |
723 | \f |
724 | static int | |
7fa3d080 | 725 | property_table_compare (const void *ap, const void *bp) |
e0001a05 NC |
726 | { |
727 | const property_table_entry *a = (const property_table_entry *) ap; | |
728 | const property_table_entry *b = (const property_table_entry *) bp; | |
729 | ||
43cd72b9 BW |
730 | if (a->address == b->address) |
731 | { | |
43cd72b9 BW |
732 | if (a->size != b->size) |
733 | return (a->size - b->size); | |
734 | ||
735 | if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) | |
736 | return ((b->flags & XTENSA_PROP_ALIGN) | |
737 | - (a->flags & XTENSA_PROP_ALIGN)); | |
738 | ||
739 | if ((a->flags & XTENSA_PROP_ALIGN) | |
740 | && (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
741 | != GET_XTENSA_PROP_ALIGNMENT (b->flags))) | |
742 | return (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
743 | - GET_XTENSA_PROP_ALIGNMENT (b->flags)); | |
68ffbac6 | 744 | |
43cd72b9 BW |
745 | if ((a->flags & XTENSA_PROP_UNREACHABLE) |
746 | != (b->flags & XTENSA_PROP_UNREACHABLE)) | |
747 | return ((b->flags & XTENSA_PROP_UNREACHABLE) | |
748 | - (a->flags & XTENSA_PROP_UNREACHABLE)); | |
749 | ||
750 | return (a->flags - b->flags); | |
751 | } | |
752 | ||
753 | return (a->address - b->address); | |
754 | } | |
755 | ||
756 | ||
757 | static int | |
7fa3d080 | 758 | property_table_matches (const void *ap, const void *bp) |
43cd72b9 BW |
759 | { |
760 | const property_table_entry *a = (const property_table_entry *) ap; | |
761 | const property_table_entry *b = (const property_table_entry *) bp; | |
762 | ||
763 | /* Check if one entry overlaps with the other. */ | |
e0001a05 NC |
764 | if ((b->address >= a->address && b->address < (a->address + a->size)) |
765 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
766 | return 0; | |
767 | ||
768 | return (a->address - b->address); | |
769 | } | |
770 | ||
771 | ||
43cd72b9 BW |
772 | /* Get the literal table or property table entries for the given |
773 | section. Sets TABLE_P and returns the number of entries. On | |
774 | error, returns a negative value. */ | |
e0001a05 | 775 | |
7fa3d080 BW |
776 | static int |
777 | xtensa_read_table_entries (bfd *abfd, | |
778 | asection *section, | |
779 | property_table_entry **table_p, | |
780 | const char *sec_name, | |
781 | bfd_boolean output_addr) | |
e0001a05 NC |
782 | { |
783 | asection *table_section; | |
e0001a05 NC |
784 | bfd_size_type table_size = 0; |
785 | bfd_byte *table_data; | |
786 | property_table_entry *blocks; | |
e4115460 | 787 | int blk, block_count; |
e0001a05 | 788 | bfd_size_type num_records; |
bcc2cc8e BW |
789 | Elf_Internal_Rela *internal_relocs, *irel, *rel_end; |
790 | bfd_vma section_addr, off; | |
43cd72b9 | 791 | flagword predef_flags; |
bcc2cc8e | 792 | bfd_size_type table_entry_size, section_limit; |
43cd72b9 BW |
793 | |
794 | if (!section | |
795 | || !(section->flags & SEC_ALLOC) | |
796 | || (section->flags & SEC_DEBUGGING)) | |
797 | { | |
798 | *table_p = NULL; | |
799 | return 0; | |
800 | } | |
e0001a05 | 801 | |
74869ac7 | 802 | table_section = xtensa_get_property_section (section, sec_name); |
43cd72b9 | 803 | if (table_section) |
eea6121a | 804 | table_size = table_section->size; |
43cd72b9 | 805 | |
68ffbac6 | 806 | if (table_size == 0) |
e0001a05 NC |
807 | { |
808 | *table_p = NULL; | |
809 | return 0; | |
810 | } | |
811 | ||
43cd72b9 BW |
812 | predef_flags = xtensa_get_property_predef_flags (table_section); |
813 | table_entry_size = 12; | |
814 | if (predef_flags) | |
815 | table_entry_size -= 4; | |
816 | ||
817 | num_records = table_size / table_entry_size; | |
e0001a05 NC |
818 | table_data = retrieve_contents (abfd, table_section, TRUE); |
819 | blocks = (property_table_entry *) | |
820 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
821 | block_count = 0; | |
43cd72b9 BW |
822 | |
823 | if (output_addr) | |
824 | section_addr = section->output_section->vma + section->output_offset; | |
825 | else | |
826 | section_addr = section->vma; | |
3ba3bc8c | 827 | |
e0001a05 | 828 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); |
3ba3bc8c | 829 | if (internal_relocs && !table_section->reloc_done) |
e0001a05 | 830 | { |
bcc2cc8e BW |
831 | qsort (internal_relocs, table_section->reloc_count, |
832 | sizeof (Elf_Internal_Rela), internal_reloc_compare); | |
833 | irel = internal_relocs; | |
834 | } | |
835 | else | |
836 | irel = NULL; | |
837 | ||
838 | section_limit = bfd_get_section_limit (abfd, section); | |
839 | rel_end = internal_relocs + table_section->reloc_count; | |
840 | ||
68ffbac6 | 841 | for (off = 0; off < table_size; off += table_entry_size) |
bcc2cc8e BW |
842 | { |
843 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
844 | ||
845 | /* Skip any relocations before the current offset. This should help | |
846 | avoid confusion caused by unexpected relocations for the preceding | |
847 | table entry. */ | |
848 | while (irel && | |
849 | (irel->r_offset < off | |
850 | || (irel->r_offset == off | |
851 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE))) | |
852 | { | |
853 | irel += 1; | |
854 | if (irel >= rel_end) | |
855 | irel = 0; | |
856 | } | |
e0001a05 | 857 | |
bcc2cc8e | 858 | if (irel && irel->r_offset == off) |
e0001a05 | 859 | { |
bcc2cc8e BW |
860 | bfd_vma sym_off; |
861 | unsigned long r_symndx = ELF32_R_SYM (irel->r_info); | |
862 | BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32); | |
e0001a05 | 863 | |
bcc2cc8e | 864 | if (get_elf_r_symndx_section (abfd, r_symndx) != section) |
e0001a05 NC |
865 | continue; |
866 | ||
bcc2cc8e BW |
867 | sym_off = get_elf_r_symndx_offset (abfd, r_symndx); |
868 | BFD_ASSERT (sym_off == 0); | |
869 | address += (section_addr + sym_off + irel->r_addend); | |
e0001a05 | 870 | } |
bcc2cc8e | 871 | else |
e0001a05 | 872 | { |
bcc2cc8e BW |
873 | if (address < section_addr |
874 | || address >= section_addr + section_limit) | |
875 | continue; | |
e0001a05 | 876 | } |
bcc2cc8e BW |
877 | |
878 | blocks[block_count].address = address; | |
879 | blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4); | |
880 | if (predef_flags) | |
881 | blocks[block_count].flags = predef_flags; | |
882 | else | |
883 | blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8); | |
884 | block_count++; | |
e0001a05 NC |
885 | } |
886 | ||
887 | release_contents (table_section, table_data); | |
888 | release_internal_relocs (table_section, internal_relocs); | |
889 | ||
43cd72b9 | 890 | if (block_count > 0) |
e0001a05 NC |
891 | { |
892 | /* Now sort them into address order for easy reference. */ | |
893 | qsort (blocks, block_count, sizeof (property_table_entry), | |
894 | property_table_compare); | |
e4115460 BW |
895 | |
896 | /* Check that the table contents are valid. Problems may occur, | |
897 | for example, if an unrelocated object file is stripped. */ | |
898 | for (blk = 1; blk < block_count; blk++) | |
899 | { | |
900 | /* The only circumstance where two entries may legitimately | |
901 | have the same address is when one of them is a zero-size | |
902 | placeholder to mark a place where fill can be inserted. | |
903 | The zero-size entry should come first. */ | |
904 | if (blocks[blk - 1].address == blocks[blk].address && | |
905 | blocks[blk - 1].size != 0) | |
906 | { | |
907 | (*_bfd_error_handler) (_("%B(%A): invalid property table"), | |
908 | abfd, section); | |
909 | bfd_set_error (bfd_error_bad_value); | |
910 | free (blocks); | |
911 | return -1; | |
912 | } | |
913 | } | |
e0001a05 | 914 | } |
43cd72b9 | 915 | |
e0001a05 NC |
916 | *table_p = blocks; |
917 | return block_count; | |
918 | } | |
919 | ||
920 | ||
7fa3d080 BW |
921 | static property_table_entry * |
922 | elf_xtensa_find_property_entry (property_table_entry *property_table, | |
923 | int property_table_size, | |
924 | bfd_vma addr) | |
e0001a05 NC |
925 | { |
926 | property_table_entry entry; | |
43cd72b9 | 927 | property_table_entry *rv; |
e0001a05 | 928 | |
43cd72b9 BW |
929 | if (property_table_size == 0) |
930 | return NULL; | |
e0001a05 NC |
931 | |
932 | entry.address = addr; | |
933 | entry.size = 1; | |
43cd72b9 | 934 | entry.flags = 0; |
e0001a05 | 935 | |
43cd72b9 BW |
936 | rv = bsearch (&entry, property_table, property_table_size, |
937 | sizeof (property_table_entry), property_table_matches); | |
938 | return rv; | |
939 | } | |
940 | ||
941 | ||
942 | static bfd_boolean | |
7fa3d080 BW |
943 | elf_xtensa_in_literal_pool (property_table_entry *lit_table, |
944 | int lit_table_size, | |
945 | bfd_vma addr) | |
43cd72b9 BW |
946 | { |
947 | if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) | |
e0001a05 NC |
948 | return TRUE; |
949 | ||
950 | return FALSE; | |
951 | } | |
952 | ||
953 | \f | |
954 | /* Look through the relocs for a section during the first phase, and | |
955 | calculate needed space in the dynamic reloc sections. */ | |
956 | ||
957 | static bfd_boolean | |
7fa3d080 BW |
958 | elf_xtensa_check_relocs (bfd *abfd, |
959 | struct bfd_link_info *info, | |
960 | asection *sec, | |
961 | const Elf_Internal_Rela *relocs) | |
e0001a05 | 962 | { |
f0e6fdb2 | 963 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
964 | Elf_Internal_Shdr *symtab_hdr; |
965 | struct elf_link_hash_entry **sym_hashes; | |
966 | const Elf_Internal_Rela *rel; | |
967 | const Elf_Internal_Rela *rel_end; | |
e0001a05 | 968 | |
28dbbc02 | 969 | if (info->relocatable || (sec->flags & SEC_ALLOC) == 0) |
e0001a05 NC |
970 | return TRUE; |
971 | ||
28dbbc02 BW |
972 | BFD_ASSERT (is_xtensa_elf (abfd)); |
973 | ||
f0e6fdb2 | 974 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
975 | if (htab == NULL) |
976 | return FALSE; | |
977 | ||
e0001a05 NC |
978 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
979 | sym_hashes = elf_sym_hashes (abfd); | |
980 | ||
e0001a05 NC |
981 | rel_end = relocs + sec->reloc_count; |
982 | for (rel = relocs; rel < rel_end; rel++) | |
983 | { | |
984 | unsigned int r_type; | |
985 | unsigned long r_symndx; | |
28dbbc02 BW |
986 | struct elf_link_hash_entry *h = NULL; |
987 | struct elf_xtensa_link_hash_entry *eh; | |
988 | int tls_type, old_tls_type; | |
989 | bfd_boolean is_got = FALSE; | |
990 | bfd_boolean is_plt = FALSE; | |
991 | bfd_boolean is_tlsfunc = FALSE; | |
e0001a05 NC |
992 | |
993 | r_symndx = ELF32_R_SYM (rel->r_info); | |
994 | r_type = ELF32_R_TYPE (rel->r_info); | |
995 | ||
996 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
997 | { | |
d003868e AM |
998 | (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
999 | abfd, r_symndx); | |
e0001a05 NC |
1000 | return FALSE; |
1001 | } | |
1002 | ||
28dbbc02 | 1003 | if (r_symndx >= symtab_hdr->sh_info) |
e0001a05 NC |
1004 | { |
1005 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1006 | while (h->root.type == bfd_link_hash_indirect | |
1007 | || h->root.type == bfd_link_hash_warning) | |
1008 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
81fbe831 AM |
1009 | |
1010 | /* PR15323, ref flags aren't set for references in the same | |
1011 | object. */ | |
1012 | h->root.non_ir_ref = 1; | |
e0001a05 | 1013 | } |
28dbbc02 | 1014 | eh = elf_xtensa_hash_entry (h); |
e0001a05 NC |
1015 | |
1016 | switch (r_type) | |
1017 | { | |
28dbbc02 BW |
1018 | case R_XTENSA_TLSDESC_FN: |
1019 | if (info->shared) | |
1020 | { | |
1021 | tls_type = GOT_TLS_GD; | |
1022 | is_got = TRUE; | |
1023 | is_tlsfunc = TRUE; | |
1024 | } | |
1025 | else | |
1026 | tls_type = GOT_TLS_IE; | |
1027 | break; | |
e0001a05 | 1028 | |
28dbbc02 BW |
1029 | case R_XTENSA_TLSDESC_ARG: |
1030 | if (info->shared) | |
e0001a05 | 1031 | { |
28dbbc02 BW |
1032 | tls_type = GOT_TLS_GD; |
1033 | is_got = TRUE; | |
1034 | } | |
1035 | else | |
1036 | { | |
1037 | tls_type = GOT_TLS_IE; | |
1038 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) | |
1039 | is_got = TRUE; | |
e0001a05 NC |
1040 | } |
1041 | break; | |
1042 | ||
28dbbc02 BW |
1043 | case R_XTENSA_TLS_DTPOFF: |
1044 | if (info->shared) | |
1045 | tls_type = GOT_TLS_GD; | |
1046 | else | |
1047 | tls_type = GOT_TLS_IE; | |
1048 | break; | |
1049 | ||
1050 | case R_XTENSA_TLS_TPOFF: | |
1051 | tls_type = GOT_TLS_IE; | |
1052 | if (info->shared) | |
1053 | info->flags |= DF_STATIC_TLS; | |
1054 | if (info->shared || h) | |
1055 | is_got = TRUE; | |
1056 | break; | |
1057 | ||
1058 | case R_XTENSA_32: | |
1059 | tls_type = GOT_NORMAL; | |
1060 | is_got = TRUE; | |
1061 | break; | |
1062 | ||
e0001a05 | 1063 | case R_XTENSA_PLT: |
28dbbc02 BW |
1064 | tls_type = GOT_NORMAL; |
1065 | is_plt = TRUE; | |
1066 | break; | |
e0001a05 | 1067 | |
28dbbc02 BW |
1068 | case R_XTENSA_GNU_VTINHERIT: |
1069 | /* This relocation describes the C++ object vtable hierarchy. | |
1070 | Reconstruct it for later use during GC. */ | |
1071 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | |
1072 | return FALSE; | |
1073 | continue; | |
1074 | ||
1075 | case R_XTENSA_GNU_VTENTRY: | |
1076 | /* This relocation describes which C++ vtable entries are actually | |
1077 | used. Record for later use during GC. */ | |
1078 | BFD_ASSERT (h != NULL); | |
1079 | if (h != NULL | |
1080 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
1081 | return FALSE; | |
1082 | continue; | |
1083 | ||
1084 | default: | |
1085 | /* Nothing to do for any other relocations. */ | |
1086 | continue; | |
1087 | } | |
1088 | ||
1089 | if (h) | |
1090 | { | |
1091 | if (is_plt) | |
e0001a05 | 1092 | { |
b45329f9 BW |
1093 | if (h->plt.refcount <= 0) |
1094 | { | |
1095 | h->needs_plt = 1; | |
1096 | h->plt.refcount = 1; | |
1097 | } | |
1098 | else | |
1099 | h->plt.refcount += 1; | |
e0001a05 NC |
1100 | |
1101 | /* Keep track of the total PLT relocation count even if we | |
1102 | don't yet know whether the dynamic sections will be | |
1103 | created. */ | |
f0e6fdb2 | 1104 | htab->plt_reloc_count += 1; |
e0001a05 NC |
1105 | |
1106 | if (elf_hash_table (info)->dynamic_sections_created) | |
1107 | { | |
f0e6fdb2 | 1108 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1109 | return FALSE; |
1110 | } | |
1111 | } | |
28dbbc02 | 1112 | else if (is_got) |
b45329f9 BW |
1113 | { |
1114 | if (h->got.refcount <= 0) | |
1115 | h->got.refcount = 1; | |
1116 | else | |
1117 | h->got.refcount += 1; | |
1118 | } | |
28dbbc02 BW |
1119 | |
1120 | if (is_tlsfunc) | |
1121 | eh->tlsfunc_refcount += 1; | |
e0001a05 | 1122 | |
28dbbc02 BW |
1123 | old_tls_type = eh->tls_type; |
1124 | } | |
1125 | else | |
1126 | { | |
1127 | /* Allocate storage the first time. */ | |
1128 | if (elf_local_got_refcounts (abfd) == NULL) | |
e0001a05 | 1129 | { |
28dbbc02 BW |
1130 | bfd_size_type size = symtab_hdr->sh_info; |
1131 | void *mem; | |
e0001a05 | 1132 | |
28dbbc02 BW |
1133 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); |
1134 | if (mem == NULL) | |
1135 | return FALSE; | |
1136 | elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem; | |
e0001a05 | 1137 | |
28dbbc02 BW |
1138 | mem = bfd_zalloc (abfd, size); |
1139 | if (mem == NULL) | |
1140 | return FALSE; | |
1141 | elf_xtensa_local_got_tls_type (abfd) = (char *) mem; | |
1142 | ||
1143 | mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); | |
1144 | if (mem == NULL) | |
1145 | return FALSE; | |
1146 | elf_xtensa_local_tlsfunc_refcounts (abfd) | |
1147 | = (bfd_signed_vma *) mem; | |
e0001a05 | 1148 | } |
e0001a05 | 1149 | |
28dbbc02 BW |
1150 | /* This is a global offset table entry for a local symbol. */ |
1151 | if (is_got || is_plt) | |
1152 | elf_local_got_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1153 | |
28dbbc02 BW |
1154 | if (is_tlsfunc) |
1155 | elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1; | |
e0001a05 | 1156 | |
28dbbc02 BW |
1157 | old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx]; |
1158 | } | |
1159 | ||
1160 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) | |
1161 | tls_type |= old_tls_type; | |
1162 | /* If a TLS symbol is accessed using IE at least once, | |
1163 | there is no point to use a dynamic model for it. */ | |
1164 | else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN | |
1165 | && ((old_tls_type & GOT_TLS_GD) == 0 | |
1166 | || (tls_type & GOT_TLS_IE) == 0)) | |
1167 | { | |
1168 | if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD)) | |
1169 | tls_type = old_tls_type; | |
1170 | else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD)) | |
1171 | tls_type |= old_tls_type; | |
1172 | else | |
1173 | { | |
1174 | (*_bfd_error_handler) | |
1175 | (_("%B: `%s' accessed both as normal and thread local symbol"), | |
1176 | abfd, | |
1177 | h ? h->root.root.string : "<local>"); | |
1178 | return FALSE; | |
1179 | } | |
1180 | } | |
1181 | ||
1182 | if (old_tls_type != tls_type) | |
1183 | { | |
1184 | if (eh) | |
1185 | eh->tls_type = tls_type; | |
1186 | else | |
1187 | elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type; | |
e0001a05 NC |
1188 | } |
1189 | } | |
1190 | ||
e0001a05 NC |
1191 | return TRUE; |
1192 | } | |
1193 | ||
1194 | ||
95147441 BW |
1195 | static void |
1196 | elf_xtensa_make_sym_local (struct bfd_link_info *info, | |
1197 | struct elf_link_hash_entry *h) | |
1198 | { | |
1199 | if (info->shared) | |
1200 | { | |
1201 | if (h->plt.refcount > 0) | |
1202 | { | |
1203 | /* For shared objects, there's no need for PLT entries for local | |
1204 | symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */ | |
1205 | if (h->got.refcount < 0) | |
1206 | h->got.refcount = 0; | |
1207 | h->got.refcount += h->plt.refcount; | |
1208 | h->plt.refcount = 0; | |
1209 | } | |
1210 | } | |
1211 | else | |
1212 | { | |
1213 | /* Don't need any dynamic relocations at all. */ | |
1214 | h->plt.refcount = 0; | |
1215 | h->got.refcount = 0; | |
1216 | } | |
1217 | } | |
1218 | ||
1219 | ||
1220 | static void | |
1221 | elf_xtensa_hide_symbol (struct bfd_link_info *info, | |
1222 | struct elf_link_hash_entry *h, | |
1223 | bfd_boolean force_local) | |
1224 | { | |
1225 | /* For a shared link, move the plt refcount to the got refcount to leave | |
1226 | space for RELATIVE relocs. */ | |
1227 | elf_xtensa_make_sym_local (info, h); | |
1228 | ||
1229 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
1230 | } | |
1231 | ||
1232 | ||
e0001a05 NC |
1233 | /* Return the section that should be marked against GC for a given |
1234 | relocation. */ | |
1235 | ||
1236 | static asection * | |
7fa3d080 | 1237 | elf_xtensa_gc_mark_hook (asection *sec, |
07adf181 | 1238 | struct bfd_link_info *info, |
7fa3d080 BW |
1239 | Elf_Internal_Rela *rel, |
1240 | struct elf_link_hash_entry *h, | |
1241 | Elf_Internal_Sym *sym) | |
e0001a05 | 1242 | { |
e1e5c0b5 BW |
1243 | /* Property sections are marked "KEEP" in the linker scripts, but they |
1244 | should not cause other sections to be marked. (This approach relies | |
1245 | on elf_xtensa_discard_info to remove property table entries that | |
1246 | describe discarded sections. Alternatively, it might be more | |
1247 | efficient to avoid using "KEEP" in the linker scripts and instead use | |
1248 | the gc_mark_extra_sections hook to mark only the property sections | |
1249 | that describe marked sections. That alternative does not work well | |
1250 | with the current property table sections, which do not correspond | |
1251 | one-to-one with the sections they describe, but that should be fixed | |
1252 | someday.) */ | |
1253 | if (xtensa_is_property_section (sec)) | |
1254 | return NULL; | |
1255 | ||
07adf181 AM |
1256 | if (h != NULL) |
1257 | switch (ELF32_R_TYPE (rel->r_info)) | |
1258 | { | |
1259 | case R_XTENSA_GNU_VTINHERIT: | |
1260 | case R_XTENSA_GNU_VTENTRY: | |
1261 | return NULL; | |
1262 | } | |
1263 | ||
1264 | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | |
e0001a05 NC |
1265 | } |
1266 | ||
7fa3d080 | 1267 | |
e0001a05 NC |
1268 | /* Update the GOT & PLT entry reference counts |
1269 | for the section being removed. */ | |
1270 | ||
1271 | static bfd_boolean | |
7fa3d080 | 1272 | elf_xtensa_gc_sweep_hook (bfd *abfd, |
28dbbc02 | 1273 | struct bfd_link_info *info, |
7fa3d080 BW |
1274 | asection *sec, |
1275 | const Elf_Internal_Rela *relocs) | |
e0001a05 NC |
1276 | { |
1277 | Elf_Internal_Shdr *symtab_hdr; | |
1278 | struct elf_link_hash_entry **sym_hashes; | |
e0001a05 | 1279 | const Elf_Internal_Rela *rel, *relend; |
28dbbc02 BW |
1280 | struct elf_xtensa_link_hash_table *htab; |
1281 | ||
1282 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1283 | if (htab == NULL) |
1284 | return FALSE; | |
e0001a05 | 1285 | |
7dda2462 TG |
1286 | if (info->relocatable) |
1287 | return TRUE; | |
1288 | ||
e0001a05 NC |
1289 | if ((sec->flags & SEC_ALLOC) == 0) |
1290 | return TRUE; | |
1291 | ||
1292 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1293 | sym_hashes = elf_sym_hashes (abfd); | |
e0001a05 NC |
1294 | |
1295 | relend = relocs + sec->reloc_count; | |
1296 | for (rel = relocs; rel < relend; rel++) | |
1297 | { | |
1298 | unsigned long r_symndx; | |
1299 | unsigned int r_type; | |
1300 | struct elf_link_hash_entry *h = NULL; | |
28dbbc02 BW |
1301 | struct elf_xtensa_link_hash_entry *eh; |
1302 | bfd_boolean is_got = FALSE; | |
1303 | bfd_boolean is_plt = FALSE; | |
1304 | bfd_boolean is_tlsfunc = FALSE; | |
e0001a05 NC |
1305 | |
1306 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1307 | if (r_symndx >= symtab_hdr->sh_info) | |
3eb128b2 AM |
1308 | { |
1309 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1310 | while (h->root.type == bfd_link_hash_indirect | |
1311 | || h->root.type == bfd_link_hash_warning) | |
1312 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1313 | } | |
28dbbc02 | 1314 | eh = elf_xtensa_hash_entry (h); |
e0001a05 NC |
1315 | |
1316 | r_type = ELF32_R_TYPE (rel->r_info); | |
1317 | switch (r_type) | |
1318 | { | |
28dbbc02 BW |
1319 | case R_XTENSA_TLSDESC_FN: |
1320 | if (info->shared) | |
1321 | { | |
1322 | is_got = TRUE; | |
1323 | is_tlsfunc = TRUE; | |
1324 | } | |
e0001a05 NC |
1325 | break; |
1326 | ||
28dbbc02 BW |
1327 | case R_XTENSA_TLSDESC_ARG: |
1328 | if (info->shared) | |
1329 | is_got = TRUE; | |
1330 | else | |
1331 | { | |
1332 | if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) | |
1333 | is_got = TRUE; | |
1334 | } | |
e0001a05 NC |
1335 | break; |
1336 | ||
28dbbc02 BW |
1337 | case R_XTENSA_TLS_TPOFF: |
1338 | if (info->shared || h) | |
1339 | is_got = TRUE; | |
e0001a05 NC |
1340 | break; |
1341 | ||
28dbbc02 BW |
1342 | case R_XTENSA_32: |
1343 | is_got = TRUE; | |
e0001a05 | 1344 | break; |
28dbbc02 BW |
1345 | |
1346 | case R_XTENSA_PLT: | |
1347 | is_plt = TRUE; | |
1348 | break; | |
1349 | ||
1350 | default: | |
1351 | continue; | |
1352 | } | |
1353 | ||
1354 | if (h) | |
1355 | { | |
1356 | if (is_plt) | |
1357 | { | |
1358 | if (h->plt.refcount > 0) | |
1359 | h->plt.refcount--; | |
1360 | } | |
1361 | else if (is_got) | |
1362 | { | |
1363 | if (h->got.refcount > 0) | |
1364 | h->got.refcount--; | |
1365 | } | |
1366 | if (is_tlsfunc) | |
1367 | { | |
1368 | if (eh->tlsfunc_refcount > 0) | |
1369 | eh->tlsfunc_refcount--; | |
1370 | } | |
1371 | } | |
1372 | else | |
1373 | { | |
1374 | if (is_got || is_plt) | |
1375 | { | |
1376 | bfd_signed_vma *got_refcount | |
1377 | = &elf_local_got_refcounts (abfd) [r_symndx]; | |
1378 | if (*got_refcount > 0) | |
1379 | *got_refcount -= 1; | |
1380 | } | |
1381 | if (is_tlsfunc) | |
1382 | { | |
1383 | bfd_signed_vma *tlsfunc_refcount | |
1384 | = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx]; | |
1385 | if (*tlsfunc_refcount > 0) | |
1386 | *tlsfunc_refcount -= 1; | |
1387 | } | |
e0001a05 NC |
1388 | } |
1389 | } | |
1390 | ||
1391 | return TRUE; | |
1392 | } | |
1393 | ||
1394 | ||
1395 | /* Create all the dynamic sections. */ | |
1396 | ||
1397 | static bfd_boolean | |
7fa3d080 | 1398 | elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
e0001a05 | 1399 | { |
f0e6fdb2 | 1400 | struct elf_xtensa_link_hash_table *htab; |
e901de89 | 1401 | flagword flags, noalloc_flags; |
f0e6fdb2 BW |
1402 | |
1403 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1404 | if (htab == NULL) |
1405 | return FALSE; | |
e0001a05 NC |
1406 | |
1407 | /* First do all the standard stuff. */ | |
1408 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
1409 | return FALSE; | |
3d4d4302 AM |
1410 | htab->splt = bfd_get_linker_section (dynobj, ".plt"); |
1411 | htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt"); | |
1412 | htab->sgot = bfd_get_linker_section (dynobj, ".got"); | |
1413 | htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt"); | |
1414 | htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got"); | |
e0001a05 NC |
1415 | |
1416 | /* Create any extra PLT sections in case check_relocs has already | |
1417 | been called on all the non-dynamic input files. */ | |
f0e6fdb2 | 1418 | if (! add_extra_plt_sections (info, htab->plt_reloc_count)) |
e0001a05 NC |
1419 | return FALSE; |
1420 | ||
e901de89 BW |
1421 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1422 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1423 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
1424 | |
1425 | /* Mark the ".got.plt" section READONLY. */ | |
f0e6fdb2 BW |
1426 | if (htab->sgotplt == NULL |
1427 | || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags)) | |
e0001a05 NC |
1428 | return FALSE; |
1429 | ||
e901de89 | 1430 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
3d4d4302 AM |
1431 | htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc", |
1432 | flags); | |
f0e6fdb2 BW |
1433 | if (htab->sgotloc == NULL |
1434 | || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2)) | |
e901de89 BW |
1435 | return FALSE; |
1436 | ||
e0001a05 | 1437 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
3d4d4302 AM |
1438 | htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt", |
1439 | noalloc_flags); | |
f0e6fdb2 BW |
1440 | if (htab->spltlittbl == NULL |
1441 | || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2)) | |
e0001a05 NC |
1442 | return FALSE; |
1443 | ||
1444 | return TRUE; | |
1445 | } | |
1446 | ||
1447 | ||
1448 | static bfd_boolean | |
f0e6fdb2 | 1449 | add_extra_plt_sections (struct bfd_link_info *info, int count) |
e0001a05 | 1450 | { |
f0e6fdb2 | 1451 | bfd *dynobj = elf_hash_table (info)->dynobj; |
e0001a05 NC |
1452 | int chunk; |
1453 | ||
1454 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
1455 | ".got.plt" sections. */ | |
1456 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
1457 | { | |
1458 | char *sname; | |
1459 | flagword flags; | |
1460 | asection *s; | |
1461 | ||
1462 | /* Stop when we find a section has already been created. */ | |
f0e6fdb2 | 1463 | if (elf_xtensa_get_plt_section (info, chunk)) |
e0001a05 NC |
1464 | break; |
1465 | ||
1466 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
1467 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1468 | ||
1469 | sname = (char *) bfd_malloc (10); | |
1470 | sprintf (sname, ".plt.%u", chunk); | |
3d4d4302 | 1471 | s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE); |
e0001a05 | 1472 | if (s == NULL |
e0001a05 NC |
1473 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1474 | return FALSE; | |
1475 | ||
1476 | sname = (char *) bfd_malloc (14); | |
1477 | sprintf (sname, ".got.plt.%u", chunk); | |
3d4d4302 | 1478 | s = bfd_make_section_anyway_with_flags (dynobj, sname, flags); |
e0001a05 | 1479 | if (s == NULL |
e0001a05 NC |
1480 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1481 | return FALSE; | |
1482 | } | |
1483 | ||
1484 | return TRUE; | |
1485 | } | |
1486 | ||
1487 | ||
1488 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1489 | regular object. The current definition is in some section of the | |
1490 | dynamic object, but we're not including those sections. We have to | |
1491 | change the definition to something the rest of the link can | |
1492 | understand. */ | |
1493 | ||
1494 | static bfd_boolean | |
7fa3d080 BW |
1495 | elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1496 | struct elf_link_hash_entry *h) | |
e0001a05 NC |
1497 | { |
1498 | /* If this is a weak symbol, and there is a real definition, the | |
1499 | processor independent code will have arranged for us to see the | |
1500 | real definition first, and we can just use the same value. */ | |
7fa3d080 | 1501 | if (h->u.weakdef) |
e0001a05 | 1502 | { |
f6e332e6 AM |
1503 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
1504 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
1505 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
1506 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
e0001a05 NC |
1507 | return TRUE; |
1508 | } | |
1509 | ||
1510 | /* This is a reference to a symbol defined by a dynamic object. The | |
1511 | reference must go through the GOT, so there's no need for COPY relocs, | |
1512 | .dynbss, etc. */ | |
1513 | ||
1514 | return TRUE; | |
1515 | } | |
1516 | ||
1517 | ||
e0001a05 | 1518 | static bfd_boolean |
f1ab2340 | 1519 | elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg) |
e0001a05 | 1520 | { |
f1ab2340 BW |
1521 | struct bfd_link_info *info; |
1522 | struct elf_xtensa_link_hash_table *htab; | |
28dbbc02 | 1523 | struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h); |
e0001a05 | 1524 | |
f1ab2340 BW |
1525 | if (h->root.type == bfd_link_hash_indirect) |
1526 | return TRUE; | |
e0001a05 | 1527 | |
f1ab2340 BW |
1528 | info = (struct bfd_link_info *) arg; |
1529 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1530 | if (htab == NULL) |
1531 | return FALSE; | |
e0001a05 | 1532 | |
28dbbc02 BW |
1533 | /* If we saw any use of an IE model for this symbol, we can then optimize |
1534 | away GOT entries for any TLSDESC_FN relocs. */ | |
1535 | if ((eh->tls_type & GOT_TLS_IE) != 0) | |
1536 | { | |
1537 | BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount); | |
1538 | h->got.refcount -= eh->tlsfunc_refcount; | |
1539 | } | |
e0001a05 | 1540 | |
28dbbc02 | 1541 | if (! elf_xtensa_dynamic_symbol_p (h, info)) |
95147441 | 1542 | elf_xtensa_make_sym_local (info, h); |
e0001a05 | 1543 | |
f1ab2340 BW |
1544 | if (h->plt.refcount > 0) |
1545 | htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1546 | |
1547 | if (h->got.refcount > 0) | |
f1ab2340 | 1548 | htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1549 | |
1550 | return TRUE; | |
1551 | } | |
1552 | ||
1553 | ||
1554 | static void | |
f0e6fdb2 | 1555 | elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) |
e0001a05 | 1556 | { |
f0e6fdb2 | 1557 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
1558 | bfd *i; |
1559 | ||
f0e6fdb2 | 1560 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1561 | if (htab == NULL) |
1562 | return; | |
f0e6fdb2 | 1563 | |
c72f2fb2 | 1564 | for (i = info->input_bfds; i; i = i->link.next) |
e0001a05 NC |
1565 | { |
1566 | bfd_signed_vma *local_got_refcounts; | |
1567 | bfd_size_type j, cnt; | |
1568 | Elf_Internal_Shdr *symtab_hdr; | |
1569 | ||
1570 | local_got_refcounts = elf_local_got_refcounts (i); | |
1571 | if (!local_got_refcounts) | |
1572 | continue; | |
1573 | ||
1574 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1575 | cnt = symtab_hdr->sh_info; | |
1576 | ||
1577 | for (j = 0; j < cnt; ++j) | |
1578 | { | |
28dbbc02 BW |
1579 | /* If we saw any use of an IE model for this symbol, we can |
1580 | then optimize away GOT entries for any TLSDESC_FN relocs. */ | |
1581 | if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0) | |
1582 | { | |
1583 | bfd_signed_vma *tlsfunc_refcount | |
1584 | = &elf_xtensa_local_tlsfunc_refcounts (i) [j]; | |
1585 | BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount); | |
1586 | local_got_refcounts[j] -= *tlsfunc_refcount; | |
1587 | } | |
1588 | ||
e0001a05 | 1589 | if (local_got_refcounts[j] > 0) |
f0e6fdb2 BW |
1590 | htab->srelgot->size += (local_got_refcounts[j] |
1591 | * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1592 | } |
1593 | } | |
1594 | } | |
1595 | ||
1596 | ||
1597 | /* Set the sizes of the dynamic sections. */ | |
1598 | ||
1599 | static bfd_boolean | |
7fa3d080 BW |
1600 | elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1601 | struct bfd_link_info *info) | |
e0001a05 | 1602 | { |
f0e6fdb2 | 1603 | struct elf_xtensa_link_hash_table *htab; |
e901de89 BW |
1604 | bfd *dynobj, *abfd; |
1605 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1606 | bfd_boolean relplt, relgot; |
1607 | int plt_entries, plt_chunks, chunk; | |
1608 | ||
1609 | plt_entries = 0; | |
1610 | plt_chunks = 0; | |
e0001a05 | 1611 | |
f0e6fdb2 | 1612 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
1613 | if (htab == NULL) |
1614 | return FALSE; | |
1615 | ||
e0001a05 NC |
1616 | dynobj = elf_hash_table (info)->dynobj; |
1617 | if (dynobj == NULL) | |
1618 | abort (); | |
f0e6fdb2 BW |
1619 | srelgot = htab->srelgot; |
1620 | srelplt = htab->srelplt; | |
e0001a05 NC |
1621 | |
1622 | if (elf_hash_table (info)->dynamic_sections_created) | |
1623 | { | |
f0e6fdb2 BW |
1624 | BFD_ASSERT (htab->srelgot != NULL |
1625 | && htab->srelplt != NULL | |
1626 | && htab->sgot != NULL | |
1627 | && htab->spltlittbl != NULL | |
1628 | && htab->sgotloc != NULL); | |
1629 | ||
e0001a05 | 1630 | /* Set the contents of the .interp section to the interpreter. */ |
893c4fe2 | 1631 | if (info->executable) |
e0001a05 | 1632 | { |
3d4d4302 | 1633 | s = bfd_get_linker_section (dynobj, ".interp"); |
e0001a05 NC |
1634 | if (s == NULL) |
1635 | abort (); | |
eea6121a | 1636 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
e0001a05 NC |
1637 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1638 | } | |
1639 | ||
1640 | /* Allocate room for one word in ".got". */ | |
f0e6fdb2 | 1641 | htab->sgot->size = 4; |
e0001a05 | 1642 | |
f1ab2340 BW |
1643 | /* Allocate space in ".rela.got" for literals that reference global |
1644 | symbols and space in ".rela.plt" for literals that have PLT | |
1645 | entries. */ | |
e0001a05 | 1646 | elf_link_hash_traverse (elf_hash_table (info), |
f1ab2340 | 1647 | elf_xtensa_allocate_dynrelocs, |
7fa3d080 | 1648 | (void *) info); |
e0001a05 | 1649 | |
e0001a05 NC |
1650 | /* If we are generating a shared object, we also need space in |
1651 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1652 | reference local symbols. */ | |
1653 | if (info->shared) | |
f0e6fdb2 | 1654 | elf_xtensa_allocate_local_got_size (info); |
e0001a05 | 1655 | |
e0001a05 NC |
1656 | /* Allocate space in ".plt" to match the size of ".rela.plt". For |
1657 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1658 | For each chunk of ".plt", we also need two more 4-byte | |
1659 | literals, two corresponding entries in ".rela.got", and an | |
1660 | 8-byte entry in ".xt.lit.plt". */ | |
f0e6fdb2 | 1661 | spltlittbl = htab->spltlittbl; |
eea6121a | 1662 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
1663 | plt_chunks = |
1664 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1665 | ||
1666 | /* Iterate over all the PLT chunks, including any extra sections | |
1667 | created earlier because the initial count of PLT relocations | |
1668 | was an overestimate. */ | |
1669 | for (chunk = 0; | |
f0e6fdb2 | 1670 | (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; |
e0001a05 NC |
1671 | chunk++) |
1672 | { | |
1673 | int chunk_entries; | |
1674 | ||
f0e6fdb2 BW |
1675 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
1676 | BFD_ASSERT (sgotplt != NULL); | |
e0001a05 NC |
1677 | |
1678 | if (chunk < plt_chunks - 1) | |
1679 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1680 | else if (chunk == plt_chunks - 1) | |
1681 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1682 | else | |
1683 | chunk_entries = 0; | |
1684 | ||
1685 | if (chunk_entries != 0) | |
1686 | { | |
eea6121a AM |
1687 | sgotplt->size = 4 * (chunk_entries + 2); |
1688 | splt->size = PLT_ENTRY_SIZE * chunk_entries; | |
1689 | srelgot->size += 2 * sizeof (Elf32_External_Rela); | |
1690 | spltlittbl->size += 8; | |
e0001a05 NC |
1691 | } |
1692 | else | |
1693 | { | |
eea6121a AM |
1694 | sgotplt->size = 0; |
1695 | splt->size = 0; | |
e0001a05 NC |
1696 | } |
1697 | } | |
e901de89 BW |
1698 | |
1699 | /* Allocate space in ".got.loc" to match the total size of all the | |
1700 | literal tables. */ | |
f0e6fdb2 | 1701 | sgotloc = htab->sgotloc; |
eea6121a | 1702 | sgotloc->size = spltlittbl->size; |
c72f2fb2 | 1703 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
e901de89 BW |
1704 | { |
1705 | if (abfd->flags & DYNAMIC) | |
1706 | continue; | |
1707 | for (s = abfd->sections; s != NULL; s = s->next) | |
1708 | { | |
dbaa2011 | 1709 | if (! discarded_section (s) |
b536dc1e BW |
1710 | && xtensa_is_littable_section (s) |
1711 | && s != spltlittbl) | |
eea6121a | 1712 | sgotloc->size += s->size; |
e901de89 BW |
1713 | } |
1714 | } | |
e0001a05 NC |
1715 | } |
1716 | ||
1717 | /* Allocate memory for dynamic sections. */ | |
1718 | relplt = FALSE; | |
1719 | relgot = FALSE; | |
1720 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1721 | { | |
1722 | const char *name; | |
e0001a05 NC |
1723 | |
1724 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1725 | continue; | |
1726 | ||
1727 | /* It's OK to base decisions on the section name, because none | |
1728 | of the dynobj section names depend upon the input files. */ | |
1729 | name = bfd_get_section_name (dynobj, s); | |
1730 | ||
0112cd26 | 1731 | if (CONST_STRNEQ (name, ".rela")) |
e0001a05 | 1732 | { |
c456f082 | 1733 | if (s->size != 0) |
e0001a05 | 1734 | { |
c456f082 AM |
1735 | if (strcmp (name, ".rela.plt") == 0) |
1736 | relplt = TRUE; | |
1737 | else if (strcmp (name, ".rela.got") == 0) | |
1738 | relgot = TRUE; | |
1739 | ||
1740 | /* We use the reloc_count field as a counter if we need | |
1741 | to copy relocs into the output file. */ | |
1742 | s->reloc_count = 0; | |
e0001a05 NC |
1743 | } |
1744 | } | |
0112cd26 NC |
1745 | else if (! CONST_STRNEQ (name, ".plt.") |
1746 | && ! CONST_STRNEQ (name, ".got.plt.") | |
c456f082 | 1747 | && strcmp (name, ".got") != 0 |
e0001a05 NC |
1748 | && strcmp (name, ".plt") != 0 |
1749 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1750 | && strcmp (name, ".xt.lit.plt") != 0 |
1751 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1752 | { |
1753 | /* It's not one of our sections, so don't allocate space. */ | |
1754 | continue; | |
1755 | } | |
1756 | ||
c456f082 AM |
1757 | if (s->size == 0) |
1758 | { | |
1759 | /* If we don't need this section, strip it from the output | |
1760 | file. We must create the ".plt*" and ".got.plt*" | |
1761 | sections in create_dynamic_sections and/or check_relocs | |
1762 | based on a conservative estimate of the PLT relocation | |
1763 | count, because the sections must be created before the | |
1764 | linker maps input sections to output sections. The | |
1765 | linker does that before size_dynamic_sections, where we | |
1766 | compute the exact size of the PLT, so there may be more | |
1767 | of these sections than are actually needed. */ | |
1768 | s->flags |= SEC_EXCLUDE; | |
1769 | } | |
1770 | else if ((s->flags & SEC_HAS_CONTENTS) != 0) | |
e0001a05 NC |
1771 | { |
1772 | /* Allocate memory for the section contents. */ | |
eea6121a | 1773 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1774 | if (s->contents == NULL) |
e0001a05 NC |
1775 | return FALSE; |
1776 | } | |
1777 | } | |
1778 | ||
1779 | if (elf_hash_table (info)->dynamic_sections_created) | |
1780 | { | |
1781 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1782 | known until finish_dynamic_sections, but we need to get the relocs | |
1783 | in place before they are sorted. */ | |
e0001a05 NC |
1784 | for (chunk = 0; chunk < plt_chunks; chunk++) |
1785 | { | |
1786 | Elf_Internal_Rela irela; | |
1787 | bfd_byte *loc; | |
1788 | ||
1789 | irela.r_offset = 0; | |
1790 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1791 | irela.r_addend = 0; | |
1792 | ||
1793 | loc = (srelgot->contents | |
1794 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1795 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1796 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1797 | loc + sizeof (Elf32_External_Rela)); | |
1798 | srelgot->reloc_count += 2; | |
1799 | } | |
1800 | ||
1801 | /* Add some entries to the .dynamic section. We fill in the | |
1802 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1803 | must add the entries now so that we get the correct size for | |
1804 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1805 | dynamic linker and used by the debugger. */ | |
1806 | #define add_dynamic_entry(TAG, VAL) \ | |
5a580b3a | 1807 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
e0001a05 | 1808 | |
ba05963f | 1809 | if (info->executable) |
e0001a05 NC |
1810 | { |
1811 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1812 | return FALSE; | |
1813 | } | |
1814 | ||
1815 | if (relplt) | |
1816 | { | |
c243ad3b | 1817 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
e0001a05 NC |
1818 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) |
1819 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1820 | return FALSE; | |
1821 | } | |
1822 | ||
1823 | if (relgot) | |
1824 | { | |
1825 | if (!add_dynamic_entry (DT_RELA, 0) | |
1826 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1827 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
1828 | return FALSE; | |
1829 | } | |
1830 | ||
c243ad3b BW |
1831 | if (!add_dynamic_entry (DT_PLTGOT, 0) |
1832 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) | |
e0001a05 NC |
1833 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) |
1834 | return FALSE; | |
1835 | } | |
1836 | #undef add_dynamic_entry | |
1837 | ||
1838 | return TRUE; | |
1839 | } | |
1840 | ||
28dbbc02 BW |
1841 | static bfd_boolean |
1842 | elf_xtensa_always_size_sections (bfd *output_bfd, | |
1843 | struct bfd_link_info *info) | |
1844 | { | |
1845 | struct elf_xtensa_link_hash_table *htab; | |
1846 | asection *tls_sec; | |
1847 | ||
1848 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
1849 | if (htab == NULL) |
1850 | return FALSE; | |
1851 | ||
28dbbc02 BW |
1852 | tls_sec = htab->elf.tls_sec; |
1853 | ||
1854 | if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0) | |
1855 | { | |
1856 | struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf; | |
1857 | struct bfd_link_hash_entry *bh = &tlsbase->root; | |
1858 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
1859 | ||
1860 | tlsbase->type = STT_TLS; | |
1861 | if (!(_bfd_generic_link_add_one_symbol | |
1862 | (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, | |
1863 | tls_sec, 0, NULL, FALSE, | |
1864 | bed->collect, &bh))) | |
1865 | return FALSE; | |
1866 | tlsbase->def_regular = 1; | |
1867 | tlsbase->other = STV_HIDDEN; | |
1868 | (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); | |
1869 | } | |
1870 | ||
1871 | return TRUE; | |
1872 | } | |
1873 | ||
e0001a05 | 1874 | \f |
28dbbc02 BW |
1875 | /* Return the base VMA address which should be subtracted from real addresses |
1876 | when resolving @dtpoff relocation. | |
1877 | This is PT_TLS segment p_vaddr. */ | |
1878 | ||
1879 | static bfd_vma | |
1880 | dtpoff_base (struct bfd_link_info *info) | |
1881 | { | |
1882 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1883 | if (elf_hash_table (info)->tls_sec == NULL) | |
1884 | return 0; | |
1885 | return elf_hash_table (info)->tls_sec->vma; | |
1886 | } | |
1887 | ||
1888 | /* Return the relocation value for @tpoff relocation | |
1889 | if STT_TLS virtual address is ADDRESS. */ | |
1890 | ||
1891 | static bfd_vma | |
1892 | tpoff (struct bfd_link_info *info, bfd_vma address) | |
1893 | { | |
1894 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
1895 | bfd_vma base; | |
1896 | ||
1897 | /* If tls_sec is NULL, we should have signalled an error already. */ | |
1898 | if (htab->tls_sec == NULL) | |
1899 | return 0; | |
1900 | base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); | |
1901 | return address - htab->tls_sec->vma + base; | |
1902 | } | |
1903 | ||
e0001a05 NC |
1904 | /* Perform the specified relocation. The instruction at (contents + address) |
1905 | is modified to set one operand to represent the value in "relocation". The | |
1906 | operand position is determined by the relocation type recorded in the | |
1907 | howto. */ | |
1908 | ||
1909 | #define CALL_SEGMENT_BITS (30) | |
7fa3d080 | 1910 | #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) |
e0001a05 NC |
1911 | |
1912 | static bfd_reloc_status_type | |
7fa3d080 BW |
1913 | elf_xtensa_do_reloc (reloc_howto_type *howto, |
1914 | bfd *abfd, | |
1915 | asection *input_section, | |
1916 | bfd_vma relocation, | |
1917 | bfd_byte *contents, | |
1918 | bfd_vma address, | |
1919 | bfd_boolean is_weak_undef, | |
1920 | char **error_message) | |
e0001a05 | 1921 | { |
43cd72b9 | 1922 | xtensa_format fmt; |
e0001a05 | 1923 | xtensa_opcode opcode; |
e0001a05 | 1924 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
1925 | static xtensa_insnbuf ibuff = NULL; |
1926 | static xtensa_insnbuf sbuff = NULL; | |
1bbb5f21 | 1927 | bfd_vma self_address; |
43cd72b9 BW |
1928 | bfd_size_type input_size; |
1929 | int opnd, slot; | |
e0001a05 NC |
1930 | uint32 newval; |
1931 | ||
43cd72b9 BW |
1932 | if (!ibuff) |
1933 | { | |
1934 | ibuff = xtensa_insnbuf_alloc (isa); | |
1935 | sbuff = xtensa_insnbuf_alloc (isa); | |
1936 | } | |
1937 | ||
1938 | input_size = bfd_get_section_limit (abfd, input_section); | |
1939 | ||
1bbb5f21 BW |
1940 | /* Calculate the PC address for this instruction. */ |
1941 | self_address = (input_section->output_section->vma | |
1942 | + input_section->output_offset | |
1943 | + address); | |
1944 | ||
e0001a05 NC |
1945 | switch (howto->type) |
1946 | { | |
1947 | case R_XTENSA_NONE: | |
43cd72b9 BW |
1948 | case R_XTENSA_DIFF8: |
1949 | case R_XTENSA_DIFF16: | |
1950 | case R_XTENSA_DIFF32: | |
28dbbc02 BW |
1951 | case R_XTENSA_TLS_FUNC: |
1952 | case R_XTENSA_TLS_ARG: | |
1953 | case R_XTENSA_TLS_CALL: | |
e0001a05 NC |
1954 | return bfd_reloc_ok; |
1955 | ||
1956 | case R_XTENSA_ASM_EXPAND: | |
1957 | if (!is_weak_undef) | |
1958 | { | |
1959 | /* Check for windowed CALL across a 1GB boundary. */ | |
91d6fa6a NC |
1960 | opcode = get_expanded_call_opcode (contents + address, |
1961 | input_size - address, 0); | |
e0001a05 NC |
1962 | if (is_windowed_call_opcode (opcode)) |
1963 | { | |
43cd72b9 | 1964 | if ((self_address >> CALL_SEGMENT_BITS) |
68ffbac6 | 1965 | != (relocation >> CALL_SEGMENT_BITS)) |
e0001a05 NC |
1966 | { |
1967 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1968 | "return may fail"; | |
1969 | return bfd_reloc_dangerous; | |
1970 | } | |
1971 | } | |
1972 | } | |
1973 | return bfd_reloc_ok; | |
1974 | ||
1975 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 | 1976 | { |
e0001a05 | 1977 | /* Convert the L32R/CALLX to CALL. */ |
43cd72b9 BW |
1978 | bfd_reloc_status_type retval = |
1979 | elf_xtensa_do_asm_simplify (contents, address, input_size, | |
1980 | error_message); | |
e0001a05 | 1981 | if (retval != bfd_reloc_ok) |
43cd72b9 | 1982 | return bfd_reloc_dangerous; |
e0001a05 NC |
1983 | |
1984 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1985 | address += 3; | |
c46082c8 | 1986 | self_address += 3; |
43cd72b9 | 1987 | howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; |
e0001a05 NC |
1988 | } |
1989 | break; | |
1990 | ||
1991 | case R_XTENSA_32: | |
e0001a05 NC |
1992 | { |
1993 | bfd_vma x; | |
1994 | x = bfd_get_32 (abfd, contents + address); | |
1995 | x = x + relocation; | |
1996 | bfd_put_32 (abfd, x, contents + address); | |
1997 | } | |
1998 | return bfd_reloc_ok; | |
1bbb5f21 BW |
1999 | |
2000 | case R_XTENSA_32_PCREL: | |
2001 | bfd_put_32 (abfd, relocation - self_address, contents + address); | |
2002 | return bfd_reloc_ok; | |
28dbbc02 BW |
2003 | |
2004 | case R_XTENSA_PLT: | |
2005 | case R_XTENSA_TLSDESC_FN: | |
2006 | case R_XTENSA_TLSDESC_ARG: | |
2007 | case R_XTENSA_TLS_DTPOFF: | |
2008 | case R_XTENSA_TLS_TPOFF: | |
2009 | bfd_put_32 (abfd, relocation, contents + address); | |
2010 | return bfd_reloc_ok; | |
e0001a05 NC |
2011 | } |
2012 | ||
43cd72b9 BW |
2013 | /* Only instruction slot-specific relocations handled below.... */ |
2014 | slot = get_relocation_slot (howto->type); | |
2015 | if (slot == XTENSA_UNDEFINED) | |
e0001a05 | 2016 | { |
43cd72b9 | 2017 | *error_message = "unexpected relocation"; |
e0001a05 NC |
2018 | return bfd_reloc_dangerous; |
2019 | } | |
2020 | ||
43cd72b9 BW |
2021 | /* Read the instruction into a buffer and decode the opcode. */ |
2022 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address, | |
2023 | input_size - address); | |
2024 | fmt = xtensa_format_decode (isa, ibuff); | |
2025 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 2026 | { |
43cd72b9 | 2027 | *error_message = "cannot decode instruction format"; |
e0001a05 NC |
2028 | return bfd_reloc_dangerous; |
2029 | } | |
2030 | ||
43cd72b9 | 2031 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
e0001a05 | 2032 | |
43cd72b9 BW |
2033 | opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); |
2034 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 2035 | { |
43cd72b9 | 2036 | *error_message = "cannot decode instruction opcode"; |
e0001a05 NC |
2037 | return bfd_reloc_dangerous; |
2038 | } | |
2039 | ||
43cd72b9 BW |
2040 | /* Check for opcode-specific "alternate" relocations. */ |
2041 | if (is_alt_relocation (howto->type)) | |
2042 | { | |
2043 | if (opcode == get_l32r_opcode ()) | |
2044 | { | |
2045 | /* Handle the special-case of non-PC-relative L32R instructions. */ | |
2046 | bfd *output_bfd = input_section->output_section->owner; | |
2047 | asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); | |
2048 | if (!lit4_sec) | |
2049 | { | |
2050 | *error_message = "relocation references missing .lit4 section"; | |
2051 | return bfd_reloc_dangerous; | |
2052 | } | |
2053 | self_address = ((lit4_sec->vma & ~0xfff) | |
2054 | + 0x40000 - 3); /* -3 to compensate for do_reloc */ | |
2055 | newval = relocation; | |
2056 | opnd = 1; | |
2057 | } | |
2058 | else if (opcode == get_const16_opcode ()) | |
2059 | { | |
2060 | /* ALT used for high 16 bits. */ | |
2061 | newval = relocation >> 16; | |
2062 | opnd = 1; | |
2063 | } | |
2064 | else | |
2065 | { | |
2066 | /* No other "alternate" relocations currently defined. */ | |
2067 | *error_message = "unexpected relocation"; | |
2068 | return bfd_reloc_dangerous; | |
2069 | } | |
2070 | } | |
2071 | else /* Not an "alternate" relocation.... */ | |
2072 | { | |
2073 | if (opcode == get_const16_opcode ()) | |
2074 | { | |
2075 | newval = relocation & 0xffff; | |
2076 | opnd = 1; | |
2077 | } | |
2078 | else | |
2079 | { | |
2080 | /* ...normal PC-relative relocation.... */ | |
2081 | ||
2082 | /* Determine which operand is being relocated. */ | |
2083 | opnd = get_relocation_opnd (opcode, howto->type); | |
2084 | if (opnd == XTENSA_UNDEFINED) | |
2085 | { | |
2086 | *error_message = "unexpected relocation"; | |
2087 | return bfd_reloc_dangerous; | |
2088 | } | |
2089 | ||
2090 | if (!howto->pc_relative) | |
2091 | { | |
2092 | *error_message = "expected PC-relative relocation"; | |
2093 | return bfd_reloc_dangerous; | |
2094 | } | |
e0001a05 | 2095 | |
43cd72b9 BW |
2096 | newval = relocation; |
2097 | } | |
2098 | } | |
e0001a05 | 2099 | |
43cd72b9 BW |
2100 | /* Apply the relocation. */ |
2101 | if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) | |
2102 | || xtensa_operand_encode (isa, opcode, opnd, &newval) | |
2103 | || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, | |
2104 | sbuff, newval)) | |
e0001a05 | 2105 | { |
2db662be BW |
2106 | const char *opname = xtensa_opcode_name (isa, opcode); |
2107 | const char *msg; | |
2108 | ||
2109 | msg = "cannot encode"; | |
2110 | if (is_direct_call_opcode (opcode)) | |
2111 | { | |
2112 | if ((relocation & 0x3) != 0) | |
2113 | msg = "misaligned call target"; | |
2114 | else | |
2115 | msg = "call target out of range"; | |
2116 | } | |
2117 | else if (opcode == get_l32r_opcode ()) | |
2118 | { | |
2119 | if ((relocation & 0x3) != 0) | |
2120 | msg = "misaligned literal target"; | |
2121 | else if (is_alt_relocation (howto->type)) | |
2122 | msg = "literal target out of range (too many literals)"; | |
2123 | else if (self_address > relocation) | |
2124 | msg = "literal target out of range (try using text-section-literals)"; | |
2125 | else | |
2126 | msg = "literal placed after use"; | |
2127 | } | |
2128 | ||
2129 | *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
e0001a05 NC |
2130 | return bfd_reloc_dangerous; |
2131 | } | |
2132 | ||
43cd72b9 | 2133 | /* Check for calls across 1GB boundaries. */ |
e0001a05 NC |
2134 | if (is_direct_call_opcode (opcode) |
2135 | && is_windowed_call_opcode (opcode)) | |
2136 | { | |
43cd72b9 | 2137 | if ((self_address >> CALL_SEGMENT_BITS) |
68ffbac6 | 2138 | != (relocation >> CALL_SEGMENT_BITS)) |
e0001a05 | 2139 | { |
43cd72b9 BW |
2140 | *error_message = |
2141 | "windowed call crosses 1GB boundary; return may fail"; | |
e0001a05 NC |
2142 | return bfd_reloc_dangerous; |
2143 | } | |
2144 | } | |
2145 | ||
43cd72b9 BW |
2146 | /* Write the modified instruction back out of the buffer. */ |
2147 | xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); | |
2148 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address, | |
2149 | input_size - address); | |
e0001a05 NC |
2150 | return bfd_reloc_ok; |
2151 | } | |
2152 | ||
2153 | ||
2db662be | 2154 | static char * |
7fa3d080 | 2155 | vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) |
e0001a05 NC |
2156 | { |
2157 | /* To reduce the size of the memory leak, | |
2158 | we only use a single message buffer. */ | |
2159 | static bfd_size_type alloc_size = 0; | |
2160 | static char *message = NULL; | |
2161 | bfd_size_type orig_len, len = 0; | |
2162 | bfd_boolean is_append; | |
1651e569 | 2163 | va_list ap; |
e0001a05 | 2164 | |
1651e569 | 2165 | va_start (ap, arglen); |
68ffbac6 L |
2166 | |
2167 | is_append = (origmsg == message); | |
e0001a05 NC |
2168 | |
2169 | orig_len = strlen (origmsg); | |
2170 | len = orig_len + strlen (fmt) + arglen + 20; | |
2171 | if (len > alloc_size) | |
2172 | { | |
515ef31d | 2173 | message = (char *) bfd_realloc_or_free (message, len); |
e0001a05 NC |
2174 | alloc_size = len; |
2175 | } | |
515ef31d NC |
2176 | if (message != NULL) |
2177 | { | |
2178 | if (!is_append) | |
2179 | memcpy (message, origmsg, orig_len); | |
2180 | vsprintf (message + orig_len, fmt, ap); | |
2181 | } | |
1651e569 | 2182 | va_end (ap); |
e0001a05 NC |
2183 | return message; |
2184 | } | |
2185 | ||
2186 | ||
e0001a05 NC |
2187 | /* This function is registered as the "special_function" in the |
2188 | Xtensa howto for handling simplify operations. | |
2189 | bfd_perform_relocation / bfd_install_relocation use it to | |
2190 | perform (install) the specified relocation. Since this replaces the code | |
2191 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
2192 | stripped-down version of bfd_perform_relocation. */ | |
2193 | ||
2194 | static bfd_reloc_status_type | |
7fa3d080 BW |
2195 | bfd_elf_xtensa_reloc (bfd *abfd, |
2196 | arelent *reloc_entry, | |
2197 | asymbol *symbol, | |
2198 | void *data, | |
2199 | asection *input_section, | |
2200 | bfd *output_bfd, | |
2201 | char **error_message) | |
e0001a05 NC |
2202 | { |
2203 | bfd_vma relocation; | |
2204 | bfd_reloc_status_type flag; | |
2205 | bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); | |
2206 | bfd_vma output_base = 0; | |
2207 | reloc_howto_type *howto = reloc_entry->howto; | |
2208 | asection *reloc_target_output_section; | |
2209 | bfd_boolean is_weak_undef; | |
2210 | ||
dd1a320b BW |
2211 | if (!xtensa_default_isa) |
2212 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
2213 | ||
1049f94e | 2214 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
2215 | output, and the reloc is against an external symbol, the resulting |
2216 | reloc will also be against the same symbol. In such a case, we | |
2217 | don't want to change anything about the way the reloc is handled, | |
2218 | since it will all be done at final link time. This test is similar | |
2219 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
2220 | howto->partial_inplace go through even if the addend is non-zero. | |
2221 | (The real problem is that partial_inplace is set for XTENSA_32 | |
2222 | relocs to begin with, but that's a long story and there's little we | |
2223 | can do about it now....) */ | |
2224 | ||
7fa3d080 | 2225 | if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) |
e0001a05 NC |
2226 | { |
2227 | reloc_entry->address += input_section->output_offset; | |
2228 | return bfd_reloc_ok; | |
2229 | } | |
2230 | ||
2231 | /* Is the address of the relocation really within the section? */ | |
07515404 | 2232 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
e0001a05 NC |
2233 | return bfd_reloc_outofrange; |
2234 | ||
4cc11e76 | 2235 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
2236 | initial relocation command value. */ |
2237 | ||
2238 | /* Get symbol value. (Common symbols are special.) */ | |
2239 | if (bfd_is_com_section (symbol->section)) | |
2240 | relocation = 0; | |
2241 | else | |
2242 | relocation = symbol->value; | |
2243 | ||
2244 | reloc_target_output_section = symbol->section->output_section; | |
2245 | ||
2246 | /* Convert input-section-relative symbol value to absolute. */ | |
2247 | if ((output_bfd && !howto->partial_inplace) | |
2248 | || reloc_target_output_section == NULL) | |
2249 | output_base = 0; | |
2250 | else | |
2251 | output_base = reloc_target_output_section->vma; | |
2252 | ||
2253 | relocation += output_base + symbol->section->output_offset; | |
2254 | ||
2255 | /* Add in supplied addend. */ | |
2256 | relocation += reloc_entry->addend; | |
2257 | ||
2258 | /* Here the variable relocation holds the final address of the | |
2259 | symbol we are relocating against, plus any addend. */ | |
2260 | if (output_bfd) | |
2261 | { | |
2262 | if (!howto->partial_inplace) | |
2263 | { | |
2264 | /* This is a partial relocation, and we want to apply the relocation | |
2265 | to the reloc entry rather than the raw data. Everything except | |
2266 | relocations against section symbols has already been handled | |
2267 | above. */ | |
43cd72b9 | 2268 | |
e0001a05 NC |
2269 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); |
2270 | reloc_entry->addend = relocation; | |
2271 | reloc_entry->address += input_section->output_offset; | |
2272 | return bfd_reloc_ok; | |
2273 | } | |
2274 | else | |
2275 | { | |
2276 | reloc_entry->address += input_section->output_offset; | |
2277 | reloc_entry->addend = 0; | |
2278 | } | |
2279 | } | |
2280 | ||
2281 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
2282 | && (symbol->flags & BSF_WEAK) != 0); | |
2283 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
2284 | (bfd_byte *) data, (bfd_vma) octets, | |
2285 | is_weak_undef, error_message); | |
2286 | ||
2287 | if (flag == bfd_reloc_dangerous) | |
2288 | { | |
2289 | /* Add the symbol name to the error message. */ | |
2290 | if (! *error_message) | |
2291 | *error_message = ""; | |
2292 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
2293 | strlen (symbol->name) + 17, | |
70961b9d AM |
2294 | symbol->name, |
2295 | (unsigned long) reloc_entry->addend); | |
e0001a05 NC |
2296 | } |
2297 | ||
2298 | return flag; | |
2299 | } | |
2300 | ||
2301 | ||
2302 | /* Set up an entry in the procedure linkage table. */ | |
2303 | ||
2304 | static bfd_vma | |
f0e6fdb2 | 2305 | elf_xtensa_create_plt_entry (struct bfd_link_info *info, |
7fa3d080 BW |
2306 | bfd *output_bfd, |
2307 | unsigned reloc_index) | |
e0001a05 NC |
2308 | { |
2309 | asection *splt, *sgotplt; | |
2310 | bfd_vma plt_base, got_base; | |
2311 | bfd_vma code_offset, lit_offset; | |
2312 | int chunk; | |
2313 | ||
2314 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
2315 | splt = elf_xtensa_get_plt_section (info, chunk); |
2316 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
2317 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
2318 | ||
2319 | plt_base = splt->output_section->vma + splt->output_offset; | |
2320 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
2321 | ||
2322 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
2323 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
2324 | ||
2325 | /* Fill in the literal entry. This is the offset of the dynamic | |
2326 | relocation entry. */ | |
2327 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
2328 | sgotplt->contents + lit_offset); | |
2329 | ||
2330 | /* Fill in the entry in the procedure linkage table. */ | |
2331 | memcpy (splt->contents + code_offset, | |
2332 | (bfd_big_endian (output_bfd) | |
2333 | ? elf_xtensa_be_plt_entry | |
2334 | : elf_xtensa_le_plt_entry), | |
2335 | PLT_ENTRY_SIZE); | |
2336 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, | |
2337 | plt_base + code_offset + 3), | |
2338 | splt->contents + code_offset + 4); | |
2339 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, | |
2340 | plt_base + code_offset + 6), | |
2341 | splt->contents + code_offset + 7); | |
2342 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, | |
2343 | plt_base + code_offset + 9), | |
2344 | splt->contents + code_offset + 10); | |
2345 | ||
2346 | return plt_base + code_offset; | |
2347 | } | |
2348 | ||
2349 | ||
28dbbc02 BW |
2350 | static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *); |
2351 | ||
2352 | static bfd_boolean | |
2353 | replace_tls_insn (Elf_Internal_Rela *rel, | |
2354 | bfd *abfd, | |
2355 | asection *input_section, | |
2356 | bfd_byte *contents, | |
2357 | bfd_boolean is_ld_model, | |
2358 | char **error_message) | |
2359 | { | |
2360 | static xtensa_insnbuf ibuff = NULL; | |
2361 | static xtensa_insnbuf sbuff = NULL; | |
2362 | xtensa_isa isa = xtensa_default_isa; | |
2363 | xtensa_format fmt; | |
2364 | xtensa_opcode old_op, new_op; | |
2365 | bfd_size_type input_size; | |
2366 | int r_type; | |
2367 | unsigned dest_reg, src_reg; | |
2368 | ||
2369 | if (ibuff == NULL) | |
2370 | { | |
2371 | ibuff = xtensa_insnbuf_alloc (isa); | |
2372 | sbuff = xtensa_insnbuf_alloc (isa); | |
2373 | } | |
2374 | ||
2375 | input_size = bfd_get_section_limit (abfd, input_section); | |
2376 | ||
2377 | /* Read the instruction into a buffer and decode the opcode. */ | |
2378 | xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset, | |
2379 | input_size - rel->r_offset); | |
2380 | fmt = xtensa_format_decode (isa, ibuff); | |
2381 | if (fmt == XTENSA_UNDEFINED) | |
2382 | { | |
2383 | *error_message = "cannot decode instruction format"; | |
2384 | return FALSE; | |
2385 | } | |
2386 | ||
2387 | BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1); | |
2388 | xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff); | |
2389 | ||
2390 | old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff); | |
2391 | if (old_op == XTENSA_UNDEFINED) | |
2392 | { | |
2393 | *error_message = "cannot decode instruction opcode"; | |
2394 | return FALSE; | |
2395 | } | |
2396 | ||
2397 | r_type = ELF32_R_TYPE (rel->r_info); | |
2398 | switch (r_type) | |
2399 | { | |
2400 | case R_XTENSA_TLS_FUNC: | |
2401 | case R_XTENSA_TLS_ARG: | |
2402 | if (old_op != get_l32r_opcode () | |
2403 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2404 | sbuff, &dest_reg) != 0) | |
2405 | { | |
2406 | *error_message = "cannot extract L32R destination for TLS access"; | |
2407 | return FALSE; | |
2408 | } | |
2409 | break; | |
2410 | ||
2411 | case R_XTENSA_TLS_CALL: | |
2412 | if (! get_indirect_call_dest_reg (old_op, &dest_reg) | |
2413 | || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, | |
2414 | sbuff, &src_reg) != 0) | |
2415 | { | |
2416 | *error_message = "cannot extract CALLXn operands for TLS access"; | |
2417 | return FALSE; | |
2418 | } | |
2419 | break; | |
2420 | ||
2421 | default: | |
2422 | abort (); | |
2423 | } | |
2424 | ||
2425 | if (is_ld_model) | |
2426 | { | |
2427 | switch (r_type) | |
2428 | { | |
2429 | case R_XTENSA_TLS_FUNC: | |
2430 | case R_XTENSA_TLS_ARG: | |
2431 | /* Change the instruction to a NOP (or "OR a1, a1, a1" for older | |
2432 | versions of Xtensa). */ | |
2433 | new_op = xtensa_opcode_lookup (isa, "nop"); | |
2434 | if (new_op == XTENSA_UNDEFINED) | |
2435 | { | |
2436 | new_op = xtensa_opcode_lookup (isa, "or"); | |
2437 | if (new_op == XTENSA_UNDEFINED | |
2438 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2439 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2440 | sbuff, 1) != 0 | |
2441 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2442 | sbuff, 1) != 0 | |
2443 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2444 | sbuff, 1) != 0) | |
2445 | { | |
2446 | *error_message = "cannot encode OR for TLS access"; | |
2447 | return FALSE; | |
2448 | } | |
2449 | } | |
2450 | else | |
2451 | { | |
2452 | if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0) | |
2453 | { | |
2454 | *error_message = "cannot encode NOP for TLS access"; | |
2455 | return FALSE; | |
2456 | } | |
2457 | } | |
2458 | break; | |
2459 | ||
2460 | case R_XTENSA_TLS_CALL: | |
2461 | /* Read THREADPTR into the CALLX's return value register. */ | |
2462 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2463 | if (new_op == XTENSA_UNDEFINED | |
2464 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2465 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2466 | sbuff, dest_reg + 2) != 0) | |
2467 | { | |
2468 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2469 | return FALSE; | |
2470 | } | |
2471 | break; | |
2472 | } | |
2473 | } | |
2474 | else | |
2475 | { | |
2476 | switch (r_type) | |
2477 | { | |
2478 | case R_XTENSA_TLS_FUNC: | |
2479 | new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); | |
2480 | if (new_op == XTENSA_UNDEFINED | |
2481 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2482 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2483 | sbuff, dest_reg) != 0) | |
2484 | { | |
2485 | *error_message = "cannot encode RUR.THREADPTR for TLS access"; | |
2486 | return FALSE; | |
2487 | } | |
2488 | break; | |
2489 | ||
2490 | case R_XTENSA_TLS_ARG: | |
2491 | /* Nothing to do. Keep the original L32R instruction. */ | |
2492 | return TRUE; | |
2493 | ||
2494 | case R_XTENSA_TLS_CALL: | |
2495 | /* Add the CALLX's src register (holding the THREADPTR value) | |
2496 | to the first argument register (holding the offset) and put | |
2497 | the result in the CALLX's return value register. */ | |
2498 | new_op = xtensa_opcode_lookup (isa, "add"); | |
2499 | if (new_op == XTENSA_UNDEFINED | |
2500 | || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 | |
2501 | || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, | |
2502 | sbuff, dest_reg + 2) != 0 | |
2503 | || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, | |
2504 | sbuff, dest_reg + 2) != 0 | |
2505 | || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, | |
2506 | sbuff, src_reg) != 0) | |
2507 | { | |
2508 | *error_message = "cannot encode ADD for TLS access"; | |
2509 | return FALSE; | |
2510 | } | |
2511 | break; | |
2512 | } | |
2513 | } | |
2514 | ||
2515 | xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff); | |
2516 | xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset, | |
2517 | input_size - rel->r_offset); | |
2518 | ||
2519 | return TRUE; | |
2520 | } | |
2521 | ||
2522 | ||
2523 | #define IS_XTENSA_TLS_RELOC(R_TYPE) \ | |
2524 | ((R_TYPE) == R_XTENSA_TLSDESC_FN \ | |
2525 | || (R_TYPE) == R_XTENSA_TLSDESC_ARG \ | |
2526 | || (R_TYPE) == R_XTENSA_TLS_DTPOFF \ | |
2527 | || (R_TYPE) == R_XTENSA_TLS_TPOFF \ | |
2528 | || (R_TYPE) == R_XTENSA_TLS_FUNC \ | |
2529 | || (R_TYPE) == R_XTENSA_TLS_ARG \ | |
2530 | || (R_TYPE) == R_XTENSA_TLS_CALL) | |
2531 | ||
e0001a05 | 2532 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 2533 | both relocatable and final links. */ |
e0001a05 NC |
2534 | |
2535 | static bfd_boolean | |
7fa3d080 BW |
2536 | elf_xtensa_relocate_section (bfd *output_bfd, |
2537 | struct bfd_link_info *info, | |
2538 | bfd *input_bfd, | |
2539 | asection *input_section, | |
2540 | bfd_byte *contents, | |
2541 | Elf_Internal_Rela *relocs, | |
2542 | Elf_Internal_Sym *local_syms, | |
2543 | asection **local_sections) | |
e0001a05 | 2544 | { |
f0e6fdb2 | 2545 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
2546 | Elf_Internal_Shdr *symtab_hdr; |
2547 | Elf_Internal_Rela *rel; | |
2548 | Elf_Internal_Rela *relend; | |
2549 | struct elf_link_hash_entry **sym_hashes; | |
88d65ad6 BW |
2550 | property_table_entry *lit_table = 0; |
2551 | int ltblsize = 0; | |
28dbbc02 | 2552 | char *local_got_tls_types; |
e0001a05 | 2553 | char *error_message = NULL; |
43cd72b9 | 2554 | bfd_size_type input_size; |
28dbbc02 | 2555 | int tls_type; |
e0001a05 | 2556 | |
43cd72b9 BW |
2557 | if (!xtensa_default_isa) |
2558 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 2559 | |
28dbbc02 BW |
2560 | BFD_ASSERT (is_xtensa_elf (input_bfd)); |
2561 | ||
f0e6fdb2 | 2562 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
2563 | if (htab == NULL) |
2564 | return FALSE; | |
2565 | ||
e0001a05 NC |
2566 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
2567 | sym_hashes = elf_sym_hashes (input_bfd); | |
28dbbc02 | 2568 | local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd); |
e0001a05 | 2569 | |
88d65ad6 BW |
2570 | if (elf_hash_table (info)->dynamic_sections_created) |
2571 | { | |
2572 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, | |
43cd72b9 BW |
2573 | &lit_table, XTENSA_LIT_SEC_NAME, |
2574 | TRUE); | |
88d65ad6 BW |
2575 | if (ltblsize < 0) |
2576 | return FALSE; | |
2577 | } | |
2578 | ||
43cd72b9 BW |
2579 | input_size = bfd_get_section_limit (input_bfd, input_section); |
2580 | ||
e0001a05 NC |
2581 | rel = relocs; |
2582 | relend = relocs + input_section->reloc_count; | |
2583 | for (; rel < relend; rel++) | |
2584 | { | |
2585 | int r_type; | |
2586 | reloc_howto_type *howto; | |
2587 | unsigned long r_symndx; | |
2588 | struct elf_link_hash_entry *h; | |
2589 | Elf_Internal_Sym *sym; | |
28dbbc02 BW |
2590 | char sym_type; |
2591 | const char *name; | |
e0001a05 NC |
2592 | asection *sec; |
2593 | bfd_vma relocation; | |
2594 | bfd_reloc_status_type r; | |
2595 | bfd_boolean is_weak_undef; | |
2596 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 2597 | bfd_boolean warned; |
28dbbc02 | 2598 | bfd_boolean dynamic_symbol; |
e0001a05 NC |
2599 | |
2600 | r_type = ELF32_R_TYPE (rel->r_info); | |
2601 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
2602 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
2603 | continue; | |
2604 | ||
2605 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
2606 | { | |
2607 | bfd_set_error (bfd_error_bad_value); | |
2608 | return FALSE; | |
2609 | } | |
2610 | howto = &elf_howto_table[r_type]; | |
2611 | ||
2612 | r_symndx = ELF32_R_SYM (rel->r_info); | |
2613 | ||
ab96bf03 AM |
2614 | h = NULL; |
2615 | sym = NULL; | |
2616 | sec = NULL; | |
2617 | is_weak_undef = FALSE; | |
2618 | unresolved_reloc = FALSE; | |
2619 | warned = FALSE; | |
2620 | ||
2621 | if (howto->partial_inplace && !info->relocatable) | |
2622 | { | |
2623 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
2624 | problems with DWARF info in partial links, there may be | |
2625 | an addend stored in the contents. Take it out of there | |
2626 | and move it back into the addend field of the reloc. */ | |
2627 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2628 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
2629 | } | |
2630 | ||
2631 | if (r_symndx < symtab_hdr->sh_info) | |
2632 | { | |
2633 | sym = local_syms + r_symndx; | |
28dbbc02 | 2634 | sym_type = ELF32_ST_TYPE (sym->st_info); |
ab96bf03 AM |
2635 | sec = local_sections[r_symndx]; |
2636 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | |
2637 | } | |
2638 | else | |
2639 | { | |
62d887d4 L |
2640 | bfd_boolean ignored; |
2641 | ||
ab96bf03 AM |
2642 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
2643 | r_symndx, symtab_hdr, sym_hashes, | |
2644 | h, sec, relocation, | |
62d887d4 | 2645 | unresolved_reloc, warned, ignored); |
ab96bf03 AM |
2646 | |
2647 | if (relocation == 0 | |
2648 | && !unresolved_reloc | |
2649 | && h->root.type == bfd_link_hash_undefweak) | |
2650 | is_weak_undef = TRUE; | |
28dbbc02 BW |
2651 | |
2652 | sym_type = h->type; | |
ab96bf03 AM |
2653 | } |
2654 | ||
dbaa2011 | 2655 | if (sec != NULL && discarded_section (sec)) |
e4067dbb | 2656 | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
545fd46b | 2657 | rel, 1, relend, howto, 0, contents); |
ab96bf03 | 2658 | |
1049f94e | 2659 | if (info->relocatable) |
e0001a05 | 2660 | { |
7aa09196 SA |
2661 | bfd_vma dest_addr; |
2662 | asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx); | |
2663 | ||
43cd72b9 | 2664 | /* This is a relocatable link. |
e0001a05 NC |
2665 | 1) If the reloc is against a section symbol, adjust |
2666 | according to the output section. | |
2667 | 2) If there is a new target for this relocation, | |
2668 | the new target will be in the same output section. | |
2669 | We adjust the relocation by the output section | |
2670 | difference. */ | |
2671 | ||
2672 | if (relaxing_section) | |
2673 | { | |
2674 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2675 | if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, |
2676 | contents)) | |
2677 | return FALSE; | |
e0001a05 NC |
2678 | } |
2679 | ||
7aa09196 SA |
2680 | dest_addr = sym_sec->output_section->vma + sym_sec->output_offset |
2681 | + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend; | |
2682 | ||
43cd72b9 | 2683 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
e0001a05 | 2684 | { |
91d6fa6a | 2685 | error_message = NULL; |
e0001a05 NC |
2686 | /* Convert ASM_SIMPLIFY into the simpler relocation |
2687 | so that they never escape a relaxing link. */ | |
43cd72b9 BW |
2688 | r = contract_asm_expansion (contents, input_size, rel, |
2689 | &error_message); | |
2690 | if (r != bfd_reloc_ok) | |
2691 | { | |
2692 | if (!((*info->callbacks->reloc_dangerous) | |
2693 | (info, error_message, input_bfd, input_section, | |
2694 | rel->r_offset))) | |
2695 | return FALSE; | |
2696 | } | |
e0001a05 NC |
2697 | r_type = ELF32_R_TYPE (rel->r_info); |
2698 | } | |
2699 | ||
1049f94e | 2700 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
2701 | anything unless the reloc is against a section symbol, |
2702 | in which case we have to adjust according to where the | |
2703 | section symbol winds up in the output section. */ | |
2704 | if (r_symndx < symtab_hdr->sh_info) | |
2705 | { | |
2706 | sym = local_syms + r_symndx; | |
2707 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2708 | { | |
2709 | sec = local_sections[r_symndx]; | |
2710 | rel->r_addend += sec->output_offset + sym->st_value; | |
2711 | } | |
2712 | } | |
2713 | ||
2714 | /* If there is an addend with a partial_inplace howto, | |
2715 | then move the addend to the contents. This is a hack | |
1049f94e | 2716 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
2717 | with some previous version of BFD. Now we can't easily get |
2718 | rid of the hack without breaking backward compatibility.... */ | |
7aa09196 SA |
2719 | r = bfd_reloc_ok; |
2720 | howto = &elf_howto_table[r_type]; | |
2721 | if (howto->partial_inplace && rel->r_addend) | |
2722 | { | |
2723 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2724 | rel->r_addend, contents, | |
2725 | rel->r_offset, FALSE, | |
2726 | &error_message); | |
2727 | rel->r_addend = 0; | |
2728 | } | |
2729 | else | |
e0001a05 | 2730 | { |
7aa09196 SA |
2731 | /* Put the correct bits in the target instruction, even |
2732 | though the relocation will still be present in the output | |
2733 | file. This makes disassembly clearer, as well as | |
2734 | allowing loadable kernel modules to work without needing | |
2735 | relocations on anything other than calls and l32r's. */ | |
2736 | ||
2737 | /* If it is not in the same section, there is nothing we can do. */ | |
2738 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP && | |
2739 | sym_sec->output_section == input_section->output_section) | |
e0001a05 NC |
2740 | { |
2741 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
7aa09196 | 2742 | dest_addr, contents, |
e0001a05 NC |
2743 | rel->r_offset, FALSE, |
2744 | &error_message); | |
e0001a05 NC |
2745 | } |
2746 | } | |
7aa09196 SA |
2747 | if (r != bfd_reloc_ok) |
2748 | { | |
2749 | if (!((*info->callbacks->reloc_dangerous) | |
2750 | (info, error_message, input_bfd, input_section, | |
2751 | rel->r_offset))) | |
2752 | return FALSE; | |
2753 | } | |
e0001a05 | 2754 | |
1049f94e | 2755 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
2756 | continue; |
2757 | } | |
2758 | ||
2759 | /* This is a final link. */ | |
2760 | ||
e0001a05 NC |
2761 | if (relaxing_section) |
2762 | { | |
2763 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2764 | do_fix_for_final_link (rel, input_bfd, input_section, contents, |
2765 | &relocation); | |
e0001a05 NC |
2766 | } |
2767 | ||
2768 | /* Sanity check the address. */ | |
43cd72b9 | 2769 | if (rel->r_offset >= input_size |
e0001a05 NC |
2770 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
2771 | { | |
43cd72b9 BW |
2772 | (*_bfd_error_handler) |
2773 | (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"), | |
2774 | input_bfd, input_section, rel->r_offset, input_size); | |
e0001a05 NC |
2775 | bfd_set_error (bfd_error_bad_value); |
2776 | return FALSE; | |
2777 | } | |
2778 | ||
28dbbc02 BW |
2779 | if (h != NULL) |
2780 | name = h->root.root.string; | |
2781 | else | |
e0001a05 | 2782 | { |
28dbbc02 BW |
2783 | name = (bfd_elf_string_from_elf_section |
2784 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | |
2785 | if (name == NULL || *name == '\0') | |
2786 | name = bfd_section_name (input_bfd, sec); | |
2787 | } | |
e0001a05 | 2788 | |
cf35638d | 2789 | if (r_symndx != STN_UNDEF |
28dbbc02 BW |
2790 | && r_type != R_XTENSA_NONE |
2791 | && (h == NULL | |
2792 | || h->root.type == bfd_link_hash_defined | |
2793 | || h->root.type == bfd_link_hash_defweak) | |
2794 | && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS)) | |
2795 | { | |
2796 | (*_bfd_error_handler) | |
2797 | ((sym_type == STT_TLS | |
2798 | ? _("%B(%A+0x%lx): %s used with TLS symbol %s") | |
2799 | : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), | |
2800 | input_bfd, | |
2801 | input_section, | |
2802 | (long) rel->r_offset, | |
2803 | howto->name, | |
2804 | name); | |
2805 | } | |
2806 | ||
2807 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); | |
2808 | ||
2809 | tls_type = GOT_UNKNOWN; | |
2810 | if (h) | |
2811 | tls_type = elf_xtensa_hash_entry (h)->tls_type; | |
2812 | else if (local_got_tls_types) | |
2813 | tls_type = local_got_tls_types [r_symndx]; | |
2814 | ||
2815 | switch (r_type) | |
2816 | { | |
2817 | case R_XTENSA_32: | |
2818 | case R_XTENSA_PLT: | |
2819 | if (elf_hash_table (info)->dynamic_sections_created | |
2820 | && (input_section->flags & SEC_ALLOC) != 0 | |
2821 | && (dynamic_symbol || info->shared)) | |
e0001a05 NC |
2822 | { |
2823 | Elf_Internal_Rela outrel; | |
2824 | bfd_byte *loc; | |
2825 | asection *srel; | |
2826 | ||
2827 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
f0e6fdb2 | 2828 | srel = htab->srelplt; |
e0001a05 | 2829 | else |
f0e6fdb2 | 2830 | srel = htab->srelgot; |
e0001a05 NC |
2831 | |
2832 | BFD_ASSERT (srel != NULL); | |
2833 | ||
2834 | outrel.r_offset = | |
2835 | _bfd_elf_section_offset (output_bfd, info, | |
2836 | input_section, rel->r_offset); | |
2837 | ||
2838 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2839 | memset (&outrel, 0, sizeof outrel); | |
2840 | else | |
2841 | { | |
f0578e28 BW |
2842 | outrel.r_offset += (input_section->output_section->vma |
2843 | + input_section->output_offset); | |
e0001a05 | 2844 | |
88d65ad6 BW |
2845 | /* Complain if the relocation is in a read-only section |
2846 | and not in a literal pool. */ | |
2847 | if ((input_section->flags & SEC_READONLY) != 0 | |
2848 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
3ba3bc8c | 2849 | outrel.r_offset)) |
88d65ad6 BW |
2850 | { |
2851 | error_message = | |
2852 | _("dynamic relocation in read-only section"); | |
2853 | if (!((*info->callbacks->reloc_dangerous) | |
2854 | (info, error_message, input_bfd, input_section, | |
2855 | rel->r_offset))) | |
2856 | return FALSE; | |
2857 | } | |
2858 | ||
e0001a05 NC |
2859 | if (dynamic_symbol) |
2860 | { | |
2861 | outrel.r_addend = rel->r_addend; | |
2862 | rel->r_addend = 0; | |
2863 | ||
2864 | if (r_type == R_XTENSA_32) | |
2865 | { | |
2866 | outrel.r_info = | |
2867 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2868 | relocation = 0; | |
2869 | } | |
2870 | else /* r_type == R_XTENSA_PLT */ | |
2871 | { | |
2872 | outrel.r_info = | |
2873 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2874 | ||
2875 | /* Create the PLT entry and set the initial | |
2876 | contents of the literal entry to the address of | |
2877 | the PLT entry. */ | |
43cd72b9 | 2878 | relocation = |
f0e6fdb2 | 2879 | elf_xtensa_create_plt_entry (info, output_bfd, |
e0001a05 NC |
2880 | srel->reloc_count); |
2881 | } | |
2882 | unresolved_reloc = FALSE; | |
2883 | } | |
2884 | else | |
2885 | { | |
2886 | /* Generate a RELATIVE relocation. */ | |
2887 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2888 | outrel.r_addend = 0; | |
2889 | } | |
2890 | } | |
2891 | ||
2892 | loc = (srel->contents | |
2893 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2894 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2895 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
eea6121a | 2896 | <= srel->size); |
e0001a05 | 2897 | } |
d9ab3f29 BW |
2898 | else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol) |
2899 | { | |
2900 | /* This should only happen for non-PIC code, which is not | |
2901 | supposed to be used on systems with dynamic linking. | |
2902 | Just ignore these relocations. */ | |
2903 | continue; | |
2904 | } | |
28dbbc02 BW |
2905 | break; |
2906 | ||
2907 | case R_XTENSA_TLS_TPOFF: | |
2908 | /* Switch to LE model for local symbols in an executable. */ | |
2909 | if (! info->shared && ! dynamic_symbol) | |
2910 | { | |
2911 | relocation = tpoff (info, relocation); | |
2912 | break; | |
2913 | } | |
2914 | /* fall through */ | |
2915 | ||
2916 | case R_XTENSA_TLSDESC_FN: | |
2917 | case R_XTENSA_TLSDESC_ARG: | |
2918 | { | |
2919 | if (r_type == R_XTENSA_TLSDESC_FN) | |
2920 | { | |
2921 | if (! info->shared || (tls_type & GOT_TLS_IE) != 0) | |
2922 | r_type = R_XTENSA_NONE; | |
2923 | } | |
2924 | else if (r_type == R_XTENSA_TLSDESC_ARG) | |
2925 | { | |
2926 | if (info->shared) | |
2927 | { | |
2928 | if ((tls_type & GOT_TLS_IE) != 0) | |
2929 | r_type = R_XTENSA_TLS_TPOFF; | |
2930 | } | |
2931 | else | |
2932 | { | |
2933 | r_type = R_XTENSA_TLS_TPOFF; | |
2934 | if (! dynamic_symbol) | |
2935 | { | |
2936 | relocation = tpoff (info, relocation); | |
2937 | break; | |
2938 | } | |
2939 | } | |
2940 | } | |
2941 | ||
2942 | if (r_type == R_XTENSA_NONE) | |
2943 | /* Nothing to do here; skip to the next reloc. */ | |
2944 | continue; | |
2945 | ||
2946 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2947 | { | |
2948 | error_message = | |
2949 | _("TLS relocation invalid without dynamic sections"); | |
2950 | if (!((*info->callbacks->reloc_dangerous) | |
2951 | (info, error_message, input_bfd, input_section, | |
2952 | rel->r_offset))) | |
2953 | return FALSE; | |
2954 | } | |
2955 | else | |
2956 | { | |
2957 | Elf_Internal_Rela outrel; | |
2958 | bfd_byte *loc; | |
2959 | asection *srel = htab->srelgot; | |
2960 | int indx; | |
2961 | ||
2962 | outrel.r_offset = (input_section->output_section->vma | |
2963 | + input_section->output_offset | |
2964 | + rel->r_offset); | |
2965 | ||
2966 | /* Complain if the relocation is in a read-only section | |
2967 | and not in a literal pool. */ | |
2968 | if ((input_section->flags & SEC_READONLY) != 0 | |
2969 | && ! elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
2970 | outrel.r_offset)) | |
2971 | { | |
2972 | error_message = | |
2973 | _("dynamic relocation in read-only section"); | |
2974 | if (!((*info->callbacks->reloc_dangerous) | |
2975 | (info, error_message, input_bfd, input_section, | |
2976 | rel->r_offset))) | |
2977 | return FALSE; | |
2978 | } | |
2979 | ||
2980 | indx = h && h->dynindx != -1 ? h->dynindx : 0; | |
2981 | if (indx == 0) | |
2982 | outrel.r_addend = relocation - dtpoff_base (info); | |
2983 | else | |
2984 | outrel.r_addend = 0; | |
2985 | rel->r_addend = 0; | |
2986 | ||
2987 | outrel.r_info = ELF32_R_INFO (indx, r_type); | |
2988 | relocation = 0; | |
2989 | unresolved_reloc = FALSE; | |
2990 | ||
2991 | BFD_ASSERT (srel); | |
2992 | loc = (srel->contents | |
2993 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2994 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2995 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
2996 | <= srel->size); | |
2997 | } | |
2998 | } | |
2999 | break; | |
3000 | ||
3001 | case R_XTENSA_TLS_DTPOFF: | |
3002 | if (! info->shared) | |
3003 | /* Switch from LD model to LE model. */ | |
3004 | relocation = tpoff (info, relocation); | |
3005 | else | |
3006 | relocation -= dtpoff_base (info); | |
3007 | break; | |
3008 | ||
3009 | case R_XTENSA_TLS_FUNC: | |
3010 | case R_XTENSA_TLS_ARG: | |
3011 | case R_XTENSA_TLS_CALL: | |
3012 | /* Check if optimizing to IE or LE model. */ | |
3013 | if ((tls_type & GOT_TLS_IE) != 0) | |
3014 | { | |
3015 | bfd_boolean is_ld_model = | |
3016 | (h && elf_xtensa_hash_entry (h) == htab->tlsbase); | |
3017 | if (! replace_tls_insn (rel, input_bfd, input_section, contents, | |
3018 | is_ld_model, &error_message)) | |
3019 | { | |
3020 | if (!((*info->callbacks->reloc_dangerous) | |
3021 | (info, error_message, input_bfd, input_section, | |
3022 | rel->r_offset))) | |
3023 | return FALSE; | |
3024 | } | |
3025 | ||
3026 | if (r_type != R_XTENSA_TLS_ARG || is_ld_model) | |
3027 | { | |
3028 | /* Skip subsequent relocations on the same instruction. */ | |
3029 | while (rel + 1 < relend && rel[1].r_offset == rel->r_offset) | |
3030 | rel++; | |
3031 | } | |
3032 | } | |
3033 | continue; | |
3034 | ||
3035 | default: | |
3036 | if (elf_hash_table (info)->dynamic_sections_created | |
3037 | && dynamic_symbol && (is_operand_relocation (r_type) | |
3038 | || r_type == R_XTENSA_32_PCREL)) | |
3039 | { | |
3040 | error_message = | |
3041 | vsprint_msg ("invalid relocation for dynamic symbol", ": %s", | |
3042 | strlen (name) + 2, name); | |
3043 | if (!((*info->callbacks->reloc_dangerous) | |
3044 | (info, error_message, input_bfd, input_section, | |
3045 | rel->r_offset))) | |
3046 | return FALSE; | |
3047 | continue; | |
3048 | } | |
3049 | break; | |
e0001a05 NC |
3050 | } |
3051 | ||
3052 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
3053 | because such sections are not SEC_ALLOC and thus ld.so will | |
3054 | not process them. */ | |
3055 | if (unresolved_reloc | |
3056 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
1d5316ab AM |
3057 | && h->def_dynamic) |
3058 | && _bfd_elf_section_offset (output_bfd, info, input_section, | |
3059 | rel->r_offset) != (bfd_vma) -1) | |
bf1747de BW |
3060 | { |
3061 | (*_bfd_error_handler) | |
3062 | (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), | |
3063 | input_bfd, | |
3064 | input_section, | |
3065 | (long) rel->r_offset, | |
3066 | howto->name, | |
28dbbc02 | 3067 | name); |
bf1747de BW |
3068 | return FALSE; |
3069 | } | |
e0001a05 | 3070 | |
28dbbc02 BW |
3071 | /* TLS optimizations may have changed r_type; update "howto". */ |
3072 | howto = &elf_howto_table[r_type]; | |
3073 | ||
e0001a05 NC |
3074 | /* There's no point in calling bfd_perform_relocation here. |
3075 | Just go directly to our "special function". */ | |
3076 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
3077 | relocation + rel->r_addend, | |
3078 | contents, rel->r_offset, is_weak_undef, | |
3079 | &error_message); | |
43cd72b9 | 3080 | |
9b8c98a4 | 3081 | if (r != bfd_reloc_ok && !warned) |
e0001a05 | 3082 | { |
43cd72b9 | 3083 | BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); |
7fa3d080 | 3084 | BFD_ASSERT (error_message != NULL); |
e0001a05 | 3085 | |
28dbbc02 BW |
3086 | if (rel->r_addend == 0) |
3087 | error_message = vsprint_msg (error_message, ": %s", | |
3088 | strlen (name) + 2, name); | |
e0001a05 | 3089 | else |
28dbbc02 BW |
3090 | error_message = vsprint_msg (error_message, ": (%s+0x%x)", |
3091 | strlen (name) + 22, | |
3092 | name, (int) rel->r_addend); | |
43cd72b9 | 3093 | |
e0001a05 NC |
3094 | if (!((*info->callbacks->reloc_dangerous) |
3095 | (info, error_message, input_bfd, input_section, | |
3096 | rel->r_offset))) | |
3097 | return FALSE; | |
3098 | } | |
3099 | } | |
3100 | ||
88d65ad6 BW |
3101 | if (lit_table) |
3102 | free (lit_table); | |
3103 | ||
3ba3bc8c BW |
3104 | input_section->reloc_done = TRUE; |
3105 | ||
e0001a05 NC |
3106 | return TRUE; |
3107 | } | |
3108 | ||
3109 | ||
3110 | /* Finish up dynamic symbol handling. There's not much to do here since | |
3111 | the PLT and GOT entries are all set up by relocate_section. */ | |
3112 | ||
3113 | static bfd_boolean | |
7fa3d080 BW |
3114 | elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, |
3115 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
3116 | struct elf_link_hash_entry *h, | |
3117 | Elf_Internal_Sym *sym) | |
e0001a05 | 3118 | { |
bf1747de | 3119 | if (h->needs_plt && !h->def_regular) |
e0001a05 NC |
3120 | { |
3121 | /* Mark the symbol as undefined, rather than as defined in | |
3122 | the .plt section. Leave the value alone. */ | |
3123 | sym->st_shndx = SHN_UNDEF; | |
bf1747de BW |
3124 | /* If the symbol is weak, we do need to clear the value. |
3125 | Otherwise, the PLT entry would provide a definition for | |
3126 | the symbol even if the symbol wasn't defined anywhere, | |
3127 | and so the symbol would never be NULL. */ | |
3128 | if (!h->ref_regular_nonweak) | |
3129 | sym->st_value = 0; | |
e0001a05 NC |
3130 | } |
3131 | ||
3132 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
9637f6ef | 3133 | if (h == elf_hash_table (info)->hdynamic |
22edb2f1 | 3134 | || h == elf_hash_table (info)->hgot) |
e0001a05 NC |
3135 | sym->st_shndx = SHN_ABS; |
3136 | ||
3137 | return TRUE; | |
3138 | } | |
3139 | ||
3140 | ||
3141 | /* Combine adjacent literal table entries in the output. Adjacent | |
3142 | entries within each input section may have been removed during | |
3143 | relaxation, but we repeat the process here, even though it's too late | |
3144 | to shrink the output section, because it's important to minimize the | |
3145 | number of literal table entries to reduce the start-up work for the | |
3146 | runtime linker. Returns the number of remaining table entries or -1 | |
3147 | on error. */ | |
3148 | ||
3149 | static int | |
7fa3d080 BW |
3150 | elf_xtensa_combine_prop_entries (bfd *output_bfd, |
3151 | asection *sxtlit, | |
3152 | asection *sgotloc) | |
e0001a05 | 3153 | { |
e0001a05 NC |
3154 | bfd_byte *contents; |
3155 | property_table_entry *table; | |
e901de89 | 3156 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
3157 | bfd_vma offset; |
3158 | int n, m, num; | |
3159 | ||
eea6121a | 3160 | section_size = sxtlit->size; |
e0001a05 NC |
3161 | BFD_ASSERT (section_size % 8 == 0); |
3162 | num = section_size / 8; | |
3163 | ||
eea6121a | 3164 | sgotloc_size = sgotloc->size; |
e901de89 | 3165 | if (sgotloc_size != section_size) |
b536dc1e BW |
3166 | { |
3167 | (*_bfd_error_handler) | |
43cd72b9 | 3168 | (_("internal inconsistency in size of .got.loc section")); |
b536dc1e BW |
3169 | return -1; |
3170 | } | |
e901de89 | 3171 | |
eea6121a AM |
3172 | table = bfd_malloc (num * sizeof (property_table_entry)); |
3173 | if (table == 0) | |
e0001a05 NC |
3174 | return -1; |
3175 | ||
3176 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
3177 | propagates to the output section, where it doesn't really apply and | |
eea6121a | 3178 | where it breaks the following call to bfd_malloc_and_get_section. */ |
e901de89 | 3179 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 3180 | |
eea6121a AM |
3181 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
3182 | { | |
3183 | if (contents != 0) | |
3184 | free (contents); | |
3185 | free (table); | |
3186 | return -1; | |
3187 | } | |
e0001a05 NC |
3188 | |
3189 | /* There should never be any relocations left at this point, so this | |
3190 | is quite a bit easier than what is done during relaxation. */ | |
3191 | ||
3192 | /* Copy the raw contents into a property table array and sort it. */ | |
3193 | offset = 0; | |
3194 | for (n = 0; n < num; n++) | |
3195 | { | |
3196 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
3197 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
3198 | offset += 8; | |
3199 | } | |
3200 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
3201 | ||
3202 | for (n = 0; n < num; n++) | |
3203 | { | |
91d6fa6a | 3204 | bfd_boolean remove_entry = FALSE; |
e0001a05 NC |
3205 | |
3206 | if (table[n].size == 0) | |
91d6fa6a NC |
3207 | remove_entry = TRUE; |
3208 | else if (n > 0 | |
3209 | && (table[n-1].address + table[n-1].size == table[n].address)) | |
e0001a05 NC |
3210 | { |
3211 | table[n-1].size += table[n].size; | |
91d6fa6a | 3212 | remove_entry = TRUE; |
e0001a05 NC |
3213 | } |
3214 | ||
91d6fa6a | 3215 | if (remove_entry) |
e0001a05 NC |
3216 | { |
3217 | for (m = n; m < num - 1; m++) | |
3218 | { | |
3219 | table[m].address = table[m+1].address; | |
3220 | table[m].size = table[m+1].size; | |
3221 | } | |
3222 | ||
3223 | n--; | |
3224 | num--; | |
3225 | } | |
3226 | } | |
3227 | ||
3228 | /* Copy the data back to the raw contents. */ | |
3229 | offset = 0; | |
3230 | for (n = 0; n < num; n++) | |
3231 | { | |
3232 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
3233 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
3234 | offset += 8; | |
3235 | } | |
3236 | ||
3237 | /* Clear the removed bytes. */ | |
3238 | if ((bfd_size_type) (num * 8) < section_size) | |
b54d4b07 | 3239 | memset (&contents[num * 8], 0, section_size - num * 8); |
e0001a05 | 3240 | |
e901de89 BW |
3241 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
3242 | section_size)) | |
e0001a05 NC |
3243 | return -1; |
3244 | ||
e901de89 BW |
3245 | /* Copy the contents to ".got.loc". */ |
3246 | memcpy (sgotloc->contents, contents, section_size); | |
3247 | ||
e0001a05 | 3248 | free (contents); |
b614a702 | 3249 | free (table); |
e0001a05 NC |
3250 | return num; |
3251 | } | |
3252 | ||
3253 | ||
3254 | /* Finish up the dynamic sections. */ | |
3255 | ||
3256 | static bfd_boolean | |
7fa3d080 BW |
3257 | elf_xtensa_finish_dynamic_sections (bfd *output_bfd, |
3258 | struct bfd_link_info *info) | |
e0001a05 | 3259 | { |
f0e6fdb2 | 3260 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 | 3261 | bfd *dynobj; |
e901de89 | 3262 | asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc; |
e0001a05 | 3263 | Elf32_External_Dyn *dyncon, *dynconend; |
d9ab3f29 | 3264 | int num_xtlit_entries = 0; |
e0001a05 NC |
3265 | |
3266 | if (! elf_hash_table (info)->dynamic_sections_created) | |
3267 | return TRUE; | |
3268 | ||
f0e6fdb2 | 3269 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
3270 | if (htab == NULL) |
3271 | return FALSE; | |
3272 | ||
e0001a05 | 3273 | dynobj = elf_hash_table (info)->dynobj; |
3d4d4302 | 3274 | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
e0001a05 NC |
3275 | BFD_ASSERT (sdyn != NULL); |
3276 | ||
3277 | /* Set the first entry in the global offset table to the address of | |
3278 | the dynamic section. */ | |
f0e6fdb2 | 3279 | sgot = htab->sgot; |
e0001a05 NC |
3280 | if (sgot) |
3281 | { | |
eea6121a | 3282 | BFD_ASSERT (sgot->size == 4); |
e0001a05 | 3283 | if (sdyn == NULL) |
7fa3d080 | 3284 | bfd_put_32 (output_bfd, 0, sgot->contents); |
e0001a05 NC |
3285 | else |
3286 | bfd_put_32 (output_bfd, | |
3287 | sdyn->output_section->vma + sdyn->output_offset, | |
3288 | sgot->contents); | |
3289 | } | |
3290 | ||
f0e6fdb2 | 3291 | srelplt = htab->srelplt; |
7fa3d080 | 3292 | if (srelplt && srelplt->size != 0) |
e0001a05 NC |
3293 | { |
3294 | asection *sgotplt, *srelgot, *spltlittbl; | |
3295 | int chunk, plt_chunks, plt_entries; | |
3296 | Elf_Internal_Rela irela; | |
3297 | bfd_byte *loc; | |
3298 | unsigned rtld_reloc; | |
3299 | ||
f0e6fdb2 BW |
3300 | srelgot = htab->srelgot; |
3301 | spltlittbl = htab->spltlittbl; | |
3302 | BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); | |
e0001a05 NC |
3303 | |
3304 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
3305 | of them follow immediately after.... */ | |
3306 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
3307 | { | |
3308 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3309 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3310 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
3311 | break; | |
3312 | } | |
3313 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
3314 | ||
eea6121a | 3315 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
3316 | plt_chunks = |
3317 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
3318 | ||
3319 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
3320 | { | |
3321 | int chunk_entries = 0; | |
3322 | ||
f0e6fdb2 | 3323 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); |
e0001a05 NC |
3324 | BFD_ASSERT (sgotplt != NULL); |
3325 | ||
3326 | /* Emit special RTLD relocations for the first two entries in | |
3327 | each chunk of the .got.plt section. */ | |
3328 | ||
3329 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
3330 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3331 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3332 | irela.r_offset = (sgotplt->output_section->vma | |
3333 | + sgotplt->output_offset); | |
3334 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
3335 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3336 | rtld_reloc += 1; | |
3337 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3338 | ||
3339 | /* Next literal immediately follows the first. */ | |
3340 | loc += sizeof (Elf32_External_Rela); | |
3341 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
3342 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
3343 | irela.r_offset = (sgotplt->output_section->vma | |
3344 | + sgotplt->output_offset + 4); | |
3345 | /* Tell rtld to set value to object's link map. */ | |
3346 | irela.r_addend = 2; | |
3347 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
3348 | rtld_reloc += 1; | |
3349 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
3350 | ||
3351 | /* Fill in the literal table. */ | |
3352 | if (chunk < plt_chunks - 1) | |
3353 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
3354 | else | |
3355 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
3356 | ||
eea6121a | 3357 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
e0001a05 NC |
3358 | bfd_put_32 (output_bfd, |
3359 | sgotplt->output_section->vma + sgotplt->output_offset, | |
3360 | spltlittbl->contents + (chunk * 8) + 0); | |
3361 | bfd_put_32 (output_bfd, | |
3362 | 8 + (chunk_entries * 4), | |
3363 | spltlittbl->contents + (chunk * 8) + 4); | |
3364 | } | |
3365 | ||
3366 | /* All the dynamic relocations have been emitted at this point. | |
3367 | Make sure the relocation sections are the correct size. */ | |
eea6121a AM |
3368 | if (srelgot->size != (sizeof (Elf32_External_Rela) |
3369 | * srelgot->reloc_count) | |
3370 | || srelplt->size != (sizeof (Elf32_External_Rela) | |
3371 | * srelplt->reloc_count)) | |
e0001a05 NC |
3372 | abort (); |
3373 | ||
3374 | /* The .xt.lit.plt section has just been modified. This must | |
3375 | happen before the code below which combines adjacent literal | |
3376 | table entries, and the .xt.lit.plt contents have to be forced to | |
3377 | the output here. */ | |
3378 | if (! bfd_set_section_contents (output_bfd, | |
3379 | spltlittbl->output_section, | |
3380 | spltlittbl->contents, | |
3381 | spltlittbl->output_offset, | |
eea6121a | 3382 | spltlittbl->size)) |
e0001a05 NC |
3383 | return FALSE; |
3384 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
3385 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
3386 | } | |
3387 | ||
3388 | /* Combine adjacent literal table entries. */ | |
1049f94e | 3389 | BFD_ASSERT (! info->relocatable); |
e901de89 | 3390 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
f0e6fdb2 | 3391 | sgotloc = htab->sgotloc; |
d9ab3f29 BW |
3392 | BFD_ASSERT (sgotloc); |
3393 | if (sxtlit) | |
3394 | { | |
3395 | num_xtlit_entries = | |
3396 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
3397 | if (num_xtlit_entries < 0) | |
3398 | return FALSE; | |
3399 | } | |
e0001a05 NC |
3400 | |
3401 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
eea6121a | 3402 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
e0001a05 NC |
3403 | for (; dyncon < dynconend; dyncon++) |
3404 | { | |
3405 | Elf_Internal_Dyn dyn; | |
e0001a05 NC |
3406 | |
3407 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
3408 | ||
3409 | switch (dyn.d_tag) | |
3410 | { | |
3411 | default: | |
3412 | break; | |
3413 | ||
3414 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
3415 | dyn.d_un.d_val = num_xtlit_entries; |
3416 | break; | |
3417 | ||
3418 | case DT_XTENSA_GOT_LOC_OFF: | |
e29297b7 | 3419 | dyn.d_un.d_ptr = htab->sgotloc->output_section->vma; |
f0e6fdb2 BW |
3420 | break; |
3421 | ||
e0001a05 | 3422 | case DT_PLTGOT: |
e29297b7 | 3423 | dyn.d_un.d_ptr = htab->sgot->output_section->vma; |
f0e6fdb2 BW |
3424 | break; |
3425 | ||
e0001a05 | 3426 | case DT_JMPREL: |
e29297b7 | 3427 | dyn.d_un.d_ptr = htab->srelplt->output_section->vma; |
e0001a05 NC |
3428 | break; |
3429 | ||
3430 | case DT_PLTRELSZ: | |
e29297b7 | 3431 | dyn.d_un.d_val = htab->srelplt->output_section->size; |
e0001a05 NC |
3432 | break; |
3433 | ||
3434 | case DT_RELASZ: | |
3435 | /* Adjust RELASZ to not include JMPREL. This matches what | |
3436 | glibc expects and what is done for several other ELF | |
3437 | targets (e.g., i386, alpha), but the "correct" behavior | |
3438 | seems to be unresolved. Since the linker script arranges | |
3439 | for .rela.plt to follow all other relocation sections, we | |
3440 | don't have to worry about changing the DT_RELA entry. */ | |
f0e6fdb2 | 3441 | if (htab->srelplt) |
e29297b7 | 3442 | dyn.d_un.d_val -= htab->srelplt->output_section->size; |
e0001a05 NC |
3443 | break; |
3444 | } | |
3445 | ||
3446 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
3447 | } | |
3448 | ||
3449 | return TRUE; | |
3450 | } | |
3451 | ||
3452 | \f | |
3453 | /* Functions for dealing with the e_flags field. */ | |
3454 | ||
3455 | /* Merge backend specific data from an object file to the output | |
3456 | object file when linking. */ | |
3457 | ||
3458 | static bfd_boolean | |
7fa3d080 | 3459 | elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
e0001a05 NC |
3460 | { |
3461 | unsigned out_mach, in_mach; | |
3462 | flagword out_flag, in_flag; | |
3463 | ||
cc643b88 | 3464 | /* Check if we have the same endianness. */ |
e0001a05 NC |
3465 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) |
3466 | return FALSE; | |
3467 | ||
3468 | /* Don't even pretend to support mixed-format linking. */ | |
3469 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
3470 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
3471 | return FALSE; | |
3472 | ||
3473 | out_flag = elf_elfheader (obfd)->e_flags; | |
3474 | in_flag = elf_elfheader (ibfd)->e_flags; | |
3475 | ||
3476 | out_mach = out_flag & EF_XTENSA_MACH; | |
3477 | in_mach = in_flag & EF_XTENSA_MACH; | |
43cd72b9 | 3478 | if (out_mach != in_mach) |
e0001a05 NC |
3479 | { |
3480 | (*_bfd_error_handler) | |
43cd72b9 | 3481 | (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"), |
d003868e | 3482 | ibfd, out_mach, in_mach); |
e0001a05 NC |
3483 | bfd_set_error (bfd_error_wrong_format); |
3484 | return FALSE; | |
3485 | } | |
3486 | ||
3487 | if (! elf_flags_init (obfd)) | |
3488 | { | |
3489 | elf_flags_init (obfd) = TRUE; | |
3490 | elf_elfheader (obfd)->e_flags = in_flag; | |
43cd72b9 | 3491 | |
e0001a05 NC |
3492 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
3493 | && bfd_get_arch_info (obfd)->the_default) | |
3494 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
3495 | bfd_get_mach (ibfd)); | |
43cd72b9 | 3496 | |
e0001a05 NC |
3497 | return TRUE; |
3498 | } | |
3499 | ||
68ffbac6 | 3500 | if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) |
43cd72b9 | 3501 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); |
e0001a05 | 3502 | |
68ffbac6 | 3503 | if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) |
43cd72b9 | 3504 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); |
e0001a05 NC |
3505 | |
3506 | return TRUE; | |
3507 | } | |
3508 | ||
3509 | ||
3510 | static bfd_boolean | |
7fa3d080 | 3511 | elf_xtensa_set_private_flags (bfd *abfd, flagword flags) |
e0001a05 NC |
3512 | { |
3513 | BFD_ASSERT (!elf_flags_init (abfd) | |
3514 | || elf_elfheader (abfd)->e_flags == flags); | |
3515 | ||
3516 | elf_elfheader (abfd)->e_flags |= flags; | |
3517 | elf_flags_init (abfd) = TRUE; | |
3518 | ||
3519 | return TRUE; | |
3520 | } | |
3521 | ||
3522 | ||
e0001a05 | 3523 | static bfd_boolean |
7fa3d080 | 3524 | elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) |
e0001a05 NC |
3525 | { |
3526 | FILE *f = (FILE *) farg; | |
3527 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
3528 | ||
3529 | fprintf (f, "\nXtensa header:\n"); | |
43cd72b9 | 3530 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) |
e0001a05 NC |
3531 | fprintf (f, "\nMachine = Base\n"); |
3532 | else | |
3533 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
3534 | ||
3535 | fprintf (f, "Insn tables = %s\n", | |
3536 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
3537 | ||
3538 | fprintf (f, "Literal tables = %s\n", | |
3539 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
3540 | ||
3541 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
3542 | } | |
3543 | ||
3544 | ||
3545 | /* Set the right machine number for an Xtensa ELF file. */ | |
3546 | ||
3547 | static bfd_boolean | |
7fa3d080 | 3548 | elf_xtensa_object_p (bfd *abfd) |
e0001a05 NC |
3549 | { |
3550 | int mach; | |
3551 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
3552 | ||
3553 | switch (arch) | |
3554 | { | |
3555 | case E_XTENSA_MACH: | |
3556 | mach = bfd_mach_xtensa; | |
3557 | break; | |
3558 | default: | |
3559 | return FALSE; | |
3560 | } | |
3561 | ||
3562 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
3563 | return TRUE; | |
3564 | } | |
3565 | ||
3566 | ||
3567 | /* The final processing done just before writing out an Xtensa ELF object | |
3568 | file. This gets the Xtensa architecture right based on the machine | |
3569 | number. */ | |
3570 | ||
3571 | static void | |
7fa3d080 BW |
3572 | elf_xtensa_final_write_processing (bfd *abfd, |
3573 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
e0001a05 NC |
3574 | { |
3575 | int mach; | |
3576 | unsigned long val; | |
3577 | ||
3578 | switch (mach = bfd_get_mach (abfd)) | |
3579 | { | |
3580 | case bfd_mach_xtensa: | |
3581 | val = E_XTENSA_MACH; | |
3582 | break; | |
3583 | default: | |
3584 | return; | |
3585 | } | |
3586 | ||
3587 | elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH); | |
3588 | elf_elfheader (abfd)->e_flags |= val; | |
3589 | } | |
3590 | ||
3591 | ||
3592 | static enum elf_reloc_type_class | |
7e612e98 AM |
3593 | elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
3594 | const asection *rel_sec ATTRIBUTE_UNUSED, | |
3595 | const Elf_Internal_Rela *rela) | |
e0001a05 NC |
3596 | { |
3597 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
3598 | { | |
3599 | case R_XTENSA_RELATIVE: | |
3600 | return reloc_class_relative; | |
3601 | case R_XTENSA_JMP_SLOT: | |
3602 | return reloc_class_plt; | |
3603 | default: | |
3604 | return reloc_class_normal; | |
3605 | } | |
3606 | } | |
3607 | ||
3608 | \f | |
3609 | static bfd_boolean | |
7fa3d080 BW |
3610 | elf_xtensa_discard_info_for_section (bfd *abfd, |
3611 | struct elf_reloc_cookie *cookie, | |
3612 | struct bfd_link_info *info, | |
3613 | asection *sec) | |
e0001a05 NC |
3614 | { |
3615 | bfd_byte *contents; | |
e0001a05 | 3616 | bfd_vma offset, actual_offset; |
1d25768e BW |
3617 | bfd_size_type removed_bytes = 0; |
3618 | bfd_size_type entry_size; | |
e0001a05 NC |
3619 | |
3620 | if (sec->output_section | |
3621 | && bfd_is_abs_section (sec->output_section)) | |
3622 | return FALSE; | |
3623 | ||
1d25768e BW |
3624 | if (xtensa_is_proptable_section (sec)) |
3625 | entry_size = 12; | |
3626 | else | |
3627 | entry_size = 8; | |
3628 | ||
a3ef2d63 | 3629 | if (sec->size == 0 || sec->size % entry_size != 0) |
1d25768e BW |
3630 | return FALSE; |
3631 | ||
e0001a05 NC |
3632 | contents = retrieve_contents (abfd, sec, info->keep_memory); |
3633 | if (!contents) | |
3634 | return FALSE; | |
3635 | ||
3636 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
3637 | if (!cookie->rels) | |
3638 | { | |
3639 | release_contents (sec, contents); | |
3640 | return FALSE; | |
3641 | } | |
3642 | ||
1d25768e BW |
3643 | /* Sort the relocations. They should already be in order when |
3644 | relaxation is enabled, but it might not be. */ | |
3645 | qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
3646 | internal_reloc_compare); | |
3647 | ||
e0001a05 NC |
3648 | cookie->rel = cookie->rels; |
3649 | cookie->relend = cookie->rels + sec->reloc_count; | |
3650 | ||
a3ef2d63 | 3651 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 NC |
3652 | { |
3653 | actual_offset = offset - removed_bytes; | |
3654 | ||
3655 | /* The ...symbol_deleted_p function will skip over relocs but it | |
3656 | won't adjust their offsets, so do that here. */ | |
3657 | while (cookie->rel < cookie->relend | |
3658 | && cookie->rel->r_offset < offset) | |
3659 | { | |
3660 | cookie->rel->r_offset -= removed_bytes; | |
3661 | cookie->rel++; | |
3662 | } | |
3663 | ||
3664 | while (cookie->rel < cookie->relend | |
3665 | && cookie->rel->r_offset == offset) | |
3666 | { | |
c152c796 | 3667 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
e0001a05 NC |
3668 | { |
3669 | /* Remove the table entry. (If the reloc type is NONE, then | |
3670 | the entry has already been merged with another and deleted | |
3671 | during relaxation.) */ | |
3672 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
3673 | { | |
3674 | /* Shift the contents up. */ | |
a3ef2d63 | 3675 | if (offset + entry_size < sec->size) |
e0001a05 | 3676 | memmove (&contents[actual_offset], |
1d25768e | 3677 | &contents[actual_offset + entry_size], |
a3ef2d63 | 3678 | sec->size - offset - entry_size); |
1d25768e | 3679 | removed_bytes += entry_size; |
e0001a05 NC |
3680 | } |
3681 | ||
3682 | /* Remove this relocation. */ | |
3683 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
3684 | } | |
3685 | ||
3686 | /* Adjust the relocation offset for previous removals. This | |
3687 | should not be done before calling ...symbol_deleted_p | |
3688 | because it might mess up the offset comparisons there. | |
3689 | Make sure the offset doesn't underflow in the case where | |
3690 | the first entry is removed. */ | |
3691 | if (cookie->rel->r_offset >= removed_bytes) | |
3692 | cookie->rel->r_offset -= removed_bytes; | |
3693 | else | |
3694 | cookie->rel->r_offset = 0; | |
3695 | ||
3696 | cookie->rel++; | |
3697 | } | |
3698 | } | |
3699 | ||
3700 | if (removed_bytes != 0) | |
3701 | { | |
3702 | /* Adjust any remaining relocs (shouldn't be any). */ | |
3703 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
3704 | { | |
3705 | if (cookie->rel->r_offset >= removed_bytes) | |
3706 | cookie->rel->r_offset -= removed_bytes; | |
3707 | else | |
3708 | cookie->rel->r_offset = 0; | |
3709 | } | |
3710 | ||
3711 | /* Clear the removed bytes. */ | |
a3ef2d63 | 3712 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 NC |
3713 | |
3714 | pin_contents (sec, contents); | |
3715 | pin_internal_relocs (sec, cookie->rels); | |
3716 | ||
eea6121a | 3717 | /* Shrink size. */ |
a3ef2d63 BW |
3718 | if (sec->rawsize == 0) |
3719 | sec->rawsize = sec->size; | |
3720 | sec->size -= removed_bytes; | |
b536dc1e BW |
3721 | |
3722 | if (xtensa_is_littable_section (sec)) | |
3723 | { | |
f0e6fdb2 BW |
3724 | asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; |
3725 | if (sgotloc) | |
3726 | sgotloc->size -= removed_bytes; | |
b536dc1e | 3727 | } |
e0001a05 NC |
3728 | } |
3729 | else | |
3730 | { | |
3731 | release_contents (sec, contents); | |
3732 | release_internal_relocs (sec, cookie->rels); | |
3733 | } | |
3734 | ||
3735 | return (removed_bytes != 0); | |
3736 | } | |
3737 | ||
3738 | ||
3739 | static bfd_boolean | |
7fa3d080 BW |
3740 | elf_xtensa_discard_info (bfd *abfd, |
3741 | struct elf_reloc_cookie *cookie, | |
3742 | struct bfd_link_info *info) | |
e0001a05 NC |
3743 | { |
3744 | asection *sec; | |
3745 | bfd_boolean changed = FALSE; | |
3746 | ||
3747 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
3748 | { | |
3749 | if (xtensa_is_property_section (sec)) | |
3750 | { | |
3751 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
3752 | changed = TRUE; | |
3753 | } | |
3754 | } | |
3755 | ||
3756 | return changed; | |
3757 | } | |
3758 | ||
3759 | ||
3760 | static bfd_boolean | |
7fa3d080 | 3761 | elf_xtensa_ignore_discarded_relocs (asection *sec) |
e0001a05 NC |
3762 | { |
3763 | return xtensa_is_property_section (sec); | |
3764 | } | |
3765 | ||
a77dc2cc BW |
3766 | |
3767 | static unsigned int | |
3768 | elf_xtensa_action_discarded (asection *sec) | |
3769 | { | |
3770 | if (strcmp (".xt_except_table", sec->name) == 0) | |
3771 | return 0; | |
3772 | ||
3773 | if (strcmp (".xt_except_desc", sec->name) == 0) | |
3774 | return 0; | |
3775 | ||
3776 | return _bfd_elf_default_action_discarded (sec); | |
3777 | } | |
3778 | ||
e0001a05 NC |
3779 | \f |
3780 | /* Support for core dump NOTE sections. */ | |
3781 | ||
3782 | static bfd_boolean | |
7fa3d080 | 3783 | elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3784 | { |
3785 | int offset; | |
eea6121a | 3786 | unsigned int size; |
e0001a05 NC |
3787 | |
3788 | /* The size for Xtensa is variable, so don't try to recognize the format | |
3789 | based on the size. Just assume this is GNU/Linux. */ | |
3790 | ||
3791 | /* pr_cursig */ | |
228e534f | 3792 | elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); |
e0001a05 NC |
3793 | |
3794 | /* pr_pid */ | |
228e534f | 3795 | elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
e0001a05 NC |
3796 | |
3797 | /* pr_reg */ | |
3798 | offset = 72; | |
eea6121a | 3799 | size = note->descsz - offset - 4; |
e0001a05 NC |
3800 | |
3801 | /* Make a ".reg/999" section. */ | |
3802 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
eea6121a | 3803 | size, note->descpos + offset); |
e0001a05 NC |
3804 | } |
3805 | ||
3806 | ||
3807 | static bfd_boolean | |
7fa3d080 | 3808 | elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3809 | { |
3810 | switch (note->descsz) | |
3811 | { | |
3812 | default: | |
3813 | return FALSE; | |
3814 | ||
3815 | case 128: /* GNU/Linux elf_prpsinfo */ | |
228e534f | 3816 | elf_tdata (abfd)->core->program |
e0001a05 | 3817 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); |
228e534f | 3818 | elf_tdata (abfd)->core->command |
e0001a05 NC |
3819 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); |
3820 | } | |
3821 | ||
3822 | /* Note that for some reason, a spurious space is tacked | |
3823 | onto the end of the args in some (at least one anyway) | |
3824 | implementations, so strip it off if it exists. */ | |
3825 | ||
3826 | { | |
228e534f | 3827 | char *command = elf_tdata (abfd)->core->command; |
e0001a05 NC |
3828 | int n = strlen (command); |
3829 | ||
3830 | if (0 < n && command[n - 1] == ' ') | |
3831 | command[n - 1] = '\0'; | |
3832 | } | |
3833 | ||
3834 | return TRUE; | |
3835 | } | |
3836 | ||
3837 | \f | |
3838 | /* Generic Xtensa configurability stuff. */ | |
3839 | ||
3840 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
3841 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
3842 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
3843 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
3844 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
3845 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
3846 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
3847 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
3848 | ||
3849 | static void | |
7fa3d080 | 3850 | init_call_opcodes (void) |
e0001a05 NC |
3851 | { |
3852 | if (callx0_op == XTENSA_UNDEFINED) | |
3853 | { | |
3854 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
3855 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
3856 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
3857 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
3858 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
3859 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
3860 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
3861 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
3862 | } | |
3863 | } | |
3864 | ||
3865 | ||
3866 | static bfd_boolean | |
7fa3d080 | 3867 | is_indirect_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3868 | { |
3869 | init_call_opcodes (); | |
3870 | return (opcode == callx0_op | |
3871 | || opcode == callx4_op | |
3872 | || opcode == callx8_op | |
3873 | || opcode == callx12_op); | |
3874 | } | |
3875 | ||
3876 | ||
3877 | static bfd_boolean | |
7fa3d080 | 3878 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3879 | { |
3880 | init_call_opcodes (); | |
3881 | return (opcode == call0_op | |
3882 | || opcode == call4_op | |
3883 | || opcode == call8_op | |
3884 | || opcode == call12_op); | |
3885 | } | |
3886 | ||
3887 | ||
3888 | static bfd_boolean | |
7fa3d080 | 3889 | is_windowed_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3890 | { |
3891 | init_call_opcodes (); | |
3892 | return (opcode == call4_op | |
3893 | || opcode == call8_op | |
3894 | || opcode == call12_op | |
3895 | || opcode == callx4_op | |
3896 | || opcode == callx8_op | |
3897 | || opcode == callx12_op); | |
3898 | } | |
3899 | ||
3900 | ||
28dbbc02 BW |
3901 | static bfd_boolean |
3902 | get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst) | |
3903 | { | |
3904 | unsigned dst = (unsigned) -1; | |
3905 | ||
3906 | init_call_opcodes (); | |
3907 | if (opcode == callx0_op) | |
3908 | dst = 0; | |
3909 | else if (opcode == callx4_op) | |
3910 | dst = 4; | |
3911 | else if (opcode == callx8_op) | |
3912 | dst = 8; | |
3913 | else if (opcode == callx12_op) | |
3914 | dst = 12; | |
3915 | ||
3916 | if (dst == (unsigned) -1) | |
3917 | return FALSE; | |
3918 | ||
3919 | *pdst = dst; | |
3920 | return TRUE; | |
3921 | } | |
3922 | ||
3923 | ||
43cd72b9 BW |
3924 | static xtensa_opcode |
3925 | get_const16_opcode (void) | |
3926 | { | |
3927 | static bfd_boolean done_lookup = FALSE; | |
3928 | static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; | |
3929 | if (!done_lookup) | |
3930 | { | |
3931 | const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); | |
3932 | done_lookup = TRUE; | |
3933 | } | |
3934 | return const16_opcode; | |
3935 | } | |
3936 | ||
3937 | ||
e0001a05 NC |
3938 | static xtensa_opcode |
3939 | get_l32r_opcode (void) | |
3940 | { | |
3941 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
43cd72b9 BW |
3942 | static bfd_boolean done_lookup = FALSE; |
3943 | ||
3944 | if (!done_lookup) | |
e0001a05 NC |
3945 | { |
3946 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
43cd72b9 | 3947 | done_lookup = TRUE; |
e0001a05 NC |
3948 | } |
3949 | return l32r_opcode; | |
3950 | } | |
3951 | ||
3952 | ||
3953 | static bfd_vma | |
7fa3d080 | 3954 | l32r_offset (bfd_vma addr, bfd_vma pc) |
e0001a05 NC |
3955 | { |
3956 | bfd_vma offset; | |
3957 | ||
3958 | offset = addr - ((pc+3) & -4); | |
3959 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
3960 | offset = (signed int) offset >> 2; | |
3961 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
3962 | return offset; | |
3963 | } | |
3964 | ||
3965 | ||
e0001a05 | 3966 | static int |
7fa3d080 | 3967 | get_relocation_opnd (xtensa_opcode opcode, int r_type) |
e0001a05 | 3968 | { |
43cd72b9 BW |
3969 | xtensa_isa isa = xtensa_default_isa; |
3970 | int last_immed, last_opnd, opi; | |
3971 | ||
3972 | if (opcode == XTENSA_UNDEFINED) | |
3973 | return XTENSA_UNDEFINED; | |
3974 | ||
3975 | /* Find the last visible PC-relative immediate operand for the opcode. | |
3976 | If there are no PC-relative immediates, then choose the last visible | |
3977 | immediate; otherwise, fail and return XTENSA_UNDEFINED. */ | |
3978 | last_immed = XTENSA_UNDEFINED; | |
3979 | last_opnd = xtensa_opcode_num_operands (isa, opcode); | |
3980 | for (opi = last_opnd - 1; opi >= 0; opi--) | |
3981 | { | |
3982 | if (xtensa_operand_is_visible (isa, opcode, opi) == 0) | |
3983 | continue; | |
3984 | if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) | |
3985 | { | |
3986 | last_immed = opi; | |
3987 | break; | |
3988 | } | |
3989 | if (last_immed == XTENSA_UNDEFINED | |
3990 | && xtensa_operand_is_register (isa, opcode, opi) == 0) | |
3991 | last_immed = opi; | |
3992 | } | |
3993 | if (last_immed < 0) | |
3994 | return XTENSA_UNDEFINED; | |
3995 | ||
3996 | /* If the operand number was specified in an old-style relocation, | |
3997 | check for consistency with the operand computed above. */ | |
3998 | if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) | |
3999 | { | |
4000 | int reloc_opnd = r_type - R_XTENSA_OP0; | |
4001 | if (reloc_opnd != last_immed) | |
4002 | return XTENSA_UNDEFINED; | |
4003 | } | |
4004 | ||
4005 | return last_immed; | |
4006 | } | |
4007 | ||
4008 | ||
4009 | int | |
7fa3d080 | 4010 | get_relocation_slot (int r_type) |
43cd72b9 BW |
4011 | { |
4012 | switch (r_type) | |
4013 | { | |
4014 | case R_XTENSA_OP0: | |
4015 | case R_XTENSA_OP1: | |
4016 | case R_XTENSA_OP2: | |
4017 | return 0; | |
4018 | ||
4019 | default: | |
4020 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
4021 | return r_type - R_XTENSA_SLOT0_OP; | |
4022 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
4023 | return r_type - R_XTENSA_SLOT0_ALT; | |
4024 | break; | |
4025 | } | |
4026 | ||
4027 | return XTENSA_UNDEFINED; | |
e0001a05 NC |
4028 | } |
4029 | ||
4030 | ||
4031 | /* Get the opcode for a relocation. */ | |
4032 | ||
4033 | static xtensa_opcode | |
7fa3d080 BW |
4034 | get_relocation_opcode (bfd *abfd, |
4035 | asection *sec, | |
4036 | bfd_byte *contents, | |
4037 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
4038 | { |
4039 | static xtensa_insnbuf ibuff = NULL; | |
43cd72b9 | 4040 | static xtensa_insnbuf sbuff = NULL; |
e0001a05 | 4041 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4042 | xtensa_format fmt; |
4043 | int slot; | |
e0001a05 NC |
4044 | |
4045 | if (contents == NULL) | |
4046 | return XTENSA_UNDEFINED; | |
4047 | ||
43cd72b9 | 4048 | if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) |
e0001a05 NC |
4049 | return XTENSA_UNDEFINED; |
4050 | ||
4051 | if (ibuff == NULL) | |
43cd72b9 BW |
4052 | { |
4053 | ibuff = xtensa_insnbuf_alloc (isa); | |
4054 | sbuff = xtensa_insnbuf_alloc (isa); | |
4055 | } | |
4056 | ||
e0001a05 | 4057 | /* Decode the instruction. */ |
43cd72b9 BW |
4058 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], |
4059 | sec->size - irel->r_offset); | |
4060 | fmt = xtensa_format_decode (isa, ibuff); | |
4061 | slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); | |
4062 | if (slot == XTENSA_UNDEFINED) | |
4063 | return XTENSA_UNDEFINED; | |
4064 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); | |
4065 | return xtensa_opcode_decode (isa, fmt, slot, sbuff); | |
e0001a05 NC |
4066 | } |
4067 | ||
4068 | ||
4069 | bfd_boolean | |
7fa3d080 BW |
4070 | is_l32r_relocation (bfd *abfd, |
4071 | asection *sec, | |
4072 | bfd_byte *contents, | |
4073 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
4074 | { |
4075 | xtensa_opcode opcode; | |
43cd72b9 | 4076 | if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
e0001a05 | 4077 | return FALSE; |
43cd72b9 | 4078 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
e0001a05 NC |
4079 | return (opcode == get_l32r_opcode ()); |
4080 | } | |
4081 | ||
e0001a05 | 4082 | |
43cd72b9 | 4083 | static bfd_size_type |
7fa3d080 BW |
4084 | get_asm_simplify_size (bfd_byte *contents, |
4085 | bfd_size_type content_len, | |
4086 | bfd_size_type offset) | |
e0001a05 | 4087 | { |
43cd72b9 | 4088 | bfd_size_type insnlen, size = 0; |
e0001a05 | 4089 | |
43cd72b9 BW |
4090 | /* Decode the size of the next two instructions. */ |
4091 | insnlen = insn_decode_len (contents, content_len, offset); | |
4092 | if (insnlen == 0) | |
4093 | return 0; | |
e0001a05 | 4094 | |
43cd72b9 | 4095 | size += insnlen; |
68ffbac6 | 4096 | |
43cd72b9 BW |
4097 | insnlen = insn_decode_len (contents, content_len, offset + size); |
4098 | if (insnlen == 0) | |
4099 | return 0; | |
e0001a05 | 4100 | |
43cd72b9 BW |
4101 | size += insnlen; |
4102 | return size; | |
4103 | } | |
e0001a05 | 4104 | |
43cd72b9 BW |
4105 | |
4106 | bfd_boolean | |
7fa3d080 | 4107 | is_alt_relocation (int r_type) |
43cd72b9 BW |
4108 | { |
4109 | return (r_type >= R_XTENSA_SLOT0_ALT | |
4110 | && r_type <= R_XTENSA_SLOT14_ALT); | |
e0001a05 NC |
4111 | } |
4112 | ||
4113 | ||
43cd72b9 | 4114 | bfd_boolean |
7fa3d080 | 4115 | is_operand_relocation (int r_type) |
e0001a05 | 4116 | { |
43cd72b9 BW |
4117 | switch (r_type) |
4118 | { | |
4119 | case R_XTENSA_OP0: | |
4120 | case R_XTENSA_OP1: | |
4121 | case R_XTENSA_OP2: | |
4122 | return TRUE; | |
e0001a05 | 4123 | |
43cd72b9 BW |
4124 | default: |
4125 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
4126 | return TRUE; | |
4127 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
4128 | return TRUE; | |
4129 | break; | |
4130 | } | |
e0001a05 | 4131 | |
43cd72b9 | 4132 | return FALSE; |
e0001a05 NC |
4133 | } |
4134 | ||
68ffbac6 | 4135 | |
43cd72b9 | 4136 | #define MIN_INSN_LENGTH 2 |
e0001a05 | 4137 | |
43cd72b9 BW |
4138 | /* Return 0 if it fails to decode. */ |
4139 | ||
4140 | bfd_size_type | |
7fa3d080 BW |
4141 | insn_decode_len (bfd_byte *contents, |
4142 | bfd_size_type content_len, | |
4143 | bfd_size_type offset) | |
e0001a05 | 4144 | { |
43cd72b9 BW |
4145 | int insn_len; |
4146 | xtensa_isa isa = xtensa_default_isa; | |
4147 | xtensa_format fmt; | |
4148 | static xtensa_insnbuf ibuff = NULL; | |
e0001a05 | 4149 | |
43cd72b9 BW |
4150 | if (offset + MIN_INSN_LENGTH > content_len) |
4151 | return 0; | |
e0001a05 | 4152 | |
43cd72b9 BW |
4153 | if (ibuff == NULL) |
4154 | ibuff = xtensa_insnbuf_alloc (isa); | |
4155 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
4156 | content_len - offset); | |
4157 | fmt = xtensa_format_decode (isa, ibuff); | |
4158 | if (fmt == XTENSA_UNDEFINED) | |
4159 | return 0; | |
4160 | insn_len = xtensa_format_length (isa, fmt); | |
4161 | if (insn_len == XTENSA_UNDEFINED) | |
4162 | return 0; | |
4163 | return insn_len; | |
e0001a05 NC |
4164 | } |
4165 | ||
4166 | ||
43cd72b9 BW |
4167 | /* Decode the opcode for a single slot instruction. |
4168 | Return 0 if it fails to decode or the instruction is multi-slot. */ | |
e0001a05 | 4169 | |
43cd72b9 | 4170 | xtensa_opcode |
7fa3d080 BW |
4171 | insn_decode_opcode (bfd_byte *contents, |
4172 | bfd_size_type content_len, | |
4173 | bfd_size_type offset, | |
4174 | int slot) | |
e0001a05 | 4175 | { |
e0001a05 | 4176 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
4177 | xtensa_format fmt; |
4178 | static xtensa_insnbuf insnbuf = NULL; | |
4179 | static xtensa_insnbuf slotbuf = NULL; | |
4180 | ||
4181 | if (offset + MIN_INSN_LENGTH > content_len) | |
e0001a05 NC |
4182 | return XTENSA_UNDEFINED; |
4183 | ||
4184 | if (insnbuf == NULL) | |
43cd72b9 BW |
4185 | { |
4186 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4187 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4188 | } | |
4189 | ||
4190 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4191 | content_len - offset); | |
4192 | fmt = xtensa_format_decode (isa, insnbuf); | |
4193 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 4194 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
4195 | |
4196 | if (slot >= xtensa_format_num_slots (isa, fmt)) | |
e0001a05 | 4197 | return XTENSA_UNDEFINED; |
e0001a05 | 4198 | |
43cd72b9 BW |
4199 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
4200 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
4201 | } | |
e0001a05 | 4202 | |
e0001a05 | 4203 | |
43cd72b9 BW |
4204 | /* The offset is the offset in the contents. |
4205 | The address is the address of that offset. */ | |
e0001a05 | 4206 | |
43cd72b9 | 4207 | static bfd_boolean |
7fa3d080 BW |
4208 | check_branch_target_aligned (bfd_byte *contents, |
4209 | bfd_size_type content_length, | |
4210 | bfd_vma offset, | |
4211 | bfd_vma address) | |
43cd72b9 BW |
4212 | { |
4213 | bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); | |
4214 | if (insn_len == 0) | |
4215 | return FALSE; | |
4216 | return check_branch_target_aligned_address (address, insn_len); | |
4217 | } | |
e0001a05 | 4218 | |
e0001a05 | 4219 | |
43cd72b9 | 4220 | static bfd_boolean |
7fa3d080 BW |
4221 | check_loop_aligned (bfd_byte *contents, |
4222 | bfd_size_type content_length, | |
4223 | bfd_vma offset, | |
4224 | bfd_vma address) | |
e0001a05 | 4225 | { |
43cd72b9 | 4226 | bfd_size_type loop_len, insn_len; |
64b607e6 | 4227 | xtensa_opcode opcode; |
e0001a05 | 4228 | |
64b607e6 BW |
4229 | opcode = insn_decode_opcode (contents, content_length, offset, 0); |
4230 | if (opcode == XTENSA_UNDEFINED | |
4231 | || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) | |
4232 | { | |
4233 | BFD_ASSERT (FALSE); | |
4234 | return FALSE; | |
4235 | } | |
68ffbac6 | 4236 | |
43cd72b9 | 4237 | loop_len = insn_decode_len (contents, content_length, offset); |
43cd72b9 | 4238 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); |
64b607e6 BW |
4239 | if (loop_len == 0 || insn_len == 0) |
4240 | { | |
4241 | BFD_ASSERT (FALSE); | |
4242 | return FALSE; | |
4243 | } | |
e0001a05 | 4244 | |
43cd72b9 BW |
4245 | return check_branch_target_aligned_address (address + loop_len, insn_len); |
4246 | } | |
e0001a05 | 4247 | |
e0001a05 NC |
4248 | |
4249 | static bfd_boolean | |
7fa3d080 | 4250 | check_branch_target_aligned_address (bfd_vma addr, int len) |
e0001a05 | 4251 | { |
43cd72b9 BW |
4252 | if (len == 8) |
4253 | return (addr % 8 == 0); | |
4254 | return ((addr >> 2) == ((addr + len - 1) >> 2)); | |
e0001a05 NC |
4255 | } |
4256 | ||
43cd72b9 BW |
4257 | \f |
4258 | /* Instruction widening and narrowing. */ | |
e0001a05 | 4259 | |
7fa3d080 BW |
4260 | /* When FLIX is available we need to access certain instructions only |
4261 | when they are 16-bit or 24-bit instructions. This table caches | |
4262 | information about such instructions by walking through all the | |
4263 | opcodes and finding the smallest single-slot format into which each | |
4264 | can be encoded. */ | |
4265 | ||
4266 | static xtensa_format *op_single_fmt_table = NULL; | |
e0001a05 NC |
4267 | |
4268 | ||
7fa3d080 BW |
4269 | static void |
4270 | init_op_single_format_table (void) | |
e0001a05 | 4271 | { |
7fa3d080 BW |
4272 | xtensa_isa isa = xtensa_default_isa; |
4273 | xtensa_insnbuf ibuf; | |
4274 | xtensa_opcode opcode; | |
4275 | xtensa_format fmt; | |
4276 | int num_opcodes; | |
4277 | ||
4278 | if (op_single_fmt_table) | |
4279 | return; | |
4280 | ||
4281 | ibuf = xtensa_insnbuf_alloc (isa); | |
4282 | num_opcodes = xtensa_isa_num_opcodes (isa); | |
4283 | ||
4284 | op_single_fmt_table = (xtensa_format *) | |
4285 | bfd_malloc (sizeof (xtensa_format) * num_opcodes); | |
4286 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
4287 | { | |
4288 | op_single_fmt_table[opcode] = XTENSA_UNDEFINED; | |
4289 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
4290 | { | |
4291 | if (xtensa_format_num_slots (isa, fmt) == 1 | |
4292 | && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) | |
4293 | { | |
4294 | xtensa_opcode old_fmt = op_single_fmt_table[opcode]; | |
4295 | int fmt_length = xtensa_format_length (isa, fmt); | |
4296 | if (old_fmt == XTENSA_UNDEFINED | |
4297 | || fmt_length < xtensa_format_length (isa, old_fmt)) | |
4298 | op_single_fmt_table[opcode] = fmt; | |
4299 | } | |
4300 | } | |
4301 | } | |
4302 | xtensa_insnbuf_free (isa, ibuf); | |
4303 | } | |
4304 | ||
4305 | ||
4306 | static xtensa_format | |
4307 | get_single_format (xtensa_opcode opcode) | |
4308 | { | |
4309 | init_op_single_format_table (); | |
4310 | return op_single_fmt_table[opcode]; | |
4311 | } | |
e0001a05 | 4312 | |
e0001a05 | 4313 | |
43cd72b9 BW |
4314 | /* For the set of narrowable instructions we do NOT include the |
4315 | narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities | |
4316 | involved during linker relaxation that may require these to | |
4317 | re-expand in some conditions. Also, the narrowing "or" -> mov.n | |
4318 | requires special case code to ensure it only works when op1 == op2. */ | |
e0001a05 | 4319 | |
7fa3d080 BW |
4320 | struct string_pair |
4321 | { | |
4322 | const char *wide; | |
4323 | const char *narrow; | |
4324 | }; | |
4325 | ||
43cd72b9 | 4326 | struct string_pair narrowable[] = |
e0001a05 | 4327 | { |
43cd72b9 BW |
4328 | { "add", "add.n" }, |
4329 | { "addi", "addi.n" }, | |
4330 | { "addmi", "addi.n" }, | |
4331 | { "l32i", "l32i.n" }, | |
4332 | { "movi", "movi.n" }, | |
4333 | { "ret", "ret.n" }, | |
4334 | { "retw", "retw.n" }, | |
4335 | { "s32i", "s32i.n" }, | |
4336 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4337 | }; | |
e0001a05 | 4338 | |
43cd72b9 | 4339 | struct string_pair widenable[] = |
e0001a05 | 4340 | { |
43cd72b9 BW |
4341 | { "add", "add.n" }, |
4342 | { "addi", "addi.n" }, | |
4343 | { "addmi", "addi.n" }, | |
4344 | { "beqz", "beqz.n" }, | |
4345 | { "bnez", "bnez.n" }, | |
4346 | { "l32i", "l32i.n" }, | |
4347 | { "movi", "movi.n" }, | |
4348 | { "ret", "ret.n" }, | |
4349 | { "retw", "retw.n" }, | |
4350 | { "s32i", "s32i.n" }, | |
4351 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
4352 | }; | |
e0001a05 NC |
4353 | |
4354 | ||
64b607e6 BW |
4355 | /* Check if an instruction can be "narrowed", i.e., changed from a standard |
4356 | 3-byte instruction to a 2-byte "density" instruction. If it is valid, | |
4357 | return the instruction buffer holding the narrow instruction. Otherwise, | |
4358 | return 0. The set of valid narrowing are specified by a string table | |
43cd72b9 BW |
4359 | but require some special case operand checks in some cases. */ |
4360 | ||
64b607e6 BW |
4361 | static xtensa_insnbuf |
4362 | can_narrow_instruction (xtensa_insnbuf slotbuf, | |
4363 | xtensa_format fmt, | |
4364 | xtensa_opcode opcode) | |
e0001a05 | 4365 | { |
43cd72b9 | 4366 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4367 | xtensa_format o_fmt; |
4368 | unsigned opi; | |
e0001a05 | 4369 | |
43cd72b9 BW |
4370 | static xtensa_insnbuf o_insnbuf = NULL; |
4371 | static xtensa_insnbuf o_slotbuf = NULL; | |
e0001a05 | 4372 | |
64b607e6 | 4373 | if (o_insnbuf == NULL) |
43cd72b9 | 4374 | { |
43cd72b9 BW |
4375 | o_insnbuf = xtensa_insnbuf_alloc (isa); |
4376 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4377 | } | |
e0001a05 | 4378 | |
64b607e6 | 4379 | for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) |
43cd72b9 BW |
4380 | { |
4381 | bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); | |
e0001a05 | 4382 | |
43cd72b9 BW |
4383 | if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) |
4384 | { | |
4385 | uint32 value, newval; | |
4386 | int i, operand_count, o_operand_count; | |
4387 | xtensa_opcode o_opcode; | |
e0001a05 | 4388 | |
43cd72b9 BW |
4389 | /* Address does not matter in this case. We might need to |
4390 | fix it to handle branches/jumps. */ | |
4391 | bfd_vma self_address = 0; | |
e0001a05 | 4392 | |
43cd72b9 BW |
4393 | o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); |
4394 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4395 | return 0; |
43cd72b9 BW |
4396 | o_fmt = get_single_format (o_opcode); |
4397 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4398 | return 0; |
e0001a05 | 4399 | |
43cd72b9 BW |
4400 | if (xtensa_format_length (isa, fmt) != 3 |
4401 | || xtensa_format_length (isa, o_fmt) != 2) | |
64b607e6 | 4402 | return 0; |
e0001a05 | 4403 | |
43cd72b9 BW |
4404 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4405 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4406 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
e0001a05 | 4407 | |
43cd72b9 | 4408 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4409 | return 0; |
e0001a05 | 4410 | |
43cd72b9 BW |
4411 | if (!is_or) |
4412 | { | |
4413 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4414 | return 0; |
43cd72b9 BW |
4415 | } |
4416 | else | |
4417 | { | |
4418 | uint32 rawval0, rawval1, rawval2; | |
e0001a05 | 4419 | |
64b607e6 BW |
4420 | if (o_operand_count + 1 != operand_count |
4421 | || xtensa_operand_get_field (isa, opcode, 0, | |
4422 | fmt, 0, slotbuf, &rawval0) != 0 | |
4423 | || xtensa_operand_get_field (isa, opcode, 1, | |
4424 | fmt, 0, slotbuf, &rawval1) != 0 | |
4425 | || xtensa_operand_get_field (isa, opcode, 2, | |
4426 | fmt, 0, slotbuf, &rawval2) != 0 | |
4427 | || rawval1 != rawval2 | |
4428 | || rawval0 == rawval1 /* it is a nop */) | |
4429 | return 0; | |
43cd72b9 | 4430 | } |
e0001a05 | 4431 | |
43cd72b9 BW |
4432 | for (i = 0; i < o_operand_count; ++i) |
4433 | { | |
4434 | if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, | |
4435 | slotbuf, &value) | |
4436 | || xtensa_operand_decode (isa, opcode, i, &value)) | |
64b607e6 | 4437 | return 0; |
e0001a05 | 4438 | |
43cd72b9 BW |
4439 | /* PC-relative branches need adjustment, but |
4440 | the PC-rel operand will always have a relocation. */ | |
4441 | newval = value; | |
4442 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4443 | self_address) | |
4444 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4445 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4446 | o_slotbuf, newval)) | |
64b607e6 | 4447 | return 0; |
43cd72b9 | 4448 | } |
e0001a05 | 4449 | |
64b607e6 BW |
4450 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) |
4451 | return 0; | |
e0001a05 | 4452 | |
64b607e6 | 4453 | return o_insnbuf; |
43cd72b9 BW |
4454 | } |
4455 | } | |
64b607e6 | 4456 | return 0; |
43cd72b9 | 4457 | } |
e0001a05 | 4458 | |
e0001a05 | 4459 | |
64b607e6 BW |
4460 | /* Attempt to narrow an instruction. If the narrowing is valid, perform |
4461 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4462 | the return value is FALSE and the contents are not modified. */ | |
e0001a05 | 4463 | |
43cd72b9 | 4464 | static bfd_boolean |
64b607e6 BW |
4465 | narrow_instruction (bfd_byte *contents, |
4466 | bfd_size_type content_length, | |
4467 | bfd_size_type offset) | |
e0001a05 | 4468 | { |
43cd72b9 | 4469 | xtensa_opcode opcode; |
64b607e6 | 4470 | bfd_size_type insn_len; |
43cd72b9 | 4471 | xtensa_isa isa = xtensa_default_isa; |
64b607e6 BW |
4472 | xtensa_format fmt; |
4473 | xtensa_insnbuf o_insnbuf; | |
e0001a05 | 4474 | |
43cd72b9 BW |
4475 | static xtensa_insnbuf insnbuf = NULL; |
4476 | static xtensa_insnbuf slotbuf = NULL; | |
e0001a05 | 4477 | |
43cd72b9 BW |
4478 | if (insnbuf == NULL) |
4479 | { | |
4480 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4481 | slotbuf = xtensa_insnbuf_alloc (isa); | |
43cd72b9 | 4482 | } |
e0001a05 | 4483 | |
43cd72b9 | 4484 | BFD_ASSERT (offset < content_length); |
2c8c90bc | 4485 | |
43cd72b9 | 4486 | if (content_length < 2) |
e0001a05 NC |
4487 | return FALSE; |
4488 | ||
64b607e6 | 4489 | /* We will hand-code a few of these for a little while. |
43cd72b9 BW |
4490 | These have all been specified in the assembler aleady. */ |
4491 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4492 | content_length - offset); | |
4493 | fmt = xtensa_format_decode (isa, insnbuf); | |
4494 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
e0001a05 NC |
4495 | return FALSE; |
4496 | ||
43cd72b9 | 4497 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
e0001a05 NC |
4498 | return FALSE; |
4499 | ||
43cd72b9 BW |
4500 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
4501 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 4502 | return FALSE; |
43cd72b9 BW |
4503 | insn_len = xtensa_format_length (isa, fmt); |
4504 | if (insn_len > content_length) | |
4505 | return FALSE; | |
4506 | ||
64b607e6 BW |
4507 | o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); |
4508 | if (o_insnbuf) | |
4509 | { | |
4510 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4511 | content_length - offset); | |
4512 | return TRUE; | |
4513 | } | |
4514 | ||
4515 | return FALSE; | |
4516 | } | |
4517 | ||
4518 | ||
4519 | /* Check if an instruction can be "widened", i.e., changed from a 2-byte | |
4520 | "density" instruction to a standard 3-byte instruction. If it is valid, | |
4521 | return the instruction buffer holding the wide instruction. Otherwise, | |
4522 | return 0. The set of valid widenings are specified by a string table | |
4523 | but require some special case operand checks in some cases. */ | |
4524 | ||
4525 | static xtensa_insnbuf | |
4526 | can_widen_instruction (xtensa_insnbuf slotbuf, | |
4527 | xtensa_format fmt, | |
4528 | xtensa_opcode opcode) | |
4529 | { | |
4530 | xtensa_isa isa = xtensa_default_isa; | |
4531 | xtensa_format o_fmt; | |
4532 | unsigned opi; | |
4533 | ||
4534 | static xtensa_insnbuf o_insnbuf = NULL; | |
4535 | static xtensa_insnbuf o_slotbuf = NULL; | |
4536 | ||
4537 | if (o_insnbuf == NULL) | |
4538 | { | |
4539 | o_insnbuf = xtensa_insnbuf_alloc (isa); | |
4540 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
4541 | } | |
4542 | ||
4543 | for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) | |
e0001a05 | 4544 | { |
43cd72b9 BW |
4545 | bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); |
4546 | bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 | |
4547 | || strcmp ("bnez", widenable[opi].wide) == 0); | |
e0001a05 | 4548 | |
43cd72b9 BW |
4549 | if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) |
4550 | { | |
4551 | uint32 value, newval; | |
4552 | int i, operand_count, o_operand_count, check_operand_count; | |
4553 | xtensa_opcode o_opcode; | |
e0001a05 | 4554 | |
43cd72b9 BW |
4555 | /* Address does not matter in this case. We might need to fix it |
4556 | to handle branches/jumps. */ | |
4557 | bfd_vma self_address = 0; | |
e0001a05 | 4558 | |
43cd72b9 BW |
4559 | o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); |
4560 | if (o_opcode == XTENSA_UNDEFINED) | |
64b607e6 | 4561 | return 0; |
43cd72b9 BW |
4562 | o_fmt = get_single_format (o_opcode); |
4563 | if (o_fmt == XTENSA_UNDEFINED) | |
64b607e6 | 4564 | return 0; |
e0001a05 | 4565 | |
43cd72b9 BW |
4566 | if (xtensa_format_length (isa, fmt) != 2 |
4567 | || xtensa_format_length (isa, o_fmt) != 3) | |
64b607e6 | 4568 | return 0; |
e0001a05 | 4569 | |
43cd72b9 BW |
4570 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
4571 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
4572 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
4573 | check_operand_count = o_operand_count; | |
e0001a05 | 4574 | |
43cd72b9 | 4575 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
64b607e6 | 4576 | return 0; |
e0001a05 | 4577 | |
43cd72b9 BW |
4578 | if (!is_or) |
4579 | { | |
4580 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
64b607e6 | 4581 | return 0; |
43cd72b9 BW |
4582 | } |
4583 | else | |
4584 | { | |
4585 | uint32 rawval0, rawval1; | |
4586 | ||
64b607e6 BW |
4587 | if (o_operand_count != operand_count + 1 |
4588 | || xtensa_operand_get_field (isa, opcode, 0, | |
4589 | fmt, 0, slotbuf, &rawval0) != 0 | |
4590 | || xtensa_operand_get_field (isa, opcode, 1, | |
4591 | fmt, 0, slotbuf, &rawval1) != 0 | |
4592 | || rawval0 == rawval1 /* it is a nop */) | |
4593 | return 0; | |
43cd72b9 BW |
4594 | } |
4595 | if (is_branch) | |
4596 | check_operand_count--; | |
4597 | ||
64b607e6 | 4598 | for (i = 0; i < check_operand_count; i++) |
43cd72b9 BW |
4599 | { |
4600 | int new_i = i; | |
4601 | if (is_or && i == o_operand_count - 1) | |
4602 | new_i = i - 1; | |
4603 | if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, | |
4604 | slotbuf, &value) | |
4605 | || xtensa_operand_decode (isa, opcode, new_i, &value)) | |
64b607e6 | 4606 | return 0; |
43cd72b9 BW |
4607 | |
4608 | /* PC-relative branches need adjustment, but | |
4609 | the PC-rel operand will always have a relocation. */ | |
4610 | newval = value; | |
4611 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
4612 | self_address) | |
4613 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
4614 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
4615 | o_slotbuf, newval)) | |
64b607e6 | 4616 | return 0; |
43cd72b9 BW |
4617 | } |
4618 | ||
4619 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) | |
64b607e6 | 4620 | return 0; |
43cd72b9 | 4621 | |
64b607e6 | 4622 | return o_insnbuf; |
43cd72b9 BW |
4623 | } |
4624 | } | |
64b607e6 BW |
4625 | return 0; |
4626 | } | |
4627 | ||
68ffbac6 | 4628 | |
64b607e6 BW |
4629 | /* Attempt to widen an instruction. If the widening is valid, perform |
4630 | the action in-place directly into the contents and return TRUE. Otherwise, | |
4631 | the return value is FALSE and the contents are not modified. */ | |
4632 | ||
4633 | static bfd_boolean | |
4634 | widen_instruction (bfd_byte *contents, | |
4635 | bfd_size_type content_length, | |
4636 | bfd_size_type offset) | |
4637 | { | |
4638 | xtensa_opcode opcode; | |
4639 | bfd_size_type insn_len; | |
4640 | xtensa_isa isa = xtensa_default_isa; | |
4641 | xtensa_format fmt; | |
4642 | xtensa_insnbuf o_insnbuf; | |
4643 | ||
4644 | static xtensa_insnbuf insnbuf = NULL; | |
4645 | static xtensa_insnbuf slotbuf = NULL; | |
4646 | ||
4647 | if (insnbuf == NULL) | |
4648 | { | |
4649 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4650 | slotbuf = xtensa_insnbuf_alloc (isa); | |
4651 | } | |
4652 | ||
4653 | BFD_ASSERT (offset < content_length); | |
4654 | ||
4655 | if (content_length < 2) | |
4656 | return FALSE; | |
4657 | ||
4658 | /* We will hand-code a few of these for a little while. | |
4659 | These have all been specified in the assembler aleady. */ | |
4660 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
4661 | content_length - offset); | |
4662 | fmt = xtensa_format_decode (isa, insnbuf); | |
4663 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
4664 | return FALSE; | |
4665 | ||
4666 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) | |
4667 | return FALSE; | |
4668 | ||
4669 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4670 | if (opcode == XTENSA_UNDEFINED) | |
4671 | return FALSE; | |
4672 | insn_len = xtensa_format_length (isa, fmt); | |
4673 | if (insn_len > content_length) | |
4674 | return FALSE; | |
4675 | ||
4676 | o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); | |
4677 | if (o_insnbuf) | |
4678 | { | |
4679 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
4680 | content_length - offset); | |
4681 | return TRUE; | |
4682 | } | |
43cd72b9 | 4683 | return FALSE; |
e0001a05 NC |
4684 | } |
4685 | ||
43cd72b9 BW |
4686 | \f |
4687 | /* Code for transforming CALLs at link-time. */ | |
e0001a05 | 4688 | |
43cd72b9 | 4689 | static bfd_reloc_status_type |
7fa3d080 BW |
4690 | elf_xtensa_do_asm_simplify (bfd_byte *contents, |
4691 | bfd_vma address, | |
4692 | bfd_vma content_length, | |
4693 | char **error_message) | |
e0001a05 | 4694 | { |
43cd72b9 BW |
4695 | static xtensa_insnbuf insnbuf = NULL; |
4696 | static xtensa_insnbuf slotbuf = NULL; | |
4697 | xtensa_format core_format = XTENSA_UNDEFINED; | |
4698 | xtensa_opcode opcode; | |
4699 | xtensa_opcode direct_call_opcode; | |
4700 | xtensa_isa isa = xtensa_default_isa; | |
4701 | bfd_byte *chbuf = contents + address; | |
4702 | int opn; | |
e0001a05 | 4703 | |
43cd72b9 | 4704 | if (insnbuf == NULL) |
e0001a05 | 4705 | { |
43cd72b9 BW |
4706 | insnbuf = xtensa_insnbuf_alloc (isa); |
4707 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4708 | } |
e0001a05 | 4709 | |
43cd72b9 BW |
4710 | if (content_length < address) |
4711 | { | |
4712 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
4713 | return bfd_reloc_other; | |
4714 | } | |
e0001a05 | 4715 | |
43cd72b9 BW |
4716 | opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); |
4717 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
4718 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
4719 | { | |
4720 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
4721 | return bfd_reloc_other; | |
4722 | } | |
68ffbac6 | 4723 | |
43cd72b9 BW |
4724 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ |
4725 | core_format = xtensa_format_lookup (isa, "x24"); | |
4726 | opcode = xtensa_opcode_lookup (isa, "or"); | |
4727 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); | |
68ffbac6 | 4728 | for (opn = 0; opn < 3; opn++) |
43cd72b9 BW |
4729 | { |
4730 | uint32 regno = 1; | |
4731 | xtensa_operand_encode (isa, opcode, opn, ®no); | |
4732 | xtensa_operand_set_field (isa, opcode, opn, core_format, 0, | |
4733 | slotbuf, regno); | |
4734 | } | |
4735 | xtensa_format_encode (isa, core_format, insnbuf); | |
4736 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4737 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); | |
e0001a05 | 4738 | |
43cd72b9 BW |
4739 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ |
4740 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); | |
4741 | xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); | |
e0001a05 | 4742 | |
43cd72b9 BW |
4743 | xtensa_format_encode (isa, core_format, insnbuf); |
4744 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
4745 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, | |
4746 | content_length - address - 3); | |
e0001a05 | 4747 | |
43cd72b9 BW |
4748 | return bfd_reloc_ok; |
4749 | } | |
e0001a05 | 4750 | |
e0001a05 | 4751 | |
43cd72b9 | 4752 | static bfd_reloc_status_type |
7fa3d080 BW |
4753 | contract_asm_expansion (bfd_byte *contents, |
4754 | bfd_vma content_length, | |
4755 | Elf_Internal_Rela *irel, | |
4756 | char **error_message) | |
43cd72b9 BW |
4757 | { |
4758 | bfd_reloc_status_type retval = | |
4759 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, | |
4760 | error_message); | |
e0001a05 | 4761 | |
43cd72b9 BW |
4762 | if (retval != bfd_reloc_ok) |
4763 | return bfd_reloc_dangerous; | |
e0001a05 | 4764 | |
43cd72b9 BW |
4765 | /* Update the irel->r_offset field so that the right immediate and |
4766 | the right instruction are modified during the relocation. */ | |
4767 | irel->r_offset += 3; | |
4768 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); | |
4769 | return bfd_reloc_ok; | |
4770 | } | |
e0001a05 | 4771 | |
e0001a05 | 4772 | |
43cd72b9 | 4773 | static xtensa_opcode |
7fa3d080 | 4774 | swap_callx_for_call_opcode (xtensa_opcode opcode) |
e0001a05 | 4775 | { |
43cd72b9 | 4776 | init_call_opcodes (); |
e0001a05 | 4777 | |
43cd72b9 BW |
4778 | if (opcode == callx0_op) return call0_op; |
4779 | if (opcode == callx4_op) return call4_op; | |
4780 | if (opcode == callx8_op) return call8_op; | |
4781 | if (opcode == callx12_op) return call12_op; | |
e0001a05 | 4782 | |
43cd72b9 BW |
4783 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ |
4784 | return XTENSA_UNDEFINED; | |
4785 | } | |
e0001a05 | 4786 | |
e0001a05 | 4787 | |
43cd72b9 BW |
4788 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; |
4789 | CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. | |
4790 | If not, return XTENSA_UNDEFINED. */ | |
e0001a05 | 4791 | |
43cd72b9 BW |
4792 | #define L32R_TARGET_REG_OPERAND 0 |
4793 | #define CONST16_TARGET_REG_OPERAND 0 | |
4794 | #define CALLN_SOURCE_OPERAND 0 | |
e0001a05 | 4795 | |
68ffbac6 | 4796 | static xtensa_opcode |
7fa3d080 | 4797 | get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) |
e0001a05 | 4798 | { |
43cd72b9 BW |
4799 | static xtensa_insnbuf insnbuf = NULL; |
4800 | static xtensa_insnbuf slotbuf = NULL; | |
4801 | xtensa_format fmt; | |
4802 | xtensa_opcode opcode; | |
4803 | xtensa_isa isa = xtensa_default_isa; | |
4804 | uint32 regno, const16_regno, call_regno; | |
4805 | int offset = 0; | |
e0001a05 | 4806 | |
43cd72b9 | 4807 | if (insnbuf == NULL) |
e0001a05 | 4808 | { |
43cd72b9 BW |
4809 | insnbuf = xtensa_insnbuf_alloc (isa); |
4810 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 4811 | } |
43cd72b9 BW |
4812 | |
4813 | xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); | |
4814 | fmt = xtensa_format_decode (isa, insnbuf); | |
4815 | if (fmt == XTENSA_UNDEFINED | |
4816 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4817 | return XTENSA_UNDEFINED; | |
4818 | ||
4819 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4820 | if (opcode == XTENSA_UNDEFINED) | |
4821 | return XTENSA_UNDEFINED; | |
4822 | ||
4823 | if (opcode == get_l32r_opcode ()) | |
e0001a05 | 4824 | { |
43cd72b9 BW |
4825 | if (p_uses_l32r) |
4826 | *p_uses_l32r = TRUE; | |
4827 | if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4828 | fmt, 0, slotbuf, ®no) | |
4829 | || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, | |
4830 | ®no)) | |
4831 | return XTENSA_UNDEFINED; | |
e0001a05 | 4832 | } |
43cd72b9 | 4833 | else if (opcode == get_const16_opcode ()) |
e0001a05 | 4834 | { |
43cd72b9 BW |
4835 | if (p_uses_l32r) |
4836 | *p_uses_l32r = FALSE; | |
4837 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4838 | fmt, 0, slotbuf, ®no) | |
4839 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4840 | ®no)) | |
4841 | return XTENSA_UNDEFINED; | |
4842 | ||
4843 | /* Check that the next instruction is also CONST16. */ | |
4844 | offset += xtensa_format_length (isa, fmt); | |
4845 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4846 | fmt = xtensa_format_decode (isa, insnbuf); | |
4847 | if (fmt == XTENSA_UNDEFINED | |
4848 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4849 | return XTENSA_UNDEFINED; | |
4850 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4851 | if (opcode != get_const16_opcode ()) | |
4852 | return XTENSA_UNDEFINED; | |
4853 | ||
4854 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4855 | fmt, 0, slotbuf, &const16_regno) | |
4856 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4857 | &const16_regno) | |
4858 | || const16_regno != regno) | |
4859 | return XTENSA_UNDEFINED; | |
e0001a05 | 4860 | } |
43cd72b9 BW |
4861 | else |
4862 | return XTENSA_UNDEFINED; | |
e0001a05 | 4863 | |
43cd72b9 BW |
4864 | /* Next instruction should be an CALLXn with operand 0 == regno. */ |
4865 | offset += xtensa_format_length (isa, fmt); | |
4866 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4867 | fmt = xtensa_format_decode (isa, insnbuf); | |
4868 | if (fmt == XTENSA_UNDEFINED | |
4869 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4870 | return XTENSA_UNDEFINED; | |
4871 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
68ffbac6 | 4872 | if (opcode == XTENSA_UNDEFINED |
43cd72b9 BW |
4873 | || !is_indirect_call_opcode (opcode)) |
4874 | return XTENSA_UNDEFINED; | |
e0001a05 | 4875 | |
43cd72b9 BW |
4876 | if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, |
4877 | fmt, 0, slotbuf, &call_regno) | |
4878 | || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, | |
4879 | &call_regno)) | |
4880 | return XTENSA_UNDEFINED; | |
e0001a05 | 4881 | |
43cd72b9 BW |
4882 | if (call_regno != regno) |
4883 | return XTENSA_UNDEFINED; | |
e0001a05 | 4884 | |
43cd72b9 BW |
4885 | return opcode; |
4886 | } | |
e0001a05 | 4887 | |
43cd72b9 BW |
4888 | \f |
4889 | /* Data structures used during relaxation. */ | |
e0001a05 | 4890 | |
43cd72b9 | 4891 | /* r_reloc: relocation values. */ |
e0001a05 | 4892 | |
43cd72b9 BW |
4893 | /* Through the relaxation process, we need to keep track of the values |
4894 | that will result from evaluating relocations. The standard ELF | |
4895 | relocation structure is not sufficient for this purpose because we're | |
4896 | operating on multiple input files at once, so we need to know which | |
4897 | input file a relocation refers to. The r_reloc structure thus | |
4898 | records both the input file (bfd) and ELF relocation. | |
e0001a05 | 4899 | |
43cd72b9 BW |
4900 | For efficiency, an r_reloc also contains a "target_offset" field to |
4901 | cache the target-section-relative offset value that is represented by | |
4902 | the relocation. | |
68ffbac6 | 4903 | |
43cd72b9 BW |
4904 | The r_reloc also contains a virtual offset that allows multiple |
4905 | inserted literals to be placed at the same "address" with | |
4906 | different offsets. */ | |
e0001a05 | 4907 | |
43cd72b9 | 4908 | typedef struct r_reloc_struct r_reloc; |
e0001a05 | 4909 | |
43cd72b9 | 4910 | struct r_reloc_struct |
e0001a05 | 4911 | { |
43cd72b9 BW |
4912 | bfd *abfd; |
4913 | Elf_Internal_Rela rela; | |
e0001a05 | 4914 | bfd_vma target_offset; |
43cd72b9 | 4915 | bfd_vma virtual_offset; |
e0001a05 NC |
4916 | }; |
4917 | ||
e0001a05 | 4918 | |
43cd72b9 BW |
4919 | /* The r_reloc structure is included by value in literal_value, but not |
4920 | every literal_value has an associated relocation -- some are simple | |
4921 | constants. In such cases, we set all the fields in the r_reloc | |
4922 | struct to zero. The r_reloc_is_const function should be used to | |
4923 | detect this case. */ | |
e0001a05 | 4924 | |
43cd72b9 | 4925 | static bfd_boolean |
7fa3d080 | 4926 | r_reloc_is_const (const r_reloc *r_rel) |
e0001a05 | 4927 | { |
43cd72b9 | 4928 | return (r_rel->abfd == NULL); |
e0001a05 NC |
4929 | } |
4930 | ||
4931 | ||
43cd72b9 | 4932 | static bfd_vma |
7fa3d080 | 4933 | r_reloc_get_target_offset (const r_reloc *r_rel) |
e0001a05 | 4934 | { |
43cd72b9 BW |
4935 | bfd_vma target_offset; |
4936 | unsigned long r_symndx; | |
e0001a05 | 4937 | |
43cd72b9 BW |
4938 | BFD_ASSERT (!r_reloc_is_const (r_rel)); |
4939 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4940 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
4941 | return (target_offset + r_rel->rela.r_addend); | |
4942 | } | |
e0001a05 | 4943 | |
e0001a05 | 4944 | |
43cd72b9 | 4945 | static struct elf_link_hash_entry * |
7fa3d080 | 4946 | r_reloc_get_hash_entry (const r_reloc *r_rel) |
e0001a05 | 4947 | { |
43cd72b9 BW |
4948 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4949 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
4950 | } | |
e0001a05 | 4951 | |
43cd72b9 BW |
4952 | |
4953 | static asection * | |
7fa3d080 | 4954 | r_reloc_get_section (const r_reloc *r_rel) |
43cd72b9 BW |
4955 | { |
4956 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4957 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
4958 | } | |
e0001a05 NC |
4959 | |
4960 | ||
4961 | static bfd_boolean | |
7fa3d080 | 4962 | r_reloc_is_defined (const r_reloc *r_rel) |
e0001a05 | 4963 | { |
43cd72b9 BW |
4964 | asection *sec; |
4965 | if (r_rel == NULL) | |
e0001a05 | 4966 | return FALSE; |
e0001a05 | 4967 | |
43cd72b9 BW |
4968 | sec = r_reloc_get_section (r_rel); |
4969 | if (sec == bfd_abs_section_ptr | |
4970 | || sec == bfd_com_section_ptr | |
4971 | || sec == bfd_und_section_ptr) | |
4972 | return FALSE; | |
4973 | return TRUE; | |
e0001a05 NC |
4974 | } |
4975 | ||
4976 | ||
7fa3d080 BW |
4977 | static void |
4978 | r_reloc_init (r_reloc *r_rel, | |
4979 | bfd *abfd, | |
4980 | Elf_Internal_Rela *irel, | |
4981 | bfd_byte *contents, | |
4982 | bfd_size_type content_length) | |
4983 | { | |
4984 | int r_type; | |
4985 | reloc_howto_type *howto; | |
4986 | ||
4987 | if (irel) | |
4988 | { | |
4989 | r_rel->rela = *irel; | |
4990 | r_rel->abfd = abfd; | |
4991 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
4992 | r_rel->virtual_offset = 0; | |
4993 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
4994 | howto = &elf_howto_table[r_type]; | |
4995 | if (howto->partial_inplace) | |
4996 | { | |
4997 | bfd_vma inplace_val; | |
4998 | BFD_ASSERT (r_rel->rela.r_offset < content_length); | |
4999 | ||
5000 | inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); | |
5001 | r_rel->target_offset += inplace_val; | |
5002 | } | |
5003 | } | |
5004 | else | |
5005 | memset (r_rel, 0, sizeof (r_reloc)); | |
5006 | } | |
5007 | ||
5008 | ||
43cd72b9 BW |
5009 | #if DEBUG |
5010 | ||
e0001a05 | 5011 | static void |
7fa3d080 | 5012 | print_r_reloc (FILE *fp, const r_reloc *r_rel) |
e0001a05 | 5013 | { |
43cd72b9 BW |
5014 | if (r_reloc_is_defined (r_rel)) |
5015 | { | |
5016 | asection *sec = r_reloc_get_section (r_rel); | |
5017 | fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); | |
5018 | } | |
5019 | else if (r_reloc_get_hash_entry (r_rel)) | |
5020 | fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); | |
5021 | else | |
5022 | fprintf (fp, " ?? + "); | |
e0001a05 | 5023 | |
43cd72b9 BW |
5024 | fprintf_vma (fp, r_rel->target_offset); |
5025 | if (r_rel->virtual_offset) | |
5026 | { | |
5027 | fprintf (fp, " + "); | |
5028 | fprintf_vma (fp, r_rel->virtual_offset); | |
5029 | } | |
68ffbac6 | 5030 | |
43cd72b9 BW |
5031 | fprintf (fp, ")"); |
5032 | } | |
e0001a05 | 5033 | |
43cd72b9 | 5034 | #endif /* DEBUG */ |
e0001a05 | 5035 | |
43cd72b9 BW |
5036 | \f |
5037 | /* source_reloc: relocations that reference literals. */ | |
e0001a05 | 5038 | |
43cd72b9 BW |
5039 | /* To determine whether literals can be coalesced, we need to first |
5040 | record all the relocations that reference the literals. The | |
5041 | source_reloc structure below is used for this purpose. The | |
5042 | source_reloc entries are kept in a per-literal-section array, sorted | |
5043 | by offset within the literal section (i.e., target offset). | |
e0001a05 | 5044 | |
43cd72b9 BW |
5045 | The source_sec and r_rel.rela.r_offset fields identify the source of |
5046 | the relocation. The r_rel field records the relocation value, i.e., | |
5047 | the offset of the literal being referenced. The opnd field is needed | |
5048 | to determine the range of the immediate field to which the relocation | |
5049 | applies, so we can determine whether another literal with the same | |
5050 | value is within range. The is_null field is true when the relocation | |
5051 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
5052 | that is converted to a direct CALL). */ | |
e0001a05 | 5053 | |
43cd72b9 BW |
5054 | typedef struct source_reloc_struct source_reloc; |
5055 | ||
5056 | struct source_reloc_struct | |
e0001a05 | 5057 | { |
43cd72b9 BW |
5058 | asection *source_sec; |
5059 | r_reloc r_rel; | |
5060 | xtensa_opcode opcode; | |
5061 | int opnd; | |
5062 | bfd_boolean is_null; | |
5063 | bfd_boolean is_abs_literal; | |
5064 | }; | |
e0001a05 | 5065 | |
e0001a05 | 5066 | |
e0001a05 | 5067 | static void |
7fa3d080 BW |
5068 | init_source_reloc (source_reloc *reloc, |
5069 | asection *source_sec, | |
5070 | const r_reloc *r_rel, | |
5071 | xtensa_opcode opcode, | |
5072 | int opnd, | |
5073 | bfd_boolean is_abs_literal) | |
e0001a05 | 5074 | { |
43cd72b9 BW |
5075 | reloc->source_sec = source_sec; |
5076 | reloc->r_rel = *r_rel; | |
5077 | reloc->opcode = opcode; | |
5078 | reloc->opnd = opnd; | |
5079 | reloc->is_null = FALSE; | |
5080 | reloc->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5081 | } |
5082 | ||
e0001a05 | 5083 | |
43cd72b9 BW |
5084 | /* Find the source_reloc for a particular source offset and relocation |
5085 | type. Note that the array is sorted by _target_ offset, so this is | |
5086 | just a linear search. */ | |
e0001a05 | 5087 | |
43cd72b9 | 5088 | static source_reloc * |
7fa3d080 BW |
5089 | find_source_reloc (source_reloc *src_relocs, |
5090 | int src_count, | |
5091 | asection *sec, | |
5092 | Elf_Internal_Rela *irel) | |
e0001a05 | 5093 | { |
43cd72b9 | 5094 | int i; |
e0001a05 | 5095 | |
43cd72b9 BW |
5096 | for (i = 0; i < src_count; i++) |
5097 | { | |
5098 | if (src_relocs[i].source_sec == sec | |
5099 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
5100 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
5101 | == ELF32_R_TYPE (irel->r_info))) | |
5102 | return &src_relocs[i]; | |
5103 | } | |
e0001a05 | 5104 | |
43cd72b9 | 5105 | return NULL; |
e0001a05 NC |
5106 | } |
5107 | ||
5108 | ||
43cd72b9 | 5109 | static int |
7fa3d080 | 5110 | source_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 5111 | { |
43cd72b9 BW |
5112 | const source_reloc *a = (const source_reloc *) ap; |
5113 | const source_reloc *b = (const source_reloc *) bp; | |
e0001a05 | 5114 | |
43cd72b9 BW |
5115 | if (a->r_rel.target_offset != b->r_rel.target_offset) |
5116 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
e0001a05 | 5117 | |
43cd72b9 BW |
5118 | /* We don't need to sort on these criteria for correctness, |
5119 | but enforcing a more strict ordering prevents unstable qsort | |
5120 | from behaving differently with different implementations. | |
5121 | Without the code below we get correct but different results | |
5122 | on Solaris 2.7 and 2.8. We would like to always produce the | |
5123 | same results no matter the host. */ | |
5124 | ||
5125 | if ((!a->is_null) - (!b->is_null)) | |
5126 | return ((!a->is_null) - (!b->is_null)); | |
5127 | return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); | |
e0001a05 NC |
5128 | } |
5129 | ||
43cd72b9 BW |
5130 | \f |
5131 | /* Literal values and value hash tables. */ | |
e0001a05 | 5132 | |
43cd72b9 BW |
5133 | /* Literals with the same value can be coalesced. The literal_value |
5134 | structure records the value of a literal: the "r_rel" field holds the | |
5135 | information from the relocation on the literal (if there is one) and | |
5136 | the "value" field holds the contents of the literal word itself. | |
e0001a05 | 5137 | |
43cd72b9 BW |
5138 | The value_map structure records a literal value along with the |
5139 | location of a literal holding that value. The value_map hash table | |
5140 | is indexed by the literal value, so that we can quickly check if a | |
5141 | particular literal value has been seen before and is thus a candidate | |
5142 | for coalescing. */ | |
e0001a05 | 5143 | |
43cd72b9 BW |
5144 | typedef struct literal_value_struct literal_value; |
5145 | typedef struct value_map_struct value_map; | |
5146 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
e0001a05 | 5147 | |
43cd72b9 | 5148 | struct literal_value_struct |
e0001a05 | 5149 | { |
68ffbac6 | 5150 | r_reloc r_rel; |
43cd72b9 BW |
5151 | unsigned long value; |
5152 | bfd_boolean is_abs_literal; | |
5153 | }; | |
5154 | ||
5155 | struct value_map_struct | |
5156 | { | |
5157 | literal_value val; /* The literal value. */ | |
5158 | r_reloc loc; /* Location of the literal. */ | |
5159 | value_map *next; | |
5160 | }; | |
5161 | ||
5162 | struct value_map_hash_table_struct | |
5163 | { | |
5164 | unsigned bucket_count; | |
5165 | value_map **buckets; | |
5166 | unsigned count; | |
5167 | bfd_boolean has_last_loc; | |
5168 | r_reloc last_loc; | |
5169 | }; | |
5170 | ||
5171 | ||
e0001a05 | 5172 | static void |
7fa3d080 BW |
5173 | init_literal_value (literal_value *lit, |
5174 | const r_reloc *r_rel, | |
5175 | unsigned long value, | |
5176 | bfd_boolean is_abs_literal) | |
e0001a05 | 5177 | { |
43cd72b9 BW |
5178 | lit->r_rel = *r_rel; |
5179 | lit->value = value; | |
5180 | lit->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
5181 | } |
5182 | ||
5183 | ||
43cd72b9 | 5184 | static bfd_boolean |
7fa3d080 BW |
5185 | literal_value_equal (const literal_value *src1, |
5186 | const literal_value *src2, | |
5187 | bfd_boolean final_static_link) | |
e0001a05 | 5188 | { |
43cd72b9 | 5189 | struct elf_link_hash_entry *h1, *h2; |
e0001a05 | 5190 | |
68ffbac6 | 5191 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
43cd72b9 | 5192 | return FALSE; |
e0001a05 | 5193 | |
43cd72b9 BW |
5194 | if (r_reloc_is_const (&src1->r_rel)) |
5195 | return (src1->value == src2->value); | |
e0001a05 | 5196 | |
43cd72b9 BW |
5197 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) |
5198 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
5199 | return FALSE; | |
e0001a05 | 5200 | |
43cd72b9 BW |
5201 | if (src1->r_rel.target_offset != src2->r_rel.target_offset) |
5202 | return FALSE; | |
68ffbac6 | 5203 | |
43cd72b9 BW |
5204 | if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) |
5205 | return FALSE; | |
5206 | ||
5207 | if (src1->value != src2->value) | |
5208 | return FALSE; | |
68ffbac6 | 5209 | |
43cd72b9 BW |
5210 | /* Now check for the same section (if defined) or the same elf_hash |
5211 | (if undefined or weak). */ | |
5212 | h1 = r_reloc_get_hash_entry (&src1->r_rel); | |
5213 | h2 = r_reloc_get_hash_entry (&src2->r_rel); | |
5214 | if (r_reloc_is_defined (&src1->r_rel) | |
5215 | && (final_static_link | |
5216 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) | |
5217 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) | |
5218 | { | |
5219 | if (r_reloc_get_section (&src1->r_rel) | |
5220 | != r_reloc_get_section (&src2->r_rel)) | |
5221 | return FALSE; | |
5222 | } | |
5223 | else | |
5224 | { | |
5225 | /* Require that the hash entries (i.e., symbols) be identical. */ | |
5226 | if (h1 != h2 || h1 == 0) | |
5227 | return FALSE; | |
5228 | } | |
5229 | ||
5230 | if (src1->is_abs_literal != src2->is_abs_literal) | |
5231 | return FALSE; | |
5232 | ||
5233 | return TRUE; | |
e0001a05 NC |
5234 | } |
5235 | ||
e0001a05 | 5236 | |
43cd72b9 BW |
5237 | /* Must be power of 2. */ |
5238 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
e0001a05 | 5239 | |
43cd72b9 | 5240 | static value_map_hash_table * |
7fa3d080 | 5241 | value_map_hash_table_init (void) |
43cd72b9 BW |
5242 | { |
5243 | value_map_hash_table *values; | |
e0001a05 | 5244 | |
43cd72b9 BW |
5245 | values = (value_map_hash_table *) |
5246 | bfd_zmalloc (sizeof (value_map_hash_table)); | |
5247 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
5248 | values->count = 0; | |
5249 | values->buckets = (value_map **) | |
5250 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
68ffbac6 | 5251 | if (values->buckets == NULL) |
43cd72b9 BW |
5252 | { |
5253 | free (values); | |
5254 | return NULL; | |
5255 | } | |
5256 | values->has_last_loc = FALSE; | |
5257 | ||
5258 | return values; | |
5259 | } | |
5260 | ||
5261 | ||
5262 | static void | |
7fa3d080 | 5263 | value_map_hash_table_delete (value_map_hash_table *table) |
e0001a05 | 5264 | { |
43cd72b9 BW |
5265 | free (table->buckets); |
5266 | free (table); | |
5267 | } | |
5268 | ||
5269 | ||
5270 | static unsigned | |
7fa3d080 | 5271 | hash_bfd_vma (bfd_vma val) |
43cd72b9 BW |
5272 | { |
5273 | return (val >> 2) + (val >> 10); | |
5274 | } | |
5275 | ||
5276 | ||
5277 | static unsigned | |
7fa3d080 | 5278 | literal_value_hash (const literal_value *src) |
43cd72b9 BW |
5279 | { |
5280 | unsigned hash_val; | |
e0001a05 | 5281 | |
43cd72b9 BW |
5282 | hash_val = hash_bfd_vma (src->value); |
5283 | if (!r_reloc_is_const (&src->r_rel)) | |
e0001a05 | 5284 | { |
43cd72b9 BW |
5285 | void *sec_or_hash; |
5286 | ||
5287 | hash_val += hash_bfd_vma (src->is_abs_literal * 1000); | |
5288 | hash_val += hash_bfd_vma (src->r_rel.target_offset); | |
5289 | hash_val += hash_bfd_vma (src->r_rel.virtual_offset); | |
68ffbac6 | 5290 | |
43cd72b9 BW |
5291 | /* Now check for the same section and the same elf_hash. */ |
5292 | if (r_reloc_is_defined (&src->r_rel)) | |
5293 | sec_or_hash = r_reloc_get_section (&src->r_rel); | |
5294 | else | |
5295 | sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); | |
f60ca5e3 | 5296 | hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); |
e0001a05 | 5297 | } |
43cd72b9 BW |
5298 | return hash_val; |
5299 | } | |
e0001a05 | 5300 | |
e0001a05 | 5301 | |
43cd72b9 | 5302 | /* Check if the specified literal_value has been seen before. */ |
e0001a05 | 5303 | |
43cd72b9 | 5304 | static value_map * |
7fa3d080 BW |
5305 | value_map_get_cached_value (value_map_hash_table *map, |
5306 | const literal_value *val, | |
5307 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5308 | { |
5309 | value_map *map_e; | |
5310 | value_map *bucket; | |
5311 | unsigned idx; | |
5312 | ||
5313 | idx = literal_value_hash (val); | |
5314 | idx = idx & (map->bucket_count - 1); | |
5315 | bucket = map->buckets[idx]; | |
5316 | for (map_e = bucket; map_e; map_e = map_e->next) | |
e0001a05 | 5317 | { |
43cd72b9 BW |
5318 | if (literal_value_equal (&map_e->val, val, final_static_link)) |
5319 | return map_e; | |
5320 | } | |
5321 | return NULL; | |
5322 | } | |
e0001a05 | 5323 | |
e0001a05 | 5324 | |
43cd72b9 BW |
5325 | /* Record a new literal value. It is illegal to call this if VALUE |
5326 | already has an entry here. */ | |
5327 | ||
5328 | static value_map * | |
7fa3d080 BW |
5329 | add_value_map (value_map_hash_table *map, |
5330 | const literal_value *val, | |
5331 | const r_reloc *loc, | |
5332 | bfd_boolean final_static_link) | |
43cd72b9 BW |
5333 | { |
5334 | value_map **bucket_p; | |
5335 | unsigned idx; | |
5336 | ||
5337 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
5338 | if (val_e == NULL) | |
5339 | { | |
5340 | bfd_set_error (bfd_error_no_memory); | |
5341 | return NULL; | |
e0001a05 NC |
5342 | } |
5343 | ||
43cd72b9 BW |
5344 | BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); |
5345 | val_e->val = *val; | |
5346 | val_e->loc = *loc; | |
5347 | ||
5348 | idx = literal_value_hash (val); | |
5349 | idx = idx & (map->bucket_count - 1); | |
5350 | bucket_p = &map->buckets[idx]; | |
5351 | ||
5352 | val_e->next = *bucket_p; | |
5353 | *bucket_p = val_e; | |
5354 | map->count++; | |
5355 | /* FIXME: Consider resizing the hash table if we get too many entries. */ | |
68ffbac6 | 5356 | |
43cd72b9 | 5357 | return val_e; |
e0001a05 NC |
5358 | } |
5359 | ||
43cd72b9 BW |
5360 | \f |
5361 | /* Lists of text actions (ta_) for narrowing, widening, longcall | |
5362 | conversion, space fill, code & literal removal, etc. */ | |
5363 | ||
5364 | /* The following text actions are generated: | |
5365 | ||
5366 | "ta_remove_insn" remove an instruction or instructions | |
5367 | "ta_remove_longcall" convert longcall to call | |
5368 | "ta_convert_longcall" convert longcall to nop/call | |
5369 | "ta_narrow_insn" narrow a wide instruction | |
5370 | "ta_widen" widen a narrow instruction | |
5371 | "ta_fill" add fill or remove fill | |
5372 | removed < 0 is a fill; branches to the fill address will be | |
5373 | changed to address + fill size (e.g., address - removed) | |
5374 | removed >= 0 branches to the fill address will stay unchanged | |
5375 | "ta_remove_literal" remove a literal; this action is | |
5376 | indicated when a literal is removed | |
5377 | or replaced. | |
5378 | "ta_add_literal" insert a new literal; this action is | |
5379 | indicated when a literal has been moved. | |
5380 | It may use a virtual_offset because | |
5381 | multiple literals can be placed at the | |
5382 | same location. | |
5383 | ||
5384 | For each of these text actions, we also record the number of bytes | |
5385 | removed by performing the text action. In the case of a "ta_widen" | |
5386 | or a "ta_fill" that adds space, the removed_bytes will be negative. */ | |
5387 | ||
5388 | typedef struct text_action_struct text_action; | |
5389 | typedef struct text_action_list_struct text_action_list; | |
5390 | typedef enum text_action_enum_t text_action_t; | |
5391 | ||
5392 | enum text_action_enum_t | |
5393 | { | |
5394 | ta_none, | |
5395 | ta_remove_insn, /* removed = -size */ | |
5396 | ta_remove_longcall, /* removed = -size */ | |
5397 | ta_convert_longcall, /* removed = 0 */ | |
5398 | ta_narrow_insn, /* removed = -1 */ | |
5399 | ta_widen_insn, /* removed = +1 */ | |
5400 | ta_fill, /* removed = +size */ | |
5401 | ta_remove_literal, | |
5402 | ta_add_literal | |
5403 | }; | |
e0001a05 | 5404 | |
e0001a05 | 5405 | |
43cd72b9 BW |
5406 | /* Structure for a text action record. */ |
5407 | struct text_action_struct | |
e0001a05 | 5408 | { |
43cd72b9 BW |
5409 | text_action_t action; |
5410 | asection *sec; /* Optional */ | |
5411 | bfd_vma offset; | |
5412 | bfd_vma virtual_offset; /* Zero except for adding literals. */ | |
5413 | int removed_bytes; | |
5414 | literal_value value; /* Only valid when adding literals. */ | |
e0001a05 | 5415 | |
43cd72b9 BW |
5416 | text_action *next; |
5417 | }; | |
e0001a05 | 5418 | |
e0001a05 | 5419 | |
43cd72b9 BW |
5420 | /* List of all of the actions taken on a text section. */ |
5421 | struct text_action_list_struct | |
5422 | { | |
5423 | text_action *head; | |
5424 | }; | |
e0001a05 | 5425 | |
e0001a05 | 5426 | |
7fa3d080 BW |
5427 | static text_action * |
5428 | find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) | |
43cd72b9 BW |
5429 | { |
5430 | text_action **m_p; | |
5431 | ||
5432 | /* It is not necessary to fill at the end of a section. */ | |
5433 | if (sec->size == offset) | |
5434 | return NULL; | |
5435 | ||
7fa3d080 | 5436 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
5437 | { |
5438 | text_action *t = *m_p; | |
5439 | /* When the action is another fill at the same address, | |
5440 | just increase the size. */ | |
5441 | if (t->offset == offset && t->action == ta_fill) | |
5442 | return t; | |
5443 | } | |
5444 | return NULL; | |
5445 | } | |
5446 | ||
5447 | ||
5448 | static int | |
7fa3d080 BW |
5449 | compute_removed_action_diff (const text_action *ta, |
5450 | asection *sec, | |
5451 | bfd_vma offset, | |
5452 | int removed, | |
5453 | int removable_space) | |
43cd72b9 BW |
5454 | { |
5455 | int new_removed; | |
5456 | int current_removed = 0; | |
5457 | ||
7fa3d080 | 5458 | if (ta) |
43cd72b9 BW |
5459 | current_removed = ta->removed_bytes; |
5460 | ||
5461 | BFD_ASSERT (ta == NULL || ta->offset == offset); | |
5462 | BFD_ASSERT (ta == NULL || ta->action == ta_fill); | |
5463 | ||
5464 | /* It is not necessary to fill at the end of a section. Clean this up. */ | |
5465 | if (sec->size == offset) | |
5466 | new_removed = removable_space - 0; | |
5467 | else | |
5468 | { | |
5469 | int space; | |
5470 | int added = -removed - current_removed; | |
5471 | /* Ignore multiples of the section alignment. */ | |
5472 | added = ((1 << sec->alignment_power) - 1) & added; | |
5473 | new_removed = (-added); | |
5474 | ||
5475 | /* Modify for removable. */ | |
5476 | space = removable_space - new_removed; | |
5477 | new_removed = (removable_space | |
5478 | - (((1 << sec->alignment_power) - 1) & space)); | |
5479 | } | |
5480 | return (new_removed - current_removed); | |
5481 | } | |
5482 | ||
5483 | ||
7fa3d080 BW |
5484 | static void |
5485 | adjust_fill_action (text_action *ta, int fill_diff) | |
43cd72b9 BW |
5486 | { |
5487 | ta->removed_bytes += fill_diff; | |
5488 | } | |
5489 | ||
5490 | ||
5491 | /* Add a modification action to the text. For the case of adding or | |
5492 | removing space, modify any current fill and assume that | |
5493 | "unreachable_space" bytes can be freely contracted. Note that a | |
5494 | negative removed value is a fill. */ | |
5495 | ||
68ffbac6 | 5496 | static void |
7fa3d080 BW |
5497 | text_action_add (text_action_list *l, |
5498 | text_action_t action, | |
5499 | asection *sec, | |
5500 | bfd_vma offset, | |
5501 | int removed) | |
43cd72b9 BW |
5502 | { |
5503 | text_action **m_p; | |
5504 | text_action *ta; | |
5505 | ||
5506 | /* It is not necessary to fill at the end of a section. */ | |
5507 | if (action == ta_fill && sec->size == offset) | |
5508 | return; | |
5509 | ||
5510 | /* It is not necessary to fill 0 bytes. */ | |
5511 | if (action == ta_fill && removed == 0) | |
5512 | return; | |
5513 | ||
7fa3d080 | 5514 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
5515 | { |
5516 | text_action *t = *m_p; | |
68ffbac6 L |
5517 | |
5518 | if (action == ta_fill) | |
43cd72b9 | 5519 | { |
658ff993 SA |
5520 | /* When the action is another fill at the same address, |
5521 | just increase the size. */ | |
5522 | if (t->offset == offset && t->action == ta_fill) | |
5523 | { | |
5524 | t->removed_bytes += removed; | |
5525 | return; | |
5526 | } | |
5527 | /* Fills need to happen before widens so that we don't | |
5528 | insert fill bytes into the instruction stream. */ | |
5529 | if (t->offset == offset && t->action == ta_widen_insn) | |
5530 | break; | |
43cd72b9 BW |
5531 | } |
5532 | } | |
5533 | ||
5534 | /* Create a new record and fill it up. */ | |
5535 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
5536 | ta->action = action; | |
5537 | ta->sec = sec; | |
5538 | ta->offset = offset; | |
5539 | ta->removed_bytes = removed; | |
5540 | ta->next = (*m_p); | |
5541 | *m_p = ta; | |
5542 | } | |
5543 | ||
5544 | ||
5545 | static void | |
7fa3d080 BW |
5546 | text_action_add_literal (text_action_list *l, |
5547 | text_action_t action, | |
5548 | const r_reloc *loc, | |
5549 | const literal_value *value, | |
5550 | int removed) | |
43cd72b9 BW |
5551 | { |
5552 | text_action **m_p; | |
5553 | text_action *ta; | |
5554 | asection *sec = r_reloc_get_section (loc); | |
5555 | bfd_vma offset = loc->target_offset; | |
5556 | bfd_vma virtual_offset = loc->virtual_offset; | |
5557 | ||
5558 | BFD_ASSERT (action == ta_add_literal); | |
5559 | ||
5560 | for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next) | |
5561 | { | |
5562 | if ((*m_p)->offset > offset | |
5563 | && ((*m_p)->offset != offset | |
5564 | || (*m_p)->virtual_offset > virtual_offset)) | |
5565 | break; | |
5566 | } | |
5567 | ||
5568 | /* Create a new record and fill it up. */ | |
5569 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
5570 | ta->action = action; | |
5571 | ta->sec = sec; | |
5572 | ta->offset = offset; | |
5573 | ta->virtual_offset = virtual_offset; | |
5574 | ta->value = *value; | |
5575 | ta->removed_bytes = removed; | |
5576 | ta->next = (*m_p); | |
5577 | *m_p = ta; | |
5578 | } | |
5579 | ||
5580 | ||
03669f1c BW |
5581 | /* Find the total offset adjustment for the relaxations specified by |
5582 | text_actions, beginning from a particular starting action. This is | |
5583 | typically used from offset_with_removed_text to search an entire list of | |
5584 | actions, but it may also be called directly when adjusting adjacent offsets | |
5585 | so that each search may begin where the previous one left off. */ | |
5586 | ||
5587 | static int | |
5588 | removed_by_actions (text_action **p_start_action, | |
5589 | bfd_vma offset, | |
5590 | bfd_boolean before_fill) | |
43cd72b9 BW |
5591 | { |
5592 | text_action *r; | |
5593 | int removed = 0; | |
5594 | ||
03669f1c BW |
5595 | r = *p_start_action; |
5596 | while (r) | |
43cd72b9 | 5597 | { |
03669f1c BW |
5598 | if (r->offset > offset) |
5599 | break; | |
5600 | ||
5601 | if (r->offset == offset | |
5602 | && (before_fill || r->action != ta_fill || r->removed_bytes >= 0)) | |
5603 | break; | |
5604 | ||
5605 | removed += r->removed_bytes; | |
5606 | ||
5607 | r = r->next; | |
43cd72b9 BW |
5608 | } |
5609 | ||
03669f1c BW |
5610 | *p_start_action = r; |
5611 | return removed; | |
5612 | } | |
5613 | ||
5614 | ||
68ffbac6 | 5615 | static bfd_vma |
03669f1c BW |
5616 | offset_with_removed_text (text_action_list *action_list, bfd_vma offset) |
5617 | { | |
5618 | text_action *r = action_list->head; | |
5619 | return offset - removed_by_actions (&r, offset, FALSE); | |
43cd72b9 BW |
5620 | } |
5621 | ||
5622 | ||
03e94c08 BW |
5623 | static unsigned |
5624 | action_list_count (text_action_list *action_list) | |
5625 | { | |
5626 | text_action *r = action_list->head; | |
5627 | unsigned count = 0; | |
5628 | for (r = action_list->head; r != NULL; r = r->next) | |
5629 | { | |
5630 | count++; | |
5631 | } | |
5632 | return count; | |
5633 | } | |
5634 | ||
5635 | ||
43cd72b9 BW |
5636 | /* The find_insn_action routine will only find non-fill actions. */ |
5637 | ||
7fa3d080 BW |
5638 | static text_action * |
5639 | find_insn_action (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 BW |
5640 | { |
5641 | text_action *t; | |
5642 | for (t = action_list->head; t; t = t->next) | |
5643 | { | |
5644 | if (t->offset == offset) | |
5645 | { | |
5646 | switch (t->action) | |
5647 | { | |
5648 | case ta_none: | |
5649 | case ta_fill: | |
5650 | break; | |
5651 | case ta_remove_insn: | |
5652 | case ta_remove_longcall: | |
5653 | case ta_convert_longcall: | |
5654 | case ta_narrow_insn: | |
5655 | case ta_widen_insn: | |
5656 | return t; | |
5657 | case ta_remove_literal: | |
5658 | case ta_add_literal: | |
5659 | BFD_ASSERT (0); | |
5660 | break; | |
5661 | } | |
5662 | } | |
5663 | } | |
5664 | return NULL; | |
5665 | } | |
5666 | ||
5667 | ||
5668 | #if DEBUG | |
5669 | ||
5670 | static void | |
7fa3d080 | 5671 | print_action_list (FILE *fp, text_action_list *action_list) |
43cd72b9 BW |
5672 | { |
5673 | text_action *r; | |
5674 | ||
5675 | fprintf (fp, "Text Action\n"); | |
5676 | for (r = action_list->head; r != NULL; r = r->next) | |
5677 | { | |
5678 | const char *t = "unknown"; | |
5679 | switch (r->action) | |
5680 | { | |
5681 | case ta_remove_insn: | |
5682 | t = "remove_insn"; break; | |
5683 | case ta_remove_longcall: | |
5684 | t = "remove_longcall"; break; | |
5685 | case ta_convert_longcall: | |
c46082c8 | 5686 | t = "convert_longcall"; break; |
43cd72b9 BW |
5687 | case ta_narrow_insn: |
5688 | t = "narrow_insn"; break; | |
5689 | case ta_widen_insn: | |
5690 | t = "widen_insn"; break; | |
5691 | case ta_fill: | |
5692 | t = "fill"; break; | |
5693 | case ta_none: | |
5694 | t = "none"; break; | |
5695 | case ta_remove_literal: | |
5696 | t = "remove_literal"; break; | |
5697 | case ta_add_literal: | |
5698 | t = "add_literal"; break; | |
5699 | } | |
5700 | ||
5701 | fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", | |
5702 | r->sec->owner->filename, | |
9ccb8af9 | 5703 | r->sec->name, (unsigned long) r->offset, t, r->removed_bytes); |
43cd72b9 BW |
5704 | } |
5705 | } | |
5706 | ||
5707 | #endif /* DEBUG */ | |
5708 | ||
5709 | \f | |
5710 | /* Lists of literals being coalesced or removed. */ | |
5711 | ||
5712 | /* In the usual case, the literal identified by "from" is being | |
5713 | coalesced with another literal identified by "to". If the literal is | |
5714 | unused and is being removed altogether, "to.abfd" will be NULL. | |
5715 | The removed_literal entries are kept on a per-section list, sorted | |
5716 | by the "from" offset field. */ | |
5717 | ||
5718 | typedef struct removed_literal_struct removed_literal; | |
5719 | typedef struct removed_literal_list_struct removed_literal_list; | |
5720 | ||
5721 | struct removed_literal_struct | |
5722 | { | |
5723 | r_reloc from; | |
5724 | r_reloc to; | |
5725 | removed_literal *next; | |
5726 | }; | |
5727 | ||
5728 | struct removed_literal_list_struct | |
5729 | { | |
5730 | removed_literal *head; | |
5731 | removed_literal *tail; | |
5732 | }; | |
5733 | ||
5734 | ||
43cd72b9 BW |
5735 | /* Record that the literal at "from" is being removed. If "to" is not |
5736 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
5737 | ||
5738 | static void | |
7fa3d080 BW |
5739 | add_removed_literal (removed_literal_list *removed_list, |
5740 | const r_reloc *from, | |
5741 | const r_reloc *to) | |
43cd72b9 BW |
5742 | { |
5743 | removed_literal *r, *new_r, *next_r; | |
5744 | ||
5745 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
5746 | ||
5747 | new_r->from = *from; | |
5748 | if (to) | |
5749 | new_r->to = *to; | |
5750 | else | |
5751 | new_r->to.abfd = NULL; | |
5752 | new_r->next = NULL; | |
68ffbac6 | 5753 | |
43cd72b9 | 5754 | r = removed_list->head; |
68ffbac6 | 5755 | if (r == NULL) |
43cd72b9 BW |
5756 | { |
5757 | removed_list->head = new_r; | |
5758 | removed_list->tail = new_r; | |
5759 | } | |
5760 | /* Special check for common case of append. */ | |
5761 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
5762 | { | |
5763 | removed_list->tail->next = new_r; | |
5764 | removed_list->tail = new_r; | |
5765 | } | |
5766 | else | |
5767 | { | |
68ffbac6 | 5768 | while (r->from.target_offset < from->target_offset && r->next) |
43cd72b9 BW |
5769 | { |
5770 | r = r->next; | |
5771 | } | |
5772 | next_r = r->next; | |
5773 | r->next = new_r; | |
5774 | new_r->next = next_r; | |
5775 | if (next_r == NULL) | |
5776 | removed_list->tail = new_r; | |
5777 | } | |
5778 | } | |
5779 | ||
5780 | ||
5781 | /* Check if the list of removed literals contains an entry for the | |
5782 | given address. Return the entry if found. */ | |
5783 | ||
5784 | static removed_literal * | |
7fa3d080 | 5785 | find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) |
43cd72b9 BW |
5786 | { |
5787 | removed_literal *r = removed_list->head; | |
5788 | while (r && r->from.target_offset < addr) | |
5789 | r = r->next; | |
5790 | if (r && r->from.target_offset == addr) | |
5791 | return r; | |
5792 | return NULL; | |
5793 | } | |
5794 | ||
5795 | ||
5796 | #if DEBUG | |
5797 | ||
5798 | static void | |
7fa3d080 | 5799 | print_removed_literals (FILE *fp, removed_literal_list *removed_list) |
43cd72b9 BW |
5800 | { |
5801 | removed_literal *r; | |
5802 | r = removed_list->head; | |
5803 | if (r) | |
5804 | fprintf (fp, "Removed Literals\n"); | |
5805 | for (; r != NULL; r = r->next) | |
5806 | { | |
5807 | print_r_reloc (fp, &r->from); | |
5808 | fprintf (fp, " => "); | |
5809 | if (r->to.abfd == NULL) | |
5810 | fprintf (fp, "REMOVED"); | |
5811 | else | |
5812 | print_r_reloc (fp, &r->to); | |
5813 | fprintf (fp, "\n"); | |
5814 | } | |
5815 | } | |
5816 | ||
5817 | #endif /* DEBUG */ | |
5818 | ||
5819 | \f | |
5820 | /* Per-section data for relaxation. */ | |
5821 | ||
5822 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
5823 | ||
5824 | struct xtensa_relax_info_struct | |
5825 | { | |
5826 | bfd_boolean is_relaxable_literal_section; | |
5827 | bfd_boolean is_relaxable_asm_section; | |
5828 | int visited; /* Number of times visited. */ | |
5829 | ||
5830 | source_reloc *src_relocs; /* Array[src_count]. */ | |
5831 | int src_count; | |
5832 | int src_next; /* Next src_relocs entry to assign. */ | |
5833 | ||
5834 | removed_literal_list removed_list; | |
5835 | text_action_list action_list; | |
5836 | ||
5837 | reloc_bfd_fix *fix_list; | |
5838 | reloc_bfd_fix *fix_array; | |
5839 | unsigned fix_array_count; | |
5840 | ||
5841 | /* Support for expanding the reloc array that is stored | |
5842 | in the section structure. If the relocations have been | |
5843 | reallocated, the newly allocated relocations will be referenced | |
5844 | here along with the actual size allocated. The relocation | |
5845 | count will always be found in the section structure. */ | |
68ffbac6 | 5846 | Elf_Internal_Rela *allocated_relocs; |
43cd72b9 BW |
5847 | unsigned relocs_count; |
5848 | unsigned allocated_relocs_count; | |
5849 | }; | |
5850 | ||
5851 | struct elf_xtensa_section_data | |
5852 | { | |
5853 | struct bfd_elf_section_data elf; | |
5854 | xtensa_relax_info relax_info; | |
5855 | }; | |
5856 | ||
43cd72b9 BW |
5857 | |
5858 | static bfd_boolean | |
7fa3d080 | 5859 | elf_xtensa_new_section_hook (bfd *abfd, asection *sec) |
43cd72b9 | 5860 | { |
f592407e AM |
5861 | if (!sec->used_by_bfd) |
5862 | { | |
5863 | struct elf_xtensa_section_data *sdata; | |
5864 | bfd_size_type amt = sizeof (*sdata); | |
43cd72b9 | 5865 | |
f592407e AM |
5866 | sdata = bfd_zalloc (abfd, amt); |
5867 | if (sdata == NULL) | |
5868 | return FALSE; | |
5869 | sec->used_by_bfd = sdata; | |
5870 | } | |
43cd72b9 BW |
5871 | |
5872 | return _bfd_elf_new_section_hook (abfd, sec); | |
5873 | } | |
5874 | ||
5875 | ||
7fa3d080 BW |
5876 | static xtensa_relax_info * |
5877 | get_xtensa_relax_info (asection *sec) | |
5878 | { | |
5879 | struct elf_xtensa_section_data *section_data; | |
5880 | ||
5881 | /* No info available if no section or if it is an output section. */ | |
5882 | if (!sec || sec == sec->output_section) | |
5883 | return NULL; | |
5884 | ||
5885 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
5886 | return §ion_data->relax_info; | |
5887 | } | |
5888 | ||
5889 | ||
43cd72b9 | 5890 | static void |
7fa3d080 | 5891 | init_xtensa_relax_info (asection *sec) |
43cd72b9 BW |
5892 | { |
5893 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5894 | ||
5895 | relax_info->is_relaxable_literal_section = FALSE; | |
5896 | relax_info->is_relaxable_asm_section = FALSE; | |
5897 | relax_info->visited = 0; | |
5898 | ||
5899 | relax_info->src_relocs = NULL; | |
5900 | relax_info->src_count = 0; | |
5901 | relax_info->src_next = 0; | |
5902 | ||
5903 | relax_info->removed_list.head = NULL; | |
5904 | relax_info->removed_list.tail = NULL; | |
5905 | ||
5906 | relax_info->action_list.head = NULL; | |
5907 | ||
5908 | relax_info->fix_list = NULL; | |
5909 | relax_info->fix_array = NULL; | |
5910 | relax_info->fix_array_count = 0; | |
5911 | ||
68ffbac6 | 5912 | relax_info->allocated_relocs = NULL; |
43cd72b9 BW |
5913 | relax_info->relocs_count = 0; |
5914 | relax_info->allocated_relocs_count = 0; | |
5915 | } | |
5916 | ||
43cd72b9 BW |
5917 | \f |
5918 | /* Coalescing literals may require a relocation to refer to a section in | |
5919 | a different input file, but the standard relocation information | |
5920 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
5921 | to "fix" the relocations that refer to sections in other input files. | |
5922 | These structures are kept on per-section lists. The "src_type" field | |
5923 | records the relocation type in case there are multiple relocations on | |
5924 | the same location. FIXME: This is ugly; an alternative might be to | |
5925 | add new symbols with the "owner" field to some other input file. */ | |
5926 | ||
5927 | struct reloc_bfd_fix_struct | |
5928 | { | |
5929 | asection *src_sec; | |
5930 | bfd_vma src_offset; | |
5931 | unsigned src_type; /* Relocation type. */ | |
68ffbac6 | 5932 | |
43cd72b9 BW |
5933 | asection *target_sec; |
5934 | bfd_vma target_offset; | |
5935 | bfd_boolean translated; | |
68ffbac6 | 5936 | |
43cd72b9 BW |
5937 | reloc_bfd_fix *next; |
5938 | }; | |
5939 | ||
5940 | ||
43cd72b9 | 5941 | static reloc_bfd_fix * |
7fa3d080 BW |
5942 | reloc_bfd_fix_init (asection *src_sec, |
5943 | bfd_vma src_offset, | |
5944 | unsigned src_type, | |
7fa3d080 BW |
5945 | asection *target_sec, |
5946 | bfd_vma target_offset, | |
5947 | bfd_boolean translated) | |
43cd72b9 BW |
5948 | { |
5949 | reloc_bfd_fix *fix; | |
5950 | ||
5951 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
5952 | fix->src_sec = src_sec; | |
5953 | fix->src_offset = src_offset; | |
5954 | fix->src_type = src_type; | |
43cd72b9 BW |
5955 | fix->target_sec = target_sec; |
5956 | fix->target_offset = target_offset; | |
5957 | fix->translated = translated; | |
5958 | ||
5959 | return fix; | |
5960 | } | |
5961 | ||
5962 | ||
5963 | static void | |
7fa3d080 | 5964 | add_fix (asection *src_sec, reloc_bfd_fix *fix) |
43cd72b9 BW |
5965 | { |
5966 | xtensa_relax_info *relax_info; | |
5967 | ||
5968 | relax_info = get_xtensa_relax_info (src_sec); | |
5969 | fix->next = relax_info->fix_list; | |
5970 | relax_info->fix_list = fix; | |
5971 | } | |
5972 | ||
5973 | ||
5974 | static int | |
7fa3d080 | 5975 | fix_compare (const void *ap, const void *bp) |
43cd72b9 BW |
5976 | { |
5977 | const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; | |
5978 | const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; | |
5979 | ||
5980 | if (a->src_offset != b->src_offset) | |
5981 | return (a->src_offset - b->src_offset); | |
5982 | return (a->src_type - b->src_type); | |
5983 | } | |
5984 | ||
5985 | ||
5986 | static void | |
7fa3d080 | 5987 | cache_fix_array (asection *sec) |
43cd72b9 BW |
5988 | { |
5989 | unsigned i, count = 0; | |
5990 | reloc_bfd_fix *r; | |
5991 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5992 | ||
5993 | if (relax_info == NULL) | |
5994 | return; | |
5995 | if (relax_info->fix_list == NULL) | |
5996 | return; | |
5997 | ||
5998 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
5999 | count++; | |
6000 | ||
6001 | relax_info->fix_array = | |
6002 | (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); | |
6003 | relax_info->fix_array_count = count; | |
6004 | ||
6005 | r = relax_info->fix_list; | |
6006 | for (i = 0; i < count; i++, r = r->next) | |
6007 | { | |
6008 | relax_info->fix_array[count - 1 - i] = *r; | |
6009 | relax_info->fix_array[count - 1 - i].next = NULL; | |
6010 | } | |
6011 | ||
6012 | qsort (relax_info->fix_array, relax_info->fix_array_count, | |
6013 | sizeof (reloc_bfd_fix), fix_compare); | |
6014 | } | |
6015 | ||
6016 | ||
6017 | static reloc_bfd_fix * | |
7fa3d080 | 6018 | get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) |
43cd72b9 BW |
6019 | { |
6020 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
6021 | reloc_bfd_fix *rv; | |
6022 | reloc_bfd_fix key; | |
6023 | ||
6024 | if (relax_info == NULL) | |
6025 | return NULL; | |
6026 | if (relax_info->fix_list == NULL) | |
6027 | return NULL; | |
6028 | ||
6029 | if (relax_info->fix_array == NULL) | |
6030 | cache_fix_array (sec); | |
6031 | ||
6032 | key.src_offset = offset; | |
6033 | key.src_type = type; | |
6034 | rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, | |
6035 | sizeof (reloc_bfd_fix), fix_compare); | |
6036 | return rv; | |
6037 | } | |
6038 | ||
6039 | \f | |
6040 | /* Section caching. */ | |
6041 | ||
6042 | typedef struct section_cache_struct section_cache_t; | |
6043 | ||
6044 | struct section_cache_struct | |
6045 | { | |
6046 | asection *sec; | |
6047 | ||
6048 | bfd_byte *contents; /* Cache of the section contents. */ | |
6049 | bfd_size_type content_length; | |
6050 | ||
6051 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6052 | unsigned pte_count; | |
6053 | ||
6054 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6055 | unsigned reloc_count; | |
6056 | }; | |
6057 | ||
6058 | ||
7fa3d080 BW |
6059 | static void |
6060 | init_section_cache (section_cache_t *sec_cache) | |
6061 | { | |
6062 | memset (sec_cache, 0, sizeof (*sec_cache)); | |
6063 | } | |
43cd72b9 BW |
6064 | |
6065 | ||
6066 | static void | |
65e911f9 | 6067 | free_section_cache (section_cache_t *sec_cache) |
43cd72b9 | 6068 | { |
7fa3d080 BW |
6069 | if (sec_cache->sec) |
6070 | { | |
6071 | release_contents (sec_cache->sec, sec_cache->contents); | |
6072 | release_internal_relocs (sec_cache->sec, sec_cache->relocs); | |
6073 | if (sec_cache->ptbl) | |
6074 | free (sec_cache->ptbl); | |
7fa3d080 | 6075 | } |
43cd72b9 BW |
6076 | } |
6077 | ||
6078 | ||
6079 | static bfd_boolean | |
7fa3d080 BW |
6080 | section_cache_section (section_cache_t *sec_cache, |
6081 | asection *sec, | |
6082 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6083 | { |
6084 | bfd *abfd; | |
6085 | property_table_entry *prop_table = NULL; | |
6086 | int ptblsize = 0; | |
6087 | bfd_byte *contents = NULL; | |
6088 | Elf_Internal_Rela *internal_relocs = NULL; | |
6089 | bfd_size_type sec_size; | |
6090 | ||
6091 | if (sec == NULL) | |
6092 | return FALSE; | |
6093 | if (sec == sec_cache->sec) | |
6094 | return TRUE; | |
6095 | ||
6096 | abfd = sec->owner; | |
6097 | sec_size = bfd_get_section_limit (abfd, sec); | |
6098 | ||
6099 | /* Get the contents. */ | |
6100 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6101 | if (contents == NULL && sec_size != 0) | |
6102 | goto err; | |
6103 | ||
6104 | /* Get the relocations. */ | |
6105 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6106 | link_info->keep_memory); | |
6107 | ||
6108 | /* Get the entry table. */ | |
6109 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, | |
6110 | XTENSA_PROP_SEC_NAME, FALSE); | |
6111 | if (ptblsize < 0) | |
6112 | goto err; | |
6113 | ||
6114 | /* Fill in the new section cache. */ | |
65e911f9 AM |
6115 | free_section_cache (sec_cache); |
6116 | init_section_cache (sec_cache); | |
43cd72b9 BW |
6117 | |
6118 | sec_cache->sec = sec; | |
6119 | sec_cache->contents = contents; | |
6120 | sec_cache->content_length = sec_size; | |
6121 | sec_cache->relocs = internal_relocs; | |
6122 | sec_cache->reloc_count = sec->reloc_count; | |
6123 | sec_cache->pte_count = ptblsize; | |
6124 | sec_cache->ptbl = prop_table; | |
6125 | ||
6126 | return TRUE; | |
6127 | ||
6128 | err: | |
6129 | release_contents (sec, contents); | |
6130 | release_internal_relocs (sec, internal_relocs); | |
6131 | if (prop_table) | |
6132 | free (prop_table); | |
6133 | return FALSE; | |
6134 | } | |
6135 | ||
43cd72b9 BW |
6136 | \f |
6137 | /* Extended basic blocks. */ | |
6138 | ||
6139 | /* An ebb_struct represents an Extended Basic Block. Within this | |
6140 | range, we guarantee that all instructions are decodable, the | |
6141 | property table entries are contiguous, and no property table | |
6142 | specifies a segment that cannot have instructions moved. This | |
6143 | structure contains caches of the contents, property table and | |
6144 | relocations for the specified section for easy use. The range is | |
6145 | specified by ranges of indices for the byte offset, property table | |
6146 | offsets and relocation offsets. These must be consistent. */ | |
6147 | ||
6148 | typedef struct ebb_struct ebb_t; | |
6149 | ||
6150 | struct ebb_struct | |
6151 | { | |
6152 | asection *sec; | |
6153 | ||
6154 | bfd_byte *contents; /* Cache of the section contents. */ | |
6155 | bfd_size_type content_length; | |
6156 | ||
6157 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
6158 | unsigned pte_count; | |
6159 | ||
6160 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
6161 | unsigned reloc_count; | |
6162 | ||
6163 | bfd_vma start_offset; /* Offset in section. */ | |
6164 | unsigned start_ptbl_idx; /* Offset in the property table. */ | |
6165 | unsigned start_reloc_idx; /* Offset in the relocations. */ | |
6166 | ||
6167 | bfd_vma end_offset; | |
6168 | unsigned end_ptbl_idx; | |
6169 | unsigned end_reloc_idx; | |
6170 | ||
6171 | bfd_boolean ends_section; /* Is this the last ebb in a section? */ | |
6172 | ||
6173 | /* The unreachable property table at the end of this set of blocks; | |
6174 | NULL if the end is not an unreachable block. */ | |
6175 | property_table_entry *ends_unreachable; | |
6176 | }; | |
6177 | ||
6178 | ||
6179 | enum ebb_target_enum | |
6180 | { | |
6181 | EBB_NO_ALIGN = 0, | |
6182 | EBB_DESIRE_TGT_ALIGN, | |
6183 | EBB_REQUIRE_TGT_ALIGN, | |
6184 | EBB_REQUIRE_LOOP_ALIGN, | |
6185 | EBB_REQUIRE_ALIGN | |
6186 | }; | |
6187 | ||
6188 | ||
6189 | /* proposed_action_struct is similar to the text_action_struct except | |
6190 | that is represents a potential transformation, not one that will | |
6191 | occur. We build a list of these for an extended basic block | |
6192 | and use them to compute the actual actions desired. We must be | |
6193 | careful that the entire set of actual actions we perform do not | |
6194 | break any relocations that would fit if the actions were not | |
6195 | performed. */ | |
6196 | ||
6197 | typedef struct proposed_action_struct proposed_action; | |
6198 | ||
6199 | struct proposed_action_struct | |
6200 | { | |
6201 | enum ebb_target_enum align_type; /* for the target alignment */ | |
6202 | bfd_vma alignment_pow; | |
6203 | text_action_t action; | |
6204 | bfd_vma offset; | |
6205 | int removed_bytes; | |
6206 | bfd_boolean do_action; /* If false, then we will not perform the action. */ | |
6207 | }; | |
6208 | ||
6209 | ||
6210 | /* The ebb_constraint_struct keeps a set of proposed actions for an | |
6211 | extended basic block. */ | |
6212 | ||
6213 | typedef struct ebb_constraint_struct ebb_constraint; | |
6214 | ||
6215 | struct ebb_constraint_struct | |
6216 | { | |
6217 | ebb_t ebb; | |
6218 | bfd_boolean start_movable; | |
6219 | ||
6220 | /* Bytes of extra space at the beginning if movable. */ | |
6221 | int start_extra_space; | |
6222 | ||
6223 | enum ebb_target_enum start_align; | |
6224 | ||
6225 | bfd_boolean end_movable; | |
6226 | ||
6227 | /* Bytes of extra space at the end if movable. */ | |
6228 | int end_extra_space; | |
6229 | ||
6230 | unsigned action_count; | |
6231 | unsigned action_allocated; | |
6232 | ||
6233 | /* Array of proposed actions. */ | |
6234 | proposed_action *actions; | |
6235 | ||
6236 | /* Action alignments -- one for each proposed action. */ | |
6237 | enum ebb_target_enum *action_aligns; | |
6238 | }; | |
6239 | ||
6240 | ||
43cd72b9 | 6241 | static void |
7fa3d080 | 6242 | init_ebb_constraint (ebb_constraint *c) |
43cd72b9 BW |
6243 | { |
6244 | memset (c, 0, sizeof (ebb_constraint)); | |
6245 | } | |
6246 | ||
6247 | ||
6248 | static void | |
7fa3d080 | 6249 | free_ebb_constraint (ebb_constraint *c) |
43cd72b9 | 6250 | { |
7fa3d080 | 6251 | if (c->actions) |
43cd72b9 BW |
6252 | free (c->actions); |
6253 | } | |
6254 | ||
6255 | ||
6256 | static void | |
7fa3d080 BW |
6257 | init_ebb (ebb_t *ebb, |
6258 | asection *sec, | |
6259 | bfd_byte *contents, | |
6260 | bfd_size_type content_length, | |
6261 | property_table_entry *prop_table, | |
6262 | unsigned ptblsize, | |
6263 | Elf_Internal_Rela *internal_relocs, | |
6264 | unsigned reloc_count) | |
43cd72b9 BW |
6265 | { |
6266 | memset (ebb, 0, sizeof (ebb_t)); | |
6267 | ebb->sec = sec; | |
6268 | ebb->contents = contents; | |
6269 | ebb->content_length = content_length; | |
6270 | ebb->ptbl = prop_table; | |
6271 | ebb->pte_count = ptblsize; | |
6272 | ebb->relocs = internal_relocs; | |
6273 | ebb->reloc_count = reloc_count; | |
6274 | ebb->start_offset = 0; | |
6275 | ebb->end_offset = ebb->content_length - 1; | |
6276 | ebb->start_ptbl_idx = 0; | |
6277 | ebb->end_ptbl_idx = ptblsize; | |
6278 | ebb->start_reloc_idx = 0; | |
6279 | ebb->end_reloc_idx = reloc_count; | |
6280 | } | |
6281 | ||
6282 | ||
6283 | /* Extend the ebb to all decodable contiguous sections. The algorithm | |
6284 | for building a basic block around an instruction is to push it | |
6285 | forward until we hit the end of a section, an unreachable block or | |
6286 | a block that cannot be transformed. Then we push it backwards | |
6287 | searching for similar conditions. */ | |
6288 | ||
7fa3d080 BW |
6289 | static bfd_boolean extend_ebb_bounds_forward (ebb_t *); |
6290 | static bfd_boolean extend_ebb_bounds_backward (ebb_t *); | |
6291 | static bfd_size_type insn_block_decodable_len | |
6292 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); | |
6293 | ||
43cd72b9 | 6294 | static bfd_boolean |
7fa3d080 | 6295 | extend_ebb_bounds (ebb_t *ebb) |
43cd72b9 BW |
6296 | { |
6297 | if (!extend_ebb_bounds_forward (ebb)) | |
6298 | return FALSE; | |
6299 | if (!extend_ebb_bounds_backward (ebb)) | |
6300 | return FALSE; | |
6301 | return TRUE; | |
6302 | } | |
6303 | ||
6304 | ||
6305 | static bfd_boolean | |
7fa3d080 | 6306 | extend_ebb_bounds_forward (ebb_t *ebb) |
43cd72b9 BW |
6307 | { |
6308 | property_table_entry *the_entry, *new_entry; | |
6309 | ||
6310 | the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
6311 | ||
6312 | /* Stop when (1) we cannot decode an instruction, (2) we are at | |
6313 | the end of the property tables, (3) we hit a non-contiguous property | |
6314 | table entry, (4) we hit a NO_TRANSFORM region. */ | |
6315 | ||
6316 | while (1) | |
6317 | { | |
6318 | bfd_vma entry_end; | |
6319 | bfd_size_type insn_block_len; | |
6320 | ||
6321 | entry_end = the_entry->address - ebb->sec->vma + the_entry->size; | |
6322 | insn_block_len = | |
6323 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6324 | ebb->end_offset, | |
6325 | entry_end - ebb->end_offset); | |
6326 | if (insn_block_len != (entry_end - ebb->end_offset)) | |
6327 | { | |
6328 | (*_bfd_error_handler) | |
6329 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
6330 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
6331 | return FALSE; | |
6332 | } | |
6333 | ebb->end_offset += insn_block_len; | |
6334 | ||
6335 | if (ebb->end_offset == ebb->sec->size) | |
6336 | ebb->ends_section = TRUE; | |
6337 | ||
6338 | /* Update the reloc counter. */ | |
6339 | while (ebb->end_reloc_idx + 1 < ebb->reloc_count | |
6340 | && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset | |
6341 | < ebb->end_offset)) | |
6342 | { | |
6343 | ebb->end_reloc_idx++; | |
6344 | } | |
6345 | ||
6346 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6347 | return TRUE; | |
6348 | ||
6349 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6350 | if (((new_entry->flags & XTENSA_PROP_INSN) == 0) | |
99ded152 | 6351 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6352 | || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6353 | break; | |
6354 | ||
6355 | if (the_entry->address + the_entry->size != new_entry->address) | |
6356 | break; | |
6357 | ||
6358 | the_entry = new_entry; | |
6359 | ebb->end_ptbl_idx++; | |
6360 | } | |
6361 | ||
6362 | /* Quick check for an unreachable or end of file just at the end. */ | |
6363 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
6364 | { | |
6365 | if (ebb->end_offset == ebb->content_length) | |
6366 | ebb->ends_section = TRUE; | |
6367 | } | |
6368 | else | |
6369 | { | |
6370 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
6371 | if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 | |
6372 | && the_entry->address + the_entry->size == new_entry->address) | |
6373 | ebb->ends_unreachable = new_entry; | |
6374 | } | |
6375 | ||
6376 | /* Any other ending requires exact alignment. */ | |
6377 | return TRUE; | |
6378 | } | |
6379 | ||
6380 | ||
6381 | static bfd_boolean | |
7fa3d080 | 6382 | extend_ebb_bounds_backward (ebb_t *ebb) |
43cd72b9 BW |
6383 | { |
6384 | property_table_entry *the_entry, *new_entry; | |
6385 | ||
6386 | the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; | |
6387 | ||
6388 | /* Stop when (1) we cannot decode the instructions in the current entry. | |
6389 | (2) we are at the beginning of the property tables, (3) we hit a | |
6390 | non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ | |
6391 | ||
6392 | while (1) | |
6393 | { | |
6394 | bfd_vma block_begin; | |
6395 | bfd_size_type insn_block_len; | |
6396 | ||
6397 | block_begin = the_entry->address - ebb->sec->vma; | |
6398 | insn_block_len = | |
6399 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
6400 | block_begin, | |
6401 | ebb->start_offset - block_begin); | |
6402 | if (insn_block_len != ebb->start_offset - block_begin) | |
6403 | { | |
6404 | (*_bfd_error_handler) | |
6405 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
6406 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
6407 | return FALSE; | |
6408 | } | |
6409 | ebb->start_offset -= insn_block_len; | |
6410 | ||
6411 | /* Update the reloc counter. */ | |
6412 | while (ebb->start_reloc_idx > 0 | |
6413 | && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset | |
6414 | >= ebb->start_offset)) | |
6415 | { | |
6416 | ebb->start_reloc_idx--; | |
6417 | } | |
6418 | ||
6419 | if (ebb->start_ptbl_idx == 0) | |
6420 | return TRUE; | |
6421 | ||
6422 | new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; | |
6423 | if ((new_entry->flags & XTENSA_PROP_INSN) == 0 | |
99ded152 | 6424 | || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) |
43cd72b9 BW |
6425 | || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) |
6426 | return TRUE; | |
6427 | if (new_entry->address + new_entry->size != the_entry->address) | |
6428 | return TRUE; | |
6429 | ||
6430 | the_entry = new_entry; | |
6431 | ebb->start_ptbl_idx--; | |
6432 | } | |
6433 | return TRUE; | |
6434 | } | |
6435 | ||
6436 | ||
6437 | static bfd_size_type | |
7fa3d080 BW |
6438 | insn_block_decodable_len (bfd_byte *contents, |
6439 | bfd_size_type content_len, | |
6440 | bfd_vma block_offset, | |
6441 | bfd_size_type block_len) | |
43cd72b9 BW |
6442 | { |
6443 | bfd_vma offset = block_offset; | |
6444 | ||
6445 | while (offset < block_offset + block_len) | |
6446 | { | |
6447 | bfd_size_type insn_len = 0; | |
6448 | ||
6449 | insn_len = insn_decode_len (contents, content_len, offset); | |
6450 | if (insn_len == 0) | |
6451 | return (offset - block_offset); | |
6452 | offset += insn_len; | |
6453 | } | |
6454 | return (offset - block_offset); | |
6455 | } | |
6456 | ||
6457 | ||
6458 | static void | |
7fa3d080 | 6459 | ebb_propose_action (ebb_constraint *c, |
7fa3d080 | 6460 | enum ebb_target_enum align_type, |
288f74fa | 6461 | bfd_vma alignment_pow, |
7fa3d080 BW |
6462 | text_action_t action, |
6463 | bfd_vma offset, | |
6464 | int removed_bytes, | |
6465 | bfd_boolean do_action) | |
43cd72b9 | 6466 | { |
b08b5071 | 6467 | proposed_action *act; |
43cd72b9 | 6468 | |
43cd72b9 BW |
6469 | if (c->action_allocated <= c->action_count) |
6470 | { | |
b08b5071 | 6471 | unsigned new_allocated, i; |
823fc61f | 6472 | proposed_action *new_actions; |
b08b5071 BW |
6473 | |
6474 | new_allocated = (c->action_count + 2) * 2; | |
823fc61f | 6475 | new_actions = (proposed_action *) |
43cd72b9 BW |
6476 | bfd_zmalloc (sizeof (proposed_action) * new_allocated); |
6477 | ||
6478 | for (i = 0; i < c->action_count; i++) | |
6479 | new_actions[i] = c->actions[i]; | |
7fa3d080 | 6480 | if (c->actions) |
43cd72b9 BW |
6481 | free (c->actions); |
6482 | c->actions = new_actions; | |
6483 | c->action_allocated = new_allocated; | |
6484 | } | |
b08b5071 BW |
6485 | |
6486 | act = &c->actions[c->action_count]; | |
6487 | act->align_type = align_type; | |
6488 | act->alignment_pow = alignment_pow; | |
6489 | act->action = action; | |
6490 | act->offset = offset; | |
6491 | act->removed_bytes = removed_bytes; | |
6492 | act->do_action = do_action; | |
6493 | ||
43cd72b9 BW |
6494 | c->action_count++; |
6495 | } | |
6496 | ||
6497 | \f | |
6498 | /* Access to internal relocations, section contents and symbols. */ | |
6499 | ||
6500 | /* During relaxation, we need to modify relocations, section contents, | |
6501 | and symbol definitions, and we need to keep the original values from | |
6502 | being reloaded from the input files, i.e., we need to "pin" the | |
6503 | modified values in memory. We also want to continue to observe the | |
6504 | setting of the "keep-memory" flag. The following functions wrap the | |
6505 | standard BFD functions to take care of this for us. */ | |
6506 | ||
6507 | static Elf_Internal_Rela * | |
7fa3d080 | 6508 | retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6509 | { |
6510 | Elf_Internal_Rela *internal_relocs; | |
6511 | ||
6512 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6513 | return NULL; | |
6514 | ||
6515 | internal_relocs = elf_section_data (sec)->relocs; | |
6516 | if (internal_relocs == NULL) | |
6517 | internal_relocs = (_bfd_elf_link_read_relocs | |
7fa3d080 | 6518 | (abfd, sec, NULL, NULL, keep_memory)); |
43cd72b9 BW |
6519 | return internal_relocs; |
6520 | } | |
6521 | ||
6522 | ||
6523 | static void | |
7fa3d080 | 6524 | pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6525 | { |
6526 | elf_section_data (sec)->relocs = internal_relocs; | |
6527 | } | |
6528 | ||
6529 | ||
6530 | static void | |
7fa3d080 | 6531 | release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
6532 | { |
6533 | if (internal_relocs | |
6534 | && elf_section_data (sec)->relocs != internal_relocs) | |
6535 | free (internal_relocs); | |
6536 | } | |
6537 | ||
6538 | ||
6539 | static bfd_byte * | |
7fa3d080 | 6540 | retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
6541 | { |
6542 | bfd_byte *contents; | |
6543 | bfd_size_type sec_size; | |
6544 | ||
6545 | sec_size = bfd_get_section_limit (abfd, sec); | |
6546 | contents = elf_section_data (sec)->this_hdr.contents; | |
68ffbac6 | 6547 | |
43cd72b9 BW |
6548 | if (contents == NULL && sec_size != 0) |
6549 | { | |
6550 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
6551 | { | |
7fa3d080 | 6552 | if (contents) |
43cd72b9 BW |
6553 | free (contents); |
6554 | return NULL; | |
6555 | } | |
68ffbac6 | 6556 | if (keep_memory) |
43cd72b9 BW |
6557 | elf_section_data (sec)->this_hdr.contents = contents; |
6558 | } | |
6559 | return contents; | |
6560 | } | |
6561 | ||
6562 | ||
6563 | static void | |
7fa3d080 | 6564 | pin_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6565 | { |
6566 | elf_section_data (sec)->this_hdr.contents = contents; | |
6567 | } | |
6568 | ||
6569 | ||
6570 | static void | |
7fa3d080 | 6571 | release_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
6572 | { |
6573 | if (contents && elf_section_data (sec)->this_hdr.contents != contents) | |
6574 | free (contents); | |
6575 | } | |
6576 | ||
6577 | ||
6578 | static Elf_Internal_Sym * | |
7fa3d080 | 6579 | retrieve_local_syms (bfd *input_bfd) |
43cd72b9 BW |
6580 | { |
6581 | Elf_Internal_Shdr *symtab_hdr; | |
6582 | Elf_Internal_Sym *isymbuf; | |
6583 | size_t locsymcount; | |
6584 | ||
6585 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
6586 | locsymcount = symtab_hdr->sh_info; | |
6587 | ||
6588 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
6589 | if (isymbuf == NULL && locsymcount != 0) | |
6590 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
6591 | NULL, NULL, NULL); | |
6592 | ||
6593 | /* Save the symbols for this input file so they won't be read again. */ | |
6594 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
6595 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
6596 | ||
6597 | return isymbuf; | |
6598 | } | |
6599 | ||
6600 | \f | |
6601 | /* Code for link-time relaxation. */ | |
6602 | ||
6603 | /* Initialization for relaxation: */ | |
7fa3d080 | 6604 | static bfd_boolean analyze_relocations (struct bfd_link_info *); |
43cd72b9 | 6605 | static bfd_boolean find_relaxable_sections |
7fa3d080 | 6606 | (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); |
43cd72b9 | 6607 | static bfd_boolean collect_source_relocs |
7fa3d080 | 6608 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 | 6609 | static bfd_boolean is_resolvable_asm_expansion |
7fa3d080 BW |
6610 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, |
6611 | bfd_boolean *); | |
43cd72b9 | 6612 | static Elf_Internal_Rela *find_associated_l32r_irel |
7fa3d080 | 6613 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); |
43cd72b9 | 6614 | static bfd_boolean compute_text_actions |
7fa3d080 BW |
6615 | (bfd *, asection *, struct bfd_link_info *); |
6616 | static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); | |
6617 | static bfd_boolean compute_ebb_actions (ebb_constraint *); | |
43cd72b9 | 6618 | static bfd_boolean check_section_ebb_pcrels_fit |
cb337148 BW |
6619 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *, |
6620 | const xtensa_opcode *); | |
7fa3d080 | 6621 | static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); |
43cd72b9 | 6622 | static void text_action_add_proposed |
7fa3d080 BW |
6623 | (text_action_list *, const ebb_constraint *, asection *); |
6624 | static int compute_fill_extra_space (property_table_entry *); | |
43cd72b9 BW |
6625 | |
6626 | /* First pass: */ | |
6627 | static bfd_boolean compute_removed_literals | |
7fa3d080 | 6628 | (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); |
43cd72b9 | 6629 | static Elf_Internal_Rela *get_irel_at_offset |
7fa3d080 | 6630 | (asection *, Elf_Internal_Rela *, bfd_vma); |
68ffbac6 | 6631 | static bfd_boolean is_removable_literal |
99ded152 BW |
6632 | (const source_reloc *, int, const source_reloc *, int, asection *, |
6633 | property_table_entry *, int); | |
43cd72b9 | 6634 | static bfd_boolean remove_dead_literal |
7fa3d080 | 6635 | (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, |
68ffbac6 | 6636 | Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); |
7fa3d080 BW |
6637 | static bfd_boolean identify_literal_placement |
6638 | (bfd *, asection *, bfd_byte *, struct bfd_link_info *, | |
6639 | value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, | |
6640 | source_reloc *, property_table_entry *, int, section_cache_t *, | |
6641 | bfd_boolean); | |
6642 | static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); | |
43cd72b9 | 6643 | static bfd_boolean coalesce_shared_literal |
7fa3d080 | 6644 | (asection *, source_reloc *, property_table_entry *, int, value_map *); |
43cd72b9 | 6645 | static bfd_boolean move_shared_literal |
7fa3d080 BW |
6646 | (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, |
6647 | int, const r_reloc *, const literal_value *, section_cache_t *); | |
43cd72b9 BW |
6648 | |
6649 | /* Second pass: */ | |
7fa3d080 BW |
6650 | static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); |
6651 | static bfd_boolean translate_section_fixes (asection *); | |
6652 | static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); | |
9b7f5d20 | 6653 | static asection *translate_reloc (const r_reloc *, r_reloc *, asection *); |
43cd72b9 | 6654 | static void shrink_dynamic_reloc_sections |
7fa3d080 | 6655 | (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); |
43cd72b9 | 6656 | static bfd_boolean move_literal |
7fa3d080 BW |
6657 | (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, |
6658 | xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); | |
43cd72b9 | 6659 | static bfd_boolean relax_property_section |
7fa3d080 | 6660 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 BW |
6661 | |
6662 | /* Third pass: */ | |
7fa3d080 | 6663 | static bfd_boolean relax_section_symbols (bfd *, asection *); |
43cd72b9 BW |
6664 | |
6665 | ||
68ffbac6 | 6666 | static bfd_boolean |
7fa3d080 BW |
6667 | elf_xtensa_relax_section (bfd *abfd, |
6668 | asection *sec, | |
6669 | struct bfd_link_info *link_info, | |
6670 | bfd_boolean *again) | |
43cd72b9 BW |
6671 | { |
6672 | static value_map_hash_table *values = NULL; | |
6673 | static bfd_boolean relocations_analyzed = FALSE; | |
6674 | xtensa_relax_info *relax_info; | |
6675 | ||
6676 | if (!relocations_analyzed) | |
6677 | { | |
6678 | /* Do some overall initialization for relaxation. */ | |
6679 | values = value_map_hash_table_init (); | |
6680 | if (values == NULL) | |
6681 | return FALSE; | |
6682 | relaxing_section = TRUE; | |
6683 | if (!analyze_relocations (link_info)) | |
6684 | return FALSE; | |
6685 | relocations_analyzed = TRUE; | |
6686 | } | |
6687 | *again = FALSE; | |
6688 | ||
6689 | /* Don't mess with linker-created sections. */ | |
6690 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
6691 | return TRUE; | |
6692 | ||
6693 | relax_info = get_xtensa_relax_info (sec); | |
6694 | BFD_ASSERT (relax_info != NULL); | |
6695 | ||
6696 | switch (relax_info->visited) | |
6697 | { | |
6698 | case 0: | |
6699 | /* Note: It would be nice to fold this pass into | |
6700 | analyze_relocations, but it is important for this step that the | |
6701 | sections be examined in link order. */ | |
6702 | if (!compute_removed_literals (abfd, sec, link_info, values)) | |
6703 | return FALSE; | |
6704 | *again = TRUE; | |
6705 | break; | |
6706 | ||
6707 | case 1: | |
6708 | if (values) | |
6709 | value_map_hash_table_delete (values); | |
6710 | values = NULL; | |
6711 | if (!relax_section (abfd, sec, link_info)) | |
6712 | return FALSE; | |
6713 | *again = TRUE; | |
6714 | break; | |
6715 | ||
6716 | case 2: | |
6717 | if (!relax_section_symbols (abfd, sec)) | |
6718 | return FALSE; | |
6719 | break; | |
6720 | } | |
6721 | ||
6722 | relax_info->visited++; | |
6723 | return TRUE; | |
6724 | } | |
6725 | ||
6726 | \f | |
6727 | /* Initialization for relaxation. */ | |
6728 | ||
6729 | /* This function is called once at the start of relaxation. It scans | |
6730 | all the input sections and marks the ones that are relaxable (i.e., | |
6731 | literal sections with L32R relocations against them), and then | |
6732 | collects source_reloc information for all the relocations against | |
6733 | those relaxable sections. During this process, it also detects | |
6734 | longcalls, i.e., calls relaxed by the assembler into indirect | |
6735 | calls, that can be optimized back into direct calls. Within each | |
6736 | extended basic block (ebb) containing an optimized longcall, it | |
6737 | computes a set of "text actions" that can be performed to remove | |
6738 | the L32R associated with the longcall while optionally preserving | |
6739 | branch target alignments. */ | |
6740 | ||
6741 | static bfd_boolean | |
7fa3d080 | 6742 | analyze_relocations (struct bfd_link_info *link_info) |
43cd72b9 BW |
6743 | { |
6744 | bfd *abfd; | |
6745 | asection *sec; | |
6746 | bfd_boolean is_relaxable = FALSE; | |
6747 | ||
6748 | /* Initialize the per-section relaxation info. */ | |
c72f2fb2 | 6749 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6750 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6751 | { | |
6752 | init_xtensa_relax_info (sec); | |
6753 | } | |
6754 | ||
6755 | /* Mark relaxable sections (and count relocations against each one). */ | |
c72f2fb2 | 6756 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6757 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6758 | { | |
6759 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
6760 | return FALSE; | |
6761 | } | |
6762 | ||
6763 | /* Bail out if there are no relaxable sections. */ | |
6764 | if (!is_relaxable) | |
6765 | return TRUE; | |
6766 | ||
6767 | /* Allocate space for source_relocs. */ | |
c72f2fb2 | 6768 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6769 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6770 | { | |
6771 | xtensa_relax_info *relax_info; | |
6772 | ||
6773 | relax_info = get_xtensa_relax_info (sec); | |
6774 | if (relax_info->is_relaxable_literal_section | |
6775 | || relax_info->is_relaxable_asm_section) | |
6776 | { | |
6777 | relax_info->src_relocs = (source_reloc *) | |
6778 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
6779 | } | |
25c6282a BW |
6780 | else |
6781 | relax_info->src_count = 0; | |
43cd72b9 BW |
6782 | } |
6783 | ||
6784 | /* Collect info on relocations against each relaxable section. */ | |
c72f2fb2 | 6785 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6786 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6787 | { | |
6788 | if (!collect_source_relocs (abfd, sec, link_info)) | |
6789 | return FALSE; | |
6790 | } | |
6791 | ||
6792 | /* Compute the text actions. */ | |
c72f2fb2 | 6793 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
43cd72b9 BW |
6794 | for (sec = abfd->sections; sec != NULL; sec = sec->next) |
6795 | { | |
6796 | if (!compute_text_actions (abfd, sec, link_info)) | |
6797 | return FALSE; | |
6798 | } | |
6799 | ||
6800 | return TRUE; | |
6801 | } | |
6802 | ||
6803 | ||
6804 | /* Find all the sections that might be relaxed. The motivation for | |
6805 | this pass is that collect_source_relocs() needs to record _all_ the | |
6806 | relocations that target each relaxable section. That is expensive | |
6807 | and unnecessary unless the target section is actually going to be | |
6808 | relaxed. This pass identifies all such sections by checking if | |
6809 | they have L32Rs pointing to them. In the process, the total number | |
6810 | of relocations targeting each section is also counted so that we | |
6811 | know how much space to allocate for source_relocs against each | |
6812 | relaxable literal section. */ | |
6813 | ||
6814 | static bfd_boolean | |
7fa3d080 BW |
6815 | find_relaxable_sections (bfd *abfd, |
6816 | asection *sec, | |
6817 | struct bfd_link_info *link_info, | |
6818 | bfd_boolean *is_relaxable_p) | |
43cd72b9 BW |
6819 | { |
6820 | Elf_Internal_Rela *internal_relocs; | |
6821 | bfd_byte *contents; | |
6822 | bfd_boolean ok = TRUE; | |
6823 | unsigned i; | |
6824 | xtensa_relax_info *source_relax_info; | |
25c6282a | 6825 | bfd_boolean is_l32r_reloc; |
43cd72b9 BW |
6826 | |
6827 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6828 | link_info->keep_memory); | |
68ffbac6 | 6829 | if (internal_relocs == NULL) |
43cd72b9 BW |
6830 | return ok; |
6831 | ||
6832 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6833 | if (contents == NULL && sec->size != 0) | |
6834 | { | |
6835 | ok = FALSE; | |
6836 | goto error_return; | |
6837 | } | |
6838 | ||
6839 | source_relax_info = get_xtensa_relax_info (sec); | |
68ffbac6 | 6840 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
6841 | { |
6842 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6843 | r_reloc r_rel; | |
6844 | asection *target_sec; | |
6845 | xtensa_relax_info *target_relax_info; | |
6846 | ||
6847 | /* If this section has not already been marked as "relaxable", and | |
6848 | if it contains any ASM_EXPAND relocations (marking expanded | |
6849 | longcalls) that can be optimized into direct calls, then mark | |
6850 | the section as "relaxable". */ | |
6851 | if (source_relax_info | |
6852 | && !source_relax_info->is_relaxable_asm_section | |
6853 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) | |
6854 | { | |
6855 | bfd_boolean is_reachable = FALSE; | |
6856 | if (is_resolvable_asm_expansion (abfd, sec, contents, irel, | |
6857 | link_info, &is_reachable) | |
6858 | && is_reachable) | |
6859 | { | |
6860 | source_relax_info->is_relaxable_asm_section = TRUE; | |
6861 | *is_relaxable_p = TRUE; | |
6862 | } | |
6863 | } | |
6864 | ||
6865 | r_reloc_init (&r_rel, abfd, irel, contents, | |
6866 | bfd_get_section_limit (abfd, sec)); | |
6867 | ||
6868 | target_sec = r_reloc_get_section (&r_rel); | |
6869 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6870 | if (!target_relax_info) | |
6871 | continue; | |
6872 | ||
6873 | /* Count PC-relative operand relocations against the target section. | |
6874 | Note: The conditions tested here must match the conditions under | |
6875 | which init_source_reloc is called in collect_source_relocs(). */ | |
25c6282a BW |
6876 | is_l32r_reloc = FALSE; |
6877 | if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
6878 | { | |
6879 | xtensa_opcode opcode = | |
6880 | get_relocation_opcode (abfd, sec, contents, irel); | |
6881 | if (opcode != XTENSA_UNDEFINED) | |
6882 | { | |
6883 | is_l32r_reloc = (opcode == get_l32r_opcode ()); | |
6884 | if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) | |
6885 | || is_l32r_reloc) | |
6886 | target_relax_info->src_count++; | |
6887 | } | |
6888 | } | |
43cd72b9 | 6889 | |
25c6282a | 6890 | if (is_l32r_reloc && r_reloc_is_defined (&r_rel)) |
43cd72b9 BW |
6891 | { |
6892 | /* Mark the target section as relaxable. */ | |
6893 | target_relax_info->is_relaxable_literal_section = TRUE; | |
6894 | *is_relaxable_p = TRUE; | |
6895 | } | |
6896 | } | |
6897 | ||
6898 | error_return: | |
6899 | release_contents (sec, contents); | |
6900 | release_internal_relocs (sec, internal_relocs); | |
6901 | return ok; | |
6902 | } | |
6903 | ||
6904 | ||
6905 | /* Record _all_ the relocations that point to relaxable sections, and | |
6906 | get rid of ASM_EXPAND relocs by either converting them to | |
6907 | ASM_SIMPLIFY or by removing them. */ | |
6908 | ||
6909 | static bfd_boolean | |
7fa3d080 BW |
6910 | collect_source_relocs (bfd *abfd, |
6911 | asection *sec, | |
6912 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6913 | { |
6914 | Elf_Internal_Rela *internal_relocs; | |
6915 | bfd_byte *contents; | |
6916 | bfd_boolean ok = TRUE; | |
6917 | unsigned i; | |
6918 | bfd_size_type sec_size; | |
6919 | ||
68ffbac6 | 6920 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
43cd72b9 | 6921 | link_info->keep_memory); |
68ffbac6 | 6922 | if (internal_relocs == NULL) |
43cd72b9 BW |
6923 | return ok; |
6924 | ||
6925 | sec_size = bfd_get_section_limit (abfd, sec); | |
6926 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6927 | if (contents == NULL && sec_size != 0) | |
6928 | { | |
6929 | ok = FALSE; | |
6930 | goto error_return; | |
6931 | } | |
6932 | ||
6933 | /* Record relocations against relaxable literal sections. */ | |
68ffbac6 | 6934 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
6935 | { |
6936 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6937 | r_reloc r_rel; | |
6938 | asection *target_sec; | |
6939 | xtensa_relax_info *target_relax_info; | |
6940 | ||
6941 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
6942 | ||
6943 | target_sec = r_reloc_get_section (&r_rel); | |
6944 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6945 | ||
6946 | if (target_relax_info | |
6947 | && (target_relax_info->is_relaxable_literal_section | |
6948 | || target_relax_info->is_relaxable_asm_section)) | |
6949 | { | |
6950 | xtensa_opcode opcode = XTENSA_UNDEFINED; | |
6951 | int opnd = -1; | |
6952 | bfd_boolean is_abs_literal = FALSE; | |
6953 | ||
6954 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
6955 | { | |
6956 | /* None of the current alternate relocs are PC-relative, | |
6957 | and only PC-relative relocs matter here. However, we | |
6958 | still need to record the opcode for literal | |
6959 | coalescing. */ | |
6960 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6961 | if (opcode == get_l32r_opcode ()) | |
6962 | { | |
6963 | is_abs_literal = TRUE; | |
6964 | opnd = 1; | |
6965 | } | |
6966 | else | |
6967 | opcode = XTENSA_UNDEFINED; | |
6968 | } | |
6969 | else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
6970 | { | |
6971 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6972 | opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
6973 | } | |
6974 | ||
6975 | if (opcode != XTENSA_UNDEFINED) | |
6976 | { | |
6977 | int src_next = target_relax_info->src_next++; | |
6978 | source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; | |
6979 | ||
6980 | init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, | |
6981 | is_abs_literal); | |
6982 | } | |
6983 | } | |
6984 | } | |
6985 | ||
6986 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
6987 | src_relocs array for the target literal section may still be | |
6988 | incomplete, but it must at least contain the entries for the L32R | |
6989 | relocations associated with ASM_EXPANDs because they were just | |
6990 | added in the preceding loop over the relocations. */ | |
6991 | ||
68ffbac6 | 6992 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
6993 | { |
6994 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6995 | bfd_boolean is_reachable; | |
6996 | ||
6997 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
6998 | &is_reachable)) | |
6999 | continue; | |
7000 | ||
7001 | if (is_reachable) | |
7002 | { | |
7003 | Elf_Internal_Rela *l32r_irel; | |
7004 | r_reloc r_rel; | |
7005 | asection *target_sec; | |
7006 | xtensa_relax_info *target_relax_info; | |
7007 | ||
7008 | /* Mark the source_reloc for the L32R so that it will be | |
7009 | removed in compute_removed_literals(), along with the | |
7010 | associated literal. */ | |
7011 | l32r_irel = find_associated_l32r_irel (abfd, sec, contents, | |
7012 | irel, internal_relocs); | |
7013 | if (l32r_irel == NULL) | |
7014 | continue; | |
7015 | ||
7016 | r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); | |
7017 | ||
7018 | target_sec = r_reloc_get_section (&r_rel); | |
7019 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7020 | ||
7021 | if (target_relax_info | |
7022 | && (target_relax_info->is_relaxable_literal_section | |
7023 | || target_relax_info->is_relaxable_asm_section)) | |
7024 | { | |
7025 | source_reloc *s_reloc; | |
7026 | ||
7027 | /* Search the source_relocs for the entry corresponding to | |
7028 | the l32r_irel. Note: The src_relocs array is not yet | |
7029 | sorted, but it wouldn't matter anyway because we're | |
7030 | searching by source offset instead of target offset. */ | |
68ffbac6 | 7031 | s_reloc = find_source_reloc (target_relax_info->src_relocs, |
43cd72b9 BW |
7032 | target_relax_info->src_next, |
7033 | sec, l32r_irel); | |
7034 | BFD_ASSERT (s_reloc); | |
7035 | s_reloc->is_null = TRUE; | |
7036 | } | |
7037 | ||
7038 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
7039 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
7040 | R_XTENSA_ASM_SIMPLIFY); | |
7041 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7042 | ||
7043 | pin_internal_relocs (sec, internal_relocs); | |
7044 | } | |
7045 | else | |
7046 | { | |
7047 | /* It is resolvable but doesn't reach. We resolve now | |
7048 | by eliminating the relocation -- the call will remain | |
7049 | expanded into L32R/CALLX. */ | |
7050 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7051 | pin_internal_relocs (sec, internal_relocs); | |
7052 | } | |
7053 | } | |
7054 | ||
7055 | error_return: | |
7056 | release_contents (sec, contents); | |
7057 | release_internal_relocs (sec, internal_relocs); | |
7058 | return ok; | |
7059 | } | |
7060 | ||
7061 | ||
7062 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
7063 | be resolved on a final link or when a partial link locates it in the | |
7064 | same section as the target. Set "is_reachable" flag if the target of | |
7065 | the call is within the range of a direct call, given the current VMA | |
7066 | for this section and the target section. */ | |
7067 | ||
7068 | bfd_boolean | |
7fa3d080 BW |
7069 | is_resolvable_asm_expansion (bfd *abfd, |
7070 | asection *sec, | |
7071 | bfd_byte *contents, | |
7072 | Elf_Internal_Rela *irel, | |
7073 | struct bfd_link_info *link_info, | |
7074 | bfd_boolean *is_reachable_p) | |
43cd72b9 BW |
7075 | { |
7076 | asection *target_sec; | |
7077 | bfd_vma target_offset; | |
7078 | r_reloc r_rel; | |
7079 | xtensa_opcode opcode, direct_call_opcode; | |
7080 | bfd_vma self_address; | |
7081 | bfd_vma dest_address; | |
7082 | bfd_boolean uses_l32r; | |
7083 | bfd_size_type sec_size; | |
7084 | ||
7085 | *is_reachable_p = FALSE; | |
7086 | ||
7087 | if (contents == NULL) | |
7088 | return FALSE; | |
7089 | ||
68ffbac6 | 7090 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) |
43cd72b9 BW |
7091 | return FALSE; |
7092 | ||
7093 | sec_size = bfd_get_section_limit (abfd, sec); | |
7094 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
7095 | sec_size - irel->r_offset, &uses_l32r); | |
7096 | /* Optimization of longcalls that use CONST16 is not yet implemented. */ | |
7097 | if (!uses_l32r) | |
7098 | return FALSE; | |
68ffbac6 | 7099 | |
43cd72b9 BW |
7100 | direct_call_opcode = swap_callx_for_call_opcode (opcode); |
7101 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
7102 | return FALSE; | |
7103 | ||
7104 | /* Check and see that the target resolves. */ | |
7105 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7106 | if (!r_reloc_is_defined (&r_rel)) | |
7107 | return FALSE; | |
7108 | ||
7109 | target_sec = r_reloc_get_section (&r_rel); | |
7110 | target_offset = r_rel.target_offset; | |
7111 | ||
7112 | /* If the target is in a shared library, then it doesn't reach. This | |
7113 | isn't supposed to come up because the compiler should never generate | |
7114 | non-PIC calls on systems that use shared libraries, but the linker | |
7115 | shouldn't crash regardless. */ | |
7116 | if (!target_sec->output_section) | |
7117 | return FALSE; | |
68ffbac6 | 7118 | |
43cd72b9 BW |
7119 | /* For relocatable sections, we can only simplify when the output |
7120 | section of the target is the same as the output section of the | |
7121 | source. */ | |
7122 | if (link_info->relocatable | |
7123 | && (target_sec->output_section != sec->output_section | |
7124 | || is_reloc_sym_weak (abfd, irel))) | |
7125 | return FALSE; | |
7126 | ||
331ed130 SA |
7127 | if (target_sec->output_section != sec->output_section) |
7128 | { | |
7129 | /* If the two sections are sufficiently far away that relaxation | |
7130 | might take the call out of range, we can't simplify. For | |
7131 | example, a positive displacement call into another memory | |
7132 | could get moved to a lower address due to literal removal, | |
7133 | but the destination won't move, and so the displacment might | |
7134 | get larger. | |
7135 | ||
7136 | If the displacement is negative, assume the destination could | |
7137 | move as far back as the start of the output section. The | |
7138 | self_address will be at least as far into the output section | |
7139 | as it is prior to relaxation. | |
7140 | ||
7141 | If the displacement is postive, assume the destination will be in | |
7142 | it's pre-relaxed location (because relaxation only makes sections | |
7143 | smaller). The self_address could go all the way to the beginning | |
7144 | of the output section. */ | |
7145 | ||
7146 | dest_address = target_sec->output_section->vma; | |
7147 | self_address = sec->output_section->vma; | |
7148 | ||
7149 | if (sec->output_section->vma > target_sec->output_section->vma) | |
7150 | self_address += sec->output_offset + irel->r_offset + 3; | |
7151 | else | |
7152 | dest_address += bfd_get_section_limit (abfd, target_sec->output_section); | |
7153 | /* Call targets should be four-byte aligned. */ | |
7154 | dest_address = (dest_address + 3) & ~3; | |
7155 | } | |
7156 | else | |
7157 | { | |
7158 | ||
7159 | self_address = (sec->output_section->vma | |
7160 | + sec->output_offset + irel->r_offset + 3); | |
7161 | dest_address = (target_sec->output_section->vma | |
7162 | + target_sec->output_offset + target_offset); | |
7163 | } | |
68ffbac6 | 7164 | |
43cd72b9 BW |
7165 | *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, |
7166 | self_address, dest_address); | |
7167 | ||
7168 | if ((self_address >> CALL_SEGMENT_BITS) != | |
7169 | (dest_address >> CALL_SEGMENT_BITS)) | |
7170 | return FALSE; | |
7171 | ||
7172 | return TRUE; | |
7173 | } | |
7174 | ||
7175 | ||
7176 | static Elf_Internal_Rela * | |
7fa3d080 BW |
7177 | find_associated_l32r_irel (bfd *abfd, |
7178 | asection *sec, | |
7179 | bfd_byte *contents, | |
7180 | Elf_Internal_Rela *other_irel, | |
7181 | Elf_Internal_Rela *internal_relocs) | |
43cd72b9 BW |
7182 | { |
7183 | unsigned i; | |
e0001a05 | 7184 | |
68ffbac6 | 7185 | for (i = 0; i < sec->reloc_count; i++) |
43cd72b9 BW |
7186 | { |
7187 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
e0001a05 | 7188 | |
43cd72b9 BW |
7189 | if (irel == other_irel) |
7190 | continue; | |
7191 | if (irel->r_offset != other_irel->r_offset) | |
7192 | continue; | |
7193 | if (is_l32r_relocation (abfd, sec, contents, irel)) | |
7194 | return irel; | |
7195 | } | |
7196 | ||
7197 | return NULL; | |
e0001a05 NC |
7198 | } |
7199 | ||
7200 | ||
cb337148 BW |
7201 | static xtensa_opcode * |
7202 | build_reloc_opcodes (bfd *abfd, | |
7203 | asection *sec, | |
7204 | bfd_byte *contents, | |
7205 | Elf_Internal_Rela *internal_relocs) | |
7206 | { | |
7207 | unsigned i; | |
7208 | xtensa_opcode *reloc_opcodes = | |
7209 | (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); | |
7210 | for (i = 0; i < sec->reloc_count; i++) | |
7211 | { | |
7212 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
7213 | reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); | |
7214 | } | |
7215 | return reloc_opcodes; | |
7216 | } | |
7217 | ||
7218 | ||
43cd72b9 BW |
7219 | /* The compute_text_actions function will build a list of potential |
7220 | transformation actions for code in the extended basic block of each | |
7221 | longcall that is optimized to a direct call. From this list we | |
7222 | generate a set of actions to actually perform that optimizes for | |
7223 | space and, if not using size_opt, maintains branch target | |
7224 | alignments. | |
e0001a05 | 7225 | |
43cd72b9 BW |
7226 | These actions to be performed are placed on a per-section list. |
7227 | The actual changes are performed by relax_section() in the second | |
7228 | pass. */ | |
7229 | ||
7230 | bfd_boolean | |
7fa3d080 BW |
7231 | compute_text_actions (bfd *abfd, |
7232 | asection *sec, | |
7233 | struct bfd_link_info *link_info) | |
e0001a05 | 7234 | { |
cb337148 | 7235 | xtensa_opcode *reloc_opcodes = NULL; |
43cd72b9 | 7236 | xtensa_relax_info *relax_info; |
e0001a05 | 7237 | bfd_byte *contents; |
43cd72b9 | 7238 | Elf_Internal_Rela *internal_relocs; |
e0001a05 NC |
7239 | bfd_boolean ok = TRUE; |
7240 | unsigned i; | |
43cd72b9 BW |
7241 | property_table_entry *prop_table = 0; |
7242 | int ptblsize = 0; | |
7243 | bfd_size_type sec_size; | |
43cd72b9 | 7244 | |
43cd72b9 BW |
7245 | relax_info = get_xtensa_relax_info (sec); |
7246 | BFD_ASSERT (relax_info); | |
25c6282a BW |
7247 | BFD_ASSERT (relax_info->src_next == relax_info->src_count); |
7248 | ||
7249 | /* Do nothing if the section contains no optimized longcalls. */ | |
43cd72b9 BW |
7250 | if (!relax_info->is_relaxable_asm_section) |
7251 | return ok; | |
e0001a05 NC |
7252 | |
7253 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7254 | link_info->keep_memory); | |
e0001a05 | 7255 | |
43cd72b9 BW |
7256 | if (internal_relocs) |
7257 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
7258 | internal_reloc_compare); | |
7259 | ||
7260 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 | 7261 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 7262 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
7263 | { |
7264 | ok = FALSE; | |
7265 | goto error_return; | |
7266 | } | |
7267 | ||
43cd72b9 BW |
7268 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
7269 | XTENSA_PROP_SEC_NAME, FALSE); | |
7270 | if (ptblsize < 0) | |
7271 | { | |
7272 | ok = FALSE; | |
7273 | goto error_return; | |
7274 | } | |
7275 | ||
7276 | for (i = 0; i < sec->reloc_count; i++) | |
e0001a05 NC |
7277 | { |
7278 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 BW |
7279 | bfd_vma r_offset; |
7280 | property_table_entry *the_entry; | |
7281 | int ptbl_idx; | |
7282 | ebb_t *ebb; | |
7283 | ebb_constraint ebb_table; | |
7284 | bfd_size_type simplify_size; | |
7285 | ||
7286 | if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) | |
7287 | continue; | |
7288 | r_offset = irel->r_offset; | |
e0001a05 | 7289 | |
43cd72b9 BW |
7290 | simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); |
7291 | if (simplify_size == 0) | |
7292 | { | |
7293 | (*_bfd_error_handler) | |
7294 | (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"), | |
7295 | sec->owner, sec, r_offset); | |
7296 | continue; | |
7297 | } | |
e0001a05 | 7298 | |
43cd72b9 BW |
7299 | /* If the instruction table is not around, then don't do this |
7300 | relaxation. */ | |
7301 | the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7302 | sec->vma + irel->r_offset); | |
7303 | if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) | |
7304 | { | |
7305 | text_action_add (&relax_info->action_list, | |
7306 | ta_convert_longcall, sec, r_offset, | |
7307 | 0); | |
7308 | continue; | |
7309 | } | |
7310 | ||
7311 | /* If the next longcall happens to be at the same address as an | |
7312 | unreachable section of size 0, then skip forward. */ | |
7313 | ptbl_idx = the_entry - prop_table; | |
7314 | while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) | |
7315 | && the_entry->size == 0 | |
7316 | && ptbl_idx + 1 < ptblsize | |
7317 | && (prop_table[ptbl_idx + 1].address | |
7318 | == prop_table[ptbl_idx].address)) | |
7319 | { | |
7320 | ptbl_idx++; | |
7321 | the_entry++; | |
7322 | } | |
e0001a05 | 7323 | |
99ded152 | 7324 | if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM) |
43cd72b9 BW |
7325 | /* NO_REORDER is OK */ |
7326 | continue; | |
e0001a05 | 7327 | |
43cd72b9 BW |
7328 | init_ebb_constraint (&ebb_table); |
7329 | ebb = &ebb_table.ebb; | |
7330 | init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, | |
7331 | internal_relocs, sec->reloc_count); | |
7332 | ebb->start_offset = r_offset + simplify_size; | |
7333 | ebb->end_offset = r_offset + simplify_size; | |
7334 | ebb->start_ptbl_idx = ptbl_idx; | |
7335 | ebb->end_ptbl_idx = ptbl_idx; | |
7336 | ebb->start_reloc_idx = i; | |
7337 | ebb->end_reloc_idx = i; | |
7338 | ||
cb337148 BW |
7339 | /* Precompute the opcode for each relocation. */ |
7340 | if (reloc_opcodes == NULL) | |
7341 | reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, | |
7342 | internal_relocs); | |
7343 | ||
43cd72b9 BW |
7344 | if (!extend_ebb_bounds (ebb) |
7345 | || !compute_ebb_proposed_actions (&ebb_table) | |
7346 | || !compute_ebb_actions (&ebb_table) | |
7347 | || !check_section_ebb_pcrels_fit (abfd, sec, contents, | |
cb337148 BW |
7348 | internal_relocs, &ebb_table, |
7349 | reloc_opcodes) | |
43cd72b9 | 7350 | || !check_section_ebb_reduces (&ebb_table)) |
e0001a05 | 7351 | { |
43cd72b9 BW |
7352 | /* If anything goes wrong or we get unlucky and something does |
7353 | not fit, with our plan because of expansion between | |
7354 | critical branches, just convert to a NOP. */ | |
7355 | ||
7356 | text_action_add (&relax_info->action_list, | |
7357 | ta_convert_longcall, sec, r_offset, 0); | |
7358 | i = ebb_table.ebb.end_reloc_idx; | |
7359 | free_ebb_constraint (&ebb_table); | |
7360 | continue; | |
e0001a05 | 7361 | } |
43cd72b9 BW |
7362 | |
7363 | text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); | |
7364 | ||
7365 | /* Update the index so we do not go looking at the relocations | |
7366 | we have already processed. */ | |
7367 | i = ebb_table.ebb.end_reloc_idx; | |
7368 | free_ebb_constraint (&ebb_table); | |
e0001a05 NC |
7369 | } |
7370 | ||
43cd72b9 | 7371 | #if DEBUG |
7fa3d080 | 7372 | if (relax_info->action_list.head) |
43cd72b9 BW |
7373 | print_action_list (stderr, &relax_info->action_list); |
7374 | #endif | |
7375 | ||
7376 | error_return: | |
e0001a05 NC |
7377 | release_contents (sec, contents); |
7378 | release_internal_relocs (sec, internal_relocs); | |
43cd72b9 BW |
7379 | if (prop_table) |
7380 | free (prop_table); | |
cb337148 BW |
7381 | if (reloc_opcodes) |
7382 | free (reloc_opcodes); | |
43cd72b9 | 7383 | |
e0001a05 NC |
7384 | return ok; |
7385 | } | |
7386 | ||
7387 | ||
64b607e6 BW |
7388 | /* Do not widen an instruction if it is preceeded by a |
7389 | loop opcode. It might cause misalignment. */ | |
7390 | ||
7391 | static bfd_boolean | |
7392 | prev_instr_is_a_loop (bfd_byte *contents, | |
7393 | bfd_size_type content_length, | |
7394 | bfd_size_type offset) | |
7395 | { | |
7396 | xtensa_opcode prev_opcode; | |
7397 | ||
7398 | if (offset < 3) | |
7399 | return FALSE; | |
7400 | prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); | |
7401 | return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); | |
68ffbac6 | 7402 | } |
64b607e6 BW |
7403 | |
7404 | ||
43cd72b9 | 7405 | /* Find all of the possible actions for an extended basic block. */ |
e0001a05 | 7406 | |
43cd72b9 | 7407 | bfd_boolean |
7fa3d080 | 7408 | compute_ebb_proposed_actions (ebb_constraint *ebb_table) |
e0001a05 | 7409 | { |
43cd72b9 BW |
7410 | const ebb_t *ebb = &ebb_table->ebb; |
7411 | unsigned rel_idx = ebb->start_reloc_idx; | |
7412 | property_table_entry *entry, *start_entry, *end_entry; | |
64b607e6 BW |
7413 | bfd_vma offset = 0; |
7414 | xtensa_isa isa = xtensa_default_isa; | |
7415 | xtensa_format fmt; | |
7416 | static xtensa_insnbuf insnbuf = NULL; | |
7417 | static xtensa_insnbuf slotbuf = NULL; | |
7418 | ||
7419 | if (insnbuf == NULL) | |
7420 | { | |
7421 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7422 | slotbuf = xtensa_insnbuf_alloc (isa); | |
7423 | } | |
e0001a05 | 7424 | |
43cd72b9 BW |
7425 | start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
7426 | end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
e0001a05 | 7427 | |
43cd72b9 | 7428 | for (entry = start_entry; entry <= end_entry; entry++) |
e0001a05 | 7429 | { |
64b607e6 | 7430 | bfd_vma start_offset, end_offset; |
43cd72b9 | 7431 | bfd_size_type insn_len; |
e0001a05 | 7432 | |
43cd72b9 BW |
7433 | start_offset = entry->address - ebb->sec->vma; |
7434 | end_offset = entry->address + entry->size - ebb->sec->vma; | |
e0001a05 | 7435 | |
43cd72b9 BW |
7436 | if (entry == start_entry) |
7437 | start_offset = ebb->start_offset; | |
7438 | if (entry == end_entry) | |
7439 | end_offset = ebb->end_offset; | |
7440 | offset = start_offset; | |
e0001a05 | 7441 | |
43cd72b9 BW |
7442 | if (offset == entry->address - ebb->sec->vma |
7443 | && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) | |
7444 | { | |
7445 | enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; | |
7446 | BFD_ASSERT (offset != end_offset); | |
7447 | if (offset == end_offset) | |
7448 | return FALSE; | |
e0001a05 | 7449 | |
43cd72b9 BW |
7450 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
7451 | offset); | |
68ffbac6 | 7452 | if (insn_len == 0) |
64b607e6 BW |
7453 | goto decode_error; |
7454 | ||
43cd72b9 BW |
7455 | if (check_branch_target_aligned_address (offset, insn_len)) |
7456 | align_type = EBB_REQUIRE_TGT_ALIGN; | |
7457 | ||
7458 | ebb_propose_action (ebb_table, align_type, 0, | |
7459 | ta_none, offset, 0, TRUE); | |
7460 | } | |
7461 | ||
7462 | while (offset != end_offset) | |
e0001a05 | 7463 | { |
43cd72b9 | 7464 | Elf_Internal_Rela *irel; |
e0001a05 | 7465 | xtensa_opcode opcode; |
e0001a05 | 7466 | |
43cd72b9 BW |
7467 | while (rel_idx < ebb->end_reloc_idx |
7468 | && (ebb->relocs[rel_idx].r_offset < offset | |
7469 | || (ebb->relocs[rel_idx].r_offset == offset | |
7470 | && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) | |
7471 | != R_XTENSA_ASM_SIMPLIFY)))) | |
7472 | rel_idx++; | |
7473 | ||
7474 | /* Check for longcall. */ | |
7475 | irel = &ebb->relocs[rel_idx]; | |
7476 | if (irel->r_offset == offset | |
7477 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) | |
7478 | { | |
7479 | bfd_size_type simplify_size; | |
e0001a05 | 7480 | |
68ffbac6 | 7481 | simplify_size = get_asm_simplify_size (ebb->contents, |
43cd72b9 BW |
7482 | ebb->content_length, |
7483 | irel->r_offset); | |
7484 | if (simplify_size == 0) | |
64b607e6 | 7485 | goto decode_error; |
43cd72b9 BW |
7486 | |
7487 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7488 | ta_convert_longcall, offset, 0, TRUE); | |
68ffbac6 | 7489 | |
43cd72b9 BW |
7490 | offset += simplify_size; |
7491 | continue; | |
7492 | } | |
e0001a05 | 7493 | |
64b607e6 BW |
7494 | if (offset + MIN_INSN_LENGTH > ebb->content_length) |
7495 | goto decode_error; | |
7496 | xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], | |
7497 | ebb->content_length - offset); | |
7498 | fmt = xtensa_format_decode (isa, insnbuf); | |
7499 | if (fmt == XTENSA_UNDEFINED) | |
7500 | goto decode_error; | |
7501 | insn_len = xtensa_format_length (isa, fmt); | |
7502 | if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) | |
7503 | goto decode_error; | |
7504 | ||
7505 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
43cd72b9 | 7506 | { |
64b607e6 BW |
7507 | offset += insn_len; |
7508 | continue; | |
43cd72b9 | 7509 | } |
64b607e6 BW |
7510 | |
7511 | xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); | |
7512 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
7513 | if (opcode == XTENSA_UNDEFINED) | |
7514 | goto decode_error; | |
7515 | ||
43cd72b9 | 7516 | if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 |
99ded152 | 7517 | && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 | 7518 | && can_narrow_instruction (slotbuf, fmt, opcode) != 0) |
43cd72b9 BW |
7519 | { |
7520 | /* Add an instruction narrow action. */ | |
7521 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7522 | ta_narrow_insn, offset, 0, FALSE); | |
43cd72b9 | 7523 | } |
99ded152 | 7524 | else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 |
64b607e6 BW |
7525 | && can_widen_instruction (slotbuf, fmt, opcode) != 0 |
7526 | && ! prev_instr_is_a_loop (ebb->contents, | |
7527 | ebb->content_length, offset)) | |
43cd72b9 BW |
7528 | { |
7529 | /* Add an instruction widen action. */ | |
7530 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7531 | ta_widen_insn, offset, 0, FALSE); | |
43cd72b9 | 7532 | } |
64b607e6 | 7533 | else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) |
43cd72b9 BW |
7534 | { |
7535 | /* Check for branch targets. */ | |
7536 | ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, | |
7537 | ta_none, offset, 0, TRUE); | |
43cd72b9 BW |
7538 | } |
7539 | ||
7540 | offset += insn_len; | |
e0001a05 NC |
7541 | } |
7542 | } | |
7543 | ||
43cd72b9 BW |
7544 | if (ebb->ends_unreachable) |
7545 | { | |
7546 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
7547 | ta_fill, ebb->end_offset, 0, TRUE); | |
7548 | } | |
e0001a05 | 7549 | |
43cd72b9 | 7550 | return TRUE; |
64b607e6 BW |
7551 | |
7552 | decode_error: | |
7553 | (*_bfd_error_handler) | |
7554 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
7555 | ebb->sec->owner, ebb->sec, offset); | |
7556 | return FALSE; | |
43cd72b9 BW |
7557 | } |
7558 | ||
7559 | ||
7560 | /* After all of the information has collected about the | |
7561 | transformations possible in an EBB, compute the appropriate actions | |
7562 | here in compute_ebb_actions. We still must check later to make | |
7563 | sure that the actions do not break any relocations. The algorithm | |
7564 | used here is pretty greedy. Basically, it removes as many no-ops | |
7565 | as possible so that the end of the EBB has the same alignment | |
7566 | characteristics as the original. First, it uses narrowing, then | |
7567 | fill space at the end of the EBB, and finally widenings. If that | |
7568 | does not work, it tries again with one fewer no-op removed. The | |
7569 | optimization will only be performed if all of the branch targets | |
7570 | that were aligned before transformation are also aligned after the | |
7571 | transformation. | |
7572 | ||
7573 | When the size_opt flag is set, ignore the branch target alignments, | |
7574 | narrow all wide instructions, and remove all no-ops unless the end | |
7575 | of the EBB prevents it. */ | |
7576 | ||
7577 | bfd_boolean | |
7fa3d080 | 7578 | compute_ebb_actions (ebb_constraint *ebb_table) |
43cd72b9 BW |
7579 | { |
7580 | unsigned i = 0; | |
7581 | unsigned j; | |
7582 | int removed_bytes = 0; | |
7583 | ebb_t *ebb = &ebb_table->ebb; | |
7584 | unsigned seg_idx_start = 0; | |
7585 | unsigned seg_idx_end = 0; | |
7586 | ||
7587 | /* We perform this like the assembler relaxation algorithm: Start by | |
7588 | assuming all instructions are narrow and all no-ops removed; then | |
7589 | walk through.... */ | |
7590 | ||
7591 | /* For each segment of this that has a solid constraint, check to | |
7592 | see if there are any combinations that will keep the constraint. | |
7593 | If so, use it. */ | |
7594 | for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) | |
e0001a05 | 7595 | { |
43cd72b9 BW |
7596 | bfd_boolean requires_text_end_align = FALSE; |
7597 | unsigned longcall_count = 0; | |
7598 | unsigned longcall_convert_count = 0; | |
7599 | unsigned narrowable_count = 0; | |
7600 | unsigned narrowable_convert_count = 0; | |
7601 | unsigned widenable_count = 0; | |
7602 | unsigned widenable_convert_count = 0; | |
e0001a05 | 7603 | |
43cd72b9 BW |
7604 | proposed_action *action = NULL; |
7605 | int align = (1 << ebb_table->ebb.sec->alignment_power); | |
e0001a05 | 7606 | |
43cd72b9 | 7607 | seg_idx_start = seg_idx_end; |
e0001a05 | 7608 | |
43cd72b9 BW |
7609 | for (i = seg_idx_start; i < ebb_table->action_count; i++) |
7610 | { | |
7611 | action = &ebb_table->actions[i]; | |
7612 | if (action->action == ta_convert_longcall) | |
7613 | longcall_count++; | |
7614 | if (action->action == ta_narrow_insn) | |
7615 | narrowable_count++; | |
7616 | if (action->action == ta_widen_insn) | |
7617 | widenable_count++; | |
7618 | if (action->action == ta_fill) | |
7619 | break; | |
7620 | if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
7621 | break; | |
7622 | if (action->align_type == EBB_REQUIRE_TGT_ALIGN | |
7623 | && !elf32xtensa_size_opt) | |
7624 | break; | |
7625 | } | |
7626 | seg_idx_end = i; | |
e0001a05 | 7627 | |
43cd72b9 BW |
7628 | if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) |
7629 | requires_text_end_align = TRUE; | |
e0001a05 | 7630 | |
43cd72b9 BW |
7631 | if (elf32xtensa_size_opt && !requires_text_end_align |
7632 | && action->align_type != EBB_REQUIRE_LOOP_ALIGN | |
7633 | && action->align_type != EBB_REQUIRE_TGT_ALIGN) | |
7634 | { | |
7635 | longcall_convert_count = longcall_count; | |
7636 | narrowable_convert_count = narrowable_count; | |
7637 | widenable_convert_count = 0; | |
7638 | } | |
7639 | else | |
7640 | { | |
7641 | /* There is a constraint. Convert the max number of longcalls. */ | |
7642 | narrowable_convert_count = 0; | |
7643 | longcall_convert_count = 0; | |
7644 | widenable_convert_count = 0; | |
e0001a05 | 7645 | |
43cd72b9 | 7646 | for (j = 0; j < longcall_count; j++) |
e0001a05 | 7647 | { |
43cd72b9 BW |
7648 | int removed = (longcall_count - j) * 3 & (align - 1); |
7649 | unsigned desire_narrow = (align - removed) & (align - 1); | |
7650 | unsigned desire_widen = removed; | |
7651 | if (desire_narrow <= narrowable_count) | |
7652 | { | |
7653 | narrowable_convert_count = desire_narrow; | |
7654 | narrowable_convert_count += | |
7655 | (align * ((narrowable_count - narrowable_convert_count) | |
7656 | / align)); | |
7657 | longcall_convert_count = (longcall_count - j); | |
7658 | widenable_convert_count = 0; | |
7659 | break; | |
7660 | } | |
7661 | if (desire_widen <= widenable_count && !elf32xtensa_size_opt) | |
7662 | { | |
7663 | narrowable_convert_count = 0; | |
7664 | longcall_convert_count = longcall_count - j; | |
7665 | widenable_convert_count = desire_widen; | |
7666 | break; | |
7667 | } | |
7668 | } | |
7669 | } | |
e0001a05 | 7670 | |
43cd72b9 BW |
7671 | /* Now the number of conversions are saved. Do them. */ |
7672 | for (i = seg_idx_start; i < seg_idx_end; i++) | |
7673 | { | |
7674 | action = &ebb_table->actions[i]; | |
7675 | switch (action->action) | |
7676 | { | |
7677 | case ta_convert_longcall: | |
7678 | if (longcall_convert_count != 0) | |
7679 | { | |
7680 | action->action = ta_remove_longcall; | |
7681 | action->do_action = TRUE; | |
7682 | action->removed_bytes += 3; | |
7683 | longcall_convert_count--; | |
7684 | } | |
7685 | break; | |
7686 | case ta_narrow_insn: | |
7687 | if (narrowable_convert_count != 0) | |
7688 | { | |
7689 | action->do_action = TRUE; | |
7690 | action->removed_bytes += 1; | |
7691 | narrowable_convert_count--; | |
7692 | } | |
7693 | break; | |
7694 | case ta_widen_insn: | |
7695 | if (widenable_convert_count != 0) | |
7696 | { | |
7697 | action->do_action = TRUE; | |
7698 | action->removed_bytes -= 1; | |
7699 | widenable_convert_count--; | |
7700 | } | |
7701 | break; | |
7702 | default: | |
7703 | break; | |
e0001a05 | 7704 | } |
43cd72b9 BW |
7705 | } |
7706 | } | |
e0001a05 | 7707 | |
43cd72b9 BW |
7708 | /* Now we move on to some local opts. Try to remove each of the |
7709 | remaining longcalls. */ | |
e0001a05 | 7710 | |
43cd72b9 BW |
7711 | if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) |
7712 | { | |
7713 | removed_bytes = 0; | |
7714 | for (i = 0; i < ebb_table->action_count; i++) | |
e0001a05 | 7715 | { |
43cd72b9 BW |
7716 | int old_removed_bytes = removed_bytes; |
7717 | proposed_action *action = &ebb_table->actions[i]; | |
7718 | ||
7719 | if (action->do_action && action->action == ta_convert_longcall) | |
7720 | { | |
7721 | bfd_boolean bad_alignment = FALSE; | |
7722 | removed_bytes += 3; | |
7723 | for (j = i + 1; j < ebb_table->action_count; j++) | |
7724 | { | |
7725 | proposed_action *new_action = &ebb_table->actions[j]; | |
7726 | bfd_vma offset = new_action->offset; | |
7727 | if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) | |
7728 | { | |
7729 | if (!check_branch_target_aligned | |
7730 | (ebb_table->ebb.contents, | |
7731 | ebb_table->ebb.content_length, | |
7732 | offset, offset - removed_bytes)) | |
7733 | { | |
7734 | bad_alignment = TRUE; | |
7735 | break; | |
7736 | } | |
7737 | } | |
7738 | if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
7739 | { | |
7740 | if (!check_loop_aligned (ebb_table->ebb.contents, | |
7741 | ebb_table->ebb.content_length, | |
7742 | offset, | |
7743 | offset - removed_bytes)) | |
7744 | { | |
7745 | bad_alignment = TRUE; | |
7746 | break; | |
7747 | } | |
7748 | } | |
7749 | if (new_action->action == ta_narrow_insn | |
7750 | && !new_action->do_action | |
7751 | && ebb_table->ebb.sec->alignment_power == 2) | |
7752 | { | |
7753 | /* Narrow an instruction and we are done. */ | |
7754 | new_action->do_action = TRUE; | |
7755 | new_action->removed_bytes += 1; | |
7756 | bad_alignment = FALSE; | |
7757 | break; | |
7758 | } | |
7759 | if (new_action->action == ta_widen_insn | |
7760 | && new_action->do_action | |
7761 | && ebb_table->ebb.sec->alignment_power == 2) | |
7762 | { | |
7763 | /* Narrow an instruction and we are done. */ | |
7764 | new_action->do_action = FALSE; | |
7765 | new_action->removed_bytes += 1; | |
7766 | bad_alignment = FALSE; | |
7767 | break; | |
7768 | } | |
5c5d6806 BW |
7769 | if (new_action->do_action) |
7770 | removed_bytes += new_action->removed_bytes; | |
43cd72b9 BW |
7771 | } |
7772 | if (!bad_alignment) | |
7773 | { | |
7774 | action->removed_bytes += 3; | |
7775 | action->action = ta_remove_longcall; | |
7776 | action->do_action = TRUE; | |
7777 | } | |
7778 | } | |
7779 | removed_bytes = old_removed_bytes; | |
7780 | if (action->do_action) | |
7781 | removed_bytes += action->removed_bytes; | |
e0001a05 NC |
7782 | } |
7783 | } | |
7784 | ||
43cd72b9 BW |
7785 | removed_bytes = 0; |
7786 | for (i = 0; i < ebb_table->action_count; ++i) | |
7787 | { | |
7788 | proposed_action *action = &ebb_table->actions[i]; | |
7789 | if (action->do_action) | |
7790 | removed_bytes += action->removed_bytes; | |
7791 | } | |
7792 | ||
7793 | if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 | |
7794 | && ebb->ends_unreachable) | |
7795 | { | |
7796 | proposed_action *action; | |
7797 | int br; | |
7798 | int extra_space; | |
7799 | ||
7800 | BFD_ASSERT (ebb_table->action_count != 0); | |
7801 | action = &ebb_table->actions[ebb_table->action_count - 1]; | |
7802 | BFD_ASSERT (action->action == ta_fill); | |
7803 | BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); | |
7804 | ||
7805 | extra_space = compute_fill_extra_space (ebb->ends_unreachable); | |
7806 | br = action->removed_bytes + removed_bytes + extra_space; | |
7807 | br = br & ((1 << ebb->sec->alignment_power ) - 1); | |
7808 | ||
7809 | action->removed_bytes = extra_space - br; | |
7810 | } | |
7811 | return TRUE; | |
e0001a05 NC |
7812 | } |
7813 | ||
7814 | ||
03e94c08 BW |
7815 | /* The xlate_map is a sorted array of address mappings designed to |
7816 | answer the offset_with_removed_text() query with a binary search instead | |
7817 | of a linear search through the section's action_list. */ | |
7818 | ||
7819 | typedef struct xlate_map_entry xlate_map_entry_t; | |
7820 | typedef struct xlate_map xlate_map_t; | |
7821 | ||
7822 | struct xlate_map_entry | |
7823 | { | |
7824 | unsigned orig_address; | |
7825 | unsigned new_address; | |
7826 | unsigned size; | |
7827 | }; | |
7828 | ||
7829 | struct xlate_map | |
7830 | { | |
7831 | unsigned entry_count; | |
7832 | xlate_map_entry_t *entry; | |
7833 | }; | |
7834 | ||
7835 | ||
68ffbac6 | 7836 | static int |
03e94c08 BW |
7837 | xlate_compare (const void *a_v, const void *b_v) |
7838 | { | |
7839 | const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; | |
7840 | const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; | |
7841 | if (a->orig_address < b->orig_address) | |
7842 | return -1; | |
7843 | if (a->orig_address > (b->orig_address + b->size - 1)) | |
7844 | return 1; | |
7845 | return 0; | |
7846 | } | |
7847 | ||
7848 | ||
7849 | static bfd_vma | |
7850 | xlate_offset_with_removed_text (const xlate_map_t *map, | |
7851 | text_action_list *action_list, | |
7852 | bfd_vma offset) | |
7853 | { | |
03e94c08 BW |
7854 | void *r; |
7855 | xlate_map_entry_t *e; | |
7856 | ||
7857 | if (map == NULL) | |
7858 | return offset_with_removed_text (action_list, offset); | |
7859 | ||
7860 | if (map->entry_count == 0) | |
7861 | return offset; | |
7862 | ||
03e94c08 BW |
7863 | r = bsearch (&offset, map->entry, map->entry_count, |
7864 | sizeof (xlate_map_entry_t), &xlate_compare); | |
7865 | e = (xlate_map_entry_t *) r; | |
68ffbac6 | 7866 | |
03e94c08 BW |
7867 | BFD_ASSERT (e != NULL); |
7868 | if (e == NULL) | |
7869 | return offset; | |
7870 | return e->new_address - e->orig_address + offset; | |
7871 | } | |
7872 | ||
7873 | ||
7874 | /* Build a binary searchable offset translation map from a section's | |
7875 | action list. */ | |
7876 | ||
7877 | static xlate_map_t * | |
7878 | build_xlate_map (asection *sec, xtensa_relax_info *relax_info) | |
7879 | { | |
7880 | xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); | |
7881 | text_action_list *action_list = &relax_info->action_list; | |
7882 | unsigned num_actions = 0; | |
7883 | text_action *r; | |
7884 | int removed; | |
7885 | xlate_map_entry_t *current_entry; | |
7886 | ||
7887 | if (map == NULL) | |
7888 | return NULL; | |
7889 | ||
7890 | num_actions = action_list_count (action_list); | |
68ffbac6 | 7891 | map->entry = (xlate_map_entry_t *) |
03e94c08 BW |
7892 | bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); |
7893 | if (map->entry == NULL) | |
7894 | { | |
7895 | free (map); | |
7896 | return NULL; | |
7897 | } | |
7898 | map->entry_count = 0; | |
68ffbac6 | 7899 | |
03e94c08 BW |
7900 | removed = 0; |
7901 | current_entry = &map->entry[0]; | |
7902 | ||
7903 | current_entry->orig_address = 0; | |
7904 | current_entry->new_address = 0; | |
7905 | current_entry->size = 0; | |
7906 | ||
7907 | for (r = action_list->head; r != NULL; r = r->next) | |
7908 | { | |
7909 | unsigned orig_size = 0; | |
7910 | switch (r->action) | |
7911 | { | |
7912 | case ta_none: | |
7913 | case ta_remove_insn: | |
7914 | case ta_convert_longcall: | |
7915 | case ta_remove_literal: | |
7916 | case ta_add_literal: | |
7917 | break; | |
7918 | case ta_remove_longcall: | |
7919 | orig_size = 6; | |
7920 | break; | |
7921 | case ta_narrow_insn: | |
7922 | orig_size = 3; | |
7923 | break; | |
7924 | case ta_widen_insn: | |
7925 | orig_size = 2; | |
7926 | break; | |
7927 | case ta_fill: | |
7928 | break; | |
7929 | } | |
7930 | current_entry->size = | |
7931 | r->offset + orig_size - current_entry->orig_address; | |
7932 | if (current_entry->size != 0) | |
7933 | { | |
7934 | current_entry++; | |
7935 | map->entry_count++; | |
7936 | } | |
7937 | current_entry->orig_address = r->offset + orig_size; | |
7938 | removed += r->removed_bytes; | |
7939 | current_entry->new_address = r->offset + orig_size - removed; | |
7940 | current_entry->size = 0; | |
7941 | } | |
7942 | ||
7943 | current_entry->size = (bfd_get_section_limit (sec->owner, sec) | |
7944 | - current_entry->orig_address); | |
7945 | if (current_entry->size != 0) | |
7946 | map->entry_count++; | |
7947 | ||
7948 | return map; | |
7949 | } | |
7950 | ||
7951 | ||
7952 | /* Free an offset translation map. */ | |
7953 | ||
68ffbac6 | 7954 | static void |
03e94c08 BW |
7955 | free_xlate_map (xlate_map_t *map) |
7956 | { | |
7957 | if (map && map->entry) | |
7958 | free (map->entry); | |
7959 | if (map) | |
7960 | free (map); | |
7961 | } | |
7962 | ||
7963 | ||
43cd72b9 BW |
7964 | /* Use check_section_ebb_pcrels_fit to make sure that all of the |
7965 | relocations in a section will fit if a proposed set of actions | |
7966 | are performed. */ | |
e0001a05 | 7967 | |
43cd72b9 | 7968 | static bfd_boolean |
7fa3d080 BW |
7969 | check_section_ebb_pcrels_fit (bfd *abfd, |
7970 | asection *sec, | |
7971 | bfd_byte *contents, | |
7972 | Elf_Internal_Rela *internal_relocs, | |
cb337148 BW |
7973 | const ebb_constraint *constraint, |
7974 | const xtensa_opcode *reloc_opcodes) | |
e0001a05 | 7975 | { |
43cd72b9 BW |
7976 | unsigned i, j; |
7977 | Elf_Internal_Rela *irel; | |
03e94c08 BW |
7978 | xlate_map_t *xmap = NULL; |
7979 | bfd_boolean ok = TRUE; | |
43cd72b9 | 7980 | xtensa_relax_info *relax_info; |
e0001a05 | 7981 | |
43cd72b9 | 7982 | relax_info = get_xtensa_relax_info (sec); |
e0001a05 | 7983 | |
03e94c08 BW |
7984 | if (relax_info && sec->reloc_count > 100) |
7985 | { | |
7986 | xmap = build_xlate_map (sec, relax_info); | |
7987 | /* NULL indicates out of memory, but the slow version | |
7988 | can still be used. */ | |
7989 | } | |
7990 | ||
43cd72b9 BW |
7991 | for (i = 0; i < sec->reloc_count; i++) |
7992 | { | |
7993 | r_reloc r_rel; | |
7994 | bfd_vma orig_self_offset, orig_target_offset; | |
7995 | bfd_vma self_offset, target_offset; | |
7996 | int r_type; | |
7997 | reloc_howto_type *howto; | |
7998 | int self_removed_bytes, target_removed_bytes; | |
e0001a05 | 7999 | |
43cd72b9 BW |
8000 | irel = &internal_relocs[i]; |
8001 | r_type = ELF32_R_TYPE (irel->r_info); | |
e0001a05 | 8002 | |
43cd72b9 BW |
8003 | howto = &elf_howto_table[r_type]; |
8004 | /* We maintain the required invariant: PC-relative relocations | |
8005 | that fit before linking must fit after linking. Thus we only | |
8006 | need to deal with relocations to the same section that are | |
8007 | PC-relative. */ | |
1bbb5f21 BW |
8008 | if (r_type == R_XTENSA_ASM_SIMPLIFY |
8009 | || r_type == R_XTENSA_32_PCREL | |
43cd72b9 BW |
8010 | || !howto->pc_relative) |
8011 | continue; | |
e0001a05 | 8012 | |
43cd72b9 BW |
8013 | r_reloc_init (&r_rel, abfd, irel, contents, |
8014 | bfd_get_section_limit (abfd, sec)); | |
e0001a05 | 8015 | |
43cd72b9 BW |
8016 | if (r_reloc_get_section (&r_rel) != sec) |
8017 | continue; | |
e0001a05 | 8018 | |
43cd72b9 BW |
8019 | orig_self_offset = irel->r_offset; |
8020 | orig_target_offset = r_rel.target_offset; | |
e0001a05 | 8021 | |
43cd72b9 BW |
8022 | self_offset = orig_self_offset; |
8023 | target_offset = orig_target_offset; | |
8024 | ||
8025 | if (relax_info) | |
8026 | { | |
03e94c08 BW |
8027 | self_offset = |
8028 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
8029 | orig_self_offset); | |
8030 | target_offset = | |
8031 | xlate_offset_with_removed_text (xmap, &relax_info->action_list, | |
8032 | orig_target_offset); | |
43cd72b9 BW |
8033 | } |
8034 | ||
8035 | self_removed_bytes = 0; | |
8036 | target_removed_bytes = 0; | |
8037 | ||
8038 | for (j = 0; j < constraint->action_count; ++j) | |
8039 | { | |
8040 | proposed_action *action = &constraint->actions[j]; | |
8041 | bfd_vma offset = action->offset; | |
8042 | int removed_bytes = action->removed_bytes; | |
8043 | if (offset < orig_self_offset | |
8044 | || (offset == orig_self_offset && action->action == ta_fill | |
8045 | && action->removed_bytes < 0)) | |
8046 | self_removed_bytes += removed_bytes; | |
8047 | if (offset < orig_target_offset | |
8048 | || (offset == orig_target_offset && action->action == ta_fill | |
8049 | && action->removed_bytes < 0)) | |
8050 | target_removed_bytes += removed_bytes; | |
8051 | } | |
8052 | self_offset -= self_removed_bytes; | |
8053 | target_offset -= target_removed_bytes; | |
8054 | ||
8055 | /* Try to encode it. Get the operand and check. */ | |
8056 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
8057 | { | |
8058 | /* None of the current alternate relocs are PC-relative, | |
8059 | and only PC-relative relocs matter here. */ | |
8060 | } | |
8061 | else | |
8062 | { | |
8063 | xtensa_opcode opcode; | |
8064 | int opnum; | |
8065 | ||
cb337148 BW |
8066 | if (reloc_opcodes) |
8067 | opcode = reloc_opcodes[i]; | |
8068 | else | |
8069 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
43cd72b9 | 8070 | if (opcode == XTENSA_UNDEFINED) |
03e94c08 BW |
8071 | { |
8072 | ok = FALSE; | |
8073 | break; | |
8074 | } | |
43cd72b9 BW |
8075 | |
8076 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
8077 | if (opnum == XTENSA_UNDEFINED) | |
03e94c08 BW |
8078 | { |
8079 | ok = FALSE; | |
8080 | break; | |
8081 | } | |
43cd72b9 BW |
8082 | |
8083 | if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) | |
03e94c08 BW |
8084 | { |
8085 | ok = FALSE; | |
8086 | break; | |
8087 | } | |
43cd72b9 BW |
8088 | } |
8089 | } | |
8090 | ||
03e94c08 BW |
8091 | if (xmap) |
8092 | free_xlate_map (xmap); | |
8093 | ||
8094 | return ok; | |
43cd72b9 BW |
8095 | } |
8096 | ||
8097 | ||
8098 | static bfd_boolean | |
7fa3d080 | 8099 | check_section_ebb_reduces (const ebb_constraint *constraint) |
43cd72b9 BW |
8100 | { |
8101 | int removed = 0; | |
8102 | unsigned i; | |
8103 | ||
8104 | for (i = 0; i < constraint->action_count; i++) | |
8105 | { | |
8106 | const proposed_action *action = &constraint->actions[i]; | |
8107 | if (action->do_action) | |
8108 | removed += action->removed_bytes; | |
8109 | } | |
8110 | if (removed < 0) | |
e0001a05 NC |
8111 | return FALSE; |
8112 | ||
8113 | return TRUE; | |
8114 | } | |
8115 | ||
8116 | ||
43cd72b9 | 8117 | void |
7fa3d080 BW |
8118 | text_action_add_proposed (text_action_list *l, |
8119 | const ebb_constraint *ebb_table, | |
8120 | asection *sec) | |
e0001a05 NC |
8121 | { |
8122 | unsigned i; | |
8123 | ||
43cd72b9 | 8124 | for (i = 0; i < ebb_table->action_count; i++) |
e0001a05 | 8125 | { |
43cd72b9 | 8126 | proposed_action *action = &ebb_table->actions[i]; |
e0001a05 | 8127 | |
43cd72b9 | 8128 | if (!action->do_action) |
e0001a05 | 8129 | continue; |
43cd72b9 BW |
8130 | switch (action->action) |
8131 | { | |
8132 | case ta_remove_insn: | |
8133 | case ta_remove_longcall: | |
8134 | case ta_convert_longcall: | |
8135 | case ta_narrow_insn: | |
8136 | case ta_widen_insn: | |
8137 | case ta_fill: | |
8138 | case ta_remove_literal: | |
8139 | text_action_add (l, action->action, sec, action->offset, | |
8140 | action->removed_bytes); | |
8141 | break; | |
8142 | case ta_none: | |
8143 | break; | |
8144 | default: | |
8145 | BFD_ASSERT (0); | |
8146 | break; | |
8147 | } | |
e0001a05 | 8148 | } |
43cd72b9 | 8149 | } |
e0001a05 | 8150 | |
43cd72b9 BW |
8151 | |
8152 | int | |
7fa3d080 | 8153 | compute_fill_extra_space (property_table_entry *entry) |
43cd72b9 BW |
8154 | { |
8155 | int fill_extra_space; | |
8156 | ||
8157 | if (!entry) | |
8158 | return 0; | |
8159 | ||
8160 | if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) | |
8161 | return 0; | |
8162 | ||
8163 | fill_extra_space = entry->size; | |
8164 | if ((entry->flags & XTENSA_PROP_ALIGN) != 0) | |
8165 | { | |
8166 | /* Fill bytes for alignment: | |
8167 | (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ | |
8168 | int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); | |
8169 | int nsm = (1 << pow) - 1; | |
8170 | bfd_vma addr = entry->address + entry->size; | |
8171 | bfd_vma align_fill = nsm - ((addr + nsm) & nsm); | |
8172 | fill_extra_space += align_fill; | |
8173 | } | |
8174 | return fill_extra_space; | |
e0001a05 NC |
8175 | } |
8176 | ||
43cd72b9 | 8177 | \f |
e0001a05 NC |
8178 | /* First relaxation pass. */ |
8179 | ||
43cd72b9 BW |
8180 | /* If the section contains relaxable literals, check each literal to |
8181 | see if it has the same value as another literal that has already | |
8182 | been seen, either in the current section or a previous one. If so, | |
8183 | add an entry to the per-section list of removed literals. The | |
e0001a05 NC |
8184 | actual changes are deferred until the next pass. */ |
8185 | ||
68ffbac6 | 8186 | static bfd_boolean |
7fa3d080 BW |
8187 | compute_removed_literals (bfd *abfd, |
8188 | asection *sec, | |
8189 | struct bfd_link_info *link_info, | |
8190 | value_map_hash_table *values) | |
e0001a05 NC |
8191 | { |
8192 | xtensa_relax_info *relax_info; | |
8193 | bfd_byte *contents; | |
8194 | Elf_Internal_Rela *internal_relocs; | |
43cd72b9 | 8195 | source_reloc *src_relocs, *rel; |
e0001a05 | 8196 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
8197 | property_table_entry *prop_table = NULL; |
8198 | int ptblsize; | |
8199 | int i, prev_i; | |
8200 | bfd_boolean last_loc_is_prev = FALSE; | |
8201 | bfd_vma last_target_offset = 0; | |
8202 | section_cache_t target_sec_cache; | |
8203 | bfd_size_type sec_size; | |
8204 | ||
8205 | init_section_cache (&target_sec_cache); | |
e0001a05 NC |
8206 | |
8207 | /* Do nothing if it is not a relaxable literal section. */ | |
8208 | relax_info = get_xtensa_relax_info (sec); | |
8209 | BFD_ASSERT (relax_info); | |
e0001a05 NC |
8210 | if (!relax_info->is_relaxable_literal_section) |
8211 | return ok; | |
8212 | ||
68ffbac6 | 8213 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
8214 | link_info->keep_memory); |
8215 | ||
43cd72b9 | 8216 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 | 8217 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 8218 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
8219 | { |
8220 | ok = FALSE; | |
8221 | goto error_return; | |
8222 | } | |
8223 | ||
8224 | /* Sort the source_relocs by target offset. */ | |
8225 | src_relocs = relax_info->src_relocs; | |
8226 | qsort (src_relocs, relax_info->src_count, | |
8227 | sizeof (source_reloc), source_reloc_compare); | |
43cd72b9 BW |
8228 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
8229 | internal_reloc_compare); | |
e0001a05 | 8230 | |
43cd72b9 BW |
8231 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
8232 | XTENSA_PROP_SEC_NAME, FALSE); | |
8233 | if (ptblsize < 0) | |
8234 | { | |
8235 | ok = FALSE; | |
8236 | goto error_return; | |
8237 | } | |
8238 | ||
8239 | prev_i = -1; | |
e0001a05 NC |
8240 | for (i = 0; i < relax_info->src_count; i++) |
8241 | { | |
e0001a05 | 8242 | Elf_Internal_Rela *irel = NULL; |
e0001a05 NC |
8243 | |
8244 | rel = &src_relocs[i]; | |
43cd72b9 BW |
8245 | if (get_l32r_opcode () != rel->opcode) |
8246 | continue; | |
e0001a05 NC |
8247 | irel = get_irel_at_offset (sec, internal_relocs, |
8248 | rel->r_rel.target_offset); | |
8249 | ||
43cd72b9 BW |
8250 | /* If the relocation on this is not a simple R_XTENSA_32 or |
8251 | R_XTENSA_PLT then do not consider it. This may happen when | |
8252 | the difference of two symbols is used in a literal. */ | |
8253 | if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 | |
8254 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) | |
8255 | continue; | |
8256 | ||
e0001a05 NC |
8257 | /* If the target_offset for this relocation is the same as the |
8258 | previous relocation, then we've already considered whether the | |
8259 | literal can be coalesced. Skip to the next one.... */ | |
43cd72b9 BW |
8260 | if (i != 0 && prev_i != -1 |
8261 | && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) | |
e0001a05 | 8262 | continue; |
43cd72b9 BW |
8263 | prev_i = i; |
8264 | ||
68ffbac6 | 8265 | if (last_loc_is_prev && |
43cd72b9 BW |
8266 | last_target_offset + 4 != rel->r_rel.target_offset) |
8267 | last_loc_is_prev = FALSE; | |
e0001a05 NC |
8268 | |
8269 | /* Check if the relocation was from an L32R that is being removed | |
8270 | because a CALLX was converted to a direct CALL, and check if | |
8271 | there are no other relocations to the literal. */ | |
68ffbac6 | 8272 | if (is_removable_literal (rel, i, src_relocs, relax_info->src_count, |
99ded152 | 8273 | sec, prop_table, ptblsize)) |
e0001a05 | 8274 | { |
43cd72b9 BW |
8275 | if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, |
8276 | irel, rel, prop_table, ptblsize)) | |
e0001a05 | 8277 | { |
43cd72b9 BW |
8278 | ok = FALSE; |
8279 | goto error_return; | |
e0001a05 | 8280 | } |
43cd72b9 | 8281 | last_target_offset = rel->r_rel.target_offset; |
e0001a05 NC |
8282 | continue; |
8283 | } | |
8284 | ||
43cd72b9 | 8285 | if (!identify_literal_placement (abfd, sec, contents, link_info, |
68ffbac6 L |
8286 | values, |
8287 | &last_loc_is_prev, irel, | |
43cd72b9 BW |
8288 | relax_info->src_count - i, rel, |
8289 | prop_table, ptblsize, | |
8290 | &target_sec_cache, rel->is_abs_literal)) | |
e0001a05 | 8291 | { |
43cd72b9 BW |
8292 | ok = FALSE; |
8293 | goto error_return; | |
8294 | } | |
8295 | last_target_offset = rel->r_rel.target_offset; | |
8296 | } | |
e0001a05 | 8297 | |
43cd72b9 BW |
8298 | #if DEBUG |
8299 | print_removed_literals (stderr, &relax_info->removed_list); | |
8300 | print_action_list (stderr, &relax_info->action_list); | |
8301 | #endif /* DEBUG */ | |
8302 | ||
8303 | error_return: | |
65e911f9 AM |
8304 | if (prop_table) |
8305 | free (prop_table); | |
8306 | free_section_cache (&target_sec_cache); | |
43cd72b9 BW |
8307 | |
8308 | release_contents (sec, contents); | |
8309 | release_internal_relocs (sec, internal_relocs); | |
8310 | return ok; | |
8311 | } | |
8312 | ||
8313 | ||
8314 | static Elf_Internal_Rela * | |
7fa3d080 BW |
8315 | get_irel_at_offset (asection *sec, |
8316 | Elf_Internal_Rela *internal_relocs, | |
8317 | bfd_vma offset) | |
43cd72b9 BW |
8318 | { |
8319 | unsigned i; | |
8320 | Elf_Internal_Rela *irel; | |
8321 | unsigned r_type; | |
8322 | Elf_Internal_Rela key; | |
8323 | ||
68ffbac6 | 8324 | if (!internal_relocs) |
43cd72b9 BW |
8325 | return NULL; |
8326 | ||
8327 | key.r_offset = offset; | |
8328 | irel = bsearch (&key, internal_relocs, sec->reloc_count, | |
8329 | sizeof (Elf_Internal_Rela), internal_reloc_matches); | |
8330 | if (!irel) | |
8331 | return NULL; | |
8332 | ||
8333 | /* bsearch does not guarantee which will be returned if there are | |
8334 | multiple matches. We need the first that is not an alignment. */ | |
8335 | i = irel - internal_relocs; | |
8336 | while (i > 0) | |
8337 | { | |
8338 | if (internal_relocs[i-1].r_offset != offset) | |
8339 | break; | |
8340 | i--; | |
8341 | } | |
8342 | for ( ; i < sec->reloc_count; i++) | |
8343 | { | |
8344 | irel = &internal_relocs[i]; | |
8345 | r_type = ELF32_R_TYPE (irel->r_info); | |
8346 | if (irel->r_offset == offset && r_type != R_XTENSA_NONE) | |
8347 | return irel; | |
8348 | } | |
8349 | ||
8350 | return NULL; | |
8351 | } | |
8352 | ||
8353 | ||
8354 | bfd_boolean | |
7fa3d080 BW |
8355 | is_removable_literal (const source_reloc *rel, |
8356 | int i, | |
8357 | const source_reloc *src_relocs, | |
99ded152 BW |
8358 | int src_count, |
8359 | asection *sec, | |
8360 | property_table_entry *prop_table, | |
8361 | int ptblsize) | |
43cd72b9 BW |
8362 | { |
8363 | const source_reloc *curr_rel; | |
99ded152 BW |
8364 | property_table_entry *entry; |
8365 | ||
43cd72b9 BW |
8366 | if (!rel->is_null) |
8367 | return FALSE; | |
68ffbac6 L |
8368 | |
8369 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
99ded152 BW |
8370 | sec->vma + rel->r_rel.target_offset); |
8371 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) | |
8372 | return FALSE; | |
8373 | ||
43cd72b9 BW |
8374 | for (++i; i < src_count; ++i) |
8375 | { | |
8376 | curr_rel = &src_relocs[i]; | |
8377 | /* If all others have the same target offset.... */ | |
8378 | if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) | |
8379 | return TRUE; | |
8380 | ||
8381 | if (!curr_rel->is_null | |
8382 | && !xtensa_is_property_section (curr_rel->source_sec) | |
8383 | && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) | |
8384 | return FALSE; | |
8385 | } | |
8386 | return TRUE; | |
8387 | } | |
8388 | ||
8389 | ||
68ffbac6 | 8390 | bfd_boolean |
7fa3d080 BW |
8391 | remove_dead_literal (bfd *abfd, |
8392 | asection *sec, | |
8393 | struct bfd_link_info *link_info, | |
8394 | Elf_Internal_Rela *internal_relocs, | |
8395 | Elf_Internal_Rela *irel, | |
8396 | source_reloc *rel, | |
8397 | property_table_entry *prop_table, | |
8398 | int ptblsize) | |
43cd72b9 BW |
8399 | { |
8400 | property_table_entry *entry; | |
8401 | xtensa_relax_info *relax_info; | |
8402 | ||
8403 | relax_info = get_xtensa_relax_info (sec); | |
8404 | if (!relax_info) | |
8405 | return FALSE; | |
8406 | ||
8407 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8408 | sec->vma + rel->r_rel.target_offset); | |
8409 | ||
8410 | /* Mark the unused literal so that it will be removed. */ | |
8411 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
8412 | ||
8413 | text_action_add (&relax_info->action_list, | |
8414 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8415 | ||
8416 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 8417 | if (sec->alignment_power > 2) |
43cd72b9 BW |
8418 | { |
8419 | int fill_extra_space; | |
8420 | bfd_vma entry_sec_offset; | |
8421 | text_action *fa; | |
8422 | property_table_entry *the_add_entry; | |
8423 | int removed_diff; | |
8424 | ||
8425 | if (entry) | |
8426 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
8427 | else | |
8428 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
8429 | ||
8430 | /* If the literal range is at the end of the section, | |
8431 | do not add fill. */ | |
8432 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8433 | entry_sec_offset); | |
8434 | fill_extra_space = compute_fill_extra_space (the_add_entry); | |
8435 | ||
8436 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8437 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8438 | -4, fill_extra_space); | |
8439 | if (fa) | |
8440 | adjust_fill_action (fa, removed_diff); | |
8441 | else | |
8442 | text_action_add (&relax_info->action_list, | |
8443 | ta_fill, sec, entry_sec_offset, removed_diff); | |
8444 | } | |
8445 | ||
8446 | /* Zero out the relocation on this literal location. */ | |
8447 | if (irel) | |
8448 | { | |
8449 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
8450 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
8451 | ||
8452 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8453 | pin_internal_relocs (sec, internal_relocs); | |
8454 | } | |
8455 | ||
8456 | /* Do not modify "last_loc_is_prev". */ | |
8457 | return TRUE; | |
8458 | } | |
8459 | ||
8460 | ||
68ffbac6 | 8461 | bfd_boolean |
7fa3d080 BW |
8462 | identify_literal_placement (bfd *abfd, |
8463 | asection *sec, | |
8464 | bfd_byte *contents, | |
8465 | struct bfd_link_info *link_info, | |
8466 | value_map_hash_table *values, | |
8467 | bfd_boolean *last_loc_is_prev_p, | |
8468 | Elf_Internal_Rela *irel, | |
8469 | int remaining_src_rels, | |
8470 | source_reloc *rel, | |
8471 | property_table_entry *prop_table, | |
8472 | int ptblsize, | |
8473 | section_cache_t *target_sec_cache, | |
8474 | bfd_boolean is_abs_literal) | |
43cd72b9 BW |
8475 | { |
8476 | literal_value val; | |
8477 | value_map *val_map; | |
8478 | xtensa_relax_info *relax_info; | |
8479 | bfd_boolean literal_placed = FALSE; | |
8480 | r_reloc r_rel; | |
8481 | unsigned long value; | |
8482 | bfd_boolean final_static_link; | |
8483 | bfd_size_type sec_size; | |
8484 | ||
8485 | relax_info = get_xtensa_relax_info (sec); | |
8486 | if (!relax_info) | |
8487 | return FALSE; | |
8488 | ||
8489 | sec_size = bfd_get_section_limit (abfd, sec); | |
8490 | ||
8491 | final_static_link = | |
8492 | (!link_info->relocatable | |
8493 | && !elf_hash_table (link_info)->dynamic_sections_created); | |
8494 | ||
8495 | /* The placement algorithm first checks to see if the literal is | |
8496 | already in the value map. If so and the value map is reachable | |
8497 | from all uses, then the literal is moved to that location. If | |
8498 | not, then we identify the last location where a fresh literal was | |
8499 | placed. If the literal can be safely moved there, then we do so. | |
8500 | If not, then we assume that the literal is not to move and leave | |
8501 | the literal where it is, marking it as the last literal | |
8502 | location. */ | |
8503 | ||
8504 | /* Find the literal value. */ | |
8505 | value = 0; | |
8506 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
8507 | if (!irel) | |
8508 | { | |
8509 | BFD_ASSERT (rel->r_rel.target_offset < sec_size); | |
8510 | value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); | |
8511 | } | |
8512 | init_literal_value (&val, &r_rel, value, is_abs_literal); | |
8513 | ||
8514 | /* Check if we've seen another literal with the same value that | |
8515 | is in the same output section. */ | |
8516 | val_map = value_map_get_cached_value (values, &val, final_static_link); | |
8517 | ||
8518 | if (val_map | |
8519 | && (r_reloc_get_section (&val_map->loc)->output_section | |
8520 | == sec->output_section) | |
8521 | && relocations_reach (rel, remaining_src_rels, &val_map->loc) | |
8522 | && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) | |
8523 | { | |
8524 | /* No change to last_loc_is_prev. */ | |
8525 | literal_placed = TRUE; | |
8526 | } | |
8527 | ||
8528 | /* For relocatable links, do not try to move literals. To do it | |
8529 | correctly might increase the number of relocations in an input | |
8530 | section making the default relocatable linking fail. */ | |
68ffbac6 | 8531 | if (!link_info->relocatable && !literal_placed |
43cd72b9 BW |
8532 | && values->has_last_loc && !(*last_loc_is_prev_p)) |
8533 | { | |
8534 | asection *target_sec = r_reloc_get_section (&values->last_loc); | |
8535 | if (target_sec && target_sec->output_section == sec->output_section) | |
8536 | { | |
8537 | /* Increment the virtual offset. */ | |
8538 | r_reloc try_loc = values->last_loc; | |
8539 | try_loc.virtual_offset += 4; | |
8540 | ||
8541 | /* There is a last loc that was in the same output section. */ | |
8542 | if (relocations_reach (rel, remaining_src_rels, &try_loc) | |
8543 | && move_shared_literal (sec, link_info, rel, | |
68ffbac6 | 8544 | prop_table, ptblsize, |
43cd72b9 | 8545 | &try_loc, &val, target_sec_cache)) |
e0001a05 | 8546 | { |
43cd72b9 BW |
8547 | values->last_loc.virtual_offset += 4; |
8548 | literal_placed = TRUE; | |
8549 | if (!val_map) | |
8550 | val_map = add_value_map (values, &val, &try_loc, | |
8551 | final_static_link); | |
8552 | else | |
8553 | val_map->loc = try_loc; | |
e0001a05 NC |
8554 | } |
8555 | } | |
43cd72b9 BW |
8556 | } |
8557 | ||
8558 | if (!literal_placed) | |
8559 | { | |
8560 | /* Nothing worked, leave the literal alone but update the last loc. */ | |
8561 | values->has_last_loc = TRUE; | |
8562 | values->last_loc = rel->r_rel; | |
8563 | if (!val_map) | |
8564 | val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); | |
e0001a05 | 8565 | else |
43cd72b9 BW |
8566 | val_map->loc = rel->r_rel; |
8567 | *last_loc_is_prev_p = TRUE; | |
e0001a05 NC |
8568 | } |
8569 | ||
43cd72b9 | 8570 | return TRUE; |
e0001a05 NC |
8571 | } |
8572 | ||
8573 | ||
8574 | /* Check if the original relocations (presumably on L32R instructions) | |
8575 | identified by reloc[0..N] can be changed to reference the literal | |
8576 | identified by r_rel. If r_rel is out of range for any of the | |
8577 | original relocations, then we don't want to coalesce the original | |
8578 | literal with the one at r_rel. We only check reloc[0..N], where the | |
8579 | offsets are all the same as for reloc[0] (i.e., they're all | |
8580 | referencing the same literal) and where N is also bounded by the | |
8581 | number of remaining entries in the "reloc" array. The "reloc" array | |
8582 | is sorted by target offset so we know all the entries for the same | |
8583 | literal will be contiguous. */ | |
8584 | ||
8585 | static bfd_boolean | |
7fa3d080 BW |
8586 | relocations_reach (source_reloc *reloc, |
8587 | int remaining_relocs, | |
8588 | const r_reloc *r_rel) | |
e0001a05 NC |
8589 | { |
8590 | bfd_vma from_offset, source_address, dest_address; | |
8591 | asection *sec; | |
8592 | int i; | |
8593 | ||
8594 | if (!r_reloc_is_defined (r_rel)) | |
8595 | return FALSE; | |
8596 | ||
8597 | sec = r_reloc_get_section (r_rel); | |
8598 | from_offset = reloc[0].r_rel.target_offset; | |
8599 | ||
8600 | for (i = 0; i < remaining_relocs; i++) | |
8601 | { | |
8602 | if (reloc[i].r_rel.target_offset != from_offset) | |
8603 | break; | |
8604 | ||
8605 | /* Ignore relocations that have been removed. */ | |
8606 | if (reloc[i].is_null) | |
8607 | continue; | |
8608 | ||
8609 | /* The original and new output section for these must be the same | |
8610 | in order to coalesce. */ | |
8611 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section | |
8612 | != sec->output_section) | |
8613 | return FALSE; | |
8614 | ||
d638e0ac BW |
8615 | /* Absolute literals in the same output section can always be |
8616 | combined. */ | |
8617 | if (reloc[i].is_abs_literal) | |
8618 | continue; | |
8619 | ||
43cd72b9 BW |
8620 | /* A literal with no PC-relative relocations can be moved anywhere. */ |
8621 | if (reloc[i].opnd != -1) | |
e0001a05 NC |
8622 | { |
8623 | /* Otherwise, check to see that it fits. */ | |
8624 | source_address = (reloc[i].source_sec->output_section->vma | |
8625 | + reloc[i].source_sec->output_offset | |
8626 | + reloc[i].r_rel.rela.r_offset); | |
8627 | dest_address = (sec->output_section->vma | |
8628 | + sec->output_offset | |
8629 | + r_rel->target_offset); | |
8630 | ||
43cd72b9 BW |
8631 | if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, |
8632 | source_address, dest_address)) | |
e0001a05 NC |
8633 | return FALSE; |
8634 | } | |
8635 | } | |
8636 | ||
8637 | return TRUE; | |
8638 | } | |
8639 | ||
8640 | ||
43cd72b9 BW |
8641 | /* Move a literal to another literal location because it is |
8642 | the same as the other literal value. */ | |
e0001a05 | 8643 | |
68ffbac6 | 8644 | static bfd_boolean |
7fa3d080 BW |
8645 | coalesce_shared_literal (asection *sec, |
8646 | source_reloc *rel, | |
8647 | property_table_entry *prop_table, | |
8648 | int ptblsize, | |
8649 | value_map *val_map) | |
e0001a05 | 8650 | { |
43cd72b9 BW |
8651 | property_table_entry *entry; |
8652 | text_action *fa; | |
8653 | property_table_entry *the_add_entry; | |
8654 | int removed_diff; | |
8655 | xtensa_relax_info *relax_info; | |
8656 | ||
8657 | relax_info = get_xtensa_relax_info (sec); | |
8658 | if (!relax_info) | |
8659 | return FALSE; | |
8660 | ||
8661 | entry = elf_xtensa_find_property_entry | |
8662 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
99ded152 | 8663 | if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) |
43cd72b9 BW |
8664 | return TRUE; |
8665 | ||
8666 | /* Mark that the literal will be coalesced. */ | |
8667 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); | |
8668 | ||
8669 | text_action_add (&relax_info->action_list, | |
8670 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8671 | ||
8672 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 8673 | if (sec->alignment_power > 2) |
e0001a05 | 8674 | { |
43cd72b9 BW |
8675 | int fill_extra_space; |
8676 | bfd_vma entry_sec_offset; | |
8677 | ||
8678 | if (entry) | |
8679 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
8680 | else | |
8681 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
8682 | ||
8683 | /* If the literal range is at the end of the section, | |
8684 | do not add fill. */ | |
8685 | fill_extra_space = 0; | |
8686 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8687 | entry_sec_offset); | |
8688 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
8689 | fill_extra_space = the_add_entry->size; | |
8690 | ||
8691 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8692 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8693 | -4, fill_extra_space); | |
8694 | if (fa) | |
8695 | adjust_fill_action (fa, removed_diff); | |
8696 | else | |
8697 | text_action_add (&relax_info->action_list, | |
8698 | ta_fill, sec, entry_sec_offset, removed_diff); | |
e0001a05 | 8699 | } |
43cd72b9 BW |
8700 | |
8701 | return TRUE; | |
8702 | } | |
8703 | ||
8704 | ||
8705 | /* Move a literal to another location. This may actually increase the | |
8706 | total amount of space used because of alignments so we need to do | |
8707 | this carefully. Also, it may make a branch go out of range. */ | |
8708 | ||
68ffbac6 | 8709 | static bfd_boolean |
7fa3d080 BW |
8710 | move_shared_literal (asection *sec, |
8711 | struct bfd_link_info *link_info, | |
8712 | source_reloc *rel, | |
8713 | property_table_entry *prop_table, | |
8714 | int ptblsize, | |
8715 | const r_reloc *target_loc, | |
8716 | const literal_value *lit_value, | |
8717 | section_cache_t *target_sec_cache) | |
43cd72b9 BW |
8718 | { |
8719 | property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; | |
8720 | text_action *fa, *target_fa; | |
8721 | int removed_diff; | |
8722 | xtensa_relax_info *relax_info, *target_relax_info; | |
8723 | asection *target_sec; | |
8724 | ebb_t *ebb; | |
8725 | ebb_constraint ebb_table; | |
8726 | bfd_boolean relocs_fit; | |
8727 | ||
8728 | /* If this routine always returns FALSE, the literals that cannot be | |
8729 | coalesced will not be moved. */ | |
8730 | if (elf32xtensa_no_literal_movement) | |
8731 | return FALSE; | |
8732 | ||
8733 | relax_info = get_xtensa_relax_info (sec); | |
8734 | if (!relax_info) | |
8735 | return FALSE; | |
8736 | ||
8737 | target_sec = r_reloc_get_section (target_loc); | |
8738 | target_relax_info = get_xtensa_relax_info (target_sec); | |
8739 | ||
8740 | /* Literals to undefined sections may not be moved because they | |
8741 | must report an error. */ | |
8742 | if (bfd_is_und_section (target_sec)) | |
8743 | return FALSE; | |
8744 | ||
8745 | src_entry = elf_xtensa_find_property_entry | |
8746 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
8747 | ||
8748 | if (!section_cache_section (target_sec_cache, target_sec, link_info)) | |
8749 | return FALSE; | |
8750 | ||
8751 | target_entry = elf_xtensa_find_property_entry | |
68ffbac6 | 8752 | (target_sec_cache->ptbl, target_sec_cache->pte_count, |
43cd72b9 BW |
8753 | target_sec->vma + target_loc->target_offset); |
8754 | ||
8755 | if (!target_entry) | |
8756 | return FALSE; | |
8757 | ||
8758 | /* Make sure that we have not broken any branches. */ | |
8759 | relocs_fit = FALSE; | |
8760 | ||
8761 | init_ebb_constraint (&ebb_table); | |
8762 | ebb = &ebb_table.ebb; | |
68ffbac6 | 8763 | init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, |
43cd72b9 BW |
8764 | target_sec_cache->content_length, |
8765 | target_sec_cache->ptbl, target_sec_cache->pte_count, | |
8766 | target_sec_cache->relocs, target_sec_cache->reloc_count); | |
8767 | ||
8768 | /* Propose to add 4 bytes + worst-case alignment size increase to | |
8769 | destination. */ | |
8770 | ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, | |
8771 | ta_fill, target_loc->target_offset, | |
8772 | -4 - (1 << target_sec->alignment_power), TRUE); | |
8773 | ||
8774 | /* Check all of the PC-relative relocations to make sure they still fit. */ | |
68ffbac6 | 8775 | relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, |
43cd72b9 BW |
8776 | target_sec_cache->contents, |
8777 | target_sec_cache->relocs, | |
cb337148 | 8778 | &ebb_table, NULL); |
43cd72b9 | 8779 | |
68ffbac6 | 8780 | if (!relocs_fit) |
43cd72b9 BW |
8781 | return FALSE; |
8782 | ||
8783 | text_action_add_literal (&target_relax_info->action_list, | |
8784 | ta_add_literal, target_loc, lit_value, -4); | |
8785 | ||
68ffbac6 | 8786 | if (target_sec->alignment_power > 2 && target_entry != src_entry) |
43cd72b9 BW |
8787 | { |
8788 | /* May need to add or remove some fill to maintain alignment. */ | |
8789 | int fill_extra_space; | |
8790 | bfd_vma entry_sec_offset; | |
8791 | ||
68ffbac6 | 8792 | entry_sec_offset = |
43cd72b9 BW |
8793 | target_entry->address - target_sec->vma + target_entry->size; |
8794 | ||
8795 | /* If the literal range is at the end of the section, | |
8796 | do not add fill. */ | |
8797 | fill_extra_space = 0; | |
8798 | the_add_entry = | |
8799 | elf_xtensa_find_property_entry (target_sec_cache->ptbl, | |
8800 | target_sec_cache->pte_count, | |
8801 | entry_sec_offset); | |
8802 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
8803 | fill_extra_space = the_add_entry->size; | |
8804 | ||
8805 | target_fa = find_fill_action (&target_relax_info->action_list, | |
8806 | target_sec, entry_sec_offset); | |
8807 | removed_diff = compute_removed_action_diff (target_fa, target_sec, | |
8808 | entry_sec_offset, 4, | |
8809 | fill_extra_space); | |
8810 | if (target_fa) | |
8811 | adjust_fill_action (target_fa, removed_diff); | |
8812 | else | |
8813 | text_action_add (&target_relax_info->action_list, | |
8814 | ta_fill, target_sec, entry_sec_offset, removed_diff); | |
8815 | } | |
8816 | ||
8817 | /* Mark that the literal will be moved to the new location. */ | |
8818 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); | |
8819 | ||
8820 | /* Remove the literal. */ | |
8821 | text_action_add (&relax_info->action_list, | |
8822 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
8823 | ||
8824 | /* If the section is 4-byte aligned, do not add fill. */ | |
68ffbac6 | 8825 | if (sec->alignment_power > 2 && target_entry != src_entry) |
43cd72b9 BW |
8826 | { |
8827 | int fill_extra_space; | |
8828 | bfd_vma entry_sec_offset; | |
8829 | ||
8830 | if (src_entry) | |
8831 | entry_sec_offset = src_entry->address - sec->vma + src_entry->size; | |
8832 | else | |
8833 | entry_sec_offset = rel->r_rel.target_offset+4; | |
8834 | ||
8835 | /* If the literal range is at the end of the section, | |
8836 | do not add fill. */ | |
8837 | fill_extra_space = 0; | |
8838 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
8839 | entry_sec_offset); | |
8840 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
8841 | fill_extra_space = the_add_entry->size; | |
8842 | ||
8843 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
8844 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
8845 | -4, fill_extra_space); | |
8846 | if (fa) | |
8847 | adjust_fill_action (fa, removed_diff); | |
8848 | else | |
8849 | text_action_add (&relax_info->action_list, | |
8850 | ta_fill, sec, entry_sec_offset, removed_diff); | |
8851 | } | |
8852 | ||
8853 | return TRUE; | |
e0001a05 NC |
8854 | } |
8855 | ||
8856 | \f | |
8857 | /* Second relaxation pass. */ | |
8858 | ||
8859 | /* Modify all of the relocations to point to the right spot, and if this | |
8860 | is a relaxable section, delete the unwanted literals and fix the | |
43cd72b9 | 8861 | section size. */ |
e0001a05 | 8862 | |
43cd72b9 | 8863 | bfd_boolean |
7fa3d080 | 8864 | relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) |
e0001a05 NC |
8865 | { |
8866 | Elf_Internal_Rela *internal_relocs; | |
8867 | xtensa_relax_info *relax_info; | |
8868 | bfd_byte *contents; | |
8869 | bfd_boolean ok = TRUE; | |
8870 | unsigned i; | |
43cd72b9 BW |
8871 | bfd_boolean rv = FALSE; |
8872 | bfd_boolean virtual_action; | |
8873 | bfd_size_type sec_size; | |
e0001a05 | 8874 | |
43cd72b9 | 8875 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
8876 | relax_info = get_xtensa_relax_info (sec); |
8877 | BFD_ASSERT (relax_info); | |
8878 | ||
43cd72b9 BW |
8879 | /* First translate any of the fixes that have been added already. */ |
8880 | translate_section_fixes (sec); | |
8881 | ||
e0001a05 NC |
8882 | /* Handle property sections (e.g., literal tables) specially. */ |
8883 | if (xtensa_is_property_section (sec)) | |
8884 | { | |
8885 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
8886 | return relax_property_section (abfd, sec, link_info); | |
8887 | } | |
8888 | ||
68ffbac6 | 8889 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
43cd72b9 | 8890 | link_info->keep_memory); |
7aa09196 SA |
8891 | if (!internal_relocs && !relax_info->action_list.head) |
8892 | return TRUE; | |
8893 | ||
43cd72b9 BW |
8894 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
8895 | if (contents == NULL && sec_size != 0) | |
8896 | { | |
8897 | ok = FALSE; | |
8898 | goto error_return; | |
8899 | } | |
8900 | ||
8901 | if (internal_relocs) | |
8902 | { | |
8903 | for (i = 0; i < sec->reloc_count; i++) | |
8904 | { | |
8905 | Elf_Internal_Rela *irel; | |
8906 | xtensa_relax_info *target_relax_info; | |
8907 | bfd_vma source_offset, old_source_offset; | |
8908 | r_reloc r_rel; | |
8909 | unsigned r_type; | |
8910 | asection *target_sec; | |
8911 | ||
8912 | /* Locally change the source address. | |
8913 | Translate the target to the new target address. | |
8914 | If it points to this section and has been removed, | |
8915 | NULLify it. | |
8916 | Write it back. */ | |
8917 | ||
8918 | irel = &internal_relocs[i]; | |
8919 | source_offset = irel->r_offset; | |
8920 | old_source_offset = source_offset; | |
8921 | ||
8922 | r_type = ELF32_R_TYPE (irel->r_info); | |
8923 | r_reloc_init (&r_rel, abfd, irel, contents, | |
8924 | bfd_get_section_limit (abfd, sec)); | |
8925 | ||
8926 | /* If this section could have changed then we may need to | |
8927 | change the relocation's offset. */ | |
8928 | ||
8929 | if (relax_info->is_relaxable_literal_section | |
8930 | || relax_info->is_relaxable_asm_section) | |
8931 | { | |
9b7f5d20 BW |
8932 | pin_internal_relocs (sec, internal_relocs); |
8933 | ||
43cd72b9 BW |
8934 | if (r_type != R_XTENSA_NONE |
8935 | && find_removed_literal (&relax_info->removed_list, | |
8936 | irel->r_offset)) | |
8937 | { | |
8938 | /* Remove this relocation. */ | |
8939 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
8940 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
8941 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8942 | irel->r_offset = offset_with_removed_text | |
8943 | (&relax_info->action_list, irel->r_offset); | |
43cd72b9 BW |
8944 | continue; |
8945 | } | |
8946 | ||
8947 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
8948 | { | |
8949 | text_action *action = | |
8950 | find_insn_action (&relax_info->action_list, | |
8951 | irel->r_offset); | |
8952 | if (action && (action->action == ta_convert_longcall | |
8953 | || action->action == ta_remove_longcall)) | |
8954 | { | |
8955 | bfd_reloc_status_type retval; | |
8956 | char *error_message = NULL; | |
8957 | ||
8958 | retval = contract_asm_expansion (contents, sec_size, | |
8959 | irel, &error_message); | |
8960 | if (retval != bfd_reloc_ok) | |
8961 | { | |
8962 | (*link_info->callbacks->reloc_dangerous) | |
8963 | (link_info, error_message, abfd, sec, | |
8964 | irel->r_offset); | |
8965 | goto error_return; | |
8966 | } | |
8967 | /* Update the action so that the code that moves | |
8968 | the contents will do the right thing. */ | |
8969 | if (action->action == ta_remove_longcall) | |
8970 | action->action = ta_remove_insn; | |
8971 | else | |
8972 | action->action = ta_none; | |
8973 | /* Refresh the info in the r_rel. */ | |
8974 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
8975 | r_type = ELF32_R_TYPE (irel->r_info); | |
8976 | } | |
8977 | } | |
8978 | ||
8979 | source_offset = offset_with_removed_text | |
8980 | (&relax_info->action_list, irel->r_offset); | |
8981 | irel->r_offset = source_offset; | |
8982 | } | |
8983 | ||
8984 | /* If the target section could have changed then | |
8985 | we may need to change the relocation's target offset. */ | |
8986 | ||
8987 | target_sec = r_reloc_get_section (&r_rel); | |
43cd72b9 | 8988 | |
ae326da8 BW |
8989 | /* For a reference to a discarded section from a DWARF section, |
8990 | i.e., where action_discarded is PRETEND, the symbol will | |
8991 | eventually be modified to refer to the kept section (at least if | |
8992 | the kept and discarded sections are the same size). Anticipate | |
8993 | that here and adjust things accordingly. */ | |
8994 | if (! elf_xtensa_ignore_discarded_relocs (sec) | |
8995 | && elf_xtensa_action_discarded (sec) == PRETEND | |
dbaa2011 | 8996 | && sec->sec_info_type != SEC_INFO_TYPE_STABS |
ae326da8 | 8997 | && target_sec != NULL |
dbaa2011 | 8998 | && discarded_section (target_sec)) |
ae326da8 BW |
8999 | { |
9000 | /* It would be natural to call _bfd_elf_check_kept_section | |
9001 | here, but it's not exported from elflink.c. It's also a | |
9002 | fairly expensive check. Adjusting the relocations to the | |
9003 | discarded section is fairly harmless; it will only adjust | |
9004 | some addends and difference values. If it turns out that | |
9005 | _bfd_elf_check_kept_section fails later, it won't matter, | |
9006 | so just compare the section names to find the right group | |
9007 | member. */ | |
9008 | asection *kept = target_sec->kept_section; | |
9009 | if (kept != NULL) | |
9010 | { | |
9011 | if ((kept->flags & SEC_GROUP) != 0) | |
9012 | { | |
9013 | asection *first = elf_next_in_group (kept); | |
9014 | asection *s = first; | |
9015 | ||
9016 | kept = NULL; | |
9017 | while (s != NULL) | |
9018 | { | |
9019 | if (strcmp (s->name, target_sec->name) == 0) | |
9020 | { | |
9021 | kept = s; | |
9022 | break; | |
9023 | } | |
9024 | s = elf_next_in_group (s); | |
9025 | if (s == first) | |
9026 | break; | |
9027 | } | |
9028 | } | |
9029 | } | |
9030 | if (kept != NULL | |
9031 | && ((target_sec->rawsize != 0 | |
9032 | ? target_sec->rawsize : target_sec->size) | |
9033 | == (kept->rawsize != 0 ? kept->rawsize : kept->size))) | |
9034 | target_sec = kept; | |
9035 | } | |
9036 | ||
9037 | target_relax_info = get_xtensa_relax_info (target_sec); | |
43cd72b9 BW |
9038 | if (target_relax_info |
9039 | && (target_relax_info->is_relaxable_literal_section | |
9040 | || target_relax_info->is_relaxable_asm_section)) | |
9041 | { | |
9042 | r_reloc new_reloc; | |
9b7f5d20 | 9043 | target_sec = translate_reloc (&r_rel, &new_reloc, target_sec); |
43cd72b9 BW |
9044 | |
9045 | if (r_type == R_XTENSA_DIFF8 | |
9046 | || r_type == R_XTENSA_DIFF16 | |
9047 | || r_type == R_XTENSA_DIFF32) | |
9048 | { | |
1058c753 VA |
9049 | bfd_signed_vma diff_value = 0; |
9050 | bfd_vma new_end_offset, diff_mask = 0; | |
43cd72b9 BW |
9051 | |
9052 | if (bfd_get_section_limit (abfd, sec) < old_source_offset) | |
9053 | { | |
9054 | (*link_info->callbacks->reloc_dangerous) | |
9055 | (link_info, _("invalid relocation address"), | |
9056 | abfd, sec, old_source_offset); | |
9057 | goto error_return; | |
9058 | } | |
9059 | ||
9060 | switch (r_type) | |
9061 | { | |
9062 | case R_XTENSA_DIFF8: | |
9063 | diff_value = | |
1058c753 | 9064 | bfd_get_signed_8 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9065 | break; |
9066 | case R_XTENSA_DIFF16: | |
9067 | diff_value = | |
1058c753 | 9068 | bfd_get_signed_16 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9069 | break; |
9070 | case R_XTENSA_DIFF32: | |
9071 | diff_value = | |
1058c753 | 9072 | bfd_get_signed_32 (abfd, &contents[old_source_offset]); |
43cd72b9 BW |
9073 | break; |
9074 | } | |
9075 | ||
9076 | new_end_offset = offset_with_removed_text | |
9077 | (&target_relax_info->action_list, | |
9078 | r_rel.target_offset + diff_value); | |
9079 | diff_value = new_end_offset - new_reloc.target_offset; | |
9080 | ||
9081 | switch (r_type) | |
9082 | { | |
9083 | case R_XTENSA_DIFF8: | |
1058c753 VA |
9084 | diff_mask = 0x7f; |
9085 | bfd_put_signed_8 (abfd, diff_value, | |
43cd72b9 BW |
9086 | &contents[old_source_offset]); |
9087 | break; | |
9088 | case R_XTENSA_DIFF16: | |
1058c753 VA |
9089 | diff_mask = 0x7fff; |
9090 | bfd_put_signed_16 (abfd, diff_value, | |
43cd72b9 BW |
9091 | &contents[old_source_offset]); |
9092 | break; | |
9093 | case R_XTENSA_DIFF32: | |
1058c753 VA |
9094 | diff_mask = 0x7fffffff; |
9095 | bfd_put_signed_32 (abfd, diff_value, | |
43cd72b9 BW |
9096 | &contents[old_source_offset]); |
9097 | break; | |
9098 | } | |
9099 | ||
1058c753 VA |
9100 | /* Check for overflow. Sign bits must be all zeroes or all ones */ |
9101 | if ((diff_value & ~diff_mask) != 0 && | |
9102 | (diff_value & ~diff_mask) != (-1 & ~diff_mask)) | |
43cd72b9 BW |
9103 | { |
9104 | (*link_info->callbacks->reloc_dangerous) | |
9105 | (link_info, _("overflow after relaxation"), | |
9106 | abfd, sec, old_source_offset); | |
9107 | goto error_return; | |
9108 | } | |
9109 | ||
9110 | pin_contents (sec, contents); | |
9111 | } | |
dc96b90a BW |
9112 | |
9113 | /* If the relocation still references a section in the same | |
9114 | input file, modify the relocation directly instead of | |
9115 | adding a "fix" record. */ | |
9116 | if (target_sec->owner == abfd) | |
9117 | { | |
9118 | unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info); | |
9119 | irel->r_info = ELF32_R_INFO (r_symndx, r_type); | |
9120 | irel->r_addend = new_reloc.rela.r_addend; | |
9121 | pin_internal_relocs (sec, internal_relocs); | |
9122 | } | |
9b7f5d20 BW |
9123 | else |
9124 | { | |
dc96b90a BW |
9125 | bfd_vma addend_displacement; |
9126 | reloc_bfd_fix *fix; | |
9127 | ||
9128 | addend_displacement = | |
9129 | new_reloc.target_offset + new_reloc.virtual_offset; | |
9130 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, | |
9131 | target_sec, | |
9132 | addend_displacement, TRUE); | |
9133 | add_fix (sec, fix); | |
9b7f5d20 | 9134 | } |
43cd72b9 | 9135 | } |
43cd72b9 BW |
9136 | } |
9137 | } | |
9138 | ||
9139 | if ((relax_info->is_relaxable_literal_section | |
9140 | || relax_info->is_relaxable_asm_section) | |
9141 | && relax_info->action_list.head) | |
9142 | { | |
9143 | /* Walk through the planned actions and build up a table | |
9144 | of move, copy and fill records. Use the move, copy and | |
9145 | fill records to perform the actions once. */ | |
9146 | ||
43cd72b9 BW |
9147 | int removed = 0; |
9148 | bfd_size_type final_size, copy_size, orig_insn_size; | |
9149 | bfd_byte *scratch = NULL; | |
9150 | bfd_byte *dup_contents = NULL; | |
a3ef2d63 | 9151 | bfd_size_type orig_size = sec->size; |
43cd72b9 BW |
9152 | bfd_vma orig_dot = 0; |
9153 | bfd_vma orig_dot_copied = 0; /* Byte copied already from | |
9154 | orig dot in physical memory. */ | |
9155 | bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ | |
9156 | bfd_vma dup_dot = 0; | |
9157 | ||
9158 | text_action *action = relax_info->action_list.head; | |
9159 | ||
9160 | final_size = sec->size; | |
9161 | for (action = relax_info->action_list.head; action; | |
9162 | action = action->next) | |
9163 | { | |
9164 | final_size -= action->removed_bytes; | |
9165 | } | |
9166 | ||
9167 | scratch = (bfd_byte *) bfd_zmalloc (final_size); | |
9168 | dup_contents = (bfd_byte *) bfd_zmalloc (final_size); | |
9169 | ||
9170 | /* The dot is the current fill location. */ | |
9171 | #if DEBUG | |
9172 | print_action_list (stderr, &relax_info->action_list); | |
9173 | #endif | |
9174 | ||
9175 | for (action = relax_info->action_list.head; action; | |
9176 | action = action->next) | |
9177 | { | |
9178 | virtual_action = FALSE; | |
9179 | if (action->offset > orig_dot) | |
9180 | { | |
9181 | orig_dot += orig_dot_copied; | |
9182 | orig_dot_copied = 0; | |
9183 | orig_dot_vo = 0; | |
9184 | /* Out of the virtual world. */ | |
9185 | } | |
9186 | ||
9187 | if (action->offset > orig_dot) | |
9188 | { | |
9189 | copy_size = action->offset - orig_dot; | |
9190 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9191 | orig_dot += copy_size; | |
9192 | dup_dot += copy_size; | |
9193 | BFD_ASSERT (action->offset == orig_dot); | |
9194 | } | |
9195 | else if (action->offset < orig_dot) | |
9196 | { | |
9197 | if (action->action == ta_fill | |
9198 | && action->offset - action->removed_bytes == orig_dot) | |
9199 | { | |
9200 | /* This is OK because the fill only effects the dup_dot. */ | |
9201 | } | |
9202 | else if (action->action == ta_add_literal) | |
9203 | { | |
9204 | /* TBD. Might need to handle this. */ | |
9205 | } | |
9206 | } | |
9207 | if (action->offset == orig_dot) | |
9208 | { | |
9209 | if (action->virtual_offset > orig_dot_vo) | |
9210 | { | |
9211 | if (orig_dot_vo == 0) | |
9212 | { | |
9213 | /* Need to copy virtual_offset bytes. Probably four. */ | |
9214 | copy_size = action->virtual_offset - orig_dot_vo; | |
9215 | memmove (&dup_contents[dup_dot], | |
9216 | &contents[orig_dot], copy_size); | |
9217 | orig_dot_copied = copy_size; | |
9218 | dup_dot += copy_size; | |
9219 | } | |
9220 | virtual_action = TRUE; | |
68ffbac6 | 9221 | } |
43cd72b9 BW |
9222 | else |
9223 | BFD_ASSERT (action->virtual_offset <= orig_dot_vo); | |
9224 | } | |
9225 | switch (action->action) | |
9226 | { | |
9227 | case ta_remove_literal: | |
9228 | case ta_remove_insn: | |
9229 | BFD_ASSERT (action->removed_bytes >= 0); | |
9230 | orig_dot += action->removed_bytes; | |
9231 | break; | |
9232 | ||
9233 | case ta_narrow_insn: | |
9234 | orig_insn_size = 3; | |
9235 | copy_size = 2; | |
9236 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9237 | BFD_ASSERT (action->removed_bytes == 1); | |
64b607e6 | 9238 | rv = narrow_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9239 | BFD_ASSERT (rv); |
9240 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9241 | orig_dot += orig_insn_size; | |
9242 | dup_dot += copy_size; | |
9243 | break; | |
9244 | ||
9245 | case ta_fill: | |
9246 | if (action->removed_bytes >= 0) | |
9247 | orig_dot += action->removed_bytes; | |
9248 | else | |
9249 | { | |
9250 | /* Already zeroed in dup_contents. Just bump the | |
9251 | counters. */ | |
9252 | dup_dot += (-action->removed_bytes); | |
9253 | } | |
9254 | break; | |
9255 | ||
9256 | case ta_none: | |
9257 | BFD_ASSERT (action->removed_bytes == 0); | |
9258 | break; | |
9259 | ||
9260 | case ta_convert_longcall: | |
9261 | case ta_remove_longcall: | |
9262 | /* These will be removed or converted before we get here. */ | |
9263 | BFD_ASSERT (0); | |
9264 | break; | |
9265 | ||
9266 | case ta_widen_insn: | |
9267 | orig_insn_size = 2; | |
9268 | copy_size = 3; | |
9269 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
9270 | BFD_ASSERT (action->removed_bytes == -1); | |
64b607e6 | 9271 | rv = widen_instruction (scratch, final_size, 0); |
43cd72b9 BW |
9272 | BFD_ASSERT (rv); |
9273 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
9274 | orig_dot += orig_insn_size; | |
9275 | dup_dot += copy_size; | |
9276 | break; | |
9277 | ||
9278 | case ta_add_literal: | |
9279 | orig_insn_size = 0; | |
9280 | copy_size = 4; | |
9281 | BFD_ASSERT (action->removed_bytes == -4); | |
9282 | /* TBD -- place the literal value here and insert | |
9283 | into the table. */ | |
9284 | memset (&dup_contents[dup_dot], 0, 4); | |
9285 | pin_internal_relocs (sec, internal_relocs); | |
9286 | pin_contents (sec, contents); | |
9287 | ||
9288 | if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, | |
9289 | relax_info, &internal_relocs, &action->value)) | |
9290 | goto error_return; | |
9291 | ||
68ffbac6 | 9292 | if (virtual_action) |
43cd72b9 BW |
9293 | orig_dot_vo += copy_size; |
9294 | ||
9295 | orig_dot += orig_insn_size; | |
9296 | dup_dot += copy_size; | |
9297 | break; | |
9298 | ||
9299 | default: | |
9300 | /* Not implemented yet. */ | |
9301 | BFD_ASSERT (0); | |
9302 | break; | |
9303 | } | |
9304 | ||
43cd72b9 BW |
9305 | removed += action->removed_bytes; |
9306 | BFD_ASSERT (dup_dot <= final_size); | |
9307 | BFD_ASSERT (orig_dot <= orig_size); | |
9308 | } | |
9309 | ||
9310 | orig_dot += orig_dot_copied; | |
9311 | orig_dot_copied = 0; | |
9312 | ||
9313 | if (orig_dot != orig_size) | |
9314 | { | |
9315 | copy_size = orig_size - orig_dot; | |
9316 | BFD_ASSERT (orig_size > orig_dot); | |
9317 | BFD_ASSERT (dup_dot + copy_size == final_size); | |
9318 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
9319 | orig_dot += copy_size; | |
9320 | dup_dot += copy_size; | |
9321 | } | |
9322 | BFD_ASSERT (orig_size == orig_dot); | |
9323 | BFD_ASSERT (final_size == dup_dot); | |
9324 | ||
9325 | /* Move the dup_contents back. */ | |
9326 | if (final_size > orig_size) | |
9327 | { | |
9328 | /* Contents need to be reallocated. Swap the dup_contents into | |
9329 | contents. */ | |
9330 | sec->contents = dup_contents; | |
9331 | free (contents); | |
9332 | contents = dup_contents; | |
9333 | pin_contents (sec, contents); | |
9334 | } | |
9335 | else | |
9336 | { | |
9337 | BFD_ASSERT (final_size <= orig_size); | |
9338 | memset (contents, 0, orig_size); | |
9339 | memcpy (contents, dup_contents, final_size); | |
9340 | free (dup_contents); | |
9341 | } | |
9342 | free (scratch); | |
9343 | pin_contents (sec, contents); | |
9344 | ||
a3ef2d63 BW |
9345 | if (sec->rawsize == 0) |
9346 | sec->rawsize = sec->size; | |
43cd72b9 BW |
9347 | sec->size = final_size; |
9348 | } | |
9349 | ||
9350 | error_return: | |
9351 | release_internal_relocs (sec, internal_relocs); | |
9352 | release_contents (sec, contents); | |
9353 | return ok; | |
9354 | } | |
9355 | ||
9356 | ||
68ffbac6 | 9357 | static bfd_boolean |
7fa3d080 | 9358 | translate_section_fixes (asection *sec) |
43cd72b9 BW |
9359 | { |
9360 | xtensa_relax_info *relax_info; | |
9361 | reloc_bfd_fix *r; | |
9362 | ||
9363 | relax_info = get_xtensa_relax_info (sec); | |
9364 | if (!relax_info) | |
9365 | return TRUE; | |
9366 | ||
9367 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
9368 | if (!translate_reloc_bfd_fix (r)) | |
9369 | return FALSE; | |
e0001a05 | 9370 | |
43cd72b9 BW |
9371 | return TRUE; |
9372 | } | |
e0001a05 | 9373 | |
e0001a05 | 9374 | |
43cd72b9 BW |
9375 | /* Translate a fix given the mapping in the relax info for the target |
9376 | section. If it has already been translated, no work is required. */ | |
e0001a05 | 9377 | |
68ffbac6 | 9378 | static bfd_boolean |
7fa3d080 | 9379 | translate_reloc_bfd_fix (reloc_bfd_fix *fix) |
43cd72b9 BW |
9380 | { |
9381 | reloc_bfd_fix new_fix; | |
9382 | asection *sec; | |
9383 | xtensa_relax_info *relax_info; | |
9384 | removed_literal *removed; | |
9385 | bfd_vma new_offset, target_offset; | |
e0001a05 | 9386 | |
43cd72b9 BW |
9387 | if (fix->translated) |
9388 | return TRUE; | |
e0001a05 | 9389 | |
43cd72b9 BW |
9390 | sec = fix->target_sec; |
9391 | target_offset = fix->target_offset; | |
e0001a05 | 9392 | |
43cd72b9 BW |
9393 | relax_info = get_xtensa_relax_info (sec); |
9394 | if (!relax_info) | |
9395 | { | |
9396 | fix->translated = TRUE; | |
9397 | return TRUE; | |
9398 | } | |
e0001a05 | 9399 | |
43cd72b9 | 9400 | new_fix = *fix; |
e0001a05 | 9401 | |
43cd72b9 BW |
9402 | /* The fix does not need to be translated if the section cannot change. */ |
9403 | if (!relax_info->is_relaxable_literal_section | |
9404 | && !relax_info->is_relaxable_asm_section) | |
9405 | { | |
9406 | fix->translated = TRUE; | |
9407 | return TRUE; | |
9408 | } | |
e0001a05 | 9409 | |
43cd72b9 BW |
9410 | /* If the literal has been moved and this relocation was on an |
9411 | opcode, then the relocation should move to the new literal | |
9412 | location. Otherwise, the relocation should move within the | |
9413 | section. */ | |
9414 | ||
9415 | removed = FALSE; | |
9416 | if (is_operand_relocation (fix->src_type)) | |
9417 | { | |
9418 | /* Check if the original relocation is against a literal being | |
9419 | removed. */ | |
9420 | removed = find_removed_literal (&relax_info->removed_list, | |
9421 | target_offset); | |
e0001a05 NC |
9422 | } |
9423 | ||
68ffbac6 | 9424 | if (removed) |
e0001a05 | 9425 | { |
43cd72b9 | 9426 | asection *new_sec; |
e0001a05 | 9427 | |
43cd72b9 BW |
9428 | /* The fact that there is still a relocation to this literal indicates |
9429 | that the literal is being coalesced, not simply removed. */ | |
9430 | BFD_ASSERT (removed->to.abfd != NULL); | |
e0001a05 | 9431 | |
43cd72b9 BW |
9432 | /* This was moved to some other address (possibly another section). */ |
9433 | new_sec = r_reloc_get_section (&removed->to); | |
68ffbac6 | 9434 | if (new_sec != sec) |
e0001a05 | 9435 | { |
43cd72b9 BW |
9436 | sec = new_sec; |
9437 | relax_info = get_xtensa_relax_info (sec); | |
68ffbac6 | 9438 | if (!relax_info || |
43cd72b9 BW |
9439 | (!relax_info->is_relaxable_literal_section |
9440 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 | 9441 | { |
43cd72b9 BW |
9442 | target_offset = removed->to.target_offset; |
9443 | new_fix.target_sec = new_sec; | |
9444 | new_fix.target_offset = target_offset; | |
9445 | new_fix.translated = TRUE; | |
9446 | *fix = new_fix; | |
9447 | return TRUE; | |
e0001a05 | 9448 | } |
e0001a05 | 9449 | } |
43cd72b9 BW |
9450 | target_offset = removed->to.target_offset; |
9451 | new_fix.target_sec = new_sec; | |
e0001a05 | 9452 | } |
43cd72b9 BW |
9453 | |
9454 | /* The target address may have been moved within its section. */ | |
9455 | new_offset = offset_with_removed_text (&relax_info->action_list, | |
9456 | target_offset); | |
9457 | ||
9458 | new_fix.target_offset = new_offset; | |
9459 | new_fix.target_offset = new_offset; | |
9460 | new_fix.translated = TRUE; | |
9461 | *fix = new_fix; | |
9462 | return TRUE; | |
e0001a05 NC |
9463 | } |
9464 | ||
9465 | ||
9466 | /* Fix up a relocation to take account of removed literals. */ | |
9467 | ||
9b7f5d20 BW |
9468 | static asection * |
9469 | translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec) | |
e0001a05 | 9470 | { |
e0001a05 NC |
9471 | xtensa_relax_info *relax_info; |
9472 | removed_literal *removed; | |
9b7f5d20 BW |
9473 | bfd_vma target_offset, base_offset; |
9474 | text_action *act; | |
e0001a05 NC |
9475 | |
9476 | *new_rel = *orig_rel; | |
9477 | ||
9478 | if (!r_reloc_is_defined (orig_rel)) | |
9b7f5d20 | 9479 | return sec ; |
e0001a05 NC |
9480 | |
9481 | relax_info = get_xtensa_relax_info (sec); | |
9b7f5d20 BW |
9482 | BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section |
9483 | || relax_info->is_relaxable_asm_section)); | |
e0001a05 | 9484 | |
43cd72b9 BW |
9485 | target_offset = orig_rel->target_offset; |
9486 | ||
9487 | removed = FALSE; | |
9488 | if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) | |
9489 | { | |
9490 | /* Check if the original relocation is against a literal being | |
9491 | removed. */ | |
9492 | removed = find_removed_literal (&relax_info->removed_list, | |
9493 | target_offset); | |
9494 | } | |
9495 | if (removed && removed->to.abfd) | |
e0001a05 NC |
9496 | { |
9497 | asection *new_sec; | |
9498 | ||
9499 | /* The fact that there is still a relocation to this literal indicates | |
9500 | that the literal is being coalesced, not simply removed. */ | |
9501 | BFD_ASSERT (removed->to.abfd != NULL); | |
9502 | ||
43cd72b9 BW |
9503 | /* This was moved to some other address |
9504 | (possibly in another section). */ | |
e0001a05 NC |
9505 | *new_rel = removed->to; |
9506 | new_sec = r_reloc_get_section (new_rel); | |
43cd72b9 | 9507 | if (new_sec != sec) |
e0001a05 NC |
9508 | { |
9509 | sec = new_sec; | |
9510 | relax_info = get_xtensa_relax_info (sec); | |
43cd72b9 BW |
9511 | if (!relax_info |
9512 | || (!relax_info->is_relaxable_literal_section | |
9513 | && !relax_info->is_relaxable_asm_section)) | |
9b7f5d20 | 9514 | return sec; |
e0001a05 | 9515 | } |
43cd72b9 | 9516 | target_offset = new_rel->target_offset; |
e0001a05 NC |
9517 | } |
9518 | ||
9b7f5d20 BW |
9519 | /* Find the base offset of the reloc symbol, excluding any addend from the |
9520 | reloc or from the section contents (for a partial_inplace reloc). Then | |
9521 | find the adjusted values of the offsets due to relaxation. The base | |
9522 | offset is needed to determine the change to the reloc's addend; the reloc | |
9523 | addend should not be adjusted due to relaxations located before the base | |
9524 | offset. */ | |
9525 | ||
9526 | base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend; | |
9527 | act = relax_info->action_list.head; | |
9528 | if (base_offset <= target_offset) | |
9529 | { | |
9530 | int base_removed = removed_by_actions (&act, base_offset, FALSE); | |
9531 | int addend_removed = removed_by_actions (&act, target_offset, FALSE); | |
9532 | new_rel->target_offset = target_offset - base_removed - addend_removed; | |
9533 | new_rel->rela.r_addend -= addend_removed; | |
9534 | } | |
9535 | else | |
9536 | { | |
9537 | /* Handle a negative addend. The base offset comes first. */ | |
9538 | int tgt_removed = removed_by_actions (&act, target_offset, FALSE); | |
9539 | int addend_removed = removed_by_actions (&act, base_offset, FALSE); | |
9540 | new_rel->target_offset = target_offset - tgt_removed; | |
9541 | new_rel->rela.r_addend += addend_removed; | |
9542 | } | |
e0001a05 | 9543 | |
9b7f5d20 | 9544 | return sec; |
e0001a05 NC |
9545 | } |
9546 | ||
9547 | ||
9548 | /* For dynamic links, there may be a dynamic relocation for each | |
9549 | literal. The number of dynamic relocations must be computed in | |
9550 | size_dynamic_sections, which occurs before relaxation. When a | |
9551 | literal is removed, this function checks if there is a corresponding | |
9552 | dynamic relocation and shrinks the size of the appropriate dynamic | |
9553 | relocation section accordingly. At this point, the contents of the | |
9554 | dynamic relocation sections have not yet been filled in, so there's | |
9555 | nothing else that needs to be done. */ | |
9556 | ||
9557 | static void | |
7fa3d080 BW |
9558 | shrink_dynamic_reloc_sections (struct bfd_link_info *info, |
9559 | bfd *abfd, | |
9560 | asection *input_section, | |
9561 | Elf_Internal_Rela *rel) | |
e0001a05 | 9562 | { |
f0e6fdb2 | 9563 | struct elf_xtensa_link_hash_table *htab; |
e0001a05 NC |
9564 | Elf_Internal_Shdr *symtab_hdr; |
9565 | struct elf_link_hash_entry **sym_hashes; | |
9566 | unsigned long r_symndx; | |
9567 | int r_type; | |
9568 | struct elf_link_hash_entry *h; | |
9569 | bfd_boolean dynamic_symbol; | |
9570 | ||
f0e6fdb2 | 9571 | htab = elf_xtensa_hash_table (info); |
4dfe6ac6 NC |
9572 | if (htab == NULL) |
9573 | return; | |
9574 | ||
e0001a05 NC |
9575 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
9576 | sym_hashes = elf_sym_hashes (abfd); | |
9577 | ||
9578 | r_type = ELF32_R_TYPE (rel->r_info); | |
9579 | r_symndx = ELF32_R_SYM (rel->r_info); | |
9580 | ||
9581 | if (r_symndx < symtab_hdr->sh_info) | |
9582 | h = NULL; | |
9583 | else | |
9584 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
9585 | ||
4608f3d9 | 9586 | dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); |
e0001a05 NC |
9587 | |
9588 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
9589 | && (input_section->flags & SEC_ALLOC) != 0 | |
9590 | && (dynamic_symbol || info->shared)) | |
9591 | { | |
e0001a05 NC |
9592 | asection *srel; |
9593 | bfd_boolean is_plt = FALSE; | |
9594 | ||
e0001a05 NC |
9595 | if (dynamic_symbol && r_type == R_XTENSA_PLT) |
9596 | { | |
f0e6fdb2 | 9597 | srel = htab->srelplt; |
e0001a05 NC |
9598 | is_plt = TRUE; |
9599 | } | |
9600 | else | |
f0e6fdb2 | 9601 | srel = htab->srelgot; |
e0001a05 NC |
9602 | |
9603 | /* Reduce size of the .rela.* section by one reloc. */ | |
e0001a05 | 9604 | BFD_ASSERT (srel != NULL); |
eea6121a AM |
9605 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
9606 | srel->size -= sizeof (Elf32_External_Rela); | |
e0001a05 NC |
9607 | |
9608 | if (is_plt) | |
9609 | { | |
9610 | asection *splt, *sgotplt, *srelgot; | |
9611 | int reloc_index, chunk; | |
9612 | ||
9613 | /* Find the PLT reloc index of the entry being removed. This | |
9614 | is computed from the size of ".rela.plt". It is needed to | |
9615 | figure out which PLT chunk to resize. Usually "last index | |
9616 | = size - 1" since the index starts at zero, but in this | |
9617 | context, the size has just been decremented so there's no | |
9618 | need to subtract one. */ | |
eea6121a | 9619 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
9620 | |
9621 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
f0e6fdb2 BW |
9622 | splt = elf_xtensa_get_plt_section (info, chunk); |
9623 | sgotplt = elf_xtensa_get_gotplt_section (info, chunk); | |
e0001a05 NC |
9624 | BFD_ASSERT (splt != NULL && sgotplt != NULL); |
9625 | ||
9626 | /* Check if an entire PLT chunk has just been eliminated. */ | |
9627 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
9628 | { | |
9629 | /* The two magic GOT entries for that chunk can go away. */ | |
f0e6fdb2 | 9630 | srelgot = htab->srelgot; |
e0001a05 NC |
9631 | BFD_ASSERT (srelgot != NULL); |
9632 | srelgot->reloc_count -= 2; | |
eea6121a AM |
9633 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
9634 | sgotplt->size -= 8; | |
e0001a05 NC |
9635 | |
9636 | /* There should be only one entry left (and it will be | |
9637 | removed below). */ | |
eea6121a AM |
9638 | BFD_ASSERT (sgotplt->size == 4); |
9639 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); | |
e0001a05 NC |
9640 | } |
9641 | ||
eea6121a AM |
9642 | BFD_ASSERT (sgotplt->size >= 4); |
9643 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); | |
e0001a05 | 9644 | |
eea6121a AM |
9645 | sgotplt->size -= 4; |
9646 | splt->size -= PLT_ENTRY_SIZE; | |
e0001a05 NC |
9647 | } |
9648 | } | |
9649 | } | |
9650 | ||
9651 | ||
43cd72b9 BW |
9652 | /* Take an r_rel and move it to another section. This usually |
9653 | requires extending the interal_relocation array and pinning it. If | |
9654 | the original r_rel is from the same BFD, we can complete this here. | |
9655 | Otherwise, we add a fix record to let the final link fix the | |
9656 | appropriate address. Contents and internal relocations for the | |
9657 | section must be pinned after calling this routine. */ | |
9658 | ||
9659 | static bfd_boolean | |
7fa3d080 BW |
9660 | move_literal (bfd *abfd, |
9661 | struct bfd_link_info *link_info, | |
9662 | asection *sec, | |
9663 | bfd_vma offset, | |
9664 | bfd_byte *contents, | |
9665 | xtensa_relax_info *relax_info, | |
9666 | Elf_Internal_Rela **internal_relocs_p, | |
9667 | const literal_value *lit) | |
43cd72b9 BW |
9668 | { |
9669 | Elf_Internal_Rela *new_relocs = NULL; | |
9670 | size_t new_relocs_count = 0; | |
9671 | Elf_Internal_Rela this_rela; | |
9672 | const r_reloc *r_rel; | |
9673 | ||
9674 | r_rel = &lit->r_rel; | |
9675 | BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); | |
9676 | ||
9677 | if (r_reloc_is_const (r_rel)) | |
9678 | bfd_put_32 (abfd, lit->value, contents + offset); | |
9679 | else | |
9680 | { | |
9681 | int r_type; | |
9682 | unsigned i; | |
43cd72b9 BW |
9683 | reloc_bfd_fix *fix; |
9684 | unsigned insert_at; | |
9685 | ||
9686 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
43cd72b9 BW |
9687 | |
9688 | /* This is the difficult case. We have to create a fix up. */ | |
9689 | this_rela.r_offset = offset; | |
9690 | this_rela.r_info = ELF32_R_INFO (0, r_type); | |
9691 | this_rela.r_addend = | |
9692 | r_rel->target_offset - r_reloc_get_target_offset (r_rel); | |
9693 | bfd_put_32 (abfd, lit->value, contents + offset); | |
9694 | ||
9695 | /* Currently, we cannot move relocations during a relocatable link. */ | |
9696 | BFD_ASSERT (!link_info->relocatable); | |
0f5f1638 | 9697 | fix = reloc_bfd_fix_init (sec, offset, r_type, |
43cd72b9 BW |
9698 | r_reloc_get_section (r_rel), |
9699 | r_rel->target_offset + r_rel->virtual_offset, | |
9700 | FALSE); | |
9701 | /* We also need to mark that relocations are needed here. */ | |
9702 | sec->flags |= SEC_RELOC; | |
9703 | ||
9704 | translate_reloc_bfd_fix (fix); | |
9705 | /* This fix has not yet been translated. */ | |
9706 | add_fix (sec, fix); | |
9707 | ||
9708 | /* Add the relocation. If we have already allocated our own | |
9709 | space for the relocations and we have room for more, then use | |
9710 | it. Otherwise, allocate new space and move the literals. */ | |
9711 | insert_at = sec->reloc_count; | |
9712 | for (i = 0; i < sec->reloc_count; ++i) | |
9713 | { | |
9714 | if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) | |
9715 | { | |
9716 | insert_at = i; | |
9717 | break; | |
9718 | } | |
9719 | } | |
9720 | ||
9721 | if (*internal_relocs_p != relax_info->allocated_relocs | |
9722 | || sec->reloc_count + 1 > relax_info->allocated_relocs_count) | |
9723 | { | |
9724 | BFD_ASSERT (relax_info->allocated_relocs == NULL | |
9725 | || sec->reloc_count == relax_info->relocs_count); | |
9726 | ||
68ffbac6 | 9727 | if (relax_info->allocated_relocs_count == 0) |
43cd72b9 BW |
9728 | new_relocs_count = (sec->reloc_count + 2) * 2; |
9729 | else | |
9730 | new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; | |
9731 | ||
9732 | new_relocs = (Elf_Internal_Rela *) | |
9733 | bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); | |
9734 | if (!new_relocs) | |
9735 | return FALSE; | |
9736 | ||
9737 | /* We could handle this more quickly by finding the split point. */ | |
9738 | if (insert_at != 0) | |
9739 | memcpy (new_relocs, *internal_relocs_p, | |
9740 | insert_at * sizeof (Elf_Internal_Rela)); | |
9741 | ||
9742 | new_relocs[insert_at] = this_rela; | |
9743 | ||
9744 | if (insert_at != sec->reloc_count) | |
9745 | memcpy (new_relocs + insert_at + 1, | |
9746 | (*internal_relocs_p) + insert_at, | |
68ffbac6 | 9747 | (sec->reloc_count - insert_at) |
43cd72b9 BW |
9748 | * sizeof (Elf_Internal_Rela)); |
9749 | ||
9750 | if (*internal_relocs_p != relax_info->allocated_relocs) | |
9751 | { | |
9752 | /* The first time we re-allocate, we can only free the | |
9753 | old relocs if they were allocated with bfd_malloc. | |
9754 | This is not true when keep_memory is in effect. */ | |
9755 | if (!link_info->keep_memory) | |
9756 | free (*internal_relocs_p); | |
9757 | } | |
9758 | else | |
9759 | free (*internal_relocs_p); | |
9760 | relax_info->allocated_relocs = new_relocs; | |
9761 | relax_info->allocated_relocs_count = new_relocs_count; | |
9762 | elf_section_data (sec)->relocs = new_relocs; | |
9763 | sec->reloc_count++; | |
9764 | relax_info->relocs_count = sec->reloc_count; | |
9765 | *internal_relocs_p = new_relocs; | |
9766 | } | |
9767 | else | |
9768 | { | |
9769 | if (insert_at != sec->reloc_count) | |
9770 | { | |
9771 | unsigned idx; | |
9772 | for (idx = sec->reloc_count; idx > insert_at; idx--) | |
9773 | (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; | |
9774 | } | |
9775 | (*internal_relocs_p)[insert_at] = this_rela; | |
9776 | sec->reloc_count++; | |
9777 | if (relax_info->allocated_relocs) | |
9778 | relax_info->relocs_count = sec->reloc_count; | |
9779 | } | |
9780 | } | |
9781 | return TRUE; | |
9782 | } | |
9783 | ||
9784 | ||
e0001a05 NC |
9785 | /* This is similar to relax_section except that when a target is moved, |
9786 | we shift addresses up. We also need to modify the size. This | |
9787 | algorithm does NOT allow for relocations into the middle of the | |
9788 | property sections. */ | |
9789 | ||
43cd72b9 | 9790 | static bfd_boolean |
7fa3d080 BW |
9791 | relax_property_section (bfd *abfd, |
9792 | asection *sec, | |
9793 | struct bfd_link_info *link_info) | |
e0001a05 NC |
9794 | { |
9795 | Elf_Internal_Rela *internal_relocs; | |
9796 | bfd_byte *contents; | |
1d25768e | 9797 | unsigned i; |
e0001a05 | 9798 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
9799 | bfd_boolean is_full_prop_section; |
9800 | size_t last_zfill_target_offset = 0; | |
9801 | asection *last_zfill_target_sec = NULL; | |
9802 | bfd_size_type sec_size; | |
1d25768e | 9803 | bfd_size_type entry_size; |
e0001a05 | 9804 | |
43cd72b9 | 9805 | sec_size = bfd_get_section_limit (abfd, sec); |
68ffbac6 | 9806 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
9807 | link_info->keep_memory); |
9808 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 9809 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
9810 | { |
9811 | ok = FALSE; | |
9812 | goto error_return; | |
9813 | } | |
9814 | ||
1d25768e BW |
9815 | is_full_prop_section = xtensa_is_proptable_section (sec); |
9816 | if (is_full_prop_section) | |
9817 | entry_size = 12; | |
9818 | else | |
9819 | entry_size = 8; | |
43cd72b9 BW |
9820 | |
9821 | if (internal_relocs) | |
e0001a05 | 9822 | { |
43cd72b9 | 9823 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
9824 | { |
9825 | Elf_Internal_Rela *irel; | |
9826 | xtensa_relax_info *target_relax_info; | |
e0001a05 NC |
9827 | unsigned r_type; |
9828 | asection *target_sec; | |
43cd72b9 BW |
9829 | literal_value val; |
9830 | bfd_byte *size_p, *flags_p; | |
e0001a05 NC |
9831 | |
9832 | /* Locally change the source address. | |
9833 | Translate the target to the new target address. | |
9834 | If it points to this section and has been removed, MOVE IT. | |
9835 | Also, don't forget to modify the associated SIZE at | |
9836 | (offset + 4). */ | |
9837 | ||
9838 | irel = &internal_relocs[i]; | |
9839 | r_type = ELF32_R_TYPE (irel->r_info); | |
9840 | if (r_type == R_XTENSA_NONE) | |
9841 | continue; | |
9842 | ||
43cd72b9 BW |
9843 | /* Find the literal value. */ |
9844 | r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); | |
9845 | size_p = &contents[irel->r_offset + 4]; | |
9846 | flags_p = NULL; | |
9847 | if (is_full_prop_section) | |
1d25768e BW |
9848 | flags_p = &contents[irel->r_offset + 8]; |
9849 | BFD_ASSERT (irel->r_offset + entry_size <= sec_size); | |
e0001a05 | 9850 | |
43cd72b9 | 9851 | target_sec = r_reloc_get_section (&val.r_rel); |
e0001a05 NC |
9852 | target_relax_info = get_xtensa_relax_info (target_sec); |
9853 | ||
9854 | if (target_relax_info | |
43cd72b9 BW |
9855 | && (target_relax_info->is_relaxable_literal_section |
9856 | || target_relax_info->is_relaxable_asm_section )) | |
e0001a05 NC |
9857 | { |
9858 | /* Translate the relocation's destination. */ | |
03669f1c BW |
9859 | bfd_vma old_offset = val.r_rel.target_offset; |
9860 | bfd_vma new_offset; | |
e0001a05 | 9861 | long old_size, new_size; |
03669f1c BW |
9862 | text_action *act = target_relax_info->action_list.head; |
9863 | new_offset = old_offset - | |
9864 | removed_by_actions (&act, old_offset, FALSE); | |
e0001a05 NC |
9865 | |
9866 | /* Assert that we are not out of bounds. */ | |
43cd72b9 | 9867 | old_size = bfd_get_32 (abfd, size_p); |
03669f1c | 9868 | new_size = old_size; |
43cd72b9 BW |
9869 | |
9870 | if (old_size == 0) | |
9871 | { | |
9872 | /* Only the first zero-sized unreachable entry is | |
9873 | allowed to expand. In this case the new offset | |
9874 | should be the offset before the fill and the new | |
9875 | size is the expansion size. For other zero-sized | |
9876 | entries the resulting size should be zero with an | |
9877 | offset before or after the fill address depending | |
9878 | on whether the expanding unreachable entry | |
9879 | preceeds it. */ | |
03669f1c BW |
9880 | if (last_zfill_target_sec == 0 |
9881 | || last_zfill_target_sec != target_sec | |
9882 | || last_zfill_target_offset != old_offset) | |
43cd72b9 | 9883 | { |
03669f1c BW |
9884 | bfd_vma new_end_offset = new_offset; |
9885 | ||
9886 | /* Recompute the new_offset, but this time don't | |
9887 | include any fill inserted by relaxation. */ | |
9888 | act = target_relax_info->action_list.head; | |
9889 | new_offset = old_offset - | |
9890 | removed_by_actions (&act, old_offset, TRUE); | |
43cd72b9 BW |
9891 | |
9892 | /* If it is not unreachable and we have not yet | |
9893 | seen an unreachable at this address, place it | |
9894 | before the fill address. */ | |
03669f1c BW |
9895 | if (flags_p && (bfd_get_32 (abfd, flags_p) |
9896 | & XTENSA_PROP_UNREACHABLE) != 0) | |
43cd72b9 | 9897 | { |
03669f1c BW |
9898 | new_size = new_end_offset - new_offset; |
9899 | ||
43cd72b9 | 9900 | last_zfill_target_sec = target_sec; |
03669f1c | 9901 | last_zfill_target_offset = old_offset; |
43cd72b9 BW |
9902 | } |
9903 | } | |
9904 | } | |
9905 | else | |
03669f1c BW |
9906 | new_size -= |
9907 | removed_by_actions (&act, old_offset + old_size, TRUE); | |
43cd72b9 | 9908 | |
e0001a05 NC |
9909 | if (new_size != old_size) |
9910 | { | |
9911 | bfd_put_32 (abfd, new_size, size_p); | |
9912 | pin_contents (sec, contents); | |
9913 | } | |
43cd72b9 | 9914 | |
03669f1c | 9915 | if (new_offset != old_offset) |
e0001a05 | 9916 | { |
03669f1c | 9917 | bfd_vma diff = new_offset - old_offset; |
e0001a05 NC |
9918 | irel->r_addend += diff; |
9919 | pin_internal_relocs (sec, internal_relocs); | |
9920 | } | |
9921 | } | |
9922 | } | |
9923 | } | |
9924 | ||
9925 | /* Combine adjacent property table entries. This is also done in | |
9926 | finish_dynamic_sections() but at that point it's too late to | |
9927 | reclaim the space in the output section, so we do this twice. */ | |
9928 | ||
43cd72b9 | 9929 | if (internal_relocs && (!link_info->relocatable |
1d25768e | 9930 | || xtensa_is_littable_section (sec))) |
e0001a05 NC |
9931 | { |
9932 | Elf_Internal_Rela *last_irel = NULL; | |
1d25768e | 9933 | Elf_Internal_Rela *irel, *next_rel, *rel_end; |
e0001a05 | 9934 | int removed_bytes = 0; |
1d25768e | 9935 | bfd_vma offset; |
43cd72b9 BW |
9936 | flagword predef_flags; |
9937 | ||
43cd72b9 | 9938 | predef_flags = xtensa_get_property_predef_flags (sec); |
e0001a05 | 9939 | |
1d25768e | 9940 | /* Walk over memory and relocations at the same time. |
e0001a05 NC |
9941 | This REQUIRES that the internal_relocs be sorted by offset. */ |
9942 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
9943 | internal_reloc_compare); | |
e0001a05 NC |
9944 | |
9945 | pin_internal_relocs (sec, internal_relocs); | |
9946 | pin_contents (sec, contents); | |
9947 | ||
1d25768e BW |
9948 | next_rel = internal_relocs; |
9949 | rel_end = internal_relocs + sec->reloc_count; | |
9950 | ||
a3ef2d63 | 9951 | BFD_ASSERT (sec->size % entry_size == 0); |
e0001a05 | 9952 | |
a3ef2d63 | 9953 | for (offset = 0; offset < sec->size; offset += entry_size) |
e0001a05 | 9954 | { |
1d25768e | 9955 | Elf_Internal_Rela *offset_rel, *extra_rel; |
e0001a05 | 9956 | bfd_vma bytes_to_remove, size, actual_offset; |
1d25768e | 9957 | bfd_boolean remove_this_rel; |
43cd72b9 | 9958 | flagword flags; |
e0001a05 | 9959 | |
1d25768e BW |
9960 | /* Find the first relocation for the entry at the current offset. |
9961 | Adjust the offsets of any extra relocations for the previous | |
9962 | entry. */ | |
9963 | offset_rel = NULL; | |
9964 | if (next_rel) | |
9965 | { | |
9966 | for (irel = next_rel; irel < rel_end; irel++) | |
9967 | { | |
9968 | if ((irel->r_offset == offset | |
9969 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) | |
9970 | || irel->r_offset > offset) | |
9971 | { | |
9972 | offset_rel = irel; | |
9973 | break; | |
9974 | } | |
9975 | irel->r_offset -= removed_bytes; | |
1d25768e BW |
9976 | } |
9977 | } | |
e0001a05 | 9978 | |
1d25768e BW |
9979 | /* Find the next relocation (if there are any left). */ |
9980 | extra_rel = NULL; | |
9981 | if (offset_rel) | |
e0001a05 | 9982 | { |
1d25768e | 9983 | for (irel = offset_rel + 1; irel < rel_end; irel++) |
e0001a05 | 9984 | { |
1d25768e BW |
9985 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) |
9986 | { | |
9987 | extra_rel = irel; | |
9988 | break; | |
9989 | } | |
e0001a05 | 9990 | } |
e0001a05 NC |
9991 | } |
9992 | ||
1d25768e BW |
9993 | /* Check if there are relocations on the current entry. There |
9994 | should usually be a relocation on the offset field. If there | |
9995 | are relocations on the size or flags, then we can't optimize | |
9996 | this entry. Also, find the next relocation to examine on the | |
9997 | next iteration. */ | |
9998 | if (offset_rel) | |
e0001a05 | 9999 | { |
1d25768e | 10000 | if (offset_rel->r_offset >= offset + entry_size) |
e0001a05 | 10001 | { |
1d25768e BW |
10002 | next_rel = offset_rel; |
10003 | /* There are no relocations on the current entry, but we | |
10004 | might still be able to remove it if the size is zero. */ | |
10005 | offset_rel = NULL; | |
10006 | } | |
10007 | else if (offset_rel->r_offset > offset | |
10008 | || (extra_rel | |
10009 | && extra_rel->r_offset < offset + entry_size)) | |
10010 | { | |
10011 | /* There is a relocation on the size or flags, so we can't | |
10012 | do anything with this entry. Continue with the next. */ | |
10013 | next_rel = offset_rel; | |
10014 | continue; | |
10015 | } | |
10016 | else | |
10017 | { | |
10018 | BFD_ASSERT (offset_rel->r_offset == offset); | |
10019 | offset_rel->r_offset -= removed_bytes; | |
10020 | next_rel = offset_rel + 1; | |
e0001a05 | 10021 | } |
e0001a05 | 10022 | } |
1d25768e BW |
10023 | else |
10024 | next_rel = NULL; | |
e0001a05 | 10025 | |
1d25768e | 10026 | remove_this_rel = FALSE; |
e0001a05 NC |
10027 | bytes_to_remove = 0; |
10028 | actual_offset = offset - removed_bytes; | |
10029 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
10030 | ||
68ffbac6 | 10031 | if (is_full_prop_section) |
43cd72b9 BW |
10032 | flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); |
10033 | else | |
10034 | flags = predef_flags; | |
10035 | ||
1d25768e BW |
10036 | if (size == 0 |
10037 | && (flags & XTENSA_PROP_ALIGN) == 0 | |
10038 | && (flags & XTENSA_PROP_UNREACHABLE) == 0) | |
e0001a05 | 10039 | { |
43cd72b9 BW |
10040 | /* Always remove entries with zero size and no alignment. */ |
10041 | bytes_to_remove = entry_size; | |
1d25768e BW |
10042 | if (offset_rel) |
10043 | remove_this_rel = TRUE; | |
e0001a05 | 10044 | } |
1d25768e BW |
10045 | else if (offset_rel |
10046 | && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32) | |
e0001a05 | 10047 | { |
1d25768e | 10048 | if (last_irel) |
e0001a05 | 10049 | { |
1d25768e BW |
10050 | flagword old_flags; |
10051 | bfd_vma old_size = | |
10052 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); | |
10053 | bfd_vma old_address = | |
10054 | (last_irel->r_addend | |
10055 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); | |
10056 | bfd_vma new_address = | |
10057 | (offset_rel->r_addend | |
10058 | + bfd_get_32 (abfd, &contents[actual_offset])); | |
68ffbac6 | 10059 | if (is_full_prop_section) |
1d25768e BW |
10060 | old_flags = bfd_get_32 |
10061 | (abfd, &contents[last_irel->r_offset + 8]); | |
10062 | else | |
10063 | old_flags = predef_flags; | |
10064 | ||
10065 | if ((ELF32_R_SYM (offset_rel->r_info) | |
10066 | == ELF32_R_SYM (last_irel->r_info)) | |
10067 | && old_address + old_size == new_address | |
10068 | && old_flags == flags | |
10069 | && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 | |
10070 | && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) | |
e0001a05 | 10071 | { |
1d25768e BW |
10072 | /* Fix the old size. */ |
10073 | bfd_put_32 (abfd, old_size + size, | |
10074 | &contents[last_irel->r_offset + 4]); | |
10075 | bytes_to_remove = entry_size; | |
10076 | remove_this_rel = TRUE; | |
e0001a05 NC |
10077 | } |
10078 | else | |
1d25768e | 10079 | last_irel = offset_rel; |
e0001a05 | 10080 | } |
1d25768e BW |
10081 | else |
10082 | last_irel = offset_rel; | |
e0001a05 NC |
10083 | } |
10084 | ||
1d25768e | 10085 | if (remove_this_rel) |
e0001a05 | 10086 | { |
1d25768e | 10087 | offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); |
3df502ae | 10088 | offset_rel->r_offset = 0; |
e0001a05 NC |
10089 | } |
10090 | ||
10091 | if (bytes_to_remove != 0) | |
10092 | { | |
10093 | removed_bytes += bytes_to_remove; | |
a3ef2d63 | 10094 | if (offset + bytes_to_remove < sec->size) |
e0001a05 | 10095 | memmove (&contents[actual_offset], |
43cd72b9 | 10096 | &contents[actual_offset + bytes_to_remove], |
a3ef2d63 | 10097 | sec->size - offset - bytes_to_remove); |
e0001a05 NC |
10098 | } |
10099 | } | |
10100 | ||
43cd72b9 | 10101 | if (removed_bytes) |
e0001a05 | 10102 | { |
1d25768e BW |
10103 | /* Fix up any extra relocations on the last entry. */ |
10104 | for (irel = next_rel; irel < rel_end; irel++) | |
10105 | irel->r_offset -= removed_bytes; | |
10106 | ||
e0001a05 | 10107 | /* Clear the removed bytes. */ |
a3ef2d63 | 10108 | memset (&contents[sec->size - removed_bytes], 0, removed_bytes); |
e0001a05 | 10109 | |
a3ef2d63 BW |
10110 | if (sec->rawsize == 0) |
10111 | sec->rawsize = sec->size; | |
10112 | sec->size -= removed_bytes; | |
e901de89 BW |
10113 | |
10114 | if (xtensa_is_littable_section (sec)) | |
10115 | { | |
f0e6fdb2 BW |
10116 | asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; |
10117 | if (sgotloc) | |
10118 | sgotloc->size -= removed_bytes; | |
e901de89 | 10119 | } |
e0001a05 NC |
10120 | } |
10121 | } | |
e901de89 | 10122 | |
e0001a05 NC |
10123 | error_return: |
10124 | release_internal_relocs (sec, internal_relocs); | |
10125 | release_contents (sec, contents); | |
10126 | return ok; | |
10127 | } | |
10128 | ||
10129 | \f | |
10130 | /* Third relaxation pass. */ | |
10131 | ||
10132 | /* Change symbol values to account for removed literals. */ | |
10133 | ||
43cd72b9 | 10134 | bfd_boolean |
7fa3d080 | 10135 | relax_section_symbols (bfd *abfd, asection *sec) |
e0001a05 NC |
10136 | { |
10137 | xtensa_relax_info *relax_info; | |
10138 | unsigned int sec_shndx; | |
10139 | Elf_Internal_Shdr *symtab_hdr; | |
10140 | Elf_Internal_Sym *isymbuf; | |
10141 | unsigned i, num_syms, num_locals; | |
10142 | ||
10143 | relax_info = get_xtensa_relax_info (sec); | |
10144 | BFD_ASSERT (relax_info); | |
10145 | ||
43cd72b9 BW |
10146 | if (!relax_info->is_relaxable_literal_section |
10147 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
10148 | return TRUE; |
10149 | ||
10150 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
10151 | ||
10152 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10153 | isymbuf = retrieve_local_syms (abfd); | |
10154 | ||
10155 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
10156 | num_locals = symtab_hdr->sh_info; | |
10157 | ||
10158 | /* Adjust the local symbols defined in this section. */ | |
10159 | for (i = 0; i < num_locals; i++) | |
10160 | { | |
10161 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
10162 | ||
10163 | if (isym->st_shndx == sec_shndx) | |
10164 | { | |
03669f1c BW |
10165 | text_action *act = relax_info->action_list.head; |
10166 | bfd_vma orig_addr = isym->st_value; | |
43cd72b9 | 10167 | |
03669f1c | 10168 | isym->st_value -= removed_by_actions (&act, orig_addr, FALSE); |
43cd72b9 | 10169 | |
03669f1c BW |
10170 | if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) |
10171 | isym->st_size -= | |
10172 | removed_by_actions (&act, orig_addr + isym->st_size, FALSE); | |
e0001a05 NC |
10173 | } |
10174 | } | |
10175 | ||
10176 | /* Now adjust the global symbols defined in this section. */ | |
10177 | for (i = 0; i < (num_syms - num_locals); i++) | |
10178 | { | |
10179 | struct elf_link_hash_entry *sym_hash; | |
10180 | ||
10181 | sym_hash = elf_sym_hashes (abfd)[i]; | |
10182 | ||
10183 | if (sym_hash->root.type == bfd_link_hash_warning) | |
10184 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
10185 | ||
10186 | if ((sym_hash->root.type == bfd_link_hash_defined | |
10187 | || sym_hash->root.type == bfd_link_hash_defweak) | |
10188 | && sym_hash->root.u.def.section == sec) | |
10189 | { | |
03669f1c BW |
10190 | text_action *act = relax_info->action_list.head; |
10191 | bfd_vma orig_addr = sym_hash->root.u.def.value; | |
43cd72b9 | 10192 | |
03669f1c BW |
10193 | sym_hash->root.u.def.value -= |
10194 | removed_by_actions (&act, orig_addr, FALSE); | |
43cd72b9 | 10195 | |
03669f1c BW |
10196 | if (sym_hash->type == STT_FUNC) |
10197 | sym_hash->size -= | |
10198 | removed_by_actions (&act, orig_addr + sym_hash->size, FALSE); | |
e0001a05 NC |
10199 | } |
10200 | } | |
10201 | ||
10202 | return TRUE; | |
10203 | } | |
10204 | ||
10205 | \f | |
10206 | /* "Fix" handling functions, called while performing relocations. */ | |
10207 | ||
43cd72b9 | 10208 | static bfd_boolean |
7fa3d080 BW |
10209 | do_fix_for_relocatable_link (Elf_Internal_Rela *rel, |
10210 | bfd *input_bfd, | |
10211 | asection *input_section, | |
10212 | bfd_byte *contents) | |
e0001a05 NC |
10213 | { |
10214 | r_reloc r_rel; | |
10215 | asection *sec, *old_sec; | |
10216 | bfd_vma old_offset; | |
10217 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 NC |
10218 | reloc_bfd_fix *fix; |
10219 | ||
10220 | if (r_type == R_XTENSA_NONE) | |
43cd72b9 | 10221 | return TRUE; |
e0001a05 | 10222 | |
43cd72b9 BW |
10223 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10224 | if (!fix) | |
10225 | return TRUE; | |
e0001a05 | 10226 | |
43cd72b9 BW |
10227 | r_reloc_init (&r_rel, input_bfd, rel, contents, |
10228 | bfd_get_section_limit (input_bfd, input_section)); | |
e0001a05 | 10229 | old_sec = r_reloc_get_section (&r_rel); |
43cd72b9 BW |
10230 | old_offset = r_rel.target_offset; |
10231 | ||
10232 | if (!old_sec || !r_reloc_is_defined (&r_rel)) | |
e0001a05 | 10233 | { |
43cd72b9 BW |
10234 | if (r_type != R_XTENSA_ASM_EXPAND) |
10235 | { | |
10236 | (*_bfd_error_handler) | |
10237 | (_("%B(%A+0x%lx): unexpected fix for %s relocation"), | |
10238 | input_bfd, input_section, rel->r_offset, | |
10239 | elf_howto_table[r_type].name); | |
10240 | return FALSE; | |
10241 | } | |
e0001a05 NC |
10242 | /* Leave it be. Resolution will happen in a later stage. */ |
10243 | } | |
10244 | else | |
10245 | { | |
10246 | sec = fix->target_sec; | |
10247 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
10248 | - (old_sec->output_offset + old_offset)); | |
10249 | } | |
43cd72b9 | 10250 | return TRUE; |
e0001a05 NC |
10251 | } |
10252 | ||
10253 | ||
10254 | static void | |
7fa3d080 BW |
10255 | do_fix_for_final_link (Elf_Internal_Rela *rel, |
10256 | bfd *input_bfd, | |
10257 | asection *input_section, | |
10258 | bfd_byte *contents, | |
10259 | bfd_vma *relocationp) | |
e0001a05 NC |
10260 | { |
10261 | asection *sec; | |
10262 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 | 10263 | reloc_bfd_fix *fix; |
43cd72b9 | 10264 | bfd_vma fixup_diff; |
e0001a05 NC |
10265 | |
10266 | if (r_type == R_XTENSA_NONE) | |
10267 | return; | |
10268 | ||
43cd72b9 BW |
10269 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
10270 | if (!fix) | |
e0001a05 NC |
10271 | return; |
10272 | ||
10273 | sec = fix->target_sec; | |
43cd72b9 BW |
10274 | |
10275 | fixup_diff = rel->r_addend; | |
10276 | if (elf_howto_table[fix->src_type].partial_inplace) | |
10277 | { | |
10278 | bfd_vma inplace_val; | |
10279 | BFD_ASSERT (fix->src_offset | |
10280 | < bfd_get_section_limit (input_bfd, input_section)); | |
10281 | inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); | |
10282 | fixup_diff += inplace_val; | |
10283 | } | |
10284 | ||
e0001a05 NC |
10285 | *relocationp = (sec->output_section->vma |
10286 | + sec->output_offset | |
43cd72b9 | 10287 | + fix->target_offset - fixup_diff); |
e0001a05 NC |
10288 | } |
10289 | ||
10290 | \f | |
10291 | /* Miscellaneous utility functions.... */ | |
10292 | ||
10293 | static asection * | |
f0e6fdb2 | 10294 | elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10295 | { |
f0e6fdb2 BW |
10296 | struct elf_xtensa_link_hash_table *htab; |
10297 | bfd *dynobj; | |
e0001a05 NC |
10298 | char plt_name[10]; |
10299 | ||
10300 | if (chunk == 0) | |
f0e6fdb2 BW |
10301 | { |
10302 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
10303 | if (htab == NULL) |
10304 | return NULL; | |
10305 | ||
f0e6fdb2 BW |
10306 | return htab->splt; |
10307 | } | |
e0001a05 | 10308 | |
f0e6fdb2 | 10309 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 | 10310 | sprintf (plt_name, ".plt.%u", chunk); |
3d4d4302 | 10311 | return bfd_get_linker_section (dynobj, plt_name); |
e0001a05 NC |
10312 | } |
10313 | ||
10314 | ||
10315 | static asection * | |
f0e6fdb2 | 10316 | elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) |
e0001a05 | 10317 | { |
f0e6fdb2 BW |
10318 | struct elf_xtensa_link_hash_table *htab; |
10319 | bfd *dynobj; | |
e0001a05 NC |
10320 | char got_name[14]; |
10321 | ||
10322 | if (chunk == 0) | |
f0e6fdb2 BW |
10323 | { |
10324 | htab = elf_xtensa_hash_table (info); | |
4dfe6ac6 NC |
10325 | if (htab == NULL) |
10326 | return NULL; | |
f0e6fdb2 BW |
10327 | return htab->sgotplt; |
10328 | } | |
e0001a05 | 10329 | |
f0e6fdb2 | 10330 | dynobj = elf_hash_table (info)->dynobj; |
e0001a05 | 10331 | sprintf (got_name, ".got.plt.%u", chunk); |
3d4d4302 | 10332 | return bfd_get_linker_section (dynobj, got_name); |
e0001a05 NC |
10333 | } |
10334 | ||
10335 | ||
10336 | /* Get the input section for a given symbol index. | |
10337 | If the symbol is: | |
10338 | . a section symbol, return the section; | |
10339 | . a common symbol, return the common section; | |
10340 | . an undefined symbol, return the undefined section; | |
10341 | . an indirect symbol, follow the links; | |
10342 | . an absolute value, return the absolute section. */ | |
10343 | ||
10344 | static asection * | |
7fa3d080 | 10345 | get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10346 | { |
10347 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10348 | asection *target_sec = NULL; | |
43cd72b9 | 10349 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
10350 | { |
10351 | Elf_Internal_Sym *isymbuf; | |
10352 | unsigned int section_index; | |
10353 | ||
10354 | isymbuf = retrieve_local_syms (abfd); | |
10355 | section_index = isymbuf[r_symndx].st_shndx; | |
10356 | ||
10357 | if (section_index == SHN_UNDEF) | |
10358 | target_sec = bfd_und_section_ptr; | |
e0001a05 NC |
10359 | else if (section_index == SHN_ABS) |
10360 | target_sec = bfd_abs_section_ptr; | |
10361 | else if (section_index == SHN_COMMON) | |
10362 | target_sec = bfd_com_section_ptr; | |
43cd72b9 | 10363 | else |
cb33740c | 10364 | target_sec = bfd_section_from_elf_index (abfd, section_index); |
e0001a05 NC |
10365 | } |
10366 | else | |
10367 | { | |
10368 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
10369 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
10370 | ||
10371 | while (h->root.type == bfd_link_hash_indirect | |
10372 | || h->root.type == bfd_link_hash_warning) | |
10373 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10374 | ||
10375 | switch (h->root.type) | |
10376 | { | |
10377 | case bfd_link_hash_defined: | |
10378 | case bfd_link_hash_defweak: | |
10379 | target_sec = h->root.u.def.section; | |
10380 | break; | |
10381 | case bfd_link_hash_common: | |
10382 | target_sec = bfd_com_section_ptr; | |
10383 | break; | |
10384 | case bfd_link_hash_undefined: | |
10385 | case bfd_link_hash_undefweak: | |
10386 | target_sec = bfd_und_section_ptr; | |
10387 | break; | |
10388 | default: /* New indirect warning. */ | |
10389 | target_sec = bfd_und_section_ptr; | |
10390 | break; | |
10391 | } | |
10392 | } | |
10393 | return target_sec; | |
10394 | } | |
10395 | ||
10396 | ||
10397 | static struct elf_link_hash_entry * | |
7fa3d080 | 10398 | get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10399 | { |
10400 | unsigned long indx; | |
10401 | struct elf_link_hash_entry *h; | |
10402 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10403 | ||
10404 | if (r_symndx < symtab_hdr->sh_info) | |
10405 | return NULL; | |
43cd72b9 | 10406 | |
e0001a05 NC |
10407 | indx = r_symndx - symtab_hdr->sh_info; |
10408 | h = elf_sym_hashes (abfd)[indx]; | |
10409 | while (h->root.type == bfd_link_hash_indirect | |
10410 | || h->root.type == bfd_link_hash_warning) | |
10411 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10412 | return h; | |
10413 | } | |
10414 | ||
10415 | ||
10416 | /* Get the section-relative offset for a symbol number. */ | |
10417 | ||
10418 | static bfd_vma | |
7fa3d080 | 10419 | get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
10420 | { |
10421 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
10422 | bfd_vma offset = 0; | |
10423 | ||
43cd72b9 | 10424 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
10425 | { |
10426 | Elf_Internal_Sym *isymbuf; | |
10427 | isymbuf = retrieve_local_syms (abfd); | |
10428 | offset = isymbuf[r_symndx].st_value; | |
10429 | } | |
10430 | else | |
10431 | { | |
10432 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
10433 | struct elf_link_hash_entry *h = | |
10434 | elf_sym_hashes (abfd)[indx]; | |
10435 | ||
10436 | while (h->root.type == bfd_link_hash_indirect | |
10437 | || h->root.type == bfd_link_hash_warning) | |
10438 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10439 | if (h->root.type == bfd_link_hash_defined | |
10440 | || h->root.type == bfd_link_hash_defweak) | |
10441 | offset = h->root.u.def.value; | |
10442 | } | |
10443 | return offset; | |
10444 | } | |
10445 | ||
10446 | ||
10447 | static bfd_boolean | |
7fa3d080 | 10448 | is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) |
43cd72b9 BW |
10449 | { |
10450 | unsigned long r_symndx = ELF32_R_SYM (rel->r_info); | |
10451 | struct elf_link_hash_entry *h; | |
10452 | ||
10453 | h = get_elf_r_symndx_hash_entry (abfd, r_symndx); | |
10454 | if (h && h->root.type == bfd_link_hash_defweak) | |
10455 | return TRUE; | |
10456 | return FALSE; | |
10457 | } | |
10458 | ||
10459 | ||
10460 | static bfd_boolean | |
7fa3d080 BW |
10461 | pcrel_reloc_fits (xtensa_opcode opc, |
10462 | int opnd, | |
10463 | bfd_vma self_address, | |
10464 | bfd_vma dest_address) | |
e0001a05 | 10465 | { |
43cd72b9 BW |
10466 | xtensa_isa isa = xtensa_default_isa; |
10467 | uint32 valp = dest_address; | |
10468 | if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) | |
10469 | || xtensa_operand_encode (isa, opc, opnd, &valp)) | |
10470 | return FALSE; | |
10471 | return TRUE; | |
e0001a05 NC |
10472 | } |
10473 | ||
10474 | ||
68ffbac6 | 10475 | static bfd_boolean |
7fa3d080 | 10476 | xtensa_is_property_section (asection *sec) |
e0001a05 | 10477 | { |
1d25768e BW |
10478 | if (xtensa_is_insntable_section (sec) |
10479 | || xtensa_is_littable_section (sec) | |
10480 | || xtensa_is_proptable_section (sec)) | |
b614a702 | 10481 | return TRUE; |
e901de89 | 10482 | |
1d25768e BW |
10483 | return FALSE; |
10484 | } | |
10485 | ||
10486 | ||
68ffbac6 | 10487 | static bfd_boolean |
1d25768e BW |
10488 | xtensa_is_insntable_section (asection *sec) |
10489 | { | |
10490 | if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) | |
10491 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.x.")) | |
e901de89 BW |
10492 | return TRUE; |
10493 | ||
e901de89 BW |
10494 | return FALSE; |
10495 | } | |
10496 | ||
10497 | ||
68ffbac6 | 10498 | static bfd_boolean |
7fa3d080 | 10499 | xtensa_is_littable_section (asection *sec) |
e901de89 | 10500 | { |
1d25768e BW |
10501 | if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME) |
10502 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.p.")) | |
b614a702 | 10503 | return TRUE; |
e901de89 | 10504 | |
1d25768e BW |
10505 | return FALSE; |
10506 | } | |
10507 | ||
10508 | ||
68ffbac6 | 10509 | static bfd_boolean |
1d25768e BW |
10510 | xtensa_is_proptable_section (asection *sec) |
10511 | { | |
10512 | if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME) | |
10513 | || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop.")) | |
e901de89 | 10514 | return TRUE; |
e0001a05 | 10515 | |
e901de89 | 10516 | return FALSE; |
e0001a05 NC |
10517 | } |
10518 | ||
10519 | ||
43cd72b9 | 10520 | static int |
7fa3d080 | 10521 | internal_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 10522 | { |
43cd72b9 BW |
10523 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
10524 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
10525 | ||
10526 | if (a->r_offset != b->r_offset) | |
10527 | return (a->r_offset - b->r_offset); | |
10528 | ||
10529 | /* We don't need to sort on these criteria for correctness, | |
10530 | but enforcing a more strict ordering prevents unstable qsort | |
10531 | from behaving differently with different implementations. | |
10532 | Without the code below we get correct but different results | |
10533 | on Solaris 2.7 and 2.8. We would like to always produce the | |
10534 | same results no matter the host. */ | |
10535 | ||
10536 | if (a->r_info != b->r_info) | |
10537 | return (a->r_info - b->r_info); | |
10538 | ||
10539 | return (a->r_addend - b->r_addend); | |
e0001a05 NC |
10540 | } |
10541 | ||
10542 | ||
10543 | static int | |
7fa3d080 | 10544 | internal_reloc_matches (const void *ap, const void *bp) |
e0001a05 NC |
10545 | { |
10546 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
10547 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
10548 | ||
43cd72b9 BW |
10549 | /* Check if one entry overlaps with the other; this shouldn't happen |
10550 | except when searching for a match. */ | |
e0001a05 NC |
10551 | return (a->r_offset - b->r_offset); |
10552 | } | |
10553 | ||
10554 | ||
74869ac7 BW |
10555 | /* Predicate function used to look up a section in a particular group. */ |
10556 | ||
10557 | static bfd_boolean | |
10558 | match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) | |
10559 | { | |
10560 | const char *gname = inf; | |
10561 | const char *group_name = elf_group_name (sec); | |
68ffbac6 | 10562 | |
74869ac7 BW |
10563 | return (group_name == gname |
10564 | || (group_name != NULL | |
10565 | && gname != NULL | |
10566 | && strcmp (group_name, gname) == 0)); | |
10567 | } | |
10568 | ||
10569 | ||
1d25768e BW |
10570 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
10571 | ||
51c8ebc1 BW |
10572 | static char * |
10573 | xtensa_property_section_name (asection *sec, const char *base_name) | |
e0001a05 | 10574 | { |
74869ac7 BW |
10575 | const char *suffix, *group_name; |
10576 | char *prop_sec_name; | |
74869ac7 BW |
10577 | |
10578 | group_name = elf_group_name (sec); | |
10579 | if (group_name) | |
10580 | { | |
10581 | suffix = strrchr (sec->name, '.'); | |
10582 | if (suffix == sec->name) | |
10583 | suffix = 0; | |
10584 | prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1 | |
10585 | + (suffix ? strlen (suffix) : 0)); | |
10586 | strcpy (prop_sec_name, base_name); | |
10587 | if (suffix) | |
10588 | strcat (prop_sec_name, suffix); | |
10589 | } | |
10590 | else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) | |
e0001a05 | 10591 | { |
43cd72b9 | 10592 | char *linkonce_kind = 0; |
b614a702 | 10593 | |
68ffbac6 | 10594 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) |
7db48a12 | 10595 | linkonce_kind = "x."; |
68ffbac6 | 10596 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) |
7db48a12 | 10597 | linkonce_kind = "p."; |
43cd72b9 BW |
10598 | else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) |
10599 | linkonce_kind = "prop."; | |
e0001a05 | 10600 | else |
b614a702 BW |
10601 | abort (); |
10602 | ||
43cd72b9 BW |
10603 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) |
10604 | + strlen (linkonce_kind) + 1); | |
b614a702 | 10605 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); |
43cd72b9 | 10606 | strcpy (prop_sec_name + linkonce_len, linkonce_kind); |
b614a702 BW |
10607 | |
10608 | suffix = sec->name + linkonce_len; | |
096c35a7 | 10609 | /* For backward compatibility, replace "t." instead of inserting |
43cd72b9 | 10610 | the new linkonce_kind (but not for "prop" sections). */ |
0112cd26 | 10611 | if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.') |
43cd72b9 BW |
10612 | suffix += 2; |
10613 | strcat (prop_sec_name + linkonce_len, suffix); | |
74869ac7 BW |
10614 | } |
10615 | else | |
10616 | prop_sec_name = strdup (base_name); | |
10617 | ||
51c8ebc1 BW |
10618 | return prop_sec_name; |
10619 | } | |
10620 | ||
10621 | ||
10622 | static asection * | |
10623 | xtensa_get_property_section (asection *sec, const char *base_name) | |
10624 | { | |
10625 | char *prop_sec_name; | |
10626 | asection *prop_sec; | |
10627 | ||
10628 | prop_sec_name = xtensa_property_section_name (sec, base_name); | |
10629 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, | |
10630 | match_section_group, | |
10631 | (void *) elf_group_name (sec)); | |
10632 | free (prop_sec_name); | |
10633 | return prop_sec; | |
10634 | } | |
10635 | ||
10636 | ||
10637 | asection * | |
10638 | xtensa_make_property_section (asection *sec, const char *base_name) | |
10639 | { | |
10640 | char *prop_sec_name; | |
10641 | asection *prop_sec; | |
10642 | ||
74869ac7 | 10643 | /* Check if the section already exists. */ |
51c8ebc1 | 10644 | prop_sec_name = xtensa_property_section_name (sec, base_name); |
74869ac7 BW |
10645 | prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, |
10646 | match_section_group, | |
51c8ebc1 | 10647 | (void *) elf_group_name (sec)); |
74869ac7 BW |
10648 | /* If not, create it. */ |
10649 | if (! prop_sec) | |
10650 | { | |
10651 | flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY); | |
10652 | flags |= (bfd_get_section_flags (sec->owner, sec) | |
10653 | & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)); | |
10654 | ||
10655 | prop_sec = bfd_make_section_anyway_with_flags | |
10656 | (sec->owner, strdup (prop_sec_name), flags); | |
10657 | if (! prop_sec) | |
10658 | return 0; | |
b614a702 | 10659 | |
51c8ebc1 | 10660 | elf_group_name (prop_sec) = elf_group_name (sec); |
e0001a05 NC |
10661 | } |
10662 | ||
74869ac7 BW |
10663 | free (prop_sec_name); |
10664 | return prop_sec; | |
e0001a05 NC |
10665 | } |
10666 | ||
43cd72b9 BW |
10667 | |
10668 | flagword | |
7fa3d080 | 10669 | xtensa_get_property_predef_flags (asection *sec) |
43cd72b9 | 10670 | { |
1d25768e | 10671 | if (xtensa_is_insntable_section (sec)) |
43cd72b9 | 10672 | return (XTENSA_PROP_INSN |
99ded152 | 10673 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
10674 | | XTENSA_PROP_INSN_NO_REORDER); |
10675 | ||
10676 | if (xtensa_is_littable_section (sec)) | |
10677 | return (XTENSA_PROP_LITERAL | |
99ded152 | 10678 | | XTENSA_PROP_NO_TRANSFORM |
43cd72b9 BW |
10679 | | XTENSA_PROP_INSN_NO_REORDER); |
10680 | ||
10681 | return 0; | |
10682 | } | |
10683 | ||
e0001a05 NC |
10684 | \f |
10685 | /* Other functions called directly by the linker. */ | |
10686 | ||
10687 | bfd_boolean | |
7fa3d080 BW |
10688 | xtensa_callback_required_dependence (bfd *abfd, |
10689 | asection *sec, | |
10690 | struct bfd_link_info *link_info, | |
10691 | deps_callback_t callback, | |
10692 | void *closure) | |
e0001a05 NC |
10693 | { |
10694 | Elf_Internal_Rela *internal_relocs; | |
10695 | bfd_byte *contents; | |
10696 | unsigned i; | |
10697 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
10698 | bfd_size_type sec_size; |
10699 | ||
10700 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 NC |
10701 | |
10702 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
10703 | instructions that reference the corresponding ".got.plt*" sections. */ | |
10704 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
0112cd26 | 10705 | && CONST_STRNEQ (sec->name, ".plt")) |
e0001a05 NC |
10706 | { |
10707 | asection *sgotplt; | |
10708 | ||
10709 | /* Find the corresponding ".got.plt*" section. */ | |
10710 | if (sec->name[4] == '\0') | |
3d4d4302 | 10711 | sgotplt = bfd_get_linker_section (sec->owner, ".got.plt"); |
e0001a05 NC |
10712 | else |
10713 | { | |
10714 | char got_name[14]; | |
10715 | int chunk = 0; | |
10716 | ||
10717 | BFD_ASSERT (sec->name[4] == '.'); | |
10718 | chunk = strtol (&sec->name[5], NULL, 10); | |
10719 | ||
10720 | sprintf (got_name, ".got.plt.%u", chunk); | |
3d4d4302 | 10721 | sgotplt = bfd_get_linker_section (sec->owner, got_name); |
e0001a05 NC |
10722 | } |
10723 | BFD_ASSERT (sgotplt); | |
10724 | ||
10725 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
10726 | section referencing a literal at the very beginning of | |
10727 | ".got.plt". This is very close to the real dependence, anyway. */ | |
43cd72b9 | 10728 | (*callback) (sec, sec_size, sgotplt, 0, closure); |
e0001a05 NC |
10729 | } |
10730 | ||
13161072 BW |
10731 | /* Only ELF files are supported for Xtensa. Check here to avoid a segfault |
10732 | when building uclibc, which runs "ld -b binary /dev/null". */ | |
10733 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
10734 | return ok; | |
10735 | ||
68ffbac6 | 10736 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
e0001a05 NC |
10737 | link_info->keep_memory); |
10738 | if (internal_relocs == NULL | |
43cd72b9 | 10739 | || sec->reloc_count == 0) |
e0001a05 NC |
10740 | return ok; |
10741 | ||
10742 | /* Cache the contents for the duration of this scan. */ | |
10743 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 10744 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
10745 | { |
10746 | ok = FALSE; | |
10747 | goto error_return; | |
10748 | } | |
10749 | ||
43cd72b9 BW |
10750 | if (!xtensa_default_isa) |
10751 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 10752 | |
43cd72b9 | 10753 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
10754 | { |
10755 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 | 10756 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
e0001a05 NC |
10757 | { |
10758 | r_reloc l32r_rel; | |
10759 | asection *target_sec; | |
10760 | bfd_vma target_offset; | |
43cd72b9 BW |
10761 | |
10762 | r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); | |
e0001a05 NC |
10763 | target_sec = NULL; |
10764 | target_offset = 0; | |
10765 | /* L32Rs must be local to the input file. */ | |
10766 | if (r_reloc_is_defined (&l32r_rel)) | |
10767 | { | |
10768 | target_sec = r_reloc_get_section (&l32r_rel); | |
43cd72b9 | 10769 | target_offset = l32r_rel.target_offset; |
e0001a05 NC |
10770 | } |
10771 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
10772 | closure); | |
10773 | } | |
10774 | } | |
10775 | ||
10776 | error_return: | |
10777 | release_internal_relocs (sec, internal_relocs); | |
10778 | release_contents (sec, contents); | |
10779 | return ok; | |
10780 | } | |
10781 | ||
2f89ff8d L |
10782 | /* The default literal sections should always be marked as "code" (i.e., |
10783 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
10784 | module loader so that the literals are not placed after the text. */ | |
b35d266b | 10785 | static const struct bfd_elf_special_section elf_xtensa_special_sections[] = |
2f89ff8d | 10786 | { |
0112cd26 NC |
10787 | { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
10788 | { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
10789 | { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | |
2caa7ca0 | 10790 | { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, |
0112cd26 | 10791 | { NULL, 0, 0, 0, 0 } |
7f4d3958 | 10792 | }; |
e0001a05 | 10793 | \f |
ae95ffa6 | 10794 | #define ELF_TARGET_ID XTENSA_ELF_DATA |
e0001a05 | 10795 | #ifndef ELF_ARCH |
6d00b590 | 10796 | #define TARGET_LITTLE_SYM xtensa_elf32_le_vec |
e0001a05 | 10797 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" |
6d00b590 | 10798 | #define TARGET_BIG_SYM xtensa_elf32_be_vec |
e0001a05 NC |
10799 | #define TARGET_BIG_NAME "elf32-xtensa-be" |
10800 | #define ELF_ARCH bfd_arch_xtensa | |
10801 | ||
4af0a1d8 BW |
10802 | #define ELF_MACHINE_CODE EM_XTENSA |
10803 | #define ELF_MACHINE_ALT1 EM_XTENSA_OLD | |
e0001a05 NC |
10804 | |
10805 | #if XCHAL_HAVE_MMU | |
10806 | #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE) | |
10807 | #else /* !XCHAL_HAVE_MMU */ | |
10808 | #define ELF_MAXPAGESIZE 1 | |
10809 | #endif /* !XCHAL_HAVE_MMU */ | |
10810 | #endif /* ELF_ARCH */ | |
10811 | ||
10812 | #define elf_backend_can_gc_sections 1 | |
10813 | #define elf_backend_can_refcount 1 | |
10814 | #define elf_backend_plt_readonly 1 | |
10815 | #define elf_backend_got_header_size 4 | |
10816 | #define elf_backend_want_dynbss 0 | |
10817 | #define elf_backend_want_got_plt 1 | |
10818 | ||
10819 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
10820 | ||
28dbbc02 BW |
10821 | #define bfd_elf32_mkobject elf_xtensa_mkobject |
10822 | ||
e0001a05 NC |
10823 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
10824 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
10825 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
10826 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
10827 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
157090f7 AM |
10828 | #define bfd_elf32_bfd_reloc_name_lookup \ |
10829 | elf_xtensa_reloc_name_lookup | |
e0001a05 | 10830 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags |
f0e6fdb2 | 10831 | #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create |
e0001a05 NC |
10832 | |
10833 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
10834 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
10835 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
10836 | #define elf_backend_discard_info elf_xtensa_discard_info | |
10837 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
10838 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
10839 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
10840 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
10841 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
10842 | #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook | |
10843 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus | |
10844 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
95147441 | 10845 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol |
e0001a05 NC |
10846 | #define elf_backend_object_p elf_xtensa_object_p |
10847 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
10848 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
10849 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
28dbbc02 | 10850 | #define elf_backend_always_size_sections elf_xtensa_always_size_sections |
74541ad4 AM |
10851 | #define elf_backend_omit_section_dynsym \ |
10852 | ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) | |
29ef7005 | 10853 | #define elf_backend_special_sections elf_xtensa_special_sections |
a77dc2cc | 10854 | #define elf_backend_action_discarded elf_xtensa_action_discarded |
28dbbc02 | 10855 | #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol |
e0001a05 NC |
10856 | |
10857 | #include "elf32-target.h" |