* elflink.c (_bfd_elf_gc_mark_hook): New function.
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
f592407e 2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05
NC
20
21#include "bfd.h"
22#include "sysdep.h"
23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
7fa3d080 38static bfd_boolean add_extra_plt_sections (bfd *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
7fa3d080
BW
97static asection *elf_xtensa_get_plt_section (bfd *, int);
98static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
106static bfd_boolean xtensa_is_littable_section (asection *);
107static int internal_reloc_compare (const void *, const void *);
108static int internal_reloc_matches (const void *, const void *);
74869ac7 109extern asection *xtensa_get_property_section (asection *, const char *);
7fa3d080 110static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
111
112/* Other functions called directly by the linker. */
113
114typedef void (*deps_callback_t)
7fa3d080 115 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 116extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
118
119
43cd72b9
BW
120/* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
7fa3d080 124
43cd72b9
BW
125int elf32xtensa_size_opt;
126
127
128/* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
e0001a05 131
7fa3d080 132typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 133
43cd72b9 134
e0001a05
NC
135/* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
b536dc1e 139 needed. It is OK if this count is an overestimate, e.g., some
e0001a05
NC
140 relocations may be removed by GC. */
141
142static int plt_reloc_count = 0;
143
144
43cd72b9
BW
145/* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
149
150xtensa_isa xtensa_default_isa;
151
152
e0001a05
NC
153/* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
156
157static bfd_boolean relaxing_section = FALSE;
158
43cd72b9
BW
159/* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
161
162int elf32xtensa_no_literal_movement = 1;
163
e0001a05
NC
164\f
165static reloc_howto_type elf_howto_table[] =
166{
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
43cd72b9
BW
220 FALSE, 0x00000000, 0x00000000, FALSE),
221
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
279
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
e0001a05
NC
326};
327
43cd72b9 328#if DEBUG_GEN_RELOC
e0001a05
NC
329#define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331#else
332#define TRACE(str)
333#endif
334
335static reloc_howto_type *
7fa3d080
BW
336elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
e0001a05
NC
338{
339 switch (code)
340 {
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
344
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
348
43cd72b9
BW
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
352
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
356
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
360
e0001a05
NC
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
364
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
368
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
372
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
376
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
380
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
384
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
388
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
392
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
396
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
400
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
404
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
408
409 default:
43cd72b9
BW
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
412 {
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
416 }
417
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
420 {
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
424 }
425
e0001a05
NC
426 break;
427 }
428
429 TRACE ("Unknown");
430 return NULL;
431}
432
433
434/* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
436
437static void
7fa3d080
BW
438elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
e0001a05
NC
441{
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
443
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
446}
447
448\f
449/* Functions for the Xtensa ELF linker. */
450
451/* The name of the dynamic interpreter. This is put in the .interp
452 section. */
453
454#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
455
456/* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
459
460#define PLT_ENTRY_SIZE 16
461
462/* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
471
472#define PLT_ENTRIES_PER_CHUNK 254
473
474/* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
478
479static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
480{
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
487};
488
489static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
490{
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
497};
498
571b5725
BW
499
500static inline bfd_boolean
7fa3d080
BW
501xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
571b5725
BW
503{
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
509
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
511}
512
e0001a05
NC
513\f
514static int
7fa3d080 515property_table_compare (const void *ap, const void *bp)
e0001a05
NC
516{
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
519
43cd72b9
BW
520 if (a->address == b->address)
521 {
43cd72b9
BW
522 if (a->size != b->size)
523 return (a->size - b->size);
524
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
528
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
534
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
539
540 return (a->flags - b->flags);
541 }
542
543 return (a->address - b->address);
544}
545
546
547static int
7fa3d080 548property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
549{
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
552
553 /* Check if one entry overlaps with the other. */
e0001a05
NC
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
557
558 return (a->address - b->address);
559}
560
561
43cd72b9
BW
562/* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
e0001a05 565
7fa3d080
BW
566static int
567xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
e0001a05
NC
572{
573 asection *table_section;
e0001a05
NC
574 bfd_size_type table_size = 0;
575 bfd_byte *table_data;
576 property_table_entry *blocks;
e4115460 577 int blk, block_count;
e0001a05
NC
578 bfd_size_type num_records;
579 Elf_Internal_Rela *internal_relocs;
3ba3bc8c 580 bfd_vma section_addr;
43cd72b9
BW
581 flagword predef_flags;
582 bfd_size_type table_entry_size;
583
584 if (!section
585 || !(section->flags & SEC_ALLOC)
586 || (section->flags & SEC_DEBUGGING))
587 {
588 *table_p = NULL;
589 return 0;
590 }
e0001a05 591
74869ac7 592 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 593 if (table_section)
eea6121a 594 table_size = table_section->size;
43cd72b9 595
e0001a05
NC
596 if (table_size == 0)
597 {
598 *table_p = NULL;
599 return 0;
600 }
601
43cd72b9
BW
602 predef_flags = xtensa_get_property_predef_flags (table_section);
603 table_entry_size = 12;
604 if (predef_flags)
605 table_entry_size -= 4;
606
607 num_records = table_size / table_entry_size;
e0001a05
NC
608 table_data = retrieve_contents (abfd, table_section, TRUE);
609 blocks = (property_table_entry *)
610 bfd_malloc (num_records * sizeof (property_table_entry));
611 block_count = 0;
43cd72b9
BW
612
613 if (output_addr)
614 section_addr = section->output_section->vma + section->output_offset;
615 else
616 section_addr = section->vma;
3ba3bc8c 617
e0001a05
NC
618 /* If the file has not yet been relocated, process the relocations
619 and sort out the table entries that apply to the specified section. */
620 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 621 if (internal_relocs && !table_section->reloc_done)
e0001a05
NC
622 {
623 unsigned i;
624
625 for (i = 0; i < table_section->reloc_count; i++)
626 {
627 Elf_Internal_Rela *rel = &internal_relocs[i];
628 unsigned long r_symndx;
629
630 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
631 continue;
632
633 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
634 r_symndx = ELF32_R_SYM (rel->r_info);
635
636 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
637 {
638 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
43cd72b9 639 BFD_ASSERT (sym_off == 0);
e0001a05 640 blocks[block_count].address =
3ba3bc8c 641 (section_addr + sym_off + rel->r_addend
e0001a05
NC
642 + bfd_get_32 (abfd, table_data + rel->r_offset));
643 blocks[block_count].size =
644 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
43cd72b9
BW
645 if (predef_flags)
646 blocks[block_count].flags = predef_flags;
647 else
648 blocks[block_count].flags =
649 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
e0001a05
NC
650 block_count++;
651 }
652 }
653 }
654 else
655 {
3ba3bc8c
BW
656 /* The file has already been relocated and the addresses are
657 already in the table. */
e0001a05 658 bfd_vma off;
43cd72b9 659 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
e0001a05 660
43cd72b9 661 for (off = 0; off < table_size; off += table_entry_size)
e0001a05
NC
662 {
663 bfd_vma address = bfd_get_32 (abfd, table_data + off);
664
3ba3bc8c 665 if (address >= section_addr
43cd72b9 666 && address < section_addr + section_limit)
e0001a05
NC
667 {
668 blocks[block_count].address = address;
669 blocks[block_count].size =
670 bfd_get_32 (abfd, table_data + off + 4);
43cd72b9
BW
671 if (predef_flags)
672 blocks[block_count].flags = predef_flags;
673 else
674 blocks[block_count].flags =
675 bfd_get_32 (abfd, table_data + off + 8);
e0001a05
NC
676 block_count++;
677 }
678 }
679 }
680
681 release_contents (table_section, table_data);
682 release_internal_relocs (table_section, internal_relocs);
683
43cd72b9 684 if (block_count > 0)
e0001a05
NC
685 {
686 /* Now sort them into address order for easy reference. */
687 qsort (blocks, block_count, sizeof (property_table_entry),
688 property_table_compare);
e4115460
BW
689
690 /* Check that the table contents are valid. Problems may occur,
691 for example, if an unrelocated object file is stripped. */
692 for (blk = 1; blk < block_count; blk++)
693 {
694 /* The only circumstance where two entries may legitimately
695 have the same address is when one of them is a zero-size
696 placeholder to mark a place where fill can be inserted.
697 The zero-size entry should come first. */
698 if (blocks[blk - 1].address == blocks[blk].address &&
699 blocks[blk - 1].size != 0)
700 {
701 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
702 abfd, section);
703 bfd_set_error (bfd_error_bad_value);
704 free (blocks);
705 return -1;
706 }
707 }
e0001a05 708 }
43cd72b9 709
e0001a05
NC
710 *table_p = blocks;
711 return block_count;
712}
713
714
7fa3d080
BW
715static property_table_entry *
716elf_xtensa_find_property_entry (property_table_entry *property_table,
717 int property_table_size,
718 bfd_vma addr)
e0001a05
NC
719{
720 property_table_entry entry;
43cd72b9 721 property_table_entry *rv;
e0001a05 722
43cd72b9
BW
723 if (property_table_size == 0)
724 return NULL;
e0001a05
NC
725
726 entry.address = addr;
727 entry.size = 1;
43cd72b9 728 entry.flags = 0;
e0001a05 729
43cd72b9
BW
730 rv = bsearch (&entry, property_table, property_table_size,
731 sizeof (property_table_entry), property_table_matches);
732 return rv;
733}
734
735
736static bfd_boolean
7fa3d080
BW
737elf_xtensa_in_literal_pool (property_table_entry *lit_table,
738 int lit_table_size,
739 bfd_vma addr)
43cd72b9
BW
740{
741 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
742 return TRUE;
743
744 return FALSE;
745}
746
747\f
748/* Look through the relocs for a section during the first phase, and
749 calculate needed space in the dynamic reloc sections. */
750
751static bfd_boolean
7fa3d080
BW
752elf_xtensa_check_relocs (bfd *abfd,
753 struct bfd_link_info *info,
754 asection *sec,
755 const Elf_Internal_Rela *relocs)
e0001a05
NC
756{
757 Elf_Internal_Shdr *symtab_hdr;
758 struct elf_link_hash_entry **sym_hashes;
759 const Elf_Internal_Rela *rel;
760 const Elf_Internal_Rela *rel_end;
e0001a05 761
1049f94e 762 if (info->relocatable)
e0001a05
NC
763 return TRUE;
764
765 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
766 sym_hashes = elf_sym_hashes (abfd);
767
e0001a05
NC
768 rel_end = relocs + sec->reloc_count;
769 for (rel = relocs; rel < rel_end; rel++)
770 {
771 unsigned int r_type;
772 unsigned long r_symndx;
773 struct elf_link_hash_entry *h;
774
775 r_symndx = ELF32_R_SYM (rel->r_info);
776 r_type = ELF32_R_TYPE (rel->r_info);
777
778 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
779 {
d003868e
AM
780 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
781 abfd, r_symndx);
e0001a05
NC
782 return FALSE;
783 }
784
785 if (r_symndx < symtab_hdr->sh_info)
786 h = NULL;
787 else
788 {
789 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
790 while (h->root.type == bfd_link_hash_indirect
791 || h->root.type == bfd_link_hash_warning)
792 h = (struct elf_link_hash_entry *) h->root.u.i.link;
793 }
794
795 switch (r_type)
796 {
797 case R_XTENSA_32:
798 if (h == NULL)
799 goto local_literal;
800
801 if ((sec->flags & SEC_ALLOC) != 0)
802 {
e0001a05
NC
803 if (h->got.refcount <= 0)
804 h->got.refcount = 1;
805 else
806 h->got.refcount += 1;
807 }
808 break;
809
810 case R_XTENSA_PLT:
811 /* If this relocation is against a local symbol, then it's
812 exactly the same as a normal local GOT entry. */
813 if (h == NULL)
814 goto local_literal;
815
816 if ((sec->flags & SEC_ALLOC) != 0)
817 {
e0001a05
NC
818 if (h->plt.refcount <= 0)
819 {
f5385ebf 820 h->needs_plt = 1;
e0001a05
NC
821 h->plt.refcount = 1;
822 }
823 else
824 h->plt.refcount += 1;
825
826 /* Keep track of the total PLT relocation count even if we
827 don't yet know whether the dynamic sections will be
828 created. */
829 plt_reloc_count += 1;
830
831 if (elf_hash_table (info)->dynamic_sections_created)
832 {
833 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
834 plt_reloc_count))
835 return FALSE;
836 }
837 }
838 break;
839
840 local_literal:
841 if ((sec->flags & SEC_ALLOC) != 0)
842 {
843 bfd_signed_vma *local_got_refcounts;
844
845 /* This is a global offset table entry for a local symbol. */
846 local_got_refcounts = elf_local_got_refcounts (abfd);
847 if (local_got_refcounts == NULL)
848 {
849 bfd_size_type size;
850
851 size = symtab_hdr->sh_info;
852 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
853 local_got_refcounts =
854 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
855 if (local_got_refcounts == NULL)
856 return FALSE;
857 elf_local_got_refcounts (abfd) = local_got_refcounts;
858 }
859 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
860 }
861 break;
862
863 case R_XTENSA_OP0:
864 case R_XTENSA_OP1:
865 case R_XTENSA_OP2:
43cd72b9
BW
866 case R_XTENSA_SLOT0_OP:
867 case R_XTENSA_SLOT1_OP:
868 case R_XTENSA_SLOT2_OP:
869 case R_XTENSA_SLOT3_OP:
870 case R_XTENSA_SLOT4_OP:
871 case R_XTENSA_SLOT5_OP:
872 case R_XTENSA_SLOT6_OP:
873 case R_XTENSA_SLOT7_OP:
874 case R_XTENSA_SLOT8_OP:
875 case R_XTENSA_SLOT9_OP:
876 case R_XTENSA_SLOT10_OP:
877 case R_XTENSA_SLOT11_OP:
878 case R_XTENSA_SLOT12_OP:
879 case R_XTENSA_SLOT13_OP:
880 case R_XTENSA_SLOT14_OP:
881 case R_XTENSA_SLOT0_ALT:
882 case R_XTENSA_SLOT1_ALT:
883 case R_XTENSA_SLOT2_ALT:
884 case R_XTENSA_SLOT3_ALT:
885 case R_XTENSA_SLOT4_ALT:
886 case R_XTENSA_SLOT5_ALT:
887 case R_XTENSA_SLOT6_ALT:
888 case R_XTENSA_SLOT7_ALT:
889 case R_XTENSA_SLOT8_ALT:
890 case R_XTENSA_SLOT9_ALT:
891 case R_XTENSA_SLOT10_ALT:
892 case R_XTENSA_SLOT11_ALT:
893 case R_XTENSA_SLOT12_ALT:
894 case R_XTENSA_SLOT13_ALT:
895 case R_XTENSA_SLOT14_ALT:
e0001a05
NC
896 case R_XTENSA_ASM_EXPAND:
897 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9
BW
898 case R_XTENSA_DIFF8:
899 case R_XTENSA_DIFF16:
900 case R_XTENSA_DIFF32:
e0001a05
NC
901 /* Nothing to do for these. */
902 break;
903
904 case R_XTENSA_GNU_VTINHERIT:
905 /* This relocation describes the C++ object vtable hierarchy.
906 Reconstruct it for later use during GC. */
c152c796 907 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
908 return FALSE;
909 break;
910
911 case R_XTENSA_GNU_VTENTRY:
912 /* This relocation describes which C++ vtable entries are actually
913 used. Record for later use during GC. */
c152c796 914 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
915 return FALSE;
916 break;
917
918 default:
919 break;
920 }
921 }
922
e0001a05
NC
923 return TRUE;
924}
925
926
927static void
7fa3d080
BW
928elf_xtensa_make_sym_local (struct bfd_link_info *info,
929 struct elf_link_hash_entry *h)
930{
931 if (info->shared)
932 {
933 if (h->plt.refcount > 0)
934 {
935 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
936 if (h->got.refcount < 0)
937 h->got.refcount = 0;
938 h->got.refcount += h->plt.refcount;
939 h->plt.refcount = 0;
940 }
941 }
942 else
943 {
944 /* Don't need any dynamic relocations at all. */
945 h->plt.refcount = 0;
946 h->got.refcount = 0;
947 }
948}
949
950
951static void
952elf_xtensa_hide_symbol (struct bfd_link_info *info,
953 struct elf_link_hash_entry *h,
954 bfd_boolean force_local)
e0001a05
NC
955{
956 /* For a shared link, move the plt refcount to the got refcount to leave
957 space for RELATIVE relocs. */
958 elf_xtensa_make_sym_local (info, h);
959
960 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
961}
962
963
e0001a05
NC
964/* Return the section that should be marked against GC for a given
965 relocation. */
966
967static asection *
7fa3d080 968elf_xtensa_gc_mark_hook (asection *sec,
07adf181 969 struct bfd_link_info *info,
7fa3d080
BW
970 Elf_Internal_Rela *rel,
971 struct elf_link_hash_entry *h,
972 Elf_Internal_Sym *sym)
e0001a05 973{
07adf181
AM
974 if (h != NULL)
975 switch (ELF32_R_TYPE (rel->r_info))
976 {
977 case R_XTENSA_GNU_VTINHERIT:
978 case R_XTENSA_GNU_VTENTRY:
979 return NULL;
980 }
981
982 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
983}
984
7fa3d080 985
e0001a05
NC
986/* Update the GOT & PLT entry reference counts
987 for the section being removed. */
988
989static bfd_boolean
7fa3d080
BW
990elf_xtensa_gc_sweep_hook (bfd *abfd,
991 struct bfd_link_info *info ATTRIBUTE_UNUSED,
992 asection *sec,
993 const Elf_Internal_Rela *relocs)
e0001a05
NC
994{
995 Elf_Internal_Shdr *symtab_hdr;
996 struct elf_link_hash_entry **sym_hashes;
997 bfd_signed_vma *local_got_refcounts;
998 const Elf_Internal_Rela *rel, *relend;
999
1000 if ((sec->flags & SEC_ALLOC) == 0)
1001 return TRUE;
1002
1003 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1004 sym_hashes = elf_sym_hashes (abfd);
1005 local_got_refcounts = elf_local_got_refcounts (abfd);
1006
1007 relend = relocs + sec->reloc_count;
1008 for (rel = relocs; rel < relend; rel++)
1009 {
1010 unsigned long r_symndx;
1011 unsigned int r_type;
1012 struct elf_link_hash_entry *h = NULL;
1013
1014 r_symndx = ELF32_R_SYM (rel->r_info);
1015 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1016 {
1017 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1018 while (h->root.type == bfd_link_hash_indirect
1019 || h->root.type == bfd_link_hash_warning)
1020 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1021 }
e0001a05
NC
1022
1023 r_type = ELF32_R_TYPE (rel->r_info);
1024 switch (r_type)
1025 {
1026 case R_XTENSA_32:
1027 if (h == NULL)
1028 goto local_literal;
1029 if (h->got.refcount > 0)
1030 h->got.refcount--;
1031 break;
1032
1033 case R_XTENSA_PLT:
1034 if (h == NULL)
1035 goto local_literal;
1036 if (h->plt.refcount > 0)
1037 h->plt.refcount--;
1038 break;
1039
1040 local_literal:
1041 if (local_got_refcounts[r_symndx] > 0)
1042 local_got_refcounts[r_symndx] -= 1;
1043 break;
1044
1045 default:
1046 break;
1047 }
1048 }
1049
1050 return TRUE;
1051}
1052
1053
1054/* Create all the dynamic sections. */
1055
1056static bfd_boolean
7fa3d080 1057elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1058{
e901de89 1059 flagword flags, noalloc_flags;
e0001a05
NC
1060 asection *s;
1061
1062 /* First do all the standard stuff. */
1063 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1064 return FALSE;
1065
1066 /* Create any extra PLT sections in case check_relocs has already
1067 been called on all the non-dynamic input files. */
1068 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1069 return FALSE;
1070
e901de89
BW
1071 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1072 | SEC_LINKER_CREATED | SEC_READONLY);
1073 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1074
1075 /* Mark the ".got.plt" section READONLY. */
1076 s = bfd_get_section_by_name (dynobj, ".got.plt");
1077 if (s == NULL
1078 || ! bfd_set_section_flags (dynobj, s, flags))
1079 return FALSE;
1080
1081 /* Create ".rela.got". */
3496cb2a 1082 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
e0001a05 1083 if (s == NULL
e0001a05
NC
1084 || ! bfd_set_section_alignment (dynobj, s, 2))
1085 return FALSE;
1086
e901de89 1087 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3496cb2a 1088 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
e901de89 1089 if (s == NULL
e901de89
BW
1090 || ! bfd_set_section_alignment (dynobj, s, 2))
1091 return FALSE;
1092
e0001a05 1093 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3496cb2a
L
1094 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1095 noalloc_flags);
e0001a05 1096 if (s == NULL
e0001a05
NC
1097 || ! bfd_set_section_alignment (dynobj, s, 2))
1098 return FALSE;
1099
1100 return TRUE;
1101}
1102
1103
1104static bfd_boolean
7fa3d080 1105add_extra_plt_sections (bfd *dynobj, int count)
e0001a05
NC
1106{
1107 int chunk;
1108
1109 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1110 ".got.plt" sections. */
1111 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1112 {
1113 char *sname;
1114 flagword flags;
1115 asection *s;
1116
1117 /* Stop when we find a section has already been created. */
1118 if (elf_xtensa_get_plt_section (dynobj, chunk))
1119 break;
1120
1121 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1122 | SEC_LINKER_CREATED | SEC_READONLY);
1123
1124 sname = (char *) bfd_malloc (10);
1125 sprintf (sname, ".plt.%u", chunk);
3496cb2a
L
1126 s = bfd_make_section_with_flags (dynobj, sname,
1127 flags | SEC_CODE);
e0001a05 1128 if (s == NULL
e0001a05
NC
1129 || ! bfd_set_section_alignment (dynobj, s, 2))
1130 return FALSE;
1131
1132 sname = (char *) bfd_malloc (14);
1133 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1134 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1135 if (s == NULL
e0001a05
NC
1136 || ! bfd_set_section_alignment (dynobj, s, 2))
1137 return FALSE;
1138 }
1139
1140 return TRUE;
1141}
1142
1143
1144/* Adjust a symbol defined by a dynamic object and referenced by a
1145 regular object. The current definition is in some section of the
1146 dynamic object, but we're not including those sections. We have to
1147 change the definition to something the rest of the link can
1148 understand. */
1149
1150static bfd_boolean
7fa3d080
BW
1151elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1152 struct elf_link_hash_entry *h)
e0001a05
NC
1153{
1154 /* If this is a weak symbol, and there is a real definition, the
1155 processor independent code will have arranged for us to see the
1156 real definition first, and we can just use the same value. */
7fa3d080 1157 if (h->u.weakdef)
e0001a05 1158 {
f6e332e6
AM
1159 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1160 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1161 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1162 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1163 return TRUE;
1164 }
1165
1166 /* This is a reference to a symbol defined by a dynamic object. The
1167 reference must go through the GOT, so there's no need for COPY relocs,
1168 .dynbss, etc. */
1169
1170 return TRUE;
1171}
1172
1173
e0001a05 1174static bfd_boolean
7fa3d080 1175elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1176{
1177 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1178
1179 if (h->root.type == bfd_link_hash_warning)
1180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1181
571b5725 1182 if (! xtensa_elf_dynamic_symbol_p (h, info))
e0001a05
NC
1183 elf_xtensa_make_sym_local (info, h);
1184
e0001a05
NC
1185 return TRUE;
1186}
1187
1188
1189static bfd_boolean
7fa3d080 1190elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1191{
1192 asection *srelplt = (asection *) arg;
1193
1194 if (h->root.type == bfd_link_hash_warning)
1195 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1196
1197 if (h->plt.refcount > 0)
eea6121a 1198 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1199
1200 return TRUE;
1201}
1202
1203
1204static bfd_boolean
7fa3d080 1205elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
e0001a05
NC
1206{
1207 asection *srelgot = (asection *) arg;
1208
1209 if (h->root.type == bfd_link_hash_warning)
1210 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1211
1212 if (h->got.refcount > 0)
eea6121a 1213 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1214
1215 return TRUE;
1216}
1217
1218
1219static void
7fa3d080
BW
1220elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1221 asection *srelgot)
e0001a05
NC
1222{
1223 bfd *i;
1224
1225 for (i = info->input_bfds; i; i = i->link_next)
1226 {
1227 bfd_signed_vma *local_got_refcounts;
1228 bfd_size_type j, cnt;
1229 Elf_Internal_Shdr *symtab_hdr;
1230
1231 local_got_refcounts = elf_local_got_refcounts (i);
1232 if (!local_got_refcounts)
1233 continue;
1234
1235 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1236 cnt = symtab_hdr->sh_info;
1237
1238 for (j = 0; j < cnt; ++j)
1239 {
1240 if (local_got_refcounts[j] > 0)
eea6121a
AM
1241 srelgot->size += (local_got_refcounts[j]
1242 * sizeof (Elf32_External_Rela));
e0001a05
NC
1243 }
1244 }
1245}
1246
1247
1248/* Set the sizes of the dynamic sections. */
1249
1250static bfd_boolean
7fa3d080
BW
1251elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1252 struct bfd_link_info *info)
e0001a05 1253{
e901de89
BW
1254 bfd *dynobj, *abfd;
1255 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1256 bfd_boolean relplt, relgot;
1257 int plt_entries, plt_chunks, chunk;
1258
1259 plt_entries = 0;
1260 plt_chunks = 0;
1261 srelgot = 0;
1262
1263 dynobj = elf_hash_table (info)->dynobj;
1264 if (dynobj == NULL)
1265 abort ();
1266
1267 if (elf_hash_table (info)->dynamic_sections_created)
1268 {
1269 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1270 if (info->executable)
e0001a05
NC
1271 {
1272 s = bfd_get_section_by_name (dynobj, ".interp");
1273 if (s == NULL)
1274 abort ();
eea6121a 1275 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1276 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1277 }
1278
1279 /* Allocate room for one word in ".got". */
1280 s = bfd_get_section_by_name (dynobj, ".got");
1281 if (s == NULL)
1282 abort ();
eea6121a 1283 s->size = 4;
e0001a05
NC
1284
1285 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1286 elf_link_hash_traverse (elf_hash_table (info),
1287 elf_xtensa_fix_refcounts,
7fa3d080 1288 (void *) info);
e0001a05
NC
1289
1290 /* Allocate space in ".rela.got" for literals that reference
1291 global symbols. */
1292 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1293 if (srelgot == NULL)
1294 abort ();
1295 elf_link_hash_traverse (elf_hash_table (info),
1296 elf_xtensa_allocate_got_size,
7fa3d080 1297 (void *) srelgot);
e0001a05
NC
1298
1299 /* If we are generating a shared object, we also need space in
1300 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1301 reference local symbols. */
1302 if (info->shared)
1303 elf_xtensa_allocate_local_got_size (info, srelgot);
1304
1305 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1306 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1307 if (srelplt == NULL)
1308 abort ();
1309 elf_link_hash_traverse (elf_hash_table (info),
1310 elf_xtensa_allocate_plt_size,
7fa3d080 1311 (void *) srelplt);
e0001a05
NC
1312
1313 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1314 each PLT entry, we need the PLT code plus a 4-byte literal.
1315 For each chunk of ".plt", we also need two more 4-byte
1316 literals, two corresponding entries in ".rela.got", and an
1317 8-byte entry in ".xt.lit.plt". */
1318 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1319 if (spltlittbl == NULL)
1320 abort ();
1321
eea6121a 1322 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1323 plt_chunks =
1324 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1325
1326 /* Iterate over all the PLT chunks, including any extra sections
1327 created earlier because the initial count of PLT relocations
1328 was an overestimate. */
1329 for (chunk = 0;
1330 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1331 chunk++)
1332 {
1333 int chunk_entries;
1334
1335 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1336 if (sgotplt == NULL)
1337 abort ();
1338
1339 if (chunk < plt_chunks - 1)
1340 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1341 else if (chunk == plt_chunks - 1)
1342 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1343 else
1344 chunk_entries = 0;
1345
1346 if (chunk_entries != 0)
1347 {
eea6121a
AM
1348 sgotplt->size = 4 * (chunk_entries + 2);
1349 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1350 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1351 spltlittbl->size += 8;
e0001a05
NC
1352 }
1353 else
1354 {
eea6121a
AM
1355 sgotplt->size = 0;
1356 splt->size = 0;
e0001a05
NC
1357 }
1358 }
e901de89
BW
1359
1360 /* Allocate space in ".got.loc" to match the total size of all the
1361 literal tables. */
1362 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1363 if (sgotloc == NULL)
1364 abort ();
eea6121a 1365 sgotloc->size = spltlittbl->size;
e901de89
BW
1366 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1367 {
1368 if (abfd->flags & DYNAMIC)
1369 continue;
1370 for (s = abfd->sections; s != NULL; s = s->next)
1371 {
b536dc1e
BW
1372 if (! elf_discarded_section (s)
1373 && xtensa_is_littable_section (s)
1374 && s != spltlittbl)
eea6121a 1375 sgotloc->size += s->size;
e901de89
BW
1376 }
1377 }
e0001a05
NC
1378 }
1379
1380 /* Allocate memory for dynamic sections. */
1381 relplt = FALSE;
1382 relgot = FALSE;
1383 for (s = dynobj->sections; s != NULL; s = s->next)
1384 {
1385 const char *name;
e0001a05
NC
1386
1387 if ((s->flags & SEC_LINKER_CREATED) == 0)
1388 continue;
1389
1390 /* It's OK to base decisions on the section name, because none
1391 of the dynobj section names depend upon the input files. */
1392 name = bfd_get_section_name (dynobj, s);
1393
0112cd26 1394 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1395 {
c456f082 1396 if (s->size != 0)
e0001a05 1397 {
c456f082
AM
1398 if (strcmp (name, ".rela.plt") == 0)
1399 relplt = TRUE;
1400 else if (strcmp (name, ".rela.got") == 0)
1401 relgot = TRUE;
1402
1403 /* We use the reloc_count field as a counter if we need
1404 to copy relocs into the output file. */
1405 s->reloc_count = 0;
e0001a05
NC
1406 }
1407 }
0112cd26
NC
1408 else if (! CONST_STRNEQ (name, ".plt.")
1409 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1410 && strcmp (name, ".got") != 0
e0001a05
NC
1411 && strcmp (name, ".plt") != 0
1412 && strcmp (name, ".got.plt") != 0
e901de89
BW
1413 && strcmp (name, ".xt.lit.plt") != 0
1414 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1415 {
1416 /* It's not one of our sections, so don't allocate space. */
1417 continue;
1418 }
1419
c456f082
AM
1420 if (s->size == 0)
1421 {
1422 /* If we don't need this section, strip it from the output
1423 file. We must create the ".plt*" and ".got.plt*"
1424 sections in create_dynamic_sections and/or check_relocs
1425 based on a conservative estimate of the PLT relocation
1426 count, because the sections must be created before the
1427 linker maps input sections to output sections. The
1428 linker does that before size_dynamic_sections, where we
1429 compute the exact size of the PLT, so there may be more
1430 of these sections than are actually needed. */
1431 s->flags |= SEC_EXCLUDE;
1432 }
1433 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1434 {
1435 /* Allocate memory for the section contents. */
eea6121a 1436 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1437 if (s->contents == NULL)
e0001a05
NC
1438 return FALSE;
1439 }
1440 }
1441
1442 if (elf_hash_table (info)->dynamic_sections_created)
1443 {
1444 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1445 known until finish_dynamic_sections, but we need to get the relocs
1446 in place before they are sorted. */
1447 if (srelgot == NULL)
1448 abort ();
1449 for (chunk = 0; chunk < plt_chunks; chunk++)
1450 {
1451 Elf_Internal_Rela irela;
1452 bfd_byte *loc;
1453
1454 irela.r_offset = 0;
1455 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1456 irela.r_addend = 0;
1457
1458 loc = (srelgot->contents
1459 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1460 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1461 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1462 loc + sizeof (Elf32_External_Rela));
1463 srelgot->reloc_count += 2;
1464 }
1465
1466 /* Add some entries to the .dynamic section. We fill in the
1467 values later, in elf_xtensa_finish_dynamic_sections, but we
1468 must add the entries now so that we get the correct size for
1469 the .dynamic section. The DT_DEBUG entry is filled in by the
1470 dynamic linker and used by the debugger. */
1471#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1472 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05
NC
1473
1474 if (! info->shared)
1475 {
1476 if (!add_dynamic_entry (DT_DEBUG, 0))
1477 return FALSE;
1478 }
1479
1480 if (relplt)
1481 {
1482 if (!add_dynamic_entry (DT_PLTGOT, 0)
1483 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1484 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1485 || !add_dynamic_entry (DT_JMPREL, 0))
1486 return FALSE;
1487 }
1488
1489 if (relgot)
1490 {
1491 if (!add_dynamic_entry (DT_RELA, 0)
1492 || !add_dynamic_entry (DT_RELASZ, 0)
1493 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1494 return FALSE;
1495 }
1496
e0001a05
NC
1497 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1498 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1499 return FALSE;
1500 }
1501#undef add_dynamic_entry
1502
1503 return TRUE;
1504}
1505
e0001a05
NC
1506\f
1507/* Perform the specified relocation. The instruction at (contents + address)
1508 is modified to set one operand to represent the value in "relocation". The
1509 operand position is determined by the relocation type recorded in the
1510 howto. */
1511
1512#define CALL_SEGMENT_BITS (30)
7fa3d080 1513#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1514
1515static bfd_reloc_status_type
7fa3d080
BW
1516elf_xtensa_do_reloc (reloc_howto_type *howto,
1517 bfd *abfd,
1518 asection *input_section,
1519 bfd_vma relocation,
1520 bfd_byte *contents,
1521 bfd_vma address,
1522 bfd_boolean is_weak_undef,
1523 char **error_message)
e0001a05 1524{
43cd72b9 1525 xtensa_format fmt;
e0001a05 1526 xtensa_opcode opcode;
e0001a05 1527 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1528 static xtensa_insnbuf ibuff = NULL;
1529 static xtensa_insnbuf sbuff = NULL;
1530 bfd_vma self_address = 0;
1531 bfd_size_type input_size;
1532 int opnd, slot;
e0001a05
NC
1533 uint32 newval;
1534
43cd72b9
BW
1535 if (!ibuff)
1536 {
1537 ibuff = xtensa_insnbuf_alloc (isa);
1538 sbuff = xtensa_insnbuf_alloc (isa);
1539 }
1540
1541 input_size = bfd_get_section_limit (abfd, input_section);
1542
e0001a05
NC
1543 switch (howto->type)
1544 {
1545 case R_XTENSA_NONE:
43cd72b9
BW
1546 case R_XTENSA_DIFF8:
1547 case R_XTENSA_DIFF16:
1548 case R_XTENSA_DIFF32:
e0001a05
NC
1549 return bfd_reloc_ok;
1550
1551 case R_XTENSA_ASM_EXPAND:
1552 if (!is_weak_undef)
1553 {
1554 /* Check for windowed CALL across a 1GB boundary. */
1555 xtensa_opcode opcode =
1556 get_expanded_call_opcode (contents + address,
43cd72b9 1557 input_size - address, 0);
e0001a05
NC
1558 if (is_windowed_call_opcode (opcode))
1559 {
1560 self_address = (input_section->output_section->vma
1561 + input_section->output_offset
1562 + address);
43cd72b9
BW
1563 if ((self_address >> CALL_SEGMENT_BITS)
1564 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1565 {
1566 *error_message = "windowed longcall crosses 1GB boundary; "
1567 "return may fail";
1568 return bfd_reloc_dangerous;
1569 }
1570 }
1571 }
1572 return bfd_reloc_ok;
1573
1574 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1575 {
e0001a05 1576 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1577 bfd_reloc_status_type retval =
1578 elf_xtensa_do_asm_simplify (contents, address, input_size,
1579 error_message);
e0001a05 1580 if (retval != bfd_reloc_ok)
43cd72b9 1581 return bfd_reloc_dangerous;
e0001a05
NC
1582
1583 /* The CALL needs to be relocated. Continue below for that part. */
1584 address += 3;
43cd72b9 1585 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1586 }
1587 break;
1588
1589 case R_XTENSA_32:
1590 case R_XTENSA_PLT:
1591 {
1592 bfd_vma x;
1593 x = bfd_get_32 (abfd, contents + address);
1594 x = x + relocation;
1595 bfd_put_32 (abfd, x, contents + address);
1596 }
1597 return bfd_reloc_ok;
1598 }
1599
43cd72b9
BW
1600 /* Only instruction slot-specific relocations handled below.... */
1601 slot = get_relocation_slot (howto->type);
1602 if (slot == XTENSA_UNDEFINED)
e0001a05 1603 {
43cd72b9 1604 *error_message = "unexpected relocation";
e0001a05
NC
1605 return bfd_reloc_dangerous;
1606 }
1607
43cd72b9
BW
1608 /* Read the instruction into a buffer and decode the opcode. */
1609 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1610 input_size - address);
1611 fmt = xtensa_format_decode (isa, ibuff);
1612 if (fmt == XTENSA_UNDEFINED)
e0001a05 1613 {
43cd72b9 1614 *error_message = "cannot decode instruction format";
e0001a05
NC
1615 return bfd_reloc_dangerous;
1616 }
1617
43cd72b9 1618 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1619
43cd72b9
BW
1620 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1621 if (opcode == XTENSA_UNDEFINED)
e0001a05 1622 {
43cd72b9 1623 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1624 return bfd_reloc_dangerous;
1625 }
1626
43cd72b9
BW
1627 /* Check for opcode-specific "alternate" relocations. */
1628 if (is_alt_relocation (howto->type))
1629 {
1630 if (opcode == get_l32r_opcode ())
1631 {
1632 /* Handle the special-case of non-PC-relative L32R instructions. */
1633 bfd *output_bfd = input_section->output_section->owner;
1634 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1635 if (!lit4_sec)
1636 {
1637 *error_message = "relocation references missing .lit4 section";
1638 return bfd_reloc_dangerous;
1639 }
1640 self_address = ((lit4_sec->vma & ~0xfff)
1641 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1642 newval = relocation;
1643 opnd = 1;
1644 }
1645 else if (opcode == get_const16_opcode ())
1646 {
1647 /* ALT used for high 16 bits. */
1648 newval = relocation >> 16;
1649 opnd = 1;
1650 }
1651 else
1652 {
1653 /* No other "alternate" relocations currently defined. */
1654 *error_message = "unexpected relocation";
1655 return bfd_reloc_dangerous;
1656 }
1657 }
1658 else /* Not an "alternate" relocation.... */
1659 {
1660 if (opcode == get_const16_opcode ())
1661 {
1662 newval = relocation & 0xffff;
1663 opnd = 1;
1664 }
1665 else
1666 {
1667 /* ...normal PC-relative relocation.... */
1668
1669 /* Determine which operand is being relocated. */
1670 opnd = get_relocation_opnd (opcode, howto->type);
1671 if (opnd == XTENSA_UNDEFINED)
1672 {
1673 *error_message = "unexpected relocation";
1674 return bfd_reloc_dangerous;
1675 }
1676
1677 if (!howto->pc_relative)
1678 {
1679 *error_message = "expected PC-relative relocation";
1680 return bfd_reloc_dangerous;
1681 }
e0001a05 1682
43cd72b9
BW
1683 /* Calculate the PC address for this instruction. */
1684 self_address = (input_section->output_section->vma
1685 + input_section->output_offset
1686 + address);
e0001a05 1687
43cd72b9
BW
1688 newval = relocation;
1689 }
1690 }
e0001a05 1691
43cd72b9
BW
1692 /* Apply the relocation. */
1693 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1694 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1695 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1696 sbuff, newval))
e0001a05 1697 {
2db662be
BW
1698 const char *opname = xtensa_opcode_name (isa, opcode);
1699 const char *msg;
1700
1701 msg = "cannot encode";
1702 if (is_direct_call_opcode (opcode))
1703 {
1704 if ((relocation & 0x3) != 0)
1705 msg = "misaligned call target";
1706 else
1707 msg = "call target out of range";
1708 }
1709 else if (opcode == get_l32r_opcode ())
1710 {
1711 if ((relocation & 0x3) != 0)
1712 msg = "misaligned literal target";
1713 else if (is_alt_relocation (howto->type))
1714 msg = "literal target out of range (too many literals)";
1715 else if (self_address > relocation)
1716 msg = "literal target out of range (try using text-section-literals)";
1717 else
1718 msg = "literal placed after use";
1719 }
1720
1721 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1722 return bfd_reloc_dangerous;
1723 }
1724
43cd72b9 1725 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1726 if (is_direct_call_opcode (opcode)
1727 && is_windowed_call_opcode (opcode))
1728 {
43cd72b9
BW
1729 if ((self_address >> CALL_SEGMENT_BITS)
1730 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1731 {
43cd72b9
BW
1732 *error_message =
1733 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1734 return bfd_reloc_dangerous;
1735 }
1736 }
1737
43cd72b9
BW
1738 /* Write the modified instruction back out of the buffer. */
1739 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1740 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1741 input_size - address);
e0001a05
NC
1742 return bfd_reloc_ok;
1743}
1744
1745
2db662be 1746static char *
7fa3d080 1747vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1748{
1749 /* To reduce the size of the memory leak,
1750 we only use a single message buffer. */
1751 static bfd_size_type alloc_size = 0;
1752 static char *message = NULL;
1753 bfd_size_type orig_len, len = 0;
1754 bfd_boolean is_append;
1755
1756 VA_OPEN (ap, arglen);
1757 VA_FIXEDARG (ap, const char *, origmsg);
1758
1759 is_append = (origmsg == message);
1760
1761 orig_len = strlen (origmsg);
1762 len = orig_len + strlen (fmt) + arglen + 20;
1763 if (len > alloc_size)
1764 {
1765 message = (char *) bfd_realloc (message, len);
1766 alloc_size = len;
1767 }
1768 if (!is_append)
1769 memcpy (message, origmsg, orig_len);
1770 vsprintf (message + orig_len, fmt, ap);
1771 VA_CLOSE (ap);
1772 return message;
1773}
1774
1775
e0001a05
NC
1776/* This function is registered as the "special_function" in the
1777 Xtensa howto for handling simplify operations.
1778 bfd_perform_relocation / bfd_install_relocation use it to
1779 perform (install) the specified relocation. Since this replaces the code
1780 in bfd_perform_relocation, it is basically an Xtensa-specific,
1781 stripped-down version of bfd_perform_relocation. */
1782
1783static bfd_reloc_status_type
7fa3d080
BW
1784bfd_elf_xtensa_reloc (bfd *abfd,
1785 arelent *reloc_entry,
1786 asymbol *symbol,
1787 void *data,
1788 asection *input_section,
1789 bfd *output_bfd,
1790 char **error_message)
e0001a05
NC
1791{
1792 bfd_vma relocation;
1793 bfd_reloc_status_type flag;
1794 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1795 bfd_vma output_base = 0;
1796 reloc_howto_type *howto = reloc_entry->howto;
1797 asection *reloc_target_output_section;
1798 bfd_boolean is_weak_undef;
1799
dd1a320b
BW
1800 if (!xtensa_default_isa)
1801 xtensa_default_isa = xtensa_isa_init (0, 0);
1802
1049f94e 1803 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1804 output, and the reloc is against an external symbol, the resulting
1805 reloc will also be against the same symbol. In such a case, we
1806 don't want to change anything about the way the reloc is handled,
1807 since it will all be done at final link time. This test is similar
1808 to what bfd_elf_generic_reloc does except that it lets relocs with
1809 howto->partial_inplace go through even if the addend is non-zero.
1810 (The real problem is that partial_inplace is set for XTENSA_32
1811 relocs to begin with, but that's a long story and there's little we
1812 can do about it now....) */
1813
7fa3d080 1814 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1815 {
1816 reloc_entry->address += input_section->output_offset;
1817 return bfd_reloc_ok;
1818 }
1819
1820 /* Is the address of the relocation really within the section? */
07515404 1821 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1822 return bfd_reloc_outofrange;
1823
4cc11e76 1824 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1825 initial relocation command value. */
1826
1827 /* Get symbol value. (Common symbols are special.) */
1828 if (bfd_is_com_section (symbol->section))
1829 relocation = 0;
1830 else
1831 relocation = symbol->value;
1832
1833 reloc_target_output_section = symbol->section->output_section;
1834
1835 /* Convert input-section-relative symbol value to absolute. */
1836 if ((output_bfd && !howto->partial_inplace)
1837 || reloc_target_output_section == NULL)
1838 output_base = 0;
1839 else
1840 output_base = reloc_target_output_section->vma;
1841
1842 relocation += output_base + symbol->section->output_offset;
1843
1844 /* Add in supplied addend. */
1845 relocation += reloc_entry->addend;
1846
1847 /* Here the variable relocation holds the final address of the
1848 symbol we are relocating against, plus any addend. */
1849 if (output_bfd)
1850 {
1851 if (!howto->partial_inplace)
1852 {
1853 /* This is a partial relocation, and we want to apply the relocation
1854 to the reloc entry rather than the raw data. Everything except
1855 relocations against section symbols has already been handled
1856 above. */
43cd72b9 1857
e0001a05
NC
1858 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1859 reloc_entry->addend = relocation;
1860 reloc_entry->address += input_section->output_offset;
1861 return bfd_reloc_ok;
1862 }
1863 else
1864 {
1865 reloc_entry->address += input_section->output_offset;
1866 reloc_entry->addend = 0;
1867 }
1868 }
1869
1870 is_weak_undef = (bfd_is_und_section (symbol->section)
1871 && (symbol->flags & BSF_WEAK) != 0);
1872 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1873 (bfd_byte *) data, (bfd_vma) octets,
1874 is_weak_undef, error_message);
1875
1876 if (flag == bfd_reloc_dangerous)
1877 {
1878 /* Add the symbol name to the error message. */
1879 if (! *error_message)
1880 *error_message = "";
1881 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1882 strlen (symbol->name) + 17,
70961b9d
AM
1883 symbol->name,
1884 (unsigned long) reloc_entry->addend);
e0001a05
NC
1885 }
1886
1887 return flag;
1888}
1889
1890
1891/* Set up an entry in the procedure linkage table. */
1892
1893static bfd_vma
7fa3d080
BW
1894elf_xtensa_create_plt_entry (bfd *dynobj,
1895 bfd *output_bfd,
1896 unsigned reloc_index)
e0001a05
NC
1897{
1898 asection *splt, *sgotplt;
1899 bfd_vma plt_base, got_base;
1900 bfd_vma code_offset, lit_offset;
1901 int chunk;
1902
1903 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1904 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1905 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1906 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1907
1908 plt_base = splt->output_section->vma + splt->output_offset;
1909 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1910
1911 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1912 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1913
1914 /* Fill in the literal entry. This is the offset of the dynamic
1915 relocation entry. */
1916 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1917 sgotplt->contents + lit_offset);
1918
1919 /* Fill in the entry in the procedure linkage table. */
1920 memcpy (splt->contents + code_offset,
1921 (bfd_big_endian (output_bfd)
1922 ? elf_xtensa_be_plt_entry
1923 : elf_xtensa_le_plt_entry),
1924 PLT_ENTRY_SIZE);
1925 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1926 plt_base + code_offset + 3),
1927 splt->contents + code_offset + 4);
1928 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1929 plt_base + code_offset + 6),
1930 splt->contents + code_offset + 7);
1931 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1932 plt_base + code_offset + 9),
1933 splt->contents + code_offset + 10);
1934
1935 return plt_base + code_offset;
1936}
1937
1938
e0001a05 1939/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1940 both relocatable and final links. */
e0001a05
NC
1941
1942static bfd_boolean
7fa3d080
BW
1943elf_xtensa_relocate_section (bfd *output_bfd,
1944 struct bfd_link_info *info,
1945 bfd *input_bfd,
1946 asection *input_section,
1947 bfd_byte *contents,
1948 Elf_Internal_Rela *relocs,
1949 Elf_Internal_Sym *local_syms,
1950 asection **local_sections)
e0001a05
NC
1951{
1952 Elf_Internal_Shdr *symtab_hdr;
1953 Elf_Internal_Rela *rel;
1954 Elf_Internal_Rela *relend;
1955 struct elf_link_hash_entry **sym_hashes;
1956 asection *srelgot, *srelplt;
1957 bfd *dynobj;
88d65ad6
BW
1958 property_table_entry *lit_table = 0;
1959 int ltblsize = 0;
e0001a05 1960 char *error_message = NULL;
43cd72b9 1961 bfd_size_type input_size;
e0001a05 1962
43cd72b9
BW
1963 if (!xtensa_default_isa)
1964 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05
NC
1965
1966 dynobj = elf_hash_table (info)->dynobj;
1967 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1968 sym_hashes = elf_sym_hashes (input_bfd);
1969
1970 srelgot = NULL;
1971 srelplt = NULL;
7fa3d080 1972 if (dynobj)
e0001a05
NC
1973 {
1974 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
1975 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1976 }
1977
88d65ad6
BW
1978 if (elf_hash_table (info)->dynamic_sections_created)
1979 {
1980 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
1981 &lit_table, XTENSA_LIT_SEC_NAME,
1982 TRUE);
88d65ad6
BW
1983 if (ltblsize < 0)
1984 return FALSE;
1985 }
1986
43cd72b9
BW
1987 input_size = bfd_get_section_limit (input_bfd, input_section);
1988
e0001a05
NC
1989 rel = relocs;
1990 relend = relocs + input_section->reloc_count;
1991 for (; rel < relend; rel++)
1992 {
1993 int r_type;
1994 reloc_howto_type *howto;
1995 unsigned long r_symndx;
1996 struct elf_link_hash_entry *h;
1997 Elf_Internal_Sym *sym;
1998 asection *sec;
1999 bfd_vma relocation;
2000 bfd_reloc_status_type r;
2001 bfd_boolean is_weak_undef;
2002 bfd_boolean unresolved_reloc;
9b8c98a4 2003 bfd_boolean warned;
e0001a05
NC
2004
2005 r_type = ELF32_R_TYPE (rel->r_info);
2006 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2007 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2008 continue;
2009
2010 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2011 {
2012 bfd_set_error (bfd_error_bad_value);
2013 return FALSE;
2014 }
2015 howto = &elf_howto_table[r_type];
2016
2017 r_symndx = ELF32_R_SYM (rel->r_info);
2018
1049f94e 2019 if (info->relocatable)
e0001a05 2020 {
43cd72b9 2021 /* This is a relocatable link.
e0001a05
NC
2022 1) If the reloc is against a section symbol, adjust
2023 according to the output section.
2024 2) If there is a new target for this relocation,
2025 the new target will be in the same output section.
2026 We adjust the relocation by the output section
2027 difference. */
2028
2029 if (relaxing_section)
2030 {
2031 /* Check if this references a section in another input file. */
43cd72b9
BW
2032 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2033 contents))
2034 return FALSE;
e0001a05
NC
2035 r_type = ELF32_R_TYPE (rel->r_info);
2036 }
2037
43cd72b9 2038 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2039 {
43cd72b9 2040 char *error_message = NULL;
e0001a05
NC
2041 /* Convert ASM_SIMPLIFY into the simpler relocation
2042 so that they never escape a relaxing link. */
43cd72b9
BW
2043 r = contract_asm_expansion (contents, input_size, rel,
2044 &error_message);
2045 if (r != bfd_reloc_ok)
2046 {
2047 if (!((*info->callbacks->reloc_dangerous)
2048 (info, error_message, input_bfd, input_section,
2049 rel->r_offset)))
2050 return FALSE;
2051 }
e0001a05
NC
2052 r_type = ELF32_R_TYPE (rel->r_info);
2053 }
2054
1049f94e 2055 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2056 anything unless the reloc is against a section symbol,
2057 in which case we have to adjust according to where the
2058 section symbol winds up in the output section. */
2059 if (r_symndx < symtab_hdr->sh_info)
2060 {
2061 sym = local_syms + r_symndx;
2062 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2063 {
2064 sec = local_sections[r_symndx];
2065 rel->r_addend += sec->output_offset + sym->st_value;
2066 }
2067 }
2068
2069 /* If there is an addend with a partial_inplace howto,
2070 then move the addend to the contents. This is a hack
1049f94e 2071 to work around problems with DWARF in relocatable links
e0001a05
NC
2072 with some previous version of BFD. Now we can't easily get
2073 rid of the hack without breaking backward compatibility.... */
2074 if (rel->r_addend)
2075 {
2076 howto = &elf_howto_table[r_type];
2077 if (howto->partial_inplace)
2078 {
2079 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2080 rel->r_addend, contents,
2081 rel->r_offset, FALSE,
2082 &error_message);
2083 if (r != bfd_reloc_ok)
2084 {
2085 if (!((*info->callbacks->reloc_dangerous)
2086 (info, error_message, input_bfd, input_section,
2087 rel->r_offset)))
2088 return FALSE;
2089 }
2090 rel->r_addend = 0;
2091 }
2092 }
2093
1049f94e 2094 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2095 continue;
2096 }
2097
2098 /* This is a final link. */
2099
2100 h = NULL;
2101 sym = NULL;
2102 sec = NULL;
2103 is_weak_undef = FALSE;
2104 unresolved_reloc = FALSE;
9b8c98a4 2105 warned = FALSE;
e0001a05
NC
2106
2107 if (howto->partial_inplace)
2108 {
2109 /* Because R_XTENSA_32 was made partial_inplace to fix some
2110 problems with DWARF info in partial links, there may be
2111 an addend stored in the contents. Take it out of there
2112 and move it back into the addend field of the reloc. */
2113 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2114 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2115 }
2116
2117 if (r_symndx < symtab_hdr->sh_info)
2118 {
2119 sym = local_syms + r_symndx;
2120 sec = local_sections[r_symndx];
8517fae7 2121 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
e0001a05
NC
2122 }
2123 else
2124 {
b2a8e766
AM
2125 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2126 r_symndx, symtab_hdr, sym_hashes,
2127 h, sec, relocation,
2128 unresolved_reloc, warned);
560e09e9
NC
2129
2130 if (relocation == 0
2131 && !unresolved_reloc
2132 && h->root.type == bfd_link_hash_undefweak)
e0001a05 2133 is_weak_undef = TRUE;
e0001a05
NC
2134 }
2135
2136 if (relaxing_section)
2137 {
2138 /* Check if this references a section in another input file. */
43cd72b9
BW
2139 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2140 &relocation);
e0001a05
NC
2141
2142 /* Update some already cached values. */
2143 r_type = ELF32_R_TYPE (rel->r_info);
2144 howto = &elf_howto_table[r_type];
2145 }
2146
2147 /* Sanity check the address. */
43cd72b9 2148 if (rel->r_offset >= input_size
e0001a05
NC
2149 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2150 {
43cd72b9
BW
2151 (*_bfd_error_handler)
2152 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2153 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2154 bfd_set_error (bfd_error_bad_value);
2155 return FALSE;
2156 }
2157
2158 /* Generate dynamic relocations. */
2159 if (elf_hash_table (info)->dynamic_sections_created)
2160 {
571b5725 2161 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05 2162
43cd72b9 2163 if (dynamic_symbol && is_operand_relocation (r_type))
e0001a05
NC
2164 {
2165 /* This is an error. The symbol's real value won't be known
2166 until runtime and it's likely to be out of range anyway. */
2167 const char *name = h->root.root.string;
2168 error_message = vsprint_msg ("invalid relocation for dynamic "
2169 "symbol", ": %s",
2170 strlen (name) + 2, name);
2171 if (!((*info->callbacks->reloc_dangerous)
2172 (info, error_message, input_bfd, input_section,
2173 rel->r_offset)))
2174 return FALSE;
2175 }
2176 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2177 && (input_section->flags & SEC_ALLOC) != 0
2178 && (dynamic_symbol || info->shared))
2179 {
2180 Elf_Internal_Rela outrel;
2181 bfd_byte *loc;
2182 asection *srel;
2183
2184 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2185 srel = srelplt;
2186 else
2187 srel = srelgot;
2188
2189 BFD_ASSERT (srel != NULL);
2190
2191 outrel.r_offset =
2192 _bfd_elf_section_offset (output_bfd, info,
2193 input_section, rel->r_offset);
2194
2195 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2196 memset (&outrel, 0, sizeof outrel);
2197 else
2198 {
f0578e28
BW
2199 outrel.r_offset += (input_section->output_section->vma
2200 + input_section->output_offset);
e0001a05 2201
88d65ad6
BW
2202 /* Complain if the relocation is in a read-only section
2203 and not in a literal pool. */
2204 if ((input_section->flags & SEC_READONLY) != 0
2205 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2206 outrel.r_offset))
88d65ad6
BW
2207 {
2208 error_message =
2209 _("dynamic relocation in read-only section");
2210 if (!((*info->callbacks->reloc_dangerous)
2211 (info, error_message, input_bfd, input_section,
2212 rel->r_offset)))
2213 return FALSE;
2214 }
2215
e0001a05
NC
2216 if (dynamic_symbol)
2217 {
2218 outrel.r_addend = rel->r_addend;
2219 rel->r_addend = 0;
2220
2221 if (r_type == R_XTENSA_32)
2222 {
2223 outrel.r_info =
2224 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2225 relocation = 0;
2226 }
2227 else /* r_type == R_XTENSA_PLT */
2228 {
2229 outrel.r_info =
2230 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2231
2232 /* Create the PLT entry and set the initial
2233 contents of the literal entry to the address of
2234 the PLT entry. */
43cd72b9 2235 relocation =
e0001a05
NC
2236 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2237 srel->reloc_count);
2238 }
2239 unresolved_reloc = FALSE;
2240 }
2241 else
2242 {
2243 /* Generate a RELATIVE relocation. */
2244 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2245 outrel.r_addend = 0;
2246 }
2247 }
2248
2249 loc = (srel->contents
2250 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2251 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2252 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2253 <= srel->size);
e0001a05
NC
2254 }
2255 }
2256
2257 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2258 because such sections are not SEC_ALLOC and thus ld.so will
2259 not process them. */
2260 if (unresolved_reloc
2261 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2262 && h->def_dynamic))
e0001a05 2263 (*_bfd_error_handler)
843fe662 2264 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
d003868e
AM
2265 input_bfd,
2266 input_section,
e0001a05 2267 (long) rel->r_offset,
843fe662 2268 howto->name,
e0001a05
NC
2269 h->root.root.string);
2270
2271 /* There's no point in calling bfd_perform_relocation here.
2272 Just go directly to our "special function". */
2273 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2274 relocation + rel->r_addend,
2275 contents, rel->r_offset, is_weak_undef,
2276 &error_message);
43cd72b9 2277
9b8c98a4 2278 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2279 {
2280 const char *name;
2281
43cd72b9 2282 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2283 BFD_ASSERT (error_message != NULL);
e0001a05 2284
7fa3d080 2285 if (h)
e0001a05
NC
2286 name = h->root.root.string;
2287 else
2288 {
2289 name = bfd_elf_string_from_elf_section
2290 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2291 if (name && *name == '\0')
2292 name = bfd_section_name (input_bfd, sec);
2293 }
2294 if (name)
43cd72b9
BW
2295 {
2296 if (rel->r_addend == 0)
2297 error_message = vsprint_msg (error_message, ": %s",
2298 strlen (name) + 2, name);
2299 else
2300 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2301 strlen (name) + 22,
0fd3a477 2302 name, (int)rel->r_addend);
43cd72b9
BW
2303 }
2304
e0001a05
NC
2305 if (!((*info->callbacks->reloc_dangerous)
2306 (info, error_message, input_bfd, input_section,
2307 rel->r_offset)))
2308 return FALSE;
2309 }
2310 }
2311
88d65ad6
BW
2312 if (lit_table)
2313 free (lit_table);
2314
3ba3bc8c
BW
2315 input_section->reloc_done = TRUE;
2316
e0001a05
NC
2317 return TRUE;
2318}
2319
2320
2321/* Finish up dynamic symbol handling. There's not much to do here since
2322 the PLT and GOT entries are all set up by relocate_section. */
2323
2324static bfd_boolean
7fa3d080
BW
2325elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2326 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2327 struct elf_link_hash_entry *h,
2328 Elf_Internal_Sym *sym)
e0001a05 2329{
f5385ebf
AM
2330 if (h->needs_plt
2331 && !h->def_regular)
e0001a05
NC
2332 {
2333 /* Mark the symbol as undefined, rather than as defined in
2334 the .plt section. Leave the value alone. */
2335 sym->st_shndx = SHN_UNDEF;
2336 }
2337
2338 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2339 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2340 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2341 sym->st_shndx = SHN_ABS;
2342
2343 return TRUE;
2344}
2345
2346
2347/* Combine adjacent literal table entries in the output. Adjacent
2348 entries within each input section may have been removed during
2349 relaxation, but we repeat the process here, even though it's too late
2350 to shrink the output section, because it's important to minimize the
2351 number of literal table entries to reduce the start-up work for the
2352 runtime linker. Returns the number of remaining table entries or -1
2353 on error. */
2354
2355static int
7fa3d080
BW
2356elf_xtensa_combine_prop_entries (bfd *output_bfd,
2357 asection *sxtlit,
2358 asection *sgotloc)
e0001a05 2359{
e0001a05
NC
2360 bfd_byte *contents;
2361 property_table_entry *table;
e901de89 2362 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2363 bfd_vma offset;
2364 int n, m, num;
2365
eea6121a 2366 section_size = sxtlit->size;
e0001a05
NC
2367 BFD_ASSERT (section_size % 8 == 0);
2368 num = section_size / 8;
2369
eea6121a 2370 sgotloc_size = sgotloc->size;
e901de89 2371 if (sgotloc_size != section_size)
b536dc1e
BW
2372 {
2373 (*_bfd_error_handler)
43cd72b9 2374 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2375 return -1;
2376 }
e901de89 2377
eea6121a
AM
2378 table = bfd_malloc (num * sizeof (property_table_entry));
2379 if (table == 0)
e0001a05
NC
2380 return -1;
2381
2382 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2383 propagates to the output section, where it doesn't really apply and
eea6121a 2384 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2385 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2386
eea6121a
AM
2387 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2388 {
2389 if (contents != 0)
2390 free (contents);
2391 free (table);
2392 return -1;
2393 }
e0001a05
NC
2394
2395 /* There should never be any relocations left at this point, so this
2396 is quite a bit easier than what is done during relaxation. */
2397
2398 /* Copy the raw contents into a property table array and sort it. */
2399 offset = 0;
2400 for (n = 0; n < num; n++)
2401 {
2402 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2403 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2404 offset += 8;
2405 }
2406 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2407
2408 for (n = 0; n < num; n++)
2409 {
2410 bfd_boolean remove = FALSE;
2411
2412 if (table[n].size == 0)
2413 remove = TRUE;
2414 else if (n > 0 &&
2415 (table[n-1].address + table[n-1].size == table[n].address))
2416 {
2417 table[n-1].size += table[n].size;
2418 remove = TRUE;
2419 }
2420
2421 if (remove)
2422 {
2423 for (m = n; m < num - 1; m++)
2424 {
2425 table[m].address = table[m+1].address;
2426 table[m].size = table[m+1].size;
2427 }
2428
2429 n--;
2430 num--;
2431 }
2432 }
2433
2434 /* Copy the data back to the raw contents. */
2435 offset = 0;
2436 for (n = 0; n < num; n++)
2437 {
2438 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2439 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2440 offset += 8;
2441 }
2442
2443 /* Clear the removed bytes. */
2444 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2445 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2446
e901de89
BW
2447 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2448 section_size))
e0001a05
NC
2449 return -1;
2450
e901de89
BW
2451 /* Copy the contents to ".got.loc". */
2452 memcpy (sgotloc->contents, contents, section_size);
2453
e0001a05 2454 free (contents);
b614a702 2455 free (table);
e0001a05
NC
2456 return num;
2457}
2458
2459
2460/* Finish up the dynamic sections. */
2461
2462static bfd_boolean
7fa3d080
BW
2463elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2464 struct bfd_link_info *info)
e0001a05
NC
2465{
2466 bfd *dynobj;
e901de89 2467 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05
NC
2468 Elf32_External_Dyn *dyncon, *dynconend;
2469 int num_xtlit_entries;
2470
2471 if (! elf_hash_table (info)->dynamic_sections_created)
2472 return TRUE;
2473
2474 dynobj = elf_hash_table (info)->dynobj;
2475 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2476 BFD_ASSERT (sdyn != NULL);
2477
2478 /* Set the first entry in the global offset table to the address of
2479 the dynamic section. */
2480 sgot = bfd_get_section_by_name (dynobj, ".got");
2481 if (sgot)
2482 {
eea6121a 2483 BFD_ASSERT (sgot->size == 4);
e0001a05 2484 if (sdyn == NULL)
7fa3d080 2485 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2486 else
2487 bfd_put_32 (output_bfd,
2488 sdyn->output_section->vma + sdyn->output_offset,
2489 sgot->contents);
2490 }
2491
2492 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
7fa3d080 2493 if (srelplt && srelplt->size != 0)
e0001a05
NC
2494 {
2495 asection *sgotplt, *srelgot, *spltlittbl;
2496 int chunk, plt_chunks, plt_entries;
2497 Elf_Internal_Rela irela;
2498 bfd_byte *loc;
2499 unsigned rtld_reloc;
2500
2501 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2502 BFD_ASSERT (srelgot != NULL);
2503
2504 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2505 BFD_ASSERT (spltlittbl != NULL);
2506
2507 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2508 of them follow immediately after.... */
2509 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2510 {
2511 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2512 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2513 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2514 break;
2515 }
2516 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2517
eea6121a 2518 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2519 plt_chunks =
2520 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2521
2522 for (chunk = 0; chunk < plt_chunks; chunk++)
2523 {
2524 int chunk_entries = 0;
2525
2526 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2527 BFD_ASSERT (sgotplt != NULL);
2528
2529 /* Emit special RTLD relocations for the first two entries in
2530 each chunk of the .got.plt section. */
2531
2532 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2533 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2534 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2535 irela.r_offset = (sgotplt->output_section->vma
2536 + sgotplt->output_offset);
2537 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2538 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2539 rtld_reloc += 1;
2540 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2541
2542 /* Next literal immediately follows the first. */
2543 loc += sizeof (Elf32_External_Rela);
2544 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2545 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2546 irela.r_offset = (sgotplt->output_section->vma
2547 + sgotplt->output_offset + 4);
2548 /* Tell rtld to set value to object's link map. */
2549 irela.r_addend = 2;
2550 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2551 rtld_reloc += 1;
2552 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2553
2554 /* Fill in the literal table. */
2555 if (chunk < plt_chunks - 1)
2556 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2557 else
2558 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2559
eea6121a 2560 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2561 bfd_put_32 (output_bfd,
2562 sgotplt->output_section->vma + sgotplt->output_offset,
2563 spltlittbl->contents + (chunk * 8) + 0);
2564 bfd_put_32 (output_bfd,
2565 8 + (chunk_entries * 4),
2566 spltlittbl->contents + (chunk * 8) + 4);
2567 }
2568
2569 /* All the dynamic relocations have been emitted at this point.
2570 Make sure the relocation sections are the correct size. */
eea6121a
AM
2571 if (srelgot->size != (sizeof (Elf32_External_Rela)
2572 * srelgot->reloc_count)
2573 || srelplt->size != (sizeof (Elf32_External_Rela)
2574 * srelplt->reloc_count))
e0001a05
NC
2575 abort ();
2576
2577 /* The .xt.lit.plt section has just been modified. This must
2578 happen before the code below which combines adjacent literal
2579 table entries, and the .xt.lit.plt contents have to be forced to
2580 the output here. */
2581 if (! bfd_set_section_contents (output_bfd,
2582 spltlittbl->output_section,
2583 spltlittbl->contents,
2584 spltlittbl->output_offset,
eea6121a 2585 spltlittbl->size))
e0001a05
NC
2586 return FALSE;
2587 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2588 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2589 }
2590
2591 /* Combine adjacent literal table entries. */
1049f94e 2592 BFD_ASSERT (! info->relocatable);
e901de89
BW
2593 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2594 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
b536dc1e 2595 BFD_ASSERT (sxtlit && sgotloc);
e901de89
BW
2596 num_xtlit_entries =
2597 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
e0001a05
NC
2598 if (num_xtlit_entries < 0)
2599 return FALSE;
2600
2601 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2602 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2603 for (; dyncon < dynconend; dyncon++)
2604 {
2605 Elf_Internal_Dyn dyn;
2606 const char *name;
2607 asection *s;
2608
2609 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2610
2611 switch (dyn.d_tag)
2612 {
2613 default:
2614 break;
2615
2616 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2617 dyn.d_un.d_val = num_xtlit_entries;
2618 break;
2619
2620 case DT_XTENSA_GOT_LOC_OFF:
e901de89 2621 name = ".got.loc";
e0001a05
NC
2622 goto get_vma;
2623 case DT_PLTGOT:
2624 name = ".got";
2625 goto get_vma;
2626 case DT_JMPREL:
2627 name = ".rela.plt";
2628 get_vma:
2629 s = bfd_get_section_by_name (output_bfd, name);
2630 BFD_ASSERT (s);
2631 dyn.d_un.d_ptr = s->vma;
2632 break;
2633
2634 case DT_PLTRELSZ:
2635 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2636 BFD_ASSERT (s);
eea6121a 2637 dyn.d_un.d_val = s->size;
e0001a05
NC
2638 break;
2639
2640 case DT_RELASZ:
2641 /* Adjust RELASZ to not include JMPREL. This matches what
2642 glibc expects and what is done for several other ELF
2643 targets (e.g., i386, alpha), but the "correct" behavior
2644 seems to be unresolved. Since the linker script arranges
2645 for .rela.plt to follow all other relocation sections, we
2646 don't have to worry about changing the DT_RELA entry. */
2647 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2648 if (s)
eea6121a 2649 dyn.d_un.d_val -= s->size;
e0001a05
NC
2650 break;
2651 }
2652
2653 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2654 }
2655
2656 return TRUE;
2657}
2658
2659\f
2660/* Functions for dealing with the e_flags field. */
2661
2662/* Merge backend specific data from an object file to the output
2663 object file when linking. */
2664
2665static bfd_boolean
7fa3d080 2666elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2667{
2668 unsigned out_mach, in_mach;
2669 flagword out_flag, in_flag;
2670
2671 /* Check if we have the same endianess. */
2672 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2673 return FALSE;
2674
2675 /* Don't even pretend to support mixed-format linking. */
2676 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2677 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2678 return FALSE;
2679
2680 out_flag = elf_elfheader (obfd)->e_flags;
2681 in_flag = elf_elfheader (ibfd)->e_flags;
2682
2683 out_mach = out_flag & EF_XTENSA_MACH;
2684 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2685 if (out_mach != in_mach)
e0001a05
NC
2686 {
2687 (*_bfd_error_handler)
43cd72b9 2688 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2689 ibfd, out_mach, in_mach);
e0001a05
NC
2690 bfd_set_error (bfd_error_wrong_format);
2691 return FALSE;
2692 }
2693
2694 if (! elf_flags_init (obfd))
2695 {
2696 elf_flags_init (obfd) = TRUE;
2697 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2698
e0001a05
NC
2699 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2700 && bfd_get_arch_info (obfd)->the_default)
2701 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2702 bfd_get_mach (ibfd));
43cd72b9 2703
e0001a05
NC
2704 return TRUE;
2705 }
2706
43cd72b9
BW
2707 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2708 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2709
43cd72b9
BW
2710 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2711 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2712
2713 return TRUE;
2714}
2715
2716
2717static bfd_boolean
7fa3d080 2718elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2719{
2720 BFD_ASSERT (!elf_flags_init (abfd)
2721 || elf_elfheader (abfd)->e_flags == flags);
2722
2723 elf_elfheader (abfd)->e_flags |= flags;
2724 elf_flags_init (abfd) = TRUE;
2725
2726 return TRUE;
2727}
2728
2729
e0001a05 2730static bfd_boolean
7fa3d080 2731elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2732{
2733 FILE *f = (FILE *) farg;
2734 flagword e_flags = elf_elfheader (abfd)->e_flags;
2735
2736 fprintf (f, "\nXtensa header:\n");
43cd72b9 2737 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2738 fprintf (f, "\nMachine = Base\n");
2739 else
2740 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2741
2742 fprintf (f, "Insn tables = %s\n",
2743 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2744
2745 fprintf (f, "Literal tables = %s\n",
2746 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2747
2748 return _bfd_elf_print_private_bfd_data (abfd, farg);
2749}
2750
2751
2752/* Set the right machine number for an Xtensa ELF file. */
2753
2754static bfd_boolean
7fa3d080 2755elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2756{
2757 int mach;
2758 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2759
2760 switch (arch)
2761 {
2762 case E_XTENSA_MACH:
2763 mach = bfd_mach_xtensa;
2764 break;
2765 default:
2766 return FALSE;
2767 }
2768
2769 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2770 return TRUE;
2771}
2772
2773
2774/* The final processing done just before writing out an Xtensa ELF object
2775 file. This gets the Xtensa architecture right based on the machine
2776 number. */
2777
2778static void
7fa3d080
BW
2779elf_xtensa_final_write_processing (bfd *abfd,
2780 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2781{
2782 int mach;
2783 unsigned long val;
2784
2785 switch (mach = bfd_get_mach (abfd))
2786 {
2787 case bfd_mach_xtensa:
2788 val = E_XTENSA_MACH;
2789 break;
2790 default:
2791 return;
2792 }
2793
2794 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2795 elf_elfheader (abfd)->e_flags |= val;
2796}
2797
2798
2799static enum elf_reloc_type_class
7fa3d080 2800elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2801{
2802 switch ((int) ELF32_R_TYPE (rela->r_info))
2803 {
2804 case R_XTENSA_RELATIVE:
2805 return reloc_class_relative;
2806 case R_XTENSA_JMP_SLOT:
2807 return reloc_class_plt;
2808 default:
2809 return reloc_class_normal;
2810 }
2811}
2812
2813\f
2814static bfd_boolean
7fa3d080
BW
2815elf_xtensa_discard_info_for_section (bfd *abfd,
2816 struct elf_reloc_cookie *cookie,
2817 struct bfd_link_info *info,
2818 asection *sec)
e0001a05
NC
2819{
2820 bfd_byte *contents;
2821 bfd_vma section_size;
2822 bfd_vma offset, actual_offset;
2823 size_t removed_bytes = 0;
2824
eea6121a 2825 section_size = sec->size;
e0001a05
NC
2826 if (section_size == 0 || section_size % 8 != 0)
2827 return FALSE;
2828
2829 if (sec->output_section
2830 && bfd_is_abs_section (sec->output_section))
2831 return FALSE;
2832
2833 contents = retrieve_contents (abfd, sec, info->keep_memory);
2834 if (!contents)
2835 return FALSE;
2836
2837 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2838 if (!cookie->rels)
2839 {
2840 release_contents (sec, contents);
2841 return FALSE;
2842 }
2843
2844 cookie->rel = cookie->rels;
2845 cookie->relend = cookie->rels + sec->reloc_count;
2846
2847 for (offset = 0; offset < section_size; offset += 8)
2848 {
2849 actual_offset = offset - removed_bytes;
2850
2851 /* The ...symbol_deleted_p function will skip over relocs but it
2852 won't adjust their offsets, so do that here. */
2853 while (cookie->rel < cookie->relend
2854 && cookie->rel->r_offset < offset)
2855 {
2856 cookie->rel->r_offset -= removed_bytes;
2857 cookie->rel++;
2858 }
2859
2860 while (cookie->rel < cookie->relend
2861 && cookie->rel->r_offset == offset)
2862 {
c152c796 2863 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2864 {
2865 /* Remove the table entry. (If the reloc type is NONE, then
2866 the entry has already been merged with another and deleted
2867 during relaxation.) */
2868 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2869 {
2870 /* Shift the contents up. */
2871 if (offset + 8 < section_size)
2872 memmove (&contents[actual_offset],
2873 &contents[actual_offset+8],
2874 section_size - offset - 8);
2875 removed_bytes += 8;
2876 }
2877
2878 /* Remove this relocation. */
2879 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2880 }
2881
2882 /* Adjust the relocation offset for previous removals. This
2883 should not be done before calling ...symbol_deleted_p
2884 because it might mess up the offset comparisons there.
2885 Make sure the offset doesn't underflow in the case where
2886 the first entry is removed. */
2887 if (cookie->rel->r_offset >= removed_bytes)
2888 cookie->rel->r_offset -= removed_bytes;
2889 else
2890 cookie->rel->r_offset = 0;
2891
2892 cookie->rel++;
2893 }
2894 }
2895
2896 if (removed_bytes != 0)
2897 {
2898 /* Adjust any remaining relocs (shouldn't be any). */
2899 for (; cookie->rel < cookie->relend; cookie->rel++)
2900 {
2901 if (cookie->rel->r_offset >= removed_bytes)
2902 cookie->rel->r_offset -= removed_bytes;
2903 else
2904 cookie->rel->r_offset = 0;
2905 }
2906
2907 /* Clear the removed bytes. */
2908 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2909
2910 pin_contents (sec, contents);
2911 pin_internal_relocs (sec, cookie->rels);
2912
eea6121a
AM
2913 /* Shrink size. */
2914 sec->size = section_size - removed_bytes;
b536dc1e
BW
2915
2916 if (xtensa_is_littable_section (sec))
2917 {
2918 bfd *dynobj = elf_hash_table (info)->dynobj;
2919 if (dynobj)
2920 {
2921 asection *sgotloc =
2922 bfd_get_section_by_name (dynobj, ".got.loc");
2923 if (sgotloc)
eea6121a 2924 sgotloc->size -= removed_bytes;
b536dc1e
BW
2925 }
2926 }
e0001a05
NC
2927 }
2928 else
2929 {
2930 release_contents (sec, contents);
2931 release_internal_relocs (sec, cookie->rels);
2932 }
2933
2934 return (removed_bytes != 0);
2935}
2936
2937
2938static bfd_boolean
7fa3d080
BW
2939elf_xtensa_discard_info (bfd *abfd,
2940 struct elf_reloc_cookie *cookie,
2941 struct bfd_link_info *info)
e0001a05
NC
2942{
2943 asection *sec;
2944 bfd_boolean changed = FALSE;
2945
2946 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2947 {
2948 if (xtensa_is_property_section (sec))
2949 {
2950 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2951 changed = TRUE;
2952 }
2953 }
2954
2955 return changed;
2956}
2957
2958
2959static bfd_boolean
7fa3d080 2960elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
2961{
2962 return xtensa_is_property_section (sec);
2963}
2964
2965\f
2966/* Support for core dump NOTE sections. */
2967
2968static bfd_boolean
7fa3d080 2969elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
2970{
2971 int offset;
eea6121a 2972 unsigned int size;
e0001a05
NC
2973
2974 /* The size for Xtensa is variable, so don't try to recognize the format
2975 based on the size. Just assume this is GNU/Linux. */
2976
2977 /* pr_cursig */
2978 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2979
2980 /* pr_pid */
2981 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2982
2983 /* pr_reg */
2984 offset = 72;
eea6121a 2985 size = note->descsz - offset - 4;
e0001a05
NC
2986
2987 /* Make a ".reg/999" section. */
2988 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 2989 size, note->descpos + offset);
e0001a05
NC
2990}
2991
2992
2993static bfd_boolean
7fa3d080 2994elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
2995{
2996 switch (note->descsz)
2997 {
2998 default:
2999 return FALSE;
3000
3001 case 128: /* GNU/Linux elf_prpsinfo */
3002 elf_tdata (abfd)->core_program
3003 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3004 elf_tdata (abfd)->core_command
3005 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3006 }
3007
3008 /* Note that for some reason, a spurious space is tacked
3009 onto the end of the args in some (at least one anyway)
3010 implementations, so strip it off if it exists. */
3011
3012 {
3013 char *command = elf_tdata (abfd)->core_command;
3014 int n = strlen (command);
3015
3016 if (0 < n && command[n - 1] == ' ')
3017 command[n - 1] = '\0';
3018 }
3019
3020 return TRUE;
3021}
3022
3023\f
3024/* Generic Xtensa configurability stuff. */
3025
3026static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3027static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3028static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3029static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3030static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3031static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3032static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3033static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3034
3035static void
7fa3d080 3036init_call_opcodes (void)
e0001a05
NC
3037{
3038 if (callx0_op == XTENSA_UNDEFINED)
3039 {
3040 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3041 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3042 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3043 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3044 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3045 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3046 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3047 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3048 }
3049}
3050
3051
3052static bfd_boolean
7fa3d080 3053is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3054{
3055 init_call_opcodes ();
3056 return (opcode == callx0_op
3057 || opcode == callx4_op
3058 || opcode == callx8_op
3059 || opcode == callx12_op);
3060}
3061
3062
3063static bfd_boolean
7fa3d080 3064is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3065{
3066 init_call_opcodes ();
3067 return (opcode == call0_op
3068 || opcode == call4_op
3069 || opcode == call8_op
3070 || opcode == call12_op);
3071}
3072
3073
3074static bfd_boolean
7fa3d080 3075is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3076{
3077 init_call_opcodes ();
3078 return (opcode == call4_op
3079 || opcode == call8_op
3080 || opcode == call12_op
3081 || opcode == callx4_op
3082 || opcode == callx8_op
3083 || opcode == callx12_op);
3084}
3085
3086
43cd72b9
BW
3087static xtensa_opcode
3088get_const16_opcode (void)
3089{
3090 static bfd_boolean done_lookup = FALSE;
3091 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3092 if (!done_lookup)
3093 {
3094 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3095 done_lookup = TRUE;
3096 }
3097 return const16_opcode;
3098}
3099
3100
e0001a05
NC
3101static xtensa_opcode
3102get_l32r_opcode (void)
3103{
3104 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3105 static bfd_boolean done_lookup = FALSE;
3106
3107 if (!done_lookup)
e0001a05
NC
3108 {
3109 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3110 done_lookup = TRUE;
e0001a05
NC
3111 }
3112 return l32r_opcode;
3113}
3114
3115
3116static bfd_vma
7fa3d080 3117l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3118{
3119 bfd_vma offset;
3120
3121 offset = addr - ((pc+3) & -4);
3122 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3123 offset = (signed int) offset >> 2;
3124 BFD_ASSERT ((signed int) offset >> 16 == -1);
3125 return offset;
3126}
3127
3128
e0001a05 3129static int
7fa3d080 3130get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3131{
43cd72b9
BW
3132 xtensa_isa isa = xtensa_default_isa;
3133 int last_immed, last_opnd, opi;
3134
3135 if (opcode == XTENSA_UNDEFINED)
3136 return XTENSA_UNDEFINED;
3137
3138 /* Find the last visible PC-relative immediate operand for the opcode.
3139 If there are no PC-relative immediates, then choose the last visible
3140 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3141 last_immed = XTENSA_UNDEFINED;
3142 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3143 for (opi = last_opnd - 1; opi >= 0; opi--)
3144 {
3145 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3146 continue;
3147 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3148 {
3149 last_immed = opi;
3150 break;
3151 }
3152 if (last_immed == XTENSA_UNDEFINED
3153 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3154 last_immed = opi;
3155 }
3156 if (last_immed < 0)
3157 return XTENSA_UNDEFINED;
3158
3159 /* If the operand number was specified in an old-style relocation,
3160 check for consistency with the operand computed above. */
3161 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3162 {
3163 int reloc_opnd = r_type - R_XTENSA_OP0;
3164 if (reloc_opnd != last_immed)
3165 return XTENSA_UNDEFINED;
3166 }
3167
3168 return last_immed;
3169}
3170
3171
3172int
7fa3d080 3173get_relocation_slot (int r_type)
43cd72b9
BW
3174{
3175 switch (r_type)
3176 {
3177 case R_XTENSA_OP0:
3178 case R_XTENSA_OP1:
3179 case R_XTENSA_OP2:
3180 return 0;
3181
3182 default:
3183 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3184 return r_type - R_XTENSA_SLOT0_OP;
3185 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3186 return r_type - R_XTENSA_SLOT0_ALT;
3187 break;
3188 }
3189
3190 return XTENSA_UNDEFINED;
e0001a05
NC
3191}
3192
3193
3194/* Get the opcode for a relocation. */
3195
3196static xtensa_opcode
7fa3d080
BW
3197get_relocation_opcode (bfd *abfd,
3198 asection *sec,
3199 bfd_byte *contents,
3200 Elf_Internal_Rela *irel)
e0001a05
NC
3201{
3202 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3203 static xtensa_insnbuf sbuff = NULL;
e0001a05 3204 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3205 xtensa_format fmt;
3206 int slot;
e0001a05
NC
3207
3208 if (contents == NULL)
3209 return XTENSA_UNDEFINED;
3210
43cd72b9 3211 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3212 return XTENSA_UNDEFINED;
3213
3214 if (ibuff == NULL)
43cd72b9
BW
3215 {
3216 ibuff = xtensa_insnbuf_alloc (isa);
3217 sbuff = xtensa_insnbuf_alloc (isa);
3218 }
3219
e0001a05 3220 /* Decode the instruction. */
43cd72b9
BW
3221 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3222 sec->size - irel->r_offset);
3223 fmt = xtensa_format_decode (isa, ibuff);
3224 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3225 if (slot == XTENSA_UNDEFINED)
3226 return XTENSA_UNDEFINED;
3227 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3228 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3229}
3230
3231
3232bfd_boolean
7fa3d080
BW
3233is_l32r_relocation (bfd *abfd,
3234 asection *sec,
3235 bfd_byte *contents,
3236 Elf_Internal_Rela *irel)
e0001a05
NC
3237{
3238 xtensa_opcode opcode;
43cd72b9 3239 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3240 return FALSE;
43cd72b9 3241 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3242 return (opcode == get_l32r_opcode ());
3243}
3244
e0001a05 3245
43cd72b9 3246static bfd_size_type
7fa3d080
BW
3247get_asm_simplify_size (bfd_byte *contents,
3248 bfd_size_type content_len,
3249 bfd_size_type offset)
e0001a05 3250{
43cd72b9 3251 bfd_size_type insnlen, size = 0;
e0001a05 3252
43cd72b9
BW
3253 /* Decode the size of the next two instructions. */
3254 insnlen = insn_decode_len (contents, content_len, offset);
3255 if (insnlen == 0)
3256 return 0;
e0001a05 3257
43cd72b9 3258 size += insnlen;
e0001a05 3259
43cd72b9
BW
3260 insnlen = insn_decode_len (contents, content_len, offset + size);
3261 if (insnlen == 0)
3262 return 0;
e0001a05 3263
43cd72b9
BW
3264 size += insnlen;
3265 return size;
3266}
e0001a05 3267
43cd72b9
BW
3268
3269bfd_boolean
7fa3d080 3270is_alt_relocation (int r_type)
43cd72b9
BW
3271{
3272 return (r_type >= R_XTENSA_SLOT0_ALT
3273 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3274}
3275
3276
43cd72b9 3277bfd_boolean
7fa3d080 3278is_operand_relocation (int r_type)
e0001a05 3279{
43cd72b9
BW
3280 switch (r_type)
3281 {
3282 case R_XTENSA_OP0:
3283 case R_XTENSA_OP1:
3284 case R_XTENSA_OP2:
3285 return TRUE;
e0001a05 3286
43cd72b9
BW
3287 default:
3288 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3289 return TRUE;
3290 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3291 return TRUE;
3292 break;
3293 }
e0001a05 3294
43cd72b9 3295 return FALSE;
e0001a05
NC
3296}
3297
43cd72b9
BW
3298
3299#define MIN_INSN_LENGTH 2
e0001a05 3300
43cd72b9
BW
3301/* Return 0 if it fails to decode. */
3302
3303bfd_size_type
7fa3d080
BW
3304insn_decode_len (bfd_byte *contents,
3305 bfd_size_type content_len,
3306 bfd_size_type offset)
e0001a05 3307{
43cd72b9
BW
3308 int insn_len;
3309 xtensa_isa isa = xtensa_default_isa;
3310 xtensa_format fmt;
3311 static xtensa_insnbuf ibuff = NULL;
e0001a05 3312
43cd72b9
BW
3313 if (offset + MIN_INSN_LENGTH > content_len)
3314 return 0;
e0001a05 3315
43cd72b9
BW
3316 if (ibuff == NULL)
3317 ibuff = xtensa_insnbuf_alloc (isa);
3318 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3319 content_len - offset);
3320 fmt = xtensa_format_decode (isa, ibuff);
3321 if (fmt == XTENSA_UNDEFINED)
3322 return 0;
3323 insn_len = xtensa_format_length (isa, fmt);
3324 if (insn_len == XTENSA_UNDEFINED)
3325 return 0;
3326 return insn_len;
e0001a05
NC
3327}
3328
3329
43cd72b9
BW
3330/* Decode the opcode for a single slot instruction.
3331 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3332
43cd72b9 3333xtensa_opcode
7fa3d080
BW
3334insn_decode_opcode (bfd_byte *contents,
3335 bfd_size_type content_len,
3336 bfd_size_type offset,
3337 int slot)
e0001a05 3338{
e0001a05 3339 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3340 xtensa_format fmt;
3341 static xtensa_insnbuf insnbuf = NULL;
3342 static xtensa_insnbuf slotbuf = NULL;
3343
3344 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3345 return XTENSA_UNDEFINED;
3346
3347 if (insnbuf == NULL)
43cd72b9
BW
3348 {
3349 insnbuf = xtensa_insnbuf_alloc (isa);
3350 slotbuf = xtensa_insnbuf_alloc (isa);
3351 }
3352
3353 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3354 content_len - offset);
3355 fmt = xtensa_format_decode (isa, insnbuf);
3356 if (fmt == XTENSA_UNDEFINED)
e0001a05 3357 return XTENSA_UNDEFINED;
43cd72b9
BW
3358
3359 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3360 return XTENSA_UNDEFINED;
e0001a05 3361
43cd72b9
BW
3362 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3363 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3364}
e0001a05 3365
e0001a05 3366
43cd72b9
BW
3367/* The offset is the offset in the contents.
3368 The address is the address of that offset. */
e0001a05 3369
43cd72b9 3370static bfd_boolean
7fa3d080
BW
3371check_branch_target_aligned (bfd_byte *contents,
3372 bfd_size_type content_length,
3373 bfd_vma offset,
3374 bfd_vma address)
43cd72b9
BW
3375{
3376 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3377 if (insn_len == 0)
3378 return FALSE;
3379 return check_branch_target_aligned_address (address, insn_len);
3380}
e0001a05 3381
e0001a05 3382
43cd72b9 3383static bfd_boolean
7fa3d080
BW
3384check_loop_aligned (bfd_byte *contents,
3385 bfd_size_type content_length,
3386 bfd_vma offset,
3387 bfd_vma address)
e0001a05 3388{
43cd72b9 3389 bfd_size_type loop_len, insn_len;
64b607e6 3390 xtensa_opcode opcode;
e0001a05 3391
64b607e6
BW
3392 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3393 if (opcode == XTENSA_UNDEFINED
3394 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3395 {
3396 BFD_ASSERT (FALSE);
3397 return FALSE;
3398 }
3399
43cd72b9 3400 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 3401 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
3402 if (loop_len == 0 || insn_len == 0)
3403 {
3404 BFD_ASSERT (FALSE);
3405 return FALSE;
3406 }
e0001a05 3407
43cd72b9
BW
3408 return check_branch_target_aligned_address (address + loop_len, insn_len);
3409}
e0001a05 3410
e0001a05
NC
3411
3412static bfd_boolean
7fa3d080 3413check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3414{
43cd72b9
BW
3415 if (len == 8)
3416 return (addr % 8 == 0);
3417 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3418}
3419
43cd72b9
BW
3420\f
3421/* Instruction widening and narrowing. */
e0001a05 3422
7fa3d080
BW
3423/* When FLIX is available we need to access certain instructions only
3424 when they are 16-bit or 24-bit instructions. This table caches
3425 information about such instructions by walking through all the
3426 opcodes and finding the smallest single-slot format into which each
3427 can be encoded. */
3428
3429static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3430
3431
7fa3d080
BW
3432static void
3433init_op_single_format_table (void)
e0001a05 3434{
7fa3d080
BW
3435 xtensa_isa isa = xtensa_default_isa;
3436 xtensa_insnbuf ibuf;
3437 xtensa_opcode opcode;
3438 xtensa_format fmt;
3439 int num_opcodes;
3440
3441 if (op_single_fmt_table)
3442 return;
3443
3444 ibuf = xtensa_insnbuf_alloc (isa);
3445 num_opcodes = xtensa_isa_num_opcodes (isa);
3446
3447 op_single_fmt_table = (xtensa_format *)
3448 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3449 for (opcode = 0; opcode < num_opcodes; opcode++)
3450 {
3451 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3452 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3453 {
3454 if (xtensa_format_num_slots (isa, fmt) == 1
3455 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3456 {
3457 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3458 int fmt_length = xtensa_format_length (isa, fmt);
3459 if (old_fmt == XTENSA_UNDEFINED
3460 || fmt_length < xtensa_format_length (isa, old_fmt))
3461 op_single_fmt_table[opcode] = fmt;
3462 }
3463 }
3464 }
3465 xtensa_insnbuf_free (isa, ibuf);
3466}
3467
3468
3469static xtensa_format
3470get_single_format (xtensa_opcode opcode)
3471{
3472 init_op_single_format_table ();
3473 return op_single_fmt_table[opcode];
3474}
e0001a05 3475
e0001a05 3476
43cd72b9
BW
3477/* For the set of narrowable instructions we do NOT include the
3478 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3479 involved during linker relaxation that may require these to
3480 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3481 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3482
7fa3d080
BW
3483struct string_pair
3484{
3485 const char *wide;
3486 const char *narrow;
3487};
3488
43cd72b9 3489struct string_pair narrowable[] =
e0001a05 3490{
43cd72b9
BW
3491 { "add", "add.n" },
3492 { "addi", "addi.n" },
3493 { "addmi", "addi.n" },
3494 { "l32i", "l32i.n" },
3495 { "movi", "movi.n" },
3496 { "ret", "ret.n" },
3497 { "retw", "retw.n" },
3498 { "s32i", "s32i.n" },
3499 { "or", "mov.n" } /* special case only when op1 == op2 */
3500};
e0001a05 3501
43cd72b9 3502struct string_pair widenable[] =
e0001a05 3503{
43cd72b9
BW
3504 { "add", "add.n" },
3505 { "addi", "addi.n" },
3506 { "addmi", "addi.n" },
3507 { "beqz", "beqz.n" },
3508 { "bnez", "bnez.n" },
3509 { "l32i", "l32i.n" },
3510 { "movi", "movi.n" },
3511 { "ret", "ret.n" },
3512 { "retw", "retw.n" },
3513 { "s32i", "s32i.n" },
3514 { "or", "mov.n" } /* special case only when op1 == op2 */
3515};
e0001a05
NC
3516
3517
64b607e6
BW
3518/* Check if an instruction can be "narrowed", i.e., changed from a standard
3519 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3520 return the instruction buffer holding the narrow instruction. Otherwise,
3521 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
3522 but require some special case operand checks in some cases. */
3523
64b607e6
BW
3524static xtensa_insnbuf
3525can_narrow_instruction (xtensa_insnbuf slotbuf,
3526 xtensa_format fmt,
3527 xtensa_opcode opcode)
e0001a05 3528{
43cd72b9 3529 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3530 xtensa_format o_fmt;
3531 unsigned opi;
e0001a05 3532
43cd72b9
BW
3533 static xtensa_insnbuf o_insnbuf = NULL;
3534 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3535
64b607e6 3536 if (o_insnbuf == NULL)
43cd72b9 3537 {
43cd72b9
BW
3538 o_insnbuf = xtensa_insnbuf_alloc (isa);
3539 o_slotbuf = xtensa_insnbuf_alloc (isa);
3540 }
e0001a05 3541
64b607e6 3542 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
3543 {
3544 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3545
43cd72b9
BW
3546 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3547 {
3548 uint32 value, newval;
3549 int i, operand_count, o_operand_count;
3550 xtensa_opcode o_opcode;
e0001a05 3551
43cd72b9
BW
3552 /* Address does not matter in this case. We might need to
3553 fix it to handle branches/jumps. */
3554 bfd_vma self_address = 0;
e0001a05 3555
43cd72b9
BW
3556 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3557 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3558 return 0;
43cd72b9
BW
3559 o_fmt = get_single_format (o_opcode);
3560 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3561 return 0;
e0001a05 3562
43cd72b9
BW
3563 if (xtensa_format_length (isa, fmt) != 3
3564 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 3565 return 0;
e0001a05 3566
43cd72b9
BW
3567 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3568 operand_count = xtensa_opcode_num_operands (isa, opcode);
3569 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3570
43cd72b9 3571 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3572 return 0;
e0001a05 3573
43cd72b9
BW
3574 if (!is_or)
3575 {
3576 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3577 return 0;
43cd72b9
BW
3578 }
3579 else
3580 {
3581 uint32 rawval0, rawval1, rawval2;
e0001a05 3582
64b607e6
BW
3583 if (o_operand_count + 1 != operand_count
3584 || xtensa_operand_get_field (isa, opcode, 0,
3585 fmt, 0, slotbuf, &rawval0) != 0
3586 || xtensa_operand_get_field (isa, opcode, 1,
3587 fmt, 0, slotbuf, &rawval1) != 0
3588 || xtensa_operand_get_field (isa, opcode, 2,
3589 fmt, 0, slotbuf, &rawval2) != 0
3590 || rawval1 != rawval2
3591 || rawval0 == rawval1 /* it is a nop */)
3592 return 0;
43cd72b9 3593 }
e0001a05 3594
43cd72b9
BW
3595 for (i = 0; i < o_operand_count; ++i)
3596 {
3597 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3598 slotbuf, &value)
3599 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 3600 return 0;
e0001a05 3601
43cd72b9
BW
3602 /* PC-relative branches need adjustment, but
3603 the PC-rel operand will always have a relocation. */
3604 newval = value;
3605 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3606 self_address)
3607 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3608 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3609 o_slotbuf, newval))
64b607e6 3610 return 0;
43cd72b9 3611 }
e0001a05 3612
64b607e6
BW
3613 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3614 return 0;
e0001a05 3615
64b607e6 3616 return o_insnbuf;
43cd72b9
BW
3617 }
3618 }
64b607e6 3619 return 0;
43cd72b9 3620}
e0001a05 3621
e0001a05 3622
64b607e6
BW
3623/* Attempt to narrow an instruction. If the narrowing is valid, perform
3624 the action in-place directly into the contents and return TRUE. Otherwise,
3625 the return value is FALSE and the contents are not modified. */
e0001a05 3626
43cd72b9 3627static bfd_boolean
64b607e6
BW
3628narrow_instruction (bfd_byte *contents,
3629 bfd_size_type content_length,
3630 bfd_size_type offset)
e0001a05 3631{
43cd72b9 3632 xtensa_opcode opcode;
64b607e6 3633 bfd_size_type insn_len;
43cd72b9 3634 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3635 xtensa_format fmt;
3636 xtensa_insnbuf o_insnbuf;
e0001a05 3637
43cd72b9
BW
3638 static xtensa_insnbuf insnbuf = NULL;
3639 static xtensa_insnbuf slotbuf = NULL;
e0001a05 3640
43cd72b9
BW
3641 if (insnbuf == NULL)
3642 {
3643 insnbuf = xtensa_insnbuf_alloc (isa);
3644 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 3645 }
e0001a05 3646
43cd72b9 3647 BFD_ASSERT (offset < content_length);
2c8c90bc 3648
43cd72b9 3649 if (content_length < 2)
e0001a05
NC
3650 return FALSE;
3651
64b607e6 3652 /* We will hand-code a few of these for a little while.
43cd72b9
BW
3653 These have all been specified in the assembler aleady. */
3654 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3655 content_length - offset);
3656 fmt = xtensa_format_decode (isa, insnbuf);
3657 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3658 return FALSE;
3659
43cd72b9 3660 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3661 return FALSE;
3662
43cd72b9
BW
3663 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3664 if (opcode == XTENSA_UNDEFINED)
e0001a05 3665 return FALSE;
43cd72b9
BW
3666 insn_len = xtensa_format_length (isa, fmt);
3667 if (insn_len > content_length)
3668 return FALSE;
3669
64b607e6
BW
3670 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3671 if (o_insnbuf)
3672 {
3673 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3674 content_length - offset);
3675 return TRUE;
3676 }
3677
3678 return FALSE;
3679}
3680
3681
3682/* Check if an instruction can be "widened", i.e., changed from a 2-byte
3683 "density" instruction to a standard 3-byte instruction. If it is valid,
3684 return the instruction buffer holding the wide instruction. Otherwise,
3685 return 0. The set of valid widenings are specified by a string table
3686 but require some special case operand checks in some cases. */
3687
3688static xtensa_insnbuf
3689can_widen_instruction (xtensa_insnbuf slotbuf,
3690 xtensa_format fmt,
3691 xtensa_opcode opcode)
3692{
3693 xtensa_isa isa = xtensa_default_isa;
3694 xtensa_format o_fmt;
3695 unsigned opi;
3696
3697 static xtensa_insnbuf o_insnbuf = NULL;
3698 static xtensa_insnbuf o_slotbuf = NULL;
3699
3700 if (o_insnbuf == NULL)
3701 {
3702 o_insnbuf = xtensa_insnbuf_alloc (isa);
3703 o_slotbuf = xtensa_insnbuf_alloc (isa);
3704 }
3705
3706 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 3707 {
43cd72b9
BW
3708 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3709 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3710 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3711
43cd72b9
BW
3712 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3713 {
3714 uint32 value, newval;
3715 int i, operand_count, o_operand_count, check_operand_count;
3716 xtensa_opcode o_opcode;
e0001a05 3717
43cd72b9
BW
3718 /* Address does not matter in this case. We might need to fix it
3719 to handle branches/jumps. */
3720 bfd_vma self_address = 0;
e0001a05 3721
43cd72b9
BW
3722 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3723 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3724 return 0;
43cd72b9
BW
3725 o_fmt = get_single_format (o_opcode);
3726 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3727 return 0;
e0001a05 3728
43cd72b9
BW
3729 if (xtensa_format_length (isa, fmt) != 2
3730 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 3731 return 0;
e0001a05 3732
43cd72b9
BW
3733 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3734 operand_count = xtensa_opcode_num_operands (isa, opcode);
3735 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3736 check_operand_count = o_operand_count;
e0001a05 3737
43cd72b9 3738 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3739 return 0;
e0001a05 3740
43cd72b9
BW
3741 if (!is_or)
3742 {
3743 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3744 return 0;
43cd72b9
BW
3745 }
3746 else
3747 {
3748 uint32 rawval0, rawval1;
3749
64b607e6
BW
3750 if (o_operand_count != operand_count + 1
3751 || xtensa_operand_get_field (isa, opcode, 0,
3752 fmt, 0, slotbuf, &rawval0) != 0
3753 || xtensa_operand_get_field (isa, opcode, 1,
3754 fmt, 0, slotbuf, &rawval1) != 0
3755 || rawval0 == rawval1 /* it is a nop */)
3756 return 0;
43cd72b9
BW
3757 }
3758 if (is_branch)
3759 check_operand_count--;
3760
64b607e6 3761 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
3762 {
3763 int new_i = i;
3764 if (is_or && i == o_operand_count - 1)
3765 new_i = i - 1;
3766 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3767 slotbuf, &value)
3768 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 3769 return 0;
43cd72b9
BW
3770
3771 /* PC-relative branches need adjustment, but
3772 the PC-rel operand will always have a relocation. */
3773 newval = value;
3774 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3775 self_address)
3776 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3777 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3778 o_slotbuf, newval))
64b607e6 3779 return 0;
43cd72b9
BW
3780 }
3781
3782 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 3783 return 0;
43cd72b9 3784
64b607e6 3785 return o_insnbuf;
43cd72b9
BW
3786 }
3787 }
64b607e6
BW
3788 return 0;
3789}
3790
3791
3792/* Attempt to widen an instruction. If the widening is valid, perform
3793 the action in-place directly into the contents and return TRUE. Otherwise,
3794 the return value is FALSE and the contents are not modified. */
3795
3796static bfd_boolean
3797widen_instruction (bfd_byte *contents,
3798 bfd_size_type content_length,
3799 bfd_size_type offset)
3800{
3801 xtensa_opcode opcode;
3802 bfd_size_type insn_len;
3803 xtensa_isa isa = xtensa_default_isa;
3804 xtensa_format fmt;
3805 xtensa_insnbuf o_insnbuf;
3806
3807 static xtensa_insnbuf insnbuf = NULL;
3808 static xtensa_insnbuf slotbuf = NULL;
3809
3810 if (insnbuf == NULL)
3811 {
3812 insnbuf = xtensa_insnbuf_alloc (isa);
3813 slotbuf = xtensa_insnbuf_alloc (isa);
3814 }
3815
3816 BFD_ASSERT (offset < content_length);
3817
3818 if (content_length < 2)
3819 return FALSE;
3820
3821 /* We will hand-code a few of these for a little while.
3822 These have all been specified in the assembler aleady. */
3823 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3824 content_length - offset);
3825 fmt = xtensa_format_decode (isa, insnbuf);
3826 if (xtensa_format_num_slots (isa, fmt) != 1)
3827 return FALSE;
3828
3829 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3830 return FALSE;
3831
3832 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3833 if (opcode == XTENSA_UNDEFINED)
3834 return FALSE;
3835 insn_len = xtensa_format_length (isa, fmt);
3836 if (insn_len > content_length)
3837 return FALSE;
3838
3839 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3840 if (o_insnbuf)
3841 {
3842 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3843 content_length - offset);
3844 return TRUE;
3845 }
43cd72b9 3846 return FALSE;
e0001a05
NC
3847}
3848
43cd72b9
BW
3849\f
3850/* Code for transforming CALLs at link-time. */
e0001a05 3851
43cd72b9 3852static bfd_reloc_status_type
7fa3d080
BW
3853elf_xtensa_do_asm_simplify (bfd_byte *contents,
3854 bfd_vma address,
3855 bfd_vma content_length,
3856 char **error_message)
e0001a05 3857{
43cd72b9
BW
3858 static xtensa_insnbuf insnbuf = NULL;
3859 static xtensa_insnbuf slotbuf = NULL;
3860 xtensa_format core_format = XTENSA_UNDEFINED;
3861 xtensa_opcode opcode;
3862 xtensa_opcode direct_call_opcode;
3863 xtensa_isa isa = xtensa_default_isa;
3864 bfd_byte *chbuf = contents + address;
3865 int opn;
e0001a05 3866
43cd72b9 3867 if (insnbuf == NULL)
e0001a05 3868 {
43cd72b9
BW
3869 insnbuf = xtensa_insnbuf_alloc (isa);
3870 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3871 }
e0001a05 3872
43cd72b9
BW
3873 if (content_length < address)
3874 {
3875 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3876 return bfd_reloc_other;
3877 }
e0001a05 3878
43cd72b9
BW
3879 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3880 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3881 if (direct_call_opcode == XTENSA_UNDEFINED)
3882 {
3883 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3884 return bfd_reloc_other;
3885 }
3886
3887 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3888 core_format = xtensa_format_lookup (isa, "x24");
3889 opcode = xtensa_opcode_lookup (isa, "or");
3890 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3891 for (opn = 0; opn < 3; opn++)
3892 {
3893 uint32 regno = 1;
3894 xtensa_operand_encode (isa, opcode, opn, &regno);
3895 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3896 slotbuf, regno);
3897 }
3898 xtensa_format_encode (isa, core_format, insnbuf);
3899 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3900 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3901
43cd72b9
BW
3902 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3903 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3904 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3905
43cd72b9
BW
3906 xtensa_format_encode (isa, core_format, insnbuf);
3907 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3908 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3909 content_length - address - 3);
e0001a05 3910
43cd72b9
BW
3911 return bfd_reloc_ok;
3912}
e0001a05 3913
e0001a05 3914
43cd72b9 3915static bfd_reloc_status_type
7fa3d080
BW
3916contract_asm_expansion (bfd_byte *contents,
3917 bfd_vma content_length,
3918 Elf_Internal_Rela *irel,
3919 char **error_message)
43cd72b9
BW
3920{
3921 bfd_reloc_status_type retval =
3922 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3923 error_message);
e0001a05 3924
43cd72b9
BW
3925 if (retval != bfd_reloc_ok)
3926 return bfd_reloc_dangerous;
e0001a05 3927
43cd72b9
BW
3928 /* Update the irel->r_offset field so that the right immediate and
3929 the right instruction are modified during the relocation. */
3930 irel->r_offset += 3;
3931 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3932 return bfd_reloc_ok;
3933}
e0001a05 3934
e0001a05 3935
43cd72b9 3936static xtensa_opcode
7fa3d080 3937swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3938{
43cd72b9 3939 init_call_opcodes ();
e0001a05 3940
43cd72b9
BW
3941 if (opcode == callx0_op) return call0_op;
3942 if (opcode == callx4_op) return call4_op;
3943 if (opcode == callx8_op) return call8_op;
3944 if (opcode == callx12_op) return call12_op;
e0001a05 3945
43cd72b9
BW
3946 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3947 return XTENSA_UNDEFINED;
3948}
e0001a05 3949
e0001a05 3950
43cd72b9
BW
3951/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3952 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3953 If not, return XTENSA_UNDEFINED. */
e0001a05 3954
43cd72b9
BW
3955#define L32R_TARGET_REG_OPERAND 0
3956#define CONST16_TARGET_REG_OPERAND 0
3957#define CALLN_SOURCE_OPERAND 0
e0001a05 3958
43cd72b9 3959static xtensa_opcode
7fa3d080 3960get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3961{
43cd72b9
BW
3962 static xtensa_insnbuf insnbuf = NULL;
3963 static xtensa_insnbuf slotbuf = NULL;
3964 xtensa_format fmt;
3965 xtensa_opcode opcode;
3966 xtensa_isa isa = xtensa_default_isa;
3967 uint32 regno, const16_regno, call_regno;
3968 int offset = 0;
e0001a05 3969
43cd72b9 3970 if (insnbuf == NULL)
e0001a05 3971 {
43cd72b9
BW
3972 insnbuf = xtensa_insnbuf_alloc (isa);
3973 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3974 }
43cd72b9
BW
3975
3976 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3977 fmt = xtensa_format_decode (isa, insnbuf);
3978 if (fmt == XTENSA_UNDEFINED
3979 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3980 return XTENSA_UNDEFINED;
3981
3982 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3983 if (opcode == XTENSA_UNDEFINED)
3984 return XTENSA_UNDEFINED;
3985
3986 if (opcode == get_l32r_opcode ())
e0001a05 3987 {
43cd72b9
BW
3988 if (p_uses_l32r)
3989 *p_uses_l32r = TRUE;
3990 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3991 fmt, 0, slotbuf, &regno)
3992 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3993 &regno))
3994 return XTENSA_UNDEFINED;
e0001a05 3995 }
43cd72b9 3996 else if (opcode == get_const16_opcode ())
e0001a05 3997 {
43cd72b9
BW
3998 if (p_uses_l32r)
3999 *p_uses_l32r = FALSE;
4000 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4001 fmt, 0, slotbuf, &regno)
4002 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4003 &regno))
4004 return XTENSA_UNDEFINED;
4005
4006 /* Check that the next instruction is also CONST16. */
4007 offset += xtensa_format_length (isa, fmt);
4008 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4009 fmt = xtensa_format_decode (isa, insnbuf);
4010 if (fmt == XTENSA_UNDEFINED
4011 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4012 return XTENSA_UNDEFINED;
4013 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4014 if (opcode != get_const16_opcode ())
4015 return XTENSA_UNDEFINED;
4016
4017 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4018 fmt, 0, slotbuf, &const16_regno)
4019 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4020 &const16_regno)
4021 || const16_regno != regno)
4022 return XTENSA_UNDEFINED;
e0001a05 4023 }
43cd72b9
BW
4024 else
4025 return XTENSA_UNDEFINED;
e0001a05 4026
43cd72b9
BW
4027 /* Next instruction should be an CALLXn with operand 0 == regno. */
4028 offset += xtensa_format_length (isa, fmt);
4029 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4030 fmt = xtensa_format_decode (isa, insnbuf);
4031 if (fmt == XTENSA_UNDEFINED
4032 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4033 return XTENSA_UNDEFINED;
4034 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4035 if (opcode == XTENSA_UNDEFINED
4036 || !is_indirect_call_opcode (opcode))
4037 return XTENSA_UNDEFINED;
e0001a05 4038
43cd72b9
BW
4039 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4040 fmt, 0, slotbuf, &call_regno)
4041 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4042 &call_regno))
4043 return XTENSA_UNDEFINED;
e0001a05 4044
43cd72b9
BW
4045 if (call_regno != regno)
4046 return XTENSA_UNDEFINED;
e0001a05 4047
43cd72b9
BW
4048 return opcode;
4049}
e0001a05 4050
43cd72b9
BW
4051\f
4052/* Data structures used during relaxation. */
e0001a05 4053
43cd72b9 4054/* r_reloc: relocation values. */
e0001a05 4055
43cd72b9
BW
4056/* Through the relaxation process, we need to keep track of the values
4057 that will result from evaluating relocations. The standard ELF
4058 relocation structure is not sufficient for this purpose because we're
4059 operating on multiple input files at once, so we need to know which
4060 input file a relocation refers to. The r_reloc structure thus
4061 records both the input file (bfd) and ELF relocation.
e0001a05 4062
43cd72b9
BW
4063 For efficiency, an r_reloc also contains a "target_offset" field to
4064 cache the target-section-relative offset value that is represented by
4065 the relocation.
4066
4067 The r_reloc also contains a virtual offset that allows multiple
4068 inserted literals to be placed at the same "address" with
4069 different offsets. */
e0001a05 4070
43cd72b9 4071typedef struct r_reloc_struct r_reloc;
e0001a05 4072
43cd72b9 4073struct r_reloc_struct
e0001a05 4074{
43cd72b9
BW
4075 bfd *abfd;
4076 Elf_Internal_Rela rela;
e0001a05 4077 bfd_vma target_offset;
43cd72b9 4078 bfd_vma virtual_offset;
e0001a05
NC
4079};
4080
e0001a05 4081
43cd72b9
BW
4082/* The r_reloc structure is included by value in literal_value, but not
4083 every literal_value has an associated relocation -- some are simple
4084 constants. In such cases, we set all the fields in the r_reloc
4085 struct to zero. The r_reloc_is_const function should be used to
4086 detect this case. */
e0001a05 4087
43cd72b9 4088static bfd_boolean
7fa3d080 4089r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4090{
43cd72b9 4091 return (r_rel->abfd == NULL);
e0001a05
NC
4092}
4093
4094
43cd72b9 4095static bfd_vma
7fa3d080 4096r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4097{
43cd72b9
BW
4098 bfd_vma target_offset;
4099 unsigned long r_symndx;
e0001a05 4100
43cd72b9
BW
4101 BFD_ASSERT (!r_reloc_is_const (r_rel));
4102 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4103 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4104 return (target_offset + r_rel->rela.r_addend);
4105}
e0001a05 4106
e0001a05 4107
43cd72b9 4108static struct elf_link_hash_entry *
7fa3d080 4109r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4110{
43cd72b9
BW
4111 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4112 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4113}
e0001a05 4114
43cd72b9
BW
4115
4116static asection *
7fa3d080 4117r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4118{
4119 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4120 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4121}
e0001a05
NC
4122
4123
4124static bfd_boolean
7fa3d080 4125r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4126{
43cd72b9
BW
4127 asection *sec;
4128 if (r_rel == NULL)
e0001a05 4129 return FALSE;
e0001a05 4130
43cd72b9
BW
4131 sec = r_reloc_get_section (r_rel);
4132 if (sec == bfd_abs_section_ptr
4133 || sec == bfd_com_section_ptr
4134 || sec == bfd_und_section_ptr)
4135 return FALSE;
4136 return TRUE;
e0001a05
NC
4137}
4138
4139
7fa3d080
BW
4140static void
4141r_reloc_init (r_reloc *r_rel,
4142 bfd *abfd,
4143 Elf_Internal_Rela *irel,
4144 bfd_byte *contents,
4145 bfd_size_type content_length)
4146{
4147 int r_type;
4148 reloc_howto_type *howto;
4149
4150 if (irel)
4151 {
4152 r_rel->rela = *irel;
4153 r_rel->abfd = abfd;
4154 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4155 r_rel->virtual_offset = 0;
4156 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4157 howto = &elf_howto_table[r_type];
4158 if (howto->partial_inplace)
4159 {
4160 bfd_vma inplace_val;
4161 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4162
4163 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4164 r_rel->target_offset += inplace_val;
4165 }
4166 }
4167 else
4168 memset (r_rel, 0, sizeof (r_reloc));
4169}
4170
4171
43cd72b9
BW
4172#if DEBUG
4173
e0001a05 4174static void
7fa3d080 4175print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4176{
43cd72b9
BW
4177 if (r_reloc_is_defined (r_rel))
4178 {
4179 asection *sec = r_reloc_get_section (r_rel);
4180 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4181 }
4182 else if (r_reloc_get_hash_entry (r_rel))
4183 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4184 else
4185 fprintf (fp, " ?? + ");
e0001a05 4186
43cd72b9
BW
4187 fprintf_vma (fp, r_rel->target_offset);
4188 if (r_rel->virtual_offset)
4189 {
4190 fprintf (fp, " + ");
4191 fprintf_vma (fp, r_rel->virtual_offset);
4192 }
4193
4194 fprintf (fp, ")");
4195}
e0001a05 4196
43cd72b9 4197#endif /* DEBUG */
e0001a05 4198
43cd72b9
BW
4199\f
4200/* source_reloc: relocations that reference literals. */
e0001a05 4201
43cd72b9
BW
4202/* To determine whether literals can be coalesced, we need to first
4203 record all the relocations that reference the literals. The
4204 source_reloc structure below is used for this purpose. The
4205 source_reloc entries are kept in a per-literal-section array, sorted
4206 by offset within the literal section (i.e., target offset).
e0001a05 4207
43cd72b9
BW
4208 The source_sec and r_rel.rela.r_offset fields identify the source of
4209 the relocation. The r_rel field records the relocation value, i.e.,
4210 the offset of the literal being referenced. The opnd field is needed
4211 to determine the range of the immediate field to which the relocation
4212 applies, so we can determine whether another literal with the same
4213 value is within range. The is_null field is true when the relocation
4214 is being removed (e.g., when an L32R is being removed due to a CALLX
4215 that is converted to a direct CALL). */
e0001a05 4216
43cd72b9
BW
4217typedef struct source_reloc_struct source_reloc;
4218
4219struct source_reloc_struct
e0001a05 4220{
43cd72b9
BW
4221 asection *source_sec;
4222 r_reloc r_rel;
4223 xtensa_opcode opcode;
4224 int opnd;
4225 bfd_boolean is_null;
4226 bfd_boolean is_abs_literal;
4227};
e0001a05 4228
e0001a05 4229
e0001a05 4230static void
7fa3d080
BW
4231init_source_reloc (source_reloc *reloc,
4232 asection *source_sec,
4233 const r_reloc *r_rel,
4234 xtensa_opcode opcode,
4235 int opnd,
4236 bfd_boolean is_abs_literal)
e0001a05 4237{
43cd72b9
BW
4238 reloc->source_sec = source_sec;
4239 reloc->r_rel = *r_rel;
4240 reloc->opcode = opcode;
4241 reloc->opnd = opnd;
4242 reloc->is_null = FALSE;
4243 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4244}
4245
e0001a05 4246
43cd72b9
BW
4247/* Find the source_reloc for a particular source offset and relocation
4248 type. Note that the array is sorted by _target_ offset, so this is
4249 just a linear search. */
e0001a05 4250
43cd72b9 4251static source_reloc *
7fa3d080
BW
4252find_source_reloc (source_reloc *src_relocs,
4253 int src_count,
4254 asection *sec,
4255 Elf_Internal_Rela *irel)
e0001a05 4256{
43cd72b9 4257 int i;
e0001a05 4258
43cd72b9
BW
4259 for (i = 0; i < src_count; i++)
4260 {
4261 if (src_relocs[i].source_sec == sec
4262 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4263 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4264 == ELF32_R_TYPE (irel->r_info)))
4265 return &src_relocs[i];
4266 }
e0001a05 4267
43cd72b9 4268 return NULL;
e0001a05
NC
4269}
4270
4271
43cd72b9 4272static int
7fa3d080 4273source_reloc_compare (const void *ap, const void *bp)
e0001a05 4274{
43cd72b9
BW
4275 const source_reloc *a = (const source_reloc *) ap;
4276 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4277
43cd72b9
BW
4278 if (a->r_rel.target_offset != b->r_rel.target_offset)
4279 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4280
43cd72b9
BW
4281 /* We don't need to sort on these criteria for correctness,
4282 but enforcing a more strict ordering prevents unstable qsort
4283 from behaving differently with different implementations.
4284 Without the code below we get correct but different results
4285 on Solaris 2.7 and 2.8. We would like to always produce the
4286 same results no matter the host. */
4287
4288 if ((!a->is_null) - (!b->is_null))
4289 return ((!a->is_null) - (!b->is_null));
4290 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4291}
4292
43cd72b9
BW
4293\f
4294/* Literal values and value hash tables. */
e0001a05 4295
43cd72b9
BW
4296/* Literals with the same value can be coalesced. The literal_value
4297 structure records the value of a literal: the "r_rel" field holds the
4298 information from the relocation on the literal (if there is one) and
4299 the "value" field holds the contents of the literal word itself.
e0001a05 4300
43cd72b9
BW
4301 The value_map structure records a literal value along with the
4302 location of a literal holding that value. The value_map hash table
4303 is indexed by the literal value, so that we can quickly check if a
4304 particular literal value has been seen before and is thus a candidate
4305 for coalescing. */
e0001a05 4306
43cd72b9
BW
4307typedef struct literal_value_struct literal_value;
4308typedef struct value_map_struct value_map;
4309typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4310
43cd72b9 4311struct literal_value_struct
e0001a05 4312{
43cd72b9
BW
4313 r_reloc r_rel;
4314 unsigned long value;
4315 bfd_boolean is_abs_literal;
4316};
4317
4318struct value_map_struct
4319{
4320 literal_value val; /* The literal value. */
4321 r_reloc loc; /* Location of the literal. */
4322 value_map *next;
4323};
4324
4325struct value_map_hash_table_struct
4326{
4327 unsigned bucket_count;
4328 value_map **buckets;
4329 unsigned count;
4330 bfd_boolean has_last_loc;
4331 r_reloc last_loc;
4332};
4333
4334
e0001a05 4335static void
7fa3d080
BW
4336init_literal_value (literal_value *lit,
4337 const r_reloc *r_rel,
4338 unsigned long value,
4339 bfd_boolean is_abs_literal)
e0001a05 4340{
43cd72b9
BW
4341 lit->r_rel = *r_rel;
4342 lit->value = value;
4343 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4344}
4345
4346
43cd72b9 4347static bfd_boolean
7fa3d080
BW
4348literal_value_equal (const literal_value *src1,
4349 const literal_value *src2,
4350 bfd_boolean final_static_link)
e0001a05 4351{
43cd72b9 4352 struct elf_link_hash_entry *h1, *h2;
e0001a05 4353
43cd72b9
BW
4354 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4355 return FALSE;
e0001a05 4356
43cd72b9
BW
4357 if (r_reloc_is_const (&src1->r_rel))
4358 return (src1->value == src2->value);
e0001a05 4359
43cd72b9
BW
4360 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4361 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4362 return FALSE;
e0001a05 4363
43cd72b9
BW
4364 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4365 return FALSE;
4366
4367 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4368 return FALSE;
4369
4370 if (src1->value != src2->value)
4371 return FALSE;
4372
4373 /* Now check for the same section (if defined) or the same elf_hash
4374 (if undefined or weak). */
4375 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4376 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4377 if (r_reloc_is_defined (&src1->r_rel)
4378 && (final_static_link
4379 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4380 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4381 {
4382 if (r_reloc_get_section (&src1->r_rel)
4383 != r_reloc_get_section (&src2->r_rel))
4384 return FALSE;
4385 }
4386 else
4387 {
4388 /* Require that the hash entries (i.e., symbols) be identical. */
4389 if (h1 != h2 || h1 == 0)
4390 return FALSE;
4391 }
4392
4393 if (src1->is_abs_literal != src2->is_abs_literal)
4394 return FALSE;
4395
4396 return TRUE;
e0001a05
NC
4397}
4398
e0001a05 4399
43cd72b9
BW
4400/* Must be power of 2. */
4401#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4402
43cd72b9 4403static value_map_hash_table *
7fa3d080 4404value_map_hash_table_init (void)
43cd72b9
BW
4405{
4406 value_map_hash_table *values;
e0001a05 4407
43cd72b9
BW
4408 values = (value_map_hash_table *)
4409 bfd_zmalloc (sizeof (value_map_hash_table));
4410 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4411 values->count = 0;
4412 values->buckets = (value_map **)
4413 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4414 if (values->buckets == NULL)
4415 {
4416 free (values);
4417 return NULL;
4418 }
4419 values->has_last_loc = FALSE;
4420
4421 return values;
4422}
4423
4424
4425static void
7fa3d080 4426value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4427{
43cd72b9
BW
4428 free (table->buckets);
4429 free (table);
4430}
4431
4432
4433static unsigned
7fa3d080 4434hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4435{
4436 return (val >> 2) + (val >> 10);
4437}
4438
4439
4440static unsigned
7fa3d080 4441literal_value_hash (const literal_value *src)
43cd72b9
BW
4442{
4443 unsigned hash_val;
e0001a05 4444
43cd72b9
BW
4445 hash_val = hash_bfd_vma (src->value);
4446 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4447 {
43cd72b9
BW
4448 void *sec_or_hash;
4449
4450 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4451 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4452 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4453
4454 /* Now check for the same section and the same elf_hash. */
4455 if (r_reloc_is_defined (&src->r_rel))
4456 sec_or_hash = r_reloc_get_section (&src->r_rel);
4457 else
4458 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4459 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4460 }
43cd72b9
BW
4461 return hash_val;
4462}
e0001a05 4463
e0001a05 4464
43cd72b9 4465/* Check if the specified literal_value has been seen before. */
e0001a05 4466
43cd72b9 4467static value_map *
7fa3d080
BW
4468value_map_get_cached_value (value_map_hash_table *map,
4469 const literal_value *val,
4470 bfd_boolean final_static_link)
43cd72b9
BW
4471{
4472 value_map *map_e;
4473 value_map *bucket;
4474 unsigned idx;
4475
4476 idx = literal_value_hash (val);
4477 idx = idx & (map->bucket_count - 1);
4478 bucket = map->buckets[idx];
4479 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4480 {
43cd72b9
BW
4481 if (literal_value_equal (&map_e->val, val, final_static_link))
4482 return map_e;
4483 }
4484 return NULL;
4485}
e0001a05 4486
e0001a05 4487
43cd72b9
BW
4488/* Record a new literal value. It is illegal to call this if VALUE
4489 already has an entry here. */
4490
4491static value_map *
7fa3d080
BW
4492add_value_map (value_map_hash_table *map,
4493 const literal_value *val,
4494 const r_reloc *loc,
4495 bfd_boolean final_static_link)
43cd72b9
BW
4496{
4497 value_map **bucket_p;
4498 unsigned idx;
4499
4500 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4501 if (val_e == NULL)
4502 {
4503 bfd_set_error (bfd_error_no_memory);
4504 return NULL;
e0001a05
NC
4505 }
4506
43cd72b9
BW
4507 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4508 val_e->val = *val;
4509 val_e->loc = *loc;
4510
4511 idx = literal_value_hash (val);
4512 idx = idx & (map->bucket_count - 1);
4513 bucket_p = &map->buckets[idx];
4514
4515 val_e->next = *bucket_p;
4516 *bucket_p = val_e;
4517 map->count++;
4518 /* FIXME: Consider resizing the hash table if we get too many entries. */
4519
4520 return val_e;
e0001a05
NC
4521}
4522
43cd72b9
BW
4523\f
4524/* Lists of text actions (ta_) for narrowing, widening, longcall
4525 conversion, space fill, code & literal removal, etc. */
4526
4527/* The following text actions are generated:
4528
4529 "ta_remove_insn" remove an instruction or instructions
4530 "ta_remove_longcall" convert longcall to call
4531 "ta_convert_longcall" convert longcall to nop/call
4532 "ta_narrow_insn" narrow a wide instruction
4533 "ta_widen" widen a narrow instruction
4534 "ta_fill" add fill or remove fill
4535 removed < 0 is a fill; branches to the fill address will be
4536 changed to address + fill size (e.g., address - removed)
4537 removed >= 0 branches to the fill address will stay unchanged
4538 "ta_remove_literal" remove a literal; this action is
4539 indicated when a literal is removed
4540 or replaced.
4541 "ta_add_literal" insert a new literal; this action is
4542 indicated when a literal has been moved.
4543 It may use a virtual_offset because
4544 multiple literals can be placed at the
4545 same location.
4546
4547 For each of these text actions, we also record the number of bytes
4548 removed by performing the text action. In the case of a "ta_widen"
4549 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4550
4551typedef struct text_action_struct text_action;
4552typedef struct text_action_list_struct text_action_list;
4553typedef enum text_action_enum_t text_action_t;
4554
4555enum text_action_enum_t
4556{
4557 ta_none,
4558 ta_remove_insn, /* removed = -size */
4559 ta_remove_longcall, /* removed = -size */
4560 ta_convert_longcall, /* removed = 0 */
4561 ta_narrow_insn, /* removed = -1 */
4562 ta_widen_insn, /* removed = +1 */
4563 ta_fill, /* removed = +size */
4564 ta_remove_literal,
4565 ta_add_literal
4566};
e0001a05 4567
e0001a05 4568
43cd72b9
BW
4569/* Structure for a text action record. */
4570struct text_action_struct
e0001a05 4571{
43cd72b9
BW
4572 text_action_t action;
4573 asection *sec; /* Optional */
4574 bfd_vma offset;
4575 bfd_vma virtual_offset; /* Zero except for adding literals. */
4576 int removed_bytes;
4577 literal_value value; /* Only valid when adding literals. */
e0001a05 4578
43cd72b9
BW
4579 text_action *next;
4580};
e0001a05 4581
e0001a05 4582
43cd72b9
BW
4583/* List of all of the actions taken on a text section. */
4584struct text_action_list_struct
4585{
4586 text_action *head;
4587};
e0001a05 4588
e0001a05 4589
7fa3d080
BW
4590static text_action *
4591find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4592{
4593 text_action **m_p;
4594
4595 /* It is not necessary to fill at the end of a section. */
4596 if (sec->size == offset)
4597 return NULL;
4598
7fa3d080 4599 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4600 {
4601 text_action *t = *m_p;
4602 /* When the action is another fill at the same address,
4603 just increase the size. */
4604 if (t->offset == offset && t->action == ta_fill)
4605 return t;
4606 }
4607 return NULL;
4608}
4609
4610
4611static int
7fa3d080
BW
4612compute_removed_action_diff (const text_action *ta,
4613 asection *sec,
4614 bfd_vma offset,
4615 int removed,
4616 int removable_space)
43cd72b9
BW
4617{
4618 int new_removed;
4619 int current_removed = 0;
4620
7fa3d080 4621 if (ta)
43cd72b9
BW
4622 current_removed = ta->removed_bytes;
4623
4624 BFD_ASSERT (ta == NULL || ta->offset == offset);
4625 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4626
4627 /* It is not necessary to fill at the end of a section. Clean this up. */
4628 if (sec->size == offset)
4629 new_removed = removable_space - 0;
4630 else
4631 {
4632 int space;
4633 int added = -removed - current_removed;
4634 /* Ignore multiples of the section alignment. */
4635 added = ((1 << sec->alignment_power) - 1) & added;
4636 new_removed = (-added);
4637
4638 /* Modify for removable. */
4639 space = removable_space - new_removed;
4640 new_removed = (removable_space
4641 - (((1 << sec->alignment_power) - 1) & space));
4642 }
4643 return (new_removed - current_removed);
4644}
4645
4646
7fa3d080
BW
4647static void
4648adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4649{
4650 ta->removed_bytes += fill_diff;
4651}
4652
4653
4654/* Add a modification action to the text. For the case of adding or
4655 removing space, modify any current fill and assume that
4656 "unreachable_space" bytes can be freely contracted. Note that a
4657 negative removed value is a fill. */
4658
4659static void
7fa3d080
BW
4660text_action_add (text_action_list *l,
4661 text_action_t action,
4662 asection *sec,
4663 bfd_vma offset,
4664 int removed)
43cd72b9
BW
4665{
4666 text_action **m_p;
4667 text_action *ta;
4668
4669 /* It is not necessary to fill at the end of a section. */
4670 if (action == ta_fill && sec->size == offset)
4671 return;
4672
4673 /* It is not necessary to fill 0 bytes. */
4674 if (action == ta_fill && removed == 0)
4675 return;
4676
7fa3d080 4677 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4678 {
4679 text_action *t = *m_p;
4680 /* When the action is another fill at the same address,
4681 just increase the size. */
4682 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4683 {
4684 t->removed_bytes += removed;
4685 return;
4686 }
4687 }
4688
4689 /* Create a new record and fill it up. */
4690 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4691 ta->action = action;
4692 ta->sec = sec;
4693 ta->offset = offset;
4694 ta->removed_bytes = removed;
4695 ta->next = (*m_p);
4696 *m_p = ta;
4697}
4698
4699
4700static void
7fa3d080
BW
4701text_action_add_literal (text_action_list *l,
4702 text_action_t action,
4703 const r_reloc *loc,
4704 const literal_value *value,
4705 int removed)
43cd72b9
BW
4706{
4707 text_action **m_p;
4708 text_action *ta;
4709 asection *sec = r_reloc_get_section (loc);
4710 bfd_vma offset = loc->target_offset;
4711 bfd_vma virtual_offset = loc->virtual_offset;
4712
4713 BFD_ASSERT (action == ta_add_literal);
4714
4715 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4716 {
4717 if ((*m_p)->offset > offset
4718 && ((*m_p)->offset != offset
4719 || (*m_p)->virtual_offset > virtual_offset))
4720 break;
4721 }
4722
4723 /* Create a new record and fill it up. */
4724 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4725 ta->action = action;
4726 ta->sec = sec;
4727 ta->offset = offset;
4728 ta->virtual_offset = virtual_offset;
4729 ta->value = *value;
4730 ta->removed_bytes = removed;
4731 ta->next = (*m_p);
4732 *m_p = ta;
4733}
4734
4735
7fa3d080
BW
4736static bfd_vma
4737offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4738{
4739 text_action *r;
4740 int removed = 0;
4741
4742 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4743 {
4744 if (r->offset < offset
4745 || (r->action == ta_fill && r->removed_bytes < 0))
4746 removed += r->removed_bytes;
4747 }
4748
4749 return (offset - removed);
4750}
4751
4752
03e94c08
BW
4753static unsigned
4754action_list_count (text_action_list *action_list)
4755{
4756 text_action *r = action_list->head;
4757 unsigned count = 0;
4758 for (r = action_list->head; r != NULL; r = r->next)
4759 {
4760 count++;
4761 }
4762 return count;
4763}
4764
4765
7fa3d080
BW
4766static bfd_vma
4767offset_with_removed_text_before_fill (text_action_list *action_list,
4768 bfd_vma offset)
43cd72b9
BW
4769{
4770 text_action *r;
4771 int removed = 0;
4772
4773 for (r = action_list->head; r && r->offset < offset; r = r->next)
4774 removed += r->removed_bytes;
4775
4776 return (offset - removed);
4777}
4778
4779
4780/* The find_insn_action routine will only find non-fill actions. */
4781
7fa3d080
BW
4782static text_action *
4783find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4784{
4785 text_action *t;
4786 for (t = action_list->head; t; t = t->next)
4787 {
4788 if (t->offset == offset)
4789 {
4790 switch (t->action)
4791 {
4792 case ta_none:
4793 case ta_fill:
4794 break;
4795 case ta_remove_insn:
4796 case ta_remove_longcall:
4797 case ta_convert_longcall:
4798 case ta_narrow_insn:
4799 case ta_widen_insn:
4800 return t;
4801 case ta_remove_literal:
4802 case ta_add_literal:
4803 BFD_ASSERT (0);
4804 break;
4805 }
4806 }
4807 }
4808 return NULL;
4809}
4810
4811
4812#if DEBUG
4813
4814static void
7fa3d080 4815print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4816{
4817 text_action *r;
4818
4819 fprintf (fp, "Text Action\n");
4820 for (r = action_list->head; r != NULL; r = r->next)
4821 {
4822 const char *t = "unknown";
4823 switch (r->action)
4824 {
4825 case ta_remove_insn:
4826 t = "remove_insn"; break;
4827 case ta_remove_longcall:
4828 t = "remove_longcall"; break;
4829 case ta_convert_longcall:
4830 t = "remove_longcall"; break;
4831 case ta_narrow_insn:
4832 t = "narrow_insn"; break;
4833 case ta_widen_insn:
4834 t = "widen_insn"; break;
4835 case ta_fill:
4836 t = "fill"; break;
4837 case ta_none:
4838 t = "none"; break;
4839 case ta_remove_literal:
4840 t = "remove_literal"; break;
4841 case ta_add_literal:
4842 t = "add_literal"; break;
4843 }
4844
4845 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4846 r->sec->owner->filename,
4847 r->sec->name, r->offset, t, r->removed_bytes);
4848 }
4849}
4850
4851#endif /* DEBUG */
4852
4853\f
4854/* Lists of literals being coalesced or removed. */
4855
4856/* In the usual case, the literal identified by "from" is being
4857 coalesced with another literal identified by "to". If the literal is
4858 unused and is being removed altogether, "to.abfd" will be NULL.
4859 The removed_literal entries are kept on a per-section list, sorted
4860 by the "from" offset field. */
4861
4862typedef struct removed_literal_struct removed_literal;
4863typedef struct removed_literal_list_struct removed_literal_list;
4864
4865struct removed_literal_struct
4866{
4867 r_reloc from;
4868 r_reloc to;
4869 removed_literal *next;
4870};
4871
4872struct removed_literal_list_struct
4873{
4874 removed_literal *head;
4875 removed_literal *tail;
4876};
4877
4878
43cd72b9
BW
4879/* Record that the literal at "from" is being removed. If "to" is not
4880 NULL, the "from" literal is being coalesced with the "to" literal. */
4881
4882static void
7fa3d080
BW
4883add_removed_literal (removed_literal_list *removed_list,
4884 const r_reloc *from,
4885 const r_reloc *to)
43cd72b9
BW
4886{
4887 removed_literal *r, *new_r, *next_r;
4888
4889 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4890
4891 new_r->from = *from;
4892 if (to)
4893 new_r->to = *to;
4894 else
4895 new_r->to.abfd = NULL;
4896 new_r->next = NULL;
4897
4898 r = removed_list->head;
4899 if (r == NULL)
4900 {
4901 removed_list->head = new_r;
4902 removed_list->tail = new_r;
4903 }
4904 /* Special check for common case of append. */
4905 else if (removed_list->tail->from.target_offset < from->target_offset)
4906 {
4907 removed_list->tail->next = new_r;
4908 removed_list->tail = new_r;
4909 }
4910 else
4911 {
7fa3d080 4912 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4913 {
4914 r = r->next;
4915 }
4916 next_r = r->next;
4917 r->next = new_r;
4918 new_r->next = next_r;
4919 if (next_r == NULL)
4920 removed_list->tail = new_r;
4921 }
4922}
4923
4924
4925/* Check if the list of removed literals contains an entry for the
4926 given address. Return the entry if found. */
4927
4928static removed_literal *
7fa3d080 4929find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4930{
4931 removed_literal *r = removed_list->head;
4932 while (r && r->from.target_offset < addr)
4933 r = r->next;
4934 if (r && r->from.target_offset == addr)
4935 return r;
4936 return NULL;
4937}
4938
4939
4940#if DEBUG
4941
4942static void
7fa3d080 4943print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4944{
4945 removed_literal *r;
4946 r = removed_list->head;
4947 if (r)
4948 fprintf (fp, "Removed Literals\n");
4949 for (; r != NULL; r = r->next)
4950 {
4951 print_r_reloc (fp, &r->from);
4952 fprintf (fp, " => ");
4953 if (r->to.abfd == NULL)
4954 fprintf (fp, "REMOVED");
4955 else
4956 print_r_reloc (fp, &r->to);
4957 fprintf (fp, "\n");
4958 }
4959}
4960
4961#endif /* DEBUG */
4962
4963\f
4964/* Per-section data for relaxation. */
4965
4966typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4967
4968struct xtensa_relax_info_struct
4969{
4970 bfd_boolean is_relaxable_literal_section;
4971 bfd_boolean is_relaxable_asm_section;
4972 int visited; /* Number of times visited. */
4973
4974 source_reloc *src_relocs; /* Array[src_count]. */
4975 int src_count;
4976 int src_next; /* Next src_relocs entry to assign. */
4977
4978 removed_literal_list removed_list;
4979 text_action_list action_list;
4980
4981 reloc_bfd_fix *fix_list;
4982 reloc_bfd_fix *fix_array;
4983 unsigned fix_array_count;
4984
4985 /* Support for expanding the reloc array that is stored
4986 in the section structure. If the relocations have been
4987 reallocated, the newly allocated relocations will be referenced
4988 here along with the actual size allocated. The relocation
4989 count will always be found in the section structure. */
4990 Elf_Internal_Rela *allocated_relocs;
4991 unsigned relocs_count;
4992 unsigned allocated_relocs_count;
4993};
4994
4995struct elf_xtensa_section_data
4996{
4997 struct bfd_elf_section_data elf;
4998 xtensa_relax_info relax_info;
4999};
5000
43cd72b9
BW
5001
5002static bfd_boolean
7fa3d080 5003elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5004{
f592407e
AM
5005 if (!sec->used_by_bfd)
5006 {
5007 struct elf_xtensa_section_data *sdata;
5008 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5009
f592407e
AM
5010 sdata = bfd_zalloc (abfd, amt);
5011 if (sdata == NULL)
5012 return FALSE;
5013 sec->used_by_bfd = sdata;
5014 }
43cd72b9
BW
5015
5016 return _bfd_elf_new_section_hook (abfd, sec);
5017}
5018
5019
7fa3d080
BW
5020static xtensa_relax_info *
5021get_xtensa_relax_info (asection *sec)
5022{
5023 struct elf_xtensa_section_data *section_data;
5024
5025 /* No info available if no section or if it is an output section. */
5026 if (!sec || sec == sec->output_section)
5027 return NULL;
5028
5029 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5030 return &section_data->relax_info;
5031}
5032
5033
43cd72b9 5034static void
7fa3d080 5035init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5036{
5037 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5038
5039 relax_info->is_relaxable_literal_section = FALSE;
5040 relax_info->is_relaxable_asm_section = FALSE;
5041 relax_info->visited = 0;
5042
5043 relax_info->src_relocs = NULL;
5044 relax_info->src_count = 0;
5045 relax_info->src_next = 0;
5046
5047 relax_info->removed_list.head = NULL;
5048 relax_info->removed_list.tail = NULL;
5049
5050 relax_info->action_list.head = NULL;
5051
5052 relax_info->fix_list = NULL;
5053 relax_info->fix_array = NULL;
5054 relax_info->fix_array_count = 0;
5055
5056 relax_info->allocated_relocs = NULL;
5057 relax_info->relocs_count = 0;
5058 relax_info->allocated_relocs_count = 0;
5059}
5060
43cd72b9
BW
5061\f
5062/* Coalescing literals may require a relocation to refer to a section in
5063 a different input file, but the standard relocation information
5064 cannot express that. Instead, the reloc_bfd_fix structures are used
5065 to "fix" the relocations that refer to sections in other input files.
5066 These structures are kept on per-section lists. The "src_type" field
5067 records the relocation type in case there are multiple relocations on
5068 the same location. FIXME: This is ugly; an alternative might be to
5069 add new symbols with the "owner" field to some other input file. */
5070
5071struct reloc_bfd_fix_struct
5072{
5073 asection *src_sec;
5074 bfd_vma src_offset;
5075 unsigned src_type; /* Relocation type. */
5076
5077 bfd *target_abfd;
5078 asection *target_sec;
5079 bfd_vma target_offset;
5080 bfd_boolean translated;
5081
5082 reloc_bfd_fix *next;
5083};
5084
5085
43cd72b9 5086static reloc_bfd_fix *
7fa3d080
BW
5087reloc_bfd_fix_init (asection *src_sec,
5088 bfd_vma src_offset,
5089 unsigned src_type,
5090 bfd *target_abfd,
5091 asection *target_sec,
5092 bfd_vma target_offset,
5093 bfd_boolean translated)
43cd72b9
BW
5094{
5095 reloc_bfd_fix *fix;
5096
5097 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5098 fix->src_sec = src_sec;
5099 fix->src_offset = src_offset;
5100 fix->src_type = src_type;
5101 fix->target_abfd = target_abfd;
5102 fix->target_sec = target_sec;
5103 fix->target_offset = target_offset;
5104 fix->translated = translated;
5105
5106 return fix;
5107}
5108
5109
5110static void
7fa3d080 5111add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5112{
5113 xtensa_relax_info *relax_info;
5114
5115 relax_info = get_xtensa_relax_info (src_sec);
5116 fix->next = relax_info->fix_list;
5117 relax_info->fix_list = fix;
5118}
5119
5120
5121static int
7fa3d080 5122fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5123{
5124 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5125 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5126
5127 if (a->src_offset != b->src_offset)
5128 return (a->src_offset - b->src_offset);
5129 return (a->src_type - b->src_type);
5130}
5131
5132
5133static void
7fa3d080 5134cache_fix_array (asection *sec)
43cd72b9
BW
5135{
5136 unsigned i, count = 0;
5137 reloc_bfd_fix *r;
5138 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5139
5140 if (relax_info == NULL)
5141 return;
5142 if (relax_info->fix_list == NULL)
5143 return;
5144
5145 for (r = relax_info->fix_list; r != NULL; r = r->next)
5146 count++;
5147
5148 relax_info->fix_array =
5149 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5150 relax_info->fix_array_count = count;
5151
5152 r = relax_info->fix_list;
5153 for (i = 0; i < count; i++, r = r->next)
5154 {
5155 relax_info->fix_array[count - 1 - i] = *r;
5156 relax_info->fix_array[count - 1 - i].next = NULL;
5157 }
5158
5159 qsort (relax_info->fix_array, relax_info->fix_array_count,
5160 sizeof (reloc_bfd_fix), fix_compare);
5161}
5162
5163
5164static reloc_bfd_fix *
7fa3d080 5165get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5166{
5167 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5168 reloc_bfd_fix *rv;
5169 reloc_bfd_fix key;
5170
5171 if (relax_info == NULL)
5172 return NULL;
5173 if (relax_info->fix_list == NULL)
5174 return NULL;
5175
5176 if (relax_info->fix_array == NULL)
5177 cache_fix_array (sec);
5178
5179 key.src_offset = offset;
5180 key.src_type = type;
5181 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5182 sizeof (reloc_bfd_fix), fix_compare);
5183 return rv;
5184}
5185
5186\f
5187/* Section caching. */
5188
5189typedef struct section_cache_struct section_cache_t;
5190
5191struct section_cache_struct
5192{
5193 asection *sec;
5194
5195 bfd_byte *contents; /* Cache of the section contents. */
5196 bfd_size_type content_length;
5197
5198 property_table_entry *ptbl; /* Cache of the section property table. */
5199 unsigned pte_count;
5200
5201 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5202 unsigned reloc_count;
5203};
5204
5205
7fa3d080
BW
5206static void
5207init_section_cache (section_cache_t *sec_cache)
5208{
5209 memset (sec_cache, 0, sizeof (*sec_cache));
5210}
43cd72b9
BW
5211
5212
5213static void
7fa3d080 5214clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5215{
7fa3d080
BW
5216 if (sec_cache->sec)
5217 {
5218 release_contents (sec_cache->sec, sec_cache->contents);
5219 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5220 if (sec_cache->ptbl)
5221 free (sec_cache->ptbl);
5222 memset (sec_cache, 0, sizeof (sec_cache));
5223 }
43cd72b9
BW
5224}
5225
5226
5227static bfd_boolean
7fa3d080
BW
5228section_cache_section (section_cache_t *sec_cache,
5229 asection *sec,
5230 struct bfd_link_info *link_info)
43cd72b9
BW
5231{
5232 bfd *abfd;
5233 property_table_entry *prop_table = NULL;
5234 int ptblsize = 0;
5235 bfd_byte *contents = NULL;
5236 Elf_Internal_Rela *internal_relocs = NULL;
5237 bfd_size_type sec_size;
5238
5239 if (sec == NULL)
5240 return FALSE;
5241 if (sec == sec_cache->sec)
5242 return TRUE;
5243
5244 abfd = sec->owner;
5245 sec_size = bfd_get_section_limit (abfd, sec);
5246
5247 /* Get the contents. */
5248 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5249 if (contents == NULL && sec_size != 0)
5250 goto err;
5251
5252 /* Get the relocations. */
5253 internal_relocs = retrieve_internal_relocs (abfd, sec,
5254 link_info->keep_memory);
5255
5256 /* Get the entry table. */
5257 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5258 XTENSA_PROP_SEC_NAME, FALSE);
5259 if (ptblsize < 0)
5260 goto err;
5261
5262 /* Fill in the new section cache. */
5263 clear_section_cache (sec_cache);
5264 memset (sec_cache, 0, sizeof (sec_cache));
5265
5266 sec_cache->sec = sec;
5267 sec_cache->contents = contents;
5268 sec_cache->content_length = sec_size;
5269 sec_cache->relocs = internal_relocs;
5270 sec_cache->reloc_count = sec->reloc_count;
5271 sec_cache->pte_count = ptblsize;
5272 sec_cache->ptbl = prop_table;
5273
5274 return TRUE;
5275
5276 err:
5277 release_contents (sec, contents);
5278 release_internal_relocs (sec, internal_relocs);
5279 if (prop_table)
5280 free (prop_table);
5281 return FALSE;
5282}
5283
43cd72b9
BW
5284\f
5285/* Extended basic blocks. */
5286
5287/* An ebb_struct represents an Extended Basic Block. Within this
5288 range, we guarantee that all instructions are decodable, the
5289 property table entries are contiguous, and no property table
5290 specifies a segment that cannot have instructions moved. This
5291 structure contains caches of the contents, property table and
5292 relocations for the specified section for easy use. The range is
5293 specified by ranges of indices for the byte offset, property table
5294 offsets and relocation offsets. These must be consistent. */
5295
5296typedef struct ebb_struct ebb_t;
5297
5298struct ebb_struct
5299{
5300 asection *sec;
5301
5302 bfd_byte *contents; /* Cache of the section contents. */
5303 bfd_size_type content_length;
5304
5305 property_table_entry *ptbl; /* Cache of the section property table. */
5306 unsigned pte_count;
5307
5308 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5309 unsigned reloc_count;
5310
5311 bfd_vma start_offset; /* Offset in section. */
5312 unsigned start_ptbl_idx; /* Offset in the property table. */
5313 unsigned start_reloc_idx; /* Offset in the relocations. */
5314
5315 bfd_vma end_offset;
5316 unsigned end_ptbl_idx;
5317 unsigned end_reloc_idx;
5318
5319 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5320
5321 /* The unreachable property table at the end of this set of blocks;
5322 NULL if the end is not an unreachable block. */
5323 property_table_entry *ends_unreachable;
5324};
5325
5326
5327enum ebb_target_enum
5328{
5329 EBB_NO_ALIGN = 0,
5330 EBB_DESIRE_TGT_ALIGN,
5331 EBB_REQUIRE_TGT_ALIGN,
5332 EBB_REQUIRE_LOOP_ALIGN,
5333 EBB_REQUIRE_ALIGN
5334};
5335
5336
5337/* proposed_action_struct is similar to the text_action_struct except
5338 that is represents a potential transformation, not one that will
5339 occur. We build a list of these for an extended basic block
5340 and use them to compute the actual actions desired. We must be
5341 careful that the entire set of actual actions we perform do not
5342 break any relocations that would fit if the actions were not
5343 performed. */
5344
5345typedef struct proposed_action_struct proposed_action;
5346
5347struct proposed_action_struct
5348{
5349 enum ebb_target_enum align_type; /* for the target alignment */
5350 bfd_vma alignment_pow;
5351 text_action_t action;
5352 bfd_vma offset;
5353 int removed_bytes;
5354 bfd_boolean do_action; /* If false, then we will not perform the action. */
5355};
5356
5357
5358/* The ebb_constraint_struct keeps a set of proposed actions for an
5359 extended basic block. */
5360
5361typedef struct ebb_constraint_struct ebb_constraint;
5362
5363struct ebb_constraint_struct
5364{
5365 ebb_t ebb;
5366 bfd_boolean start_movable;
5367
5368 /* Bytes of extra space at the beginning if movable. */
5369 int start_extra_space;
5370
5371 enum ebb_target_enum start_align;
5372
5373 bfd_boolean end_movable;
5374
5375 /* Bytes of extra space at the end if movable. */
5376 int end_extra_space;
5377
5378 unsigned action_count;
5379 unsigned action_allocated;
5380
5381 /* Array of proposed actions. */
5382 proposed_action *actions;
5383
5384 /* Action alignments -- one for each proposed action. */
5385 enum ebb_target_enum *action_aligns;
5386};
5387
5388
43cd72b9 5389static void
7fa3d080 5390init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5391{
5392 memset (c, 0, sizeof (ebb_constraint));
5393}
5394
5395
5396static void
7fa3d080 5397free_ebb_constraint (ebb_constraint *c)
43cd72b9 5398{
7fa3d080 5399 if (c->actions)
43cd72b9
BW
5400 free (c->actions);
5401}
5402
5403
5404static void
7fa3d080
BW
5405init_ebb (ebb_t *ebb,
5406 asection *sec,
5407 bfd_byte *contents,
5408 bfd_size_type content_length,
5409 property_table_entry *prop_table,
5410 unsigned ptblsize,
5411 Elf_Internal_Rela *internal_relocs,
5412 unsigned reloc_count)
43cd72b9
BW
5413{
5414 memset (ebb, 0, sizeof (ebb_t));
5415 ebb->sec = sec;
5416 ebb->contents = contents;
5417 ebb->content_length = content_length;
5418 ebb->ptbl = prop_table;
5419 ebb->pte_count = ptblsize;
5420 ebb->relocs = internal_relocs;
5421 ebb->reloc_count = reloc_count;
5422 ebb->start_offset = 0;
5423 ebb->end_offset = ebb->content_length - 1;
5424 ebb->start_ptbl_idx = 0;
5425 ebb->end_ptbl_idx = ptblsize;
5426 ebb->start_reloc_idx = 0;
5427 ebb->end_reloc_idx = reloc_count;
5428}
5429
5430
5431/* Extend the ebb to all decodable contiguous sections. The algorithm
5432 for building a basic block around an instruction is to push it
5433 forward until we hit the end of a section, an unreachable block or
5434 a block that cannot be transformed. Then we push it backwards
5435 searching for similar conditions. */
5436
7fa3d080
BW
5437static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5438static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5439static bfd_size_type insn_block_decodable_len
5440 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5441
43cd72b9 5442static bfd_boolean
7fa3d080 5443extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5444{
5445 if (!extend_ebb_bounds_forward (ebb))
5446 return FALSE;
5447 if (!extend_ebb_bounds_backward (ebb))
5448 return FALSE;
5449 return TRUE;
5450}
5451
5452
5453static bfd_boolean
7fa3d080 5454extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5455{
5456 property_table_entry *the_entry, *new_entry;
5457
5458 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5459
5460 /* Stop when (1) we cannot decode an instruction, (2) we are at
5461 the end of the property tables, (3) we hit a non-contiguous property
5462 table entry, (4) we hit a NO_TRANSFORM region. */
5463
5464 while (1)
5465 {
5466 bfd_vma entry_end;
5467 bfd_size_type insn_block_len;
5468
5469 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5470 insn_block_len =
5471 insn_block_decodable_len (ebb->contents, ebb->content_length,
5472 ebb->end_offset,
5473 entry_end - ebb->end_offset);
5474 if (insn_block_len != (entry_end - ebb->end_offset))
5475 {
5476 (*_bfd_error_handler)
5477 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5478 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5479 return FALSE;
5480 }
5481 ebb->end_offset += insn_block_len;
5482
5483 if (ebb->end_offset == ebb->sec->size)
5484 ebb->ends_section = TRUE;
5485
5486 /* Update the reloc counter. */
5487 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5488 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5489 < ebb->end_offset))
5490 {
5491 ebb->end_reloc_idx++;
5492 }
5493
5494 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5495 return TRUE;
5496
5497 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5498 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5499 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5500 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5501 break;
5502
5503 if (the_entry->address + the_entry->size != new_entry->address)
5504 break;
5505
5506 the_entry = new_entry;
5507 ebb->end_ptbl_idx++;
5508 }
5509
5510 /* Quick check for an unreachable or end of file just at the end. */
5511 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5512 {
5513 if (ebb->end_offset == ebb->content_length)
5514 ebb->ends_section = TRUE;
5515 }
5516 else
5517 {
5518 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5519 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5520 && the_entry->address + the_entry->size == new_entry->address)
5521 ebb->ends_unreachable = new_entry;
5522 }
5523
5524 /* Any other ending requires exact alignment. */
5525 return TRUE;
5526}
5527
5528
5529static bfd_boolean
7fa3d080 5530extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5531{
5532 property_table_entry *the_entry, *new_entry;
5533
5534 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5535
5536 /* Stop when (1) we cannot decode the instructions in the current entry.
5537 (2) we are at the beginning of the property tables, (3) we hit a
5538 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5539
5540 while (1)
5541 {
5542 bfd_vma block_begin;
5543 bfd_size_type insn_block_len;
5544
5545 block_begin = the_entry->address - ebb->sec->vma;
5546 insn_block_len =
5547 insn_block_decodable_len (ebb->contents, ebb->content_length,
5548 block_begin,
5549 ebb->start_offset - block_begin);
5550 if (insn_block_len != ebb->start_offset - block_begin)
5551 {
5552 (*_bfd_error_handler)
5553 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5554 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5555 return FALSE;
5556 }
5557 ebb->start_offset -= insn_block_len;
5558
5559 /* Update the reloc counter. */
5560 while (ebb->start_reloc_idx > 0
5561 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5562 >= ebb->start_offset))
5563 {
5564 ebb->start_reloc_idx--;
5565 }
5566
5567 if (ebb->start_ptbl_idx == 0)
5568 return TRUE;
5569
5570 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5571 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5572 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5573 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5574 return TRUE;
5575 if (new_entry->address + new_entry->size != the_entry->address)
5576 return TRUE;
5577
5578 the_entry = new_entry;
5579 ebb->start_ptbl_idx--;
5580 }
5581 return TRUE;
5582}
5583
5584
5585static bfd_size_type
7fa3d080
BW
5586insn_block_decodable_len (bfd_byte *contents,
5587 bfd_size_type content_len,
5588 bfd_vma block_offset,
5589 bfd_size_type block_len)
43cd72b9
BW
5590{
5591 bfd_vma offset = block_offset;
5592
5593 while (offset < block_offset + block_len)
5594 {
5595 bfd_size_type insn_len = 0;
5596
5597 insn_len = insn_decode_len (contents, content_len, offset);
5598 if (insn_len == 0)
5599 return (offset - block_offset);
5600 offset += insn_len;
5601 }
5602 return (offset - block_offset);
5603}
5604
5605
5606static void
7fa3d080 5607ebb_propose_action (ebb_constraint *c,
7fa3d080 5608 enum ebb_target_enum align_type,
288f74fa 5609 bfd_vma alignment_pow,
7fa3d080
BW
5610 text_action_t action,
5611 bfd_vma offset,
5612 int removed_bytes,
5613 bfd_boolean do_action)
43cd72b9 5614{
b08b5071 5615 proposed_action *act;
43cd72b9 5616
43cd72b9
BW
5617 if (c->action_allocated <= c->action_count)
5618 {
b08b5071 5619 unsigned new_allocated, i;
823fc61f 5620 proposed_action *new_actions;
b08b5071
BW
5621
5622 new_allocated = (c->action_count + 2) * 2;
823fc61f 5623 new_actions = (proposed_action *)
43cd72b9
BW
5624 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5625
5626 for (i = 0; i < c->action_count; i++)
5627 new_actions[i] = c->actions[i];
7fa3d080 5628 if (c->actions)
43cd72b9
BW
5629 free (c->actions);
5630 c->actions = new_actions;
5631 c->action_allocated = new_allocated;
5632 }
b08b5071
BW
5633
5634 act = &c->actions[c->action_count];
5635 act->align_type = align_type;
5636 act->alignment_pow = alignment_pow;
5637 act->action = action;
5638 act->offset = offset;
5639 act->removed_bytes = removed_bytes;
5640 act->do_action = do_action;
5641
43cd72b9
BW
5642 c->action_count++;
5643}
5644
5645\f
5646/* Access to internal relocations, section contents and symbols. */
5647
5648/* During relaxation, we need to modify relocations, section contents,
5649 and symbol definitions, and we need to keep the original values from
5650 being reloaded from the input files, i.e., we need to "pin" the
5651 modified values in memory. We also want to continue to observe the
5652 setting of the "keep-memory" flag. The following functions wrap the
5653 standard BFD functions to take care of this for us. */
5654
5655static Elf_Internal_Rela *
7fa3d080 5656retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5657{
5658 Elf_Internal_Rela *internal_relocs;
5659
5660 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5661 return NULL;
5662
5663 internal_relocs = elf_section_data (sec)->relocs;
5664 if (internal_relocs == NULL)
5665 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5666 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5667 return internal_relocs;
5668}
5669
5670
5671static void
7fa3d080 5672pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5673{
5674 elf_section_data (sec)->relocs = internal_relocs;
5675}
5676
5677
5678static void
7fa3d080 5679release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5680{
5681 if (internal_relocs
5682 && elf_section_data (sec)->relocs != internal_relocs)
5683 free (internal_relocs);
5684}
5685
5686
5687static bfd_byte *
7fa3d080 5688retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5689{
5690 bfd_byte *contents;
5691 bfd_size_type sec_size;
5692
5693 sec_size = bfd_get_section_limit (abfd, sec);
5694 contents = elf_section_data (sec)->this_hdr.contents;
5695
5696 if (contents == NULL && sec_size != 0)
5697 {
5698 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5699 {
7fa3d080 5700 if (contents)
43cd72b9
BW
5701 free (contents);
5702 return NULL;
5703 }
5704 if (keep_memory)
5705 elf_section_data (sec)->this_hdr.contents = contents;
5706 }
5707 return contents;
5708}
5709
5710
5711static void
7fa3d080 5712pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5713{
5714 elf_section_data (sec)->this_hdr.contents = contents;
5715}
5716
5717
5718static void
7fa3d080 5719release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5720{
5721 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5722 free (contents);
5723}
5724
5725
5726static Elf_Internal_Sym *
7fa3d080 5727retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5728{
5729 Elf_Internal_Shdr *symtab_hdr;
5730 Elf_Internal_Sym *isymbuf;
5731 size_t locsymcount;
5732
5733 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5734 locsymcount = symtab_hdr->sh_info;
5735
5736 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5737 if (isymbuf == NULL && locsymcount != 0)
5738 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5739 NULL, NULL, NULL);
5740
5741 /* Save the symbols for this input file so they won't be read again. */
5742 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5743 symtab_hdr->contents = (unsigned char *) isymbuf;
5744
5745 return isymbuf;
5746}
5747
5748\f
5749/* Code for link-time relaxation. */
5750
5751/* Initialization for relaxation: */
7fa3d080 5752static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5753static bfd_boolean find_relaxable_sections
7fa3d080 5754 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5755static bfd_boolean collect_source_relocs
7fa3d080 5756 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5757static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5758 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5759 bfd_boolean *);
43cd72b9 5760static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5761 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5762static bfd_boolean compute_text_actions
7fa3d080
BW
5763 (bfd *, asection *, struct bfd_link_info *);
5764static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5765static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5766static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
5767 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5768 const xtensa_opcode *);
7fa3d080 5769static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5770static void text_action_add_proposed
7fa3d080
BW
5771 (text_action_list *, const ebb_constraint *, asection *);
5772static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5773
5774/* First pass: */
5775static bfd_boolean compute_removed_literals
7fa3d080 5776 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5777static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5778 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5779static bfd_boolean is_removable_literal
7fa3d080 5780 (const source_reloc *, int, const source_reloc *, int);
43cd72b9 5781static bfd_boolean remove_dead_literal
7fa3d080
BW
5782 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5783 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5784static bfd_boolean identify_literal_placement
5785 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5786 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5787 source_reloc *, property_table_entry *, int, section_cache_t *,
5788 bfd_boolean);
5789static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5790static bfd_boolean coalesce_shared_literal
7fa3d080 5791 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5792static bfd_boolean move_shared_literal
7fa3d080
BW
5793 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5794 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5795
5796/* Second pass: */
7fa3d080
BW
5797static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5798static bfd_boolean translate_section_fixes (asection *);
5799static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5800static void translate_reloc (const r_reloc *, r_reloc *);
43cd72b9 5801static void shrink_dynamic_reloc_sections
7fa3d080 5802 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5803static bfd_boolean move_literal
7fa3d080
BW
5804 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5805 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5806static bfd_boolean relax_property_section
7fa3d080 5807 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5808
5809/* Third pass: */
7fa3d080 5810static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5811
5812
5813static bfd_boolean
7fa3d080
BW
5814elf_xtensa_relax_section (bfd *abfd,
5815 asection *sec,
5816 struct bfd_link_info *link_info,
5817 bfd_boolean *again)
43cd72b9
BW
5818{
5819 static value_map_hash_table *values = NULL;
5820 static bfd_boolean relocations_analyzed = FALSE;
5821 xtensa_relax_info *relax_info;
5822
5823 if (!relocations_analyzed)
5824 {
5825 /* Do some overall initialization for relaxation. */
5826 values = value_map_hash_table_init ();
5827 if (values == NULL)
5828 return FALSE;
5829 relaxing_section = TRUE;
5830 if (!analyze_relocations (link_info))
5831 return FALSE;
5832 relocations_analyzed = TRUE;
5833 }
5834 *again = FALSE;
5835
5836 /* Don't mess with linker-created sections. */
5837 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5838 return TRUE;
5839
5840 relax_info = get_xtensa_relax_info (sec);
5841 BFD_ASSERT (relax_info != NULL);
5842
5843 switch (relax_info->visited)
5844 {
5845 case 0:
5846 /* Note: It would be nice to fold this pass into
5847 analyze_relocations, but it is important for this step that the
5848 sections be examined in link order. */
5849 if (!compute_removed_literals (abfd, sec, link_info, values))
5850 return FALSE;
5851 *again = TRUE;
5852 break;
5853
5854 case 1:
5855 if (values)
5856 value_map_hash_table_delete (values);
5857 values = NULL;
5858 if (!relax_section (abfd, sec, link_info))
5859 return FALSE;
5860 *again = TRUE;
5861 break;
5862
5863 case 2:
5864 if (!relax_section_symbols (abfd, sec))
5865 return FALSE;
5866 break;
5867 }
5868
5869 relax_info->visited++;
5870 return TRUE;
5871}
5872
5873\f
5874/* Initialization for relaxation. */
5875
5876/* This function is called once at the start of relaxation. It scans
5877 all the input sections and marks the ones that are relaxable (i.e.,
5878 literal sections with L32R relocations against them), and then
5879 collects source_reloc information for all the relocations against
5880 those relaxable sections. During this process, it also detects
5881 longcalls, i.e., calls relaxed by the assembler into indirect
5882 calls, that can be optimized back into direct calls. Within each
5883 extended basic block (ebb) containing an optimized longcall, it
5884 computes a set of "text actions" that can be performed to remove
5885 the L32R associated with the longcall while optionally preserving
5886 branch target alignments. */
5887
5888static bfd_boolean
7fa3d080 5889analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5890{
5891 bfd *abfd;
5892 asection *sec;
5893 bfd_boolean is_relaxable = FALSE;
5894
5895 /* Initialize the per-section relaxation info. */
5896 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5897 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5898 {
5899 init_xtensa_relax_info (sec);
5900 }
5901
5902 /* Mark relaxable sections (and count relocations against each one). */
5903 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5904 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5905 {
5906 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5907 return FALSE;
5908 }
5909
5910 /* Bail out if there are no relaxable sections. */
5911 if (!is_relaxable)
5912 return TRUE;
5913
5914 /* Allocate space for source_relocs. */
5915 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5916 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5917 {
5918 xtensa_relax_info *relax_info;
5919
5920 relax_info = get_xtensa_relax_info (sec);
5921 if (relax_info->is_relaxable_literal_section
5922 || relax_info->is_relaxable_asm_section)
5923 {
5924 relax_info->src_relocs = (source_reloc *)
5925 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5926 }
5927 }
5928
5929 /* Collect info on relocations against each relaxable section. */
5930 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5931 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5932 {
5933 if (!collect_source_relocs (abfd, sec, link_info))
5934 return FALSE;
5935 }
5936
5937 /* Compute the text actions. */
5938 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5939 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5940 {
5941 if (!compute_text_actions (abfd, sec, link_info))
5942 return FALSE;
5943 }
5944
5945 return TRUE;
5946}
5947
5948
5949/* Find all the sections that might be relaxed. The motivation for
5950 this pass is that collect_source_relocs() needs to record _all_ the
5951 relocations that target each relaxable section. That is expensive
5952 and unnecessary unless the target section is actually going to be
5953 relaxed. This pass identifies all such sections by checking if
5954 they have L32Rs pointing to them. In the process, the total number
5955 of relocations targeting each section is also counted so that we
5956 know how much space to allocate for source_relocs against each
5957 relaxable literal section. */
5958
5959static bfd_boolean
7fa3d080
BW
5960find_relaxable_sections (bfd *abfd,
5961 asection *sec,
5962 struct bfd_link_info *link_info,
5963 bfd_boolean *is_relaxable_p)
43cd72b9
BW
5964{
5965 Elf_Internal_Rela *internal_relocs;
5966 bfd_byte *contents;
5967 bfd_boolean ok = TRUE;
5968 unsigned i;
5969 xtensa_relax_info *source_relax_info;
5970
5971 internal_relocs = retrieve_internal_relocs (abfd, sec,
5972 link_info->keep_memory);
5973 if (internal_relocs == NULL)
5974 return ok;
5975
5976 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5977 if (contents == NULL && sec->size != 0)
5978 {
5979 ok = FALSE;
5980 goto error_return;
5981 }
5982
5983 source_relax_info = get_xtensa_relax_info (sec);
5984 for (i = 0; i < sec->reloc_count; i++)
5985 {
5986 Elf_Internal_Rela *irel = &internal_relocs[i];
5987 r_reloc r_rel;
5988 asection *target_sec;
5989 xtensa_relax_info *target_relax_info;
5990
5991 /* If this section has not already been marked as "relaxable", and
5992 if it contains any ASM_EXPAND relocations (marking expanded
5993 longcalls) that can be optimized into direct calls, then mark
5994 the section as "relaxable". */
5995 if (source_relax_info
5996 && !source_relax_info->is_relaxable_asm_section
5997 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
5998 {
5999 bfd_boolean is_reachable = FALSE;
6000 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6001 link_info, &is_reachable)
6002 && is_reachable)
6003 {
6004 source_relax_info->is_relaxable_asm_section = TRUE;
6005 *is_relaxable_p = TRUE;
6006 }
6007 }
6008
6009 r_reloc_init (&r_rel, abfd, irel, contents,
6010 bfd_get_section_limit (abfd, sec));
6011
6012 target_sec = r_reloc_get_section (&r_rel);
6013 target_relax_info = get_xtensa_relax_info (target_sec);
6014 if (!target_relax_info)
6015 continue;
6016
6017 /* Count PC-relative operand relocations against the target section.
6018 Note: The conditions tested here must match the conditions under
6019 which init_source_reloc is called in collect_source_relocs(). */
6020 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6021 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6022 || is_l32r_relocation (abfd, sec, contents, irel)))
6023 target_relax_info->src_count++;
6024
6025 if (is_l32r_relocation (abfd, sec, contents, irel)
6026 && r_reloc_is_defined (&r_rel))
6027 {
6028 /* Mark the target section as relaxable. */
6029 target_relax_info->is_relaxable_literal_section = TRUE;
6030 *is_relaxable_p = TRUE;
6031 }
6032 }
6033
6034 error_return:
6035 release_contents (sec, contents);
6036 release_internal_relocs (sec, internal_relocs);
6037 return ok;
6038}
6039
6040
6041/* Record _all_ the relocations that point to relaxable sections, and
6042 get rid of ASM_EXPAND relocs by either converting them to
6043 ASM_SIMPLIFY or by removing them. */
6044
6045static bfd_boolean
7fa3d080
BW
6046collect_source_relocs (bfd *abfd,
6047 asection *sec,
6048 struct bfd_link_info *link_info)
43cd72b9
BW
6049{
6050 Elf_Internal_Rela *internal_relocs;
6051 bfd_byte *contents;
6052 bfd_boolean ok = TRUE;
6053 unsigned i;
6054 bfd_size_type sec_size;
6055
6056 internal_relocs = retrieve_internal_relocs (abfd, sec,
6057 link_info->keep_memory);
6058 if (internal_relocs == NULL)
6059 return ok;
6060
6061 sec_size = bfd_get_section_limit (abfd, sec);
6062 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6063 if (contents == NULL && sec_size != 0)
6064 {
6065 ok = FALSE;
6066 goto error_return;
6067 }
6068
6069 /* Record relocations against relaxable literal sections. */
6070 for (i = 0; i < sec->reloc_count; i++)
6071 {
6072 Elf_Internal_Rela *irel = &internal_relocs[i];
6073 r_reloc r_rel;
6074 asection *target_sec;
6075 xtensa_relax_info *target_relax_info;
6076
6077 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6078
6079 target_sec = r_reloc_get_section (&r_rel);
6080 target_relax_info = get_xtensa_relax_info (target_sec);
6081
6082 if (target_relax_info
6083 && (target_relax_info->is_relaxable_literal_section
6084 || target_relax_info->is_relaxable_asm_section))
6085 {
6086 xtensa_opcode opcode = XTENSA_UNDEFINED;
6087 int opnd = -1;
6088 bfd_boolean is_abs_literal = FALSE;
6089
6090 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6091 {
6092 /* None of the current alternate relocs are PC-relative,
6093 and only PC-relative relocs matter here. However, we
6094 still need to record the opcode for literal
6095 coalescing. */
6096 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6097 if (opcode == get_l32r_opcode ())
6098 {
6099 is_abs_literal = TRUE;
6100 opnd = 1;
6101 }
6102 else
6103 opcode = XTENSA_UNDEFINED;
6104 }
6105 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6106 {
6107 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6108 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6109 }
6110
6111 if (opcode != XTENSA_UNDEFINED)
6112 {
6113 int src_next = target_relax_info->src_next++;
6114 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6115
6116 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6117 is_abs_literal);
6118 }
6119 }
6120 }
6121
6122 /* Now get rid of ASM_EXPAND relocations. At this point, the
6123 src_relocs array for the target literal section may still be
6124 incomplete, but it must at least contain the entries for the L32R
6125 relocations associated with ASM_EXPANDs because they were just
6126 added in the preceding loop over the relocations. */
6127
6128 for (i = 0; i < sec->reloc_count; i++)
6129 {
6130 Elf_Internal_Rela *irel = &internal_relocs[i];
6131 bfd_boolean is_reachable;
6132
6133 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6134 &is_reachable))
6135 continue;
6136
6137 if (is_reachable)
6138 {
6139 Elf_Internal_Rela *l32r_irel;
6140 r_reloc r_rel;
6141 asection *target_sec;
6142 xtensa_relax_info *target_relax_info;
6143
6144 /* Mark the source_reloc for the L32R so that it will be
6145 removed in compute_removed_literals(), along with the
6146 associated literal. */
6147 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6148 irel, internal_relocs);
6149 if (l32r_irel == NULL)
6150 continue;
6151
6152 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6153
6154 target_sec = r_reloc_get_section (&r_rel);
6155 target_relax_info = get_xtensa_relax_info (target_sec);
6156
6157 if (target_relax_info
6158 && (target_relax_info->is_relaxable_literal_section
6159 || target_relax_info->is_relaxable_asm_section))
6160 {
6161 source_reloc *s_reloc;
6162
6163 /* Search the source_relocs for the entry corresponding to
6164 the l32r_irel. Note: The src_relocs array is not yet
6165 sorted, but it wouldn't matter anyway because we're
6166 searching by source offset instead of target offset. */
6167 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6168 target_relax_info->src_next,
6169 sec, l32r_irel);
6170 BFD_ASSERT (s_reloc);
6171 s_reloc->is_null = TRUE;
6172 }
6173
6174 /* Convert this reloc to ASM_SIMPLIFY. */
6175 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6176 R_XTENSA_ASM_SIMPLIFY);
6177 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6178
6179 pin_internal_relocs (sec, internal_relocs);
6180 }
6181 else
6182 {
6183 /* It is resolvable but doesn't reach. We resolve now
6184 by eliminating the relocation -- the call will remain
6185 expanded into L32R/CALLX. */
6186 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6187 pin_internal_relocs (sec, internal_relocs);
6188 }
6189 }
6190
6191 error_return:
6192 release_contents (sec, contents);
6193 release_internal_relocs (sec, internal_relocs);
6194 return ok;
6195}
6196
6197
6198/* Return TRUE if the asm expansion can be resolved. Generally it can
6199 be resolved on a final link or when a partial link locates it in the
6200 same section as the target. Set "is_reachable" flag if the target of
6201 the call is within the range of a direct call, given the current VMA
6202 for this section and the target section. */
6203
6204bfd_boolean
7fa3d080
BW
6205is_resolvable_asm_expansion (bfd *abfd,
6206 asection *sec,
6207 bfd_byte *contents,
6208 Elf_Internal_Rela *irel,
6209 struct bfd_link_info *link_info,
6210 bfd_boolean *is_reachable_p)
43cd72b9
BW
6211{
6212 asection *target_sec;
6213 bfd_vma target_offset;
6214 r_reloc r_rel;
6215 xtensa_opcode opcode, direct_call_opcode;
6216 bfd_vma self_address;
6217 bfd_vma dest_address;
6218 bfd_boolean uses_l32r;
6219 bfd_size_type sec_size;
6220
6221 *is_reachable_p = FALSE;
6222
6223 if (contents == NULL)
6224 return FALSE;
6225
6226 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6227 return FALSE;
6228
6229 sec_size = bfd_get_section_limit (abfd, sec);
6230 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6231 sec_size - irel->r_offset, &uses_l32r);
6232 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6233 if (!uses_l32r)
6234 return FALSE;
6235
6236 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6237 if (direct_call_opcode == XTENSA_UNDEFINED)
6238 return FALSE;
6239
6240 /* Check and see that the target resolves. */
6241 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6242 if (!r_reloc_is_defined (&r_rel))
6243 return FALSE;
6244
6245 target_sec = r_reloc_get_section (&r_rel);
6246 target_offset = r_rel.target_offset;
6247
6248 /* If the target is in a shared library, then it doesn't reach. This
6249 isn't supposed to come up because the compiler should never generate
6250 non-PIC calls on systems that use shared libraries, but the linker
6251 shouldn't crash regardless. */
6252 if (!target_sec->output_section)
6253 return FALSE;
6254
6255 /* For relocatable sections, we can only simplify when the output
6256 section of the target is the same as the output section of the
6257 source. */
6258 if (link_info->relocatable
6259 && (target_sec->output_section != sec->output_section
6260 || is_reloc_sym_weak (abfd, irel)))
6261 return FALSE;
6262
6263 self_address = (sec->output_section->vma
6264 + sec->output_offset + irel->r_offset + 3);
6265 dest_address = (target_sec->output_section->vma
6266 + target_sec->output_offset + target_offset);
6267
6268 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6269 self_address, dest_address);
6270
6271 if ((self_address >> CALL_SEGMENT_BITS) !=
6272 (dest_address >> CALL_SEGMENT_BITS))
6273 return FALSE;
6274
6275 return TRUE;
6276}
6277
6278
6279static Elf_Internal_Rela *
7fa3d080
BW
6280find_associated_l32r_irel (bfd *abfd,
6281 asection *sec,
6282 bfd_byte *contents,
6283 Elf_Internal_Rela *other_irel,
6284 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6285{
6286 unsigned i;
e0001a05 6287
43cd72b9
BW
6288 for (i = 0; i < sec->reloc_count; i++)
6289 {
6290 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6291
43cd72b9
BW
6292 if (irel == other_irel)
6293 continue;
6294 if (irel->r_offset != other_irel->r_offset)
6295 continue;
6296 if (is_l32r_relocation (abfd, sec, contents, irel))
6297 return irel;
6298 }
6299
6300 return NULL;
e0001a05
NC
6301}
6302
6303
cb337148
BW
6304static xtensa_opcode *
6305build_reloc_opcodes (bfd *abfd,
6306 asection *sec,
6307 bfd_byte *contents,
6308 Elf_Internal_Rela *internal_relocs)
6309{
6310 unsigned i;
6311 xtensa_opcode *reloc_opcodes =
6312 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6313 for (i = 0; i < sec->reloc_count; i++)
6314 {
6315 Elf_Internal_Rela *irel = &internal_relocs[i];
6316 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6317 }
6318 return reloc_opcodes;
6319}
6320
6321
43cd72b9
BW
6322/* The compute_text_actions function will build a list of potential
6323 transformation actions for code in the extended basic block of each
6324 longcall that is optimized to a direct call. From this list we
6325 generate a set of actions to actually perform that optimizes for
6326 space and, if not using size_opt, maintains branch target
6327 alignments.
e0001a05 6328
43cd72b9
BW
6329 These actions to be performed are placed on a per-section list.
6330 The actual changes are performed by relax_section() in the second
6331 pass. */
6332
6333bfd_boolean
7fa3d080
BW
6334compute_text_actions (bfd *abfd,
6335 asection *sec,
6336 struct bfd_link_info *link_info)
e0001a05 6337{
cb337148 6338 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 6339 xtensa_relax_info *relax_info;
e0001a05 6340 bfd_byte *contents;
43cd72b9 6341 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6342 bfd_boolean ok = TRUE;
6343 unsigned i;
43cd72b9
BW
6344 property_table_entry *prop_table = 0;
6345 int ptblsize = 0;
6346 bfd_size_type sec_size;
6347 static bfd_boolean no_insn_move = FALSE;
6348
6349 if (no_insn_move)
6350 return ok;
6351
6352 /* Do nothing if the section contains no optimized longcalls. */
6353 relax_info = get_xtensa_relax_info (sec);
6354 BFD_ASSERT (relax_info);
6355 if (!relax_info->is_relaxable_asm_section)
6356 return ok;
e0001a05
NC
6357
6358 internal_relocs = retrieve_internal_relocs (abfd, sec,
6359 link_info->keep_memory);
e0001a05 6360
43cd72b9
BW
6361 if (internal_relocs)
6362 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6363 internal_reloc_compare);
6364
6365 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6366 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6367 if (contents == NULL && sec_size != 0)
e0001a05
NC
6368 {
6369 ok = FALSE;
6370 goto error_return;
6371 }
6372
43cd72b9
BW
6373 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6374 XTENSA_PROP_SEC_NAME, FALSE);
6375 if (ptblsize < 0)
6376 {
6377 ok = FALSE;
6378 goto error_return;
6379 }
6380
6381 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6382 {
6383 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6384 bfd_vma r_offset;
6385 property_table_entry *the_entry;
6386 int ptbl_idx;
6387 ebb_t *ebb;
6388 ebb_constraint ebb_table;
6389 bfd_size_type simplify_size;
6390
6391 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6392 continue;
6393 r_offset = irel->r_offset;
e0001a05 6394
43cd72b9
BW
6395 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6396 if (simplify_size == 0)
6397 {
6398 (*_bfd_error_handler)
6399 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6400 sec->owner, sec, r_offset);
6401 continue;
6402 }
e0001a05 6403
43cd72b9
BW
6404 /* If the instruction table is not around, then don't do this
6405 relaxation. */
6406 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6407 sec->vma + irel->r_offset);
6408 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6409 {
6410 text_action_add (&relax_info->action_list,
6411 ta_convert_longcall, sec, r_offset,
6412 0);
6413 continue;
6414 }
6415
6416 /* If the next longcall happens to be at the same address as an
6417 unreachable section of size 0, then skip forward. */
6418 ptbl_idx = the_entry - prop_table;
6419 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6420 && the_entry->size == 0
6421 && ptbl_idx + 1 < ptblsize
6422 && (prop_table[ptbl_idx + 1].address
6423 == prop_table[ptbl_idx].address))
6424 {
6425 ptbl_idx++;
6426 the_entry++;
6427 }
e0001a05 6428
43cd72b9
BW
6429 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6430 /* NO_REORDER is OK */
6431 continue;
e0001a05 6432
43cd72b9
BW
6433 init_ebb_constraint (&ebb_table);
6434 ebb = &ebb_table.ebb;
6435 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6436 internal_relocs, sec->reloc_count);
6437 ebb->start_offset = r_offset + simplify_size;
6438 ebb->end_offset = r_offset + simplify_size;
6439 ebb->start_ptbl_idx = ptbl_idx;
6440 ebb->end_ptbl_idx = ptbl_idx;
6441 ebb->start_reloc_idx = i;
6442 ebb->end_reloc_idx = i;
6443
cb337148
BW
6444 /* Precompute the opcode for each relocation. */
6445 if (reloc_opcodes == NULL)
6446 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6447 internal_relocs);
6448
43cd72b9
BW
6449 if (!extend_ebb_bounds (ebb)
6450 || !compute_ebb_proposed_actions (&ebb_table)
6451 || !compute_ebb_actions (&ebb_table)
6452 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
6453 internal_relocs, &ebb_table,
6454 reloc_opcodes)
43cd72b9 6455 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6456 {
43cd72b9
BW
6457 /* If anything goes wrong or we get unlucky and something does
6458 not fit, with our plan because of expansion between
6459 critical branches, just convert to a NOP. */
6460
6461 text_action_add (&relax_info->action_list,
6462 ta_convert_longcall, sec, r_offset, 0);
6463 i = ebb_table.ebb.end_reloc_idx;
6464 free_ebb_constraint (&ebb_table);
6465 continue;
e0001a05 6466 }
43cd72b9
BW
6467
6468 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6469
6470 /* Update the index so we do not go looking at the relocations
6471 we have already processed. */
6472 i = ebb_table.ebb.end_reloc_idx;
6473 free_ebb_constraint (&ebb_table);
e0001a05
NC
6474 }
6475
43cd72b9 6476#if DEBUG
7fa3d080 6477 if (relax_info->action_list.head)
43cd72b9
BW
6478 print_action_list (stderr, &relax_info->action_list);
6479#endif
6480
6481error_return:
e0001a05
NC
6482 release_contents (sec, contents);
6483 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6484 if (prop_table)
6485 free (prop_table);
cb337148
BW
6486 if (reloc_opcodes)
6487 free (reloc_opcodes);
43cd72b9 6488
e0001a05
NC
6489 return ok;
6490}
6491
6492
64b607e6
BW
6493/* Do not widen an instruction if it is preceeded by a
6494 loop opcode. It might cause misalignment. */
6495
6496static bfd_boolean
6497prev_instr_is_a_loop (bfd_byte *contents,
6498 bfd_size_type content_length,
6499 bfd_size_type offset)
6500{
6501 xtensa_opcode prev_opcode;
6502
6503 if (offset < 3)
6504 return FALSE;
6505 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6506 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6507}
6508
6509
43cd72b9 6510/* Find all of the possible actions for an extended basic block. */
e0001a05 6511
43cd72b9 6512bfd_boolean
7fa3d080 6513compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6514{
43cd72b9
BW
6515 const ebb_t *ebb = &ebb_table->ebb;
6516 unsigned rel_idx = ebb->start_reloc_idx;
6517 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
6518 bfd_vma offset = 0;
6519 xtensa_isa isa = xtensa_default_isa;
6520 xtensa_format fmt;
6521 static xtensa_insnbuf insnbuf = NULL;
6522 static xtensa_insnbuf slotbuf = NULL;
6523
6524 if (insnbuf == NULL)
6525 {
6526 insnbuf = xtensa_insnbuf_alloc (isa);
6527 slotbuf = xtensa_insnbuf_alloc (isa);
6528 }
e0001a05 6529
43cd72b9
BW
6530 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6531 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6532
43cd72b9 6533 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6534 {
64b607e6 6535 bfd_vma start_offset, end_offset;
43cd72b9 6536 bfd_size_type insn_len;
e0001a05 6537
43cd72b9
BW
6538 start_offset = entry->address - ebb->sec->vma;
6539 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6540
43cd72b9
BW
6541 if (entry == start_entry)
6542 start_offset = ebb->start_offset;
6543 if (entry == end_entry)
6544 end_offset = ebb->end_offset;
6545 offset = start_offset;
e0001a05 6546
43cd72b9
BW
6547 if (offset == entry->address - ebb->sec->vma
6548 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6549 {
6550 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6551 BFD_ASSERT (offset != end_offset);
6552 if (offset == end_offset)
6553 return FALSE;
e0001a05 6554
43cd72b9
BW
6555 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6556 offset);
43cd72b9 6557 if (insn_len == 0)
64b607e6
BW
6558 goto decode_error;
6559
43cd72b9
BW
6560 if (check_branch_target_aligned_address (offset, insn_len))
6561 align_type = EBB_REQUIRE_TGT_ALIGN;
6562
6563 ebb_propose_action (ebb_table, align_type, 0,
6564 ta_none, offset, 0, TRUE);
6565 }
6566
6567 while (offset != end_offset)
e0001a05 6568 {
43cd72b9 6569 Elf_Internal_Rela *irel;
e0001a05 6570 xtensa_opcode opcode;
e0001a05 6571
43cd72b9
BW
6572 while (rel_idx < ebb->end_reloc_idx
6573 && (ebb->relocs[rel_idx].r_offset < offset
6574 || (ebb->relocs[rel_idx].r_offset == offset
6575 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6576 != R_XTENSA_ASM_SIMPLIFY))))
6577 rel_idx++;
6578
6579 /* Check for longcall. */
6580 irel = &ebb->relocs[rel_idx];
6581 if (irel->r_offset == offset
6582 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6583 {
6584 bfd_size_type simplify_size;
e0001a05 6585
43cd72b9
BW
6586 simplify_size = get_asm_simplify_size (ebb->contents,
6587 ebb->content_length,
6588 irel->r_offset);
6589 if (simplify_size == 0)
64b607e6 6590 goto decode_error;
43cd72b9
BW
6591
6592 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6593 ta_convert_longcall, offset, 0, TRUE);
6594
6595 offset += simplify_size;
6596 continue;
6597 }
e0001a05 6598
64b607e6
BW
6599 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6600 goto decode_error;
6601 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6602 ebb->content_length - offset);
6603 fmt = xtensa_format_decode (isa, insnbuf);
6604 if (fmt == XTENSA_UNDEFINED)
6605 goto decode_error;
6606 insn_len = xtensa_format_length (isa, fmt);
6607 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6608 goto decode_error;
6609
6610 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 6611 {
64b607e6
BW
6612 offset += insn_len;
6613 continue;
43cd72b9 6614 }
64b607e6
BW
6615
6616 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6617 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6618 if (opcode == XTENSA_UNDEFINED)
6619 goto decode_error;
6620
43cd72b9
BW
6621 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6622 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
64b607e6 6623 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
6624 {
6625 /* Add an instruction narrow action. */
6626 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6627 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 6628 }
64b607e6
BW
6629 else if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6630 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6631 && ! prev_instr_is_a_loop (ebb->contents,
6632 ebb->content_length, offset))
43cd72b9
BW
6633 {
6634 /* Add an instruction widen action. */
6635 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6636 ta_widen_insn, offset, 0, FALSE);
43cd72b9 6637 }
64b607e6 6638 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
6639 {
6640 /* Check for branch targets. */
6641 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6642 ta_none, offset, 0, TRUE);
43cd72b9
BW
6643 }
6644
6645 offset += insn_len;
e0001a05
NC
6646 }
6647 }
6648
43cd72b9
BW
6649 if (ebb->ends_unreachable)
6650 {
6651 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6652 ta_fill, ebb->end_offset, 0, TRUE);
6653 }
e0001a05 6654
43cd72b9 6655 return TRUE;
64b607e6
BW
6656
6657 decode_error:
6658 (*_bfd_error_handler)
6659 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6660 ebb->sec->owner, ebb->sec, offset);
6661 return FALSE;
43cd72b9
BW
6662}
6663
6664
6665/* After all of the information has collected about the
6666 transformations possible in an EBB, compute the appropriate actions
6667 here in compute_ebb_actions. We still must check later to make
6668 sure that the actions do not break any relocations. The algorithm
6669 used here is pretty greedy. Basically, it removes as many no-ops
6670 as possible so that the end of the EBB has the same alignment
6671 characteristics as the original. First, it uses narrowing, then
6672 fill space at the end of the EBB, and finally widenings. If that
6673 does not work, it tries again with one fewer no-op removed. The
6674 optimization will only be performed if all of the branch targets
6675 that were aligned before transformation are also aligned after the
6676 transformation.
6677
6678 When the size_opt flag is set, ignore the branch target alignments,
6679 narrow all wide instructions, and remove all no-ops unless the end
6680 of the EBB prevents it. */
6681
6682bfd_boolean
7fa3d080 6683compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6684{
6685 unsigned i = 0;
6686 unsigned j;
6687 int removed_bytes = 0;
6688 ebb_t *ebb = &ebb_table->ebb;
6689 unsigned seg_idx_start = 0;
6690 unsigned seg_idx_end = 0;
6691
6692 /* We perform this like the assembler relaxation algorithm: Start by
6693 assuming all instructions are narrow and all no-ops removed; then
6694 walk through.... */
6695
6696 /* For each segment of this that has a solid constraint, check to
6697 see if there are any combinations that will keep the constraint.
6698 If so, use it. */
6699 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6700 {
43cd72b9
BW
6701 bfd_boolean requires_text_end_align = FALSE;
6702 unsigned longcall_count = 0;
6703 unsigned longcall_convert_count = 0;
6704 unsigned narrowable_count = 0;
6705 unsigned narrowable_convert_count = 0;
6706 unsigned widenable_count = 0;
6707 unsigned widenable_convert_count = 0;
e0001a05 6708
43cd72b9
BW
6709 proposed_action *action = NULL;
6710 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6711
43cd72b9 6712 seg_idx_start = seg_idx_end;
e0001a05 6713
43cd72b9
BW
6714 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6715 {
6716 action = &ebb_table->actions[i];
6717 if (action->action == ta_convert_longcall)
6718 longcall_count++;
6719 if (action->action == ta_narrow_insn)
6720 narrowable_count++;
6721 if (action->action == ta_widen_insn)
6722 widenable_count++;
6723 if (action->action == ta_fill)
6724 break;
6725 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6726 break;
6727 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6728 && !elf32xtensa_size_opt)
6729 break;
6730 }
6731 seg_idx_end = i;
e0001a05 6732
43cd72b9
BW
6733 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6734 requires_text_end_align = TRUE;
e0001a05 6735
43cd72b9
BW
6736 if (elf32xtensa_size_opt && !requires_text_end_align
6737 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6738 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6739 {
6740 longcall_convert_count = longcall_count;
6741 narrowable_convert_count = narrowable_count;
6742 widenable_convert_count = 0;
6743 }
6744 else
6745 {
6746 /* There is a constraint. Convert the max number of longcalls. */
6747 narrowable_convert_count = 0;
6748 longcall_convert_count = 0;
6749 widenable_convert_count = 0;
e0001a05 6750
43cd72b9 6751 for (j = 0; j < longcall_count; j++)
e0001a05 6752 {
43cd72b9
BW
6753 int removed = (longcall_count - j) * 3 & (align - 1);
6754 unsigned desire_narrow = (align - removed) & (align - 1);
6755 unsigned desire_widen = removed;
6756 if (desire_narrow <= narrowable_count)
6757 {
6758 narrowable_convert_count = desire_narrow;
6759 narrowable_convert_count +=
6760 (align * ((narrowable_count - narrowable_convert_count)
6761 / align));
6762 longcall_convert_count = (longcall_count - j);
6763 widenable_convert_count = 0;
6764 break;
6765 }
6766 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6767 {
6768 narrowable_convert_count = 0;
6769 longcall_convert_count = longcall_count - j;
6770 widenable_convert_count = desire_widen;
6771 break;
6772 }
6773 }
6774 }
e0001a05 6775
43cd72b9
BW
6776 /* Now the number of conversions are saved. Do them. */
6777 for (i = seg_idx_start; i < seg_idx_end; i++)
6778 {
6779 action = &ebb_table->actions[i];
6780 switch (action->action)
6781 {
6782 case ta_convert_longcall:
6783 if (longcall_convert_count != 0)
6784 {
6785 action->action = ta_remove_longcall;
6786 action->do_action = TRUE;
6787 action->removed_bytes += 3;
6788 longcall_convert_count--;
6789 }
6790 break;
6791 case ta_narrow_insn:
6792 if (narrowable_convert_count != 0)
6793 {
6794 action->do_action = TRUE;
6795 action->removed_bytes += 1;
6796 narrowable_convert_count--;
6797 }
6798 break;
6799 case ta_widen_insn:
6800 if (widenable_convert_count != 0)
6801 {
6802 action->do_action = TRUE;
6803 action->removed_bytes -= 1;
6804 widenable_convert_count--;
6805 }
6806 break;
6807 default:
6808 break;
e0001a05 6809 }
43cd72b9
BW
6810 }
6811 }
e0001a05 6812
43cd72b9
BW
6813 /* Now we move on to some local opts. Try to remove each of the
6814 remaining longcalls. */
e0001a05 6815
43cd72b9
BW
6816 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6817 {
6818 removed_bytes = 0;
6819 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6820 {
43cd72b9
BW
6821 int old_removed_bytes = removed_bytes;
6822 proposed_action *action = &ebb_table->actions[i];
6823
6824 if (action->do_action && action->action == ta_convert_longcall)
6825 {
6826 bfd_boolean bad_alignment = FALSE;
6827 removed_bytes += 3;
6828 for (j = i + 1; j < ebb_table->action_count; j++)
6829 {
6830 proposed_action *new_action = &ebb_table->actions[j];
6831 bfd_vma offset = new_action->offset;
6832 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6833 {
6834 if (!check_branch_target_aligned
6835 (ebb_table->ebb.contents,
6836 ebb_table->ebb.content_length,
6837 offset, offset - removed_bytes))
6838 {
6839 bad_alignment = TRUE;
6840 break;
6841 }
6842 }
6843 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6844 {
6845 if (!check_loop_aligned (ebb_table->ebb.contents,
6846 ebb_table->ebb.content_length,
6847 offset,
6848 offset - removed_bytes))
6849 {
6850 bad_alignment = TRUE;
6851 break;
6852 }
6853 }
6854 if (new_action->action == ta_narrow_insn
6855 && !new_action->do_action
6856 && ebb_table->ebb.sec->alignment_power == 2)
6857 {
6858 /* Narrow an instruction and we are done. */
6859 new_action->do_action = TRUE;
6860 new_action->removed_bytes += 1;
6861 bad_alignment = FALSE;
6862 break;
6863 }
6864 if (new_action->action == ta_widen_insn
6865 && new_action->do_action
6866 && ebb_table->ebb.sec->alignment_power == 2)
6867 {
6868 /* Narrow an instruction and we are done. */
6869 new_action->do_action = FALSE;
6870 new_action->removed_bytes += 1;
6871 bad_alignment = FALSE;
6872 break;
6873 }
6874 }
6875 if (!bad_alignment)
6876 {
6877 action->removed_bytes += 3;
6878 action->action = ta_remove_longcall;
6879 action->do_action = TRUE;
6880 }
6881 }
6882 removed_bytes = old_removed_bytes;
6883 if (action->do_action)
6884 removed_bytes += action->removed_bytes;
e0001a05
NC
6885 }
6886 }
6887
43cd72b9
BW
6888 removed_bytes = 0;
6889 for (i = 0; i < ebb_table->action_count; ++i)
6890 {
6891 proposed_action *action = &ebb_table->actions[i];
6892 if (action->do_action)
6893 removed_bytes += action->removed_bytes;
6894 }
6895
6896 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6897 && ebb->ends_unreachable)
6898 {
6899 proposed_action *action;
6900 int br;
6901 int extra_space;
6902
6903 BFD_ASSERT (ebb_table->action_count != 0);
6904 action = &ebb_table->actions[ebb_table->action_count - 1];
6905 BFD_ASSERT (action->action == ta_fill);
6906 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6907
6908 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6909 br = action->removed_bytes + removed_bytes + extra_space;
6910 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6911
6912 action->removed_bytes = extra_space - br;
6913 }
6914 return TRUE;
e0001a05
NC
6915}
6916
6917
03e94c08
BW
6918/* The xlate_map is a sorted array of address mappings designed to
6919 answer the offset_with_removed_text() query with a binary search instead
6920 of a linear search through the section's action_list. */
6921
6922typedef struct xlate_map_entry xlate_map_entry_t;
6923typedef struct xlate_map xlate_map_t;
6924
6925struct xlate_map_entry
6926{
6927 unsigned orig_address;
6928 unsigned new_address;
6929 unsigned size;
6930};
6931
6932struct xlate_map
6933{
6934 unsigned entry_count;
6935 xlate_map_entry_t *entry;
6936};
6937
6938
6939static int
6940xlate_compare (const void *a_v, const void *b_v)
6941{
6942 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6943 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6944 if (a->orig_address < b->orig_address)
6945 return -1;
6946 if (a->orig_address > (b->orig_address + b->size - 1))
6947 return 1;
6948 return 0;
6949}
6950
6951
6952static bfd_vma
6953xlate_offset_with_removed_text (const xlate_map_t *map,
6954 text_action_list *action_list,
6955 bfd_vma offset)
6956{
6957 xlate_map_entry_t tmp;
6958 void *r;
6959 xlate_map_entry_t *e;
6960
6961 if (map == NULL)
6962 return offset_with_removed_text (action_list, offset);
6963
6964 if (map->entry_count == 0)
6965 return offset;
6966
6967 tmp.orig_address = offset;
6968 tmp.new_address = offset;
6969 tmp.size = 1;
6970
6971 r = bsearch (&offset, map->entry, map->entry_count,
6972 sizeof (xlate_map_entry_t), &xlate_compare);
6973 e = (xlate_map_entry_t *) r;
6974
6975 BFD_ASSERT (e != NULL);
6976 if (e == NULL)
6977 return offset;
6978 return e->new_address - e->orig_address + offset;
6979}
6980
6981
6982/* Build a binary searchable offset translation map from a section's
6983 action list. */
6984
6985static xlate_map_t *
6986build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
6987{
6988 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
6989 text_action_list *action_list = &relax_info->action_list;
6990 unsigned num_actions = 0;
6991 text_action *r;
6992 int removed;
6993 xlate_map_entry_t *current_entry;
6994
6995 if (map == NULL)
6996 return NULL;
6997
6998 num_actions = action_list_count (action_list);
6999 map->entry = (xlate_map_entry_t *)
7000 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7001 if (map->entry == NULL)
7002 {
7003 free (map);
7004 return NULL;
7005 }
7006 map->entry_count = 0;
7007
7008 removed = 0;
7009 current_entry = &map->entry[0];
7010
7011 current_entry->orig_address = 0;
7012 current_entry->new_address = 0;
7013 current_entry->size = 0;
7014
7015 for (r = action_list->head; r != NULL; r = r->next)
7016 {
7017 unsigned orig_size = 0;
7018 switch (r->action)
7019 {
7020 case ta_none:
7021 case ta_remove_insn:
7022 case ta_convert_longcall:
7023 case ta_remove_literal:
7024 case ta_add_literal:
7025 break;
7026 case ta_remove_longcall:
7027 orig_size = 6;
7028 break;
7029 case ta_narrow_insn:
7030 orig_size = 3;
7031 break;
7032 case ta_widen_insn:
7033 orig_size = 2;
7034 break;
7035 case ta_fill:
7036 break;
7037 }
7038 current_entry->size =
7039 r->offset + orig_size - current_entry->orig_address;
7040 if (current_entry->size != 0)
7041 {
7042 current_entry++;
7043 map->entry_count++;
7044 }
7045 current_entry->orig_address = r->offset + orig_size;
7046 removed += r->removed_bytes;
7047 current_entry->new_address = r->offset + orig_size - removed;
7048 current_entry->size = 0;
7049 }
7050
7051 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7052 - current_entry->orig_address);
7053 if (current_entry->size != 0)
7054 map->entry_count++;
7055
7056 return map;
7057}
7058
7059
7060/* Free an offset translation map. */
7061
7062static void
7063free_xlate_map (xlate_map_t *map)
7064{
7065 if (map && map->entry)
7066 free (map->entry);
7067 if (map)
7068 free (map);
7069}
7070
7071
43cd72b9
BW
7072/* Use check_section_ebb_pcrels_fit to make sure that all of the
7073 relocations in a section will fit if a proposed set of actions
7074 are performed. */
e0001a05 7075
43cd72b9 7076static bfd_boolean
7fa3d080
BW
7077check_section_ebb_pcrels_fit (bfd *abfd,
7078 asection *sec,
7079 bfd_byte *contents,
7080 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7081 const ebb_constraint *constraint,
7082 const xtensa_opcode *reloc_opcodes)
e0001a05 7083{
43cd72b9
BW
7084 unsigned i, j;
7085 Elf_Internal_Rela *irel;
03e94c08
BW
7086 xlate_map_t *xmap = NULL;
7087 bfd_boolean ok = TRUE;
43cd72b9 7088 xtensa_relax_info *relax_info;
e0001a05 7089
43cd72b9 7090 relax_info = get_xtensa_relax_info (sec);
e0001a05 7091
03e94c08
BW
7092 if (relax_info && sec->reloc_count > 100)
7093 {
7094 xmap = build_xlate_map (sec, relax_info);
7095 /* NULL indicates out of memory, but the slow version
7096 can still be used. */
7097 }
7098
43cd72b9
BW
7099 for (i = 0; i < sec->reloc_count; i++)
7100 {
7101 r_reloc r_rel;
7102 bfd_vma orig_self_offset, orig_target_offset;
7103 bfd_vma self_offset, target_offset;
7104 int r_type;
7105 reloc_howto_type *howto;
7106 int self_removed_bytes, target_removed_bytes;
e0001a05 7107
43cd72b9
BW
7108 irel = &internal_relocs[i];
7109 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7110
43cd72b9
BW
7111 howto = &elf_howto_table[r_type];
7112 /* We maintain the required invariant: PC-relative relocations
7113 that fit before linking must fit after linking. Thus we only
7114 need to deal with relocations to the same section that are
7115 PC-relative. */
7116 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7117 || !howto->pc_relative)
7118 continue;
e0001a05 7119
43cd72b9
BW
7120 r_reloc_init (&r_rel, abfd, irel, contents,
7121 bfd_get_section_limit (abfd, sec));
e0001a05 7122
43cd72b9
BW
7123 if (r_reloc_get_section (&r_rel) != sec)
7124 continue;
e0001a05 7125
43cd72b9
BW
7126 orig_self_offset = irel->r_offset;
7127 orig_target_offset = r_rel.target_offset;
e0001a05 7128
43cd72b9
BW
7129 self_offset = orig_self_offset;
7130 target_offset = orig_target_offset;
7131
7132 if (relax_info)
7133 {
03e94c08
BW
7134 self_offset =
7135 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7136 orig_self_offset);
7137 target_offset =
7138 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7139 orig_target_offset);
43cd72b9
BW
7140 }
7141
7142 self_removed_bytes = 0;
7143 target_removed_bytes = 0;
7144
7145 for (j = 0; j < constraint->action_count; ++j)
7146 {
7147 proposed_action *action = &constraint->actions[j];
7148 bfd_vma offset = action->offset;
7149 int removed_bytes = action->removed_bytes;
7150 if (offset < orig_self_offset
7151 || (offset == orig_self_offset && action->action == ta_fill
7152 && action->removed_bytes < 0))
7153 self_removed_bytes += removed_bytes;
7154 if (offset < orig_target_offset
7155 || (offset == orig_target_offset && action->action == ta_fill
7156 && action->removed_bytes < 0))
7157 target_removed_bytes += removed_bytes;
7158 }
7159 self_offset -= self_removed_bytes;
7160 target_offset -= target_removed_bytes;
7161
7162 /* Try to encode it. Get the operand and check. */
7163 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7164 {
7165 /* None of the current alternate relocs are PC-relative,
7166 and only PC-relative relocs matter here. */
7167 }
7168 else
7169 {
7170 xtensa_opcode opcode;
7171 int opnum;
7172
cb337148
BW
7173 if (reloc_opcodes)
7174 opcode = reloc_opcodes[i];
7175 else
7176 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 7177 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7178 {
7179 ok = FALSE;
7180 break;
7181 }
43cd72b9
BW
7182
7183 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7184 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7185 {
7186 ok = FALSE;
7187 break;
7188 }
43cd72b9
BW
7189
7190 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7191 {
7192 ok = FALSE;
7193 break;
7194 }
43cd72b9
BW
7195 }
7196 }
7197
03e94c08
BW
7198 if (xmap)
7199 free_xlate_map (xmap);
7200
7201 return ok;
43cd72b9
BW
7202}
7203
7204
7205static bfd_boolean
7fa3d080 7206check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7207{
7208 int removed = 0;
7209 unsigned i;
7210
7211 for (i = 0; i < constraint->action_count; i++)
7212 {
7213 const proposed_action *action = &constraint->actions[i];
7214 if (action->do_action)
7215 removed += action->removed_bytes;
7216 }
7217 if (removed < 0)
e0001a05
NC
7218 return FALSE;
7219
7220 return TRUE;
7221}
7222
7223
43cd72b9 7224void
7fa3d080
BW
7225text_action_add_proposed (text_action_list *l,
7226 const ebb_constraint *ebb_table,
7227 asection *sec)
e0001a05
NC
7228{
7229 unsigned i;
7230
43cd72b9 7231 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7232 {
43cd72b9 7233 proposed_action *action = &ebb_table->actions[i];
e0001a05 7234
43cd72b9 7235 if (!action->do_action)
e0001a05 7236 continue;
43cd72b9
BW
7237 switch (action->action)
7238 {
7239 case ta_remove_insn:
7240 case ta_remove_longcall:
7241 case ta_convert_longcall:
7242 case ta_narrow_insn:
7243 case ta_widen_insn:
7244 case ta_fill:
7245 case ta_remove_literal:
7246 text_action_add (l, action->action, sec, action->offset,
7247 action->removed_bytes);
7248 break;
7249 case ta_none:
7250 break;
7251 default:
7252 BFD_ASSERT (0);
7253 break;
7254 }
e0001a05 7255 }
43cd72b9 7256}
e0001a05 7257
43cd72b9
BW
7258
7259int
7fa3d080 7260compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7261{
7262 int fill_extra_space;
7263
7264 if (!entry)
7265 return 0;
7266
7267 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7268 return 0;
7269
7270 fill_extra_space = entry->size;
7271 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7272 {
7273 /* Fill bytes for alignment:
7274 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7275 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7276 int nsm = (1 << pow) - 1;
7277 bfd_vma addr = entry->address + entry->size;
7278 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7279 fill_extra_space += align_fill;
7280 }
7281 return fill_extra_space;
e0001a05
NC
7282}
7283
43cd72b9 7284\f
e0001a05
NC
7285/* First relaxation pass. */
7286
43cd72b9
BW
7287/* If the section contains relaxable literals, check each literal to
7288 see if it has the same value as another literal that has already
7289 been seen, either in the current section or a previous one. If so,
7290 add an entry to the per-section list of removed literals. The
e0001a05
NC
7291 actual changes are deferred until the next pass. */
7292
7293static bfd_boolean
7fa3d080
BW
7294compute_removed_literals (bfd *abfd,
7295 asection *sec,
7296 struct bfd_link_info *link_info,
7297 value_map_hash_table *values)
e0001a05
NC
7298{
7299 xtensa_relax_info *relax_info;
7300 bfd_byte *contents;
7301 Elf_Internal_Rela *internal_relocs;
43cd72b9 7302 source_reloc *src_relocs, *rel;
e0001a05 7303 bfd_boolean ok = TRUE;
43cd72b9
BW
7304 property_table_entry *prop_table = NULL;
7305 int ptblsize;
7306 int i, prev_i;
7307 bfd_boolean last_loc_is_prev = FALSE;
7308 bfd_vma last_target_offset = 0;
7309 section_cache_t target_sec_cache;
7310 bfd_size_type sec_size;
7311
7312 init_section_cache (&target_sec_cache);
e0001a05
NC
7313
7314 /* Do nothing if it is not a relaxable literal section. */
7315 relax_info = get_xtensa_relax_info (sec);
7316 BFD_ASSERT (relax_info);
e0001a05
NC
7317 if (!relax_info->is_relaxable_literal_section)
7318 return ok;
7319
7320 internal_relocs = retrieve_internal_relocs (abfd, sec,
7321 link_info->keep_memory);
7322
43cd72b9 7323 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7324 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7325 if (contents == NULL && sec_size != 0)
e0001a05
NC
7326 {
7327 ok = FALSE;
7328 goto error_return;
7329 }
7330
7331 /* Sort the source_relocs by target offset. */
7332 src_relocs = relax_info->src_relocs;
7333 qsort (src_relocs, relax_info->src_count,
7334 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7335 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7336 internal_reloc_compare);
e0001a05 7337
43cd72b9
BW
7338 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7339 XTENSA_PROP_SEC_NAME, FALSE);
7340 if (ptblsize < 0)
7341 {
7342 ok = FALSE;
7343 goto error_return;
7344 }
7345
7346 prev_i = -1;
e0001a05
NC
7347 for (i = 0; i < relax_info->src_count; i++)
7348 {
e0001a05 7349 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7350
7351 rel = &src_relocs[i];
43cd72b9
BW
7352 if (get_l32r_opcode () != rel->opcode)
7353 continue;
e0001a05
NC
7354 irel = get_irel_at_offset (sec, internal_relocs,
7355 rel->r_rel.target_offset);
7356
43cd72b9
BW
7357 /* If the relocation on this is not a simple R_XTENSA_32 or
7358 R_XTENSA_PLT then do not consider it. This may happen when
7359 the difference of two symbols is used in a literal. */
7360 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7361 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7362 continue;
7363
e0001a05
NC
7364 /* If the target_offset for this relocation is the same as the
7365 previous relocation, then we've already considered whether the
7366 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7367 if (i != 0 && prev_i != -1
7368 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7369 continue;
43cd72b9
BW
7370 prev_i = i;
7371
7372 if (last_loc_is_prev &&
7373 last_target_offset + 4 != rel->r_rel.target_offset)
7374 last_loc_is_prev = FALSE;
e0001a05
NC
7375
7376 /* Check if the relocation was from an L32R that is being removed
7377 because a CALLX was converted to a direct CALL, and check if
7378 there are no other relocations to the literal. */
43cd72b9 7379 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
e0001a05 7380 {
43cd72b9
BW
7381 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7382 irel, rel, prop_table, ptblsize))
e0001a05 7383 {
43cd72b9
BW
7384 ok = FALSE;
7385 goto error_return;
e0001a05 7386 }
43cd72b9 7387 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7388 continue;
7389 }
7390
43cd72b9
BW
7391 if (!identify_literal_placement (abfd, sec, contents, link_info,
7392 values,
7393 &last_loc_is_prev, irel,
7394 relax_info->src_count - i, rel,
7395 prop_table, ptblsize,
7396 &target_sec_cache, rel->is_abs_literal))
e0001a05 7397 {
43cd72b9
BW
7398 ok = FALSE;
7399 goto error_return;
7400 }
7401 last_target_offset = rel->r_rel.target_offset;
7402 }
e0001a05 7403
43cd72b9
BW
7404#if DEBUG
7405 print_removed_literals (stderr, &relax_info->removed_list);
7406 print_action_list (stderr, &relax_info->action_list);
7407#endif /* DEBUG */
7408
7409error_return:
7410 if (prop_table) free (prop_table);
7411 clear_section_cache (&target_sec_cache);
7412
7413 release_contents (sec, contents);
7414 release_internal_relocs (sec, internal_relocs);
7415 return ok;
7416}
7417
7418
7419static Elf_Internal_Rela *
7fa3d080
BW
7420get_irel_at_offset (asection *sec,
7421 Elf_Internal_Rela *internal_relocs,
7422 bfd_vma offset)
43cd72b9
BW
7423{
7424 unsigned i;
7425 Elf_Internal_Rela *irel;
7426 unsigned r_type;
7427 Elf_Internal_Rela key;
7428
7429 if (!internal_relocs)
7430 return NULL;
7431
7432 key.r_offset = offset;
7433 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7434 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7435 if (!irel)
7436 return NULL;
7437
7438 /* bsearch does not guarantee which will be returned if there are
7439 multiple matches. We need the first that is not an alignment. */
7440 i = irel - internal_relocs;
7441 while (i > 0)
7442 {
7443 if (internal_relocs[i-1].r_offset != offset)
7444 break;
7445 i--;
7446 }
7447 for ( ; i < sec->reloc_count; i++)
7448 {
7449 irel = &internal_relocs[i];
7450 r_type = ELF32_R_TYPE (irel->r_info);
7451 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7452 return irel;
7453 }
7454
7455 return NULL;
7456}
7457
7458
7459bfd_boolean
7fa3d080
BW
7460is_removable_literal (const source_reloc *rel,
7461 int i,
7462 const source_reloc *src_relocs,
7463 int src_count)
43cd72b9
BW
7464{
7465 const source_reloc *curr_rel;
7466 if (!rel->is_null)
7467 return FALSE;
7468
7469 for (++i; i < src_count; ++i)
7470 {
7471 curr_rel = &src_relocs[i];
7472 /* If all others have the same target offset.... */
7473 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7474 return TRUE;
7475
7476 if (!curr_rel->is_null
7477 && !xtensa_is_property_section (curr_rel->source_sec)
7478 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7479 return FALSE;
7480 }
7481 return TRUE;
7482}
7483
7484
7485bfd_boolean
7fa3d080
BW
7486remove_dead_literal (bfd *abfd,
7487 asection *sec,
7488 struct bfd_link_info *link_info,
7489 Elf_Internal_Rela *internal_relocs,
7490 Elf_Internal_Rela *irel,
7491 source_reloc *rel,
7492 property_table_entry *prop_table,
7493 int ptblsize)
43cd72b9
BW
7494{
7495 property_table_entry *entry;
7496 xtensa_relax_info *relax_info;
7497
7498 relax_info = get_xtensa_relax_info (sec);
7499 if (!relax_info)
7500 return FALSE;
7501
7502 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7503 sec->vma + rel->r_rel.target_offset);
7504
7505 /* Mark the unused literal so that it will be removed. */
7506 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7507
7508 text_action_add (&relax_info->action_list,
7509 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7510
7511 /* If the section is 4-byte aligned, do not add fill. */
7512 if (sec->alignment_power > 2)
7513 {
7514 int fill_extra_space;
7515 bfd_vma entry_sec_offset;
7516 text_action *fa;
7517 property_table_entry *the_add_entry;
7518 int removed_diff;
7519
7520 if (entry)
7521 entry_sec_offset = entry->address - sec->vma + entry->size;
7522 else
7523 entry_sec_offset = rel->r_rel.target_offset + 4;
7524
7525 /* If the literal range is at the end of the section,
7526 do not add fill. */
7527 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7528 entry_sec_offset);
7529 fill_extra_space = compute_fill_extra_space (the_add_entry);
7530
7531 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7532 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7533 -4, fill_extra_space);
7534 if (fa)
7535 adjust_fill_action (fa, removed_diff);
7536 else
7537 text_action_add (&relax_info->action_list,
7538 ta_fill, sec, entry_sec_offset, removed_diff);
7539 }
7540
7541 /* Zero out the relocation on this literal location. */
7542 if (irel)
7543 {
7544 if (elf_hash_table (link_info)->dynamic_sections_created)
7545 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7546
7547 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7548 pin_internal_relocs (sec, internal_relocs);
7549 }
7550
7551 /* Do not modify "last_loc_is_prev". */
7552 return TRUE;
7553}
7554
7555
7556bfd_boolean
7fa3d080
BW
7557identify_literal_placement (bfd *abfd,
7558 asection *sec,
7559 bfd_byte *contents,
7560 struct bfd_link_info *link_info,
7561 value_map_hash_table *values,
7562 bfd_boolean *last_loc_is_prev_p,
7563 Elf_Internal_Rela *irel,
7564 int remaining_src_rels,
7565 source_reloc *rel,
7566 property_table_entry *prop_table,
7567 int ptblsize,
7568 section_cache_t *target_sec_cache,
7569 bfd_boolean is_abs_literal)
43cd72b9
BW
7570{
7571 literal_value val;
7572 value_map *val_map;
7573 xtensa_relax_info *relax_info;
7574 bfd_boolean literal_placed = FALSE;
7575 r_reloc r_rel;
7576 unsigned long value;
7577 bfd_boolean final_static_link;
7578 bfd_size_type sec_size;
7579
7580 relax_info = get_xtensa_relax_info (sec);
7581 if (!relax_info)
7582 return FALSE;
7583
7584 sec_size = bfd_get_section_limit (abfd, sec);
7585
7586 final_static_link =
7587 (!link_info->relocatable
7588 && !elf_hash_table (link_info)->dynamic_sections_created);
7589
7590 /* The placement algorithm first checks to see if the literal is
7591 already in the value map. If so and the value map is reachable
7592 from all uses, then the literal is moved to that location. If
7593 not, then we identify the last location where a fresh literal was
7594 placed. If the literal can be safely moved there, then we do so.
7595 If not, then we assume that the literal is not to move and leave
7596 the literal where it is, marking it as the last literal
7597 location. */
7598
7599 /* Find the literal value. */
7600 value = 0;
7601 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7602 if (!irel)
7603 {
7604 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7605 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7606 }
7607 init_literal_value (&val, &r_rel, value, is_abs_literal);
7608
7609 /* Check if we've seen another literal with the same value that
7610 is in the same output section. */
7611 val_map = value_map_get_cached_value (values, &val, final_static_link);
7612
7613 if (val_map
7614 && (r_reloc_get_section (&val_map->loc)->output_section
7615 == sec->output_section)
7616 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7617 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7618 {
7619 /* No change to last_loc_is_prev. */
7620 literal_placed = TRUE;
7621 }
7622
7623 /* For relocatable links, do not try to move literals. To do it
7624 correctly might increase the number of relocations in an input
7625 section making the default relocatable linking fail. */
7626 if (!link_info->relocatable && !literal_placed
7627 && values->has_last_loc && !(*last_loc_is_prev_p))
7628 {
7629 asection *target_sec = r_reloc_get_section (&values->last_loc);
7630 if (target_sec && target_sec->output_section == sec->output_section)
7631 {
7632 /* Increment the virtual offset. */
7633 r_reloc try_loc = values->last_loc;
7634 try_loc.virtual_offset += 4;
7635
7636 /* There is a last loc that was in the same output section. */
7637 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7638 && move_shared_literal (sec, link_info, rel,
7639 prop_table, ptblsize,
7640 &try_loc, &val, target_sec_cache))
e0001a05 7641 {
43cd72b9
BW
7642 values->last_loc.virtual_offset += 4;
7643 literal_placed = TRUE;
7644 if (!val_map)
7645 val_map = add_value_map (values, &val, &try_loc,
7646 final_static_link);
7647 else
7648 val_map->loc = try_loc;
e0001a05
NC
7649 }
7650 }
43cd72b9
BW
7651 }
7652
7653 if (!literal_placed)
7654 {
7655 /* Nothing worked, leave the literal alone but update the last loc. */
7656 values->has_last_loc = TRUE;
7657 values->last_loc = rel->r_rel;
7658 if (!val_map)
7659 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7660 else
43cd72b9
BW
7661 val_map->loc = rel->r_rel;
7662 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7663 }
7664
43cd72b9 7665 return TRUE;
e0001a05
NC
7666}
7667
7668
7669/* Check if the original relocations (presumably on L32R instructions)
7670 identified by reloc[0..N] can be changed to reference the literal
7671 identified by r_rel. If r_rel is out of range for any of the
7672 original relocations, then we don't want to coalesce the original
7673 literal with the one at r_rel. We only check reloc[0..N], where the
7674 offsets are all the same as for reloc[0] (i.e., they're all
7675 referencing the same literal) and where N is also bounded by the
7676 number of remaining entries in the "reloc" array. The "reloc" array
7677 is sorted by target offset so we know all the entries for the same
7678 literal will be contiguous. */
7679
7680static bfd_boolean
7fa3d080
BW
7681relocations_reach (source_reloc *reloc,
7682 int remaining_relocs,
7683 const r_reloc *r_rel)
e0001a05
NC
7684{
7685 bfd_vma from_offset, source_address, dest_address;
7686 asection *sec;
7687 int i;
7688
7689 if (!r_reloc_is_defined (r_rel))
7690 return FALSE;
7691
7692 sec = r_reloc_get_section (r_rel);
7693 from_offset = reloc[0].r_rel.target_offset;
7694
7695 for (i = 0; i < remaining_relocs; i++)
7696 {
7697 if (reloc[i].r_rel.target_offset != from_offset)
7698 break;
7699
7700 /* Ignore relocations that have been removed. */
7701 if (reloc[i].is_null)
7702 continue;
7703
7704 /* The original and new output section for these must be the same
7705 in order to coalesce. */
7706 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7707 != sec->output_section)
7708 return FALSE;
7709
d638e0ac
BW
7710 /* Absolute literals in the same output section can always be
7711 combined. */
7712 if (reloc[i].is_abs_literal)
7713 continue;
7714
43cd72b9
BW
7715 /* A literal with no PC-relative relocations can be moved anywhere. */
7716 if (reloc[i].opnd != -1)
e0001a05
NC
7717 {
7718 /* Otherwise, check to see that it fits. */
7719 source_address = (reloc[i].source_sec->output_section->vma
7720 + reloc[i].source_sec->output_offset
7721 + reloc[i].r_rel.rela.r_offset);
7722 dest_address = (sec->output_section->vma
7723 + sec->output_offset
7724 + r_rel->target_offset);
7725
43cd72b9
BW
7726 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7727 source_address, dest_address))
e0001a05
NC
7728 return FALSE;
7729 }
7730 }
7731
7732 return TRUE;
7733}
7734
7735
43cd72b9
BW
7736/* Move a literal to another literal location because it is
7737 the same as the other literal value. */
e0001a05 7738
43cd72b9 7739static bfd_boolean
7fa3d080
BW
7740coalesce_shared_literal (asection *sec,
7741 source_reloc *rel,
7742 property_table_entry *prop_table,
7743 int ptblsize,
7744 value_map *val_map)
e0001a05 7745{
43cd72b9
BW
7746 property_table_entry *entry;
7747 text_action *fa;
7748 property_table_entry *the_add_entry;
7749 int removed_diff;
7750 xtensa_relax_info *relax_info;
7751
7752 relax_info = get_xtensa_relax_info (sec);
7753 if (!relax_info)
7754 return FALSE;
7755
7756 entry = elf_xtensa_find_property_entry
7757 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7758 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7759 return TRUE;
7760
7761 /* Mark that the literal will be coalesced. */
7762 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7763
7764 text_action_add (&relax_info->action_list,
7765 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7766
7767 /* If the section is 4-byte aligned, do not add fill. */
7768 if (sec->alignment_power > 2)
e0001a05 7769 {
43cd72b9
BW
7770 int fill_extra_space;
7771 bfd_vma entry_sec_offset;
7772
7773 if (entry)
7774 entry_sec_offset = entry->address - sec->vma + entry->size;
7775 else
7776 entry_sec_offset = rel->r_rel.target_offset + 4;
7777
7778 /* If the literal range is at the end of the section,
7779 do not add fill. */
7780 fill_extra_space = 0;
7781 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7782 entry_sec_offset);
7783 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7784 fill_extra_space = the_add_entry->size;
7785
7786 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7787 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7788 -4, fill_extra_space);
7789 if (fa)
7790 adjust_fill_action (fa, removed_diff);
7791 else
7792 text_action_add (&relax_info->action_list,
7793 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7794 }
43cd72b9
BW
7795
7796 return TRUE;
7797}
7798
7799
7800/* Move a literal to another location. This may actually increase the
7801 total amount of space used because of alignments so we need to do
7802 this carefully. Also, it may make a branch go out of range. */
7803
7804static bfd_boolean
7fa3d080
BW
7805move_shared_literal (asection *sec,
7806 struct bfd_link_info *link_info,
7807 source_reloc *rel,
7808 property_table_entry *prop_table,
7809 int ptblsize,
7810 const r_reloc *target_loc,
7811 const literal_value *lit_value,
7812 section_cache_t *target_sec_cache)
43cd72b9
BW
7813{
7814 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7815 text_action *fa, *target_fa;
7816 int removed_diff;
7817 xtensa_relax_info *relax_info, *target_relax_info;
7818 asection *target_sec;
7819 ebb_t *ebb;
7820 ebb_constraint ebb_table;
7821 bfd_boolean relocs_fit;
7822
7823 /* If this routine always returns FALSE, the literals that cannot be
7824 coalesced will not be moved. */
7825 if (elf32xtensa_no_literal_movement)
7826 return FALSE;
7827
7828 relax_info = get_xtensa_relax_info (sec);
7829 if (!relax_info)
7830 return FALSE;
7831
7832 target_sec = r_reloc_get_section (target_loc);
7833 target_relax_info = get_xtensa_relax_info (target_sec);
7834
7835 /* Literals to undefined sections may not be moved because they
7836 must report an error. */
7837 if (bfd_is_und_section (target_sec))
7838 return FALSE;
7839
7840 src_entry = elf_xtensa_find_property_entry
7841 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7842
7843 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7844 return FALSE;
7845
7846 target_entry = elf_xtensa_find_property_entry
7847 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7848 target_sec->vma + target_loc->target_offset);
7849
7850 if (!target_entry)
7851 return FALSE;
7852
7853 /* Make sure that we have not broken any branches. */
7854 relocs_fit = FALSE;
7855
7856 init_ebb_constraint (&ebb_table);
7857 ebb = &ebb_table.ebb;
7858 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7859 target_sec_cache->content_length,
7860 target_sec_cache->ptbl, target_sec_cache->pte_count,
7861 target_sec_cache->relocs, target_sec_cache->reloc_count);
7862
7863 /* Propose to add 4 bytes + worst-case alignment size increase to
7864 destination. */
7865 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7866 ta_fill, target_loc->target_offset,
7867 -4 - (1 << target_sec->alignment_power), TRUE);
7868
7869 /* Check all of the PC-relative relocations to make sure they still fit. */
7870 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7871 target_sec_cache->contents,
7872 target_sec_cache->relocs,
cb337148 7873 &ebb_table, NULL);
43cd72b9
BW
7874
7875 if (!relocs_fit)
7876 return FALSE;
7877
7878 text_action_add_literal (&target_relax_info->action_list,
7879 ta_add_literal, target_loc, lit_value, -4);
7880
7881 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7882 {
7883 /* May need to add or remove some fill to maintain alignment. */
7884 int fill_extra_space;
7885 bfd_vma entry_sec_offset;
7886
7887 entry_sec_offset =
7888 target_entry->address - target_sec->vma + target_entry->size;
7889
7890 /* If the literal range is at the end of the section,
7891 do not add fill. */
7892 fill_extra_space = 0;
7893 the_add_entry =
7894 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7895 target_sec_cache->pte_count,
7896 entry_sec_offset);
7897 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7898 fill_extra_space = the_add_entry->size;
7899
7900 target_fa = find_fill_action (&target_relax_info->action_list,
7901 target_sec, entry_sec_offset);
7902 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7903 entry_sec_offset, 4,
7904 fill_extra_space);
7905 if (target_fa)
7906 adjust_fill_action (target_fa, removed_diff);
7907 else
7908 text_action_add (&target_relax_info->action_list,
7909 ta_fill, target_sec, entry_sec_offset, removed_diff);
7910 }
7911
7912 /* Mark that the literal will be moved to the new location. */
7913 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7914
7915 /* Remove the literal. */
7916 text_action_add (&relax_info->action_list,
7917 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7918
7919 /* If the section is 4-byte aligned, do not add fill. */
7920 if (sec->alignment_power > 2 && target_entry != src_entry)
7921 {
7922 int fill_extra_space;
7923 bfd_vma entry_sec_offset;
7924
7925 if (src_entry)
7926 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7927 else
7928 entry_sec_offset = rel->r_rel.target_offset+4;
7929
7930 /* If the literal range is at the end of the section,
7931 do not add fill. */
7932 fill_extra_space = 0;
7933 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7934 entry_sec_offset);
7935 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7936 fill_extra_space = the_add_entry->size;
7937
7938 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7939 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7940 -4, fill_extra_space);
7941 if (fa)
7942 adjust_fill_action (fa, removed_diff);
7943 else
7944 text_action_add (&relax_info->action_list,
7945 ta_fill, sec, entry_sec_offset, removed_diff);
7946 }
7947
7948 return TRUE;
e0001a05
NC
7949}
7950
7951\f
7952/* Second relaxation pass. */
7953
7954/* Modify all of the relocations to point to the right spot, and if this
7955 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 7956 section size. */
e0001a05 7957
43cd72b9 7958bfd_boolean
7fa3d080 7959relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
7960{
7961 Elf_Internal_Rela *internal_relocs;
7962 xtensa_relax_info *relax_info;
7963 bfd_byte *contents;
7964 bfd_boolean ok = TRUE;
7965 unsigned i;
43cd72b9
BW
7966 bfd_boolean rv = FALSE;
7967 bfd_boolean virtual_action;
7968 bfd_size_type sec_size;
e0001a05 7969
43cd72b9 7970 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
7971 relax_info = get_xtensa_relax_info (sec);
7972 BFD_ASSERT (relax_info);
7973
43cd72b9
BW
7974 /* First translate any of the fixes that have been added already. */
7975 translate_section_fixes (sec);
7976
e0001a05
NC
7977 /* Handle property sections (e.g., literal tables) specially. */
7978 if (xtensa_is_property_section (sec))
7979 {
7980 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7981 return relax_property_section (abfd, sec, link_info);
7982 }
7983
43cd72b9
BW
7984 internal_relocs = retrieve_internal_relocs (abfd, sec,
7985 link_info->keep_memory);
7986 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7987 if (contents == NULL && sec_size != 0)
7988 {
7989 ok = FALSE;
7990 goto error_return;
7991 }
7992
7993 if (internal_relocs)
7994 {
7995 for (i = 0; i < sec->reloc_count; i++)
7996 {
7997 Elf_Internal_Rela *irel;
7998 xtensa_relax_info *target_relax_info;
7999 bfd_vma source_offset, old_source_offset;
8000 r_reloc r_rel;
8001 unsigned r_type;
8002 asection *target_sec;
8003
8004 /* Locally change the source address.
8005 Translate the target to the new target address.
8006 If it points to this section and has been removed,
8007 NULLify it.
8008 Write it back. */
8009
8010 irel = &internal_relocs[i];
8011 source_offset = irel->r_offset;
8012 old_source_offset = source_offset;
8013
8014 r_type = ELF32_R_TYPE (irel->r_info);
8015 r_reloc_init (&r_rel, abfd, irel, contents,
8016 bfd_get_section_limit (abfd, sec));
8017
8018 /* If this section could have changed then we may need to
8019 change the relocation's offset. */
8020
8021 if (relax_info->is_relaxable_literal_section
8022 || relax_info->is_relaxable_asm_section)
8023 {
8024 if (r_type != R_XTENSA_NONE
8025 && find_removed_literal (&relax_info->removed_list,
8026 irel->r_offset))
8027 {
8028 /* Remove this relocation. */
8029 if (elf_hash_table (link_info)->dynamic_sections_created)
8030 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8031 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8032 irel->r_offset = offset_with_removed_text
8033 (&relax_info->action_list, irel->r_offset);
8034 pin_internal_relocs (sec, internal_relocs);
8035 continue;
8036 }
8037
8038 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8039 {
8040 text_action *action =
8041 find_insn_action (&relax_info->action_list,
8042 irel->r_offset);
8043 if (action && (action->action == ta_convert_longcall
8044 || action->action == ta_remove_longcall))
8045 {
8046 bfd_reloc_status_type retval;
8047 char *error_message = NULL;
8048
8049 retval = contract_asm_expansion (contents, sec_size,
8050 irel, &error_message);
8051 if (retval != bfd_reloc_ok)
8052 {
8053 (*link_info->callbacks->reloc_dangerous)
8054 (link_info, error_message, abfd, sec,
8055 irel->r_offset);
8056 goto error_return;
8057 }
8058 /* Update the action so that the code that moves
8059 the contents will do the right thing. */
8060 if (action->action == ta_remove_longcall)
8061 action->action = ta_remove_insn;
8062 else
8063 action->action = ta_none;
8064 /* Refresh the info in the r_rel. */
8065 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8066 r_type = ELF32_R_TYPE (irel->r_info);
8067 }
8068 }
8069
8070 source_offset = offset_with_removed_text
8071 (&relax_info->action_list, irel->r_offset);
8072 irel->r_offset = source_offset;
8073 }
8074
8075 /* If the target section could have changed then
8076 we may need to change the relocation's target offset. */
8077
8078 target_sec = r_reloc_get_section (&r_rel);
8079 target_relax_info = get_xtensa_relax_info (target_sec);
8080
8081 if (target_relax_info
8082 && (target_relax_info->is_relaxable_literal_section
8083 || target_relax_info->is_relaxable_asm_section))
8084 {
8085 r_reloc new_reloc;
8086 reloc_bfd_fix *fix;
8087 bfd_vma addend_displacement;
8088
8089 translate_reloc (&r_rel, &new_reloc);
8090
8091 if (r_type == R_XTENSA_DIFF8
8092 || r_type == R_XTENSA_DIFF16
8093 || r_type == R_XTENSA_DIFF32)
8094 {
8095 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8096
8097 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8098 {
8099 (*link_info->callbacks->reloc_dangerous)
8100 (link_info, _("invalid relocation address"),
8101 abfd, sec, old_source_offset);
8102 goto error_return;
8103 }
8104
8105 switch (r_type)
8106 {
8107 case R_XTENSA_DIFF8:
8108 diff_value =
8109 bfd_get_8 (abfd, &contents[old_source_offset]);
8110 break;
8111 case R_XTENSA_DIFF16:
8112 diff_value =
8113 bfd_get_16 (abfd, &contents[old_source_offset]);
8114 break;
8115 case R_XTENSA_DIFF32:
8116 diff_value =
8117 bfd_get_32 (abfd, &contents[old_source_offset]);
8118 break;
8119 }
8120
8121 new_end_offset = offset_with_removed_text
8122 (&target_relax_info->action_list,
8123 r_rel.target_offset + diff_value);
8124 diff_value = new_end_offset - new_reloc.target_offset;
8125
8126 switch (r_type)
8127 {
8128 case R_XTENSA_DIFF8:
8129 diff_mask = 0xff;
8130 bfd_put_8 (abfd, diff_value,
8131 &contents[old_source_offset]);
8132 break;
8133 case R_XTENSA_DIFF16:
8134 diff_mask = 0xffff;
8135 bfd_put_16 (abfd, diff_value,
8136 &contents[old_source_offset]);
8137 break;
8138 case R_XTENSA_DIFF32:
8139 diff_mask = 0xffffffff;
8140 bfd_put_32 (abfd, diff_value,
8141 &contents[old_source_offset]);
8142 break;
8143 }
8144
8145 /* Check for overflow. */
8146 if ((diff_value & ~diff_mask) != 0)
8147 {
8148 (*link_info->callbacks->reloc_dangerous)
8149 (link_info, _("overflow after relaxation"),
8150 abfd, sec, old_source_offset);
8151 goto error_return;
8152 }
8153
8154 pin_contents (sec, contents);
8155 }
8156
8157 /* FIXME: If the relocation still references a section in
8158 the same input file, the relocation should be modified
8159 directly instead of adding a "fix" record. */
8160
8161 addend_displacement =
8162 new_reloc.target_offset + new_reloc.virtual_offset;
8163
8164 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8165 r_reloc_get_section (&new_reloc),
8166 addend_displacement, TRUE);
8167 add_fix (sec, fix);
8168 }
8169
8170 pin_internal_relocs (sec, internal_relocs);
8171 }
8172 }
8173
8174 if ((relax_info->is_relaxable_literal_section
8175 || relax_info->is_relaxable_asm_section)
8176 && relax_info->action_list.head)
8177 {
8178 /* Walk through the planned actions and build up a table
8179 of move, copy and fill records. Use the move, copy and
8180 fill records to perform the actions once. */
8181
8182 bfd_size_type size = sec->size;
8183 int removed = 0;
8184 bfd_size_type final_size, copy_size, orig_insn_size;
8185 bfd_byte *scratch = NULL;
8186 bfd_byte *dup_contents = NULL;
8187 bfd_size_type orig_size = size;
8188 bfd_vma orig_dot = 0;
8189 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8190 orig dot in physical memory. */
8191 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8192 bfd_vma dup_dot = 0;
8193
8194 text_action *action = relax_info->action_list.head;
8195
8196 final_size = sec->size;
8197 for (action = relax_info->action_list.head; action;
8198 action = action->next)
8199 {
8200 final_size -= action->removed_bytes;
8201 }
8202
8203 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8204 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8205
8206 /* The dot is the current fill location. */
8207#if DEBUG
8208 print_action_list (stderr, &relax_info->action_list);
8209#endif
8210
8211 for (action = relax_info->action_list.head; action;
8212 action = action->next)
8213 {
8214 virtual_action = FALSE;
8215 if (action->offset > orig_dot)
8216 {
8217 orig_dot += orig_dot_copied;
8218 orig_dot_copied = 0;
8219 orig_dot_vo = 0;
8220 /* Out of the virtual world. */
8221 }
8222
8223 if (action->offset > orig_dot)
8224 {
8225 copy_size = action->offset - orig_dot;
8226 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8227 orig_dot += copy_size;
8228 dup_dot += copy_size;
8229 BFD_ASSERT (action->offset == orig_dot);
8230 }
8231 else if (action->offset < orig_dot)
8232 {
8233 if (action->action == ta_fill
8234 && action->offset - action->removed_bytes == orig_dot)
8235 {
8236 /* This is OK because the fill only effects the dup_dot. */
8237 }
8238 else if (action->action == ta_add_literal)
8239 {
8240 /* TBD. Might need to handle this. */
8241 }
8242 }
8243 if (action->offset == orig_dot)
8244 {
8245 if (action->virtual_offset > orig_dot_vo)
8246 {
8247 if (orig_dot_vo == 0)
8248 {
8249 /* Need to copy virtual_offset bytes. Probably four. */
8250 copy_size = action->virtual_offset - orig_dot_vo;
8251 memmove (&dup_contents[dup_dot],
8252 &contents[orig_dot], copy_size);
8253 orig_dot_copied = copy_size;
8254 dup_dot += copy_size;
8255 }
8256 virtual_action = TRUE;
8257 }
8258 else
8259 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8260 }
8261 switch (action->action)
8262 {
8263 case ta_remove_literal:
8264 case ta_remove_insn:
8265 BFD_ASSERT (action->removed_bytes >= 0);
8266 orig_dot += action->removed_bytes;
8267 break;
8268
8269 case ta_narrow_insn:
8270 orig_insn_size = 3;
8271 copy_size = 2;
8272 memmove (scratch, &contents[orig_dot], orig_insn_size);
8273 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 8274 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
8275 BFD_ASSERT (rv);
8276 memmove (&dup_contents[dup_dot], scratch, copy_size);
8277 orig_dot += orig_insn_size;
8278 dup_dot += copy_size;
8279 break;
8280
8281 case ta_fill:
8282 if (action->removed_bytes >= 0)
8283 orig_dot += action->removed_bytes;
8284 else
8285 {
8286 /* Already zeroed in dup_contents. Just bump the
8287 counters. */
8288 dup_dot += (-action->removed_bytes);
8289 }
8290 break;
8291
8292 case ta_none:
8293 BFD_ASSERT (action->removed_bytes == 0);
8294 break;
8295
8296 case ta_convert_longcall:
8297 case ta_remove_longcall:
8298 /* These will be removed or converted before we get here. */
8299 BFD_ASSERT (0);
8300 break;
8301
8302 case ta_widen_insn:
8303 orig_insn_size = 2;
8304 copy_size = 3;
8305 memmove (scratch, &contents[orig_dot], orig_insn_size);
8306 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 8307 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
8308 BFD_ASSERT (rv);
8309 memmove (&dup_contents[dup_dot], scratch, copy_size);
8310 orig_dot += orig_insn_size;
8311 dup_dot += copy_size;
8312 break;
8313
8314 case ta_add_literal:
8315 orig_insn_size = 0;
8316 copy_size = 4;
8317 BFD_ASSERT (action->removed_bytes == -4);
8318 /* TBD -- place the literal value here and insert
8319 into the table. */
8320 memset (&dup_contents[dup_dot], 0, 4);
8321 pin_internal_relocs (sec, internal_relocs);
8322 pin_contents (sec, contents);
8323
8324 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8325 relax_info, &internal_relocs, &action->value))
8326 goto error_return;
8327
8328 if (virtual_action)
8329 orig_dot_vo += copy_size;
8330
8331 orig_dot += orig_insn_size;
8332 dup_dot += copy_size;
8333 break;
8334
8335 default:
8336 /* Not implemented yet. */
8337 BFD_ASSERT (0);
8338 break;
8339 }
8340
8341 size -= action->removed_bytes;
8342 removed += action->removed_bytes;
8343 BFD_ASSERT (dup_dot <= final_size);
8344 BFD_ASSERT (orig_dot <= orig_size);
8345 }
8346
8347 orig_dot += orig_dot_copied;
8348 orig_dot_copied = 0;
8349
8350 if (orig_dot != orig_size)
8351 {
8352 copy_size = orig_size - orig_dot;
8353 BFD_ASSERT (orig_size > orig_dot);
8354 BFD_ASSERT (dup_dot + copy_size == final_size);
8355 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8356 orig_dot += copy_size;
8357 dup_dot += copy_size;
8358 }
8359 BFD_ASSERT (orig_size == orig_dot);
8360 BFD_ASSERT (final_size == dup_dot);
8361
8362 /* Move the dup_contents back. */
8363 if (final_size > orig_size)
8364 {
8365 /* Contents need to be reallocated. Swap the dup_contents into
8366 contents. */
8367 sec->contents = dup_contents;
8368 free (contents);
8369 contents = dup_contents;
8370 pin_contents (sec, contents);
8371 }
8372 else
8373 {
8374 BFD_ASSERT (final_size <= orig_size);
8375 memset (contents, 0, orig_size);
8376 memcpy (contents, dup_contents, final_size);
8377 free (dup_contents);
8378 }
8379 free (scratch);
8380 pin_contents (sec, contents);
8381
8382 sec->size = final_size;
8383 }
8384
8385 error_return:
8386 release_internal_relocs (sec, internal_relocs);
8387 release_contents (sec, contents);
8388 return ok;
8389}
8390
8391
8392static bfd_boolean
7fa3d080 8393translate_section_fixes (asection *sec)
43cd72b9
BW
8394{
8395 xtensa_relax_info *relax_info;
8396 reloc_bfd_fix *r;
8397
8398 relax_info = get_xtensa_relax_info (sec);
8399 if (!relax_info)
8400 return TRUE;
8401
8402 for (r = relax_info->fix_list; r != NULL; r = r->next)
8403 if (!translate_reloc_bfd_fix (r))
8404 return FALSE;
e0001a05 8405
43cd72b9
BW
8406 return TRUE;
8407}
e0001a05 8408
e0001a05 8409
43cd72b9
BW
8410/* Translate a fix given the mapping in the relax info for the target
8411 section. If it has already been translated, no work is required. */
e0001a05 8412
43cd72b9 8413static bfd_boolean
7fa3d080 8414translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8415{
8416 reloc_bfd_fix new_fix;
8417 asection *sec;
8418 xtensa_relax_info *relax_info;
8419 removed_literal *removed;
8420 bfd_vma new_offset, target_offset;
e0001a05 8421
43cd72b9
BW
8422 if (fix->translated)
8423 return TRUE;
e0001a05 8424
43cd72b9
BW
8425 sec = fix->target_sec;
8426 target_offset = fix->target_offset;
e0001a05 8427
43cd72b9
BW
8428 relax_info = get_xtensa_relax_info (sec);
8429 if (!relax_info)
8430 {
8431 fix->translated = TRUE;
8432 return TRUE;
8433 }
e0001a05 8434
43cd72b9 8435 new_fix = *fix;
e0001a05 8436
43cd72b9
BW
8437 /* The fix does not need to be translated if the section cannot change. */
8438 if (!relax_info->is_relaxable_literal_section
8439 && !relax_info->is_relaxable_asm_section)
8440 {
8441 fix->translated = TRUE;
8442 return TRUE;
8443 }
e0001a05 8444
43cd72b9
BW
8445 /* If the literal has been moved and this relocation was on an
8446 opcode, then the relocation should move to the new literal
8447 location. Otherwise, the relocation should move within the
8448 section. */
8449
8450 removed = FALSE;
8451 if (is_operand_relocation (fix->src_type))
8452 {
8453 /* Check if the original relocation is against a literal being
8454 removed. */
8455 removed = find_removed_literal (&relax_info->removed_list,
8456 target_offset);
e0001a05
NC
8457 }
8458
43cd72b9 8459 if (removed)
e0001a05 8460 {
43cd72b9 8461 asection *new_sec;
e0001a05 8462
43cd72b9
BW
8463 /* The fact that there is still a relocation to this literal indicates
8464 that the literal is being coalesced, not simply removed. */
8465 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8466
43cd72b9
BW
8467 /* This was moved to some other address (possibly another section). */
8468 new_sec = r_reloc_get_section (&removed->to);
8469 if (new_sec != sec)
e0001a05 8470 {
43cd72b9
BW
8471 sec = new_sec;
8472 relax_info = get_xtensa_relax_info (sec);
8473 if (!relax_info ||
8474 (!relax_info->is_relaxable_literal_section
8475 && !relax_info->is_relaxable_asm_section))
e0001a05 8476 {
43cd72b9
BW
8477 target_offset = removed->to.target_offset;
8478 new_fix.target_sec = new_sec;
8479 new_fix.target_offset = target_offset;
8480 new_fix.translated = TRUE;
8481 *fix = new_fix;
8482 return TRUE;
e0001a05 8483 }
e0001a05 8484 }
43cd72b9
BW
8485 target_offset = removed->to.target_offset;
8486 new_fix.target_sec = new_sec;
e0001a05 8487 }
43cd72b9
BW
8488
8489 /* The target address may have been moved within its section. */
8490 new_offset = offset_with_removed_text (&relax_info->action_list,
8491 target_offset);
8492
8493 new_fix.target_offset = new_offset;
8494 new_fix.target_offset = new_offset;
8495 new_fix.translated = TRUE;
8496 *fix = new_fix;
8497 return TRUE;
e0001a05
NC
8498}
8499
8500
8501/* Fix up a relocation to take account of removed literals. */
8502
8503static void
7fa3d080 8504translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
e0001a05
NC
8505{
8506 asection *sec;
8507 xtensa_relax_info *relax_info;
8508 removed_literal *removed;
43cd72b9 8509 bfd_vma new_offset, target_offset, removed_bytes;
e0001a05
NC
8510
8511 *new_rel = *orig_rel;
8512
8513 if (!r_reloc_is_defined (orig_rel))
8514 return;
8515 sec = r_reloc_get_section (orig_rel);
8516
8517 relax_info = get_xtensa_relax_info (sec);
8518 BFD_ASSERT (relax_info);
8519
43cd72b9
BW
8520 if (!relax_info->is_relaxable_literal_section
8521 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
8522 return;
8523
43cd72b9
BW
8524 target_offset = orig_rel->target_offset;
8525
8526 removed = FALSE;
8527 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8528 {
8529 /* Check if the original relocation is against a literal being
8530 removed. */
8531 removed = find_removed_literal (&relax_info->removed_list,
8532 target_offset);
8533 }
8534 if (removed && removed->to.abfd)
e0001a05
NC
8535 {
8536 asection *new_sec;
8537
8538 /* The fact that there is still a relocation to this literal indicates
8539 that the literal is being coalesced, not simply removed. */
8540 BFD_ASSERT (removed->to.abfd != NULL);
8541
43cd72b9
BW
8542 /* This was moved to some other address
8543 (possibly in another section). */
e0001a05
NC
8544 *new_rel = removed->to;
8545 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8546 if (new_sec != sec)
e0001a05
NC
8547 {
8548 sec = new_sec;
8549 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8550 if (!relax_info
8551 || (!relax_info->is_relaxable_literal_section
8552 && !relax_info->is_relaxable_asm_section))
e0001a05
NC
8553 return;
8554 }
43cd72b9 8555 target_offset = new_rel->target_offset;
e0001a05
NC
8556 }
8557
8558 /* ...and the target address may have been moved within its section. */
43cd72b9
BW
8559 new_offset = offset_with_removed_text (&relax_info->action_list,
8560 target_offset);
e0001a05
NC
8561
8562 /* Modify the offset and addend. */
43cd72b9 8563 removed_bytes = target_offset - new_offset;
e0001a05 8564 new_rel->target_offset = new_offset;
43cd72b9 8565 new_rel->rela.r_addend -= removed_bytes;
e0001a05
NC
8566}
8567
8568
8569/* For dynamic links, there may be a dynamic relocation for each
8570 literal. The number of dynamic relocations must be computed in
8571 size_dynamic_sections, which occurs before relaxation. When a
8572 literal is removed, this function checks if there is a corresponding
8573 dynamic relocation and shrinks the size of the appropriate dynamic
8574 relocation section accordingly. At this point, the contents of the
8575 dynamic relocation sections have not yet been filled in, so there's
8576 nothing else that needs to be done. */
8577
8578static void
7fa3d080
BW
8579shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8580 bfd *abfd,
8581 asection *input_section,
8582 Elf_Internal_Rela *rel)
e0001a05
NC
8583{
8584 Elf_Internal_Shdr *symtab_hdr;
8585 struct elf_link_hash_entry **sym_hashes;
8586 unsigned long r_symndx;
8587 int r_type;
8588 struct elf_link_hash_entry *h;
8589 bfd_boolean dynamic_symbol;
8590
8591 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8592 sym_hashes = elf_sym_hashes (abfd);
8593
8594 r_type = ELF32_R_TYPE (rel->r_info);
8595 r_symndx = ELF32_R_SYM (rel->r_info);
8596
8597 if (r_symndx < symtab_hdr->sh_info)
8598 h = NULL;
8599 else
8600 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8601
571b5725 8602 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
e0001a05
NC
8603
8604 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8605 && (input_section->flags & SEC_ALLOC) != 0
8606 && (dynamic_symbol || info->shared))
8607 {
8608 bfd *dynobj;
8609 const char *srel_name;
8610 asection *srel;
8611 bfd_boolean is_plt = FALSE;
8612
8613 dynobj = elf_hash_table (info)->dynobj;
8614 BFD_ASSERT (dynobj != NULL);
8615
8616 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8617 {
8618 srel_name = ".rela.plt";
8619 is_plt = TRUE;
8620 }
8621 else
8622 srel_name = ".rela.got";
8623
8624 /* Reduce size of the .rela.* section by one reloc. */
8625 srel = bfd_get_section_by_name (dynobj, srel_name);
8626 BFD_ASSERT (srel != NULL);
eea6121a
AM
8627 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8628 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8629
8630 if (is_plt)
8631 {
8632 asection *splt, *sgotplt, *srelgot;
8633 int reloc_index, chunk;
8634
8635 /* Find the PLT reloc index of the entry being removed. This
8636 is computed from the size of ".rela.plt". It is needed to
8637 figure out which PLT chunk to resize. Usually "last index
8638 = size - 1" since the index starts at zero, but in this
8639 context, the size has just been decremented so there's no
8640 need to subtract one. */
eea6121a 8641 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8642
8643 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8644 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8645 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8646 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8647
8648 /* Check if an entire PLT chunk has just been eliminated. */
8649 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8650 {
8651 /* The two magic GOT entries for that chunk can go away. */
8652 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8653 BFD_ASSERT (srelgot != NULL);
8654 srelgot->reloc_count -= 2;
eea6121a
AM
8655 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8656 sgotplt->size -= 8;
e0001a05
NC
8657
8658 /* There should be only one entry left (and it will be
8659 removed below). */
eea6121a
AM
8660 BFD_ASSERT (sgotplt->size == 4);
8661 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8662 }
8663
eea6121a
AM
8664 BFD_ASSERT (sgotplt->size >= 4);
8665 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8666
eea6121a
AM
8667 sgotplt->size -= 4;
8668 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8669 }
8670 }
8671}
8672
8673
43cd72b9
BW
8674/* Take an r_rel and move it to another section. This usually
8675 requires extending the interal_relocation array and pinning it. If
8676 the original r_rel is from the same BFD, we can complete this here.
8677 Otherwise, we add a fix record to let the final link fix the
8678 appropriate address. Contents and internal relocations for the
8679 section must be pinned after calling this routine. */
8680
8681static bfd_boolean
7fa3d080
BW
8682move_literal (bfd *abfd,
8683 struct bfd_link_info *link_info,
8684 asection *sec,
8685 bfd_vma offset,
8686 bfd_byte *contents,
8687 xtensa_relax_info *relax_info,
8688 Elf_Internal_Rela **internal_relocs_p,
8689 const literal_value *lit)
43cd72b9
BW
8690{
8691 Elf_Internal_Rela *new_relocs = NULL;
8692 size_t new_relocs_count = 0;
8693 Elf_Internal_Rela this_rela;
8694 const r_reloc *r_rel;
8695
8696 r_rel = &lit->r_rel;
8697 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8698
8699 if (r_reloc_is_const (r_rel))
8700 bfd_put_32 (abfd, lit->value, contents + offset);
8701 else
8702 {
8703 int r_type;
8704 unsigned i;
8705 asection *target_sec;
8706 reloc_bfd_fix *fix;
8707 unsigned insert_at;
8708
8709 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8710 target_sec = r_reloc_get_section (r_rel);
8711
8712 /* This is the difficult case. We have to create a fix up. */
8713 this_rela.r_offset = offset;
8714 this_rela.r_info = ELF32_R_INFO (0, r_type);
8715 this_rela.r_addend =
8716 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8717 bfd_put_32 (abfd, lit->value, contents + offset);
8718
8719 /* Currently, we cannot move relocations during a relocatable link. */
8720 BFD_ASSERT (!link_info->relocatable);
8721 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8722 r_reloc_get_section (r_rel),
8723 r_rel->target_offset + r_rel->virtual_offset,
8724 FALSE);
8725 /* We also need to mark that relocations are needed here. */
8726 sec->flags |= SEC_RELOC;
8727
8728 translate_reloc_bfd_fix (fix);
8729 /* This fix has not yet been translated. */
8730 add_fix (sec, fix);
8731
8732 /* Add the relocation. If we have already allocated our own
8733 space for the relocations and we have room for more, then use
8734 it. Otherwise, allocate new space and move the literals. */
8735 insert_at = sec->reloc_count;
8736 for (i = 0; i < sec->reloc_count; ++i)
8737 {
8738 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8739 {
8740 insert_at = i;
8741 break;
8742 }
8743 }
8744
8745 if (*internal_relocs_p != relax_info->allocated_relocs
8746 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8747 {
8748 BFD_ASSERT (relax_info->allocated_relocs == NULL
8749 || sec->reloc_count == relax_info->relocs_count);
8750
8751 if (relax_info->allocated_relocs_count == 0)
8752 new_relocs_count = (sec->reloc_count + 2) * 2;
8753 else
8754 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8755
8756 new_relocs = (Elf_Internal_Rela *)
8757 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8758 if (!new_relocs)
8759 return FALSE;
8760
8761 /* We could handle this more quickly by finding the split point. */
8762 if (insert_at != 0)
8763 memcpy (new_relocs, *internal_relocs_p,
8764 insert_at * sizeof (Elf_Internal_Rela));
8765
8766 new_relocs[insert_at] = this_rela;
8767
8768 if (insert_at != sec->reloc_count)
8769 memcpy (new_relocs + insert_at + 1,
8770 (*internal_relocs_p) + insert_at,
8771 (sec->reloc_count - insert_at)
8772 * sizeof (Elf_Internal_Rela));
8773
8774 if (*internal_relocs_p != relax_info->allocated_relocs)
8775 {
8776 /* The first time we re-allocate, we can only free the
8777 old relocs if they were allocated with bfd_malloc.
8778 This is not true when keep_memory is in effect. */
8779 if (!link_info->keep_memory)
8780 free (*internal_relocs_p);
8781 }
8782 else
8783 free (*internal_relocs_p);
8784 relax_info->allocated_relocs = new_relocs;
8785 relax_info->allocated_relocs_count = new_relocs_count;
8786 elf_section_data (sec)->relocs = new_relocs;
8787 sec->reloc_count++;
8788 relax_info->relocs_count = sec->reloc_count;
8789 *internal_relocs_p = new_relocs;
8790 }
8791 else
8792 {
8793 if (insert_at != sec->reloc_count)
8794 {
8795 unsigned idx;
8796 for (idx = sec->reloc_count; idx > insert_at; idx--)
8797 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8798 }
8799 (*internal_relocs_p)[insert_at] = this_rela;
8800 sec->reloc_count++;
8801 if (relax_info->allocated_relocs)
8802 relax_info->relocs_count = sec->reloc_count;
8803 }
8804 }
8805 return TRUE;
8806}
8807
8808
e0001a05
NC
8809/* This is similar to relax_section except that when a target is moved,
8810 we shift addresses up. We also need to modify the size. This
8811 algorithm does NOT allow for relocations into the middle of the
8812 property sections. */
8813
43cd72b9 8814static bfd_boolean
7fa3d080
BW
8815relax_property_section (bfd *abfd,
8816 asection *sec,
8817 struct bfd_link_info *link_info)
e0001a05
NC
8818{
8819 Elf_Internal_Rela *internal_relocs;
8820 bfd_byte *contents;
8821 unsigned i, nexti;
8822 bfd_boolean ok = TRUE;
43cd72b9
BW
8823 bfd_boolean is_full_prop_section;
8824 size_t last_zfill_target_offset = 0;
8825 asection *last_zfill_target_sec = NULL;
8826 bfd_size_type sec_size;
e0001a05 8827
43cd72b9 8828 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8829 internal_relocs = retrieve_internal_relocs (abfd, sec,
8830 link_info->keep_memory);
8831 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8832 if (contents == NULL && sec_size != 0)
e0001a05
NC
8833 {
8834 ok = FALSE;
8835 goto error_return;
8836 }
8837
43cd72b9 8838 is_full_prop_section =
0112cd26
NC
8839 ( CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
8840 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."));
43cd72b9
BW
8841
8842 if (internal_relocs)
e0001a05 8843 {
43cd72b9 8844 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8845 {
8846 Elf_Internal_Rela *irel;
8847 xtensa_relax_info *target_relax_info;
e0001a05
NC
8848 unsigned r_type;
8849 asection *target_sec;
43cd72b9
BW
8850 literal_value val;
8851 bfd_byte *size_p, *flags_p;
e0001a05
NC
8852
8853 /* Locally change the source address.
8854 Translate the target to the new target address.
8855 If it points to this section and has been removed, MOVE IT.
8856 Also, don't forget to modify the associated SIZE at
8857 (offset + 4). */
8858
8859 irel = &internal_relocs[i];
8860 r_type = ELF32_R_TYPE (irel->r_info);
8861 if (r_type == R_XTENSA_NONE)
8862 continue;
8863
43cd72b9
BW
8864 /* Find the literal value. */
8865 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8866 size_p = &contents[irel->r_offset + 4];
8867 flags_p = NULL;
8868 if (is_full_prop_section)
8869 {
8870 flags_p = &contents[irel->r_offset + 8];
8871 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8872 }
8873 else
8874 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
e0001a05 8875
43cd72b9 8876 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8877 target_relax_info = get_xtensa_relax_info (target_sec);
8878
8879 if (target_relax_info
43cd72b9
BW
8880 && (target_relax_info->is_relaxable_literal_section
8881 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
8882 {
8883 /* Translate the relocation's destination. */
43cd72b9 8884 bfd_vma new_offset, new_end_offset;
e0001a05
NC
8885 long old_size, new_size;
8886
43cd72b9
BW
8887 new_offset = offset_with_removed_text
8888 (&target_relax_info->action_list, val.r_rel.target_offset);
e0001a05
NC
8889
8890 /* Assert that we are not out of bounds. */
43cd72b9
BW
8891 old_size = bfd_get_32 (abfd, size_p);
8892
8893 if (old_size == 0)
8894 {
8895 /* Only the first zero-sized unreachable entry is
8896 allowed to expand. In this case the new offset
8897 should be the offset before the fill and the new
8898 size is the expansion size. For other zero-sized
8899 entries the resulting size should be zero with an
8900 offset before or after the fill address depending
8901 on whether the expanding unreachable entry
8902 preceeds it. */
8903 if (last_zfill_target_sec
8904 && last_zfill_target_sec == target_sec
8905 && last_zfill_target_offset == val.r_rel.target_offset)
8906 new_end_offset = new_offset;
8907 else
8908 {
8909 new_end_offset = new_offset;
8910 new_offset = offset_with_removed_text_before_fill
8911 (&target_relax_info->action_list,
8912 val.r_rel.target_offset);
8913
8914 /* If it is not unreachable and we have not yet
8915 seen an unreachable at this address, place it
8916 before the fill address. */
8917 if (!flags_p
8918 || (bfd_get_32 (abfd, flags_p)
8919 & XTENSA_PROP_UNREACHABLE) == 0)
8920 new_end_offset = new_offset;
8921 else
8922 {
8923 last_zfill_target_sec = target_sec;
8924 last_zfill_target_offset = val.r_rel.target_offset;
8925 }
8926 }
8927 }
8928 else
8929 {
8930 new_end_offset = offset_with_removed_text_before_fill
8931 (&target_relax_info->action_list,
8932 val.r_rel.target_offset + old_size);
8933 }
e0001a05 8934
e0001a05 8935 new_size = new_end_offset - new_offset;
43cd72b9 8936
e0001a05
NC
8937 if (new_size != old_size)
8938 {
8939 bfd_put_32 (abfd, new_size, size_p);
8940 pin_contents (sec, contents);
8941 }
43cd72b9
BW
8942
8943 if (new_offset != val.r_rel.target_offset)
e0001a05 8944 {
43cd72b9 8945 bfd_vma diff = new_offset - val.r_rel.target_offset;
e0001a05
NC
8946 irel->r_addend += diff;
8947 pin_internal_relocs (sec, internal_relocs);
8948 }
8949 }
8950 }
8951 }
8952
8953 /* Combine adjacent property table entries. This is also done in
8954 finish_dynamic_sections() but at that point it's too late to
8955 reclaim the space in the output section, so we do this twice. */
8956
43cd72b9
BW
8957 if (internal_relocs && (!link_info->relocatable
8958 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
e0001a05
NC
8959 {
8960 Elf_Internal_Rela *last_irel = NULL;
8961 int removed_bytes = 0;
8962 bfd_vma offset, last_irel_offset;
8963 bfd_vma section_size;
43cd72b9
BW
8964 bfd_size_type entry_size;
8965 flagword predef_flags;
8966
8967 if (is_full_prop_section)
8968 entry_size = 12;
8969 else
8970 entry_size = 8;
8971
8972 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05
NC
8973
8974 /* Walk over memory and irels at the same time.
8975 This REQUIRES that the internal_relocs be sorted by offset. */
8976 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8977 internal_reloc_compare);
8978 nexti = 0; /* Index into internal_relocs. */
8979
8980 pin_internal_relocs (sec, internal_relocs);
8981 pin_contents (sec, contents);
8982
8983 last_irel_offset = (bfd_vma) -1;
eea6121a 8984 section_size = sec->size;
43cd72b9 8985 BFD_ASSERT (section_size % entry_size == 0);
e0001a05 8986
43cd72b9 8987 for (offset = 0; offset < section_size; offset += entry_size)
e0001a05
NC
8988 {
8989 Elf_Internal_Rela *irel, *next_irel;
8990 bfd_vma bytes_to_remove, size, actual_offset;
8991 bfd_boolean remove_this_irel;
43cd72b9 8992 flagword flags;
e0001a05
NC
8993
8994 irel = NULL;
8995 next_irel = NULL;
8996
8997 /* Find the next two relocations (if there are that many left),
8998 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8999 the starting reloc index. After these two loops, "i"
9000 is the index of the first non-NONE reloc past that starting
9001 index, and "nexti" is the index for the next non-NONE reloc
9002 after "i". */
9003
9004 for (i = nexti; i < sec->reloc_count; i++)
9005 {
9006 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
9007 {
9008 irel = &internal_relocs[i];
9009 break;
9010 }
9011 internal_relocs[i].r_offset -= removed_bytes;
9012 }
9013
9014 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
9015 {
9016 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
9017 != R_XTENSA_NONE)
9018 {
9019 next_irel = &internal_relocs[nexti];
9020 break;
9021 }
9022 internal_relocs[nexti].r_offset -= removed_bytes;
9023 }
9024
9025 remove_this_irel = FALSE;
9026 bytes_to_remove = 0;
9027 actual_offset = offset - removed_bytes;
9028 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9029
43cd72b9
BW
9030 if (is_full_prop_section)
9031 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9032 else
9033 flags = predef_flags;
9034
e0001a05
NC
9035 /* Check that the irels are sorted by offset,
9036 with only one per address. */
9037 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
9038 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
9039
43cd72b9
BW
9040 /* Make sure there aren't relocs on the size or flag fields. */
9041 if ((irel && irel->r_offset == offset + 4)
9042 || (is_full_prop_section
9043 && irel && irel->r_offset == offset + 8))
e0001a05
NC
9044 {
9045 irel->r_offset -= removed_bytes;
9046 last_irel_offset = irel->r_offset;
9047 }
43cd72b9
BW
9048 else if (next_irel && (next_irel->r_offset == offset + 4
9049 || (is_full_prop_section
9050 && next_irel->r_offset == offset + 8)))
e0001a05
NC
9051 {
9052 nexti += 1;
9053 irel->r_offset -= removed_bytes;
9054 next_irel->r_offset -= removed_bytes;
9055 last_irel_offset = next_irel->r_offset;
9056 }
43cd72b9
BW
9057 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9058 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9059 {
43cd72b9
BW
9060 /* Always remove entries with zero size and no alignment. */
9061 bytes_to_remove = entry_size;
e0001a05
NC
9062 if (irel && irel->r_offset == offset)
9063 {
9064 remove_this_irel = TRUE;
9065
9066 irel->r_offset -= removed_bytes;
9067 last_irel_offset = irel->r_offset;
9068 }
9069 }
9070 else if (irel && irel->r_offset == offset)
9071 {
9072 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9073 {
9074 if (last_irel)
9075 {
43cd72b9
BW
9076 flagword old_flags;
9077 bfd_vma old_size =
e0001a05 9078 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
43cd72b9
BW
9079 bfd_vma old_address =
9080 (last_irel->r_addend
e0001a05 9081 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
43cd72b9
BW
9082 bfd_vma new_address =
9083 (irel->r_addend
e0001a05 9084 + bfd_get_32 (abfd, &contents[actual_offset]));
43cd72b9
BW
9085 if (is_full_prop_section)
9086 old_flags = bfd_get_32
9087 (abfd, &contents[last_irel->r_offset + 8]);
9088 else
9089 old_flags = predef_flags;
9090
9091 if ((ELF32_R_SYM (irel->r_info)
9092 == ELF32_R_SYM (last_irel->r_info))
9093 && old_address + old_size == new_address
9094 && old_flags == flags
9095 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9096 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9097 {
43cd72b9 9098 /* Fix the old size. */
e0001a05
NC
9099 bfd_put_32 (abfd, old_size + size,
9100 &contents[last_irel->r_offset + 4]);
43cd72b9 9101 bytes_to_remove = entry_size;
e0001a05
NC
9102 remove_this_irel = TRUE;
9103 }
9104 else
9105 last_irel = irel;
9106 }
9107 else
9108 last_irel = irel;
9109 }
9110
9111 irel->r_offset -= removed_bytes;
9112 last_irel_offset = irel->r_offset;
9113 }
9114
9115 if (remove_this_irel)
9116 {
9117 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9118 irel->r_offset -= bytes_to_remove;
9119 }
9120
9121 if (bytes_to_remove != 0)
9122 {
9123 removed_bytes += bytes_to_remove;
43cd72b9 9124 if (offset + bytes_to_remove < section_size)
e0001a05 9125 memmove (&contents[actual_offset],
43cd72b9
BW
9126 &contents[actual_offset + bytes_to_remove],
9127 section_size - offset - bytes_to_remove);
e0001a05
NC
9128 }
9129 }
9130
43cd72b9 9131 if (removed_bytes)
e0001a05
NC
9132 {
9133 /* Clear the removed bytes. */
9134 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9135
eea6121a 9136 sec->size = section_size - removed_bytes;
e901de89
BW
9137
9138 if (xtensa_is_littable_section (sec))
9139 {
9140 bfd *dynobj = elf_hash_table (link_info)->dynobj;
9141 if (dynobj)
9142 {
9143 asection *sgotloc =
9144 bfd_get_section_by_name (dynobj, ".got.loc");
9145 if (sgotloc)
eea6121a 9146 sgotloc->size -= removed_bytes;
e901de89
BW
9147 }
9148 }
e0001a05
NC
9149 }
9150 }
e901de89 9151
e0001a05
NC
9152 error_return:
9153 release_internal_relocs (sec, internal_relocs);
9154 release_contents (sec, contents);
9155 return ok;
9156}
9157
9158\f
9159/* Third relaxation pass. */
9160
9161/* Change symbol values to account for removed literals. */
9162
43cd72b9 9163bfd_boolean
7fa3d080 9164relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9165{
9166 xtensa_relax_info *relax_info;
9167 unsigned int sec_shndx;
9168 Elf_Internal_Shdr *symtab_hdr;
9169 Elf_Internal_Sym *isymbuf;
9170 unsigned i, num_syms, num_locals;
9171
9172 relax_info = get_xtensa_relax_info (sec);
9173 BFD_ASSERT (relax_info);
9174
43cd72b9
BW
9175 if (!relax_info->is_relaxable_literal_section
9176 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9177 return TRUE;
9178
9179 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9180
9181 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9182 isymbuf = retrieve_local_syms (abfd);
9183
9184 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9185 num_locals = symtab_hdr->sh_info;
9186
9187 /* Adjust the local symbols defined in this section. */
9188 for (i = 0; i < num_locals; i++)
9189 {
9190 Elf_Internal_Sym *isym = &isymbuf[i];
9191
9192 if (isym->st_shndx == sec_shndx)
9193 {
43cd72b9
BW
9194 bfd_vma new_address = offset_with_removed_text
9195 (&relax_info->action_list, isym->st_value);
9196 bfd_vma new_size = isym->st_size;
9197
9198 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9199 {
9200 bfd_vma new_end = offset_with_removed_text
9201 (&relax_info->action_list, isym->st_value + isym->st_size);
9202 new_size = new_end - new_address;
9203 }
9204
9205 isym->st_value = new_address;
9206 isym->st_size = new_size;
e0001a05
NC
9207 }
9208 }
9209
9210 /* Now adjust the global symbols defined in this section. */
9211 for (i = 0; i < (num_syms - num_locals); i++)
9212 {
9213 struct elf_link_hash_entry *sym_hash;
9214
9215 sym_hash = elf_sym_hashes (abfd)[i];
9216
9217 if (sym_hash->root.type == bfd_link_hash_warning)
9218 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9219
9220 if ((sym_hash->root.type == bfd_link_hash_defined
9221 || sym_hash->root.type == bfd_link_hash_defweak)
9222 && sym_hash->root.u.def.section == sec)
9223 {
43cd72b9
BW
9224 bfd_vma new_address = offset_with_removed_text
9225 (&relax_info->action_list, sym_hash->root.u.def.value);
9226 bfd_vma new_size = sym_hash->size;
9227
9228 if (sym_hash->type == STT_FUNC)
9229 {
9230 bfd_vma new_end = offset_with_removed_text
9231 (&relax_info->action_list,
9232 sym_hash->root.u.def.value + sym_hash->size);
9233 new_size = new_end - new_address;
9234 }
9235
9236 sym_hash->root.u.def.value = new_address;
9237 sym_hash->size = new_size;
e0001a05
NC
9238 }
9239 }
9240
9241 return TRUE;
9242}
9243
9244\f
9245/* "Fix" handling functions, called while performing relocations. */
9246
43cd72b9 9247static bfd_boolean
7fa3d080
BW
9248do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9249 bfd *input_bfd,
9250 asection *input_section,
9251 bfd_byte *contents)
e0001a05
NC
9252{
9253 r_reloc r_rel;
9254 asection *sec, *old_sec;
9255 bfd_vma old_offset;
9256 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9257 reloc_bfd_fix *fix;
9258
9259 if (r_type == R_XTENSA_NONE)
43cd72b9 9260 return TRUE;
e0001a05 9261
43cd72b9
BW
9262 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9263 if (!fix)
9264 return TRUE;
e0001a05 9265
43cd72b9
BW
9266 r_reloc_init (&r_rel, input_bfd, rel, contents,
9267 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9268 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9269 old_offset = r_rel.target_offset;
9270
9271 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9272 {
43cd72b9
BW
9273 if (r_type != R_XTENSA_ASM_EXPAND)
9274 {
9275 (*_bfd_error_handler)
9276 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9277 input_bfd, input_section, rel->r_offset,
9278 elf_howto_table[r_type].name);
9279 return FALSE;
9280 }
e0001a05
NC
9281 /* Leave it be. Resolution will happen in a later stage. */
9282 }
9283 else
9284 {
9285 sec = fix->target_sec;
9286 rel->r_addend += ((sec->output_offset + fix->target_offset)
9287 - (old_sec->output_offset + old_offset));
9288 }
43cd72b9 9289 return TRUE;
e0001a05
NC
9290}
9291
9292
9293static void
7fa3d080
BW
9294do_fix_for_final_link (Elf_Internal_Rela *rel,
9295 bfd *input_bfd,
9296 asection *input_section,
9297 bfd_byte *contents,
9298 bfd_vma *relocationp)
e0001a05
NC
9299{
9300 asection *sec;
9301 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9302 reloc_bfd_fix *fix;
43cd72b9 9303 bfd_vma fixup_diff;
e0001a05
NC
9304
9305 if (r_type == R_XTENSA_NONE)
9306 return;
9307
43cd72b9
BW
9308 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9309 if (!fix)
e0001a05
NC
9310 return;
9311
9312 sec = fix->target_sec;
43cd72b9
BW
9313
9314 fixup_diff = rel->r_addend;
9315 if (elf_howto_table[fix->src_type].partial_inplace)
9316 {
9317 bfd_vma inplace_val;
9318 BFD_ASSERT (fix->src_offset
9319 < bfd_get_section_limit (input_bfd, input_section));
9320 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9321 fixup_diff += inplace_val;
9322 }
9323
e0001a05
NC
9324 *relocationp = (sec->output_section->vma
9325 + sec->output_offset
43cd72b9 9326 + fix->target_offset - fixup_diff);
e0001a05
NC
9327}
9328
9329\f
9330/* Miscellaneous utility functions.... */
9331
9332static asection *
7fa3d080 9333elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
e0001a05
NC
9334{
9335 char plt_name[10];
9336
9337 if (chunk == 0)
9338 return bfd_get_section_by_name (dynobj, ".plt");
9339
9340 sprintf (plt_name, ".plt.%u", chunk);
9341 return bfd_get_section_by_name (dynobj, plt_name);
9342}
9343
9344
9345static asection *
7fa3d080 9346elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
e0001a05
NC
9347{
9348 char got_name[14];
9349
9350 if (chunk == 0)
9351 return bfd_get_section_by_name (dynobj, ".got.plt");
9352
9353 sprintf (got_name, ".got.plt.%u", chunk);
9354 return bfd_get_section_by_name (dynobj, got_name);
9355}
9356
9357
9358/* Get the input section for a given symbol index.
9359 If the symbol is:
9360 . a section symbol, return the section;
9361 . a common symbol, return the common section;
9362 . an undefined symbol, return the undefined section;
9363 . an indirect symbol, follow the links;
9364 . an absolute value, return the absolute section. */
9365
9366static asection *
7fa3d080 9367get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9368{
9369 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9370 asection *target_sec = NULL;
43cd72b9 9371 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9372 {
9373 Elf_Internal_Sym *isymbuf;
9374 unsigned int section_index;
9375
9376 isymbuf = retrieve_local_syms (abfd);
9377 section_index = isymbuf[r_symndx].st_shndx;
9378
9379 if (section_index == SHN_UNDEF)
9380 target_sec = bfd_und_section_ptr;
9381 else if (section_index > 0 && section_index < SHN_LORESERVE)
9382 target_sec = bfd_section_from_elf_index (abfd, section_index);
9383 else if (section_index == SHN_ABS)
9384 target_sec = bfd_abs_section_ptr;
9385 else if (section_index == SHN_COMMON)
9386 target_sec = bfd_com_section_ptr;
43cd72b9 9387 else
e0001a05
NC
9388 /* Who knows? */
9389 target_sec = NULL;
9390 }
9391 else
9392 {
9393 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9394 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9395
9396 while (h->root.type == bfd_link_hash_indirect
9397 || h->root.type == bfd_link_hash_warning)
9398 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9399
9400 switch (h->root.type)
9401 {
9402 case bfd_link_hash_defined:
9403 case bfd_link_hash_defweak:
9404 target_sec = h->root.u.def.section;
9405 break;
9406 case bfd_link_hash_common:
9407 target_sec = bfd_com_section_ptr;
9408 break;
9409 case bfd_link_hash_undefined:
9410 case bfd_link_hash_undefweak:
9411 target_sec = bfd_und_section_ptr;
9412 break;
9413 default: /* New indirect warning. */
9414 target_sec = bfd_und_section_ptr;
9415 break;
9416 }
9417 }
9418 return target_sec;
9419}
9420
9421
9422static struct elf_link_hash_entry *
7fa3d080 9423get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9424{
9425 unsigned long indx;
9426 struct elf_link_hash_entry *h;
9427 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9428
9429 if (r_symndx < symtab_hdr->sh_info)
9430 return NULL;
43cd72b9 9431
e0001a05
NC
9432 indx = r_symndx - symtab_hdr->sh_info;
9433 h = elf_sym_hashes (abfd)[indx];
9434 while (h->root.type == bfd_link_hash_indirect
9435 || h->root.type == bfd_link_hash_warning)
9436 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9437 return h;
9438}
9439
9440
9441/* Get the section-relative offset for a symbol number. */
9442
9443static bfd_vma
7fa3d080 9444get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9445{
9446 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9447 bfd_vma offset = 0;
9448
43cd72b9 9449 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9450 {
9451 Elf_Internal_Sym *isymbuf;
9452 isymbuf = retrieve_local_syms (abfd);
9453 offset = isymbuf[r_symndx].st_value;
9454 }
9455 else
9456 {
9457 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9458 struct elf_link_hash_entry *h =
9459 elf_sym_hashes (abfd)[indx];
9460
9461 while (h->root.type == bfd_link_hash_indirect
9462 || h->root.type == bfd_link_hash_warning)
9463 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9464 if (h->root.type == bfd_link_hash_defined
9465 || h->root.type == bfd_link_hash_defweak)
9466 offset = h->root.u.def.value;
9467 }
9468 return offset;
9469}
9470
9471
9472static bfd_boolean
7fa3d080 9473is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9474{
9475 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9476 struct elf_link_hash_entry *h;
9477
9478 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9479 if (h && h->root.type == bfd_link_hash_defweak)
9480 return TRUE;
9481 return FALSE;
9482}
9483
9484
9485static bfd_boolean
7fa3d080
BW
9486pcrel_reloc_fits (xtensa_opcode opc,
9487 int opnd,
9488 bfd_vma self_address,
9489 bfd_vma dest_address)
e0001a05 9490{
43cd72b9
BW
9491 xtensa_isa isa = xtensa_default_isa;
9492 uint32 valp = dest_address;
9493 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9494 || xtensa_operand_encode (isa, opc, opnd, &valp))
9495 return FALSE;
9496 return TRUE;
e0001a05
NC
9497}
9498
9499
b614a702 9500static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
b614a702 9501
e0001a05 9502static bfd_boolean
7fa3d080 9503xtensa_is_property_section (asection *sec)
e0001a05 9504{
0112cd26
NC
9505 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9506 || CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9507 || CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME))
b614a702 9508 return TRUE;
e901de89 9509
b614a702 9510 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
0112cd26
NC
9511 && (CONST_STRNEQ (&sec->name[linkonce_len], "x.")
9512 || CONST_STRNEQ (&sec->name[linkonce_len], "p.")
9513 || CONST_STRNEQ (&sec->name[linkonce_len], "prop.")))
e901de89
BW
9514 return TRUE;
9515
e901de89
BW
9516 return FALSE;
9517}
9518
9519
9520static bfd_boolean
7fa3d080 9521xtensa_is_littable_section (asection *sec)
e901de89 9522{
0112cd26 9523 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME))
b614a702 9524 return TRUE;
e901de89 9525
b614a702
BW
9526 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9527 && sec->name[linkonce_len] == 'p'
9528 && sec->name[linkonce_len + 1] == '.')
e901de89 9529 return TRUE;
e0001a05 9530
e901de89 9531 return FALSE;
e0001a05
NC
9532}
9533
9534
43cd72b9 9535static int
7fa3d080 9536internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9537{
43cd72b9
BW
9538 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9539 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9540
9541 if (a->r_offset != b->r_offset)
9542 return (a->r_offset - b->r_offset);
9543
9544 /* We don't need to sort on these criteria for correctness,
9545 but enforcing a more strict ordering prevents unstable qsort
9546 from behaving differently with different implementations.
9547 Without the code below we get correct but different results
9548 on Solaris 2.7 and 2.8. We would like to always produce the
9549 same results no matter the host. */
9550
9551 if (a->r_info != b->r_info)
9552 return (a->r_info - b->r_info);
9553
9554 return (a->r_addend - b->r_addend);
e0001a05
NC
9555}
9556
9557
9558static int
7fa3d080 9559internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9560{
9561 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9562 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9563
43cd72b9
BW
9564 /* Check if one entry overlaps with the other; this shouldn't happen
9565 except when searching for a match. */
e0001a05
NC
9566 return (a->r_offset - b->r_offset);
9567}
9568
9569
74869ac7
BW
9570/* Predicate function used to look up a section in a particular group. */
9571
9572static bfd_boolean
9573match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9574{
9575 const char *gname = inf;
9576 const char *group_name = elf_group_name (sec);
9577
9578 return (group_name == gname
9579 || (group_name != NULL
9580 && gname != NULL
9581 && strcmp (group_name, gname) == 0));
9582}
9583
9584
9585asection *
9586xtensa_get_property_section (asection *sec, const char *base_name)
e0001a05 9587{
74869ac7
BW
9588 const char *suffix, *group_name;
9589 char *prop_sec_name;
9590 asection *prop_sec;
9591
9592 group_name = elf_group_name (sec);
9593 if (group_name)
9594 {
9595 suffix = strrchr (sec->name, '.');
9596 if (suffix == sec->name)
9597 suffix = 0;
9598 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9599 + (suffix ? strlen (suffix) : 0));
9600 strcpy (prop_sec_name, base_name);
9601 if (suffix)
9602 strcat (prop_sec_name, suffix);
9603 }
9604 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9605 {
43cd72b9 9606 char *linkonce_kind = 0;
b614a702
BW
9607
9608 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9609 linkonce_kind = "x.";
b614a702 9610 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9611 linkonce_kind = "p.";
43cd72b9
BW
9612 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9613 linkonce_kind = "prop.";
e0001a05 9614 else
b614a702
BW
9615 abort ();
9616
43cd72b9
BW
9617 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9618 + strlen (linkonce_kind) + 1);
b614a702 9619 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9620 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9621
9622 suffix = sec->name + linkonce_len;
096c35a7 9623 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 9624 the new linkonce_kind (but not for "prop" sections). */
0112cd26 9625 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
9626 suffix += 2;
9627 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
9628 }
9629 else
9630 prop_sec_name = strdup (base_name);
9631
9632 /* Check if the section already exists. */
9633 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9634 match_section_group,
9635 (void *) group_name);
9636 /* If not, create it. */
9637 if (! prop_sec)
9638 {
9639 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9640 flags |= (bfd_get_section_flags (sec->owner, sec)
9641 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9642
9643 prop_sec = bfd_make_section_anyway_with_flags
9644 (sec->owner, strdup (prop_sec_name), flags);
9645 if (! prop_sec)
9646 return 0;
b614a702 9647
74869ac7 9648 elf_group_name (prop_sec) = group_name;
e0001a05
NC
9649 }
9650
74869ac7
BW
9651 free (prop_sec_name);
9652 return prop_sec;
e0001a05
NC
9653}
9654
43cd72b9
BW
9655
9656flagword
7fa3d080 9657xtensa_get_property_predef_flags (asection *sec)
43cd72b9 9658{
0112cd26
NC
9659 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9660 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
43cd72b9
BW
9661 return (XTENSA_PROP_INSN
9662 | XTENSA_PROP_INSN_NO_TRANSFORM
9663 | XTENSA_PROP_INSN_NO_REORDER);
9664
9665 if (xtensa_is_littable_section (sec))
9666 return (XTENSA_PROP_LITERAL
9667 | XTENSA_PROP_INSN_NO_TRANSFORM
9668 | XTENSA_PROP_INSN_NO_REORDER);
9669
9670 return 0;
9671}
9672
e0001a05
NC
9673\f
9674/* Other functions called directly by the linker. */
9675
9676bfd_boolean
7fa3d080
BW
9677xtensa_callback_required_dependence (bfd *abfd,
9678 asection *sec,
9679 struct bfd_link_info *link_info,
9680 deps_callback_t callback,
9681 void *closure)
e0001a05
NC
9682{
9683 Elf_Internal_Rela *internal_relocs;
9684 bfd_byte *contents;
9685 unsigned i;
9686 bfd_boolean ok = TRUE;
43cd72b9
BW
9687 bfd_size_type sec_size;
9688
9689 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9690
9691 /* ".plt*" sections have no explicit relocations but they contain L32R
9692 instructions that reference the corresponding ".got.plt*" sections. */
9693 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 9694 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
9695 {
9696 asection *sgotplt;
9697
9698 /* Find the corresponding ".got.plt*" section. */
9699 if (sec->name[4] == '\0')
9700 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9701 else
9702 {
9703 char got_name[14];
9704 int chunk = 0;
9705
9706 BFD_ASSERT (sec->name[4] == '.');
9707 chunk = strtol (&sec->name[5], NULL, 10);
9708
9709 sprintf (got_name, ".got.plt.%u", chunk);
9710 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9711 }
9712 BFD_ASSERT (sgotplt);
9713
9714 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9715 section referencing a literal at the very beginning of
9716 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9717 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9718 }
9719
9720 internal_relocs = retrieve_internal_relocs (abfd, sec,
9721 link_info->keep_memory);
9722 if (internal_relocs == NULL
43cd72b9 9723 || sec->reloc_count == 0)
e0001a05
NC
9724 return ok;
9725
9726 /* Cache the contents for the duration of this scan. */
9727 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9728 if (contents == NULL && sec_size != 0)
e0001a05
NC
9729 {
9730 ok = FALSE;
9731 goto error_return;
9732 }
9733
43cd72b9
BW
9734 if (!xtensa_default_isa)
9735 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9736
43cd72b9 9737 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9738 {
9739 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9740 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9741 {
9742 r_reloc l32r_rel;
9743 asection *target_sec;
9744 bfd_vma target_offset;
43cd72b9
BW
9745
9746 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9747 target_sec = NULL;
9748 target_offset = 0;
9749 /* L32Rs must be local to the input file. */
9750 if (r_reloc_is_defined (&l32r_rel))
9751 {
9752 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9753 target_offset = l32r_rel.target_offset;
e0001a05
NC
9754 }
9755 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9756 closure);
9757 }
9758 }
9759
9760 error_return:
9761 release_internal_relocs (sec, internal_relocs);
9762 release_contents (sec, contents);
9763 return ok;
9764}
9765
2f89ff8d
L
9766/* The default literal sections should always be marked as "code" (i.e.,
9767 SHF_EXECINSTR). This is particularly important for the Linux kernel
9768 module loader so that the literals are not placed after the text. */
b35d266b 9769static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9770{
0112cd26
NC
9771 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9772 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9773 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9774 { NULL, 0, 0, 0, 0 }
7f4d3958 9775};
e0001a05
NC
9776\f
9777#ifndef ELF_ARCH
9778#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9779#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9780#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9781#define TARGET_BIG_NAME "elf32-xtensa-be"
9782#define ELF_ARCH bfd_arch_xtensa
9783
4af0a1d8
BW
9784#define ELF_MACHINE_CODE EM_XTENSA
9785#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9786
9787#if XCHAL_HAVE_MMU
9788#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9789#else /* !XCHAL_HAVE_MMU */
9790#define ELF_MAXPAGESIZE 1
9791#endif /* !XCHAL_HAVE_MMU */
9792#endif /* ELF_ARCH */
9793
9794#define elf_backend_can_gc_sections 1
9795#define elf_backend_can_refcount 1
9796#define elf_backend_plt_readonly 1
9797#define elf_backend_got_header_size 4
9798#define elf_backend_want_dynbss 0
9799#define elf_backend_want_got_plt 1
9800
9801#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9802
e0001a05
NC
9803#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9804#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9805#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9806#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9807#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9808#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9809
9810#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9811#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9812#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9813#define elf_backend_discard_info elf_xtensa_discard_info
9814#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9815#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9816#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9817#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9818#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9819#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9820#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9821#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9822#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
9823#define elf_backend_object_p elf_xtensa_object_p
9824#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9825#define elf_backend_relocate_section elf_xtensa_relocate_section
9826#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
29ef7005 9827#define elf_backend_special_sections elf_xtensa_special_sections
e0001a05
NC
9828
9829#include "elf32-target.h"
This page took 0.6603 seconds and 4 git commands to generate.