PR 868
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
515ef31d 2 Copyright 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
31#include "xtensa-isa.h"
32#include "xtensa-config.h"
33
43cd72b9
BW
34#define XTENSA_NO_NOP_REMOVAL 0
35
e0001a05
NC
36/* Local helper functions. */
37
f0e6fdb2 38static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 39static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 40static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 42static bfd_boolean do_fix_for_relocatable_link
7fa3d080 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 44static void do_fix_for_final_link
7fa3d080 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
46
47/* Local functions to handle Xtensa configurability. */
48
7fa3d080
BW
49static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52static xtensa_opcode get_const16_opcode (void);
53static xtensa_opcode get_l32r_opcode (void);
54static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55static int get_relocation_opnd (xtensa_opcode, int);
56static int get_relocation_slot (int);
e0001a05 57static xtensa_opcode get_relocation_opcode
7fa3d080 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 59static bfd_boolean is_l32r_relocation
7fa3d080
BW
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61static bfd_boolean is_alt_relocation (int);
62static bfd_boolean is_operand_relocation (int);
43cd72b9 63static bfd_size_type insn_decode_len
7fa3d080 64 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 65static xtensa_opcode insn_decode_opcode
7fa3d080 66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 67static bfd_boolean check_branch_target_aligned
7fa3d080 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 69static bfd_boolean check_loop_aligned
7fa3d080
BW
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 72static bfd_size_type get_asm_simplify_size
7fa3d080 73 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
74
75/* Functions for link-time code simplifications. */
76
43cd72b9 77static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 78 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 79static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
83
84/* Access to internal relocations, section contents and symbols. */
85
86static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
87 (bfd *, asection *, bfd_boolean);
88static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91static void pin_contents (asection *, bfd_byte *);
92static void release_contents (asection *, bfd_byte *);
93static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
94
95/* Miscellaneous utility functions. */
96
f0e6fdb2
BW
97static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 99static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 100static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
101 (bfd *, unsigned long);
102static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 106static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 107static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 108static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
109static int internal_reloc_compare (const void *, const void *);
110static int internal_reloc_matches (const void *, const void *);
74869ac7 111extern asection *xtensa_get_property_section (asection *, const char *);
7fa3d080 112static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
113
114/* Other functions called directly by the linker. */
115
116typedef void (*deps_callback_t)
7fa3d080 117 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 118extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 119 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
120
121
43cd72b9
BW
122/* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
7fa3d080 126
43cd72b9
BW
127int elf32xtensa_size_opt;
128
129
130/* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
e0001a05 133
7fa3d080 134typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 135
43cd72b9 136
43cd72b9
BW
137/* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
140 this information. */
141
142xtensa_isa xtensa_default_isa;
143
144
e0001a05
NC
145/* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
148
149static bfd_boolean relaxing_section = FALSE;
150
43cd72b9
BW
151/* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
153
154int elf32xtensa_no_literal_movement = 1;
155
e0001a05
NC
156\f
157static reloc_howto_type elf_howto_table[] =
158{
159 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
160 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 161 FALSE, 0, 0, FALSE),
e0001a05
NC
162 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
163 bfd_elf_xtensa_reloc, "R_XTENSA_32",
164 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 165
e0001a05
NC
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
172 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
173
e0001a05
NC
174 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 176 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
177 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 179 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
180 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 182 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
183 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
185 FALSE, 0, 0xffffffff, FALSE),
186
e0001a05 187 EMPTY_HOWTO (7),
e5f131d1
BW
188
189 /* Old relocations for backward compatibility. */
e0001a05 190 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 191 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 192 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 193 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 194 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
196
e0001a05
NC
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 199 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
202 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
203
e0001a05 204 EMPTY_HOWTO (13),
1bbb5f21
BW
205
206 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
207 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
208 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 209
e0001a05
NC
210 /* GNU extension to record C++ vtable hierarchy. */
211 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
212 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 213 FALSE, 0, 0, FALSE),
e0001a05
NC
214 /* GNU extension to record C++ vtable member usage. */
215 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
216 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 217 FALSE, 0, 0, FALSE),
43cd72b9
BW
218
219 /* Relocations for supporting difference of symbols. */
220 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 221 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 222 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 223 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 224 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 225 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
226
227 /* General immediate operand relocations. */
228 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 229 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 230 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 232 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 233 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 234 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 236 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 238 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
258
259 /* "Alternate" relocations. The meaning of these is opcode-specific. */
260 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 262 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 264 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 266 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 268 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 270 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
e0001a05
NC
290};
291
43cd72b9 292#if DEBUG_GEN_RELOC
e0001a05
NC
293#define TRACE(str) \
294 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
295#else
296#define TRACE(str)
297#endif
298
299static reloc_howto_type *
7fa3d080
BW
300elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
301 bfd_reloc_code_real_type code)
e0001a05
NC
302{
303 switch (code)
304 {
305 case BFD_RELOC_NONE:
306 TRACE ("BFD_RELOC_NONE");
307 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
308
309 case BFD_RELOC_32:
310 TRACE ("BFD_RELOC_32");
311 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
312
1bbb5f21
BW
313 case BFD_RELOC_32_PCREL:
314 TRACE ("BFD_RELOC_32_PCREL");
315 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
316
43cd72b9
BW
317 case BFD_RELOC_XTENSA_DIFF8:
318 TRACE ("BFD_RELOC_XTENSA_DIFF8");
319 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
320
321 case BFD_RELOC_XTENSA_DIFF16:
322 TRACE ("BFD_RELOC_XTENSA_DIFF16");
323 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
324
325 case BFD_RELOC_XTENSA_DIFF32:
326 TRACE ("BFD_RELOC_XTENSA_DIFF32");
327 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
328
e0001a05
NC
329 case BFD_RELOC_XTENSA_RTLD:
330 TRACE ("BFD_RELOC_XTENSA_RTLD");
331 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
332
333 case BFD_RELOC_XTENSA_GLOB_DAT:
334 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
335 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
336
337 case BFD_RELOC_XTENSA_JMP_SLOT:
338 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
339 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
340
341 case BFD_RELOC_XTENSA_RELATIVE:
342 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
343 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
344
345 case BFD_RELOC_XTENSA_PLT:
346 TRACE ("BFD_RELOC_XTENSA_PLT");
347 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
348
349 case BFD_RELOC_XTENSA_OP0:
350 TRACE ("BFD_RELOC_XTENSA_OP0");
351 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
352
353 case BFD_RELOC_XTENSA_OP1:
354 TRACE ("BFD_RELOC_XTENSA_OP1");
355 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
356
357 case BFD_RELOC_XTENSA_OP2:
358 TRACE ("BFD_RELOC_XTENSA_OP2");
359 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
360
361 case BFD_RELOC_XTENSA_ASM_EXPAND:
362 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
363 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
364
365 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
366 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
367 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
368
369 case BFD_RELOC_VTABLE_INHERIT:
370 TRACE ("BFD_RELOC_VTABLE_INHERIT");
371 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
372
373 case BFD_RELOC_VTABLE_ENTRY:
374 TRACE ("BFD_RELOC_VTABLE_ENTRY");
375 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
376
377 default:
43cd72b9
BW
378 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
379 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
380 {
381 unsigned n = (R_XTENSA_SLOT0_OP +
382 (code - BFD_RELOC_XTENSA_SLOT0_OP));
383 return &elf_howto_table[n];
384 }
385
386 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
387 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
388 {
389 unsigned n = (R_XTENSA_SLOT0_ALT +
390 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
391 return &elf_howto_table[n];
392 }
393
e0001a05
NC
394 break;
395 }
396
397 TRACE ("Unknown");
398 return NULL;
399}
400
157090f7
AM
401static reloc_howto_type *
402elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
403 const char *r_name)
404{
405 unsigned int i;
406
407 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
408 if (elf_howto_table[i].name != NULL
409 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
410 return &elf_howto_table[i];
411
412 return NULL;
413}
414
e0001a05
NC
415
416/* Given an ELF "rela" relocation, find the corresponding howto and record
417 it in the BFD internal arelent representation of the relocation. */
418
419static void
7fa3d080
BW
420elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
421 arelent *cache_ptr,
422 Elf_Internal_Rela *dst)
e0001a05
NC
423{
424 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
425
426 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
427 cache_ptr->howto = &elf_howto_table[r_type];
428}
429
430\f
431/* Functions for the Xtensa ELF linker. */
432
433/* The name of the dynamic interpreter. This is put in the .interp
434 section. */
435
436#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
437
438/* The size in bytes of an entry in the procedure linkage table.
439 (This does _not_ include the space for the literals associated with
440 the PLT entry.) */
441
442#define PLT_ENTRY_SIZE 16
443
444/* For _really_ large PLTs, we may need to alternate between literals
445 and code to keep the literals within the 256K range of the L32R
446 instructions in the code. It's unlikely that anyone would ever need
447 such a big PLT, but an arbitrary limit on the PLT size would be bad.
448 Thus, we split the PLT into chunks. Since there's very little
449 overhead (2 extra literals) for each chunk, the chunk size is kept
450 small so that the code for handling multiple chunks get used and
451 tested regularly. With 254 entries, there are 1K of literals for
452 each chunk, and that seems like a nice round number. */
453
454#define PLT_ENTRIES_PER_CHUNK 254
455
456/* PLT entries are actually used as stub functions for lazy symbol
457 resolution. Once the symbol is resolved, the stub function is never
458 invoked. Note: the 32-byte frame size used here cannot be changed
459 without a corresponding change in the runtime linker. */
460
461static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
462{
463 0x6c, 0x10, 0x04, /* entry sp, 32 */
464 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
465 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
466 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
467 0x0a, 0x80, 0x00, /* jx a8 */
468 0 /* unused */
469};
470
471static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
472{
473 0x36, 0x41, 0x00, /* entry sp, 32 */
474 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
475 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
476 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
477 0xa0, 0x08, 0x00, /* jx a8 */
478 0 /* unused */
479};
480
f0e6fdb2
BW
481/* Xtensa ELF linker hash table. */
482
483struct elf_xtensa_link_hash_table
484{
485 struct elf_link_hash_table elf;
486
487 /* Short-cuts to get to dynamic linker sections. */
488 asection *sgot;
489 asection *sgotplt;
490 asection *srelgot;
491 asection *splt;
492 asection *srelplt;
493 asection *sgotloc;
494 asection *spltlittbl;
495
496 /* Total count of PLT relocations seen during check_relocs.
497 The actual PLT code must be split into multiple sections and all
498 the sections have to be created before size_dynamic_sections,
499 where we figure out the exact number of PLT entries that will be
500 needed. It is OK if this count is an overestimate, e.g., some
501 relocations may be removed by GC. */
502 int plt_reloc_count;
503};
504
505/* Get the Xtensa ELF linker hash table from a link_info structure. */
506
507#define elf_xtensa_hash_table(p) \
508 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
509
510/* Create an Xtensa ELF linker hash table. */
511
512static struct bfd_link_hash_table *
513elf_xtensa_link_hash_table_create (bfd *abfd)
514{
515 struct elf_xtensa_link_hash_table *ret;
516 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
517
518 ret = bfd_malloc (amt);
519 if (ret == NULL)
520 return NULL;
521
522 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
523 _bfd_elf_link_hash_newfunc,
524 sizeof (struct elf_link_hash_entry)))
525 {
526 free (ret);
527 return NULL;
528 }
529
530 ret->sgot = NULL;
531 ret->sgotplt = NULL;
532 ret->srelgot = NULL;
533 ret->splt = NULL;
534 ret->srelplt = NULL;
535 ret->sgotloc = NULL;
536 ret->spltlittbl = NULL;
537
538 ret->plt_reloc_count = 0;
539
540 return &ret->elf.root;
541}
571b5725
BW
542
543static inline bfd_boolean
4608f3d9 544elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 545 struct bfd_link_info *info)
571b5725
BW
546{
547 /* Check if we should do dynamic things to this symbol. The
548 "ignore_protected" argument need not be set, because Xtensa code
549 does not require special handling of STV_PROTECTED to make function
550 pointer comparisons work properly. The PLT addresses are never
551 used for function pointers. */
552
553 return _bfd_elf_dynamic_symbol_p (h, info, 0);
554}
555
e0001a05
NC
556\f
557static int
7fa3d080 558property_table_compare (const void *ap, const void *bp)
e0001a05
NC
559{
560 const property_table_entry *a = (const property_table_entry *) ap;
561 const property_table_entry *b = (const property_table_entry *) bp;
562
43cd72b9
BW
563 if (a->address == b->address)
564 {
43cd72b9
BW
565 if (a->size != b->size)
566 return (a->size - b->size);
567
568 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
569 return ((b->flags & XTENSA_PROP_ALIGN)
570 - (a->flags & XTENSA_PROP_ALIGN));
571
572 if ((a->flags & XTENSA_PROP_ALIGN)
573 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
574 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
575 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
576 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
577
578 if ((a->flags & XTENSA_PROP_UNREACHABLE)
579 != (b->flags & XTENSA_PROP_UNREACHABLE))
580 return ((b->flags & XTENSA_PROP_UNREACHABLE)
581 - (a->flags & XTENSA_PROP_UNREACHABLE));
582
583 return (a->flags - b->flags);
584 }
585
586 return (a->address - b->address);
587}
588
589
590static int
7fa3d080 591property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
592{
593 const property_table_entry *a = (const property_table_entry *) ap;
594 const property_table_entry *b = (const property_table_entry *) bp;
595
596 /* Check if one entry overlaps with the other. */
e0001a05
NC
597 if ((b->address >= a->address && b->address < (a->address + a->size))
598 || (a->address >= b->address && a->address < (b->address + b->size)))
599 return 0;
600
601 return (a->address - b->address);
602}
603
604
43cd72b9
BW
605/* Get the literal table or property table entries for the given
606 section. Sets TABLE_P and returns the number of entries. On
607 error, returns a negative value. */
e0001a05 608
7fa3d080
BW
609static int
610xtensa_read_table_entries (bfd *abfd,
611 asection *section,
612 property_table_entry **table_p,
613 const char *sec_name,
614 bfd_boolean output_addr)
e0001a05
NC
615{
616 asection *table_section;
e0001a05
NC
617 bfd_size_type table_size = 0;
618 bfd_byte *table_data;
619 property_table_entry *blocks;
e4115460 620 int blk, block_count;
e0001a05 621 bfd_size_type num_records;
bcc2cc8e
BW
622 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
623 bfd_vma section_addr, off;
43cd72b9 624 flagword predef_flags;
bcc2cc8e 625 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
626
627 if (!section
628 || !(section->flags & SEC_ALLOC)
629 || (section->flags & SEC_DEBUGGING))
630 {
631 *table_p = NULL;
632 return 0;
633 }
e0001a05 634
74869ac7 635 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 636 if (table_section)
eea6121a 637 table_size = table_section->size;
43cd72b9 638
e0001a05
NC
639 if (table_size == 0)
640 {
641 *table_p = NULL;
642 return 0;
643 }
644
43cd72b9
BW
645 predef_flags = xtensa_get_property_predef_flags (table_section);
646 table_entry_size = 12;
647 if (predef_flags)
648 table_entry_size -= 4;
649
650 num_records = table_size / table_entry_size;
e0001a05
NC
651 table_data = retrieve_contents (abfd, table_section, TRUE);
652 blocks = (property_table_entry *)
653 bfd_malloc (num_records * sizeof (property_table_entry));
654 block_count = 0;
43cd72b9
BW
655
656 if (output_addr)
657 section_addr = section->output_section->vma + section->output_offset;
658 else
659 section_addr = section->vma;
3ba3bc8c 660
e0001a05 661 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 662 if (internal_relocs && !table_section->reloc_done)
e0001a05 663 {
bcc2cc8e
BW
664 qsort (internal_relocs, table_section->reloc_count,
665 sizeof (Elf_Internal_Rela), internal_reloc_compare);
666 irel = internal_relocs;
667 }
668 else
669 irel = NULL;
670
671 section_limit = bfd_get_section_limit (abfd, section);
672 rel_end = internal_relocs + table_section->reloc_count;
673
674 for (off = 0; off < table_size; off += table_entry_size)
675 {
676 bfd_vma address = bfd_get_32 (abfd, table_data + off);
677
678 /* Skip any relocations before the current offset. This should help
679 avoid confusion caused by unexpected relocations for the preceding
680 table entry. */
681 while (irel &&
682 (irel->r_offset < off
683 || (irel->r_offset == off
684 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
685 {
686 irel += 1;
687 if (irel >= rel_end)
688 irel = 0;
689 }
e0001a05 690
bcc2cc8e 691 if (irel && irel->r_offset == off)
e0001a05 692 {
bcc2cc8e
BW
693 bfd_vma sym_off;
694 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
695 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 696
bcc2cc8e 697 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
698 continue;
699
bcc2cc8e
BW
700 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
701 BFD_ASSERT (sym_off == 0);
702 address += (section_addr + sym_off + irel->r_addend);
e0001a05 703 }
bcc2cc8e 704 else
e0001a05 705 {
bcc2cc8e
BW
706 if (address < section_addr
707 || address >= section_addr + section_limit)
708 continue;
e0001a05 709 }
bcc2cc8e
BW
710
711 blocks[block_count].address = address;
712 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
713 if (predef_flags)
714 blocks[block_count].flags = predef_flags;
715 else
716 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
717 block_count++;
e0001a05
NC
718 }
719
720 release_contents (table_section, table_data);
721 release_internal_relocs (table_section, internal_relocs);
722
43cd72b9 723 if (block_count > 0)
e0001a05
NC
724 {
725 /* Now sort them into address order for easy reference. */
726 qsort (blocks, block_count, sizeof (property_table_entry),
727 property_table_compare);
e4115460
BW
728
729 /* Check that the table contents are valid. Problems may occur,
730 for example, if an unrelocated object file is stripped. */
731 for (blk = 1; blk < block_count; blk++)
732 {
733 /* The only circumstance where two entries may legitimately
734 have the same address is when one of them is a zero-size
735 placeholder to mark a place where fill can be inserted.
736 The zero-size entry should come first. */
737 if (blocks[blk - 1].address == blocks[blk].address &&
738 blocks[blk - 1].size != 0)
739 {
740 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
741 abfd, section);
742 bfd_set_error (bfd_error_bad_value);
743 free (blocks);
744 return -1;
745 }
746 }
e0001a05 747 }
43cd72b9 748
e0001a05
NC
749 *table_p = blocks;
750 return block_count;
751}
752
753
7fa3d080
BW
754static property_table_entry *
755elf_xtensa_find_property_entry (property_table_entry *property_table,
756 int property_table_size,
757 bfd_vma addr)
e0001a05
NC
758{
759 property_table_entry entry;
43cd72b9 760 property_table_entry *rv;
e0001a05 761
43cd72b9
BW
762 if (property_table_size == 0)
763 return NULL;
e0001a05
NC
764
765 entry.address = addr;
766 entry.size = 1;
43cd72b9 767 entry.flags = 0;
e0001a05 768
43cd72b9
BW
769 rv = bsearch (&entry, property_table, property_table_size,
770 sizeof (property_table_entry), property_table_matches);
771 return rv;
772}
773
774
775static bfd_boolean
7fa3d080
BW
776elf_xtensa_in_literal_pool (property_table_entry *lit_table,
777 int lit_table_size,
778 bfd_vma addr)
43cd72b9
BW
779{
780 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
781 return TRUE;
782
783 return FALSE;
784}
785
786\f
787/* Look through the relocs for a section during the first phase, and
788 calculate needed space in the dynamic reloc sections. */
789
790static bfd_boolean
7fa3d080
BW
791elf_xtensa_check_relocs (bfd *abfd,
792 struct bfd_link_info *info,
793 asection *sec,
794 const Elf_Internal_Rela *relocs)
e0001a05 795{
f0e6fdb2 796 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
797 Elf_Internal_Shdr *symtab_hdr;
798 struct elf_link_hash_entry **sym_hashes;
799 const Elf_Internal_Rela *rel;
800 const Elf_Internal_Rela *rel_end;
e0001a05 801
1049f94e 802 if (info->relocatable)
e0001a05
NC
803 return TRUE;
804
f0e6fdb2 805 htab = elf_xtensa_hash_table (info);
e0001a05
NC
806 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
807 sym_hashes = elf_sym_hashes (abfd);
808
e0001a05
NC
809 rel_end = relocs + sec->reloc_count;
810 for (rel = relocs; rel < rel_end; rel++)
811 {
812 unsigned int r_type;
813 unsigned long r_symndx;
814 struct elf_link_hash_entry *h;
815
816 r_symndx = ELF32_R_SYM (rel->r_info);
817 r_type = ELF32_R_TYPE (rel->r_info);
818
819 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
820 {
d003868e
AM
821 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
822 abfd, r_symndx);
e0001a05
NC
823 return FALSE;
824 }
825
826 if (r_symndx < symtab_hdr->sh_info)
827 h = NULL;
828 else
829 {
830 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
831 while (h->root.type == bfd_link_hash_indirect
832 || h->root.type == bfd_link_hash_warning)
833 h = (struct elf_link_hash_entry *) h->root.u.i.link;
834 }
835
836 switch (r_type)
837 {
838 case R_XTENSA_32:
839 if (h == NULL)
840 goto local_literal;
841
842 if ((sec->flags & SEC_ALLOC) != 0)
843 {
e0001a05
NC
844 if (h->got.refcount <= 0)
845 h->got.refcount = 1;
846 else
847 h->got.refcount += 1;
848 }
849 break;
850
851 case R_XTENSA_PLT:
852 /* If this relocation is against a local symbol, then it's
853 exactly the same as a normal local GOT entry. */
854 if (h == NULL)
855 goto local_literal;
856
857 if ((sec->flags & SEC_ALLOC) != 0)
858 {
e0001a05
NC
859 if (h->plt.refcount <= 0)
860 {
f5385ebf 861 h->needs_plt = 1;
e0001a05
NC
862 h->plt.refcount = 1;
863 }
864 else
865 h->plt.refcount += 1;
866
867 /* Keep track of the total PLT relocation count even if we
868 don't yet know whether the dynamic sections will be
869 created. */
f0e6fdb2 870 htab->plt_reloc_count += 1;
e0001a05
NC
871
872 if (elf_hash_table (info)->dynamic_sections_created)
873 {
f0e6fdb2 874 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
875 return FALSE;
876 }
877 }
878 break;
879
880 local_literal:
881 if ((sec->flags & SEC_ALLOC) != 0)
882 {
883 bfd_signed_vma *local_got_refcounts;
884
885 /* This is a global offset table entry for a local symbol. */
886 local_got_refcounts = elf_local_got_refcounts (abfd);
887 if (local_got_refcounts == NULL)
888 {
889 bfd_size_type size;
890
891 size = symtab_hdr->sh_info;
892 size *= sizeof (bfd_signed_vma);
43cd72b9
BW
893 local_got_refcounts =
894 (bfd_signed_vma *) bfd_zalloc (abfd, size);
e0001a05
NC
895 if (local_got_refcounts == NULL)
896 return FALSE;
897 elf_local_got_refcounts (abfd) = local_got_refcounts;
898 }
899 local_got_refcounts[r_symndx] += 1;
e0001a05
NC
900 }
901 break;
902
e0001a05
NC
903 case R_XTENSA_GNU_VTINHERIT:
904 /* This relocation describes the C++ object vtable hierarchy.
905 Reconstruct it for later use during GC. */
c152c796 906 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
e0001a05
NC
907 return FALSE;
908 break;
909
910 case R_XTENSA_GNU_VTENTRY:
911 /* This relocation describes which C++ vtable entries are actually
912 used. Record for later use during GC. */
d17e0c6e
JB
913 BFD_ASSERT (h != NULL);
914 if (h != NULL
915 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
e0001a05
NC
916 return FALSE;
917 break;
918
919 default:
920 break;
921 }
922 }
923
e0001a05
NC
924 return TRUE;
925}
926
927
95147441
BW
928static void
929elf_xtensa_make_sym_local (struct bfd_link_info *info,
930 struct elf_link_hash_entry *h)
931{
932 if (info->shared)
933 {
934 if (h->plt.refcount > 0)
935 {
936 /* For shared objects, there's no need for PLT entries for local
937 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
938 if (h->got.refcount < 0)
939 h->got.refcount = 0;
940 h->got.refcount += h->plt.refcount;
941 h->plt.refcount = 0;
942 }
943 }
944 else
945 {
946 /* Don't need any dynamic relocations at all. */
947 h->plt.refcount = 0;
948 h->got.refcount = 0;
949 }
950}
951
952
953static void
954elf_xtensa_hide_symbol (struct bfd_link_info *info,
955 struct elf_link_hash_entry *h,
956 bfd_boolean force_local)
957{
958 /* For a shared link, move the plt refcount to the got refcount to leave
959 space for RELATIVE relocs. */
960 elf_xtensa_make_sym_local (info, h);
961
962 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
963}
964
965
e0001a05
NC
966/* Return the section that should be marked against GC for a given
967 relocation. */
968
969static asection *
7fa3d080 970elf_xtensa_gc_mark_hook (asection *sec,
07adf181 971 struct bfd_link_info *info,
7fa3d080
BW
972 Elf_Internal_Rela *rel,
973 struct elf_link_hash_entry *h,
974 Elf_Internal_Sym *sym)
e0001a05 975{
e1e5c0b5
BW
976 /* Property sections are marked "KEEP" in the linker scripts, but they
977 should not cause other sections to be marked. (This approach relies
978 on elf_xtensa_discard_info to remove property table entries that
979 describe discarded sections. Alternatively, it might be more
980 efficient to avoid using "KEEP" in the linker scripts and instead use
981 the gc_mark_extra_sections hook to mark only the property sections
982 that describe marked sections. That alternative does not work well
983 with the current property table sections, which do not correspond
984 one-to-one with the sections they describe, but that should be fixed
985 someday.) */
986 if (xtensa_is_property_section (sec))
987 return NULL;
988
07adf181
AM
989 if (h != NULL)
990 switch (ELF32_R_TYPE (rel->r_info))
991 {
992 case R_XTENSA_GNU_VTINHERIT:
993 case R_XTENSA_GNU_VTENTRY:
994 return NULL;
995 }
996
997 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
998}
999
7fa3d080 1000
e0001a05
NC
1001/* Update the GOT & PLT entry reference counts
1002 for the section being removed. */
1003
1004static bfd_boolean
7fa3d080
BW
1005elf_xtensa_gc_sweep_hook (bfd *abfd,
1006 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1007 asection *sec,
1008 const Elf_Internal_Rela *relocs)
e0001a05
NC
1009{
1010 Elf_Internal_Shdr *symtab_hdr;
1011 struct elf_link_hash_entry **sym_hashes;
1012 bfd_signed_vma *local_got_refcounts;
1013 const Elf_Internal_Rela *rel, *relend;
1014
7dda2462
TG
1015 if (info->relocatable)
1016 return TRUE;
1017
e0001a05
NC
1018 if ((sec->flags & SEC_ALLOC) == 0)
1019 return TRUE;
1020
1021 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1022 sym_hashes = elf_sym_hashes (abfd);
1023 local_got_refcounts = elf_local_got_refcounts (abfd);
1024
1025 relend = relocs + sec->reloc_count;
1026 for (rel = relocs; rel < relend; rel++)
1027 {
1028 unsigned long r_symndx;
1029 unsigned int r_type;
1030 struct elf_link_hash_entry *h = NULL;
1031
1032 r_symndx = ELF32_R_SYM (rel->r_info);
1033 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1034 {
1035 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1036 while (h->root.type == bfd_link_hash_indirect
1037 || h->root.type == bfd_link_hash_warning)
1038 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1039 }
e0001a05
NC
1040
1041 r_type = ELF32_R_TYPE (rel->r_info);
1042 switch (r_type)
1043 {
1044 case R_XTENSA_32:
1045 if (h == NULL)
1046 goto local_literal;
1047 if (h->got.refcount > 0)
1048 h->got.refcount--;
1049 break;
1050
1051 case R_XTENSA_PLT:
1052 if (h == NULL)
1053 goto local_literal;
1054 if (h->plt.refcount > 0)
1055 h->plt.refcount--;
1056 break;
1057
1058 local_literal:
1059 if (local_got_refcounts[r_symndx] > 0)
1060 local_got_refcounts[r_symndx] -= 1;
1061 break;
1062
1063 default:
1064 break;
1065 }
1066 }
1067
1068 return TRUE;
1069}
1070
1071
1072/* Create all the dynamic sections. */
1073
1074static bfd_boolean
7fa3d080 1075elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1076{
f0e6fdb2 1077 struct elf_xtensa_link_hash_table *htab;
e901de89 1078 flagword flags, noalloc_flags;
f0e6fdb2
BW
1079
1080 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1081
1082 /* First do all the standard stuff. */
1083 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1084 return FALSE;
f0e6fdb2
BW
1085 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1086 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1087 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1088 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
e0001a05
NC
1089
1090 /* Create any extra PLT sections in case check_relocs has already
1091 been called on all the non-dynamic input files. */
f0e6fdb2 1092 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1093 return FALSE;
1094
e901de89
BW
1095 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1096 | SEC_LINKER_CREATED | SEC_READONLY);
1097 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1098
1099 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1100 if (htab->sgotplt == NULL
1101 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1102 return FALSE;
1103
1104 /* Create ".rela.got". */
f0e6fdb2
BW
1105 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1106 if (htab->srelgot == NULL
1107 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
e0001a05
NC
1108 return FALSE;
1109
e901de89 1110 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1111 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1112 if (htab->sgotloc == NULL
1113 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1114 return FALSE;
1115
e0001a05 1116 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1117 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1118 noalloc_flags);
1119 if (htab->spltlittbl == NULL
1120 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1121 return FALSE;
1122
1123 return TRUE;
1124}
1125
1126
1127static bfd_boolean
f0e6fdb2 1128add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1129{
f0e6fdb2 1130 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1131 int chunk;
1132
1133 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1134 ".got.plt" sections. */
1135 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1136 {
1137 char *sname;
1138 flagword flags;
1139 asection *s;
1140
1141 /* Stop when we find a section has already been created. */
f0e6fdb2 1142 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1143 break;
1144
1145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1146 | SEC_LINKER_CREATED | SEC_READONLY);
1147
1148 sname = (char *) bfd_malloc (10);
1149 sprintf (sname, ".plt.%u", chunk);
ba05963f 1150 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1151 if (s == NULL
e0001a05
NC
1152 || ! bfd_set_section_alignment (dynobj, s, 2))
1153 return FALSE;
1154
1155 sname = (char *) bfd_malloc (14);
1156 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1157 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1158 if (s == NULL
e0001a05
NC
1159 || ! bfd_set_section_alignment (dynobj, s, 2))
1160 return FALSE;
1161 }
1162
1163 return TRUE;
1164}
1165
1166
1167/* Adjust a symbol defined by a dynamic object and referenced by a
1168 regular object. The current definition is in some section of the
1169 dynamic object, but we're not including those sections. We have to
1170 change the definition to something the rest of the link can
1171 understand. */
1172
1173static bfd_boolean
7fa3d080
BW
1174elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1175 struct elf_link_hash_entry *h)
e0001a05
NC
1176{
1177 /* If this is a weak symbol, and there is a real definition, the
1178 processor independent code will have arranged for us to see the
1179 real definition first, and we can just use the same value. */
7fa3d080 1180 if (h->u.weakdef)
e0001a05 1181 {
f6e332e6
AM
1182 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1183 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1184 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1185 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1186 return TRUE;
1187 }
1188
1189 /* This is a reference to a symbol defined by a dynamic object. The
1190 reference must go through the GOT, so there's no need for COPY relocs,
1191 .dynbss, etc. */
1192
1193 return TRUE;
1194}
1195
1196
e0001a05 1197static bfd_boolean
f1ab2340 1198elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1199{
f1ab2340
BW
1200 struct bfd_link_info *info;
1201 struct elf_xtensa_link_hash_table *htab;
1202 bfd_boolean is_dynamic;
e0001a05 1203
f1ab2340
BW
1204 if (h->root.type == bfd_link_hash_indirect)
1205 return TRUE;
e0001a05
NC
1206
1207 if (h->root.type == bfd_link_hash_warning)
1208 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1209
f1ab2340
BW
1210 info = (struct bfd_link_info *) arg;
1211 htab = elf_xtensa_hash_table (info);
e0001a05 1212
f1ab2340 1213 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 1214
f1ab2340 1215 if (! is_dynamic)
95147441 1216 elf_xtensa_make_sym_local (info, h);
e0001a05 1217
f1ab2340
BW
1218 if (h->plt.refcount > 0)
1219 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1220
1221 if (h->got.refcount > 0)
f1ab2340 1222 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1223
1224 return TRUE;
1225}
1226
1227
1228static void
f0e6fdb2 1229elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1230{
f0e6fdb2 1231 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1232 bfd *i;
1233
f0e6fdb2
BW
1234 htab = elf_xtensa_hash_table (info);
1235
e0001a05
NC
1236 for (i = info->input_bfds; i; i = i->link_next)
1237 {
1238 bfd_signed_vma *local_got_refcounts;
1239 bfd_size_type j, cnt;
1240 Elf_Internal_Shdr *symtab_hdr;
1241
1242 local_got_refcounts = elf_local_got_refcounts (i);
1243 if (!local_got_refcounts)
1244 continue;
1245
1246 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1247 cnt = symtab_hdr->sh_info;
1248
1249 for (j = 0; j < cnt; ++j)
1250 {
1251 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1252 htab->srelgot->size += (local_got_refcounts[j]
1253 * sizeof (Elf32_External_Rela));
e0001a05
NC
1254 }
1255 }
1256}
1257
1258
1259/* Set the sizes of the dynamic sections. */
1260
1261static bfd_boolean
7fa3d080
BW
1262elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1263 struct bfd_link_info *info)
e0001a05 1264{
f0e6fdb2 1265 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1266 bfd *dynobj, *abfd;
1267 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1268 bfd_boolean relplt, relgot;
1269 int plt_entries, plt_chunks, chunk;
1270
1271 plt_entries = 0;
1272 plt_chunks = 0;
e0001a05 1273
f0e6fdb2 1274 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1275 dynobj = elf_hash_table (info)->dynobj;
1276 if (dynobj == NULL)
1277 abort ();
f0e6fdb2
BW
1278 srelgot = htab->srelgot;
1279 srelplt = htab->srelplt;
e0001a05
NC
1280
1281 if (elf_hash_table (info)->dynamic_sections_created)
1282 {
f0e6fdb2
BW
1283 BFD_ASSERT (htab->srelgot != NULL
1284 && htab->srelplt != NULL
1285 && htab->sgot != NULL
1286 && htab->spltlittbl != NULL
1287 && htab->sgotloc != NULL);
1288
e0001a05 1289 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1290 if (info->executable)
e0001a05
NC
1291 {
1292 s = bfd_get_section_by_name (dynobj, ".interp");
1293 if (s == NULL)
1294 abort ();
eea6121a 1295 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1296 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1297 }
1298
1299 /* Allocate room for one word in ".got". */
f0e6fdb2 1300 htab->sgot->size = 4;
e0001a05 1301
f1ab2340
BW
1302 /* Allocate space in ".rela.got" for literals that reference global
1303 symbols and space in ".rela.plt" for literals that have PLT
1304 entries. */
e0001a05 1305 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1306 elf_xtensa_allocate_dynrelocs,
7fa3d080 1307 (void *) info);
e0001a05 1308
e0001a05
NC
1309 /* If we are generating a shared object, we also need space in
1310 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1311 reference local symbols. */
1312 if (info->shared)
f0e6fdb2 1313 elf_xtensa_allocate_local_got_size (info);
e0001a05 1314
e0001a05
NC
1315 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1316 each PLT entry, we need the PLT code plus a 4-byte literal.
1317 For each chunk of ".plt", we also need two more 4-byte
1318 literals, two corresponding entries in ".rela.got", and an
1319 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1320 spltlittbl = htab->spltlittbl;
eea6121a 1321 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1322 plt_chunks =
1323 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1324
1325 /* Iterate over all the PLT chunks, including any extra sections
1326 created earlier because the initial count of PLT relocations
1327 was an overestimate. */
1328 for (chunk = 0;
f0e6fdb2 1329 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1330 chunk++)
1331 {
1332 int chunk_entries;
1333
f0e6fdb2
BW
1334 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1335 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1336
1337 if (chunk < plt_chunks - 1)
1338 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1339 else if (chunk == plt_chunks - 1)
1340 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1341 else
1342 chunk_entries = 0;
1343
1344 if (chunk_entries != 0)
1345 {
eea6121a
AM
1346 sgotplt->size = 4 * (chunk_entries + 2);
1347 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1348 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1349 spltlittbl->size += 8;
e0001a05
NC
1350 }
1351 else
1352 {
eea6121a
AM
1353 sgotplt->size = 0;
1354 splt->size = 0;
e0001a05
NC
1355 }
1356 }
e901de89
BW
1357
1358 /* Allocate space in ".got.loc" to match the total size of all the
1359 literal tables. */
f0e6fdb2 1360 sgotloc = htab->sgotloc;
eea6121a 1361 sgotloc->size = spltlittbl->size;
e901de89
BW
1362 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1363 {
1364 if (abfd->flags & DYNAMIC)
1365 continue;
1366 for (s = abfd->sections; s != NULL; s = s->next)
1367 {
b536dc1e
BW
1368 if (! elf_discarded_section (s)
1369 && xtensa_is_littable_section (s)
1370 && s != spltlittbl)
eea6121a 1371 sgotloc->size += s->size;
e901de89
BW
1372 }
1373 }
e0001a05
NC
1374 }
1375
1376 /* Allocate memory for dynamic sections. */
1377 relplt = FALSE;
1378 relgot = FALSE;
1379 for (s = dynobj->sections; s != NULL; s = s->next)
1380 {
1381 const char *name;
e0001a05
NC
1382
1383 if ((s->flags & SEC_LINKER_CREATED) == 0)
1384 continue;
1385
1386 /* It's OK to base decisions on the section name, because none
1387 of the dynobj section names depend upon the input files. */
1388 name = bfd_get_section_name (dynobj, s);
1389
0112cd26 1390 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1391 {
c456f082 1392 if (s->size != 0)
e0001a05 1393 {
c456f082
AM
1394 if (strcmp (name, ".rela.plt") == 0)
1395 relplt = TRUE;
1396 else if (strcmp (name, ".rela.got") == 0)
1397 relgot = TRUE;
1398
1399 /* We use the reloc_count field as a counter if we need
1400 to copy relocs into the output file. */
1401 s->reloc_count = 0;
e0001a05
NC
1402 }
1403 }
0112cd26
NC
1404 else if (! CONST_STRNEQ (name, ".plt.")
1405 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1406 && strcmp (name, ".got") != 0
e0001a05
NC
1407 && strcmp (name, ".plt") != 0
1408 && strcmp (name, ".got.plt") != 0
e901de89
BW
1409 && strcmp (name, ".xt.lit.plt") != 0
1410 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1411 {
1412 /* It's not one of our sections, so don't allocate space. */
1413 continue;
1414 }
1415
c456f082
AM
1416 if (s->size == 0)
1417 {
1418 /* If we don't need this section, strip it from the output
1419 file. We must create the ".plt*" and ".got.plt*"
1420 sections in create_dynamic_sections and/or check_relocs
1421 based on a conservative estimate of the PLT relocation
1422 count, because the sections must be created before the
1423 linker maps input sections to output sections. The
1424 linker does that before size_dynamic_sections, where we
1425 compute the exact size of the PLT, so there may be more
1426 of these sections than are actually needed. */
1427 s->flags |= SEC_EXCLUDE;
1428 }
1429 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1430 {
1431 /* Allocate memory for the section contents. */
eea6121a 1432 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1433 if (s->contents == NULL)
e0001a05
NC
1434 return FALSE;
1435 }
1436 }
1437
1438 if (elf_hash_table (info)->dynamic_sections_created)
1439 {
1440 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1441 known until finish_dynamic_sections, but we need to get the relocs
1442 in place before they are sorted. */
e0001a05
NC
1443 for (chunk = 0; chunk < plt_chunks; chunk++)
1444 {
1445 Elf_Internal_Rela irela;
1446 bfd_byte *loc;
1447
1448 irela.r_offset = 0;
1449 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1450 irela.r_addend = 0;
1451
1452 loc = (srelgot->contents
1453 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1454 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1455 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1456 loc + sizeof (Elf32_External_Rela));
1457 srelgot->reloc_count += 2;
1458 }
1459
1460 /* Add some entries to the .dynamic section. We fill in the
1461 values later, in elf_xtensa_finish_dynamic_sections, but we
1462 must add the entries now so that we get the correct size for
1463 the .dynamic section. The DT_DEBUG entry is filled in by the
1464 dynamic linker and used by the debugger. */
1465#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1466 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1467
ba05963f 1468 if (info->executable)
e0001a05
NC
1469 {
1470 if (!add_dynamic_entry (DT_DEBUG, 0))
1471 return FALSE;
1472 }
1473
1474 if (relplt)
1475 {
c243ad3b 1476 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1477 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1478 || !add_dynamic_entry (DT_JMPREL, 0))
1479 return FALSE;
1480 }
1481
1482 if (relgot)
1483 {
1484 if (!add_dynamic_entry (DT_RELA, 0)
1485 || !add_dynamic_entry (DT_RELASZ, 0)
1486 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1487 return FALSE;
1488 }
1489
c243ad3b
BW
1490 if (!add_dynamic_entry (DT_PLTGOT, 0)
1491 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1492 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1493 return FALSE;
1494 }
1495#undef add_dynamic_entry
1496
1497 return TRUE;
1498}
1499
e0001a05
NC
1500\f
1501/* Perform the specified relocation. The instruction at (contents + address)
1502 is modified to set one operand to represent the value in "relocation". The
1503 operand position is determined by the relocation type recorded in the
1504 howto. */
1505
1506#define CALL_SEGMENT_BITS (30)
7fa3d080 1507#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1508
1509static bfd_reloc_status_type
7fa3d080
BW
1510elf_xtensa_do_reloc (reloc_howto_type *howto,
1511 bfd *abfd,
1512 asection *input_section,
1513 bfd_vma relocation,
1514 bfd_byte *contents,
1515 bfd_vma address,
1516 bfd_boolean is_weak_undef,
1517 char **error_message)
e0001a05 1518{
43cd72b9 1519 xtensa_format fmt;
e0001a05 1520 xtensa_opcode opcode;
e0001a05 1521 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1522 static xtensa_insnbuf ibuff = NULL;
1523 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1524 bfd_vma self_address;
43cd72b9
BW
1525 bfd_size_type input_size;
1526 int opnd, slot;
e0001a05
NC
1527 uint32 newval;
1528
43cd72b9
BW
1529 if (!ibuff)
1530 {
1531 ibuff = xtensa_insnbuf_alloc (isa);
1532 sbuff = xtensa_insnbuf_alloc (isa);
1533 }
1534
1535 input_size = bfd_get_section_limit (abfd, input_section);
1536
1bbb5f21
BW
1537 /* Calculate the PC address for this instruction. */
1538 self_address = (input_section->output_section->vma
1539 + input_section->output_offset
1540 + address);
1541
e0001a05
NC
1542 switch (howto->type)
1543 {
1544 case R_XTENSA_NONE:
43cd72b9
BW
1545 case R_XTENSA_DIFF8:
1546 case R_XTENSA_DIFF16:
1547 case R_XTENSA_DIFF32:
e0001a05
NC
1548 return bfd_reloc_ok;
1549
1550 case R_XTENSA_ASM_EXPAND:
1551 if (!is_weak_undef)
1552 {
1553 /* Check for windowed CALL across a 1GB boundary. */
1554 xtensa_opcode opcode =
1555 get_expanded_call_opcode (contents + address,
43cd72b9 1556 input_size - address, 0);
e0001a05
NC
1557 if (is_windowed_call_opcode (opcode))
1558 {
43cd72b9
BW
1559 if ((self_address >> CALL_SEGMENT_BITS)
1560 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1561 {
1562 *error_message = "windowed longcall crosses 1GB boundary; "
1563 "return may fail";
1564 return bfd_reloc_dangerous;
1565 }
1566 }
1567 }
1568 return bfd_reloc_ok;
1569
1570 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1571 {
e0001a05 1572 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1573 bfd_reloc_status_type retval =
1574 elf_xtensa_do_asm_simplify (contents, address, input_size,
1575 error_message);
e0001a05 1576 if (retval != bfd_reloc_ok)
43cd72b9 1577 return bfd_reloc_dangerous;
e0001a05
NC
1578
1579 /* The CALL needs to be relocated. Continue below for that part. */
1580 address += 3;
c46082c8 1581 self_address += 3;
43cd72b9 1582 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1583 }
1584 break;
1585
1586 case R_XTENSA_32:
1587 case R_XTENSA_PLT:
1588 {
1589 bfd_vma x;
1590 x = bfd_get_32 (abfd, contents + address);
1591 x = x + relocation;
1592 bfd_put_32 (abfd, x, contents + address);
1593 }
1594 return bfd_reloc_ok;
1bbb5f21
BW
1595
1596 case R_XTENSA_32_PCREL:
1597 bfd_put_32 (abfd, relocation - self_address, contents + address);
1598 return bfd_reloc_ok;
e0001a05
NC
1599 }
1600
43cd72b9
BW
1601 /* Only instruction slot-specific relocations handled below.... */
1602 slot = get_relocation_slot (howto->type);
1603 if (slot == XTENSA_UNDEFINED)
e0001a05 1604 {
43cd72b9 1605 *error_message = "unexpected relocation";
e0001a05
NC
1606 return bfd_reloc_dangerous;
1607 }
1608
43cd72b9
BW
1609 /* Read the instruction into a buffer and decode the opcode. */
1610 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1611 input_size - address);
1612 fmt = xtensa_format_decode (isa, ibuff);
1613 if (fmt == XTENSA_UNDEFINED)
e0001a05 1614 {
43cd72b9 1615 *error_message = "cannot decode instruction format";
e0001a05
NC
1616 return bfd_reloc_dangerous;
1617 }
1618
43cd72b9 1619 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1620
43cd72b9
BW
1621 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1622 if (opcode == XTENSA_UNDEFINED)
e0001a05 1623 {
43cd72b9 1624 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1625 return bfd_reloc_dangerous;
1626 }
1627
43cd72b9
BW
1628 /* Check for opcode-specific "alternate" relocations. */
1629 if (is_alt_relocation (howto->type))
1630 {
1631 if (opcode == get_l32r_opcode ())
1632 {
1633 /* Handle the special-case of non-PC-relative L32R instructions. */
1634 bfd *output_bfd = input_section->output_section->owner;
1635 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1636 if (!lit4_sec)
1637 {
1638 *error_message = "relocation references missing .lit4 section";
1639 return bfd_reloc_dangerous;
1640 }
1641 self_address = ((lit4_sec->vma & ~0xfff)
1642 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1643 newval = relocation;
1644 opnd = 1;
1645 }
1646 else if (opcode == get_const16_opcode ())
1647 {
1648 /* ALT used for high 16 bits. */
1649 newval = relocation >> 16;
1650 opnd = 1;
1651 }
1652 else
1653 {
1654 /* No other "alternate" relocations currently defined. */
1655 *error_message = "unexpected relocation";
1656 return bfd_reloc_dangerous;
1657 }
1658 }
1659 else /* Not an "alternate" relocation.... */
1660 {
1661 if (opcode == get_const16_opcode ())
1662 {
1663 newval = relocation & 0xffff;
1664 opnd = 1;
1665 }
1666 else
1667 {
1668 /* ...normal PC-relative relocation.... */
1669
1670 /* Determine which operand is being relocated. */
1671 opnd = get_relocation_opnd (opcode, howto->type);
1672 if (opnd == XTENSA_UNDEFINED)
1673 {
1674 *error_message = "unexpected relocation";
1675 return bfd_reloc_dangerous;
1676 }
1677
1678 if (!howto->pc_relative)
1679 {
1680 *error_message = "expected PC-relative relocation";
1681 return bfd_reloc_dangerous;
1682 }
e0001a05 1683
43cd72b9
BW
1684 newval = relocation;
1685 }
1686 }
e0001a05 1687
43cd72b9
BW
1688 /* Apply the relocation. */
1689 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1690 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1691 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1692 sbuff, newval))
e0001a05 1693 {
2db662be
BW
1694 const char *opname = xtensa_opcode_name (isa, opcode);
1695 const char *msg;
1696
1697 msg = "cannot encode";
1698 if (is_direct_call_opcode (opcode))
1699 {
1700 if ((relocation & 0x3) != 0)
1701 msg = "misaligned call target";
1702 else
1703 msg = "call target out of range";
1704 }
1705 else if (opcode == get_l32r_opcode ())
1706 {
1707 if ((relocation & 0x3) != 0)
1708 msg = "misaligned literal target";
1709 else if (is_alt_relocation (howto->type))
1710 msg = "literal target out of range (too many literals)";
1711 else if (self_address > relocation)
1712 msg = "literal target out of range (try using text-section-literals)";
1713 else
1714 msg = "literal placed after use";
1715 }
1716
1717 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
1718 return bfd_reloc_dangerous;
1719 }
1720
43cd72b9 1721 /* Check for calls across 1GB boundaries. */
e0001a05
NC
1722 if (is_direct_call_opcode (opcode)
1723 && is_windowed_call_opcode (opcode))
1724 {
43cd72b9
BW
1725 if ((self_address >> CALL_SEGMENT_BITS)
1726 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 1727 {
43cd72b9
BW
1728 *error_message =
1729 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
1730 return bfd_reloc_dangerous;
1731 }
1732 }
1733
43cd72b9
BW
1734 /* Write the modified instruction back out of the buffer. */
1735 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1736 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1737 input_size - address);
e0001a05
NC
1738 return bfd_reloc_ok;
1739}
1740
1741
2db662be 1742static char *
7fa3d080 1743vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
1744{
1745 /* To reduce the size of the memory leak,
1746 we only use a single message buffer. */
1747 static bfd_size_type alloc_size = 0;
1748 static char *message = NULL;
1749 bfd_size_type orig_len, len = 0;
1750 bfd_boolean is_append;
1751
1752 VA_OPEN (ap, arglen);
1753 VA_FIXEDARG (ap, const char *, origmsg);
1754
1755 is_append = (origmsg == message);
1756
1757 orig_len = strlen (origmsg);
1758 len = orig_len + strlen (fmt) + arglen + 20;
1759 if (len > alloc_size)
1760 {
515ef31d 1761 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
1762 alloc_size = len;
1763 }
515ef31d
NC
1764 if (message != NULL)
1765 {
1766 if (!is_append)
1767 memcpy (message, origmsg, orig_len);
1768 vsprintf (message + orig_len, fmt, ap);
1769 }
e0001a05
NC
1770 VA_CLOSE (ap);
1771 return message;
1772}
1773
1774
e0001a05
NC
1775/* This function is registered as the "special_function" in the
1776 Xtensa howto for handling simplify operations.
1777 bfd_perform_relocation / bfd_install_relocation use it to
1778 perform (install) the specified relocation. Since this replaces the code
1779 in bfd_perform_relocation, it is basically an Xtensa-specific,
1780 stripped-down version of bfd_perform_relocation. */
1781
1782static bfd_reloc_status_type
7fa3d080
BW
1783bfd_elf_xtensa_reloc (bfd *abfd,
1784 arelent *reloc_entry,
1785 asymbol *symbol,
1786 void *data,
1787 asection *input_section,
1788 bfd *output_bfd,
1789 char **error_message)
e0001a05
NC
1790{
1791 bfd_vma relocation;
1792 bfd_reloc_status_type flag;
1793 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1794 bfd_vma output_base = 0;
1795 reloc_howto_type *howto = reloc_entry->howto;
1796 asection *reloc_target_output_section;
1797 bfd_boolean is_weak_undef;
1798
dd1a320b
BW
1799 if (!xtensa_default_isa)
1800 xtensa_default_isa = xtensa_isa_init (0, 0);
1801
1049f94e 1802 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
1803 output, and the reloc is against an external symbol, the resulting
1804 reloc will also be against the same symbol. In such a case, we
1805 don't want to change anything about the way the reloc is handled,
1806 since it will all be done at final link time. This test is similar
1807 to what bfd_elf_generic_reloc does except that it lets relocs with
1808 howto->partial_inplace go through even if the addend is non-zero.
1809 (The real problem is that partial_inplace is set for XTENSA_32
1810 relocs to begin with, but that's a long story and there's little we
1811 can do about it now....) */
1812
7fa3d080 1813 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
1814 {
1815 reloc_entry->address += input_section->output_offset;
1816 return bfd_reloc_ok;
1817 }
1818
1819 /* Is the address of the relocation really within the section? */
07515404 1820 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
1821 return bfd_reloc_outofrange;
1822
4cc11e76 1823 /* Work out which section the relocation is targeted at and the
e0001a05
NC
1824 initial relocation command value. */
1825
1826 /* Get symbol value. (Common symbols are special.) */
1827 if (bfd_is_com_section (symbol->section))
1828 relocation = 0;
1829 else
1830 relocation = symbol->value;
1831
1832 reloc_target_output_section = symbol->section->output_section;
1833
1834 /* Convert input-section-relative symbol value to absolute. */
1835 if ((output_bfd && !howto->partial_inplace)
1836 || reloc_target_output_section == NULL)
1837 output_base = 0;
1838 else
1839 output_base = reloc_target_output_section->vma;
1840
1841 relocation += output_base + symbol->section->output_offset;
1842
1843 /* Add in supplied addend. */
1844 relocation += reloc_entry->addend;
1845
1846 /* Here the variable relocation holds the final address of the
1847 symbol we are relocating against, plus any addend. */
1848 if (output_bfd)
1849 {
1850 if (!howto->partial_inplace)
1851 {
1852 /* This is a partial relocation, and we want to apply the relocation
1853 to the reloc entry rather than the raw data. Everything except
1854 relocations against section symbols has already been handled
1855 above. */
43cd72b9 1856
e0001a05
NC
1857 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1858 reloc_entry->addend = relocation;
1859 reloc_entry->address += input_section->output_offset;
1860 return bfd_reloc_ok;
1861 }
1862 else
1863 {
1864 reloc_entry->address += input_section->output_offset;
1865 reloc_entry->addend = 0;
1866 }
1867 }
1868
1869 is_weak_undef = (bfd_is_und_section (symbol->section)
1870 && (symbol->flags & BSF_WEAK) != 0);
1871 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1872 (bfd_byte *) data, (bfd_vma) octets,
1873 is_weak_undef, error_message);
1874
1875 if (flag == bfd_reloc_dangerous)
1876 {
1877 /* Add the symbol name to the error message. */
1878 if (! *error_message)
1879 *error_message = "";
1880 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1881 strlen (symbol->name) + 17,
70961b9d
AM
1882 symbol->name,
1883 (unsigned long) reloc_entry->addend);
e0001a05
NC
1884 }
1885
1886 return flag;
1887}
1888
1889
1890/* Set up an entry in the procedure linkage table. */
1891
1892static bfd_vma
f0e6fdb2 1893elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
1894 bfd *output_bfd,
1895 unsigned reloc_index)
e0001a05
NC
1896{
1897 asection *splt, *sgotplt;
1898 bfd_vma plt_base, got_base;
1899 bfd_vma code_offset, lit_offset;
1900 int chunk;
1901
1902 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
1903 splt = elf_xtensa_get_plt_section (info, chunk);
1904 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
1905 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1906
1907 plt_base = splt->output_section->vma + splt->output_offset;
1908 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1909
1910 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1911 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1912
1913 /* Fill in the literal entry. This is the offset of the dynamic
1914 relocation entry. */
1915 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1916 sgotplt->contents + lit_offset);
1917
1918 /* Fill in the entry in the procedure linkage table. */
1919 memcpy (splt->contents + code_offset,
1920 (bfd_big_endian (output_bfd)
1921 ? elf_xtensa_be_plt_entry
1922 : elf_xtensa_le_plt_entry),
1923 PLT_ENTRY_SIZE);
1924 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1925 plt_base + code_offset + 3),
1926 splt->contents + code_offset + 4);
1927 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1928 plt_base + code_offset + 6),
1929 splt->contents + code_offset + 7);
1930 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1931 plt_base + code_offset + 9),
1932 splt->contents + code_offset + 10);
1933
1934 return plt_base + code_offset;
1935}
1936
1937
e0001a05 1938/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 1939 both relocatable and final links. */
e0001a05
NC
1940
1941static bfd_boolean
7fa3d080
BW
1942elf_xtensa_relocate_section (bfd *output_bfd,
1943 struct bfd_link_info *info,
1944 bfd *input_bfd,
1945 asection *input_section,
1946 bfd_byte *contents,
1947 Elf_Internal_Rela *relocs,
1948 Elf_Internal_Sym *local_syms,
1949 asection **local_sections)
e0001a05 1950{
f0e6fdb2 1951 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1952 Elf_Internal_Shdr *symtab_hdr;
1953 Elf_Internal_Rela *rel;
1954 Elf_Internal_Rela *relend;
1955 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
1956 property_table_entry *lit_table = 0;
1957 int ltblsize = 0;
e0001a05 1958 char *error_message = NULL;
43cd72b9 1959 bfd_size_type input_size;
e0001a05 1960
43cd72b9
BW
1961 if (!xtensa_default_isa)
1962 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 1963
f0e6fdb2 1964 htab = elf_xtensa_hash_table (info);
e0001a05
NC
1965 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1966 sym_hashes = elf_sym_hashes (input_bfd);
1967
88d65ad6
BW
1968 if (elf_hash_table (info)->dynamic_sections_created)
1969 {
1970 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
1971 &lit_table, XTENSA_LIT_SEC_NAME,
1972 TRUE);
88d65ad6
BW
1973 if (ltblsize < 0)
1974 return FALSE;
1975 }
1976
43cd72b9
BW
1977 input_size = bfd_get_section_limit (input_bfd, input_section);
1978
e0001a05
NC
1979 rel = relocs;
1980 relend = relocs + input_section->reloc_count;
1981 for (; rel < relend; rel++)
1982 {
1983 int r_type;
1984 reloc_howto_type *howto;
1985 unsigned long r_symndx;
1986 struct elf_link_hash_entry *h;
1987 Elf_Internal_Sym *sym;
1988 asection *sec;
1989 bfd_vma relocation;
1990 bfd_reloc_status_type r;
1991 bfd_boolean is_weak_undef;
1992 bfd_boolean unresolved_reloc;
9b8c98a4 1993 bfd_boolean warned;
e0001a05
NC
1994
1995 r_type = ELF32_R_TYPE (rel->r_info);
1996 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
1997 || r_type == (int) R_XTENSA_GNU_VTENTRY)
1998 continue;
1999
2000 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2001 {
2002 bfd_set_error (bfd_error_bad_value);
2003 return FALSE;
2004 }
2005 howto = &elf_howto_table[r_type];
2006
2007 r_symndx = ELF32_R_SYM (rel->r_info);
2008
ab96bf03
AM
2009 h = NULL;
2010 sym = NULL;
2011 sec = NULL;
2012 is_weak_undef = FALSE;
2013 unresolved_reloc = FALSE;
2014 warned = FALSE;
2015
2016 if (howto->partial_inplace && !info->relocatable)
2017 {
2018 /* Because R_XTENSA_32 was made partial_inplace to fix some
2019 problems with DWARF info in partial links, there may be
2020 an addend stored in the contents. Take it out of there
2021 and move it back into the addend field of the reloc. */
2022 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2023 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2024 }
2025
2026 if (r_symndx < symtab_hdr->sh_info)
2027 {
2028 sym = local_syms + r_symndx;
2029 sec = local_sections[r_symndx];
2030 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2031 }
2032 else
2033 {
2034 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2035 r_symndx, symtab_hdr, sym_hashes,
2036 h, sec, relocation,
2037 unresolved_reloc, warned);
2038
2039 if (relocation == 0
2040 && !unresolved_reloc
2041 && h->root.type == bfd_link_hash_undefweak)
2042 is_weak_undef = TRUE;
2043 }
2044
2045 if (sec != NULL && elf_discarded_section (sec))
2046 {
2047 /* For relocs against symbols from removed linkonce sections,
2048 or sections discarded by a linker script, we just want the
2049 section contents zeroed. Avoid any special processing. */
2050 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2051 rel->r_info = 0;
2052 rel->r_addend = 0;
2053 continue;
2054 }
2055
1049f94e 2056 if (info->relocatable)
e0001a05 2057 {
43cd72b9 2058 /* This is a relocatable link.
e0001a05
NC
2059 1) If the reloc is against a section symbol, adjust
2060 according to the output section.
2061 2) If there is a new target for this relocation,
2062 the new target will be in the same output section.
2063 We adjust the relocation by the output section
2064 difference. */
2065
2066 if (relaxing_section)
2067 {
2068 /* Check if this references a section in another input file. */
43cd72b9
BW
2069 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2070 contents))
2071 return FALSE;
e0001a05
NC
2072 }
2073
43cd72b9 2074 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2075 {
43cd72b9 2076 char *error_message = NULL;
e0001a05
NC
2077 /* Convert ASM_SIMPLIFY into the simpler relocation
2078 so that they never escape a relaxing link. */
43cd72b9
BW
2079 r = contract_asm_expansion (contents, input_size, rel,
2080 &error_message);
2081 if (r != bfd_reloc_ok)
2082 {
2083 if (!((*info->callbacks->reloc_dangerous)
2084 (info, error_message, input_bfd, input_section,
2085 rel->r_offset)))
2086 return FALSE;
2087 }
e0001a05
NC
2088 r_type = ELF32_R_TYPE (rel->r_info);
2089 }
2090
1049f94e 2091 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2092 anything unless the reloc is against a section symbol,
2093 in which case we have to adjust according to where the
2094 section symbol winds up in the output section. */
2095 if (r_symndx < symtab_hdr->sh_info)
2096 {
2097 sym = local_syms + r_symndx;
2098 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2099 {
2100 sec = local_sections[r_symndx];
2101 rel->r_addend += sec->output_offset + sym->st_value;
2102 }
2103 }
2104
2105 /* If there is an addend with a partial_inplace howto,
2106 then move the addend to the contents. This is a hack
1049f94e 2107 to work around problems with DWARF in relocatable links
e0001a05
NC
2108 with some previous version of BFD. Now we can't easily get
2109 rid of the hack without breaking backward compatibility.... */
2110 if (rel->r_addend)
2111 {
2112 howto = &elf_howto_table[r_type];
2113 if (howto->partial_inplace)
2114 {
2115 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2116 rel->r_addend, contents,
2117 rel->r_offset, FALSE,
2118 &error_message);
2119 if (r != bfd_reloc_ok)
2120 {
2121 if (!((*info->callbacks->reloc_dangerous)
2122 (info, error_message, input_bfd, input_section,
2123 rel->r_offset)))
2124 return FALSE;
2125 }
2126 rel->r_addend = 0;
2127 }
2128 }
2129
1049f94e 2130 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2131 continue;
2132 }
2133
2134 /* This is a final link. */
2135
e0001a05
NC
2136 if (relaxing_section)
2137 {
2138 /* Check if this references a section in another input file. */
43cd72b9
BW
2139 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2140 &relocation);
e0001a05
NC
2141 }
2142
2143 /* Sanity check the address. */
43cd72b9 2144 if (rel->r_offset >= input_size
e0001a05
NC
2145 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2146 {
43cd72b9
BW
2147 (*_bfd_error_handler)
2148 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2149 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2150 bfd_set_error (bfd_error_bad_value);
2151 return FALSE;
2152 }
2153
2154 /* Generate dynamic relocations. */
2155 if (elf_hash_table (info)->dynamic_sections_created)
2156 {
4608f3d9 2157 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05 2158
1bbb5f21
BW
2159 if (dynamic_symbol && (is_operand_relocation (r_type)
2160 || r_type == R_XTENSA_32_PCREL))
e0001a05 2161 {
e0001a05 2162 const char *name = h->root.root.string;
1bbb5f21
BW
2163 error_message =
2164 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2165 strlen (name) + 2, name);
e0001a05
NC
2166 if (!((*info->callbacks->reloc_dangerous)
2167 (info, error_message, input_bfd, input_section,
2168 rel->r_offset)))
2169 return FALSE;
d9ab3f29 2170 continue;
e0001a05
NC
2171 }
2172 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2173 && (input_section->flags & SEC_ALLOC) != 0
2174 && (dynamic_symbol || info->shared))
2175 {
2176 Elf_Internal_Rela outrel;
2177 bfd_byte *loc;
2178 asection *srel;
2179
2180 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2181 srel = htab->srelplt;
e0001a05 2182 else
f0e6fdb2 2183 srel = htab->srelgot;
e0001a05
NC
2184
2185 BFD_ASSERT (srel != NULL);
2186
2187 outrel.r_offset =
2188 _bfd_elf_section_offset (output_bfd, info,
2189 input_section, rel->r_offset);
2190
2191 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2192 memset (&outrel, 0, sizeof outrel);
2193 else
2194 {
f0578e28
BW
2195 outrel.r_offset += (input_section->output_section->vma
2196 + input_section->output_offset);
e0001a05 2197
88d65ad6
BW
2198 /* Complain if the relocation is in a read-only section
2199 and not in a literal pool. */
2200 if ((input_section->flags & SEC_READONLY) != 0
2201 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2202 outrel.r_offset))
88d65ad6
BW
2203 {
2204 error_message =
2205 _("dynamic relocation in read-only section");
2206 if (!((*info->callbacks->reloc_dangerous)
2207 (info, error_message, input_bfd, input_section,
2208 rel->r_offset)))
2209 return FALSE;
2210 }
2211
e0001a05
NC
2212 if (dynamic_symbol)
2213 {
2214 outrel.r_addend = rel->r_addend;
2215 rel->r_addend = 0;
2216
2217 if (r_type == R_XTENSA_32)
2218 {
2219 outrel.r_info =
2220 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2221 relocation = 0;
2222 }
2223 else /* r_type == R_XTENSA_PLT */
2224 {
2225 outrel.r_info =
2226 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2227
2228 /* Create the PLT entry and set the initial
2229 contents of the literal entry to the address of
2230 the PLT entry. */
43cd72b9 2231 relocation =
f0e6fdb2 2232 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2233 srel->reloc_count);
2234 }
2235 unresolved_reloc = FALSE;
2236 }
2237 else
2238 {
2239 /* Generate a RELATIVE relocation. */
2240 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2241 outrel.r_addend = 0;
2242 }
2243 }
2244
2245 loc = (srel->contents
2246 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2247 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2248 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2249 <= srel->size);
e0001a05 2250 }
d9ab3f29
BW
2251 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2252 {
2253 /* This should only happen for non-PIC code, which is not
2254 supposed to be used on systems with dynamic linking.
2255 Just ignore these relocations. */
2256 continue;
2257 }
e0001a05
NC
2258 }
2259
2260 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2261 because such sections are not SEC_ALLOC and thus ld.so will
2262 not process them. */
2263 if (unresolved_reloc
2264 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 2265 && h->def_dynamic))
bf1747de
BW
2266 {
2267 (*_bfd_error_handler)
2268 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2269 input_bfd,
2270 input_section,
2271 (long) rel->r_offset,
2272 howto->name,
2273 h->root.root.string);
2274 return FALSE;
2275 }
e0001a05
NC
2276
2277 /* There's no point in calling bfd_perform_relocation here.
2278 Just go directly to our "special function". */
2279 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2280 relocation + rel->r_addend,
2281 contents, rel->r_offset, is_weak_undef,
2282 &error_message);
43cd72b9 2283
9b8c98a4 2284 if (r != bfd_reloc_ok && !warned)
e0001a05
NC
2285 {
2286 const char *name;
2287
43cd72b9 2288 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2289 BFD_ASSERT (error_message != NULL);
e0001a05 2290
7fa3d080 2291 if (h)
e0001a05
NC
2292 name = h->root.root.string;
2293 else
2294 {
2295 name = bfd_elf_string_from_elf_section
2296 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2297 if (name && *name == '\0')
2298 name = bfd_section_name (input_bfd, sec);
2299 }
2300 if (name)
43cd72b9
BW
2301 {
2302 if (rel->r_addend == 0)
2303 error_message = vsprint_msg (error_message, ": %s",
2304 strlen (name) + 2, name);
2305 else
2306 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2307 strlen (name) + 22,
0fd3a477 2308 name, (int)rel->r_addend);
43cd72b9
BW
2309 }
2310
e0001a05
NC
2311 if (!((*info->callbacks->reloc_dangerous)
2312 (info, error_message, input_bfd, input_section,
2313 rel->r_offset)))
2314 return FALSE;
2315 }
2316 }
2317
88d65ad6
BW
2318 if (lit_table)
2319 free (lit_table);
2320
3ba3bc8c
BW
2321 input_section->reloc_done = TRUE;
2322
e0001a05
NC
2323 return TRUE;
2324}
2325
2326
2327/* Finish up dynamic symbol handling. There's not much to do here since
2328 the PLT and GOT entries are all set up by relocate_section. */
2329
2330static bfd_boolean
7fa3d080
BW
2331elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2332 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2333 struct elf_link_hash_entry *h,
2334 Elf_Internal_Sym *sym)
e0001a05 2335{
bf1747de 2336 if (h->needs_plt && !h->def_regular)
e0001a05
NC
2337 {
2338 /* Mark the symbol as undefined, rather than as defined in
2339 the .plt section. Leave the value alone. */
2340 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
2341 /* If the symbol is weak, we do need to clear the value.
2342 Otherwise, the PLT entry would provide a definition for
2343 the symbol even if the symbol wasn't defined anywhere,
2344 and so the symbol would never be NULL. */
2345 if (!h->ref_regular_nonweak)
2346 sym->st_value = 0;
e0001a05
NC
2347 }
2348
2349 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2350 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 2351 || h == elf_hash_table (info)->hgot)
e0001a05
NC
2352 sym->st_shndx = SHN_ABS;
2353
2354 return TRUE;
2355}
2356
2357
2358/* Combine adjacent literal table entries in the output. Adjacent
2359 entries within each input section may have been removed during
2360 relaxation, but we repeat the process here, even though it's too late
2361 to shrink the output section, because it's important to minimize the
2362 number of literal table entries to reduce the start-up work for the
2363 runtime linker. Returns the number of remaining table entries or -1
2364 on error. */
2365
2366static int
7fa3d080
BW
2367elf_xtensa_combine_prop_entries (bfd *output_bfd,
2368 asection *sxtlit,
2369 asection *sgotloc)
e0001a05 2370{
e0001a05
NC
2371 bfd_byte *contents;
2372 property_table_entry *table;
e901de89 2373 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
2374 bfd_vma offset;
2375 int n, m, num;
2376
eea6121a 2377 section_size = sxtlit->size;
e0001a05
NC
2378 BFD_ASSERT (section_size % 8 == 0);
2379 num = section_size / 8;
2380
eea6121a 2381 sgotloc_size = sgotloc->size;
e901de89 2382 if (sgotloc_size != section_size)
b536dc1e
BW
2383 {
2384 (*_bfd_error_handler)
43cd72b9 2385 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
2386 return -1;
2387 }
e901de89 2388
eea6121a
AM
2389 table = bfd_malloc (num * sizeof (property_table_entry));
2390 if (table == 0)
e0001a05
NC
2391 return -1;
2392
2393 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2394 propagates to the output section, where it doesn't really apply and
eea6121a 2395 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 2396 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 2397
eea6121a
AM
2398 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2399 {
2400 if (contents != 0)
2401 free (contents);
2402 free (table);
2403 return -1;
2404 }
e0001a05
NC
2405
2406 /* There should never be any relocations left at this point, so this
2407 is quite a bit easier than what is done during relaxation. */
2408
2409 /* Copy the raw contents into a property table array and sort it. */
2410 offset = 0;
2411 for (n = 0; n < num; n++)
2412 {
2413 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2414 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2415 offset += 8;
2416 }
2417 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2418
2419 for (n = 0; n < num; n++)
2420 {
2421 bfd_boolean remove = FALSE;
2422
2423 if (table[n].size == 0)
2424 remove = TRUE;
2425 else if (n > 0 &&
2426 (table[n-1].address + table[n-1].size == table[n].address))
2427 {
2428 table[n-1].size += table[n].size;
2429 remove = TRUE;
2430 }
2431
2432 if (remove)
2433 {
2434 for (m = n; m < num - 1; m++)
2435 {
2436 table[m].address = table[m+1].address;
2437 table[m].size = table[m+1].size;
2438 }
2439
2440 n--;
2441 num--;
2442 }
2443 }
2444
2445 /* Copy the data back to the raw contents. */
2446 offset = 0;
2447 for (n = 0; n < num; n++)
2448 {
2449 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2450 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2451 offset += 8;
2452 }
2453
2454 /* Clear the removed bytes. */
2455 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 2456 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 2457
e901de89
BW
2458 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2459 section_size))
e0001a05
NC
2460 return -1;
2461
e901de89
BW
2462 /* Copy the contents to ".got.loc". */
2463 memcpy (sgotloc->contents, contents, section_size);
2464
e0001a05 2465 free (contents);
b614a702 2466 free (table);
e0001a05
NC
2467 return num;
2468}
2469
2470
2471/* Finish up the dynamic sections. */
2472
2473static bfd_boolean
7fa3d080
BW
2474elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2475 struct bfd_link_info *info)
e0001a05 2476{
f0e6fdb2 2477 struct elf_xtensa_link_hash_table *htab;
e0001a05 2478 bfd *dynobj;
e901de89 2479 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 2480 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 2481 int num_xtlit_entries = 0;
e0001a05
NC
2482
2483 if (! elf_hash_table (info)->dynamic_sections_created)
2484 return TRUE;
2485
f0e6fdb2 2486 htab = elf_xtensa_hash_table (info);
e0001a05
NC
2487 dynobj = elf_hash_table (info)->dynobj;
2488 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2489 BFD_ASSERT (sdyn != NULL);
2490
2491 /* Set the first entry in the global offset table to the address of
2492 the dynamic section. */
f0e6fdb2 2493 sgot = htab->sgot;
e0001a05
NC
2494 if (sgot)
2495 {
eea6121a 2496 BFD_ASSERT (sgot->size == 4);
e0001a05 2497 if (sdyn == NULL)
7fa3d080 2498 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
2499 else
2500 bfd_put_32 (output_bfd,
2501 sdyn->output_section->vma + sdyn->output_offset,
2502 sgot->contents);
2503 }
2504
f0e6fdb2 2505 srelplt = htab->srelplt;
7fa3d080 2506 if (srelplt && srelplt->size != 0)
e0001a05
NC
2507 {
2508 asection *sgotplt, *srelgot, *spltlittbl;
2509 int chunk, plt_chunks, plt_entries;
2510 Elf_Internal_Rela irela;
2511 bfd_byte *loc;
2512 unsigned rtld_reloc;
2513
f0e6fdb2
BW
2514 srelgot = htab->srelgot;
2515 spltlittbl = htab->spltlittbl;
2516 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
2517
2518 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2519 of them follow immediately after.... */
2520 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2521 {
2522 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2523 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2524 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2525 break;
2526 }
2527 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2528
eea6121a 2529 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
2530 plt_chunks =
2531 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2532
2533 for (chunk = 0; chunk < plt_chunks; chunk++)
2534 {
2535 int chunk_entries = 0;
2536
f0e6fdb2 2537 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2538 BFD_ASSERT (sgotplt != NULL);
2539
2540 /* Emit special RTLD relocations for the first two entries in
2541 each chunk of the .got.plt section. */
2542
2543 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2544 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2545 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2546 irela.r_offset = (sgotplt->output_section->vma
2547 + sgotplt->output_offset);
2548 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2549 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2550 rtld_reloc += 1;
2551 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2552
2553 /* Next literal immediately follows the first. */
2554 loc += sizeof (Elf32_External_Rela);
2555 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2556 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2557 irela.r_offset = (sgotplt->output_section->vma
2558 + sgotplt->output_offset + 4);
2559 /* Tell rtld to set value to object's link map. */
2560 irela.r_addend = 2;
2561 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2562 rtld_reloc += 1;
2563 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2564
2565 /* Fill in the literal table. */
2566 if (chunk < plt_chunks - 1)
2567 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2568 else
2569 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2570
eea6121a 2571 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
2572 bfd_put_32 (output_bfd,
2573 sgotplt->output_section->vma + sgotplt->output_offset,
2574 spltlittbl->contents + (chunk * 8) + 0);
2575 bfd_put_32 (output_bfd,
2576 8 + (chunk_entries * 4),
2577 spltlittbl->contents + (chunk * 8) + 4);
2578 }
2579
2580 /* All the dynamic relocations have been emitted at this point.
2581 Make sure the relocation sections are the correct size. */
eea6121a
AM
2582 if (srelgot->size != (sizeof (Elf32_External_Rela)
2583 * srelgot->reloc_count)
2584 || srelplt->size != (sizeof (Elf32_External_Rela)
2585 * srelplt->reloc_count))
e0001a05
NC
2586 abort ();
2587
2588 /* The .xt.lit.plt section has just been modified. This must
2589 happen before the code below which combines adjacent literal
2590 table entries, and the .xt.lit.plt contents have to be forced to
2591 the output here. */
2592 if (! bfd_set_section_contents (output_bfd,
2593 spltlittbl->output_section,
2594 spltlittbl->contents,
2595 spltlittbl->output_offset,
eea6121a 2596 spltlittbl->size))
e0001a05
NC
2597 return FALSE;
2598 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2599 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2600 }
2601
2602 /* Combine adjacent literal table entries. */
1049f94e 2603 BFD_ASSERT (! info->relocatable);
e901de89 2604 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 2605 sgotloc = htab->sgotloc;
d9ab3f29
BW
2606 BFD_ASSERT (sgotloc);
2607 if (sxtlit)
2608 {
2609 num_xtlit_entries =
2610 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2611 if (num_xtlit_entries < 0)
2612 return FALSE;
2613 }
e0001a05
NC
2614
2615 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 2616 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
2617 for (; dyncon < dynconend; dyncon++)
2618 {
2619 Elf_Internal_Dyn dyn;
e0001a05
NC
2620
2621 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2622
2623 switch (dyn.d_tag)
2624 {
2625 default:
2626 break;
2627
2628 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
2629 dyn.d_un.d_val = num_xtlit_entries;
2630 break;
2631
2632 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 2633 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
2634 break;
2635
e0001a05 2636 case DT_PLTGOT:
e29297b7 2637 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
2638 break;
2639
e0001a05 2640 case DT_JMPREL:
e29297b7 2641 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
2642 break;
2643
2644 case DT_PLTRELSZ:
e29297b7 2645 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
2646 break;
2647
2648 case DT_RELASZ:
2649 /* Adjust RELASZ to not include JMPREL. This matches what
2650 glibc expects and what is done for several other ELF
2651 targets (e.g., i386, alpha), but the "correct" behavior
2652 seems to be unresolved. Since the linker script arranges
2653 for .rela.plt to follow all other relocation sections, we
2654 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 2655 if (htab->srelplt)
e29297b7 2656 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
2657 break;
2658 }
2659
2660 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2661 }
2662
2663 return TRUE;
2664}
2665
2666\f
2667/* Functions for dealing with the e_flags field. */
2668
2669/* Merge backend specific data from an object file to the output
2670 object file when linking. */
2671
2672static bfd_boolean
7fa3d080 2673elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
2674{
2675 unsigned out_mach, in_mach;
2676 flagword out_flag, in_flag;
2677
2678 /* Check if we have the same endianess. */
2679 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2680 return FALSE;
2681
2682 /* Don't even pretend to support mixed-format linking. */
2683 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2684 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2685 return FALSE;
2686
2687 out_flag = elf_elfheader (obfd)->e_flags;
2688 in_flag = elf_elfheader (ibfd)->e_flags;
2689
2690 out_mach = out_flag & EF_XTENSA_MACH;
2691 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 2692 if (out_mach != in_mach)
e0001a05
NC
2693 {
2694 (*_bfd_error_handler)
43cd72b9 2695 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 2696 ibfd, out_mach, in_mach);
e0001a05
NC
2697 bfd_set_error (bfd_error_wrong_format);
2698 return FALSE;
2699 }
2700
2701 if (! elf_flags_init (obfd))
2702 {
2703 elf_flags_init (obfd) = TRUE;
2704 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 2705
e0001a05
NC
2706 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2707 && bfd_get_arch_info (obfd)->the_default)
2708 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2709 bfd_get_mach (ibfd));
43cd72b9 2710
e0001a05
NC
2711 return TRUE;
2712 }
2713
43cd72b9
BW
2714 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2715 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 2716
43cd72b9
BW
2717 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2718 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
2719
2720 return TRUE;
2721}
2722
2723
2724static bfd_boolean
7fa3d080 2725elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
2726{
2727 BFD_ASSERT (!elf_flags_init (abfd)
2728 || elf_elfheader (abfd)->e_flags == flags);
2729
2730 elf_elfheader (abfd)->e_flags |= flags;
2731 elf_flags_init (abfd) = TRUE;
2732
2733 return TRUE;
2734}
2735
2736
e0001a05 2737static bfd_boolean
7fa3d080 2738elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
2739{
2740 FILE *f = (FILE *) farg;
2741 flagword e_flags = elf_elfheader (abfd)->e_flags;
2742
2743 fprintf (f, "\nXtensa header:\n");
43cd72b9 2744 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
2745 fprintf (f, "\nMachine = Base\n");
2746 else
2747 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2748
2749 fprintf (f, "Insn tables = %s\n",
2750 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2751
2752 fprintf (f, "Literal tables = %s\n",
2753 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2754
2755 return _bfd_elf_print_private_bfd_data (abfd, farg);
2756}
2757
2758
2759/* Set the right machine number for an Xtensa ELF file. */
2760
2761static bfd_boolean
7fa3d080 2762elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
2763{
2764 int mach;
2765 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2766
2767 switch (arch)
2768 {
2769 case E_XTENSA_MACH:
2770 mach = bfd_mach_xtensa;
2771 break;
2772 default:
2773 return FALSE;
2774 }
2775
2776 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2777 return TRUE;
2778}
2779
2780
2781/* The final processing done just before writing out an Xtensa ELF object
2782 file. This gets the Xtensa architecture right based on the machine
2783 number. */
2784
2785static void
7fa3d080
BW
2786elf_xtensa_final_write_processing (bfd *abfd,
2787 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
2788{
2789 int mach;
2790 unsigned long val;
2791
2792 switch (mach = bfd_get_mach (abfd))
2793 {
2794 case bfd_mach_xtensa:
2795 val = E_XTENSA_MACH;
2796 break;
2797 default:
2798 return;
2799 }
2800
2801 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2802 elf_elfheader (abfd)->e_flags |= val;
2803}
2804
2805
2806static enum elf_reloc_type_class
7fa3d080 2807elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
2808{
2809 switch ((int) ELF32_R_TYPE (rela->r_info))
2810 {
2811 case R_XTENSA_RELATIVE:
2812 return reloc_class_relative;
2813 case R_XTENSA_JMP_SLOT:
2814 return reloc_class_plt;
2815 default:
2816 return reloc_class_normal;
2817 }
2818}
2819
2820\f
2821static bfd_boolean
7fa3d080
BW
2822elf_xtensa_discard_info_for_section (bfd *abfd,
2823 struct elf_reloc_cookie *cookie,
2824 struct bfd_link_info *info,
2825 asection *sec)
e0001a05
NC
2826{
2827 bfd_byte *contents;
e0001a05 2828 bfd_vma offset, actual_offset;
1d25768e
BW
2829 bfd_size_type removed_bytes = 0;
2830 bfd_size_type entry_size;
e0001a05
NC
2831
2832 if (sec->output_section
2833 && bfd_is_abs_section (sec->output_section))
2834 return FALSE;
2835
1d25768e
BW
2836 if (xtensa_is_proptable_section (sec))
2837 entry_size = 12;
2838 else
2839 entry_size = 8;
2840
a3ef2d63 2841 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
2842 return FALSE;
2843
e0001a05
NC
2844 contents = retrieve_contents (abfd, sec, info->keep_memory);
2845 if (!contents)
2846 return FALSE;
2847
2848 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2849 if (!cookie->rels)
2850 {
2851 release_contents (sec, contents);
2852 return FALSE;
2853 }
2854
1d25768e
BW
2855 /* Sort the relocations. They should already be in order when
2856 relaxation is enabled, but it might not be. */
2857 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2858 internal_reloc_compare);
2859
e0001a05
NC
2860 cookie->rel = cookie->rels;
2861 cookie->relend = cookie->rels + sec->reloc_count;
2862
a3ef2d63 2863 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
2864 {
2865 actual_offset = offset - removed_bytes;
2866
2867 /* The ...symbol_deleted_p function will skip over relocs but it
2868 won't adjust their offsets, so do that here. */
2869 while (cookie->rel < cookie->relend
2870 && cookie->rel->r_offset < offset)
2871 {
2872 cookie->rel->r_offset -= removed_bytes;
2873 cookie->rel++;
2874 }
2875
2876 while (cookie->rel < cookie->relend
2877 && cookie->rel->r_offset == offset)
2878 {
c152c796 2879 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
2880 {
2881 /* Remove the table entry. (If the reloc type is NONE, then
2882 the entry has already been merged with another and deleted
2883 during relaxation.) */
2884 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2885 {
2886 /* Shift the contents up. */
a3ef2d63 2887 if (offset + entry_size < sec->size)
e0001a05 2888 memmove (&contents[actual_offset],
1d25768e 2889 &contents[actual_offset + entry_size],
a3ef2d63 2890 sec->size - offset - entry_size);
1d25768e 2891 removed_bytes += entry_size;
e0001a05
NC
2892 }
2893
2894 /* Remove this relocation. */
2895 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2896 }
2897
2898 /* Adjust the relocation offset for previous removals. This
2899 should not be done before calling ...symbol_deleted_p
2900 because it might mess up the offset comparisons there.
2901 Make sure the offset doesn't underflow in the case where
2902 the first entry is removed. */
2903 if (cookie->rel->r_offset >= removed_bytes)
2904 cookie->rel->r_offset -= removed_bytes;
2905 else
2906 cookie->rel->r_offset = 0;
2907
2908 cookie->rel++;
2909 }
2910 }
2911
2912 if (removed_bytes != 0)
2913 {
2914 /* Adjust any remaining relocs (shouldn't be any). */
2915 for (; cookie->rel < cookie->relend; cookie->rel++)
2916 {
2917 if (cookie->rel->r_offset >= removed_bytes)
2918 cookie->rel->r_offset -= removed_bytes;
2919 else
2920 cookie->rel->r_offset = 0;
2921 }
2922
2923 /* Clear the removed bytes. */
a3ef2d63 2924 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
2925
2926 pin_contents (sec, contents);
2927 pin_internal_relocs (sec, cookie->rels);
2928
eea6121a 2929 /* Shrink size. */
a3ef2d63
BW
2930 if (sec->rawsize == 0)
2931 sec->rawsize = sec->size;
2932 sec->size -= removed_bytes;
b536dc1e
BW
2933
2934 if (xtensa_is_littable_section (sec))
2935 {
f0e6fdb2
BW
2936 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2937 if (sgotloc)
2938 sgotloc->size -= removed_bytes;
b536dc1e 2939 }
e0001a05
NC
2940 }
2941 else
2942 {
2943 release_contents (sec, contents);
2944 release_internal_relocs (sec, cookie->rels);
2945 }
2946
2947 return (removed_bytes != 0);
2948}
2949
2950
2951static bfd_boolean
7fa3d080
BW
2952elf_xtensa_discard_info (bfd *abfd,
2953 struct elf_reloc_cookie *cookie,
2954 struct bfd_link_info *info)
e0001a05
NC
2955{
2956 asection *sec;
2957 bfd_boolean changed = FALSE;
2958
2959 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2960 {
2961 if (xtensa_is_property_section (sec))
2962 {
2963 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2964 changed = TRUE;
2965 }
2966 }
2967
2968 return changed;
2969}
2970
2971
2972static bfd_boolean
7fa3d080 2973elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
2974{
2975 return xtensa_is_property_section (sec);
2976}
2977
a77dc2cc
BW
2978
2979static unsigned int
2980elf_xtensa_action_discarded (asection *sec)
2981{
2982 if (strcmp (".xt_except_table", sec->name) == 0)
2983 return 0;
2984
2985 if (strcmp (".xt_except_desc", sec->name) == 0)
2986 return 0;
2987
2988 return _bfd_elf_default_action_discarded (sec);
2989}
2990
e0001a05
NC
2991\f
2992/* Support for core dump NOTE sections. */
2993
2994static bfd_boolean
7fa3d080 2995elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
2996{
2997 int offset;
eea6121a 2998 unsigned int size;
e0001a05
NC
2999
3000 /* The size for Xtensa is variable, so don't try to recognize the format
3001 based on the size. Just assume this is GNU/Linux. */
3002
3003 /* pr_cursig */
3004 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3005
3006 /* pr_pid */
3007 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3008
3009 /* pr_reg */
3010 offset = 72;
eea6121a 3011 size = note->descsz - offset - 4;
e0001a05
NC
3012
3013 /* Make a ".reg/999" section. */
3014 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3015 size, note->descpos + offset);
e0001a05
NC
3016}
3017
3018
3019static bfd_boolean
7fa3d080 3020elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3021{
3022 switch (note->descsz)
3023 {
3024 default:
3025 return FALSE;
3026
3027 case 128: /* GNU/Linux elf_prpsinfo */
3028 elf_tdata (abfd)->core_program
3029 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3030 elf_tdata (abfd)->core_command
3031 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3032 }
3033
3034 /* Note that for some reason, a spurious space is tacked
3035 onto the end of the args in some (at least one anyway)
3036 implementations, so strip it off if it exists. */
3037
3038 {
3039 char *command = elf_tdata (abfd)->core_command;
3040 int n = strlen (command);
3041
3042 if (0 < n && command[n - 1] == ' ')
3043 command[n - 1] = '\0';
3044 }
3045
3046 return TRUE;
3047}
3048
3049\f
3050/* Generic Xtensa configurability stuff. */
3051
3052static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3053static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3054static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3055static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3056static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3057static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3058static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3059static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3060
3061static void
7fa3d080 3062init_call_opcodes (void)
e0001a05
NC
3063{
3064 if (callx0_op == XTENSA_UNDEFINED)
3065 {
3066 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3067 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3068 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3069 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3070 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3071 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3072 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3073 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3074 }
3075}
3076
3077
3078static bfd_boolean
7fa3d080 3079is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3080{
3081 init_call_opcodes ();
3082 return (opcode == callx0_op
3083 || opcode == callx4_op
3084 || opcode == callx8_op
3085 || opcode == callx12_op);
3086}
3087
3088
3089static bfd_boolean
7fa3d080 3090is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3091{
3092 init_call_opcodes ();
3093 return (opcode == call0_op
3094 || opcode == call4_op
3095 || opcode == call8_op
3096 || opcode == call12_op);
3097}
3098
3099
3100static bfd_boolean
7fa3d080 3101is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3102{
3103 init_call_opcodes ();
3104 return (opcode == call4_op
3105 || opcode == call8_op
3106 || opcode == call12_op
3107 || opcode == callx4_op
3108 || opcode == callx8_op
3109 || opcode == callx12_op);
3110}
3111
3112
43cd72b9
BW
3113static xtensa_opcode
3114get_const16_opcode (void)
3115{
3116 static bfd_boolean done_lookup = FALSE;
3117 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3118 if (!done_lookup)
3119 {
3120 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3121 done_lookup = TRUE;
3122 }
3123 return const16_opcode;
3124}
3125
3126
e0001a05
NC
3127static xtensa_opcode
3128get_l32r_opcode (void)
3129{
3130 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3131 static bfd_boolean done_lookup = FALSE;
3132
3133 if (!done_lookup)
e0001a05
NC
3134 {
3135 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3136 done_lookup = TRUE;
e0001a05
NC
3137 }
3138 return l32r_opcode;
3139}
3140
3141
3142static bfd_vma
7fa3d080 3143l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3144{
3145 bfd_vma offset;
3146
3147 offset = addr - ((pc+3) & -4);
3148 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3149 offset = (signed int) offset >> 2;
3150 BFD_ASSERT ((signed int) offset >> 16 == -1);
3151 return offset;
3152}
3153
3154
e0001a05 3155static int
7fa3d080 3156get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3157{
43cd72b9
BW
3158 xtensa_isa isa = xtensa_default_isa;
3159 int last_immed, last_opnd, opi;
3160
3161 if (opcode == XTENSA_UNDEFINED)
3162 return XTENSA_UNDEFINED;
3163
3164 /* Find the last visible PC-relative immediate operand for the opcode.
3165 If there are no PC-relative immediates, then choose the last visible
3166 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3167 last_immed = XTENSA_UNDEFINED;
3168 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3169 for (opi = last_opnd - 1; opi >= 0; opi--)
3170 {
3171 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3172 continue;
3173 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3174 {
3175 last_immed = opi;
3176 break;
3177 }
3178 if (last_immed == XTENSA_UNDEFINED
3179 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3180 last_immed = opi;
3181 }
3182 if (last_immed < 0)
3183 return XTENSA_UNDEFINED;
3184
3185 /* If the operand number was specified in an old-style relocation,
3186 check for consistency with the operand computed above. */
3187 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3188 {
3189 int reloc_opnd = r_type - R_XTENSA_OP0;
3190 if (reloc_opnd != last_immed)
3191 return XTENSA_UNDEFINED;
3192 }
3193
3194 return last_immed;
3195}
3196
3197
3198int
7fa3d080 3199get_relocation_slot (int r_type)
43cd72b9
BW
3200{
3201 switch (r_type)
3202 {
3203 case R_XTENSA_OP0:
3204 case R_XTENSA_OP1:
3205 case R_XTENSA_OP2:
3206 return 0;
3207
3208 default:
3209 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3210 return r_type - R_XTENSA_SLOT0_OP;
3211 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3212 return r_type - R_XTENSA_SLOT0_ALT;
3213 break;
3214 }
3215
3216 return XTENSA_UNDEFINED;
e0001a05
NC
3217}
3218
3219
3220/* Get the opcode for a relocation. */
3221
3222static xtensa_opcode
7fa3d080
BW
3223get_relocation_opcode (bfd *abfd,
3224 asection *sec,
3225 bfd_byte *contents,
3226 Elf_Internal_Rela *irel)
e0001a05
NC
3227{
3228 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3229 static xtensa_insnbuf sbuff = NULL;
e0001a05 3230 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3231 xtensa_format fmt;
3232 int slot;
e0001a05
NC
3233
3234 if (contents == NULL)
3235 return XTENSA_UNDEFINED;
3236
43cd72b9 3237 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3238 return XTENSA_UNDEFINED;
3239
3240 if (ibuff == NULL)
43cd72b9
BW
3241 {
3242 ibuff = xtensa_insnbuf_alloc (isa);
3243 sbuff = xtensa_insnbuf_alloc (isa);
3244 }
3245
e0001a05 3246 /* Decode the instruction. */
43cd72b9
BW
3247 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3248 sec->size - irel->r_offset);
3249 fmt = xtensa_format_decode (isa, ibuff);
3250 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3251 if (slot == XTENSA_UNDEFINED)
3252 return XTENSA_UNDEFINED;
3253 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3254 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3255}
3256
3257
3258bfd_boolean
7fa3d080
BW
3259is_l32r_relocation (bfd *abfd,
3260 asection *sec,
3261 bfd_byte *contents,
3262 Elf_Internal_Rela *irel)
e0001a05
NC
3263{
3264 xtensa_opcode opcode;
43cd72b9 3265 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3266 return FALSE;
43cd72b9 3267 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3268 return (opcode == get_l32r_opcode ());
3269}
3270
e0001a05 3271
43cd72b9 3272static bfd_size_type
7fa3d080
BW
3273get_asm_simplify_size (bfd_byte *contents,
3274 bfd_size_type content_len,
3275 bfd_size_type offset)
e0001a05 3276{
43cd72b9 3277 bfd_size_type insnlen, size = 0;
e0001a05 3278
43cd72b9
BW
3279 /* Decode the size of the next two instructions. */
3280 insnlen = insn_decode_len (contents, content_len, offset);
3281 if (insnlen == 0)
3282 return 0;
e0001a05 3283
43cd72b9 3284 size += insnlen;
e0001a05 3285
43cd72b9
BW
3286 insnlen = insn_decode_len (contents, content_len, offset + size);
3287 if (insnlen == 0)
3288 return 0;
e0001a05 3289
43cd72b9
BW
3290 size += insnlen;
3291 return size;
3292}
e0001a05 3293
43cd72b9
BW
3294
3295bfd_boolean
7fa3d080 3296is_alt_relocation (int r_type)
43cd72b9
BW
3297{
3298 return (r_type >= R_XTENSA_SLOT0_ALT
3299 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
3300}
3301
3302
43cd72b9 3303bfd_boolean
7fa3d080 3304is_operand_relocation (int r_type)
e0001a05 3305{
43cd72b9
BW
3306 switch (r_type)
3307 {
3308 case R_XTENSA_OP0:
3309 case R_XTENSA_OP1:
3310 case R_XTENSA_OP2:
3311 return TRUE;
e0001a05 3312
43cd72b9
BW
3313 default:
3314 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3315 return TRUE;
3316 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3317 return TRUE;
3318 break;
3319 }
e0001a05 3320
43cd72b9 3321 return FALSE;
e0001a05
NC
3322}
3323
43cd72b9
BW
3324
3325#define MIN_INSN_LENGTH 2
e0001a05 3326
43cd72b9
BW
3327/* Return 0 if it fails to decode. */
3328
3329bfd_size_type
7fa3d080
BW
3330insn_decode_len (bfd_byte *contents,
3331 bfd_size_type content_len,
3332 bfd_size_type offset)
e0001a05 3333{
43cd72b9
BW
3334 int insn_len;
3335 xtensa_isa isa = xtensa_default_isa;
3336 xtensa_format fmt;
3337 static xtensa_insnbuf ibuff = NULL;
e0001a05 3338
43cd72b9
BW
3339 if (offset + MIN_INSN_LENGTH > content_len)
3340 return 0;
e0001a05 3341
43cd72b9
BW
3342 if (ibuff == NULL)
3343 ibuff = xtensa_insnbuf_alloc (isa);
3344 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3345 content_len - offset);
3346 fmt = xtensa_format_decode (isa, ibuff);
3347 if (fmt == XTENSA_UNDEFINED)
3348 return 0;
3349 insn_len = xtensa_format_length (isa, fmt);
3350 if (insn_len == XTENSA_UNDEFINED)
3351 return 0;
3352 return insn_len;
e0001a05
NC
3353}
3354
3355
43cd72b9
BW
3356/* Decode the opcode for a single slot instruction.
3357 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 3358
43cd72b9 3359xtensa_opcode
7fa3d080
BW
3360insn_decode_opcode (bfd_byte *contents,
3361 bfd_size_type content_len,
3362 bfd_size_type offset,
3363 int slot)
e0001a05 3364{
e0001a05 3365 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3366 xtensa_format fmt;
3367 static xtensa_insnbuf insnbuf = NULL;
3368 static xtensa_insnbuf slotbuf = NULL;
3369
3370 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
3371 return XTENSA_UNDEFINED;
3372
3373 if (insnbuf == NULL)
43cd72b9
BW
3374 {
3375 insnbuf = xtensa_insnbuf_alloc (isa);
3376 slotbuf = xtensa_insnbuf_alloc (isa);
3377 }
3378
3379 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3380 content_len - offset);
3381 fmt = xtensa_format_decode (isa, insnbuf);
3382 if (fmt == XTENSA_UNDEFINED)
e0001a05 3383 return XTENSA_UNDEFINED;
43cd72b9
BW
3384
3385 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 3386 return XTENSA_UNDEFINED;
e0001a05 3387
43cd72b9
BW
3388 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3389 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3390}
e0001a05 3391
e0001a05 3392
43cd72b9
BW
3393/* The offset is the offset in the contents.
3394 The address is the address of that offset. */
e0001a05 3395
43cd72b9 3396static bfd_boolean
7fa3d080
BW
3397check_branch_target_aligned (bfd_byte *contents,
3398 bfd_size_type content_length,
3399 bfd_vma offset,
3400 bfd_vma address)
43cd72b9
BW
3401{
3402 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3403 if (insn_len == 0)
3404 return FALSE;
3405 return check_branch_target_aligned_address (address, insn_len);
3406}
e0001a05 3407
e0001a05 3408
43cd72b9 3409static bfd_boolean
7fa3d080
BW
3410check_loop_aligned (bfd_byte *contents,
3411 bfd_size_type content_length,
3412 bfd_vma offset,
3413 bfd_vma address)
e0001a05 3414{
43cd72b9 3415 bfd_size_type loop_len, insn_len;
64b607e6 3416 xtensa_opcode opcode;
e0001a05 3417
64b607e6
BW
3418 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3419 if (opcode == XTENSA_UNDEFINED
3420 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3421 {
3422 BFD_ASSERT (FALSE);
3423 return FALSE;
3424 }
3425
43cd72b9 3426 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 3427 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
3428 if (loop_len == 0 || insn_len == 0)
3429 {
3430 BFD_ASSERT (FALSE);
3431 return FALSE;
3432 }
e0001a05 3433
43cd72b9
BW
3434 return check_branch_target_aligned_address (address + loop_len, insn_len);
3435}
e0001a05 3436
e0001a05
NC
3437
3438static bfd_boolean
7fa3d080 3439check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 3440{
43cd72b9
BW
3441 if (len == 8)
3442 return (addr % 8 == 0);
3443 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
3444}
3445
43cd72b9
BW
3446\f
3447/* Instruction widening and narrowing. */
e0001a05 3448
7fa3d080
BW
3449/* When FLIX is available we need to access certain instructions only
3450 when they are 16-bit or 24-bit instructions. This table caches
3451 information about such instructions by walking through all the
3452 opcodes and finding the smallest single-slot format into which each
3453 can be encoded. */
3454
3455static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
3456
3457
7fa3d080
BW
3458static void
3459init_op_single_format_table (void)
e0001a05 3460{
7fa3d080
BW
3461 xtensa_isa isa = xtensa_default_isa;
3462 xtensa_insnbuf ibuf;
3463 xtensa_opcode opcode;
3464 xtensa_format fmt;
3465 int num_opcodes;
3466
3467 if (op_single_fmt_table)
3468 return;
3469
3470 ibuf = xtensa_insnbuf_alloc (isa);
3471 num_opcodes = xtensa_isa_num_opcodes (isa);
3472
3473 op_single_fmt_table = (xtensa_format *)
3474 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3475 for (opcode = 0; opcode < num_opcodes; opcode++)
3476 {
3477 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3478 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3479 {
3480 if (xtensa_format_num_slots (isa, fmt) == 1
3481 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3482 {
3483 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3484 int fmt_length = xtensa_format_length (isa, fmt);
3485 if (old_fmt == XTENSA_UNDEFINED
3486 || fmt_length < xtensa_format_length (isa, old_fmt))
3487 op_single_fmt_table[opcode] = fmt;
3488 }
3489 }
3490 }
3491 xtensa_insnbuf_free (isa, ibuf);
3492}
3493
3494
3495static xtensa_format
3496get_single_format (xtensa_opcode opcode)
3497{
3498 init_op_single_format_table ();
3499 return op_single_fmt_table[opcode];
3500}
e0001a05 3501
e0001a05 3502
43cd72b9
BW
3503/* For the set of narrowable instructions we do NOT include the
3504 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3505 involved during linker relaxation that may require these to
3506 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3507 requires special case code to ensure it only works when op1 == op2. */
e0001a05 3508
7fa3d080
BW
3509struct string_pair
3510{
3511 const char *wide;
3512 const char *narrow;
3513};
3514
43cd72b9 3515struct string_pair narrowable[] =
e0001a05 3516{
43cd72b9
BW
3517 { "add", "add.n" },
3518 { "addi", "addi.n" },
3519 { "addmi", "addi.n" },
3520 { "l32i", "l32i.n" },
3521 { "movi", "movi.n" },
3522 { "ret", "ret.n" },
3523 { "retw", "retw.n" },
3524 { "s32i", "s32i.n" },
3525 { "or", "mov.n" } /* special case only when op1 == op2 */
3526};
e0001a05 3527
43cd72b9 3528struct string_pair widenable[] =
e0001a05 3529{
43cd72b9
BW
3530 { "add", "add.n" },
3531 { "addi", "addi.n" },
3532 { "addmi", "addi.n" },
3533 { "beqz", "beqz.n" },
3534 { "bnez", "bnez.n" },
3535 { "l32i", "l32i.n" },
3536 { "movi", "movi.n" },
3537 { "ret", "ret.n" },
3538 { "retw", "retw.n" },
3539 { "s32i", "s32i.n" },
3540 { "or", "mov.n" } /* special case only when op1 == op2 */
3541};
e0001a05
NC
3542
3543
64b607e6
BW
3544/* Check if an instruction can be "narrowed", i.e., changed from a standard
3545 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3546 return the instruction buffer holding the narrow instruction. Otherwise,
3547 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
3548 but require some special case operand checks in some cases. */
3549
64b607e6
BW
3550static xtensa_insnbuf
3551can_narrow_instruction (xtensa_insnbuf slotbuf,
3552 xtensa_format fmt,
3553 xtensa_opcode opcode)
e0001a05 3554{
43cd72b9 3555 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3556 xtensa_format o_fmt;
3557 unsigned opi;
e0001a05 3558
43cd72b9
BW
3559 static xtensa_insnbuf o_insnbuf = NULL;
3560 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 3561
64b607e6 3562 if (o_insnbuf == NULL)
43cd72b9 3563 {
43cd72b9
BW
3564 o_insnbuf = xtensa_insnbuf_alloc (isa);
3565 o_slotbuf = xtensa_insnbuf_alloc (isa);
3566 }
e0001a05 3567
64b607e6 3568 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
3569 {
3570 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 3571
43cd72b9
BW
3572 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3573 {
3574 uint32 value, newval;
3575 int i, operand_count, o_operand_count;
3576 xtensa_opcode o_opcode;
e0001a05 3577
43cd72b9
BW
3578 /* Address does not matter in this case. We might need to
3579 fix it to handle branches/jumps. */
3580 bfd_vma self_address = 0;
e0001a05 3581
43cd72b9
BW
3582 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3583 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3584 return 0;
43cd72b9
BW
3585 o_fmt = get_single_format (o_opcode);
3586 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3587 return 0;
e0001a05 3588
43cd72b9
BW
3589 if (xtensa_format_length (isa, fmt) != 3
3590 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 3591 return 0;
e0001a05 3592
43cd72b9
BW
3593 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3594 operand_count = xtensa_opcode_num_operands (isa, opcode);
3595 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 3596
43cd72b9 3597 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3598 return 0;
e0001a05 3599
43cd72b9
BW
3600 if (!is_or)
3601 {
3602 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3603 return 0;
43cd72b9
BW
3604 }
3605 else
3606 {
3607 uint32 rawval0, rawval1, rawval2;
e0001a05 3608
64b607e6
BW
3609 if (o_operand_count + 1 != operand_count
3610 || xtensa_operand_get_field (isa, opcode, 0,
3611 fmt, 0, slotbuf, &rawval0) != 0
3612 || xtensa_operand_get_field (isa, opcode, 1,
3613 fmt, 0, slotbuf, &rawval1) != 0
3614 || xtensa_operand_get_field (isa, opcode, 2,
3615 fmt, 0, slotbuf, &rawval2) != 0
3616 || rawval1 != rawval2
3617 || rawval0 == rawval1 /* it is a nop */)
3618 return 0;
43cd72b9 3619 }
e0001a05 3620
43cd72b9
BW
3621 for (i = 0; i < o_operand_count; ++i)
3622 {
3623 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3624 slotbuf, &value)
3625 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 3626 return 0;
e0001a05 3627
43cd72b9
BW
3628 /* PC-relative branches need adjustment, but
3629 the PC-rel operand will always have a relocation. */
3630 newval = value;
3631 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3632 self_address)
3633 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3634 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3635 o_slotbuf, newval))
64b607e6 3636 return 0;
43cd72b9 3637 }
e0001a05 3638
64b607e6
BW
3639 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3640 return 0;
e0001a05 3641
64b607e6 3642 return o_insnbuf;
43cd72b9
BW
3643 }
3644 }
64b607e6 3645 return 0;
43cd72b9 3646}
e0001a05 3647
e0001a05 3648
64b607e6
BW
3649/* Attempt to narrow an instruction. If the narrowing is valid, perform
3650 the action in-place directly into the contents and return TRUE. Otherwise,
3651 the return value is FALSE and the contents are not modified. */
e0001a05 3652
43cd72b9 3653static bfd_boolean
64b607e6
BW
3654narrow_instruction (bfd_byte *contents,
3655 bfd_size_type content_length,
3656 bfd_size_type offset)
e0001a05 3657{
43cd72b9 3658 xtensa_opcode opcode;
64b607e6 3659 bfd_size_type insn_len;
43cd72b9 3660 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
3661 xtensa_format fmt;
3662 xtensa_insnbuf o_insnbuf;
e0001a05 3663
43cd72b9
BW
3664 static xtensa_insnbuf insnbuf = NULL;
3665 static xtensa_insnbuf slotbuf = NULL;
e0001a05 3666
43cd72b9
BW
3667 if (insnbuf == NULL)
3668 {
3669 insnbuf = xtensa_insnbuf_alloc (isa);
3670 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 3671 }
e0001a05 3672
43cd72b9 3673 BFD_ASSERT (offset < content_length);
2c8c90bc 3674
43cd72b9 3675 if (content_length < 2)
e0001a05
NC
3676 return FALSE;
3677
64b607e6 3678 /* We will hand-code a few of these for a little while.
43cd72b9
BW
3679 These have all been specified in the assembler aleady. */
3680 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3681 content_length - offset);
3682 fmt = xtensa_format_decode (isa, insnbuf);
3683 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
3684 return FALSE;
3685
43cd72b9 3686 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
3687 return FALSE;
3688
43cd72b9
BW
3689 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3690 if (opcode == XTENSA_UNDEFINED)
e0001a05 3691 return FALSE;
43cd72b9
BW
3692 insn_len = xtensa_format_length (isa, fmt);
3693 if (insn_len > content_length)
3694 return FALSE;
3695
64b607e6
BW
3696 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3697 if (o_insnbuf)
3698 {
3699 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3700 content_length - offset);
3701 return TRUE;
3702 }
3703
3704 return FALSE;
3705}
3706
3707
3708/* Check if an instruction can be "widened", i.e., changed from a 2-byte
3709 "density" instruction to a standard 3-byte instruction. If it is valid,
3710 return the instruction buffer holding the wide instruction. Otherwise,
3711 return 0. The set of valid widenings are specified by a string table
3712 but require some special case operand checks in some cases. */
3713
3714static xtensa_insnbuf
3715can_widen_instruction (xtensa_insnbuf slotbuf,
3716 xtensa_format fmt,
3717 xtensa_opcode opcode)
3718{
3719 xtensa_isa isa = xtensa_default_isa;
3720 xtensa_format o_fmt;
3721 unsigned opi;
3722
3723 static xtensa_insnbuf o_insnbuf = NULL;
3724 static xtensa_insnbuf o_slotbuf = NULL;
3725
3726 if (o_insnbuf == NULL)
3727 {
3728 o_insnbuf = xtensa_insnbuf_alloc (isa);
3729 o_slotbuf = xtensa_insnbuf_alloc (isa);
3730 }
3731
3732 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 3733 {
43cd72b9
BW
3734 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3735 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3736 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 3737
43cd72b9
BW
3738 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3739 {
3740 uint32 value, newval;
3741 int i, operand_count, o_operand_count, check_operand_count;
3742 xtensa_opcode o_opcode;
e0001a05 3743
43cd72b9
BW
3744 /* Address does not matter in this case. We might need to fix it
3745 to handle branches/jumps. */
3746 bfd_vma self_address = 0;
e0001a05 3747
43cd72b9
BW
3748 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3749 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 3750 return 0;
43cd72b9
BW
3751 o_fmt = get_single_format (o_opcode);
3752 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 3753 return 0;
e0001a05 3754
43cd72b9
BW
3755 if (xtensa_format_length (isa, fmt) != 2
3756 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 3757 return 0;
e0001a05 3758
43cd72b9
BW
3759 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3760 operand_count = xtensa_opcode_num_operands (isa, opcode);
3761 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3762 check_operand_count = o_operand_count;
e0001a05 3763
43cd72b9 3764 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 3765 return 0;
e0001a05 3766
43cd72b9
BW
3767 if (!is_or)
3768 {
3769 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 3770 return 0;
43cd72b9
BW
3771 }
3772 else
3773 {
3774 uint32 rawval0, rawval1;
3775
64b607e6
BW
3776 if (o_operand_count != operand_count + 1
3777 || xtensa_operand_get_field (isa, opcode, 0,
3778 fmt, 0, slotbuf, &rawval0) != 0
3779 || xtensa_operand_get_field (isa, opcode, 1,
3780 fmt, 0, slotbuf, &rawval1) != 0
3781 || rawval0 == rawval1 /* it is a nop */)
3782 return 0;
43cd72b9
BW
3783 }
3784 if (is_branch)
3785 check_operand_count--;
3786
64b607e6 3787 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
3788 {
3789 int new_i = i;
3790 if (is_or && i == o_operand_count - 1)
3791 new_i = i - 1;
3792 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3793 slotbuf, &value)
3794 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 3795 return 0;
43cd72b9
BW
3796
3797 /* PC-relative branches need adjustment, but
3798 the PC-rel operand will always have a relocation. */
3799 newval = value;
3800 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3801 self_address)
3802 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3803 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3804 o_slotbuf, newval))
64b607e6 3805 return 0;
43cd72b9
BW
3806 }
3807
3808 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 3809 return 0;
43cd72b9 3810
64b607e6 3811 return o_insnbuf;
43cd72b9
BW
3812 }
3813 }
64b607e6
BW
3814 return 0;
3815}
3816
3817
3818/* Attempt to widen an instruction. If the widening is valid, perform
3819 the action in-place directly into the contents and return TRUE. Otherwise,
3820 the return value is FALSE and the contents are not modified. */
3821
3822static bfd_boolean
3823widen_instruction (bfd_byte *contents,
3824 bfd_size_type content_length,
3825 bfd_size_type offset)
3826{
3827 xtensa_opcode opcode;
3828 bfd_size_type insn_len;
3829 xtensa_isa isa = xtensa_default_isa;
3830 xtensa_format fmt;
3831 xtensa_insnbuf o_insnbuf;
3832
3833 static xtensa_insnbuf insnbuf = NULL;
3834 static xtensa_insnbuf slotbuf = NULL;
3835
3836 if (insnbuf == NULL)
3837 {
3838 insnbuf = xtensa_insnbuf_alloc (isa);
3839 slotbuf = xtensa_insnbuf_alloc (isa);
3840 }
3841
3842 BFD_ASSERT (offset < content_length);
3843
3844 if (content_length < 2)
3845 return FALSE;
3846
3847 /* We will hand-code a few of these for a little while.
3848 These have all been specified in the assembler aleady. */
3849 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3850 content_length - offset);
3851 fmt = xtensa_format_decode (isa, insnbuf);
3852 if (xtensa_format_num_slots (isa, fmt) != 1)
3853 return FALSE;
3854
3855 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3856 return FALSE;
3857
3858 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3859 if (opcode == XTENSA_UNDEFINED)
3860 return FALSE;
3861 insn_len = xtensa_format_length (isa, fmt);
3862 if (insn_len > content_length)
3863 return FALSE;
3864
3865 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3866 if (o_insnbuf)
3867 {
3868 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3869 content_length - offset);
3870 return TRUE;
3871 }
43cd72b9 3872 return FALSE;
e0001a05
NC
3873}
3874
43cd72b9
BW
3875\f
3876/* Code for transforming CALLs at link-time. */
e0001a05 3877
43cd72b9 3878static bfd_reloc_status_type
7fa3d080
BW
3879elf_xtensa_do_asm_simplify (bfd_byte *contents,
3880 bfd_vma address,
3881 bfd_vma content_length,
3882 char **error_message)
e0001a05 3883{
43cd72b9
BW
3884 static xtensa_insnbuf insnbuf = NULL;
3885 static xtensa_insnbuf slotbuf = NULL;
3886 xtensa_format core_format = XTENSA_UNDEFINED;
3887 xtensa_opcode opcode;
3888 xtensa_opcode direct_call_opcode;
3889 xtensa_isa isa = xtensa_default_isa;
3890 bfd_byte *chbuf = contents + address;
3891 int opn;
e0001a05 3892
43cd72b9 3893 if (insnbuf == NULL)
e0001a05 3894 {
43cd72b9
BW
3895 insnbuf = xtensa_insnbuf_alloc (isa);
3896 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 3897 }
e0001a05 3898
43cd72b9
BW
3899 if (content_length < address)
3900 {
3901 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3902 return bfd_reloc_other;
3903 }
e0001a05 3904
43cd72b9
BW
3905 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3906 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3907 if (direct_call_opcode == XTENSA_UNDEFINED)
3908 {
3909 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3910 return bfd_reloc_other;
3911 }
3912
3913 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3914 core_format = xtensa_format_lookup (isa, "x24");
3915 opcode = xtensa_opcode_lookup (isa, "or");
3916 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3917 for (opn = 0; opn < 3; opn++)
3918 {
3919 uint32 regno = 1;
3920 xtensa_operand_encode (isa, opcode, opn, &regno);
3921 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3922 slotbuf, regno);
3923 }
3924 xtensa_format_encode (isa, core_format, insnbuf);
3925 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3926 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 3927
43cd72b9
BW
3928 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3929 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3930 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 3931
43cd72b9
BW
3932 xtensa_format_encode (isa, core_format, insnbuf);
3933 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3934 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3935 content_length - address - 3);
e0001a05 3936
43cd72b9
BW
3937 return bfd_reloc_ok;
3938}
e0001a05 3939
e0001a05 3940
43cd72b9 3941static bfd_reloc_status_type
7fa3d080
BW
3942contract_asm_expansion (bfd_byte *contents,
3943 bfd_vma content_length,
3944 Elf_Internal_Rela *irel,
3945 char **error_message)
43cd72b9
BW
3946{
3947 bfd_reloc_status_type retval =
3948 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3949 error_message);
e0001a05 3950
43cd72b9
BW
3951 if (retval != bfd_reloc_ok)
3952 return bfd_reloc_dangerous;
e0001a05 3953
43cd72b9
BW
3954 /* Update the irel->r_offset field so that the right immediate and
3955 the right instruction are modified during the relocation. */
3956 irel->r_offset += 3;
3957 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3958 return bfd_reloc_ok;
3959}
e0001a05 3960
e0001a05 3961
43cd72b9 3962static xtensa_opcode
7fa3d080 3963swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 3964{
43cd72b9 3965 init_call_opcodes ();
e0001a05 3966
43cd72b9
BW
3967 if (opcode == callx0_op) return call0_op;
3968 if (opcode == callx4_op) return call4_op;
3969 if (opcode == callx8_op) return call8_op;
3970 if (opcode == callx12_op) return call12_op;
e0001a05 3971
43cd72b9
BW
3972 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3973 return XTENSA_UNDEFINED;
3974}
e0001a05 3975
e0001a05 3976
43cd72b9
BW
3977/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3978 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3979 If not, return XTENSA_UNDEFINED. */
e0001a05 3980
43cd72b9
BW
3981#define L32R_TARGET_REG_OPERAND 0
3982#define CONST16_TARGET_REG_OPERAND 0
3983#define CALLN_SOURCE_OPERAND 0
e0001a05 3984
43cd72b9 3985static xtensa_opcode
7fa3d080 3986get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 3987{
43cd72b9
BW
3988 static xtensa_insnbuf insnbuf = NULL;
3989 static xtensa_insnbuf slotbuf = NULL;
3990 xtensa_format fmt;
3991 xtensa_opcode opcode;
3992 xtensa_isa isa = xtensa_default_isa;
3993 uint32 regno, const16_regno, call_regno;
3994 int offset = 0;
e0001a05 3995
43cd72b9 3996 if (insnbuf == NULL)
e0001a05 3997 {
43cd72b9
BW
3998 insnbuf = xtensa_insnbuf_alloc (isa);
3999 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4000 }
43cd72b9
BW
4001
4002 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4003 fmt = xtensa_format_decode (isa, insnbuf);
4004 if (fmt == XTENSA_UNDEFINED
4005 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4006 return XTENSA_UNDEFINED;
4007
4008 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4009 if (opcode == XTENSA_UNDEFINED)
4010 return XTENSA_UNDEFINED;
4011
4012 if (opcode == get_l32r_opcode ())
e0001a05 4013 {
43cd72b9
BW
4014 if (p_uses_l32r)
4015 *p_uses_l32r = TRUE;
4016 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4017 fmt, 0, slotbuf, &regno)
4018 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4019 &regno))
4020 return XTENSA_UNDEFINED;
e0001a05 4021 }
43cd72b9 4022 else if (opcode == get_const16_opcode ())
e0001a05 4023 {
43cd72b9
BW
4024 if (p_uses_l32r)
4025 *p_uses_l32r = FALSE;
4026 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4027 fmt, 0, slotbuf, &regno)
4028 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4029 &regno))
4030 return XTENSA_UNDEFINED;
4031
4032 /* Check that the next instruction is also CONST16. */
4033 offset += xtensa_format_length (isa, fmt);
4034 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4035 fmt = xtensa_format_decode (isa, insnbuf);
4036 if (fmt == XTENSA_UNDEFINED
4037 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4038 return XTENSA_UNDEFINED;
4039 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4040 if (opcode != get_const16_opcode ())
4041 return XTENSA_UNDEFINED;
4042
4043 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4044 fmt, 0, slotbuf, &const16_regno)
4045 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4046 &const16_regno)
4047 || const16_regno != regno)
4048 return XTENSA_UNDEFINED;
e0001a05 4049 }
43cd72b9
BW
4050 else
4051 return XTENSA_UNDEFINED;
e0001a05 4052
43cd72b9
BW
4053 /* Next instruction should be an CALLXn with operand 0 == regno. */
4054 offset += xtensa_format_length (isa, fmt);
4055 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4056 fmt = xtensa_format_decode (isa, insnbuf);
4057 if (fmt == XTENSA_UNDEFINED
4058 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4059 return XTENSA_UNDEFINED;
4060 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4061 if (opcode == XTENSA_UNDEFINED
4062 || !is_indirect_call_opcode (opcode))
4063 return XTENSA_UNDEFINED;
e0001a05 4064
43cd72b9
BW
4065 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4066 fmt, 0, slotbuf, &call_regno)
4067 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4068 &call_regno))
4069 return XTENSA_UNDEFINED;
e0001a05 4070
43cd72b9
BW
4071 if (call_regno != regno)
4072 return XTENSA_UNDEFINED;
e0001a05 4073
43cd72b9
BW
4074 return opcode;
4075}
e0001a05 4076
43cd72b9
BW
4077\f
4078/* Data structures used during relaxation. */
e0001a05 4079
43cd72b9 4080/* r_reloc: relocation values. */
e0001a05 4081
43cd72b9
BW
4082/* Through the relaxation process, we need to keep track of the values
4083 that will result from evaluating relocations. The standard ELF
4084 relocation structure is not sufficient for this purpose because we're
4085 operating on multiple input files at once, so we need to know which
4086 input file a relocation refers to. The r_reloc structure thus
4087 records both the input file (bfd) and ELF relocation.
e0001a05 4088
43cd72b9
BW
4089 For efficiency, an r_reloc also contains a "target_offset" field to
4090 cache the target-section-relative offset value that is represented by
4091 the relocation.
4092
4093 The r_reloc also contains a virtual offset that allows multiple
4094 inserted literals to be placed at the same "address" with
4095 different offsets. */
e0001a05 4096
43cd72b9 4097typedef struct r_reloc_struct r_reloc;
e0001a05 4098
43cd72b9 4099struct r_reloc_struct
e0001a05 4100{
43cd72b9
BW
4101 bfd *abfd;
4102 Elf_Internal_Rela rela;
e0001a05 4103 bfd_vma target_offset;
43cd72b9 4104 bfd_vma virtual_offset;
e0001a05
NC
4105};
4106
e0001a05 4107
43cd72b9
BW
4108/* The r_reloc structure is included by value in literal_value, but not
4109 every literal_value has an associated relocation -- some are simple
4110 constants. In such cases, we set all the fields in the r_reloc
4111 struct to zero. The r_reloc_is_const function should be used to
4112 detect this case. */
e0001a05 4113
43cd72b9 4114static bfd_boolean
7fa3d080 4115r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4116{
43cd72b9 4117 return (r_rel->abfd == NULL);
e0001a05
NC
4118}
4119
4120
43cd72b9 4121static bfd_vma
7fa3d080 4122r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4123{
43cd72b9
BW
4124 bfd_vma target_offset;
4125 unsigned long r_symndx;
e0001a05 4126
43cd72b9
BW
4127 BFD_ASSERT (!r_reloc_is_const (r_rel));
4128 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4129 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4130 return (target_offset + r_rel->rela.r_addend);
4131}
e0001a05 4132
e0001a05 4133
43cd72b9 4134static struct elf_link_hash_entry *
7fa3d080 4135r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4136{
43cd72b9
BW
4137 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4138 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4139}
e0001a05 4140
43cd72b9
BW
4141
4142static asection *
7fa3d080 4143r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4144{
4145 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4146 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4147}
e0001a05
NC
4148
4149
4150static bfd_boolean
7fa3d080 4151r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4152{
43cd72b9
BW
4153 asection *sec;
4154 if (r_rel == NULL)
e0001a05 4155 return FALSE;
e0001a05 4156
43cd72b9
BW
4157 sec = r_reloc_get_section (r_rel);
4158 if (sec == bfd_abs_section_ptr
4159 || sec == bfd_com_section_ptr
4160 || sec == bfd_und_section_ptr)
4161 return FALSE;
4162 return TRUE;
e0001a05
NC
4163}
4164
4165
7fa3d080
BW
4166static void
4167r_reloc_init (r_reloc *r_rel,
4168 bfd *abfd,
4169 Elf_Internal_Rela *irel,
4170 bfd_byte *contents,
4171 bfd_size_type content_length)
4172{
4173 int r_type;
4174 reloc_howto_type *howto;
4175
4176 if (irel)
4177 {
4178 r_rel->rela = *irel;
4179 r_rel->abfd = abfd;
4180 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4181 r_rel->virtual_offset = 0;
4182 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4183 howto = &elf_howto_table[r_type];
4184 if (howto->partial_inplace)
4185 {
4186 bfd_vma inplace_val;
4187 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4188
4189 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4190 r_rel->target_offset += inplace_val;
4191 }
4192 }
4193 else
4194 memset (r_rel, 0, sizeof (r_reloc));
4195}
4196
4197
43cd72b9
BW
4198#if DEBUG
4199
e0001a05 4200static void
7fa3d080 4201print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4202{
43cd72b9
BW
4203 if (r_reloc_is_defined (r_rel))
4204 {
4205 asection *sec = r_reloc_get_section (r_rel);
4206 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4207 }
4208 else if (r_reloc_get_hash_entry (r_rel))
4209 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4210 else
4211 fprintf (fp, " ?? + ");
e0001a05 4212
43cd72b9
BW
4213 fprintf_vma (fp, r_rel->target_offset);
4214 if (r_rel->virtual_offset)
4215 {
4216 fprintf (fp, " + ");
4217 fprintf_vma (fp, r_rel->virtual_offset);
4218 }
4219
4220 fprintf (fp, ")");
4221}
e0001a05 4222
43cd72b9 4223#endif /* DEBUG */
e0001a05 4224
43cd72b9
BW
4225\f
4226/* source_reloc: relocations that reference literals. */
e0001a05 4227
43cd72b9
BW
4228/* To determine whether literals can be coalesced, we need to first
4229 record all the relocations that reference the literals. The
4230 source_reloc structure below is used for this purpose. The
4231 source_reloc entries are kept in a per-literal-section array, sorted
4232 by offset within the literal section (i.e., target offset).
e0001a05 4233
43cd72b9
BW
4234 The source_sec and r_rel.rela.r_offset fields identify the source of
4235 the relocation. The r_rel field records the relocation value, i.e.,
4236 the offset of the literal being referenced. The opnd field is needed
4237 to determine the range of the immediate field to which the relocation
4238 applies, so we can determine whether another literal with the same
4239 value is within range. The is_null field is true when the relocation
4240 is being removed (e.g., when an L32R is being removed due to a CALLX
4241 that is converted to a direct CALL). */
e0001a05 4242
43cd72b9
BW
4243typedef struct source_reloc_struct source_reloc;
4244
4245struct source_reloc_struct
e0001a05 4246{
43cd72b9
BW
4247 asection *source_sec;
4248 r_reloc r_rel;
4249 xtensa_opcode opcode;
4250 int opnd;
4251 bfd_boolean is_null;
4252 bfd_boolean is_abs_literal;
4253};
e0001a05 4254
e0001a05 4255
e0001a05 4256static void
7fa3d080
BW
4257init_source_reloc (source_reloc *reloc,
4258 asection *source_sec,
4259 const r_reloc *r_rel,
4260 xtensa_opcode opcode,
4261 int opnd,
4262 bfd_boolean is_abs_literal)
e0001a05 4263{
43cd72b9
BW
4264 reloc->source_sec = source_sec;
4265 reloc->r_rel = *r_rel;
4266 reloc->opcode = opcode;
4267 reloc->opnd = opnd;
4268 reloc->is_null = FALSE;
4269 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4270}
4271
e0001a05 4272
43cd72b9
BW
4273/* Find the source_reloc for a particular source offset and relocation
4274 type. Note that the array is sorted by _target_ offset, so this is
4275 just a linear search. */
e0001a05 4276
43cd72b9 4277static source_reloc *
7fa3d080
BW
4278find_source_reloc (source_reloc *src_relocs,
4279 int src_count,
4280 asection *sec,
4281 Elf_Internal_Rela *irel)
e0001a05 4282{
43cd72b9 4283 int i;
e0001a05 4284
43cd72b9
BW
4285 for (i = 0; i < src_count; i++)
4286 {
4287 if (src_relocs[i].source_sec == sec
4288 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4289 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4290 == ELF32_R_TYPE (irel->r_info)))
4291 return &src_relocs[i];
4292 }
e0001a05 4293
43cd72b9 4294 return NULL;
e0001a05
NC
4295}
4296
4297
43cd72b9 4298static int
7fa3d080 4299source_reloc_compare (const void *ap, const void *bp)
e0001a05 4300{
43cd72b9
BW
4301 const source_reloc *a = (const source_reloc *) ap;
4302 const source_reloc *b = (const source_reloc *) bp;
e0001a05 4303
43cd72b9
BW
4304 if (a->r_rel.target_offset != b->r_rel.target_offset)
4305 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 4306
43cd72b9
BW
4307 /* We don't need to sort on these criteria for correctness,
4308 but enforcing a more strict ordering prevents unstable qsort
4309 from behaving differently with different implementations.
4310 Without the code below we get correct but different results
4311 on Solaris 2.7 and 2.8. We would like to always produce the
4312 same results no matter the host. */
4313
4314 if ((!a->is_null) - (!b->is_null))
4315 return ((!a->is_null) - (!b->is_null));
4316 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
4317}
4318
43cd72b9
BW
4319\f
4320/* Literal values and value hash tables. */
e0001a05 4321
43cd72b9
BW
4322/* Literals with the same value can be coalesced. The literal_value
4323 structure records the value of a literal: the "r_rel" field holds the
4324 information from the relocation on the literal (if there is one) and
4325 the "value" field holds the contents of the literal word itself.
e0001a05 4326
43cd72b9
BW
4327 The value_map structure records a literal value along with the
4328 location of a literal holding that value. The value_map hash table
4329 is indexed by the literal value, so that we can quickly check if a
4330 particular literal value has been seen before and is thus a candidate
4331 for coalescing. */
e0001a05 4332
43cd72b9
BW
4333typedef struct literal_value_struct literal_value;
4334typedef struct value_map_struct value_map;
4335typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 4336
43cd72b9 4337struct literal_value_struct
e0001a05 4338{
43cd72b9
BW
4339 r_reloc r_rel;
4340 unsigned long value;
4341 bfd_boolean is_abs_literal;
4342};
4343
4344struct value_map_struct
4345{
4346 literal_value val; /* The literal value. */
4347 r_reloc loc; /* Location of the literal. */
4348 value_map *next;
4349};
4350
4351struct value_map_hash_table_struct
4352{
4353 unsigned bucket_count;
4354 value_map **buckets;
4355 unsigned count;
4356 bfd_boolean has_last_loc;
4357 r_reloc last_loc;
4358};
4359
4360
e0001a05 4361static void
7fa3d080
BW
4362init_literal_value (literal_value *lit,
4363 const r_reloc *r_rel,
4364 unsigned long value,
4365 bfd_boolean is_abs_literal)
e0001a05 4366{
43cd72b9
BW
4367 lit->r_rel = *r_rel;
4368 lit->value = value;
4369 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
4370}
4371
4372
43cd72b9 4373static bfd_boolean
7fa3d080
BW
4374literal_value_equal (const literal_value *src1,
4375 const literal_value *src2,
4376 bfd_boolean final_static_link)
e0001a05 4377{
43cd72b9 4378 struct elf_link_hash_entry *h1, *h2;
e0001a05 4379
43cd72b9
BW
4380 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4381 return FALSE;
e0001a05 4382
43cd72b9
BW
4383 if (r_reloc_is_const (&src1->r_rel))
4384 return (src1->value == src2->value);
e0001a05 4385
43cd72b9
BW
4386 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4387 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4388 return FALSE;
e0001a05 4389
43cd72b9
BW
4390 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4391 return FALSE;
4392
4393 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4394 return FALSE;
4395
4396 if (src1->value != src2->value)
4397 return FALSE;
4398
4399 /* Now check for the same section (if defined) or the same elf_hash
4400 (if undefined or weak). */
4401 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4402 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4403 if (r_reloc_is_defined (&src1->r_rel)
4404 && (final_static_link
4405 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4406 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4407 {
4408 if (r_reloc_get_section (&src1->r_rel)
4409 != r_reloc_get_section (&src2->r_rel))
4410 return FALSE;
4411 }
4412 else
4413 {
4414 /* Require that the hash entries (i.e., symbols) be identical. */
4415 if (h1 != h2 || h1 == 0)
4416 return FALSE;
4417 }
4418
4419 if (src1->is_abs_literal != src2->is_abs_literal)
4420 return FALSE;
4421
4422 return TRUE;
e0001a05
NC
4423}
4424
e0001a05 4425
43cd72b9
BW
4426/* Must be power of 2. */
4427#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 4428
43cd72b9 4429static value_map_hash_table *
7fa3d080 4430value_map_hash_table_init (void)
43cd72b9
BW
4431{
4432 value_map_hash_table *values;
e0001a05 4433
43cd72b9
BW
4434 values = (value_map_hash_table *)
4435 bfd_zmalloc (sizeof (value_map_hash_table));
4436 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4437 values->count = 0;
4438 values->buckets = (value_map **)
4439 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4440 if (values->buckets == NULL)
4441 {
4442 free (values);
4443 return NULL;
4444 }
4445 values->has_last_loc = FALSE;
4446
4447 return values;
4448}
4449
4450
4451static void
7fa3d080 4452value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 4453{
43cd72b9
BW
4454 free (table->buckets);
4455 free (table);
4456}
4457
4458
4459static unsigned
7fa3d080 4460hash_bfd_vma (bfd_vma val)
43cd72b9
BW
4461{
4462 return (val >> 2) + (val >> 10);
4463}
4464
4465
4466static unsigned
7fa3d080 4467literal_value_hash (const literal_value *src)
43cd72b9
BW
4468{
4469 unsigned hash_val;
e0001a05 4470
43cd72b9
BW
4471 hash_val = hash_bfd_vma (src->value);
4472 if (!r_reloc_is_const (&src->r_rel))
e0001a05 4473 {
43cd72b9
BW
4474 void *sec_or_hash;
4475
4476 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4477 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4478 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4479
4480 /* Now check for the same section and the same elf_hash. */
4481 if (r_reloc_is_defined (&src->r_rel))
4482 sec_or_hash = r_reloc_get_section (&src->r_rel);
4483 else
4484 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 4485 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 4486 }
43cd72b9
BW
4487 return hash_val;
4488}
e0001a05 4489
e0001a05 4490
43cd72b9 4491/* Check if the specified literal_value has been seen before. */
e0001a05 4492
43cd72b9 4493static value_map *
7fa3d080
BW
4494value_map_get_cached_value (value_map_hash_table *map,
4495 const literal_value *val,
4496 bfd_boolean final_static_link)
43cd72b9
BW
4497{
4498 value_map *map_e;
4499 value_map *bucket;
4500 unsigned idx;
4501
4502 idx = literal_value_hash (val);
4503 idx = idx & (map->bucket_count - 1);
4504 bucket = map->buckets[idx];
4505 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 4506 {
43cd72b9
BW
4507 if (literal_value_equal (&map_e->val, val, final_static_link))
4508 return map_e;
4509 }
4510 return NULL;
4511}
e0001a05 4512
e0001a05 4513
43cd72b9
BW
4514/* Record a new literal value. It is illegal to call this if VALUE
4515 already has an entry here. */
4516
4517static value_map *
7fa3d080
BW
4518add_value_map (value_map_hash_table *map,
4519 const literal_value *val,
4520 const r_reloc *loc,
4521 bfd_boolean final_static_link)
43cd72b9
BW
4522{
4523 value_map **bucket_p;
4524 unsigned idx;
4525
4526 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4527 if (val_e == NULL)
4528 {
4529 bfd_set_error (bfd_error_no_memory);
4530 return NULL;
e0001a05
NC
4531 }
4532
43cd72b9
BW
4533 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4534 val_e->val = *val;
4535 val_e->loc = *loc;
4536
4537 idx = literal_value_hash (val);
4538 idx = idx & (map->bucket_count - 1);
4539 bucket_p = &map->buckets[idx];
4540
4541 val_e->next = *bucket_p;
4542 *bucket_p = val_e;
4543 map->count++;
4544 /* FIXME: Consider resizing the hash table if we get too many entries. */
4545
4546 return val_e;
e0001a05
NC
4547}
4548
43cd72b9
BW
4549\f
4550/* Lists of text actions (ta_) for narrowing, widening, longcall
4551 conversion, space fill, code & literal removal, etc. */
4552
4553/* The following text actions are generated:
4554
4555 "ta_remove_insn" remove an instruction or instructions
4556 "ta_remove_longcall" convert longcall to call
4557 "ta_convert_longcall" convert longcall to nop/call
4558 "ta_narrow_insn" narrow a wide instruction
4559 "ta_widen" widen a narrow instruction
4560 "ta_fill" add fill or remove fill
4561 removed < 0 is a fill; branches to the fill address will be
4562 changed to address + fill size (e.g., address - removed)
4563 removed >= 0 branches to the fill address will stay unchanged
4564 "ta_remove_literal" remove a literal; this action is
4565 indicated when a literal is removed
4566 or replaced.
4567 "ta_add_literal" insert a new literal; this action is
4568 indicated when a literal has been moved.
4569 It may use a virtual_offset because
4570 multiple literals can be placed at the
4571 same location.
4572
4573 For each of these text actions, we also record the number of bytes
4574 removed by performing the text action. In the case of a "ta_widen"
4575 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4576
4577typedef struct text_action_struct text_action;
4578typedef struct text_action_list_struct text_action_list;
4579typedef enum text_action_enum_t text_action_t;
4580
4581enum text_action_enum_t
4582{
4583 ta_none,
4584 ta_remove_insn, /* removed = -size */
4585 ta_remove_longcall, /* removed = -size */
4586 ta_convert_longcall, /* removed = 0 */
4587 ta_narrow_insn, /* removed = -1 */
4588 ta_widen_insn, /* removed = +1 */
4589 ta_fill, /* removed = +size */
4590 ta_remove_literal,
4591 ta_add_literal
4592};
e0001a05 4593
e0001a05 4594
43cd72b9
BW
4595/* Structure for a text action record. */
4596struct text_action_struct
e0001a05 4597{
43cd72b9
BW
4598 text_action_t action;
4599 asection *sec; /* Optional */
4600 bfd_vma offset;
4601 bfd_vma virtual_offset; /* Zero except for adding literals. */
4602 int removed_bytes;
4603 literal_value value; /* Only valid when adding literals. */
e0001a05 4604
43cd72b9
BW
4605 text_action *next;
4606};
e0001a05 4607
e0001a05 4608
43cd72b9
BW
4609/* List of all of the actions taken on a text section. */
4610struct text_action_list_struct
4611{
4612 text_action *head;
4613};
e0001a05 4614
e0001a05 4615
7fa3d080
BW
4616static text_action *
4617find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
4618{
4619 text_action **m_p;
4620
4621 /* It is not necessary to fill at the end of a section. */
4622 if (sec->size == offset)
4623 return NULL;
4624
7fa3d080 4625 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4626 {
4627 text_action *t = *m_p;
4628 /* When the action is another fill at the same address,
4629 just increase the size. */
4630 if (t->offset == offset && t->action == ta_fill)
4631 return t;
4632 }
4633 return NULL;
4634}
4635
4636
4637static int
7fa3d080
BW
4638compute_removed_action_diff (const text_action *ta,
4639 asection *sec,
4640 bfd_vma offset,
4641 int removed,
4642 int removable_space)
43cd72b9
BW
4643{
4644 int new_removed;
4645 int current_removed = 0;
4646
7fa3d080 4647 if (ta)
43cd72b9
BW
4648 current_removed = ta->removed_bytes;
4649
4650 BFD_ASSERT (ta == NULL || ta->offset == offset);
4651 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4652
4653 /* It is not necessary to fill at the end of a section. Clean this up. */
4654 if (sec->size == offset)
4655 new_removed = removable_space - 0;
4656 else
4657 {
4658 int space;
4659 int added = -removed - current_removed;
4660 /* Ignore multiples of the section alignment. */
4661 added = ((1 << sec->alignment_power) - 1) & added;
4662 new_removed = (-added);
4663
4664 /* Modify for removable. */
4665 space = removable_space - new_removed;
4666 new_removed = (removable_space
4667 - (((1 << sec->alignment_power) - 1) & space));
4668 }
4669 return (new_removed - current_removed);
4670}
4671
4672
7fa3d080
BW
4673static void
4674adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
4675{
4676 ta->removed_bytes += fill_diff;
4677}
4678
4679
4680/* Add a modification action to the text. For the case of adding or
4681 removing space, modify any current fill and assume that
4682 "unreachable_space" bytes can be freely contracted. Note that a
4683 negative removed value is a fill. */
4684
4685static void
7fa3d080
BW
4686text_action_add (text_action_list *l,
4687 text_action_t action,
4688 asection *sec,
4689 bfd_vma offset,
4690 int removed)
43cd72b9
BW
4691{
4692 text_action **m_p;
4693 text_action *ta;
4694
4695 /* It is not necessary to fill at the end of a section. */
4696 if (action == ta_fill && sec->size == offset)
4697 return;
4698
4699 /* It is not necessary to fill 0 bytes. */
4700 if (action == ta_fill && removed == 0)
4701 return;
4702
7fa3d080 4703 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
4704 {
4705 text_action *t = *m_p;
4706 /* When the action is another fill at the same address,
4707 just increase the size. */
4708 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4709 {
4710 t->removed_bytes += removed;
4711 return;
4712 }
4713 }
4714
4715 /* Create a new record and fill it up. */
4716 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4717 ta->action = action;
4718 ta->sec = sec;
4719 ta->offset = offset;
4720 ta->removed_bytes = removed;
4721 ta->next = (*m_p);
4722 *m_p = ta;
4723}
4724
4725
4726static void
7fa3d080
BW
4727text_action_add_literal (text_action_list *l,
4728 text_action_t action,
4729 const r_reloc *loc,
4730 const literal_value *value,
4731 int removed)
43cd72b9
BW
4732{
4733 text_action **m_p;
4734 text_action *ta;
4735 asection *sec = r_reloc_get_section (loc);
4736 bfd_vma offset = loc->target_offset;
4737 bfd_vma virtual_offset = loc->virtual_offset;
4738
4739 BFD_ASSERT (action == ta_add_literal);
4740
4741 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4742 {
4743 if ((*m_p)->offset > offset
4744 && ((*m_p)->offset != offset
4745 || (*m_p)->virtual_offset > virtual_offset))
4746 break;
4747 }
4748
4749 /* Create a new record and fill it up. */
4750 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4751 ta->action = action;
4752 ta->sec = sec;
4753 ta->offset = offset;
4754 ta->virtual_offset = virtual_offset;
4755 ta->value = *value;
4756 ta->removed_bytes = removed;
4757 ta->next = (*m_p);
4758 *m_p = ta;
4759}
4760
4761
03669f1c
BW
4762/* Find the total offset adjustment for the relaxations specified by
4763 text_actions, beginning from a particular starting action. This is
4764 typically used from offset_with_removed_text to search an entire list of
4765 actions, but it may also be called directly when adjusting adjacent offsets
4766 so that each search may begin where the previous one left off. */
4767
4768static int
4769removed_by_actions (text_action **p_start_action,
4770 bfd_vma offset,
4771 bfd_boolean before_fill)
43cd72b9
BW
4772{
4773 text_action *r;
4774 int removed = 0;
4775
03669f1c
BW
4776 r = *p_start_action;
4777 while (r)
43cd72b9 4778 {
03669f1c
BW
4779 if (r->offset > offset)
4780 break;
4781
4782 if (r->offset == offset
4783 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
4784 break;
4785
4786 removed += r->removed_bytes;
4787
4788 r = r->next;
43cd72b9
BW
4789 }
4790
03669f1c
BW
4791 *p_start_action = r;
4792 return removed;
4793}
4794
4795
4796static bfd_vma
4797offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4798{
4799 text_action *r = action_list->head;
4800 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
4801}
4802
4803
03e94c08
BW
4804static unsigned
4805action_list_count (text_action_list *action_list)
4806{
4807 text_action *r = action_list->head;
4808 unsigned count = 0;
4809 for (r = action_list->head; r != NULL; r = r->next)
4810 {
4811 count++;
4812 }
4813 return count;
4814}
4815
4816
43cd72b9
BW
4817/* The find_insn_action routine will only find non-fill actions. */
4818
7fa3d080
BW
4819static text_action *
4820find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
4821{
4822 text_action *t;
4823 for (t = action_list->head; t; t = t->next)
4824 {
4825 if (t->offset == offset)
4826 {
4827 switch (t->action)
4828 {
4829 case ta_none:
4830 case ta_fill:
4831 break;
4832 case ta_remove_insn:
4833 case ta_remove_longcall:
4834 case ta_convert_longcall:
4835 case ta_narrow_insn:
4836 case ta_widen_insn:
4837 return t;
4838 case ta_remove_literal:
4839 case ta_add_literal:
4840 BFD_ASSERT (0);
4841 break;
4842 }
4843 }
4844 }
4845 return NULL;
4846}
4847
4848
4849#if DEBUG
4850
4851static void
7fa3d080 4852print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
4853{
4854 text_action *r;
4855
4856 fprintf (fp, "Text Action\n");
4857 for (r = action_list->head; r != NULL; r = r->next)
4858 {
4859 const char *t = "unknown";
4860 switch (r->action)
4861 {
4862 case ta_remove_insn:
4863 t = "remove_insn"; break;
4864 case ta_remove_longcall:
4865 t = "remove_longcall"; break;
4866 case ta_convert_longcall:
c46082c8 4867 t = "convert_longcall"; break;
43cd72b9
BW
4868 case ta_narrow_insn:
4869 t = "narrow_insn"; break;
4870 case ta_widen_insn:
4871 t = "widen_insn"; break;
4872 case ta_fill:
4873 t = "fill"; break;
4874 case ta_none:
4875 t = "none"; break;
4876 case ta_remove_literal:
4877 t = "remove_literal"; break;
4878 case ta_add_literal:
4879 t = "add_literal"; break;
4880 }
4881
4882 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4883 r->sec->owner->filename,
4884 r->sec->name, r->offset, t, r->removed_bytes);
4885 }
4886}
4887
4888#endif /* DEBUG */
4889
4890\f
4891/* Lists of literals being coalesced or removed. */
4892
4893/* In the usual case, the literal identified by "from" is being
4894 coalesced with another literal identified by "to". If the literal is
4895 unused and is being removed altogether, "to.abfd" will be NULL.
4896 The removed_literal entries are kept on a per-section list, sorted
4897 by the "from" offset field. */
4898
4899typedef struct removed_literal_struct removed_literal;
4900typedef struct removed_literal_list_struct removed_literal_list;
4901
4902struct removed_literal_struct
4903{
4904 r_reloc from;
4905 r_reloc to;
4906 removed_literal *next;
4907};
4908
4909struct removed_literal_list_struct
4910{
4911 removed_literal *head;
4912 removed_literal *tail;
4913};
4914
4915
43cd72b9
BW
4916/* Record that the literal at "from" is being removed. If "to" is not
4917 NULL, the "from" literal is being coalesced with the "to" literal. */
4918
4919static void
7fa3d080
BW
4920add_removed_literal (removed_literal_list *removed_list,
4921 const r_reloc *from,
4922 const r_reloc *to)
43cd72b9
BW
4923{
4924 removed_literal *r, *new_r, *next_r;
4925
4926 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4927
4928 new_r->from = *from;
4929 if (to)
4930 new_r->to = *to;
4931 else
4932 new_r->to.abfd = NULL;
4933 new_r->next = NULL;
4934
4935 r = removed_list->head;
4936 if (r == NULL)
4937 {
4938 removed_list->head = new_r;
4939 removed_list->tail = new_r;
4940 }
4941 /* Special check for common case of append. */
4942 else if (removed_list->tail->from.target_offset < from->target_offset)
4943 {
4944 removed_list->tail->next = new_r;
4945 removed_list->tail = new_r;
4946 }
4947 else
4948 {
7fa3d080 4949 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
4950 {
4951 r = r->next;
4952 }
4953 next_r = r->next;
4954 r->next = new_r;
4955 new_r->next = next_r;
4956 if (next_r == NULL)
4957 removed_list->tail = new_r;
4958 }
4959}
4960
4961
4962/* Check if the list of removed literals contains an entry for the
4963 given address. Return the entry if found. */
4964
4965static removed_literal *
7fa3d080 4966find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
4967{
4968 removed_literal *r = removed_list->head;
4969 while (r && r->from.target_offset < addr)
4970 r = r->next;
4971 if (r && r->from.target_offset == addr)
4972 return r;
4973 return NULL;
4974}
4975
4976
4977#if DEBUG
4978
4979static void
7fa3d080 4980print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
4981{
4982 removed_literal *r;
4983 r = removed_list->head;
4984 if (r)
4985 fprintf (fp, "Removed Literals\n");
4986 for (; r != NULL; r = r->next)
4987 {
4988 print_r_reloc (fp, &r->from);
4989 fprintf (fp, " => ");
4990 if (r->to.abfd == NULL)
4991 fprintf (fp, "REMOVED");
4992 else
4993 print_r_reloc (fp, &r->to);
4994 fprintf (fp, "\n");
4995 }
4996}
4997
4998#endif /* DEBUG */
4999
5000\f
5001/* Per-section data for relaxation. */
5002
5003typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5004
5005struct xtensa_relax_info_struct
5006{
5007 bfd_boolean is_relaxable_literal_section;
5008 bfd_boolean is_relaxable_asm_section;
5009 int visited; /* Number of times visited. */
5010
5011 source_reloc *src_relocs; /* Array[src_count]. */
5012 int src_count;
5013 int src_next; /* Next src_relocs entry to assign. */
5014
5015 removed_literal_list removed_list;
5016 text_action_list action_list;
5017
5018 reloc_bfd_fix *fix_list;
5019 reloc_bfd_fix *fix_array;
5020 unsigned fix_array_count;
5021
5022 /* Support for expanding the reloc array that is stored
5023 in the section structure. If the relocations have been
5024 reallocated, the newly allocated relocations will be referenced
5025 here along with the actual size allocated. The relocation
5026 count will always be found in the section structure. */
5027 Elf_Internal_Rela *allocated_relocs;
5028 unsigned relocs_count;
5029 unsigned allocated_relocs_count;
5030};
5031
5032struct elf_xtensa_section_data
5033{
5034 struct bfd_elf_section_data elf;
5035 xtensa_relax_info relax_info;
5036};
5037
43cd72b9
BW
5038
5039static bfd_boolean
7fa3d080 5040elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5041{
f592407e
AM
5042 if (!sec->used_by_bfd)
5043 {
5044 struct elf_xtensa_section_data *sdata;
5045 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5046
f592407e
AM
5047 sdata = bfd_zalloc (abfd, amt);
5048 if (sdata == NULL)
5049 return FALSE;
5050 sec->used_by_bfd = sdata;
5051 }
43cd72b9
BW
5052
5053 return _bfd_elf_new_section_hook (abfd, sec);
5054}
5055
5056
7fa3d080
BW
5057static xtensa_relax_info *
5058get_xtensa_relax_info (asection *sec)
5059{
5060 struct elf_xtensa_section_data *section_data;
5061
5062 /* No info available if no section or if it is an output section. */
5063 if (!sec || sec == sec->output_section)
5064 return NULL;
5065
5066 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5067 return &section_data->relax_info;
5068}
5069
5070
43cd72b9 5071static void
7fa3d080 5072init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5073{
5074 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5075
5076 relax_info->is_relaxable_literal_section = FALSE;
5077 relax_info->is_relaxable_asm_section = FALSE;
5078 relax_info->visited = 0;
5079
5080 relax_info->src_relocs = NULL;
5081 relax_info->src_count = 0;
5082 relax_info->src_next = 0;
5083
5084 relax_info->removed_list.head = NULL;
5085 relax_info->removed_list.tail = NULL;
5086
5087 relax_info->action_list.head = NULL;
5088
5089 relax_info->fix_list = NULL;
5090 relax_info->fix_array = NULL;
5091 relax_info->fix_array_count = 0;
5092
5093 relax_info->allocated_relocs = NULL;
5094 relax_info->relocs_count = 0;
5095 relax_info->allocated_relocs_count = 0;
5096}
5097
43cd72b9
BW
5098\f
5099/* Coalescing literals may require a relocation to refer to a section in
5100 a different input file, but the standard relocation information
5101 cannot express that. Instead, the reloc_bfd_fix structures are used
5102 to "fix" the relocations that refer to sections in other input files.
5103 These structures are kept on per-section lists. The "src_type" field
5104 records the relocation type in case there are multiple relocations on
5105 the same location. FIXME: This is ugly; an alternative might be to
5106 add new symbols with the "owner" field to some other input file. */
5107
5108struct reloc_bfd_fix_struct
5109{
5110 asection *src_sec;
5111 bfd_vma src_offset;
5112 unsigned src_type; /* Relocation type. */
5113
43cd72b9
BW
5114 asection *target_sec;
5115 bfd_vma target_offset;
5116 bfd_boolean translated;
5117
5118 reloc_bfd_fix *next;
5119};
5120
5121
43cd72b9 5122static reloc_bfd_fix *
7fa3d080
BW
5123reloc_bfd_fix_init (asection *src_sec,
5124 bfd_vma src_offset,
5125 unsigned src_type,
7fa3d080
BW
5126 asection *target_sec,
5127 bfd_vma target_offset,
5128 bfd_boolean translated)
43cd72b9
BW
5129{
5130 reloc_bfd_fix *fix;
5131
5132 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5133 fix->src_sec = src_sec;
5134 fix->src_offset = src_offset;
5135 fix->src_type = src_type;
43cd72b9
BW
5136 fix->target_sec = target_sec;
5137 fix->target_offset = target_offset;
5138 fix->translated = translated;
5139
5140 return fix;
5141}
5142
5143
5144static void
7fa3d080 5145add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5146{
5147 xtensa_relax_info *relax_info;
5148
5149 relax_info = get_xtensa_relax_info (src_sec);
5150 fix->next = relax_info->fix_list;
5151 relax_info->fix_list = fix;
5152}
5153
5154
5155static int
7fa3d080 5156fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5157{
5158 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5159 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5160
5161 if (a->src_offset != b->src_offset)
5162 return (a->src_offset - b->src_offset);
5163 return (a->src_type - b->src_type);
5164}
5165
5166
5167static void
7fa3d080 5168cache_fix_array (asection *sec)
43cd72b9
BW
5169{
5170 unsigned i, count = 0;
5171 reloc_bfd_fix *r;
5172 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5173
5174 if (relax_info == NULL)
5175 return;
5176 if (relax_info->fix_list == NULL)
5177 return;
5178
5179 for (r = relax_info->fix_list; r != NULL; r = r->next)
5180 count++;
5181
5182 relax_info->fix_array =
5183 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5184 relax_info->fix_array_count = count;
5185
5186 r = relax_info->fix_list;
5187 for (i = 0; i < count; i++, r = r->next)
5188 {
5189 relax_info->fix_array[count - 1 - i] = *r;
5190 relax_info->fix_array[count - 1 - i].next = NULL;
5191 }
5192
5193 qsort (relax_info->fix_array, relax_info->fix_array_count,
5194 sizeof (reloc_bfd_fix), fix_compare);
5195}
5196
5197
5198static reloc_bfd_fix *
7fa3d080 5199get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
5200{
5201 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5202 reloc_bfd_fix *rv;
5203 reloc_bfd_fix key;
5204
5205 if (relax_info == NULL)
5206 return NULL;
5207 if (relax_info->fix_list == NULL)
5208 return NULL;
5209
5210 if (relax_info->fix_array == NULL)
5211 cache_fix_array (sec);
5212
5213 key.src_offset = offset;
5214 key.src_type = type;
5215 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5216 sizeof (reloc_bfd_fix), fix_compare);
5217 return rv;
5218}
5219
5220\f
5221/* Section caching. */
5222
5223typedef struct section_cache_struct section_cache_t;
5224
5225struct section_cache_struct
5226{
5227 asection *sec;
5228
5229 bfd_byte *contents; /* Cache of the section contents. */
5230 bfd_size_type content_length;
5231
5232 property_table_entry *ptbl; /* Cache of the section property table. */
5233 unsigned pte_count;
5234
5235 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5236 unsigned reloc_count;
5237};
5238
5239
7fa3d080
BW
5240static void
5241init_section_cache (section_cache_t *sec_cache)
5242{
5243 memset (sec_cache, 0, sizeof (*sec_cache));
5244}
43cd72b9
BW
5245
5246
5247static void
7fa3d080 5248clear_section_cache (section_cache_t *sec_cache)
43cd72b9 5249{
7fa3d080
BW
5250 if (sec_cache->sec)
5251 {
5252 release_contents (sec_cache->sec, sec_cache->contents);
5253 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5254 if (sec_cache->ptbl)
5255 free (sec_cache->ptbl);
5256 memset (sec_cache, 0, sizeof (sec_cache));
5257 }
43cd72b9
BW
5258}
5259
5260
5261static bfd_boolean
7fa3d080
BW
5262section_cache_section (section_cache_t *sec_cache,
5263 asection *sec,
5264 struct bfd_link_info *link_info)
43cd72b9
BW
5265{
5266 bfd *abfd;
5267 property_table_entry *prop_table = NULL;
5268 int ptblsize = 0;
5269 bfd_byte *contents = NULL;
5270 Elf_Internal_Rela *internal_relocs = NULL;
5271 bfd_size_type sec_size;
5272
5273 if (sec == NULL)
5274 return FALSE;
5275 if (sec == sec_cache->sec)
5276 return TRUE;
5277
5278 abfd = sec->owner;
5279 sec_size = bfd_get_section_limit (abfd, sec);
5280
5281 /* Get the contents. */
5282 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5283 if (contents == NULL && sec_size != 0)
5284 goto err;
5285
5286 /* Get the relocations. */
5287 internal_relocs = retrieve_internal_relocs (abfd, sec,
5288 link_info->keep_memory);
5289
5290 /* Get the entry table. */
5291 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5292 XTENSA_PROP_SEC_NAME, FALSE);
5293 if (ptblsize < 0)
5294 goto err;
5295
5296 /* Fill in the new section cache. */
5297 clear_section_cache (sec_cache);
5298 memset (sec_cache, 0, sizeof (sec_cache));
5299
5300 sec_cache->sec = sec;
5301 sec_cache->contents = contents;
5302 sec_cache->content_length = sec_size;
5303 sec_cache->relocs = internal_relocs;
5304 sec_cache->reloc_count = sec->reloc_count;
5305 sec_cache->pte_count = ptblsize;
5306 sec_cache->ptbl = prop_table;
5307
5308 return TRUE;
5309
5310 err:
5311 release_contents (sec, contents);
5312 release_internal_relocs (sec, internal_relocs);
5313 if (prop_table)
5314 free (prop_table);
5315 return FALSE;
5316}
5317
43cd72b9
BW
5318\f
5319/* Extended basic blocks. */
5320
5321/* An ebb_struct represents an Extended Basic Block. Within this
5322 range, we guarantee that all instructions are decodable, the
5323 property table entries are contiguous, and no property table
5324 specifies a segment that cannot have instructions moved. This
5325 structure contains caches of the contents, property table and
5326 relocations for the specified section for easy use. The range is
5327 specified by ranges of indices for the byte offset, property table
5328 offsets and relocation offsets. These must be consistent. */
5329
5330typedef struct ebb_struct ebb_t;
5331
5332struct ebb_struct
5333{
5334 asection *sec;
5335
5336 bfd_byte *contents; /* Cache of the section contents. */
5337 bfd_size_type content_length;
5338
5339 property_table_entry *ptbl; /* Cache of the section property table. */
5340 unsigned pte_count;
5341
5342 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5343 unsigned reloc_count;
5344
5345 bfd_vma start_offset; /* Offset in section. */
5346 unsigned start_ptbl_idx; /* Offset in the property table. */
5347 unsigned start_reloc_idx; /* Offset in the relocations. */
5348
5349 bfd_vma end_offset;
5350 unsigned end_ptbl_idx;
5351 unsigned end_reloc_idx;
5352
5353 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5354
5355 /* The unreachable property table at the end of this set of blocks;
5356 NULL if the end is not an unreachable block. */
5357 property_table_entry *ends_unreachable;
5358};
5359
5360
5361enum ebb_target_enum
5362{
5363 EBB_NO_ALIGN = 0,
5364 EBB_DESIRE_TGT_ALIGN,
5365 EBB_REQUIRE_TGT_ALIGN,
5366 EBB_REQUIRE_LOOP_ALIGN,
5367 EBB_REQUIRE_ALIGN
5368};
5369
5370
5371/* proposed_action_struct is similar to the text_action_struct except
5372 that is represents a potential transformation, not one that will
5373 occur. We build a list of these for an extended basic block
5374 and use them to compute the actual actions desired. We must be
5375 careful that the entire set of actual actions we perform do not
5376 break any relocations that would fit if the actions were not
5377 performed. */
5378
5379typedef struct proposed_action_struct proposed_action;
5380
5381struct proposed_action_struct
5382{
5383 enum ebb_target_enum align_type; /* for the target alignment */
5384 bfd_vma alignment_pow;
5385 text_action_t action;
5386 bfd_vma offset;
5387 int removed_bytes;
5388 bfd_boolean do_action; /* If false, then we will not perform the action. */
5389};
5390
5391
5392/* The ebb_constraint_struct keeps a set of proposed actions for an
5393 extended basic block. */
5394
5395typedef struct ebb_constraint_struct ebb_constraint;
5396
5397struct ebb_constraint_struct
5398{
5399 ebb_t ebb;
5400 bfd_boolean start_movable;
5401
5402 /* Bytes of extra space at the beginning if movable. */
5403 int start_extra_space;
5404
5405 enum ebb_target_enum start_align;
5406
5407 bfd_boolean end_movable;
5408
5409 /* Bytes of extra space at the end if movable. */
5410 int end_extra_space;
5411
5412 unsigned action_count;
5413 unsigned action_allocated;
5414
5415 /* Array of proposed actions. */
5416 proposed_action *actions;
5417
5418 /* Action alignments -- one for each proposed action. */
5419 enum ebb_target_enum *action_aligns;
5420};
5421
5422
43cd72b9 5423static void
7fa3d080 5424init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
5425{
5426 memset (c, 0, sizeof (ebb_constraint));
5427}
5428
5429
5430static void
7fa3d080 5431free_ebb_constraint (ebb_constraint *c)
43cd72b9 5432{
7fa3d080 5433 if (c->actions)
43cd72b9
BW
5434 free (c->actions);
5435}
5436
5437
5438static void
7fa3d080
BW
5439init_ebb (ebb_t *ebb,
5440 asection *sec,
5441 bfd_byte *contents,
5442 bfd_size_type content_length,
5443 property_table_entry *prop_table,
5444 unsigned ptblsize,
5445 Elf_Internal_Rela *internal_relocs,
5446 unsigned reloc_count)
43cd72b9
BW
5447{
5448 memset (ebb, 0, sizeof (ebb_t));
5449 ebb->sec = sec;
5450 ebb->contents = contents;
5451 ebb->content_length = content_length;
5452 ebb->ptbl = prop_table;
5453 ebb->pte_count = ptblsize;
5454 ebb->relocs = internal_relocs;
5455 ebb->reloc_count = reloc_count;
5456 ebb->start_offset = 0;
5457 ebb->end_offset = ebb->content_length - 1;
5458 ebb->start_ptbl_idx = 0;
5459 ebb->end_ptbl_idx = ptblsize;
5460 ebb->start_reloc_idx = 0;
5461 ebb->end_reloc_idx = reloc_count;
5462}
5463
5464
5465/* Extend the ebb to all decodable contiguous sections. The algorithm
5466 for building a basic block around an instruction is to push it
5467 forward until we hit the end of a section, an unreachable block or
5468 a block that cannot be transformed. Then we push it backwards
5469 searching for similar conditions. */
5470
7fa3d080
BW
5471static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5472static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5473static bfd_size_type insn_block_decodable_len
5474 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5475
43cd72b9 5476static bfd_boolean
7fa3d080 5477extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
5478{
5479 if (!extend_ebb_bounds_forward (ebb))
5480 return FALSE;
5481 if (!extend_ebb_bounds_backward (ebb))
5482 return FALSE;
5483 return TRUE;
5484}
5485
5486
5487static bfd_boolean
7fa3d080 5488extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
5489{
5490 property_table_entry *the_entry, *new_entry;
5491
5492 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5493
5494 /* Stop when (1) we cannot decode an instruction, (2) we are at
5495 the end of the property tables, (3) we hit a non-contiguous property
5496 table entry, (4) we hit a NO_TRANSFORM region. */
5497
5498 while (1)
5499 {
5500 bfd_vma entry_end;
5501 bfd_size_type insn_block_len;
5502
5503 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5504 insn_block_len =
5505 insn_block_decodable_len (ebb->contents, ebb->content_length,
5506 ebb->end_offset,
5507 entry_end - ebb->end_offset);
5508 if (insn_block_len != (entry_end - ebb->end_offset))
5509 {
5510 (*_bfd_error_handler)
5511 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5512 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5513 return FALSE;
5514 }
5515 ebb->end_offset += insn_block_len;
5516
5517 if (ebb->end_offset == ebb->sec->size)
5518 ebb->ends_section = TRUE;
5519
5520 /* Update the reloc counter. */
5521 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5522 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5523 < ebb->end_offset))
5524 {
5525 ebb->end_reloc_idx++;
5526 }
5527
5528 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5529 return TRUE;
5530
5531 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5532 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 5533 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
5534 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5535 break;
5536
5537 if (the_entry->address + the_entry->size != new_entry->address)
5538 break;
5539
5540 the_entry = new_entry;
5541 ebb->end_ptbl_idx++;
5542 }
5543
5544 /* Quick check for an unreachable or end of file just at the end. */
5545 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5546 {
5547 if (ebb->end_offset == ebb->content_length)
5548 ebb->ends_section = TRUE;
5549 }
5550 else
5551 {
5552 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5553 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5554 && the_entry->address + the_entry->size == new_entry->address)
5555 ebb->ends_unreachable = new_entry;
5556 }
5557
5558 /* Any other ending requires exact alignment. */
5559 return TRUE;
5560}
5561
5562
5563static bfd_boolean
7fa3d080 5564extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
5565{
5566 property_table_entry *the_entry, *new_entry;
5567
5568 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5569
5570 /* Stop when (1) we cannot decode the instructions in the current entry.
5571 (2) we are at the beginning of the property tables, (3) we hit a
5572 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5573
5574 while (1)
5575 {
5576 bfd_vma block_begin;
5577 bfd_size_type insn_block_len;
5578
5579 block_begin = the_entry->address - ebb->sec->vma;
5580 insn_block_len =
5581 insn_block_decodable_len (ebb->contents, ebb->content_length,
5582 block_begin,
5583 ebb->start_offset - block_begin);
5584 if (insn_block_len != ebb->start_offset - block_begin)
5585 {
5586 (*_bfd_error_handler)
5587 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5588 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5589 return FALSE;
5590 }
5591 ebb->start_offset -= insn_block_len;
5592
5593 /* Update the reloc counter. */
5594 while (ebb->start_reloc_idx > 0
5595 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5596 >= ebb->start_offset))
5597 {
5598 ebb->start_reloc_idx--;
5599 }
5600
5601 if (ebb->start_ptbl_idx == 0)
5602 return TRUE;
5603
5604 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5605 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 5606 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
5607 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5608 return TRUE;
5609 if (new_entry->address + new_entry->size != the_entry->address)
5610 return TRUE;
5611
5612 the_entry = new_entry;
5613 ebb->start_ptbl_idx--;
5614 }
5615 return TRUE;
5616}
5617
5618
5619static bfd_size_type
7fa3d080
BW
5620insn_block_decodable_len (bfd_byte *contents,
5621 bfd_size_type content_len,
5622 bfd_vma block_offset,
5623 bfd_size_type block_len)
43cd72b9
BW
5624{
5625 bfd_vma offset = block_offset;
5626
5627 while (offset < block_offset + block_len)
5628 {
5629 bfd_size_type insn_len = 0;
5630
5631 insn_len = insn_decode_len (contents, content_len, offset);
5632 if (insn_len == 0)
5633 return (offset - block_offset);
5634 offset += insn_len;
5635 }
5636 return (offset - block_offset);
5637}
5638
5639
5640static void
7fa3d080 5641ebb_propose_action (ebb_constraint *c,
7fa3d080 5642 enum ebb_target_enum align_type,
288f74fa 5643 bfd_vma alignment_pow,
7fa3d080
BW
5644 text_action_t action,
5645 bfd_vma offset,
5646 int removed_bytes,
5647 bfd_boolean do_action)
43cd72b9 5648{
b08b5071 5649 proposed_action *act;
43cd72b9 5650
43cd72b9
BW
5651 if (c->action_allocated <= c->action_count)
5652 {
b08b5071 5653 unsigned new_allocated, i;
823fc61f 5654 proposed_action *new_actions;
b08b5071
BW
5655
5656 new_allocated = (c->action_count + 2) * 2;
823fc61f 5657 new_actions = (proposed_action *)
43cd72b9
BW
5658 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5659
5660 for (i = 0; i < c->action_count; i++)
5661 new_actions[i] = c->actions[i];
7fa3d080 5662 if (c->actions)
43cd72b9
BW
5663 free (c->actions);
5664 c->actions = new_actions;
5665 c->action_allocated = new_allocated;
5666 }
b08b5071
BW
5667
5668 act = &c->actions[c->action_count];
5669 act->align_type = align_type;
5670 act->alignment_pow = alignment_pow;
5671 act->action = action;
5672 act->offset = offset;
5673 act->removed_bytes = removed_bytes;
5674 act->do_action = do_action;
5675
43cd72b9
BW
5676 c->action_count++;
5677}
5678
5679\f
5680/* Access to internal relocations, section contents and symbols. */
5681
5682/* During relaxation, we need to modify relocations, section contents,
5683 and symbol definitions, and we need to keep the original values from
5684 being reloaded from the input files, i.e., we need to "pin" the
5685 modified values in memory. We also want to continue to observe the
5686 setting of the "keep-memory" flag. The following functions wrap the
5687 standard BFD functions to take care of this for us. */
5688
5689static Elf_Internal_Rela *
7fa3d080 5690retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5691{
5692 Elf_Internal_Rela *internal_relocs;
5693
5694 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5695 return NULL;
5696
5697 internal_relocs = elf_section_data (sec)->relocs;
5698 if (internal_relocs == NULL)
5699 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 5700 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
5701 return internal_relocs;
5702}
5703
5704
5705static void
7fa3d080 5706pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5707{
5708 elf_section_data (sec)->relocs = internal_relocs;
5709}
5710
5711
5712static void
7fa3d080 5713release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
5714{
5715 if (internal_relocs
5716 && elf_section_data (sec)->relocs != internal_relocs)
5717 free (internal_relocs);
5718}
5719
5720
5721static bfd_byte *
7fa3d080 5722retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
5723{
5724 bfd_byte *contents;
5725 bfd_size_type sec_size;
5726
5727 sec_size = bfd_get_section_limit (abfd, sec);
5728 contents = elf_section_data (sec)->this_hdr.contents;
5729
5730 if (contents == NULL && sec_size != 0)
5731 {
5732 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5733 {
7fa3d080 5734 if (contents)
43cd72b9
BW
5735 free (contents);
5736 return NULL;
5737 }
5738 if (keep_memory)
5739 elf_section_data (sec)->this_hdr.contents = contents;
5740 }
5741 return contents;
5742}
5743
5744
5745static void
7fa3d080 5746pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5747{
5748 elf_section_data (sec)->this_hdr.contents = contents;
5749}
5750
5751
5752static void
7fa3d080 5753release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
5754{
5755 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5756 free (contents);
5757}
5758
5759
5760static Elf_Internal_Sym *
7fa3d080 5761retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
5762{
5763 Elf_Internal_Shdr *symtab_hdr;
5764 Elf_Internal_Sym *isymbuf;
5765 size_t locsymcount;
5766
5767 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5768 locsymcount = symtab_hdr->sh_info;
5769
5770 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5771 if (isymbuf == NULL && locsymcount != 0)
5772 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5773 NULL, NULL, NULL);
5774
5775 /* Save the symbols for this input file so they won't be read again. */
5776 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5777 symtab_hdr->contents = (unsigned char *) isymbuf;
5778
5779 return isymbuf;
5780}
5781
5782\f
5783/* Code for link-time relaxation. */
5784
5785/* Initialization for relaxation: */
7fa3d080 5786static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 5787static bfd_boolean find_relaxable_sections
7fa3d080 5788 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 5789static bfd_boolean collect_source_relocs
7fa3d080 5790 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 5791static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
5792 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5793 bfd_boolean *);
43cd72b9 5794static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 5795 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 5796static bfd_boolean compute_text_actions
7fa3d080
BW
5797 (bfd *, asection *, struct bfd_link_info *);
5798static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5799static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 5800static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
5801 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5802 const xtensa_opcode *);
7fa3d080 5803static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 5804static void text_action_add_proposed
7fa3d080
BW
5805 (text_action_list *, const ebb_constraint *, asection *);
5806static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
5807
5808/* First pass: */
5809static bfd_boolean compute_removed_literals
7fa3d080 5810 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 5811static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 5812 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 5813static bfd_boolean is_removable_literal
99ded152
BW
5814 (const source_reloc *, int, const source_reloc *, int, asection *,
5815 property_table_entry *, int);
43cd72b9 5816static bfd_boolean remove_dead_literal
7fa3d080
BW
5817 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5818 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5819static bfd_boolean identify_literal_placement
5820 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5821 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5822 source_reloc *, property_table_entry *, int, section_cache_t *,
5823 bfd_boolean);
5824static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 5825static bfd_boolean coalesce_shared_literal
7fa3d080 5826 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 5827static bfd_boolean move_shared_literal
7fa3d080
BW
5828 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5829 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
5830
5831/* Second pass: */
7fa3d080
BW
5832static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5833static bfd_boolean translate_section_fixes (asection *);
5834static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 5835static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 5836static void shrink_dynamic_reloc_sections
7fa3d080 5837 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 5838static bfd_boolean move_literal
7fa3d080
BW
5839 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5840 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 5841static bfd_boolean relax_property_section
7fa3d080 5842 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
5843
5844/* Third pass: */
7fa3d080 5845static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
5846
5847
5848static bfd_boolean
7fa3d080
BW
5849elf_xtensa_relax_section (bfd *abfd,
5850 asection *sec,
5851 struct bfd_link_info *link_info,
5852 bfd_boolean *again)
43cd72b9
BW
5853{
5854 static value_map_hash_table *values = NULL;
5855 static bfd_boolean relocations_analyzed = FALSE;
5856 xtensa_relax_info *relax_info;
5857
5858 if (!relocations_analyzed)
5859 {
5860 /* Do some overall initialization for relaxation. */
5861 values = value_map_hash_table_init ();
5862 if (values == NULL)
5863 return FALSE;
5864 relaxing_section = TRUE;
5865 if (!analyze_relocations (link_info))
5866 return FALSE;
5867 relocations_analyzed = TRUE;
5868 }
5869 *again = FALSE;
5870
5871 /* Don't mess with linker-created sections. */
5872 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5873 return TRUE;
5874
5875 relax_info = get_xtensa_relax_info (sec);
5876 BFD_ASSERT (relax_info != NULL);
5877
5878 switch (relax_info->visited)
5879 {
5880 case 0:
5881 /* Note: It would be nice to fold this pass into
5882 analyze_relocations, but it is important for this step that the
5883 sections be examined in link order. */
5884 if (!compute_removed_literals (abfd, sec, link_info, values))
5885 return FALSE;
5886 *again = TRUE;
5887 break;
5888
5889 case 1:
5890 if (values)
5891 value_map_hash_table_delete (values);
5892 values = NULL;
5893 if (!relax_section (abfd, sec, link_info))
5894 return FALSE;
5895 *again = TRUE;
5896 break;
5897
5898 case 2:
5899 if (!relax_section_symbols (abfd, sec))
5900 return FALSE;
5901 break;
5902 }
5903
5904 relax_info->visited++;
5905 return TRUE;
5906}
5907
5908\f
5909/* Initialization for relaxation. */
5910
5911/* This function is called once at the start of relaxation. It scans
5912 all the input sections and marks the ones that are relaxable (i.e.,
5913 literal sections with L32R relocations against them), and then
5914 collects source_reloc information for all the relocations against
5915 those relaxable sections. During this process, it also detects
5916 longcalls, i.e., calls relaxed by the assembler into indirect
5917 calls, that can be optimized back into direct calls. Within each
5918 extended basic block (ebb) containing an optimized longcall, it
5919 computes a set of "text actions" that can be performed to remove
5920 the L32R associated with the longcall while optionally preserving
5921 branch target alignments. */
5922
5923static bfd_boolean
7fa3d080 5924analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
5925{
5926 bfd *abfd;
5927 asection *sec;
5928 bfd_boolean is_relaxable = FALSE;
5929
5930 /* Initialize the per-section relaxation info. */
5931 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5932 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5933 {
5934 init_xtensa_relax_info (sec);
5935 }
5936
5937 /* Mark relaxable sections (and count relocations against each one). */
5938 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5939 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5940 {
5941 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5942 return FALSE;
5943 }
5944
5945 /* Bail out if there are no relaxable sections. */
5946 if (!is_relaxable)
5947 return TRUE;
5948
5949 /* Allocate space for source_relocs. */
5950 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5951 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5952 {
5953 xtensa_relax_info *relax_info;
5954
5955 relax_info = get_xtensa_relax_info (sec);
5956 if (relax_info->is_relaxable_literal_section
5957 || relax_info->is_relaxable_asm_section)
5958 {
5959 relax_info->src_relocs = (source_reloc *)
5960 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5961 }
25c6282a
BW
5962 else
5963 relax_info->src_count = 0;
43cd72b9
BW
5964 }
5965
5966 /* Collect info on relocations against each relaxable section. */
5967 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5968 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5969 {
5970 if (!collect_source_relocs (abfd, sec, link_info))
5971 return FALSE;
5972 }
5973
5974 /* Compute the text actions. */
5975 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5976 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5977 {
5978 if (!compute_text_actions (abfd, sec, link_info))
5979 return FALSE;
5980 }
5981
5982 return TRUE;
5983}
5984
5985
5986/* Find all the sections that might be relaxed. The motivation for
5987 this pass is that collect_source_relocs() needs to record _all_ the
5988 relocations that target each relaxable section. That is expensive
5989 and unnecessary unless the target section is actually going to be
5990 relaxed. This pass identifies all such sections by checking if
5991 they have L32Rs pointing to them. In the process, the total number
5992 of relocations targeting each section is also counted so that we
5993 know how much space to allocate for source_relocs against each
5994 relaxable literal section. */
5995
5996static bfd_boolean
7fa3d080
BW
5997find_relaxable_sections (bfd *abfd,
5998 asection *sec,
5999 struct bfd_link_info *link_info,
6000 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6001{
6002 Elf_Internal_Rela *internal_relocs;
6003 bfd_byte *contents;
6004 bfd_boolean ok = TRUE;
6005 unsigned i;
6006 xtensa_relax_info *source_relax_info;
25c6282a 6007 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6008
6009 internal_relocs = retrieve_internal_relocs (abfd, sec,
6010 link_info->keep_memory);
6011 if (internal_relocs == NULL)
6012 return ok;
6013
6014 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6015 if (contents == NULL && sec->size != 0)
6016 {
6017 ok = FALSE;
6018 goto error_return;
6019 }
6020
6021 source_relax_info = get_xtensa_relax_info (sec);
6022 for (i = 0; i < sec->reloc_count; i++)
6023 {
6024 Elf_Internal_Rela *irel = &internal_relocs[i];
6025 r_reloc r_rel;
6026 asection *target_sec;
6027 xtensa_relax_info *target_relax_info;
6028
6029 /* If this section has not already been marked as "relaxable", and
6030 if it contains any ASM_EXPAND relocations (marking expanded
6031 longcalls) that can be optimized into direct calls, then mark
6032 the section as "relaxable". */
6033 if (source_relax_info
6034 && !source_relax_info->is_relaxable_asm_section
6035 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6036 {
6037 bfd_boolean is_reachable = FALSE;
6038 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6039 link_info, &is_reachable)
6040 && is_reachable)
6041 {
6042 source_relax_info->is_relaxable_asm_section = TRUE;
6043 *is_relaxable_p = TRUE;
6044 }
6045 }
6046
6047 r_reloc_init (&r_rel, abfd, irel, contents,
6048 bfd_get_section_limit (abfd, sec));
6049
6050 target_sec = r_reloc_get_section (&r_rel);
6051 target_relax_info = get_xtensa_relax_info (target_sec);
6052 if (!target_relax_info)
6053 continue;
6054
6055 /* Count PC-relative operand relocations against the target section.
6056 Note: The conditions tested here must match the conditions under
6057 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6058 is_l32r_reloc = FALSE;
6059 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6060 {
6061 xtensa_opcode opcode =
6062 get_relocation_opcode (abfd, sec, contents, irel);
6063 if (opcode != XTENSA_UNDEFINED)
6064 {
6065 is_l32r_reloc = (opcode == get_l32r_opcode ());
6066 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6067 || is_l32r_reloc)
6068 target_relax_info->src_count++;
6069 }
6070 }
43cd72b9 6071
25c6282a 6072 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6073 {
6074 /* Mark the target section as relaxable. */
6075 target_relax_info->is_relaxable_literal_section = TRUE;
6076 *is_relaxable_p = TRUE;
6077 }
6078 }
6079
6080 error_return:
6081 release_contents (sec, contents);
6082 release_internal_relocs (sec, internal_relocs);
6083 return ok;
6084}
6085
6086
6087/* Record _all_ the relocations that point to relaxable sections, and
6088 get rid of ASM_EXPAND relocs by either converting them to
6089 ASM_SIMPLIFY or by removing them. */
6090
6091static bfd_boolean
7fa3d080
BW
6092collect_source_relocs (bfd *abfd,
6093 asection *sec,
6094 struct bfd_link_info *link_info)
43cd72b9
BW
6095{
6096 Elf_Internal_Rela *internal_relocs;
6097 bfd_byte *contents;
6098 bfd_boolean ok = TRUE;
6099 unsigned i;
6100 bfd_size_type sec_size;
6101
6102 internal_relocs = retrieve_internal_relocs (abfd, sec,
6103 link_info->keep_memory);
6104 if (internal_relocs == NULL)
6105 return ok;
6106
6107 sec_size = bfd_get_section_limit (abfd, sec);
6108 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6109 if (contents == NULL && sec_size != 0)
6110 {
6111 ok = FALSE;
6112 goto error_return;
6113 }
6114
6115 /* Record relocations against relaxable literal sections. */
6116 for (i = 0; i < sec->reloc_count; i++)
6117 {
6118 Elf_Internal_Rela *irel = &internal_relocs[i];
6119 r_reloc r_rel;
6120 asection *target_sec;
6121 xtensa_relax_info *target_relax_info;
6122
6123 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6124
6125 target_sec = r_reloc_get_section (&r_rel);
6126 target_relax_info = get_xtensa_relax_info (target_sec);
6127
6128 if (target_relax_info
6129 && (target_relax_info->is_relaxable_literal_section
6130 || target_relax_info->is_relaxable_asm_section))
6131 {
6132 xtensa_opcode opcode = XTENSA_UNDEFINED;
6133 int opnd = -1;
6134 bfd_boolean is_abs_literal = FALSE;
6135
6136 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6137 {
6138 /* None of the current alternate relocs are PC-relative,
6139 and only PC-relative relocs matter here. However, we
6140 still need to record the opcode for literal
6141 coalescing. */
6142 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6143 if (opcode == get_l32r_opcode ())
6144 {
6145 is_abs_literal = TRUE;
6146 opnd = 1;
6147 }
6148 else
6149 opcode = XTENSA_UNDEFINED;
6150 }
6151 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6152 {
6153 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6154 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6155 }
6156
6157 if (opcode != XTENSA_UNDEFINED)
6158 {
6159 int src_next = target_relax_info->src_next++;
6160 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6161
6162 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6163 is_abs_literal);
6164 }
6165 }
6166 }
6167
6168 /* Now get rid of ASM_EXPAND relocations. At this point, the
6169 src_relocs array for the target literal section may still be
6170 incomplete, but it must at least contain the entries for the L32R
6171 relocations associated with ASM_EXPANDs because they were just
6172 added in the preceding loop over the relocations. */
6173
6174 for (i = 0; i < sec->reloc_count; i++)
6175 {
6176 Elf_Internal_Rela *irel = &internal_relocs[i];
6177 bfd_boolean is_reachable;
6178
6179 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6180 &is_reachable))
6181 continue;
6182
6183 if (is_reachable)
6184 {
6185 Elf_Internal_Rela *l32r_irel;
6186 r_reloc r_rel;
6187 asection *target_sec;
6188 xtensa_relax_info *target_relax_info;
6189
6190 /* Mark the source_reloc for the L32R so that it will be
6191 removed in compute_removed_literals(), along with the
6192 associated literal. */
6193 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6194 irel, internal_relocs);
6195 if (l32r_irel == NULL)
6196 continue;
6197
6198 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6199
6200 target_sec = r_reloc_get_section (&r_rel);
6201 target_relax_info = get_xtensa_relax_info (target_sec);
6202
6203 if (target_relax_info
6204 && (target_relax_info->is_relaxable_literal_section
6205 || target_relax_info->is_relaxable_asm_section))
6206 {
6207 source_reloc *s_reloc;
6208
6209 /* Search the source_relocs for the entry corresponding to
6210 the l32r_irel. Note: The src_relocs array is not yet
6211 sorted, but it wouldn't matter anyway because we're
6212 searching by source offset instead of target offset. */
6213 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6214 target_relax_info->src_next,
6215 sec, l32r_irel);
6216 BFD_ASSERT (s_reloc);
6217 s_reloc->is_null = TRUE;
6218 }
6219
6220 /* Convert this reloc to ASM_SIMPLIFY. */
6221 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6222 R_XTENSA_ASM_SIMPLIFY);
6223 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6224
6225 pin_internal_relocs (sec, internal_relocs);
6226 }
6227 else
6228 {
6229 /* It is resolvable but doesn't reach. We resolve now
6230 by eliminating the relocation -- the call will remain
6231 expanded into L32R/CALLX. */
6232 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6233 pin_internal_relocs (sec, internal_relocs);
6234 }
6235 }
6236
6237 error_return:
6238 release_contents (sec, contents);
6239 release_internal_relocs (sec, internal_relocs);
6240 return ok;
6241}
6242
6243
6244/* Return TRUE if the asm expansion can be resolved. Generally it can
6245 be resolved on a final link or when a partial link locates it in the
6246 same section as the target. Set "is_reachable" flag if the target of
6247 the call is within the range of a direct call, given the current VMA
6248 for this section and the target section. */
6249
6250bfd_boolean
7fa3d080
BW
6251is_resolvable_asm_expansion (bfd *abfd,
6252 asection *sec,
6253 bfd_byte *contents,
6254 Elf_Internal_Rela *irel,
6255 struct bfd_link_info *link_info,
6256 bfd_boolean *is_reachable_p)
43cd72b9
BW
6257{
6258 asection *target_sec;
6259 bfd_vma target_offset;
6260 r_reloc r_rel;
6261 xtensa_opcode opcode, direct_call_opcode;
6262 bfd_vma self_address;
6263 bfd_vma dest_address;
6264 bfd_boolean uses_l32r;
6265 bfd_size_type sec_size;
6266
6267 *is_reachable_p = FALSE;
6268
6269 if (contents == NULL)
6270 return FALSE;
6271
6272 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6273 return FALSE;
6274
6275 sec_size = bfd_get_section_limit (abfd, sec);
6276 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6277 sec_size - irel->r_offset, &uses_l32r);
6278 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6279 if (!uses_l32r)
6280 return FALSE;
6281
6282 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6283 if (direct_call_opcode == XTENSA_UNDEFINED)
6284 return FALSE;
6285
6286 /* Check and see that the target resolves. */
6287 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6288 if (!r_reloc_is_defined (&r_rel))
6289 return FALSE;
6290
6291 target_sec = r_reloc_get_section (&r_rel);
6292 target_offset = r_rel.target_offset;
6293
6294 /* If the target is in a shared library, then it doesn't reach. This
6295 isn't supposed to come up because the compiler should never generate
6296 non-PIC calls on systems that use shared libraries, but the linker
6297 shouldn't crash regardless. */
6298 if (!target_sec->output_section)
6299 return FALSE;
6300
6301 /* For relocatable sections, we can only simplify when the output
6302 section of the target is the same as the output section of the
6303 source. */
6304 if (link_info->relocatable
6305 && (target_sec->output_section != sec->output_section
6306 || is_reloc_sym_weak (abfd, irel)))
6307 return FALSE;
6308
6309 self_address = (sec->output_section->vma
6310 + sec->output_offset + irel->r_offset + 3);
6311 dest_address = (target_sec->output_section->vma
6312 + target_sec->output_offset + target_offset);
6313
6314 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6315 self_address, dest_address);
6316
6317 if ((self_address >> CALL_SEGMENT_BITS) !=
6318 (dest_address >> CALL_SEGMENT_BITS))
6319 return FALSE;
6320
6321 return TRUE;
6322}
6323
6324
6325static Elf_Internal_Rela *
7fa3d080
BW
6326find_associated_l32r_irel (bfd *abfd,
6327 asection *sec,
6328 bfd_byte *contents,
6329 Elf_Internal_Rela *other_irel,
6330 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6331{
6332 unsigned i;
e0001a05 6333
43cd72b9
BW
6334 for (i = 0; i < sec->reloc_count; i++)
6335 {
6336 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 6337
43cd72b9
BW
6338 if (irel == other_irel)
6339 continue;
6340 if (irel->r_offset != other_irel->r_offset)
6341 continue;
6342 if (is_l32r_relocation (abfd, sec, contents, irel))
6343 return irel;
6344 }
6345
6346 return NULL;
e0001a05
NC
6347}
6348
6349
cb337148
BW
6350static xtensa_opcode *
6351build_reloc_opcodes (bfd *abfd,
6352 asection *sec,
6353 bfd_byte *contents,
6354 Elf_Internal_Rela *internal_relocs)
6355{
6356 unsigned i;
6357 xtensa_opcode *reloc_opcodes =
6358 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6359 for (i = 0; i < sec->reloc_count; i++)
6360 {
6361 Elf_Internal_Rela *irel = &internal_relocs[i];
6362 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6363 }
6364 return reloc_opcodes;
6365}
6366
6367
43cd72b9
BW
6368/* The compute_text_actions function will build a list of potential
6369 transformation actions for code in the extended basic block of each
6370 longcall that is optimized to a direct call. From this list we
6371 generate a set of actions to actually perform that optimizes for
6372 space and, if not using size_opt, maintains branch target
6373 alignments.
e0001a05 6374
43cd72b9
BW
6375 These actions to be performed are placed on a per-section list.
6376 The actual changes are performed by relax_section() in the second
6377 pass. */
6378
6379bfd_boolean
7fa3d080
BW
6380compute_text_actions (bfd *abfd,
6381 asection *sec,
6382 struct bfd_link_info *link_info)
e0001a05 6383{
cb337148 6384 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 6385 xtensa_relax_info *relax_info;
e0001a05 6386 bfd_byte *contents;
43cd72b9 6387 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
6388 bfd_boolean ok = TRUE;
6389 unsigned i;
43cd72b9
BW
6390 property_table_entry *prop_table = 0;
6391 int ptblsize = 0;
6392 bfd_size_type sec_size;
43cd72b9 6393
43cd72b9
BW
6394 relax_info = get_xtensa_relax_info (sec);
6395 BFD_ASSERT (relax_info);
25c6282a
BW
6396 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6397
6398 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
6399 if (!relax_info->is_relaxable_asm_section)
6400 return ok;
e0001a05
NC
6401
6402 internal_relocs = retrieve_internal_relocs (abfd, sec,
6403 link_info->keep_memory);
e0001a05 6404
43cd72b9
BW
6405 if (internal_relocs)
6406 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6407 internal_reloc_compare);
6408
6409 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 6410 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 6411 if (contents == NULL && sec_size != 0)
e0001a05
NC
6412 {
6413 ok = FALSE;
6414 goto error_return;
6415 }
6416
43cd72b9
BW
6417 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6418 XTENSA_PROP_SEC_NAME, FALSE);
6419 if (ptblsize < 0)
6420 {
6421 ok = FALSE;
6422 goto error_return;
6423 }
6424
6425 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
6426 {
6427 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
6428 bfd_vma r_offset;
6429 property_table_entry *the_entry;
6430 int ptbl_idx;
6431 ebb_t *ebb;
6432 ebb_constraint ebb_table;
6433 bfd_size_type simplify_size;
6434
6435 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6436 continue;
6437 r_offset = irel->r_offset;
e0001a05 6438
43cd72b9
BW
6439 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6440 if (simplify_size == 0)
6441 {
6442 (*_bfd_error_handler)
6443 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6444 sec->owner, sec, r_offset);
6445 continue;
6446 }
e0001a05 6447
43cd72b9
BW
6448 /* If the instruction table is not around, then don't do this
6449 relaxation. */
6450 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6451 sec->vma + irel->r_offset);
6452 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6453 {
6454 text_action_add (&relax_info->action_list,
6455 ta_convert_longcall, sec, r_offset,
6456 0);
6457 continue;
6458 }
6459
6460 /* If the next longcall happens to be at the same address as an
6461 unreachable section of size 0, then skip forward. */
6462 ptbl_idx = the_entry - prop_table;
6463 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6464 && the_entry->size == 0
6465 && ptbl_idx + 1 < ptblsize
6466 && (prop_table[ptbl_idx + 1].address
6467 == prop_table[ptbl_idx].address))
6468 {
6469 ptbl_idx++;
6470 the_entry++;
6471 }
e0001a05 6472
99ded152 6473 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
6474 /* NO_REORDER is OK */
6475 continue;
e0001a05 6476
43cd72b9
BW
6477 init_ebb_constraint (&ebb_table);
6478 ebb = &ebb_table.ebb;
6479 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6480 internal_relocs, sec->reloc_count);
6481 ebb->start_offset = r_offset + simplify_size;
6482 ebb->end_offset = r_offset + simplify_size;
6483 ebb->start_ptbl_idx = ptbl_idx;
6484 ebb->end_ptbl_idx = ptbl_idx;
6485 ebb->start_reloc_idx = i;
6486 ebb->end_reloc_idx = i;
6487
cb337148
BW
6488 /* Precompute the opcode for each relocation. */
6489 if (reloc_opcodes == NULL)
6490 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6491 internal_relocs);
6492
43cd72b9
BW
6493 if (!extend_ebb_bounds (ebb)
6494 || !compute_ebb_proposed_actions (&ebb_table)
6495 || !compute_ebb_actions (&ebb_table)
6496 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
6497 internal_relocs, &ebb_table,
6498 reloc_opcodes)
43cd72b9 6499 || !check_section_ebb_reduces (&ebb_table))
e0001a05 6500 {
43cd72b9
BW
6501 /* If anything goes wrong or we get unlucky and something does
6502 not fit, with our plan because of expansion between
6503 critical branches, just convert to a NOP. */
6504
6505 text_action_add (&relax_info->action_list,
6506 ta_convert_longcall, sec, r_offset, 0);
6507 i = ebb_table.ebb.end_reloc_idx;
6508 free_ebb_constraint (&ebb_table);
6509 continue;
e0001a05 6510 }
43cd72b9
BW
6511
6512 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6513
6514 /* Update the index so we do not go looking at the relocations
6515 we have already processed. */
6516 i = ebb_table.ebb.end_reloc_idx;
6517 free_ebb_constraint (&ebb_table);
e0001a05
NC
6518 }
6519
43cd72b9 6520#if DEBUG
7fa3d080 6521 if (relax_info->action_list.head)
43cd72b9
BW
6522 print_action_list (stderr, &relax_info->action_list);
6523#endif
6524
6525error_return:
e0001a05
NC
6526 release_contents (sec, contents);
6527 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
6528 if (prop_table)
6529 free (prop_table);
cb337148
BW
6530 if (reloc_opcodes)
6531 free (reloc_opcodes);
43cd72b9 6532
e0001a05
NC
6533 return ok;
6534}
6535
6536
64b607e6
BW
6537/* Do not widen an instruction if it is preceeded by a
6538 loop opcode. It might cause misalignment. */
6539
6540static bfd_boolean
6541prev_instr_is_a_loop (bfd_byte *contents,
6542 bfd_size_type content_length,
6543 bfd_size_type offset)
6544{
6545 xtensa_opcode prev_opcode;
6546
6547 if (offset < 3)
6548 return FALSE;
6549 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6550 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6551}
6552
6553
43cd72b9 6554/* Find all of the possible actions for an extended basic block. */
e0001a05 6555
43cd72b9 6556bfd_boolean
7fa3d080 6557compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 6558{
43cd72b9
BW
6559 const ebb_t *ebb = &ebb_table->ebb;
6560 unsigned rel_idx = ebb->start_reloc_idx;
6561 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
6562 bfd_vma offset = 0;
6563 xtensa_isa isa = xtensa_default_isa;
6564 xtensa_format fmt;
6565 static xtensa_insnbuf insnbuf = NULL;
6566 static xtensa_insnbuf slotbuf = NULL;
6567
6568 if (insnbuf == NULL)
6569 {
6570 insnbuf = xtensa_insnbuf_alloc (isa);
6571 slotbuf = xtensa_insnbuf_alloc (isa);
6572 }
e0001a05 6573
43cd72b9
BW
6574 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6575 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 6576
43cd72b9 6577 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 6578 {
64b607e6 6579 bfd_vma start_offset, end_offset;
43cd72b9 6580 bfd_size_type insn_len;
e0001a05 6581
43cd72b9
BW
6582 start_offset = entry->address - ebb->sec->vma;
6583 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 6584
43cd72b9
BW
6585 if (entry == start_entry)
6586 start_offset = ebb->start_offset;
6587 if (entry == end_entry)
6588 end_offset = ebb->end_offset;
6589 offset = start_offset;
e0001a05 6590
43cd72b9
BW
6591 if (offset == entry->address - ebb->sec->vma
6592 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6593 {
6594 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6595 BFD_ASSERT (offset != end_offset);
6596 if (offset == end_offset)
6597 return FALSE;
e0001a05 6598
43cd72b9
BW
6599 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6600 offset);
43cd72b9 6601 if (insn_len == 0)
64b607e6
BW
6602 goto decode_error;
6603
43cd72b9
BW
6604 if (check_branch_target_aligned_address (offset, insn_len))
6605 align_type = EBB_REQUIRE_TGT_ALIGN;
6606
6607 ebb_propose_action (ebb_table, align_type, 0,
6608 ta_none, offset, 0, TRUE);
6609 }
6610
6611 while (offset != end_offset)
e0001a05 6612 {
43cd72b9 6613 Elf_Internal_Rela *irel;
e0001a05 6614 xtensa_opcode opcode;
e0001a05 6615
43cd72b9
BW
6616 while (rel_idx < ebb->end_reloc_idx
6617 && (ebb->relocs[rel_idx].r_offset < offset
6618 || (ebb->relocs[rel_idx].r_offset == offset
6619 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6620 != R_XTENSA_ASM_SIMPLIFY))))
6621 rel_idx++;
6622
6623 /* Check for longcall. */
6624 irel = &ebb->relocs[rel_idx];
6625 if (irel->r_offset == offset
6626 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6627 {
6628 bfd_size_type simplify_size;
e0001a05 6629
43cd72b9
BW
6630 simplify_size = get_asm_simplify_size (ebb->contents,
6631 ebb->content_length,
6632 irel->r_offset);
6633 if (simplify_size == 0)
64b607e6 6634 goto decode_error;
43cd72b9
BW
6635
6636 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6637 ta_convert_longcall, offset, 0, TRUE);
6638
6639 offset += simplify_size;
6640 continue;
6641 }
e0001a05 6642
64b607e6
BW
6643 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6644 goto decode_error;
6645 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6646 ebb->content_length - offset);
6647 fmt = xtensa_format_decode (isa, insnbuf);
6648 if (fmt == XTENSA_UNDEFINED)
6649 goto decode_error;
6650 insn_len = xtensa_format_length (isa, fmt);
6651 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6652 goto decode_error;
6653
6654 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 6655 {
64b607e6
BW
6656 offset += insn_len;
6657 continue;
43cd72b9 6658 }
64b607e6
BW
6659
6660 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6661 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6662 if (opcode == XTENSA_UNDEFINED)
6663 goto decode_error;
6664
43cd72b9 6665 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 6666 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 6667 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
6668 {
6669 /* Add an instruction narrow action. */
6670 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6671 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 6672 }
99ded152 6673 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
6674 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6675 && ! prev_instr_is_a_loop (ebb->contents,
6676 ebb->content_length, offset))
43cd72b9
BW
6677 {
6678 /* Add an instruction widen action. */
6679 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6680 ta_widen_insn, offset, 0, FALSE);
43cd72b9 6681 }
64b607e6 6682 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
6683 {
6684 /* Check for branch targets. */
6685 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6686 ta_none, offset, 0, TRUE);
43cd72b9
BW
6687 }
6688
6689 offset += insn_len;
e0001a05
NC
6690 }
6691 }
6692
43cd72b9
BW
6693 if (ebb->ends_unreachable)
6694 {
6695 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6696 ta_fill, ebb->end_offset, 0, TRUE);
6697 }
e0001a05 6698
43cd72b9 6699 return TRUE;
64b607e6
BW
6700
6701 decode_error:
6702 (*_bfd_error_handler)
6703 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6704 ebb->sec->owner, ebb->sec, offset);
6705 return FALSE;
43cd72b9
BW
6706}
6707
6708
6709/* After all of the information has collected about the
6710 transformations possible in an EBB, compute the appropriate actions
6711 here in compute_ebb_actions. We still must check later to make
6712 sure that the actions do not break any relocations. The algorithm
6713 used here is pretty greedy. Basically, it removes as many no-ops
6714 as possible so that the end of the EBB has the same alignment
6715 characteristics as the original. First, it uses narrowing, then
6716 fill space at the end of the EBB, and finally widenings. If that
6717 does not work, it tries again with one fewer no-op removed. The
6718 optimization will only be performed if all of the branch targets
6719 that were aligned before transformation are also aligned after the
6720 transformation.
6721
6722 When the size_opt flag is set, ignore the branch target alignments,
6723 narrow all wide instructions, and remove all no-ops unless the end
6724 of the EBB prevents it. */
6725
6726bfd_boolean
7fa3d080 6727compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
6728{
6729 unsigned i = 0;
6730 unsigned j;
6731 int removed_bytes = 0;
6732 ebb_t *ebb = &ebb_table->ebb;
6733 unsigned seg_idx_start = 0;
6734 unsigned seg_idx_end = 0;
6735
6736 /* We perform this like the assembler relaxation algorithm: Start by
6737 assuming all instructions are narrow and all no-ops removed; then
6738 walk through.... */
6739
6740 /* For each segment of this that has a solid constraint, check to
6741 see if there are any combinations that will keep the constraint.
6742 If so, use it. */
6743 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 6744 {
43cd72b9
BW
6745 bfd_boolean requires_text_end_align = FALSE;
6746 unsigned longcall_count = 0;
6747 unsigned longcall_convert_count = 0;
6748 unsigned narrowable_count = 0;
6749 unsigned narrowable_convert_count = 0;
6750 unsigned widenable_count = 0;
6751 unsigned widenable_convert_count = 0;
e0001a05 6752
43cd72b9
BW
6753 proposed_action *action = NULL;
6754 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 6755
43cd72b9 6756 seg_idx_start = seg_idx_end;
e0001a05 6757
43cd72b9
BW
6758 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6759 {
6760 action = &ebb_table->actions[i];
6761 if (action->action == ta_convert_longcall)
6762 longcall_count++;
6763 if (action->action == ta_narrow_insn)
6764 narrowable_count++;
6765 if (action->action == ta_widen_insn)
6766 widenable_count++;
6767 if (action->action == ta_fill)
6768 break;
6769 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6770 break;
6771 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6772 && !elf32xtensa_size_opt)
6773 break;
6774 }
6775 seg_idx_end = i;
e0001a05 6776
43cd72b9
BW
6777 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6778 requires_text_end_align = TRUE;
e0001a05 6779
43cd72b9
BW
6780 if (elf32xtensa_size_opt && !requires_text_end_align
6781 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6782 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6783 {
6784 longcall_convert_count = longcall_count;
6785 narrowable_convert_count = narrowable_count;
6786 widenable_convert_count = 0;
6787 }
6788 else
6789 {
6790 /* There is a constraint. Convert the max number of longcalls. */
6791 narrowable_convert_count = 0;
6792 longcall_convert_count = 0;
6793 widenable_convert_count = 0;
e0001a05 6794
43cd72b9 6795 for (j = 0; j < longcall_count; j++)
e0001a05 6796 {
43cd72b9
BW
6797 int removed = (longcall_count - j) * 3 & (align - 1);
6798 unsigned desire_narrow = (align - removed) & (align - 1);
6799 unsigned desire_widen = removed;
6800 if (desire_narrow <= narrowable_count)
6801 {
6802 narrowable_convert_count = desire_narrow;
6803 narrowable_convert_count +=
6804 (align * ((narrowable_count - narrowable_convert_count)
6805 / align));
6806 longcall_convert_count = (longcall_count - j);
6807 widenable_convert_count = 0;
6808 break;
6809 }
6810 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6811 {
6812 narrowable_convert_count = 0;
6813 longcall_convert_count = longcall_count - j;
6814 widenable_convert_count = desire_widen;
6815 break;
6816 }
6817 }
6818 }
e0001a05 6819
43cd72b9
BW
6820 /* Now the number of conversions are saved. Do them. */
6821 for (i = seg_idx_start; i < seg_idx_end; i++)
6822 {
6823 action = &ebb_table->actions[i];
6824 switch (action->action)
6825 {
6826 case ta_convert_longcall:
6827 if (longcall_convert_count != 0)
6828 {
6829 action->action = ta_remove_longcall;
6830 action->do_action = TRUE;
6831 action->removed_bytes += 3;
6832 longcall_convert_count--;
6833 }
6834 break;
6835 case ta_narrow_insn:
6836 if (narrowable_convert_count != 0)
6837 {
6838 action->do_action = TRUE;
6839 action->removed_bytes += 1;
6840 narrowable_convert_count--;
6841 }
6842 break;
6843 case ta_widen_insn:
6844 if (widenable_convert_count != 0)
6845 {
6846 action->do_action = TRUE;
6847 action->removed_bytes -= 1;
6848 widenable_convert_count--;
6849 }
6850 break;
6851 default:
6852 break;
e0001a05 6853 }
43cd72b9
BW
6854 }
6855 }
e0001a05 6856
43cd72b9
BW
6857 /* Now we move on to some local opts. Try to remove each of the
6858 remaining longcalls. */
e0001a05 6859
43cd72b9
BW
6860 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6861 {
6862 removed_bytes = 0;
6863 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 6864 {
43cd72b9
BW
6865 int old_removed_bytes = removed_bytes;
6866 proposed_action *action = &ebb_table->actions[i];
6867
6868 if (action->do_action && action->action == ta_convert_longcall)
6869 {
6870 bfd_boolean bad_alignment = FALSE;
6871 removed_bytes += 3;
6872 for (j = i + 1; j < ebb_table->action_count; j++)
6873 {
6874 proposed_action *new_action = &ebb_table->actions[j];
6875 bfd_vma offset = new_action->offset;
6876 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6877 {
6878 if (!check_branch_target_aligned
6879 (ebb_table->ebb.contents,
6880 ebb_table->ebb.content_length,
6881 offset, offset - removed_bytes))
6882 {
6883 bad_alignment = TRUE;
6884 break;
6885 }
6886 }
6887 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6888 {
6889 if (!check_loop_aligned (ebb_table->ebb.contents,
6890 ebb_table->ebb.content_length,
6891 offset,
6892 offset - removed_bytes))
6893 {
6894 bad_alignment = TRUE;
6895 break;
6896 }
6897 }
6898 if (new_action->action == ta_narrow_insn
6899 && !new_action->do_action
6900 && ebb_table->ebb.sec->alignment_power == 2)
6901 {
6902 /* Narrow an instruction and we are done. */
6903 new_action->do_action = TRUE;
6904 new_action->removed_bytes += 1;
6905 bad_alignment = FALSE;
6906 break;
6907 }
6908 if (new_action->action == ta_widen_insn
6909 && new_action->do_action
6910 && ebb_table->ebb.sec->alignment_power == 2)
6911 {
6912 /* Narrow an instruction and we are done. */
6913 new_action->do_action = FALSE;
6914 new_action->removed_bytes += 1;
6915 bad_alignment = FALSE;
6916 break;
6917 }
5c5d6806
BW
6918 if (new_action->do_action)
6919 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
6920 }
6921 if (!bad_alignment)
6922 {
6923 action->removed_bytes += 3;
6924 action->action = ta_remove_longcall;
6925 action->do_action = TRUE;
6926 }
6927 }
6928 removed_bytes = old_removed_bytes;
6929 if (action->do_action)
6930 removed_bytes += action->removed_bytes;
e0001a05
NC
6931 }
6932 }
6933
43cd72b9
BW
6934 removed_bytes = 0;
6935 for (i = 0; i < ebb_table->action_count; ++i)
6936 {
6937 proposed_action *action = &ebb_table->actions[i];
6938 if (action->do_action)
6939 removed_bytes += action->removed_bytes;
6940 }
6941
6942 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6943 && ebb->ends_unreachable)
6944 {
6945 proposed_action *action;
6946 int br;
6947 int extra_space;
6948
6949 BFD_ASSERT (ebb_table->action_count != 0);
6950 action = &ebb_table->actions[ebb_table->action_count - 1];
6951 BFD_ASSERT (action->action == ta_fill);
6952 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6953
6954 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6955 br = action->removed_bytes + removed_bytes + extra_space;
6956 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6957
6958 action->removed_bytes = extra_space - br;
6959 }
6960 return TRUE;
e0001a05
NC
6961}
6962
6963
03e94c08
BW
6964/* The xlate_map is a sorted array of address mappings designed to
6965 answer the offset_with_removed_text() query with a binary search instead
6966 of a linear search through the section's action_list. */
6967
6968typedef struct xlate_map_entry xlate_map_entry_t;
6969typedef struct xlate_map xlate_map_t;
6970
6971struct xlate_map_entry
6972{
6973 unsigned orig_address;
6974 unsigned new_address;
6975 unsigned size;
6976};
6977
6978struct xlate_map
6979{
6980 unsigned entry_count;
6981 xlate_map_entry_t *entry;
6982};
6983
6984
6985static int
6986xlate_compare (const void *a_v, const void *b_v)
6987{
6988 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6989 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6990 if (a->orig_address < b->orig_address)
6991 return -1;
6992 if (a->orig_address > (b->orig_address + b->size - 1))
6993 return 1;
6994 return 0;
6995}
6996
6997
6998static bfd_vma
6999xlate_offset_with_removed_text (const xlate_map_t *map,
7000 text_action_list *action_list,
7001 bfd_vma offset)
7002{
7003 xlate_map_entry_t tmp;
7004 void *r;
7005 xlate_map_entry_t *e;
7006
7007 if (map == NULL)
7008 return offset_with_removed_text (action_list, offset);
7009
7010 if (map->entry_count == 0)
7011 return offset;
7012
7013 tmp.orig_address = offset;
7014 tmp.new_address = offset;
7015 tmp.size = 1;
7016
7017 r = bsearch (&offset, map->entry, map->entry_count,
7018 sizeof (xlate_map_entry_t), &xlate_compare);
7019 e = (xlate_map_entry_t *) r;
7020
7021 BFD_ASSERT (e != NULL);
7022 if (e == NULL)
7023 return offset;
7024 return e->new_address - e->orig_address + offset;
7025}
7026
7027
7028/* Build a binary searchable offset translation map from a section's
7029 action list. */
7030
7031static xlate_map_t *
7032build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7033{
7034 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7035 text_action_list *action_list = &relax_info->action_list;
7036 unsigned num_actions = 0;
7037 text_action *r;
7038 int removed;
7039 xlate_map_entry_t *current_entry;
7040
7041 if (map == NULL)
7042 return NULL;
7043
7044 num_actions = action_list_count (action_list);
7045 map->entry = (xlate_map_entry_t *)
7046 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7047 if (map->entry == NULL)
7048 {
7049 free (map);
7050 return NULL;
7051 }
7052 map->entry_count = 0;
7053
7054 removed = 0;
7055 current_entry = &map->entry[0];
7056
7057 current_entry->orig_address = 0;
7058 current_entry->new_address = 0;
7059 current_entry->size = 0;
7060
7061 for (r = action_list->head; r != NULL; r = r->next)
7062 {
7063 unsigned orig_size = 0;
7064 switch (r->action)
7065 {
7066 case ta_none:
7067 case ta_remove_insn:
7068 case ta_convert_longcall:
7069 case ta_remove_literal:
7070 case ta_add_literal:
7071 break;
7072 case ta_remove_longcall:
7073 orig_size = 6;
7074 break;
7075 case ta_narrow_insn:
7076 orig_size = 3;
7077 break;
7078 case ta_widen_insn:
7079 orig_size = 2;
7080 break;
7081 case ta_fill:
7082 break;
7083 }
7084 current_entry->size =
7085 r->offset + orig_size - current_entry->orig_address;
7086 if (current_entry->size != 0)
7087 {
7088 current_entry++;
7089 map->entry_count++;
7090 }
7091 current_entry->orig_address = r->offset + orig_size;
7092 removed += r->removed_bytes;
7093 current_entry->new_address = r->offset + orig_size - removed;
7094 current_entry->size = 0;
7095 }
7096
7097 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7098 - current_entry->orig_address);
7099 if (current_entry->size != 0)
7100 map->entry_count++;
7101
7102 return map;
7103}
7104
7105
7106/* Free an offset translation map. */
7107
7108static void
7109free_xlate_map (xlate_map_t *map)
7110{
7111 if (map && map->entry)
7112 free (map->entry);
7113 if (map)
7114 free (map);
7115}
7116
7117
43cd72b9
BW
7118/* Use check_section_ebb_pcrels_fit to make sure that all of the
7119 relocations in a section will fit if a proposed set of actions
7120 are performed. */
e0001a05 7121
43cd72b9 7122static bfd_boolean
7fa3d080
BW
7123check_section_ebb_pcrels_fit (bfd *abfd,
7124 asection *sec,
7125 bfd_byte *contents,
7126 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7127 const ebb_constraint *constraint,
7128 const xtensa_opcode *reloc_opcodes)
e0001a05 7129{
43cd72b9
BW
7130 unsigned i, j;
7131 Elf_Internal_Rela *irel;
03e94c08
BW
7132 xlate_map_t *xmap = NULL;
7133 bfd_boolean ok = TRUE;
43cd72b9 7134 xtensa_relax_info *relax_info;
e0001a05 7135
43cd72b9 7136 relax_info = get_xtensa_relax_info (sec);
e0001a05 7137
03e94c08
BW
7138 if (relax_info && sec->reloc_count > 100)
7139 {
7140 xmap = build_xlate_map (sec, relax_info);
7141 /* NULL indicates out of memory, but the slow version
7142 can still be used. */
7143 }
7144
43cd72b9
BW
7145 for (i = 0; i < sec->reloc_count; i++)
7146 {
7147 r_reloc r_rel;
7148 bfd_vma orig_self_offset, orig_target_offset;
7149 bfd_vma self_offset, target_offset;
7150 int r_type;
7151 reloc_howto_type *howto;
7152 int self_removed_bytes, target_removed_bytes;
e0001a05 7153
43cd72b9
BW
7154 irel = &internal_relocs[i];
7155 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7156
43cd72b9
BW
7157 howto = &elf_howto_table[r_type];
7158 /* We maintain the required invariant: PC-relative relocations
7159 that fit before linking must fit after linking. Thus we only
7160 need to deal with relocations to the same section that are
7161 PC-relative. */
1bbb5f21
BW
7162 if (r_type == R_XTENSA_ASM_SIMPLIFY
7163 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7164 || !howto->pc_relative)
7165 continue;
e0001a05 7166
43cd72b9
BW
7167 r_reloc_init (&r_rel, abfd, irel, contents,
7168 bfd_get_section_limit (abfd, sec));
e0001a05 7169
43cd72b9
BW
7170 if (r_reloc_get_section (&r_rel) != sec)
7171 continue;
e0001a05 7172
43cd72b9
BW
7173 orig_self_offset = irel->r_offset;
7174 orig_target_offset = r_rel.target_offset;
e0001a05 7175
43cd72b9
BW
7176 self_offset = orig_self_offset;
7177 target_offset = orig_target_offset;
7178
7179 if (relax_info)
7180 {
03e94c08
BW
7181 self_offset =
7182 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7183 orig_self_offset);
7184 target_offset =
7185 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7186 orig_target_offset);
43cd72b9
BW
7187 }
7188
7189 self_removed_bytes = 0;
7190 target_removed_bytes = 0;
7191
7192 for (j = 0; j < constraint->action_count; ++j)
7193 {
7194 proposed_action *action = &constraint->actions[j];
7195 bfd_vma offset = action->offset;
7196 int removed_bytes = action->removed_bytes;
7197 if (offset < orig_self_offset
7198 || (offset == orig_self_offset && action->action == ta_fill
7199 && action->removed_bytes < 0))
7200 self_removed_bytes += removed_bytes;
7201 if (offset < orig_target_offset
7202 || (offset == orig_target_offset && action->action == ta_fill
7203 && action->removed_bytes < 0))
7204 target_removed_bytes += removed_bytes;
7205 }
7206 self_offset -= self_removed_bytes;
7207 target_offset -= target_removed_bytes;
7208
7209 /* Try to encode it. Get the operand and check. */
7210 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7211 {
7212 /* None of the current alternate relocs are PC-relative,
7213 and only PC-relative relocs matter here. */
7214 }
7215 else
7216 {
7217 xtensa_opcode opcode;
7218 int opnum;
7219
cb337148
BW
7220 if (reloc_opcodes)
7221 opcode = reloc_opcodes[i];
7222 else
7223 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 7224 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
7225 {
7226 ok = FALSE;
7227 break;
7228 }
43cd72b9
BW
7229
7230 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7231 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
7232 {
7233 ok = FALSE;
7234 break;
7235 }
43cd72b9
BW
7236
7237 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
7238 {
7239 ok = FALSE;
7240 break;
7241 }
43cd72b9
BW
7242 }
7243 }
7244
03e94c08
BW
7245 if (xmap)
7246 free_xlate_map (xmap);
7247
7248 return ok;
43cd72b9
BW
7249}
7250
7251
7252static bfd_boolean
7fa3d080 7253check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
7254{
7255 int removed = 0;
7256 unsigned i;
7257
7258 for (i = 0; i < constraint->action_count; i++)
7259 {
7260 const proposed_action *action = &constraint->actions[i];
7261 if (action->do_action)
7262 removed += action->removed_bytes;
7263 }
7264 if (removed < 0)
e0001a05
NC
7265 return FALSE;
7266
7267 return TRUE;
7268}
7269
7270
43cd72b9 7271void
7fa3d080
BW
7272text_action_add_proposed (text_action_list *l,
7273 const ebb_constraint *ebb_table,
7274 asection *sec)
e0001a05
NC
7275{
7276 unsigned i;
7277
43cd72b9 7278 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7279 {
43cd72b9 7280 proposed_action *action = &ebb_table->actions[i];
e0001a05 7281
43cd72b9 7282 if (!action->do_action)
e0001a05 7283 continue;
43cd72b9
BW
7284 switch (action->action)
7285 {
7286 case ta_remove_insn:
7287 case ta_remove_longcall:
7288 case ta_convert_longcall:
7289 case ta_narrow_insn:
7290 case ta_widen_insn:
7291 case ta_fill:
7292 case ta_remove_literal:
7293 text_action_add (l, action->action, sec, action->offset,
7294 action->removed_bytes);
7295 break;
7296 case ta_none:
7297 break;
7298 default:
7299 BFD_ASSERT (0);
7300 break;
7301 }
e0001a05 7302 }
43cd72b9 7303}
e0001a05 7304
43cd72b9
BW
7305
7306int
7fa3d080 7307compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
7308{
7309 int fill_extra_space;
7310
7311 if (!entry)
7312 return 0;
7313
7314 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7315 return 0;
7316
7317 fill_extra_space = entry->size;
7318 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7319 {
7320 /* Fill bytes for alignment:
7321 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7322 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7323 int nsm = (1 << pow) - 1;
7324 bfd_vma addr = entry->address + entry->size;
7325 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7326 fill_extra_space += align_fill;
7327 }
7328 return fill_extra_space;
e0001a05
NC
7329}
7330
43cd72b9 7331\f
e0001a05
NC
7332/* First relaxation pass. */
7333
43cd72b9
BW
7334/* If the section contains relaxable literals, check each literal to
7335 see if it has the same value as another literal that has already
7336 been seen, either in the current section or a previous one. If so,
7337 add an entry to the per-section list of removed literals. The
e0001a05
NC
7338 actual changes are deferred until the next pass. */
7339
7340static bfd_boolean
7fa3d080
BW
7341compute_removed_literals (bfd *abfd,
7342 asection *sec,
7343 struct bfd_link_info *link_info,
7344 value_map_hash_table *values)
e0001a05
NC
7345{
7346 xtensa_relax_info *relax_info;
7347 bfd_byte *contents;
7348 Elf_Internal_Rela *internal_relocs;
43cd72b9 7349 source_reloc *src_relocs, *rel;
e0001a05 7350 bfd_boolean ok = TRUE;
43cd72b9
BW
7351 property_table_entry *prop_table = NULL;
7352 int ptblsize;
7353 int i, prev_i;
7354 bfd_boolean last_loc_is_prev = FALSE;
7355 bfd_vma last_target_offset = 0;
7356 section_cache_t target_sec_cache;
7357 bfd_size_type sec_size;
7358
7359 init_section_cache (&target_sec_cache);
e0001a05
NC
7360
7361 /* Do nothing if it is not a relaxable literal section. */
7362 relax_info = get_xtensa_relax_info (sec);
7363 BFD_ASSERT (relax_info);
e0001a05
NC
7364 if (!relax_info->is_relaxable_literal_section)
7365 return ok;
7366
7367 internal_relocs = retrieve_internal_relocs (abfd, sec,
7368 link_info->keep_memory);
7369
43cd72b9 7370 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7371 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7372 if (contents == NULL && sec_size != 0)
e0001a05
NC
7373 {
7374 ok = FALSE;
7375 goto error_return;
7376 }
7377
7378 /* Sort the source_relocs by target offset. */
7379 src_relocs = relax_info->src_relocs;
7380 qsort (src_relocs, relax_info->src_count,
7381 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
7382 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7383 internal_reloc_compare);
e0001a05 7384
43cd72b9
BW
7385 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7386 XTENSA_PROP_SEC_NAME, FALSE);
7387 if (ptblsize < 0)
7388 {
7389 ok = FALSE;
7390 goto error_return;
7391 }
7392
7393 prev_i = -1;
e0001a05
NC
7394 for (i = 0; i < relax_info->src_count; i++)
7395 {
e0001a05 7396 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
7397
7398 rel = &src_relocs[i];
43cd72b9
BW
7399 if (get_l32r_opcode () != rel->opcode)
7400 continue;
e0001a05
NC
7401 irel = get_irel_at_offset (sec, internal_relocs,
7402 rel->r_rel.target_offset);
7403
43cd72b9
BW
7404 /* If the relocation on this is not a simple R_XTENSA_32 or
7405 R_XTENSA_PLT then do not consider it. This may happen when
7406 the difference of two symbols is used in a literal. */
7407 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7408 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7409 continue;
7410
e0001a05
NC
7411 /* If the target_offset for this relocation is the same as the
7412 previous relocation, then we've already considered whether the
7413 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
7414 if (i != 0 && prev_i != -1
7415 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 7416 continue;
43cd72b9
BW
7417 prev_i = i;
7418
7419 if (last_loc_is_prev &&
7420 last_target_offset + 4 != rel->r_rel.target_offset)
7421 last_loc_is_prev = FALSE;
e0001a05
NC
7422
7423 /* Check if the relocation was from an L32R that is being removed
7424 because a CALLX was converted to a direct CALL, and check if
7425 there are no other relocations to the literal. */
99ded152
BW
7426 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
7427 sec, prop_table, ptblsize))
e0001a05 7428 {
43cd72b9
BW
7429 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7430 irel, rel, prop_table, ptblsize))
e0001a05 7431 {
43cd72b9
BW
7432 ok = FALSE;
7433 goto error_return;
e0001a05 7434 }
43cd72b9 7435 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
7436 continue;
7437 }
7438
43cd72b9
BW
7439 if (!identify_literal_placement (abfd, sec, contents, link_info,
7440 values,
7441 &last_loc_is_prev, irel,
7442 relax_info->src_count - i, rel,
7443 prop_table, ptblsize,
7444 &target_sec_cache, rel->is_abs_literal))
e0001a05 7445 {
43cd72b9
BW
7446 ok = FALSE;
7447 goto error_return;
7448 }
7449 last_target_offset = rel->r_rel.target_offset;
7450 }
e0001a05 7451
43cd72b9
BW
7452#if DEBUG
7453 print_removed_literals (stderr, &relax_info->removed_list);
7454 print_action_list (stderr, &relax_info->action_list);
7455#endif /* DEBUG */
7456
7457error_return:
7458 if (prop_table) free (prop_table);
7459 clear_section_cache (&target_sec_cache);
7460
7461 release_contents (sec, contents);
7462 release_internal_relocs (sec, internal_relocs);
7463 return ok;
7464}
7465
7466
7467static Elf_Internal_Rela *
7fa3d080
BW
7468get_irel_at_offset (asection *sec,
7469 Elf_Internal_Rela *internal_relocs,
7470 bfd_vma offset)
43cd72b9
BW
7471{
7472 unsigned i;
7473 Elf_Internal_Rela *irel;
7474 unsigned r_type;
7475 Elf_Internal_Rela key;
7476
7477 if (!internal_relocs)
7478 return NULL;
7479
7480 key.r_offset = offset;
7481 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7482 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7483 if (!irel)
7484 return NULL;
7485
7486 /* bsearch does not guarantee which will be returned if there are
7487 multiple matches. We need the first that is not an alignment. */
7488 i = irel - internal_relocs;
7489 while (i > 0)
7490 {
7491 if (internal_relocs[i-1].r_offset != offset)
7492 break;
7493 i--;
7494 }
7495 for ( ; i < sec->reloc_count; i++)
7496 {
7497 irel = &internal_relocs[i];
7498 r_type = ELF32_R_TYPE (irel->r_info);
7499 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7500 return irel;
7501 }
7502
7503 return NULL;
7504}
7505
7506
7507bfd_boolean
7fa3d080
BW
7508is_removable_literal (const source_reloc *rel,
7509 int i,
7510 const source_reloc *src_relocs,
99ded152
BW
7511 int src_count,
7512 asection *sec,
7513 property_table_entry *prop_table,
7514 int ptblsize)
43cd72b9
BW
7515{
7516 const source_reloc *curr_rel;
99ded152
BW
7517 property_table_entry *entry;
7518
43cd72b9
BW
7519 if (!rel->is_null)
7520 return FALSE;
7521
99ded152
BW
7522 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7523 sec->vma + rel->r_rel.target_offset);
7524 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7525 return FALSE;
7526
43cd72b9
BW
7527 for (++i; i < src_count; ++i)
7528 {
7529 curr_rel = &src_relocs[i];
7530 /* If all others have the same target offset.... */
7531 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7532 return TRUE;
7533
7534 if (!curr_rel->is_null
7535 && !xtensa_is_property_section (curr_rel->source_sec)
7536 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7537 return FALSE;
7538 }
7539 return TRUE;
7540}
7541
7542
7543bfd_boolean
7fa3d080
BW
7544remove_dead_literal (bfd *abfd,
7545 asection *sec,
7546 struct bfd_link_info *link_info,
7547 Elf_Internal_Rela *internal_relocs,
7548 Elf_Internal_Rela *irel,
7549 source_reloc *rel,
7550 property_table_entry *prop_table,
7551 int ptblsize)
43cd72b9
BW
7552{
7553 property_table_entry *entry;
7554 xtensa_relax_info *relax_info;
7555
7556 relax_info = get_xtensa_relax_info (sec);
7557 if (!relax_info)
7558 return FALSE;
7559
7560 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7561 sec->vma + rel->r_rel.target_offset);
7562
7563 /* Mark the unused literal so that it will be removed. */
7564 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7565
7566 text_action_add (&relax_info->action_list,
7567 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7568
7569 /* If the section is 4-byte aligned, do not add fill. */
7570 if (sec->alignment_power > 2)
7571 {
7572 int fill_extra_space;
7573 bfd_vma entry_sec_offset;
7574 text_action *fa;
7575 property_table_entry *the_add_entry;
7576 int removed_diff;
7577
7578 if (entry)
7579 entry_sec_offset = entry->address - sec->vma + entry->size;
7580 else
7581 entry_sec_offset = rel->r_rel.target_offset + 4;
7582
7583 /* If the literal range is at the end of the section,
7584 do not add fill. */
7585 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7586 entry_sec_offset);
7587 fill_extra_space = compute_fill_extra_space (the_add_entry);
7588
7589 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7590 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7591 -4, fill_extra_space);
7592 if (fa)
7593 adjust_fill_action (fa, removed_diff);
7594 else
7595 text_action_add (&relax_info->action_list,
7596 ta_fill, sec, entry_sec_offset, removed_diff);
7597 }
7598
7599 /* Zero out the relocation on this literal location. */
7600 if (irel)
7601 {
7602 if (elf_hash_table (link_info)->dynamic_sections_created)
7603 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7604
7605 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7606 pin_internal_relocs (sec, internal_relocs);
7607 }
7608
7609 /* Do not modify "last_loc_is_prev". */
7610 return TRUE;
7611}
7612
7613
7614bfd_boolean
7fa3d080
BW
7615identify_literal_placement (bfd *abfd,
7616 asection *sec,
7617 bfd_byte *contents,
7618 struct bfd_link_info *link_info,
7619 value_map_hash_table *values,
7620 bfd_boolean *last_loc_is_prev_p,
7621 Elf_Internal_Rela *irel,
7622 int remaining_src_rels,
7623 source_reloc *rel,
7624 property_table_entry *prop_table,
7625 int ptblsize,
7626 section_cache_t *target_sec_cache,
7627 bfd_boolean is_abs_literal)
43cd72b9
BW
7628{
7629 literal_value val;
7630 value_map *val_map;
7631 xtensa_relax_info *relax_info;
7632 bfd_boolean literal_placed = FALSE;
7633 r_reloc r_rel;
7634 unsigned long value;
7635 bfd_boolean final_static_link;
7636 bfd_size_type sec_size;
7637
7638 relax_info = get_xtensa_relax_info (sec);
7639 if (!relax_info)
7640 return FALSE;
7641
7642 sec_size = bfd_get_section_limit (abfd, sec);
7643
7644 final_static_link =
7645 (!link_info->relocatable
7646 && !elf_hash_table (link_info)->dynamic_sections_created);
7647
7648 /* The placement algorithm first checks to see if the literal is
7649 already in the value map. If so and the value map is reachable
7650 from all uses, then the literal is moved to that location. If
7651 not, then we identify the last location where a fresh literal was
7652 placed. If the literal can be safely moved there, then we do so.
7653 If not, then we assume that the literal is not to move and leave
7654 the literal where it is, marking it as the last literal
7655 location. */
7656
7657 /* Find the literal value. */
7658 value = 0;
7659 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7660 if (!irel)
7661 {
7662 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7663 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7664 }
7665 init_literal_value (&val, &r_rel, value, is_abs_literal);
7666
7667 /* Check if we've seen another literal with the same value that
7668 is in the same output section. */
7669 val_map = value_map_get_cached_value (values, &val, final_static_link);
7670
7671 if (val_map
7672 && (r_reloc_get_section (&val_map->loc)->output_section
7673 == sec->output_section)
7674 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7675 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7676 {
7677 /* No change to last_loc_is_prev. */
7678 literal_placed = TRUE;
7679 }
7680
7681 /* For relocatable links, do not try to move literals. To do it
7682 correctly might increase the number of relocations in an input
7683 section making the default relocatable linking fail. */
7684 if (!link_info->relocatable && !literal_placed
7685 && values->has_last_loc && !(*last_loc_is_prev_p))
7686 {
7687 asection *target_sec = r_reloc_get_section (&values->last_loc);
7688 if (target_sec && target_sec->output_section == sec->output_section)
7689 {
7690 /* Increment the virtual offset. */
7691 r_reloc try_loc = values->last_loc;
7692 try_loc.virtual_offset += 4;
7693
7694 /* There is a last loc that was in the same output section. */
7695 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7696 && move_shared_literal (sec, link_info, rel,
7697 prop_table, ptblsize,
7698 &try_loc, &val, target_sec_cache))
e0001a05 7699 {
43cd72b9
BW
7700 values->last_loc.virtual_offset += 4;
7701 literal_placed = TRUE;
7702 if (!val_map)
7703 val_map = add_value_map (values, &val, &try_loc,
7704 final_static_link);
7705 else
7706 val_map->loc = try_loc;
e0001a05
NC
7707 }
7708 }
43cd72b9
BW
7709 }
7710
7711 if (!literal_placed)
7712 {
7713 /* Nothing worked, leave the literal alone but update the last loc. */
7714 values->has_last_loc = TRUE;
7715 values->last_loc = rel->r_rel;
7716 if (!val_map)
7717 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 7718 else
43cd72b9
BW
7719 val_map->loc = rel->r_rel;
7720 *last_loc_is_prev_p = TRUE;
e0001a05
NC
7721 }
7722
43cd72b9 7723 return TRUE;
e0001a05
NC
7724}
7725
7726
7727/* Check if the original relocations (presumably on L32R instructions)
7728 identified by reloc[0..N] can be changed to reference the literal
7729 identified by r_rel. If r_rel is out of range for any of the
7730 original relocations, then we don't want to coalesce the original
7731 literal with the one at r_rel. We only check reloc[0..N], where the
7732 offsets are all the same as for reloc[0] (i.e., they're all
7733 referencing the same literal) and where N is also bounded by the
7734 number of remaining entries in the "reloc" array. The "reloc" array
7735 is sorted by target offset so we know all the entries for the same
7736 literal will be contiguous. */
7737
7738static bfd_boolean
7fa3d080
BW
7739relocations_reach (source_reloc *reloc,
7740 int remaining_relocs,
7741 const r_reloc *r_rel)
e0001a05
NC
7742{
7743 bfd_vma from_offset, source_address, dest_address;
7744 asection *sec;
7745 int i;
7746
7747 if (!r_reloc_is_defined (r_rel))
7748 return FALSE;
7749
7750 sec = r_reloc_get_section (r_rel);
7751 from_offset = reloc[0].r_rel.target_offset;
7752
7753 for (i = 0; i < remaining_relocs; i++)
7754 {
7755 if (reloc[i].r_rel.target_offset != from_offset)
7756 break;
7757
7758 /* Ignore relocations that have been removed. */
7759 if (reloc[i].is_null)
7760 continue;
7761
7762 /* The original and new output section for these must be the same
7763 in order to coalesce. */
7764 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7765 != sec->output_section)
7766 return FALSE;
7767
d638e0ac
BW
7768 /* Absolute literals in the same output section can always be
7769 combined. */
7770 if (reloc[i].is_abs_literal)
7771 continue;
7772
43cd72b9
BW
7773 /* A literal with no PC-relative relocations can be moved anywhere. */
7774 if (reloc[i].opnd != -1)
e0001a05
NC
7775 {
7776 /* Otherwise, check to see that it fits. */
7777 source_address = (reloc[i].source_sec->output_section->vma
7778 + reloc[i].source_sec->output_offset
7779 + reloc[i].r_rel.rela.r_offset);
7780 dest_address = (sec->output_section->vma
7781 + sec->output_offset
7782 + r_rel->target_offset);
7783
43cd72b9
BW
7784 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7785 source_address, dest_address))
e0001a05
NC
7786 return FALSE;
7787 }
7788 }
7789
7790 return TRUE;
7791}
7792
7793
43cd72b9
BW
7794/* Move a literal to another literal location because it is
7795 the same as the other literal value. */
e0001a05 7796
43cd72b9 7797static bfd_boolean
7fa3d080
BW
7798coalesce_shared_literal (asection *sec,
7799 source_reloc *rel,
7800 property_table_entry *prop_table,
7801 int ptblsize,
7802 value_map *val_map)
e0001a05 7803{
43cd72b9
BW
7804 property_table_entry *entry;
7805 text_action *fa;
7806 property_table_entry *the_add_entry;
7807 int removed_diff;
7808 xtensa_relax_info *relax_info;
7809
7810 relax_info = get_xtensa_relax_info (sec);
7811 if (!relax_info)
7812 return FALSE;
7813
7814 entry = elf_xtensa_find_property_entry
7815 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 7816 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
7817 return TRUE;
7818
7819 /* Mark that the literal will be coalesced. */
7820 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7821
7822 text_action_add (&relax_info->action_list,
7823 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7824
7825 /* If the section is 4-byte aligned, do not add fill. */
7826 if (sec->alignment_power > 2)
e0001a05 7827 {
43cd72b9
BW
7828 int fill_extra_space;
7829 bfd_vma entry_sec_offset;
7830
7831 if (entry)
7832 entry_sec_offset = entry->address - sec->vma + entry->size;
7833 else
7834 entry_sec_offset = rel->r_rel.target_offset + 4;
7835
7836 /* If the literal range is at the end of the section,
7837 do not add fill. */
7838 fill_extra_space = 0;
7839 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7840 entry_sec_offset);
7841 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7842 fill_extra_space = the_add_entry->size;
7843
7844 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7845 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7846 -4, fill_extra_space);
7847 if (fa)
7848 adjust_fill_action (fa, removed_diff);
7849 else
7850 text_action_add (&relax_info->action_list,
7851 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 7852 }
43cd72b9
BW
7853
7854 return TRUE;
7855}
7856
7857
7858/* Move a literal to another location. This may actually increase the
7859 total amount of space used because of alignments so we need to do
7860 this carefully. Also, it may make a branch go out of range. */
7861
7862static bfd_boolean
7fa3d080
BW
7863move_shared_literal (asection *sec,
7864 struct bfd_link_info *link_info,
7865 source_reloc *rel,
7866 property_table_entry *prop_table,
7867 int ptblsize,
7868 const r_reloc *target_loc,
7869 const literal_value *lit_value,
7870 section_cache_t *target_sec_cache)
43cd72b9
BW
7871{
7872 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7873 text_action *fa, *target_fa;
7874 int removed_diff;
7875 xtensa_relax_info *relax_info, *target_relax_info;
7876 asection *target_sec;
7877 ebb_t *ebb;
7878 ebb_constraint ebb_table;
7879 bfd_boolean relocs_fit;
7880
7881 /* If this routine always returns FALSE, the literals that cannot be
7882 coalesced will not be moved. */
7883 if (elf32xtensa_no_literal_movement)
7884 return FALSE;
7885
7886 relax_info = get_xtensa_relax_info (sec);
7887 if (!relax_info)
7888 return FALSE;
7889
7890 target_sec = r_reloc_get_section (target_loc);
7891 target_relax_info = get_xtensa_relax_info (target_sec);
7892
7893 /* Literals to undefined sections may not be moved because they
7894 must report an error. */
7895 if (bfd_is_und_section (target_sec))
7896 return FALSE;
7897
7898 src_entry = elf_xtensa_find_property_entry
7899 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7900
7901 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7902 return FALSE;
7903
7904 target_entry = elf_xtensa_find_property_entry
7905 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7906 target_sec->vma + target_loc->target_offset);
7907
7908 if (!target_entry)
7909 return FALSE;
7910
7911 /* Make sure that we have not broken any branches. */
7912 relocs_fit = FALSE;
7913
7914 init_ebb_constraint (&ebb_table);
7915 ebb = &ebb_table.ebb;
7916 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7917 target_sec_cache->content_length,
7918 target_sec_cache->ptbl, target_sec_cache->pte_count,
7919 target_sec_cache->relocs, target_sec_cache->reloc_count);
7920
7921 /* Propose to add 4 bytes + worst-case alignment size increase to
7922 destination. */
7923 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7924 ta_fill, target_loc->target_offset,
7925 -4 - (1 << target_sec->alignment_power), TRUE);
7926
7927 /* Check all of the PC-relative relocations to make sure they still fit. */
7928 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7929 target_sec_cache->contents,
7930 target_sec_cache->relocs,
cb337148 7931 &ebb_table, NULL);
43cd72b9
BW
7932
7933 if (!relocs_fit)
7934 return FALSE;
7935
7936 text_action_add_literal (&target_relax_info->action_list,
7937 ta_add_literal, target_loc, lit_value, -4);
7938
7939 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7940 {
7941 /* May need to add or remove some fill to maintain alignment. */
7942 int fill_extra_space;
7943 bfd_vma entry_sec_offset;
7944
7945 entry_sec_offset =
7946 target_entry->address - target_sec->vma + target_entry->size;
7947
7948 /* If the literal range is at the end of the section,
7949 do not add fill. */
7950 fill_extra_space = 0;
7951 the_add_entry =
7952 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7953 target_sec_cache->pte_count,
7954 entry_sec_offset);
7955 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7956 fill_extra_space = the_add_entry->size;
7957
7958 target_fa = find_fill_action (&target_relax_info->action_list,
7959 target_sec, entry_sec_offset);
7960 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7961 entry_sec_offset, 4,
7962 fill_extra_space);
7963 if (target_fa)
7964 adjust_fill_action (target_fa, removed_diff);
7965 else
7966 text_action_add (&target_relax_info->action_list,
7967 ta_fill, target_sec, entry_sec_offset, removed_diff);
7968 }
7969
7970 /* Mark that the literal will be moved to the new location. */
7971 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7972
7973 /* Remove the literal. */
7974 text_action_add (&relax_info->action_list,
7975 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7976
7977 /* If the section is 4-byte aligned, do not add fill. */
7978 if (sec->alignment_power > 2 && target_entry != src_entry)
7979 {
7980 int fill_extra_space;
7981 bfd_vma entry_sec_offset;
7982
7983 if (src_entry)
7984 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7985 else
7986 entry_sec_offset = rel->r_rel.target_offset+4;
7987
7988 /* If the literal range is at the end of the section,
7989 do not add fill. */
7990 fill_extra_space = 0;
7991 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7992 entry_sec_offset);
7993 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7994 fill_extra_space = the_add_entry->size;
7995
7996 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7997 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7998 -4, fill_extra_space);
7999 if (fa)
8000 adjust_fill_action (fa, removed_diff);
8001 else
8002 text_action_add (&relax_info->action_list,
8003 ta_fill, sec, entry_sec_offset, removed_diff);
8004 }
8005
8006 return TRUE;
e0001a05
NC
8007}
8008
8009\f
8010/* Second relaxation pass. */
8011
8012/* Modify all of the relocations to point to the right spot, and if this
8013 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8014 section size. */
e0001a05 8015
43cd72b9 8016bfd_boolean
7fa3d080 8017relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8018{
8019 Elf_Internal_Rela *internal_relocs;
8020 xtensa_relax_info *relax_info;
8021 bfd_byte *contents;
8022 bfd_boolean ok = TRUE;
8023 unsigned i;
43cd72b9
BW
8024 bfd_boolean rv = FALSE;
8025 bfd_boolean virtual_action;
8026 bfd_size_type sec_size;
e0001a05 8027
43cd72b9 8028 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8029 relax_info = get_xtensa_relax_info (sec);
8030 BFD_ASSERT (relax_info);
8031
43cd72b9
BW
8032 /* First translate any of the fixes that have been added already. */
8033 translate_section_fixes (sec);
8034
e0001a05
NC
8035 /* Handle property sections (e.g., literal tables) specially. */
8036 if (xtensa_is_property_section (sec))
8037 {
8038 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8039 return relax_property_section (abfd, sec, link_info);
8040 }
8041
43cd72b9
BW
8042 internal_relocs = retrieve_internal_relocs (abfd, sec,
8043 link_info->keep_memory);
8044 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8045 if (contents == NULL && sec_size != 0)
8046 {
8047 ok = FALSE;
8048 goto error_return;
8049 }
8050
8051 if (internal_relocs)
8052 {
8053 for (i = 0; i < sec->reloc_count; i++)
8054 {
8055 Elf_Internal_Rela *irel;
8056 xtensa_relax_info *target_relax_info;
8057 bfd_vma source_offset, old_source_offset;
8058 r_reloc r_rel;
8059 unsigned r_type;
8060 asection *target_sec;
8061
8062 /* Locally change the source address.
8063 Translate the target to the new target address.
8064 If it points to this section and has been removed,
8065 NULLify it.
8066 Write it back. */
8067
8068 irel = &internal_relocs[i];
8069 source_offset = irel->r_offset;
8070 old_source_offset = source_offset;
8071
8072 r_type = ELF32_R_TYPE (irel->r_info);
8073 r_reloc_init (&r_rel, abfd, irel, contents,
8074 bfd_get_section_limit (abfd, sec));
8075
8076 /* If this section could have changed then we may need to
8077 change the relocation's offset. */
8078
8079 if (relax_info->is_relaxable_literal_section
8080 || relax_info->is_relaxable_asm_section)
8081 {
9b7f5d20
BW
8082 pin_internal_relocs (sec, internal_relocs);
8083
43cd72b9
BW
8084 if (r_type != R_XTENSA_NONE
8085 && find_removed_literal (&relax_info->removed_list,
8086 irel->r_offset))
8087 {
8088 /* Remove this relocation. */
8089 if (elf_hash_table (link_info)->dynamic_sections_created)
8090 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8091 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8092 irel->r_offset = offset_with_removed_text
8093 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8094 continue;
8095 }
8096
8097 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8098 {
8099 text_action *action =
8100 find_insn_action (&relax_info->action_list,
8101 irel->r_offset);
8102 if (action && (action->action == ta_convert_longcall
8103 || action->action == ta_remove_longcall))
8104 {
8105 bfd_reloc_status_type retval;
8106 char *error_message = NULL;
8107
8108 retval = contract_asm_expansion (contents, sec_size,
8109 irel, &error_message);
8110 if (retval != bfd_reloc_ok)
8111 {
8112 (*link_info->callbacks->reloc_dangerous)
8113 (link_info, error_message, abfd, sec,
8114 irel->r_offset);
8115 goto error_return;
8116 }
8117 /* Update the action so that the code that moves
8118 the contents will do the right thing. */
8119 if (action->action == ta_remove_longcall)
8120 action->action = ta_remove_insn;
8121 else
8122 action->action = ta_none;
8123 /* Refresh the info in the r_rel. */
8124 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8125 r_type = ELF32_R_TYPE (irel->r_info);
8126 }
8127 }
8128
8129 source_offset = offset_with_removed_text
8130 (&relax_info->action_list, irel->r_offset);
8131 irel->r_offset = source_offset;
8132 }
8133
8134 /* If the target section could have changed then
8135 we may need to change the relocation's target offset. */
8136
8137 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8138
ae326da8
BW
8139 /* For a reference to a discarded section from a DWARF section,
8140 i.e., where action_discarded is PRETEND, the symbol will
8141 eventually be modified to refer to the kept section (at least if
8142 the kept and discarded sections are the same size). Anticipate
8143 that here and adjust things accordingly. */
8144 if (! elf_xtensa_ignore_discarded_relocs (sec)
8145 && elf_xtensa_action_discarded (sec) == PRETEND
8146 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8147 && target_sec != NULL
8148 && elf_discarded_section (target_sec))
8149 {
8150 /* It would be natural to call _bfd_elf_check_kept_section
8151 here, but it's not exported from elflink.c. It's also a
8152 fairly expensive check. Adjusting the relocations to the
8153 discarded section is fairly harmless; it will only adjust
8154 some addends and difference values. If it turns out that
8155 _bfd_elf_check_kept_section fails later, it won't matter,
8156 so just compare the section names to find the right group
8157 member. */
8158 asection *kept = target_sec->kept_section;
8159 if (kept != NULL)
8160 {
8161 if ((kept->flags & SEC_GROUP) != 0)
8162 {
8163 asection *first = elf_next_in_group (kept);
8164 asection *s = first;
8165
8166 kept = NULL;
8167 while (s != NULL)
8168 {
8169 if (strcmp (s->name, target_sec->name) == 0)
8170 {
8171 kept = s;
8172 break;
8173 }
8174 s = elf_next_in_group (s);
8175 if (s == first)
8176 break;
8177 }
8178 }
8179 }
8180 if (kept != NULL
8181 && ((target_sec->rawsize != 0
8182 ? target_sec->rawsize : target_sec->size)
8183 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8184 target_sec = kept;
8185 }
8186
8187 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
8188 if (target_relax_info
8189 && (target_relax_info->is_relaxable_literal_section
8190 || target_relax_info->is_relaxable_asm_section))
8191 {
8192 r_reloc new_reloc;
9b7f5d20 8193 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
8194
8195 if (r_type == R_XTENSA_DIFF8
8196 || r_type == R_XTENSA_DIFF16
8197 || r_type == R_XTENSA_DIFF32)
8198 {
8199 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8200
8201 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8202 {
8203 (*link_info->callbacks->reloc_dangerous)
8204 (link_info, _("invalid relocation address"),
8205 abfd, sec, old_source_offset);
8206 goto error_return;
8207 }
8208
8209 switch (r_type)
8210 {
8211 case R_XTENSA_DIFF8:
8212 diff_value =
8213 bfd_get_8 (abfd, &contents[old_source_offset]);
8214 break;
8215 case R_XTENSA_DIFF16:
8216 diff_value =
8217 bfd_get_16 (abfd, &contents[old_source_offset]);
8218 break;
8219 case R_XTENSA_DIFF32:
8220 diff_value =
8221 bfd_get_32 (abfd, &contents[old_source_offset]);
8222 break;
8223 }
8224
8225 new_end_offset = offset_with_removed_text
8226 (&target_relax_info->action_list,
8227 r_rel.target_offset + diff_value);
8228 diff_value = new_end_offset - new_reloc.target_offset;
8229
8230 switch (r_type)
8231 {
8232 case R_XTENSA_DIFF8:
8233 diff_mask = 0xff;
8234 bfd_put_8 (abfd, diff_value,
8235 &contents[old_source_offset]);
8236 break;
8237 case R_XTENSA_DIFF16:
8238 diff_mask = 0xffff;
8239 bfd_put_16 (abfd, diff_value,
8240 &contents[old_source_offset]);
8241 break;
8242 case R_XTENSA_DIFF32:
8243 diff_mask = 0xffffffff;
8244 bfd_put_32 (abfd, diff_value,
8245 &contents[old_source_offset]);
8246 break;
8247 }
8248
8249 /* Check for overflow. */
8250 if ((diff_value & ~diff_mask) != 0)
8251 {
8252 (*link_info->callbacks->reloc_dangerous)
8253 (link_info, _("overflow after relaxation"),
8254 abfd, sec, old_source_offset);
8255 goto error_return;
8256 }
8257
8258 pin_contents (sec, contents);
8259 }
dc96b90a
BW
8260
8261 /* If the relocation still references a section in the same
8262 input file, modify the relocation directly instead of
8263 adding a "fix" record. */
8264 if (target_sec->owner == abfd)
8265 {
8266 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
8267 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
8268 irel->r_addend = new_reloc.rela.r_addend;
8269 pin_internal_relocs (sec, internal_relocs);
8270 }
9b7f5d20
BW
8271 else
8272 {
dc96b90a
BW
8273 bfd_vma addend_displacement;
8274 reloc_bfd_fix *fix;
8275
8276 addend_displacement =
8277 new_reloc.target_offset + new_reloc.virtual_offset;
8278 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
8279 target_sec,
8280 addend_displacement, TRUE);
8281 add_fix (sec, fix);
9b7f5d20 8282 }
43cd72b9 8283 }
43cd72b9
BW
8284 }
8285 }
8286
8287 if ((relax_info->is_relaxable_literal_section
8288 || relax_info->is_relaxable_asm_section)
8289 && relax_info->action_list.head)
8290 {
8291 /* Walk through the planned actions and build up a table
8292 of move, copy and fill records. Use the move, copy and
8293 fill records to perform the actions once. */
8294
43cd72b9
BW
8295 int removed = 0;
8296 bfd_size_type final_size, copy_size, orig_insn_size;
8297 bfd_byte *scratch = NULL;
8298 bfd_byte *dup_contents = NULL;
a3ef2d63 8299 bfd_size_type orig_size = sec->size;
43cd72b9
BW
8300 bfd_vma orig_dot = 0;
8301 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8302 orig dot in physical memory. */
8303 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8304 bfd_vma dup_dot = 0;
8305
8306 text_action *action = relax_info->action_list.head;
8307
8308 final_size = sec->size;
8309 for (action = relax_info->action_list.head; action;
8310 action = action->next)
8311 {
8312 final_size -= action->removed_bytes;
8313 }
8314
8315 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8316 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8317
8318 /* The dot is the current fill location. */
8319#if DEBUG
8320 print_action_list (stderr, &relax_info->action_list);
8321#endif
8322
8323 for (action = relax_info->action_list.head; action;
8324 action = action->next)
8325 {
8326 virtual_action = FALSE;
8327 if (action->offset > orig_dot)
8328 {
8329 orig_dot += orig_dot_copied;
8330 orig_dot_copied = 0;
8331 orig_dot_vo = 0;
8332 /* Out of the virtual world. */
8333 }
8334
8335 if (action->offset > orig_dot)
8336 {
8337 copy_size = action->offset - orig_dot;
8338 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8339 orig_dot += copy_size;
8340 dup_dot += copy_size;
8341 BFD_ASSERT (action->offset == orig_dot);
8342 }
8343 else if (action->offset < orig_dot)
8344 {
8345 if (action->action == ta_fill
8346 && action->offset - action->removed_bytes == orig_dot)
8347 {
8348 /* This is OK because the fill only effects the dup_dot. */
8349 }
8350 else if (action->action == ta_add_literal)
8351 {
8352 /* TBD. Might need to handle this. */
8353 }
8354 }
8355 if (action->offset == orig_dot)
8356 {
8357 if (action->virtual_offset > orig_dot_vo)
8358 {
8359 if (orig_dot_vo == 0)
8360 {
8361 /* Need to copy virtual_offset bytes. Probably four. */
8362 copy_size = action->virtual_offset - orig_dot_vo;
8363 memmove (&dup_contents[dup_dot],
8364 &contents[orig_dot], copy_size);
8365 orig_dot_copied = copy_size;
8366 dup_dot += copy_size;
8367 }
8368 virtual_action = TRUE;
8369 }
8370 else
8371 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8372 }
8373 switch (action->action)
8374 {
8375 case ta_remove_literal:
8376 case ta_remove_insn:
8377 BFD_ASSERT (action->removed_bytes >= 0);
8378 orig_dot += action->removed_bytes;
8379 break;
8380
8381 case ta_narrow_insn:
8382 orig_insn_size = 3;
8383 copy_size = 2;
8384 memmove (scratch, &contents[orig_dot], orig_insn_size);
8385 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 8386 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
8387 BFD_ASSERT (rv);
8388 memmove (&dup_contents[dup_dot], scratch, copy_size);
8389 orig_dot += orig_insn_size;
8390 dup_dot += copy_size;
8391 break;
8392
8393 case ta_fill:
8394 if (action->removed_bytes >= 0)
8395 orig_dot += action->removed_bytes;
8396 else
8397 {
8398 /* Already zeroed in dup_contents. Just bump the
8399 counters. */
8400 dup_dot += (-action->removed_bytes);
8401 }
8402 break;
8403
8404 case ta_none:
8405 BFD_ASSERT (action->removed_bytes == 0);
8406 break;
8407
8408 case ta_convert_longcall:
8409 case ta_remove_longcall:
8410 /* These will be removed or converted before we get here. */
8411 BFD_ASSERT (0);
8412 break;
8413
8414 case ta_widen_insn:
8415 orig_insn_size = 2;
8416 copy_size = 3;
8417 memmove (scratch, &contents[orig_dot], orig_insn_size);
8418 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 8419 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
8420 BFD_ASSERT (rv);
8421 memmove (&dup_contents[dup_dot], scratch, copy_size);
8422 orig_dot += orig_insn_size;
8423 dup_dot += copy_size;
8424 break;
8425
8426 case ta_add_literal:
8427 orig_insn_size = 0;
8428 copy_size = 4;
8429 BFD_ASSERT (action->removed_bytes == -4);
8430 /* TBD -- place the literal value here and insert
8431 into the table. */
8432 memset (&dup_contents[dup_dot], 0, 4);
8433 pin_internal_relocs (sec, internal_relocs);
8434 pin_contents (sec, contents);
8435
8436 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8437 relax_info, &internal_relocs, &action->value))
8438 goto error_return;
8439
8440 if (virtual_action)
8441 orig_dot_vo += copy_size;
8442
8443 orig_dot += orig_insn_size;
8444 dup_dot += copy_size;
8445 break;
8446
8447 default:
8448 /* Not implemented yet. */
8449 BFD_ASSERT (0);
8450 break;
8451 }
8452
43cd72b9
BW
8453 removed += action->removed_bytes;
8454 BFD_ASSERT (dup_dot <= final_size);
8455 BFD_ASSERT (orig_dot <= orig_size);
8456 }
8457
8458 orig_dot += orig_dot_copied;
8459 orig_dot_copied = 0;
8460
8461 if (orig_dot != orig_size)
8462 {
8463 copy_size = orig_size - orig_dot;
8464 BFD_ASSERT (orig_size > orig_dot);
8465 BFD_ASSERT (dup_dot + copy_size == final_size);
8466 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8467 orig_dot += copy_size;
8468 dup_dot += copy_size;
8469 }
8470 BFD_ASSERT (orig_size == orig_dot);
8471 BFD_ASSERT (final_size == dup_dot);
8472
8473 /* Move the dup_contents back. */
8474 if (final_size > orig_size)
8475 {
8476 /* Contents need to be reallocated. Swap the dup_contents into
8477 contents. */
8478 sec->contents = dup_contents;
8479 free (contents);
8480 contents = dup_contents;
8481 pin_contents (sec, contents);
8482 }
8483 else
8484 {
8485 BFD_ASSERT (final_size <= orig_size);
8486 memset (contents, 0, orig_size);
8487 memcpy (contents, dup_contents, final_size);
8488 free (dup_contents);
8489 }
8490 free (scratch);
8491 pin_contents (sec, contents);
8492
a3ef2d63
BW
8493 if (sec->rawsize == 0)
8494 sec->rawsize = sec->size;
43cd72b9
BW
8495 sec->size = final_size;
8496 }
8497
8498 error_return:
8499 release_internal_relocs (sec, internal_relocs);
8500 release_contents (sec, contents);
8501 return ok;
8502}
8503
8504
8505static bfd_boolean
7fa3d080 8506translate_section_fixes (asection *sec)
43cd72b9
BW
8507{
8508 xtensa_relax_info *relax_info;
8509 reloc_bfd_fix *r;
8510
8511 relax_info = get_xtensa_relax_info (sec);
8512 if (!relax_info)
8513 return TRUE;
8514
8515 for (r = relax_info->fix_list; r != NULL; r = r->next)
8516 if (!translate_reloc_bfd_fix (r))
8517 return FALSE;
e0001a05 8518
43cd72b9
BW
8519 return TRUE;
8520}
e0001a05 8521
e0001a05 8522
43cd72b9
BW
8523/* Translate a fix given the mapping in the relax info for the target
8524 section. If it has already been translated, no work is required. */
e0001a05 8525
43cd72b9 8526static bfd_boolean
7fa3d080 8527translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
8528{
8529 reloc_bfd_fix new_fix;
8530 asection *sec;
8531 xtensa_relax_info *relax_info;
8532 removed_literal *removed;
8533 bfd_vma new_offset, target_offset;
e0001a05 8534
43cd72b9
BW
8535 if (fix->translated)
8536 return TRUE;
e0001a05 8537
43cd72b9
BW
8538 sec = fix->target_sec;
8539 target_offset = fix->target_offset;
e0001a05 8540
43cd72b9
BW
8541 relax_info = get_xtensa_relax_info (sec);
8542 if (!relax_info)
8543 {
8544 fix->translated = TRUE;
8545 return TRUE;
8546 }
e0001a05 8547
43cd72b9 8548 new_fix = *fix;
e0001a05 8549
43cd72b9
BW
8550 /* The fix does not need to be translated if the section cannot change. */
8551 if (!relax_info->is_relaxable_literal_section
8552 && !relax_info->is_relaxable_asm_section)
8553 {
8554 fix->translated = TRUE;
8555 return TRUE;
8556 }
e0001a05 8557
43cd72b9
BW
8558 /* If the literal has been moved and this relocation was on an
8559 opcode, then the relocation should move to the new literal
8560 location. Otherwise, the relocation should move within the
8561 section. */
8562
8563 removed = FALSE;
8564 if (is_operand_relocation (fix->src_type))
8565 {
8566 /* Check if the original relocation is against a literal being
8567 removed. */
8568 removed = find_removed_literal (&relax_info->removed_list,
8569 target_offset);
e0001a05
NC
8570 }
8571
43cd72b9 8572 if (removed)
e0001a05 8573 {
43cd72b9 8574 asection *new_sec;
e0001a05 8575
43cd72b9
BW
8576 /* The fact that there is still a relocation to this literal indicates
8577 that the literal is being coalesced, not simply removed. */
8578 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 8579
43cd72b9
BW
8580 /* This was moved to some other address (possibly another section). */
8581 new_sec = r_reloc_get_section (&removed->to);
8582 if (new_sec != sec)
e0001a05 8583 {
43cd72b9
BW
8584 sec = new_sec;
8585 relax_info = get_xtensa_relax_info (sec);
8586 if (!relax_info ||
8587 (!relax_info->is_relaxable_literal_section
8588 && !relax_info->is_relaxable_asm_section))
e0001a05 8589 {
43cd72b9
BW
8590 target_offset = removed->to.target_offset;
8591 new_fix.target_sec = new_sec;
8592 new_fix.target_offset = target_offset;
8593 new_fix.translated = TRUE;
8594 *fix = new_fix;
8595 return TRUE;
e0001a05 8596 }
e0001a05 8597 }
43cd72b9
BW
8598 target_offset = removed->to.target_offset;
8599 new_fix.target_sec = new_sec;
e0001a05 8600 }
43cd72b9
BW
8601
8602 /* The target address may have been moved within its section. */
8603 new_offset = offset_with_removed_text (&relax_info->action_list,
8604 target_offset);
8605
8606 new_fix.target_offset = new_offset;
8607 new_fix.target_offset = new_offset;
8608 new_fix.translated = TRUE;
8609 *fix = new_fix;
8610 return TRUE;
e0001a05
NC
8611}
8612
8613
8614/* Fix up a relocation to take account of removed literals. */
8615
9b7f5d20
BW
8616static asection *
8617translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 8618{
e0001a05
NC
8619 xtensa_relax_info *relax_info;
8620 removed_literal *removed;
9b7f5d20
BW
8621 bfd_vma target_offset, base_offset;
8622 text_action *act;
e0001a05
NC
8623
8624 *new_rel = *orig_rel;
8625
8626 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 8627 return sec ;
e0001a05
NC
8628
8629 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
8630 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
8631 || relax_info->is_relaxable_asm_section));
e0001a05 8632
43cd72b9
BW
8633 target_offset = orig_rel->target_offset;
8634
8635 removed = FALSE;
8636 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8637 {
8638 /* Check if the original relocation is against a literal being
8639 removed. */
8640 removed = find_removed_literal (&relax_info->removed_list,
8641 target_offset);
8642 }
8643 if (removed && removed->to.abfd)
e0001a05
NC
8644 {
8645 asection *new_sec;
8646
8647 /* The fact that there is still a relocation to this literal indicates
8648 that the literal is being coalesced, not simply removed. */
8649 BFD_ASSERT (removed->to.abfd != NULL);
8650
43cd72b9
BW
8651 /* This was moved to some other address
8652 (possibly in another section). */
e0001a05
NC
8653 *new_rel = removed->to;
8654 new_sec = r_reloc_get_section (new_rel);
43cd72b9 8655 if (new_sec != sec)
e0001a05
NC
8656 {
8657 sec = new_sec;
8658 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
8659 if (!relax_info
8660 || (!relax_info->is_relaxable_literal_section
8661 && !relax_info->is_relaxable_asm_section))
9b7f5d20 8662 return sec;
e0001a05 8663 }
43cd72b9 8664 target_offset = new_rel->target_offset;
e0001a05
NC
8665 }
8666
9b7f5d20
BW
8667 /* Find the base offset of the reloc symbol, excluding any addend from the
8668 reloc or from the section contents (for a partial_inplace reloc). Then
8669 find the adjusted values of the offsets due to relaxation. The base
8670 offset is needed to determine the change to the reloc's addend; the reloc
8671 addend should not be adjusted due to relaxations located before the base
8672 offset. */
8673
8674 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
8675 act = relax_info->action_list.head;
8676 if (base_offset <= target_offset)
8677 {
8678 int base_removed = removed_by_actions (&act, base_offset, FALSE);
8679 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
8680 new_rel->target_offset = target_offset - base_removed - addend_removed;
8681 new_rel->rela.r_addend -= addend_removed;
8682 }
8683 else
8684 {
8685 /* Handle a negative addend. The base offset comes first. */
8686 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
8687 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
8688 new_rel->target_offset = target_offset - tgt_removed;
8689 new_rel->rela.r_addend += addend_removed;
8690 }
e0001a05 8691
9b7f5d20 8692 return sec;
e0001a05
NC
8693}
8694
8695
8696/* For dynamic links, there may be a dynamic relocation for each
8697 literal. The number of dynamic relocations must be computed in
8698 size_dynamic_sections, which occurs before relaxation. When a
8699 literal is removed, this function checks if there is a corresponding
8700 dynamic relocation and shrinks the size of the appropriate dynamic
8701 relocation section accordingly. At this point, the contents of the
8702 dynamic relocation sections have not yet been filled in, so there's
8703 nothing else that needs to be done. */
8704
8705static void
7fa3d080
BW
8706shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8707 bfd *abfd,
8708 asection *input_section,
8709 Elf_Internal_Rela *rel)
e0001a05 8710{
f0e6fdb2 8711 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
8712 Elf_Internal_Shdr *symtab_hdr;
8713 struct elf_link_hash_entry **sym_hashes;
8714 unsigned long r_symndx;
8715 int r_type;
8716 struct elf_link_hash_entry *h;
8717 bfd_boolean dynamic_symbol;
8718
f0e6fdb2 8719 htab = elf_xtensa_hash_table (info);
e0001a05
NC
8720 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8721 sym_hashes = elf_sym_hashes (abfd);
8722
8723 r_type = ELF32_R_TYPE (rel->r_info);
8724 r_symndx = ELF32_R_SYM (rel->r_info);
8725
8726 if (r_symndx < symtab_hdr->sh_info)
8727 h = NULL;
8728 else
8729 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8730
4608f3d9 8731 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
8732
8733 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8734 && (input_section->flags & SEC_ALLOC) != 0
8735 && (dynamic_symbol || info->shared))
8736 {
e0001a05
NC
8737 asection *srel;
8738 bfd_boolean is_plt = FALSE;
8739
e0001a05
NC
8740 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8741 {
f0e6fdb2 8742 srel = htab->srelplt;
e0001a05
NC
8743 is_plt = TRUE;
8744 }
8745 else
f0e6fdb2 8746 srel = htab->srelgot;
e0001a05
NC
8747
8748 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 8749 BFD_ASSERT (srel != NULL);
eea6121a
AM
8750 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8751 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
8752
8753 if (is_plt)
8754 {
8755 asection *splt, *sgotplt, *srelgot;
8756 int reloc_index, chunk;
8757
8758 /* Find the PLT reloc index of the entry being removed. This
8759 is computed from the size of ".rela.plt". It is needed to
8760 figure out which PLT chunk to resize. Usually "last index
8761 = size - 1" since the index starts at zero, but in this
8762 context, the size has just been decremented so there's no
8763 need to subtract one. */
eea6121a 8764 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
8765
8766 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
8767 splt = elf_xtensa_get_plt_section (info, chunk);
8768 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
8769 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8770
8771 /* Check if an entire PLT chunk has just been eliminated. */
8772 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8773 {
8774 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 8775 srelgot = htab->srelgot;
e0001a05
NC
8776 BFD_ASSERT (srelgot != NULL);
8777 srelgot->reloc_count -= 2;
eea6121a
AM
8778 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8779 sgotplt->size -= 8;
e0001a05
NC
8780
8781 /* There should be only one entry left (and it will be
8782 removed below). */
eea6121a
AM
8783 BFD_ASSERT (sgotplt->size == 4);
8784 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
8785 }
8786
eea6121a
AM
8787 BFD_ASSERT (sgotplt->size >= 4);
8788 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 8789
eea6121a
AM
8790 sgotplt->size -= 4;
8791 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
8792 }
8793 }
8794}
8795
8796
43cd72b9
BW
8797/* Take an r_rel and move it to another section. This usually
8798 requires extending the interal_relocation array and pinning it. If
8799 the original r_rel is from the same BFD, we can complete this here.
8800 Otherwise, we add a fix record to let the final link fix the
8801 appropriate address. Contents and internal relocations for the
8802 section must be pinned after calling this routine. */
8803
8804static bfd_boolean
7fa3d080
BW
8805move_literal (bfd *abfd,
8806 struct bfd_link_info *link_info,
8807 asection *sec,
8808 bfd_vma offset,
8809 bfd_byte *contents,
8810 xtensa_relax_info *relax_info,
8811 Elf_Internal_Rela **internal_relocs_p,
8812 const literal_value *lit)
43cd72b9
BW
8813{
8814 Elf_Internal_Rela *new_relocs = NULL;
8815 size_t new_relocs_count = 0;
8816 Elf_Internal_Rela this_rela;
8817 const r_reloc *r_rel;
8818
8819 r_rel = &lit->r_rel;
8820 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8821
8822 if (r_reloc_is_const (r_rel))
8823 bfd_put_32 (abfd, lit->value, contents + offset);
8824 else
8825 {
8826 int r_type;
8827 unsigned i;
8828 asection *target_sec;
8829 reloc_bfd_fix *fix;
8830 unsigned insert_at;
8831
8832 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8833 target_sec = r_reloc_get_section (r_rel);
8834
8835 /* This is the difficult case. We have to create a fix up. */
8836 this_rela.r_offset = offset;
8837 this_rela.r_info = ELF32_R_INFO (0, r_type);
8838 this_rela.r_addend =
8839 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8840 bfd_put_32 (abfd, lit->value, contents + offset);
8841
8842 /* Currently, we cannot move relocations during a relocatable link. */
8843 BFD_ASSERT (!link_info->relocatable);
0f5f1638 8844 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
8845 r_reloc_get_section (r_rel),
8846 r_rel->target_offset + r_rel->virtual_offset,
8847 FALSE);
8848 /* We also need to mark that relocations are needed here. */
8849 sec->flags |= SEC_RELOC;
8850
8851 translate_reloc_bfd_fix (fix);
8852 /* This fix has not yet been translated. */
8853 add_fix (sec, fix);
8854
8855 /* Add the relocation. If we have already allocated our own
8856 space for the relocations and we have room for more, then use
8857 it. Otherwise, allocate new space and move the literals. */
8858 insert_at = sec->reloc_count;
8859 for (i = 0; i < sec->reloc_count; ++i)
8860 {
8861 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8862 {
8863 insert_at = i;
8864 break;
8865 }
8866 }
8867
8868 if (*internal_relocs_p != relax_info->allocated_relocs
8869 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8870 {
8871 BFD_ASSERT (relax_info->allocated_relocs == NULL
8872 || sec->reloc_count == relax_info->relocs_count);
8873
8874 if (relax_info->allocated_relocs_count == 0)
8875 new_relocs_count = (sec->reloc_count + 2) * 2;
8876 else
8877 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8878
8879 new_relocs = (Elf_Internal_Rela *)
8880 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8881 if (!new_relocs)
8882 return FALSE;
8883
8884 /* We could handle this more quickly by finding the split point. */
8885 if (insert_at != 0)
8886 memcpy (new_relocs, *internal_relocs_p,
8887 insert_at * sizeof (Elf_Internal_Rela));
8888
8889 new_relocs[insert_at] = this_rela;
8890
8891 if (insert_at != sec->reloc_count)
8892 memcpy (new_relocs + insert_at + 1,
8893 (*internal_relocs_p) + insert_at,
8894 (sec->reloc_count - insert_at)
8895 * sizeof (Elf_Internal_Rela));
8896
8897 if (*internal_relocs_p != relax_info->allocated_relocs)
8898 {
8899 /* The first time we re-allocate, we can only free the
8900 old relocs if they were allocated with bfd_malloc.
8901 This is not true when keep_memory is in effect. */
8902 if (!link_info->keep_memory)
8903 free (*internal_relocs_p);
8904 }
8905 else
8906 free (*internal_relocs_p);
8907 relax_info->allocated_relocs = new_relocs;
8908 relax_info->allocated_relocs_count = new_relocs_count;
8909 elf_section_data (sec)->relocs = new_relocs;
8910 sec->reloc_count++;
8911 relax_info->relocs_count = sec->reloc_count;
8912 *internal_relocs_p = new_relocs;
8913 }
8914 else
8915 {
8916 if (insert_at != sec->reloc_count)
8917 {
8918 unsigned idx;
8919 for (idx = sec->reloc_count; idx > insert_at; idx--)
8920 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8921 }
8922 (*internal_relocs_p)[insert_at] = this_rela;
8923 sec->reloc_count++;
8924 if (relax_info->allocated_relocs)
8925 relax_info->relocs_count = sec->reloc_count;
8926 }
8927 }
8928 return TRUE;
8929}
8930
8931
e0001a05
NC
8932/* This is similar to relax_section except that when a target is moved,
8933 we shift addresses up. We also need to modify the size. This
8934 algorithm does NOT allow for relocations into the middle of the
8935 property sections. */
8936
43cd72b9 8937static bfd_boolean
7fa3d080
BW
8938relax_property_section (bfd *abfd,
8939 asection *sec,
8940 struct bfd_link_info *link_info)
e0001a05
NC
8941{
8942 Elf_Internal_Rela *internal_relocs;
8943 bfd_byte *contents;
1d25768e 8944 unsigned i;
e0001a05 8945 bfd_boolean ok = TRUE;
43cd72b9
BW
8946 bfd_boolean is_full_prop_section;
8947 size_t last_zfill_target_offset = 0;
8948 asection *last_zfill_target_sec = NULL;
8949 bfd_size_type sec_size;
1d25768e 8950 bfd_size_type entry_size;
e0001a05 8951
43cd72b9 8952 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8953 internal_relocs = retrieve_internal_relocs (abfd, sec,
8954 link_info->keep_memory);
8955 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8956 if (contents == NULL && sec_size != 0)
e0001a05
NC
8957 {
8958 ok = FALSE;
8959 goto error_return;
8960 }
8961
1d25768e
BW
8962 is_full_prop_section = xtensa_is_proptable_section (sec);
8963 if (is_full_prop_section)
8964 entry_size = 12;
8965 else
8966 entry_size = 8;
43cd72b9
BW
8967
8968 if (internal_relocs)
e0001a05 8969 {
43cd72b9 8970 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
8971 {
8972 Elf_Internal_Rela *irel;
8973 xtensa_relax_info *target_relax_info;
e0001a05
NC
8974 unsigned r_type;
8975 asection *target_sec;
43cd72b9
BW
8976 literal_value val;
8977 bfd_byte *size_p, *flags_p;
e0001a05
NC
8978
8979 /* Locally change the source address.
8980 Translate the target to the new target address.
8981 If it points to this section and has been removed, MOVE IT.
8982 Also, don't forget to modify the associated SIZE at
8983 (offset + 4). */
8984
8985 irel = &internal_relocs[i];
8986 r_type = ELF32_R_TYPE (irel->r_info);
8987 if (r_type == R_XTENSA_NONE)
8988 continue;
8989
43cd72b9
BW
8990 /* Find the literal value. */
8991 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8992 size_p = &contents[irel->r_offset + 4];
8993 flags_p = NULL;
8994 if (is_full_prop_section)
1d25768e
BW
8995 flags_p = &contents[irel->r_offset + 8];
8996 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 8997
43cd72b9 8998 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
8999 target_relax_info = get_xtensa_relax_info (target_sec);
9000
9001 if (target_relax_info
43cd72b9
BW
9002 && (target_relax_info->is_relaxable_literal_section
9003 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9004 {
9005 /* Translate the relocation's destination. */
03669f1c
BW
9006 bfd_vma old_offset = val.r_rel.target_offset;
9007 bfd_vma new_offset;
e0001a05 9008 long old_size, new_size;
03669f1c
BW
9009 text_action *act = target_relax_info->action_list.head;
9010 new_offset = old_offset -
9011 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9012
9013 /* Assert that we are not out of bounds. */
43cd72b9 9014 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9015 new_size = old_size;
43cd72b9
BW
9016
9017 if (old_size == 0)
9018 {
9019 /* Only the first zero-sized unreachable entry is
9020 allowed to expand. In this case the new offset
9021 should be the offset before the fill and the new
9022 size is the expansion size. For other zero-sized
9023 entries the resulting size should be zero with an
9024 offset before or after the fill address depending
9025 on whether the expanding unreachable entry
9026 preceeds it. */
03669f1c
BW
9027 if (last_zfill_target_sec == 0
9028 || last_zfill_target_sec != target_sec
9029 || last_zfill_target_offset != old_offset)
43cd72b9 9030 {
03669f1c
BW
9031 bfd_vma new_end_offset = new_offset;
9032
9033 /* Recompute the new_offset, but this time don't
9034 include any fill inserted by relaxation. */
9035 act = target_relax_info->action_list.head;
9036 new_offset = old_offset -
9037 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9038
9039 /* If it is not unreachable and we have not yet
9040 seen an unreachable at this address, place it
9041 before the fill address. */
03669f1c
BW
9042 if (flags_p && (bfd_get_32 (abfd, flags_p)
9043 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9044 {
03669f1c
BW
9045 new_size = new_end_offset - new_offset;
9046
43cd72b9 9047 last_zfill_target_sec = target_sec;
03669f1c 9048 last_zfill_target_offset = old_offset;
43cd72b9
BW
9049 }
9050 }
9051 }
9052 else
03669f1c
BW
9053 new_size -=
9054 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9055
e0001a05
NC
9056 if (new_size != old_size)
9057 {
9058 bfd_put_32 (abfd, new_size, size_p);
9059 pin_contents (sec, contents);
9060 }
43cd72b9 9061
03669f1c 9062 if (new_offset != old_offset)
e0001a05 9063 {
03669f1c 9064 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9065 irel->r_addend += diff;
9066 pin_internal_relocs (sec, internal_relocs);
9067 }
9068 }
9069 }
9070 }
9071
9072 /* Combine adjacent property table entries. This is also done in
9073 finish_dynamic_sections() but at that point it's too late to
9074 reclaim the space in the output section, so we do this twice. */
9075
43cd72b9 9076 if (internal_relocs && (!link_info->relocatable
1d25768e 9077 || xtensa_is_littable_section (sec)))
e0001a05
NC
9078 {
9079 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9080 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9081 int removed_bytes = 0;
1d25768e 9082 bfd_vma offset;
43cd72b9
BW
9083 flagword predef_flags;
9084
43cd72b9 9085 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9086
1d25768e 9087 /* Walk over memory and relocations at the same time.
e0001a05
NC
9088 This REQUIRES that the internal_relocs be sorted by offset. */
9089 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9090 internal_reloc_compare);
e0001a05
NC
9091
9092 pin_internal_relocs (sec, internal_relocs);
9093 pin_contents (sec, contents);
9094
1d25768e
BW
9095 next_rel = internal_relocs;
9096 rel_end = internal_relocs + sec->reloc_count;
9097
a3ef2d63 9098 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9099
a3ef2d63 9100 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9101 {
1d25768e 9102 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9103 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9104 bfd_boolean remove_this_rel;
43cd72b9 9105 flagword flags;
e0001a05 9106
1d25768e
BW
9107 /* Find the first relocation for the entry at the current offset.
9108 Adjust the offsets of any extra relocations for the previous
9109 entry. */
9110 offset_rel = NULL;
9111 if (next_rel)
9112 {
9113 for (irel = next_rel; irel < rel_end; irel++)
9114 {
9115 if ((irel->r_offset == offset
9116 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9117 || irel->r_offset > offset)
9118 {
9119 offset_rel = irel;
9120 break;
9121 }
9122 irel->r_offset -= removed_bytes;
1d25768e
BW
9123 }
9124 }
e0001a05 9125
1d25768e
BW
9126 /* Find the next relocation (if there are any left). */
9127 extra_rel = NULL;
9128 if (offset_rel)
e0001a05 9129 {
1d25768e 9130 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9131 {
1d25768e
BW
9132 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9133 {
9134 extra_rel = irel;
9135 break;
9136 }
e0001a05 9137 }
e0001a05
NC
9138 }
9139
1d25768e
BW
9140 /* Check if there are relocations on the current entry. There
9141 should usually be a relocation on the offset field. If there
9142 are relocations on the size or flags, then we can't optimize
9143 this entry. Also, find the next relocation to examine on the
9144 next iteration. */
9145 if (offset_rel)
e0001a05 9146 {
1d25768e 9147 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9148 {
1d25768e
BW
9149 next_rel = offset_rel;
9150 /* There are no relocations on the current entry, but we
9151 might still be able to remove it if the size is zero. */
9152 offset_rel = NULL;
9153 }
9154 else if (offset_rel->r_offset > offset
9155 || (extra_rel
9156 && extra_rel->r_offset < offset + entry_size))
9157 {
9158 /* There is a relocation on the size or flags, so we can't
9159 do anything with this entry. Continue with the next. */
9160 next_rel = offset_rel;
9161 continue;
9162 }
9163 else
9164 {
9165 BFD_ASSERT (offset_rel->r_offset == offset);
9166 offset_rel->r_offset -= removed_bytes;
9167 next_rel = offset_rel + 1;
e0001a05 9168 }
e0001a05 9169 }
1d25768e
BW
9170 else
9171 next_rel = NULL;
e0001a05 9172
1d25768e 9173 remove_this_rel = FALSE;
e0001a05
NC
9174 bytes_to_remove = 0;
9175 actual_offset = offset - removed_bytes;
9176 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9177
43cd72b9
BW
9178 if (is_full_prop_section)
9179 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9180 else
9181 flags = predef_flags;
9182
1d25768e
BW
9183 if (size == 0
9184 && (flags & XTENSA_PROP_ALIGN) == 0
9185 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9186 {
43cd72b9
BW
9187 /* Always remove entries with zero size and no alignment. */
9188 bytes_to_remove = entry_size;
1d25768e
BW
9189 if (offset_rel)
9190 remove_this_rel = TRUE;
e0001a05 9191 }
1d25768e
BW
9192 else if (offset_rel
9193 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 9194 {
1d25768e 9195 if (last_irel)
e0001a05 9196 {
1d25768e
BW
9197 flagword old_flags;
9198 bfd_vma old_size =
9199 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9200 bfd_vma old_address =
9201 (last_irel->r_addend
9202 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9203 bfd_vma new_address =
9204 (offset_rel->r_addend
9205 + bfd_get_32 (abfd, &contents[actual_offset]));
9206 if (is_full_prop_section)
9207 old_flags = bfd_get_32
9208 (abfd, &contents[last_irel->r_offset + 8]);
9209 else
9210 old_flags = predef_flags;
9211
9212 if ((ELF32_R_SYM (offset_rel->r_info)
9213 == ELF32_R_SYM (last_irel->r_info))
9214 && old_address + old_size == new_address
9215 && old_flags == flags
9216 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9217 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 9218 {
1d25768e
BW
9219 /* Fix the old size. */
9220 bfd_put_32 (abfd, old_size + size,
9221 &contents[last_irel->r_offset + 4]);
9222 bytes_to_remove = entry_size;
9223 remove_this_rel = TRUE;
e0001a05
NC
9224 }
9225 else
1d25768e 9226 last_irel = offset_rel;
e0001a05 9227 }
1d25768e
BW
9228 else
9229 last_irel = offset_rel;
e0001a05
NC
9230 }
9231
1d25768e 9232 if (remove_this_rel)
e0001a05 9233 {
1d25768e
BW
9234 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9235 /* In case this is the last entry, move the relocation offset
9236 to the previous entry, if there is one. */
9237 if (offset_rel->r_offset >= bytes_to_remove)
9238 offset_rel->r_offset -= bytes_to_remove;
9239 else
9240 offset_rel->r_offset = 0;
e0001a05
NC
9241 }
9242
9243 if (bytes_to_remove != 0)
9244 {
9245 removed_bytes += bytes_to_remove;
a3ef2d63 9246 if (offset + bytes_to_remove < sec->size)
e0001a05 9247 memmove (&contents[actual_offset],
43cd72b9 9248 &contents[actual_offset + bytes_to_remove],
a3ef2d63 9249 sec->size - offset - bytes_to_remove);
e0001a05
NC
9250 }
9251 }
9252
43cd72b9 9253 if (removed_bytes)
e0001a05 9254 {
1d25768e
BW
9255 /* Fix up any extra relocations on the last entry. */
9256 for (irel = next_rel; irel < rel_end; irel++)
9257 irel->r_offset -= removed_bytes;
9258
e0001a05 9259 /* Clear the removed bytes. */
a3ef2d63 9260 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 9261
a3ef2d63
BW
9262 if (sec->rawsize == 0)
9263 sec->rawsize = sec->size;
9264 sec->size -= removed_bytes;
e901de89
BW
9265
9266 if (xtensa_is_littable_section (sec))
9267 {
f0e6fdb2
BW
9268 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9269 if (sgotloc)
9270 sgotloc->size -= removed_bytes;
e901de89 9271 }
e0001a05
NC
9272 }
9273 }
e901de89 9274
e0001a05
NC
9275 error_return:
9276 release_internal_relocs (sec, internal_relocs);
9277 release_contents (sec, contents);
9278 return ok;
9279}
9280
9281\f
9282/* Third relaxation pass. */
9283
9284/* Change symbol values to account for removed literals. */
9285
43cd72b9 9286bfd_boolean
7fa3d080 9287relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
9288{
9289 xtensa_relax_info *relax_info;
9290 unsigned int sec_shndx;
9291 Elf_Internal_Shdr *symtab_hdr;
9292 Elf_Internal_Sym *isymbuf;
9293 unsigned i, num_syms, num_locals;
9294
9295 relax_info = get_xtensa_relax_info (sec);
9296 BFD_ASSERT (relax_info);
9297
43cd72b9
BW
9298 if (!relax_info->is_relaxable_literal_section
9299 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
9300 return TRUE;
9301
9302 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9303
9304 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9305 isymbuf = retrieve_local_syms (abfd);
9306
9307 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9308 num_locals = symtab_hdr->sh_info;
9309
9310 /* Adjust the local symbols defined in this section. */
9311 for (i = 0; i < num_locals; i++)
9312 {
9313 Elf_Internal_Sym *isym = &isymbuf[i];
9314
9315 if (isym->st_shndx == sec_shndx)
9316 {
03669f1c
BW
9317 text_action *act = relax_info->action_list.head;
9318 bfd_vma orig_addr = isym->st_value;
43cd72b9 9319
03669f1c 9320 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 9321
03669f1c
BW
9322 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9323 isym->st_size -=
9324 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
9325 }
9326 }
9327
9328 /* Now adjust the global symbols defined in this section. */
9329 for (i = 0; i < (num_syms - num_locals); i++)
9330 {
9331 struct elf_link_hash_entry *sym_hash;
9332
9333 sym_hash = elf_sym_hashes (abfd)[i];
9334
9335 if (sym_hash->root.type == bfd_link_hash_warning)
9336 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9337
9338 if ((sym_hash->root.type == bfd_link_hash_defined
9339 || sym_hash->root.type == bfd_link_hash_defweak)
9340 && sym_hash->root.u.def.section == sec)
9341 {
03669f1c
BW
9342 text_action *act = relax_info->action_list.head;
9343 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 9344
03669f1c
BW
9345 sym_hash->root.u.def.value -=
9346 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 9347
03669f1c
BW
9348 if (sym_hash->type == STT_FUNC)
9349 sym_hash->size -=
9350 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
9351 }
9352 }
9353
9354 return TRUE;
9355}
9356
9357\f
9358/* "Fix" handling functions, called while performing relocations. */
9359
43cd72b9 9360static bfd_boolean
7fa3d080
BW
9361do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9362 bfd *input_bfd,
9363 asection *input_section,
9364 bfd_byte *contents)
e0001a05
NC
9365{
9366 r_reloc r_rel;
9367 asection *sec, *old_sec;
9368 bfd_vma old_offset;
9369 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
9370 reloc_bfd_fix *fix;
9371
9372 if (r_type == R_XTENSA_NONE)
43cd72b9 9373 return TRUE;
e0001a05 9374
43cd72b9
BW
9375 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9376 if (!fix)
9377 return TRUE;
e0001a05 9378
43cd72b9
BW
9379 r_reloc_init (&r_rel, input_bfd, rel, contents,
9380 bfd_get_section_limit (input_bfd, input_section));
e0001a05 9381 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
9382 old_offset = r_rel.target_offset;
9383
9384 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 9385 {
43cd72b9
BW
9386 if (r_type != R_XTENSA_ASM_EXPAND)
9387 {
9388 (*_bfd_error_handler)
9389 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9390 input_bfd, input_section, rel->r_offset,
9391 elf_howto_table[r_type].name);
9392 return FALSE;
9393 }
e0001a05
NC
9394 /* Leave it be. Resolution will happen in a later stage. */
9395 }
9396 else
9397 {
9398 sec = fix->target_sec;
9399 rel->r_addend += ((sec->output_offset + fix->target_offset)
9400 - (old_sec->output_offset + old_offset));
9401 }
43cd72b9 9402 return TRUE;
e0001a05
NC
9403}
9404
9405
9406static void
7fa3d080
BW
9407do_fix_for_final_link (Elf_Internal_Rela *rel,
9408 bfd *input_bfd,
9409 asection *input_section,
9410 bfd_byte *contents,
9411 bfd_vma *relocationp)
e0001a05
NC
9412{
9413 asection *sec;
9414 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 9415 reloc_bfd_fix *fix;
43cd72b9 9416 bfd_vma fixup_diff;
e0001a05
NC
9417
9418 if (r_type == R_XTENSA_NONE)
9419 return;
9420
43cd72b9
BW
9421 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9422 if (!fix)
e0001a05
NC
9423 return;
9424
9425 sec = fix->target_sec;
43cd72b9
BW
9426
9427 fixup_diff = rel->r_addend;
9428 if (elf_howto_table[fix->src_type].partial_inplace)
9429 {
9430 bfd_vma inplace_val;
9431 BFD_ASSERT (fix->src_offset
9432 < bfd_get_section_limit (input_bfd, input_section));
9433 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9434 fixup_diff += inplace_val;
9435 }
9436
e0001a05
NC
9437 *relocationp = (sec->output_section->vma
9438 + sec->output_offset
43cd72b9 9439 + fix->target_offset - fixup_diff);
e0001a05
NC
9440}
9441
9442\f
9443/* Miscellaneous utility functions.... */
9444
9445static asection *
f0e6fdb2 9446elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 9447{
f0e6fdb2
BW
9448 struct elf_xtensa_link_hash_table *htab;
9449 bfd *dynobj;
e0001a05
NC
9450 char plt_name[10];
9451
9452 if (chunk == 0)
f0e6fdb2
BW
9453 {
9454 htab = elf_xtensa_hash_table (info);
9455 return htab->splt;
9456 }
e0001a05 9457
f0e6fdb2 9458 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9459 sprintf (plt_name, ".plt.%u", chunk);
9460 return bfd_get_section_by_name (dynobj, plt_name);
9461}
9462
9463
9464static asection *
f0e6fdb2 9465elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 9466{
f0e6fdb2
BW
9467 struct elf_xtensa_link_hash_table *htab;
9468 bfd *dynobj;
e0001a05
NC
9469 char got_name[14];
9470
9471 if (chunk == 0)
f0e6fdb2
BW
9472 {
9473 htab = elf_xtensa_hash_table (info);
9474 return htab->sgotplt;
9475 }
e0001a05 9476
f0e6fdb2 9477 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
9478 sprintf (got_name, ".got.plt.%u", chunk);
9479 return bfd_get_section_by_name (dynobj, got_name);
9480}
9481
9482
9483/* Get the input section for a given symbol index.
9484 If the symbol is:
9485 . a section symbol, return the section;
9486 . a common symbol, return the common section;
9487 . an undefined symbol, return the undefined section;
9488 . an indirect symbol, follow the links;
9489 . an absolute value, return the absolute section. */
9490
9491static asection *
7fa3d080 9492get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9493{
9494 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9495 asection *target_sec = NULL;
43cd72b9 9496 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9497 {
9498 Elf_Internal_Sym *isymbuf;
9499 unsigned int section_index;
9500
9501 isymbuf = retrieve_local_syms (abfd);
9502 section_index = isymbuf[r_symndx].st_shndx;
9503
9504 if (section_index == SHN_UNDEF)
9505 target_sec = bfd_und_section_ptr;
9506 else if (section_index > 0 && section_index < SHN_LORESERVE)
9507 target_sec = bfd_section_from_elf_index (abfd, section_index);
9508 else if (section_index == SHN_ABS)
9509 target_sec = bfd_abs_section_ptr;
9510 else if (section_index == SHN_COMMON)
9511 target_sec = bfd_com_section_ptr;
43cd72b9 9512 else
e0001a05
NC
9513 /* Who knows? */
9514 target_sec = NULL;
9515 }
9516 else
9517 {
9518 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9519 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9520
9521 while (h->root.type == bfd_link_hash_indirect
9522 || h->root.type == bfd_link_hash_warning)
9523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9524
9525 switch (h->root.type)
9526 {
9527 case bfd_link_hash_defined:
9528 case bfd_link_hash_defweak:
9529 target_sec = h->root.u.def.section;
9530 break;
9531 case bfd_link_hash_common:
9532 target_sec = bfd_com_section_ptr;
9533 break;
9534 case bfd_link_hash_undefined:
9535 case bfd_link_hash_undefweak:
9536 target_sec = bfd_und_section_ptr;
9537 break;
9538 default: /* New indirect warning. */
9539 target_sec = bfd_und_section_ptr;
9540 break;
9541 }
9542 }
9543 return target_sec;
9544}
9545
9546
9547static struct elf_link_hash_entry *
7fa3d080 9548get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9549{
9550 unsigned long indx;
9551 struct elf_link_hash_entry *h;
9552 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9553
9554 if (r_symndx < symtab_hdr->sh_info)
9555 return NULL;
43cd72b9 9556
e0001a05
NC
9557 indx = r_symndx - symtab_hdr->sh_info;
9558 h = elf_sym_hashes (abfd)[indx];
9559 while (h->root.type == bfd_link_hash_indirect
9560 || h->root.type == bfd_link_hash_warning)
9561 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9562 return h;
9563}
9564
9565
9566/* Get the section-relative offset for a symbol number. */
9567
9568static bfd_vma
7fa3d080 9569get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
9570{
9571 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9572 bfd_vma offset = 0;
9573
43cd72b9 9574 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
9575 {
9576 Elf_Internal_Sym *isymbuf;
9577 isymbuf = retrieve_local_syms (abfd);
9578 offset = isymbuf[r_symndx].st_value;
9579 }
9580 else
9581 {
9582 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9583 struct elf_link_hash_entry *h =
9584 elf_sym_hashes (abfd)[indx];
9585
9586 while (h->root.type == bfd_link_hash_indirect
9587 || h->root.type == bfd_link_hash_warning)
9588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9589 if (h->root.type == bfd_link_hash_defined
9590 || h->root.type == bfd_link_hash_defweak)
9591 offset = h->root.u.def.value;
9592 }
9593 return offset;
9594}
9595
9596
9597static bfd_boolean
7fa3d080 9598is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
9599{
9600 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9601 struct elf_link_hash_entry *h;
9602
9603 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9604 if (h && h->root.type == bfd_link_hash_defweak)
9605 return TRUE;
9606 return FALSE;
9607}
9608
9609
9610static bfd_boolean
7fa3d080
BW
9611pcrel_reloc_fits (xtensa_opcode opc,
9612 int opnd,
9613 bfd_vma self_address,
9614 bfd_vma dest_address)
e0001a05 9615{
43cd72b9
BW
9616 xtensa_isa isa = xtensa_default_isa;
9617 uint32 valp = dest_address;
9618 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9619 || xtensa_operand_encode (isa, opc, opnd, &valp))
9620 return FALSE;
9621 return TRUE;
e0001a05
NC
9622}
9623
9624
9625static bfd_boolean
7fa3d080 9626xtensa_is_property_section (asection *sec)
e0001a05 9627{
1d25768e
BW
9628 if (xtensa_is_insntable_section (sec)
9629 || xtensa_is_littable_section (sec)
9630 || xtensa_is_proptable_section (sec))
b614a702 9631 return TRUE;
e901de89 9632
1d25768e
BW
9633 return FALSE;
9634}
9635
9636
9637static bfd_boolean
9638xtensa_is_insntable_section (asection *sec)
9639{
9640 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9641 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
9642 return TRUE;
9643
e901de89
BW
9644 return FALSE;
9645}
9646
9647
9648static bfd_boolean
7fa3d080 9649xtensa_is_littable_section (asection *sec)
e901de89 9650{
1d25768e
BW
9651 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9652 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 9653 return TRUE;
e901de89 9654
1d25768e
BW
9655 return FALSE;
9656}
9657
9658
9659static bfd_boolean
9660xtensa_is_proptable_section (asection *sec)
9661{
9662 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9663 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 9664 return TRUE;
e0001a05 9665
e901de89 9666 return FALSE;
e0001a05
NC
9667}
9668
9669
43cd72b9 9670static int
7fa3d080 9671internal_reloc_compare (const void *ap, const void *bp)
e0001a05 9672{
43cd72b9
BW
9673 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9674 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9675
9676 if (a->r_offset != b->r_offset)
9677 return (a->r_offset - b->r_offset);
9678
9679 /* We don't need to sort on these criteria for correctness,
9680 but enforcing a more strict ordering prevents unstable qsort
9681 from behaving differently with different implementations.
9682 Without the code below we get correct but different results
9683 on Solaris 2.7 and 2.8. We would like to always produce the
9684 same results no matter the host. */
9685
9686 if (a->r_info != b->r_info)
9687 return (a->r_info - b->r_info);
9688
9689 return (a->r_addend - b->r_addend);
e0001a05
NC
9690}
9691
9692
9693static int
7fa3d080 9694internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
9695{
9696 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9697 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9698
43cd72b9
BW
9699 /* Check if one entry overlaps with the other; this shouldn't happen
9700 except when searching for a match. */
e0001a05
NC
9701 return (a->r_offset - b->r_offset);
9702}
9703
9704
74869ac7
BW
9705/* Predicate function used to look up a section in a particular group. */
9706
9707static bfd_boolean
9708match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9709{
9710 const char *gname = inf;
9711 const char *group_name = elf_group_name (sec);
9712
9713 return (group_name == gname
9714 || (group_name != NULL
9715 && gname != NULL
9716 && strcmp (group_name, gname) == 0));
9717}
9718
9719
1d25768e
BW
9720static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9721
74869ac7
BW
9722asection *
9723xtensa_get_property_section (asection *sec, const char *base_name)
e0001a05 9724{
74869ac7
BW
9725 const char *suffix, *group_name;
9726 char *prop_sec_name;
9727 asection *prop_sec;
9728
9729 group_name = elf_group_name (sec);
9730 if (group_name)
9731 {
9732 suffix = strrchr (sec->name, '.');
9733 if (suffix == sec->name)
9734 suffix = 0;
9735 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9736 + (suffix ? strlen (suffix) : 0));
9737 strcpy (prop_sec_name, base_name);
9738 if (suffix)
9739 strcat (prop_sec_name, suffix);
9740 }
9741 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 9742 {
43cd72b9 9743 char *linkonce_kind = 0;
b614a702
BW
9744
9745 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 9746 linkonce_kind = "x.";
b614a702 9747 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 9748 linkonce_kind = "p.";
43cd72b9
BW
9749 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9750 linkonce_kind = "prop.";
e0001a05 9751 else
b614a702
BW
9752 abort ();
9753
43cd72b9
BW
9754 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9755 + strlen (linkonce_kind) + 1);
b614a702 9756 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 9757 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
9758
9759 suffix = sec->name + linkonce_len;
096c35a7 9760 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 9761 the new linkonce_kind (but not for "prop" sections). */
0112cd26 9762 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
9763 suffix += 2;
9764 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
9765 }
9766 else
9767 prop_sec_name = strdup (base_name);
9768
9769 /* Check if the section already exists. */
9770 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9771 match_section_group,
9772 (void *) group_name);
9773 /* If not, create it. */
9774 if (! prop_sec)
9775 {
9776 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9777 flags |= (bfd_get_section_flags (sec->owner, sec)
9778 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9779
9780 prop_sec = bfd_make_section_anyway_with_flags
9781 (sec->owner, strdup (prop_sec_name), flags);
9782 if (! prop_sec)
9783 return 0;
b614a702 9784
74869ac7 9785 elf_group_name (prop_sec) = group_name;
e0001a05
NC
9786 }
9787
74869ac7
BW
9788 free (prop_sec_name);
9789 return prop_sec;
e0001a05
NC
9790}
9791
43cd72b9
BW
9792
9793flagword
7fa3d080 9794xtensa_get_property_predef_flags (asection *sec)
43cd72b9 9795{
1d25768e 9796 if (xtensa_is_insntable_section (sec))
43cd72b9 9797 return (XTENSA_PROP_INSN
99ded152 9798 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
9799 | XTENSA_PROP_INSN_NO_REORDER);
9800
9801 if (xtensa_is_littable_section (sec))
9802 return (XTENSA_PROP_LITERAL
99ded152 9803 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
9804 | XTENSA_PROP_INSN_NO_REORDER);
9805
9806 return 0;
9807}
9808
e0001a05
NC
9809\f
9810/* Other functions called directly by the linker. */
9811
9812bfd_boolean
7fa3d080
BW
9813xtensa_callback_required_dependence (bfd *abfd,
9814 asection *sec,
9815 struct bfd_link_info *link_info,
9816 deps_callback_t callback,
9817 void *closure)
e0001a05
NC
9818{
9819 Elf_Internal_Rela *internal_relocs;
9820 bfd_byte *contents;
9821 unsigned i;
9822 bfd_boolean ok = TRUE;
43cd72b9
BW
9823 bfd_size_type sec_size;
9824
9825 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9826
9827 /* ".plt*" sections have no explicit relocations but they contain L32R
9828 instructions that reference the corresponding ".got.plt*" sections. */
9829 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 9830 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
9831 {
9832 asection *sgotplt;
9833
9834 /* Find the corresponding ".got.plt*" section. */
9835 if (sec->name[4] == '\0')
9836 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9837 else
9838 {
9839 char got_name[14];
9840 int chunk = 0;
9841
9842 BFD_ASSERT (sec->name[4] == '.');
9843 chunk = strtol (&sec->name[5], NULL, 10);
9844
9845 sprintf (got_name, ".got.plt.%u", chunk);
9846 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9847 }
9848 BFD_ASSERT (sgotplt);
9849
9850 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9851 section referencing a literal at the very beginning of
9852 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 9853 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
9854 }
9855
13161072
BW
9856 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9857 when building uclibc, which runs "ld -b binary /dev/null". */
9858 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9859 return ok;
9860
e0001a05
NC
9861 internal_relocs = retrieve_internal_relocs (abfd, sec,
9862 link_info->keep_memory);
9863 if (internal_relocs == NULL
43cd72b9 9864 || sec->reloc_count == 0)
e0001a05
NC
9865 return ok;
9866
9867 /* Cache the contents for the duration of this scan. */
9868 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9869 if (contents == NULL && sec_size != 0)
e0001a05
NC
9870 {
9871 ok = FALSE;
9872 goto error_return;
9873 }
9874
43cd72b9
BW
9875 if (!xtensa_default_isa)
9876 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 9877
43cd72b9 9878 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9879 {
9880 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 9881 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
9882 {
9883 r_reloc l32r_rel;
9884 asection *target_sec;
9885 bfd_vma target_offset;
43cd72b9
BW
9886
9887 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
9888 target_sec = NULL;
9889 target_offset = 0;
9890 /* L32Rs must be local to the input file. */
9891 if (r_reloc_is_defined (&l32r_rel))
9892 {
9893 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 9894 target_offset = l32r_rel.target_offset;
e0001a05
NC
9895 }
9896 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9897 closure);
9898 }
9899 }
9900
9901 error_return:
9902 release_internal_relocs (sec, internal_relocs);
9903 release_contents (sec, contents);
9904 return ok;
9905}
9906
2f89ff8d
L
9907/* The default literal sections should always be marked as "code" (i.e.,
9908 SHF_EXECINSTR). This is particularly important for the Linux kernel
9909 module loader so that the literals are not placed after the text. */
b35d266b 9910static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 9911{
0112cd26
NC
9912 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9913 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9914 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 9915 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 9916 { NULL, 0, 0, 0, 0 }
7f4d3958 9917};
e0001a05
NC
9918\f
9919#ifndef ELF_ARCH
9920#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9921#define TARGET_LITTLE_NAME "elf32-xtensa-le"
9922#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9923#define TARGET_BIG_NAME "elf32-xtensa-be"
9924#define ELF_ARCH bfd_arch_xtensa
9925
4af0a1d8
BW
9926#define ELF_MACHINE_CODE EM_XTENSA
9927#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
9928
9929#if XCHAL_HAVE_MMU
9930#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9931#else /* !XCHAL_HAVE_MMU */
9932#define ELF_MAXPAGESIZE 1
9933#endif /* !XCHAL_HAVE_MMU */
9934#endif /* ELF_ARCH */
9935
9936#define elf_backend_can_gc_sections 1
9937#define elf_backend_can_refcount 1
9938#define elf_backend_plt_readonly 1
9939#define elf_backend_got_header_size 4
9940#define elf_backend_want_dynbss 0
9941#define elf_backend_want_got_plt 1
9942
9943#define elf_info_to_howto elf_xtensa_info_to_howto_rela
9944
e0001a05
NC
9945#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9946#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9947#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9948#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9949#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
9950#define bfd_elf32_bfd_reloc_name_lookup \
9951 elf_xtensa_reloc_name_lookup
e0001a05 9952#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 9953#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
9954
9955#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9956#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
9957#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9958#define elf_backend_discard_info elf_xtensa_discard_info
9959#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9960#define elf_backend_final_write_processing elf_xtensa_final_write_processing
9961#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9962#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9963#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9964#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9965#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9966#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 9967#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
9968#define elf_backend_object_p elf_xtensa_object_p
9969#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9970#define elf_backend_relocate_section elf_xtensa_relocate_section
9971#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
74541ad4
AM
9972#define elf_backend_omit_section_dynsym \
9973 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 9974#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 9975#define elf_backend_action_discarded elf_xtensa_action_discarded
e0001a05
NC
9976
9977#include "elf32-target.h"
This page took 0.783599 seconds and 4 git commands to generate.