2013-03-29 Sriraman Tallam <tmsriram@google.com>
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
dbaa2011 2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
aa820537 3 Free Software Foundation, Inc.
e0001a05
NC
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
cd123cb7 9 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
10 License, or (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 20 02110-1301, USA. */
e0001a05 21
e0001a05 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
e0001a05 24
e0001a05 25#include <stdarg.h>
e0001a05
NC
26#include <strings.h>
27
28#include "bfdlink.h"
29#include "libbfd.h"
30#include "elf-bfd.h"
31#include "elf/xtensa.h"
32#include "xtensa-isa.h"
33#include "xtensa-config.h"
34
43cd72b9
BW
35#define XTENSA_NO_NOP_REMOVAL 0
36
e0001a05
NC
37/* Local helper functions. */
38
f0e6fdb2 39static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 40static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 41static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 43static bfd_boolean do_fix_for_relocatable_link
7fa3d080 44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 45static void do_fix_for_final_link
7fa3d080 46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
47
48/* Local functions to handle Xtensa configurability. */
49
7fa3d080
BW
50static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53static xtensa_opcode get_const16_opcode (void);
54static xtensa_opcode get_l32r_opcode (void);
55static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56static int get_relocation_opnd (xtensa_opcode, int);
57static int get_relocation_slot (int);
e0001a05 58static xtensa_opcode get_relocation_opcode
7fa3d080 59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 60static bfd_boolean is_l32r_relocation
7fa3d080
BW
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62static bfd_boolean is_alt_relocation (int);
63static bfd_boolean is_operand_relocation (int);
43cd72b9 64static bfd_size_type insn_decode_len
7fa3d080 65 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 66static xtensa_opcode insn_decode_opcode
7fa3d080 67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 68static bfd_boolean check_branch_target_aligned
7fa3d080 69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 70static bfd_boolean check_loop_aligned
7fa3d080
BW
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 73static bfd_size_type get_asm_simplify_size
7fa3d080 74 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
75
76/* Functions for link-time code simplifications. */
77
43cd72b9 78static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 79 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 80static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
84
85/* Access to internal relocations, section contents and symbols. */
86
87static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
88 (bfd *, asection *, bfd_boolean);
89static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92static void pin_contents (asection *, bfd_byte *);
93static void release_contents (asection *, bfd_byte *);
94static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
95
96/* Miscellaneous utility functions. */
97
f0e6fdb2
BW
98static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 100static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 101static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
102 (bfd *, unsigned long);
103static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 107static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 108static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 109static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
110static int internal_reloc_compare (const void *, const void *);
111static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
112static asection *xtensa_get_property_section (asection *, const char *);
113extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 114static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
115
116/* Other functions called directly by the linker. */
117
118typedef void (*deps_callback_t)
7fa3d080 119 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 120extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
122
123
43cd72b9
BW
124/* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
7fa3d080 128
43cd72b9
BW
129int elf32xtensa_size_opt;
130
131
132/* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
e0001a05 135
7fa3d080 136typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 137
43cd72b9 138
43cd72b9
BW
139/* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144xtensa_isa xtensa_default_isa;
145
146
e0001a05
NC
147/* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151static bfd_boolean relaxing_section = FALSE;
152
43cd72b9
BW
153/* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156int elf32xtensa_no_literal_movement = 1;
157
b0dddeec
AM
158/* Rename one of the generic section flags to better document how it
159 is used here. */
160/* Whether relocations have been processed. */
161#define reloc_done sec_flg0
e0001a05
NC
162\f
163static reloc_howto_type elf_howto_table[] =
164{
165 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 167 FALSE, 0, 0, FALSE),
e0001a05
NC
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 171
e0001a05
NC
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
179
e0001a05
NC
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 182 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 185 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 188 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
191 FALSE, 0, 0xffffffff, FALSE),
192
e0001a05 193 EMPTY_HOWTO (7),
e5f131d1
BW
194
195 /* Old relocations for backward compatibility. */
e0001a05 196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
202
e0001a05
NC
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
209
e0001a05 210 EMPTY_HOWTO (13),
1bbb5f21
BW
211
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 215
e0001a05
NC
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 219 FALSE, 0, 0, FALSE),
e0001a05
NC
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 223 FALSE, 0, 0, FALSE),
43cd72b9
BW
224
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
264
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
296
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 FALSE, 0, 0, FALSE),
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 FALSE, 0, 0, FALSE),
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 FALSE, 0, 0, FALSE),
e0001a05
NC
319};
320
43cd72b9 321#if DEBUG_GEN_RELOC
e0001a05
NC
322#define TRACE(str) \
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324#else
325#define TRACE(str)
326#endif
327
328static reloc_howto_type *
7fa3d080
BW
329elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
e0001a05
NC
331{
332 switch (code)
333 {
334 case BFD_RELOC_NONE:
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
337
338 case BFD_RELOC_32:
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
341
1bbb5f21
BW
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
345
43cd72b9
BW
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
349
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
353
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
357
e0001a05
NC
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
361
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
365
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
369
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
373
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
377
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
381
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
385
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
389
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
393
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
397
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
401
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
405
28dbbc02
BW
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
413
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
425
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
429
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
433
e0001a05 434 default:
43cd72b9
BW
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
437 {
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
441 }
442
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
445 {
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
449 }
450
e0001a05
NC
451 break;
452 }
453
454 TRACE ("Unknown");
455 return NULL;
456}
457
157090f7
AM
458static reloc_howto_type *
459elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
460 const char *r_name)
461{
462 unsigned int i;
463
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
468
469 return NULL;
470}
471
e0001a05
NC
472
473/* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
475
476static void
7fa3d080
BW
477elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 arelent *cache_ptr,
479 Elf_Internal_Rela *dst)
e0001a05
NC
480{
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
482
483 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
484 cache_ptr->howto = &elf_howto_table[r_type];
485}
486
487\f
488/* Functions for the Xtensa ELF linker. */
489
490/* The name of the dynamic interpreter. This is put in the .interp
491 section. */
492
493#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
494
495/* The size in bytes of an entry in the procedure linkage table.
496 (This does _not_ include the space for the literals associated with
497 the PLT entry.) */
498
499#define PLT_ENTRY_SIZE 16
500
501/* For _really_ large PLTs, we may need to alternate between literals
502 and code to keep the literals within the 256K range of the L32R
503 instructions in the code. It's unlikely that anyone would ever need
504 such a big PLT, but an arbitrary limit on the PLT size would be bad.
505 Thus, we split the PLT into chunks. Since there's very little
506 overhead (2 extra literals) for each chunk, the chunk size is kept
507 small so that the code for handling multiple chunks get used and
508 tested regularly. With 254 entries, there are 1K of literals for
509 each chunk, and that seems like a nice round number. */
510
511#define PLT_ENTRIES_PER_CHUNK 254
512
513/* PLT entries are actually used as stub functions for lazy symbol
514 resolution. Once the symbol is resolved, the stub function is never
515 invoked. Note: the 32-byte frame size used here cannot be changed
516 without a corresponding change in the runtime linker. */
517
518static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
519{
520 0x6c, 0x10, 0x04, /* entry sp, 32 */
521 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
522 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
523 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
524 0x0a, 0x80, 0x00, /* jx a8 */
525 0 /* unused */
526};
527
528static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
529{
530 0x36, 0x41, 0x00, /* entry sp, 32 */
531 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
532 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
533 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
534 0xa0, 0x08, 0x00, /* jx a8 */
535 0 /* unused */
536};
537
28dbbc02
BW
538/* The size of the thread control block. */
539#define TCB_SIZE 8
540
541struct elf_xtensa_link_hash_entry
542{
543 struct elf_link_hash_entry elf;
544
545 bfd_signed_vma tlsfunc_refcount;
546
547#define GOT_UNKNOWN 0
548#define GOT_NORMAL 1
549#define GOT_TLS_GD 2 /* global or local dynamic */
550#define GOT_TLS_IE 4 /* initial or local exec */
551#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
552 unsigned char tls_type;
553};
554
555#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
556
557struct elf_xtensa_obj_tdata
558{
559 struct elf_obj_tdata root;
560
561 /* tls_type for each local got entry. */
562 char *local_got_tls_type;
563
564 bfd_signed_vma *local_tlsfunc_refcounts;
565};
566
567#define elf_xtensa_tdata(abfd) \
568 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
569
570#define elf_xtensa_local_got_tls_type(abfd) \
571 (elf_xtensa_tdata (abfd)->local_got_tls_type)
572
573#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
574 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
575
576#define is_xtensa_elf(bfd) \
577 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
578 && elf_tdata (bfd) != NULL \
4dfe6ac6 579 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
580
581static bfd_boolean
582elf_xtensa_mkobject (bfd *abfd)
583{
584 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 585 XTENSA_ELF_DATA);
28dbbc02
BW
586}
587
f0e6fdb2
BW
588/* Xtensa ELF linker hash table. */
589
590struct elf_xtensa_link_hash_table
591{
592 struct elf_link_hash_table elf;
593
594 /* Short-cuts to get to dynamic linker sections. */
595 asection *sgot;
596 asection *sgotplt;
597 asection *srelgot;
598 asection *splt;
599 asection *srelplt;
600 asection *sgotloc;
601 asection *spltlittbl;
602
603 /* Total count of PLT relocations seen during check_relocs.
604 The actual PLT code must be split into multiple sections and all
605 the sections have to be created before size_dynamic_sections,
606 where we figure out the exact number of PLT entries that will be
607 needed. It is OK if this count is an overestimate, e.g., some
608 relocations may be removed by GC. */
609 int plt_reloc_count;
28dbbc02
BW
610
611 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
612};
613
614/* Get the Xtensa ELF linker hash table from a link_info structure. */
615
616#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
617 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
618 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 619
28dbbc02
BW
620/* Create an entry in an Xtensa ELF linker hash table. */
621
622static struct bfd_hash_entry *
623elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
624 struct bfd_hash_table *table,
625 const char *string)
626{
627 /* Allocate the structure if it has not already been allocated by a
628 subclass. */
629 if (entry == NULL)
630 {
631 entry = bfd_hash_allocate (table,
632 sizeof (struct elf_xtensa_link_hash_entry));
633 if (entry == NULL)
634 return entry;
635 }
636
637 /* Call the allocation method of the superclass. */
638 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
639 if (entry != NULL)
640 {
641 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
642 eh->tlsfunc_refcount = 0;
643 eh->tls_type = GOT_UNKNOWN;
644 }
645
646 return entry;
647}
648
f0e6fdb2
BW
649/* Create an Xtensa ELF linker hash table. */
650
651static struct bfd_link_hash_table *
652elf_xtensa_link_hash_table_create (bfd *abfd)
653{
28dbbc02 654 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
655 struct elf_xtensa_link_hash_table *ret;
656 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
657
7bf52ea2 658 ret = bfd_zmalloc (amt);
f0e6fdb2
BW
659 if (ret == NULL)
660 return NULL;
661
662 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 663 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
664 sizeof (struct elf_xtensa_link_hash_entry),
665 XTENSA_ELF_DATA))
f0e6fdb2
BW
666 {
667 free (ret);
668 return NULL;
669 }
670
28dbbc02
BW
671 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
672 for it later. */
673 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
674 TRUE, FALSE, FALSE);
675 tlsbase->root.type = bfd_link_hash_new;
676 tlsbase->root.u.undef.abfd = NULL;
677 tlsbase->non_elf = 0;
678 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
679 ret->tlsbase->tls_type = GOT_UNKNOWN;
680
f0e6fdb2
BW
681 return &ret->elf.root;
682}
571b5725 683
28dbbc02
BW
684/* Copy the extra info we tack onto an elf_link_hash_entry. */
685
686static void
687elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
688 struct elf_link_hash_entry *dir,
689 struct elf_link_hash_entry *ind)
690{
691 struct elf_xtensa_link_hash_entry *edir, *eind;
692
693 edir = elf_xtensa_hash_entry (dir);
694 eind = elf_xtensa_hash_entry (ind);
695
696 if (ind->root.type == bfd_link_hash_indirect)
697 {
698 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
699 eind->tlsfunc_refcount = 0;
700
701 if (dir->got.refcount <= 0)
702 {
703 edir->tls_type = eind->tls_type;
704 eind->tls_type = GOT_UNKNOWN;
705 }
706 }
707
708 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
709}
710
571b5725 711static inline bfd_boolean
4608f3d9 712elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 713 struct bfd_link_info *info)
571b5725
BW
714{
715 /* Check if we should do dynamic things to this symbol. The
716 "ignore_protected" argument need not be set, because Xtensa code
717 does not require special handling of STV_PROTECTED to make function
718 pointer comparisons work properly. The PLT addresses are never
719 used for function pointers. */
720
721 return _bfd_elf_dynamic_symbol_p (h, info, 0);
722}
723
e0001a05
NC
724\f
725static int
7fa3d080 726property_table_compare (const void *ap, const void *bp)
e0001a05
NC
727{
728 const property_table_entry *a = (const property_table_entry *) ap;
729 const property_table_entry *b = (const property_table_entry *) bp;
730
43cd72b9
BW
731 if (a->address == b->address)
732 {
43cd72b9
BW
733 if (a->size != b->size)
734 return (a->size - b->size);
735
736 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
737 return ((b->flags & XTENSA_PROP_ALIGN)
738 - (a->flags & XTENSA_PROP_ALIGN));
739
740 if ((a->flags & XTENSA_PROP_ALIGN)
741 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
742 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
743 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
744 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
68ffbac6 745
43cd72b9
BW
746 if ((a->flags & XTENSA_PROP_UNREACHABLE)
747 != (b->flags & XTENSA_PROP_UNREACHABLE))
748 return ((b->flags & XTENSA_PROP_UNREACHABLE)
749 - (a->flags & XTENSA_PROP_UNREACHABLE));
750
751 return (a->flags - b->flags);
752 }
753
754 return (a->address - b->address);
755}
756
757
758static int
7fa3d080 759property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
760{
761 const property_table_entry *a = (const property_table_entry *) ap;
762 const property_table_entry *b = (const property_table_entry *) bp;
763
764 /* Check if one entry overlaps with the other. */
e0001a05
NC
765 if ((b->address >= a->address && b->address < (a->address + a->size))
766 || (a->address >= b->address && a->address < (b->address + b->size)))
767 return 0;
768
769 return (a->address - b->address);
770}
771
772
43cd72b9
BW
773/* Get the literal table or property table entries for the given
774 section. Sets TABLE_P and returns the number of entries. On
775 error, returns a negative value. */
e0001a05 776
7fa3d080
BW
777static int
778xtensa_read_table_entries (bfd *abfd,
779 asection *section,
780 property_table_entry **table_p,
781 const char *sec_name,
782 bfd_boolean output_addr)
e0001a05
NC
783{
784 asection *table_section;
e0001a05
NC
785 bfd_size_type table_size = 0;
786 bfd_byte *table_data;
787 property_table_entry *blocks;
e4115460 788 int blk, block_count;
e0001a05 789 bfd_size_type num_records;
bcc2cc8e
BW
790 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
791 bfd_vma section_addr, off;
43cd72b9 792 flagword predef_flags;
bcc2cc8e 793 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
794
795 if (!section
796 || !(section->flags & SEC_ALLOC)
797 || (section->flags & SEC_DEBUGGING))
798 {
799 *table_p = NULL;
800 return 0;
801 }
e0001a05 802
74869ac7 803 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 804 if (table_section)
eea6121a 805 table_size = table_section->size;
43cd72b9 806
68ffbac6 807 if (table_size == 0)
e0001a05
NC
808 {
809 *table_p = NULL;
810 return 0;
811 }
812
43cd72b9
BW
813 predef_flags = xtensa_get_property_predef_flags (table_section);
814 table_entry_size = 12;
815 if (predef_flags)
816 table_entry_size -= 4;
817
818 num_records = table_size / table_entry_size;
e0001a05
NC
819 table_data = retrieve_contents (abfd, table_section, TRUE);
820 blocks = (property_table_entry *)
821 bfd_malloc (num_records * sizeof (property_table_entry));
822 block_count = 0;
43cd72b9
BW
823
824 if (output_addr)
825 section_addr = section->output_section->vma + section->output_offset;
826 else
827 section_addr = section->vma;
3ba3bc8c 828
e0001a05 829 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 830 if (internal_relocs && !table_section->reloc_done)
e0001a05 831 {
bcc2cc8e
BW
832 qsort (internal_relocs, table_section->reloc_count,
833 sizeof (Elf_Internal_Rela), internal_reloc_compare);
834 irel = internal_relocs;
835 }
836 else
837 irel = NULL;
838
839 section_limit = bfd_get_section_limit (abfd, section);
840 rel_end = internal_relocs + table_section->reloc_count;
841
68ffbac6 842 for (off = 0; off < table_size; off += table_entry_size)
bcc2cc8e
BW
843 {
844 bfd_vma address = bfd_get_32 (abfd, table_data + off);
845
846 /* Skip any relocations before the current offset. This should help
847 avoid confusion caused by unexpected relocations for the preceding
848 table entry. */
849 while (irel &&
850 (irel->r_offset < off
851 || (irel->r_offset == off
852 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
853 {
854 irel += 1;
855 if (irel >= rel_end)
856 irel = 0;
857 }
e0001a05 858
bcc2cc8e 859 if (irel && irel->r_offset == off)
e0001a05 860 {
bcc2cc8e
BW
861 bfd_vma sym_off;
862 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
863 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 864
bcc2cc8e 865 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
866 continue;
867
bcc2cc8e
BW
868 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
869 BFD_ASSERT (sym_off == 0);
870 address += (section_addr + sym_off + irel->r_addend);
e0001a05 871 }
bcc2cc8e 872 else
e0001a05 873 {
bcc2cc8e
BW
874 if (address < section_addr
875 || address >= section_addr + section_limit)
876 continue;
e0001a05 877 }
bcc2cc8e
BW
878
879 blocks[block_count].address = address;
880 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
881 if (predef_flags)
882 blocks[block_count].flags = predef_flags;
883 else
884 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
885 block_count++;
e0001a05
NC
886 }
887
888 release_contents (table_section, table_data);
889 release_internal_relocs (table_section, internal_relocs);
890
43cd72b9 891 if (block_count > 0)
e0001a05
NC
892 {
893 /* Now sort them into address order for easy reference. */
894 qsort (blocks, block_count, sizeof (property_table_entry),
895 property_table_compare);
e4115460
BW
896
897 /* Check that the table contents are valid. Problems may occur,
898 for example, if an unrelocated object file is stripped. */
899 for (blk = 1; blk < block_count; blk++)
900 {
901 /* The only circumstance where two entries may legitimately
902 have the same address is when one of them is a zero-size
903 placeholder to mark a place where fill can be inserted.
904 The zero-size entry should come first. */
905 if (blocks[blk - 1].address == blocks[blk].address &&
906 blocks[blk - 1].size != 0)
907 {
908 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
909 abfd, section);
910 bfd_set_error (bfd_error_bad_value);
911 free (blocks);
912 return -1;
913 }
914 }
e0001a05 915 }
43cd72b9 916
e0001a05
NC
917 *table_p = blocks;
918 return block_count;
919}
920
921
7fa3d080
BW
922static property_table_entry *
923elf_xtensa_find_property_entry (property_table_entry *property_table,
924 int property_table_size,
925 bfd_vma addr)
e0001a05
NC
926{
927 property_table_entry entry;
43cd72b9 928 property_table_entry *rv;
e0001a05 929
43cd72b9
BW
930 if (property_table_size == 0)
931 return NULL;
e0001a05
NC
932
933 entry.address = addr;
934 entry.size = 1;
43cd72b9 935 entry.flags = 0;
e0001a05 936
43cd72b9
BW
937 rv = bsearch (&entry, property_table, property_table_size,
938 sizeof (property_table_entry), property_table_matches);
939 return rv;
940}
941
942
943static bfd_boolean
7fa3d080
BW
944elf_xtensa_in_literal_pool (property_table_entry *lit_table,
945 int lit_table_size,
946 bfd_vma addr)
43cd72b9
BW
947{
948 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
949 return TRUE;
950
951 return FALSE;
952}
953
954\f
955/* Look through the relocs for a section during the first phase, and
956 calculate needed space in the dynamic reloc sections. */
957
958static bfd_boolean
7fa3d080
BW
959elf_xtensa_check_relocs (bfd *abfd,
960 struct bfd_link_info *info,
961 asection *sec,
962 const Elf_Internal_Rela *relocs)
e0001a05 963{
f0e6fdb2 964 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
965 Elf_Internal_Shdr *symtab_hdr;
966 struct elf_link_hash_entry **sym_hashes;
967 const Elf_Internal_Rela *rel;
968 const Elf_Internal_Rela *rel_end;
e0001a05 969
28dbbc02 970 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
971 return TRUE;
972
28dbbc02
BW
973 BFD_ASSERT (is_xtensa_elf (abfd));
974
f0e6fdb2 975 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
976 if (htab == NULL)
977 return FALSE;
978
e0001a05
NC
979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
980 sym_hashes = elf_sym_hashes (abfd);
981
e0001a05
NC
982 rel_end = relocs + sec->reloc_count;
983 for (rel = relocs; rel < rel_end; rel++)
984 {
985 unsigned int r_type;
986 unsigned long r_symndx;
28dbbc02
BW
987 struct elf_link_hash_entry *h = NULL;
988 struct elf_xtensa_link_hash_entry *eh;
989 int tls_type, old_tls_type;
990 bfd_boolean is_got = FALSE;
991 bfd_boolean is_plt = FALSE;
992 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
993
994 r_symndx = ELF32_R_SYM (rel->r_info);
995 r_type = ELF32_R_TYPE (rel->r_info);
996
997 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
998 {
d003868e
AM
999 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1000 abfd, r_symndx);
e0001a05
NC
1001 return FALSE;
1002 }
1003
28dbbc02 1004 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1005 {
1006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1007 while (h->root.type == bfd_link_hash_indirect
1008 || h->root.type == bfd_link_hash_warning)
1009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1010 }
28dbbc02 1011 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1012
1013 switch (r_type)
1014 {
28dbbc02
BW
1015 case R_XTENSA_TLSDESC_FN:
1016 if (info->shared)
1017 {
1018 tls_type = GOT_TLS_GD;
1019 is_got = TRUE;
1020 is_tlsfunc = TRUE;
1021 }
1022 else
1023 tls_type = GOT_TLS_IE;
1024 break;
e0001a05 1025
28dbbc02
BW
1026 case R_XTENSA_TLSDESC_ARG:
1027 if (info->shared)
e0001a05 1028 {
28dbbc02
BW
1029 tls_type = GOT_TLS_GD;
1030 is_got = TRUE;
1031 }
1032 else
1033 {
1034 tls_type = GOT_TLS_IE;
1035 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1036 is_got = TRUE;
e0001a05
NC
1037 }
1038 break;
1039
28dbbc02
BW
1040 case R_XTENSA_TLS_DTPOFF:
1041 if (info->shared)
1042 tls_type = GOT_TLS_GD;
1043 else
1044 tls_type = GOT_TLS_IE;
1045 break;
1046
1047 case R_XTENSA_TLS_TPOFF:
1048 tls_type = GOT_TLS_IE;
1049 if (info->shared)
1050 info->flags |= DF_STATIC_TLS;
1051 if (info->shared || h)
1052 is_got = TRUE;
1053 break;
1054
1055 case R_XTENSA_32:
1056 tls_type = GOT_NORMAL;
1057 is_got = TRUE;
1058 break;
1059
e0001a05 1060 case R_XTENSA_PLT:
28dbbc02
BW
1061 tls_type = GOT_NORMAL;
1062 is_plt = TRUE;
1063 break;
e0001a05 1064
28dbbc02
BW
1065 case R_XTENSA_GNU_VTINHERIT:
1066 /* This relocation describes the C++ object vtable hierarchy.
1067 Reconstruct it for later use during GC. */
1068 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1069 return FALSE;
1070 continue;
1071
1072 case R_XTENSA_GNU_VTENTRY:
1073 /* This relocation describes which C++ vtable entries are actually
1074 used. Record for later use during GC. */
1075 BFD_ASSERT (h != NULL);
1076 if (h != NULL
1077 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1078 return FALSE;
1079 continue;
1080
1081 default:
1082 /* Nothing to do for any other relocations. */
1083 continue;
1084 }
1085
1086 if (h)
1087 {
1088 if (is_plt)
e0001a05 1089 {
b45329f9
BW
1090 if (h->plt.refcount <= 0)
1091 {
1092 h->needs_plt = 1;
1093 h->plt.refcount = 1;
1094 }
1095 else
1096 h->plt.refcount += 1;
e0001a05
NC
1097
1098 /* Keep track of the total PLT relocation count even if we
1099 don't yet know whether the dynamic sections will be
1100 created. */
f0e6fdb2 1101 htab->plt_reloc_count += 1;
e0001a05
NC
1102
1103 if (elf_hash_table (info)->dynamic_sections_created)
1104 {
f0e6fdb2 1105 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1106 return FALSE;
1107 }
1108 }
28dbbc02 1109 else if (is_got)
b45329f9
BW
1110 {
1111 if (h->got.refcount <= 0)
1112 h->got.refcount = 1;
1113 else
1114 h->got.refcount += 1;
1115 }
28dbbc02
BW
1116
1117 if (is_tlsfunc)
1118 eh->tlsfunc_refcount += 1;
e0001a05 1119
28dbbc02
BW
1120 old_tls_type = eh->tls_type;
1121 }
1122 else
1123 {
1124 /* Allocate storage the first time. */
1125 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1126 {
28dbbc02
BW
1127 bfd_size_type size = symtab_hdr->sh_info;
1128 void *mem;
e0001a05 1129
28dbbc02
BW
1130 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1131 if (mem == NULL)
1132 return FALSE;
1133 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1134
28dbbc02
BW
1135 mem = bfd_zalloc (abfd, size);
1136 if (mem == NULL)
1137 return FALSE;
1138 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1139
1140 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1141 if (mem == NULL)
1142 return FALSE;
1143 elf_xtensa_local_tlsfunc_refcounts (abfd)
1144 = (bfd_signed_vma *) mem;
e0001a05 1145 }
e0001a05 1146
28dbbc02
BW
1147 /* This is a global offset table entry for a local symbol. */
1148 if (is_got || is_plt)
1149 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1150
28dbbc02
BW
1151 if (is_tlsfunc)
1152 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1153
28dbbc02
BW
1154 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1155 }
1156
1157 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1158 tls_type |= old_tls_type;
1159 /* If a TLS symbol is accessed using IE at least once,
1160 there is no point to use a dynamic model for it. */
1161 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1162 && ((old_tls_type & GOT_TLS_GD) == 0
1163 || (tls_type & GOT_TLS_IE) == 0))
1164 {
1165 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1166 tls_type = old_tls_type;
1167 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1168 tls_type |= old_tls_type;
1169 else
1170 {
1171 (*_bfd_error_handler)
1172 (_("%B: `%s' accessed both as normal and thread local symbol"),
1173 abfd,
1174 h ? h->root.root.string : "<local>");
1175 return FALSE;
1176 }
1177 }
1178
1179 if (old_tls_type != tls_type)
1180 {
1181 if (eh)
1182 eh->tls_type = tls_type;
1183 else
1184 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1185 }
1186 }
1187
e0001a05
NC
1188 return TRUE;
1189}
1190
1191
95147441
BW
1192static void
1193elf_xtensa_make_sym_local (struct bfd_link_info *info,
1194 struct elf_link_hash_entry *h)
1195{
1196 if (info->shared)
1197 {
1198 if (h->plt.refcount > 0)
1199 {
1200 /* For shared objects, there's no need for PLT entries for local
1201 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1202 if (h->got.refcount < 0)
1203 h->got.refcount = 0;
1204 h->got.refcount += h->plt.refcount;
1205 h->plt.refcount = 0;
1206 }
1207 }
1208 else
1209 {
1210 /* Don't need any dynamic relocations at all. */
1211 h->plt.refcount = 0;
1212 h->got.refcount = 0;
1213 }
1214}
1215
1216
1217static void
1218elf_xtensa_hide_symbol (struct bfd_link_info *info,
1219 struct elf_link_hash_entry *h,
1220 bfd_boolean force_local)
1221{
1222 /* For a shared link, move the plt refcount to the got refcount to leave
1223 space for RELATIVE relocs. */
1224 elf_xtensa_make_sym_local (info, h);
1225
1226 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1227}
1228
1229
e0001a05
NC
1230/* Return the section that should be marked against GC for a given
1231 relocation. */
1232
1233static asection *
7fa3d080 1234elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1235 struct bfd_link_info *info,
7fa3d080
BW
1236 Elf_Internal_Rela *rel,
1237 struct elf_link_hash_entry *h,
1238 Elf_Internal_Sym *sym)
e0001a05 1239{
e1e5c0b5
BW
1240 /* Property sections are marked "KEEP" in the linker scripts, but they
1241 should not cause other sections to be marked. (This approach relies
1242 on elf_xtensa_discard_info to remove property table entries that
1243 describe discarded sections. Alternatively, it might be more
1244 efficient to avoid using "KEEP" in the linker scripts and instead use
1245 the gc_mark_extra_sections hook to mark only the property sections
1246 that describe marked sections. That alternative does not work well
1247 with the current property table sections, which do not correspond
1248 one-to-one with the sections they describe, but that should be fixed
1249 someday.) */
1250 if (xtensa_is_property_section (sec))
1251 return NULL;
1252
07adf181
AM
1253 if (h != NULL)
1254 switch (ELF32_R_TYPE (rel->r_info))
1255 {
1256 case R_XTENSA_GNU_VTINHERIT:
1257 case R_XTENSA_GNU_VTENTRY:
1258 return NULL;
1259 }
1260
1261 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1262}
1263
7fa3d080 1264
e0001a05
NC
1265/* Update the GOT & PLT entry reference counts
1266 for the section being removed. */
1267
1268static bfd_boolean
7fa3d080 1269elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1270 struct bfd_link_info *info,
7fa3d080
BW
1271 asection *sec,
1272 const Elf_Internal_Rela *relocs)
e0001a05
NC
1273{
1274 Elf_Internal_Shdr *symtab_hdr;
1275 struct elf_link_hash_entry **sym_hashes;
e0001a05 1276 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1277 struct elf_xtensa_link_hash_table *htab;
1278
1279 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1280 if (htab == NULL)
1281 return FALSE;
e0001a05 1282
7dda2462
TG
1283 if (info->relocatable)
1284 return TRUE;
1285
e0001a05
NC
1286 if ((sec->flags & SEC_ALLOC) == 0)
1287 return TRUE;
1288
1289 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1290 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1291
1292 relend = relocs + sec->reloc_count;
1293 for (rel = relocs; rel < relend; rel++)
1294 {
1295 unsigned long r_symndx;
1296 unsigned int r_type;
1297 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1298 struct elf_xtensa_link_hash_entry *eh;
1299 bfd_boolean is_got = FALSE;
1300 bfd_boolean is_plt = FALSE;
1301 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1302
1303 r_symndx = ELF32_R_SYM (rel->r_info);
1304 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1305 {
1306 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1307 while (h->root.type == bfd_link_hash_indirect
1308 || h->root.type == bfd_link_hash_warning)
1309 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1310 }
28dbbc02 1311 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1312
1313 r_type = ELF32_R_TYPE (rel->r_info);
1314 switch (r_type)
1315 {
28dbbc02
BW
1316 case R_XTENSA_TLSDESC_FN:
1317 if (info->shared)
1318 {
1319 is_got = TRUE;
1320 is_tlsfunc = TRUE;
1321 }
e0001a05
NC
1322 break;
1323
28dbbc02
BW
1324 case R_XTENSA_TLSDESC_ARG:
1325 if (info->shared)
1326 is_got = TRUE;
1327 else
1328 {
1329 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1330 is_got = TRUE;
1331 }
e0001a05
NC
1332 break;
1333
28dbbc02
BW
1334 case R_XTENSA_TLS_TPOFF:
1335 if (info->shared || h)
1336 is_got = TRUE;
e0001a05
NC
1337 break;
1338
28dbbc02
BW
1339 case R_XTENSA_32:
1340 is_got = TRUE;
e0001a05 1341 break;
28dbbc02
BW
1342
1343 case R_XTENSA_PLT:
1344 is_plt = TRUE;
1345 break;
1346
1347 default:
1348 continue;
1349 }
1350
1351 if (h)
1352 {
1353 if (is_plt)
1354 {
1355 if (h->plt.refcount > 0)
1356 h->plt.refcount--;
1357 }
1358 else if (is_got)
1359 {
1360 if (h->got.refcount > 0)
1361 h->got.refcount--;
1362 }
1363 if (is_tlsfunc)
1364 {
1365 if (eh->tlsfunc_refcount > 0)
1366 eh->tlsfunc_refcount--;
1367 }
1368 }
1369 else
1370 {
1371 if (is_got || is_plt)
1372 {
1373 bfd_signed_vma *got_refcount
1374 = &elf_local_got_refcounts (abfd) [r_symndx];
1375 if (*got_refcount > 0)
1376 *got_refcount -= 1;
1377 }
1378 if (is_tlsfunc)
1379 {
1380 bfd_signed_vma *tlsfunc_refcount
1381 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1382 if (*tlsfunc_refcount > 0)
1383 *tlsfunc_refcount -= 1;
1384 }
e0001a05
NC
1385 }
1386 }
1387
1388 return TRUE;
1389}
1390
1391
1392/* Create all the dynamic sections. */
1393
1394static bfd_boolean
7fa3d080 1395elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1396{
f0e6fdb2 1397 struct elf_xtensa_link_hash_table *htab;
e901de89 1398 flagword flags, noalloc_flags;
f0e6fdb2
BW
1399
1400 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1401 if (htab == NULL)
1402 return FALSE;
e0001a05
NC
1403
1404 /* First do all the standard stuff. */
1405 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1406 return FALSE;
3d4d4302
AM
1407 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1408 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1409 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1410 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1411 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
e0001a05
NC
1412
1413 /* Create any extra PLT sections in case check_relocs has already
1414 been called on all the non-dynamic input files. */
f0e6fdb2 1415 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1416 return FALSE;
1417
e901de89
BW
1418 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1419 | SEC_LINKER_CREATED | SEC_READONLY);
1420 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1421
1422 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1423 if (htab->sgotplt == NULL
1424 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1425 return FALSE;
1426
e901de89 1427 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3d4d4302
AM
1428 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1429 flags);
f0e6fdb2
BW
1430 if (htab->sgotloc == NULL
1431 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1432 return FALSE;
1433
e0001a05 1434 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3d4d4302
AM
1435 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1436 noalloc_flags);
f0e6fdb2
BW
1437 if (htab->spltlittbl == NULL
1438 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1439 return FALSE;
1440
1441 return TRUE;
1442}
1443
1444
1445static bfd_boolean
f0e6fdb2 1446add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1447{
f0e6fdb2 1448 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1449 int chunk;
1450
1451 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1452 ".got.plt" sections. */
1453 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1454 {
1455 char *sname;
1456 flagword flags;
1457 asection *s;
1458
1459 /* Stop when we find a section has already been created. */
f0e6fdb2 1460 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1461 break;
1462
1463 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1464 | SEC_LINKER_CREATED | SEC_READONLY);
1465
1466 sname = (char *) bfd_malloc (10);
1467 sprintf (sname, ".plt.%u", chunk);
3d4d4302 1468 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1469 if (s == NULL
e0001a05
NC
1470 || ! bfd_set_section_alignment (dynobj, s, 2))
1471 return FALSE;
1472
1473 sname = (char *) bfd_malloc (14);
1474 sprintf (sname, ".got.plt.%u", chunk);
3d4d4302 1475 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
e0001a05 1476 if (s == NULL
e0001a05
NC
1477 || ! bfd_set_section_alignment (dynobj, s, 2))
1478 return FALSE;
1479 }
1480
1481 return TRUE;
1482}
1483
1484
1485/* Adjust a symbol defined by a dynamic object and referenced by a
1486 regular object. The current definition is in some section of the
1487 dynamic object, but we're not including those sections. We have to
1488 change the definition to something the rest of the link can
1489 understand. */
1490
1491static bfd_boolean
7fa3d080
BW
1492elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1493 struct elf_link_hash_entry *h)
e0001a05
NC
1494{
1495 /* If this is a weak symbol, and there is a real definition, the
1496 processor independent code will have arranged for us to see the
1497 real definition first, and we can just use the same value. */
7fa3d080 1498 if (h->u.weakdef)
e0001a05 1499 {
f6e332e6
AM
1500 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1501 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1502 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1503 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1504 return TRUE;
1505 }
1506
1507 /* This is a reference to a symbol defined by a dynamic object. The
1508 reference must go through the GOT, so there's no need for COPY relocs,
1509 .dynbss, etc. */
1510
1511 return TRUE;
1512}
1513
1514
e0001a05 1515static bfd_boolean
f1ab2340 1516elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1517{
f1ab2340
BW
1518 struct bfd_link_info *info;
1519 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1520 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1521
f1ab2340
BW
1522 if (h->root.type == bfd_link_hash_indirect)
1523 return TRUE;
e0001a05 1524
f1ab2340
BW
1525 info = (struct bfd_link_info *) arg;
1526 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1527 if (htab == NULL)
1528 return FALSE;
e0001a05 1529
28dbbc02
BW
1530 /* If we saw any use of an IE model for this symbol, we can then optimize
1531 away GOT entries for any TLSDESC_FN relocs. */
1532 if ((eh->tls_type & GOT_TLS_IE) != 0)
1533 {
1534 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1535 h->got.refcount -= eh->tlsfunc_refcount;
1536 }
e0001a05 1537
28dbbc02 1538 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1539 elf_xtensa_make_sym_local (info, h);
e0001a05 1540
f1ab2340
BW
1541 if (h->plt.refcount > 0)
1542 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1543
1544 if (h->got.refcount > 0)
f1ab2340 1545 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1546
1547 return TRUE;
1548}
1549
1550
1551static void
f0e6fdb2 1552elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1553{
f0e6fdb2 1554 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1555 bfd *i;
1556
f0e6fdb2 1557 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1558 if (htab == NULL)
1559 return;
f0e6fdb2 1560
e0001a05
NC
1561 for (i = info->input_bfds; i; i = i->link_next)
1562 {
1563 bfd_signed_vma *local_got_refcounts;
1564 bfd_size_type j, cnt;
1565 Elf_Internal_Shdr *symtab_hdr;
1566
1567 local_got_refcounts = elf_local_got_refcounts (i);
1568 if (!local_got_refcounts)
1569 continue;
1570
1571 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1572 cnt = symtab_hdr->sh_info;
1573
1574 for (j = 0; j < cnt; ++j)
1575 {
28dbbc02
BW
1576 /* If we saw any use of an IE model for this symbol, we can
1577 then optimize away GOT entries for any TLSDESC_FN relocs. */
1578 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1579 {
1580 bfd_signed_vma *tlsfunc_refcount
1581 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1582 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1583 local_got_refcounts[j] -= *tlsfunc_refcount;
1584 }
1585
e0001a05 1586 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1587 htab->srelgot->size += (local_got_refcounts[j]
1588 * sizeof (Elf32_External_Rela));
e0001a05
NC
1589 }
1590 }
1591}
1592
1593
1594/* Set the sizes of the dynamic sections. */
1595
1596static bfd_boolean
7fa3d080
BW
1597elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1598 struct bfd_link_info *info)
e0001a05 1599{
f0e6fdb2 1600 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1601 bfd *dynobj, *abfd;
1602 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1603 bfd_boolean relplt, relgot;
1604 int plt_entries, plt_chunks, chunk;
1605
1606 plt_entries = 0;
1607 plt_chunks = 0;
e0001a05 1608
f0e6fdb2 1609 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1610 if (htab == NULL)
1611 return FALSE;
1612
e0001a05
NC
1613 dynobj = elf_hash_table (info)->dynobj;
1614 if (dynobj == NULL)
1615 abort ();
f0e6fdb2
BW
1616 srelgot = htab->srelgot;
1617 srelplt = htab->srelplt;
e0001a05
NC
1618
1619 if (elf_hash_table (info)->dynamic_sections_created)
1620 {
f0e6fdb2
BW
1621 BFD_ASSERT (htab->srelgot != NULL
1622 && htab->srelplt != NULL
1623 && htab->sgot != NULL
1624 && htab->spltlittbl != NULL
1625 && htab->sgotloc != NULL);
1626
e0001a05 1627 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1628 if (info->executable)
e0001a05 1629 {
3d4d4302 1630 s = bfd_get_linker_section (dynobj, ".interp");
e0001a05
NC
1631 if (s == NULL)
1632 abort ();
eea6121a 1633 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1634 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1635 }
1636
1637 /* Allocate room for one word in ".got". */
f0e6fdb2 1638 htab->sgot->size = 4;
e0001a05 1639
f1ab2340
BW
1640 /* Allocate space in ".rela.got" for literals that reference global
1641 symbols and space in ".rela.plt" for literals that have PLT
1642 entries. */
e0001a05 1643 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1644 elf_xtensa_allocate_dynrelocs,
7fa3d080 1645 (void *) info);
e0001a05 1646
e0001a05
NC
1647 /* If we are generating a shared object, we also need space in
1648 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1649 reference local symbols. */
1650 if (info->shared)
f0e6fdb2 1651 elf_xtensa_allocate_local_got_size (info);
e0001a05 1652
e0001a05
NC
1653 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1654 each PLT entry, we need the PLT code plus a 4-byte literal.
1655 For each chunk of ".plt", we also need two more 4-byte
1656 literals, two corresponding entries in ".rela.got", and an
1657 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1658 spltlittbl = htab->spltlittbl;
eea6121a 1659 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1660 plt_chunks =
1661 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1662
1663 /* Iterate over all the PLT chunks, including any extra sections
1664 created earlier because the initial count of PLT relocations
1665 was an overestimate. */
1666 for (chunk = 0;
f0e6fdb2 1667 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1668 chunk++)
1669 {
1670 int chunk_entries;
1671
f0e6fdb2
BW
1672 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1673 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1674
1675 if (chunk < plt_chunks - 1)
1676 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1677 else if (chunk == plt_chunks - 1)
1678 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1679 else
1680 chunk_entries = 0;
1681
1682 if (chunk_entries != 0)
1683 {
eea6121a
AM
1684 sgotplt->size = 4 * (chunk_entries + 2);
1685 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1686 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1687 spltlittbl->size += 8;
e0001a05
NC
1688 }
1689 else
1690 {
eea6121a
AM
1691 sgotplt->size = 0;
1692 splt->size = 0;
e0001a05
NC
1693 }
1694 }
e901de89
BW
1695
1696 /* Allocate space in ".got.loc" to match the total size of all the
1697 literal tables. */
f0e6fdb2 1698 sgotloc = htab->sgotloc;
eea6121a 1699 sgotloc->size = spltlittbl->size;
e901de89
BW
1700 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1701 {
1702 if (abfd->flags & DYNAMIC)
1703 continue;
1704 for (s = abfd->sections; s != NULL; s = s->next)
1705 {
dbaa2011 1706 if (! discarded_section (s)
b536dc1e
BW
1707 && xtensa_is_littable_section (s)
1708 && s != spltlittbl)
eea6121a 1709 sgotloc->size += s->size;
e901de89
BW
1710 }
1711 }
e0001a05
NC
1712 }
1713
1714 /* Allocate memory for dynamic sections. */
1715 relplt = FALSE;
1716 relgot = FALSE;
1717 for (s = dynobj->sections; s != NULL; s = s->next)
1718 {
1719 const char *name;
e0001a05
NC
1720
1721 if ((s->flags & SEC_LINKER_CREATED) == 0)
1722 continue;
1723
1724 /* It's OK to base decisions on the section name, because none
1725 of the dynobj section names depend upon the input files. */
1726 name = bfd_get_section_name (dynobj, s);
1727
0112cd26 1728 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1729 {
c456f082 1730 if (s->size != 0)
e0001a05 1731 {
c456f082
AM
1732 if (strcmp (name, ".rela.plt") == 0)
1733 relplt = TRUE;
1734 else if (strcmp (name, ".rela.got") == 0)
1735 relgot = TRUE;
1736
1737 /* We use the reloc_count field as a counter if we need
1738 to copy relocs into the output file. */
1739 s->reloc_count = 0;
e0001a05
NC
1740 }
1741 }
0112cd26
NC
1742 else if (! CONST_STRNEQ (name, ".plt.")
1743 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1744 && strcmp (name, ".got") != 0
e0001a05
NC
1745 && strcmp (name, ".plt") != 0
1746 && strcmp (name, ".got.plt") != 0
e901de89
BW
1747 && strcmp (name, ".xt.lit.plt") != 0
1748 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1749 {
1750 /* It's not one of our sections, so don't allocate space. */
1751 continue;
1752 }
1753
c456f082
AM
1754 if (s->size == 0)
1755 {
1756 /* If we don't need this section, strip it from the output
1757 file. We must create the ".plt*" and ".got.plt*"
1758 sections in create_dynamic_sections and/or check_relocs
1759 based on a conservative estimate of the PLT relocation
1760 count, because the sections must be created before the
1761 linker maps input sections to output sections. The
1762 linker does that before size_dynamic_sections, where we
1763 compute the exact size of the PLT, so there may be more
1764 of these sections than are actually needed. */
1765 s->flags |= SEC_EXCLUDE;
1766 }
1767 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1768 {
1769 /* Allocate memory for the section contents. */
eea6121a 1770 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1771 if (s->contents == NULL)
e0001a05
NC
1772 return FALSE;
1773 }
1774 }
1775
1776 if (elf_hash_table (info)->dynamic_sections_created)
1777 {
1778 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1779 known until finish_dynamic_sections, but we need to get the relocs
1780 in place before they are sorted. */
e0001a05
NC
1781 for (chunk = 0; chunk < plt_chunks; chunk++)
1782 {
1783 Elf_Internal_Rela irela;
1784 bfd_byte *loc;
1785
1786 irela.r_offset = 0;
1787 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1788 irela.r_addend = 0;
1789
1790 loc = (srelgot->contents
1791 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1792 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1793 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1794 loc + sizeof (Elf32_External_Rela));
1795 srelgot->reloc_count += 2;
1796 }
1797
1798 /* Add some entries to the .dynamic section. We fill in the
1799 values later, in elf_xtensa_finish_dynamic_sections, but we
1800 must add the entries now so that we get the correct size for
1801 the .dynamic section. The DT_DEBUG entry is filled in by the
1802 dynamic linker and used by the debugger. */
1803#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1804 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1805
ba05963f 1806 if (info->executable)
e0001a05
NC
1807 {
1808 if (!add_dynamic_entry (DT_DEBUG, 0))
1809 return FALSE;
1810 }
1811
1812 if (relplt)
1813 {
c243ad3b 1814 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1815 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1816 || !add_dynamic_entry (DT_JMPREL, 0))
1817 return FALSE;
1818 }
1819
1820 if (relgot)
1821 {
1822 if (!add_dynamic_entry (DT_RELA, 0)
1823 || !add_dynamic_entry (DT_RELASZ, 0)
1824 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1825 return FALSE;
1826 }
1827
c243ad3b
BW
1828 if (!add_dynamic_entry (DT_PLTGOT, 0)
1829 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1830 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1831 return FALSE;
1832 }
1833#undef add_dynamic_entry
1834
1835 return TRUE;
1836}
1837
28dbbc02
BW
1838static bfd_boolean
1839elf_xtensa_always_size_sections (bfd *output_bfd,
1840 struct bfd_link_info *info)
1841{
1842 struct elf_xtensa_link_hash_table *htab;
1843 asection *tls_sec;
1844
1845 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1846 if (htab == NULL)
1847 return FALSE;
1848
28dbbc02
BW
1849 tls_sec = htab->elf.tls_sec;
1850
1851 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1852 {
1853 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1854 struct bfd_link_hash_entry *bh = &tlsbase->root;
1855 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1856
1857 tlsbase->type = STT_TLS;
1858 if (!(_bfd_generic_link_add_one_symbol
1859 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1860 tls_sec, 0, NULL, FALSE,
1861 bed->collect, &bh)))
1862 return FALSE;
1863 tlsbase->def_regular = 1;
1864 tlsbase->other = STV_HIDDEN;
1865 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1866 }
1867
1868 return TRUE;
1869}
1870
e0001a05 1871\f
28dbbc02
BW
1872/* Return the base VMA address which should be subtracted from real addresses
1873 when resolving @dtpoff relocation.
1874 This is PT_TLS segment p_vaddr. */
1875
1876static bfd_vma
1877dtpoff_base (struct bfd_link_info *info)
1878{
1879 /* If tls_sec is NULL, we should have signalled an error already. */
1880 if (elf_hash_table (info)->tls_sec == NULL)
1881 return 0;
1882 return elf_hash_table (info)->tls_sec->vma;
1883}
1884
1885/* Return the relocation value for @tpoff relocation
1886 if STT_TLS virtual address is ADDRESS. */
1887
1888static bfd_vma
1889tpoff (struct bfd_link_info *info, bfd_vma address)
1890{
1891 struct elf_link_hash_table *htab = elf_hash_table (info);
1892 bfd_vma base;
1893
1894 /* If tls_sec is NULL, we should have signalled an error already. */
1895 if (htab->tls_sec == NULL)
1896 return 0;
1897 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1898 return address - htab->tls_sec->vma + base;
1899}
1900
e0001a05
NC
1901/* Perform the specified relocation. The instruction at (contents + address)
1902 is modified to set one operand to represent the value in "relocation". The
1903 operand position is determined by the relocation type recorded in the
1904 howto. */
1905
1906#define CALL_SEGMENT_BITS (30)
7fa3d080 1907#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1908
1909static bfd_reloc_status_type
7fa3d080
BW
1910elf_xtensa_do_reloc (reloc_howto_type *howto,
1911 bfd *abfd,
1912 asection *input_section,
1913 bfd_vma relocation,
1914 bfd_byte *contents,
1915 bfd_vma address,
1916 bfd_boolean is_weak_undef,
1917 char **error_message)
e0001a05 1918{
43cd72b9 1919 xtensa_format fmt;
e0001a05 1920 xtensa_opcode opcode;
e0001a05 1921 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1922 static xtensa_insnbuf ibuff = NULL;
1923 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1924 bfd_vma self_address;
43cd72b9
BW
1925 bfd_size_type input_size;
1926 int opnd, slot;
e0001a05
NC
1927 uint32 newval;
1928
43cd72b9
BW
1929 if (!ibuff)
1930 {
1931 ibuff = xtensa_insnbuf_alloc (isa);
1932 sbuff = xtensa_insnbuf_alloc (isa);
1933 }
1934
1935 input_size = bfd_get_section_limit (abfd, input_section);
1936
1bbb5f21
BW
1937 /* Calculate the PC address for this instruction. */
1938 self_address = (input_section->output_section->vma
1939 + input_section->output_offset
1940 + address);
1941
e0001a05
NC
1942 switch (howto->type)
1943 {
1944 case R_XTENSA_NONE:
43cd72b9
BW
1945 case R_XTENSA_DIFF8:
1946 case R_XTENSA_DIFF16:
1947 case R_XTENSA_DIFF32:
28dbbc02
BW
1948 case R_XTENSA_TLS_FUNC:
1949 case R_XTENSA_TLS_ARG:
1950 case R_XTENSA_TLS_CALL:
e0001a05
NC
1951 return bfd_reloc_ok;
1952
1953 case R_XTENSA_ASM_EXPAND:
1954 if (!is_weak_undef)
1955 {
1956 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1957 opcode = get_expanded_call_opcode (contents + address,
1958 input_size - address, 0);
e0001a05
NC
1959 if (is_windowed_call_opcode (opcode))
1960 {
43cd72b9 1961 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 1962 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1963 {
1964 *error_message = "windowed longcall crosses 1GB boundary; "
1965 "return may fail";
1966 return bfd_reloc_dangerous;
1967 }
1968 }
1969 }
1970 return bfd_reloc_ok;
1971
1972 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1973 {
e0001a05 1974 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1975 bfd_reloc_status_type retval =
1976 elf_xtensa_do_asm_simplify (contents, address, input_size,
1977 error_message);
e0001a05 1978 if (retval != bfd_reloc_ok)
43cd72b9 1979 return bfd_reloc_dangerous;
e0001a05
NC
1980
1981 /* The CALL needs to be relocated. Continue below for that part. */
1982 address += 3;
c46082c8 1983 self_address += 3;
43cd72b9 1984 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1985 }
1986 break;
1987
1988 case R_XTENSA_32:
e0001a05
NC
1989 {
1990 bfd_vma x;
1991 x = bfd_get_32 (abfd, contents + address);
1992 x = x + relocation;
1993 bfd_put_32 (abfd, x, contents + address);
1994 }
1995 return bfd_reloc_ok;
1bbb5f21
BW
1996
1997 case R_XTENSA_32_PCREL:
1998 bfd_put_32 (abfd, relocation - self_address, contents + address);
1999 return bfd_reloc_ok;
28dbbc02
BW
2000
2001 case R_XTENSA_PLT:
2002 case R_XTENSA_TLSDESC_FN:
2003 case R_XTENSA_TLSDESC_ARG:
2004 case R_XTENSA_TLS_DTPOFF:
2005 case R_XTENSA_TLS_TPOFF:
2006 bfd_put_32 (abfd, relocation, contents + address);
2007 return bfd_reloc_ok;
e0001a05
NC
2008 }
2009
43cd72b9
BW
2010 /* Only instruction slot-specific relocations handled below.... */
2011 slot = get_relocation_slot (howto->type);
2012 if (slot == XTENSA_UNDEFINED)
e0001a05 2013 {
43cd72b9 2014 *error_message = "unexpected relocation";
e0001a05
NC
2015 return bfd_reloc_dangerous;
2016 }
2017
43cd72b9
BW
2018 /* Read the instruction into a buffer and decode the opcode. */
2019 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2020 input_size - address);
2021 fmt = xtensa_format_decode (isa, ibuff);
2022 if (fmt == XTENSA_UNDEFINED)
e0001a05 2023 {
43cd72b9 2024 *error_message = "cannot decode instruction format";
e0001a05
NC
2025 return bfd_reloc_dangerous;
2026 }
2027
43cd72b9 2028 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2029
43cd72b9
BW
2030 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2031 if (opcode == XTENSA_UNDEFINED)
e0001a05 2032 {
43cd72b9 2033 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2034 return bfd_reloc_dangerous;
2035 }
2036
43cd72b9
BW
2037 /* Check for opcode-specific "alternate" relocations. */
2038 if (is_alt_relocation (howto->type))
2039 {
2040 if (opcode == get_l32r_opcode ())
2041 {
2042 /* Handle the special-case of non-PC-relative L32R instructions. */
2043 bfd *output_bfd = input_section->output_section->owner;
2044 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2045 if (!lit4_sec)
2046 {
2047 *error_message = "relocation references missing .lit4 section";
2048 return bfd_reloc_dangerous;
2049 }
2050 self_address = ((lit4_sec->vma & ~0xfff)
2051 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2052 newval = relocation;
2053 opnd = 1;
2054 }
2055 else if (opcode == get_const16_opcode ())
2056 {
2057 /* ALT used for high 16 bits. */
2058 newval = relocation >> 16;
2059 opnd = 1;
2060 }
2061 else
2062 {
2063 /* No other "alternate" relocations currently defined. */
2064 *error_message = "unexpected relocation";
2065 return bfd_reloc_dangerous;
2066 }
2067 }
2068 else /* Not an "alternate" relocation.... */
2069 {
2070 if (opcode == get_const16_opcode ())
2071 {
2072 newval = relocation & 0xffff;
2073 opnd = 1;
2074 }
2075 else
2076 {
2077 /* ...normal PC-relative relocation.... */
2078
2079 /* Determine which operand is being relocated. */
2080 opnd = get_relocation_opnd (opcode, howto->type);
2081 if (opnd == XTENSA_UNDEFINED)
2082 {
2083 *error_message = "unexpected relocation";
2084 return bfd_reloc_dangerous;
2085 }
2086
2087 if (!howto->pc_relative)
2088 {
2089 *error_message = "expected PC-relative relocation";
2090 return bfd_reloc_dangerous;
2091 }
e0001a05 2092
43cd72b9
BW
2093 newval = relocation;
2094 }
2095 }
e0001a05 2096
43cd72b9
BW
2097 /* Apply the relocation. */
2098 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2099 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2100 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2101 sbuff, newval))
e0001a05 2102 {
2db662be
BW
2103 const char *opname = xtensa_opcode_name (isa, opcode);
2104 const char *msg;
2105
2106 msg = "cannot encode";
2107 if (is_direct_call_opcode (opcode))
2108 {
2109 if ((relocation & 0x3) != 0)
2110 msg = "misaligned call target";
2111 else
2112 msg = "call target out of range";
2113 }
2114 else if (opcode == get_l32r_opcode ())
2115 {
2116 if ((relocation & 0x3) != 0)
2117 msg = "misaligned literal target";
2118 else if (is_alt_relocation (howto->type))
2119 msg = "literal target out of range (too many literals)";
2120 else if (self_address > relocation)
2121 msg = "literal target out of range (try using text-section-literals)";
2122 else
2123 msg = "literal placed after use";
2124 }
2125
2126 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2127 return bfd_reloc_dangerous;
2128 }
2129
43cd72b9 2130 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2131 if (is_direct_call_opcode (opcode)
2132 && is_windowed_call_opcode (opcode))
2133 {
43cd72b9 2134 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 2135 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2136 {
43cd72b9
BW
2137 *error_message =
2138 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2139 return bfd_reloc_dangerous;
2140 }
2141 }
2142
43cd72b9
BW
2143 /* Write the modified instruction back out of the buffer. */
2144 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2145 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2146 input_size - address);
e0001a05
NC
2147 return bfd_reloc_ok;
2148}
2149
2150
2db662be 2151static char *
7fa3d080 2152vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2153{
2154 /* To reduce the size of the memory leak,
2155 we only use a single message buffer. */
2156 static bfd_size_type alloc_size = 0;
2157 static char *message = NULL;
2158 bfd_size_type orig_len, len = 0;
2159 bfd_boolean is_append;
2160
2161 VA_OPEN (ap, arglen);
2162 VA_FIXEDARG (ap, const char *, origmsg);
68ffbac6
L
2163
2164 is_append = (origmsg == message);
e0001a05
NC
2165
2166 orig_len = strlen (origmsg);
2167 len = orig_len + strlen (fmt) + arglen + 20;
2168 if (len > alloc_size)
2169 {
515ef31d 2170 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2171 alloc_size = len;
2172 }
515ef31d
NC
2173 if (message != NULL)
2174 {
2175 if (!is_append)
2176 memcpy (message, origmsg, orig_len);
2177 vsprintf (message + orig_len, fmt, ap);
2178 }
e0001a05
NC
2179 VA_CLOSE (ap);
2180 return message;
2181}
2182
2183
e0001a05
NC
2184/* This function is registered as the "special_function" in the
2185 Xtensa howto for handling simplify operations.
2186 bfd_perform_relocation / bfd_install_relocation use it to
2187 perform (install) the specified relocation. Since this replaces the code
2188 in bfd_perform_relocation, it is basically an Xtensa-specific,
2189 stripped-down version of bfd_perform_relocation. */
2190
2191static bfd_reloc_status_type
7fa3d080
BW
2192bfd_elf_xtensa_reloc (bfd *abfd,
2193 arelent *reloc_entry,
2194 asymbol *symbol,
2195 void *data,
2196 asection *input_section,
2197 bfd *output_bfd,
2198 char **error_message)
e0001a05
NC
2199{
2200 bfd_vma relocation;
2201 bfd_reloc_status_type flag;
2202 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2203 bfd_vma output_base = 0;
2204 reloc_howto_type *howto = reloc_entry->howto;
2205 asection *reloc_target_output_section;
2206 bfd_boolean is_weak_undef;
2207
dd1a320b
BW
2208 if (!xtensa_default_isa)
2209 xtensa_default_isa = xtensa_isa_init (0, 0);
2210
1049f94e 2211 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2212 output, and the reloc is against an external symbol, the resulting
2213 reloc will also be against the same symbol. In such a case, we
2214 don't want to change anything about the way the reloc is handled,
2215 since it will all be done at final link time. This test is similar
2216 to what bfd_elf_generic_reloc does except that it lets relocs with
2217 howto->partial_inplace go through even if the addend is non-zero.
2218 (The real problem is that partial_inplace is set for XTENSA_32
2219 relocs to begin with, but that's a long story and there's little we
2220 can do about it now....) */
2221
7fa3d080 2222 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2223 {
2224 reloc_entry->address += input_section->output_offset;
2225 return bfd_reloc_ok;
2226 }
2227
2228 /* Is the address of the relocation really within the section? */
07515404 2229 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2230 return bfd_reloc_outofrange;
2231
4cc11e76 2232 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2233 initial relocation command value. */
2234
2235 /* Get symbol value. (Common symbols are special.) */
2236 if (bfd_is_com_section (symbol->section))
2237 relocation = 0;
2238 else
2239 relocation = symbol->value;
2240
2241 reloc_target_output_section = symbol->section->output_section;
2242
2243 /* Convert input-section-relative symbol value to absolute. */
2244 if ((output_bfd && !howto->partial_inplace)
2245 || reloc_target_output_section == NULL)
2246 output_base = 0;
2247 else
2248 output_base = reloc_target_output_section->vma;
2249
2250 relocation += output_base + symbol->section->output_offset;
2251
2252 /* Add in supplied addend. */
2253 relocation += reloc_entry->addend;
2254
2255 /* Here the variable relocation holds the final address of the
2256 symbol we are relocating against, plus any addend. */
2257 if (output_bfd)
2258 {
2259 if (!howto->partial_inplace)
2260 {
2261 /* This is a partial relocation, and we want to apply the relocation
2262 to the reloc entry rather than the raw data. Everything except
2263 relocations against section symbols has already been handled
2264 above. */
43cd72b9 2265
e0001a05
NC
2266 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2267 reloc_entry->addend = relocation;
2268 reloc_entry->address += input_section->output_offset;
2269 return bfd_reloc_ok;
2270 }
2271 else
2272 {
2273 reloc_entry->address += input_section->output_offset;
2274 reloc_entry->addend = 0;
2275 }
2276 }
2277
2278 is_weak_undef = (bfd_is_und_section (symbol->section)
2279 && (symbol->flags & BSF_WEAK) != 0);
2280 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2281 (bfd_byte *) data, (bfd_vma) octets,
2282 is_weak_undef, error_message);
2283
2284 if (flag == bfd_reloc_dangerous)
2285 {
2286 /* Add the symbol name to the error message. */
2287 if (! *error_message)
2288 *error_message = "";
2289 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2290 strlen (symbol->name) + 17,
70961b9d
AM
2291 symbol->name,
2292 (unsigned long) reloc_entry->addend);
e0001a05
NC
2293 }
2294
2295 return flag;
2296}
2297
2298
2299/* Set up an entry in the procedure linkage table. */
2300
2301static bfd_vma
f0e6fdb2 2302elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2303 bfd *output_bfd,
2304 unsigned reloc_index)
e0001a05
NC
2305{
2306 asection *splt, *sgotplt;
2307 bfd_vma plt_base, got_base;
2308 bfd_vma code_offset, lit_offset;
2309 int chunk;
2310
2311 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2312 splt = elf_xtensa_get_plt_section (info, chunk);
2313 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2314 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2315
2316 plt_base = splt->output_section->vma + splt->output_offset;
2317 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2318
2319 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2320 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2321
2322 /* Fill in the literal entry. This is the offset of the dynamic
2323 relocation entry. */
2324 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2325 sgotplt->contents + lit_offset);
2326
2327 /* Fill in the entry in the procedure linkage table. */
2328 memcpy (splt->contents + code_offset,
2329 (bfd_big_endian (output_bfd)
2330 ? elf_xtensa_be_plt_entry
2331 : elf_xtensa_le_plt_entry),
2332 PLT_ENTRY_SIZE);
2333 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2334 plt_base + code_offset + 3),
2335 splt->contents + code_offset + 4);
2336 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2337 plt_base + code_offset + 6),
2338 splt->contents + code_offset + 7);
2339 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2340 plt_base + code_offset + 9),
2341 splt->contents + code_offset + 10);
2342
2343 return plt_base + code_offset;
2344}
2345
2346
28dbbc02
BW
2347static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2348
2349static bfd_boolean
2350replace_tls_insn (Elf_Internal_Rela *rel,
2351 bfd *abfd,
2352 asection *input_section,
2353 bfd_byte *contents,
2354 bfd_boolean is_ld_model,
2355 char **error_message)
2356{
2357 static xtensa_insnbuf ibuff = NULL;
2358 static xtensa_insnbuf sbuff = NULL;
2359 xtensa_isa isa = xtensa_default_isa;
2360 xtensa_format fmt;
2361 xtensa_opcode old_op, new_op;
2362 bfd_size_type input_size;
2363 int r_type;
2364 unsigned dest_reg, src_reg;
2365
2366 if (ibuff == NULL)
2367 {
2368 ibuff = xtensa_insnbuf_alloc (isa);
2369 sbuff = xtensa_insnbuf_alloc (isa);
2370 }
2371
2372 input_size = bfd_get_section_limit (abfd, input_section);
2373
2374 /* Read the instruction into a buffer and decode the opcode. */
2375 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2376 input_size - rel->r_offset);
2377 fmt = xtensa_format_decode (isa, ibuff);
2378 if (fmt == XTENSA_UNDEFINED)
2379 {
2380 *error_message = "cannot decode instruction format";
2381 return FALSE;
2382 }
2383
2384 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2385 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2386
2387 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2388 if (old_op == XTENSA_UNDEFINED)
2389 {
2390 *error_message = "cannot decode instruction opcode";
2391 return FALSE;
2392 }
2393
2394 r_type = ELF32_R_TYPE (rel->r_info);
2395 switch (r_type)
2396 {
2397 case R_XTENSA_TLS_FUNC:
2398 case R_XTENSA_TLS_ARG:
2399 if (old_op != get_l32r_opcode ()
2400 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2401 sbuff, &dest_reg) != 0)
2402 {
2403 *error_message = "cannot extract L32R destination for TLS access";
2404 return FALSE;
2405 }
2406 break;
2407
2408 case R_XTENSA_TLS_CALL:
2409 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2410 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2411 sbuff, &src_reg) != 0)
2412 {
2413 *error_message = "cannot extract CALLXn operands for TLS access";
2414 return FALSE;
2415 }
2416 break;
2417
2418 default:
2419 abort ();
2420 }
2421
2422 if (is_ld_model)
2423 {
2424 switch (r_type)
2425 {
2426 case R_XTENSA_TLS_FUNC:
2427 case R_XTENSA_TLS_ARG:
2428 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2429 versions of Xtensa). */
2430 new_op = xtensa_opcode_lookup (isa, "nop");
2431 if (new_op == XTENSA_UNDEFINED)
2432 {
2433 new_op = xtensa_opcode_lookup (isa, "or");
2434 if (new_op == XTENSA_UNDEFINED
2435 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2436 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2437 sbuff, 1) != 0
2438 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2439 sbuff, 1) != 0
2440 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2441 sbuff, 1) != 0)
2442 {
2443 *error_message = "cannot encode OR for TLS access";
2444 return FALSE;
2445 }
2446 }
2447 else
2448 {
2449 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2450 {
2451 *error_message = "cannot encode NOP for TLS access";
2452 return FALSE;
2453 }
2454 }
2455 break;
2456
2457 case R_XTENSA_TLS_CALL:
2458 /* Read THREADPTR into the CALLX's return value register. */
2459 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2460 if (new_op == XTENSA_UNDEFINED
2461 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2462 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2463 sbuff, dest_reg + 2) != 0)
2464 {
2465 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2466 return FALSE;
2467 }
2468 break;
2469 }
2470 }
2471 else
2472 {
2473 switch (r_type)
2474 {
2475 case R_XTENSA_TLS_FUNC:
2476 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2477 if (new_op == XTENSA_UNDEFINED
2478 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2479 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2480 sbuff, dest_reg) != 0)
2481 {
2482 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2483 return FALSE;
2484 }
2485 break;
2486
2487 case R_XTENSA_TLS_ARG:
2488 /* Nothing to do. Keep the original L32R instruction. */
2489 return TRUE;
2490
2491 case R_XTENSA_TLS_CALL:
2492 /* Add the CALLX's src register (holding the THREADPTR value)
2493 to the first argument register (holding the offset) and put
2494 the result in the CALLX's return value register. */
2495 new_op = xtensa_opcode_lookup (isa, "add");
2496 if (new_op == XTENSA_UNDEFINED
2497 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2498 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2499 sbuff, dest_reg + 2) != 0
2500 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2501 sbuff, dest_reg + 2) != 0
2502 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2503 sbuff, src_reg) != 0)
2504 {
2505 *error_message = "cannot encode ADD for TLS access";
2506 return FALSE;
2507 }
2508 break;
2509 }
2510 }
2511
2512 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2513 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2514 input_size - rel->r_offset);
2515
2516 return TRUE;
2517}
2518
2519
2520#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2521 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2522 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2523 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2524 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2525 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2526 || (R_TYPE) == R_XTENSA_TLS_ARG \
2527 || (R_TYPE) == R_XTENSA_TLS_CALL)
2528
e0001a05 2529/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2530 both relocatable and final links. */
e0001a05
NC
2531
2532static bfd_boolean
7fa3d080
BW
2533elf_xtensa_relocate_section (bfd *output_bfd,
2534 struct bfd_link_info *info,
2535 bfd *input_bfd,
2536 asection *input_section,
2537 bfd_byte *contents,
2538 Elf_Internal_Rela *relocs,
2539 Elf_Internal_Sym *local_syms,
2540 asection **local_sections)
e0001a05 2541{
f0e6fdb2 2542 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2543 Elf_Internal_Shdr *symtab_hdr;
2544 Elf_Internal_Rela *rel;
2545 Elf_Internal_Rela *relend;
2546 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2547 property_table_entry *lit_table = 0;
2548 int ltblsize = 0;
28dbbc02 2549 char *local_got_tls_types;
e0001a05 2550 char *error_message = NULL;
43cd72b9 2551 bfd_size_type input_size;
28dbbc02 2552 int tls_type;
e0001a05 2553
43cd72b9
BW
2554 if (!xtensa_default_isa)
2555 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2556
28dbbc02
BW
2557 BFD_ASSERT (is_xtensa_elf (input_bfd));
2558
f0e6fdb2 2559 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2560 if (htab == NULL)
2561 return FALSE;
2562
e0001a05
NC
2563 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2564 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2565 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2566
88d65ad6
BW
2567 if (elf_hash_table (info)->dynamic_sections_created)
2568 {
2569 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2570 &lit_table, XTENSA_LIT_SEC_NAME,
2571 TRUE);
88d65ad6
BW
2572 if (ltblsize < 0)
2573 return FALSE;
2574 }
2575
43cd72b9
BW
2576 input_size = bfd_get_section_limit (input_bfd, input_section);
2577
e0001a05
NC
2578 rel = relocs;
2579 relend = relocs + input_section->reloc_count;
2580 for (; rel < relend; rel++)
2581 {
2582 int r_type;
2583 reloc_howto_type *howto;
2584 unsigned long r_symndx;
2585 struct elf_link_hash_entry *h;
2586 Elf_Internal_Sym *sym;
28dbbc02
BW
2587 char sym_type;
2588 const char *name;
e0001a05
NC
2589 asection *sec;
2590 bfd_vma relocation;
2591 bfd_reloc_status_type r;
2592 bfd_boolean is_weak_undef;
2593 bfd_boolean unresolved_reloc;
9b8c98a4 2594 bfd_boolean warned;
28dbbc02 2595 bfd_boolean dynamic_symbol;
e0001a05
NC
2596
2597 r_type = ELF32_R_TYPE (rel->r_info);
2598 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2599 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2600 continue;
2601
2602 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2603 {
2604 bfd_set_error (bfd_error_bad_value);
2605 return FALSE;
2606 }
2607 howto = &elf_howto_table[r_type];
2608
2609 r_symndx = ELF32_R_SYM (rel->r_info);
2610
ab96bf03
AM
2611 h = NULL;
2612 sym = NULL;
2613 sec = NULL;
2614 is_weak_undef = FALSE;
2615 unresolved_reloc = FALSE;
2616 warned = FALSE;
2617
2618 if (howto->partial_inplace && !info->relocatable)
2619 {
2620 /* Because R_XTENSA_32 was made partial_inplace to fix some
2621 problems with DWARF info in partial links, there may be
2622 an addend stored in the contents. Take it out of there
2623 and move it back into the addend field of the reloc. */
2624 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2625 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2626 }
2627
2628 if (r_symndx < symtab_hdr->sh_info)
2629 {
2630 sym = local_syms + r_symndx;
28dbbc02 2631 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2632 sec = local_sections[r_symndx];
2633 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2634 }
2635 else
2636 {
2637 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2638 r_symndx, symtab_hdr, sym_hashes,
2639 h, sec, relocation,
2640 unresolved_reloc, warned);
2641
2642 if (relocation == 0
2643 && !unresolved_reloc
2644 && h->root.type == bfd_link_hash_undefweak)
2645 is_weak_undef = TRUE;
28dbbc02
BW
2646
2647 sym_type = h->type;
ab96bf03
AM
2648 }
2649
dbaa2011 2650 if (sec != NULL && discarded_section (sec))
e4067dbb 2651 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 2652 rel, 1, relend, howto, 0, contents);
ab96bf03 2653
1049f94e 2654 if (info->relocatable)
e0001a05 2655 {
7aa09196
SA
2656 bfd_vma dest_addr;
2657 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2658
43cd72b9 2659 /* This is a relocatable link.
e0001a05
NC
2660 1) If the reloc is against a section symbol, adjust
2661 according to the output section.
2662 2) If there is a new target for this relocation,
2663 the new target will be in the same output section.
2664 We adjust the relocation by the output section
2665 difference. */
2666
2667 if (relaxing_section)
2668 {
2669 /* Check if this references a section in another input file. */
43cd72b9
BW
2670 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2671 contents))
2672 return FALSE;
e0001a05
NC
2673 }
2674
7aa09196
SA
2675 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2676 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2677
43cd72b9 2678 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2679 {
91d6fa6a 2680 error_message = NULL;
e0001a05
NC
2681 /* Convert ASM_SIMPLIFY into the simpler relocation
2682 so that they never escape a relaxing link. */
43cd72b9
BW
2683 r = contract_asm_expansion (contents, input_size, rel,
2684 &error_message);
2685 if (r != bfd_reloc_ok)
2686 {
2687 if (!((*info->callbacks->reloc_dangerous)
2688 (info, error_message, input_bfd, input_section,
2689 rel->r_offset)))
2690 return FALSE;
2691 }
e0001a05
NC
2692 r_type = ELF32_R_TYPE (rel->r_info);
2693 }
2694
1049f94e 2695 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2696 anything unless the reloc is against a section symbol,
2697 in which case we have to adjust according to where the
2698 section symbol winds up in the output section. */
2699 if (r_symndx < symtab_hdr->sh_info)
2700 {
2701 sym = local_syms + r_symndx;
2702 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2703 {
2704 sec = local_sections[r_symndx];
2705 rel->r_addend += sec->output_offset + sym->st_value;
2706 }
2707 }
2708
2709 /* If there is an addend with a partial_inplace howto,
2710 then move the addend to the contents. This is a hack
1049f94e 2711 to work around problems with DWARF in relocatable links
e0001a05
NC
2712 with some previous version of BFD. Now we can't easily get
2713 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2714 r = bfd_reloc_ok;
2715 howto = &elf_howto_table[r_type];
2716 if (howto->partial_inplace && rel->r_addend)
2717 {
2718 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2719 rel->r_addend, contents,
2720 rel->r_offset, FALSE,
2721 &error_message);
2722 rel->r_addend = 0;
2723 }
2724 else
e0001a05 2725 {
7aa09196
SA
2726 /* Put the correct bits in the target instruction, even
2727 though the relocation will still be present in the output
2728 file. This makes disassembly clearer, as well as
2729 allowing loadable kernel modules to work without needing
2730 relocations on anything other than calls and l32r's. */
2731
2732 /* If it is not in the same section, there is nothing we can do. */
2733 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2734 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2735 {
2736 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2737 dest_addr, contents,
e0001a05
NC
2738 rel->r_offset, FALSE,
2739 &error_message);
e0001a05
NC
2740 }
2741 }
7aa09196
SA
2742 if (r != bfd_reloc_ok)
2743 {
2744 if (!((*info->callbacks->reloc_dangerous)
2745 (info, error_message, input_bfd, input_section,
2746 rel->r_offset)))
2747 return FALSE;
2748 }
e0001a05 2749
1049f94e 2750 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2751 continue;
2752 }
2753
2754 /* This is a final link. */
2755
e0001a05
NC
2756 if (relaxing_section)
2757 {
2758 /* Check if this references a section in another input file. */
43cd72b9
BW
2759 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2760 &relocation);
e0001a05
NC
2761 }
2762
2763 /* Sanity check the address. */
43cd72b9 2764 if (rel->r_offset >= input_size
e0001a05
NC
2765 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2766 {
43cd72b9
BW
2767 (*_bfd_error_handler)
2768 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2769 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2770 bfd_set_error (bfd_error_bad_value);
2771 return FALSE;
2772 }
2773
28dbbc02
BW
2774 if (h != NULL)
2775 name = h->root.root.string;
2776 else
e0001a05 2777 {
28dbbc02
BW
2778 name = (bfd_elf_string_from_elf_section
2779 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2780 if (name == NULL || *name == '\0')
2781 name = bfd_section_name (input_bfd, sec);
2782 }
e0001a05 2783
cf35638d 2784 if (r_symndx != STN_UNDEF
28dbbc02
BW
2785 && r_type != R_XTENSA_NONE
2786 && (h == NULL
2787 || h->root.type == bfd_link_hash_defined
2788 || h->root.type == bfd_link_hash_defweak)
2789 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2790 {
2791 (*_bfd_error_handler)
2792 ((sym_type == STT_TLS
2793 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2794 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2795 input_bfd,
2796 input_section,
2797 (long) rel->r_offset,
2798 howto->name,
2799 name);
2800 }
2801
2802 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2803
2804 tls_type = GOT_UNKNOWN;
2805 if (h)
2806 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2807 else if (local_got_tls_types)
2808 tls_type = local_got_tls_types [r_symndx];
2809
2810 switch (r_type)
2811 {
2812 case R_XTENSA_32:
2813 case R_XTENSA_PLT:
2814 if (elf_hash_table (info)->dynamic_sections_created
2815 && (input_section->flags & SEC_ALLOC) != 0
2816 && (dynamic_symbol || info->shared))
e0001a05
NC
2817 {
2818 Elf_Internal_Rela outrel;
2819 bfd_byte *loc;
2820 asection *srel;
2821
2822 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2823 srel = htab->srelplt;
e0001a05 2824 else
f0e6fdb2 2825 srel = htab->srelgot;
e0001a05
NC
2826
2827 BFD_ASSERT (srel != NULL);
2828
2829 outrel.r_offset =
2830 _bfd_elf_section_offset (output_bfd, info,
2831 input_section, rel->r_offset);
2832
2833 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2834 memset (&outrel, 0, sizeof outrel);
2835 else
2836 {
f0578e28
BW
2837 outrel.r_offset += (input_section->output_section->vma
2838 + input_section->output_offset);
e0001a05 2839
88d65ad6
BW
2840 /* Complain if the relocation is in a read-only section
2841 and not in a literal pool. */
2842 if ((input_section->flags & SEC_READONLY) != 0
2843 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2844 outrel.r_offset))
88d65ad6
BW
2845 {
2846 error_message =
2847 _("dynamic relocation in read-only section");
2848 if (!((*info->callbacks->reloc_dangerous)
2849 (info, error_message, input_bfd, input_section,
2850 rel->r_offset)))
2851 return FALSE;
2852 }
2853
e0001a05
NC
2854 if (dynamic_symbol)
2855 {
2856 outrel.r_addend = rel->r_addend;
2857 rel->r_addend = 0;
2858
2859 if (r_type == R_XTENSA_32)
2860 {
2861 outrel.r_info =
2862 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2863 relocation = 0;
2864 }
2865 else /* r_type == R_XTENSA_PLT */
2866 {
2867 outrel.r_info =
2868 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2869
2870 /* Create the PLT entry and set the initial
2871 contents of the literal entry to the address of
2872 the PLT entry. */
43cd72b9 2873 relocation =
f0e6fdb2 2874 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2875 srel->reloc_count);
2876 }
2877 unresolved_reloc = FALSE;
2878 }
2879 else
2880 {
2881 /* Generate a RELATIVE relocation. */
2882 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2883 outrel.r_addend = 0;
2884 }
2885 }
2886
2887 loc = (srel->contents
2888 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2889 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2890 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2891 <= srel->size);
e0001a05 2892 }
d9ab3f29
BW
2893 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2894 {
2895 /* This should only happen for non-PIC code, which is not
2896 supposed to be used on systems with dynamic linking.
2897 Just ignore these relocations. */
2898 continue;
2899 }
28dbbc02
BW
2900 break;
2901
2902 case R_XTENSA_TLS_TPOFF:
2903 /* Switch to LE model for local symbols in an executable. */
2904 if (! info->shared && ! dynamic_symbol)
2905 {
2906 relocation = tpoff (info, relocation);
2907 break;
2908 }
2909 /* fall through */
2910
2911 case R_XTENSA_TLSDESC_FN:
2912 case R_XTENSA_TLSDESC_ARG:
2913 {
2914 if (r_type == R_XTENSA_TLSDESC_FN)
2915 {
2916 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2917 r_type = R_XTENSA_NONE;
2918 }
2919 else if (r_type == R_XTENSA_TLSDESC_ARG)
2920 {
2921 if (info->shared)
2922 {
2923 if ((tls_type & GOT_TLS_IE) != 0)
2924 r_type = R_XTENSA_TLS_TPOFF;
2925 }
2926 else
2927 {
2928 r_type = R_XTENSA_TLS_TPOFF;
2929 if (! dynamic_symbol)
2930 {
2931 relocation = tpoff (info, relocation);
2932 break;
2933 }
2934 }
2935 }
2936
2937 if (r_type == R_XTENSA_NONE)
2938 /* Nothing to do here; skip to the next reloc. */
2939 continue;
2940
2941 if (! elf_hash_table (info)->dynamic_sections_created)
2942 {
2943 error_message =
2944 _("TLS relocation invalid without dynamic sections");
2945 if (!((*info->callbacks->reloc_dangerous)
2946 (info, error_message, input_bfd, input_section,
2947 rel->r_offset)))
2948 return FALSE;
2949 }
2950 else
2951 {
2952 Elf_Internal_Rela outrel;
2953 bfd_byte *loc;
2954 asection *srel = htab->srelgot;
2955 int indx;
2956
2957 outrel.r_offset = (input_section->output_section->vma
2958 + input_section->output_offset
2959 + rel->r_offset);
2960
2961 /* Complain if the relocation is in a read-only section
2962 and not in a literal pool. */
2963 if ((input_section->flags & SEC_READONLY) != 0
2964 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2965 outrel.r_offset))
2966 {
2967 error_message =
2968 _("dynamic relocation in read-only section");
2969 if (!((*info->callbacks->reloc_dangerous)
2970 (info, error_message, input_bfd, input_section,
2971 rel->r_offset)))
2972 return FALSE;
2973 }
2974
2975 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2976 if (indx == 0)
2977 outrel.r_addend = relocation - dtpoff_base (info);
2978 else
2979 outrel.r_addend = 0;
2980 rel->r_addend = 0;
2981
2982 outrel.r_info = ELF32_R_INFO (indx, r_type);
2983 relocation = 0;
2984 unresolved_reloc = FALSE;
2985
2986 BFD_ASSERT (srel);
2987 loc = (srel->contents
2988 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2989 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2990 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2991 <= srel->size);
2992 }
2993 }
2994 break;
2995
2996 case R_XTENSA_TLS_DTPOFF:
2997 if (! info->shared)
2998 /* Switch from LD model to LE model. */
2999 relocation = tpoff (info, relocation);
3000 else
3001 relocation -= dtpoff_base (info);
3002 break;
3003
3004 case R_XTENSA_TLS_FUNC:
3005 case R_XTENSA_TLS_ARG:
3006 case R_XTENSA_TLS_CALL:
3007 /* Check if optimizing to IE or LE model. */
3008 if ((tls_type & GOT_TLS_IE) != 0)
3009 {
3010 bfd_boolean is_ld_model =
3011 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3012 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3013 is_ld_model, &error_message))
3014 {
3015 if (!((*info->callbacks->reloc_dangerous)
3016 (info, error_message, input_bfd, input_section,
3017 rel->r_offset)))
3018 return FALSE;
3019 }
3020
3021 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3022 {
3023 /* Skip subsequent relocations on the same instruction. */
3024 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3025 rel++;
3026 }
3027 }
3028 continue;
3029
3030 default:
3031 if (elf_hash_table (info)->dynamic_sections_created
3032 && dynamic_symbol && (is_operand_relocation (r_type)
3033 || r_type == R_XTENSA_32_PCREL))
3034 {
3035 error_message =
3036 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3037 strlen (name) + 2, name);
3038 if (!((*info->callbacks->reloc_dangerous)
3039 (info, error_message, input_bfd, input_section,
3040 rel->r_offset)))
3041 return FALSE;
3042 continue;
3043 }
3044 break;
e0001a05
NC
3045 }
3046
3047 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3048 because such sections are not SEC_ALLOC and thus ld.so will
3049 not process them. */
3050 if (unresolved_reloc
3051 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
3052 && h->def_dynamic)
3053 && _bfd_elf_section_offset (output_bfd, info, input_section,
3054 rel->r_offset) != (bfd_vma) -1)
bf1747de
BW
3055 {
3056 (*_bfd_error_handler)
3057 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3058 input_bfd,
3059 input_section,
3060 (long) rel->r_offset,
3061 howto->name,
28dbbc02 3062 name);
bf1747de
BW
3063 return FALSE;
3064 }
e0001a05 3065
28dbbc02
BW
3066 /* TLS optimizations may have changed r_type; update "howto". */
3067 howto = &elf_howto_table[r_type];
3068
e0001a05
NC
3069 /* There's no point in calling bfd_perform_relocation here.
3070 Just go directly to our "special function". */
3071 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3072 relocation + rel->r_addend,
3073 contents, rel->r_offset, is_weak_undef,
3074 &error_message);
43cd72b9 3075
9b8c98a4 3076 if (r != bfd_reloc_ok && !warned)
e0001a05 3077 {
43cd72b9 3078 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3079 BFD_ASSERT (error_message != NULL);
e0001a05 3080
28dbbc02
BW
3081 if (rel->r_addend == 0)
3082 error_message = vsprint_msg (error_message, ": %s",
3083 strlen (name) + 2, name);
e0001a05 3084 else
28dbbc02
BW
3085 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3086 strlen (name) + 22,
3087 name, (int) rel->r_addend);
43cd72b9 3088
e0001a05
NC
3089 if (!((*info->callbacks->reloc_dangerous)
3090 (info, error_message, input_bfd, input_section,
3091 rel->r_offset)))
3092 return FALSE;
3093 }
3094 }
3095
88d65ad6
BW
3096 if (lit_table)
3097 free (lit_table);
3098
3ba3bc8c
BW
3099 input_section->reloc_done = TRUE;
3100
e0001a05
NC
3101 return TRUE;
3102}
3103
3104
3105/* Finish up dynamic symbol handling. There's not much to do here since
3106 the PLT and GOT entries are all set up by relocate_section. */
3107
3108static bfd_boolean
7fa3d080
BW
3109elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3110 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3111 struct elf_link_hash_entry *h,
3112 Elf_Internal_Sym *sym)
e0001a05 3113{
bf1747de 3114 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3115 {
3116 /* Mark the symbol as undefined, rather than as defined in
3117 the .plt section. Leave the value alone. */
3118 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3119 /* If the symbol is weak, we do need to clear the value.
3120 Otherwise, the PLT entry would provide a definition for
3121 the symbol even if the symbol wasn't defined anywhere,
3122 and so the symbol would never be NULL. */
3123 if (!h->ref_regular_nonweak)
3124 sym->st_value = 0;
e0001a05
NC
3125 }
3126
3127 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9637f6ef 3128 if (h == elf_hash_table (info)->hdynamic
22edb2f1 3129 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3130 sym->st_shndx = SHN_ABS;
3131
3132 return TRUE;
3133}
3134
3135
3136/* Combine adjacent literal table entries in the output. Adjacent
3137 entries within each input section may have been removed during
3138 relaxation, but we repeat the process here, even though it's too late
3139 to shrink the output section, because it's important to minimize the
3140 number of literal table entries to reduce the start-up work for the
3141 runtime linker. Returns the number of remaining table entries or -1
3142 on error. */
3143
3144static int
7fa3d080
BW
3145elf_xtensa_combine_prop_entries (bfd *output_bfd,
3146 asection *sxtlit,
3147 asection *sgotloc)
e0001a05 3148{
e0001a05
NC
3149 bfd_byte *contents;
3150 property_table_entry *table;
e901de89 3151 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3152 bfd_vma offset;
3153 int n, m, num;
3154
eea6121a 3155 section_size = sxtlit->size;
e0001a05
NC
3156 BFD_ASSERT (section_size % 8 == 0);
3157 num = section_size / 8;
3158
eea6121a 3159 sgotloc_size = sgotloc->size;
e901de89 3160 if (sgotloc_size != section_size)
b536dc1e
BW
3161 {
3162 (*_bfd_error_handler)
43cd72b9 3163 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3164 return -1;
3165 }
e901de89 3166
eea6121a
AM
3167 table = bfd_malloc (num * sizeof (property_table_entry));
3168 if (table == 0)
e0001a05
NC
3169 return -1;
3170
3171 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3172 propagates to the output section, where it doesn't really apply and
eea6121a 3173 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3174 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3175
eea6121a
AM
3176 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3177 {
3178 if (contents != 0)
3179 free (contents);
3180 free (table);
3181 return -1;
3182 }
e0001a05
NC
3183
3184 /* There should never be any relocations left at this point, so this
3185 is quite a bit easier than what is done during relaxation. */
3186
3187 /* Copy the raw contents into a property table array and sort it. */
3188 offset = 0;
3189 for (n = 0; n < num; n++)
3190 {
3191 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3192 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3193 offset += 8;
3194 }
3195 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3196
3197 for (n = 0; n < num; n++)
3198 {
91d6fa6a 3199 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3200
3201 if (table[n].size == 0)
91d6fa6a
NC
3202 remove_entry = TRUE;
3203 else if (n > 0
3204 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3205 {
3206 table[n-1].size += table[n].size;
91d6fa6a 3207 remove_entry = TRUE;
e0001a05
NC
3208 }
3209
91d6fa6a 3210 if (remove_entry)
e0001a05
NC
3211 {
3212 for (m = n; m < num - 1; m++)
3213 {
3214 table[m].address = table[m+1].address;
3215 table[m].size = table[m+1].size;
3216 }
3217
3218 n--;
3219 num--;
3220 }
3221 }
3222
3223 /* Copy the data back to the raw contents. */
3224 offset = 0;
3225 for (n = 0; n < num; n++)
3226 {
3227 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3228 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3229 offset += 8;
3230 }
3231
3232 /* Clear the removed bytes. */
3233 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3234 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3235
e901de89
BW
3236 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3237 section_size))
e0001a05
NC
3238 return -1;
3239
e901de89
BW
3240 /* Copy the contents to ".got.loc". */
3241 memcpy (sgotloc->contents, contents, section_size);
3242
e0001a05 3243 free (contents);
b614a702 3244 free (table);
e0001a05
NC
3245 return num;
3246}
3247
3248
3249/* Finish up the dynamic sections. */
3250
3251static bfd_boolean
7fa3d080
BW
3252elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3253 struct bfd_link_info *info)
e0001a05 3254{
f0e6fdb2 3255 struct elf_xtensa_link_hash_table *htab;
e0001a05 3256 bfd *dynobj;
e901de89 3257 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3258 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3259 int num_xtlit_entries = 0;
e0001a05
NC
3260
3261 if (! elf_hash_table (info)->dynamic_sections_created)
3262 return TRUE;
3263
f0e6fdb2 3264 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3265 if (htab == NULL)
3266 return FALSE;
3267
e0001a05 3268 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3269 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
e0001a05
NC
3270 BFD_ASSERT (sdyn != NULL);
3271
3272 /* Set the first entry in the global offset table to the address of
3273 the dynamic section. */
f0e6fdb2 3274 sgot = htab->sgot;
e0001a05
NC
3275 if (sgot)
3276 {
eea6121a 3277 BFD_ASSERT (sgot->size == 4);
e0001a05 3278 if (sdyn == NULL)
7fa3d080 3279 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3280 else
3281 bfd_put_32 (output_bfd,
3282 sdyn->output_section->vma + sdyn->output_offset,
3283 sgot->contents);
3284 }
3285
f0e6fdb2 3286 srelplt = htab->srelplt;
7fa3d080 3287 if (srelplt && srelplt->size != 0)
e0001a05
NC
3288 {
3289 asection *sgotplt, *srelgot, *spltlittbl;
3290 int chunk, plt_chunks, plt_entries;
3291 Elf_Internal_Rela irela;
3292 bfd_byte *loc;
3293 unsigned rtld_reloc;
3294
f0e6fdb2
BW
3295 srelgot = htab->srelgot;
3296 spltlittbl = htab->spltlittbl;
3297 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3298
3299 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3300 of them follow immediately after.... */
3301 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3302 {
3303 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3304 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3305 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3306 break;
3307 }
3308 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3309
eea6121a 3310 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3311 plt_chunks =
3312 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3313
3314 for (chunk = 0; chunk < plt_chunks; chunk++)
3315 {
3316 int chunk_entries = 0;
3317
f0e6fdb2 3318 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3319 BFD_ASSERT (sgotplt != NULL);
3320
3321 /* Emit special RTLD relocations for the first two entries in
3322 each chunk of the .got.plt section. */
3323
3324 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3325 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3326 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3327 irela.r_offset = (sgotplt->output_section->vma
3328 + sgotplt->output_offset);
3329 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3330 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3331 rtld_reloc += 1;
3332 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3333
3334 /* Next literal immediately follows the first. */
3335 loc += sizeof (Elf32_External_Rela);
3336 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3337 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3338 irela.r_offset = (sgotplt->output_section->vma
3339 + sgotplt->output_offset + 4);
3340 /* Tell rtld to set value to object's link map. */
3341 irela.r_addend = 2;
3342 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3343 rtld_reloc += 1;
3344 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3345
3346 /* Fill in the literal table. */
3347 if (chunk < plt_chunks - 1)
3348 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3349 else
3350 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3351
eea6121a 3352 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3353 bfd_put_32 (output_bfd,
3354 sgotplt->output_section->vma + sgotplt->output_offset,
3355 spltlittbl->contents + (chunk * 8) + 0);
3356 bfd_put_32 (output_bfd,
3357 8 + (chunk_entries * 4),
3358 spltlittbl->contents + (chunk * 8) + 4);
3359 }
3360
3361 /* All the dynamic relocations have been emitted at this point.
3362 Make sure the relocation sections are the correct size. */
eea6121a
AM
3363 if (srelgot->size != (sizeof (Elf32_External_Rela)
3364 * srelgot->reloc_count)
3365 || srelplt->size != (sizeof (Elf32_External_Rela)
3366 * srelplt->reloc_count))
e0001a05
NC
3367 abort ();
3368
3369 /* The .xt.lit.plt section has just been modified. This must
3370 happen before the code below which combines adjacent literal
3371 table entries, and the .xt.lit.plt contents have to be forced to
3372 the output here. */
3373 if (! bfd_set_section_contents (output_bfd,
3374 spltlittbl->output_section,
3375 spltlittbl->contents,
3376 spltlittbl->output_offset,
eea6121a 3377 spltlittbl->size))
e0001a05
NC
3378 return FALSE;
3379 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3380 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3381 }
3382
3383 /* Combine adjacent literal table entries. */
1049f94e 3384 BFD_ASSERT (! info->relocatable);
e901de89 3385 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3386 sgotloc = htab->sgotloc;
d9ab3f29
BW
3387 BFD_ASSERT (sgotloc);
3388 if (sxtlit)
3389 {
3390 num_xtlit_entries =
3391 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3392 if (num_xtlit_entries < 0)
3393 return FALSE;
3394 }
e0001a05
NC
3395
3396 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3397 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3398 for (; dyncon < dynconend; dyncon++)
3399 {
3400 Elf_Internal_Dyn dyn;
e0001a05
NC
3401
3402 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3403
3404 switch (dyn.d_tag)
3405 {
3406 default:
3407 break;
3408
3409 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3410 dyn.d_un.d_val = num_xtlit_entries;
3411 break;
3412
3413 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 3414 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
3415 break;
3416
e0001a05 3417 case DT_PLTGOT:
e29297b7 3418 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
3419 break;
3420
e0001a05 3421 case DT_JMPREL:
e29297b7 3422 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
3423 break;
3424
3425 case DT_PLTRELSZ:
e29297b7 3426 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
3427 break;
3428
3429 case DT_RELASZ:
3430 /* Adjust RELASZ to not include JMPREL. This matches what
3431 glibc expects and what is done for several other ELF
3432 targets (e.g., i386, alpha), but the "correct" behavior
3433 seems to be unresolved. Since the linker script arranges
3434 for .rela.plt to follow all other relocation sections, we
3435 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 3436 if (htab->srelplt)
e29297b7 3437 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
3438 break;
3439 }
3440
3441 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3442 }
3443
3444 return TRUE;
3445}
3446
3447\f
3448/* Functions for dealing with the e_flags field. */
3449
3450/* Merge backend specific data from an object file to the output
3451 object file when linking. */
3452
3453static bfd_boolean
7fa3d080 3454elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
3455{
3456 unsigned out_mach, in_mach;
3457 flagword out_flag, in_flag;
3458
cc643b88 3459 /* Check if we have the same endianness. */
e0001a05
NC
3460 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3461 return FALSE;
3462
3463 /* Don't even pretend to support mixed-format linking. */
3464 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3465 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3466 return FALSE;
3467
3468 out_flag = elf_elfheader (obfd)->e_flags;
3469 in_flag = elf_elfheader (ibfd)->e_flags;
3470
3471 out_mach = out_flag & EF_XTENSA_MACH;
3472 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3473 if (out_mach != in_mach)
e0001a05
NC
3474 {
3475 (*_bfd_error_handler)
43cd72b9 3476 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3477 ibfd, out_mach, in_mach);
e0001a05
NC
3478 bfd_set_error (bfd_error_wrong_format);
3479 return FALSE;
3480 }
3481
3482 if (! elf_flags_init (obfd))
3483 {
3484 elf_flags_init (obfd) = TRUE;
3485 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3486
e0001a05
NC
3487 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3488 && bfd_get_arch_info (obfd)->the_default)
3489 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3490 bfd_get_mach (ibfd));
43cd72b9 3491
e0001a05
NC
3492 return TRUE;
3493 }
3494
68ffbac6 3495 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
43cd72b9 3496 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3497
68ffbac6 3498 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
43cd72b9 3499 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3500
3501 return TRUE;
3502}
3503
3504
3505static bfd_boolean
7fa3d080 3506elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3507{
3508 BFD_ASSERT (!elf_flags_init (abfd)
3509 || elf_elfheader (abfd)->e_flags == flags);
3510
3511 elf_elfheader (abfd)->e_flags |= flags;
3512 elf_flags_init (abfd) = TRUE;
3513
3514 return TRUE;
3515}
3516
3517
e0001a05 3518static bfd_boolean
7fa3d080 3519elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3520{
3521 FILE *f = (FILE *) farg;
3522 flagword e_flags = elf_elfheader (abfd)->e_flags;
3523
3524 fprintf (f, "\nXtensa header:\n");
43cd72b9 3525 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3526 fprintf (f, "\nMachine = Base\n");
3527 else
3528 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3529
3530 fprintf (f, "Insn tables = %s\n",
3531 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3532
3533 fprintf (f, "Literal tables = %s\n",
3534 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3535
3536 return _bfd_elf_print_private_bfd_data (abfd, farg);
3537}
3538
3539
3540/* Set the right machine number for an Xtensa ELF file. */
3541
3542static bfd_boolean
7fa3d080 3543elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3544{
3545 int mach;
3546 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3547
3548 switch (arch)
3549 {
3550 case E_XTENSA_MACH:
3551 mach = bfd_mach_xtensa;
3552 break;
3553 default:
3554 return FALSE;
3555 }
3556
3557 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3558 return TRUE;
3559}
3560
3561
3562/* The final processing done just before writing out an Xtensa ELF object
3563 file. This gets the Xtensa architecture right based on the machine
3564 number. */
3565
3566static void
7fa3d080
BW
3567elf_xtensa_final_write_processing (bfd *abfd,
3568 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3569{
3570 int mach;
3571 unsigned long val;
3572
3573 switch (mach = bfd_get_mach (abfd))
3574 {
3575 case bfd_mach_xtensa:
3576 val = E_XTENSA_MACH;
3577 break;
3578 default:
3579 return;
3580 }
3581
3582 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3583 elf_elfheader (abfd)->e_flags |= val;
3584}
3585
3586
3587static enum elf_reloc_type_class
7e612e98
AM
3588elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3589 const asection *rel_sec ATTRIBUTE_UNUSED,
3590 const Elf_Internal_Rela *rela)
e0001a05
NC
3591{
3592 switch ((int) ELF32_R_TYPE (rela->r_info))
3593 {
3594 case R_XTENSA_RELATIVE:
3595 return reloc_class_relative;
3596 case R_XTENSA_JMP_SLOT:
3597 return reloc_class_plt;
3598 default:
3599 return reloc_class_normal;
3600 }
3601}
3602
3603\f
3604static bfd_boolean
7fa3d080
BW
3605elf_xtensa_discard_info_for_section (bfd *abfd,
3606 struct elf_reloc_cookie *cookie,
3607 struct bfd_link_info *info,
3608 asection *sec)
e0001a05
NC
3609{
3610 bfd_byte *contents;
e0001a05 3611 bfd_vma offset, actual_offset;
1d25768e
BW
3612 bfd_size_type removed_bytes = 0;
3613 bfd_size_type entry_size;
e0001a05
NC
3614
3615 if (sec->output_section
3616 && bfd_is_abs_section (sec->output_section))
3617 return FALSE;
3618
1d25768e
BW
3619 if (xtensa_is_proptable_section (sec))
3620 entry_size = 12;
3621 else
3622 entry_size = 8;
3623
a3ef2d63 3624 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3625 return FALSE;
3626
e0001a05
NC
3627 contents = retrieve_contents (abfd, sec, info->keep_memory);
3628 if (!contents)
3629 return FALSE;
3630
3631 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3632 if (!cookie->rels)
3633 {
3634 release_contents (sec, contents);
3635 return FALSE;
3636 }
3637
1d25768e
BW
3638 /* Sort the relocations. They should already be in order when
3639 relaxation is enabled, but it might not be. */
3640 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3641 internal_reloc_compare);
3642
e0001a05
NC
3643 cookie->rel = cookie->rels;
3644 cookie->relend = cookie->rels + sec->reloc_count;
3645
a3ef2d63 3646 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3647 {
3648 actual_offset = offset - removed_bytes;
3649
3650 /* The ...symbol_deleted_p function will skip over relocs but it
3651 won't adjust their offsets, so do that here. */
3652 while (cookie->rel < cookie->relend
3653 && cookie->rel->r_offset < offset)
3654 {
3655 cookie->rel->r_offset -= removed_bytes;
3656 cookie->rel++;
3657 }
3658
3659 while (cookie->rel < cookie->relend
3660 && cookie->rel->r_offset == offset)
3661 {
c152c796 3662 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3663 {
3664 /* Remove the table entry. (If the reloc type is NONE, then
3665 the entry has already been merged with another and deleted
3666 during relaxation.) */
3667 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3668 {
3669 /* Shift the contents up. */
a3ef2d63 3670 if (offset + entry_size < sec->size)
e0001a05 3671 memmove (&contents[actual_offset],
1d25768e 3672 &contents[actual_offset + entry_size],
a3ef2d63 3673 sec->size - offset - entry_size);
1d25768e 3674 removed_bytes += entry_size;
e0001a05
NC
3675 }
3676
3677 /* Remove this relocation. */
3678 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3679 }
3680
3681 /* Adjust the relocation offset for previous removals. This
3682 should not be done before calling ...symbol_deleted_p
3683 because it might mess up the offset comparisons there.
3684 Make sure the offset doesn't underflow in the case where
3685 the first entry is removed. */
3686 if (cookie->rel->r_offset >= removed_bytes)
3687 cookie->rel->r_offset -= removed_bytes;
3688 else
3689 cookie->rel->r_offset = 0;
3690
3691 cookie->rel++;
3692 }
3693 }
3694
3695 if (removed_bytes != 0)
3696 {
3697 /* Adjust any remaining relocs (shouldn't be any). */
3698 for (; cookie->rel < cookie->relend; cookie->rel++)
3699 {
3700 if (cookie->rel->r_offset >= removed_bytes)
3701 cookie->rel->r_offset -= removed_bytes;
3702 else
3703 cookie->rel->r_offset = 0;
3704 }
3705
3706 /* Clear the removed bytes. */
a3ef2d63 3707 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3708
3709 pin_contents (sec, contents);
3710 pin_internal_relocs (sec, cookie->rels);
3711
eea6121a 3712 /* Shrink size. */
a3ef2d63
BW
3713 if (sec->rawsize == 0)
3714 sec->rawsize = sec->size;
3715 sec->size -= removed_bytes;
b536dc1e
BW
3716
3717 if (xtensa_is_littable_section (sec))
3718 {
f0e6fdb2
BW
3719 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3720 if (sgotloc)
3721 sgotloc->size -= removed_bytes;
b536dc1e 3722 }
e0001a05
NC
3723 }
3724 else
3725 {
3726 release_contents (sec, contents);
3727 release_internal_relocs (sec, cookie->rels);
3728 }
3729
3730 return (removed_bytes != 0);
3731}
3732
3733
3734static bfd_boolean
7fa3d080
BW
3735elf_xtensa_discard_info (bfd *abfd,
3736 struct elf_reloc_cookie *cookie,
3737 struct bfd_link_info *info)
e0001a05
NC
3738{
3739 asection *sec;
3740 bfd_boolean changed = FALSE;
3741
3742 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3743 {
3744 if (xtensa_is_property_section (sec))
3745 {
3746 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3747 changed = TRUE;
3748 }
3749 }
3750
3751 return changed;
3752}
3753
3754
3755static bfd_boolean
7fa3d080 3756elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3757{
3758 return xtensa_is_property_section (sec);
3759}
3760
a77dc2cc
BW
3761
3762static unsigned int
3763elf_xtensa_action_discarded (asection *sec)
3764{
3765 if (strcmp (".xt_except_table", sec->name) == 0)
3766 return 0;
3767
3768 if (strcmp (".xt_except_desc", sec->name) == 0)
3769 return 0;
3770
3771 return _bfd_elf_default_action_discarded (sec);
3772}
3773
e0001a05
NC
3774\f
3775/* Support for core dump NOTE sections. */
3776
3777static bfd_boolean
7fa3d080 3778elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3779{
3780 int offset;
eea6121a 3781 unsigned int size;
e0001a05
NC
3782
3783 /* The size for Xtensa is variable, so don't try to recognize the format
3784 based on the size. Just assume this is GNU/Linux. */
3785
3786 /* pr_cursig */
228e534f 3787 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
e0001a05
NC
3788
3789 /* pr_pid */
228e534f 3790 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3791
3792 /* pr_reg */
3793 offset = 72;
eea6121a 3794 size = note->descsz - offset - 4;
e0001a05
NC
3795
3796 /* Make a ".reg/999" section. */
3797 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3798 size, note->descpos + offset);
e0001a05
NC
3799}
3800
3801
3802static bfd_boolean
7fa3d080 3803elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3804{
3805 switch (note->descsz)
3806 {
3807 default:
3808 return FALSE;
3809
3810 case 128: /* GNU/Linux elf_prpsinfo */
228e534f 3811 elf_tdata (abfd)->core->program
e0001a05 3812 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
228e534f 3813 elf_tdata (abfd)->core->command
e0001a05
NC
3814 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3815 }
3816
3817 /* Note that for some reason, a spurious space is tacked
3818 onto the end of the args in some (at least one anyway)
3819 implementations, so strip it off if it exists. */
3820
3821 {
228e534f 3822 char *command = elf_tdata (abfd)->core->command;
e0001a05
NC
3823 int n = strlen (command);
3824
3825 if (0 < n && command[n - 1] == ' ')
3826 command[n - 1] = '\0';
3827 }
3828
3829 return TRUE;
3830}
3831
3832\f
3833/* Generic Xtensa configurability stuff. */
3834
3835static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3836static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3837static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3838static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3839static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3840static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3841static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3842static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3843
3844static void
7fa3d080 3845init_call_opcodes (void)
e0001a05
NC
3846{
3847 if (callx0_op == XTENSA_UNDEFINED)
3848 {
3849 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3850 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3851 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3852 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3853 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3854 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3855 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3856 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3857 }
3858}
3859
3860
3861static bfd_boolean
7fa3d080 3862is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3863{
3864 init_call_opcodes ();
3865 return (opcode == callx0_op
3866 || opcode == callx4_op
3867 || opcode == callx8_op
3868 || opcode == callx12_op);
3869}
3870
3871
3872static bfd_boolean
7fa3d080 3873is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3874{
3875 init_call_opcodes ();
3876 return (opcode == call0_op
3877 || opcode == call4_op
3878 || opcode == call8_op
3879 || opcode == call12_op);
3880}
3881
3882
3883static bfd_boolean
7fa3d080 3884is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3885{
3886 init_call_opcodes ();
3887 return (opcode == call4_op
3888 || opcode == call8_op
3889 || opcode == call12_op
3890 || opcode == callx4_op
3891 || opcode == callx8_op
3892 || opcode == callx12_op);
3893}
3894
3895
28dbbc02
BW
3896static bfd_boolean
3897get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3898{
3899 unsigned dst = (unsigned) -1;
3900
3901 init_call_opcodes ();
3902 if (opcode == callx0_op)
3903 dst = 0;
3904 else if (opcode == callx4_op)
3905 dst = 4;
3906 else if (opcode == callx8_op)
3907 dst = 8;
3908 else if (opcode == callx12_op)
3909 dst = 12;
3910
3911 if (dst == (unsigned) -1)
3912 return FALSE;
3913
3914 *pdst = dst;
3915 return TRUE;
3916}
3917
3918
43cd72b9
BW
3919static xtensa_opcode
3920get_const16_opcode (void)
3921{
3922 static bfd_boolean done_lookup = FALSE;
3923 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3924 if (!done_lookup)
3925 {
3926 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3927 done_lookup = TRUE;
3928 }
3929 return const16_opcode;
3930}
3931
3932
e0001a05
NC
3933static xtensa_opcode
3934get_l32r_opcode (void)
3935{
3936 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3937 static bfd_boolean done_lookup = FALSE;
3938
3939 if (!done_lookup)
e0001a05
NC
3940 {
3941 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3942 done_lookup = TRUE;
e0001a05
NC
3943 }
3944 return l32r_opcode;
3945}
3946
3947
3948static bfd_vma
7fa3d080 3949l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3950{
3951 bfd_vma offset;
3952
3953 offset = addr - ((pc+3) & -4);
3954 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3955 offset = (signed int) offset >> 2;
3956 BFD_ASSERT ((signed int) offset >> 16 == -1);
3957 return offset;
3958}
3959
3960
e0001a05 3961static int
7fa3d080 3962get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3963{
43cd72b9
BW
3964 xtensa_isa isa = xtensa_default_isa;
3965 int last_immed, last_opnd, opi;
3966
3967 if (opcode == XTENSA_UNDEFINED)
3968 return XTENSA_UNDEFINED;
3969
3970 /* Find the last visible PC-relative immediate operand for the opcode.
3971 If there are no PC-relative immediates, then choose the last visible
3972 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3973 last_immed = XTENSA_UNDEFINED;
3974 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3975 for (opi = last_opnd - 1; opi >= 0; opi--)
3976 {
3977 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3978 continue;
3979 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3980 {
3981 last_immed = opi;
3982 break;
3983 }
3984 if (last_immed == XTENSA_UNDEFINED
3985 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3986 last_immed = opi;
3987 }
3988 if (last_immed < 0)
3989 return XTENSA_UNDEFINED;
3990
3991 /* If the operand number was specified in an old-style relocation,
3992 check for consistency with the operand computed above. */
3993 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3994 {
3995 int reloc_opnd = r_type - R_XTENSA_OP0;
3996 if (reloc_opnd != last_immed)
3997 return XTENSA_UNDEFINED;
3998 }
3999
4000 return last_immed;
4001}
4002
4003
4004int
7fa3d080 4005get_relocation_slot (int r_type)
43cd72b9
BW
4006{
4007 switch (r_type)
4008 {
4009 case R_XTENSA_OP0:
4010 case R_XTENSA_OP1:
4011 case R_XTENSA_OP2:
4012 return 0;
4013
4014 default:
4015 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4016 return r_type - R_XTENSA_SLOT0_OP;
4017 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4018 return r_type - R_XTENSA_SLOT0_ALT;
4019 break;
4020 }
4021
4022 return XTENSA_UNDEFINED;
e0001a05
NC
4023}
4024
4025
4026/* Get the opcode for a relocation. */
4027
4028static xtensa_opcode
7fa3d080
BW
4029get_relocation_opcode (bfd *abfd,
4030 asection *sec,
4031 bfd_byte *contents,
4032 Elf_Internal_Rela *irel)
e0001a05
NC
4033{
4034 static xtensa_insnbuf ibuff = NULL;
43cd72b9 4035 static xtensa_insnbuf sbuff = NULL;
e0001a05 4036 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4037 xtensa_format fmt;
4038 int slot;
e0001a05
NC
4039
4040 if (contents == NULL)
4041 return XTENSA_UNDEFINED;
4042
43cd72b9 4043 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4044 return XTENSA_UNDEFINED;
4045
4046 if (ibuff == NULL)
43cd72b9
BW
4047 {
4048 ibuff = xtensa_insnbuf_alloc (isa);
4049 sbuff = xtensa_insnbuf_alloc (isa);
4050 }
4051
e0001a05 4052 /* Decode the instruction. */
43cd72b9
BW
4053 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4054 sec->size - irel->r_offset);
4055 fmt = xtensa_format_decode (isa, ibuff);
4056 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4057 if (slot == XTENSA_UNDEFINED)
4058 return XTENSA_UNDEFINED;
4059 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4060 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4061}
4062
4063
4064bfd_boolean
7fa3d080
BW
4065is_l32r_relocation (bfd *abfd,
4066 asection *sec,
4067 bfd_byte *contents,
4068 Elf_Internal_Rela *irel)
e0001a05
NC
4069{
4070 xtensa_opcode opcode;
43cd72b9 4071 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4072 return FALSE;
43cd72b9 4073 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4074 return (opcode == get_l32r_opcode ());
4075}
4076
e0001a05 4077
43cd72b9 4078static bfd_size_type
7fa3d080
BW
4079get_asm_simplify_size (bfd_byte *contents,
4080 bfd_size_type content_len,
4081 bfd_size_type offset)
e0001a05 4082{
43cd72b9 4083 bfd_size_type insnlen, size = 0;
e0001a05 4084
43cd72b9
BW
4085 /* Decode the size of the next two instructions. */
4086 insnlen = insn_decode_len (contents, content_len, offset);
4087 if (insnlen == 0)
4088 return 0;
e0001a05 4089
43cd72b9 4090 size += insnlen;
68ffbac6 4091
43cd72b9
BW
4092 insnlen = insn_decode_len (contents, content_len, offset + size);
4093 if (insnlen == 0)
4094 return 0;
e0001a05 4095
43cd72b9
BW
4096 size += insnlen;
4097 return size;
4098}
e0001a05 4099
43cd72b9
BW
4100
4101bfd_boolean
7fa3d080 4102is_alt_relocation (int r_type)
43cd72b9
BW
4103{
4104 return (r_type >= R_XTENSA_SLOT0_ALT
4105 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4106}
4107
4108
43cd72b9 4109bfd_boolean
7fa3d080 4110is_operand_relocation (int r_type)
e0001a05 4111{
43cd72b9
BW
4112 switch (r_type)
4113 {
4114 case R_XTENSA_OP0:
4115 case R_XTENSA_OP1:
4116 case R_XTENSA_OP2:
4117 return TRUE;
e0001a05 4118
43cd72b9
BW
4119 default:
4120 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4121 return TRUE;
4122 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4123 return TRUE;
4124 break;
4125 }
e0001a05 4126
43cd72b9 4127 return FALSE;
e0001a05
NC
4128}
4129
68ffbac6 4130
43cd72b9 4131#define MIN_INSN_LENGTH 2
e0001a05 4132
43cd72b9
BW
4133/* Return 0 if it fails to decode. */
4134
4135bfd_size_type
7fa3d080
BW
4136insn_decode_len (bfd_byte *contents,
4137 bfd_size_type content_len,
4138 bfd_size_type offset)
e0001a05 4139{
43cd72b9
BW
4140 int insn_len;
4141 xtensa_isa isa = xtensa_default_isa;
4142 xtensa_format fmt;
4143 static xtensa_insnbuf ibuff = NULL;
e0001a05 4144
43cd72b9
BW
4145 if (offset + MIN_INSN_LENGTH > content_len)
4146 return 0;
e0001a05 4147
43cd72b9
BW
4148 if (ibuff == NULL)
4149 ibuff = xtensa_insnbuf_alloc (isa);
4150 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4151 content_len - offset);
4152 fmt = xtensa_format_decode (isa, ibuff);
4153 if (fmt == XTENSA_UNDEFINED)
4154 return 0;
4155 insn_len = xtensa_format_length (isa, fmt);
4156 if (insn_len == XTENSA_UNDEFINED)
4157 return 0;
4158 return insn_len;
e0001a05
NC
4159}
4160
4161
43cd72b9
BW
4162/* Decode the opcode for a single slot instruction.
4163 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4164
43cd72b9 4165xtensa_opcode
7fa3d080
BW
4166insn_decode_opcode (bfd_byte *contents,
4167 bfd_size_type content_len,
4168 bfd_size_type offset,
4169 int slot)
e0001a05 4170{
e0001a05 4171 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4172 xtensa_format fmt;
4173 static xtensa_insnbuf insnbuf = NULL;
4174 static xtensa_insnbuf slotbuf = NULL;
4175
4176 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4177 return XTENSA_UNDEFINED;
4178
4179 if (insnbuf == NULL)
43cd72b9
BW
4180 {
4181 insnbuf = xtensa_insnbuf_alloc (isa);
4182 slotbuf = xtensa_insnbuf_alloc (isa);
4183 }
4184
4185 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4186 content_len - offset);
4187 fmt = xtensa_format_decode (isa, insnbuf);
4188 if (fmt == XTENSA_UNDEFINED)
e0001a05 4189 return XTENSA_UNDEFINED;
43cd72b9
BW
4190
4191 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4192 return XTENSA_UNDEFINED;
e0001a05 4193
43cd72b9
BW
4194 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4195 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4196}
e0001a05 4197
e0001a05 4198
43cd72b9
BW
4199/* The offset is the offset in the contents.
4200 The address is the address of that offset. */
e0001a05 4201
43cd72b9 4202static bfd_boolean
7fa3d080
BW
4203check_branch_target_aligned (bfd_byte *contents,
4204 bfd_size_type content_length,
4205 bfd_vma offset,
4206 bfd_vma address)
43cd72b9
BW
4207{
4208 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4209 if (insn_len == 0)
4210 return FALSE;
4211 return check_branch_target_aligned_address (address, insn_len);
4212}
e0001a05 4213
e0001a05 4214
43cd72b9 4215static bfd_boolean
7fa3d080
BW
4216check_loop_aligned (bfd_byte *contents,
4217 bfd_size_type content_length,
4218 bfd_vma offset,
4219 bfd_vma address)
e0001a05 4220{
43cd72b9 4221 bfd_size_type loop_len, insn_len;
64b607e6 4222 xtensa_opcode opcode;
e0001a05 4223
64b607e6
BW
4224 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4225 if (opcode == XTENSA_UNDEFINED
4226 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4227 {
4228 BFD_ASSERT (FALSE);
4229 return FALSE;
4230 }
68ffbac6 4231
43cd72b9 4232 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4233 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4234 if (loop_len == 0 || insn_len == 0)
4235 {
4236 BFD_ASSERT (FALSE);
4237 return FALSE;
4238 }
e0001a05 4239
43cd72b9
BW
4240 return check_branch_target_aligned_address (address + loop_len, insn_len);
4241}
e0001a05 4242
e0001a05
NC
4243
4244static bfd_boolean
7fa3d080 4245check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4246{
43cd72b9
BW
4247 if (len == 8)
4248 return (addr % 8 == 0);
4249 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4250}
4251
43cd72b9
BW
4252\f
4253/* Instruction widening and narrowing. */
e0001a05 4254
7fa3d080
BW
4255/* When FLIX is available we need to access certain instructions only
4256 when they are 16-bit or 24-bit instructions. This table caches
4257 information about such instructions by walking through all the
4258 opcodes and finding the smallest single-slot format into which each
4259 can be encoded. */
4260
4261static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4262
4263
7fa3d080
BW
4264static void
4265init_op_single_format_table (void)
e0001a05 4266{
7fa3d080
BW
4267 xtensa_isa isa = xtensa_default_isa;
4268 xtensa_insnbuf ibuf;
4269 xtensa_opcode opcode;
4270 xtensa_format fmt;
4271 int num_opcodes;
4272
4273 if (op_single_fmt_table)
4274 return;
4275
4276 ibuf = xtensa_insnbuf_alloc (isa);
4277 num_opcodes = xtensa_isa_num_opcodes (isa);
4278
4279 op_single_fmt_table = (xtensa_format *)
4280 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4281 for (opcode = 0; opcode < num_opcodes; opcode++)
4282 {
4283 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4284 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4285 {
4286 if (xtensa_format_num_slots (isa, fmt) == 1
4287 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4288 {
4289 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4290 int fmt_length = xtensa_format_length (isa, fmt);
4291 if (old_fmt == XTENSA_UNDEFINED
4292 || fmt_length < xtensa_format_length (isa, old_fmt))
4293 op_single_fmt_table[opcode] = fmt;
4294 }
4295 }
4296 }
4297 xtensa_insnbuf_free (isa, ibuf);
4298}
4299
4300
4301static xtensa_format
4302get_single_format (xtensa_opcode opcode)
4303{
4304 init_op_single_format_table ();
4305 return op_single_fmt_table[opcode];
4306}
e0001a05 4307
e0001a05 4308
43cd72b9
BW
4309/* For the set of narrowable instructions we do NOT include the
4310 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4311 involved during linker relaxation that may require these to
4312 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4313 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4314
7fa3d080
BW
4315struct string_pair
4316{
4317 const char *wide;
4318 const char *narrow;
4319};
4320
43cd72b9 4321struct string_pair narrowable[] =
e0001a05 4322{
43cd72b9
BW
4323 { "add", "add.n" },
4324 { "addi", "addi.n" },
4325 { "addmi", "addi.n" },
4326 { "l32i", "l32i.n" },
4327 { "movi", "movi.n" },
4328 { "ret", "ret.n" },
4329 { "retw", "retw.n" },
4330 { "s32i", "s32i.n" },
4331 { "or", "mov.n" } /* special case only when op1 == op2 */
4332};
e0001a05 4333
43cd72b9 4334struct string_pair widenable[] =
e0001a05 4335{
43cd72b9
BW
4336 { "add", "add.n" },
4337 { "addi", "addi.n" },
4338 { "addmi", "addi.n" },
4339 { "beqz", "beqz.n" },
4340 { "bnez", "bnez.n" },
4341 { "l32i", "l32i.n" },
4342 { "movi", "movi.n" },
4343 { "ret", "ret.n" },
4344 { "retw", "retw.n" },
4345 { "s32i", "s32i.n" },
4346 { "or", "mov.n" } /* special case only when op1 == op2 */
4347};
e0001a05
NC
4348
4349
64b607e6
BW
4350/* Check if an instruction can be "narrowed", i.e., changed from a standard
4351 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4352 return the instruction buffer holding the narrow instruction. Otherwise,
4353 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4354 but require some special case operand checks in some cases. */
4355
64b607e6
BW
4356static xtensa_insnbuf
4357can_narrow_instruction (xtensa_insnbuf slotbuf,
4358 xtensa_format fmt,
4359 xtensa_opcode opcode)
e0001a05 4360{
43cd72b9 4361 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4362 xtensa_format o_fmt;
4363 unsigned opi;
e0001a05 4364
43cd72b9
BW
4365 static xtensa_insnbuf o_insnbuf = NULL;
4366 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4367
64b607e6 4368 if (o_insnbuf == NULL)
43cd72b9 4369 {
43cd72b9
BW
4370 o_insnbuf = xtensa_insnbuf_alloc (isa);
4371 o_slotbuf = xtensa_insnbuf_alloc (isa);
4372 }
e0001a05 4373
64b607e6 4374 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4375 {
4376 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4377
43cd72b9
BW
4378 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4379 {
4380 uint32 value, newval;
4381 int i, operand_count, o_operand_count;
4382 xtensa_opcode o_opcode;
e0001a05 4383
43cd72b9
BW
4384 /* Address does not matter in this case. We might need to
4385 fix it to handle branches/jumps. */
4386 bfd_vma self_address = 0;
e0001a05 4387
43cd72b9
BW
4388 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4389 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4390 return 0;
43cd72b9
BW
4391 o_fmt = get_single_format (o_opcode);
4392 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4393 return 0;
e0001a05 4394
43cd72b9
BW
4395 if (xtensa_format_length (isa, fmt) != 3
4396 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4397 return 0;
e0001a05 4398
43cd72b9
BW
4399 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4400 operand_count = xtensa_opcode_num_operands (isa, opcode);
4401 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4402
43cd72b9 4403 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4404 return 0;
e0001a05 4405
43cd72b9
BW
4406 if (!is_or)
4407 {
4408 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4409 return 0;
43cd72b9
BW
4410 }
4411 else
4412 {
4413 uint32 rawval0, rawval1, rawval2;
e0001a05 4414
64b607e6
BW
4415 if (o_operand_count + 1 != operand_count
4416 || xtensa_operand_get_field (isa, opcode, 0,
4417 fmt, 0, slotbuf, &rawval0) != 0
4418 || xtensa_operand_get_field (isa, opcode, 1,
4419 fmt, 0, slotbuf, &rawval1) != 0
4420 || xtensa_operand_get_field (isa, opcode, 2,
4421 fmt, 0, slotbuf, &rawval2) != 0
4422 || rawval1 != rawval2
4423 || rawval0 == rawval1 /* it is a nop */)
4424 return 0;
43cd72b9 4425 }
e0001a05 4426
43cd72b9
BW
4427 for (i = 0; i < o_operand_count; ++i)
4428 {
4429 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4430 slotbuf, &value)
4431 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4432 return 0;
e0001a05 4433
43cd72b9
BW
4434 /* PC-relative branches need adjustment, but
4435 the PC-rel operand will always have a relocation. */
4436 newval = value;
4437 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4438 self_address)
4439 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4440 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4441 o_slotbuf, newval))
64b607e6 4442 return 0;
43cd72b9 4443 }
e0001a05 4444
64b607e6
BW
4445 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4446 return 0;
e0001a05 4447
64b607e6 4448 return o_insnbuf;
43cd72b9
BW
4449 }
4450 }
64b607e6 4451 return 0;
43cd72b9 4452}
e0001a05 4453
e0001a05 4454
64b607e6
BW
4455/* Attempt to narrow an instruction. If the narrowing is valid, perform
4456 the action in-place directly into the contents and return TRUE. Otherwise,
4457 the return value is FALSE and the contents are not modified. */
e0001a05 4458
43cd72b9 4459static bfd_boolean
64b607e6
BW
4460narrow_instruction (bfd_byte *contents,
4461 bfd_size_type content_length,
4462 bfd_size_type offset)
e0001a05 4463{
43cd72b9 4464 xtensa_opcode opcode;
64b607e6 4465 bfd_size_type insn_len;
43cd72b9 4466 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4467 xtensa_format fmt;
4468 xtensa_insnbuf o_insnbuf;
e0001a05 4469
43cd72b9
BW
4470 static xtensa_insnbuf insnbuf = NULL;
4471 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4472
43cd72b9
BW
4473 if (insnbuf == NULL)
4474 {
4475 insnbuf = xtensa_insnbuf_alloc (isa);
4476 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4477 }
e0001a05 4478
43cd72b9 4479 BFD_ASSERT (offset < content_length);
2c8c90bc 4480
43cd72b9 4481 if (content_length < 2)
e0001a05
NC
4482 return FALSE;
4483
64b607e6 4484 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4485 These have all been specified in the assembler aleady. */
4486 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4487 content_length - offset);
4488 fmt = xtensa_format_decode (isa, insnbuf);
4489 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4490 return FALSE;
4491
43cd72b9 4492 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4493 return FALSE;
4494
43cd72b9
BW
4495 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4496 if (opcode == XTENSA_UNDEFINED)
e0001a05 4497 return FALSE;
43cd72b9
BW
4498 insn_len = xtensa_format_length (isa, fmt);
4499 if (insn_len > content_length)
4500 return FALSE;
4501
64b607e6
BW
4502 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4503 if (o_insnbuf)
4504 {
4505 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4506 content_length - offset);
4507 return TRUE;
4508 }
4509
4510 return FALSE;
4511}
4512
4513
4514/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4515 "density" instruction to a standard 3-byte instruction. If it is valid,
4516 return the instruction buffer holding the wide instruction. Otherwise,
4517 return 0. The set of valid widenings are specified by a string table
4518 but require some special case operand checks in some cases. */
4519
4520static xtensa_insnbuf
4521can_widen_instruction (xtensa_insnbuf slotbuf,
4522 xtensa_format fmt,
4523 xtensa_opcode opcode)
4524{
4525 xtensa_isa isa = xtensa_default_isa;
4526 xtensa_format o_fmt;
4527 unsigned opi;
4528
4529 static xtensa_insnbuf o_insnbuf = NULL;
4530 static xtensa_insnbuf o_slotbuf = NULL;
4531
4532 if (o_insnbuf == NULL)
4533 {
4534 o_insnbuf = xtensa_insnbuf_alloc (isa);
4535 o_slotbuf = xtensa_insnbuf_alloc (isa);
4536 }
4537
4538 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4539 {
43cd72b9
BW
4540 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4541 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4542 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4543
43cd72b9
BW
4544 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4545 {
4546 uint32 value, newval;
4547 int i, operand_count, o_operand_count, check_operand_count;
4548 xtensa_opcode o_opcode;
e0001a05 4549
43cd72b9
BW
4550 /* Address does not matter in this case. We might need to fix it
4551 to handle branches/jumps. */
4552 bfd_vma self_address = 0;
e0001a05 4553
43cd72b9
BW
4554 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4555 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4556 return 0;
43cd72b9
BW
4557 o_fmt = get_single_format (o_opcode);
4558 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4559 return 0;
e0001a05 4560
43cd72b9
BW
4561 if (xtensa_format_length (isa, fmt) != 2
4562 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4563 return 0;
e0001a05 4564
43cd72b9
BW
4565 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4566 operand_count = xtensa_opcode_num_operands (isa, opcode);
4567 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4568 check_operand_count = o_operand_count;
e0001a05 4569
43cd72b9 4570 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4571 return 0;
e0001a05 4572
43cd72b9
BW
4573 if (!is_or)
4574 {
4575 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4576 return 0;
43cd72b9
BW
4577 }
4578 else
4579 {
4580 uint32 rawval0, rawval1;
4581
64b607e6
BW
4582 if (o_operand_count != operand_count + 1
4583 || xtensa_operand_get_field (isa, opcode, 0,
4584 fmt, 0, slotbuf, &rawval0) != 0
4585 || xtensa_operand_get_field (isa, opcode, 1,
4586 fmt, 0, slotbuf, &rawval1) != 0
4587 || rawval0 == rawval1 /* it is a nop */)
4588 return 0;
43cd72b9
BW
4589 }
4590 if (is_branch)
4591 check_operand_count--;
4592
64b607e6 4593 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4594 {
4595 int new_i = i;
4596 if (is_or && i == o_operand_count - 1)
4597 new_i = i - 1;
4598 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4599 slotbuf, &value)
4600 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4601 return 0;
43cd72b9
BW
4602
4603 /* PC-relative branches need adjustment, but
4604 the PC-rel operand will always have a relocation. */
4605 newval = value;
4606 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4607 self_address)
4608 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4609 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4610 o_slotbuf, newval))
64b607e6 4611 return 0;
43cd72b9
BW
4612 }
4613
4614 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4615 return 0;
43cd72b9 4616
64b607e6 4617 return o_insnbuf;
43cd72b9
BW
4618 }
4619 }
64b607e6
BW
4620 return 0;
4621}
4622
68ffbac6 4623
64b607e6
BW
4624/* Attempt to widen an instruction. If the widening is valid, perform
4625 the action in-place directly into the contents and return TRUE. Otherwise,
4626 the return value is FALSE and the contents are not modified. */
4627
4628static bfd_boolean
4629widen_instruction (bfd_byte *contents,
4630 bfd_size_type content_length,
4631 bfd_size_type offset)
4632{
4633 xtensa_opcode opcode;
4634 bfd_size_type insn_len;
4635 xtensa_isa isa = xtensa_default_isa;
4636 xtensa_format fmt;
4637 xtensa_insnbuf o_insnbuf;
4638
4639 static xtensa_insnbuf insnbuf = NULL;
4640 static xtensa_insnbuf slotbuf = NULL;
4641
4642 if (insnbuf == NULL)
4643 {
4644 insnbuf = xtensa_insnbuf_alloc (isa);
4645 slotbuf = xtensa_insnbuf_alloc (isa);
4646 }
4647
4648 BFD_ASSERT (offset < content_length);
4649
4650 if (content_length < 2)
4651 return FALSE;
4652
4653 /* We will hand-code a few of these for a little while.
4654 These have all been specified in the assembler aleady. */
4655 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4656 content_length - offset);
4657 fmt = xtensa_format_decode (isa, insnbuf);
4658 if (xtensa_format_num_slots (isa, fmt) != 1)
4659 return FALSE;
4660
4661 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4662 return FALSE;
4663
4664 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4665 if (opcode == XTENSA_UNDEFINED)
4666 return FALSE;
4667 insn_len = xtensa_format_length (isa, fmt);
4668 if (insn_len > content_length)
4669 return FALSE;
4670
4671 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4672 if (o_insnbuf)
4673 {
4674 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4675 content_length - offset);
4676 return TRUE;
4677 }
43cd72b9 4678 return FALSE;
e0001a05
NC
4679}
4680
43cd72b9
BW
4681\f
4682/* Code for transforming CALLs at link-time. */
e0001a05 4683
43cd72b9 4684static bfd_reloc_status_type
7fa3d080
BW
4685elf_xtensa_do_asm_simplify (bfd_byte *contents,
4686 bfd_vma address,
4687 bfd_vma content_length,
4688 char **error_message)
e0001a05 4689{
43cd72b9
BW
4690 static xtensa_insnbuf insnbuf = NULL;
4691 static xtensa_insnbuf slotbuf = NULL;
4692 xtensa_format core_format = XTENSA_UNDEFINED;
4693 xtensa_opcode opcode;
4694 xtensa_opcode direct_call_opcode;
4695 xtensa_isa isa = xtensa_default_isa;
4696 bfd_byte *chbuf = contents + address;
4697 int opn;
e0001a05 4698
43cd72b9 4699 if (insnbuf == NULL)
e0001a05 4700 {
43cd72b9
BW
4701 insnbuf = xtensa_insnbuf_alloc (isa);
4702 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4703 }
e0001a05 4704
43cd72b9
BW
4705 if (content_length < address)
4706 {
4707 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4708 return bfd_reloc_other;
4709 }
e0001a05 4710
43cd72b9
BW
4711 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4712 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4713 if (direct_call_opcode == XTENSA_UNDEFINED)
4714 {
4715 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4716 return bfd_reloc_other;
4717 }
68ffbac6 4718
43cd72b9
BW
4719 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4720 core_format = xtensa_format_lookup (isa, "x24");
4721 opcode = xtensa_opcode_lookup (isa, "or");
4722 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
68ffbac6 4723 for (opn = 0; opn < 3; opn++)
43cd72b9
BW
4724 {
4725 uint32 regno = 1;
4726 xtensa_operand_encode (isa, opcode, opn, &regno);
4727 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4728 slotbuf, regno);
4729 }
4730 xtensa_format_encode (isa, core_format, insnbuf);
4731 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4732 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4733
43cd72b9
BW
4734 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4735 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4736 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4737
43cd72b9
BW
4738 xtensa_format_encode (isa, core_format, insnbuf);
4739 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4740 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4741 content_length - address - 3);
e0001a05 4742
43cd72b9
BW
4743 return bfd_reloc_ok;
4744}
e0001a05 4745
e0001a05 4746
43cd72b9 4747static bfd_reloc_status_type
7fa3d080
BW
4748contract_asm_expansion (bfd_byte *contents,
4749 bfd_vma content_length,
4750 Elf_Internal_Rela *irel,
4751 char **error_message)
43cd72b9
BW
4752{
4753 bfd_reloc_status_type retval =
4754 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4755 error_message);
e0001a05 4756
43cd72b9
BW
4757 if (retval != bfd_reloc_ok)
4758 return bfd_reloc_dangerous;
e0001a05 4759
43cd72b9
BW
4760 /* Update the irel->r_offset field so that the right immediate and
4761 the right instruction are modified during the relocation. */
4762 irel->r_offset += 3;
4763 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4764 return bfd_reloc_ok;
4765}
e0001a05 4766
e0001a05 4767
43cd72b9 4768static xtensa_opcode
7fa3d080 4769swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4770{
43cd72b9 4771 init_call_opcodes ();
e0001a05 4772
43cd72b9
BW
4773 if (opcode == callx0_op) return call0_op;
4774 if (opcode == callx4_op) return call4_op;
4775 if (opcode == callx8_op) return call8_op;
4776 if (opcode == callx12_op) return call12_op;
e0001a05 4777
43cd72b9
BW
4778 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4779 return XTENSA_UNDEFINED;
4780}
e0001a05 4781
e0001a05 4782
43cd72b9
BW
4783/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4784 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4785 If not, return XTENSA_UNDEFINED. */
e0001a05 4786
43cd72b9
BW
4787#define L32R_TARGET_REG_OPERAND 0
4788#define CONST16_TARGET_REG_OPERAND 0
4789#define CALLN_SOURCE_OPERAND 0
e0001a05 4790
68ffbac6 4791static xtensa_opcode
7fa3d080 4792get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4793{
43cd72b9
BW
4794 static xtensa_insnbuf insnbuf = NULL;
4795 static xtensa_insnbuf slotbuf = NULL;
4796 xtensa_format fmt;
4797 xtensa_opcode opcode;
4798 xtensa_isa isa = xtensa_default_isa;
4799 uint32 regno, const16_regno, call_regno;
4800 int offset = 0;
e0001a05 4801
43cd72b9 4802 if (insnbuf == NULL)
e0001a05 4803 {
43cd72b9
BW
4804 insnbuf = xtensa_insnbuf_alloc (isa);
4805 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4806 }
43cd72b9
BW
4807
4808 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4809 fmt = xtensa_format_decode (isa, insnbuf);
4810 if (fmt == XTENSA_UNDEFINED
4811 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4812 return XTENSA_UNDEFINED;
4813
4814 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4815 if (opcode == XTENSA_UNDEFINED)
4816 return XTENSA_UNDEFINED;
4817
4818 if (opcode == get_l32r_opcode ())
e0001a05 4819 {
43cd72b9
BW
4820 if (p_uses_l32r)
4821 *p_uses_l32r = TRUE;
4822 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4823 fmt, 0, slotbuf, &regno)
4824 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4825 &regno))
4826 return XTENSA_UNDEFINED;
e0001a05 4827 }
43cd72b9 4828 else if (opcode == get_const16_opcode ())
e0001a05 4829 {
43cd72b9
BW
4830 if (p_uses_l32r)
4831 *p_uses_l32r = FALSE;
4832 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4833 fmt, 0, slotbuf, &regno)
4834 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4835 &regno))
4836 return XTENSA_UNDEFINED;
4837
4838 /* Check that the next instruction is also CONST16. */
4839 offset += xtensa_format_length (isa, fmt);
4840 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4841 fmt = xtensa_format_decode (isa, insnbuf);
4842 if (fmt == XTENSA_UNDEFINED
4843 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4844 return XTENSA_UNDEFINED;
4845 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4846 if (opcode != get_const16_opcode ())
4847 return XTENSA_UNDEFINED;
4848
4849 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4850 fmt, 0, slotbuf, &const16_regno)
4851 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4852 &const16_regno)
4853 || const16_regno != regno)
4854 return XTENSA_UNDEFINED;
e0001a05 4855 }
43cd72b9
BW
4856 else
4857 return XTENSA_UNDEFINED;
e0001a05 4858
43cd72b9
BW
4859 /* Next instruction should be an CALLXn with operand 0 == regno. */
4860 offset += xtensa_format_length (isa, fmt);
4861 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4862 fmt = xtensa_format_decode (isa, insnbuf);
4863 if (fmt == XTENSA_UNDEFINED
4864 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4865 return XTENSA_UNDEFINED;
4866 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
68ffbac6 4867 if (opcode == XTENSA_UNDEFINED
43cd72b9
BW
4868 || !is_indirect_call_opcode (opcode))
4869 return XTENSA_UNDEFINED;
e0001a05 4870
43cd72b9
BW
4871 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4872 fmt, 0, slotbuf, &call_regno)
4873 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4874 &call_regno))
4875 return XTENSA_UNDEFINED;
e0001a05 4876
43cd72b9
BW
4877 if (call_regno != regno)
4878 return XTENSA_UNDEFINED;
e0001a05 4879
43cd72b9
BW
4880 return opcode;
4881}
e0001a05 4882
43cd72b9
BW
4883\f
4884/* Data structures used during relaxation. */
e0001a05 4885
43cd72b9 4886/* r_reloc: relocation values. */
e0001a05 4887
43cd72b9
BW
4888/* Through the relaxation process, we need to keep track of the values
4889 that will result from evaluating relocations. The standard ELF
4890 relocation structure is not sufficient for this purpose because we're
4891 operating on multiple input files at once, so we need to know which
4892 input file a relocation refers to. The r_reloc structure thus
4893 records both the input file (bfd) and ELF relocation.
e0001a05 4894
43cd72b9
BW
4895 For efficiency, an r_reloc also contains a "target_offset" field to
4896 cache the target-section-relative offset value that is represented by
4897 the relocation.
68ffbac6 4898
43cd72b9
BW
4899 The r_reloc also contains a virtual offset that allows multiple
4900 inserted literals to be placed at the same "address" with
4901 different offsets. */
e0001a05 4902
43cd72b9 4903typedef struct r_reloc_struct r_reloc;
e0001a05 4904
43cd72b9 4905struct r_reloc_struct
e0001a05 4906{
43cd72b9
BW
4907 bfd *abfd;
4908 Elf_Internal_Rela rela;
e0001a05 4909 bfd_vma target_offset;
43cd72b9 4910 bfd_vma virtual_offset;
e0001a05
NC
4911};
4912
e0001a05 4913
43cd72b9
BW
4914/* The r_reloc structure is included by value in literal_value, but not
4915 every literal_value has an associated relocation -- some are simple
4916 constants. In such cases, we set all the fields in the r_reloc
4917 struct to zero. The r_reloc_is_const function should be used to
4918 detect this case. */
e0001a05 4919
43cd72b9 4920static bfd_boolean
7fa3d080 4921r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4922{
43cd72b9 4923 return (r_rel->abfd == NULL);
e0001a05
NC
4924}
4925
4926
43cd72b9 4927static bfd_vma
7fa3d080 4928r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4929{
43cd72b9
BW
4930 bfd_vma target_offset;
4931 unsigned long r_symndx;
e0001a05 4932
43cd72b9
BW
4933 BFD_ASSERT (!r_reloc_is_const (r_rel));
4934 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4935 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4936 return (target_offset + r_rel->rela.r_addend);
4937}
e0001a05 4938
e0001a05 4939
43cd72b9 4940static struct elf_link_hash_entry *
7fa3d080 4941r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4942{
43cd72b9
BW
4943 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4944 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4945}
e0001a05 4946
43cd72b9
BW
4947
4948static asection *
7fa3d080 4949r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4950{
4951 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4952 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4953}
e0001a05
NC
4954
4955
4956static bfd_boolean
7fa3d080 4957r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4958{
43cd72b9
BW
4959 asection *sec;
4960 if (r_rel == NULL)
e0001a05 4961 return FALSE;
e0001a05 4962
43cd72b9
BW
4963 sec = r_reloc_get_section (r_rel);
4964 if (sec == bfd_abs_section_ptr
4965 || sec == bfd_com_section_ptr
4966 || sec == bfd_und_section_ptr)
4967 return FALSE;
4968 return TRUE;
e0001a05
NC
4969}
4970
4971
7fa3d080
BW
4972static void
4973r_reloc_init (r_reloc *r_rel,
4974 bfd *abfd,
4975 Elf_Internal_Rela *irel,
4976 bfd_byte *contents,
4977 bfd_size_type content_length)
4978{
4979 int r_type;
4980 reloc_howto_type *howto;
4981
4982 if (irel)
4983 {
4984 r_rel->rela = *irel;
4985 r_rel->abfd = abfd;
4986 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4987 r_rel->virtual_offset = 0;
4988 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4989 howto = &elf_howto_table[r_type];
4990 if (howto->partial_inplace)
4991 {
4992 bfd_vma inplace_val;
4993 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4994
4995 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4996 r_rel->target_offset += inplace_val;
4997 }
4998 }
4999 else
5000 memset (r_rel, 0, sizeof (r_reloc));
5001}
5002
5003
43cd72b9
BW
5004#if DEBUG
5005
e0001a05 5006static void
7fa3d080 5007print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 5008{
43cd72b9
BW
5009 if (r_reloc_is_defined (r_rel))
5010 {
5011 asection *sec = r_reloc_get_section (r_rel);
5012 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5013 }
5014 else if (r_reloc_get_hash_entry (r_rel))
5015 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5016 else
5017 fprintf (fp, " ?? + ");
e0001a05 5018
43cd72b9
BW
5019 fprintf_vma (fp, r_rel->target_offset);
5020 if (r_rel->virtual_offset)
5021 {
5022 fprintf (fp, " + ");
5023 fprintf_vma (fp, r_rel->virtual_offset);
5024 }
68ffbac6 5025
43cd72b9
BW
5026 fprintf (fp, ")");
5027}
e0001a05 5028
43cd72b9 5029#endif /* DEBUG */
e0001a05 5030
43cd72b9
BW
5031\f
5032/* source_reloc: relocations that reference literals. */
e0001a05 5033
43cd72b9
BW
5034/* To determine whether literals can be coalesced, we need to first
5035 record all the relocations that reference the literals. The
5036 source_reloc structure below is used for this purpose. The
5037 source_reloc entries are kept in a per-literal-section array, sorted
5038 by offset within the literal section (i.e., target offset).
e0001a05 5039
43cd72b9
BW
5040 The source_sec and r_rel.rela.r_offset fields identify the source of
5041 the relocation. The r_rel field records the relocation value, i.e.,
5042 the offset of the literal being referenced. The opnd field is needed
5043 to determine the range of the immediate field to which the relocation
5044 applies, so we can determine whether another literal with the same
5045 value is within range. The is_null field is true when the relocation
5046 is being removed (e.g., when an L32R is being removed due to a CALLX
5047 that is converted to a direct CALL). */
e0001a05 5048
43cd72b9
BW
5049typedef struct source_reloc_struct source_reloc;
5050
5051struct source_reloc_struct
e0001a05 5052{
43cd72b9
BW
5053 asection *source_sec;
5054 r_reloc r_rel;
5055 xtensa_opcode opcode;
5056 int opnd;
5057 bfd_boolean is_null;
5058 bfd_boolean is_abs_literal;
5059};
e0001a05 5060
e0001a05 5061
e0001a05 5062static void
7fa3d080
BW
5063init_source_reloc (source_reloc *reloc,
5064 asection *source_sec,
5065 const r_reloc *r_rel,
5066 xtensa_opcode opcode,
5067 int opnd,
5068 bfd_boolean is_abs_literal)
e0001a05 5069{
43cd72b9
BW
5070 reloc->source_sec = source_sec;
5071 reloc->r_rel = *r_rel;
5072 reloc->opcode = opcode;
5073 reloc->opnd = opnd;
5074 reloc->is_null = FALSE;
5075 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5076}
5077
e0001a05 5078
43cd72b9
BW
5079/* Find the source_reloc for a particular source offset and relocation
5080 type. Note that the array is sorted by _target_ offset, so this is
5081 just a linear search. */
e0001a05 5082
43cd72b9 5083static source_reloc *
7fa3d080
BW
5084find_source_reloc (source_reloc *src_relocs,
5085 int src_count,
5086 asection *sec,
5087 Elf_Internal_Rela *irel)
e0001a05 5088{
43cd72b9 5089 int i;
e0001a05 5090
43cd72b9
BW
5091 for (i = 0; i < src_count; i++)
5092 {
5093 if (src_relocs[i].source_sec == sec
5094 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5095 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5096 == ELF32_R_TYPE (irel->r_info)))
5097 return &src_relocs[i];
5098 }
e0001a05 5099
43cd72b9 5100 return NULL;
e0001a05
NC
5101}
5102
5103
43cd72b9 5104static int
7fa3d080 5105source_reloc_compare (const void *ap, const void *bp)
e0001a05 5106{
43cd72b9
BW
5107 const source_reloc *a = (const source_reloc *) ap;
5108 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5109
43cd72b9
BW
5110 if (a->r_rel.target_offset != b->r_rel.target_offset)
5111 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5112
43cd72b9
BW
5113 /* We don't need to sort on these criteria for correctness,
5114 but enforcing a more strict ordering prevents unstable qsort
5115 from behaving differently with different implementations.
5116 Without the code below we get correct but different results
5117 on Solaris 2.7 and 2.8. We would like to always produce the
5118 same results no matter the host. */
5119
5120 if ((!a->is_null) - (!b->is_null))
5121 return ((!a->is_null) - (!b->is_null));
5122 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5123}
5124
43cd72b9
BW
5125\f
5126/* Literal values and value hash tables. */
e0001a05 5127
43cd72b9
BW
5128/* Literals with the same value can be coalesced. The literal_value
5129 structure records the value of a literal: the "r_rel" field holds the
5130 information from the relocation on the literal (if there is one) and
5131 the "value" field holds the contents of the literal word itself.
e0001a05 5132
43cd72b9
BW
5133 The value_map structure records a literal value along with the
5134 location of a literal holding that value. The value_map hash table
5135 is indexed by the literal value, so that we can quickly check if a
5136 particular literal value has been seen before and is thus a candidate
5137 for coalescing. */
e0001a05 5138
43cd72b9
BW
5139typedef struct literal_value_struct literal_value;
5140typedef struct value_map_struct value_map;
5141typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5142
43cd72b9 5143struct literal_value_struct
e0001a05 5144{
68ffbac6 5145 r_reloc r_rel;
43cd72b9
BW
5146 unsigned long value;
5147 bfd_boolean is_abs_literal;
5148};
5149
5150struct value_map_struct
5151{
5152 literal_value val; /* The literal value. */
5153 r_reloc loc; /* Location of the literal. */
5154 value_map *next;
5155};
5156
5157struct value_map_hash_table_struct
5158{
5159 unsigned bucket_count;
5160 value_map **buckets;
5161 unsigned count;
5162 bfd_boolean has_last_loc;
5163 r_reloc last_loc;
5164};
5165
5166
e0001a05 5167static void
7fa3d080
BW
5168init_literal_value (literal_value *lit,
5169 const r_reloc *r_rel,
5170 unsigned long value,
5171 bfd_boolean is_abs_literal)
e0001a05 5172{
43cd72b9
BW
5173 lit->r_rel = *r_rel;
5174 lit->value = value;
5175 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5176}
5177
5178
43cd72b9 5179static bfd_boolean
7fa3d080
BW
5180literal_value_equal (const literal_value *src1,
5181 const literal_value *src2,
5182 bfd_boolean final_static_link)
e0001a05 5183{
43cd72b9 5184 struct elf_link_hash_entry *h1, *h2;
e0001a05 5185
68ffbac6 5186 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
43cd72b9 5187 return FALSE;
e0001a05 5188
43cd72b9
BW
5189 if (r_reloc_is_const (&src1->r_rel))
5190 return (src1->value == src2->value);
e0001a05 5191
43cd72b9
BW
5192 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5193 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5194 return FALSE;
e0001a05 5195
43cd72b9
BW
5196 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5197 return FALSE;
68ffbac6 5198
43cd72b9
BW
5199 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5200 return FALSE;
5201
5202 if (src1->value != src2->value)
5203 return FALSE;
68ffbac6 5204
43cd72b9
BW
5205 /* Now check for the same section (if defined) or the same elf_hash
5206 (if undefined or weak). */
5207 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5208 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5209 if (r_reloc_is_defined (&src1->r_rel)
5210 && (final_static_link
5211 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5212 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5213 {
5214 if (r_reloc_get_section (&src1->r_rel)
5215 != r_reloc_get_section (&src2->r_rel))
5216 return FALSE;
5217 }
5218 else
5219 {
5220 /* Require that the hash entries (i.e., symbols) be identical. */
5221 if (h1 != h2 || h1 == 0)
5222 return FALSE;
5223 }
5224
5225 if (src1->is_abs_literal != src2->is_abs_literal)
5226 return FALSE;
5227
5228 return TRUE;
e0001a05
NC
5229}
5230
e0001a05 5231
43cd72b9
BW
5232/* Must be power of 2. */
5233#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5234
43cd72b9 5235static value_map_hash_table *
7fa3d080 5236value_map_hash_table_init (void)
43cd72b9
BW
5237{
5238 value_map_hash_table *values;
e0001a05 5239
43cd72b9
BW
5240 values = (value_map_hash_table *)
5241 bfd_zmalloc (sizeof (value_map_hash_table));
5242 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5243 values->count = 0;
5244 values->buckets = (value_map **)
5245 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
68ffbac6 5246 if (values->buckets == NULL)
43cd72b9
BW
5247 {
5248 free (values);
5249 return NULL;
5250 }
5251 values->has_last_loc = FALSE;
5252
5253 return values;
5254}
5255
5256
5257static void
7fa3d080 5258value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5259{
43cd72b9
BW
5260 free (table->buckets);
5261 free (table);
5262}
5263
5264
5265static unsigned
7fa3d080 5266hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5267{
5268 return (val >> 2) + (val >> 10);
5269}
5270
5271
5272static unsigned
7fa3d080 5273literal_value_hash (const literal_value *src)
43cd72b9
BW
5274{
5275 unsigned hash_val;
e0001a05 5276
43cd72b9
BW
5277 hash_val = hash_bfd_vma (src->value);
5278 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5279 {
43cd72b9
BW
5280 void *sec_or_hash;
5281
5282 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5283 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5284 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
68ffbac6 5285
43cd72b9
BW
5286 /* Now check for the same section and the same elf_hash. */
5287 if (r_reloc_is_defined (&src->r_rel))
5288 sec_or_hash = r_reloc_get_section (&src->r_rel);
5289 else
5290 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5291 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5292 }
43cd72b9
BW
5293 return hash_val;
5294}
e0001a05 5295
e0001a05 5296
43cd72b9 5297/* Check if the specified literal_value has been seen before. */
e0001a05 5298
43cd72b9 5299static value_map *
7fa3d080
BW
5300value_map_get_cached_value (value_map_hash_table *map,
5301 const literal_value *val,
5302 bfd_boolean final_static_link)
43cd72b9
BW
5303{
5304 value_map *map_e;
5305 value_map *bucket;
5306 unsigned idx;
5307
5308 idx = literal_value_hash (val);
5309 idx = idx & (map->bucket_count - 1);
5310 bucket = map->buckets[idx];
5311 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5312 {
43cd72b9
BW
5313 if (literal_value_equal (&map_e->val, val, final_static_link))
5314 return map_e;
5315 }
5316 return NULL;
5317}
e0001a05 5318
e0001a05 5319
43cd72b9
BW
5320/* Record a new literal value. It is illegal to call this if VALUE
5321 already has an entry here. */
5322
5323static value_map *
7fa3d080
BW
5324add_value_map (value_map_hash_table *map,
5325 const literal_value *val,
5326 const r_reloc *loc,
5327 bfd_boolean final_static_link)
43cd72b9
BW
5328{
5329 value_map **bucket_p;
5330 unsigned idx;
5331
5332 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5333 if (val_e == NULL)
5334 {
5335 bfd_set_error (bfd_error_no_memory);
5336 return NULL;
e0001a05
NC
5337 }
5338
43cd72b9
BW
5339 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5340 val_e->val = *val;
5341 val_e->loc = *loc;
5342
5343 idx = literal_value_hash (val);
5344 idx = idx & (map->bucket_count - 1);
5345 bucket_p = &map->buckets[idx];
5346
5347 val_e->next = *bucket_p;
5348 *bucket_p = val_e;
5349 map->count++;
5350 /* FIXME: Consider resizing the hash table if we get too many entries. */
68ffbac6 5351
43cd72b9 5352 return val_e;
e0001a05
NC
5353}
5354
43cd72b9
BW
5355\f
5356/* Lists of text actions (ta_) for narrowing, widening, longcall
5357 conversion, space fill, code & literal removal, etc. */
5358
5359/* The following text actions are generated:
5360
5361 "ta_remove_insn" remove an instruction or instructions
5362 "ta_remove_longcall" convert longcall to call
5363 "ta_convert_longcall" convert longcall to nop/call
5364 "ta_narrow_insn" narrow a wide instruction
5365 "ta_widen" widen a narrow instruction
5366 "ta_fill" add fill or remove fill
5367 removed < 0 is a fill; branches to the fill address will be
5368 changed to address + fill size (e.g., address - removed)
5369 removed >= 0 branches to the fill address will stay unchanged
5370 "ta_remove_literal" remove a literal; this action is
5371 indicated when a literal is removed
5372 or replaced.
5373 "ta_add_literal" insert a new literal; this action is
5374 indicated when a literal has been moved.
5375 It may use a virtual_offset because
5376 multiple literals can be placed at the
5377 same location.
5378
5379 For each of these text actions, we also record the number of bytes
5380 removed by performing the text action. In the case of a "ta_widen"
5381 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5382
5383typedef struct text_action_struct text_action;
5384typedef struct text_action_list_struct text_action_list;
5385typedef enum text_action_enum_t text_action_t;
5386
5387enum text_action_enum_t
5388{
5389 ta_none,
5390 ta_remove_insn, /* removed = -size */
5391 ta_remove_longcall, /* removed = -size */
5392 ta_convert_longcall, /* removed = 0 */
5393 ta_narrow_insn, /* removed = -1 */
5394 ta_widen_insn, /* removed = +1 */
5395 ta_fill, /* removed = +size */
5396 ta_remove_literal,
5397 ta_add_literal
5398};
e0001a05 5399
e0001a05 5400
43cd72b9
BW
5401/* Structure for a text action record. */
5402struct text_action_struct
e0001a05 5403{
43cd72b9
BW
5404 text_action_t action;
5405 asection *sec; /* Optional */
5406 bfd_vma offset;
5407 bfd_vma virtual_offset; /* Zero except for adding literals. */
5408 int removed_bytes;
5409 literal_value value; /* Only valid when adding literals. */
e0001a05 5410
43cd72b9
BW
5411 text_action *next;
5412};
e0001a05 5413
e0001a05 5414
43cd72b9
BW
5415/* List of all of the actions taken on a text section. */
5416struct text_action_list_struct
5417{
5418 text_action *head;
5419};
e0001a05 5420
e0001a05 5421
7fa3d080
BW
5422static text_action *
5423find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
5424{
5425 text_action **m_p;
5426
5427 /* It is not necessary to fill at the end of a section. */
5428 if (sec->size == offset)
5429 return NULL;
5430
7fa3d080 5431 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5432 {
5433 text_action *t = *m_p;
5434 /* When the action is another fill at the same address,
5435 just increase the size. */
5436 if (t->offset == offset && t->action == ta_fill)
5437 return t;
5438 }
5439 return NULL;
5440}
5441
5442
5443static int
7fa3d080
BW
5444compute_removed_action_diff (const text_action *ta,
5445 asection *sec,
5446 bfd_vma offset,
5447 int removed,
5448 int removable_space)
43cd72b9
BW
5449{
5450 int new_removed;
5451 int current_removed = 0;
5452
7fa3d080 5453 if (ta)
43cd72b9
BW
5454 current_removed = ta->removed_bytes;
5455
5456 BFD_ASSERT (ta == NULL || ta->offset == offset);
5457 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5458
5459 /* It is not necessary to fill at the end of a section. Clean this up. */
5460 if (sec->size == offset)
5461 new_removed = removable_space - 0;
5462 else
5463 {
5464 int space;
5465 int added = -removed - current_removed;
5466 /* Ignore multiples of the section alignment. */
5467 added = ((1 << sec->alignment_power) - 1) & added;
5468 new_removed = (-added);
5469
5470 /* Modify for removable. */
5471 space = removable_space - new_removed;
5472 new_removed = (removable_space
5473 - (((1 << sec->alignment_power) - 1) & space));
5474 }
5475 return (new_removed - current_removed);
5476}
5477
5478
7fa3d080
BW
5479static void
5480adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5481{
5482 ta->removed_bytes += fill_diff;
5483}
5484
5485
5486/* Add a modification action to the text. For the case of adding or
5487 removing space, modify any current fill and assume that
5488 "unreachable_space" bytes can be freely contracted. Note that a
5489 negative removed value is a fill. */
5490
68ffbac6 5491static void
7fa3d080
BW
5492text_action_add (text_action_list *l,
5493 text_action_t action,
5494 asection *sec,
5495 bfd_vma offset,
5496 int removed)
43cd72b9
BW
5497{
5498 text_action **m_p;
5499 text_action *ta;
5500
5501 /* It is not necessary to fill at the end of a section. */
5502 if (action == ta_fill && sec->size == offset)
5503 return;
5504
5505 /* It is not necessary to fill 0 bytes. */
5506 if (action == ta_fill && removed == 0)
5507 return;
5508
7fa3d080 5509 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5510 {
5511 text_action *t = *m_p;
68ffbac6
L
5512
5513 if (action == ta_fill)
43cd72b9 5514 {
658ff993
SA
5515 /* When the action is another fill at the same address,
5516 just increase the size. */
5517 if (t->offset == offset && t->action == ta_fill)
5518 {
5519 t->removed_bytes += removed;
5520 return;
5521 }
5522 /* Fills need to happen before widens so that we don't
5523 insert fill bytes into the instruction stream. */
5524 if (t->offset == offset && t->action == ta_widen_insn)
5525 break;
43cd72b9
BW
5526 }
5527 }
5528
5529 /* Create a new record and fill it up. */
5530 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5531 ta->action = action;
5532 ta->sec = sec;
5533 ta->offset = offset;
5534 ta->removed_bytes = removed;
5535 ta->next = (*m_p);
5536 *m_p = ta;
5537}
5538
5539
5540static void
7fa3d080
BW
5541text_action_add_literal (text_action_list *l,
5542 text_action_t action,
5543 const r_reloc *loc,
5544 const literal_value *value,
5545 int removed)
43cd72b9
BW
5546{
5547 text_action **m_p;
5548 text_action *ta;
5549 asection *sec = r_reloc_get_section (loc);
5550 bfd_vma offset = loc->target_offset;
5551 bfd_vma virtual_offset = loc->virtual_offset;
5552
5553 BFD_ASSERT (action == ta_add_literal);
5554
5555 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5556 {
5557 if ((*m_p)->offset > offset
5558 && ((*m_p)->offset != offset
5559 || (*m_p)->virtual_offset > virtual_offset))
5560 break;
5561 }
5562
5563 /* Create a new record and fill it up. */
5564 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5565 ta->action = action;
5566 ta->sec = sec;
5567 ta->offset = offset;
5568 ta->virtual_offset = virtual_offset;
5569 ta->value = *value;
5570 ta->removed_bytes = removed;
5571 ta->next = (*m_p);
5572 *m_p = ta;
5573}
5574
5575
03669f1c
BW
5576/* Find the total offset adjustment for the relaxations specified by
5577 text_actions, beginning from a particular starting action. This is
5578 typically used from offset_with_removed_text to search an entire list of
5579 actions, but it may also be called directly when adjusting adjacent offsets
5580 so that each search may begin where the previous one left off. */
5581
5582static int
5583removed_by_actions (text_action **p_start_action,
5584 bfd_vma offset,
5585 bfd_boolean before_fill)
43cd72b9
BW
5586{
5587 text_action *r;
5588 int removed = 0;
5589
03669f1c
BW
5590 r = *p_start_action;
5591 while (r)
43cd72b9 5592 {
03669f1c
BW
5593 if (r->offset > offset)
5594 break;
5595
5596 if (r->offset == offset
5597 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5598 break;
5599
5600 removed += r->removed_bytes;
5601
5602 r = r->next;
43cd72b9
BW
5603 }
5604
03669f1c
BW
5605 *p_start_action = r;
5606 return removed;
5607}
5608
5609
68ffbac6 5610static bfd_vma
03669f1c
BW
5611offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5612{
5613 text_action *r = action_list->head;
5614 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
5615}
5616
5617
03e94c08
BW
5618static unsigned
5619action_list_count (text_action_list *action_list)
5620{
5621 text_action *r = action_list->head;
5622 unsigned count = 0;
5623 for (r = action_list->head; r != NULL; r = r->next)
5624 {
5625 count++;
5626 }
5627 return count;
5628}
5629
5630
43cd72b9
BW
5631/* The find_insn_action routine will only find non-fill actions. */
5632
7fa3d080
BW
5633static text_action *
5634find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
5635{
5636 text_action *t;
5637 for (t = action_list->head; t; t = t->next)
5638 {
5639 if (t->offset == offset)
5640 {
5641 switch (t->action)
5642 {
5643 case ta_none:
5644 case ta_fill:
5645 break;
5646 case ta_remove_insn:
5647 case ta_remove_longcall:
5648 case ta_convert_longcall:
5649 case ta_narrow_insn:
5650 case ta_widen_insn:
5651 return t;
5652 case ta_remove_literal:
5653 case ta_add_literal:
5654 BFD_ASSERT (0);
5655 break;
5656 }
5657 }
5658 }
5659 return NULL;
5660}
5661
5662
5663#if DEBUG
5664
5665static void
7fa3d080 5666print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
5667{
5668 text_action *r;
5669
5670 fprintf (fp, "Text Action\n");
5671 for (r = action_list->head; r != NULL; r = r->next)
5672 {
5673 const char *t = "unknown";
5674 switch (r->action)
5675 {
5676 case ta_remove_insn:
5677 t = "remove_insn"; break;
5678 case ta_remove_longcall:
5679 t = "remove_longcall"; break;
5680 case ta_convert_longcall:
c46082c8 5681 t = "convert_longcall"; break;
43cd72b9
BW
5682 case ta_narrow_insn:
5683 t = "narrow_insn"; break;
5684 case ta_widen_insn:
5685 t = "widen_insn"; break;
5686 case ta_fill:
5687 t = "fill"; break;
5688 case ta_none:
5689 t = "none"; break;
5690 case ta_remove_literal:
5691 t = "remove_literal"; break;
5692 case ta_add_literal:
5693 t = "add_literal"; break;
5694 }
5695
5696 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5697 r->sec->owner->filename,
9ccb8af9 5698 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
43cd72b9
BW
5699 }
5700}
5701
5702#endif /* DEBUG */
5703
5704\f
5705/* Lists of literals being coalesced or removed. */
5706
5707/* In the usual case, the literal identified by "from" is being
5708 coalesced with another literal identified by "to". If the literal is
5709 unused and is being removed altogether, "to.abfd" will be NULL.
5710 The removed_literal entries are kept on a per-section list, sorted
5711 by the "from" offset field. */
5712
5713typedef struct removed_literal_struct removed_literal;
5714typedef struct removed_literal_list_struct removed_literal_list;
5715
5716struct removed_literal_struct
5717{
5718 r_reloc from;
5719 r_reloc to;
5720 removed_literal *next;
5721};
5722
5723struct removed_literal_list_struct
5724{
5725 removed_literal *head;
5726 removed_literal *tail;
5727};
5728
5729
43cd72b9
BW
5730/* Record that the literal at "from" is being removed. If "to" is not
5731 NULL, the "from" literal is being coalesced with the "to" literal. */
5732
5733static void
7fa3d080
BW
5734add_removed_literal (removed_literal_list *removed_list,
5735 const r_reloc *from,
5736 const r_reloc *to)
43cd72b9
BW
5737{
5738 removed_literal *r, *new_r, *next_r;
5739
5740 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5741
5742 new_r->from = *from;
5743 if (to)
5744 new_r->to = *to;
5745 else
5746 new_r->to.abfd = NULL;
5747 new_r->next = NULL;
68ffbac6 5748
43cd72b9 5749 r = removed_list->head;
68ffbac6 5750 if (r == NULL)
43cd72b9
BW
5751 {
5752 removed_list->head = new_r;
5753 removed_list->tail = new_r;
5754 }
5755 /* Special check for common case of append. */
5756 else if (removed_list->tail->from.target_offset < from->target_offset)
5757 {
5758 removed_list->tail->next = new_r;
5759 removed_list->tail = new_r;
5760 }
5761 else
5762 {
68ffbac6 5763 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5764 {
5765 r = r->next;
5766 }
5767 next_r = r->next;
5768 r->next = new_r;
5769 new_r->next = next_r;
5770 if (next_r == NULL)
5771 removed_list->tail = new_r;
5772 }
5773}
5774
5775
5776/* Check if the list of removed literals contains an entry for the
5777 given address. Return the entry if found. */
5778
5779static removed_literal *
7fa3d080 5780find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
5781{
5782 removed_literal *r = removed_list->head;
5783 while (r && r->from.target_offset < addr)
5784 r = r->next;
5785 if (r && r->from.target_offset == addr)
5786 return r;
5787 return NULL;
5788}
5789
5790
5791#if DEBUG
5792
5793static void
7fa3d080 5794print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5795{
5796 removed_literal *r;
5797 r = removed_list->head;
5798 if (r)
5799 fprintf (fp, "Removed Literals\n");
5800 for (; r != NULL; r = r->next)
5801 {
5802 print_r_reloc (fp, &r->from);
5803 fprintf (fp, " => ");
5804 if (r->to.abfd == NULL)
5805 fprintf (fp, "REMOVED");
5806 else
5807 print_r_reloc (fp, &r->to);
5808 fprintf (fp, "\n");
5809 }
5810}
5811
5812#endif /* DEBUG */
5813
5814\f
5815/* Per-section data for relaxation. */
5816
5817typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5818
5819struct xtensa_relax_info_struct
5820{
5821 bfd_boolean is_relaxable_literal_section;
5822 bfd_boolean is_relaxable_asm_section;
5823 int visited; /* Number of times visited. */
5824
5825 source_reloc *src_relocs; /* Array[src_count]. */
5826 int src_count;
5827 int src_next; /* Next src_relocs entry to assign. */
5828
5829 removed_literal_list removed_list;
5830 text_action_list action_list;
5831
5832 reloc_bfd_fix *fix_list;
5833 reloc_bfd_fix *fix_array;
5834 unsigned fix_array_count;
5835
5836 /* Support for expanding the reloc array that is stored
5837 in the section structure. If the relocations have been
5838 reallocated, the newly allocated relocations will be referenced
5839 here along with the actual size allocated. The relocation
5840 count will always be found in the section structure. */
68ffbac6 5841 Elf_Internal_Rela *allocated_relocs;
43cd72b9
BW
5842 unsigned relocs_count;
5843 unsigned allocated_relocs_count;
5844};
5845
5846struct elf_xtensa_section_data
5847{
5848 struct bfd_elf_section_data elf;
5849 xtensa_relax_info relax_info;
5850};
5851
43cd72b9
BW
5852
5853static bfd_boolean
7fa3d080 5854elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5855{
f592407e
AM
5856 if (!sec->used_by_bfd)
5857 {
5858 struct elf_xtensa_section_data *sdata;
5859 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5860
f592407e
AM
5861 sdata = bfd_zalloc (abfd, amt);
5862 if (sdata == NULL)
5863 return FALSE;
5864 sec->used_by_bfd = sdata;
5865 }
43cd72b9
BW
5866
5867 return _bfd_elf_new_section_hook (abfd, sec);
5868}
5869
5870
7fa3d080
BW
5871static xtensa_relax_info *
5872get_xtensa_relax_info (asection *sec)
5873{
5874 struct elf_xtensa_section_data *section_data;
5875
5876 /* No info available if no section or if it is an output section. */
5877 if (!sec || sec == sec->output_section)
5878 return NULL;
5879
5880 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5881 return &section_data->relax_info;
5882}
5883
5884
43cd72b9 5885static void
7fa3d080 5886init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5887{
5888 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5889
5890 relax_info->is_relaxable_literal_section = FALSE;
5891 relax_info->is_relaxable_asm_section = FALSE;
5892 relax_info->visited = 0;
5893
5894 relax_info->src_relocs = NULL;
5895 relax_info->src_count = 0;
5896 relax_info->src_next = 0;
5897
5898 relax_info->removed_list.head = NULL;
5899 relax_info->removed_list.tail = NULL;
5900
5901 relax_info->action_list.head = NULL;
5902
5903 relax_info->fix_list = NULL;
5904 relax_info->fix_array = NULL;
5905 relax_info->fix_array_count = 0;
5906
68ffbac6 5907 relax_info->allocated_relocs = NULL;
43cd72b9
BW
5908 relax_info->relocs_count = 0;
5909 relax_info->allocated_relocs_count = 0;
5910}
5911
43cd72b9
BW
5912\f
5913/* Coalescing literals may require a relocation to refer to a section in
5914 a different input file, but the standard relocation information
5915 cannot express that. Instead, the reloc_bfd_fix structures are used
5916 to "fix" the relocations that refer to sections in other input files.
5917 These structures are kept on per-section lists. The "src_type" field
5918 records the relocation type in case there are multiple relocations on
5919 the same location. FIXME: This is ugly; an alternative might be to
5920 add new symbols with the "owner" field to some other input file. */
5921
5922struct reloc_bfd_fix_struct
5923{
5924 asection *src_sec;
5925 bfd_vma src_offset;
5926 unsigned src_type; /* Relocation type. */
68ffbac6 5927
43cd72b9
BW
5928 asection *target_sec;
5929 bfd_vma target_offset;
5930 bfd_boolean translated;
68ffbac6 5931
43cd72b9
BW
5932 reloc_bfd_fix *next;
5933};
5934
5935
43cd72b9 5936static reloc_bfd_fix *
7fa3d080
BW
5937reloc_bfd_fix_init (asection *src_sec,
5938 bfd_vma src_offset,
5939 unsigned src_type,
7fa3d080
BW
5940 asection *target_sec,
5941 bfd_vma target_offset,
5942 bfd_boolean translated)
43cd72b9
BW
5943{
5944 reloc_bfd_fix *fix;
5945
5946 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5947 fix->src_sec = src_sec;
5948 fix->src_offset = src_offset;
5949 fix->src_type = src_type;
43cd72b9
BW
5950 fix->target_sec = target_sec;
5951 fix->target_offset = target_offset;
5952 fix->translated = translated;
5953
5954 return fix;
5955}
5956
5957
5958static void
7fa3d080 5959add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5960{
5961 xtensa_relax_info *relax_info;
5962
5963 relax_info = get_xtensa_relax_info (src_sec);
5964 fix->next = relax_info->fix_list;
5965 relax_info->fix_list = fix;
5966}
5967
5968
5969static int
7fa3d080 5970fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5971{
5972 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5973 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5974
5975 if (a->src_offset != b->src_offset)
5976 return (a->src_offset - b->src_offset);
5977 return (a->src_type - b->src_type);
5978}
5979
5980
5981static void
7fa3d080 5982cache_fix_array (asection *sec)
43cd72b9
BW
5983{
5984 unsigned i, count = 0;
5985 reloc_bfd_fix *r;
5986 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5987
5988 if (relax_info == NULL)
5989 return;
5990 if (relax_info->fix_list == NULL)
5991 return;
5992
5993 for (r = relax_info->fix_list; r != NULL; r = r->next)
5994 count++;
5995
5996 relax_info->fix_array =
5997 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5998 relax_info->fix_array_count = count;
5999
6000 r = relax_info->fix_list;
6001 for (i = 0; i < count; i++, r = r->next)
6002 {
6003 relax_info->fix_array[count - 1 - i] = *r;
6004 relax_info->fix_array[count - 1 - i].next = NULL;
6005 }
6006
6007 qsort (relax_info->fix_array, relax_info->fix_array_count,
6008 sizeof (reloc_bfd_fix), fix_compare);
6009}
6010
6011
6012static reloc_bfd_fix *
7fa3d080 6013get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6014{
6015 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6016 reloc_bfd_fix *rv;
6017 reloc_bfd_fix key;
6018
6019 if (relax_info == NULL)
6020 return NULL;
6021 if (relax_info->fix_list == NULL)
6022 return NULL;
6023
6024 if (relax_info->fix_array == NULL)
6025 cache_fix_array (sec);
6026
6027 key.src_offset = offset;
6028 key.src_type = type;
6029 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6030 sizeof (reloc_bfd_fix), fix_compare);
6031 return rv;
6032}
6033
6034\f
6035/* Section caching. */
6036
6037typedef struct section_cache_struct section_cache_t;
6038
6039struct section_cache_struct
6040{
6041 asection *sec;
6042
6043 bfd_byte *contents; /* Cache of the section contents. */
6044 bfd_size_type content_length;
6045
6046 property_table_entry *ptbl; /* Cache of the section property table. */
6047 unsigned pte_count;
6048
6049 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6050 unsigned reloc_count;
6051};
6052
6053
7fa3d080
BW
6054static void
6055init_section_cache (section_cache_t *sec_cache)
6056{
6057 memset (sec_cache, 0, sizeof (*sec_cache));
6058}
43cd72b9
BW
6059
6060
6061static void
65e911f9 6062free_section_cache (section_cache_t *sec_cache)
43cd72b9 6063{
7fa3d080
BW
6064 if (sec_cache->sec)
6065 {
6066 release_contents (sec_cache->sec, sec_cache->contents);
6067 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6068 if (sec_cache->ptbl)
6069 free (sec_cache->ptbl);
7fa3d080 6070 }
43cd72b9
BW
6071}
6072
6073
6074static bfd_boolean
7fa3d080
BW
6075section_cache_section (section_cache_t *sec_cache,
6076 asection *sec,
6077 struct bfd_link_info *link_info)
43cd72b9
BW
6078{
6079 bfd *abfd;
6080 property_table_entry *prop_table = NULL;
6081 int ptblsize = 0;
6082 bfd_byte *contents = NULL;
6083 Elf_Internal_Rela *internal_relocs = NULL;
6084 bfd_size_type sec_size;
6085
6086 if (sec == NULL)
6087 return FALSE;
6088 if (sec == sec_cache->sec)
6089 return TRUE;
6090
6091 abfd = sec->owner;
6092 sec_size = bfd_get_section_limit (abfd, sec);
6093
6094 /* Get the contents. */
6095 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6096 if (contents == NULL && sec_size != 0)
6097 goto err;
6098
6099 /* Get the relocations. */
6100 internal_relocs = retrieve_internal_relocs (abfd, sec,
6101 link_info->keep_memory);
6102
6103 /* Get the entry table. */
6104 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6105 XTENSA_PROP_SEC_NAME, FALSE);
6106 if (ptblsize < 0)
6107 goto err;
6108
6109 /* Fill in the new section cache. */
65e911f9
AM
6110 free_section_cache (sec_cache);
6111 init_section_cache (sec_cache);
43cd72b9
BW
6112
6113 sec_cache->sec = sec;
6114 sec_cache->contents = contents;
6115 sec_cache->content_length = sec_size;
6116 sec_cache->relocs = internal_relocs;
6117 sec_cache->reloc_count = sec->reloc_count;
6118 sec_cache->pte_count = ptblsize;
6119 sec_cache->ptbl = prop_table;
6120
6121 return TRUE;
6122
6123 err:
6124 release_contents (sec, contents);
6125 release_internal_relocs (sec, internal_relocs);
6126 if (prop_table)
6127 free (prop_table);
6128 return FALSE;
6129}
6130
43cd72b9
BW
6131\f
6132/* Extended basic blocks. */
6133
6134/* An ebb_struct represents an Extended Basic Block. Within this
6135 range, we guarantee that all instructions are decodable, the
6136 property table entries are contiguous, and no property table
6137 specifies a segment that cannot have instructions moved. This
6138 structure contains caches of the contents, property table and
6139 relocations for the specified section for easy use. The range is
6140 specified by ranges of indices for the byte offset, property table
6141 offsets and relocation offsets. These must be consistent. */
6142
6143typedef struct ebb_struct ebb_t;
6144
6145struct ebb_struct
6146{
6147 asection *sec;
6148
6149 bfd_byte *contents; /* Cache of the section contents. */
6150 bfd_size_type content_length;
6151
6152 property_table_entry *ptbl; /* Cache of the section property table. */
6153 unsigned pte_count;
6154
6155 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6156 unsigned reloc_count;
6157
6158 bfd_vma start_offset; /* Offset in section. */
6159 unsigned start_ptbl_idx; /* Offset in the property table. */
6160 unsigned start_reloc_idx; /* Offset in the relocations. */
6161
6162 bfd_vma end_offset;
6163 unsigned end_ptbl_idx;
6164 unsigned end_reloc_idx;
6165
6166 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6167
6168 /* The unreachable property table at the end of this set of blocks;
6169 NULL if the end is not an unreachable block. */
6170 property_table_entry *ends_unreachable;
6171};
6172
6173
6174enum ebb_target_enum
6175{
6176 EBB_NO_ALIGN = 0,
6177 EBB_DESIRE_TGT_ALIGN,
6178 EBB_REQUIRE_TGT_ALIGN,
6179 EBB_REQUIRE_LOOP_ALIGN,
6180 EBB_REQUIRE_ALIGN
6181};
6182
6183
6184/* proposed_action_struct is similar to the text_action_struct except
6185 that is represents a potential transformation, not one that will
6186 occur. We build a list of these for an extended basic block
6187 and use them to compute the actual actions desired. We must be
6188 careful that the entire set of actual actions we perform do not
6189 break any relocations that would fit if the actions were not
6190 performed. */
6191
6192typedef struct proposed_action_struct proposed_action;
6193
6194struct proposed_action_struct
6195{
6196 enum ebb_target_enum align_type; /* for the target alignment */
6197 bfd_vma alignment_pow;
6198 text_action_t action;
6199 bfd_vma offset;
6200 int removed_bytes;
6201 bfd_boolean do_action; /* If false, then we will not perform the action. */
6202};
6203
6204
6205/* The ebb_constraint_struct keeps a set of proposed actions for an
6206 extended basic block. */
6207
6208typedef struct ebb_constraint_struct ebb_constraint;
6209
6210struct ebb_constraint_struct
6211{
6212 ebb_t ebb;
6213 bfd_boolean start_movable;
6214
6215 /* Bytes of extra space at the beginning if movable. */
6216 int start_extra_space;
6217
6218 enum ebb_target_enum start_align;
6219
6220 bfd_boolean end_movable;
6221
6222 /* Bytes of extra space at the end if movable. */
6223 int end_extra_space;
6224
6225 unsigned action_count;
6226 unsigned action_allocated;
6227
6228 /* Array of proposed actions. */
6229 proposed_action *actions;
6230
6231 /* Action alignments -- one for each proposed action. */
6232 enum ebb_target_enum *action_aligns;
6233};
6234
6235
43cd72b9 6236static void
7fa3d080 6237init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6238{
6239 memset (c, 0, sizeof (ebb_constraint));
6240}
6241
6242
6243static void
7fa3d080 6244free_ebb_constraint (ebb_constraint *c)
43cd72b9 6245{
7fa3d080 6246 if (c->actions)
43cd72b9
BW
6247 free (c->actions);
6248}
6249
6250
6251static void
7fa3d080
BW
6252init_ebb (ebb_t *ebb,
6253 asection *sec,
6254 bfd_byte *contents,
6255 bfd_size_type content_length,
6256 property_table_entry *prop_table,
6257 unsigned ptblsize,
6258 Elf_Internal_Rela *internal_relocs,
6259 unsigned reloc_count)
43cd72b9
BW
6260{
6261 memset (ebb, 0, sizeof (ebb_t));
6262 ebb->sec = sec;
6263 ebb->contents = contents;
6264 ebb->content_length = content_length;
6265 ebb->ptbl = prop_table;
6266 ebb->pte_count = ptblsize;
6267 ebb->relocs = internal_relocs;
6268 ebb->reloc_count = reloc_count;
6269 ebb->start_offset = 0;
6270 ebb->end_offset = ebb->content_length - 1;
6271 ebb->start_ptbl_idx = 0;
6272 ebb->end_ptbl_idx = ptblsize;
6273 ebb->start_reloc_idx = 0;
6274 ebb->end_reloc_idx = reloc_count;
6275}
6276
6277
6278/* Extend the ebb to all decodable contiguous sections. The algorithm
6279 for building a basic block around an instruction is to push it
6280 forward until we hit the end of a section, an unreachable block or
6281 a block that cannot be transformed. Then we push it backwards
6282 searching for similar conditions. */
6283
7fa3d080
BW
6284static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6285static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6286static bfd_size_type insn_block_decodable_len
6287 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6288
43cd72b9 6289static bfd_boolean
7fa3d080 6290extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6291{
6292 if (!extend_ebb_bounds_forward (ebb))
6293 return FALSE;
6294 if (!extend_ebb_bounds_backward (ebb))
6295 return FALSE;
6296 return TRUE;
6297}
6298
6299
6300static bfd_boolean
7fa3d080 6301extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6302{
6303 property_table_entry *the_entry, *new_entry;
6304
6305 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6306
6307 /* Stop when (1) we cannot decode an instruction, (2) we are at
6308 the end of the property tables, (3) we hit a non-contiguous property
6309 table entry, (4) we hit a NO_TRANSFORM region. */
6310
6311 while (1)
6312 {
6313 bfd_vma entry_end;
6314 bfd_size_type insn_block_len;
6315
6316 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6317 insn_block_len =
6318 insn_block_decodable_len (ebb->contents, ebb->content_length,
6319 ebb->end_offset,
6320 entry_end - ebb->end_offset);
6321 if (insn_block_len != (entry_end - ebb->end_offset))
6322 {
6323 (*_bfd_error_handler)
6324 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6325 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6326 return FALSE;
6327 }
6328 ebb->end_offset += insn_block_len;
6329
6330 if (ebb->end_offset == ebb->sec->size)
6331 ebb->ends_section = TRUE;
6332
6333 /* Update the reloc counter. */
6334 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6335 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6336 < ebb->end_offset))
6337 {
6338 ebb->end_reloc_idx++;
6339 }
6340
6341 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6342 return TRUE;
6343
6344 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6345 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6346 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6347 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6348 break;
6349
6350 if (the_entry->address + the_entry->size != new_entry->address)
6351 break;
6352
6353 the_entry = new_entry;
6354 ebb->end_ptbl_idx++;
6355 }
6356
6357 /* Quick check for an unreachable or end of file just at the end. */
6358 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6359 {
6360 if (ebb->end_offset == ebb->content_length)
6361 ebb->ends_section = TRUE;
6362 }
6363 else
6364 {
6365 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6366 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6367 && the_entry->address + the_entry->size == new_entry->address)
6368 ebb->ends_unreachable = new_entry;
6369 }
6370
6371 /* Any other ending requires exact alignment. */
6372 return TRUE;
6373}
6374
6375
6376static bfd_boolean
7fa3d080 6377extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6378{
6379 property_table_entry *the_entry, *new_entry;
6380
6381 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6382
6383 /* Stop when (1) we cannot decode the instructions in the current entry.
6384 (2) we are at the beginning of the property tables, (3) we hit a
6385 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6386
6387 while (1)
6388 {
6389 bfd_vma block_begin;
6390 bfd_size_type insn_block_len;
6391
6392 block_begin = the_entry->address - ebb->sec->vma;
6393 insn_block_len =
6394 insn_block_decodable_len (ebb->contents, ebb->content_length,
6395 block_begin,
6396 ebb->start_offset - block_begin);
6397 if (insn_block_len != ebb->start_offset - block_begin)
6398 {
6399 (*_bfd_error_handler)
6400 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6401 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6402 return FALSE;
6403 }
6404 ebb->start_offset -= insn_block_len;
6405
6406 /* Update the reloc counter. */
6407 while (ebb->start_reloc_idx > 0
6408 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6409 >= ebb->start_offset))
6410 {
6411 ebb->start_reloc_idx--;
6412 }
6413
6414 if (ebb->start_ptbl_idx == 0)
6415 return TRUE;
6416
6417 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6418 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6419 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6420 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6421 return TRUE;
6422 if (new_entry->address + new_entry->size != the_entry->address)
6423 return TRUE;
6424
6425 the_entry = new_entry;
6426 ebb->start_ptbl_idx--;
6427 }
6428 return TRUE;
6429}
6430
6431
6432static bfd_size_type
7fa3d080
BW
6433insn_block_decodable_len (bfd_byte *contents,
6434 bfd_size_type content_len,
6435 bfd_vma block_offset,
6436 bfd_size_type block_len)
43cd72b9
BW
6437{
6438 bfd_vma offset = block_offset;
6439
6440 while (offset < block_offset + block_len)
6441 {
6442 bfd_size_type insn_len = 0;
6443
6444 insn_len = insn_decode_len (contents, content_len, offset);
6445 if (insn_len == 0)
6446 return (offset - block_offset);
6447 offset += insn_len;
6448 }
6449 return (offset - block_offset);
6450}
6451
6452
6453static void
7fa3d080 6454ebb_propose_action (ebb_constraint *c,
7fa3d080 6455 enum ebb_target_enum align_type,
288f74fa 6456 bfd_vma alignment_pow,
7fa3d080
BW
6457 text_action_t action,
6458 bfd_vma offset,
6459 int removed_bytes,
6460 bfd_boolean do_action)
43cd72b9 6461{
b08b5071 6462 proposed_action *act;
43cd72b9 6463
43cd72b9
BW
6464 if (c->action_allocated <= c->action_count)
6465 {
b08b5071 6466 unsigned new_allocated, i;
823fc61f 6467 proposed_action *new_actions;
b08b5071
BW
6468
6469 new_allocated = (c->action_count + 2) * 2;
823fc61f 6470 new_actions = (proposed_action *)
43cd72b9
BW
6471 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6472
6473 for (i = 0; i < c->action_count; i++)
6474 new_actions[i] = c->actions[i];
7fa3d080 6475 if (c->actions)
43cd72b9
BW
6476 free (c->actions);
6477 c->actions = new_actions;
6478 c->action_allocated = new_allocated;
6479 }
b08b5071
BW
6480
6481 act = &c->actions[c->action_count];
6482 act->align_type = align_type;
6483 act->alignment_pow = alignment_pow;
6484 act->action = action;
6485 act->offset = offset;
6486 act->removed_bytes = removed_bytes;
6487 act->do_action = do_action;
6488
43cd72b9
BW
6489 c->action_count++;
6490}
6491
6492\f
6493/* Access to internal relocations, section contents and symbols. */
6494
6495/* During relaxation, we need to modify relocations, section contents,
6496 and symbol definitions, and we need to keep the original values from
6497 being reloaded from the input files, i.e., we need to "pin" the
6498 modified values in memory. We also want to continue to observe the
6499 setting of the "keep-memory" flag. The following functions wrap the
6500 standard BFD functions to take care of this for us. */
6501
6502static Elf_Internal_Rela *
7fa3d080 6503retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6504{
6505 Elf_Internal_Rela *internal_relocs;
6506
6507 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6508 return NULL;
6509
6510 internal_relocs = elf_section_data (sec)->relocs;
6511 if (internal_relocs == NULL)
6512 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6513 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6514 return internal_relocs;
6515}
6516
6517
6518static void
7fa3d080 6519pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6520{
6521 elf_section_data (sec)->relocs = internal_relocs;
6522}
6523
6524
6525static void
7fa3d080 6526release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6527{
6528 if (internal_relocs
6529 && elf_section_data (sec)->relocs != internal_relocs)
6530 free (internal_relocs);
6531}
6532
6533
6534static bfd_byte *
7fa3d080 6535retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6536{
6537 bfd_byte *contents;
6538 bfd_size_type sec_size;
6539
6540 sec_size = bfd_get_section_limit (abfd, sec);
6541 contents = elf_section_data (sec)->this_hdr.contents;
68ffbac6 6542
43cd72b9
BW
6543 if (contents == NULL && sec_size != 0)
6544 {
6545 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6546 {
7fa3d080 6547 if (contents)
43cd72b9
BW
6548 free (contents);
6549 return NULL;
6550 }
68ffbac6 6551 if (keep_memory)
43cd72b9
BW
6552 elf_section_data (sec)->this_hdr.contents = contents;
6553 }
6554 return contents;
6555}
6556
6557
6558static void
7fa3d080 6559pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6560{
6561 elf_section_data (sec)->this_hdr.contents = contents;
6562}
6563
6564
6565static void
7fa3d080 6566release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6567{
6568 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6569 free (contents);
6570}
6571
6572
6573static Elf_Internal_Sym *
7fa3d080 6574retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6575{
6576 Elf_Internal_Shdr *symtab_hdr;
6577 Elf_Internal_Sym *isymbuf;
6578 size_t locsymcount;
6579
6580 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6581 locsymcount = symtab_hdr->sh_info;
6582
6583 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6584 if (isymbuf == NULL && locsymcount != 0)
6585 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6586 NULL, NULL, NULL);
6587
6588 /* Save the symbols for this input file so they won't be read again. */
6589 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6590 symtab_hdr->contents = (unsigned char *) isymbuf;
6591
6592 return isymbuf;
6593}
6594
6595\f
6596/* Code for link-time relaxation. */
6597
6598/* Initialization for relaxation: */
7fa3d080 6599static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6600static bfd_boolean find_relaxable_sections
7fa3d080 6601 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6602static bfd_boolean collect_source_relocs
7fa3d080 6603 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6604static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6605 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6606 bfd_boolean *);
43cd72b9 6607static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6608 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6609static bfd_boolean compute_text_actions
7fa3d080
BW
6610 (bfd *, asection *, struct bfd_link_info *);
6611static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6612static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 6613static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
6614 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6615 const xtensa_opcode *);
7fa3d080 6616static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6617static void text_action_add_proposed
7fa3d080
BW
6618 (text_action_list *, const ebb_constraint *, asection *);
6619static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6620
6621/* First pass: */
6622static bfd_boolean compute_removed_literals
7fa3d080 6623 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6624static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6625 (asection *, Elf_Internal_Rela *, bfd_vma);
68ffbac6 6626static bfd_boolean is_removable_literal
99ded152
BW
6627 (const source_reloc *, int, const source_reloc *, int, asection *,
6628 property_table_entry *, int);
43cd72b9 6629static bfd_boolean remove_dead_literal
7fa3d080 6630 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
68ffbac6 6631 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
7fa3d080
BW
6632static bfd_boolean identify_literal_placement
6633 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6634 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6635 source_reloc *, property_table_entry *, int, section_cache_t *,
6636 bfd_boolean);
6637static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6638static bfd_boolean coalesce_shared_literal
7fa3d080 6639 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6640static bfd_boolean move_shared_literal
7fa3d080
BW
6641 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6642 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6643
6644/* Second pass: */
7fa3d080
BW
6645static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6646static bfd_boolean translate_section_fixes (asection *);
6647static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6648static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6649static void shrink_dynamic_reloc_sections
7fa3d080 6650 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6651static bfd_boolean move_literal
7fa3d080
BW
6652 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6653 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6654static bfd_boolean relax_property_section
7fa3d080 6655 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6656
6657/* Third pass: */
7fa3d080 6658static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6659
6660
68ffbac6 6661static bfd_boolean
7fa3d080
BW
6662elf_xtensa_relax_section (bfd *abfd,
6663 asection *sec,
6664 struct bfd_link_info *link_info,
6665 bfd_boolean *again)
43cd72b9
BW
6666{
6667 static value_map_hash_table *values = NULL;
6668 static bfd_boolean relocations_analyzed = FALSE;
6669 xtensa_relax_info *relax_info;
6670
6671 if (!relocations_analyzed)
6672 {
6673 /* Do some overall initialization for relaxation. */
6674 values = value_map_hash_table_init ();
6675 if (values == NULL)
6676 return FALSE;
6677 relaxing_section = TRUE;
6678 if (!analyze_relocations (link_info))
6679 return FALSE;
6680 relocations_analyzed = TRUE;
6681 }
6682 *again = FALSE;
6683
6684 /* Don't mess with linker-created sections. */
6685 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6686 return TRUE;
6687
6688 relax_info = get_xtensa_relax_info (sec);
6689 BFD_ASSERT (relax_info != NULL);
6690
6691 switch (relax_info->visited)
6692 {
6693 case 0:
6694 /* Note: It would be nice to fold this pass into
6695 analyze_relocations, but it is important for this step that the
6696 sections be examined in link order. */
6697 if (!compute_removed_literals (abfd, sec, link_info, values))
6698 return FALSE;
6699 *again = TRUE;
6700 break;
6701
6702 case 1:
6703 if (values)
6704 value_map_hash_table_delete (values);
6705 values = NULL;
6706 if (!relax_section (abfd, sec, link_info))
6707 return FALSE;
6708 *again = TRUE;
6709 break;
6710
6711 case 2:
6712 if (!relax_section_symbols (abfd, sec))
6713 return FALSE;
6714 break;
6715 }
6716
6717 relax_info->visited++;
6718 return TRUE;
6719}
6720
6721\f
6722/* Initialization for relaxation. */
6723
6724/* This function is called once at the start of relaxation. It scans
6725 all the input sections and marks the ones that are relaxable (i.e.,
6726 literal sections with L32R relocations against them), and then
6727 collects source_reloc information for all the relocations against
6728 those relaxable sections. During this process, it also detects
6729 longcalls, i.e., calls relaxed by the assembler into indirect
6730 calls, that can be optimized back into direct calls. Within each
6731 extended basic block (ebb) containing an optimized longcall, it
6732 computes a set of "text actions" that can be performed to remove
6733 the L32R associated with the longcall while optionally preserving
6734 branch target alignments. */
6735
6736static bfd_boolean
7fa3d080 6737analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6738{
6739 bfd *abfd;
6740 asection *sec;
6741 bfd_boolean is_relaxable = FALSE;
6742
6743 /* Initialize the per-section relaxation info. */
6744 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6745 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6746 {
6747 init_xtensa_relax_info (sec);
6748 }
6749
6750 /* Mark relaxable sections (and count relocations against each one). */
6751 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6752 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6753 {
6754 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6755 return FALSE;
6756 }
6757
6758 /* Bail out if there are no relaxable sections. */
6759 if (!is_relaxable)
6760 return TRUE;
6761
6762 /* Allocate space for source_relocs. */
6763 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6764 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6765 {
6766 xtensa_relax_info *relax_info;
6767
6768 relax_info = get_xtensa_relax_info (sec);
6769 if (relax_info->is_relaxable_literal_section
6770 || relax_info->is_relaxable_asm_section)
6771 {
6772 relax_info->src_relocs = (source_reloc *)
6773 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6774 }
25c6282a
BW
6775 else
6776 relax_info->src_count = 0;
43cd72b9
BW
6777 }
6778
6779 /* Collect info on relocations against each relaxable section. */
6780 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6781 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6782 {
6783 if (!collect_source_relocs (abfd, sec, link_info))
6784 return FALSE;
6785 }
6786
6787 /* Compute the text actions. */
6788 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6789 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6790 {
6791 if (!compute_text_actions (abfd, sec, link_info))
6792 return FALSE;
6793 }
6794
6795 return TRUE;
6796}
6797
6798
6799/* Find all the sections that might be relaxed. The motivation for
6800 this pass is that collect_source_relocs() needs to record _all_ the
6801 relocations that target each relaxable section. That is expensive
6802 and unnecessary unless the target section is actually going to be
6803 relaxed. This pass identifies all such sections by checking if
6804 they have L32Rs pointing to them. In the process, the total number
6805 of relocations targeting each section is also counted so that we
6806 know how much space to allocate for source_relocs against each
6807 relaxable literal section. */
6808
6809static bfd_boolean
7fa3d080
BW
6810find_relaxable_sections (bfd *abfd,
6811 asection *sec,
6812 struct bfd_link_info *link_info,
6813 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6814{
6815 Elf_Internal_Rela *internal_relocs;
6816 bfd_byte *contents;
6817 bfd_boolean ok = TRUE;
6818 unsigned i;
6819 xtensa_relax_info *source_relax_info;
25c6282a 6820 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6821
6822 internal_relocs = retrieve_internal_relocs (abfd, sec,
6823 link_info->keep_memory);
68ffbac6 6824 if (internal_relocs == NULL)
43cd72b9
BW
6825 return ok;
6826
6827 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6828 if (contents == NULL && sec->size != 0)
6829 {
6830 ok = FALSE;
6831 goto error_return;
6832 }
6833
6834 source_relax_info = get_xtensa_relax_info (sec);
68ffbac6 6835 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6836 {
6837 Elf_Internal_Rela *irel = &internal_relocs[i];
6838 r_reloc r_rel;
6839 asection *target_sec;
6840 xtensa_relax_info *target_relax_info;
6841
6842 /* If this section has not already been marked as "relaxable", and
6843 if it contains any ASM_EXPAND relocations (marking expanded
6844 longcalls) that can be optimized into direct calls, then mark
6845 the section as "relaxable". */
6846 if (source_relax_info
6847 && !source_relax_info->is_relaxable_asm_section
6848 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6849 {
6850 bfd_boolean is_reachable = FALSE;
6851 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6852 link_info, &is_reachable)
6853 && is_reachable)
6854 {
6855 source_relax_info->is_relaxable_asm_section = TRUE;
6856 *is_relaxable_p = TRUE;
6857 }
6858 }
6859
6860 r_reloc_init (&r_rel, abfd, irel, contents,
6861 bfd_get_section_limit (abfd, sec));
6862
6863 target_sec = r_reloc_get_section (&r_rel);
6864 target_relax_info = get_xtensa_relax_info (target_sec);
6865 if (!target_relax_info)
6866 continue;
6867
6868 /* Count PC-relative operand relocations against the target section.
6869 Note: The conditions tested here must match the conditions under
6870 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6871 is_l32r_reloc = FALSE;
6872 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6873 {
6874 xtensa_opcode opcode =
6875 get_relocation_opcode (abfd, sec, contents, irel);
6876 if (opcode != XTENSA_UNDEFINED)
6877 {
6878 is_l32r_reloc = (opcode == get_l32r_opcode ());
6879 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6880 || is_l32r_reloc)
6881 target_relax_info->src_count++;
6882 }
6883 }
43cd72b9 6884
25c6282a 6885 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6886 {
6887 /* Mark the target section as relaxable. */
6888 target_relax_info->is_relaxable_literal_section = TRUE;
6889 *is_relaxable_p = TRUE;
6890 }
6891 }
6892
6893 error_return:
6894 release_contents (sec, contents);
6895 release_internal_relocs (sec, internal_relocs);
6896 return ok;
6897}
6898
6899
6900/* Record _all_ the relocations that point to relaxable sections, and
6901 get rid of ASM_EXPAND relocs by either converting them to
6902 ASM_SIMPLIFY or by removing them. */
6903
6904static bfd_boolean
7fa3d080
BW
6905collect_source_relocs (bfd *abfd,
6906 asection *sec,
6907 struct bfd_link_info *link_info)
43cd72b9
BW
6908{
6909 Elf_Internal_Rela *internal_relocs;
6910 bfd_byte *contents;
6911 bfd_boolean ok = TRUE;
6912 unsigned i;
6913 bfd_size_type sec_size;
6914
68ffbac6 6915 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 6916 link_info->keep_memory);
68ffbac6 6917 if (internal_relocs == NULL)
43cd72b9
BW
6918 return ok;
6919
6920 sec_size = bfd_get_section_limit (abfd, sec);
6921 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6922 if (contents == NULL && sec_size != 0)
6923 {
6924 ok = FALSE;
6925 goto error_return;
6926 }
6927
6928 /* Record relocations against relaxable literal sections. */
68ffbac6 6929 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6930 {
6931 Elf_Internal_Rela *irel = &internal_relocs[i];
6932 r_reloc r_rel;
6933 asection *target_sec;
6934 xtensa_relax_info *target_relax_info;
6935
6936 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6937
6938 target_sec = r_reloc_get_section (&r_rel);
6939 target_relax_info = get_xtensa_relax_info (target_sec);
6940
6941 if (target_relax_info
6942 && (target_relax_info->is_relaxable_literal_section
6943 || target_relax_info->is_relaxable_asm_section))
6944 {
6945 xtensa_opcode opcode = XTENSA_UNDEFINED;
6946 int opnd = -1;
6947 bfd_boolean is_abs_literal = FALSE;
6948
6949 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6950 {
6951 /* None of the current alternate relocs are PC-relative,
6952 and only PC-relative relocs matter here. However, we
6953 still need to record the opcode for literal
6954 coalescing. */
6955 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6956 if (opcode == get_l32r_opcode ())
6957 {
6958 is_abs_literal = TRUE;
6959 opnd = 1;
6960 }
6961 else
6962 opcode = XTENSA_UNDEFINED;
6963 }
6964 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6965 {
6966 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6967 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6968 }
6969
6970 if (opcode != XTENSA_UNDEFINED)
6971 {
6972 int src_next = target_relax_info->src_next++;
6973 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6974
6975 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6976 is_abs_literal);
6977 }
6978 }
6979 }
6980
6981 /* Now get rid of ASM_EXPAND relocations. At this point, the
6982 src_relocs array for the target literal section may still be
6983 incomplete, but it must at least contain the entries for the L32R
6984 relocations associated with ASM_EXPANDs because they were just
6985 added in the preceding loop over the relocations. */
6986
68ffbac6 6987 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6988 {
6989 Elf_Internal_Rela *irel = &internal_relocs[i];
6990 bfd_boolean is_reachable;
6991
6992 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6993 &is_reachable))
6994 continue;
6995
6996 if (is_reachable)
6997 {
6998 Elf_Internal_Rela *l32r_irel;
6999 r_reloc r_rel;
7000 asection *target_sec;
7001 xtensa_relax_info *target_relax_info;
7002
7003 /* Mark the source_reloc for the L32R so that it will be
7004 removed in compute_removed_literals(), along with the
7005 associated literal. */
7006 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7007 irel, internal_relocs);
7008 if (l32r_irel == NULL)
7009 continue;
7010
7011 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7012
7013 target_sec = r_reloc_get_section (&r_rel);
7014 target_relax_info = get_xtensa_relax_info (target_sec);
7015
7016 if (target_relax_info
7017 && (target_relax_info->is_relaxable_literal_section
7018 || target_relax_info->is_relaxable_asm_section))
7019 {
7020 source_reloc *s_reloc;
7021
7022 /* Search the source_relocs for the entry corresponding to
7023 the l32r_irel. Note: The src_relocs array is not yet
7024 sorted, but it wouldn't matter anyway because we're
7025 searching by source offset instead of target offset. */
68ffbac6 7026 s_reloc = find_source_reloc (target_relax_info->src_relocs,
43cd72b9
BW
7027 target_relax_info->src_next,
7028 sec, l32r_irel);
7029 BFD_ASSERT (s_reloc);
7030 s_reloc->is_null = TRUE;
7031 }
7032
7033 /* Convert this reloc to ASM_SIMPLIFY. */
7034 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7035 R_XTENSA_ASM_SIMPLIFY);
7036 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7037
7038 pin_internal_relocs (sec, internal_relocs);
7039 }
7040 else
7041 {
7042 /* It is resolvable but doesn't reach. We resolve now
7043 by eliminating the relocation -- the call will remain
7044 expanded into L32R/CALLX. */
7045 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7046 pin_internal_relocs (sec, internal_relocs);
7047 }
7048 }
7049
7050 error_return:
7051 release_contents (sec, contents);
7052 release_internal_relocs (sec, internal_relocs);
7053 return ok;
7054}
7055
7056
7057/* Return TRUE if the asm expansion can be resolved. Generally it can
7058 be resolved on a final link or when a partial link locates it in the
7059 same section as the target. Set "is_reachable" flag if the target of
7060 the call is within the range of a direct call, given the current VMA
7061 for this section and the target section. */
7062
7063bfd_boolean
7fa3d080
BW
7064is_resolvable_asm_expansion (bfd *abfd,
7065 asection *sec,
7066 bfd_byte *contents,
7067 Elf_Internal_Rela *irel,
7068 struct bfd_link_info *link_info,
7069 bfd_boolean *is_reachable_p)
43cd72b9
BW
7070{
7071 asection *target_sec;
7072 bfd_vma target_offset;
7073 r_reloc r_rel;
7074 xtensa_opcode opcode, direct_call_opcode;
7075 bfd_vma self_address;
7076 bfd_vma dest_address;
7077 bfd_boolean uses_l32r;
7078 bfd_size_type sec_size;
7079
7080 *is_reachable_p = FALSE;
7081
7082 if (contents == NULL)
7083 return FALSE;
7084
68ffbac6 7085 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
43cd72b9
BW
7086 return FALSE;
7087
7088 sec_size = bfd_get_section_limit (abfd, sec);
7089 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7090 sec_size - irel->r_offset, &uses_l32r);
7091 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7092 if (!uses_l32r)
7093 return FALSE;
68ffbac6 7094
43cd72b9
BW
7095 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7096 if (direct_call_opcode == XTENSA_UNDEFINED)
7097 return FALSE;
7098
7099 /* Check and see that the target resolves. */
7100 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7101 if (!r_reloc_is_defined (&r_rel))
7102 return FALSE;
7103
7104 target_sec = r_reloc_get_section (&r_rel);
7105 target_offset = r_rel.target_offset;
7106
7107 /* If the target is in a shared library, then it doesn't reach. This
7108 isn't supposed to come up because the compiler should never generate
7109 non-PIC calls on systems that use shared libraries, but the linker
7110 shouldn't crash regardless. */
7111 if (!target_sec->output_section)
7112 return FALSE;
68ffbac6 7113
43cd72b9
BW
7114 /* For relocatable sections, we can only simplify when the output
7115 section of the target is the same as the output section of the
7116 source. */
7117 if (link_info->relocatable
7118 && (target_sec->output_section != sec->output_section
7119 || is_reloc_sym_weak (abfd, irel)))
7120 return FALSE;
7121
7122 self_address = (sec->output_section->vma
7123 + sec->output_offset + irel->r_offset + 3);
7124 dest_address = (target_sec->output_section->vma
7125 + target_sec->output_offset + target_offset);
68ffbac6 7126
43cd72b9
BW
7127 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7128 self_address, dest_address);
7129
7130 if ((self_address >> CALL_SEGMENT_BITS) !=
7131 (dest_address >> CALL_SEGMENT_BITS))
7132 return FALSE;
7133
7134 return TRUE;
7135}
7136
7137
7138static Elf_Internal_Rela *
7fa3d080
BW
7139find_associated_l32r_irel (bfd *abfd,
7140 asection *sec,
7141 bfd_byte *contents,
7142 Elf_Internal_Rela *other_irel,
7143 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7144{
7145 unsigned i;
e0001a05 7146
68ffbac6 7147 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7148 {
7149 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7150
43cd72b9
BW
7151 if (irel == other_irel)
7152 continue;
7153 if (irel->r_offset != other_irel->r_offset)
7154 continue;
7155 if (is_l32r_relocation (abfd, sec, contents, irel))
7156 return irel;
7157 }
7158
7159 return NULL;
e0001a05
NC
7160}
7161
7162
cb337148
BW
7163static xtensa_opcode *
7164build_reloc_opcodes (bfd *abfd,
7165 asection *sec,
7166 bfd_byte *contents,
7167 Elf_Internal_Rela *internal_relocs)
7168{
7169 unsigned i;
7170 xtensa_opcode *reloc_opcodes =
7171 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7172 for (i = 0; i < sec->reloc_count; i++)
7173 {
7174 Elf_Internal_Rela *irel = &internal_relocs[i];
7175 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7176 }
7177 return reloc_opcodes;
7178}
7179
7180
43cd72b9
BW
7181/* The compute_text_actions function will build a list of potential
7182 transformation actions for code in the extended basic block of each
7183 longcall that is optimized to a direct call. From this list we
7184 generate a set of actions to actually perform that optimizes for
7185 space and, if not using size_opt, maintains branch target
7186 alignments.
e0001a05 7187
43cd72b9
BW
7188 These actions to be performed are placed on a per-section list.
7189 The actual changes are performed by relax_section() in the second
7190 pass. */
7191
7192bfd_boolean
7fa3d080
BW
7193compute_text_actions (bfd *abfd,
7194 asection *sec,
7195 struct bfd_link_info *link_info)
e0001a05 7196{
cb337148 7197 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7198 xtensa_relax_info *relax_info;
e0001a05 7199 bfd_byte *contents;
43cd72b9 7200 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7201 bfd_boolean ok = TRUE;
7202 unsigned i;
43cd72b9
BW
7203 property_table_entry *prop_table = 0;
7204 int ptblsize = 0;
7205 bfd_size_type sec_size;
43cd72b9 7206
43cd72b9
BW
7207 relax_info = get_xtensa_relax_info (sec);
7208 BFD_ASSERT (relax_info);
25c6282a
BW
7209 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7210
7211 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7212 if (!relax_info->is_relaxable_asm_section)
7213 return ok;
e0001a05
NC
7214
7215 internal_relocs = retrieve_internal_relocs (abfd, sec,
7216 link_info->keep_memory);
e0001a05 7217
43cd72b9
BW
7218 if (internal_relocs)
7219 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7220 internal_reloc_compare);
7221
7222 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7223 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7224 if (contents == NULL && sec_size != 0)
e0001a05
NC
7225 {
7226 ok = FALSE;
7227 goto error_return;
7228 }
7229
43cd72b9
BW
7230 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7231 XTENSA_PROP_SEC_NAME, FALSE);
7232 if (ptblsize < 0)
7233 {
7234 ok = FALSE;
7235 goto error_return;
7236 }
7237
7238 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7239 {
7240 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7241 bfd_vma r_offset;
7242 property_table_entry *the_entry;
7243 int ptbl_idx;
7244 ebb_t *ebb;
7245 ebb_constraint ebb_table;
7246 bfd_size_type simplify_size;
7247
7248 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7249 continue;
7250 r_offset = irel->r_offset;
e0001a05 7251
43cd72b9
BW
7252 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7253 if (simplify_size == 0)
7254 {
7255 (*_bfd_error_handler)
7256 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7257 sec->owner, sec, r_offset);
7258 continue;
7259 }
e0001a05 7260
43cd72b9
BW
7261 /* If the instruction table is not around, then don't do this
7262 relaxation. */
7263 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7264 sec->vma + irel->r_offset);
7265 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7266 {
7267 text_action_add (&relax_info->action_list,
7268 ta_convert_longcall, sec, r_offset,
7269 0);
7270 continue;
7271 }
7272
7273 /* If the next longcall happens to be at the same address as an
7274 unreachable section of size 0, then skip forward. */
7275 ptbl_idx = the_entry - prop_table;
7276 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7277 && the_entry->size == 0
7278 && ptbl_idx + 1 < ptblsize
7279 && (prop_table[ptbl_idx + 1].address
7280 == prop_table[ptbl_idx].address))
7281 {
7282 ptbl_idx++;
7283 the_entry++;
7284 }
e0001a05 7285
99ded152 7286 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7287 /* NO_REORDER is OK */
7288 continue;
e0001a05 7289
43cd72b9
BW
7290 init_ebb_constraint (&ebb_table);
7291 ebb = &ebb_table.ebb;
7292 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7293 internal_relocs, sec->reloc_count);
7294 ebb->start_offset = r_offset + simplify_size;
7295 ebb->end_offset = r_offset + simplify_size;
7296 ebb->start_ptbl_idx = ptbl_idx;
7297 ebb->end_ptbl_idx = ptbl_idx;
7298 ebb->start_reloc_idx = i;
7299 ebb->end_reloc_idx = i;
7300
cb337148
BW
7301 /* Precompute the opcode for each relocation. */
7302 if (reloc_opcodes == NULL)
7303 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7304 internal_relocs);
7305
43cd72b9
BW
7306 if (!extend_ebb_bounds (ebb)
7307 || !compute_ebb_proposed_actions (&ebb_table)
7308 || !compute_ebb_actions (&ebb_table)
7309 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
7310 internal_relocs, &ebb_table,
7311 reloc_opcodes)
43cd72b9 7312 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7313 {
43cd72b9
BW
7314 /* If anything goes wrong or we get unlucky and something does
7315 not fit, with our plan because of expansion between
7316 critical branches, just convert to a NOP. */
7317
7318 text_action_add (&relax_info->action_list,
7319 ta_convert_longcall, sec, r_offset, 0);
7320 i = ebb_table.ebb.end_reloc_idx;
7321 free_ebb_constraint (&ebb_table);
7322 continue;
e0001a05 7323 }
43cd72b9
BW
7324
7325 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7326
7327 /* Update the index so we do not go looking at the relocations
7328 we have already processed. */
7329 i = ebb_table.ebb.end_reloc_idx;
7330 free_ebb_constraint (&ebb_table);
e0001a05
NC
7331 }
7332
43cd72b9 7333#if DEBUG
7fa3d080 7334 if (relax_info->action_list.head)
43cd72b9
BW
7335 print_action_list (stderr, &relax_info->action_list);
7336#endif
7337
7338error_return:
e0001a05
NC
7339 release_contents (sec, contents);
7340 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7341 if (prop_table)
7342 free (prop_table);
cb337148
BW
7343 if (reloc_opcodes)
7344 free (reloc_opcodes);
43cd72b9 7345
e0001a05
NC
7346 return ok;
7347}
7348
7349
64b607e6
BW
7350/* Do not widen an instruction if it is preceeded by a
7351 loop opcode. It might cause misalignment. */
7352
7353static bfd_boolean
7354prev_instr_is_a_loop (bfd_byte *contents,
7355 bfd_size_type content_length,
7356 bfd_size_type offset)
7357{
7358 xtensa_opcode prev_opcode;
7359
7360 if (offset < 3)
7361 return FALSE;
7362 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7363 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
68ffbac6 7364}
64b607e6
BW
7365
7366
43cd72b9 7367/* Find all of the possible actions for an extended basic block. */
e0001a05 7368
43cd72b9 7369bfd_boolean
7fa3d080 7370compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7371{
43cd72b9
BW
7372 const ebb_t *ebb = &ebb_table->ebb;
7373 unsigned rel_idx = ebb->start_reloc_idx;
7374 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7375 bfd_vma offset = 0;
7376 xtensa_isa isa = xtensa_default_isa;
7377 xtensa_format fmt;
7378 static xtensa_insnbuf insnbuf = NULL;
7379 static xtensa_insnbuf slotbuf = NULL;
7380
7381 if (insnbuf == NULL)
7382 {
7383 insnbuf = xtensa_insnbuf_alloc (isa);
7384 slotbuf = xtensa_insnbuf_alloc (isa);
7385 }
e0001a05 7386
43cd72b9
BW
7387 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7388 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7389
43cd72b9 7390 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7391 {
64b607e6 7392 bfd_vma start_offset, end_offset;
43cd72b9 7393 bfd_size_type insn_len;
e0001a05 7394
43cd72b9
BW
7395 start_offset = entry->address - ebb->sec->vma;
7396 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7397
43cd72b9
BW
7398 if (entry == start_entry)
7399 start_offset = ebb->start_offset;
7400 if (entry == end_entry)
7401 end_offset = ebb->end_offset;
7402 offset = start_offset;
e0001a05 7403
43cd72b9
BW
7404 if (offset == entry->address - ebb->sec->vma
7405 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7406 {
7407 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7408 BFD_ASSERT (offset != end_offset);
7409 if (offset == end_offset)
7410 return FALSE;
e0001a05 7411
43cd72b9
BW
7412 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7413 offset);
68ffbac6 7414 if (insn_len == 0)
64b607e6
BW
7415 goto decode_error;
7416
43cd72b9
BW
7417 if (check_branch_target_aligned_address (offset, insn_len))
7418 align_type = EBB_REQUIRE_TGT_ALIGN;
7419
7420 ebb_propose_action (ebb_table, align_type, 0,
7421 ta_none, offset, 0, TRUE);
7422 }
7423
7424 while (offset != end_offset)
e0001a05 7425 {
43cd72b9 7426 Elf_Internal_Rela *irel;
e0001a05 7427 xtensa_opcode opcode;
e0001a05 7428
43cd72b9
BW
7429 while (rel_idx < ebb->end_reloc_idx
7430 && (ebb->relocs[rel_idx].r_offset < offset
7431 || (ebb->relocs[rel_idx].r_offset == offset
7432 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7433 != R_XTENSA_ASM_SIMPLIFY))))
7434 rel_idx++;
7435
7436 /* Check for longcall. */
7437 irel = &ebb->relocs[rel_idx];
7438 if (irel->r_offset == offset
7439 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7440 {
7441 bfd_size_type simplify_size;
e0001a05 7442
68ffbac6 7443 simplify_size = get_asm_simplify_size (ebb->contents,
43cd72b9
BW
7444 ebb->content_length,
7445 irel->r_offset);
7446 if (simplify_size == 0)
64b607e6 7447 goto decode_error;
43cd72b9
BW
7448
7449 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7450 ta_convert_longcall, offset, 0, TRUE);
68ffbac6 7451
43cd72b9
BW
7452 offset += simplify_size;
7453 continue;
7454 }
e0001a05 7455
64b607e6
BW
7456 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7457 goto decode_error;
7458 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7459 ebb->content_length - offset);
7460 fmt = xtensa_format_decode (isa, insnbuf);
7461 if (fmt == XTENSA_UNDEFINED)
7462 goto decode_error;
7463 insn_len = xtensa_format_length (isa, fmt);
7464 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7465 goto decode_error;
7466
7467 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7468 {
64b607e6
BW
7469 offset += insn_len;
7470 continue;
43cd72b9 7471 }
64b607e6
BW
7472
7473 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7474 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7475 if (opcode == XTENSA_UNDEFINED)
7476 goto decode_error;
7477
43cd72b9 7478 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7479 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7480 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7481 {
7482 /* Add an instruction narrow action. */
7483 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7484 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7485 }
99ded152 7486 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7487 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7488 && ! prev_instr_is_a_loop (ebb->contents,
7489 ebb->content_length, offset))
43cd72b9
BW
7490 {
7491 /* Add an instruction widen action. */
7492 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7493 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7494 }
64b607e6 7495 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7496 {
7497 /* Check for branch targets. */
7498 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7499 ta_none, offset, 0, TRUE);
43cd72b9
BW
7500 }
7501
7502 offset += insn_len;
e0001a05
NC
7503 }
7504 }
7505
43cd72b9
BW
7506 if (ebb->ends_unreachable)
7507 {
7508 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7509 ta_fill, ebb->end_offset, 0, TRUE);
7510 }
e0001a05 7511
43cd72b9 7512 return TRUE;
64b607e6
BW
7513
7514 decode_error:
7515 (*_bfd_error_handler)
7516 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7517 ebb->sec->owner, ebb->sec, offset);
7518 return FALSE;
43cd72b9
BW
7519}
7520
7521
7522/* After all of the information has collected about the
7523 transformations possible in an EBB, compute the appropriate actions
7524 here in compute_ebb_actions. We still must check later to make
7525 sure that the actions do not break any relocations. The algorithm
7526 used here is pretty greedy. Basically, it removes as many no-ops
7527 as possible so that the end of the EBB has the same alignment
7528 characteristics as the original. First, it uses narrowing, then
7529 fill space at the end of the EBB, and finally widenings. If that
7530 does not work, it tries again with one fewer no-op removed. The
7531 optimization will only be performed if all of the branch targets
7532 that were aligned before transformation are also aligned after the
7533 transformation.
7534
7535 When the size_opt flag is set, ignore the branch target alignments,
7536 narrow all wide instructions, and remove all no-ops unless the end
7537 of the EBB prevents it. */
7538
7539bfd_boolean
7fa3d080 7540compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7541{
7542 unsigned i = 0;
7543 unsigned j;
7544 int removed_bytes = 0;
7545 ebb_t *ebb = &ebb_table->ebb;
7546 unsigned seg_idx_start = 0;
7547 unsigned seg_idx_end = 0;
7548
7549 /* We perform this like the assembler relaxation algorithm: Start by
7550 assuming all instructions are narrow and all no-ops removed; then
7551 walk through.... */
7552
7553 /* For each segment of this that has a solid constraint, check to
7554 see if there are any combinations that will keep the constraint.
7555 If so, use it. */
7556 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7557 {
43cd72b9
BW
7558 bfd_boolean requires_text_end_align = FALSE;
7559 unsigned longcall_count = 0;
7560 unsigned longcall_convert_count = 0;
7561 unsigned narrowable_count = 0;
7562 unsigned narrowable_convert_count = 0;
7563 unsigned widenable_count = 0;
7564 unsigned widenable_convert_count = 0;
e0001a05 7565
43cd72b9
BW
7566 proposed_action *action = NULL;
7567 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 7568
43cd72b9 7569 seg_idx_start = seg_idx_end;
e0001a05 7570
43cd72b9
BW
7571 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7572 {
7573 action = &ebb_table->actions[i];
7574 if (action->action == ta_convert_longcall)
7575 longcall_count++;
7576 if (action->action == ta_narrow_insn)
7577 narrowable_count++;
7578 if (action->action == ta_widen_insn)
7579 widenable_count++;
7580 if (action->action == ta_fill)
7581 break;
7582 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7583 break;
7584 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7585 && !elf32xtensa_size_opt)
7586 break;
7587 }
7588 seg_idx_end = i;
e0001a05 7589
43cd72b9
BW
7590 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7591 requires_text_end_align = TRUE;
e0001a05 7592
43cd72b9
BW
7593 if (elf32xtensa_size_opt && !requires_text_end_align
7594 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7595 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7596 {
7597 longcall_convert_count = longcall_count;
7598 narrowable_convert_count = narrowable_count;
7599 widenable_convert_count = 0;
7600 }
7601 else
7602 {
7603 /* There is a constraint. Convert the max number of longcalls. */
7604 narrowable_convert_count = 0;
7605 longcall_convert_count = 0;
7606 widenable_convert_count = 0;
e0001a05 7607
43cd72b9 7608 for (j = 0; j < longcall_count; j++)
e0001a05 7609 {
43cd72b9
BW
7610 int removed = (longcall_count - j) * 3 & (align - 1);
7611 unsigned desire_narrow = (align - removed) & (align - 1);
7612 unsigned desire_widen = removed;
7613 if (desire_narrow <= narrowable_count)
7614 {
7615 narrowable_convert_count = desire_narrow;
7616 narrowable_convert_count +=
7617 (align * ((narrowable_count - narrowable_convert_count)
7618 / align));
7619 longcall_convert_count = (longcall_count - j);
7620 widenable_convert_count = 0;
7621 break;
7622 }
7623 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7624 {
7625 narrowable_convert_count = 0;
7626 longcall_convert_count = longcall_count - j;
7627 widenable_convert_count = desire_widen;
7628 break;
7629 }
7630 }
7631 }
e0001a05 7632
43cd72b9
BW
7633 /* Now the number of conversions are saved. Do them. */
7634 for (i = seg_idx_start; i < seg_idx_end; i++)
7635 {
7636 action = &ebb_table->actions[i];
7637 switch (action->action)
7638 {
7639 case ta_convert_longcall:
7640 if (longcall_convert_count != 0)
7641 {
7642 action->action = ta_remove_longcall;
7643 action->do_action = TRUE;
7644 action->removed_bytes += 3;
7645 longcall_convert_count--;
7646 }
7647 break;
7648 case ta_narrow_insn:
7649 if (narrowable_convert_count != 0)
7650 {
7651 action->do_action = TRUE;
7652 action->removed_bytes += 1;
7653 narrowable_convert_count--;
7654 }
7655 break;
7656 case ta_widen_insn:
7657 if (widenable_convert_count != 0)
7658 {
7659 action->do_action = TRUE;
7660 action->removed_bytes -= 1;
7661 widenable_convert_count--;
7662 }
7663 break;
7664 default:
7665 break;
e0001a05 7666 }
43cd72b9
BW
7667 }
7668 }
e0001a05 7669
43cd72b9
BW
7670 /* Now we move on to some local opts. Try to remove each of the
7671 remaining longcalls. */
e0001a05 7672
43cd72b9
BW
7673 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7674 {
7675 removed_bytes = 0;
7676 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7677 {
43cd72b9
BW
7678 int old_removed_bytes = removed_bytes;
7679 proposed_action *action = &ebb_table->actions[i];
7680
7681 if (action->do_action && action->action == ta_convert_longcall)
7682 {
7683 bfd_boolean bad_alignment = FALSE;
7684 removed_bytes += 3;
7685 for (j = i + 1; j < ebb_table->action_count; j++)
7686 {
7687 proposed_action *new_action = &ebb_table->actions[j];
7688 bfd_vma offset = new_action->offset;
7689 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7690 {
7691 if (!check_branch_target_aligned
7692 (ebb_table->ebb.contents,
7693 ebb_table->ebb.content_length,
7694 offset, offset - removed_bytes))
7695 {
7696 bad_alignment = TRUE;
7697 break;
7698 }
7699 }
7700 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7701 {
7702 if (!check_loop_aligned (ebb_table->ebb.contents,
7703 ebb_table->ebb.content_length,
7704 offset,
7705 offset - removed_bytes))
7706 {
7707 bad_alignment = TRUE;
7708 break;
7709 }
7710 }
7711 if (new_action->action == ta_narrow_insn
7712 && !new_action->do_action
7713 && ebb_table->ebb.sec->alignment_power == 2)
7714 {
7715 /* Narrow an instruction and we are done. */
7716 new_action->do_action = TRUE;
7717 new_action->removed_bytes += 1;
7718 bad_alignment = FALSE;
7719 break;
7720 }
7721 if (new_action->action == ta_widen_insn
7722 && new_action->do_action
7723 && ebb_table->ebb.sec->alignment_power == 2)
7724 {
7725 /* Narrow an instruction and we are done. */
7726 new_action->do_action = FALSE;
7727 new_action->removed_bytes += 1;
7728 bad_alignment = FALSE;
7729 break;
7730 }
5c5d6806
BW
7731 if (new_action->do_action)
7732 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
7733 }
7734 if (!bad_alignment)
7735 {
7736 action->removed_bytes += 3;
7737 action->action = ta_remove_longcall;
7738 action->do_action = TRUE;
7739 }
7740 }
7741 removed_bytes = old_removed_bytes;
7742 if (action->do_action)
7743 removed_bytes += action->removed_bytes;
e0001a05
NC
7744 }
7745 }
7746
43cd72b9
BW
7747 removed_bytes = 0;
7748 for (i = 0; i < ebb_table->action_count; ++i)
7749 {
7750 proposed_action *action = &ebb_table->actions[i];
7751 if (action->do_action)
7752 removed_bytes += action->removed_bytes;
7753 }
7754
7755 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7756 && ebb->ends_unreachable)
7757 {
7758 proposed_action *action;
7759 int br;
7760 int extra_space;
7761
7762 BFD_ASSERT (ebb_table->action_count != 0);
7763 action = &ebb_table->actions[ebb_table->action_count - 1];
7764 BFD_ASSERT (action->action == ta_fill);
7765 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7766
7767 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7768 br = action->removed_bytes + removed_bytes + extra_space;
7769 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7770
7771 action->removed_bytes = extra_space - br;
7772 }
7773 return TRUE;
e0001a05
NC
7774}
7775
7776
03e94c08
BW
7777/* The xlate_map is a sorted array of address mappings designed to
7778 answer the offset_with_removed_text() query with a binary search instead
7779 of a linear search through the section's action_list. */
7780
7781typedef struct xlate_map_entry xlate_map_entry_t;
7782typedef struct xlate_map xlate_map_t;
7783
7784struct xlate_map_entry
7785{
7786 unsigned orig_address;
7787 unsigned new_address;
7788 unsigned size;
7789};
7790
7791struct xlate_map
7792{
7793 unsigned entry_count;
7794 xlate_map_entry_t *entry;
7795};
7796
7797
68ffbac6 7798static int
03e94c08
BW
7799xlate_compare (const void *a_v, const void *b_v)
7800{
7801 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7802 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7803 if (a->orig_address < b->orig_address)
7804 return -1;
7805 if (a->orig_address > (b->orig_address + b->size - 1))
7806 return 1;
7807 return 0;
7808}
7809
7810
7811static bfd_vma
7812xlate_offset_with_removed_text (const xlate_map_t *map,
7813 text_action_list *action_list,
7814 bfd_vma offset)
7815{
03e94c08
BW
7816 void *r;
7817 xlate_map_entry_t *e;
7818
7819 if (map == NULL)
7820 return offset_with_removed_text (action_list, offset);
7821
7822 if (map->entry_count == 0)
7823 return offset;
7824
03e94c08
BW
7825 r = bsearch (&offset, map->entry, map->entry_count,
7826 sizeof (xlate_map_entry_t), &xlate_compare);
7827 e = (xlate_map_entry_t *) r;
68ffbac6 7828
03e94c08
BW
7829 BFD_ASSERT (e != NULL);
7830 if (e == NULL)
7831 return offset;
7832 return e->new_address - e->orig_address + offset;
7833}
7834
7835
7836/* Build a binary searchable offset translation map from a section's
7837 action list. */
7838
7839static xlate_map_t *
7840build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7841{
7842 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7843 text_action_list *action_list = &relax_info->action_list;
7844 unsigned num_actions = 0;
7845 text_action *r;
7846 int removed;
7847 xlate_map_entry_t *current_entry;
7848
7849 if (map == NULL)
7850 return NULL;
7851
7852 num_actions = action_list_count (action_list);
68ffbac6 7853 map->entry = (xlate_map_entry_t *)
03e94c08
BW
7854 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7855 if (map->entry == NULL)
7856 {
7857 free (map);
7858 return NULL;
7859 }
7860 map->entry_count = 0;
68ffbac6 7861
03e94c08
BW
7862 removed = 0;
7863 current_entry = &map->entry[0];
7864
7865 current_entry->orig_address = 0;
7866 current_entry->new_address = 0;
7867 current_entry->size = 0;
7868
7869 for (r = action_list->head; r != NULL; r = r->next)
7870 {
7871 unsigned orig_size = 0;
7872 switch (r->action)
7873 {
7874 case ta_none:
7875 case ta_remove_insn:
7876 case ta_convert_longcall:
7877 case ta_remove_literal:
7878 case ta_add_literal:
7879 break;
7880 case ta_remove_longcall:
7881 orig_size = 6;
7882 break;
7883 case ta_narrow_insn:
7884 orig_size = 3;
7885 break;
7886 case ta_widen_insn:
7887 orig_size = 2;
7888 break;
7889 case ta_fill:
7890 break;
7891 }
7892 current_entry->size =
7893 r->offset + orig_size - current_entry->orig_address;
7894 if (current_entry->size != 0)
7895 {
7896 current_entry++;
7897 map->entry_count++;
7898 }
7899 current_entry->orig_address = r->offset + orig_size;
7900 removed += r->removed_bytes;
7901 current_entry->new_address = r->offset + orig_size - removed;
7902 current_entry->size = 0;
7903 }
7904
7905 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7906 - current_entry->orig_address);
7907 if (current_entry->size != 0)
7908 map->entry_count++;
7909
7910 return map;
7911}
7912
7913
7914/* Free an offset translation map. */
7915
68ffbac6 7916static void
03e94c08
BW
7917free_xlate_map (xlate_map_t *map)
7918{
7919 if (map && map->entry)
7920 free (map->entry);
7921 if (map)
7922 free (map);
7923}
7924
7925
43cd72b9
BW
7926/* Use check_section_ebb_pcrels_fit to make sure that all of the
7927 relocations in a section will fit if a proposed set of actions
7928 are performed. */
e0001a05 7929
43cd72b9 7930static bfd_boolean
7fa3d080
BW
7931check_section_ebb_pcrels_fit (bfd *abfd,
7932 asection *sec,
7933 bfd_byte *contents,
7934 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7935 const ebb_constraint *constraint,
7936 const xtensa_opcode *reloc_opcodes)
e0001a05 7937{
43cd72b9
BW
7938 unsigned i, j;
7939 Elf_Internal_Rela *irel;
03e94c08
BW
7940 xlate_map_t *xmap = NULL;
7941 bfd_boolean ok = TRUE;
43cd72b9 7942 xtensa_relax_info *relax_info;
e0001a05 7943
43cd72b9 7944 relax_info = get_xtensa_relax_info (sec);
e0001a05 7945
03e94c08
BW
7946 if (relax_info && sec->reloc_count > 100)
7947 {
7948 xmap = build_xlate_map (sec, relax_info);
7949 /* NULL indicates out of memory, but the slow version
7950 can still be used. */
7951 }
7952
43cd72b9
BW
7953 for (i = 0; i < sec->reloc_count; i++)
7954 {
7955 r_reloc r_rel;
7956 bfd_vma orig_self_offset, orig_target_offset;
7957 bfd_vma self_offset, target_offset;
7958 int r_type;
7959 reloc_howto_type *howto;
7960 int self_removed_bytes, target_removed_bytes;
e0001a05 7961
43cd72b9
BW
7962 irel = &internal_relocs[i];
7963 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7964
43cd72b9
BW
7965 howto = &elf_howto_table[r_type];
7966 /* We maintain the required invariant: PC-relative relocations
7967 that fit before linking must fit after linking. Thus we only
7968 need to deal with relocations to the same section that are
7969 PC-relative. */
1bbb5f21
BW
7970 if (r_type == R_XTENSA_ASM_SIMPLIFY
7971 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7972 || !howto->pc_relative)
7973 continue;
e0001a05 7974
43cd72b9
BW
7975 r_reloc_init (&r_rel, abfd, irel, contents,
7976 bfd_get_section_limit (abfd, sec));
e0001a05 7977
43cd72b9
BW
7978 if (r_reloc_get_section (&r_rel) != sec)
7979 continue;
e0001a05 7980
43cd72b9
BW
7981 orig_self_offset = irel->r_offset;
7982 orig_target_offset = r_rel.target_offset;
e0001a05 7983
43cd72b9
BW
7984 self_offset = orig_self_offset;
7985 target_offset = orig_target_offset;
7986
7987 if (relax_info)
7988 {
03e94c08
BW
7989 self_offset =
7990 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7991 orig_self_offset);
7992 target_offset =
7993 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7994 orig_target_offset);
43cd72b9
BW
7995 }
7996
7997 self_removed_bytes = 0;
7998 target_removed_bytes = 0;
7999
8000 for (j = 0; j < constraint->action_count; ++j)
8001 {
8002 proposed_action *action = &constraint->actions[j];
8003 bfd_vma offset = action->offset;
8004 int removed_bytes = action->removed_bytes;
8005 if (offset < orig_self_offset
8006 || (offset == orig_self_offset && action->action == ta_fill
8007 && action->removed_bytes < 0))
8008 self_removed_bytes += removed_bytes;
8009 if (offset < orig_target_offset
8010 || (offset == orig_target_offset && action->action == ta_fill
8011 && action->removed_bytes < 0))
8012 target_removed_bytes += removed_bytes;
8013 }
8014 self_offset -= self_removed_bytes;
8015 target_offset -= target_removed_bytes;
8016
8017 /* Try to encode it. Get the operand and check. */
8018 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8019 {
8020 /* None of the current alternate relocs are PC-relative,
8021 and only PC-relative relocs matter here. */
8022 }
8023 else
8024 {
8025 xtensa_opcode opcode;
8026 int opnum;
8027
cb337148
BW
8028 if (reloc_opcodes)
8029 opcode = reloc_opcodes[i];
8030 else
8031 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 8032 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
8033 {
8034 ok = FALSE;
8035 break;
8036 }
43cd72b9
BW
8037
8038 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8039 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
8040 {
8041 ok = FALSE;
8042 break;
8043 }
43cd72b9
BW
8044
8045 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8046 {
8047 ok = FALSE;
8048 break;
8049 }
43cd72b9
BW
8050 }
8051 }
8052
03e94c08
BW
8053 if (xmap)
8054 free_xlate_map (xmap);
8055
8056 return ok;
43cd72b9
BW
8057}
8058
8059
8060static bfd_boolean
7fa3d080 8061check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8062{
8063 int removed = 0;
8064 unsigned i;
8065
8066 for (i = 0; i < constraint->action_count; i++)
8067 {
8068 const proposed_action *action = &constraint->actions[i];
8069 if (action->do_action)
8070 removed += action->removed_bytes;
8071 }
8072 if (removed < 0)
e0001a05
NC
8073 return FALSE;
8074
8075 return TRUE;
8076}
8077
8078
43cd72b9 8079void
7fa3d080
BW
8080text_action_add_proposed (text_action_list *l,
8081 const ebb_constraint *ebb_table,
8082 asection *sec)
e0001a05
NC
8083{
8084 unsigned i;
8085
43cd72b9 8086 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8087 {
43cd72b9 8088 proposed_action *action = &ebb_table->actions[i];
e0001a05 8089
43cd72b9 8090 if (!action->do_action)
e0001a05 8091 continue;
43cd72b9
BW
8092 switch (action->action)
8093 {
8094 case ta_remove_insn:
8095 case ta_remove_longcall:
8096 case ta_convert_longcall:
8097 case ta_narrow_insn:
8098 case ta_widen_insn:
8099 case ta_fill:
8100 case ta_remove_literal:
8101 text_action_add (l, action->action, sec, action->offset,
8102 action->removed_bytes);
8103 break;
8104 case ta_none:
8105 break;
8106 default:
8107 BFD_ASSERT (0);
8108 break;
8109 }
e0001a05 8110 }
43cd72b9 8111}
e0001a05 8112
43cd72b9
BW
8113
8114int
7fa3d080 8115compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8116{
8117 int fill_extra_space;
8118
8119 if (!entry)
8120 return 0;
8121
8122 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8123 return 0;
8124
8125 fill_extra_space = entry->size;
8126 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8127 {
8128 /* Fill bytes for alignment:
8129 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8130 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8131 int nsm = (1 << pow) - 1;
8132 bfd_vma addr = entry->address + entry->size;
8133 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8134 fill_extra_space += align_fill;
8135 }
8136 return fill_extra_space;
e0001a05
NC
8137}
8138
43cd72b9 8139\f
e0001a05
NC
8140/* First relaxation pass. */
8141
43cd72b9
BW
8142/* If the section contains relaxable literals, check each literal to
8143 see if it has the same value as another literal that has already
8144 been seen, either in the current section or a previous one. If so,
8145 add an entry to the per-section list of removed literals. The
e0001a05
NC
8146 actual changes are deferred until the next pass. */
8147
68ffbac6 8148static bfd_boolean
7fa3d080
BW
8149compute_removed_literals (bfd *abfd,
8150 asection *sec,
8151 struct bfd_link_info *link_info,
8152 value_map_hash_table *values)
e0001a05
NC
8153{
8154 xtensa_relax_info *relax_info;
8155 bfd_byte *contents;
8156 Elf_Internal_Rela *internal_relocs;
43cd72b9 8157 source_reloc *src_relocs, *rel;
e0001a05 8158 bfd_boolean ok = TRUE;
43cd72b9
BW
8159 property_table_entry *prop_table = NULL;
8160 int ptblsize;
8161 int i, prev_i;
8162 bfd_boolean last_loc_is_prev = FALSE;
8163 bfd_vma last_target_offset = 0;
8164 section_cache_t target_sec_cache;
8165 bfd_size_type sec_size;
8166
8167 init_section_cache (&target_sec_cache);
e0001a05
NC
8168
8169 /* Do nothing if it is not a relaxable literal section. */
8170 relax_info = get_xtensa_relax_info (sec);
8171 BFD_ASSERT (relax_info);
e0001a05
NC
8172 if (!relax_info->is_relaxable_literal_section)
8173 return ok;
8174
68ffbac6 8175 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
8176 link_info->keep_memory);
8177
43cd72b9 8178 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8179 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8180 if (contents == NULL && sec_size != 0)
e0001a05
NC
8181 {
8182 ok = FALSE;
8183 goto error_return;
8184 }
8185
8186 /* Sort the source_relocs by target offset. */
8187 src_relocs = relax_info->src_relocs;
8188 qsort (src_relocs, relax_info->src_count,
8189 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8190 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8191 internal_reloc_compare);
e0001a05 8192
43cd72b9
BW
8193 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8194 XTENSA_PROP_SEC_NAME, FALSE);
8195 if (ptblsize < 0)
8196 {
8197 ok = FALSE;
8198 goto error_return;
8199 }
8200
8201 prev_i = -1;
e0001a05
NC
8202 for (i = 0; i < relax_info->src_count; i++)
8203 {
e0001a05 8204 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8205
8206 rel = &src_relocs[i];
43cd72b9
BW
8207 if (get_l32r_opcode () != rel->opcode)
8208 continue;
e0001a05
NC
8209 irel = get_irel_at_offset (sec, internal_relocs,
8210 rel->r_rel.target_offset);
8211
43cd72b9
BW
8212 /* If the relocation on this is not a simple R_XTENSA_32 or
8213 R_XTENSA_PLT then do not consider it. This may happen when
8214 the difference of two symbols is used in a literal. */
8215 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8216 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8217 continue;
8218
e0001a05
NC
8219 /* If the target_offset for this relocation is the same as the
8220 previous relocation, then we've already considered whether the
8221 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8222 if (i != 0 && prev_i != -1
8223 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8224 continue;
43cd72b9
BW
8225 prev_i = i;
8226
68ffbac6 8227 if (last_loc_is_prev &&
43cd72b9
BW
8228 last_target_offset + 4 != rel->r_rel.target_offset)
8229 last_loc_is_prev = FALSE;
e0001a05
NC
8230
8231 /* Check if the relocation was from an L32R that is being removed
8232 because a CALLX was converted to a direct CALL, and check if
8233 there are no other relocations to the literal. */
68ffbac6 8234 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
99ded152 8235 sec, prop_table, ptblsize))
e0001a05 8236 {
43cd72b9
BW
8237 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8238 irel, rel, prop_table, ptblsize))
e0001a05 8239 {
43cd72b9
BW
8240 ok = FALSE;
8241 goto error_return;
e0001a05 8242 }
43cd72b9 8243 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8244 continue;
8245 }
8246
43cd72b9 8247 if (!identify_literal_placement (abfd, sec, contents, link_info,
68ffbac6
L
8248 values,
8249 &last_loc_is_prev, irel,
43cd72b9
BW
8250 relax_info->src_count - i, rel,
8251 prop_table, ptblsize,
8252 &target_sec_cache, rel->is_abs_literal))
e0001a05 8253 {
43cd72b9
BW
8254 ok = FALSE;
8255 goto error_return;
8256 }
8257 last_target_offset = rel->r_rel.target_offset;
8258 }
e0001a05 8259
43cd72b9
BW
8260#if DEBUG
8261 print_removed_literals (stderr, &relax_info->removed_list);
8262 print_action_list (stderr, &relax_info->action_list);
8263#endif /* DEBUG */
8264
8265error_return:
65e911f9
AM
8266 if (prop_table)
8267 free (prop_table);
8268 free_section_cache (&target_sec_cache);
43cd72b9
BW
8269
8270 release_contents (sec, contents);
8271 release_internal_relocs (sec, internal_relocs);
8272 return ok;
8273}
8274
8275
8276static Elf_Internal_Rela *
7fa3d080
BW
8277get_irel_at_offset (asection *sec,
8278 Elf_Internal_Rela *internal_relocs,
8279 bfd_vma offset)
43cd72b9
BW
8280{
8281 unsigned i;
8282 Elf_Internal_Rela *irel;
8283 unsigned r_type;
8284 Elf_Internal_Rela key;
8285
68ffbac6 8286 if (!internal_relocs)
43cd72b9
BW
8287 return NULL;
8288
8289 key.r_offset = offset;
8290 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8291 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8292 if (!irel)
8293 return NULL;
8294
8295 /* bsearch does not guarantee which will be returned if there are
8296 multiple matches. We need the first that is not an alignment. */
8297 i = irel - internal_relocs;
8298 while (i > 0)
8299 {
8300 if (internal_relocs[i-1].r_offset != offset)
8301 break;
8302 i--;
8303 }
8304 for ( ; i < sec->reloc_count; i++)
8305 {
8306 irel = &internal_relocs[i];
8307 r_type = ELF32_R_TYPE (irel->r_info);
8308 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8309 return irel;
8310 }
8311
8312 return NULL;
8313}
8314
8315
8316bfd_boolean
7fa3d080
BW
8317is_removable_literal (const source_reloc *rel,
8318 int i,
8319 const source_reloc *src_relocs,
99ded152
BW
8320 int src_count,
8321 asection *sec,
8322 property_table_entry *prop_table,
8323 int ptblsize)
43cd72b9
BW
8324{
8325 const source_reloc *curr_rel;
99ded152
BW
8326 property_table_entry *entry;
8327
43cd72b9
BW
8328 if (!rel->is_null)
8329 return FALSE;
68ffbac6
L
8330
8331 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
99ded152
BW
8332 sec->vma + rel->r_rel.target_offset);
8333 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8334 return FALSE;
8335
43cd72b9
BW
8336 for (++i; i < src_count; ++i)
8337 {
8338 curr_rel = &src_relocs[i];
8339 /* If all others have the same target offset.... */
8340 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8341 return TRUE;
8342
8343 if (!curr_rel->is_null
8344 && !xtensa_is_property_section (curr_rel->source_sec)
8345 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8346 return FALSE;
8347 }
8348 return TRUE;
8349}
8350
8351
68ffbac6 8352bfd_boolean
7fa3d080
BW
8353remove_dead_literal (bfd *abfd,
8354 asection *sec,
8355 struct bfd_link_info *link_info,
8356 Elf_Internal_Rela *internal_relocs,
8357 Elf_Internal_Rela *irel,
8358 source_reloc *rel,
8359 property_table_entry *prop_table,
8360 int ptblsize)
43cd72b9
BW
8361{
8362 property_table_entry *entry;
8363 xtensa_relax_info *relax_info;
8364
8365 relax_info = get_xtensa_relax_info (sec);
8366 if (!relax_info)
8367 return FALSE;
8368
8369 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8370 sec->vma + rel->r_rel.target_offset);
8371
8372 /* Mark the unused literal so that it will be removed. */
8373 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8374
8375 text_action_add (&relax_info->action_list,
8376 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8377
8378 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8379 if (sec->alignment_power > 2)
43cd72b9
BW
8380 {
8381 int fill_extra_space;
8382 bfd_vma entry_sec_offset;
8383 text_action *fa;
8384 property_table_entry *the_add_entry;
8385 int removed_diff;
8386
8387 if (entry)
8388 entry_sec_offset = entry->address - sec->vma + entry->size;
8389 else
8390 entry_sec_offset = rel->r_rel.target_offset + 4;
8391
8392 /* If the literal range is at the end of the section,
8393 do not add fill. */
8394 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8395 entry_sec_offset);
8396 fill_extra_space = compute_fill_extra_space (the_add_entry);
8397
8398 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8399 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8400 -4, fill_extra_space);
8401 if (fa)
8402 adjust_fill_action (fa, removed_diff);
8403 else
8404 text_action_add (&relax_info->action_list,
8405 ta_fill, sec, entry_sec_offset, removed_diff);
8406 }
8407
8408 /* Zero out the relocation on this literal location. */
8409 if (irel)
8410 {
8411 if (elf_hash_table (link_info)->dynamic_sections_created)
8412 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8413
8414 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8415 pin_internal_relocs (sec, internal_relocs);
8416 }
8417
8418 /* Do not modify "last_loc_is_prev". */
8419 return TRUE;
8420}
8421
8422
68ffbac6 8423bfd_boolean
7fa3d080
BW
8424identify_literal_placement (bfd *abfd,
8425 asection *sec,
8426 bfd_byte *contents,
8427 struct bfd_link_info *link_info,
8428 value_map_hash_table *values,
8429 bfd_boolean *last_loc_is_prev_p,
8430 Elf_Internal_Rela *irel,
8431 int remaining_src_rels,
8432 source_reloc *rel,
8433 property_table_entry *prop_table,
8434 int ptblsize,
8435 section_cache_t *target_sec_cache,
8436 bfd_boolean is_abs_literal)
43cd72b9
BW
8437{
8438 literal_value val;
8439 value_map *val_map;
8440 xtensa_relax_info *relax_info;
8441 bfd_boolean literal_placed = FALSE;
8442 r_reloc r_rel;
8443 unsigned long value;
8444 bfd_boolean final_static_link;
8445 bfd_size_type sec_size;
8446
8447 relax_info = get_xtensa_relax_info (sec);
8448 if (!relax_info)
8449 return FALSE;
8450
8451 sec_size = bfd_get_section_limit (abfd, sec);
8452
8453 final_static_link =
8454 (!link_info->relocatable
8455 && !elf_hash_table (link_info)->dynamic_sections_created);
8456
8457 /* The placement algorithm first checks to see if the literal is
8458 already in the value map. If so and the value map is reachable
8459 from all uses, then the literal is moved to that location. If
8460 not, then we identify the last location where a fresh literal was
8461 placed. If the literal can be safely moved there, then we do so.
8462 If not, then we assume that the literal is not to move and leave
8463 the literal where it is, marking it as the last literal
8464 location. */
8465
8466 /* Find the literal value. */
8467 value = 0;
8468 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8469 if (!irel)
8470 {
8471 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8472 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8473 }
8474 init_literal_value (&val, &r_rel, value, is_abs_literal);
8475
8476 /* Check if we've seen another literal with the same value that
8477 is in the same output section. */
8478 val_map = value_map_get_cached_value (values, &val, final_static_link);
8479
8480 if (val_map
8481 && (r_reloc_get_section (&val_map->loc)->output_section
8482 == sec->output_section)
8483 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8484 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8485 {
8486 /* No change to last_loc_is_prev. */
8487 literal_placed = TRUE;
8488 }
8489
8490 /* For relocatable links, do not try to move literals. To do it
8491 correctly might increase the number of relocations in an input
8492 section making the default relocatable linking fail. */
68ffbac6 8493 if (!link_info->relocatable && !literal_placed
43cd72b9
BW
8494 && values->has_last_loc && !(*last_loc_is_prev_p))
8495 {
8496 asection *target_sec = r_reloc_get_section (&values->last_loc);
8497 if (target_sec && target_sec->output_section == sec->output_section)
8498 {
8499 /* Increment the virtual offset. */
8500 r_reloc try_loc = values->last_loc;
8501 try_loc.virtual_offset += 4;
8502
8503 /* There is a last loc that was in the same output section. */
8504 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8505 && move_shared_literal (sec, link_info, rel,
68ffbac6 8506 prop_table, ptblsize,
43cd72b9 8507 &try_loc, &val, target_sec_cache))
e0001a05 8508 {
43cd72b9
BW
8509 values->last_loc.virtual_offset += 4;
8510 literal_placed = TRUE;
8511 if (!val_map)
8512 val_map = add_value_map (values, &val, &try_loc,
8513 final_static_link);
8514 else
8515 val_map->loc = try_loc;
e0001a05
NC
8516 }
8517 }
43cd72b9
BW
8518 }
8519
8520 if (!literal_placed)
8521 {
8522 /* Nothing worked, leave the literal alone but update the last loc. */
8523 values->has_last_loc = TRUE;
8524 values->last_loc = rel->r_rel;
8525 if (!val_map)
8526 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 8527 else
43cd72b9
BW
8528 val_map->loc = rel->r_rel;
8529 *last_loc_is_prev_p = TRUE;
e0001a05
NC
8530 }
8531
43cd72b9 8532 return TRUE;
e0001a05
NC
8533}
8534
8535
8536/* Check if the original relocations (presumably on L32R instructions)
8537 identified by reloc[0..N] can be changed to reference the literal
8538 identified by r_rel. If r_rel is out of range for any of the
8539 original relocations, then we don't want to coalesce the original
8540 literal with the one at r_rel. We only check reloc[0..N], where the
8541 offsets are all the same as for reloc[0] (i.e., they're all
8542 referencing the same literal) and where N is also bounded by the
8543 number of remaining entries in the "reloc" array. The "reloc" array
8544 is sorted by target offset so we know all the entries for the same
8545 literal will be contiguous. */
8546
8547static bfd_boolean
7fa3d080
BW
8548relocations_reach (source_reloc *reloc,
8549 int remaining_relocs,
8550 const r_reloc *r_rel)
e0001a05
NC
8551{
8552 bfd_vma from_offset, source_address, dest_address;
8553 asection *sec;
8554 int i;
8555
8556 if (!r_reloc_is_defined (r_rel))
8557 return FALSE;
8558
8559 sec = r_reloc_get_section (r_rel);
8560 from_offset = reloc[0].r_rel.target_offset;
8561
8562 for (i = 0; i < remaining_relocs; i++)
8563 {
8564 if (reloc[i].r_rel.target_offset != from_offset)
8565 break;
8566
8567 /* Ignore relocations that have been removed. */
8568 if (reloc[i].is_null)
8569 continue;
8570
8571 /* The original and new output section for these must be the same
8572 in order to coalesce. */
8573 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8574 != sec->output_section)
8575 return FALSE;
8576
d638e0ac
BW
8577 /* Absolute literals in the same output section can always be
8578 combined. */
8579 if (reloc[i].is_abs_literal)
8580 continue;
8581
43cd72b9
BW
8582 /* A literal with no PC-relative relocations can be moved anywhere. */
8583 if (reloc[i].opnd != -1)
e0001a05
NC
8584 {
8585 /* Otherwise, check to see that it fits. */
8586 source_address = (reloc[i].source_sec->output_section->vma
8587 + reloc[i].source_sec->output_offset
8588 + reloc[i].r_rel.rela.r_offset);
8589 dest_address = (sec->output_section->vma
8590 + sec->output_offset
8591 + r_rel->target_offset);
8592
43cd72b9
BW
8593 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8594 source_address, dest_address))
e0001a05
NC
8595 return FALSE;
8596 }
8597 }
8598
8599 return TRUE;
8600}
8601
8602
43cd72b9
BW
8603/* Move a literal to another literal location because it is
8604 the same as the other literal value. */
e0001a05 8605
68ffbac6 8606static bfd_boolean
7fa3d080
BW
8607coalesce_shared_literal (asection *sec,
8608 source_reloc *rel,
8609 property_table_entry *prop_table,
8610 int ptblsize,
8611 value_map *val_map)
e0001a05 8612{
43cd72b9
BW
8613 property_table_entry *entry;
8614 text_action *fa;
8615 property_table_entry *the_add_entry;
8616 int removed_diff;
8617 xtensa_relax_info *relax_info;
8618
8619 relax_info = get_xtensa_relax_info (sec);
8620 if (!relax_info)
8621 return FALSE;
8622
8623 entry = elf_xtensa_find_property_entry
8624 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 8625 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
8626 return TRUE;
8627
8628 /* Mark that the literal will be coalesced. */
8629 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8630
8631 text_action_add (&relax_info->action_list,
8632 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8633
8634 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8635 if (sec->alignment_power > 2)
e0001a05 8636 {
43cd72b9
BW
8637 int fill_extra_space;
8638 bfd_vma entry_sec_offset;
8639
8640 if (entry)
8641 entry_sec_offset = entry->address - sec->vma + entry->size;
8642 else
8643 entry_sec_offset = rel->r_rel.target_offset + 4;
8644
8645 /* If the literal range is at the end of the section,
8646 do not add fill. */
8647 fill_extra_space = 0;
8648 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8649 entry_sec_offset);
8650 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8651 fill_extra_space = the_add_entry->size;
8652
8653 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8654 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8655 -4, fill_extra_space);
8656 if (fa)
8657 adjust_fill_action (fa, removed_diff);
8658 else
8659 text_action_add (&relax_info->action_list,
8660 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 8661 }
43cd72b9
BW
8662
8663 return TRUE;
8664}
8665
8666
8667/* Move a literal to another location. This may actually increase the
8668 total amount of space used because of alignments so we need to do
8669 this carefully. Also, it may make a branch go out of range. */
8670
68ffbac6 8671static bfd_boolean
7fa3d080
BW
8672move_shared_literal (asection *sec,
8673 struct bfd_link_info *link_info,
8674 source_reloc *rel,
8675 property_table_entry *prop_table,
8676 int ptblsize,
8677 const r_reloc *target_loc,
8678 const literal_value *lit_value,
8679 section_cache_t *target_sec_cache)
43cd72b9
BW
8680{
8681 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8682 text_action *fa, *target_fa;
8683 int removed_diff;
8684 xtensa_relax_info *relax_info, *target_relax_info;
8685 asection *target_sec;
8686 ebb_t *ebb;
8687 ebb_constraint ebb_table;
8688 bfd_boolean relocs_fit;
8689
8690 /* If this routine always returns FALSE, the literals that cannot be
8691 coalesced will not be moved. */
8692 if (elf32xtensa_no_literal_movement)
8693 return FALSE;
8694
8695 relax_info = get_xtensa_relax_info (sec);
8696 if (!relax_info)
8697 return FALSE;
8698
8699 target_sec = r_reloc_get_section (target_loc);
8700 target_relax_info = get_xtensa_relax_info (target_sec);
8701
8702 /* Literals to undefined sections may not be moved because they
8703 must report an error. */
8704 if (bfd_is_und_section (target_sec))
8705 return FALSE;
8706
8707 src_entry = elf_xtensa_find_property_entry
8708 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8709
8710 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8711 return FALSE;
8712
8713 target_entry = elf_xtensa_find_property_entry
68ffbac6 8714 (target_sec_cache->ptbl, target_sec_cache->pte_count,
43cd72b9
BW
8715 target_sec->vma + target_loc->target_offset);
8716
8717 if (!target_entry)
8718 return FALSE;
8719
8720 /* Make sure that we have not broken any branches. */
8721 relocs_fit = FALSE;
8722
8723 init_ebb_constraint (&ebb_table);
8724 ebb = &ebb_table.ebb;
68ffbac6 8725 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
43cd72b9
BW
8726 target_sec_cache->content_length,
8727 target_sec_cache->ptbl, target_sec_cache->pte_count,
8728 target_sec_cache->relocs, target_sec_cache->reloc_count);
8729
8730 /* Propose to add 4 bytes + worst-case alignment size increase to
8731 destination. */
8732 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8733 ta_fill, target_loc->target_offset,
8734 -4 - (1 << target_sec->alignment_power), TRUE);
8735
8736 /* Check all of the PC-relative relocations to make sure they still fit. */
68ffbac6 8737 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
43cd72b9
BW
8738 target_sec_cache->contents,
8739 target_sec_cache->relocs,
cb337148 8740 &ebb_table, NULL);
43cd72b9 8741
68ffbac6 8742 if (!relocs_fit)
43cd72b9
BW
8743 return FALSE;
8744
8745 text_action_add_literal (&target_relax_info->action_list,
8746 ta_add_literal, target_loc, lit_value, -4);
8747
68ffbac6 8748 if (target_sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
8749 {
8750 /* May need to add or remove some fill to maintain alignment. */
8751 int fill_extra_space;
8752 bfd_vma entry_sec_offset;
8753
68ffbac6 8754 entry_sec_offset =
43cd72b9
BW
8755 target_entry->address - target_sec->vma + target_entry->size;
8756
8757 /* If the literal range is at the end of the section,
8758 do not add fill. */
8759 fill_extra_space = 0;
8760 the_add_entry =
8761 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8762 target_sec_cache->pte_count,
8763 entry_sec_offset);
8764 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8765 fill_extra_space = the_add_entry->size;
8766
8767 target_fa = find_fill_action (&target_relax_info->action_list,
8768 target_sec, entry_sec_offset);
8769 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8770 entry_sec_offset, 4,
8771 fill_extra_space);
8772 if (target_fa)
8773 adjust_fill_action (target_fa, removed_diff);
8774 else
8775 text_action_add (&target_relax_info->action_list,
8776 ta_fill, target_sec, entry_sec_offset, removed_diff);
8777 }
8778
8779 /* Mark that the literal will be moved to the new location. */
8780 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8781
8782 /* Remove the literal. */
8783 text_action_add (&relax_info->action_list,
8784 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8785
8786 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8787 if (sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
8788 {
8789 int fill_extra_space;
8790 bfd_vma entry_sec_offset;
8791
8792 if (src_entry)
8793 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8794 else
8795 entry_sec_offset = rel->r_rel.target_offset+4;
8796
8797 /* If the literal range is at the end of the section,
8798 do not add fill. */
8799 fill_extra_space = 0;
8800 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8801 entry_sec_offset);
8802 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8803 fill_extra_space = the_add_entry->size;
8804
8805 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8806 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8807 -4, fill_extra_space);
8808 if (fa)
8809 adjust_fill_action (fa, removed_diff);
8810 else
8811 text_action_add (&relax_info->action_list,
8812 ta_fill, sec, entry_sec_offset, removed_diff);
8813 }
8814
8815 return TRUE;
e0001a05
NC
8816}
8817
8818\f
8819/* Second relaxation pass. */
8820
8821/* Modify all of the relocations to point to the right spot, and if this
8822 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8823 section size. */
e0001a05 8824
43cd72b9 8825bfd_boolean
7fa3d080 8826relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8827{
8828 Elf_Internal_Rela *internal_relocs;
8829 xtensa_relax_info *relax_info;
8830 bfd_byte *contents;
8831 bfd_boolean ok = TRUE;
8832 unsigned i;
43cd72b9
BW
8833 bfd_boolean rv = FALSE;
8834 bfd_boolean virtual_action;
8835 bfd_size_type sec_size;
e0001a05 8836
43cd72b9 8837 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8838 relax_info = get_xtensa_relax_info (sec);
8839 BFD_ASSERT (relax_info);
8840
43cd72b9
BW
8841 /* First translate any of the fixes that have been added already. */
8842 translate_section_fixes (sec);
8843
e0001a05
NC
8844 /* Handle property sections (e.g., literal tables) specially. */
8845 if (xtensa_is_property_section (sec))
8846 {
8847 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8848 return relax_property_section (abfd, sec, link_info);
8849 }
8850
68ffbac6 8851 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 8852 link_info->keep_memory);
7aa09196
SA
8853 if (!internal_relocs && !relax_info->action_list.head)
8854 return TRUE;
8855
43cd72b9
BW
8856 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8857 if (contents == NULL && sec_size != 0)
8858 {
8859 ok = FALSE;
8860 goto error_return;
8861 }
8862
8863 if (internal_relocs)
8864 {
8865 for (i = 0; i < sec->reloc_count; i++)
8866 {
8867 Elf_Internal_Rela *irel;
8868 xtensa_relax_info *target_relax_info;
8869 bfd_vma source_offset, old_source_offset;
8870 r_reloc r_rel;
8871 unsigned r_type;
8872 asection *target_sec;
8873
8874 /* Locally change the source address.
8875 Translate the target to the new target address.
8876 If it points to this section and has been removed,
8877 NULLify it.
8878 Write it back. */
8879
8880 irel = &internal_relocs[i];
8881 source_offset = irel->r_offset;
8882 old_source_offset = source_offset;
8883
8884 r_type = ELF32_R_TYPE (irel->r_info);
8885 r_reloc_init (&r_rel, abfd, irel, contents,
8886 bfd_get_section_limit (abfd, sec));
8887
8888 /* If this section could have changed then we may need to
8889 change the relocation's offset. */
8890
8891 if (relax_info->is_relaxable_literal_section
8892 || relax_info->is_relaxable_asm_section)
8893 {
9b7f5d20
BW
8894 pin_internal_relocs (sec, internal_relocs);
8895
43cd72b9
BW
8896 if (r_type != R_XTENSA_NONE
8897 && find_removed_literal (&relax_info->removed_list,
8898 irel->r_offset))
8899 {
8900 /* Remove this relocation. */
8901 if (elf_hash_table (link_info)->dynamic_sections_created)
8902 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8903 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8904 irel->r_offset = offset_with_removed_text
8905 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8906 continue;
8907 }
8908
8909 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8910 {
8911 text_action *action =
8912 find_insn_action (&relax_info->action_list,
8913 irel->r_offset);
8914 if (action && (action->action == ta_convert_longcall
8915 || action->action == ta_remove_longcall))
8916 {
8917 bfd_reloc_status_type retval;
8918 char *error_message = NULL;
8919
8920 retval = contract_asm_expansion (contents, sec_size,
8921 irel, &error_message);
8922 if (retval != bfd_reloc_ok)
8923 {
8924 (*link_info->callbacks->reloc_dangerous)
8925 (link_info, error_message, abfd, sec,
8926 irel->r_offset);
8927 goto error_return;
8928 }
8929 /* Update the action so that the code that moves
8930 the contents will do the right thing. */
8931 if (action->action == ta_remove_longcall)
8932 action->action = ta_remove_insn;
8933 else
8934 action->action = ta_none;
8935 /* Refresh the info in the r_rel. */
8936 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8937 r_type = ELF32_R_TYPE (irel->r_info);
8938 }
8939 }
8940
8941 source_offset = offset_with_removed_text
8942 (&relax_info->action_list, irel->r_offset);
8943 irel->r_offset = source_offset;
8944 }
8945
8946 /* If the target section could have changed then
8947 we may need to change the relocation's target offset. */
8948
8949 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8950
ae326da8
BW
8951 /* For a reference to a discarded section from a DWARF section,
8952 i.e., where action_discarded is PRETEND, the symbol will
8953 eventually be modified to refer to the kept section (at least if
8954 the kept and discarded sections are the same size). Anticipate
8955 that here and adjust things accordingly. */
8956 if (! elf_xtensa_ignore_discarded_relocs (sec)
8957 && elf_xtensa_action_discarded (sec) == PRETEND
dbaa2011 8958 && sec->sec_info_type != SEC_INFO_TYPE_STABS
ae326da8 8959 && target_sec != NULL
dbaa2011 8960 && discarded_section (target_sec))
ae326da8
BW
8961 {
8962 /* It would be natural to call _bfd_elf_check_kept_section
8963 here, but it's not exported from elflink.c. It's also a
8964 fairly expensive check. Adjusting the relocations to the
8965 discarded section is fairly harmless; it will only adjust
8966 some addends and difference values. If it turns out that
8967 _bfd_elf_check_kept_section fails later, it won't matter,
8968 so just compare the section names to find the right group
8969 member. */
8970 asection *kept = target_sec->kept_section;
8971 if (kept != NULL)
8972 {
8973 if ((kept->flags & SEC_GROUP) != 0)
8974 {
8975 asection *first = elf_next_in_group (kept);
8976 asection *s = first;
8977
8978 kept = NULL;
8979 while (s != NULL)
8980 {
8981 if (strcmp (s->name, target_sec->name) == 0)
8982 {
8983 kept = s;
8984 break;
8985 }
8986 s = elf_next_in_group (s);
8987 if (s == first)
8988 break;
8989 }
8990 }
8991 }
8992 if (kept != NULL
8993 && ((target_sec->rawsize != 0
8994 ? target_sec->rawsize : target_sec->size)
8995 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8996 target_sec = kept;
8997 }
8998
8999 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9000 if (target_relax_info
9001 && (target_relax_info->is_relaxable_literal_section
9002 || target_relax_info->is_relaxable_asm_section))
9003 {
9004 r_reloc new_reloc;
9b7f5d20 9005 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9006
9007 if (r_type == R_XTENSA_DIFF8
9008 || r_type == R_XTENSA_DIFF16
9009 || r_type == R_XTENSA_DIFF32)
9010 {
9011 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
9012
9013 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9014 {
9015 (*link_info->callbacks->reloc_dangerous)
9016 (link_info, _("invalid relocation address"),
9017 abfd, sec, old_source_offset);
9018 goto error_return;
9019 }
9020
9021 switch (r_type)
9022 {
9023 case R_XTENSA_DIFF8:
9024 diff_value =
9025 bfd_get_8 (abfd, &contents[old_source_offset]);
9026 break;
9027 case R_XTENSA_DIFF16:
9028 diff_value =
9029 bfd_get_16 (abfd, &contents[old_source_offset]);
9030 break;
9031 case R_XTENSA_DIFF32:
9032 diff_value =
9033 bfd_get_32 (abfd, &contents[old_source_offset]);
9034 break;
9035 }
9036
9037 new_end_offset = offset_with_removed_text
9038 (&target_relax_info->action_list,
9039 r_rel.target_offset + diff_value);
9040 diff_value = new_end_offset - new_reloc.target_offset;
9041
9042 switch (r_type)
9043 {
9044 case R_XTENSA_DIFF8:
9045 diff_mask = 0xff;
9046 bfd_put_8 (abfd, diff_value,
9047 &contents[old_source_offset]);
9048 break;
9049 case R_XTENSA_DIFF16:
9050 diff_mask = 0xffff;
9051 bfd_put_16 (abfd, diff_value,
9052 &contents[old_source_offset]);
9053 break;
9054 case R_XTENSA_DIFF32:
9055 diff_mask = 0xffffffff;
9056 bfd_put_32 (abfd, diff_value,
9057 &contents[old_source_offset]);
9058 break;
9059 }
9060
9061 /* Check for overflow. */
9062 if ((diff_value & ~diff_mask) != 0)
9063 {
9064 (*link_info->callbacks->reloc_dangerous)
9065 (link_info, _("overflow after relaxation"),
9066 abfd, sec, old_source_offset);
9067 goto error_return;
9068 }
9069
9070 pin_contents (sec, contents);
9071 }
dc96b90a
BW
9072
9073 /* If the relocation still references a section in the same
9074 input file, modify the relocation directly instead of
9075 adding a "fix" record. */
9076 if (target_sec->owner == abfd)
9077 {
9078 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9079 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9080 irel->r_addend = new_reloc.rela.r_addend;
9081 pin_internal_relocs (sec, internal_relocs);
9082 }
9b7f5d20
BW
9083 else
9084 {
dc96b90a
BW
9085 bfd_vma addend_displacement;
9086 reloc_bfd_fix *fix;
9087
9088 addend_displacement =
9089 new_reloc.target_offset + new_reloc.virtual_offset;
9090 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9091 target_sec,
9092 addend_displacement, TRUE);
9093 add_fix (sec, fix);
9b7f5d20 9094 }
43cd72b9 9095 }
43cd72b9
BW
9096 }
9097 }
9098
9099 if ((relax_info->is_relaxable_literal_section
9100 || relax_info->is_relaxable_asm_section)
9101 && relax_info->action_list.head)
9102 {
9103 /* Walk through the planned actions and build up a table
9104 of move, copy and fill records. Use the move, copy and
9105 fill records to perform the actions once. */
9106
43cd72b9
BW
9107 int removed = 0;
9108 bfd_size_type final_size, copy_size, orig_insn_size;
9109 bfd_byte *scratch = NULL;
9110 bfd_byte *dup_contents = NULL;
a3ef2d63 9111 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9112 bfd_vma orig_dot = 0;
9113 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9114 orig dot in physical memory. */
9115 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9116 bfd_vma dup_dot = 0;
9117
9118 text_action *action = relax_info->action_list.head;
9119
9120 final_size = sec->size;
9121 for (action = relax_info->action_list.head; action;
9122 action = action->next)
9123 {
9124 final_size -= action->removed_bytes;
9125 }
9126
9127 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9128 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9129
9130 /* The dot is the current fill location. */
9131#if DEBUG
9132 print_action_list (stderr, &relax_info->action_list);
9133#endif
9134
9135 for (action = relax_info->action_list.head; action;
9136 action = action->next)
9137 {
9138 virtual_action = FALSE;
9139 if (action->offset > orig_dot)
9140 {
9141 orig_dot += orig_dot_copied;
9142 orig_dot_copied = 0;
9143 orig_dot_vo = 0;
9144 /* Out of the virtual world. */
9145 }
9146
9147 if (action->offset > orig_dot)
9148 {
9149 copy_size = action->offset - orig_dot;
9150 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9151 orig_dot += copy_size;
9152 dup_dot += copy_size;
9153 BFD_ASSERT (action->offset == orig_dot);
9154 }
9155 else if (action->offset < orig_dot)
9156 {
9157 if (action->action == ta_fill
9158 && action->offset - action->removed_bytes == orig_dot)
9159 {
9160 /* This is OK because the fill only effects the dup_dot. */
9161 }
9162 else if (action->action == ta_add_literal)
9163 {
9164 /* TBD. Might need to handle this. */
9165 }
9166 }
9167 if (action->offset == orig_dot)
9168 {
9169 if (action->virtual_offset > orig_dot_vo)
9170 {
9171 if (orig_dot_vo == 0)
9172 {
9173 /* Need to copy virtual_offset bytes. Probably four. */
9174 copy_size = action->virtual_offset - orig_dot_vo;
9175 memmove (&dup_contents[dup_dot],
9176 &contents[orig_dot], copy_size);
9177 orig_dot_copied = copy_size;
9178 dup_dot += copy_size;
9179 }
9180 virtual_action = TRUE;
68ffbac6 9181 }
43cd72b9
BW
9182 else
9183 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9184 }
9185 switch (action->action)
9186 {
9187 case ta_remove_literal:
9188 case ta_remove_insn:
9189 BFD_ASSERT (action->removed_bytes >= 0);
9190 orig_dot += action->removed_bytes;
9191 break;
9192
9193 case ta_narrow_insn:
9194 orig_insn_size = 3;
9195 copy_size = 2;
9196 memmove (scratch, &contents[orig_dot], orig_insn_size);
9197 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9198 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9199 BFD_ASSERT (rv);
9200 memmove (&dup_contents[dup_dot], scratch, copy_size);
9201 orig_dot += orig_insn_size;
9202 dup_dot += copy_size;
9203 break;
9204
9205 case ta_fill:
9206 if (action->removed_bytes >= 0)
9207 orig_dot += action->removed_bytes;
9208 else
9209 {
9210 /* Already zeroed in dup_contents. Just bump the
9211 counters. */
9212 dup_dot += (-action->removed_bytes);
9213 }
9214 break;
9215
9216 case ta_none:
9217 BFD_ASSERT (action->removed_bytes == 0);
9218 break;
9219
9220 case ta_convert_longcall:
9221 case ta_remove_longcall:
9222 /* These will be removed or converted before we get here. */
9223 BFD_ASSERT (0);
9224 break;
9225
9226 case ta_widen_insn:
9227 orig_insn_size = 2;
9228 copy_size = 3;
9229 memmove (scratch, &contents[orig_dot], orig_insn_size);
9230 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9231 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9232 BFD_ASSERT (rv);
9233 memmove (&dup_contents[dup_dot], scratch, copy_size);
9234 orig_dot += orig_insn_size;
9235 dup_dot += copy_size;
9236 break;
9237
9238 case ta_add_literal:
9239 orig_insn_size = 0;
9240 copy_size = 4;
9241 BFD_ASSERT (action->removed_bytes == -4);
9242 /* TBD -- place the literal value here and insert
9243 into the table. */
9244 memset (&dup_contents[dup_dot], 0, 4);
9245 pin_internal_relocs (sec, internal_relocs);
9246 pin_contents (sec, contents);
9247
9248 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9249 relax_info, &internal_relocs, &action->value))
9250 goto error_return;
9251
68ffbac6 9252 if (virtual_action)
43cd72b9
BW
9253 orig_dot_vo += copy_size;
9254
9255 orig_dot += orig_insn_size;
9256 dup_dot += copy_size;
9257 break;
9258
9259 default:
9260 /* Not implemented yet. */
9261 BFD_ASSERT (0);
9262 break;
9263 }
9264
43cd72b9
BW
9265 removed += action->removed_bytes;
9266 BFD_ASSERT (dup_dot <= final_size);
9267 BFD_ASSERT (orig_dot <= orig_size);
9268 }
9269
9270 orig_dot += orig_dot_copied;
9271 orig_dot_copied = 0;
9272
9273 if (orig_dot != orig_size)
9274 {
9275 copy_size = orig_size - orig_dot;
9276 BFD_ASSERT (orig_size > orig_dot);
9277 BFD_ASSERT (dup_dot + copy_size == final_size);
9278 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9279 orig_dot += copy_size;
9280 dup_dot += copy_size;
9281 }
9282 BFD_ASSERT (orig_size == orig_dot);
9283 BFD_ASSERT (final_size == dup_dot);
9284
9285 /* Move the dup_contents back. */
9286 if (final_size > orig_size)
9287 {
9288 /* Contents need to be reallocated. Swap the dup_contents into
9289 contents. */
9290 sec->contents = dup_contents;
9291 free (contents);
9292 contents = dup_contents;
9293 pin_contents (sec, contents);
9294 }
9295 else
9296 {
9297 BFD_ASSERT (final_size <= orig_size);
9298 memset (contents, 0, orig_size);
9299 memcpy (contents, dup_contents, final_size);
9300 free (dup_contents);
9301 }
9302 free (scratch);
9303 pin_contents (sec, contents);
9304
a3ef2d63
BW
9305 if (sec->rawsize == 0)
9306 sec->rawsize = sec->size;
43cd72b9
BW
9307 sec->size = final_size;
9308 }
9309
9310 error_return:
9311 release_internal_relocs (sec, internal_relocs);
9312 release_contents (sec, contents);
9313 return ok;
9314}
9315
9316
68ffbac6 9317static bfd_boolean
7fa3d080 9318translate_section_fixes (asection *sec)
43cd72b9
BW
9319{
9320 xtensa_relax_info *relax_info;
9321 reloc_bfd_fix *r;
9322
9323 relax_info = get_xtensa_relax_info (sec);
9324 if (!relax_info)
9325 return TRUE;
9326
9327 for (r = relax_info->fix_list; r != NULL; r = r->next)
9328 if (!translate_reloc_bfd_fix (r))
9329 return FALSE;
e0001a05 9330
43cd72b9
BW
9331 return TRUE;
9332}
e0001a05 9333
e0001a05 9334
43cd72b9
BW
9335/* Translate a fix given the mapping in the relax info for the target
9336 section. If it has already been translated, no work is required. */
e0001a05 9337
68ffbac6 9338static bfd_boolean
7fa3d080 9339translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9340{
9341 reloc_bfd_fix new_fix;
9342 asection *sec;
9343 xtensa_relax_info *relax_info;
9344 removed_literal *removed;
9345 bfd_vma new_offset, target_offset;
e0001a05 9346
43cd72b9
BW
9347 if (fix->translated)
9348 return TRUE;
e0001a05 9349
43cd72b9
BW
9350 sec = fix->target_sec;
9351 target_offset = fix->target_offset;
e0001a05 9352
43cd72b9
BW
9353 relax_info = get_xtensa_relax_info (sec);
9354 if (!relax_info)
9355 {
9356 fix->translated = TRUE;
9357 return TRUE;
9358 }
e0001a05 9359
43cd72b9 9360 new_fix = *fix;
e0001a05 9361
43cd72b9
BW
9362 /* The fix does not need to be translated if the section cannot change. */
9363 if (!relax_info->is_relaxable_literal_section
9364 && !relax_info->is_relaxable_asm_section)
9365 {
9366 fix->translated = TRUE;
9367 return TRUE;
9368 }
e0001a05 9369
43cd72b9
BW
9370 /* If the literal has been moved and this relocation was on an
9371 opcode, then the relocation should move to the new literal
9372 location. Otherwise, the relocation should move within the
9373 section. */
9374
9375 removed = FALSE;
9376 if (is_operand_relocation (fix->src_type))
9377 {
9378 /* Check if the original relocation is against a literal being
9379 removed. */
9380 removed = find_removed_literal (&relax_info->removed_list,
9381 target_offset);
e0001a05
NC
9382 }
9383
68ffbac6 9384 if (removed)
e0001a05 9385 {
43cd72b9 9386 asection *new_sec;
e0001a05 9387
43cd72b9
BW
9388 /* The fact that there is still a relocation to this literal indicates
9389 that the literal is being coalesced, not simply removed. */
9390 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9391
43cd72b9
BW
9392 /* This was moved to some other address (possibly another section). */
9393 new_sec = r_reloc_get_section (&removed->to);
68ffbac6 9394 if (new_sec != sec)
e0001a05 9395 {
43cd72b9
BW
9396 sec = new_sec;
9397 relax_info = get_xtensa_relax_info (sec);
68ffbac6 9398 if (!relax_info ||
43cd72b9
BW
9399 (!relax_info->is_relaxable_literal_section
9400 && !relax_info->is_relaxable_asm_section))
e0001a05 9401 {
43cd72b9
BW
9402 target_offset = removed->to.target_offset;
9403 new_fix.target_sec = new_sec;
9404 new_fix.target_offset = target_offset;
9405 new_fix.translated = TRUE;
9406 *fix = new_fix;
9407 return TRUE;
e0001a05 9408 }
e0001a05 9409 }
43cd72b9
BW
9410 target_offset = removed->to.target_offset;
9411 new_fix.target_sec = new_sec;
e0001a05 9412 }
43cd72b9
BW
9413
9414 /* The target address may have been moved within its section. */
9415 new_offset = offset_with_removed_text (&relax_info->action_list,
9416 target_offset);
9417
9418 new_fix.target_offset = new_offset;
9419 new_fix.target_offset = new_offset;
9420 new_fix.translated = TRUE;
9421 *fix = new_fix;
9422 return TRUE;
e0001a05
NC
9423}
9424
9425
9426/* Fix up a relocation to take account of removed literals. */
9427
9b7f5d20
BW
9428static asection *
9429translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9430{
e0001a05
NC
9431 xtensa_relax_info *relax_info;
9432 removed_literal *removed;
9b7f5d20
BW
9433 bfd_vma target_offset, base_offset;
9434 text_action *act;
e0001a05
NC
9435
9436 *new_rel = *orig_rel;
9437
9438 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9439 return sec ;
e0001a05
NC
9440
9441 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9442 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9443 || relax_info->is_relaxable_asm_section));
e0001a05 9444
43cd72b9
BW
9445 target_offset = orig_rel->target_offset;
9446
9447 removed = FALSE;
9448 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9449 {
9450 /* Check if the original relocation is against a literal being
9451 removed. */
9452 removed = find_removed_literal (&relax_info->removed_list,
9453 target_offset);
9454 }
9455 if (removed && removed->to.abfd)
e0001a05
NC
9456 {
9457 asection *new_sec;
9458
9459 /* The fact that there is still a relocation to this literal indicates
9460 that the literal is being coalesced, not simply removed. */
9461 BFD_ASSERT (removed->to.abfd != NULL);
9462
43cd72b9
BW
9463 /* This was moved to some other address
9464 (possibly in another section). */
e0001a05
NC
9465 *new_rel = removed->to;
9466 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9467 if (new_sec != sec)
e0001a05
NC
9468 {
9469 sec = new_sec;
9470 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9471 if (!relax_info
9472 || (!relax_info->is_relaxable_literal_section
9473 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9474 return sec;
e0001a05 9475 }
43cd72b9 9476 target_offset = new_rel->target_offset;
e0001a05
NC
9477 }
9478
9b7f5d20
BW
9479 /* Find the base offset of the reloc symbol, excluding any addend from the
9480 reloc or from the section contents (for a partial_inplace reloc). Then
9481 find the adjusted values of the offsets due to relaxation. The base
9482 offset is needed to determine the change to the reloc's addend; the reloc
9483 addend should not be adjusted due to relaxations located before the base
9484 offset. */
9485
9486 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9487 act = relax_info->action_list.head;
9488 if (base_offset <= target_offset)
9489 {
9490 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9491 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9492 new_rel->target_offset = target_offset - base_removed - addend_removed;
9493 new_rel->rela.r_addend -= addend_removed;
9494 }
9495 else
9496 {
9497 /* Handle a negative addend. The base offset comes first. */
9498 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9499 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9500 new_rel->target_offset = target_offset - tgt_removed;
9501 new_rel->rela.r_addend += addend_removed;
9502 }
e0001a05 9503
9b7f5d20 9504 return sec;
e0001a05
NC
9505}
9506
9507
9508/* For dynamic links, there may be a dynamic relocation for each
9509 literal. The number of dynamic relocations must be computed in
9510 size_dynamic_sections, which occurs before relaxation. When a
9511 literal is removed, this function checks if there is a corresponding
9512 dynamic relocation and shrinks the size of the appropriate dynamic
9513 relocation section accordingly. At this point, the contents of the
9514 dynamic relocation sections have not yet been filled in, so there's
9515 nothing else that needs to be done. */
9516
9517static void
7fa3d080
BW
9518shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9519 bfd *abfd,
9520 asection *input_section,
9521 Elf_Internal_Rela *rel)
e0001a05 9522{
f0e6fdb2 9523 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
9524 Elf_Internal_Shdr *symtab_hdr;
9525 struct elf_link_hash_entry **sym_hashes;
9526 unsigned long r_symndx;
9527 int r_type;
9528 struct elf_link_hash_entry *h;
9529 bfd_boolean dynamic_symbol;
9530
f0e6fdb2 9531 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
9532 if (htab == NULL)
9533 return;
9534
e0001a05
NC
9535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9536 sym_hashes = elf_sym_hashes (abfd);
9537
9538 r_type = ELF32_R_TYPE (rel->r_info);
9539 r_symndx = ELF32_R_SYM (rel->r_info);
9540
9541 if (r_symndx < symtab_hdr->sh_info)
9542 h = NULL;
9543 else
9544 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9545
4608f3d9 9546 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
9547
9548 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9549 && (input_section->flags & SEC_ALLOC) != 0
9550 && (dynamic_symbol || info->shared))
9551 {
e0001a05
NC
9552 asection *srel;
9553 bfd_boolean is_plt = FALSE;
9554
e0001a05
NC
9555 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9556 {
f0e6fdb2 9557 srel = htab->srelplt;
e0001a05
NC
9558 is_plt = TRUE;
9559 }
9560 else
f0e6fdb2 9561 srel = htab->srelgot;
e0001a05
NC
9562
9563 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 9564 BFD_ASSERT (srel != NULL);
eea6121a
AM
9565 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9566 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
9567
9568 if (is_plt)
9569 {
9570 asection *splt, *sgotplt, *srelgot;
9571 int reloc_index, chunk;
9572
9573 /* Find the PLT reloc index of the entry being removed. This
9574 is computed from the size of ".rela.plt". It is needed to
9575 figure out which PLT chunk to resize. Usually "last index
9576 = size - 1" since the index starts at zero, but in this
9577 context, the size has just been decremented so there's no
9578 need to subtract one. */
eea6121a 9579 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
9580
9581 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
9582 splt = elf_xtensa_get_plt_section (info, chunk);
9583 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
9584 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9585
9586 /* Check if an entire PLT chunk has just been eliminated. */
9587 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9588 {
9589 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 9590 srelgot = htab->srelgot;
e0001a05
NC
9591 BFD_ASSERT (srelgot != NULL);
9592 srelgot->reloc_count -= 2;
eea6121a
AM
9593 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9594 sgotplt->size -= 8;
e0001a05
NC
9595
9596 /* There should be only one entry left (and it will be
9597 removed below). */
eea6121a
AM
9598 BFD_ASSERT (sgotplt->size == 4);
9599 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
9600 }
9601
eea6121a
AM
9602 BFD_ASSERT (sgotplt->size >= 4);
9603 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 9604
eea6121a
AM
9605 sgotplt->size -= 4;
9606 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
9607 }
9608 }
9609}
9610
9611
43cd72b9
BW
9612/* Take an r_rel and move it to another section. This usually
9613 requires extending the interal_relocation array and pinning it. If
9614 the original r_rel is from the same BFD, we can complete this here.
9615 Otherwise, we add a fix record to let the final link fix the
9616 appropriate address. Contents and internal relocations for the
9617 section must be pinned after calling this routine. */
9618
9619static bfd_boolean
7fa3d080
BW
9620move_literal (bfd *abfd,
9621 struct bfd_link_info *link_info,
9622 asection *sec,
9623 bfd_vma offset,
9624 bfd_byte *contents,
9625 xtensa_relax_info *relax_info,
9626 Elf_Internal_Rela **internal_relocs_p,
9627 const literal_value *lit)
43cd72b9
BW
9628{
9629 Elf_Internal_Rela *new_relocs = NULL;
9630 size_t new_relocs_count = 0;
9631 Elf_Internal_Rela this_rela;
9632 const r_reloc *r_rel;
9633
9634 r_rel = &lit->r_rel;
9635 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9636
9637 if (r_reloc_is_const (r_rel))
9638 bfd_put_32 (abfd, lit->value, contents + offset);
9639 else
9640 {
9641 int r_type;
9642 unsigned i;
43cd72b9
BW
9643 reloc_bfd_fix *fix;
9644 unsigned insert_at;
9645
9646 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
9647
9648 /* This is the difficult case. We have to create a fix up. */
9649 this_rela.r_offset = offset;
9650 this_rela.r_info = ELF32_R_INFO (0, r_type);
9651 this_rela.r_addend =
9652 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9653 bfd_put_32 (abfd, lit->value, contents + offset);
9654
9655 /* Currently, we cannot move relocations during a relocatable link. */
9656 BFD_ASSERT (!link_info->relocatable);
0f5f1638 9657 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
9658 r_reloc_get_section (r_rel),
9659 r_rel->target_offset + r_rel->virtual_offset,
9660 FALSE);
9661 /* We also need to mark that relocations are needed here. */
9662 sec->flags |= SEC_RELOC;
9663
9664 translate_reloc_bfd_fix (fix);
9665 /* This fix has not yet been translated. */
9666 add_fix (sec, fix);
9667
9668 /* Add the relocation. If we have already allocated our own
9669 space for the relocations and we have room for more, then use
9670 it. Otherwise, allocate new space and move the literals. */
9671 insert_at = sec->reloc_count;
9672 for (i = 0; i < sec->reloc_count; ++i)
9673 {
9674 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9675 {
9676 insert_at = i;
9677 break;
9678 }
9679 }
9680
9681 if (*internal_relocs_p != relax_info->allocated_relocs
9682 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9683 {
9684 BFD_ASSERT (relax_info->allocated_relocs == NULL
9685 || sec->reloc_count == relax_info->relocs_count);
9686
68ffbac6 9687 if (relax_info->allocated_relocs_count == 0)
43cd72b9
BW
9688 new_relocs_count = (sec->reloc_count + 2) * 2;
9689 else
9690 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9691
9692 new_relocs = (Elf_Internal_Rela *)
9693 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9694 if (!new_relocs)
9695 return FALSE;
9696
9697 /* We could handle this more quickly by finding the split point. */
9698 if (insert_at != 0)
9699 memcpy (new_relocs, *internal_relocs_p,
9700 insert_at * sizeof (Elf_Internal_Rela));
9701
9702 new_relocs[insert_at] = this_rela;
9703
9704 if (insert_at != sec->reloc_count)
9705 memcpy (new_relocs + insert_at + 1,
9706 (*internal_relocs_p) + insert_at,
68ffbac6 9707 (sec->reloc_count - insert_at)
43cd72b9
BW
9708 * sizeof (Elf_Internal_Rela));
9709
9710 if (*internal_relocs_p != relax_info->allocated_relocs)
9711 {
9712 /* The first time we re-allocate, we can only free the
9713 old relocs if they were allocated with bfd_malloc.
9714 This is not true when keep_memory is in effect. */
9715 if (!link_info->keep_memory)
9716 free (*internal_relocs_p);
9717 }
9718 else
9719 free (*internal_relocs_p);
9720 relax_info->allocated_relocs = new_relocs;
9721 relax_info->allocated_relocs_count = new_relocs_count;
9722 elf_section_data (sec)->relocs = new_relocs;
9723 sec->reloc_count++;
9724 relax_info->relocs_count = sec->reloc_count;
9725 *internal_relocs_p = new_relocs;
9726 }
9727 else
9728 {
9729 if (insert_at != sec->reloc_count)
9730 {
9731 unsigned idx;
9732 for (idx = sec->reloc_count; idx > insert_at; idx--)
9733 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9734 }
9735 (*internal_relocs_p)[insert_at] = this_rela;
9736 sec->reloc_count++;
9737 if (relax_info->allocated_relocs)
9738 relax_info->relocs_count = sec->reloc_count;
9739 }
9740 }
9741 return TRUE;
9742}
9743
9744
e0001a05
NC
9745/* This is similar to relax_section except that when a target is moved,
9746 we shift addresses up. We also need to modify the size. This
9747 algorithm does NOT allow for relocations into the middle of the
9748 property sections. */
9749
43cd72b9 9750static bfd_boolean
7fa3d080
BW
9751relax_property_section (bfd *abfd,
9752 asection *sec,
9753 struct bfd_link_info *link_info)
e0001a05
NC
9754{
9755 Elf_Internal_Rela *internal_relocs;
9756 bfd_byte *contents;
1d25768e 9757 unsigned i;
e0001a05 9758 bfd_boolean ok = TRUE;
43cd72b9
BW
9759 bfd_boolean is_full_prop_section;
9760 size_t last_zfill_target_offset = 0;
9761 asection *last_zfill_target_sec = NULL;
9762 bfd_size_type sec_size;
1d25768e 9763 bfd_size_type entry_size;
e0001a05 9764
43cd72b9 9765 sec_size = bfd_get_section_limit (abfd, sec);
68ffbac6 9766 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
9767 link_info->keep_memory);
9768 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9769 if (contents == NULL && sec_size != 0)
e0001a05
NC
9770 {
9771 ok = FALSE;
9772 goto error_return;
9773 }
9774
1d25768e
BW
9775 is_full_prop_section = xtensa_is_proptable_section (sec);
9776 if (is_full_prop_section)
9777 entry_size = 12;
9778 else
9779 entry_size = 8;
43cd72b9
BW
9780
9781 if (internal_relocs)
e0001a05 9782 {
43cd72b9 9783 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9784 {
9785 Elf_Internal_Rela *irel;
9786 xtensa_relax_info *target_relax_info;
e0001a05
NC
9787 unsigned r_type;
9788 asection *target_sec;
43cd72b9
BW
9789 literal_value val;
9790 bfd_byte *size_p, *flags_p;
e0001a05
NC
9791
9792 /* Locally change the source address.
9793 Translate the target to the new target address.
9794 If it points to this section and has been removed, MOVE IT.
9795 Also, don't forget to modify the associated SIZE at
9796 (offset + 4). */
9797
9798 irel = &internal_relocs[i];
9799 r_type = ELF32_R_TYPE (irel->r_info);
9800 if (r_type == R_XTENSA_NONE)
9801 continue;
9802
43cd72b9
BW
9803 /* Find the literal value. */
9804 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9805 size_p = &contents[irel->r_offset + 4];
9806 flags_p = NULL;
9807 if (is_full_prop_section)
1d25768e
BW
9808 flags_p = &contents[irel->r_offset + 8];
9809 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 9810
43cd72b9 9811 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
9812 target_relax_info = get_xtensa_relax_info (target_sec);
9813
9814 if (target_relax_info
43cd72b9
BW
9815 && (target_relax_info->is_relaxable_literal_section
9816 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9817 {
9818 /* Translate the relocation's destination. */
03669f1c
BW
9819 bfd_vma old_offset = val.r_rel.target_offset;
9820 bfd_vma new_offset;
e0001a05 9821 long old_size, new_size;
03669f1c
BW
9822 text_action *act = target_relax_info->action_list.head;
9823 new_offset = old_offset -
9824 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9825
9826 /* Assert that we are not out of bounds. */
43cd72b9 9827 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9828 new_size = old_size;
43cd72b9
BW
9829
9830 if (old_size == 0)
9831 {
9832 /* Only the first zero-sized unreachable entry is
9833 allowed to expand. In this case the new offset
9834 should be the offset before the fill and the new
9835 size is the expansion size. For other zero-sized
9836 entries the resulting size should be zero with an
9837 offset before or after the fill address depending
9838 on whether the expanding unreachable entry
9839 preceeds it. */
03669f1c
BW
9840 if (last_zfill_target_sec == 0
9841 || last_zfill_target_sec != target_sec
9842 || last_zfill_target_offset != old_offset)
43cd72b9 9843 {
03669f1c
BW
9844 bfd_vma new_end_offset = new_offset;
9845
9846 /* Recompute the new_offset, but this time don't
9847 include any fill inserted by relaxation. */
9848 act = target_relax_info->action_list.head;
9849 new_offset = old_offset -
9850 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9851
9852 /* If it is not unreachable and we have not yet
9853 seen an unreachable at this address, place it
9854 before the fill address. */
03669f1c
BW
9855 if (flags_p && (bfd_get_32 (abfd, flags_p)
9856 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9857 {
03669f1c
BW
9858 new_size = new_end_offset - new_offset;
9859
43cd72b9 9860 last_zfill_target_sec = target_sec;
03669f1c 9861 last_zfill_target_offset = old_offset;
43cd72b9
BW
9862 }
9863 }
9864 }
9865 else
03669f1c
BW
9866 new_size -=
9867 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9868
e0001a05
NC
9869 if (new_size != old_size)
9870 {
9871 bfd_put_32 (abfd, new_size, size_p);
9872 pin_contents (sec, contents);
9873 }
43cd72b9 9874
03669f1c 9875 if (new_offset != old_offset)
e0001a05 9876 {
03669f1c 9877 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9878 irel->r_addend += diff;
9879 pin_internal_relocs (sec, internal_relocs);
9880 }
9881 }
9882 }
9883 }
9884
9885 /* Combine adjacent property table entries. This is also done in
9886 finish_dynamic_sections() but at that point it's too late to
9887 reclaim the space in the output section, so we do this twice. */
9888
43cd72b9 9889 if (internal_relocs && (!link_info->relocatable
1d25768e 9890 || xtensa_is_littable_section (sec)))
e0001a05
NC
9891 {
9892 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9893 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9894 int removed_bytes = 0;
1d25768e 9895 bfd_vma offset;
43cd72b9
BW
9896 flagword predef_flags;
9897
43cd72b9 9898 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9899
1d25768e 9900 /* Walk over memory and relocations at the same time.
e0001a05
NC
9901 This REQUIRES that the internal_relocs be sorted by offset. */
9902 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9903 internal_reloc_compare);
e0001a05
NC
9904
9905 pin_internal_relocs (sec, internal_relocs);
9906 pin_contents (sec, contents);
9907
1d25768e
BW
9908 next_rel = internal_relocs;
9909 rel_end = internal_relocs + sec->reloc_count;
9910
a3ef2d63 9911 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9912
a3ef2d63 9913 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9914 {
1d25768e 9915 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9916 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9917 bfd_boolean remove_this_rel;
43cd72b9 9918 flagword flags;
e0001a05 9919
1d25768e
BW
9920 /* Find the first relocation for the entry at the current offset.
9921 Adjust the offsets of any extra relocations for the previous
9922 entry. */
9923 offset_rel = NULL;
9924 if (next_rel)
9925 {
9926 for (irel = next_rel; irel < rel_end; irel++)
9927 {
9928 if ((irel->r_offset == offset
9929 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9930 || irel->r_offset > offset)
9931 {
9932 offset_rel = irel;
9933 break;
9934 }
9935 irel->r_offset -= removed_bytes;
1d25768e
BW
9936 }
9937 }
e0001a05 9938
1d25768e
BW
9939 /* Find the next relocation (if there are any left). */
9940 extra_rel = NULL;
9941 if (offset_rel)
e0001a05 9942 {
1d25768e 9943 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9944 {
1d25768e
BW
9945 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9946 {
9947 extra_rel = irel;
9948 break;
9949 }
e0001a05 9950 }
e0001a05
NC
9951 }
9952
1d25768e
BW
9953 /* Check if there are relocations on the current entry. There
9954 should usually be a relocation on the offset field. If there
9955 are relocations on the size or flags, then we can't optimize
9956 this entry. Also, find the next relocation to examine on the
9957 next iteration. */
9958 if (offset_rel)
e0001a05 9959 {
1d25768e 9960 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9961 {
1d25768e
BW
9962 next_rel = offset_rel;
9963 /* There are no relocations on the current entry, but we
9964 might still be able to remove it if the size is zero. */
9965 offset_rel = NULL;
9966 }
9967 else if (offset_rel->r_offset > offset
9968 || (extra_rel
9969 && extra_rel->r_offset < offset + entry_size))
9970 {
9971 /* There is a relocation on the size or flags, so we can't
9972 do anything with this entry. Continue with the next. */
9973 next_rel = offset_rel;
9974 continue;
9975 }
9976 else
9977 {
9978 BFD_ASSERT (offset_rel->r_offset == offset);
9979 offset_rel->r_offset -= removed_bytes;
9980 next_rel = offset_rel + 1;
e0001a05 9981 }
e0001a05 9982 }
1d25768e
BW
9983 else
9984 next_rel = NULL;
e0001a05 9985
1d25768e 9986 remove_this_rel = FALSE;
e0001a05
NC
9987 bytes_to_remove = 0;
9988 actual_offset = offset - removed_bytes;
9989 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9990
68ffbac6 9991 if (is_full_prop_section)
43cd72b9
BW
9992 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9993 else
9994 flags = predef_flags;
9995
1d25768e
BW
9996 if (size == 0
9997 && (flags & XTENSA_PROP_ALIGN) == 0
9998 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 9999 {
43cd72b9
BW
10000 /* Always remove entries with zero size and no alignment. */
10001 bytes_to_remove = entry_size;
1d25768e
BW
10002 if (offset_rel)
10003 remove_this_rel = TRUE;
e0001a05 10004 }
1d25768e
BW
10005 else if (offset_rel
10006 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10007 {
1d25768e 10008 if (last_irel)
e0001a05 10009 {
1d25768e
BW
10010 flagword old_flags;
10011 bfd_vma old_size =
10012 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10013 bfd_vma old_address =
10014 (last_irel->r_addend
10015 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10016 bfd_vma new_address =
10017 (offset_rel->r_addend
10018 + bfd_get_32 (abfd, &contents[actual_offset]));
68ffbac6 10019 if (is_full_prop_section)
1d25768e
BW
10020 old_flags = bfd_get_32
10021 (abfd, &contents[last_irel->r_offset + 8]);
10022 else
10023 old_flags = predef_flags;
10024
10025 if ((ELF32_R_SYM (offset_rel->r_info)
10026 == ELF32_R_SYM (last_irel->r_info))
10027 && old_address + old_size == new_address
10028 && old_flags == flags
10029 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10030 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10031 {
1d25768e
BW
10032 /* Fix the old size. */
10033 bfd_put_32 (abfd, old_size + size,
10034 &contents[last_irel->r_offset + 4]);
10035 bytes_to_remove = entry_size;
10036 remove_this_rel = TRUE;
e0001a05
NC
10037 }
10038 else
1d25768e 10039 last_irel = offset_rel;
e0001a05 10040 }
1d25768e
BW
10041 else
10042 last_irel = offset_rel;
e0001a05
NC
10043 }
10044
1d25768e 10045 if (remove_this_rel)
e0001a05 10046 {
1d25768e 10047 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10048 offset_rel->r_offset = 0;
e0001a05
NC
10049 }
10050
10051 if (bytes_to_remove != 0)
10052 {
10053 removed_bytes += bytes_to_remove;
a3ef2d63 10054 if (offset + bytes_to_remove < sec->size)
e0001a05 10055 memmove (&contents[actual_offset],
43cd72b9 10056 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10057 sec->size - offset - bytes_to_remove);
e0001a05
NC
10058 }
10059 }
10060
43cd72b9 10061 if (removed_bytes)
e0001a05 10062 {
1d25768e
BW
10063 /* Fix up any extra relocations on the last entry. */
10064 for (irel = next_rel; irel < rel_end; irel++)
10065 irel->r_offset -= removed_bytes;
10066
e0001a05 10067 /* Clear the removed bytes. */
a3ef2d63 10068 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10069
a3ef2d63
BW
10070 if (sec->rawsize == 0)
10071 sec->rawsize = sec->size;
10072 sec->size -= removed_bytes;
e901de89
BW
10073
10074 if (xtensa_is_littable_section (sec))
10075 {
f0e6fdb2
BW
10076 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10077 if (sgotloc)
10078 sgotloc->size -= removed_bytes;
e901de89 10079 }
e0001a05
NC
10080 }
10081 }
e901de89 10082
e0001a05
NC
10083 error_return:
10084 release_internal_relocs (sec, internal_relocs);
10085 release_contents (sec, contents);
10086 return ok;
10087}
10088
10089\f
10090/* Third relaxation pass. */
10091
10092/* Change symbol values to account for removed literals. */
10093
43cd72b9 10094bfd_boolean
7fa3d080 10095relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10096{
10097 xtensa_relax_info *relax_info;
10098 unsigned int sec_shndx;
10099 Elf_Internal_Shdr *symtab_hdr;
10100 Elf_Internal_Sym *isymbuf;
10101 unsigned i, num_syms, num_locals;
10102
10103 relax_info = get_xtensa_relax_info (sec);
10104 BFD_ASSERT (relax_info);
10105
43cd72b9
BW
10106 if (!relax_info->is_relaxable_literal_section
10107 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10108 return TRUE;
10109
10110 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10111
10112 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10113 isymbuf = retrieve_local_syms (abfd);
10114
10115 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10116 num_locals = symtab_hdr->sh_info;
10117
10118 /* Adjust the local symbols defined in this section. */
10119 for (i = 0; i < num_locals; i++)
10120 {
10121 Elf_Internal_Sym *isym = &isymbuf[i];
10122
10123 if (isym->st_shndx == sec_shndx)
10124 {
03669f1c
BW
10125 text_action *act = relax_info->action_list.head;
10126 bfd_vma orig_addr = isym->st_value;
43cd72b9 10127
03669f1c 10128 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10129
03669f1c
BW
10130 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10131 isym->st_size -=
10132 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
10133 }
10134 }
10135
10136 /* Now adjust the global symbols defined in this section. */
10137 for (i = 0; i < (num_syms - num_locals); i++)
10138 {
10139 struct elf_link_hash_entry *sym_hash;
10140
10141 sym_hash = elf_sym_hashes (abfd)[i];
10142
10143 if (sym_hash->root.type == bfd_link_hash_warning)
10144 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10145
10146 if ((sym_hash->root.type == bfd_link_hash_defined
10147 || sym_hash->root.type == bfd_link_hash_defweak)
10148 && sym_hash->root.u.def.section == sec)
10149 {
03669f1c
BW
10150 text_action *act = relax_info->action_list.head;
10151 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 10152
03669f1c
BW
10153 sym_hash->root.u.def.value -=
10154 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10155
03669f1c
BW
10156 if (sym_hash->type == STT_FUNC)
10157 sym_hash->size -=
10158 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
10159 }
10160 }
10161
10162 return TRUE;
10163}
10164
10165\f
10166/* "Fix" handling functions, called while performing relocations. */
10167
43cd72b9 10168static bfd_boolean
7fa3d080
BW
10169do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10170 bfd *input_bfd,
10171 asection *input_section,
10172 bfd_byte *contents)
e0001a05
NC
10173{
10174 r_reloc r_rel;
10175 asection *sec, *old_sec;
10176 bfd_vma old_offset;
10177 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10178 reloc_bfd_fix *fix;
10179
10180 if (r_type == R_XTENSA_NONE)
43cd72b9 10181 return TRUE;
e0001a05 10182
43cd72b9
BW
10183 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10184 if (!fix)
10185 return TRUE;
e0001a05 10186
43cd72b9
BW
10187 r_reloc_init (&r_rel, input_bfd, rel, contents,
10188 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10189 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10190 old_offset = r_rel.target_offset;
10191
10192 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10193 {
43cd72b9
BW
10194 if (r_type != R_XTENSA_ASM_EXPAND)
10195 {
10196 (*_bfd_error_handler)
10197 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10198 input_bfd, input_section, rel->r_offset,
10199 elf_howto_table[r_type].name);
10200 return FALSE;
10201 }
e0001a05
NC
10202 /* Leave it be. Resolution will happen in a later stage. */
10203 }
10204 else
10205 {
10206 sec = fix->target_sec;
10207 rel->r_addend += ((sec->output_offset + fix->target_offset)
10208 - (old_sec->output_offset + old_offset));
10209 }
43cd72b9 10210 return TRUE;
e0001a05
NC
10211}
10212
10213
10214static void
7fa3d080
BW
10215do_fix_for_final_link (Elf_Internal_Rela *rel,
10216 bfd *input_bfd,
10217 asection *input_section,
10218 bfd_byte *contents,
10219 bfd_vma *relocationp)
e0001a05
NC
10220{
10221 asection *sec;
10222 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10223 reloc_bfd_fix *fix;
43cd72b9 10224 bfd_vma fixup_diff;
e0001a05
NC
10225
10226 if (r_type == R_XTENSA_NONE)
10227 return;
10228
43cd72b9
BW
10229 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10230 if (!fix)
e0001a05
NC
10231 return;
10232
10233 sec = fix->target_sec;
43cd72b9
BW
10234
10235 fixup_diff = rel->r_addend;
10236 if (elf_howto_table[fix->src_type].partial_inplace)
10237 {
10238 bfd_vma inplace_val;
10239 BFD_ASSERT (fix->src_offset
10240 < bfd_get_section_limit (input_bfd, input_section));
10241 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10242 fixup_diff += inplace_val;
10243 }
10244
e0001a05
NC
10245 *relocationp = (sec->output_section->vma
10246 + sec->output_offset
43cd72b9 10247 + fix->target_offset - fixup_diff);
e0001a05
NC
10248}
10249
10250\f
10251/* Miscellaneous utility functions.... */
10252
10253static asection *
f0e6fdb2 10254elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10255{
f0e6fdb2
BW
10256 struct elf_xtensa_link_hash_table *htab;
10257 bfd *dynobj;
e0001a05
NC
10258 char plt_name[10];
10259
10260 if (chunk == 0)
f0e6fdb2
BW
10261 {
10262 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10263 if (htab == NULL)
10264 return NULL;
10265
f0e6fdb2
BW
10266 return htab->splt;
10267 }
e0001a05 10268
f0e6fdb2 10269 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10270 sprintf (plt_name, ".plt.%u", chunk);
3d4d4302 10271 return bfd_get_linker_section (dynobj, plt_name);
e0001a05
NC
10272}
10273
10274
10275static asection *
f0e6fdb2 10276elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10277{
f0e6fdb2
BW
10278 struct elf_xtensa_link_hash_table *htab;
10279 bfd *dynobj;
e0001a05
NC
10280 char got_name[14];
10281
10282 if (chunk == 0)
f0e6fdb2
BW
10283 {
10284 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10285 if (htab == NULL)
10286 return NULL;
f0e6fdb2
BW
10287 return htab->sgotplt;
10288 }
e0001a05 10289
f0e6fdb2 10290 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10291 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10292 return bfd_get_linker_section (dynobj, got_name);
e0001a05
NC
10293}
10294
10295
10296/* Get the input section for a given symbol index.
10297 If the symbol is:
10298 . a section symbol, return the section;
10299 . a common symbol, return the common section;
10300 . an undefined symbol, return the undefined section;
10301 . an indirect symbol, follow the links;
10302 . an absolute value, return the absolute section. */
10303
10304static asection *
7fa3d080 10305get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10306{
10307 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10308 asection *target_sec = NULL;
43cd72b9 10309 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10310 {
10311 Elf_Internal_Sym *isymbuf;
10312 unsigned int section_index;
10313
10314 isymbuf = retrieve_local_syms (abfd);
10315 section_index = isymbuf[r_symndx].st_shndx;
10316
10317 if (section_index == SHN_UNDEF)
10318 target_sec = bfd_und_section_ptr;
e0001a05
NC
10319 else if (section_index == SHN_ABS)
10320 target_sec = bfd_abs_section_ptr;
10321 else if (section_index == SHN_COMMON)
10322 target_sec = bfd_com_section_ptr;
43cd72b9 10323 else
cb33740c 10324 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10325 }
10326 else
10327 {
10328 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10329 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10330
10331 while (h->root.type == bfd_link_hash_indirect
10332 || h->root.type == bfd_link_hash_warning)
10333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10334
10335 switch (h->root.type)
10336 {
10337 case bfd_link_hash_defined:
10338 case bfd_link_hash_defweak:
10339 target_sec = h->root.u.def.section;
10340 break;
10341 case bfd_link_hash_common:
10342 target_sec = bfd_com_section_ptr;
10343 break;
10344 case bfd_link_hash_undefined:
10345 case bfd_link_hash_undefweak:
10346 target_sec = bfd_und_section_ptr;
10347 break;
10348 default: /* New indirect warning. */
10349 target_sec = bfd_und_section_ptr;
10350 break;
10351 }
10352 }
10353 return target_sec;
10354}
10355
10356
10357static struct elf_link_hash_entry *
7fa3d080 10358get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10359{
10360 unsigned long indx;
10361 struct elf_link_hash_entry *h;
10362 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10363
10364 if (r_symndx < symtab_hdr->sh_info)
10365 return NULL;
43cd72b9 10366
e0001a05
NC
10367 indx = r_symndx - symtab_hdr->sh_info;
10368 h = elf_sym_hashes (abfd)[indx];
10369 while (h->root.type == bfd_link_hash_indirect
10370 || h->root.type == bfd_link_hash_warning)
10371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10372 return h;
10373}
10374
10375
10376/* Get the section-relative offset for a symbol number. */
10377
10378static bfd_vma
7fa3d080 10379get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10380{
10381 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10382 bfd_vma offset = 0;
10383
43cd72b9 10384 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10385 {
10386 Elf_Internal_Sym *isymbuf;
10387 isymbuf = retrieve_local_syms (abfd);
10388 offset = isymbuf[r_symndx].st_value;
10389 }
10390 else
10391 {
10392 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10393 struct elf_link_hash_entry *h =
10394 elf_sym_hashes (abfd)[indx];
10395
10396 while (h->root.type == bfd_link_hash_indirect
10397 || h->root.type == bfd_link_hash_warning)
10398 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10399 if (h->root.type == bfd_link_hash_defined
10400 || h->root.type == bfd_link_hash_defweak)
10401 offset = h->root.u.def.value;
10402 }
10403 return offset;
10404}
10405
10406
10407static bfd_boolean
7fa3d080 10408is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10409{
10410 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10411 struct elf_link_hash_entry *h;
10412
10413 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10414 if (h && h->root.type == bfd_link_hash_defweak)
10415 return TRUE;
10416 return FALSE;
10417}
10418
10419
10420static bfd_boolean
7fa3d080
BW
10421pcrel_reloc_fits (xtensa_opcode opc,
10422 int opnd,
10423 bfd_vma self_address,
10424 bfd_vma dest_address)
e0001a05 10425{
43cd72b9
BW
10426 xtensa_isa isa = xtensa_default_isa;
10427 uint32 valp = dest_address;
10428 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10429 || xtensa_operand_encode (isa, opc, opnd, &valp))
10430 return FALSE;
10431 return TRUE;
e0001a05
NC
10432}
10433
10434
68ffbac6 10435static bfd_boolean
7fa3d080 10436xtensa_is_property_section (asection *sec)
e0001a05 10437{
1d25768e
BW
10438 if (xtensa_is_insntable_section (sec)
10439 || xtensa_is_littable_section (sec)
10440 || xtensa_is_proptable_section (sec))
b614a702 10441 return TRUE;
e901de89 10442
1d25768e
BW
10443 return FALSE;
10444}
10445
10446
68ffbac6 10447static bfd_boolean
1d25768e
BW
10448xtensa_is_insntable_section (asection *sec)
10449{
10450 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10451 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10452 return TRUE;
10453
e901de89
BW
10454 return FALSE;
10455}
10456
10457
68ffbac6 10458static bfd_boolean
7fa3d080 10459xtensa_is_littable_section (asection *sec)
e901de89 10460{
1d25768e
BW
10461 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10462 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10463 return TRUE;
e901de89 10464
1d25768e
BW
10465 return FALSE;
10466}
10467
10468
68ffbac6 10469static bfd_boolean
1d25768e
BW
10470xtensa_is_proptable_section (asection *sec)
10471{
10472 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10473 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 10474 return TRUE;
e0001a05 10475
e901de89 10476 return FALSE;
e0001a05
NC
10477}
10478
10479
43cd72b9 10480static int
7fa3d080 10481internal_reloc_compare (const void *ap, const void *bp)
e0001a05 10482{
43cd72b9
BW
10483 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10484 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10485
10486 if (a->r_offset != b->r_offset)
10487 return (a->r_offset - b->r_offset);
10488
10489 /* We don't need to sort on these criteria for correctness,
10490 but enforcing a more strict ordering prevents unstable qsort
10491 from behaving differently with different implementations.
10492 Without the code below we get correct but different results
10493 on Solaris 2.7 and 2.8. We would like to always produce the
10494 same results no matter the host. */
10495
10496 if (a->r_info != b->r_info)
10497 return (a->r_info - b->r_info);
10498
10499 return (a->r_addend - b->r_addend);
e0001a05
NC
10500}
10501
10502
10503static int
7fa3d080 10504internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
10505{
10506 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10507 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10508
43cd72b9
BW
10509 /* Check if one entry overlaps with the other; this shouldn't happen
10510 except when searching for a match. */
e0001a05
NC
10511 return (a->r_offset - b->r_offset);
10512}
10513
10514
74869ac7
BW
10515/* Predicate function used to look up a section in a particular group. */
10516
10517static bfd_boolean
10518match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10519{
10520 const char *gname = inf;
10521 const char *group_name = elf_group_name (sec);
68ffbac6 10522
74869ac7
BW
10523 return (group_name == gname
10524 || (group_name != NULL
10525 && gname != NULL
10526 && strcmp (group_name, gname) == 0));
10527}
10528
10529
1d25768e
BW
10530static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10531
51c8ebc1
BW
10532static char *
10533xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 10534{
74869ac7
BW
10535 const char *suffix, *group_name;
10536 char *prop_sec_name;
74869ac7
BW
10537
10538 group_name = elf_group_name (sec);
10539 if (group_name)
10540 {
10541 suffix = strrchr (sec->name, '.');
10542 if (suffix == sec->name)
10543 suffix = 0;
10544 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10545 + (suffix ? strlen (suffix) : 0));
10546 strcpy (prop_sec_name, base_name);
10547 if (suffix)
10548 strcat (prop_sec_name, suffix);
10549 }
10550 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 10551 {
43cd72b9 10552 char *linkonce_kind = 0;
b614a702 10553
68ffbac6 10554 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 10555 linkonce_kind = "x.";
68ffbac6 10556 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 10557 linkonce_kind = "p.";
43cd72b9
BW
10558 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10559 linkonce_kind = "prop.";
e0001a05 10560 else
b614a702
BW
10561 abort ();
10562
43cd72b9
BW
10563 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10564 + strlen (linkonce_kind) + 1);
b614a702 10565 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 10566 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
10567
10568 suffix = sec->name + linkonce_len;
096c35a7 10569 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 10570 the new linkonce_kind (but not for "prop" sections). */
0112cd26 10571 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
10572 suffix += 2;
10573 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
10574 }
10575 else
10576 prop_sec_name = strdup (base_name);
10577
51c8ebc1
BW
10578 return prop_sec_name;
10579}
10580
10581
10582static asection *
10583xtensa_get_property_section (asection *sec, const char *base_name)
10584{
10585 char *prop_sec_name;
10586 asection *prop_sec;
10587
10588 prop_sec_name = xtensa_property_section_name (sec, base_name);
10589 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10590 match_section_group,
10591 (void *) elf_group_name (sec));
10592 free (prop_sec_name);
10593 return prop_sec;
10594}
10595
10596
10597asection *
10598xtensa_make_property_section (asection *sec, const char *base_name)
10599{
10600 char *prop_sec_name;
10601 asection *prop_sec;
10602
74869ac7 10603 /* Check if the section already exists. */
51c8ebc1 10604 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
10605 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10606 match_section_group,
51c8ebc1 10607 (void *) elf_group_name (sec));
74869ac7
BW
10608 /* If not, create it. */
10609 if (! prop_sec)
10610 {
10611 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10612 flags |= (bfd_get_section_flags (sec->owner, sec)
10613 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10614
10615 prop_sec = bfd_make_section_anyway_with_flags
10616 (sec->owner, strdup (prop_sec_name), flags);
10617 if (! prop_sec)
10618 return 0;
b614a702 10619
51c8ebc1 10620 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
10621 }
10622
74869ac7
BW
10623 free (prop_sec_name);
10624 return prop_sec;
e0001a05
NC
10625}
10626
43cd72b9
BW
10627
10628flagword
7fa3d080 10629xtensa_get_property_predef_flags (asection *sec)
43cd72b9 10630{
1d25768e 10631 if (xtensa_is_insntable_section (sec))
43cd72b9 10632 return (XTENSA_PROP_INSN
99ded152 10633 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10634 | XTENSA_PROP_INSN_NO_REORDER);
10635
10636 if (xtensa_is_littable_section (sec))
10637 return (XTENSA_PROP_LITERAL
99ded152 10638 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10639 | XTENSA_PROP_INSN_NO_REORDER);
10640
10641 return 0;
10642}
10643
e0001a05
NC
10644\f
10645/* Other functions called directly by the linker. */
10646
10647bfd_boolean
7fa3d080
BW
10648xtensa_callback_required_dependence (bfd *abfd,
10649 asection *sec,
10650 struct bfd_link_info *link_info,
10651 deps_callback_t callback,
10652 void *closure)
e0001a05
NC
10653{
10654 Elf_Internal_Rela *internal_relocs;
10655 bfd_byte *contents;
10656 unsigned i;
10657 bfd_boolean ok = TRUE;
43cd72b9
BW
10658 bfd_size_type sec_size;
10659
10660 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
10661
10662 /* ".plt*" sections have no explicit relocations but they contain L32R
10663 instructions that reference the corresponding ".got.plt*" sections. */
10664 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 10665 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
10666 {
10667 asection *sgotplt;
10668
10669 /* Find the corresponding ".got.plt*" section. */
10670 if (sec->name[4] == '\0')
3d4d4302 10671 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
e0001a05
NC
10672 else
10673 {
10674 char got_name[14];
10675 int chunk = 0;
10676
10677 BFD_ASSERT (sec->name[4] == '.');
10678 chunk = strtol (&sec->name[5], NULL, 10);
10679
10680 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10681 sgotplt = bfd_get_linker_section (sec->owner, got_name);
e0001a05
NC
10682 }
10683 BFD_ASSERT (sgotplt);
10684
10685 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10686 section referencing a literal at the very beginning of
10687 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 10688 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
10689 }
10690
13161072
BW
10691 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10692 when building uclibc, which runs "ld -b binary /dev/null". */
10693 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10694 return ok;
10695
68ffbac6 10696 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
10697 link_info->keep_memory);
10698 if (internal_relocs == NULL
43cd72b9 10699 || sec->reloc_count == 0)
e0001a05
NC
10700 return ok;
10701
10702 /* Cache the contents for the duration of this scan. */
10703 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10704 if (contents == NULL && sec_size != 0)
e0001a05
NC
10705 {
10706 ok = FALSE;
10707 goto error_return;
10708 }
10709
43cd72b9
BW
10710 if (!xtensa_default_isa)
10711 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 10712
43cd72b9 10713 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10714 {
10715 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 10716 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
10717 {
10718 r_reloc l32r_rel;
10719 asection *target_sec;
10720 bfd_vma target_offset;
43cd72b9
BW
10721
10722 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
10723 target_sec = NULL;
10724 target_offset = 0;
10725 /* L32Rs must be local to the input file. */
10726 if (r_reloc_is_defined (&l32r_rel))
10727 {
10728 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 10729 target_offset = l32r_rel.target_offset;
e0001a05
NC
10730 }
10731 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10732 closure);
10733 }
10734 }
10735
10736 error_return:
10737 release_internal_relocs (sec, internal_relocs);
10738 release_contents (sec, contents);
10739 return ok;
10740}
10741
2f89ff8d
L
10742/* The default literal sections should always be marked as "code" (i.e.,
10743 SHF_EXECINSTR). This is particularly important for the Linux kernel
10744 module loader so that the literals are not placed after the text. */
b35d266b 10745static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 10746{
0112cd26
NC
10747 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10748 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10749 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 10750 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 10751 { NULL, 0, 0, 0, 0 }
7f4d3958 10752};
e0001a05 10753\f
ae95ffa6 10754#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05
NC
10755#ifndef ELF_ARCH
10756#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10757#define TARGET_LITTLE_NAME "elf32-xtensa-le"
10758#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10759#define TARGET_BIG_NAME "elf32-xtensa-be"
10760#define ELF_ARCH bfd_arch_xtensa
10761
4af0a1d8
BW
10762#define ELF_MACHINE_CODE EM_XTENSA
10763#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
10764
10765#if XCHAL_HAVE_MMU
10766#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10767#else /* !XCHAL_HAVE_MMU */
10768#define ELF_MAXPAGESIZE 1
10769#endif /* !XCHAL_HAVE_MMU */
10770#endif /* ELF_ARCH */
10771
10772#define elf_backend_can_gc_sections 1
10773#define elf_backend_can_refcount 1
10774#define elf_backend_plt_readonly 1
10775#define elf_backend_got_header_size 4
10776#define elf_backend_want_dynbss 0
10777#define elf_backend_want_got_plt 1
10778
10779#define elf_info_to_howto elf_xtensa_info_to_howto_rela
10780
28dbbc02
BW
10781#define bfd_elf32_mkobject elf_xtensa_mkobject
10782
e0001a05
NC
10783#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10784#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10785#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10786#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10787#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
10788#define bfd_elf32_bfd_reloc_name_lookup \
10789 elf_xtensa_reloc_name_lookup
e0001a05 10790#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 10791#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
10792
10793#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10794#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
10795#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10796#define elf_backend_discard_info elf_xtensa_discard_info
10797#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10798#define elf_backend_final_write_processing elf_xtensa_final_write_processing
10799#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10800#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10801#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10802#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10803#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10804#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 10805#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
10806#define elf_backend_object_p elf_xtensa_object_p
10807#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10808#define elf_backend_relocate_section elf_xtensa_relocate_section
10809#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 10810#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
10811#define elf_backend_omit_section_dynsym \
10812 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 10813#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 10814#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 10815#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
10816
10817#include "elf32-target.h"
This page took 1.320413 seconds and 4 git commands to generate.