sim: Don't overwrite stored errno in sim_syscall_multi
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
219d1afa 2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
cd123cb7 8 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
3e110533 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 19 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "sysdep.h"
3db64b00 22#include "bfd.h"
e0001a05 23
e0001a05 24#include <stdarg.h>
e0001a05
NC
25#include <strings.h>
26
27#include "bfdlink.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/xtensa.h"
4c2af04f 31#include "splay-tree.h"
e0001a05
NC
32#include "xtensa-isa.h"
33#include "xtensa-config.h"
34
43cd72b9
BW
35#define XTENSA_NO_NOP_REMOVAL 0
36
e0001a05
NC
37/* Local helper functions. */
38
f0e6fdb2 39static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 40static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 41static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 43static bfd_boolean do_fix_for_relocatable_link
7fa3d080 44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 45static void do_fix_for_final_link
7fa3d080 46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
47
48/* Local functions to handle Xtensa configurability. */
49
7fa3d080
BW
50static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53static xtensa_opcode get_const16_opcode (void);
54static xtensa_opcode get_l32r_opcode (void);
55static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56static int get_relocation_opnd (xtensa_opcode, int);
57static int get_relocation_slot (int);
e0001a05 58static xtensa_opcode get_relocation_opcode
7fa3d080 59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 60static bfd_boolean is_l32r_relocation
7fa3d080
BW
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62static bfd_boolean is_alt_relocation (int);
63static bfd_boolean is_operand_relocation (int);
43cd72b9 64static bfd_size_type insn_decode_len
7fa3d080 65 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 66static xtensa_opcode insn_decode_opcode
7fa3d080 67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 68static bfd_boolean check_branch_target_aligned
7fa3d080 69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 70static bfd_boolean check_loop_aligned
7fa3d080
BW
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 73static bfd_size_type get_asm_simplify_size
7fa3d080 74 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
75
76/* Functions for link-time code simplifications. */
77
43cd72b9 78static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 79 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 80static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
84
85/* Access to internal relocations, section contents and symbols. */
86
87static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
88 (bfd *, asection *, bfd_boolean);
89static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92static void pin_contents (asection *, bfd_byte *);
93static void release_contents (asection *, bfd_byte *);
94static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
95
96/* Miscellaneous utility functions. */
97
f0e6fdb2
BW
98static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 100static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 101static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
102 (bfd *, unsigned long);
103static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 107static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 108static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 109static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
110static int internal_reloc_compare (const void *, const void *);
111static int internal_reloc_matches (const void *, const void *);
51c8ebc1 112static asection *xtensa_get_property_section (asection *, const char *);
7fa3d080 113static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
114
115/* Other functions called directly by the linker. */
116
117typedef void (*deps_callback_t)
7fa3d080 118 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 119extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
121
122
43cd72b9
BW
123/* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
7fa3d080 127
43cd72b9
BW
128int elf32xtensa_size_opt;
129
130
131/* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
e0001a05 134
7fa3d080 135typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 136
43cd72b9 137
43cd72b9
BW
138/* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143xtensa_isa xtensa_default_isa;
144
145
e0001a05
NC
146/* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150static bfd_boolean relaxing_section = FALSE;
151
43cd72b9
BW
152/* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155int elf32xtensa_no_literal_movement = 1;
156
8255c61b
MF
157/* Place property records for a section into individual property section
158 with xt.prop. prefix. */
159
160bfd_boolean elf32xtensa_separate_props = FALSE;
161
b0dddeec
AM
162/* Rename one of the generic section flags to better document how it
163 is used here. */
164/* Whether relocations have been processed. */
165#define reloc_done sec_flg0
e0001a05
NC
166\f
167static reloc_howto_type elf_howto_table[] =
168{
6346d5ca 169 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
e0001a05 170 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 171 FALSE, 0, 0, FALSE),
e0001a05
NC
172 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
173 bfd_elf_xtensa_reloc, "R_XTENSA_32",
174 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 175
e0001a05
NC
176 /* Replace a 32-bit value with a value from the runtime linker (only
177 used by linker-generated stub functions). The r_addend value is
178 special: 1 means to substitute a pointer to the runtime linker's
179 dynamic resolver function; 2 means to substitute the link map for
180 the shared object. */
181 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
182 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
183
e0001a05
NC
184 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 186 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
187 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 189 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
190 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 192 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
193 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
194 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
195 FALSE, 0, 0xffffffff, FALSE),
196
e0001a05 197 EMPTY_HOWTO (7),
e5f131d1
BW
198
199 /* Old relocations for backward compatibility. */
e0001a05 200 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 201 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 202 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 203 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 204 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
205 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
206
e0001a05
NC
207 /* Assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
210 /* Relax assembly auto-expansion. */
211 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
212 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
213
e0001a05 214 EMPTY_HOWTO (13),
1bbb5f21
BW
215
216 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
217 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
218 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 219
e0001a05
NC
220 /* GNU extension to record C++ vtable hierarchy. */
221 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
07d6d2b8 222 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 223 FALSE, 0, 0, FALSE),
e0001a05
NC
224 /* GNU extension to record C++ vtable member usage. */
225 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
07d6d2b8 226 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 227 FALSE, 0, 0, FALSE),
43cd72b9
BW
228
229 /* Relocations for supporting difference of symbols. */
1058c753 230 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
1058c753 232 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
e5f131d1 233 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
1058c753 234 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
236
237 /* General immediate operand relocations. */
238 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 258 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 260 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 262 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 264 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 266 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
268
269 /* "Alternate" relocations. The meaning of these is opcode-specific. */
270 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 290 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 292 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 294 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 296 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 298 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 299 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
300
301 /* TLS relocations. */
302 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
304 FALSE, 0, 0xffffffff, FALSE),
305 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
307 FALSE, 0, 0xffffffff, FALSE),
308 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
310 FALSE, 0, 0xffffffff, FALSE),
311 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
313 FALSE, 0, 0xffffffff, FALSE),
314 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
316 FALSE, 0, 0, FALSE),
317 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
319 FALSE, 0, 0, FALSE),
320 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
322 FALSE, 0, 0, FALSE),
e0001a05
NC
323};
324
43cd72b9 325#if DEBUG_GEN_RELOC
e0001a05
NC
326#define TRACE(str) \
327 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
328#else
329#define TRACE(str)
330#endif
331
332static reloc_howto_type *
7fa3d080
BW
333elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
334 bfd_reloc_code_real_type code)
e0001a05
NC
335{
336 switch (code)
337 {
338 case BFD_RELOC_NONE:
339 TRACE ("BFD_RELOC_NONE");
340 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
341
342 case BFD_RELOC_32:
343 TRACE ("BFD_RELOC_32");
344 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
345
1bbb5f21
BW
346 case BFD_RELOC_32_PCREL:
347 TRACE ("BFD_RELOC_32_PCREL");
348 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
349
43cd72b9
BW
350 case BFD_RELOC_XTENSA_DIFF8:
351 TRACE ("BFD_RELOC_XTENSA_DIFF8");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
353
354 case BFD_RELOC_XTENSA_DIFF16:
355 TRACE ("BFD_RELOC_XTENSA_DIFF16");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
357
358 case BFD_RELOC_XTENSA_DIFF32:
359 TRACE ("BFD_RELOC_XTENSA_DIFF32");
360 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
361
e0001a05
NC
362 case BFD_RELOC_XTENSA_RTLD:
363 TRACE ("BFD_RELOC_XTENSA_RTLD");
364 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
365
366 case BFD_RELOC_XTENSA_GLOB_DAT:
367 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
368 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
369
370 case BFD_RELOC_XTENSA_JMP_SLOT:
371 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
372 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
373
374 case BFD_RELOC_XTENSA_RELATIVE:
375 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
376 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
377
378 case BFD_RELOC_XTENSA_PLT:
379 TRACE ("BFD_RELOC_XTENSA_PLT");
380 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
381
382 case BFD_RELOC_XTENSA_OP0:
383 TRACE ("BFD_RELOC_XTENSA_OP0");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
385
386 case BFD_RELOC_XTENSA_OP1:
387 TRACE ("BFD_RELOC_XTENSA_OP1");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
389
390 case BFD_RELOC_XTENSA_OP2:
391 TRACE ("BFD_RELOC_XTENSA_OP2");
392 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
393
394 case BFD_RELOC_XTENSA_ASM_EXPAND:
395 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
397
398 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
399 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
400 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
401
402 case BFD_RELOC_VTABLE_INHERIT:
403 TRACE ("BFD_RELOC_VTABLE_INHERIT");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
405
406 case BFD_RELOC_VTABLE_ENTRY:
407 TRACE ("BFD_RELOC_VTABLE_ENTRY");
408 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
409
28dbbc02
BW
410 case BFD_RELOC_XTENSA_TLSDESC_FN:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
413
414 case BFD_RELOC_XTENSA_TLSDESC_ARG:
415 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
417
418 case BFD_RELOC_XTENSA_TLS_DTPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_TPOFF:
423 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
425
426 case BFD_RELOC_XTENSA_TLS_FUNC:
427 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
429
430 case BFD_RELOC_XTENSA_TLS_ARG:
431 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
433
434 case BFD_RELOC_XTENSA_TLS_CALL:
435 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
436 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
437
e0001a05 438 default:
43cd72b9
BW
439 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
440 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
441 {
442 unsigned n = (R_XTENSA_SLOT0_OP +
443 (code - BFD_RELOC_XTENSA_SLOT0_OP));
444 return &elf_howto_table[n];
445 }
446
447 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
448 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
449 {
450 unsigned n = (R_XTENSA_SLOT0_ALT +
451 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
452 return &elf_howto_table[n];
453 }
454
e0001a05
NC
455 break;
456 }
457
f3185997 458 /* xgettext:c-format */
e8f5af78 459 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
f3185997 460 bfd_set_error (bfd_error_bad_value);
e0001a05
NC
461 TRACE ("Unknown");
462 return NULL;
463}
464
157090f7
AM
465static reloc_howto_type *
466elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
467 const char *r_name)
468{
469 unsigned int i;
470
471 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
472 if (elf_howto_table[i].name != NULL
473 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
474 return &elf_howto_table[i];
475
476 return NULL;
477}
478
e0001a05
NC
479
480/* Given an ELF "rela" relocation, find the corresponding howto and record
481 it in the BFD internal arelent representation of the relocation. */
482
f3185997 483static bfd_boolean
0aa13fee 484elf_xtensa_info_to_howto_rela (bfd *abfd,
7fa3d080
BW
485 arelent *cache_ptr,
486 Elf_Internal_Rela *dst)
e0001a05
NC
487{
488 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
489
5860e3f8
NC
490 if (r_type >= (unsigned int) R_XTENSA_max)
491 {
695344c0 492 /* xgettext:c-format */
0aa13fee
AM
493 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
494 abfd, r_type);
f3185997
NC
495 bfd_set_error (bfd_error_bad_value);
496 return FALSE;
5860e3f8 497 }
e0001a05 498 cache_ptr->howto = &elf_howto_table[r_type];
f3185997 499 return TRUE;
e0001a05
NC
500}
501
502\f
503/* Functions for the Xtensa ELF linker. */
504
505/* The name of the dynamic interpreter. This is put in the .interp
506 section. */
507
508#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
509
510/* The size in bytes of an entry in the procedure linkage table.
511 (This does _not_ include the space for the literals associated with
512 the PLT entry.) */
513
514#define PLT_ENTRY_SIZE 16
515
516/* For _really_ large PLTs, we may need to alternate between literals
517 and code to keep the literals within the 256K range of the L32R
518 instructions in the code. It's unlikely that anyone would ever need
519 such a big PLT, but an arbitrary limit on the PLT size would be bad.
520 Thus, we split the PLT into chunks. Since there's very little
521 overhead (2 extra literals) for each chunk, the chunk size is kept
522 small so that the code for handling multiple chunks get used and
523 tested regularly. With 254 entries, there are 1K of literals for
524 each chunk, and that seems like a nice round number. */
525
526#define PLT_ENTRIES_PER_CHUNK 254
527
528/* PLT entries are actually used as stub functions for lazy symbol
529 resolution. Once the symbol is resolved, the stub function is never
530 invoked. Note: the 32-byte frame size used here cannot be changed
531 without a corresponding change in the runtime linker. */
532
f7e16c2a 533static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
e0001a05 534{
f7e16c2a
MF
535 {
536 0x6c, 0x10, 0x04, /* entry sp, 32 */
537 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
538 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
539 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
540 0x0a, 0x80, 0x00, /* jx a8 */
541 0 /* unused */
542 },
543 {
544 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
545 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
546 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
547 0x0a, 0x80, 0x00, /* jx a8 */
548 0 /* unused */
549 }
e0001a05
NC
550};
551
f7e16c2a 552static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
e0001a05 553{
f7e16c2a
MF
554 {
555 0x36, 0x41, 0x00, /* entry sp, 32 */
556 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
557 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
558 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
559 0xa0, 0x08, 0x00, /* jx a8 */
560 0 /* unused */
561 },
562 {
563 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
564 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
565 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
566 0xa0, 0x08, 0x00, /* jx a8 */
567 0 /* unused */
568 }
e0001a05
NC
569};
570
28dbbc02
BW
571/* The size of the thread control block. */
572#define TCB_SIZE 8
573
574struct elf_xtensa_link_hash_entry
575{
576 struct elf_link_hash_entry elf;
577
578 bfd_signed_vma tlsfunc_refcount;
579
580#define GOT_UNKNOWN 0
581#define GOT_NORMAL 1
582#define GOT_TLS_GD 2 /* global or local dynamic */
583#define GOT_TLS_IE 4 /* initial or local exec */
584#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
585 unsigned char tls_type;
586};
587
588#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
589
590struct elf_xtensa_obj_tdata
591{
592 struct elf_obj_tdata root;
593
594 /* tls_type for each local got entry. */
595 char *local_got_tls_type;
596
597 bfd_signed_vma *local_tlsfunc_refcounts;
598};
599
600#define elf_xtensa_tdata(abfd) \
601 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
602
603#define elf_xtensa_local_got_tls_type(abfd) \
604 (elf_xtensa_tdata (abfd)->local_got_tls_type)
605
606#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
607 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
608
609#define is_xtensa_elf(bfd) \
610 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
611 && elf_tdata (bfd) != NULL \
4dfe6ac6 612 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
613
614static bfd_boolean
615elf_xtensa_mkobject (bfd *abfd)
616{
617 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 618 XTENSA_ELF_DATA);
28dbbc02
BW
619}
620
f0e6fdb2
BW
621/* Xtensa ELF linker hash table. */
622
623struct elf_xtensa_link_hash_table
624{
625 struct elf_link_hash_table elf;
626
627 /* Short-cuts to get to dynamic linker sections. */
f0e6fdb2
BW
628 asection *sgotloc;
629 asection *spltlittbl;
630
631 /* Total count of PLT relocations seen during check_relocs.
632 The actual PLT code must be split into multiple sections and all
633 the sections have to be created before size_dynamic_sections,
634 where we figure out the exact number of PLT entries that will be
635 needed. It is OK if this count is an overestimate, e.g., some
636 relocations may be removed by GC. */
637 int plt_reloc_count;
28dbbc02
BW
638
639 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
640};
641
642/* Get the Xtensa ELF linker hash table from a link_info structure. */
643
644#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
645 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
646 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 647
28dbbc02
BW
648/* Create an entry in an Xtensa ELF linker hash table. */
649
650static struct bfd_hash_entry *
651elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
652 struct bfd_hash_table *table,
653 const char *string)
654{
655 /* Allocate the structure if it has not already been allocated by a
656 subclass. */
657 if (entry == NULL)
658 {
659 entry = bfd_hash_allocate (table,
660 sizeof (struct elf_xtensa_link_hash_entry));
661 if (entry == NULL)
662 return entry;
663 }
664
665 /* Call the allocation method of the superclass. */
666 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
667 if (entry != NULL)
668 {
669 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
670 eh->tlsfunc_refcount = 0;
671 eh->tls_type = GOT_UNKNOWN;
672 }
673
674 return entry;
675}
676
f0e6fdb2
BW
677/* Create an Xtensa ELF linker hash table. */
678
679static struct bfd_link_hash_table *
680elf_xtensa_link_hash_table_create (bfd *abfd)
681{
28dbbc02 682 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
683 struct elf_xtensa_link_hash_table *ret;
684 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
685
7bf52ea2 686 ret = bfd_zmalloc (amt);
f0e6fdb2
BW
687 if (ret == NULL)
688 return NULL;
689
690 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 691 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
692 sizeof (struct elf_xtensa_link_hash_entry),
693 XTENSA_ELF_DATA))
f0e6fdb2
BW
694 {
695 free (ret);
696 return NULL;
697 }
698
28dbbc02
BW
699 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
700 for it later. */
701 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
702 TRUE, FALSE, FALSE);
703 tlsbase->root.type = bfd_link_hash_new;
704 tlsbase->root.u.undef.abfd = NULL;
705 tlsbase->non_elf = 0;
706 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
707 ret->tlsbase->tls_type = GOT_UNKNOWN;
708
f0e6fdb2
BW
709 return &ret->elf.root;
710}
571b5725 711
28dbbc02
BW
712/* Copy the extra info we tack onto an elf_link_hash_entry. */
713
714static void
715elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
716 struct elf_link_hash_entry *dir,
717 struct elf_link_hash_entry *ind)
718{
719 struct elf_xtensa_link_hash_entry *edir, *eind;
720
721 edir = elf_xtensa_hash_entry (dir);
722 eind = elf_xtensa_hash_entry (ind);
723
724 if (ind->root.type == bfd_link_hash_indirect)
725 {
726 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
727 eind->tlsfunc_refcount = 0;
728
729 if (dir->got.refcount <= 0)
730 {
731 edir->tls_type = eind->tls_type;
732 eind->tls_type = GOT_UNKNOWN;
733 }
734 }
735
736 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
737}
738
571b5725 739static inline bfd_boolean
4608f3d9 740elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 741 struct bfd_link_info *info)
571b5725
BW
742{
743 /* Check if we should do dynamic things to this symbol. The
744 "ignore_protected" argument need not be set, because Xtensa code
745 does not require special handling of STV_PROTECTED to make function
746 pointer comparisons work properly. The PLT addresses are never
747 used for function pointers. */
748
749 return _bfd_elf_dynamic_symbol_p (h, info, 0);
750}
751
e0001a05
NC
752\f
753static int
7fa3d080 754property_table_compare (const void *ap, const void *bp)
e0001a05
NC
755{
756 const property_table_entry *a = (const property_table_entry *) ap;
757 const property_table_entry *b = (const property_table_entry *) bp;
758
43cd72b9
BW
759 if (a->address == b->address)
760 {
43cd72b9
BW
761 if (a->size != b->size)
762 return (a->size - b->size);
763
764 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
765 return ((b->flags & XTENSA_PROP_ALIGN)
766 - (a->flags & XTENSA_PROP_ALIGN));
767
768 if ((a->flags & XTENSA_PROP_ALIGN)
769 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
770 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
771 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
772 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
68ffbac6 773
43cd72b9
BW
774 if ((a->flags & XTENSA_PROP_UNREACHABLE)
775 != (b->flags & XTENSA_PROP_UNREACHABLE))
776 return ((b->flags & XTENSA_PROP_UNREACHABLE)
777 - (a->flags & XTENSA_PROP_UNREACHABLE));
778
779 return (a->flags - b->flags);
780 }
781
782 return (a->address - b->address);
783}
784
785
786static int
7fa3d080 787property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
788{
789 const property_table_entry *a = (const property_table_entry *) ap;
790 const property_table_entry *b = (const property_table_entry *) bp;
791
792 /* Check if one entry overlaps with the other. */
e0001a05
NC
793 if ((b->address >= a->address && b->address < (a->address + a->size))
794 || (a->address >= b->address && a->address < (b->address + b->size)))
795 return 0;
796
797 return (a->address - b->address);
798}
799
800
43cd72b9
BW
801/* Get the literal table or property table entries for the given
802 section. Sets TABLE_P and returns the number of entries. On
803 error, returns a negative value. */
e0001a05 804
4b8e28c7 805int
7fa3d080
BW
806xtensa_read_table_entries (bfd *abfd,
807 asection *section,
808 property_table_entry **table_p,
809 const char *sec_name,
810 bfd_boolean output_addr)
e0001a05
NC
811{
812 asection *table_section;
e0001a05
NC
813 bfd_size_type table_size = 0;
814 bfd_byte *table_data;
815 property_table_entry *blocks;
e4115460 816 int blk, block_count;
e0001a05 817 bfd_size_type num_records;
bcc2cc8e
BW
818 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
819 bfd_vma section_addr, off;
43cd72b9 820 flagword predef_flags;
bcc2cc8e 821 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
822
823 if (!section
824 || !(section->flags & SEC_ALLOC)
825 || (section->flags & SEC_DEBUGGING))
826 {
827 *table_p = NULL;
828 return 0;
829 }
e0001a05 830
74869ac7 831 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 832 if (table_section)
eea6121a 833 table_size = table_section->size;
43cd72b9 834
68ffbac6 835 if (table_size == 0)
e0001a05
NC
836 {
837 *table_p = NULL;
838 return 0;
839 }
840
43cd72b9
BW
841 predef_flags = xtensa_get_property_predef_flags (table_section);
842 table_entry_size = 12;
843 if (predef_flags)
844 table_entry_size -= 4;
845
846 num_records = table_size / table_entry_size;
e0001a05
NC
847 table_data = retrieve_contents (abfd, table_section, TRUE);
848 blocks = (property_table_entry *)
849 bfd_malloc (num_records * sizeof (property_table_entry));
850 block_count = 0;
43cd72b9
BW
851
852 if (output_addr)
853 section_addr = section->output_section->vma + section->output_offset;
854 else
855 section_addr = section->vma;
3ba3bc8c 856
e0001a05 857 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 858 if (internal_relocs && !table_section->reloc_done)
e0001a05 859 {
bcc2cc8e
BW
860 qsort (internal_relocs, table_section->reloc_count,
861 sizeof (Elf_Internal_Rela), internal_reloc_compare);
862 irel = internal_relocs;
863 }
864 else
865 irel = NULL;
866
867 section_limit = bfd_get_section_limit (abfd, section);
868 rel_end = internal_relocs + table_section->reloc_count;
869
68ffbac6 870 for (off = 0; off < table_size; off += table_entry_size)
bcc2cc8e
BW
871 {
872 bfd_vma address = bfd_get_32 (abfd, table_data + off);
873
874 /* Skip any relocations before the current offset. This should help
875 avoid confusion caused by unexpected relocations for the preceding
876 table entry. */
877 while (irel &&
878 (irel->r_offset < off
879 || (irel->r_offset == off
880 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
881 {
882 irel += 1;
883 if (irel >= rel_end)
884 irel = 0;
885 }
e0001a05 886
bcc2cc8e 887 if (irel && irel->r_offset == off)
e0001a05 888 {
bcc2cc8e
BW
889 bfd_vma sym_off;
890 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
891 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 892
bcc2cc8e 893 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
894 continue;
895
bcc2cc8e
BW
896 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
897 BFD_ASSERT (sym_off == 0);
898 address += (section_addr + sym_off + irel->r_addend);
e0001a05 899 }
bcc2cc8e 900 else
e0001a05 901 {
bcc2cc8e
BW
902 if (address < section_addr
903 || address >= section_addr + section_limit)
904 continue;
e0001a05 905 }
bcc2cc8e
BW
906
907 blocks[block_count].address = address;
908 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
909 if (predef_flags)
910 blocks[block_count].flags = predef_flags;
911 else
912 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
913 block_count++;
e0001a05
NC
914 }
915
916 release_contents (table_section, table_data);
917 release_internal_relocs (table_section, internal_relocs);
918
43cd72b9 919 if (block_count > 0)
e0001a05
NC
920 {
921 /* Now sort them into address order for easy reference. */
922 qsort (blocks, block_count, sizeof (property_table_entry),
923 property_table_compare);
e4115460
BW
924
925 /* Check that the table contents are valid. Problems may occur,
07d6d2b8 926 for example, if an unrelocated object file is stripped. */
e4115460
BW
927 for (blk = 1; blk < block_count; blk++)
928 {
929 /* The only circumstance where two entries may legitimately
930 have the same address is when one of them is a zero-size
931 placeholder to mark a place where fill can be inserted.
932 The zero-size entry should come first. */
933 if (blocks[blk - 1].address == blocks[blk].address &&
934 blocks[blk - 1].size != 0)
935 {
695344c0 936 /* xgettext:c-format */
871b3ab2 937 _bfd_error_handler (_("%pB(%pA): invalid property table"),
4eca0228 938 abfd, section);
e4115460
BW
939 bfd_set_error (bfd_error_bad_value);
940 free (blocks);
941 return -1;
942 }
943 }
e0001a05 944 }
43cd72b9 945
e0001a05
NC
946 *table_p = blocks;
947 return block_count;
948}
949
950
7fa3d080
BW
951static property_table_entry *
952elf_xtensa_find_property_entry (property_table_entry *property_table,
953 int property_table_size,
954 bfd_vma addr)
e0001a05
NC
955{
956 property_table_entry entry;
43cd72b9 957 property_table_entry *rv;
e0001a05 958
43cd72b9
BW
959 if (property_table_size == 0)
960 return NULL;
e0001a05
NC
961
962 entry.address = addr;
963 entry.size = 1;
43cd72b9 964 entry.flags = 0;
e0001a05 965
43cd72b9
BW
966 rv = bsearch (&entry, property_table, property_table_size,
967 sizeof (property_table_entry), property_table_matches);
968 return rv;
969}
970
971
972static bfd_boolean
7fa3d080
BW
973elf_xtensa_in_literal_pool (property_table_entry *lit_table,
974 int lit_table_size,
975 bfd_vma addr)
43cd72b9
BW
976{
977 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
978 return TRUE;
979
980 return FALSE;
981}
982
983\f
984/* Look through the relocs for a section during the first phase, and
985 calculate needed space in the dynamic reloc sections. */
986
987static bfd_boolean
7fa3d080
BW
988elf_xtensa_check_relocs (bfd *abfd,
989 struct bfd_link_info *info,
990 asection *sec,
991 const Elf_Internal_Rela *relocs)
e0001a05 992{
f0e6fdb2 993 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
994 Elf_Internal_Shdr *symtab_hdr;
995 struct elf_link_hash_entry **sym_hashes;
996 const Elf_Internal_Rela *rel;
997 const Elf_Internal_Rela *rel_end;
e0001a05 998
0e1862bb 999 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
1000 return TRUE;
1001
28dbbc02
BW
1002 BFD_ASSERT (is_xtensa_elf (abfd));
1003
f0e6fdb2 1004 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1005 if (htab == NULL)
1006 return FALSE;
1007
e0001a05
NC
1008 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1009 sym_hashes = elf_sym_hashes (abfd);
1010
e0001a05
NC
1011 rel_end = relocs + sec->reloc_count;
1012 for (rel = relocs; rel < rel_end; rel++)
1013 {
1014 unsigned int r_type;
d42c267e 1015 unsigned r_symndx;
28dbbc02
BW
1016 struct elf_link_hash_entry *h = NULL;
1017 struct elf_xtensa_link_hash_entry *eh;
1018 int tls_type, old_tls_type;
1019 bfd_boolean is_got = FALSE;
1020 bfd_boolean is_plt = FALSE;
1021 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1022
1023 r_symndx = ELF32_R_SYM (rel->r_info);
1024 r_type = ELF32_R_TYPE (rel->r_info);
1025
1026 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1027 {
695344c0 1028 /* xgettext:c-format */
871b3ab2 1029 _bfd_error_handler (_("%pB: bad symbol index: %d"),
4eca0228 1030 abfd, r_symndx);
e0001a05
NC
1031 return FALSE;
1032 }
1033
28dbbc02 1034 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1035 {
1036 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037 while (h->root.type == bfd_link_hash_indirect
1038 || h->root.type == bfd_link_hash_warning)
1039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1040 }
28dbbc02 1041 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1042
1043 switch (r_type)
1044 {
28dbbc02 1045 case R_XTENSA_TLSDESC_FN:
0e1862bb 1046 if (bfd_link_pic (info))
28dbbc02
BW
1047 {
1048 tls_type = GOT_TLS_GD;
1049 is_got = TRUE;
1050 is_tlsfunc = TRUE;
1051 }
1052 else
1053 tls_type = GOT_TLS_IE;
1054 break;
e0001a05 1055
28dbbc02 1056 case R_XTENSA_TLSDESC_ARG:
0e1862bb 1057 if (bfd_link_pic (info))
e0001a05 1058 {
28dbbc02
BW
1059 tls_type = GOT_TLS_GD;
1060 is_got = TRUE;
1061 }
1062 else
1063 {
1064 tls_type = GOT_TLS_IE;
1065 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1066 is_got = TRUE;
e0001a05
NC
1067 }
1068 break;
1069
28dbbc02 1070 case R_XTENSA_TLS_DTPOFF:
0e1862bb 1071 if (bfd_link_pic (info))
28dbbc02
BW
1072 tls_type = GOT_TLS_GD;
1073 else
1074 tls_type = GOT_TLS_IE;
1075 break;
1076
1077 case R_XTENSA_TLS_TPOFF:
1078 tls_type = GOT_TLS_IE;
0e1862bb 1079 if (bfd_link_pic (info))
28dbbc02 1080 info->flags |= DF_STATIC_TLS;
0e1862bb 1081 if (bfd_link_pic (info) || h)
28dbbc02
BW
1082 is_got = TRUE;
1083 break;
1084
1085 case R_XTENSA_32:
1086 tls_type = GOT_NORMAL;
1087 is_got = TRUE;
1088 break;
1089
e0001a05 1090 case R_XTENSA_PLT:
28dbbc02
BW
1091 tls_type = GOT_NORMAL;
1092 is_plt = TRUE;
1093 break;
e0001a05 1094
28dbbc02
BW
1095 case R_XTENSA_GNU_VTINHERIT:
1096 /* This relocation describes the C++ object vtable hierarchy.
1097 Reconstruct it for later use during GC. */
1098 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1099 return FALSE;
1100 continue;
1101
1102 case R_XTENSA_GNU_VTENTRY:
1103 /* This relocation describes which C++ vtable entries are actually
1104 used. Record for later use during GC. */
1105 BFD_ASSERT (h != NULL);
1106 if (h != NULL
1107 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1108 return FALSE;
1109 continue;
1110
1111 default:
1112 /* Nothing to do for any other relocations. */
1113 continue;
1114 }
1115
1116 if (h)
1117 {
1118 if (is_plt)
e0001a05 1119 {
b45329f9
BW
1120 if (h->plt.refcount <= 0)
1121 {
1122 h->needs_plt = 1;
1123 h->plt.refcount = 1;
1124 }
1125 else
1126 h->plt.refcount += 1;
e0001a05
NC
1127
1128 /* Keep track of the total PLT relocation count even if we
1129 don't yet know whether the dynamic sections will be
1130 created. */
f0e6fdb2 1131 htab->plt_reloc_count += 1;
e0001a05
NC
1132
1133 if (elf_hash_table (info)->dynamic_sections_created)
1134 {
f0e6fdb2 1135 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1136 return FALSE;
1137 }
1138 }
28dbbc02 1139 else if (is_got)
b45329f9
BW
1140 {
1141 if (h->got.refcount <= 0)
1142 h->got.refcount = 1;
1143 else
1144 h->got.refcount += 1;
1145 }
28dbbc02
BW
1146
1147 if (is_tlsfunc)
1148 eh->tlsfunc_refcount += 1;
e0001a05 1149
28dbbc02
BW
1150 old_tls_type = eh->tls_type;
1151 }
1152 else
1153 {
1154 /* Allocate storage the first time. */
1155 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1156 {
28dbbc02
BW
1157 bfd_size_type size = symtab_hdr->sh_info;
1158 void *mem;
e0001a05 1159
28dbbc02
BW
1160 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1161 if (mem == NULL)
1162 return FALSE;
1163 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1164
28dbbc02
BW
1165 mem = bfd_zalloc (abfd, size);
1166 if (mem == NULL)
1167 return FALSE;
1168 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1169
1170 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1171 if (mem == NULL)
1172 return FALSE;
1173 elf_xtensa_local_tlsfunc_refcounts (abfd)
1174 = (bfd_signed_vma *) mem;
e0001a05 1175 }
e0001a05 1176
28dbbc02
BW
1177 /* This is a global offset table entry for a local symbol. */
1178 if (is_got || is_plt)
1179 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1180
28dbbc02
BW
1181 if (is_tlsfunc)
1182 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1183
28dbbc02
BW
1184 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1185 }
1186
1187 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1188 tls_type |= old_tls_type;
1189 /* If a TLS symbol is accessed using IE at least once,
1190 there is no point to use a dynamic model for it. */
1191 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1192 && ((old_tls_type & GOT_TLS_GD) == 0
1193 || (tls_type & GOT_TLS_IE) == 0))
1194 {
1195 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1196 tls_type = old_tls_type;
1197 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1198 tls_type |= old_tls_type;
1199 else
1200 {
4eca0228 1201 _bfd_error_handler
695344c0 1202 /* xgettext:c-format */
871b3ab2 1203 (_("%pB: `%s' accessed both as normal and thread local symbol"),
28dbbc02
BW
1204 abfd,
1205 h ? h->root.root.string : "<local>");
1206 return FALSE;
1207 }
1208 }
1209
1210 if (old_tls_type != tls_type)
1211 {
1212 if (eh)
1213 eh->tls_type = tls_type;
1214 else
1215 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1216 }
1217 }
1218
e0001a05
NC
1219 return TRUE;
1220}
1221
1222
95147441
BW
1223static void
1224elf_xtensa_make_sym_local (struct bfd_link_info *info,
07d6d2b8 1225 struct elf_link_hash_entry *h)
95147441 1226{
0e1862bb 1227 if (bfd_link_pic (info))
95147441
BW
1228 {
1229 if (h->plt.refcount > 0)
07d6d2b8 1230 {
95147441
BW
1231 /* For shared objects, there's no need for PLT entries for local
1232 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
07d6d2b8
AM
1233 if (h->got.refcount < 0)
1234 h->got.refcount = 0;
1235 h->got.refcount += h->plt.refcount;
1236 h->plt.refcount = 0;
1237 }
95147441
BW
1238 }
1239 else
1240 {
1241 /* Don't need any dynamic relocations at all. */
1242 h->plt.refcount = 0;
1243 h->got.refcount = 0;
1244 }
1245}
1246
1247
1248static void
1249elf_xtensa_hide_symbol (struct bfd_link_info *info,
07d6d2b8
AM
1250 struct elf_link_hash_entry *h,
1251 bfd_boolean force_local)
95147441
BW
1252{
1253 /* For a shared link, move the plt refcount to the got refcount to leave
1254 space for RELATIVE relocs. */
1255 elf_xtensa_make_sym_local (info, h);
1256
1257 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1258}
1259
1260
e0001a05
NC
1261/* Return the section that should be marked against GC for a given
1262 relocation. */
1263
1264static asection *
7fa3d080 1265elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1266 struct bfd_link_info *info,
7fa3d080
BW
1267 Elf_Internal_Rela *rel,
1268 struct elf_link_hash_entry *h,
1269 Elf_Internal_Sym *sym)
e0001a05 1270{
e1e5c0b5
BW
1271 /* Property sections are marked "KEEP" in the linker scripts, but they
1272 should not cause other sections to be marked. (This approach relies
1273 on elf_xtensa_discard_info to remove property table entries that
1274 describe discarded sections. Alternatively, it might be more
1275 efficient to avoid using "KEEP" in the linker scripts and instead use
1276 the gc_mark_extra_sections hook to mark only the property sections
1277 that describe marked sections. That alternative does not work well
1278 with the current property table sections, which do not correspond
1279 one-to-one with the sections they describe, but that should be fixed
1280 someday.) */
1281 if (xtensa_is_property_section (sec))
1282 return NULL;
1283
07adf181
AM
1284 if (h != NULL)
1285 switch (ELF32_R_TYPE (rel->r_info))
1286 {
1287 case R_XTENSA_GNU_VTINHERIT:
1288 case R_XTENSA_GNU_VTENTRY:
1289 return NULL;
1290 }
1291
1292 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1293}
1294
7fa3d080 1295
e0001a05
NC
1296/* Create all the dynamic sections. */
1297
1298static bfd_boolean
7fa3d080 1299elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1300{
f0e6fdb2 1301 struct elf_xtensa_link_hash_table *htab;
e901de89 1302 flagword flags, noalloc_flags;
f0e6fdb2
BW
1303
1304 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1305 if (htab == NULL)
1306 return FALSE;
e0001a05
NC
1307
1308 /* First do all the standard stuff. */
1309 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1310 return FALSE;
1311
1312 /* Create any extra PLT sections in case check_relocs has already
1313 been called on all the non-dynamic input files. */
f0e6fdb2 1314 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1315 return FALSE;
1316
e901de89
BW
1317 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1318 | SEC_LINKER_CREATED | SEC_READONLY);
1319 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1320
1321 /* Mark the ".got.plt" section READONLY. */
ce558b89
AM
1322 if (htab->elf.sgotplt == NULL
1323 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
e0001a05
NC
1324 return FALSE;
1325
e901de89 1326 /* Create ".got.loc" (literal tables for use by dynamic linker). */
3d4d4302
AM
1327 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1328 flags);
f0e6fdb2
BW
1329 if (htab->sgotloc == NULL
1330 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1331 return FALSE;
1332
e0001a05 1333 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
3d4d4302
AM
1334 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1335 noalloc_flags);
f0e6fdb2
BW
1336 if (htab->spltlittbl == NULL
1337 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1338 return FALSE;
1339
1340 return TRUE;
1341}
1342
1343
1344static bfd_boolean
f0e6fdb2 1345add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1346{
f0e6fdb2 1347 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1348 int chunk;
1349
1350 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1351 ".got.plt" sections. */
1352 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1353 {
1354 char *sname;
1355 flagword flags;
1356 asection *s;
1357
1358 /* Stop when we find a section has already been created. */
f0e6fdb2 1359 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1360 break;
1361
1362 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1363 | SEC_LINKER_CREATED | SEC_READONLY);
1364
1365 sname = (char *) bfd_malloc (10);
1366 sprintf (sname, ".plt.%u", chunk);
3d4d4302 1367 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1368 if (s == NULL
e0001a05
NC
1369 || ! bfd_set_section_alignment (dynobj, s, 2))
1370 return FALSE;
1371
1372 sname = (char *) bfd_malloc (14);
1373 sprintf (sname, ".got.plt.%u", chunk);
3d4d4302 1374 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
e0001a05 1375 if (s == NULL
e0001a05
NC
1376 || ! bfd_set_section_alignment (dynobj, s, 2))
1377 return FALSE;
1378 }
1379
1380 return TRUE;
1381}
1382
1383
1384/* Adjust a symbol defined by a dynamic object and referenced by a
1385 regular object. The current definition is in some section of the
1386 dynamic object, but we're not including those sections. We have to
1387 change the definition to something the rest of the link can
1388 understand. */
1389
1390static bfd_boolean
7fa3d080
BW
1391elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1392 struct elf_link_hash_entry *h)
e0001a05
NC
1393{
1394 /* If this is a weak symbol, and there is a real definition, the
1395 processor independent code will have arranged for us to see the
1396 real definition first, and we can just use the same value. */
60d67dc8 1397 if (h->is_weakalias)
e0001a05 1398 {
60d67dc8
AM
1399 struct elf_link_hash_entry *def = weakdef (h);
1400 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1401 h->root.u.def.section = def->root.u.def.section;
1402 h->root.u.def.value = def->root.u.def.value;
e0001a05
NC
1403 return TRUE;
1404 }
1405
1406 /* This is a reference to a symbol defined by a dynamic object. The
1407 reference must go through the GOT, so there's no need for COPY relocs,
1408 .dynbss, etc. */
1409
1410 return TRUE;
1411}
1412
1413
e0001a05 1414static bfd_boolean
f1ab2340 1415elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1416{
f1ab2340
BW
1417 struct bfd_link_info *info;
1418 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1419 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1420
f1ab2340
BW
1421 if (h->root.type == bfd_link_hash_indirect)
1422 return TRUE;
e0001a05 1423
f1ab2340
BW
1424 info = (struct bfd_link_info *) arg;
1425 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1426 if (htab == NULL)
1427 return FALSE;
e0001a05 1428
28dbbc02
BW
1429 /* If we saw any use of an IE model for this symbol, we can then optimize
1430 away GOT entries for any TLSDESC_FN relocs. */
1431 if ((eh->tls_type & GOT_TLS_IE) != 0)
1432 {
1433 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1434 h->got.refcount -= eh->tlsfunc_refcount;
1435 }
e0001a05 1436
28dbbc02 1437 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1438 elf_xtensa_make_sym_local (info, h);
e0001a05 1439
c451bb34
MF
1440 if (! elf_xtensa_dynamic_symbol_p (h, info)
1441 && h->root.type == bfd_link_hash_undefweak)
1442 return TRUE;
1443
f1ab2340 1444 if (h->plt.refcount > 0)
ce558b89 1445 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1446
1447 if (h->got.refcount > 0)
ce558b89 1448 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1449
1450 return TRUE;
1451}
1452
1453
1454static void
f0e6fdb2 1455elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1456{
f0e6fdb2 1457 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1458 bfd *i;
1459
f0e6fdb2 1460 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1461 if (htab == NULL)
1462 return;
f0e6fdb2 1463
c72f2fb2 1464 for (i = info->input_bfds; i; i = i->link.next)
e0001a05
NC
1465 {
1466 bfd_signed_vma *local_got_refcounts;
1467 bfd_size_type j, cnt;
1468 Elf_Internal_Shdr *symtab_hdr;
1469
1470 local_got_refcounts = elf_local_got_refcounts (i);
1471 if (!local_got_refcounts)
1472 continue;
1473
1474 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1475 cnt = symtab_hdr->sh_info;
1476
1477 for (j = 0; j < cnt; ++j)
1478 {
28dbbc02
BW
1479 /* If we saw any use of an IE model for this symbol, we can
1480 then optimize away GOT entries for any TLSDESC_FN relocs. */
1481 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1482 {
1483 bfd_signed_vma *tlsfunc_refcount
1484 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1485 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1486 local_got_refcounts[j] -= *tlsfunc_refcount;
1487 }
1488
e0001a05 1489 if (local_got_refcounts[j] > 0)
ce558b89
AM
1490 htab->elf.srelgot->size += (local_got_refcounts[j]
1491 * sizeof (Elf32_External_Rela));
e0001a05
NC
1492 }
1493 }
1494}
1495
1496
1497/* Set the sizes of the dynamic sections. */
1498
1499static bfd_boolean
7fa3d080
BW
1500elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1501 struct bfd_link_info *info)
e0001a05 1502{
f0e6fdb2 1503 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1504 bfd *dynobj, *abfd;
1505 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1506 bfd_boolean relplt, relgot;
1507 int plt_entries, plt_chunks, chunk;
1508
1509 plt_entries = 0;
1510 plt_chunks = 0;
e0001a05 1511
f0e6fdb2 1512 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1513 if (htab == NULL)
1514 return FALSE;
1515
e0001a05
NC
1516 dynobj = elf_hash_table (info)->dynobj;
1517 if (dynobj == NULL)
1518 abort ();
ce558b89
AM
1519 srelgot = htab->elf.srelgot;
1520 srelplt = htab->elf.srelplt;
e0001a05
NC
1521
1522 if (elf_hash_table (info)->dynamic_sections_created)
1523 {
ce558b89
AM
1524 BFD_ASSERT (htab->elf.srelgot != NULL
1525 && htab->elf.srelplt != NULL
1526 && htab->elf.sgot != NULL
f0e6fdb2
BW
1527 && htab->spltlittbl != NULL
1528 && htab->sgotloc != NULL);
1529
e0001a05 1530 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 1531 if (bfd_link_executable (info) && !info->nointerp)
e0001a05 1532 {
3d4d4302 1533 s = bfd_get_linker_section (dynobj, ".interp");
e0001a05
NC
1534 if (s == NULL)
1535 abort ();
eea6121a 1536 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1537 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1538 }
1539
1540 /* Allocate room for one word in ".got". */
ce558b89 1541 htab->elf.sgot->size = 4;
e0001a05 1542
f1ab2340
BW
1543 /* Allocate space in ".rela.got" for literals that reference global
1544 symbols and space in ".rela.plt" for literals that have PLT
1545 entries. */
e0001a05 1546 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1547 elf_xtensa_allocate_dynrelocs,
7fa3d080 1548 (void *) info);
e0001a05 1549
e0001a05
NC
1550 /* If we are generating a shared object, we also need space in
1551 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1552 reference local symbols. */
0e1862bb 1553 if (bfd_link_pic (info))
f0e6fdb2 1554 elf_xtensa_allocate_local_got_size (info);
e0001a05 1555
e0001a05
NC
1556 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1557 each PLT entry, we need the PLT code plus a 4-byte literal.
1558 For each chunk of ".plt", we also need two more 4-byte
1559 literals, two corresponding entries in ".rela.got", and an
1560 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1561 spltlittbl = htab->spltlittbl;
eea6121a 1562 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1563 plt_chunks =
1564 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1565
1566 /* Iterate over all the PLT chunks, including any extra sections
1567 created earlier because the initial count of PLT relocations
1568 was an overestimate. */
1569 for (chunk = 0;
f0e6fdb2 1570 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1571 chunk++)
1572 {
1573 int chunk_entries;
1574
f0e6fdb2
BW
1575 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1576 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1577
1578 if (chunk < plt_chunks - 1)
1579 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1580 else if (chunk == plt_chunks - 1)
1581 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1582 else
1583 chunk_entries = 0;
1584
1585 if (chunk_entries != 0)
1586 {
eea6121a
AM
1587 sgotplt->size = 4 * (chunk_entries + 2);
1588 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1589 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1590 spltlittbl->size += 8;
e0001a05
NC
1591 }
1592 else
1593 {
eea6121a
AM
1594 sgotplt->size = 0;
1595 splt->size = 0;
e0001a05
NC
1596 }
1597 }
e901de89
BW
1598
1599 /* Allocate space in ".got.loc" to match the total size of all the
1600 literal tables. */
f0e6fdb2 1601 sgotloc = htab->sgotloc;
eea6121a 1602 sgotloc->size = spltlittbl->size;
c72f2fb2 1603 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
e901de89
BW
1604 {
1605 if (abfd->flags & DYNAMIC)
1606 continue;
1607 for (s = abfd->sections; s != NULL; s = s->next)
1608 {
dbaa2011 1609 if (! discarded_section (s)
b536dc1e
BW
1610 && xtensa_is_littable_section (s)
1611 && s != spltlittbl)
eea6121a 1612 sgotloc->size += s->size;
e901de89
BW
1613 }
1614 }
e0001a05
NC
1615 }
1616
1617 /* Allocate memory for dynamic sections. */
1618 relplt = FALSE;
1619 relgot = FALSE;
1620 for (s = dynobj->sections; s != NULL; s = s->next)
1621 {
1622 const char *name;
e0001a05
NC
1623
1624 if ((s->flags & SEC_LINKER_CREATED) == 0)
1625 continue;
1626
1627 /* It's OK to base decisions on the section name, because none
1628 of the dynobj section names depend upon the input files. */
1629 name = bfd_get_section_name (dynobj, s);
1630
0112cd26 1631 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1632 {
c456f082 1633 if (s->size != 0)
e0001a05 1634 {
c456f082
AM
1635 if (strcmp (name, ".rela.plt") == 0)
1636 relplt = TRUE;
1637 else if (strcmp (name, ".rela.got") == 0)
1638 relgot = TRUE;
1639
1640 /* We use the reloc_count field as a counter if we need
1641 to copy relocs into the output file. */
1642 s->reloc_count = 0;
e0001a05
NC
1643 }
1644 }
0112cd26
NC
1645 else if (! CONST_STRNEQ (name, ".plt.")
1646 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1647 && strcmp (name, ".got") != 0
e0001a05
NC
1648 && strcmp (name, ".plt") != 0
1649 && strcmp (name, ".got.plt") != 0
e901de89
BW
1650 && strcmp (name, ".xt.lit.plt") != 0
1651 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1652 {
1653 /* It's not one of our sections, so don't allocate space. */
1654 continue;
1655 }
1656
c456f082
AM
1657 if (s->size == 0)
1658 {
1659 /* If we don't need this section, strip it from the output
1660 file. We must create the ".plt*" and ".got.plt*"
1661 sections in create_dynamic_sections and/or check_relocs
1662 based on a conservative estimate of the PLT relocation
1663 count, because the sections must be created before the
1664 linker maps input sections to output sections. The
1665 linker does that before size_dynamic_sections, where we
1666 compute the exact size of the PLT, so there may be more
1667 of these sections than are actually needed. */
1668 s->flags |= SEC_EXCLUDE;
1669 }
1670 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1671 {
1672 /* Allocate memory for the section contents. */
eea6121a 1673 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1674 if (s->contents == NULL)
e0001a05
NC
1675 return FALSE;
1676 }
1677 }
1678
1679 if (elf_hash_table (info)->dynamic_sections_created)
1680 {
1681 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1682 known until finish_dynamic_sections, but we need to get the relocs
1683 in place before they are sorted. */
e0001a05
NC
1684 for (chunk = 0; chunk < plt_chunks; chunk++)
1685 {
1686 Elf_Internal_Rela irela;
1687 bfd_byte *loc;
1688
1689 irela.r_offset = 0;
1690 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1691 irela.r_addend = 0;
1692
1693 loc = (srelgot->contents
1694 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1695 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1696 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1697 loc + sizeof (Elf32_External_Rela));
1698 srelgot->reloc_count += 2;
1699 }
1700
1701 /* Add some entries to the .dynamic section. We fill in the
1702 values later, in elf_xtensa_finish_dynamic_sections, but we
1703 must add the entries now so that we get the correct size for
1704 the .dynamic section. The DT_DEBUG entry is filled in by the
1705 dynamic linker and used by the debugger. */
1706#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1707 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1708
0e1862bb 1709 if (bfd_link_executable (info))
e0001a05
NC
1710 {
1711 if (!add_dynamic_entry (DT_DEBUG, 0))
1712 return FALSE;
1713 }
1714
1715 if (relplt)
1716 {
c243ad3b 1717 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1718 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1719 || !add_dynamic_entry (DT_JMPREL, 0))
1720 return FALSE;
1721 }
1722
1723 if (relgot)
1724 {
1725 if (!add_dynamic_entry (DT_RELA, 0)
1726 || !add_dynamic_entry (DT_RELASZ, 0)
1727 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1728 return FALSE;
1729 }
1730
c243ad3b
BW
1731 if (!add_dynamic_entry (DT_PLTGOT, 0)
1732 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1733 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1734 return FALSE;
1735 }
1736#undef add_dynamic_entry
1737
1738 return TRUE;
1739}
1740
28dbbc02
BW
1741static bfd_boolean
1742elf_xtensa_always_size_sections (bfd *output_bfd,
1743 struct bfd_link_info *info)
1744{
1745 struct elf_xtensa_link_hash_table *htab;
1746 asection *tls_sec;
1747
1748 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1749 if (htab == NULL)
1750 return FALSE;
1751
28dbbc02
BW
1752 tls_sec = htab->elf.tls_sec;
1753
1754 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1755 {
1756 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1757 struct bfd_link_hash_entry *bh = &tlsbase->root;
1758 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1759
1760 tlsbase->type = STT_TLS;
1761 if (!(_bfd_generic_link_add_one_symbol
1762 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1763 tls_sec, 0, NULL, FALSE,
1764 bed->collect, &bh)))
1765 return FALSE;
1766 tlsbase->def_regular = 1;
1767 tlsbase->other = STV_HIDDEN;
1768 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1769 }
1770
1771 return TRUE;
1772}
1773
e0001a05 1774\f
28dbbc02
BW
1775/* Return the base VMA address which should be subtracted from real addresses
1776 when resolving @dtpoff relocation.
1777 This is PT_TLS segment p_vaddr. */
1778
1779static bfd_vma
1780dtpoff_base (struct bfd_link_info *info)
1781{
1782 /* If tls_sec is NULL, we should have signalled an error already. */
1783 if (elf_hash_table (info)->tls_sec == NULL)
1784 return 0;
1785 return elf_hash_table (info)->tls_sec->vma;
1786}
1787
1788/* Return the relocation value for @tpoff relocation
1789 if STT_TLS virtual address is ADDRESS. */
1790
1791static bfd_vma
1792tpoff (struct bfd_link_info *info, bfd_vma address)
1793{
1794 struct elf_link_hash_table *htab = elf_hash_table (info);
1795 bfd_vma base;
1796
1797 /* If tls_sec is NULL, we should have signalled an error already. */
1798 if (htab->tls_sec == NULL)
1799 return 0;
1800 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1801 return address - htab->tls_sec->vma + base;
1802}
1803
e0001a05
NC
1804/* Perform the specified relocation. The instruction at (contents + address)
1805 is modified to set one operand to represent the value in "relocation". The
1806 operand position is determined by the relocation type recorded in the
1807 howto. */
1808
1809#define CALL_SEGMENT_BITS (30)
7fa3d080 1810#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1811
1812static bfd_reloc_status_type
7fa3d080
BW
1813elf_xtensa_do_reloc (reloc_howto_type *howto,
1814 bfd *abfd,
1815 asection *input_section,
1816 bfd_vma relocation,
1817 bfd_byte *contents,
1818 bfd_vma address,
1819 bfd_boolean is_weak_undef,
1820 char **error_message)
e0001a05 1821{
43cd72b9 1822 xtensa_format fmt;
e0001a05 1823 xtensa_opcode opcode;
e0001a05 1824 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1825 static xtensa_insnbuf ibuff = NULL;
1826 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1827 bfd_vma self_address;
43cd72b9
BW
1828 bfd_size_type input_size;
1829 int opnd, slot;
e0001a05
NC
1830 uint32 newval;
1831
43cd72b9
BW
1832 if (!ibuff)
1833 {
1834 ibuff = xtensa_insnbuf_alloc (isa);
1835 sbuff = xtensa_insnbuf_alloc (isa);
1836 }
1837
1838 input_size = bfd_get_section_limit (abfd, input_section);
1839
1bbb5f21
BW
1840 /* Calculate the PC address for this instruction. */
1841 self_address = (input_section->output_section->vma
1842 + input_section->output_offset
1843 + address);
1844
e0001a05
NC
1845 switch (howto->type)
1846 {
1847 case R_XTENSA_NONE:
43cd72b9
BW
1848 case R_XTENSA_DIFF8:
1849 case R_XTENSA_DIFF16:
1850 case R_XTENSA_DIFF32:
28dbbc02
BW
1851 case R_XTENSA_TLS_FUNC:
1852 case R_XTENSA_TLS_ARG:
1853 case R_XTENSA_TLS_CALL:
e0001a05
NC
1854 return bfd_reloc_ok;
1855
1856 case R_XTENSA_ASM_EXPAND:
1857 if (!is_weak_undef)
1858 {
1859 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1860 opcode = get_expanded_call_opcode (contents + address,
1861 input_size - address, 0);
e0001a05
NC
1862 if (is_windowed_call_opcode (opcode))
1863 {
43cd72b9 1864 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 1865 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1866 {
1867 *error_message = "windowed longcall crosses 1GB boundary; "
1868 "return may fail";
1869 return bfd_reloc_dangerous;
1870 }
1871 }
1872 }
1873 return bfd_reloc_ok;
1874
1875 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1876 {
07d6d2b8 1877 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1878 bfd_reloc_status_type retval =
1879 elf_xtensa_do_asm_simplify (contents, address, input_size,
1880 error_message);
e0001a05 1881 if (retval != bfd_reloc_ok)
43cd72b9 1882 return bfd_reloc_dangerous;
e0001a05
NC
1883
1884 /* The CALL needs to be relocated. Continue below for that part. */
1885 address += 3;
c46082c8 1886 self_address += 3;
43cd72b9 1887 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1888 }
1889 break;
1890
1891 case R_XTENSA_32:
e0001a05
NC
1892 {
1893 bfd_vma x;
1894 x = bfd_get_32 (abfd, contents + address);
1895 x = x + relocation;
1896 bfd_put_32 (abfd, x, contents + address);
1897 }
1898 return bfd_reloc_ok;
1bbb5f21
BW
1899
1900 case R_XTENSA_32_PCREL:
1901 bfd_put_32 (abfd, relocation - self_address, contents + address);
1902 return bfd_reloc_ok;
28dbbc02
BW
1903
1904 case R_XTENSA_PLT:
1905 case R_XTENSA_TLSDESC_FN:
1906 case R_XTENSA_TLSDESC_ARG:
1907 case R_XTENSA_TLS_DTPOFF:
1908 case R_XTENSA_TLS_TPOFF:
1909 bfd_put_32 (abfd, relocation, contents + address);
1910 return bfd_reloc_ok;
e0001a05
NC
1911 }
1912
43cd72b9
BW
1913 /* Only instruction slot-specific relocations handled below.... */
1914 slot = get_relocation_slot (howto->type);
1915 if (slot == XTENSA_UNDEFINED)
e0001a05 1916 {
43cd72b9 1917 *error_message = "unexpected relocation";
e0001a05
NC
1918 return bfd_reloc_dangerous;
1919 }
1920
43cd72b9
BW
1921 /* Read the instruction into a buffer and decode the opcode. */
1922 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1923 input_size - address);
1924 fmt = xtensa_format_decode (isa, ibuff);
1925 if (fmt == XTENSA_UNDEFINED)
e0001a05 1926 {
43cd72b9 1927 *error_message = "cannot decode instruction format";
e0001a05
NC
1928 return bfd_reloc_dangerous;
1929 }
1930
43cd72b9 1931 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 1932
43cd72b9
BW
1933 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1934 if (opcode == XTENSA_UNDEFINED)
e0001a05 1935 {
43cd72b9 1936 *error_message = "cannot decode instruction opcode";
e0001a05
NC
1937 return bfd_reloc_dangerous;
1938 }
1939
43cd72b9
BW
1940 /* Check for opcode-specific "alternate" relocations. */
1941 if (is_alt_relocation (howto->type))
1942 {
1943 if (opcode == get_l32r_opcode ())
1944 {
1945 /* Handle the special-case of non-PC-relative L32R instructions. */
1946 bfd *output_bfd = input_section->output_section->owner;
1947 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1948 if (!lit4_sec)
1949 {
1950 *error_message = "relocation references missing .lit4 section";
1951 return bfd_reloc_dangerous;
1952 }
1953 self_address = ((lit4_sec->vma & ~0xfff)
1954 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1955 newval = relocation;
1956 opnd = 1;
1957 }
1958 else if (opcode == get_const16_opcode ())
1959 {
00863b8e
MF
1960 /* ALT used for high 16 bits.
1961 Ignore 32-bit overflow. */
1962 newval = (relocation >> 16) & 0xffff;
43cd72b9
BW
1963 opnd = 1;
1964 }
1965 else
1966 {
1967 /* No other "alternate" relocations currently defined. */
1968 *error_message = "unexpected relocation";
1969 return bfd_reloc_dangerous;
1970 }
1971 }
1972 else /* Not an "alternate" relocation.... */
1973 {
1974 if (opcode == get_const16_opcode ())
1975 {
1976 newval = relocation & 0xffff;
1977 opnd = 1;
1978 }
1979 else
1980 {
1981 /* ...normal PC-relative relocation.... */
1982
1983 /* Determine which operand is being relocated. */
1984 opnd = get_relocation_opnd (opcode, howto->type);
1985 if (opnd == XTENSA_UNDEFINED)
1986 {
1987 *error_message = "unexpected relocation";
1988 return bfd_reloc_dangerous;
1989 }
1990
1991 if (!howto->pc_relative)
1992 {
1993 *error_message = "expected PC-relative relocation";
1994 return bfd_reloc_dangerous;
1995 }
e0001a05 1996
43cd72b9
BW
1997 newval = relocation;
1998 }
1999 }
e0001a05 2000
43cd72b9
BW
2001 /* Apply the relocation. */
2002 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2003 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2004 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2005 sbuff, newval))
e0001a05 2006 {
2db662be
BW
2007 const char *opname = xtensa_opcode_name (isa, opcode);
2008 const char *msg;
2009
2010 msg = "cannot encode";
2011 if (is_direct_call_opcode (opcode))
2012 {
2013 if ((relocation & 0x3) != 0)
2014 msg = "misaligned call target";
2015 else
2016 msg = "call target out of range";
2017 }
2018 else if (opcode == get_l32r_opcode ())
2019 {
2020 if ((relocation & 0x3) != 0)
2021 msg = "misaligned literal target";
2022 else if (is_alt_relocation (howto->type))
2023 msg = "literal target out of range (too many literals)";
2024 else if (self_address > relocation)
2025 msg = "literal target out of range (try using text-section-literals)";
2026 else
2027 msg = "literal placed after use";
2028 }
2029
2030 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2031 return bfd_reloc_dangerous;
2032 }
2033
43cd72b9 2034 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2035 if (is_direct_call_opcode (opcode)
2036 && is_windowed_call_opcode (opcode))
2037 {
43cd72b9 2038 if ((self_address >> CALL_SEGMENT_BITS)
68ffbac6 2039 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2040 {
43cd72b9
BW
2041 *error_message =
2042 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2043 return bfd_reloc_dangerous;
2044 }
2045 }
2046
43cd72b9
BW
2047 /* Write the modified instruction back out of the buffer. */
2048 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2049 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2050 input_size - address);
e0001a05
NC
2051 return bfd_reloc_ok;
2052}
2053
2054
2db662be 2055static char *
7fa3d080 2056vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2057{
2058 /* To reduce the size of the memory leak,
2059 we only use a single message buffer. */
2060 static bfd_size_type alloc_size = 0;
2061 static char *message = NULL;
2062 bfd_size_type orig_len, len = 0;
2063 bfd_boolean is_append;
1651e569 2064 va_list ap;
e0001a05 2065
1651e569 2066 va_start (ap, arglen);
68ffbac6
L
2067
2068 is_append = (origmsg == message);
e0001a05
NC
2069
2070 orig_len = strlen (origmsg);
2071 len = orig_len + strlen (fmt) + arglen + 20;
2072 if (len > alloc_size)
2073 {
515ef31d 2074 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2075 alloc_size = len;
2076 }
515ef31d
NC
2077 if (message != NULL)
2078 {
2079 if (!is_append)
2080 memcpy (message, origmsg, orig_len);
2081 vsprintf (message + orig_len, fmt, ap);
2082 }
1651e569 2083 va_end (ap);
e0001a05
NC
2084 return message;
2085}
2086
2087
e0001a05
NC
2088/* This function is registered as the "special_function" in the
2089 Xtensa howto for handling simplify operations.
2090 bfd_perform_relocation / bfd_install_relocation use it to
2091 perform (install) the specified relocation. Since this replaces the code
2092 in bfd_perform_relocation, it is basically an Xtensa-specific,
2093 stripped-down version of bfd_perform_relocation. */
2094
2095static bfd_reloc_status_type
7fa3d080
BW
2096bfd_elf_xtensa_reloc (bfd *abfd,
2097 arelent *reloc_entry,
2098 asymbol *symbol,
2099 void *data,
2100 asection *input_section,
2101 bfd *output_bfd,
2102 char **error_message)
e0001a05
NC
2103{
2104 bfd_vma relocation;
2105 bfd_reloc_status_type flag;
2106 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2107 bfd_vma output_base = 0;
2108 reloc_howto_type *howto = reloc_entry->howto;
2109 asection *reloc_target_output_section;
2110 bfd_boolean is_weak_undef;
2111
dd1a320b
BW
2112 if (!xtensa_default_isa)
2113 xtensa_default_isa = xtensa_isa_init (0, 0);
2114
1049f94e 2115 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2116 output, and the reloc is against an external symbol, the resulting
2117 reloc will also be against the same symbol. In such a case, we
2118 don't want to change anything about the way the reloc is handled,
2119 since it will all be done at final link time. This test is similar
2120 to what bfd_elf_generic_reloc does except that it lets relocs with
2121 howto->partial_inplace go through even if the addend is non-zero.
2122 (The real problem is that partial_inplace is set for XTENSA_32
2123 relocs to begin with, but that's a long story and there's little we
2124 can do about it now....) */
2125
7fa3d080 2126 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2127 {
2128 reloc_entry->address += input_section->output_offset;
2129 return bfd_reloc_ok;
2130 }
2131
2132 /* Is the address of the relocation really within the section? */
07515404 2133 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2134 return bfd_reloc_outofrange;
2135
4cc11e76 2136 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2137 initial relocation command value. */
2138
2139 /* Get symbol value. (Common symbols are special.) */
2140 if (bfd_is_com_section (symbol->section))
2141 relocation = 0;
2142 else
2143 relocation = symbol->value;
2144
2145 reloc_target_output_section = symbol->section->output_section;
2146
2147 /* Convert input-section-relative symbol value to absolute. */
2148 if ((output_bfd && !howto->partial_inplace)
2149 || reloc_target_output_section == NULL)
2150 output_base = 0;
2151 else
2152 output_base = reloc_target_output_section->vma;
2153
2154 relocation += output_base + symbol->section->output_offset;
2155
2156 /* Add in supplied addend. */
2157 relocation += reloc_entry->addend;
2158
2159 /* Here the variable relocation holds the final address of the
2160 symbol we are relocating against, plus any addend. */
2161 if (output_bfd)
2162 {
2163 if (!howto->partial_inplace)
2164 {
2165 /* This is a partial relocation, and we want to apply the relocation
2166 to the reloc entry rather than the raw data. Everything except
2167 relocations against section symbols has already been handled
2168 above. */
43cd72b9 2169
e0001a05
NC
2170 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2171 reloc_entry->addend = relocation;
2172 reloc_entry->address += input_section->output_offset;
2173 return bfd_reloc_ok;
2174 }
2175 else
2176 {
2177 reloc_entry->address += input_section->output_offset;
2178 reloc_entry->addend = 0;
2179 }
2180 }
2181
2182 is_weak_undef = (bfd_is_und_section (symbol->section)
2183 && (symbol->flags & BSF_WEAK) != 0);
2184 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2185 (bfd_byte *) data, (bfd_vma) octets,
2186 is_weak_undef, error_message);
2187
2188 if (flag == bfd_reloc_dangerous)
2189 {
2190 /* Add the symbol name to the error message. */
2191 if (! *error_message)
2192 *error_message = "";
2193 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2194 strlen (symbol->name) + 17,
70961b9d
AM
2195 symbol->name,
2196 (unsigned long) reloc_entry->addend);
e0001a05
NC
2197 }
2198
2199 return flag;
2200}
2201
2202
2203/* Set up an entry in the procedure linkage table. */
2204
2205static bfd_vma
f0e6fdb2 2206elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2207 bfd *output_bfd,
2208 unsigned reloc_index)
e0001a05
NC
2209{
2210 asection *splt, *sgotplt;
2211 bfd_vma plt_base, got_base;
92b3f008 2212 bfd_vma code_offset, lit_offset, abi_offset;
e0001a05
NC
2213 int chunk;
2214
2215 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2216 splt = elf_xtensa_get_plt_section (info, chunk);
2217 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2218 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2219
2220 plt_base = splt->output_section->vma + splt->output_offset;
2221 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2222
2223 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2224 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2225
2226 /* Fill in the literal entry. This is the offset of the dynamic
2227 relocation entry. */
2228 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2229 sgotplt->contents + lit_offset);
2230
2231 /* Fill in the entry in the procedure linkage table. */
2232 memcpy (splt->contents + code_offset,
2233 (bfd_big_endian (output_bfd)
f7e16c2a
MF
2234 ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
2235 : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
e0001a05 2236 PLT_ENTRY_SIZE);
92b3f008 2237 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
e0001a05 2238 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
92b3f008
MF
2239 plt_base + code_offset + abi_offset),
2240 splt->contents + code_offset + abi_offset + 1);
e0001a05 2241 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
92b3f008
MF
2242 plt_base + code_offset + abi_offset + 3),
2243 splt->contents + code_offset + abi_offset + 4);
e0001a05 2244 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
92b3f008
MF
2245 plt_base + code_offset + abi_offset + 6),
2246 splt->contents + code_offset + abi_offset + 7);
e0001a05
NC
2247
2248 return plt_base + code_offset;
2249}
2250
2251
28dbbc02
BW
2252static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2253
2254static bfd_boolean
2255replace_tls_insn (Elf_Internal_Rela *rel,
2256 bfd *abfd,
2257 asection *input_section,
2258 bfd_byte *contents,
2259 bfd_boolean is_ld_model,
2260 char **error_message)
2261{
2262 static xtensa_insnbuf ibuff = NULL;
2263 static xtensa_insnbuf sbuff = NULL;
2264 xtensa_isa isa = xtensa_default_isa;
2265 xtensa_format fmt;
2266 xtensa_opcode old_op, new_op;
2267 bfd_size_type input_size;
2268 int r_type;
2269 unsigned dest_reg, src_reg;
2270
2271 if (ibuff == NULL)
2272 {
2273 ibuff = xtensa_insnbuf_alloc (isa);
2274 sbuff = xtensa_insnbuf_alloc (isa);
2275 }
2276
2277 input_size = bfd_get_section_limit (abfd, input_section);
2278
2279 /* Read the instruction into a buffer and decode the opcode. */
2280 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2281 input_size - rel->r_offset);
2282 fmt = xtensa_format_decode (isa, ibuff);
2283 if (fmt == XTENSA_UNDEFINED)
2284 {
2285 *error_message = "cannot decode instruction format";
2286 return FALSE;
2287 }
2288
2289 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2290 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2291
2292 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2293 if (old_op == XTENSA_UNDEFINED)
2294 {
2295 *error_message = "cannot decode instruction opcode";
2296 return FALSE;
2297 }
2298
2299 r_type = ELF32_R_TYPE (rel->r_info);
2300 switch (r_type)
2301 {
2302 case R_XTENSA_TLS_FUNC:
2303 case R_XTENSA_TLS_ARG:
2304 if (old_op != get_l32r_opcode ()
2305 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2306 sbuff, &dest_reg) != 0)
2307 {
2308 *error_message = "cannot extract L32R destination for TLS access";
2309 return FALSE;
2310 }
2311 break;
2312
2313 case R_XTENSA_TLS_CALL:
2314 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2315 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2316 sbuff, &src_reg) != 0)
2317 {
2318 *error_message = "cannot extract CALLXn operands for TLS access";
2319 return FALSE;
2320 }
2321 break;
2322
2323 default:
2324 abort ();
2325 }
2326
2327 if (is_ld_model)
2328 {
2329 switch (r_type)
2330 {
2331 case R_XTENSA_TLS_FUNC:
2332 case R_XTENSA_TLS_ARG:
2333 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2334 versions of Xtensa). */
2335 new_op = xtensa_opcode_lookup (isa, "nop");
2336 if (new_op == XTENSA_UNDEFINED)
2337 {
2338 new_op = xtensa_opcode_lookup (isa, "or");
2339 if (new_op == XTENSA_UNDEFINED
2340 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2341 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2342 sbuff, 1) != 0
2343 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2344 sbuff, 1) != 0
2345 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2346 sbuff, 1) != 0)
2347 {
2348 *error_message = "cannot encode OR for TLS access";
2349 return FALSE;
2350 }
2351 }
2352 else
2353 {
2354 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2355 {
2356 *error_message = "cannot encode NOP for TLS access";
2357 return FALSE;
2358 }
2359 }
2360 break;
2361
2362 case R_XTENSA_TLS_CALL:
2363 /* Read THREADPTR into the CALLX's return value register. */
2364 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2365 if (new_op == XTENSA_UNDEFINED
2366 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2367 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2368 sbuff, dest_reg + 2) != 0)
2369 {
2370 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2371 return FALSE;
2372 }
2373 break;
2374 }
2375 }
2376 else
2377 {
2378 switch (r_type)
2379 {
2380 case R_XTENSA_TLS_FUNC:
2381 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2382 if (new_op == XTENSA_UNDEFINED
2383 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2384 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2385 sbuff, dest_reg) != 0)
2386 {
2387 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2388 return FALSE;
2389 }
2390 break;
2391
2392 case R_XTENSA_TLS_ARG:
2393 /* Nothing to do. Keep the original L32R instruction. */
2394 return TRUE;
2395
2396 case R_XTENSA_TLS_CALL:
2397 /* Add the CALLX's src register (holding the THREADPTR value)
2398 to the first argument register (holding the offset) and put
2399 the result in the CALLX's return value register. */
2400 new_op = xtensa_opcode_lookup (isa, "add");
2401 if (new_op == XTENSA_UNDEFINED
2402 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2403 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2404 sbuff, dest_reg + 2) != 0
2405 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2406 sbuff, dest_reg + 2) != 0
2407 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2408 sbuff, src_reg) != 0)
2409 {
2410 *error_message = "cannot encode ADD for TLS access";
2411 return FALSE;
2412 }
2413 break;
2414 }
2415 }
2416
2417 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2418 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
07d6d2b8 2419 input_size - rel->r_offset);
28dbbc02
BW
2420
2421 return TRUE;
2422}
2423
2424
2425#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2426 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2427 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2428 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2429 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2430 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2431 || (R_TYPE) == R_XTENSA_TLS_ARG \
2432 || (R_TYPE) == R_XTENSA_TLS_CALL)
2433
e0001a05 2434/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2435 both relocatable and final links. */
e0001a05
NC
2436
2437static bfd_boolean
7fa3d080
BW
2438elf_xtensa_relocate_section (bfd *output_bfd,
2439 struct bfd_link_info *info,
2440 bfd *input_bfd,
2441 asection *input_section,
2442 bfd_byte *contents,
2443 Elf_Internal_Rela *relocs,
2444 Elf_Internal_Sym *local_syms,
2445 asection **local_sections)
e0001a05 2446{
f0e6fdb2 2447 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2448 Elf_Internal_Shdr *symtab_hdr;
2449 Elf_Internal_Rela *rel;
2450 Elf_Internal_Rela *relend;
2451 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2452 property_table_entry *lit_table = 0;
2453 int ltblsize = 0;
28dbbc02 2454 char *local_got_tls_types;
e0001a05 2455 char *error_message = NULL;
43cd72b9 2456 bfd_size_type input_size;
28dbbc02 2457 int tls_type;
e0001a05 2458
43cd72b9
BW
2459 if (!xtensa_default_isa)
2460 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2461
28dbbc02
BW
2462 BFD_ASSERT (is_xtensa_elf (input_bfd));
2463
f0e6fdb2 2464 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2465 if (htab == NULL)
2466 return FALSE;
2467
e0001a05
NC
2468 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2469 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2470 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2471
88d65ad6
BW
2472 if (elf_hash_table (info)->dynamic_sections_created)
2473 {
2474 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2475 &lit_table, XTENSA_LIT_SEC_NAME,
2476 TRUE);
88d65ad6
BW
2477 if (ltblsize < 0)
2478 return FALSE;
2479 }
2480
43cd72b9
BW
2481 input_size = bfd_get_section_limit (input_bfd, input_section);
2482
e0001a05
NC
2483 rel = relocs;
2484 relend = relocs + input_section->reloc_count;
2485 for (; rel < relend; rel++)
2486 {
2487 int r_type;
2488 reloc_howto_type *howto;
2489 unsigned long r_symndx;
2490 struct elf_link_hash_entry *h;
2491 Elf_Internal_Sym *sym;
28dbbc02
BW
2492 char sym_type;
2493 const char *name;
e0001a05
NC
2494 asection *sec;
2495 bfd_vma relocation;
2496 bfd_reloc_status_type r;
2497 bfd_boolean is_weak_undef;
2498 bfd_boolean unresolved_reloc;
9b8c98a4 2499 bfd_boolean warned;
28dbbc02 2500 bfd_boolean dynamic_symbol;
e0001a05
NC
2501
2502 r_type = ELF32_R_TYPE (rel->r_info);
2503 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2504 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2505 continue;
2506
2507 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2508 {
2509 bfd_set_error (bfd_error_bad_value);
2510 return FALSE;
2511 }
2512 howto = &elf_howto_table[r_type];
2513
2514 r_symndx = ELF32_R_SYM (rel->r_info);
2515
ab96bf03
AM
2516 h = NULL;
2517 sym = NULL;
2518 sec = NULL;
2519 is_weak_undef = FALSE;
2520 unresolved_reloc = FALSE;
2521 warned = FALSE;
2522
0e1862bb 2523 if (howto->partial_inplace && !bfd_link_relocatable (info))
ab96bf03
AM
2524 {
2525 /* Because R_XTENSA_32 was made partial_inplace to fix some
2526 problems with DWARF info in partial links, there may be
2527 an addend stored in the contents. Take it out of there
2528 and move it back into the addend field of the reloc. */
2529 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2530 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2531 }
2532
2533 if (r_symndx < symtab_hdr->sh_info)
2534 {
2535 sym = local_syms + r_symndx;
28dbbc02 2536 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2537 sec = local_sections[r_symndx];
2538 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2539 }
2540 else
2541 {
62d887d4
L
2542 bfd_boolean ignored;
2543
ab96bf03
AM
2544 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2545 r_symndx, symtab_hdr, sym_hashes,
2546 h, sec, relocation,
62d887d4 2547 unresolved_reloc, warned, ignored);
ab96bf03
AM
2548
2549 if (relocation == 0
2550 && !unresolved_reloc
2551 && h->root.type == bfd_link_hash_undefweak)
2552 is_weak_undef = TRUE;
28dbbc02
BW
2553
2554 sym_type = h->type;
ab96bf03
AM
2555 }
2556
dbaa2011 2557 if (sec != NULL && discarded_section (sec))
e4067dbb 2558 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 2559 rel, 1, relend, howto, 0, contents);
ab96bf03 2560
0e1862bb 2561 if (bfd_link_relocatable (info))
e0001a05 2562 {
7aa09196
SA
2563 bfd_vma dest_addr;
2564 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2565
43cd72b9 2566 /* This is a relocatable link.
e0001a05
NC
2567 1) If the reloc is against a section symbol, adjust
2568 according to the output section.
2569 2) If there is a new target for this relocation,
2570 the new target will be in the same output section.
2571 We adjust the relocation by the output section
2572 difference. */
2573
2574 if (relaxing_section)
2575 {
2576 /* Check if this references a section in another input file. */
43cd72b9
BW
2577 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2578 contents))
2579 return FALSE;
e0001a05
NC
2580 }
2581
7aa09196
SA
2582 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2583 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2584
43cd72b9 2585 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2586 {
91d6fa6a 2587 error_message = NULL;
e0001a05
NC
2588 /* Convert ASM_SIMPLIFY into the simpler relocation
2589 so that they never escape a relaxing link. */
43cd72b9
BW
2590 r = contract_asm_expansion (contents, input_size, rel,
2591 &error_message);
2592 if (r != bfd_reloc_ok)
1a72702b
AM
2593 (*info->callbacks->reloc_dangerous)
2594 (info, error_message,
2595 input_bfd, input_section, rel->r_offset);
2596
e0001a05
NC
2597 r_type = ELF32_R_TYPE (rel->r_info);
2598 }
2599
1049f94e 2600 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2601 anything unless the reloc is against a section symbol,
2602 in which case we have to adjust according to where the
2603 section symbol winds up in the output section. */
2604 if (r_symndx < symtab_hdr->sh_info)
2605 {
2606 sym = local_syms + r_symndx;
2607 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2608 {
2609 sec = local_sections[r_symndx];
2610 rel->r_addend += sec->output_offset + sym->st_value;
2611 }
2612 }
2613
2614 /* If there is an addend with a partial_inplace howto,
2615 then move the addend to the contents. This is a hack
1049f94e 2616 to work around problems with DWARF in relocatable links
e0001a05
NC
2617 with some previous version of BFD. Now we can't easily get
2618 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2619 r = bfd_reloc_ok;
2620 howto = &elf_howto_table[r_type];
2621 if (howto->partial_inplace && rel->r_addend)
2622 {
2623 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2624 rel->r_addend, contents,
2625 rel->r_offset, FALSE,
2626 &error_message);
2627 rel->r_addend = 0;
2628 }
2629 else
e0001a05 2630 {
7aa09196
SA
2631 /* Put the correct bits in the target instruction, even
2632 though the relocation will still be present in the output
2633 file. This makes disassembly clearer, as well as
2634 allowing loadable kernel modules to work without needing
2635 relocations on anything other than calls and l32r's. */
2636
2637 /* If it is not in the same section, there is nothing we can do. */
2638 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2639 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2640 {
2641 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2642 dest_addr, contents,
e0001a05
NC
2643 rel->r_offset, FALSE,
2644 &error_message);
e0001a05
NC
2645 }
2646 }
7aa09196 2647 if (r != bfd_reloc_ok)
1a72702b
AM
2648 (*info->callbacks->reloc_dangerous)
2649 (info, error_message,
2650 input_bfd, input_section, rel->r_offset);
e0001a05 2651
1049f94e 2652 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2653 continue;
2654 }
2655
2656 /* This is a final link. */
2657
e0001a05
NC
2658 if (relaxing_section)
2659 {
2660 /* Check if this references a section in another input file. */
43cd72b9
BW
2661 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2662 &relocation);
e0001a05
NC
2663 }
2664
2665 /* Sanity check the address. */
43cd72b9 2666 if (rel->r_offset >= input_size
e0001a05
NC
2667 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2668 {
4eca0228 2669 _bfd_error_handler
695344c0 2670 /* xgettext:c-format */
2dcf00ce
AM
2671 (_("%pB(%pA+%#" PRIx64 "): "
2672 "relocation offset out of range (size=%#" PRIx64 ")"),
2673 input_bfd, input_section, (uint64_t) rel->r_offset,
2674 (uint64_t) input_size);
e0001a05
NC
2675 bfd_set_error (bfd_error_bad_value);
2676 return FALSE;
2677 }
2678
28dbbc02
BW
2679 if (h != NULL)
2680 name = h->root.root.string;
2681 else
e0001a05 2682 {
28dbbc02
BW
2683 name = (bfd_elf_string_from_elf_section
2684 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2685 if (name == NULL || *name == '\0')
2686 name = bfd_section_name (input_bfd, sec);
2687 }
e0001a05 2688
cf35638d 2689 if (r_symndx != STN_UNDEF
28dbbc02
BW
2690 && r_type != R_XTENSA_NONE
2691 && (h == NULL
2692 || h->root.type == bfd_link_hash_defined
2693 || h->root.type == bfd_link_hash_defweak)
2694 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2695 {
4eca0228 2696 _bfd_error_handler
28dbbc02 2697 ((sym_type == STT_TLS
695344c0 2698 /* xgettext:c-format */
2dcf00ce 2699 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
695344c0 2700 /* xgettext:c-format */
2dcf00ce 2701 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
28dbbc02
BW
2702 input_bfd,
2703 input_section,
2dcf00ce 2704 (uint64_t) rel->r_offset,
28dbbc02
BW
2705 howto->name,
2706 name);
2707 }
2708
2709 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2710
2711 tls_type = GOT_UNKNOWN;
2712 if (h)
2713 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2714 else if (local_got_tls_types)
2715 tls_type = local_got_tls_types [r_symndx];
2716
2717 switch (r_type)
2718 {
2719 case R_XTENSA_32:
2720 case R_XTENSA_PLT:
2721 if (elf_hash_table (info)->dynamic_sections_created
2722 && (input_section->flags & SEC_ALLOC) != 0
0e1862bb 2723 && (dynamic_symbol || bfd_link_pic (info)))
e0001a05
NC
2724 {
2725 Elf_Internal_Rela outrel;
2726 bfd_byte *loc;
2727 asection *srel;
2728
2729 if (dynamic_symbol && r_type == R_XTENSA_PLT)
ce558b89 2730 srel = htab->elf.srelplt;
e0001a05 2731 else
ce558b89 2732 srel = htab->elf.srelgot;
e0001a05
NC
2733
2734 BFD_ASSERT (srel != NULL);
2735
2736 outrel.r_offset =
2737 _bfd_elf_section_offset (output_bfd, info,
2738 input_section, rel->r_offset);
2739
2740 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2741 memset (&outrel, 0, sizeof outrel);
2742 else
2743 {
f0578e28
BW
2744 outrel.r_offset += (input_section->output_section->vma
2745 + input_section->output_offset);
e0001a05 2746
88d65ad6
BW
2747 /* Complain if the relocation is in a read-only section
2748 and not in a literal pool. */
2749 if ((input_section->flags & SEC_READONLY) != 0
2750 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2751 outrel.r_offset))
88d65ad6
BW
2752 {
2753 error_message =
2754 _("dynamic relocation in read-only section");
1a72702b
AM
2755 (*info->callbacks->reloc_dangerous)
2756 (info, error_message,
2757 input_bfd, input_section, rel->r_offset);
88d65ad6
BW
2758 }
2759
e0001a05
NC
2760 if (dynamic_symbol)
2761 {
2762 outrel.r_addend = rel->r_addend;
2763 rel->r_addend = 0;
2764
2765 if (r_type == R_XTENSA_32)
2766 {
2767 outrel.r_info =
2768 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2769 relocation = 0;
2770 }
2771 else /* r_type == R_XTENSA_PLT */
2772 {
2773 outrel.r_info =
2774 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2775
2776 /* Create the PLT entry and set the initial
2777 contents of the literal entry to the address of
2778 the PLT entry. */
43cd72b9 2779 relocation =
f0e6fdb2 2780 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2781 srel->reloc_count);
2782 }
2783 unresolved_reloc = FALSE;
2784 }
c451bb34 2785 else if (!is_weak_undef)
e0001a05
NC
2786 {
2787 /* Generate a RELATIVE relocation. */
2788 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2789 outrel.r_addend = 0;
2790 }
c451bb34
MF
2791 else
2792 {
2793 continue;
2794 }
e0001a05
NC
2795 }
2796
2797 loc = (srel->contents
2798 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2799 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2800 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2801 <= srel->size);
e0001a05 2802 }
d9ab3f29
BW
2803 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2804 {
2805 /* This should only happen for non-PIC code, which is not
2806 supposed to be used on systems with dynamic linking.
2807 Just ignore these relocations. */
2808 continue;
2809 }
28dbbc02
BW
2810 break;
2811
2812 case R_XTENSA_TLS_TPOFF:
2813 /* Switch to LE model for local symbols in an executable. */
0e1862bb 2814 if (! bfd_link_pic (info) && ! dynamic_symbol)
28dbbc02
BW
2815 {
2816 relocation = tpoff (info, relocation);
2817 break;
2818 }
2819 /* fall through */
2820
2821 case R_XTENSA_TLSDESC_FN:
2822 case R_XTENSA_TLSDESC_ARG:
2823 {
2824 if (r_type == R_XTENSA_TLSDESC_FN)
2825 {
0e1862bb 2826 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
28dbbc02
BW
2827 r_type = R_XTENSA_NONE;
2828 }
2829 else if (r_type == R_XTENSA_TLSDESC_ARG)
2830 {
0e1862bb 2831 if (bfd_link_pic (info))
28dbbc02
BW
2832 {
2833 if ((tls_type & GOT_TLS_IE) != 0)
2834 r_type = R_XTENSA_TLS_TPOFF;
2835 }
2836 else
2837 {
2838 r_type = R_XTENSA_TLS_TPOFF;
2839 if (! dynamic_symbol)
2840 {
2841 relocation = tpoff (info, relocation);
2842 break;
2843 }
2844 }
2845 }
2846
2847 if (r_type == R_XTENSA_NONE)
2848 /* Nothing to do here; skip to the next reloc. */
2849 continue;
2850
2851 if (! elf_hash_table (info)->dynamic_sections_created)
2852 {
2853 error_message =
2854 _("TLS relocation invalid without dynamic sections");
1a72702b
AM
2855 (*info->callbacks->reloc_dangerous)
2856 (info, error_message,
2857 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2858 }
2859 else
2860 {
2861 Elf_Internal_Rela outrel;
2862 bfd_byte *loc;
ce558b89 2863 asection *srel = htab->elf.srelgot;
28dbbc02
BW
2864 int indx;
2865
2866 outrel.r_offset = (input_section->output_section->vma
2867 + input_section->output_offset
2868 + rel->r_offset);
2869
2870 /* Complain if the relocation is in a read-only section
2871 and not in a literal pool. */
2872 if ((input_section->flags & SEC_READONLY) != 0
2873 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2874 outrel.r_offset))
2875 {
2876 error_message =
2877 _("dynamic relocation in read-only section");
1a72702b
AM
2878 (*info->callbacks->reloc_dangerous)
2879 (info, error_message,
2880 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2881 }
2882
2883 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2884 if (indx == 0)
2885 outrel.r_addend = relocation - dtpoff_base (info);
2886 else
2887 outrel.r_addend = 0;
2888 rel->r_addend = 0;
2889
2890 outrel.r_info = ELF32_R_INFO (indx, r_type);
2891 relocation = 0;
2892 unresolved_reloc = FALSE;
2893
2894 BFD_ASSERT (srel);
2895 loc = (srel->contents
2896 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2897 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2898 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2899 <= srel->size);
2900 }
2901 }
2902 break;
2903
2904 case R_XTENSA_TLS_DTPOFF:
0e1862bb 2905 if (! bfd_link_pic (info))
28dbbc02
BW
2906 /* Switch from LD model to LE model. */
2907 relocation = tpoff (info, relocation);
2908 else
2909 relocation -= dtpoff_base (info);
2910 break;
2911
2912 case R_XTENSA_TLS_FUNC:
2913 case R_XTENSA_TLS_ARG:
2914 case R_XTENSA_TLS_CALL:
2915 /* Check if optimizing to IE or LE model. */
2916 if ((tls_type & GOT_TLS_IE) != 0)
2917 {
2918 bfd_boolean is_ld_model =
2919 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2920 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2921 is_ld_model, &error_message))
1a72702b
AM
2922 (*info->callbacks->reloc_dangerous)
2923 (info, error_message,
2924 input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2925
2926 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2927 {
2928 /* Skip subsequent relocations on the same instruction. */
2929 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2930 rel++;
2931 }
2932 }
2933 continue;
2934
2935 default:
2936 if (elf_hash_table (info)->dynamic_sections_created
2937 && dynamic_symbol && (is_operand_relocation (r_type)
2938 || r_type == R_XTENSA_32_PCREL))
2939 {
2940 error_message =
2941 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2942 strlen (name) + 2, name);
1a72702b
AM
2943 (*info->callbacks->reloc_dangerous)
2944 (info, error_message, input_bfd, input_section, rel->r_offset);
28dbbc02
BW
2945 continue;
2946 }
2947 break;
e0001a05
NC
2948 }
2949
2950 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2951 because such sections are not SEC_ALLOC and thus ld.so will
2952 not process them. */
2953 if (unresolved_reloc
2954 && !((input_section->flags & SEC_DEBUGGING) != 0
1d5316ab
AM
2955 && h->def_dynamic)
2956 && _bfd_elf_section_offset (output_bfd, info, input_section,
2957 rel->r_offset) != (bfd_vma) -1)
bf1747de 2958 {
4eca0228 2959 _bfd_error_handler
695344c0 2960 /* xgettext:c-format */
2dcf00ce
AM
2961 (_("%pB(%pA+%#" PRIx64 "): "
2962 "unresolvable %s relocation against symbol `%s'"),
bf1747de
BW
2963 input_bfd,
2964 input_section,
2dcf00ce 2965 (uint64_t) rel->r_offset,
bf1747de 2966 howto->name,
28dbbc02 2967 name);
bf1747de
BW
2968 return FALSE;
2969 }
e0001a05 2970
28dbbc02
BW
2971 /* TLS optimizations may have changed r_type; update "howto". */
2972 howto = &elf_howto_table[r_type];
2973
e0001a05
NC
2974 /* There's no point in calling bfd_perform_relocation here.
2975 Just go directly to our "special function". */
2976 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2977 relocation + rel->r_addend,
2978 contents, rel->r_offset, is_weak_undef,
2979 &error_message);
43cd72b9 2980
9b8c98a4 2981 if (r != bfd_reloc_ok && !warned)
e0001a05 2982 {
43cd72b9 2983 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 2984 BFD_ASSERT (error_message != NULL);
e0001a05 2985
28dbbc02
BW
2986 if (rel->r_addend == 0)
2987 error_message = vsprint_msg (error_message, ": %s",
2988 strlen (name) + 2, name);
e0001a05 2989 else
28dbbc02
BW
2990 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2991 strlen (name) + 22,
2992 name, (int) rel->r_addend);
43cd72b9 2993
1a72702b
AM
2994 (*info->callbacks->reloc_dangerous)
2995 (info, error_message, input_bfd, input_section, rel->r_offset);
e0001a05
NC
2996 }
2997 }
2998
88d65ad6
BW
2999 if (lit_table)
3000 free (lit_table);
3001
3ba3bc8c
BW
3002 input_section->reloc_done = TRUE;
3003
e0001a05
NC
3004 return TRUE;
3005}
3006
3007
3008/* Finish up dynamic symbol handling. There's not much to do here since
3009 the PLT and GOT entries are all set up by relocate_section. */
3010
3011static bfd_boolean
7fa3d080
BW
3012elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3013 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3014 struct elf_link_hash_entry *h,
3015 Elf_Internal_Sym *sym)
e0001a05 3016{
bf1747de 3017 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3018 {
3019 /* Mark the symbol as undefined, rather than as defined in
3020 the .plt section. Leave the value alone. */
3021 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3022 /* If the symbol is weak, we do need to clear the value.
3023 Otherwise, the PLT entry would provide a definition for
3024 the symbol even if the symbol wasn't defined anywhere,
3025 and so the symbol would never be NULL. */
3026 if (!h->ref_regular_nonweak)
3027 sym->st_value = 0;
e0001a05
NC
3028 }
3029
3030 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9637f6ef 3031 if (h == elf_hash_table (info)->hdynamic
22edb2f1 3032 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3033 sym->st_shndx = SHN_ABS;
3034
3035 return TRUE;
3036}
3037
3038
3039/* Combine adjacent literal table entries in the output. Adjacent
3040 entries within each input section may have been removed during
3041 relaxation, but we repeat the process here, even though it's too late
3042 to shrink the output section, because it's important to minimize the
3043 number of literal table entries to reduce the start-up work for the
3044 runtime linker. Returns the number of remaining table entries or -1
3045 on error. */
3046
3047static int
7fa3d080
BW
3048elf_xtensa_combine_prop_entries (bfd *output_bfd,
3049 asection *sxtlit,
3050 asection *sgotloc)
e0001a05 3051{
e0001a05
NC
3052 bfd_byte *contents;
3053 property_table_entry *table;
e901de89 3054 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3055 bfd_vma offset;
3056 int n, m, num;
3057
eea6121a 3058 section_size = sxtlit->size;
e0001a05
NC
3059 BFD_ASSERT (section_size % 8 == 0);
3060 num = section_size / 8;
3061
eea6121a 3062 sgotloc_size = sgotloc->size;
e901de89 3063 if (sgotloc_size != section_size)
b536dc1e 3064 {
4eca0228 3065 _bfd_error_handler
43cd72b9 3066 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3067 return -1;
3068 }
e901de89 3069
eea6121a
AM
3070 table = bfd_malloc (num * sizeof (property_table_entry));
3071 if (table == 0)
e0001a05
NC
3072 return -1;
3073
3074 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3075 propagates to the output section, where it doesn't really apply and
eea6121a 3076 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3077 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3078
eea6121a
AM
3079 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3080 {
3081 if (contents != 0)
3082 free (contents);
3083 free (table);
3084 return -1;
3085 }
e0001a05
NC
3086
3087 /* There should never be any relocations left at this point, so this
3088 is quite a bit easier than what is done during relaxation. */
3089
3090 /* Copy the raw contents into a property table array and sort it. */
3091 offset = 0;
3092 for (n = 0; n < num; n++)
3093 {
3094 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3095 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3096 offset += 8;
3097 }
3098 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3099
3100 for (n = 0; n < num; n++)
3101 {
91d6fa6a 3102 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3103
3104 if (table[n].size == 0)
91d6fa6a
NC
3105 remove_entry = TRUE;
3106 else if (n > 0
3107 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3108 {
3109 table[n-1].size += table[n].size;
91d6fa6a 3110 remove_entry = TRUE;
e0001a05
NC
3111 }
3112
91d6fa6a 3113 if (remove_entry)
e0001a05
NC
3114 {
3115 for (m = n; m < num - 1; m++)
3116 {
3117 table[m].address = table[m+1].address;
3118 table[m].size = table[m+1].size;
3119 }
3120
3121 n--;
3122 num--;
3123 }
3124 }
3125
3126 /* Copy the data back to the raw contents. */
3127 offset = 0;
3128 for (n = 0; n < num; n++)
3129 {
3130 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3131 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3132 offset += 8;
3133 }
3134
3135 /* Clear the removed bytes. */
3136 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3137 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3138
e901de89
BW
3139 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3140 section_size))
e0001a05
NC
3141 return -1;
3142
e901de89
BW
3143 /* Copy the contents to ".got.loc". */
3144 memcpy (sgotloc->contents, contents, section_size);
3145
e0001a05 3146 free (contents);
b614a702 3147 free (table);
e0001a05
NC
3148 return num;
3149}
3150
3151
3152/* Finish up the dynamic sections. */
3153
3154static bfd_boolean
7fa3d080
BW
3155elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3156 struct bfd_link_info *info)
e0001a05 3157{
f0e6fdb2 3158 struct elf_xtensa_link_hash_table *htab;
e0001a05 3159 bfd *dynobj;
f82863d7 3160 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
e0001a05 3161 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3162 int num_xtlit_entries = 0;
e0001a05
NC
3163
3164 if (! elf_hash_table (info)->dynamic_sections_created)
3165 return TRUE;
3166
f0e6fdb2 3167 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3168 if (htab == NULL)
3169 return FALSE;
3170
e0001a05 3171 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3172 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
e0001a05
NC
3173 BFD_ASSERT (sdyn != NULL);
3174
3175 /* Set the first entry in the global offset table to the address of
3176 the dynamic section. */
ce558b89 3177 sgot = htab->elf.sgot;
e0001a05
NC
3178 if (sgot)
3179 {
eea6121a 3180 BFD_ASSERT (sgot->size == 4);
e0001a05 3181 if (sdyn == NULL)
7fa3d080 3182 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3183 else
3184 bfd_put_32 (output_bfd,
3185 sdyn->output_section->vma + sdyn->output_offset,
3186 sgot->contents);
3187 }
3188
ce558b89 3189 srelplt = htab->elf.srelplt;
f82863d7 3190 srelgot = htab->elf.srelgot;
7fa3d080 3191 if (srelplt && srelplt->size != 0)
e0001a05 3192 {
f82863d7 3193 asection *sgotplt, *spltlittbl;
e0001a05
NC
3194 int chunk, plt_chunks, plt_entries;
3195 Elf_Internal_Rela irela;
3196 bfd_byte *loc;
3197 unsigned rtld_reloc;
3198
f0e6fdb2
BW
3199 spltlittbl = htab->spltlittbl;
3200 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3201
3202 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3203 of them follow immediately after.... */
3204 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3205 {
3206 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3207 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3208 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3209 break;
3210 }
3211 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3212
eea6121a 3213 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3214 plt_chunks =
3215 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3216
3217 for (chunk = 0; chunk < plt_chunks; chunk++)
3218 {
3219 int chunk_entries = 0;
3220
f0e6fdb2 3221 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3222 BFD_ASSERT (sgotplt != NULL);
3223
3224 /* Emit special RTLD relocations for the first two entries in
3225 each chunk of the .got.plt section. */
3226
3227 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3228 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3229 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3230 irela.r_offset = (sgotplt->output_section->vma
3231 + sgotplt->output_offset);
3232 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3233 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3234 rtld_reloc += 1;
3235 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3236
3237 /* Next literal immediately follows the first. */
3238 loc += sizeof (Elf32_External_Rela);
3239 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3240 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3241 irela.r_offset = (sgotplt->output_section->vma
3242 + sgotplt->output_offset + 4);
3243 /* Tell rtld to set value to object's link map. */
3244 irela.r_addend = 2;
3245 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3246 rtld_reloc += 1;
3247 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3248
3249 /* Fill in the literal table. */
3250 if (chunk < plt_chunks - 1)
3251 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3252 else
3253 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3254
eea6121a 3255 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3256 bfd_put_32 (output_bfd,
3257 sgotplt->output_section->vma + sgotplt->output_offset,
3258 spltlittbl->contents + (chunk * 8) + 0);
3259 bfd_put_32 (output_bfd,
3260 8 + (chunk_entries * 4),
3261 spltlittbl->contents + (chunk * 8) + 4);
3262 }
3263
e0001a05
NC
3264 /* The .xt.lit.plt section has just been modified. This must
3265 happen before the code below which combines adjacent literal
3266 table entries, and the .xt.lit.plt contents have to be forced to
3267 the output here. */
3268 if (! bfd_set_section_contents (output_bfd,
3269 spltlittbl->output_section,
3270 spltlittbl->contents,
3271 spltlittbl->output_offset,
eea6121a 3272 spltlittbl->size))
e0001a05
NC
3273 return FALSE;
3274 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3275 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3276 }
3277
f82863d7
MF
3278 /* All the dynamic relocations have been emitted at this point.
3279 Make sure the relocation sections are the correct size. */
3280 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3281 * srelgot->reloc_count))
3282 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3283 * srelplt->reloc_count)))
3284 abort ();
3285
e0001a05 3286 /* Combine adjacent literal table entries. */
0e1862bb 3287 BFD_ASSERT (! bfd_link_relocatable (info));
e901de89 3288 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3289 sgotloc = htab->sgotloc;
d9ab3f29
BW
3290 BFD_ASSERT (sgotloc);
3291 if (sxtlit)
3292 {
3293 num_xtlit_entries =
3294 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3295 if (num_xtlit_entries < 0)
3296 return FALSE;
3297 }
e0001a05
NC
3298
3299 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3300 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3301 for (; dyncon < dynconend; dyncon++)
3302 {
3303 Elf_Internal_Dyn dyn;
e0001a05
NC
3304
3305 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3306
3307 switch (dyn.d_tag)
3308 {
3309 default:
3310 break;
3311
3312 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3313 dyn.d_un.d_val = num_xtlit_entries;
3314 break;
3315
3316 case DT_XTENSA_GOT_LOC_OFF:
4ade44b7
AM
3317 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3318 + htab->sgotloc->output_offset);
f0e6fdb2
BW
3319 break;
3320
e0001a05 3321 case DT_PLTGOT:
ce558b89
AM
3322 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3323 + htab->elf.sgot->output_offset);
f0e6fdb2
BW
3324 break;
3325
e0001a05 3326 case DT_JMPREL:
ce558b89
AM
3327 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3328 + htab->elf.srelplt->output_offset);
e0001a05
NC
3329 break;
3330
3331 case DT_PLTRELSZ:
ce558b89 3332 dyn.d_un.d_val = htab->elf.srelplt->size;
e0001a05 3333 break;
e0001a05
NC
3334 }
3335
3336 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3337 }
3338
3339 return TRUE;
3340}
3341
3342\f
3343/* Functions for dealing with the e_flags field. */
3344
3345/* Merge backend specific data from an object file to the output
3346 object file when linking. */
3347
3348static bfd_boolean
50e03d47 3349elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
e0001a05 3350{
50e03d47 3351 bfd *obfd = info->output_bfd;
e0001a05
NC
3352 unsigned out_mach, in_mach;
3353 flagword out_flag, in_flag;
3354
cc643b88 3355 /* Check if we have the same endianness. */
50e03d47 3356 if (!_bfd_generic_verify_endian_match (ibfd, info))
e0001a05
NC
3357 return FALSE;
3358
3359 /* Don't even pretend to support mixed-format linking. */
3360 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3361 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3362 return FALSE;
3363
3364 out_flag = elf_elfheader (obfd)->e_flags;
3365 in_flag = elf_elfheader (ibfd)->e_flags;
3366
3367 out_mach = out_flag & EF_XTENSA_MACH;
3368 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3369 if (out_mach != in_mach)
e0001a05 3370 {
4eca0228 3371 _bfd_error_handler
695344c0 3372 /* xgettext:c-format */
38f14ab8 3373 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
d003868e 3374 ibfd, out_mach, in_mach);
e0001a05
NC
3375 bfd_set_error (bfd_error_wrong_format);
3376 return FALSE;
3377 }
3378
3379 if (! elf_flags_init (obfd))
3380 {
3381 elf_flags_init (obfd) = TRUE;
3382 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3383
e0001a05
NC
3384 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3385 && bfd_get_arch_info (obfd)->the_default)
3386 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3387 bfd_get_mach (ibfd));
43cd72b9 3388
e0001a05
NC
3389 return TRUE;
3390 }
3391
68ffbac6 3392 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
43cd72b9 3393 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3394
68ffbac6 3395 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
43cd72b9 3396 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3397
3398 return TRUE;
3399}
3400
3401
3402static bfd_boolean
7fa3d080 3403elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3404{
3405 BFD_ASSERT (!elf_flags_init (abfd)
3406 || elf_elfheader (abfd)->e_flags == flags);
3407
3408 elf_elfheader (abfd)->e_flags |= flags;
3409 elf_flags_init (abfd) = TRUE;
3410
3411 return TRUE;
3412}
3413
3414
e0001a05 3415static bfd_boolean
7fa3d080 3416elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3417{
3418 FILE *f = (FILE *) farg;
3419 flagword e_flags = elf_elfheader (abfd)->e_flags;
3420
3421 fprintf (f, "\nXtensa header:\n");
43cd72b9 3422 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3423 fprintf (f, "\nMachine = Base\n");
3424 else
3425 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3426
3427 fprintf (f, "Insn tables = %s\n",
3428 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3429
3430 fprintf (f, "Literal tables = %s\n",
3431 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3432
3433 return _bfd_elf_print_private_bfd_data (abfd, farg);
3434}
3435
3436
3437/* Set the right machine number for an Xtensa ELF file. */
3438
3439static bfd_boolean
7fa3d080 3440elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3441{
3442 int mach;
3443 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3444
3445 switch (arch)
3446 {
3447 case E_XTENSA_MACH:
3448 mach = bfd_mach_xtensa;
3449 break;
3450 default:
3451 return FALSE;
3452 }
3453
3454 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3455 return TRUE;
3456}
3457
3458
3459/* The final processing done just before writing out an Xtensa ELF object
3460 file. This gets the Xtensa architecture right based on the machine
3461 number. */
3462
3463static void
7fa3d080
BW
3464elf_xtensa_final_write_processing (bfd *abfd,
3465 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3466{
3467 int mach;
3468 unsigned long val;
3469
3470 switch (mach = bfd_get_mach (abfd))
3471 {
3472 case bfd_mach_xtensa:
3473 val = E_XTENSA_MACH;
3474 break;
3475 default:
3476 return;
3477 }
3478
3479 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3480 elf_elfheader (abfd)->e_flags |= val;
3481}
3482
3483
3484static enum elf_reloc_type_class
7e612e98
AM
3485elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3486 const asection *rel_sec ATTRIBUTE_UNUSED,
3487 const Elf_Internal_Rela *rela)
e0001a05
NC
3488{
3489 switch ((int) ELF32_R_TYPE (rela->r_info))
3490 {
3491 case R_XTENSA_RELATIVE:
3492 return reloc_class_relative;
3493 case R_XTENSA_JMP_SLOT:
3494 return reloc_class_plt;
3495 default:
3496 return reloc_class_normal;
3497 }
3498}
3499
3500\f
3501static bfd_boolean
7fa3d080
BW
3502elf_xtensa_discard_info_for_section (bfd *abfd,
3503 struct elf_reloc_cookie *cookie,
3504 struct bfd_link_info *info,
3505 asection *sec)
e0001a05
NC
3506{
3507 bfd_byte *contents;
e0001a05 3508 bfd_vma offset, actual_offset;
1d25768e
BW
3509 bfd_size_type removed_bytes = 0;
3510 bfd_size_type entry_size;
e0001a05
NC
3511
3512 if (sec->output_section
3513 && bfd_is_abs_section (sec->output_section))
3514 return FALSE;
3515
1d25768e
BW
3516 if (xtensa_is_proptable_section (sec))
3517 entry_size = 12;
3518 else
3519 entry_size = 8;
3520
a3ef2d63 3521 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3522 return FALSE;
3523
e0001a05
NC
3524 contents = retrieve_contents (abfd, sec, info->keep_memory);
3525 if (!contents)
3526 return FALSE;
3527
3528 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3529 if (!cookie->rels)
3530 {
3531 release_contents (sec, contents);
3532 return FALSE;
3533 }
3534
1d25768e
BW
3535 /* Sort the relocations. They should already be in order when
3536 relaxation is enabled, but it might not be. */
3537 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3538 internal_reloc_compare);
3539
e0001a05
NC
3540 cookie->rel = cookie->rels;
3541 cookie->relend = cookie->rels + sec->reloc_count;
3542
a3ef2d63 3543 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3544 {
3545 actual_offset = offset - removed_bytes;
3546
3547 /* The ...symbol_deleted_p function will skip over relocs but it
3548 won't adjust their offsets, so do that here. */
3549 while (cookie->rel < cookie->relend
3550 && cookie->rel->r_offset < offset)
3551 {
3552 cookie->rel->r_offset -= removed_bytes;
3553 cookie->rel++;
3554 }
3555
3556 while (cookie->rel < cookie->relend
3557 && cookie->rel->r_offset == offset)
3558 {
c152c796 3559 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3560 {
3561 /* Remove the table entry. (If the reloc type is NONE, then
3562 the entry has already been merged with another and deleted
3563 during relaxation.) */
3564 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3565 {
3566 /* Shift the contents up. */
a3ef2d63 3567 if (offset + entry_size < sec->size)
e0001a05 3568 memmove (&contents[actual_offset],
1d25768e 3569 &contents[actual_offset + entry_size],
a3ef2d63 3570 sec->size - offset - entry_size);
1d25768e 3571 removed_bytes += entry_size;
e0001a05
NC
3572 }
3573
3574 /* Remove this relocation. */
3575 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3576 }
3577
3578 /* Adjust the relocation offset for previous removals. This
3579 should not be done before calling ...symbol_deleted_p
3580 because it might mess up the offset comparisons there.
3581 Make sure the offset doesn't underflow in the case where
3582 the first entry is removed. */
3583 if (cookie->rel->r_offset >= removed_bytes)
3584 cookie->rel->r_offset -= removed_bytes;
3585 else
3586 cookie->rel->r_offset = 0;
3587
3588 cookie->rel++;
3589 }
3590 }
3591
3592 if (removed_bytes != 0)
3593 {
3594 /* Adjust any remaining relocs (shouldn't be any). */
3595 for (; cookie->rel < cookie->relend; cookie->rel++)
3596 {
3597 if (cookie->rel->r_offset >= removed_bytes)
3598 cookie->rel->r_offset -= removed_bytes;
3599 else
3600 cookie->rel->r_offset = 0;
3601 }
3602
3603 /* Clear the removed bytes. */
a3ef2d63 3604 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3605
3606 pin_contents (sec, contents);
3607 pin_internal_relocs (sec, cookie->rels);
3608
eea6121a 3609 /* Shrink size. */
a3ef2d63
BW
3610 if (sec->rawsize == 0)
3611 sec->rawsize = sec->size;
3612 sec->size -= removed_bytes;
b536dc1e
BW
3613
3614 if (xtensa_is_littable_section (sec))
3615 {
f0e6fdb2
BW
3616 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3617 if (sgotloc)
3618 sgotloc->size -= removed_bytes;
b536dc1e 3619 }
e0001a05
NC
3620 }
3621 else
3622 {
3623 release_contents (sec, contents);
3624 release_internal_relocs (sec, cookie->rels);
3625 }
3626
3627 return (removed_bytes != 0);
3628}
3629
3630
3631static bfd_boolean
7fa3d080
BW
3632elf_xtensa_discard_info (bfd *abfd,
3633 struct elf_reloc_cookie *cookie,
3634 struct bfd_link_info *info)
e0001a05
NC
3635{
3636 asection *sec;
3637 bfd_boolean changed = FALSE;
3638
3639 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3640 {
3641 if (xtensa_is_property_section (sec))
3642 {
3643 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3644 changed = TRUE;
3645 }
3646 }
3647
3648 return changed;
3649}
3650
3651
3652static bfd_boolean
7fa3d080 3653elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3654{
3655 return xtensa_is_property_section (sec);
3656}
3657
a77dc2cc
BW
3658
3659static unsigned int
3660elf_xtensa_action_discarded (asection *sec)
3661{
3662 if (strcmp (".xt_except_table", sec->name) == 0)
3663 return 0;
3664
3665 if (strcmp (".xt_except_desc", sec->name) == 0)
3666 return 0;
3667
3668 return _bfd_elf_default_action_discarded (sec);
3669}
3670
e0001a05
NC
3671\f
3672/* Support for core dump NOTE sections. */
3673
3674static bfd_boolean
7fa3d080 3675elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3676{
3677 int offset;
eea6121a 3678 unsigned int size;
e0001a05
NC
3679
3680 /* The size for Xtensa is variable, so don't try to recognize the format
3681 based on the size. Just assume this is GNU/Linux. */
3682
3683 /* pr_cursig */
228e534f 3684 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
e0001a05
NC
3685
3686 /* pr_pid */
228e534f 3687 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3688
3689 /* pr_reg */
3690 offset = 72;
eea6121a 3691 size = note->descsz - offset - 4;
e0001a05
NC
3692
3693 /* Make a ".reg/999" section. */
3694 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3695 size, note->descpos + offset);
e0001a05
NC
3696}
3697
3698
3699static bfd_boolean
7fa3d080 3700elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3701{
3702 switch (note->descsz)
3703 {
3704 default:
3705 return FALSE;
3706
3707 case 128: /* GNU/Linux elf_prpsinfo */
228e534f 3708 elf_tdata (abfd)->core->program
e0001a05 3709 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
228e534f 3710 elf_tdata (abfd)->core->command
e0001a05
NC
3711 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3712 }
3713
3714 /* Note that for some reason, a spurious space is tacked
3715 onto the end of the args in some (at least one anyway)
3716 implementations, so strip it off if it exists. */
3717
3718 {
228e534f 3719 char *command = elf_tdata (abfd)->core->command;
e0001a05
NC
3720 int n = strlen (command);
3721
3722 if (0 < n && command[n - 1] == ' ')
3723 command[n - 1] = '\0';
3724 }
3725
3726 return TRUE;
3727}
3728
3729\f
3730/* Generic Xtensa configurability stuff. */
3731
3732static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3733static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3734static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3735static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3736static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3737static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3738static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3739static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3740
3741static void
7fa3d080 3742init_call_opcodes (void)
e0001a05
NC
3743{
3744 if (callx0_op == XTENSA_UNDEFINED)
3745 {
3746 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3747 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3748 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3749 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3750 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3751 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3752 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3753 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3754 }
3755}
3756
3757
3758static bfd_boolean
7fa3d080 3759is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3760{
3761 init_call_opcodes ();
3762 return (opcode == callx0_op
3763 || opcode == callx4_op
3764 || opcode == callx8_op
3765 || opcode == callx12_op);
3766}
3767
3768
3769static bfd_boolean
7fa3d080 3770is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3771{
3772 init_call_opcodes ();
3773 return (opcode == call0_op
3774 || opcode == call4_op
3775 || opcode == call8_op
3776 || opcode == call12_op);
3777}
3778
3779
3780static bfd_boolean
7fa3d080 3781is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3782{
3783 init_call_opcodes ();
3784 return (opcode == call4_op
3785 || opcode == call8_op
3786 || opcode == call12_op
3787 || opcode == callx4_op
3788 || opcode == callx8_op
3789 || opcode == callx12_op);
3790}
3791
3792
28dbbc02
BW
3793static bfd_boolean
3794get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3795{
3796 unsigned dst = (unsigned) -1;
3797
3798 init_call_opcodes ();
3799 if (opcode == callx0_op)
3800 dst = 0;
3801 else if (opcode == callx4_op)
3802 dst = 4;
3803 else if (opcode == callx8_op)
3804 dst = 8;
3805 else if (opcode == callx12_op)
3806 dst = 12;
3807
3808 if (dst == (unsigned) -1)
3809 return FALSE;
3810
3811 *pdst = dst;
3812 return TRUE;
3813}
3814
3815
43cd72b9
BW
3816static xtensa_opcode
3817get_const16_opcode (void)
3818{
3819 static bfd_boolean done_lookup = FALSE;
3820 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3821 if (!done_lookup)
3822 {
3823 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3824 done_lookup = TRUE;
3825 }
3826 return const16_opcode;
3827}
3828
3829
e0001a05
NC
3830static xtensa_opcode
3831get_l32r_opcode (void)
3832{
3833 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3834 static bfd_boolean done_lookup = FALSE;
3835
3836 if (!done_lookup)
e0001a05
NC
3837 {
3838 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3839 done_lookup = TRUE;
e0001a05
NC
3840 }
3841 return l32r_opcode;
3842}
3843
3844
3845static bfd_vma
7fa3d080 3846l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3847{
3848 bfd_vma offset;
3849
3850 offset = addr - ((pc+3) & -4);
3851 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3852 offset = (signed int) offset >> 2;
3853 BFD_ASSERT ((signed int) offset >> 16 == -1);
3854 return offset;
3855}
3856
3857
e0001a05 3858static int
7fa3d080 3859get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3860{
43cd72b9
BW
3861 xtensa_isa isa = xtensa_default_isa;
3862 int last_immed, last_opnd, opi;
3863
3864 if (opcode == XTENSA_UNDEFINED)
3865 return XTENSA_UNDEFINED;
3866
3867 /* Find the last visible PC-relative immediate operand for the opcode.
3868 If there are no PC-relative immediates, then choose the last visible
3869 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3870 last_immed = XTENSA_UNDEFINED;
3871 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3872 for (opi = last_opnd - 1; opi >= 0; opi--)
3873 {
3874 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3875 continue;
3876 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3877 {
3878 last_immed = opi;
3879 break;
3880 }
3881 if (last_immed == XTENSA_UNDEFINED
3882 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3883 last_immed = opi;
3884 }
3885 if (last_immed < 0)
3886 return XTENSA_UNDEFINED;
3887
3888 /* If the operand number was specified in an old-style relocation,
3889 check for consistency with the operand computed above. */
3890 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3891 {
3892 int reloc_opnd = r_type - R_XTENSA_OP0;
3893 if (reloc_opnd != last_immed)
3894 return XTENSA_UNDEFINED;
3895 }
3896
3897 return last_immed;
3898}
3899
3900
3901int
7fa3d080 3902get_relocation_slot (int r_type)
43cd72b9
BW
3903{
3904 switch (r_type)
3905 {
3906 case R_XTENSA_OP0:
3907 case R_XTENSA_OP1:
3908 case R_XTENSA_OP2:
3909 return 0;
3910
3911 default:
3912 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3913 return r_type - R_XTENSA_SLOT0_OP;
3914 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3915 return r_type - R_XTENSA_SLOT0_ALT;
3916 break;
3917 }
3918
3919 return XTENSA_UNDEFINED;
e0001a05
NC
3920}
3921
3922
3923/* Get the opcode for a relocation. */
3924
3925static xtensa_opcode
7fa3d080
BW
3926get_relocation_opcode (bfd *abfd,
3927 asection *sec,
3928 bfd_byte *contents,
3929 Elf_Internal_Rela *irel)
e0001a05
NC
3930{
3931 static xtensa_insnbuf ibuff = NULL;
43cd72b9 3932 static xtensa_insnbuf sbuff = NULL;
e0001a05 3933 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
3934 xtensa_format fmt;
3935 int slot;
e0001a05
NC
3936
3937 if (contents == NULL)
3938 return XTENSA_UNDEFINED;
3939
43cd72b9 3940 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
3941 return XTENSA_UNDEFINED;
3942
3943 if (ibuff == NULL)
43cd72b9
BW
3944 {
3945 ibuff = xtensa_insnbuf_alloc (isa);
3946 sbuff = xtensa_insnbuf_alloc (isa);
3947 }
3948
e0001a05 3949 /* Decode the instruction. */
43cd72b9
BW
3950 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3951 sec->size - irel->r_offset);
3952 fmt = xtensa_format_decode (isa, ibuff);
3953 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3954 if (slot == XTENSA_UNDEFINED)
3955 return XTENSA_UNDEFINED;
3956 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3957 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
3958}
3959
3960
3961bfd_boolean
7fa3d080
BW
3962is_l32r_relocation (bfd *abfd,
3963 asection *sec,
3964 bfd_byte *contents,
3965 Elf_Internal_Rela *irel)
e0001a05
NC
3966{
3967 xtensa_opcode opcode;
43cd72b9 3968 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 3969 return FALSE;
43cd72b9 3970 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
3971 return (opcode == get_l32r_opcode ());
3972}
3973
e0001a05 3974
43cd72b9 3975static bfd_size_type
7fa3d080
BW
3976get_asm_simplify_size (bfd_byte *contents,
3977 bfd_size_type content_len,
3978 bfd_size_type offset)
e0001a05 3979{
43cd72b9 3980 bfd_size_type insnlen, size = 0;
e0001a05 3981
43cd72b9
BW
3982 /* Decode the size of the next two instructions. */
3983 insnlen = insn_decode_len (contents, content_len, offset);
3984 if (insnlen == 0)
3985 return 0;
e0001a05 3986
43cd72b9 3987 size += insnlen;
68ffbac6 3988
43cd72b9
BW
3989 insnlen = insn_decode_len (contents, content_len, offset + size);
3990 if (insnlen == 0)
3991 return 0;
e0001a05 3992
43cd72b9
BW
3993 size += insnlen;
3994 return size;
3995}
e0001a05 3996
43cd72b9
BW
3997
3998bfd_boolean
7fa3d080 3999is_alt_relocation (int r_type)
43cd72b9
BW
4000{
4001 return (r_type >= R_XTENSA_SLOT0_ALT
4002 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4003}
4004
4005
43cd72b9 4006bfd_boolean
7fa3d080 4007is_operand_relocation (int r_type)
e0001a05 4008{
43cd72b9
BW
4009 switch (r_type)
4010 {
4011 case R_XTENSA_OP0:
4012 case R_XTENSA_OP1:
4013 case R_XTENSA_OP2:
4014 return TRUE;
e0001a05 4015
43cd72b9
BW
4016 default:
4017 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4018 return TRUE;
4019 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4020 return TRUE;
4021 break;
4022 }
e0001a05 4023
43cd72b9 4024 return FALSE;
e0001a05
NC
4025}
4026
68ffbac6 4027
43cd72b9 4028#define MIN_INSN_LENGTH 2
e0001a05 4029
43cd72b9
BW
4030/* Return 0 if it fails to decode. */
4031
4032bfd_size_type
7fa3d080
BW
4033insn_decode_len (bfd_byte *contents,
4034 bfd_size_type content_len,
4035 bfd_size_type offset)
e0001a05 4036{
43cd72b9
BW
4037 int insn_len;
4038 xtensa_isa isa = xtensa_default_isa;
4039 xtensa_format fmt;
4040 static xtensa_insnbuf ibuff = NULL;
e0001a05 4041
43cd72b9
BW
4042 if (offset + MIN_INSN_LENGTH > content_len)
4043 return 0;
e0001a05 4044
43cd72b9
BW
4045 if (ibuff == NULL)
4046 ibuff = xtensa_insnbuf_alloc (isa);
4047 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4048 content_len - offset);
4049 fmt = xtensa_format_decode (isa, ibuff);
4050 if (fmt == XTENSA_UNDEFINED)
4051 return 0;
4052 insn_len = xtensa_format_length (isa, fmt);
4053 if (insn_len == XTENSA_UNDEFINED)
4054 return 0;
4055 return insn_len;
e0001a05
NC
4056}
4057
4058
43cd72b9
BW
4059/* Decode the opcode for a single slot instruction.
4060 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4061
43cd72b9 4062xtensa_opcode
7fa3d080
BW
4063insn_decode_opcode (bfd_byte *contents,
4064 bfd_size_type content_len,
4065 bfd_size_type offset,
4066 int slot)
e0001a05 4067{
e0001a05 4068 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4069 xtensa_format fmt;
4070 static xtensa_insnbuf insnbuf = NULL;
4071 static xtensa_insnbuf slotbuf = NULL;
4072
4073 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4074 return XTENSA_UNDEFINED;
4075
4076 if (insnbuf == NULL)
43cd72b9
BW
4077 {
4078 insnbuf = xtensa_insnbuf_alloc (isa);
4079 slotbuf = xtensa_insnbuf_alloc (isa);
4080 }
4081
4082 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4083 content_len - offset);
4084 fmt = xtensa_format_decode (isa, insnbuf);
4085 if (fmt == XTENSA_UNDEFINED)
e0001a05 4086 return XTENSA_UNDEFINED;
43cd72b9
BW
4087
4088 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4089 return XTENSA_UNDEFINED;
e0001a05 4090
43cd72b9
BW
4091 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4092 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4093}
e0001a05 4094
e0001a05 4095
43cd72b9
BW
4096/* The offset is the offset in the contents.
4097 The address is the address of that offset. */
e0001a05 4098
43cd72b9 4099static bfd_boolean
7fa3d080
BW
4100check_branch_target_aligned (bfd_byte *contents,
4101 bfd_size_type content_length,
4102 bfd_vma offset,
4103 bfd_vma address)
43cd72b9
BW
4104{
4105 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4106 if (insn_len == 0)
4107 return FALSE;
4108 return check_branch_target_aligned_address (address, insn_len);
4109}
e0001a05 4110
e0001a05 4111
43cd72b9 4112static bfd_boolean
7fa3d080
BW
4113check_loop_aligned (bfd_byte *contents,
4114 bfd_size_type content_length,
4115 bfd_vma offset,
4116 bfd_vma address)
e0001a05 4117{
43cd72b9 4118 bfd_size_type loop_len, insn_len;
64b607e6 4119 xtensa_opcode opcode;
e0001a05 4120
64b607e6
BW
4121 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4122 if (opcode == XTENSA_UNDEFINED
4123 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4124 {
4125 BFD_ASSERT (FALSE);
4126 return FALSE;
4127 }
68ffbac6 4128
43cd72b9 4129 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4130 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4131 if (loop_len == 0 || insn_len == 0)
4132 {
4133 BFD_ASSERT (FALSE);
4134 return FALSE;
4135 }
e0001a05 4136
43cd72b9
BW
4137 return check_branch_target_aligned_address (address + loop_len, insn_len);
4138}
e0001a05 4139
e0001a05
NC
4140
4141static bfd_boolean
7fa3d080 4142check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4143{
43cd72b9
BW
4144 if (len == 8)
4145 return (addr % 8 == 0);
4146 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4147}
4148
43cd72b9
BW
4149\f
4150/* Instruction widening and narrowing. */
e0001a05 4151
7fa3d080
BW
4152/* When FLIX is available we need to access certain instructions only
4153 when they are 16-bit or 24-bit instructions. This table caches
4154 information about such instructions by walking through all the
4155 opcodes and finding the smallest single-slot format into which each
4156 can be encoded. */
4157
4158static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4159
4160
7fa3d080
BW
4161static void
4162init_op_single_format_table (void)
e0001a05 4163{
7fa3d080
BW
4164 xtensa_isa isa = xtensa_default_isa;
4165 xtensa_insnbuf ibuf;
4166 xtensa_opcode opcode;
4167 xtensa_format fmt;
4168 int num_opcodes;
4169
4170 if (op_single_fmt_table)
4171 return;
4172
4173 ibuf = xtensa_insnbuf_alloc (isa);
4174 num_opcodes = xtensa_isa_num_opcodes (isa);
4175
4176 op_single_fmt_table = (xtensa_format *)
4177 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4178 for (opcode = 0; opcode < num_opcodes; opcode++)
4179 {
4180 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4181 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4182 {
4183 if (xtensa_format_num_slots (isa, fmt) == 1
4184 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4185 {
4186 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4187 int fmt_length = xtensa_format_length (isa, fmt);
4188 if (old_fmt == XTENSA_UNDEFINED
4189 || fmt_length < xtensa_format_length (isa, old_fmt))
4190 op_single_fmt_table[opcode] = fmt;
4191 }
4192 }
4193 }
4194 xtensa_insnbuf_free (isa, ibuf);
4195}
4196
4197
4198static xtensa_format
4199get_single_format (xtensa_opcode opcode)
4200{
4201 init_op_single_format_table ();
4202 return op_single_fmt_table[opcode];
4203}
e0001a05 4204
e0001a05 4205
43cd72b9
BW
4206/* For the set of narrowable instructions we do NOT include the
4207 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4208 involved during linker relaxation that may require these to
4209 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4210 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4211
7fa3d080
BW
4212struct string_pair
4213{
4214 const char *wide;
4215 const char *narrow;
4216};
4217
43cd72b9 4218struct string_pair narrowable[] =
e0001a05 4219{
43cd72b9
BW
4220 { "add", "add.n" },
4221 { "addi", "addi.n" },
4222 { "addmi", "addi.n" },
4223 { "l32i", "l32i.n" },
4224 { "movi", "movi.n" },
4225 { "ret", "ret.n" },
4226 { "retw", "retw.n" },
4227 { "s32i", "s32i.n" },
4228 { "or", "mov.n" } /* special case only when op1 == op2 */
4229};
e0001a05 4230
43cd72b9 4231struct string_pair widenable[] =
e0001a05 4232{
43cd72b9
BW
4233 { "add", "add.n" },
4234 { "addi", "addi.n" },
4235 { "addmi", "addi.n" },
4236 { "beqz", "beqz.n" },
4237 { "bnez", "bnez.n" },
4238 { "l32i", "l32i.n" },
4239 { "movi", "movi.n" },
4240 { "ret", "ret.n" },
4241 { "retw", "retw.n" },
4242 { "s32i", "s32i.n" },
4243 { "or", "mov.n" } /* special case only when op1 == op2 */
4244};
e0001a05
NC
4245
4246
64b607e6
BW
4247/* Check if an instruction can be "narrowed", i.e., changed from a standard
4248 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4249 return the instruction buffer holding the narrow instruction. Otherwise,
4250 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4251 but require some special case operand checks in some cases. */
4252
64b607e6
BW
4253static xtensa_insnbuf
4254can_narrow_instruction (xtensa_insnbuf slotbuf,
4255 xtensa_format fmt,
4256 xtensa_opcode opcode)
e0001a05 4257{
43cd72b9 4258 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4259 xtensa_format o_fmt;
4260 unsigned opi;
e0001a05 4261
43cd72b9
BW
4262 static xtensa_insnbuf o_insnbuf = NULL;
4263 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4264
64b607e6 4265 if (o_insnbuf == NULL)
43cd72b9 4266 {
43cd72b9
BW
4267 o_insnbuf = xtensa_insnbuf_alloc (isa);
4268 o_slotbuf = xtensa_insnbuf_alloc (isa);
4269 }
e0001a05 4270
64b607e6 4271 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4272 {
4273 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4274
43cd72b9
BW
4275 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4276 {
4277 uint32 value, newval;
4278 int i, operand_count, o_operand_count;
4279 xtensa_opcode o_opcode;
e0001a05 4280
43cd72b9
BW
4281 /* Address does not matter in this case. We might need to
4282 fix it to handle branches/jumps. */
4283 bfd_vma self_address = 0;
e0001a05 4284
43cd72b9
BW
4285 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4286 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4287 return 0;
43cd72b9
BW
4288 o_fmt = get_single_format (o_opcode);
4289 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4290 return 0;
e0001a05 4291
43cd72b9
BW
4292 if (xtensa_format_length (isa, fmt) != 3
4293 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4294 return 0;
e0001a05 4295
43cd72b9
BW
4296 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4297 operand_count = xtensa_opcode_num_operands (isa, opcode);
4298 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4299
43cd72b9 4300 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4301 return 0;
e0001a05 4302
43cd72b9
BW
4303 if (!is_or)
4304 {
4305 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4306 return 0;
43cd72b9
BW
4307 }
4308 else
4309 {
4310 uint32 rawval0, rawval1, rawval2;
e0001a05 4311
64b607e6
BW
4312 if (o_operand_count + 1 != operand_count
4313 || xtensa_operand_get_field (isa, opcode, 0,
4314 fmt, 0, slotbuf, &rawval0) != 0
4315 || xtensa_operand_get_field (isa, opcode, 1,
4316 fmt, 0, slotbuf, &rawval1) != 0
4317 || xtensa_operand_get_field (isa, opcode, 2,
4318 fmt, 0, slotbuf, &rawval2) != 0
4319 || rawval1 != rawval2
4320 || rawval0 == rawval1 /* it is a nop */)
4321 return 0;
43cd72b9 4322 }
e0001a05 4323
43cd72b9
BW
4324 for (i = 0; i < o_operand_count; ++i)
4325 {
4326 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4327 slotbuf, &value)
4328 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4329 return 0;
e0001a05 4330
43cd72b9
BW
4331 /* PC-relative branches need adjustment, but
4332 the PC-rel operand will always have a relocation. */
4333 newval = value;
4334 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4335 self_address)
4336 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4337 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4338 o_slotbuf, newval))
64b607e6 4339 return 0;
43cd72b9 4340 }
e0001a05 4341
64b607e6
BW
4342 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4343 return 0;
e0001a05 4344
64b607e6 4345 return o_insnbuf;
43cd72b9
BW
4346 }
4347 }
64b607e6 4348 return 0;
43cd72b9 4349}
e0001a05 4350
e0001a05 4351
64b607e6
BW
4352/* Attempt to narrow an instruction. If the narrowing is valid, perform
4353 the action in-place directly into the contents and return TRUE. Otherwise,
4354 the return value is FALSE and the contents are not modified. */
e0001a05 4355
43cd72b9 4356static bfd_boolean
64b607e6
BW
4357narrow_instruction (bfd_byte *contents,
4358 bfd_size_type content_length,
4359 bfd_size_type offset)
e0001a05 4360{
43cd72b9 4361 xtensa_opcode opcode;
64b607e6 4362 bfd_size_type insn_len;
43cd72b9 4363 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4364 xtensa_format fmt;
4365 xtensa_insnbuf o_insnbuf;
e0001a05 4366
43cd72b9
BW
4367 static xtensa_insnbuf insnbuf = NULL;
4368 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4369
43cd72b9
BW
4370 if (insnbuf == NULL)
4371 {
4372 insnbuf = xtensa_insnbuf_alloc (isa);
4373 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4374 }
e0001a05 4375
43cd72b9 4376 BFD_ASSERT (offset < content_length);
2c8c90bc 4377
43cd72b9 4378 if (content_length < 2)
e0001a05
NC
4379 return FALSE;
4380
64b607e6 4381 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4382 These have all been specified in the assembler aleady. */
4383 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4384 content_length - offset);
4385 fmt = xtensa_format_decode (isa, insnbuf);
4386 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4387 return FALSE;
4388
43cd72b9 4389 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4390 return FALSE;
4391
43cd72b9
BW
4392 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4393 if (opcode == XTENSA_UNDEFINED)
e0001a05 4394 return FALSE;
43cd72b9
BW
4395 insn_len = xtensa_format_length (isa, fmt);
4396 if (insn_len > content_length)
4397 return FALSE;
4398
64b607e6
BW
4399 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4400 if (o_insnbuf)
4401 {
4402 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4403 content_length - offset);
4404 return TRUE;
4405 }
4406
4407 return FALSE;
4408}
4409
4410
4411/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4412 "density" instruction to a standard 3-byte instruction. If it is valid,
4413 return the instruction buffer holding the wide instruction. Otherwise,
4414 return 0. The set of valid widenings are specified by a string table
4415 but require some special case operand checks in some cases. */
4416
4417static xtensa_insnbuf
4418can_widen_instruction (xtensa_insnbuf slotbuf,
4419 xtensa_format fmt,
4420 xtensa_opcode opcode)
4421{
4422 xtensa_isa isa = xtensa_default_isa;
4423 xtensa_format o_fmt;
4424 unsigned opi;
4425
4426 static xtensa_insnbuf o_insnbuf = NULL;
4427 static xtensa_insnbuf o_slotbuf = NULL;
4428
4429 if (o_insnbuf == NULL)
4430 {
4431 o_insnbuf = xtensa_insnbuf_alloc (isa);
4432 o_slotbuf = xtensa_insnbuf_alloc (isa);
4433 }
4434
4435 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4436 {
43cd72b9
BW
4437 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4438 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4439 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4440
43cd72b9
BW
4441 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4442 {
4443 uint32 value, newval;
4444 int i, operand_count, o_operand_count, check_operand_count;
4445 xtensa_opcode o_opcode;
e0001a05 4446
43cd72b9
BW
4447 /* Address does not matter in this case. We might need to fix it
4448 to handle branches/jumps. */
4449 bfd_vma self_address = 0;
e0001a05 4450
43cd72b9
BW
4451 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4452 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4453 return 0;
43cd72b9
BW
4454 o_fmt = get_single_format (o_opcode);
4455 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4456 return 0;
e0001a05 4457
43cd72b9
BW
4458 if (xtensa_format_length (isa, fmt) != 2
4459 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4460 return 0;
e0001a05 4461
43cd72b9
BW
4462 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4463 operand_count = xtensa_opcode_num_operands (isa, opcode);
4464 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4465 check_operand_count = o_operand_count;
e0001a05 4466
43cd72b9 4467 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4468 return 0;
e0001a05 4469
43cd72b9
BW
4470 if (!is_or)
4471 {
4472 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4473 return 0;
43cd72b9
BW
4474 }
4475 else
4476 {
4477 uint32 rawval0, rawval1;
4478
64b607e6
BW
4479 if (o_operand_count != operand_count + 1
4480 || xtensa_operand_get_field (isa, opcode, 0,
4481 fmt, 0, slotbuf, &rawval0) != 0
4482 || xtensa_operand_get_field (isa, opcode, 1,
4483 fmt, 0, slotbuf, &rawval1) != 0
4484 || rawval0 == rawval1 /* it is a nop */)
4485 return 0;
43cd72b9
BW
4486 }
4487 if (is_branch)
4488 check_operand_count--;
4489
64b607e6 4490 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4491 {
4492 int new_i = i;
4493 if (is_or && i == o_operand_count - 1)
4494 new_i = i - 1;
4495 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4496 slotbuf, &value)
4497 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4498 return 0;
43cd72b9
BW
4499
4500 /* PC-relative branches need adjustment, but
4501 the PC-rel operand will always have a relocation. */
4502 newval = value;
4503 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4504 self_address)
4505 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4506 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4507 o_slotbuf, newval))
64b607e6 4508 return 0;
43cd72b9
BW
4509 }
4510
4511 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4512 return 0;
43cd72b9 4513
64b607e6 4514 return o_insnbuf;
43cd72b9
BW
4515 }
4516 }
64b607e6
BW
4517 return 0;
4518}
4519
68ffbac6 4520
64b607e6
BW
4521/* Attempt to widen an instruction. If the widening is valid, perform
4522 the action in-place directly into the contents and return TRUE. Otherwise,
4523 the return value is FALSE and the contents are not modified. */
4524
4525static bfd_boolean
4526widen_instruction (bfd_byte *contents,
4527 bfd_size_type content_length,
4528 bfd_size_type offset)
4529{
4530 xtensa_opcode opcode;
4531 bfd_size_type insn_len;
4532 xtensa_isa isa = xtensa_default_isa;
4533 xtensa_format fmt;
4534 xtensa_insnbuf o_insnbuf;
4535
4536 static xtensa_insnbuf insnbuf = NULL;
4537 static xtensa_insnbuf slotbuf = NULL;
4538
4539 if (insnbuf == NULL)
4540 {
4541 insnbuf = xtensa_insnbuf_alloc (isa);
4542 slotbuf = xtensa_insnbuf_alloc (isa);
4543 }
4544
4545 BFD_ASSERT (offset < content_length);
4546
4547 if (content_length < 2)
4548 return FALSE;
4549
4550 /* We will hand-code a few of these for a little while.
4551 These have all been specified in the assembler aleady. */
4552 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4553 content_length - offset);
4554 fmt = xtensa_format_decode (isa, insnbuf);
4555 if (xtensa_format_num_slots (isa, fmt) != 1)
4556 return FALSE;
4557
4558 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4559 return FALSE;
4560
4561 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4562 if (opcode == XTENSA_UNDEFINED)
4563 return FALSE;
4564 insn_len = xtensa_format_length (isa, fmt);
4565 if (insn_len > content_length)
4566 return FALSE;
4567
4568 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4569 if (o_insnbuf)
4570 {
4571 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4572 content_length - offset);
4573 return TRUE;
4574 }
43cd72b9 4575 return FALSE;
e0001a05
NC
4576}
4577
43cd72b9
BW
4578\f
4579/* Code for transforming CALLs at link-time. */
e0001a05 4580
43cd72b9 4581static bfd_reloc_status_type
7fa3d080
BW
4582elf_xtensa_do_asm_simplify (bfd_byte *contents,
4583 bfd_vma address,
4584 bfd_vma content_length,
4585 char **error_message)
e0001a05 4586{
43cd72b9
BW
4587 static xtensa_insnbuf insnbuf = NULL;
4588 static xtensa_insnbuf slotbuf = NULL;
4589 xtensa_format core_format = XTENSA_UNDEFINED;
4590 xtensa_opcode opcode;
4591 xtensa_opcode direct_call_opcode;
4592 xtensa_isa isa = xtensa_default_isa;
4593 bfd_byte *chbuf = contents + address;
4594 int opn;
e0001a05 4595
43cd72b9 4596 if (insnbuf == NULL)
e0001a05 4597 {
43cd72b9
BW
4598 insnbuf = xtensa_insnbuf_alloc (isa);
4599 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4600 }
e0001a05 4601
43cd72b9
BW
4602 if (content_length < address)
4603 {
38f14ab8 4604 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
43cd72b9
BW
4605 return bfd_reloc_other;
4606 }
e0001a05 4607
43cd72b9
BW
4608 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4609 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4610 if (direct_call_opcode == XTENSA_UNDEFINED)
4611 {
38f14ab8 4612 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
43cd72b9
BW
4613 return bfd_reloc_other;
4614 }
68ffbac6 4615
43cd72b9
BW
4616 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4617 core_format = xtensa_format_lookup (isa, "x24");
4618 opcode = xtensa_opcode_lookup (isa, "or");
4619 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
68ffbac6 4620 for (opn = 0; opn < 3; opn++)
43cd72b9
BW
4621 {
4622 uint32 regno = 1;
4623 xtensa_operand_encode (isa, opcode, opn, &regno);
4624 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4625 slotbuf, regno);
4626 }
4627 xtensa_format_encode (isa, core_format, insnbuf);
4628 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4629 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4630
43cd72b9
BW
4631 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4632 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4633 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4634
43cd72b9
BW
4635 xtensa_format_encode (isa, core_format, insnbuf);
4636 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4637 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4638 content_length - address - 3);
e0001a05 4639
43cd72b9
BW
4640 return bfd_reloc_ok;
4641}
e0001a05 4642
e0001a05 4643
43cd72b9 4644static bfd_reloc_status_type
7fa3d080
BW
4645contract_asm_expansion (bfd_byte *contents,
4646 bfd_vma content_length,
4647 Elf_Internal_Rela *irel,
4648 char **error_message)
43cd72b9
BW
4649{
4650 bfd_reloc_status_type retval =
4651 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4652 error_message);
e0001a05 4653
43cd72b9
BW
4654 if (retval != bfd_reloc_ok)
4655 return bfd_reloc_dangerous;
e0001a05 4656
43cd72b9
BW
4657 /* Update the irel->r_offset field so that the right immediate and
4658 the right instruction are modified during the relocation. */
4659 irel->r_offset += 3;
4660 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4661 return bfd_reloc_ok;
4662}
e0001a05 4663
e0001a05 4664
43cd72b9 4665static xtensa_opcode
7fa3d080 4666swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4667{
43cd72b9 4668 init_call_opcodes ();
e0001a05 4669
43cd72b9
BW
4670 if (opcode == callx0_op) return call0_op;
4671 if (opcode == callx4_op) return call4_op;
4672 if (opcode == callx8_op) return call8_op;
4673 if (opcode == callx12_op) return call12_op;
e0001a05 4674
43cd72b9
BW
4675 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4676 return XTENSA_UNDEFINED;
4677}
e0001a05 4678
e0001a05 4679
43cd72b9
BW
4680/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4681 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4682 If not, return XTENSA_UNDEFINED. */
e0001a05 4683
43cd72b9
BW
4684#define L32R_TARGET_REG_OPERAND 0
4685#define CONST16_TARGET_REG_OPERAND 0
4686#define CALLN_SOURCE_OPERAND 0
e0001a05 4687
68ffbac6 4688static xtensa_opcode
7fa3d080 4689get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4690{
43cd72b9
BW
4691 static xtensa_insnbuf insnbuf = NULL;
4692 static xtensa_insnbuf slotbuf = NULL;
4693 xtensa_format fmt;
4694 xtensa_opcode opcode;
4695 xtensa_isa isa = xtensa_default_isa;
4696 uint32 regno, const16_regno, call_regno;
4697 int offset = 0;
e0001a05 4698
43cd72b9 4699 if (insnbuf == NULL)
e0001a05 4700 {
43cd72b9
BW
4701 insnbuf = xtensa_insnbuf_alloc (isa);
4702 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4703 }
43cd72b9
BW
4704
4705 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4706 fmt = xtensa_format_decode (isa, insnbuf);
4707 if (fmt == XTENSA_UNDEFINED
4708 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4709 return XTENSA_UNDEFINED;
4710
4711 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4712 if (opcode == XTENSA_UNDEFINED)
4713 return XTENSA_UNDEFINED;
4714
4715 if (opcode == get_l32r_opcode ())
e0001a05 4716 {
43cd72b9
BW
4717 if (p_uses_l32r)
4718 *p_uses_l32r = TRUE;
4719 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4720 fmt, 0, slotbuf, &regno)
4721 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4722 &regno))
4723 return XTENSA_UNDEFINED;
e0001a05 4724 }
43cd72b9 4725 else if (opcode == get_const16_opcode ())
e0001a05 4726 {
43cd72b9
BW
4727 if (p_uses_l32r)
4728 *p_uses_l32r = FALSE;
4729 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4730 fmt, 0, slotbuf, &regno)
4731 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4732 &regno))
4733 return XTENSA_UNDEFINED;
4734
4735 /* Check that the next instruction is also CONST16. */
4736 offset += xtensa_format_length (isa, fmt);
4737 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4738 fmt = xtensa_format_decode (isa, insnbuf);
4739 if (fmt == XTENSA_UNDEFINED
4740 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4741 return XTENSA_UNDEFINED;
4742 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4743 if (opcode != get_const16_opcode ())
4744 return XTENSA_UNDEFINED;
4745
4746 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4747 fmt, 0, slotbuf, &const16_regno)
4748 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4749 &const16_regno)
4750 || const16_regno != regno)
4751 return XTENSA_UNDEFINED;
e0001a05 4752 }
43cd72b9
BW
4753 else
4754 return XTENSA_UNDEFINED;
e0001a05 4755
43cd72b9
BW
4756 /* Next instruction should be an CALLXn with operand 0 == regno. */
4757 offset += xtensa_format_length (isa, fmt);
4758 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4759 fmt = xtensa_format_decode (isa, insnbuf);
4760 if (fmt == XTENSA_UNDEFINED
4761 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4762 return XTENSA_UNDEFINED;
4763 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
68ffbac6 4764 if (opcode == XTENSA_UNDEFINED
43cd72b9
BW
4765 || !is_indirect_call_opcode (opcode))
4766 return XTENSA_UNDEFINED;
e0001a05 4767
43cd72b9
BW
4768 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4769 fmt, 0, slotbuf, &call_regno)
4770 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4771 &call_regno))
4772 return XTENSA_UNDEFINED;
e0001a05 4773
43cd72b9
BW
4774 if (call_regno != regno)
4775 return XTENSA_UNDEFINED;
e0001a05 4776
43cd72b9
BW
4777 return opcode;
4778}
e0001a05 4779
43cd72b9
BW
4780\f
4781/* Data structures used during relaxation. */
e0001a05 4782
43cd72b9 4783/* r_reloc: relocation values. */
e0001a05 4784
43cd72b9
BW
4785/* Through the relaxation process, we need to keep track of the values
4786 that will result from evaluating relocations. The standard ELF
4787 relocation structure is not sufficient for this purpose because we're
4788 operating on multiple input files at once, so we need to know which
4789 input file a relocation refers to. The r_reloc structure thus
4790 records both the input file (bfd) and ELF relocation.
e0001a05 4791
43cd72b9
BW
4792 For efficiency, an r_reloc also contains a "target_offset" field to
4793 cache the target-section-relative offset value that is represented by
4794 the relocation.
68ffbac6 4795
43cd72b9
BW
4796 The r_reloc also contains a virtual offset that allows multiple
4797 inserted literals to be placed at the same "address" with
4798 different offsets. */
e0001a05 4799
43cd72b9 4800typedef struct r_reloc_struct r_reloc;
e0001a05 4801
43cd72b9 4802struct r_reloc_struct
e0001a05 4803{
43cd72b9
BW
4804 bfd *abfd;
4805 Elf_Internal_Rela rela;
e0001a05 4806 bfd_vma target_offset;
43cd72b9 4807 bfd_vma virtual_offset;
e0001a05
NC
4808};
4809
e0001a05 4810
43cd72b9
BW
4811/* The r_reloc structure is included by value in literal_value, but not
4812 every literal_value has an associated relocation -- some are simple
4813 constants. In such cases, we set all the fields in the r_reloc
4814 struct to zero. The r_reloc_is_const function should be used to
4815 detect this case. */
e0001a05 4816
43cd72b9 4817static bfd_boolean
7fa3d080 4818r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4819{
43cd72b9 4820 return (r_rel->abfd == NULL);
e0001a05
NC
4821}
4822
4823
43cd72b9 4824static bfd_vma
7fa3d080 4825r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4826{
43cd72b9
BW
4827 bfd_vma target_offset;
4828 unsigned long r_symndx;
e0001a05 4829
43cd72b9
BW
4830 BFD_ASSERT (!r_reloc_is_const (r_rel));
4831 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4832 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4833 return (target_offset + r_rel->rela.r_addend);
4834}
e0001a05 4835
e0001a05 4836
43cd72b9 4837static struct elf_link_hash_entry *
7fa3d080 4838r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4839{
43cd72b9
BW
4840 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4841 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4842}
e0001a05 4843
43cd72b9
BW
4844
4845static asection *
7fa3d080 4846r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4847{
4848 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4849 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4850}
e0001a05
NC
4851
4852
4853static bfd_boolean
7fa3d080 4854r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4855{
43cd72b9
BW
4856 asection *sec;
4857 if (r_rel == NULL)
e0001a05 4858 return FALSE;
e0001a05 4859
43cd72b9
BW
4860 sec = r_reloc_get_section (r_rel);
4861 if (sec == bfd_abs_section_ptr
4862 || sec == bfd_com_section_ptr
4863 || sec == bfd_und_section_ptr)
4864 return FALSE;
4865 return TRUE;
e0001a05
NC
4866}
4867
4868
7fa3d080
BW
4869static void
4870r_reloc_init (r_reloc *r_rel,
4871 bfd *abfd,
4872 Elf_Internal_Rela *irel,
4873 bfd_byte *contents,
4874 bfd_size_type content_length)
4875{
4876 int r_type;
4877 reloc_howto_type *howto;
4878
4879 if (irel)
4880 {
4881 r_rel->rela = *irel;
4882 r_rel->abfd = abfd;
4883 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4884 r_rel->virtual_offset = 0;
4885 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4886 howto = &elf_howto_table[r_type];
4887 if (howto->partial_inplace)
4888 {
4889 bfd_vma inplace_val;
4890 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4891
4892 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4893 r_rel->target_offset += inplace_val;
4894 }
4895 }
4896 else
4897 memset (r_rel, 0, sizeof (r_reloc));
4898}
4899
4900
43cd72b9
BW
4901#if DEBUG
4902
e0001a05 4903static void
7fa3d080 4904print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 4905{
43cd72b9
BW
4906 if (r_reloc_is_defined (r_rel))
4907 {
4908 asection *sec = r_reloc_get_section (r_rel);
4909 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4910 }
4911 else if (r_reloc_get_hash_entry (r_rel))
4912 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4913 else
4914 fprintf (fp, " ?? + ");
e0001a05 4915
43cd72b9
BW
4916 fprintf_vma (fp, r_rel->target_offset);
4917 if (r_rel->virtual_offset)
4918 {
4919 fprintf (fp, " + ");
4920 fprintf_vma (fp, r_rel->virtual_offset);
4921 }
68ffbac6 4922
43cd72b9
BW
4923 fprintf (fp, ")");
4924}
e0001a05 4925
43cd72b9 4926#endif /* DEBUG */
e0001a05 4927
43cd72b9
BW
4928\f
4929/* source_reloc: relocations that reference literals. */
e0001a05 4930
43cd72b9
BW
4931/* To determine whether literals can be coalesced, we need to first
4932 record all the relocations that reference the literals. The
4933 source_reloc structure below is used for this purpose. The
4934 source_reloc entries are kept in a per-literal-section array, sorted
4935 by offset within the literal section (i.e., target offset).
e0001a05 4936
43cd72b9
BW
4937 The source_sec and r_rel.rela.r_offset fields identify the source of
4938 the relocation. The r_rel field records the relocation value, i.e.,
4939 the offset of the literal being referenced. The opnd field is needed
4940 to determine the range of the immediate field to which the relocation
4941 applies, so we can determine whether another literal with the same
4942 value is within range. The is_null field is true when the relocation
4943 is being removed (e.g., when an L32R is being removed due to a CALLX
4944 that is converted to a direct CALL). */
e0001a05 4945
43cd72b9
BW
4946typedef struct source_reloc_struct source_reloc;
4947
4948struct source_reloc_struct
e0001a05 4949{
43cd72b9
BW
4950 asection *source_sec;
4951 r_reloc r_rel;
4952 xtensa_opcode opcode;
4953 int opnd;
4954 bfd_boolean is_null;
4955 bfd_boolean is_abs_literal;
4956};
e0001a05 4957
e0001a05 4958
e0001a05 4959static void
7fa3d080
BW
4960init_source_reloc (source_reloc *reloc,
4961 asection *source_sec,
4962 const r_reloc *r_rel,
4963 xtensa_opcode opcode,
4964 int opnd,
4965 bfd_boolean is_abs_literal)
e0001a05 4966{
43cd72b9
BW
4967 reloc->source_sec = source_sec;
4968 reloc->r_rel = *r_rel;
4969 reloc->opcode = opcode;
4970 reloc->opnd = opnd;
4971 reloc->is_null = FALSE;
4972 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
4973}
4974
e0001a05 4975
43cd72b9
BW
4976/* Find the source_reloc for a particular source offset and relocation
4977 type. Note that the array is sorted by _target_ offset, so this is
4978 just a linear search. */
e0001a05 4979
43cd72b9 4980static source_reloc *
7fa3d080
BW
4981find_source_reloc (source_reloc *src_relocs,
4982 int src_count,
4983 asection *sec,
4984 Elf_Internal_Rela *irel)
e0001a05 4985{
43cd72b9 4986 int i;
e0001a05 4987
43cd72b9
BW
4988 for (i = 0; i < src_count; i++)
4989 {
4990 if (src_relocs[i].source_sec == sec
4991 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4992 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4993 == ELF32_R_TYPE (irel->r_info)))
4994 return &src_relocs[i];
4995 }
e0001a05 4996
43cd72b9 4997 return NULL;
e0001a05
NC
4998}
4999
5000
43cd72b9 5001static int
7fa3d080 5002source_reloc_compare (const void *ap, const void *bp)
e0001a05 5003{
43cd72b9
BW
5004 const source_reloc *a = (const source_reloc *) ap;
5005 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5006
43cd72b9
BW
5007 if (a->r_rel.target_offset != b->r_rel.target_offset)
5008 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5009
43cd72b9
BW
5010 /* We don't need to sort on these criteria for correctness,
5011 but enforcing a more strict ordering prevents unstable qsort
5012 from behaving differently with different implementations.
5013 Without the code below we get correct but different results
5014 on Solaris 2.7 and 2.8. We would like to always produce the
5015 same results no matter the host. */
5016
5017 if ((!a->is_null) - (!b->is_null))
5018 return ((!a->is_null) - (!b->is_null));
5019 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5020}
5021
43cd72b9
BW
5022\f
5023/* Literal values and value hash tables. */
e0001a05 5024
43cd72b9
BW
5025/* Literals with the same value can be coalesced. The literal_value
5026 structure records the value of a literal: the "r_rel" field holds the
5027 information from the relocation on the literal (if there is one) and
5028 the "value" field holds the contents of the literal word itself.
e0001a05 5029
43cd72b9
BW
5030 The value_map structure records a literal value along with the
5031 location of a literal holding that value. The value_map hash table
5032 is indexed by the literal value, so that we can quickly check if a
5033 particular literal value has been seen before and is thus a candidate
5034 for coalescing. */
e0001a05 5035
43cd72b9
BW
5036typedef struct literal_value_struct literal_value;
5037typedef struct value_map_struct value_map;
5038typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5039
43cd72b9 5040struct literal_value_struct
e0001a05 5041{
68ffbac6 5042 r_reloc r_rel;
43cd72b9
BW
5043 unsigned long value;
5044 bfd_boolean is_abs_literal;
5045};
5046
5047struct value_map_struct
5048{
5049 literal_value val; /* The literal value. */
5050 r_reloc loc; /* Location of the literal. */
5051 value_map *next;
5052};
5053
5054struct value_map_hash_table_struct
5055{
5056 unsigned bucket_count;
5057 value_map **buckets;
5058 unsigned count;
5059 bfd_boolean has_last_loc;
5060 r_reloc last_loc;
5061};
5062
5063
e0001a05 5064static void
7fa3d080
BW
5065init_literal_value (literal_value *lit,
5066 const r_reloc *r_rel,
5067 unsigned long value,
5068 bfd_boolean is_abs_literal)
e0001a05 5069{
43cd72b9
BW
5070 lit->r_rel = *r_rel;
5071 lit->value = value;
5072 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5073}
5074
5075
43cd72b9 5076static bfd_boolean
7fa3d080
BW
5077literal_value_equal (const literal_value *src1,
5078 const literal_value *src2,
5079 bfd_boolean final_static_link)
e0001a05 5080{
43cd72b9 5081 struct elf_link_hash_entry *h1, *h2;
e0001a05 5082
68ffbac6 5083 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
43cd72b9 5084 return FALSE;
e0001a05 5085
43cd72b9
BW
5086 if (r_reloc_is_const (&src1->r_rel))
5087 return (src1->value == src2->value);
e0001a05 5088
43cd72b9
BW
5089 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5090 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5091 return FALSE;
e0001a05 5092
43cd72b9
BW
5093 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5094 return FALSE;
68ffbac6 5095
43cd72b9
BW
5096 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5097 return FALSE;
5098
5099 if (src1->value != src2->value)
5100 return FALSE;
68ffbac6 5101
43cd72b9
BW
5102 /* Now check for the same section (if defined) or the same elf_hash
5103 (if undefined or weak). */
5104 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5105 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5106 if (r_reloc_is_defined (&src1->r_rel)
5107 && (final_static_link
5108 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5109 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5110 {
5111 if (r_reloc_get_section (&src1->r_rel)
5112 != r_reloc_get_section (&src2->r_rel))
5113 return FALSE;
5114 }
5115 else
5116 {
5117 /* Require that the hash entries (i.e., symbols) be identical. */
5118 if (h1 != h2 || h1 == 0)
5119 return FALSE;
5120 }
5121
5122 if (src1->is_abs_literal != src2->is_abs_literal)
5123 return FALSE;
5124
5125 return TRUE;
e0001a05
NC
5126}
5127
e0001a05 5128
43cd72b9
BW
5129/* Must be power of 2. */
5130#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5131
43cd72b9 5132static value_map_hash_table *
7fa3d080 5133value_map_hash_table_init (void)
43cd72b9
BW
5134{
5135 value_map_hash_table *values;
e0001a05 5136
43cd72b9
BW
5137 values = (value_map_hash_table *)
5138 bfd_zmalloc (sizeof (value_map_hash_table));
5139 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5140 values->count = 0;
5141 values->buckets = (value_map **)
5142 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
68ffbac6 5143 if (values->buckets == NULL)
43cd72b9
BW
5144 {
5145 free (values);
5146 return NULL;
5147 }
5148 values->has_last_loc = FALSE;
5149
5150 return values;
5151}
5152
5153
5154static void
7fa3d080 5155value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5156{
43cd72b9
BW
5157 free (table->buckets);
5158 free (table);
5159}
5160
5161
5162static unsigned
7fa3d080 5163hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5164{
5165 return (val >> 2) + (val >> 10);
5166}
5167
5168
5169static unsigned
7fa3d080 5170literal_value_hash (const literal_value *src)
43cd72b9
BW
5171{
5172 unsigned hash_val;
e0001a05 5173
43cd72b9
BW
5174 hash_val = hash_bfd_vma (src->value);
5175 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5176 {
43cd72b9
BW
5177 void *sec_or_hash;
5178
5179 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5180 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5181 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
68ffbac6 5182
43cd72b9
BW
5183 /* Now check for the same section and the same elf_hash. */
5184 if (r_reloc_is_defined (&src->r_rel))
5185 sec_or_hash = r_reloc_get_section (&src->r_rel);
5186 else
5187 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5188 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5189 }
43cd72b9
BW
5190 return hash_val;
5191}
e0001a05 5192
e0001a05 5193
43cd72b9 5194/* Check if the specified literal_value has been seen before. */
e0001a05 5195
43cd72b9 5196static value_map *
7fa3d080
BW
5197value_map_get_cached_value (value_map_hash_table *map,
5198 const literal_value *val,
5199 bfd_boolean final_static_link)
43cd72b9
BW
5200{
5201 value_map *map_e;
5202 value_map *bucket;
5203 unsigned idx;
5204
5205 idx = literal_value_hash (val);
5206 idx = idx & (map->bucket_count - 1);
5207 bucket = map->buckets[idx];
5208 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5209 {
43cd72b9
BW
5210 if (literal_value_equal (&map_e->val, val, final_static_link))
5211 return map_e;
5212 }
5213 return NULL;
5214}
e0001a05 5215
e0001a05 5216
43cd72b9
BW
5217/* Record a new literal value. It is illegal to call this if VALUE
5218 already has an entry here. */
5219
5220static value_map *
7fa3d080
BW
5221add_value_map (value_map_hash_table *map,
5222 const literal_value *val,
5223 const r_reloc *loc,
5224 bfd_boolean final_static_link)
43cd72b9
BW
5225{
5226 value_map **bucket_p;
5227 unsigned idx;
5228
5229 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5230 if (val_e == NULL)
5231 {
5232 bfd_set_error (bfd_error_no_memory);
5233 return NULL;
e0001a05
NC
5234 }
5235
43cd72b9
BW
5236 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5237 val_e->val = *val;
5238 val_e->loc = *loc;
5239
5240 idx = literal_value_hash (val);
5241 idx = idx & (map->bucket_count - 1);
5242 bucket_p = &map->buckets[idx];
5243
5244 val_e->next = *bucket_p;
5245 *bucket_p = val_e;
5246 map->count++;
5247 /* FIXME: Consider resizing the hash table if we get too many entries. */
68ffbac6 5248
43cd72b9 5249 return val_e;
e0001a05
NC
5250}
5251
43cd72b9
BW
5252\f
5253/* Lists of text actions (ta_) for narrowing, widening, longcall
5254 conversion, space fill, code & literal removal, etc. */
5255
5256/* The following text actions are generated:
5257
07d6d2b8
AM
5258 "ta_remove_insn" remove an instruction or instructions
5259 "ta_remove_longcall" convert longcall to call
43cd72b9 5260 "ta_convert_longcall" convert longcall to nop/call
07d6d2b8
AM
5261 "ta_narrow_insn" narrow a wide instruction
5262 "ta_widen" widen a narrow instruction
5263 "ta_fill" add fill or remove fill
43cd72b9
BW
5264 removed < 0 is a fill; branches to the fill address will be
5265 changed to address + fill size (e.g., address - removed)
5266 removed >= 0 branches to the fill address will stay unchanged
07d6d2b8 5267 "ta_remove_literal" remove a literal; this action is
43cd72b9 5268 indicated when a literal is removed
07d6d2b8
AM
5269 or replaced.
5270 "ta_add_literal" insert a new literal; this action is
5271 indicated when a literal has been moved.
5272 It may use a virtual_offset because
43cd72b9 5273 multiple literals can be placed at the
07d6d2b8 5274 same location.
43cd72b9
BW
5275
5276 For each of these text actions, we also record the number of bytes
5277 removed by performing the text action. In the case of a "ta_widen"
5278 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5279
5280typedef struct text_action_struct text_action;
5281typedef struct text_action_list_struct text_action_list;
5282typedef enum text_action_enum_t text_action_t;
5283
5284enum text_action_enum_t
5285{
5286 ta_none,
07d6d2b8
AM
5287 ta_remove_insn, /* removed = -size */
5288 ta_remove_longcall, /* removed = -size */
5289 ta_convert_longcall, /* removed = 0 */
5290 ta_narrow_insn, /* removed = -1 */
5291 ta_widen_insn, /* removed = +1 */
5292 ta_fill, /* removed = +size */
43cd72b9
BW
5293 ta_remove_literal,
5294 ta_add_literal
5295};
e0001a05 5296
e0001a05 5297
43cd72b9
BW
5298/* Structure for a text action record. */
5299struct text_action_struct
e0001a05 5300{
43cd72b9
BW
5301 text_action_t action;
5302 asection *sec; /* Optional */
5303 bfd_vma offset;
5304 bfd_vma virtual_offset; /* Zero except for adding literals. */
5305 int removed_bytes;
5306 literal_value value; /* Only valid when adding literals. */
43cd72b9 5307};
e0001a05 5308
071aa5c9
MF
5309struct removal_by_action_entry_struct
5310{
5311 bfd_vma offset;
5312 int removed;
5313 int eq_removed;
5314 int eq_removed_before_fill;
5315};
5316typedef struct removal_by_action_entry_struct removal_by_action_entry;
5317
5318struct removal_by_action_map_struct
5319{
5320 unsigned n_entries;
5321 removal_by_action_entry *entry;
5322};
5323typedef struct removal_by_action_map_struct removal_by_action_map;
5324
e0001a05 5325
43cd72b9
BW
5326/* List of all of the actions taken on a text section. */
5327struct text_action_list_struct
5328{
4c2af04f
MF
5329 unsigned count;
5330 splay_tree tree;
071aa5c9 5331 removal_by_action_map map;
43cd72b9 5332};
e0001a05 5333
e0001a05 5334
7fa3d080
BW
5335static text_action *
5336find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9 5337{
4c2af04f 5338 text_action a;
43cd72b9
BW
5339
5340 /* It is not necessary to fill at the end of a section. */
5341 if (sec->size == offset)
5342 return NULL;
5343
4c2af04f
MF
5344 a.offset = offset;
5345 a.action = ta_fill;
5346
5347 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5348 if (node)
5349 return (text_action *)node->value;
43cd72b9
BW
5350 return NULL;
5351}
5352
5353
5354static int
7fa3d080
BW
5355compute_removed_action_diff (const text_action *ta,
5356 asection *sec,
5357 bfd_vma offset,
5358 int removed,
5359 int removable_space)
43cd72b9
BW
5360{
5361 int new_removed;
5362 int current_removed = 0;
5363
7fa3d080 5364 if (ta)
43cd72b9
BW
5365 current_removed = ta->removed_bytes;
5366
5367 BFD_ASSERT (ta == NULL || ta->offset == offset);
5368 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5369
5370 /* It is not necessary to fill at the end of a section. Clean this up. */
5371 if (sec->size == offset)
5372 new_removed = removable_space - 0;
5373 else
5374 {
5375 int space;
5376 int added = -removed - current_removed;
5377 /* Ignore multiples of the section alignment. */
5378 added = ((1 << sec->alignment_power) - 1) & added;
5379 new_removed = (-added);
5380
5381 /* Modify for removable. */
5382 space = removable_space - new_removed;
5383 new_removed = (removable_space
5384 - (((1 << sec->alignment_power) - 1) & space));
5385 }
5386 return (new_removed - current_removed);
5387}
5388
5389
7fa3d080
BW
5390static void
5391adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5392{
5393 ta->removed_bytes += fill_diff;
5394}
5395
5396
4c2af04f
MF
5397static int
5398text_action_compare (splay_tree_key a, splay_tree_key b)
5399{
5400 text_action *pa = (text_action *)a;
5401 text_action *pb = (text_action *)b;
5402 static const int action_priority[] =
5403 {
5404 [ta_fill] = 0,
5405 [ta_none] = 1,
5406 [ta_convert_longcall] = 2,
5407 [ta_narrow_insn] = 3,
5408 [ta_remove_insn] = 4,
5409 [ta_remove_longcall] = 5,
5410 [ta_remove_literal] = 6,
5411 [ta_widen_insn] = 7,
5412 [ta_add_literal] = 8,
5413 };
5414
5415 if (pa->offset == pb->offset)
5416 {
5417 if (pa->action == pb->action)
5418 return 0;
5419 return action_priority[pa->action] - action_priority[pb->action];
5420 }
5421 else
5422 return pa->offset < pb->offset ? -1 : 1;
5423}
5424
5425static text_action *
5426action_first (text_action_list *action_list)
5427{
5428 splay_tree_node node = splay_tree_min (action_list->tree);
5429 return node ? (text_action *)node->value : NULL;
5430}
5431
5432static text_action *
5433action_next (text_action_list *action_list, text_action *action)
5434{
5435 splay_tree_node node = splay_tree_successor (action_list->tree,
5436 (splay_tree_key)action);
5437 return node ? (text_action *)node->value : NULL;
5438}
5439
43cd72b9
BW
5440/* Add a modification action to the text. For the case of adding or
5441 removing space, modify any current fill and assume that
5442 "unreachable_space" bytes can be freely contracted. Note that a
5443 negative removed value is a fill. */
5444
68ffbac6 5445static void
7fa3d080
BW
5446text_action_add (text_action_list *l,
5447 text_action_t action,
5448 asection *sec,
5449 bfd_vma offset,
5450 int removed)
43cd72b9 5451{
43cd72b9 5452 text_action *ta;
4c2af04f 5453 text_action a;
43cd72b9
BW
5454
5455 /* It is not necessary to fill at the end of a section. */
5456 if (action == ta_fill && sec->size == offset)
5457 return;
5458
5459 /* It is not necessary to fill 0 bytes. */
5460 if (action == ta_fill && removed == 0)
5461 return;
5462
4c2af04f
MF
5463 a.action = action;
5464 a.offset = offset;
5465
5466 if (action == ta_fill)
43cd72b9 5467 {
4c2af04f 5468 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
68ffbac6 5469
4c2af04f 5470 if (node)
43cd72b9 5471 {
4c2af04f
MF
5472 ta = (text_action *)node->value;
5473 ta->removed_bytes += removed;
5474 return;
43cd72b9
BW
5475 }
5476 }
4c2af04f
MF
5477 else
5478 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
43cd72b9 5479
43cd72b9
BW
5480 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5481 ta->action = action;
5482 ta->sec = sec;
5483 ta->offset = offset;
5484 ta->removed_bytes = removed;
4c2af04f
MF
5485 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5486 ++l->count;
43cd72b9
BW
5487}
5488
5489
5490static void
7fa3d080
BW
5491text_action_add_literal (text_action_list *l,
5492 text_action_t action,
5493 const r_reloc *loc,
5494 const literal_value *value,
5495 int removed)
43cd72b9 5496{
43cd72b9
BW
5497 text_action *ta;
5498 asection *sec = r_reloc_get_section (loc);
5499 bfd_vma offset = loc->target_offset;
5500 bfd_vma virtual_offset = loc->virtual_offset;
5501
5502 BFD_ASSERT (action == ta_add_literal);
5503
43cd72b9
BW
5504 /* Create a new record and fill it up. */
5505 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5506 ta->action = action;
5507 ta->sec = sec;
5508 ta->offset = offset;
5509 ta->virtual_offset = virtual_offset;
5510 ta->value = *value;
5511 ta->removed_bytes = removed;
4c2af04f
MF
5512
5513 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5514 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5515 ++l->count;
43cd72b9
BW
5516}
5517
5518
03669f1c
BW
5519/* Find the total offset adjustment for the relaxations specified by
5520 text_actions, beginning from a particular starting action. This is
5521 typically used from offset_with_removed_text to search an entire list of
5522 actions, but it may also be called directly when adjusting adjacent offsets
5523 so that each search may begin where the previous one left off. */
5524
5525static int
4c2af04f
MF
5526removed_by_actions (text_action_list *action_list,
5527 text_action **p_start_action,
03669f1c
BW
5528 bfd_vma offset,
5529 bfd_boolean before_fill)
43cd72b9
BW
5530{
5531 text_action *r;
5532 int removed = 0;
5533
03669f1c 5534 r = *p_start_action;
4c2af04f
MF
5535 if (r)
5536 {
5537 splay_tree_node node = splay_tree_lookup (action_list->tree,
5538 (splay_tree_key)r);
5539 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5540 }
5541
03669f1c 5542 while (r)
43cd72b9 5543 {
03669f1c
BW
5544 if (r->offset > offset)
5545 break;
5546
5547 if (r->offset == offset
5548 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5549 break;
5550
5551 removed += r->removed_bytes;
5552
4c2af04f 5553 r = action_next (action_list, r);
43cd72b9
BW
5554 }
5555
03669f1c
BW
5556 *p_start_action = r;
5557 return removed;
5558}
5559
5560
68ffbac6 5561static bfd_vma
03669f1c
BW
5562offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5563{
4c2af04f
MF
5564 text_action *r = action_first (action_list);
5565
5566 return offset - removed_by_actions (action_list, &r, offset, FALSE);
43cd72b9
BW
5567}
5568
5569
03e94c08
BW
5570static unsigned
5571action_list_count (text_action_list *action_list)
5572{
4c2af04f 5573 return action_list->count;
03e94c08
BW
5574}
5575
4c2af04f
MF
5576typedef struct map_action_fn_context_struct map_action_fn_context;
5577struct map_action_fn_context_struct
071aa5c9 5578{
4c2af04f 5579 int removed;
071aa5c9
MF
5580 removal_by_action_map map;
5581 bfd_boolean eq_complete;
4c2af04f 5582};
071aa5c9 5583
4c2af04f
MF
5584static int
5585map_action_fn (splay_tree_node node, void *p)
5586{
5587 map_action_fn_context *ctx = p;
5588 text_action *r = (text_action *)node->value;
5589 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
071aa5c9 5590
4c2af04f 5591 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
071aa5c9 5592 {
4c2af04f
MF
5593 --ientry;
5594 }
5595 else
5596 {
5597 ++ctx->map.n_entries;
5598 ctx->eq_complete = FALSE;
5599 ientry->offset = r->offset;
5600 ientry->eq_removed_before_fill = ctx->removed;
5601 }
071aa5c9 5602
4c2af04f
MF
5603 if (!ctx->eq_complete)
5604 {
5605 if (r->action != ta_fill || r->removed_bytes >= 0)
071aa5c9 5606 {
4c2af04f
MF
5607 ientry->eq_removed = ctx->removed;
5608 ctx->eq_complete = TRUE;
071aa5c9
MF
5609 }
5610 else
4c2af04f
MF
5611 ientry->eq_removed = ctx->removed + r->removed_bytes;
5612 }
071aa5c9 5613
4c2af04f
MF
5614 ctx->removed += r->removed_bytes;
5615 ientry->removed = ctx->removed;
5616 return 0;
5617}
071aa5c9 5618
4c2af04f
MF
5619static void
5620map_removal_by_action (text_action_list *action_list)
5621{
5622 map_action_fn_context ctx;
5623
5624 ctx.removed = 0;
5625 ctx.map.n_entries = 0;
5626 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5627 sizeof (removal_by_action_entry));
5628 ctx.eq_complete = FALSE;
5629
5630 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5631 action_list->map = ctx.map;
071aa5c9
MF
5632}
5633
5634static int
5635removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5636 bfd_boolean before_fill)
5637{
5638 unsigned a, b;
5639
5640 if (!action_list->map.entry)
5641 map_removal_by_action (action_list);
5642
5643 if (!action_list->map.n_entries)
5644 return 0;
5645
5646 a = 0;
5647 b = action_list->map.n_entries;
5648
5649 while (b - a > 1)
5650 {
5651 unsigned c = (a + b) / 2;
5652
5653 if (action_list->map.entry[c].offset <= offset)
5654 a = c;
5655 else
5656 b = c;
5657 }
5658
5659 if (action_list->map.entry[a].offset < offset)
5660 {
5661 return action_list->map.entry[a].removed;
5662 }
5663 else if (action_list->map.entry[a].offset == offset)
5664 {
5665 return before_fill ?
5666 action_list->map.entry[a].eq_removed_before_fill :
5667 action_list->map.entry[a].eq_removed;
5668 }
5669 else
5670 {
5671 return 0;
5672 }
5673}
5674
5675static bfd_vma
5676offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5677{
5678 int removed = removed_by_actions_map (action_list, offset, FALSE);
5679 return offset - removed;
5680}
5681
03e94c08 5682
43cd72b9
BW
5683/* The find_insn_action routine will only find non-fill actions. */
5684
7fa3d080
BW
5685static text_action *
5686find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9 5687{
4c2af04f 5688 static const text_action_t action[] =
43cd72b9 5689 {
4c2af04f
MF
5690 ta_convert_longcall,
5691 ta_remove_longcall,
5692 ta_widen_insn,
5693 ta_narrow_insn,
5694 ta_remove_insn,
5695 };
5696 text_action a;
5697 unsigned i;
5698
5699 a.offset = offset;
5700 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5701 {
5702 splay_tree_node node;
5703
5704 a.action = action[i];
5705 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5706 if (node)
5707 return (text_action *)node->value;
43cd72b9
BW
5708 }
5709 return NULL;
5710}
5711
5712
5713#if DEBUG
5714
5715static void
4c2af04f
MF
5716print_action (FILE *fp, text_action *r)
5717{
5718 const char *t = "unknown";
5719 switch (r->action)
5720 {
5721 case ta_remove_insn:
5722 t = "remove_insn"; break;
5723 case ta_remove_longcall:
5724 t = "remove_longcall"; break;
5725 case ta_convert_longcall:
5726 t = "convert_longcall"; break;
5727 case ta_narrow_insn:
5728 t = "narrow_insn"; break;
5729 case ta_widen_insn:
5730 t = "widen_insn"; break;
5731 case ta_fill:
5732 t = "fill"; break;
5733 case ta_none:
5734 t = "none"; break;
5735 case ta_remove_literal:
5736 t = "remove_literal"; break;
5737 case ta_add_literal:
5738 t = "add_literal"; break;
5739 }
5740
5741 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5742 r->sec->owner->filename,
5743 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5744}
5745
5746static int
5747print_action_list_fn (splay_tree_node node, void *p)
43cd72b9 5748{
4c2af04f 5749 text_action *r = (text_action *)node->value;
43cd72b9 5750
4c2af04f
MF
5751 print_action (p, r);
5752 return 0;
5753}
43cd72b9 5754
4c2af04f
MF
5755static void
5756print_action_list (FILE *fp, text_action_list *action_list)
5757{
5758 fprintf (fp, "Text Action\n");
5759 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
43cd72b9
BW
5760}
5761
5762#endif /* DEBUG */
5763
5764\f
5765/* Lists of literals being coalesced or removed. */
5766
5767/* In the usual case, the literal identified by "from" is being
5768 coalesced with another literal identified by "to". If the literal is
5769 unused and is being removed altogether, "to.abfd" will be NULL.
5770 The removed_literal entries are kept on a per-section list, sorted
5771 by the "from" offset field. */
5772
5773typedef struct removed_literal_struct removed_literal;
3439c466 5774typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
43cd72b9
BW
5775typedef struct removed_literal_list_struct removed_literal_list;
5776
5777struct removed_literal_struct
5778{
5779 r_reloc from;
5780 r_reloc to;
5781 removed_literal *next;
5782};
5783
3439c466
MF
5784struct removed_literal_map_entry_struct
5785{
5786 bfd_vma addr;
5787 removed_literal *literal;
5788};
5789
43cd72b9
BW
5790struct removed_literal_list_struct
5791{
5792 removed_literal *head;
5793 removed_literal *tail;
3439c466
MF
5794
5795 unsigned n_map;
5796 removed_literal_map_entry *map;
43cd72b9
BW
5797};
5798
5799
43cd72b9
BW
5800/* Record that the literal at "from" is being removed. If "to" is not
5801 NULL, the "from" literal is being coalesced with the "to" literal. */
5802
5803static void
7fa3d080
BW
5804add_removed_literal (removed_literal_list *removed_list,
5805 const r_reloc *from,
5806 const r_reloc *to)
43cd72b9
BW
5807{
5808 removed_literal *r, *new_r, *next_r;
5809
5810 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5811
5812 new_r->from = *from;
5813 if (to)
5814 new_r->to = *to;
5815 else
5816 new_r->to.abfd = NULL;
5817 new_r->next = NULL;
68ffbac6 5818
43cd72b9 5819 r = removed_list->head;
68ffbac6 5820 if (r == NULL)
43cd72b9
BW
5821 {
5822 removed_list->head = new_r;
5823 removed_list->tail = new_r;
5824 }
5825 /* Special check for common case of append. */
5826 else if (removed_list->tail->from.target_offset < from->target_offset)
5827 {
5828 removed_list->tail->next = new_r;
5829 removed_list->tail = new_r;
5830 }
5831 else
5832 {
68ffbac6 5833 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5834 {
5835 r = r->next;
5836 }
5837 next_r = r->next;
5838 r->next = new_r;
5839 new_r->next = next_r;
5840 if (next_r == NULL)
5841 removed_list->tail = new_r;
5842 }
5843}
5844
3439c466
MF
5845static void
5846map_removed_literal (removed_literal_list *removed_list)
5847{
5848 unsigned n_map = 0;
5849 unsigned i;
5850 removed_literal_map_entry *map = NULL;
5851 removed_literal *r = removed_list->head;
5852
5853 for (i = 0; r; ++i, r = r->next)
5854 {
5855 if (i == n_map)
5856 {
5857 n_map = (n_map * 2) + 2;
5858 map = bfd_realloc (map, n_map * sizeof (*map));
5859 }
5860 map[i].addr = r->from.target_offset;
5861 map[i].literal = r;
5862 }
5863 removed_list->map = map;
5864 removed_list->n_map = i;
5865}
5866
5867static int
5868removed_literal_compare (const void *a, const void *b)
5869{
5870 const removed_literal_map_entry *pa = a;
5871 const removed_literal_map_entry *pb = b;
5872
5873 if (pa->addr == pb->addr)
5874 return 0;
5875 else
5876 return pa->addr < pb->addr ? -1 : 1;
5877}
43cd72b9
BW
5878
5879/* Check if the list of removed literals contains an entry for the
5880 given address. Return the entry if found. */
5881
5882static removed_literal *
7fa3d080 5883find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9 5884{
3439c466
MF
5885 removed_literal_map_entry *p;
5886 removed_literal *r = NULL;
5887
5888 if (removed_list->map == NULL)
5889 map_removed_literal (removed_list);
5890
5891 p = bsearch (&addr, removed_list->map, removed_list->n_map,
5892 sizeof (*removed_list->map), removed_literal_compare);
5893 if (p)
5894 {
5895 while (p != removed_list->map && (p - 1)->addr == addr)
5896 --p;
5897 r = p->literal;
5898 }
5899 return r;
43cd72b9
BW
5900}
5901
5902
5903#if DEBUG
5904
5905static void
7fa3d080 5906print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5907{
5908 removed_literal *r;
5909 r = removed_list->head;
5910 if (r)
5911 fprintf (fp, "Removed Literals\n");
5912 for (; r != NULL; r = r->next)
5913 {
5914 print_r_reloc (fp, &r->from);
5915 fprintf (fp, " => ");
5916 if (r->to.abfd == NULL)
5917 fprintf (fp, "REMOVED");
5918 else
5919 print_r_reloc (fp, &r->to);
5920 fprintf (fp, "\n");
5921 }
5922}
5923
5924#endif /* DEBUG */
5925
5926\f
5927/* Per-section data for relaxation. */
5928
5929typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5930
5931struct xtensa_relax_info_struct
5932{
5933 bfd_boolean is_relaxable_literal_section;
5934 bfd_boolean is_relaxable_asm_section;
5935 int visited; /* Number of times visited. */
5936
5937 source_reloc *src_relocs; /* Array[src_count]. */
5938 int src_count;
5939 int src_next; /* Next src_relocs entry to assign. */
5940
5941 removed_literal_list removed_list;
5942 text_action_list action_list;
5943
5944 reloc_bfd_fix *fix_list;
5945 reloc_bfd_fix *fix_array;
5946 unsigned fix_array_count;
5947
5948 /* Support for expanding the reloc array that is stored
5949 in the section structure. If the relocations have been
5950 reallocated, the newly allocated relocations will be referenced
5951 here along with the actual size allocated. The relocation
5952 count will always be found in the section structure. */
68ffbac6 5953 Elf_Internal_Rela *allocated_relocs;
43cd72b9
BW
5954 unsigned relocs_count;
5955 unsigned allocated_relocs_count;
5956};
5957
5958struct elf_xtensa_section_data
5959{
5960 struct bfd_elf_section_data elf;
5961 xtensa_relax_info relax_info;
5962};
5963
43cd72b9
BW
5964
5965static bfd_boolean
7fa3d080 5966elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5967{
f592407e
AM
5968 if (!sec->used_by_bfd)
5969 {
5970 struct elf_xtensa_section_data *sdata;
5971 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5972
f592407e
AM
5973 sdata = bfd_zalloc (abfd, amt);
5974 if (sdata == NULL)
5975 return FALSE;
5976 sec->used_by_bfd = sdata;
5977 }
43cd72b9
BW
5978
5979 return _bfd_elf_new_section_hook (abfd, sec);
5980}
5981
5982
7fa3d080
BW
5983static xtensa_relax_info *
5984get_xtensa_relax_info (asection *sec)
5985{
5986 struct elf_xtensa_section_data *section_data;
5987
5988 /* No info available if no section or if it is an output section. */
5989 if (!sec || sec == sec->output_section)
5990 return NULL;
5991
5992 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5993 return &section_data->relax_info;
5994}
5995
5996
43cd72b9 5997static void
7fa3d080 5998init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5999{
6000 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6001
6002 relax_info->is_relaxable_literal_section = FALSE;
6003 relax_info->is_relaxable_asm_section = FALSE;
6004 relax_info->visited = 0;
6005
6006 relax_info->src_relocs = NULL;
6007 relax_info->src_count = 0;
6008 relax_info->src_next = 0;
6009
6010 relax_info->removed_list.head = NULL;
6011 relax_info->removed_list.tail = NULL;
6012
4c2af04f
MF
6013 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6014 NULL, NULL);
071aa5c9
MF
6015 relax_info->action_list.map.n_entries = 0;
6016 relax_info->action_list.map.entry = NULL;
6017
43cd72b9
BW
6018 relax_info->fix_list = NULL;
6019 relax_info->fix_array = NULL;
6020 relax_info->fix_array_count = 0;
6021
68ffbac6 6022 relax_info->allocated_relocs = NULL;
43cd72b9
BW
6023 relax_info->relocs_count = 0;
6024 relax_info->allocated_relocs_count = 0;
6025}
6026
43cd72b9
BW
6027\f
6028/* Coalescing literals may require a relocation to refer to a section in
6029 a different input file, but the standard relocation information
6030 cannot express that. Instead, the reloc_bfd_fix structures are used
6031 to "fix" the relocations that refer to sections in other input files.
6032 These structures are kept on per-section lists. The "src_type" field
6033 records the relocation type in case there are multiple relocations on
6034 the same location. FIXME: This is ugly; an alternative might be to
6035 add new symbols with the "owner" field to some other input file. */
6036
6037struct reloc_bfd_fix_struct
6038{
6039 asection *src_sec;
6040 bfd_vma src_offset;
6041 unsigned src_type; /* Relocation type. */
68ffbac6 6042
43cd72b9
BW
6043 asection *target_sec;
6044 bfd_vma target_offset;
6045 bfd_boolean translated;
68ffbac6 6046
43cd72b9
BW
6047 reloc_bfd_fix *next;
6048};
6049
6050
43cd72b9 6051static reloc_bfd_fix *
7fa3d080
BW
6052reloc_bfd_fix_init (asection *src_sec,
6053 bfd_vma src_offset,
6054 unsigned src_type,
7fa3d080
BW
6055 asection *target_sec,
6056 bfd_vma target_offset,
6057 bfd_boolean translated)
43cd72b9
BW
6058{
6059 reloc_bfd_fix *fix;
6060
6061 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6062 fix->src_sec = src_sec;
6063 fix->src_offset = src_offset;
6064 fix->src_type = src_type;
43cd72b9
BW
6065 fix->target_sec = target_sec;
6066 fix->target_offset = target_offset;
6067 fix->translated = translated;
6068
6069 return fix;
6070}
6071
6072
6073static void
7fa3d080 6074add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
6075{
6076 xtensa_relax_info *relax_info;
6077
6078 relax_info = get_xtensa_relax_info (src_sec);
6079 fix->next = relax_info->fix_list;
6080 relax_info->fix_list = fix;
6081}
6082
6083
6084static int
7fa3d080 6085fix_compare (const void *ap, const void *bp)
43cd72b9
BW
6086{
6087 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6088 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6089
6090 if (a->src_offset != b->src_offset)
6091 return (a->src_offset - b->src_offset);
6092 return (a->src_type - b->src_type);
6093}
6094
6095
6096static void
7fa3d080 6097cache_fix_array (asection *sec)
43cd72b9
BW
6098{
6099 unsigned i, count = 0;
6100 reloc_bfd_fix *r;
6101 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6102
6103 if (relax_info == NULL)
6104 return;
6105 if (relax_info->fix_list == NULL)
6106 return;
6107
6108 for (r = relax_info->fix_list; r != NULL; r = r->next)
6109 count++;
6110
6111 relax_info->fix_array =
6112 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6113 relax_info->fix_array_count = count;
6114
6115 r = relax_info->fix_list;
6116 for (i = 0; i < count; i++, r = r->next)
6117 {
6118 relax_info->fix_array[count - 1 - i] = *r;
6119 relax_info->fix_array[count - 1 - i].next = NULL;
6120 }
6121
6122 qsort (relax_info->fix_array, relax_info->fix_array_count,
6123 sizeof (reloc_bfd_fix), fix_compare);
6124}
6125
6126
6127static reloc_bfd_fix *
7fa3d080 6128get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6129{
6130 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6131 reloc_bfd_fix *rv;
6132 reloc_bfd_fix key;
6133
6134 if (relax_info == NULL)
6135 return NULL;
6136 if (relax_info->fix_list == NULL)
6137 return NULL;
6138
6139 if (relax_info->fix_array == NULL)
6140 cache_fix_array (sec);
6141
6142 key.src_offset = offset;
6143 key.src_type = type;
6144 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6145 sizeof (reloc_bfd_fix), fix_compare);
6146 return rv;
6147}
6148
6149\f
6150/* Section caching. */
6151
6152typedef struct section_cache_struct section_cache_t;
6153
6154struct section_cache_struct
6155{
6156 asection *sec;
6157
6158 bfd_byte *contents; /* Cache of the section contents. */
6159 bfd_size_type content_length;
6160
6161 property_table_entry *ptbl; /* Cache of the section property table. */
6162 unsigned pte_count;
6163
6164 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6165 unsigned reloc_count;
6166};
6167
6168
7fa3d080
BW
6169static void
6170init_section_cache (section_cache_t *sec_cache)
6171{
6172 memset (sec_cache, 0, sizeof (*sec_cache));
6173}
43cd72b9
BW
6174
6175
6176static void
65e911f9 6177free_section_cache (section_cache_t *sec_cache)
43cd72b9 6178{
7fa3d080
BW
6179 if (sec_cache->sec)
6180 {
6181 release_contents (sec_cache->sec, sec_cache->contents);
6182 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6183 if (sec_cache->ptbl)
6184 free (sec_cache->ptbl);
7fa3d080 6185 }
43cd72b9
BW
6186}
6187
6188
6189static bfd_boolean
7fa3d080
BW
6190section_cache_section (section_cache_t *sec_cache,
6191 asection *sec,
6192 struct bfd_link_info *link_info)
43cd72b9
BW
6193{
6194 bfd *abfd;
6195 property_table_entry *prop_table = NULL;
6196 int ptblsize = 0;
6197 bfd_byte *contents = NULL;
6198 Elf_Internal_Rela *internal_relocs = NULL;
6199 bfd_size_type sec_size;
6200
6201 if (sec == NULL)
6202 return FALSE;
6203 if (sec == sec_cache->sec)
6204 return TRUE;
6205
6206 abfd = sec->owner;
6207 sec_size = bfd_get_section_limit (abfd, sec);
6208
6209 /* Get the contents. */
6210 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6211 if (contents == NULL && sec_size != 0)
6212 goto err;
6213
6214 /* Get the relocations. */
6215 internal_relocs = retrieve_internal_relocs (abfd, sec,
6216 link_info->keep_memory);
6217
6218 /* Get the entry table. */
6219 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6220 XTENSA_PROP_SEC_NAME, FALSE);
6221 if (ptblsize < 0)
6222 goto err;
6223
6224 /* Fill in the new section cache. */
65e911f9
AM
6225 free_section_cache (sec_cache);
6226 init_section_cache (sec_cache);
43cd72b9
BW
6227
6228 sec_cache->sec = sec;
6229 sec_cache->contents = contents;
6230 sec_cache->content_length = sec_size;
6231 sec_cache->relocs = internal_relocs;
6232 sec_cache->reloc_count = sec->reloc_count;
6233 sec_cache->pte_count = ptblsize;
6234 sec_cache->ptbl = prop_table;
6235
6236 return TRUE;
6237
6238 err:
6239 release_contents (sec, contents);
6240 release_internal_relocs (sec, internal_relocs);
6241 if (prop_table)
6242 free (prop_table);
6243 return FALSE;
6244}
6245
43cd72b9
BW
6246\f
6247/* Extended basic blocks. */
6248
6249/* An ebb_struct represents an Extended Basic Block. Within this
6250 range, we guarantee that all instructions are decodable, the
6251 property table entries are contiguous, and no property table
6252 specifies a segment that cannot have instructions moved. This
6253 structure contains caches of the contents, property table and
6254 relocations for the specified section for easy use. The range is
6255 specified by ranges of indices for the byte offset, property table
6256 offsets and relocation offsets. These must be consistent. */
6257
6258typedef struct ebb_struct ebb_t;
6259
6260struct ebb_struct
6261{
6262 asection *sec;
6263
6264 bfd_byte *contents; /* Cache of the section contents. */
6265 bfd_size_type content_length;
6266
6267 property_table_entry *ptbl; /* Cache of the section property table. */
6268 unsigned pte_count;
6269
6270 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6271 unsigned reloc_count;
6272
6273 bfd_vma start_offset; /* Offset in section. */
6274 unsigned start_ptbl_idx; /* Offset in the property table. */
6275 unsigned start_reloc_idx; /* Offset in the relocations. */
6276
6277 bfd_vma end_offset;
6278 unsigned end_ptbl_idx;
6279 unsigned end_reloc_idx;
6280
6281 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6282
6283 /* The unreachable property table at the end of this set of blocks;
6284 NULL if the end is not an unreachable block. */
6285 property_table_entry *ends_unreachable;
6286};
6287
6288
6289enum ebb_target_enum
6290{
6291 EBB_NO_ALIGN = 0,
6292 EBB_DESIRE_TGT_ALIGN,
6293 EBB_REQUIRE_TGT_ALIGN,
6294 EBB_REQUIRE_LOOP_ALIGN,
6295 EBB_REQUIRE_ALIGN
6296};
6297
6298
6299/* proposed_action_struct is similar to the text_action_struct except
6300 that is represents a potential transformation, not one that will
6301 occur. We build a list of these for an extended basic block
6302 and use them to compute the actual actions desired. We must be
6303 careful that the entire set of actual actions we perform do not
6304 break any relocations that would fit if the actions were not
6305 performed. */
6306
6307typedef struct proposed_action_struct proposed_action;
6308
6309struct proposed_action_struct
6310{
6311 enum ebb_target_enum align_type; /* for the target alignment */
6312 bfd_vma alignment_pow;
6313 text_action_t action;
6314 bfd_vma offset;
6315 int removed_bytes;
6316 bfd_boolean do_action; /* If false, then we will not perform the action. */
6317};
6318
6319
6320/* The ebb_constraint_struct keeps a set of proposed actions for an
6321 extended basic block. */
6322
6323typedef struct ebb_constraint_struct ebb_constraint;
6324
6325struct ebb_constraint_struct
6326{
6327 ebb_t ebb;
6328 bfd_boolean start_movable;
6329
6330 /* Bytes of extra space at the beginning if movable. */
6331 int start_extra_space;
6332
6333 enum ebb_target_enum start_align;
6334
6335 bfd_boolean end_movable;
6336
6337 /* Bytes of extra space at the end if movable. */
6338 int end_extra_space;
6339
6340 unsigned action_count;
6341 unsigned action_allocated;
6342
6343 /* Array of proposed actions. */
6344 proposed_action *actions;
6345
6346 /* Action alignments -- one for each proposed action. */
6347 enum ebb_target_enum *action_aligns;
6348};
6349
6350
43cd72b9 6351static void
7fa3d080 6352init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6353{
6354 memset (c, 0, sizeof (ebb_constraint));
6355}
6356
6357
6358static void
7fa3d080 6359free_ebb_constraint (ebb_constraint *c)
43cd72b9 6360{
7fa3d080 6361 if (c->actions)
43cd72b9
BW
6362 free (c->actions);
6363}
6364
6365
6366static void
7fa3d080
BW
6367init_ebb (ebb_t *ebb,
6368 asection *sec,
6369 bfd_byte *contents,
6370 bfd_size_type content_length,
6371 property_table_entry *prop_table,
6372 unsigned ptblsize,
6373 Elf_Internal_Rela *internal_relocs,
6374 unsigned reloc_count)
43cd72b9
BW
6375{
6376 memset (ebb, 0, sizeof (ebb_t));
6377 ebb->sec = sec;
6378 ebb->contents = contents;
6379 ebb->content_length = content_length;
6380 ebb->ptbl = prop_table;
6381 ebb->pte_count = ptblsize;
6382 ebb->relocs = internal_relocs;
6383 ebb->reloc_count = reloc_count;
6384 ebb->start_offset = 0;
6385 ebb->end_offset = ebb->content_length - 1;
6386 ebb->start_ptbl_idx = 0;
6387 ebb->end_ptbl_idx = ptblsize;
6388 ebb->start_reloc_idx = 0;
6389 ebb->end_reloc_idx = reloc_count;
6390}
6391
6392
6393/* Extend the ebb to all decodable contiguous sections. The algorithm
6394 for building a basic block around an instruction is to push it
6395 forward until we hit the end of a section, an unreachable block or
6396 a block that cannot be transformed. Then we push it backwards
6397 searching for similar conditions. */
6398
7fa3d080
BW
6399static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6400static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6401static bfd_size_type insn_block_decodable_len
6402 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6403
43cd72b9 6404static bfd_boolean
7fa3d080 6405extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6406{
6407 if (!extend_ebb_bounds_forward (ebb))
6408 return FALSE;
6409 if (!extend_ebb_bounds_backward (ebb))
6410 return FALSE;
6411 return TRUE;
6412}
6413
6414
6415static bfd_boolean
7fa3d080 6416extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6417{
6418 property_table_entry *the_entry, *new_entry;
6419
6420 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6421
6422 /* Stop when (1) we cannot decode an instruction, (2) we are at
6423 the end of the property tables, (3) we hit a non-contiguous property
6424 table entry, (4) we hit a NO_TRANSFORM region. */
6425
6426 while (1)
6427 {
6428 bfd_vma entry_end;
6429 bfd_size_type insn_block_len;
6430
6431 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6432 insn_block_len =
6433 insn_block_decodable_len (ebb->contents, ebb->content_length,
6434 ebb->end_offset,
6435 entry_end - ebb->end_offset);
6436 if (insn_block_len != (entry_end - ebb->end_offset))
6437 {
4eca0228 6438 _bfd_error_handler
695344c0 6439 /* xgettext:c-format */
2dcf00ce 6440 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
d42c267e 6441 "possible configuration mismatch"),
2dcf00ce
AM
6442 ebb->sec->owner, ebb->sec,
6443 (uint64_t) (ebb->end_offset + insn_block_len));
43cd72b9
BW
6444 return FALSE;
6445 }
6446 ebb->end_offset += insn_block_len;
6447
6448 if (ebb->end_offset == ebb->sec->size)
6449 ebb->ends_section = TRUE;
6450
6451 /* Update the reloc counter. */
6452 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6453 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6454 < ebb->end_offset))
6455 {
6456 ebb->end_reloc_idx++;
6457 }
6458
6459 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6460 return TRUE;
6461
6462 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6463 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6464 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6465 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6466 break;
6467
6468 if (the_entry->address + the_entry->size != new_entry->address)
6469 break;
6470
6471 the_entry = new_entry;
6472 ebb->end_ptbl_idx++;
6473 }
6474
6475 /* Quick check for an unreachable or end of file just at the end. */
6476 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6477 {
6478 if (ebb->end_offset == ebb->content_length)
6479 ebb->ends_section = TRUE;
6480 }
6481 else
6482 {
6483 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6484 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6485 && the_entry->address + the_entry->size == new_entry->address)
6486 ebb->ends_unreachable = new_entry;
6487 }
6488
6489 /* Any other ending requires exact alignment. */
6490 return TRUE;
6491}
6492
6493
6494static bfd_boolean
7fa3d080 6495extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6496{
6497 property_table_entry *the_entry, *new_entry;
6498
6499 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6500
6501 /* Stop when (1) we cannot decode the instructions in the current entry.
6502 (2) we are at the beginning of the property tables, (3) we hit a
6503 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6504
6505 while (1)
6506 {
6507 bfd_vma block_begin;
6508 bfd_size_type insn_block_len;
6509
6510 block_begin = the_entry->address - ebb->sec->vma;
6511 insn_block_len =
6512 insn_block_decodable_len (ebb->contents, ebb->content_length,
6513 block_begin,
6514 ebb->start_offset - block_begin);
6515 if (insn_block_len != ebb->start_offset - block_begin)
6516 {
4eca0228 6517 _bfd_error_handler
695344c0 6518 /* xgettext:c-format */
2dcf00ce 6519 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
d42c267e 6520 "possible configuration mismatch"),
2dcf00ce
AM
6521 ebb->sec->owner, ebb->sec,
6522 (uint64_t) (ebb->end_offset + insn_block_len));
43cd72b9
BW
6523 return FALSE;
6524 }
6525 ebb->start_offset -= insn_block_len;
6526
6527 /* Update the reloc counter. */
6528 while (ebb->start_reloc_idx > 0
6529 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6530 >= ebb->start_offset))
6531 {
6532 ebb->start_reloc_idx--;
6533 }
6534
6535 if (ebb->start_ptbl_idx == 0)
6536 return TRUE;
6537
6538 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6539 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6540 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6541 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6542 return TRUE;
6543 if (new_entry->address + new_entry->size != the_entry->address)
6544 return TRUE;
6545
6546 the_entry = new_entry;
6547 ebb->start_ptbl_idx--;
6548 }
6549 return TRUE;
6550}
6551
6552
6553static bfd_size_type
7fa3d080
BW
6554insn_block_decodable_len (bfd_byte *contents,
6555 bfd_size_type content_len,
6556 bfd_vma block_offset,
6557 bfd_size_type block_len)
43cd72b9
BW
6558{
6559 bfd_vma offset = block_offset;
6560
6561 while (offset < block_offset + block_len)
6562 {
6563 bfd_size_type insn_len = 0;
6564
6565 insn_len = insn_decode_len (contents, content_len, offset);
6566 if (insn_len == 0)
6567 return (offset - block_offset);
6568 offset += insn_len;
6569 }
6570 return (offset - block_offset);
6571}
6572
6573
6574static void
7fa3d080 6575ebb_propose_action (ebb_constraint *c,
7fa3d080 6576 enum ebb_target_enum align_type,
288f74fa 6577 bfd_vma alignment_pow,
7fa3d080
BW
6578 text_action_t action,
6579 bfd_vma offset,
6580 int removed_bytes,
6581 bfd_boolean do_action)
43cd72b9 6582{
b08b5071 6583 proposed_action *act;
43cd72b9 6584
43cd72b9
BW
6585 if (c->action_allocated <= c->action_count)
6586 {
b08b5071 6587 unsigned new_allocated, i;
823fc61f 6588 proposed_action *new_actions;
b08b5071
BW
6589
6590 new_allocated = (c->action_count + 2) * 2;
823fc61f 6591 new_actions = (proposed_action *)
43cd72b9
BW
6592 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6593
6594 for (i = 0; i < c->action_count; i++)
6595 new_actions[i] = c->actions[i];
7fa3d080 6596 if (c->actions)
43cd72b9
BW
6597 free (c->actions);
6598 c->actions = new_actions;
6599 c->action_allocated = new_allocated;
6600 }
b08b5071
BW
6601
6602 act = &c->actions[c->action_count];
6603 act->align_type = align_type;
6604 act->alignment_pow = alignment_pow;
6605 act->action = action;
6606 act->offset = offset;
6607 act->removed_bytes = removed_bytes;
6608 act->do_action = do_action;
6609
43cd72b9
BW
6610 c->action_count++;
6611}
6612
6613\f
6614/* Access to internal relocations, section contents and symbols. */
6615
6616/* During relaxation, we need to modify relocations, section contents,
6617 and symbol definitions, and we need to keep the original values from
6618 being reloaded from the input files, i.e., we need to "pin" the
6619 modified values in memory. We also want to continue to observe the
6620 setting of the "keep-memory" flag. The following functions wrap the
6621 standard BFD functions to take care of this for us. */
6622
6623static Elf_Internal_Rela *
7fa3d080 6624retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6625{
6626 Elf_Internal_Rela *internal_relocs;
6627
6628 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6629 return NULL;
6630
6631 internal_relocs = elf_section_data (sec)->relocs;
6632 if (internal_relocs == NULL)
6633 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6634 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6635 return internal_relocs;
6636}
6637
6638
6639static void
7fa3d080 6640pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6641{
6642 elf_section_data (sec)->relocs = internal_relocs;
6643}
6644
6645
6646static void
7fa3d080 6647release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6648{
6649 if (internal_relocs
6650 && elf_section_data (sec)->relocs != internal_relocs)
6651 free (internal_relocs);
6652}
6653
6654
6655static bfd_byte *
7fa3d080 6656retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6657{
6658 bfd_byte *contents;
6659 bfd_size_type sec_size;
6660
6661 sec_size = bfd_get_section_limit (abfd, sec);
6662 contents = elf_section_data (sec)->this_hdr.contents;
68ffbac6 6663
43cd72b9
BW
6664 if (contents == NULL && sec_size != 0)
6665 {
6666 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6667 {
7fa3d080 6668 if (contents)
43cd72b9
BW
6669 free (contents);
6670 return NULL;
6671 }
68ffbac6 6672 if (keep_memory)
43cd72b9
BW
6673 elf_section_data (sec)->this_hdr.contents = contents;
6674 }
6675 return contents;
6676}
6677
6678
6679static void
7fa3d080 6680pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6681{
6682 elf_section_data (sec)->this_hdr.contents = contents;
6683}
6684
6685
6686static void
7fa3d080 6687release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6688{
6689 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6690 free (contents);
6691}
6692
6693
6694static Elf_Internal_Sym *
7fa3d080 6695retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6696{
6697 Elf_Internal_Shdr *symtab_hdr;
6698 Elf_Internal_Sym *isymbuf;
6699 size_t locsymcount;
6700
6701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6702 locsymcount = symtab_hdr->sh_info;
6703
6704 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6705 if (isymbuf == NULL && locsymcount != 0)
6706 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6707 NULL, NULL, NULL);
6708
6709 /* Save the symbols for this input file so they won't be read again. */
6710 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6711 symtab_hdr->contents = (unsigned char *) isymbuf;
6712
6713 return isymbuf;
6714}
6715
6716\f
6717/* Code for link-time relaxation. */
6718
6719/* Initialization for relaxation: */
7fa3d080 6720static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6721static bfd_boolean find_relaxable_sections
7fa3d080 6722 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6723static bfd_boolean collect_source_relocs
7fa3d080 6724 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6725static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6726 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6727 bfd_boolean *);
43cd72b9 6728static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6729 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6730static bfd_boolean compute_text_actions
7fa3d080
BW
6731 (bfd *, asection *, struct bfd_link_info *);
6732static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6733static bfd_boolean compute_ebb_actions (ebb_constraint *);
b2b326d2 6734typedef struct reloc_range_list_struct reloc_range_list;
43cd72b9 6735static bfd_boolean check_section_ebb_pcrels_fit
b2b326d2
MF
6736 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6737 reloc_range_list *, const ebb_constraint *,
cb337148 6738 const xtensa_opcode *);
7fa3d080 6739static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6740static void text_action_add_proposed
7fa3d080 6741 (text_action_list *, const ebb_constraint *, asection *);
43cd72b9
BW
6742
6743/* First pass: */
6744static bfd_boolean compute_removed_literals
7fa3d080 6745 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6746static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6747 (asection *, Elf_Internal_Rela *, bfd_vma);
68ffbac6 6748static bfd_boolean is_removable_literal
99ded152
BW
6749 (const source_reloc *, int, const source_reloc *, int, asection *,
6750 property_table_entry *, int);
43cd72b9 6751static bfd_boolean remove_dead_literal
7fa3d080 6752 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
68ffbac6 6753 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
7fa3d080
BW
6754static bfd_boolean identify_literal_placement
6755 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6756 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6757 source_reloc *, property_table_entry *, int, section_cache_t *,
6758 bfd_boolean);
6759static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6760static bfd_boolean coalesce_shared_literal
7fa3d080 6761 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6762static bfd_boolean move_shared_literal
7fa3d080
BW
6763 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6764 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6765
6766/* Second pass: */
7fa3d080
BW
6767static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6768static bfd_boolean translate_section_fixes (asection *);
6769static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6770static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6771static void shrink_dynamic_reloc_sections
7fa3d080 6772 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6773static bfd_boolean move_literal
7fa3d080
BW
6774 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6775 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6776static bfd_boolean relax_property_section
7fa3d080 6777 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6778
6779/* Third pass: */
7fa3d080 6780static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6781
6782
68ffbac6 6783static bfd_boolean
7fa3d080
BW
6784elf_xtensa_relax_section (bfd *abfd,
6785 asection *sec,
6786 struct bfd_link_info *link_info,
6787 bfd_boolean *again)
43cd72b9
BW
6788{
6789 static value_map_hash_table *values = NULL;
6790 static bfd_boolean relocations_analyzed = FALSE;
6791 xtensa_relax_info *relax_info;
6792
6793 if (!relocations_analyzed)
6794 {
6795 /* Do some overall initialization for relaxation. */
6796 values = value_map_hash_table_init ();
6797 if (values == NULL)
6798 return FALSE;
6799 relaxing_section = TRUE;
6800 if (!analyze_relocations (link_info))
6801 return FALSE;
6802 relocations_analyzed = TRUE;
6803 }
6804 *again = FALSE;
6805
6806 /* Don't mess with linker-created sections. */
6807 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6808 return TRUE;
6809
6810 relax_info = get_xtensa_relax_info (sec);
6811 BFD_ASSERT (relax_info != NULL);
6812
6813 switch (relax_info->visited)
6814 {
6815 case 0:
6816 /* Note: It would be nice to fold this pass into
6817 analyze_relocations, but it is important for this step that the
6818 sections be examined in link order. */
6819 if (!compute_removed_literals (abfd, sec, link_info, values))
6820 return FALSE;
6821 *again = TRUE;
6822 break;
6823
6824 case 1:
6825 if (values)
6826 value_map_hash_table_delete (values);
6827 values = NULL;
6828 if (!relax_section (abfd, sec, link_info))
6829 return FALSE;
6830 *again = TRUE;
6831 break;
6832
6833 case 2:
6834 if (!relax_section_symbols (abfd, sec))
6835 return FALSE;
6836 break;
6837 }
6838
6839 relax_info->visited++;
6840 return TRUE;
6841}
6842
6843\f
6844/* Initialization for relaxation. */
6845
6846/* This function is called once at the start of relaxation. It scans
6847 all the input sections and marks the ones that are relaxable (i.e.,
6848 literal sections with L32R relocations against them), and then
6849 collects source_reloc information for all the relocations against
6850 those relaxable sections. During this process, it also detects
6851 longcalls, i.e., calls relaxed by the assembler into indirect
6852 calls, that can be optimized back into direct calls. Within each
6853 extended basic block (ebb) containing an optimized longcall, it
6854 computes a set of "text actions" that can be performed to remove
6855 the L32R associated with the longcall while optionally preserving
6856 branch target alignments. */
6857
6858static bfd_boolean
7fa3d080 6859analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6860{
6861 bfd *abfd;
6862 asection *sec;
6863 bfd_boolean is_relaxable = FALSE;
6864
6865 /* Initialize the per-section relaxation info. */
c72f2fb2 6866 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6867 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6868 {
6869 init_xtensa_relax_info (sec);
6870 }
6871
6872 /* Mark relaxable sections (and count relocations against each one). */
c72f2fb2 6873 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6874 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6875 {
6876 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6877 return FALSE;
6878 }
6879
6880 /* Bail out if there are no relaxable sections. */
6881 if (!is_relaxable)
6882 return TRUE;
6883
6884 /* Allocate space for source_relocs. */
c72f2fb2 6885 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6886 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6887 {
6888 xtensa_relax_info *relax_info;
6889
6890 relax_info = get_xtensa_relax_info (sec);
6891 if (relax_info->is_relaxable_literal_section
6892 || relax_info->is_relaxable_asm_section)
6893 {
6894 relax_info->src_relocs = (source_reloc *)
6895 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6896 }
25c6282a
BW
6897 else
6898 relax_info->src_count = 0;
43cd72b9
BW
6899 }
6900
6901 /* Collect info on relocations against each relaxable section. */
c72f2fb2 6902 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6903 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6904 {
6905 if (!collect_source_relocs (abfd, sec, link_info))
6906 return FALSE;
6907 }
6908
6909 /* Compute the text actions. */
c72f2fb2 6910 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
43cd72b9
BW
6911 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6912 {
6913 if (!compute_text_actions (abfd, sec, link_info))
6914 return FALSE;
6915 }
6916
6917 return TRUE;
6918}
6919
6920
6921/* Find all the sections that might be relaxed. The motivation for
6922 this pass is that collect_source_relocs() needs to record _all_ the
6923 relocations that target each relaxable section. That is expensive
6924 and unnecessary unless the target section is actually going to be
6925 relaxed. This pass identifies all such sections by checking if
6926 they have L32Rs pointing to them. In the process, the total number
6927 of relocations targeting each section is also counted so that we
6928 know how much space to allocate for source_relocs against each
6929 relaxable literal section. */
6930
6931static bfd_boolean
7fa3d080
BW
6932find_relaxable_sections (bfd *abfd,
6933 asection *sec,
6934 struct bfd_link_info *link_info,
6935 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6936{
6937 Elf_Internal_Rela *internal_relocs;
6938 bfd_byte *contents;
6939 bfd_boolean ok = TRUE;
6940 unsigned i;
6941 xtensa_relax_info *source_relax_info;
25c6282a 6942 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6943
6944 internal_relocs = retrieve_internal_relocs (abfd, sec,
6945 link_info->keep_memory);
68ffbac6 6946 if (internal_relocs == NULL)
43cd72b9
BW
6947 return ok;
6948
6949 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6950 if (contents == NULL && sec->size != 0)
6951 {
6952 ok = FALSE;
6953 goto error_return;
6954 }
6955
6956 source_relax_info = get_xtensa_relax_info (sec);
68ffbac6 6957 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
6958 {
6959 Elf_Internal_Rela *irel = &internal_relocs[i];
6960 r_reloc r_rel;
6961 asection *target_sec;
6962 xtensa_relax_info *target_relax_info;
6963
6964 /* If this section has not already been marked as "relaxable", and
6965 if it contains any ASM_EXPAND relocations (marking expanded
6966 longcalls) that can be optimized into direct calls, then mark
6967 the section as "relaxable". */
6968 if (source_relax_info
6969 && !source_relax_info->is_relaxable_asm_section
6970 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6971 {
6972 bfd_boolean is_reachable = FALSE;
6973 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6974 link_info, &is_reachable)
6975 && is_reachable)
6976 {
6977 source_relax_info->is_relaxable_asm_section = TRUE;
6978 *is_relaxable_p = TRUE;
6979 }
6980 }
6981
6982 r_reloc_init (&r_rel, abfd, irel, contents,
6983 bfd_get_section_limit (abfd, sec));
6984
6985 target_sec = r_reloc_get_section (&r_rel);
6986 target_relax_info = get_xtensa_relax_info (target_sec);
6987 if (!target_relax_info)
6988 continue;
6989
6990 /* Count PC-relative operand relocations against the target section.
07d6d2b8 6991 Note: The conditions tested here must match the conditions under
43cd72b9 6992 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6993 is_l32r_reloc = FALSE;
6994 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6995 {
6996 xtensa_opcode opcode =
6997 get_relocation_opcode (abfd, sec, contents, irel);
6998 if (opcode != XTENSA_UNDEFINED)
6999 {
7000 is_l32r_reloc = (opcode == get_l32r_opcode ());
7001 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7002 || is_l32r_reloc)
7003 target_relax_info->src_count++;
7004 }
7005 }
43cd72b9 7006
25c6282a 7007 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
7008 {
7009 /* Mark the target section as relaxable. */
7010 target_relax_info->is_relaxable_literal_section = TRUE;
7011 *is_relaxable_p = TRUE;
7012 }
7013 }
7014
7015 error_return:
7016 release_contents (sec, contents);
7017 release_internal_relocs (sec, internal_relocs);
7018 return ok;
7019}
7020
7021
7022/* Record _all_ the relocations that point to relaxable sections, and
7023 get rid of ASM_EXPAND relocs by either converting them to
7024 ASM_SIMPLIFY or by removing them. */
7025
7026static bfd_boolean
7fa3d080
BW
7027collect_source_relocs (bfd *abfd,
7028 asection *sec,
7029 struct bfd_link_info *link_info)
43cd72b9
BW
7030{
7031 Elf_Internal_Rela *internal_relocs;
7032 bfd_byte *contents;
7033 bfd_boolean ok = TRUE;
7034 unsigned i;
7035 bfd_size_type sec_size;
7036
68ffbac6 7037 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 7038 link_info->keep_memory);
68ffbac6 7039 if (internal_relocs == NULL)
43cd72b9
BW
7040 return ok;
7041
7042 sec_size = bfd_get_section_limit (abfd, sec);
7043 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7044 if (contents == NULL && sec_size != 0)
7045 {
7046 ok = FALSE;
7047 goto error_return;
7048 }
7049
7050 /* Record relocations against relaxable literal sections. */
68ffbac6 7051 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7052 {
7053 Elf_Internal_Rela *irel = &internal_relocs[i];
7054 r_reloc r_rel;
7055 asection *target_sec;
7056 xtensa_relax_info *target_relax_info;
7057
7058 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7059
7060 target_sec = r_reloc_get_section (&r_rel);
7061 target_relax_info = get_xtensa_relax_info (target_sec);
7062
7063 if (target_relax_info
7064 && (target_relax_info->is_relaxable_literal_section
7065 || target_relax_info->is_relaxable_asm_section))
7066 {
7067 xtensa_opcode opcode = XTENSA_UNDEFINED;
7068 int opnd = -1;
7069 bfd_boolean is_abs_literal = FALSE;
7070
7071 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7072 {
7073 /* None of the current alternate relocs are PC-relative,
7074 and only PC-relative relocs matter here. However, we
7075 still need to record the opcode for literal
7076 coalescing. */
7077 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7078 if (opcode == get_l32r_opcode ())
7079 {
7080 is_abs_literal = TRUE;
7081 opnd = 1;
7082 }
7083 else
7084 opcode = XTENSA_UNDEFINED;
7085 }
7086 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7087 {
7088 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7089 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7090 }
7091
7092 if (opcode != XTENSA_UNDEFINED)
7093 {
7094 int src_next = target_relax_info->src_next++;
7095 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7096
7097 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7098 is_abs_literal);
7099 }
7100 }
7101 }
7102
7103 /* Now get rid of ASM_EXPAND relocations. At this point, the
7104 src_relocs array for the target literal section may still be
7105 incomplete, but it must at least contain the entries for the L32R
7106 relocations associated with ASM_EXPANDs because they were just
7107 added in the preceding loop over the relocations. */
7108
68ffbac6 7109 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7110 {
7111 Elf_Internal_Rela *irel = &internal_relocs[i];
7112 bfd_boolean is_reachable;
7113
7114 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7115 &is_reachable))
7116 continue;
7117
7118 if (is_reachable)
7119 {
7120 Elf_Internal_Rela *l32r_irel;
7121 r_reloc r_rel;
7122 asection *target_sec;
7123 xtensa_relax_info *target_relax_info;
7124
7125 /* Mark the source_reloc for the L32R so that it will be
7126 removed in compute_removed_literals(), along with the
7127 associated literal. */
7128 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7129 irel, internal_relocs);
7130 if (l32r_irel == NULL)
7131 continue;
7132
7133 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7134
7135 target_sec = r_reloc_get_section (&r_rel);
7136 target_relax_info = get_xtensa_relax_info (target_sec);
7137
7138 if (target_relax_info
7139 && (target_relax_info->is_relaxable_literal_section
7140 || target_relax_info->is_relaxable_asm_section))
7141 {
7142 source_reloc *s_reloc;
7143
7144 /* Search the source_relocs for the entry corresponding to
7145 the l32r_irel. Note: The src_relocs array is not yet
7146 sorted, but it wouldn't matter anyway because we're
7147 searching by source offset instead of target offset. */
68ffbac6 7148 s_reloc = find_source_reloc (target_relax_info->src_relocs,
43cd72b9
BW
7149 target_relax_info->src_next,
7150 sec, l32r_irel);
7151 BFD_ASSERT (s_reloc);
7152 s_reloc->is_null = TRUE;
7153 }
7154
7155 /* Convert this reloc to ASM_SIMPLIFY. */
7156 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7157 R_XTENSA_ASM_SIMPLIFY);
7158 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7159
7160 pin_internal_relocs (sec, internal_relocs);
7161 }
7162 else
7163 {
7164 /* It is resolvable but doesn't reach. We resolve now
7165 by eliminating the relocation -- the call will remain
7166 expanded into L32R/CALLX. */
7167 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7168 pin_internal_relocs (sec, internal_relocs);
7169 }
7170 }
7171
7172 error_return:
7173 release_contents (sec, contents);
7174 release_internal_relocs (sec, internal_relocs);
7175 return ok;
7176}
7177
7178
7179/* Return TRUE if the asm expansion can be resolved. Generally it can
7180 be resolved on a final link or when a partial link locates it in the
7181 same section as the target. Set "is_reachable" flag if the target of
7182 the call is within the range of a direct call, given the current VMA
7183 for this section and the target section. */
7184
7185bfd_boolean
7fa3d080
BW
7186is_resolvable_asm_expansion (bfd *abfd,
7187 asection *sec,
7188 bfd_byte *contents,
7189 Elf_Internal_Rela *irel,
7190 struct bfd_link_info *link_info,
7191 bfd_boolean *is_reachable_p)
43cd72b9
BW
7192{
7193 asection *target_sec;
7194 bfd_vma target_offset;
7195 r_reloc r_rel;
7196 xtensa_opcode opcode, direct_call_opcode;
7197 bfd_vma self_address;
7198 bfd_vma dest_address;
7199 bfd_boolean uses_l32r;
7200 bfd_size_type sec_size;
7201
7202 *is_reachable_p = FALSE;
7203
7204 if (contents == NULL)
7205 return FALSE;
7206
68ffbac6 7207 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
43cd72b9
BW
7208 return FALSE;
7209
7210 sec_size = bfd_get_section_limit (abfd, sec);
7211 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7212 sec_size - irel->r_offset, &uses_l32r);
7213 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7214 if (!uses_l32r)
7215 return FALSE;
68ffbac6 7216
43cd72b9
BW
7217 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7218 if (direct_call_opcode == XTENSA_UNDEFINED)
7219 return FALSE;
7220
7221 /* Check and see that the target resolves. */
7222 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7223 if (!r_reloc_is_defined (&r_rel))
7224 return FALSE;
7225
7226 target_sec = r_reloc_get_section (&r_rel);
7227 target_offset = r_rel.target_offset;
7228
7229 /* If the target is in a shared library, then it doesn't reach. This
7230 isn't supposed to come up because the compiler should never generate
7231 non-PIC calls on systems that use shared libraries, but the linker
7232 shouldn't crash regardless. */
7233 if (!target_sec->output_section)
7234 return FALSE;
68ffbac6 7235
43cd72b9
BW
7236 /* For relocatable sections, we can only simplify when the output
7237 section of the target is the same as the output section of the
7238 source. */
0e1862bb 7239 if (bfd_link_relocatable (link_info)
43cd72b9
BW
7240 && (target_sec->output_section != sec->output_section
7241 || is_reloc_sym_weak (abfd, irel)))
7242 return FALSE;
7243
331ed130
SA
7244 if (target_sec->output_section != sec->output_section)
7245 {
7246 /* If the two sections are sufficiently far away that relaxation
7247 might take the call out of range, we can't simplify. For
7248 example, a positive displacement call into another memory
7249 could get moved to a lower address due to literal removal,
7250 but the destination won't move, and so the displacment might
7251 get larger.
7252
7253 If the displacement is negative, assume the destination could
7254 move as far back as the start of the output section. The
7255 self_address will be at least as far into the output section
7256 as it is prior to relaxation.
7257
7258 If the displacement is postive, assume the destination will be in
7259 it's pre-relaxed location (because relaxation only makes sections
7260 smaller). The self_address could go all the way to the beginning
7261 of the output section. */
7262
7263 dest_address = target_sec->output_section->vma;
7264 self_address = sec->output_section->vma;
7265
7266 if (sec->output_section->vma > target_sec->output_section->vma)
7267 self_address += sec->output_offset + irel->r_offset + 3;
7268 else
7269 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7270 /* Call targets should be four-byte aligned. */
7271 dest_address = (dest_address + 3) & ~3;
7272 }
7273 else
7274 {
7275
7276 self_address = (sec->output_section->vma
7277 + sec->output_offset + irel->r_offset + 3);
7278 dest_address = (target_sec->output_section->vma
7279 + target_sec->output_offset + target_offset);
7280 }
68ffbac6 7281
43cd72b9
BW
7282 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7283 self_address, dest_address);
7284
7285 if ((self_address >> CALL_SEGMENT_BITS) !=
7286 (dest_address >> CALL_SEGMENT_BITS))
7287 return FALSE;
7288
7289 return TRUE;
7290}
7291
7292
7293static Elf_Internal_Rela *
7fa3d080
BW
7294find_associated_l32r_irel (bfd *abfd,
7295 asection *sec,
7296 bfd_byte *contents,
7297 Elf_Internal_Rela *other_irel,
7298 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7299{
7300 unsigned i;
e0001a05 7301
68ffbac6 7302 for (i = 0; i < sec->reloc_count; i++)
43cd72b9
BW
7303 {
7304 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7305
43cd72b9
BW
7306 if (irel == other_irel)
7307 continue;
7308 if (irel->r_offset != other_irel->r_offset)
7309 continue;
7310 if (is_l32r_relocation (abfd, sec, contents, irel))
7311 return irel;
7312 }
7313
7314 return NULL;
e0001a05
NC
7315}
7316
7317
cb337148
BW
7318static xtensa_opcode *
7319build_reloc_opcodes (bfd *abfd,
7320 asection *sec,
7321 bfd_byte *contents,
7322 Elf_Internal_Rela *internal_relocs)
7323{
7324 unsigned i;
7325 xtensa_opcode *reloc_opcodes =
7326 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7327 for (i = 0; i < sec->reloc_count; i++)
7328 {
7329 Elf_Internal_Rela *irel = &internal_relocs[i];
7330 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7331 }
7332 return reloc_opcodes;
7333}
7334
b2b326d2
MF
7335struct reloc_range_struct
7336{
7337 bfd_vma addr;
7338 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7339 /* Original irel index in the array of relocations for a section. */
7340 unsigned irel_index;
7341};
7342typedef struct reloc_range_struct reloc_range;
7343
7344typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7345struct reloc_range_list_entry_struct
7346{
7347 reloc_range_list_entry *next;
7348 reloc_range_list_entry *prev;
7349 Elf_Internal_Rela *irel;
7350 xtensa_opcode opcode;
7351 int opnum;
7352};
7353
7354struct reloc_range_list_struct
7355{
7356 /* The rest of the structure is only meaningful when ok is TRUE. */
7357 bfd_boolean ok;
7358
7359 unsigned n_range; /* Number of range markers. */
7360 reloc_range *range; /* Sorted range markers. */
7361
7362 unsigned first; /* Index of a first range element in the list. */
7363 unsigned last; /* One past index of a last range element in the list. */
7364
7365 unsigned n_list; /* Number of list elements. */
7366 reloc_range_list_entry *reloc; /* */
7367 reloc_range_list_entry list_root;
7368};
7369
7370static int
7371reloc_range_compare (const void *a, const void *b)
7372{
7373 const reloc_range *ra = a;
7374 const reloc_range *rb = b;
7375
7376 if (ra->addr != rb->addr)
7377 return ra->addr < rb->addr ? -1 : 1;
7378 if (ra->add != rb->add)
7379 return ra->add ? -1 : 1;
7380 return 0;
7381}
7382
7383static void
7384build_reloc_ranges (bfd *abfd, asection *sec,
7385 bfd_byte *contents,
7386 Elf_Internal_Rela *internal_relocs,
7387 xtensa_opcode *reloc_opcodes,
7388 reloc_range_list *list)
7389{
7390 unsigned i;
7391 size_t n = 0;
7392 size_t max_n = 0;
7393 reloc_range *ranges = NULL;
7394 reloc_range_list_entry *reloc =
7395 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7396
7397 memset (list, 0, sizeof (*list));
7398 list->ok = TRUE;
7399
7400 for (i = 0; i < sec->reloc_count; i++)
7401 {
7402 Elf_Internal_Rela *irel = &internal_relocs[i];
7403 int r_type = ELF32_R_TYPE (irel->r_info);
7404 reloc_howto_type *howto = &elf_howto_table[r_type];
7405 r_reloc r_rel;
7406
7407 if (r_type == R_XTENSA_ASM_SIMPLIFY
7408 || r_type == R_XTENSA_32_PCREL
7409 || !howto->pc_relative)
7410 continue;
7411
7412 r_reloc_init (&r_rel, abfd, irel, contents,
7413 bfd_get_section_limit (abfd, sec));
7414
7415 if (r_reloc_get_section (&r_rel) != sec)
7416 continue;
7417
7418 if (n + 2 > max_n)
7419 {
7420 max_n = (max_n + 2) * 2;
7421 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7422 }
7423
7424 ranges[n].addr = irel->r_offset;
7425 ranges[n + 1].addr = r_rel.target_offset;
7426
7427 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7428 ranges[n + 1].add = !ranges[n].add;
7429
7430 ranges[n].irel_index = i;
7431 ranges[n + 1].irel_index = i;
7432
7433 n += 2;
7434
7435 reloc[i].irel = irel;
7436
7437 /* Every relocation won't possibly be checked in the optimized version of
07d6d2b8 7438 check_section_ebb_pcrels_fit, so this needs to be done here. */
b2b326d2
MF
7439 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7440 {
7441 /* None of the current alternate relocs are PC-relative,
7442 and only PC-relative relocs matter here. */
7443 }
7444 else
7445 {
7446 xtensa_opcode opcode;
7447 int opnum;
7448
7449 if (reloc_opcodes)
7450 opcode = reloc_opcodes[i];
7451 else
7452 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7453
7454 if (opcode == XTENSA_UNDEFINED)
7455 {
7456 list->ok = FALSE;
7457 break;
7458 }
7459
7460 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7461 if (opnum == XTENSA_UNDEFINED)
7462 {
7463 list->ok = FALSE;
7464 break;
7465 }
7466
7467 /* Record relocation opcode and opnum as we've calculated them
7468 anyway and they won't change. */
7469 reloc[i].opcode = opcode;
7470 reloc[i].opnum = opnum;
7471 }
7472 }
7473
7474 if (list->ok)
7475 {
7476 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7477 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7478
7479 list->n_range = n;
7480 list->range = ranges;
7481 list->reloc = reloc;
7482 list->list_root.prev = &list->list_root;
7483 list->list_root.next = &list->list_root;
7484 }
7485 else
7486 {
7487 free (ranges);
7488 free (reloc);
7489 }
7490}
7491
7492static void reloc_range_list_append (reloc_range_list *list,
7493 unsigned irel_index)
7494{
7495 reloc_range_list_entry *entry = list->reloc + irel_index;
7496
7497 entry->prev = list->list_root.prev;
7498 entry->next = &list->list_root;
7499 entry->prev->next = entry;
7500 entry->next->prev = entry;
7501 ++list->n_list;
7502}
7503
7504static void reloc_range_list_remove (reloc_range_list *list,
7505 unsigned irel_index)
7506{
7507 reloc_range_list_entry *entry = list->reloc + irel_index;
7508
7509 entry->next->prev = entry->prev;
7510 entry->prev->next = entry->next;
7511 --list->n_list;
7512}
7513
7514/* Update relocation list object so that it lists all relocations that cross
7515 [first; last] range. Range bounds should not decrease with successive
7516 invocations. */
7517static void reloc_range_list_update_range (reloc_range_list *list,
7518 bfd_vma first, bfd_vma last)
7519{
7520 /* This should not happen: EBBs are iterated from lower addresses to higher.
7521 But even if that happens there's no need to break: just flush current list
7522 and start from scratch. */
7523 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7524 (list->first > 0 && list->range[list->first - 1].addr >= first))
7525 {
7526 list->first = 0;
7527 list->last = 0;
7528 list->n_list = 0;
7529 list->list_root.next = &list->list_root;
7530 list->list_root.prev = &list->list_root;
7531 fprintf (stderr, "%s: move backwards requested\n", __func__);
7532 }
7533
7534 for (; list->last < list->n_range &&
7535 list->range[list->last].addr <= last; ++list->last)
7536 if (list->range[list->last].add)
7537 reloc_range_list_append (list, list->range[list->last].irel_index);
7538
7539 for (; list->first < list->n_range &&
7540 list->range[list->first].addr < first; ++list->first)
7541 if (!list->range[list->first].add)
7542 reloc_range_list_remove (list, list->range[list->first].irel_index);
7543}
7544
7545static void free_reloc_range_list (reloc_range_list *list)
7546{
7547 free (list->range);
7548 free (list->reloc);
7549}
cb337148 7550
43cd72b9
BW
7551/* The compute_text_actions function will build a list of potential
7552 transformation actions for code in the extended basic block of each
7553 longcall that is optimized to a direct call. From this list we
7554 generate a set of actions to actually perform that optimizes for
7555 space and, if not using size_opt, maintains branch target
7556 alignments.
e0001a05 7557
43cd72b9
BW
7558 These actions to be performed are placed on a per-section list.
7559 The actual changes are performed by relax_section() in the second
7560 pass. */
7561
7562bfd_boolean
7fa3d080
BW
7563compute_text_actions (bfd *abfd,
7564 asection *sec,
7565 struct bfd_link_info *link_info)
e0001a05 7566{
cb337148 7567 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7568 xtensa_relax_info *relax_info;
e0001a05 7569 bfd_byte *contents;
43cd72b9 7570 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7571 bfd_boolean ok = TRUE;
7572 unsigned i;
43cd72b9
BW
7573 property_table_entry *prop_table = 0;
7574 int ptblsize = 0;
7575 bfd_size_type sec_size;
b2b326d2 7576 reloc_range_list relevant_relocs;
43cd72b9 7577
43cd72b9
BW
7578 relax_info = get_xtensa_relax_info (sec);
7579 BFD_ASSERT (relax_info);
25c6282a
BW
7580 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7581
7582 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7583 if (!relax_info->is_relaxable_asm_section)
7584 return ok;
e0001a05
NC
7585
7586 internal_relocs = retrieve_internal_relocs (abfd, sec,
7587 link_info->keep_memory);
e0001a05 7588
43cd72b9
BW
7589 if (internal_relocs)
7590 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7591 internal_reloc_compare);
7592
7593 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7594 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7595 if (contents == NULL && sec_size != 0)
e0001a05
NC
7596 {
7597 ok = FALSE;
7598 goto error_return;
7599 }
7600
43cd72b9
BW
7601 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7602 XTENSA_PROP_SEC_NAME, FALSE);
7603 if (ptblsize < 0)
7604 {
7605 ok = FALSE;
7606 goto error_return;
7607 }
7608
b2b326d2
MF
7609 /* Precompute the opcode for each relocation. */
7610 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7611
7612 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7613 &relevant_relocs);
7614
43cd72b9 7615 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7616 {
7617 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7618 bfd_vma r_offset;
7619 property_table_entry *the_entry;
7620 int ptbl_idx;
7621 ebb_t *ebb;
7622 ebb_constraint ebb_table;
7623 bfd_size_type simplify_size;
7624
7625 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7626 continue;
7627 r_offset = irel->r_offset;
e0001a05 7628
43cd72b9
BW
7629 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7630 if (simplify_size == 0)
7631 {
4eca0228 7632 _bfd_error_handler
695344c0 7633 /* xgettext:c-format */
2dcf00ce 7634 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
d42c267e
AM
7635 "XTENSA_ASM_SIMPLIFY relocation; "
7636 "possible configuration mismatch"),
2dcf00ce 7637 sec->owner, sec, (uint64_t) r_offset);
43cd72b9
BW
7638 continue;
7639 }
e0001a05 7640
43cd72b9
BW
7641 /* If the instruction table is not around, then don't do this
7642 relaxation. */
7643 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7644 sec->vma + irel->r_offset);
7645 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7646 {
7647 text_action_add (&relax_info->action_list,
7648 ta_convert_longcall, sec, r_offset,
7649 0);
7650 continue;
7651 }
7652
7653 /* If the next longcall happens to be at the same address as an
7654 unreachable section of size 0, then skip forward. */
7655 ptbl_idx = the_entry - prop_table;
7656 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7657 && the_entry->size == 0
7658 && ptbl_idx + 1 < ptblsize
7659 && (prop_table[ptbl_idx + 1].address
7660 == prop_table[ptbl_idx].address))
7661 {
7662 ptbl_idx++;
7663 the_entry++;
7664 }
e0001a05 7665
99ded152 7666 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7667 /* NO_REORDER is OK */
7668 continue;
e0001a05 7669
43cd72b9
BW
7670 init_ebb_constraint (&ebb_table);
7671 ebb = &ebb_table.ebb;
7672 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7673 internal_relocs, sec->reloc_count);
7674 ebb->start_offset = r_offset + simplify_size;
7675 ebb->end_offset = r_offset + simplify_size;
7676 ebb->start_ptbl_idx = ptbl_idx;
7677 ebb->end_ptbl_idx = ptbl_idx;
7678 ebb->start_reloc_idx = i;
7679 ebb->end_reloc_idx = i;
7680
7681 if (!extend_ebb_bounds (ebb)
7682 || !compute_ebb_proposed_actions (&ebb_table)
7683 || !compute_ebb_actions (&ebb_table)
7684 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
b2b326d2
MF
7685 internal_relocs,
7686 &relevant_relocs,
7687 &ebb_table, reloc_opcodes)
43cd72b9 7688 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7689 {
43cd72b9
BW
7690 /* If anything goes wrong or we get unlucky and something does
7691 not fit, with our plan because of expansion between
7692 critical branches, just convert to a NOP. */
7693
7694 text_action_add (&relax_info->action_list,
7695 ta_convert_longcall, sec, r_offset, 0);
7696 i = ebb_table.ebb.end_reloc_idx;
7697 free_ebb_constraint (&ebb_table);
7698 continue;
e0001a05 7699 }
43cd72b9
BW
7700
7701 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7702
7703 /* Update the index so we do not go looking at the relocations
7704 we have already processed. */
7705 i = ebb_table.ebb.end_reloc_idx;
7706 free_ebb_constraint (&ebb_table);
e0001a05
NC
7707 }
7708
b2b326d2
MF
7709 free_reloc_range_list (&relevant_relocs);
7710
43cd72b9 7711#if DEBUG
4c2af04f 7712 if (action_list_count (&relax_info->action_list))
43cd72b9
BW
7713 print_action_list (stderr, &relax_info->action_list);
7714#endif
7715
7716error_return:
e0001a05
NC
7717 release_contents (sec, contents);
7718 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7719 if (prop_table)
7720 free (prop_table);
cb337148
BW
7721 if (reloc_opcodes)
7722 free (reloc_opcodes);
43cd72b9 7723
e0001a05
NC
7724 return ok;
7725}
7726
7727
64b607e6
BW
7728/* Do not widen an instruction if it is preceeded by a
7729 loop opcode. It might cause misalignment. */
7730
7731static bfd_boolean
7732prev_instr_is_a_loop (bfd_byte *contents,
7733 bfd_size_type content_length,
7734 bfd_size_type offset)
7735{
7736 xtensa_opcode prev_opcode;
7737
7738 if (offset < 3)
7739 return FALSE;
7740 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7741 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
68ffbac6 7742}
64b607e6
BW
7743
7744
43cd72b9 7745/* Find all of the possible actions for an extended basic block. */
e0001a05 7746
43cd72b9 7747bfd_boolean
7fa3d080 7748compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7749{
43cd72b9
BW
7750 const ebb_t *ebb = &ebb_table->ebb;
7751 unsigned rel_idx = ebb->start_reloc_idx;
7752 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7753 bfd_vma offset = 0;
7754 xtensa_isa isa = xtensa_default_isa;
7755 xtensa_format fmt;
7756 static xtensa_insnbuf insnbuf = NULL;
7757 static xtensa_insnbuf slotbuf = NULL;
7758
7759 if (insnbuf == NULL)
7760 {
7761 insnbuf = xtensa_insnbuf_alloc (isa);
7762 slotbuf = xtensa_insnbuf_alloc (isa);
7763 }
e0001a05 7764
43cd72b9
BW
7765 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7766 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7767
43cd72b9 7768 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7769 {
64b607e6 7770 bfd_vma start_offset, end_offset;
43cd72b9 7771 bfd_size_type insn_len;
e0001a05 7772
43cd72b9
BW
7773 start_offset = entry->address - ebb->sec->vma;
7774 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7775
43cd72b9
BW
7776 if (entry == start_entry)
7777 start_offset = ebb->start_offset;
7778 if (entry == end_entry)
7779 end_offset = ebb->end_offset;
7780 offset = start_offset;
e0001a05 7781
43cd72b9
BW
7782 if (offset == entry->address - ebb->sec->vma
7783 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7784 {
7785 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7786 BFD_ASSERT (offset != end_offset);
7787 if (offset == end_offset)
7788 return FALSE;
e0001a05 7789
43cd72b9
BW
7790 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7791 offset);
68ffbac6 7792 if (insn_len == 0)
64b607e6
BW
7793 goto decode_error;
7794
43cd72b9
BW
7795 if (check_branch_target_aligned_address (offset, insn_len))
7796 align_type = EBB_REQUIRE_TGT_ALIGN;
7797
7798 ebb_propose_action (ebb_table, align_type, 0,
7799 ta_none, offset, 0, TRUE);
7800 }
7801
7802 while (offset != end_offset)
e0001a05 7803 {
43cd72b9 7804 Elf_Internal_Rela *irel;
e0001a05 7805 xtensa_opcode opcode;
e0001a05 7806
43cd72b9
BW
7807 while (rel_idx < ebb->end_reloc_idx
7808 && (ebb->relocs[rel_idx].r_offset < offset
7809 || (ebb->relocs[rel_idx].r_offset == offset
7810 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7811 != R_XTENSA_ASM_SIMPLIFY))))
7812 rel_idx++;
7813
7814 /* Check for longcall. */
7815 irel = &ebb->relocs[rel_idx];
7816 if (irel->r_offset == offset
7817 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7818 {
7819 bfd_size_type simplify_size;
e0001a05 7820
68ffbac6 7821 simplify_size = get_asm_simplify_size (ebb->contents,
43cd72b9
BW
7822 ebb->content_length,
7823 irel->r_offset);
7824 if (simplify_size == 0)
64b607e6 7825 goto decode_error;
43cd72b9
BW
7826
7827 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7828 ta_convert_longcall, offset, 0, TRUE);
68ffbac6 7829
43cd72b9
BW
7830 offset += simplify_size;
7831 continue;
7832 }
e0001a05 7833
64b607e6
BW
7834 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7835 goto decode_error;
7836 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7837 ebb->content_length - offset);
7838 fmt = xtensa_format_decode (isa, insnbuf);
7839 if (fmt == XTENSA_UNDEFINED)
7840 goto decode_error;
7841 insn_len = xtensa_format_length (isa, fmt);
7842 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7843 goto decode_error;
7844
7845 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7846 {
64b607e6
BW
7847 offset += insn_len;
7848 continue;
43cd72b9 7849 }
64b607e6
BW
7850
7851 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7852 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7853 if (opcode == XTENSA_UNDEFINED)
7854 goto decode_error;
7855
43cd72b9 7856 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7857 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7858 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7859 {
7860 /* Add an instruction narrow action. */
7861 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7862 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7863 }
99ded152 7864 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7865 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7866 && ! prev_instr_is_a_loop (ebb->contents,
7867 ebb->content_length, offset))
43cd72b9
BW
7868 {
7869 /* Add an instruction widen action. */
7870 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7871 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7872 }
64b607e6 7873 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7874 {
7875 /* Check for branch targets. */
7876 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7877 ta_none, offset, 0, TRUE);
43cd72b9
BW
7878 }
7879
7880 offset += insn_len;
e0001a05
NC
7881 }
7882 }
7883
43cd72b9
BW
7884 if (ebb->ends_unreachable)
7885 {
7886 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7887 ta_fill, ebb->end_offset, 0, TRUE);
7888 }
e0001a05 7889
43cd72b9 7890 return TRUE;
64b607e6
BW
7891
7892 decode_error:
4eca0228 7893 _bfd_error_handler
695344c0 7894 /* xgettext:c-format */
2dcf00ce 7895 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
d42c267e 7896 "possible configuration mismatch"),
2dcf00ce 7897 ebb->sec->owner, ebb->sec, (uint64_t) offset);
64b607e6 7898 return FALSE;
43cd72b9
BW
7899}
7900
7901
7902/* After all of the information has collected about the
7903 transformations possible in an EBB, compute the appropriate actions
7904 here in compute_ebb_actions. We still must check later to make
7905 sure that the actions do not break any relocations. The algorithm
7906 used here is pretty greedy. Basically, it removes as many no-ops
7907 as possible so that the end of the EBB has the same alignment
7908 characteristics as the original. First, it uses narrowing, then
7909 fill space at the end of the EBB, and finally widenings. If that
7910 does not work, it tries again with one fewer no-op removed. The
7911 optimization will only be performed if all of the branch targets
7912 that were aligned before transformation are also aligned after the
7913 transformation.
7914
7915 When the size_opt flag is set, ignore the branch target alignments,
7916 narrow all wide instructions, and remove all no-ops unless the end
7917 of the EBB prevents it. */
7918
7919bfd_boolean
7fa3d080 7920compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7921{
7922 unsigned i = 0;
7923 unsigned j;
7924 int removed_bytes = 0;
7925 ebb_t *ebb = &ebb_table->ebb;
7926 unsigned seg_idx_start = 0;
7927 unsigned seg_idx_end = 0;
7928
7929 /* We perform this like the assembler relaxation algorithm: Start by
7930 assuming all instructions are narrow and all no-ops removed; then
7931 walk through.... */
7932
7933 /* For each segment of this that has a solid constraint, check to
7934 see if there are any combinations that will keep the constraint.
7935 If so, use it. */
7936 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7937 {
43cd72b9
BW
7938 bfd_boolean requires_text_end_align = FALSE;
7939 unsigned longcall_count = 0;
7940 unsigned longcall_convert_count = 0;
7941 unsigned narrowable_count = 0;
7942 unsigned narrowable_convert_count = 0;
7943 unsigned widenable_count = 0;
7944 unsigned widenable_convert_count = 0;
e0001a05 7945
43cd72b9
BW
7946 proposed_action *action = NULL;
7947 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 7948
43cd72b9 7949 seg_idx_start = seg_idx_end;
e0001a05 7950
43cd72b9
BW
7951 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7952 {
7953 action = &ebb_table->actions[i];
7954 if (action->action == ta_convert_longcall)
7955 longcall_count++;
7956 if (action->action == ta_narrow_insn)
7957 narrowable_count++;
7958 if (action->action == ta_widen_insn)
7959 widenable_count++;
7960 if (action->action == ta_fill)
7961 break;
7962 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7963 break;
7964 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7965 && !elf32xtensa_size_opt)
7966 break;
7967 }
7968 seg_idx_end = i;
e0001a05 7969
43cd72b9
BW
7970 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7971 requires_text_end_align = TRUE;
e0001a05 7972
43cd72b9
BW
7973 if (elf32xtensa_size_opt && !requires_text_end_align
7974 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7975 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7976 {
7977 longcall_convert_count = longcall_count;
7978 narrowable_convert_count = narrowable_count;
7979 widenable_convert_count = 0;
7980 }
7981 else
7982 {
7983 /* There is a constraint. Convert the max number of longcalls. */
7984 narrowable_convert_count = 0;
7985 longcall_convert_count = 0;
7986 widenable_convert_count = 0;
e0001a05 7987
43cd72b9 7988 for (j = 0; j < longcall_count; j++)
e0001a05 7989 {
43cd72b9
BW
7990 int removed = (longcall_count - j) * 3 & (align - 1);
7991 unsigned desire_narrow = (align - removed) & (align - 1);
7992 unsigned desire_widen = removed;
7993 if (desire_narrow <= narrowable_count)
7994 {
7995 narrowable_convert_count = desire_narrow;
7996 narrowable_convert_count +=
7997 (align * ((narrowable_count - narrowable_convert_count)
7998 / align));
7999 longcall_convert_count = (longcall_count - j);
8000 widenable_convert_count = 0;
8001 break;
8002 }
8003 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8004 {
8005 narrowable_convert_count = 0;
8006 longcall_convert_count = longcall_count - j;
8007 widenable_convert_count = desire_widen;
8008 break;
8009 }
8010 }
8011 }
e0001a05 8012
43cd72b9
BW
8013 /* Now the number of conversions are saved. Do them. */
8014 for (i = seg_idx_start; i < seg_idx_end; i++)
8015 {
8016 action = &ebb_table->actions[i];
8017 switch (action->action)
8018 {
8019 case ta_convert_longcall:
8020 if (longcall_convert_count != 0)
8021 {
8022 action->action = ta_remove_longcall;
8023 action->do_action = TRUE;
8024 action->removed_bytes += 3;
8025 longcall_convert_count--;
8026 }
8027 break;
8028 case ta_narrow_insn:
8029 if (narrowable_convert_count != 0)
8030 {
8031 action->do_action = TRUE;
8032 action->removed_bytes += 1;
8033 narrowable_convert_count--;
8034 }
8035 break;
8036 case ta_widen_insn:
8037 if (widenable_convert_count != 0)
8038 {
8039 action->do_action = TRUE;
8040 action->removed_bytes -= 1;
8041 widenable_convert_count--;
8042 }
8043 break;
8044 default:
8045 break;
e0001a05 8046 }
43cd72b9
BW
8047 }
8048 }
e0001a05 8049
43cd72b9
BW
8050 /* Now we move on to some local opts. Try to remove each of the
8051 remaining longcalls. */
e0001a05 8052
43cd72b9
BW
8053 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8054 {
8055 removed_bytes = 0;
8056 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8057 {
43cd72b9
BW
8058 int old_removed_bytes = removed_bytes;
8059 proposed_action *action = &ebb_table->actions[i];
8060
8061 if (action->do_action && action->action == ta_convert_longcall)
8062 {
8063 bfd_boolean bad_alignment = FALSE;
8064 removed_bytes += 3;
8065 for (j = i + 1; j < ebb_table->action_count; j++)
8066 {
8067 proposed_action *new_action = &ebb_table->actions[j];
8068 bfd_vma offset = new_action->offset;
8069 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8070 {
8071 if (!check_branch_target_aligned
8072 (ebb_table->ebb.contents,
8073 ebb_table->ebb.content_length,
8074 offset, offset - removed_bytes))
8075 {
8076 bad_alignment = TRUE;
8077 break;
8078 }
8079 }
8080 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8081 {
8082 if (!check_loop_aligned (ebb_table->ebb.contents,
8083 ebb_table->ebb.content_length,
8084 offset,
8085 offset - removed_bytes))
8086 {
8087 bad_alignment = TRUE;
8088 break;
8089 }
8090 }
8091 if (new_action->action == ta_narrow_insn
8092 && !new_action->do_action
8093 && ebb_table->ebb.sec->alignment_power == 2)
8094 {
8095 /* Narrow an instruction and we are done. */
8096 new_action->do_action = TRUE;
8097 new_action->removed_bytes += 1;
8098 bad_alignment = FALSE;
8099 break;
8100 }
8101 if (new_action->action == ta_widen_insn
8102 && new_action->do_action
8103 && ebb_table->ebb.sec->alignment_power == 2)
8104 {
8105 /* Narrow an instruction and we are done. */
8106 new_action->do_action = FALSE;
8107 new_action->removed_bytes += 1;
8108 bad_alignment = FALSE;
8109 break;
8110 }
5c5d6806
BW
8111 if (new_action->do_action)
8112 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
8113 }
8114 if (!bad_alignment)
8115 {
8116 action->removed_bytes += 3;
8117 action->action = ta_remove_longcall;
8118 action->do_action = TRUE;
8119 }
8120 }
8121 removed_bytes = old_removed_bytes;
8122 if (action->do_action)
8123 removed_bytes += action->removed_bytes;
e0001a05
NC
8124 }
8125 }
8126
43cd72b9
BW
8127 removed_bytes = 0;
8128 for (i = 0; i < ebb_table->action_count; ++i)
8129 {
8130 proposed_action *action = &ebb_table->actions[i];
8131 if (action->do_action)
8132 removed_bytes += action->removed_bytes;
8133 }
8134
8135 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8136 && ebb->ends_unreachable)
8137 {
8138 proposed_action *action;
8139 int br;
8140 int extra_space;
8141
8142 BFD_ASSERT (ebb_table->action_count != 0);
8143 action = &ebb_table->actions[ebb_table->action_count - 1];
8144 BFD_ASSERT (action->action == ta_fill);
8145 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8146
4b8e28c7 8147 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
43cd72b9
BW
8148 br = action->removed_bytes + removed_bytes + extra_space;
8149 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8150
8151 action->removed_bytes = extra_space - br;
8152 }
8153 return TRUE;
e0001a05
NC
8154}
8155
8156
03e94c08
BW
8157/* The xlate_map is a sorted array of address mappings designed to
8158 answer the offset_with_removed_text() query with a binary search instead
8159 of a linear search through the section's action_list. */
8160
8161typedef struct xlate_map_entry xlate_map_entry_t;
8162typedef struct xlate_map xlate_map_t;
8163
8164struct xlate_map_entry
8165{
0854d504
MF
8166 bfd_vma orig_address;
8167 bfd_vma new_address;
03e94c08
BW
8168 unsigned size;
8169};
8170
8171struct xlate_map
8172{
8173 unsigned entry_count;
8174 xlate_map_entry_t *entry;
8175};
8176
8177
68ffbac6 8178static int
03e94c08
BW
8179xlate_compare (const void *a_v, const void *b_v)
8180{
8181 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8182 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8183 if (a->orig_address < b->orig_address)
8184 return -1;
8185 if (a->orig_address > (b->orig_address + b->size - 1))
8186 return 1;
8187 return 0;
8188}
8189
8190
8191static bfd_vma
8192xlate_offset_with_removed_text (const xlate_map_t *map,
8193 text_action_list *action_list,
8194 bfd_vma offset)
8195{
03e94c08
BW
8196 void *r;
8197 xlate_map_entry_t *e;
0854d504 8198 struct xlate_map_entry se;
03e94c08
BW
8199
8200 if (map == NULL)
8201 return offset_with_removed_text (action_list, offset);
8202
8203 if (map->entry_count == 0)
8204 return offset;
8205
0854d504
MF
8206 se.orig_address = offset;
8207 r = bsearch (&se, map->entry, map->entry_count,
03e94c08
BW
8208 sizeof (xlate_map_entry_t), &xlate_compare);
8209 e = (xlate_map_entry_t *) r;
68ffbac6 8210
0854d504
MF
8211 /* There could be a jump past the end of the section,
8212 allow it using the last xlate map entry to translate its address. */
8213 if (e == NULL)
8214 {
8215 e = map->entry + map->entry_count - 1;
8216 if (xlate_compare (&se, e) <= 0)
8217 e = NULL;
8218 }
03e94c08
BW
8219 BFD_ASSERT (e != NULL);
8220 if (e == NULL)
8221 return offset;
8222 return e->new_address - e->orig_address + offset;
8223}
8224
4c2af04f
MF
8225typedef struct xlate_map_context_struct xlate_map_context;
8226struct xlate_map_context_struct
8227{
8228 xlate_map_t *map;
8229 xlate_map_entry_t *current_entry;
8230 int removed;
8231};
8232
8233static int
8234xlate_map_fn (splay_tree_node node, void *p)
8235{
8236 text_action *r = (text_action *)node->value;
8237 xlate_map_context *ctx = p;
8238 unsigned orig_size = 0;
8239
8240 switch (r->action)
8241 {
8242 case ta_none:
8243 case ta_remove_insn:
8244 case ta_convert_longcall:
8245 case ta_remove_literal:
8246 case ta_add_literal:
8247 break;
8248 case ta_remove_longcall:
8249 orig_size = 6;
8250 break;
8251 case ta_narrow_insn:
8252 orig_size = 3;
8253 break;
8254 case ta_widen_insn:
8255 orig_size = 2;
8256 break;
8257 case ta_fill:
8258 break;
8259 }
8260 ctx->current_entry->size =
8261 r->offset + orig_size - ctx->current_entry->orig_address;
8262 if (ctx->current_entry->size != 0)
8263 {
8264 ctx->current_entry++;
8265 ctx->map->entry_count++;
8266 }
8267 ctx->current_entry->orig_address = r->offset + orig_size;
8268 ctx->removed += r->removed_bytes;
8269 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8270 ctx->current_entry->size = 0;
8271 return 0;
8272}
03e94c08
BW
8273
8274/* Build a binary searchable offset translation map from a section's
8275 action list. */
8276
8277static xlate_map_t *
8278build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8279{
03e94c08
BW
8280 text_action_list *action_list = &relax_info->action_list;
8281 unsigned num_actions = 0;
4c2af04f 8282 xlate_map_context ctx;
03e94c08 8283
4c2af04f
MF
8284 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8285
8286 if (ctx.map == NULL)
03e94c08
BW
8287 return NULL;
8288
8289 num_actions = action_list_count (action_list);
4c2af04f 8290 ctx.map->entry = (xlate_map_entry_t *)
03e94c08 8291 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
4c2af04f 8292 if (ctx.map->entry == NULL)
03e94c08 8293 {
4c2af04f 8294 free (ctx.map);
03e94c08
BW
8295 return NULL;
8296 }
4c2af04f 8297 ctx.map->entry_count = 0;
68ffbac6 8298
4c2af04f
MF
8299 ctx.removed = 0;
8300 ctx.current_entry = &ctx.map->entry[0];
03e94c08 8301
4c2af04f
MF
8302 ctx.current_entry->orig_address = 0;
8303 ctx.current_entry->new_address = 0;
8304 ctx.current_entry->size = 0;
03e94c08 8305
4c2af04f 8306 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
03e94c08 8307
4c2af04f
MF
8308 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8309 - ctx.current_entry->orig_address);
8310 if (ctx.current_entry->size != 0)
8311 ctx.map->entry_count++;
03e94c08 8312
4c2af04f 8313 return ctx.map;
03e94c08
BW
8314}
8315
8316
8317/* Free an offset translation map. */
8318
68ffbac6 8319static void
03e94c08
BW
8320free_xlate_map (xlate_map_t *map)
8321{
8322 if (map && map->entry)
8323 free (map->entry);
8324 if (map)
8325 free (map);
8326}
8327
8328
43cd72b9
BW
8329/* Use check_section_ebb_pcrels_fit to make sure that all of the
8330 relocations in a section will fit if a proposed set of actions
8331 are performed. */
e0001a05 8332
43cd72b9 8333static bfd_boolean
7fa3d080
BW
8334check_section_ebb_pcrels_fit (bfd *abfd,
8335 asection *sec,
8336 bfd_byte *contents,
8337 Elf_Internal_Rela *internal_relocs,
b2b326d2 8338 reloc_range_list *relevant_relocs,
cb337148
BW
8339 const ebb_constraint *constraint,
8340 const xtensa_opcode *reloc_opcodes)
e0001a05 8341{
43cd72b9 8342 unsigned i, j;
b2b326d2 8343 unsigned n = sec->reloc_count;
43cd72b9 8344 Elf_Internal_Rela *irel;
03e94c08
BW
8345 xlate_map_t *xmap = NULL;
8346 bfd_boolean ok = TRUE;
43cd72b9 8347 xtensa_relax_info *relax_info;
b2b326d2 8348 reloc_range_list_entry *entry = NULL;
e0001a05 8349
43cd72b9 8350 relax_info = get_xtensa_relax_info (sec);
e0001a05 8351
03e94c08
BW
8352 if (relax_info && sec->reloc_count > 100)
8353 {
8354 xmap = build_xlate_map (sec, relax_info);
8355 /* NULL indicates out of memory, but the slow version
8356 can still be used. */
8357 }
8358
b2b326d2
MF
8359 if (relevant_relocs && constraint->action_count)
8360 {
8361 if (!relevant_relocs->ok)
8362 {
8363 ok = FALSE;
8364 n = 0;
8365 }
8366 else
8367 {
8368 bfd_vma min_offset, max_offset;
8369 min_offset = max_offset = constraint->actions[0].offset;
8370
8371 for (i = 1; i < constraint->action_count; ++i)
8372 {
8373 proposed_action *action = &constraint->actions[i];
8374 bfd_vma offset = action->offset;
8375
8376 if (offset < min_offset)
8377 min_offset = offset;
8378 if (offset > max_offset)
8379 max_offset = offset;
8380 }
8381 reloc_range_list_update_range (relevant_relocs, min_offset,
8382 max_offset);
8383 n = relevant_relocs->n_list;
8384 entry = &relevant_relocs->list_root;
8385 }
8386 }
8387 else
8388 {
8389 relevant_relocs = NULL;
8390 }
8391
8392 for (i = 0; i < n; i++)
43cd72b9
BW
8393 {
8394 r_reloc r_rel;
8395 bfd_vma orig_self_offset, orig_target_offset;
8396 bfd_vma self_offset, target_offset;
8397 int r_type;
8398 reloc_howto_type *howto;
8399 int self_removed_bytes, target_removed_bytes;
e0001a05 8400
b2b326d2
MF
8401 if (relevant_relocs)
8402 {
8403 entry = entry->next;
8404 irel = entry->irel;
8405 }
8406 else
8407 {
8408 irel = internal_relocs + i;
8409 }
43cd72b9 8410 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 8411
43cd72b9
BW
8412 howto = &elf_howto_table[r_type];
8413 /* We maintain the required invariant: PC-relative relocations
8414 that fit before linking must fit after linking. Thus we only
8415 need to deal with relocations to the same section that are
8416 PC-relative. */
1bbb5f21
BW
8417 if (r_type == R_XTENSA_ASM_SIMPLIFY
8418 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
8419 || !howto->pc_relative)
8420 continue;
e0001a05 8421
43cd72b9
BW
8422 r_reloc_init (&r_rel, abfd, irel, contents,
8423 bfd_get_section_limit (abfd, sec));
e0001a05 8424
43cd72b9
BW
8425 if (r_reloc_get_section (&r_rel) != sec)
8426 continue;
e0001a05 8427
43cd72b9
BW
8428 orig_self_offset = irel->r_offset;
8429 orig_target_offset = r_rel.target_offset;
e0001a05 8430
43cd72b9
BW
8431 self_offset = orig_self_offset;
8432 target_offset = orig_target_offset;
8433
8434 if (relax_info)
8435 {
03e94c08
BW
8436 self_offset =
8437 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8438 orig_self_offset);
8439 target_offset =
8440 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8441 orig_target_offset);
43cd72b9
BW
8442 }
8443
8444 self_removed_bytes = 0;
8445 target_removed_bytes = 0;
8446
8447 for (j = 0; j < constraint->action_count; ++j)
8448 {
8449 proposed_action *action = &constraint->actions[j];
8450 bfd_vma offset = action->offset;
8451 int removed_bytes = action->removed_bytes;
8452 if (offset < orig_self_offset
8453 || (offset == orig_self_offset && action->action == ta_fill
8454 && action->removed_bytes < 0))
8455 self_removed_bytes += removed_bytes;
8456 if (offset < orig_target_offset
8457 || (offset == orig_target_offset && action->action == ta_fill
8458 && action->removed_bytes < 0))
8459 target_removed_bytes += removed_bytes;
8460 }
8461 self_offset -= self_removed_bytes;
8462 target_offset -= target_removed_bytes;
8463
8464 /* Try to encode it. Get the operand and check. */
8465 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8466 {
8467 /* None of the current alternate relocs are PC-relative,
8468 and only PC-relative relocs matter here. */
8469 }
8470 else
8471 {
8472 xtensa_opcode opcode;
8473 int opnum;
8474
b2b326d2 8475 if (relevant_relocs)
03e94c08 8476 {
b2b326d2
MF
8477 opcode = entry->opcode;
8478 opnum = entry->opnum;
03e94c08 8479 }
b2b326d2 8480 else
03e94c08 8481 {
b2b326d2
MF
8482 if (reloc_opcodes)
8483 opcode = reloc_opcodes[relevant_relocs ?
8484 (unsigned)(entry - relevant_relocs->reloc) : i];
8485 else
8486 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8487 if (opcode == XTENSA_UNDEFINED)
8488 {
8489 ok = FALSE;
8490 break;
8491 }
8492
8493 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8494 if (opnum == XTENSA_UNDEFINED)
8495 {
8496 ok = FALSE;
8497 break;
8498 }
03e94c08 8499 }
43cd72b9
BW
8500
8501 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8502 {
8503 ok = FALSE;
8504 break;
8505 }
43cd72b9
BW
8506 }
8507 }
8508
03e94c08
BW
8509 if (xmap)
8510 free_xlate_map (xmap);
8511
8512 return ok;
43cd72b9
BW
8513}
8514
8515
8516static bfd_boolean
7fa3d080 8517check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8518{
8519 int removed = 0;
8520 unsigned i;
8521
8522 for (i = 0; i < constraint->action_count; i++)
8523 {
8524 const proposed_action *action = &constraint->actions[i];
8525 if (action->do_action)
8526 removed += action->removed_bytes;
8527 }
8528 if (removed < 0)
e0001a05
NC
8529 return FALSE;
8530
8531 return TRUE;
8532}
8533
8534
43cd72b9 8535void
7fa3d080
BW
8536text_action_add_proposed (text_action_list *l,
8537 const ebb_constraint *ebb_table,
8538 asection *sec)
e0001a05
NC
8539{
8540 unsigned i;
8541
43cd72b9 8542 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8543 {
43cd72b9 8544 proposed_action *action = &ebb_table->actions[i];
e0001a05 8545
43cd72b9 8546 if (!action->do_action)
e0001a05 8547 continue;
43cd72b9
BW
8548 switch (action->action)
8549 {
8550 case ta_remove_insn:
8551 case ta_remove_longcall:
8552 case ta_convert_longcall:
8553 case ta_narrow_insn:
8554 case ta_widen_insn:
8555 case ta_fill:
8556 case ta_remove_literal:
8557 text_action_add (l, action->action, sec, action->offset,
8558 action->removed_bytes);
8559 break;
8560 case ta_none:
8561 break;
8562 default:
8563 BFD_ASSERT (0);
8564 break;
8565 }
e0001a05 8566 }
43cd72b9 8567}
e0001a05 8568
43cd72b9
BW
8569
8570int
4b8e28c7 8571xtensa_compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8572{
8573 int fill_extra_space;
8574
8575 if (!entry)
8576 return 0;
8577
8578 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8579 return 0;
8580
8581 fill_extra_space = entry->size;
8582 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8583 {
8584 /* Fill bytes for alignment:
8585 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8586 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8587 int nsm = (1 << pow) - 1;
8588 bfd_vma addr = entry->address + entry->size;
8589 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8590 fill_extra_space += align_fill;
8591 }
8592 return fill_extra_space;
e0001a05
NC
8593}
8594
43cd72b9 8595\f
e0001a05
NC
8596/* First relaxation pass. */
8597
43cd72b9
BW
8598/* If the section contains relaxable literals, check each literal to
8599 see if it has the same value as another literal that has already
8600 been seen, either in the current section or a previous one. If so,
8601 add an entry to the per-section list of removed literals. The
e0001a05
NC
8602 actual changes are deferred until the next pass. */
8603
68ffbac6 8604static bfd_boolean
7fa3d080
BW
8605compute_removed_literals (bfd *abfd,
8606 asection *sec,
8607 struct bfd_link_info *link_info,
8608 value_map_hash_table *values)
e0001a05
NC
8609{
8610 xtensa_relax_info *relax_info;
8611 bfd_byte *contents;
8612 Elf_Internal_Rela *internal_relocs;
43cd72b9 8613 source_reloc *src_relocs, *rel;
e0001a05 8614 bfd_boolean ok = TRUE;
43cd72b9
BW
8615 property_table_entry *prop_table = NULL;
8616 int ptblsize;
8617 int i, prev_i;
8618 bfd_boolean last_loc_is_prev = FALSE;
8619 bfd_vma last_target_offset = 0;
8620 section_cache_t target_sec_cache;
8621 bfd_size_type sec_size;
8622
8623 init_section_cache (&target_sec_cache);
e0001a05
NC
8624
8625 /* Do nothing if it is not a relaxable literal section. */
8626 relax_info = get_xtensa_relax_info (sec);
8627 BFD_ASSERT (relax_info);
e0001a05
NC
8628 if (!relax_info->is_relaxable_literal_section)
8629 return ok;
8630
68ffbac6 8631 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
8632 link_info->keep_memory);
8633
43cd72b9 8634 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8635 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8636 if (contents == NULL && sec_size != 0)
e0001a05
NC
8637 {
8638 ok = FALSE;
8639 goto error_return;
8640 }
8641
8642 /* Sort the source_relocs by target offset. */
8643 src_relocs = relax_info->src_relocs;
8644 qsort (src_relocs, relax_info->src_count,
8645 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8646 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8647 internal_reloc_compare);
e0001a05 8648
43cd72b9
BW
8649 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8650 XTENSA_PROP_SEC_NAME, FALSE);
8651 if (ptblsize < 0)
8652 {
8653 ok = FALSE;
8654 goto error_return;
8655 }
8656
8657 prev_i = -1;
e0001a05
NC
8658 for (i = 0; i < relax_info->src_count; i++)
8659 {
e0001a05 8660 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8661
8662 rel = &src_relocs[i];
43cd72b9
BW
8663 if (get_l32r_opcode () != rel->opcode)
8664 continue;
e0001a05
NC
8665 irel = get_irel_at_offset (sec, internal_relocs,
8666 rel->r_rel.target_offset);
8667
43cd72b9
BW
8668 /* If the relocation on this is not a simple R_XTENSA_32 or
8669 R_XTENSA_PLT then do not consider it. This may happen when
8670 the difference of two symbols is used in a literal. */
8671 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8672 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8673 continue;
8674
e0001a05
NC
8675 /* If the target_offset for this relocation is the same as the
8676 previous relocation, then we've already considered whether the
8677 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8678 if (i != 0 && prev_i != -1
8679 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8680 continue;
43cd72b9
BW
8681 prev_i = i;
8682
68ffbac6 8683 if (last_loc_is_prev &&
43cd72b9
BW
8684 last_target_offset + 4 != rel->r_rel.target_offset)
8685 last_loc_is_prev = FALSE;
e0001a05
NC
8686
8687 /* Check if the relocation was from an L32R that is being removed
8688 because a CALLX was converted to a direct CALL, and check if
8689 there are no other relocations to the literal. */
68ffbac6 8690 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
99ded152 8691 sec, prop_table, ptblsize))
e0001a05 8692 {
43cd72b9
BW
8693 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8694 irel, rel, prop_table, ptblsize))
e0001a05 8695 {
43cd72b9
BW
8696 ok = FALSE;
8697 goto error_return;
e0001a05 8698 }
43cd72b9 8699 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8700 continue;
8701 }
8702
43cd72b9 8703 if (!identify_literal_placement (abfd, sec, contents, link_info,
68ffbac6
L
8704 values,
8705 &last_loc_is_prev, irel,
43cd72b9
BW
8706 relax_info->src_count - i, rel,
8707 prop_table, ptblsize,
8708 &target_sec_cache, rel->is_abs_literal))
e0001a05 8709 {
43cd72b9
BW
8710 ok = FALSE;
8711 goto error_return;
8712 }
8713 last_target_offset = rel->r_rel.target_offset;
8714 }
e0001a05 8715
43cd72b9
BW
8716#if DEBUG
8717 print_removed_literals (stderr, &relax_info->removed_list);
8718 print_action_list (stderr, &relax_info->action_list);
8719#endif /* DEBUG */
8720
8721error_return:
65e911f9
AM
8722 if (prop_table)
8723 free (prop_table);
8724 free_section_cache (&target_sec_cache);
43cd72b9
BW
8725
8726 release_contents (sec, contents);
8727 release_internal_relocs (sec, internal_relocs);
8728 return ok;
8729}
8730
8731
8732static Elf_Internal_Rela *
7fa3d080
BW
8733get_irel_at_offset (asection *sec,
8734 Elf_Internal_Rela *internal_relocs,
8735 bfd_vma offset)
43cd72b9
BW
8736{
8737 unsigned i;
8738 Elf_Internal_Rela *irel;
8739 unsigned r_type;
8740 Elf_Internal_Rela key;
8741
68ffbac6 8742 if (!internal_relocs)
43cd72b9
BW
8743 return NULL;
8744
8745 key.r_offset = offset;
8746 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8747 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8748 if (!irel)
8749 return NULL;
8750
8751 /* bsearch does not guarantee which will be returned if there are
8752 multiple matches. We need the first that is not an alignment. */
8753 i = irel - internal_relocs;
8754 while (i > 0)
8755 {
8756 if (internal_relocs[i-1].r_offset != offset)
8757 break;
8758 i--;
8759 }
8760 for ( ; i < sec->reloc_count; i++)
8761 {
8762 irel = &internal_relocs[i];
8763 r_type = ELF32_R_TYPE (irel->r_info);
8764 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8765 return irel;
8766 }
8767
8768 return NULL;
8769}
8770
8771
8772bfd_boolean
7fa3d080
BW
8773is_removable_literal (const source_reloc *rel,
8774 int i,
8775 const source_reloc *src_relocs,
99ded152
BW
8776 int src_count,
8777 asection *sec,
8778 property_table_entry *prop_table,
8779 int ptblsize)
43cd72b9
BW
8780{
8781 const source_reloc *curr_rel;
99ded152
BW
8782 property_table_entry *entry;
8783
43cd72b9
BW
8784 if (!rel->is_null)
8785 return FALSE;
68ffbac6
L
8786
8787 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
99ded152
BW
8788 sec->vma + rel->r_rel.target_offset);
8789 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8790 return FALSE;
8791
43cd72b9
BW
8792 for (++i; i < src_count; ++i)
8793 {
8794 curr_rel = &src_relocs[i];
8795 /* If all others have the same target offset.... */
8796 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8797 return TRUE;
8798
8799 if (!curr_rel->is_null
8800 && !xtensa_is_property_section (curr_rel->source_sec)
8801 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8802 return FALSE;
8803 }
8804 return TRUE;
8805}
8806
8807
68ffbac6 8808bfd_boolean
7fa3d080
BW
8809remove_dead_literal (bfd *abfd,
8810 asection *sec,
8811 struct bfd_link_info *link_info,
8812 Elf_Internal_Rela *internal_relocs,
8813 Elf_Internal_Rela *irel,
8814 source_reloc *rel,
8815 property_table_entry *prop_table,
8816 int ptblsize)
43cd72b9
BW
8817{
8818 property_table_entry *entry;
8819 xtensa_relax_info *relax_info;
8820
8821 relax_info = get_xtensa_relax_info (sec);
8822 if (!relax_info)
8823 return FALSE;
8824
8825 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8826 sec->vma + rel->r_rel.target_offset);
8827
8828 /* Mark the unused literal so that it will be removed. */
8829 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8830
8831 text_action_add (&relax_info->action_list,
8832 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8833
8834 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 8835 if (sec->alignment_power > 2)
43cd72b9
BW
8836 {
8837 int fill_extra_space;
8838 bfd_vma entry_sec_offset;
8839 text_action *fa;
8840 property_table_entry *the_add_entry;
8841 int removed_diff;
8842
8843 if (entry)
8844 entry_sec_offset = entry->address - sec->vma + entry->size;
8845 else
8846 entry_sec_offset = rel->r_rel.target_offset + 4;
8847
8848 /* If the literal range is at the end of the section,
8849 do not add fill. */
8850 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8851 entry_sec_offset);
4b8e28c7 8852 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
43cd72b9
BW
8853
8854 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8855 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8856 -4, fill_extra_space);
8857 if (fa)
8858 adjust_fill_action (fa, removed_diff);
8859 else
8860 text_action_add (&relax_info->action_list,
8861 ta_fill, sec, entry_sec_offset, removed_diff);
8862 }
8863
8864 /* Zero out the relocation on this literal location. */
8865 if (irel)
8866 {
8867 if (elf_hash_table (link_info)->dynamic_sections_created)
8868 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8869
8870 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8871 pin_internal_relocs (sec, internal_relocs);
8872 }
8873
8874 /* Do not modify "last_loc_is_prev". */
8875 return TRUE;
8876}
8877
8878
68ffbac6 8879bfd_boolean
7fa3d080
BW
8880identify_literal_placement (bfd *abfd,
8881 asection *sec,
8882 bfd_byte *contents,
8883 struct bfd_link_info *link_info,
8884 value_map_hash_table *values,
8885 bfd_boolean *last_loc_is_prev_p,
8886 Elf_Internal_Rela *irel,
8887 int remaining_src_rels,
8888 source_reloc *rel,
8889 property_table_entry *prop_table,
8890 int ptblsize,
8891 section_cache_t *target_sec_cache,
8892 bfd_boolean is_abs_literal)
43cd72b9
BW
8893{
8894 literal_value val;
8895 value_map *val_map;
8896 xtensa_relax_info *relax_info;
8897 bfd_boolean literal_placed = FALSE;
8898 r_reloc r_rel;
8899 unsigned long value;
8900 bfd_boolean final_static_link;
8901 bfd_size_type sec_size;
8902
8903 relax_info = get_xtensa_relax_info (sec);
8904 if (!relax_info)
8905 return FALSE;
8906
8907 sec_size = bfd_get_section_limit (abfd, sec);
8908
8909 final_static_link =
0e1862bb 8910 (!bfd_link_relocatable (link_info)
43cd72b9
BW
8911 && !elf_hash_table (link_info)->dynamic_sections_created);
8912
8913 /* The placement algorithm first checks to see if the literal is
8914 already in the value map. If so and the value map is reachable
8915 from all uses, then the literal is moved to that location. If
8916 not, then we identify the last location where a fresh literal was
8917 placed. If the literal can be safely moved there, then we do so.
8918 If not, then we assume that the literal is not to move and leave
8919 the literal where it is, marking it as the last literal
8920 location. */
8921
8922 /* Find the literal value. */
8923 value = 0;
8924 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8925 if (!irel)
8926 {
8927 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8928 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8929 }
8930 init_literal_value (&val, &r_rel, value, is_abs_literal);
8931
8932 /* Check if we've seen another literal with the same value that
8933 is in the same output section. */
8934 val_map = value_map_get_cached_value (values, &val, final_static_link);
8935
8936 if (val_map
8937 && (r_reloc_get_section (&val_map->loc)->output_section
8938 == sec->output_section)
8939 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8940 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8941 {
8942 /* No change to last_loc_is_prev. */
8943 literal_placed = TRUE;
8944 }
8945
8946 /* For relocatable links, do not try to move literals. To do it
8947 correctly might increase the number of relocations in an input
8948 section making the default relocatable linking fail. */
0e1862bb 8949 if (!bfd_link_relocatable (link_info) && !literal_placed
43cd72b9
BW
8950 && values->has_last_loc && !(*last_loc_is_prev_p))
8951 {
8952 asection *target_sec = r_reloc_get_section (&values->last_loc);
8953 if (target_sec && target_sec->output_section == sec->output_section)
8954 {
8955 /* Increment the virtual offset. */
8956 r_reloc try_loc = values->last_loc;
8957 try_loc.virtual_offset += 4;
8958
8959 /* There is a last loc that was in the same output section. */
8960 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8961 && move_shared_literal (sec, link_info, rel,
68ffbac6 8962 prop_table, ptblsize,
43cd72b9 8963 &try_loc, &val, target_sec_cache))
e0001a05 8964 {
43cd72b9
BW
8965 values->last_loc.virtual_offset += 4;
8966 literal_placed = TRUE;
8967 if (!val_map)
8968 val_map = add_value_map (values, &val, &try_loc,
8969 final_static_link);
8970 else
8971 val_map->loc = try_loc;
e0001a05
NC
8972 }
8973 }
43cd72b9
BW
8974 }
8975
8976 if (!literal_placed)
8977 {
8978 /* Nothing worked, leave the literal alone but update the last loc. */
8979 values->has_last_loc = TRUE;
8980 values->last_loc = rel->r_rel;
8981 if (!val_map)
8982 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 8983 else
43cd72b9
BW
8984 val_map->loc = rel->r_rel;
8985 *last_loc_is_prev_p = TRUE;
e0001a05
NC
8986 }
8987
43cd72b9 8988 return TRUE;
e0001a05
NC
8989}
8990
8991
8992/* Check if the original relocations (presumably on L32R instructions)
8993 identified by reloc[0..N] can be changed to reference the literal
8994 identified by r_rel. If r_rel is out of range for any of the
8995 original relocations, then we don't want to coalesce the original
8996 literal with the one at r_rel. We only check reloc[0..N], where the
8997 offsets are all the same as for reloc[0] (i.e., they're all
8998 referencing the same literal) and where N is also bounded by the
8999 number of remaining entries in the "reloc" array. The "reloc" array
9000 is sorted by target offset so we know all the entries for the same
9001 literal will be contiguous. */
9002
9003static bfd_boolean
7fa3d080
BW
9004relocations_reach (source_reloc *reloc,
9005 int remaining_relocs,
9006 const r_reloc *r_rel)
e0001a05
NC
9007{
9008 bfd_vma from_offset, source_address, dest_address;
9009 asection *sec;
9010 int i;
9011
9012 if (!r_reloc_is_defined (r_rel))
9013 return FALSE;
9014
9015 sec = r_reloc_get_section (r_rel);
9016 from_offset = reloc[0].r_rel.target_offset;
9017
9018 for (i = 0; i < remaining_relocs; i++)
9019 {
9020 if (reloc[i].r_rel.target_offset != from_offset)
9021 break;
9022
9023 /* Ignore relocations that have been removed. */
9024 if (reloc[i].is_null)
9025 continue;
9026
9027 /* The original and new output section for these must be the same
07d6d2b8 9028 in order to coalesce. */
e0001a05
NC
9029 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9030 != sec->output_section)
9031 return FALSE;
9032
d638e0ac
BW
9033 /* Absolute literals in the same output section can always be
9034 combined. */
9035 if (reloc[i].is_abs_literal)
9036 continue;
9037
43cd72b9
BW
9038 /* A literal with no PC-relative relocations can be moved anywhere. */
9039 if (reloc[i].opnd != -1)
e0001a05
NC
9040 {
9041 /* Otherwise, check to see that it fits. */
9042 source_address = (reloc[i].source_sec->output_section->vma
9043 + reloc[i].source_sec->output_offset
9044 + reloc[i].r_rel.rela.r_offset);
9045 dest_address = (sec->output_section->vma
9046 + sec->output_offset
9047 + r_rel->target_offset);
9048
43cd72b9
BW
9049 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9050 source_address, dest_address))
e0001a05
NC
9051 return FALSE;
9052 }
9053 }
9054
9055 return TRUE;
9056}
9057
9058
43cd72b9
BW
9059/* Move a literal to another literal location because it is
9060 the same as the other literal value. */
e0001a05 9061
68ffbac6 9062static bfd_boolean
7fa3d080
BW
9063coalesce_shared_literal (asection *sec,
9064 source_reloc *rel,
9065 property_table_entry *prop_table,
9066 int ptblsize,
9067 value_map *val_map)
e0001a05 9068{
43cd72b9
BW
9069 property_table_entry *entry;
9070 text_action *fa;
9071 property_table_entry *the_add_entry;
9072 int removed_diff;
9073 xtensa_relax_info *relax_info;
9074
9075 relax_info = get_xtensa_relax_info (sec);
9076 if (!relax_info)
9077 return FALSE;
9078
9079 entry = elf_xtensa_find_property_entry
9080 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 9081 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
9082 return TRUE;
9083
9084 /* Mark that the literal will be coalesced. */
9085 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9086
9087 text_action_add (&relax_info->action_list,
9088 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9089
9090 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 9091 if (sec->alignment_power > 2)
e0001a05 9092 {
43cd72b9
BW
9093 int fill_extra_space;
9094 bfd_vma entry_sec_offset;
9095
9096 if (entry)
9097 entry_sec_offset = entry->address - sec->vma + entry->size;
9098 else
9099 entry_sec_offset = rel->r_rel.target_offset + 4;
9100
9101 /* If the literal range is at the end of the section,
9102 do not add fill. */
9103 fill_extra_space = 0;
9104 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9105 entry_sec_offset);
9106 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9107 fill_extra_space = the_add_entry->size;
9108
9109 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9110 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9111 -4, fill_extra_space);
9112 if (fa)
9113 adjust_fill_action (fa, removed_diff);
9114 else
9115 text_action_add (&relax_info->action_list,
9116 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 9117 }
43cd72b9
BW
9118
9119 return TRUE;
9120}
9121
9122
9123/* Move a literal to another location. This may actually increase the
9124 total amount of space used because of alignments so we need to do
9125 this carefully. Also, it may make a branch go out of range. */
9126
68ffbac6 9127static bfd_boolean
7fa3d080
BW
9128move_shared_literal (asection *sec,
9129 struct bfd_link_info *link_info,
9130 source_reloc *rel,
9131 property_table_entry *prop_table,
9132 int ptblsize,
9133 const r_reloc *target_loc,
9134 const literal_value *lit_value,
9135 section_cache_t *target_sec_cache)
43cd72b9
BW
9136{
9137 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9138 text_action *fa, *target_fa;
9139 int removed_diff;
9140 xtensa_relax_info *relax_info, *target_relax_info;
9141 asection *target_sec;
9142 ebb_t *ebb;
9143 ebb_constraint ebb_table;
9144 bfd_boolean relocs_fit;
9145
9146 /* If this routine always returns FALSE, the literals that cannot be
9147 coalesced will not be moved. */
9148 if (elf32xtensa_no_literal_movement)
9149 return FALSE;
9150
9151 relax_info = get_xtensa_relax_info (sec);
9152 if (!relax_info)
9153 return FALSE;
9154
9155 target_sec = r_reloc_get_section (target_loc);
9156 target_relax_info = get_xtensa_relax_info (target_sec);
9157
9158 /* Literals to undefined sections may not be moved because they
9159 must report an error. */
9160 if (bfd_is_und_section (target_sec))
9161 return FALSE;
9162
9163 src_entry = elf_xtensa_find_property_entry
9164 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9165
9166 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9167 return FALSE;
9168
9169 target_entry = elf_xtensa_find_property_entry
68ffbac6 9170 (target_sec_cache->ptbl, target_sec_cache->pte_count,
43cd72b9
BW
9171 target_sec->vma + target_loc->target_offset);
9172
9173 if (!target_entry)
9174 return FALSE;
9175
9176 /* Make sure that we have not broken any branches. */
9177 relocs_fit = FALSE;
9178
9179 init_ebb_constraint (&ebb_table);
9180 ebb = &ebb_table.ebb;
68ffbac6 9181 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
43cd72b9
BW
9182 target_sec_cache->content_length,
9183 target_sec_cache->ptbl, target_sec_cache->pte_count,
9184 target_sec_cache->relocs, target_sec_cache->reloc_count);
9185
9186 /* Propose to add 4 bytes + worst-case alignment size increase to
9187 destination. */
9188 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9189 ta_fill, target_loc->target_offset,
9190 -4 - (1 << target_sec->alignment_power), TRUE);
9191
9192 /* Check all of the PC-relative relocations to make sure they still fit. */
68ffbac6 9193 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
43cd72b9 9194 target_sec_cache->contents,
b2b326d2 9195 target_sec_cache->relocs, NULL,
cb337148 9196 &ebb_table, NULL);
43cd72b9 9197
68ffbac6 9198 if (!relocs_fit)
43cd72b9
BW
9199 return FALSE;
9200
9201 text_action_add_literal (&target_relax_info->action_list,
9202 ta_add_literal, target_loc, lit_value, -4);
9203
68ffbac6 9204 if (target_sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
9205 {
9206 /* May need to add or remove some fill to maintain alignment. */
9207 int fill_extra_space;
9208 bfd_vma entry_sec_offset;
9209
68ffbac6 9210 entry_sec_offset =
43cd72b9
BW
9211 target_entry->address - target_sec->vma + target_entry->size;
9212
9213 /* If the literal range is at the end of the section,
9214 do not add fill. */
9215 fill_extra_space = 0;
9216 the_add_entry =
9217 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9218 target_sec_cache->pte_count,
9219 entry_sec_offset);
9220 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9221 fill_extra_space = the_add_entry->size;
9222
9223 target_fa = find_fill_action (&target_relax_info->action_list,
9224 target_sec, entry_sec_offset);
9225 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9226 entry_sec_offset, 4,
9227 fill_extra_space);
9228 if (target_fa)
9229 adjust_fill_action (target_fa, removed_diff);
9230 else
9231 text_action_add (&target_relax_info->action_list,
9232 ta_fill, target_sec, entry_sec_offset, removed_diff);
9233 }
9234
9235 /* Mark that the literal will be moved to the new location. */
9236 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9237
9238 /* Remove the literal. */
9239 text_action_add (&relax_info->action_list,
9240 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9241
9242 /* If the section is 4-byte aligned, do not add fill. */
68ffbac6 9243 if (sec->alignment_power > 2 && target_entry != src_entry)
43cd72b9
BW
9244 {
9245 int fill_extra_space;
9246 bfd_vma entry_sec_offset;
9247
9248 if (src_entry)
9249 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9250 else
9251 entry_sec_offset = rel->r_rel.target_offset+4;
9252
9253 /* If the literal range is at the end of the section,
9254 do not add fill. */
9255 fill_extra_space = 0;
9256 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9257 entry_sec_offset);
9258 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9259 fill_extra_space = the_add_entry->size;
9260
9261 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9262 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9263 -4, fill_extra_space);
9264 if (fa)
9265 adjust_fill_action (fa, removed_diff);
9266 else
9267 text_action_add (&relax_info->action_list,
9268 ta_fill, sec, entry_sec_offset, removed_diff);
9269 }
9270
9271 return TRUE;
e0001a05
NC
9272}
9273
9274\f
9275/* Second relaxation pass. */
9276
4c2af04f
MF
9277static int
9278action_remove_bytes_fn (splay_tree_node node, void *p)
9279{
9280 bfd_size_type *final_size = p;
9281 text_action *action = (text_action *)node->value;
9282
9283 *final_size -= action->removed_bytes;
9284 return 0;
9285}
9286
e0001a05
NC
9287/* Modify all of the relocations to point to the right spot, and if this
9288 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 9289 section size. */
e0001a05 9290
43cd72b9 9291bfd_boolean
7fa3d080 9292relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
9293{
9294 Elf_Internal_Rela *internal_relocs;
9295 xtensa_relax_info *relax_info;
9296 bfd_byte *contents;
9297 bfd_boolean ok = TRUE;
9298 unsigned i;
43cd72b9
BW
9299 bfd_boolean rv = FALSE;
9300 bfd_boolean virtual_action;
9301 bfd_size_type sec_size;
e0001a05 9302
43cd72b9 9303 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9304 relax_info = get_xtensa_relax_info (sec);
9305 BFD_ASSERT (relax_info);
9306
43cd72b9
BW
9307 /* First translate any of the fixes that have been added already. */
9308 translate_section_fixes (sec);
9309
e0001a05
NC
9310 /* Handle property sections (e.g., literal tables) specially. */
9311 if (xtensa_is_property_section (sec))
9312 {
9313 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9314 return relax_property_section (abfd, sec, link_info);
9315 }
9316
68ffbac6 9317 internal_relocs = retrieve_internal_relocs (abfd, sec,
43cd72b9 9318 link_info->keep_memory);
4c2af04f 9319 if (!internal_relocs && !action_list_count (&relax_info->action_list))
7aa09196
SA
9320 return TRUE;
9321
43cd72b9
BW
9322 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9323 if (contents == NULL && sec_size != 0)
9324 {
9325 ok = FALSE;
9326 goto error_return;
9327 }
9328
9329 if (internal_relocs)
9330 {
9331 for (i = 0; i < sec->reloc_count; i++)
9332 {
9333 Elf_Internal_Rela *irel;
9334 xtensa_relax_info *target_relax_info;
9335 bfd_vma source_offset, old_source_offset;
9336 r_reloc r_rel;
9337 unsigned r_type;
9338 asection *target_sec;
9339
9340 /* Locally change the source address.
9341 Translate the target to the new target address.
9342 If it points to this section and has been removed,
9343 NULLify it.
9344 Write it back. */
9345
9346 irel = &internal_relocs[i];
9347 source_offset = irel->r_offset;
9348 old_source_offset = source_offset;
9349
9350 r_type = ELF32_R_TYPE (irel->r_info);
9351 r_reloc_init (&r_rel, abfd, irel, contents,
9352 bfd_get_section_limit (abfd, sec));
9353
9354 /* If this section could have changed then we may need to
9355 change the relocation's offset. */
9356
9357 if (relax_info->is_relaxable_literal_section
9358 || relax_info->is_relaxable_asm_section)
9359 {
9b7f5d20
BW
9360 pin_internal_relocs (sec, internal_relocs);
9361
43cd72b9
BW
9362 if (r_type != R_XTENSA_NONE
9363 && find_removed_literal (&relax_info->removed_list,
9364 irel->r_offset))
9365 {
9366 /* Remove this relocation. */
9367 if (elf_hash_table (link_info)->dynamic_sections_created)
9368 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9369 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
071aa5c9 9370 irel->r_offset = offset_with_removed_text_map
43cd72b9 9371 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
9372 continue;
9373 }
9374
9375 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9376 {
9377 text_action *action =
9378 find_insn_action (&relax_info->action_list,
9379 irel->r_offset);
9380 if (action && (action->action == ta_convert_longcall
9381 || action->action == ta_remove_longcall))
9382 {
9383 bfd_reloc_status_type retval;
9384 char *error_message = NULL;
9385
9386 retval = contract_asm_expansion (contents, sec_size,
9387 irel, &error_message);
9388 if (retval != bfd_reloc_ok)
9389 {
9390 (*link_info->callbacks->reloc_dangerous)
9391 (link_info, error_message, abfd, sec,
9392 irel->r_offset);
9393 goto error_return;
9394 }
9395 /* Update the action so that the code that moves
9396 the contents will do the right thing. */
4c2af04f 9397 /* ta_remove_longcall and ta_remove_insn actions are
07d6d2b8 9398 grouped together in the tree as well as
4c2af04f
MF
9399 ta_convert_longcall and ta_none, so that changes below
9400 can be done w/o removing and reinserting action into
9401 the tree. */
9402
43cd72b9
BW
9403 if (action->action == ta_remove_longcall)
9404 action->action = ta_remove_insn;
9405 else
9406 action->action = ta_none;
9407 /* Refresh the info in the r_rel. */
9408 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9409 r_type = ELF32_R_TYPE (irel->r_info);
9410 }
9411 }
9412
071aa5c9 9413 source_offset = offset_with_removed_text_map
43cd72b9
BW
9414 (&relax_info->action_list, irel->r_offset);
9415 irel->r_offset = source_offset;
9416 }
9417
9418 /* If the target section could have changed then
9419 we may need to change the relocation's target offset. */
9420
9421 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 9422
ae326da8
BW
9423 /* For a reference to a discarded section from a DWARF section,
9424 i.e., where action_discarded is PRETEND, the symbol will
9425 eventually be modified to refer to the kept section (at least if
9426 the kept and discarded sections are the same size). Anticipate
9427 that here and adjust things accordingly. */
9428 if (! elf_xtensa_ignore_discarded_relocs (sec)
9429 && elf_xtensa_action_discarded (sec) == PRETEND
dbaa2011 9430 && sec->sec_info_type != SEC_INFO_TYPE_STABS
ae326da8 9431 && target_sec != NULL
dbaa2011 9432 && discarded_section (target_sec))
ae326da8
BW
9433 {
9434 /* It would be natural to call _bfd_elf_check_kept_section
9435 here, but it's not exported from elflink.c. It's also a
9436 fairly expensive check. Adjusting the relocations to the
9437 discarded section is fairly harmless; it will only adjust
9438 some addends and difference values. If it turns out that
9439 _bfd_elf_check_kept_section fails later, it won't matter,
9440 so just compare the section names to find the right group
9441 member. */
9442 asection *kept = target_sec->kept_section;
9443 if (kept != NULL)
9444 {
9445 if ((kept->flags & SEC_GROUP) != 0)
9446 {
9447 asection *first = elf_next_in_group (kept);
9448 asection *s = first;
9449
9450 kept = NULL;
9451 while (s != NULL)
9452 {
9453 if (strcmp (s->name, target_sec->name) == 0)
9454 {
9455 kept = s;
9456 break;
9457 }
9458 s = elf_next_in_group (s);
9459 if (s == first)
9460 break;
9461 }
9462 }
9463 }
9464 if (kept != NULL
9465 && ((target_sec->rawsize != 0
9466 ? target_sec->rawsize : target_sec->size)
9467 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9468 target_sec = kept;
9469 }
9470
9471 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9472 if (target_relax_info
9473 && (target_relax_info->is_relaxable_literal_section
9474 || target_relax_info->is_relaxable_asm_section))
9475 {
9476 r_reloc new_reloc;
9b7f5d20 9477 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9478
9479 if (r_type == R_XTENSA_DIFF8
9480 || r_type == R_XTENSA_DIFF16
9481 || r_type == R_XTENSA_DIFF32)
9482 {
1058c753
VA
9483 bfd_signed_vma diff_value = 0;
9484 bfd_vma new_end_offset, diff_mask = 0;
43cd72b9
BW
9485
9486 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9487 {
9488 (*link_info->callbacks->reloc_dangerous)
9489 (link_info, _("invalid relocation address"),
9490 abfd, sec, old_source_offset);
9491 goto error_return;
9492 }
9493
9494 switch (r_type)
9495 {
9496 case R_XTENSA_DIFF8:
9497 diff_value =
1058c753 9498 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9499 break;
9500 case R_XTENSA_DIFF16:
9501 diff_value =
1058c753 9502 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9503 break;
9504 case R_XTENSA_DIFF32:
9505 diff_value =
1058c753 9506 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
43cd72b9
BW
9507 break;
9508 }
9509
071aa5c9 9510 new_end_offset = offset_with_removed_text_map
43cd72b9
BW
9511 (&target_relax_info->action_list,
9512 r_rel.target_offset + diff_value);
9513 diff_value = new_end_offset - new_reloc.target_offset;
9514
9515 switch (r_type)
9516 {
9517 case R_XTENSA_DIFF8:
1058c753
VA
9518 diff_mask = 0x7f;
9519 bfd_put_signed_8 (abfd, diff_value,
43cd72b9
BW
9520 &contents[old_source_offset]);
9521 break;
9522 case R_XTENSA_DIFF16:
1058c753
VA
9523 diff_mask = 0x7fff;
9524 bfd_put_signed_16 (abfd, diff_value,
43cd72b9
BW
9525 &contents[old_source_offset]);
9526 break;
9527 case R_XTENSA_DIFF32:
1058c753
VA
9528 diff_mask = 0x7fffffff;
9529 bfd_put_signed_32 (abfd, diff_value,
43cd72b9
BW
9530 &contents[old_source_offset]);
9531 break;
9532 }
9533
1058c753
VA
9534 /* Check for overflow. Sign bits must be all zeroes or all ones */
9535 if ((diff_value & ~diff_mask) != 0 &&
9536 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
43cd72b9
BW
9537 {
9538 (*link_info->callbacks->reloc_dangerous)
9539 (link_info, _("overflow after relaxation"),
9540 abfd, sec, old_source_offset);
9541 goto error_return;
9542 }
9543
9544 pin_contents (sec, contents);
9545 }
dc96b90a
BW
9546
9547 /* If the relocation still references a section in the same
9548 input file, modify the relocation directly instead of
9549 adding a "fix" record. */
9550 if (target_sec->owner == abfd)
9551 {
9552 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9553 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9554 irel->r_addend = new_reloc.rela.r_addend;
9555 pin_internal_relocs (sec, internal_relocs);
9556 }
9b7f5d20
BW
9557 else
9558 {
dc96b90a
BW
9559 bfd_vma addend_displacement;
9560 reloc_bfd_fix *fix;
9561
9562 addend_displacement =
9563 new_reloc.target_offset + new_reloc.virtual_offset;
9564 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9565 target_sec,
9566 addend_displacement, TRUE);
9567 add_fix (sec, fix);
9b7f5d20 9568 }
43cd72b9 9569 }
43cd72b9
BW
9570 }
9571 }
9572
9573 if ((relax_info->is_relaxable_literal_section
9574 || relax_info->is_relaxable_asm_section)
4c2af04f 9575 && action_list_count (&relax_info->action_list))
43cd72b9
BW
9576 {
9577 /* Walk through the planned actions and build up a table
9578 of move, copy and fill records. Use the move, copy and
9579 fill records to perform the actions once. */
9580
43cd72b9
BW
9581 bfd_size_type final_size, copy_size, orig_insn_size;
9582 bfd_byte *scratch = NULL;
9583 bfd_byte *dup_contents = NULL;
a3ef2d63 9584 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9585 bfd_vma orig_dot = 0;
9586 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9587 orig dot in physical memory. */
9588 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9589 bfd_vma dup_dot = 0;
9590
4c2af04f 9591 text_action *action;
43cd72b9
BW
9592
9593 final_size = sec->size;
43cd72b9 9594
4c2af04f
MF
9595 splay_tree_foreach (relax_info->action_list.tree,
9596 action_remove_bytes_fn, &final_size);
43cd72b9
BW
9597 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9598 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9599
9600 /* The dot is the current fill location. */
9601#if DEBUG
9602 print_action_list (stderr, &relax_info->action_list);
9603#endif
9604
4c2af04f
MF
9605 for (action = action_first (&relax_info->action_list); action;
9606 action = action_next (&relax_info->action_list, action))
43cd72b9
BW
9607 {
9608 virtual_action = FALSE;
9609 if (action->offset > orig_dot)
9610 {
9611 orig_dot += orig_dot_copied;
9612 orig_dot_copied = 0;
9613 orig_dot_vo = 0;
9614 /* Out of the virtual world. */
9615 }
9616
9617 if (action->offset > orig_dot)
9618 {
9619 copy_size = action->offset - orig_dot;
9620 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9621 orig_dot += copy_size;
9622 dup_dot += copy_size;
9623 BFD_ASSERT (action->offset == orig_dot);
9624 }
9625 else if (action->offset < orig_dot)
9626 {
9627 if (action->action == ta_fill
9628 && action->offset - action->removed_bytes == orig_dot)
9629 {
9630 /* This is OK because the fill only effects the dup_dot. */
9631 }
9632 else if (action->action == ta_add_literal)
9633 {
9634 /* TBD. Might need to handle this. */
9635 }
9636 }
9637 if (action->offset == orig_dot)
9638 {
9639 if (action->virtual_offset > orig_dot_vo)
9640 {
9641 if (orig_dot_vo == 0)
9642 {
9643 /* Need to copy virtual_offset bytes. Probably four. */
9644 copy_size = action->virtual_offset - orig_dot_vo;
9645 memmove (&dup_contents[dup_dot],
9646 &contents[orig_dot], copy_size);
9647 orig_dot_copied = copy_size;
9648 dup_dot += copy_size;
9649 }
9650 virtual_action = TRUE;
68ffbac6 9651 }
43cd72b9
BW
9652 else
9653 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9654 }
9655 switch (action->action)
9656 {
9657 case ta_remove_literal:
9658 case ta_remove_insn:
9659 BFD_ASSERT (action->removed_bytes >= 0);
9660 orig_dot += action->removed_bytes;
9661 break;
9662
9663 case ta_narrow_insn:
9664 orig_insn_size = 3;
9665 copy_size = 2;
9666 memmove (scratch, &contents[orig_dot], orig_insn_size);
9667 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9668 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9669 BFD_ASSERT (rv);
9670 memmove (&dup_contents[dup_dot], scratch, copy_size);
9671 orig_dot += orig_insn_size;
9672 dup_dot += copy_size;
9673 break;
9674
9675 case ta_fill:
9676 if (action->removed_bytes >= 0)
9677 orig_dot += action->removed_bytes;
9678 else
9679 {
9680 /* Already zeroed in dup_contents. Just bump the
9681 counters. */
9682 dup_dot += (-action->removed_bytes);
9683 }
9684 break;
9685
9686 case ta_none:
9687 BFD_ASSERT (action->removed_bytes == 0);
9688 break;
9689
9690 case ta_convert_longcall:
9691 case ta_remove_longcall:
9692 /* These will be removed or converted before we get here. */
9693 BFD_ASSERT (0);
9694 break;
9695
9696 case ta_widen_insn:
9697 orig_insn_size = 2;
9698 copy_size = 3;
9699 memmove (scratch, &contents[orig_dot], orig_insn_size);
9700 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9701 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9702 BFD_ASSERT (rv);
9703 memmove (&dup_contents[dup_dot], scratch, copy_size);
9704 orig_dot += orig_insn_size;
9705 dup_dot += copy_size;
9706 break;
9707
9708 case ta_add_literal:
9709 orig_insn_size = 0;
9710 copy_size = 4;
9711 BFD_ASSERT (action->removed_bytes == -4);
9712 /* TBD -- place the literal value here and insert
9713 into the table. */
9714 memset (&dup_contents[dup_dot], 0, 4);
9715 pin_internal_relocs (sec, internal_relocs);
9716 pin_contents (sec, contents);
9717
9718 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9719 relax_info, &internal_relocs, &action->value))
9720 goto error_return;
9721
68ffbac6 9722 if (virtual_action)
43cd72b9
BW
9723 orig_dot_vo += copy_size;
9724
9725 orig_dot += orig_insn_size;
9726 dup_dot += copy_size;
9727 break;
9728
9729 default:
9730 /* Not implemented yet. */
9731 BFD_ASSERT (0);
9732 break;
9733 }
9734
43cd72b9
BW
9735 BFD_ASSERT (dup_dot <= final_size);
9736 BFD_ASSERT (orig_dot <= orig_size);
9737 }
9738
9739 orig_dot += orig_dot_copied;
9740 orig_dot_copied = 0;
9741
9742 if (orig_dot != orig_size)
9743 {
9744 copy_size = orig_size - orig_dot;
9745 BFD_ASSERT (orig_size > orig_dot);
9746 BFD_ASSERT (dup_dot + copy_size == final_size);
9747 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9748 orig_dot += copy_size;
9749 dup_dot += copy_size;
9750 }
9751 BFD_ASSERT (orig_size == orig_dot);
9752 BFD_ASSERT (final_size == dup_dot);
9753
9754 /* Move the dup_contents back. */
9755 if (final_size > orig_size)
9756 {
9757 /* Contents need to be reallocated. Swap the dup_contents into
9758 contents. */
9759 sec->contents = dup_contents;
9760 free (contents);
9761 contents = dup_contents;
9762 pin_contents (sec, contents);
9763 }
9764 else
9765 {
9766 BFD_ASSERT (final_size <= orig_size);
9767 memset (contents, 0, orig_size);
9768 memcpy (contents, dup_contents, final_size);
9769 free (dup_contents);
9770 }
9771 free (scratch);
9772 pin_contents (sec, contents);
9773
a3ef2d63
BW
9774 if (sec->rawsize == 0)
9775 sec->rawsize = sec->size;
43cd72b9
BW
9776 sec->size = final_size;
9777 }
9778
9779 error_return:
9780 release_internal_relocs (sec, internal_relocs);
9781 release_contents (sec, contents);
9782 return ok;
9783}
9784
9785
68ffbac6 9786static bfd_boolean
7fa3d080 9787translate_section_fixes (asection *sec)
43cd72b9
BW
9788{
9789 xtensa_relax_info *relax_info;
9790 reloc_bfd_fix *r;
9791
9792 relax_info = get_xtensa_relax_info (sec);
9793 if (!relax_info)
9794 return TRUE;
9795
9796 for (r = relax_info->fix_list; r != NULL; r = r->next)
9797 if (!translate_reloc_bfd_fix (r))
9798 return FALSE;
e0001a05 9799
43cd72b9
BW
9800 return TRUE;
9801}
e0001a05 9802
e0001a05 9803
43cd72b9
BW
9804/* Translate a fix given the mapping in the relax info for the target
9805 section. If it has already been translated, no work is required. */
e0001a05 9806
68ffbac6 9807static bfd_boolean
7fa3d080 9808translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9809{
9810 reloc_bfd_fix new_fix;
9811 asection *sec;
9812 xtensa_relax_info *relax_info;
9813 removed_literal *removed;
9814 bfd_vma new_offset, target_offset;
e0001a05 9815
43cd72b9
BW
9816 if (fix->translated)
9817 return TRUE;
e0001a05 9818
43cd72b9
BW
9819 sec = fix->target_sec;
9820 target_offset = fix->target_offset;
e0001a05 9821
43cd72b9
BW
9822 relax_info = get_xtensa_relax_info (sec);
9823 if (!relax_info)
9824 {
9825 fix->translated = TRUE;
9826 return TRUE;
9827 }
e0001a05 9828
43cd72b9 9829 new_fix = *fix;
e0001a05 9830
43cd72b9
BW
9831 /* The fix does not need to be translated if the section cannot change. */
9832 if (!relax_info->is_relaxable_literal_section
9833 && !relax_info->is_relaxable_asm_section)
9834 {
9835 fix->translated = TRUE;
9836 return TRUE;
9837 }
e0001a05 9838
43cd72b9
BW
9839 /* If the literal has been moved and this relocation was on an
9840 opcode, then the relocation should move to the new literal
9841 location. Otherwise, the relocation should move within the
9842 section. */
9843
9844 removed = FALSE;
9845 if (is_operand_relocation (fix->src_type))
9846 {
9847 /* Check if the original relocation is against a literal being
9848 removed. */
9849 removed = find_removed_literal (&relax_info->removed_list,
9850 target_offset);
e0001a05
NC
9851 }
9852
68ffbac6 9853 if (removed)
e0001a05 9854 {
43cd72b9 9855 asection *new_sec;
e0001a05 9856
43cd72b9
BW
9857 /* The fact that there is still a relocation to this literal indicates
9858 that the literal is being coalesced, not simply removed. */
9859 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9860
43cd72b9
BW
9861 /* This was moved to some other address (possibly another section). */
9862 new_sec = r_reloc_get_section (&removed->to);
68ffbac6 9863 if (new_sec != sec)
e0001a05 9864 {
43cd72b9
BW
9865 sec = new_sec;
9866 relax_info = get_xtensa_relax_info (sec);
68ffbac6 9867 if (!relax_info ||
43cd72b9
BW
9868 (!relax_info->is_relaxable_literal_section
9869 && !relax_info->is_relaxable_asm_section))
e0001a05 9870 {
43cd72b9
BW
9871 target_offset = removed->to.target_offset;
9872 new_fix.target_sec = new_sec;
9873 new_fix.target_offset = target_offset;
9874 new_fix.translated = TRUE;
9875 *fix = new_fix;
9876 return TRUE;
e0001a05 9877 }
e0001a05 9878 }
43cd72b9
BW
9879 target_offset = removed->to.target_offset;
9880 new_fix.target_sec = new_sec;
e0001a05 9881 }
43cd72b9
BW
9882
9883 /* The target address may have been moved within its section. */
9884 new_offset = offset_with_removed_text (&relax_info->action_list,
9885 target_offset);
9886
9887 new_fix.target_offset = new_offset;
9888 new_fix.target_offset = new_offset;
9889 new_fix.translated = TRUE;
9890 *fix = new_fix;
9891 return TRUE;
e0001a05
NC
9892}
9893
9894
9895/* Fix up a relocation to take account of removed literals. */
9896
9b7f5d20
BW
9897static asection *
9898translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9899{
e0001a05
NC
9900 xtensa_relax_info *relax_info;
9901 removed_literal *removed;
9b7f5d20 9902 bfd_vma target_offset, base_offset;
e0001a05
NC
9903
9904 *new_rel = *orig_rel;
9905
9906 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9907 return sec ;
e0001a05
NC
9908
9909 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9910 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9911 || relax_info->is_relaxable_asm_section));
e0001a05 9912
43cd72b9
BW
9913 target_offset = orig_rel->target_offset;
9914
9915 removed = FALSE;
9916 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9917 {
9918 /* Check if the original relocation is against a literal being
9919 removed. */
9920 removed = find_removed_literal (&relax_info->removed_list,
9921 target_offset);
9922 }
9923 if (removed && removed->to.abfd)
e0001a05
NC
9924 {
9925 asection *new_sec;
9926
9927 /* The fact that there is still a relocation to this literal indicates
9928 that the literal is being coalesced, not simply removed. */
9929 BFD_ASSERT (removed->to.abfd != NULL);
9930
43cd72b9
BW
9931 /* This was moved to some other address
9932 (possibly in another section). */
e0001a05
NC
9933 *new_rel = removed->to;
9934 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9935 if (new_sec != sec)
e0001a05
NC
9936 {
9937 sec = new_sec;
9938 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9939 if (!relax_info
9940 || (!relax_info->is_relaxable_literal_section
9941 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9942 return sec;
e0001a05 9943 }
43cd72b9 9944 target_offset = new_rel->target_offset;
e0001a05
NC
9945 }
9946
9b7f5d20
BW
9947 /* Find the base offset of the reloc symbol, excluding any addend from the
9948 reloc or from the section contents (for a partial_inplace reloc). Then
9949 find the adjusted values of the offsets due to relaxation. The base
9950 offset is needed to determine the change to the reloc's addend; the reloc
9951 addend should not be adjusted due to relaxations located before the base
9952 offset. */
9953
9954 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9b7f5d20
BW
9955 if (base_offset <= target_offset)
9956 {
071aa5c9
MF
9957 int base_removed = removed_by_actions_map (&relax_info->action_list,
9958 base_offset, FALSE);
9959 int addend_removed = removed_by_actions_map (&relax_info->action_list,
9960 target_offset, FALSE) -
9961 base_removed;
9962
9b7f5d20
BW
9963 new_rel->target_offset = target_offset - base_removed - addend_removed;
9964 new_rel->rela.r_addend -= addend_removed;
9965 }
9966 else
9967 {
9968 /* Handle a negative addend. The base offset comes first. */
071aa5c9
MF
9969 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
9970 target_offset, FALSE);
9971 int addend_removed = removed_by_actions_map (&relax_info->action_list,
9972 base_offset, FALSE) -
9973 tgt_removed;
9974
9b7f5d20
BW
9975 new_rel->target_offset = target_offset - tgt_removed;
9976 new_rel->rela.r_addend += addend_removed;
9977 }
e0001a05 9978
9b7f5d20 9979 return sec;
e0001a05
NC
9980}
9981
9982
9983/* For dynamic links, there may be a dynamic relocation for each
9984 literal. The number of dynamic relocations must be computed in
9985 size_dynamic_sections, which occurs before relaxation. When a
9986 literal is removed, this function checks if there is a corresponding
9987 dynamic relocation and shrinks the size of the appropriate dynamic
9988 relocation section accordingly. At this point, the contents of the
9989 dynamic relocation sections have not yet been filled in, so there's
9990 nothing else that needs to be done. */
9991
9992static void
7fa3d080
BW
9993shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9994 bfd *abfd,
9995 asection *input_section,
9996 Elf_Internal_Rela *rel)
e0001a05 9997{
f0e6fdb2 9998 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
9999 Elf_Internal_Shdr *symtab_hdr;
10000 struct elf_link_hash_entry **sym_hashes;
10001 unsigned long r_symndx;
10002 int r_type;
10003 struct elf_link_hash_entry *h;
10004 bfd_boolean dynamic_symbol;
10005
f0e6fdb2 10006 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10007 if (htab == NULL)
10008 return;
10009
e0001a05
NC
10010 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10011 sym_hashes = elf_sym_hashes (abfd);
10012
10013 r_type = ELF32_R_TYPE (rel->r_info);
10014 r_symndx = ELF32_R_SYM (rel->r_info);
10015
10016 if (r_symndx < symtab_hdr->sh_info)
10017 h = NULL;
10018 else
10019 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10020
4608f3d9 10021 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
10022
10023 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10024 && (input_section->flags & SEC_ALLOC) != 0
c451bb34 10025 && (dynamic_symbol || bfd_link_pic (info))
5d3a462f
MF
10026 && (!h || h->root.type != bfd_link_hash_undefweak
10027 || (dynamic_symbol && bfd_link_dll (info))))
e0001a05 10028 {
e0001a05
NC
10029 asection *srel;
10030 bfd_boolean is_plt = FALSE;
10031
e0001a05
NC
10032 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10033 {
ce558b89 10034 srel = htab->elf.srelplt;
e0001a05
NC
10035 is_plt = TRUE;
10036 }
10037 else
ce558b89 10038 srel = htab->elf.srelgot;
e0001a05
NC
10039
10040 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 10041 BFD_ASSERT (srel != NULL);
eea6121a
AM
10042 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10043 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
10044
10045 if (is_plt)
10046 {
10047 asection *splt, *sgotplt, *srelgot;
10048 int reloc_index, chunk;
10049
10050 /* Find the PLT reloc index of the entry being removed. This
10051 is computed from the size of ".rela.plt". It is needed to
10052 figure out which PLT chunk to resize. Usually "last index
10053 = size - 1" since the index starts at zero, but in this
10054 context, the size has just been decremented so there's no
10055 need to subtract one. */
eea6121a 10056 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
10057
10058 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
10059 splt = elf_xtensa_get_plt_section (info, chunk);
10060 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
10061 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10062
10063 /* Check if an entire PLT chunk has just been eliminated. */
10064 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10065 {
10066 /* The two magic GOT entries for that chunk can go away. */
ce558b89 10067 srelgot = htab->elf.srelgot;
e0001a05
NC
10068 BFD_ASSERT (srelgot != NULL);
10069 srelgot->reloc_count -= 2;
eea6121a
AM
10070 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10071 sgotplt->size -= 8;
e0001a05
NC
10072
10073 /* There should be only one entry left (and it will be
10074 removed below). */
eea6121a
AM
10075 BFD_ASSERT (sgotplt->size == 4);
10076 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
10077 }
10078
eea6121a
AM
10079 BFD_ASSERT (sgotplt->size >= 4);
10080 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 10081
eea6121a
AM
10082 sgotplt->size -= 4;
10083 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
10084 }
10085 }
10086}
10087
10088
43cd72b9
BW
10089/* Take an r_rel and move it to another section. This usually
10090 requires extending the interal_relocation array and pinning it. If
10091 the original r_rel is from the same BFD, we can complete this here.
10092 Otherwise, we add a fix record to let the final link fix the
10093 appropriate address. Contents and internal relocations for the
10094 section must be pinned after calling this routine. */
10095
10096static bfd_boolean
7fa3d080
BW
10097move_literal (bfd *abfd,
10098 struct bfd_link_info *link_info,
10099 asection *sec,
10100 bfd_vma offset,
10101 bfd_byte *contents,
10102 xtensa_relax_info *relax_info,
10103 Elf_Internal_Rela **internal_relocs_p,
10104 const literal_value *lit)
43cd72b9
BW
10105{
10106 Elf_Internal_Rela *new_relocs = NULL;
10107 size_t new_relocs_count = 0;
10108 Elf_Internal_Rela this_rela;
10109 const r_reloc *r_rel;
10110
10111 r_rel = &lit->r_rel;
10112 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10113
10114 if (r_reloc_is_const (r_rel))
10115 bfd_put_32 (abfd, lit->value, contents + offset);
10116 else
10117 {
10118 int r_type;
10119 unsigned i;
43cd72b9
BW
10120 reloc_bfd_fix *fix;
10121 unsigned insert_at;
10122
10123 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
10124
10125 /* This is the difficult case. We have to create a fix up. */
10126 this_rela.r_offset = offset;
10127 this_rela.r_info = ELF32_R_INFO (0, r_type);
10128 this_rela.r_addend =
10129 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10130 bfd_put_32 (abfd, lit->value, contents + offset);
10131
10132 /* Currently, we cannot move relocations during a relocatable link. */
0e1862bb 10133 BFD_ASSERT (!bfd_link_relocatable (link_info));
0f5f1638 10134 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
10135 r_reloc_get_section (r_rel),
10136 r_rel->target_offset + r_rel->virtual_offset,
10137 FALSE);
10138 /* We also need to mark that relocations are needed here. */
10139 sec->flags |= SEC_RELOC;
10140
10141 translate_reloc_bfd_fix (fix);
10142 /* This fix has not yet been translated. */
10143 add_fix (sec, fix);
10144
10145 /* Add the relocation. If we have already allocated our own
10146 space for the relocations and we have room for more, then use
10147 it. Otherwise, allocate new space and move the literals. */
10148 insert_at = sec->reloc_count;
10149 for (i = 0; i < sec->reloc_count; ++i)
10150 {
10151 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10152 {
10153 insert_at = i;
10154 break;
10155 }
10156 }
10157
10158 if (*internal_relocs_p != relax_info->allocated_relocs
10159 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10160 {
10161 BFD_ASSERT (relax_info->allocated_relocs == NULL
10162 || sec->reloc_count == relax_info->relocs_count);
10163
68ffbac6 10164 if (relax_info->allocated_relocs_count == 0)
43cd72b9
BW
10165 new_relocs_count = (sec->reloc_count + 2) * 2;
10166 else
10167 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10168
10169 new_relocs = (Elf_Internal_Rela *)
10170 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10171 if (!new_relocs)
10172 return FALSE;
10173
10174 /* We could handle this more quickly by finding the split point. */
10175 if (insert_at != 0)
10176 memcpy (new_relocs, *internal_relocs_p,
10177 insert_at * sizeof (Elf_Internal_Rela));
10178
10179 new_relocs[insert_at] = this_rela;
10180
10181 if (insert_at != sec->reloc_count)
10182 memcpy (new_relocs + insert_at + 1,
10183 (*internal_relocs_p) + insert_at,
68ffbac6 10184 (sec->reloc_count - insert_at)
43cd72b9
BW
10185 * sizeof (Elf_Internal_Rela));
10186
10187 if (*internal_relocs_p != relax_info->allocated_relocs)
10188 {
10189 /* The first time we re-allocate, we can only free the
10190 old relocs if they were allocated with bfd_malloc.
10191 This is not true when keep_memory is in effect. */
10192 if (!link_info->keep_memory)
10193 free (*internal_relocs_p);
10194 }
10195 else
10196 free (*internal_relocs_p);
10197 relax_info->allocated_relocs = new_relocs;
10198 relax_info->allocated_relocs_count = new_relocs_count;
10199 elf_section_data (sec)->relocs = new_relocs;
10200 sec->reloc_count++;
10201 relax_info->relocs_count = sec->reloc_count;
10202 *internal_relocs_p = new_relocs;
10203 }
10204 else
10205 {
10206 if (insert_at != sec->reloc_count)
10207 {
10208 unsigned idx;
10209 for (idx = sec->reloc_count; idx > insert_at; idx--)
10210 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10211 }
10212 (*internal_relocs_p)[insert_at] = this_rela;
10213 sec->reloc_count++;
10214 if (relax_info->allocated_relocs)
10215 relax_info->relocs_count = sec->reloc_count;
10216 }
10217 }
10218 return TRUE;
10219}
10220
10221
e0001a05
NC
10222/* This is similar to relax_section except that when a target is moved,
10223 we shift addresses up. We also need to modify the size. This
10224 algorithm does NOT allow for relocations into the middle of the
10225 property sections. */
10226
43cd72b9 10227static bfd_boolean
7fa3d080
BW
10228relax_property_section (bfd *abfd,
10229 asection *sec,
10230 struct bfd_link_info *link_info)
e0001a05
NC
10231{
10232 Elf_Internal_Rela *internal_relocs;
10233 bfd_byte *contents;
1d25768e 10234 unsigned i;
e0001a05 10235 bfd_boolean ok = TRUE;
43cd72b9
BW
10236 bfd_boolean is_full_prop_section;
10237 size_t last_zfill_target_offset = 0;
10238 asection *last_zfill_target_sec = NULL;
10239 bfd_size_type sec_size;
1d25768e 10240 bfd_size_type entry_size;
e0001a05 10241
43cd72b9 10242 sec_size = bfd_get_section_limit (abfd, sec);
68ffbac6 10243 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
10244 link_info->keep_memory);
10245 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10246 if (contents == NULL && sec_size != 0)
e0001a05
NC
10247 {
10248 ok = FALSE;
10249 goto error_return;
10250 }
10251
1d25768e
BW
10252 is_full_prop_section = xtensa_is_proptable_section (sec);
10253 if (is_full_prop_section)
10254 entry_size = 12;
10255 else
10256 entry_size = 8;
43cd72b9
BW
10257
10258 if (internal_relocs)
e0001a05 10259 {
43cd72b9 10260 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10261 {
10262 Elf_Internal_Rela *irel;
10263 xtensa_relax_info *target_relax_info;
e0001a05
NC
10264 unsigned r_type;
10265 asection *target_sec;
43cd72b9
BW
10266 literal_value val;
10267 bfd_byte *size_p, *flags_p;
e0001a05
NC
10268
10269 /* Locally change the source address.
10270 Translate the target to the new target address.
10271 If it points to this section and has been removed, MOVE IT.
10272 Also, don't forget to modify the associated SIZE at
10273 (offset + 4). */
10274
10275 irel = &internal_relocs[i];
10276 r_type = ELF32_R_TYPE (irel->r_info);
10277 if (r_type == R_XTENSA_NONE)
10278 continue;
10279
43cd72b9
BW
10280 /* Find the literal value. */
10281 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10282 size_p = &contents[irel->r_offset + 4];
10283 flags_p = NULL;
10284 if (is_full_prop_section)
1d25768e
BW
10285 flags_p = &contents[irel->r_offset + 8];
10286 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 10287
43cd72b9 10288 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
10289 target_relax_info = get_xtensa_relax_info (target_sec);
10290
10291 if (target_relax_info
43cd72b9
BW
10292 && (target_relax_info->is_relaxable_literal_section
10293 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
10294 {
10295 /* Translate the relocation's destination. */
03669f1c
BW
10296 bfd_vma old_offset = val.r_rel.target_offset;
10297 bfd_vma new_offset;
e0001a05 10298 long old_size, new_size;
071aa5c9
MF
10299 int removed_by_old_offset =
10300 removed_by_actions_map (&target_relax_info->action_list,
10301 old_offset, FALSE);
10302 new_offset = old_offset - removed_by_old_offset;
e0001a05
NC
10303
10304 /* Assert that we are not out of bounds. */
43cd72b9 10305 old_size = bfd_get_32 (abfd, size_p);
03669f1c 10306 new_size = old_size;
43cd72b9
BW
10307
10308 if (old_size == 0)
10309 {
10310 /* Only the first zero-sized unreachable entry is
10311 allowed to expand. In this case the new offset
10312 should be the offset before the fill and the new
10313 size is the expansion size. For other zero-sized
10314 entries the resulting size should be zero with an
10315 offset before or after the fill address depending
10316 on whether the expanding unreachable entry
10317 preceeds it. */
03669f1c
BW
10318 if (last_zfill_target_sec == 0
10319 || last_zfill_target_sec != target_sec
10320 || last_zfill_target_offset != old_offset)
43cd72b9 10321 {
03669f1c
BW
10322 bfd_vma new_end_offset = new_offset;
10323
10324 /* Recompute the new_offset, but this time don't
10325 include any fill inserted by relaxation. */
071aa5c9
MF
10326 removed_by_old_offset =
10327 removed_by_actions_map (&target_relax_info->action_list,
10328 old_offset, TRUE);
10329 new_offset = old_offset - removed_by_old_offset;
43cd72b9
BW
10330
10331 /* If it is not unreachable and we have not yet
10332 seen an unreachable at this address, place it
10333 before the fill address. */
03669f1c
BW
10334 if (flags_p && (bfd_get_32 (abfd, flags_p)
10335 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 10336 {
03669f1c
BW
10337 new_size = new_end_offset - new_offset;
10338
43cd72b9 10339 last_zfill_target_sec = target_sec;
03669f1c 10340 last_zfill_target_offset = old_offset;
43cd72b9
BW
10341 }
10342 }
10343 }
10344 else
071aa5c9
MF
10345 {
10346 int removed_by_old_offset_size =
10347 removed_by_actions_map (&target_relax_info->action_list,
10348 old_offset + old_size, TRUE);
10349 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10350 }
43cd72b9 10351
e0001a05
NC
10352 if (new_size != old_size)
10353 {
10354 bfd_put_32 (abfd, new_size, size_p);
10355 pin_contents (sec, contents);
10356 }
43cd72b9 10357
03669f1c 10358 if (new_offset != old_offset)
e0001a05 10359 {
03669f1c 10360 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
10361 irel->r_addend += diff;
10362 pin_internal_relocs (sec, internal_relocs);
10363 }
10364 }
10365 }
10366 }
10367
10368 /* Combine adjacent property table entries. This is also done in
10369 finish_dynamic_sections() but at that point it's too late to
10370 reclaim the space in the output section, so we do this twice. */
10371
0e1862bb 10372 if (internal_relocs && (!bfd_link_relocatable (link_info)
1d25768e 10373 || xtensa_is_littable_section (sec)))
e0001a05
NC
10374 {
10375 Elf_Internal_Rela *last_irel = NULL;
1d25768e 10376 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 10377 int removed_bytes = 0;
1d25768e 10378 bfd_vma offset;
43cd72b9
BW
10379 flagword predef_flags;
10380
43cd72b9 10381 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 10382
1d25768e 10383 /* Walk over memory and relocations at the same time.
07d6d2b8 10384 This REQUIRES that the internal_relocs be sorted by offset. */
e0001a05
NC
10385 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10386 internal_reloc_compare);
e0001a05
NC
10387
10388 pin_internal_relocs (sec, internal_relocs);
10389 pin_contents (sec, contents);
10390
1d25768e
BW
10391 next_rel = internal_relocs;
10392 rel_end = internal_relocs + sec->reloc_count;
10393
a3ef2d63 10394 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 10395
a3ef2d63 10396 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 10397 {
1d25768e 10398 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 10399 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 10400 bfd_boolean remove_this_rel;
43cd72b9 10401 flagword flags;
e0001a05 10402
1d25768e
BW
10403 /* Find the first relocation for the entry at the current offset.
10404 Adjust the offsets of any extra relocations for the previous
10405 entry. */
10406 offset_rel = NULL;
10407 if (next_rel)
10408 {
10409 for (irel = next_rel; irel < rel_end; irel++)
10410 {
10411 if ((irel->r_offset == offset
10412 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10413 || irel->r_offset > offset)
10414 {
10415 offset_rel = irel;
10416 break;
10417 }
10418 irel->r_offset -= removed_bytes;
1d25768e
BW
10419 }
10420 }
e0001a05 10421
1d25768e
BW
10422 /* Find the next relocation (if there are any left). */
10423 extra_rel = NULL;
10424 if (offset_rel)
e0001a05 10425 {
1d25768e 10426 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 10427 {
1d25768e
BW
10428 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10429 {
10430 extra_rel = irel;
10431 break;
10432 }
e0001a05 10433 }
e0001a05
NC
10434 }
10435
1d25768e
BW
10436 /* Check if there are relocations on the current entry. There
10437 should usually be a relocation on the offset field. If there
10438 are relocations on the size or flags, then we can't optimize
10439 this entry. Also, find the next relocation to examine on the
10440 next iteration. */
10441 if (offset_rel)
e0001a05 10442 {
1d25768e 10443 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 10444 {
1d25768e
BW
10445 next_rel = offset_rel;
10446 /* There are no relocations on the current entry, but we
10447 might still be able to remove it if the size is zero. */
10448 offset_rel = NULL;
10449 }
10450 else if (offset_rel->r_offset > offset
10451 || (extra_rel
10452 && extra_rel->r_offset < offset + entry_size))
10453 {
10454 /* There is a relocation on the size or flags, so we can't
10455 do anything with this entry. Continue with the next. */
10456 next_rel = offset_rel;
10457 continue;
10458 }
10459 else
10460 {
10461 BFD_ASSERT (offset_rel->r_offset == offset);
10462 offset_rel->r_offset -= removed_bytes;
10463 next_rel = offset_rel + 1;
e0001a05 10464 }
e0001a05 10465 }
1d25768e
BW
10466 else
10467 next_rel = NULL;
e0001a05 10468
1d25768e 10469 remove_this_rel = FALSE;
e0001a05
NC
10470 bytes_to_remove = 0;
10471 actual_offset = offset - removed_bytes;
10472 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10473
68ffbac6 10474 if (is_full_prop_section)
43cd72b9
BW
10475 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10476 else
10477 flags = predef_flags;
10478
1d25768e
BW
10479 if (size == 0
10480 && (flags & XTENSA_PROP_ALIGN) == 0
10481 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 10482 {
43cd72b9
BW
10483 /* Always remove entries with zero size and no alignment. */
10484 bytes_to_remove = entry_size;
1d25768e
BW
10485 if (offset_rel)
10486 remove_this_rel = TRUE;
e0001a05 10487 }
1d25768e
BW
10488 else if (offset_rel
10489 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10490 {
1d25768e 10491 if (last_irel)
e0001a05 10492 {
1d25768e
BW
10493 flagword old_flags;
10494 bfd_vma old_size =
10495 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10496 bfd_vma old_address =
10497 (last_irel->r_addend
10498 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10499 bfd_vma new_address =
10500 (offset_rel->r_addend
10501 + bfd_get_32 (abfd, &contents[actual_offset]));
68ffbac6 10502 if (is_full_prop_section)
1d25768e
BW
10503 old_flags = bfd_get_32
10504 (abfd, &contents[last_irel->r_offset + 8]);
10505 else
10506 old_flags = predef_flags;
10507
10508 if ((ELF32_R_SYM (offset_rel->r_info)
10509 == ELF32_R_SYM (last_irel->r_info))
10510 && old_address + old_size == new_address
10511 && old_flags == flags
10512 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10513 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10514 {
1d25768e
BW
10515 /* Fix the old size. */
10516 bfd_put_32 (abfd, old_size + size,
10517 &contents[last_irel->r_offset + 4]);
10518 bytes_to_remove = entry_size;
10519 remove_this_rel = TRUE;
e0001a05
NC
10520 }
10521 else
1d25768e 10522 last_irel = offset_rel;
e0001a05 10523 }
1d25768e
BW
10524 else
10525 last_irel = offset_rel;
e0001a05
NC
10526 }
10527
1d25768e 10528 if (remove_this_rel)
e0001a05 10529 {
1d25768e 10530 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10531 offset_rel->r_offset = 0;
e0001a05
NC
10532 }
10533
10534 if (bytes_to_remove != 0)
10535 {
10536 removed_bytes += bytes_to_remove;
a3ef2d63 10537 if (offset + bytes_to_remove < sec->size)
e0001a05 10538 memmove (&contents[actual_offset],
43cd72b9 10539 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10540 sec->size - offset - bytes_to_remove);
e0001a05
NC
10541 }
10542 }
10543
43cd72b9 10544 if (removed_bytes)
e0001a05 10545 {
1d25768e
BW
10546 /* Fix up any extra relocations on the last entry. */
10547 for (irel = next_rel; irel < rel_end; irel++)
10548 irel->r_offset -= removed_bytes;
10549
e0001a05 10550 /* Clear the removed bytes. */
a3ef2d63 10551 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10552
a3ef2d63
BW
10553 if (sec->rawsize == 0)
10554 sec->rawsize = sec->size;
10555 sec->size -= removed_bytes;
e901de89
BW
10556
10557 if (xtensa_is_littable_section (sec))
10558 {
f0e6fdb2
BW
10559 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10560 if (sgotloc)
10561 sgotloc->size -= removed_bytes;
e901de89 10562 }
e0001a05
NC
10563 }
10564 }
e901de89 10565
e0001a05
NC
10566 error_return:
10567 release_internal_relocs (sec, internal_relocs);
10568 release_contents (sec, contents);
10569 return ok;
10570}
10571
10572\f
10573/* Third relaxation pass. */
10574
10575/* Change symbol values to account for removed literals. */
10576
43cd72b9 10577bfd_boolean
7fa3d080 10578relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10579{
10580 xtensa_relax_info *relax_info;
10581 unsigned int sec_shndx;
10582 Elf_Internal_Shdr *symtab_hdr;
10583 Elf_Internal_Sym *isymbuf;
10584 unsigned i, num_syms, num_locals;
10585
10586 relax_info = get_xtensa_relax_info (sec);
10587 BFD_ASSERT (relax_info);
10588
43cd72b9
BW
10589 if (!relax_info->is_relaxable_literal_section
10590 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10591 return TRUE;
10592
10593 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10594
10595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10596 isymbuf = retrieve_local_syms (abfd);
10597
10598 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10599 num_locals = symtab_hdr->sh_info;
10600
10601 /* Adjust the local symbols defined in this section. */
10602 for (i = 0; i < num_locals; i++)
10603 {
10604 Elf_Internal_Sym *isym = &isymbuf[i];
10605
10606 if (isym->st_shndx == sec_shndx)
10607 {
03669f1c 10608 bfd_vma orig_addr = isym->st_value;
071aa5c9
MF
10609 int removed = removed_by_actions_map (&relax_info->action_list,
10610 orig_addr, FALSE);
43cd72b9 10611
071aa5c9 10612 isym->st_value -= removed;
03669f1c
BW
10613 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10614 isym->st_size -=
071aa5c9
MF
10615 removed_by_actions_map (&relax_info->action_list,
10616 orig_addr + isym->st_size, FALSE) -
10617 removed;
e0001a05
NC
10618 }
10619 }
10620
10621 /* Now adjust the global symbols defined in this section. */
10622 for (i = 0; i < (num_syms - num_locals); i++)
10623 {
10624 struct elf_link_hash_entry *sym_hash;
10625
10626 sym_hash = elf_sym_hashes (abfd)[i];
10627
10628 if (sym_hash->root.type == bfd_link_hash_warning)
10629 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10630
10631 if ((sym_hash->root.type == bfd_link_hash_defined
10632 || sym_hash->root.type == bfd_link_hash_defweak)
10633 && sym_hash->root.u.def.section == sec)
10634 {
03669f1c 10635 bfd_vma orig_addr = sym_hash->root.u.def.value;
071aa5c9
MF
10636 int removed = removed_by_actions_map (&relax_info->action_list,
10637 orig_addr, FALSE);
43cd72b9 10638
071aa5c9 10639 sym_hash->root.u.def.value -= removed;
43cd72b9 10640
03669f1c
BW
10641 if (sym_hash->type == STT_FUNC)
10642 sym_hash->size -=
071aa5c9
MF
10643 removed_by_actions_map (&relax_info->action_list,
10644 orig_addr + sym_hash->size, FALSE) -
10645 removed;
e0001a05
NC
10646 }
10647 }
10648
10649 return TRUE;
10650}
10651
10652\f
10653/* "Fix" handling functions, called while performing relocations. */
10654
43cd72b9 10655static bfd_boolean
7fa3d080
BW
10656do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10657 bfd *input_bfd,
10658 asection *input_section,
10659 bfd_byte *contents)
e0001a05
NC
10660{
10661 r_reloc r_rel;
10662 asection *sec, *old_sec;
10663 bfd_vma old_offset;
10664 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10665 reloc_bfd_fix *fix;
10666
10667 if (r_type == R_XTENSA_NONE)
43cd72b9 10668 return TRUE;
e0001a05 10669
43cd72b9
BW
10670 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10671 if (!fix)
10672 return TRUE;
e0001a05 10673
43cd72b9
BW
10674 r_reloc_init (&r_rel, input_bfd, rel, contents,
10675 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10676 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10677 old_offset = r_rel.target_offset;
10678
10679 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10680 {
43cd72b9
BW
10681 if (r_type != R_XTENSA_ASM_EXPAND)
10682 {
4eca0228 10683 _bfd_error_handler
695344c0 10684 /* xgettext:c-format */
2dcf00ce
AM
10685 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10686 input_bfd, input_section, (uint64_t) rel->r_offset,
43cd72b9
BW
10687 elf_howto_table[r_type].name);
10688 return FALSE;
10689 }
e0001a05
NC
10690 /* Leave it be. Resolution will happen in a later stage. */
10691 }
10692 else
10693 {
10694 sec = fix->target_sec;
10695 rel->r_addend += ((sec->output_offset + fix->target_offset)
10696 - (old_sec->output_offset + old_offset));
10697 }
43cd72b9 10698 return TRUE;
e0001a05
NC
10699}
10700
10701
10702static void
7fa3d080
BW
10703do_fix_for_final_link (Elf_Internal_Rela *rel,
10704 bfd *input_bfd,
10705 asection *input_section,
10706 bfd_byte *contents,
10707 bfd_vma *relocationp)
e0001a05
NC
10708{
10709 asection *sec;
10710 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10711 reloc_bfd_fix *fix;
43cd72b9 10712 bfd_vma fixup_diff;
e0001a05
NC
10713
10714 if (r_type == R_XTENSA_NONE)
10715 return;
10716
43cd72b9
BW
10717 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10718 if (!fix)
e0001a05
NC
10719 return;
10720
10721 sec = fix->target_sec;
43cd72b9
BW
10722
10723 fixup_diff = rel->r_addend;
10724 if (elf_howto_table[fix->src_type].partial_inplace)
10725 {
10726 bfd_vma inplace_val;
10727 BFD_ASSERT (fix->src_offset
10728 < bfd_get_section_limit (input_bfd, input_section));
10729 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10730 fixup_diff += inplace_val;
10731 }
10732
e0001a05
NC
10733 *relocationp = (sec->output_section->vma
10734 + sec->output_offset
43cd72b9 10735 + fix->target_offset - fixup_diff);
e0001a05
NC
10736}
10737
10738\f
10739/* Miscellaneous utility functions.... */
10740
10741static asection *
f0e6fdb2 10742elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10743{
f0e6fdb2 10744 bfd *dynobj;
0bae9e9e 10745 char plt_name[17];
e0001a05
NC
10746
10747 if (chunk == 0)
ce558b89 10748 return elf_hash_table (info)->splt;
e0001a05 10749
f0e6fdb2 10750 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10751 sprintf (plt_name, ".plt.%u", chunk);
3d4d4302 10752 return bfd_get_linker_section (dynobj, plt_name);
e0001a05
NC
10753}
10754
10755
10756static asection *
f0e6fdb2 10757elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10758{
f0e6fdb2 10759 bfd *dynobj;
0bae9e9e 10760 char got_name[21];
e0001a05
NC
10761
10762 if (chunk == 0)
ce558b89 10763 return elf_hash_table (info)->sgotplt;
e0001a05 10764
f0e6fdb2 10765 dynobj = elf_hash_table (info)->dynobj;
e0001a05 10766 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 10767 return bfd_get_linker_section (dynobj, got_name);
e0001a05
NC
10768}
10769
10770
10771/* Get the input section for a given symbol index.
10772 If the symbol is:
10773 . a section symbol, return the section;
10774 . a common symbol, return the common section;
10775 . an undefined symbol, return the undefined section;
10776 . an indirect symbol, follow the links;
10777 . an absolute value, return the absolute section. */
10778
10779static asection *
7fa3d080 10780get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10781{
10782 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10783 asection *target_sec = NULL;
43cd72b9 10784 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10785 {
10786 Elf_Internal_Sym *isymbuf;
10787 unsigned int section_index;
10788
10789 isymbuf = retrieve_local_syms (abfd);
10790 section_index = isymbuf[r_symndx].st_shndx;
10791
10792 if (section_index == SHN_UNDEF)
10793 target_sec = bfd_und_section_ptr;
e0001a05
NC
10794 else if (section_index == SHN_ABS)
10795 target_sec = bfd_abs_section_ptr;
10796 else if (section_index == SHN_COMMON)
10797 target_sec = bfd_com_section_ptr;
43cd72b9 10798 else
cb33740c 10799 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10800 }
10801 else
10802 {
10803 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10804 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10805
10806 while (h->root.type == bfd_link_hash_indirect
07d6d2b8
AM
10807 || h->root.type == bfd_link_hash_warning)
10808 h = (struct elf_link_hash_entry *) h->root.u.i.link;
e0001a05
NC
10809
10810 switch (h->root.type)
10811 {
10812 case bfd_link_hash_defined:
10813 case bfd_link_hash_defweak:
10814 target_sec = h->root.u.def.section;
10815 break;
10816 case bfd_link_hash_common:
10817 target_sec = bfd_com_section_ptr;
10818 break;
10819 case bfd_link_hash_undefined:
10820 case bfd_link_hash_undefweak:
10821 target_sec = bfd_und_section_ptr;
10822 break;
10823 default: /* New indirect warning. */
10824 target_sec = bfd_und_section_ptr;
10825 break;
10826 }
10827 }
10828 return target_sec;
10829}
10830
10831
10832static struct elf_link_hash_entry *
7fa3d080 10833get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10834{
10835 unsigned long indx;
10836 struct elf_link_hash_entry *h;
10837 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10838
10839 if (r_symndx < symtab_hdr->sh_info)
10840 return NULL;
43cd72b9 10841
e0001a05
NC
10842 indx = r_symndx - symtab_hdr->sh_info;
10843 h = elf_sym_hashes (abfd)[indx];
10844 while (h->root.type == bfd_link_hash_indirect
10845 || h->root.type == bfd_link_hash_warning)
10846 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10847 return h;
10848}
10849
10850
10851/* Get the section-relative offset for a symbol number. */
10852
10853static bfd_vma
7fa3d080 10854get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10855{
10856 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10857 bfd_vma offset = 0;
10858
43cd72b9 10859 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10860 {
10861 Elf_Internal_Sym *isymbuf;
10862 isymbuf = retrieve_local_syms (abfd);
10863 offset = isymbuf[r_symndx].st_value;
10864 }
10865 else
10866 {
10867 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10868 struct elf_link_hash_entry *h =
10869 elf_sym_hashes (abfd)[indx];
10870
10871 while (h->root.type == bfd_link_hash_indirect
07d6d2b8 10872 || h->root.type == bfd_link_hash_warning)
e0001a05
NC
10873 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10874 if (h->root.type == bfd_link_hash_defined
07d6d2b8 10875 || h->root.type == bfd_link_hash_defweak)
e0001a05
NC
10876 offset = h->root.u.def.value;
10877 }
10878 return offset;
10879}
10880
10881
10882static bfd_boolean
7fa3d080 10883is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10884{
10885 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10886 struct elf_link_hash_entry *h;
10887
10888 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10889 if (h && h->root.type == bfd_link_hash_defweak)
10890 return TRUE;
10891 return FALSE;
10892}
10893
10894
10895static bfd_boolean
7fa3d080
BW
10896pcrel_reloc_fits (xtensa_opcode opc,
10897 int opnd,
10898 bfd_vma self_address,
10899 bfd_vma dest_address)
e0001a05 10900{
43cd72b9
BW
10901 xtensa_isa isa = xtensa_default_isa;
10902 uint32 valp = dest_address;
10903 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10904 || xtensa_operand_encode (isa, opc, opnd, &valp))
10905 return FALSE;
10906 return TRUE;
e0001a05
NC
10907}
10908
10909
68ffbac6 10910static bfd_boolean
7fa3d080 10911xtensa_is_property_section (asection *sec)
e0001a05 10912{
1d25768e
BW
10913 if (xtensa_is_insntable_section (sec)
10914 || xtensa_is_littable_section (sec)
10915 || xtensa_is_proptable_section (sec))
b614a702 10916 return TRUE;
e901de89 10917
1d25768e
BW
10918 return FALSE;
10919}
10920
10921
68ffbac6 10922static bfd_boolean
1d25768e
BW
10923xtensa_is_insntable_section (asection *sec)
10924{
10925 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10926 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10927 return TRUE;
10928
e901de89
BW
10929 return FALSE;
10930}
10931
10932
68ffbac6 10933static bfd_boolean
7fa3d080 10934xtensa_is_littable_section (asection *sec)
e901de89 10935{
1d25768e
BW
10936 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10937 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10938 return TRUE;
e901de89 10939
1d25768e
BW
10940 return FALSE;
10941}
10942
10943
68ffbac6 10944static bfd_boolean
1d25768e
BW
10945xtensa_is_proptable_section (asection *sec)
10946{
10947 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10948 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 10949 return TRUE;
e0001a05 10950
e901de89 10951 return FALSE;
e0001a05
NC
10952}
10953
10954
43cd72b9 10955static int
7fa3d080 10956internal_reloc_compare (const void *ap, const void *bp)
e0001a05 10957{
43cd72b9
BW
10958 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10959 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10960
10961 if (a->r_offset != b->r_offset)
10962 return (a->r_offset - b->r_offset);
10963
10964 /* We don't need to sort on these criteria for correctness,
10965 but enforcing a more strict ordering prevents unstable qsort
10966 from behaving differently with different implementations.
10967 Without the code below we get correct but different results
10968 on Solaris 2.7 and 2.8. We would like to always produce the
10969 same results no matter the host. */
10970
10971 if (a->r_info != b->r_info)
10972 return (a->r_info - b->r_info);
10973
10974 return (a->r_addend - b->r_addend);
e0001a05
NC
10975}
10976
10977
10978static int
7fa3d080 10979internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
10980{
10981 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10982 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10983
43cd72b9
BW
10984 /* Check if one entry overlaps with the other; this shouldn't happen
10985 except when searching for a match. */
e0001a05
NC
10986 return (a->r_offset - b->r_offset);
10987}
10988
10989
74869ac7
BW
10990/* Predicate function used to look up a section in a particular group. */
10991
10992static bfd_boolean
10993match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10994{
10995 const char *gname = inf;
10996 const char *group_name = elf_group_name (sec);
68ffbac6 10997
74869ac7
BW
10998 return (group_name == gname
10999 || (group_name != NULL
11000 && gname != NULL
11001 && strcmp (group_name, gname) == 0));
11002}
11003
11004
8255c61b
MF
11005static char *
11006xtensa_add_names (const char *base, const char *suffix)
11007{
11008 if (suffix)
11009 {
11010 size_t base_len = strlen (base);
11011 size_t suffix_len = strlen (suffix);
11012 char *str = bfd_malloc (base_len + suffix_len + 1);
11013
11014 memcpy (str, base, base_len);
11015 memcpy (str + base_len, suffix, suffix_len + 1);
11016 return str;
11017 }
11018 else
11019 {
11020 return strdup (base);
11021 }
11022}
11023
1d25768e
BW
11024static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11025
51c8ebc1 11026static char *
8255c61b
MF
11027xtensa_property_section_name (asection *sec, const char *base_name,
11028 bfd_boolean separate_sections)
e0001a05 11029{
74869ac7
BW
11030 const char *suffix, *group_name;
11031 char *prop_sec_name;
74869ac7
BW
11032
11033 group_name = elf_group_name (sec);
11034 if (group_name)
11035 {
11036 suffix = strrchr (sec->name, '.');
11037 if (suffix == sec->name)
11038 suffix = 0;
8255c61b 11039 prop_sec_name = xtensa_add_names (base_name, suffix);
74869ac7
BW
11040 }
11041 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 11042 {
43cd72b9 11043 char *linkonce_kind = 0;
b614a702 11044
68ffbac6 11045 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 11046 linkonce_kind = "x.";
68ffbac6 11047 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 11048 linkonce_kind = "p.";
43cd72b9
BW
11049 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11050 linkonce_kind = "prop.";
e0001a05 11051 else
b614a702
BW
11052 abort ();
11053
43cd72b9
BW
11054 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11055 + strlen (linkonce_kind) + 1);
b614a702 11056 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 11057 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
11058
11059 suffix = sec->name + linkonce_len;
096c35a7 11060 /* For backward compatibility, replace "t." instead of inserting
07d6d2b8 11061 the new linkonce_kind (but not for "prop" sections). */
0112cd26 11062 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
07d6d2b8 11063 suffix += 2;
43cd72b9 11064 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
11065 }
11066 else
8255c61b
MF
11067 {
11068 prop_sec_name = xtensa_add_names (base_name,
11069 separate_sections ? sec->name : NULL);
11070 }
74869ac7 11071
51c8ebc1
BW
11072 return prop_sec_name;
11073}
11074
11075
11076static asection *
8255c61b
MF
11077xtensa_get_separate_property_section (asection *sec, const char *base_name,
11078 bfd_boolean separate_section)
51c8ebc1
BW
11079{
11080 char *prop_sec_name;
11081 asection *prop_sec;
11082
8255c61b
MF
11083 prop_sec_name = xtensa_property_section_name (sec, base_name,
11084 separate_section);
51c8ebc1
BW
11085 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11086 match_section_group,
11087 (void *) elf_group_name (sec));
11088 free (prop_sec_name);
11089 return prop_sec;
11090}
11091
8255c61b
MF
11092static asection *
11093xtensa_get_property_section (asection *sec, const char *base_name)
11094{
11095 asection *prop_sec;
11096
11097 /* Try individual property section first. */
11098 prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
11099
11100 /* Refer to a common property section if individual is not present. */
11101 if (!prop_sec)
11102 prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
11103
11104 return prop_sec;
11105}
11106
51c8ebc1
BW
11107
11108asection *
11109xtensa_make_property_section (asection *sec, const char *base_name)
11110{
11111 char *prop_sec_name;
11112 asection *prop_sec;
11113
74869ac7 11114 /* Check if the section already exists. */
8255c61b
MF
11115 prop_sec_name = xtensa_property_section_name (sec, base_name,
11116 elf32xtensa_separate_props);
74869ac7
BW
11117 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11118 match_section_group,
51c8ebc1 11119 (void *) elf_group_name (sec));
74869ac7
BW
11120 /* If not, create it. */
11121 if (! prop_sec)
11122 {
11123 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11124 flags |= (bfd_get_section_flags (sec->owner, sec)
11125 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11126
11127 prop_sec = bfd_make_section_anyway_with_flags
11128 (sec->owner, strdup (prop_sec_name), flags);
11129 if (! prop_sec)
11130 return 0;
b614a702 11131
51c8ebc1 11132 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
11133 }
11134
74869ac7
BW
11135 free (prop_sec_name);
11136 return prop_sec;
e0001a05
NC
11137}
11138
43cd72b9
BW
11139
11140flagword
7fa3d080 11141xtensa_get_property_predef_flags (asection *sec)
43cd72b9 11142{
1d25768e 11143 if (xtensa_is_insntable_section (sec))
43cd72b9 11144 return (XTENSA_PROP_INSN
99ded152 11145 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
11146 | XTENSA_PROP_INSN_NO_REORDER);
11147
11148 if (xtensa_is_littable_section (sec))
11149 return (XTENSA_PROP_LITERAL
99ded152 11150 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
11151 | XTENSA_PROP_INSN_NO_REORDER);
11152
11153 return 0;
11154}
11155
e0001a05
NC
11156\f
11157/* Other functions called directly by the linker. */
11158
11159bfd_boolean
7fa3d080
BW
11160xtensa_callback_required_dependence (bfd *abfd,
11161 asection *sec,
11162 struct bfd_link_info *link_info,
11163 deps_callback_t callback,
11164 void *closure)
e0001a05
NC
11165{
11166 Elf_Internal_Rela *internal_relocs;
11167 bfd_byte *contents;
11168 unsigned i;
11169 bfd_boolean ok = TRUE;
43cd72b9
BW
11170 bfd_size_type sec_size;
11171
11172 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
11173
11174 /* ".plt*" sections have no explicit relocations but they contain L32R
11175 instructions that reference the corresponding ".got.plt*" sections. */
11176 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 11177 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
11178 {
11179 asection *sgotplt;
11180
11181 /* Find the corresponding ".got.plt*" section. */
11182 if (sec->name[4] == '\0')
ce558b89 11183 sgotplt = elf_hash_table (link_info)->sgotplt;
e0001a05
NC
11184 else
11185 {
11186 char got_name[14];
11187 int chunk = 0;
11188
11189 BFD_ASSERT (sec->name[4] == '.');
11190 chunk = strtol (&sec->name[5], NULL, 10);
11191
11192 sprintf (got_name, ".got.plt.%u", chunk);
3d4d4302 11193 sgotplt = bfd_get_linker_section (sec->owner, got_name);
e0001a05
NC
11194 }
11195 BFD_ASSERT (sgotplt);
11196
11197 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11198 section referencing a literal at the very beginning of
11199 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 11200 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
11201 }
11202
13161072
BW
11203 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11204 when building uclibc, which runs "ld -b binary /dev/null". */
11205 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11206 return ok;
11207
68ffbac6 11208 internal_relocs = retrieve_internal_relocs (abfd, sec,
e0001a05
NC
11209 link_info->keep_memory);
11210 if (internal_relocs == NULL
43cd72b9 11211 || sec->reloc_count == 0)
e0001a05
NC
11212 return ok;
11213
11214 /* Cache the contents for the duration of this scan. */
11215 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 11216 if (contents == NULL && sec_size != 0)
e0001a05
NC
11217 {
11218 ok = FALSE;
11219 goto error_return;
11220 }
11221
43cd72b9
BW
11222 if (!xtensa_default_isa)
11223 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 11224
43cd72b9 11225 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
11226 {
11227 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 11228 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
11229 {
11230 r_reloc l32r_rel;
11231 asection *target_sec;
11232 bfd_vma target_offset;
43cd72b9
BW
11233
11234 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
11235 target_sec = NULL;
11236 target_offset = 0;
11237 /* L32Rs must be local to the input file. */
11238 if (r_reloc_is_defined (&l32r_rel))
11239 {
11240 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 11241 target_offset = l32r_rel.target_offset;
e0001a05
NC
11242 }
11243 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11244 closure);
11245 }
11246 }
11247
11248 error_return:
11249 release_internal_relocs (sec, internal_relocs);
11250 release_contents (sec, contents);
11251 return ok;
11252}
11253
2f89ff8d
L
11254/* The default literal sections should always be marked as "code" (i.e.,
11255 SHF_EXECINSTR). This is particularly important for the Linux kernel
11256 module loader so that the literals are not placed after the text. */
b35d266b 11257static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 11258{
0112cd26
NC
11259 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11260 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
07d6d2b8
AM
11261 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11262 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11263 { NULL, 0, 0, 0, 0 }
7f4d3958 11264};
e0001a05 11265\f
ae95ffa6 11266#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05 11267#ifndef ELF_ARCH
6d00b590 11268#define TARGET_LITTLE_SYM xtensa_elf32_le_vec
e0001a05 11269#define TARGET_LITTLE_NAME "elf32-xtensa-le"
6d00b590 11270#define TARGET_BIG_SYM xtensa_elf32_be_vec
e0001a05
NC
11271#define TARGET_BIG_NAME "elf32-xtensa-be"
11272#define ELF_ARCH bfd_arch_xtensa
11273
4af0a1d8
BW
11274#define ELF_MACHINE_CODE EM_XTENSA
11275#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05 11276
f7e16c2a 11277#define ELF_MAXPAGESIZE 0x1000
e0001a05
NC
11278#endif /* ELF_ARCH */
11279
11280#define elf_backend_can_gc_sections 1
11281#define elf_backend_can_refcount 1
11282#define elf_backend_plt_readonly 1
11283#define elf_backend_got_header_size 4
11284#define elf_backend_want_dynbss 0
11285#define elf_backend_want_got_plt 1
64f52338 11286#define elf_backend_dtrel_excludes_plt 1
e0001a05
NC
11287
11288#define elf_info_to_howto elf_xtensa_info_to_howto_rela
11289
28dbbc02
BW
11290#define bfd_elf32_mkobject elf_xtensa_mkobject
11291
e0001a05
NC
11292#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11293#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11294#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11295#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11296#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
11297#define bfd_elf32_bfd_reloc_name_lookup \
11298 elf_xtensa_reloc_name_lookup
e0001a05 11299#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 11300#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
11301
11302#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11303#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
11304#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11305#define elf_backend_discard_info elf_xtensa_discard_info
11306#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11307#define elf_backend_final_write_processing elf_xtensa_final_write_processing
11308#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11309#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11310#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
e0001a05
NC
11311#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11312#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 11313#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
11314#define elf_backend_object_p elf_xtensa_object_p
11315#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11316#define elf_backend_relocate_section elf_xtensa_relocate_section
11317#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 11318#define elf_backend_always_size_sections elf_xtensa_always_size_sections
d00dd7dc 11319#define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
29ef7005 11320#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 11321#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 11322#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
11323
11324#include "elf32-target.h"
This page took 2.173417 seconds and 4 git commands to generate.