Commit | Line | Data |
---|---|---|
b352eebf | 1 | /* Support for HPPA 64-bit ELF |
a03bd320 | 2 | 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 |
5a580b3a | 3 | Free Software Foundation, Inc. |
15bda425 | 4 | |
ae9a127f | 5 | This file is part of BFD, the Binary File Descriptor library. |
15bda425 | 6 | |
ae9a127f NC |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
cd123cb7 | 9 | the Free Software Foundation; either version 3 of the License, or |
ae9a127f | 10 | (at your option) any later version. |
15bda425 | 11 | |
ae9a127f NC |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
15bda425 | 16 | |
ae9a127f NC |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
cd123cb7 NC |
19 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
20 | MA 02110-1301, USA. */ | |
15bda425 | 21 | |
8d25cc3d | 22 | #include "alloca-conf.h" |
15bda425 | 23 | #include "sysdep.h" |
3db64b00 | 24 | #include "bfd.h" |
15bda425 JL |
25 | #include "libbfd.h" |
26 | #include "elf-bfd.h" | |
27 | #include "elf/hppa.h" | |
28 | #include "libhppa.h" | |
29 | #include "elf64-hppa.h" | |
8bc9c892 | 30 | |
8bc9c892 | 31 | |
15bda425 JL |
32 | #define ARCH_SIZE 64 |
33 | ||
34 | #define PLT_ENTRY_SIZE 0x10 | |
35 | #define DLT_ENTRY_SIZE 0x8 | |
36 | #define OPD_ENTRY_SIZE 0x20 | |
fe8bc63d | 37 | |
15bda425 JL |
38 | #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl" |
39 | ||
40 | /* The stub is supposed to load the target address and target's DP | |
41 | value out of the PLT, then do an external branch to the target | |
42 | address. | |
43 | ||
44 | LDD PLTOFF(%r27),%r1 | |
45 | BVE (%r1) | |
46 | LDD PLTOFF+8(%r27),%r27 | |
47 | ||
48 | Note that we must use the LDD with a 14 bit displacement, not the one | |
49 | with a 5 bit displacement. */ | |
50 | static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00, | |
51 | 0x53, 0x7b, 0x00, 0x00 }; | |
52 | ||
a03bd320 | 53 | struct elf64_hppa_link_hash_entry |
15bda425 | 54 | { |
a03bd320 | 55 | struct elf_link_hash_entry eh; |
15bda425 JL |
56 | |
57 | /* Offsets for this symbol in various linker sections. */ | |
58 | bfd_vma dlt_offset; | |
59 | bfd_vma plt_offset; | |
60 | bfd_vma opd_offset; | |
61 | bfd_vma stub_offset; | |
62 | ||
15bda425 JL |
63 | /* The index of the (possibly local) symbol in the input bfd and its |
64 | associated BFD. Needed so that we can have relocs against local | |
65 | symbols in shared libraries. */ | |
dc810e39 | 66 | long sym_indx; |
15bda425 JL |
67 | bfd *owner; |
68 | ||
69 | /* Dynamic symbols may need to have two different values. One for | |
70 | the dynamic symbol table, one for the normal symbol table. | |
71 | ||
72 | In such cases we store the symbol's real value and section | |
73 | index here so we can restore the real value before we write | |
74 | the normal symbol table. */ | |
75 | bfd_vma st_value; | |
76 | int st_shndx; | |
77 | ||
78 | /* Used to count non-got, non-plt relocations for delayed sizing | |
79 | of relocation sections. */ | |
80 | struct elf64_hppa_dyn_reloc_entry | |
81 | { | |
82 | /* Next relocation in the chain. */ | |
83 | struct elf64_hppa_dyn_reloc_entry *next; | |
84 | ||
85 | /* The type of the relocation. */ | |
86 | int type; | |
87 | ||
88 | /* The input section of the relocation. */ | |
89 | asection *sec; | |
90 | ||
a03bd320 DA |
91 | /* Number of relocs copied in this section. */ |
92 | bfd_size_type count; | |
93 | ||
15bda425 JL |
94 | /* The index of the section symbol for the input section of |
95 | the relocation. Only needed when building shared libraries. */ | |
96 | int sec_symndx; | |
97 | ||
98 | /* The offset within the input section of the relocation. */ | |
99 | bfd_vma offset; | |
100 | ||
101 | /* The addend for the relocation. */ | |
102 | bfd_vma addend; | |
103 | ||
104 | } *reloc_entries; | |
105 | ||
106 | /* Nonzero if this symbol needs an entry in one of the linker | |
107 | sections. */ | |
108 | unsigned want_dlt; | |
109 | unsigned want_plt; | |
110 | unsigned want_opd; | |
111 | unsigned want_stub; | |
112 | }; | |
113 | ||
15bda425 JL |
114 | struct elf64_hppa_link_hash_table |
115 | { | |
116 | struct elf_link_hash_table root; | |
117 | ||
118 | /* Shortcuts to get to the various linker defined sections. */ | |
119 | asection *dlt_sec; | |
120 | asection *dlt_rel_sec; | |
121 | asection *plt_sec; | |
122 | asection *plt_rel_sec; | |
123 | asection *opd_sec; | |
124 | asection *opd_rel_sec; | |
125 | asection *other_rel_sec; | |
126 | ||
127 | /* Offset of __gp within .plt section. When the PLT gets large we want | |
128 | to slide __gp into the PLT section so that we can continue to use | |
129 | single DP relative instructions to load values out of the PLT. */ | |
130 | bfd_vma gp_offset; | |
131 | ||
132 | /* Note this is not strictly correct. We should create a stub section for | |
133 | each input section with calls. The stub section should be placed before | |
134 | the section with the call. */ | |
135 | asection *stub_sec; | |
136 | ||
137 | bfd_vma text_segment_base; | |
138 | bfd_vma data_segment_base; | |
139 | ||
15bda425 JL |
140 | /* We build tables to map from an input section back to its |
141 | symbol index. This is the BFD for which we currently have | |
142 | a map. */ | |
143 | bfd *section_syms_bfd; | |
144 | ||
145 | /* Array of symbol numbers for each input section attached to the | |
146 | current BFD. */ | |
147 | int *section_syms; | |
148 | }; | |
149 | ||
a03bd320 | 150 | #define hppa_link_hash_table(p) \ |
15bda425 JL |
151 | ((struct elf64_hppa_link_hash_table *) ((p)->hash)) |
152 | ||
a03bd320 DA |
153 | #define hppa_elf_hash_entry(ent) \ |
154 | ((struct elf64_hppa_link_hash_entry *)(ent)) | |
155 | ||
156 | #define eh_name(eh) \ | |
157 | (eh ? eh->root.root.string : "<undef>") | |
158 | ||
15bda425 | 159 | typedef struct bfd_hash_entry *(*new_hash_entry_func) |
813c8a3c | 160 | (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); |
15bda425 | 161 | |
15bda425 | 162 | static struct bfd_link_hash_table *elf64_hppa_hash_table_create |
813c8a3c DA |
163 | (bfd *abfd); |
164 | ||
15bda425 JL |
165 | /* This must follow the definitions of the various derived linker |
166 | hash tables and shared functions. */ | |
167 | #include "elf-hppa.h" | |
168 | ||
b34976b6 | 169 | static bfd_boolean elf64_hppa_object_p |
813c8a3c | 170 | (bfd *); |
15bda425 | 171 | |
15bda425 | 172 | static void elf64_hppa_post_process_headers |
813c8a3c | 173 | (bfd *, struct bfd_link_info *); |
15bda425 | 174 | |
b34976b6 | 175 | static bfd_boolean elf64_hppa_create_dynamic_sections |
813c8a3c | 176 | (bfd *, struct bfd_link_info *); |
15bda425 | 177 | |
b34976b6 | 178 | static bfd_boolean elf64_hppa_adjust_dynamic_symbol |
813c8a3c | 179 | (struct bfd_link_info *, struct elf_link_hash_entry *); |
15bda425 | 180 | |
b34976b6 | 181 | static bfd_boolean elf64_hppa_mark_milli_and_exported_functions |
813c8a3c | 182 | (struct elf_link_hash_entry *, void *); |
47b7c2db | 183 | |
b34976b6 | 184 | static bfd_boolean elf64_hppa_size_dynamic_sections |
813c8a3c | 185 | (bfd *, struct bfd_link_info *); |
15bda425 | 186 | |
6e0b88f1 | 187 | static int elf64_hppa_link_output_symbol_hook |
813c8a3c DA |
188 | (struct bfd_link_info *, const char *, Elf_Internal_Sym *, |
189 | asection *, struct elf_link_hash_entry *); | |
99c79b2e | 190 | |
b34976b6 | 191 | static bfd_boolean elf64_hppa_finish_dynamic_symbol |
813c8a3c DA |
192 | (bfd *, struct bfd_link_info *, |
193 | struct elf_link_hash_entry *, Elf_Internal_Sym *); | |
fe8bc63d | 194 | |
5ac81c74 | 195 | static enum elf_reloc_type_class elf64_hppa_reloc_type_class |
813c8a3c | 196 | (const Elf_Internal_Rela *); |
5ac81c74 | 197 | |
b34976b6 | 198 | static bfd_boolean elf64_hppa_finish_dynamic_sections |
813c8a3c | 199 | (bfd *, struct bfd_link_info *); |
15bda425 | 200 | |
b34976b6 | 201 | static bfd_boolean elf64_hppa_check_relocs |
813c8a3c DA |
202 | (bfd *, struct bfd_link_info *, |
203 | asection *, const Elf_Internal_Rela *); | |
15bda425 | 204 | |
b34976b6 | 205 | static bfd_boolean elf64_hppa_dynamic_symbol_p |
813c8a3c | 206 | (struct elf_link_hash_entry *, struct bfd_link_info *); |
15bda425 | 207 | |
b34976b6 | 208 | static bfd_boolean elf64_hppa_mark_exported_functions |
813c8a3c | 209 | (struct elf_link_hash_entry *, void *); |
15bda425 | 210 | |
b34976b6 | 211 | static bfd_boolean elf64_hppa_finalize_opd |
a03bd320 | 212 | (struct elf_link_hash_entry *, void *); |
15bda425 | 213 | |
b34976b6 | 214 | static bfd_boolean elf64_hppa_finalize_dlt |
a03bd320 | 215 | (struct elf_link_hash_entry *, void *); |
15bda425 | 216 | |
b34976b6 | 217 | static bfd_boolean allocate_global_data_dlt |
a03bd320 | 218 | (struct elf_link_hash_entry *, void *); |
15bda425 | 219 | |
b34976b6 | 220 | static bfd_boolean allocate_global_data_plt |
a03bd320 | 221 | (struct elf_link_hash_entry *, void *); |
15bda425 | 222 | |
b34976b6 | 223 | static bfd_boolean allocate_global_data_stub |
a03bd320 | 224 | (struct elf_link_hash_entry *, void *); |
15bda425 | 225 | |
b34976b6 | 226 | static bfd_boolean allocate_global_data_opd |
a03bd320 | 227 | (struct elf_link_hash_entry *, void *); |
15bda425 | 228 | |
b34976b6 | 229 | static bfd_boolean get_reloc_section |
813c8a3c | 230 | (bfd *, struct elf64_hppa_link_hash_table *, asection *); |
15bda425 | 231 | |
b34976b6 | 232 | static bfd_boolean count_dyn_reloc |
a03bd320 | 233 | (bfd *, struct elf64_hppa_link_hash_entry *, |
813c8a3c | 234 | int, asection *, int, bfd_vma, bfd_vma); |
15bda425 | 235 | |
b34976b6 | 236 | static bfd_boolean allocate_dynrel_entries |
a03bd320 | 237 | (struct elf_link_hash_entry *, void *); |
15bda425 | 238 | |
b34976b6 | 239 | static bfd_boolean elf64_hppa_finalize_dynreloc |
a03bd320 | 240 | (struct elf_link_hash_entry *, void *); |
15bda425 | 241 | |
b34976b6 | 242 | static bfd_boolean get_opd |
813c8a3c | 243 | (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); |
15bda425 | 244 | |
b34976b6 | 245 | static bfd_boolean get_plt |
813c8a3c | 246 | (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); |
15bda425 | 247 | |
b34976b6 | 248 | static bfd_boolean get_dlt |
813c8a3c | 249 | (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); |
15bda425 | 250 | |
b34976b6 | 251 | static bfd_boolean get_stub |
813c8a3c | 252 | (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); |
15bda425 | 253 | |
3fab46d0 | 254 | static int elf64_hppa_elf_get_symbol_type |
813c8a3c | 255 | (Elf_Internal_Sym *, int); |
3fab46d0 | 256 | |
a03bd320 | 257 | /* Initialize an entry in the link hash table. */ |
15bda425 | 258 | |
a03bd320 DA |
259 | static struct bfd_hash_entry * |
260 | hppa64_link_hash_newfunc (struct bfd_hash_entry *entry, | |
261 | struct bfd_hash_table *table, | |
262 | const char *string) | |
15bda425 | 263 | { |
15bda425 JL |
264 | /* Allocate the structure if it has not already been allocated by a |
265 | subclass. */ | |
a03bd320 DA |
266 | if (entry == NULL) |
267 | { | |
268 | entry = bfd_hash_allocate (table, | |
269 | sizeof (struct elf64_hppa_link_hash_entry)); | |
270 | if (entry == NULL) | |
271 | return entry; | |
272 | } | |
15bda425 | 273 | |
15bda425 | 274 | /* Call the allocation method of the superclass. */ |
a03bd320 DA |
275 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
276 | if (entry != NULL) | |
277 | { | |
278 | struct elf64_hppa_link_hash_entry *hh; | |
15bda425 | 279 | |
a03bd320 DA |
280 | /* Initialize our local data. All zeros. */ |
281 | hh = hppa_elf_hash_entry (entry); | |
282 | memset (&hh->dlt_offset, 0, | |
283 | (sizeof (struct elf64_hppa_link_hash_entry) | |
284 | - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset))); | |
285 | } | |
336549c1 | 286 | |
a03bd320 | 287 | return entry; |
15bda425 JL |
288 | } |
289 | ||
290 | /* Create the derived linker hash table. The PA64 ELF port uses this | |
291 | derived hash table to keep information specific to the PA ElF | |
292 | linker (without using static variables). */ | |
293 | ||
294 | static struct bfd_link_hash_table* | |
813c8a3c | 295 | elf64_hppa_hash_table_create (bfd *abfd) |
15bda425 | 296 | { |
a03bd320 DA |
297 | struct elf64_hppa_link_hash_table *htab; |
298 | bfd_size_type amt = sizeof (*htab); | |
15bda425 | 299 | |
a03bd320 DA |
300 | htab = bfd_zalloc (abfd, amt); |
301 | if (htab == NULL) | |
302 | return NULL; | |
15bda425 | 303 | |
a03bd320 DA |
304 | if (!_bfd_elf_link_hash_table_init (&htab->root, abfd, |
305 | hppa64_link_hash_newfunc, | |
306 | sizeof (struct elf64_hppa_link_hash_entry))) | |
307 | { | |
308 | bfd_release (abfd, htab); | |
309 | return NULL; | |
310 | } | |
15bda425 | 311 | |
a03bd320 DA |
312 | htab->text_segment_base = (bfd_vma) -1; |
313 | htab->data_segment_base = (bfd_vma) -1; | |
15bda425 | 314 | |
a03bd320 | 315 | return &htab->root.root; |
15bda425 JL |
316 | } |
317 | \f | |
318 | /* Return nonzero if ABFD represents a PA2.0 ELF64 file. | |
319 | ||
320 | Additionally we set the default architecture and machine. */ | |
b34976b6 | 321 | static bfd_boolean |
813c8a3c | 322 | elf64_hppa_object_p (bfd *abfd) |
15bda425 | 323 | { |
24a5e751 L |
324 | Elf_Internal_Ehdr * i_ehdrp; |
325 | unsigned int flags; | |
d9634ba1 | 326 | |
24a5e751 L |
327 | i_ehdrp = elf_elfheader (abfd); |
328 | if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) | |
329 | { | |
6c21aa76 NC |
330 | /* GCC on hppa-linux produces binaries with OSABI=Linux, |
331 | but the kernel produces corefiles with OSABI=SysV. */ | |
d97a8924 DA |
332 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX |
333 | && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ | |
b34976b6 | 334 | return FALSE; |
24a5e751 L |
335 | } |
336 | else | |
337 | { | |
d97a8924 DA |
338 | /* HPUX produces binaries with OSABI=HPUX, |
339 | but the kernel produces corefiles with OSABI=SysV. */ | |
340 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX | |
341 | && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ | |
b34976b6 | 342 | return FALSE; |
24a5e751 L |
343 | } |
344 | ||
345 | flags = i_ehdrp->e_flags; | |
d9634ba1 AM |
346 | switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) |
347 | { | |
348 | case EFA_PARISC_1_0: | |
349 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); | |
350 | case EFA_PARISC_1_1: | |
351 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); | |
352 | case EFA_PARISC_2_0: | |
d97a8924 DA |
353 | if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64) |
354 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | |
355 | else | |
356 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); | |
d9634ba1 AM |
357 | case EFA_PARISC_2_0 | EF_PARISC_WIDE: |
358 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | |
359 | } | |
360 | /* Don't be fussy. */ | |
b34976b6 | 361 | return TRUE; |
15bda425 JL |
362 | } |
363 | ||
364 | /* Given section type (hdr->sh_type), return a boolean indicating | |
365 | whether or not the section is an elf64-hppa specific section. */ | |
b34976b6 | 366 | static bfd_boolean |
6dc132d9 L |
367 | elf64_hppa_section_from_shdr (bfd *abfd, |
368 | Elf_Internal_Shdr *hdr, | |
369 | const char *name, | |
370 | int shindex) | |
15bda425 JL |
371 | { |
372 | asection *newsect; | |
373 | ||
374 | switch (hdr->sh_type) | |
375 | { | |
376 | case SHT_PARISC_EXT: | |
377 | if (strcmp (name, ".PARISC.archext") != 0) | |
b34976b6 | 378 | return FALSE; |
15bda425 JL |
379 | break; |
380 | case SHT_PARISC_UNWIND: | |
381 | if (strcmp (name, ".PARISC.unwind") != 0) | |
b34976b6 | 382 | return FALSE; |
15bda425 JL |
383 | break; |
384 | case SHT_PARISC_DOC: | |
385 | case SHT_PARISC_ANNOT: | |
386 | default: | |
b34976b6 | 387 | return FALSE; |
15bda425 JL |
388 | } |
389 | ||
6dc132d9 | 390 | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
b34976b6 | 391 | return FALSE; |
15bda425 JL |
392 | newsect = hdr->bfd_section; |
393 | ||
b34976b6 | 394 | return TRUE; |
15bda425 JL |
395 | } |
396 | ||
15bda425 JL |
397 | /* SEC is a section containing relocs for an input BFD when linking; return |
398 | a suitable section for holding relocs in the output BFD for a link. */ | |
399 | ||
b34976b6 | 400 | static bfd_boolean |
813c8a3c DA |
401 | get_reloc_section (bfd *abfd, |
402 | struct elf64_hppa_link_hash_table *hppa_info, | |
403 | asection *sec) | |
15bda425 JL |
404 | { |
405 | const char *srel_name; | |
406 | asection *srel; | |
407 | bfd *dynobj; | |
408 | ||
409 | srel_name = (bfd_elf_string_from_elf_section | |
410 | (abfd, elf_elfheader(abfd)->e_shstrndx, | |
411 | elf_section_data(sec)->rel_hdr.sh_name)); | |
412 | if (srel_name == NULL) | |
b34976b6 | 413 | return FALSE; |
15bda425 | 414 | |
0112cd26 | 415 | BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela") |
15bda425 | 416 | && strcmp (bfd_get_section_name (abfd, sec), |
0112cd26 NC |
417 | srel_name + 5) == 0) |
418 | || (CONST_STRNEQ (srel_name, ".rel") | |
15bda425 | 419 | && strcmp (bfd_get_section_name (abfd, sec), |
0112cd26 | 420 | srel_name + 4) == 0)); |
15bda425 JL |
421 | |
422 | dynobj = hppa_info->root.dynobj; | |
423 | if (!dynobj) | |
424 | hppa_info->root.dynobj = dynobj = abfd; | |
425 | ||
426 | srel = bfd_get_section_by_name (dynobj, srel_name); | |
427 | if (srel == NULL) | |
428 | { | |
3496cb2a L |
429 | srel = bfd_make_section_with_flags (dynobj, srel_name, |
430 | (SEC_ALLOC | |
431 | | SEC_LOAD | |
432 | | SEC_HAS_CONTENTS | |
433 | | SEC_IN_MEMORY | |
434 | | SEC_LINKER_CREATED | |
435 | | SEC_READONLY)); | |
15bda425 | 436 | if (srel == NULL |
15bda425 | 437 | || !bfd_set_section_alignment (dynobj, srel, 3)) |
b34976b6 | 438 | return FALSE; |
15bda425 JL |
439 | } |
440 | ||
441 | hppa_info->other_rel_sec = srel; | |
b34976b6 | 442 | return TRUE; |
15bda425 JL |
443 | } |
444 | ||
fe8bc63d | 445 | /* Add a new entry to the list of dynamic relocations against DYN_H. |
15bda425 JL |
446 | |
447 | We use this to keep a record of all the FPTR relocations against a | |
448 | particular symbol so that we can create FPTR relocations in the | |
449 | output file. */ | |
450 | ||
b34976b6 | 451 | static bfd_boolean |
813c8a3c | 452 | count_dyn_reloc (bfd *abfd, |
a03bd320 | 453 | struct elf64_hppa_link_hash_entry *hh, |
813c8a3c DA |
454 | int type, |
455 | asection *sec, | |
456 | int sec_symndx, | |
457 | bfd_vma offset, | |
458 | bfd_vma addend) | |
15bda425 JL |
459 | { |
460 | struct elf64_hppa_dyn_reloc_entry *rent; | |
461 | ||
462 | rent = (struct elf64_hppa_dyn_reloc_entry *) | |
dc810e39 | 463 | bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)); |
15bda425 | 464 | if (!rent) |
b34976b6 | 465 | return FALSE; |
15bda425 | 466 | |
a03bd320 | 467 | rent->next = hh->reloc_entries; |
15bda425 JL |
468 | rent->type = type; |
469 | rent->sec = sec; | |
470 | rent->sec_symndx = sec_symndx; | |
471 | rent->offset = offset; | |
472 | rent->addend = addend; | |
a03bd320 | 473 | hh->reloc_entries = rent; |
15bda425 | 474 | |
b34976b6 | 475 | return TRUE; |
15bda425 JL |
476 | } |
477 | ||
a03bd320 DA |
478 | /* Return a pointer to the local DLT, PLT and OPD reference counts |
479 | for ABFD. Returns NULL if the storage allocation fails. */ | |
480 | ||
481 | static bfd_signed_vma * | |
482 | hppa64_elf_local_refcounts (bfd *abfd) | |
483 | { | |
484 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
485 | bfd_signed_vma *local_refcounts; | |
486 | ||
487 | local_refcounts = elf_local_got_refcounts (abfd); | |
488 | if (local_refcounts == NULL) | |
489 | { | |
490 | bfd_size_type size; | |
491 | ||
492 | /* Allocate space for local DLT, PLT and OPD reference | |
493 | counts. Done this way to save polluting elf_obj_tdata | |
494 | with another target specific pointer. */ | |
495 | size = symtab_hdr->sh_info; | |
496 | size *= 3 * sizeof (bfd_signed_vma); | |
497 | local_refcounts = bfd_zalloc (abfd, size); | |
498 | elf_local_got_refcounts (abfd) = local_refcounts; | |
499 | } | |
500 | return local_refcounts; | |
501 | } | |
502 | ||
15bda425 JL |
503 | /* Scan the RELOCS and record the type of dynamic entries that each |
504 | referenced symbol needs. */ | |
505 | ||
b34976b6 | 506 | static bfd_boolean |
813c8a3c DA |
507 | elf64_hppa_check_relocs (bfd *abfd, |
508 | struct bfd_link_info *info, | |
509 | asection *sec, | |
510 | const Elf_Internal_Rela *relocs) | |
15bda425 JL |
511 | { |
512 | struct elf64_hppa_link_hash_table *hppa_info; | |
513 | const Elf_Internal_Rela *relend; | |
514 | Elf_Internal_Shdr *symtab_hdr; | |
515 | const Elf_Internal_Rela *rel; | |
516 | asection *dlt, *plt, *stubs; | |
517 | char *buf; | |
518 | size_t buf_len; | |
4fbb74a6 | 519 | unsigned int sec_symndx; |
15bda425 | 520 | |
1049f94e | 521 | if (info->relocatable) |
b34976b6 | 522 | return TRUE; |
15bda425 JL |
523 | |
524 | /* If this is the first dynamic object found in the link, create | |
525 | the special sections required for dynamic linking. */ | |
526 | if (! elf_hash_table (info)->dynamic_sections_created) | |
527 | { | |
45d6a902 | 528 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) |
b34976b6 | 529 | return FALSE; |
15bda425 JL |
530 | } |
531 | ||
a03bd320 | 532 | hppa_info = hppa_link_hash_table (info); |
15bda425 JL |
533 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
534 | ||
535 | /* If necessary, build a new table holding section symbols indices | |
6cdc0ccc | 536 | for this BFD. */ |
fe8bc63d | 537 | |
15bda425 JL |
538 | if (info->shared && hppa_info->section_syms_bfd != abfd) |
539 | { | |
832d951b | 540 | unsigned long i; |
9ad5cbcf | 541 | unsigned int highest_shndx; |
6cdc0ccc AM |
542 | Elf_Internal_Sym *local_syms = NULL; |
543 | Elf_Internal_Sym *isym, *isymend; | |
dc810e39 | 544 | bfd_size_type amt; |
15bda425 JL |
545 | |
546 | /* We're done with the old cache of section index to section symbol | |
547 | index information. Free it. | |
548 | ||
549 | ?!? Note we leak the last section_syms array. Presumably we | |
550 | could free it in one of the later routines in this file. */ | |
551 | if (hppa_info->section_syms) | |
552 | free (hppa_info->section_syms); | |
553 | ||
6cdc0ccc AM |
554 | /* Read this BFD's local symbols. */ |
555 | if (symtab_hdr->sh_info != 0) | |
47b7c2db | 556 | { |
6cdc0ccc AM |
557 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; |
558 | if (local_syms == NULL) | |
559 | local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
560 | symtab_hdr->sh_info, 0, | |
561 | NULL, NULL, NULL); | |
562 | if (local_syms == NULL) | |
b34976b6 | 563 | return FALSE; |
9ad5cbcf AM |
564 | } |
565 | ||
6cdc0ccc | 566 | /* Record the highest section index referenced by the local symbols. */ |
15bda425 | 567 | highest_shndx = 0; |
6cdc0ccc AM |
568 | isymend = local_syms + symtab_hdr->sh_info; |
569 | for (isym = local_syms; isym < isymend; isym++) | |
15bda425 | 570 | { |
4fbb74a6 AM |
571 | if (isym->st_shndx > highest_shndx |
572 | && isym->st_shndx < SHN_LORESERVE) | |
15bda425 JL |
573 | highest_shndx = isym->st_shndx; |
574 | } | |
575 | ||
15bda425 JL |
576 | /* Allocate an array to hold the section index to section symbol index |
577 | mapping. Bump by one since we start counting at zero. */ | |
578 | highest_shndx++; | |
dc810e39 AM |
579 | amt = highest_shndx; |
580 | amt *= sizeof (int); | |
581 | hppa_info->section_syms = (int *) bfd_malloc (amt); | |
15bda425 JL |
582 | |
583 | /* Now walk the local symbols again. If we find a section symbol, | |
584 | record the index of the symbol into the section_syms array. */ | |
6cdc0ccc | 585 | for (i = 0, isym = local_syms; isym < isymend; i++, isym++) |
15bda425 JL |
586 | { |
587 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
588 | hppa_info->section_syms[isym->st_shndx] = i; | |
589 | } | |
590 | ||
6cdc0ccc AM |
591 | /* We are finished with the local symbols. */ |
592 | if (local_syms != NULL | |
593 | && symtab_hdr->contents != (unsigned char *) local_syms) | |
594 | { | |
595 | if (! info->keep_memory) | |
596 | free (local_syms); | |
597 | else | |
598 | { | |
599 | /* Cache the symbols for elf_link_input_bfd. */ | |
600 | symtab_hdr->contents = (unsigned char *) local_syms; | |
601 | } | |
602 | } | |
15bda425 JL |
603 | |
604 | /* Record which BFD we built the section_syms mapping for. */ | |
605 | hppa_info->section_syms_bfd = abfd; | |
606 | } | |
607 | ||
608 | /* Record the symbol index for this input section. We may need it for | |
609 | relocations when building shared libraries. When not building shared | |
610 | libraries this value is never really used, but assign it to zero to | |
611 | prevent out of bounds memory accesses in other routines. */ | |
612 | if (info->shared) | |
613 | { | |
614 | sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
615 | ||
616 | /* If we did not find a section symbol for this section, then | |
617 | something went terribly wrong above. */ | |
4fbb74a6 | 618 | if (sec_symndx == SHN_BAD) |
b34976b6 | 619 | return FALSE; |
15bda425 | 620 | |
4fbb74a6 AM |
621 | if (sec_symndx < SHN_LORESERVE) |
622 | sec_symndx = hppa_info->section_syms[sec_symndx]; | |
623 | else | |
624 | sec_symndx = 0; | |
15bda425 JL |
625 | } |
626 | else | |
627 | sec_symndx = 0; | |
fe8bc63d | 628 | |
15bda425 JL |
629 | dlt = plt = stubs = NULL; |
630 | buf = NULL; | |
631 | buf_len = 0; | |
632 | ||
633 | relend = relocs + sec->reloc_count; | |
634 | for (rel = relocs; rel < relend; ++rel) | |
635 | { | |
560e09e9 NC |
636 | enum |
637 | { | |
638 | NEED_DLT = 1, | |
639 | NEED_PLT = 2, | |
640 | NEED_STUB = 4, | |
641 | NEED_OPD = 8, | |
642 | NEED_DYNREL = 16, | |
643 | }; | |
15bda425 | 644 | |
15bda425 | 645 | unsigned long r_symndx = ELF64_R_SYM (rel->r_info); |
a03bd320 | 646 | struct elf64_hppa_link_hash_entry *hh; |
15bda425 | 647 | int need_entry; |
b34976b6 | 648 | bfd_boolean maybe_dynamic; |
15bda425 JL |
649 | int dynrel_type = R_PARISC_NONE; |
650 | static reloc_howto_type *howto; | |
651 | ||
652 | if (r_symndx >= symtab_hdr->sh_info) | |
653 | { | |
654 | /* We're dealing with a global symbol -- find its hash entry | |
655 | and mark it as being referenced. */ | |
656 | long indx = r_symndx - symtab_hdr->sh_info; | |
a03bd320 DA |
657 | hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]); |
658 | while (hh->eh.root.type == bfd_link_hash_indirect | |
659 | || hh->eh.root.type == bfd_link_hash_warning) | |
660 | hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); | |
15bda425 | 661 | |
a03bd320 | 662 | hh->eh.ref_regular = 1; |
15bda425 | 663 | } |
a03bd320 DA |
664 | else |
665 | hh = NULL; | |
15bda425 JL |
666 | |
667 | /* We can only get preliminary data on whether a symbol is | |
668 | locally or externally defined, as not all of the input files | |
669 | have yet been processed. Do something with what we know, as | |
670 | this may help reduce memory usage and processing time later. */ | |
b34976b6 | 671 | maybe_dynamic = FALSE; |
a03bd320 | 672 | if (hh && ((info->shared |
f5385ebf AM |
673 | && (!info->symbolic |
674 | || info->unresolved_syms_in_shared_libs == RM_IGNORE)) | |
a03bd320 DA |
675 | || !hh->eh.def_regular |
676 | || hh->eh.root.type == bfd_link_hash_defweak)) | |
b34976b6 | 677 | maybe_dynamic = TRUE; |
15bda425 JL |
678 | |
679 | howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info); | |
680 | need_entry = 0; | |
681 | switch (howto->type) | |
682 | { | |
683 | /* These are simple indirect references to symbols through the | |
684 | DLT. We need to create a DLT entry for any symbols which | |
685 | appears in a DLTIND relocation. */ | |
686 | case R_PARISC_DLTIND21L: | |
687 | case R_PARISC_DLTIND14R: | |
688 | case R_PARISC_DLTIND14F: | |
689 | case R_PARISC_DLTIND14WR: | |
690 | case R_PARISC_DLTIND14DR: | |
691 | need_entry = NEED_DLT; | |
692 | break; | |
693 | ||
694 | /* ?!? These need a DLT entry. But I have no idea what to do with | |
695 | the "link time TP value. */ | |
696 | case R_PARISC_LTOFF_TP21L: | |
697 | case R_PARISC_LTOFF_TP14R: | |
698 | case R_PARISC_LTOFF_TP14F: | |
699 | case R_PARISC_LTOFF_TP64: | |
700 | case R_PARISC_LTOFF_TP14WR: | |
701 | case R_PARISC_LTOFF_TP14DR: | |
702 | case R_PARISC_LTOFF_TP16F: | |
703 | case R_PARISC_LTOFF_TP16WF: | |
704 | case R_PARISC_LTOFF_TP16DF: | |
705 | need_entry = NEED_DLT; | |
706 | break; | |
707 | ||
708 | /* These are function calls. Depending on their precise target we | |
709 | may need to make a stub for them. The stub uses the PLT, so we | |
710 | need to create PLT entries for these symbols too. */ | |
832d951b | 711 | case R_PARISC_PCREL12F: |
15bda425 JL |
712 | case R_PARISC_PCREL17F: |
713 | case R_PARISC_PCREL22F: | |
714 | case R_PARISC_PCREL32: | |
715 | case R_PARISC_PCREL64: | |
716 | case R_PARISC_PCREL21L: | |
717 | case R_PARISC_PCREL17R: | |
718 | case R_PARISC_PCREL17C: | |
719 | case R_PARISC_PCREL14R: | |
720 | case R_PARISC_PCREL14F: | |
721 | case R_PARISC_PCREL22C: | |
722 | case R_PARISC_PCREL14WR: | |
723 | case R_PARISC_PCREL14DR: | |
724 | case R_PARISC_PCREL16F: | |
725 | case R_PARISC_PCREL16WF: | |
726 | case R_PARISC_PCREL16DF: | |
a03bd320 DA |
727 | /* Function calls might need to go through the .plt, and |
728 | might need a long branch stub. */ | |
729 | if (hh != NULL && hh->eh.type != STT_PARISC_MILLI) | |
730 | need_entry = (NEED_PLT | NEED_STUB); | |
731 | else | |
732 | need_entry = 0; | |
15bda425 JL |
733 | break; |
734 | ||
735 | case R_PARISC_PLTOFF21L: | |
736 | case R_PARISC_PLTOFF14R: | |
737 | case R_PARISC_PLTOFF14F: | |
738 | case R_PARISC_PLTOFF14WR: | |
739 | case R_PARISC_PLTOFF14DR: | |
740 | case R_PARISC_PLTOFF16F: | |
741 | case R_PARISC_PLTOFF16WF: | |
742 | case R_PARISC_PLTOFF16DF: | |
743 | need_entry = (NEED_PLT); | |
744 | break; | |
745 | ||
746 | case R_PARISC_DIR64: | |
747 | if (info->shared || maybe_dynamic) | |
748 | need_entry = (NEED_DYNREL); | |
749 | dynrel_type = R_PARISC_DIR64; | |
750 | break; | |
751 | ||
752 | /* This is an indirect reference through the DLT to get the address | |
753 | of a OPD descriptor. Thus we need to make a DLT entry that points | |
754 | to an OPD entry. */ | |
755 | case R_PARISC_LTOFF_FPTR21L: | |
756 | case R_PARISC_LTOFF_FPTR14R: | |
757 | case R_PARISC_LTOFF_FPTR14WR: | |
758 | case R_PARISC_LTOFF_FPTR14DR: | |
759 | case R_PARISC_LTOFF_FPTR32: | |
760 | case R_PARISC_LTOFF_FPTR64: | |
761 | case R_PARISC_LTOFF_FPTR16F: | |
762 | case R_PARISC_LTOFF_FPTR16WF: | |
763 | case R_PARISC_LTOFF_FPTR16DF: | |
764 | if (info->shared || maybe_dynamic) | |
a03bd320 | 765 | need_entry = (NEED_DLT | NEED_OPD | NEED_PLT); |
15bda425 | 766 | else |
a03bd320 | 767 | need_entry = (NEED_DLT | NEED_OPD | NEED_PLT); |
15bda425 JL |
768 | dynrel_type = R_PARISC_FPTR64; |
769 | break; | |
770 | ||
771 | /* This is a simple OPD entry. */ | |
772 | case R_PARISC_FPTR64: | |
773 | if (info->shared || maybe_dynamic) | |
a03bd320 | 774 | need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL); |
15bda425 | 775 | else |
a03bd320 | 776 | need_entry = (NEED_OPD | NEED_PLT); |
15bda425 JL |
777 | dynrel_type = R_PARISC_FPTR64; |
778 | break; | |
779 | ||
780 | /* Add more cases as needed. */ | |
781 | } | |
782 | ||
783 | if (!need_entry) | |
784 | continue; | |
785 | ||
a03bd320 DA |
786 | if (hh) |
787 | { | |
788 | /* Stash away enough information to be able to find this symbol | |
789 | regardless of whether or not it is local or global. */ | |
790 | hh->owner = abfd; | |
791 | hh->sym_indx = r_symndx; | |
792 | } | |
15bda425 | 793 | |
15bda425 JL |
794 | /* Create what's needed. */ |
795 | if (need_entry & NEED_DLT) | |
796 | { | |
a03bd320 DA |
797 | /* Allocate space for a DLT entry, as well as a dynamic |
798 | relocation for this entry. */ | |
15bda425 JL |
799 | if (! hppa_info->dlt_sec |
800 | && ! get_dlt (abfd, info, hppa_info)) | |
801 | goto err_out; | |
a03bd320 DA |
802 | |
803 | if (hh != NULL) | |
804 | { | |
805 | hh->want_dlt = 1; | |
806 | hh->eh.got.refcount += 1; | |
807 | } | |
808 | else | |
809 | { | |
810 | bfd_signed_vma *local_dlt_refcounts; | |
811 | ||
812 | /* This is a DLT entry for a local symbol. */ | |
813 | local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); | |
814 | if (local_dlt_refcounts == NULL) | |
815 | return FALSE; | |
816 | local_dlt_refcounts[r_symndx] += 1; | |
817 | } | |
15bda425 JL |
818 | } |
819 | ||
820 | if (need_entry & NEED_PLT) | |
821 | { | |
822 | if (! hppa_info->plt_sec | |
823 | && ! get_plt (abfd, info, hppa_info)) | |
824 | goto err_out; | |
a03bd320 DA |
825 | |
826 | if (hh != NULL) | |
827 | { | |
828 | hh->want_plt = 1; | |
829 | hh->eh.needs_plt = 1; | |
830 | hh->eh.plt.refcount += 1; | |
831 | } | |
832 | else | |
833 | { | |
834 | bfd_signed_vma *local_dlt_refcounts; | |
835 | bfd_signed_vma *local_plt_refcounts; | |
836 | ||
837 | /* This is a PLT entry for a local symbol. */ | |
838 | local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); | |
839 | if (local_dlt_refcounts == NULL) | |
840 | return FALSE; | |
841 | local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info; | |
842 | local_plt_refcounts[r_symndx] += 1; | |
843 | } | |
15bda425 JL |
844 | } |
845 | ||
846 | if (need_entry & NEED_STUB) | |
847 | { | |
848 | if (! hppa_info->stub_sec | |
849 | && ! get_stub (abfd, info, hppa_info)) | |
850 | goto err_out; | |
a03bd320 DA |
851 | if (hh) |
852 | hh->want_stub = 1; | |
15bda425 JL |
853 | } |
854 | ||
855 | if (need_entry & NEED_OPD) | |
856 | { | |
857 | if (! hppa_info->opd_sec | |
858 | && ! get_opd (abfd, info, hppa_info)) | |
859 | goto err_out; | |
860 | ||
a03bd320 DA |
861 | /* FPTRs are not allocated by the dynamic linker for PA64, |
862 | though it is possible that will change in the future. */ | |
fe8bc63d | 863 | |
a03bd320 DA |
864 | if (hh != NULL) |
865 | hh->want_opd = 1; | |
866 | else | |
867 | { | |
868 | bfd_signed_vma *local_dlt_refcounts; | |
869 | bfd_signed_vma *local_opd_refcounts; | |
870 | ||
871 | /* This is a OPD for a local symbol. */ | |
872 | local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); | |
873 | if (local_dlt_refcounts == NULL) | |
874 | return FALSE; | |
875 | local_opd_refcounts = (local_dlt_refcounts | |
876 | + 2 * symtab_hdr->sh_info); | |
877 | local_opd_refcounts[r_symndx] += 1; | |
878 | } | |
15bda425 JL |
879 | } |
880 | ||
881 | /* Add a new dynamic relocation to the chain of dynamic | |
882 | relocations for this symbol. */ | |
883 | if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC)) | |
884 | { | |
885 | if (! hppa_info->other_rel_sec | |
886 | && ! get_reloc_section (abfd, hppa_info, sec)) | |
887 | goto err_out; | |
888 | ||
a03bd320 DA |
889 | /* Count dynamic relocations against global symbols. */ |
890 | if (hh != NULL | |
891 | && !count_dyn_reloc (abfd, hh, dynrel_type, sec, | |
892 | sec_symndx, rel->r_offset, rel->r_addend)) | |
15bda425 JL |
893 | goto err_out; |
894 | ||
895 | /* If we are building a shared library and we just recorded | |
896 | a dynamic R_PARISC_FPTR64 relocation, then make sure the | |
897 | section symbol for this section ends up in the dynamic | |
898 | symbol table. */ | |
899 | if (info->shared && dynrel_type == R_PARISC_FPTR64 | |
c152c796 | 900 | && ! (bfd_elf_link_record_local_dynamic_symbol |
15bda425 | 901 | (info, abfd, sec_symndx))) |
b34976b6 | 902 | return FALSE; |
15bda425 JL |
903 | } |
904 | } | |
905 | ||
906 | if (buf) | |
907 | free (buf); | |
b34976b6 | 908 | return TRUE; |
15bda425 JL |
909 | |
910 | err_out: | |
911 | if (buf) | |
912 | free (buf); | |
b34976b6 | 913 | return FALSE; |
15bda425 JL |
914 | } |
915 | ||
916 | struct elf64_hppa_allocate_data | |
917 | { | |
918 | struct bfd_link_info *info; | |
919 | bfd_size_type ofs; | |
920 | }; | |
921 | ||
922 | /* Should we do dynamic things to this symbol? */ | |
923 | ||
b34976b6 | 924 | static bfd_boolean |
a03bd320 | 925 | elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh, |
813c8a3c | 926 | struct bfd_link_info *info) |
15bda425 | 927 | { |
986a241f RH |
928 | /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols |
929 | and relocations that retrieve a function descriptor? Assume the | |
930 | worst for now. */ | |
a03bd320 | 931 | if (_bfd_elf_dynamic_symbol_p (eh, info, 1)) |
986a241f RH |
932 | { |
933 | /* ??? Why is this here and not elsewhere is_local_label_name. */ | |
a03bd320 | 934 | if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$') |
986a241f | 935 | return FALSE; |
15bda425 | 936 | |
986a241f RH |
937 | return TRUE; |
938 | } | |
939 | else | |
b34976b6 | 940 | return FALSE; |
15bda425 JL |
941 | } |
942 | ||
4cc11e76 | 943 | /* Mark all functions exported by this file so that we can later allocate |
15bda425 JL |
944 | entries in .opd for them. */ |
945 | ||
b34976b6 | 946 | static bfd_boolean |
a03bd320 | 947 | elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data) |
15bda425 | 948 | { |
a03bd320 | 949 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
950 | struct bfd_link_info *info = (struct bfd_link_info *)data; |
951 | struct elf64_hppa_link_hash_table *hppa_info; | |
952 | ||
a03bd320 | 953 | hppa_info = hppa_link_hash_table (info); |
15bda425 | 954 | |
a03bd320 DA |
955 | if (eh->root.type == bfd_link_hash_warning) |
956 | eh = (struct elf_link_hash_entry *) eh->root.u.i.link; | |
e92d460e | 957 | |
a03bd320 DA |
958 | if (eh |
959 | && (eh->root.type == bfd_link_hash_defined | |
960 | || eh->root.type == bfd_link_hash_defweak) | |
961 | && eh->root.u.def.section->output_section != NULL | |
962 | && eh->type == STT_FUNC) | |
15bda425 | 963 | { |
15bda425 JL |
964 | if (! hppa_info->opd_sec |
965 | && ! get_opd (hppa_info->root.dynobj, info, hppa_info)) | |
b34976b6 | 966 | return FALSE; |
15bda425 | 967 | |
a03bd320 DA |
968 | hh->want_opd = 1; |
969 | ||
832d951b | 970 | /* Put a flag here for output_symbol_hook. */ |
a03bd320 DA |
971 | hh->st_shndx = -1; |
972 | eh->needs_plt = 1; | |
15bda425 JL |
973 | } |
974 | ||
b34976b6 | 975 | return TRUE; |
15bda425 JL |
976 | } |
977 | ||
978 | /* Allocate space for a DLT entry. */ | |
979 | ||
b34976b6 | 980 | static bfd_boolean |
a03bd320 | 981 | allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data) |
15bda425 | 982 | { |
a03bd320 | 983 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
984 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; |
985 | ||
a03bd320 | 986 | if (hh->want_dlt) |
15bda425 | 987 | { |
15bda425 JL |
988 | if (x->info->shared) |
989 | { | |
990 | /* Possibly add the symbol to the local dynamic symbol | |
991 | table since we might need to create a dynamic relocation | |
992 | against it. */ | |
a03bd320 | 993 | if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI) |
15bda425 | 994 | { |
a03bd320 | 995 | bfd *owner = eh->root.u.def.section->owner; |
15bda425 | 996 | |
c152c796 | 997 | if (! (bfd_elf_link_record_local_dynamic_symbol |
a03bd320 | 998 | (x->info, owner, hh->sym_indx))) |
b34976b6 | 999 | return FALSE; |
15bda425 JL |
1000 | } |
1001 | } | |
1002 | ||
a03bd320 | 1003 | hh->dlt_offset = x->ofs; |
15bda425 JL |
1004 | x->ofs += DLT_ENTRY_SIZE; |
1005 | } | |
b34976b6 | 1006 | return TRUE; |
15bda425 JL |
1007 | } |
1008 | ||
1009 | /* Allocate space for a DLT.PLT entry. */ | |
1010 | ||
b34976b6 | 1011 | static bfd_boolean |
a03bd320 | 1012 | allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data) |
15bda425 | 1013 | { |
a03bd320 | 1014 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
1015 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; |
1016 | ||
a03bd320 DA |
1017 | if (hh->want_plt |
1018 | && elf64_hppa_dynamic_symbol_p (eh, x->info) | |
1019 | && !((eh->root.type == bfd_link_hash_defined | |
1020 | || eh->root.type == bfd_link_hash_defweak) | |
1021 | && eh->root.u.def.section->output_section != NULL)) | |
15bda425 | 1022 | { |
a03bd320 | 1023 | hh->plt_offset = x->ofs; |
15bda425 | 1024 | x->ofs += PLT_ENTRY_SIZE; |
a03bd320 DA |
1025 | if (hh->plt_offset < 0x2000) |
1026 | hppa_link_hash_table (x->info)->gp_offset = hh->plt_offset; | |
15bda425 JL |
1027 | } |
1028 | else | |
a03bd320 | 1029 | hh->want_plt = 0; |
15bda425 | 1030 | |
b34976b6 | 1031 | return TRUE; |
15bda425 JL |
1032 | } |
1033 | ||
1034 | /* Allocate space for a STUB entry. */ | |
1035 | ||
b34976b6 | 1036 | static bfd_boolean |
a03bd320 | 1037 | allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data) |
15bda425 | 1038 | { |
a03bd320 | 1039 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
1040 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; |
1041 | ||
a03bd320 DA |
1042 | if (hh->want_stub |
1043 | && elf64_hppa_dynamic_symbol_p (eh, x->info) | |
1044 | && !((eh->root.type == bfd_link_hash_defined | |
1045 | || eh->root.type == bfd_link_hash_defweak) | |
1046 | && eh->root.u.def.section->output_section != NULL)) | |
15bda425 | 1047 | { |
a03bd320 | 1048 | hh->stub_offset = x->ofs; |
15bda425 JL |
1049 | x->ofs += sizeof (plt_stub); |
1050 | } | |
1051 | else | |
a03bd320 | 1052 | hh->want_stub = 0; |
b34976b6 | 1053 | return TRUE; |
15bda425 JL |
1054 | } |
1055 | ||
1056 | /* Allocate space for a FPTR entry. */ | |
1057 | ||
b34976b6 | 1058 | static bfd_boolean |
a03bd320 | 1059 | allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data) |
15bda425 | 1060 | { |
a03bd320 | 1061 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
1062 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; |
1063 | ||
a03bd320 | 1064 | if (hh && hh->want_opd) |
15bda425 | 1065 | { |
a03bd320 DA |
1066 | while (hh->eh.root.type == bfd_link_hash_indirect |
1067 | || hh->eh.root.type == bfd_link_hash_warning) | |
1068 | hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); | |
15bda425 JL |
1069 | |
1070 | /* We never need an opd entry for a symbol which is not | |
1071 | defined by this output file. */ | |
a03bd320 DA |
1072 | if (hh && (hh->eh.root.type == bfd_link_hash_undefined |
1073 | || hh->eh.root.type == bfd_link_hash_undefweak | |
1074 | || hh->eh.root.u.def.section->output_section == NULL)) | |
1075 | hh->want_opd = 0; | |
15bda425 JL |
1076 | |
1077 | /* If we are creating a shared library, took the address of a local | |
1078 | function or might export this function from this object file, then | |
1079 | we have to create an opd descriptor. */ | |
1080 | else if (x->info->shared | |
a03bd320 DA |
1081 | || hh == NULL |
1082 | || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI) | |
1083 | || (hh->eh.root.type == bfd_link_hash_defined | |
1084 | || hh->eh.root.type == bfd_link_hash_defweak)) | |
15bda425 JL |
1085 | { |
1086 | /* If we are creating a shared library, then we will have to | |
1087 | create a runtime relocation for the symbol to properly | |
1088 | initialize the .opd entry. Make sure the symbol gets | |
1089 | added to the dynamic symbol table. */ | |
1090 | if (x->info->shared | |
a03bd320 | 1091 | && (hh == NULL || (hh->eh.dynindx == -1))) |
15bda425 JL |
1092 | { |
1093 | bfd *owner; | |
adfef0bd | 1094 | /* PR 6511: Default to using the dynamic symbol table. */ |
a03bd320 | 1095 | owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner); |
15bda425 | 1096 | |
c152c796 | 1097 | if (!bfd_elf_link_record_local_dynamic_symbol |
a03bd320 | 1098 | (x->info, owner, hh->sym_indx)) |
b34976b6 | 1099 | return FALSE; |
15bda425 JL |
1100 | } |
1101 | ||
1102 | /* This may not be necessary or desirable anymore now that | |
1103 | we have some support for dealing with section symbols | |
1104 | in dynamic relocs. But name munging does make the result | |
1105 | much easier to debug. ie, the EPLT reloc will reference | |
1106 | a symbol like .foobar, instead of .text + offset. */ | |
a03bd320 | 1107 | if (x->info->shared && eh) |
15bda425 JL |
1108 | { |
1109 | char *new_name; | |
1110 | struct elf_link_hash_entry *nh; | |
1111 | ||
a03bd320 | 1112 | new_name = alloca (strlen (eh->root.root.string) + 2); |
15bda425 | 1113 | new_name[0] = '.'; |
a03bd320 | 1114 | strcpy (new_name + 1, eh->root.root.string); |
15bda425 JL |
1115 | |
1116 | nh = elf_link_hash_lookup (elf_hash_table (x->info), | |
b34976b6 | 1117 | new_name, TRUE, TRUE, TRUE); |
15bda425 | 1118 | |
a03bd320 DA |
1119 | nh->root.type = eh->root.type; |
1120 | nh->root.u.def.value = eh->root.u.def.value; | |
1121 | nh->root.u.def.section = eh->root.u.def.section; | |
15bda425 | 1122 | |
c152c796 | 1123 | if (! bfd_elf_link_record_dynamic_symbol (x->info, nh)) |
b34976b6 | 1124 | return FALSE; |
15bda425 JL |
1125 | |
1126 | } | |
a03bd320 | 1127 | hh->opd_offset = x->ofs; |
15bda425 JL |
1128 | x->ofs += OPD_ENTRY_SIZE; |
1129 | } | |
1130 | ||
1131 | /* Otherwise we do not need an opd entry. */ | |
1132 | else | |
a03bd320 | 1133 | hh->want_opd = 0; |
15bda425 | 1134 | } |
b34976b6 | 1135 | return TRUE; |
15bda425 JL |
1136 | } |
1137 | ||
1138 | /* HP requires the EI_OSABI field to be filled in. The assignment to | |
1139 | EI_ABIVERSION may not be strictly necessary. */ | |
1140 | ||
1141 | static void | |
813c8a3c DA |
1142 | elf64_hppa_post_process_headers (bfd *abfd, |
1143 | struct bfd_link_info *link_info ATTRIBUTE_UNUSED) | |
15bda425 JL |
1144 | { |
1145 | Elf_Internal_Ehdr * i_ehdrp; | |
1146 | ||
1147 | i_ehdrp = elf_elfheader (abfd); | |
d1036acb L |
1148 | |
1149 | i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; | |
1150 | i_ehdrp->e_ident[EI_ABIVERSION] = 1; | |
15bda425 JL |
1151 | } |
1152 | ||
1153 | /* Create function descriptor section (.opd). This section is called .opd | |
4cc11e76 | 1154 | because it contains "official procedure descriptors". The "official" |
15bda425 JL |
1155 | refers to the fact that these descriptors are used when taking the address |
1156 | of a procedure, thus ensuring a unique address for each procedure. */ | |
1157 | ||
b34976b6 | 1158 | static bfd_boolean |
813c8a3c DA |
1159 | get_opd (bfd *abfd, |
1160 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
1161 | struct elf64_hppa_link_hash_table *hppa_info) | |
15bda425 JL |
1162 | { |
1163 | asection *opd; | |
1164 | bfd *dynobj; | |
1165 | ||
1166 | opd = hppa_info->opd_sec; | |
1167 | if (!opd) | |
1168 | { | |
1169 | dynobj = hppa_info->root.dynobj; | |
1170 | if (!dynobj) | |
1171 | hppa_info->root.dynobj = dynobj = abfd; | |
1172 | ||
3496cb2a L |
1173 | opd = bfd_make_section_with_flags (dynobj, ".opd", |
1174 | (SEC_ALLOC | |
1175 | | SEC_LOAD | |
1176 | | SEC_HAS_CONTENTS | |
1177 | | SEC_IN_MEMORY | |
1178 | | SEC_LINKER_CREATED)); | |
15bda425 | 1179 | if (!opd |
15bda425 JL |
1180 | || !bfd_set_section_alignment (abfd, opd, 3)) |
1181 | { | |
1182 | BFD_ASSERT (0); | |
b34976b6 | 1183 | return FALSE; |
15bda425 JL |
1184 | } |
1185 | ||
1186 | hppa_info->opd_sec = opd; | |
1187 | } | |
1188 | ||
b34976b6 | 1189 | return TRUE; |
15bda425 JL |
1190 | } |
1191 | ||
1192 | /* Create the PLT section. */ | |
1193 | ||
b34976b6 | 1194 | static bfd_boolean |
813c8a3c DA |
1195 | get_plt (bfd *abfd, |
1196 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
1197 | struct elf64_hppa_link_hash_table *hppa_info) | |
15bda425 JL |
1198 | { |
1199 | asection *plt; | |
1200 | bfd *dynobj; | |
1201 | ||
1202 | plt = hppa_info->plt_sec; | |
1203 | if (!plt) | |
1204 | { | |
1205 | dynobj = hppa_info->root.dynobj; | |
1206 | if (!dynobj) | |
1207 | hppa_info->root.dynobj = dynobj = abfd; | |
1208 | ||
3496cb2a L |
1209 | plt = bfd_make_section_with_flags (dynobj, ".plt", |
1210 | (SEC_ALLOC | |
1211 | | SEC_LOAD | |
1212 | | SEC_HAS_CONTENTS | |
1213 | | SEC_IN_MEMORY | |
1214 | | SEC_LINKER_CREATED)); | |
15bda425 | 1215 | if (!plt |
15bda425 JL |
1216 | || !bfd_set_section_alignment (abfd, plt, 3)) |
1217 | { | |
1218 | BFD_ASSERT (0); | |
b34976b6 | 1219 | return FALSE; |
15bda425 JL |
1220 | } |
1221 | ||
1222 | hppa_info->plt_sec = plt; | |
1223 | } | |
1224 | ||
b34976b6 | 1225 | return TRUE; |
15bda425 JL |
1226 | } |
1227 | ||
1228 | /* Create the DLT section. */ | |
1229 | ||
b34976b6 | 1230 | static bfd_boolean |
813c8a3c DA |
1231 | get_dlt (bfd *abfd, |
1232 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
1233 | struct elf64_hppa_link_hash_table *hppa_info) | |
15bda425 JL |
1234 | { |
1235 | asection *dlt; | |
1236 | bfd *dynobj; | |
1237 | ||
1238 | dlt = hppa_info->dlt_sec; | |
1239 | if (!dlt) | |
1240 | { | |
1241 | dynobj = hppa_info->root.dynobj; | |
1242 | if (!dynobj) | |
1243 | hppa_info->root.dynobj = dynobj = abfd; | |
1244 | ||
3496cb2a L |
1245 | dlt = bfd_make_section_with_flags (dynobj, ".dlt", |
1246 | (SEC_ALLOC | |
1247 | | SEC_LOAD | |
1248 | | SEC_HAS_CONTENTS | |
1249 | | SEC_IN_MEMORY | |
1250 | | SEC_LINKER_CREATED)); | |
15bda425 | 1251 | if (!dlt |
15bda425 JL |
1252 | || !bfd_set_section_alignment (abfd, dlt, 3)) |
1253 | { | |
1254 | BFD_ASSERT (0); | |
b34976b6 | 1255 | return FALSE; |
15bda425 JL |
1256 | } |
1257 | ||
1258 | hppa_info->dlt_sec = dlt; | |
1259 | } | |
1260 | ||
b34976b6 | 1261 | return TRUE; |
15bda425 JL |
1262 | } |
1263 | ||
1264 | /* Create the stubs section. */ | |
1265 | ||
b34976b6 | 1266 | static bfd_boolean |
813c8a3c DA |
1267 | get_stub (bfd *abfd, |
1268 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
1269 | struct elf64_hppa_link_hash_table *hppa_info) | |
15bda425 JL |
1270 | { |
1271 | asection *stub; | |
1272 | bfd *dynobj; | |
1273 | ||
1274 | stub = hppa_info->stub_sec; | |
1275 | if (!stub) | |
1276 | { | |
1277 | dynobj = hppa_info->root.dynobj; | |
1278 | if (!dynobj) | |
1279 | hppa_info->root.dynobj = dynobj = abfd; | |
1280 | ||
3496cb2a L |
1281 | stub = bfd_make_section_with_flags (dynobj, ".stub", |
1282 | (SEC_ALLOC | SEC_LOAD | |
1283 | | SEC_HAS_CONTENTS | |
1284 | | SEC_IN_MEMORY | |
1285 | | SEC_READONLY | |
1286 | | SEC_LINKER_CREATED)); | |
15bda425 | 1287 | if (!stub |
15bda425 JL |
1288 | || !bfd_set_section_alignment (abfd, stub, 3)) |
1289 | { | |
1290 | BFD_ASSERT (0); | |
b34976b6 | 1291 | return FALSE; |
15bda425 JL |
1292 | } |
1293 | ||
1294 | hppa_info->stub_sec = stub; | |
1295 | } | |
1296 | ||
b34976b6 | 1297 | return TRUE; |
15bda425 JL |
1298 | } |
1299 | ||
1300 | /* Create sections necessary for dynamic linking. This is only a rough | |
1301 | cut and will likely change as we learn more about the somewhat | |
1302 | unusual dynamic linking scheme HP uses. | |
1303 | ||
1304 | .stub: | |
1305 | Contains code to implement cross-space calls. The first time one | |
1306 | of the stubs is used it will call into the dynamic linker, later | |
1307 | calls will go straight to the target. | |
1308 | ||
1309 | The only stub we support right now looks like | |
1310 | ||
1311 | ldd OFFSET(%dp),%r1 | |
1312 | bve %r0(%r1) | |
1313 | ldd OFFSET+8(%dp),%dp | |
1314 | ||
1315 | Other stubs may be needed in the future. We may want the remove | |
1316 | the break/nop instruction. It is only used right now to keep the | |
1317 | offset of a .plt entry and a .stub entry in sync. | |
1318 | ||
1319 | .dlt: | |
1320 | This is what most people call the .got. HP used a different name. | |
1321 | Losers. | |
1322 | ||
1323 | .rela.dlt: | |
1324 | Relocations for the DLT. | |
1325 | ||
1326 | .plt: | |
1327 | Function pointers as address,gp pairs. | |
1328 | ||
1329 | .rela.plt: | |
1330 | Should contain dynamic IPLT (and EPLT?) relocations. | |
1331 | ||
1332 | .opd: | |
fe8bc63d | 1333 | FPTRS |
15bda425 JL |
1334 | |
1335 | .rela.opd: | |
1336 | EPLT relocations for symbols exported from shared libraries. */ | |
1337 | ||
b34976b6 | 1338 | static bfd_boolean |
813c8a3c DA |
1339 | elf64_hppa_create_dynamic_sections (bfd *abfd, |
1340 | struct bfd_link_info *info) | |
15bda425 JL |
1341 | { |
1342 | asection *s; | |
1343 | ||
a03bd320 | 1344 | if (! get_stub (abfd, info, hppa_link_hash_table (info))) |
b34976b6 | 1345 | return FALSE; |
15bda425 | 1346 | |
a03bd320 | 1347 | if (! get_dlt (abfd, info, hppa_link_hash_table (info))) |
b34976b6 | 1348 | return FALSE; |
15bda425 | 1349 | |
a03bd320 | 1350 | if (! get_plt (abfd, info, hppa_link_hash_table (info))) |
b34976b6 | 1351 | return FALSE; |
15bda425 | 1352 | |
a03bd320 | 1353 | if (! get_opd (abfd, info, hppa_link_hash_table (info))) |
b34976b6 | 1354 | return FALSE; |
15bda425 | 1355 | |
3496cb2a L |
1356 | s = bfd_make_section_with_flags (abfd, ".rela.dlt", |
1357 | (SEC_ALLOC | SEC_LOAD | |
1358 | | SEC_HAS_CONTENTS | |
1359 | | SEC_IN_MEMORY | |
1360 | | SEC_READONLY | |
1361 | | SEC_LINKER_CREATED)); | |
15bda425 | 1362 | if (s == NULL |
15bda425 | 1363 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1364 | return FALSE; |
a03bd320 | 1365 | hppa_link_hash_table (info)->dlt_rel_sec = s; |
15bda425 | 1366 | |
3496cb2a L |
1367 | s = bfd_make_section_with_flags (abfd, ".rela.plt", |
1368 | (SEC_ALLOC | SEC_LOAD | |
1369 | | SEC_HAS_CONTENTS | |
1370 | | SEC_IN_MEMORY | |
1371 | | SEC_READONLY | |
1372 | | SEC_LINKER_CREATED)); | |
15bda425 | 1373 | if (s == NULL |
15bda425 | 1374 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1375 | return FALSE; |
a03bd320 | 1376 | hppa_link_hash_table (info)->plt_rel_sec = s; |
15bda425 | 1377 | |
3496cb2a L |
1378 | s = bfd_make_section_with_flags (abfd, ".rela.data", |
1379 | (SEC_ALLOC | SEC_LOAD | |
1380 | | SEC_HAS_CONTENTS | |
1381 | | SEC_IN_MEMORY | |
1382 | | SEC_READONLY | |
1383 | | SEC_LINKER_CREATED)); | |
15bda425 | 1384 | if (s == NULL |
15bda425 | 1385 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1386 | return FALSE; |
a03bd320 | 1387 | hppa_link_hash_table (info)->other_rel_sec = s; |
15bda425 | 1388 | |
3496cb2a L |
1389 | s = bfd_make_section_with_flags (abfd, ".rela.opd", |
1390 | (SEC_ALLOC | SEC_LOAD | |
1391 | | SEC_HAS_CONTENTS | |
1392 | | SEC_IN_MEMORY | |
1393 | | SEC_READONLY | |
1394 | | SEC_LINKER_CREATED)); | |
15bda425 | 1395 | if (s == NULL |
15bda425 | 1396 | || !bfd_set_section_alignment (abfd, s, 3)) |
b34976b6 | 1397 | return FALSE; |
a03bd320 | 1398 | hppa_link_hash_table (info)->opd_rel_sec = s; |
15bda425 | 1399 | |
b34976b6 | 1400 | return TRUE; |
15bda425 JL |
1401 | } |
1402 | ||
1403 | /* Allocate dynamic relocations for those symbols that turned out | |
1404 | to be dynamic. */ | |
1405 | ||
b34976b6 | 1406 | static bfd_boolean |
a03bd320 | 1407 | allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data) |
15bda425 | 1408 | { |
a03bd320 | 1409 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
1410 | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; |
1411 | struct elf64_hppa_link_hash_table *hppa_info; | |
1412 | struct elf64_hppa_dyn_reloc_entry *rent; | |
b34976b6 | 1413 | bfd_boolean dynamic_symbol, shared; |
15bda425 | 1414 | |
a03bd320 DA |
1415 | hppa_info = hppa_link_hash_table (x->info); |
1416 | dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info); | |
15bda425 JL |
1417 | shared = x->info->shared; |
1418 | ||
1419 | /* We may need to allocate relocations for a non-dynamic symbol | |
1420 | when creating a shared library. */ | |
1421 | if (!dynamic_symbol && !shared) | |
b34976b6 | 1422 | return TRUE; |
15bda425 JL |
1423 | |
1424 | /* Take care of the normal data relocations. */ | |
1425 | ||
a03bd320 | 1426 | for (rent = hh->reloc_entries; rent; rent = rent->next) |
15bda425 | 1427 | { |
d663e1cd JL |
1428 | /* Allocate one iff we are building a shared library, the relocation |
1429 | isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ | |
a03bd320 | 1430 | if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd) |
d663e1cd JL |
1431 | continue; |
1432 | ||
eea6121a | 1433 | hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela); |
15bda425 JL |
1434 | |
1435 | /* Make sure this symbol gets into the dynamic symbol table if it is | |
1436 | not already recorded. ?!? This should not be in the loop since | |
1437 | the symbol need only be added once. */ | |
a03bd320 | 1438 | if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI) |
c152c796 | 1439 | if (!bfd_elf_link_record_local_dynamic_symbol |
a03bd320 | 1440 | (x->info, rent->sec->owner, hh->sym_indx)) |
b34976b6 | 1441 | return FALSE; |
15bda425 JL |
1442 | } |
1443 | ||
1444 | /* Take care of the GOT and PLT relocations. */ | |
1445 | ||
a03bd320 | 1446 | if ((dynamic_symbol || shared) && hh->want_dlt) |
eea6121a | 1447 | hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela); |
15bda425 JL |
1448 | |
1449 | /* If we are building a shared library, then every symbol that has an | |
1450 | opd entry will need an EPLT relocation to relocate the symbol's address | |
1451 | and __gp value based on the runtime load address. */ | |
a03bd320 | 1452 | if (shared && hh->want_opd) |
eea6121a | 1453 | hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela); |
15bda425 | 1454 | |
a03bd320 | 1455 | if (hh->want_plt && dynamic_symbol) |
15bda425 JL |
1456 | { |
1457 | bfd_size_type t = 0; | |
1458 | ||
1459 | /* Dynamic symbols get one IPLT relocation. Local symbols in | |
1460 | shared libraries get two REL relocations. Local symbols in | |
1461 | main applications get nothing. */ | |
1462 | if (dynamic_symbol) | |
1463 | t = sizeof (Elf64_External_Rela); | |
1464 | else if (shared) | |
1465 | t = 2 * sizeof (Elf64_External_Rela); | |
1466 | ||
eea6121a | 1467 | hppa_info->plt_rel_sec->size += t; |
15bda425 JL |
1468 | } |
1469 | ||
b34976b6 | 1470 | return TRUE; |
15bda425 JL |
1471 | } |
1472 | ||
1473 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1474 | regular object. */ | |
1475 | ||
b34976b6 | 1476 | static bfd_boolean |
813c8a3c | 1477 | elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
a03bd320 | 1478 | struct elf_link_hash_entry *eh) |
15bda425 JL |
1479 | { |
1480 | /* ??? Undefined symbols with PLT entries should be re-defined | |
1481 | to be the PLT entry. */ | |
1482 | ||
1483 | /* If this is a weak symbol, and there is a real definition, the | |
1484 | processor independent code will have arranged for us to see the | |
1485 | real definition first, and we can just use the same value. */ | |
a03bd320 | 1486 | if (eh->u.weakdef != NULL) |
15bda425 | 1487 | { |
a03bd320 DA |
1488 | BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined |
1489 | || eh->u.weakdef->root.type == bfd_link_hash_defweak); | |
1490 | eh->root.u.def.section = eh->u.weakdef->root.u.def.section; | |
1491 | eh->root.u.def.value = eh->u.weakdef->root.u.def.value; | |
b34976b6 | 1492 | return TRUE; |
15bda425 JL |
1493 | } |
1494 | ||
1495 | /* If this is a reference to a symbol defined by a dynamic object which | |
1496 | is not a function, we might allocate the symbol in our .dynbss section | |
1497 | and allocate a COPY dynamic relocation. | |
1498 | ||
1499 | But PA64 code is canonically PIC, so as a rule we can avoid this sort | |
1500 | of hackery. */ | |
1501 | ||
b34976b6 | 1502 | return TRUE; |
15bda425 JL |
1503 | } |
1504 | ||
47b7c2db AM |
1505 | /* This function is called via elf_link_hash_traverse to mark millicode |
1506 | symbols with a dynindx of -1 and to remove the string table reference | |
1507 | from the dynamic symbol table. If the symbol is not a millicode symbol, | |
1508 | elf64_hppa_mark_exported_functions is called. */ | |
1509 | ||
b34976b6 | 1510 | static bfd_boolean |
a03bd320 | 1511 | elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh, |
813c8a3c | 1512 | void *data) |
47b7c2db | 1513 | { |
a03bd320 | 1514 | struct elf_link_hash_entry *elf = eh; |
47b7c2db | 1515 | struct bfd_link_info *info = (struct bfd_link_info *)data; |
47b7c2db AM |
1516 | |
1517 | if (elf->root.type == bfd_link_hash_warning) | |
1518 | elf = (struct elf_link_hash_entry *) elf->root.u.i.link; | |
1519 | ||
1520 | if (elf->type == STT_PARISC_MILLI) | |
1521 | { | |
1522 | if (elf->dynindx != -1) | |
1523 | { | |
1524 | elf->dynindx = -1; | |
1525 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | |
1526 | elf->dynstr_index); | |
1527 | } | |
b34976b6 | 1528 | return TRUE; |
47b7c2db AM |
1529 | } |
1530 | ||
a03bd320 | 1531 | return elf64_hppa_mark_exported_functions (eh, data); |
47b7c2db AM |
1532 | } |
1533 | ||
15bda425 JL |
1534 | /* Set the final sizes of the dynamic sections and allocate memory for |
1535 | the contents of our special sections. */ | |
1536 | ||
b34976b6 | 1537 | static bfd_boolean |
a03bd320 | 1538 | elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) |
15bda425 | 1539 | { |
a03bd320 DA |
1540 | struct elf64_hppa_link_hash_table *hppa_info; |
1541 | struct elf64_hppa_allocate_data data; | |
15bda425 | 1542 | bfd *dynobj; |
a03bd320 DA |
1543 | bfd *ibfd; |
1544 | asection *sec; | |
b34976b6 AM |
1545 | bfd_boolean plt; |
1546 | bfd_boolean relocs; | |
1547 | bfd_boolean reltext; | |
15bda425 | 1548 | |
a03bd320 | 1549 | hppa_info = hppa_link_hash_table (info); |
15bda425 JL |
1550 | |
1551 | dynobj = elf_hash_table (info)->dynobj; | |
1552 | BFD_ASSERT (dynobj != NULL); | |
1553 | ||
47b7c2db AM |
1554 | /* Mark each function this program exports so that we will allocate |
1555 | space in the .opd section for each function's FPTR. If we are | |
1556 | creating dynamic sections, change the dynamic index of millicode | |
1557 | symbols to -1 and remove them from the string table for .dynstr. | |
1558 | ||
1559 | We have to traverse the main linker hash table since we have to | |
1560 | find functions which may not have been mentioned in any relocs. */ | |
1561 | elf_link_hash_traverse (elf_hash_table (info), | |
1562 | (elf_hash_table (info)->dynamic_sections_created | |
1563 | ? elf64_hppa_mark_milli_and_exported_functions | |
1564 | : elf64_hppa_mark_exported_functions), | |
1565 | info); | |
1566 | ||
15bda425 JL |
1567 | if (elf_hash_table (info)->dynamic_sections_created) |
1568 | { | |
1569 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 1570 | if (info->executable) |
15bda425 | 1571 | { |
a03bd320 DA |
1572 | sec = bfd_get_section_by_name (dynobj, ".interp"); |
1573 | BFD_ASSERT (sec != NULL); | |
1574 | sec->size = sizeof ELF_DYNAMIC_INTERPRETER; | |
1575 | sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; | |
15bda425 JL |
1576 | } |
1577 | } | |
1578 | else | |
1579 | { | |
1580 | /* We may have created entries in the .rela.got section. | |
1581 | However, if we are not creating the dynamic sections, we will | |
1582 | not actually use these entries. Reset the size of .rela.dlt, | |
1583 | which will cause it to get stripped from the output file | |
1584 | below. */ | |
a03bd320 DA |
1585 | sec = bfd_get_section_by_name (dynobj, ".rela.dlt"); |
1586 | if (sec != NULL) | |
1587 | sec->size = 0; | |
1588 | } | |
1589 | ||
1590 | /* Set up DLT, PLT and OPD offsets for local syms, and space for local | |
1591 | dynamic relocs. */ | |
1592 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) | |
1593 | { | |
1594 | bfd_signed_vma *local_dlt; | |
1595 | bfd_signed_vma *end_local_dlt; | |
1596 | bfd_signed_vma *local_plt; | |
1597 | bfd_signed_vma *end_local_plt; | |
1598 | bfd_signed_vma *local_opd; | |
1599 | bfd_signed_vma *end_local_opd; | |
1600 | bfd_size_type locsymcount; | |
1601 | Elf_Internal_Shdr *symtab_hdr; | |
1602 | asection *srel; | |
1603 | ||
1604 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) | |
1605 | continue; | |
1606 | ||
1607 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
1608 | { | |
1609 | struct elf64_hppa_dyn_reloc_entry *hdh_p; | |
1610 | ||
1611 | for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *) | |
1612 | elf_section_data (sec)->local_dynrel); | |
1613 | hdh_p != NULL; | |
1614 | hdh_p = hdh_p->next) | |
1615 | { | |
1616 | if (!bfd_is_abs_section (hdh_p->sec) | |
1617 | && bfd_is_abs_section (hdh_p->sec->output_section)) | |
1618 | { | |
1619 | /* Input section has been discarded, either because | |
1620 | it is a copy of a linkonce section or due to | |
1621 | linker script /DISCARD/, so we'll be discarding | |
1622 | the relocs too. */ | |
1623 | } | |
1624 | else if (hdh_p->count != 0) | |
1625 | { | |
1626 | srel = elf_section_data (hdh_p->sec)->sreloc; | |
1627 | srel->size += hdh_p->count * sizeof (Elf64_External_Rela); | |
1628 | if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) | |
1629 | info->flags |= DF_TEXTREL; | |
1630 | } | |
1631 | } | |
1632 | } | |
1633 | ||
1634 | local_dlt = elf_local_got_refcounts (ibfd); | |
1635 | if (!local_dlt) | |
1636 | continue; | |
1637 | ||
1638 | symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; | |
1639 | locsymcount = symtab_hdr->sh_info; | |
1640 | end_local_dlt = local_dlt + locsymcount; | |
1641 | sec = hppa_info->dlt_sec; | |
1642 | srel = hppa_info->dlt_rel_sec; | |
1643 | for (; local_dlt < end_local_dlt; ++local_dlt) | |
1644 | { | |
1645 | if (*local_dlt > 0) | |
1646 | { | |
1647 | *local_dlt = sec->size; | |
1648 | sec->size += DLT_ENTRY_SIZE; | |
1649 | if (info->shared) | |
1650 | { | |
1651 | srel->size += sizeof (Elf64_External_Rela); | |
1652 | } | |
1653 | } | |
1654 | else | |
1655 | *local_dlt = (bfd_vma) -1; | |
1656 | } | |
1657 | ||
1658 | local_plt = end_local_dlt; | |
1659 | end_local_plt = local_plt + locsymcount; | |
1660 | if (! hppa_info->root.dynamic_sections_created) | |
1661 | { | |
1662 | /* Won't be used, but be safe. */ | |
1663 | for (; local_plt < end_local_plt; ++local_plt) | |
1664 | *local_plt = (bfd_vma) -1; | |
1665 | } | |
1666 | else | |
1667 | { | |
1668 | sec = hppa_info->plt_sec; | |
1669 | srel = hppa_info->plt_rel_sec; | |
1670 | for (; local_plt < end_local_plt; ++local_plt) | |
1671 | { | |
1672 | if (*local_plt > 0) | |
1673 | { | |
1674 | *local_plt = sec->size; | |
1675 | sec->size += PLT_ENTRY_SIZE; | |
1676 | if (info->shared) | |
1677 | srel->size += sizeof (Elf64_External_Rela); | |
1678 | } | |
1679 | else | |
1680 | *local_plt = (bfd_vma) -1; | |
1681 | } | |
1682 | } | |
1683 | ||
1684 | local_opd = end_local_plt; | |
1685 | end_local_opd = local_opd + locsymcount; | |
1686 | if (! hppa_info->root.dynamic_sections_created) | |
1687 | { | |
1688 | /* Won't be used, but be safe. */ | |
1689 | for (; local_opd < end_local_opd; ++local_opd) | |
1690 | *local_opd = (bfd_vma) -1; | |
1691 | } | |
1692 | else | |
1693 | { | |
1694 | sec = hppa_info->opd_sec; | |
1695 | srel = hppa_info->opd_rel_sec; | |
1696 | for (; local_opd < end_local_opd; ++local_opd) | |
1697 | { | |
1698 | if (*local_opd > 0) | |
1699 | { | |
1700 | *local_opd = sec->size; | |
1701 | sec->size += OPD_ENTRY_SIZE; | |
1702 | if (info->shared) | |
1703 | srel->size += sizeof (Elf64_External_Rela); | |
1704 | } | |
1705 | else | |
1706 | *local_opd = (bfd_vma) -1; | |
1707 | } | |
1708 | } | |
15bda425 JL |
1709 | } |
1710 | ||
1711 | /* Allocate the GOT entries. */ | |
1712 | ||
1713 | data.info = info; | |
a03bd320 | 1714 | if (hppa_info->dlt_sec) |
15bda425 | 1715 | { |
a03bd320 DA |
1716 | data.ofs = hppa_info->dlt_sec->size; |
1717 | elf_link_hash_traverse (elf_hash_table (info), | |
1718 | allocate_global_data_dlt, &data); | |
eea6121a | 1719 | hppa_info->dlt_sec->size = data.ofs; |
a03bd320 | 1720 | } |
15bda425 | 1721 | |
a03bd320 DA |
1722 | if (hppa_info->plt_sec) |
1723 | { | |
1724 | data.ofs = hppa_info->plt_sec->size; | |
1725 | elf_link_hash_traverse (elf_hash_table (info), | |
1726 | allocate_global_data_plt, &data); | |
eea6121a | 1727 | hppa_info->plt_sec->size = data.ofs; |
a03bd320 | 1728 | } |
15bda425 | 1729 | |
a03bd320 DA |
1730 | if (hppa_info->stub_sec) |
1731 | { | |
15bda425 | 1732 | data.ofs = 0x0; |
a03bd320 DA |
1733 | elf_link_hash_traverse (elf_hash_table (info), |
1734 | allocate_global_data_stub, &data); | |
eea6121a | 1735 | hppa_info->stub_sec->size = data.ofs; |
15bda425 JL |
1736 | } |
1737 | ||
15bda425 | 1738 | /* Allocate space for entries in the .opd section. */ |
a03bd320 | 1739 | if (hppa_info->opd_sec) |
15bda425 | 1740 | { |
a03bd320 DA |
1741 | data.ofs = hppa_info->opd_sec->size; |
1742 | elf_link_hash_traverse (elf_hash_table (info), | |
1743 | allocate_global_data_opd, &data); | |
eea6121a | 1744 | hppa_info->opd_sec->size = data.ofs; |
15bda425 JL |
1745 | } |
1746 | ||
1747 | /* Now allocate space for dynamic relocations, if necessary. */ | |
1748 | if (hppa_info->root.dynamic_sections_created) | |
a03bd320 DA |
1749 | elf_link_hash_traverse (elf_hash_table (info), |
1750 | allocate_dynrel_entries, &data); | |
15bda425 JL |
1751 | |
1752 | /* The sizes of all the sections are set. Allocate memory for them. */ | |
b34976b6 AM |
1753 | plt = FALSE; |
1754 | relocs = FALSE; | |
1755 | reltext = FALSE; | |
a03bd320 | 1756 | for (sec = dynobj->sections; sec != NULL; sec = sec->next) |
15bda425 JL |
1757 | { |
1758 | const char *name; | |
15bda425 | 1759 | |
a03bd320 | 1760 | if ((sec->flags & SEC_LINKER_CREATED) == 0) |
15bda425 JL |
1761 | continue; |
1762 | ||
1763 | /* It's OK to base decisions on the section name, because none | |
1764 | of the dynobj section names depend upon the input files. */ | |
a03bd320 | 1765 | name = bfd_get_section_name (dynobj, sec); |
15bda425 | 1766 | |
15bda425 JL |
1767 | if (strcmp (name, ".plt") == 0) |
1768 | { | |
c456f082 | 1769 | /* Remember whether there is a PLT. */ |
a03bd320 | 1770 | plt = sec->size != 0; |
15bda425 | 1771 | } |
c456f082 | 1772 | else if (strcmp (name, ".opd") == 0 |
0112cd26 | 1773 | || CONST_STRNEQ (name, ".dlt") |
c456f082 AM |
1774 | || strcmp (name, ".stub") == 0 |
1775 | || strcmp (name, ".got") == 0) | |
15bda425 | 1776 | { |
d663e1cd | 1777 | /* Strip this section if we don't need it; see the comment below. */ |
15bda425 | 1778 | } |
0112cd26 | 1779 | else if (CONST_STRNEQ (name, ".rela")) |
15bda425 | 1780 | { |
a03bd320 | 1781 | if (sec->size != 0) |
15bda425 JL |
1782 | { |
1783 | asection *target; | |
1784 | ||
1785 | /* Remember whether there are any reloc sections other | |
1786 | than .rela.plt. */ | |
1787 | if (strcmp (name, ".rela.plt") != 0) | |
1788 | { | |
1789 | const char *outname; | |
1790 | ||
b34976b6 | 1791 | relocs = TRUE; |
15bda425 JL |
1792 | |
1793 | /* If this relocation section applies to a read only | |
1794 | section, then we probably need a DT_TEXTREL | |
1795 | entry. The entries in the .rela.plt section | |
1796 | really apply to the .got section, which we | |
1797 | created ourselves and so know is not readonly. */ | |
1798 | outname = bfd_get_section_name (output_bfd, | |
a03bd320 | 1799 | sec->output_section); |
15bda425 JL |
1800 | target = bfd_get_section_by_name (output_bfd, outname + 4); |
1801 | if (target != NULL | |
1802 | && (target->flags & SEC_READONLY) != 0 | |
1803 | && (target->flags & SEC_ALLOC) != 0) | |
b34976b6 | 1804 | reltext = TRUE; |
15bda425 JL |
1805 | } |
1806 | ||
1807 | /* We use the reloc_count field as a counter if we need | |
1808 | to copy relocs into the output file. */ | |
a03bd320 | 1809 | sec->reloc_count = 0; |
15bda425 JL |
1810 | } |
1811 | } | |
c456f082 | 1812 | else |
15bda425 JL |
1813 | { |
1814 | /* It's not one of our sections, so don't allocate space. */ | |
1815 | continue; | |
1816 | } | |
1817 | ||
a03bd320 | 1818 | if (sec->size == 0) |
15bda425 | 1819 | { |
c456f082 AM |
1820 | /* If we don't need this section, strip it from the |
1821 | output file. This is mostly to handle .rela.bss and | |
1822 | .rela.plt. We must create both sections in | |
1823 | create_dynamic_sections, because they must be created | |
1824 | before the linker maps input sections to output | |
1825 | sections. The linker does that before | |
1826 | adjust_dynamic_symbol is called, and it is that | |
1827 | function which decides whether anything needs to go | |
1828 | into these sections. */ | |
a03bd320 | 1829 | sec->flags |= SEC_EXCLUDE; |
15bda425 JL |
1830 | continue; |
1831 | } | |
1832 | ||
a03bd320 | 1833 | if ((sec->flags & SEC_HAS_CONTENTS) == 0) |
c456f082 AM |
1834 | continue; |
1835 | ||
15bda425 | 1836 | /* Allocate memory for the section contents if it has not |
832d951b AM |
1837 | been allocated already. We use bfd_zalloc here in case |
1838 | unused entries are not reclaimed before the section's | |
1839 | contents are written out. This should not happen, but this | |
1840 | way if it does, we get a R_PARISC_NONE reloc instead of | |
1841 | garbage. */ | |
a03bd320 | 1842 | if (sec->contents == NULL) |
15bda425 | 1843 | { |
a03bd320 DA |
1844 | sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size); |
1845 | if (sec->contents == NULL) | |
b34976b6 | 1846 | return FALSE; |
15bda425 JL |
1847 | } |
1848 | } | |
1849 | ||
1850 | if (elf_hash_table (info)->dynamic_sections_created) | |
1851 | { | |
1852 | /* Always create a DT_PLTGOT. It actually has nothing to do with | |
1853 | the PLT, it is how we communicate the __gp value of a load | |
1854 | module to the dynamic linker. */ | |
dc810e39 | 1855 | #define add_dynamic_entry(TAG, VAL) \ |
5a580b3a | 1856 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
dc810e39 AM |
1857 | |
1858 | if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0) | |
1859 | || !add_dynamic_entry (DT_PLTGOT, 0)) | |
b34976b6 | 1860 | return FALSE; |
15bda425 JL |
1861 | |
1862 | /* Add some entries to the .dynamic section. We fill in the | |
1863 | values later, in elf64_hppa_finish_dynamic_sections, but we | |
1864 | must add the entries now so that we get the correct size for | |
1865 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1866 | dynamic linker and used by the debugger. */ | |
1867 | if (! info->shared) | |
1868 | { | |
dc810e39 AM |
1869 | if (!add_dynamic_entry (DT_DEBUG, 0) |
1870 | || !add_dynamic_entry (DT_HP_DLD_HOOK, 0) | |
1871 | || !add_dynamic_entry (DT_HP_LOAD_MAP, 0)) | |
b34976b6 | 1872 | return FALSE; |
15bda425 JL |
1873 | } |
1874 | ||
f2482cb2 NC |
1875 | /* Force DT_FLAGS to always be set. |
1876 | Required by HPUX 11.00 patch PHSS_26559. */ | |
1877 | if (!add_dynamic_entry (DT_FLAGS, (info)->flags)) | |
b34976b6 | 1878 | return FALSE; |
f2482cb2 | 1879 | |
15bda425 JL |
1880 | if (plt) |
1881 | { | |
dc810e39 AM |
1882 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
1883 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1884 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
b34976b6 | 1885 | return FALSE; |
15bda425 JL |
1886 | } |
1887 | ||
1888 | if (relocs) | |
1889 | { | |
dc810e39 AM |
1890 | if (!add_dynamic_entry (DT_RELA, 0) |
1891 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1892 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) | |
b34976b6 | 1893 | return FALSE; |
15bda425 JL |
1894 | } |
1895 | ||
1896 | if (reltext) | |
1897 | { | |
dc810e39 | 1898 | if (!add_dynamic_entry (DT_TEXTREL, 0)) |
b34976b6 | 1899 | return FALSE; |
d6cf2879 | 1900 | info->flags |= DF_TEXTREL; |
15bda425 JL |
1901 | } |
1902 | } | |
dc810e39 | 1903 | #undef add_dynamic_entry |
15bda425 | 1904 | |
b34976b6 | 1905 | return TRUE; |
15bda425 JL |
1906 | } |
1907 | ||
1908 | /* Called after we have output the symbol into the dynamic symbol | |
1909 | table, but before we output the symbol into the normal symbol | |
1910 | table. | |
1911 | ||
1912 | For some symbols we had to change their address when outputting | |
1913 | the dynamic symbol table. We undo that change here so that | |
1914 | the symbols have their expected value in the normal symbol | |
1915 | table. Ick. */ | |
1916 | ||
6e0b88f1 | 1917 | static int |
a03bd320 | 1918 | elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
813c8a3c DA |
1919 | const char *name, |
1920 | Elf_Internal_Sym *sym, | |
1921 | asection *input_sec ATTRIBUTE_UNUSED, | |
a03bd320 | 1922 | struct elf_link_hash_entry *eh) |
15bda425 | 1923 | { |
a03bd320 | 1924 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
1925 | |
1926 | /* We may be called with the file symbol or section symbols. | |
1927 | They never need munging, so it is safe to ignore them. */ | |
a03bd320 | 1928 | if (!name || !eh) |
6e0b88f1 | 1929 | return 1; |
15bda425 | 1930 | |
832d951b AM |
1931 | /* Function symbols for which we created .opd entries *may* have been |
1932 | munged by finish_dynamic_symbol and have to be un-munged here. | |
1933 | ||
1934 | Note that finish_dynamic_symbol sometimes turns dynamic symbols | |
1935 | into non-dynamic ones, so we initialize st_shndx to -1 in | |
1936 | mark_exported_functions and check to see if it was overwritten | |
a03bd320 DA |
1937 | here instead of just checking eh->dynindx. */ |
1938 | if (hh->want_opd && hh->st_shndx != -1) | |
15bda425 JL |
1939 | { |
1940 | /* Restore the saved value and section index. */ | |
a03bd320 DA |
1941 | sym->st_value = hh->st_value; |
1942 | sym->st_shndx = hh->st_shndx; | |
15bda425 JL |
1943 | } |
1944 | ||
6e0b88f1 | 1945 | return 1; |
15bda425 JL |
1946 | } |
1947 | ||
1948 | /* Finish up dynamic symbol handling. We set the contents of various | |
1949 | dynamic sections here. */ | |
1950 | ||
b34976b6 | 1951 | static bfd_boolean |
813c8a3c DA |
1952 | elf64_hppa_finish_dynamic_symbol (bfd *output_bfd, |
1953 | struct bfd_link_info *info, | |
a03bd320 | 1954 | struct elf_link_hash_entry *eh, |
813c8a3c | 1955 | Elf_Internal_Sym *sym) |
15bda425 | 1956 | { |
a03bd320 | 1957 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
1958 | asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel; |
1959 | struct elf64_hppa_link_hash_table *hppa_info; | |
15bda425 | 1960 | |
a03bd320 | 1961 | hppa_info = hppa_link_hash_table (info); |
15bda425 JL |
1962 | |
1963 | stub = hppa_info->stub_sec; | |
1964 | splt = hppa_info->plt_sec; | |
1965 | sdlt = hppa_info->dlt_sec; | |
1966 | sopd = hppa_info->opd_sec; | |
1967 | spltrel = hppa_info->plt_rel_sec; | |
1968 | sdltrel = hppa_info->dlt_rel_sec; | |
1969 | ||
15bda425 JL |
1970 | /* Incredible. It is actually necessary to NOT use the symbol's real |
1971 | value when building the dynamic symbol table for a shared library. | |
1972 | At least for symbols that refer to functions. | |
1973 | ||
1974 | We will store a new value and section index into the symbol long | |
1975 | enough to output it into the dynamic symbol table, then we restore | |
1976 | the original values (in elf64_hppa_link_output_symbol_hook). */ | |
a03bd320 | 1977 | if (hh->want_opd) |
15bda425 | 1978 | { |
f12123c0 | 1979 | BFD_ASSERT (sopd != NULL); |
d663e1cd | 1980 | |
15bda425 JL |
1981 | /* Save away the original value and section index so that we |
1982 | can restore them later. */ | |
a03bd320 DA |
1983 | hh->st_value = sym->st_value; |
1984 | hh->st_shndx = sym->st_shndx; | |
15bda425 JL |
1985 | |
1986 | /* For the dynamic symbol table entry, we want the value to be | |
1987 | address of this symbol's entry within the .opd section. */ | |
a03bd320 | 1988 | sym->st_value = (hh->opd_offset |
15bda425 JL |
1989 | + sopd->output_offset |
1990 | + sopd->output_section->vma); | |
1991 | sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
1992 | sopd->output_section); | |
1993 | } | |
1994 | ||
1995 | /* Initialize a .plt entry if requested. */ | |
a03bd320 DA |
1996 | if (hh->want_plt |
1997 | && elf64_hppa_dynamic_symbol_p (eh, info)) | |
15bda425 JL |
1998 | { |
1999 | bfd_vma value; | |
2000 | Elf_Internal_Rela rel; | |
947216bf | 2001 | bfd_byte *loc; |
15bda425 | 2002 | |
f12123c0 | 2003 | BFD_ASSERT (splt != NULL && spltrel != NULL); |
d663e1cd | 2004 | |
15bda425 JL |
2005 | /* We do not actually care about the value in the PLT entry |
2006 | if we are creating a shared library and the symbol is | |
2007 | still undefined, we create a dynamic relocation to fill | |
2008 | in the correct value. */ | |
a03bd320 | 2009 | if (info->shared && eh->root.type == bfd_link_hash_undefined) |
15bda425 JL |
2010 | value = 0; |
2011 | else | |
a03bd320 | 2012 | value = (eh->root.u.def.value + eh->root.u.def.section->vma); |
15bda425 | 2013 | |
fe8bc63d | 2014 | /* Fill in the entry in the procedure linkage table. |
15bda425 JL |
2015 | |
2016 | The format of a plt entry is | |
fe8bc63d | 2017 | <funcaddr> <__gp>. |
15bda425 JL |
2018 | |
2019 | plt_offset is the offset within the PLT section at which to | |
fe8bc63d | 2020 | install the PLT entry. |
15bda425 JL |
2021 | |
2022 | We are modifying the in-memory PLT contents here, so we do not add | |
2023 | in the output_offset of the PLT section. */ | |
2024 | ||
a03bd320 | 2025 | bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset); |
15bda425 | 2026 | value = _bfd_get_gp_value (splt->output_section->owner); |
a03bd320 | 2027 | bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8); |
15bda425 JL |
2028 | |
2029 | /* Create a dynamic IPLT relocation for this entry. | |
2030 | ||
2031 | We are creating a relocation in the output file's PLT section, | |
2032 | which is included within the DLT secton. So we do need to include | |
2033 | the PLT's output_offset in the computation of the relocation's | |
2034 | address. */ | |
a03bd320 | 2035 | rel.r_offset = (hh->plt_offset + splt->output_offset |
15bda425 | 2036 | + splt->output_section->vma); |
a03bd320 | 2037 | rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT); |
15bda425 JL |
2038 | rel.r_addend = 0; |
2039 | ||
947216bf AM |
2040 | loc = spltrel->contents; |
2041 | loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2042 | bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc); | |
15bda425 JL |
2043 | } |
2044 | ||
2045 | /* Initialize an external call stub entry if requested. */ | |
a03bd320 DA |
2046 | if (hh->want_stub |
2047 | && elf64_hppa_dynamic_symbol_p (eh, info)) | |
15bda425 JL |
2048 | { |
2049 | bfd_vma value; | |
2050 | int insn; | |
b352eebf | 2051 | unsigned int max_offset; |
15bda425 | 2052 | |
f12123c0 | 2053 | BFD_ASSERT (stub != NULL); |
d663e1cd | 2054 | |
15bda425 JL |
2055 | /* Install the generic stub template. |
2056 | ||
2057 | We are modifying the contents of the stub section, so we do not | |
2058 | need to include the stub section's output_offset here. */ | |
a03bd320 | 2059 | memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub)); |
15bda425 JL |
2060 | |
2061 | /* Fix up the first ldd instruction. | |
2062 | ||
2063 | We are modifying the contents of the STUB section in memory, | |
fe8bc63d | 2064 | so we do not need to include its output offset in this computation. |
15bda425 JL |
2065 | |
2066 | Note the plt_offset value is the value of the PLT entry relative to | |
2067 | the start of the PLT section. These instructions will reference | |
2068 | data relative to the value of __gp, which may not necessarily have | |
2069 | the same address as the start of the PLT section. | |
2070 | ||
2071 | gp_offset contains the offset of __gp within the PLT section. */ | |
a03bd320 | 2072 | value = hh->plt_offset - hppa_info->gp_offset; |
fe8bc63d | 2073 | |
a03bd320 | 2074 | insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset); |
b352eebf AM |
2075 | if (output_bfd->arch_info->mach >= 25) |
2076 | { | |
2077 | /* Wide mode allows 16 bit offsets. */ | |
2078 | max_offset = 32768; | |
2079 | insn &= ~ 0xfff1; | |
dc810e39 | 2080 | insn |= re_assemble_16 ((int) value); |
b352eebf AM |
2081 | } |
2082 | else | |
2083 | { | |
2084 | max_offset = 8192; | |
2085 | insn &= ~ 0x3ff1; | |
dc810e39 | 2086 | insn |= re_assemble_14 ((int) value); |
b352eebf AM |
2087 | } |
2088 | ||
2089 | if ((value & 7) || value + max_offset >= 2*max_offset - 8) | |
2090 | { | |
2091 | (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"), | |
a03bd320 | 2092 | hh->eh.root.root.string, |
b352eebf | 2093 | (long) value); |
b34976b6 | 2094 | return FALSE; |
b352eebf AM |
2095 | } |
2096 | ||
dc810e39 | 2097 | bfd_put_32 (stub->owner, (bfd_vma) insn, |
a03bd320 | 2098 | stub->contents + hh->stub_offset); |
15bda425 JL |
2099 | |
2100 | /* Fix up the second ldd instruction. */ | |
b352eebf | 2101 | value += 8; |
a03bd320 | 2102 | insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8); |
b352eebf AM |
2103 | if (output_bfd->arch_info->mach >= 25) |
2104 | { | |
2105 | insn &= ~ 0xfff1; | |
dc810e39 | 2106 | insn |= re_assemble_16 ((int) value); |
b352eebf AM |
2107 | } |
2108 | else | |
2109 | { | |
2110 | insn &= ~ 0x3ff1; | |
dc810e39 | 2111 | insn |= re_assemble_14 ((int) value); |
b352eebf | 2112 | } |
dc810e39 | 2113 | bfd_put_32 (stub->owner, (bfd_vma) insn, |
a03bd320 | 2114 | stub->contents + hh->stub_offset + 8); |
15bda425 JL |
2115 | } |
2116 | ||
b34976b6 | 2117 | return TRUE; |
15bda425 JL |
2118 | } |
2119 | ||
2120 | /* The .opd section contains FPTRs for each function this file | |
2121 | exports. Initialize the FPTR entries. */ | |
2122 | ||
b34976b6 | 2123 | static bfd_boolean |
a03bd320 | 2124 | elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data) |
15bda425 | 2125 | { |
a03bd320 | 2126 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
2127 | struct bfd_link_info *info = (struct bfd_link_info *)data; |
2128 | struct elf64_hppa_link_hash_table *hppa_info; | |
15bda425 JL |
2129 | asection *sopd; |
2130 | asection *sopdrel; | |
2131 | ||
a03bd320 | 2132 | hppa_info = hppa_link_hash_table (info); |
15bda425 JL |
2133 | sopd = hppa_info->opd_sec; |
2134 | sopdrel = hppa_info->opd_rel_sec; | |
2135 | ||
a03bd320 | 2136 | if (hh->want_opd) |
15bda425 JL |
2137 | { |
2138 | bfd_vma value; | |
2139 | ||
fe8bc63d | 2140 | /* The first two words of an .opd entry are zero. |
15bda425 JL |
2141 | |
2142 | We are modifying the contents of the OPD section in memory, so we | |
2143 | do not need to include its output offset in this computation. */ | |
a03bd320 | 2144 | memset (sopd->contents + hh->opd_offset, 0, 16); |
15bda425 | 2145 | |
a03bd320 DA |
2146 | value = (eh->root.u.def.value |
2147 | + eh->root.u.def.section->output_section->vma | |
2148 | + eh->root.u.def.section->output_offset); | |
15bda425 JL |
2149 | |
2150 | /* The next word is the address of the function. */ | |
a03bd320 | 2151 | bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16); |
15bda425 JL |
2152 | |
2153 | /* The last word is our local __gp value. */ | |
2154 | value = _bfd_get_gp_value (sopd->output_section->owner); | |
a03bd320 | 2155 | bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24); |
15bda425 JL |
2156 | } |
2157 | ||
2158 | /* If we are generating a shared library, we must generate EPLT relocations | |
2159 | for each entry in the .opd, even for static functions (they may have | |
2160 | had their address taken). */ | |
a03bd320 | 2161 | if (info->shared && hh->want_opd) |
15bda425 | 2162 | { |
947216bf AM |
2163 | Elf_Internal_Rela rel; |
2164 | bfd_byte *loc; | |
15bda425 JL |
2165 | int dynindx; |
2166 | ||
2167 | /* We may need to do a relocation against a local symbol, in | |
2168 | which case we have to look up it's dynamic symbol index off | |
2169 | the local symbol hash table. */ | |
a03bd320 DA |
2170 | if (eh->dynindx != -1) |
2171 | dynindx = eh->dynindx; | |
15bda425 JL |
2172 | else |
2173 | dynindx | |
a03bd320 DA |
2174 | = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, |
2175 | hh->sym_indx); | |
15bda425 JL |
2176 | |
2177 | /* The offset of this relocation is the absolute address of the | |
2178 | .opd entry for this symbol. */ | |
a03bd320 | 2179 | rel.r_offset = (hh->opd_offset + sopd->output_offset |
15bda425 JL |
2180 | + sopd->output_section->vma); |
2181 | ||
2182 | /* If H is non-null, then we have an external symbol. | |
2183 | ||
2184 | It is imperative that we use a different dynamic symbol for the | |
2185 | EPLT relocation if the symbol has global scope. | |
2186 | ||
2187 | In the dynamic symbol table, the function symbol will have a value | |
2188 | which is address of the function's .opd entry. | |
2189 | ||
2190 | Thus, we can not use that dynamic symbol for the EPLT relocation | |
2191 | (if we did, the data in the .opd would reference itself rather | |
2192 | than the actual address of the function). Instead we have to use | |
2193 | a new dynamic symbol which has the same value as the original global | |
fe8bc63d | 2194 | function symbol. |
15bda425 JL |
2195 | |
2196 | We prefix the original symbol with a "." and use the new symbol in | |
2197 | the EPLT relocation. This new symbol has already been recorded in | |
2198 | the symbol table, we just have to look it up and use it. | |
2199 | ||
2200 | We do not have such problems with static functions because we do | |
2201 | not make their addresses in the dynamic symbol table point to | |
2202 | the .opd entry. Ultimately this should be safe since a static | |
2203 | function can not be directly referenced outside of its shared | |
2204 | library. | |
2205 | ||
2206 | We do have to play similar games for FPTR relocations in shared | |
2207 | libraries, including those for static symbols. See the FPTR | |
2208 | handling in elf64_hppa_finalize_dynreloc. */ | |
a03bd320 | 2209 | if (eh) |
15bda425 JL |
2210 | { |
2211 | char *new_name; | |
2212 | struct elf_link_hash_entry *nh; | |
2213 | ||
a03bd320 | 2214 | new_name = alloca (strlen (eh->root.root.string) + 2); |
15bda425 | 2215 | new_name[0] = '.'; |
a03bd320 | 2216 | strcpy (new_name + 1, eh->root.root.string); |
15bda425 JL |
2217 | |
2218 | nh = elf_link_hash_lookup (elf_hash_table (info), | |
adfef0bd NC |
2219 | new_name, TRUE, TRUE, FALSE); |
2220 | ||
15bda425 JL |
2221 | /* All we really want from the new symbol is its dynamic |
2222 | symbol index. */ | |
7fb9f789 NC |
2223 | if (nh) |
2224 | dynindx = nh->dynindx; | |
15bda425 JL |
2225 | } |
2226 | ||
2227 | rel.r_addend = 0; | |
2228 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT); | |
2229 | ||
947216bf AM |
2230 | loc = sopdrel->contents; |
2231 | loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2232 | bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc); | |
15bda425 | 2233 | } |
b34976b6 | 2234 | return TRUE; |
15bda425 JL |
2235 | } |
2236 | ||
2237 | /* The .dlt section contains addresses for items referenced through the | |
2238 | dlt. Note that we can have a DLTIND relocation for a local symbol, thus | |
2239 | we can not depend on finish_dynamic_symbol to initialize the .dlt. */ | |
2240 | ||
b34976b6 | 2241 | static bfd_boolean |
a03bd320 | 2242 | elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data) |
15bda425 | 2243 | { |
a03bd320 | 2244 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
2245 | struct bfd_link_info *info = (struct bfd_link_info *)data; |
2246 | struct elf64_hppa_link_hash_table *hppa_info; | |
2247 | asection *sdlt, *sdltrel; | |
15bda425 | 2248 | |
a03bd320 | 2249 | hppa_info = hppa_link_hash_table (info); |
15bda425 JL |
2250 | |
2251 | sdlt = hppa_info->dlt_sec; | |
2252 | sdltrel = hppa_info->dlt_rel_sec; | |
2253 | ||
2254 | /* H/DYN_H may refer to a local variable and we know it's | |
2255 | address, so there is no need to create a relocation. Just install | |
2256 | the proper value into the DLT, note this shortcut can not be | |
2257 | skipped when building a shared library. */ | |
a03bd320 | 2258 | if (! info->shared && hh && hh->want_dlt) |
15bda425 JL |
2259 | { |
2260 | bfd_vma value; | |
2261 | ||
2262 | /* If we had an LTOFF_FPTR style relocation we want the DLT entry | |
fe8bc63d | 2263 | to point to the FPTR entry in the .opd section. |
15bda425 JL |
2264 | |
2265 | We include the OPD's output offset in this computation as | |
2266 | we are referring to an absolute address in the resulting | |
2267 | object file. */ | |
a03bd320 | 2268 | if (hh->want_opd) |
15bda425 | 2269 | { |
a03bd320 | 2270 | value = (hh->opd_offset |
15bda425 JL |
2271 | + hppa_info->opd_sec->output_offset |
2272 | + hppa_info->opd_sec->output_section->vma); | |
2273 | } | |
a03bd320 DA |
2274 | else if ((eh->root.type == bfd_link_hash_defined |
2275 | || eh->root.type == bfd_link_hash_defweak) | |
2276 | && eh->root.u.def.section) | |
15bda425 | 2277 | { |
a03bd320 DA |
2278 | value = eh->root.u.def.value + eh->root.u.def.section->output_offset; |
2279 | if (eh->root.u.def.section->output_section) | |
2280 | value += eh->root.u.def.section->output_section->vma; | |
15bda425 | 2281 | else |
a03bd320 | 2282 | value += eh->root.u.def.section->vma; |
15bda425 | 2283 | } |
3db4b612 JL |
2284 | else |
2285 | /* We have an undefined function reference. */ | |
2286 | value = 0; | |
15bda425 JL |
2287 | |
2288 | /* We do not need to include the output offset of the DLT section | |
2289 | here because we are modifying the in-memory contents. */ | |
a03bd320 | 2290 | bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset); |
15bda425 JL |
2291 | } |
2292 | ||
4cc11e76 | 2293 | /* Create a relocation for the DLT entry associated with this symbol. |
15bda425 | 2294 | When building a shared library the symbol does not have to be dynamic. */ |
a03bd320 DA |
2295 | if (hh->want_dlt |
2296 | && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared)) | |
15bda425 | 2297 | { |
947216bf AM |
2298 | Elf_Internal_Rela rel; |
2299 | bfd_byte *loc; | |
15bda425 JL |
2300 | int dynindx; |
2301 | ||
2302 | /* We may need to do a relocation against a local symbol, in | |
2303 | which case we have to look up it's dynamic symbol index off | |
2304 | the local symbol hash table. */ | |
a03bd320 DA |
2305 | if (eh && eh->dynindx != -1) |
2306 | dynindx = eh->dynindx; | |
15bda425 JL |
2307 | else |
2308 | dynindx | |
a03bd320 DA |
2309 | = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, |
2310 | hh->sym_indx); | |
15bda425 | 2311 | |
15bda425 JL |
2312 | /* Create a dynamic relocation for this entry. Do include the output |
2313 | offset of the DLT entry since we need an absolute address in the | |
2314 | resulting object file. */ | |
a03bd320 | 2315 | rel.r_offset = (hh->dlt_offset + sdlt->output_offset |
15bda425 | 2316 | + sdlt->output_section->vma); |
a03bd320 | 2317 | if (eh && eh->type == STT_FUNC) |
15bda425 JL |
2318 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64); |
2319 | else | |
2320 | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64); | |
2321 | rel.r_addend = 0; | |
2322 | ||
947216bf AM |
2323 | loc = sdltrel->contents; |
2324 | loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela); | |
2325 | bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc); | |
15bda425 | 2326 | } |
b34976b6 | 2327 | return TRUE; |
15bda425 JL |
2328 | } |
2329 | ||
2330 | /* Finalize the dynamic relocations. Specifically the FPTR relocations | |
2331 | for dynamic functions used to initialize static data. */ | |
2332 | ||
b34976b6 | 2333 | static bfd_boolean |
a03bd320 | 2334 | elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh, |
813c8a3c | 2335 | void *data) |
15bda425 | 2336 | { |
a03bd320 | 2337 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); |
15bda425 JL |
2338 | struct bfd_link_info *info = (struct bfd_link_info *)data; |
2339 | struct elf64_hppa_link_hash_table *hppa_info; | |
15bda425 JL |
2340 | int dynamic_symbol; |
2341 | ||
a03bd320 | 2342 | dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info); |
15bda425 JL |
2343 | |
2344 | if (!dynamic_symbol && !info->shared) | |
b34976b6 | 2345 | return TRUE; |
15bda425 | 2346 | |
a03bd320 | 2347 | if (hh->reloc_entries) |
15bda425 JL |
2348 | { |
2349 | struct elf64_hppa_dyn_reloc_entry *rent; | |
2350 | int dynindx; | |
2351 | ||
a03bd320 | 2352 | hppa_info = hppa_link_hash_table (info); |
15bda425 JL |
2353 | |
2354 | /* We may need to do a relocation against a local symbol, in | |
2355 | which case we have to look up it's dynamic symbol index off | |
2356 | the local symbol hash table. */ | |
a03bd320 DA |
2357 | if (eh->dynindx != -1) |
2358 | dynindx = eh->dynindx; | |
15bda425 JL |
2359 | else |
2360 | dynindx | |
a03bd320 DA |
2361 | = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, |
2362 | hh->sym_indx); | |
15bda425 | 2363 | |
a03bd320 | 2364 | for (rent = hh->reloc_entries; rent; rent = rent->next) |
15bda425 | 2365 | { |
947216bf AM |
2366 | Elf_Internal_Rela rel; |
2367 | bfd_byte *loc; | |
15bda425 | 2368 | |
d663e1cd JL |
2369 | /* Allocate one iff we are building a shared library, the relocation |
2370 | isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ | |
a03bd320 | 2371 | if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd) |
d663e1cd | 2372 | continue; |
15bda425 | 2373 | |
fe8bc63d | 2374 | /* Create a dynamic relocation for this entry. |
15bda425 JL |
2375 | |
2376 | We need the output offset for the reloc's section because | |
2377 | we are creating an absolute address in the resulting object | |
2378 | file. */ | |
2379 | rel.r_offset = (rent->offset + rent->sec->output_offset | |
2380 | + rent->sec->output_section->vma); | |
2381 | ||
2382 | /* An FPTR64 relocation implies that we took the address of | |
2383 | a function and that the function has an entry in the .opd | |
2384 | section. We want the FPTR64 relocation to reference the | |
2385 | entry in .opd. | |
2386 | ||
2387 | We could munge the symbol value in the dynamic symbol table | |
2388 | (in fact we already do for functions with global scope) to point | |
2389 | to the .opd entry. Then we could use that dynamic symbol in | |
2390 | this relocation. | |
2391 | ||
2392 | Or we could do something sensible, not munge the symbol's | |
2393 | address and instead just use a different symbol to reference | |
2394 | the .opd entry. At least that seems sensible until you | |
2395 | realize there's no local dynamic symbols we can use for that | |
2396 | purpose. Thus the hair in the check_relocs routine. | |
fe8bc63d | 2397 | |
15bda425 JL |
2398 | We use a section symbol recorded by check_relocs as the |
2399 | base symbol for the relocation. The addend is the difference | |
2400 | between the section symbol and the address of the .opd entry. */ | |
a03bd320 | 2401 | if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd) |
15bda425 JL |
2402 | { |
2403 | bfd_vma value, value2; | |
15bda425 JL |
2404 | |
2405 | /* First compute the address of the opd entry for this symbol. */ | |
a03bd320 | 2406 | value = (hh->opd_offset |
15bda425 JL |
2407 | + hppa_info->opd_sec->output_section->vma |
2408 | + hppa_info->opd_sec->output_offset); | |
2409 | ||
2410 | /* Compute the value of the start of the section with | |
2411 | the relocation. */ | |
2412 | value2 = (rent->sec->output_section->vma | |
2413 | + rent->sec->output_offset); | |
2414 | ||
2415 | /* Compute the difference between the start of the section | |
2416 | with the relocation and the opd entry. */ | |
2417 | value -= value2; | |
fe8bc63d | 2418 | |
15bda425 JL |
2419 | /* The result becomes the addend of the relocation. */ |
2420 | rel.r_addend = value; | |
2421 | ||
2422 | /* The section symbol becomes the symbol for the dynamic | |
2423 | relocation. */ | |
2424 | dynindx | |
2425 | = _bfd_elf_link_lookup_local_dynindx (info, | |
2426 | rent->sec->owner, | |
2427 | rent->sec_symndx); | |
2428 | } | |
2429 | else | |
2430 | rel.r_addend = rent->addend; | |
2431 | ||
2432 | rel.r_info = ELF64_R_INFO (dynindx, rent->type); | |
2433 | ||
947216bf AM |
2434 | loc = hppa_info->other_rel_sec->contents; |
2435 | loc += (hppa_info->other_rel_sec->reloc_count++ | |
2436 | * sizeof (Elf64_External_Rela)); | |
15bda425 | 2437 | bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner, |
947216bf | 2438 | &rel, loc); |
15bda425 JL |
2439 | } |
2440 | } | |
2441 | ||
b34976b6 | 2442 | return TRUE; |
15bda425 JL |
2443 | } |
2444 | ||
5ac81c74 JL |
2445 | /* Used to decide how to sort relocs in an optimal manner for the |
2446 | dynamic linker, before writing them out. */ | |
2447 | ||
2448 | static enum elf_reloc_type_class | |
813c8a3c | 2449 | elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela) |
5ac81c74 JL |
2450 | { |
2451 | if (ELF64_R_SYM (rela->r_info) == 0) | |
2452 | return reloc_class_relative; | |
2453 | ||
2454 | switch ((int) ELF64_R_TYPE (rela->r_info)) | |
2455 | { | |
2456 | case R_PARISC_IPLT: | |
2457 | return reloc_class_plt; | |
2458 | case R_PARISC_COPY: | |
2459 | return reloc_class_copy; | |
2460 | default: | |
2461 | return reloc_class_normal; | |
2462 | } | |
2463 | } | |
2464 | ||
15bda425 JL |
2465 | /* Finish up the dynamic sections. */ |
2466 | ||
b34976b6 | 2467 | static bfd_boolean |
813c8a3c DA |
2468 | elf64_hppa_finish_dynamic_sections (bfd *output_bfd, |
2469 | struct bfd_link_info *info) | |
15bda425 JL |
2470 | { |
2471 | bfd *dynobj; | |
2472 | asection *sdyn; | |
2473 | struct elf64_hppa_link_hash_table *hppa_info; | |
2474 | ||
a03bd320 | 2475 | hppa_info = hppa_link_hash_table (info); |
15bda425 JL |
2476 | |
2477 | /* Finalize the contents of the .opd section. */ | |
a03bd320 DA |
2478 | elf_link_hash_traverse (elf_hash_table (info), |
2479 | elf64_hppa_finalize_opd, | |
2480 | info); | |
15bda425 | 2481 | |
a03bd320 DA |
2482 | elf_link_hash_traverse (elf_hash_table (info), |
2483 | elf64_hppa_finalize_dynreloc, | |
2484 | info); | |
15bda425 JL |
2485 | |
2486 | /* Finalize the contents of the .dlt section. */ | |
2487 | dynobj = elf_hash_table (info)->dynobj; | |
2488 | /* Finalize the contents of the .dlt section. */ | |
a03bd320 DA |
2489 | elf_link_hash_traverse (elf_hash_table (info), |
2490 | elf64_hppa_finalize_dlt, | |
2491 | info); | |
15bda425 | 2492 | |
15bda425 JL |
2493 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); |
2494 | ||
2495 | if (elf_hash_table (info)->dynamic_sections_created) | |
2496 | { | |
2497 | Elf64_External_Dyn *dyncon, *dynconend; | |
15bda425 JL |
2498 | |
2499 | BFD_ASSERT (sdyn != NULL); | |
2500 | ||
2501 | dyncon = (Elf64_External_Dyn *) sdyn->contents; | |
eea6121a | 2502 | dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size); |
15bda425 JL |
2503 | for (; dyncon < dynconend; dyncon++) |
2504 | { | |
2505 | Elf_Internal_Dyn dyn; | |
2506 | asection *s; | |
2507 | ||
2508 | bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); | |
2509 | ||
2510 | switch (dyn.d_tag) | |
2511 | { | |
2512 | default: | |
2513 | break; | |
2514 | ||
2515 | case DT_HP_LOAD_MAP: | |
2516 | /* Compute the absolute address of 16byte scratchpad area | |
2517 | for the dynamic linker. | |
2518 | ||
2519 | By convention the linker script will allocate the scratchpad | |
2520 | area at the start of the .data section. So all we have to | |
2521 | to is find the start of the .data section. */ | |
2522 | s = bfd_get_section_by_name (output_bfd, ".data"); | |
2523 | dyn.d_un.d_ptr = s->vma; | |
2524 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2525 | break; | |
2526 | ||
2527 | case DT_PLTGOT: | |
2528 | /* HP's use PLTGOT to set the GOT register. */ | |
2529 | dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd); | |
2530 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2531 | break; | |
2532 | ||
2533 | case DT_JMPREL: | |
2534 | s = hppa_info->plt_rel_sec; | |
2535 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
2536 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2537 | break; | |
2538 | ||
2539 | case DT_PLTRELSZ: | |
2540 | s = hppa_info->plt_rel_sec; | |
eea6121a | 2541 | dyn.d_un.d_val = s->size; |
15bda425 JL |
2542 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); |
2543 | break; | |
2544 | ||
2545 | case DT_RELA: | |
2546 | s = hppa_info->other_rel_sec; | |
eea6121a | 2547 | if (! s || ! s->size) |
15bda425 | 2548 | s = hppa_info->dlt_rel_sec; |
eea6121a | 2549 | if (! s || ! s->size) |
5ac81c74 | 2550 | s = hppa_info->opd_rel_sec; |
15bda425 JL |
2551 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
2552 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2553 | break; | |
2554 | ||
2555 | case DT_RELASZ: | |
2556 | s = hppa_info->other_rel_sec; | |
eea6121a | 2557 | dyn.d_un.d_val = s->size; |
15bda425 | 2558 | s = hppa_info->dlt_rel_sec; |
eea6121a | 2559 | dyn.d_un.d_val += s->size; |
15bda425 | 2560 | s = hppa_info->opd_rel_sec; |
eea6121a | 2561 | dyn.d_un.d_val += s->size; |
15bda425 JL |
2562 | /* There is some question about whether or not the size of |
2563 | the PLT relocs should be included here. HP's tools do | |
2564 | it, so we'll emulate them. */ | |
2565 | s = hppa_info->plt_rel_sec; | |
eea6121a | 2566 | dyn.d_un.d_val += s->size; |
15bda425 JL |
2567 | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); |
2568 | break; | |
2569 | ||
2570 | } | |
2571 | } | |
2572 | } | |
2573 | ||
b34976b6 | 2574 | return TRUE; |
15bda425 JL |
2575 | } |
2576 | ||
235ecfbc NC |
2577 | /* Support for core dump NOTE sections. */ |
2578 | ||
2579 | static bfd_boolean | |
2580 | elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) | |
2581 | { | |
2582 | int offset; | |
2583 | size_t size; | |
2584 | ||
2585 | switch (note->descsz) | |
2586 | { | |
2587 | default: | |
2588 | return FALSE; | |
2589 | ||
2590 | case 760: /* Linux/hppa */ | |
2591 | /* pr_cursig */ | |
2592 | elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); | |
2593 | ||
2594 | /* pr_pid */ | |
2595 | elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32); | |
2596 | ||
2597 | /* pr_reg */ | |
2598 | offset = 112; | |
2599 | size = 640; | |
2600 | ||
2601 | break; | |
2602 | } | |
2603 | ||
2604 | /* Make a ".reg/999" section. */ | |
2605 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
2606 | size, note->descpos + offset); | |
2607 | } | |
2608 | ||
2609 | static bfd_boolean | |
2610 | elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) | |
2611 | { | |
2612 | char * command; | |
2613 | int n; | |
2614 | ||
2615 | switch (note->descsz) | |
2616 | { | |
2617 | default: | |
2618 | return FALSE; | |
2619 | ||
2620 | case 136: /* Linux/hppa elf_prpsinfo. */ | |
2621 | elf_tdata (abfd)->core_program | |
2622 | = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16); | |
2623 | elf_tdata (abfd)->core_command | |
2624 | = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80); | |
2625 | } | |
2626 | ||
2627 | /* Note that for some reason, a spurious space is tacked | |
2628 | onto the end of the args in some (at least one anyway) | |
2629 | implementations, so strip it off if it exists. */ | |
2630 | command = elf_tdata (abfd)->core_command; | |
2631 | n = strlen (command); | |
2632 | ||
2633 | if (0 < n && command[n - 1] == ' ') | |
2634 | command[n - 1] = '\0'; | |
2635 | ||
2636 | return TRUE; | |
2637 | } | |
2638 | ||
15bda425 JL |
2639 | /* Return the number of additional phdrs we will need. |
2640 | ||
2641 | The generic ELF code only creates PT_PHDRs for executables. The HP | |
fe8bc63d | 2642 | dynamic linker requires PT_PHDRs for dynamic libraries too. |
15bda425 JL |
2643 | |
2644 | This routine indicates that the backend needs one additional program | |
2645 | header for that case. | |
2646 | ||
2647 | Note we do not have access to the link info structure here, so we have | |
2648 | to guess whether or not we are building a shared library based on the | |
2649 | existence of a .interp section. */ | |
2650 | ||
2651 | static int | |
a6b96beb | 2652 | elf64_hppa_additional_program_headers (bfd *abfd, |
813c8a3c | 2653 | struct bfd_link_info *info ATTRIBUTE_UNUSED) |
15bda425 JL |
2654 | { |
2655 | asection *s; | |
2656 | ||
2657 | /* If we are creating a shared library, then we have to create a | |
2658 | PT_PHDR segment. HP's dynamic linker chokes without it. */ | |
2659 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2660 | if (! s) | |
2661 | return 1; | |
2662 | return 0; | |
2663 | } | |
2664 | ||
2665 | /* Allocate and initialize any program headers required by this | |
2666 | specific backend. | |
2667 | ||
2668 | The generic ELF code only creates PT_PHDRs for executables. The HP | |
fe8bc63d | 2669 | dynamic linker requires PT_PHDRs for dynamic libraries too. |
15bda425 JL |
2670 | |
2671 | This allocates the PT_PHDR and initializes it in a manner suitable | |
fe8bc63d | 2672 | for the HP linker. |
15bda425 JL |
2673 | |
2674 | Note we do not have access to the link info structure here, so we have | |
2675 | to guess whether or not we are building a shared library based on the | |
2676 | existence of a .interp section. */ | |
2677 | ||
b34976b6 | 2678 | static bfd_boolean |
8ded5a0f AM |
2679 | elf64_hppa_modify_segment_map (bfd *abfd, |
2680 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
15bda425 | 2681 | { |
edd21aca | 2682 | struct elf_segment_map *m; |
15bda425 JL |
2683 | asection *s; |
2684 | ||
2685 | s = bfd_get_section_by_name (abfd, ".interp"); | |
2686 | if (! s) | |
2687 | { | |
2688 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2689 | if (m->p_type == PT_PHDR) | |
2690 | break; | |
2691 | if (m == NULL) | |
2692 | { | |
dc810e39 AM |
2693 | m = ((struct elf_segment_map *) |
2694 | bfd_zalloc (abfd, (bfd_size_type) sizeof *m)); | |
15bda425 | 2695 | if (m == NULL) |
b34976b6 | 2696 | return FALSE; |
15bda425 JL |
2697 | |
2698 | m->p_type = PT_PHDR; | |
2699 | m->p_flags = PF_R | PF_X; | |
2700 | m->p_flags_valid = 1; | |
2701 | m->p_paddr_valid = 1; | |
2702 | m->includes_phdrs = 1; | |
2703 | ||
2704 | m->next = elf_tdata (abfd)->segment_map; | |
2705 | elf_tdata (abfd)->segment_map = m; | |
2706 | } | |
2707 | } | |
2708 | ||
2709 | for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) | |
2710 | if (m->p_type == PT_LOAD) | |
2711 | { | |
0ba2a60e | 2712 | unsigned int i; |
15bda425 JL |
2713 | |
2714 | for (i = 0; i < m->count; i++) | |
2715 | { | |
2716 | /* The code "hint" is not really a hint. It is a requirement | |
2717 | for certain versions of the HP dynamic linker. Worse yet, | |
2718 | it must be set even if the shared library does not have | |
2719 | any code in its "text" segment (thus the check for .hash | |
2720 | to catch this situation). */ | |
2721 | if (m->sections[i]->flags & SEC_CODE | |
2722 | || (strcmp (m->sections[i]->name, ".hash") == 0)) | |
2723 | m->p_flags |= (PF_X | PF_HP_CODE); | |
2724 | } | |
2725 | } | |
2726 | ||
b34976b6 | 2727 | return TRUE; |
15bda425 JL |
2728 | } |
2729 | ||
3fab46d0 AM |
2730 | /* Called when writing out an object file to decide the type of a |
2731 | symbol. */ | |
2732 | static int | |
813c8a3c DA |
2733 | elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, |
2734 | int type) | |
3fab46d0 AM |
2735 | { |
2736 | if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) | |
2737 | return STT_PARISC_MILLI; | |
2738 | else | |
2739 | return type; | |
2740 | } | |
2741 | ||
d97a8924 DA |
2742 | /* Support HP specific sections for core files. */ |
2743 | static bfd_boolean | |
2744 | elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index, | |
2745 | const char *typename) | |
2746 | { | |
927e625f MK |
2747 | if (hdr->p_type == PT_HP_CORE_KERNEL) |
2748 | { | |
2749 | asection *sect; | |
2750 | ||
2751 | if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)) | |
2752 | return FALSE; | |
2753 | ||
2754 | sect = bfd_make_section_anyway (abfd, ".kernel"); | |
2755 | if (sect == NULL) | |
2756 | return FALSE; | |
2757 | sect->size = hdr->p_filesz; | |
2758 | sect->filepos = hdr->p_offset; | |
2759 | sect->flags = SEC_HAS_CONTENTS | SEC_READONLY; | |
2760 | return TRUE; | |
2761 | } | |
2762 | ||
d97a8924 DA |
2763 | if (hdr->p_type == PT_HP_CORE_PROC) |
2764 | { | |
2765 | int sig; | |
2766 | ||
2767 | if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0) | |
2768 | return FALSE; | |
2769 | if (bfd_bread (&sig, 4, abfd) != 4) | |
2770 | return FALSE; | |
2771 | ||
2772 | elf_tdata (abfd)->core_signal = sig; | |
2773 | ||
927e625f | 2774 | if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)) |
d97a8924 | 2775 | return FALSE; |
927e625f MK |
2776 | |
2777 | /* GDB uses the ".reg" section to read register contents. */ | |
2778 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz, | |
2779 | hdr->p_offset); | |
d97a8924 DA |
2780 | } |
2781 | ||
2782 | if (hdr->p_type == PT_HP_CORE_LOADABLE | |
2783 | || hdr->p_type == PT_HP_CORE_STACK | |
2784 | || hdr->p_type == PT_HP_CORE_MMF) | |
2785 | hdr->p_type = PT_LOAD; | |
2786 | ||
2787 | return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename); | |
2788 | } | |
2789 | ||
5887528b DA |
2790 | /* Hook called by the linker routine which adds symbols from an object |
2791 | file. HP's libraries define symbols with HP specific section | |
2792 | indices, which we have to handle. */ | |
2793 | ||
2794 | static bfd_boolean | |
2795 | elf_hppa_add_symbol_hook (bfd *abfd, | |
2796 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
2797 | Elf_Internal_Sym *sym, | |
2798 | const char **namep ATTRIBUTE_UNUSED, | |
2799 | flagword *flagsp ATTRIBUTE_UNUSED, | |
2800 | asection **secp, | |
2801 | bfd_vma *valp) | |
2802 | { | |
2803 | unsigned int index = sym->st_shndx; | |
2804 | ||
2805 | switch (index) | |
2806 | { | |
2807 | case SHN_PARISC_ANSI_COMMON: | |
2808 | *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common"); | |
2809 | (*secp)->flags |= SEC_IS_COMMON; | |
2810 | *valp = sym->st_size; | |
2811 | break; | |
2812 | ||
2813 | case SHN_PARISC_HUGE_COMMON: | |
2814 | *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common"); | |
2815 | (*secp)->flags |= SEC_IS_COMMON; | |
2816 | *valp = sym->st_size; | |
2817 | break; | |
2818 | } | |
2819 | ||
2820 | return TRUE; | |
2821 | } | |
2822 | ||
2823 | static bfd_boolean | |
2824 | elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h, | |
2825 | void *data) | |
2826 | { | |
2827 | struct bfd_link_info *info = data; | |
2828 | ||
2829 | if (h->root.type == bfd_link_hash_warning) | |
2830 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2831 | ||
2832 | /* If we are not creating a shared library, and this symbol is | |
2833 | referenced by a shared library but is not defined anywhere, then | |
2834 | the generic code will warn that it is undefined. | |
2835 | ||
2836 | This behavior is undesirable on HPs since the standard shared | |
2837 | libraries contain references to undefined symbols. | |
2838 | ||
2839 | So we twiddle the flags associated with such symbols so that they | |
2840 | will not trigger the warning. ?!? FIXME. This is horribly fragile. | |
2841 | ||
2842 | Ultimately we should have better controls over the generic ELF BFD | |
2843 | linker code. */ | |
2844 | if (! info->relocatable | |
2845 | && info->unresolved_syms_in_shared_libs != RM_IGNORE | |
2846 | && h->root.type == bfd_link_hash_undefined | |
2847 | && h->ref_dynamic | |
2848 | && !h->ref_regular) | |
2849 | { | |
2850 | h->ref_dynamic = 0; | |
2851 | h->pointer_equality_needed = 1; | |
2852 | } | |
2853 | ||
2854 | return TRUE; | |
2855 | } | |
2856 | ||
2857 | static bfd_boolean | |
2858 | elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h, | |
2859 | void *data) | |
2860 | { | |
2861 | struct bfd_link_info *info = data; | |
2862 | ||
2863 | if (h->root.type == bfd_link_hash_warning) | |
2864 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
2865 | ||
2866 | /* If we are not creating a shared library, and this symbol is | |
2867 | referenced by a shared library but is not defined anywhere, then | |
2868 | the generic code will warn that it is undefined. | |
2869 | ||
2870 | This behavior is undesirable on HPs since the standard shared | |
2871 | libraries contain references to undefined symbols. | |
2872 | ||
2873 | So we twiddle the flags associated with such symbols so that they | |
2874 | will not trigger the warning. ?!? FIXME. This is horribly fragile. | |
2875 | ||
2876 | Ultimately we should have better controls over the generic ELF BFD | |
2877 | linker code. */ | |
2878 | if (! info->relocatable | |
2879 | && info->unresolved_syms_in_shared_libs != RM_IGNORE | |
2880 | && h->root.type == bfd_link_hash_undefined | |
2881 | && !h->ref_dynamic | |
2882 | && !h->ref_regular | |
2883 | && h->pointer_equality_needed) | |
2884 | { | |
2885 | h->ref_dynamic = 1; | |
2886 | h->pointer_equality_needed = 0; | |
2887 | } | |
2888 | ||
2889 | return TRUE; | |
2890 | } | |
2891 | ||
2892 | static bfd_boolean | |
2893 | elf_hppa_is_dynamic_loader_symbol (const char *name) | |
2894 | { | |
2895 | return (! strcmp (name, "__CPU_REVISION") | |
2896 | || ! strcmp (name, "__CPU_KEYBITS_1") | |
2897 | || ! strcmp (name, "__SYSTEM_ID_D") | |
2898 | || ! strcmp (name, "__FPU_MODEL") | |
2899 | || ! strcmp (name, "__FPU_REVISION") | |
2900 | || ! strcmp (name, "__ARGC") | |
2901 | || ! strcmp (name, "__ARGV") | |
2902 | || ! strcmp (name, "__ENVP") | |
2903 | || ! strcmp (name, "__TLS_SIZE_D") | |
2904 | || ! strcmp (name, "__LOAD_INFO") | |
2905 | || ! strcmp (name, "__systab")); | |
2906 | } | |
2907 | ||
2908 | /* Record the lowest address for the data and text segments. */ | |
2909 | static void | |
2910 | elf_hppa_record_segment_addrs (bfd *abfd, | |
2911 | asection *section, | |
2912 | void *data) | |
2913 | { | |
2914 | struct elf64_hppa_link_hash_table *hppa_info = data; | |
2915 | ||
2916 | if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) | |
2917 | { | |
2918 | bfd_vma value; | |
2919 | Elf_Internal_Phdr *p; | |
2920 | ||
2921 | p = _bfd_elf_find_segment_containing_section (abfd, section->output_section); | |
2922 | BFD_ASSERT (p != NULL); | |
2923 | value = p->p_vaddr; | |
2924 | ||
2925 | if (section->flags & SEC_READONLY) | |
2926 | { | |
2927 | if (value < hppa_info->text_segment_base) | |
2928 | hppa_info->text_segment_base = value; | |
2929 | } | |
2930 | else | |
2931 | { | |
2932 | if (value < hppa_info->data_segment_base) | |
2933 | hppa_info->data_segment_base = value; | |
2934 | } | |
2935 | } | |
2936 | } | |
2937 | ||
2938 | /* Called after we have seen all the input files/sections, but before | |
2939 | final symbol resolution and section placement has been determined. | |
2940 | ||
2941 | We use this hook to (possibly) provide a value for __gp, then we | |
2942 | fall back to the generic ELF final link routine. */ | |
2943 | ||
2944 | static bfd_boolean | |
2945 | elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info) | |
2946 | { | |
2947 | bfd_boolean retval; | |
2948 | struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info); | |
2949 | ||
2950 | if (! info->relocatable) | |
2951 | { | |
2952 | struct elf_link_hash_entry *gp; | |
2953 | bfd_vma gp_val; | |
2954 | ||
2955 | /* The linker script defines a value for __gp iff it was referenced | |
2956 | by one of the objects being linked. First try to find the symbol | |
2957 | in the hash table. If that fails, just compute the value __gp | |
2958 | should have had. */ | |
2959 | gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE, | |
2960 | FALSE, FALSE); | |
2961 | ||
2962 | if (gp) | |
2963 | { | |
2964 | ||
2965 | /* Adjust the value of __gp as we may want to slide it into the | |
2966 | .plt section so that the stubs can access PLT entries without | |
2967 | using an addil sequence. */ | |
2968 | gp->root.u.def.value += hppa_info->gp_offset; | |
2969 | ||
2970 | gp_val = (gp->root.u.def.section->output_section->vma | |
2971 | + gp->root.u.def.section->output_offset | |
2972 | + gp->root.u.def.value); | |
2973 | } | |
2974 | else | |
2975 | { | |
2976 | asection *sec; | |
2977 | ||
2978 | /* First look for a .plt section. If found, then __gp is the | |
2979 | address of the .plt + gp_offset. | |
2980 | ||
2981 | If no .plt is found, then look for .dlt, .opd and .data (in | |
2982 | that order) and set __gp to the base address of whichever | |
2983 | section is found first. */ | |
2984 | ||
2985 | sec = hppa_info->plt_sec; | |
2986 | if (sec && ! (sec->flags & SEC_EXCLUDE)) | |
2987 | gp_val = (sec->output_offset | |
2988 | + sec->output_section->vma | |
2989 | + hppa_info->gp_offset); | |
2990 | else | |
2991 | { | |
2992 | sec = hppa_info->dlt_sec; | |
2993 | if (!sec || (sec->flags & SEC_EXCLUDE)) | |
2994 | sec = hppa_info->opd_sec; | |
2995 | if (!sec || (sec->flags & SEC_EXCLUDE)) | |
2996 | sec = bfd_get_section_by_name (abfd, ".data"); | |
2997 | if (!sec || (sec->flags & SEC_EXCLUDE)) | |
2998 | gp_val = 0; | |
2999 | else | |
3000 | gp_val = sec->output_offset + sec->output_section->vma; | |
3001 | } | |
3002 | } | |
3003 | ||
3004 | /* Install whatever value we found/computed for __gp. */ | |
3005 | _bfd_set_gp_value (abfd, gp_val); | |
3006 | } | |
3007 | ||
3008 | /* We need to know the base of the text and data segments so that we | |
3009 | can perform SEGREL relocations. We will record the base addresses | |
3010 | when we encounter the first SEGREL relocation. */ | |
3011 | hppa_info->text_segment_base = (bfd_vma)-1; | |
3012 | hppa_info->data_segment_base = (bfd_vma)-1; | |
3013 | ||
3014 | /* HP's shared libraries have references to symbols that are not | |
3015 | defined anywhere. The generic ELF BFD linker code will complain | |
3016 | about such symbols. | |
3017 | ||
3018 | So we detect the losing case and arrange for the flags on the symbol | |
3019 | to indicate that it was never referenced. This keeps the generic | |
3020 | ELF BFD link code happy and appears to not create any secondary | |
3021 | problems. Ultimately we need a way to control the behavior of the | |
3022 | generic ELF BFD link code better. */ | |
3023 | elf_link_hash_traverse (elf_hash_table (info), | |
3024 | elf_hppa_unmark_useless_dynamic_symbols, | |
3025 | info); | |
3026 | ||
3027 | /* Invoke the regular ELF backend linker to do all the work. */ | |
3028 | retval = bfd_elf_final_link (abfd, info); | |
3029 | ||
3030 | elf_link_hash_traverse (elf_hash_table (info), | |
3031 | elf_hppa_remark_useless_dynamic_symbols, | |
3032 | info); | |
3033 | ||
3034 | /* If we're producing a final executable, sort the contents of the | |
3035 | unwind section. */ | |
3036 | if (retval) | |
3037 | retval = elf_hppa_sort_unwind (abfd); | |
3038 | ||
3039 | return retval; | |
3040 | } | |
3041 | ||
3042 | /* Relocate the given INSN. VALUE should be the actual value we want | |
3043 | to insert into the instruction, ie by this point we should not be | |
3044 | concerned with computing an offset relative to the DLT, PC, etc. | |
3045 | Instead this routine is meant to handle the bit manipulations needed | |
3046 | to insert the relocation into the given instruction. */ | |
3047 | ||
3048 | static int | |
3049 | elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type) | |
3050 | { | |
3051 | switch (r_type) | |
3052 | { | |
3053 | /* This is any 22 bit branch. In PA2.0 syntax it corresponds to | |
3054 | the "B" instruction. */ | |
3055 | case R_PARISC_PCREL22F: | |
3056 | case R_PARISC_PCREL22C: | |
3057 | return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value); | |
3058 | ||
3059 | /* This is any 12 bit branch. */ | |
3060 | case R_PARISC_PCREL12F: | |
3061 | return (insn & ~0x1ffd) | re_assemble_12 (sym_value); | |
3062 | ||
3063 | /* This is any 17 bit branch. In PA2.0 syntax it also corresponds | |
3064 | to the "B" instruction as well as BE. */ | |
3065 | case R_PARISC_PCREL17F: | |
3066 | case R_PARISC_DIR17F: | |
3067 | case R_PARISC_DIR17R: | |
3068 | case R_PARISC_PCREL17C: | |
3069 | case R_PARISC_PCREL17R: | |
3070 | return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value); | |
3071 | ||
3072 | /* ADDIL or LDIL instructions. */ | |
3073 | case R_PARISC_DLTREL21L: | |
3074 | case R_PARISC_DLTIND21L: | |
3075 | case R_PARISC_LTOFF_FPTR21L: | |
3076 | case R_PARISC_PCREL21L: | |
3077 | case R_PARISC_LTOFF_TP21L: | |
3078 | case R_PARISC_DPREL21L: | |
3079 | case R_PARISC_PLTOFF21L: | |
3080 | case R_PARISC_DIR21L: | |
3081 | return (insn & ~0x1fffff) | re_assemble_21 (sym_value); | |
3082 | ||
3083 | /* LDO and integer loads/stores with 14 bit displacements. */ | |
3084 | case R_PARISC_DLTREL14R: | |
3085 | case R_PARISC_DLTREL14F: | |
3086 | case R_PARISC_DLTIND14R: | |
3087 | case R_PARISC_DLTIND14F: | |
3088 | case R_PARISC_LTOFF_FPTR14R: | |
3089 | case R_PARISC_PCREL14R: | |
3090 | case R_PARISC_PCREL14F: | |
3091 | case R_PARISC_LTOFF_TP14R: | |
3092 | case R_PARISC_LTOFF_TP14F: | |
3093 | case R_PARISC_DPREL14R: | |
3094 | case R_PARISC_DPREL14F: | |
3095 | case R_PARISC_PLTOFF14R: | |
3096 | case R_PARISC_PLTOFF14F: | |
3097 | case R_PARISC_DIR14R: | |
3098 | case R_PARISC_DIR14F: | |
3099 | return (insn & ~0x3fff) | low_sign_unext (sym_value, 14); | |
3100 | ||
3101 | /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */ | |
3102 | case R_PARISC_LTOFF_FPTR16F: | |
3103 | case R_PARISC_PCREL16F: | |
3104 | case R_PARISC_LTOFF_TP16F: | |
3105 | case R_PARISC_GPREL16F: | |
3106 | case R_PARISC_PLTOFF16F: | |
3107 | case R_PARISC_DIR16F: | |
3108 | case R_PARISC_LTOFF16F: | |
3109 | return (insn & ~0xffff) | re_assemble_16 (sym_value); | |
3110 | ||
3111 | /* Doubleword loads and stores with a 14 bit displacement. */ | |
3112 | case R_PARISC_DLTREL14DR: | |
3113 | case R_PARISC_DLTIND14DR: | |
3114 | case R_PARISC_LTOFF_FPTR14DR: | |
3115 | case R_PARISC_LTOFF_FPTR16DF: | |
3116 | case R_PARISC_PCREL14DR: | |
3117 | case R_PARISC_PCREL16DF: | |
3118 | case R_PARISC_LTOFF_TP14DR: | |
3119 | case R_PARISC_LTOFF_TP16DF: | |
3120 | case R_PARISC_DPREL14DR: | |
3121 | case R_PARISC_GPREL16DF: | |
3122 | case R_PARISC_PLTOFF14DR: | |
3123 | case R_PARISC_PLTOFF16DF: | |
3124 | case R_PARISC_DIR14DR: | |
3125 | case R_PARISC_DIR16DF: | |
3126 | case R_PARISC_LTOFF16DF: | |
3127 | return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13) | |
3128 | | ((sym_value & 0x1ff8) << 1)); | |
3129 | ||
3130 | /* Floating point single word load/store instructions. */ | |
3131 | case R_PARISC_DLTREL14WR: | |
3132 | case R_PARISC_DLTIND14WR: | |
3133 | case R_PARISC_LTOFF_FPTR14WR: | |
3134 | case R_PARISC_LTOFF_FPTR16WF: | |
3135 | case R_PARISC_PCREL14WR: | |
3136 | case R_PARISC_PCREL16WF: | |
3137 | case R_PARISC_LTOFF_TP14WR: | |
3138 | case R_PARISC_LTOFF_TP16WF: | |
3139 | case R_PARISC_DPREL14WR: | |
3140 | case R_PARISC_GPREL16WF: | |
3141 | case R_PARISC_PLTOFF14WR: | |
3142 | case R_PARISC_PLTOFF16WF: | |
3143 | case R_PARISC_DIR16WF: | |
3144 | case R_PARISC_DIR14WR: | |
3145 | case R_PARISC_LTOFF16WF: | |
3146 | return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13) | |
3147 | | ((sym_value & 0x1ffc) << 1)); | |
3148 | ||
3149 | default: | |
3150 | return insn; | |
3151 | } | |
3152 | } | |
3153 | ||
3154 | /* Compute the value for a relocation (REL) during a final link stage, | |
3155 | then insert the value into the proper location in CONTENTS. | |
3156 | ||
3157 | VALUE is a tentative value for the relocation and may be overridden | |
3158 | and modified here based on the specific relocation to be performed. | |
3159 | ||
3160 | For example we do conversions for PC-relative branches in this routine | |
3161 | or redirection of calls to external routines to stubs. | |
3162 | ||
3163 | The work of actually applying the relocation is left to a helper | |
3164 | routine in an attempt to reduce the complexity and size of this | |
3165 | function. */ | |
3166 | ||
3167 | static bfd_reloc_status_type | |
3168 | elf_hppa_final_link_relocate (Elf_Internal_Rela *rel, | |
3169 | bfd *input_bfd, | |
3170 | bfd *output_bfd, | |
3171 | asection *input_section, | |
3172 | bfd_byte *contents, | |
3173 | bfd_vma value, | |
3174 | struct bfd_link_info *info, | |
3175 | asection *sym_sec, | |
3176 | struct elf_link_hash_entry *eh) | |
3177 | { | |
3178 | struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info); | |
3179 | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | |
3180 | bfd_vma *local_offsets; | |
3181 | Elf_Internal_Shdr *symtab_hdr; | |
3182 | int insn; | |
3183 | bfd_vma max_branch_offset = 0; | |
3184 | bfd_vma offset = rel->r_offset; | |
3185 | bfd_signed_vma addend = rel->r_addend; | |
3186 | reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info); | |
3187 | unsigned int r_symndx = ELF_R_SYM (rel->r_info); | |
3188 | unsigned int r_type = howto->type; | |
3189 | bfd_byte *hit_data = contents + offset; | |
3190 | ||
3191 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3192 | local_offsets = elf_local_got_offsets (input_bfd); | |
3193 | insn = bfd_get_32 (input_bfd, hit_data); | |
3194 | ||
3195 | switch (r_type) | |
3196 | { | |
3197 | case R_PARISC_NONE: | |
3198 | break; | |
3199 | ||
3200 | /* Basic function call support. | |
3201 | ||
3202 | Note for a call to a function defined in another dynamic library | |
3203 | we want to redirect the call to a stub. */ | |
3204 | ||
3205 | /* PC relative relocs without an implicit offset. */ | |
3206 | case R_PARISC_PCREL21L: | |
3207 | case R_PARISC_PCREL14R: | |
3208 | case R_PARISC_PCREL14F: | |
3209 | case R_PARISC_PCREL14WR: | |
3210 | case R_PARISC_PCREL14DR: | |
3211 | case R_PARISC_PCREL16F: | |
3212 | case R_PARISC_PCREL16WF: | |
3213 | case R_PARISC_PCREL16DF: | |
3214 | { | |
3215 | /* If this is a call to a function defined in another dynamic | |
3216 | library, then redirect the call to the local stub for this | |
3217 | function. */ | |
3218 | if (sym_sec == NULL || sym_sec->output_section == NULL) | |
3219 | value = (hh->stub_offset + hppa_info->stub_sec->output_offset | |
3220 | + hppa_info->stub_sec->output_section->vma); | |
3221 | ||
3222 | /* Turn VALUE into a proper PC relative address. */ | |
3223 | value -= (offset + input_section->output_offset | |
3224 | + input_section->output_section->vma); | |
3225 | ||
3226 | /* Adjust for any field selectors. */ | |
3227 | if (r_type == R_PARISC_PCREL21L) | |
3228 | value = hppa_field_adjust (value, -8 + addend, e_lsel); | |
3229 | else if (r_type == R_PARISC_PCREL14F | |
3230 | || r_type == R_PARISC_PCREL16F | |
3231 | || r_type == R_PARISC_PCREL16WF | |
3232 | || r_type == R_PARISC_PCREL16DF) | |
3233 | value = hppa_field_adjust (value, -8 + addend, e_fsel); | |
3234 | else | |
3235 | value = hppa_field_adjust (value, -8 + addend, e_rsel); | |
3236 | ||
3237 | /* Apply the relocation to the given instruction. */ | |
3238 | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | |
3239 | break; | |
3240 | } | |
3241 | ||
3242 | case R_PARISC_PCREL12F: | |
3243 | case R_PARISC_PCREL22F: | |
3244 | case R_PARISC_PCREL17F: | |
3245 | case R_PARISC_PCREL22C: | |
3246 | case R_PARISC_PCREL17C: | |
3247 | case R_PARISC_PCREL17R: | |
3248 | { | |
3249 | /* If this is a call to a function defined in another dynamic | |
3250 | library, then redirect the call to the local stub for this | |
3251 | function. */ | |
3252 | if (sym_sec == NULL || sym_sec->output_section == NULL) | |
3253 | value = (hh->stub_offset + hppa_info->stub_sec->output_offset | |
3254 | + hppa_info->stub_sec->output_section->vma); | |
3255 | ||
3256 | /* Turn VALUE into a proper PC relative address. */ | |
3257 | value -= (offset + input_section->output_offset | |
3258 | + input_section->output_section->vma); | |
3259 | addend -= 8; | |
3260 | ||
3261 | if (r_type == (unsigned int) R_PARISC_PCREL22F) | |
3262 | max_branch_offset = (1 << (22-1)) << 2; | |
3263 | else if (r_type == (unsigned int) R_PARISC_PCREL17F) | |
3264 | max_branch_offset = (1 << (17-1)) << 2; | |
3265 | else if (r_type == (unsigned int) R_PARISC_PCREL12F) | |
3266 | max_branch_offset = (1 << (12-1)) << 2; | |
3267 | ||
3268 | /* Make sure we can reach the branch target. */ | |
3269 | if (max_branch_offset != 0 | |
3270 | && value + addend + max_branch_offset >= 2*max_branch_offset) | |
3271 | { | |
3272 | (*_bfd_error_handler) | |
3273 | (_("%B(%A+0x%lx): cannot reach %s"), | |
3274 | input_bfd, | |
3275 | input_section, | |
3276 | offset, | |
3277 | eh->root.root.string); | |
3278 | bfd_set_error (bfd_error_bad_value); | |
3279 | return bfd_reloc_notsupported; | |
3280 | } | |
3281 | ||
3282 | /* Adjust for any field selectors. */ | |
3283 | if (r_type == R_PARISC_PCREL17R) | |
3284 | value = hppa_field_adjust (value, addend, e_rsel); | |
3285 | else | |
3286 | value = hppa_field_adjust (value, addend, e_fsel); | |
3287 | ||
3288 | /* All branches are implicitly shifted by 2 places. */ | |
3289 | value >>= 2; | |
3290 | ||
3291 | /* Apply the relocation to the given instruction. */ | |
3292 | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | |
3293 | break; | |
3294 | } | |
3295 | ||
3296 | /* Indirect references to data through the DLT. */ | |
3297 | case R_PARISC_DLTIND14R: | |
3298 | case R_PARISC_DLTIND14F: | |
3299 | case R_PARISC_DLTIND14DR: | |
3300 | case R_PARISC_DLTIND14WR: | |
3301 | case R_PARISC_DLTIND21L: | |
3302 | case R_PARISC_LTOFF_FPTR14R: | |
3303 | case R_PARISC_LTOFF_FPTR14DR: | |
3304 | case R_PARISC_LTOFF_FPTR14WR: | |
3305 | case R_PARISC_LTOFF_FPTR21L: | |
3306 | case R_PARISC_LTOFF_FPTR16F: | |
3307 | case R_PARISC_LTOFF_FPTR16WF: | |
3308 | case R_PARISC_LTOFF_FPTR16DF: | |
3309 | case R_PARISC_LTOFF_TP21L: | |
3310 | case R_PARISC_LTOFF_TP14R: | |
3311 | case R_PARISC_LTOFF_TP14F: | |
3312 | case R_PARISC_LTOFF_TP14WR: | |
3313 | case R_PARISC_LTOFF_TP14DR: | |
3314 | case R_PARISC_LTOFF_TP16F: | |
3315 | case R_PARISC_LTOFF_TP16WF: | |
3316 | case R_PARISC_LTOFF_TP16DF: | |
3317 | case R_PARISC_LTOFF16F: | |
3318 | case R_PARISC_LTOFF16WF: | |
3319 | case R_PARISC_LTOFF16DF: | |
3320 | { | |
3321 | bfd_vma off; | |
3322 | ||
3323 | /* If this relocation was against a local symbol, then we still | |
3324 | have not set up the DLT entry (it's not convenient to do so | |
3325 | in the "finalize_dlt" routine because it is difficult to get | |
3326 | to the local symbol's value). | |
3327 | ||
3328 | So, if this is a local symbol (h == NULL), then we need to | |
3329 | fill in its DLT entry. | |
3330 | ||
3331 | Similarly we may still need to set up an entry in .opd for | |
3332 | a local function which had its address taken. */ | |
3333 | if (hh == NULL) | |
3334 | { | |
3335 | bfd_vma *local_opd_offsets, *local_dlt_offsets; | |
3336 | ||
3337 | if (local_offsets == NULL) | |
3338 | abort (); | |
3339 | ||
3340 | /* Now do .opd creation if needed. */ | |
3341 | if (r_type == R_PARISC_LTOFF_FPTR14R | |
3342 | || r_type == R_PARISC_LTOFF_FPTR14DR | |
3343 | || r_type == R_PARISC_LTOFF_FPTR14WR | |
3344 | || r_type == R_PARISC_LTOFF_FPTR21L | |
3345 | || r_type == R_PARISC_LTOFF_FPTR16F | |
3346 | || r_type == R_PARISC_LTOFF_FPTR16WF | |
3347 | || r_type == R_PARISC_LTOFF_FPTR16DF) | |
3348 | { | |
3349 | local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info; | |
3350 | off = local_opd_offsets[r_symndx]; | |
3351 | ||
3352 | /* The last bit records whether we've already initialised | |
3353 | this local .opd entry. */ | |
3354 | if ((off & 1) != 0) | |
3355 | { | |
3356 | BFD_ASSERT (off != (bfd_vma) -1); | |
3357 | off &= ~1; | |
3358 | } | |
3359 | else | |
3360 | { | |
3361 | local_opd_offsets[r_symndx] |= 1; | |
3362 | ||
3363 | /* The first two words of an .opd entry are zero. */ | |
3364 | memset (hppa_info->opd_sec->contents + off, 0, 16); | |
3365 | ||
3366 | /* The next word is the address of the function. */ | |
3367 | bfd_put_64 (hppa_info->opd_sec->owner, value + addend, | |
3368 | (hppa_info->opd_sec->contents + off + 16)); | |
3369 | ||
3370 | /* The last word is our local __gp value. */ | |
3371 | value = _bfd_get_gp_value | |
3372 | (hppa_info->opd_sec->output_section->owner); | |
3373 | bfd_put_64 (hppa_info->opd_sec->owner, value, | |
3374 | (hppa_info->opd_sec->contents + off + 24)); | |
3375 | } | |
3376 | ||
3377 | /* The DLT value is the address of the .opd entry. */ | |
3378 | value = (off | |
3379 | + hppa_info->opd_sec->output_offset | |
3380 | + hppa_info->opd_sec->output_section->vma); | |
3381 | addend = 0; | |
3382 | } | |
3383 | ||
3384 | local_dlt_offsets = local_offsets; | |
3385 | off = local_dlt_offsets[r_symndx]; | |
3386 | ||
3387 | if ((off & 1) != 0) | |
3388 | { | |
3389 | BFD_ASSERT (off != (bfd_vma) -1); | |
3390 | off &= ~1; | |
3391 | } | |
3392 | else | |
3393 | { | |
3394 | local_dlt_offsets[r_symndx] |= 1; | |
3395 | bfd_put_64 (hppa_info->dlt_sec->owner, | |
3396 | value + addend, | |
3397 | hppa_info->dlt_sec->contents + off); | |
3398 | } | |
3399 | } | |
3400 | else | |
3401 | off = hh->dlt_offset; | |
3402 | ||
3403 | /* We want the value of the DLT offset for this symbol, not | |
3404 | the symbol's actual address. Note that __gp may not point | |
3405 | to the start of the DLT, so we have to compute the absolute | |
3406 | address, then subtract out the value of __gp. */ | |
3407 | value = (off | |
3408 | + hppa_info->dlt_sec->output_offset | |
3409 | + hppa_info->dlt_sec->output_section->vma); | |
3410 | value -= _bfd_get_gp_value (output_bfd); | |
3411 | ||
3412 | /* All DLTIND relocations are basically the same at this point, | |
3413 | except that we need different field selectors for the 21bit | |
3414 | version vs the 14bit versions. */ | |
3415 | if (r_type == R_PARISC_DLTIND21L | |
3416 | || r_type == R_PARISC_LTOFF_FPTR21L | |
3417 | || r_type == R_PARISC_LTOFF_TP21L) | |
3418 | value = hppa_field_adjust (value, 0, e_lsel); | |
3419 | else if (r_type == R_PARISC_DLTIND14F | |
3420 | || r_type == R_PARISC_LTOFF_FPTR16F | |
3421 | || r_type == R_PARISC_LTOFF_FPTR16WF | |
3422 | || r_type == R_PARISC_LTOFF_FPTR16DF | |
3423 | || r_type == R_PARISC_LTOFF16F | |
3424 | || r_type == R_PARISC_LTOFF16DF | |
3425 | || r_type == R_PARISC_LTOFF16WF | |
3426 | || r_type == R_PARISC_LTOFF_TP16F | |
3427 | || r_type == R_PARISC_LTOFF_TP16WF | |
3428 | || r_type == R_PARISC_LTOFF_TP16DF) | |
3429 | value = hppa_field_adjust (value, 0, e_fsel); | |
3430 | else | |
3431 | value = hppa_field_adjust (value, 0, e_rsel); | |
3432 | ||
3433 | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | |
3434 | break; | |
3435 | } | |
3436 | ||
3437 | case R_PARISC_DLTREL14R: | |
3438 | case R_PARISC_DLTREL14F: | |
3439 | case R_PARISC_DLTREL14DR: | |
3440 | case R_PARISC_DLTREL14WR: | |
3441 | case R_PARISC_DLTREL21L: | |
3442 | case R_PARISC_DPREL21L: | |
3443 | case R_PARISC_DPREL14WR: | |
3444 | case R_PARISC_DPREL14DR: | |
3445 | case R_PARISC_DPREL14R: | |
3446 | case R_PARISC_DPREL14F: | |
3447 | case R_PARISC_GPREL16F: | |
3448 | case R_PARISC_GPREL16WF: | |
3449 | case R_PARISC_GPREL16DF: | |
3450 | { | |
3451 | /* Subtract out the global pointer value to make value a DLT | |
3452 | relative address. */ | |
3453 | value -= _bfd_get_gp_value (output_bfd); | |
3454 | ||
3455 | /* All DLTREL relocations are basically the same at this point, | |
3456 | except that we need different field selectors for the 21bit | |
3457 | version vs the 14bit versions. */ | |
3458 | if (r_type == R_PARISC_DLTREL21L | |
3459 | || r_type == R_PARISC_DPREL21L) | |
3460 | value = hppa_field_adjust (value, addend, e_lrsel); | |
3461 | else if (r_type == R_PARISC_DLTREL14F | |
3462 | || r_type == R_PARISC_DPREL14F | |
3463 | || r_type == R_PARISC_GPREL16F | |
3464 | || r_type == R_PARISC_GPREL16WF | |
3465 | || r_type == R_PARISC_GPREL16DF) | |
3466 | value = hppa_field_adjust (value, addend, e_fsel); | |
3467 | else | |
3468 | value = hppa_field_adjust (value, addend, e_rrsel); | |
3469 | ||
3470 | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | |
3471 | break; | |
3472 | } | |
3473 | ||
3474 | case R_PARISC_DIR21L: | |
3475 | case R_PARISC_DIR17R: | |
3476 | case R_PARISC_DIR17F: | |
3477 | case R_PARISC_DIR14R: | |
3478 | case R_PARISC_DIR14F: | |
3479 | case R_PARISC_DIR14WR: | |
3480 | case R_PARISC_DIR14DR: | |
3481 | case R_PARISC_DIR16F: | |
3482 | case R_PARISC_DIR16WF: | |
3483 | case R_PARISC_DIR16DF: | |
3484 | { | |
3485 | /* All DIR relocations are basically the same at this point, | |
3486 | except that branch offsets need to be divided by four, and | |
3487 | we need different field selectors. Note that we don't | |
3488 | redirect absolute calls to local stubs. */ | |
3489 | ||
3490 | if (r_type == R_PARISC_DIR21L) | |
3491 | value = hppa_field_adjust (value, addend, e_lrsel); | |
3492 | else if (r_type == R_PARISC_DIR17F | |
3493 | || r_type == R_PARISC_DIR16F | |
3494 | || r_type == R_PARISC_DIR16WF | |
3495 | || r_type == R_PARISC_DIR16DF | |
3496 | || r_type == R_PARISC_DIR14F) | |
3497 | value = hppa_field_adjust (value, addend, e_fsel); | |
3498 | else | |
3499 | value = hppa_field_adjust (value, addend, e_rrsel); | |
3500 | ||
3501 | if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F) | |
3502 | /* All branches are implicitly shifted by 2 places. */ | |
3503 | value >>= 2; | |
3504 | ||
3505 | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | |
3506 | break; | |
3507 | } | |
3508 | ||
3509 | case R_PARISC_PLTOFF21L: | |
3510 | case R_PARISC_PLTOFF14R: | |
3511 | case R_PARISC_PLTOFF14F: | |
3512 | case R_PARISC_PLTOFF14WR: | |
3513 | case R_PARISC_PLTOFF14DR: | |
3514 | case R_PARISC_PLTOFF16F: | |
3515 | case R_PARISC_PLTOFF16WF: | |
3516 | case R_PARISC_PLTOFF16DF: | |
3517 | { | |
3518 | /* We want the value of the PLT offset for this symbol, not | |
3519 | the symbol's actual address. Note that __gp may not point | |
3520 | to the start of the DLT, so we have to compute the absolute | |
3521 | address, then subtract out the value of __gp. */ | |
3522 | value = (hh->plt_offset | |
3523 | + hppa_info->plt_sec->output_offset | |
3524 | + hppa_info->plt_sec->output_section->vma); | |
3525 | value -= _bfd_get_gp_value (output_bfd); | |
3526 | ||
3527 | /* All PLTOFF relocations are basically the same at this point, | |
3528 | except that we need different field selectors for the 21bit | |
3529 | version vs the 14bit versions. */ | |
3530 | if (r_type == R_PARISC_PLTOFF21L) | |
3531 | value = hppa_field_adjust (value, addend, e_lrsel); | |
3532 | else if (r_type == R_PARISC_PLTOFF14F | |
3533 | || r_type == R_PARISC_PLTOFF16F | |
3534 | || r_type == R_PARISC_PLTOFF16WF | |
3535 | || r_type == R_PARISC_PLTOFF16DF) | |
3536 | value = hppa_field_adjust (value, addend, e_fsel); | |
3537 | else | |
3538 | value = hppa_field_adjust (value, addend, e_rrsel); | |
3539 | ||
3540 | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | |
3541 | break; | |
3542 | } | |
3543 | ||
3544 | case R_PARISC_LTOFF_FPTR32: | |
3545 | { | |
3546 | /* We may still need to create the FPTR itself if it was for | |
3547 | a local symbol. */ | |
3548 | if (hh == NULL) | |
3549 | { | |
3550 | /* The first two words of an .opd entry are zero. */ | |
3551 | memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16); | |
3552 | ||
3553 | /* The next word is the address of the function. */ | |
3554 | bfd_put_64 (hppa_info->opd_sec->owner, value + addend, | |
3555 | (hppa_info->opd_sec->contents | |
3556 | + hh->opd_offset + 16)); | |
3557 | ||
3558 | /* The last word is our local __gp value. */ | |
3559 | value = _bfd_get_gp_value | |
3560 | (hppa_info->opd_sec->output_section->owner); | |
3561 | bfd_put_64 (hppa_info->opd_sec->owner, value, | |
3562 | hppa_info->opd_sec->contents + hh->opd_offset + 24); | |
3563 | ||
3564 | /* The DLT value is the address of the .opd entry. */ | |
3565 | value = (hh->opd_offset | |
3566 | + hppa_info->opd_sec->output_offset | |
3567 | + hppa_info->opd_sec->output_section->vma); | |
3568 | ||
3569 | bfd_put_64 (hppa_info->dlt_sec->owner, | |
3570 | value, | |
3571 | hppa_info->dlt_sec->contents + hh->dlt_offset); | |
3572 | } | |
3573 | ||
3574 | /* We want the value of the DLT offset for this symbol, not | |
3575 | the symbol's actual address. Note that __gp may not point | |
3576 | to the start of the DLT, so we have to compute the absolute | |
3577 | address, then subtract out the value of __gp. */ | |
3578 | value = (hh->dlt_offset | |
3579 | + hppa_info->dlt_sec->output_offset | |
3580 | + hppa_info->dlt_sec->output_section->vma); | |
3581 | value -= _bfd_get_gp_value (output_bfd); | |
3582 | bfd_put_32 (input_bfd, value, hit_data); | |
3583 | return bfd_reloc_ok; | |
3584 | } | |
3585 | ||
3586 | case R_PARISC_LTOFF_FPTR64: | |
3587 | case R_PARISC_LTOFF_TP64: | |
3588 | { | |
3589 | /* We may still need to create the FPTR itself if it was for | |
3590 | a local symbol. */ | |
3591 | if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64) | |
3592 | { | |
3593 | /* The first two words of an .opd entry are zero. */ | |
3594 | memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16); | |
3595 | ||
3596 | /* The next word is the address of the function. */ | |
3597 | bfd_put_64 (hppa_info->opd_sec->owner, value + addend, | |
3598 | (hppa_info->opd_sec->contents | |
3599 | + hh->opd_offset + 16)); | |
3600 | ||
3601 | /* The last word is our local __gp value. */ | |
3602 | value = _bfd_get_gp_value | |
3603 | (hppa_info->opd_sec->output_section->owner); | |
3604 | bfd_put_64 (hppa_info->opd_sec->owner, value, | |
3605 | hppa_info->opd_sec->contents + hh->opd_offset + 24); | |
3606 | ||
3607 | /* The DLT value is the address of the .opd entry. */ | |
3608 | value = (hh->opd_offset | |
3609 | + hppa_info->opd_sec->output_offset | |
3610 | + hppa_info->opd_sec->output_section->vma); | |
3611 | ||
3612 | bfd_put_64 (hppa_info->dlt_sec->owner, | |
3613 | value, | |
3614 | hppa_info->dlt_sec->contents + hh->dlt_offset); | |
3615 | } | |
3616 | ||
3617 | /* We want the value of the DLT offset for this symbol, not | |
3618 | the symbol's actual address. Note that __gp may not point | |
3619 | to the start of the DLT, so we have to compute the absolute | |
3620 | address, then subtract out the value of __gp. */ | |
3621 | value = (hh->dlt_offset | |
3622 | + hppa_info->dlt_sec->output_offset | |
3623 | + hppa_info->dlt_sec->output_section->vma); | |
3624 | value -= _bfd_get_gp_value (output_bfd); | |
3625 | bfd_put_64 (input_bfd, value, hit_data); | |
3626 | return bfd_reloc_ok; | |
3627 | } | |
3628 | ||
3629 | case R_PARISC_DIR32: | |
3630 | bfd_put_32 (input_bfd, value + addend, hit_data); | |
3631 | return bfd_reloc_ok; | |
3632 | ||
3633 | case R_PARISC_DIR64: | |
3634 | bfd_put_64 (input_bfd, value + addend, hit_data); | |
3635 | return bfd_reloc_ok; | |
3636 | ||
3637 | case R_PARISC_GPREL64: | |
3638 | /* Subtract out the global pointer value to make value a DLT | |
3639 | relative address. */ | |
3640 | value -= _bfd_get_gp_value (output_bfd); | |
3641 | ||
3642 | bfd_put_64 (input_bfd, value + addend, hit_data); | |
3643 | return bfd_reloc_ok; | |
3644 | ||
3645 | case R_PARISC_LTOFF64: | |
3646 | /* We want the value of the DLT offset for this symbol, not | |
3647 | the symbol's actual address. Note that __gp may not point | |
3648 | to the start of the DLT, so we have to compute the absolute | |
3649 | address, then subtract out the value of __gp. */ | |
3650 | value = (hh->dlt_offset | |
3651 | + hppa_info->dlt_sec->output_offset | |
3652 | + hppa_info->dlt_sec->output_section->vma); | |
3653 | value -= _bfd_get_gp_value (output_bfd); | |
3654 | ||
3655 | bfd_put_64 (input_bfd, value + addend, hit_data); | |
3656 | return bfd_reloc_ok; | |
3657 | ||
3658 | case R_PARISC_PCREL32: | |
3659 | { | |
3660 | /* If this is a call to a function defined in another dynamic | |
3661 | library, then redirect the call to the local stub for this | |
3662 | function. */ | |
3663 | if (sym_sec == NULL || sym_sec->output_section == NULL) | |
3664 | value = (hh->stub_offset + hppa_info->stub_sec->output_offset | |
3665 | + hppa_info->stub_sec->output_section->vma); | |
3666 | ||
3667 | /* Turn VALUE into a proper PC relative address. */ | |
3668 | value -= (offset + input_section->output_offset | |
3669 | + input_section->output_section->vma); | |
3670 | ||
3671 | value += addend; | |
3672 | value -= 8; | |
3673 | bfd_put_32 (input_bfd, value, hit_data); | |
3674 | return bfd_reloc_ok; | |
3675 | } | |
3676 | ||
3677 | case R_PARISC_PCREL64: | |
3678 | { | |
3679 | /* If this is a call to a function defined in another dynamic | |
3680 | library, then redirect the call to the local stub for this | |
3681 | function. */ | |
3682 | if (sym_sec == NULL || sym_sec->output_section == NULL) | |
3683 | value = (hh->stub_offset + hppa_info->stub_sec->output_offset | |
3684 | + hppa_info->stub_sec->output_section->vma); | |
3685 | ||
3686 | /* Turn VALUE into a proper PC relative address. */ | |
3687 | value -= (offset + input_section->output_offset | |
3688 | + input_section->output_section->vma); | |
3689 | ||
3690 | value += addend; | |
3691 | value -= 8; | |
3692 | bfd_put_64 (input_bfd, value, hit_data); | |
3693 | return bfd_reloc_ok; | |
3694 | } | |
3695 | ||
3696 | case R_PARISC_FPTR64: | |
3697 | { | |
3698 | bfd_vma off; | |
3699 | ||
3700 | /* We may still need to create the FPTR itself if it was for | |
3701 | a local symbol. */ | |
3702 | if (hh == NULL) | |
3703 | { | |
3704 | bfd_vma *local_opd_offsets; | |
3705 | ||
3706 | if (local_offsets == NULL) | |
3707 | abort (); | |
3708 | ||
3709 | local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info; | |
3710 | off = local_opd_offsets[r_symndx]; | |
3711 | ||
3712 | /* The last bit records whether we've already initialised | |
3713 | this local .opd entry. */ | |
3714 | if ((off & 1) != 0) | |
3715 | { | |
3716 | BFD_ASSERT (off != (bfd_vma) -1); | |
3717 | off &= ~1; | |
3718 | } | |
3719 | else | |
3720 | { | |
3721 | /* The first two words of an .opd entry are zero. */ | |
3722 | memset (hppa_info->opd_sec->contents + off, 0, 16); | |
3723 | ||
3724 | /* The next word is the address of the function. */ | |
3725 | bfd_put_64 (hppa_info->opd_sec->owner, value + addend, | |
3726 | (hppa_info->opd_sec->contents + off + 16)); | |
3727 | ||
3728 | /* The last word is our local __gp value. */ | |
3729 | value = _bfd_get_gp_value | |
3730 | (hppa_info->opd_sec->output_section->owner); | |
3731 | bfd_put_64 (hppa_info->opd_sec->owner, value, | |
3732 | hppa_info->opd_sec->contents + off + 24); | |
3733 | } | |
3734 | } | |
3735 | else | |
3736 | off = hh->opd_offset; | |
3737 | ||
3738 | if (hh == NULL || hh->want_opd) | |
3739 | /* We want the value of the OPD offset for this symbol. */ | |
3740 | value = (off | |
3741 | + hppa_info->opd_sec->output_offset | |
3742 | + hppa_info->opd_sec->output_section->vma); | |
3743 | else | |
3744 | /* We want the address of the symbol. */ | |
3745 | value += addend; | |
3746 | ||
3747 | bfd_put_64 (input_bfd, value, hit_data); | |
3748 | return bfd_reloc_ok; | |
3749 | } | |
3750 | ||
3751 | case R_PARISC_SECREL32: | |
3752 | if (sym_sec) | |
3753 | value -= sym_sec->output_section->vma; | |
3754 | bfd_put_32 (input_bfd, value + addend, hit_data); | |
3755 | return bfd_reloc_ok; | |
3756 | ||
3757 | case R_PARISC_SEGREL32: | |
3758 | case R_PARISC_SEGREL64: | |
3759 | { | |
3760 | /* If this is the first SEGREL relocation, then initialize | |
3761 | the segment base values. */ | |
3762 | if (hppa_info->text_segment_base == (bfd_vma) -1) | |
3763 | bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs, | |
3764 | hppa_info); | |
3765 | ||
3766 | /* VALUE holds the absolute address. We want to include the | |
3767 | addend, then turn it into a segment relative address. | |
3768 | ||
3769 | The segment is derived from SYM_SEC. We assume that there are | |
3770 | only two segments of note in the resulting executable/shlib. | |
3771 | A readonly segment (.text) and a readwrite segment (.data). */ | |
3772 | value += addend; | |
3773 | ||
3774 | if (sym_sec->flags & SEC_CODE) | |
3775 | value -= hppa_info->text_segment_base; | |
3776 | else | |
3777 | value -= hppa_info->data_segment_base; | |
3778 | ||
3779 | if (r_type == R_PARISC_SEGREL32) | |
3780 | bfd_put_32 (input_bfd, value, hit_data); | |
3781 | else | |
3782 | bfd_put_64 (input_bfd, value, hit_data); | |
3783 | return bfd_reloc_ok; | |
3784 | } | |
3785 | ||
3786 | /* Something we don't know how to handle. */ | |
3787 | default: | |
3788 | return bfd_reloc_notsupported; | |
3789 | } | |
3790 | ||
3791 | /* Update the instruction word. */ | |
3792 | bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); | |
3793 | return bfd_reloc_ok; | |
3794 | } | |
3795 | ||
3796 | /* Relocate an HPPA ELF section. */ | |
3797 | ||
3798 | static bfd_boolean | |
3799 | elf64_hppa_relocate_section (bfd *output_bfd, | |
3800 | struct bfd_link_info *info, | |
3801 | bfd *input_bfd, | |
3802 | asection *input_section, | |
3803 | bfd_byte *contents, | |
3804 | Elf_Internal_Rela *relocs, | |
3805 | Elf_Internal_Sym *local_syms, | |
3806 | asection **local_sections) | |
3807 | { | |
3808 | Elf_Internal_Shdr *symtab_hdr; | |
3809 | Elf_Internal_Rela *rel; | |
3810 | Elf_Internal_Rela *relend; | |
3811 | struct elf64_hppa_link_hash_table *hppa_info; | |
3812 | ||
3813 | hppa_info = hppa_link_hash_table (info); | |
3814 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3815 | ||
3816 | rel = relocs; | |
3817 | relend = relocs + input_section->reloc_count; | |
3818 | for (; rel < relend; rel++) | |
3819 | { | |
3820 | int r_type; | |
3821 | reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info); | |
3822 | unsigned long r_symndx; | |
3823 | struct elf_link_hash_entry *eh; | |
3824 | Elf_Internal_Sym *sym; | |
3825 | asection *sym_sec; | |
3826 | bfd_vma relocation; | |
3827 | bfd_reloc_status_type r; | |
3828 | bfd_boolean warned_undef; | |
3829 | ||
3830 | r_type = ELF_R_TYPE (rel->r_info); | |
3831 | if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED) | |
3832 | { | |
3833 | bfd_set_error (bfd_error_bad_value); | |
3834 | return FALSE; | |
3835 | } | |
3836 | if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY | |
3837 | || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) | |
3838 | continue; | |
3839 | ||
3840 | /* This is a final link. */ | |
3841 | r_symndx = ELF_R_SYM (rel->r_info); | |
3842 | eh = NULL; | |
3843 | sym = NULL; | |
3844 | sym_sec = NULL; | |
3845 | warned_undef = FALSE; | |
3846 | if (r_symndx < symtab_hdr->sh_info) | |
3847 | { | |
3848 | /* This is a local symbol, hh defaults to NULL. */ | |
3849 | sym = local_syms + r_symndx; | |
3850 | sym_sec = local_sections[r_symndx]; | |
3851 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel); | |
3852 | } | |
3853 | else | |
3854 | { | |
3855 | /* This is not a local symbol. */ | |
3856 | bfd_boolean unresolved_reloc; | |
3857 | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); | |
3858 | ||
3859 | /* It seems this can happen with erroneous or unsupported | |
3860 | input (mixing a.out and elf in an archive, for example.) */ | |
3861 | if (sym_hashes == NULL) | |
3862 | return FALSE; | |
3863 | ||
3864 | eh = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
3865 | ||
3866 | while (eh->root.type == bfd_link_hash_indirect | |
3867 | || eh->root.type == bfd_link_hash_warning) | |
3868 | eh = (struct elf_link_hash_entry *) eh->root.u.i.link; | |
3869 | ||
3870 | warned_undef = FALSE; | |
3871 | unresolved_reloc = FALSE; | |
3872 | relocation = 0; | |
3873 | if (eh->root.type == bfd_link_hash_defined | |
3874 | || eh->root.type == bfd_link_hash_defweak) | |
3875 | { | |
3876 | sym_sec = eh->root.u.def.section; | |
3877 | if (sym_sec == NULL | |
3878 | || sym_sec->output_section == NULL) | |
3879 | /* Set a flag that will be cleared later if we find a | |
3880 | relocation value for this symbol. output_section | |
3881 | is typically NULL for symbols satisfied by a shared | |
3882 | library. */ | |
3883 | unresolved_reloc = TRUE; | |
3884 | else | |
3885 | relocation = (eh->root.u.def.value | |
3886 | + sym_sec->output_section->vma | |
3887 | + sym_sec->output_offset); | |
3888 | } | |
3889 | else if (eh->root.type == bfd_link_hash_undefweak) | |
3890 | ; | |
3891 | else if (info->unresolved_syms_in_objects == RM_IGNORE | |
3892 | && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT) | |
3893 | ; | |
3894 | else if (!info->relocatable | |
3895 | && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string)) | |
3896 | continue; | |
3897 | else if (!info->relocatable) | |
3898 | { | |
3899 | bfd_boolean err; | |
3900 | err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR | |
3901 | || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT); | |
3902 | if (!info->callbacks->undefined_symbol (info, | |
3903 | eh->root.root.string, | |
3904 | input_bfd, | |
3905 | input_section, | |
3906 | rel->r_offset, err)) | |
3907 | return FALSE; | |
3908 | warned_undef = TRUE; | |
3909 | } | |
3910 | ||
3911 | if (!info->relocatable | |
3912 | && relocation == 0 | |
3913 | && eh->root.type != bfd_link_hash_defined | |
3914 | && eh->root.type != bfd_link_hash_defweak | |
3915 | && eh->root.type != bfd_link_hash_undefweak) | |
3916 | { | |
3917 | if (info->unresolved_syms_in_objects == RM_IGNORE | |
3918 | && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT | |
3919 | && eh->type == STT_PARISC_MILLI) | |
3920 | { | |
3921 | if (! info->callbacks->undefined_symbol | |
3922 | (info, eh_name (eh), input_bfd, | |
3923 | input_section, rel->r_offset, FALSE)) | |
3924 | return FALSE; | |
3925 | warned_undef = TRUE; | |
3926 | } | |
3927 | } | |
3928 | } | |
3929 | ||
3930 | if (sym_sec != NULL && elf_discarded_section (sym_sec)) | |
3931 | { | |
3932 | /* For relocs against symbols from removed linkonce sections, | |
3933 | or sections discarded by a linker script, we just want the | |
3934 | section contents zeroed. Avoid any special processing. */ | |
3935 | _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); | |
3936 | rel->r_info = 0; | |
3937 | rel->r_addend = 0; | |
3938 | continue; | |
3939 | } | |
3940 | ||
3941 | if (info->relocatable) | |
3942 | continue; | |
3943 | ||
3944 | r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd, | |
3945 | input_section, contents, | |
3946 | relocation, info, sym_sec, | |
3947 | eh); | |
3948 | ||
3949 | if (r != bfd_reloc_ok) | |
3950 | { | |
3951 | switch (r) | |
3952 | { | |
3953 | default: | |
3954 | abort (); | |
3955 | case bfd_reloc_overflow: | |
3956 | { | |
3957 | const char *sym_name; | |
3958 | ||
3959 | if (eh != NULL) | |
3960 | sym_name = NULL; | |
3961 | else | |
3962 | { | |
3963 | sym_name = bfd_elf_string_from_elf_section (input_bfd, | |
3964 | symtab_hdr->sh_link, | |
3965 | sym->st_name); | |
3966 | if (sym_name == NULL) | |
3967 | return FALSE; | |
3968 | if (*sym_name == '\0') | |
3969 | sym_name = bfd_section_name (input_bfd, sym_sec); | |
3970 | } | |
3971 | ||
3972 | if (!((*info->callbacks->reloc_overflow) | |
3973 | (info, (eh ? &eh->root : NULL), sym_name, | |
3974 | howto->name, (bfd_vma) 0, input_bfd, | |
3975 | input_section, rel->r_offset))) | |
3976 | return FALSE; | |
3977 | } | |
3978 | break; | |
3979 | } | |
3980 | } | |
3981 | } | |
3982 | return TRUE; | |
3983 | } | |
3984 | ||
b35d266b | 3985 | static const struct bfd_elf_special_section elf64_hppa_special_sections[] = |
2f89ff8d | 3986 | { |
0112cd26 NC |
3987 | { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
3988 | { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, | |
3989 | { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
3990 | { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
3991 | { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
3992 | { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | |
3993 | { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS }, | |
3994 | { NULL, 0, 0, 0, 0 } | |
2f89ff8d L |
3995 | }; |
3996 | ||
15bda425 JL |
3997 | /* The hash bucket size is the standard one, namely 4. */ |
3998 | ||
3999 | const struct elf_size_info hppa64_elf_size_info = | |
4000 | { | |
4001 | sizeof (Elf64_External_Ehdr), | |
4002 | sizeof (Elf64_External_Phdr), | |
4003 | sizeof (Elf64_External_Shdr), | |
4004 | sizeof (Elf64_External_Rel), | |
4005 | sizeof (Elf64_External_Rela), | |
4006 | sizeof (Elf64_External_Sym), | |
4007 | sizeof (Elf64_External_Dyn), | |
4008 | sizeof (Elf_External_Note), | |
4009 | 4, | |
4010 | 1, | |
45d6a902 | 4011 | 64, 3, |
15bda425 JL |
4012 | ELFCLASS64, EV_CURRENT, |
4013 | bfd_elf64_write_out_phdrs, | |
4014 | bfd_elf64_write_shdrs_and_ehdr, | |
1489a3a0 | 4015 | bfd_elf64_checksum_contents, |
15bda425 | 4016 | bfd_elf64_write_relocs, |
73ff0d56 | 4017 | bfd_elf64_swap_symbol_in, |
15bda425 JL |
4018 | bfd_elf64_swap_symbol_out, |
4019 | bfd_elf64_slurp_reloc_table, | |
4020 | bfd_elf64_slurp_symbol_table, | |
4021 | bfd_elf64_swap_dyn_in, | |
4022 | bfd_elf64_swap_dyn_out, | |
947216bf AM |
4023 | bfd_elf64_swap_reloc_in, |
4024 | bfd_elf64_swap_reloc_out, | |
4025 | bfd_elf64_swap_reloca_in, | |
4026 | bfd_elf64_swap_reloca_out | |
15bda425 JL |
4027 | }; |
4028 | ||
4029 | #define TARGET_BIG_SYM bfd_elf64_hppa_vec | |
4030 | #define TARGET_BIG_NAME "elf64-hppa" | |
4031 | #define ELF_ARCH bfd_arch_hppa | |
4032 | #define ELF_MACHINE_CODE EM_PARISC | |
4033 | /* This is not strictly correct. The maximum page size for PA2.0 is | |
4034 | 64M. But everything still uses 4k. */ | |
4035 | #define ELF_MAXPAGESIZE 0x1000 | |
d1036acb L |
4036 | #define ELF_OSABI ELFOSABI_HPUX |
4037 | ||
15bda425 | 4038 | #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup |
157090f7 | 4039 | #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup |
15bda425 JL |
4040 | #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name |
4041 | #define elf_info_to_howto elf_hppa_info_to_howto | |
4042 | #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel | |
4043 | ||
4044 | #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr | |
4045 | #define elf_backend_object_p elf64_hppa_object_p | |
4046 | #define elf_backend_final_write_processing \ | |
4047 | elf_hppa_final_write_processing | |
99c79b2e | 4048 | #define elf_backend_fake_sections elf_hppa_fake_sections |
15bda425 JL |
4049 | #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook |
4050 | ||
f0fe0e16 | 4051 | #define elf_backend_relocate_section elf_hppa_relocate_section |
15bda425 JL |
4052 | |
4053 | #define bfd_elf64_bfd_final_link elf_hppa_final_link | |
4054 | ||
4055 | #define elf_backend_create_dynamic_sections \ | |
4056 | elf64_hppa_create_dynamic_sections | |
4057 | #define elf_backend_post_process_headers elf64_hppa_post_process_headers | |
4058 | ||
74541ad4 AM |
4059 | #define elf_backend_omit_section_dynsym \ |
4060 | ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) | |
15bda425 JL |
4061 | #define elf_backend_adjust_dynamic_symbol \ |
4062 | elf64_hppa_adjust_dynamic_symbol | |
4063 | ||
4064 | #define elf_backend_size_dynamic_sections \ | |
4065 | elf64_hppa_size_dynamic_sections | |
4066 | ||
4067 | #define elf_backend_finish_dynamic_symbol \ | |
4068 | elf64_hppa_finish_dynamic_symbol | |
4069 | #define elf_backend_finish_dynamic_sections \ | |
4070 | elf64_hppa_finish_dynamic_sections | |
235ecfbc NC |
4071 | #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus |
4072 | #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo | |
4073 | ||
15bda425 JL |
4074 | /* Stuff for the BFD linker: */ |
4075 | #define bfd_elf64_bfd_link_hash_table_create \ | |
4076 | elf64_hppa_hash_table_create | |
4077 | ||
4078 | #define elf_backend_check_relocs \ | |
4079 | elf64_hppa_check_relocs | |
4080 | ||
4081 | #define elf_backend_size_info \ | |
4082 | hppa64_elf_size_info | |
4083 | ||
4084 | #define elf_backend_additional_program_headers \ | |
4085 | elf64_hppa_additional_program_headers | |
4086 | ||
4087 | #define elf_backend_modify_segment_map \ | |
4088 | elf64_hppa_modify_segment_map | |
4089 | ||
4090 | #define elf_backend_link_output_symbol_hook \ | |
4091 | elf64_hppa_link_output_symbol_hook | |
4092 | ||
15bda425 JL |
4093 | #define elf_backend_want_got_plt 0 |
4094 | #define elf_backend_plt_readonly 0 | |
4095 | #define elf_backend_want_plt_sym 0 | |
4096 | #define elf_backend_got_header_size 0 | |
b34976b6 AM |
4097 | #define elf_backend_type_change_ok TRUE |
4098 | #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type | |
4099 | #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class | |
4100 | #define elf_backend_rela_normal 1 | |
29ef7005 | 4101 | #define elf_backend_special_sections elf64_hppa_special_sections |
8a696751 | 4102 | #define elf_backend_action_discarded elf_hppa_action_discarded |
d97a8924 | 4103 | #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr |
15bda425 | 4104 | |
83d1651b L |
4105 | #define elf64_bed elf64_hppa_hpux_bed |
4106 | ||
15bda425 | 4107 | #include "elf64-target.h" |
d952f17a AM |
4108 | |
4109 | #undef TARGET_BIG_SYM | |
4110 | #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec | |
4111 | #undef TARGET_BIG_NAME | |
4112 | #define TARGET_BIG_NAME "elf64-hppa-linux" | |
d1036acb L |
4113 | #undef ELF_OSABI |
4114 | #define ELF_OSABI ELFOSABI_LINUX | |
4115 | #undef elf_backend_post_process_headers | |
4116 | #define elf_backend_post_process_headers _bfd_elf_set_osabi | |
83d1651b L |
4117 | #undef elf64_bed |
4118 | #define elf64_bed elf64_hppa_linux_bed | |
d952f17a | 4119 | |
d952f17a | 4120 | #include "elf64-target.h" |