2001-05-16 Jeff Johnston <jjohnstn@redhat.com>
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf
AM
1/* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
15bda425
JL
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 unsigned long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
fe8bc63d 172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
15bda425
JL
183static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
200
201static boolean elf64_hppa_finish_dynamic_symbol
202 PARAMS ((bfd *, struct bfd_link_info *,
203 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 204
15bda425
JL
205static boolean elf64_hppa_finish_dynamic_sections
206 PARAMS ((bfd *, struct bfd_link_info *));
207
208static boolean elf64_hppa_check_relocs
209 PARAMS ((bfd *, struct bfd_link_info *,
210 asection *, const Elf_Internal_Rela *));
211
212static boolean elf64_hppa_dynamic_symbol_p
213 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
214
215static boolean elf64_hppa_mark_exported_functions
216 PARAMS ((struct elf_link_hash_entry *, PTR));
217
218static boolean elf64_hppa_finalize_opd
219 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
220
221static boolean elf64_hppa_finalize_dlt
222 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
223
224static boolean allocate_global_data_dlt
225 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
226
227static boolean allocate_global_data_plt
228 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
229
230static boolean allocate_global_data_stub
231 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
232
233static boolean allocate_global_data_opd
234 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
235
236static boolean get_reloc_section
237 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
238
239static boolean count_dyn_reloc
240 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
241 int, asection *, int, bfd_vma, bfd_vma));
242
243static boolean allocate_dynrel_entries
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
245
246static boolean elf64_hppa_finalize_dynreloc
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
248
249static boolean get_opd
250 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
251
252static boolean get_plt
253 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
254
255static boolean get_dlt
256 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
257
258static boolean get_stub
259 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
260
3fab46d0
AM
261static int elf64_hppa_elf_get_symbol_type
262 PARAMS ((Elf_Internal_Sym *, int));
263
15bda425
JL
264static boolean
265elf64_hppa_dyn_hash_table_init (ht, abfd, new)
266 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 267 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
268 new_hash_entry_func new;
269{
fe8bc63d 270 memset (ht, 0, sizeof (*ht));
15bda425
JL
271 return bfd_hash_table_init (&ht->root, new);
272}
273
274static struct bfd_hash_entry*
275elf64_hppa_new_dyn_hash_entry (entry, table, string)
276 struct bfd_hash_entry *entry;
277 struct bfd_hash_table *table;
278 const char *string;
279{
280 struct elf64_hppa_dyn_hash_entry *ret;
281 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
282
283 /* Allocate the structure if it has not already been allocated by a
284 subclass. */
285 if (!ret)
286 ret = bfd_hash_allocate (table, sizeof (*ret));
287
288 if (!ret)
289 return 0;
290
291 /* Initialize our local data. All zeros, and definitely easier
292 than setting 8 bit fields. */
fe8bc63d 293 memset (ret, 0, sizeof (*ret));
15bda425
JL
294
295 /* Call the allocation method of the superclass. */
296 ret = ((struct elf64_hppa_dyn_hash_entry *)
297 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
298
299 return &ret->root;
300}
301
302/* Create the derived linker hash table. The PA64 ELF port uses this
303 derived hash table to keep information specific to the PA ElF
304 linker (without using static variables). */
305
306static struct bfd_link_hash_table*
307elf64_hppa_hash_table_create (abfd)
308 bfd *abfd;
309{
310 struct elf64_hppa_link_hash_table *ret;
311
312 ret = bfd_zalloc (abfd, sizeof (*ret));
313 if (!ret)
314 return 0;
315 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
316 _bfd_elf_link_hash_newfunc))
317 {
318 bfd_release (abfd, ret);
319 return 0;
320 }
321
322 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
323 elf64_hppa_new_dyn_hash_entry))
324 return 0;
325 return &ret->root.root;
326}
327
328/* Look up an entry in a PA64 ELF linker hash table. */
329
330static struct elf64_hppa_dyn_hash_entry *
331elf64_hppa_dyn_hash_lookup(table, string, create, copy)
332 struct elf64_hppa_dyn_hash_table *table;
333 const char *string;
334 boolean create, copy;
335{
336 return ((struct elf64_hppa_dyn_hash_entry *)
337 bfd_hash_lookup (&table->root, string, create, copy));
338}
339
340/* Traverse a PA64 ELF linker hash table. */
341
342static void
343elf64_hppa_dyn_hash_traverse (table, func, info)
344 struct elf64_hppa_dyn_hash_table *table;
345 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
346 PTR info;
347{
348 (bfd_hash_traverse
349 (&table->root,
350 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
351 info));
352}
353\f
354/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
355
356 Additionally we set the default architecture and machine. */
357static boolean
358elf64_hppa_object_p (abfd)
359 bfd *abfd;
360{
d9634ba1
AM
361 unsigned int flags = elf_elfheader (abfd)->e_flags;
362
363 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
364 {
365 case EFA_PARISC_1_0:
366 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
367 case EFA_PARISC_1_1:
368 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
369 case EFA_PARISC_2_0:
370 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
371 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
372 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
373 }
374 /* Don't be fussy. */
375 return true;
15bda425
JL
376}
377
378/* Given section type (hdr->sh_type), return a boolean indicating
379 whether or not the section is an elf64-hppa specific section. */
380static boolean
381elf64_hppa_section_from_shdr (abfd, hdr, name)
382 bfd *abfd;
383 Elf64_Internal_Shdr *hdr;
384 char *name;
385{
386 asection *newsect;
387
388 switch (hdr->sh_type)
389 {
390 case SHT_PARISC_EXT:
391 if (strcmp (name, ".PARISC.archext") != 0)
392 return false;
393 break;
394 case SHT_PARISC_UNWIND:
395 if (strcmp (name, ".PARISC.unwind") != 0)
396 return false;
397 break;
398 case SHT_PARISC_DOC:
399 case SHT_PARISC_ANNOT:
400 default:
401 return false;
402 }
403
404 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
405 return false;
406 newsect = hdr->bfd_section;
407
408 return true;
409}
410
15bda425 411/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 412 name describes what was once potentially anonymous memory. We
15bda425
JL
413 allocate memory as necessary, possibly reusing PBUF/PLEN. */
414
415static const char *
0ba2a60e
AM
416get_dyn_name (sec, h, rel, pbuf, plen)
417 asection *sec;
15bda425
JL
418 struct elf_link_hash_entry *h;
419 const Elf_Internal_Rela *rel;
420 char **pbuf;
421 size_t *plen;
422{
423 size_t nlen, tlen;
424 char *buf;
425 size_t len;
426
427 if (h && rel->r_addend == 0)
428 return h->root.root.string;
429
430 if (h)
431 nlen = strlen (h->root.root.string);
432 else
0ba2a60e
AM
433 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
434 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
435
436 len = *plen;
437 buf = *pbuf;
438 if (len < tlen)
439 {
440 if (buf)
441 free (buf);
442 *pbuf = buf = malloc (tlen);
443 *plen = len = tlen;
444 if (!buf)
445 return NULL;
446 }
447
448 if (h)
449 {
450 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 451 buf[nlen++] = '+';
15bda425
JL
452 sprintf_vma (buf + nlen, rel->r_addend);
453 }
454 else
455 {
0ba2a60e
AM
456 nlen = sprintf (buf, "%x:%lx",
457 sec->id & 0xffffffff,
458 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
459 if (rel->r_addend)
460 {
461 buf[nlen++] = '+';
462 sprintf_vma (buf + nlen, rel->r_addend);
463 }
464 }
465
466 return buf;
467}
468
469/* SEC is a section containing relocs for an input BFD when linking; return
470 a suitable section for holding relocs in the output BFD for a link. */
471
472static boolean
473get_reloc_section (abfd, hppa_info, sec)
474 bfd *abfd;
475 struct elf64_hppa_link_hash_table *hppa_info;
476 asection *sec;
477{
478 const char *srel_name;
479 asection *srel;
480 bfd *dynobj;
481
482 srel_name = (bfd_elf_string_from_elf_section
483 (abfd, elf_elfheader(abfd)->e_shstrndx,
484 elf_section_data(sec)->rel_hdr.sh_name));
485 if (srel_name == NULL)
486 return false;
487
488 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
489 && strcmp (bfd_get_section_name (abfd, sec),
490 srel_name+5) == 0)
491 || (strncmp (srel_name, ".rel", 4) == 0
492 && strcmp (bfd_get_section_name (abfd, sec),
493 srel_name+4) == 0));
494
495 dynobj = hppa_info->root.dynobj;
496 if (!dynobj)
497 hppa_info->root.dynobj = dynobj = abfd;
498
499 srel = bfd_get_section_by_name (dynobj, srel_name);
500 if (srel == NULL)
501 {
502 srel = bfd_make_section (dynobj, srel_name);
503 if (srel == NULL
504 || !bfd_set_section_flags (dynobj, srel,
505 (SEC_ALLOC
506 | SEC_LOAD
507 | SEC_HAS_CONTENTS
508 | SEC_IN_MEMORY
509 | SEC_LINKER_CREATED
510 | SEC_READONLY))
511 || !bfd_set_section_alignment (dynobj, srel, 3))
512 return false;
513 }
514
515 hppa_info->other_rel_sec = srel;
516 return true;
517}
518
fe8bc63d 519/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
520
521 We use this to keep a record of all the FPTR relocations against a
522 particular symbol so that we can create FPTR relocations in the
523 output file. */
524
525static boolean
526count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
527 bfd *abfd;
528 struct elf64_hppa_dyn_hash_entry *dyn_h;
529 int type;
530 asection *sec;
531 int sec_symndx;
532 bfd_vma offset;
533 bfd_vma addend;
534{
535 struct elf64_hppa_dyn_reloc_entry *rent;
536
537 rent = (struct elf64_hppa_dyn_reloc_entry *)
538 bfd_alloc (abfd, sizeof (*rent));
539 if (!rent)
540 return false;
541
542 rent->next = dyn_h->reloc_entries;
543 rent->type = type;
544 rent->sec = sec;
545 rent->sec_symndx = sec_symndx;
546 rent->offset = offset;
547 rent->addend = addend;
548 dyn_h->reloc_entries = rent;
549
550 return true;
551}
552
553/* Scan the RELOCS and record the type of dynamic entries that each
554 referenced symbol needs. */
555
556static boolean
557elf64_hppa_check_relocs (abfd, info, sec, relocs)
558 bfd *abfd;
559 struct bfd_link_info *info;
560 asection *sec;
561 const Elf_Internal_Rela *relocs;
562{
563 struct elf64_hppa_link_hash_table *hppa_info;
564 const Elf_Internal_Rela *relend;
565 Elf_Internal_Shdr *symtab_hdr;
566 const Elf_Internal_Rela *rel;
567 asection *dlt, *plt, *stubs;
568 char *buf;
569 size_t buf_len;
570 int sec_symndx;
571
572 if (info->relocateable)
573 return true;
574
575 /* If this is the first dynamic object found in the link, create
576 the special sections required for dynamic linking. */
577 if (! elf_hash_table (info)->dynamic_sections_created)
578 {
579 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
580 return false;
581 }
582
583 hppa_info = elf64_hppa_hash_table (info);
584 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
585
586 /* If necessary, build a new table holding section symbols indices
587 for this BFD. This is disgusting. */
fe8bc63d 588
15bda425
JL
589 if (info->shared && hppa_info->section_syms_bfd != abfd)
590 {
832d951b 591 unsigned long i;
0ba2a60e 592 int highest_shndx;
15bda425
JL
593 Elf_Internal_Sym *local_syms, *isym;
594 Elf64_External_Sym *ext_syms, *esym;
595
596 /* We're done with the old cache of section index to section symbol
597 index information. Free it.
598
599 ?!? Note we leak the last section_syms array. Presumably we
600 could free it in one of the later routines in this file. */
601 if (hppa_info->section_syms)
602 free (hppa_info->section_syms);
603
604 /* Allocate memory for the internal and external symbols. */
605 local_syms
606 = (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
607 * sizeof (Elf_Internal_Sym));
608 if (local_syms == NULL)
609 return false;
610
611 ext_syms
612 = (Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_info
613 * sizeof (Elf64_External_Sym));
614 if (ext_syms == NULL)
615 {
616 free (local_syms);
617 return false;
618 }
619
620 /* Read in the local symbols. */
621 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
622 || bfd_read (ext_syms, 1,
623 (symtab_hdr->sh_info
624 * sizeof (Elf64_External_Sym)), abfd)
625 != (symtab_hdr->sh_info * sizeof (Elf64_External_Sym)))
626 {
627 free (local_syms);
628 free (ext_syms);
629 return false;
630 }
631
632 /* Swap in the local symbols, also record the highest section index
633 referenced by the local symbols. */
634 isym = local_syms;
635 esym = ext_syms;
636 highest_shndx = 0;
637 for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
638 {
639 bfd_elf64_swap_symbol_in (abfd, esym, isym);
640 if (isym->st_shndx > highest_shndx)
641 highest_shndx = isym->st_shndx;
642 }
643
644 /* Now we can free the external symbols. */
645 free (ext_syms);
646
647 /* Allocate an array to hold the section index to section symbol index
648 mapping. Bump by one since we start counting at zero. */
649 highest_shndx++;
650 hppa_info->section_syms = (int *) bfd_malloc (highest_shndx
651 * sizeof (int));
652
653 /* Now walk the local symbols again. If we find a section symbol,
654 record the index of the symbol into the section_syms array. */
655 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
656 {
657 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
658 hppa_info->section_syms[isym->st_shndx] = i;
659 }
660
661 /* We are finished with the local symbols. Get rid of them. */
662 free (local_syms);
663
664 /* Record which BFD we built the section_syms mapping for. */
665 hppa_info->section_syms_bfd = abfd;
666 }
667
668 /* Record the symbol index for this input section. We may need it for
669 relocations when building shared libraries. When not building shared
670 libraries this value is never really used, but assign it to zero to
671 prevent out of bounds memory accesses in other routines. */
672 if (info->shared)
673 {
674 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
675
676 /* If we did not find a section symbol for this section, then
677 something went terribly wrong above. */
678 if (sec_symndx == -1)
679 return false;
680
681 sec_symndx = hppa_info->section_syms[sec_symndx];
682 }
683 else
684 sec_symndx = 0;
fe8bc63d 685
15bda425
JL
686 dlt = plt = stubs = NULL;
687 buf = NULL;
688 buf_len = 0;
689
690 relend = relocs + sec->reloc_count;
691 for (rel = relocs; rel < relend; ++rel)
692 {
693 enum {
694 NEED_DLT = 1,
695 NEED_PLT = 2,
696 NEED_STUB = 4,
697 NEED_OPD = 8,
698 NEED_DYNREL = 16,
699 };
700
701 struct elf_link_hash_entry *h = NULL;
702 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
703 struct elf64_hppa_dyn_hash_entry *dyn_h;
704 int need_entry;
705 const char *addr_name;
706 boolean maybe_dynamic;
707 int dynrel_type = R_PARISC_NONE;
708 static reloc_howto_type *howto;
709
710 if (r_symndx >= symtab_hdr->sh_info)
711 {
712 /* We're dealing with a global symbol -- find its hash entry
713 and mark it as being referenced. */
714 long indx = r_symndx - symtab_hdr->sh_info;
715 h = elf_sym_hashes (abfd)[indx];
716 while (h->root.type == bfd_link_hash_indirect
717 || h->root.type == bfd_link_hash_warning)
718 h = (struct elf_link_hash_entry *) h->root.u.i.link;
719
720 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
721 }
722
723 /* We can only get preliminary data on whether a symbol is
724 locally or externally defined, as not all of the input files
725 have yet been processed. Do something with what we know, as
726 this may help reduce memory usage and processing time later. */
727 maybe_dynamic = false;
728 if (h && ((info->shared && ! info->symbolic)
729 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
730 || h->root.type == bfd_link_hash_defweak))
731 maybe_dynamic = true;
732
733 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
734 need_entry = 0;
735 switch (howto->type)
736 {
737 /* These are simple indirect references to symbols through the
738 DLT. We need to create a DLT entry for any symbols which
739 appears in a DLTIND relocation. */
740 case R_PARISC_DLTIND21L:
741 case R_PARISC_DLTIND14R:
742 case R_PARISC_DLTIND14F:
743 case R_PARISC_DLTIND14WR:
744 case R_PARISC_DLTIND14DR:
745 need_entry = NEED_DLT;
746 break;
747
748 /* ?!? These need a DLT entry. But I have no idea what to do with
749 the "link time TP value. */
750 case R_PARISC_LTOFF_TP21L:
751 case R_PARISC_LTOFF_TP14R:
752 case R_PARISC_LTOFF_TP14F:
753 case R_PARISC_LTOFF_TP64:
754 case R_PARISC_LTOFF_TP14WR:
755 case R_PARISC_LTOFF_TP14DR:
756 case R_PARISC_LTOFF_TP16F:
757 case R_PARISC_LTOFF_TP16WF:
758 case R_PARISC_LTOFF_TP16DF:
759 need_entry = NEED_DLT;
760 break;
761
762 /* These are function calls. Depending on their precise target we
763 may need to make a stub for them. The stub uses the PLT, so we
764 need to create PLT entries for these symbols too. */
832d951b 765 case R_PARISC_PCREL12F:
15bda425
JL
766 case R_PARISC_PCREL17F:
767 case R_PARISC_PCREL22F:
768 case R_PARISC_PCREL32:
769 case R_PARISC_PCREL64:
770 case R_PARISC_PCREL21L:
771 case R_PARISC_PCREL17R:
772 case R_PARISC_PCREL17C:
773 case R_PARISC_PCREL14R:
774 case R_PARISC_PCREL14F:
775 case R_PARISC_PCREL22C:
776 case R_PARISC_PCREL14WR:
777 case R_PARISC_PCREL14DR:
778 case R_PARISC_PCREL16F:
779 case R_PARISC_PCREL16WF:
780 case R_PARISC_PCREL16DF:
781 need_entry = (NEED_PLT | NEED_STUB);
782 break;
783
784 case R_PARISC_PLTOFF21L:
785 case R_PARISC_PLTOFF14R:
786 case R_PARISC_PLTOFF14F:
787 case R_PARISC_PLTOFF14WR:
788 case R_PARISC_PLTOFF14DR:
789 case R_PARISC_PLTOFF16F:
790 case R_PARISC_PLTOFF16WF:
791 case R_PARISC_PLTOFF16DF:
792 need_entry = (NEED_PLT);
793 break;
794
795 case R_PARISC_DIR64:
796 if (info->shared || maybe_dynamic)
797 need_entry = (NEED_DYNREL);
798 dynrel_type = R_PARISC_DIR64;
799 break;
800
801 /* This is an indirect reference through the DLT to get the address
802 of a OPD descriptor. Thus we need to make a DLT entry that points
803 to an OPD entry. */
804 case R_PARISC_LTOFF_FPTR21L:
805 case R_PARISC_LTOFF_FPTR14R:
806 case R_PARISC_LTOFF_FPTR14WR:
807 case R_PARISC_LTOFF_FPTR14DR:
808 case R_PARISC_LTOFF_FPTR32:
809 case R_PARISC_LTOFF_FPTR64:
810 case R_PARISC_LTOFF_FPTR16F:
811 case R_PARISC_LTOFF_FPTR16WF:
812 case R_PARISC_LTOFF_FPTR16DF:
813 if (info->shared || maybe_dynamic)
814 need_entry = (NEED_DLT | NEED_OPD);
815 else
816 need_entry = (NEED_DLT | NEED_OPD);
817 dynrel_type = R_PARISC_FPTR64;
818 break;
819
820 /* This is a simple OPD entry. */
821 case R_PARISC_FPTR64:
822 if (info->shared || maybe_dynamic)
823 need_entry = (NEED_OPD | NEED_DYNREL);
824 else
825 need_entry = (NEED_OPD);
826 dynrel_type = R_PARISC_FPTR64;
827 break;
828
829 /* Add more cases as needed. */
830 }
831
832 if (!need_entry)
833 continue;
834
835 /* Collect a canonical name for this address. */
0ba2a60e 836 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
837
838 /* Collect the canonical entry data for this address. */
839 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
840 addr_name, true, true);
841 BFD_ASSERT (dyn_h);
842
843 /* Stash away enough information to be able to find this symbol
844 regardless of whether or not it is local or global. */
845 dyn_h->h = h;
846 dyn_h->owner = abfd;
847 dyn_h->sym_indx = r_symndx;
848
849 /* ?!? We may need to do some error checking in here. */
850 /* Create what's needed. */
851 if (need_entry & NEED_DLT)
852 {
853 if (! hppa_info->dlt_sec
854 && ! get_dlt (abfd, info, hppa_info))
855 goto err_out;
856 dyn_h->want_dlt = 1;
857 }
858
859 if (need_entry & NEED_PLT)
860 {
861 if (! hppa_info->plt_sec
862 && ! get_plt (abfd, info, hppa_info))
863 goto err_out;
864 dyn_h->want_plt = 1;
865 }
866
867 if (need_entry & NEED_STUB)
868 {
869 if (! hppa_info->stub_sec
870 && ! get_stub (abfd, info, hppa_info))
871 goto err_out;
872 dyn_h->want_stub = 1;
873 }
874
875 if (need_entry & NEED_OPD)
876 {
877 if (! hppa_info->opd_sec
878 && ! get_opd (abfd, info, hppa_info))
879 goto err_out;
880
881 dyn_h->want_opd = 1;
882
883 /* FPTRs are not allocated by the dynamic linker for PA64, though
884 it is possible that will change in the future. */
fe8bc63d 885
15bda425
JL
886 /* This could be a local function that had its address taken, in
887 which case H will be NULL. */
888 if (h)
889 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
890 }
891
892 /* Add a new dynamic relocation to the chain of dynamic
893 relocations for this symbol. */
894 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
895 {
896 if (! hppa_info->other_rel_sec
897 && ! get_reloc_section (abfd, hppa_info, sec))
898 goto err_out;
899
900 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
901 sec_symndx, rel->r_offset, rel->r_addend))
902 goto err_out;
903
904 /* If we are building a shared library and we just recorded
905 a dynamic R_PARISC_FPTR64 relocation, then make sure the
906 section symbol for this section ends up in the dynamic
907 symbol table. */
908 if (info->shared && dynrel_type == R_PARISC_FPTR64
909 && ! (_bfd_elf64_link_record_local_dynamic_symbol
910 (info, abfd, sec_symndx)))
911 return false;
912 }
913 }
914
915 if (buf)
916 free (buf);
917 return true;
918
919 err_out:
920 if (buf)
921 free (buf);
922 return false;
923}
924
925struct elf64_hppa_allocate_data
926{
927 struct bfd_link_info *info;
928 bfd_size_type ofs;
929};
930
931/* Should we do dynamic things to this symbol? */
932
933static boolean
934elf64_hppa_dynamic_symbol_p (h, info)
935 struct elf_link_hash_entry *h;
936 struct bfd_link_info *info;
937{
938 if (h == NULL)
939 return false;
940
941 while (h->root.type == bfd_link_hash_indirect
942 || h->root.type == bfd_link_hash_warning)
943 h = (struct elf_link_hash_entry *) h->root.u.i.link;
944
945 if (h->dynindx == -1)
946 return false;
947
948 if (h->root.type == bfd_link_hash_undefweak
949 || h->root.type == bfd_link_hash_defweak)
950 return true;
951
952 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
953 return false;
954
955 if ((info->shared && !info->symbolic)
956 || ((h->elf_link_hash_flags
957 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
958 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
959 return true;
960
961 return false;
962}
963
964/* Mark all funtions exported by this file so that we can later allocate
965 entries in .opd for them. */
966
967static boolean
968elf64_hppa_mark_exported_functions (h, data)
969 struct elf_link_hash_entry *h;
970 PTR data;
971{
972 struct bfd_link_info *info = (struct bfd_link_info *)data;
973 struct elf64_hppa_link_hash_table *hppa_info;
974
975 hppa_info = elf64_hppa_hash_table (info);
976
977 if (h
978 && (h->root.type == bfd_link_hash_defined
979 || h->root.type == bfd_link_hash_defweak)
980 && h->root.u.def.section->output_section != NULL
981 && h->type == STT_FUNC)
982 {
983 struct elf64_hppa_dyn_hash_entry *dyn_h;
984
985 /* Add this symbol to the PA64 linker hash table. */
986 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
987 h->root.root.string, true, true);
988 BFD_ASSERT (dyn_h);
989 dyn_h->h = h;
990
991 if (! hppa_info->opd_sec
992 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
993 return false;
994
995 dyn_h->want_opd = 1;
832d951b
AM
996 /* Put a flag here for output_symbol_hook. */
997 dyn_h->st_shndx = -1;
15bda425
JL
998 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
999 }
1000
1001 return true;
1002}
1003
1004/* Allocate space for a DLT entry. */
1005
1006static boolean
1007allocate_global_data_dlt (dyn_h, data)
1008 struct elf64_hppa_dyn_hash_entry *dyn_h;
1009 PTR data;
1010{
1011 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1012
1013 if (dyn_h->want_dlt)
1014 {
1015 struct elf_link_hash_entry *h = dyn_h->h;
1016
1017 if (x->info->shared)
1018 {
1019 /* Possibly add the symbol to the local dynamic symbol
1020 table since we might need to create a dynamic relocation
1021 against it. */
1022 if (! h
1023 || (h && h->dynindx == -1))
1024 {
1025 bfd *owner;
1026 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1027
1028 if (!_bfd_elf64_link_record_local_dynamic_symbol
1029 (x->info, owner, dyn_h->sym_indx))
1030 return false;
1031 }
1032 }
1033
1034 dyn_h->dlt_offset = x->ofs;
1035 x->ofs += DLT_ENTRY_SIZE;
1036 }
1037 return true;
1038}
1039
1040/* Allocate space for a DLT.PLT entry. */
1041
1042static boolean
1043allocate_global_data_plt (dyn_h, data)
1044 struct elf64_hppa_dyn_hash_entry *dyn_h;
1045 PTR data;
1046{
1047 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1048
1049 if (dyn_h->want_plt
1050 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1051 && !((dyn_h->h->root.type == bfd_link_hash_defined
1052 || dyn_h->h->root.type == bfd_link_hash_defweak)
1053 && dyn_h->h->root.u.def.section->output_section != NULL))
1054 {
1055 dyn_h->plt_offset = x->ofs;
1056 x->ofs += PLT_ENTRY_SIZE;
1057 if (dyn_h->plt_offset < 0x2000)
1058 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1059 }
1060 else
1061 dyn_h->want_plt = 0;
1062
1063 return true;
1064}
1065
1066/* Allocate space for a STUB entry. */
1067
1068static boolean
1069allocate_global_data_stub (dyn_h, data)
1070 struct elf64_hppa_dyn_hash_entry *dyn_h;
1071 PTR data;
1072{
1073 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1074
1075 if (dyn_h->want_stub
1076 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1077 && !((dyn_h->h->root.type == bfd_link_hash_defined
1078 || dyn_h->h->root.type == bfd_link_hash_defweak)
1079 && dyn_h->h->root.u.def.section->output_section != NULL))
1080 {
1081 dyn_h->stub_offset = x->ofs;
1082 x->ofs += sizeof (plt_stub);
1083 }
1084 else
1085 dyn_h->want_stub = 0;
1086 return true;
1087}
1088
1089/* Allocate space for a FPTR entry. */
1090
1091static boolean
1092allocate_global_data_opd (dyn_h, data)
1093 struct elf64_hppa_dyn_hash_entry *dyn_h;
1094 PTR data;
1095{
1096 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1097
1098 if (dyn_h->want_opd)
1099 {
1100 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1101
15bda425
JL
1102 if (h)
1103 while (h->root.type == bfd_link_hash_indirect
1104 || h->root.type == bfd_link_hash_warning)
1105 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1106
1107 /* We never need an opd entry for a symbol which is not
1108 defined by this output file. */
1109 if (h && h->root.type == bfd_link_hash_undefined)
1110 dyn_h->want_opd = 0;
1111
1112 /* If we are creating a shared library, took the address of a local
1113 function or might export this function from this object file, then
1114 we have to create an opd descriptor. */
1115 else if (x->info->shared
1116 || h == NULL
1117 || h->dynindx == -1
1118 || ((h->root.type == bfd_link_hash_defined
1119 || h->root.type == bfd_link_hash_defweak)
1120 && h->root.u.def.section->output_section != NULL))
1121 {
1122 /* If we are creating a shared library, then we will have to
1123 create a runtime relocation for the symbol to properly
1124 initialize the .opd entry. Make sure the symbol gets
1125 added to the dynamic symbol table. */
1126 if (x->info->shared
1127 && (h == NULL || (h->dynindx == -1)))
1128 {
1129 bfd *owner;
1130 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1131
1132 if (!_bfd_elf64_link_record_local_dynamic_symbol
1133 (x->info, owner, dyn_h->sym_indx))
1134 return false;
1135 }
1136
1137 /* This may not be necessary or desirable anymore now that
1138 we have some support for dealing with section symbols
1139 in dynamic relocs. But name munging does make the result
1140 much easier to debug. ie, the EPLT reloc will reference
1141 a symbol like .foobar, instead of .text + offset. */
1142 if (x->info->shared && h)
1143 {
1144 char *new_name;
1145 struct elf_link_hash_entry *nh;
1146
1147 new_name = alloca (strlen (h->root.root.string) + 2);
1148 new_name[0] = '.';
1149 strcpy (new_name + 1, h->root.root.string);
1150
1151 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1152 new_name, true, true, true);
1153
1154 nh->root.type = h->root.type;
1155 nh->root.u.def.value = h->root.u.def.value;
1156 nh->root.u.def.section = h->root.u.def.section;
1157
1158 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1159 return false;
1160
1161 }
1162 dyn_h->opd_offset = x->ofs;
1163 x->ofs += OPD_ENTRY_SIZE;
1164 }
1165
1166 /* Otherwise we do not need an opd entry. */
1167 else
1168 dyn_h->want_opd = 0;
1169 }
1170 return true;
1171}
1172
1173/* HP requires the EI_OSABI field to be filled in. The assignment to
1174 EI_ABIVERSION may not be strictly necessary. */
1175
1176static void
1177elf64_hppa_post_process_headers (abfd, link_info)
1178 bfd * abfd;
1179 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1180{
1181 Elf_Internal_Ehdr * i_ehdrp;
1182
1183 i_ehdrp = elf_elfheader (abfd);
1184
d952f17a
AM
1185 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1186 {
1187 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1188 }
1189 else
1190 {
1191 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1192 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1193 }
15bda425
JL
1194}
1195
1196/* Create function descriptor section (.opd). This section is called .opd
1197 because it contains "official prodecure descriptors". The "official"
1198 refers to the fact that these descriptors are used when taking the address
1199 of a procedure, thus ensuring a unique address for each procedure. */
1200
1201static boolean
1202get_opd (abfd, info, hppa_info)
1203 bfd *abfd;
edd21aca 1204 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1205 struct elf64_hppa_link_hash_table *hppa_info;
1206{
1207 asection *opd;
1208 bfd *dynobj;
1209
1210 opd = hppa_info->opd_sec;
1211 if (!opd)
1212 {
1213 dynobj = hppa_info->root.dynobj;
1214 if (!dynobj)
1215 hppa_info->root.dynobj = dynobj = abfd;
1216
1217 opd = bfd_make_section (dynobj, ".opd");
1218 if (!opd
1219 || !bfd_set_section_flags (dynobj, opd,
1220 (SEC_ALLOC
1221 | SEC_LOAD
1222 | SEC_HAS_CONTENTS
1223 | SEC_IN_MEMORY
1224 | SEC_LINKER_CREATED))
1225 || !bfd_set_section_alignment (abfd, opd, 3))
1226 {
1227 BFD_ASSERT (0);
1228 return false;
1229 }
1230
1231 hppa_info->opd_sec = opd;
1232 }
1233
1234 return true;
1235}
1236
1237/* Create the PLT section. */
1238
1239static boolean
1240get_plt (abfd, info, hppa_info)
1241 bfd *abfd;
edd21aca 1242 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1243 struct elf64_hppa_link_hash_table *hppa_info;
1244{
1245 asection *plt;
1246 bfd *dynobj;
1247
1248 plt = hppa_info->plt_sec;
1249 if (!plt)
1250 {
1251 dynobj = hppa_info->root.dynobj;
1252 if (!dynobj)
1253 hppa_info->root.dynobj = dynobj = abfd;
1254
1255 plt = bfd_make_section (dynobj, ".plt");
1256 if (!plt
1257 || !bfd_set_section_flags (dynobj, plt,
1258 (SEC_ALLOC
1259 | SEC_LOAD
1260 | SEC_HAS_CONTENTS
1261 | SEC_IN_MEMORY
1262 | SEC_LINKER_CREATED))
1263 || !bfd_set_section_alignment (abfd, plt, 3))
1264 {
1265 BFD_ASSERT (0);
1266 return false;
1267 }
1268
1269 hppa_info->plt_sec = plt;
1270 }
1271
1272 return true;
1273}
1274
1275/* Create the DLT section. */
1276
1277static boolean
1278get_dlt (abfd, info, hppa_info)
1279 bfd *abfd;
edd21aca 1280 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1281 struct elf64_hppa_link_hash_table *hppa_info;
1282{
1283 asection *dlt;
1284 bfd *dynobj;
1285
1286 dlt = hppa_info->dlt_sec;
1287 if (!dlt)
1288 {
1289 dynobj = hppa_info->root.dynobj;
1290 if (!dynobj)
1291 hppa_info->root.dynobj = dynobj = abfd;
1292
1293 dlt = bfd_make_section (dynobj, ".dlt");
1294 if (!dlt
1295 || !bfd_set_section_flags (dynobj, dlt,
1296 (SEC_ALLOC
1297 | SEC_LOAD
1298 | SEC_HAS_CONTENTS
1299 | SEC_IN_MEMORY
1300 | SEC_LINKER_CREATED))
1301 || !bfd_set_section_alignment (abfd, dlt, 3))
1302 {
1303 BFD_ASSERT (0);
1304 return false;
1305 }
1306
1307 hppa_info->dlt_sec = dlt;
1308 }
1309
1310 return true;
1311}
1312
1313/* Create the stubs section. */
1314
1315static boolean
1316get_stub (abfd, info, hppa_info)
1317 bfd *abfd;
edd21aca 1318 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1319 struct elf64_hppa_link_hash_table *hppa_info;
1320{
1321 asection *stub;
1322 bfd *dynobj;
1323
1324 stub = hppa_info->stub_sec;
1325 if (!stub)
1326 {
1327 dynobj = hppa_info->root.dynobj;
1328 if (!dynobj)
1329 hppa_info->root.dynobj = dynobj = abfd;
1330
1331 stub = bfd_make_section (dynobj, ".stub");
1332 if (!stub
1333 || !bfd_set_section_flags (dynobj, stub,
1334 (SEC_ALLOC
1335 | SEC_LOAD
1336 | SEC_HAS_CONTENTS
1337 | SEC_IN_MEMORY
1338 | SEC_READONLY
1339 | SEC_LINKER_CREATED))
1340 || !bfd_set_section_alignment (abfd, stub, 3))
1341 {
1342 BFD_ASSERT (0);
1343 return false;
1344 }
1345
1346 hppa_info->stub_sec = stub;
1347 }
1348
1349 return true;
1350}
1351
1352/* Create sections necessary for dynamic linking. This is only a rough
1353 cut and will likely change as we learn more about the somewhat
1354 unusual dynamic linking scheme HP uses.
1355
1356 .stub:
1357 Contains code to implement cross-space calls. The first time one
1358 of the stubs is used it will call into the dynamic linker, later
1359 calls will go straight to the target.
1360
1361 The only stub we support right now looks like
1362
1363 ldd OFFSET(%dp),%r1
1364 bve %r0(%r1)
1365 ldd OFFSET+8(%dp),%dp
1366
1367 Other stubs may be needed in the future. We may want the remove
1368 the break/nop instruction. It is only used right now to keep the
1369 offset of a .plt entry and a .stub entry in sync.
1370
1371 .dlt:
1372 This is what most people call the .got. HP used a different name.
1373 Losers.
1374
1375 .rela.dlt:
1376 Relocations for the DLT.
1377
1378 .plt:
1379 Function pointers as address,gp pairs.
1380
1381 .rela.plt:
1382 Should contain dynamic IPLT (and EPLT?) relocations.
1383
1384 .opd:
fe8bc63d 1385 FPTRS
15bda425
JL
1386
1387 .rela.opd:
1388 EPLT relocations for symbols exported from shared libraries. */
1389
1390static boolean
1391elf64_hppa_create_dynamic_sections (abfd, info)
1392 bfd *abfd;
1393 struct bfd_link_info *info;
1394{
1395 asection *s;
1396
1397 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1398 return false;
1399
1400 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1401 return false;
1402
1403 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1404 return false;
1405
1406 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1407 return false;
1408
1409 s = bfd_make_section(abfd, ".rela.dlt");
1410 if (s == NULL
1411 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1412 | SEC_HAS_CONTENTS
1413 | SEC_IN_MEMORY
1414 | SEC_READONLY
1415 | SEC_LINKER_CREATED))
1416 || !bfd_set_section_alignment (abfd, s, 3))
1417 return false;
1418 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1419
1420 s = bfd_make_section(abfd, ".rela.plt");
1421 if (s == NULL
1422 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1423 | SEC_HAS_CONTENTS
1424 | SEC_IN_MEMORY
1425 | SEC_READONLY
1426 | SEC_LINKER_CREATED))
1427 || !bfd_set_section_alignment (abfd, s, 3))
1428 return false;
1429 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1430
1431 s = bfd_make_section(abfd, ".rela.data");
1432 if (s == NULL
1433 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1434 | SEC_HAS_CONTENTS
1435 | SEC_IN_MEMORY
1436 | SEC_READONLY
1437 | SEC_LINKER_CREATED))
1438 || !bfd_set_section_alignment (abfd, s, 3))
1439 return false;
1440 elf64_hppa_hash_table (info)->other_rel_sec = s;
1441
1442 s = bfd_make_section(abfd, ".rela.opd");
1443 if (s == NULL
1444 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1445 | SEC_HAS_CONTENTS
1446 | SEC_IN_MEMORY
1447 | SEC_READONLY
1448 | SEC_LINKER_CREATED))
1449 || !bfd_set_section_alignment (abfd, s, 3))
1450 return false;
1451 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1452
1453 return true;
1454}
1455
1456/* Allocate dynamic relocations for those symbols that turned out
1457 to be dynamic. */
1458
1459static boolean
1460allocate_dynrel_entries (dyn_h, data)
1461 struct elf64_hppa_dyn_hash_entry *dyn_h;
1462 PTR data;
1463{
1464 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1465 struct elf64_hppa_link_hash_table *hppa_info;
1466 struct elf64_hppa_dyn_reloc_entry *rent;
1467 boolean dynamic_symbol, shared;
1468
1469 hppa_info = elf64_hppa_hash_table (x->info);
1470 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1471 shared = x->info->shared;
1472
1473 /* We may need to allocate relocations for a non-dynamic symbol
1474 when creating a shared library. */
1475 if (!dynamic_symbol && !shared)
1476 return true;
1477
1478 /* Take care of the normal data relocations. */
1479
1480 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1481 {
1482 switch (rent->type)
1483 {
1484 case R_PARISC_FPTR64:
1485 /* Allocate one iff we are not building a shared library and
1486 !want_opd, which by this point will be true only if we're
1487 actually allocating one statically in the main executable. */
1488 if (!x->info->shared && dyn_h->want_opd)
1489 continue;
1490 break;
1491 }
1492 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1493
1494 /* Make sure this symbol gets into the dynamic symbol table if it is
1495 not already recorded. ?!? This should not be in the loop since
1496 the symbol need only be added once. */
1497 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1498 if (!_bfd_elf64_link_record_local_dynamic_symbol
1499 (x->info, rent->sec->owner, dyn_h->sym_indx))
1500 return false;
1501 }
1502
1503 /* Take care of the GOT and PLT relocations. */
1504
1505 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1506 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1507
1508 /* If we are building a shared library, then every symbol that has an
1509 opd entry will need an EPLT relocation to relocate the symbol's address
1510 and __gp value based on the runtime load address. */
1511 if (shared && dyn_h->want_opd)
1512 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1513
1514 if (dyn_h->want_plt && dynamic_symbol)
1515 {
1516 bfd_size_type t = 0;
1517
1518 /* Dynamic symbols get one IPLT relocation. Local symbols in
1519 shared libraries get two REL relocations. Local symbols in
1520 main applications get nothing. */
1521 if (dynamic_symbol)
1522 t = sizeof (Elf64_External_Rela);
1523 else if (shared)
1524 t = 2 * sizeof (Elf64_External_Rela);
1525
1526 hppa_info->plt_rel_sec->_raw_size += t;
1527 }
1528
1529 return true;
1530}
1531
1532/* Adjust a symbol defined by a dynamic object and referenced by a
1533 regular object. */
1534
1535static boolean
1536elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1537 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1538 struct elf_link_hash_entry *h;
1539{
1540 /* ??? Undefined symbols with PLT entries should be re-defined
1541 to be the PLT entry. */
1542
1543 /* If this is a weak symbol, and there is a real definition, the
1544 processor independent code will have arranged for us to see the
1545 real definition first, and we can just use the same value. */
1546 if (h->weakdef != NULL)
1547 {
1548 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1549 || h->weakdef->root.type == bfd_link_hash_defweak);
1550 h->root.u.def.section = h->weakdef->root.u.def.section;
1551 h->root.u.def.value = h->weakdef->root.u.def.value;
1552 return true;
1553 }
1554
1555 /* If this is a reference to a symbol defined by a dynamic object which
1556 is not a function, we might allocate the symbol in our .dynbss section
1557 and allocate a COPY dynamic relocation.
1558
1559 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1560 of hackery. */
1561
1562 return true;
1563}
1564
1565/* Set the final sizes of the dynamic sections and allocate memory for
1566 the contents of our special sections. */
1567
1568static boolean
1569elf64_hppa_size_dynamic_sections (output_bfd, info)
1570 bfd *output_bfd;
1571 struct bfd_link_info *info;
1572{
1573 bfd *dynobj;
1574 asection *s;
1575 boolean plt;
1576 boolean relocs;
1577 boolean reltext;
15bda425
JL
1578 struct elf64_hppa_allocate_data data;
1579 struct elf64_hppa_link_hash_table *hppa_info;
1580
1581 hppa_info = elf64_hppa_hash_table (info);
1582
1583 dynobj = elf_hash_table (info)->dynobj;
1584 BFD_ASSERT (dynobj != NULL);
1585
1586 if (elf_hash_table (info)->dynamic_sections_created)
1587 {
1588 /* Set the contents of the .interp section to the interpreter. */
1589 if (! info->shared)
1590 {
1591 s = bfd_get_section_by_name (dynobj, ".interp");
1592 BFD_ASSERT (s != NULL);
1593 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1594 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1595 }
1596 }
1597 else
1598 {
1599 /* We may have created entries in the .rela.got section.
1600 However, if we are not creating the dynamic sections, we will
1601 not actually use these entries. Reset the size of .rela.dlt,
1602 which will cause it to get stripped from the output file
1603 below. */
1604 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1605 if (s != NULL)
1606 s->_raw_size = 0;
1607 }
1608
1609 /* Allocate the GOT entries. */
1610
1611 data.info = info;
1612 if (elf64_hppa_hash_table (info)->dlt_sec)
1613 {
1614 data.ofs = 0x0;
1615 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1616 allocate_global_data_dlt, &data);
1617 hppa_info->dlt_sec->_raw_size = data.ofs;
1618
1619 data.ofs = 0x0;
1620 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1621 allocate_global_data_plt, &data);
1622 hppa_info->plt_sec->_raw_size = data.ofs;
1623
1624 data.ofs = 0x0;
1625 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1626 allocate_global_data_stub, &data);
1627 hppa_info->stub_sec->_raw_size = data.ofs;
1628 }
1629
1630 /* Mark each function this program exports so that we will allocate
1631 space in the .opd section for each function's FPTR.
1632
1633 We have to traverse the main linker hash table since we have to
1634 find functions which may not have been mentioned in any relocs. */
1635 elf_link_hash_traverse (elf_hash_table (info),
1636 elf64_hppa_mark_exported_functions,
1637 info);
1638
1639 /* Allocate space for entries in the .opd section. */
1640 if (elf64_hppa_hash_table (info)->opd_sec)
1641 {
1642 data.ofs = 0;
1643 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1644 allocate_global_data_opd, &data);
1645 hppa_info->opd_sec->_raw_size = data.ofs;
1646 }
1647
1648 /* Now allocate space for dynamic relocations, if necessary. */
1649 if (hppa_info->root.dynamic_sections_created)
1650 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1651 allocate_dynrel_entries, &data);
1652
1653 /* The sizes of all the sections are set. Allocate memory for them. */
1654 plt = false;
1655 relocs = false;
1656 reltext = false;
1657 for (s = dynobj->sections; s != NULL; s = s->next)
1658 {
1659 const char *name;
1660 boolean strip;
1661
1662 if ((s->flags & SEC_LINKER_CREATED) == 0)
1663 continue;
1664
1665 /* It's OK to base decisions on the section name, because none
1666 of the dynobj section names depend upon the input files. */
1667 name = bfd_get_section_name (dynobj, s);
1668
1669 strip = 0;
1670
1671 if (strcmp (name, ".plt") == 0)
1672 {
1673 if (s->_raw_size == 0)
1674 {
1675 /* Strip this section if we don't need it; see the
1676 comment below. */
1677 strip = true;
1678 }
1679 else
1680 {
1681 /* Remember whether there is a PLT. */
1682 plt = true;
1683 }
1684 }
1685 else if (strcmp (name, ".dlt") == 0)
1686 {
1687 if (s->_raw_size == 0)
1688 {
1689 /* Strip this section if we don't need it; see the
1690 comment below. */
1691 strip = true;
1692 }
1693 }
1694 else if (strcmp (name, ".opd") == 0)
1695 {
1696 if (s->_raw_size == 0)
1697 {
1698 /* Strip this section if we don't need it; see the
1699 comment below. */
1700 strip = true;
1701 }
1702 }
1703 else if (strncmp (name, ".rela", 4) == 0)
1704 {
1705 if (s->_raw_size == 0)
1706 {
1707 /* If we don't need this section, strip it from the
1708 output file. This is mostly to handle .rela.bss and
1709 .rela.plt. We must create both sections in
1710 create_dynamic_sections, because they must be created
1711 before the linker maps input sections to output
1712 sections. The linker does that before
1713 adjust_dynamic_symbol is called, and it is that
1714 function which decides whether anything needs to go
1715 into these sections. */
1716 strip = true;
1717 }
1718 else
1719 {
1720 asection *target;
1721
1722 /* Remember whether there are any reloc sections other
1723 than .rela.plt. */
1724 if (strcmp (name, ".rela.plt") != 0)
1725 {
1726 const char *outname;
1727
1728 relocs = true;
1729
1730 /* If this relocation section applies to a read only
1731 section, then we probably need a DT_TEXTREL
1732 entry. The entries in the .rela.plt section
1733 really apply to the .got section, which we
1734 created ourselves and so know is not readonly. */
1735 outname = bfd_get_section_name (output_bfd,
1736 s->output_section);
1737 target = bfd_get_section_by_name (output_bfd, outname + 4);
1738 if (target != NULL
1739 && (target->flags & SEC_READONLY) != 0
1740 && (target->flags & SEC_ALLOC) != 0)
1741 reltext = true;
1742 }
1743
1744 /* We use the reloc_count field as a counter if we need
1745 to copy relocs into the output file. */
1746 s->reloc_count = 0;
1747 }
1748 }
1749 else if (strncmp (name, ".dlt", 4) != 0
1750 && strcmp (name, ".stub") != 0
1751 && strcmp (name, ".got") != 0)
1752 {
1753 /* It's not one of our sections, so don't allocate space. */
1754 continue;
1755 }
1756
1757 if (strip)
1758 {
1759 _bfd_strip_section_from_output (info, s);
1760 continue;
1761 }
1762
1763 /* Allocate memory for the section contents if it has not
832d951b
AM
1764 been allocated already. We use bfd_zalloc here in case
1765 unused entries are not reclaimed before the section's
1766 contents are written out. This should not happen, but this
1767 way if it does, we get a R_PARISC_NONE reloc instead of
1768 garbage. */
15bda425
JL
1769 if (s->contents == NULL)
1770 {
7a9af8c4 1771 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1772 if (s->contents == NULL && s->_raw_size != 0)
1773 return false;
1774 }
1775 }
1776
1777 if (elf_hash_table (info)->dynamic_sections_created)
1778 {
1779 /* Always create a DT_PLTGOT. It actually has nothing to do with
1780 the PLT, it is how we communicate the __gp value of a load
1781 module to the dynamic linker. */
1782 if (! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_FLAGS, 0)
1783 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
1784 return false;
1785
1786 /* Add some entries to the .dynamic section. We fill in the
1787 values later, in elf64_hppa_finish_dynamic_sections, but we
1788 must add the entries now so that we get the correct size for
1789 the .dynamic section. The DT_DEBUG entry is filled in by the
1790 dynamic linker and used by the debugger. */
1791 if (! info->shared)
1792 {
1793 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)
1794 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_HOOK, 0)
1795 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_LOAD_MAP, 0))
1796 return false;
1797 }
1798
1799 if (plt)
1800 {
1801 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1802 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1803 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1804 return false;
1805 }
1806
1807 if (relocs)
1808 {
1809 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1810 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1811 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1812 sizeof (Elf64_External_Rela)))
1813 return false;
1814 }
1815
1816 if (reltext)
1817 {
1818 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1819 return false;
d6cf2879 1820 info->flags |= DF_TEXTREL;
15bda425
JL
1821 }
1822 }
1823
1824 return true;
1825}
1826
1827/* Called after we have output the symbol into the dynamic symbol
1828 table, but before we output the symbol into the normal symbol
1829 table.
1830
1831 For some symbols we had to change their address when outputting
1832 the dynamic symbol table. We undo that change here so that
1833 the symbols have their expected value in the normal symbol
1834 table. Ick. */
1835
1836static boolean
1837elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1838 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1839 struct bfd_link_info *info;
1840 const char *name;
1841 Elf_Internal_Sym *sym;
edd21aca 1842 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1843{
1844 struct elf64_hppa_link_hash_table *hppa_info;
1845 struct elf64_hppa_dyn_hash_entry *dyn_h;
1846
1847 /* We may be called with the file symbol or section symbols.
1848 They never need munging, so it is safe to ignore them. */
1849 if (!name)
1850 return true;
1851
1852 /* Get the PA dyn_symbol (if any) associated with NAME. */
1853 hppa_info = elf64_hppa_hash_table (info);
1854 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1855 name, false, false);
1856
832d951b
AM
1857 /* Function symbols for which we created .opd entries *may* have been
1858 munged by finish_dynamic_symbol and have to be un-munged here.
1859
1860 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1861 into non-dynamic ones, so we initialize st_shndx to -1 in
1862 mark_exported_functions and check to see if it was overwritten
1863 here instead of just checking dyn_h->h->dynindx. */
1864 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1865 {
1866 /* Restore the saved value and section index. */
1867 sym->st_value = dyn_h->st_value;
fe8bc63d 1868 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1869 }
1870
1871 return true;
1872}
1873
1874/* Finish up dynamic symbol handling. We set the contents of various
1875 dynamic sections here. */
1876
1877static boolean
1878elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1879 bfd *output_bfd;
1880 struct bfd_link_info *info;
1881 struct elf_link_hash_entry *h;
1882 Elf_Internal_Sym *sym;
1883{
1884 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1885 struct elf64_hppa_link_hash_table *hppa_info;
1886 struct elf64_hppa_dyn_hash_entry *dyn_h;
1887
1888 hppa_info = elf64_hppa_hash_table (info);
1889 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1890 h->root.root.string, false, false);
1891
1892 stub = hppa_info->stub_sec;
1893 splt = hppa_info->plt_sec;
1894 sdlt = hppa_info->dlt_sec;
1895 sopd = hppa_info->opd_sec;
1896 spltrel = hppa_info->plt_rel_sec;
1897 sdltrel = hppa_info->dlt_rel_sec;
1898
1899 BFD_ASSERT (stub != NULL && splt != NULL
1900 && sopd != NULL && sdlt != NULL)
1901
1902 /* Incredible. It is actually necessary to NOT use the symbol's real
1903 value when building the dynamic symbol table for a shared library.
1904 At least for symbols that refer to functions.
1905
1906 We will store a new value and section index into the symbol long
1907 enough to output it into the dynamic symbol table, then we restore
1908 the original values (in elf64_hppa_link_output_symbol_hook). */
1909 if (dyn_h && dyn_h->want_opd)
1910 {
1911 /* Save away the original value and section index so that we
1912 can restore them later. */
1913 dyn_h->st_value = sym->st_value;
1914 dyn_h->st_shndx = sym->st_shndx;
1915
1916 /* For the dynamic symbol table entry, we want the value to be
1917 address of this symbol's entry within the .opd section. */
1918 sym->st_value = (dyn_h->opd_offset
1919 + sopd->output_offset
1920 + sopd->output_section->vma);
1921 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1922 sopd->output_section);
1923 }
1924
1925 /* Initialize a .plt entry if requested. */
1926 if (dyn_h && dyn_h->want_plt
1927 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1928 {
1929 bfd_vma value;
1930 Elf_Internal_Rela rel;
1931
1932 /* We do not actually care about the value in the PLT entry
1933 if we are creating a shared library and the symbol is
1934 still undefined, we create a dynamic relocation to fill
1935 in the correct value. */
1936 if (info->shared && h->root.type == bfd_link_hash_undefined)
1937 value = 0;
1938 else
1939 value = (h->root.u.def.value + h->root.u.def.section->vma);
1940
fe8bc63d 1941 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1942
1943 The format of a plt entry is
fe8bc63d 1944 <funcaddr> <__gp>.
15bda425
JL
1945
1946 plt_offset is the offset within the PLT section at which to
fe8bc63d 1947 install the PLT entry.
15bda425
JL
1948
1949 We are modifying the in-memory PLT contents here, so we do not add
1950 in the output_offset of the PLT section. */
1951
1952 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1953 value = _bfd_get_gp_value (splt->output_section->owner);
1954 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1955
1956 /* Create a dynamic IPLT relocation for this entry.
1957
1958 We are creating a relocation in the output file's PLT section,
1959 which is included within the DLT secton. So we do need to include
1960 the PLT's output_offset in the computation of the relocation's
1961 address. */
1962 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1963 + splt->output_section->vma);
1964 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1965 rel.r_addend = 0;
1966
1967 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
1968 (((Elf64_External_Rela *)
1969 spltrel->contents)
1970 + spltrel->reloc_count));
1971 spltrel->reloc_count++;
1972 }
1973
1974 /* Initialize an external call stub entry if requested. */
1975 if (dyn_h && dyn_h->want_stub
1976 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1977 {
1978 bfd_vma value;
1979 int insn;
b352eebf 1980 unsigned int max_offset;
15bda425
JL
1981
1982 /* Install the generic stub template.
1983
1984 We are modifying the contents of the stub section, so we do not
1985 need to include the stub section's output_offset here. */
1986 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
1987
1988 /* Fix up the first ldd instruction.
1989
1990 We are modifying the contents of the STUB section in memory,
fe8bc63d 1991 so we do not need to include its output offset in this computation.
15bda425
JL
1992
1993 Note the plt_offset value is the value of the PLT entry relative to
1994 the start of the PLT section. These instructions will reference
1995 data relative to the value of __gp, which may not necessarily have
1996 the same address as the start of the PLT section.
1997
1998 gp_offset contains the offset of __gp within the PLT section. */
1999 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2000
15bda425 2001 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2002 if (output_bfd->arch_info->mach >= 25)
2003 {
2004 /* Wide mode allows 16 bit offsets. */
2005 max_offset = 32768;
2006 insn &= ~ 0xfff1;
2007 insn |= re_assemble_16 (value);
2008 }
2009 else
2010 {
2011 max_offset = 8192;
2012 insn &= ~ 0x3ff1;
2013 insn |= re_assemble_14 (value);
2014 }
2015
2016 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2017 {
2018 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2019 dyn_h->root.string,
2020 (long) value);
2021 return false;
2022 }
2023
2024 bfd_put_32 (stub->owner, insn,
15bda425
JL
2025 stub->contents + dyn_h->stub_offset);
2026
2027 /* Fix up the second ldd instruction. */
b352eebf 2028 value += 8;
15bda425 2029 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2030 if (output_bfd->arch_info->mach >= 25)
2031 {
2032 insn &= ~ 0xfff1;
2033 insn |= re_assemble_16 (value);
2034 }
2035 else
2036 {
2037 insn &= ~ 0x3ff1;
2038 insn |= re_assemble_14 (value);
2039 }
2040 bfd_put_32 (stub->owner, insn,
15bda425
JL
2041 stub->contents + dyn_h->stub_offset + 8);
2042 }
2043
2044 /* Millicode symbols should not be put in the dynamic
2045 symbol table under any circumstances. */
2046 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2047 h->dynindx = -1;
2048
2049 return true;
2050}
2051
2052/* The .opd section contains FPTRs for each function this file
2053 exports. Initialize the FPTR entries. */
2054
2055static boolean
2056elf64_hppa_finalize_opd (dyn_h, data)
2057 struct elf64_hppa_dyn_hash_entry *dyn_h;
2058 PTR data;
2059{
2060 struct bfd_link_info *info = (struct bfd_link_info *)data;
2061 struct elf64_hppa_link_hash_table *hppa_info;
2062 struct elf_link_hash_entry *h = dyn_h->h;
2063 asection *sopd;
2064 asection *sopdrel;
2065
2066 hppa_info = elf64_hppa_hash_table (info);
2067 sopd = hppa_info->opd_sec;
2068 sopdrel = hppa_info->opd_rel_sec;
2069
2070 if (h && dyn_h && dyn_h->want_opd)
2071 {
2072 bfd_vma value;
2073
fe8bc63d 2074 /* The first two words of an .opd entry are zero.
15bda425
JL
2075
2076 We are modifying the contents of the OPD section in memory, so we
2077 do not need to include its output offset in this computation. */
2078 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2079
2080 value = (h->root.u.def.value
2081 + h->root.u.def.section->output_section->vma
2082 + h->root.u.def.section->output_offset);
2083
2084 /* The next word is the address of the function. */
2085 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2086
2087 /* The last word is our local __gp value. */
2088 value = _bfd_get_gp_value (sopd->output_section->owner);
2089 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2090 }
2091
2092 /* If we are generating a shared library, we must generate EPLT relocations
2093 for each entry in the .opd, even for static functions (they may have
2094 had their address taken). */
2095 if (info->shared && dyn_h && dyn_h->want_opd)
2096 {
2097 Elf64_Internal_Rela rel;
15bda425
JL
2098 int dynindx;
2099
2100 /* We may need to do a relocation against a local symbol, in
2101 which case we have to look up it's dynamic symbol index off
2102 the local symbol hash table. */
2103 if (h && h->dynindx != -1)
2104 dynindx = h->dynindx;
2105 else
2106 dynindx
2107 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2108 dyn_h->sym_indx);
2109
2110 /* The offset of this relocation is the absolute address of the
2111 .opd entry for this symbol. */
2112 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2113 + sopd->output_section->vma);
2114
2115 /* If H is non-null, then we have an external symbol.
2116
2117 It is imperative that we use a different dynamic symbol for the
2118 EPLT relocation if the symbol has global scope.
2119
2120 In the dynamic symbol table, the function symbol will have a value
2121 which is address of the function's .opd entry.
2122
2123 Thus, we can not use that dynamic symbol for the EPLT relocation
2124 (if we did, the data in the .opd would reference itself rather
2125 than the actual address of the function). Instead we have to use
2126 a new dynamic symbol which has the same value as the original global
fe8bc63d 2127 function symbol.
15bda425
JL
2128
2129 We prefix the original symbol with a "." and use the new symbol in
2130 the EPLT relocation. This new symbol has already been recorded in
2131 the symbol table, we just have to look it up and use it.
2132
2133 We do not have such problems with static functions because we do
2134 not make their addresses in the dynamic symbol table point to
2135 the .opd entry. Ultimately this should be safe since a static
2136 function can not be directly referenced outside of its shared
2137 library.
2138
2139 We do have to play similar games for FPTR relocations in shared
2140 libraries, including those for static symbols. See the FPTR
2141 handling in elf64_hppa_finalize_dynreloc. */
2142 if (h)
2143 {
2144 char *new_name;
2145 struct elf_link_hash_entry *nh;
2146
2147 new_name = alloca (strlen (h->root.root.string) + 2);
2148 new_name[0] = '.';
2149 strcpy (new_name + 1, h->root.root.string);
2150
2151 nh = elf_link_hash_lookup (elf_hash_table (info),
2152 new_name, false, false, false);
2153
2154 /* All we really want from the new symbol is its dynamic
2155 symbol index. */
2156 dynindx = nh->dynindx;
2157 }
2158
2159 rel.r_addend = 0;
2160 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2161
2162 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2163 (((Elf64_External_Rela *)
2164 sopdrel->contents)
2165 + sopdrel->reloc_count));
2166 sopdrel->reloc_count++;
2167 }
2168 return true;
2169}
2170
2171/* The .dlt section contains addresses for items referenced through the
2172 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2173 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2174
2175static boolean
2176elf64_hppa_finalize_dlt (dyn_h, data)
2177 struct elf64_hppa_dyn_hash_entry *dyn_h;
2178 PTR data;
2179{
2180 struct bfd_link_info *info = (struct bfd_link_info *)data;
2181 struct elf64_hppa_link_hash_table *hppa_info;
2182 asection *sdlt, *sdltrel;
2183 struct elf_link_hash_entry *h = dyn_h->h;
2184
2185 hppa_info = elf64_hppa_hash_table (info);
2186
2187 sdlt = hppa_info->dlt_sec;
2188 sdltrel = hppa_info->dlt_rel_sec;
2189
2190 /* H/DYN_H may refer to a local variable and we know it's
2191 address, so there is no need to create a relocation. Just install
2192 the proper value into the DLT, note this shortcut can not be
2193 skipped when building a shared library. */
2194 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2195 {
2196 bfd_vma value;
2197
2198 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2199 to point to the FPTR entry in the .opd section.
15bda425
JL
2200
2201 We include the OPD's output offset in this computation as
2202 we are referring to an absolute address in the resulting
2203 object file. */
2204 if (dyn_h->want_opd)
2205 {
2206 value = (dyn_h->opd_offset
2207 + hppa_info->opd_sec->output_offset
2208 + hppa_info->opd_sec->output_section->vma);
2209 }
2210 else
2211 {
2212 value = (h->root.u.def.value
2213 + h->root.u.def.section->output_offset);
2214
2215 if (h->root.u.def.section->output_section)
2216 value += h->root.u.def.section->output_section->vma;
2217 else
2218 value += h->root.u.def.section->vma;
2219 }
2220
2221 /* We do not need to include the output offset of the DLT section
2222 here because we are modifying the in-memory contents. */
2223 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2224 }
2225
2226 /* Create a relocation for the DLT entry assocated with this symbol.
2227 When building a shared library the symbol does not have to be dynamic. */
2228 if (dyn_h->want_dlt
2229 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2230 {
2231 Elf64_Internal_Rela rel;
2232 int dynindx;
2233
2234 /* We may need to do a relocation against a local symbol, in
2235 which case we have to look up it's dynamic symbol index off
2236 the local symbol hash table. */
2237 if (h && h->dynindx != -1)
2238 dynindx = h->dynindx;
2239 else
2240 dynindx
2241 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2242 dyn_h->sym_indx);
2243
15bda425
JL
2244 /* Create a dynamic relocation for this entry. Do include the output
2245 offset of the DLT entry since we need an absolute address in the
2246 resulting object file. */
2247 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2248 + sdlt->output_section->vma);
2249 if (h && h->type == STT_FUNC)
2250 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2251 else
2252 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2253 rel.r_addend = 0;
2254
2255 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2256 (((Elf64_External_Rela *)
2257 sdltrel->contents)
2258 + sdltrel->reloc_count));
2259 sdltrel->reloc_count++;
2260 }
2261 return true;
2262}
2263
2264/* Finalize the dynamic relocations. Specifically the FPTR relocations
2265 for dynamic functions used to initialize static data. */
2266
2267static boolean
2268elf64_hppa_finalize_dynreloc (dyn_h, data)
2269 struct elf64_hppa_dyn_hash_entry *dyn_h;
2270 PTR data;
2271{
2272 struct bfd_link_info *info = (struct bfd_link_info *)data;
2273 struct elf64_hppa_link_hash_table *hppa_info;
2274 struct elf_link_hash_entry *h;
2275 int dynamic_symbol;
2276
2277 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2278
2279 if (!dynamic_symbol && !info->shared)
2280 return true;
2281
2282 if (dyn_h->reloc_entries)
2283 {
2284 struct elf64_hppa_dyn_reloc_entry *rent;
2285 int dynindx;
2286
2287 hppa_info = elf64_hppa_hash_table (info);
2288 h = dyn_h->h;
2289
2290 /* We may need to do a relocation against a local symbol, in
2291 which case we have to look up it's dynamic symbol index off
2292 the local symbol hash table. */
2293 if (h && h->dynindx != -1)
2294 dynindx = h->dynindx;
2295 else
2296 dynindx
2297 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2298 dyn_h->sym_indx);
2299
2300 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2301 {
2302 Elf64_Internal_Rela rel;
2303
2304 switch (rent->type)
2305 {
2306 case R_PARISC_FPTR64:
2307 /* Allocate one iff we are not building a shared library and
2308 !want_opd, which by this point will be true only if we're
2309 actually allocating one statically in the main executable. */
2310 if (!info->shared && dyn_h->want_opd)
2311 continue;
2312 break;
2313 }
2314
fe8bc63d 2315 /* Create a dynamic relocation for this entry.
15bda425
JL
2316
2317 We need the output offset for the reloc's section because
2318 we are creating an absolute address in the resulting object
2319 file. */
2320 rel.r_offset = (rent->offset + rent->sec->output_offset
2321 + rent->sec->output_section->vma);
2322
2323 /* An FPTR64 relocation implies that we took the address of
2324 a function and that the function has an entry in the .opd
2325 section. We want the FPTR64 relocation to reference the
2326 entry in .opd.
2327
2328 We could munge the symbol value in the dynamic symbol table
2329 (in fact we already do for functions with global scope) to point
2330 to the .opd entry. Then we could use that dynamic symbol in
2331 this relocation.
2332
2333 Or we could do something sensible, not munge the symbol's
2334 address and instead just use a different symbol to reference
2335 the .opd entry. At least that seems sensible until you
2336 realize there's no local dynamic symbols we can use for that
2337 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2338
15bda425
JL
2339 We use a section symbol recorded by check_relocs as the
2340 base symbol for the relocation. The addend is the difference
2341 between the section symbol and the address of the .opd entry. */
2342 if (info->shared && rent->type == R_PARISC_FPTR64)
2343 {
2344 bfd_vma value, value2;
15bda425
JL
2345
2346 /* First compute the address of the opd entry for this symbol. */
2347 value = (dyn_h->opd_offset
2348 + hppa_info->opd_sec->output_section->vma
2349 + hppa_info->opd_sec->output_offset);
2350
2351 /* Compute the value of the start of the section with
2352 the relocation. */
2353 value2 = (rent->sec->output_section->vma
2354 + rent->sec->output_offset);
2355
2356 /* Compute the difference between the start of the section
2357 with the relocation and the opd entry. */
2358 value -= value2;
fe8bc63d 2359
15bda425
JL
2360 /* The result becomes the addend of the relocation. */
2361 rel.r_addend = value;
2362
2363 /* The section symbol becomes the symbol for the dynamic
2364 relocation. */
2365 dynindx
2366 = _bfd_elf_link_lookup_local_dynindx (info,
2367 rent->sec->owner,
2368 rent->sec_symndx);
2369 }
2370 else
2371 rel.r_addend = rent->addend;
2372
2373 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2374
2375 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2376 &rel,
2377 (((Elf64_External_Rela *)
2378 hppa_info->other_rel_sec->contents)
2379 + hppa_info->other_rel_sec->reloc_count));
2380 hppa_info->other_rel_sec->reloc_count++;
2381 }
2382 }
2383
2384 return true;
2385}
2386
2387/* Finish up the dynamic sections. */
2388
2389static boolean
2390elf64_hppa_finish_dynamic_sections (output_bfd, info)
2391 bfd *output_bfd;
2392 struct bfd_link_info *info;
2393{
2394 bfd *dynobj;
2395 asection *sdyn;
2396 struct elf64_hppa_link_hash_table *hppa_info;
2397
2398 hppa_info = elf64_hppa_hash_table (info);
2399
2400 /* Finalize the contents of the .opd section. */
2401 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2402 elf64_hppa_finalize_opd,
2403 info);
2404
2405 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2406 elf64_hppa_finalize_dynreloc,
2407 info);
2408
2409 /* Finalize the contents of the .dlt section. */
2410 dynobj = elf_hash_table (info)->dynobj;
2411 /* Finalize the contents of the .dlt section. */
2412 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2413 elf64_hppa_finalize_dlt,
2414 info);
2415
15bda425
JL
2416 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2417
2418 if (elf_hash_table (info)->dynamic_sections_created)
2419 {
2420 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2421
2422 BFD_ASSERT (sdyn != NULL);
2423
2424 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2425 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2426 for (; dyncon < dynconend; dyncon++)
2427 {
2428 Elf_Internal_Dyn dyn;
2429 asection *s;
2430
2431 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2432
2433 switch (dyn.d_tag)
2434 {
2435 default:
2436 break;
2437
2438 case DT_HP_LOAD_MAP:
2439 /* Compute the absolute address of 16byte scratchpad area
2440 for the dynamic linker.
2441
2442 By convention the linker script will allocate the scratchpad
2443 area at the start of the .data section. So all we have to
2444 to is find the start of the .data section. */
2445 s = bfd_get_section_by_name (output_bfd, ".data");
2446 dyn.d_un.d_ptr = s->vma;
2447 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2448 break;
2449
2450 case DT_PLTGOT:
2451 /* HP's use PLTGOT to set the GOT register. */
2452 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2453 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2454 break;
2455
2456 case DT_JMPREL:
2457 s = hppa_info->plt_rel_sec;
2458 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2459 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2460 break;
2461
2462 case DT_PLTRELSZ:
2463 s = hppa_info->plt_rel_sec;
2464 dyn.d_un.d_val = s->_raw_size;
2465 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2466 break;
2467
2468 case DT_RELA:
2469 s = hppa_info->other_rel_sec;
2470 if (! s)
2471 s = hppa_info->dlt_rel_sec;
2472 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2473 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2474 break;
2475
2476 case DT_RELASZ:
2477 s = hppa_info->other_rel_sec;
2478 dyn.d_un.d_val = s->_raw_size;
2479 s = hppa_info->dlt_rel_sec;
2480 dyn.d_un.d_val += s->_raw_size;
2481 s = hppa_info->opd_rel_sec;
2482 dyn.d_un.d_val += s->_raw_size;
2483 /* There is some question about whether or not the size of
2484 the PLT relocs should be included here. HP's tools do
2485 it, so we'll emulate them. */
2486 s = hppa_info->plt_rel_sec;
2487 dyn.d_un.d_val += s->_raw_size;
2488 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2489 break;
2490
2491 }
2492 }
2493 }
2494
2495 return true;
2496}
2497
15bda425
JL
2498/* Return the number of additional phdrs we will need.
2499
2500 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2501 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2502
2503 This routine indicates that the backend needs one additional program
2504 header for that case.
2505
2506 Note we do not have access to the link info structure here, so we have
2507 to guess whether or not we are building a shared library based on the
2508 existence of a .interp section. */
2509
2510static int
2511elf64_hppa_additional_program_headers (abfd)
2512 bfd *abfd;
2513{
2514 asection *s;
2515
2516 /* If we are creating a shared library, then we have to create a
2517 PT_PHDR segment. HP's dynamic linker chokes without it. */
2518 s = bfd_get_section_by_name (abfd, ".interp");
2519 if (! s)
2520 return 1;
2521 return 0;
2522}
2523
2524/* Allocate and initialize any program headers required by this
2525 specific backend.
2526
2527 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2528 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2529
2530 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2531 for the HP linker.
15bda425
JL
2532
2533 Note we do not have access to the link info structure here, so we have
2534 to guess whether or not we are building a shared library based on the
2535 existence of a .interp section. */
2536
2537static boolean
2538elf64_hppa_modify_segment_map (abfd)
2539 bfd *abfd;
2540{
edd21aca 2541 struct elf_segment_map *m;
15bda425
JL
2542 asection *s;
2543
2544 s = bfd_get_section_by_name (abfd, ".interp");
2545 if (! s)
2546 {
2547 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2548 if (m->p_type == PT_PHDR)
2549 break;
2550 if (m == NULL)
2551 {
2552 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
2553 if (m == NULL)
2554 return false;
2555
2556 m->p_type = PT_PHDR;
2557 m->p_flags = PF_R | PF_X;
2558 m->p_flags_valid = 1;
2559 m->p_paddr_valid = 1;
2560 m->includes_phdrs = 1;
2561
2562 m->next = elf_tdata (abfd)->segment_map;
2563 elf_tdata (abfd)->segment_map = m;
2564 }
2565 }
2566
2567 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2568 if (m->p_type == PT_LOAD)
2569 {
0ba2a60e 2570 unsigned int i;
15bda425
JL
2571
2572 for (i = 0; i < m->count; i++)
2573 {
2574 /* The code "hint" is not really a hint. It is a requirement
2575 for certain versions of the HP dynamic linker. Worse yet,
2576 it must be set even if the shared library does not have
2577 any code in its "text" segment (thus the check for .hash
2578 to catch this situation). */
2579 if (m->sections[i]->flags & SEC_CODE
2580 || (strcmp (m->sections[i]->name, ".hash") == 0))
2581 m->p_flags |= (PF_X | PF_HP_CODE);
2582 }
2583 }
2584
2585 return true;
2586}
2587
3fab46d0
AM
2588/* Called when writing out an object file to decide the type of a
2589 symbol. */
2590static int
2591elf64_hppa_elf_get_symbol_type (elf_sym, type)
2592 Elf_Internal_Sym *elf_sym;
2593 int type;
2594{
2595 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2596 return STT_PARISC_MILLI;
2597 else
2598 return type;
2599}
2600
15bda425
JL
2601/* The hash bucket size is the standard one, namely 4. */
2602
2603const struct elf_size_info hppa64_elf_size_info =
2604{
2605 sizeof (Elf64_External_Ehdr),
2606 sizeof (Elf64_External_Phdr),
2607 sizeof (Elf64_External_Shdr),
2608 sizeof (Elf64_External_Rel),
2609 sizeof (Elf64_External_Rela),
2610 sizeof (Elf64_External_Sym),
2611 sizeof (Elf64_External_Dyn),
2612 sizeof (Elf_External_Note),
2613 4,
2614 1,
2615 64, 8,
2616 ELFCLASS64, EV_CURRENT,
2617 bfd_elf64_write_out_phdrs,
2618 bfd_elf64_write_shdrs_and_ehdr,
2619 bfd_elf64_write_relocs,
2620 bfd_elf64_swap_symbol_out,
2621 bfd_elf64_slurp_reloc_table,
2622 bfd_elf64_slurp_symbol_table,
2623 bfd_elf64_swap_dyn_in,
2624 bfd_elf64_swap_dyn_out,
2625 NULL,
2626 NULL,
2627 NULL,
2628 NULL
2629};
2630
2631#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2632#define TARGET_BIG_NAME "elf64-hppa"
2633#define ELF_ARCH bfd_arch_hppa
2634#define ELF_MACHINE_CODE EM_PARISC
2635/* This is not strictly correct. The maximum page size for PA2.0 is
2636 64M. But everything still uses 4k. */
2637#define ELF_MAXPAGESIZE 0x1000
2638#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2639#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2640#define elf_info_to_howto elf_hppa_info_to_howto
2641#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2642
2643#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2644#define elf_backend_object_p elf64_hppa_object_p
2645#define elf_backend_final_write_processing \
2646 elf_hppa_final_write_processing
2647#define elf_backend_fake_sections elf_hppa_fake_sections
2648#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2649
2650#define elf_backend_relocate_section elf_hppa_relocate_section
2651
2652#define bfd_elf64_bfd_final_link elf_hppa_final_link
2653
2654#define elf_backend_create_dynamic_sections \
2655 elf64_hppa_create_dynamic_sections
2656#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2657
2658#define elf_backend_adjust_dynamic_symbol \
2659 elf64_hppa_adjust_dynamic_symbol
2660
2661#define elf_backend_size_dynamic_sections \
2662 elf64_hppa_size_dynamic_sections
2663
2664#define elf_backend_finish_dynamic_symbol \
2665 elf64_hppa_finish_dynamic_symbol
2666#define elf_backend_finish_dynamic_sections \
2667 elf64_hppa_finish_dynamic_sections
2668
2669/* Stuff for the BFD linker: */
2670#define bfd_elf64_bfd_link_hash_table_create \
2671 elf64_hppa_hash_table_create
2672
2673#define elf_backend_check_relocs \
2674 elf64_hppa_check_relocs
2675
2676#define elf_backend_size_info \
2677 hppa64_elf_size_info
2678
2679#define elf_backend_additional_program_headers \
2680 elf64_hppa_additional_program_headers
2681
2682#define elf_backend_modify_segment_map \
2683 elf64_hppa_modify_segment_map
2684
2685#define elf_backend_link_output_symbol_hook \
2686 elf64_hppa_link_output_symbol_hook
2687
15bda425
JL
2688#define elf_backend_want_got_plt 0
2689#define elf_backend_plt_readonly 0
2690#define elf_backend_want_plt_sym 0
2691#define elf_backend_got_header_size 0
2692#define elf_backend_plt_header_size 0
2693#define elf_backend_type_change_ok true
3fab46d0 2694#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
15bda425
JL
2695
2696#include "elf64-target.h"
d952f17a
AM
2697
2698#undef TARGET_BIG_SYM
2699#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2700#undef TARGET_BIG_NAME
2701#define TARGET_BIG_NAME "elf64-hppa-linux"
2702
2703#define INCLUDED_TARGET_FILE 1
2704#include "elf64-target.h"
This page took 0.162684 seconds and 4 git commands to generate.