merge with gcc
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
15bda425
JL
1/* Generic support for 64-bit ELF
2 Copyright 1999, 2000 Free Software Foundation, Inc.
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20#include "bfd.h"
21#include "sysdep.h"
22#include "libbfd.h"
23#include "elf-bfd.h"
24#include "elf/hppa.h"
25#include "libhppa.h"
26#include "elf64-hppa.h"
27#define ARCH_SIZE 64
28
29#define PLT_ENTRY_SIZE 0x10
30#define DLT_ENTRY_SIZE 0x8
31#define OPD_ENTRY_SIZE 0x20
32
33#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
34
35/* The stub is supposed to load the target address and target's DP
36 value out of the PLT, then do an external branch to the target
37 address.
38
39 LDD PLTOFF(%r27),%r1
40 BVE (%r1)
41 LDD PLTOFF+8(%r27),%r27
42
43 Note that we must use the LDD with a 14 bit displacement, not the one
44 with a 5 bit displacement. */
45static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
46 0x53, 0x7b, 0x00, 0x00 };
47
48struct elf64_hppa_dyn_hash_entry
49{
50 struct bfd_hash_entry root;
51
52 /* Offsets for this symbol in various linker sections. */
53 bfd_vma dlt_offset;
54 bfd_vma plt_offset;
55 bfd_vma opd_offset;
56 bfd_vma stub_offset;
57
edd21aca 58 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
59 struct elf_link_hash_entry *h;
60
61 /* The index of the (possibly local) symbol in the input bfd and its
62 associated BFD. Needed so that we can have relocs against local
63 symbols in shared libraries. */
64 unsigned long sym_indx;
65 bfd *owner;
66
67 /* Dynamic symbols may need to have two different values. One for
68 the dynamic symbol table, one for the normal symbol table.
69
70 In such cases we store the symbol's real value and section
71 index here so we can restore the real value before we write
72 the normal symbol table. */
73 bfd_vma st_value;
74 int st_shndx;
75
76 /* Used to count non-got, non-plt relocations for delayed sizing
77 of relocation sections. */
78 struct elf64_hppa_dyn_reloc_entry
79 {
80 /* Next relocation in the chain. */
81 struct elf64_hppa_dyn_reloc_entry *next;
82
83 /* The type of the relocation. */
84 int type;
85
86 /* The input section of the relocation. */
87 asection *sec;
88
89 /* The index of the section symbol for the input section of
90 the relocation. Only needed when building shared libraries. */
91 int sec_symndx;
92
93 /* The offset within the input section of the relocation. */
94 bfd_vma offset;
95
96 /* The addend for the relocation. */
97 bfd_vma addend;
98
99 } *reloc_entries;
100
101 /* Nonzero if this symbol needs an entry in one of the linker
102 sections. */
103 unsigned want_dlt;
104 unsigned want_plt;
105 unsigned want_opd;
106 unsigned want_stub;
107};
108
109struct elf64_hppa_dyn_hash_table
110{
111 struct bfd_hash_table root;
112};
113
114struct elf64_hppa_link_hash_table
115{
116 struct elf_link_hash_table root;
117
118 /* Shortcuts to get to the various linker defined sections. */
119 asection *dlt_sec;
120 asection *dlt_rel_sec;
121 asection *plt_sec;
122 asection *plt_rel_sec;
123 asection *opd_sec;
124 asection *opd_rel_sec;
125 asection *other_rel_sec;
126
127 /* Offset of __gp within .plt section. When the PLT gets large we want
128 to slide __gp into the PLT section so that we can continue to use
129 single DP relative instructions to load values out of the PLT. */
130 bfd_vma gp_offset;
131
132 /* Note this is not strictly correct. We should create a stub section for
133 each input section with calls. The stub section should be placed before
134 the section with the call. */
135 asection *stub_sec;
136
137 bfd_vma text_segment_base;
138 bfd_vma data_segment_base;
139
140 struct elf64_hppa_dyn_hash_table dyn_hash_table;
141
142 /* We build tables to map from an input section back to its
143 symbol index. This is the BFD for which we currently have
144 a map. */
145 bfd *section_syms_bfd;
146
147 /* Array of symbol numbers for each input section attached to the
148 current BFD. */
149 int *section_syms;
150};
151
152#define elf64_hppa_hash_table(p) \
153 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
154
155typedef struct bfd_hash_entry *(*new_hash_entry_func)
156 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
157
158static boolean elf64_hppa_dyn_hash_table_init
159 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
160 new_hash_entry_func new));
161static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
162 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
163 const char *string));
164static struct bfd_link_hash_table *elf64_hppa_hash_table_create
165 PARAMS ((bfd *abfd));
166static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
167 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
168 boolean create, boolean copy));
169static void elf64_hppa_dyn_hash_traverse
170 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
171 boolean (*func)(struct elf64_hppa_dyn_hash_entry *, PTR),
172 PTR info));
173
174static const char *get_dyn_name
0ba2a60e
AM
175 PARAMS ((asection *, struct elf_link_hash_entry *,
176 const Elf_Internal_Rela *, char **, size_t *));
15bda425
JL
177
178
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
183
184static boolean elf64_hppa_object_p
185 PARAMS ((bfd *));
186
187static boolean elf64_hppa_section_from_shdr
188 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
189
190static void elf64_hppa_post_process_headers
191 PARAMS ((bfd *, struct bfd_link_info *));
192
193static boolean elf64_hppa_create_dynamic_sections
194 PARAMS ((bfd *, struct bfd_link_info *));
195
196static boolean elf64_hppa_adjust_dynamic_symbol
197 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
198
199static boolean elf64_hppa_size_dynamic_sections
200 PARAMS ((bfd *, struct bfd_link_info *));
201
202static boolean elf64_hppa_finish_dynamic_symbol
203 PARAMS ((bfd *, struct bfd_link_info *,
204 struct elf_link_hash_entry *, Elf_Internal_Sym *));
205
206static boolean elf64_hppa_finish_dynamic_sections
207 PARAMS ((bfd *, struct bfd_link_info *));
208
209static boolean elf64_hppa_check_relocs
210 PARAMS ((bfd *, struct bfd_link_info *,
211 asection *, const Elf_Internal_Rela *));
212
213static boolean elf64_hppa_dynamic_symbol_p
214 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
215
216static boolean elf64_hppa_mark_exported_functions
217 PARAMS ((struct elf_link_hash_entry *, PTR));
218
219static boolean elf64_hppa_finalize_opd
220 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
221
222static boolean elf64_hppa_finalize_dlt
223 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
224
225static boolean allocate_global_data_dlt
226 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
227
228static boolean allocate_global_data_plt
229 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
230
231static boolean allocate_global_data_stub
232 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
233
234static boolean allocate_global_data_opd
235 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
236
237static boolean get_reloc_section
238 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
239
240static boolean count_dyn_reloc
241 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
242 int, asection *, int, bfd_vma, bfd_vma));
243
244static boolean allocate_dynrel_entries
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
247static boolean elf64_hppa_finalize_dynreloc
248 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
249
250static boolean get_opd
251 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
252
253static boolean get_plt
254 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
255
256static boolean get_dlt
257 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
258
259static boolean get_stub
260 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
261
262static boolean
263elf64_hppa_dyn_hash_table_init (ht, abfd, new)
264 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 265 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
266 new_hash_entry_func new;
267{
268 memset (ht, 0, sizeof(*ht));
269 return bfd_hash_table_init (&ht->root, new);
270}
271
272static struct bfd_hash_entry*
273elf64_hppa_new_dyn_hash_entry (entry, table, string)
274 struct bfd_hash_entry *entry;
275 struct bfd_hash_table *table;
276 const char *string;
277{
278 struct elf64_hppa_dyn_hash_entry *ret;
279 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
280
281 /* Allocate the structure if it has not already been allocated by a
282 subclass. */
283 if (!ret)
284 ret = bfd_hash_allocate (table, sizeof (*ret));
285
286 if (!ret)
287 return 0;
288
289 /* Initialize our local data. All zeros, and definitely easier
290 than setting 8 bit fields. */
291 memset (ret, 0, sizeof(*ret));
292
293 /* Call the allocation method of the superclass. */
294 ret = ((struct elf64_hppa_dyn_hash_entry *)
295 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
296
297 return &ret->root;
298}
299
300/* Create the derived linker hash table. The PA64 ELF port uses this
301 derived hash table to keep information specific to the PA ElF
302 linker (without using static variables). */
303
304static struct bfd_link_hash_table*
305elf64_hppa_hash_table_create (abfd)
306 bfd *abfd;
307{
308 struct elf64_hppa_link_hash_table *ret;
309
310 ret = bfd_zalloc (abfd, sizeof (*ret));
311 if (!ret)
312 return 0;
313 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
314 _bfd_elf_link_hash_newfunc))
315 {
316 bfd_release (abfd, ret);
317 return 0;
318 }
319
320 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
321 elf64_hppa_new_dyn_hash_entry))
322 return 0;
323 return &ret->root.root;
324}
325
326/* Look up an entry in a PA64 ELF linker hash table. */
327
328static struct elf64_hppa_dyn_hash_entry *
329elf64_hppa_dyn_hash_lookup(table, string, create, copy)
330 struct elf64_hppa_dyn_hash_table *table;
331 const char *string;
332 boolean create, copy;
333{
334 return ((struct elf64_hppa_dyn_hash_entry *)
335 bfd_hash_lookup (&table->root, string, create, copy));
336}
337
338/* Traverse a PA64 ELF linker hash table. */
339
340static void
341elf64_hppa_dyn_hash_traverse (table, func, info)
342 struct elf64_hppa_dyn_hash_table *table;
343 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
344 PTR info;
345{
346 (bfd_hash_traverse
347 (&table->root,
348 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
349 info));
350}
351\f
352/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
353
354 Additionally we set the default architecture and machine. */
355static boolean
356elf64_hppa_object_p (abfd)
357 bfd *abfd;
358{
359 /* Set the right machine number for an HPPA ELF file. */
360 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
361}
362
363/* Given section type (hdr->sh_type), return a boolean indicating
364 whether or not the section is an elf64-hppa specific section. */
365static boolean
366elf64_hppa_section_from_shdr (abfd, hdr, name)
367 bfd *abfd;
368 Elf64_Internal_Shdr *hdr;
369 char *name;
370{
371 asection *newsect;
372
373 switch (hdr->sh_type)
374 {
375 case SHT_PARISC_EXT:
376 if (strcmp (name, ".PARISC.archext") != 0)
377 return false;
378 break;
379 case SHT_PARISC_UNWIND:
380 if (strcmp (name, ".PARISC.unwind") != 0)
381 return false;
382 break;
383 case SHT_PARISC_DOC:
384 case SHT_PARISC_ANNOT:
385 default:
386 return false;
387 }
388
389 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
390 return false;
391 newsect = hdr->bfd_section;
392
393 return true;
394}
395
396
397/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
398 name describes what was once potentially anonymous memory. We
399 allocate memory as necessary, possibly reusing PBUF/PLEN. */
400
401static const char *
0ba2a60e
AM
402get_dyn_name (sec, h, rel, pbuf, plen)
403 asection *sec;
15bda425
JL
404 struct elf_link_hash_entry *h;
405 const Elf_Internal_Rela *rel;
406 char **pbuf;
407 size_t *plen;
408{
409 size_t nlen, tlen;
410 char *buf;
411 size_t len;
412
413 if (h && rel->r_addend == 0)
414 return h->root.root.string;
415
416 if (h)
417 nlen = strlen (h->root.root.string);
418 else
0ba2a60e
AM
419 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
420 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
421
422 len = *plen;
423 buf = *pbuf;
424 if (len < tlen)
425 {
426 if (buf)
427 free (buf);
428 *pbuf = buf = malloc (tlen);
429 *plen = len = tlen;
430 if (!buf)
431 return NULL;
432 }
433
434 if (h)
435 {
436 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 437 buf[nlen++] = '+';
15bda425
JL
438 sprintf_vma (buf + nlen, rel->r_addend);
439 }
440 else
441 {
0ba2a60e
AM
442 nlen = sprintf (buf, "%x:%lx",
443 sec->id & 0xffffffff,
444 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
445 if (rel->r_addend)
446 {
447 buf[nlen++] = '+';
448 sprintf_vma (buf + nlen, rel->r_addend);
449 }
450 }
451
452 return buf;
453}
454
455/* SEC is a section containing relocs for an input BFD when linking; return
456 a suitable section for holding relocs in the output BFD for a link. */
457
458static boolean
459get_reloc_section (abfd, hppa_info, sec)
460 bfd *abfd;
461 struct elf64_hppa_link_hash_table *hppa_info;
462 asection *sec;
463{
464 const char *srel_name;
465 asection *srel;
466 bfd *dynobj;
467
468 srel_name = (bfd_elf_string_from_elf_section
469 (abfd, elf_elfheader(abfd)->e_shstrndx,
470 elf_section_data(sec)->rel_hdr.sh_name));
471 if (srel_name == NULL)
472 return false;
473
474 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
475 && strcmp (bfd_get_section_name (abfd, sec),
476 srel_name+5) == 0)
477 || (strncmp (srel_name, ".rel", 4) == 0
478 && strcmp (bfd_get_section_name (abfd, sec),
479 srel_name+4) == 0));
480
481 dynobj = hppa_info->root.dynobj;
482 if (!dynobj)
483 hppa_info->root.dynobj = dynobj = abfd;
484
485 srel = bfd_get_section_by_name (dynobj, srel_name);
486 if (srel == NULL)
487 {
488 srel = bfd_make_section (dynobj, srel_name);
489 if (srel == NULL
490 || !bfd_set_section_flags (dynobj, srel,
491 (SEC_ALLOC
492 | SEC_LOAD
493 | SEC_HAS_CONTENTS
494 | SEC_IN_MEMORY
495 | SEC_LINKER_CREATED
496 | SEC_READONLY))
497 || !bfd_set_section_alignment (dynobj, srel, 3))
498 return false;
499 }
500
501 hppa_info->other_rel_sec = srel;
502 return true;
503}
504
505/* Add a new entry to the list of dynamic relocations against DYN_H.
506
507 We use this to keep a record of all the FPTR relocations against a
508 particular symbol so that we can create FPTR relocations in the
509 output file. */
510
511static boolean
512count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
513 bfd *abfd;
514 struct elf64_hppa_dyn_hash_entry *dyn_h;
515 int type;
516 asection *sec;
517 int sec_symndx;
518 bfd_vma offset;
519 bfd_vma addend;
520{
521 struct elf64_hppa_dyn_reloc_entry *rent;
522
523 rent = (struct elf64_hppa_dyn_reloc_entry *)
524 bfd_alloc (abfd, sizeof (*rent));
525 if (!rent)
526 return false;
527
528 rent->next = dyn_h->reloc_entries;
529 rent->type = type;
530 rent->sec = sec;
531 rent->sec_symndx = sec_symndx;
532 rent->offset = offset;
533 rent->addend = addend;
534 dyn_h->reloc_entries = rent;
535
536 return true;
537}
538
539/* Scan the RELOCS and record the type of dynamic entries that each
540 referenced symbol needs. */
541
542static boolean
543elf64_hppa_check_relocs (abfd, info, sec, relocs)
544 bfd *abfd;
545 struct bfd_link_info *info;
546 asection *sec;
547 const Elf_Internal_Rela *relocs;
548{
549 struct elf64_hppa_link_hash_table *hppa_info;
550 const Elf_Internal_Rela *relend;
551 Elf_Internal_Shdr *symtab_hdr;
552 const Elf_Internal_Rela *rel;
553 asection *dlt, *plt, *stubs;
554 char *buf;
555 size_t buf_len;
556 int sec_symndx;
557
558 if (info->relocateable)
559 return true;
560
561 /* If this is the first dynamic object found in the link, create
562 the special sections required for dynamic linking. */
563 if (! elf_hash_table (info)->dynamic_sections_created)
564 {
565 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
566 return false;
567 }
568
569 hppa_info = elf64_hppa_hash_table (info);
570 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
571
572 /* If necessary, build a new table holding section symbols indices
573 for this BFD. This is disgusting. */
574
575 if (info->shared && hppa_info->section_syms_bfd != abfd)
576 {
0ba2a60e
AM
577 unsigned int i;
578 int highest_shndx;
15bda425
JL
579 Elf_Internal_Sym *local_syms, *isym;
580 Elf64_External_Sym *ext_syms, *esym;
581
582 /* We're done with the old cache of section index to section symbol
583 index information. Free it.
584
585 ?!? Note we leak the last section_syms array. Presumably we
586 could free it in one of the later routines in this file. */
587 if (hppa_info->section_syms)
588 free (hppa_info->section_syms);
589
590 /* Allocate memory for the internal and external symbols. */
591 local_syms
592 = (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
593 * sizeof (Elf_Internal_Sym));
594 if (local_syms == NULL)
595 return false;
596
597 ext_syms
598 = (Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_info
599 * sizeof (Elf64_External_Sym));
600 if (ext_syms == NULL)
601 {
602 free (local_syms);
603 return false;
604 }
605
606 /* Read in the local symbols. */
607 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
608 || bfd_read (ext_syms, 1,
609 (symtab_hdr->sh_info
610 * sizeof (Elf64_External_Sym)), abfd)
611 != (symtab_hdr->sh_info * sizeof (Elf64_External_Sym)))
612 {
613 free (local_syms);
614 free (ext_syms);
615 return false;
616 }
617
618 /* Swap in the local symbols, also record the highest section index
619 referenced by the local symbols. */
620 isym = local_syms;
621 esym = ext_syms;
622 highest_shndx = 0;
623 for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
624 {
625 bfd_elf64_swap_symbol_in (abfd, esym, isym);
626 if (isym->st_shndx > highest_shndx)
627 highest_shndx = isym->st_shndx;
628 }
629
630 /* Now we can free the external symbols. */
631 free (ext_syms);
632
633 /* Allocate an array to hold the section index to section symbol index
634 mapping. Bump by one since we start counting at zero. */
635 highest_shndx++;
636 hppa_info->section_syms = (int *) bfd_malloc (highest_shndx
637 * sizeof (int));
638
639 /* Now walk the local symbols again. If we find a section symbol,
640 record the index of the symbol into the section_syms array. */
641 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
642 {
643 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
644 hppa_info->section_syms[isym->st_shndx] = i;
645 }
646
647 /* We are finished with the local symbols. Get rid of them. */
648 free (local_syms);
649
650 /* Record which BFD we built the section_syms mapping for. */
651 hppa_info->section_syms_bfd = abfd;
652 }
653
654 /* Record the symbol index for this input section. We may need it for
655 relocations when building shared libraries. When not building shared
656 libraries this value is never really used, but assign it to zero to
657 prevent out of bounds memory accesses in other routines. */
658 if (info->shared)
659 {
660 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
661
662 /* If we did not find a section symbol for this section, then
663 something went terribly wrong above. */
664 if (sec_symndx == -1)
665 return false;
666
667 sec_symndx = hppa_info->section_syms[sec_symndx];
668 }
669 else
670 sec_symndx = 0;
671
672 dlt = plt = stubs = NULL;
673 buf = NULL;
674 buf_len = 0;
675
676 relend = relocs + sec->reloc_count;
677 for (rel = relocs; rel < relend; ++rel)
678 {
679 enum {
680 NEED_DLT = 1,
681 NEED_PLT = 2,
682 NEED_STUB = 4,
683 NEED_OPD = 8,
684 NEED_DYNREL = 16,
685 };
686
687 struct elf_link_hash_entry *h = NULL;
688 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
689 struct elf64_hppa_dyn_hash_entry *dyn_h;
690 int need_entry;
691 const char *addr_name;
692 boolean maybe_dynamic;
693 int dynrel_type = R_PARISC_NONE;
694 static reloc_howto_type *howto;
695
696 if (r_symndx >= symtab_hdr->sh_info)
697 {
698 /* We're dealing with a global symbol -- find its hash entry
699 and mark it as being referenced. */
700 long indx = r_symndx - symtab_hdr->sh_info;
701 h = elf_sym_hashes (abfd)[indx];
702 while (h->root.type == bfd_link_hash_indirect
703 || h->root.type == bfd_link_hash_warning)
704 h = (struct elf_link_hash_entry *) h->root.u.i.link;
705
706 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
707 }
708
709 /* We can only get preliminary data on whether a symbol is
710 locally or externally defined, as not all of the input files
711 have yet been processed. Do something with what we know, as
712 this may help reduce memory usage and processing time later. */
713 maybe_dynamic = false;
714 if (h && ((info->shared && ! info->symbolic)
715 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
716 || h->root.type == bfd_link_hash_defweak))
717 maybe_dynamic = true;
718
719 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
720 need_entry = 0;
721 switch (howto->type)
722 {
723 /* These are simple indirect references to symbols through the
724 DLT. We need to create a DLT entry for any symbols which
725 appears in a DLTIND relocation. */
726 case R_PARISC_DLTIND21L:
727 case R_PARISC_DLTIND14R:
728 case R_PARISC_DLTIND14F:
729 case R_PARISC_DLTIND14WR:
730 case R_PARISC_DLTIND14DR:
731 need_entry = NEED_DLT;
732 break;
733
734 /* ?!? These need a DLT entry. But I have no idea what to do with
735 the "link time TP value. */
736 case R_PARISC_LTOFF_TP21L:
737 case R_PARISC_LTOFF_TP14R:
738 case R_PARISC_LTOFF_TP14F:
739 case R_PARISC_LTOFF_TP64:
740 case R_PARISC_LTOFF_TP14WR:
741 case R_PARISC_LTOFF_TP14DR:
742 case R_PARISC_LTOFF_TP16F:
743 case R_PARISC_LTOFF_TP16WF:
744 case R_PARISC_LTOFF_TP16DF:
745 need_entry = NEED_DLT;
746 break;
747
748 /* These are function calls. Depending on their precise target we
749 may need to make a stub for them. The stub uses the PLT, so we
750 need to create PLT entries for these symbols too. */
751 case R_PARISC_PCREL17F:
752 case R_PARISC_PCREL22F:
753 case R_PARISC_PCREL32:
754 case R_PARISC_PCREL64:
755 case R_PARISC_PCREL21L:
756 case R_PARISC_PCREL17R:
757 case R_PARISC_PCREL17C:
758 case R_PARISC_PCREL14R:
759 case R_PARISC_PCREL14F:
760 case R_PARISC_PCREL22C:
761 case R_PARISC_PCREL14WR:
762 case R_PARISC_PCREL14DR:
763 case R_PARISC_PCREL16F:
764 case R_PARISC_PCREL16WF:
765 case R_PARISC_PCREL16DF:
766 need_entry = (NEED_PLT | NEED_STUB);
767 break;
768
769 case R_PARISC_PLTOFF21L:
770 case R_PARISC_PLTOFF14R:
771 case R_PARISC_PLTOFF14F:
772 case R_PARISC_PLTOFF14WR:
773 case R_PARISC_PLTOFF14DR:
774 case R_PARISC_PLTOFF16F:
775 case R_PARISC_PLTOFF16WF:
776 case R_PARISC_PLTOFF16DF:
777 need_entry = (NEED_PLT);
778 break;
779
780 case R_PARISC_DIR64:
781 if (info->shared || maybe_dynamic)
782 need_entry = (NEED_DYNREL);
783 dynrel_type = R_PARISC_DIR64;
784 break;
785
786 /* This is an indirect reference through the DLT to get the address
787 of a OPD descriptor. Thus we need to make a DLT entry that points
788 to an OPD entry. */
789 case R_PARISC_LTOFF_FPTR21L:
790 case R_PARISC_LTOFF_FPTR14R:
791 case R_PARISC_LTOFF_FPTR14WR:
792 case R_PARISC_LTOFF_FPTR14DR:
793 case R_PARISC_LTOFF_FPTR32:
794 case R_PARISC_LTOFF_FPTR64:
795 case R_PARISC_LTOFF_FPTR16F:
796 case R_PARISC_LTOFF_FPTR16WF:
797 case R_PARISC_LTOFF_FPTR16DF:
798 if (info->shared || maybe_dynamic)
799 need_entry = (NEED_DLT | NEED_OPD);
800 else
801 need_entry = (NEED_DLT | NEED_OPD);
802 dynrel_type = R_PARISC_FPTR64;
803 break;
804
805 /* This is a simple OPD entry. */
806 case R_PARISC_FPTR64:
807 if (info->shared || maybe_dynamic)
808 need_entry = (NEED_OPD | NEED_DYNREL);
809 else
810 need_entry = (NEED_OPD);
811 dynrel_type = R_PARISC_FPTR64;
812 break;
813
814 /* Add more cases as needed. */
815 }
816
817 if (!need_entry)
818 continue;
819
820 /* Collect a canonical name for this address. */
0ba2a60e 821 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
822
823 /* Collect the canonical entry data for this address. */
824 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
825 addr_name, true, true);
826 BFD_ASSERT (dyn_h);
827
828 /* Stash away enough information to be able to find this symbol
829 regardless of whether or not it is local or global. */
830 dyn_h->h = h;
831 dyn_h->owner = abfd;
832 dyn_h->sym_indx = r_symndx;
833
834 /* ?!? We may need to do some error checking in here. */
835 /* Create what's needed. */
836 if (need_entry & NEED_DLT)
837 {
838 if (! hppa_info->dlt_sec
839 && ! get_dlt (abfd, info, hppa_info))
840 goto err_out;
841 dyn_h->want_dlt = 1;
842 }
843
844 if (need_entry & NEED_PLT)
845 {
846 if (! hppa_info->plt_sec
847 && ! get_plt (abfd, info, hppa_info))
848 goto err_out;
849 dyn_h->want_plt = 1;
850 }
851
852 if (need_entry & NEED_STUB)
853 {
854 if (! hppa_info->stub_sec
855 && ! get_stub (abfd, info, hppa_info))
856 goto err_out;
857 dyn_h->want_stub = 1;
858 }
859
860 if (need_entry & NEED_OPD)
861 {
862 if (! hppa_info->opd_sec
863 && ! get_opd (abfd, info, hppa_info))
864 goto err_out;
865
866 dyn_h->want_opd = 1;
867
868 /* FPTRs are not allocated by the dynamic linker for PA64, though
869 it is possible that will change in the future. */
870
871 /* This could be a local function that had its address taken, in
872 which case H will be NULL. */
873 if (h)
874 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
875 }
876
877 /* Add a new dynamic relocation to the chain of dynamic
878 relocations for this symbol. */
879 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
880 {
881 if (! hppa_info->other_rel_sec
882 && ! get_reloc_section (abfd, hppa_info, sec))
883 goto err_out;
884
885 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
886 sec_symndx, rel->r_offset, rel->r_addend))
887 goto err_out;
888
889 /* If we are building a shared library and we just recorded
890 a dynamic R_PARISC_FPTR64 relocation, then make sure the
891 section symbol for this section ends up in the dynamic
892 symbol table. */
893 if (info->shared && dynrel_type == R_PARISC_FPTR64
894 && ! (_bfd_elf64_link_record_local_dynamic_symbol
895 (info, abfd, sec_symndx)))
896 return false;
897 }
898 }
899
900 if (buf)
901 free (buf);
902 return true;
903
904 err_out:
905 if (buf)
906 free (buf);
907 return false;
908}
909
910struct elf64_hppa_allocate_data
911{
912 struct bfd_link_info *info;
913 bfd_size_type ofs;
914};
915
916/* Should we do dynamic things to this symbol? */
917
918static boolean
919elf64_hppa_dynamic_symbol_p (h, info)
920 struct elf_link_hash_entry *h;
921 struct bfd_link_info *info;
922{
923 if (h == NULL)
924 return false;
925
926 while (h->root.type == bfd_link_hash_indirect
927 || h->root.type == bfd_link_hash_warning)
928 h = (struct elf_link_hash_entry *) h->root.u.i.link;
929
930 if (h->dynindx == -1)
931 return false;
932
933 if (h->root.type == bfd_link_hash_undefweak
934 || h->root.type == bfd_link_hash_defweak)
935 return true;
936
937 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
938 return false;
939
940 if ((info->shared && !info->symbolic)
941 || ((h->elf_link_hash_flags
942 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
943 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
944 return true;
945
946 return false;
947}
948
949/* Mark all funtions exported by this file so that we can later allocate
950 entries in .opd for them. */
951
952static boolean
953elf64_hppa_mark_exported_functions (h, data)
954 struct elf_link_hash_entry *h;
955 PTR data;
956{
957 struct bfd_link_info *info = (struct bfd_link_info *)data;
958 struct elf64_hppa_link_hash_table *hppa_info;
959
960 hppa_info = elf64_hppa_hash_table (info);
961
962 if (h
963 && (h->root.type == bfd_link_hash_defined
964 || h->root.type == bfd_link_hash_defweak)
965 && h->root.u.def.section->output_section != NULL
966 && h->type == STT_FUNC)
967 {
968 struct elf64_hppa_dyn_hash_entry *dyn_h;
969
970 /* Add this symbol to the PA64 linker hash table. */
971 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
972 h->root.root.string, true, true);
973 BFD_ASSERT (dyn_h);
974 dyn_h->h = h;
975
976 if (! hppa_info->opd_sec
977 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
978 return false;
979
980 dyn_h->want_opd = 1;
981 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
982 }
983
984 return true;
985}
986
987/* Allocate space for a DLT entry. */
988
989static boolean
990allocate_global_data_dlt (dyn_h, data)
991 struct elf64_hppa_dyn_hash_entry *dyn_h;
992 PTR data;
993{
994 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
995
996 if (dyn_h->want_dlt)
997 {
998 struct elf_link_hash_entry *h = dyn_h->h;
999
1000 if (x->info->shared)
1001 {
1002 /* Possibly add the symbol to the local dynamic symbol
1003 table since we might need to create a dynamic relocation
1004 against it. */
1005 if (! h
1006 || (h && h->dynindx == -1))
1007 {
1008 bfd *owner;
1009 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1010
1011 if (!_bfd_elf64_link_record_local_dynamic_symbol
1012 (x->info, owner, dyn_h->sym_indx))
1013 return false;
1014 }
1015 }
1016
1017 dyn_h->dlt_offset = x->ofs;
1018 x->ofs += DLT_ENTRY_SIZE;
1019 }
1020 return true;
1021}
1022
1023/* Allocate space for a DLT.PLT entry. */
1024
1025static boolean
1026allocate_global_data_plt (dyn_h, data)
1027 struct elf64_hppa_dyn_hash_entry *dyn_h;
1028 PTR data;
1029{
1030 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1031
1032 if (dyn_h->want_plt
1033 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1034 && !((dyn_h->h->root.type == bfd_link_hash_defined
1035 || dyn_h->h->root.type == bfd_link_hash_defweak)
1036 && dyn_h->h->root.u.def.section->output_section != NULL))
1037 {
1038 dyn_h->plt_offset = x->ofs;
1039 x->ofs += PLT_ENTRY_SIZE;
1040 if (dyn_h->plt_offset < 0x2000)
1041 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1042 }
1043 else
1044 dyn_h->want_plt = 0;
1045
1046 return true;
1047}
1048
1049/* Allocate space for a STUB entry. */
1050
1051static boolean
1052allocate_global_data_stub (dyn_h, data)
1053 struct elf64_hppa_dyn_hash_entry *dyn_h;
1054 PTR data;
1055{
1056 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1057
1058 if (dyn_h->want_stub
1059 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1060 && !((dyn_h->h->root.type == bfd_link_hash_defined
1061 || dyn_h->h->root.type == bfd_link_hash_defweak)
1062 && dyn_h->h->root.u.def.section->output_section != NULL))
1063 {
1064 dyn_h->stub_offset = x->ofs;
1065 x->ofs += sizeof (plt_stub);
1066 }
1067 else
1068 dyn_h->want_stub = 0;
1069 return true;
1070}
1071
1072/* Allocate space for a FPTR entry. */
1073
1074static boolean
1075allocate_global_data_opd (dyn_h, data)
1076 struct elf64_hppa_dyn_hash_entry *dyn_h;
1077 PTR data;
1078{
1079 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1080
1081 if (dyn_h->want_opd)
1082 {
1083 struct elf_link_hash_entry *h = dyn_h->h;
1084
1085 if (h)
1086 while (h->root.type == bfd_link_hash_indirect
1087 || h->root.type == bfd_link_hash_warning)
1088 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1089
1090 /* We never need an opd entry for a symbol which is not
1091 defined by this output file. */
1092 if (h && h->root.type == bfd_link_hash_undefined)
1093 dyn_h->want_opd = 0;
1094
1095 /* If we are creating a shared library, took the address of a local
1096 function or might export this function from this object file, then
1097 we have to create an opd descriptor. */
1098 else if (x->info->shared
1099 || h == NULL
1100 || h->dynindx == -1
1101 || ((h->root.type == bfd_link_hash_defined
1102 || h->root.type == bfd_link_hash_defweak)
1103 && h->root.u.def.section->output_section != NULL))
1104 {
1105 /* If we are creating a shared library, then we will have to
1106 create a runtime relocation for the symbol to properly
1107 initialize the .opd entry. Make sure the symbol gets
1108 added to the dynamic symbol table. */
1109 if (x->info->shared
1110 && (h == NULL || (h->dynindx == -1)))
1111 {
1112 bfd *owner;
1113 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1114
1115 if (!_bfd_elf64_link_record_local_dynamic_symbol
1116 (x->info, owner, dyn_h->sym_indx))
1117 return false;
1118 }
1119
1120 /* This may not be necessary or desirable anymore now that
1121 we have some support for dealing with section symbols
1122 in dynamic relocs. But name munging does make the result
1123 much easier to debug. ie, the EPLT reloc will reference
1124 a symbol like .foobar, instead of .text + offset. */
1125 if (x->info->shared && h)
1126 {
1127 char *new_name;
1128 struct elf_link_hash_entry *nh;
1129
1130 new_name = alloca (strlen (h->root.root.string) + 2);
1131 new_name[0] = '.';
1132 strcpy (new_name + 1, h->root.root.string);
1133
1134 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1135 new_name, true, true, true);
1136
1137 nh->root.type = h->root.type;
1138 nh->root.u.def.value = h->root.u.def.value;
1139 nh->root.u.def.section = h->root.u.def.section;
1140
1141 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1142 return false;
1143
1144 }
1145 dyn_h->opd_offset = x->ofs;
1146 x->ofs += OPD_ENTRY_SIZE;
1147 }
1148
1149 /* Otherwise we do not need an opd entry. */
1150 else
1151 dyn_h->want_opd = 0;
1152 }
1153 return true;
1154}
1155
1156/* HP requires the EI_OSABI field to be filled in. The assignment to
1157 EI_ABIVERSION may not be strictly necessary. */
1158
1159static void
1160elf64_hppa_post_process_headers (abfd, link_info)
1161 bfd * abfd;
1162 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1163{
1164 Elf_Internal_Ehdr * i_ehdrp;
1165
1166 i_ehdrp = elf_elfheader (abfd);
1167
1168 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1169 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1170}
1171
1172/* Create function descriptor section (.opd). This section is called .opd
1173 because it contains "official prodecure descriptors". The "official"
1174 refers to the fact that these descriptors are used when taking the address
1175 of a procedure, thus ensuring a unique address for each procedure. */
1176
1177static boolean
1178get_opd (abfd, info, hppa_info)
1179 bfd *abfd;
edd21aca 1180 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1181 struct elf64_hppa_link_hash_table *hppa_info;
1182{
1183 asection *opd;
1184 bfd *dynobj;
1185
1186 opd = hppa_info->opd_sec;
1187 if (!opd)
1188 {
1189 dynobj = hppa_info->root.dynobj;
1190 if (!dynobj)
1191 hppa_info->root.dynobj = dynobj = abfd;
1192
1193 opd = bfd_make_section (dynobj, ".opd");
1194 if (!opd
1195 || !bfd_set_section_flags (dynobj, opd,
1196 (SEC_ALLOC
1197 | SEC_LOAD
1198 | SEC_HAS_CONTENTS
1199 | SEC_IN_MEMORY
1200 | SEC_LINKER_CREATED))
1201 || !bfd_set_section_alignment (abfd, opd, 3))
1202 {
1203 BFD_ASSERT (0);
1204 return false;
1205 }
1206
1207 hppa_info->opd_sec = opd;
1208 }
1209
1210 return true;
1211}
1212
1213/* Create the PLT section. */
1214
1215static boolean
1216get_plt (abfd, info, hppa_info)
1217 bfd *abfd;
edd21aca 1218 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1219 struct elf64_hppa_link_hash_table *hppa_info;
1220{
1221 asection *plt;
1222 bfd *dynobj;
1223
1224 plt = hppa_info->plt_sec;
1225 if (!plt)
1226 {
1227 dynobj = hppa_info->root.dynobj;
1228 if (!dynobj)
1229 hppa_info->root.dynobj = dynobj = abfd;
1230
1231 plt = bfd_make_section (dynobj, ".plt");
1232 if (!plt
1233 || !bfd_set_section_flags (dynobj, plt,
1234 (SEC_ALLOC
1235 | SEC_LOAD
1236 | SEC_HAS_CONTENTS
1237 | SEC_IN_MEMORY
1238 | SEC_LINKER_CREATED))
1239 || !bfd_set_section_alignment (abfd, plt, 3))
1240 {
1241 BFD_ASSERT (0);
1242 return false;
1243 }
1244
1245 hppa_info->plt_sec = plt;
1246 }
1247
1248 return true;
1249}
1250
1251/* Create the DLT section. */
1252
1253static boolean
1254get_dlt (abfd, info, hppa_info)
1255 bfd *abfd;
edd21aca 1256 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1257 struct elf64_hppa_link_hash_table *hppa_info;
1258{
1259 asection *dlt;
1260 bfd *dynobj;
1261
1262 dlt = hppa_info->dlt_sec;
1263 if (!dlt)
1264 {
1265 dynobj = hppa_info->root.dynobj;
1266 if (!dynobj)
1267 hppa_info->root.dynobj = dynobj = abfd;
1268
1269 dlt = bfd_make_section (dynobj, ".dlt");
1270 if (!dlt
1271 || !bfd_set_section_flags (dynobj, dlt,
1272 (SEC_ALLOC
1273 | SEC_LOAD
1274 | SEC_HAS_CONTENTS
1275 | SEC_IN_MEMORY
1276 | SEC_LINKER_CREATED))
1277 || !bfd_set_section_alignment (abfd, dlt, 3))
1278 {
1279 BFD_ASSERT (0);
1280 return false;
1281 }
1282
1283 hppa_info->dlt_sec = dlt;
1284 }
1285
1286 return true;
1287}
1288
1289/* Create the stubs section. */
1290
1291static boolean
1292get_stub (abfd, info, hppa_info)
1293 bfd *abfd;
edd21aca 1294 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1295 struct elf64_hppa_link_hash_table *hppa_info;
1296{
1297 asection *stub;
1298 bfd *dynobj;
1299
1300 stub = hppa_info->stub_sec;
1301 if (!stub)
1302 {
1303 dynobj = hppa_info->root.dynobj;
1304 if (!dynobj)
1305 hppa_info->root.dynobj = dynobj = abfd;
1306
1307 stub = bfd_make_section (dynobj, ".stub");
1308 if (!stub
1309 || !bfd_set_section_flags (dynobj, stub,
1310 (SEC_ALLOC
1311 | SEC_LOAD
1312 | SEC_HAS_CONTENTS
1313 | SEC_IN_MEMORY
1314 | SEC_READONLY
1315 | SEC_LINKER_CREATED))
1316 || !bfd_set_section_alignment (abfd, stub, 3))
1317 {
1318 BFD_ASSERT (0);
1319 return false;
1320 }
1321
1322 hppa_info->stub_sec = stub;
1323 }
1324
1325 return true;
1326}
1327
1328/* Create sections necessary for dynamic linking. This is only a rough
1329 cut and will likely change as we learn more about the somewhat
1330 unusual dynamic linking scheme HP uses.
1331
1332 .stub:
1333 Contains code to implement cross-space calls. The first time one
1334 of the stubs is used it will call into the dynamic linker, later
1335 calls will go straight to the target.
1336
1337 The only stub we support right now looks like
1338
1339 ldd OFFSET(%dp),%r1
1340 bve %r0(%r1)
1341 ldd OFFSET+8(%dp),%dp
1342
1343 Other stubs may be needed in the future. We may want the remove
1344 the break/nop instruction. It is only used right now to keep the
1345 offset of a .plt entry and a .stub entry in sync.
1346
1347 .dlt:
1348 This is what most people call the .got. HP used a different name.
1349 Losers.
1350
1351 .rela.dlt:
1352 Relocations for the DLT.
1353
1354 .plt:
1355 Function pointers as address,gp pairs.
1356
1357 .rela.plt:
1358 Should contain dynamic IPLT (and EPLT?) relocations.
1359
1360 .opd:
1361 FPTRS
1362
1363 .rela.opd:
1364 EPLT relocations for symbols exported from shared libraries. */
1365
1366static boolean
1367elf64_hppa_create_dynamic_sections (abfd, info)
1368 bfd *abfd;
1369 struct bfd_link_info *info;
1370{
1371 asection *s;
1372
1373 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1374 return false;
1375
1376 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1377 return false;
1378
1379 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1380 return false;
1381
1382 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1383 return false;
1384
1385 s = bfd_make_section(abfd, ".rela.dlt");
1386 if (s == NULL
1387 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1388 | SEC_HAS_CONTENTS
1389 | SEC_IN_MEMORY
1390 | SEC_READONLY
1391 | SEC_LINKER_CREATED))
1392 || !bfd_set_section_alignment (abfd, s, 3))
1393 return false;
1394 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1395
1396 s = bfd_make_section(abfd, ".rela.plt");
1397 if (s == NULL
1398 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1399 | SEC_HAS_CONTENTS
1400 | SEC_IN_MEMORY
1401 | SEC_READONLY
1402 | SEC_LINKER_CREATED))
1403 || !bfd_set_section_alignment (abfd, s, 3))
1404 return false;
1405 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1406
1407 s = bfd_make_section(abfd, ".rela.data");
1408 if (s == NULL
1409 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1410 | SEC_HAS_CONTENTS
1411 | SEC_IN_MEMORY
1412 | SEC_READONLY
1413 | SEC_LINKER_CREATED))
1414 || !bfd_set_section_alignment (abfd, s, 3))
1415 return false;
1416 elf64_hppa_hash_table (info)->other_rel_sec = s;
1417
1418 s = bfd_make_section(abfd, ".rela.opd");
1419 if (s == NULL
1420 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1421 | SEC_HAS_CONTENTS
1422 | SEC_IN_MEMORY
1423 | SEC_READONLY
1424 | SEC_LINKER_CREATED))
1425 || !bfd_set_section_alignment (abfd, s, 3))
1426 return false;
1427 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1428
1429 return true;
1430}
1431
1432/* Allocate dynamic relocations for those symbols that turned out
1433 to be dynamic. */
1434
1435static boolean
1436allocate_dynrel_entries (dyn_h, data)
1437 struct elf64_hppa_dyn_hash_entry *dyn_h;
1438 PTR data;
1439{
1440 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1441 struct elf64_hppa_link_hash_table *hppa_info;
1442 struct elf64_hppa_dyn_reloc_entry *rent;
1443 boolean dynamic_symbol, shared;
1444
1445 hppa_info = elf64_hppa_hash_table (x->info);
1446 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1447 shared = x->info->shared;
1448
1449 /* We may need to allocate relocations for a non-dynamic symbol
1450 when creating a shared library. */
1451 if (!dynamic_symbol && !shared)
1452 return true;
1453
1454 /* Take care of the normal data relocations. */
1455
1456 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1457 {
1458 switch (rent->type)
1459 {
1460 case R_PARISC_FPTR64:
1461 /* Allocate one iff we are not building a shared library and
1462 !want_opd, which by this point will be true only if we're
1463 actually allocating one statically in the main executable. */
1464 if (!x->info->shared && dyn_h->want_opd)
1465 continue;
1466 break;
1467 }
1468 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1469
1470 /* Make sure this symbol gets into the dynamic symbol table if it is
1471 not already recorded. ?!? This should not be in the loop since
1472 the symbol need only be added once. */
1473 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1474 if (!_bfd_elf64_link_record_local_dynamic_symbol
1475 (x->info, rent->sec->owner, dyn_h->sym_indx))
1476 return false;
1477 }
1478
1479 /* Take care of the GOT and PLT relocations. */
1480
1481 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1482 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1483
1484 /* If we are building a shared library, then every symbol that has an
1485 opd entry will need an EPLT relocation to relocate the symbol's address
1486 and __gp value based on the runtime load address. */
1487 if (shared && dyn_h->want_opd)
1488 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1489
1490 if (dyn_h->want_plt && dynamic_symbol)
1491 {
1492 bfd_size_type t = 0;
1493
1494 /* Dynamic symbols get one IPLT relocation. Local symbols in
1495 shared libraries get two REL relocations. Local symbols in
1496 main applications get nothing. */
1497 if (dynamic_symbol)
1498 t = sizeof (Elf64_External_Rela);
1499 else if (shared)
1500 t = 2 * sizeof (Elf64_External_Rela);
1501
1502 hppa_info->plt_rel_sec->_raw_size += t;
1503 }
1504
1505 return true;
1506}
1507
1508/* Adjust a symbol defined by a dynamic object and referenced by a
1509 regular object. */
1510
1511static boolean
1512elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1513 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1514 struct elf_link_hash_entry *h;
1515{
1516 /* ??? Undefined symbols with PLT entries should be re-defined
1517 to be the PLT entry. */
1518
1519 /* If this is a weak symbol, and there is a real definition, the
1520 processor independent code will have arranged for us to see the
1521 real definition first, and we can just use the same value. */
1522 if (h->weakdef != NULL)
1523 {
1524 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1525 || h->weakdef->root.type == bfd_link_hash_defweak);
1526 h->root.u.def.section = h->weakdef->root.u.def.section;
1527 h->root.u.def.value = h->weakdef->root.u.def.value;
1528 return true;
1529 }
1530
1531 /* If this is a reference to a symbol defined by a dynamic object which
1532 is not a function, we might allocate the symbol in our .dynbss section
1533 and allocate a COPY dynamic relocation.
1534
1535 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1536 of hackery. */
1537
1538 return true;
1539}
1540
1541/* Set the final sizes of the dynamic sections and allocate memory for
1542 the contents of our special sections. */
1543
1544static boolean
1545elf64_hppa_size_dynamic_sections (output_bfd, info)
1546 bfd *output_bfd;
1547 struct bfd_link_info *info;
1548{
1549 bfd *dynobj;
1550 asection *s;
1551 boolean plt;
1552 boolean relocs;
1553 boolean reltext;
15bda425
JL
1554 struct elf64_hppa_allocate_data data;
1555 struct elf64_hppa_link_hash_table *hppa_info;
1556
1557 hppa_info = elf64_hppa_hash_table (info);
1558
1559 dynobj = elf_hash_table (info)->dynobj;
1560 BFD_ASSERT (dynobj != NULL);
1561
1562 if (elf_hash_table (info)->dynamic_sections_created)
1563 {
1564 /* Set the contents of the .interp section to the interpreter. */
1565 if (! info->shared)
1566 {
1567 s = bfd_get_section_by_name (dynobj, ".interp");
1568 BFD_ASSERT (s != NULL);
1569 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1570 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1571 }
1572 }
1573 else
1574 {
1575 /* We may have created entries in the .rela.got section.
1576 However, if we are not creating the dynamic sections, we will
1577 not actually use these entries. Reset the size of .rela.dlt,
1578 which will cause it to get stripped from the output file
1579 below. */
1580 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1581 if (s != NULL)
1582 s->_raw_size = 0;
1583 }
1584
1585 /* Allocate the GOT entries. */
1586
1587 data.info = info;
1588 if (elf64_hppa_hash_table (info)->dlt_sec)
1589 {
1590 data.ofs = 0x0;
1591 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1592 allocate_global_data_dlt, &data);
1593 hppa_info->dlt_sec->_raw_size = data.ofs;
1594
1595 data.ofs = 0x0;
1596 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1597 allocate_global_data_plt, &data);
1598 hppa_info->plt_sec->_raw_size = data.ofs;
1599
1600 data.ofs = 0x0;
1601 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1602 allocate_global_data_stub, &data);
1603 hppa_info->stub_sec->_raw_size = data.ofs;
1604 }
1605
1606 /* Mark each function this program exports so that we will allocate
1607 space in the .opd section for each function's FPTR.
1608
1609 We have to traverse the main linker hash table since we have to
1610 find functions which may not have been mentioned in any relocs. */
1611 elf_link_hash_traverse (elf_hash_table (info),
1612 elf64_hppa_mark_exported_functions,
1613 info);
1614
1615 /* Allocate space for entries in the .opd section. */
1616 if (elf64_hppa_hash_table (info)->opd_sec)
1617 {
1618 data.ofs = 0;
1619 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1620 allocate_global_data_opd, &data);
1621 hppa_info->opd_sec->_raw_size = data.ofs;
1622 }
1623
1624 /* Now allocate space for dynamic relocations, if necessary. */
1625 if (hppa_info->root.dynamic_sections_created)
1626 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1627 allocate_dynrel_entries, &data);
1628
1629 /* The sizes of all the sections are set. Allocate memory for them. */
1630 plt = false;
1631 relocs = false;
1632 reltext = false;
1633 for (s = dynobj->sections; s != NULL; s = s->next)
1634 {
1635 const char *name;
1636 boolean strip;
1637
1638 if ((s->flags & SEC_LINKER_CREATED) == 0)
1639 continue;
1640
1641 /* It's OK to base decisions on the section name, because none
1642 of the dynobj section names depend upon the input files. */
1643 name = bfd_get_section_name (dynobj, s);
1644
1645 strip = 0;
1646
1647 if (strcmp (name, ".plt") == 0)
1648 {
1649 if (s->_raw_size == 0)
1650 {
1651 /* Strip this section if we don't need it; see the
1652 comment below. */
1653 strip = true;
1654 }
1655 else
1656 {
1657 /* Remember whether there is a PLT. */
1658 plt = true;
1659 }
1660 }
1661 else if (strcmp (name, ".dlt") == 0)
1662 {
1663 if (s->_raw_size == 0)
1664 {
1665 /* Strip this section if we don't need it; see the
1666 comment below. */
1667 strip = true;
1668 }
1669 }
1670 else if (strcmp (name, ".opd") == 0)
1671 {
1672 if (s->_raw_size == 0)
1673 {
1674 /* Strip this section if we don't need it; see the
1675 comment below. */
1676 strip = true;
1677 }
1678 }
1679 else if (strncmp (name, ".rela", 4) == 0)
1680 {
1681 if (s->_raw_size == 0)
1682 {
1683 /* If we don't need this section, strip it from the
1684 output file. This is mostly to handle .rela.bss and
1685 .rela.plt. We must create both sections in
1686 create_dynamic_sections, because they must be created
1687 before the linker maps input sections to output
1688 sections. The linker does that before
1689 adjust_dynamic_symbol is called, and it is that
1690 function which decides whether anything needs to go
1691 into these sections. */
1692 strip = true;
1693 }
1694 else
1695 {
1696 asection *target;
1697
1698 /* Remember whether there are any reloc sections other
1699 than .rela.plt. */
1700 if (strcmp (name, ".rela.plt") != 0)
1701 {
1702 const char *outname;
1703
1704 relocs = true;
1705
1706 /* If this relocation section applies to a read only
1707 section, then we probably need a DT_TEXTREL
1708 entry. The entries in the .rela.plt section
1709 really apply to the .got section, which we
1710 created ourselves and so know is not readonly. */
1711 outname = bfd_get_section_name (output_bfd,
1712 s->output_section);
1713 target = bfd_get_section_by_name (output_bfd, outname + 4);
1714 if (target != NULL
1715 && (target->flags & SEC_READONLY) != 0
1716 && (target->flags & SEC_ALLOC) != 0)
1717 reltext = true;
1718 }
1719
1720 /* We use the reloc_count field as a counter if we need
1721 to copy relocs into the output file. */
1722 s->reloc_count = 0;
1723 }
1724 }
1725 else if (strncmp (name, ".dlt", 4) != 0
1726 && strcmp (name, ".stub") != 0
1727 && strcmp (name, ".got") != 0)
1728 {
1729 /* It's not one of our sections, so don't allocate space. */
1730 continue;
1731 }
1732
1733 if (strip)
1734 {
1735 _bfd_strip_section_from_output (info, s);
1736 continue;
1737 }
1738
1739 /* Allocate memory for the section contents if it has not
1740 been allocated already. */
1741 if (s->contents == NULL)
1742 {
1743 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1744 if (s->contents == NULL && s->_raw_size != 0)
1745 return false;
1746 }
1747 }
1748
1749 if (elf_hash_table (info)->dynamic_sections_created)
1750 {
1751 /* Always create a DT_PLTGOT. It actually has nothing to do with
1752 the PLT, it is how we communicate the __gp value of a load
1753 module to the dynamic linker. */
1754 if (! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_FLAGS, 0)
1755 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
1756 return false;
1757
1758 /* Add some entries to the .dynamic section. We fill in the
1759 values later, in elf64_hppa_finish_dynamic_sections, but we
1760 must add the entries now so that we get the correct size for
1761 the .dynamic section. The DT_DEBUG entry is filled in by the
1762 dynamic linker and used by the debugger. */
1763 if (! info->shared)
1764 {
1765 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)
1766 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_HOOK, 0)
1767 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_LOAD_MAP, 0))
1768 return false;
1769 }
1770
1771 if (plt)
1772 {
1773 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1774 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1775 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1776 return false;
1777 }
1778
1779 if (relocs)
1780 {
1781 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1782 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1783 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1784 sizeof (Elf64_External_Rela)))
1785 return false;
1786 }
1787
1788 if (reltext)
1789 {
1790 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1791 return false;
d6cf2879 1792 info->flags |= DF_TEXTREL;
15bda425
JL
1793 }
1794 }
1795
1796 return true;
1797}
1798
1799/* Called after we have output the symbol into the dynamic symbol
1800 table, but before we output the symbol into the normal symbol
1801 table.
1802
1803 For some symbols we had to change their address when outputting
1804 the dynamic symbol table. We undo that change here so that
1805 the symbols have their expected value in the normal symbol
1806 table. Ick. */
1807
1808static boolean
1809elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1810 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1811 struct bfd_link_info *info;
1812 const char *name;
1813 Elf_Internal_Sym *sym;
edd21aca 1814 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1815{
1816 struct elf64_hppa_link_hash_table *hppa_info;
1817 struct elf64_hppa_dyn_hash_entry *dyn_h;
1818
1819 /* We may be called with the file symbol or section symbols.
1820 They never need munging, so it is safe to ignore them. */
1821 if (!name)
1822 return true;
1823
1824 /* Get the PA dyn_symbol (if any) associated with NAME. */
1825 hppa_info = elf64_hppa_hash_table (info);
1826 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1827 name, false, false);
1828
1829 /* Function symbols for which we created .opd entries were munged
1830 by finish_dynamic_symbol and have to be un-munged here. */
1831 if (dyn_h && dyn_h->want_opd)
1832 {
1833 /* Restore the saved value and section index. */
1834 sym->st_value = dyn_h->st_value;
1835 sym->st_shndx = dyn_h->st_shndx;
1836 }
1837
1838 return true;
1839}
1840
1841/* Finish up dynamic symbol handling. We set the contents of various
1842 dynamic sections here. */
1843
1844static boolean
1845elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1846 bfd *output_bfd;
1847 struct bfd_link_info *info;
1848 struct elf_link_hash_entry *h;
1849 Elf_Internal_Sym *sym;
1850{
1851 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1852 struct elf64_hppa_link_hash_table *hppa_info;
1853 struct elf64_hppa_dyn_hash_entry *dyn_h;
1854
1855 hppa_info = elf64_hppa_hash_table (info);
1856 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1857 h->root.root.string, false, false);
1858
1859 stub = hppa_info->stub_sec;
1860 splt = hppa_info->plt_sec;
1861 sdlt = hppa_info->dlt_sec;
1862 sopd = hppa_info->opd_sec;
1863 spltrel = hppa_info->plt_rel_sec;
1864 sdltrel = hppa_info->dlt_rel_sec;
1865
1866 BFD_ASSERT (stub != NULL && splt != NULL
1867 && sopd != NULL && sdlt != NULL)
1868
1869 /* Incredible. It is actually necessary to NOT use the symbol's real
1870 value when building the dynamic symbol table for a shared library.
1871 At least for symbols that refer to functions.
1872
1873 We will store a new value and section index into the symbol long
1874 enough to output it into the dynamic symbol table, then we restore
1875 the original values (in elf64_hppa_link_output_symbol_hook). */
1876 if (dyn_h && dyn_h->want_opd)
1877 {
1878 /* Save away the original value and section index so that we
1879 can restore them later. */
1880 dyn_h->st_value = sym->st_value;
1881 dyn_h->st_shndx = sym->st_shndx;
1882
1883 /* For the dynamic symbol table entry, we want the value to be
1884 address of this symbol's entry within the .opd section. */
1885 sym->st_value = (dyn_h->opd_offset
1886 + sopd->output_offset
1887 + sopd->output_section->vma);
1888 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1889 sopd->output_section);
1890 }
1891
1892 /* Initialize a .plt entry if requested. */
1893 if (dyn_h && dyn_h->want_plt
1894 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1895 {
1896 bfd_vma value;
1897 Elf_Internal_Rela rel;
1898
1899 /* We do not actually care about the value in the PLT entry
1900 if we are creating a shared library and the symbol is
1901 still undefined, we create a dynamic relocation to fill
1902 in the correct value. */
1903 if (info->shared && h->root.type == bfd_link_hash_undefined)
1904 value = 0;
1905 else
1906 value = (h->root.u.def.value + h->root.u.def.section->vma);
1907
1908 /* Fill in the entry in the procedure linkage table.
1909
1910 The format of a plt entry is
1911 <funcaddr> <__gp>.
1912
1913 plt_offset is the offset within the PLT section at which to
1914 install the PLT entry.
1915
1916 We are modifying the in-memory PLT contents here, so we do not add
1917 in the output_offset of the PLT section. */
1918
1919 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1920 value = _bfd_get_gp_value (splt->output_section->owner);
1921 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1922
1923 /* Create a dynamic IPLT relocation for this entry.
1924
1925 We are creating a relocation in the output file's PLT section,
1926 which is included within the DLT secton. So we do need to include
1927 the PLT's output_offset in the computation of the relocation's
1928 address. */
1929 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1930 + splt->output_section->vma);
1931 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1932 rel.r_addend = 0;
1933
1934 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
1935 (((Elf64_External_Rela *)
1936 spltrel->contents)
1937 + spltrel->reloc_count));
1938 spltrel->reloc_count++;
1939 }
1940
1941 /* Initialize an external call stub entry if requested. */
1942 if (dyn_h && dyn_h->want_stub
1943 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1944 {
1945 bfd_vma value;
1946 int insn;
1947
1948 /* Install the generic stub template.
1949
1950 We are modifying the contents of the stub section, so we do not
1951 need to include the stub section's output_offset here. */
1952 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
1953
1954 /* Fix up the first ldd instruction.
1955
1956 We are modifying the contents of the STUB section in memory,
1957 so we do not need to include its output offset in this computation.
1958
1959 Note the plt_offset value is the value of the PLT entry relative to
1960 the start of the PLT section. These instructions will reference
1961 data relative to the value of __gp, which may not necessarily have
1962 the same address as the start of the PLT section.
1963
1964 gp_offset contains the offset of __gp within the PLT section. */
1965 value = dyn_h->plt_offset - hppa_info->gp_offset;
1966
1967 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
1968 insn &= 0xffffc00e;
1969 insn |= ((value & 0x2000) >> 13);
1970 value &= 0x1ff8;
1971 value <<= 1;
1972 bfd_put_32 (stub->owner, (insn | value),
1973 stub->contents + dyn_h->stub_offset);
1974
1975 /* Fix up the second ldd instruction. */
1976 value = dyn_h->plt_offset - hppa_info->gp_offset + 8;
1977
1978 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
1979 insn &= 0xffffc00e;
1980 insn |= ((value & 0x2000) >> 13);
1981 value &= 0x1ff8;
1982 value <<= 1;
1983 bfd_put_32 (stub->owner, (insn | value),
1984 stub->contents + dyn_h->stub_offset + 8);
1985 }
1986
1987 /* Millicode symbols should not be put in the dynamic
1988 symbol table under any circumstances. */
1989 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
1990 h->dynindx = -1;
1991
1992 return true;
1993}
1994
1995/* The .opd section contains FPTRs for each function this file
1996 exports. Initialize the FPTR entries. */
1997
1998static boolean
1999elf64_hppa_finalize_opd (dyn_h, data)
2000 struct elf64_hppa_dyn_hash_entry *dyn_h;
2001 PTR data;
2002{
2003 struct bfd_link_info *info = (struct bfd_link_info *)data;
2004 struct elf64_hppa_link_hash_table *hppa_info;
2005 struct elf_link_hash_entry *h = dyn_h->h;
2006 asection *sopd;
2007 asection *sopdrel;
2008
2009 hppa_info = elf64_hppa_hash_table (info);
2010 sopd = hppa_info->opd_sec;
2011 sopdrel = hppa_info->opd_rel_sec;
2012
2013 if (h && dyn_h && dyn_h->want_opd)
2014 {
2015 bfd_vma value;
2016
2017 /* The first two words of an .opd entry are zero.
2018
2019 We are modifying the contents of the OPD section in memory, so we
2020 do not need to include its output offset in this computation. */
2021 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2022
2023 value = (h->root.u.def.value
2024 + h->root.u.def.section->output_section->vma
2025 + h->root.u.def.section->output_offset);
2026
2027 /* The next word is the address of the function. */
2028 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2029
2030 /* The last word is our local __gp value. */
2031 value = _bfd_get_gp_value (sopd->output_section->owner);
2032 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2033 }
2034
2035 /* If we are generating a shared library, we must generate EPLT relocations
2036 for each entry in the .opd, even for static functions (they may have
2037 had their address taken). */
2038 if (info->shared && dyn_h && dyn_h->want_opd)
2039 {
2040 Elf64_Internal_Rela rel;
15bda425
JL
2041 int dynindx;
2042
2043 /* We may need to do a relocation against a local symbol, in
2044 which case we have to look up it's dynamic symbol index off
2045 the local symbol hash table. */
2046 if (h && h->dynindx != -1)
2047 dynindx = h->dynindx;
2048 else
2049 dynindx
2050 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2051 dyn_h->sym_indx);
2052
2053 /* The offset of this relocation is the absolute address of the
2054 .opd entry for this symbol. */
2055 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2056 + sopd->output_section->vma);
2057
2058 /* If H is non-null, then we have an external symbol.
2059
2060 It is imperative that we use a different dynamic symbol for the
2061 EPLT relocation if the symbol has global scope.
2062
2063 In the dynamic symbol table, the function symbol will have a value
2064 which is address of the function's .opd entry.
2065
2066 Thus, we can not use that dynamic symbol for the EPLT relocation
2067 (if we did, the data in the .opd would reference itself rather
2068 than the actual address of the function). Instead we have to use
2069 a new dynamic symbol which has the same value as the original global
2070 function symbol.
2071
2072 We prefix the original symbol with a "." and use the new symbol in
2073 the EPLT relocation. This new symbol has already been recorded in
2074 the symbol table, we just have to look it up and use it.
2075
2076 We do not have such problems with static functions because we do
2077 not make their addresses in the dynamic symbol table point to
2078 the .opd entry. Ultimately this should be safe since a static
2079 function can not be directly referenced outside of its shared
2080 library.
2081
2082 We do have to play similar games for FPTR relocations in shared
2083 libraries, including those for static symbols. See the FPTR
2084 handling in elf64_hppa_finalize_dynreloc. */
2085 if (h)
2086 {
2087 char *new_name;
2088 struct elf_link_hash_entry *nh;
2089
2090 new_name = alloca (strlen (h->root.root.string) + 2);
2091 new_name[0] = '.';
2092 strcpy (new_name + 1, h->root.root.string);
2093
2094 nh = elf_link_hash_lookup (elf_hash_table (info),
2095 new_name, false, false, false);
2096
2097 /* All we really want from the new symbol is its dynamic
2098 symbol index. */
2099 dynindx = nh->dynindx;
2100 }
2101
2102 rel.r_addend = 0;
2103 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2104
2105 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2106 (((Elf64_External_Rela *)
2107 sopdrel->contents)
2108 + sopdrel->reloc_count));
2109 sopdrel->reloc_count++;
2110 }
2111 return true;
2112}
2113
2114/* The .dlt section contains addresses for items referenced through the
2115 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2116 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2117
2118static boolean
2119elf64_hppa_finalize_dlt (dyn_h, data)
2120 struct elf64_hppa_dyn_hash_entry *dyn_h;
2121 PTR data;
2122{
2123 struct bfd_link_info *info = (struct bfd_link_info *)data;
2124 struct elf64_hppa_link_hash_table *hppa_info;
2125 asection *sdlt, *sdltrel;
2126 struct elf_link_hash_entry *h = dyn_h->h;
2127
2128 hppa_info = elf64_hppa_hash_table (info);
2129
2130 sdlt = hppa_info->dlt_sec;
2131 sdltrel = hppa_info->dlt_rel_sec;
2132
2133 /* H/DYN_H may refer to a local variable and we know it's
2134 address, so there is no need to create a relocation. Just install
2135 the proper value into the DLT, note this shortcut can not be
2136 skipped when building a shared library. */
2137 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2138 {
2139 bfd_vma value;
2140
2141 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2142 to point to the FPTR entry in the .opd section.
2143
2144 We include the OPD's output offset in this computation as
2145 we are referring to an absolute address in the resulting
2146 object file. */
2147 if (dyn_h->want_opd)
2148 {
2149 value = (dyn_h->opd_offset
2150 + hppa_info->opd_sec->output_offset
2151 + hppa_info->opd_sec->output_section->vma);
2152 }
2153 else
2154 {
2155 value = (h->root.u.def.value
2156 + h->root.u.def.section->output_offset);
2157
2158 if (h->root.u.def.section->output_section)
2159 value += h->root.u.def.section->output_section->vma;
2160 else
2161 value += h->root.u.def.section->vma;
2162 }
2163
2164 /* We do not need to include the output offset of the DLT section
2165 here because we are modifying the in-memory contents. */
2166 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2167 }
2168
2169 /* Create a relocation for the DLT entry assocated with this symbol.
2170 When building a shared library the symbol does not have to be dynamic. */
2171 if (dyn_h->want_dlt
2172 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2173 {
2174 Elf64_Internal_Rela rel;
2175 int dynindx;
2176
2177 /* We may need to do a relocation against a local symbol, in
2178 which case we have to look up it's dynamic symbol index off
2179 the local symbol hash table. */
2180 if (h && h->dynindx != -1)
2181 dynindx = h->dynindx;
2182 else
2183 dynindx
2184 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2185 dyn_h->sym_indx);
2186
2187
2188 /* Create a dynamic relocation for this entry. Do include the output
2189 offset of the DLT entry since we need an absolute address in the
2190 resulting object file. */
2191 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2192 + sdlt->output_section->vma);
2193 if (h && h->type == STT_FUNC)
2194 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2195 else
2196 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2197 rel.r_addend = 0;
2198
2199 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2200 (((Elf64_External_Rela *)
2201 sdltrel->contents)
2202 + sdltrel->reloc_count));
2203 sdltrel->reloc_count++;
2204 }
2205 return true;
2206}
2207
2208/* Finalize the dynamic relocations. Specifically the FPTR relocations
2209 for dynamic functions used to initialize static data. */
2210
2211static boolean
2212elf64_hppa_finalize_dynreloc (dyn_h, data)
2213 struct elf64_hppa_dyn_hash_entry *dyn_h;
2214 PTR data;
2215{
2216 struct bfd_link_info *info = (struct bfd_link_info *)data;
2217 struct elf64_hppa_link_hash_table *hppa_info;
2218 struct elf_link_hash_entry *h;
2219 int dynamic_symbol;
2220
2221 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2222
2223 if (!dynamic_symbol && !info->shared)
2224 return true;
2225
2226 if (dyn_h->reloc_entries)
2227 {
2228 struct elf64_hppa_dyn_reloc_entry *rent;
2229 int dynindx;
2230
2231 hppa_info = elf64_hppa_hash_table (info);
2232 h = dyn_h->h;
2233
2234 /* We may need to do a relocation against a local symbol, in
2235 which case we have to look up it's dynamic symbol index off
2236 the local symbol hash table. */
2237 if (h && h->dynindx != -1)
2238 dynindx = h->dynindx;
2239 else
2240 dynindx
2241 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2242 dyn_h->sym_indx);
2243
2244 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2245 {
2246 Elf64_Internal_Rela rel;
2247
2248 switch (rent->type)
2249 {
2250 case R_PARISC_FPTR64:
2251 /* Allocate one iff we are not building a shared library and
2252 !want_opd, which by this point will be true only if we're
2253 actually allocating one statically in the main executable. */
2254 if (!info->shared && dyn_h->want_opd)
2255 continue;
2256 break;
2257 }
2258
2259 /* Create a dynamic relocation for this entry.
2260
2261 We need the output offset for the reloc's section because
2262 we are creating an absolute address in the resulting object
2263 file. */
2264 rel.r_offset = (rent->offset + rent->sec->output_offset
2265 + rent->sec->output_section->vma);
2266
2267 /* An FPTR64 relocation implies that we took the address of
2268 a function and that the function has an entry in the .opd
2269 section. We want the FPTR64 relocation to reference the
2270 entry in .opd.
2271
2272 We could munge the symbol value in the dynamic symbol table
2273 (in fact we already do for functions with global scope) to point
2274 to the .opd entry. Then we could use that dynamic symbol in
2275 this relocation.
2276
2277 Or we could do something sensible, not munge the symbol's
2278 address and instead just use a different symbol to reference
2279 the .opd entry. At least that seems sensible until you
2280 realize there's no local dynamic symbols we can use for that
2281 purpose. Thus the hair in the check_relocs routine.
2282
2283 We use a section symbol recorded by check_relocs as the
2284 base symbol for the relocation. The addend is the difference
2285 between the section symbol and the address of the .opd entry. */
2286 if (info->shared && rent->type == R_PARISC_FPTR64)
2287 {
2288 bfd_vma value, value2;
15bda425
JL
2289
2290 /* First compute the address of the opd entry for this symbol. */
2291 value = (dyn_h->opd_offset
2292 + hppa_info->opd_sec->output_section->vma
2293 + hppa_info->opd_sec->output_offset);
2294
2295 /* Compute the value of the start of the section with
2296 the relocation. */
2297 value2 = (rent->sec->output_section->vma
2298 + rent->sec->output_offset);
2299
2300 /* Compute the difference between the start of the section
2301 with the relocation and the opd entry. */
2302 value -= value2;
2303
2304 /* The result becomes the addend of the relocation. */
2305 rel.r_addend = value;
2306
2307 /* The section symbol becomes the symbol for the dynamic
2308 relocation. */
2309 dynindx
2310 = _bfd_elf_link_lookup_local_dynindx (info,
2311 rent->sec->owner,
2312 rent->sec_symndx);
2313 }
2314 else
2315 rel.r_addend = rent->addend;
2316
2317 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2318
2319 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2320 &rel,
2321 (((Elf64_External_Rela *)
2322 hppa_info->other_rel_sec->contents)
2323 + hppa_info->other_rel_sec->reloc_count));
2324 hppa_info->other_rel_sec->reloc_count++;
2325 }
2326 }
2327
2328 return true;
2329}
2330
2331/* Finish up the dynamic sections. */
2332
2333static boolean
2334elf64_hppa_finish_dynamic_sections (output_bfd, info)
2335 bfd *output_bfd;
2336 struct bfd_link_info *info;
2337{
2338 bfd *dynobj;
2339 asection *sdyn;
2340 struct elf64_hppa_link_hash_table *hppa_info;
2341
2342 hppa_info = elf64_hppa_hash_table (info);
2343
2344 /* Finalize the contents of the .opd section. */
2345 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2346 elf64_hppa_finalize_opd,
2347 info);
2348
2349 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2350 elf64_hppa_finalize_dynreloc,
2351 info);
2352
2353 /* Finalize the contents of the .dlt section. */
2354 dynobj = elf_hash_table (info)->dynobj;
2355 /* Finalize the contents of the .dlt section. */
2356 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2357 elf64_hppa_finalize_dlt,
2358 info);
2359
2360
2361 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2362
2363 if (elf_hash_table (info)->dynamic_sections_created)
2364 {
2365 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2366
2367 BFD_ASSERT (sdyn != NULL);
2368
2369 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2370 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2371 for (; dyncon < dynconend; dyncon++)
2372 {
2373 Elf_Internal_Dyn dyn;
2374 asection *s;
2375
2376 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2377
2378 switch (dyn.d_tag)
2379 {
2380 default:
2381 break;
2382
2383 case DT_HP_LOAD_MAP:
2384 /* Compute the absolute address of 16byte scratchpad area
2385 for the dynamic linker.
2386
2387 By convention the linker script will allocate the scratchpad
2388 area at the start of the .data section. So all we have to
2389 to is find the start of the .data section. */
2390 s = bfd_get_section_by_name (output_bfd, ".data");
2391 dyn.d_un.d_ptr = s->vma;
2392 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2393 break;
2394
2395 case DT_PLTGOT:
2396 /* HP's use PLTGOT to set the GOT register. */
2397 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2398 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2399 break;
2400
2401 case DT_JMPREL:
2402 s = hppa_info->plt_rel_sec;
2403 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2404 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2405 break;
2406
2407 case DT_PLTRELSZ:
2408 s = hppa_info->plt_rel_sec;
2409 dyn.d_un.d_val = s->_raw_size;
2410 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2411 break;
2412
2413 case DT_RELA:
2414 s = hppa_info->other_rel_sec;
2415 if (! s)
2416 s = hppa_info->dlt_rel_sec;
2417 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2418 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2419 break;
2420
2421 case DT_RELASZ:
2422 s = hppa_info->other_rel_sec;
2423 dyn.d_un.d_val = s->_raw_size;
2424 s = hppa_info->dlt_rel_sec;
2425 dyn.d_un.d_val += s->_raw_size;
2426 s = hppa_info->opd_rel_sec;
2427 dyn.d_un.d_val += s->_raw_size;
2428 /* There is some question about whether or not the size of
2429 the PLT relocs should be included here. HP's tools do
2430 it, so we'll emulate them. */
2431 s = hppa_info->plt_rel_sec;
2432 dyn.d_un.d_val += s->_raw_size;
2433 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2434 break;
2435
2436 }
2437 }
2438 }
2439
2440 return true;
2441}
2442
2443
2444/* Return the number of additional phdrs we will need.
2445
2446 The generic ELF code only creates PT_PHDRs for executables. The HP
2447 dynamic linker requires PT_PHDRs for dynamic libraries too.
2448
2449 This routine indicates that the backend needs one additional program
2450 header for that case.
2451
2452 Note we do not have access to the link info structure here, so we have
2453 to guess whether or not we are building a shared library based on the
2454 existence of a .interp section. */
2455
2456static int
2457elf64_hppa_additional_program_headers (abfd)
2458 bfd *abfd;
2459{
2460 asection *s;
2461
2462 /* If we are creating a shared library, then we have to create a
2463 PT_PHDR segment. HP's dynamic linker chokes without it. */
2464 s = bfd_get_section_by_name (abfd, ".interp");
2465 if (! s)
2466 return 1;
2467 return 0;
2468}
2469
2470/* Allocate and initialize any program headers required by this
2471 specific backend.
2472
2473 The generic ELF code only creates PT_PHDRs for executables. The HP
2474 dynamic linker requires PT_PHDRs for dynamic libraries too.
2475
2476 This allocates the PT_PHDR and initializes it in a manner suitable
2477 for the HP linker.
2478
2479 Note we do not have access to the link info structure here, so we have
2480 to guess whether or not we are building a shared library based on the
2481 existence of a .interp section. */
2482
2483static boolean
2484elf64_hppa_modify_segment_map (abfd)
2485 bfd *abfd;
2486{
edd21aca 2487 struct elf_segment_map *m;
15bda425
JL
2488 asection *s;
2489
2490 s = bfd_get_section_by_name (abfd, ".interp");
2491 if (! s)
2492 {
2493 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2494 if (m->p_type == PT_PHDR)
2495 break;
2496 if (m == NULL)
2497 {
2498 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
2499 if (m == NULL)
2500 return false;
2501
2502 m->p_type = PT_PHDR;
2503 m->p_flags = PF_R | PF_X;
2504 m->p_flags_valid = 1;
2505 m->p_paddr_valid = 1;
2506 m->includes_phdrs = 1;
2507
2508 m->next = elf_tdata (abfd)->segment_map;
2509 elf_tdata (abfd)->segment_map = m;
2510 }
2511 }
2512
2513 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2514 if (m->p_type == PT_LOAD)
2515 {
0ba2a60e 2516 unsigned int i;
15bda425
JL
2517
2518 for (i = 0; i < m->count; i++)
2519 {
2520 /* The code "hint" is not really a hint. It is a requirement
2521 for certain versions of the HP dynamic linker. Worse yet,
2522 it must be set even if the shared library does not have
2523 any code in its "text" segment (thus the check for .hash
2524 to catch this situation). */
2525 if (m->sections[i]->flags & SEC_CODE
2526 || (strcmp (m->sections[i]->name, ".hash") == 0))
2527 m->p_flags |= (PF_X | PF_HP_CODE);
2528 }
2529 }
2530
2531 return true;
2532}
2533
2534/* The hash bucket size is the standard one, namely 4. */
2535
2536const struct elf_size_info hppa64_elf_size_info =
2537{
2538 sizeof (Elf64_External_Ehdr),
2539 sizeof (Elf64_External_Phdr),
2540 sizeof (Elf64_External_Shdr),
2541 sizeof (Elf64_External_Rel),
2542 sizeof (Elf64_External_Rela),
2543 sizeof (Elf64_External_Sym),
2544 sizeof (Elf64_External_Dyn),
2545 sizeof (Elf_External_Note),
2546 4,
2547 1,
2548 64, 8,
2549 ELFCLASS64, EV_CURRENT,
2550 bfd_elf64_write_out_phdrs,
2551 bfd_elf64_write_shdrs_and_ehdr,
2552 bfd_elf64_write_relocs,
2553 bfd_elf64_swap_symbol_out,
2554 bfd_elf64_slurp_reloc_table,
2555 bfd_elf64_slurp_symbol_table,
2556 bfd_elf64_swap_dyn_in,
2557 bfd_elf64_swap_dyn_out,
2558 NULL,
2559 NULL,
2560 NULL,
2561 NULL
2562};
2563
2564#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2565#define TARGET_BIG_NAME "elf64-hppa"
2566#define ELF_ARCH bfd_arch_hppa
2567#define ELF_MACHINE_CODE EM_PARISC
2568/* This is not strictly correct. The maximum page size for PA2.0 is
2569 64M. But everything still uses 4k. */
2570#define ELF_MAXPAGESIZE 0x1000
2571#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2572#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2573#define elf_info_to_howto elf_hppa_info_to_howto
2574#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2575
2576#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2577#define elf_backend_object_p elf64_hppa_object_p
2578#define elf_backend_final_write_processing \
2579 elf_hppa_final_write_processing
2580#define elf_backend_fake_sections elf_hppa_fake_sections
2581#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2582
2583#define elf_backend_relocate_section elf_hppa_relocate_section
2584
2585#define bfd_elf64_bfd_final_link elf_hppa_final_link
2586
2587#define elf_backend_create_dynamic_sections \
2588 elf64_hppa_create_dynamic_sections
2589#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2590
2591#define elf_backend_adjust_dynamic_symbol \
2592 elf64_hppa_adjust_dynamic_symbol
2593
2594#define elf_backend_size_dynamic_sections \
2595 elf64_hppa_size_dynamic_sections
2596
2597#define elf_backend_finish_dynamic_symbol \
2598 elf64_hppa_finish_dynamic_symbol
2599#define elf_backend_finish_dynamic_sections \
2600 elf64_hppa_finish_dynamic_sections
2601
2602/* Stuff for the BFD linker: */
2603#define bfd_elf64_bfd_link_hash_table_create \
2604 elf64_hppa_hash_table_create
2605
2606#define elf_backend_check_relocs \
2607 elf64_hppa_check_relocs
2608
2609#define elf_backend_size_info \
2610 hppa64_elf_size_info
2611
2612#define elf_backend_additional_program_headers \
2613 elf64_hppa_additional_program_headers
2614
2615#define elf_backend_modify_segment_map \
2616 elf64_hppa_modify_segment_map
2617
2618#define elf_backend_link_output_symbol_hook \
2619 elf64_hppa_link_output_symbol_hook
2620
2621
2622#define elf_backend_want_got_plt 0
2623#define elf_backend_plt_readonly 0
2624#define elf_backend_want_plt_sym 0
2625#define elf_backend_got_header_size 0
2626#define elf_backend_plt_header_size 0
2627#define elf_backend_type_change_ok true
2628
2629#include "elf64-target.h"
This page took 0.131105 seconds and 4 git commands to generate.