Multi-GOT support for m68k.
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
b352eebf 1/* Support for HPPA 64-bit ELF
4fbb74a6 2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5a580b3a 3 Free Software Foundation, Inc.
15bda425 4
ae9a127f 5 This file is part of BFD, the Binary File Descriptor library.
15bda425 6
ae9a127f
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
ae9a127f 10 (at your option) any later version.
15bda425 11
ae9a127f
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
15bda425 16
ae9a127f
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
15bda425 21
15bda425 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
15bda425
JL
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/hppa.h"
27#include "libhppa.h"
28#include "elf64-hppa.h"
8bc9c892
NC
29
30/* This is the code recommended in the autoconf documentation, almost
31 verbatim. */
32#ifndef __GNUC__
33# if HAVE_ALLOCA_H
34# include <alloca.h>
35# else
36# ifdef _AIX
37/* Indented so that pre-ansi C compilers will ignore it, rather than
38 choke on it. Some versions of AIX require this to be the first
39 thing in the file. */
40 #pragma alloca
41# else
42# ifndef alloca /* predefined by HP cc +Olibcalls */
43# if !defined (__STDC__) && !defined (__hpux)
44extern char *alloca ();
45# else
46extern void *alloca ();
47# endif /* __STDC__, __hpux */
48# endif /* alloca */
49# endif /* _AIX */
50# endif /* HAVE_ALLOCA_H */
d68aa3e6
DA
51#else
52extern void *alloca (size_t);
8bc9c892
NC
53#endif /* __GNUC__ */
54
55
15bda425
JL
56#define ARCH_SIZE 64
57
58#define PLT_ENTRY_SIZE 0x10
59#define DLT_ENTRY_SIZE 0x8
60#define OPD_ENTRY_SIZE 0x20
fe8bc63d 61
15bda425
JL
62#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
63
64/* The stub is supposed to load the target address and target's DP
65 value out of the PLT, then do an external branch to the target
66 address.
67
68 LDD PLTOFF(%r27),%r1
69 BVE (%r1)
70 LDD PLTOFF+8(%r27),%r27
71
72 Note that we must use the LDD with a 14 bit displacement, not the one
73 with a 5 bit displacement. */
74static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
75 0x53, 0x7b, 0x00, 0x00 };
76
77struct elf64_hppa_dyn_hash_entry
78{
79 struct bfd_hash_entry root;
80
81 /* Offsets for this symbol in various linker sections. */
82 bfd_vma dlt_offset;
83 bfd_vma plt_offset;
84 bfd_vma opd_offset;
85 bfd_vma stub_offset;
86
edd21aca 87 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
88 struct elf_link_hash_entry *h;
89
90 /* The index of the (possibly local) symbol in the input bfd and its
91 associated BFD. Needed so that we can have relocs against local
92 symbols in shared libraries. */
dc810e39 93 long sym_indx;
15bda425
JL
94 bfd *owner;
95
96 /* Dynamic symbols may need to have two different values. One for
97 the dynamic symbol table, one for the normal symbol table.
98
99 In such cases we store the symbol's real value and section
100 index here so we can restore the real value before we write
101 the normal symbol table. */
102 bfd_vma st_value;
103 int st_shndx;
104
105 /* Used to count non-got, non-plt relocations for delayed sizing
106 of relocation sections. */
107 struct elf64_hppa_dyn_reloc_entry
108 {
109 /* Next relocation in the chain. */
110 struct elf64_hppa_dyn_reloc_entry *next;
111
112 /* The type of the relocation. */
113 int type;
114
115 /* The input section of the relocation. */
116 asection *sec;
117
118 /* The index of the section symbol for the input section of
119 the relocation. Only needed when building shared libraries. */
120 int sec_symndx;
121
122 /* The offset within the input section of the relocation. */
123 bfd_vma offset;
124
125 /* The addend for the relocation. */
126 bfd_vma addend;
127
128 } *reloc_entries;
129
130 /* Nonzero if this symbol needs an entry in one of the linker
131 sections. */
132 unsigned want_dlt;
133 unsigned want_plt;
134 unsigned want_opd;
135 unsigned want_stub;
136};
137
138struct elf64_hppa_dyn_hash_table
139{
140 struct bfd_hash_table root;
141};
142
143struct elf64_hppa_link_hash_table
144{
145 struct elf_link_hash_table root;
146
147 /* Shortcuts to get to the various linker defined sections. */
148 asection *dlt_sec;
149 asection *dlt_rel_sec;
150 asection *plt_sec;
151 asection *plt_rel_sec;
152 asection *opd_sec;
153 asection *opd_rel_sec;
154 asection *other_rel_sec;
155
156 /* Offset of __gp within .plt section. When the PLT gets large we want
157 to slide __gp into the PLT section so that we can continue to use
158 single DP relative instructions to load values out of the PLT. */
159 bfd_vma gp_offset;
160
161 /* Note this is not strictly correct. We should create a stub section for
162 each input section with calls. The stub section should be placed before
163 the section with the call. */
164 asection *stub_sec;
165
166 bfd_vma text_segment_base;
167 bfd_vma data_segment_base;
168
169 struct elf64_hppa_dyn_hash_table dyn_hash_table;
170
171 /* We build tables to map from an input section back to its
172 symbol index. This is the BFD for which we currently have
173 a map. */
174 bfd *section_syms_bfd;
175
176 /* Array of symbol numbers for each input section attached to the
177 current BFD. */
178 int *section_syms;
179};
180
181#define elf64_hppa_hash_table(p) \
182 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
183
184typedef struct bfd_hash_entry *(*new_hash_entry_func)
185 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
186
15bda425
JL
187static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
188 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
189 const char *string));
190static struct bfd_link_hash_table *elf64_hppa_hash_table_create
191 PARAMS ((bfd *abfd));
192static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
193 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
b34976b6 194 bfd_boolean create, bfd_boolean copy));
15bda425
JL
195static void elf64_hppa_dyn_hash_traverse
196 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
b34976b6 197 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
198 PTR info));
199
200static const char *get_dyn_name
d63b5ed9 201 PARAMS ((bfd *, struct elf_link_hash_entry *,
0ba2a60e 202 const Elf_Internal_Rela *, char **, size_t *));
15bda425 203
15bda425
JL
204/* This must follow the definitions of the various derived linker
205 hash tables and shared functions. */
206#include "elf-hppa.h"
207
b34976b6 208static bfd_boolean elf64_hppa_object_p
15bda425
JL
209 PARAMS ((bfd *));
210
15bda425
JL
211static void elf64_hppa_post_process_headers
212 PARAMS ((bfd *, struct bfd_link_info *));
213
b34976b6 214static bfd_boolean elf64_hppa_create_dynamic_sections
15bda425
JL
215 PARAMS ((bfd *, struct bfd_link_info *));
216
b34976b6 217static bfd_boolean elf64_hppa_adjust_dynamic_symbol
15bda425
JL
218 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
219
b34976b6 220static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
47b7c2db
AM
221 PARAMS ((struct elf_link_hash_entry *, PTR));
222
b34976b6 223static bfd_boolean elf64_hppa_size_dynamic_sections
15bda425
JL
224 PARAMS ((bfd *, struct bfd_link_info *));
225
b34976b6 226static bfd_boolean elf64_hppa_link_output_symbol_hook
754021d0
AM
227 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
228 asection *, struct elf_link_hash_entry *));
99c79b2e 229
b34976b6 230static bfd_boolean elf64_hppa_finish_dynamic_symbol
15bda425
JL
231 PARAMS ((bfd *, struct bfd_link_info *,
232 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 233
5ac81c74
JL
234static enum elf_reloc_type_class elf64_hppa_reloc_type_class
235 PARAMS ((const Elf_Internal_Rela *));
236
b34976b6 237static bfd_boolean elf64_hppa_finish_dynamic_sections
15bda425
JL
238 PARAMS ((bfd *, struct bfd_link_info *));
239
b34976b6 240static bfd_boolean elf64_hppa_check_relocs
15bda425
JL
241 PARAMS ((bfd *, struct bfd_link_info *,
242 asection *, const Elf_Internal_Rela *));
243
b34976b6 244static bfd_boolean elf64_hppa_dynamic_symbol_p
15bda425
JL
245 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
246
b34976b6 247static bfd_boolean elf64_hppa_mark_exported_functions
15bda425
JL
248 PARAMS ((struct elf_link_hash_entry *, PTR));
249
b34976b6 250static bfd_boolean elf64_hppa_finalize_opd
15bda425
JL
251 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
252
b34976b6 253static bfd_boolean elf64_hppa_finalize_dlt
15bda425
JL
254 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
255
b34976b6 256static bfd_boolean allocate_global_data_dlt
15bda425
JL
257 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
258
b34976b6 259static bfd_boolean allocate_global_data_plt
15bda425
JL
260 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
261
b34976b6 262static bfd_boolean allocate_global_data_stub
15bda425
JL
263 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
264
b34976b6 265static bfd_boolean allocate_global_data_opd
15bda425
JL
266 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
267
b34976b6 268static bfd_boolean get_reloc_section
15bda425
JL
269 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
270
b34976b6 271static bfd_boolean count_dyn_reloc
15bda425
JL
272 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
273 int, asection *, int, bfd_vma, bfd_vma));
274
b34976b6 275static bfd_boolean allocate_dynrel_entries
15bda425
JL
276 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
277
b34976b6 278static bfd_boolean elf64_hppa_finalize_dynreloc
15bda425
JL
279 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
280
b34976b6 281static bfd_boolean get_opd
15bda425
JL
282 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
283
b34976b6 284static bfd_boolean get_plt
15bda425
JL
285 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
286
b34976b6 287static bfd_boolean get_dlt
15bda425
JL
288 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
289
b34976b6 290static bfd_boolean get_stub
15bda425
JL
291 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
292
3fab46d0
AM
293static int elf64_hppa_elf_get_symbol_type
294 PARAMS ((Elf_Internal_Sym *, int));
295
b34976b6 296static bfd_boolean
66eb6687
AM
297elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
298 bfd *abfd ATTRIBUTE_UNUSED,
299 new_hash_entry_func new,
300 unsigned int entsize)
15bda425 301{
fe8bc63d 302 memset (ht, 0, sizeof (*ht));
66eb6687 303 return bfd_hash_table_init (&ht->root, new, entsize);
15bda425
JL
304}
305
306static struct bfd_hash_entry*
307elf64_hppa_new_dyn_hash_entry (entry, table, string)
308 struct bfd_hash_entry *entry;
309 struct bfd_hash_table *table;
310 const char *string;
311{
312 struct elf64_hppa_dyn_hash_entry *ret;
313 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
314
315 /* Allocate the structure if it has not already been allocated by a
316 subclass. */
317 if (!ret)
318 ret = bfd_hash_allocate (table, sizeof (*ret));
319
320 if (!ret)
321 return 0;
322
15bda425
JL
323 /* Call the allocation method of the superclass. */
324 ret = ((struct elf64_hppa_dyn_hash_entry *)
325 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
326
336549c1
AM
327 /* Initialize our local data. All zeros. */
328 memset (&ret->dlt_offset, 0,
329 (sizeof (struct elf64_hppa_dyn_hash_entry)
330 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
331
15bda425
JL
332 return &ret->root;
333}
334
335/* Create the derived linker hash table. The PA64 ELF port uses this
336 derived hash table to keep information specific to the PA ElF
337 linker (without using static variables). */
338
339static struct bfd_link_hash_table*
340elf64_hppa_hash_table_create (abfd)
341 bfd *abfd;
342{
343 struct elf64_hppa_link_hash_table *ret;
344
dc810e39 345 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
15bda425
JL
346 if (!ret)
347 return 0;
348 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
66eb6687
AM
349 _bfd_elf_link_hash_newfunc,
350 sizeof (struct elf_link_hash_entry)))
15bda425
JL
351 {
352 bfd_release (abfd, ret);
353 return 0;
354 }
355
356 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
66eb6687
AM
357 elf64_hppa_new_dyn_hash_entry,
358 sizeof (struct elf64_hppa_dyn_hash_entry)))
15bda425
JL
359 return 0;
360 return &ret->root.root;
361}
362
363/* Look up an entry in a PA64 ELF linker hash table. */
364
365static struct elf64_hppa_dyn_hash_entry *
366elf64_hppa_dyn_hash_lookup(table, string, create, copy)
367 struct elf64_hppa_dyn_hash_table *table;
368 const char *string;
b34976b6 369 bfd_boolean create, copy;
15bda425
JL
370{
371 return ((struct elf64_hppa_dyn_hash_entry *)
372 bfd_hash_lookup (&table->root, string, create, copy));
373}
374
375/* Traverse a PA64 ELF linker hash table. */
376
377static void
378elf64_hppa_dyn_hash_traverse (table, func, info)
379 struct elf64_hppa_dyn_hash_table *table;
b34976b6 380 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
15bda425
JL
381 PTR info;
382{
383 (bfd_hash_traverse
384 (&table->root,
b34976b6 385 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
15bda425
JL
386 info));
387}
388\f
389/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
390
391 Additionally we set the default architecture and machine. */
b34976b6 392static bfd_boolean
15bda425
JL
393elf64_hppa_object_p (abfd)
394 bfd *abfd;
395{
24a5e751
L
396 Elf_Internal_Ehdr * i_ehdrp;
397 unsigned int flags;
d9634ba1 398
24a5e751
L
399 i_ehdrp = elf_elfheader (abfd);
400 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
401 {
6c21aa76
NC
402 /* GCC on hppa-linux produces binaries with OSABI=Linux,
403 but the kernel produces corefiles with OSABI=SysV. */
d97a8924
DA
404 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
405 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 406 return FALSE;
24a5e751
L
407 }
408 else
409 {
d97a8924
DA
410 /* HPUX produces binaries with OSABI=HPUX,
411 but the kernel produces corefiles with OSABI=SysV. */
412 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
413 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
b34976b6 414 return FALSE;
24a5e751
L
415 }
416
417 flags = i_ehdrp->e_flags;
d9634ba1
AM
418 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
419 {
420 case EFA_PARISC_1_0:
421 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
422 case EFA_PARISC_1_1:
423 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
424 case EFA_PARISC_2_0:
d97a8924
DA
425 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
426 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
427 else
428 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
d9634ba1
AM
429 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
430 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
431 }
432 /* Don't be fussy. */
b34976b6 433 return TRUE;
15bda425
JL
434}
435
436/* Given section type (hdr->sh_type), return a boolean indicating
437 whether or not the section is an elf64-hppa specific section. */
b34976b6 438static bfd_boolean
6dc132d9
L
439elf64_hppa_section_from_shdr (bfd *abfd,
440 Elf_Internal_Shdr *hdr,
441 const char *name,
442 int shindex)
15bda425
JL
443{
444 asection *newsect;
445
446 switch (hdr->sh_type)
447 {
448 case SHT_PARISC_EXT:
449 if (strcmp (name, ".PARISC.archext") != 0)
b34976b6 450 return FALSE;
15bda425
JL
451 break;
452 case SHT_PARISC_UNWIND:
453 if (strcmp (name, ".PARISC.unwind") != 0)
b34976b6 454 return FALSE;
15bda425
JL
455 break;
456 case SHT_PARISC_DOC:
457 case SHT_PARISC_ANNOT:
458 default:
b34976b6 459 return FALSE;
15bda425
JL
460 }
461
6dc132d9 462 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 463 return FALSE;
15bda425
JL
464 newsect = hdr->bfd_section;
465
b34976b6 466 return TRUE;
15bda425
JL
467}
468
15bda425 469/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 470 name describes what was once potentially anonymous memory. We
15bda425
JL
471 allocate memory as necessary, possibly reusing PBUF/PLEN. */
472
473static const char *
d63b5ed9
DA
474get_dyn_name (abfd, h, rel, pbuf, plen)
475 bfd *abfd;
15bda425
JL
476 struct elf_link_hash_entry *h;
477 const Elf_Internal_Rela *rel;
478 char **pbuf;
479 size_t *plen;
480{
d63b5ed9 481 asection *sec = abfd->sections;
15bda425
JL
482 size_t nlen, tlen;
483 char *buf;
484 size_t len;
485
486 if (h && rel->r_addend == 0)
487 return h->root.root.string;
488
489 if (h)
490 nlen = strlen (h->root.root.string);
491 else
0ba2a60e
AM
492 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
493 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
494
495 len = *plen;
496 buf = *pbuf;
497 if (len < tlen)
498 {
499 if (buf)
500 free (buf);
501 *pbuf = buf = malloc (tlen);
502 *plen = len = tlen;
503 if (!buf)
504 return NULL;
505 }
506
507 if (h)
508 {
509 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 510 buf[nlen++] = '+';
15bda425
JL
511 sprintf_vma (buf + nlen, rel->r_addend);
512 }
513 else
514 {
0ba2a60e
AM
515 nlen = sprintf (buf, "%x:%lx",
516 sec->id & 0xffffffff,
517 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
518 if (rel->r_addend)
519 {
520 buf[nlen++] = '+';
521 sprintf_vma (buf + nlen, rel->r_addend);
522 }
523 }
524
525 return buf;
526}
527
528/* SEC is a section containing relocs for an input BFD when linking; return
529 a suitable section for holding relocs in the output BFD for a link. */
530
b34976b6 531static bfd_boolean
15bda425
JL
532get_reloc_section (abfd, hppa_info, sec)
533 bfd *abfd;
534 struct elf64_hppa_link_hash_table *hppa_info;
535 asection *sec;
536{
537 const char *srel_name;
538 asection *srel;
539 bfd *dynobj;
540
541 srel_name = (bfd_elf_string_from_elf_section
542 (abfd, elf_elfheader(abfd)->e_shstrndx,
543 elf_section_data(sec)->rel_hdr.sh_name));
544 if (srel_name == NULL)
b34976b6 545 return FALSE;
15bda425 546
0112cd26 547 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
15bda425 548 && strcmp (bfd_get_section_name (abfd, sec),
0112cd26
NC
549 srel_name + 5) == 0)
550 || (CONST_STRNEQ (srel_name, ".rel")
15bda425 551 && strcmp (bfd_get_section_name (abfd, sec),
0112cd26 552 srel_name + 4) == 0));
15bda425
JL
553
554 dynobj = hppa_info->root.dynobj;
555 if (!dynobj)
556 hppa_info->root.dynobj = dynobj = abfd;
557
558 srel = bfd_get_section_by_name (dynobj, srel_name);
559 if (srel == NULL)
560 {
3496cb2a
L
561 srel = bfd_make_section_with_flags (dynobj, srel_name,
562 (SEC_ALLOC
563 | SEC_LOAD
564 | SEC_HAS_CONTENTS
565 | SEC_IN_MEMORY
566 | SEC_LINKER_CREATED
567 | SEC_READONLY));
15bda425 568 if (srel == NULL
15bda425 569 || !bfd_set_section_alignment (dynobj, srel, 3))
b34976b6 570 return FALSE;
15bda425
JL
571 }
572
573 hppa_info->other_rel_sec = srel;
b34976b6 574 return TRUE;
15bda425
JL
575}
576
fe8bc63d 577/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
578
579 We use this to keep a record of all the FPTR relocations against a
580 particular symbol so that we can create FPTR relocations in the
581 output file. */
582
b34976b6 583static bfd_boolean
15bda425
JL
584count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
585 bfd *abfd;
586 struct elf64_hppa_dyn_hash_entry *dyn_h;
587 int type;
588 asection *sec;
589 int sec_symndx;
590 bfd_vma offset;
591 bfd_vma addend;
592{
593 struct elf64_hppa_dyn_reloc_entry *rent;
594
595 rent = (struct elf64_hppa_dyn_reloc_entry *)
dc810e39 596 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
15bda425 597 if (!rent)
b34976b6 598 return FALSE;
15bda425
JL
599
600 rent->next = dyn_h->reloc_entries;
601 rent->type = type;
602 rent->sec = sec;
603 rent->sec_symndx = sec_symndx;
604 rent->offset = offset;
605 rent->addend = addend;
606 dyn_h->reloc_entries = rent;
607
b34976b6 608 return TRUE;
15bda425
JL
609}
610
611/* Scan the RELOCS and record the type of dynamic entries that each
612 referenced symbol needs. */
613
b34976b6 614static bfd_boolean
15bda425
JL
615elf64_hppa_check_relocs (abfd, info, sec, relocs)
616 bfd *abfd;
617 struct bfd_link_info *info;
618 asection *sec;
619 const Elf_Internal_Rela *relocs;
620{
621 struct elf64_hppa_link_hash_table *hppa_info;
622 const Elf_Internal_Rela *relend;
623 Elf_Internal_Shdr *symtab_hdr;
624 const Elf_Internal_Rela *rel;
625 asection *dlt, *plt, *stubs;
626 char *buf;
627 size_t buf_len;
4fbb74a6 628 unsigned int sec_symndx;
15bda425 629
1049f94e 630 if (info->relocatable)
b34976b6 631 return TRUE;
15bda425
JL
632
633 /* If this is the first dynamic object found in the link, create
634 the special sections required for dynamic linking. */
635 if (! elf_hash_table (info)->dynamic_sections_created)
636 {
45d6a902 637 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
b34976b6 638 return FALSE;
15bda425
JL
639 }
640
641 hppa_info = elf64_hppa_hash_table (info);
642 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
643
644 /* If necessary, build a new table holding section symbols indices
6cdc0ccc 645 for this BFD. */
fe8bc63d 646
15bda425
JL
647 if (info->shared && hppa_info->section_syms_bfd != abfd)
648 {
832d951b 649 unsigned long i;
9ad5cbcf 650 unsigned int highest_shndx;
6cdc0ccc
AM
651 Elf_Internal_Sym *local_syms = NULL;
652 Elf_Internal_Sym *isym, *isymend;
dc810e39 653 bfd_size_type amt;
15bda425
JL
654
655 /* We're done with the old cache of section index to section symbol
656 index information. Free it.
657
658 ?!? Note we leak the last section_syms array. Presumably we
659 could free it in one of the later routines in this file. */
660 if (hppa_info->section_syms)
661 free (hppa_info->section_syms);
662
6cdc0ccc
AM
663 /* Read this BFD's local symbols. */
664 if (symtab_hdr->sh_info != 0)
47b7c2db 665 {
6cdc0ccc
AM
666 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
667 if (local_syms == NULL)
668 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
669 symtab_hdr->sh_info, 0,
670 NULL, NULL, NULL);
671 if (local_syms == NULL)
b34976b6 672 return FALSE;
9ad5cbcf
AM
673 }
674
6cdc0ccc 675 /* Record the highest section index referenced by the local symbols. */
15bda425 676 highest_shndx = 0;
6cdc0ccc
AM
677 isymend = local_syms + symtab_hdr->sh_info;
678 for (isym = local_syms; isym < isymend; isym++)
15bda425 679 {
4fbb74a6
AM
680 if (isym->st_shndx > highest_shndx
681 && isym->st_shndx < SHN_LORESERVE)
15bda425
JL
682 highest_shndx = isym->st_shndx;
683 }
684
15bda425
JL
685 /* Allocate an array to hold the section index to section symbol index
686 mapping. Bump by one since we start counting at zero. */
687 highest_shndx++;
dc810e39
AM
688 amt = highest_shndx;
689 amt *= sizeof (int);
690 hppa_info->section_syms = (int *) bfd_malloc (amt);
15bda425
JL
691
692 /* Now walk the local symbols again. If we find a section symbol,
693 record the index of the symbol into the section_syms array. */
6cdc0ccc 694 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
15bda425
JL
695 {
696 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
697 hppa_info->section_syms[isym->st_shndx] = i;
698 }
699
6cdc0ccc
AM
700 /* We are finished with the local symbols. */
701 if (local_syms != NULL
702 && symtab_hdr->contents != (unsigned char *) local_syms)
703 {
704 if (! info->keep_memory)
705 free (local_syms);
706 else
707 {
708 /* Cache the symbols for elf_link_input_bfd. */
709 symtab_hdr->contents = (unsigned char *) local_syms;
710 }
711 }
15bda425
JL
712
713 /* Record which BFD we built the section_syms mapping for. */
714 hppa_info->section_syms_bfd = abfd;
715 }
716
717 /* Record the symbol index for this input section. We may need it for
718 relocations when building shared libraries. When not building shared
719 libraries this value is never really used, but assign it to zero to
720 prevent out of bounds memory accesses in other routines. */
721 if (info->shared)
722 {
723 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
724
725 /* If we did not find a section symbol for this section, then
726 something went terribly wrong above. */
4fbb74a6 727 if (sec_symndx == SHN_BAD)
b34976b6 728 return FALSE;
15bda425 729
4fbb74a6
AM
730 if (sec_symndx < SHN_LORESERVE)
731 sec_symndx = hppa_info->section_syms[sec_symndx];
732 else
733 sec_symndx = 0;
15bda425
JL
734 }
735 else
736 sec_symndx = 0;
fe8bc63d 737
15bda425
JL
738 dlt = plt = stubs = NULL;
739 buf = NULL;
740 buf_len = 0;
741
742 relend = relocs + sec->reloc_count;
743 for (rel = relocs; rel < relend; ++rel)
744 {
560e09e9
NC
745 enum
746 {
747 NEED_DLT = 1,
748 NEED_PLT = 2,
749 NEED_STUB = 4,
750 NEED_OPD = 8,
751 NEED_DYNREL = 16,
752 };
15bda425
JL
753
754 struct elf_link_hash_entry *h = NULL;
755 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
756 struct elf64_hppa_dyn_hash_entry *dyn_h;
757 int need_entry;
758 const char *addr_name;
b34976b6 759 bfd_boolean maybe_dynamic;
15bda425
JL
760 int dynrel_type = R_PARISC_NONE;
761 static reloc_howto_type *howto;
762
763 if (r_symndx >= symtab_hdr->sh_info)
764 {
765 /* We're dealing with a global symbol -- find its hash entry
766 and mark it as being referenced. */
767 long indx = r_symndx - symtab_hdr->sh_info;
768 h = elf_sym_hashes (abfd)[indx];
769 while (h->root.type == bfd_link_hash_indirect
770 || h->root.type == bfd_link_hash_warning)
771 h = (struct elf_link_hash_entry *) h->root.u.i.link;
772
f5385ebf 773 h->ref_regular = 1;
15bda425
JL
774 }
775
776 /* We can only get preliminary data on whether a symbol is
777 locally or externally defined, as not all of the input files
778 have yet been processed. Do something with what we know, as
779 this may help reduce memory usage and processing time later. */
b34976b6 780 maybe_dynamic = FALSE;
671bae9c 781 if (h && ((info->shared
f5385ebf
AM
782 && (!info->symbolic
783 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
784 || !h->def_regular
15bda425 785 || h->root.type == bfd_link_hash_defweak))
b34976b6 786 maybe_dynamic = TRUE;
15bda425
JL
787
788 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
789 need_entry = 0;
790 switch (howto->type)
791 {
792 /* These are simple indirect references to symbols through the
793 DLT. We need to create a DLT entry for any symbols which
794 appears in a DLTIND relocation. */
795 case R_PARISC_DLTIND21L:
796 case R_PARISC_DLTIND14R:
797 case R_PARISC_DLTIND14F:
798 case R_PARISC_DLTIND14WR:
799 case R_PARISC_DLTIND14DR:
800 need_entry = NEED_DLT;
801 break;
802
803 /* ?!? These need a DLT entry. But I have no idea what to do with
804 the "link time TP value. */
805 case R_PARISC_LTOFF_TP21L:
806 case R_PARISC_LTOFF_TP14R:
807 case R_PARISC_LTOFF_TP14F:
808 case R_PARISC_LTOFF_TP64:
809 case R_PARISC_LTOFF_TP14WR:
810 case R_PARISC_LTOFF_TP14DR:
811 case R_PARISC_LTOFF_TP16F:
812 case R_PARISC_LTOFF_TP16WF:
813 case R_PARISC_LTOFF_TP16DF:
814 need_entry = NEED_DLT;
815 break;
816
817 /* These are function calls. Depending on their precise target we
818 may need to make a stub for them. The stub uses the PLT, so we
819 need to create PLT entries for these symbols too. */
832d951b 820 case R_PARISC_PCREL12F:
15bda425
JL
821 case R_PARISC_PCREL17F:
822 case R_PARISC_PCREL22F:
823 case R_PARISC_PCREL32:
824 case R_PARISC_PCREL64:
825 case R_PARISC_PCREL21L:
826 case R_PARISC_PCREL17R:
827 case R_PARISC_PCREL17C:
828 case R_PARISC_PCREL14R:
829 case R_PARISC_PCREL14F:
830 case R_PARISC_PCREL22C:
831 case R_PARISC_PCREL14WR:
832 case R_PARISC_PCREL14DR:
833 case R_PARISC_PCREL16F:
834 case R_PARISC_PCREL16WF:
835 case R_PARISC_PCREL16DF:
836 need_entry = (NEED_PLT | NEED_STUB);
837 break;
838
839 case R_PARISC_PLTOFF21L:
840 case R_PARISC_PLTOFF14R:
841 case R_PARISC_PLTOFF14F:
842 case R_PARISC_PLTOFF14WR:
843 case R_PARISC_PLTOFF14DR:
844 case R_PARISC_PLTOFF16F:
845 case R_PARISC_PLTOFF16WF:
846 case R_PARISC_PLTOFF16DF:
847 need_entry = (NEED_PLT);
848 break;
849
850 case R_PARISC_DIR64:
851 if (info->shared || maybe_dynamic)
852 need_entry = (NEED_DYNREL);
853 dynrel_type = R_PARISC_DIR64;
854 break;
855
856 /* This is an indirect reference through the DLT to get the address
857 of a OPD descriptor. Thus we need to make a DLT entry that points
858 to an OPD entry. */
859 case R_PARISC_LTOFF_FPTR21L:
860 case R_PARISC_LTOFF_FPTR14R:
861 case R_PARISC_LTOFF_FPTR14WR:
862 case R_PARISC_LTOFF_FPTR14DR:
863 case R_PARISC_LTOFF_FPTR32:
864 case R_PARISC_LTOFF_FPTR64:
865 case R_PARISC_LTOFF_FPTR16F:
866 case R_PARISC_LTOFF_FPTR16WF:
867 case R_PARISC_LTOFF_FPTR16DF:
868 if (info->shared || maybe_dynamic)
869 need_entry = (NEED_DLT | NEED_OPD);
870 else
871 need_entry = (NEED_DLT | NEED_OPD);
872 dynrel_type = R_PARISC_FPTR64;
873 break;
874
875 /* This is a simple OPD entry. */
876 case R_PARISC_FPTR64:
877 if (info->shared || maybe_dynamic)
878 need_entry = (NEED_OPD | NEED_DYNREL);
879 else
880 need_entry = (NEED_OPD);
881 dynrel_type = R_PARISC_FPTR64;
882 break;
883
884 /* Add more cases as needed. */
885 }
886
887 if (!need_entry)
888 continue;
889
890 /* Collect a canonical name for this address. */
d63b5ed9 891 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
15bda425
JL
892
893 /* Collect the canonical entry data for this address. */
894 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 895 addr_name, TRUE, TRUE);
15bda425
JL
896 BFD_ASSERT (dyn_h);
897
898 /* Stash away enough information to be able to find this symbol
899 regardless of whether or not it is local or global. */
900 dyn_h->h = h;
901 dyn_h->owner = abfd;
902 dyn_h->sym_indx = r_symndx;
903
904 /* ?!? We may need to do some error checking in here. */
905 /* Create what's needed. */
906 if (need_entry & NEED_DLT)
907 {
908 if (! hppa_info->dlt_sec
909 && ! get_dlt (abfd, info, hppa_info))
910 goto err_out;
911 dyn_h->want_dlt = 1;
912 }
913
914 if (need_entry & NEED_PLT)
915 {
916 if (! hppa_info->plt_sec
917 && ! get_plt (abfd, info, hppa_info))
918 goto err_out;
919 dyn_h->want_plt = 1;
920 }
921
922 if (need_entry & NEED_STUB)
923 {
924 if (! hppa_info->stub_sec
925 && ! get_stub (abfd, info, hppa_info))
926 goto err_out;
927 dyn_h->want_stub = 1;
928 }
929
930 if (need_entry & NEED_OPD)
931 {
932 if (! hppa_info->opd_sec
933 && ! get_opd (abfd, info, hppa_info))
934 goto err_out;
935
936 dyn_h->want_opd = 1;
937
938 /* FPTRs are not allocated by the dynamic linker for PA64, though
939 it is possible that will change in the future. */
fe8bc63d 940
15bda425
JL
941 /* This could be a local function that had its address taken, in
942 which case H will be NULL. */
943 if (h)
f5385ebf 944 h->needs_plt = 1;
15bda425
JL
945 }
946
947 /* Add a new dynamic relocation to the chain of dynamic
948 relocations for this symbol. */
949 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
950 {
951 if (! hppa_info->other_rel_sec
952 && ! get_reloc_section (abfd, hppa_info, sec))
953 goto err_out;
954
955 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
956 sec_symndx, rel->r_offset, rel->r_addend))
957 goto err_out;
958
959 /* If we are building a shared library and we just recorded
960 a dynamic R_PARISC_FPTR64 relocation, then make sure the
961 section symbol for this section ends up in the dynamic
962 symbol table. */
963 if (info->shared && dynrel_type == R_PARISC_FPTR64
c152c796 964 && ! (bfd_elf_link_record_local_dynamic_symbol
15bda425 965 (info, abfd, sec_symndx)))
b34976b6 966 return FALSE;
15bda425
JL
967 }
968 }
969
970 if (buf)
971 free (buf);
b34976b6 972 return TRUE;
15bda425
JL
973
974 err_out:
975 if (buf)
976 free (buf);
b34976b6 977 return FALSE;
15bda425
JL
978}
979
980struct elf64_hppa_allocate_data
981{
982 struct bfd_link_info *info;
983 bfd_size_type ofs;
984};
985
986/* Should we do dynamic things to this symbol? */
987
b34976b6 988static bfd_boolean
15bda425
JL
989elf64_hppa_dynamic_symbol_p (h, info)
990 struct elf_link_hash_entry *h;
991 struct bfd_link_info *info;
992{
986a241f
RH
993 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
994 and relocations that retrieve a function descriptor? Assume the
995 worst for now. */
996 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
997 {
998 /* ??? Why is this here and not elsewhere is_local_label_name. */
999 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
1000 return FALSE;
15bda425 1001
986a241f
RH
1002 return TRUE;
1003 }
1004 else
b34976b6 1005 return FALSE;
15bda425
JL
1006}
1007
4cc11e76 1008/* Mark all functions exported by this file so that we can later allocate
15bda425
JL
1009 entries in .opd for them. */
1010
b34976b6 1011static bfd_boolean
15bda425
JL
1012elf64_hppa_mark_exported_functions (h, data)
1013 struct elf_link_hash_entry *h;
1014 PTR data;
1015{
1016 struct bfd_link_info *info = (struct bfd_link_info *)data;
1017 struct elf64_hppa_link_hash_table *hppa_info;
1018
1019 hppa_info = elf64_hppa_hash_table (info);
1020
e92d460e
AM
1021 if (h->root.type == bfd_link_hash_warning)
1022 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1023
15bda425
JL
1024 if (h
1025 && (h->root.type == bfd_link_hash_defined
1026 || h->root.type == bfd_link_hash_defweak)
1027 && h->root.u.def.section->output_section != NULL
1028 && h->type == STT_FUNC)
1029 {
1030 struct elf64_hppa_dyn_hash_entry *dyn_h;
1031
1032 /* Add this symbol to the PA64 linker hash table. */
1033 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1034 h->root.root.string, TRUE, TRUE);
15bda425
JL
1035 BFD_ASSERT (dyn_h);
1036 dyn_h->h = h;
1037
1038 if (! hppa_info->opd_sec
1039 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
b34976b6 1040 return FALSE;
15bda425
JL
1041
1042 dyn_h->want_opd = 1;
832d951b
AM
1043 /* Put a flag here for output_symbol_hook. */
1044 dyn_h->st_shndx = -1;
f5385ebf 1045 h->needs_plt = 1;
15bda425
JL
1046 }
1047
b34976b6 1048 return TRUE;
15bda425
JL
1049}
1050
1051/* Allocate space for a DLT entry. */
1052
b34976b6 1053static bfd_boolean
15bda425
JL
1054allocate_global_data_dlt (dyn_h, data)
1055 struct elf64_hppa_dyn_hash_entry *dyn_h;
1056 PTR data;
1057{
1058 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1059
1060 if (dyn_h->want_dlt)
1061 {
1062 struct elf_link_hash_entry *h = dyn_h->h;
1063
1064 if (x->info->shared)
1065 {
1066 /* Possibly add the symbol to the local dynamic symbol
1067 table since we might need to create a dynamic relocation
1068 against it. */
1069 if (! h
47b7c2db 1070 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
15bda425
JL
1071 {
1072 bfd *owner;
1073 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1074
c152c796 1075 if (! (bfd_elf_link_record_local_dynamic_symbol
dc810e39 1076 (x->info, owner, dyn_h->sym_indx)))
b34976b6 1077 return FALSE;
15bda425
JL
1078 }
1079 }
1080
1081 dyn_h->dlt_offset = x->ofs;
1082 x->ofs += DLT_ENTRY_SIZE;
1083 }
b34976b6 1084 return TRUE;
15bda425
JL
1085}
1086
1087/* Allocate space for a DLT.PLT entry. */
1088
b34976b6 1089static bfd_boolean
15bda425
JL
1090allocate_global_data_plt (dyn_h, data)
1091 struct elf64_hppa_dyn_hash_entry *dyn_h;
1092 PTR data;
1093{
1094 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1095
1096 if (dyn_h->want_plt
1097 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1098 && !((dyn_h->h->root.type == bfd_link_hash_defined
1099 || dyn_h->h->root.type == bfd_link_hash_defweak)
1100 && dyn_h->h->root.u.def.section->output_section != NULL))
1101 {
1102 dyn_h->plt_offset = x->ofs;
1103 x->ofs += PLT_ENTRY_SIZE;
1104 if (dyn_h->plt_offset < 0x2000)
1105 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1106 }
1107 else
1108 dyn_h->want_plt = 0;
1109
b34976b6 1110 return TRUE;
15bda425
JL
1111}
1112
1113/* Allocate space for a STUB entry. */
1114
b34976b6 1115static bfd_boolean
15bda425
JL
1116allocate_global_data_stub (dyn_h, data)
1117 struct elf64_hppa_dyn_hash_entry *dyn_h;
1118 PTR data;
1119{
1120 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1121
1122 if (dyn_h->want_stub
1123 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1124 && !((dyn_h->h->root.type == bfd_link_hash_defined
1125 || dyn_h->h->root.type == bfd_link_hash_defweak)
1126 && dyn_h->h->root.u.def.section->output_section != NULL))
1127 {
1128 dyn_h->stub_offset = x->ofs;
1129 x->ofs += sizeof (plt_stub);
1130 }
1131 else
1132 dyn_h->want_stub = 0;
b34976b6 1133 return TRUE;
15bda425
JL
1134}
1135
1136/* Allocate space for a FPTR entry. */
1137
b34976b6 1138static bfd_boolean
15bda425
JL
1139allocate_global_data_opd (dyn_h, data)
1140 struct elf64_hppa_dyn_hash_entry *dyn_h;
1141 PTR data;
1142{
1143 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1144
1145 if (dyn_h->want_opd)
1146 {
1147 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1148
15bda425
JL
1149 if (h)
1150 while (h->root.type == bfd_link_hash_indirect
1151 || h->root.type == bfd_link_hash_warning)
1152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1153
1154 /* We never need an opd entry for a symbol which is not
1155 defined by this output file. */
3db4b612 1156 if (h && (h->root.type == bfd_link_hash_undefined
af7cfa33 1157 || h->root.type == bfd_link_hash_undefweak
3db4b612 1158 || h->root.u.def.section->output_section == NULL))
15bda425
JL
1159 dyn_h->want_opd = 0;
1160
1161 /* If we are creating a shared library, took the address of a local
1162 function or might export this function from this object file, then
1163 we have to create an opd descriptor. */
1164 else if (x->info->shared
1165 || h == NULL
47b7c2db 1166 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
3db4b612
JL
1167 || (h->root.type == bfd_link_hash_defined
1168 || h->root.type == bfd_link_hash_defweak))
15bda425
JL
1169 {
1170 /* If we are creating a shared library, then we will have to
1171 create a runtime relocation for the symbol to properly
1172 initialize the .opd entry. Make sure the symbol gets
1173 added to the dynamic symbol table. */
1174 if (x->info->shared
1175 && (h == NULL || (h->dynindx == -1)))
1176 {
1177 bfd *owner;
1178 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1179
c152c796 1180 if (!bfd_elf_link_record_local_dynamic_symbol
15bda425 1181 (x->info, owner, dyn_h->sym_indx))
b34976b6 1182 return FALSE;
15bda425
JL
1183 }
1184
1185 /* This may not be necessary or desirable anymore now that
1186 we have some support for dealing with section symbols
1187 in dynamic relocs. But name munging does make the result
1188 much easier to debug. ie, the EPLT reloc will reference
1189 a symbol like .foobar, instead of .text + offset. */
1190 if (x->info->shared && h)
1191 {
1192 char *new_name;
1193 struct elf_link_hash_entry *nh;
1194
1195 new_name = alloca (strlen (h->root.root.string) + 2);
1196 new_name[0] = '.';
1197 strcpy (new_name + 1, h->root.root.string);
1198
1199 nh = elf_link_hash_lookup (elf_hash_table (x->info),
b34976b6 1200 new_name, TRUE, TRUE, TRUE);
15bda425
JL
1201
1202 nh->root.type = h->root.type;
1203 nh->root.u.def.value = h->root.u.def.value;
1204 nh->root.u.def.section = h->root.u.def.section;
1205
c152c796 1206 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
b34976b6 1207 return FALSE;
15bda425
JL
1208
1209 }
1210 dyn_h->opd_offset = x->ofs;
1211 x->ofs += OPD_ENTRY_SIZE;
1212 }
1213
1214 /* Otherwise we do not need an opd entry. */
1215 else
1216 dyn_h->want_opd = 0;
1217 }
b34976b6 1218 return TRUE;
15bda425
JL
1219}
1220
1221/* HP requires the EI_OSABI field to be filled in. The assignment to
1222 EI_ABIVERSION may not be strictly necessary. */
1223
1224static void
1225elf64_hppa_post_process_headers (abfd, link_info)
1226 bfd * abfd;
1227 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1228{
1229 Elf_Internal_Ehdr * i_ehdrp;
1230
1231 i_ehdrp = elf_elfheader (abfd);
d1036acb
L
1232
1233 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1234 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
15bda425
JL
1235}
1236
1237/* Create function descriptor section (.opd). This section is called .opd
4cc11e76 1238 because it contains "official procedure descriptors". The "official"
15bda425
JL
1239 refers to the fact that these descriptors are used when taking the address
1240 of a procedure, thus ensuring a unique address for each procedure. */
1241
b34976b6 1242static bfd_boolean
15bda425
JL
1243get_opd (abfd, info, hppa_info)
1244 bfd *abfd;
edd21aca 1245 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1246 struct elf64_hppa_link_hash_table *hppa_info;
1247{
1248 asection *opd;
1249 bfd *dynobj;
1250
1251 opd = hppa_info->opd_sec;
1252 if (!opd)
1253 {
1254 dynobj = hppa_info->root.dynobj;
1255 if (!dynobj)
1256 hppa_info->root.dynobj = dynobj = abfd;
1257
3496cb2a
L
1258 opd = bfd_make_section_with_flags (dynobj, ".opd",
1259 (SEC_ALLOC
1260 | SEC_LOAD
1261 | SEC_HAS_CONTENTS
1262 | SEC_IN_MEMORY
1263 | SEC_LINKER_CREATED));
15bda425 1264 if (!opd
15bda425
JL
1265 || !bfd_set_section_alignment (abfd, opd, 3))
1266 {
1267 BFD_ASSERT (0);
b34976b6 1268 return FALSE;
15bda425
JL
1269 }
1270
1271 hppa_info->opd_sec = opd;
1272 }
1273
b34976b6 1274 return TRUE;
15bda425
JL
1275}
1276
1277/* Create the PLT section. */
1278
b34976b6 1279static bfd_boolean
15bda425
JL
1280get_plt (abfd, info, hppa_info)
1281 bfd *abfd;
edd21aca 1282 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1283 struct elf64_hppa_link_hash_table *hppa_info;
1284{
1285 asection *plt;
1286 bfd *dynobj;
1287
1288 plt = hppa_info->plt_sec;
1289 if (!plt)
1290 {
1291 dynobj = hppa_info->root.dynobj;
1292 if (!dynobj)
1293 hppa_info->root.dynobj = dynobj = abfd;
1294
3496cb2a
L
1295 plt = bfd_make_section_with_flags (dynobj, ".plt",
1296 (SEC_ALLOC
1297 | SEC_LOAD
1298 | SEC_HAS_CONTENTS
1299 | SEC_IN_MEMORY
1300 | SEC_LINKER_CREATED));
15bda425 1301 if (!plt
15bda425
JL
1302 || !bfd_set_section_alignment (abfd, plt, 3))
1303 {
1304 BFD_ASSERT (0);
b34976b6 1305 return FALSE;
15bda425
JL
1306 }
1307
1308 hppa_info->plt_sec = plt;
1309 }
1310
b34976b6 1311 return TRUE;
15bda425
JL
1312}
1313
1314/* Create the DLT section. */
1315
b34976b6 1316static bfd_boolean
15bda425
JL
1317get_dlt (abfd, info, hppa_info)
1318 bfd *abfd;
edd21aca 1319 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1320 struct elf64_hppa_link_hash_table *hppa_info;
1321{
1322 asection *dlt;
1323 bfd *dynobj;
1324
1325 dlt = hppa_info->dlt_sec;
1326 if (!dlt)
1327 {
1328 dynobj = hppa_info->root.dynobj;
1329 if (!dynobj)
1330 hppa_info->root.dynobj = dynobj = abfd;
1331
3496cb2a
L
1332 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1333 (SEC_ALLOC
1334 | SEC_LOAD
1335 | SEC_HAS_CONTENTS
1336 | SEC_IN_MEMORY
1337 | SEC_LINKER_CREATED));
15bda425 1338 if (!dlt
15bda425
JL
1339 || !bfd_set_section_alignment (abfd, dlt, 3))
1340 {
1341 BFD_ASSERT (0);
b34976b6 1342 return FALSE;
15bda425
JL
1343 }
1344
1345 hppa_info->dlt_sec = dlt;
1346 }
1347
b34976b6 1348 return TRUE;
15bda425
JL
1349}
1350
1351/* Create the stubs section. */
1352
b34976b6 1353static bfd_boolean
15bda425
JL
1354get_stub (abfd, info, hppa_info)
1355 bfd *abfd;
edd21aca 1356 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1357 struct elf64_hppa_link_hash_table *hppa_info;
1358{
1359 asection *stub;
1360 bfd *dynobj;
1361
1362 stub = hppa_info->stub_sec;
1363 if (!stub)
1364 {
1365 dynobj = hppa_info->root.dynobj;
1366 if (!dynobj)
1367 hppa_info->root.dynobj = dynobj = abfd;
1368
3496cb2a
L
1369 stub = bfd_make_section_with_flags (dynobj, ".stub",
1370 (SEC_ALLOC | SEC_LOAD
1371 | SEC_HAS_CONTENTS
1372 | SEC_IN_MEMORY
1373 | SEC_READONLY
1374 | SEC_LINKER_CREATED));
15bda425 1375 if (!stub
15bda425
JL
1376 || !bfd_set_section_alignment (abfd, stub, 3))
1377 {
1378 BFD_ASSERT (0);
b34976b6 1379 return FALSE;
15bda425
JL
1380 }
1381
1382 hppa_info->stub_sec = stub;
1383 }
1384
b34976b6 1385 return TRUE;
15bda425
JL
1386}
1387
1388/* Create sections necessary for dynamic linking. This is only a rough
1389 cut and will likely change as we learn more about the somewhat
1390 unusual dynamic linking scheme HP uses.
1391
1392 .stub:
1393 Contains code to implement cross-space calls. The first time one
1394 of the stubs is used it will call into the dynamic linker, later
1395 calls will go straight to the target.
1396
1397 The only stub we support right now looks like
1398
1399 ldd OFFSET(%dp),%r1
1400 bve %r0(%r1)
1401 ldd OFFSET+8(%dp),%dp
1402
1403 Other stubs may be needed in the future. We may want the remove
1404 the break/nop instruction. It is only used right now to keep the
1405 offset of a .plt entry and a .stub entry in sync.
1406
1407 .dlt:
1408 This is what most people call the .got. HP used a different name.
1409 Losers.
1410
1411 .rela.dlt:
1412 Relocations for the DLT.
1413
1414 .plt:
1415 Function pointers as address,gp pairs.
1416
1417 .rela.plt:
1418 Should contain dynamic IPLT (and EPLT?) relocations.
1419
1420 .opd:
fe8bc63d 1421 FPTRS
15bda425
JL
1422
1423 .rela.opd:
1424 EPLT relocations for symbols exported from shared libraries. */
1425
b34976b6 1426static bfd_boolean
15bda425
JL
1427elf64_hppa_create_dynamic_sections (abfd, info)
1428 bfd *abfd;
1429 struct bfd_link_info *info;
1430{
1431 asection *s;
1432
1433 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1434 return FALSE;
15bda425
JL
1435
1436 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1437 return FALSE;
15bda425
JL
1438
1439 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1440 return FALSE;
15bda425
JL
1441
1442 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
b34976b6 1443 return FALSE;
15bda425 1444
3496cb2a
L
1445 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1446 (SEC_ALLOC | SEC_LOAD
1447 | SEC_HAS_CONTENTS
1448 | SEC_IN_MEMORY
1449 | SEC_READONLY
1450 | SEC_LINKER_CREATED));
15bda425 1451 if (s == NULL
15bda425 1452 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1453 return FALSE;
15bda425
JL
1454 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1455
3496cb2a
L
1456 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1457 (SEC_ALLOC | SEC_LOAD
1458 | SEC_HAS_CONTENTS
1459 | SEC_IN_MEMORY
1460 | SEC_READONLY
1461 | SEC_LINKER_CREATED));
15bda425 1462 if (s == NULL
15bda425 1463 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1464 return FALSE;
15bda425
JL
1465 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1466
3496cb2a
L
1467 s = bfd_make_section_with_flags (abfd, ".rela.data",
1468 (SEC_ALLOC | SEC_LOAD
1469 | SEC_HAS_CONTENTS
1470 | SEC_IN_MEMORY
1471 | SEC_READONLY
1472 | SEC_LINKER_CREATED));
15bda425 1473 if (s == NULL
15bda425 1474 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1475 return FALSE;
15bda425
JL
1476 elf64_hppa_hash_table (info)->other_rel_sec = s;
1477
3496cb2a
L
1478 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1479 (SEC_ALLOC | SEC_LOAD
1480 | SEC_HAS_CONTENTS
1481 | SEC_IN_MEMORY
1482 | SEC_READONLY
1483 | SEC_LINKER_CREATED));
15bda425 1484 if (s == NULL
15bda425 1485 || !bfd_set_section_alignment (abfd, s, 3))
b34976b6 1486 return FALSE;
15bda425
JL
1487 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1488
b34976b6 1489 return TRUE;
15bda425
JL
1490}
1491
1492/* Allocate dynamic relocations for those symbols that turned out
1493 to be dynamic. */
1494
b34976b6 1495static bfd_boolean
15bda425
JL
1496allocate_dynrel_entries (dyn_h, data)
1497 struct elf64_hppa_dyn_hash_entry *dyn_h;
1498 PTR data;
1499{
1500 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1501 struct elf64_hppa_link_hash_table *hppa_info;
1502 struct elf64_hppa_dyn_reloc_entry *rent;
b34976b6 1503 bfd_boolean dynamic_symbol, shared;
15bda425
JL
1504
1505 hppa_info = elf64_hppa_hash_table (x->info);
1506 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1507 shared = x->info->shared;
1508
1509 /* We may need to allocate relocations for a non-dynamic symbol
1510 when creating a shared library. */
1511 if (!dynamic_symbol && !shared)
b34976b6 1512 return TRUE;
15bda425
JL
1513
1514 /* Take care of the normal data relocations. */
1515
1516 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1517 {
d663e1cd
JL
1518 /* Allocate one iff we are building a shared library, the relocation
1519 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1520 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1521 continue;
1522
eea6121a 1523 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1524
1525 /* Make sure this symbol gets into the dynamic symbol table if it is
1526 not already recorded. ?!? This should not be in the loop since
1527 the symbol need only be added once. */
47b7c2db
AM
1528 if (dyn_h->h == 0
1529 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
c152c796 1530 if (!bfd_elf_link_record_local_dynamic_symbol
15bda425 1531 (x->info, rent->sec->owner, dyn_h->sym_indx))
b34976b6 1532 return FALSE;
15bda425
JL
1533 }
1534
1535 /* Take care of the GOT and PLT relocations. */
1536
1537 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
eea6121a 1538 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1539
1540 /* If we are building a shared library, then every symbol that has an
1541 opd entry will need an EPLT relocation to relocate the symbol's address
1542 and __gp value based on the runtime load address. */
1543 if (shared && dyn_h->want_opd)
eea6121a 1544 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
15bda425
JL
1545
1546 if (dyn_h->want_plt && dynamic_symbol)
1547 {
1548 bfd_size_type t = 0;
1549
1550 /* Dynamic symbols get one IPLT relocation. Local symbols in
1551 shared libraries get two REL relocations. Local symbols in
1552 main applications get nothing. */
1553 if (dynamic_symbol)
1554 t = sizeof (Elf64_External_Rela);
1555 else if (shared)
1556 t = 2 * sizeof (Elf64_External_Rela);
1557
eea6121a 1558 hppa_info->plt_rel_sec->size += t;
15bda425
JL
1559 }
1560
b34976b6 1561 return TRUE;
15bda425
JL
1562}
1563
1564/* Adjust a symbol defined by a dynamic object and referenced by a
1565 regular object. */
1566
b34976b6 1567static bfd_boolean
15bda425 1568elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1569 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1570 struct elf_link_hash_entry *h;
1571{
1572 /* ??? Undefined symbols with PLT entries should be re-defined
1573 to be the PLT entry. */
1574
1575 /* If this is a weak symbol, and there is a real definition, the
1576 processor independent code will have arranged for us to see the
1577 real definition first, and we can just use the same value. */
f6e332e6 1578 if (h->u.weakdef != NULL)
15bda425 1579 {
f6e332e6
AM
1580 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1581 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1582 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1583 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 1584 return TRUE;
15bda425
JL
1585 }
1586
1587 /* If this is a reference to a symbol defined by a dynamic object which
1588 is not a function, we might allocate the symbol in our .dynbss section
1589 and allocate a COPY dynamic relocation.
1590
1591 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1592 of hackery. */
1593
b34976b6 1594 return TRUE;
15bda425
JL
1595}
1596
47b7c2db
AM
1597/* This function is called via elf_link_hash_traverse to mark millicode
1598 symbols with a dynindx of -1 and to remove the string table reference
1599 from the dynamic symbol table. If the symbol is not a millicode symbol,
1600 elf64_hppa_mark_exported_functions is called. */
1601
b34976b6 1602static bfd_boolean
47b7c2db
AM
1603elf64_hppa_mark_milli_and_exported_functions (h, data)
1604 struct elf_link_hash_entry *h;
1605 PTR data;
1606{
1607 struct bfd_link_info *info = (struct bfd_link_info *)data;
1608 struct elf_link_hash_entry *elf = h;
1609
1610 if (elf->root.type == bfd_link_hash_warning)
1611 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1612
1613 if (elf->type == STT_PARISC_MILLI)
1614 {
1615 if (elf->dynindx != -1)
1616 {
1617 elf->dynindx = -1;
1618 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1619 elf->dynstr_index);
1620 }
b34976b6 1621 return TRUE;
47b7c2db
AM
1622 }
1623
1624 return elf64_hppa_mark_exported_functions (h, data);
1625}
1626
15bda425
JL
1627/* Set the final sizes of the dynamic sections and allocate memory for
1628 the contents of our special sections. */
1629
b34976b6 1630static bfd_boolean
15bda425
JL
1631elf64_hppa_size_dynamic_sections (output_bfd, info)
1632 bfd *output_bfd;
1633 struct bfd_link_info *info;
1634{
1635 bfd *dynobj;
1636 asection *s;
b34976b6
AM
1637 bfd_boolean plt;
1638 bfd_boolean relocs;
1639 bfd_boolean reltext;
15bda425
JL
1640 struct elf64_hppa_allocate_data data;
1641 struct elf64_hppa_link_hash_table *hppa_info;
1642
1643 hppa_info = elf64_hppa_hash_table (info);
1644
1645 dynobj = elf_hash_table (info)->dynobj;
1646 BFD_ASSERT (dynobj != NULL);
1647
47b7c2db
AM
1648 /* Mark each function this program exports so that we will allocate
1649 space in the .opd section for each function's FPTR. If we are
1650 creating dynamic sections, change the dynamic index of millicode
1651 symbols to -1 and remove them from the string table for .dynstr.
1652
1653 We have to traverse the main linker hash table since we have to
1654 find functions which may not have been mentioned in any relocs. */
1655 elf_link_hash_traverse (elf_hash_table (info),
1656 (elf_hash_table (info)->dynamic_sections_created
1657 ? elf64_hppa_mark_milli_and_exported_functions
1658 : elf64_hppa_mark_exported_functions),
1659 info);
1660
15bda425
JL
1661 if (elf_hash_table (info)->dynamic_sections_created)
1662 {
1663 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1664 if (info->executable)
15bda425
JL
1665 {
1666 s = bfd_get_section_by_name (dynobj, ".interp");
1667 BFD_ASSERT (s != NULL);
eea6121a 1668 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15bda425
JL
1669 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1670 }
1671 }
1672 else
1673 {
1674 /* We may have created entries in the .rela.got section.
1675 However, if we are not creating the dynamic sections, we will
1676 not actually use these entries. Reset the size of .rela.dlt,
1677 which will cause it to get stripped from the output file
1678 below. */
1679 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1680 if (s != NULL)
eea6121a 1681 s->size = 0;
15bda425
JL
1682 }
1683
1684 /* Allocate the GOT entries. */
1685
1686 data.info = info;
1687 if (elf64_hppa_hash_table (info)->dlt_sec)
1688 {
1689 data.ofs = 0x0;
1690 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1691 allocate_global_data_dlt, &data);
eea6121a 1692 hppa_info->dlt_sec->size = data.ofs;
15bda425
JL
1693
1694 data.ofs = 0x0;
1695 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1696 allocate_global_data_plt, &data);
eea6121a 1697 hppa_info->plt_sec->size = data.ofs;
15bda425
JL
1698
1699 data.ofs = 0x0;
1700 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1701 allocate_global_data_stub, &data);
eea6121a 1702 hppa_info->stub_sec->size = data.ofs;
15bda425
JL
1703 }
1704
15bda425
JL
1705 /* Allocate space for entries in the .opd section. */
1706 if (elf64_hppa_hash_table (info)->opd_sec)
1707 {
1708 data.ofs = 0;
1709 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1710 allocate_global_data_opd, &data);
eea6121a 1711 hppa_info->opd_sec->size = data.ofs;
15bda425
JL
1712 }
1713
1714 /* Now allocate space for dynamic relocations, if necessary. */
1715 if (hppa_info->root.dynamic_sections_created)
1716 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1717 allocate_dynrel_entries, &data);
1718
1719 /* The sizes of all the sections are set. Allocate memory for them. */
b34976b6
AM
1720 plt = FALSE;
1721 relocs = FALSE;
1722 reltext = FALSE;
15bda425
JL
1723 for (s = dynobj->sections; s != NULL; s = s->next)
1724 {
1725 const char *name;
15bda425
JL
1726
1727 if ((s->flags & SEC_LINKER_CREATED) == 0)
1728 continue;
1729
1730 /* It's OK to base decisions on the section name, because none
1731 of the dynobj section names depend upon the input files. */
1732 name = bfd_get_section_name (dynobj, s);
1733
15bda425
JL
1734 if (strcmp (name, ".plt") == 0)
1735 {
c456f082
AM
1736 /* Remember whether there is a PLT. */
1737 plt = s->size != 0;
15bda425 1738 }
c456f082 1739 else if (strcmp (name, ".opd") == 0
0112cd26 1740 || CONST_STRNEQ (name, ".dlt")
c456f082
AM
1741 || strcmp (name, ".stub") == 0
1742 || strcmp (name, ".got") == 0)
15bda425 1743 {
d663e1cd 1744 /* Strip this section if we don't need it; see the comment below. */
15bda425 1745 }
0112cd26 1746 else if (CONST_STRNEQ (name, ".rela"))
15bda425 1747 {
c456f082 1748 if (s->size != 0)
15bda425
JL
1749 {
1750 asection *target;
1751
1752 /* Remember whether there are any reloc sections other
1753 than .rela.plt. */
1754 if (strcmp (name, ".rela.plt") != 0)
1755 {
1756 const char *outname;
1757
b34976b6 1758 relocs = TRUE;
15bda425
JL
1759
1760 /* If this relocation section applies to a read only
1761 section, then we probably need a DT_TEXTREL
1762 entry. The entries in the .rela.plt section
1763 really apply to the .got section, which we
1764 created ourselves and so know is not readonly. */
1765 outname = bfd_get_section_name (output_bfd,
1766 s->output_section);
1767 target = bfd_get_section_by_name (output_bfd, outname + 4);
1768 if (target != NULL
1769 && (target->flags & SEC_READONLY) != 0
1770 && (target->flags & SEC_ALLOC) != 0)
b34976b6 1771 reltext = TRUE;
15bda425
JL
1772 }
1773
1774 /* We use the reloc_count field as a counter if we need
1775 to copy relocs into the output file. */
1776 s->reloc_count = 0;
1777 }
1778 }
c456f082 1779 else
15bda425
JL
1780 {
1781 /* It's not one of our sections, so don't allocate space. */
1782 continue;
1783 }
1784
c456f082 1785 if (s->size == 0)
15bda425 1786 {
c456f082
AM
1787 /* If we don't need this section, strip it from the
1788 output file. This is mostly to handle .rela.bss and
1789 .rela.plt. We must create both sections in
1790 create_dynamic_sections, because they must be created
1791 before the linker maps input sections to output
1792 sections. The linker does that before
1793 adjust_dynamic_symbol is called, and it is that
1794 function which decides whether anything needs to go
1795 into these sections. */
8423293d 1796 s->flags |= SEC_EXCLUDE;
15bda425
JL
1797 continue;
1798 }
1799
c456f082
AM
1800 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1801 continue;
1802
15bda425 1803 /* Allocate memory for the section contents if it has not
832d951b
AM
1804 been allocated already. We use bfd_zalloc here in case
1805 unused entries are not reclaimed before the section's
1806 contents are written out. This should not happen, but this
1807 way if it does, we get a R_PARISC_NONE reloc instead of
1808 garbage. */
15bda425
JL
1809 if (s->contents == NULL)
1810 {
eea6121a 1811 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1812 if (s->contents == NULL)
b34976b6 1813 return FALSE;
15bda425
JL
1814 }
1815 }
1816
1817 if (elf_hash_table (info)->dynamic_sections_created)
1818 {
1819 /* Always create a DT_PLTGOT. It actually has nothing to do with
1820 the PLT, it is how we communicate the __gp value of a load
1821 module to the dynamic linker. */
dc810e39 1822#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1823 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
dc810e39
AM
1824
1825 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1826 || !add_dynamic_entry (DT_PLTGOT, 0))
b34976b6 1827 return FALSE;
15bda425
JL
1828
1829 /* Add some entries to the .dynamic section. We fill in the
1830 values later, in elf64_hppa_finish_dynamic_sections, but we
1831 must add the entries now so that we get the correct size for
1832 the .dynamic section. The DT_DEBUG entry is filled in by the
1833 dynamic linker and used by the debugger. */
1834 if (! info->shared)
1835 {
dc810e39
AM
1836 if (!add_dynamic_entry (DT_DEBUG, 0)
1837 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1838 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
b34976b6 1839 return FALSE;
15bda425
JL
1840 }
1841
f2482cb2
NC
1842 /* Force DT_FLAGS to always be set.
1843 Required by HPUX 11.00 patch PHSS_26559. */
1844 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
b34976b6 1845 return FALSE;
f2482cb2 1846
15bda425
JL
1847 if (plt)
1848 {
dc810e39
AM
1849 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1850 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1851 || !add_dynamic_entry (DT_JMPREL, 0))
b34976b6 1852 return FALSE;
15bda425
JL
1853 }
1854
1855 if (relocs)
1856 {
dc810e39
AM
1857 if (!add_dynamic_entry (DT_RELA, 0)
1858 || !add_dynamic_entry (DT_RELASZ, 0)
1859 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
b34976b6 1860 return FALSE;
15bda425
JL
1861 }
1862
1863 if (reltext)
1864 {
dc810e39 1865 if (!add_dynamic_entry (DT_TEXTREL, 0))
b34976b6 1866 return FALSE;
d6cf2879 1867 info->flags |= DF_TEXTREL;
15bda425
JL
1868 }
1869 }
dc810e39 1870#undef add_dynamic_entry
15bda425 1871
b34976b6 1872 return TRUE;
15bda425
JL
1873}
1874
1875/* Called after we have output the symbol into the dynamic symbol
1876 table, but before we output the symbol into the normal symbol
1877 table.
1878
1879 For some symbols we had to change their address when outputting
1880 the dynamic symbol table. We undo that change here so that
1881 the symbols have their expected value in the normal symbol
1882 table. Ick. */
1883
b34976b6 1884static bfd_boolean
754021d0 1885elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
15bda425
JL
1886 struct bfd_link_info *info;
1887 const char *name;
1888 Elf_Internal_Sym *sym;
edd21aca 1889 asection *input_sec ATTRIBUTE_UNUSED;
754021d0 1890 struct elf_link_hash_entry *h;
15bda425
JL
1891{
1892 struct elf64_hppa_link_hash_table *hppa_info;
1893 struct elf64_hppa_dyn_hash_entry *dyn_h;
1894
1895 /* We may be called with the file symbol or section symbols.
1896 They never need munging, so it is safe to ignore them. */
1897 if (!name)
b34976b6 1898 return TRUE;
15bda425
JL
1899
1900 /* Get the PA dyn_symbol (if any) associated with NAME. */
1901 hppa_info = elf64_hppa_hash_table (info);
1902 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1903 name, FALSE, FALSE);
ac7bbf74 1904 if (!dyn_h || dyn_h->h != h)
754021d0 1905 return TRUE;
15bda425 1906
832d951b
AM
1907 /* Function symbols for which we created .opd entries *may* have been
1908 munged by finish_dynamic_symbol and have to be un-munged here.
1909
1910 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1911 into non-dynamic ones, so we initialize st_shndx to -1 in
1912 mark_exported_functions and check to see if it was overwritten
1913 here instead of just checking dyn_h->h->dynindx. */
ac7bbf74 1914 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1915 {
1916 /* Restore the saved value and section index. */
1917 sym->st_value = dyn_h->st_value;
fe8bc63d 1918 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1919 }
1920
b34976b6 1921 return TRUE;
15bda425
JL
1922}
1923
1924/* Finish up dynamic symbol handling. We set the contents of various
1925 dynamic sections here. */
1926
b34976b6 1927static bfd_boolean
15bda425
JL
1928elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1929 bfd *output_bfd;
1930 struct bfd_link_info *info;
1931 struct elf_link_hash_entry *h;
1932 Elf_Internal_Sym *sym;
1933{
1934 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1935 struct elf64_hppa_link_hash_table *hppa_info;
1936 struct elf64_hppa_dyn_hash_entry *dyn_h;
1937
1938 hppa_info = elf64_hppa_hash_table (info);
1939 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
b34976b6 1940 h->root.root.string, FALSE, FALSE);
15bda425
JL
1941
1942 stub = hppa_info->stub_sec;
1943 splt = hppa_info->plt_sec;
1944 sdlt = hppa_info->dlt_sec;
1945 sopd = hppa_info->opd_sec;
1946 spltrel = hppa_info->plt_rel_sec;
1947 sdltrel = hppa_info->dlt_rel_sec;
1948
15bda425
JL
1949 /* Incredible. It is actually necessary to NOT use the symbol's real
1950 value when building the dynamic symbol table for a shared library.
1951 At least for symbols that refer to functions.
1952
1953 We will store a new value and section index into the symbol long
1954 enough to output it into the dynamic symbol table, then we restore
1955 the original values (in elf64_hppa_link_output_symbol_hook). */
1956 if (dyn_h && dyn_h->want_opd)
1957 {
f12123c0 1958 BFD_ASSERT (sopd != NULL);
d663e1cd 1959
15bda425
JL
1960 /* Save away the original value and section index so that we
1961 can restore them later. */
1962 dyn_h->st_value = sym->st_value;
1963 dyn_h->st_shndx = sym->st_shndx;
1964
1965 /* For the dynamic symbol table entry, we want the value to be
1966 address of this symbol's entry within the .opd section. */
1967 sym->st_value = (dyn_h->opd_offset
1968 + sopd->output_offset
1969 + sopd->output_section->vma);
1970 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1971 sopd->output_section);
1972 }
1973
1974 /* Initialize a .plt entry if requested. */
1975 if (dyn_h && dyn_h->want_plt
1976 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1977 {
1978 bfd_vma value;
1979 Elf_Internal_Rela rel;
947216bf 1980 bfd_byte *loc;
15bda425 1981
f12123c0 1982 BFD_ASSERT (splt != NULL && spltrel != NULL);
d663e1cd 1983
15bda425
JL
1984 /* We do not actually care about the value in the PLT entry
1985 if we are creating a shared library and the symbol is
1986 still undefined, we create a dynamic relocation to fill
1987 in the correct value. */
1988 if (info->shared && h->root.type == bfd_link_hash_undefined)
1989 value = 0;
1990 else
1991 value = (h->root.u.def.value + h->root.u.def.section->vma);
1992
fe8bc63d 1993 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1994
1995 The format of a plt entry is
fe8bc63d 1996 <funcaddr> <__gp>.
15bda425
JL
1997
1998 plt_offset is the offset within the PLT section at which to
fe8bc63d 1999 install the PLT entry.
15bda425
JL
2000
2001 We are modifying the in-memory PLT contents here, so we do not add
2002 in the output_offset of the PLT section. */
2003
2004 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2005 value = _bfd_get_gp_value (splt->output_section->owner);
2006 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2007
2008 /* Create a dynamic IPLT relocation for this entry.
2009
2010 We are creating a relocation in the output file's PLT section,
2011 which is included within the DLT secton. So we do need to include
2012 the PLT's output_offset in the computation of the relocation's
2013 address. */
2014 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2015 + splt->output_section->vma);
2016 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2017 rel.r_addend = 0;
2018
947216bf
AM
2019 loc = spltrel->contents;
2020 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2021 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
15bda425
JL
2022 }
2023
2024 /* Initialize an external call stub entry if requested. */
2025 if (dyn_h && dyn_h->want_stub
2026 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2027 {
2028 bfd_vma value;
2029 int insn;
b352eebf 2030 unsigned int max_offset;
15bda425 2031
f12123c0 2032 BFD_ASSERT (stub != NULL);
d663e1cd 2033
15bda425
JL
2034 /* Install the generic stub template.
2035
2036 We are modifying the contents of the stub section, so we do not
2037 need to include the stub section's output_offset here. */
2038 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2039
2040 /* Fix up the first ldd instruction.
2041
2042 We are modifying the contents of the STUB section in memory,
fe8bc63d 2043 so we do not need to include its output offset in this computation.
15bda425
JL
2044
2045 Note the plt_offset value is the value of the PLT entry relative to
2046 the start of the PLT section. These instructions will reference
2047 data relative to the value of __gp, which may not necessarily have
2048 the same address as the start of the PLT section.
2049
2050 gp_offset contains the offset of __gp within the PLT section. */
2051 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 2052
15bda425 2053 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
b352eebf
AM
2054 if (output_bfd->arch_info->mach >= 25)
2055 {
2056 /* Wide mode allows 16 bit offsets. */
2057 max_offset = 32768;
2058 insn &= ~ 0xfff1;
dc810e39 2059 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2060 }
2061 else
2062 {
2063 max_offset = 8192;
2064 insn &= ~ 0x3ff1;
dc810e39 2065 insn |= re_assemble_14 ((int) value);
b352eebf
AM
2066 }
2067
2068 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2069 {
2070 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2071 dyn_h->root.string,
2072 (long) value);
b34976b6 2073 return FALSE;
b352eebf
AM
2074 }
2075
dc810e39 2076 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2077 stub->contents + dyn_h->stub_offset);
2078
2079 /* Fix up the second ldd instruction. */
b352eebf 2080 value += 8;
15bda425 2081 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
b352eebf
AM
2082 if (output_bfd->arch_info->mach >= 25)
2083 {
2084 insn &= ~ 0xfff1;
dc810e39 2085 insn |= re_assemble_16 ((int) value);
b352eebf
AM
2086 }
2087 else
2088 {
2089 insn &= ~ 0x3ff1;
dc810e39 2090 insn |= re_assemble_14 ((int) value);
b352eebf 2091 }
dc810e39 2092 bfd_put_32 (stub->owner, (bfd_vma) insn,
15bda425
JL
2093 stub->contents + dyn_h->stub_offset + 8);
2094 }
2095
b34976b6 2096 return TRUE;
15bda425
JL
2097}
2098
2099/* The .opd section contains FPTRs for each function this file
2100 exports. Initialize the FPTR entries. */
2101
b34976b6 2102static bfd_boolean
15bda425
JL
2103elf64_hppa_finalize_opd (dyn_h, data)
2104 struct elf64_hppa_dyn_hash_entry *dyn_h;
2105 PTR data;
2106{
2107 struct bfd_link_info *info = (struct bfd_link_info *)data;
2108 struct elf64_hppa_link_hash_table *hppa_info;
3db4b612 2109 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2110 asection *sopd;
2111 asection *sopdrel;
2112
2113 hppa_info = elf64_hppa_hash_table (info);
2114 sopd = hppa_info->opd_sec;
2115 sopdrel = hppa_info->opd_rel_sec;
2116
3db4b612 2117 if (h && dyn_h->want_opd)
15bda425
JL
2118 {
2119 bfd_vma value;
2120
fe8bc63d 2121 /* The first two words of an .opd entry are zero.
15bda425
JL
2122
2123 We are modifying the contents of the OPD section in memory, so we
2124 do not need to include its output offset in this computation. */
2125 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2126
2127 value = (h->root.u.def.value
2128 + h->root.u.def.section->output_section->vma
2129 + h->root.u.def.section->output_offset);
2130
2131 /* The next word is the address of the function. */
2132 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2133
2134 /* The last word is our local __gp value. */
2135 value = _bfd_get_gp_value (sopd->output_section->owner);
2136 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2137 }
2138
2139 /* If we are generating a shared library, we must generate EPLT relocations
2140 for each entry in the .opd, even for static functions (they may have
2141 had their address taken). */
2142 if (info->shared && dyn_h && dyn_h->want_opd)
2143 {
947216bf
AM
2144 Elf_Internal_Rela rel;
2145 bfd_byte *loc;
15bda425
JL
2146 int dynindx;
2147
2148 /* We may need to do a relocation against a local symbol, in
2149 which case we have to look up it's dynamic symbol index off
2150 the local symbol hash table. */
2151 if (h && h->dynindx != -1)
2152 dynindx = h->dynindx;
2153 else
2154 dynindx
2155 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2156 dyn_h->sym_indx);
2157
2158 /* The offset of this relocation is the absolute address of the
2159 .opd entry for this symbol. */
2160 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2161 + sopd->output_section->vma);
2162
2163 /* If H is non-null, then we have an external symbol.
2164
2165 It is imperative that we use a different dynamic symbol for the
2166 EPLT relocation if the symbol has global scope.
2167
2168 In the dynamic symbol table, the function symbol will have a value
2169 which is address of the function's .opd entry.
2170
2171 Thus, we can not use that dynamic symbol for the EPLT relocation
2172 (if we did, the data in the .opd would reference itself rather
2173 than the actual address of the function). Instead we have to use
2174 a new dynamic symbol which has the same value as the original global
fe8bc63d 2175 function symbol.
15bda425
JL
2176
2177 We prefix the original symbol with a "." and use the new symbol in
2178 the EPLT relocation. This new symbol has already been recorded in
2179 the symbol table, we just have to look it up and use it.
2180
2181 We do not have such problems with static functions because we do
2182 not make their addresses in the dynamic symbol table point to
2183 the .opd entry. Ultimately this should be safe since a static
2184 function can not be directly referenced outside of its shared
2185 library.
2186
2187 We do have to play similar games for FPTR relocations in shared
2188 libraries, including those for static symbols. See the FPTR
2189 handling in elf64_hppa_finalize_dynreloc. */
2190 if (h)
2191 {
2192 char *new_name;
2193 struct elf_link_hash_entry *nh;
2194
2195 new_name = alloca (strlen (h->root.root.string) + 2);
2196 new_name[0] = '.';
2197 strcpy (new_name + 1, h->root.root.string);
2198
2199 nh = elf_link_hash_lookup (elf_hash_table (info),
b34976b6 2200 new_name, FALSE, FALSE, FALSE);
15bda425
JL
2201
2202 /* All we really want from the new symbol is its dynamic
2203 symbol index. */
7fb9f789
NC
2204 if (nh)
2205 dynindx = nh->dynindx;
15bda425
JL
2206 }
2207
2208 rel.r_addend = 0;
2209 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2210
947216bf
AM
2211 loc = sopdrel->contents;
2212 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2213 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
15bda425 2214 }
b34976b6 2215 return TRUE;
15bda425
JL
2216}
2217
2218/* The .dlt section contains addresses for items referenced through the
2219 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2220 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2221
b34976b6 2222static bfd_boolean
15bda425
JL
2223elf64_hppa_finalize_dlt (dyn_h, data)
2224 struct elf64_hppa_dyn_hash_entry *dyn_h;
2225 PTR data;
2226{
2227 struct bfd_link_info *info = (struct bfd_link_info *)data;
2228 struct elf64_hppa_link_hash_table *hppa_info;
2229 asection *sdlt, *sdltrel;
3db4b612 2230 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
15bda425
JL
2231
2232 hppa_info = elf64_hppa_hash_table (info);
2233
2234 sdlt = hppa_info->dlt_sec;
2235 sdltrel = hppa_info->dlt_rel_sec;
2236
2237 /* H/DYN_H may refer to a local variable and we know it's
2238 address, so there is no need to create a relocation. Just install
2239 the proper value into the DLT, note this shortcut can not be
2240 skipped when building a shared library. */
3db4b612 2241 if (! info->shared && h && dyn_h->want_dlt)
15bda425
JL
2242 {
2243 bfd_vma value;
2244
2245 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2246 to point to the FPTR entry in the .opd section.
15bda425
JL
2247
2248 We include the OPD's output offset in this computation as
2249 we are referring to an absolute address in the resulting
2250 object file. */
2251 if (dyn_h->want_opd)
2252 {
2253 value = (dyn_h->opd_offset
2254 + hppa_info->opd_sec->output_offset
2255 + hppa_info->opd_sec->output_section->vma);
2256 }
37f4508b
AM
2257 else if ((h->root.type == bfd_link_hash_defined
2258 || h->root.type == bfd_link_hash_defweak)
2259 && h->root.u.def.section)
15bda425 2260 {
3db4b612 2261 value = h->root.u.def.value + h->root.u.def.section->output_offset;
15bda425
JL
2262 if (h->root.u.def.section->output_section)
2263 value += h->root.u.def.section->output_section->vma;
2264 else
2265 value += h->root.u.def.section->vma;
2266 }
3db4b612
JL
2267 else
2268 /* We have an undefined function reference. */
2269 value = 0;
15bda425
JL
2270
2271 /* We do not need to include the output offset of the DLT section
2272 here because we are modifying the in-memory contents. */
2273 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2274 }
2275
4cc11e76 2276 /* Create a relocation for the DLT entry associated with this symbol.
15bda425
JL
2277 When building a shared library the symbol does not have to be dynamic. */
2278 if (dyn_h->want_dlt
2279 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2280 {
947216bf
AM
2281 Elf_Internal_Rela rel;
2282 bfd_byte *loc;
15bda425
JL
2283 int dynindx;
2284
2285 /* We may need to do a relocation against a local symbol, in
2286 which case we have to look up it's dynamic symbol index off
2287 the local symbol hash table. */
2288 if (h && h->dynindx != -1)
2289 dynindx = h->dynindx;
2290 else
2291 dynindx
2292 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2293 dyn_h->sym_indx);
2294
15bda425
JL
2295 /* Create a dynamic relocation for this entry. Do include the output
2296 offset of the DLT entry since we need an absolute address in the
2297 resulting object file. */
2298 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2299 + sdlt->output_section->vma);
2300 if (h && h->type == STT_FUNC)
2301 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2302 else
2303 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2304 rel.r_addend = 0;
2305
947216bf
AM
2306 loc = sdltrel->contents;
2307 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2308 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
15bda425 2309 }
b34976b6 2310 return TRUE;
15bda425
JL
2311}
2312
2313/* Finalize the dynamic relocations. Specifically the FPTR relocations
2314 for dynamic functions used to initialize static data. */
2315
b34976b6 2316static bfd_boolean
15bda425
JL
2317elf64_hppa_finalize_dynreloc (dyn_h, data)
2318 struct elf64_hppa_dyn_hash_entry *dyn_h;
2319 PTR data;
2320{
2321 struct bfd_link_info *info = (struct bfd_link_info *)data;
2322 struct elf64_hppa_link_hash_table *hppa_info;
2323 struct elf_link_hash_entry *h;
2324 int dynamic_symbol;
2325
2326 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2327
2328 if (!dynamic_symbol && !info->shared)
b34976b6 2329 return TRUE;
15bda425
JL
2330
2331 if (dyn_h->reloc_entries)
2332 {
2333 struct elf64_hppa_dyn_reloc_entry *rent;
2334 int dynindx;
2335
2336 hppa_info = elf64_hppa_hash_table (info);
2337 h = dyn_h->h;
2338
2339 /* We may need to do a relocation against a local symbol, in
2340 which case we have to look up it's dynamic symbol index off
2341 the local symbol hash table. */
2342 if (h && h->dynindx != -1)
2343 dynindx = h->dynindx;
2344 else
2345 dynindx
2346 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2347 dyn_h->sym_indx);
2348
2349 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2350 {
947216bf
AM
2351 Elf_Internal_Rela rel;
2352 bfd_byte *loc;
15bda425 2353
d663e1cd
JL
2354 /* Allocate one iff we are building a shared library, the relocation
2355 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2356 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2357 continue;
15bda425 2358
fe8bc63d 2359 /* Create a dynamic relocation for this entry.
15bda425
JL
2360
2361 We need the output offset for the reloc's section because
2362 we are creating an absolute address in the resulting object
2363 file. */
2364 rel.r_offset = (rent->offset + rent->sec->output_offset
2365 + rent->sec->output_section->vma);
2366
2367 /* An FPTR64 relocation implies that we took the address of
2368 a function and that the function has an entry in the .opd
2369 section. We want the FPTR64 relocation to reference the
2370 entry in .opd.
2371
2372 We could munge the symbol value in the dynamic symbol table
2373 (in fact we already do for functions with global scope) to point
2374 to the .opd entry. Then we could use that dynamic symbol in
2375 this relocation.
2376
2377 Or we could do something sensible, not munge the symbol's
2378 address and instead just use a different symbol to reference
2379 the .opd entry. At least that seems sensible until you
2380 realize there's no local dynamic symbols we can use for that
2381 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2382
15bda425
JL
2383 We use a section symbol recorded by check_relocs as the
2384 base symbol for the relocation. The addend is the difference
2385 between the section symbol and the address of the .opd entry. */
3db4b612 2386 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
15bda425
JL
2387 {
2388 bfd_vma value, value2;
15bda425
JL
2389
2390 /* First compute the address of the opd entry for this symbol. */
2391 value = (dyn_h->opd_offset
2392 + hppa_info->opd_sec->output_section->vma
2393 + hppa_info->opd_sec->output_offset);
2394
2395 /* Compute the value of the start of the section with
2396 the relocation. */
2397 value2 = (rent->sec->output_section->vma
2398 + rent->sec->output_offset);
2399
2400 /* Compute the difference between the start of the section
2401 with the relocation and the opd entry. */
2402 value -= value2;
fe8bc63d 2403
15bda425
JL
2404 /* The result becomes the addend of the relocation. */
2405 rel.r_addend = value;
2406
2407 /* The section symbol becomes the symbol for the dynamic
2408 relocation. */
2409 dynindx
2410 = _bfd_elf_link_lookup_local_dynindx (info,
2411 rent->sec->owner,
2412 rent->sec_symndx);
2413 }
2414 else
2415 rel.r_addend = rent->addend;
2416
2417 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2418
947216bf
AM
2419 loc = hppa_info->other_rel_sec->contents;
2420 loc += (hppa_info->other_rel_sec->reloc_count++
2421 * sizeof (Elf64_External_Rela));
15bda425 2422 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
947216bf 2423 &rel, loc);
15bda425
JL
2424 }
2425 }
2426
b34976b6 2427 return TRUE;
15bda425
JL
2428}
2429
5ac81c74
JL
2430/* Used to decide how to sort relocs in an optimal manner for the
2431 dynamic linker, before writing them out. */
2432
2433static enum elf_reloc_type_class
2434elf64_hppa_reloc_type_class (rela)
2435 const Elf_Internal_Rela *rela;
2436{
2437 if (ELF64_R_SYM (rela->r_info) == 0)
2438 return reloc_class_relative;
2439
2440 switch ((int) ELF64_R_TYPE (rela->r_info))
2441 {
2442 case R_PARISC_IPLT:
2443 return reloc_class_plt;
2444 case R_PARISC_COPY:
2445 return reloc_class_copy;
2446 default:
2447 return reloc_class_normal;
2448 }
2449}
2450
15bda425
JL
2451/* Finish up the dynamic sections. */
2452
b34976b6 2453static bfd_boolean
15bda425
JL
2454elf64_hppa_finish_dynamic_sections (output_bfd, info)
2455 bfd *output_bfd;
2456 struct bfd_link_info *info;
2457{
2458 bfd *dynobj;
2459 asection *sdyn;
2460 struct elf64_hppa_link_hash_table *hppa_info;
2461
2462 hppa_info = elf64_hppa_hash_table (info);
2463
2464 /* Finalize the contents of the .opd section. */
2465 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2466 elf64_hppa_finalize_opd,
2467 info);
2468
2469 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2470 elf64_hppa_finalize_dynreloc,
2471 info);
2472
2473 /* Finalize the contents of the .dlt section. */
2474 dynobj = elf_hash_table (info)->dynobj;
2475 /* Finalize the contents of the .dlt section. */
2476 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2477 elf64_hppa_finalize_dlt,
2478 info);
2479
15bda425
JL
2480 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2481
2482 if (elf_hash_table (info)->dynamic_sections_created)
2483 {
2484 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2485
2486 BFD_ASSERT (sdyn != NULL);
2487
2488 dyncon = (Elf64_External_Dyn *) sdyn->contents;
eea6121a 2489 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15bda425
JL
2490 for (; dyncon < dynconend; dyncon++)
2491 {
2492 Elf_Internal_Dyn dyn;
2493 asection *s;
2494
2495 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2496
2497 switch (dyn.d_tag)
2498 {
2499 default:
2500 break;
2501
2502 case DT_HP_LOAD_MAP:
2503 /* Compute the absolute address of 16byte scratchpad area
2504 for the dynamic linker.
2505
2506 By convention the linker script will allocate the scratchpad
2507 area at the start of the .data section. So all we have to
2508 to is find the start of the .data section. */
2509 s = bfd_get_section_by_name (output_bfd, ".data");
2510 dyn.d_un.d_ptr = s->vma;
2511 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2512 break;
2513
2514 case DT_PLTGOT:
2515 /* HP's use PLTGOT to set the GOT register. */
2516 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2517 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2518 break;
2519
2520 case DT_JMPREL:
2521 s = hppa_info->plt_rel_sec;
2522 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2523 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2524 break;
2525
2526 case DT_PLTRELSZ:
2527 s = hppa_info->plt_rel_sec;
eea6121a 2528 dyn.d_un.d_val = s->size;
15bda425
JL
2529 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2530 break;
2531
2532 case DT_RELA:
2533 s = hppa_info->other_rel_sec;
eea6121a 2534 if (! s || ! s->size)
15bda425 2535 s = hppa_info->dlt_rel_sec;
eea6121a 2536 if (! s || ! s->size)
5ac81c74 2537 s = hppa_info->opd_rel_sec;
15bda425
JL
2538 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2539 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2540 break;
2541
2542 case DT_RELASZ:
2543 s = hppa_info->other_rel_sec;
eea6121a 2544 dyn.d_un.d_val = s->size;
15bda425 2545 s = hppa_info->dlt_rel_sec;
eea6121a 2546 dyn.d_un.d_val += s->size;
15bda425 2547 s = hppa_info->opd_rel_sec;
eea6121a 2548 dyn.d_un.d_val += s->size;
15bda425
JL
2549 /* There is some question about whether or not the size of
2550 the PLT relocs should be included here. HP's tools do
2551 it, so we'll emulate them. */
2552 s = hppa_info->plt_rel_sec;
eea6121a 2553 dyn.d_un.d_val += s->size;
15bda425
JL
2554 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2555 break;
2556
2557 }
2558 }
2559 }
2560
b34976b6 2561 return TRUE;
15bda425
JL
2562}
2563
235ecfbc
NC
2564/* Support for core dump NOTE sections. */
2565
2566static bfd_boolean
2567elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2568{
2569 int offset;
2570 size_t size;
2571
2572 switch (note->descsz)
2573 {
2574 default:
2575 return FALSE;
2576
2577 case 760: /* Linux/hppa */
2578 /* pr_cursig */
2579 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2580
2581 /* pr_pid */
2582 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2583
2584 /* pr_reg */
2585 offset = 112;
2586 size = 640;
2587
2588 break;
2589 }
2590
2591 /* Make a ".reg/999" section. */
2592 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2593 size, note->descpos + offset);
2594}
2595
2596static bfd_boolean
2597elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2598{
2599 char * command;
2600 int n;
2601
2602 switch (note->descsz)
2603 {
2604 default:
2605 return FALSE;
2606
2607 case 136: /* Linux/hppa elf_prpsinfo. */
2608 elf_tdata (abfd)->core_program
2609 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2610 elf_tdata (abfd)->core_command
2611 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2612 }
2613
2614 /* Note that for some reason, a spurious space is tacked
2615 onto the end of the args in some (at least one anyway)
2616 implementations, so strip it off if it exists. */
2617 command = elf_tdata (abfd)->core_command;
2618 n = strlen (command);
2619
2620 if (0 < n && command[n - 1] == ' ')
2621 command[n - 1] = '\0';
2622
2623 return TRUE;
2624}
2625
15bda425
JL
2626/* Return the number of additional phdrs we will need.
2627
2628 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2629 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2630
2631 This routine indicates that the backend needs one additional program
2632 header for that case.
2633
2634 Note we do not have access to the link info structure here, so we have
2635 to guess whether or not we are building a shared library based on the
2636 existence of a .interp section. */
2637
2638static int
a6b96beb
AM
2639elf64_hppa_additional_program_headers (bfd *abfd,
2640 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15bda425
JL
2641{
2642 asection *s;
2643
2644 /* If we are creating a shared library, then we have to create a
2645 PT_PHDR segment. HP's dynamic linker chokes without it. */
2646 s = bfd_get_section_by_name (abfd, ".interp");
2647 if (! s)
2648 return 1;
2649 return 0;
2650}
2651
2652/* Allocate and initialize any program headers required by this
2653 specific backend.
2654
2655 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2656 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2657
2658 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2659 for the HP linker.
15bda425
JL
2660
2661 Note we do not have access to the link info structure here, so we have
2662 to guess whether or not we are building a shared library based on the
2663 existence of a .interp section. */
2664
b34976b6 2665static bfd_boolean
8ded5a0f
AM
2666elf64_hppa_modify_segment_map (bfd *abfd,
2667 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15bda425 2668{
edd21aca 2669 struct elf_segment_map *m;
15bda425
JL
2670 asection *s;
2671
2672 s = bfd_get_section_by_name (abfd, ".interp");
2673 if (! s)
2674 {
2675 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2676 if (m->p_type == PT_PHDR)
2677 break;
2678 if (m == NULL)
2679 {
dc810e39
AM
2680 m = ((struct elf_segment_map *)
2681 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
15bda425 2682 if (m == NULL)
b34976b6 2683 return FALSE;
15bda425
JL
2684
2685 m->p_type = PT_PHDR;
2686 m->p_flags = PF_R | PF_X;
2687 m->p_flags_valid = 1;
2688 m->p_paddr_valid = 1;
2689 m->includes_phdrs = 1;
2690
2691 m->next = elf_tdata (abfd)->segment_map;
2692 elf_tdata (abfd)->segment_map = m;
2693 }
2694 }
2695
2696 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2697 if (m->p_type == PT_LOAD)
2698 {
0ba2a60e 2699 unsigned int i;
15bda425
JL
2700
2701 for (i = 0; i < m->count; i++)
2702 {
2703 /* The code "hint" is not really a hint. It is a requirement
2704 for certain versions of the HP dynamic linker. Worse yet,
2705 it must be set even if the shared library does not have
2706 any code in its "text" segment (thus the check for .hash
2707 to catch this situation). */
2708 if (m->sections[i]->flags & SEC_CODE
2709 || (strcmp (m->sections[i]->name, ".hash") == 0))
2710 m->p_flags |= (PF_X | PF_HP_CODE);
2711 }
2712 }
2713
b34976b6 2714 return TRUE;
15bda425
JL
2715}
2716
3fab46d0
AM
2717/* Called when writing out an object file to decide the type of a
2718 symbol. */
2719static int
2720elf64_hppa_elf_get_symbol_type (elf_sym, type)
2721 Elf_Internal_Sym *elf_sym;
2722 int type;
2723{
2724 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2725 return STT_PARISC_MILLI;
2726 else
2727 return type;
2728}
2729
d97a8924
DA
2730/* Support HP specific sections for core files. */
2731static bfd_boolean
2732elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2733 const char *typename)
2734{
927e625f
MK
2735 if (hdr->p_type == PT_HP_CORE_KERNEL)
2736 {
2737 asection *sect;
2738
2739 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2740 return FALSE;
2741
2742 sect = bfd_make_section_anyway (abfd, ".kernel");
2743 if (sect == NULL)
2744 return FALSE;
2745 sect->size = hdr->p_filesz;
2746 sect->filepos = hdr->p_offset;
2747 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2748 return TRUE;
2749 }
2750
d97a8924
DA
2751 if (hdr->p_type == PT_HP_CORE_PROC)
2752 {
2753 int sig;
2754
2755 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2756 return FALSE;
2757 if (bfd_bread (&sig, 4, abfd) != 4)
2758 return FALSE;
2759
2760 elf_tdata (abfd)->core_signal = sig;
2761
927e625f 2762 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
d97a8924 2763 return FALSE;
927e625f
MK
2764
2765 /* GDB uses the ".reg" section to read register contents. */
2766 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2767 hdr->p_offset);
d97a8924
DA
2768 }
2769
2770 if (hdr->p_type == PT_HP_CORE_LOADABLE
2771 || hdr->p_type == PT_HP_CORE_STACK
2772 || hdr->p_type == PT_HP_CORE_MMF)
2773 hdr->p_type = PT_LOAD;
2774
2775 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2776}
2777
b35d266b 2778static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2f89ff8d 2779{
0112cd26
NC
2780 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2781 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2782 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2783 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2784 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2785 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2786 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2787 { NULL, 0, 0, 0, 0 }
2f89ff8d
L
2788};
2789
15bda425
JL
2790/* The hash bucket size is the standard one, namely 4. */
2791
2792const struct elf_size_info hppa64_elf_size_info =
2793{
2794 sizeof (Elf64_External_Ehdr),
2795 sizeof (Elf64_External_Phdr),
2796 sizeof (Elf64_External_Shdr),
2797 sizeof (Elf64_External_Rel),
2798 sizeof (Elf64_External_Rela),
2799 sizeof (Elf64_External_Sym),
2800 sizeof (Elf64_External_Dyn),
2801 sizeof (Elf_External_Note),
2802 4,
2803 1,
45d6a902 2804 64, 3,
15bda425
JL
2805 ELFCLASS64, EV_CURRENT,
2806 bfd_elf64_write_out_phdrs,
2807 bfd_elf64_write_shdrs_and_ehdr,
1489a3a0 2808 bfd_elf64_checksum_contents,
15bda425 2809 bfd_elf64_write_relocs,
73ff0d56 2810 bfd_elf64_swap_symbol_in,
15bda425
JL
2811 bfd_elf64_swap_symbol_out,
2812 bfd_elf64_slurp_reloc_table,
2813 bfd_elf64_slurp_symbol_table,
2814 bfd_elf64_swap_dyn_in,
2815 bfd_elf64_swap_dyn_out,
947216bf
AM
2816 bfd_elf64_swap_reloc_in,
2817 bfd_elf64_swap_reloc_out,
2818 bfd_elf64_swap_reloca_in,
2819 bfd_elf64_swap_reloca_out
15bda425
JL
2820};
2821
2822#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2823#define TARGET_BIG_NAME "elf64-hppa"
2824#define ELF_ARCH bfd_arch_hppa
2825#define ELF_MACHINE_CODE EM_PARISC
2826/* This is not strictly correct. The maximum page size for PA2.0 is
2827 64M. But everything still uses 4k. */
2828#define ELF_MAXPAGESIZE 0x1000
d1036acb
L
2829#define ELF_OSABI ELFOSABI_HPUX
2830
15bda425 2831#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
157090f7 2832#define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
15bda425
JL
2833#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2834#define elf_info_to_howto elf_hppa_info_to_howto
2835#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2836
2837#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2838#define elf_backend_object_p elf64_hppa_object_p
2839#define elf_backend_final_write_processing \
2840 elf_hppa_final_write_processing
99c79b2e 2841#define elf_backend_fake_sections elf_hppa_fake_sections
15bda425
JL
2842#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2843
f0fe0e16 2844#define elf_backend_relocate_section elf_hppa_relocate_section
15bda425
JL
2845
2846#define bfd_elf64_bfd_final_link elf_hppa_final_link
2847
2848#define elf_backend_create_dynamic_sections \
2849 elf64_hppa_create_dynamic_sections
2850#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2851
74541ad4
AM
2852#define elf_backend_omit_section_dynsym \
2853 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
15bda425
JL
2854#define elf_backend_adjust_dynamic_symbol \
2855 elf64_hppa_adjust_dynamic_symbol
2856
2857#define elf_backend_size_dynamic_sections \
2858 elf64_hppa_size_dynamic_sections
2859
2860#define elf_backend_finish_dynamic_symbol \
2861 elf64_hppa_finish_dynamic_symbol
2862#define elf_backend_finish_dynamic_sections \
2863 elf64_hppa_finish_dynamic_sections
235ecfbc
NC
2864#define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
2865#define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
2866
15bda425
JL
2867/* Stuff for the BFD linker: */
2868#define bfd_elf64_bfd_link_hash_table_create \
2869 elf64_hppa_hash_table_create
2870
2871#define elf_backend_check_relocs \
2872 elf64_hppa_check_relocs
2873
2874#define elf_backend_size_info \
2875 hppa64_elf_size_info
2876
2877#define elf_backend_additional_program_headers \
2878 elf64_hppa_additional_program_headers
2879
2880#define elf_backend_modify_segment_map \
2881 elf64_hppa_modify_segment_map
2882
2883#define elf_backend_link_output_symbol_hook \
2884 elf64_hppa_link_output_symbol_hook
2885
15bda425
JL
2886#define elf_backend_want_got_plt 0
2887#define elf_backend_plt_readonly 0
2888#define elf_backend_want_plt_sym 0
2889#define elf_backend_got_header_size 0
b34976b6
AM
2890#define elf_backend_type_change_ok TRUE
2891#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2892#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2893#define elf_backend_rela_normal 1
29ef7005 2894#define elf_backend_special_sections elf64_hppa_special_sections
8a696751 2895#define elf_backend_action_discarded elf_hppa_action_discarded
d97a8924 2896#define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
15bda425 2897
83d1651b
L
2898#define elf64_bed elf64_hppa_hpux_bed
2899
15bda425 2900#include "elf64-target.h"
d952f17a
AM
2901
2902#undef TARGET_BIG_SYM
2903#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2904#undef TARGET_BIG_NAME
2905#define TARGET_BIG_NAME "elf64-hppa-linux"
d1036acb
L
2906#undef ELF_OSABI
2907#define ELF_OSABI ELFOSABI_LINUX
2908#undef elf_backend_post_process_headers
2909#define elf_backend_post_process_headers _bfd_elf_set_osabi
83d1651b
L
2910#undef elf64_bed
2911#define elf64_bed elf64_hppa_linux_bed
d952f17a 2912
d952f17a 2913#include "elf64-target.h"
This page took 0.818799 seconds and 4 git commands to generate.