2000-12-08 Kazu Hirata <kazu@hxi.com>
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
CommitLineData
15bda425
JL
1/* Generic support for 64-bit ELF
2 Copyright 1999, 2000 Free Software Foundation, Inc.
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
3ef20aaa 20#include "alloca-conf.h"
15bda425
JL
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
fe8bc63d 33
15bda425
JL
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
edd21aca 59 /* The symbol table entry, if any, that this was derived from. */
15bda425
JL
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 unsigned long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
fe8bc63d 172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
15bda425
JL
173 PTR info));
174
175static const char *get_dyn_name
0ba2a60e
AM
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
15bda425 178
15bda425
JL
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
15bda425
JL
183static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198static boolean elf64_hppa_size_dynamic_sections
199 PARAMS ((bfd *, struct bfd_link_info *));
200
201static boolean elf64_hppa_finish_dynamic_symbol
202 PARAMS ((bfd *, struct bfd_link_info *,
203 struct elf_link_hash_entry *, Elf_Internal_Sym *));
fe8bc63d 204
15bda425
JL
205static boolean elf64_hppa_finish_dynamic_sections
206 PARAMS ((bfd *, struct bfd_link_info *));
207
208static boolean elf64_hppa_check_relocs
209 PARAMS ((bfd *, struct bfd_link_info *,
210 asection *, const Elf_Internal_Rela *));
211
212static boolean elf64_hppa_dynamic_symbol_p
213 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
214
215static boolean elf64_hppa_mark_exported_functions
216 PARAMS ((struct elf_link_hash_entry *, PTR));
217
218static boolean elf64_hppa_finalize_opd
219 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
220
221static boolean elf64_hppa_finalize_dlt
222 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
223
224static boolean allocate_global_data_dlt
225 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
226
227static boolean allocate_global_data_plt
228 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
229
230static boolean allocate_global_data_stub
231 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
232
233static boolean allocate_global_data_opd
234 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
235
236static boolean get_reloc_section
237 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
238
239static boolean count_dyn_reloc
240 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
241 int, asection *, int, bfd_vma, bfd_vma));
242
243static boolean allocate_dynrel_entries
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
245
246static boolean elf64_hppa_finalize_dynreloc
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
248
249static boolean get_opd
250 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
251
252static boolean get_plt
253 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
254
255static boolean get_dlt
256 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
257
258static boolean get_stub
259 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
260
261static boolean
262elf64_hppa_dyn_hash_table_init (ht, abfd, new)
263 struct elf64_hppa_dyn_hash_table *ht;
edd21aca 264 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
265 new_hash_entry_func new;
266{
fe8bc63d 267 memset (ht, 0, sizeof (*ht));
15bda425
JL
268 return bfd_hash_table_init (&ht->root, new);
269}
270
271static struct bfd_hash_entry*
272elf64_hppa_new_dyn_hash_entry (entry, table, string)
273 struct bfd_hash_entry *entry;
274 struct bfd_hash_table *table;
275 const char *string;
276{
277 struct elf64_hppa_dyn_hash_entry *ret;
278 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
279
280 /* Allocate the structure if it has not already been allocated by a
281 subclass. */
282 if (!ret)
283 ret = bfd_hash_allocate (table, sizeof (*ret));
284
285 if (!ret)
286 return 0;
287
288 /* Initialize our local data. All zeros, and definitely easier
289 than setting 8 bit fields. */
fe8bc63d 290 memset (ret, 0, sizeof (*ret));
15bda425
JL
291
292 /* Call the allocation method of the superclass. */
293 ret = ((struct elf64_hppa_dyn_hash_entry *)
294 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
295
296 return &ret->root;
297}
298
299/* Create the derived linker hash table. The PA64 ELF port uses this
300 derived hash table to keep information specific to the PA ElF
301 linker (without using static variables). */
302
303static struct bfd_link_hash_table*
304elf64_hppa_hash_table_create (abfd)
305 bfd *abfd;
306{
307 struct elf64_hppa_link_hash_table *ret;
308
309 ret = bfd_zalloc (abfd, sizeof (*ret));
310 if (!ret)
311 return 0;
312 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
313 _bfd_elf_link_hash_newfunc))
314 {
315 bfd_release (abfd, ret);
316 return 0;
317 }
318
319 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
320 elf64_hppa_new_dyn_hash_entry))
321 return 0;
322 return &ret->root.root;
323}
324
325/* Look up an entry in a PA64 ELF linker hash table. */
326
327static struct elf64_hppa_dyn_hash_entry *
328elf64_hppa_dyn_hash_lookup(table, string, create, copy)
329 struct elf64_hppa_dyn_hash_table *table;
330 const char *string;
331 boolean create, copy;
332{
333 return ((struct elf64_hppa_dyn_hash_entry *)
334 bfd_hash_lookup (&table->root, string, create, copy));
335}
336
337/* Traverse a PA64 ELF linker hash table. */
338
339static void
340elf64_hppa_dyn_hash_traverse (table, func, info)
341 struct elf64_hppa_dyn_hash_table *table;
342 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
343 PTR info;
344{
345 (bfd_hash_traverse
346 (&table->root,
347 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
348 info));
349}
350\f
351/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
352
353 Additionally we set the default architecture and machine. */
354static boolean
355elf64_hppa_object_p (abfd)
356 bfd *abfd;
357{
358 /* Set the right machine number for an HPPA ELF file. */
359 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
360}
361
362/* Given section type (hdr->sh_type), return a boolean indicating
363 whether or not the section is an elf64-hppa specific section. */
364static boolean
365elf64_hppa_section_from_shdr (abfd, hdr, name)
366 bfd *abfd;
367 Elf64_Internal_Shdr *hdr;
368 char *name;
369{
370 asection *newsect;
371
372 switch (hdr->sh_type)
373 {
374 case SHT_PARISC_EXT:
375 if (strcmp (name, ".PARISC.archext") != 0)
376 return false;
377 break;
378 case SHT_PARISC_UNWIND:
379 if (strcmp (name, ".PARISC.unwind") != 0)
380 return false;
381 break;
382 case SHT_PARISC_DOC:
383 case SHT_PARISC_ANNOT:
384 default:
385 return false;
386 }
387
388 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
389 return false;
390 newsect = hdr->bfd_section;
391
392 return true;
393}
394
15bda425 395/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
fe8bc63d 396 name describes what was once potentially anonymous memory. We
15bda425
JL
397 allocate memory as necessary, possibly reusing PBUF/PLEN. */
398
399static const char *
0ba2a60e
AM
400get_dyn_name (sec, h, rel, pbuf, plen)
401 asection *sec;
15bda425
JL
402 struct elf_link_hash_entry *h;
403 const Elf_Internal_Rela *rel;
404 char **pbuf;
405 size_t *plen;
406{
407 size_t nlen, tlen;
408 char *buf;
409 size_t len;
410
411 if (h && rel->r_addend == 0)
412 return h->root.root.string;
413
414 if (h)
415 nlen = strlen (h->root.root.string);
416 else
0ba2a60e
AM
417 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
418 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
15bda425
JL
419
420 len = *plen;
421 buf = *pbuf;
422 if (len < tlen)
423 {
424 if (buf)
425 free (buf);
426 *pbuf = buf = malloc (tlen);
427 *plen = len = tlen;
428 if (!buf)
429 return NULL;
430 }
431
432 if (h)
433 {
434 memcpy (buf, h->root.root.string, nlen);
0ba2a60e 435 buf[nlen++] = '+';
15bda425
JL
436 sprintf_vma (buf + nlen, rel->r_addend);
437 }
438 else
439 {
0ba2a60e
AM
440 nlen = sprintf (buf, "%x:%lx",
441 sec->id & 0xffffffff,
442 (long) ELF64_R_SYM (rel->r_info));
15bda425
JL
443 if (rel->r_addend)
444 {
445 buf[nlen++] = '+';
446 sprintf_vma (buf + nlen, rel->r_addend);
447 }
448 }
449
450 return buf;
451}
452
453/* SEC is a section containing relocs for an input BFD when linking; return
454 a suitable section for holding relocs in the output BFD for a link. */
455
456static boolean
457get_reloc_section (abfd, hppa_info, sec)
458 bfd *abfd;
459 struct elf64_hppa_link_hash_table *hppa_info;
460 asection *sec;
461{
462 const char *srel_name;
463 asection *srel;
464 bfd *dynobj;
465
466 srel_name = (bfd_elf_string_from_elf_section
467 (abfd, elf_elfheader(abfd)->e_shstrndx,
468 elf_section_data(sec)->rel_hdr.sh_name));
469 if (srel_name == NULL)
470 return false;
471
472 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
473 && strcmp (bfd_get_section_name (abfd, sec),
474 srel_name+5) == 0)
475 || (strncmp (srel_name, ".rel", 4) == 0
476 && strcmp (bfd_get_section_name (abfd, sec),
477 srel_name+4) == 0));
478
479 dynobj = hppa_info->root.dynobj;
480 if (!dynobj)
481 hppa_info->root.dynobj = dynobj = abfd;
482
483 srel = bfd_get_section_by_name (dynobj, srel_name);
484 if (srel == NULL)
485 {
486 srel = bfd_make_section (dynobj, srel_name);
487 if (srel == NULL
488 || !bfd_set_section_flags (dynobj, srel,
489 (SEC_ALLOC
490 | SEC_LOAD
491 | SEC_HAS_CONTENTS
492 | SEC_IN_MEMORY
493 | SEC_LINKER_CREATED
494 | SEC_READONLY))
495 || !bfd_set_section_alignment (dynobj, srel, 3))
496 return false;
497 }
498
499 hppa_info->other_rel_sec = srel;
500 return true;
501}
502
fe8bc63d 503/* Add a new entry to the list of dynamic relocations against DYN_H.
15bda425
JL
504
505 We use this to keep a record of all the FPTR relocations against a
506 particular symbol so that we can create FPTR relocations in the
507 output file. */
508
509static boolean
510count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
511 bfd *abfd;
512 struct elf64_hppa_dyn_hash_entry *dyn_h;
513 int type;
514 asection *sec;
515 int sec_symndx;
516 bfd_vma offset;
517 bfd_vma addend;
518{
519 struct elf64_hppa_dyn_reloc_entry *rent;
520
521 rent = (struct elf64_hppa_dyn_reloc_entry *)
522 bfd_alloc (abfd, sizeof (*rent));
523 if (!rent)
524 return false;
525
526 rent->next = dyn_h->reloc_entries;
527 rent->type = type;
528 rent->sec = sec;
529 rent->sec_symndx = sec_symndx;
530 rent->offset = offset;
531 rent->addend = addend;
532 dyn_h->reloc_entries = rent;
533
534 return true;
535}
536
537/* Scan the RELOCS and record the type of dynamic entries that each
538 referenced symbol needs. */
539
540static boolean
541elf64_hppa_check_relocs (abfd, info, sec, relocs)
542 bfd *abfd;
543 struct bfd_link_info *info;
544 asection *sec;
545 const Elf_Internal_Rela *relocs;
546{
547 struct elf64_hppa_link_hash_table *hppa_info;
548 const Elf_Internal_Rela *relend;
549 Elf_Internal_Shdr *symtab_hdr;
550 const Elf_Internal_Rela *rel;
551 asection *dlt, *plt, *stubs;
552 char *buf;
553 size_t buf_len;
554 int sec_symndx;
555
556 if (info->relocateable)
557 return true;
558
559 /* If this is the first dynamic object found in the link, create
560 the special sections required for dynamic linking. */
561 if (! elf_hash_table (info)->dynamic_sections_created)
562 {
563 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
564 return false;
565 }
566
567 hppa_info = elf64_hppa_hash_table (info);
568 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
569
570 /* If necessary, build a new table holding section symbols indices
571 for this BFD. This is disgusting. */
fe8bc63d 572
15bda425
JL
573 if (info->shared && hppa_info->section_syms_bfd != abfd)
574 {
832d951b 575 unsigned long i;
0ba2a60e 576 int highest_shndx;
15bda425
JL
577 Elf_Internal_Sym *local_syms, *isym;
578 Elf64_External_Sym *ext_syms, *esym;
579
580 /* We're done with the old cache of section index to section symbol
581 index information. Free it.
582
583 ?!? Note we leak the last section_syms array. Presumably we
584 could free it in one of the later routines in this file. */
585 if (hppa_info->section_syms)
586 free (hppa_info->section_syms);
587
588 /* Allocate memory for the internal and external symbols. */
589 local_syms
590 = (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
591 * sizeof (Elf_Internal_Sym));
592 if (local_syms == NULL)
593 return false;
594
595 ext_syms
596 = (Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_info
597 * sizeof (Elf64_External_Sym));
598 if (ext_syms == NULL)
599 {
600 free (local_syms);
601 return false;
602 }
603
604 /* Read in the local symbols. */
605 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
606 || bfd_read (ext_syms, 1,
607 (symtab_hdr->sh_info
608 * sizeof (Elf64_External_Sym)), abfd)
609 != (symtab_hdr->sh_info * sizeof (Elf64_External_Sym)))
610 {
611 free (local_syms);
612 free (ext_syms);
613 return false;
614 }
615
616 /* Swap in the local symbols, also record the highest section index
617 referenced by the local symbols. */
618 isym = local_syms;
619 esym = ext_syms;
620 highest_shndx = 0;
621 for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
622 {
623 bfd_elf64_swap_symbol_in (abfd, esym, isym);
624 if (isym->st_shndx > highest_shndx)
625 highest_shndx = isym->st_shndx;
626 }
627
628 /* Now we can free the external symbols. */
629 free (ext_syms);
630
631 /* Allocate an array to hold the section index to section symbol index
632 mapping. Bump by one since we start counting at zero. */
633 highest_shndx++;
634 hppa_info->section_syms = (int *) bfd_malloc (highest_shndx
635 * sizeof (int));
636
637 /* Now walk the local symbols again. If we find a section symbol,
638 record the index of the symbol into the section_syms array. */
639 for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
640 {
641 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
642 hppa_info->section_syms[isym->st_shndx] = i;
643 }
644
645 /* We are finished with the local symbols. Get rid of them. */
646 free (local_syms);
647
648 /* Record which BFD we built the section_syms mapping for. */
649 hppa_info->section_syms_bfd = abfd;
650 }
651
652 /* Record the symbol index for this input section. We may need it for
653 relocations when building shared libraries. When not building shared
654 libraries this value is never really used, but assign it to zero to
655 prevent out of bounds memory accesses in other routines. */
656 if (info->shared)
657 {
658 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
659
660 /* If we did not find a section symbol for this section, then
661 something went terribly wrong above. */
662 if (sec_symndx == -1)
663 return false;
664
665 sec_symndx = hppa_info->section_syms[sec_symndx];
666 }
667 else
668 sec_symndx = 0;
fe8bc63d 669
15bda425
JL
670 dlt = plt = stubs = NULL;
671 buf = NULL;
672 buf_len = 0;
673
674 relend = relocs + sec->reloc_count;
675 for (rel = relocs; rel < relend; ++rel)
676 {
677 enum {
678 NEED_DLT = 1,
679 NEED_PLT = 2,
680 NEED_STUB = 4,
681 NEED_OPD = 8,
682 NEED_DYNREL = 16,
683 };
684
685 struct elf_link_hash_entry *h = NULL;
686 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
687 struct elf64_hppa_dyn_hash_entry *dyn_h;
688 int need_entry;
689 const char *addr_name;
690 boolean maybe_dynamic;
691 int dynrel_type = R_PARISC_NONE;
692 static reloc_howto_type *howto;
693
694 if (r_symndx >= symtab_hdr->sh_info)
695 {
696 /* We're dealing with a global symbol -- find its hash entry
697 and mark it as being referenced. */
698 long indx = r_symndx - symtab_hdr->sh_info;
699 h = elf_sym_hashes (abfd)[indx];
700 while (h->root.type == bfd_link_hash_indirect
701 || h->root.type == bfd_link_hash_warning)
702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
703
704 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
705 }
706
707 /* We can only get preliminary data on whether a symbol is
708 locally or externally defined, as not all of the input files
709 have yet been processed. Do something with what we know, as
710 this may help reduce memory usage and processing time later. */
711 maybe_dynamic = false;
712 if (h && ((info->shared && ! info->symbolic)
713 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
714 || h->root.type == bfd_link_hash_defweak))
715 maybe_dynamic = true;
716
717 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
718 need_entry = 0;
719 switch (howto->type)
720 {
721 /* These are simple indirect references to symbols through the
722 DLT. We need to create a DLT entry for any symbols which
723 appears in a DLTIND relocation. */
724 case R_PARISC_DLTIND21L:
725 case R_PARISC_DLTIND14R:
726 case R_PARISC_DLTIND14F:
727 case R_PARISC_DLTIND14WR:
728 case R_PARISC_DLTIND14DR:
729 need_entry = NEED_DLT;
730 break;
731
732 /* ?!? These need a DLT entry. But I have no idea what to do with
733 the "link time TP value. */
734 case R_PARISC_LTOFF_TP21L:
735 case R_PARISC_LTOFF_TP14R:
736 case R_PARISC_LTOFF_TP14F:
737 case R_PARISC_LTOFF_TP64:
738 case R_PARISC_LTOFF_TP14WR:
739 case R_PARISC_LTOFF_TP14DR:
740 case R_PARISC_LTOFF_TP16F:
741 case R_PARISC_LTOFF_TP16WF:
742 case R_PARISC_LTOFF_TP16DF:
743 need_entry = NEED_DLT;
744 break;
745
746 /* These are function calls. Depending on their precise target we
747 may need to make a stub for them. The stub uses the PLT, so we
748 need to create PLT entries for these symbols too. */
832d951b 749 case R_PARISC_PCREL12F:
15bda425
JL
750 case R_PARISC_PCREL17F:
751 case R_PARISC_PCREL22F:
752 case R_PARISC_PCREL32:
753 case R_PARISC_PCREL64:
754 case R_PARISC_PCREL21L:
755 case R_PARISC_PCREL17R:
756 case R_PARISC_PCREL17C:
757 case R_PARISC_PCREL14R:
758 case R_PARISC_PCREL14F:
759 case R_PARISC_PCREL22C:
760 case R_PARISC_PCREL14WR:
761 case R_PARISC_PCREL14DR:
762 case R_PARISC_PCREL16F:
763 case R_PARISC_PCREL16WF:
764 case R_PARISC_PCREL16DF:
765 need_entry = (NEED_PLT | NEED_STUB);
766 break;
767
768 case R_PARISC_PLTOFF21L:
769 case R_PARISC_PLTOFF14R:
770 case R_PARISC_PLTOFF14F:
771 case R_PARISC_PLTOFF14WR:
772 case R_PARISC_PLTOFF14DR:
773 case R_PARISC_PLTOFF16F:
774 case R_PARISC_PLTOFF16WF:
775 case R_PARISC_PLTOFF16DF:
776 need_entry = (NEED_PLT);
777 break;
778
779 case R_PARISC_DIR64:
780 if (info->shared || maybe_dynamic)
781 need_entry = (NEED_DYNREL);
782 dynrel_type = R_PARISC_DIR64;
783 break;
784
785 /* This is an indirect reference through the DLT to get the address
786 of a OPD descriptor. Thus we need to make a DLT entry that points
787 to an OPD entry. */
788 case R_PARISC_LTOFF_FPTR21L:
789 case R_PARISC_LTOFF_FPTR14R:
790 case R_PARISC_LTOFF_FPTR14WR:
791 case R_PARISC_LTOFF_FPTR14DR:
792 case R_PARISC_LTOFF_FPTR32:
793 case R_PARISC_LTOFF_FPTR64:
794 case R_PARISC_LTOFF_FPTR16F:
795 case R_PARISC_LTOFF_FPTR16WF:
796 case R_PARISC_LTOFF_FPTR16DF:
797 if (info->shared || maybe_dynamic)
798 need_entry = (NEED_DLT | NEED_OPD);
799 else
800 need_entry = (NEED_DLT | NEED_OPD);
801 dynrel_type = R_PARISC_FPTR64;
802 break;
803
804 /* This is a simple OPD entry. */
805 case R_PARISC_FPTR64:
806 if (info->shared || maybe_dynamic)
807 need_entry = (NEED_OPD | NEED_DYNREL);
808 else
809 need_entry = (NEED_OPD);
810 dynrel_type = R_PARISC_FPTR64;
811 break;
812
813 /* Add more cases as needed. */
814 }
815
816 if (!need_entry)
817 continue;
818
819 /* Collect a canonical name for this address. */
0ba2a60e 820 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
15bda425
JL
821
822 /* Collect the canonical entry data for this address. */
823 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
824 addr_name, true, true);
825 BFD_ASSERT (dyn_h);
826
827 /* Stash away enough information to be able to find this symbol
828 regardless of whether or not it is local or global. */
829 dyn_h->h = h;
830 dyn_h->owner = abfd;
831 dyn_h->sym_indx = r_symndx;
832
833 /* ?!? We may need to do some error checking in here. */
834 /* Create what's needed. */
835 if (need_entry & NEED_DLT)
836 {
837 if (! hppa_info->dlt_sec
838 && ! get_dlt (abfd, info, hppa_info))
839 goto err_out;
840 dyn_h->want_dlt = 1;
841 }
842
843 if (need_entry & NEED_PLT)
844 {
845 if (! hppa_info->plt_sec
846 && ! get_plt (abfd, info, hppa_info))
847 goto err_out;
848 dyn_h->want_plt = 1;
849 }
850
851 if (need_entry & NEED_STUB)
852 {
853 if (! hppa_info->stub_sec
854 && ! get_stub (abfd, info, hppa_info))
855 goto err_out;
856 dyn_h->want_stub = 1;
857 }
858
859 if (need_entry & NEED_OPD)
860 {
861 if (! hppa_info->opd_sec
862 && ! get_opd (abfd, info, hppa_info))
863 goto err_out;
864
865 dyn_h->want_opd = 1;
866
867 /* FPTRs are not allocated by the dynamic linker for PA64, though
868 it is possible that will change in the future. */
fe8bc63d 869
15bda425
JL
870 /* This could be a local function that had its address taken, in
871 which case H will be NULL. */
872 if (h)
873 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
874 }
875
876 /* Add a new dynamic relocation to the chain of dynamic
877 relocations for this symbol. */
878 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
879 {
880 if (! hppa_info->other_rel_sec
881 && ! get_reloc_section (abfd, hppa_info, sec))
882 goto err_out;
883
884 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
885 sec_symndx, rel->r_offset, rel->r_addend))
886 goto err_out;
887
888 /* If we are building a shared library and we just recorded
889 a dynamic R_PARISC_FPTR64 relocation, then make sure the
890 section symbol for this section ends up in the dynamic
891 symbol table. */
892 if (info->shared && dynrel_type == R_PARISC_FPTR64
893 && ! (_bfd_elf64_link_record_local_dynamic_symbol
894 (info, abfd, sec_symndx)))
895 return false;
896 }
897 }
898
899 if (buf)
900 free (buf);
901 return true;
902
903 err_out:
904 if (buf)
905 free (buf);
906 return false;
907}
908
909struct elf64_hppa_allocate_data
910{
911 struct bfd_link_info *info;
912 bfd_size_type ofs;
913};
914
915/* Should we do dynamic things to this symbol? */
916
917static boolean
918elf64_hppa_dynamic_symbol_p (h, info)
919 struct elf_link_hash_entry *h;
920 struct bfd_link_info *info;
921{
922 if (h == NULL)
923 return false;
924
925 while (h->root.type == bfd_link_hash_indirect
926 || h->root.type == bfd_link_hash_warning)
927 h = (struct elf_link_hash_entry *) h->root.u.i.link;
928
929 if (h->dynindx == -1)
930 return false;
931
932 if (h->root.type == bfd_link_hash_undefweak
933 || h->root.type == bfd_link_hash_defweak)
934 return true;
935
936 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
937 return false;
938
939 if ((info->shared && !info->symbolic)
940 || ((h->elf_link_hash_flags
941 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
942 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
943 return true;
944
945 return false;
946}
947
948/* Mark all funtions exported by this file so that we can later allocate
949 entries in .opd for them. */
950
951static boolean
952elf64_hppa_mark_exported_functions (h, data)
953 struct elf_link_hash_entry *h;
954 PTR data;
955{
956 struct bfd_link_info *info = (struct bfd_link_info *)data;
957 struct elf64_hppa_link_hash_table *hppa_info;
958
959 hppa_info = elf64_hppa_hash_table (info);
960
961 if (h
962 && (h->root.type == bfd_link_hash_defined
963 || h->root.type == bfd_link_hash_defweak)
964 && h->root.u.def.section->output_section != NULL
965 && h->type == STT_FUNC)
966 {
967 struct elf64_hppa_dyn_hash_entry *dyn_h;
968
969 /* Add this symbol to the PA64 linker hash table. */
970 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
971 h->root.root.string, true, true);
972 BFD_ASSERT (dyn_h);
973 dyn_h->h = h;
974
975 if (! hppa_info->opd_sec
976 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
977 return false;
978
979 dyn_h->want_opd = 1;
832d951b
AM
980 /* Put a flag here for output_symbol_hook. */
981 dyn_h->st_shndx = -1;
15bda425
JL
982 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
983 }
984
985 return true;
986}
987
988/* Allocate space for a DLT entry. */
989
990static boolean
991allocate_global_data_dlt (dyn_h, data)
992 struct elf64_hppa_dyn_hash_entry *dyn_h;
993 PTR data;
994{
995 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
996
997 if (dyn_h->want_dlt)
998 {
999 struct elf_link_hash_entry *h = dyn_h->h;
1000
1001 if (x->info->shared)
1002 {
1003 /* Possibly add the symbol to the local dynamic symbol
1004 table since we might need to create a dynamic relocation
1005 against it. */
1006 if (! h
1007 || (h && h->dynindx == -1))
1008 {
1009 bfd *owner;
1010 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1011
1012 if (!_bfd_elf64_link_record_local_dynamic_symbol
1013 (x->info, owner, dyn_h->sym_indx))
1014 return false;
1015 }
1016 }
1017
1018 dyn_h->dlt_offset = x->ofs;
1019 x->ofs += DLT_ENTRY_SIZE;
1020 }
1021 return true;
1022}
1023
1024/* Allocate space for a DLT.PLT entry. */
1025
1026static boolean
1027allocate_global_data_plt (dyn_h, data)
1028 struct elf64_hppa_dyn_hash_entry *dyn_h;
1029 PTR data;
1030{
1031 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1032
1033 if (dyn_h->want_plt
1034 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1035 && !((dyn_h->h->root.type == bfd_link_hash_defined
1036 || dyn_h->h->root.type == bfd_link_hash_defweak)
1037 && dyn_h->h->root.u.def.section->output_section != NULL))
1038 {
1039 dyn_h->plt_offset = x->ofs;
1040 x->ofs += PLT_ENTRY_SIZE;
1041 if (dyn_h->plt_offset < 0x2000)
1042 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1043 }
1044 else
1045 dyn_h->want_plt = 0;
1046
1047 return true;
1048}
1049
1050/* Allocate space for a STUB entry. */
1051
1052static boolean
1053allocate_global_data_stub (dyn_h, data)
1054 struct elf64_hppa_dyn_hash_entry *dyn_h;
1055 PTR data;
1056{
1057 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1058
1059 if (dyn_h->want_stub
1060 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1061 && !((dyn_h->h->root.type == bfd_link_hash_defined
1062 || dyn_h->h->root.type == bfd_link_hash_defweak)
1063 && dyn_h->h->root.u.def.section->output_section != NULL))
1064 {
1065 dyn_h->stub_offset = x->ofs;
1066 x->ofs += sizeof (plt_stub);
1067 }
1068 else
1069 dyn_h->want_stub = 0;
1070 return true;
1071}
1072
1073/* Allocate space for a FPTR entry. */
1074
1075static boolean
1076allocate_global_data_opd (dyn_h, data)
1077 struct elf64_hppa_dyn_hash_entry *dyn_h;
1078 PTR data;
1079{
1080 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1081
1082 if (dyn_h->want_opd)
1083 {
1084 struct elf_link_hash_entry *h = dyn_h->h;
fe8bc63d 1085
15bda425
JL
1086 if (h)
1087 while (h->root.type == bfd_link_hash_indirect
1088 || h->root.type == bfd_link_hash_warning)
1089 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1090
1091 /* We never need an opd entry for a symbol which is not
1092 defined by this output file. */
1093 if (h && h->root.type == bfd_link_hash_undefined)
1094 dyn_h->want_opd = 0;
1095
1096 /* If we are creating a shared library, took the address of a local
1097 function or might export this function from this object file, then
1098 we have to create an opd descriptor. */
1099 else if (x->info->shared
1100 || h == NULL
1101 || h->dynindx == -1
1102 || ((h->root.type == bfd_link_hash_defined
1103 || h->root.type == bfd_link_hash_defweak)
1104 && h->root.u.def.section->output_section != NULL))
1105 {
1106 /* If we are creating a shared library, then we will have to
1107 create a runtime relocation for the symbol to properly
1108 initialize the .opd entry. Make sure the symbol gets
1109 added to the dynamic symbol table. */
1110 if (x->info->shared
1111 && (h == NULL || (h->dynindx == -1)))
1112 {
1113 bfd *owner;
1114 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1115
1116 if (!_bfd_elf64_link_record_local_dynamic_symbol
1117 (x->info, owner, dyn_h->sym_indx))
1118 return false;
1119 }
1120
1121 /* This may not be necessary or desirable anymore now that
1122 we have some support for dealing with section symbols
1123 in dynamic relocs. But name munging does make the result
1124 much easier to debug. ie, the EPLT reloc will reference
1125 a symbol like .foobar, instead of .text + offset. */
1126 if (x->info->shared && h)
1127 {
1128 char *new_name;
1129 struct elf_link_hash_entry *nh;
1130
1131 new_name = alloca (strlen (h->root.root.string) + 2);
1132 new_name[0] = '.';
1133 strcpy (new_name + 1, h->root.root.string);
1134
1135 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1136 new_name, true, true, true);
1137
1138 nh->root.type = h->root.type;
1139 nh->root.u.def.value = h->root.u.def.value;
1140 nh->root.u.def.section = h->root.u.def.section;
1141
1142 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1143 return false;
1144
1145 }
1146 dyn_h->opd_offset = x->ofs;
1147 x->ofs += OPD_ENTRY_SIZE;
1148 }
1149
1150 /* Otherwise we do not need an opd entry. */
1151 else
1152 dyn_h->want_opd = 0;
1153 }
1154 return true;
1155}
1156
1157/* HP requires the EI_OSABI field to be filled in. The assignment to
1158 EI_ABIVERSION may not be strictly necessary. */
1159
1160static void
1161elf64_hppa_post_process_headers (abfd, link_info)
1162 bfd * abfd;
1163 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1164{
1165 Elf_Internal_Ehdr * i_ehdrp;
1166
1167 i_ehdrp = elf_elfheader (abfd);
1168
1169 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1170 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1171}
1172
1173/* Create function descriptor section (.opd). This section is called .opd
1174 because it contains "official prodecure descriptors". The "official"
1175 refers to the fact that these descriptors are used when taking the address
1176 of a procedure, thus ensuring a unique address for each procedure. */
1177
1178static boolean
1179get_opd (abfd, info, hppa_info)
1180 bfd *abfd;
edd21aca 1181 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1182 struct elf64_hppa_link_hash_table *hppa_info;
1183{
1184 asection *opd;
1185 bfd *dynobj;
1186
1187 opd = hppa_info->opd_sec;
1188 if (!opd)
1189 {
1190 dynobj = hppa_info->root.dynobj;
1191 if (!dynobj)
1192 hppa_info->root.dynobj = dynobj = abfd;
1193
1194 opd = bfd_make_section (dynobj, ".opd");
1195 if (!opd
1196 || !bfd_set_section_flags (dynobj, opd,
1197 (SEC_ALLOC
1198 | SEC_LOAD
1199 | SEC_HAS_CONTENTS
1200 | SEC_IN_MEMORY
1201 | SEC_LINKER_CREATED))
1202 || !bfd_set_section_alignment (abfd, opd, 3))
1203 {
1204 BFD_ASSERT (0);
1205 return false;
1206 }
1207
1208 hppa_info->opd_sec = opd;
1209 }
1210
1211 return true;
1212}
1213
1214/* Create the PLT section. */
1215
1216static boolean
1217get_plt (abfd, info, hppa_info)
1218 bfd *abfd;
edd21aca 1219 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1220 struct elf64_hppa_link_hash_table *hppa_info;
1221{
1222 asection *plt;
1223 bfd *dynobj;
1224
1225 plt = hppa_info->plt_sec;
1226 if (!plt)
1227 {
1228 dynobj = hppa_info->root.dynobj;
1229 if (!dynobj)
1230 hppa_info->root.dynobj = dynobj = abfd;
1231
1232 plt = bfd_make_section (dynobj, ".plt");
1233 if (!plt
1234 || !bfd_set_section_flags (dynobj, plt,
1235 (SEC_ALLOC
1236 | SEC_LOAD
1237 | SEC_HAS_CONTENTS
1238 | SEC_IN_MEMORY
1239 | SEC_LINKER_CREATED))
1240 || !bfd_set_section_alignment (abfd, plt, 3))
1241 {
1242 BFD_ASSERT (0);
1243 return false;
1244 }
1245
1246 hppa_info->plt_sec = plt;
1247 }
1248
1249 return true;
1250}
1251
1252/* Create the DLT section. */
1253
1254static boolean
1255get_dlt (abfd, info, hppa_info)
1256 bfd *abfd;
edd21aca 1257 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1258 struct elf64_hppa_link_hash_table *hppa_info;
1259{
1260 asection *dlt;
1261 bfd *dynobj;
1262
1263 dlt = hppa_info->dlt_sec;
1264 if (!dlt)
1265 {
1266 dynobj = hppa_info->root.dynobj;
1267 if (!dynobj)
1268 hppa_info->root.dynobj = dynobj = abfd;
1269
1270 dlt = bfd_make_section (dynobj, ".dlt");
1271 if (!dlt
1272 || !bfd_set_section_flags (dynobj, dlt,
1273 (SEC_ALLOC
1274 | SEC_LOAD
1275 | SEC_HAS_CONTENTS
1276 | SEC_IN_MEMORY
1277 | SEC_LINKER_CREATED))
1278 || !bfd_set_section_alignment (abfd, dlt, 3))
1279 {
1280 BFD_ASSERT (0);
1281 return false;
1282 }
1283
1284 hppa_info->dlt_sec = dlt;
1285 }
1286
1287 return true;
1288}
1289
1290/* Create the stubs section. */
1291
1292static boolean
1293get_stub (abfd, info, hppa_info)
1294 bfd *abfd;
edd21aca 1295 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1296 struct elf64_hppa_link_hash_table *hppa_info;
1297{
1298 asection *stub;
1299 bfd *dynobj;
1300
1301 stub = hppa_info->stub_sec;
1302 if (!stub)
1303 {
1304 dynobj = hppa_info->root.dynobj;
1305 if (!dynobj)
1306 hppa_info->root.dynobj = dynobj = abfd;
1307
1308 stub = bfd_make_section (dynobj, ".stub");
1309 if (!stub
1310 || !bfd_set_section_flags (dynobj, stub,
1311 (SEC_ALLOC
1312 | SEC_LOAD
1313 | SEC_HAS_CONTENTS
1314 | SEC_IN_MEMORY
1315 | SEC_READONLY
1316 | SEC_LINKER_CREATED))
1317 || !bfd_set_section_alignment (abfd, stub, 3))
1318 {
1319 BFD_ASSERT (0);
1320 return false;
1321 }
1322
1323 hppa_info->stub_sec = stub;
1324 }
1325
1326 return true;
1327}
1328
1329/* Create sections necessary for dynamic linking. This is only a rough
1330 cut and will likely change as we learn more about the somewhat
1331 unusual dynamic linking scheme HP uses.
1332
1333 .stub:
1334 Contains code to implement cross-space calls. The first time one
1335 of the stubs is used it will call into the dynamic linker, later
1336 calls will go straight to the target.
1337
1338 The only stub we support right now looks like
1339
1340 ldd OFFSET(%dp),%r1
1341 bve %r0(%r1)
1342 ldd OFFSET+8(%dp),%dp
1343
1344 Other stubs may be needed in the future. We may want the remove
1345 the break/nop instruction. It is only used right now to keep the
1346 offset of a .plt entry and a .stub entry in sync.
1347
1348 .dlt:
1349 This is what most people call the .got. HP used a different name.
1350 Losers.
1351
1352 .rela.dlt:
1353 Relocations for the DLT.
1354
1355 .plt:
1356 Function pointers as address,gp pairs.
1357
1358 .rela.plt:
1359 Should contain dynamic IPLT (and EPLT?) relocations.
1360
1361 .opd:
fe8bc63d 1362 FPTRS
15bda425
JL
1363
1364 .rela.opd:
1365 EPLT relocations for symbols exported from shared libraries. */
1366
1367static boolean
1368elf64_hppa_create_dynamic_sections (abfd, info)
1369 bfd *abfd;
1370 struct bfd_link_info *info;
1371{
1372 asection *s;
1373
1374 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1375 return false;
1376
1377 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1378 return false;
1379
1380 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1381 return false;
1382
1383 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1384 return false;
1385
1386 s = bfd_make_section(abfd, ".rela.dlt");
1387 if (s == NULL
1388 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1389 | SEC_HAS_CONTENTS
1390 | SEC_IN_MEMORY
1391 | SEC_READONLY
1392 | SEC_LINKER_CREATED))
1393 || !bfd_set_section_alignment (abfd, s, 3))
1394 return false;
1395 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1396
1397 s = bfd_make_section(abfd, ".rela.plt");
1398 if (s == NULL
1399 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1400 | SEC_HAS_CONTENTS
1401 | SEC_IN_MEMORY
1402 | SEC_READONLY
1403 | SEC_LINKER_CREATED))
1404 || !bfd_set_section_alignment (abfd, s, 3))
1405 return false;
1406 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1407
1408 s = bfd_make_section(abfd, ".rela.data");
1409 if (s == NULL
1410 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1411 | SEC_HAS_CONTENTS
1412 | SEC_IN_MEMORY
1413 | SEC_READONLY
1414 | SEC_LINKER_CREATED))
1415 || !bfd_set_section_alignment (abfd, s, 3))
1416 return false;
1417 elf64_hppa_hash_table (info)->other_rel_sec = s;
1418
1419 s = bfd_make_section(abfd, ".rela.opd");
1420 if (s == NULL
1421 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1422 | SEC_HAS_CONTENTS
1423 | SEC_IN_MEMORY
1424 | SEC_READONLY
1425 | SEC_LINKER_CREATED))
1426 || !bfd_set_section_alignment (abfd, s, 3))
1427 return false;
1428 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1429
1430 return true;
1431}
1432
1433/* Allocate dynamic relocations for those symbols that turned out
1434 to be dynamic. */
1435
1436static boolean
1437allocate_dynrel_entries (dyn_h, data)
1438 struct elf64_hppa_dyn_hash_entry *dyn_h;
1439 PTR data;
1440{
1441 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1442 struct elf64_hppa_link_hash_table *hppa_info;
1443 struct elf64_hppa_dyn_reloc_entry *rent;
1444 boolean dynamic_symbol, shared;
1445
1446 hppa_info = elf64_hppa_hash_table (x->info);
1447 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1448 shared = x->info->shared;
1449
1450 /* We may need to allocate relocations for a non-dynamic symbol
1451 when creating a shared library. */
1452 if (!dynamic_symbol && !shared)
1453 return true;
1454
1455 /* Take care of the normal data relocations. */
1456
1457 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1458 {
1459 switch (rent->type)
1460 {
1461 case R_PARISC_FPTR64:
1462 /* Allocate one iff we are not building a shared library and
1463 !want_opd, which by this point will be true only if we're
1464 actually allocating one statically in the main executable. */
1465 if (!x->info->shared && dyn_h->want_opd)
1466 continue;
1467 break;
1468 }
1469 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1470
1471 /* Make sure this symbol gets into the dynamic symbol table if it is
1472 not already recorded. ?!? This should not be in the loop since
1473 the symbol need only be added once. */
1474 if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
1475 if (!_bfd_elf64_link_record_local_dynamic_symbol
1476 (x->info, rent->sec->owner, dyn_h->sym_indx))
1477 return false;
1478 }
1479
1480 /* Take care of the GOT and PLT relocations. */
1481
1482 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1483 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1484
1485 /* If we are building a shared library, then every symbol that has an
1486 opd entry will need an EPLT relocation to relocate the symbol's address
1487 and __gp value based on the runtime load address. */
1488 if (shared && dyn_h->want_opd)
1489 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1490
1491 if (dyn_h->want_plt && dynamic_symbol)
1492 {
1493 bfd_size_type t = 0;
1494
1495 /* Dynamic symbols get one IPLT relocation. Local symbols in
1496 shared libraries get two REL relocations. Local symbols in
1497 main applications get nothing. */
1498 if (dynamic_symbol)
1499 t = sizeof (Elf64_External_Rela);
1500 else if (shared)
1501 t = 2 * sizeof (Elf64_External_Rela);
1502
1503 hppa_info->plt_rel_sec->_raw_size += t;
1504 }
1505
1506 return true;
1507}
1508
1509/* Adjust a symbol defined by a dynamic object and referenced by a
1510 regular object. */
1511
1512static boolean
1513elf64_hppa_adjust_dynamic_symbol (info, h)
edd21aca 1514 struct bfd_link_info *info ATTRIBUTE_UNUSED;
15bda425
JL
1515 struct elf_link_hash_entry *h;
1516{
1517 /* ??? Undefined symbols with PLT entries should be re-defined
1518 to be the PLT entry. */
1519
1520 /* If this is a weak symbol, and there is a real definition, the
1521 processor independent code will have arranged for us to see the
1522 real definition first, and we can just use the same value. */
1523 if (h->weakdef != NULL)
1524 {
1525 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1526 || h->weakdef->root.type == bfd_link_hash_defweak);
1527 h->root.u.def.section = h->weakdef->root.u.def.section;
1528 h->root.u.def.value = h->weakdef->root.u.def.value;
1529 return true;
1530 }
1531
1532 /* If this is a reference to a symbol defined by a dynamic object which
1533 is not a function, we might allocate the symbol in our .dynbss section
1534 and allocate a COPY dynamic relocation.
1535
1536 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1537 of hackery. */
1538
1539 return true;
1540}
1541
1542/* Set the final sizes of the dynamic sections and allocate memory for
1543 the contents of our special sections. */
1544
1545static boolean
1546elf64_hppa_size_dynamic_sections (output_bfd, info)
1547 bfd *output_bfd;
1548 struct bfd_link_info *info;
1549{
1550 bfd *dynobj;
1551 asection *s;
1552 boolean plt;
1553 boolean relocs;
1554 boolean reltext;
15bda425
JL
1555 struct elf64_hppa_allocate_data data;
1556 struct elf64_hppa_link_hash_table *hppa_info;
1557
1558 hppa_info = elf64_hppa_hash_table (info);
1559
1560 dynobj = elf_hash_table (info)->dynobj;
1561 BFD_ASSERT (dynobj != NULL);
1562
1563 if (elf_hash_table (info)->dynamic_sections_created)
1564 {
1565 /* Set the contents of the .interp section to the interpreter. */
1566 if (! info->shared)
1567 {
1568 s = bfd_get_section_by_name (dynobj, ".interp");
1569 BFD_ASSERT (s != NULL);
1570 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1571 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1572 }
1573 }
1574 else
1575 {
1576 /* We may have created entries in the .rela.got section.
1577 However, if we are not creating the dynamic sections, we will
1578 not actually use these entries. Reset the size of .rela.dlt,
1579 which will cause it to get stripped from the output file
1580 below. */
1581 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1582 if (s != NULL)
1583 s->_raw_size = 0;
1584 }
1585
1586 /* Allocate the GOT entries. */
1587
1588 data.info = info;
1589 if (elf64_hppa_hash_table (info)->dlt_sec)
1590 {
1591 data.ofs = 0x0;
1592 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1593 allocate_global_data_dlt, &data);
1594 hppa_info->dlt_sec->_raw_size = data.ofs;
1595
1596 data.ofs = 0x0;
1597 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1598 allocate_global_data_plt, &data);
1599 hppa_info->plt_sec->_raw_size = data.ofs;
1600
1601 data.ofs = 0x0;
1602 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1603 allocate_global_data_stub, &data);
1604 hppa_info->stub_sec->_raw_size = data.ofs;
1605 }
1606
1607 /* Mark each function this program exports so that we will allocate
1608 space in the .opd section for each function's FPTR.
1609
1610 We have to traverse the main linker hash table since we have to
1611 find functions which may not have been mentioned in any relocs. */
1612 elf_link_hash_traverse (elf_hash_table (info),
1613 elf64_hppa_mark_exported_functions,
1614 info);
1615
1616 /* Allocate space for entries in the .opd section. */
1617 if (elf64_hppa_hash_table (info)->opd_sec)
1618 {
1619 data.ofs = 0;
1620 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1621 allocate_global_data_opd, &data);
1622 hppa_info->opd_sec->_raw_size = data.ofs;
1623 }
1624
1625 /* Now allocate space for dynamic relocations, if necessary. */
1626 if (hppa_info->root.dynamic_sections_created)
1627 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1628 allocate_dynrel_entries, &data);
1629
1630 /* The sizes of all the sections are set. Allocate memory for them. */
1631 plt = false;
1632 relocs = false;
1633 reltext = false;
1634 for (s = dynobj->sections; s != NULL; s = s->next)
1635 {
1636 const char *name;
1637 boolean strip;
1638
1639 if ((s->flags & SEC_LINKER_CREATED) == 0)
1640 continue;
1641
1642 /* It's OK to base decisions on the section name, because none
1643 of the dynobj section names depend upon the input files. */
1644 name = bfd_get_section_name (dynobj, s);
1645
1646 strip = 0;
1647
1648 if (strcmp (name, ".plt") == 0)
1649 {
1650 if (s->_raw_size == 0)
1651 {
1652 /* Strip this section if we don't need it; see the
1653 comment below. */
1654 strip = true;
1655 }
1656 else
1657 {
1658 /* Remember whether there is a PLT. */
1659 plt = true;
1660 }
1661 }
1662 else if (strcmp (name, ".dlt") == 0)
1663 {
1664 if (s->_raw_size == 0)
1665 {
1666 /* Strip this section if we don't need it; see the
1667 comment below. */
1668 strip = true;
1669 }
1670 }
1671 else if (strcmp (name, ".opd") == 0)
1672 {
1673 if (s->_raw_size == 0)
1674 {
1675 /* Strip this section if we don't need it; see the
1676 comment below. */
1677 strip = true;
1678 }
1679 }
1680 else if (strncmp (name, ".rela", 4) == 0)
1681 {
1682 if (s->_raw_size == 0)
1683 {
1684 /* If we don't need this section, strip it from the
1685 output file. This is mostly to handle .rela.bss and
1686 .rela.plt. We must create both sections in
1687 create_dynamic_sections, because they must be created
1688 before the linker maps input sections to output
1689 sections. The linker does that before
1690 adjust_dynamic_symbol is called, and it is that
1691 function which decides whether anything needs to go
1692 into these sections. */
1693 strip = true;
1694 }
1695 else
1696 {
1697 asection *target;
1698
1699 /* Remember whether there are any reloc sections other
1700 than .rela.plt. */
1701 if (strcmp (name, ".rela.plt") != 0)
1702 {
1703 const char *outname;
1704
1705 relocs = true;
1706
1707 /* If this relocation section applies to a read only
1708 section, then we probably need a DT_TEXTREL
1709 entry. The entries in the .rela.plt section
1710 really apply to the .got section, which we
1711 created ourselves and so know is not readonly. */
1712 outname = bfd_get_section_name (output_bfd,
1713 s->output_section);
1714 target = bfd_get_section_by_name (output_bfd, outname + 4);
1715 if (target != NULL
1716 && (target->flags & SEC_READONLY) != 0
1717 && (target->flags & SEC_ALLOC) != 0)
1718 reltext = true;
1719 }
1720
1721 /* We use the reloc_count field as a counter if we need
1722 to copy relocs into the output file. */
1723 s->reloc_count = 0;
1724 }
1725 }
1726 else if (strncmp (name, ".dlt", 4) != 0
1727 && strcmp (name, ".stub") != 0
1728 && strcmp (name, ".got") != 0)
1729 {
1730 /* It's not one of our sections, so don't allocate space. */
1731 continue;
1732 }
1733
1734 if (strip)
1735 {
1736 _bfd_strip_section_from_output (info, s);
1737 continue;
1738 }
1739
1740 /* Allocate memory for the section contents if it has not
832d951b
AM
1741 been allocated already. We use bfd_zalloc here in case
1742 unused entries are not reclaimed before the section's
1743 contents are written out. This should not happen, but this
1744 way if it does, we get a R_PARISC_NONE reloc instead of
1745 garbage. */
15bda425
JL
1746 if (s->contents == NULL)
1747 {
7a9af8c4 1748 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
15bda425
JL
1749 if (s->contents == NULL && s->_raw_size != 0)
1750 return false;
1751 }
1752 }
1753
1754 if (elf_hash_table (info)->dynamic_sections_created)
1755 {
1756 /* Always create a DT_PLTGOT. It actually has nothing to do with
1757 the PLT, it is how we communicate the __gp value of a load
1758 module to the dynamic linker. */
1759 if (! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_FLAGS, 0)
1760 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
1761 return false;
1762
1763 /* Add some entries to the .dynamic section. We fill in the
1764 values later, in elf64_hppa_finish_dynamic_sections, but we
1765 must add the entries now so that we get the correct size for
1766 the .dynamic section. The DT_DEBUG entry is filled in by the
1767 dynamic linker and used by the debugger. */
1768 if (! info->shared)
1769 {
1770 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)
1771 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_HOOK, 0)
1772 || ! bfd_elf64_add_dynamic_entry (info, DT_HP_LOAD_MAP, 0))
1773 return false;
1774 }
1775
1776 if (plt)
1777 {
1778 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1779 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1780 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1781 return false;
1782 }
1783
1784 if (relocs)
1785 {
1786 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1787 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1788 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1789 sizeof (Elf64_External_Rela)))
1790 return false;
1791 }
1792
1793 if (reltext)
1794 {
1795 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1796 return false;
d6cf2879 1797 info->flags |= DF_TEXTREL;
15bda425
JL
1798 }
1799 }
1800
1801 return true;
1802}
1803
1804/* Called after we have output the symbol into the dynamic symbol
1805 table, but before we output the symbol into the normal symbol
1806 table.
1807
1808 For some symbols we had to change their address when outputting
1809 the dynamic symbol table. We undo that change here so that
1810 the symbols have their expected value in the normal symbol
1811 table. Ick. */
1812
1813static boolean
1814elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
edd21aca 1815 bfd *abfd ATTRIBUTE_UNUSED;
15bda425
JL
1816 struct bfd_link_info *info;
1817 const char *name;
1818 Elf_Internal_Sym *sym;
edd21aca 1819 asection *input_sec ATTRIBUTE_UNUSED;
15bda425
JL
1820{
1821 struct elf64_hppa_link_hash_table *hppa_info;
1822 struct elf64_hppa_dyn_hash_entry *dyn_h;
1823
1824 /* We may be called with the file symbol or section symbols.
1825 They never need munging, so it is safe to ignore them. */
1826 if (!name)
1827 return true;
1828
1829 /* Get the PA dyn_symbol (if any) associated with NAME. */
1830 hppa_info = elf64_hppa_hash_table (info);
1831 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1832 name, false, false);
1833
832d951b
AM
1834 /* Function symbols for which we created .opd entries *may* have been
1835 munged by finish_dynamic_symbol and have to be un-munged here.
1836
1837 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1838 into non-dynamic ones, so we initialize st_shndx to -1 in
1839 mark_exported_functions and check to see if it was overwritten
1840 here instead of just checking dyn_h->h->dynindx. */
1841 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
15bda425
JL
1842 {
1843 /* Restore the saved value and section index. */
1844 sym->st_value = dyn_h->st_value;
fe8bc63d 1845 sym->st_shndx = dyn_h->st_shndx;
15bda425
JL
1846 }
1847
1848 return true;
1849}
1850
1851/* Finish up dynamic symbol handling. We set the contents of various
1852 dynamic sections here. */
1853
1854static boolean
1855elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1856 bfd *output_bfd;
1857 struct bfd_link_info *info;
1858 struct elf_link_hash_entry *h;
1859 Elf_Internal_Sym *sym;
1860{
1861 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1862 struct elf64_hppa_link_hash_table *hppa_info;
1863 struct elf64_hppa_dyn_hash_entry *dyn_h;
1864
1865 hppa_info = elf64_hppa_hash_table (info);
1866 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1867 h->root.root.string, false, false);
1868
1869 stub = hppa_info->stub_sec;
1870 splt = hppa_info->plt_sec;
1871 sdlt = hppa_info->dlt_sec;
1872 sopd = hppa_info->opd_sec;
1873 spltrel = hppa_info->plt_rel_sec;
1874 sdltrel = hppa_info->dlt_rel_sec;
1875
1876 BFD_ASSERT (stub != NULL && splt != NULL
1877 && sopd != NULL && sdlt != NULL)
1878
1879 /* Incredible. It is actually necessary to NOT use the symbol's real
1880 value when building the dynamic symbol table for a shared library.
1881 At least for symbols that refer to functions.
1882
1883 We will store a new value and section index into the symbol long
1884 enough to output it into the dynamic symbol table, then we restore
1885 the original values (in elf64_hppa_link_output_symbol_hook). */
1886 if (dyn_h && dyn_h->want_opd)
1887 {
1888 /* Save away the original value and section index so that we
1889 can restore them later. */
1890 dyn_h->st_value = sym->st_value;
1891 dyn_h->st_shndx = sym->st_shndx;
1892
1893 /* For the dynamic symbol table entry, we want the value to be
1894 address of this symbol's entry within the .opd section. */
1895 sym->st_value = (dyn_h->opd_offset
1896 + sopd->output_offset
1897 + sopd->output_section->vma);
1898 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1899 sopd->output_section);
1900 }
1901
1902 /* Initialize a .plt entry if requested. */
1903 if (dyn_h && dyn_h->want_plt
1904 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1905 {
1906 bfd_vma value;
1907 Elf_Internal_Rela rel;
1908
1909 /* We do not actually care about the value in the PLT entry
1910 if we are creating a shared library and the symbol is
1911 still undefined, we create a dynamic relocation to fill
1912 in the correct value. */
1913 if (info->shared && h->root.type == bfd_link_hash_undefined)
1914 value = 0;
1915 else
1916 value = (h->root.u.def.value + h->root.u.def.section->vma);
1917
fe8bc63d 1918 /* Fill in the entry in the procedure linkage table.
15bda425
JL
1919
1920 The format of a plt entry is
fe8bc63d 1921 <funcaddr> <__gp>.
15bda425
JL
1922
1923 plt_offset is the offset within the PLT section at which to
fe8bc63d 1924 install the PLT entry.
15bda425
JL
1925
1926 We are modifying the in-memory PLT contents here, so we do not add
1927 in the output_offset of the PLT section. */
1928
1929 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1930 value = _bfd_get_gp_value (splt->output_section->owner);
1931 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1932
1933 /* Create a dynamic IPLT relocation for this entry.
1934
1935 We are creating a relocation in the output file's PLT section,
1936 which is included within the DLT secton. So we do need to include
1937 the PLT's output_offset in the computation of the relocation's
1938 address. */
1939 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1940 + splt->output_section->vma);
1941 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1942 rel.r_addend = 0;
1943
1944 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
1945 (((Elf64_External_Rela *)
1946 spltrel->contents)
1947 + spltrel->reloc_count));
1948 spltrel->reloc_count++;
1949 }
1950
1951 /* Initialize an external call stub entry if requested. */
1952 if (dyn_h && dyn_h->want_stub
1953 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1954 {
1955 bfd_vma value;
1956 int insn;
1957
1958 /* Install the generic stub template.
1959
1960 We are modifying the contents of the stub section, so we do not
1961 need to include the stub section's output_offset here. */
1962 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
1963
1964 /* Fix up the first ldd instruction.
1965
1966 We are modifying the contents of the STUB section in memory,
fe8bc63d 1967 so we do not need to include its output offset in this computation.
15bda425
JL
1968
1969 Note the plt_offset value is the value of the PLT entry relative to
1970 the start of the PLT section. These instructions will reference
1971 data relative to the value of __gp, which may not necessarily have
1972 the same address as the start of the PLT section.
1973
1974 gp_offset contains the offset of __gp within the PLT section. */
1975 value = dyn_h->plt_offset - hppa_info->gp_offset;
fe8bc63d 1976
15bda425
JL
1977 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
1978 insn &= 0xffffc00e;
1979 insn |= ((value & 0x2000) >> 13);
1980 value &= 0x1ff8;
1981 value <<= 1;
1982 bfd_put_32 (stub->owner, (insn | value),
1983 stub->contents + dyn_h->stub_offset);
1984
1985 /* Fix up the second ldd instruction. */
1986 value = dyn_h->plt_offset - hppa_info->gp_offset + 8;
fe8bc63d 1987
15bda425
JL
1988 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
1989 insn &= 0xffffc00e;
1990 insn |= ((value & 0x2000) >> 13);
1991 value &= 0x1ff8;
1992 value <<= 1;
1993 bfd_put_32 (stub->owner, (insn | value),
1994 stub->contents + dyn_h->stub_offset + 8);
1995 }
1996
1997 /* Millicode symbols should not be put in the dynamic
1998 symbol table under any circumstances. */
1999 if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
2000 h->dynindx = -1;
2001
2002 return true;
2003}
2004
2005/* The .opd section contains FPTRs for each function this file
2006 exports. Initialize the FPTR entries. */
2007
2008static boolean
2009elf64_hppa_finalize_opd (dyn_h, data)
2010 struct elf64_hppa_dyn_hash_entry *dyn_h;
2011 PTR data;
2012{
2013 struct bfd_link_info *info = (struct bfd_link_info *)data;
2014 struct elf64_hppa_link_hash_table *hppa_info;
2015 struct elf_link_hash_entry *h = dyn_h->h;
2016 asection *sopd;
2017 asection *sopdrel;
2018
2019 hppa_info = elf64_hppa_hash_table (info);
2020 sopd = hppa_info->opd_sec;
2021 sopdrel = hppa_info->opd_rel_sec;
2022
2023 if (h && dyn_h && dyn_h->want_opd)
2024 {
2025 bfd_vma value;
2026
fe8bc63d 2027 /* The first two words of an .opd entry are zero.
15bda425
JL
2028
2029 We are modifying the contents of the OPD section in memory, so we
2030 do not need to include its output offset in this computation. */
2031 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2032
2033 value = (h->root.u.def.value
2034 + h->root.u.def.section->output_section->vma
2035 + h->root.u.def.section->output_offset);
2036
2037 /* The next word is the address of the function. */
2038 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2039
2040 /* The last word is our local __gp value. */
2041 value = _bfd_get_gp_value (sopd->output_section->owner);
2042 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2043 }
2044
2045 /* If we are generating a shared library, we must generate EPLT relocations
2046 for each entry in the .opd, even for static functions (they may have
2047 had their address taken). */
2048 if (info->shared && dyn_h && dyn_h->want_opd)
2049 {
2050 Elf64_Internal_Rela rel;
15bda425
JL
2051 int dynindx;
2052
2053 /* We may need to do a relocation against a local symbol, in
2054 which case we have to look up it's dynamic symbol index off
2055 the local symbol hash table. */
2056 if (h && h->dynindx != -1)
2057 dynindx = h->dynindx;
2058 else
2059 dynindx
2060 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2061 dyn_h->sym_indx);
2062
2063 /* The offset of this relocation is the absolute address of the
2064 .opd entry for this symbol. */
2065 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2066 + sopd->output_section->vma);
2067
2068 /* If H is non-null, then we have an external symbol.
2069
2070 It is imperative that we use a different dynamic symbol for the
2071 EPLT relocation if the symbol has global scope.
2072
2073 In the dynamic symbol table, the function symbol will have a value
2074 which is address of the function's .opd entry.
2075
2076 Thus, we can not use that dynamic symbol for the EPLT relocation
2077 (if we did, the data in the .opd would reference itself rather
2078 than the actual address of the function). Instead we have to use
2079 a new dynamic symbol which has the same value as the original global
fe8bc63d 2080 function symbol.
15bda425
JL
2081
2082 We prefix the original symbol with a "." and use the new symbol in
2083 the EPLT relocation. This new symbol has already been recorded in
2084 the symbol table, we just have to look it up and use it.
2085
2086 We do not have such problems with static functions because we do
2087 not make their addresses in the dynamic symbol table point to
2088 the .opd entry. Ultimately this should be safe since a static
2089 function can not be directly referenced outside of its shared
2090 library.
2091
2092 We do have to play similar games for FPTR relocations in shared
2093 libraries, including those for static symbols. See the FPTR
2094 handling in elf64_hppa_finalize_dynreloc. */
2095 if (h)
2096 {
2097 char *new_name;
2098 struct elf_link_hash_entry *nh;
2099
2100 new_name = alloca (strlen (h->root.root.string) + 2);
2101 new_name[0] = '.';
2102 strcpy (new_name + 1, h->root.root.string);
2103
2104 nh = elf_link_hash_lookup (elf_hash_table (info),
2105 new_name, false, false, false);
2106
2107 /* All we really want from the new symbol is its dynamic
2108 symbol index. */
2109 dynindx = nh->dynindx;
2110 }
2111
2112 rel.r_addend = 0;
2113 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2114
2115 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2116 (((Elf64_External_Rela *)
2117 sopdrel->contents)
2118 + sopdrel->reloc_count));
2119 sopdrel->reloc_count++;
2120 }
2121 return true;
2122}
2123
2124/* The .dlt section contains addresses for items referenced through the
2125 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2126 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2127
2128static boolean
2129elf64_hppa_finalize_dlt (dyn_h, data)
2130 struct elf64_hppa_dyn_hash_entry *dyn_h;
2131 PTR data;
2132{
2133 struct bfd_link_info *info = (struct bfd_link_info *)data;
2134 struct elf64_hppa_link_hash_table *hppa_info;
2135 asection *sdlt, *sdltrel;
2136 struct elf_link_hash_entry *h = dyn_h->h;
2137
2138 hppa_info = elf64_hppa_hash_table (info);
2139
2140 sdlt = hppa_info->dlt_sec;
2141 sdltrel = hppa_info->dlt_rel_sec;
2142
2143 /* H/DYN_H may refer to a local variable and we know it's
2144 address, so there is no need to create a relocation. Just install
2145 the proper value into the DLT, note this shortcut can not be
2146 skipped when building a shared library. */
2147 if (! info->shared && h && dyn_h && dyn_h->want_dlt)
2148 {
2149 bfd_vma value;
2150
2151 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
fe8bc63d 2152 to point to the FPTR entry in the .opd section.
15bda425
JL
2153
2154 We include the OPD's output offset in this computation as
2155 we are referring to an absolute address in the resulting
2156 object file. */
2157 if (dyn_h->want_opd)
2158 {
2159 value = (dyn_h->opd_offset
2160 + hppa_info->opd_sec->output_offset
2161 + hppa_info->opd_sec->output_section->vma);
2162 }
2163 else
2164 {
2165 value = (h->root.u.def.value
2166 + h->root.u.def.section->output_offset);
2167
2168 if (h->root.u.def.section->output_section)
2169 value += h->root.u.def.section->output_section->vma;
2170 else
2171 value += h->root.u.def.section->vma;
2172 }
2173
2174 /* We do not need to include the output offset of the DLT section
2175 here because we are modifying the in-memory contents. */
2176 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2177 }
2178
2179 /* Create a relocation for the DLT entry assocated with this symbol.
2180 When building a shared library the symbol does not have to be dynamic. */
2181 if (dyn_h->want_dlt
2182 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2183 {
2184 Elf64_Internal_Rela rel;
2185 int dynindx;
2186
2187 /* We may need to do a relocation against a local symbol, in
2188 which case we have to look up it's dynamic symbol index off
2189 the local symbol hash table. */
2190 if (h && h->dynindx != -1)
2191 dynindx = h->dynindx;
2192 else
2193 dynindx
2194 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2195 dyn_h->sym_indx);
2196
15bda425
JL
2197 /* Create a dynamic relocation for this entry. Do include the output
2198 offset of the DLT entry since we need an absolute address in the
2199 resulting object file. */
2200 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2201 + sdlt->output_section->vma);
2202 if (h && h->type == STT_FUNC)
2203 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2204 else
2205 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2206 rel.r_addend = 0;
2207
2208 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2209 (((Elf64_External_Rela *)
2210 sdltrel->contents)
2211 + sdltrel->reloc_count));
2212 sdltrel->reloc_count++;
2213 }
2214 return true;
2215}
2216
2217/* Finalize the dynamic relocations. Specifically the FPTR relocations
2218 for dynamic functions used to initialize static data. */
2219
2220static boolean
2221elf64_hppa_finalize_dynreloc (dyn_h, data)
2222 struct elf64_hppa_dyn_hash_entry *dyn_h;
2223 PTR data;
2224{
2225 struct bfd_link_info *info = (struct bfd_link_info *)data;
2226 struct elf64_hppa_link_hash_table *hppa_info;
2227 struct elf_link_hash_entry *h;
2228 int dynamic_symbol;
2229
2230 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2231
2232 if (!dynamic_symbol && !info->shared)
2233 return true;
2234
2235 if (dyn_h->reloc_entries)
2236 {
2237 struct elf64_hppa_dyn_reloc_entry *rent;
2238 int dynindx;
2239
2240 hppa_info = elf64_hppa_hash_table (info);
2241 h = dyn_h->h;
2242
2243 /* We may need to do a relocation against a local symbol, in
2244 which case we have to look up it's dynamic symbol index off
2245 the local symbol hash table. */
2246 if (h && h->dynindx != -1)
2247 dynindx = h->dynindx;
2248 else
2249 dynindx
2250 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2251 dyn_h->sym_indx);
2252
2253 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2254 {
2255 Elf64_Internal_Rela rel;
2256
2257 switch (rent->type)
2258 {
2259 case R_PARISC_FPTR64:
2260 /* Allocate one iff we are not building a shared library and
2261 !want_opd, which by this point will be true only if we're
2262 actually allocating one statically in the main executable. */
2263 if (!info->shared && dyn_h->want_opd)
2264 continue;
2265 break;
2266 }
2267
fe8bc63d 2268 /* Create a dynamic relocation for this entry.
15bda425
JL
2269
2270 We need the output offset for the reloc's section because
2271 we are creating an absolute address in the resulting object
2272 file. */
2273 rel.r_offset = (rent->offset + rent->sec->output_offset
2274 + rent->sec->output_section->vma);
2275
2276 /* An FPTR64 relocation implies that we took the address of
2277 a function and that the function has an entry in the .opd
2278 section. We want the FPTR64 relocation to reference the
2279 entry in .opd.
2280
2281 We could munge the symbol value in the dynamic symbol table
2282 (in fact we already do for functions with global scope) to point
2283 to the .opd entry. Then we could use that dynamic symbol in
2284 this relocation.
2285
2286 Or we could do something sensible, not munge the symbol's
2287 address and instead just use a different symbol to reference
2288 the .opd entry. At least that seems sensible until you
2289 realize there's no local dynamic symbols we can use for that
2290 purpose. Thus the hair in the check_relocs routine.
fe8bc63d 2291
15bda425
JL
2292 We use a section symbol recorded by check_relocs as the
2293 base symbol for the relocation. The addend is the difference
2294 between the section symbol and the address of the .opd entry. */
2295 if (info->shared && rent->type == R_PARISC_FPTR64)
2296 {
2297 bfd_vma value, value2;
15bda425
JL
2298
2299 /* First compute the address of the opd entry for this symbol. */
2300 value = (dyn_h->opd_offset
2301 + hppa_info->opd_sec->output_section->vma
2302 + hppa_info->opd_sec->output_offset);
2303
2304 /* Compute the value of the start of the section with
2305 the relocation. */
2306 value2 = (rent->sec->output_section->vma
2307 + rent->sec->output_offset);
2308
2309 /* Compute the difference between the start of the section
2310 with the relocation and the opd entry. */
2311 value -= value2;
fe8bc63d 2312
15bda425
JL
2313 /* The result becomes the addend of the relocation. */
2314 rel.r_addend = value;
2315
2316 /* The section symbol becomes the symbol for the dynamic
2317 relocation. */
2318 dynindx
2319 = _bfd_elf_link_lookup_local_dynindx (info,
2320 rent->sec->owner,
2321 rent->sec_symndx);
2322 }
2323 else
2324 rel.r_addend = rent->addend;
2325
2326 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2327
2328 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2329 &rel,
2330 (((Elf64_External_Rela *)
2331 hppa_info->other_rel_sec->contents)
2332 + hppa_info->other_rel_sec->reloc_count));
2333 hppa_info->other_rel_sec->reloc_count++;
2334 }
2335 }
2336
2337 return true;
2338}
2339
2340/* Finish up the dynamic sections. */
2341
2342static boolean
2343elf64_hppa_finish_dynamic_sections (output_bfd, info)
2344 bfd *output_bfd;
2345 struct bfd_link_info *info;
2346{
2347 bfd *dynobj;
2348 asection *sdyn;
2349 struct elf64_hppa_link_hash_table *hppa_info;
2350
2351 hppa_info = elf64_hppa_hash_table (info);
2352
2353 /* Finalize the contents of the .opd section. */
2354 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2355 elf64_hppa_finalize_opd,
2356 info);
2357
2358 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2359 elf64_hppa_finalize_dynreloc,
2360 info);
2361
2362 /* Finalize the contents of the .dlt section. */
2363 dynobj = elf_hash_table (info)->dynobj;
2364 /* Finalize the contents of the .dlt section. */
2365 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2366 elf64_hppa_finalize_dlt,
2367 info);
2368
15bda425
JL
2369 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2370
2371 if (elf_hash_table (info)->dynamic_sections_created)
2372 {
2373 Elf64_External_Dyn *dyncon, *dynconend;
15bda425
JL
2374
2375 BFD_ASSERT (sdyn != NULL);
2376
2377 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2378 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2379 for (; dyncon < dynconend; dyncon++)
2380 {
2381 Elf_Internal_Dyn dyn;
2382 asection *s;
2383
2384 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2385
2386 switch (dyn.d_tag)
2387 {
2388 default:
2389 break;
2390
2391 case DT_HP_LOAD_MAP:
2392 /* Compute the absolute address of 16byte scratchpad area
2393 for the dynamic linker.
2394
2395 By convention the linker script will allocate the scratchpad
2396 area at the start of the .data section. So all we have to
2397 to is find the start of the .data section. */
2398 s = bfd_get_section_by_name (output_bfd, ".data");
2399 dyn.d_un.d_ptr = s->vma;
2400 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2401 break;
2402
2403 case DT_PLTGOT:
2404 /* HP's use PLTGOT to set the GOT register. */
2405 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2406 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2407 break;
2408
2409 case DT_JMPREL:
2410 s = hppa_info->plt_rel_sec;
2411 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2412 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2413 break;
2414
2415 case DT_PLTRELSZ:
2416 s = hppa_info->plt_rel_sec;
2417 dyn.d_un.d_val = s->_raw_size;
2418 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2419 break;
2420
2421 case DT_RELA:
2422 s = hppa_info->other_rel_sec;
2423 if (! s)
2424 s = hppa_info->dlt_rel_sec;
2425 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2426 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2427 break;
2428
2429 case DT_RELASZ:
2430 s = hppa_info->other_rel_sec;
2431 dyn.d_un.d_val = s->_raw_size;
2432 s = hppa_info->dlt_rel_sec;
2433 dyn.d_un.d_val += s->_raw_size;
2434 s = hppa_info->opd_rel_sec;
2435 dyn.d_un.d_val += s->_raw_size;
2436 /* There is some question about whether or not the size of
2437 the PLT relocs should be included here. HP's tools do
2438 it, so we'll emulate them. */
2439 s = hppa_info->plt_rel_sec;
2440 dyn.d_un.d_val += s->_raw_size;
2441 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2442 break;
2443
2444 }
2445 }
2446 }
2447
2448 return true;
2449}
2450
15bda425
JL
2451/* Return the number of additional phdrs we will need.
2452
2453 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2454 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2455
2456 This routine indicates that the backend needs one additional program
2457 header for that case.
2458
2459 Note we do not have access to the link info structure here, so we have
2460 to guess whether or not we are building a shared library based on the
2461 existence of a .interp section. */
2462
2463static int
2464elf64_hppa_additional_program_headers (abfd)
2465 bfd *abfd;
2466{
2467 asection *s;
2468
2469 /* If we are creating a shared library, then we have to create a
2470 PT_PHDR segment. HP's dynamic linker chokes without it. */
2471 s = bfd_get_section_by_name (abfd, ".interp");
2472 if (! s)
2473 return 1;
2474 return 0;
2475}
2476
2477/* Allocate and initialize any program headers required by this
2478 specific backend.
2479
2480 The generic ELF code only creates PT_PHDRs for executables. The HP
fe8bc63d 2481 dynamic linker requires PT_PHDRs for dynamic libraries too.
15bda425
JL
2482
2483 This allocates the PT_PHDR and initializes it in a manner suitable
fe8bc63d 2484 for the HP linker.
15bda425
JL
2485
2486 Note we do not have access to the link info structure here, so we have
2487 to guess whether or not we are building a shared library based on the
2488 existence of a .interp section. */
2489
2490static boolean
2491elf64_hppa_modify_segment_map (abfd)
2492 bfd *abfd;
2493{
edd21aca 2494 struct elf_segment_map *m;
15bda425
JL
2495 asection *s;
2496
2497 s = bfd_get_section_by_name (abfd, ".interp");
2498 if (! s)
2499 {
2500 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2501 if (m->p_type == PT_PHDR)
2502 break;
2503 if (m == NULL)
2504 {
2505 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
2506 if (m == NULL)
2507 return false;
2508
2509 m->p_type = PT_PHDR;
2510 m->p_flags = PF_R | PF_X;
2511 m->p_flags_valid = 1;
2512 m->p_paddr_valid = 1;
2513 m->includes_phdrs = 1;
2514
2515 m->next = elf_tdata (abfd)->segment_map;
2516 elf_tdata (abfd)->segment_map = m;
2517 }
2518 }
2519
2520 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2521 if (m->p_type == PT_LOAD)
2522 {
0ba2a60e 2523 unsigned int i;
15bda425
JL
2524
2525 for (i = 0; i < m->count; i++)
2526 {
2527 /* The code "hint" is not really a hint. It is a requirement
2528 for certain versions of the HP dynamic linker. Worse yet,
2529 it must be set even if the shared library does not have
2530 any code in its "text" segment (thus the check for .hash
2531 to catch this situation). */
2532 if (m->sections[i]->flags & SEC_CODE
2533 || (strcmp (m->sections[i]->name, ".hash") == 0))
2534 m->p_flags |= (PF_X | PF_HP_CODE);
2535 }
2536 }
2537
2538 return true;
2539}
2540
2541/* The hash bucket size is the standard one, namely 4. */
2542
2543const struct elf_size_info hppa64_elf_size_info =
2544{
2545 sizeof (Elf64_External_Ehdr),
2546 sizeof (Elf64_External_Phdr),
2547 sizeof (Elf64_External_Shdr),
2548 sizeof (Elf64_External_Rel),
2549 sizeof (Elf64_External_Rela),
2550 sizeof (Elf64_External_Sym),
2551 sizeof (Elf64_External_Dyn),
2552 sizeof (Elf_External_Note),
2553 4,
2554 1,
2555 64, 8,
2556 ELFCLASS64, EV_CURRENT,
2557 bfd_elf64_write_out_phdrs,
2558 bfd_elf64_write_shdrs_and_ehdr,
2559 bfd_elf64_write_relocs,
2560 bfd_elf64_swap_symbol_out,
2561 bfd_elf64_slurp_reloc_table,
2562 bfd_elf64_slurp_symbol_table,
2563 bfd_elf64_swap_dyn_in,
2564 bfd_elf64_swap_dyn_out,
2565 NULL,
2566 NULL,
2567 NULL,
2568 NULL
2569};
2570
2571#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2572#define TARGET_BIG_NAME "elf64-hppa"
2573#define ELF_ARCH bfd_arch_hppa
2574#define ELF_MACHINE_CODE EM_PARISC
2575/* This is not strictly correct. The maximum page size for PA2.0 is
2576 64M. But everything still uses 4k. */
2577#define ELF_MAXPAGESIZE 0x1000
2578#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2579#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2580#define elf_info_to_howto elf_hppa_info_to_howto
2581#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2582
2583#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2584#define elf_backend_object_p elf64_hppa_object_p
2585#define elf_backend_final_write_processing \
2586 elf_hppa_final_write_processing
2587#define elf_backend_fake_sections elf_hppa_fake_sections
2588#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2589
2590#define elf_backend_relocate_section elf_hppa_relocate_section
2591
2592#define bfd_elf64_bfd_final_link elf_hppa_final_link
2593
2594#define elf_backend_create_dynamic_sections \
2595 elf64_hppa_create_dynamic_sections
2596#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2597
2598#define elf_backend_adjust_dynamic_symbol \
2599 elf64_hppa_adjust_dynamic_symbol
2600
2601#define elf_backend_size_dynamic_sections \
2602 elf64_hppa_size_dynamic_sections
2603
2604#define elf_backend_finish_dynamic_symbol \
2605 elf64_hppa_finish_dynamic_symbol
2606#define elf_backend_finish_dynamic_sections \
2607 elf64_hppa_finish_dynamic_sections
2608
2609/* Stuff for the BFD linker: */
2610#define bfd_elf64_bfd_link_hash_table_create \
2611 elf64_hppa_hash_table_create
2612
2613#define elf_backend_check_relocs \
2614 elf64_hppa_check_relocs
2615
2616#define elf_backend_size_info \
2617 hppa64_elf_size_info
2618
2619#define elf_backend_additional_program_headers \
2620 elf64_hppa_additional_program_headers
2621
2622#define elf_backend_modify_segment_map \
2623 elf64_hppa_modify_segment_map
2624
2625#define elf_backend_link_output_symbol_hook \
2626 elf64_hppa_link_output_symbol_hook
2627
15bda425
JL
2628#define elf_backend_want_got_plt 0
2629#define elf_backend_plt_readonly 0
2630#define elf_backend_want_plt_sym 0
2631#define elf_backend_got_header_size 0
2632#define elf_backend_plt_header_size 0
2633#define elf_backend_type_change_ok true
2634
2635#include "elf64-target.h"
This page took 0.150722 seconds and 4 git commands to generate.