Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
CommitLineData
3c3bdf30 1/* MMIX-specific support for 64-bit ELF.
2571583a 2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3c3bdf30
NC
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
cd123cb7 5 This file is part of BFD, the Binary File Descriptor library.
3c3bdf30 6
cd123cb7
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
3c3bdf30 11
cd123cb7
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
3c3bdf30 21
3c3bdf30
NC
22
23/* No specific ABI or "processor-specific supplement" defined. */
24
25/* TODO:
f60ebe14
HPN
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
3c3bdf30 30
3c3bdf30 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
3c3bdf30
NC
33#include "libbfd.h"
34#include "elf-bfd.h"
35#include "elf/mmix.h"
36#include "opcode/mmix.h"
37
38#define MINUS_ONE (((bfd_vma) 0) - 1)
39
f60ebe14
HPN
40#define MAX_PUSHJ_STUB_SIZE (5 * 4)
41
3c3bdf30
NC
42/* Put these everywhere in new code. */
43#define FATAL_DEBUG \
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
46
47#define BAD_CASE(x) \
48 _bfd_abort (__FILE__, __LINE__, \
49 "bad case for " #x)
50
f0abc2a1
AM
51struct _mmix_elf_section_data
52{
53 struct bfd_elf_section_data elf;
54 union
55 {
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
58 } bpo;
f60ebe14
HPN
59
60 struct pushj_stub_info
61 {
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
64
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
67
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
71
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
76 } pjs;
18978b27
HPN
77
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
81 there. */
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
f0abc2a1
AM
84};
85
86#define mmix_elf_section_data(sec) \
68bfbfcc 87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
f0abc2a1 88
930b4cb2 89/* For each section containing a base-plus-offset (BPO) reloc, we attach
f0abc2a1 90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
930b4cb2
HPN
91 NULL. */
92struct bpo_reloc_section_info
93 {
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
96
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
99
100 /* Running index, used at relocation time. */
101 size_t bpo_index;
102
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
107 };
108
109/* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111struct bpo_reloc_request
112 {
113 bfd_vma value;
114
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
117 size_t regindex;
118 size_t offset;
119
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
123 size_t bpo_reloc_no;
124
125 /* Set when the value is computed. Better than coding "guard values"
b34976b6 126 into the other members. Is FALSE only for BPO relocs in a GC:ed
930b4cb2 127 section. */
b34976b6 128 bfd_boolean valid;
930b4cb2
HPN
129 };
130
f0abc2a1 131/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
930b4cb2
HPN
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
136 collide. */
137struct bpo_greg_section_info
138 {
139 /* After GC, this reflects the number of remaining, non-excluded
140 BPO-relocs. */
141 size_t n_bpo_relocs;
142
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
148
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
152
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
f60ebe14
HPN
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
930b4cb2
HPN
157 size_t n_allocated_bpo_gregs;
158
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
162
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
166 };
167
3c3bdf30 168
2c3fc389 169extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
3c3bdf30 170
2c3fc389 171extern void mmix_elf_symbol_processing (bfd *, asymbol *);
3c3bdf30 172
4fa5c2a8
HPN
173/* Only intended to be called from a debugger. */
174extern void mmix_dump_bpo_gregs
52d45da3 175 (struct bfd_link_info *, void (*) (const char *, ...));
4fa5c2a8 176
f60ebe14 177static void
2c3fc389
NC
178mmix_set_relaxable_size (bfd *, asection *, void *);
179static bfd_reloc_status_type
180mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182static bfd_reloc_status_type
183mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
185 char **);
f60ebe14 186
f60ebe14 187
3c3bdf30
NC
188/* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190static reloc_howto_type elf_mmix_howto_table[] =
191 {
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
194 0, /* rightshift */
6346d5ca
AM
195 3, /* size (0 = byte, 1 = short, 2 = long) */
196 0, /* bitsize */
b34976b6 197 FALSE, /* pc_relative */
3c3bdf30 198 0, /* bitpos */
6346d5ca 199 complain_overflow_dont, /* complain_on_overflow */
3c3bdf30
NC
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
b34976b6 202 FALSE, /* partial_inplace */
3c3bdf30
NC
203 0, /* src_mask */
204 0, /* dst_mask */
b34976b6 205 FALSE), /* pcrel_offset */
3c3bdf30
NC
206
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
209 0, /* rightshift */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
211 8, /* bitsize */
b34976b6 212 FALSE, /* pc_relative */
3c3bdf30
NC
213 0, /* bitpos */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
b34976b6 217 FALSE, /* partial_inplace */
930b4cb2 218 0, /* src_mask */
3c3bdf30 219 0xff, /* dst_mask */
b34976b6 220 FALSE), /* pcrel_offset */
3c3bdf30
NC
221
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
224 0, /* rightshift */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
226 16, /* bitsize */
b34976b6 227 FALSE, /* pc_relative */
3c3bdf30
NC
228 0, /* bitpos */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
b34976b6 232 FALSE, /* partial_inplace */
930b4cb2 233 0, /* src_mask */
3c3bdf30 234 0xffff, /* dst_mask */
b34976b6 235 FALSE), /* pcrel_offset */
3c3bdf30
NC
236
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 24, /* bitsize */
b34976b6 242 FALSE, /* pc_relative */
3c3bdf30
NC
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
b34976b6 247 FALSE, /* partial_inplace */
930b4cb2 248 ~0xffffff, /* src_mask */
3c3bdf30 249 0xffffff, /* dst_mask */
b34976b6 250 FALSE), /* pcrel_offset */
3c3bdf30
NC
251
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
254 0, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
b34976b6 257 FALSE, /* pc_relative */
3c3bdf30
NC
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
b34976b6 262 FALSE, /* partial_inplace */
930b4cb2 263 0, /* src_mask */
3c3bdf30 264 0xffffffff, /* dst_mask */
b34976b6 265 FALSE), /* pcrel_offset */
3c3bdf30
NC
266
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
269 0, /* rightshift */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
271 64, /* bitsize */
b34976b6 272 FALSE, /* pc_relative */
3c3bdf30
NC
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
b34976b6 277 FALSE, /* partial_inplace */
930b4cb2 278 0, /* src_mask */
3c3bdf30 279 MINUS_ONE, /* dst_mask */
b34976b6 280 FALSE), /* pcrel_offset */
3c3bdf30
NC
281
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 8, /* bitsize */
b34976b6 287 TRUE, /* pc_relative */
3c3bdf30
NC
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
b34976b6 292 FALSE, /* partial_inplace */
930b4cb2 293 0, /* src_mask */
3c3bdf30 294 0xff, /* dst_mask */
b34976b6 295 TRUE), /* pcrel_offset */
3c3bdf30
NC
296
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
299 0, /* rightshift */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
301 16, /* bitsize */
b34976b6 302 TRUE, /* pc_relative */
3c3bdf30
NC
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
b34976b6 307 FALSE, /* partial_inplace */
930b4cb2 308 0, /* src_mask */
3c3bdf30 309 0xffff, /* dst_mask */
b34976b6 310 TRUE), /* pcrel_offset */
3c3bdf30
NC
311
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
b34976b6 317 TRUE, /* pc_relative */
3c3bdf30
NC
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
b34976b6 322 FALSE, /* partial_inplace */
930b4cb2 323 ~0xffffff, /* src_mask */
3c3bdf30 324 0xffffff, /* dst_mask */
b34976b6 325 TRUE), /* pcrel_offset */
3c3bdf30
NC
326
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
b34976b6 332 TRUE, /* pc_relative */
3c3bdf30
NC
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
b34976b6 337 FALSE, /* partial_inplace */
930b4cb2 338 0, /* src_mask */
3c3bdf30 339 0xffffffff, /* dst_mask */
b34976b6 340 TRUE), /* pcrel_offset */
3c3bdf30
NC
341
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
344 0, /* rightshift */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
346 64, /* bitsize */
b34976b6 347 TRUE, /* pc_relative */
3c3bdf30
NC
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
b34976b6 352 FALSE, /* partial_inplace */
930b4cb2 353 0, /* src_mask */
3c3bdf30 354 MINUS_ONE, /* dst_mask */
b34976b6 355 TRUE), /* pcrel_offset */
3c3bdf30
NC
356
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 0, /* rightshift */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
361 0, /* bitsize */
b34976b6 362 FALSE, /* pc_relative */
3c3bdf30
NC
363 0, /* bitpos */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
b34976b6 367 FALSE, /* partial_inplace */
3c3bdf30
NC
368 0, /* src_mask */
369 0, /* dst_mask */
b34976b6 370 TRUE), /* pcrel_offset */
3c3bdf30
NC
371
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
374 0, /* rightshift */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
376 0, /* bitsize */
b34976b6 377 FALSE, /* pc_relative */
3c3bdf30
NC
378 0, /* bitpos */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
b34976b6 382 FALSE, /* partial_inplace */
3c3bdf30
NC
383 0, /* src_mask */
384 0, /* dst_mask */
b34976b6 385 FALSE), /* pcrel_offset */
3c3bdf30
NC
386
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
392 2, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 19, /* bitsize */
b34976b6 395 TRUE, /* pc_relative */
3c3bdf30
NC
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
b34976b6 400 FALSE, /* partial_inplace */
930b4cb2 401 ~0x0100ffff, /* src_mask */
3c3bdf30 402 0x0100ffff, /* dst_mask */
b34976b6 403 TRUE), /* pcrel_offset */
3c3bdf30
NC
404
405 HOWTO (R_MMIX_GETA_1, /* type */
406 2, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 19, /* bitsize */
b34976b6 409 TRUE, /* pc_relative */
3c3bdf30
NC
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
b34976b6 414 FALSE, /* partial_inplace */
930b4cb2 415 ~0x0100ffff, /* src_mask */
3c3bdf30 416 0x0100ffff, /* dst_mask */
b34976b6 417 TRUE), /* pcrel_offset */
3c3bdf30
NC
418
419 HOWTO (R_MMIX_GETA_2, /* type */
420 2, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 19, /* bitsize */
b34976b6 423 TRUE, /* pc_relative */
3c3bdf30
NC
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
b34976b6 428 FALSE, /* partial_inplace */
930b4cb2 429 ~0x0100ffff, /* src_mask */
3c3bdf30 430 0x0100ffff, /* dst_mask */
b34976b6 431 TRUE), /* pcrel_offset */
3c3bdf30
NC
432
433 HOWTO (R_MMIX_GETA_3, /* type */
434 2, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 19, /* bitsize */
b34976b6 437 TRUE, /* pc_relative */
3c3bdf30
NC
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
b34976b6 442 FALSE, /* partial_inplace */
930b4cb2 443 ~0x0100ffff, /* src_mask */
3c3bdf30 444 0x0100ffff, /* dst_mask */
b34976b6 445 TRUE), /* pcrel_offset */
3c3bdf30
NC
446
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
452 2, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 19, /* bitsize */
b34976b6 455 TRUE, /* pc_relative */
3c3bdf30
NC
456 0, /* bitpos */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
b34976b6 460 FALSE, /* partial_inplace */
930b4cb2 461 ~0x0100ffff, /* src_mask */
3c3bdf30 462 0x0100ffff, /* dst_mask */
b34976b6 463 TRUE), /* pcrel_offset */
3c3bdf30
NC
464
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 19, /* bitsize */
b34976b6 469 TRUE, /* pc_relative */
3c3bdf30
NC
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
b34976b6 474 FALSE, /* partial_inplace */
930b4cb2 475 ~0x0100ffff, /* src_mask */
3c3bdf30 476 0x0100ffff, /* dst_mask */
b34976b6 477 TRUE), /* pcrel_offset */
3c3bdf30
NC
478
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 19, /* bitsize */
b34976b6 483 TRUE, /* pc_relative */
3c3bdf30
NC
484 0, /* bitpos */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
b34976b6 488 FALSE, /* partial_inplace */
930b4cb2 489 ~0x0100ffff, /* src_mask */
3c3bdf30 490 0x0100ffff, /* dst_mask */
b34976b6 491 TRUE), /* pcrel_offset */
3c3bdf30
NC
492
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 19, /* bitsize */
b34976b6 497 TRUE, /* pc_relative */
3c3bdf30
NC
498 0, /* bitpos */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
b34976b6 502 FALSE, /* partial_inplace */
930b4cb2 503 ~0x0100ffff, /* src_mask */
3c3bdf30 504 0x0100ffff, /* dst_mask */
b34976b6 505 TRUE), /* pcrel_offset */
3c3bdf30
NC
506
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
508 2, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 19, /* bitsize */
b34976b6 511 TRUE, /* pc_relative */
3c3bdf30
NC
512 0, /* bitpos */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
b34976b6 516 FALSE, /* partial_inplace */
930b4cb2 517 ~0x0100ffff, /* src_mask */
3c3bdf30 518 0x0100ffff, /* dst_mask */
b34976b6 519 TRUE), /* pcrel_offset */
3c3bdf30
NC
520
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
f60ebe14
HPN
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
3c3bdf30
NC
526 PUSHJ. */
527 HOWTO (R_MMIX_PUSHJ, /* type */
528 2, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 19, /* bitsize */
b34976b6 531 TRUE, /* pc_relative */
3c3bdf30
NC
532 0, /* bitpos */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
b34976b6 536 FALSE, /* partial_inplace */
930b4cb2 537 ~0x0100ffff, /* src_mask */
3c3bdf30 538 0x0100ffff, /* dst_mask */
b34976b6 539 TRUE), /* pcrel_offset */
3c3bdf30
NC
540
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
542 2, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 19, /* bitsize */
b34976b6 545 TRUE, /* pc_relative */
3c3bdf30
NC
546 0, /* bitpos */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
b34976b6 550 FALSE, /* partial_inplace */
930b4cb2 551 ~0x0100ffff, /* src_mask */
3c3bdf30 552 0x0100ffff, /* dst_mask */
b34976b6 553 TRUE), /* pcrel_offset */
3c3bdf30
NC
554
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
556 2, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 19, /* bitsize */
b34976b6 559 TRUE, /* pc_relative */
3c3bdf30
NC
560 0, /* bitpos */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
b34976b6 564 FALSE, /* partial_inplace */
930b4cb2 565 ~0x0100ffff, /* src_mask */
3c3bdf30 566 0x0100ffff, /* dst_mask */
b34976b6 567 TRUE), /* pcrel_offset */
3c3bdf30
NC
568
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
570 2, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 19, /* bitsize */
b34976b6 573 TRUE, /* pc_relative */
3c3bdf30
NC
574 0, /* bitpos */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
b34976b6 578 FALSE, /* partial_inplace */
930b4cb2 579 ~0x0100ffff, /* src_mask */
3c3bdf30 580 0x0100ffff, /* dst_mask */
b34976b6 581 TRUE), /* pcrel_offset */
3c3bdf30
NC
582
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
588 2, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 27, /* bitsize */
b34976b6 591 TRUE, /* pc_relative */
3c3bdf30
NC
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
b34976b6 596 FALSE, /* partial_inplace */
930b4cb2 597 ~0x1ffffff, /* src_mask */
3c3bdf30 598 0x1ffffff, /* dst_mask */
b34976b6 599 TRUE), /* pcrel_offset */
3c3bdf30
NC
600
601 HOWTO (R_MMIX_JMP_1, /* type */
602 2, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 27, /* bitsize */
b34976b6 605 TRUE, /* pc_relative */
3c3bdf30
NC
606 0, /* bitpos */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
b34976b6 610 FALSE, /* partial_inplace */
930b4cb2 611 ~0x1ffffff, /* src_mask */
3c3bdf30 612 0x1ffffff, /* dst_mask */
b34976b6 613 TRUE), /* pcrel_offset */
3c3bdf30
NC
614
615 HOWTO (R_MMIX_JMP_2, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 27, /* bitsize */
b34976b6 619 TRUE, /* pc_relative */
3c3bdf30
NC
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
b34976b6 624 FALSE, /* partial_inplace */
930b4cb2 625 ~0x1ffffff, /* src_mask */
3c3bdf30 626 0x1ffffff, /* dst_mask */
b34976b6 627 TRUE), /* pcrel_offset */
3c3bdf30
NC
628
629 HOWTO (R_MMIX_JMP_3, /* type */
630 2, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 27, /* bitsize */
b34976b6 633 TRUE, /* pc_relative */
3c3bdf30
NC
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
b34976b6 638 FALSE, /* partial_inplace */
930b4cb2 639 ~0x1ffffff, /* src_mask */
3c3bdf30 640 0x1ffffff, /* dst_mask */
b34976b6 641 TRUE), /* pcrel_offset */
3c3bdf30
NC
642
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 19, /* bitsize */
b34976b6 650 TRUE, /* pc_relative */
3c3bdf30
NC
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
b34976b6 655 FALSE, /* partial_inplace */
930b4cb2 656 ~0x0100ffff, /* src_mask */
3c3bdf30 657 0x0100ffff, /* dst_mask */
b34976b6 658 TRUE), /* pcrel_offset */
3c3bdf30
NC
659
660 /* For JMP. */
661 HOWTO (R_MMIX_ADDR27, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 27, /* bitsize */
b34976b6 665 TRUE, /* pc_relative */
3c3bdf30
NC
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
b34976b6 670 FALSE, /* partial_inplace */
930b4cb2 671 ~0x1ffffff, /* src_mask */
3c3bdf30 672 0x1ffffff, /* dst_mask */
b34976b6 673 TRUE), /* pcrel_offset */
3c3bdf30
NC
674
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
678 0, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 8, /* bitsize */
b34976b6 681 FALSE, /* pc_relative */
3c3bdf30
NC
682 0, /* bitpos */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
b34976b6 686 FALSE, /* partial_inplace */
930b4cb2 687 0, /* src_mask */
3c3bdf30 688 0xff, /* dst_mask */
b34976b6 689 FALSE), /* pcrel_offset */
3c3bdf30
NC
690
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
693 0, /* rightshift */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
695 8, /* bitsize */
b34976b6 696 FALSE, /* pc_relative */
3c3bdf30
NC
697 0, /* bitpos */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
b34976b6 701 FALSE, /* partial_inplace */
930b4cb2 702 0, /* src_mask */
3c3bdf30 703 0xff, /* dst_mask */
b34976b6 704 FALSE), /* pcrel_offset */
3c3bdf30
NC
705
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
710 0, /* rightshift */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
712 64, /* bitsize */
b34976b6 713 FALSE, /* pc_relative */
3c3bdf30
NC
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
b34976b6 718 FALSE, /* partial_inplace */
930b4cb2 719 0, /* src_mask */
3c3bdf30 720 0xffff, /* dst_mask */
b34976b6 721 FALSE), /* pcrel_offset */
3c3bdf30
NC
722
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
729 0, /* rightshift */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
731 0, /* bitsize */
b34976b6 732 FALSE, /* pc_relative */
3c3bdf30
NC
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
b34976b6 737 FALSE, /* partial_inplace */
3c3bdf30
NC
738 0, /* src_mask */
739 0, /* dst_mask */
b34976b6 740 FALSE), /* pcrel_offset */
f60ebe14
HPN
741
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 19, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
3c3bdf30
NC
755 };
756
757
758/* Map BFD reloc types to MMIX ELF reloc types. */
759
760struct mmix_reloc_map
761 {
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
764 };
765
766
767static const struct mmix_reloc_map mmix_reloc_map[] =
768 {
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
f60ebe14
HPN
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
3c3bdf30
NC
793 };
794
795static reloc_howto_type *
2c3fc389
NC
796bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
3c3bdf30
NC
798{
799 unsigned int i;
800
801 for (i = 0;
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803 i++)
804 {
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807 }
808
809 return NULL;
157090f7
AM
810}
811
812static reloc_howto_type *
813bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 const char *r_name)
815{
816 unsigned int i;
817
818 for (i = 0;
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820 i++)
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
824
825 return NULL;
3c3bdf30
NC
826}
827
f0abc2a1 828static bfd_boolean
2c3fc389 829mmix_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 830{
f592407e
AM
831 if (!sec->used_by_bfd)
832 {
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 835
f592407e
AM
836 sdata = bfd_zalloc (abfd, amt);
837 if (sdata == NULL)
838 return FALSE;
839 sec->used_by_bfd = sdata;
840 }
f0abc2a1
AM
841
842 return _bfd_elf_new_section_hook (abfd, sec);
843}
844
3c3bdf30
NC
845
846/* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
852
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854 GETA $N,foo
855 ->
856 SETL $N,foo & 0xffff
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
860
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
863 worthwhile.)
864 [P]Bcc $N,foo
865 ->
866 [~P]B~cc $N,.+20
867 SETL $255,foo & ...
868 INCML ...
869 INCMH ...
870 INCH ...
871 GO $255,$255,0
872
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
874 PUSHJ $N,foo
875 ->
876 SETL $255,foo & ...
877 INCML ...
878 INCMH ...
879 INCH ...
880 PUSHGO $N,$255,0
881
882 R_MMIX_JMP: (FIXME: Relaxation...)
883 JMP foo
884 ->
885 SETL $255,foo & ...
886 INCML ...
887 INCMH ...
888 INCH ...
889 GO $255,$255,0
890
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
892
893static bfd_reloc_status_type
18978b27
HPN
894mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
3c3bdf30
NC
897{
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
901 int offs = 0;
902 int reg = 255;
903
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
906 switch (howto->type)
907 {
908 case R_MMIX_GETA:
909 offs = 0;
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911
912 /* We change to an absolute value. */
913 value += addr;
914 break;
915
916 case R_MMIX_CBRANCH:
917 {
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
922
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
927
928 bfd_put_32 (abfd,
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 | (24/4)),
931 (bfd_byte *) datap);
932
933 /* Put a "GO $255,$255,0" after the common sequence. */
934 bfd_put_32 (abfd,
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
937
938 /* Common sequence starts at offset 4. */
939 offs = 4;
940
941 /* We change to an absolute value. */
942 value += addr;
943 }
944 break;
945
f60ebe14
HPN
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
948 if ((value & 3) == 0
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
951 howto->bitsize,
952 0,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
956 else
957 {
1a23a9e6 958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
f60ebe14
HPN
959
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
962 for the stub. */
963 bfd_byte *stubcontents
f075ee0c 964 = ((bfd_byte *) datap
f60ebe14 965 - (addr - (isec->output_section->vma + isec->output_offset))
eea6121a 966 + size
f60ebe14
HPN
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
968 bfd_vma stubaddr;
969
18978b27
HPN
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 {
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 {
981 /* For the first such error per input section, produce
982 a verbose message. */
983 *error_message
984 = _("invalid input relocation when producing"
985 " non-ELF, non-mmo format output."
986 "\n Please use the objcopy program to convert from"
987 " ELF or mmo,"
988 "\n or assemble using"
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
992 }
993
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
998 }
999
f60ebe14
HPN
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1004 [R_MMIX_ADDR19],
1005 datap,
1006 addr,
1007 isec->output_section->vma
1008 + isec->output_offset
eea6121a 1009 + size
f60ebe14
HPN
1010 + (mmix_elf_section_data (isec)
1011 ->pjs.stub_offset)
18978b27
HPN
1012 - addr,
1013 error_message);
f60ebe14
HPN
1014 if (r != bfd_reloc_ok)
1015 return r;
1016
1017 stubaddr
1018 = (isec->output_section->vma
1019 + isec->output_offset
eea6121a 1020 + size
f60ebe14
HPN
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1022
1023 /* We generate a simple JMP if that suffices, else the whole 5
1024 insn stub. */
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 0,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1030 {
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1034 [R_MMIX_ADDR27],
1035 stubcontents,
1036 stubaddr,
18978b27
HPN
1037 value + addr - stubaddr,
1038 error_message);
f60ebe14
HPN
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
eea6121a
AM
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
f60ebe14
HPN
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
3c3bdf30
NC
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
cedb70c5 1108 /* FALLTHROUGH. */
3c3bdf30
NC
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
f60ebe14 1111 pcrel_mmix_reloc_fits:
3c3bdf30
NC
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
f60ebe14 1127 highbit = 1 << 24;
3c3bdf30
NC
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
930b4cb2 1136 (in1 & howto->src_mask)
3c3bdf30
NC
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
930b4cb2
HPN
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
f0abc2a1 1149 = mmix_elf_section_data (isec)->bpo.reloc;
18978b27
HPN
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1152 size_t bpo_index;
1153
1154 if (bpodata == NULL)
1155 {
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 {
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1167 *error_message
1168 = _("invalid input relocation when producing"
1169 " non-ELF, non-mmo format output."
1170 "\n Please use the objcopy program to convert from"
1171 " ELF or mmo,"
1172 "\n or compile using the gcc-option"
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1176 }
1177
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1182 }
1183
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
930b4cb2
HPN
1187
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1192 {
4eca0228 1193 _bfd_error_handler
695344c0 1194 /* xgettext:c-format */
dae82561 1195 (_("%B: Internal inconsistency error for value for\n\
d42c267e 1196 linker-allocated global register: linked: %#Lx != relaxed: %#Lx"),
dae82561 1197 isec->owner,
d42c267e
AM
1198 value,
1199 gregdata->reloc_request[bpo_index].value);
930b4cb2
HPN
1200 bfd_set_error (bfd_error_bad_value);
1201 return bfd_reloc_overflow;
1202 }
1203
1204 /* Then store the register number and offset for that register
1205 into datap and datap + 1 respectively. */
1206 bfd_put_8 (abfd,
1207 gregdata->reloc_request[bpo_index].regindex
1208 + bpo_greg_section->output_section->vma / 8,
1209 datap);
1210 bfd_put_8 (abfd,
1211 gregdata->reloc_request[bpo_index].offset,
1212 ((unsigned char *) datap) + 1);
1213 return bfd_reloc_ok;
1214 }
1215
3c3bdf30
NC
1216 case R_MMIX_REG_OR_BYTE:
1217 case R_MMIX_REG:
1218 if (value > 255)
1219 return bfd_reloc_overflow;
1220 bfd_put_8 (abfd, value, datap);
1221 return bfd_reloc_ok;
1222
1223 default:
1224 BAD_CASE (howto->type);
1225 }
1226
1227 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1228 sequence. */
1229
1230 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1231 everything that looks strange. */
1232 if (value & 3)
1233 flag = bfd_reloc_overflow;
1234
1235 bfd_put_32 (abfd,
1236 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1237 (bfd_byte *) datap + offs);
1238 bfd_put_32 (abfd,
1239 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1240 (bfd_byte *) datap + offs + 4);
1241 bfd_put_32 (abfd,
1242 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1243 (bfd_byte *) datap + offs + 8);
1244 bfd_put_32 (abfd,
1245 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1246 (bfd_byte *) datap + offs + 12);
1247
1248 return flag;
1249}
1250
1251/* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1252
1253static void
2c3fc389
NC
1254mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1255 arelent *cache_ptr,
1256 Elf_Internal_Rela *dst)
3c3bdf30
NC
1257{
1258 unsigned int r_type;
1259
1260 r_type = ELF64_R_TYPE (dst->r_info);
5860e3f8
NC
1261 if (r_type >= (unsigned int) R_MMIX_max)
1262 {
695344c0 1263 /* xgettext:c-format */
64d29018 1264 _bfd_error_handler (_("%B: invalid MMIX reloc number: %d"), abfd, r_type);
5860e3f8
NC
1265 r_type = 0;
1266 }
3c3bdf30
NC
1267 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1268}
1269
1270/* Any MMIX-specific relocation gets here at assembly time or when linking
1271 to other formats (such as mmo); this is the relocation function from
1272 the reloc_table. We don't get here for final pure ELF linking. */
1273
1274static bfd_reloc_status_type
2c3fc389
NC
1275mmix_elf_reloc (bfd *abfd,
1276 arelent *reloc_entry,
1277 asymbol *symbol,
1278 void * data,
1279 asection *input_section,
1280 bfd *output_bfd,
1281 char **error_message)
3c3bdf30
NC
1282{
1283 bfd_vma relocation;
1284 bfd_reloc_status_type r;
1285 asection *reloc_target_output_section;
1286 bfd_reloc_status_type flag = bfd_reloc_ok;
1287 bfd_vma output_base = 0;
3c3bdf30
NC
1288
1289 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1290 input_section, output_bfd, error_message);
1291
1292 /* If that was all that was needed (i.e. this isn't a final link, only
1293 some segment adjustments), we're done. */
1294 if (r != bfd_reloc_continue)
1295 return r;
1296
1297 if (bfd_is_und_section (symbol->section)
1298 && (symbol->flags & BSF_WEAK) == 0
1299 && output_bfd == (bfd *) NULL)
1300 return bfd_reloc_undefined;
1301
1302 /* Is the address of the relocation really within the section? */
07515404 1303 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
3c3bdf30
NC
1304 return bfd_reloc_outofrange;
1305
4cc11e76 1306 /* Work out which section the relocation is targeted at and the
3c3bdf30
NC
1307 initial relocation command value. */
1308
1309 /* Get symbol value. (Common symbols are special.) */
1310 if (bfd_is_com_section (symbol->section))
1311 relocation = 0;
1312 else
1313 relocation = symbol->value;
1314
1315 reloc_target_output_section = bfd_get_output_section (symbol);
1316
1317 /* Here the variable relocation holds the final address of the symbol we
1318 are relocating against, plus any addend. */
1319 if (output_bfd)
1320 output_base = 0;
1321 else
1322 output_base = reloc_target_output_section->vma;
1323
1324 relocation += output_base + symbol->section->output_offset;
1325
3c3bdf30
NC
1326 if (output_bfd != (bfd *) NULL)
1327 {
1328 /* Add in supplied addend. */
1329 relocation += reloc_entry->addend;
1330
1331 /* This is a partial relocation, and we want to apply the
1332 relocation to the reloc entry rather than the raw data.
1333 Modify the reloc inplace to reflect what we now know. */
1334 reloc_entry->addend = relocation;
1335 reloc_entry->address += input_section->output_offset;
1336 return flag;
1337 }
1338
1339 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1340 data, reloc_entry->address,
1341 reloc_entry->addend, relocation,
1342 bfd_asymbol_name (symbol),
18978b27
HPN
1343 reloc_target_output_section,
1344 error_message);
3c3bdf30 1345}
e06fcc86 1346\f
3c3bdf30
NC
1347/* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1348 for guidance if you're thinking of copying this. */
1349
b34976b6 1350static bfd_boolean
2c3fc389
NC
1351mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1352 struct bfd_link_info *info,
1353 bfd *input_bfd,
1354 asection *input_section,
1355 bfd_byte *contents,
1356 Elf_Internal_Rela *relocs,
1357 Elf_Internal_Sym *local_syms,
1358 asection **local_sections)
3c3bdf30
NC
1359{
1360 Elf_Internal_Shdr *symtab_hdr;
1361 struct elf_link_hash_entry **sym_hashes;
1362 Elf_Internal_Rela *rel;
1363 Elf_Internal_Rela *relend;
1a23a9e6 1364 bfd_size_type size;
f60ebe14 1365 size_t pjsno = 0;
3c3bdf30 1366
1a23a9e6 1367 size = input_section->rawsize ? input_section->rawsize : input_section->size;
3c3bdf30
NC
1368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1369 sym_hashes = elf_sym_hashes (input_bfd);
1370 relend = relocs + input_section->reloc_count;
1371
1a23a9e6
AM
1372 /* Zero the stub area before we start. */
1373 if (input_section->rawsize != 0
1374 && input_section->size > input_section->rawsize)
1375 memset (contents + input_section->rawsize, 0,
1376 input_section->size - input_section->rawsize);
1377
3c3bdf30
NC
1378 for (rel = relocs; rel < relend; rel ++)
1379 {
1380 reloc_howto_type *howto;
1381 unsigned long r_symndx;
1382 Elf_Internal_Sym *sym;
1383 asection *sec;
1384 struct elf_link_hash_entry *h;
1385 bfd_vma relocation;
1386 bfd_reloc_status_type r;
1387 const char *name = NULL;
1388 int r_type;
b34976b6 1389 bfd_boolean undefined_signalled = FALSE;
3c3bdf30
NC
1390
1391 r_type = ELF64_R_TYPE (rel->r_info);
1392
1393 if (r_type == R_MMIX_GNU_VTINHERIT
1394 || r_type == R_MMIX_GNU_VTENTRY)
1395 continue;
1396
1397 r_symndx = ELF64_R_SYM (rel->r_info);
1398
ab96bf03
AM
1399 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1400 h = NULL;
1401 sym = NULL;
1402 sec = NULL;
1403
1404 if (r_symndx < symtab_hdr->sh_info)
1405 {
1406 sym = local_syms + r_symndx;
1407 sec = local_sections [r_symndx];
1408 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1409
1410 name = bfd_elf_string_from_elf_section (input_bfd,
1411 symtab_hdr->sh_link,
1412 sym->st_name);
1413 if (name == NULL)
1414 name = bfd_section_name (input_bfd, sec);
1415 }
1416 else
1417 {
62d887d4 1418 bfd_boolean unresolved_reloc, ignored;
ab96bf03
AM
1419
1420 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1421 r_symndx, symtab_hdr, sym_hashes,
1422 h, sec, relocation,
62d887d4
L
1423 unresolved_reloc, undefined_signalled,
1424 ignored);
ab96bf03
AM
1425 name = h->root.root.string;
1426 }
1427
dbaa2011 1428 if (sec != NULL && discarded_section (sec))
e4067dbb 1429 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 1430 rel, 1, relend, howto, 0, contents);
ab96bf03 1431
0e1862bb 1432 if (bfd_link_relocatable (info))
3c3bdf30 1433 {
f60ebe14
HPN
1434 /* This is a relocatable link. For most relocs we don't have to
1435 change anything, unless the reloc is against a section
1436 symbol, in which case we have to adjust according to where
1437 the section symbol winds up in the output section. */
ab96bf03
AM
1438 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1439 rel->r_addend += sec->output_offset;
3c3bdf30 1440
f60ebe14
HPN
1441 /* For PUSHJ stub relocs however, we may need to change the
1442 reloc and the section contents, if the reloc doesn't reach
1443 beyond the end of the output section and previous stubs.
1444 Then we change the section contents to be a PUSHJ to the end
1445 of the input section plus stubs (we can do that without using
1446 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1447 at the stub location. */
1448 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1449 {
1450 /* We've already checked whether we need a stub; use that
1451 knowledge. */
1452 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1453 != 0)
1454 {
1455 Elf_Internal_Rela relcpy;
1456
1457 if (mmix_elf_section_data (input_section)
1458 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1459 abort ();
1460
1461 /* There's already a PUSHJ insn there, so just fill in
1462 the offset bits to the stub. */
1463 if (mmix_final_link_relocate (elf_mmix_howto_table
1464 + R_MMIX_ADDR19,
1465 input_section,
1466 contents,
1467 rel->r_offset,
1468 0,
1469 input_section
1470 ->output_section->vma
1471 + input_section->output_offset
eea6121a 1472 + size
f60ebe14
HPN
1473 + mmix_elf_section_data (input_section)
1474 ->pjs.stub_offset,
18978b27 1475 NULL, NULL, NULL) != bfd_reloc_ok)
f60ebe14
HPN
1476 return FALSE;
1477
1478 /* Put a JMP insn at the stub; it goes with the
1479 R_MMIX_JMP reloc. */
1480 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1481 contents
eea6121a 1482 + size
f60ebe14
HPN
1483 + mmix_elf_section_data (input_section)
1484 ->pjs.stub_offset);
1485
1486 /* Change the reloc to be at the stub, and to a full
1487 R_MMIX_JMP reloc. */
1488 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1489 rel->r_offset
eea6121a 1490 = (size
f60ebe14
HPN
1491 + mmix_elf_section_data (input_section)
1492 ->pjs.stub_offset);
1493
1494 mmix_elf_section_data (input_section)->pjs.stub_offset
1495 += MAX_PUSHJ_STUB_SIZE;
1496
1497 /* Shift this reloc to the end of the relocs to maintain
1498 the r_offset sorted reloc order. */
1499 relcpy = *rel;
1500 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1501 relend[-1] = relcpy;
1502
1503 /* Back up one reloc, or else we'd skip the next reloc
1504 in turn. */
1505 rel--;
1506 }
1507
1508 pjsno++;
1509 }
3c3bdf30
NC
1510 continue;
1511 }
1512
3c3bdf30
NC
1513 r = mmix_final_link_relocate (howto, input_section,
1514 contents, rel->r_offset,
18978b27 1515 rel->r_addend, relocation, name, sec, NULL);
3c3bdf30
NC
1516
1517 if (r != bfd_reloc_ok)
1518 {
3c3bdf30
NC
1519 const char * msg = (const char *) NULL;
1520
1521 switch (r)
1522 {
1523 case bfd_reloc_overflow:
1a72702b 1524 info->callbacks->reloc_overflow
dfeffb9f
L
1525 (info, (h ? &h->root : NULL), name, howto->name,
1526 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3c3bdf30
NC
1527 break;
1528
1529 case bfd_reloc_undefined:
1530 /* We may have sent this message above. */
1531 if (! undefined_signalled)
1a72702b
AM
1532 info->callbacks->undefined_symbol
1533 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
b34976b6 1534 undefined_signalled = TRUE;
3c3bdf30
NC
1535 break;
1536
1537 case bfd_reloc_outofrange:
1538 msg = _("internal error: out of range error");
1539 break;
1540
1541 case bfd_reloc_notsupported:
1542 msg = _("internal error: unsupported relocation error");
1543 break;
1544
1545 case bfd_reloc_dangerous:
1546 msg = _("internal error: dangerous relocation");
1547 break;
1548
1549 default:
1550 msg = _("internal error: unknown error");
1551 break;
1552 }
1553
1554 if (msg)
1a72702b
AM
1555 (*info->callbacks->warning) (info, msg, name, input_bfd,
1556 input_section, rel->r_offset);
3c3bdf30
NC
1557 }
1558 }
1559
b34976b6 1560 return TRUE;
3c3bdf30 1561}
e06fcc86 1562\f
3c3bdf30
NC
1563/* Perform a single relocation. By default we use the standard BFD
1564 routines. A few relocs we have to do ourselves. */
1565
1566static bfd_reloc_status_type
18978b27
HPN
1567mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1568 bfd_byte *contents, bfd_vma r_offset,
1569 bfd_signed_vma r_addend, bfd_vma relocation,
1570 const char *symname, asection *symsec,
1571 char **error_message)
3c3bdf30
NC
1572{
1573 bfd_reloc_status_type r = bfd_reloc_ok;
1574 bfd_vma addr
1575 = (input_section->output_section->vma
1576 + input_section->output_offset
1577 + r_offset);
1578 bfd_signed_vma srel
1579 = (bfd_signed_vma) relocation + r_addend;
1580
1581 switch (howto->type)
1582 {
1583 /* All these are PC-relative. */
f60ebe14 1584 case R_MMIX_PUSHJ_STUBBABLE:
3c3bdf30
NC
1585 case R_MMIX_PUSHJ:
1586 case R_MMIX_CBRANCH:
1587 case R_MMIX_ADDR19:
1588 case R_MMIX_GETA:
1589 case R_MMIX_ADDR27:
1590 case R_MMIX_JMP:
1591 contents += r_offset;
1592
1593 srel -= (input_section->output_section->vma
1594 + input_section->output_offset
1595 + r_offset);
1596
1597 r = mmix_elf_perform_relocation (input_section, howto, contents,
18978b27 1598 addr, srel, error_message);
3c3bdf30
NC
1599 break;
1600
930b4cb2
HPN
1601 case R_MMIX_BASE_PLUS_OFFSET:
1602 if (symsec == NULL)
1603 return bfd_reloc_undefined;
1604
1605 /* Check that we're not relocating against a register symbol. */
1606 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1607 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1608 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1609 MMIX_REG_SECTION_NAME) == 0)
1610 {
1611 /* Note: This is separated out into two messages in order
1612 to ease the translation into other languages. */
1613 if (symname == NULL || *symname == 0)
4eca0228 1614 _bfd_error_handler
695344c0 1615 /* xgettext:c-format */
dae82561
AM
1616 (_("%B: base-plus-offset relocation against register symbol:"
1617 " (unknown) in %A"),
1618 input_section->owner, symsec);
930b4cb2 1619 else
4eca0228 1620 _bfd_error_handler
695344c0 1621 /* xgettext:c-format */
dae82561
AM
1622 (_("%B: base-plus-offset relocation against register symbol:"
1623 " %s in %A"),
1624 input_section->owner, symname, symsec);
930b4cb2
HPN
1625 return bfd_reloc_overflow;
1626 }
1627 goto do_mmix_reloc;
1628
3c3bdf30
NC
1629 case R_MMIX_REG_OR_BYTE:
1630 case R_MMIX_REG:
1631 /* For now, we handle these alike. They must refer to an register
1632 symbol, which is either relative to the register section and in
1633 the range 0..255, or is in the register contents section with vma
1634 regno * 8. */
1635
1636 /* FIXME: A better way to check for reg contents section?
1637 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1638 if (symsec == NULL)
1639 return bfd_reloc_undefined;
1640
1641 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1642 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1643 {
1644 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1645 {
1646 /* The bfd_reloc_outofrange return value, though intuitively
1647 a better value, will not get us an error. */
1648 return bfd_reloc_overflow;
1649 }
1650 srel /= 8;
1651 }
1652 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1653 MMIX_REG_SECTION_NAME) == 0)
1654 {
1655 if (srel < 0 || srel > 255)
1656 /* The bfd_reloc_outofrange return value, though intuitively a
1657 better value, will not get us an error. */
1658 return bfd_reloc_overflow;
1659 }
1660 else
1661 {
930b4cb2 1662 /* Note: This is separated out into two messages in order
ca09e32b
NC
1663 to ease the translation into other languages. */
1664 if (symname == NULL || *symname == 0)
4eca0228 1665 _bfd_error_handler
695344c0 1666 /* xgettext:c-format */
dae82561
AM
1667 (_("%B: register relocation against non-register symbol:"
1668 " (unknown) in %A"),
1669 input_section->owner, symsec);
ca09e32b 1670 else
4eca0228 1671 _bfd_error_handler
695344c0 1672 /* xgettext:c-format */
dae82561
AM
1673 (_("%B: register relocation against non-register symbol:"
1674 " %s in %A"),
1675 input_section->owner, symname, symsec);
3c3bdf30
NC
1676
1677 /* The bfd_reloc_outofrange return value, though intuitively a
1678 better value, will not get us an error. */
1679 return bfd_reloc_overflow;
1680 }
930b4cb2 1681 do_mmix_reloc:
3c3bdf30
NC
1682 contents += r_offset;
1683 r = mmix_elf_perform_relocation (input_section, howto, contents,
18978b27 1684 addr, srel, error_message);
3c3bdf30
NC
1685 break;
1686
1687 case R_MMIX_LOCAL:
1688 /* This isn't a real relocation, it's just an assertion that the
1689 final relocation value corresponds to a local register. We
1690 ignore the actual relocation; nothing is changed. */
1691 {
1692 asection *regsec
1693 = bfd_get_section_by_name (input_section->output_section->owner,
1694 MMIX_REG_CONTENTS_SECTION_NAME);
1695 bfd_vma first_global;
1696
1697 /* Check that this is an absolute value, or a reference to the
1698 register contents section or the register (symbol) section.
1699 Absolute numbers can get here as undefined section. Undefined
1700 symbols are signalled elsewhere, so there's no conflict in us
1701 accidentally handling it. */
1702 if (!bfd_is_abs_section (symsec)
1703 && !bfd_is_und_section (symsec)
1704 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1705 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1706 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_SECTION_NAME) != 0)
1708 {
4eca0228 1709 _bfd_error_handler
dae82561
AM
1710 (_("%B: directive LOCAL valid only with a register or absolute value"),
1711 input_section->owner);
3c3bdf30
NC
1712
1713 return bfd_reloc_overflow;
1714 }
1715
1716 /* If we don't have a register contents section, then $255 is the
1717 first global register. */
1718 if (regsec == NULL)
1719 first_global = 255;
1720 else
1721 {
a0f49396
NC
1722 first_global
1723 = bfd_get_section_vma (input_section->output_section->owner,
1724 regsec) / 8;
3c3bdf30
NC
1725 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1726 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1727 {
1728 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1729 /* The bfd_reloc_outofrange return value, though
1730 intuitively a better value, will not get us an error. */
1731 return bfd_reloc_overflow;
1732 srel /= 8;
1733 }
1734 }
1735
1736 if ((bfd_vma) srel >= first_global)
1737 {
1738 /* FIXME: Better error message. */
4eca0228 1739 _bfd_error_handler
695344c0 1740 /* xgettext:c-format */
d42c267e
AM
1741 (_("%B: LOCAL directive: Register $%Ld is not a local register."
1742 " First global register is $%Ld."),
1743 input_section->owner, srel, first_global);
3c3bdf30
NC
1744
1745 return bfd_reloc_overflow;
1746 }
1747 }
1748 r = bfd_reloc_ok;
1749 break;
1750
1751 default:
1752 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1753 contents, r_offset,
1754 relocation, r_addend);
1755 }
1756
1757 return r;
1758}
e06fcc86 1759\f
3c3bdf30
NC
1760/* Return the section that should be marked against GC for a given
1761 relocation. */
1762
1763static asection *
07adf181
AM
1764mmix_elf_gc_mark_hook (asection *sec,
1765 struct bfd_link_info *info,
1766 Elf_Internal_Rela *rel,
1767 struct elf_link_hash_entry *h,
1768 Elf_Internal_Sym *sym)
3c3bdf30
NC
1769{
1770 if (h != NULL)
07adf181
AM
1771 switch (ELF64_R_TYPE (rel->r_info))
1772 {
1773 case R_MMIX_GNU_VTINHERIT:
1774 case R_MMIX_GNU_VTENTRY:
1775 return NULL;
1776 }
3c3bdf30 1777
07adf181 1778 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
3c3bdf30 1779}
930b4cb2
HPN
1780
1781/* Update relocation info for a GC-excluded section. We could supposedly
1782 perform the allocation after GC, but there's no suitable hook between
1783 GC (or section merge) and the point when all input sections must be
1784 present. Better to waste some memory and (perhaps) a little time. */
1785
b34976b6 1786static bfd_boolean
07adf181
AM
1787mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1788 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1789 asection *sec,
1790 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
930b4cb2
HPN
1791{
1792 struct bpo_reloc_section_info *bpodata
f0abc2a1 1793 = mmix_elf_section_data (sec)->bpo.reloc;
930b4cb2
HPN
1794 asection *allocated_gregs_section;
1795
1796 /* If no bpodata here, we have nothing to do. */
1797 if (bpodata == NULL)
b34976b6 1798 return TRUE;
930b4cb2
HPN
1799
1800 allocated_gregs_section = bpodata->bpo_greg_section;
1801
f0abc2a1 1802 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
930b4cb2
HPN
1803 -= bpodata->n_bpo_relocs_this_section;
1804
b34976b6 1805 return TRUE;
930b4cb2 1806}
e06fcc86 1807\f
3c3bdf30
NC
1808/* Sort register relocs to come before expanding relocs. */
1809
1810static int
2c3fc389 1811mmix_elf_sort_relocs (const void * p1, const void * p2)
3c3bdf30
NC
1812{
1813 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1814 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1815 int r1_is_reg, r2_is_reg;
1816
1817 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1818 insns. */
1819 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1820 return 1;
1821 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1822 return -1;
1823
1824 r1_is_reg
1825 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1826 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1827 r2_is_reg
1828 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1829 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1830 if (r1_is_reg != r2_is_reg)
1831 return r2_is_reg - r1_is_reg;
1832
1833 /* Neither or both are register relocs. Then sort on full offset. */
1834 if (r1->r_offset > r2->r_offset)
1835 return 1;
1836 else if (r1->r_offset < r2->r_offset)
1837 return -1;
1838 return 0;
1839}
1840
930b4cb2
HPN
1841/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1842
b34976b6 1843static bfd_boolean
2c3fc389
NC
1844mmix_elf_check_common_relocs (bfd *abfd,
1845 struct bfd_link_info *info,
1846 asection *sec,
1847 const Elf_Internal_Rela *relocs)
930b4cb2
HPN
1848{
1849 bfd *bpo_greg_owner = NULL;
1850 asection *allocated_gregs_section = NULL;
1851 struct bpo_greg_section_info *gregdata = NULL;
1852 struct bpo_reloc_section_info *bpodata = NULL;
1853 const Elf_Internal_Rela *rel;
1854 const Elf_Internal_Rela *rel_end;
1855
930b4cb2
HPN
1856 /* We currently have to abuse this COFF-specific member, since there's
1857 no target-machine-dedicated member. There's no alternative outside
1858 the bfd_link_info struct; we can't specialize a hash-table since
1859 they're different between ELF and mmo. */
1860 bpo_greg_owner = (bfd *) info->base_file;
1861
1862 rel_end = relocs + sec->reloc_count;
1863 for (rel = relocs; rel < rel_end; rel++)
1864 {
1865 switch (ELF64_R_TYPE (rel->r_info))
1866 {
1867 /* This relocation causes a GREG allocation. We need to count
1868 them, and we need to create a section for them, so we need an
1869 object to fake as the owner of that section. We can't use
1870 the ELF dynobj for this, since the ELF bits assume lots of
1871 DSO-related stuff if that member is non-NULL. */
1872 case R_MMIX_BASE_PLUS_OFFSET:
f60ebe14 1873 /* We don't do anything with this reloc for a relocatable link. */
0e1862bb 1874 if (bfd_link_relocatable (info))
f60ebe14
HPN
1875 break;
1876
930b4cb2
HPN
1877 if (bpo_greg_owner == NULL)
1878 {
1879 bpo_greg_owner = abfd;
2c3fc389 1880 info->base_file = bpo_greg_owner;
930b4cb2
HPN
1881 }
1882
4fa5c2a8
HPN
1883 if (allocated_gregs_section == NULL)
1884 allocated_gregs_section
1885 = bfd_get_section_by_name (bpo_greg_owner,
1886 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1887
930b4cb2
HPN
1888 if (allocated_gregs_section == NULL)
1889 {
1890 allocated_gregs_section
3496cb2a
L
1891 = bfd_make_section_with_flags (bpo_greg_owner,
1892 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1893 (SEC_HAS_CONTENTS
1894 | SEC_IN_MEMORY
1895 | SEC_LINKER_CREATED));
930b4cb2
HPN
1896 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1897 treated like any other section, and we'd get errors for
1898 address overlap with the text section. Let's set none of
1899 those flags, as that is what currently happens for usual
1900 GREG allocations, and that works. */
1901 if (allocated_gregs_section == NULL
930b4cb2
HPN
1902 || !bfd_set_section_alignment (bpo_greg_owner,
1903 allocated_gregs_section,
1904 3))
b34976b6 1905 return FALSE;
930b4cb2
HPN
1906
1907 gregdata = (struct bpo_greg_section_info *)
1908 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1909 if (gregdata == NULL)
b34976b6 1910 return FALSE;
f0abc2a1
AM
1911 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1912 = gregdata;
930b4cb2
HPN
1913 }
1914 else if (gregdata == NULL)
f0abc2a1
AM
1915 gregdata
1916 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
930b4cb2
HPN
1917
1918 /* Get ourselves some auxiliary info for the BPO-relocs. */
1919 if (bpodata == NULL)
1920 {
1921 /* No use doing a separate iteration pass to find the upper
1922 limit - just use the number of relocs. */
1923 bpodata = (struct bpo_reloc_section_info *)
1924 bfd_alloc (bpo_greg_owner,
1925 sizeof (struct bpo_reloc_section_info)
1926 * (sec->reloc_count + 1));
1927 if (bpodata == NULL)
b34976b6 1928 return FALSE;
f0abc2a1 1929 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
930b4cb2
HPN
1930 bpodata->first_base_plus_offset_reloc
1931 = bpodata->bpo_index
1932 = gregdata->n_max_bpo_relocs;
1933 bpodata->bpo_greg_section
1934 = allocated_gregs_section;
4fa5c2a8 1935 bpodata->n_bpo_relocs_this_section = 0;
930b4cb2
HPN
1936 }
1937
1938 bpodata->n_bpo_relocs_this_section++;
1939 gregdata->n_max_bpo_relocs++;
1940
1941 /* We don't get another chance to set this before GC; we've not
f60ebe14 1942 set up any hook that runs before GC. */
930b4cb2
HPN
1943 gregdata->n_bpo_relocs
1944 = gregdata->n_max_bpo_relocs;
1945 break;
f60ebe14
HPN
1946
1947 case R_MMIX_PUSHJ_STUBBABLE:
1948 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1949 break;
930b4cb2
HPN
1950 }
1951 }
1952
f60ebe14
HPN
1953 /* Allocate per-reloc stub storage and initialize it to the max stub
1954 size. */
1955 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1956 {
1957 size_t i;
1958
1959 mmix_elf_section_data (sec)->pjs.stub_size
1960 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1961 * sizeof (mmix_elf_section_data (sec)
1962 ->pjs.stub_size[0]));
1963 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1964 return FALSE;
1965
1966 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1967 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1968 }
1969
b34976b6 1970 return TRUE;
930b4cb2
HPN
1971}
1972
3c3bdf30
NC
1973/* Look through the relocs for a section during the first phase. */
1974
b34976b6 1975static bfd_boolean
2c3fc389
NC
1976mmix_elf_check_relocs (bfd *abfd,
1977 struct bfd_link_info *info,
1978 asection *sec,
1979 const Elf_Internal_Rela *relocs)
3c3bdf30
NC
1980{
1981 Elf_Internal_Shdr *symtab_hdr;
5582a088 1982 struct elf_link_hash_entry **sym_hashes;
3c3bdf30
NC
1983 const Elf_Internal_Rela *rel;
1984 const Elf_Internal_Rela *rel_end;
1985
3c3bdf30
NC
1986 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1987 sym_hashes = elf_sym_hashes (abfd);
3c3bdf30
NC
1988
1989 /* First we sort the relocs so that any register relocs come before
1990 expansion-relocs to the same insn. FIXME: Not done for mmo. */
2c3fc389 1991 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
3c3bdf30
NC
1992 mmix_elf_sort_relocs);
1993
930b4cb2
HPN
1994 /* Do the common part. */
1995 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
b34976b6 1996 return FALSE;
930b4cb2 1997
0e1862bb 1998 if (bfd_link_relocatable (info))
f60ebe14
HPN
1999 return TRUE;
2000
3c3bdf30
NC
2001 rel_end = relocs + sec->reloc_count;
2002 for (rel = relocs; rel < rel_end; rel++)
2003 {
2004 struct elf_link_hash_entry *h;
2005 unsigned long r_symndx;
2006
2007 r_symndx = ELF64_R_SYM (rel->r_info);
2008 if (r_symndx < symtab_hdr->sh_info)
2009 h = NULL;
2010 else
973a3492
L
2011 {
2012 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2013 while (h->root.type == bfd_link_hash_indirect
2014 || h->root.type == bfd_link_hash_warning)
2015 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831
AM
2016
2017 /* PR15323, ref flags aren't set for references in the same
2018 object. */
bc4e12de 2019 h->root.non_ir_ref_regular = 1;
973a3492 2020 }
3c3bdf30
NC
2021
2022 switch (ELF64_R_TYPE (rel->r_info))
930b4cb2 2023 {
3c3bdf30
NC
2024 /* This relocation describes the C++ object vtable hierarchy.
2025 Reconstruct it for later use during GC. */
2026 case R_MMIX_GNU_VTINHERIT:
c152c796 2027 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 2028 return FALSE;
3c3bdf30
NC
2029 break;
2030
2031 /* This relocation describes which C++ vtable entries are actually
2032 used. Record for later use during GC. */
2033 case R_MMIX_GNU_VTENTRY:
d17e0c6e
JB
2034 BFD_ASSERT (h != NULL);
2035 if (h != NULL
2036 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
b34976b6 2037 return FALSE;
3c3bdf30 2038 break;
930b4cb2
HPN
2039 }
2040 }
2041
b34976b6 2042 return TRUE;
930b4cb2
HPN
2043}
2044
2045/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2046 Copied from elf_link_add_object_symbols. */
2047
b34976b6 2048bfd_boolean
2c3fc389 2049_bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
930b4cb2
HPN
2050{
2051 asection *o;
2052
2053 for (o = abfd->sections; o != NULL; o = o->next)
2054 {
2055 Elf_Internal_Rela *internal_relocs;
b34976b6 2056 bfd_boolean ok;
930b4cb2
HPN
2057
2058 if ((o->flags & SEC_RELOC) == 0
2059 || o->reloc_count == 0
2060 || ((info->strip == strip_all || info->strip == strip_debugger)
2061 && (o->flags & SEC_DEBUGGING) != 0)
2062 || bfd_is_abs_section (o->output_section))
2063 continue;
2064
2065 internal_relocs
2c3fc389 2066 = _bfd_elf_link_read_relocs (abfd, o, NULL,
45d6a902
AM
2067 (Elf_Internal_Rela *) NULL,
2068 info->keep_memory);
930b4cb2 2069 if (internal_relocs == NULL)
b34976b6 2070 return FALSE;
930b4cb2
HPN
2071
2072 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2073
2074 if (! info->keep_memory)
2075 free (internal_relocs);
2076
2077 if (! ok)
b34976b6 2078 return FALSE;
3c3bdf30
NC
2079 }
2080
b34976b6 2081 return TRUE;
3c3bdf30 2082}
e06fcc86 2083\f
3c3bdf30
NC
2084/* Change symbols relative to the reg contents section to instead be to
2085 the register section, and scale them down to correspond to the register
2086 number. */
2087
6e0b88f1 2088static int
2c3fc389
NC
2089mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2090 const char *name ATTRIBUTE_UNUSED,
2091 Elf_Internal_Sym *sym,
2092 asection *input_sec,
2093 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
3c3bdf30
NC
2094{
2095 if (input_sec != NULL
2096 && input_sec->name != NULL
2097 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2098 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2099 {
2100 sym->st_value /= 8;
2101 sym->st_shndx = SHN_REGISTER;
2102 }
2103
6e0b88f1 2104 return 1;
3c3bdf30
NC
2105}
2106
2107/* We fake a register section that holds values that are register numbers.
2108 Having a SHN_REGISTER and register section translates better to other
2109 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2110 This section faking is based on a construct in elf32-mips.c. */
2111static asection mmix_elf_reg_section;
2112static asymbol mmix_elf_reg_section_symbol;
2113static asymbol *mmix_elf_reg_section_symbol_ptr;
2114
f60ebe14 2115/* Handle the special section numbers that a symbol may use. */
3c3bdf30
NC
2116
2117void
e6c7cdec 2118mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
3c3bdf30
NC
2119{
2120 elf_symbol_type *elfsym;
2121
2122 elfsym = (elf_symbol_type *) asym;
2123 switch (elfsym->internal_elf_sym.st_shndx)
2124 {
2125 case SHN_REGISTER:
2126 if (mmix_elf_reg_section.name == NULL)
2127 {
2128 /* Initialize the register section. */
2129 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2130 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2131 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2132 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2133 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2134 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2135 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2136 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2137 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2138 }
2139 asym->section = &mmix_elf_reg_section;
2140 break;
2141
2142 default:
2143 break;
2144 }
2145}
2146
2147/* Given a BFD section, try to locate the corresponding ELF section
2148 index. */
2149
b34976b6 2150static bfd_boolean
2c3fc389
NC
2151mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2152 asection * sec,
2153 int * retval)
3c3bdf30
NC
2154{
2155 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2156 *retval = SHN_REGISTER;
2157 else
b34976b6 2158 return FALSE;
3c3bdf30 2159
b34976b6 2160 return TRUE;
3c3bdf30
NC
2161}
2162
2163/* Hook called by the linker routine which adds symbols from an object
2164 file. We must handle the special SHN_REGISTER section number here.
2165
2166 We also check that we only have *one* each of the section-start
2167 symbols, since otherwise having two with the same value would cause
2168 them to be "merged", but with the contents serialized. */
2169
2c3fc389
NC
2170static bfd_boolean
2171mmix_elf_add_symbol_hook (bfd *abfd,
2172 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2173 Elf_Internal_Sym *sym,
2174 const char **namep ATTRIBUTE_UNUSED,
2175 flagword *flagsp ATTRIBUTE_UNUSED,
2176 asection **secp,
2177 bfd_vma *valp ATTRIBUTE_UNUSED)
3c3bdf30
NC
2178{
2179 if (sym->st_shndx == SHN_REGISTER)
46fda84e
AM
2180 {
2181 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2182 (*secp)->flags |= SEC_LINKER_CREATED;
2183 }
3c3bdf30 2184 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
0112cd26 2185 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
3c3bdf30
NC
2186 {
2187 /* See if we have another one. */
4ab82700
AM
2188 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2189 *namep,
b34976b6
AM
2190 FALSE,
2191 FALSE,
2192 FALSE);
3c3bdf30 2193
4ab82700 2194 if (h != NULL && h->type != bfd_link_hash_undefined)
3c3bdf30
NC
2195 {
2196 /* How do we get the asymbol (or really: the filename) from h?
4ab82700 2197 h->u.def.section->owner is NULL. */
4eca0228 2198 _bfd_error_handler
695344c0 2199 /* xgettext:c-format */
dae82561 2200 (_("%B: Error: multiple definition of `%s'; start of %s "
4eca0228 2201 "is set in a earlier linked file\n"),
dae82561 2202 abfd, *namep,
4eca0228 2203 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX));
3c3bdf30 2204 bfd_set_error (bfd_error_bad_value);
b34976b6 2205 return FALSE;
3c3bdf30
NC
2206 }
2207 }
2208
b34976b6 2209 return TRUE;
3c3bdf30
NC
2210}
2211
2212/* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2213
2c3fc389
NC
2214static bfd_boolean
2215mmix_elf_is_local_label_name (bfd *abfd, const char *name)
3c3bdf30
NC
2216{
2217 const char *colpos;
2218 int digits;
2219
2220 /* Also include the default local-label definition. */
2221 if (_bfd_elf_is_local_label_name (abfd, name))
b34976b6 2222 return TRUE;
3c3bdf30
NC
2223
2224 if (*name != 'L')
b34976b6 2225 return FALSE;
3c3bdf30
NC
2226
2227 /* If there's no ":", or more than one, it's not a local symbol. */
2228 colpos = strchr (name, ':');
2229 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
b34976b6 2230 return FALSE;
3c3bdf30
NC
2231
2232 /* Check that there are remaining characters and that they are digits. */
2233 if (colpos[1] == 0)
b34976b6 2234 return FALSE;
3c3bdf30
NC
2235
2236 digits = strspn (colpos + 1, "0123456789");
2237 return digits != 0 && colpos[1 + digits] == 0;
2238}
2239
2240/* We get rid of the register section here. */
2241
b34976b6 2242bfd_boolean
2c3fc389 2243mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
3c3bdf30
NC
2244{
2245 /* We never output a register section, though we create one for
2246 temporary measures. Check that nobody entered contents into it. */
2247 asection *reg_section;
3c3bdf30
NC
2248
2249 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2250
2251 if (reg_section != NULL)
2252 {
2253 /* FIXME: Pass error state gracefully. */
2254 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2255 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2256
46fda84e
AM
2257 /* Really remove the section, if it hasn't already been done. */
2258 if (!bfd_section_removed_from_list (abfd, reg_section))
2259 {
2260 bfd_section_list_remove (abfd, reg_section);
2261 --abfd->section_count;
2262 }
3c3bdf30
NC
2263 }
2264
c152c796 2265 if (! bfd_elf_final_link (abfd, info))
b34976b6 2266 return FALSE;
3c3bdf30 2267
930b4cb2
HPN
2268 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2269 the regular linker machinery. We do it here, like other targets with
2270 special sections. */
2271 if (info->base_file != NULL)
2272 {
2273 asection *greg_section
2274 = bfd_get_section_by_name ((bfd *) info->base_file,
2275 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2276 if (!bfd_set_section_contents (abfd,
2277 greg_section->output_section,
2278 greg_section->contents,
2279 (file_ptr) greg_section->output_offset,
eea6121a 2280 greg_section->size))
b34976b6 2281 return FALSE;
930b4cb2 2282 }
b34976b6 2283 return TRUE;
930b4cb2
HPN
2284}
2285
f60ebe14 2286/* We need to include the maximum size of PUSHJ-stubs in the initial
eea6121a 2287 section size. This is expected to shrink during linker relaxation. */
f60ebe14
HPN
2288
2289static void
2c3fc389
NC
2290mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2291 asection *sec,
2292 void *ptr)
f60ebe14
HPN
2293{
2294 struct bfd_link_info *info = ptr;
2295
2296 /* Make sure we only do this for section where we know we want this,
2297 otherwise we might end up resetting the size of COMMONs. */
2298 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2299 return;
2300
1a23a9e6 2301 sec->rawsize = sec->size;
eea6121a
AM
2302 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2303 * MAX_PUSHJ_STUB_SIZE);
f60ebe14
HPN
2304
2305 /* For use in relocatable link, we start with a max stubs size. See
2306 mmix_elf_relax_section. */
0e1862bb 2307 if (bfd_link_relocatable (info) && sec->output_section)
f60ebe14
HPN
2308 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2309 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2310 * MAX_PUSHJ_STUB_SIZE);
2311}
2312
930b4cb2
HPN
2313/* Initialize stuff for the linker-generated GREGs to match
2314 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2315
b34976b6 2316bfd_boolean
2c3fc389
NC
2317_bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2318 struct bfd_link_info *info)
930b4cb2
HPN
2319{
2320 asection *bpo_gregs_section;
2321 bfd *bpo_greg_owner;
2322 struct bpo_greg_section_info *gregdata;
2323 size_t n_gregs;
2324 bfd_vma gregs_size;
2325 size_t i;
2326 size_t *bpo_reloc_indexes;
f60ebe14
HPN
2327 bfd *ibfd;
2328
2329 /* Set the initial size of sections. */
c72f2fb2 2330 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
f60ebe14 2331 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
930b4cb2
HPN
2332
2333 /* The bpo_greg_owner bfd is supposed to have been set by
2334 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2335 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2336 bpo_greg_owner = (bfd *) info->base_file;
2337 if (bpo_greg_owner == NULL)
b34976b6 2338 return TRUE;
930b4cb2
HPN
2339
2340 bpo_gregs_section
2341 = bfd_get_section_by_name (bpo_greg_owner,
2342 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2343
930b4cb2 2344 if (bpo_gregs_section == NULL)
b34976b6 2345 return TRUE;
930b4cb2
HPN
2346
2347 /* We use the target-data handle in the ELF section data. */
f0abc2a1 2348 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2349 if (gregdata == NULL)
b34976b6 2350 return FALSE;
930b4cb2
HPN
2351
2352 n_gregs = gregdata->n_bpo_relocs;
2353 gregdata->n_allocated_bpo_gregs = n_gregs;
2354
2355 /* When this reaches zero during relaxation, all entries have been
2356 filled in and the size of the linker gregs can be calculated. */
2357 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2358
2359 /* Set the zeroth-order estimate for the GREGs size. */
2360 gregs_size = n_gregs * 8;
2361
2362 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
b34976b6 2363 return FALSE;
930b4cb2
HPN
2364
2365 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2366 time. Note that we must use the max number ever noted for the array,
2367 since the index numbers were created before GC. */
2368 gregdata->reloc_request
2369 = bfd_zalloc (bpo_greg_owner,
2370 sizeof (struct bpo_reloc_request)
2371 * gregdata->n_max_bpo_relocs);
2372
2373 gregdata->bpo_reloc_indexes
2374 = bpo_reloc_indexes
2375 = bfd_alloc (bpo_greg_owner,
2376 gregdata->n_max_bpo_relocs
2377 * sizeof (size_t));
2378 if (bpo_reloc_indexes == NULL)
b34976b6 2379 return FALSE;
930b4cb2
HPN
2380
2381 /* The default order is an identity mapping. */
2382 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2383 {
2384 bpo_reloc_indexes[i] = i;
2385 gregdata->reloc_request[i].bpo_reloc_no = i;
2386 }
2387
b34976b6 2388 return TRUE;
3c3bdf30 2389}
e06fcc86 2390\f
930b4cb2
HPN
2391/* Fill in contents in the linker allocated gregs. Everything is
2392 calculated at this point; we just move the contents into place here. */
2393
b34976b6 2394bfd_boolean
2c3fc389
NC
2395_bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2396 struct bfd_link_info *link_info)
930b4cb2
HPN
2397{
2398 asection *bpo_gregs_section;
2399 bfd *bpo_greg_owner;
2400 struct bpo_greg_section_info *gregdata;
2401 size_t n_gregs;
2402 size_t i, j;
2403 size_t lastreg;
2404 bfd_byte *contents;
2405
2406 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2407 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2408 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2409 bpo_greg_owner = (bfd *) link_info->base_file;
2410 if (bpo_greg_owner == NULL)
b34976b6 2411 return TRUE;
930b4cb2
HPN
2412
2413 bpo_gregs_section
2414 = bfd_get_section_by_name (bpo_greg_owner,
2415 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2416
2417 /* This can't happen without DSO handling. When DSOs are handled
2418 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2419 section. */
2420 if (bpo_gregs_section == NULL)
b34976b6 2421 return TRUE;
930b4cb2
HPN
2422
2423 /* We use the target-data handle in the ELF section data. */
2424
f0abc2a1 2425 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2426 if (gregdata == NULL)
b34976b6 2427 return FALSE;
930b4cb2
HPN
2428
2429 n_gregs = gregdata->n_allocated_bpo_gregs;
2430
2431 bpo_gregs_section->contents
eea6121a 2432 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
930b4cb2 2433 if (contents == NULL)
b34976b6 2434 return FALSE;
930b4cb2 2435
7e799044
HPN
2436 /* Sanity check: If these numbers mismatch, some relocation has not been
2437 accounted for and the rest of gregdata is probably inconsistent.
2438 It's a bug, but it's more helpful to identify it than segfaulting
2439 below. */
2440 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2441 != gregdata->n_bpo_relocs)
2442 {
4eca0228 2443 _bfd_error_handler
695344c0 2444 /* xgettext:c-format */
d42c267e 2445 (_("Internal inconsistency: remaining %lu != max %lu.\n\
7e799044 2446 Please report this bug."),
d42c267e
AM
2447 (unsigned long) gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2448 (unsigned long) gregdata->n_bpo_relocs);
b34976b6 2449 return FALSE;
7e799044
HPN
2450 }
2451
930b4cb2
HPN
2452 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2453 if (gregdata->reloc_request[i].regindex != lastreg)
2454 {
2455 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2456 contents + j * 8);
2457 lastreg = gregdata->reloc_request[i].regindex;
2458 j++;
2459 }
2460
b34976b6 2461 return TRUE;
930b4cb2
HPN
2462}
2463
2464/* Sort valid relocs to come before non-valid relocs, then on increasing
2465 value. */
2466
2467static int
2c3fc389 2468bpo_reloc_request_sort_fn (const void * p1, const void * p2)
930b4cb2
HPN
2469{
2470 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2471 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2472
2473 /* Primary function is validity; non-valid relocs sorted after valid
2474 ones. */
2475 if (r1->valid != r2->valid)
2476 return r2->valid - r1->valid;
2477
4fa5c2a8
HPN
2478 /* Then sort on value. Don't simplify and return just the difference of
2479 the values: the upper bits of the 64-bit value would be truncated on
2480 a host with 32-bit ints. */
930b4cb2 2481 if (r1->value != r2->value)
4fa5c2a8 2482 return r1->value > r2->value ? 1 : -1;
930b4cb2 2483
dfbbae4c
HPN
2484 /* As a last re-sort, use the relocation number, so we get a stable
2485 sort. The *addresses* aren't stable since items are swapped during
2486 sorting. It depends on the qsort implementation if this actually
2487 happens. */
2488 return r1->bpo_reloc_no > r2->bpo_reloc_no
2489 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
930b4cb2
HPN
2490}
2491
4fa5c2a8
HPN
2492/* For debug use only. Dumps the global register allocations resulting
2493 from base-plus-offset relocs. */
2494
2495void
e6c7cdec 2496mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
52d45da3 2497 void (*pf) (const char *fmt, ...))
4fa5c2a8
HPN
2498{
2499 bfd *bpo_greg_owner;
2500 asection *bpo_gregs_section;
2501 struct bpo_greg_section_info *gregdata;
2502 unsigned int i;
2503
2504 if (link_info == NULL || link_info->base_file == NULL)
2505 return;
2506
2507 bpo_greg_owner = (bfd *) link_info->base_file;
2508
2509 bpo_gregs_section
2510 = bfd_get_section_by_name (bpo_greg_owner,
2511 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2512
2513 if (bpo_gregs_section == NULL)
2514 return;
2515
f0abc2a1 2516 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
4fa5c2a8
HPN
2517 if (gregdata == NULL)
2518 return;
2519
2520 if (pf == NULL)
2521 pf = _bfd_error_handler;
2522
2523 /* These format strings are not translated. They are for debug purposes
2524 only and never displayed to an end user. Should they escape, we
2525 surely want them in original. */
2526 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2527 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2528 gregdata->n_max_bpo_relocs,
2529 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2530 gregdata->n_allocated_bpo_gregs);
2531
2532 if (gregdata->reloc_request)
2533 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2534 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2535 i,
cf3d882d
AM
2536 (gregdata->bpo_reloc_indexes != NULL
2537 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
4fa5c2a8
HPN
2538 gregdata->reloc_request[i].bpo_reloc_no,
2539 gregdata->reloc_request[i].valid,
2540
2541 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2542 (unsigned long) gregdata->reloc_request[i].value,
2543 gregdata->reloc_request[i].regindex,
2544 gregdata->reloc_request[i].offset);
2545}
2546
930b4cb2
HPN
2547/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2548 when the last such reloc is done, an index-array is sorted according to
2549 the values and iterated over to produce register numbers (indexed by 0
2550 from the first allocated register number) and offsets for use in real
80f540b7 2551 relocation. (N.B.: Relocatable runs are handled, not just punted.)
930b4cb2 2552
f60ebe14
HPN
2553 PUSHJ stub accounting is also done here.
2554
930b4cb2
HPN
2555 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2556
b34976b6 2557static bfd_boolean
2c3fc389
NC
2558mmix_elf_relax_section (bfd *abfd,
2559 asection *sec,
2560 struct bfd_link_info *link_info,
2561 bfd_boolean *again)
930b4cb2 2562{
930b4cb2 2563 Elf_Internal_Shdr *symtab_hdr;
930b4cb2 2564 Elf_Internal_Rela *internal_relocs;
930b4cb2
HPN
2565 Elf_Internal_Rela *irel, *irelend;
2566 asection *bpo_gregs_section = NULL;
2567 struct bpo_greg_section_info *gregdata;
2568 struct bpo_reloc_section_info *bpodata
f0abc2a1 2569 = mmix_elf_section_data (sec)->bpo.reloc;
f60ebe14
HPN
2570 /* The initialization is to quiet compiler warnings. The value is to
2571 spot a missing actual initialization. */
2572 size_t bpono = (size_t) -1;
2573 size_t pjsno = 0;
6cdc0ccc 2574 Elf_Internal_Sym *isymbuf = NULL;
1a23a9e6 2575 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
f60ebe14
HPN
2576
2577 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
930b4cb2
HPN
2578
2579 /* Assume nothing changes. */
b34976b6 2580 *again = FALSE;
930b4cb2 2581
f60ebe14
HPN
2582 /* We don't have to do anything if this section does not have relocs, or
2583 if this is not a code section. */
2584 if ((sec->flags & SEC_RELOC) == 0
930b4cb2
HPN
2585 || sec->reloc_count == 0
2586 || (sec->flags & SEC_CODE) == 0
2587 || (sec->flags & SEC_LINKER_CREATED) != 0
f60ebe14
HPN
2588 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2589 then nothing to do. */
2590 || (bpodata == NULL
2591 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
b34976b6 2592 return TRUE;
930b4cb2
HPN
2593
2594 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
930b4cb2 2595
f60ebe14
HPN
2596 if (bpodata != NULL)
2597 {
2598 bpo_gregs_section = bpodata->bpo_greg_section;
2599 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2600 bpono = bpodata->first_base_plus_offset_reloc;
2601 }
2602 else
2603 gregdata = NULL;
930b4cb2
HPN
2604
2605 /* Get a copy of the native relocations. */
2606 internal_relocs
2c3fc389 2607 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
45d6a902
AM
2608 (Elf_Internal_Rela *) NULL,
2609 link_info->keep_memory);
930b4cb2
HPN
2610 if (internal_relocs == NULL)
2611 goto error_return;
930b4cb2
HPN
2612
2613 /* Walk through them looking for relaxing opportunities. */
2614 irelend = internal_relocs + sec->reloc_count;
2615 for (irel = internal_relocs; irel < irelend; irel++)
2616 {
2617 bfd_vma symval;
f60ebe14 2618 struct elf_link_hash_entry *h = NULL;
930b4cb2 2619
f60ebe14
HPN
2620 /* We only process two relocs. */
2621 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2622 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
930b4cb2
HPN
2623 continue;
2624
f60ebe14
HPN
2625 /* We process relocs in a distinctly different way when this is a
2626 relocatable link (for one, we don't look at symbols), so we avoid
2627 mixing its code with that for the "normal" relaxation. */
0e1862bb 2628 if (bfd_link_relocatable (link_info))
f60ebe14
HPN
2629 {
2630 /* The only transformation in a relocatable link is to generate
2631 a full stub at the location of the stub calculated for the
2632 input section, if the relocated stub location, the end of the
2633 output section plus earlier stubs, cannot be reached. Thus
2634 relocatable linking can only lead to worse code, but it still
2635 works. */
2636 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2637 {
2638 /* If we can reach the end of the output-section and beyond
2639 any current stubs, then we don't need a stub for this
2640 reloc. The relaxed order of output stub allocation may
2641 not exactly match the straightforward order, so we always
2642 assume presence of output stubs, which will allow
2643 relaxation only on relocations indifferent to the
2644 presence of output stub allocations for other relocations
2645 and thus the order of output stub allocation. */
2646 if (bfd_check_overflow (complain_overflow_signed,
2647 19,
2648 0,
2649 bfd_arch_bits_per_address (abfd),
2650 /* Output-stub location. */
1a23a9e6 2651 sec->output_section->rawsize
f60ebe14
HPN
2652 + (mmix_elf_section_data (sec
2653 ->output_section)
2654 ->pjs.stubs_size_sum)
2655 /* Location of this PUSHJ reloc. */
2656 - (sec->output_offset + irel->r_offset)
2657 /* Don't count *this* stub twice. */
2658 - (mmix_elf_section_data (sec)
2659 ->pjs.stub_size[pjsno]
2660 + MAX_PUSHJ_STUB_SIZE))
2661 == bfd_reloc_ok)
2662 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2663
2664 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2665 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2666
2667 pjsno++;
2668 }
2669
2670 continue;
2671 }
2672
930b4cb2
HPN
2673 /* Get the value of the symbol referred to by the reloc. */
2674 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2675 {
2676 /* A local symbol. */
6cdc0ccc 2677 Elf_Internal_Sym *isym;
930b4cb2
HPN
2678 asection *sym_sec;
2679
6cdc0ccc
AM
2680 /* Read this BFD's local symbols if we haven't already. */
2681 if (isymbuf == NULL)
2682 {
2683 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2684 if (isymbuf == NULL)
2685 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2686 symtab_hdr->sh_info, 0,
2687 NULL, NULL, NULL);
2688 if (isymbuf == 0)
2689 goto error_return;
2690 }
930b4cb2 2691
6cdc0ccc
AM
2692 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2693 if (isym->st_shndx == SHN_UNDEF)
930b4cb2 2694 sym_sec = bfd_und_section_ptr;
6cdc0ccc 2695 else if (isym->st_shndx == SHN_ABS)
930b4cb2 2696 sym_sec = bfd_abs_section_ptr;
6cdc0ccc 2697 else if (isym->st_shndx == SHN_COMMON)
930b4cb2
HPN
2698 sym_sec = bfd_com_section_ptr;
2699 else
6cdc0ccc
AM
2700 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2701 symval = (isym->st_value
930b4cb2
HPN
2702 + sym_sec->output_section->vma
2703 + sym_sec->output_offset);
2704 }
2705 else
2706 {
2707 unsigned long indx;
930b4cb2
HPN
2708
2709 /* An external symbol. */
2710 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2711 h = elf_sym_hashes (abfd)[indx];
2712 BFD_ASSERT (h != NULL);
284d826d
HPN
2713 if (h->root.type == bfd_link_hash_undefweak)
2714 /* FIXME: for R_MMIX_PUSHJ_STUBBABLE, there are alternatives to
2715 the canonical value 0 for an unresolved weak symbol to
2716 consider: as the debug-friendly approach, resolve to "abort"
2717 (or a port-specific function), or as the space-friendly
2718 approach resolve to the next instruction (like some other
2719 ports, notably ARM and AArch64). These alternatives require
2720 matching code in mmix_elf_perform_relocation or its caller. */
2721 symval = 0;
2722 else if (h->root.type == bfd_link_hash_defined
2723 || h->root.type == bfd_link_hash_defweak)
2724 symval = (h->root.u.def.value
2725 + h->root.u.def.section->output_section->vma
2726 + h->root.u.def.section->output_offset);
2727 else
930b4cb2 2728 {
f60ebe14
HPN
2729 /* This appears to be a reference to an undefined symbol. Just
2730 ignore it--it will be caught by the regular reloc processing.
2731 We need to keep BPO reloc accounting consistent, though
2732 else we'll abort instead of emitting an error message. */
2733 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2734 && gregdata != NULL)
2735 {
2736 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2737 bpono++;
2738 }
930b4cb2
HPN
2739 continue;
2740 }
930b4cb2
HPN
2741 }
2742
f60ebe14
HPN
2743 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2744 {
2745 bfd_vma value = symval + irel->r_addend;
2746 bfd_vma dot
2747 = (sec->output_section->vma
2748 + sec->output_offset
2749 + irel->r_offset);
2750 bfd_vma stubaddr
2751 = (sec->output_section->vma
2752 + sec->output_offset
eea6121a 2753 + size
f60ebe14
HPN
2754 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2755
2756 if ((value & 3) == 0
2757 && bfd_check_overflow (complain_overflow_signed,
2758 19,
2759 0,
2760 bfd_arch_bits_per_address (abfd),
2761 value - dot
2762 - (value > dot
2763 ? mmix_elf_section_data (sec)
2764 ->pjs.stub_size[pjsno]
2765 : 0))
2766 == bfd_reloc_ok)
2767 /* If the reloc fits, no stub is needed. */
2768 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2769 else
2770 /* Maybe we can get away with just a JMP insn? */
2771 if ((value & 3) == 0
2772 && bfd_check_overflow (complain_overflow_signed,
2773 27,
2774 0,
2775 bfd_arch_bits_per_address (abfd),
2776 value - stubaddr
2777 - (value > dot
2778 ? mmix_elf_section_data (sec)
2779 ->pjs.stub_size[pjsno] - 4
2780 : 0))
2781 == bfd_reloc_ok)
2782 /* Yep, account for a stub consisting of a single JMP insn. */
2783 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2784 else
2785 /* Nope, go for the full insn stub. It doesn't seem useful to
2786 emit the intermediate sizes; those will only be useful for
2787 a >64M program assuming contiguous code. */
2788 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2789 = MAX_PUSHJ_STUB_SIZE;
2790
2791 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2792 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2793 pjsno++;
2794 continue;
2795 }
2796
2797 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2798
930b4cb2
HPN
2799 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2800 = symval + irel->r_addend;
b34976b6 2801 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
930b4cb2
HPN
2802 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2803 }
2804
2805 /* Check if that was the last BPO-reloc. If so, sort the values and
2806 calculate how many registers we need to cover them. Set the size of
2807 the linker gregs, and if the number of registers changed, indicate
2808 that we need to relax some more because we have more work to do. */
f60ebe14
HPN
2809 if (gregdata != NULL
2810 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
930b4cb2
HPN
2811 {
2812 size_t i;
2813 bfd_vma prev_base;
2814 size_t regindex;
2815
2816 /* First, reset the remaining relocs for the next round. */
2817 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2818 = gregdata->n_bpo_relocs;
2819
2c3fc389 2820 qsort (gregdata->reloc_request,
930b4cb2
HPN
2821 gregdata->n_max_bpo_relocs,
2822 sizeof (struct bpo_reloc_request),
2823 bpo_reloc_request_sort_fn);
2824
2825 /* Recalculate indexes. When we find a change (however unlikely
2826 after the initial iteration), we know we need to relax again,
2827 since items in the GREG-array are sorted by increasing value and
2828 stored in the relaxation phase. */
2829 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2830 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2831 != i)
2832 {
2833 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2834 = i;
b34976b6 2835 *again = TRUE;
930b4cb2
HPN
2836 }
2837
2838 /* Allocate register numbers (indexing from 0). Stop at the first
2839 non-valid reloc. */
2840 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2841 i < gregdata->n_bpo_relocs;
2842 i++)
2843 {
2844 if (gregdata->reloc_request[i].value > prev_base + 255)
2845 {
2846 regindex++;
2847 prev_base = gregdata->reloc_request[i].value;
2848 }
2849 gregdata->reloc_request[i].regindex = regindex;
2850 gregdata->reloc_request[i].offset
2851 = gregdata->reloc_request[i].value - prev_base;
2852 }
2853
2854 /* If it's not the same as the last time, we need to relax again,
2855 because the size of the section has changed. I'm not sure we
2856 actually need to do any adjustments since the shrinking happens
2857 at the start of this section, but better safe than sorry. */
2858 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2859 {
2860 gregdata->n_allocated_bpo_gregs = regindex + 1;
b34976b6 2861 *again = TRUE;
930b4cb2
HPN
2862 }
2863
eea6121a 2864 bpo_gregs_section->size = (regindex + 1) * 8;
930b4cb2
HPN
2865 }
2866
6cdc0ccc 2867 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
930b4cb2
HPN
2868 {
2869 if (! link_info->keep_memory)
6cdc0ccc
AM
2870 free (isymbuf);
2871 else
930b4cb2 2872 {
6cdc0ccc
AM
2873 /* Cache the symbols for elf_link_input_bfd. */
2874 symtab_hdr->contents = (unsigned char *) isymbuf;
930b4cb2
HPN
2875 }
2876 }
2877
284d826d
HPN
2878 BFD_ASSERT(pjsno == mmix_elf_section_data (sec)->pjs.n_pushj_relocs);
2879
6cdc0ccc
AM
2880 if (internal_relocs != NULL
2881 && elf_section_data (sec)->relocs != internal_relocs)
2882 free (internal_relocs);
2883
eea6121a 2884 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
f60ebe14
HPN
2885 abort ();
2886
eea6121a 2887 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
f60ebe14 2888 {
eea6121a 2889 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
f60ebe14
HPN
2890 *again = TRUE;
2891 }
2892
b34976b6 2893 return TRUE;
930b4cb2
HPN
2894
2895 error_return:
6cdc0ccc
AM
2896 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2897 free (isymbuf);
2898 if (internal_relocs != NULL
2899 && elf_section_data (sec)->relocs != internal_relocs)
2900 free (internal_relocs);
b34976b6 2901 return FALSE;
930b4cb2
HPN
2902}
2903\f
3c3bdf30
NC
2904#define ELF_ARCH bfd_arch_mmix
2905#define ELF_MACHINE_CODE EM_MMIX
2906
2907/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2908 However, that's too much for something somewhere in the linker part of
2909 BFD; perhaps the start-address has to be a non-zero multiple of this
2910 number, or larger than this number. The symptom is that the linker
2911 complains: "warning: allocated section `.text' not in segment". We
2912 settle for 64k; the page-size used in examples is 8k.
2913 #define ELF_MAXPAGESIZE 0x10000
2914
2915 Unfortunately, this causes excessive padding in the supposedly small
2916 for-education programs that are the expected usage (where people would
2917 inspect output). We stick to 256 bytes just to have *some* default
2918 alignment. */
2919#define ELF_MAXPAGESIZE 0x100
2920
6d00b590 2921#define TARGET_BIG_SYM mmix_elf64_vec
3c3bdf30
NC
2922#define TARGET_BIG_NAME "elf64-mmix"
2923
2924#define elf_info_to_howto_rel NULL
2925#define elf_info_to_howto mmix_info_to_howto_rela
2926#define elf_backend_relocate_section mmix_elf_relocate_section
2927#define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
930b4cb2
HPN
2928#define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2929
3c3bdf30
NC
2930#define elf_backend_link_output_symbol_hook \
2931 mmix_elf_link_output_symbol_hook
2932#define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2933
2934#define elf_backend_check_relocs mmix_elf_check_relocs
2935#define elf_backend_symbol_processing mmix_elf_symbol_processing
74541ad4
AM
2936#define elf_backend_omit_section_dynsym \
2937 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
3c3bdf30
NC
2938
2939#define bfd_elf64_bfd_is_local_label_name \
2940 mmix_elf_is_local_label_name
2941
2942#define elf_backend_may_use_rel_p 0
2943#define elf_backend_may_use_rela_p 1
2944#define elf_backend_default_use_rela_p 1
2945
2946#define elf_backend_can_gc_sections 1
2947#define elf_backend_section_from_bfd_section \
2948 mmix_elf_section_from_bfd_section
2949
f0abc2a1 2950#define bfd_elf64_new_section_hook mmix_elf_new_section_hook
3c3bdf30 2951#define bfd_elf64_bfd_final_link mmix_elf_final_link
930b4cb2 2952#define bfd_elf64_bfd_relax_section mmix_elf_relax_section
3c3bdf30
NC
2953
2954#include "elf64-target.h"
This page took 1.014563 seconds and 4 git commands to generate.