%L conversions
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
CommitLineData
3c3bdf30 1/* MMIX-specific support for 64-bit ELF.
219d1afa 2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3c3bdf30
NC
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
cd123cb7 5 This file is part of BFD, the Binary File Descriptor library.
3c3bdf30 6
cd123cb7
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
3c3bdf30 11
cd123cb7
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
3c3bdf30 21
3c3bdf30
NC
22
23/* No specific ABI or "processor-specific supplement" defined. */
24
25/* TODO:
f60ebe14
HPN
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
3c3bdf30 30
3c3bdf30 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
3c3bdf30
NC
33#include "libbfd.h"
34#include "elf-bfd.h"
35#include "elf/mmix.h"
36#include "opcode/mmix.h"
37
38#define MINUS_ONE (((bfd_vma) 0) - 1)
39
f60ebe14
HPN
40#define MAX_PUSHJ_STUB_SIZE (5 * 4)
41
3c3bdf30
NC
42/* Put these everywhere in new code. */
43#define FATAL_DEBUG \
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
46
47#define BAD_CASE(x) \
48 _bfd_abort (__FILE__, __LINE__, \
49 "bad case for " #x)
50
f0abc2a1
AM
51struct _mmix_elf_section_data
52{
53 struct bfd_elf_section_data elf;
54 union
55 {
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
58 } bpo;
f60ebe14
HPN
59
60 struct pushj_stub_info
61 {
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
64
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
67
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
71
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
76 } pjs;
18978b27
HPN
77
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
81 there. */
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
f0abc2a1
AM
84};
85
86#define mmix_elf_section_data(sec) \
68bfbfcc 87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
f0abc2a1 88
930b4cb2 89/* For each section containing a base-plus-offset (BPO) reloc, we attach
f0abc2a1 90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
930b4cb2
HPN
91 NULL. */
92struct bpo_reloc_section_info
93 {
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
96
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
99
100 /* Running index, used at relocation time. */
101 size_t bpo_index;
102
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
107 };
108
109/* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111struct bpo_reloc_request
112 {
113 bfd_vma value;
114
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
117 size_t regindex;
118 size_t offset;
119
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
123 size_t bpo_reloc_no;
124
125 /* Set when the value is computed. Better than coding "guard values"
b34976b6 126 into the other members. Is FALSE only for BPO relocs in a GC:ed
930b4cb2 127 section. */
b34976b6 128 bfd_boolean valid;
930b4cb2
HPN
129 };
130
f0abc2a1 131/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
930b4cb2
HPN
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
136 collide. */
137struct bpo_greg_section_info
138 {
139 /* After GC, this reflects the number of remaining, non-excluded
140 BPO-relocs. */
141 size_t n_bpo_relocs;
142
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
148
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
152
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
f60ebe14
HPN
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
930b4cb2
HPN
157 size_t n_allocated_bpo_gregs;
158
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
162
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
166 };
167
3c3bdf30 168
2c3fc389 169extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
3c3bdf30 170
2c3fc389 171extern void mmix_elf_symbol_processing (bfd *, asymbol *);
3c3bdf30 172
4fa5c2a8
HPN
173/* Only intended to be called from a debugger. */
174extern void mmix_dump_bpo_gregs
52d45da3 175 (struct bfd_link_info *, void (*) (const char *, ...));
4fa5c2a8 176
f60ebe14 177static void
2c3fc389
NC
178mmix_set_relaxable_size (bfd *, asection *, void *);
179static bfd_reloc_status_type
180mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182static bfd_reloc_status_type
183mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
185 char **);
f60ebe14 186
f60ebe14 187
3c3bdf30
NC
188/* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190static reloc_howto_type elf_mmix_howto_table[] =
191 {
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
194 0, /* rightshift */
6346d5ca
AM
195 3, /* size (0 = byte, 1 = short, 2 = long) */
196 0, /* bitsize */
b34976b6 197 FALSE, /* pc_relative */
3c3bdf30 198 0, /* bitpos */
6346d5ca 199 complain_overflow_dont, /* complain_on_overflow */
3c3bdf30
NC
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
b34976b6 202 FALSE, /* partial_inplace */
3c3bdf30
NC
203 0, /* src_mask */
204 0, /* dst_mask */
b34976b6 205 FALSE), /* pcrel_offset */
3c3bdf30
NC
206
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
209 0, /* rightshift */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
211 8, /* bitsize */
b34976b6 212 FALSE, /* pc_relative */
3c3bdf30
NC
213 0, /* bitpos */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
b34976b6 217 FALSE, /* partial_inplace */
930b4cb2 218 0, /* src_mask */
3c3bdf30 219 0xff, /* dst_mask */
b34976b6 220 FALSE), /* pcrel_offset */
3c3bdf30
NC
221
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
224 0, /* rightshift */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
226 16, /* bitsize */
b34976b6 227 FALSE, /* pc_relative */
3c3bdf30
NC
228 0, /* bitpos */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
b34976b6 232 FALSE, /* partial_inplace */
930b4cb2 233 0, /* src_mask */
3c3bdf30 234 0xffff, /* dst_mask */
b34976b6 235 FALSE), /* pcrel_offset */
3c3bdf30
NC
236
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 24, /* bitsize */
b34976b6 242 FALSE, /* pc_relative */
3c3bdf30
NC
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
b34976b6 247 FALSE, /* partial_inplace */
930b4cb2 248 ~0xffffff, /* src_mask */
3c3bdf30 249 0xffffff, /* dst_mask */
b34976b6 250 FALSE), /* pcrel_offset */
3c3bdf30
NC
251
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
254 0, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
b34976b6 257 FALSE, /* pc_relative */
3c3bdf30
NC
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
b34976b6 262 FALSE, /* partial_inplace */
930b4cb2 263 0, /* src_mask */
3c3bdf30 264 0xffffffff, /* dst_mask */
b34976b6 265 FALSE), /* pcrel_offset */
3c3bdf30
NC
266
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
269 0, /* rightshift */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
271 64, /* bitsize */
b34976b6 272 FALSE, /* pc_relative */
3c3bdf30
NC
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
b34976b6 277 FALSE, /* partial_inplace */
930b4cb2 278 0, /* src_mask */
3c3bdf30 279 MINUS_ONE, /* dst_mask */
b34976b6 280 FALSE), /* pcrel_offset */
3c3bdf30
NC
281
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 8, /* bitsize */
b34976b6 287 TRUE, /* pc_relative */
3c3bdf30
NC
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
b34976b6 292 FALSE, /* partial_inplace */
930b4cb2 293 0, /* src_mask */
3c3bdf30 294 0xff, /* dst_mask */
b34976b6 295 TRUE), /* pcrel_offset */
3c3bdf30
NC
296
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
299 0, /* rightshift */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
301 16, /* bitsize */
b34976b6 302 TRUE, /* pc_relative */
3c3bdf30
NC
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
b34976b6 307 FALSE, /* partial_inplace */
930b4cb2 308 0, /* src_mask */
3c3bdf30 309 0xffff, /* dst_mask */
b34976b6 310 TRUE), /* pcrel_offset */
3c3bdf30
NC
311
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
b34976b6 317 TRUE, /* pc_relative */
3c3bdf30
NC
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
b34976b6 322 FALSE, /* partial_inplace */
930b4cb2 323 ~0xffffff, /* src_mask */
3c3bdf30 324 0xffffff, /* dst_mask */
b34976b6 325 TRUE), /* pcrel_offset */
3c3bdf30
NC
326
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
b34976b6 332 TRUE, /* pc_relative */
3c3bdf30
NC
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
b34976b6 337 FALSE, /* partial_inplace */
930b4cb2 338 0, /* src_mask */
3c3bdf30 339 0xffffffff, /* dst_mask */
b34976b6 340 TRUE), /* pcrel_offset */
3c3bdf30
NC
341
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
344 0, /* rightshift */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
346 64, /* bitsize */
b34976b6 347 TRUE, /* pc_relative */
3c3bdf30
NC
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
b34976b6 352 FALSE, /* partial_inplace */
930b4cb2 353 0, /* src_mask */
3c3bdf30 354 MINUS_ONE, /* dst_mask */
b34976b6 355 TRUE), /* pcrel_offset */
3c3bdf30
NC
356
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 0, /* rightshift */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
361 0, /* bitsize */
b34976b6 362 FALSE, /* pc_relative */
3c3bdf30
NC
363 0, /* bitpos */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
b34976b6 367 FALSE, /* partial_inplace */
3c3bdf30
NC
368 0, /* src_mask */
369 0, /* dst_mask */
b34976b6 370 TRUE), /* pcrel_offset */
3c3bdf30
NC
371
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
374 0, /* rightshift */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
376 0, /* bitsize */
b34976b6 377 FALSE, /* pc_relative */
3c3bdf30
NC
378 0, /* bitpos */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
b34976b6 382 FALSE, /* partial_inplace */
3c3bdf30
NC
383 0, /* src_mask */
384 0, /* dst_mask */
b34976b6 385 FALSE), /* pcrel_offset */
3c3bdf30
NC
386
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
392 2, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 19, /* bitsize */
b34976b6 395 TRUE, /* pc_relative */
3c3bdf30
NC
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
b34976b6 400 FALSE, /* partial_inplace */
930b4cb2 401 ~0x0100ffff, /* src_mask */
3c3bdf30 402 0x0100ffff, /* dst_mask */
b34976b6 403 TRUE), /* pcrel_offset */
3c3bdf30
NC
404
405 HOWTO (R_MMIX_GETA_1, /* type */
406 2, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 19, /* bitsize */
b34976b6 409 TRUE, /* pc_relative */
3c3bdf30
NC
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
b34976b6 414 FALSE, /* partial_inplace */
930b4cb2 415 ~0x0100ffff, /* src_mask */
3c3bdf30 416 0x0100ffff, /* dst_mask */
b34976b6 417 TRUE), /* pcrel_offset */
3c3bdf30
NC
418
419 HOWTO (R_MMIX_GETA_2, /* type */
420 2, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 19, /* bitsize */
b34976b6 423 TRUE, /* pc_relative */
3c3bdf30
NC
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
b34976b6 428 FALSE, /* partial_inplace */
930b4cb2 429 ~0x0100ffff, /* src_mask */
3c3bdf30 430 0x0100ffff, /* dst_mask */
b34976b6 431 TRUE), /* pcrel_offset */
3c3bdf30
NC
432
433 HOWTO (R_MMIX_GETA_3, /* type */
434 2, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 19, /* bitsize */
b34976b6 437 TRUE, /* pc_relative */
3c3bdf30
NC
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
b34976b6 442 FALSE, /* partial_inplace */
930b4cb2 443 ~0x0100ffff, /* src_mask */
3c3bdf30 444 0x0100ffff, /* dst_mask */
b34976b6 445 TRUE), /* pcrel_offset */
3c3bdf30
NC
446
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
452 2, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 19, /* bitsize */
b34976b6 455 TRUE, /* pc_relative */
3c3bdf30
NC
456 0, /* bitpos */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
b34976b6 460 FALSE, /* partial_inplace */
930b4cb2 461 ~0x0100ffff, /* src_mask */
3c3bdf30 462 0x0100ffff, /* dst_mask */
07d6d2b8 463 TRUE), /* pcrel_offset */
3c3bdf30
NC
464
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 19, /* bitsize */
b34976b6 469 TRUE, /* pc_relative */
3c3bdf30
NC
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
b34976b6 474 FALSE, /* partial_inplace */
930b4cb2 475 ~0x0100ffff, /* src_mask */
3c3bdf30 476 0x0100ffff, /* dst_mask */
b34976b6 477 TRUE), /* pcrel_offset */
3c3bdf30
NC
478
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 19, /* bitsize */
b34976b6 483 TRUE, /* pc_relative */
3c3bdf30
NC
484 0, /* bitpos */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
b34976b6 488 FALSE, /* partial_inplace */
930b4cb2 489 ~0x0100ffff, /* src_mask */
3c3bdf30 490 0x0100ffff, /* dst_mask */
b34976b6 491 TRUE), /* pcrel_offset */
3c3bdf30
NC
492
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 19, /* bitsize */
b34976b6 497 TRUE, /* pc_relative */
3c3bdf30
NC
498 0, /* bitpos */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
b34976b6 502 FALSE, /* partial_inplace */
930b4cb2 503 ~0x0100ffff, /* src_mask */
3c3bdf30 504 0x0100ffff, /* dst_mask */
b34976b6 505 TRUE), /* pcrel_offset */
3c3bdf30
NC
506
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
508 2, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 19, /* bitsize */
b34976b6 511 TRUE, /* pc_relative */
3c3bdf30
NC
512 0, /* bitpos */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
b34976b6 516 FALSE, /* partial_inplace */
930b4cb2 517 ~0x0100ffff, /* src_mask */
3c3bdf30 518 0x0100ffff, /* dst_mask */
b34976b6 519 TRUE), /* pcrel_offset */
3c3bdf30
NC
520
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
f60ebe14
HPN
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
3c3bdf30
NC
526 PUSHJ. */
527 HOWTO (R_MMIX_PUSHJ, /* type */
528 2, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 19, /* bitsize */
b34976b6 531 TRUE, /* pc_relative */
3c3bdf30
NC
532 0, /* bitpos */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
b34976b6 536 FALSE, /* partial_inplace */
930b4cb2 537 ~0x0100ffff, /* src_mask */
3c3bdf30 538 0x0100ffff, /* dst_mask */
b34976b6 539 TRUE), /* pcrel_offset */
3c3bdf30
NC
540
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
542 2, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 19, /* bitsize */
b34976b6 545 TRUE, /* pc_relative */
3c3bdf30
NC
546 0, /* bitpos */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
b34976b6 550 FALSE, /* partial_inplace */
930b4cb2 551 ~0x0100ffff, /* src_mask */
3c3bdf30 552 0x0100ffff, /* dst_mask */
b34976b6 553 TRUE), /* pcrel_offset */
3c3bdf30
NC
554
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
556 2, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 19, /* bitsize */
b34976b6 559 TRUE, /* pc_relative */
3c3bdf30
NC
560 0, /* bitpos */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
b34976b6 564 FALSE, /* partial_inplace */
930b4cb2 565 ~0x0100ffff, /* src_mask */
3c3bdf30 566 0x0100ffff, /* dst_mask */
b34976b6 567 TRUE), /* pcrel_offset */
3c3bdf30
NC
568
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
570 2, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 19, /* bitsize */
b34976b6 573 TRUE, /* pc_relative */
3c3bdf30
NC
574 0, /* bitpos */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
b34976b6 578 FALSE, /* partial_inplace */
930b4cb2 579 ~0x0100ffff, /* src_mask */
3c3bdf30 580 0x0100ffff, /* dst_mask */
b34976b6 581 TRUE), /* pcrel_offset */
3c3bdf30
NC
582
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
588 2, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 27, /* bitsize */
b34976b6 591 TRUE, /* pc_relative */
3c3bdf30
NC
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
b34976b6 596 FALSE, /* partial_inplace */
930b4cb2 597 ~0x1ffffff, /* src_mask */
3c3bdf30 598 0x1ffffff, /* dst_mask */
b34976b6 599 TRUE), /* pcrel_offset */
3c3bdf30
NC
600
601 HOWTO (R_MMIX_JMP_1, /* type */
602 2, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 27, /* bitsize */
b34976b6 605 TRUE, /* pc_relative */
3c3bdf30
NC
606 0, /* bitpos */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
b34976b6 610 FALSE, /* partial_inplace */
930b4cb2 611 ~0x1ffffff, /* src_mask */
3c3bdf30 612 0x1ffffff, /* dst_mask */
b34976b6 613 TRUE), /* pcrel_offset */
3c3bdf30
NC
614
615 HOWTO (R_MMIX_JMP_2, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 27, /* bitsize */
b34976b6 619 TRUE, /* pc_relative */
3c3bdf30
NC
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
b34976b6 624 FALSE, /* partial_inplace */
930b4cb2 625 ~0x1ffffff, /* src_mask */
3c3bdf30 626 0x1ffffff, /* dst_mask */
b34976b6 627 TRUE), /* pcrel_offset */
3c3bdf30
NC
628
629 HOWTO (R_MMIX_JMP_3, /* type */
630 2, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 27, /* bitsize */
b34976b6 633 TRUE, /* pc_relative */
3c3bdf30
NC
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
b34976b6 638 FALSE, /* partial_inplace */
930b4cb2 639 ~0x1ffffff, /* src_mask */
3c3bdf30 640 0x1ffffff, /* dst_mask */
b34976b6 641 TRUE), /* pcrel_offset */
3c3bdf30
NC
642
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 19, /* bitsize */
b34976b6 650 TRUE, /* pc_relative */
3c3bdf30
NC
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
b34976b6 655 FALSE, /* partial_inplace */
930b4cb2 656 ~0x0100ffff, /* src_mask */
3c3bdf30 657 0x0100ffff, /* dst_mask */
b34976b6 658 TRUE), /* pcrel_offset */
3c3bdf30
NC
659
660 /* For JMP. */
661 HOWTO (R_MMIX_ADDR27, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 27, /* bitsize */
b34976b6 665 TRUE, /* pc_relative */
3c3bdf30
NC
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
b34976b6 670 FALSE, /* partial_inplace */
930b4cb2 671 ~0x1ffffff, /* src_mask */
3c3bdf30 672 0x1ffffff, /* dst_mask */
b34976b6 673 TRUE), /* pcrel_offset */
3c3bdf30
NC
674
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
678 0, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 8, /* bitsize */
b34976b6 681 FALSE, /* pc_relative */
3c3bdf30
NC
682 0, /* bitpos */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
b34976b6 686 FALSE, /* partial_inplace */
930b4cb2 687 0, /* src_mask */
3c3bdf30 688 0xff, /* dst_mask */
b34976b6 689 FALSE), /* pcrel_offset */
3c3bdf30
NC
690
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
693 0, /* rightshift */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
695 8, /* bitsize */
b34976b6 696 FALSE, /* pc_relative */
3c3bdf30
NC
697 0, /* bitpos */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
b34976b6 701 FALSE, /* partial_inplace */
930b4cb2 702 0, /* src_mask */
3c3bdf30 703 0xff, /* dst_mask */
b34976b6 704 FALSE), /* pcrel_offset */
3c3bdf30
NC
705
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
710 0, /* rightshift */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
712 64, /* bitsize */
b34976b6 713 FALSE, /* pc_relative */
3c3bdf30
NC
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
b34976b6 718 FALSE, /* partial_inplace */
930b4cb2 719 0, /* src_mask */
3c3bdf30 720 0xffff, /* dst_mask */
b34976b6 721 FALSE), /* pcrel_offset */
3c3bdf30
NC
722
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
729 0, /* rightshift */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
731 0, /* bitsize */
b34976b6 732 FALSE, /* pc_relative */
3c3bdf30
NC
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
b34976b6 737 FALSE, /* partial_inplace */
3c3bdf30
NC
738 0, /* src_mask */
739 0, /* dst_mask */
b34976b6 740 FALSE), /* pcrel_offset */
f60ebe14
HPN
741
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 19, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
3c3bdf30
NC
755 };
756
757
758/* Map BFD reloc types to MMIX ELF reloc types. */
759
760struct mmix_reloc_map
761 {
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
764 };
765
766
767static const struct mmix_reloc_map mmix_reloc_map[] =
768 {
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
f60ebe14
HPN
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
3c3bdf30
NC
793 };
794
795static reloc_howto_type *
2c3fc389
NC
796bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
3c3bdf30
NC
798{
799 unsigned int i;
800
801 for (i = 0;
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803 i++)
804 {
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807 }
808
809 return NULL;
157090f7
AM
810}
811
812static reloc_howto_type *
813bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 const char *r_name)
815{
816 unsigned int i;
817
818 for (i = 0;
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820 i++)
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
824
825 return NULL;
3c3bdf30
NC
826}
827
f0abc2a1 828static bfd_boolean
2c3fc389 829mmix_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 830{
f592407e
AM
831 if (!sec->used_by_bfd)
832 {
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 835
f592407e
AM
836 sdata = bfd_zalloc (abfd, amt);
837 if (sdata == NULL)
838 return FALSE;
839 sec->used_by_bfd = sdata;
840 }
f0abc2a1
AM
841
842 return _bfd_elf_new_section_hook (abfd, sec);
843}
844
3c3bdf30
NC
845
846/* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
852
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854 GETA $N,foo
855 ->
856 SETL $N,foo & 0xffff
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
860
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
863 worthwhile.)
864 [P]Bcc $N,foo
865 ->
866 [~P]B~cc $N,.+20
867 SETL $255,foo & ...
868 INCML ...
869 INCMH ...
870 INCH ...
871 GO $255,$255,0
872
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
874 PUSHJ $N,foo
875 ->
876 SETL $255,foo & ...
877 INCML ...
878 INCMH ...
879 INCH ...
880 PUSHGO $N,$255,0
881
882 R_MMIX_JMP: (FIXME: Relaxation...)
883 JMP foo
884 ->
885 SETL $255,foo & ...
886 INCML ...
887 INCMH ...
888 INCH ...
889 GO $255,$255,0
890
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
892
893static bfd_reloc_status_type
18978b27
HPN
894mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
3c3bdf30
NC
897{
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
901 int offs = 0;
902 int reg = 255;
903
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
906 switch (howto->type)
907 {
908 case R_MMIX_GETA:
909 offs = 0;
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911
912 /* We change to an absolute value. */
913 value += addr;
914 break;
915
916 case R_MMIX_CBRANCH:
917 {
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
922
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
927
928 bfd_put_32 (abfd,
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 | (24/4)),
931 (bfd_byte *) datap);
932
933 /* Put a "GO $255,$255,0" after the common sequence. */
934 bfd_put_32 (abfd,
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
937
938 /* Common sequence starts at offset 4. */
939 offs = 4;
940
941 /* We change to an absolute value. */
942 value += addr;
943 }
944 break;
945
f60ebe14
HPN
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
948 if ((value & 3) == 0
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
951 howto->bitsize,
952 0,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
956 else
957 {
1a23a9e6 958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
f60ebe14
HPN
959
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
962 for the stub. */
963 bfd_byte *stubcontents
f075ee0c 964 = ((bfd_byte *) datap
f60ebe14 965 - (addr - (isec->output_section->vma + isec->output_offset))
eea6121a 966 + size
f60ebe14
HPN
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
968 bfd_vma stubaddr;
969
18978b27
HPN
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 {
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 {
981 /* For the first such error per input section, produce
982 a verbose message. */
983 *error_message
984 = _("invalid input relocation when producing"
985 " non-ELF, non-mmo format output."
986 "\n Please use the objcopy program to convert from"
987 " ELF or mmo,"
988 "\n or assemble using"
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
992 }
993
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
998 }
999
f60ebe14
HPN
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1004 [R_MMIX_ADDR19],
1005 datap,
1006 addr,
1007 isec->output_section->vma
1008 + isec->output_offset
eea6121a 1009 + size
f60ebe14
HPN
1010 + (mmix_elf_section_data (isec)
1011 ->pjs.stub_offset)
18978b27
HPN
1012 - addr,
1013 error_message);
f60ebe14
HPN
1014 if (r != bfd_reloc_ok)
1015 return r;
1016
1017 stubaddr
1018 = (isec->output_section->vma
1019 + isec->output_offset
eea6121a 1020 + size
f60ebe14
HPN
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1022
1023 /* We generate a simple JMP if that suffices, else the whole 5
1024 insn stub. */
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 0,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1030 {
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1034 [R_MMIX_ADDR27],
1035 stubcontents,
1036 stubaddr,
18978b27
HPN
1037 value + addr - stubaddr,
1038 error_message);
f60ebe14
HPN
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
eea6121a
AM
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
f60ebe14
HPN
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
3c3bdf30
NC
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
cedb70c5 1108 /* FALLTHROUGH. */
3c3bdf30
NC
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
f60ebe14 1111 pcrel_mmix_reloc_fits:
3c3bdf30
NC
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
f60ebe14 1127 highbit = 1 << 24;
3c3bdf30
NC
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
930b4cb2 1136 (in1 & howto->src_mask)
3c3bdf30
NC
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
930b4cb2
HPN
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
f0abc2a1 1149 = mmix_elf_section_data (isec)->bpo.reloc;
18978b27
HPN
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1152 size_t bpo_index;
1153
1154 if (bpodata == NULL)
1155 {
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 {
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1167 *error_message
1168 = _("invalid input relocation when producing"
1169 " non-ELF, non-mmo format output."
1170 "\n Please use the objcopy program to convert from"
1171 " ELF or mmo,"
1172 "\n or compile using the gcc-option"
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1176 }
1177
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1182 }
1183
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
930b4cb2
HPN
1187
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1192 {
4eca0228 1193 _bfd_error_handler
695344c0 1194 /* xgettext:c-format */
871b3ab2 1195 (_("%pB: Internal inconsistency error for value for\n\
2dcf00ce 1196 linker-allocated global register: linked: %#" PRIx64 " != relaxed: %#" PRIx64 ""),
dae82561 1197 isec->owner,
2dcf00ce
AM
1198 (uint64_t) value,
1199 (uint64_t) gregdata->reloc_request[bpo_index].value);
930b4cb2
HPN
1200 bfd_set_error (bfd_error_bad_value);
1201 return bfd_reloc_overflow;
1202 }
1203
1204 /* Then store the register number and offset for that register
1205 into datap and datap + 1 respectively. */
1206 bfd_put_8 (abfd,
1207 gregdata->reloc_request[bpo_index].regindex
1208 + bpo_greg_section->output_section->vma / 8,
1209 datap);
1210 bfd_put_8 (abfd,
1211 gregdata->reloc_request[bpo_index].offset,
1212 ((unsigned char *) datap) + 1);
1213 return bfd_reloc_ok;
1214 }
1215
3c3bdf30
NC
1216 case R_MMIX_REG_OR_BYTE:
1217 case R_MMIX_REG:
1218 if (value > 255)
1219 return bfd_reloc_overflow;
1220 bfd_put_8 (abfd, value, datap);
1221 return bfd_reloc_ok;
1222
1223 default:
1224 BAD_CASE (howto->type);
1225 }
1226
1227 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1228 sequence. */
1229
1230 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1231 everything that looks strange. */
1232 if (value & 3)
1233 flag = bfd_reloc_overflow;
1234
1235 bfd_put_32 (abfd,
1236 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1237 (bfd_byte *) datap + offs);
1238 bfd_put_32 (abfd,
1239 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1240 (bfd_byte *) datap + offs + 4);
1241 bfd_put_32 (abfd,
1242 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1243 (bfd_byte *) datap + offs + 8);
1244 bfd_put_32 (abfd,
1245 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1246 (bfd_byte *) datap + offs + 12);
1247
1248 return flag;
1249}
1250
1251/* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1252
1253static void
2c3fc389
NC
1254mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1255 arelent *cache_ptr,
1256 Elf_Internal_Rela *dst)
3c3bdf30
NC
1257{
1258 unsigned int r_type;
1259
1260 r_type = ELF64_R_TYPE (dst->r_info);
5860e3f8
NC
1261 if (r_type >= (unsigned int) R_MMIX_max)
1262 {
695344c0 1263 /* xgettext:c-format */
871b3ab2 1264 _bfd_error_handler (_("%pB: invalid MMIX reloc number: %d"), abfd, r_type);
5860e3f8
NC
1265 r_type = 0;
1266 }
3c3bdf30
NC
1267 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1268}
1269
1270/* Any MMIX-specific relocation gets here at assembly time or when linking
1271 to other formats (such as mmo); this is the relocation function from
1272 the reloc_table. We don't get here for final pure ELF linking. */
1273
1274static bfd_reloc_status_type
2c3fc389
NC
1275mmix_elf_reloc (bfd *abfd,
1276 arelent *reloc_entry,
1277 asymbol *symbol,
1278 void * data,
1279 asection *input_section,
1280 bfd *output_bfd,
1281 char **error_message)
3c3bdf30
NC
1282{
1283 bfd_vma relocation;
1284 bfd_reloc_status_type r;
1285 asection *reloc_target_output_section;
1286 bfd_reloc_status_type flag = bfd_reloc_ok;
1287 bfd_vma output_base = 0;
3c3bdf30
NC
1288
1289 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1290 input_section, output_bfd, error_message);
1291
1292 /* If that was all that was needed (i.e. this isn't a final link, only
1293 some segment adjustments), we're done. */
1294 if (r != bfd_reloc_continue)
1295 return r;
1296
1297 if (bfd_is_und_section (symbol->section)
1298 && (symbol->flags & BSF_WEAK) == 0
1299 && output_bfd == (bfd *) NULL)
1300 return bfd_reloc_undefined;
1301
1302 /* Is the address of the relocation really within the section? */
07515404 1303 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
3c3bdf30
NC
1304 return bfd_reloc_outofrange;
1305
4cc11e76 1306 /* Work out which section the relocation is targeted at and the
3c3bdf30
NC
1307 initial relocation command value. */
1308
1309 /* Get symbol value. (Common symbols are special.) */
1310 if (bfd_is_com_section (symbol->section))
1311 relocation = 0;
1312 else
1313 relocation = symbol->value;
1314
1315 reloc_target_output_section = bfd_get_output_section (symbol);
1316
1317 /* Here the variable relocation holds the final address of the symbol we
1318 are relocating against, plus any addend. */
1319 if (output_bfd)
1320 output_base = 0;
1321 else
1322 output_base = reloc_target_output_section->vma;
1323
1324 relocation += output_base + symbol->section->output_offset;
1325
3c3bdf30
NC
1326 if (output_bfd != (bfd *) NULL)
1327 {
1328 /* Add in supplied addend. */
1329 relocation += reloc_entry->addend;
1330
1331 /* This is a partial relocation, and we want to apply the
1332 relocation to the reloc entry rather than the raw data.
1333 Modify the reloc inplace to reflect what we now know. */
1334 reloc_entry->addend = relocation;
1335 reloc_entry->address += input_section->output_offset;
1336 return flag;
1337 }
1338
1339 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1340 data, reloc_entry->address,
1341 reloc_entry->addend, relocation,
1342 bfd_asymbol_name (symbol),
18978b27
HPN
1343 reloc_target_output_section,
1344 error_message);
3c3bdf30 1345}
e06fcc86 1346\f
3c3bdf30
NC
1347/* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1348 for guidance if you're thinking of copying this. */
1349
b34976b6 1350static bfd_boolean
2c3fc389
NC
1351mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1352 struct bfd_link_info *info,
1353 bfd *input_bfd,
1354 asection *input_section,
1355 bfd_byte *contents,
1356 Elf_Internal_Rela *relocs,
1357 Elf_Internal_Sym *local_syms,
1358 asection **local_sections)
3c3bdf30
NC
1359{
1360 Elf_Internal_Shdr *symtab_hdr;
1361 struct elf_link_hash_entry **sym_hashes;
1362 Elf_Internal_Rela *rel;
1363 Elf_Internal_Rela *relend;
1a23a9e6 1364 bfd_size_type size;
f60ebe14 1365 size_t pjsno = 0;
3c3bdf30 1366
1a23a9e6 1367 size = input_section->rawsize ? input_section->rawsize : input_section->size;
3c3bdf30
NC
1368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1369 sym_hashes = elf_sym_hashes (input_bfd);
1370 relend = relocs + input_section->reloc_count;
1371
1a23a9e6
AM
1372 /* Zero the stub area before we start. */
1373 if (input_section->rawsize != 0
1374 && input_section->size > input_section->rawsize)
1375 memset (contents + input_section->rawsize, 0,
1376 input_section->size - input_section->rawsize);
1377
3c3bdf30
NC
1378 for (rel = relocs; rel < relend; rel ++)
1379 {
1380 reloc_howto_type *howto;
1381 unsigned long r_symndx;
1382 Elf_Internal_Sym *sym;
1383 asection *sec;
1384 struct elf_link_hash_entry *h;
1385 bfd_vma relocation;
1386 bfd_reloc_status_type r;
1387 const char *name = NULL;
1388 int r_type;
b34976b6 1389 bfd_boolean undefined_signalled = FALSE;
3c3bdf30
NC
1390
1391 r_type = ELF64_R_TYPE (rel->r_info);
1392
1393 if (r_type == R_MMIX_GNU_VTINHERIT
1394 || r_type == R_MMIX_GNU_VTENTRY)
1395 continue;
1396
1397 r_symndx = ELF64_R_SYM (rel->r_info);
1398
ab96bf03
AM
1399 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1400 h = NULL;
1401 sym = NULL;
1402 sec = NULL;
1403
1404 if (r_symndx < symtab_hdr->sh_info)
1405 {
1406 sym = local_syms + r_symndx;
1407 sec = local_sections [r_symndx];
1408 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1409
1410 name = bfd_elf_string_from_elf_section (input_bfd,
1411 symtab_hdr->sh_link,
1412 sym->st_name);
1413 if (name == NULL)
1414 name = bfd_section_name (input_bfd, sec);
1415 }
1416 else
1417 {
62d887d4 1418 bfd_boolean unresolved_reloc, ignored;
ab96bf03
AM
1419
1420 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1421 r_symndx, symtab_hdr, sym_hashes,
1422 h, sec, relocation,
62d887d4
L
1423 unresolved_reloc, undefined_signalled,
1424 ignored);
ab96bf03
AM
1425 name = h->root.root.string;
1426 }
1427
dbaa2011 1428 if (sec != NULL && discarded_section (sec))
e4067dbb 1429 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 1430 rel, 1, relend, howto, 0, contents);
ab96bf03 1431
0e1862bb 1432 if (bfd_link_relocatable (info))
3c3bdf30 1433 {
f60ebe14
HPN
1434 /* This is a relocatable link. For most relocs we don't have to
1435 change anything, unless the reloc is against a section
1436 symbol, in which case we have to adjust according to where
1437 the section symbol winds up in the output section. */
ab96bf03
AM
1438 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1439 rel->r_addend += sec->output_offset;
3c3bdf30 1440
f60ebe14
HPN
1441 /* For PUSHJ stub relocs however, we may need to change the
1442 reloc and the section contents, if the reloc doesn't reach
1443 beyond the end of the output section and previous stubs.
1444 Then we change the section contents to be a PUSHJ to the end
1445 of the input section plus stubs (we can do that without using
1446 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1447 at the stub location. */
1448 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1449 {
1450 /* We've already checked whether we need a stub; use that
1451 knowledge. */
1452 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1453 != 0)
1454 {
1455 Elf_Internal_Rela relcpy;
1456
1457 if (mmix_elf_section_data (input_section)
1458 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1459 abort ();
1460
1461 /* There's already a PUSHJ insn there, so just fill in
1462 the offset bits to the stub. */
1463 if (mmix_final_link_relocate (elf_mmix_howto_table
1464 + R_MMIX_ADDR19,
1465 input_section,
1466 contents,
1467 rel->r_offset,
1468 0,
1469 input_section
1470 ->output_section->vma
1471 + input_section->output_offset
eea6121a 1472 + size
f60ebe14
HPN
1473 + mmix_elf_section_data (input_section)
1474 ->pjs.stub_offset,
18978b27 1475 NULL, NULL, NULL) != bfd_reloc_ok)
f60ebe14
HPN
1476 return FALSE;
1477
1478 /* Put a JMP insn at the stub; it goes with the
1479 R_MMIX_JMP reloc. */
1480 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1481 contents
eea6121a 1482 + size
f60ebe14
HPN
1483 + mmix_elf_section_data (input_section)
1484 ->pjs.stub_offset);
1485
1486 /* Change the reloc to be at the stub, and to a full
1487 R_MMIX_JMP reloc. */
1488 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1489 rel->r_offset
eea6121a 1490 = (size
f60ebe14
HPN
1491 + mmix_elf_section_data (input_section)
1492 ->pjs.stub_offset);
1493
1494 mmix_elf_section_data (input_section)->pjs.stub_offset
1495 += MAX_PUSHJ_STUB_SIZE;
1496
1497 /* Shift this reloc to the end of the relocs to maintain
1498 the r_offset sorted reloc order. */
1499 relcpy = *rel;
1500 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1501 relend[-1] = relcpy;
1502
1503 /* Back up one reloc, or else we'd skip the next reloc
1504 in turn. */
1505 rel--;
1506 }
1507
1508 pjsno++;
1509 }
3c3bdf30
NC
1510 continue;
1511 }
1512
3c3bdf30
NC
1513 r = mmix_final_link_relocate (howto, input_section,
1514 contents, rel->r_offset,
18978b27 1515 rel->r_addend, relocation, name, sec, NULL);
3c3bdf30
NC
1516
1517 if (r != bfd_reloc_ok)
1518 {
3c3bdf30
NC
1519 const char * msg = (const char *) NULL;
1520
1521 switch (r)
1522 {
1523 case bfd_reloc_overflow:
1a72702b 1524 info->callbacks->reloc_overflow
dfeffb9f
L
1525 (info, (h ? &h->root : NULL), name, howto->name,
1526 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3c3bdf30
NC
1527 break;
1528
1529 case bfd_reloc_undefined:
1530 /* We may have sent this message above. */
1531 if (! undefined_signalled)
1a72702b
AM
1532 info->callbacks->undefined_symbol
1533 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
b34976b6 1534 undefined_signalled = TRUE;
3c3bdf30
NC
1535 break;
1536
1537 case bfd_reloc_outofrange:
1538 msg = _("internal error: out of range error");
1539 break;
1540
1541 case bfd_reloc_notsupported:
1542 msg = _("internal error: unsupported relocation error");
1543 break;
1544
1545 case bfd_reloc_dangerous:
1546 msg = _("internal error: dangerous relocation");
1547 break;
1548
1549 default:
1550 msg = _("internal error: unknown error");
1551 break;
1552 }
1553
1554 if (msg)
1a72702b
AM
1555 (*info->callbacks->warning) (info, msg, name, input_bfd,
1556 input_section, rel->r_offset);
3c3bdf30
NC
1557 }
1558 }
1559
b34976b6 1560 return TRUE;
3c3bdf30 1561}
e06fcc86 1562\f
3c3bdf30
NC
1563/* Perform a single relocation. By default we use the standard BFD
1564 routines. A few relocs we have to do ourselves. */
1565
1566static bfd_reloc_status_type
18978b27
HPN
1567mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1568 bfd_byte *contents, bfd_vma r_offset,
1569 bfd_signed_vma r_addend, bfd_vma relocation,
1570 const char *symname, asection *symsec,
1571 char **error_message)
3c3bdf30
NC
1572{
1573 bfd_reloc_status_type r = bfd_reloc_ok;
1574 bfd_vma addr
1575 = (input_section->output_section->vma
1576 + input_section->output_offset
1577 + r_offset);
1578 bfd_signed_vma srel
1579 = (bfd_signed_vma) relocation + r_addend;
1580
1581 switch (howto->type)
1582 {
1583 /* All these are PC-relative. */
f60ebe14 1584 case R_MMIX_PUSHJ_STUBBABLE:
3c3bdf30
NC
1585 case R_MMIX_PUSHJ:
1586 case R_MMIX_CBRANCH:
1587 case R_MMIX_ADDR19:
1588 case R_MMIX_GETA:
1589 case R_MMIX_ADDR27:
1590 case R_MMIX_JMP:
1591 contents += r_offset;
1592
1593 srel -= (input_section->output_section->vma
1594 + input_section->output_offset
1595 + r_offset);
1596
1597 r = mmix_elf_perform_relocation (input_section, howto, contents,
18978b27 1598 addr, srel, error_message);
3c3bdf30
NC
1599 break;
1600
930b4cb2
HPN
1601 case R_MMIX_BASE_PLUS_OFFSET:
1602 if (symsec == NULL)
1603 return bfd_reloc_undefined;
1604
1605 /* Check that we're not relocating against a register symbol. */
1606 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1607 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1608 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1609 MMIX_REG_SECTION_NAME) == 0)
1610 {
1611 /* Note: This is separated out into two messages in order
1612 to ease the translation into other languages. */
1613 if (symname == NULL || *symname == 0)
4eca0228 1614 _bfd_error_handler
695344c0 1615 /* xgettext:c-format */
871b3ab2
AM
1616 (_("%pB: base-plus-offset relocation against register symbol:"
1617 " (unknown) in %pA"),
dae82561 1618 input_section->owner, symsec);
930b4cb2 1619 else
4eca0228 1620 _bfd_error_handler
695344c0 1621 /* xgettext:c-format */
871b3ab2
AM
1622 (_("%pB: base-plus-offset relocation against register symbol:"
1623 " %s in %pA"),
dae82561 1624 input_section->owner, symname, symsec);
930b4cb2
HPN
1625 return bfd_reloc_overflow;
1626 }
1627 goto do_mmix_reloc;
1628
3c3bdf30
NC
1629 case R_MMIX_REG_OR_BYTE:
1630 case R_MMIX_REG:
1631 /* For now, we handle these alike. They must refer to an register
1632 symbol, which is either relative to the register section and in
1633 the range 0..255, or is in the register contents section with vma
1634 regno * 8. */
1635
1636 /* FIXME: A better way to check for reg contents section?
1637 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1638 if (symsec == NULL)
1639 return bfd_reloc_undefined;
1640
1641 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1642 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1643 {
1644 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1645 {
1646 /* The bfd_reloc_outofrange return value, though intuitively
1647 a better value, will not get us an error. */
1648 return bfd_reloc_overflow;
1649 }
1650 srel /= 8;
1651 }
1652 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1653 MMIX_REG_SECTION_NAME) == 0)
1654 {
1655 if (srel < 0 || srel > 255)
1656 /* The bfd_reloc_outofrange return value, though intuitively a
1657 better value, will not get us an error. */
1658 return bfd_reloc_overflow;
1659 }
1660 else
1661 {
930b4cb2 1662 /* Note: This is separated out into two messages in order
ca09e32b
NC
1663 to ease the translation into other languages. */
1664 if (symname == NULL || *symname == 0)
4eca0228 1665 _bfd_error_handler
695344c0 1666 /* xgettext:c-format */
871b3ab2
AM
1667 (_("%pB: register relocation against non-register symbol:"
1668 " (unknown) in %pA"),
dae82561 1669 input_section->owner, symsec);
ca09e32b 1670 else
4eca0228 1671 _bfd_error_handler
695344c0 1672 /* xgettext:c-format */
871b3ab2
AM
1673 (_("%pB: register relocation against non-register symbol:"
1674 " %s in %pA"),
dae82561 1675 input_section->owner, symname, symsec);
3c3bdf30
NC
1676
1677 /* The bfd_reloc_outofrange return value, though intuitively a
1678 better value, will not get us an error. */
1679 return bfd_reloc_overflow;
1680 }
930b4cb2 1681 do_mmix_reloc:
3c3bdf30
NC
1682 contents += r_offset;
1683 r = mmix_elf_perform_relocation (input_section, howto, contents,
18978b27 1684 addr, srel, error_message);
3c3bdf30
NC
1685 break;
1686
1687 case R_MMIX_LOCAL:
1688 /* This isn't a real relocation, it's just an assertion that the
1689 final relocation value corresponds to a local register. We
1690 ignore the actual relocation; nothing is changed. */
1691 {
1692 asection *regsec
1693 = bfd_get_section_by_name (input_section->output_section->owner,
1694 MMIX_REG_CONTENTS_SECTION_NAME);
1695 bfd_vma first_global;
1696
1697 /* Check that this is an absolute value, or a reference to the
1698 register contents section or the register (symbol) section.
1699 Absolute numbers can get here as undefined section. Undefined
1700 symbols are signalled elsewhere, so there's no conflict in us
1701 accidentally handling it. */
1702 if (!bfd_is_abs_section (symsec)
1703 && !bfd_is_und_section (symsec)
1704 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1705 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1706 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_SECTION_NAME) != 0)
1708 {
4eca0228 1709 _bfd_error_handler
871b3ab2 1710 (_("%pB: directive LOCAL valid only with a register or absolute value"),
dae82561 1711 input_section->owner);
3c3bdf30
NC
1712
1713 return bfd_reloc_overflow;
1714 }
1715
1716 /* If we don't have a register contents section, then $255 is the
1717 first global register. */
1718 if (regsec == NULL)
1719 first_global = 255;
1720 else
1721 {
a0f49396
NC
1722 first_global
1723 = bfd_get_section_vma (input_section->output_section->owner,
1724 regsec) / 8;
3c3bdf30
NC
1725 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1726 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1727 {
1728 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1729 /* The bfd_reloc_outofrange return value, though
1730 intuitively a better value, will not get us an error. */
1731 return bfd_reloc_overflow;
1732 srel /= 8;
1733 }
1734 }
1735
1736 if ((bfd_vma) srel >= first_global)
1737 {
1738 /* FIXME: Better error message. */
4eca0228 1739 _bfd_error_handler
695344c0 1740 /* xgettext:c-format */
2dcf00ce
AM
1741 (_("%pB: LOCAL directive: "
1742 "Register $%" PRId64 " is not a local register."
1743 " First global register is $%" PRId64 "."),
1744 input_section->owner, (int64_t) srel, (int64_t) first_global);
3c3bdf30
NC
1745
1746 return bfd_reloc_overflow;
1747 }
1748 }
1749 r = bfd_reloc_ok;
1750 break;
1751
1752 default:
1753 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1754 contents, r_offset,
1755 relocation, r_addend);
1756 }
1757
1758 return r;
1759}
e06fcc86 1760\f
3c3bdf30
NC
1761/* Return the section that should be marked against GC for a given
1762 relocation. */
1763
1764static asection *
07adf181
AM
1765mmix_elf_gc_mark_hook (asection *sec,
1766 struct bfd_link_info *info,
1767 Elf_Internal_Rela *rel,
1768 struct elf_link_hash_entry *h,
1769 Elf_Internal_Sym *sym)
3c3bdf30
NC
1770{
1771 if (h != NULL)
07adf181
AM
1772 switch (ELF64_R_TYPE (rel->r_info))
1773 {
1774 case R_MMIX_GNU_VTINHERIT:
1775 case R_MMIX_GNU_VTENTRY:
1776 return NULL;
1777 }
3c3bdf30 1778
07adf181 1779 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
3c3bdf30 1780}
e06fcc86 1781\f
3c3bdf30
NC
1782/* Sort register relocs to come before expanding relocs. */
1783
1784static int
2c3fc389 1785mmix_elf_sort_relocs (const void * p1, const void * p2)
3c3bdf30
NC
1786{
1787 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1788 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1789 int r1_is_reg, r2_is_reg;
1790
1791 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1792 insns. */
1793 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1794 return 1;
1795 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1796 return -1;
1797
1798 r1_is_reg
1799 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1800 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1801 r2_is_reg
1802 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1803 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1804 if (r1_is_reg != r2_is_reg)
1805 return r2_is_reg - r1_is_reg;
1806
1807 /* Neither or both are register relocs. Then sort on full offset. */
1808 if (r1->r_offset > r2->r_offset)
1809 return 1;
1810 else if (r1->r_offset < r2->r_offset)
1811 return -1;
1812 return 0;
1813}
1814
930b4cb2
HPN
1815/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1816
b34976b6 1817static bfd_boolean
2c3fc389
NC
1818mmix_elf_check_common_relocs (bfd *abfd,
1819 struct bfd_link_info *info,
1820 asection *sec,
1821 const Elf_Internal_Rela *relocs)
930b4cb2
HPN
1822{
1823 bfd *bpo_greg_owner = NULL;
1824 asection *allocated_gregs_section = NULL;
1825 struct bpo_greg_section_info *gregdata = NULL;
1826 struct bpo_reloc_section_info *bpodata = NULL;
1827 const Elf_Internal_Rela *rel;
1828 const Elf_Internal_Rela *rel_end;
1829
930b4cb2
HPN
1830 /* We currently have to abuse this COFF-specific member, since there's
1831 no target-machine-dedicated member. There's no alternative outside
1832 the bfd_link_info struct; we can't specialize a hash-table since
1833 they're different between ELF and mmo. */
1834 bpo_greg_owner = (bfd *) info->base_file;
1835
1836 rel_end = relocs + sec->reloc_count;
1837 for (rel = relocs; rel < rel_end; rel++)
1838 {
1839 switch (ELF64_R_TYPE (rel->r_info))
07d6d2b8 1840 {
930b4cb2
HPN
1841 /* This relocation causes a GREG allocation. We need to count
1842 them, and we need to create a section for them, so we need an
1843 object to fake as the owner of that section. We can't use
1844 the ELF dynobj for this, since the ELF bits assume lots of
1845 DSO-related stuff if that member is non-NULL. */
1846 case R_MMIX_BASE_PLUS_OFFSET:
f60ebe14 1847 /* We don't do anything with this reloc for a relocatable link. */
0e1862bb 1848 if (bfd_link_relocatable (info))
f60ebe14
HPN
1849 break;
1850
930b4cb2
HPN
1851 if (bpo_greg_owner == NULL)
1852 {
1853 bpo_greg_owner = abfd;
2c3fc389 1854 info->base_file = bpo_greg_owner;
930b4cb2
HPN
1855 }
1856
4fa5c2a8
HPN
1857 if (allocated_gregs_section == NULL)
1858 allocated_gregs_section
1859 = bfd_get_section_by_name (bpo_greg_owner,
1860 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1861
930b4cb2
HPN
1862 if (allocated_gregs_section == NULL)
1863 {
1864 allocated_gregs_section
3496cb2a
L
1865 = bfd_make_section_with_flags (bpo_greg_owner,
1866 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1867 (SEC_HAS_CONTENTS
1868 | SEC_IN_MEMORY
1869 | SEC_LINKER_CREATED));
930b4cb2
HPN
1870 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1871 treated like any other section, and we'd get errors for
1872 address overlap with the text section. Let's set none of
1873 those flags, as that is what currently happens for usual
1874 GREG allocations, and that works. */
1875 if (allocated_gregs_section == NULL
930b4cb2
HPN
1876 || !bfd_set_section_alignment (bpo_greg_owner,
1877 allocated_gregs_section,
1878 3))
b34976b6 1879 return FALSE;
930b4cb2
HPN
1880
1881 gregdata = (struct bpo_greg_section_info *)
1882 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1883 if (gregdata == NULL)
b34976b6 1884 return FALSE;
f0abc2a1
AM
1885 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1886 = gregdata;
930b4cb2
HPN
1887 }
1888 else if (gregdata == NULL)
f0abc2a1
AM
1889 gregdata
1890 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
930b4cb2
HPN
1891
1892 /* Get ourselves some auxiliary info for the BPO-relocs. */
1893 if (bpodata == NULL)
1894 {
1895 /* No use doing a separate iteration pass to find the upper
1896 limit - just use the number of relocs. */
1897 bpodata = (struct bpo_reloc_section_info *)
1898 bfd_alloc (bpo_greg_owner,
1899 sizeof (struct bpo_reloc_section_info)
1900 * (sec->reloc_count + 1));
1901 if (bpodata == NULL)
b34976b6 1902 return FALSE;
f0abc2a1 1903 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
930b4cb2
HPN
1904 bpodata->first_base_plus_offset_reloc
1905 = bpodata->bpo_index
1906 = gregdata->n_max_bpo_relocs;
1907 bpodata->bpo_greg_section
1908 = allocated_gregs_section;
4fa5c2a8 1909 bpodata->n_bpo_relocs_this_section = 0;
930b4cb2
HPN
1910 }
1911
1912 bpodata->n_bpo_relocs_this_section++;
1913 gregdata->n_max_bpo_relocs++;
1914
1915 /* We don't get another chance to set this before GC; we've not
f60ebe14 1916 set up any hook that runs before GC. */
930b4cb2
HPN
1917 gregdata->n_bpo_relocs
1918 = gregdata->n_max_bpo_relocs;
1919 break;
f60ebe14
HPN
1920
1921 case R_MMIX_PUSHJ_STUBBABLE:
1922 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1923 break;
930b4cb2
HPN
1924 }
1925 }
1926
f60ebe14
HPN
1927 /* Allocate per-reloc stub storage and initialize it to the max stub
1928 size. */
1929 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1930 {
1931 size_t i;
1932
1933 mmix_elf_section_data (sec)->pjs.stub_size
1934 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1935 * sizeof (mmix_elf_section_data (sec)
1936 ->pjs.stub_size[0]));
1937 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1938 return FALSE;
1939
1940 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1941 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1942 }
1943
b34976b6 1944 return TRUE;
930b4cb2
HPN
1945}
1946
3c3bdf30
NC
1947/* Look through the relocs for a section during the first phase. */
1948
b34976b6 1949static bfd_boolean
2c3fc389
NC
1950mmix_elf_check_relocs (bfd *abfd,
1951 struct bfd_link_info *info,
1952 asection *sec,
1953 const Elf_Internal_Rela *relocs)
3c3bdf30
NC
1954{
1955 Elf_Internal_Shdr *symtab_hdr;
5582a088 1956 struct elf_link_hash_entry **sym_hashes;
3c3bdf30
NC
1957 const Elf_Internal_Rela *rel;
1958 const Elf_Internal_Rela *rel_end;
1959
3c3bdf30
NC
1960 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1961 sym_hashes = elf_sym_hashes (abfd);
3c3bdf30
NC
1962
1963 /* First we sort the relocs so that any register relocs come before
1964 expansion-relocs to the same insn. FIXME: Not done for mmo. */
2c3fc389 1965 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
3c3bdf30
NC
1966 mmix_elf_sort_relocs);
1967
930b4cb2
HPN
1968 /* Do the common part. */
1969 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
b34976b6 1970 return FALSE;
930b4cb2 1971
0e1862bb 1972 if (bfd_link_relocatable (info))
f60ebe14
HPN
1973 return TRUE;
1974
3c3bdf30
NC
1975 rel_end = relocs + sec->reloc_count;
1976 for (rel = relocs; rel < rel_end; rel++)
1977 {
1978 struct elf_link_hash_entry *h;
1979 unsigned long r_symndx;
1980
1981 r_symndx = ELF64_R_SYM (rel->r_info);
1982 if (r_symndx < symtab_hdr->sh_info)
07d6d2b8 1983 h = NULL;
3c3bdf30 1984 else
973a3492
L
1985 {
1986 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1987 while (h->root.type == bfd_link_hash_indirect
1988 || h->root.type == bfd_link_hash_warning)
1989 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1990 }
3c3bdf30
NC
1991
1992 switch (ELF64_R_TYPE (rel->r_info))
930b4cb2 1993 {
07d6d2b8
AM
1994 /* This relocation describes the C++ object vtable hierarchy.
1995 Reconstruct it for later use during GC. */
1996 case R_MMIX_GNU_VTINHERIT:
1997 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1998 return FALSE;
1999 break;
2000
2001 /* This relocation describes which C++ vtable entries are actually
2002 used. Record for later use during GC. */
2003 case R_MMIX_GNU_VTENTRY:
2004 BFD_ASSERT (h != NULL);
2005 if (h != NULL
2006 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2007 return FALSE;
2008 break;
930b4cb2
HPN
2009 }
2010 }
2011
b34976b6 2012 return TRUE;
930b4cb2
HPN
2013}
2014
2015/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2016 Copied from elf_link_add_object_symbols. */
2017
b34976b6 2018bfd_boolean
2c3fc389 2019_bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
930b4cb2
HPN
2020{
2021 asection *o;
2022
2023 for (o = abfd->sections; o != NULL; o = o->next)
2024 {
2025 Elf_Internal_Rela *internal_relocs;
b34976b6 2026 bfd_boolean ok;
930b4cb2
HPN
2027
2028 if ((o->flags & SEC_RELOC) == 0
2029 || o->reloc_count == 0
2030 || ((info->strip == strip_all || info->strip == strip_debugger)
2031 && (o->flags & SEC_DEBUGGING) != 0)
2032 || bfd_is_abs_section (o->output_section))
2033 continue;
2034
2035 internal_relocs
2c3fc389 2036 = _bfd_elf_link_read_relocs (abfd, o, NULL,
45d6a902
AM
2037 (Elf_Internal_Rela *) NULL,
2038 info->keep_memory);
930b4cb2 2039 if (internal_relocs == NULL)
b34976b6 2040 return FALSE;
930b4cb2
HPN
2041
2042 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2043
2044 if (! info->keep_memory)
2045 free (internal_relocs);
2046
2047 if (! ok)
b34976b6 2048 return FALSE;
3c3bdf30
NC
2049 }
2050
b34976b6 2051 return TRUE;
3c3bdf30 2052}
e06fcc86 2053\f
3c3bdf30
NC
2054/* Change symbols relative to the reg contents section to instead be to
2055 the register section, and scale them down to correspond to the register
2056 number. */
2057
6e0b88f1 2058static int
2c3fc389
NC
2059mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2060 const char *name ATTRIBUTE_UNUSED,
2061 Elf_Internal_Sym *sym,
2062 asection *input_sec,
2063 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
3c3bdf30
NC
2064{
2065 if (input_sec != NULL
2066 && input_sec->name != NULL
2067 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2068 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2069 {
2070 sym->st_value /= 8;
2071 sym->st_shndx = SHN_REGISTER;
2072 }
2073
6e0b88f1 2074 return 1;
3c3bdf30
NC
2075}
2076
2077/* We fake a register section that holds values that are register numbers.
2078 Having a SHN_REGISTER and register section translates better to other
2079 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2080 This section faking is based on a construct in elf32-mips.c. */
2081static asection mmix_elf_reg_section;
2082static asymbol mmix_elf_reg_section_symbol;
2083static asymbol *mmix_elf_reg_section_symbol_ptr;
2084
f60ebe14 2085/* Handle the special section numbers that a symbol may use. */
3c3bdf30
NC
2086
2087void
e6c7cdec 2088mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
3c3bdf30
NC
2089{
2090 elf_symbol_type *elfsym;
2091
2092 elfsym = (elf_symbol_type *) asym;
2093 switch (elfsym->internal_elf_sym.st_shndx)
2094 {
2095 case SHN_REGISTER:
2096 if (mmix_elf_reg_section.name == NULL)
2097 {
2098 /* Initialize the register section. */
2099 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2100 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2101 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2102 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2103 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2104 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2105 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2106 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2107 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2108 }
2109 asym->section = &mmix_elf_reg_section;
2110 break;
2111
2112 default:
2113 break;
2114 }
2115}
2116
2117/* Given a BFD section, try to locate the corresponding ELF section
2118 index. */
2119
b34976b6 2120static bfd_boolean
2c3fc389
NC
2121mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2122 asection * sec,
2123 int * retval)
3c3bdf30
NC
2124{
2125 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2126 *retval = SHN_REGISTER;
2127 else
b34976b6 2128 return FALSE;
3c3bdf30 2129
b34976b6 2130 return TRUE;
3c3bdf30
NC
2131}
2132
2133/* Hook called by the linker routine which adds symbols from an object
2134 file. We must handle the special SHN_REGISTER section number here.
2135
2136 We also check that we only have *one* each of the section-start
2137 symbols, since otherwise having two with the same value would cause
2138 them to be "merged", but with the contents serialized. */
2139
2c3fc389
NC
2140static bfd_boolean
2141mmix_elf_add_symbol_hook (bfd *abfd,
2142 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2143 Elf_Internal_Sym *sym,
2144 const char **namep ATTRIBUTE_UNUSED,
2145 flagword *flagsp ATTRIBUTE_UNUSED,
2146 asection **secp,
2147 bfd_vma *valp ATTRIBUTE_UNUSED)
3c3bdf30
NC
2148{
2149 if (sym->st_shndx == SHN_REGISTER)
46fda84e
AM
2150 {
2151 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2152 (*secp)->flags |= SEC_LINKER_CREATED;
2153 }
3c3bdf30 2154 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
0112cd26 2155 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
3c3bdf30
NC
2156 {
2157 /* See if we have another one. */
4ab82700
AM
2158 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2159 *namep,
b34976b6
AM
2160 FALSE,
2161 FALSE,
2162 FALSE);
3c3bdf30 2163
4ab82700 2164 if (h != NULL && h->type != bfd_link_hash_undefined)
3c3bdf30
NC
2165 {
2166 /* How do we get the asymbol (or really: the filename) from h?
4ab82700 2167 h->u.def.section->owner is NULL. */
4eca0228 2168 _bfd_error_handler
695344c0 2169 /* xgettext:c-format */
871b3ab2 2170 (_("%pB: Error: multiple definition of `%s'; start of %s "
4eca0228 2171 "is set in a earlier linked file\n"),
dae82561 2172 abfd, *namep,
4eca0228 2173 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX));
3c3bdf30 2174 bfd_set_error (bfd_error_bad_value);
b34976b6 2175 return FALSE;
3c3bdf30
NC
2176 }
2177 }
2178
b34976b6 2179 return TRUE;
3c3bdf30
NC
2180}
2181
2182/* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2183
2c3fc389
NC
2184static bfd_boolean
2185mmix_elf_is_local_label_name (bfd *abfd, const char *name)
3c3bdf30
NC
2186{
2187 const char *colpos;
2188 int digits;
2189
2190 /* Also include the default local-label definition. */
2191 if (_bfd_elf_is_local_label_name (abfd, name))
b34976b6 2192 return TRUE;
3c3bdf30
NC
2193
2194 if (*name != 'L')
b34976b6 2195 return FALSE;
3c3bdf30
NC
2196
2197 /* If there's no ":", or more than one, it's not a local symbol. */
2198 colpos = strchr (name, ':');
2199 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
b34976b6 2200 return FALSE;
3c3bdf30
NC
2201
2202 /* Check that there are remaining characters and that they are digits. */
2203 if (colpos[1] == 0)
b34976b6 2204 return FALSE;
3c3bdf30
NC
2205
2206 digits = strspn (colpos + 1, "0123456789");
2207 return digits != 0 && colpos[1 + digits] == 0;
2208}
2209
2210/* We get rid of the register section here. */
2211
b34976b6 2212bfd_boolean
2c3fc389 2213mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
3c3bdf30
NC
2214{
2215 /* We never output a register section, though we create one for
2216 temporary measures. Check that nobody entered contents into it. */
2217 asection *reg_section;
3c3bdf30
NC
2218
2219 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2220
2221 if (reg_section != NULL)
2222 {
2223 /* FIXME: Pass error state gracefully. */
2224 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2225 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2226
46fda84e
AM
2227 /* Really remove the section, if it hasn't already been done. */
2228 if (!bfd_section_removed_from_list (abfd, reg_section))
2229 {
2230 bfd_section_list_remove (abfd, reg_section);
2231 --abfd->section_count;
2232 }
3c3bdf30
NC
2233 }
2234
c152c796 2235 if (! bfd_elf_final_link (abfd, info))
b34976b6 2236 return FALSE;
3c3bdf30 2237
930b4cb2
HPN
2238 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2239 the regular linker machinery. We do it here, like other targets with
2240 special sections. */
2241 if (info->base_file != NULL)
2242 {
2243 asection *greg_section
2244 = bfd_get_section_by_name ((bfd *) info->base_file,
2245 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2246 if (!bfd_set_section_contents (abfd,
2247 greg_section->output_section,
2248 greg_section->contents,
2249 (file_ptr) greg_section->output_offset,
eea6121a 2250 greg_section->size))
b34976b6 2251 return FALSE;
930b4cb2 2252 }
b34976b6 2253 return TRUE;
930b4cb2
HPN
2254}
2255
f60ebe14 2256/* We need to include the maximum size of PUSHJ-stubs in the initial
eea6121a 2257 section size. This is expected to shrink during linker relaxation. */
f60ebe14
HPN
2258
2259static void
2c3fc389
NC
2260mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2261 asection *sec,
2262 void *ptr)
f60ebe14
HPN
2263{
2264 struct bfd_link_info *info = ptr;
2265
2266 /* Make sure we only do this for section where we know we want this,
2267 otherwise we might end up resetting the size of COMMONs. */
2268 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2269 return;
2270
1a23a9e6 2271 sec->rawsize = sec->size;
eea6121a
AM
2272 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2273 * MAX_PUSHJ_STUB_SIZE);
f60ebe14
HPN
2274
2275 /* For use in relocatable link, we start with a max stubs size. See
2276 mmix_elf_relax_section. */
0e1862bb 2277 if (bfd_link_relocatable (info) && sec->output_section)
f60ebe14
HPN
2278 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2279 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2280 * MAX_PUSHJ_STUB_SIZE);
2281}
2282
930b4cb2
HPN
2283/* Initialize stuff for the linker-generated GREGs to match
2284 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2285
b34976b6 2286bfd_boolean
2c3fc389
NC
2287_bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2288 struct bfd_link_info *info)
930b4cb2
HPN
2289{
2290 asection *bpo_gregs_section;
2291 bfd *bpo_greg_owner;
2292 struct bpo_greg_section_info *gregdata;
2293 size_t n_gregs;
2294 bfd_vma gregs_size;
2295 size_t i;
2296 size_t *bpo_reloc_indexes;
f60ebe14
HPN
2297 bfd *ibfd;
2298
2299 /* Set the initial size of sections. */
c72f2fb2 2300 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
f60ebe14 2301 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
930b4cb2
HPN
2302
2303 /* The bpo_greg_owner bfd is supposed to have been set by
2304 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2305 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2306 bpo_greg_owner = (bfd *) info->base_file;
2307 if (bpo_greg_owner == NULL)
b34976b6 2308 return TRUE;
930b4cb2
HPN
2309
2310 bpo_gregs_section
2311 = bfd_get_section_by_name (bpo_greg_owner,
2312 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2313
930b4cb2 2314 if (bpo_gregs_section == NULL)
b34976b6 2315 return TRUE;
930b4cb2
HPN
2316
2317 /* We use the target-data handle in the ELF section data. */
f0abc2a1 2318 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2319 if (gregdata == NULL)
b34976b6 2320 return FALSE;
930b4cb2
HPN
2321
2322 n_gregs = gregdata->n_bpo_relocs;
2323 gregdata->n_allocated_bpo_gregs = n_gregs;
2324
2325 /* When this reaches zero during relaxation, all entries have been
2326 filled in and the size of the linker gregs can be calculated. */
2327 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2328
2329 /* Set the zeroth-order estimate for the GREGs size. */
2330 gregs_size = n_gregs * 8;
2331
2332 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
b34976b6 2333 return FALSE;
930b4cb2
HPN
2334
2335 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2336 time. Note that we must use the max number ever noted for the array,
2337 since the index numbers were created before GC. */
2338 gregdata->reloc_request
2339 = bfd_zalloc (bpo_greg_owner,
2340 sizeof (struct bpo_reloc_request)
2341 * gregdata->n_max_bpo_relocs);
2342
2343 gregdata->bpo_reloc_indexes
2344 = bpo_reloc_indexes
2345 = bfd_alloc (bpo_greg_owner,
2346 gregdata->n_max_bpo_relocs
2347 * sizeof (size_t));
2348 if (bpo_reloc_indexes == NULL)
b34976b6 2349 return FALSE;
930b4cb2
HPN
2350
2351 /* The default order is an identity mapping. */
2352 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2353 {
2354 bpo_reloc_indexes[i] = i;
2355 gregdata->reloc_request[i].bpo_reloc_no = i;
2356 }
2357
b34976b6 2358 return TRUE;
3c3bdf30 2359}
e06fcc86 2360\f
930b4cb2
HPN
2361/* Fill in contents in the linker allocated gregs. Everything is
2362 calculated at this point; we just move the contents into place here. */
2363
b34976b6 2364bfd_boolean
2c3fc389
NC
2365_bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2366 struct bfd_link_info *link_info)
930b4cb2
HPN
2367{
2368 asection *bpo_gregs_section;
2369 bfd *bpo_greg_owner;
2370 struct bpo_greg_section_info *gregdata;
2371 size_t n_gregs;
2372 size_t i, j;
2373 size_t lastreg;
2374 bfd_byte *contents;
2375
2376 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2377 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2378 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2379 bpo_greg_owner = (bfd *) link_info->base_file;
2380 if (bpo_greg_owner == NULL)
b34976b6 2381 return TRUE;
930b4cb2
HPN
2382
2383 bpo_gregs_section
2384 = bfd_get_section_by_name (bpo_greg_owner,
2385 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2386
2387 /* This can't happen without DSO handling. When DSOs are handled
2388 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2389 section. */
2390 if (bpo_gregs_section == NULL)
b34976b6 2391 return TRUE;
930b4cb2
HPN
2392
2393 /* We use the target-data handle in the ELF section data. */
2394
f0abc2a1 2395 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2396 if (gregdata == NULL)
b34976b6 2397 return FALSE;
930b4cb2
HPN
2398
2399 n_gregs = gregdata->n_allocated_bpo_gregs;
2400
2401 bpo_gregs_section->contents
eea6121a 2402 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
930b4cb2 2403 if (contents == NULL)
b34976b6 2404 return FALSE;
930b4cb2 2405
7e799044
HPN
2406 /* Sanity check: If these numbers mismatch, some relocation has not been
2407 accounted for and the rest of gregdata is probably inconsistent.
2408 It's a bug, but it's more helpful to identify it than segfaulting
2409 below. */
2410 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2411 != gregdata->n_bpo_relocs)
2412 {
4eca0228 2413 _bfd_error_handler
695344c0 2414 /* xgettext:c-format */
d42c267e 2415 (_("Internal inconsistency: remaining %lu != max %lu.\n\
7e799044 2416 Please report this bug."),
d42c267e
AM
2417 (unsigned long) gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2418 (unsigned long) gregdata->n_bpo_relocs);
b34976b6 2419 return FALSE;
7e799044
HPN
2420 }
2421
930b4cb2
HPN
2422 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2423 if (gregdata->reloc_request[i].regindex != lastreg)
2424 {
2425 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2426 contents + j * 8);
2427 lastreg = gregdata->reloc_request[i].regindex;
2428 j++;
2429 }
2430
b34976b6 2431 return TRUE;
930b4cb2
HPN
2432}
2433
2434/* Sort valid relocs to come before non-valid relocs, then on increasing
2435 value. */
2436
2437static int
2c3fc389 2438bpo_reloc_request_sort_fn (const void * p1, const void * p2)
930b4cb2
HPN
2439{
2440 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2441 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2442
2443 /* Primary function is validity; non-valid relocs sorted after valid
2444 ones. */
2445 if (r1->valid != r2->valid)
2446 return r2->valid - r1->valid;
2447
4fa5c2a8
HPN
2448 /* Then sort on value. Don't simplify and return just the difference of
2449 the values: the upper bits of the 64-bit value would be truncated on
2450 a host with 32-bit ints. */
930b4cb2 2451 if (r1->value != r2->value)
4fa5c2a8 2452 return r1->value > r2->value ? 1 : -1;
930b4cb2 2453
dfbbae4c
HPN
2454 /* As a last re-sort, use the relocation number, so we get a stable
2455 sort. The *addresses* aren't stable since items are swapped during
2456 sorting. It depends on the qsort implementation if this actually
2457 happens. */
2458 return r1->bpo_reloc_no > r2->bpo_reloc_no
2459 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
930b4cb2
HPN
2460}
2461
4fa5c2a8
HPN
2462/* For debug use only. Dumps the global register allocations resulting
2463 from base-plus-offset relocs. */
2464
2465void
e6c7cdec 2466mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
52d45da3 2467 void (*pf) (const char *fmt, ...))
4fa5c2a8
HPN
2468{
2469 bfd *bpo_greg_owner;
2470 asection *bpo_gregs_section;
2471 struct bpo_greg_section_info *gregdata;
2472 unsigned int i;
2473
2474 if (link_info == NULL || link_info->base_file == NULL)
2475 return;
2476
2477 bpo_greg_owner = (bfd *) link_info->base_file;
2478
2479 bpo_gregs_section
2480 = bfd_get_section_by_name (bpo_greg_owner,
2481 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2482
2483 if (bpo_gregs_section == NULL)
2484 return;
2485
f0abc2a1 2486 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
4fa5c2a8
HPN
2487 if (gregdata == NULL)
2488 return;
2489
2490 if (pf == NULL)
2491 pf = _bfd_error_handler;
2492
2493 /* These format strings are not translated. They are for debug purposes
2494 only and never displayed to an end user. Should they escape, we
2495 surely want them in original. */
2496 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2497 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2498 gregdata->n_max_bpo_relocs,
2499 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2500 gregdata->n_allocated_bpo_gregs);
2501
2502 if (gregdata->reloc_request)
2503 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2504 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2505 i,
cf3d882d
AM
2506 (gregdata->bpo_reloc_indexes != NULL
2507 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
4fa5c2a8
HPN
2508 gregdata->reloc_request[i].bpo_reloc_no,
2509 gregdata->reloc_request[i].valid,
2510
2511 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2512 (unsigned long) gregdata->reloc_request[i].value,
2513 gregdata->reloc_request[i].regindex,
2514 gregdata->reloc_request[i].offset);
2515}
2516
930b4cb2
HPN
2517/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2518 when the last such reloc is done, an index-array is sorted according to
2519 the values and iterated over to produce register numbers (indexed by 0
2520 from the first allocated register number) and offsets for use in real
80f540b7 2521 relocation. (N.B.: Relocatable runs are handled, not just punted.)
930b4cb2 2522
f60ebe14
HPN
2523 PUSHJ stub accounting is also done here.
2524
930b4cb2
HPN
2525 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2526
b34976b6 2527static bfd_boolean
2c3fc389
NC
2528mmix_elf_relax_section (bfd *abfd,
2529 asection *sec,
2530 struct bfd_link_info *link_info,
2531 bfd_boolean *again)
930b4cb2 2532{
930b4cb2 2533 Elf_Internal_Shdr *symtab_hdr;
930b4cb2 2534 Elf_Internal_Rela *internal_relocs;
930b4cb2
HPN
2535 Elf_Internal_Rela *irel, *irelend;
2536 asection *bpo_gregs_section = NULL;
2537 struct bpo_greg_section_info *gregdata;
2538 struct bpo_reloc_section_info *bpodata
f0abc2a1 2539 = mmix_elf_section_data (sec)->bpo.reloc;
f60ebe14
HPN
2540 /* The initialization is to quiet compiler warnings. The value is to
2541 spot a missing actual initialization. */
2542 size_t bpono = (size_t) -1;
2543 size_t pjsno = 0;
6cdc0ccc 2544 Elf_Internal_Sym *isymbuf = NULL;
1a23a9e6 2545 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
f60ebe14
HPN
2546
2547 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
930b4cb2
HPN
2548
2549 /* Assume nothing changes. */
b34976b6 2550 *again = FALSE;
930b4cb2 2551
f60ebe14
HPN
2552 /* We don't have to do anything if this section does not have relocs, or
2553 if this is not a code section. */
2554 if ((sec->flags & SEC_RELOC) == 0
930b4cb2
HPN
2555 || sec->reloc_count == 0
2556 || (sec->flags & SEC_CODE) == 0
2557 || (sec->flags & SEC_LINKER_CREATED) != 0
f60ebe14 2558 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
07d6d2b8 2559 then nothing to do. */
f60ebe14
HPN
2560 || (bpodata == NULL
2561 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
b34976b6 2562 return TRUE;
930b4cb2
HPN
2563
2564 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
930b4cb2 2565
f60ebe14
HPN
2566 if (bpodata != NULL)
2567 {
2568 bpo_gregs_section = bpodata->bpo_greg_section;
2569 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2570 bpono = bpodata->first_base_plus_offset_reloc;
2571 }
2572 else
2573 gregdata = NULL;
930b4cb2
HPN
2574
2575 /* Get a copy of the native relocations. */
2576 internal_relocs
2c3fc389 2577 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
45d6a902
AM
2578 (Elf_Internal_Rela *) NULL,
2579 link_info->keep_memory);
930b4cb2
HPN
2580 if (internal_relocs == NULL)
2581 goto error_return;
930b4cb2
HPN
2582
2583 /* Walk through them looking for relaxing opportunities. */
2584 irelend = internal_relocs + sec->reloc_count;
2585 for (irel = internal_relocs; irel < irelend; irel++)
2586 {
2587 bfd_vma symval;
f60ebe14 2588 struct elf_link_hash_entry *h = NULL;
930b4cb2 2589
f60ebe14
HPN
2590 /* We only process two relocs. */
2591 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2592 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
930b4cb2
HPN
2593 continue;
2594
f60ebe14
HPN
2595 /* We process relocs in a distinctly different way when this is a
2596 relocatable link (for one, we don't look at symbols), so we avoid
2597 mixing its code with that for the "normal" relaxation. */
0e1862bb 2598 if (bfd_link_relocatable (link_info))
f60ebe14
HPN
2599 {
2600 /* The only transformation in a relocatable link is to generate
2601 a full stub at the location of the stub calculated for the
2602 input section, if the relocated stub location, the end of the
2603 output section plus earlier stubs, cannot be reached. Thus
2604 relocatable linking can only lead to worse code, but it still
2605 works. */
2606 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2607 {
2608 /* If we can reach the end of the output-section and beyond
2609 any current stubs, then we don't need a stub for this
2610 reloc. The relaxed order of output stub allocation may
2611 not exactly match the straightforward order, so we always
2612 assume presence of output stubs, which will allow
2613 relaxation only on relocations indifferent to the
2614 presence of output stub allocations for other relocations
2615 and thus the order of output stub allocation. */
2616 if (bfd_check_overflow (complain_overflow_signed,
2617 19,
2618 0,
2619 bfd_arch_bits_per_address (abfd),
2620 /* Output-stub location. */
1a23a9e6 2621 sec->output_section->rawsize
f60ebe14
HPN
2622 + (mmix_elf_section_data (sec
2623 ->output_section)
2624 ->pjs.stubs_size_sum)
2625 /* Location of this PUSHJ reloc. */
2626 - (sec->output_offset + irel->r_offset)
2627 /* Don't count *this* stub twice. */
2628 - (mmix_elf_section_data (sec)
2629 ->pjs.stub_size[pjsno]
2630 + MAX_PUSHJ_STUB_SIZE))
2631 == bfd_reloc_ok)
2632 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2633
2634 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2635 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2636
2637 pjsno++;
2638 }
2639
2640 continue;
2641 }
2642
930b4cb2
HPN
2643 /* Get the value of the symbol referred to by the reloc. */
2644 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2645 {
2646 /* A local symbol. */
6cdc0ccc 2647 Elf_Internal_Sym *isym;
930b4cb2
HPN
2648 asection *sym_sec;
2649
6cdc0ccc
AM
2650 /* Read this BFD's local symbols if we haven't already. */
2651 if (isymbuf == NULL)
2652 {
2653 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2654 if (isymbuf == NULL)
2655 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2656 symtab_hdr->sh_info, 0,
2657 NULL, NULL, NULL);
2658 if (isymbuf == 0)
2659 goto error_return;
2660 }
930b4cb2 2661
6cdc0ccc
AM
2662 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2663 if (isym->st_shndx == SHN_UNDEF)
930b4cb2 2664 sym_sec = bfd_und_section_ptr;
6cdc0ccc 2665 else if (isym->st_shndx == SHN_ABS)
930b4cb2 2666 sym_sec = bfd_abs_section_ptr;
6cdc0ccc 2667 else if (isym->st_shndx == SHN_COMMON)
930b4cb2
HPN
2668 sym_sec = bfd_com_section_ptr;
2669 else
6cdc0ccc
AM
2670 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2671 symval = (isym->st_value
930b4cb2
HPN
2672 + sym_sec->output_section->vma
2673 + sym_sec->output_offset);
2674 }
2675 else
2676 {
2677 unsigned long indx;
930b4cb2
HPN
2678
2679 /* An external symbol. */
2680 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2681 h = elf_sym_hashes (abfd)[indx];
2682 BFD_ASSERT (h != NULL);
284d826d
HPN
2683 if (h->root.type == bfd_link_hash_undefweak)
2684 /* FIXME: for R_MMIX_PUSHJ_STUBBABLE, there are alternatives to
2685 the canonical value 0 for an unresolved weak symbol to
2686 consider: as the debug-friendly approach, resolve to "abort"
2687 (or a port-specific function), or as the space-friendly
2688 approach resolve to the next instruction (like some other
2689 ports, notably ARM and AArch64). These alternatives require
2690 matching code in mmix_elf_perform_relocation or its caller. */
2691 symval = 0;
2692 else if (h->root.type == bfd_link_hash_defined
2693 || h->root.type == bfd_link_hash_defweak)
2694 symval = (h->root.u.def.value
2695 + h->root.u.def.section->output_section->vma
2696 + h->root.u.def.section->output_offset);
2697 else
930b4cb2 2698 {
f60ebe14
HPN
2699 /* This appears to be a reference to an undefined symbol. Just
2700 ignore it--it will be caught by the regular reloc processing.
2701 We need to keep BPO reloc accounting consistent, though
2702 else we'll abort instead of emitting an error message. */
2703 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2704 && gregdata != NULL)
2705 {
2706 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2707 bpono++;
2708 }
930b4cb2
HPN
2709 continue;
2710 }
930b4cb2
HPN
2711 }
2712
f60ebe14
HPN
2713 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2714 {
2715 bfd_vma value = symval + irel->r_addend;
2716 bfd_vma dot
2717 = (sec->output_section->vma
2718 + sec->output_offset
2719 + irel->r_offset);
2720 bfd_vma stubaddr
2721 = (sec->output_section->vma
2722 + sec->output_offset
eea6121a 2723 + size
f60ebe14
HPN
2724 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2725
2726 if ((value & 3) == 0
2727 && bfd_check_overflow (complain_overflow_signed,
2728 19,
2729 0,
2730 bfd_arch_bits_per_address (abfd),
2731 value - dot
2732 - (value > dot
2733 ? mmix_elf_section_data (sec)
2734 ->pjs.stub_size[pjsno]
2735 : 0))
2736 == bfd_reloc_ok)
2737 /* If the reloc fits, no stub is needed. */
2738 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2739 else
2740 /* Maybe we can get away with just a JMP insn? */
2741 if ((value & 3) == 0
2742 && bfd_check_overflow (complain_overflow_signed,
2743 27,
2744 0,
2745 bfd_arch_bits_per_address (abfd),
2746 value - stubaddr
2747 - (value > dot
2748 ? mmix_elf_section_data (sec)
2749 ->pjs.stub_size[pjsno] - 4
2750 : 0))
2751 == bfd_reloc_ok)
2752 /* Yep, account for a stub consisting of a single JMP insn. */
2753 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2754 else
2755 /* Nope, go for the full insn stub. It doesn't seem useful to
2756 emit the intermediate sizes; those will only be useful for
2757 a >64M program assuming contiguous code. */
2758 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2759 = MAX_PUSHJ_STUB_SIZE;
2760
2761 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2762 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2763 pjsno++;
2764 continue;
2765 }
2766
2767 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2768
930b4cb2
HPN
2769 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2770 = symval + irel->r_addend;
b34976b6 2771 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
930b4cb2
HPN
2772 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2773 }
2774
2775 /* Check if that was the last BPO-reloc. If so, sort the values and
2776 calculate how many registers we need to cover them. Set the size of
2777 the linker gregs, and if the number of registers changed, indicate
2778 that we need to relax some more because we have more work to do. */
f60ebe14
HPN
2779 if (gregdata != NULL
2780 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
930b4cb2
HPN
2781 {
2782 size_t i;
2783 bfd_vma prev_base;
2784 size_t regindex;
2785
2786 /* First, reset the remaining relocs for the next round. */
2787 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2788 = gregdata->n_bpo_relocs;
2789
2c3fc389 2790 qsort (gregdata->reloc_request,
930b4cb2
HPN
2791 gregdata->n_max_bpo_relocs,
2792 sizeof (struct bpo_reloc_request),
2793 bpo_reloc_request_sort_fn);
2794
2795 /* Recalculate indexes. When we find a change (however unlikely
2796 after the initial iteration), we know we need to relax again,
2797 since items in the GREG-array are sorted by increasing value and
2798 stored in the relaxation phase. */
2799 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2800 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2801 != i)
2802 {
2803 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2804 = i;
b34976b6 2805 *again = TRUE;
930b4cb2
HPN
2806 }
2807
2808 /* Allocate register numbers (indexing from 0). Stop at the first
2809 non-valid reloc. */
2810 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2811 i < gregdata->n_bpo_relocs;
2812 i++)
2813 {
2814 if (gregdata->reloc_request[i].value > prev_base + 255)
2815 {
2816 regindex++;
2817 prev_base = gregdata->reloc_request[i].value;
2818 }
2819 gregdata->reloc_request[i].regindex = regindex;
2820 gregdata->reloc_request[i].offset
2821 = gregdata->reloc_request[i].value - prev_base;
2822 }
2823
2824 /* If it's not the same as the last time, we need to relax again,
2825 because the size of the section has changed. I'm not sure we
2826 actually need to do any adjustments since the shrinking happens
2827 at the start of this section, but better safe than sorry. */
2828 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2829 {
2830 gregdata->n_allocated_bpo_gregs = regindex + 1;
b34976b6 2831 *again = TRUE;
930b4cb2
HPN
2832 }
2833
eea6121a 2834 bpo_gregs_section->size = (regindex + 1) * 8;
930b4cb2
HPN
2835 }
2836
6cdc0ccc 2837 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
930b4cb2
HPN
2838 {
2839 if (! link_info->keep_memory)
6cdc0ccc
AM
2840 free (isymbuf);
2841 else
930b4cb2 2842 {
6cdc0ccc
AM
2843 /* Cache the symbols for elf_link_input_bfd. */
2844 symtab_hdr->contents = (unsigned char *) isymbuf;
930b4cb2
HPN
2845 }
2846 }
2847
284d826d
HPN
2848 BFD_ASSERT(pjsno == mmix_elf_section_data (sec)->pjs.n_pushj_relocs);
2849
6cdc0ccc
AM
2850 if (internal_relocs != NULL
2851 && elf_section_data (sec)->relocs != internal_relocs)
2852 free (internal_relocs);
2853
eea6121a 2854 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
f60ebe14
HPN
2855 abort ();
2856
eea6121a 2857 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
f60ebe14 2858 {
eea6121a 2859 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
f60ebe14
HPN
2860 *again = TRUE;
2861 }
2862
b34976b6 2863 return TRUE;
930b4cb2
HPN
2864
2865 error_return:
6cdc0ccc
AM
2866 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2867 free (isymbuf);
2868 if (internal_relocs != NULL
2869 && elf_section_data (sec)->relocs != internal_relocs)
2870 free (internal_relocs);
b34976b6 2871 return FALSE;
930b4cb2
HPN
2872}
2873\f
3c3bdf30 2874#define ELF_ARCH bfd_arch_mmix
07d6d2b8 2875#define ELF_MACHINE_CODE EM_MMIX
3c3bdf30
NC
2876
2877/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2878 However, that's too much for something somewhere in the linker part of
2879 BFD; perhaps the start-address has to be a non-zero multiple of this
2880 number, or larger than this number. The symptom is that the linker
2881 complains: "warning: allocated section `.text' not in segment". We
2882 settle for 64k; the page-size used in examples is 8k.
2883 #define ELF_MAXPAGESIZE 0x10000
2884
2885 Unfortunately, this causes excessive padding in the supposedly small
2886 for-education programs that are the expected usage (where people would
2887 inspect output). We stick to 256 bytes just to have *some* default
2888 alignment. */
2889#define ELF_MAXPAGESIZE 0x100
2890
6d00b590 2891#define TARGET_BIG_SYM mmix_elf64_vec
3c3bdf30
NC
2892#define TARGET_BIG_NAME "elf64-mmix"
2893
2894#define elf_info_to_howto_rel NULL
2895#define elf_info_to_howto mmix_info_to_howto_rela
2896#define elf_backend_relocate_section mmix_elf_relocate_section
2897#define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
930b4cb2 2898
3c3bdf30
NC
2899#define elf_backend_link_output_symbol_hook \
2900 mmix_elf_link_output_symbol_hook
2901#define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2902
2903#define elf_backend_check_relocs mmix_elf_check_relocs
2904#define elf_backend_symbol_processing mmix_elf_symbol_processing
d00dd7dc 2905#define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
3c3bdf30 2906
cd5b2bab
AM
2907#define bfd_elf64_bfd_copy_link_hash_symbol_type \
2908 _bfd_generic_copy_link_hash_symbol_type
2909
3c3bdf30
NC
2910#define bfd_elf64_bfd_is_local_label_name \
2911 mmix_elf_is_local_label_name
2912
2913#define elf_backend_may_use_rel_p 0
2914#define elf_backend_may_use_rela_p 1
2915#define elf_backend_default_use_rela_p 1
2916
2917#define elf_backend_can_gc_sections 1
2918#define elf_backend_section_from_bfd_section \
2919 mmix_elf_section_from_bfd_section
2920
f0abc2a1 2921#define bfd_elf64_new_section_hook mmix_elf_new_section_hook
3c3bdf30 2922#define bfd_elf64_bfd_final_link mmix_elf_final_link
930b4cb2 2923#define bfd_elf64_bfd_relax_section mmix_elf_relax_section
3c3bdf30
NC
2924
2925#include "elf64-target.h"
This page took 1.029188 seconds and 4 git commands to generate.