bfd/
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
CommitLineData
3c3bdf30 1/* MMIX-specific support for 64-bit ELF.
f0abc2a1 2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
3c3bdf30
NC
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21/* No specific ABI or "processor-specific supplement" defined. */
22
23/* TODO:
f60ebe14
HPN
24 - "Traditional" linker relaxation (shrinking whole sections).
25 - Merge reloc stubs jumping to same location.
26 - GETA stub relaxation (call a stub for out of range new
27 R_MMIX_GETA_STUBBABLE). */
3c3bdf30
NC
28
29#include "bfd.h"
30#include "sysdep.h"
31#include "libbfd.h"
32#include "elf-bfd.h"
33#include "elf/mmix.h"
34#include "opcode/mmix.h"
35
36#define MINUS_ONE (((bfd_vma) 0) - 1)
37
f60ebe14
HPN
38#define MAX_PUSHJ_STUB_SIZE (5 * 4)
39
3c3bdf30
NC
40/* Put these everywhere in new code. */
41#define FATAL_DEBUG \
42 _bfd_abort (__FILE__, __LINE__, \
43 "Internal: Non-debugged code (test-case missing)")
44
45#define BAD_CASE(x) \
46 _bfd_abort (__FILE__, __LINE__, \
47 "bad case for " #x)
48
f0abc2a1
AM
49struct _mmix_elf_section_data
50{
51 struct bfd_elf_section_data elf;
52 union
53 {
54 struct bpo_reloc_section_info *reloc;
55 struct bpo_greg_section_info *greg;
56 } bpo;
f60ebe14
HPN
57
58 struct pushj_stub_info
59 {
60 /* Maximum number of stubs needed for this section. */
61 bfd_size_type n_pushj_relocs;
62
63 /* Size of stubs after a mmix_elf_relax_section round. */
64 bfd_size_type stubs_size_sum;
65
66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
67 of these. Allocated in mmix_elf_check_common_relocs. */
68 bfd_size_type *stub_size;
69
70 /* Offset of next stub during relocation. Somewhat redundant with the
71 above: error coverage is easier and we don't have to reset the
72 stubs_size_sum for relocation. */
73 bfd_size_type stub_offset;
74 } pjs;
f0abc2a1
AM
75};
76
77#define mmix_elf_section_data(sec) \
68bfbfcc 78 ((struct _mmix_elf_section_data *) elf_section_data (sec))
f0abc2a1 79
930b4cb2 80/* For each section containing a base-plus-offset (BPO) reloc, we attach
f0abc2a1 81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
930b4cb2
HPN
82 NULL. */
83struct bpo_reloc_section_info
84 {
85 /* The base is 1; this is the first number in this section. */
86 size_t first_base_plus_offset_reloc;
87
88 /* Number of BPO-relocs in this section. */
89 size_t n_bpo_relocs_this_section;
90
91 /* Running index, used at relocation time. */
92 size_t bpo_index;
93
94 /* We don't have access to the bfd_link_info struct in
95 mmix_final_link_relocate. What we really want to get at is the
96 global single struct greg_relocation, so we stash it here. */
97 asection *bpo_greg_section;
98 };
99
100/* Helper struct (in global context) for the one below.
101 There's one of these created for every BPO reloc. */
102struct bpo_reloc_request
103 {
104 bfd_vma value;
105
106 /* Valid after relaxation. The base is 0; the first register number
107 must be added. The offset is in range 0..255. */
108 size_t regindex;
109 size_t offset;
110
111 /* The order number for this BPO reloc, corresponding to the order in
112 which BPO relocs were found. Used to create an index after reloc
113 requests are sorted. */
114 size_t bpo_reloc_no;
115
116 /* Set when the value is computed. Better than coding "guard values"
b34976b6 117 into the other members. Is FALSE only for BPO relocs in a GC:ed
930b4cb2 118 section. */
b34976b6 119 bfd_boolean valid;
930b4cb2
HPN
120 };
121
f0abc2a1 122/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
930b4cb2
HPN
123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124 which is linked into the register contents section
125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
126 linker; using the same hook as for usual with BPO relocs does not
127 collide. */
128struct bpo_greg_section_info
129 {
130 /* After GC, this reflects the number of remaining, non-excluded
131 BPO-relocs. */
132 size_t n_bpo_relocs;
133
134 /* This is the number of allocated bpo_reloc_requests; the size of
135 sorted_indexes. Valid after the check.*relocs functions are called
136 for all incoming sections. It includes the number of BPO relocs in
137 sections that were GC:ed. */
138 size_t n_max_bpo_relocs;
139
140 /* A counter used to find out when to fold the BPO gregs, since we
141 don't have a single "after-relaxation" hook. */
142 size_t n_remaining_bpo_relocs_this_relaxation_round;
143
144 /* The number of linker-allocated GREGs resulting from BPO relocs.
f60ebe14
HPN
145 This is an approximation after _bfd_mmix_before_linker_allocation
146 and supposedly accurate after mmix_elf_relax_section is called for
147 all incoming non-collected sections. */
930b4cb2
HPN
148 size_t n_allocated_bpo_gregs;
149
150 /* Index into reloc_request[], sorted on increasing "value", secondary
151 by increasing index for strict sorting order. */
152 size_t *bpo_reloc_indexes;
153
154 /* An array of all relocations, with the "value" member filled in by
155 the relaxation function. */
156 struct bpo_reloc_request *reloc_request;
157 };
158
b34976b6 159static bfd_boolean mmix_elf_link_output_symbol_hook
754021d0
AM
160 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
161 asection *, struct elf_link_hash_entry *));
3c3bdf30
NC
162
163static bfd_reloc_status_type mmix_elf_reloc
164 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
165
166static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
167 PARAMS ((bfd *, bfd_reloc_code_real_type));
168
169static void mmix_info_to_howto_rela
947216bf 170 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
3c3bdf30
NC
171
172static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
173
f0abc2a1
AM
174static bfd_boolean mmix_elf_new_section_hook
175 PARAMS ((bfd *, asection *));
176
b34976b6 177static bfd_boolean mmix_elf_check_relocs
3c3bdf30
NC
178 PARAMS ((bfd *, struct bfd_link_info *, asection *,
179 const Elf_Internal_Rela *));
180
b34976b6 181static bfd_boolean mmix_elf_check_common_relocs
930b4cb2
HPN
182 PARAMS ((bfd *, struct bfd_link_info *, asection *,
183 const Elf_Internal_Rela *));
184
b34976b6 185static bfd_boolean mmix_elf_relocate_section
3c3bdf30
NC
186 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
187 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
188
189static asection * mmix_elf_gc_mark_hook
1e2f5b6e 190 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
3c3bdf30
NC
191 struct elf_link_hash_entry *, Elf_Internal_Sym *));
192
b34976b6 193static bfd_boolean mmix_elf_gc_sweep_hook
930b4cb2
HPN
194 PARAMS ((bfd *, struct bfd_link_info *, asection *,
195 const Elf_Internal_Rela *));
196
3c3bdf30
NC
197static bfd_reloc_status_type mmix_final_link_relocate
198 PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
199 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
200
201static bfd_reloc_status_type mmix_elf_perform_relocation
202 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
203
b34976b6 204static bfd_boolean mmix_elf_section_from_bfd_section
af746e92 205 PARAMS ((bfd *, asection *, int *));
3c3bdf30 206
b34976b6 207static bfd_boolean mmix_elf_add_symbol_hook
3c3bdf30
NC
208 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
209 const char **, flagword *, asection **, bfd_vma *));
210
b34976b6 211static bfd_boolean mmix_elf_is_local_label_name
3c3bdf30
NC
212 PARAMS ((bfd *, const char *));
213
930b4cb2
HPN
214static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
215
b34976b6 216static bfd_boolean mmix_elf_relax_section
930b4cb2 217 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
b34976b6 218 bfd_boolean *again));
930b4cb2 219
b34976b6 220extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
3c3bdf30
NC
221
222extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
223
4fa5c2a8
HPN
224/* Only intended to be called from a debugger. */
225extern void mmix_dump_bpo_gregs
226 PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
227
f60ebe14
HPN
228static void
229mmix_set_relaxable_size
230 PARAMS ((bfd *, asection *, void *));
231
232static bfd_boolean
233mmix_elf_get_section_contents
234 PARAMS ((bfd *, sec_ptr, void *, file_ptr, bfd_size_type));
235
236
3c3bdf30
NC
237/* Watch out: this currently needs to have elements with the same index as
238 their R_MMIX_ number. */
239static reloc_howto_type elf_mmix_howto_table[] =
240 {
241 /* This reloc does nothing. */
242 HOWTO (R_MMIX_NONE, /* type */
243 0, /* rightshift */
244 2, /* size (0 = byte, 1 = short, 2 = long) */
245 32, /* bitsize */
b34976b6 246 FALSE, /* pc_relative */
3c3bdf30
NC
247 0, /* bitpos */
248 complain_overflow_bitfield, /* complain_on_overflow */
249 bfd_elf_generic_reloc, /* special_function */
250 "R_MMIX_NONE", /* name */
b34976b6 251 FALSE, /* partial_inplace */
3c3bdf30
NC
252 0, /* src_mask */
253 0, /* dst_mask */
b34976b6 254 FALSE), /* pcrel_offset */
3c3bdf30
NC
255
256 /* An 8 bit absolute relocation. */
257 HOWTO (R_MMIX_8, /* type */
258 0, /* rightshift */
259 0, /* size (0 = byte, 1 = short, 2 = long) */
260 8, /* bitsize */
b34976b6 261 FALSE, /* pc_relative */
3c3bdf30
NC
262 0, /* bitpos */
263 complain_overflow_bitfield, /* complain_on_overflow */
264 bfd_elf_generic_reloc, /* special_function */
265 "R_MMIX_8", /* name */
b34976b6 266 FALSE, /* partial_inplace */
930b4cb2 267 0, /* src_mask */
3c3bdf30 268 0xff, /* dst_mask */
b34976b6 269 FALSE), /* pcrel_offset */
3c3bdf30
NC
270
271 /* An 16 bit absolute relocation. */
272 HOWTO (R_MMIX_16, /* type */
273 0, /* rightshift */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
275 16, /* bitsize */
b34976b6 276 FALSE, /* pc_relative */
3c3bdf30
NC
277 0, /* bitpos */
278 complain_overflow_bitfield, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_MMIX_16", /* name */
b34976b6 281 FALSE, /* partial_inplace */
930b4cb2 282 0, /* src_mask */
3c3bdf30 283 0xffff, /* dst_mask */
b34976b6 284 FALSE), /* pcrel_offset */
3c3bdf30
NC
285
286 /* An 24 bit absolute relocation. */
287 HOWTO (R_MMIX_24, /* type */
288 0, /* rightshift */
289 2, /* size (0 = byte, 1 = short, 2 = long) */
290 24, /* bitsize */
b34976b6 291 FALSE, /* pc_relative */
3c3bdf30
NC
292 0, /* bitpos */
293 complain_overflow_bitfield, /* complain_on_overflow */
294 bfd_elf_generic_reloc, /* special_function */
295 "R_MMIX_24", /* name */
b34976b6 296 FALSE, /* partial_inplace */
930b4cb2 297 ~0xffffff, /* src_mask */
3c3bdf30 298 0xffffff, /* dst_mask */
b34976b6 299 FALSE), /* pcrel_offset */
3c3bdf30
NC
300
301 /* A 32 bit absolute relocation. */
302 HOWTO (R_MMIX_32, /* type */
303 0, /* rightshift */
304 2, /* size (0 = byte, 1 = short, 2 = long) */
305 32, /* bitsize */
b34976b6 306 FALSE, /* pc_relative */
3c3bdf30
NC
307 0, /* bitpos */
308 complain_overflow_bitfield, /* complain_on_overflow */
309 bfd_elf_generic_reloc, /* special_function */
310 "R_MMIX_32", /* name */
b34976b6 311 FALSE, /* partial_inplace */
930b4cb2 312 0, /* src_mask */
3c3bdf30 313 0xffffffff, /* dst_mask */
b34976b6 314 FALSE), /* pcrel_offset */
3c3bdf30
NC
315
316 /* 64 bit relocation. */
317 HOWTO (R_MMIX_64, /* type */
318 0, /* rightshift */
319 4, /* size (0 = byte, 1 = short, 2 = long) */
320 64, /* bitsize */
b34976b6 321 FALSE, /* pc_relative */
3c3bdf30
NC
322 0, /* bitpos */
323 complain_overflow_bitfield, /* complain_on_overflow */
324 bfd_elf_generic_reloc, /* special_function */
325 "R_MMIX_64", /* name */
b34976b6 326 FALSE, /* partial_inplace */
930b4cb2 327 0, /* src_mask */
3c3bdf30 328 MINUS_ONE, /* dst_mask */
b34976b6 329 FALSE), /* pcrel_offset */
3c3bdf30
NC
330
331 /* An 8 bit PC-relative relocation. */
332 HOWTO (R_MMIX_PC_8, /* type */
333 0, /* rightshift */
334 0, /* size (0 = byte, 1 = short, 2 = long) */
335 8, /* bitsize */
b34976b6 336 TRUE, /* pc_relative */
3c3bdf30
NC
337 0, /* bitpos */
338 complain_overflow_bitfield, /* complain_on_overflow */
339 bfd_elf_generic_reloc, /* special_function */
340 "R_MMIX_PC_8", /* name */
b34976b6 341 FALSE, /* partial_inplace */
930b4cb2 342 0, /* src_mask */
3c3bdf30 343 0xff, /* dst_mask */
b34976b6 344 TRUE), /* pcrel_offset */
3c3bdf30
NC
345
346 /* An 16 bit PC-relative relocation. */
347 HOWTO (R_MMIX_PC_16, /* type */
348 0, /* rightshift */
349 1, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
b34976b6 351 TRUE, /* pc_relative */
3c3bdf30
NC
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_MMIX_PC_16", /* name */
b34976b6 356 FALSE, /* partial_inplace */
930b4cb2 357 0, /* src_mask */
3c3bdf30 358 0xffff, /* dst_mask */
b34976b6 359 TRUE), /* pcrel_offset */
3c3bdf30
NC
360
361 /* An 24 bit PC-relative relocation. */
362 HOWTO (R_MMIX_PC_24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 24, /* bitsize */
b34976b6 366 TRUE, /* pc_relative */
3c3bdf30
NC
367 0, /* bitpos */
368 complain_overflow_bitfield, /* complain_on_overflow */
369 bfd_elf_generic_reloc, /* special_function */
370 "R_MMIX_PC_24", /* name */
b34976b6 371 FALSE, /* partial_inplace */
930b4cb2 372 ~0xffffff, /* src_mask */
3c3bdf30 373 0xffffff, /* dst_mask */
b34976b6 374 TRUE), /* pcrel_offset */
3c3bdf30
NC
375
376 /* A 32 bit absolute PC-relative relocation. */
377 HOWTO (R_MMIX_PC_32, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
b34976b6 381 TRUE, /* pc_relative */
3c3bdf30
NC
382 0, /* bitpos */
383 complain_overflow_bitfield, /* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_MMIX_PC_32", /* name */
b34976b6 386 FALSE, /* partial_inplace */
930b4cb2 387 0, /* src_mask */
3c3bdf30 388 0xffffffff, /* dst_mask */
b34976b6 389 TRUE), /* pcrel_offset */
3c3bdf30
NC
390
391 /* 64 bit PC-relative relocation. */
392 HOWTO (R_MMIX_PC_64, /* type */
393 0, /* rightshift */
394 4, /* size (0 = byte, 1 = short, 2 = long) */
395 64, /* bitsize */
b34976b6 396 TRUE, /* pc_relative */
3c3bdf30
NC
397 0, /* bitpos */
398 complain_overflow_bitfield, /* complain_on_overflow */
399 bfd_elf_generic_reloc, /* special_function */
400 "R_MMIX_PC_64", /* name */
b34976b6 401 FALSE, /* partial_inplace */
930b4cb2 402 0, /* src_mask */
3c3bdf30 403 MINUS_ONE, /* dst_mask */
b34976b6 404 TRUE), /* pcrel_offset */
3c3bdf30
NC
405
406 /* GNU extension to record C++ vtable hierarchy. */
407 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
408 0, /* rightshift */
409 0, /* size (0 = byte, 1 = short, 2 = long) */
410 0, /* bitsize */
b34976b6 411 FALSE, /* pc_relative */
3c3bdf30
NC
412 0, /* bitpos */
413 complain_overflow_dont, /* complain_on_overflow */
414 NULL, /* special_function */
415 "R_MMIX_GNU_VTINHERIT", /* name */
b34976b6 416 FALSE, /* partial_inplace */
3c3bdf30
NC
417 0, /* src_mask */
418 0, /* dst_mask */
b34976b6 419 TRUE), /* pcrel_offset */
3c3bdf30
NC
420
421 /* GNU extension to record C++ vtable member usage. */
422 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
423 0, /* rightshift */
424 0, /* size (0 = byte, 1 = short, 2 = long) */
425 0, /* bitsize */
b34976b6 426 FALSE, /* pc_relative */
3c3bdf30
NC
427 0, /* bitpos */
428 complain_overflow_dont, /* complain_on_overflow */
429 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
430 "R_MMIX_GNU_VTENTRY", /* name */
b34976b6 431 FALSE, /* partial_inplace */
3c3bdf30
NC
432 0, /* src_mask */
433 0, /* dst_mask */
b34976b6 434 FALSE), /* pcrel_offset */
3c3bdf30
NC
435
436 /* The GETA relocation is supposed to get any address that could
437 possibly be reached by the GETA instruction. It can silently expand
438 to get a 64-bit operand, but will complain if any of the two least
439 significant bits are set. The howto members reflect a simple GETA. */
440 HOWTO (R_MMIX_GETA, /* type */
441 2, /* rightshift */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
443 19, /* bitsize */
b34976b6 444 TRUE, /* pc_relative */
3c3bdf30
NC
445 0, /* bitpos */
446 complain_overflow_signed, /* complain_on_overflow */
447 mmix_elf_reloc, /* special_function */
448 "R_MMIX_GETA", /* name */
b34976b6 449 FALSE, /* partial_inplace */
930b4cb2 450 ~0x0100ffff, /* src_mask */
3c3bdf30 451 0x0100ffff, /* dst_mask */
b34976b6 452 TRUE), /* pcrel_offset */
3c3bdf30
NC
453
454 HOWTO (R_MMIX_GETA_1, /* type */
455 2, /* rightshift */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
457 19, /* bitsize */
b34976b6 458 TRUE, /* pc_relative */
3c3bdf30
NC
459 0, /* bitpos */
460 complain_overflow_signed, /* complain_on_overflow */
461 mmix_elf_reloc, /* special_function */
462 "R_MMIX_GETA_1", /* name */
b34976b6 463 FALSE, /* partial_inplace */
930b4cb2 464 ~0x0100ffff, /* src_mask */
3c3bdf30 465 0x0100ffff, /* dst_mask */
b34976b6 466 TRUE), /* pcrel_offset */
3c3bdf30
NC
467
468 HOWTO (R_MMIX_GETA_2, /* type */
469 2, /* rightshift */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
471 19, /* bitsize */
b34976b6 472 TRUE, /* pc_relative */
3c3bdf30
NC
473 0, /* bitpos */
474 complain_overflow_signed, /* complain_on_overflow */
475 mmix_elf_reloc, /* special_function */
476 "R_MMIX_GETA_2", /* name */
b34976b6 477 FALSE, /* partial_inplace */
930b4cb2 478 ~0x0100ffff, /* src_mask */
3c3bdf30 479 0x0100ffff, /* dst_mask */
b34976b6 480 TRUE), /* pcrel_offset */
3c3bdf30
NC
481
482 HOWTO (R_MMIX_GETA_3, /* type */
483 2, /* rightshift */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
485 19, /* bitsize */
b34976b6 486 TRUE, /* pc_relative */
3c3bdf30
NC
487 0, /* bitpos */
488 complain_overflow_signed, /* complain_on_overflow */
489 mmix_elf_reloc, /* special_function */
490 "R_MMIX_GETA_3", /* name */
b34976b6 491 FALSE, /* partial_inplace */
930b4cb2 492 ~0x0100ffff, /* src_mask */
3c3bdf30 493 0x0100ffff, /* dst_mask */
b34976b6 494 TRUE), /* pcrel_offset */
3c3bdf30
NC
495
496 /* The conditional branches are supposed to reach any (code) address.
497 It can silently expand to a 64-bit operand, but will emit an error if
498 any of the two least significant bits are set. The howto members
499 reflect a simple branch. */
500 HOWTO (R_MMIX_CBRANCH, /* type */
501 2, /* rightshift */
502 2, /* size (0 = byte, 1 = short, 2 = long) */
503 19, /* bitsize */
b34976b6 504 TRUE, /* pc_relative */
3c3bdf30
NC
505 0, /* bitpos */
506 complain_overflow_signed, /* complain_on_overflow */
507 mmix_elf_reloc, /* special_function */
508 "R_MMIX_CBRANCH", /* name */
b34976b6 509 FALSE, /* partial_inplace */
930b4cb2 510 ~0x0100ffff, /* src_mask */
3c3bdf30 511 0x0100ffff, /* dst_mask */
b34976b6 512 TRUE), /* pcrel_offset */
3c3bdf30
NC
513
514 HOWTO (R_MMIX_CBRANCH_J, /* type */
515 2, /* rightshift */
516 2, /* size (0 = byte, 1 = short, 2 = long) */
517 19, /* bitsize */
b34976b6 518 TRUE, /* pc_relative */
3c3bdf30
NC
519 0, /* bitpos */
520 complain_overflow_signed, /* complain_on_overflow */
521 mmix_elf_reloc, /* special_function */
522 "R_MMIX_CBRANCH_J", /* name */
b34976b6 523 FALSE, /* partial_inplace */
930b4cb2 524 ~0x0100ffff, /* src_mask */
3c3bdf30 525 0x0100ffff, /* dst_mask */
b34976b6 526 TRUE), /* pcrel_offset */
3c3bdf30
NC
527
528 HOWTO (R_MMIX_CBRANCH_1, /* type */
529 2, /* rightshift */
530 2, /* size (0 = byte, 1 = short, 2 = long) */
531 19, /* bitsize */
b34976b6 532 TRUE, /* pc_relative */
3c3bdf30
NC
533 0, /* bitpos */
534 complain_overflow_signed, /* complain_on_overflow */
535 mmix_elf_reloc, /* special_function */
536 "R_MMIX_CBRANCH_1", /* name */
b34976b6 537 FALSE, /* partial_inplace */
930b4cb2 538 ~0x0100ffff, /* src_mask */
3c3bdf30 539 0x0100ffff, /* dst_mask */
b34976b6 540 TRUE), /* pcrel_offset */
3c3bdf30
NC
541
542 HOWTO (R_MMIX_CBRANCH_2, /* type */
543 2, /* rightshift */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
545 19, /* bitsize */
b34976b6 546 TRUE, /* pc_relative */
3c3bdf30
NC
547 0, /* bitpos */
548 complain_overflow_signed, /* complain_on_overflow */
549 mmix_elf_reloc, /* special_function */
550 "R_MMIX_CBRANCH_2", /* name */
b34976b6 551 FALSE, /* partial_inplace */
930b4cb2 552 ~0x0100ffff, /* src_mask */
3c3bdf30 553 0x0100ffff, /* dst_mask */
b34976b6 554 TRUE), /* pcrel_offset */
3c3bdf30
NC
555
556 HOWTO (R_MMIX_CBRANCH_3, /* type */
557 2, /* rightshift */
558 2, /* size (0 = byte, 1 = short, 2 = long) */
559 19, /* bitsize */
b34976b6 560 TRUE, /* pc_relative */
3c3bdf30
NC
561 0, /* bitpos */
562 complain_overflow_signed, /* complain_on_overflow */
563 mmix_elf_reloc, /* special_function */
564 "R_MMIX_CBRANCH_3", /* name */
b34976b6 565 FALSE, /* partial_inplace */
930b4cb2 566 ~0x0100ffff, /* src_mask */
3c3bdf30 567 0x0100ffff, /* dst_mask */
b34976b6 568 TRUE), /* pcrel_offset */
3c3bdf30
NC
569
570 /* The PUSHJ instruction can reach any (code) address, as long as it's
571 the beginning of a function (no usable restriction). It can silently
572 expand to a 64-bit operand, but will emit an error if any of the two
f60ebe14
HPN
573 least significant bits are set. It can also expand into a call to a
574 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
3c3bdf30
NC
575 PUSHJ. */
576 HOWTO (R_MMIX_PUSHJ, /* type */
577 2, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 19, /* bitsize */
b34976b6 580 TRUE, /* pc_relative */
3c3bdf30
NC
581 0, /* bitpos */
582 complain_overflow_signed, /* complain_on_overflow */
583 mmix_elf_reloc, /* special_function */
584 "R_MMIX_PUSHJ", /* name */
b34976b6 585 FALSE, /* partial_inplace */
930b4cb2 586 ~0x0100ffff, /* src_mask */
3c3bdf30 587 0x0100ffff, /* dst_mask */
b34976b6 588 TRUE), /* pcrel_offset */
3c3bdf30
NC
589
590 HOWTO (R_MMIX_PUSHJ_1, /* type */
591 2, /* rightshift */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
593 19, /* bitsize */
b34976b6 594 TRUE, /* pc_relative */
3c3bdf30
NC
595 0, /* bitpos */
596 complain_overflow_signed, /* complain_on_overflow */
597 mmix_elf_reloc, /* special_function */
598 "R_MMIX_PUSHJ_1", /* name */
b34976b6 599 FALSE, /* partial_inplace */
930b4cb2 600 ~0x0100ffff, /* src_mask */
3c3bdf30 601 0x0100ffff, /* dst_mask */
b34976b6 602 TRUE), /* pcrel_offset */
3c3bdf30
NC
603
604 HOWTO (R_MMIX_PUSHJ_2, /* type */
605 2, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 19, /* bitsize */
b34976b6 608 TRUE, /* pc_relative */
3c3bdf30
NC
609 0, /* bitpos */
610 complain_overflow_signed, /* complain_on_overflow */
611 mmix_elf_reloc, /* special_function */
612 "R_MMIX_PUSHJ_2", /* name */
b34976b6 613 FALSE, /* partial_inplace */
930b4cb2 614 ~0x0100ffff, /* src_mask */
3c3bdf30 615 0x0100ffff, /* dst_mask */
b34976b6 616 TRUE), /* pcrel_offset */
3c3bdf30
NC
617
618 HOWTO (R_MMIX_PUSHJ_3, /* type */
619 2, /* rightshift */
620 2, /* size (0 = byte, 1 = short, 2 = long) */
621 19, /* bitsize */
b34976b6 622 TRUE, /* pc_relative */
3c3bdf30
NC
623 0, /* bitpos */
624 complain_overflow_signed, /* complain_on_overflow */
625 mmix_elf_reloc, /* special_function */
626 "R_MMIX_PUSHJ_3", /* name */
b34976b6 627 FALSE, /* partial_inplace */
930b4cb2 628 ~0x0100ffff, /* src_mask */
3c3bdf30 629 0x0100ffff, /* dst_mask */
b34976b6 630 TRUE), /* pcrel_offset */
3c3bdf30
NC
631
632 /* A JMP is supposed to reach any (code) address. By itself, it can
633 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
634 limit is soon reached if you link the program in wildly different
635 memory segments. The howto members reflect a trivial JMP. */
636 HOWTO (R_MMIX_JMP, /* type */
637 2, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 27, /* bitsize */
b34976b6 640 TRUE, /* pc_relative */
3c3bdf30
NC
641 0, /* bitpos */
642 complain_overflow_signed, /* complain_on_overflow */
643 mmix_elf_reloc, /* special_function */
644 "R_MMIX_JMP", /* name */
b34976b6 645 FALSE, /* partial_inplace */
930b4cb2 646 ~0x1ffffff, /* src_mask */
3c3bdf30 647 0x1ffffff, /* dst_mask */
b34976b6 648 TRUE), /* pcrel_offset */
3c3bdf30
NC
649
650 HOWTO (R_MMIX_JMP_1, /* type */
651 2, /* rightshift */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
653 27, /* bitsize */
b34976b6 654 TRUE, /* pc_relative */
3c3bdf30
NC
655 0, /* bitpos */
656 complain_overflow_signed, /* complain_on_overflow */
657 mmix_elf_reloc, /* special_function */
658 "R_MMIX_JMP_1", /* name */
b34976b6 659 FALSE, /* partial_inplace */
930b4cb2 660 ~0x1ffffff, /* src_mask */
3c3bdf30 661 0x1ffffff, /* dst_mask */
b34976b6 662 TRUE), /* pcrel_offset */
3c3bdf30
NC
663
664 HOWTO (R_MMIX_JMP_2, /* type */
665 2, /* rightshift */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
667 27, /* bitsize */
b34976b6 668 TRUE, /* pc_relative */
3c3bdf30
NC
669 0, /* bitpos */
670 complain_overflow_signed, /* complain_on_overflow */
671 mmix_elf_reloc, /* special_function */
672 "R_MMIX_JMP_2", /* name */
b34976b6 673 FALSE, /* partial_inplace */
930b4cb2 674 ~0x1ffffff, /* src_mask */
3c3bdf30 675 0x1ffffff, /* dst_mask */
b34976b6 676 TRUE), /* pcrel_offset */
3c3bdf30
NC
677
678 HOWTO (R_MMIX_JMP_3, /* type */
679 2, /* rightshift */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
681 27, /* bitsize */
b34976b6 682 TRUE, /* pc_relative */
3c3bdf30
NC
683 0, /* bitpos */
684 complain_overflow_signed, /* complain_on_overflow */
685 mmix_elf_reloc, /* special_function */
686 "R_MMIX_JMP_3", /* name */
b34976b6 687 FALSE, /* partial_inplace */
930b4cb2 688 ~0x1ffffff, /* src_mask */
3c3bdf30 689 0x1ffffff, /* dst_mask */
b34976b6 690 TRUE), /* pcrel_offset */
3c3bdf30
NC
691
692 /* When we don't emit link-time-relaxable code from the assembler, or
693 when relaxation has done all it can do, these relocs are used. For
694 GETA/PUSHJ/branches. */
695 HOWTO (R_MMIX_ADDR19, /* type */
696 2, /* rightshift */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
698 19, /* bitsize */
b34976b6 699 TRUE, /* pc_relative */
3c3bdf30
NC
700 0, /* bitpos */
701 complain_overflow_signed, /* complain_on_overflow */
702 mmix_elf_reloc, /* special_function */
703 "R_MMIX_ADDR19", /* name */
b34976b6 704 FALSE, /* partial_inplace */
930b4cb2 705 ~0x0100ffff, /* src_mask */
3c3bdf30 706 0x0100ffff, /* dst_mask */
b34976b6 707 TRUE), /* pcrel_offset */
3c3bdf30
NC
708
709 /* For JMP. */
710 HOWTO (R_MMIX_ADDR27, /* type */
711 2, /* rightshift */
712 2, /* size (0 = byte, 1 = short, 2 = long) */
713 27, /* bitsize */
b34976b6 714 TRUE, /* pc_relative */
3c3bdf30
NC
715 0, /* bitpos */
716 complain_overflow_signed, /* complain_on_overflow */
717 mmix_elf_reloc, /* special_function */
718 "R_MMIX_ADDR27", /* name */
b34976b6 719 FALSE, /* partial_inplace */
930b4cb2 720 ~0x1ffffff, /* src_mask */
3c3bdf30 721 0x1ffffff, /* dst_mask */
b34976b6 722 TRUE), /* pcrel_offset */
3c3bdf30
NC
723
724 /* A general register or the value 0..255. If a value, then the
725 instruction (offset -3) needs adjusting. */
726 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
727 0, /* rightshift */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
729 8, /* bitsize */
b34976b6 730 FALSE, /* pc_relative */
3c3bdf30
NC
731 0, /* bitpos */
732 complain_overflow_bitfield, /* complain_on_overflow */
733 mmix_elf_reloc, /* special_function */
734 "R_MMIX_REG_OR_BYTE", /* name */
b34976b6 735 FALSE, /* partial_inplace */
930b4cb2 736 0, /* src_mask */
3c3bdf30 737 0xff, /* dst_mask */
b34976b6 738 FALSE), /* pcrel_offset */
3c3bdf30
NC
739
740 /* A general register. */
741 HOWTO (R_MMIX_REG, /* type */
742 0, /* rightshift */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
744 8, /* bitsize */
b34976b6 745 FALSE, /* pc_relative */
3c3bdf30
NC
746 0, /* bitpos */
747 complain_overflow_bitfield, /* complain_on_overflow */
748 mmix_elf_reloc, /* special_function */
749 "R_MMIX_REG", /* name */
b34976b6 750 FALSE, /* partial_inplace */
930b4cb2 751 0, /* src_mask */
3c3bdf30 752 0xff, /* dst_mask */
b34976b6 753 FALSE), /* pcrel_offset */
3c3bdf30
NC
754
755 /* A register plus an index, corresponding to the relocation expression.
756 The sizes must correspond to the valid range of the expression, while
757 the bitmasks correspond to what we store in the image. */
758 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
759 0, /* rightshift */
760 4, /* size (0 = byte, 1 = short, 2 = long) */
761 64, /* bitsize */
b34976b6 762 FALSE, /* pc_relative */
3c3bdf30
NC
763 0, /* bitpos */
764 complain_overflow_bitfield, /* complain_on_overflow */
765 mmix_elf_reloc, /* special_function */
766 "R_MMIX_BASE_PLUS_OFFSET", /* name */
b34976b6 767 FALSE, /* partial_inplace */
930b4cb2 768 0, /* src_mask */
3c3bdf30 769 0xffff, /* dst_mask */
b34976b6 770 FALSE), /* pcrel_offset */
3c3bdf30
NC
771
772 /* A "magic" relocation for a LOCAL expression, asserting that the
773 expression is less than the number of global registers. No actual
774 modification of the contents is done. Implementing this as a
775 relocation was less intrusive than e.g. putting such expressions in a
776 section to discard *after* relocation. */
777 HOWTO (R_MMIX_LOCAL, /* type */
778 0, /* rightshift */
779 0, /* size (0 = byte, 1 = short, 2 = long) */
780 0, /* bitsize */
b34976b6 781 FALSE, /* pc_relative */
3c3bdf30
NC
782 0, /* bitpos */
783 complain_overflow_dont, /* complain_on_overflow */
784 mmix_elf_reloc, /* special_function */
785 "R_MMIX_LOCAL", /* name */
b34976b6 786 FALSE, /* partial_inplace */
3c3bdf30
NC
787 0, /* src_mask */
788 0, /* dst_mask */
b34976b6 789 FALSE), /* pcrel_offset */
f60ebe14
HPN
790
791 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
792 2, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 19, /* bitsize */
795 TRUE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_signed, /* complain_on_overflow */
798 mmix_elf_reloc, /* special_function */
799 "R_MMIX_PUSHJ_STUBBABLE", /* name */
800 FALSE, /* partial_inplace */
801 ~0x0100ffff, /* src_mask */
802 0x0100ffff, /* dst_mask */
803 TRUE) /* pcrel_offset */
3c3bdf30
NC
804 };
805
806
807/* Map BFD reloc types to MMIX ELF reloc types. */
808
809struct mmix_reloc_map
810 {
811 bfd_reloc_code_real_type bfd_reloc_val;
812 enum elf_mmix_reloc_type elf_reloc_val;
813 };
814
815
816static const struct mmix_reloc_map mmix_reloc_map[] =
817 {
818 {BFD_RELOC_NONE, R_MMIX_NONE},
819 {BFD_RELOC_8, R_MMIX_8},
820 {BFD_RELOC_16, R_MMIX_16},
821 {BFD_RELOC_24, R_MMIX_24},
822 {BFD_RELOC_32, R_MMIX_32},
823 {BFD_RELOC_64, R_MMIX_64},
824 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
825 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
826 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
827 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
828 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
829 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
830 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
831 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
832 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
833 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
834 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
835 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
836 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
837 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
838 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
839 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
f60ebe14
HPN
840 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
841 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
3c3bdf30
NC
842 };
843
844static reloc_howto_type *
845bfd_elf64_bfd_reloc_type_lookup (abfd, code)
846 bfd *abfd ATTRIBUTE_UNUSED;
847 bfd_reloc_code_real_type code;
848{
849 unsigned int i;
850
851 for (i = 0;
852 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
853 i++)
854 {
855 if (mmix_reloc_map[i].bfd_reloc_val == code)
856 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
857 }
858
859 return NULL;
860}
861
f0abc2a1
AM
862static bfd_boolean
863mmix_elf_new_section_hook (abfd, sec)
864 bfd *abfd;
865 asection *sec;
866{
867 struct _mmix_elf_section_data *sdata;
868 bfd_size_type amt = sizeof (*sdata);
869
870 sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
871 if (sdata == NULL)
872 return FALSE;
873 sec->used_by_bfd = (PTR) sdata;
874
875 return _bfd_elf_new_section_hook (abfd, sec);
876}
877
3c3bdf30
NC
878
879/* This function performs the actual bitfiddling and sanity check for a
880 final relocation. Each relocation gets its *worst*-case expansion
881 in size when it arrives here; any reduction in size should have been
882 caught in linker relaxation earlier. When we get here, the relocation
883 looks like the smallest instruction with SWYM:s (nop:s) appended to the
884 max size. We fill in those nop:s.
885
886 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
887 GETA $N,foo
888 ->
889 SETL $N,foo & 0xffff
890 INCML $N,(foo >> 16) & 0xffff
891 INCMH $N,(foo >> 32) & 0xffff
892 INCH $N,(foo >> 48) & 0xffff
893
894 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
895 condbranches needing relaxation might be rare enough to not be
896 worthwhile.)
897 [P]Bcc $N,foo
898 ->
899 [~P]B~cc $N,.+20
900 SETL $255,foo & ...
901 INCML ...
902 INCMH ...
903 INCH ...
904 GO $255,$255,0
905
906 R_MMIX_PUSHJ: (FIXME: Relaxation...)
907 PUSHJ $N,foo
908 ->
909 SETL $255,foo & ...
910 INCML ...
911 INCMH ...
912 INCH ...
913 PUSHGO $N,$255,0
914
915 R_MMIX_JMP: (FIXME: Relaxation...)
916 JMP foo
917 ->
918 SETL $255,foo & ...
919 INCML ...
920 INCMH ...
921 INCH ...
922 GO $255,$255,0
923
924 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
925
926static bfd_reloc_status_type
927mmix_elf_perform_relocation (isec, howto, datap, addr, value)
928 asection *isec;
929 reloc_howto_type *howto;
930 PTR datap;
f60ebe14 931 bfd_vma addr;
3c3bdf30
NC
932 bfd_vma value;
933{
934 bfd *abfd = isec->owner;
935 bfd_reloc_status_type flag = bfd_reloc_ok;
936 bfd_reloc_status_type r;
937 int offs = 0;
938 int reg = 255;
939
940 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
941 We handle the differences here and the common sequence later. */
942 switch (howto->type)
943 {
944 case R_MMIX_GETA:
945 offs = 0;
946 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
947
948 /* We change to an absolute value. */
949 value += addr;
950 break;
951
952 case R_MMIX_CBRANCH:
953 {
954 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
955
956 /* Invert the condition and prediction bit, and set the offset
957 to five instructions ahead.
958
959 We *can* do better if we want to. If the branch is found to be
960 within limits, we could leave the branch as is; there'll just
961 be a bunch of NOP:s after it. But we shouldn't see this
962 sequence often enough that it's worth doing it. */
963
964 bfd_put_32 (abfd,
965 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
966 | (24/4)),
967 (bfd_byte *) datap);
968
969 /* Put a "GO $255,$255,0" after the common sequence. */
970 bfd_put_32 (abfd,
971 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
972 (bfd_byte *) datap + 20);
973
974 /* Common sequence starts at offset 4. */
975 offs = 4;
976
977 /* We change to an absolute value. */
978 value += addr;
979 }
980 break;
981
f60ebe14
HPN
982 case R_MMIX_PUSHJ_STUBBABLE:
983 /* If the address fits, we're fine. */
984 if ((value & 3) == 0
985 /* Note rightshift 0; see R_MMIX_JMP case below. */
986 && (r = bfd_check_overflow (complain_overflow_signed,
987 howto->bitsize,
988 0,
989 bfd_arch_bits_per_address (abfd),
990 value)) == bfd_reloc_ok)
991 goto pcrel_mmix_reloc_fits;
992 else
993 {
994 bfd_size_type raw_size
995 = (isec->_raw_size
996 - mmix_elf_section_data (isec)->pjs.n_pushj_relocs
997 * MAX_PUSHJ_STUB_SIZE);
998
999 /* We have the bytes at the PUSHJ insn and need to get the
1000 position for the stub. There's supposed to be room allocated
1001 for the stub. */
1002 bfd_byte *stubcontents
1003 = ((char *) datap
1004 - (addr - (isec->output_section->vma + isec->output_offset))
1005 + raw_size
1006 + mmix_elf_section_data (isec)->pjs.stub_offset);
1007 bfd_vma stubaddr;
1008
1009 /* The address doesn't fit, so redirect the PUSHJ to the
1010 location of the stub. */
1011 r = mmix_elf_perform_relocation (isec,
1012 &elf_mmix_howto_table
1013 [R_MMIX_ADDR19],
1014 datap,
1015 addr,
1016 isec->output_section->vma
1017 + isec->output_offset
1018 + raw_size
1019 + (mmix_elf_section_data (isec)
1020 ->pjs.stub_offset)
1021 - addr);
1022 if (r != bfd_reloc_ok)
1023 return r;
1024
1025 stubaddr
1026 = (isec->output_section->vma
1027 + isec->output_offset
1028 + raw_size
1029 + mmix_elf_section_data (isec)->pjs.stub_offset);
1030
1031 /* We generate a simple JMP if that suffices, else the whole 5
1032 insn stub. */
1033 if (bfd_check_overflow (complain_overflow_signed,
1034 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1035 0,
1036 bfd_arch_bits_per_address (abfd),
1037 addr + value - stubaddr) == bfd_reloc_ok)
1038 {
1039 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1040 r = mmix_elf_perform_relocation (isec,
1041 &elf_mmix_howto_table
1042 [R_MMIX_ADDR27],
1043 stubcontents,
1044 stubaddr,
1045 value + addr - stubaddr);
1046 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1047
1048 if (raw_size
1049 + mmix_elf_section_data (isec)->pjs.stub_offset
1050 > isec->_cooked_size)
1051 abort ();
1052
1053 return r;
1054 }
1055 else
1056 {
1057 /* Put a "GO $255,0" after the common sequence. */
1058 bfd_put_32 (abfd,
1059 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1060 | 0xff00, (bfd_byte *) stubcontents + 16);
1061
1062 /* Prepare for the general code to set the first part of the
1063 linker stub, and */
1064 value += addr;
1065 datap = stubcontents;
1066 mmix_elf_section_data (isec)->pjs.stub_offset
1067 += MAX_PUSHJ_STUB_SIZE;
1068 }
1069 }
1070 break;
1071
3c3bdf30
NC
1072 case R_MMIX_PUSHJ:
1073 {
1074 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1075
1076 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1077 bfd_put_32 (abfd,
1078 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1079 | (inreg << 16)
1080 | 0xff00,
1081 (bfd_byte *) datap + 16);
1082
1083 /* We change to an absolute value. */
1084 value += addr;
1085 }
1086 break;
1087
1088 case R_MMIX_JMP:
1089 /* This one is a little special. If we get here on a non-relaxing
1090 link, and the destination is actually in range, we don't need to
1091 execute the nops.
1092 If so, we fall through to the bit-fiddling relocs.
1093
1094 FIXME: bfd_check_overflow seems broken; the relocation is
1095 rightshifted before testing, so supply a zero rightshift. */
1096
1097 if (! ((value & 3) == 0
1098 && (r = bfd_check_overflow (complain_overflow_signed,
1099 howto->bitsize,
1100 0,
1101 bfd_arch_bits_per_address (abfd),
1102 value)) == bfd_reloc_ok))
1103 {
1104 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1105 modified below, and put a "GO $255,$255,0" after the
1106 address-loading sequence. */
1107 bfd_put_32 (abfd,
1108 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1109 | 0xffff00,
1110 (bfd_byte *) datap + 16);
1111
1112 /* We change to an absolute value. */
1113 value += addr;
1114 break;
1115 }
cedb70c5 1116 /* FALLTHROUGH. */
3c3bdf30
NC
1117 case R_MMIX_ADDR19:
1118 case R_MMIX_ADDR27:
f60ebe14 1119 pcrel_mmix_reloc_fits:
3c3bdf30
NC
1120 /* These must be in range, or else we emit an error. */
1121 if ((value & 3) == 0
1122 /* Note rightshift 0; see above. */
1123 && (r = bfd_check_overflow (complain_overflow_signed,
1124 howto->bitsize,
1125 0,
1126 bfd_arch_bits_per_address (abfd),
1127 value)) == bfd_reloc_ok)
1128 {
1129 bfd_vma in1
1130 = bfd_get_32 (abfd, (bfd_byte *) datap);
1131 bfd_vma highbit;
1132
1133 if ((bfd_signed_vma) value < 0)
1134 {
f60ebe14 1135 highbit = 1 << 24;
3c3bdf30
NC
1136 value += (1 << (howto->bitsize - 1));
1137 }
1138 else
1139 highbit = 0;
1140
1141 value >>= 2;
1142
1143 bfd_put_32 (abfd,
930b4cb2 1144 (in1 & howto->src_mask)
3c3bdf30
NC
1145 | highbit
1146 | (value & howto->dst_mask),
1147 (bfd_byte *) datap);
1148
1149 return bfd_reloc_ok;
1150 }
1151 else
1152 return bfd_reloc_overflow;
1153
930b4cb2
HPN
1154 case R_MMIX_BASE_PLUS_OFFSET:
1155 {
1156 struct bpo_reloc_section_info *bpodata
f0abc2a1 1157 = mmix_elf_section_data (isec)->bpo.reloc;
930b4cb2
HPN
1158 asection *bpo_greg_section
1159 = bpodata->bpo_greg_section;
1160 struct bpo_greg_section_info *gregdata
f0abc2a1 1161 = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
930b4cb2
HPN
1162 size_t bpo_index
1163 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1164
1165 /* A consistency check: The value we now have in "relocation" must
1166 be the same as the value we stored for that relocation. It
1167 doesn't cost much, so can be left in at all times. */
1168 if (value != gregdata->reloc_request[bpo_index].value)
1169 {
1170 (*_bfd_error_handler)
1171 (_("%s: Internal inconsistency error for value for\n\
1172 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1173 bfd_get_filename (isec->owner),
1174 (unsigned long) (value >> 32), (unsigned long) value,
1175 (unsigned long) (gregdata->reloc_request[bpo_index].value
1176 >> 32),
1177 (unsigned long) gregdata->reloc_request[bpo_index].value);
1178 bfd_set_error (bfd_error_bad_value);
1179 return bfd_reloc_overflow;
1180 }
1181
1182 /* Then store the register number and offset for that register
1183 into datap and datap + 1 respectively. */
1184 bfd_put_8 (abfd,
1185 gregdata->reloc_request[bpo_index].regindex
1186 + bpo_greg_section->output_section->vma / 8,
1187 datap);
1188 bfd_put_8 (abfd,
1189 gregdata->reloc_request[bpo_index].offset,
1190 ((unsigned char *) datap) + 1);
1191 return bfd_reloc_ok;
1192 }
1193
3c3bdf30
NC
1194 case R_MMIX_REG_OR_BYTE:
1195 case R_MMIX_REG:
1196 if (value > 255)
1197 return bfd_reloc_overflow;
1198 bfd_put_8 (abfd, value, datap);
1199 return bfd_reloc_ok;
1200
1201 default:
1202 BAD_CASE (howto->type);
1203 }
1204
1205 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1206 sequence. */
1207
1208 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1209 everything that looks strange. */
1210 if (value & 3)
1211 flag = bfd_reloc_overflow;
1212
1213 bfd_put_32 (abfd,
1214 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1215 (bfd_byte *) datap + offs);
1216 bfd_put_32 (abfd,
1217 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1218 (bfd_byte *) datap + offs + 4);
1219 bfd_put_32 (abfd,
1220 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1221 (bfd_byte *) datap + offs + 8);
1222 bfd_put_32 (abfd,
1223 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1224 (bfd_byte *) datap + offs + 12);
1225
1226 return flag;
1227}
1228
1229/* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1230
1231static void
1232mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1233 bfd *abfd ATTRIBUTE_UNUSED;
1234 arelent *cache_ptr;
947216bf 1235 Elf_Internal_Rela *dst;
3c3bdf30
NC
1236{
1237 unsigned int r_type;
1238
1239 r_type = ELF64_R_TYPE (dst->r_info);
1240 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1241 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1242}
1243
1244/* Any MMIX-specific relocation gets here at assembly time or when linking
1245 to other formats (such as mmo); this is the relocation function from
1246 the reloc_table. We don't get here for final pure ELF linking. */
1247
1248static bfd_reloc_status_type
1249mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1250 output_bfd, error_message)
1251 bfd *abfd;
1252 arelent *reloc_entry;
1253 asymbol *symbol;
1254 PTR data;
1255 asection *input_section;
1256 bfd *output_bfd;
1257 char **error_message ATTRIBUTE_UNUSED;
1258{
1259 bfd_vma relocation;
1260 bfd_reloc_status_type r;
1261 asection *reloc_target_output_section;
1262 bfd_reloc_status_type flag = bfd_reloc_ok;
1263 bfd_vma output_base = 0;
1264 bfd_vma addr;
1265
1266 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1267 input_section, output_bfd, error_message);
1268
1269 /* If that was all that was needed (i.e. this isn't a final link, only
1270 some segment adjustments), we're done. */
1271 if (r != bfd_reloc_continue)
1272 return r;
1273
1274 if (bfd_is_und_section (symbol->section)
1275 && (symbol->flags & BSF_WEAK) == 0
1276 && output_bfd == (bfd *) NULL)
1277 return bfd_reloc_undefined;
1278
1279 /* Is the address of the relocation really within the section? */
1280 if (reloc_entry->address > input_section->_cooked_size)
1281 return bfd_reloc_outofrange;
1282
4cc11e76 1283 /* Work out which section the relocation is targeted at and the
3c3bdf30
NC
1284 initial relocation command value. */
1285
1286 /* Get symbol value. (Common symbols are special.) */
1287 if (bfd_is_com_section (symbol->section))
1288 relocation = 0;
1289 else
1290 relocation = symbol->value;
1291
1292 reloc_target_output_section = bfd_get_output_section (symbol);
1293
1294 /* Here the variable relocation holds the final address of the symbol we
1295 are relocating against, plus any addend. */
1296 if (output_bfd)
1297 output_base = 0;
1298 else
1299 output_base = reloc_target_output_section->vma;
1300
1301 relocation += output_base + symbol->section->output_offset;
1302
1303 /* Get position of relocation. */
1304 addr = (reloc_entry->address + input_section->output_section->vma
1305 + input_section->output_offset);
1306 if (output_bfd != (bfd *) NULL)
1307 {
1308 /* Add in supplied addend. */
1309 relocation += reloc_entry->addend;
1310
1311 /* This is a partial relocation, and we want to apply the
1312 relocation to the reloc entry rather than the raw data.
1313 Modify the reloc inplace to reflect what we now know. */
1314 reloc_entry->addend = relocation;
1315 reloc_entry->address += input_section->output_offset;
1316 return flag;
1317 }
1318
1319 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1320 data, reloc_entry->address,
1321 reloc_entry->addend, relocation,
1322 bfd_asymbol_name (symbol),
1323 reloc_target_output_section);
1324}
e06fcc86 1325\f
3c3bdf30
NC
1326/* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1327 for guidance if you're thinking of copying this. */
1328
b34976b6 1329static bfd_boolean
3c3bdf30
NC
1330mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1331 contents, relocs, local_syms, local_sections)
1332 bfd *output_bfd ATTRIBUTE_UNUSED;
1333 struct bfd_link_info *info;
1334 bfd *input_bfd;
1335 asection *input_section;
1336 bfd_byte *contents;
1337 Elf_Internal_Rela *relocs;
1338 Elf_Internal_Sym *local_syms;
1339 asection **local_sections;
1340{
1341 Elf_Internal_Shdr *symtab_hdr;
1342 struct elf_link_hash_entry **sym_hashes;
1343 Elf_Internal_Rela *rel;
1344 Elf_Internal_Rela *relend;
f60ebe14
HPN
1345 bfd_size_type raw_size
1346 = (input_section->_raw_size
1347 - mmix_elf_section_data (input_section)->pjs.n_pushj_relocs
1348 * MAX_PUSHJ_STUB_SIZE);
1349 size_t pjsno = 0;
3c3bdf30
NC
1350
1351 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1352 sym_hashes = elf_sym_hashes (input_bfd);
1353 relend = relocs + input_section->reloc_count;
1354
1355 for (rel = relocs; rel < relend; rel ++)
1356 {
1357 reloc_howto_type *howto;
1358 unsigned long r_symndx;
1359 Elf_Internal_Sym *sym;
1360 asection *sec;
1361 struct elf_link_hash_entry *h;
1362 bfd_vma relocation;
1363 bfd_reloc_status_type r;
1364 const char *name = NULL;
1365 int r_type;
b34976b6 1366 bfd_boolean undefined_signalled = FALSE;
3c3bdf30
NC
1367
1368 r_type = ELF64_R_TYPE (rel->r_info);
1369
1370 if (r_type == R_MMIX_GNU_VTINHERIT
1371 || r_type == R_MMIX_GNU_VTENTRY)
1372 continue;
1373
1374 r_symndx = ELF64_R_SYM (rel->r_info);
1375
1049f94e 1376 if (info->relocatable)
3c3bdf30 1377 {
f60ebe14
HPN
1378 /* This is a relocatable link. For most relocs we don't have to
1379 change anything, unless the reloc is against a section
1380 symbol, in which case we have to adjust according to where
1381 the section symbol winds up in the output section. */
3c3bdf30
NC
1382 if (r_symndx < symtab_hdr->sh_info)
1383 {
1384 sym = local_syms + r_symndx;
1385
1386 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1387 {
1388 sec = local_sections [r_symndx];
1389 rel->r_addend += sec->output_offset + sym->st_value;
1390 }
1391 }
1392
f60ebe14
HPN
1393 /* For PUSHJ stub relocs however, we may need to change the
1394 reloc and the section contents, if the reloc doesn't reach
1395 beyond the end of the output section and previous stubs.
1396 Then we change the section contents to be a PUSHJ to the end
1397 of the input section plus stubs (we can do that without using
1398 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1399 at the stub location. */
1400 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1401 {
1402 /* We've already checked whether we need a stub; use that
1403 knowledge. */
1404 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1405 != 0)
1406 {
1407 Elf_Internal_Rela relcpy;
1408
1409 if (mmix_elf_section_data (input_section)
1410 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1411 abort ();
1412
1413 /* There's already a PUSHJ insn there, so just fill in
1414 the offset bits to the stub. */
1415 if (mmix_final_link_relocate (elf_mmix_howto_table
1416 + R_MMIX_ADDR19,
1417 input_section,
1418 contents,
1419 rel->r_offset,
1420 0,
1421 input_section
1422 ->output_section->vma
1423 + input_section->output_offset
1424 + raw_size
1425 + mmix_elf_section_data (input_section)
1426 ->pjs.stub_offset,
1427 NULL, NULL) != bfd_reloc_ok)
1428 return FALSE;
1429
1430 /* Put a JMP insn at the stub; it goes with the
1431 R_MMIX_JMP reloc. */
1432 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1433 contents
1434 + raw_size
1435 + mmix_elf_section_data (input_section)
1436 ->pjs.stub_offset);
1437
1438 /* Change the reloc to be at the stub, and to a full
1439 R_MMIX_JMP reloc. */
1440 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1441 rel->r_offset
1442 = (raw_size
1443 + mmix_elf_section_data (input_section)
1444 ->pjs.stub_offset);
1445
1446 mmix_elf_section_data (input_section)->pjs.stub_offset
1447 += MAX_PUSHJ_STUB_SIZE;
1448
1449 /* Shift this reloc to the end of the relocs to maintain
1450 the r_offset sorted reloc order. */
1451 relcpy = *rel;
1452 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1453 relend[-1] = relcpy;
1454
1455 /* Back up one reloc, or else we'd skip the next reloc
1456 in turn. */
1457 rel--;
1458 }
1459
1460 pjsno++;
1461 }
3c3bdf30
NC
1462 continue;
1463 }
1464
1465 /* This is a final link. */
1466 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1467 h = NULL;
1468 sym = NULL;
1469 sec = NULL;
1470
1471 if (r_symndx < symtab_hdr->sh_info)
1472 {
1473 sym = local_syms + r_symndx;
1474 sec = local_sections [r_symndx];
8517fae7 1475 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3c3bdf30
NC
1476
1477 name = bfd_elf_string_from_elf_section
1478 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1479 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1480 }
1481 else
1482 {
59c2e50f 1483 bfd_boolean unresolved_reloc;
3c3bdf30 1484
59c2e50f
L
1485 RELOC_FOR_GLOBAL_SYMBOL (h, sym_hashes, r_symndx, symtab_hdr,
1486 relocation, sec, unresolved_reloc,
1487 info, undefined_signalled);
3c3bdf30
NC
1488 }
1489
1490 r = mmix_final_link_relocate (howto, input_section,
1491 contents, rel->r_offset,
1492 rel->r_addend, relocation, name, sec);
1493
1494 if (r != bfd_reloc_ok)
1495 {
b34976b6 1496 bfd_boolean check_ok = TRUE;
3c3bdf30
NC
1497 const char * msg = (const char *) NULL;
1498
1499 switch (r)
1500 {
1501 case bfd_reloc_overflow:
1502 check_ok = info->callbacks->reloc_overflow
1503 (info, name, howto->name, (bfd_vma) 0,
1504 input_bfd, input_section, rel->r_offset);
1505 break;
1506
1507 case bfd_reloc_undefined:
1508 /* We may have sent this message above. */
1509 if (! undefined_signalled)
1510 check_ok = info->callbacks->undefined_symbol
1511 (info, name, input_bfd, input_section, rel->r_offset,
b34976b6
AM
1512 TRUE);
1513 undefined_signalled = TRUE;
3c3bdf30
NC
1514 break;
1515
1516 case bfd_reloc_outofrange:
1517 msg = _("internal error: out of range error");
1518 break;
1519
1520 case bfd_reloc_notsupported:
1521 msg = _("internal error: unsupported relocation error");
1522 break;
1523
1524 case bfd_reloc_dangerous:
1525 msg = _("internal error: dangerous relocation");
1526 break;
1527
1528 default:
1529 msg = _("internal error: unknown error");
1530 break;
1531 }
1532
1533 if (msg)
1534 check_ok = info->callbacks->warning
1535 (info, msg, name, input_bfd, input_section, rel->r_offset);
1536
1537 if (! check_ok)
b34976b6 1538 return FALSE;
3c3bdf30
NC
1539 }
1540 }
1541
b34976b6 1542 return TRUE;
3c3bdf30 1543}
e06fcc86 1544\f
3c3bdf30
NC
1545/* Perform a single relocation. By default we use the standard BFD
1546 routines. A few relocs we have to do ourselves. */
1547
1548static bfd_reloc_status_type
1549mmix_final_link_relocate (howto, input_section, contents,
1550 r_offset, r_addend, relocation, symname, symsec)
1551 reloc_howto_type *howto;
1552 asection *input_section;
1553 bfd_byte *contents;
1554 bfd_vma r_offset;
1555 bfd_signed_vma r_addend;
1556 bfd_vma relocation;
1557 const char *symname;
1558 asection *symsec;
1559{
1560 bfd_reloc_status_type r = bfd_reloc_ok;
1561 bfd_vma addr
1562 = (input_section->output_section->vma
1563 + input_section->output_offset
1564 + r_offset);
1565 bfd_signed_vma srel
1566 = (bfd_signed_vma) relocation + r_addend;
1567
1568 switch (howto->type)
1569 {
1570 /* All these are PC-relative. */
f60ebe14 1571 case R_MMIX_PUSHJ_STUBBABLE:
3c3bdf30
NC
1572 case R_MMIX_PUSHJ:
1573 case R_MMIX_CBRANCH:
1574 case R_MMIX_ADDR19:
1575 case R_MMIX_GETA:
1576 case R_MMIX_ADDR27:
1577 case R_MMIX_JMP:
1578 contents += r_offset;
1579
1580 srel -= (input_section->output_section->vma
1581 + input_section->output_offset
1582 + r_offset);
1583
1584 r = mmix_elf_perform_relocation (input_section, howto, contents,
1585 addr, srel);
1586 break;
1587
930b4cb2
HPN
1588 case R_MMIX_BASE_PLUS_OFFSET:
1589 if (symsec == NULL)
1590 return bfd_reloc_undefined;
1591
1592 /* Check that we're not relocating against a register symbol. */
1593 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1594 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1595 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1596 MMIX_REG_SECTION_NAME) == 0)
1597 {
1598 /* Note: This is separated out into two messages in order
1599 to ease the translation into other languages. */
1600 if (symname == NULL || *symname == 0)
1601 (*_bfd_error_handler)
1602 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1603 bfd_get_filename (input_section->owner),
1604 bfd_get_section_name (symsec->owner, symsec));
1605 else
1606 (*_bfd_error_handler)
1607 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1608 bfd_get_filename (input_section->owner), symname,
1609 bfd_get_section_name (symsec->owner, symsec));
1610 return bfd_reloc_overflow;
1611 }
1612 goto do_mmix_reloc;
1613
3c3bdf30
NC
1614 case R_MMIX_REG_OR_BYTE:
1615 case R_MMIX_REG:
1616 /* For now, we handle these alike. They must refer to an register
1617 symbol, which is either relative to the register section and in
1618 the range 0..255, or is in the register contents section with vma
1619 regno * 8. */
1620
1621 /* FIXME: A better way to check for reg contents section?
1622 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1623 if (symsec == NULL)
1624 return bfd_reloc_undefined;
1625
1626 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1627 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1628 {
1629 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1630 {
1631 /* The bfd_reloc_outofrange return value, though intuitively
1632 a better value, will not get us an error. */
1633 return bfd_reloc_overflow;
1634 }
1635 srel /= 8;
1636 }
1637 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1638 MMIX_REG_SECTION_NAME) == 0)
1639 {
1640 if (srel < 0 || srel > 255)
1641 /* The bfd_reloc_outofrange return value, though intuitively a
1642 better value, will not get us an error. */
1643 return bfd_reloc_overflow;
1644 }
1645 else
1646 {
930b4cb2 1647 /* Note: This is separated out into two messages in order
ca09e32b
NC
1648 to ease the translation into other languages. */
1649 if (symname == NULL || *symname == 0)
1650 (*_bfd_error_handler)
1651 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1652 bfd_get_filename (input_section->owner),
1653 bfd_get_section_name (symsec->owner, symsec));
1654 else
1655 (*_bfd_error_handler)
1656 (_("%s: register relocation against non-register symbol: %s in %s"),
1657 bfd_get_filename (input_section->owner), symname,
1658 bfd_get_section_name (symsec->owner, symsec));
3c3bdf30
NC
1659
1660 /* The bfd_reloc_outofrange return value, though intuitively a
1661 better value, will not get us an error. */
1662 return bfd_reloc_overflow;
1663 }
930b4cb2 1664 do_mmix_reloc:
3c3bdf30
NC
1665 contents += r_offset;
1666 r = mmix_elf_perform_relocation (input_section, howto, contents,
1667 addr, srel);
1668 break;
1669
1670 case R_MMIX_LOCAL:
1671 /* This isn't a real relocation, it's just an assertion that the
1672 final relocation value corresponds to a local register. We
1673 ignore the actual relocation; nothing is changed. */
1674 {
1675 asection *regsec
1676 = bfd_get_section_by_name (input_section->output_section->owner,
1677 MMIX_REG_CONTENTS_SECTION_NAME);
1678 bfd_vma first_global;
1679
1680 /* Check that this is an absolute value, or a reference to the
1681 register contents section or the register (symbol) section.
1682 Absolute numbers can get here as undefined section. Undefined
1683 symbols are signalled elsewhere, so there's no conflict in us
1684 accidentally handling it. */
1685 if (!bfd_is_abs_section (symsec)
1686 && !bfd_is_und_section (symsec)
1687 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1688 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1689 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1690 MMIX_REG_SECTION_NAME) != 0)
1691 {
1692 (*_bfd_error_handler)
1693 (_("%s: directive LOCAL valid only with a register or absolute value"),
1694 bfd_get_filename (input_section->owner));
1695
1696 return bfd_reloc_overflow;
1697 }
1698
1699 /* If we don't have a register contents section, then $255 is the
1700 first global register. */
1701 if (regsec == NULL)
1702 first_global = 255;
1703 else
1704 {
1705 first_global = bfd_get_section_vma (abfd, regsec) / 8;
1706 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1708 {
1709 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1710 /* The bfd_reloc_outofrange return value, though
1711 intuitively a better value, will not get us an error. */
1712 return bfd_reloc_overflow;
1713 srel /= 8;
1714 }
1715 }
1716
1717 if ((bfd_vma) srel >= first_global)
1718 {
1719 /* FIXME: Better error message. */
1720 (*_bfd_error_handler)
1721 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1722 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1723
1724 return bfd_reloc_overflow;
1725 }
1726 }
1727 r = bfd_reloc_ok;
1728 break;
1729
1730 default:
1731 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1732 contents, r_offset,
1733 relocation, r_addend);
1734 }
1735
1736 return r;
1737}
e06fcc86 1738\f
3c3bdf30
NC
1739/* Return the section that should be marked against GC for a given
1740 relocation. */
1741
1742static asection *
1e2f5b6e
AM
1743mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1744 asection *sec;
3c3bdf30
NC
1745 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1746 Elf_Internal_Rela *rel;
1747 struct elf_link_hash_entry *h;
1748 Elf_Internal_Sym *sym;
1749{
1750 if (h != NULL)
1751 {
1752 switch (ELF64_R_TYPE (rel->r_info))
1753 {
1754 case R_MMIX_GNU_VTINHERIT:
1755 case R_MMIX_GNU_VTENTRY:
1756 break;
1757
1758 default:
1759 switch (h->root.type)
1760 {
1761 case bfd_link_hash_defined:
1762 case bfd_link_hash_defweak:
1763 return h->root.u.def.section;
1764
1765 case bfd_link_hash_common:
1766 return h->root.u.c.p->section;
1767
1768 default:
1769 break;
1770 }
1771 }
1772 }
1773 else
1e2f5b6e 1774 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
3c3bdf30
NC
1775
1776 return NULL;
1777}
930b4cb2
HPN
1778
1779/* Update relocation info for a GC-excluded section. We could supposedly
1780 perform the allocation after GC, but there's no suitable hook between
1781 GC (or section merge) and the point when all input sections must be
1782 present. Better to waste some memory and (perhaps) a little time. */
1783
b34976b6 1784static bfd_boolean
930b4cb2
HPN
1785mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1786 bfd *abfd ATTRIBUTE_UNUSED;
1787 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1788 asection *sec ATTRIBUTE_UNUSED;
1789 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1790{
1791 struct bpo_reloc_section_info *bpodata
f0abc2a1 1792 = mmix_elf_section_data (sec)->bpo.reloc;
930b4cb2
HPN
1793 asection *allocated_gregs_section;
1794
1795 /* If no bpodata here, we have nothing to do. */
1796 if (bpodata == NULL)
b34976b6 1797 return TRUE;
930b4cb2
HPN
1798
1799 allocated_gregs_section = bpodata->bpo_greg_section;
1800
f0abc2a1 1801 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
930b4cb2
HPN
1802 -= bpodata->n_bpo_relocs_this_section;
1803
b34976b6 1804 return TRUE;
930b4cb2 1805}
e06fcc86 1806\f
3c3bdf30
NC
1807/* Sort register relocs to come before expanding relocs. */
1808
1809static int
1810mmix_elf_sort_relocs (p1, p2)
1811 const PTR p1;
1812 const PTR p2;
1813{
1814 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1815 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1816 int r1_is_reg, r2_is_reg;
1817
1818 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1819 insns. */
1820 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1821 return 1;
1822 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1823 return -1;
1824
1825 r1_is_reg
1826 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1827 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1828 r2_is_reg
1829 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1830 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1831 if (r1_is_reg != r2_is_reg)
1832 return r2_is_reg - r1_is_reg;
1833
1834 /* Neither or both are register relocs. Then sort on full offset. */
1835 if (r1->r_offset > r2->r_offset)
1836 return 1;
1837 else if (r1->r_offset < r2->r_offset)
1838 return -1;
1839 return 0;
1840}
1841
930b4cb2
HPN
1842/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1843
b34976b6 1844static bfd_boolean
930b4cb2
HPN
1845mmix_elf_check_common_relocs (abfd, info, sec, relocs)
1846 bfd *abfd;
1847 struct bfd_link_info *info;
1848 asection *sec;
1849 const Elf_Internal_Rela *relocs;
1850{
1851 bfd *bpo_greg_owner = NULL;
1852 asection *allocated_gregs_section = NULL;
1853 struct bpo_greg_section_info *gregdata = NULL;
1854 struct bpo_reloc_section_info *bpodata = NULL;
1855 const Elf_Internal_Rela *rel;
1856 const Elf_Internal_Rela *rel_end;
1857
930b4cb2
HPN
1858 /* We currently have to abuse this COFF-specific member, since there's
1859 no target-machine-dedicated member. There's no alternative outside
1860 the bfd_link_info struct; we can't specialize a hash-table since
1861 they're different between ELF and mmo. */
1862 bpo_greg_owner = (bfd *) info->base_file;
1863
1864 rel_end = relocs + sec->reloc_count;
1865 for (rel = relocs; rel < rel_end; rel++)
1866 {
1867 switch (ELF64_R_TYPE (rel->r_info))
1868 {
1869 /* This relocation causes a GREG allocation. We need to count
1870 them, and we need to create a section for them, so we need an
1871 object to fake as the owner of that section. We can't use
1872 the ELF dynobj for this, since the ELF bits assume lots of
1873 DSO-related stuff if that member is non-NULL. */
1874 case R_MMIX_BASE_PLUS_OFFSET:
f60ebe14
HPN
1875 /* We don't do anything with this reloc for a relocatable link. */
1876 if (info->relocatable)
1877 break;
1878
930b4cb2
HPN
1879 if (bpo_greg_owner == NULL)
1880 {
1881 bpo_greg_owner = abfd;
1882 info->base_file = (PTR) bpo_greg_owner;
1883 }
1884
4fa5c2a8
HPN
1885 if (allocated_gregs_section == NULL)
1886 allocated_gregs_section
1887 = bfd_get_section_by_name (bpo_greg_owner,
1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1889
930b4cb2
HPN
1890 if (allocated_gregs_section == NULL)
1891 {
1892 allocated_gregs_section
1893 = bfd_make_section (bpo_greg_owner,
1894 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1895 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1896 treated like any other section, and we'd get errors for
1897 address overlap with the text section. Let's set none of
1898 those flags, as that is what currently happens for usual
1899 GREG allocations, and that works. */
1900 if (allocated_gregs_section == NULL
1901 || !bfd_set_section_flags (bpo_greg_owner,
1902 allocated_gregs_section,
1903 (SEC_HAS_CONTENTS
1904 | SEC_IN_MEMORY
1905 | SEC_LINKER_CREATED))
1906 || !bfd_set_section_alignment (bpo_greg_owner,
1907 allocated_gregs_section,
1908 3))
b34976b6 1909 return FALSE;
930b4cb2
HPN
1910
1911 gregdata = (struct bpo_greg_section_info *)
1912 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1913 if (gregdata == NULL)
b34976b6 1914 return FALSE;
f0abc2a1
AM
1915 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1916 = gregdata;
930b4cb2
HPN
1917 }
1918 else if (gregdata == NULL)
f0abc2a1
AM
1919 gregdata
1920 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
930b4cb2
HPN
1921
1922 /* Get ourselves some auxiliary info for the BPO-relocs. */
1923 if (bpodata == NULL)
1924 {
1925 /* No use doing a separate iteration pass to find the upper
1926 limit - just use the number of relocs. */
1927 bpodata = (struct bpo_reloc_section_info *)
1928 bfd_alloc (bpo_greg_owner,
1929 sizeof (struct bpo_reloc_section_info)
1930 * (sec->reloc_count + 1));
1931 if (bpodata == NULL)
b34976b6 1932 return FALSE;
f0abc2a1 1933 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
930b4cb2
HPN
1934 bpodata->first_base_plus_offset_reloc
1935 = bpodata->bpo_index
1936 = gregdata->n_max_bpo_relocs;
1937 bpodata->bpo_greg_section
1938 = allocated_gregs_section;
4fa5c2a8 1939 bpodata->n_bpo_relocs_this_section = 0;
930b4cb2
HPN
1940 }
1941
1942 bpodata->n_bpo_relocs_this_section++;
1943 gregdata->n_max_bpo_relocs++;
1944
1945 /* We don't get another chance to set this before GC; we've not
f60ebe14 1946 set up any hook that runs before GC. */
930b4cb2
HPN
1947 gregdata->n_bpo_relocs
1948 = gregdata->n_max_bpo_relocs;
1949 break;
f60ebe14
HPN
1950
1951 case R_MMIX_PUSHJ_STUBBABLE:
1952 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1953 break;
930b4cb2
HPN
1954 }
1955 }
1956
f60ebe14
HPN
1957 /* Allocate per-reloc stub storage and initialize it to the max stub
1958 size. */
1959 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1960 {
1961 size_t i;
1962
1963 mmix_elf_section_data (sec)->pjs.stub_size
1964 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1965 * sizeof (mmix_elf_section_data (sec)
1966 ->pjs.stub_size[0]));
1967 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1968 return FALSE;
1969
1970 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1971 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1972 }
1973
b34976b6 1974 return TRUE;
930b4cb2
HPN
1975}
1976
3c3bdf30
NC
1977/* Look through the relocs for a section during the first phase. */
1978
b34976b6 1979static bfd_boolean
3c3bdf30
NC
1980mmix_elf_check_relocs (abfd, info, sec, relocs)
1981 bfd *abfd;
1982 struct bfd_link_info *info;
1983 asection *sec;
1984 const Elf_Internal_Rela *relocs;
1985{
1986 Elf_Internal_Shdr *symtab_hdr;
1987 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1988 const Elf_Internal_Rela *rel;
1989 const Elf_Internal_Rela *rel_end;
1990
3c3bdf30
NC
1991 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1992 sym_hashes = elf_sym_hashes (abfd);
1993 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1994 if (!elf_bad_symtab (abfd))
1995 sym_hashes_end -= symtab_hdr->sh_info;
1996
1997 /* First we sort the relocs so that any register relocs come before
1998 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1999 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
2000 mmix_elf_sort_relocs);
2001
930b4cb2
HPN
2002 /* Do the common part. */
2003 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
b34976b6 2004 return FALSE;
930b4cb2 2005
f60ebe14
HPN
2006 if (info->relocatable)
2007 return TRUE;
2008
3c3bdf30
NC
2009 rel_end = relocs + sec->reloc_count;
2010 for (rel = relocs; rel < rel_end; rel++)
2011 {
2012 struct elf_link_hash_entry *h;
2013 unsigned long r_symndx;
2014
2015 r_symndx = ELF64_R_SYM (rel->r_info);
2016 if (r_symndx < symtab_hdr->sh_info)
2017 h = NULL;
2018 else
2019 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2020
2021 switch (ELF64_R_TYPE (rel->r_info))
930b4cb2 2022 {
3c3bdf30
NC
2023 /* This relocation describes the C++ object vtable hierarchy.
2024 Reconstruct it for later use during GC. */
2025 case R_MMIX_GNU_VTINHERIT:
2026 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 2027 return FALSE;
3c3bdf30
NC
2028 break;
2029
2030 /* This relocation describes which C++ vtable entries are actually
2031 used. Record for later use during GC. */
2032 case R_MMIX_GNU_VTENTRY:
2033 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
b34976b6 2034 return FALSE;
3c3bdf30 2035 break;
930b4cb2
HPN
2036 }
2037 }
2038
b34976b6 2039 return TRUE;
930b4cb2
HPN
2040}
2041
2042/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2043 Copied from elf_link_add_object_symbols. */
2044
b34976b6 2045bfd_boolean
930b4cb2
HPN
2046_bfd_mmix_check_all_relocs (abfd, info)
2047 bfd *abfd;
2048 struct bfd_link_info *info;
2049{
2050 asection *o;
2051
2052 for (o = abfd->sections; o != NULL; o = o->next)
2053 {
2054 Elf_Internal_Rela *internal_relocs;
b34976b6 2055 bfd_boolean ok;
930b4cb2
HPN
2056
2057 if ((o->flags & SEC_RELOC) == 0
2058 || o->reloc_count == 0
2059 || ((info->strip == strip_all || info->strip == strip_debugger)
2060 && (o->flags & SEC_DEBUGGING) != 0)
2061 || bfd_is_abs_section (o->output_section))
2062 continue;
2063
2064 internal_relocs
45d6a902
AM
2065 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2066 (Elf_Internal_Rela *) NULL,
2067 info->keep_memory);
930b4cb2 2068 if (internal_relocs == NULL)
b34976b6 2069 return FALSE;
930b4cb2
HPN
2070
2071 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2072
2073 if (! info->keep_memory)
2074 free (internal_relocs);
2075
2076 if (! ok)
b34976b6 2077 return FALSE;
3c3bdf30
NC
2078 }
2079
b34976b6 2080 return TRUE;
3c3bdf30 2081}
e06fcc86 2082\f
3c3bdf30
NC
2083/* Change symbols relative to the reg contents section to instead be to
2084 the register section, and scale them down to correspond to the register
2085 number. */
2086
b34976b6 2087static bfd_boolean
754021d0 2088mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
3c3bdf30
NC
2089 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2090 const char *name ATTRIBUTE_UNUSED;
2091 Elf_Internal_Sym *sym;
2092 asection *input_sec;
754021d0 2093 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
3c3bdf30
NC
2094{
2095 if (input_sec != NULL
2096 && input_sec->name != NULL
2097 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2098 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2099 {
2100 sym->st_value /= 8;
2101 sym->st_shndx = SHN_REGISTER;
2102 }
2103
b34976b6 2104 return TRUE;
3c3bdf30
NC
2105}
2106
2107/* We fake a register section that holds values that are register numbers.
2108 Having a SHN_REGISTER and register section translates better to other
2109 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2110 This section faking is based on a construct in elf32-mips.c. */
2111static asection mmix_elf_reg_section;
2112static asymbol mmix_elf_reg_section_symbol;
2113static asymbol *mmix_elf_reg_section_symbol_ptr;
2114
f60ebe14 2115/* Handle the special section numbers that a symbol may use. */
3c3bdf30
NC
2116
2117void
2118mmix_elf_symbol_processing (abfd, asym)
2119 bfd *abfd ATTRIBUTE_UNUSED;
2120 asymbol *asym;
2121{
2122 elf_symbol_type *elfsym;
2123
2124 elfsym = (elf_symbol_type *) asym;
2125 switch (elfsym->internal_elf_sym.st_shndx)
2126 {
2127 case SHN_REGISTER:
2128 if (mmix_elf_reg_section.name == NULL)
2129 {
2130 /* Initialize the register section. */
2131 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2132 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2133 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2134 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2135 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2136 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2137 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2138 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2139 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2140 }
2141 asym->section = &mmix_elf_reg_section;
2142 break;
2143
2144 default:
2145 break;
2146 }
2147}
2148
2149/* Given a BFD section, try to locate the corresponding ELF section
2150 index. */
2151
b34976b6 2152static bfd_boolean
af746e92 2153mmix_elf_section_from_bfd_section (abfd, sec, retval)
3c3bdf30 2154 bfd * abfd ATTRIBUTE_UNUSED;
3c3bdf30
NC
2155 asection * sec;
2156 int * retval;
2157{
2158 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2159 *retval = SHN_REGISTER;
2160 else
b34976b6 2161 return FALSE;
3c3bdf30 2162
b34976b6 2163 return TRUE;
3c3bdf30
NC
2164}
2165
2166/* Hook called by the linker routine which adds symbols from an object
2167 file. We must handle the special SHN_REGISTER section number here.
2168
2169 We also check that we only have *one* each of the section-start
2170 symbols, since otherwise having two with the same value would cause
2171 them to be "merged", but with the contents serialized. */
2172
b34976b6 2173bfd_boolean
3c3bdf30
NC
2174mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2175 bfd *abfd;
2176 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2177 const Elf_Internal_Sym *sym;
2178 const char **namep ATTRIBUTE_UNUSED;
2179 flagword *flagsp ATTRIBUTE_UNUSED;
2180 asection **secp;
2181 bfd_vma *valp ATTRIBUTE_UNUSED;
2182{
2183 if (sym->st_shndx == SHN_REGISTER)
2184 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2185 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2186 && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
2187 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
2188 {
2189 /* See if we have another one. */
4ab82700
AM
2190 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2191 *namep,
b34976b6
AM
2192 FALSE,
2193 FALSE,
2194 FALSE);
3c3bdf30 2195
4ab82700 2196 if (h != NULL && h->type != bfd_link_hash_undefined)
3c3bdf30
NC
2197 {
2198 /* How do we get the asymbol (or really: the filename) from h?
4ab82700 2199 h->u.def.section->owner is NULL. */
3c3bdf30
NC
2200 ((*_bfd_error_handler)
2201 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2202 bfd_get_filename (abfd), *namep,
2203 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2204 bfd_set_error (bfd_error_bad_value);
b34976b6 2205 return FALSE;
3c3bdf30
NC
2206 }
2207 }
2208
b34976b6 2209 return TRUE;
3c3bdf30
NC
2210}
2211
2212/* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2213
b34976b6 2214bfd_boolean
3c3bdf30
NC
2215mmix_elf_is_local_label_name (abfd, name)
2216 bfd *abfd;
2217 const char *name;
2218{
2219 const char *colpos;
2220 int digits;
2221
2222 /* Also include the default local-label definition. */
2223 if (_bfd_elf_is_local_label_name (abfd, name))
b34976b6 2224 return TRUE;
3c3bdf30
NC
2225
2226 if (*name != 'L')
b34976b6 2227 return FALSE;
3c3bdf30
NC
2228
2229 /* If there's no ":", or more than one, it's not a local symbol. */
2230 colpos = strchr (name, ':');
2231 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
b34976b6 2232 return FALSE;
3c3bdf30
NC
2233
2234 /* Check that there are remaining characters and that they are digits. */
2235 if (colpos[1] == 0)
b34976b6 2236 return FALSE;
3c3bdf30
NC
2237
2238 digits = strspn (colpos + 1, "0123456789");
2239 return digits != 0 && colpos[1 + digits] == 0;
2240}
2241
2242/* We get rid of the register section here. */
2243
b34976b6 2244bfd_boolean
3c3bdf30
NC
2245mmix_elf_final_link (abfd, info)
2246 bfd *abfd;
2247 struct bfd_link_info *info;
2248{
2249 /* We never output a register section, though we create one for
2250 temporary measures. Check that nobody entered contents into it. */
2251 asection *reg_section;
2252 asection **secpp;
2253
2254 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2255
2256 if (reg_section != NULL)
2257 {
2258 /* FIXME: Pass error state gracefully. */
2259 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2260 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2261
3c3bdf30
NC
2262 /* Really remove the section. */
2263 for (secpp = &abfd->sections;
2264 *secpp != reg_section;
2265 secpp = &(*secpp)->next)
2266 ;
9e7b37b3 2267 bfd_section_list_remove (abfd, secpp);
3c3bdf30
NC
2268 --abfd->section_count;
2269 }
2270
2271 if (! bfd_elf64_bfd_final_link (abfd, info))
b34976b6 2272 return FALSE;
3c3bdf30 2273
930b4cb2
HPN
2274 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2275 the regular linker machinery. We do it here, like other targets with
2276 special sections. */
2277 if (info->base_file != NULL)
2278 {
2279 asection *greg_section
2280 = bfd_get_section_by_name ((bfd *) info->base_file,
2281 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2282 if (!bfd_set_section_contents (abfd,
2283 greg_section->output_section,
2284 greg_section->contents,
2285 (file_ptr) greg_section->output_offset,
2286 greg_section->_cooked_size))
b34976b6 2287 return FALSE;
930b4cb2 2288 }
b34976b6 2289 return TRUE;
930b4cb2
HPN
2290}
2291
f60ebe14
HPN
2292/* We need to include the maximum size of PUSHJ-stubs in the initial
2293 section size. This is expected to shrink during linker relaxation.
2294
2295 You might think that we should set *only* _cooked_size, but that won't
2296 work: section contents allocation will be using _raw_size in mixed
2297 format linking and not enough storage will be allocated. FIXME: That's
2298 a major bug, including the name bfd_get_section_size_before_reloc; it
2299 should be bfd_get_section_size_before_relax. The relaxation functions
2300 set _cooked size. Relaxation happens before relocation. All functions
2301 *after relaxation* should be using _cooked size. */
2302
2303static void
2304mmix_set_relaxable_size (abfd, sec, ptr)
2305 bfd *abfd ATTRIBUTE_UNUSED;
2306 asection *sec;
2307 void *ptr;
2308{
2309 struct bfd_link_info *info = ptr;
2310
2311 /* Make sure we only do this for section where we know we want this,
2312 otherwise we might end up resetting the size of COMMONs. */
2313 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2314 return;
2315
2316 sec->_cooked_size
2317 = (sec->_raw_size
2318 + mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2319 * MAX_PUSHJ_STUB_SIZE);
2320 sec->_raw_size = sec->_cooked_size;
2321
2322 /* For use in relocatable link, we start with a max stubs size. See
2323 mmix_elf_relax_section. */
2324 if (info->relocatable && sec->output_section)
2325 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2326 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2327 * MAX_PUSHJ_STUB_SIZE);
2328}
2329
930b4cb2
HPN
2330/* Initialize stuff for the linker-generated GREGs to match
2331 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2332
b34976b6 2333bfd_boolean
f60ebe14 2334_bfd_mmix_before_linker_allocation (abfd, info)
930b4cb2
HPN
2335 bfd *abfd ATTRIBUTE_UNUSED;
2336 struct bfd_link_info *info;
2337{
2338 asection *bpo_gregs_section;
2339 bfd *bpo_greg_owner;
2340 struct bpo_greg_section_info *gregdata;
2341 size_t n_gregs;
2342 bfd_vma gregs_size;
2343 size_t i;
2344 size_t *bpo_reloc_indexes;
f60ebe14
HPN
2345 bfd *ibfd;
2346
2347 /* Set the initial size of sections. */
2348 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2349 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
930b4cb2
HPN
2350
2351 /* The bpo_greg_owner bfd is supposed to have been set by
2352 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2353 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2354 bpo_greg_owner = (bfd *) info->base_file;
2355 if (bpo_greg_owner == NULL)
b34976b6 2356 return TRUE;
930b4cb2
HPN
2357
2358 bpo_gregs_section
2359 = bfd_get_section_by_name (bpo_greg_owner,
2360 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2361
930b4cb2 2362 if (bpo_gregs_section == NULL)
b34976b6 2363 return TRUE;
930b4cb2
HPN
2364
2365 /* We use the target-data handle in the ELF section data. */
f0abc2a1 2366 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2367 if (gregdata == NULL)
b34976b6 2368 return FALSE;
930b4cb2
HPN
2369
2370 n_gregs = gregdata->n_bpo_relocs;
2371 gregdata->n_allocated_bpo_gregs = n_gregs;
2372
2373 /* When this reaches zero during relaxation, all entries have been
2374 filled in and the size of the linker gregs can be calculated. */
2375 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2376
2377 /* Set the zeroth-order estimate for the GREGs size. */
2378 gregs_size = n_gregs * 8;
2379
2380 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
b34976b6 2381 return FALSE;
930b4cb2
HPN
2382
2383 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2384 time. Note that we must use the max number ever noted for the array,
2385 since the index numbers were created before GC. */
2386 gregdata->reloc_request
2387 = bfd_zalloc (bpo_greg_owner,
2388 sizeof (struct bpo_reloc_request)
2389 * gregdata->n_max_bpo_relocs);
2390
2391 gregdata->bpo_reloc_indexes
2392 = bpo_reloc_indexes
2393 = bfd_alloc (bpo_greg_owner,
2394 gregdata->n_max_bpo_relocs
2395 * sizeof (size_t));
2396 if (bpo_reloc_indexes == NULL)
b34976b6 2397 return FALSE;
930b4cb2
HPN
2398
2399 /* The default order is an identity mapping. */
2400 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2401 {
2402 bpo_reloc_indexes[i] = i;
2403 gregdata->reloc_request[i].bpo_reloc_no = i;
2404 }
2405
b34976b6 2406 return TRUE;
3c3bdf30 2407}
e06fcc86 2408\f
930b4cb2
HPN
2409/* Fill in contents in the linker allocated gregs. Everything is
2410 calculated at this point; we just move the contents into place here. */
2411
b34976b6 2412bfd_boolean
f60ebe14 2413_bfd_mmix_after_linker_allocation (abfd, link_info)
930b4cb2
HPN
2414 bfd *abfd ATTRIBUTE_UNUSED;
2415 struct bfd_link_info *link_info;
2416{
2417 asection *bpo_gregs_section;
2418 bfd *bpo_greg_owner;
2419 struct bpo_greg_section_info *gregdata;
2420 size_t n_gregs;
2421 size_t i, j;
2422 size_t lastreg;
2423 bfd_byte *contents;
2424
2425 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2426 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2427 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2428 bpo_greg_owner = (bfd *) link_info->base_file;
2429 if (bpo_greg_owner == NULL)
b34976b6 2430 return TRUE;
930b4cb2
HPN
2431
2432 bpo_gregs_section
2433 = bfd_get_section_by_name (bpo_greg_owner,
2434 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2435
2436 /* This can't happen without DSO handling. When DSOs are handled
2437 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2438 section. */
2439 if (bpo_gregs_section == NULL)
b34976b6 2440 return TRUE;
930b4cb2
HPN
2441
2442 /* We use the target-data handle in the ELF section data. */
2443
f0abc2a1 2444 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2445 if (gregdata == NULL)
b34976b6 2446 return FALSE;
930b4cb2
HPN
2447
2448 n_gregs = gregdata->n_allocated_bpo_gregs;
2449
3416d2e7
HPN
2450 /* We need to have a _raw_size contents even though there's only
2451 _cooked_size worth of data, since the generic relocation machinery
2452 will allocate and copy that much temporarily. */
930b4cb2 2453 bpo_gregs_section->contents
3416d2e7 2454 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->_raw_size);
930b4cb2 2455 if (contents == NULL)
b34976b6 2456 return FALSE;
930b4cb2 2457
7e799044
HPN
2458 /* Sanity check: If these numbers mismatch, some relocation has not been
2459 accounted for and the rest of gregdata is probably inconsistent.
2460 It's a bug, but it's more helpful to identify it than segfaulting
2461 below. */
2462 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2463 != gregdata->n_bpo_relocs)
2464 {
2465 (*_bfd_error_handler)
2466 (_("Internal inconsistency: remaining %u != max %u.\n\
2467 Please report this bug."),
2468 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2469 gregdata->n_bpo_relocs);
b34976b6 2470 return FALSE;
7e799044
HPN
2471 }
2472
930b4cb2
HPN
2473 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2474 if (gregdata->reloc_request[i].regindex != lastreg)
2475 {
2476 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2477 contents + j * 8);
2478 lastreg = gregdata->reloc_request[i].regindex;
2479 j++;
2480 }
2481
b34976b6 2482 return TRUE;
930b4cb2
HPN
2483}
2484
2485/* Sort valid relocs to come before non-valid relocs, then on increasing
2486 value. */
2487
2488static int
2489bpo_reloc_request_sort_fn (p1, p2)
2490 const PTR p1;
2491 const PTR p2;
2492{
2493 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2494 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2495
2496 /* Primary function is validity; non-valid relocs sorted after valid
2497 ones. */
2498 if (r1->valid != r2->valid)
2499 return r2->valid - r1->valid;
2500
4fa5c2a8
HPN
2501 /* Then sort on value. Don't simplify and return just the difference of
2502 the values: the upper bits of the 64-bit value would be truncated on
2503 a host with 32-bit ints. */
930b4cb2 2504 if (r1->value != r2->value)
4fa5c2a8 2505 return r1->value > r2->value ? 1 : -1;
930b4cb2 2506
dfbbae4c
HPN
2507 /* As a last re-sort, use the relocation number, so we get a stable
2508 sort. The *addresses* aren't stable since items are swapped during
2509 sorting. It depends on the qsort implementation if this actually
2510 happens. */
2511 return r1->bpo_reloc_no > r2->bpo_reloc_no
2512 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
930b4cb2
HPN
2513}
2514
4fa5c2a8
HPN
2515/* For debug use only. Dumps the global register allocations resulting
2516 from base-plus-offset relocs. */
2517
2518void
2519mmix_dump_bpo_gregs (link_info, pf)
2520 struct bfd_link_info *link_info;
2521 bfd_error_handler_type pf;
2522{
2523 bfd *bpo_greg_owner;
2524 asection *bpo_gregs_section;
2525 struct bpo_greg_section_info *gregdata;
2526 unsigned int i;
2527
2528 if (link_info == NULL || link_info->base_file == NULL)
2529 return;
2530
2531 bpo_greg_owner = (bfd *) link_info->base_file;
2532
2533 bpo_gregs_section
2534 = bfd_get_section_by_name (bpo_greg_owner,
2535 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2536
2537 if (bpo_gregs_section == NULL)
2538 return;
2539
f0abc2a1 2540 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
4fa5c2a8
HPN
2541 if (gregdata == NULL)
2542 return;
2543
2544 if (pf == NULL)
2545 pf = _bfd_error_handler;
2546
2547 /* These format strings are not translated. They are for debug purposes
2548 only and never displayed to an end user. Should they escape, we
2549 surely want them in original. */
2550 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2551 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2552 gregdata->n_max_bpo_relocs,
2553 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2554 gregdata->n_allocated_bpo_gregs);
2555
2556 if (gregdata->reloc_request)
2557 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2558 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2559 i,
cf3d882d
AM
2560 (gregdata->bpo_reloc_indexes != NULL
2561 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
4fa5c2a8
HPN
2562 gregdata->reloc_request[i].bpo_reloc_no,
2563 gregdata->reloc_request[i].valid,
2564
2565 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2566 (unsigned long) gregdata->reloc_request[i].value,
2567 gregdata->reloc_request[i].regindex,
2568 gregdata->reloc_request[i].offset);
2569}
2570
930b4cb2
HPN
2571/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2572 when the last such reloc is done, an index-array is sorted according to
2573 the values and iterated over to produce register numbers (indexed by 0
2574 from the first allocated register number) and offsets for use in real
2575 relocation.
2576
f60ebe14
HPN
2577 PUSHJ stub accounting is also done here.
2578
930b4cb2
HPN
2579 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2580
b34976b6 2581static bfd_boolean
930b4cb2
HPN
2582mmix_elf_relax_section (abfd, sec, link_info, again)
2583 bfd *abfd;
2584 asection *sec;
2585 struct bfd_link_info *link_info;
b34976b6 2586 bfd_boolean *again;
930b4cb2 2587{
930b4cb2 2588 Elf_Internal_Shdr *symtab_hdr;
930b4cb2 2589 Elf_Internal_Rela *internal_relocs;
930b4cb2
HPN
2590 Elf_Internal_Rela *irel, *irelend;
2591 asection *bpo_gregs_section = NULL;
2592 struct bpo_greg_section_info *gregdata;
2593 struct bpo_reloc_section_info *bpodata
f0abc2a1 2594 = mmix_elf_section_data (sec)->bpo.reloc;
f60ebe14
HPN
2595 /* The initialization is to quiet compiler warnings. The value is to
2596 spot a missing actual initialization. */
2597 size_t bpono = (size_t) -1;
2598 size_t pjsno = 0;
930b4cb2 2599 bfd *bpo_greg_owner;
6cdc0ccc 2600 Elf_Internal_Sym *isymbuf = NULL;
f60ebe14
HPN
2601 bfd_size_type raw_size
2602 = (sec->_raw_size
2603 - mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2604 * MAX_PUSHJ_STUB_SIZE);
2605
2606 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
930b4cb2
HPN
2607
2608 /* Assume nothing changes. */
b34976b6 2609 *again = FALSE;
930b4cb2
HPN
2610
2611 /* If this is the first time we have been called for this section,
2612 initialize the cooked size. */
f60ebe14
HPN
2613 if (sec->_cooked_size == 0 && sec->_raw_size != 0)
2614 abort ();
2615
2616 /* We don't have to do anything if this section does not have relocs, or
2617 if this is not a code section. */
2618 if ((sec->flags & SEC_RELOC) == 0
930b4cb2
HPN
2619 || sec->reloc_count == 0
2620 || (sec->flags & SEC_CODE) == 0
2621 || (sec->flags & SEC_LINKER_CREATED) != 0
f60ebe14
HPN
2622 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2623 then nothing to do. */
2624 || (bpodata == NULL
2625 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
b34976b6 2626 return TRUE;
930b4cb2
HPN
2627
2628 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
930b4cb2
HPN
2629
2630 bpo_greg_owner = (bfd *) link_info->base_file;
930b4cb2 2631
f60ebe14
HPN
2632 if (bpodata != NULL)
2633 {
2634 bpo_gregs_section = bpodata->bpo_greg_section;
2635 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2636 bpono = bpodata->first_base_plus_offset_reloc;
2637 }
2638 else
2639 gregdata = NULL;
930b4cb2
HPN
2640
2641 /* Get a copy of the native relocations. */
2642 internal_relocs
45d6a902
AM
2643 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2644 (Elf_Internal_Rela *) NULL,
2645 link_info->keep_memory);
930b4cb2
HPN
2646 if (internal_relocs == NULL)
2647 goto error_return;
930b4cb2
HPN
2648
2649 /* Walk through them looking for relaxing opportunities. */
2650 irelend = internal_relocs + sec->reloc_count;
2651 for (irel = internal_relocs; irel < irelend; irel++)
2652 {
2653 bfd_vma symval;
f60ebe14 2654 struct elf_link_hash_entry *h = NULL;
930b4cb2 2655
f60ebe14
HPN
2656 /* We only process two relocs. */
2657 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2658 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
930b4cb2
HPN
2659 continue;
2660
f60ebe14
HPN
2661 /* We process relocs in a distinctly different way when this is a
2662 relocatable link (for one, we don't look at symbols), so we avoid
2663 mixing its code with that for the "normal" relaxation. */
2664 if (link_info->relocatable)
2665 {
2666 /* The only transformation in a relocatable link is to generate
2667 a full stub at the location of the stub calculated for the
2668 input section, if the relocated stub location, the end of the
2669 output section plus earlier stubs, cannot be reached. Thus
2670 relocatable linking can only lead to worse code, but it still
2671 works. */
2672 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2673 {
2674 /* If we can reach the end of the output-section and beyond
2675 any current stubs, then we don't need a stub for this
2676 reloc. The relaxed order of output stub allocation may
2677 not exactly match the straightforward order, so we always
2678 assume presence of output stubs, which will allow
2679 relaxation only on relocations indifferent to the
2680 presence of output stub allocations for other relocations
2681 and thus the order of output stub allocation. */
2682 if (bfd_check_overflow (complain_overflow_signed,
2683 19,
2684 0,
2685 bfd_arch_bits_per_address (abfd),
2686 /* Output-stub location. */
2687 sec->output_section->_cooked_size
2688 + (mmix_elf_section_data (sec
2689 ->output_section)
2690 ->pjs.stubs_size_sum)
2691 /* Location of this PUSHJ reloc. */
2692 - (sec->output_offset + irel->r_offset)
2693 /* Don't count *this* stub twice. */
2694 - (mmix_elf_section_data (sec)
2695 ->pjs.stub_size[pjsno]
2696 + MAX_PUSHJ_STUB_SIZE))
2697 == bfd_reloc_ok)
2698 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2699
2700 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2701 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2702
2703 pjsno++;
2704 }
2705
2706 continue;
2707 }
2708
930b4cb2
HPN
2709 /* Get the value of the symbol referred to by the reloc. */
2710 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2711 {
2712 /* A local symbol. */
6cdc0ccc 2713 Elf_Internal_Sym *isym;
930b4cb2
HPN
2714 asection *sym_sec;
2715
6cdc0ccc
AM
2716 /* Read this BFD's local symbols if we haven't already. */
2717 if (isymbuf == NULL)
2718 {
2719 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2720 if (isymbuf == NULL)
2721 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2722 symtab_hdr->sh_info, 0,
2723 NULL, NULL, NULL);
2724 if (isymbuf == 0)
2725 goto error_return;
2726 }
930b4cb2 2727
6cdc0ccc
AM
2728 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2729 if (isym->st_shndx == SHN_UNDEF)
930b4cb2 2730 sym_sec = bfd_und_section_ptr;
6cdc0ccc 2731 else if (isym->st_shndx == SHN_ABS)
930b4cb2 2732 sym_sec = bfd_abs_section_ptr;
6cdc0ccc 2733 else if (isym->st_shndx == SHN_COMMON)
930b4cb2
HPN
2734 sym_sec = bfd_com_section_ptr;
2735 else
6cdc0ccc
AM
2736 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2737 symval = (isym->st_value
930b4cb2
HPN
2738 + sym_sec->output_section->vma
2739 + sym_sec->output_offset);
2740 }
2741 else
2742 {
2743 unsigned long indx;
930b4cb2
HPN
2744
2745 /* An external symbol. */
2746 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2747 h = elf_sym_hashes (abfd)[indx];
2748 BFD_ASSERT (h != NULL);
2749 if (h->root.type != bfd_link_hash_defined
2750 && h->root.type != bfd_link_hash_defweak)
2751 {
f60ebe14
HPN
2752 /* This appears to be a reference to an undefined symbol. Just
2753 ignore it--it will be caught by the regular reloc processing.
2754 We need to keep BPO reloc accounting consistent, though
2755 else we'll abort instead of emitting an error message. */
2756 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2757 && gregdata != NULL)
2758 {
2759 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2760 bpono++;
2761 }
930b4cb2
HPN
2762 continue;
2763 }
2764
2765 symval = (h->root.u.def.value
2766 + h->root.u.def.section->output_section->vma
2767 + h->root.u.def.section->output_offset);
2768 }
2769
f60ebe14
HPN
2770 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2771 {
2772 bfd_vma value = symval + irel->r_addend;
2773 bfd_vma dot
2774 = (sec->output_section->vma
2775 + sec->output_offset
2776 + irel->r_offset);
2777 bfd_vma stubaddr
2778 = (sec->output_section->vma
2779 + sec->output_offset
2780 + raw_size
2781 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2782
2783 if ((value & 3) == 0
2784 && bfd_check_overflow (complain_overflow_signed,
2785 19,
2786 0,
2787 bfd_arch_bits_per_address (abfd),
2788 value - dot
2789 - (value > dot
2790 ? mmix_elf_section_data (sec)
2791 ->pjs.stub_size[pjsno]
2792 : 0))
2793 == bfd_reloc_ok)
2794 /* If the reloc fits, no stub is needed. */
2795 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2796 else
2797 /* Maybe we can get away with just a JMP insn? */
2798 if ((value & 3) == 0
2799 && bfd_check_overflow (complain_overflow_signed,
2800 27,
2801 0,
2802 bfd_arch_bits_per_address (abfd),
2803 value - stubaddr
2804 - (value > dot
2805 ? mmix_elf_section_data (sec)
2806 ->pjs.stub_size[pjsno] - 4
2807 : 0))
2808 == bfd_reloc_ok)
2809 /* Yep, account for a stub consisting of a single JMP insn. */
2810 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2811 else
2812 /* Nope, go for the full insn stub. It doesn't seem useful to
2813 emit the intermediate sizes; those will only be useful for
2814 a >64M program assuming contiguous code. */
2815 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2816 = MAX_PUSHJ_STUB_SIZE;
2817
2818 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2819 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2820 pjsno++;
2821 continue;
2822 }
2823
2824 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2825
930b4cb2
HPN
2826 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2827 = symval + irel->r_addend;
b34976b6 2828 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
930b4cb2
HPN
2829 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2830 }
2831
2832 /* Check if that was the last BPO-reloc. If so, sort the values and
2833 calculate how many registers we need to cover them. Set the size of
2834 the linker gregs, and if the number of registers changed, indicate
2835 that we need to relax some more because we have more work to do. */
f60ebe14
HPN
2836 if (gregdata != NULL
2837 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
930b4cb2
HPN
2838 {
2839 size_t i;
2840 bfd_vma prev_base;
2841 size_t regindex;
2842
2843 /* First, reset the remaining relocs for the next round. */
2844 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2845 = gregdata->n_bpo_relocs;
2846
2847 qsort ((PTR) gregdata->reloc_request,
2848 gregdata->n_max_bpo_relocs,
2849 sizeof (struct bpo_reloc_request),
2850 bpo_reloc_request_sort_fn);
2851
2852 /* Recalculate indexes. When we find a change (however unlikely
2853 after the initial iteration), we know we need to relax again,
2854 since items in the GREG-array are sorted by increasing value and
2855 stored in the relaxation phase. */
2856 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2857 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2858 != i)
2859 {
2860 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2861 = i;
b34976b6 2862 *again = TRUE;
930b4cb2
HPN
2863 }
2864
2865 /* Allocate register numbers (indexing from 0). Stop at the first
2866 non-valid reloc. */
2867 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2868 i < gregdata->n_bpo_relocs;
2869 i++)
2870 {
2871 if (gregdata->reloc_request[i].value > prev_base + 255)
2872 {
2873 regindex++;
2874 prev_base = gregdata->reloc_request[i].value;
2875 }
2876 gregdata->reloc_request[i].regindex = regindex;
2877 gregdata->reloc_request[i].offset
2878 = gregdata->reloc_request[i].value - prev_base;
2879 }
2880
2881 /* If it's not the same as the last time, we need to relax again,
2882 because the size of the section has changed. I'm not sure we
2883 actually need to do any adjustments since the shrinking happens
2884 at the start of this section, but better safe than sorry. */
2885 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2886 {
2887 gregdata->n_allocated_bpo_gregs = regindex + 1;
b34976b6 2888 *again = TRUE;
930b4cb2
HPN
2889 }
2890
2891 bpo_gregs_section->_cooked_size = (regindex + 1) * 8;
2892 }
2893
6cdc0ccc 2894 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
930b4cb2
HPN
2895 {
2896 if (! link_info->keep_memory)
6cdc0ccc
AM
2897 free (isymbuf);
2898 else
930b4cb2 2899 {
6cdc0ccc
AM
2900 /* Cache the symbols for elf_link_input_bfd. */
2901 symtab_hdr->contents = (unsigned char *) isymbuf;
930b4cb2
HPN
2902 }
2903 }
2904
6cdc0ccc
AM
2905 if (internal_relocs != NULL
2906 && elf_section_data (sec)->relocs != internal_relocs)
2907 free (internal_relocs);
2908
f60ebe14
HPN
2909 if (sec->_cooked_size
2910 < raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2911 abort ();
2912
2913 if (sec->_cooked_size
2914 > raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2915 {
2916 sec->_cooked_size
2917 = raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2918 *again = TRUE;
2919 }
2920
b34976b6 2921 return TRUE;
930b4cb2
HPN
2922
2923 error_return:
6cdc0ccc
AM
2924 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2925 free (isymbuf);
2926 if (internal_relocs != NULL
2927 && elf_section_data (sec)->relocs != internal_relocs)
2928 free (internal_relocs);
b34976b6 2929 return FALSE;
930b4cb2 2930}
f60ebe14
HPN
2931
2932/* Because we set _raw_size to include the max size of pushj stubs,
2933 i.e. larger than the actual section input size (see
2934 mmix_set_relaxable_raw_size), we have to take care of that when reading
2935 the section. */
2936
2937static bfd_boolean
2938mmix_elf_get_section_contents (abfd, section, location, offset, count)
2939 bfd *abfd;
2940 sec_ptr section;
2941 void *location;
2942 file_ptr offset;
2943 bfd_size_type count;
2944{
2945 bfd_size_type raw_size
2946 = (section->_raw_size
2947 - mmix_elf_section_data (section)->pjs.n_pushj_relocs
2948 * MAX_PUSHJ_STUB_SIZE);
2949
2950 if (offset + count > section->_raw_size)
2951 {
2952 abort();
2953 bfd_set_error (bfd_error_invalid_operation);
2954 return FALSE;
2955 }
2956
2957 /* Check bounds against the faked raw_size. */
2958 if (offset + count > raw_size)
2959 {
2960 /* Clear the part in the faked area. */
2961 memset (location + raw_size - offset, 0, count - (raw_size - offset));
2962
2963 /* If there's no initial part within the "real" contents, we're
2964 done. */
2965 if ((bfd_size_type) offset >= raw_size)
2966 return TRUE;
2967
2968 /* Else adjust the count and fall through to call the generic
2969 function. */
2970 count = raw_size - offset;
2971 }
2972
2973 return
2974 _bfd_generic_get_section_contents (abfd, section, location, offset,
2975 count);
2976}
2977
930b4cb2 2978\f
3c3bdf30
NC
2979#define ELF_ARCH bfd_arch_mmix
2980#define ELF_MACHINE_CODE EM_MMIX
2981
2982/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2983 However, that's too much for something somewhere in the linker part of
2984 BFD; perhaps the start-address has to be a non-zero multiple of this
2985 number, or larger than this number. The symptom is that the linker
2986 complains: "warning: allocated section `.text' not in segment". We
2987 settle for 64k; the page-size used in examples is 8k.
2988 #define ELF_MAXPAGESIZE 0x10000
2989
2990 Unfortunately, this causes excessive padding in the supposedly small
2991 for-education programs that are the expected usage (where people would
2992 inspect output). We stick to 256 bytes just to have *some* default
2993 alignment. */
2994#define ELF_MAXPAGESIZE 0x100
2995
2996#define TARGET_BIG_SYM bfd_elf64_mmix_vec
2997#define TARGET_BIG_NAME "elf64-mmix"
2998
2999#define elf_info_to_howto_rel NULL
3000#define elf_info_to_howto mmix_info_to_howto_rela
3001#define elf_backend_relocate_section mmix_elf_relocate_section
3002#define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
930b4cb2
HPN
3003#define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
3004
3c3bdf30
NC
3005#define elf_backend_link_output_symbol_hook \
3006 mmix_elf_link_output_symbol_hook
3007#define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
3008
3009#define elf_backend_check_relocs mmix_elf_check_relocs
3010#define elf_backend_symbol_processing mmix_elf_symbol_processing
3011
3012#define bfd_elf64_bfd_is_local_label_name \
3013 mmix_elf_is_local_label_name
3014
3015#define elf_backend_may_use_rel_p 0
3016#define elf_backend_may_use_rela_p 1
3017#define elf_backend_default_use_rela_p 1
3018
3019#define elf_backend_can_gc_sections 1
3020#define elf_backend_section_from_bfd_section \
3021 mmix_elf_section_from_bfd_section
3022
f0abc2a1 3023#define bfd_elf64_new_section_hook mmix_elf_new_section_hook
3c3bdf30 3024#define bfd_elf64_bfd_final_link mmix_elf_final_link
930b4cb2 3025#define bfd_elf64_bfd_relax_section mmix_elf_relax_section
f60ebe14 3026#define bfd_elf64_get_section_contents mmix_elf_get_section_contents
3c3bdf30
NC
3027
3028#include "elf64-target.h"
This page took 0.300036 seconds and 4 git commands to generate.