* Makefile.am: Remove all mention of elflink.h.
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
CommitLineData
3c3bdf30 1/* MMIX-specific support for 64-bit ELF.
b2a8e766 2 Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3c3bdf30
NC
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21/* No specific ABI or "processor-specific supplement" defined. */
22
23/* TODO:
f60ebe14
HPN
24 - "Traditional" linker relaxation (shrinking whole sections).
25 - Merge reloc stubs jumping to same location.
26 - GETA stub relaxation (call a stub for out of range new
27 R_MMIX_GETA_STUBBABLE). */
3c3bdf30
NC
28
29#include "bfd.h"
30#include "sysdep.h"
31#include "libbfd.h"
32#include "elf-bfd.h"
33#include "elf/mmix.h"
34#include "opcode/mmix.h"
35
36#define MINUS_ONE (((bfd_vma) 0) - 1)
37
f60ebe14
HPN
38#define MAX_PUSHJ_STUB_SIZE (5 * 4)
39
3c3bdf30
NC
40/* Put these everywhere in new code. */
41#define FATAL_DEBUG \
42 _bfd_abort (__FILE__, __LINE__, \
43 "Internal: Non-debugged code (test-case missing)")
44
45#define BAD_CASE(x) \
46 _bfd_abort (__FILE__, __LINE__, \
47 "bad case for " #x)
48
f0abc2a1
AM
49struct _mmix_elf_section_data
50{
51 struct bfd_elf_section_data elf;
52 union
53 {
54 struct bpo_reloc_section_info *reloc;
55 struct bpo_greg_section_info *greg;
56 } bpo;
f60ebe14
HPN
57
58 struct pushj_stub_info
59 {
60 /* Maximum number of stubs needed for this section. */
61 bfd_size_type n_pushj_relocs;
62
63 /* Size of stubs after a mmix_elf_relax_section round. */
64 bfd_size_type stubs_size_sum;
65
66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
67 of these. Allocated in mmix_elf_check_common_relocs. */
68 bfd_size_type *stub_size;
69
70 /* Offset of next stub during relocation. Somewhat redundant with the
71 above: error coverage is easier and we don't have to reset the
72 stubs_size_sum for relocation. */
73 bfd_size_type stub_offset;
74 } pjs;
f0abc2a1
AM
75};
76
77#define mmix_elf_section_data(sec) \
68bfbfcc 78 ((struct _mmix_elf_section_data *) elf_section_data (sec))
f0abc2a1 79
930b4cb2 80/* For each section containing a base-plus-offset (BPO) reloc, we attach
f0abc2a1 81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
930b4cb2
HPN
82 NULL. */
83struct bpo_reloc_section_info
84 {
85 /* The base is 1; this is the first number in this section. */
86 size_t first_base_plus_offset_reloc;
87
88 /* Number of BPO-relocs in this section. */
89 size_t n_bpo_relocs_this_section;
90
91 /* Running index, used at relocation time. */
92 size_t bpo_index;
93
94 /* We don't have access to the bfd_link_info struct in
95 mmix_final_link_relocate. What we really want to get at is the
96 global single struct greg_relocation, so we stash it here. */
97 asection *bpo_greg_section;
98 };
99
100/* Helper struct (in global context) for the one below.
101 There's one of these created for every BPO reloc. */
102struct bpo_reloc_request
103 {
104 bfd_vma value;
105
106 /* Valid after relaxation. The base is 0; the first register number
107 must be added. The offset is in range 0..255. */
108 size_t regindex;
109 size_t offset;
110
111 /* The order number for this BPO reloc, corresponding to the order in
112 which BPO relocs were found. Used to create an index after reloc
113 requests are sorted. */
114 size_t bpo_reloc_no;
115
116 /* Set when the value is computed. Better than coding "guard values"
b34976b6 117 into the other members. Is FALSE only for BPO relocs in a GC:ed
930b4cb2 118 section. */
b34976b6 119 bfd_boolean valid;
930b4cb2
HPN
120 };
121
f0abc2a1 122/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
930b4cb2
HPN
123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124 which is linked into the register contents section
125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
126 linker; using the same hook as for usual with BPO relocs does not
127 collide. */
128struct bpo_greg_section_info
129 {
130 /* After GC, this reflects the number of remaining, non-excluded
131 BPO-relocs. */
132 size_t n_bpo_relocs;
133
134 /* This is the number of allocated bpo_reloc_requests; the size of
135 sorted_indexes. Valid after the check.*relocs functions are called
136 for all incoming sections. It includes the number of BPO relocs in
137 sections that were GC:ed. */
138 size_t n_max_bpo_relocs;
139
140 /* A counter used to find out when to fold the BPO gregs, since we
141 don't have a single "after-relaxation" hook. */
142 size_t n_remaining_bpo_relocs_this_relaxation_round;
143
144 /* The number of linker-allocated GREGs resulting from BPO relocs.
f60ebe14
HPN
145 This is an approximation after _bfd_mmix_before_linker_allocation
146 and supposedly accurate after mmix_elf_relax_section is called for
147 all incoming non-collected sections. */
930b4cb2
HPN
148 size_t n_allocated_bpo_gregs;
149
150 /* Index into reloc_request[], sorted on increasing "value", secondary
151 by increasing index for strict sorting order. */
152 size_t *bpo_reloc_indexes;
153
154 /* An array of all relocations, with the "value" member filled in by
155 the relaxation function. */
156 struct bpo_reloc_request *reloc_request;
157 };
158
b34976b6 159static bfd_boolean mmix_elf_link_output_symbol_hook
754021d0
AM
160 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
161 asection *, struct elf_link_hash_entry *));
3c3bdf30
NC
162
163static bfd_reloc_status_type mmix_elf_reloc
164 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
165
166static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
167 PARAMS ((bfd *, bfd_reloc_code_real_type));
168
169static void mmix_info_to_howto_rela
947216bf 170 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
3c3bdf30
NC
171
172static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
173
f0abc2a1
AM
174static bfd_boolean mmix_elf_new_section_hook
175 PARAMS ((bfd *, asection *));
176
b34976b6 177static bfd_boolean mmix_elf_check_relocs
3c3bdf30
NC
178 PARAMS ((bfd *, struct bfd_link_info *, asection *,
179 const Elf_Internal_Rela *));
180
b34976b6 181static bfd_boolean mmix_elf_check_common_relocs
930b4cb2
HPN
182 PARAMS ((bfd *, struct bfd_link_info *, asection *,
183 const Elf_Internal_Rela *));
184
b34976b6 185static bfd_boolean mmix_elf_relocate_section
3c3bdf30
NC
186 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
187 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
188
189static asection * mmix_elf_gc_mark_hook
1e2f5b6e 190 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
3c3bdf30
NC
191 struct elf_link_hash_entry *, Elf_Internal_Sym *));
192
b34976b6 193static bfd_boolean mmix_elf_gc_sweep_hook
930b4cb2
HPN
194 PARAMS ((bfd *, struct bfd_link_info *, asection *,
195 const Elf_Internal_Rela *));
196
3c3bdf30
NC
197static bfd_reloc_status_type mmix_final_link_relocate
198 PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
199 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
200
201static bfd_reloc_status_type mmix_elf_perform_relocation
202 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
203
b34976b6 204static bfd_boolean mmix_elf_section_from_bfd_section
af746e92 205 PARAMS ((bfd *, asection *, int *));
3c3bdf30 206
b34976b6 207static bfd_boolean mmix_elf_add_symbol_hook
555cd476 208 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
3c3bdf30
NC
209 const char **, flagword *, asection **, bfd_vma *));
210
b34976b6 211static bfd_boolean mmix_elf_is_local_label_name
3c3bdf30
NC
212 PARAMS ((bfd *, const char *));
213
930b4cb2
HPN
214static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
215
b34976b6 216static bfd_boolean mmix_elf_relax_section
930b4cb2 217 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
b34976b6 218 bfd_boolean *again));
930b4cb2 219
b34976b6 220extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
3c3bdf30
NC
221
222extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
223
4fa5c2a8
HPN
224/* Only intended to be called from a debugger. */
225extern void mmix_dump_bpo_gregs
226 PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
227
f60ebe14
HPN
228static void
229mmix_set_relaxable_size
230 PARAMS ((bfd *, asection *, void *));
231
232static bfd_boolean
233mmix_elf_get_section_contents
234 PARAMS ((bfd *, sec_ptr, void *, file_ptr, bfd_size_type));
235
236
3c3bdf30
NC
237/* Watch out: this currently needs to have elements with the same index as
238 their R_MMIX_ number. */
239static reloc_howto_type elf_mmix_howto_table[] =
240 {
241 /* This reloc does nothing. */
242 HOWTO (R_MMIX_NONE, /* type */
243 0, /* rightshift */
244 2, /* size (0 = byte, 1 = short, 2 = long) */
245 32, /* bitsize */
b34976b6 246 FALSE, /* pc_relative */
3c3bdf30
NC
247 0, /* bitpos */
248 complain_overflow_bitfield, /* complain_on_overflow */
249 bfd_elf_generic_reloc, /* special_function */
250 "R_MMIX_NONE", /* name */
b34976b6 251 FALSE, /* partial_inplace */
3c3bdf30
NC
252 0, /* src_mask */
253 0, /* dst_mask */
b34976b6 254 FALSE), /* pcrel_offset */
3c3bdf30
NC
255
256 /* An 8 bit absolute relocation. */
257 HOWTO (R_MMIX_8, /* type */
258 0, /* rightshift */
259 0, /* size (0 = byte, 1 = short, 2 = long) */
260 8, /* bitsize */
b34976b6 261 FALSE, /* pc_relative */
3c3bdf30
NC
262 0, /* bitpos */
263 complain_overflow_bitfield, /* complain_on_overflow */
264 bfd_elf_generic_reloc, /* special_function */
265 "R_MMIX_8", /* name */
b34976b6 266 FALSE, /* partial_inplace */
930b4cb2 267 0, /* src_mask */
3c3bdf30 268 0xff, /* dst_mask */
b34976b6 269 FALSE), /* pcrel_offset */
3c3bdf30
NC
270
271 /* An 16 bit absolute relocation. */
272 HOWTO (R_MMIX_16, /* type */
273 0, /* rightshift */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
275 16, /* bitsize */
b34976b6 276 FALSE, /* pc_relative */
3c3bdf30
NC
277 0, /* bitpos */
278 complain_overflow_bitfield, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_MMIX_16", /* name */
b34976b6 281 FALSE, /* partial_inplace */
930b4cb2 282 0, /* src_mask */
3c3bdf30 283 0xffff, /* dst_mask */
b34976b6 284 FALSE), /* pcrel_offset */
3c3bdf30
NC
285
286 /* An 24 bit absolute relocation. */
287 HOWTO (R_MMIX_24, /* type */
288 0, /* rightshift */
289 2, /* size (0 = byte, 1 = short, 2 = long) */
290 24, /* bitsize */
b34976b6 291 FALSE, /* pc_relative */
3c3bdf30
NC
292 0, /* bitpos */
293 complain_overflow_bitfield, /* complain_on_overflow */
294 bfd_elf_generic_reloc, /* special_function */
295 "R_MMIX_24", /* name */
b34976b6 296 FALSE, /* partial_inplace */
930b4cb2 297 ~0xffffff, /* src_mask */
3c3bdf30 298 0xffffff, /* dst_mask */
b34976b6 299 FALSE), /* pcrel_offset */
3c3bdf30
NC
300
301 /* A 32 bit absolute relocation. */
302 HOWTO (R_MMIX_32, /* type */
303 0, /* rightshift */
304 2, /* size (0 = byte, 1 = short, 2 = long) */
305 32, /* bitsize */
b34976b6 306 FALSE, /* pc_relative */
3c3bdf30
NC
307 0, /* bitpos */
308 complain_overflow_bitfield, /* complain_on_overflow */
309 bfd_elf_generic_reloc, /* special_function */
310 "R_MMIX_32", /* name */
b34976b6 311 FALSE, /* partial_inplace */
930b4cb2 312 0, /* src_mask */
3c3bdf30 313 0xffffffff, /* dst_mask */
b34976b6 314 FALSE), /* pcrel_offset */
3c3bdf30
NC
315
316 /* 64 bit relocation. */
317 HOWTO (R_MMIX_64, /* type */
318 0, /* rightshift */
319 4, /* size (0 = byte, 1 = short, 2 = long) */
320 64, /* bitsize */
b34976b6 321 FALSE, /* pc_relative */
3c3bdf30
NC
322 0, /* bitpos */
323 complain_overflow_bitfield, /* complain_on_overflow */
324 bfd_elf_generic_reloc, /* special_function */
325 "R_MMIX_64", /* name */
b34976b6 326 FALSE, /* partial_inplace */
930b4cb2 327 0, /* src_mask */
3c3bdf30 328 MINUS_ONE, /* dst_mask */
b34976b6 329 FALSE), /* pcrel_offset */
3c3bdf30
NC
330
331 /* An 8 bit PC-relative relocation. */
332 HOWTO (R_MMIX_PC_8, /* type */
333 0, /* rightshift */
334 0, /* size (0 = byte, 1 = short, 2 = long) */
335 8, /* bitsize */
b34976b6 336 TRUE, /* pc_relative */
3c3bdf30
NC
337 0, /* bitpos */
338 complain_overflow_bitfield, /* complain_on_overflow */
339 bfd_elf_generic_reloc, /* special_function */
340 "R_MMIX_PC_8", /* name */
b34976b6 341 FALSE, /* partial_inplace */
930b4cb2 342 0, /* src_mask */
3c3bdf30 343 0xff, /* dst_mask */
b34976b6 344 TRUE), /* pcrel_offset */
3c3bdf30
NC
345
346 /* An 16 bit PC-relative relocation. */
347 HOWTO (R_MMIX_PC_16, /* type */
348 0, /* rightshift */
349 1, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
b34976b6 351 TRUE, /* pc_relative */
3c3bdf30
NC
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_MMIX_PC_16", /* name */
b34976b6 356 FALSE, /* partial_inplace */
930b4cb2 357 0, /* src_mask */
3c3bdf30 358 0xffff, /* dst_mask */
b34976b6 359 TRUE), /* pcrel_offset */
3c3bdf30
NC
360
361 /* An 24 bit PC-relative relocation. */
362 HOWTO (R_MMIX_PC_24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 24, /* bitsize */
b34976b6 366 TRUE, /* pc_relative */
3c3bdf30
NC
367 0, /* bitpos */
368 complain_overflow_bitfield, /* complain_on_overflow */
369 bfd_elf_generic_reloc, /* special_function */
370 "R_MMIX_PC_24", /* name */
b34976b6 371 FALSE, /* partial_inplace */
930b4cb2 372 ~0xffffff, /* src_mask */
3c3bdf30 373 0xffffff, /* dst_mask */
b34976b6 374 TRUE), /* pcrel_offset */
3c3bdf30
NC
375
376 /* A 32 bit absolute PC-relative relocation. */
377 HOWTO (R_MMIX_PC_32, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
b34976b6 381 TRUE, /* pc_relative */
3c3bdf30
NC
382 0, /* bitpos */
383 complain_overflow_bitfield, /* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_MMIX_PC_32", /* name */
b34976b6 386 FALSE, /* partial_inplace */
930b4cb2 387 0, /* src_mask */
3c3bdf30 388 0xffffffff, /* dst_mask */
b34976b6 389 TRUE), /* pcrel_offset */
3c3bdf30
NC
390
391 /* 64 bit PC-relative relocation. */
392 HOWTO (R_MMIX_PC_64, /* type */
393 0, /* rightshift */
394 4, /* size (0 = byte, 1 = short, 2 = long) */
395 64, /* bitsize */
b34976b6 396 TRUE, /* pc_relative */
3c3bdf30
NC
397 0, /* bitpos */
398 complain_overflow_bitfield, /* complain_on_overflow */
399 bfd_elf_generic_reloc, /* special_function */
400 "R_MMIX_PC_64", /* name */
b34976b6 401 FALSE, /* partial_inplace */
930b4cb2 402 0, /* src_mask */
3c3bdf30 403 MINUS_ONE, /* dst_mask */
b34976b6 404 TRUE), /* pcrel_offset */
3c3bdf30
NC
405
406 /* GNU extension to record C++ vtable hierarchy. */
407 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
408 0, /* rightshift */
409 0, /* size (0 = byte, 1 = short, 2 = long) */
410 0, /* bitsize */
b34976b6 411 FALSE, /* pc_relative */
3c3bdf30
NC
412 0, /* bitpos */
413 complain_overflow_dont, /* complain_on_overflow */
414 NULL, /* special_function */
415 "R_MMIX_GNU_VTINHERIT", /* name */
b34976b6 416 FALSE, /* partial_inplace */
3c3bdf30
NC
417 0, /* src_mask */
418 0, /* dst_mask */
b34976b6 419 TRUE), /* pcrel_offset */
3c3bdf30
NC
420
421 /* GNU extension to record C++ vtable member usage. */
422 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
423 0, /* rightshift */
424 0, /* size (0 = byte, 1 = short, 2 = long) */
425 0, /* bitsize */
b34976b6 426 FALSE, /* pc_relative */
3c3bdf30
NC
427 0, /* bitpos */
428 complain_overflow_dont, /* complain_on_overflow */
429 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
430 "R_MMIX_GNU_VTENTRY", /* name */
b34976b6 431 FALSE, /* partial_inplace */
3c3bdf30
NC
432 0, /* src_mask */
433 0, /* dst_mask */
b34976b6 434 FALSE), /* pcrel_offset */
3c3bdf30
NC
435
436 /* The GETA relocation is supposed to get any address that could
437 possibly be reached by the GETA instruction. It can silently expand
438 to get a 64-bit operand, but will complain if any of the two least
439 significant bits are set. The howto members reflect a simple GETA. */
440 HOWTO (R_MMIX_GETA, /* type */
441 2, /* rightshift */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
443 19, /* bitsize */
b34976b6 444 TRUE, /* pc_relative */
3c3bdf30
NC
445 0, /* bitpos */
446 complain_overflow_signed, /* complain_on_overflow */
447 mmix_elf_reloc, /* special_function */
448 "R_MMIX_GETA", /* name */
b34976b6 449 FALSE, /* partial_inplace */
930b4cb2 450 ~0x0100ffff, /* src_mask */
3c3bdf30 451 0x0100ffff, /* dst_mask */
b34976b6 452 TRUE), /* pcrel_offset */
3c3bdf30
NC
453
454 HOWTO (R_MMIX_GETA_1, /* type */
455 2, /* rightshift */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
457 19, /* bitsize */
b34976b6 458 TRUE, /* pc_relative */
3c3bdf30
NC
459 0, /* bitpos */
460 complain_overflow_signed, /* complain_on_overflow */
461 mmix_elf_reloc, /* special_function */
462 "R_MMIX_GETA_1", /* name */
b34976b6 463 FALSE, /* partial_inplace */
930b4cb2 464 ~0x0100ffff, /* src_mask */
3c3bdf30 465 0x0100ffff, /* dst_mask */
b34976b6 466 TRUE), /* pcrel_offset */
3c3bdf30
NC
467
468 HOWTO (R_MMIX_GETA_2, /* type */
469 2, /* rightshift */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
471 19, /* bitsize */
b34976b6 472 TRUE, /* pc_relative */
3c3bdf30
NC
473 0, /* bitpos */
474 complain_overflow_signed, /* complain_on_overflow */
475 mmix_elf_reloc, /* special_function */
476 "R_MMIX_GETA_2", /* name */
b34976b6 477 FALSE, /* partial_inplace */
930b4cb2 478 ~0x0100ffff, /* src_mask */
3c3bdf30 479 0x0100ffff, /* dst_mask */
b34976b6 480 TRUE), /* pcrel_offset */
3c3bdf30
NC
481
482 HOWTO (R_MMIX_GETA_3, /* type */
483 2, /* rightshift */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
485 19, /* bitsize */
b34976b6 486 TRUE, /* pc_relative */
3c3bdf30
NC
487 0, /* bitpos */
488 complain_overflow_signed, /* complain_on_overflow */
489 mmix_elf_reloc, /* special_function */
490 "R_MMIX_GETA_3", /* name */
b34976b6 491 FALSE, /* partial_inplace */
930b4cb2 492 ~0x0100ffff, /* src_mask */
3c3bdf30 493 0x0100ffff, /* dst_mask */
b34976b6 494 TRUE), /* pcrel_offset */
3c3bdf30
NC
495
496 /* The conditional branches are supposed to reach any (code) address.
497 It can silently expand to a 64-bit operand, but will emit an error if
498 any of the two least significant bits are set. The howto members
499 reflect a simple branch. */
500 HOWTO (R_MMIX_CBRANCH, /* type */
501 2, /* rightshift */
502 2, /* size (0 = byte, 1 = short, 2 = long) */
503 19, /* bitsize */
b34976b6 504 TRUE, /* pc_relative */
3c3bdf30
NC
505 0, /* bitpos */
506 complain_overflow_signed, /* complain_on_overflow */
507 mmix_elf_reloc, /* special_function */
508 "R_MMIX_CBRANCH", /* name */
b34976b6 509 FALSE, /* partial_inplace */
930b4cb2 510 ~0x0100ffff, /* src_mask */
3c3bdf30 511 0x0100ffff, /* dst_mask */
b34976b6 512 TRUE), /* pcrel_offset */
3c3bdf30
NC
513
514 HOWTO (R_MMIX_CBRANCH_J, /* type */
515 2, /* rightshift */
516 2, /* size (0 = byte, 1 = short, 2 = long) */
517 19, /* bitsize */
b34976b6 518 TRUE, /* pc_relative */
3c3bdf30
NC
519 0, /* bitpos */
520 complain_overflow_signed, /* complain_on_overflow */
521 mmix_elf_reloc, /* special_function */
522 "R_MMIX_CBRANCH_J", /* name */
b34976b6 523 FALSE, /* partial_inplace */
930b4cb2 524 ~0x0100ffff, /* src_mask */
3c3bdf30 525 0x0100ffff, /* dst_mask */
b34976b6 526 TRUE), /* pcrel_offset */
3c3bdf30
NC
527
528 HOWTO (R_MMIX_CBRANCH_1, /* type */
529 2, /* rightshift */
530 2, /* size (0 = byte, 1 = short, 2 = long) */
531 19, /* bitsize */
b34976b6 532 TRUE, /* pc_relative */
3c3bdf30
NC
533 0, /* bitpos */
534 complain_overflow_signed, /* complain_on_overflow */
535 mmix_elf_reloc, /* special_function */
536 "R_MMIX_CBRANCH_1", /* name */
b34976b6 537 FALSE, /* partial_inplace */
930b4cb2 538 ~0x0100ffff, /* src_mask */
3c3bdf30 539 0x0100ffff, /* dst_mask */
b34976b6 540 TRUE), /* pcrel_offset */
3c3bdf30
NC
541
542 HOWTO (R_MMIX_CBRANCH_2, /* type */
543 2, /* rightshift */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
545 19, /* bitsize */
b34976b6 546 TRUE, /* pc_relative */
3c3bdf30
NC
547 0, /* bitpos */
548 complain_overflow_signed, /* complain_on_overflow */
549 mmix_elf_reloc, /* special_function */
550 "R_MMIX_CBRANCH_2", /* name */
b34976b6 551 FALSE, /* partial_inplace */
930b4cb2 552 ~0x0100ffff, /* src_mask */
3c3bdf30 553 0x0100ffff, /* dst_mask */
b34976b6 554 TRUE), /* pcrel_offset */
3c3bdf30
NC
555
556 HOWTO (R_MMIX_CBRANCH_3, /* type */
557 2, /* rightshift */
558 2, /* size (0 = byte, 1 = short, 2 = long) */
559 19, /* bitsize */
b34976b6 560 TRUE, /* pc_relative */
3c3bdf30
NC
561 0, /* bitpos */
562 complain_overflow_signed, /* complain_on_overflow */
563 mmix_elf_reloc, /* special_function */
564 "R_MMIX_CBRANCH_3", /* name */
b34976b6 565 FALSE, /* partial_inplace */
930b4cb2 566 ~0x0100ffff, /* src_mask */
3c3bdf30 567 0x0100ffff, /* dst_mask */
b34976b6 568 TRUE), /* pcrel_offset */
3c3bdf30
NC
569
570 /* The PUSHJ instruction can reach any (code) address, as long as it's
571 the beginning of a function (no usable restriction). It can silently
572 expand to a 64-bit operand, but will emit an error if any of the two
f60ebe14
HPN
573 least significant bits are set. It can also expand into a call to a
574 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
3c3bdf30
NC
575 PUSHJ. */
576 HOWTO (R_MMIX_PUSHJ, /* type */
577 2, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 19, /* bitsize */
b34976b6 580 TRUE, /* pc_relative */
3c3bdf30
NC
581 0, /* bitpos */
582 complain_overflow_signed, /* complain_on_overflow */
583 mmix_elf_reloc, /* special_function */
584 "R_MMIX_PUSHJ", /* name */
b34976b6 585 FALSE, /* partial_inplace */
930b4cb2 586 ~0x0100ffff, /* src_mask */
3c3bdf30 587 0x0100ffff, /* dst_mask */
b34976b6 588 TRUE), /* pcrel_offset */
3c3bdf30
NC
589
590 HOWTO (R_MMIX_PUSHJ_1, /* type */
591 2, /* rightshift */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
593 19, /* bitsize */
b34976b6 594 TRUE, /* pc_relative */
3c3bdf30
NC
595 0, /* bitpos */
596 complain_overflow_signed, /* complain_on_overflow */
597 mmix_elf_reloc, /* special_function */
598 "R_MMIX_PUSHJ_1", /* name */
b34976b6 599 FALSE, /* partial_inplace */
930b4cb2 600 ~0x0100ffff, /* src_mask */
3c3bdf30 601 0x0100ffff, /* dst_mask */
b34976b6 602 TRUE), /* pcrel_offset */
3c3bdf30
NC
603
604 HOWTO (R_MMIX_PUSHJ_2, /* type */
605 2, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 19, /* bitsize */
b34976b6 608 TRUE, /* pc_relative */
3c3bdf30
NC
609 0, /* bitpos */
610 complain_overflow_signed, /* complain_on_overflow */
611 mmix_elf_reloc, /* special_function */
612 "R_MMIX_PUSHJ_2", /* name */
b34976b6 613 FALSE, /* partial_inplace */
930b4cb2 614 ~0x0100ffff, /* src_mask */
3c3bdf30 615 0x0100ffff, /* dst_mask */
b34976b6 616 TRUE), /* pcrel_offset */
3c3bdf30
NC
617
618 HOWTO (R_MMIX_PUSHJ_3, /* type */
619 2, /* rightshift */
620 2, /* size (0 = byte, 1 = short, 2 = long) */
621 19, /* bitsize */
b34976b6 622 TRUE, /* pc_relative */
3c3bdf30
NC
623 0, /* bitpos */
624 complain_overflow_signed, /* complain_on_overflow */
625 mmix_elf_reloc, /* special_function */
626 "R_MMIX_PUSHJ_3", /* name */
b34976b6 627 FALSE, /* partial_inplace */
930b4cb2 628 ~0x0100ffff, /* src_mask */
3c3bdf30 629 0x0100ffff, /* dst_mask */
b34976b6 630 TRUE), /* pcrel_offset */
3c3bdf30
NC
631
632 /* A JMP is supposed to reach any (code) address. By itself, it can
633 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
634 limit is soon reached if you link the program in wildly different
635 memory segments. The howto members reflect a trivial JMP. */
636 HOWTO (R_MMIX_JMP, /* type */
637 2, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 27, /* bitsize */
b34976b6 640 TRUE, /* pc_relative */
3c3bdf30
NC
641 0, /* bitpos */
642 complain_overflow_signed, /* complain_on_overflow */
643 mmix_elf_reloc, /* special_function */
644 "R_MMIX_JMP", /* name */
b34976b6 645 FALSE, /* partial_inplace */
930b4cb2 646 ~0x1ffffff, /* src_mask */
3c3bdf30 647 0x1ffffff, /* dst_mask */
b34976b6 648 TRUE), /* pcrel_offset */
3c3bdf30
NC
649
650 HOWTO (R_MMIX_JMP_1, /* type */
651 2, /* rightshift */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
653 27, /* bitsize */
b34976b6 654 TRUE, /* pc_relative */
3c3bdf30
NC
655 0, /* bitpos */
656 complain_overflow_signed, /* complain_on_overflow */
657 mmix_elf_reloc, /* special_function */
658 "R_MMIX_JMP_1", /* name */
b34976b6 659 FALSE, /* partial_inplace */
930b4cb2 660 ~0x1ffffff, /* src_mask */
3c3bdf30 661 0x1ffffff, /* dst_mask */
b34976b6 662 TRUE), /* pcrel_offset */
3c3bdf30
NC
663
664 HOWTO (R_MMIX_JMP_2, /* type */
665 2, /* rightshift */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
667 27, /* bitsize */
b34976b6 668 TRUE, /* pc_relative */
3c3bdf30
NC
669 0, /* bitpos */
670 complain_overflow_signed, /* complain_on_overflow */
671 mmix_elf_reloc, /* special_function */
672 "R_MMIX_JMP_2", /* name */
b34976b6 673 FALSE, /* partial_inplace */
930b4cb2 674 ~0x1ffffff, /* src_mask */
3c3bdf30 675 0x1ffffff, /* dst_mask */
b34976b6 676 TRUE), /* pcrel_offset */
3c3bdf30
NC
677
678 HOWTO (R_MMIX_JMP_3, /* type */
679 2, /* rightshift */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
681 27, /* bitsize */
b34976b6 682 TRUE, /* pc_relative */
3c3bdf30
NC
683 0, /* bitpos */
684 complain_overflow_signed, /* complain_on_overflow */
685 mmix_elf_reloc, /* special_function */
686 "R_MMIX_JMP_3", /* name */
b34976b6 687 FALSE, /* partial_inplace */
930b4cb2 688 ~0x1ffffff, /* src_mask */
3c3bdf30 689 0x1ffffff, /* dst_mask */
b34976b6 690 TRUE), /* pcrel_offset */
3c3bdf30
NC
691
692 /* When we don't emit link-time-relaxable code from the assembler, or
693 when relaxation has done all it can do, these relocs are used. For
694 GETA/PUSHJ/branches. */
695 HOWTO (R_MMIX_ADDR19, /* type */
696 2, /* rightshift */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
698 19, /* bitsize */
b34976b6 699 TRUE, /* pc_relative */
3c3bdf30
NC
700 0, /* bitpos */
701 complain_overflow_signed, /* complain_on_overflow */
702 mmix_elf_reloc, /* special_function */
703 "R_MMIX_ADDR19", /* name */
b34976b6 704 FALSE, /* partial_inplace */
930b4cb2 705 ~0x0100ffff, /* src_mask */
3c3bdf30 706 0x0100ffff, /* dst_mask */
b34976b6 707 TRUE), /* pcrel_offset */
3c3bdf30
NC
708
709 /* For JMP. */
710 HOWTO (R_MMIX_ADDR27, /* type */
711 2, /* rightshift */
712 2, /* size (0 = byte, 1 = short, 2 = long) */
713 27, /* bitsize */
b34976b6 714 TRUE, /* pc_relative */
3c3bdf30
NC
715 0, /* bitpos */
716 complain_overflow_signed, /* complain_on_overflow */
717 mmix_elf_reloc, /* special_function */
718 "R_MMIX_ADDR27", /* name */
b34976b6 719 FALSE, /* partial_inplace */
930b4cb2 720 ~0x1ffffff, /* src_mask */
3c3bdf30 721 0x1ffffff, /* dst_mask */
b34976b6 722 TRUE), /* pcrel_offset */
3c3bdf30
NC
723
724 /* A general register or the value 0..255. If a value, then the
725 instruction (offset -3) needs adjusting. */
726 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
727 0, /* rightshift */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
729 8, /* bitsize */
b34976b6 730 FALSE, /* pc_relative */
3c3bdf30
NC
731 0, /* bitpos */
732 complain_overflow_bitfield, /* complain_on_overflow */
733 mmix_elf_reloc, /* special_function */
734 "R_MMIX_REG_OR_BYTE", /* name */
b34976b6 735 FALSE, /* partial_inplace */
930b4cb2 736 0, /* src_mask */
3c3bdf30 737 0xff, /* dst_mask */
b34976b6 738 FALSE), /* pcrel_offset */
3c3bdf30
NC
739
740 /* A general register. */
741 HOWTO (R_MMIX_REG, /* type */
742 0, /* rightshift */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
744 8, /* bitsize */
b34976b6 745 FALSE, /* pc_relative */
3c3bdf30
NC
746 0, /* bitpos */
747 complain_overflow_bitfield, /* complain_on_overflow */
748 mmix_elf_reloc, /* special_function */
749 "R_MMIX_REG", /* name */
b34976b6 750 FALSE, /* partial_inplace */
930b4cb2 751 0, /* src_mask */
3c3bdf30 752 0xff, /* dst_mask */
b34976b6 753 FALSE), /* pcrel_offset */
3c3bdf30
NC
754
755 /* A register plus an index, corresponding to the relocation expression.
756 The sizes must correspond to the valid range of the expression, while
757 the bitmasks correspond to what we store in the image. */
758 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
759 0, /* rightshift */
760 4, /* size (0 = byte, 1 = short, 2 = long) */
761 64, /* bitsize */
b34976b6 762 FALSE, /* pc_relative */
3c3bdf30
NC
763 0, /* bitpos */
764 complain_overflow_bitfield, /* complain_on_overflow */
765 mmix_elf_reloc, /* special_function */
766 "R_MMIX_BASE_PLUS_OFFSET", /* name */
b34976b6 767 FALSE, /* partial_inplace */
930b4cb2 768 0, /* src_mask */
3c3bdf30 769 0xffff, /* dst_mask */
b34976b6 770 FALSE), /* pcrel_offset */
3c3bdf30
NC
771
772 /* A "magic" relocation for a LOCAL expression, asserting that the
773 expression is less than the number of global registers. No actual
774 modification of the contents is done. Implementing this as a
775 relocation was less intrusive than e.g. putting such expressions in a
776 section to discard *after* relocation. */
777 HOWTO (R_MMIX_LOCAL, /* type */
778 0, /* rightshift */
779 0, /* size (0 = byte, 1 = short, 2 = long) */
780 0, /* bitsize */
b34976b6 781 FALSE, /* pc_relative */
3c3bdf30
NC
782 0, /* bitpos */
783 complain_overflow_dont, /* complain_on_overflow */
784 mmix_elf_reloc, /* special_function */
785 "R_MMIX_LOCAL", /* name */
b34976b6 786 FALSE, /* partial_inplace */
3c3bdf30
NC
787 0, /* src_mask */
788 0, /* dst_mask */
b34976b6 789 FALSE), /* pcrel_offset */
f60ebe14
HPN
790
791 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
792 2, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 19, /* bitsize */
795 TRUE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_signed, /* complain_on_overflow */
798 mmix_elf_reloc, /* special_function */
799 "R_MMIX_PUSHJ_STUBBABLE", /* name */
800 FALSE, /* partial_inplace */
801 ~0x0100ffff, /* src_mask */
802 0x0100ffff, /* dst_mask */
803 TRUE) /* pcrel_offset */
3c3bdf30
NC
804 };
805
806
807/* Map BFD reloc types to MMIX ELF reloc types. */
808
809struct mmix_reloc_map
810 {
811 bfd_reloc_code_real_type bfd_reloc_val;
812 enum elf_mmix_reloc_type elf_reloc_val;
813 };
814
815
816static const struct mmix_reloc_map mmix_reloc_map[] =
817 {
818 {BFD_RELOC_NONE, R_MMIX_NONE},
819 {BFD_RELOC_8, R_MMIX_8},
820 {BFD_RELOC_16, R_MMIX_16},
821 {BFD_RELOC_24, R_MMIX_24},
822 {BFD_RELOC_32, R_MMIX_32},
823 {BFD_RELOC_64, R_MMIX_64},
824 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
825 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
826 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
827 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
828 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
829 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
830 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
831 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
832 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
833 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
834 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
835 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
836 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
837 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
838 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
839 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
f60ebe14
HPN
840 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
841 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
3c3bdf30
NC
842 };
843
844static reloc_howto_type *
845bfd_elf64_bfd_reloc_type_lookup (abfd, code)
846 bfd *abfd ATTRIBUTE_UNUSED;
847 bfd_reloc_code_real_type code;
848{
849 unsigned int i;
850
851 for (i = 0;
852 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
853 i++)
854 {
855 if (mmix_reloc_map[i].bfd_reloc_val == code)
856 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
857 }
858
859 return NULL;
860}
861
f0abc2a1
AM
862static bfd_boolean
863mmix_elf_new_section_hook (abfd, sec)
864 bfd *abfd;
865 asection *sec;
866{
867 struct _mmix_elf_section_data *sdata;
868 bfd_size_type amt = sizeof (*sdata);
869
870 sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
871 if (sdata == NULL)
872 return FALSE;
873 sec->used_by_bfd = (PTR) sdata;
874
875 return _bfd_elf_new_section_hook (abfd, sec);
876}
877
3c3bdf30
NC
878
879/* This function performs the actual bitfiddling and sanity check for a
880 final relocation. Each relocation gets its *worst*-case expansion
881 in size when it arrives here; any reduction in size should have been
882 caught in linker relaxation earlier. When we get here, the relocation
883 looks like the smallest instruction with SWYM:s (nop:s) appended to the
884 max size. We fill in those nop:s.
885
886 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
887 GETA $N,foo
888 ->
889 SETL $N,foo & 0xffff
890 INCML $N,(foo >> 16) & 0xffff
891 INCMH $N,(foo >> 32) & 0xffff
892 INCH $N,(foo >> 48) & 0xffff
893
894 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
895 condbranches needing relaxation might be rare enough to not be
896 worthwhile.)
897 [P]Bcc $N,foo
898 ->
899 [~P]B~cc $N,.+20
900 SETL $255,foo & ...
901 INCML ...
902 INCMH ...
903 INCH ...
904 GO $255,$255,0
905
906 R_MMIX_PUSHJ: (FIXME: Relaxation...)
907 PUSHJ $N,foo
908 ->
909 SETL $255,foo & ...
910 INCML ...
911 INCMH ...
912 INCH ...
913 PUSHGO $N,$255,0
914
915 R_MMIX_JMP: (FIXME: Relaxation...)
916 JMP foo
917 ->
918 SETL $255,foo & ...
919 INCML ...
920 INCMH ...
921 INCH ...
922 GO $255,$255,0
923
924 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
925
926static bfd_reloc_status_type
927mmix_elf_perform_relocation (isec, howto, datap, addr, value)
928 asection *isec;
929 reloc_howto_type *howto;
930 PTR datap;
f60ebe14 931 bfd_vma addr;
3c3bdf30
NC
932 bfd_vma value;
933{
934 bfd *abfd = isec->owner;
935 bfd_reloc_status_type flag = bfd_reloc_ok;
936 bfd_reloc_status_type r;
937 int offs = 0;
938 int reg = 255;
939
940 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
941 We handle the differences here and the common sequence later. */
942 switch (howto->type)
943 {
944 case R_MMIX_GETA:
945 offs = 0;
946 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
947
948 /* We change to an absolute value. */
949 value += addr;
950 break;
951
952 case R_MMIX_CBRANCH:
953 {
954 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
955
956 /* Invert the condition and prediction bit, and set the offset
957 to five instructions ahead.
958
959 We *can* do better if we want to. If the branch is found to be
960 within limits, we could leave the branch as is; there'll just
961 be a bunch of NOP:s after it. But we shouldn't see this
962 sequence often enough that it's worth doing it. */
963
964 bfd_put_32 (abfd,
965 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
966 | (24/4)),
967 (bfd_byte *) datap);
968
969 /* Put a "GO $255,$255,0" after the common sequence. */
970 bfd_put_32 (abfd,
971 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
972 (bfd_byte *) datap + 20);
973
974 /* Common sequence starts at offset 4. */
975 offs = 4;
976
977 /* We change to an absolute value. */
978 value += addr;
979 }
980 break;
981
f60ebe14
HPN
982 case R_MMIX_PUSHJ_STUBBABLE:
983 /* If the address fits, we're fine. */
984 if ((value & 3) == 0
985 /* Note rightshift 0; see R_MMIX_JMP case below. */
986 && (r = bfd_check_overflow (complain_overflow_signed,
987 howto->bitsize,
988 0,
989 bfd_arch_bits_per_address (abfd),
990 value)) == bfd_reloc_ok)
991 goto pcrel_mmix_reloc_fits;
992 else
993 {
994 bfd_size_type raw_size
995 = (isec->_raw_size
996 - mmix_elf_section_data (isec)->pjs.n_pushj_relocs
997 * MAX_PUSHJ_STUB_SIZE);
998
999 /* We have the bytes at the PUSHJ insn and need to get the
1000 position for the stub. There's supposed to be room allocated
1001 for the stub. */
1002 bfd_byte *stubcontents
1003 = ((char *) datap
1004 - (addr - (isec->output_section->vma + isec->output_offset))
1005 + raw_size
1006 + mmix_elf_section_data (isec)->pjs.stub_offset);
1007 bfd_vma stubaddr;
1008
1009 /* The address doesn't fit, so redirect the PUSHJ to the
1010 location of the stub. */
1011 r = mmix_elf_perform_relocation (isec,
1012 &elf_mmix_howto_table
1013 [R_MMIX_ADDR19],
1014 datap,
1015 addr,
1016 isec->output_section->vma
1017 + isec->output_offset
1018 + raw_size
1019 + (mmix_elf_section_data (isec)
1020 ->pjs.stub_offset)
1021 - addr);
1022 if (r != bfd_reloc_ok)
1023 return r;
1024
1025 stubaddr
1026 = (isec->output_section->vma
1027 + isec->output_offset
1028 + raw_size
1029 + mmix_elf_section_data (isec)->pjs.stub_offset);
1030
1031 /* We generate a simple JMP if that suffices, else the whole 5
1032 insn stub. */
1033 if (bfd_check_overflow (complain_overflow_signed,
1034 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1035 0,
1036 bfd_arch_bits_per_address (abfd),
1037 addr + value - stubaddr) == bfd_reloc_ok)
1038 {
1039 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1040 r = mmix_elf_perform_relocation (isec,
1041 &elf_mmix_howto_table
1042 [R_MMIX_ADDR27],
1043 stubcontents,
1044 stubaddr,
1045 value + addr - stubaddr);
1046 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1047
1048 if (raw_size
1049 + mmix_elf_section_data (isec)->pjs.stub_offset
1050 > isec->_cooked_size)
1051 abort ();
1052
1053 return r;
1054 }
1055 else
1056 {
1057 /* Put a "GO $255,0" after the common sequence. */
1058 bfd_put_32 (abfd,
1059 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1060 | 0xff00, (bfd_byte *) stubcontents + 16);
1061
1062 /* Prepare for the general code to set the first part of the
1063 linker stub, and */
1064 value += addr;
1065 datap = stubcontents;
1066 mmix_elf_section_data (isec)->pjs.stub_offset
1067 += MAX_PUSHJ_STUB_SIZE;
1068 }
1069 }
1070 break;
1071
3c3bdf30
NC
1072 case R_MMIX_PUSHJ:
1073 {
1074 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1075
1076 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1077 bfd_put_32 (abfd,
1078 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1079 | (inreg << 16)
1080 | 0xff00,
1081 (bfd_byte *) datap + 16);
1082
1083 /* We change to an absolute value. */
1084 value += addr;
1085 }
1086 break;
1087
1088 case R_MMIX_JMP:
1089 /* This one is a little special. If we get here on a non-relaxing
1090 link, and the destination is actually in range, we don't need to
1091 execute the nops.
1092 If so, we fall through to the bit-fiddling relocs.
1093
1094 FIXME: bfd_check_overflow seems broken; the relocation is
1095 rightshifted before testing, so supply a zero rightshift. */
1096
1097 if (! ((value & 3) == 0
1098 && (r = bfd_check_overflow (complain_overflow_signed,
1099 howto->bitsize,
1100 0,
1101 bfd_arch_bits_per_address (abfd),
1102 value)) == bfd_reloc_ok))
1103 {
1104 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1105 modified below, and put a "GO $255,$255,0" after the
1106 address-loading sequence. */
1107 bfd_put_32 (abfd,
1108 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1109 | 0xffff00,
1110 (bfd_byte *) datap + 16);
1111
1112 /* We change to an absolute value. */
1113 value += addr;
1114 break;
1115 }
cedb70c5 1116 /* FALLTHROUGH. */
3c3bdf30
NC
1117 case R_MMIX_ADDR19:
1118 case R_MMIX_ADDR27:
f60ebe14 1119 pcrel_mmix_reloc_fits:
3c3bdf30
NC
1120 /* These must be in range, or else we emit an error. */
1121 if ((value & 3) == 0
1122 /* Note rightshift 0; see above. */
1123 && (r = bfd_check_overflow (complain_overflow_signed,
1124 howto->bitsize,
1125 0,
1126 bfd_arch_bits_per_address (abfd),
1127 value)) == bfd_reloc_ok)
1128 {
1129 bfd_vma in1
1130 = bfd_get_32 (abfd, (bfd_byte *) datap);
1131 bfd_vma highbit;
1132
1133 if ((bfd_signed_vma) value < 0)
1134 {
f60ebe14 1135 highbit = 1 << 24;
3c3bdf30
NC
1136 value += (1 << (howto->bitsize - 1));
1137 }
1138 else
1139 highbit = 0;
1140
1141 value >>= 2;
1142
1143 bfd_put_32 (abfd,
930b4cb2 1144 (in1 & howto->src_mask)
3c3bdf30
NC
1145 | highbit
1146 | (value & howto->dst_mask),
1147 (bfd_byte *) datap);
1148
1149 return bfd_reloc_ok;
1150 }
1151 else
1152 return bfd_reloc_overflow;
1153
930b4cb2
HPN
1154 case R_MMIX_BASE_PLUS_OFFSET:
1155 {
1156 struct bpo_reloc_section_info *bpodata
f0abc2a1 1157 = mmix_elf_section_data (isec)->bpo.reloc;
930b4cb2
HPN
1158 asection *bpo_greg_section
1159 = bpodata->bpo_greg_section;
1160 struct bpo_greg_section_info *gregdata
f0abc2a1 1161 = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
930b4cb2
HPN
1162 size_t bpo_index
1163 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1164
1165 /* A consistency check: The value we now have in "relocation" must
1166 be the same as the value we stored for that relocation. It
1167 doesn't cost much, so can be left in at all times. */
1168 if (value != gregdata->reloc_request[bpo_index].value)
1169 {
1170 (*_bfd_error_handler)
1171 (_("%s: Internal inconsistency error for value for\n\
1172 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1173 bfd_get_filename (isec->owner),
1174 (unsigned long) (value >> 32), (unsigned long) value,
1175 (unsigned long) (gregdata->reloc_request[bpo_index].value
1176 >> 32),
1177 (unsigned long) gregdata->reloc_request[bpo_index].value);
1178 bfd_set_error (bfd_error_bad_value);
1179 return bfd_reloc_overflow;
1180 }
1181
1182 /* Then store the register number and offset for that register
1183 into datap and datap + 1 respectively. */
1184 bfd_put_8 (abfd,
1185 gregdata->reloc_request[bpo_index].regindex
1186 + bpo_greg_section->output_section->vma / 8,
1187 datap);
1188 bfd_put_8 (abfd,
1189 gregdata->reloc_request[bpo_index].offset,
1190 ((unsigned char *) datap) + 1);
1191 return bfd_reloc_ok;
1192 }
1193
3c3bdf30
NC
1194 case R_MMIX_REG_OR_BYTE:
1195 case R_MMIX_REG:
1196 if (value > 255)
1197 return bfd_reloc_overflow;
1198 bfd_put_8 (abfd, value, datap);
1199 return bfd_reloc_ok;
1200
1201 default:
1202 BAD_CASE (howto->type);
1203 }
1204
1205 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1206 sequence. */
1207
1208 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1209 everything that looks strange. */
1210 if (value & 3)
1211 flag = bfd_reloc_overflow;
1212
1213 bfd_put_32 (abfd,
1214 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1215 (bfd_byte *) datap + offs);
1216 bfd_put_32 (abfd,
1217 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1218 (bfd_byte *) datap + offs + 4);
1219 bfd_put_32 (abfd,
1220 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1221 (bfd_byte *) datap + offs + 8);
1222 bfd_put_32 (abfd,
1223 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1224 (bfd_byte *) datap + offs + 12);
1225
1226 return flag;
1227}
1228
1229/* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1230
1231static void
1232mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1233 bfd *abfd ATTRIBUTE_UNUSED;
1234 arelent *cache_ptr;
947216bf 1235 Elf_Internal_Rela *dst;
3c3bdf30
NC
1236{
1237 unsigned int r_type;
1238
1239 r_type = ELF64_R_TYPE (dst->r_info);
1240 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1241 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1242}
1243
1244/* Any MMIX-specific relocation gets here at assembly time or when linking
1245 to other formats (such as mmo); this is the relocation function from
1246 the reloc_table. We don't get here for final pure ELF linking. */
1247
1248static bfd_reloc_status_type
1249mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1250 output_bfd, error_message)
1251 bfd *abfd;
1252 arelent *reloc_entry;
1253 asymbol *symbol;
1254 PTR data;
1255 asection *input_section;
1256 bfd *output_bfd;
1257 char **error_message ATTRIBUTE_UNUSED;
1258{
1259 bfd_vma relocation;
1260 bfd_reloc_status_type r;
1261 asection *reloc_target_output_section;
1262 bfd_reloc_status_type flag = bfd_reloc_ok;
1263 bfd_vma output_base = 0;
1264 bfd_vma addr;
1265
1266 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1267 input_section, output_bfd, error_message);
1268
1269 /* If that was all that was needed (i.e. this isn't a final link, only
1270 some segment adjustments), we're done. */
1271 if (r != bfd_reloc_continue)
1272 return r;
1273
1274 if (bfd_is_und_section (symbol->section)
1275 && (symbol->flags & BSF_WEAK) == 0
1276 && output_bfd == (bfd *) NULL)
1277 return bfd_reloc_undefined;
1278
1279 /* Is the address of the relocation really within the section? */
1280 if (reloc_entry->address > input_section->_cooked_size)
1281 return bfd_reloc_outofrange;
1282
4cc11e76 1283 /* Work out which section the relocation is targeted at and the
3c3bdf30
NC
1284 initial relocation command value. */
1285
1286 /* Get symbol value. (Common symbols are special.) */
1287 if (bfd_is_com_section (symbol->section))
1288 relocation = 0;
1289 else
1290 relocation = symbol->value;
1291
1292 reloc_target_output_section = bfd_get_output_section (symbol);
1293
1294 /* Here the variable relocation holds the final address of the symbol we
1295 are relocating against, plus any addend. */
1296 if (output_bfd)
1297 output_base = 0;
1298 else
1299 output_base = reloc_target_output_section->vma;
1300
1301 relocation += output_base + symbol->section->output_offset;
1302
1303 /* Get position of relocation. */
1304 addr = (reloc_entry->address + input_section->output_section->vma
1305 + input_section->output_offset);
1306 if (output_bfd != (bfd *) NULL)
1307 {
1308 /* Add in supplied addend. */
1309 relocation += reloc_entry->addend;
1310
1311 /* This is a partial relocation, and we want to apply the
1312 relocation to the reloc entry rather than the raw data.
1313 Modify the reloc inplace to reflect what we now know. */
1314 reloc_entry->addend = relocation;
1315 reloc_entry->address += input_section->output_offset;
1316 return flag;
1317 }
1318
1319 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1320 data, reloc_entry->address,
1321 reloc_entry->addend, relocation,
1322 bfd_asymbol_name (symbol),
1323 reloc_target_output_section);
1324}
e06fcc86 1325\f
3c3bdf30
NC
1326/* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1327 for guidance if you're thinking of copying this. */
1328
b34976b6 1329static bfd_boolean
3c3bdf30
NC
1330mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1331 contents, relocs, local_syms, local_sections)
1332 bfd *output_bfd ATTRIBUTE_UNUSED;
1333 struct bfd_link_info *info;
1334 bfd *input_bfd;
1335 asection *input_section;
1336 bfd_byte *contents;
1337 Elf_Internal_Rela *relocs;
1338 Elf_Internal_Sym *local_syms;
1339 asection **local_sections;
1340{
1341 Elf_Internal_Shdr *symtab_hdr;
1342 struct elf_link_hash_entry **sym_hashes;
1343 Elf_Internal_Rela *rel;
1344 Elf_Internal_Rela *relend;
f60ebe14
HPN
1345 bfd_size_type raw_size
1346 = (input_section->_raw_size
1347 - mmix_elf_section_data (input_section)->pjs.n_pushj_relocs
1348 * MAX_PUSHJ_STUB_SIZE);
1349 size_t pjsno = 0;
3c3bdf30
NC
1350
1351 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1352 sym_hashes = elf_sym_hashes (input_bfd);
1353 relend = relocs + input_section->reloc_count;
1354
1355 for (rel = relocs; rel < relend; rel ++)
1356 {
1357 reloc_howto_type *howto;
1358 unsigned long r_symndx;
1359 Elf_Internal_Sym *sym;
1360 asection *sec;
1361 struct elf_link_hash_entry *h;
1362 bfd_vma relocation;
1363 bfd_reloc_status_type r;
1364 const char *name = NULL;
1365 int r_type;
b34976b6 1366 bfd_boolean undefined_signalled = FALSE;
3c3bdf30
NC
1367
1368 r_type = ELF64_R_TYPE (rel->r_info);
1369
1370 if (r_type == R_MMIX_GNU_VTINHERIT
1371 || r_type == R_MMIX_GNU_VTENTRY)
1372 continue;
1373
1374 r_symndx = ELF64_R_SYM (rel->r_info);
1375
1049f94e 1376 if (info->relocatable)
3c3bdf30 1377 {
f60ebe14
HPN
1378 /* This is a relocatable link. For most relocs we don't have to
1379 change anything, unless the reloc is against a section
1380 symbol, in which case we have to adjust according to where
1381 the section symbol winds up in the output section. */
3c3bdf30
NC
1382 if (r_symndx < symtab_hdr->sh_info)
1383 {
1384 sym = local_syms + r_symndx;
1385
1386 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1387 {
1388 sec = local_sections [r_symndx];
1389 rel->r_addend += sec->output_offset + sym->st_value;
1390 }
1391 }
1392
f60ebe14
HPN
1393 /* For PUSHJ stub relocs however, we may need to change the
1394 reloc and the section contents, if the reloc doesn't reach
1395 beyond the end of the output section and previous stubs.
1396 Then we change the section contents to be a PUSHJ to the end
1397 of the input section plus stubs (we can do that without using
1398 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1399 at the stub location. */
1400 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1401 {
1402 /* We've already checked whether we need a stub; use that
1403 knowledge. */
1404 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1405 != 0)
1406 {
1407 Elf_Internal_Rela relcpy;
1408
1409 if (mmix_elf_section_data (input_section)
1410 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1411 abort ();
1412
1413 /* There's already a PUSHJ insn there, so just fill in
1414 the offset bits to the stub. */
1415 if (mmix_final_link_relocate (elf_mmix_howto_table
1416 + R_MMIX_ADDR19,
1417 input_section,
1418 contents,
1419 rel->r_offset,
1420 0,
1421 input_section
1422 ->output_section->vma
1423 + input_section->output_offset
1424 + raw_size
1425 + mmix_elf_section_data (input_section)
1426 ->pjs.stub_offset,
1427 NULL, NULL) != bfd_reloc_ok)
1428 return FALSE;
1429
1430 /* Put a JMP insn at the stub; it goes with the
1431 R_MMIX_JMP reloc. */
1432 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1433 contents
1434 + raw_size
1435 + mmix_elf_section_data (input_section)
1436 ->pjs.stub_offset);
1437
1438 /* Change the reloc to be at the stub, and to a full
1439 R_MMIX_JMP reloc. */
1440 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1441 rel->r_offset
1442 = (raw_size
1443 + mmix_elf_section_data (input_section)
1444 ->pjs.stub_offset);
1445
1446 mmix_elf_section_data (input_section)->pjs.stub_offset
1447 += MAX_PUSHJ_STUB_SIZE;
1448
1449 /* Shift this reloc to the end of the relocs to maintain
1450 the r_offset sorted reloc order. */
1451 relcpy = *rel;
1452 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1453 relend[-1] = relcpy;
1454
1455 /* Back up one reloc, or else we'd skip the next reloc
1456 in turn. */
1457 rel--;
1458 }
1459
1460 pjsno++;
1461 }
3c3bdf30
NC
1462 continue;
1463 }
1464
1465 /* This is a final link. */
1466 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1467 h = NULL;
1468 sym = NULL;
1469 sec = NULL;
1470
1471 if (r_symndx < symtab_hdr->sh_info)
1472 {
1473 sym = local_syms + r_symndx;
1474 sec = local_sections [r_symndx];
8517fae7 1475 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3c3bdf30 1476
6a9cae7f
AM
1477 name = bfd_elf_string_from_elf_section (input_bfd,
1478 symtab_hdr->sh_link,
1479 sym->st_name);
1480 if (name == NULL)
1481 name = bfd_section_name (input_bfd, sec);
3c3bdf30
NC
1482 }
1483 else
1484 {
59c2e50f 1485 bfd_boolean unresolved_reloc;
3c3bdf30 1486
b2a8e766
AM
1487 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1488 r_symndx, symtab_hdr, sym_hashes,
1489 h, sec, relocation,
1490 unresolved_reloc, undefined_signalled);
6a9cae7f 1491 name = h->root.root.string;
3c3bdf30
NC
1492 }
1493
1494 r = mmix_final_link_relocate (howto, input_section,
1495 contents, rel->r_offset,
1496 rel->r_addend, relocation, name, sec);
1497
1498 if (r != bfd_reloc_ok)
1499 {
b34976b6 1500 bfd_boolean check_ok = TRUE;
3c3bdf30
NC
1501 const char * msg = (const char *) NULL;
1502
1503 switch (r)
1504 {
1505 case bfd_reloc_overflow:
1506 check_ok = info->callbacks->reloc_overflow
1507 (info, name, howto->name, (bfd_vma) 0,
1508 input_bfd, input_section, rel->r_offset);
1509 break;
1510
1511 case bfd_reloc_undefined:
1512 /* We may have sent this message above. */
1513 if (! undefined_signalled)
1514 check_ok = info->callbacks->undefined_symbol
1515 (info, name, input_bfd, input_section, rel->r_offset,
b34976b6
AM
1516 TRUE);
1517 undefined_signalled = TRUE;
3c3bdf30
NC
1518 break;
1519
1520 case bfd_reloc_outofrange:
1521 msg = _("internal error: out of range error");
1522 break;
1523
1524 case bfd_reloc_notsupported:
1525 msg = _("internal error: unsupported relocation error");
1526 break;
1527
1528 case bfd_reloc_dangerous:
1529 msg = _("internal error: dangerous relocation");
1530 break;
1531
1532 default:
1533 msg = _("internal error: unknown error");
1534 break;
1535 }
1536
1537 if (msg)
1538 check_ok = info->callbacks->warning
1539 (info, msg, name, input_bfd, input_section, rel->r_offset);
1540
1541 if (! check_ok)
b34976b6 1542 return FALSE;
3c3bdf30
NC
1543 }
1544 }
1545
b34976b6 1546 return TRUE;
3c3bdf30 1547}
e06fcc86 1548\f
3c3bdf30
NC
1549/* Perform a single relocation. By default we use the standard BFD
1550 routines. A few relocs we have to do ourselves. */
1551
1552static bfd_reloc_status_type
1553mmix_final_link_relocate (howto, input_section, contents,
1554 r_offset, r_addend, relocation, symname, symsec)
1555 reloc_howto_type *howto;
1556 asection *input_section;
1557 bfd_byte *contents;
1558 bfd_vma r_offset;
1559 bfd_signed_vma r_addend;
1560 bfd_vma relocation;
1561 const char *symname;
1562 asection *symsec;
1563{
1564 bfd_reloc_status_type r = bfd_reloc_ok;
1565 bfd_vma addr
1566 = (input_section->output_section->vma
1567 + input_section->output_offset
1568 + r_offset);
1569 bfd_signed_vma srel
1570 = (bfd_signed_vma) relocation + r_addend;
1571
1572 switch (howto->type)
1573 {
1574 /* All these are PC-relative. */
f60ebe14 1575 case R_MMIX_PUSHJ_STUBBABLE:
3c3bdf30
NC
1576 case R_MMIX_PUSHJ:
1577 case R_MMIX_CBRANCH:
1578 case R_MMIX_ADDR19:
1579 case R_MMIX_GETA:
1580 case R_MMIX_ADDR27:
1581 case R_MMIX_JMP:
1582 contents += r_offset;
1583
1584 srel -= (input_section->output_section->vma
1585 + input_section->output_offset
1586 + r_offset);
1587
1588 r = mmix_elf_perform_relocation (input_section, howto, contents,
1589 addr, srel);
1590 break;
1591
930b4cb2
HPN
1592 case R_MMIX_BASE_PLUS_OFFSET:
1593 if (symsec == NULL)
1594 return bfd_reloc_undefined;
1595
1596 /* Check that we're not relocating against a register symbol. */
1597 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1598 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1599 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1600 MMIX_REG_SECTION_NAME) == 0)
1601 {
1602 /* Note: This is separated out into two messages in order
1603 to ease the translation into other languages. */
1604 if (symname == NULL || *symname == 0)
1605 (*_bfd_error_handler)
1606 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1607 bfd_get_filename (input_section->owner),
1608 bfd_get_section_name (symsec->owner, symsec));
1609 else
1610 (*_bfd_error_handler)
1611 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1612 bfd_get_filename (input_section->owner), symname,
1613 bfd_get_section_name (symsec->owner, symsec));
1614 return bfd_reloc_overflow;
1615 }
1616 goto do_mmix_reloc;
1617
3c3bdf30
NC
1618 case R_MMIX_REG_OR_BYTE:
1619 case R_MMIX_REG:
1620 /* For now, we handle these alike. They must refer to an register
1621 symbol, which is either relative to the register section and in
1622 the range 0..255, or is in the register contents section with vma
1623 regno * 8. */
1624
1625 /* FIXME: A better way to check for reg contents section?
1626 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1627 if (symsec == NULL)
1628 return bfd_reloc_undefined;
1629
1630 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1631 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1632 {
1633 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1634 {
1635 /* The bfd_reloc_outofrange return value, though intuitively
1636 a better value, will not get us an error. */
1637 return bfd_reloc_overflow;
1638 }
1639 srel /= 8;
1640 }
1641 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1642 MMIX_REG_SECTION_NAME) == 0)
1643 {
1644 if (srel < 0 || srel > 255)
1645 /* The bfd_reloc_outofrange return value, though intuitively a
1646 better value, will not get us an error. */
1647 return bfd_reloc_overflow;
1648 }
1649 else
1650 {
930b4cb2 1651 /* Note: This is separated out into two messages in order
ca09e32b
NC
1652 to ease the translation into other languages. */
1653 if (symname == NULL || *symname == 0)
1654 (*_bfd_error_handler)
1655 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1656 bfd_get_filename (input_section->owner),
1657 bfd_get_section_name (symsec->owner, symsec));
1658 else
1659 (*_bfd_error_handler)
1660 (_("%s: register relocation against non-register symbol: %s in %s"),
1661 bfd_get_filename (input_section->owner), symname,
1662 bfd_get_section_name (symsec->owner, symsec));
3c3bdf30
NC
1663
1664 /* The bfd_reloc_outofrange return value, though intuitively a
1665 better value, will not get us an error. */
1666 return bfd_reloc_overflow;
1667 }
930b4cb2 1668 do_mmix_reloc:
3c3bdf30
NC
1669 contents += r_offset;
1670 r = mmix_elf_perform_relocation (input_section, howto, contents,
1671 addr, srel);
1672 break;
1673
1674 case R_MMIX_LOCAL:
1675 /* This isn't a real relocation, it's just an assertion that the
1676 final relocation value corresponds to a local register. We
1677 ignore the actual relocation; nothing is changed. */
1678 {
1679 asection *regsec
1680 = bfd_get_section_by_name (input_section->output_section->owner,
1681 MMIX_REG_CONTENTS_SECTION_NAME);
1682 bfd_vma first_global;
1683
1684 /* Check that this is an absolute value, or a reference to the
1685 register contents section or the register (symbol) section.
1686 Absolute numbers can get here as undefined section. Undefined
1687 symbols are signalled elsewhere, so there's no conflict in us
1688 accidentally handling it. */
1689 if (!bfd_is_abs_section (symsec)
1690 && !bfd_is_und_section (symsec)
1691 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1692 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1693 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1694 MMIX_REG_SECTION_NAME) != 0)
1695 {
1696 (*_bfd_error_handler)
1697 (_("%s: directive LOCAL valid only with a register or absolute value"),
1698 bfd_get_filename (input_section->owner));
1699
1700 return bfd_reloc_overflow;
1701 }
1702
1703 /* If we don't have a register contents section, then $255 is the
1704 first global register. */
1705 if (regsec == NULL)
1706 first_global = 255;
1707 else
1708 {
1709 first_global = bfd_get_section_vma (abfd, regsec) / 8;
1710 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1711 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1712 {
1713 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1714 /* The bfd_reloc_outofrange return value, though
1715 intuitively a better value, will not get us an error. */
1716 return bfd_reloc_overflow;
1717 srel /= 8;
1718 }
1719 }
1720
1721 if ((bfd_vma) srel >= first_global)
1722 {
1723 /* FIXME: Better error message. */
1724 (*_bfd_error_handler)
1725 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1726 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1727
1728 return bfd_reloc_overflow;
1729 }
1730 }
1731 r = bfd_reloc_ok;
1732 break;
1733
1734 default:
1735 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1736 contents, r_offset,
1737 relocation, r_addend);
1738 }
1739
1740 return r;
1741}
e06fcc86 1742\f
3c3bdf30
NC
1743/* Return the section that should be marked against GC for a given
1744 relocation. */
1745
1746static asection *
1e2f5b6e
AM
1747mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1748 asection *sec;
3c3bdf30
NC
1749 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1750 Elf_Internal_Rela *rel;
1751 struct elf_link_hash_entry *h;
1752 Elf_Internal_Sym *sym;
1753{
1754 if (h != NULL)
1755 {
1756 switch (ELF64_R_TYPE (rel->r_info))
1757 {
1758 case R_MMIX_GNU_VTINHERIT:
1759 case R_MMIX_GNU_VTENTRY:
1760 break;
1761
1762 default:
1763 switch (h->root.type)
1764 {
1765 case bfd_link_hash_defined:
1766 case bfd_link_hash_defweak:
1767 return h->root.u.def.section;
1768
1769 case bfd_link_hash_common:
1770 return h->root.u.c.p->section;
1771
1772 default:
1773 break;
1774 }
1775 }
1776 }
1777 else
1e2f5b6e 1778 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
3c3bdf30
NC
1779
1780 return NULL;
1781}
930b4cb2
HPN
1782
1783/* Update relocation info for a GC-excluded section. We could supposedly
1784 perform the allocation after GC, but there's no suitable hook between
1785 GC (or section merge) and the point when all input sections must be
1786 present. Better to waste some memory and (perhaps) a little time. */
1787
b34976b6 1788static bfd_boolean
930b4cb2
HPN
1789mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1790 bfd *abfd ATTRIBUTE_UNUSED;
1791 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1792 asection *sec ATTRIBUTE_UNUSED;
1793 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1794{
1795 struct bpo_reloc_section_info *bpodata
f0abc2a1 1796 = mmix_elf_section_data (sec)->bpo.reloc;
930b4cb2
HPN
1797 asection *allocated_gregs_section;
1798
1799 /* If no bpodata here, we have nothing to do. */
1800 if (bpodata == NULL)
b34976b6 1801 return TRUE;
930b4cb2
HPN
1802
1803 allocated_gregs_section = bpodata->bpo_greg_section;
1804
f0abc2a1 1805 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
930b4cb2
HPN
1806 -= bpodata->n_bpo_relocs_this_section;
1807
b34976b6 1808 return TRUE;
930b4cb2 1809}
e06fcc86 1810\f
3c3bdf30
NC
1811/* Sort register relocs to come before expanding relocs. */
1812
1813static int
1814mmix_elf_sort_relocs (p1, p2)
1815 const PTR p1;
1816 const PTR p2;
1817{
1818 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1819 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1820 int r1_is_reg, r2_is_reg;
1821
1822 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1823 insns. */
1824 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1825 return 1;
1826 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1827 return -1;
1828
1829 r1_is_reg
1830 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1831 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1832 r2_is_reg
1833 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1834 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1835 if (r1_is_reg != r2_is_reg)
1836 return r2_is_reg - r1_is_reg;
1837
1838 /* Neither or both are register relocs. Then sort on full offset. */
1839 if (r1->r_offset > r2->r_offset)
1840 return 1;
1841 else if (r1->r_offset < r2->r_offset)
1842 return -1;
1843 return 0;
1844}
1845
930b4cb2
HPN
1846/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1847
b34976b6 1848static bfd_boolean
930b4cb2
HPN
1849mmix_elf_check_common_relocs (abfd, info, sec, relocs)
1850 bfd *abfd;
1851 struct bfd_link_info *info;
1852 asection *sec;
1853 const Elf_Internal_Rela *relocs;
1854{
1855 bfd *bpo_greg_owner = NULL;
1856 asection *allocated_gregs_section = NULL;
1857 struct bpo_greg_section_info *gregdata = NULL;
1858 struct bpo_reloc_section_info *bpodata = NULL;
1859 const Elf_Internal_Rela *rel;
1860 const Elf_Internal_Rela *rel_end;
1861
930b4cb2
HPN
1862 /* We currently have to abuse this COFF-specific member, since there's
1863 no target-machine-dedicated member. There's no alternative outside
1864 the bfd_link_info struct; we can't specialize a hash-table since
1865 they're different between ELF and mmo. */
1866 bpo_greg_owner = (bfd *) info->base_file;
1867
1868 rel_end = relocs + sec->reloc_count;
1869 for (rel = relocs; rel < rel_end; rel++)
1870 {
1871 switch (ELF64_R_TYPE (rel->r_info))
1872 {
1873 /* This relocation causes a GREG allocation. We need to count
1874 them, and we need to create a section for them, so we need an
1875 object to fake as the owner of that section. We can't use
1876 the ELF dynobj for this, since the ELF bits assume lots of
1877 DSO-related stuff if that member is non-NULL. */
1878 case R_MMIX_BASE_PLUS_OFFSET:
f60ebe14
HPN
1879 /* We don't do anything with this reloc for a relocatable link. */
1880 if (info->relocatable)
1881 break;
1882
930b4cb2
HPN
1883 if (bpo_greg_owner == NULL)
1884 {
1885 bpo_greg_owner = abfd;
1886 info->base_file = (PTR) bpo_greg_owner;
1887 }
1888
4fa5c2a8
HPN
1889 if (allocated_gregs_section == NULL)
1890 allocated_gregs_section
1891 = bfd_get_section_by_name (bpo_greg_owner,
1892 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1893
930b4cb2
HPN
1894 if (allocated_gregs_section == NULL)
1895 {
1896 allocated_gregs_section
1897 = bfd_make_section (bpo_greg_owner,
1898 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1899 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1900 treated like any other section, and we'd get errors for
1901 address overlap with the text section. Let's set none of
1902 those flags, as that is what currently happens for usual
1903 GREG allocations, and that works. */
1904 if (allocated_gregs_section == NULL
1905 || !bfd_set_section_flags (bpo_greg_owner,
1906 allocated_gregs_section,
1907 (SEC_HAS_CONTENTS
1908 | SEC_IN_MEMORY
1909 | SEC_LINKER_CREATED))
1910 || !bfd_set_section_alignment (bpo_greg_owner,
1911 allocated_gregs_section,
1912 3))
b34976b6 1913 return FALSE;
930b4cb2
HPN
1914
1915 gregdata = (struct bpo_greg_section_info *)
1916 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1917 if (gregdata == NULL)
b34976b6 1918 return FALSE;
f0abc2a1
AM
1919 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1920 = gregdata;
930b4cb2
HPN
1921 }
1922 else if (gregdata == NULL)
f0abc2a1
AM
1923 gregdata
1924 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
930b4cb2
HPN
1925
1926 /* Get ourselves some auxiliary info for the BPO-relocs. */
1927 if (bpodata == NULL)
1928 {
1929 /* No use doing a separate iteration pass to find the upper
1930 limit - just use the number of relocs. */
1931 bpodata = (struct bpo_reloc_section_info *)
1932 bfd_alloc (bpo_greg_owner,
1933 sizeof (struct bpo_reloc_section_info)
1934 * (sec->reloc_count + 1));
1935 if (bpodata == NULL)
b34976b6 1936 return FALSE;
f0abc2a1 1937 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
930b4cb2
HPN
1938 bpodata->first_base_plus_offset_reloc
1939 = bpodata->bpo_index
1940 = gregdata->n_max_bpo_relocs;
1941 bpodata->bpo_greg_section
1942 = allocated_gregs_section;
4fa5c2a8 1943 bpodata->n_bpo_relocs_this_section = 0;
930b4cb2
HPN
1944 }
1945
1946 bpodata->n_bpo_relocs_this_section++;
1947 gregdata->n_max_bpo_relocs++;
1948
1949 /* We don't get another chance to set this before GC; we've not
f60ebe14 1950 set up any hook that runs before GC. */
930b4cb2
HPN
1951 gregdata->n_bpo_relocs
1952 = gregdata->n_max_bpo_relocs;
1953 break;
f60ebe14
HPN
1954
1955 case R_MMIX_PUSHJ_STUBBABLE:
1956 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1957 break;
930b4cb2
HPN
1958 }
1959 }
1960
f60ebe14
HPN
1961 /* Allocate per-reloc stub storage and initialize it to the max stub
1962 size. */
1963 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1964 {
1965 size_t i;
1966
1967 mmix_elf_section_data (sec)->pjs.stub_size
1968 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1969 * sizeof (mmix_elf_section_data (sec)
1970 ->pjs.stub_size[0]));
1971 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1972 return FALSE;
1973
1974 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1975 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1976 }
1977
b34976b6 1978 return TRUE;
930b4cb2
HPN
1979}
1980
3c3bdf30
NC
1981/* Look through the relocs for a section during the first phase. */
1982
b34976b6 1983static bfd_boolean
3c3bdf30
NC
1984mmix_elf_check_relocs (abfd, info, sec, relocs)
1985 bfd *abfd;
1986 struct bfd_link_info *info;
1987 asection *sec;
1988 const Elf_Internal_Rela *relocs;
1989{
1990 Elf_Internal_Shdr *symtab_hdr;
1991 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1992 const Elf_Internal_Rela *rel;
1993 const Elf_Internal_Rela *rel_end;
1994
3c3bdf30
NC
1995 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1996 sym_hashes = elf_sym_hashes (abfd);
1997 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1998 if (!elf_bad_symtab (abfd))
1999 sym_hashes_end -= symtab_hdr->sh_info;
2000
2001 /* First we sort the relocs so that any register relocs come before
2002 expansion-relocs to the same insn. FIXME: Not done for mmo. */
2003 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
2004 mmix_elf_sort_relocs);
2005
930b4cb2
HPN
2006 /* Do the common part. */
2007 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
b34976b6 2008 return FALSE;
930b4cb2 2009
f60ebe14
HPN
2010 if (info->relocatable)
2011 return TRUE;
2012
3c3bdf30
NC
2013 rel_end = relocs + sec->reloc_count;
2014 for (rel = relocs; rel < rel_end; rel++)
2015 {
2016 struct elf_link_hash_entry *h;
2017 unsigned long r_symndx;
2018
2019 r_symndx = ELF64_R_SYM (rel->r_info);
2020 if (r_symndx < symtab_hdr->sh_info)
2021 h = NULL;
2022 else
2023 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2024
2025 switch (ELF64_R_TYPE (rel->r_info))
930b4cb2 2026 {
3c3bdf30
NC
2027 /* This relocation describes the C++ object vtable hierarchy.
2028 Reconstruct it for later use during GC. */
2029 case R_MMIX_GNU_VTINHERIT:
c152c796 2030 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 2031 return FALSE;
3c3bdf30
NC
2032 break;
2033
2034 /* This relocation describes which C++ vtable entries are actually
2035 used. Record for later use during GC. */
2036 case R_MMIX_GNU_VTENTRY:
c152c796 2037 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
b34976b6 2038 return FALSE;
3c3bdf30 2039 break;
930b4cb2
HPN
2040 }
2041 }
2042
b34976b6 2043 return TRUE;
930b4cb2
HPN
2044}
2045
2046/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2047 Copied from elf_link_add_object_symbols. */
2048
b34976b6 2049bfd_boolean
930b4cb2
HPN
2050_bfd_mmix_check_all_relocs (abfd, info)
2051 bfd *abfd;
2052 struct bfd_link_info *info;
2053{
2054 asection *o;
2055
2056 for (o = abfd->sections; o != NULL; o = o->next)
2057 {
2058 Elf_Internal_Rela *internal_relocs;
b34976b6 2059 bfd_boolean ok;
930b4cb2
HPN
2060
2061 if ((o->flags & SEC_RELOC) == 0
2062 || o->reloc_count == 0
2063 || ((info->strip == strip_all || info->strip == strip_debugger)
2064 && (o->flags & SEC_DEBUGGING) != 0)
2065 || bfd_is_abs_section (o->output_section))
2066 continue;
2067
2068 internal_relocs
45d6a902
AM
2069 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2070 (Elf_Internal_Rela *) NULL,
2071 info->keep_memory);
930b4cb2 2072 if (internal_relocs == NULL)
b34976b6 2073 return FALSE;
930b4cb2
HPN
2074
2075 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2076
2077 if (! info->keep_memory)
2078 free (internal_relocs);
2079
2080 if (! ok)
b34976b6 2081 return FALSE;
3c3bdf30
NC
2082 }
2083
b34976b6 2084 return TRUE;
3c3bdf30 2085}
e06fcc86 2086\f
3c3bdf30
NC
2087/* Change symbols relative to the reg contents section to instead be to
2088 the register section, and scale them down to correspond to the register
2089 number. */
2090
b34976b6 2091static bfd_boolean
754021d0 2092mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
3c3bdf30
NC
2093 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2094 const char *name ATTRIBUTE_UNUSED;
2095 Elf_Internal_Sym *sym;
2096 asection *input_sec;
754021d0 2097 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
3c3bdf30
NC
2098{
2099 if (input_sec != NULL
2100 && input_sec->name != NULL
2101 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2102 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2103 {
2104 sym->st_value /= 8;
2105 sym->st_shndx = SHN_REGISTER;
2106 }
2107
b34976b6 2108 return TRUE;
3c3bdf30
NC
2109}
2110
2111/* We fake a register section that holds values that are register numbers.
2112 Having a SHN_REGISTER and register section translates better to other
2113 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2114 This section faking is based on a construct in elf32-mips.c. */
2115static asection mmix_elf_reg_section;
2116static asymbol mmix_elf_reg_section_symbol;
2117static asymbol *mmix_elf_reg_section_symbol_ptr;
2118
f60ebe14 2119/* Handle the special section numbers that a symbol may use. */
3c3bdf30
NC
2120
2121void
2122mmix_elf_symbol_processing (abfd, asym)
2123 bfd *abfd ATTRIBUTE_UNUSED;
2124 asymbol *asym;
2125{
2126 elf_symbol_type *elfsym;
2127
2128 elfsym = (elf_symbol_type *) asym;
2129 switch (elfsym->internal_elf_sym.st_shndx)
2130 {
2131 case SHN_REGISTER:
2132 if (mmix_elf_reg_section.name == NULL)
2133 {
2134 /* Initialize the register section. */
2135 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2136 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2137 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2138 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2139 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2140 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2141 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2142 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2143 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2144 }
2145 asym->section = &mmix_elf_reg_section;
2146 break;
2147
2148 default:
2149 break;
2150 }
2151}
2152
2153/* Given a BFD section, try to locate the corresponding ELF section
2154 index. */
2155
b34976b6 2156static bfd_boolean
af746e92 2157mmix_elf_section_from_bfd_section (abfd, sec, retval)
3c3bdf30 2158 bfd * abfd ATTRIBUTE_UNUSED;
3c3bdf30
NC
2159 asection * sec;
2160 int * retval;
2161{
2162 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2163 *retval = SHN_REGISTER;
2164 else
b34976b6 2165 return FALSE;
3c3bdf30 2166
b34976b6 2167 return TRUE;
3c3bdf30
NC
2168}
2169
2170/* Hook called by the linker routine which adds symbols from an object
2171 file. We must handle the special SHN_REGISTER section number here.
2172
2173 We also check that we only have *one* each of the section-start
2174 symbols, since otherwise having two with the same value would cause
2175 them to be "merged", but with the contents serialized. */
2176
b34976b6 2177bfd_boolean
3c3bdf30
NC
2178mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2179 bfd *abfd;
2180 struct bfd_link_info *info ATTRIBUTE_UNUSED;
555cd476 2181 Elf_Internal_Sym *sym;
3c3bdf30
NC
2182 const char **namep ATTRIBUTE_UNUSED;
2183 flagword *flagsp ATTRIBUTE_UNUSED;
2184 asection **secp;
2185 bfd_vma *valp ATTRIBUTE_UNUSED;
2186{
2187 if (sym->st_shndx == SHN_REGISTER)
2188 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2189 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2190 && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
2191 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
2192 {
2193 /* See if we have another one. */
4ab82700
AM
2194 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2195 *namep,
b34976b6
AM
2196 FALSE,
2197 FALSE,
2198 FALSE);
3c3bdf30 2199
4ab82700 2200 if (h != NULL && h->type != bfd_link_hash_undefined)
3c3bdf30
NC
2201 {
2202 /* How do we get the asymbol (or really: the filename) from h?
4ab82700 2203 h->u.def.section->owner is NULL. */
3c3bdf30
NC
2204 ((*_bfd_error_handler)
2205 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2206 bfd_get_filename (abfd), *namep,
2207 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2208 bfd_set_error (bfd_error_bad_value);
b34976b6 2209 return FALSE;
3c3bdf30
NC
2210 }
2211 }
2212
b34976b6 2213 return TRUE;
3c3bdf30
NC
2214}
2215
2216/* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2217
b34976b6 2218bfd_boolean
3c3bdf30
NC
2219mmix_elf_is_local_label_name (abfd, name)
2220 bfd *abfd;
2221 const char *name;
2222{
2223 const char *colpos;
2224 int digits;
2225
2226 /* Also include the default local-label definition. */
2227 if (_bfd_elf_is_local_label_name (abfd, name))
b34976b6 2228 return TRUE;
3c3bdf30
NC
2229
2230 if (*name != 'L')
b34976b6 2231 return FALSE;
3c3bdf30
NC
2232
2233 /* If there's no ":", or more than one, it's not a local symbol. */
2234 colpos = strchr (name, ':');
2235 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
b34976b6 2236 return FALSE;
3c3bdf30
NC
2237
2238 /* Check that there are remaining characters and that they are digits. */
2239 if (colpos[1] == 0)
b34976b6 2240 return FALSE;
3c3bdf30
NC
2241
2242 digits = strspn (colpos + 1, "0123456789");
2243 return digits != 0 && colpos[1 + digits] == 0;
2244}
2245
2246/* We get rid of the register section here. */
2247
b34976b6 2248bfd_boolean
3c3bdf30
NC
2249mmix_elf_final_link (abfd, info)
2250 bfd *abfd;
2251 struct bfd_link_info *info;
2252{
2253 /* We never output a register section, though we create one for
2254 temporary measures. Check that nobody entered contents into it. */
2255 asection *reg_section;
2256 asection **secpp;
2257
2258 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2259
2260 if (reg_section != NULL)
2261 {
2262 /* FIXME: Pass error state gracefully. */
2263 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2264 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2265
3c3bdf30
NC
2266 /* Really remove the section. */
2267 for (secpp = &abfd->sections;
2268 *secpp != reg_section;
2269 secpp = &(*secpp)->next)
2270 ;
9e7b37b3 2271 bfd_section_list_remove (abfd, secpp);
3c3bdf30
NC
2272 --abfd->section_count;
2273 }
2274
c152c796 2275 if (! bfd_elf_final_link (abfd, info))
b34976b6 2276 return FALSE;
3c3bdf30 2277
930b4cb2
HPN
2278 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2279 the regular linker machinery. We do it here, like other targets with
2280 special sections. */
2281 if (info->base_file != NULL)
2282 {
2283 asection *greg_section
2284 = bfd_get_section_by_name ((bfd *) info->base_file,
2285 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2286 if (!bfd_set_section_contents (abfd,
2287 greg_section->output_section,
2288 greg_section->contents,
2289 (file_ptr) greg_section->output_offset,
2290 greg_section->_cooked_size))
b34976b6 2291 return FALSE;
930b4cb2 2292 }
b34976b6 2293 return TRUE;
930b4cb2
HPN
2294}
2295
f60ebe14
HPN
2296/* We need to include the maximum size of PUSHJ-stubs in the initial
2297 section size. This is expected to shrink during linker relaxation.
2298
2299 You might think that we should set *only* _cooked_size, but that won't
2300 work: section contents allocation will be using _raw_size in mixed
2301 format linking and not enough storage will be allocated. FIXME: That's
2302 a major bug, including the name bfd_get_section_size_before_reloc; it
2303 should be bfd_get_section_size_before_relax. The relaxation functions
2304 set _cooked size. Relaxation happens before relocation. All functions
2305 *after relaxation* should be using _cooked size. */
2306
2307static void
2308mmix_set_relaxable_size (abfd, sec, ptr)
2309 bfd *abfd ATTRIBUTE_UNUSED;
2310 asection *sec;
2311 void *ptr;
2312{
2313 struct bfd_link_info *info = ptr;
2314
2315 /* Make sure we only do this for section where we know we want this,
2316 otherwise we might end up resetting the size of COMMONs. */
2317 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2318 return;
2319
2320 sec->_cooked_size
2321 = (sec->_raw_size
2322 + mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2323 * MAX_PUSHJ_STUB_SIZE);
2324 sec->_raw_size = sec->_cooked_size;
2325
2326 /* For use in relocatable link, we start with a max stubs size. See
2327 mmix_elf_relax_section. */
2328 if (info->relocatable && sec->output_section)
2329 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2330 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2331 * MAX_PUSHJ_STUB_SIZE);
2332}
2333
930b4cb2
HPN
2334/* Initialize stuff for the linker-generated GREGs to match
2335 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2336
b34976b6 2337bfd_boolean
f60ebe14 2338_bfd_mmix_before_linker_allocation (abfd, info)
930b4cb2
HPN
2339 bfd *abfd ATTRIBUTE_UNUSED;
2340 struct bfd_link_info *info;
2341{
2342 asection *bpo_gregs_section;
2343 bfd *bpo_greg_owner;
2344 struct bpo_greg_section_info *gregdata;
2345 size_t n_gregs;
2346 bfd_vma gregs_size;
2347 size_t i;
2348 size_t *bpo_reloc_indexes;
f60ebe14
HPN
2349 bfd *ibfd;
2350
2351 /* Set the initial size of sections. */
2352 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2353 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
930b4cb2
HPN
2354
2355 /* The bpo_greg_owner bfd is supposed to have been set by
2356 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2357 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2358 bpo_greg_owner = (bfd *) info->base_file;
2359 if (bpo_greg_owner == NULL)
b34976b6 2360 return TRUE;
930b4cb2
HPN
2361
2362 bpo_gregs_section
2363 = bfd_get_section_by_name (bpo_greg_owner,
2364 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2365
930b4cb2 2366 if (bpo_gregs_section == NULL)
b34976b6 2367 return TRUE;
930b4cb2
HPN
2368
2369 /* We use the target-data handle in the ELF section data. */
f0abc2a1 2370 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2371 if (gregdata == NULL)
b34976b6 2372 return FALSE;
930b4cb2
HPN
2373
2374 n_gregs = gregdata->n_bpo_relocs;
2375 gregdata->n_allocated_bpo_gregs = n_gregs;
2376
2377 /* When this reaches zero during relaxation, all entries have been
2378 filled in and the size of the linker gregs can be calculated. */
2379 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2380
2381 /* Set the zeroth-order estimate for the GREGs size. */
2382 gregs_size = n_gregs * 8;
2383
2384 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
b34976b6 2385 return FALSE;
930b4cb2
HPN
2386
2387 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2388 time. Note that we must use the max number ever noted for the array,
2389 since the index numbers were created before GC. */
2390 gregdata->reloc_request
2391 = bfd_zalloc (bpo_greg_owner,
2392 sizeof (struct bpo_reloc_request)
2393 * gregdata->n_max_bpo_relocs);
2394
2395 gregdata->bpo_reloc_indexes
2396 = bpo_reloc_indexes
2397 = bfd_alloc (bpo_greg_owner,
2398 gregdata->n_max_bpo_relocs
2399 * sizeof (size_t));
2400 if (bpo_reloc_indexes == NULL)
b34976b6 2401 return FALSE;
930b4cb2
HPN
2402
2403 /* The default order is an identity mapping. */
2404 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2405 {
2406 bpo_reloc_indexes[i] = i;
2407 gregdata->reloc_request[i].bpo_reloc_no = i;
2408 }
2409
b34976b6 2410 return TRUE;
3c3bdf30 2411}
e06fcc86 2412\f
930b4cb2
HPN
2413/* Fill in contents in the linker allocated gregs. Everything is
2414 calculated at this point; we just move the contents into place here. */
2415
b34976b6 2416bfd_boolean
f60ebe14 2417_bfd_mmix_after_linker_allocation (abfd, link_info)
930b4cb2
HPN
2418 bfd *abfd ATTRIBUTE_UNUSED;
2419 struct bfd_link_info *link_info;
2420{
2421 asection *bpo_gregs_section;
2422 bfd *bpo_greg_owner;
2423 struct bpo_greg_section_info *gregdata;
2424 size_t n_gregs;
2425 size_t i, j;
2426 size_t lastreg;
2427 bfd_byte *contents;
2428
2429 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2430 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2431 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2432 bpo_greg_owner = (bfd *) link_info->base_file;
2433 if (bpo_greg_owner == NULL)
b34976b6 2434 return TRUE;
930b4cb2
HPN
2435
2436 bpo_gregs_section
2437 = bfd_get_section_by_name (bpo_greg_owner,
2438 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2439
2440 /* This can't happen without DSO handling. When DSOs are handled
2441 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2442 section. */
2443 if (bpo_gregs_section == NULL)
b34976b6 2444 return TRUE;
930b4cb2
HPN
2445
2446 /* We use the target-data handle in the ELF section data. */
2447
f0abc2a1 2448 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2449 if (gregdata == NULL)
b34976b6 2450 return FALSE;
930b4cb2
HPN
2451
2452 n_gregs = gregdata->n_allocated_bpo_gregs;
2453
3416d2e7
HPN
2454 /* We need to have a _raw_size contents even though there's only
2455 _cooked_size worth of data, since the generic relocation machinery
2456 will allocate and copy that much temporarily. */
930b4cb2 2457 bpo_gregs_section->contents
3416d2e7 2458 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->_raw_size);
930b4cb2 2459 if (contents == NULL)
b34976b6 2460 return FALSE;
930b4cb2 2461
7e799044
HPN
2462 /* Sanity check: If these numbers mismatch, some relocation has not been
2463 accounted for and the rest of gregdata is probably inconsistent.
2464 It's a bug, but it's more helpful to identify it than segfaulting
2465 below. */
2466 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2467 != gregdata->n_bpo_relocs)
2468 {
2469 (*_bfd_error_handler)
2470 (_("Internal inconsistency: remaining %u != max %u.\n\
2471 Please report this bug."),
2472 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2473 gregdata->n_bpo_relocs);
b34976b6 2474 return FALSE;
7e799044
HPN
2475 }
2476
930b4cb2
HPN
2477 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2478 if (gregdata->reloc_request[i].regindex != lastreg)
2479 {
2480 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2481 contents + j * 8);
2482 lastreg = gregdata->reloc_request[i].regindex;
2483 j++;
2484 }
2485
b34976b6 2486 return TRUE;
930b4cb2
HPN
2487}
2488
2489/* Sort valid relocs to come before non-valid relocs, then on increasing
2490 value. */
2491
2492static int
2493bpo_reloc_request_sort_fn (p1, p2)
2494 const PTR p1;
2495 const PTR p2;
2496{
2497 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2498 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2499
2500 /* Primary function is validity; non-valid relocs sorted after valid
2501 ones. */
2502 if (r1->valid != r2->valid)
2503 return r2->valid - r1->valid;
2504
4fa5c2a8
HPN
2505 /* Then sort on value. Don't simplify and return just the difference of
2506 the values: the upper bits of the 64-bit value would be truncated on
2507 a host with 32-bit ints. */
930b4cb2 2508 if (r1->value != r2->value)
4fa5c2a8 2509 return r1->value > r2->value ? 1 : -1;
930b4cb2 2510
dfbbae4c
HPN
2511 /* As a last re-sort, use the relocation number, so we get a stable
2512 sort. The *addresses* aren't stable since items are swapped during
2513 sorting. It depends on the qsort implementation if this actually
2514 happens. */
2515 return r1->bpo_reloc_no > r2->bpo_reloc_no
2516 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
930b4cb2
HPN
2517}
2518
4fa5c2a8
HPN
2519/* For debug use only. Dumps the global register allocations resulting
2520 from base-plus-offset relocs. */
2521
2522void
2523mmix_dump_bpo_gregs (link_info, pf)
2524 struct bfd_link_info *link_info;
2525 bfd_error_handler_type pf;
2526{
2527 bfd *bpo_greg_owner;
2528 asection *bpo_gregs_section;
2529 struct bpo_greg_section_info *gregdata;
2530 unsigned int i;
2531
2532 if (link_info == NULL || link_info->base_file == NULL)
2533 return;
2534
2535 bpo_greg_owner = (bfd *) link_info->base_file;
2536
2537 bpo_gregs_section
2538 = bfd_get_section_by_name (bpo_greg_owner,
2539 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2540
2541 if (bpo_gregs_section == NULL)
2542 return;
2543
f0abc2a1 2544 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
4fa5c2a8
HPN
2545 if (gregdata == NULL)
2546 return;
2547
2548 if (pf == NULL)
2549 pf = _bfd_error_handler;
2550
2551 /* These format strings are not translated. They are for debug purposes
2552 only and never displayed to an end user. Should they escape, we
2553 surely want them in original. */
2554 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2555 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2556 gregdata->n_max_bpo_relocs,
2557 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2558 gregdata->n_allocated_bpo_gregs);
2559
2560 if (gregdata->reloc_request)
2561 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2562 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2563 i,
cf3d882d
AM
2564 (gregdata->bpo_reloc_indexes != NULL
2565 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
4fa5c2a8
HPN
2566 gregdata->reloc_request[i].bpo_reloc_no,
2567 gregdata->reloc_request[i].valid,
2568
2569 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2570 (unsigned long) gregdata->reloc_request[i].value,
2571 gregdata->reloc_request[i].regindex,
2572 gregdata->reloc_request[i].offset);
2573}
2574
930b4cb2
HPN
2575/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2576 when the last such reloc is done, an index-array is sorted according to
2577 the values and iterated over to produce register numbers (indexed by 0
2578 from the first allocated register number) and offsets for use in real
2579 relocation.
2580
f60ebe14
HPN
2581 PUSHJ stub accounting is also done here.
2582
930b4cb2
HPN
2583 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2584
b34976b6 2585static bfd_boolean
930b4cb2
HPN
2586mmix_elf_relax_section (abfd, sec, link_info, again)
2587 bfd *abfd;
2588 asection *sec;
2589 struct bfd_link_info *link_info;
b34976b6 2590 bfd_boolean *again;
930b4cb2 2591{
930b4cb2 2592 Elf_Internal_Shdr *symtab_hdr;
930b4cb2 2593 Elf_Internal_Rela *internal_relocs;
930b4cb2
HPN
2594 Elf_Internal_Rela *irel, *irelend;
2595 asection *bpo_gregs_section = NULL;
2596 struct bpo_greg_section_info *gregdata;
2597 struct bpo_reloc_section_info *bpodata
f0abc2a1 2598 = mmix_elf_section_data (sec)->bpo.reloc;
f60ebe14
HPN
2599 /* The initialization is to quiet compiler warnings. The value is to
2600 spot a missing actual initialization. */
2601 size_t bpono = (size_t) -1;
2602 size_t pjsno = 0;
930b4cb2 2603 bfd *bpo_greg_owner;
6cdc0ccc 2604 Elf_Internal_Sym *isymbuf = NULL;
f60ebe14
HPN
2605 bfd_size_type raw_size
2606 = (sec->_raw_size
2607 - mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2608 * MAX_PUSHJ_STUB_SIZE);
2609
2610 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
930b4cb2
HPN
2611
2612 /* Assume nothing changes. */
b34976b6 2613 *again = FALSE;
930b4cb2
HPN
2614
2615 /* If this is the first time we have been called for this section,
2616 initialize the cooked size. */
f60ebe14
HPN
2617 if (sec->_cooked_size == 0 && sec->_raw_size != 0)
2618 abort ();
2619
2620 /* We don't have to do anything if this section does not have relocs, or
2621 if this is not a code section. */
2622 if ((sec->flags & SEC_RELOC) == 0
930b4cb2
HPN
2623 || sec->reloc_count == 0
2624 || (sec->flags & SEC_CODE) == 0
2625 || (sec->flags & SEC_LINKER_CREATED) != 0
f60ebe14
HPN
2626 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2627 then nothing to do. */
2628 || (bpodata == NULL
2629 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
b34976b6 2630 return TRUE;
930b4cb2
HPN
2631
2632 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
930b4cb2
HPN
2633
2634 bpo_greg_owner = (bfd *) link_info->base_file;
930b4cb2 2635
f60ebe14
HPN
2636 if (bpodata != NULL)
2637 {
2638 bpo_gregs_section = bpodata->bpo_greg_section;
2639 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2640 bpono = bpodata->first_base_plus_offset_reloc;
2641 }
2642 else
2643 gregdata = NULL;
930b4cb2
HPN
2644
2645 /* Get a copy of the native relocations. */
2646 internal_relocs
45d6a902
AM
2647 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2648 (Elf_Internal_Rela *) NULL,
2649 link_info->keep_memory);
930b4cb2
HPN
2650 if (internal_relocs == NULL)
2651 goto error_return;
930b4cb2
HPN
2652
2653 /* Walk through them looking for relaxing opportunities. */
2654 irelend = internal_relocs + sec->reloc_count;
2655 for (irel = internal_relocs; irel < irelend; irel++)
2656 {
2657 bfd_vma symval;
f60ebe14 2658 struct elf_link_hash_entry *h = NULL;
930b4cb2 2659
f60ebe14
HPN
2660 /* We only process two relocs. */
2661 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2662 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
930b4cb2
HPN
2663 continue;
2664
f60ebe14
HPN
2665 /* We process relocs in a distinctly different way when this is a
2666 relocatable link (for one, we don't look at symbols), so we avoid
2667 mixing its code with that for the "normal" relaxation. */
2668 if (link_info->relocatable)
2669 {
2670 /* The only transformation in a relocatable link is to generate
2671 a full stub at the location of the stub calculated for the
2672 input section, if the relocated stub location, the end of the
2673 output section plus earlier stubs, cannot be reached. Thus
2674 relocatable linking can only lead to worse code, but it still
2675 works. */
2676 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2677 {
2678 /* If we can reach the end of the output-section and beyond
2679 any current stubs, then we don't need a stub for this
2680 reloc. The relaxed order of output stub allocation may
2681 not exactly match the straightforward order, so we always
2682 assume presence of output stubs, which will allow
2683 relaxation only on relocations indifferent to the
2684 presence of output stub allocations for other relocations
2685 and thus the order of output stub allocation. */
2686 if (bfd_check_overflow (complain_overflow_signed,
2687 19,
2688 0,
2689 bfd_arch_bits_per_address (abfd),
2690 /* Output-stub location. */
2691 sec->output_section->_cooked_size
2692 + (mmix_elf_section_data (sec
2693 ->output_section)
2694 ->pjs.stubs_size_sum)
2695 /* Location of this PUSHJ reloc. */
2696 - (sec->output_offset + irel->r_offset)
2697 /* Don't count *this* stub twice. */
2698 - (mmix_elf_section_data (sec)
2699 ->pjs.stub_size[pjsno]
2700 + MAX_PUSHJ_STUB_SIZE))
2701 == bfd_reloc_ok)
2702 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2703
2704 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2705 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2706
2707 pjsno++;
2708 }
2709
2710 continue;
2711 }
2712
930b4cb2
HPN
2713 /* Get the value of the symbol referred to by the reloc. */
2714 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2715 {
2716 /* A local symbol. */
6cdc0ccc 2717 Elf_Internal_Sym *isym;
930b4cb2
HPN
2718 asection *sym_sec;
2719
6cdc0ccc
AM
2720 /* Read this BFD's local symbols if we haven't already. */
2721 if (isymbuf == NULL)
2722 {
2723 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2724 if (isymbuf == NULL)
2725 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2726 symtab_hdr->sh_info, 0,
2727 NULL, NULL, NULL);
2728 if (isymbuf == 0)
2729 goto error_return;
2730 }
930b4cb2 2731
6cdc0ccc
AM
2732 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2733 if (isym->st_shndx == SHN_UNDEF)
930b4cb2 2734 sym_sec = bfd_und_section_ptr;
6cdc0ccc 2735 else if (isym->st_shndx == SHN_ABS)
930b4cb2 2736 sym_sec = bfd_abs_section_ptr;
6cdc0ccc 2737 else if (isym->st_shndx == SHN_COMMON)
930b4cb2
HPN
2738 sym_sec = bfd_com_section_ptr;
2739 else
6cdc0ccc
AM
2740 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2741 symval = (isym->st_value
930b4cb2
HPN
2742 + sym_sec->output_section->vma
2743 + sym_sec->output_offset);
2744 }
2745 else
2746 {
2747 unsigned long indx;
930b4cb2
HPN
2748
2749 /* An external symbol. */
2750 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2751 h = elf_sym_hashes (abfd)[indx];
2752 BFD_ASSERT (h != NULL);
2753 if (h->root.type != bfd_link_hash_defined
2754 && h->root.type != bfd_link_hash_defweak)
2755 {
f60ebe14
HPN
2756 /* This appears to be a reference to an undefined symbol. Just
2757 ignore it--it will be caught by the regular reloc processing.
2758 We need to keep BPO reloc accounting consistent, though
2759 else we'll abort instead of emitting an error message. */
2760 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2761 && gregdata != NULL)
2762 {
2763 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2764 bpono++;
2765 }
930b4cb2
HPN
2766 continue;
2767 }
2768
2769 symval = (h->root.u.def.value
2770 + h->root.u.def.section->output_section->vma
2771 + h->root.u.def.section->output_offset);
2772 }
2773
f60ebe14
HPN
2774 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2775 {
2776 bfd_vma value = symval + irel->r_addend;
2777 bfd_vma dot
2778 = (sec->output_section->vma
2779 + sec->output_offset
2780 + irel->r_offset);
2781 bfd_vma stubaddr
2782 = (sec->output_section->vma
2783 + sec->output_offset
2784 + raw_size
2785 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2786
2787 if ((value & 3) == 0
2788 && bfd_check_overflow (complain_overflow_signed,
2789 19,
2790 0,
2791 bfd_arch_bits_per_address (abfd),
2792 value - dot
2793 - (value > dot
2794 ? mmix_elf_section_data (sec)
2795 ->pjs.stub_size[pjsno]
2796 : 0))
2797 == bfd_reloc_ok)
2798 /* If the reloc fits, no stub is needed. */
2799 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2800 else
2801 /* Maybe we can get away with just a JMP insn? */
2802 if ((value & 3) == 0
2803 && bfd_check_overflow (complain_overflow_signed,
2804 27,
2805 0,
2806 bfd_arch_bits_per_address (abfd),
2807 value - stubaddr
2808 - (value > dot
2809 ? mmix_elf_section_data (sec)
2810 ->pjs.stub_size[pjsno] - 4
2811 : 0))
2812 == bfd_reloc_ok)
2813 /* Yep, account for a stub consisting of a single JMP insn. */
2814 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2815 else
2816 /* Nope, go for the full insn stub. It doesn't seem useful to
2817 emit the intermediate sizes; those will only be useful for
2818 a >64M program assuming contiguous code. */
2819 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2820 = MAX_PUSHJ_STUB_SIZE;
2821
2822 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2823 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2824 pjsno++;
2825 continue;
2826 }
2827
2828 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2829
930b4cb2
HPN
2830 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2831 = symval + irel->r_addend;
b34976b6 2832 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
930b4cb2
HPN
2833 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2834 }
2835
2836 /* Check if that was the last BPO-reloc. If so, sort the values and
2837 calculate how many registers we need to cover them. Set the size of
2838 the linker gregs, and if the number of registers changed, indicate
2839 that we need to relax some more because we have more work to do. */
f60ebe14
HPN
2840 if (gregdata != NULL
2841 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
930b4cb2
HPN
2842 {
2843 size_t i;
2844 bfd_vma prev_base;
2845 size_t regindex;
2846
2847 /* First, reset the remaining relocs for the next round. */
2848 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2849 = gregdata->n_bpo_relocs;
2850
2851 qsort ((PTR) gregdata->reloc_request,
2852 gregdata->n_max_bpo_relocs,
2853 sizeof (struct bpo_reloc_request),
2854 bpo_reloc_request_sort_fn);
2855
2856 /* Recalculate indexes. When we find a change (however unlikely
2857 after the initial iteration), we know we need to relax again,
2858 since items in the GREG-array are sorted by increasing value and
2859 stored in the relaxation phase. */
2860 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2861 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2862 != i)
2863 {
2864 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2865 = i;
b34976b6 2866 *again = TRUE;
930b4cb2
HPN
2867 }
2868
2869 /* Allocate register numbers (indexing from 0). Stop at the first
2870 non-valid reloc. */
2871 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2872 i < gregdata->n_bpo_relocs;
2873 i++)
2874 {
2875 if (gregdata->reloc_request[i].value > prev_base + 255)
2876 {
2877 regindex++;
2878 prev_base = gregdata->reloc_request[i].value;
2879 }
2880 gregdata->reloc_request[i].regindex = regindex;
2881 gregdata->reloc_request[i].offset
2882 = gregdata->reloc_request[i].value - prev_base;
2883 }
2884
2885 /* If it's not the same as the last time, we need to relax again,
2886 because the size of the section has changed. I'm not sure we
2887 actually need to do any adjustments since the shrinking happens
2888 at the start of this section, but better safe than sorry. */
2889 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2890 {
2891 gregdata->n_allocated_bpo_gregs = regindex + 1;
b34976b6 2892 *again = TRUE;
930b4cb2
HPN
2893 }
2894
2895 bpo_gregs_section->_cooked_size = (regindex + 1) * 8;
2896 }
2897
6cdc0ccc 2898 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
930b4cb2
HPN
2899 {
2900 if (! link_info->keep_memory)
6cdc0ccc
AM
2901 free (isymbuf);
2902 else
930b4cb2 2903 {
6cdc0ccc
AM
2904 /* Cache the symbols for elf_link_input_bfd. */
2905 symtab_hdr->contents = (unsigned char *) isymbuf;
930b4cb2
HPN
2906 }
2907 }
2908
6cdc0ccc
AM
2909 if (internal_relocs != NULL
2910 && elf_section_data (sec)->relocs != internal_relocs)
2911 free (internal_relocs);
2912
f60ebe14
HPN
2913 if (sec->_cooked_size
2914 < raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2915 abort ();
2916
2917 if (sec->_cooked_size
2918 > raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2919 {
2920 sec->_cooked_size
2921 = raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2922 *again = TRUE;
2923 }
2924
b34976b6 2925 return TRUE;
930b4cb2
HPN
2926
2927 error_return:
6cdc0ccc
AM
2928 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2929 free (isymbuf);
2930 if (internal_relocs != NULL
2931 && elf_section_data (sec)->relocs != internal_relocs)
2932 free (internal_relocs);
b34976b6 2933 return FALSE;
930b4cb2 2934}
f60ebe14
HPN
2935
2936/* Because we set _raw_size to include the max size of pushj stubs,
2937 i.e. larger than the actual section input size (see
2938 mmix_set_relaxable_raw_size), we have to take care of that when reading
2939 the section. */
2940
2941static bfd_boolean
2942mmix_elf_get_section_contents (abfd, section, location, offset, count)
2943 bfd *abfd;
2944 sec_ptr section;
2945 void *location;
2946 file_ptr offset;
2947 bfd_size_type count;
2948{
2949 bfd_size_type raw_size
2950 = (section->_raw_size
2951 - mmix_elf_section_data (section)->pjs.n_pushj_relocs
2952 * MAX_PUSHJ_STUB_SIZE);
2953
2954 if (offset + count > section->_raw_size)
2955 {
2956 abort();
2957 bfd_set_error (bfd_error_invalid_operation);
2958 return FALSE;
2959 }
2960
2961 /* Check bounds against the faked raw_size. */
2962 if (offset + count > raw_size)
2963 {
2964 /* Clear the part in the faked area. */
2965 memset (location + raw_size - offset, 0, count - (raw_size - offset));
2966
2967 /* If there's no initial part within the "real" contents, we're
2968 done. */
2969 if ((bfd_size_type) offset >= raw_size)
2970 return TRUE;
2971
2972 /* Else adjust the count and fall through to call the generic
2973 function. */
2974 count = raw_size - offset;
2975 }
2976
2977 return
2978 _bfd_generic_get_section_contents (abfd, section, location, offset,
2979 count);
2980}
2981
930b4cb2 2982\f
3c3bdf30
NC
2983#define ELF_ARCH bfd_arch_mmix
2984#define ELF_MACHINE_CODE EM_MMIX
2985
2986/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2987 However, that's too much for something somewhere in the linker part of
2988 BFD; perhaps the start-address has to be a non-zero multiple of this
2989 number, or larger than this number. The symptom is that the linker
2990 complains: "warning: allocated section `.text' not in segment". We
2991 settle for 64k; the page-size used in examples is 8k.
2992 #define ELF_MAXPAGESIZE 0x10000
2993
2994 Unfortunately, this causes excessive padding in the supposedly small
2995 for-education programs that are the expected usage (where people would
2996 inspect output). We stick to 256 bytes just to have *some* default
2997 alignment. */
2998#define ELF_MAXPAGESIZE 0x100
2999
3000#define TARGET_BIG_SYM bfd_elf64_mmix_vec
3001#define TARGET_BIG_NAME "elf64-mmix"
3002
3003#define elf_info_to_howto_rel NULL
3004#define elf_info_to_howto mmix_info_to_howto_rela
3005#define elf_backend_relocate_section mmix_elf_relocate_section
3006#define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
930b4cb2
HPN
3007#define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
3008
3c3bdf30
NC
3009#define elf_backend_link_output_symbol_hook \
3010 mmix_elf_link_output_symbol_hook
3011#define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
3012
3013#define elf_backend_check_relocs mmix_elf_check_relocs
3014#define elf_backend_symbol_processing mmix_elf_symbol_processing
3015
3016#define bfd_elf64_bfd_is_local_label_name \
3017 mmix_elf_is_local_label_name
3018
3019#define elf_backend_may_use_rel_p 0
3020#define elf_backend_may_use_rela_p 1
3021#define elf_backend_default_use_rela_p 1
3022
3023#define elf_backend_can_gc_sections 1
3024#define elf_backend_section_from_bfd_section \
3025 mmix_elf_section_from_bfd_section
3026
f0abc2a1 3027#define bfd_elf64_new_section_hook mmix_elf_new_section_hook
3c3bdf30 3028#define bfd_elf64_bfd_final_link mmix_elf_final_link
930b4cb2 3029#define bfd_elf64_bfd_relax_section mmix_elf_relax_section
f60ebe14 3030#define bfd_elf64_get_section_contents mmix_elf_get_section_contents
3c3bdf30
NC
3031
3032#include "elf64-target.h"
This page took 0.332109 seconds and 4 git commands to generate.