Use %pI, %pR, %pS, %pT in place of %I, %R, %S and %T.
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
CommitLineData
3c3bdf30 1/* MMIX-specific support for 64-bit ELF.
219d1afa 2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3c3bdf30
NC
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
cd123cb7 5 This file is part of BFD, the Binary File Descriptor library.
3c3bdf30 6
cd123cb7
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
3c3bdf30 11
cd123cb7
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
3c3bdf30 21
3c3bdf30
NC
22
23/* No specific ABI or "processor-specific supplement" defined. */
24
25/* TODO:
f60ebe14
HPN
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
3c3bdf30 30
3c3bdf30 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
3c3bdf30
NC
33#include "libbfd.h"
34#include "elf-bfd.h"
35#include "elf/mmix.h"
36#include "opcode/mmix.h"
37
38#define MINUS_ONE (((bfd_vma) 0) - 1)
39
f60ebe14
HPN
40#define MAX_PUSHJ_STUB_SIZE (5 * 4)
41
3c3bdf30
NC
42/* Put these everywhere in new code. */
43#define FATAL_DEBUG \
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
46
47#define BAD_CASE(x) \
48 _bfd_abort (__FILE__, __LINE__, \
49 "bad case for " #x)
50
f0abc2a1
AM
51struct _mmix_elf_section_data
52{
53 struct bfd_elf_section_data elf;
54 union
55 {
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
58 } bpo;
f60ebe14
HPN
59
60 struct pushj_stub_info
61 {
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
64
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
67
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
71
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
76 } pjs;
18978b27
HPN
77
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
81 there. */
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
f0abc2a1
AM
84};
85
86#define mmix_elf_section_data(sec) \
68bfbfcc 87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
f0abc2a1 88
930b4cb2 89/* For each section containing a base-plus-offset (BPO) reloc, we attach
f0abc2a1 90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
930b4cb2
HPN
91 NULL. */
92struct bpo_reloc_section_info
93 {
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
96
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
99
100 /* Running index, used at relocation time. */
101 size_t bpo_index;
102
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
107 };
108
109/* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111struct bpo_reloc_request
112 {
113 bfd_vma value;
114
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
117 size_t regindex;
118 size_t offset;
119
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
123 size_t bpo_reloc_no;
124
125 /* Set when the value is computed. Better than coding "guard values"
b34976b6 126 into the other members. Is FALSE only for BPO relocs in a GC:ed
930b4cb2 127 section. */
b34976b6 128 bfd_boolean valid;
930b4cb2
HPN
129 };
130
f0abc2a1 131/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
930b4cb2
HPN
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
136 collide. */
137struct bpo_greg_section_info
138 {
139 /* After GC, this reflects the number of remaining, non-excluded
140 BPO-relocs. */
141 size_t n_bpo_relocs;
142
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
148
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
152
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
f60ebe14
HPN
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
930b4cb2
HPN
157 size_t n_allocated_bpo_gregs;
158
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
162
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
166 };
167
3c3bdf30 168
2c3fc389 169extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
3c3bdf30 170
2c3fc389 171extern void mmix_elf_symbol_processing (bfd *, asymbol *);
3c3bdf30 172
4fa5c2a8
HPN
173/* Only intended to be called from a debugger. */
174extern void mmix_dump_bpo_gregs
52d45da3 175 (struct bfd_link_info *, void (*) (const char *, ...));
4fa5c2a8 176
f60ebe14 177static void
2c3fc389
NC
178mmix_set_relaxable_size (bfd *, asection *, void *);
179static bfd_reloc_status_type
180mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182static bfd_reloc_status_type
183mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
185 char **);
f60ebe14 186
f60ebe14 187
3c3bdf30
NC
188/* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190static reloc_howto_type elf_mmix_howto_table[] =
191 {
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
194 0, /* rightshift */
6346d5ca
AM
195 3, /* size (0 = byte, 1 = short, 2 = long) */
196 0, /* bitsize */
b34976b6 197 FALSE, /* pc_relative */
3c3bdf30 198 0, /* bitpos */
6346d5ca 199 complain_overflow_dont, /* complain_on_overflow */
3c3bdf30
NC
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
b34976b6 202 FALSE, /* partial_inplace */
3c3bdf30
NC
203 0, /* src_mask */
204 0, /* dst_mask */
b34976b6 205 FALSE), /* pcrel_offset */
3c3bdf30
NC
206
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
209 0, /* rightshift */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
211 8, /* bitsize */
b34976b6 212 FALSE, /* pc_relative */
3c3bdf30
NC
213 0, /* bitpos */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
b34976b6 217 FALSE, /* partial_inplace */
930b4cb2 218 0, /* src_mask */
3c3bdf30 219 0xff, /* dst_mask */
b34976b6 220 FALSE), /* pcrel_offset */
3c3bdf30
NC
221
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
224 0, /* rightshift */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
226 16, /* bitsize */
b34976b6 227 FALSE, /* pc_relative */
3c3bdf30
NC
228 0, /* bitpos */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
b34976b6 232 FALSE, /* partial_inplace */
930b4cb2 233 0, /* src_mask */
3c3bdf30 234 0xffff, /* dst_mask */
b34976b6 235 FALSE), /* pcrel_offset */
3c3bdf30
NC
236
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 24, /* bitsize */
b34976b6 242 FALSE, /* pc_relative */
3c3bdf30
NC
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
b34976b6 247 FALSE, /* partial_inplace */
930b4cb2 248 ~0xffffff, /* src_mask */
3c3bdf30 249 0xffffff, /* dst_mask */
b34976b6 250 FALSE), /* pcrel_offset */
3c3bdf30
NC
251
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
254 0, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
b34976b6 257 FALSE, /* pc_relative */
3c3bdf30
NC
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
b34976b6 262 FALSE, /* partial_inplace */
930b4cb2 263 0, /* src_mask */
3c3bdf30 264 0xffffffff, /* dst_mask */
b34976b6 265 FALSE), /* pcrel_offset */
3c3bdf30
NC
266
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
269 0, /* rightshift */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
271 64, /* bitsize */
b34976b6 272 FALSE, /* pc_relative */
3c3bdf30
NC
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
b34976b6 277 FALSE, /* partial_inplace */
930b4cb2 278 0, /* src_mask */
3c3bdf30 279 MINUS_ONE, /* dst_mask */
b34976b6 280 FALSE), /* pcrel_offset */
3c3bdf30
NC
281
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 8, /* bitsize */
b34976b6 287 TRUE, /* pc_relative */
3c3bdf30
NC
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
b34976b6 292 FALSE, /* partial_inplace */
930b4cb2 293 0, /* src_mask */
3c3bdf30 294 0xff, /* dst_mask */
b34976b6 295 TRUE), /* pcrel_offset */
3c3bdf30
NC
296
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
299 0, /* rightshift */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
301 16, /* bitsize */
b34976b6 302 TRUE, /* pc_relative */
3c3bdf30
NC
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
b34976b6 307 FALSE, /* partial_inplace */
930b4cb2 308 0, /* src_mask */
3c3bdf30 309 0xffff, /* dst_mask */
b34976b6 310 TRUE), /* pcrel_offset */
3c3bdf30
NC
311
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
b34976b6 317 TRUE, /* pc_relative */
3c3bdf30
NC
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
b34976b6 322 FALSE, /* partial_inplace */
930b4cb2 323 ~0xffffff, /* src_mask */
3c3bdf30 324 0xffffff, /* dst_mask */
b34976b6 325 TRUE), /* pcrel_offset */
3c3bdf30
NC
326
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
b34976b6 332 TRUE, /* pc_relative */
3c3bdf30
NC
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
b34976b6 337 FALSE, /* partial_inplace */
930b4cb2 338 0, /* src_mask */
3c3bdf30 339 0xffffffff, /* dst_mask */
b34976b6 340 TRUE), /* pcrel_offset */
3c3bdf30
NC
341
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
344 0, /* rightshift */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
346 64, /* bitsize */
b34976b6 347 TRUE, /* pc_relative */
3c3bdf30
NC
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
b34976b6 352 FALSE, /* partial_inplace */
930b4cb2 353 0, /* src_mask */
3c3bdf30 354 MINUS_ONE, /* dst_mask */
b34976b6 355 TRUE), /* pcrel_offset */
3c3bdf30
NC
356
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 0, /* rightshift */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
361 0, /* bitsize */
b34976b6 362 FALSE, /* pc_relative */
3c3bdf30
NC
363 0, /* bitpos */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
b34976b6 367 FALSE, /* partial_inplace */
3c3bdf30
NC
368 0, /* src_mask */
369 0, /* dst_mask */
b34976b6 370 TRUE), /* pcrel_offset */
3c3bdf30
NC
371
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
374 0, /* rightshift */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
376 0, /* bitsize */
b34976b6 377 FALSE, /* pc_relative */
3c3bdf30
NC
378 0, /* bitpos */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
b34976b6 382 FALSE, /* partial_inplace */
3c3bdf30
NC
383 0, /* src_mask */
384 0, /* dst_mask */
b34976b6 385 FALSE), /* pcrel_offset */
3c3bdf30
NC
386
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
392 2, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 19, /* bitsize */
b34976b6 395 TRUE, /* pc_relative */
3c3bdf30
NC
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
b34976b6 400 FALSE, /* partial_inplace */
930b4cb2 401 ~0x0100ffff, /* src_mask */
3c3bdf30 402 0x0100ffff, /* dst_mask */
b34976b6 403 TRUE), /* pcrel_offset */
3c3bdf30
NC
404
405 HOWTO (R_MMIX_GETA_1, /* type */
406 2, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 19, /* bitsize */
b34976b6 409 TRUE, /* pc_relative */
3c3bdf30
NC
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
b34976b6 414 FALSE, /* partial_inplace */
930b4cb2 415 ~0x0100ffff, /* src_mask */
3c3bdf30 416 0x0100ffff, /* dst_mask */
b34976b6 417 TRUE), /* pcrel_offset */
3c3bdf30
NC
418
419 HOWTO (R_MMIX_GETA_2, /* type */
420 2, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 19, /* bitsize */
b34976b6 423 TRUE, /* pc_relative */
3c3bdf30
NC
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
b34976b6 428 FALSE, /* partial_inplace */
930b4cb2 429 ~0x0100ffff, /* src_mask */
3c3bdf30 430 0x0100ffff, /* dst_mask */
b34976b6 431 TRUE), /* pcrel_offset */
3c3bdf30
NC
432
433 HOWTO (R_MMIX_GETA_3, /* type */
434 2, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 19, /* bitsize */
b34976b6 437 TRUE, /* pc_relative */
3c3bdf30
NC
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
b34976b6 442 FALSE, /* partial_inplace */
930b4cb2 443 ~0x0100ffff, /* src_mask */
3c3bdf30 444 0x0100ffff, /* dst_mask */
b34976b6 445 TRUE), /* pcrel_offset */
3c3bdf30
NC
446
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
452 2, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 19, /* bitsize */
b34976b6 455 TRUE, /* pc_relative */
3c3bdf30
NC
456 0, /* bitpos */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
b34976b6 460 FALSE, /* partial_inplace */
930b4cb2 461 ~0x0100ffff, /* src_mask */
3c3bdf30 462 0x0100ffff, /* dst_mask */
07d6d2b8 463 TRUE), /* pcrel_offset */
3c3bdf30
NC
464
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 19, /* bitsize */
b34976b6 469 TRUE, /* pc_relative */
3c3bdf30
NC
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
b34976b6 474 FALSE, /* partial_inplace */
930b4cb2 475 ~0x0100ffff, /* src_mask */
3c3bdf30 476 0x0100ffff, /* dst_mask */
b34976b6 477 TRUE), /* pcrel_offset */
3c3bdf30
NC
478
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 19, /* bitsize */
b34976b6 483 TRUE, /* pc_relative */
3c3bdf30
NC
484 0, /* bitpos */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
b34976b6 488 FALSE, /* partial_inplace */
930b4cb2 489 ~0x0100ffff, /* src_mask */
3c3bdf30 490 0x0100ffff, /* dst_mask */
b34976b6 491 TRUE), /* pcrel_offset */
3c3bdf30
NC
492
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 19, /* bitsize */
b34976b6 497 TRUE, /* pc_relative */
3c3bdf30
NC
498 0, /* bitpos */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
b34976b6 502 FALSE, /* partial_inplace */
930b4cb2 503 ~0x0100ffff, /* src_mask */
3c3bdf30 504 0x0100ffff, /* dst_mask */
b34976b6 505 TRUE), /* pcrel_offset */
3c3bdf30
NC
506
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
508 2, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 19, /* bitsize */
b34976b6 511 TRUE, /* pc_relative */
3c3bdf30
NC
512 0, /* bitpos */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
b34976b6 516 FALSE, /* partial_inplace */
930b4cb2 517 ~0x0100ffff, /* src_mask */
3c3bdf30 518 0x0100ffff, /* dst_mask */
b34976b6 519 TRUE), /* pcrel_offset */
3c3bdf30
NC
520
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
f60ebe14
HPN
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
3c3bdf30
NC
526 PUSHJ. */
527 HOWTO (R_MMIX_PUSHJ, /* type */
528 2, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 19, /* bitsize */
b34976b6 531 TRUE, /* pc_relative */
3c3bdf30
NC
532 0, /* bitpos */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
b34976b6 536 FALSE, /* partial_inplace */
930b4cb2 537 ~0x0100ffff, /* src_mask */
3c3bdf30 538 0x0100ffff, /* dst_mask */
b34976b6 539 TRUE), /* pcrel_offset */
3c3bdf30
NC
540
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
542 2, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 19, /* bitsize */
b34976b6 545 TRUE, /* pc_relative */
3c3bdf30
NC
546 0, /* bitpos */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
b34976b6 550 FALSE, /* partial_inplace */
930b4cb2 551 ~0x0100ffff, /* src_mask */
3c3bdf30 552 0x0100ffff, /* dst_mask */
b34976b6 553 TRUE), /* pcrel_offset */
3c3bdf30
NC
554
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
556 2, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 19, /* bitsize */
b34976b6 559 TRUE, /* pc_relative */
3c3bdf30
NC
560 0, /* bitpos */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
b34976b6 564 FALSE, /* partial_inplace */
930b4cb2 565 ~0x0100ffff, /* src_mask */
3c3bdf30 566 0x0100ffff, /* dst_mask */
b34976b6 567 TRUE), /* pcrel_offset */
3c3bdf30
NC
568
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
570 2, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 19, /* bitsize */
b34976b6 573 TRUE, /* pc_relative */
3c3bdf30
NC
574 0, /* bitpos */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
b34976b6 578 FALSE, /* partial_inplace */
930b4cb2 579 ~0x0100ffff, /* src_mask */
3c3bdf30 580 0x0100ffff, /* dst_mask */
b34976b6 581 TRUE), /* pcrel_offset */
3c3bdf30
NC
582
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
588 2, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 27, /* bitsize */
b34976b6 591 TRUE, /* pc_relative */
3c3bdf30
NC
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
b34976b6 596 FALSE, /* partial_inplace */
930b4cb2 597 ~0x1ffffff, /* src_mask */
3c3bdf30 598 0x1ffffff, /* dst_mask */
b34976b6 599 TRUE), /* pcrel_offset */
3c3bdf30
NC
600
601 HOWTO (R_MMIX_JMP_1, /* type */
602 2, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 27, /* bitsize */
b34976b6 605 TRUE, /* pc_relative */
3c3bdf30
NC
606 0, /* bitpos */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
b34976b6 610 FALSE, /* partial_inplace */
930b4cb2 611 ~0x1ffffff, /* src_mask */
3c3bdf30 612 0x1ffffff, /* dst_mask */
b34976b6 613 TRUE), /* pcrel_offset */
3c3bdf30
NC
614
615 HOWTO (R_MMIX_JMP_2, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 27, /* bitsize */
b34976b6 619 TRUE, /* pc_relative */
3c3bdf30
NC
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
b34976b6 624 FALSE, /* partial_inplace */
930b4cb2 625 ~0x1ffffff, /* src_mask */
3c3bdf30 626 0x1ffffff, /* dst_mask */
b34976b6 627 TRUE), /* pcrel_offset */
3c3bdf30
NC
628
629 HOWTO (R_MMIX_JMP_3, /* type */
630 2, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 27, /* bitsize */
b34976b6 633 TRUE, /* pc_relative */
3c3bdf30
NC
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
b34976b6 638 FALSE, /* partial_inplace */
930b4cb2 639 ~0x1ffffff, /* src_mask */
3c3bdf30 640 0x1ffffff, /* dst_mask */
b34976b6 641 TRUE), /* pcrel_offset */
3c3bdf30
NC
642
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 19, /* bitsize */
b34976b6 650 TRUE, /* pc_relative */
3c3bdf30
NC
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
b34976b6 655 FALSE, /* partial_inplace */
930b4cb2 656 ~0x0100ffff, /* src_mask */
3c3bdf30 657 0x0100ffff, /* dst_mask */
b34976b6 658 TRUE), /* pcrel_offset */
3c3bdf30
NC
659
660 /* For JMP. */
661 HOWTO (R_MMIX_ADDR27, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 27, /* bitsize */
b34976b6 665 TRUE, /* pc_relative */
3c3bdf30
NC
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
b34976b6 670 FALSE, /* partial_inplace */
930b4cb2 671 ~0x1ffffff, /* src_mask */
3c3bdf30 672 0x1ffffff, /* dst_mask */
b34976b6 673 TRUE), /* pcrel_offset */
3c3bdf30
NC
674
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
678 0, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 8, /* bitsize */
b34976b6 681 FALSE, /* pc_relative */
3c3bdf30
NC
682 0, /* bitpos */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
b34976b6 686 FALSE, /* partial_inplace */
930b4cb2 687 0, /* src_mask */
3c3bdf30 688 0xff, /* dst_mask */
b34976b6 689 FALSE), /* pcrel_offset */
3c3bdf30
NC
690
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
693 0, /* rightshift */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
695 8, /* bitsize */
b34976b6 696 FALSE, /* pc_relative */
3c3bdf30
NC
697 0, /* bitpos */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
b34976b6 701 FALSE, /* partial_inplace */
930b4cb2 702 0, /* src_mask */
3c3bdf30 703 0xff, /* dst_mask */
b34976b6 704 FALSE), /* pcrel_offset */
3c3bdf30
NC
705
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
710 0, /* rightshift */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
712 64, /* bitsize */
b34976b6 713 FALSE, /* pc_relative */
3c3bdf30
NC
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
b34976b6 718 FALSE, /* partial_inplace */
930b4cb2 719 0, /* src_mask */
3c3bdf30 720 0xffff, /* dst_mask */
b34976b6 721 FALSE), /* pcrel_offset */
3c3bdf30
NC
722
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
729 0, /* rightshift */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
731 0, /* bitsize */
b34976b6 732 FALSE, /* pc_relative */
3c3bdf30
NC
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
b34976b6 737 FALSE, /* partial_inplace */
3c3bdf30
NC
738 0, /* src_mask */
739 0, /* dst_mask */
b34976b6 740 FALSE), /* pcrel_offset */
f60ebe14
HPN
741
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 19, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
3c3bdf30
NC
755 };
756
757
758/* Map BFD reloc types to MMIX ELF reloc types. */
759
760struct mmix_reloc_map
761 {
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
764 };
765
766
767static const struct mmix_reloc_map mmix_reloc_map[] =
768 {
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
f60ebe14
HPN
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
3c3bdf30
NC
793 };
794
795static reloc_howto_type *
2c3fc389
NC
796bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
3c3bdf30
NC
798{
799 unsigned int i;
800
801 for (i = 0;
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803 i++)
804 {
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807 }
808
809 return NULL;
157090f7
AM
810}
811
812static reloc_howto_type *
813bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 const char *r_name)
815{
816 unsigned int i;
817
818 for (i = 0;
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820 i++)
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
824
825 return NULL;
3c3bdf30
NC
826}
827
f0abc2a1 828static bfd_boolean
2c3fc389 829mmix_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 830{
f592407e
AM
831 if (!sec->used_by_bfd)
832 {
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 835
f592407e
AM
836 sdata = bfd_zalloc (abfd, amt);
837 if (sdata == NULL)
838 return FALSE;
839 sec->used_by_bfd = sdata;
840 }
f0abc2a1
AM
841
842 return _bfd_elf_new_section_hook (abfd, sec);
843}
844
3c3bdf30
NC
845
846/* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
852
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854 GETA $N,foo
855 ->
856 SETL $N,foo & 0xffff
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
860
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
863 worthwhile.)
864 [P]Bcc $N,foo
865 ->
866 [~P]B~cc $N,.+20
867 SETL $255,foo & ...
868 INCML ...
869 INCMH ...
870 INCH ...
871 GO $255,$255,0
872
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
874 PUSHJ $N,foo
875 ->
876 SETL $255,foo & ...
877 INCML ...
878 INCMH ...
879 INCH ...
880 PUSHGO $N,$255,0
881
882 R_MMIX_JMP: (FIXME: Relaxation...)
883 JMP foo
884 ->
885 SETL $255,foo & ...
886 INCML ...
887 INCMH ...
888 INCH ...
889 GO $255,$255,0
890
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
892
893static bfd_reloc_status_type
18978b27
HPN
894mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
3c3bdf30
NC
897{
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
901 int offs = 0;
902 int reg = 255;
903
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
906 switch (howto->type)
907 {
908 case R_MMIX_GETA:
909 offs = 0;
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911
912 /* We change to an absolute value. */
913 value += addr;
914 break;
915
916 case R_MMIX_CBRANCH:
917 {
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
922
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
927
928 bfd_put_32 (abfd,
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 | (24/4)),
931 (bfd_byte *) datap);
932
933 /* Put a "GO $255,$255,0" after the common sequence. */
934 bfd_put_32 (abfd,
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
937
938 /* Common sequence starts at offset 4. */
939 offs = 4;
940
941 /* We change to an absolute value. */
942 value += addr;
943 }
944 break;
945
f60ebe14
HPN
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
948 if ((value & 3) == 0
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
951 howto->bitsize,
952 0,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
956 else
957 {
1a23a9e6 958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
f60ebe14
HPN
959
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
962 for the stub. */
963 bfd_byte *stubcontents
f075ee0c 964 = ((bfd_byte *) datap
f60ebe14 965 - (addr - (isec->output_section->vma + isec->output_offset))
eea6121a 966 + size
f60ebe14
HPN
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
968 bfd_vma stubaddr;
969
18978b27
HPN
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 {
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 {
981 /* For the first such error per input section, produce
982 a verbose message. */
983 *error_message
984 = _("invalid input relocation when producing"
985 " non-ELF, non-mmo format output."
986 "\n Please use the objcopy program to convert from"
987 " ELF or mmo,"
988 "\n or assemble using"
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
992 }
993
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
998 }
999
f60ebe14
HPN
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1004 [R_MMIX_ADDR19],
1005 datap,
1006 addr,
1007 isec->output_section->vma
1008 + isec->output_offset
eea6121a 1009 + size
f60ebe14
HPN
1010 + (mmix_elf_section_data (isec)
1011 ->pjs.stub_offset)
18978b27
HPN
1012 - addr,
1013 error_message);
f60ebe14
HPN
1014 if (r != bfd_reloc_ok)
1015 return r;
1016
1017 stubaddr
1018 = (isec->output_section->vma
1019 + isec->output_offset
eea6121a 1020 + size
f60ebe14
HPN
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1022
1023 /* We generate a simple JMP if that suffices, else the whole 5
1024 insn stub. */
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 0,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1030 {
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1034 [R_MMIX_ADDR27],
1035 stubcontents,
1036 stubaddr,
18978b27
HPN
1037 value + addr - stubaddr,
1038 error_message);
f60ebe14
HPN
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
eea6121a
AM
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
f60ebe14
HPN
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
3c3bdf30
NC
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
cedb70c5 1108 /* FALLTHROUGH. */
3c3bdf30
NC
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
f60ebe14 1111 pcrel_mmix_reloc_fits:
3c3bdf30
NC
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
f60ebe14 1127 highbit = 1 << 24;
3c3bdf30
NC
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
930b4cb2 1136 (in1 & howto->src_mask)
3c3bdf30
NC
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
930b4cb2
HPN
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
f0abc2a1 1149 = mmix_elf_section_data (isec)->bpo.reloc;
18978b27
HPN
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1152 size_t bpo_index;
1153
1154 if (bpodata == NULL)
1155 {
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 {
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1167 *error_message
1168 = _("invalid input relocation when producing"
1169 " non-ELF, non-mmo format output."
1170 "\n Please use the objcopy program to convert from"
1171 " ELF or mmo,"
1172 "\n or compile using the gcc-option"
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1176 }
1177
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1182 }
1183
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
930b4cb2
HPN
1187
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1192 {
4eca0228 1193 _bfd_error_handler
695344c0 1194 /* xgettext:c-format */
871b3ab2 1195 (_("%pB: Internal inconsistency error for value for\n\
d42c267e 1196 linker-allocated global register: linked: %#Lx != relaxed: %#Lx"),
dae82561 1197 isec->owner,
d42c267e
AM
1198 value,
1199 gregdata->reloc_request[bpo_index].value);
930b4cb2
HPN
1200 bfd_set_error (bfd_error_bad_value);
1201 return bfd_reloc_overflow;
1202 }
1203
1204 /* Then store the register number and offset for that register
1205 into datap and datap + 1 respectively. */
1206 bfd_put_8 (abfd,
1207 gregdata->reloc_request[bpo_index].regindex
1208 + bpo_greg_section->output_section->vma / 8,
1209 datap);
1210 bfd_put_8 (abfd,
1211 gregdata->reloc_request[bpo_index].offset,
1212 ((unsigned char *) datap) + 1);
1213 return bfd_reloc_ok;
1214 }
1215
3c3bdf30
NC
1216 case R_MMIX_REG_OR_BYTE:
1217 case R_MMIX_REG:
1218 if (value > 255)
1219 return bfd_reloc_overflow;
1220 bfd_put_8 (abfd, value, datap);
1221 return bfd_reloc_ok;
1222
1223 default:
1224 BAD_CASE (howto->type);
1225 }
1226
1227 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1228 sequence. */
1229
1230 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1231 everything that looks strange. */
1232 if (value & 3)
1233 flag = bfd_reloc_overflow;
1234
1235 bfd_put_32 (abfd,
1236 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1237 (bfd_byte *) datap + offs);
1238 bfd_put_32 (abfd,
1239 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1240 (bfd_byte *) datap + offs + 4);
1241 bfd_put_32 (abfd,
1242 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1243 (bfd_byte *) datap + offs + 8);
1244 bfd_put_32 (abfd,
1245 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1246 (bfd_byte *) datap + offs + 12);
1247
1248 return flag;
1249}
1250
1251/* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1252
1253static void
2c3fc389
NC
1254mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1255 arelent *cache_ptr,
1256 Elf_Internal_Rela *dst)
3c3bdf30
NC
1257{
1258 unsigned int r_type;
1259
1260 r_type = ELF64_R_TYPE (dst->r_info);
5860e3f8
NC
1261 if (r_type >= (unsigned int) R_MMIX_max)
1262 {
695344c0 1263 /* xgettext:c-format */
871b3ab2 1264 _bfd_error_handler (_("%pB: invalid MMIX reloc number: %d"), abfd, r_type);
5860e3f8
NC
1265 r_type = 0;
1266 }
3c3bdf30
NC
1267 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1268}
1269
1270/* Any MMIX-specific relocation gets here at assembly time or when linking
1271 to other formats (such as mmo); this is the relocation function from
1272 the reloc_table. We don't get here for final pure ELF linking. */
1273
1274static bfd_reloc_status_type
2c3fc389
NC
1275mmix_elf_reloc (bfd *abfd,
1276 arelent *reloc_entry,
1277 asymbol *symbol,
1278 void * data,
1279 asection *input_section,
1280 bfd *output_bfd,
1281 char **error_message)
3c3bdf30
NC
1282{
1283 bfd_vma relocation;
1284 bfd_reloc_status_type r;
1285 asection *reloc_target_output_section;
1286 bfd_reloc_status_type flag = bfd_reloc_ok;
1287 bfd_vma output_base = 0;
3c3bdf30
NC
1288
1289 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1290 input_section, output_bfd, error_message);
1291
1292 /* If that was all that was needed (i.e. this isn't a final link, only
1293 some segment adjustments), we're done. */
1294 if (r != bfd_reloc_continue)
1295 return r;
1296
1297 if (bfd_is_und_section (symbol->section)
1298 && (symbol->flags & BSF_WEAK) == 0
1299 && output_bfd == (bfd *) NULL)
1300 return bfd_reloc_undefined;
1301
1302 /* Is the address of the relocation really within the section? */
07515404 1303 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
3c3bdf30
NC
1304 return bfd_reloc_outofrange;
1305
4cc11e76 1306 /* Work out which section the relocation is targeted at and the
3c3bdf30
NC
1307 initial relocation command value. */
1308
1309 /* Get symbol value. (Common symbols are special.) */
1310 if (bfd_is_com_section (symbol->section))
1311 relocation = 0;
1312 else
1313 relocation = symbol->value;
1314
1315 reloc_target_output_section = bfd_get_output_section (symbol);
1316
1317 /* Here the variable relocation holds the final address of the symbol we
1318 are relocating against, plus any addend. */
1319 if (output_bfd)
1320 output_base = 0;
1321 else
1322 output_base = reloc_target_output_section->vma;
1323
1324 relocation += output_base + symbol->section->output_offset;
1325
3c3bdf30
NC
1326 if (output_bfd != (bfd *) NULL)
1327 {
1328 /* Add in supplied addend. */
1329 relocation += reloc_entry->addend;
1330
1331 /* This is a partial relocation, and we want to apply the
1332 relocation to the reloc entry rather than the raw data.
1333 Modify the reloc inplace to reflect what we now know. */
1334 reloc_entry->addend = relocation;
1335 reloc_entry->address += input_section->output_offset;
1336 return flag;
1337 }
1338
1339 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1340 data, reloc_entry->address,
1341 reloc_entry->addend, relocation,
1342 bfd_asymbol_name (symbol),
18978b27
HPN
1343 reloc_target_output_section,
1344 error_message);
3c3bdf30 1345}
e06fcc86 1346\f
3c3bdf30
NC
1347/* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1348 for guidance if you're thinking of copying this. */
1349
b34976b6 1350static bfd_boolean
2c3fc389
NC
1351mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1352 struct bfd_link_info *info,
1353 bfd *input_bfd,
1354 asection *input_section,
1355 bfd_byte *contents,
1356 Elf_Internal_Rela *relocs,
1357 Elf_Internal_Sym *local_syms,
1358 asection **local_sections)
3c3bdf30
NC
1359{
1360 Elf_Internal_Shdr *symtab_hdr;
1361 struct elf_link_hash_entry **sym_hashes;
1362 Elf_Internal_Rela *rel;
1363 Elf_Internal_Rela *relend;
1a23a9e6 1364 bfd_size_type size;
f60ebe14 1365 size_t pjsno = 0;
3c3bdf30 1366
1a23a9e6 1367 size = input_section->rawsize ? input_section->rawsize : input_section->size;
3c3bdf30
NC
1368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1369 sym_hashes = elf_sym_hashes (input_bfd);
1370 relend = relocs + input_section->reloc_count;
1371
1a23a9e6
AM
1372 /* Zero the stub area before we start. */
1373 if (input_section->rawsize != 0
1374 && input_section->size > input_section->rawsize)
1375 memset (contents + input_section->rawsize, 0,
1376 input_section->size - input_section->rawsize);
1377
3c3bdf30
NC
1378 for (rel = relocs; rel < relend; rel ++)
1379 {
1380 reloc_howto_type *howto;
1381 unsigned long r_symndx;
1382 Elf_Internal_Sym *sym;
1383 asection *sec;
1384 struct elf_link_hash_entry *h;
1385 bfd_vma relocation;
1386 bfd_reloc_status_type r;
1387 const char *name = NULL;
1388 int r_type;
b34976b6 1389 bfd_boolean undefined_signalled = FALSE;
3c3bdf30
NC
1390
1391 r_type = ELF64_R_TYPE (rel->r_info);
1392
1393 if (r_type == R_MMIX_GNU_VTINHERIT
1394 || r_type == R_MMIX_GNU_VTENTRY)
1395 continue;
1396
1397 r_symndx = ELF64_R_SYM (rel->r_info);
1398
ab96bf03
AM
1399 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1400 h = NULL;
1401 sym = NULL;
1402 sec = NULL;
1403
1404 if (r_symndx < symtab_hdr->sh_info)
1405 {
1406 sym = local_syms + r_symndx;
1407 sec = local_sections [r_symndx];
1408 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1409
1410 name = bfd_elf_string_from_elf_section (input_bfd,
1411 symtab_hdr->sh_link,
1412 sym->st_name);
1413 if (name == NULL)
1414 name = bfd_section_name (input_bfd, sec);
1415 }
1416 else
1417 {
62d887d4 1418 bfd_boolean unresolved_reloc, ignored;
ab96bf03
AM
1419
1420 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1421 r_symndx, symtab_hdr, sym_hashes,
1422 h, sec, relocation,
62d887d4
L
1423 unresolved_reloc, undefined_signalled,
1424 ignored);
ab96bf03
AM
1425 name = h->root.root.string;
1426 }
1427
dbaa2011 1428 if (sec != NULL && discarded_section (sec))
e4067dbb 1429 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
545fd46b 1430 rel, 1, relend, howto, 0, contents);
ab96bf03 1431
0e1862bb 1432 if (bfd_link_relocatable (info))
3c3bdf30 1433 {
f60ebe14
HPN
1434 /* This is a relocatable link. For most relocs we don't have to
1435 change anything, unless the reloc is against a section
1436 symbol, in which case we have to adjust according to where
1437 the section symbol winds up in the output section. */
ab96bf03
AM
1438 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1439 rel->r_addend += sec->output_offset;
3c3bdf30 1440
f60ebe14
HPN
1441 /* For PUSHJ stub relocs however, we may need to change the
1442 reloc and the section contents, if the reloc doesn't reach
1443 beyond the end of the output section and previous stubs.
1444 Then we change the section contents to be a PUSHJ to the end
1445 of the input section plus stubs (we can do that without using
1446 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1447 at the stub location. */
1448 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1449 {
1450 /* We've already checked whether we need a stub; use that
1451 knowledge. */
1452 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1453 != 0)
1454 {
1455 Elf_Internal_Rela relcpy;
1456
1457 if (mmix_elf_section_data (input_section)
1458 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1459 abort ();
1460
1461 /* There's already a PUSHJ insn there, so just fill in
1462 the offset bits to the stub. */
1463 if (mmix_final_link_relocate (elf_mmix_howto_table
1464 + R_MMIX_ADDR19,
1465 input_section,
1466 contents,
1467 rel->r_offset,
1468 0,
1469 input_section
1470 ->output_section->vma
1471 + input_section->output_offset
eea6121a 1472 + size
f60ebe14
HPN
1473 + mmix_elf_section_data (input_section)
1474 ->pjs.stub_offset,
18978b27 1475 NULL, NULL, NULL) != bfd_reloc_ok)
f60ebe14
HPN
1476 return FALSE;
1477
1478 /* Put a JMP insn at the stub; it goes with the
1479 R_MMIX_JMP reloc. */
1480 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1481 contents
eea6121a 1482 + size
f60ebe14
HPN
1483 + mmix_elf_section_data (input_section)
1484 ->pjs.stub_offset);
1485
1486 /* Change the reloc to be at the stub, and to a full
1487 R_MMIX_JMP reloc. */
1488 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1489 rel->r_offset
eea6121a 1490 = (size
f60ebe14
HPN
1491 + mmix_elf_section_data (input_section)
1492 ->pjs.stub_offset);
1493
1494 mmix_elf_section_data (input_section)->pjs.stub_offset
1495 += MAX_PUSHJ_STUB_SIZE;
1496
1497 /* Shift this reloc to the end of the relocs to maintain
1498 the r_offset sorted reloc order. */
1499 relcpy = *rel;
1500 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1501 relend[-1] = relcpy;
1502
1503 /* Back up one reloc, or else we'd skip the next reloc
1504 in turn. */
1505 rel--;
1506 }
1507
1508 pjsno++;
1509 }
3c3bdf30
NC
1510 continue;
1511 }
1512
3c3bdf30
NC
1513 r = mmix_final_link_relocate (howto, input_section,
1514 contents, rel->r_offset,
18978b27 1515 rel->r_addend, relocation, name, sec, NULL);
3c3bdf30
NC
1516
1517 if (r != bfd_reloc_ok)
1518 {
3c3bdf30
NC
1519 const char * msg = (const char *) NULL;
1520
1521 switch (r)
1522 {
1523 case bfd_reloc_overflow:
1a72702b 1524 info->callbacks->reloc_overflow
dfeffb9f
L
1525 (info, (h ? &h->root : NULL), name, howto->name,
1526 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3c3bdf30
NC
1527 break;
1528
1529 case bfd_reloc_undefined:
1530 /* We may have sent this message above. */
1531 if (! undefined_signalled)
1a72702b
AM
1532 info->callbacks->undefined_symbol
1533 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
b34976b6 1534 undefined_signalled = TRUE;
3c3bdf30
NC
1535 break;
1536
1537 case bfd_reloc_outofrange:
1538 msg = _("internal error: out of range error");
1539 break;
1540
1541 case bfd_reloc_notsupported:
1542 msg = _("internal error: unsupported relocation error");
1543 break;
1544
1545 case bfd_reloc_dangerous:
1546 msg = _("internal error: dangerous relocation");
1547 break;
1548
1549 default:
1550 msg = _("internal error: unknown error");
1551 break;
1552 }
1553
1554 if (msg)
1a72702b
AM
1555 (*info->callbacks->warning) (info, msg, name, input_bfd,
1556 input_section, rel->r_offset);
3c3bdf30
NC
1557 }
1558 }
1559
b34976b6 1560 return TRUE;
3c3bdf30 1561}
e06fcc86 1562\f
3c3bdf30
NC
1563/* Perform a single relocation. By default we use the standard BFD
1564 routines. A few relocs we have to do ourselves. */
1565
1566static bfd_reloc_status_type
18978b27
HPN
1567mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1568 bfd_byte *contents, bfd_vma r_offset,
1569 bfd_signed_vma r_addend, bfd_vma relocation,
1570 const char *symname, asection *symsec,
1571 char **error_message)
3c3bdf30
NC
1572{
1573 bfd_reloc_status_type r = bfd_reloc_ok;
1574 bfd_vma addr
1575 = (input_section->output_section->vma
1576 + input_section->output_offset
1577 + r_offset);
1578 bfd_signed_vma srel
1579 = (bfd_signed_vma) relocation + r_addend;
1580
1581 switch (howto->type)
1582 {
1583 /* All these are PC-relative. */
f60ebe14 1584 case R_MMIX_PUSHJ_STUBBABLE:
3c3bdf30
NC
1585 case R_MMIX_PUSHJ:
1586 case R_MMIX_CBRANCH:
1587 case R_MMIX_ADDR19:
1588 case R_MMIX_GETA:
1589 case R_MMIX_ADDR27:
1590 case R_MMIX_JMP:
1591 contents += r_offset;
1592
1593 srel -= (input_section->output_section->vma
1594 + input_section->output_offset
1595 + r_offset);
1596
1597 r = mmix_elf_perform_relocation (input_section, howto, contents,
18978b27 1598 addr, srel, error_message);
3c3bdf30
NC
1599 break;
1600
930b4cb2
HPN
1601 case R_MMIX_BASE_PLUS_OFFSET:
1602 if (symsec == NULL)
1603 return bfd_reloc_undefined;
1604
1605 /* Check that we're not relocating against a register symbol. */
1606 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1607 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1608 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1609 MMIX_REG_SECTION_NAME) == 0)
1610 {
1611 /* Note: This is separated out into two messages in order
1612 to ease the translation into other languages. */
1613 if (symname == NULL || *symname == 0)
4eca0228 1614 _bfd_error_handler
695344c0 1615 /* xgettext:c-format */
871b3ab2
AM
1616 (_("%pB: base-plus-offset relocation against register symbol:"
1617 " (unknown) in %pA"),
dae82561 1618 input_section->owner, symsec);
930b4cb2 1619 else
4eca0228 1620 _bfd_error_handler
695344c0 1621 /* xgettext:c-format */
871b3ab2
AM
1622 (_("%pB: base-plus-offset relocation against register symbol:"
1623 " %s in %pA"),
dae82561 1624 input_section->owner, symname, symsec);
930b4cb2
HPN
1625 return bfd_reloc_overflow;
1626 }
1627 goto do_mmix_reloc;
1628
3c3bdf30
NC
1629 case R_MMIX_REG_OR_BYTE:
1630 case R_MMIX_REG:
1631 /* For now, we handle these alike. They must refer to an register
1632 symbol, which is either relative to the register section and in
1633 the range 0..255, or is in the register contents section with vma
1634 regno * 8. */
1635
1636 /* FIXME: A better way to check for reg contents section?
1637 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1638 if (symsec == NULL)
1639 return bfd_reloc_undefined;
1640
1641 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1642 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1643 {
1644 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1645 {
1646 /* The bfd_reloc_outofrange return value, though intuitively
1647 a better value, will not get us an error. */
1648 return bfd_reloc_overflow;
1649 }
1650 srel /= 8;
1651 }
1652 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1653 MMIX_REG_SECTION_NAME) == 0)
1654 {
1655 if (srel < 0 || srel > 255)
1656 /* The bfd_reloc_outofrange return value, though intuitively a
1657 better value, will not get us an error. */
1658 return bfd_reloc_overflow;
1659 }
1660 else
1661 {
930b4cb2 1662 /* Note: This is separated out into two messages in order
ca09e32b
NC
1663 to ease the translation into other languages. */
1664 if (symname == NULL || *symname == 0)
4eca0228 1665 _bfd_error_handler
695344c0 1666 /* xgettext:c-format */
871b3ab2
AM
1667 (_("%pB: register relocation against non-register symbol:"
1668 " (unknown) in %pA"),
dae82561 1669 input_section->owner, symsec);
ca09e32b 1670 else
4eca0228 1671 _bfd_error_handler
695344c0 1672 /* xgettext:c-format */
871b3ab2
AM
1673 (_("%pB: register relocation against non-register symbol:"
1674 " %s in %pA"),
dae82561 1675 input_section->owner, symname, symsec);
3c3bdf30
NC
1676
1677 /* The bfd_reloc_outofrange return value, though intuitively a
1678 better value, will not get us an error. */
1679 return bfd_reloc_overflow;
1680 }
930b4cb2 1681 do_mmix_reloc:
3c3bdf30
NC
1682 contents += r_offset;
1683 r = mmix_elf_perform_relocation (input_section, howto, contents,
18978b27 1684 addr, srel, error_message);
3c3bdf30
NC
1685 break;
1686
1687 case R_MMIX_LOCAL:
1688 /* This isn't a real relocation, it's just an assertion that the
1689 final relocation value corresponds to a local register. We
1690 ignore the actual relocation; nothing is changed. */
1691 {
1692 asection *regsec
1693 = bfd_get_section_by_name (input_section->output_section->owner,
1694 MMIX_REG_CONTENTS_SECTION_NAME);
1695 bfd_vma first_global;
1696
1697 /* Check that this is an absolute value, or a reference to the
1698 register contents section or the register (symbol) section.
1699 Absolute numbers can get here as undefined section. Undefined
1700 symbols are signalled elsewhere, so there's no conflict in us
1701 accidentally handling it. */
1702 if (!bfd_is_abs_section (symsec)
1703 && !bfd_is_und_section (symsec)
1704 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1705 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1706 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_SECTION_NAME) != 0)
1708 {
4eca0228 1709 _bfd_error_handler
871b3ab2 1710 (_("%pB: directive LOCAL valid only with a register or absolute value"),
dae82561 1711 input_section->owner);
3c3bdf30
NC
1712
1713 return bfd_reloc_overflow;
1714 }
1715
1716 /* If we don't have a register contents section, then $255 is the
1717 first global register. */
1718 if (regsec == NULL)
1719 first_global = 255;
1720 else
1721 {
a0f49396
NC
1722 first_global
1723 = bfd_get_section_vma (input_section->output_section->owner,
1724 regsec) / 8;
3c3bdf30
NC
1725 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1726 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1727 {
1728 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1729 /* The bfd_reloc_outofrange return value, though
1730 intuitively a better value, will not get us an error. */
1731 return bfd_reloc_overflow;
1732 srel /= 8;
1733 }
1734 }
1735
1736 if ((bfd_vma) srel >= first_global)
1737 {
1738 /* FIXME: Better error message. */
4eca0228 1739 _bfd_error_handler
695344c0 1740 /* xgettext:c-format */
871b3ab2 1741 (_("%pB: LOCAL directive: Register $%Ld is not a local register."
d42c267e
AM
1742 " First global register is $%Ld."),
1743 input_section->owner, srel, first_global);
3c3bdf30
NC
1744
1745 return bfd_reloc_overflow;
1746 }
1747 }
1748 r = bfd_reloc_ok;
1749 break;
1750
1751 default:
1752 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1753 contents, r_offset,
1754 relocation, r_addend);
1755 }
1756
1757 return r;
1758}
e06fcc86 1759\f
3c3bdf30
NC
1760/* Return the section that should be marked against GC for a given
1761 relocation. */
1762
1763static asection *
07adf181
AM
1764mmix_elf_gc_mark_hook (asection *sec,
1765 struct bfd_link_info *info,
1766 Elf_Internal_Rela *rel,
1767 struct elf_link_hash_entry *h,
1768 Elf_Internal_Sym *sym)
3c3bdf30
NC
1769{
1770 if (h != NULL)
07adf181
AM
1771 switch (ELF64_R_TYPE (rel->r_info))
1772 {
1773 case R_MMIX_GNU_VTINHERIT:
1774 case R_MMIX_GNU_VTENTRY:
1775 return NULL;
1776 }
3c3bdf30 1777
07adf181 1778 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
3c3bdf30 1779}
e06fcc86 1780\f
3c3bdf30
NC
1781/* Sort register relocs to come before expanding relocs. */
1782
1783static int
2c3fc389 1784mmix_elf_sort_relocs (const void * p1, const void * p2)
3c3bdf30
NC
1785{
1786 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1787 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1788 int r1_is_reg, r2_is_reg;
1789
1790 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1791 insns. */
1792 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1793 return 1;
1794 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1795 return -1;
1796
1797 r1_is_reg
1798 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1799 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1800 r2_is_reg
1801 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1802 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1803 if (r1_is_reg != r2_is_reg)
1804 return r2_is_reg - r1_is_reg;
1805
1806 /* Neither or both are register relocs. Then sort on full offset. */
1807 if (r1->r_offset > r2->r_offset)
1808 return 1;
1809 else if (r1->r_offset < r2->r_offset)
1810 return -1;
1811 return 0;
1812}
1813
930b4cb2
HPN
1814/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1815
b34976b6 1816static bfd_boolean
2c3fc389
NC
1817mmix_elf_check_common_relocs (bfd *abfd,
1818 struct bfd_link_info *info,
1819 asection *sec,
1820 const Elf_Internal_Rela *relocs)
930b4cb2
HPN
1821{
1822 bfd *bpo_greg_owner = NULL;
1823 asection *allocated_gregs_section = NULL;
1824 struct bpo_greg_section_info *gregdata = NULL;
1825 struct bpo_reloc_section_info *bpodata = NULL;
1826 const Elf_Internal_Rela *rel;
1827 const Elf_Internal_Rela *rel_end;
1828
930b4cb2
HPN
1829 /* We currently have to abuse this COFF-specific member, since there's
1830 no target-machine-dedicated member. There's no alternative outside
1831 the bfd_link_info struct; we can't specialize a hash-table since
1832 they're different between ELF and mmo. */
1833 bpo_greg_owner = (bfd *) info->base_file;
1834
1835 rel_end = relocs + sec->reloc_count;
1836 for (rel = relocs; rel < rel_end; rel++)
1837 {
1838 switch (ELF64_R_TYPE (rel->r_info))
07d6d2b8 1839 {
930b4cb2
HPN
1840 /* This relocation causes a GREG allocation. We need to count
1841 them, and we need to create a section for them, so we need an
1842 object to fake as the owner of that section. We can't use
1843 the ELF dynobj for this, since the ELF bits assume lots of
1844 DSO-related stuff if that member is non-NULL. */
1845 case R_MMIX_BASE_PLUS_OFFSET:
f60ebe14 1846 /* We don't do anything with this reloc for a relocatable link. */
0e1862bb 1847 if (bfd_link_relocatable (info))
f60ebe14
HPN
1848 break;
1849
930b4cb2
HPN
1850 if (bpo_greg_owner == NULL)
1851 {
1852 bpo_greg_owner = abfd;
2c3fc389 1853 info->base_file = bpo_greg_owner;
930b4cb2
HPN
1854 }
1855
4fa5c2a8
HPN
1856 if (allocated_gregs_section == NULL)
1857 allocated_gregs_section
1858 = bfd_get_section_by_name (bpo_greg_owner,
1859 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1860
930b4cb2
HPN
1861 if (allocated_gregs_section == NULL)
1862 {
1863 allocated_gregs_section
3496cb2a
L
1864 = bfd_make_section_with_flags (bpo_greg_owner,
1865 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1866 (SEC_HAS_CONTENTS
1867 | SEC_IN_MEMORY
1868 | SEC_LINKER_CREATED));
930b4cb2
HPN
1869 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1870 treated like any other section, and we'd get errors for
1871 address overlap with the text section. Let's set none of
1872 those flags, as that is what currently happens for usual
1873 GREG allocations, and that works. */
1874 if (allocated_gregs_section == NULL
930b4cb2
HPN
1875 || !bfd_set_section_alignment (bpo_greg_owner,
1876 allocated_gregs_section,
1877 3))
b34976b6 1878 return FALSE;
930b4cb2
HPN
1879
1880 gregdata = (struct bpo_greg_section_info *)
1881 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1882 if (gregdata == NULL)
b34976b6 1883 return FALSE;
f0abc2a1
AM
1884 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1885 = gregdata;
930b4cb2
HPN
1886 }
1887 else if (gregdata == NULL)
f0abc2a1
AM
1888 gregdata
1889 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
930b4cb2
HPN
1890
1891 /* Get ourselves some auxiliary info for the BPO-relocs. */
1892 if (bpodata == NULL)
1893 {
1894 /* No use doing a separate iteration pass to find the upper
1895 limit - just use the number of relocs. */
1896 bpodata = (struct bpo_reloc_section_info *)
1897 bfd_alloc (bpo_greg_owner,
1898 sizeof (struct bpo_reloc_section_info)
1899 * (sec->reloc_count + 1));
1900 if (bpodata == NULL)
b34976b6 1901 return FALSE;
f0abc2a1 1902 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
930b4cb2
HPN
1903 bpodata->first_base_plus_offset_reloc
1904 = bpodata->bpo_index
1905 = gregdata->n_max_bpo_relocs;
1906 bpodata->bpo_greg_section
1907 = allocated_gregs_section;
4fa5c2a8 1908 bpodata->n_bpo_relocs_this_section = 0;
930b4cb2
HPN
1909 }
1910
1911 bpodata->n_bpo_relocs_this_section++;
1912 gregdata->n_max_bpo_relocs++;
1913
1914 /* We don't get another chance to set this before GC; we've not
f60ebe14 1915 set up any hook that runs before GC. */
930b4cb2
HPN
1916 gregdata->n_bpo_relocs
1917 = gregdata->n_max_bpo_relocs;
1918 break;
f60ebe14
HPN
1919
1920 case R_MMIX_PUSHJ_STUBBABLE:
1921 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1922 break;
930b4cb2
HPN
1923 }
1924 }
1925
f60ebe14
HPN
1926 /* Allocate per-reloc stub storage and initialize it to the max stub
1927 size. */
1928 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1929 {
1930 size_t i;
1931
1932 mmix_elf_section_data (sec)->pjs.stub_size
1933 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1934 * sizeof (mmix_elf_section_data (sec)
1935 ->pjs.stub_size[0]));
1936 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1937 return FALSE;
1938
1939 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1940 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1941 }
1942
b34976b6 1943 return TRUE;
930b4cb2
HPN
1944}
1945
3c3bdf30
NC
1946/* Look through the relocs for a section during the first phase. */
1947
b34976b6 1948static bfd_boolean
2c3fc389
NC
1949mmix_elf_check_relocs (bfd *abfd,
1950 struct bfd_link_info *info,
1951 asection *sec,
1952 const Elf_Internal_Rela *relocs)
3c3bdf30
NC
1953{
1954 Elf_Internal_Shdr *symtab_hdr;
5582a088 1955 struct elf_link_hash_entry **sym_hashes;
3c3bdf30
NC
1956 const Elf_Internal_Rela *rel;
1957 const Elf_Internal_Rela *rel_end;
1958
3c3bdf30
NC
1959 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1960 sym_hashes = elf_sym_hashes (abfd);
3c3bdf30
NC
1961
1962 /* First we sort the relocs so that any register relocs come before
1963 expansion-relocs to the same insn. FIXME: Not done for mmo. */
2c3fc389 1964 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
3c3bdf30
NC
1965 mmix_elf_sort_relocs);
1966
930b4cb2
HPN
1967 /* Do the common part. */
1968 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
b34976b6 1969 return FALSE;
930b4cb2 1970
0e1862bb 1971 if (bfd_link_relocatable (info))
f60ebe14
HPN
1972 return TRUE;
1973
3c3bdf30
NC
1974 rel_end = relocs + sec->reloc_count;
1975 for (rel = relocs; rel < rel_end; rel++)
1976 {
1977 struct elf_link_hash_entry *h;
1978 unsigned long r_symndx;
1979
1980 r_symndx = ELF64_R_SYM (rel->r_info);
1981 if (r_symndx < symtab_hdr->sh_info)
07d6d2b8 1982 h = NULL;
3c3bdf30 1983 else
973a3492
L
1984 {
1985 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1986 while (h->root.type == bfd_link_hash_indirect
1987 || h->root.type == bfd_link_hash_warning)
1988 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1989 }
3c3bdf30
NC
1990
1991 switch (ELF64_R_TYPE (rel->r_info))
930b4cb2 1992 {
07d6d2b8
AM
1993 /* This relocation describes the C++ object vtable hierarchy.
1994 Reconstruct it for later use during GC. */
1995 case R_MMIX_GNU_VTINHERIT:
1996 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1997 return FALSE;
1998 break;
1999
2000 /* This relocation describes which C++ vtable entries are actually
2001 used. Record for later use during GC. */
2002 case R_MMIX_GNU_VTENTRY:
2003 BFD_ASSERT (h != NULL);
2004 if (h != NULL
2005 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2006 return FALSE;
2007 break;
930b4cb2
HPN
2008 }
2009 }
2010
b34976b6 2011 return TRUE;
930b4cb2
HPN
2012}
2013
2014/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2015 Copied from elf_link_add_object_symbols. */
2016
b34976b6 2017bfd_boolean
2c3fc389 2018_bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
930b4cb2
HPN
2019{
2020 asection *o;
2021
2022 for (o = abfd->sections; o != NULL; o = o->next)
2023 {
2024 Elf_Internal_Rela *internal_relocs;
b34976b6 2025 bfd_boolean ok;
930b4cb2
HPN
2026
2027 if ((o->flags & SEC_RELOC) == 0
2028 || o->reloc_count == 0
2029 || ((info->strip == strip_all || info->strip == strip_debugger)
2030 && (o->flags & SEC_DEBUGGING) != 0)
2031 || bfd_is_abs_section (o->output_section))
2032 continue;
2033
2034 internal_relocs
2c3fc389 2035 = _bfd_elf_link_read_relocs (abfd, o, NULL,
45d6a902
AM
2036 (Elf_Internal_Rela *) NULL,
2037 info->keep_memory);
930b4cb2 2038 if (internal_relocs == NULL)
b34976b6 2039 return FALSE;
930b4cb2
HPN
2040
2041 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2042
2043 if (! info->keep_memory)
2044 free (internal_relocs);
2045
2046 if (! ok)
b34976b6 2047 return FALSE;
3c3bdf30
NC
2048 }
2049
b34976b6 2050 return TRUE;
3c3bdf30 2051}
e06fcc86 2052\f
3c3bdf30
NC
2053/* Change symbols relative to the reg contents section to instead be to
2054 the register section, and scale them down to correspond to the register
2055 number. */
2056
6e0b88f1 2057static int
2c3fc389
NC
2058mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2059 const char *name ATTRIBUTE_UNUSED,
2060 Elf_Internal_Sym *sym,
2061 asection *input_sec,
2062 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
3c3bdf30
NC
2063{
2064 if (input_sec != NULL
2065 && input_sec->name != NULL
2066 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2067 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2068 {
2069 sym->st_value /= 8;
2070 sym->st_shndx = SHN_REGISTER;
2071 }
2072
6e0b88f1 2073 return 1;
3c3bdf30
NC
2074}
2075
2076/* We fake a register section that holds values that are register numbers.
2077 Having a SHN_REGISTER and register section translates better to other
2078 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2079 This section faking is based on a construct in elf32-mips.c. */
2080static asection mmix_elf_reg_section;
2081static asymbol mmix_elf_reg_section_symbol;
2082static asymbol *mmix_elf_reg_section_symbol_ptr;
2083
f60ebe14 2084/* Handle the special section numbers that a symbol may use. */
3c3bdf30
NC
2085
2086void
e6c7cdec 2087mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
3c3bdf30
NC
2088{
2089 elf_symbol_type *elfsym;
2090
2091 elfsym = (elf_symbol_type *) asym;
2092 switch (elfsym->internal_elf_sym.st_shndx)
2093 {
2094 case SHN_REGISTER:
2095 if (mmix_elf_reg_section.name == NULL)
2096 {
2097 /* Initialize the register section. */
2098 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2099 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2100 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2101 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2102 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2103 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2104 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2105 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2106 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2107 }
2108 asym->section = &mmix_elf_reg_section;
2109 break;
2110
2111 default:
2112 break;
2113 }
2114}
2115
2116/* Given a BFD section, try to locate the corresponding ELF section
2117 index. */
2118
b34976b6 2119static bfd_boolean
2c3fc389
NC
2120mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2121 asection * sec,
2122 int * retval)
3c3bdf30
NC
2123{
2124 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2125 *retval = SHN_REGISTER;
2126 else
b34976b6 2127 return FALSE;
3c3bdf30 2128
b34976b6 2129 return TRUE;
3c3bdf30
NC
2130}
2131
2132/* Hook called by the linker routine which adds symbols from an object
2133 file. We must handle the special SHN_REGISTER section number here.
2134
2135 We also check that we only have *one* each of the section-start
2136 symbols, since otherwise having two with the same value would cause
2137 them to be "merged", but with the contents serialized. */
2138
2c3fc389
NC
2139static bfd_boolean
2140mmix_elf_add_symbol_hook (bfd *abfd,
2141 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2142 Elf_Internal_Sym *sym,
2143 const char **namep ATTRIBUTE_UNUSED,
2144 flagword *flagsp ATTRIBUTE_UNUSED,
2145 asection **secp,
2146 bfd_vma *valp ATTRIBUTE_UNUSED)
3c3bdf30
NC
2147{
2148 if (sym->st_shndx == SHN_REGISTER)
46fda84e
AM
2149 {
2150 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2151 (*secp)->flags |= SEC_LINKER_CREATED;
2152 }
3c3bdf30 2153 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
0112cd26 2154 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
3c3bdf30
NC
2155 {
2156 /* See if we have another one. */
4ab82700
AM
2157 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2158 *namep,
b34976b6
AM
2159 FALSE,
2160 FALSE,
2161 FALSE);
3c3bdf30 2162
4ab82700 2163 if (h != NULL && h->type != bfd_link_hash_undefined)
3c3bdf30
NC
2164 {
2165 /* How do we get the asymbol (or really: the filename) from h?
4ab82700 2166 h->u.def.section->owner is NULL. */
4eca0228 2167 _bfd_error_handler
695344c0 2168 /* xgettext:c-format */
871b3ab2 2169 (_("%pB: Error: multiple definition of `%s'; start of %s "
4eca0228 2170 "is set in a earlier linked file\n"),
dae82561 2171 abfd, *namep,
4eca0228 2172 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX));
3c3bdf30 2173 bfd_set_error (bfd_error_bad_value);
b34976b6 2174 return FALSE;
3c3bdf30
NC
2175 }
2176 }
2177
b34976b6 2178 return TRUE;
3c3bdf30
NC
2179}
2180
2181/* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2182
2c3fc389
NC
2183static bfd_boolean
2184mmix_elf_is_local_label_name (bfd *abfd, const char *name)
3c3bdf30
NC
2185{
2186 const char *colpos;
2187 int digits;
2188
2189 /* Also include the default local-label definition. */
2190 if (_bfd_elf_is_local_label_name (abfd, name))
b34976b6 2191 return TRUE;
3c3bdf30
NC
2192
2193 if (*name != 'L')
b34976b6 2194 return FALSE;
3c3bdf30
NC
2195
2196 /* If there's no ":", or more than one, it's not a local symbol. */
2197 colpos = strchr (name, ':');
2198 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
b34976b6 2199 return FALSE;
3c3bdf30
NC
2200
2201 /* Check that there are remaining characters and that they are digits. */
2202 if (colpos[1] == 0)
b34976b6 2203 return FALSE;
3c3bdf30
NC
2204
2205 digits = strspn (colpos + 1, "0123456789");
2206 return digits != 0 && colpos[1 + digits] == 0;
2207}
2208
2209/* We get rid of the register section here. */
2210
b34976b6 2211bfd_boolean
2c3fc389 2212mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
3c3bdf30
NC
2213{
2214 /* We never output a register section, though we create one for
2215 temporary measures. Check that nobody entered contents into it. */
2216 asection *reg_section;
3c3bdf30
NC
2217
2218 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2219
2220 if (reg_section != NULL)
2221 {
2222 /* FIXME: Pass error state gracefully. */
2223 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2224 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2225
46fda84e
AM
2226 /* Really remove the section, if it hasn't already been done. */
2227 if (!bfd_section_removed_from_list (abfd, reg_section))
2228 {
2229 bfd_section_list_remove (abfd, reg_section);
2230 --abfd->section_count;
2231 }
3c3bdf30
NC
2232 }
2233
c152c796 2234 if (! bfd_elf_final_link (abfd, info))
b34976b6 2235 return FALSE;
3c3bdf30 2236
930b4cb2
HPN
2237 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2238 the regular linker machinery. We do it here, like other targets with
2239 special sections. */
2240 if (info->base_file != NULL)
2241 {
2242 asection *greg_section
2243 = bfd_get_section_by_name ((bfd *) info->base_file,
2244 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2245 if (!bfd_set_section_contents (abfd,
2246 greg_section->output_section,
2247 greg_section->contents,
2248 (file_ptr) greg_section->output_offset,
eea6121a 2249 greg_section->size))
b34976b6 2250 return FALSE;
930b4cb2 2251 }
b34976b6 2252 return TRUE;
930b4cb2
HPN
2253}
2254
f60ebe14 2255/* We need to include the maximum size of PUSHJ-stubs in the initial
eea6121a 2256 section size. This is expected to shrink during linker relaxation. */
f60ebe14
HPN
2257
2258static void
2c3fc389
NC
2259mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2260 asection *sec,
2261 void *ptr)
f60ebe14
HPN
2262{
2263 struct bfd_link_info *info = ptr;
2264
2265 /* Make sure we only do this for section where we know we want this,
2266 otherwise we might end up resetting the size of COMMONs. */
2267 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2268 return;
2269
1a23a9e6 2270 sec->rawsize = sec->size;
eea6121a
AM
2271 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2272 * MAX_PUSHJ_STUB_SIZE);
f60ebe14
HPN
2273
2274 /* For use in relocatable link, we start with a max stubs size. See
2275 mmix_elf_relax_section. */
0e1862bb 2276 if (bfd_link_relocatable (info) && sec->output_section)
f60ebe14
HPN
2277 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2278 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2279 * MAX_PUSHJ_STUB_SIZE);
2280}
2281
930b4cb2
HPN
2282/* Initialize stuff for the linker-generated GREGs to match
2283 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2284
b34976b6 2285bfd_boolean
2c3fc389
NC
2286_bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2287 struct bfd_link_info *info)
930b4cb2
HPN
2288{
2289 asection *bpo_gregs_section;
2290 bfd *bpo_greg_owner;
2291 struct bpo_greg_section_info *gregdata;
2292 size_t n_gregs;
2293 bfd_vma gregs_size;
2294 size_t i;
2295 size_t *bpo_reloc_indexes;
f60ebe14
HPN
2296 bfd *ibfd;
2297
2298 /* Set the initial size of sections. */
c72f2fb2 2299 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
f60ebe14 2300 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
930b4cb2
HPN
2301
2302 /* The bpo_greg_owner bfd is supposed to have been set by
2303 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2304 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2305 bpo_greg_owner = (bfd *) info->base_file;
2306 if (bpo_greg_owner == NULL)
b34976b6 2307 return TRUE;
930b4cb2
HPN
2308
2309 bpo_gregs_section
2310 = bfd_get_section_by_name (bpo_greg_owner,
2311 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2312
930b4cb2 2313 if (bpo_gregs_section == NULL)
b34976b6 2314 return TRUE;
930b4cb2
HPN
2315
2316 /* We use the target-data handle in the ELF section data. */
f0abc2a1 2317 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2318 if (gregdata == NULL)
b34976b6 2319 return FALSE;
930b4cb2
HPN
2320
2321 n_gregs = gregdata->n_bpo_relocs;
2322 gregdata->n_allocated_bpo_gregs = n_gregs;
2323
2324 /* When this reaches zero during relaxation, all entries have been
2325 filled in and the size of the linker gregs can be calculated. */
2326 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2327
2328 /* Set the zeroth-order estimate for the GREGs size. */
2329 gregs_size = n_gregs * 8;
2330
2331 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
b34976b6 2332 return FALSE;
930b4cb2
HPN
2333
2334 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2335 time. Note that we must use the max number ever noted for the array,
2336 since the index numbers were created before GC. */
2337 gregdata->reloc_request
2338 = bfd_zalloc (bpo_greg_owner,
2339 sizeof (struct bpo_reloc_request)
2340 * gregdata->n_max_bpo_relocs);
2341
2342 gregdata->bpo_reloc_indexes
2343 = bpo_reloc_indexes
2344 = bfd_alloc (bpo_greg_owner,
2345 gregdata->n_max_bpo_relocs
2346 * sizeof (size_t));
2347 if (bpo_reloc_indexes == NULL)
b34976b6 2348 return FALSE;
930b4cb2
HPN
2349
2350 /* The default order is an identity mapping. */
2351 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2352 {
2353 bpo_reloc_indexes[i] = i;
2354 gregdata->reloc_request[i].bpo_reloc_no = i;
2355 }
2356
b34976b6 2357 return TRUE;
3c3bdf30 2358}
e06fcc86 2359\f
930b4cb2
HPN
2360/* Fill in contents in the linker allocated gregs. Everything is
2361 calculated at this point; we just move the contents into place here. */
2362
b34976b6 2363bfd_boolean
2c3fc389
NC
2364_bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2365 struct bfd_link_info *link_info)
930b4cb2
HPN
2366{
2367 asection *bpo_gregs_section;
2368 bfd *bpo_greg_owner;
2369 struct bpo_greg_section_info *gregdata;
2370 size_t n_gregs;
2371 size_t i, j;
2372 size_t lastreg;
2373 bfd_byte *contents;
2374
2375 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2376 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2377 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2378 bpo_greg_owner = (bfd *) link_info->base_file;
2379 if (bpo_greg_owner == NULL)
b34976b6 2380 return TRUE;
930b4cb2
HPN
2381
2382 bpo_gregs_section
2383 = bfd_get_section_by_name (bpo_greg_owner,
2384 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2385
2386 /* This can't happen without DSO handling. When DSOs are handled
2387 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2388 section. */
2389 if (bpo_gregs_section == NULL)
b34976b6 2390 return TRUE;
930b4cb2
HPN
2391
2392 /* We use the target-data handle in the ELF section data. */
2393
f0abc2a1 2394 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
930b4cb2 2395 if (gregdata == NULL)
b34976b6 2396 return FALSE;
930b4cb2
HPN
2397
2398 n_gregs = gregdata->n_allocated_bpo_gregs;
2399
2400 bpo_gregs_section->contents
eea6121a 2401 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
930b4cb2 2402 if (contents == NULL)
b34976b6 2403 return FALSE;
930b4cb2 2404
7e799044
HPN
2405 /* Sanity check: If these numbers mismatch, some relocation has not been
2406 accounted for and the rest of gregdata is probably inconsistent.
2407 It's a bug, but it's more helpful to identify it than segfaulting
2408 below. */
2409 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2410 != gregdata->n_bpo_relocs)
2411 {
4eca0228 2412 _bfd_error_handler
695344c0 2413 /* xgettext:c-format */
d42c267e 2414 (_("Internal inconsistency: remaining %lu != max %lu.\n\
7e799044 2415 Please report this bug."),
d42c267e
AM
2416 (unsigned long) gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2417 (unsigned long) gregdata->n_bpo_relocs);
b34976b6 2418 return FALSE;
7e799044
HPN
2419 }
2420
930b4cb2
HPN
2421 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2422 if (gregdata->reloc_request[i].regindex != lastreg)
2423 {
2424 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2425 contents + j * 8);
2426 lastreg = gregdata->reloc_request[i].regindex;
2427 j++;
2428 }
2429
b34976b6 2430 return TRUE;
930b4cb2
HPN
2431}
2432
2433/* Sort valid relocs to come before non-valid relocs, then on increasing
2434 value. */
2435
2436static int
2c3fc389 2437bpo_reloc_request_sort_fn (const void * p1, const void * p2)
930b4cb2
HPN
2438{
2439 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2440 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2441
2442 /* Primary function is validity; non-valid relocs sorted after valid
2443 ones. */
2444 if (r1->valid != r2->valid)
2445 return r2->valid - r1->valid;
2446
4fa5c2a8
HPN
2447 /* Then sort on value. Don't simplify and return just the difference of
2448 the values: the upper bits of the 64-bit value would be truncated on
2449 a host with 32-bit ints. */
930b4cb2 2450 if (r1->value != r2->value)
4fa5c2a8 2451 return r1->value > r2->value ? 1 : -1;
930b4cb2 2452
dfbbae4c
HPN
2453 /* As a last re-sort, use the relocation number, so we get a stable
2454 sort. The *addresses* aren't stable since items are swapped during
2455 sorting. It depends on the qsort implementation if this actually
2456 happens. */
2457 return r1->bpo_reloc_no > r2->bpo_reloc_no
2458 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
930b4cb2
HPN
2459}
2460
4fa5c2a8
HPN
2461/* For debug use only. Dumps the global register allocations resulting
2462 from base-plus-offset relocs. */
2463
2464void
e6c7cdec 2465mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
52d45da3 2466 void (*pf) (const char *fmt, ...))
4fa5c2a8
HPN
2467{
2468 bfd *bpo_greg_owner;
2469 asection *bpo_gregs_section;
2470 struct bpo_greg_section_info *gregdata;
2471 unsigned int i;
2472
2473 if (link_info == NULL || link_info->base_file == NULL)
2474 return;
2475
2476 bpo_greg_owner = (bfd *) link_info->base_file;
2477
2478 bpo_gregs_section
2479 = bfd_get_section_by_name (bpo_greg_owner,
2480 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2481
2482 if (bpo_gregs_section == NULL)
2483 return;
2484
f0abc2a1 2485 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
4fa5c2a8
HPN
2486 if (gregdata == NULL)
2487 return;
2488
2489 if (pf == NULL)
2490 pf = _bfd_error_handler;
2491
2492 /* These format strings are not translated. They are for debug purposes
2493 only and never displayed to an end user. Should they escape, we
2494 surely want them in original. */
2495 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2496 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2497 gregdata->n_max_bpo_relocs,
2498 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2499 gregdata->n_allocated_bpo_gregs);
2500
2501 if (gregdata->reloc_request)
2502 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2503 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2504 i,
cf3d882d
AM
2505 (gregdata->bpo_reloc_indexes != NULL
2506 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
4fa5c2a8
HPN
2507 gregdata->reloc_request[i].bpo_reloc_no,
2508 gregdata->reloc_request[i].valid,
2509
2510 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2511 (unsigned long) gregdata->reloc_request[i].value,
2512 gregdata->reloc_request[i].regindex,
2513 gregdata->reloc_request[i].offset);
2514}
2515
930b4cb2
HPN
2516/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2517 when the last such reloc is done, an index-array is sorted according to
2518 the values and iterated over to produce register numbers (indexed by 0
2519 from the first allocated register number) and offsets for use in real
80f540b7 2520 relocation. (N.B.: Relocatable runs are handled, not just punted.)
930b4cb2 2521
f60ebe14
HPN
2522 PUSHJ stub accounting is also done here.
2523
930b4cb2
HPN
2524 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2525
b34976b6 2526static bfd_boolean
2c3fc389
NC
2527mmix_elf_relax_section (bfd *abfd,
2528 asection *sec,
2529 struct bfd_link_info *link_info,
2530 bfd_boolean *again)
930b4cb2 2531{
930b4cb2 2532 Elf_Internal_Shdr *symtab_hdr;
930b4cb2 2533 Elf_Internal_Rela *internal_relocs;
930b4cb2
HPN
2534 Elf_Internal_Rela *irel, *irelend;
2535 asection *bpo_gregs_section = NULL;
2536 struct bpo_greg_section_info *gregdata;
2537 struct bpo_reloc_section_info *bpodata
f0abc2a1 2538 = mmix_elf_section_data (sec)->bpo.reloc;
f60ebe14
HPN
2539 /* The initialization is to quiet compiler warnings. The value is to
2540 spot a missing actual initialization. */
2541 size_t bpono = (size_t) -1;
2542 size_t pjsno = 0;
6cdc0ccc 2543 Elf_Internal_Sym *isymbuf = NULL;
1a23a9e6 2544 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
f60ebe14
HPN
2545
2546 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
930b4cb2
HPN
2547
2548 /* Assume nothing changes. */
b34976b6 2549 *again = FALSE;
930b4cb2 2550
f60ebe14
HPN
2551 /* We don't have to do anything if this section does not have relocs, or
2552 if this is not a code section. */
2553 if ((sec->flags & SEC_RELOC) == 0
930b4cb2
HPN
2554 || sec->reloc_count == 0
2555 || (sec->flags & SEC_CODE) == 0
2556 || (sec->flags & SEC_LINKER_CREATED) != 0
f60ebe14 2557 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
07d6d2b8 2558 then nothing to do. */
f60ebe14
HPN
2559 || (bpodata == NULL
2560 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
b34976b6 2561 return TRUE;
930b4cb2
HPN
2562
2563 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
930b4cb2 2564
f60ebe14
HPN
2565 if (bpodata != NULL)
2566 {
2567 bpo_gregs_section = bpodata->bpo_greg_section;
2568 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2569 bpono = bpodata->first_base_plus_offset_reloc;
2570 }
2571 else
2572 gregdata = NULL;
930b4cb2
HPN
2573
2574 /* Get a copy of the native relocations. */
2575 internal_relocs
2c3fc389 2576 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
45d6a902
AM
2577 (Elf_Internal_Rela *) NULL,
2578 link_info->keep_memory);
930b4cb2
HPN
2579 if (internal_relocs == NULL)
2580 goto error_return;
930b4cb2
HPN
2581
2582 /* Walk through them looking for relaxing opportunities. */
2583 irelend = internal_relocs + sec->reloc_count;
2584 for (irel = internal_relocs; irel < irelend; irel++)
2585 {
2586 bfd_vma symval;
f60ebe14 2587 struct elf_link_hash_entry *h = NULL;
930b4cb2 2588
f60ebe14
HPN
2589 /* We only process two relocs. */
2590 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2591 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
930b4cb2
HPN
2592 continue;
2593
f60ebe14
HPN
2594 /* We process relocs in a distinctly different way when this is a
2595 relocatable link (for one, we don't look at symbols), so we avoid
2596 mixing its code with that for the "normal" relaxation. */
0e1862bb 2597 if (bfd_link_relocatable (link_info))
f60ebe14
HPN
2598 {
2599 /* The only transformation in a relocatable link is to generate
2600 a full stub at the location of the stub calculated for the
2601 input section, if the relocated stub location, the end of the
2602 output section plus earlier stubs, cannot be reached. Thus
2603 relocatable linking can only lead to worse code, but it still
2604 works. */
2605 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2606 {
2607 /* If we can reach the end of the output-section and beyond
2608 any current stubs, then we don't need a stub for this
2609 reloc. The relaxed order of output stub allocation may
2610 not exactly match the straightforward order, so we always
2611 assume presence of output stubs, which will allow
2612 relaxation only on relocations indifferent to the
2613 presence of output stub allocations for other relocations
2614 and thus the order of output stub allocation. */
2615 if (bfd_check_overflow (complain_overflow_signed,
2616 19,
2617 0,
2618 bfd_arch_bits_per_address (abfd),
2619 /* Output-stub location. */
1a23a9e6 2620 sec->output_section->rawsize
f60ebe14
HPN
2621 + (mmix_elf_section_data (sec
2622 ->output_section)
2623 ->pjs.stubs_size_sum)
2624 /* Location of this PUSHJ reloc. */
2625 - (sec->output_offset + irel->r_offset)
2626 /* Don't count *this* stub twice. */
2627 - (mmix_elf_section_data (sec)
2628 ->pjs.stub_size[pjsno]
2629 + MAX_PUSHJ_STUB_SIZE))
2630 == bfd_reloc_ok)
2631 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2632
2633 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2634 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2635
2636 pjsno++;
2637 }
2638
2639 continue;
2640 }
2641
930b4cb2
HPN
2642 /* Get the value of the symbol referred to by the reloc. */
2643 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2644 {
2645 /* A local symbol. */
6cdc0ccc 2646 Elf_Internal_Sym *isym;
930b4cb2
HPN
2647 asection *sym_sec;
2648
6cdc0ccc
AM
2649 /* Read this BFD's local symbols if we haven't already. */
2650 if (isymbuf == NULL)
2651 {
2652 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2653 if (isymbuf == NULL)
2654 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2655 symtab_hdr->sh_info, 0,
2656 NULL, NULL, NULL);
2657 if (isymbuf == 0)
2658 goto error_return;
2659 }
930b4cb2 2660
6cdc0ccc
AM
2661 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2662 if (isym->st_shndx == SHN_UNDEF)
930b4cb2 2663 sym_sec = bfd_und_section_ptr;
6cdc0ccc 2664 else if (isym->st_shndx == SHN_ABS)
930b4cb2 2665 sym_sec = bfd_abs_section_ptr;
6cdc0ccc 2666 else if (isym->st_shndx == SHN_COMMON)
930b4cb2
HPN
2667 sym_sec = bfd_com_section_ptr;
2668 else
6cdc0ccc
AM
2669 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2670 symval = (isym->st_value
930b4cb2
HPN
2671 + sym_sec->output_section->vma
2672 + sym_sec->output_offset);
2673 }
2674 else
2675 {
2676 unsigned long indx;
930b4cb2
HPN
2677
2678 /* An external symbol. */
2679 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2680 h = elf_sym_hashes (abfd)[indx];
2681 BFD_ASSERT (h != NULL);
284d826d
HPN
2682 if (h->root.type == bfd_link_hash_undefweak)
2683 /* FIXME: for R_MMIX_PUSHJ_STUBBABLE, there are alternatives to
2684 the canonical value 0 for an unresolved weak symbol to
2685 consider: as the debug-friendly approach, resolve to "abort"
2686 (or a port-specific function), or as the space-friendly
2687 approach resolve to the next instruction (like some other
2688 ports, notably ARM and AArch64). These alternatives require
2689 matching code in mmix_elf_perform_relocation or its caller. */
2690 symval = 0;
2691 else if (h->root.type == bfd_link_hash_defined
2692 || h->root.type == bfd_link_hash_defweak)
2693 symval = (h->root.u.def.value
2694 + h->root.u.def.section->output_section->vma
2695 + h->root.u.def.section->output_offset);
2696 else
930b4cb2 2697 {
f60ebe14
HPN
2698 /* This appears to be a reference to an undefined symbol. Just
2699 ignore it--it will be caught by the regular reloc processing.
2700 We need to keep BPO reloc accounting consistent, though
2701 else we'll abort instead of emitting an error message. */
2702 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2703 && gregdata != NULL)
2704 {
2705 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2706 bpono++;
2707 }
930b4cb2
HPN
2708 continue;
2709 }
930b4cb2
HPN
2710 }
2711
f60ebe14
HPN
2712 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2713 {
2714 bfd_vma value = symval + irel->r_addend;
2715 bfd_vma dot
2716 = (sec->output_section->vma
2717 + sec->output_offset
2718 + irel->r_offset);
2719 bfd_vma stubaddr
2720 = (sec->output_section->vma
2721 + sec->output_offset
eea6121a 2722 + size
f60ebe14
HPN
2723 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2724
2725 if ((value & 3) == 0
2726 && bfd_check_overflow (complain_overflow_signed,
2727 19,
2728 0,
2729 bfd_arch_bits_per_address (abfd),
2730 value - dot
2731 - (value > dot
2732 ? mmix_elf_section_data (sec)
2733 ->pjs.stub_size[pjsno]
2734 : 0))
2735 == bfd_reloc_ok)
2736 /* If the reloc fits, no stub is needed. */
2737 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2738 else
2739 /* Maybe we can get away with just a JMP insn? */
2740 if ((value & 3) == 0
2741 && bfd_check_overflow (complain_overflow_signed,
2742 27,
2743 0,
2744 bfd_arch_bits_per_address (abfd),
2745 value - stubaddr
2746 - (value > dot
2747 ? mmix_elf_section_data (sec)
2748 ->pjs.stub_size[pjsno] - 4
2749 : 0))
2750 == bfd_reloc_ok)
2751 /* Yep, account for a stub consisting of a single JMP insn. */
2752 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2753 else
2754 /* Nope, go for the full insn stub. It doesn't seem useful to
2755 emit the intermediate sizes; those will only be useful for
2756 a >64M program assuming contiguous code. */
2757 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2758 = MAX_PUSHJ_STUB_SIZE;
2759
2760 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2761 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2762 pjsno++;
2763 continue;
2764 }
2765
2766 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2767
930b4cb2
HPN
2768 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2769 = symval + irel->r_addend;
b34976b6 2770 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
930b4cb2
HPN
2771 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2772 }
2773
2774 /* Check if that was the last BPO-reloc. If so, sort the values and
2775 calculate how many registers we need to cover them. Set the size of
2776 the linker gregs, and if the number of registers changed, indicate
2777 that we need to relax some more because we have more work to do. */
f60ebe14
HPN
2778 if (gregdata != NULL
2779 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
930b4cb2
HPN
2780 {
2781 size_t i;
2782 bfd_vma prev_base;
2783 size_t regindex;
2784
2785 /* First, reset the remaining relocs for the next round. */
2786 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2787 = gregdata->n_bpo_relocs;
2788
2c3fc389 2789 qsort (gregdata->reloc_request,
930b4cb2
HPN
2790 gregdata->n_max_bpo_relocs,
2791 sizeof (struct bpo_reloc_request),
2792 bpo_reloc_request_sort_fn);
2793
2794 /* Recalculate indexes. When we find a change (however unlikely
2795 after the initial iteration), we know we need to relax again,
2796 since items in the GREG-array are sorted by increasing value and
2797 stored in the relaxation phase. */
2798 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2799 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2800 != i)
2801 {
2802 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2803 = i;
b34976b6 2804 *again = TRUE;
930b4cb2
HPN
2805 }
2806
2807 /* Allocate register numbers (indexing from 0). Stop at the first
2808 non-valid reloc. */
2809 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2810 i < gregdata->n_bpo_relocs;
2811 i++)
2812 {
2813 if (gregdata->reloc_request[i].value > prev_base + 255)
2814 {
2815 regindex++;
2816 prev_base = gregdata->reloc_request[i].value;
2817 }
2818 gregdata->reloc_request[i].regindex = regindex;
2819 gregdata->reloc_request[i].offset
2820 = gregdata->reloc_request[i].value - prev_base;
2821 }
2822
2823 /* If it's not the same as the last time, we need to relax again,
2824 because the size of the section has changed. I'm not sure we
2825 actually need to do any adjustments since the shrinking happens
2826 at the start of this section, but better safe than sorry. */
2827 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2828 {
2829 gregdata->n_allocated_bpo_gregs = regindex + 1;
b34976b6 2830 *again = TRUE;
930b4cb2
HPN
2831 }
2832
eea6121a 2833 bpo_gregs_section->size = (regindex + 1) * 8;
930b4cb2
HPN
2834 }
2835
6cdc0ccc 2836 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
930b4cb2
HPN
2837 {
2838 if (! link_info->keep_memory)
6cdc0ccc
AM
2839 free (isymbuf);
2840 else
930b4cb2 2841 {
6cdc0ccc
AM
2842 /* Cache the symbols for elf_link_input_bfd. */
2843 symtab_hdr->contents = (unsigned char *) isymbuf;
930b4cb2
HPN
2844 }
2845 }
2846
284d826d
HPN
2847 BFD_ASSERT(pjsno == mmix_elf_section_data (sec)->pjs.n_pushj_relocs);
2848
6cdc0ccc
AM
2849 if (internal_relocs != NULL
2850 && elf_section_data (sec)->relocs != internal_relocs)
2851 free (internal_relocs);
2852
eea6121a 2853 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
f60ebe14
HPN
2854 abort ();
2855
eea6121a 2856 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
f60ebe14 2857 {
eea6121a 2858 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
f60ebe14
HPN
2859 *again = TRUE;
2860 }
2861
b34976b6 2862 return TRUE;
930b4cb2
HPN
2863
2864 error_return:
6cdc0ccc
AM
2865 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2866 free (isymbuf);
2867 if (internal_relocs != NULL
2868 && elf_section_data (sec)->relocs != internal_relocs)
2869 free (internal_relocs);
b34976b6 2870 return FALSE;
930b4cb2
HPN
2871}
2872\f
3c3bdf30 2873#define ELF_ARCH bfd_arch_mmix
07d6d2b8 2874#define ELF_MACHINE_CODE EM_MMIX
3c3bdf30
NC
2875
2876/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2877 However, that's too much for something somewhere in the linker part of
2878 BFD; perhaps the start-address has to be a non-zero multiple of this
2879 number, or larger than this number. The symptom is that the linker
2880 complains: "warning: allocated section `.text' not in segment". We
2881 settle for 64k; the page-size used in examples is 8k.
2882 #define ELF_MAXPAGESIZE 0x10000
2883
2884 Unfortunately, this causes excessive padding in the supposedly small
2885 for-education programs that are the expected usage (where people would
2886 inspect output). We stick to 256 bytes just to have *some* default
2887 alignment. */
2888#define ELF_MAXPAGESIZE 0x100
2889
6d00b590 2890#define TARGET_BIG_SYM mmix_elf64_vec
3c3bdf30
NC
2891#define TARGET_BIG_NAME "elf64-mmix"
2892
2893#define elf_info_to_howto_rel NULL
2894#define elf_info_to_howto mmix_info_to_howto_rela
2895#define elf_backend_relocate_section mmix_elf_relocate_section
2896#define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
930b4cb2 2897
3c3bdf30
NC
2898#define elf_backend_link_output_symbol_hook \
2899 mmix_elf_link_output_symbol_hook
2900#define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2901
2902#define elf_backend_check_relocs mmix_elf_check_relocs
2903#define elf_backend_symbol_processing mmix_elf_symbol_processing
d00dd7dc 2904#define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
3c3bdf30 2905
cd5b2bab
AM
2906#define bfd_elf64_bfd_copy_link_hash_symbol_type \
2907 _bfd_generic_copy_link_hash_symbol_type
2908
3c3bdf30
NC
2909#define bfd_elf64_bfd_is_local_label_name \
2910 mmix_elf_is_local_label_name
2911
2912#define elf_backend_may_use_rel_p 0
2913#define elf_backend_may_use_rela_p 1
2914#define elf_backend_default_use_rela_p 1
2915
2916#define elf_backend_can_gc_sections 1
2917#define elf_backend_section_from_bfd_section \
2918 mmix_elf_section_from_bfd_section
2919
f0abc2a1 2920#define bfd_elf64_new_section_hook mmix_elf_new_section_hook
3c3bdf30 2921#define bfd_elf64_bfd_final_link mmix_elf_final_link
930b4cb2 2922#define bfd_elf64_bfd_relax_section mmix_elf_relax_section
3c3bdf30
NC
2923
2924#include "elf64-target.h"
This page took 0.979949 seconds and 4 git commands to generate.