* reloc16.c (bfd_coff_reloc16_relax_section): Count the total number
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
CommitLineData
252b5132 1/* SPARC-specific support for 64-bit ELF
37fb6db1
ILT
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25
26/* This is defined if one wants to build upward compatible binaries
27 with the original sparc64-elf toolchain. The support is kept in for
28 now but is turned off by default. dje 970930 */
29/*#define SPARC64_OLD_RELOCS*/
30
31#include "elf/sparc.h"
32
33/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
34#define MINUS_ONE (~ (bfd_vma) 0)
35
587ff49e
RH
36static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
37 PARAMS((bfd *));
252b5132
RH
38static reloc_howto_type *sparc64_elf_reloc_type_lookup
39 PARAMS ((bfd *, bfd_reloc_code_real_type));
40static void sparc64_elf_info_to_howto
41 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
42
43static void sparc64_elf_build_plt
44 PARAMS((bfd *, unsigned char *, int));
45static bfd_vma sparc64_elf_plt_entry_offset
46 PARAMS((int));
47static bfd_vma sparc64_elf_plt_ptr_offset
48 PARAMS((int, int));
49
50static boolean sparc64_elf_check_relocs
51 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
52 const Elf_Internal_Rela *));
53static boolean sparc64_elf_adjust_dynamic_symbol
54 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
55static boolean sparc64_elf_size_dynamic_sections
56 PARAMS((bfd *, struct bfd_link_info *));
587ff49e
RH
57static int sparc64_elf_get_symbol_type
58 PARAMS (( Elf_Internal_Sym *, int));
59static boolean sparc64_elf_add_symbol_hook
60 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
61 const char **, flagword *, asection **, bfd_vma *));
62static void sparc64_elf_symbol_processing
63 PARAMS ((bfd *, asymbol *));
252b5132
RH
64
65static boolean sparc64_elf_merge_private_bfd_data
66 PARAMS ((bfd *, bfd *));
67
68static boolean sparc64_elf_relocate_section
69 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
70 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
71static boolean sparc64_elf_object_p PARAMS ((bfd *));
f65054f7
RH
72static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
73static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
74static boolean sparc64_elf_slurp_one_reloc_table
75 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
76static boolean sparc64_elf_slurp_reloc_table
77 PARAMS ((bfd *, asection *, asymbol **, boolean));
78static long sparc64_elf_canonicalize_dynamic_reloc
79 PARAMS ((bfd *, arelent **, asymbol **));
80static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
252b5132
RH
81\f
82/* The relocation "howto" table. */
83
84static bfd_reloc_status_type sparc_elf_notsup_reloc
85 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
86static bfd_reloc_status_type sparc_elf_wdisp16_reloc
87 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
88static bfd_reloc_status_type sparc_elf_hix22_reloc
89 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
90static bfd_reloc_status_type sparc_elf_lox10_reloc
91 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
92
93static reloc_howto_type sparc64_elf_howto_table[] =
94{
95 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
96 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
97 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
98 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
99 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
102 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
103 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
104 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
105 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
106 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
107 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
108 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
109 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
111 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
113 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
114 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
115 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
116 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
117 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
118 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true),
119#ifndef SPARC64_OLD_RELOCS
120 /* These aren't implemented yet. */
121 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
122 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
123 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
124 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
127#endif
128 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
129 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
130 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
131 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
132 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
133 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
134 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
135 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
139 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
140 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
141 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
142 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
143 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
144 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
145 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
146 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
147 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
148 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
149 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
150 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
151 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
152 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
153 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
154};
155
156struct elf_reloc_map {
157 bfd_reloc_code_real_type bfd_reloc_val;
158 unsigned char elf_reloc_val;
159};
160
161static CONST struct elf_reloc_map sparc_reloc_map[] =
162{
163 { BFD_RELOC_NONE, R_SPARC_NONE, },
164 { BFD_RELOC_16, R_SPARC_16, },
165 { BFD_RELOC_8, R_SPARC_8 },
166 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
167 { BFD_RELOC_CTOR, R_SPARC_64 },
168 { BFD_RELOC_32, R_SPARC_32 },
169 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
170 { BFD_RELOC_HI22, R_SPARC_HI22 },
171 { BFD_RELOC_LO10, R_SPARC_LO10, },
172 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
173 { BFD_RELOC_SPARC22, R_SPARC_22 },
174 { BFD_RELOC_SPARC13, R_SPARC_13 },
175 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
176 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
177 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
178 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
179 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
180 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
181 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
182 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
183 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
184 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
185 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
186 /* ??? Doesn't dwarf use this? */
187/*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
188 {BFD_RELOC_SPARC_10, R_SPARC_10},
189 {BFD_RELOC_SPARC_11, R_SPARC_11},
190 {BFD_RELOC_SPARC_64, R_SPARC_64},
191 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
192 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
193 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
194 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
195 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
196 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
197 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
198 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
199 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
200 {BFD_RELOC_SPARC_7, R_SPARC_7},
201 {BFD_RELOC_SPARC_5, R_SPARC_5},
202 {BFD_RELOC_SPARC_6, R_SPARC_6},
203 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
204 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
205 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
206 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
207 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
208 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
209 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
210 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
211};
212
213static reloc_howto_type *
214sparc64_elf_reloc_type_lookup (abfd, code)
215 bfd *abfd;
216 bfd_reloc_code_real_type code;
217{
218 unsigned int i;
219 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
220 {
221 if (sparc_reloc_map[i].bfd_reloc_val == code)
222 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
223 }
224 return 0;
225}
226
227static void
228sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
229 bfd *abfd;
230 arelent *cache_ptr;
231 Elf64_Internal_Rela *dst;
232{
f65054f7
RH
233 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
234 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
235}
236\f
237/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
238 section can represent up to two relocs, we must tell the user to allocate
239 more space. */
240
241static long
242sparc64_elf_get_reloc_upper_bound (abfd, sec)
243 bfd *abfd;
244 asection *sec;
245{
246 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
247}
248
249static long
250sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
251 bfd *abfd;
252{
253 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
254}
255
256/* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
257 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
258 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
259 for the same location, R_SPARC_LO10 and R_SPARC_13. */
260
261static boolean
262sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
263 bfd *abfd;
264 asection *asect;
265 Elf_Internal_Shdr *rel_hdr;
266 asymbol **symbols;
267 boolean dynamic;
268{
269 struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
270 PTR allocated = NULL;
271 bfd_byte *native_relocs;
272 arelent *relent;
273 unsigned int i;
274 int entsize;
275 bfd_size_type count;
276 arelent *relents;
277
278 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
279 if (allocated == NULL)
280 goto error_return;
281
282 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
283 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
284 != rel_hdr->sh_size))
285 goto error_return;
286
287 native_relocs = (bfd_byte *) allocated;
288
289 relents = asect->relocation + asect->reloc_count;
290
291 entsize = rel_hdr->sh_entsize;
292 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
293
294 count = rel_hdr->sh_size / entsize;
295
296 for (i = 0, relent = relents; i < count;
297 i++, relent++, native_relocs += entsize)
298 {
299 Elf_Internal_Rela rela;
300
301 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
302
303 /* The address of an ELF reloc is section relative for an object
304 file, and absolute for an executable file or shared library.
305 The address of a normal BFD reloc is always section relative,
306 and the address of a dynamic reloc is absolute.. */
307 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
308 relent->address = rela.r_offset;
309 else
310 relent->address = rela.r_offset - asect->vma;
311
312 if (ELF64_R_SYM (rela.r_info) == 0)
313 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
314 else
315 {
316 asymbol **ps, *s;
317
318 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
319 s = *ps;
320
321 /* Canonicalize ELF section symbols. FIXME: Why? */
322 if ((s->flags & BSF_SECTION_SYM) == 0)
323 relent->sym_ptr_ptr = ps;
324 else
325 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
326 }
327
328 relent->addend = rela.r_addend;
329
330 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
331 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
332 {
333 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
334 relent[1].address = relent->address;
335 relent++;
336 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
337 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
338 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
339 }
340 else
341 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
342 }
343
344 asect->reloc_count += relent - relents;
345
346 if (allocated != NULL)
347 free (allocated);
348
349 return true;
350
351 error_return:
352 if (allocated != NULL)
353 free (allocated);
354 return false;
355}
356
357/* Read in and swap the external relocs. */
358
359static boolean
360sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
361 bfd *abfd;
362 asection *asect;
363 asymbol **symbols;
364 boolean dynamic;
365{
366 struct bfd_elf_section_data * const d = elf_section_data (asect);
367 Elf_Internal_Shdr *rel_hdr;
368 Elf_Internal_Shdr *rel_hdr2;
369
370 if (asect->relocation != NULL)
371 return true;
372
373 if (! dynamic)
374 {
375 if ((asect->flags & SEC_RELOC) == 0
376 || asect->reloc_count == 0)
377 return true;
378
379 rel_hdr = &d->rel_hdr;
380 rel_hdr2 = d->rel_hdr2;
381
382 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
383 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
384 }
385 else
386 {
387 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
388 case because relocations against this section may use the
389 dynamic symbol table, and in that case bfd_section_from_shdr
390 in elf.c does not update the RELOC_COUNT. */
391 if (asect->_raw_size == 0)
392 return true;
393
394 rel_hdr = &d->this_hdr;
395 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
396 rel_hdr2 = NULL;
397 }
398
399 asect->relocation = ((arelent *)
400 bfd_alloc (abfd,
401 asect->reloc_count * 2 * sizeof (arelent)));
402 if (asect->relocation == NULL)
403 return false;
404
405 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
406 asect->reloc_count = 0;
407
408 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
409 dynamic))
410 return false;
411
412 if (rel_hdr2
413 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
414 dynamic))
415 return false;
416
417 return true;
418}
419
420/* Canonicalize the dynamic relocation entries. Note that we return
421 the dynamic relocations as a single block, although they are
422 actually associated with particular sections; the interface, which
423 was designed for SunOS style shared libraries, expects that there
424 is only one set of dynamic relocs. Any section that was actually
425 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
426 the dynamic symbol table, is considered to be a dynamic reloc
427 section. */
428
429static long
430sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
431 bfd *abfd;
432 arelent **storage;
433 asymbol **syms;
434{
435 asection *s;
436 long ret;
437
438 if (elf_dynsymtab (abfd) == 0)
439 {
440 bfd_set_error (bfd_error_invalid_operation);
441 return -1;
442 }
443
444 ret = 0;
445 for (s = abfd->sections; s != NULL; s = s->next)
446 {
447 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
448 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
449 {
450 arelent *p;
451 long count, i;
452
453 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
454 return -1;
455 count = s->reloc_count;
456 p = s->relocation;
457 for (i = 0; i < count; i++)
458 *storage++ = p++;
459 ret += count;
460 }
461 }
462
463 *storage = NULL;
464
465 return ret;
466}
467
468/* Write out the relocs. */
469
470static void
471sparc64_elf_write_relocs (abfd, sec, data)
472 bfd *abfd;
473 asection *sec;
474 PTR data;
475{
476 boolean *failedp = (boolean *) data;
477 Elf_Internal_Shdr *rela_hdr;
37fb6db1 478 Elf64_External_Rela *outbound_relocas, *src_rela;
f65054f7
RH
479 unsigned int idx, count;
480 asymbol *last_sym = 0;
481 int last_sym_idx = 0;
482
483 /* If we have already failed, don't do anything. */
484 if (*failedp)
485 return;
486
487 if ((sec->flags & SEC_RELOC) == 0)
488 return;
489
490 /* The linker backend writes the relocs out itself, and sets the
491 reloc_count field to zero to inhibit writing them here. Also,
492 sometimes the SEC_RELOC flag gets set even when there aren't any
493 relocs. */
494 if (sec->reloc_count == 0)
495 return;
496
497 /* We can combine two relocs that refer to the same address
498 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
499 latter is R_SPARC_13 with no associated symbol. */
500 count = 0;
501 for (idx = 0; idx < sec->reloc_count; idx++)
502 {
503 bfd_vma addr;
504 unsigned int i;
505
506 ++count;
507
508 addr = sec->orelocation[idx]->address;
509 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
510 && idx < sec->reloc_count - 1)
511 {
512 arelent *r = sec->orelocation[idx + 1];
513
514 if (r->howto->type == R_SPARC_13
515 && r->address == addr
516 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
517 && (*r->sym_ptr_ptr)->value == 0)
518 ++idx;
519 }
520 }
521
522 rela_hdr = &elf_section_data (sec)->rel_hdr;
523
524 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
525 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
526 if (rela_hdr->contents == NULL)
527 {
528 *failedp = true;
529 return;
530 }
531
532 /* Figure out whether the relocations are RELA or REL relocations. */
533 if (rela_hdr->sh_type != SHT_RELA)
534 abort ();
535
536 /* orelocation has the data, reloc_count has the count... */
537 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
37fb6db1 538 src_rela = outbound_relocas;
f65054f7
RH
539
540 for (idx = 0; idx < sec->reloc_count; idx++)
541 {
542 Elf_Internal_Rela dst_rela;
f65054f7
RH
543 arelent *ptr;
544 asymbol *sym;
545 int n;
546
547 ptr = sec->orelocation[idx];
f65054f7
RH
548
549 /* The address of an ELF reloc is section relative for an object
550 file, and absolute for an executable file or shared library.
551 The address of a BFD reloc is always section relative. */
552 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
553 dst_rela.r_offset = ptr->address;
554 else
555 dst_rela.r_offset = ptr->address + sec->vma;
556
557 sym = *ptr->sym_ptr_ptr;
558 if (sym == last_sym)
559 n = last_sym_idx;
560 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
561 n = STN_UNDEF;
562 else
563 {
564 last_sym = sym;
565 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
566 if (n < 0)
567 {
568 *failedp = true;
569 return;
570 }
571 last_sym_idx = n;
572 }
573
574 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
575 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
576 && ! _bfd_elf_validate_reloc (abfd, ptr))
577 {
578 *failedp = true;
579 return;
580 }
581
582 if (ptr->howto->type == R_SPARC_LO10
583 && idx < sec->reloc_count - 1)
584 {
585 arelent *r = sec->orelocation[idx + 1];
586
587 if (r->howto->type == R_SPARC_13
588 && r->address == ptr->address
589 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
590 && (*r->sym_ptr_ptr)->value == 0)
591 {
592 idx++;
593 dst_rela.r_info
594 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
595 R_SPARC_OLO10));
596 }
597 else
598 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
599 }
600 else
601 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
602
603 dst_rela.r_addend = ptr->addend;
604 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
37fb6db1 605 ++src_rela;
f65054f7 606 }
252b5132 607}
587ff49e
RH
608\f
609/* Sparc64 ELF linker hash table. */
610
611struct sparc64_elf_app_reg
612{
613 unsigned char bind;
614 unsigned short shndx;
615 bfd *abfd;
616 char *name;
617};
618
619struct sparc64_elf_link_hash_table
620{
621 struct elf_link_hash_table root;
622
623 struct sparc64_elf_app_reg app_regs [4];
624};
625
626/* Get the Sparc64 ELF linker hash table from a link_info structure. */
627
628#define sparc64_elf_hash_table(p) \
629 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
630
631/* Create a Sparc64 ELF linker hash table. */
632
633static struct bfd_link_hash_table *
634sparc64_elf_bfd_link_hash_table_create (abfd)
635 bfd *abfd;
636{
637 struct sparc64_elf_link_hash_table *ret;
638
639 ret = ((struct sparc64_elf_link_hash_table *)
640 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
641 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
642 return NULL;
643
644 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
645 _bfd_elf_link_hash_newfunc))
646 {
647 bfd_release (abfd, ret);
648 return NULL;
649 }
650
651 return &ret->root.root;
652}
653
252b5132
RH
654\f
655/* Utility for performing the standard initial work of an instruction
656 relocation.
657 *PRELOCATION will contain the relocated item.
658 *PINSN will contain the instruction from the input stream.
659 If the result is `bfd_reloc_other' the caller can continue with
660 performing the relocation. Otherwise it must stop and return the
661 value to its caller. */
662
663static bfd_reloc_status_type
664init_insn_reloc (abfd,
665 reloc_entry,
666 symbol,
667 data,
668 input_section,
669 output_bfd,
670 prelocation,
671 pinsn)
672 bfd *abfd;
673 arelent *reloc_entry;
674 asymbol *symbol;
675 PTR data;
676 asection *input_section;
677 bfd *output_bfd;
678 bfd_vma *prelocation;
679 bfd_vma *pinsn;
680{
681 bfd_vma relocation;
682 reloc_howto_type *howto = reloc_entry->howto;
683
684 if (output_bfd != (bfd *) NULL
685 && (symbol->flags & BSF_SECTION_SYM) == 0
686 && (! howto->partial_inplace
687 || reloc_entry->addend == 0))
688 {
689 reloc_entry->address += input_section->output_offset;
690 return bfd_reloc_ok;
691 }
692
693 /* This works because partial_inplace == false. */
694 if (output_bfd != NULL)
695 return bfd_reloc_continue;
696
697 if (reloc_entry->address > input_section->_cooked_size)
698 return bfd_reloc_outofrange;
699
700 relocation = (symbol->value
701 + symbol->section->output_section->vma
702 + symbol->section->output_offset);
703 relocation += reloc_entry->addend;
704 if (howto->pc_relative)
705 {
706 relocation -= (input_section->output_section->vma
707 + input_section->output_offset);
708 relocation -= reloc_entry->address;
709 }
710
711 *prelocation = relocation;
712 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
713 return bfd_reloc_other;
714}
715
716/* For unsupported relocs. */
717
718static bfd_reloc_status_type
719sparc_elf_notsup_reloc (abfd,
720 reloc_entry,
721 symbol,
722 data,
723 input_section,
724 output_bfd,
725 error_message)
726 bfd *abfd;
727 arelent *reloc_entry;
728 asymbol *symbol;
729 PTR data;
730 asection *input_section;
731 bfd *output_bfd;
732 char **error_message;
733{
734 return bfd_reloc_notsupported;
735}
736
737/* Handle the WDISP16 reloc. */
738
739static bfd_reloc_status_type
740sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
741 output_bfd, error_message)
742 bfd *abfd;
743 arelent *reloc_entry;
744 asymbol *symbol;
745 PTR data;
746 asection *input_section;
747 bfd *output_bfd;
748 char **error_message;
749{
750 bfd_vma relocation;
751 bfd_vma insn;
752 bfd_reloc_status_type status;
753
754 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
755 input_section, output_bfd, &relocation, &insn);
756 if (status != bfd_reloc_other)
757 return status;
758
759 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
760 | ((relocation >> 2) & 0x3fff));
761 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
762
763 if ((bfd_signed_vma) relocation < - 0x40000
764 || (bfd_signed_vma) relocation > 0x3ffff)
765 return bfd_reloc_overflow;
766 else
767 return bfd_reloc_ok;
768}
769
770/* Handle the HIX22 reloc. */
771
772static bfd_reloc_status_type
773sparc_elf_hix22_reloc (abfd,
774 reloc_entry,
775 symbol,
776 data,
777 input_section,
778 output_bfd,
779 error_message)
780 bfd *abfd;
781 arelent *reloc_entry;
782 asymbol *symbol;
783 PTR data;
784 asection *input_section;
785 bfd *output_bfd;
786 char **error_message;
787{
788 bfd_vma relocation;
789 bfd_vma insn;
790 bfd_reloc_status_type status;
791
792 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
793 input_section, output_bfd, &relocation, &insn);
794 if (status != bfd_reloc_other)
795 return status;
796
797 relocation ^= MINUS_ONE;
798 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
799 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
800
801 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
802 return bfd_reloc_overflow;
803 else
804 return bfd_reloc_ok;
805}
806
807/* Handle the LOX10 reloc. */
808
809static bfd_reloc_status_type
810sparc_elf_lox10_reloc (abfd,
811 reloc_entry,
812 symbol,
813 data,
814 input_section,
815 output_bfd,
816 error_message)
817 bfd *abfd;
818 arelent *reloc_entry;
819 asymbol *symbol;
820 PTR data;
821 asection *input_section;
822 bfd *output_bfd;
823 char **error_message;
824{
825 bfd_vma relocation;
826 bfd_vma insn;
827 bfd_reloc_status_type status;
828
829 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
830 input_section, output_bfd, &relocation, &insn);
831 if (status != bfd_reloc_other)
832 return status;
833
834 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
835 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
836
837 return bfd_reloc_ok;
838}
839\f
840/* PLT/GOT stuff */
841
842/* Both the headers and the entries are icache aligned. */
843#define PLT_ENTRY_SIZE 32
844#define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
845#define LARGE_PLT_THRESHOLD 32768
846#define GOT_RESERVED_ENTRIES 1
847
848#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
849
850
851/* Fill in the .plt section. */
852
853static void
854sparc64_elf_build_plt (output_bfd, contents, nentries)
855 bfd *output_bfd;
856 unsigned char *contents;
857 int nentries;
858{
859 const unsigned int nop = 0x01000000;
860 int i, j;
861
862 /* The first four entries are reserved, and are initially undefined.
863 We fill them with `illtrap 0' to force ld.so to do something. */
864
865 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
866 bfd_put_32 (output_bfd, 0, contents+i*4);
867
868 /* The first 32768 entries are close enough to plt1 to get there via
869 a straight branch. */
870
871 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
872 {
873 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
874 unsigned int sethi, ba;
875
876 /* sethi (. - plt0), %g1 */
877 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
878
a11c78e7
RH
879 /* ba,a,pt %xcc, plt1 */
880 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
252b5132
RH
881
882 bfd_put_32 (output_bfd, sethi, entry);
883 bfd_put_32 (output_bfd, ba, entry+4);
884 bfd_put_32 (output_bfd, nop, entry+8);
885 bfd_put_32 (output_bfd, nop, entry+12);
886 bfd_put_32 (output_bfd, nop, entry+16);
887 bfd_put_32 (output_bfd, nop, entry+20);
888 bfd_put_32 (output_bfd, nop, entry+24);
889 bfd_put_32 (output_bfd, nop, entry+28);
890 }
891
892 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
893 160: 160 entries and 160 pointers. This is to separate code from data,
894 which is much friendlier on the cache. */
895
896 for (; i < nentries; i += 160)
897 {
898 int block = (i + 160 <= nentries ? 160 : nentries - i);
899 for (j = 0; j < block; ++j)
900 {
901 unsigned char *entry, *ptr;
902 unsigned int ldx;
903
904 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
905 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
906
907 /* ldx [%o7 + ptr - entry+4], %g1 */
908 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
909
910 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
911 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
912 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
913 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
914 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
915 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
916
a11c78e7 917 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
252b5132
RH
918 }
919 }
920}
921
922/* Return the offset of a particular plt entry within the .plt section. */
923
924static bfd_vma
925sparc64_elf_plt_entry_offset (index)
926 int index;
927{
928 int block, ofs;
929
930 if (index < LARGE_PLT_THRESHOLD)
931 return index * PLT_ENTRY_SIZE;
932
933 /* See above for details. */
934
935 block = (index - LARGE_PLT_THRESHOLD) / 160;
936 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
937
938 return ((bfd_vma)(LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
939 + ofs * 6*4);
940}
941
942static bfd_vma
943sparc64_elf_plt_ptr_offset (index, max)
944 int index, max;
945{
946 int block, ofs, last;
947
948 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
949
950 /* See above for details. */
951
a11c78e7
RH
952 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
953 + LARGE_PLT_THRESHOLD;
954 ofs = index - block;
955 if (block + 160 > max)
956 last = (max - LARGE_PLT_THRESHOLD) % 160;
957 else
958 last = 160;
252b5132 959
a11c78e7 960 return (block * PLT_ENTRY_SIZE
252b5132
RH
961 + last * 6*4
962 + ofs * 8);
963}
964
965
966\f
967/* Look through the relocs for a section during the first phase, and
968 allocate space in the global offset table or procedure linkage
969 table. */
970
971static boolean
972sparc64_elf_check_relocs (abfd, info, sec, relocs)
973 bfd *abfd;
974 struct bfd_link_info *info;
975 asection *sec;
976 const Elf_Internal_Rela *relocs;
977{
978 bfd *dynobj;
979 Elf_Internal_Shdr *symtab_hdr;
980 struct elf_link_hash_entry **sym_hashes;
981 bfd_vma *local_got_offsets;
982 const Elf_Internal_Rela *rel;
983 const Elf_Internal_Rela *rel_end;
984 asection *sgot;
985 asection *srelgot;
986 asection *sreloc;
987
988 if (info->relocateable || !(sec->flags & SEC_ALLOC))
989 return true;
990
991 dynobj = elf_hash_table (info)->dynobj;
992 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
993 sym_hashes = elf_sym_hashes (abfd);
994 local_got_offsets = elf_local_got_offsets (abfd);
995
996 sgot = NULL;
997 srelgot = NULL;
998 sreloc = NULL;
999
1000 rel_end = relocs + sec->reloc_count;
1001 for (rel = relocs; rel < rel_end; rel++)
1002 {
1003 unsigned long r_symndx;
1004 struct elf_link_hash_entry *h;
1005
1006 r_symndx = ELF64_R_SYM (rel->r_info);
1007 if (r_symndx < symtab_hdr->sh_info)
1008 h = NULL;
1009 else
1010 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1011
f65054f7 1012 switch (ELF64_R_TYPE_ID (rel->r_info))
252b5132
RH
1013 {
1014 case R_SPARC_GOT10:
1015 case R_SPARC_GOT13:
1016 case R_SPARC_GOT22:
1017 /* This symbol requires a global offset table entry. */
1018
1019 if (dynobj == NULL)
1020 {
1021 /* Create the .got section. */
1022 elf_hash_table (info)->dynobj = dynobj = abfd;
1023 if (! _bfd_elf_create_got_section (dynobj, info))
1024 return false;
1025 }
1026
1027 if (sgot == NULL)
1028 {
1029 sgot = bfd_get_section_by_name (dynobj, ".got");
1030 BFD_ASSERT (sgot != NULL);
1031 }
1032
1033 if (srelgot == NULL && (h != NULL || info->shared))
1034 {
1035 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1036 if (srelgot == NULL)
1037 {
1038 srelgot = bfd_make_section (dynobj, ".rela.got");
1039 if (srelgot == NULL
1040 || ! bfd_set_section_flags (dynobj, srelgot,
1041 (SEC_ALLOC
1042 | SEC_LOAD
1043 | SEC_HAS_CONTENTS
1044 | SEC_IN_MEMORY
1045 | SEC_LINKER_CREATED
1046 | SEC_READONLY))
1047 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1048 return false;
1049 }
1050 }
1051
1052 if (h != NULL)
1053 {
1054 if (h->got.offset != (bfd_vma) -1)
1055 {
1056 /* We have already allocated space in the .got. */
1057 break;
1058 }
1059 h->got.offset = sgot->_raw_size;
1060
1061 /* Make sure this symbol is output as a dynamic symbol. */
1062 if (h->dynindx == -1)
1063 {
1064 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1065 return false;
1066 }
1067
1068 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1069 }
1070 else
1071 {
1072 /* This is a global offset table entry for a local
1073 symbol. */
1074 if (local_got_offsets == NULL)
1075 {
1076 size_t size;
1077 register unsigned int i;
1078
1079 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1080 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1081 if (local_got_offsets == NULL)
1082 return false;
1083 elf_local_got_offsets (abfd) = local_got_offsets;
1084 for (i = 0; i < symtab_hdr->sh_info; i++)
1085 local_got_offsets[i] = (bfd_vma) -1;
1086 }
1087 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1088 {
1089 /* We have already allocated space in the .got. */
1090 break;
1091 }
1092 local_got_offsets[r_symndx] = sgot->_raw_size;
1093
1094 if (info->shared)
1095 {
1096 /* If we are generating a shared object, we need to
1097 output a R_SPARC_RELATIVE reloc so that the
1098 dynamic linker can adjust this GOT entry. */
1099 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1100 }
1101 }
1102
1103 sgot->_raw_size += 8;
1104
1105#if 0
1106 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1107 unsigned numbers. If we permit ourselves to modify
1108 code so we get sethi/xor, this could work.
1109 Question: do we consider conditionally re-enabling
1110 this for -fpic, once we know about object code models? */
1111 /* If the .got section is more than 0x1000 bytes, we add
1112 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1113 bit relocations have a greater chance of working. */
1114 if (sgot->_raw_size >= 0x1000
1115 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1116 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1117#endif
1118
1119 break;
1120
1121 case R_SPARC_WPLT30:
1122 case R_SPARC_PLT32:
1123 case R_SPARC_HIPLT22:
1124 case R_SPARC_LOPLT10:
1125 case R_SPARC_PCPLT32:
1126 case R_SPARC_PCPLT22:
1127 case R_SPARC_PCPLT10:
1128 case R_SPARC_PLT64:
1129 /* This symbol requires a procedure linkage table entry. We
1130 actually build the entry in adjust_dynamic_symbol,
1131 because this might be a case of linking PIC code without
1132 linking in any dynamic objects, in which case we don't
1133 need to generate a procedure linkage table after all. */
1134
1135 if (h == NULL)
1136 {
1137 /* It does not make sense to have a procedure linkage
1138 table entry for a local symbol. */
1139 bfd_set_error (bfd_error_bad_value);
1140 return false;
1141 }
1142
1143 /* Make sure this symbol is output as a dynamic symbol. */
1144 if (h->dynindx == -1)
1145 {
1146 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1147 return false;
1148 }
1149
1150 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1151 break;
1152
1153 case R_SPARC_PC10:
1154 case R_SPARC_PC22:
1155 case R_SPARC_PC_HH22:
1156 case R_SPARC_PC_HM10:
1157 case R_SPARC_PC_LM22:
1158 if (h != NULL
1159 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1160 break;
1161 /* Fall through. */
1162 case R_SPARC_DISP8:
1163 case R_SPARC_DISP16:
1164 case R_SPARC_DISP32:
1165 case R_SPARC_DISP64:
1166 case R_SPARC_WDISP30:
1167 case R_SPARC_WDISP22:
1168 case R_SPARC_WDISP19:
1169 case R_SPARC_WDISP16:
1170 if (h == NULL)
1171 break;
1172 /* Fall through. */
1173 case R_SPARC_8:
1174 case R_SPARC_16:
1175 case R_SPARC_32:
1176 case R_SPARC_HI22:
1177 case R_SPARC_22:
1178 case R_SPARC_13:
1179 case R_SPARC_LO10:
1180 case R_SPARC_UA32:
1181 case R_SPARC_10:
1182 case R_SPARC_11:
1183 case R_SPARC_64:
1184 case R_SPARC_OLO10:
1185 case R_SPARC_HH22:
1186 case R_SPARC_HM10:
1187 case R_SPARC_LM22:
1188 case R_SPARC_7:
1189 case R_SPARC_5:
1190 case R_SPARC_6:
1191 case R_SPARC_HIX22:
1192 case R_SPARC_LOX10:
1193 case R_SPARC_H44:
1194 case R_SPARC_M44:
1195 case R_SPARC_L44:
1196 case R_SPARC_UA64:
1197 case R_SPARC_UA16:
1198 /* When creating a shared object, we must copy these relocs
1199 into the output file. We create a reloc section in
1200 dynobj and make room for the reloc.
1201
1202 But don't do this for debugging sections -- this shows up
1203 with DWARF2 -- first because they are not loaded, and
1204 second because DWARF sez the debug info is not to be
1205 biased by the load address. */
1206 if (info->shared && (sec->flags & SEC_ALLOC))
1207 {
1208 if (sreloc == NULL)
1209 {
1210 const char *name;
1211
1212 name = (bfd_elf_string_from_elf_section
1213 (abfd,
1214 elf_elfheader (abfd)->e_shstrndx,
1215 elf_section_data (sec)->rel_hdr.sh_name));
1216 if (name == NULL)
1217 return false;
1218
1219 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1220 && strcmp (bfd_get_section_name (abfd, sec),
1221 name + 5) == 0);
1222
1223 sreloc = bfd_get_section_by_name (dynobj, name);
1224 if (sreloc == NULL)
1225 {
1226 flagword flags;
1227
1228 sreloc = bfd_make_section (dynobj, name);
1229 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1230 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1231 if ((sec->flags & SEC_ALLOC) != 0)
1232 flags |= SEC_ALLOC | SEC_LOAD;
1233 if (sreloc == NULL
1234 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1235 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1236 return false;
1237 }
1238 }
1239
1240 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1241 }
1242 break;
1243
1244 case R_SPARC_REGISTER:
1245 /* Nothing to do. */
1246 break;
1247
1248 default:
1249 (*_bfd_error_handler)(_("%s: check_relocs: unhandled reloc type %d"),
1250 bfd_get_filename(abfd),
f65054f7 1251 ELF64_R_TYPE_ID (rel->r_info));
252b5132
RH
1252 return false;
1253 }
1254 }
1255
1256 return true;
1257}
1258
587ff49e
RH
1259/* Hook called by the linker routine which adds symbols from an object
1260 file. We use it for STT_REGISTER symbols. */
1261
1262static boolean
1263sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1264 bfd *abfd;
1265 struct bfd_link_info *info;
1266 const Elf_Internal_Sym *sym;
1267 const char **namep;
1268 flagword *flagsp;
1269 asection **secp;
1270 bfd_vma *valp;
1271{
1272 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1273
1274 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1275 {
1276 int reg;
1277 struct sparc64_elf_app_reg *p;
1278
1279 reg = (int)sym->st_value;
1280 switch (reg & ~1)
1281 {
1282 case 2: reg -= 2; break;
1283 case 6: reg -= 4; break;
1284 default:
1285 (*_bfd_error_handler)
1286 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1287 bfd_get_filename (abfd));
1288 return false;
1289 }
1290
1291 if (info->hash->creator != abfd->xvec
1292 || (abfd->flags & DYNAMIC) != 0)
1293 {
1294 /* STT_REGISTER only works when linking an elf64_sparc object.
1295 If STT_REGISTER comes from a dynamic object, don't put it into
1296 the output bfd. The dynamic linker will recheck it. */
1297 *namep = NULL;
1298 return true;
1299 }
1300
1301 p = sparc64_elf_hash_table(info)->app_regs + reg;
1302
1303 if (p->name != NULL && strcmp (p->name, *namep))
1304 {
1305 (*_bfd_error_handler)
1306 (_("Register %%g%d used incompatibly: "
1307 "previously declared in %s to %s, in %s redefined to %s"),
1308 (int)sym->st_value,
1309 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1310 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1311 return false;
1312 }
1313
1314 if (p->name == NULL)
1315 {
1316 if (**namep)
1317 {
1318 struct elf_link_hash_entry *h;
1319
1320 h = (struct elf_link_hash_entry *)
1321 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1322
1323 if (h != NULL)
1324 {
1325 unsigned char type = h->type;
1326
1327 if (type > STT_FUNC) type = 0;
1328 (*_bfd_error_handler)
1329 (_("Symbol `%s' has differing types: "
1330 "previously %s, REGISTER in %s"),
1331 *namep, stt_types [type], bfd_get_filename (abfd));
1332 return false;
1333 }
1334
1335 p->name = bfd_hash_allocate (&info->hash->table,
1336 strlen (*namep) + 1);
1337 if (!p->name)
1338 return false;
1339
1340 strcpy (p->name, *namep);
1341 }
1342 else
1343 p->name = "";
1344 p->bind = ELF_ST_BIND (sym->st_info);
1345 p->abfd = abfd;
1346 p->shndx = sym->st_shndx;
1347 }
1348 else
1349 {
1350 if (p->bind == STB_WEAK
1351 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1352 {
1353 p->bind = STB_GLOBAL;
1354 p->abfd = abfd;
1355 }
1356 }
1357 *namep = NULL;
1358 return true;
1359 }
1360 else if (! *namep || ! **namep)
1361 return true;
1362 else
1363 {
1364 int i;
1365 struct sparc64_elf_app_reg *p;
1366
1367 p = sparc64_elf_hash_table(info)->app_regs;
1368 for (i = 0; i < 4; i++, p++)
1369 if (p->name != NULL && ! strcmp (p->name, *namep))
1370 {
1371 unsigned char type = ELF_ST_TYPE (sym->st_info);
1372
1373 if (type > STT_FUNC) type = 0;
1374 (*_bfd_error_handler)
1375 (_("Symbol `%s' has differing types: "
1376 "REGISTER in %s, %s in %s"),
1377 *namep, bfd_get_filename (p->abfd), stt_types [type],
1378 bfd_get_filename (abfd));
1379 return false;
1380 }
1381 }
1382 return true;
1383}
1384
1385/* This function takes care of emiting STT_REGISTER symbols
1386 which we cannot easily keep in the symbol hash table. */
1387
1388static boolean
1389sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1390 bfd *output_bfd;
1391 struct bfd_link_info *info;
1392 PTR finfo;
1393 boolean (*func) PARAMS ((PTR, const char *,
1394 Elf_Internal_Sym *, asection *));
1395{
1396 int reg;
1397 struct sparc64_elf_app_reg *app_regs =
1398 sparc64_elf_hash_table(info)->app_regs;
1399 Elf_Internal_Sym sym;
1400
1401 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1402 at the end of the dynlocal list, so they came at the end of the local
1403 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1404 to back up symtab->sh_info. */
1405 if (elf_hash_table (info)->dynlocal)
1406 {
1fa0ddb3
RH
1407 bfd * dynobj = elf_hash_table (info)->dynobj;
1408 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
587ff49e
RH
1409 struct elf_link_local_dynamic_entry *e;
1410
1411 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1412 if (e->input_indx == -1)
1413 break;
1414 if (e)
1415 {
1416 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1417 = e->dynindx;
1418 }
1419 }
1420
1421 if (info->strip == strip_all)
1422 return true;
1423
1424 for (reg = 0; reg < 4; reg++)
1425 if (app_regs [reg].name != NULL)
1426 {
1427 if (info->strip == strip_some
1428 && bfd_hash_lookup (info->keep_hash,
1429 app_regs [reg].name,
1430 false, false) == NULL)
1431 continue;
1432
1433 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1434 sym.st_size = 0;
1435 sym.st_other = 0;
1436 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1437 sym.st_shndx = app_regs [reg].shndx;
1438 if (! (*func) (finfo, app_regs [reg].name, &sym,
1439 sym.st_shndx == SHN_ABS
1440 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1441 return false;
1442 }
1443
1444 return true;
1445}
1446
1447static int
1448sparc64_elf_get_symbol_type (elf_sym, type)
1449 Elf_Internal_Sym * elf_sym;
1450 int type;
1451{
1452 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1453 return STT_REGISTER;
1454 else
1455 return type;
1456}
1457
1458/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1459 even in SHN_UNDEF section. */
1460
1461static void
1462sparc64_elf_symbol_processing (abfd, asym)
1463 bfd *abfd;
1464 asymbol *asym;
1465{
1466 elf_symbol_type *elfsym;
1467
1468 elfsym = (elf_symbol_type *) asym;
1469 if (elfsym->internal_elf_sym.st_info
1470 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1471 {
1472 asym->flags |= BSF_GLOBAL;
1473 }
1474}
1475
252b5132
RH
1476/* Adjust a symbol defined by a dynamic object and referenced by a
1477 regular object. The current definition is in some section of the
1478 dynamic object, but we're not including those sections. We have to
1479 change the definition to something the rest of the link can
1480 understand. */
1481
1482static boolean
1483sparc64_elf_adjust_dynamic_symbol (info, h)
1484 struct bfd_link_info *info;
1485 struct elf_link_hash_entry *h;
1486{
1487 bfd *dynobj;
1488 asection *s;
1489 unsigned int power_of_two;
1490
1491 dynobj = elf_hash_table (info)->dynobj;
1492
1493 /* Make sure we know what is going on here. */
1494 BFD_ASSERT (dynobj != NULL
1495 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1496 || h->weakdef != NULL
1497 || ((h->elf_link_hash_flags
1498 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1499 && (h->elf_link_hash_flags
1500 & ELF_LINK_HASH_REF_REGULAR) != 0
1501 && (h->elf_link_hash_flags
1502 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1503
1504 /* If this is a function, put it in the procedure linkage table. We
1505 will fill in the contents of the procedure linkage table later
1506 (although we could actually do it here). The STT_NOTYPE
1507 condition is a hack specifically for the Oracle libraries
1508 delivered for Solaris; for some inexplicable reason, they define
1509 some of their functions as STT_NOTYPE when they really should be
1510 STT_FUNC. */
1511 if (h->type == STT_FUNC
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1513 || (h->type == STT_NOTYPE
1514 && (h->root.type == bfd_link_hash_defined
1515 || h->root.type == bfd_link_hash_defweak)
1516 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1517 {
1518 if (! elf_hash_table (info)->dynamic_sections_created)
1519 {
1520 /* This case can occur if we saw a WPLT30 reloc in an input
1521 file, but none of the input files were dynamic objects.
1522 In such a case, we don't actually need to build a
1523 procedure linkage table, and we can just do a WDISP30
1524 reloc instead. */
1525 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1526 return true;
1527 }
1528
1529 s = bfd_get_section_by_name (dynobj, ".plt");
1530 BFD_ASSERT (s != NULL);
1531
1532 /* The first four bit in .plt is reserved. */
1533 if (s->_raw_size == 0)
1534 s->_raw_size = PLT_HEADER_SIZE;
1535
1536 /* If this symbol is not defined in a regular file, and we are
1537 not generating a shared library, then set the symbol to this
1538 location in the .plt. This is required to make function
1539 pointers compare as equal between the normal executable and
1540 the shared library. */
1541 if (! info->shared
1542 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1543 {
1544 h->root.u.def.section = s;
1545 h->root.u.def.value = s->_raw_size;
1546 }
1547
1548 /* To simplify matters later, just store the plt index here. */
1549 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1550
1551 /* Make room for this entry. */
1552 s->_raw_size += PLT_ENTRY_SIZE;
1553
1554 /* We also need to make an entry in the .rela.plt section. */
1555
1556 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1557 BFD_ASSERT (s != NULL);
1558
1559 /* The first plt entries are reserved, and the relocations must
1560 pair up exactly. */
1561 if (s->_raw_size == 0)
1562 s->_raw_size += (PLT_HEADER_SIZE/PLT_ENTRY_SIZE
1563 * sizeof (Elf64_External_Rela));
1564
1565 s->_raw_size += sizeof (Elf64_External_Rela);
1566
1567 /* The procedure linkage table size is bounded by the magnitude
1568 of the offset we can describe in the entry. */
1569 if (s->_raw_size >= (bfd_vma)1 << 32)
1570 {
1571 bfd_set_error (bfd_error_bad_value);
1572 return false;
1573 }
1574
1575 return true;
1576 }
1577
1578 /* If this is a weak symbol, and there is a real definition, the
1579 processor independent code will have arranged for us to see the
1580 real definition first, and we can just use the same value. */
1581 if (h->weakdef != NULL)
1582 {
1583 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1584 || h->weakdef->root.type == bfd_link_hash_defweak);
1585 h->root.u.def.section = h->weakdef->root.u.def.section;
1586 h->root.u.def.value = h->weakdef->root.u.def.value;
1587 return true;
1588 }
1589
1590 /* This is a reference to a symbol defined by a dynamic object which
1591 is not a function. */
1592
1593 /* If we are creating a shared library, we must presume that the
1594 only references to the symbol are via the global offset table.
1595 For such cases we need not do anything here; the relocations will
1596 be handled correctly by relocate_section. */
1597 if (info->shared)
1598 return true;
1599
1600 /* We must allocate the symbol in our .dynbss section, which will
1601 become part of the .bss section of the executable. There will be
1602 an entry for this symbol in the .dynsym section. The dynamic
1603 object will contain position independent code, so all references
1604 from the dynamic object to this symbol will go through the global
1605 offset table. The dynamic linker will use the .dynsym entry to
1606 determine the address it must put in the global offset table, so
1607 both the dynamic object and the regular object will refer to the
1608 same memory location for the variable. */
1609
1610 s = bfd_get_section_by_name (dynobj, ".dynbss");
1611 BFD_ASSERT (s != NULL);
1612
1613 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1614 to copy the initial value out of the dynamic object and into the
1615 runtime process image. We need to remember the offset into the
1616 .rel.bss section we are going to use. */
1617 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1618 {
1619 asection *srel;
1620
1621 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1622 BFD_ASSERT (srel != NULL);
1623 srel->_raw_size += sizeof (Elf64_External_Rela);
1624 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1625 }
1626
1627 /* We need to figure out the alignment required for this symbol. I
1628 have no idea how ELF linkers handle this. 16-bytes is the size
1629 of the largest type that requires hard alignment -- long double. */
1630 power_of_two = bfd_log2 (h->size);
1631 if (power_of_two > 4)
1632 power_of_two = 4;
1633
1634 /* Apply the required alignment. */
1635 s->_raw_size = BFD_ALIGN (s->_raw_size,
1636 (bfd_size_type) (1 << power_of_two));
1637 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1638 {
1639 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1640 return false;
1641 }
1642
1643 /* Define the symbol as being at this point in the section. */
1644 h->root.u.def.section = s;
1645 h->root.u.def.value = s->_raw_size;
1646
1647 /* Increment the section size to make room for the symbol. */
1648 s->_raw_size += h->size;
1649
1650 return true;
1651}
1652
1653/* Set the sizes of the dynamic sections. */
1654
1655static boolean
1656sparc64_elf_size_dynamic_sections (output_bfd, info)
1657 bfd *output_bfd;
1658 struct bfd_link_info *info;
1659{
1660 bfd *dynobj;
1661 asection *s;
1662 boolean reltext;
1663 boolean relplt;
1664
1665 dynobj = elf_hash_table (info)->dynobj;
1666 BFD_ASSERT (dynobj != NULL);
1667
1668 if (elf_hash_table (info)->dynamic_sections_created)
1669 {
1670 /* Set the contents of the .interp section to the interpreter. */
1671 if (! info->shared)
1672 {
1673 s = bfd_get_section_by_name (dynobj, ".interp");
1674 BFD_ASSERT (s != NULL);
1675 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1676 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1677 }
1678 }
1679 else
1680 {
1681 /* We may have created entries in the .rela.got section.
1682 However, if we are not creating the dynamic sections, we will
1683 not actually use these entries. Reset the size of .rela.got,
1684 which will cause it to get stripped from the output file
1685 below. */
1686 s = bfd_get_section_by_name (dynobj, ".rela.got");
1687 if (s != NULL)
1688 s->_raw_size = 0;
1689 }
1690
1691 /* The check_relocs and adjust_dynamic_symbol entry points have
1692 determined the sizes of the various dynamic sections. Allocate
1693 memory for them. */
1694 reltext = false;
1695 relplt = false;
1696 for (s = dynobj->sections; s != NULL; s = s->next)
1697 {
1698 const char *name;
1699 boolean strip;
1700
1701 if ((s->flags & SEC_LINKER_CREATED) == 0)
1702 continue;
1703
1704 /* It's OK to base decisions on the section name, because none
1705 of the dynobj section names depend upon the input files. */
1706 name = bfd_get_section_name (dynobj, s);
1707
1708 strip = false;
1709
1710 if (strncmp (name, ".rela", 5) == 0)
1711 {
1712 if (s->_raw_size == 0)
1713 {
1714 /* If we don't need this section, strip it from the
1715 output file. This is to handle .rela.bss and
1716 .rel.plt. We must create it in
1717 create_dynamic_sections, because it must be created
1718 before the linker maps input sections to output
1719 sections. The linker does that before
1720 adjust_dynamic_symbol is called, and it is that
1721 function which decides whether anything needs to go
1722 into these sections. */
1723 strip = true;
1724 }
1725 else
1726 {
1727 const char *outname;
1728 asection *target;
1729
1730 /* If this relocation section applies to a read only
1731 section, then we probably need a DT_TEXTREL entry. */
1732 outname = bfd_get_section_name (output_bfd,
1733 s->output_section);
1734 target = bfd_get_section_by_name (output_bfd, outname + 5);
1735 if (target != NULL
1736 && (target->flags & SEC_READONLY) != 0)
1737 reltext = true;
1738
1739 if (strcmp (name, ".rela.plt") == 0)
1740 relplt = true;
1741
1742 /* We use the reloc_count field as a counter if we need
1743 to copy relocs into the output file. */
1744 s->reloc_count = 0;
1745 }
1746 }
1747 else if (strcmp (name, ".plt") != 0
1748 && strncmp (name, ".got", 4) != 0)
1749 {
1750 /* It's not one of our sections, so don't allocate space. */
1751 continue;
1752 }
1753
1754 if (strip)
1755 {
7f8d5fc9 1756 _bfd_strip_section_from_output (info, s);
252b5132
RH
1757 continue;
1758 }
1759
1760 /* Allocate memory for the section contents. Zero the memory
1761 for the benefit of .rela.plt, which has 4 unused entries
1762 at the beginning, and we don't want garbage. */
1763 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1764 if (s->contents == NULL && s->_raw_size != 0)
1765 return false;
1766 }
1767
1768 if (elf_hash_table (info)->dynamic_sections_created)
1769 {
1770 /* Add some entries to the .dynamic section. We fill in the
1771 values later, in sparc64_elf_finish_dynamic_sections, but we
1772 must add the entries now so that we get the correct size for
1773 the .dynamic section. The DT_DEBUG entry is filled in by the
1774 dynamic linker and used by the debugger. */
587ff49e
RH
1775 int reg;
1776 struct sparc64_elf_app_reg * app_regs;
1777 struct bfd_strtab_hash *dynstr;
1778 struct elf_link_hash_table *eht = elf_hash_table (info);
1779
252b5132
RH
1780 if (! info->shared)
1781 {
1782 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1783 return false;
1784 }
1785
1786 if (relplt)
1787 {
1788 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1789 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
d6bcbdc1 1791 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
252b5132
RH
1792 return false;
1793 }
1794
1795 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1796 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1797 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1798 sizeof (Elf64_External_Rela)))
1799 return false;
1800
1801 if (reltext)
1802 {
1803 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1804 return false;
1805 }
587ff49e
RH
1806
1807 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1808 entries if needed. */
1809 app_regs = sparc64_elf_hash_table (info)->app_regs;
1810 dynstr = eht->dynstr;
1811
1812 for (reg = 0; reg < 4; reg++)
1813 if (app_regs [reg].name != NULL)
1814 {
1815 struct elf_link_local_dynamic_entry *entry, *e;
1816
1817 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1818 return false;
1819
1820 entry = (struct elf_link_local_dynamic_entry *)
1821 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1822 if (entry == NULL)
1823 return false;
1824
1825 /* We cheat here a little bit: the symbol will not be local, so we
1826 put it at the end of the dynlocal linked list. We will fix it
1827 later on, as we have to fix other fields anyway. */
1828 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1829 entry->isym.st_size = 0;
1830 if (*app_regs [reg].name != '\0')
1831 entry->isym.st_name
1832 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1833 else
1834 entry->isym.st_name = 0;
1835 entry->isym.st_other = 0;
1836 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1837 STT_REGISTER);
1838 entry->isym.st_shndx = app_regs [reg].shndx;
1839 entry->next = NULL;
1840 entry->input_bfd = output_bfd;
1841 entry->input_indx = -1;
1842
1843 if (eht->dynlocal == NULL)
1844 eht->dynlocal = entry;
1845 else
1846 {
1847 for (e = eht->dynlocal; e->next; e = e->next)
1848 ;
1849 e->next = entry;
1850 }
1851 eht->dynsymcount++;
1852 }
252b5132
RH
1853 }
1854
252b5132
RH
1855 return true;
1856}
252b5132
RH
1857\f
1858/* Relocate a SPARC64 ELF section. */
1859
1860static boolean
1861sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1862 contents, relocs, local_syms, local_sections)
1863 bfd *output_bfd;
1864 struct bfd_link_info *info;
1865 bfd *input_bfd;
1866 asection *input_section;
1867 bfd_byte *contents;
1868 Elf_Internal_Rela *relocs;
1869 Elf_Internal_Sym *local_syms;
1870 asection **local_sections;
1871{
1872 bfd *dynobj;
1873 Elf_Internal_Shdr *symtab_hdr;
1874 struct elf_link_hash_entry **sym_hashes;
1875 bfd_vma *local_got_offsets;
1876 bfd_vma got_base;
1877 asection *sgot;
1878 asection *splt;
1879 asection *sreloc;
1880 Elf_Internal_Rela *rel;
1881 Elf_Internal_Rela *relend;
1882
1883 dynobj = elf_hash_table (info)->dynobj;
1884 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1885 sym_hashes = elf_sym_hashes (input_bfd);
1886 local_got_offsets = elf_local_got_offsets (input_bfd);
1887
1888 if (elf_hash_table(info)->hgot == NULL)
1889 got_base = 0;
1890 else
1891 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1892
1893 sgot = splt = sreloc = NULL;
1894
1895 rel = relocs;
1896 relend = relocs + input_section->reloc_count;
1897 for (; rel < relend; rel++)
1898 {
1899 int r_type;
1900 reloc_howto_type *howto;
1901 long r_symndx;
1902 struct elf_link_hash_entry *h;
1903 Elf_Internal_Sym *sym;
1904 asection *sec;
1905 bfd_vma relocation;
1906 bfd_reloc_status_type r;
1907
f65054f7 1908 r_type = ELF64_R_TYPE_ID (rel->r_info);
60dac299 1909 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
252b5132
RH
1910 {
1911 bfd_set_error (bfd_error_bad_value);
1912 return false;
1913 }
1914 howto = sparc64_elf_howto_table + r_type;
1915
1916 r_symndx = ELF64_R_SYM (rel->r_info);
1917
1918 if (info->relocateable)
1919 {
1920 /* This is a relocateable link. We don't have to change
1921 anything, unless the reloc is against a section symbol,
1922 in which case we have to adjust according to where the
1923 section symbol winds up in the output section. */
1924 if (r_symndx < symtab_hdr->sh_info)
1925 {
1926 sym = local_syms + r_symndx;
1927 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1928 {
1929 sec = local_sections[r_symndx];
1930 rel->r_addend += sec->output_offset + sym->st_value;
1931 }
1932 }
1933
1934 continue;
1935 }
1936
1937 /* This is a final link. */
1938 h = NULL;
1939 sym = NULL;
1940 sec = NULL;
1941 if (r_symndx < symtab_hdr->sh_info)
1942 {
1943 sym = local_syms + r_symndx;
1944 sec = local_sections[r_symndx];
1945 relocation = (sec->output_section->vma
1946 + sec->output_offset
1947 + sym->st_value);
1948 }
1949 else
1950 {
1951 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1952 while (h->root.type == bfd_link_hash_indirect
1953 || h->root.type == bfd_link_hash_warning)
1954 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1955 if (h->root.type == bfd_link_hash_defined
1956 || h->root.type == bfd_link_hash_defweak)
1957 {
1958 boolean skip_it = false;
1959 sec = h->root.u.def.section;
1960
1961 switch (r_type)
1962 {
1963 case R_SPARC_WPLT30:
1964 case R_SPARC_PLT32:
1965 case R_SPARC_HIPLT22:
1966 case R_SPARC_LOPLT10:
1967 case R_SPARC_PCPLT32:
1968 case R_SPARC_PCPLT22:
1969 case R_SPARC_PCPLT10:
1970 case R_SPARC_PLT64:
1971 if (h->plt.offset != (bfd_vma) -1)
1972 skip_it = true;
1973 break;
1974
1975 case R_SPARC_GOT10:
1976 case R_SPARC_GOT13:
1977 case R_SPARC_GOT22:
1978 if (elf_hash_table(info)->dynamic_sections_created
1979 && (!info->shared
1980 || (!info->symbolic && h->dynindx != -1)
1981 || !(h->elf_link_hash_flags
1982 & ELF_LINK_HASH_DEF_REGULAR)))
1983 skip_it = true;
1984 break;
1985
1986 case R_SPARC_PC10:
1987 case R_SPARC_PC22:
1988 case R_SPARC_PC_HH22:
1989 case R_SPARC_PC_HM10:
1990 case R_SPARC_PC_LM22:
1991 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
1992 break;
1993 /* FALLTHRU */
1994
1995 case R_SPARC_8:
1996 case R_SPARC_16:
1997 case R_SPARC_32:
1998 case R_SPARC_DISP8:
1999 case R_SPARC_DISP16:
2000 case R_SPARC_DISP32:
2001 case R_SPARC_WDISP30:
2002 case R_SPARC_WDISP22:
2003 case R_SPARC_HI22:
2004 case R_SPARC_22:
2005 case R_SPARC_13:
2006 case R_SPARC_LO10:
2007 case R_SPARC_UA32:
2008 case R_SPARC_10:
2009 case R_SPARC_11:
2010 case R_SPARC_64:
2011 case R_SPARC_OLO10:
2012 case R_SPARC_HH22:
2013 case R_SPARC_HM10:
2014 case R_SPARC_LM22:
2015 case R_SPARC_WDISP19:
2016 case R_SPARC_WDISP16:
2017 case R_SPARC_7:
2018 case R_SPARC_5:
2019 case R_SPARC_6:
2020 case R_SPARC_DISP64:
2021 case R_SPARC_HIX22:
2022 case R_SPARC_LOX10:
2023 case R_SPARC_H44:
2024 case R_SPARC_M44:
2025 case R_SPARC_L44:
2026 case R_SPARC_UA64:
2027 case R_SPARC_UA16:
2028 if (info->shared
2029 && ((!info->symbolic && h->dynindx != -1)
2030 || !(h->elf_link_hash_flags
2031 & ELF_LINK_HASH_DEF_REGULAR)))
2032 skip_it = true;
2033 break;
2034 }
2035
2036 if (skip_it)
2037 {
2038 /* In these cases, we don't need the relocation
2039 value. We check specially because in some
2040 obscure cases sec->output_section will be NULL. */
2041 relocation = 0;
2042 }
2043 else
2044 {
2045 relocation = (h->root.u.def.value
2046 + sec->output_section->vma
2047 + sec->output_offset);
2048 }
2049 }
2050 else if (h->root.type == bfd_link_hash_undefweak)
2051 relocation = 0;
2052 else if (info->shared && !info->symbolic && !info->no_undefined)
2053 relocation = 0;
2054 else
2055 {
2056 if (! ((*info->callbacks->undefined_symbol)
2057 (info, h->root.root.string, input_bfd,
5cc7c785
L
2058 input_section, rel->r_offset,
2059 (!info->shared || info->no_undefined))))
252b5132
RH
2060 return false;
2061 relocation = 0;
2062 }
2063 }
2064
2065 /* When generating a shared object, these relocations are copied
2066 into the output file to be resolved at run time. */
2067 if (info->shared && (input_section->flags & SEC_ALLOC))
2068 {
2069 switch (r_type)
2070 {
2071 case R_SPARC_PC10:
2072 case R_SPARC_PC22:
2073 case R_SPARC_PC_HH22:
2074 case R_SPARC_PC_HM10:
2075 case R_SPARC_PC_LM22:
2076 if (h != NULL
2077 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2078 break;
2079 /* Fall through. */
2080 case R_SPARC_DISP8:
2081 case R_SPARC_DISP16:
2082 case R_SPARC_DISP32:
2083 case R_SPARC_WDISP30:
2084 case R_SPARC_WDISP22:
2085 case R_SPARC_WDISP19:
2086 case R_SPARC_WDISP16:
2087 case R_SPARC_DISP64:
2088 if (h == NULL)
2089 break;
2090 /* Fall through. */
2091 case R_SPARC_8:
2092 case R_SPARC_16:
2093 case R_SPARC_32:
2094 case R_SPARC_HI22:
2095 case R_SPARC_22:
2096 case R_SPARC_13:
2097 case R_SPARC_LO10:
2098 case R_SPARC_UA32:
2099 case R_SPARC_10:
2100 case R_SPARC_11:
2101 case R_SPARC_64:
2102 case R_SPARC_OLO10:
2103 case R_SPARC_HH22:
2104 case R_SPARC_HM10:
2105 case R_SPARC_LM22:
2106 case R_SPARC_7:
2107 case R_SPARC_5:
2108 case R_SPARC_6:
2109 case R_SPARC_HIX22:
2110 case R_SPARC_LOX10:
2111 case R_SPARC_H44:
2112 case R_SPARC_M44:
2113 case R_SPARC_L44:
2114 case R_SPARC_UA64:
2115 case R_SPARC_UA16:
2116 {
2117 Elf_Internal_Rela outrel;
2118 boolean skip;
2119
2120 if (sreloc == NULL)
2121 {
2122 const char *name =
2123 (bfd_elf_string_from_elf_section
2124 (input_bfd,
2125 elf_elfheader (input_bfd)->e_shstrndx,
2126 elf_section_data (input_section)->rel_hdr.sh_name));
2127
2128 if (name == NULL)
2129 return false;
2130
2131 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2132 && strcmp (bfd_get_section_name(input_bfd,
2133 input_section),
2134 name + 5) == 0);
2135
2136 sreloc = bfd_get_section_by_name (dynobj, name);
2137 BFD_ASSERT (sreloc != NULL);
2138 }
2139
2140 skip = false;
2141
2142 if (elf_section_data (input_section)->stab_info == NULL)
2143 outrel.r_offset = rel->r_offset;
2144 else
2145 {
2146 bfd_vma off;
2147
2148 off = (_bfd_stab_section_offset
2149 (output_bfd, &elf_hash_table (info)->stab_info,
2150 input_section,
2151 &elf_section_data (input_section)->stab_info,
2152 rel->r_offset));
2153 if (off == MINUS_ONE)
2154 skip = true;
2155 outrel.r_offset = off;
2156 }
2157
2158 outrel.r_offset += (input_section->output_section->vma
2159 + input_section->output_offset);
2160
2161 /* Optimize unaligned reloc usage now that we know where
2162 it finally resides. */
2163 switch (r_type)
2164 {
2165 case R_SPARC_16:
2166 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2167 break;
2168 case R_SPARC_UA16:
2169 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2170 break;
2171 case R_SPARC_32:
2172 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2173 break;
2174 case R_SPARC_UA32:
2175 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2176 break;
2177 case R_SPARC_64:
2178 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2179 break;
2180 case R_SPARC_UA64:
2181 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2182 break;
2183 }
2184
2185 if (skip)
2186 memset (&outrel, 0, sizeof outrel);
2187 /* h->dynindx may be -1 if the symbol was marked to
2188 become local. */
2189 else if (h != NULL
2190 && ((! info->symbolic && h->dynindx != -1)
2191 || (h->elf_link_hash_flags
2192 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2193 {
2194 BFD_ASSERT (h->dynindx != -1);
f65054f7
RH
2195 outrel.r_info
2196 = ELF64_R_INFO (h->dynindx,
2197 ELF64_R_TYPE_INFO (
2198 ELF64_R_TYPE_DATA (rel->r_info),
2199 r_type));
252b5132
RH
2200 outrel.r_addend = rel->r_addend;
2201 }
2202 else
2203 {
2204 if (r_type == R_SPARC_64)
2205 {
2206 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2207 outrel.r_addend = relocation + rel->r_addend;
2208 }
2209 else
2210 {
2211 long indx;
2212
2213 if (h == NULL)
2214 sec = local_sections[r_symndx];
2215 else
2216 {
2217 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2218 || (h->root.type
2219 == bfd_link_hash_defweak));
2220 sec = h->root.u.def.section;
2221 }
2222 if (sec != NULL && bfd_is_abs_section (sec))
2223 indx = 0;
2224 else if (sec == NULL || sec->owner == NULL)
2225 {
2226 bfd_set_error (bfd_error_bad_value);
2227 return false;
2228 }
2229 else
2230 {
2231 asection *osec;
2232
2233 osec = sec->output_section;
2234 indx = elf_section_data (osec)->dynindx;
2235
2236 /* FIXME: we really should be able to link non-pic
2237 shared libraries. */
2238 if (indx == 0)
2239 {
2240 BFD_FAIL ();
2241 (*_bfd_error_handler)
2242 (_("%s: probably compiled without -fPIC?"),
2243 bfd_get_filename (input_bfd));
2244 bfd_set_error (bfd_error_bad_value);
2245 return false;
2246 }
2247 }
2248
f65054f7
RH
2249 outrel.r_info
2250 = ELF64_R_INFO (indx,
2251 ELF64_R_TYPE_INFO (
2252 ELF64_R_TYPE_DATA (rel->r_info),
2253 r_type));
840a9995 2254 outrel.r_addend = relocation + rel->r_addend;
252b5132
RH
2255 }
2256 }
2257
2258 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2259 (((Elf64_External_Rela *)
2260 sreloc->contents)
2261 + sreloc->reloc_count));
2262 ++sreloc->reloc_count;
2263
2264 /* This reloc will be computed at runtime, so there's no
2265 need to do anything now, unless this is a RELATIVE
2266 reloc in an unallocated section. */
2267 if (skip
2268 || (input_section->flags & SEC_ALLOC) != 0
f65054f7 2269 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
252b5132
RH
2270 continue;
2271 }
2272 break;
2273 }
2274 }
2275
2276 switch (r_type)
2277 {
2278 case R_SPARC_GOT10:
2279 case R_SPARC_GOT13:
2280 case R_SPARC_GOT22:
2281 /* Relocation is to the entry for this symbol in the global
2282 offset table. */
2283 if (sgot == NULL)
2284 {
2285 sgot = bfd_get_section_by_name (dynobj, ".got");
2286 BFD_ASSERT (sgot != NULL);
2287 }
2288
2289 if (h != NULL)
2290 {
2291 bfd_vma off = h->got.offset;
2292 BFD_ASSERT (off != (bfd_vma) -1);
2293
2294 if (! elf_hash_table (info)->dynamic_sections_created
2295 || (info->shared
2296 && (info->symbolic || h->dynindx == -1)
2297 && (h->elf_link_hash_flags
2298 & ELF_LINK_HASH_DEF_REGULAR)))
2299 {
2300 /* This is actually a static link, or it is a -Bsymbolic
2301 link and the symbol is defined locally, or the symbol
2302 was forced to be local because of a version file. We
2303 must initialize this entry in the global offset table.
2304 Since the offset must always be a multiple of 8, we
2305 use the least significant bit to record whether we
2306 have initialized it already.
2307
2308 When doing a dynamic link, we create a .rela.got
2309 relocation entry to initialize the value. This is
2310 done in the finish_dynamic_symbol routine. */
2311
2312 if ((off & 1) != 0)
2313 off &= ~1;
2314 else
2315 {
2316 bfd_put_64 (output_bfd, relocation,
2317 sgot->contents + off);
2318 h->got.offset |= 1;
2319 }
2320 }
2321 relocation = sgot->output_offset + off - got_base;
2322 }
2323 else
2324 {
2325 bfd_vma off;
2326
2327 BFD_ASSERT (local_got_offsets != NULL);
2328 off = local_got_offsets[r_symndx];
2329 BFD_ASSERT (off != (bfd_vma) -1);
2330
2331 /* The offset must always be a multiple of 8. We use
2332 the least significant bit to record whether we have
2333 already processed this entry. */
2334 if ((off & 1) != 0)
2335 off &= ~1;
2336 else
2337 {
2338 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2339 local_got_offsets[r_symndx] |= 1;
2340
2341 if (info->shared)
2342 {
2343 asection *srelgot;
2344 Elf_Internal_Rela outrel;
2345
2346 /* We need to generate a R_SPARC_RELATIVE reloc
2347 for the dynamic linker. */
2348 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2349 BFD_ASSERT (srelgot != NULL);
2350
2351 outrel.r_offset = (sgot->output_section->vma
2352 + sgot->output_offset
2353 + off);
2354 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2355 outrel.r_addend = relocation;
2356 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2357 (((Elf64_External_Rela *)
2358 srelgot->contents)
2359 + srelgot->reloc_count));
2360 ++srelgot->reloc_count;
2361 }
2362 }
2363 relocation = sgot->output_offset + off - got_base;
2364 }
2365 goto do_default;
2366
2367 case R_SPARC_WPLT30:
2368 case R_SPARC_PLT32:
2369 case R_SPARC_HIPLT22:
2370 case R_SPARC_LOPLT10:
2371 case R_SPARC_PCPLT32:
2372 case R_SPARC_PCPLT22:
2373 case R_SPARC_PCPLT10:
2374 case R_SPARC_PLT64:
2375 /* Relocation is to the entry for this symbol in the
2376 procedure linkage table. */
2377 BFD_ASSERT (h != NULL);
2378
2379 if (h->plt.offset == (bfd_vma) -1)
2380 {
2381 /* We didn't make a PLT entry for this symbol. This
2382 happens when statically linking PIC code, or when
2383 using -Bsymbolic. */
2384 goto do_default;
2385 }
2386
2387 if (splt == NULL)
2388 {
2389 splt = bfd_get_section_by_name (dynobj, ".plt");
2390 BFD_ASSERT (splt != NULL);
2391 }
2392
2393 relocation = (splt->output_section->vma
2394 + splt->output_offset
2395 + sparc64_elf_plt_entry_offset (h->plt.offset));
2396 goto do_default;
2397
2398 case R_SPARC_OLO10:
2399 {
2400 bfd_vma x;
2401
2402 relocation += rel->r_addend;
2403 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2404
2405 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2406 x = (x & ~0x1fff) | (relocation & 0x1fff);
2407 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2408
2409 r = bfd_check_overflow (howto->complain_on_overflow,
2410 howto->bitsize, howto->rightshift,
2411 bfd_arch_bits_per_address (input_bfd),
2412 relocation);
2413 }
2414 break;
2415
2416 case R_SPARC_WDISP16:
2417 {
2418 bfd_vma x;
2419
2420 relocation += rel->r_addend;
2421 /* Adjust for pc-relative-ness. */
2422 relocation -= (input_section->output_section->vma
2423 + input_section->output_offset);
2424 relocation -= rel->r_offset;
2425
2426 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2427 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2428 | ((relocation >> 2) & 0x3fff));
2429 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2430
2431 r = bfd_check_overflow (howto->complain_on_overflow,
2432 howto->bitsize, howto->rightshift,
2433 bfd_arch_bits_per_address (input_bfd),
2434 relocation);
2435 }
2436 break;
2437
2438 case R_SPARC_HIX22:
2439 {
2440 bfd_vma x;
2441
2442 relocation += rel->r_addend;
2443 relocation = relocation ^ MINUS_ONE;
2444
2445 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2446 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2447 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2448
2449 r = bfd_check_overflow (howto->complain_on_overflow,
2450 howto->bitsize, howto->rightshift,
2451 bfd_arch_bits_per_address (input_bfd),
2452 relocation);
2453 }
2454 break;
2455
2456 case R_SPARC_LOX10:
2457 {
2458 bfd_vma x;
2459
2460 relocation += rel->r_addend;
2461 relocation = (relocation & 0x3ff) | 0x1c00;
2462
2463 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2464 x = (x & ~0x1fff) | relocation;
2465 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2466
2467 r = bfd_reloc_ok;
2468 }
2469 break;
2470
2471 default:
2472 do_default:
2473 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2474 contents, rel->r_offset,
2475 relocation, rel->r_addend);
2476 break;
2477 }
2478
2479 switch (r)
2480 {
2481 case bfd_reloc_ok:
2482 break;
2483
2484 default:
2485 case bfd_reloc_outofrange:
2486 abort ();
2487
2488 case bfd_reloc_overflow:
2489 {
2490 const char *name;
2491
2492 if (h != NULL)
2493 {
2494 if (h->root.type == bfd_link_hash_undefweak
2495 && howto->pc_relative)
2496 {
2497 /* Assume this is a call protected by other code that
2498 detect the symbol is undefined. If this is the case,
2499 we can safely ignore the overflow. If not, the
2500 program is hosed anyway, and a little warning isn't
2501 going to help. */
2502 break;
2503 }
2504
2505 name = h->root.root.string;
2506 }
2507 else
2508 {
2509 name = (bfd_elf_string_from_elf_section
2510 (input_bfd,
2511 symtab_hdr->sh_link,
2512 sym->st_name));
2513 if (name == NULL)
2514 return false;
2515 if (*name == '\0')
2516 name = bfd_section_name (input_bfd, sec);
2517 }
2518 if (! ((*info->callbacks->reloc_overflow)
2519 (info, name, howto->name, (bfd_vma) 0,
2520 input_bfd, input_section, rel->r_offset)))
2521 return false;
2522 }
2523 break;
2524 }
2525 }
2526
2527 return true;
2528}
2529
2530/* Finish up dynamic symbol handling. We set the contents of various
2531 dynamic sections here. */
2532
2533static boolean
2534sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2535 bfd *output_bfd;
2536 struct bfd_link_info *info;
2537 struct elf_link_hash_entry *h;
2538 Elf_Internal_Sym *sym;
2539{
2540 bfd *dynobj;
2541
2542 dynobj = elf_hash_table (info)->dynobj;
2543
2544 if (h->plt.offset != (bfd_vma) -1)
2545 {
2546 asection *splt;
2547 asection *srela;
2548 Elf_Internal_Rela rela;
2549
2550 /* This symbol has an entry in the PLT. Set it up. */
2551
2552 BFD_ASSERT (h->dynindx != -1);
2553
2554 splt = bfd_get_section_by_name (dynobj, ".plt");
2555 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2556 BFD_ASSERT (splt != NULL && srela != NULL);
2557
2558 /* Fill in the entry in the .rela.plt section. */
2559
2560 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2561 {
2562 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2563 rela.r_addend = 0;
2564 }
2565 else
2566 {
2567 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2568 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
a11c78e7
RH
2569 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2570 -(splt->output_section->vma + splt->output_offset);
252b5132
RH
2571 }
2572 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2573 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2574
2575 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2576 ((Elf64_External_Rela *) srela->contents
2577 + h->plt.offset));
2578
2579 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2580 {
2581 /* Mark the symbol as undefined, rather than as defined in
2582 the .plt section. Leave the value alone. */
2583 sym->st_shndx = SHN_UNDEF;
2584 }
2585 }
2586
2587 if (h->got.offset != (bfd_vma) -1)
2588 {
2589 asection *sgot;
2590 asection *srela;
2591 Elf_Internal_Rela rela;
2592
2593 /* This symbol has an entry in the GOT. Set it up. */
2594
2595 sgot = bfd_get_section_by_name (dynobj, ".got");
2596 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2597 BFD_ASSERT (sgot != NULL && srela != NULL);
2598
2599 rela.r_offset = (sgot->output_section->vma
2600 + sgot->output_offset
2601 + (h->got.offset &~ 1));
2602
2603 /* If this is a -Bsymbolic link, and the symbol is defined
2604 locally, we just want to emit a RELATIVE reloc. Likewise if
2605 the symbol was forced to be local because of a version file.
2606 The entry in the global offset table will already have been
2607 initialized in the relocate_section function. */
2608 if (info->shared
2609 && (info->symbolic || h->dynindx == -1)
2610 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2611 {
2612 asection *sec = h->root.u.def.section;
2613 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2614 rela.r_addend = (h->root.u.def.value
2615 + sec->output_section->vma
2616 + sec->output_offset);
2617 }
2618 else
2619 {
2620 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2621 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2622 rela.r_addend = 0;
2623 }
2624
2625 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2626 ((Elf64_External_Rela *) srela->contents
2627 + srela->reloc_count));
2628 ++srela->reloc_count;
2629 }
2630
2631 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2632 {
2633 asection *s;
2634 Elf_Internal_Rela rela;
2635
2636 /* This symbols needs a copy reloc. Set it up. */
2637
2638 BFD_ASSERT (h->dynindx != -1);
2639
2640 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2641 ".rela.bss");
2642 BFD_ASSERT (s != NULL);
2643
2644 rela.r_offset = (h->root.u.def.value
2645 + h->root.u.def.section->output_section->vma
2646 + h->root.u.def.section->output_offset);
2647 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2648 rela.r_addend = 0;
2649 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2650 ((Elf64_External_Rela *) s->contents
2651 + s->reloc_count));
2652 ++s->reloc_count;
2653 }
2654
2655 /* Mark some specially defined symbols as absolute. */
2656 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2657 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2658 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2659 sym->st_shndx = SHN_ABS;
2660
2661 return true;
2662}
2663
2664/* Finish up the dynamic sections. */
2665
2666static boolean
2667sparc64_elf_finish_dynamic_sections (output_bfd, info)
2668 bfd *output_bfd;
2669 struct bfd_link_info *info;
2670{
2671 bfd *dynobj;
587ff49e 2672 int stt_regidx = -1;
252b5132
RH
2673 asection *sdyn;
2674 asection *sgot;
2675
2676 dynobj = elf_hash_table (info)->dynobj;
2677
2678 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2679
2680 if (elf_hash_table (info)->dynamic_sections_created)
2681 {
2682 asection *splt;
2683 Elf64_External_Dyn *dyncon, *dynconend;
2684
2685 splt = bfd_get_section_by_name (dynobj, ".plt");
2686 BFD_ASSERT (splt != NULL && sdyn != NULL);
2687
2688 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2689 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2690 for (; dyncon < dynconend; dyncon++)
2691 {
2692 Elf_Internal_Dyn dyn;
2693 const char *name;
2694 boolean size;
2695
2696 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2697
2698 switch (dyn.d_tag)
2699 {
2700 case DT_PLTGOT: name = ".plt"; size = false; break;
2701 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2702 case DT_JMPREL: name = ".rela.plt"; size = false; break;
587ff49e
RH
2703 case DT_SPARC_REGISTER:
2704 if (stt_regidx == -1)
2705 {
2706 stt_regidx =
2707 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2708 if (stt_regidx == -1)
2709 return false;
2710 }
2711 dyn.d_un.d_val = stt_regidx++;
2712 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2713 /* fallthrough */
252b5132
RH
2714 default: name = NULL; size = false; break;
2715 }
2716
2717 if (name != NULL)
2718 {
2719 asection *s;
2720
2721 s = bfd_get_section_by_name (output_bfd, name);
2722 if (s == NULL)
2723 dyn.d_un.d_val = 0;
2724 else
2725 {
2726 if (! size)
2727 dyn.d_un.d_ptr = s->vma;
2728 else
2729 {
2730 if (s->_cooked_size != 0)
2731 dyn.d_un.d_val = s->_cooked_size;
2732 else
2733 dyn.d_un.d_val = s->_raw_size;
2734 }
2735 }
2736 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2737 }
2738 }
2739
2740 /* Initialize the contents of the .plt section. */
2741 if (splt->_raw_size > 0)
2742 {
2743 sparc64_elf_build_plt(output_bfd, splt->contents,
2744 splt->_raw_size / PLT_ENTRY_SIZE);
2745 }
2746
2747 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2748 PLT_ENTRY_SIZE;
2749 }
2750
2751 /* Set the first entry in the global offset table to the address of
2752 the dynamic section. */
2753 sgot = bfd_get_section_by_name (dynobj, ".got");
2754 BFD_ASSERT (sgot != NULL);
2755 if (sgot->_raw_size > 0)
2756 {
2757 if (sdyn == NULL)
2758 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2759 else
2760 bfd_put_64 (output_bfd,
2761 sdyn->output_section->vma + sdyn->output_offset,
2762 sgot->contents);
2763 }
2764
2765 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2766
252b5132
RH
2767 return true;
2768}
2769\f
2770/* Functions for dealing with the e_flags field. */
2771
2772/* Merge backend specific data from an object file to the output
2773 object file when linking. */
2774
2775static boolean
2776sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2777 bfd *ibfd;
2778 bfd *obfd;
2779{
2780 boolean error;
2781 flagword new_flags, old_flags;
2782 int new_mm, old_mm;
2783
2784 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2785 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2786 return true;
2787
2788 new_flags = elf_elfheader (ibfd)->e_flags;
2789 old_flags = elf_elfheader (obfd)->e_flags;
2790
2791 if (!elf_flags_init (obfd)) /* First call, no flags set */
2792 {
2793 elf_flags_init (obfd) = true;
2794 elf_elfheader (obfd)->e_flags = new_flags;
2795 }
2796
2797 else if (new_flags == old_flags) /* Compatible flags are ok */
2798 ;
2799
2800 else /* Incompatible flags */
2801 {
2802 error = false;
2803
37fb6db1
ILT
2804 if ((ibfd->flags & DYNAMIC) != 0)
2805 {
2806 /* We don't want dynamic objects memory ordering and
2807 architecture to have any role. That's what dynamic linker
2808 should do. */
2809 old_flags &= ~(EF_SPARCV9_MM | EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1);
2810 old_flags |= (new_flags
2811 & (EF_SPARCV9_MM
2812 | EF_SPARC_SUN_US1
2813 | EF_SPARC_HAL_R1));
2814 }
2815 else
2816 {
2817 /* Choose the highest architecture requirements. */
2818 old_flags |= (new_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2819 new_flags |= (old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2820 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2821 == (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2822 {
2823 error = true;
2824 (*_bfd_error_handler)
2825 (_("%s: linking UltraSPARC specific with HAL specific code"),
2826 bfd_get_filename (ibfd));
2827 }
2828 /* Choose the most restrictive memory ordering. */
2829 old_mm = (old_flags & EF_SPARCV9_MM);
2830 new_mm = (new_flags & EF_SPARCV9_MM);
2831 old_flags &= ~EF_SPARCV9_MM;
2832 new_flags &= ~EF_SPARCV9_MM;
2833 if (new_mm < old_mm)
2834 old_mm = new_mm;
2835 old_flags |= old_mm;
2836 new_flags |= old_mm;
2837 }
252b5132
RH
2838
2839 /* Warn about any other mismatches */
2840 if (new_flags != old_flags)
2841 {
2842 error = true;
2843 (*_bfd_error_handler)
2844 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2845 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2846 }
2847
2848 elf_elfheader (obfd)->e_flags = old_flags;
2849
2850 if (error)
2851 {
2852 bfd_set_error (bfd_error_bad_value);
2853 return false;
2854 }
2855 }
2856 return true;
2857}
587ff49e
RH
2858\f
2859/* Print a STT_REGISTER symbol to file FILE. */
252b5132 2860
587ff49e
RH
2861static const char *
2862sparc64_elf_print_symbol_all (abfd, filep, symbol)
2863 bfd *abfd;
2864 PTR filep;
2865 asymbol *symbol;
2866{
2867 FILE *file = (FILE *) filep;
2868 int reg, type;
2869
2870 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2871 != STT_REGISTER)
2872 return NULL;
2873
2874 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2875 type = symbol->flags;
2876 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
2877 ((type & BSF_LOCAL)
2878 ? (type & BSF_GLOBAL) ? '!' : 'l'
2879 : (type & BSF_GLOBAL) ? 'g' : ' '),
2880 (type & BSF_WEAK) ? 'w' : ' ');
2881 if (symbol->name == NULL || symbol->name [0] == '\0')
2882 return "#scratch";
2883 else
2884 return symbol->name;
2885}
252b5132
RH
2886\f
2887/* Set the right machine number for a SPARC64 ELF file. */
2888
2889static boolean
2890sparc64_elf_object_p (abfd)
2891 bfd *abfd;
2892{
2893 unsigned long mach = bfd_mach_sparc_v9;
2894
2895 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
2896 mach = bfd_mach_sparc_v9a;
2897 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
2898}
2899
f65054f7
RH
2900/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
2901 standard ELF, because R_SPARC_OLO10 has secondary addend in
2902 ELF64_R_TYPE_DATA field. This structure is used to redirect the
2903 relocation handling routines. */
2904
2905const struct elf_size_info sparc64_elf_size_info =
2906{
2907 sizeof (Elf64_External_Ehdr),
2908 sizeof (Elf64_External_Phdr),
2909 sizeof (Elf64_External_Shdr),
2910 sizeof (Elf64_External_Rel),
2911 sizeof (Elf64_External_Rela),
2912 sizeof (Elf64_External_Sym),
2913 sizeof (Elf64_External_Dyn),
2914 sizeof (Elf_External_Note),
a11c78e7 2915 4, /* hash-table entry size */
f65054f7
RH
2916 /* internal relocations per external relocations.
2917 For link purposes we use just 1 internal per
2918 1 external, for assembly and slurp symbol table
2919 we use 2. */
2920 1,
2921 64, /* arch_size */
2922 8, /* file_align */
2923 ELFCLASS64,
2924 EV_CURRENT,
2925 bfd_elf64_write_out_phdrs,
2926 bfd_elf64_write_shdrs_and_ehdr,
2927 sparc64_elf_write_relocs,
2928 bfd_elf64_swap_symbol_out,
2929 sparc64_elf_slurp_reloc_table,
2930 bfd_elf64_slurp_symbol_table,
2931 bfd_elf64_swap_dyn_in,
2932 bfd_elf64_swap_dyn_out,
2933 NULL,
2934 NULL,
2935 NULL,
2936 NULL
2937};
2938
252b5132
RH
2939#define TARGET_BIG_SYM bfd_elf64_sparc_vec
2940#define TARGET_BIG_NAME "elf64-sparc"
2941#define ELF_ARCH bfd_arch_sparc
2942#define ELF_MAXPAGESIZE 0x100000
2943
2944/* This is the official ABI value. */
2945#define ELF_MACHINE_CODE EM_SPARCV9
2946
2947/* This is the value that we used before the ABI was released. */
2948#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
2949
587ff49e
RH
2950#define bfd_elf64_bfd_link_hash_table_create \
2951 sparc64_elf_bfd_link_hash_table_create
2952
252b5132
RH
2953#define elf_info_to_howto \
2954 sparc64_elf_info_to_howto
f65054f7
RH
2955#define bfd_elf64_get_reloc_upper_bound \
2956 sparc64_elf_get_reloc_upper_bound
2957#define bfd_elf64_get_dynamic_reloc_upper_bound \
2958 sparc64_elf_get_dynamic_reloc_upper_bound
2959#define bfd_elf64_canonicalize_dynamic_reloc \
2960 sparc64_elf_canonicalize_dynamic_reloc
252b5132
RH
2961#define bfd_elf64_bfd_reloc_type_lookup \
2962 sparc64_elf_reloc_type_lookup
2963
2964#define elf_backend_create_dynamic_sections \
2965 _bfd_elf_create_dynamic_sections
587ff49e
RH
2966#define elf_backend_add_symbol_hook \
2967 sparc64_elf_add_symbol_hook
2968#define elf_backend_get_symbol_type \
2969 sparc64_elf_get_symbol_type
2970#define elf_backend_symbol_processing \
2971 sparc64_elf_symbol_processing
252b5132
RH
2972#define elf_backend_check_relocs \
2973 sparc64_elf_check_relocs
2974#define elf_backend_adjust_dynamic_symbol \
2975 sparc64_elf_adjust_dynamic_symbol
2976#define elf_backend_size_dynamic_sections \
2977 sparc64_elf_size_dynamic_sections
2978#define elf_backend_relocate_section \
2979 sparc64_elf_relocate_section
2980#define elf_backend_finish_dynamic_symbol \
2981 sparc64_elf_finish_dynamic_symbol
2982#define elf_backend_finish_dynamic_sections \
2983 sparc64_elf_finish_dynamic_sections
587ff49e
RH
2984#define elf_backend_print_symbol_all \
2985 sparc64_elf_print_symbol_all
2986#define elf_backend_output_arch_syms \
2987 sparc64_elf_output_arch_syms
252b5132
RH
2988
2989#define bfd_elf64_bfd_merge_private_bfd_data \
2990 sparc64_elf_merge_private_bfd_data
2991
f65054f7
RH
2992#define elf_backend_size_info \
2993 sparc64_elf_size_info
252b5132
RH
2994#define elf_backend_object_p \
2995 sparc64_elf_object_p
2996
2997#define elf_backend_want_got_plt 0
2998#define elf_backend_plt_readonly 0
2999#define elf_backend_want_plt_sym 1
3000
3001/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3002#define elf_backend_plt_alignment 8
3003
3004#define elf_backend_got_header_size 8
3005#define elf_backend_plt_header_size PLT_HEADER_SIZE
3006
3007#include "elf64-target.h"
This page took 0.349826 seconds and 4 git commands to generate.