Make set_solib_svr4_fetch_link_map_offsets() work as intended.
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
CommitLineData
252b5132 1/* SPARC-specific support for 64-bit ELF
7898deda 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
37fb6db1 3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
f7775d95 25#include "opcode/sparc.h"
252b5132
RH
26
27/* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30/*#define SPARC64_OLD_RELOCS*/
31
32#include "elf/sparc.h"
33
34/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35#define MINUS_ONE (~ (bfd_vma) 0)
36
587ff49e 37static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
99c79b2e
AJ
38 PARAMS ((bfd *));
39static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
252b5132
RH
42static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47static void sparc64_elf_build_plt
99c79b2e 48 PARAMS ((bfd *, unsigned char *, int));
252b5132 49static bfd_vma sparc64_elf_plt_entry_offset
dc810e39 50 PARAMS ((bfd_vma));
252b5132 51static bfd_vma sparc64_elf_plt_ptr_offset
dc810e39 52 PARAMS ((bfd_vma, bfd_vma));
252b5132
RH
53
54static boolean sparc64_elf_check_relocs
99c79b2e
AJ
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
252b5132 57static boolean sparc64_elf_adjust_dynamic_symbol
99c79b2e 58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
252b5132 59static boolean sparc64_elf_size_dynamic_sections
99c79b2e 60 PARAMS ((bfd *, struct bfd_link_info *));
587ff49e
RH
61static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
99c79b2e 65 const char **, flagword *, asection **, bfd_vma *));
5d964dfa
AM
66static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
587ff49e
RH
69static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
252b5132 71
069f40e5
JJ
72static boolean sparc64_elf_copy_private_bfd_data
73 PARAMS ((bfd *, bfd *));
252b5132
RH
74static boolean sparc64_elf_merge_private_bfd_data
75 PARAMS ((bfd *, bfd *));
76
99c79b2e
AJ
77static const char *sparc64_elf_print_symbol_all
78 PARAMS ((bfd *, PTR, asymbol *));
f7775d95
JJ
79static boolean sparc64_elf_relax_section
80 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
252b5132
RH
81static boolean sparc64_elf_relocate_section
82 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
83 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
99c79b2e
AJ
84static boolean sparc64_elf_finish_dynamic_symbol
85 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
86 Elf_Internal_Sym *));
87static boolean sparc64_elf_finish_dynamic_sections
88 PARAMS ((bfd *, struct bfd_link_info *));
252b5132 89static boolean sparc64_elf_object_p PARAMS ((bfd *));
f65054f7
RH
90static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
91static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
92static boolean sparc64_elf_slurp_one_reloc_table
93 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
94static boolean sparc64_elf_slurp_reloc_table
95 PARAMS ((bfd *, asection *, asymbol **, boolean));
96static long sparc64_elf_canonicalize_dynamic_reloc
97 PARAMS ((bfd *, arelent **, asymbol **));
98static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
db6751f2 99static enum elf_reloc_type_class sparc64_elf_reloc_type_class PARAMS ((int));
252b5132
RH
100\f
101/* The relocation "howto" table. */
102
103static bfd_reloc_status_type sparc_elf_notsup_reloc
104 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
105static bfd_reloc_status_type sparc_elf_wdisp16_reloc
106 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
107static bfd_reloc_status_type sparc_elf_hix22_reloc
108 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
109static bfd_reloc_status_type sparc_elf_lox10_reloc
110 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
111
112static reloc_howto_type sparc64_elf_howto_table[] =
113{
114 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
115 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
116 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
117 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
118 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
119 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
120 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
121 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
122 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
123 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
125 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
126 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
127 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
128 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
129 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
130 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
131 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
132 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
133 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
134 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
135 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
136 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
9fc54e19 137 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
252b5132
RH
138#ifndef SPARC64_OLD_RELOCS
139 /* These aren't implemented yet. */
140 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
141 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
142 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
143 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
145 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
146#endif
147 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
148 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
149 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
150 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
151 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
152 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
153 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
155 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
156 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
157 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
158 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
159 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
160 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
161 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
162 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
163 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
164 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
165 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
167 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
168 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
169 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
170 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
171 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
172 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
173};
174
175struct elf_reloc_map {
176 bfd_reloc_code_real_type bfd_reloc_val;
177 unsigned char elf_reloc_val;
178};
179
dc810e39 180static const struct elf_reloc_map sparc_reloc_map[] =
252b5132
RH
181{
182 { BFD_RELOC_NONE, R_SPARC_NONE, },
183 { BFD_RELOC_16, R_SPARC_16, },
184 { BFD_RELOC_8, R_SPARC_8 },
185 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
186 { BFD_RELOC_CTOR, R_SPARC_64 },
187 { BFD_RELOC_32, R_SPARC_32 },
188 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
189 { BFD_RELOC_HI22, R_SPARC_HI22 },
190 { BFD_RELOC_LO10, R_SPARC_LO10, },
191 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
192 { BFD_RELOC_SPARC22, R_SPARC_22 },
193 { BFD_RELOC_SPARC13, R_SPARC_13 },
194 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
195 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
196 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
197 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
198 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
199 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
200 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
201 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
202 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
203 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
204 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
0f2712ed
NC
205 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
206 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
207 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
208 { BFD_RELOC_SPARC_10, R_SPARC_10 },
209 { BFD_RELOC_SPARC_11, R_SPARC_11 },
210 { BFD_RELOC_SPARC_64, R_SPARC_64 },
211 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
212 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
213 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
214 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
215 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
216 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
217 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
218 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
219 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
220 { BFD_RELOC_SPARC_7, R_SPARC_7 },
221 { BFD_RELOC_SPARC_5, R_SPARC_5 },
222 { BFD_RELOC_SPARC_6, R_SPARC_6 },
223 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
224 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
225 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
226 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
227 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
228 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
229 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
230 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
252b5132
RH
231};
232
233static reloc_howto_type *
234sparc64_elf_reloc_type_lookup (abfd, code)
6c08d697 235 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
236 bfd_reloc_code_real_type code;
237{
238 unsigned int i;
239 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
240 {
241 if (sparc_reloc_map[i].bfd_reloc_val == code)
242 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
243 }
244 return 0;
245}
246
247static void
248sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
6c08d697 249 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
250 arelent *cache_ptr;
251 Elf64_Internal_Rela *dst;
252{
f65054f7
RH
253 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
254 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
255}
256\f
257/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
258 section can represent up to two relocs, we must tell the user to allocate
259 more space. */
435b1e90 260
f65054f7
RH
261static long
262sparc64_elf_get_reloc_upper_bound (abfd, sec)
6c08d697 263 bfd *abfd ATTRIBUTE_UNUSED;
f65054f7
RH
264 asection *sec;
265{
266 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
267}
268
269static long
270sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
271 bfd *abfd;
272{
273 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
274}
275
435b1e90 276/* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
f65054f7
RH
277 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
278 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
279 for the same location, R_SPARC_LO10 and R_SPARC_13. */
280
281static boolean
282sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
283 bfd *abfd;
284 asection *asect;
285 Elf_Internal_Shdr *rel_hdr;
286 asymbol **symbols;
287 boolean dynamic;
288{
f65054f7
RH
289 PTR allocated = NULL;
290 bfd_byte *native_relocs;
291 arelent *relent;
292 unsigned int i;
293 int entsize;
294 bfd_size_type count;
295 arelent *relents;
296
dc810e39 297 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
f65054f7
RH
298 if (allocated == NULL)
299 goto error_return;
300
301 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
dc810e39 302 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
f65054f7
RH
303 goto error_return;
304
305 native_relocs = (bfd_byte *) allocated;
306
307 relents = asect->relocation + asect->reloc_count;
308
309 entsize = rel_hdr->sh_entsize;
310 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
435b1e90 311
f65054f7
RH
312 count = rel_hdr->sh_size / entsize;
313
314 for (i = 0, relent = relents; i < count;
315 i++, relent++, native_relocs += entsize)
316 {
317 Elf_Internal_Rela rela;
318
319 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
320
321 /* The address of an ELF reloc is section relative for an object
322 file, and absolute for an executable file or shared library.
323 The address of a normal BFD reloc is always section relative,
324 and the address of a dynamic reloc is absolute.. */
325 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
326 relent->address = rela.r_offset;
327 else
328 relent->address = rela.r_offset - asect->vma;
329
330 if (ELF64_R_SYM (rela.r_info) == 0)
331 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
332 else
333 {
334 asymbol **ps, *s;
335
336 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
337 s = *ps;
338
339 /* Canonicalize ELF section symbols. FIXME: Why? */
340 if ((s->flags & BSF_SECTION_SYM) == 0)
341 relent->sym_ptr_ptr = ps;
342 else
343 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
344 }
345
346 relent->addend = rela.r_addend;
347
348 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
349 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
350 {
351 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
352 relent[1].address = relent->address;
353 relent++;
354 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
355 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
356 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
357 }
358 else
359 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
360 }
361
362 asect->reloc_count += relent - relents;
363
364 if (allocated != NULL)
365 free (allocated);
366
367 return true;
368
369 error_return:
370 if (allocated != NULL)
371 free (allocated);
372 return false;
373}
374
375/* Read in and swap the external relocs. */
376
377static boolean
378sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
379 bfd *abfd;
380 asection *asect;
381 asymbol **symbols;
382 boolean dynamic;
383{
384 struct bfd_elf_section_data * const d = elf_section_data (asect);
385 Elf_Internal_Shdr *rel_hdr;
386 Elf_Internal_Shdr *rel_hdr2;
dc810e39 387 bfd_size_type amt;
f65054f7
RH
388
389 if (asect->relocation != NULL)
390 return true;
391
392 if (! dynamic)
393 {
394 if ((asect->flags & SEC_RELOC) == 0
395 || asect->reloc_count == 0)
396 return true;
397
398 rel_hdr = &d->rel_hdr;
399 rel_hdr2 = d->rel_hdr2;
400
401 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
402 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
403 }
404 else
405 {
406 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
407 case because relocations against this section may use the
408 dynamic symbol table, and in that case bfd_section_from_shdr
409 in elf.c does not update the RELOC_COUNT. */
410 if (asect->_raw_size == 0)
411 return true;
412
413 rel_hdr = &d->this_hdr;
d9bc7a44 414 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
f65054f7
RH
415 rel_hdr2 = NULL;
416 }
417
dc810e39
AM
418 amt = asect->reloc_count;
419 amt *= 2 * sizeof (arelent);
420 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
f65054f7
RH
421 if (asect->relocation == NULL)
422 return false;
423
424 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
425 asect->reloc_count = 0;
435b1e90 426
f65054f7
RH
427 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
428 dynamic))
429 return false;
435b1e90
KH
430
431 if (rel_hdr2
f65054f7
RH
432 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
433 dynamic))
434 return false;
435
436 return true;
437}
438
439/* Canonicalize the dynamic relocation entries. Note that we return
440 the dynamic relocations as a single block, although they are
441 actually associated with particular sections; the interface, which
442 was designed for SunOS style shared libraries, expects that there
443 is only one set of dynamic relocs. Any section that was actually
444 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
445 the dynamic symbol table, is considered to be a dynamic reloc
446 section. */
447
448static long
449sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
450 bfd *abfd;
451 arelent **storage;
452 asymbol **syms;
453{
454 asection *s;
455 long ret;
456
457 if (elf_dynsymtab (abfd) == 0)
458 {
459 bfd_set_error (bfd_error_invalid_operation);
460 return -1;
461 }
462
463 ret = 0;
464 for (s = abfd->sections; s != NULL; s = s->next)
465 {
466 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
467 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
468 {
469 arelent *p;
470 long count, i;
471
472 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
473 return -1;
474 count = s->reloc_count;
475 p = s->relocation;
476 for (i = 0; i < count; i++)
477 *storage++ = p++;
478 ret += count;
479 }
480 }
481
482 *storage = NULL;
483
484 return ret;
485}
486
487/* Write out the relocs. */
488
489static void
490sparc64_elf_write_relocs (abfd, sec, data)
491 bfd *abfd;
492 asection *sec;
493 PTR data;
494{
495 boolean *failedp = (boolean *) data;
496 Elf_Internal_Shdr *rela_hdr;
37fb6db1 497 Elf64_External_Rela *outbound_relocas, *src_rela;
f65054f7
RH
498 unsigned int idx, count;
499 asymbol *last_sym = 0;
500 int last_sym_idx = 0;
501
502 /* If we have already failed, don't do anything. */
503 if (*failedp)
504 return;
505
506 if ((sec->flags & SEC_RELOC) == 0)
507 return;
508
509 /* The linker backend writes the relocs out itself, and sets the
510 reloc_count field to zero to inhibit writing them here. Also,
511 sometimes the SEC_RELOC flag gets set even when there aren't any
512 relocs. */
513 if (sec->reloc_count == 0)
514 return;
515
516 /* We can combine two relocs that refer to the same address
517 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
518 latter is R_SPARC_13 with no associated symbol. */
519 count = 0;
520 for (idx = 0; idx < sec->reloc_count; idx++)
521 {
522 bfd_vma addr;
f65054f7
RH
523
524 ++count;
525
526 addr = sec->orelocation[idx]->address;
527 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
528 && idx < sec->reloc_count - 1)
529 {
530 arelent *r = sec->orelocation[idx + 1];
531
532 if (r->howto->type == R_SPARC_13
533 && r->address == addr
534 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
535 && (*r->sym_ptr_ptr)->value == 0)
536 ++idx;
537 }
538 }
539
540 rela_hdr = &elf_section_data (sec)->rel_hdr;
541
542 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
543 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
544 if (rela_hdr->contents == NULL)
545 {
546 *failedp = true;
547 return;
548 }
549
550 /* Figure out whether the relocations are RELA or REL relocations. */
551 if (rela_hdr->sh_type != SHT_RELA)
552 abort ();
553
435b1e90 554 /* orelocation has the data, reloc_count has the count... */
f65054f7 555 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
37fb6db1 556 src_rela = outbound_relocas;
f65054f7
RH
557
558 for (idx = 0; idx < sec->reloc_count; idx++)
559 {
560 Elf_Internal_Rela dst_rela;
f65054f7
RH
561 arelent *ptr;
562 asymbol *sym;
563 int n;
564
565 ptr = sec->orelocation[idx];
f65054f7
RH
566
567 /* The address of an ELF reloc is section relative for an object
568 file, and absolute for an executable file or shared library.
569 The address of a BFD reloc is always section relative. */
570 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
571 dst_rela.r_offset = ptr->address;
572 else
573 dst_rela.r_offset = ptr->address + sec->vma;
574
575 sym = *ptr->sym_ptr_ptr;
576 if (sym == last_sym)
577 n = last_sym_idx;
578 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
579 n = STN_UNDEF;
580 else
581 {
582 last_sym = sym;
583 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
584 if (n < 0)
585 {
586 *failedp = true;
587 return;
588 }
589 last_sym_idx = n;
590 }
591
592 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
593 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
594 && ! _bfd_elf_validate_reloc (abfd, ptr))
595 {
596 *failedp = true;
597 return;
598 }
599
600 if (ptr->howto->type == R_SPARC_LO10
601 && idx < sec->reloc_count - 1)
602 {
603 arelent *r = sec->orelocation[idx + 1];
604
605 if (r->howto->type == R_SPARC_13
606 && r->address == ptr->address
607 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
608 && (*r->sym_ptr_ptr)->value == 0)
609 {
610 idx++;
611 dst_rela.r_info
612 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
613 R_SPARC_OLO10));
614 }
615 else
616 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
617 }
618 else
619 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
620
621 dst_rela.r_addend = ptr->addend;
622 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
37fb6db1 623 ++src_rela;
f65054f7 624 }
252b5132 625}
587ff49e
RH
626\f
627/* Sparc64 ELF linker hash table. */
628
629struct sparc64_elf_app_reg
630{
631 unsigned char bind;
632 unsigned short shndx;
633 bfd *abfd;
634 char *name;
635};
636
637struct sparc64_elf_link_hash_table
638{
639 struct elf_link_hash_table root;
640
641 struct sparc64_elf_app_reg app_regs [4];
642};
643
644/* Get the Sparc64 ELF linker hash table from a link_info structure. */
645
646#define sparc64_elf_hash_table(p) \
647 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
435b1e90 648
587ff49e
RH
649/* Create a Sparc64 ELF linker hash table. */
650
651static struct bfd_link_hash_table *
652sparc64_elf_bfd_link_hash_table_create (abfd)
653 bfd *abfd;
654{
655 struct sparc64_elf_link_hash_table *ret;
dc810e39 656 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
587ff49e 657
dc810e39 658 ret = (struct sparc64_elf_link_hash_table *) bfd_zalloc (abfd, amt);
587ff49e
RH
659 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
660 return NULL;
661
662 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
663 _bfd_elf_link_hash_newfunc))
664 {
665 bfd_release (abfd, ret);
666 return NULL;
667 }
668
669 return &ret->root.root;
670}
252b5132
RH
671\f
672/* Utility for performing the standard initial work of an instruction
673 relocation.
674 *PRELOCATION will contain the relocated item.
675 *PINSN will contain the instruction from the input stream.
676 If the result is `bfd_reloc_other' the caller can continue with
677 performing the relocation. Otherwise it must stop and return the
678 value to its caller. */
679
680static bfd_reloc_status_type
681init_insn_reloc (abfd,
682 reloc_entry,
683 symbol,
684 data,
685 input_section,
686 output_bfd,
687 prelocation,
688 pinsn)
689 bfd *abfd;
690 arelent *reloc_entry;
691 asymbol *symbol;
692 PTR data;
693 asection *input_section;
694 bfd *output_bfd;
695 bfd_vma *prelocation;
696 bfd_vma *pinsn;
697{
698 bfd_vma relocation;
699 reloc_howto_type *howto = reloc_entry->howto;
700
701 if (output_bfd != (bfd *) NULL
702 && (symbol->flags & BSF_SECTION_SYM) == 0
703 && (! howto->partial_inplace
704 || reloc_entry->addend == 0))
705 {
706 reloc_entry->address += input_section->output_offset;
707 return bfd_reloc_ok;
708 }
709
710 /* This works because partial_inplace == false. */
711 if (output_bfd != NULL)
712 return bfd_reloc_continue;
713
714 if (reloc_entry->address > input_section->_cooked_size)
715 return bfd_reloc_outofrange;
716
717 relocation = (symbol->value
718 + symbol->section->output_section->vma
719 + symbol->section->output_offset);
720 relocation += reloc_entry->addend;
721 if (howto->pc_relative)
722 {
723 relocation -= (input_section->output_section->vma
724 + input_section->output_offset);
725 relocation -= reloc_entry->address;
726 }
727
728 *prelocation = relocation;
729 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
730 return bfd_reloc_other;
731}
732
733/* For unsupported relocs. */
734
735static bfd_reloc_status_type
736sparc_elf_notsup_reloc (abfd,
737 reloc_entry,
738 symbol,
739 data,
740 input_section,
741 output_bfd,
742 error_message)
6c08d697
JJ
743 bfd *abfd ATTRIBUTE_UNUSED;
744 arelent *reloc_entry ATTRIBUTE_UNUSED;
745 asymbol *symbol ATTRIBUTE_UNUSED;
746 PTR data ATTRIBUTE_UNUSED;
747 asection *input_section ATTRIBUTE_UNUSED;
748 bfd *output_bfd ATTRIBUTE_UNUSED;
749 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
750{
751 return bfd_reloc_notsupported;
752}
753
754/* Handle the WDISP16 reloc. */
755
756static bfd_reloc_status_type
757sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
758 output_bfd, error_message)
759 bfd *abfd;
760 arelent *reloc_entry;
761 asymbol *symbol;
762 PTR data;
763 asection *input_section;
764 bfd *output_bfd;
6c08d697 765 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
766{
767 bfd_vma relocation;
768 bfd_vma insn;
769 bfd_reloc_status_type status;
770
771 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
772 input_section, output_bfd, &relocation, &insn);
773 if (status != bfd_reloc_other)
774 return status;
775
dc810e39
AM
776 insn &= ~ (bfd_vma) 0x303fff;
777 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
252b5132
RH
778 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
779
780 if ((bfd_signed_vma) relocation < - 0x40000
781 || (bfd_signed_vma) relocation > 0x3ffff)
782 return bfd_reloc_overflow;
783 else
784 return bfd_reloc_ok;
785}
786
787/* Handle the HIX22 reloc. */
788
789static bfd_reloc_status_type
790sparc_elf_hix22_reloc (abfd,
791 reloc_entry,
792 symbol,
793 data,
794 input_section,
795 output_bfd,
796 error_message)
797 bfd *abfd;
798 arelent *reloc_entry;
799 asymbol *symbol;
800 PTR data;
801 asection *input_section;
802 bfd *output_bfd;
6c08d697 803 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
804{
805 bfd_vma relocation;
806 bfd_vma insn;
807 bfd_reloc_status_type status;
808
809 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
810 input_section, output_bfd, &relocation, &insn);
811 if (status != bfd_reloc_other)
812 return status;
813
814 relocation ^= MINUS_ONE;
dc810e39 815 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
252b5132
RH
816 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
817
818 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
819 return bfd_reloc_overflow;
820 else
821 return bfd_reloc_ok;
822}
823
824/* Handle the LOX10 reloc. */
825
826static bfd_reloc_status_type
827sparc_elf_lox10_reloc (abfd,
828 reloc_entry,
829 symbol,
830 data,
831 input_section,
832 output_bfd,
833 error_message)
834 bfd *abfd;
835 arelent *reloc_entry;
836 asymbol *symbol;
837 PTR data;
838 asection *input_section;
839 bfd *output_bfd;
6c08d697 840 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
841{
842 bfd_vma relocation;
843 bfd_vma insn;
844 bfd_reloc_status_type status;
845
846 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
847 input_section, output_bfd, &relocation, &insn);
848 if (status != bfd_reloc_other)
849 return status;
850
dc810e39 851 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
252b5132
RH
852 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
853
854 return bfd_reloc_ok;
855}
856\f
857/* PLT/GOT stuff */
858
859/* Both the headers and the entries are icache aligned. */
860#define PLT_ENTRY_SIZE 32
861#define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
862#define LARGE_PLT_THRESHOLD 32768
863#define GOT_RESERVED_ENTRIES 1
864
865#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
866
252b5132
RH
867/* Fill in the .plt section. */
868
869static void
870sparc64_elf_build_plt (output_bfd, contents, nentries)
871 bfd *output_bfd;
872 unsigned char *contents;
873 int nentries;
874{
875 const unsigned int nop = 0x01000000;
876 int i, j;
435b1e90 877
252b5132
RH
878 /* The first four entries are reserved, and are initially undefined.
879 We fill them with `illtrap 0' to force ld.so to do something. */
880
881 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
dc810e39 882 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
252b5132
RH
883
884 /* The first 32768 entries are close enough to plt1 to get there via
885 a straight branch. */
886
887 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
888 {
889 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
890 unsigned int sethi, ba;
891
892 /* sethi (. - plt0), %g1 */
893 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
894
a11c78e7
RH
895 /* ba,a,pt %xcc, plt1 */
896 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
252b5132 897
dc810e39
AM
898 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
899 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
900 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
901 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
902 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
903 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
904 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
905 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
252b5132
RH
906 }
907
908 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
909 160: 160 entries and 160 pointers. This is to separate code from data,
910 which is much friendlier on the cache. */
435b1e90 911
252b5132
RH
912 for (; i < nentries; i += 160)
913 {
914 int block = (i + 160 <= nentries ? 160 : nentries - i);
915 for (j = 0; j < block; ++j)
916 {
917 unsigned char *entry, *ptr;
918 unsigned int ldx;
919
920 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
921 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
922
923 /* ldx [%o7 + ptr - entry+4], %g1 */
924 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
925
dc810e39
AM
926 /* mov %o7,%g5
927 call .+8
928 nop
929 ldx [%o7+P],%g1
930 jmpl %o7+%g1,%g1
931 mov %g5,%o7 */
932 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
933 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
934 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
935 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
936 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
937 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
938
939 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
252b5132
RH
940 }
941 }
942}
943
944/* Return the offset of a particular plt entry within the .plt section. */
945
946static bfd_vma
947sparc64_elf_plt_entry_offset (index)
dc810e39 948 bfd_vma index;
252b5132 949{
dc810e39 950 bfd_vma block, ofs;
252b5132
RH
951
952 if (index < LARGE_PLT_THRESHOLD)
953 return index * PLT_ENTRY_SIZE;
954
955 /* See above for details. */
956
957 block = (index - LARGE_PLT_THRESHOLD) / 160;
958 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
959
dc810e39 960 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
252b5132
RH
961}
962
963static bfd_vma
964sparc64_elf_plt_ptr_offset (index, max)
dc810e39
AM
965 bfd_vma index;
966 bfd_vma max;
252b5132 967{
dc810e39 968 bfd_vma block, ofs, last;
252b5132
RH
969
970 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
971
972 /* See above for details. */
973
dc810e39 974 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
a11c78e7
RH
975 ofs = index - block;
976 if (block + 160 > max)
977 last = (max - LARGE_PLT_THRESHOLD) % 160;
978 else
979 last = 160;
252b5132 980
a11c78e7 981 return (block * PLT_ENTRY_SIZE
252b5132
RH
982 + last * 6*4
983 + ofs * 8);
984}
252b5132
RH
985\f
986/* Look through the relocs for a section during the first phase, and
987 allocate space in the global offset table or procedure linkage
988 table. */
989
990static boolean
991sparc64_elf_check_relocs (abfd, info, sec, relocs)
992 bfd *abfd;
993 struct bfd_link_info *info;
994 asection *sec;
995 const Elf_Internal_Rela *relocs;
996{
997 bfd *dynobj;
998 Elf_Internal_Shdr *symtab_hdr;
999 struct elf_link_hash_entry **sym_hashes;
1000 bfd_vma *local_got_offsets;
1001 const Elf_Internal_Rela *rel;
1002 const Elf_Internal_Rela *rel_end;
1003 asection *sgot;
1004 asection *srelgot;
1005 asection *sreloc;
1006
1007 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1008 return true;
1009
1010 dynobj = elf_hash_table (info)->dynobj;
1011 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1012 sym_hashes = elf_sym_hashes (abfd);
1013 local_got_offsets = elf_local_got_offsets (abfd);
1014
1015 sgot = NULL;
1016 srelgot = NULL;
1017 sreloc = NULL;
1018
d9bc7a44 1019 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
252b5132
RH
1020 for (rel = relocs; rel < rel_end; rel++)
1021 {
1022 unsigned long r_symndx;
1023 struct elf_link_hash_entry *h;
1024
1025 r_symndx = ELF64_R_SYM (rel->r_info);
1026 if (r_symndx < symtab_hdr->sh_info)
1027 h = NULL;
1028 else
1029 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1030
f65054f7 1031 switch (ELF64_R_TYPE_ID (rel->r_info))
252b5132
RH
1032 {
1033 case R_SPARC_GOT10:
1034 case R_SPARC_GOT13:
1035 case R_SPARC_GOT22:
1036 /* This symbol requires a global offset table entry. */
1037
1038 if (dynobj == NULL)
1039 {
1040 /* Create the .got section. */
1041 elf_hash_table (info)->dynobj = dynobj = abfd;
1042 if (! _bfd_elf_create_got_section (dynobj, info))
1043 return false;
1044 }
1045
1046 if (sgot == NULL)
1047 {
1048 sgot = bfd_get_section_by_name (dynobj, ".got");
1049 BFD_ASSERT (sgot != NULL);
1050 }
1051
1052 if (srelgot == NULL && (h != NULL || info->shared))
1053 {
1054 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1055 if (srelgot == NULL)
1056 {
1057 srelgot = bfd_make_section (dynobj, ".rela.got");
1058 if (srelgot == NULL
1059 || ! bfd_set_section_flags (dynobj, srelgot,
1060 (SEC_ALLOC
1061 | SEC_LOAD
1062 | SEC_HAS_CONTENTS
1063 | SEC_IN_MEMORY
1064 | SEC_LINKER_CREATED
1065 | SEC_READONLY))
1066 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1067 return false;
1068 }
1069 }
1070
1071 if (h != NULL)
1072 {
1073 if (h->got.offset != (bfd_vma) -1)
1074 {
1075 /* We have already allocated space in the .got. */
1076 break;
1077 }
1078 h->got.offset = sgot->_raw_size;
1079
1080 /* Make sure this symbol is output as a dynamic symbol. */
1081 if (h->dynindx == -1)
1082 {
1083 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1084 return false;
1085 }
1086
1087 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1088 }
1089 else
1090 {
1091 /* This is a global offset table entry for a local
1092 symbol. */
1093 if (local_got_offsets == NULL)
1094 {
dc810e39 1095 bfd_size_type size;
252b5132
RH
1096 register unsigned int i;
1097
dc810e39
AM
1098 size = symtab_hdr->sh_info;
1099 size *= sizeof (bfd_vma);
252b5132
RH
1100 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1101 if (local_got_offsets == NULL)
1102 return false;
1103 elf_local_got_offsets (abfd) = local_got_offsets;
1104 for (i = 0; i < symtab_hdr->sh_info; i++)
1105 local_got_offsets[i] = (bfd_vma) -1;
1106 }
1107 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1108 {
1109 /* We have already allocated space in the .got. */
1110 break;
1111 }
1112 local_got_offsets[r_symndx] = sgot->_raw_size;
1113
1114 if (info->shared)
1115 {
1116 /* If we are generating a shared object, we need to
1117 output a R_SPARC_RELATIVE reloc so that the
1118 dynamic linker can adjust this GOT entry. */
1119 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1120 }
1121 }
1122
1123 sgot->_raw_size += 8;
1124
1125#if 0
1126 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1127 unsigned numbers. If we permit ourselves to modify
1128 code so we get sethi/xor, this could work.
1129 Question: do we consider conditionally re-enabling
1130 this for -fpic, once we know about object code models? */
1131 /* If the .got section is more than 0x1000 bytes, we add
1132 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1133 bit relocations have a greater chance of working. */
1134 if (sgot->_raw_size >= 0x1000
1135 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1136 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1137#endif
1138
1139 break;
1140
1141 case R_SPARC_WPLT30:
1142 case R_SPARC_PLT32:
1143 case R_SPARC_HIPLT22:
1144 case R_SPARC_LOPLT10:
1145 case R_SPARC_PCPLT32:
1146 case R_SPARC_PCPLT22:
1147 case R_SPARC_PCPLT10:
1148 case R_SPARC_PLT64:
1149 /* This symbol requires a procedure linkage table entry. We
1150 actually build the entry in adjust_dynamic_symbol,
1151 because this might be a case of linking PIC code without
1152 linking in any dynamic objects, in which case we don't
1153 need to generate a procedure linkage table after all. */
1154
1155 if (h == NULL)
1156 {
1157 /* It does not make sense to have a procedure linkage
1158 table entry for a local symbol. */
1159 bfd_set_error (bfd_error_bad_value);
1160 return false;
1161 }
1162
1163 /* Make sure this symbol is output as a dynamic symbol. */
1164 if (h->dynindx == -1)
1165 {
1166 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1167 return false;
1168 }
1169
1170 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1171 break;
1172
1173 case R_SPARC_PC10:
1174 case R_SPARC_PC22:
1175 case R_SPARC_PC_HH22:
1176 case R_SPARC_PC_HM10:
1177 case R_SPARC_PC_LM22:
1178 if (h != NULL
1179 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1180 break;
1181 /* Fall through. */
1182 case R_SPARC_DISP8:
1183 case R_SPARC_DISP16:
1184 case R_SPARC_DISP32:
1185 case R_SPARC_DISP64:
1186 case R_SPARC_WDISP30:
1187 case R_SPARC_WDISP22:
1188 case R_SPARC_WDISP19:
1189 case R_SPARC_WDISP16:
1190 if (h == NULL)
1191 break;
1192 /* Fall through. */
1193 case R_SPARC_8:
1194 case R_SPARC_16:
1195 case R_SPARC_32:
1196 case R_SPARC_HI22:
1197 case R_SPARC_22:
1198 case R_SPARC_13:
1199 case R_SPARC_LO10:
1200 case R_SPARC_UA32:
1201 case R_SPARC_10:
1202 case R_SPARC_11:
1203 case R_SPARC_64:
1204 case R_SPARC_OLO10:
1205 case R_SPARC_HH22:
1206 case R_SPARC_HM10:
1207 case R_SPARC_LM22:
1208 case R_SPARC_7:
1209 case R_SPARC_5:
1210 case R_SPARC_6:
1211 case R_SPARC_HIX22:
1212 case R_SPARC_LOX10:
1213 case R_SPARC_H44:
1214 case R_SPARC_M44:
1215 case R_SPARC_L44:
1216 case R_SPARC_UA64:
1217 case R_SPARC_UA16:
1218 /* When creating a shared object, we must copy these relocs
1219 into the output file. We create a reloc section in
435b1e90 1220 dynobj and make room for the reloc.
252b5132
RH
1221
1222 But don't do this for debugging sections -- this shows up
1223 with DWARF2 -- first because they are not loaded, and
1224 second because DWARF sez the debug info is not to be
1225 biased by the load address. */
1226 if (info->shared && (sec->flags & SEC_ALLOC))
1227 {
1228 if (sreloc == NULL)
1229 {
1230 const char *name;
1231
1232 name = (bfd_elf_string_from_elf_section
1233 (abfd,
1234 elf_elfheader (abfd)->e_shstrndx,
1235 elf_section_data (sec)->rel_hdr.sh_name));
1236 if (name == NULL)
1237 return false;
1238
1239 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1240 && strcmp (bfd_get_section_name (abfd, sec),
1241 name + 5) == 0);
1242
1243 sreloc = bfd_get_section_by_name (dynobj, name);
1244 if (sreloc == NULL)
1245 {
1246 flagword flags;
1247
1248 sreloc = bfd_make_section (dynobj, name);
1249 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1250 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1251 if ((sec->flags & SEC_ALLOC) != 0)
1252 flags |= SEC_ALLOC | SEC_LOAD;
1253 if (sreloc == NULL
1254 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1255 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1256 return false;
1257 }
db6751f2
JJ
1258 if (sec->flags & SEC_READONLY)
1259 info->flags |= DF_TEXTREL;
252b5132
RH
1260 }
1261
1262 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1263 }
1264 break;
1265
1266 case R_SPARC_REGISTER:
1267 /* Nothing to do. */
1268 break;
1269
1270 default:
435b1e90 1271 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
252b5132 1272 bfd_get_filename(abfd),
f65054f7 1273 ELF64_R_TYPE_ID (rel->r_info));
252b5132
RH
1274 return false;
1275 }
1276 }
1277
1278 return true;
1279}
1280
587ff49e
RH
1281/* Hook called by the linker routine which adds symbols from an object
1282 file. We use it for STT_REGISTER symbols. */
1283
1284static boolean
1285sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1286 bfd *abfd;
1287 struct bfd_link_info *info;
1288 const Elf_Internal_Sym *sym;
1289 const char **namep;
6c08d697
JJ
1290 flagword *flagsp ATTRIBUTE_UNUSED;
1291 asection **secp ATTRIBUTE_UNUSED;
1292 bfd_vma *valp ATTRIBUTE_UNUSED;
587ff49e
RH
1293{
1294 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1295
1296 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1297 {
1298 int reg;
1299 struct sparc64_elf_app_reg *p;
435b1e90 1300
587ff49e
RH
1301 reg = (int)sym->st_value;
1302 switch (reg & ~1)
1303 {
1304 case 2: reg -= 2; break;
1305 case 6: reg -= 4; break;
1306 default:
1307 (*_bfd_error_handler)
1308 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1309 bfd_get_filename (abfd));
1310 return false;
1311 }
1312
1313 if (info->hash->creator != abfd->xvec
1314 || (abfd->flags & DYNAMIC) != 0)
1315 {
1316 /* STT_REGISTER only works when linking an elf64_sparc object.
1317 If STT_REGISTER comes from a dynamic object, don't put it into
1318 the output bfd. The dynamic linker will recheck it. */
1319 *namep = NULL;
1320 return true;
1321 }
1322
1323 p = sparc64_elf_hash_table(info)->app_regs + reg;
1324
1325 if (p->name != NULL && strcmp (p->name, *namep))
1326 {
1327 (*_bfd_error_handler)
1328 (_("Register %%g%d used incompatibly: "
1329 "previously declared in %s to %s, in %s redefined to %s"),
1330 (int)sym->st_value,
1331 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1332 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1333 return false;
1334 }
1335
1336 if (p->name == NULL)
1337 {
1338 if (**namep)
1339 {
1340 struct elf_link_hash_entry *h;
435b1e90 1341
587ff49e
RH
1342 h = (struct elf_link_hash_entry *)
1343 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1344
1345 if (h != NULL)
1346 {
1347 unsigned char type = h->type;
1348
1349 if (type > STT_FUNC) type = 0;
1350 (*_bfd_error_handler)
1351 (_("Symbol `%s' has differing types: "
1352 "previously %s, REGISTER in %s"),
1353 *namep, stt_types [type], bfd_get_filename (abfd));
1354 return false;
1355 }
1356
1357 p->name = bfd_hash_allocate (&info->hash->table,
1358 strlen (*namep) + 1);
1359 if (!p->name)
1360 return false;
1361
1362 strcpy (p->name, *namep);
1363 }
1364 else
1365 p->name = "";
1366 p->bind = ELF_ST_BIND (sym->st_info);
1367 p->abfd = abfd;
1368 p->shndx = sym->st_shndx;
1369 }
1370 else
1371 {
1372 if (p->bind == STB_WEAK
1373 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1374 {
1375 p->bind = STB_GLOBAL;
1376 p->abfd = abfd;
1377 }
1378 }
1379 *namep = NULL;
1380 return true;
1381 }
1382 else if (! *namep || ! **namep)
1383 return true;
1384 else
1385 {
1386 int i;
1387 struct sparc64_elf_app_reg *p;
1388
1389 p = sparc64_elf_hash_table(info)->app_regs;
1390 for (i = 0; i < 4; i++, p++)
1391 if (p->name != NULL && ! strcmp (p->name, *namep))
1392 {
1393 unsigned char type = ELF_ST_TYPE (sym->st_info);
1394
1395 if (type > STT_FUNC) type = 0;
1396 (*_bfd_error_handler)
1397 (_("Symbol `%s' has differing types: "
1398 "REGISTER in %s, %s in %s"),
1399 *namep, bfd_get_filename (p->abfd), stt_types [type],
1400 bfd_get_filename (abfd));
1401 return false;
1402 }
1403 }
1404 return true;
1405}
1406
1407/* This function takes care of emiting STT_REGISTER symbols
1408 which we cannot easily keep in the symbol hash table. */
1409
1410static boolean
1411sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
6c08d697 1412 bfd *output_bfd ATTRIBUTE_UNUSED;
587ff49e
RH
1413 struct bfd_link_info *info;
1414 PTR finfo;
1415 boolean (*func) PARAMS ((PTR, const char *,
1416 Elf_Internal_Sym *, asection *));
1417{
1418 int reg;
1419 struct sparc64_elf_app_reg *app_regs =
1420 sparc64_elf_hash_table(info)->app_regs;
1421 Elf_Internal_Sym sym;
1422
1423 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1424 at the end of the dynlocal list, so they came at the end of the local
1425 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1426 to back up symtab->sh_info. */
1427 if (elf_hash_table (info)->dynlocal)
1428 {
1fa0ddb3
RH
1429 bfd * dynobj = elf_hash_table (info)->dynobj;
1430 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
587ff49e
RH
1431 struct elf_link_local_dynamic_entry *e;
1432
1433 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1434 if (e->input_indx == -1)
1435 break;
1436 if (e)
1437 {
1438 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1439 = e->dynindx;
1440 }
1441 }
1442
1443 if (info->strip == strip_all)
1444 return true;
1445
1446 for (reg = 0; reg < 4; reg++)
1447 if (app_regs [reg].name != NULL)
1448 {
1449 if (info->strip == strip_some
1450 && bfd_hash_lookup (info->keep_hash,
1451 app_regs [reg].name,
1452 false, false) == NULL)
1453 continue;
1454
1455 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1456 sym.st_size = 0;
1457 sym.st_other = 0;
1458 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1459 sym.st_shndx = app_regs [reg].shndx;
1460 if (! (*func) (finfo, app_regs [reg].name, &sym,
1461 sym.st_shndx == SHN_ABS
1462 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1463 return false;
1464 }
1465
1466 return true;
1467}
1468
1469static int
1470sparc64_elf_get_symbol_type (elf_sym, type)
1471 Elf_Internal_Sym * elf_sym;
1472 int type;
1473{
1474 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1475 return STT_REGISTER;
1476 else
1477 return type;
1478}
1479
1480/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1481 even in SHN_UNDEF section. */
1482
1483static void
1484sparc64_elf_symbol_processing (abfd, asym)
6c08d697 1485 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
1486 asymbol *asym;
1487{
1488 elf_symbol_type *elfsym;
1489
1490 elfsym = (elf_symbol_type *) asym;
1491 if (elfsym->internal_elf_sym.st_info
1492 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1493 {
1494 asym->flags |= BSF_GLOBAL;
1495 }
1496}
1497
252b5132
RH
1498/* Adjust a symbol defined by a dynamic object and referenced by a
1499 regular object. The current definition is in some section of the
1500 dynamic object, but we're not including those sections. We have to
1501 change the definition to something the rest of the link can
1502 understand. */
1503
1504static boolean
1505sparc64_elf_adjust_dynamic_symbol (info, h)
1506 struct bfd_link_info *info;
1507 struct elf_link_hash_entry *h;
1508{
1509 bfd *dynobj;
1510 asection *s;
1511 unsigned int power_of_two;
1512
1513 dynobj = elf_hash_table (info)->dynobj;
1514
1515 /* Make sure we know what is going on here. */
1516 BFD_ASSERT (dynobj != NULL
1517 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1518 || h->weakdef != NULL
1519 || ((h->elf_link_hash_flags
1520 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1521 && (h->elf_link_hash_flags
1522 & ELF_LINK_HASH_REF_REGULAR) != 0
1523 && (h->elf_link_hash_flags
1524 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1525
1526 /* If this is a function, put it in the procedure linkage table. We
1527 will fill in the contents of the procedure linkage table later
1528 (although we could actually do it here). The STT_NOTYPE
1529 condition is a hack specifically for the Oracle libraries
1530 delivered for Solaris; for some inexplicable reason, they define
1531 some of their functions as STT_NOTYPE when they really should be
1532 STT_FUNC. */
1533 if (h->type == STT_FUNC
1534 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1535 || (h->type == STT_NOTYPE
1536 && (h->root.type == bfd_link_hash_defined
1537 || h->root.type == bfd_link_hash_defweak)
1538 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1539 {
1540 if (! elf_hash_table (info)->dynamic_sections_created)
1541 {
1542 /* This case can occur if we saw a WPLT30 reloc in an input
1543 file, but none of the input files were dynamic objects.
1544 In such a case, we don't actually need to build a
1545 procedure linkage table, and we can just do a WDISP30
1546 reloc instead. */
1547 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1548 return true;
1549 }
1550
1551 s = bfd_get_section_by_name (dynobj, ".plt");
1552 BFD_ASSERT (s != NULL);
1553
1554 /* The first four bit in .plt is reserved. */
1555 if (s->_raw_size == 0)
1556 s->_raw_size = PLT_HEADER_SIZE;
1557
1558 /* If this symbol is not defined in a regular file, and we are
1559 not generating a shared library, then set the symbol to this
1560 location in the .plt. This is required to make function
1561 pointers compare as equal between the normal executable and
1562 the shared library. */
1563 if (! info->shared
1564 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1565 {
1566 h->root.u.def.section = s;
1567 h->root.u.def.value = s->_raw_size;
1568 }
1569
1570 /* To simplify matters later, just store the plt index here. */
1571 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1572
1573 /* Make room for this entry. */
1574 s->_raw_size += PLT_ENTRY_SIZE;
1575
1576 /* We also need to make an entry in the .rela.plt section. */
1577
1578 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1579 BFD_ASSERT (s != NULL);
1580
252b5132
RH
1581 s->_raw_size += sizeof (Elf64_External_Rela);
1582
1583 /* The procedure linkage table size is bounded by the magnitude
1584 of the offset we can describe in the entry. */
1585 if (s->_raw_size >= (bfd_vma)1 << 32)
1586 {
1587 bfd_set_error (bfd_error_bad_value);
1588 return false;
1589 }
1590
1591 return true;
1592 }
1593
1594 /* If this is a weak symbol, and there is a real definition, the
1595 processor independent code will have arranged for us to see the
1596 real definition first, and we can just use the same value. */
1597 if (h->weakdef != NULL)
1598 {
1599 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1600 || h->weakdef->root.type == bfd_link_hash_defweak);
1601 h->root.u.def.section = h->weakdef->root.u.def.section;
1602 h->root.u.def.value = h->weakdef->root.u.def.value;
1603 return true;
1604 }
1605
1606 /* This is a reference to a symbol defined by a dynamic object which
1607 is not a function. */
1608
1609 /* If we are creating a shared library, we must presume that the
1610 only references to the symbol are via the global offset table.
1611 For such cases we need not do anything here; the relocations will
1612 be handled correctly by relocate_section. */
1613 if (info->shared)
1614 return true;
1615
1616 /* We must allocate the symbol in our .dynbss section, which will
1617 become part of the .bss section of the executable. There will be
1618 an entry for this symbol in the .dynsym section. The dynamic
1619 object will contain position independent code, so all references
1620 from the dynamic object to this symbol will go through the global
1621 offset table. The dynamic linker will use the .dynsym entry to
1622 determine the address it must put in the global offset table, so
1623 both the dynamic object and the regular object will refer to the
1624 same memory location for the variable. */
1625
1626 s = bfd_get_section_by_name (dynobj, ".dynbss");
1627 BFD_ASSERT (s != NULL);
1628
1629 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1630 to copy the initial value out of the dynamic object and into the
1631 runtime process image. We need to remember the offset into the
1632 .rel.bss section we are going to use. */
1633 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1634 {
1635 asection *srel;
1636
1637 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1638 BFD_ASSERT (srel != NULL);
1639 srel->_raw_size += sizeof (Elf64_External_Rela);
1640 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1641 }
1642
1643 /* We need to figure out the alignment required for this symbol. I
1644 have no idea how ELF linkers handle this. 16-bytes is the size
1645 of the largest type that requires hard alignment -- long double. */
1646 power_of_two = bfd_log2 (h->size);
1647 if (power_of_two > 4)
1648 power_of_two = 4;
1649
1650 /* Apply the required alignment. */
1651 s->_raw_size = BFD_ALIGN (s->_raw_size,
1652 (bfd_size_type) (1 << power_of_two));
1653 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1654 {
1655 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1656 return false;
1657 }
1658
1659 /* Define the symbol as being at this point in the section. */
1660 h->root.u.def.section = s;
1661 h->root.u.def.value = s->_raw_size;
1662
1663 /* Increment the section size to make room for the symbol. */
1664 s->_raw_size += h->size;
1665
1666 return true;
1667}
1668
1669/* Set the sizes of the dynamic sections. */
1670
1671static boolean
1672sparc64_elf_size_dynamic_sections (output_bfd, info)
1673 bfd *output_bfd;
1674 struct bfd_link_info *info;
1675{
1676 bfd *dynobj;
1677 asection *s;
252b5132
RH
1678 boolean relplt;
1679
1680 dynobj = elf_hash_table (info)->dynobj;
1681 BFD_ASSERT (dynobj != NULL);
1682
1683 if (elf_hash_table (info)->dynamic_sections_created)
1684 {
1685 /* Set the contents of the .interp section to the interpreter. */
1686 if (! info->shared)
1687 {
1688 s = bfd_get_section_by_name (dynobj, ".interp");
1689 BFD_ASSERT (s != NULL);
1690 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1691 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1692 }
1693 }
1694 else
1695 {
1696 /* We may have created entries in the .rela.got section.
1697 However, if we are not creating the dynamic sections, we will
1698 not actually use these entries. Reset the size of .rela.got,
1699 which will cause it to get stripped from the output file
1700 below. */
1701 s = bfd_get_section_by_name (dynobj, ".rela.got");
1702 if (s != NULL)
1703 s->_raw_size = 0;
1704 }
1705
1706 /* The check_relocs and adjust_dynamic_symbol entry points have
1707 determined the sizes of the various dynamic sections. Allocate
1708 memory for them. */
252b5132
RH
1709 relplt = false;
1710 for (s = dynobj->sections; s != NULL; s = s->next)
1711 {
1712 const char *name;
1713 boolean strip;
1714
1715 if ((s->flags & SEC_LINKER_CREATED) == 0)
1716 continue;
1717
1718 /* It's OK to base decisions on the section name, because none
1719 of the dynobj section names depend upon the input files. */
1720 name = bfd_get_section_name (dynobj, s);
1721
1722 strip = false;
1723
1724 if (strncmp (name, ".rela", 5) == 0)
1725 {
1726 if (s->_raw_size == 0)
1727 {
1728 /* If we don't need this section, strip it from the
1729 output file. This is to handle .rela.bss and
1730 .rel.plt. We must create it in
1731 create_dynamic_sections, because it must be created
1732 before the linker maps input sections to output
1733 sections. The linker does that before
1734 adjust_dynamic_symbol is called, and it is that
1735 function which decides whether anything needs to go
1736 into these sections. */
1737 strip = true;
1738 }
1739 else
1740 {
252b5132
RH
1741 if (strcmp (name, ".rela.plt") == 0)
1742 relplt = true;
1743
1744 /* We use the reloc_count field as a counter if we need
1745 to copy relocs into the output file. */
1746 s->reloc_count = 0;
1747 }
1748 }
1749 else if (strcmp (name, ".plt") != 0
1750 && strncmp (name, ".got", 4) != 0)
1751 {
1752 /* It's not one of our sections, so don't allocate space. */
1753 continue;
1754 }
1755
1756 if (strip)
1757 {
7f8d5fc9 1758 _bfd_strip_section_from_output (info, s);
252b5132
RH
1759 continue;
1760 }
1761
1762 /* Allocate memory for the section contents. Zero the memory
1763 for the benefit of .rela.plt, which has 4 unused entries
1764 at the beginning, and we don't want garbage. */
1765 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1766 if (s->contents == NULL && s->_raw_size != 0)
1767 return false;
1768 }
1769
1770 if (elf_hash_table (info)->dynamic_sections_created)
1771 {
1772 /* Add some entries to the .dynamic section. We fill in the
1773 values later, in sparc64_elf_finish_dynamic_sections, but we
1774 must add the entries now so that we get the correct size for
1775 the .dynamic section. The DT_DEBUG entry is filled in by the
1776 dynamic linker and used by the debugger. */
dc810e39
AM
1777#define add_dynamic_entry(TAG, VAL) \
1778 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1779
587ff49e
RH
1780 int reg;
1781 struct sparc64_elf_app_reg * app_regs;
1782 struct bfd_strtab_hash *dynstr;
1783 struct elf_link_hash_table *eht = elf_hash_table (info);
1784
dc810e39 1785 if (!info->shared)
252b5132 1786 {
dc810e39 1787 if (!add_dynamic_entry (DT_DEBUG, 0))
252b5132
RH
1788 return false;
1789 }
1790
1791 if (relplt)
1792 {
dc810e39
AM
1793 if (!add_dynamic_entry (DT_PLTGOT, 0)
1794 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1795 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1796 || !add_dynamic_entry (DT_JMPREL, 0))
252b5132
RH
1797 return false;
1798 }
1799
dc810e39
AM
1800 if (!add_dynamic_entry (DT_RELA, 0)
1801 || !add_dynamic_entry (DT_RELASZ, 0)
1802 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
252b5132
RH
1803 return false;
1804
db6751f2 1805 if (info->flags & DF_TEXTREL)
252b5132 1806 {
dc810e39 1807 if (!add_dynamic_entry (DT_TEXTREL, 0))
252b5132
RH
1808 return false;
1809 }
587ff49e
RH
1810
1811 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1812 entries if needed. */
1813 app_regs = sparc64_elf_hash_table (info)->app_regs;
1814 dynstr = eht->dynstr;
1815
1816 for (reg = 0; reg < 4; reg++)
1817 if (app_regs [reg].name != NULL)
1818 {
1819 struct elf_link_local_dynamic_entry *entry, *e;
435b1e90 1820
dc810e39 1821 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
587ff49e
RH
1822 return false;
1823
1824 entry = (struct elf_link_local_dynamic_entry *)
1825 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1826 if (entry == NULL)
1827 return false;
1828
1829 /* We cheat here a little bit: the symbol will not be local, so we
1830 put it at the end of the dynlocal linked list. We will fix it
1831 later on, as we have to fix other fields anyway. */
1832 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1833 entry->isym.st_size = 0;
1834 if (*app_regs [reg].name != '\0')
1835 entry->isym.st_name
1836 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1837 else
1838 entry->isym.st_name = 0;
1839 entry->isym.st_other = 0;
1840 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1841 STT_REGISTER);
1842 entry->isym.st_shndx = app_regs [reg].shndx;
1843 entry->next = NULL;
1844 entry->input_bfd = output_bfd;
1845 entry->input_indx = -1;
1846
1847 if (eht->dynlocal == NULL)
1848 eht->dynlocal = entry;
1849 else
1850 {
1851 for (e = eht->dynlocal; e->next; e = e->next)
1852 ;
1853 e->next = entry;
1854 }
1855 eht->dynsymcount++;
1856 }
252b5132 1857 }
dc810e39 1858#undef add_dynamic_entry
252b5132 1859
252b5132
RH
1860 return true;
1861}
252b5132 1862\f
f7775d95
JJ
1863#define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1864#define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1865
f7775d95
JJ
1866static boolean
1867sparc64_elf_relax_section (abfd, section, link_info, again)
1868 bfd *abfd ATTRIBUTE_UNUSED;
1869 asection *section ATTRIBUTE_UNUSED;
1870 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1871 boolean *again;
1872{
1873 *again = false;
1874 SET_SEC_DO_RELAX (section);
1875 return true;
1876}
1877\f
252b5132
RH
1878/* Relocate a SPARC64 ELF section. */
1879
1880static boolean
1881sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1882 contents, relocs, local_syms, local_sections)
1883 bfd *output_bfd;
1884 struct bfd_link_info *info;
1885 bfd *input_bfd;
1886 asection *input_section;
1887 bfd_byte *contents;
1888 Elf_Internal_Rela *relocs;
1889 Elf_Internal_Sym *local_syms;
1890 asection **local_sections;
1891{
1892 bfd *dynobj;
1893 Elf_Internal_Shdr *symtab_hdr;
1894 struct elf_link_hash_entry **sym_hashes;
1895 bfd_vma *local_got_offsets;
1896 bfd_vma got_base;
1897 asection *sgot;
1898 asection *splt;
1899 asection *sreloc;
1900 Elf_Internal_Rela *rel;
1901 Elf_Internal_Rela *relend;
1902
1903 dynobj = elf_hash_table (info)->dynobj;
1904 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1905 sym_hashes = elf_sym_hashes (input_bfd);
1906 local_got_offsets = elf_local_got_offsets (input_bfd);
1907
1908 if (elf_hash_table(info)->hgot == NULL)
1909 got_base = 0;
1910 else
1911 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1912
1913 sgot = splt = sreloc = NULL;
1914
1915 rel = relocs;
e90fdc1a 1916 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
252b5132
RH
1917 for (; rel < relend; rel++)
1918 {
1919 int r_type;
1920 reloc_howto_type *howto;
6c08d697 1921 unsigned long r_symndx;
252b5132
RH
1922 struct elf_link_hash_entry *h;
1923 Elf_Internal_Sym *sym;
1924 asection *sec;
1925 bfd_vma relocation;
1926 bfd_reloc_status_type r;
1927
f65054f7 1928 r_type = ELF64_R_TYPE_ID (rel->r_info);
60dac299 1929 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
252b5132
RH
1930 {
1931 bfd_set_error (bfd_error_bad_value);
1932 return false;
1933 }
1934 howto = sparc64_elf_howto_table + r_type;
1935
1936 r_symndx = ELF64_R_SYM (rel->r_info);
1937
1938 if (info->relocateable)
1939 {
1940 /* This is a relocateable link. We don't have to change
1941 anything, unless the reloc is against a section symbol,
1942 in which case we have to adjust according to where the
1943 section symbol winds up in the output section. */
1944 if (r_symndx < symtab_hdr->sh_info)
1945 {
1946 sym = local_syms + r_symndx;
1947 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1948 {
1949 sec = local_sections[r_symndx];
1950 rel->r_addend += sec->output_offset + sym->st_value;
1951 }
1952 }
1953
1954 continue;
1955 }
1956
1957 /* This is a final link. */
1958 h = NULL;
1959 sym = NULL;
1960 sec = NULL;
1961 if (r_symndx < symtab_hdr->sh_info)
1962 {
1963 sym = local_syms + r_symndx;
1964 sec = local_sections[r_symndx];
1965 relocation = (sec->output_section->vma
1966 + sec->output_offset
1967 + sym->st_value);
1968 }
1969 else
1970 {
1971 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1972 while (h->root.type == bfd_link_hash_indirect
1973 || h->root.type == bfd_link_hash_warning)
1974 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1975 if (h->root.type == bfd_link_hash_defined
1976 || h->root.type == bfd_link_hash_defweak)
1977 {
1978 boolean skip_it = false;
1979 sec = h->root.u.def.section;
1980
1981 switch (r_type)
1982 {
1983 case R_SPARC_WPLT30:
1984 case R_SPARC_PLT32:
1985 case R_SPARC_HIPLT22:
1986 case R_SPARC_LOPLT10:
1987 case R_SPARC_PCPLT32:
1988 case R_SPARC_PCPLT22:
1989 case R_SPARC_PCPLT10:
1990 case R_SPARC_PLT64:
1991 if (h->plt.offset != (bfd_vma) -1)
1992 skip_it = true;
1993 break;
1994
1995 case R_SPARC_GOT10:
1996 case R_SPARC_GOT13:
1997 case R_SPARC_GOT22:
1998 if (elf_hash_table(info)->dynamic_sections_created
1999 && (!info->shared
2000 || (!info->symbolic && h->dynindx != -1)
2001 || !(h->elf_link_hash_flags
2002 & ELF_LINK_HASH_DEF_REGULAR)))
2003 skip_it = true;
2004 break;
2005
2006 case R_SPARC_PC10:
2007 case R_SPARC_PC22:
2008 case R_SPARC_PC_HH22:
2009 case R_SPARC_PC_HM10:
2010 case R_SPARC_PC_LM22:
2011 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2012 break;
2013 /* FALLTHRU */
2014
2015 case R_SPARC_8:
2016 case R_SPARC_16:
2017 case R_SPARC_32:
2018 case R_SPARC_DISP8:
2019 case R_SPARC_DISP16:
2020 case R_SPARC_DISP32:
2021 case R_SPARC_WDISP30:
2022 case R_SPARC_WDISP22:
2023 case R_SPARC_HI22:
2024 case R_SPARC_22:
2025 case R_SPARC_13:
2026 case R_SPARC_LO10:
2027 case R_SPARC_UA32:
2028 case R_SPARC_10:
2029 case R_SPARC_11:
2030 case R_SPARC_64:
2031 case R_SPARC_OLO10:
2032 case R_SPARC_HH22:
2033 case R_SPARC_HM10:
2034 case R_SPARC_LM22:
2035 case R_SPARC_WDISP19:
2036 case R_SPARC_WDISP16:
2037 case R_SPARC_7:
2038 case R_SPARC_5:
2039 case R_SPARC_6:
2040 case R_SPARC_DISP64:
2041 case R_SPARC_HIX22:
2042 case R_SPARC_LOX10:
2043 case R_SPARC_H44:
2044 case R_SPARC_M44:
2045 case R_SPARC_L44:
2046 case R_SPARC_UA64:
2047 case R_SPARC_UA16:
2048 if (info->shared
2049 && ((!info->symbolic && h->dynindx != -1)
2050 || !(h->elf_link_hash_flags
2051 & ELF_LINK_HASH_DEF_REGULAR)))
2052 skip_it = true;
2053 break;
2054 }
2055
2056 if (skip_it)
2057 {
2058 /* In these cases, we don't need the relocation
2059 value. We check specially because in some
2060 obscure cases sec->output_section will be NULL. */
2061 relocation = 0;
2062 }
2063 else
2064 {
2065 relocation = (h->root.u.def.value
2066 + sec->output_section->vma
2067 + sec->output_offset);
2068 }
2069 }
2070 else if (h->root.type == bfd_link_hash_undefweak)
2071 relocation = 0;
671bae9c
NC
2072 else if (info->shared
2073 && (!info->symbolic || info->allow_shlib_undefined)
3a27a730
L
2074 && !info->no_undefined
2075 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
252b5132
RH
2076 relocation = 0;
2077 else
2078 {
2079 if (! ((*info->callbacks->undefined_symbol)
2080 (info, h->root.root.string, input_bfd,
5cc7c785 2081 input_section, rel->r_offset,
3a27a730
L
2082 (!info->shared || info->no_undefined
2083 || ELF_ST_VISIBILITY (h->other)))))
252b5132 2084 return false;
be040dbb
JJ
2085
2086 /* To avoid generating warning messages about truncated
2087 relocations, set the relocation's address to be the same as
2088 the start of this section. */
2089
2090 if (input_section->output_section != NULL)
2091 relocation = input_section->output_section->vma;
2092 else
2093 relocation = 0;
252b5132
RH
2094 }
2095 }
2096
2097 /* When generating a shared object, these relocations are copied
2098 into the output file to be resolved at run time. */
2099 if (info->shared && (input_section->flags & SEC_ALLOC))
2100 {
2101 switch (r_type)
2102 {
2103 case R_SPARC_PC10:
2104 case R_SPARC_PC22:
2105 case R_SPARC_PC_HH22:
2106 case R_SPARC_PC_HM10:
2107 case R_SPARC_PC_LM22:
2108 if (h != NULL
2109 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2110 break;
2111 /* Fall through. */
2112 case R_SPARC_DISP8:
2113 case R_SPARC_DISP16:
2114 case R_SPARC_DISP32:
2115 case R_SPARC_WDISP30:
2116 case R_SPARC_WDISP22:
2117 case R_SPARC_WDISP19:
2118 case R_SPARC_WDISP16:
2119 case R_SPARC_DISP64:
2120 if (h == NULL)
2121 break;
2122 /* Fall through. */
2123 case R_SPARC_8:
2124 case R_SPARC_16:
2125 case R_SPARC_32:
2126 case R_SPARC_HI22:
2127 case R_SPARC_22:
2128 case R_SPARC_13:
2129 case R_SPARC_LO10:
2130 case R_SPARC_UA32:
2131 case R_SPARC_10:
2132 case R_SPARC_11:
2133 case R_SPARC_64:
2134 case R_SPARC_OLO10:
2135 case R_SPARC_HH22:
2136 case R_SPARC_HM10:
2137 case R_SPARC_LM22:
2138 case R_SPARC_7:
2139 case R_SPARC_5:
2140 case R_SPARC_6:
2141 case R_SPARC_HIX22:
2142 case R_SPARC_LOX10:
2143 case R_SPARC_H44:
2144 case R_SPARC_M44:
2145 case R_SPARC_L44:
2146 case R_SPARC_UA64:
2147 case R_SPARC_UA16:
2148 {
2149 Elf_Internal_Rela outrel;
2150 boolean skip;
2151
2152 if (sreloc == NULL)
2153 {
2154 const char *name =
2155 (bfd_elf_string_from_elf_section
2156 (input_bfd,
2157 elf_elfheader (input_bfd)->e_shstrndx,
2158 elf_section_data (input_section)->rel_hdr.sh_name));
2159
2160 if (name == NULL)
2161 return false;
2162
2163 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2164 && strcmp (bfd_get_section_name(input_bfd,
2165 input_section),
2166 name + 5) == 0);
2167
2168 sreloc = bfd_get_section_by_name (dynobj, name);
2169 BFD_ASSERT (sreloc != NULL);
2170 }
2171
2172 skip = false;
2173
2174 if (elf_section_data (input_section)->stab_info == NULL)
2175 outrel.r_offset = rel->r_offset;
2176 else
2177 {
2178 bfd_vma off;
2179
2180 off = (_bfd_stab_section_offset
2181 (output_bfd, &elf_hash_table (info)->stab_info,
2182 input_section,
2183 &elf_section_data (input_section)->stab_info,
2184 rel->r_offset));
2185 if (off == MINUS_ONE)
2186 skip = true;
2187 outrel.r_offset = off;
2188 }
2189
2190 outrel.r_offset += (input_section->output_section->vma
2191 + input_section->output_offset);
2192
2193 /* Optimize unaligned reloc usage now that we know where
2194 it finally resides. */
2195 switch (r_type)
2196 {
2197 case R_SPARC_16:
2198 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2199 break;
2200 case R_SPARC_UA16:
2201 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2202 break;
2203 case R_SPARC_32:
2204 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2205 break;
2206 case R_SPARC_UA32:
2207 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2208 break;
2209 case R_SPARC_64:
2210 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2211 break;
2212 case R_SPARC_UA64:
2213 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2214 break;
2215 }
2216
2217 if (skip)
2218 memset (&outrel, 0, sizeof outrel);
2219 /* h->dynindx may be -1 if the symbol was marked to
2220 become local. */
2221 else if (h != NULL
2222 && ((! info->symbolic && h->dynindx != -1)
2223 || (h->elf_link_hash_flags
2224 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2225 {
2226 BFD_ASSERT (h->dynindx != -1);
f65054f7
RH
2227 outrel.r_info
2228 = ELF64_R_INFO (h->dynindx,
2229 ELF64_R_TYPE_INFO (
2230 ELF64_R_TYPE_DATA (rel->r_info),
2231 r_type));
252b5132
RH
2232 outrel.r_addend = rel->r_addend;
2233 }
2234 else
2235 {
2236 if (r_type == R_SPARC_64)
2237 {
2238 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2239 outrel.r_addend = relocation + rel->r_addend;
2240 }
2241 else
2242 {
2243 long indx;
2244
2245 if (h == NULL)
2246 sec = local_sections[r_symndx];
2247 else
2248 {
2249 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2250 || (h->root.type
2251 == bfd_link_hash_defweak));
2252 sec = h->root.u.def.section;
2253 }
2254 if (sec != NULL && bfd_is_abs_section (sec))
2255 indx = 0;
2256 else if (sec == NULL || sec->owner == NULL)
2257 {
2258 bfd_set_error (bfd_error_bad_value);
2259 return false;
2260 }
2261 else
2262 {
2263 asection *osec;
2264
2265 osec = sec->output_section;
2266 indx = elf_section_data (osec)->dynindx;
2267
2268 /* FIXME: we really should be able to link non-pic
2269 shared libraries. */
2270 if (indx == 0)
2271 {
2272 BFD_FAIL ();
2273 (*_bfd_error_handler)
2274 (_("%s: probably compiled without -fPIC?"),
2275 bfd_get_filename (input_bfd));
2276 bfd_set_error (bfd_error_bad_value);
2277 return false;
2278 }
2279 }
2280
f65054f7
RH
2281 outrel.r_info
2282 = ELF64_R_INFO (indx,
2283 ELF64_R_TYPE_INFO (
2284 ELF64_R_TYPE_DATA (rel->r_info),
2285 r_type));
840a9995 2286 outrel.r_addend = relocation + rel->r_addend;
252b5132
RH
2287 }
2288 }
2289
2290 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2291 (((Elf64_External_Rela *)
2292 sreloc->contents)
2293 + sreloc->reloc_count));
2294 ++sreloc->reloc_count;
2295
2296 /* This reloc will be computed at runtime, so there's no
20278fa3
JJ
2297 need to do anything now. */
2298 continue;
252b5132
RH
2299 }
2300 break;
2301 }
2302 }
2303
2304 switch (r_type)
2305 {
2306 case R_SPARC_GOT10:
2307 case R_SPARC_GOT13:
2308 case R_SPARC_GOT22:
2309 /* Relocation is to the entry for this symbol in the global
2310 offset table. */
2311 if (sgot == NULL)
2312 {
2313 sgot = bfd_get_section_by_name (dynobj, ".got");
2314 BFD_ASSERT (sgot != NULL);
2315 }
2316
2317 if (h != NULL)
2318 {
2319 bfd_vma off = h->got.offset;
2320 BFD_ASSERT (off != (bfd_vma) -1);
2321
2322 if (! elf_hash_table (info)->dynamic_sections_created
2323 || (info->shared
2324 && (info->symbolic || h->dynindx == -1)
2325 && (h->elf_link_hash_flags
2326 & ELF_LINK_HASH_DEF_REGULAR)))
2327 {
2328 /* This is actually a static link, or it is a -Bsymbolic
2329 link and the symbol is defined locally, or the symbol
2330 was forced to be local because of a version file. We
2331 must initialize this entry in the global offset table.
2332 Since the offset must always be a multiple of 8, we
2333 use the least significant bit to record whether we
2334 have initialized it already.
2335
2336 When doing a dynamic link, we create a .rela.got
2337 relocation entry to initialize the value. This is
2338 done in the finish_dynamic_symbol routine. */
2339
2340 if ((off & 1) != 0)
2341 off &= ~1;
2342 else
2343 {
2344 bfd_put_64 (output_bfd, relocation,
2345 sgot->contents + off);
2346 h->got.offset |= 1;
2347 }
2348 }
2349 relocation = sgot->output_offset + off - got_base;
2350 }
2351 else
2352 {
2353 bfd_vma off;
2354
2355 BFD_ASSERT (local_got_offsets != NULL);
2356 off = local_got_offsets[r_symndx];
2357 BFD_ASSERT (off != (bfd_vma) -1);
2358
2359 /* The offset must always be a multiple of 8. We use
2360 the least significant bit to record whether we have
2361 already processed this entry. */
2362 if ((off & 1) != 0)
2363 off &= ~1;
2364 else
2365 {
252b5132
RH
2366 local_got_offsets[r_symndx] |= 1;
2367
2368 if (info->shared)
2369 {
2370 asection *srelgot;
2371 Elf_Internal_Rela outrel;
2372
ea5fbc67
GK
2373 /* The Solaris 2.7 64-bit linker adds the contents
2374 of the location to the value of the reloc.
2375 Note this is different behaviour to the
2376 32-bit linker, which both adds the contents
2377 and ignores the addend. So clear the location. */
dc810e39
AM
2378 bfd_put_64 (output_bfd, (bfd_vma) 0,
2379 sgot->contents + off);
435b1e90 2380
252b5132
RH
2381 /* We need to generate a R_SPARC_RELATIVE reloc
2382 for the dynamic linker. */
2383 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2384 BFD_ASSERT (srelgot != NULL);
2385
2386 outrel.r_offset = (sgot->output_section->vma
2387 + sgot->output_offset
2388 + off);
2389 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2390 outrel.r_addend = relocation;
2391 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2392 (((Elf64_External_Rela *)
2393 srelgot->contents)
2394 + srelgot->reloc_count));
2395 ++srelgot->reloc_count;
2396 }
ea5fbc67
GK
2397 else
2398 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
252b5132
RH
2399 }
2400 relocation = sgot->output_offset + off - got_base;
2401 }
2402 goto do_default;
2403
2404 case R_SPARC_WPLT30:
2405 case R_SPARC_PLT32:
2406 case R_SPARC_HIPLT22:
2407 case R_SPARC_LOPLT10:
2408 case R_SPARC_PCPLT32:
2409 case R_SPARC_PCPLT22:
2410 case R_SPARC_PCPLT10:
2411 case R_SPARC_PLT64:
2412 /* Relocation is to the entry for this symbol in the
2413 procedure linkage table. */
2414 BFD_ASSERT (h != NULL);
2415
2416 if (h->plt.offset == (bfd_vma) -1)
2417 {
2418 /* We didn't make a PLT entry for this symbol. This
2419 happens when statically linking PIC code, or when
2420 using -Bsymbolic. */
2421 goto do_default;
2422 }
2423
2424 if (splt == NULL)
2425 {
2426 splt = bfd_get_section_by_name (dynobj, ".plt");
2427 BFD_ASSERT (splt != NULL);
2428 }
2429
2430 relocation = (splt->output_section->vma
2431 + splt->output_offset
2432 + sparc64_elf_plt_entry_offset (h->plt.offset));
f7775d95
JJ
2433 if (r_type == R_SPARC_WPLT30)
2434 goto do_wplt30;
252b5132
RH
2435 goto do_default;
2436
2437 case R_SPARC_OLO10:
2438 {
2439 bfd_vma x;
2440
2441 relocation += rel->r_addend;
2442 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2443
2444 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2445 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
252b5132
RH
2446 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2447
2448 r = bfd_check_overflow (howto->complain_on_overflow,
2449 howto->bitsize, howto->rightshift,
2450 bfd_arch_bits_per_address (input_bfd),
2451 relocation);
2452 }
2453 break;
2454
2455 case R_SPARC_WDISP16:
2456 {
2457 bfd_vma x;
2458
2459 relocation += rel->r_addend;
2460 /* Adjust for pc-relative-ness. */
2461 relocation -= (input_section->output_section->vma
2462 + input_section->output_offset);
2463 relocation -= rel->r_offset;
2464
2465 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39
AM
2466 x &= ~(bfd_vma) 0x303fff;
2467 x |= ((((relocation >> 2) & 0xc000) << 6)
2468 | ((relocation >> 2) & 0x3fff));
252b5132
RH
2469 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2470
2471 r = bfd_check_overflow (howto->complain_on_overflow,
2472 howto->bitsize, howto->rightshift,
2473 bfd_arch_bits_per_address (input_bfd),
2474 relocation);
2475 }
2476 break;
2477
2478 case R_SPARC_HIX22:
2479 {
2480 bfd_vma x;
2481
2482 relocation += rel->r_addend;
2483 relocation = relocation ^ MINUS_ONE;
2484
2485 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2486 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
252b5132
RH
2487 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2488
2489 r = bfd_check_overflow (howto->complain_on_overflow,
2490 howto->bitsize, howto->rightshift,
2491 bfd_arch_bits_per_address (input_bfd),
2492 relocation);
2493 }
2494 break;
2495
2496 case R_SPARC_LOX10:
2497 {
2498 bfd_vma x;
2499
2500 relocation += rel->r_addend;
2501 relocation = (relocation & 0x3ff) | 0x1c00;
2502
2503 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2504 x = (x & ~(bfd_vma) 0x1fff) | relocation;
252b5132
RH
2505 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2506
2507 r = bfd_reloc_ok;
2508 }
2509 break;
2510
f7775d95
JJ
2511 case R_SPARC_WDISP30:
2512 do_wplt30:
2513 if (SEC_DO_RELAX (input_section)
2514 && rel->r_offset + 4 < input_section->_raw_size)
2515 {
2516#define G0 0
2517#define O7 15
2518#define XCC (2 << 20)
2519#define COND(x) (((x)&0xf)<<25)
2520#define CONDA COND(0x8)
2521#define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2522#define INSN_BA (F2(0,2) | CONDA)
2523#define INSN_OR F3(2, 0x2, 0)
2524#define INSN_NOP F2(0,4)
2525
2526 bfd_vma x, y;
2527
2528 /* If the instruction is a call with either:
2529 restore
2530 arithmetic instruction with rd == %o7
2531 where rs1 != %o7 and rs2 if it is register != %o7
2532 then we can optimize if the call destination is near
2533 by changing the call into a branch always. */
2534 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2535 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2536 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2537 {
2538 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2539 || ((y & OP3(0x28)) == 0 /* arithmetic */
2540 && (y & RD(~0)) == RD(O7)))
2541 && (y & RS1(~0)) != RS1(O7)
2542 && ((y & F3I(~0))
2543 || (y & RS2(~0)) != RS2(O7)))
2544 {
2545 bfd_vma reloc;
2546
2547 reloc = relocation + rel->r_addend - rel->r_offset;
2548 reloc -= (input_section->output_section->vma
2549 + input_section->output_offset);
2550 if (reloc & 3)
2551 goto do_default;
2552
2553 /* Ensure the branch fits into simm22. */
2554 if ((reloc & ~(bfd_vma)0x7fffff)
2555 && ((reloc | 0x7fffff) != MINUS_ONE))
2556 goto do_default;
2557 reloc >>= 2;
2558
2559 /* Check whether it fits into simm19. */
2560 if ((reloc & 0x3c0000) == 0
2561 || (reloc & 0x3c0000) == 0x3c0000)
2562 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2563 else
2564 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2565 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2566 r = bfd_reloc_ok;
2567 if (rel->r_offset >= 4
2568 && (y & (0xffffffff ^ RS1(~0)))
2569 == (INSN_OR | RD(O7) | RS2(G0)))
2570 {
2571 bfd_vma z;
2572 unsigned int reg;
2573
2574 z = bfd_get_32 (input_bfd,
2575 contents + rel->r_offset - 4);
2576 if ((z & (0xffffffff ^ RD(~0)))
2577 != (INSN_OR | RS1(O7) | RS2(G0)))
2578 break;
2579
2580 /* The sequence was
2581 or %o7, %g0, %rN
2582 call foo
2583 or %rN, %g0, %o7
2584
2585 If call foo was replaced with ba, replace
2586 or %rN, %g0, %o7 with nop. */
2587
2588 reg = (y & RS1(~0)) >> 14;
2589 if (reg != ((z & RD(~0)) >> 25)
2590 || reg == G0 || reg == O7)
2591 break;
2592
dc810e39 2593 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
f7775d95
JJ
2594 contents + rel->r_offset + 4);
2595 }
2596 break;
2597 }
2598 }
2599 }
2600 /* FALLTHROUGH */
2601
252b5132
RH
2602 default:
2603 do_default:
2604 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2605 contents, rel->r_offset,
2606 relocation, rel->r_addend);
2607 break;
2608 }
2609
2610 switch (r)
2611 {
2612 case bfd_reloc_ok:
2613 break;
2614
2615 default:
2616 case bfd_reloc_outofrange:
2617 abort ();
2618
2619 case bfd_reloc_overflow:
2620 {
2621 const char *name;
2622
2623 if (h != NULL)
2624 {
2625 if (h->root.type == bfd_link_hash_undefweak
2626 && howto->pc_relative)
2627 {
2628 /* Assume this is a call protected by other code that
2629 detect the symbol is undefined. If this is the case,
435b1e90 2630 we can safely ignore the overflow. If not, the
252b5132
RH
2631 program is hosed anyway, and a little warning isn't
2632 going to help. */
2633 break;
2634 }
435b1e90 2635
252b5132
RH
2636 name = h->root.root.string;
2637 }
2638 else
2639 {
2640 name = (bfd_elf_string_from_elf_section
2641 (input_bfd,
2642 symtab_hdr->sh_link,
2643 sym->st_name));
2644 if (name == NULL)
2645 return false;
2646 if (*name == '\0')
2647 name = bfd_section_name (input_bfd, sec);
2648 }
2649 if (! ((*info->callbacks->reloc_overflow)
2650 (info, name, howto->name, (bfd_vma) 0,
2651 input_bfd, input_section, rel->r_offset)))
2652 return false;
2653 }
2654 break;
2655 }
2656 }
2657
2658 return true;
2659}
2660
2661/* Finish up dynamic symbol handling. We set the contents of various
2662 dynamic sections here. */
2663
2664static boolean
2665sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2666 bfd *output_bfd;
2667 struct bfd_link_info *info;
2668 struct elf_link_hash_entry *h;
2669 Elf_Internal_Sym *sym;
2670{
2671 bfd *dynobj;
2672
2673 dynobj = elf_hash_table (info)->dynobj;
2674
2675 if (h->plt.offset != (bfd_vma) -1)
2676 {
2677 asection *splt;
2678 asection *srela;
2679 Elf_Internal_Rela rela;
2680
435b1e90 2681 /* This symbol has an entry in the PLT. Set it up. */
252b5132
RH
2682
2683 BFD_ASSERT (h->dynindx != -1);
2684
2685 splt = bfd_get_section_by_name (dynobj, ".plt");
2686 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2687 BFD_ASSERT (splt != NULL && srela != NULL);
2688
2689 /* Fill in the entry in the .rela.plt section. */
2690
2691 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2692 {
2693 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2694 rela.r_addend = 0;
2695 }
2696 else
2697 {
dc810e39 2698 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
252b5132 2699 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
a11c78e7
RH
2700 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2701 -(splt->output_section->vma + splt->output_offset);
252b5132
RH
2702 }
2703 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2704 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2705
be040dbb
JJ
2706 /* Adjust for the first 4 reserved elements in the .plt section
2707 when setting the offset in the .rela.plt section.
2708 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2709 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2710
252b5132
RH
2711 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2712 ((Elf64_External_Rela *) srela->contents
be040dbb 2713 + (h->plt.offset - 4)));
252b5132
RH
2714
2715 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2716 {
2717 /* Mark the symbol as undefined, rather than as defined in
2718 the .plt section. Leave the value alone. */
2719 sym->st_shndx = SHN_UNDEF;
8701c1bc
JJ
2720 /* If the symbol is weak, we do need to clear the value.
2721 Otherwise, the PLT entry would provide a definition for
2722 the symbol even if the symbol wasn't defined anywhere,
2723 and so the symbol would never be NULL. */
2724 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2725 == 0)
2726 sym->st_value = 0;
252b5132
RH
2727 }
2728 }
2729
2730 if (h->got.offset != (bfd_vma) -1)
2731 {
2732 asection *sgot;
2733 asection *srela;
2734 Elf_Internal_Rela rela;
2735
2736 /* This symbol has an entry in the GOT. Set it up. */
2737
2738 sgot = bfd_get_section_by_name (dynobj, ".got");
2739 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2740 BFD_ASSERT (sgot != NULL && srela != NULL);
2741
2742 rela.r_offset = (sgot->output_section->vma
2743 + sgot->output_offset
dc810e39 2744 + (h->got.offset &~ (bfd_vma) 1));
252b5132
RH
2745
2746 /* If this is a -Bsymbolic link, and the symbol is defined
2747 locally, we just want to emit a RELATIVE reloc. Likewise if
2748 the symbol was forced to be local because of a version file.
2749 The entry in the global offset table will already have been
2750 initialized in the relocate_section function. */
2751 if (info->shared
2752 && (info->symbolic || h->dynindx == -1)
2753 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2754 {
2755 asection *sec = h->root.u.def.section;
2756 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2757 rela.r_addend = (h->root.u.def.value
2758 + sec->output_section->vma
2759 + sec->output_offset);
2760 }
2761 else
2762 {
2763 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2764 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2765 rela.r_addend = 0;
2766 }
2767
2768 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2769 ((Elf64_External_Rela *) srela->contents
2770 + srela->reloc_count));
2771 ++srela->reloc_count;
2772 }
2773
2774 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2775 {
2776 asection *s;
2777 Elf_Internal_Rela rela;
2778
2779 /* This symbols needs a copy reloc. Set it up. */
2780
2781 BFD_ASSERT (h->dynindx != -1);
2782
2783 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2784 ".rela.bss");
2785 BFD_ASSERT (s != NULL);
2786
2787 rela.r_offset = (h->root.u.def.value
2788 + h->root.u.def.section->output_section->vma
2789 + h->root.u.def.section->output_offset);
2790 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2791 rela.r_addend = 0;
2792 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2793 ((Elf64_External_Rela *) s->contents
2794 + s->reloc_count));
2795 ++s->reloc_count;
2796 }
2797
2798 /* Mark some specially defined symbols as absolute. */
2799 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2800 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2801 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2802 sym->st_shndx = SHN_ABS;
2803
2804 return true;
2805}
2806
2807/* Finish up the dynamic sections. */
2808
2809static boolean
2810sparc64_elf_finish_dynamic_sections (output_bfd, info)
2811 bfd *output_bfd;
2812 struct bfd_link_info *info;
2813{
2814 bfd *dynobj;
587ff49e 2815 int stt_regidx = -1;
252b5132
RH
2816 asection *sdyn;
2817 asection *sgot;
2818
2819 dynobj = elf_hash_table (info)->dynobj;
2820
2821 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2822
2823 if (elf_hash_table (info)->dynamic_sections_created)
2824 {
2825 asection *splt;
2826 Elf64_External_Dyn *dyncon, *dynconend;
2827
2828 splt = bfd_get_section_by_name (dynobj, ".plt");
2829 BFD_ASSERT (splt != NULL && sdyn != NULL);
2830
2831 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2832 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2833 for (; dyncon < dynconend; dyncon++)
2834 {
2835 Elf_Internal_Dyn dyn;
2836 const char *name;
2837 boolean size;
2838
2839 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2840
2841 switch (dyn.d_tag)
2842 {
2843 case DT_PLTGOT: name = ".plt"; size = false; break;
2844 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2845 case DT_JMPREL: name = ".rela.plt"; size = false; break;
587ff49e
RH
2846 case DT_SPARC_REGISTER:
2847 if (stt_regidx == -1)
2848 {
2849 stt_regidx =
2850 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2851 if (stt_regidx == -1)
2852 return false;
2853 }
2854 dyn.d_un.d_val = stt_regidx++;
2855 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2856 /* fallthrough */
252b5132
RH
2857 default: name = NULL; size = false; break;
2858 }
2859
2860 if (name != NULL)
2861 {
2862 asection *s;
2863
2864 s = bfd_get_section_by_name (output_bfd, name);
2865 if (s == NULL)
2866 dyn.d_un.d_val = 0;
2867 else
2868 {
2869 if (! size)
2870 dyn.d_un.d_ptr = s->vma;
2871 else
2872 {
2873 if (s->_cooked_size != 0)
2874 dyn.d_un.d_val = s->_cooked_size;
2875 else
2876 dyn.d_un.d_val = s->_raw_size;
2877 }
2878 }
2879 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2880 }
2881 }
2882
2883 /* Initialize the contents of the .plt section. */
2884 if (splt->_raw_size > 0)
2885 {
dc810e39
AM
2886 sparc64_elf_build_plt (output_bfd, splt->contents,
2887 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
252b5132
RH
2888 }
2889
2890 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2891 PLT_ENTRY_SIZE;
2892 }
2893
2894 /* Set the first entry in the global offset table to the address of
2895 the dynamic section. */
2896 sgot = bfd_get_section_by_name (dynobj, ".got");
2897 BFD_ASSERT (sgot != NULL);
2898 if (sgot->_raw_size > 0)
2899 {
2900 if (sdyn == NULL)
2901 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2902 else
2903 bfd_put_64 (output_bfd,
2904 sdyn->output_section->vma + sdyn->output_offset,
2905 sgot->contents);
2906 }
2907
2908 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2909
252b5132
RH
2910 return true;
2911}
db6751f2
JJ
2912
2913static enum elf_reloc_type_class
2914sparc64_elf_reloc_type_class (type)
2915 int type;
2916{
2917 switch (type)
2918 {
2919 case R_SPARC_RELATIVE:
2920 return reloc_class_relative;
2921 case R_SPARC_JMP_SLOT:
2922 return reloc_class_plt;
2923 case R_SPARC_COPY:
2924 return reloc_class_copy;
2925 default:
2926 return reloc_class_normal;
2927 }
2928}
252b5132 2929\f
435b1e90 2930/* Functions for dealing with the e_flags field. */
252b5132 2931
069f40e5
JJ
2932/* Copy backend specific data from one object module to another */
2933static boolean
2934sparc64_elf_copy_private_bfd_data (ibfd, obfd)
2935 bfd *ibfd, *obfd;
2936{
2937 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2938 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2939 return true;
2940
2941 BFD_ASSERT (!elf_flags_init (obfd)
2942 || (elf_elfheader (obfd)->e_flags
2943 == elf_elfheader (ibfd)->e_flags));
2944
2945 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2946 elf_flags_init (obfd) = true;
2947 return true;
2948}
2949
252b5132
RH
2950/* Merge backend specific data from an object file to the output
2951 object file when linking. */
2952
2953static boolean
2954sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2955 bfd *ibfd;
2956 bfd *obfd;
2957{
2958 boolean error;
2959 flagword new_flags, old_flags;
2960 int new_mm, old_mm;
2961
2962 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2963 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2964 return true;
2965
2966 new_flags = elf_elfheader (ibfd)->e_flags;
2967 old_flags = elf_elfheader (obfd)->e_flags;
2968
2969 if (!elf_flags_init (obfd)) /* First call, no flags set */
2970 {
2971 elf_flags_init (obfd) = true;
2972 elf_elfheader (obfd)->e_flags = new_flags;
2973 }
435b1e90 2974
252b5132
RH
2975 else if (new_flags == old_flags) /* Compatible flags are ok */
2976 ;
435b1e90 2977
252b5132
RH
2978 else /* Incompatible flags */
2979 {
2980 error = false;
19f7b010
JJ
2981
2982#define EF_SPARC_ISA_EXTENSIONS \
2983 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2984
37fb6db1
ILT
2985 if ((ibfd->flags & DYNAMIC) != 0)
2986 {
2987 /* We don't want dynamic objects memory ordering and
2988 architecture to have any role. That's what dynamic linker
2989 should do. */
19f7b010 2990 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
6c08d697 2991 new_flags |= (old_flags
19f7b010 2992 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
37fb6db1
ILT
2993 }
2994 else
2995 {
2996 /* Choose the highest architecture requirements. */
19f7b010
JJ
2997 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2998 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2999 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3000 && (old_flags & EF_SPARC_HAL_R1))
37fb6db1
ILT
3001 {
3002 error = true;
3003 (*_bfd_error_handler)
3004 (_("%s: linking UltraSPARC specific with HAL specific code"),
3005 bfd_get_filename (ibfd));
3006 }
3007 /* Choose the most restrictive memory ordering. */
3008 old_mm = (old_flags & EF_SPARCV9_MM);
3009 new_mm = (new_flags & EF_SPARCV9_MM);
3010 old_flags &= ~EF_SPARCV9_MM;
3011 new_flags &= ~EF_SPARCV9_MM;
3012 if (new_mm < old_mm)
3013 old_mm = new_mm;
3014 old_flags |= old_mm;
3015 new_flags |= old_mm;
3016 }
252b5132
RH
3017
3018 /* Warn about any other mismatches */
3019 if (new_flags != old_flags)
3020 {
3021 error = true;
3022 (*_bfd_error_handler)
3023 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3024 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
3025 }
3026
3027 elf_elfheader (obfd)->e_flags = old_flags;
3028
3029 if (error)
3030 {
3031 bfd_set_error (bfd_error_bad_value);
3032 return false;
3033 }
3034 }
3035 return true;
3036}
587ff49e
RH
3037\f
3038/* Print a STT_REGISTER symbol to file FILE. */
252b5132 3039
587ff49e
RH
3040static const char *
3041sparc64_elf_print_symbol_all (abfd, filep, symbol)
6c08d697 3042 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
3043 PTR filep;
3044 asymbol *symbol;
3045{
3046 FILE *file = (FILE *) filep;
3047 int reg, type;
435b1e90 3048
587ff49e
RH
3049 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3050 != STT_REGISTER)
3051 return NULL;
3052
3053 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3054 type = symbol->flags;
3055 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3056 ((type & BSF_LOCAL)
3057 ? (type & BSF_GLOBAL) ? '!' : 'l'
99c79b2e
AJ
3058 : (type & BSF_GLOBAL) ? 'g' : ' '),
3059 (type & BSF_WEAK) ? 'w' : ' ');
587ff49e
RH
3060 if (symbol->name == NULL || symbol->name [0] == '\0')
3061 return "#scratch";
3062 else
3063 return symbol->name;
3064}
252b5132
RH
3065\f
3066/* Set the right machine number for a SPARC64 ELF file. */
3067
3068static boolean
3069sparc64_elf_object_p (abfd)
3070 bfd *abfd;
3071{
3072 unsigned long mach = bfd_mach_sparc_v9;
19f7b010
JJ
3073
3074 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3075 mach = bfd_mach_sparc_v9b;
3076 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
252b5132
RH
3077 mach = bfd_mach_sparc_v9a;
3078 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3079}
3080
f65054f7
RH
3081/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3082 standard ELF, because R_SPARC_OLO10 has secondary addend in
3083 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3084 relocation handling routines. */
3085
3086const struct elf_size_info sparc64_elf_size_info =
3087{
3088 sizeof (Elf64_External_Ehdr),
3089 sizeof (Elf64_External_Phdr),
3090 sizeof (Elf64_External_Shdr),
3091 sizeof (Elf64_External_Rel),
3092 sizeof (Elf64_External_Rela),
3093 sizeof (Elf64_External_Sym),
3094 sizeof (Elf64_External_Dyn),
3095 sizeof (Elf_External_Note),
a11c78e7 3096 4, /* hash-table entry size */
f65054f7
RH
3097 /* internal relocations per external relocations.
3098 For link purposes we use just 1 internal per
3099 1 external, for assembly and slurp symbol table
435b1e90 3100 we use 2. */
f65054f7
RH
3101 1,
3102 64, /* arch_size */
3103 8, /* file_align */
3104 ELFCLASS64,
3105 EV_CURRENT,
3106 bfd_elf64_write_out_phdrs,
3107 bfd_elf64_write_shdrs_and_ehdr,
3108 sparc64_elf_write_relocs,
3109 bfd_elf64_swap_symbol_out,
3110 sparc64_elf_slurp_reloc_table,
3111 bfd_elf64_slurp_symbol_table,
3112 bfd_elf64_swap_dyn_in,
3113 bfd_elf64_swap_dyn_out,
3114 NULL,
3115 NULL,
3116 NULL,
3117 NULL
3118};
3119
252b5132
RH
3120#define TARGET_BIG_SYM bfd_elf64_sparc_vec
3121#define TARGET_BIG_NAME "elf64-sparc"
3122#define ELF_ARCH bfd_arch_sparc
3123#define ELF_MAXPAGESIZE 0x100000
3124
3125/* This is the official ABI value. */
3126#define ELF_MACHINE_CODE EM_SPARCV9
3127
3128/* This is the value that we used before the ABI was released. */
3129#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3130
587ff49e
RH
3131#define bfd_elf64_bfd_link_hash_table_create \
3132 sparc64_elf_bfd_link_hash_table_create
435b1e90 3133
252b5132
RH
3134#define elf_info_to_howto \
3135 sparc64_elf_info_to_howto
f65054f7
RH
3136#define bfd_elf64_get_reloc_upper_bound \
3137 sparc64_elf_get_reloc_upper_bound
3138#define bfd_elf64_get_dynamic_reloc_upper_bound \
3139 sparc64_elf_get_dynamic_reloc_upper_bound
3140#define bfd_elf64_canonicalize_dynamic_reloc \
3141 sparc64_elf_canonicalize_dynamic_reloc
252b5132
RH
3142#define bfd_elf64_bfd_reloc_type_lookup \
3143 sparc64_elf_reloc_type_lookup
f7775d95
JJ
3144#define bfd_elf64_bfd_relax_section \
3145 sparc64_elf_relax_section
252b5132
RH
3146
3147#define elf_backend_create_dynamic_sections \
3148 _bfd_elf_create_dynamic_sections
587ff49e
RH
3149#define elf_backend_add_symbol_hook \
3150 sparc64_elf_add_symbol_hook
3151#define elf_backend_get_symbol_type \
3152 sparc64_elf_get_symbol_type
3153#define elf_backend_symbol_processing \
3154 sparc64_elf_symbol_processing
252b5132
RH
3155#define elf_backend_check_relocs \
3156 sparc64_elf_check_relocs
3157#define elf_backend_adjust_dynamic_symbol \
3158 sparc64_elf_adjust_dynamic_symbol
3159#define elf_backend_size_dynamic_sections \
3160 sparc64_elf_size_dynamic_sections
3161#define elf_backend_relocate_section \
3162 sparc64_elf_relocate_section
3163#define elf_backend_finish_dynamic_symbol \
3164 sparc64_elf_finish_dynamic_symbol
3165#define elf_backend_finish_dynamic_sections \
3166 sparc64_elf_finish_dynamic_sections
587ff49e
RH
3167#define elf_backend_print_symbol_all \
3168 sparc64_elf_print_symbol_all
3169#define elf_backend_output_arch_syms \
3170 sparc64_elf_output_arch_syms
069f40e5
JJ
3171#define bfd_elf64_bfd_copy_private_bfd_data \
3172 sparc64_elf_copy_private_bfd_data
252b5132
RH
3173#define bfd_elf64_bfd_merge_private_bfd_data \
3174 sparc64_elf_merge_private_bfd_data
3175
f65054f7
RH
3176#define elf_backend_size_info \
3177 sparc64_elf_size_info
252b5132
RH
3178#define elf_backend_object_p \
3179 sparc64_elf_object_p
db6751f2
JJ
3180#define elf_backend_reloc_type_class \
3181 sparc64_elf_reloc_type_class
252b5132
RH
3182
3183#define elf_backend_want_got_plt 0
3184#define elf_backend_plt_readonly 0
3185#define elf_backend_want_plt_sym 1
3186
3187/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3188#define elf_backend_plt_alignment 8
3189
3190#define elf_backend_got_header_size 8
3191#define elf_backend_plt_header_size PLT_HEADER_SIZE
3192
3193#include "elf64-target.h"
This page took 0.224392 seconds and 4 git commands to generate.