2002-11-05 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
CommitLineData
252b5132 1/* SPARC-specific support for 64-bit ELF
e2d34d7d 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
37fb6db1 3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
f7775d95 25#include "opcode/sparc.h"
252b5132
RH
26
27/* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30/*#define SPARC64_OLD_RELOCS*/
31
32#include "elf/sparc.h"
33
34/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35#define MINUS_ONE (~ (bfd_vma) 0)
36
587ff49e 37static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
99c79b2e
AJ
38 PARAMS ((bfd *));
39static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
252b5132
RH
42static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47static void sparc64_elf_build_plt
99c79b2e 48 PARAMS ((bfd *, unsigned char *, int));
252b5132 49static bfd_vma sparc64_elf_plt_entry_offset
dc810e39 50 PARAMS ((bfd_vma));
252b5132 51static bfd_vma sparc64_elf_plt_ptr_offset
dc810e39 52 PARAMS ((bfd_vma, bfd_vma));
252b5132
RH
53
54static boolean sparc64_elf_check_relocs
99c79b2e
AJ
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
252b5132 57static boolean sparc64_elf_adjust_dynamic_symbol
99c79b2e 58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
252b5132 59static boolean sparc64_elf_size_dynamic_sections
99c79b2e 60 PARAMS ((bfd *, struct bfd_link_info *));
587ff49e
RH
61static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
99c79b2e 65 const char **, flagword *, asection **, bfd_vma *));
5d964dfa
AM
66static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
587ff49e
RH
69static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
252b5132
RH
71
72static boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
0594c12d
AM
75static boolean sparc64_elf_fake_sections
76 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
77
99c79b2e
AJ
78static const char *sparc64_elf_print_symbol_all
79 PARAMS ((bfd *, PTR, asymbol *));
f7775d95
JJ
80static boolean sparc64_elf_relax_section
81 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
252b5132
RH
82static boolean sparc64_elf_relocate_section
83 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
84 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
99c79b2e
AJ
85static boolean sparc64_elf_finish_dynamic_symbol
86 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
87 Elf_Internal_Sym *));
88static boolean sparc64_elf_finish_dynamic_sections
89 PARAMS ((bfd *, struct bfd_link_info *));
252b5132 90static boolean sparc64_elf_object_p PARAMS ((bfd *));
f65054f7
RH
91static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
92static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
93static boolean sparc64_elf_slurp_one_reloc_table
94 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
95static boolean sparc64_elf_slurp_reloc_table
96 PARAMS ((bfd *, asection *, asymbol **, boolean));
97static long sparc64_elf_canonicalize_dynamic_reloc
98 PARAMS ((bfd *, arelent **, asymbol **));
99static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
f51e552e
AM
100static enum elf_reloc_type_class sparc64_elf_reloc_type_class
101 PARAMS ((const Elf_Internal_Rela *));
252b5132
RH
102\f
103/* The relocation "howto" table. */
104
105static bfd_reloc_status_type sparc_elf_notsup_reloc
106 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
107static bfd_reloc_status_type sparc_elf_wdisp16_reloc
108 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
109static bfd_reloc_status_type sparc_elf_hix22_reloc
110 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
111static bfd_reloc_status_type sparc_elf_lox10_reloc
112 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
113
114static reloc_howto_type sparc64_elf_howto_table[] =
115{
116 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
117 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
118 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
119 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
120 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
121 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
bd5e6e7e 122 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0xffffffff,true),
252b5132
RH
123 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
124 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
125 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
126 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
127 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
128 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
129 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
130 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
131 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
132 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
133 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
134 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
135 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
136 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
137 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
138 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
9fc54e19 139 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
252b5132 140#ifndef SPARC64_OLD_RELOCS
bd5e6e7e 141 HOWTO(R_SPARC_PLT32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", false,0,0xffffffff,true),
252b5132 142 /* These aren't implemented yet. */
252b5132
RH
143 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
144 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
145 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
146 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
147 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
148#endif
149 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
150 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
151 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
152 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
153 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
155 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
157 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
158 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
159 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
160 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
161 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
162 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
163 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
164 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
165 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
bd5e6e7e 166 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, true),
252b5132
RH
167 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
168 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
169 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
170 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
171 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
172 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
173 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
174 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
175};
176
177struct elf_reloc_map {
178 bfd_reloc_code_real_type bfd_reloc_val;
179 unsigned char elf_reloc_val;
180};
181
dc810e39 182static const struct elf_reloc_map sparc_reloc_map[] =
252b5132
RH
183{
184 { BFD_RELOC_NONE, R_SPARC_NONE, },
185 { BFD_RELOC_16, R_SPARC_16, },
bd5e6e7e 186 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
252b5132
RH
187 { BFD_RELOC_8, R_SPARC_8 },
188 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
189 { BFD_RELOC_CTOR, R_SPARC_64 },
190 { BFD_RELOC_32, R_SPARC_32 },
191 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
192 { BFD_RELOC_HI22, R_SPARC_HI22 },
193 { BFD_RELOC_LO10, R_SPARC_LO10, },
194 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
bd5e6e7e 195 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
252b5132
RH
196 { BFD_RELOC_SPARC22, R_SPARC_22 },
197 { BFD_RELOC_SPARC13, R_SPARC_13 },
198 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
199 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
200 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
201 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
202 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
203 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
204 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
205 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
206 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
207 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
208 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
0f2712ed
NC
209 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
210 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
211 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
212 { BFD_RELOC_SPARC_10, R_SPARC_10 },
213 { BFD_RELOC_SPARC_11, R_SPARC_11 },
214 { BFD_RELOC_SPARC_64, R_SPARC_64 },
215 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
216 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
217 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
218 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
219 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
220 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
221 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
222 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
223 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
224 { BFD_RELOC_SPARC_7, R_SPARC_7 },
225 { BFD_RELOC_SPARC_5, R_SPARC_5 },
226 { BFD_RELOC_SPARC_6, R_SPARC_6 },
227 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
bd5e6e7e
JJ
228#ifndef SPARC64_OLD_RELOCS
229 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
230#endif
0f2712ed
NC
231 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
232 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
233 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
234 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
235 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
236 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
237 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
252b5132
RH
238};
239
240static reloc_howto_type *
241sparc64_elf_reloc_type_lookup (abfd, code)
6c08d697 242 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
243 bfd_reloc_code_real_type code;
244{
245 unsigned int i;
246 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
247 {
248 if (sparc_reloc_map[i].bfd_reloc_val == code)
249 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
250 }
251 return 0;
252}
253
254static void
255sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
6c08d697 256 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
257 arelent *cache_ptr;
258 Elf64_Internal_Rela *dst;
259{
f65054f7
RH
260 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
261 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
262}
263\f
264/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
265 section can represent up to two relocs, we must tell the user to allocate
266 more space. */
435b1e90 267
f65054f7
RH
268static long
269sparc64_elf_get_reloc_upper_bound (abfd, sec)
6c08d697 270 bfd *abfd ATTRIBUTE_UNUSED;
f65054f7
RH
271 asection *sec;
272{
273 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
274}
275
276static long
277sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
278 bfd *abfd;
279{
280 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
281}
282
435b1e90 283/* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
f65054f7
RH
284 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
285 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
286 for the same location, R_SPARC_LO10 and R_SPARC_13. */
287
288static boolean
289sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
290 bfd *abfd;
291 asection *asect;
292 Elf_Internal_Shdr *rel_hdr;
293 asymbol **symbols;
294 boolean dynamic;
295{
f65054f7
RH
296 PTR allocated = NULL;
297 bfd_byte *native_relocs;
298 arelent *relent;
299 unsigned int i;
300 int entsize;
301 bfd_size_type count;
302 arelent *relents;
303
dc810e39 304 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
f65054f7
RH
305 if (allocated == NULL)
306 goto error_return;
307
308 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
dc810e39 309 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
f65054f7
RH
310 goto error_return;
311
312 native_relocs = (bfd_byte *) allocated;
313
314 relents = asect->relocation + asect->reloc_count;
315
316 entsize = rel_hdr->sh_entsize;
317 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
435b1e90 318
f65054f7
RH
319 count = rel_hdr->sh_size / entsize;
320
321 for (i = 0, relent = relents; i < count;
322 i++, relent++, native_relocs += entsize)
323 {
324 Elf_Internal_Rela rela;
325
326 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
327
328 /* The address of an ELF reloc is section relative for an object
329 file, and absolute for an executable file or shared library.
330 The address of a normal BFD reloc is always section relative,
331 and the address of a dynamic reloc is absolute.. */
332 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
333 relent->address = rela.r_offset;
334 else
335 relent->address = rela.r_offset - asect->vma;
336
337 if (ELF64_R_SYM (rela.r_info) == 0)
338 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
339 else
340 {
341 asymbol **ps, *s;
342
343 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
344 s = *ps;
345
346 /* Canonicalize ELF section symbols. FIXME: Why? */
347 if ((s->flags & BSF_SECTION_SYM) == 0)
348 relent->sym_ptr_ptr = ps;
349 else
350 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
351 }
352
353 relent->addend = rela.r_addend;
354
355 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
356 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
357 {
358 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
359 relent[1].address = relent->address;
360 relent++;
361 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
362 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
363 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
364 }
365 else
366 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
367 }
368
369 asect->reloc_count += relent - relents;
370
371 if (allocated != NULL)
372 free (allocated);
373
374 return true;
375
376 error_return:
377 if (allocated != NULL)
378 free (allocated);
379 return false;
380}
381
382/* Read in and swap the external relocs. */
383
384static boolean
385sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
386 bfd *abfd;
387 asection *asect;
388 asymbol **symbols;
389 boolean dynamic;
390{
391 struct bfd_elf_section_data * const d = elf_section_data (asect);
392 Elf_Internal_Shdr *rel_hdr;
393 Elf_Internal_Shdr *rel_hdr2;
dc810e39 394 bfd_size_type amt;
f65054f7
RH
395
396 if (asect->relocation != NULL)
397 return true;
398
399 if (! dynamic)
400 {
401 if ((asect->flags & SEC_RELOC) == 0
402 || asect->reloc_count == 0)
403 return true;
404
405 rel_hdr = &d->rel_hdr;
406 rel_hdr2 = d->rel_hdr2;
407
408 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
409 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
410 }
411 else
412 {
413 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
414 case because relocations against this section may use the
415 dynamic symbol table, and in that case bfd_section_from_shdr
416 in elf.c does not update the RELOC_COUNT. */
417 if (asect->_raw_size == 0)
418 return true;
419
420 rel_hdr = &d->this_hdr;
d9bc7a44 421 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
f65054f7
RH
422 rel_hdr2 = NULL;
423 }
424
dc810e39
AM
425 amt = asect->reloc_count;
426 amt *= 2 * sizeof (arelent);
427 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
f65054f7
RH
428 if (asect->relocation == NULL)
429 return false;
430
431 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
432 asect->reloc_count = 0;
435b1e90 433
f65054f7
RH
434 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
435 dynamic))
436 return false;
435b1e90
KH
437
438 if (rel_hdr2
f65054f7
RH
439 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
440 dynamic))
441 return false;
442
443 return true;
444}
445
446/* Canonicalize the dynamic relocation entries. Note that we return
447 the dynamic relocations as a single block, although they are
448 actually associated with particular sections; the interface, which
449 was designed for SunOS style shared libraries, expects that there
450 is only one set of dynamic relocs. Any section that was actually
451 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
452 the dynamic symbol table, is considered to be a dynamic reloc
453 section. */
454
455static long
456sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
457 bfd *abfd;
458 arelent **storage;
459 asymbol **syms;
460{
461 asection *s;
462 long ret;
463
464 if (elf_dynsymtab (abfd) == 0)
465 {
466 bfd_set_error (bfd_error_invalid_operation);
467 return -1;
468 }
469
470 ret = 0;
471 for (s = abfd->sections; s != NULL; s = s->next)
472 {
473 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
474 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
475 {
476 arelent *p;
477 long count, i;
478
479 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
480 return -1;
481 count = s->reloc_count;
482 p = s->relocation;
483 for (i = 0; i < count; i++)
484 *storage++ = p++;
485 ret += count;
486 }
487 }
488
489 *storage = NULL;
490
491 return ret;
492}
493
494/* Write out the relocs. */
495
496static void
497sparc64_elf_write_relocs (abfd, sec, data)
498 bfd *abfd;
499 asection *sec;
500 PTR data;
501{
502 boolean *failedp = (boolean *) data;
503 Elf_Internal_Shdr *rela_hdr;
37fb6db1 504 Elf64_External_Rela *outbound_relocas, *src_rela;
f65054f7
RH
505 unsigned int idx, count;
506 asymbol *last_sym = 0;
507 int last_sym_idx = 0;
508
509 /* If we have already failed, don't do anything. */
510 if (*failedp)
511 return;
512
513 if ((sec->flags & SEC_RELOC) == 0)
514 return;
515
516 /* The linker backend writes the relocs out itself, and sets the
517 reloc_count field to zero to inhibit writing them here. Also,
518 sometimes the SEC_RELOC flag gets set even when there aren't any
519 relocs. */
520 if (sec->reloc_count == 0)
521 return;
522
523 /* We can combine two relocs that refer to the same address
524 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
525 latter is R_SPARC_13 with no associated symbol. */
526 count = 0;
527 for (idx = 0; idx < sec->reloc_count; idx++)
528 {
529 bfd_vma addr;
f65054f7
RH
530
531 ++count;
532
533 addr = sec->orelocation[idx]->address;
534 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
535 && idx < sec->reloc_count - 1)
536 {
537 arelent *r = sec->orelocation[idx + 1];
538
539 if (r->howto->type == R_SPARC_13
540 && r->address == addr
541 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
542 && (*r->sym_ptr_ptr)->value == 0)
543 ++idx;
544 }
545 }
546
547 rela_hdr = &elf_section_data (sec)->rel_hdr;
548
549 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
550 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
551 if (rela_hdr->contents == NULL)
552 {
553 *failedp = true;
554 return;
555 }
556
557 /* Figure out whether the relocations are RELA or REL relocations. */
558 if (rela_hdr->sh_type != SHT_RELA)
559 abort ();
560
435b1e90 561 /* orelocation has the data, reloc_count has the count... */
f65054f7 562 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
37fb6db1 563 src_rela = outbound_relocas;
f65054f7
RH
564
565 for (idx = 0; idx < sec->reloc_count; idx++)
566 {
567 Elf_Internal_Rela dst_rela;
f65054f7
RH
568 arelent *ptr;
569 asymbol *sym;
570 int n;
571
572 ptr = sec->orelocation[idx];
f65054f7
RH
573
574 /* The address of an ELF reloc is section relative for an object
575 file, and absolute for an executable file or shared library.
576 The address of a BFD reloc is always section relative. */
577 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
578 dst_rela.r_offset = ptr->address;
579 else
580 dst_rela.r_offset = ptr->address + sec->vma;
581
582 sym = *ptr->sym_ptr_ptr;
583 if (sym == last_sym)
584 n = last_sym_idx;
585 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
586 n = STN_UNDEF;
587 else
588 {
589 last_sym = sym;
590 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
591 if (n < 0)
592 {
593 *failedp = true;
594 return;
595 }
596 last_sym_idx = n;
597 }
598
599 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
600 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
601 && ! _bfd_elf_validate_reloc (abfd, ptr))
602 {
603 *failedp = true;
604 return;
605 }
606
607 if (ptr->howto->type == R_SPARC_LO10
608 && idx < sec->reloc_count - 1)
609 {
610 arelent *r = sec->orelocation[idx + 1];
611
612 if (r->howto->type == R_SPARC_13
613 && r->address == ptr->address
614 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
615 && (*r->sym_ptr_ptr)->value == 0)
616 {
617 idx++;
618 dst_rela.r_info
619 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
620 R_SPARC_OLO10));
621 }
622 else
623 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
624 }
625 else
626 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
627
628 dst_rela.r_addend = ptr->addend;
629 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
37fb6db1 630 ++src_rela;
f65054f7 631 }
252b5132 632}
587ff49e
RH
633\f
634/* Sparc64 ELF linker hash table. */
635
636struct sparc64_elf_app_reg
637{
638 unsigned char bind;
639 unsigned short shndx;
640 bfd *abfd;
641 char *name;
642};
643
644struct sparc64_elf_link_hash_table
645{
646 struct elf_link_hash_table root;
647
648 struct sparc64_elf_app_reg app_regs [4];
649};
650
651/* Get the Sparc64 ELF linker hash table from a link_info structure. */
652
653#define sparc64_elf_hash_table(p) \
654 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
435b1e90 655
587ff49e
RH
656/* Create a Sparc64 ELF linker hash table. */
657
658static struct bfd_link_hash_table *
659sparc64_elf_bfd_link_hash_table_create (abfd)
660 bfd *abfd;
661{
662 struct sparc64_elf_link_hash_table *ret;
dc810e39 663 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
587ff49e 664
e2d34d7d 665 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
587ff49e
RH
666 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
667 return NULL;
668
669 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
670 _bfd_elf_link_hash_newfunc))
671 {
e2d34d7d 672 free (ret);
587ff49e
RH
673 return NULL;
674 }
675
676 return &ret->root.root;
677}
252b5132
RH
678\f
679/* Utility for performing the standard initial work of an instruction
680 relocation.
681 *PRELOCATION will contain the relocated item.
682 *PINSN will contain the instruction from the input stream.
683 If the result is `bfd_reloc_other' the caller can continue with
684 performing the relocation. Otherwise it must stop and return the
685 value to its caller. */
686
687static bfd_reloc_status_type
688init_insn_reloc (abfd,
689 reloc_entry,
690 symbol,
691 data,
692 input_section,
693 output_bfd,
694 prelocation,
695 pinsn)
696 bfd *abfd;
697 arelent *reloc_entry;
698 asymbol *symbol;
699 PTR data;
700 asection *input_section;
701 bfd *output_bfd;
702 bfd_vma *prelocation;
703 bfd_vma *pinsn;
704{
705 bfd_vma relocation;
706 reloc_howto_type *howto = reloc_entry->howto;
707
708 if (output_bfd != (bfd *) NULL
709 && (symbol->flags & BSF_SECTION_SYM) == 0
710 && (! howto->partial_inplace
711 || reloc_entry->addend == 0))
712 {
713 reloc_entry->address += input_section->output_offset;
714 return bfd_reloc_ok;
715 }
716
82e51918 717 /* This works because partial_inplace is false. */
252b5132
RH
718 if (output_bfd != NULL)
719 return bfd_reloc_continue;
720
721 if (reloc_entry->address > input_section->_cooked_size)
722 return bfd_reloc_outofrange;
723
724 relocation = (symbol->value
725 + symbol->section->output_section->vma
726 + symbol->section->output_offset);
727 relocation += reloc_entry->addend;
728 if (howto->pc_relative)
729 {
730 relocation -= (input_section->output_section->vma
731 + input_section->output_offset);
732 relocation -= reloc_entry->address;
733 }
734
735 *prelocation = relocation;
736 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
737 return bfd_reloc_other;
738}
739
740/* For unsupported relocs. */
741
742static bfd_reloc_status_type
743sparc_elf_notsup_reloc (abfd,
744 reloc_entry,
745 symbol,
746 data,
747 input_section,
748 output_bfd,
749 error_message)
6c08d697
JJ
750 bfd *abfd ATTRIBUTE_UNUSED;
751 arelent *reloc_entry ATTRIBUTE_UNUSED;
752 asymbol *symbol ATTRIBUTE_UNUSED;
753 PTR data ATTRIBUTE_UNUSED;
754 asection *input_section ATTRIBUTE_UNUSED;
755 bfd *output_bfd ATTRIBUTE_UNUSED;
756 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
757{
758 return bfd_reloc_notsupported;
759}
760
761/* Handle the WDISP16 reloc. */
762
763static bfd_reloc_status_type
764sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
765 output_bfd, error_message)
766 bfd *abfd;
767 arelent *reloc_entry;
768 asymbol *symbol;
769 PTR data;
770 asection *input_section;
771 bfd *output_bfd;
6c08d697 772 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
773{
774 bfd_vma relocation;
775 bfd_vma insn;
776 bfd_reloc_status_type status;
777
778 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
779 input_section, output_bfd, &relocation, &insn);
780 if (status != bfd_reloc_other)
781 return status;
782
dc810e39
AM
783 insn &= ~ (bfd_vma) 0x303fff;
784 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
252b5132
RH
785 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
786
787 if ((bfd_signed_vma) relocation < - 0x40000
788 || (bfd_signed_vma) relocation > 0x3ffff)
789 return bfd_reloc_overflow;
790 else
791 return bfd_reloc_ok;
792}
793
794/* Handle the HIX22 reloc. */
795
796static bfd_reloc_status_type
797sparc_elf_hix22_reloc (abfd,
798 reloc_entry,
799 symbol,
800 data,
801 input_section,
802 output_bfd,
803 error_message)
804 bfd *abfd;
805 arelent *reloc_entry;
806 asymbol *symbol;
807 PTR data;
808 asection *input_section;
809 bfd *output_bfd;
6c08d697 810 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
811{
812 bfd_vma relocation;
813 bfd_vma insn;
814 bfd_reloc_status_type status;
815
816 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
817 input_section, output_bfd, &relocation, &insn);
818 if (status != bfd_reloc_other)
819 return status;
820
821 relocation ^= MINUS_ONE;
dc810e39 822 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
252b5132
RH
823 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
824
825 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
826 return bfd_reloc_overflow;
827 else
828 return bfd_reloc_ok;
829}
830
831/* Handle the LOX10 reloc. */
832
833static bfd_reloc_status_type
834sparc_elf_lox10_reloc (abfd,
835 reloc_entry,
836 symbol,
837 data,
838 input_section,
839 output_bfd,
840 error_message)
841 bfd *abfd;
842 arelent *reloc_entry;
843 asymbol *symbol;
844 PTR data;
845 asection *input_section;
846 bfd *output_bfd;
6c08d697 847 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
848{
849 bfd_vma relocation;
850 bfd_vma insn;
851 bfd_reloc_status_type status;
852
853 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
854 input_section, output_bfd, &relocation, &insn);
855 if (status != bfd_reloc_other)
856 return status;
857
dc810e39 858 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
252b5132
RH
859 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
860
861 return bfd_reloc_ok;
862}
863\f
864/* PLT/GOT stuff */
865
866/* Both the headers and the entries are icache aligned. */
867#define PLT_ENTRY_SIZE 32
868#define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
869#define LARGE_PLT_THRESHOLD 32768
870#define GOT_RESERVED_ENTRIES 1
871
872#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
873
252b5132
RH
874/* Fill in the .plt section. */
875
876static void
877sparc64_elf_build_plt (output_bfd, contents, nentries)
878 bfd *output_bfd;
879 unsigned char *contents;
880 int nentries;
881{
882 const unsigned int nop = 0x01000000;
883 int i, j;
435b1e90 884
252b5132
RH
885 /* The first four entries are reserved, and are initially undefined.
886 We fill them with `illtrap 0' to force ld.so to do something. */
887
888 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
dc810e39 889 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
252b5132
RH
890
891 /* The first 32768 entries are close enough to plt1 to get there via
892 a straight branch. */
893
894 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
895 {
896 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
897 unsigned int sethi, ba;
898
899 /* sethi (. - plt0), %g1 */
900 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
901
a11c78e7
RH
902 /* ba,a,pt %xcc, plt1 */
903 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
252b5132 904
dc810e39
AM
905 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
906 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
907 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
908 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
909 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
910 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
911 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
912 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
252b5132
RH
913 }
914
915 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
916 160: 160 entries and 160 pointers. This is to separate code from data,
917 which is much friendlier on the cache. */
435b1e90 918
252b5132
RH
919 for (; i < nentries; i += 160)
920 {
921 int block = (i + 160 <= nentries ? 160 : nentries - i);
922 for (j = 0; j < block; ++j)
923 {
924 unsigned char *entry, *ptr;
925 unsigned int ldx;
926
927 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
928 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
929
e62de969
JJ
930 /* ldx [%o7 + ptr - (entry+4)], %g1 */
931 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
252b5132 932
dc810e39
AM
933 /* mov %o7,%g5
934 call .+8
935 nop
936 ldx [%o7+P],%g1
937 jmpl %o7+%g1,%g1
938 mov %g5,%o7 */
939 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
940 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
941 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
942 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
943 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
944 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
945
946 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
252b5132
RH
947 }
948 }
949}
950
951/* Return the offset of a particular plt entry within the .plt section. */
952
953static bfd_vma
954sparc64_elf_plt_entry_offset (index)
dc810e39 955 bfd_vma index;
252b5132 956{
dc810e39 957 bfd_vma block, ofs;
252b5132
RH
958
959 if (index < LARGE_PLT_THRESHOLD)
960 return index * PLT_ENTRY_SIZE;
961
962 /* See above for details. */
963
964 block = (index - LARGE_PLT_THRESHOLD) / 160;
965 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
966
dc810e39 967 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
252b5132
RH
968}
969
970static bfd_vma
971sparc64_elf_plt_ptr_offset (index, max)
dc810e39
AM
972 bfd_vma index;
973 bfd_vma max;
252b5132 974{
dc810e39 975 bfd_vma block, ofs, last;
252b5132
RH
976
977 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
978
979 /* See above for details. */
980
dc810e39 981 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
a11c78e7
RH
982 ofs = index - block;
983 if (block + 160 > max)
984 last = (max - LARGE_PLT_THRESHOLD) % 160;
985 else
986 last = 160;
252b5132 987
a11c78e7 988 return (block * PLT_ENTRY_SIZE
252b5132
RH
989 + last * 6*4
990 + ofs * 8);
991}
252b5132
RH
992\f
993/* Look through the relocs for a section during the first phase, and
994 allocate space in the global offset table or procedure linkage
995 table. */
996
997static boolean
998sparc64_elf_check_relocs (abfd, info, sec, relocs)
999 bfd *abfd;
1000 struct bfd_link_info *info;
1001 asection *sec;
1002 const Elf_Internal_Rela *relocs;
1003{
1004 bfd *dynobj;
1005 Elf_Internal_Shdr *symtab_hdr;
1006 struct elf_link_hash_entry **sym_hashes;
1007 bfd_vma *local_got_offsets;
1008 const Elf_Internal_Rela *rel;
1009 const Elf_Internal_Rela *rel_end;
1010 asection *sgot;
1011 asection *srelgot;
1012 asection *sreloc;
1013
1014 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1015 return true;
1016
1017 dynobj = elf_hash_table (info)->dynobj;
1018 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1019 sym_hashes = elf_sym_hashes (abfd);
1020 local_got_offsets = elf_local_got_offsets (abfd);
1021
1022 sgot = NULL;
1023 srelgot = NULL;
1024 sreloc = NULL;
1025
d9bc7a44 1026 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
252b5132
RH
1027 for (rel = relocs; rel < rel_end; rel++)
1028 {
1029 unsigned long r_symndx;
1030 struct elf_link_hash_entry *h;
1031
1032 r_symndx = ELF64_R_SYM (rel->r_info);
1033 if (r_symndx < symtab_hdr->sh_info)
1034 h = NULL;
1035 else
1036 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037
f65054f7 1038 switch (ELF64_R_TYPE_ID (rel->r_info))
252b5132
RH
1039 {
1040 case R_SPARC_GOT10:
1041 case R_SPARC_GOT13:
1042 case R_SPARC_GOT22:
1043 /* This symbol requires a global offset table entry. */
1044
1045 if (dynobj == NULL)
1046 {
1047 /* Create the .got section. */
1048 elf_hash_table (info)->dynobj = dynobj = abfd;
1049 if (! _bfd_elf_create_got_section (dynobj, info))
1050 return false;
1051 }
1052
1053 if (sgot == NULL)
1054 {
1055 sgot = bfd_get_section_by_name (dynobj, ".got");
1056 BFD_ASSERT (sgot != NULL);
1057 }
1058
1059 if (srelgot == NULL && (h != NULL || info->shared))
1060 {
1061 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1062 if (srelgot == NULL)
1063 {
1064 srelgot = bfd_make_section (dynobj, ".rela.got");
1065 if (srelgot == NULL
1066 || ! bfd_set_section_flags (dynobj, srelgot,
1067 (SEC_ALLOC
1068 | SEC_LOAD
1069 | SEC_HAS_CONTENTS
1070 | SEC_IN_MEMORY
1071 | SEC_LINKER_CREATED
1072 | SEC_READONLY))
1073 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1074 return false;
1075 }
1076 }
1077
1078 if (h != NULL)
1079 {
1080 if (h->got.offset != (bfd_vma) -1)
1081 {
1082 /* We have already allocated space in the .got. */
1083 break;
1084 }
1085 h->got.offset = sgot->_raw_size;
1086
1087 /* Make sure this symbol is output as a dynamic symbol. */
1088 if (h->dynindx == -1)
1089 {
1090 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1091 return false;
1092 }
1093
1094 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1095 }
1096 else
1097 {
1098 /* This is a global offset table entry for a local
1099 symbol. */
1100 if (local_got_offsets == NULL)
1101 {
dc810e39 1102 bfd_size_type size;
252b5132
RH
1103 register unsigned int i;
1104
dc810e39
AM
1105 size = symtab_hdr->sh_info;
1106 size *= sizeof (bfd_vma);
252b5132
RH
1107 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1108 if (local_got_offsets == NULL)
1109 return false;
1110 elf_local_got_offsets (abfd) = local_got_offsets;
1111 for (i = 0; i < symtab_hdr->sh_info; i++)
1112 local_got_offsets[i] = (bfd_vma) -1;
1113 }
1114 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1115 {
1116 /* We have already allocated space in the .got. */
1117 break;
1118 }
1119 local_got_offsets[r_symndx] = sgot->_raw_size;
1120
1121 if (info->shared)
1122 {
1123 /* If we are generating a shared object, we need to
1124 output a R_SPARC_RELATIVE reloc so that the
1125 dynamic linker can adjust this GOT entry. */
1126 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1127 }
1128 }
1129
1130 sgot->_raw_size += 8;
1131
1132#if 0
1133 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1134 unsigned numbers. If we permit ourselves to modify
1135 code so we get sethi/xor, this could work.
1136 Question: do we consider conditionally re-enabling
1137 this for -fpic, once we know about object code models? */
1138 /* If the .got section is more than 0x1000 bytes, we add
1139 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1140 bit relocations have a greater chance of working. */
1141 if (sgot->_raw_size >= 0x1000
1142 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1143 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1144#endif
1145
1146 break;
1147
1148 case R_SPARC_WPLT30:
1149 case R_SPARC_PLT32:
1150 case R_SPARC_HIPLT22:
1151 case R_SPARC_LOPLT10:
1152 case R_SPARC_PCPLT32:
1153 case R_SPARC_PCPLT22:
1154 case R_SPARC_PCPLT10:
1155 case R_SPARC_PLT64:
1156 /* This symbol requires a procedure linkage table entry. We
1157 actually build the entry in adjust_dynamic_symbol,
1158 because this might be a case of linking PIC code without
1159 linking in any dynamic objects, in which case we don't
1160 need to generate a procedure linkage table after all. */
1161
1162 if (h == NULL)
1163 {
1164 /* It does not make sense to have a procedure linkage
1165 table entry for a local symbol. */
1166 bfd_set_error (bfd_error_bad_value);
1167 return false;
1168 }
1169
1170 /* Make sure this symbol is output as a dynamic symbol. */
1171 if (h->dynindx == -1)
1172 {
1173 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1174 return false;
1175 }
1176
1177 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
bd5e6e7e
JJ
1178 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1179 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1180 break;
1181 /* Fall through. */
252b5132
RH
1182 case R_SPARC_PC10:
1183 case R_SPARC_PC22:
1184 case R_SPARC_PC_HH22:
1185 case R_SPARC_PC_HM10:
1186 case R_SPARC_PC_LM22:
1187 if (h != NULL
1188 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1189 break;
1190 /* Fall through. */
1191 case R_SPARC_DISP8:
1192 case R_SPARC_DISP16:
1193 case R_SPARC_DISP32:
1194 case R_SPARC_DISP64:
1195 case R_SPARC_WDISP30:
1196 case R_SPARC_WDISP22:
1197 case R_SPARC_WDISP19:
1198 case R_SPARC_WDISP16:
1199 if (h == NULL)
1200 break;
1201 /* Fall through. */
1202 case R_SPARC_8:
1203 case R_SPARC_16:
1204 case R_SPARC_32:
1205 case R_SPARC_HI22:
1206 case R_SPARC_22:
1207 case R_SPARC_13:
1208 case R_SPARC_LO10:
1209 case R_SPARC_UA32:
1210 case R_SPARC_10:
1211 case R_SPARC_11:
1212 case R_SPARC_64:
1213 case R_SPARC_OLO10:
1214 case R_SPARC_HH22:
1215 case R_SPARC_HM10:
1216 case R_SPARC_LM22:
1217 case R_SPARC_7:
1218 case R_SPARC_5:
1219 case R_SPARC_6:
1220 case R_SPARC_HIX22:
1221 case R_SPARC_LOX10:
1222 case R_SPARC_H44:
1223 case R_SPARC_M44:
1224 case R_SPARC_L44:
1225 case R_SPARC_UA64:
1226 case R_SPARC_UA16:
1227 /* When creating a shared object, we must copy these relocs
1228 into the output file. We create a reloc section in
435b1e90 1229 dynobj and make room for the reloc.
252b5132
RH
1230
1231 But don't do this for debugging sections -- this shows up
1232 with DWARF2 -- first because they are not loaded, and
1233 second because DWARF sez the debug info is not to be
1234 biased by the load address. */
1235 if (info->shared && (sec->flags & SEC_ALLOC))
1236 {
1237 if (sreloc == NULL)
1238 {
1239 const char *name;
1240
1241 name = (bfd_elf_string_from_elf_section
1242 (abfd,
1243 elf_elfheader (abfd)->e_shstrndx,
1244 elf_section_data (sec)->rel_hdr.sh_name));
1245 if (name == NULL)
1246 return false;
1247
1248 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1249 && strcmp (bfd_get_section_name (abfd, sec),
1250 name + 5) == 0);
1251
1252 sreloc = bfd_get_section_by_name (dynobj, name);
1253 if (sreloc == NULL)
1254 {
1255 flagword flags;
1256
1257 sreloc = bfd_make_section (dynobj, name);
1258 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1259 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1260 if ((sec->flags & SEC_ALLOC) != 0)
1261 flags |= SEC_ALLOC | SEC_LOAD;
1262 if (sreloc == NULL
1263 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1264 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1265 return false;
1266 }
db6751f2
JJ
1267 if (sec->flags & SEC_READONLY)
1268 info->flags |= DF_TEXTREL;
252b5132
RH
1269 }
1270
1271 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1272 }
1273 break;
1274
1275 case R_SPARC_REGISTER:
1276 /* Nothing to do. */
1277 break;
1278
1279 default:
435b1e90 1280 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
8f615d07 1281 bfd_archive_filename (abfd),
f65054f7 1282 ELF64_R_TYPE_ID (rel->r_info));
252b5132
RH
1283 return false;
1284 }
1285 }
1286
1287 return true;
1288}
1289
587ff49e
RH
1290/* Hook called by the linker routine which adds symbols from an object
1291 file. We use it for STT_REGISTER symbols. */
1292
1293static boolean
1294sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1295 bfd *abfd;
1296 struct bfd_link_info *info;
1297 const Elf_Internal_Sym *sym;
1298 const char **namep;
6c08d697
JJ
1299 flagword *flagsp ATTRIBUTE_UNUSED;
1300 asection **secp ATTRIBUTE_UNUSED;
1301 bfd_vma *valp ATTRIBUTE_UNUSED;
587ff49e 1302{
8f615d07 1303 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
587ff49e
RH
1304
1305 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1306 {
1307 int reg;
1308 struct sparc64_elf_app_reg *p;
435b1e90 1309
587ff49e
RH
1310 reg = (int)sym->st_value;
1311 switch (reg & ~1)
1312 {
1313 case 2: reg -= 2; break;
1314 case 6: reg -= 4; break;
1315 default:
1316 (*_bfd_error_handler)
1317 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
8f615d07 1318 bfd_archive_filename (abfd));
587ff49e
RH
1319 return false;
1320 }
1321
1322 if (info->hash->creator != abfd->xvec
1323 || (abfd->flags & DYNAMIC) != 0)
1324 {
1325 /* STT_REGISTER only works when linking an elf64_sparc object.
1326 If STT_REGISTER comes from a dynamic object, don't put it into
1327 the output bfd. The dynamic linker will recheck it. */
1328 *namep = NULL;
1329 return true;
1330 }
1331
1332 p = sparc64_elf_hash_table(info)->app_regs + reg;
1333
1334 if (p->name != NULL && strcmp (p->name, *namep))
1335 {
1336 (*_bfd_error_handler)
ca09e32b 1337 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
8f615d07 1338 (int) sym->st_value,
ca09e32b 1339 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
8f615d07 1340 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
587ff49e
RH
1341 return false;
1342 }
1343
1344 if (p->name == NULL)
1345 {
1346 if (**namep)
1347 {
1348 struct elf_link_hash_entry *h;
435b1e90 1349
587ff49e
RH
1350 h = (struct elf_link_hash_entry *)
1351 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1352
1353 if (h != NULL)
1354 {
1355 unsigned char type = h->type;
1356
8f615d07
AM
1357 if (type > STT_FUNC)
1358 type = 0;
1359 (*_bfd_error_handler)
ca09e32b
NC
1360 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1361 *namep, bfd_archive_filename (abfd),
8f615d07 1362 stt_types[type], bfd_archive_filename (p->abfd));
587ff49e
RH
1363 return false;
1364 }
1365
1366 p->name = bfd_hash_allocate (&info->hash->table,
1367 strlen (*namep) + 1);
1368 if (!p->name)
1369 return false;
1370
1371 strcpy (p->name, *namep);
1372 }
1373 else
1374 p->name = "";
1375 p->bind = ELF_ST_BIND (sym->st_info);
1376 p->abfd = abfd;
1377 p->shndx = sym->st_shndx;
1378 }
1379 else
1380 {
1381 if (p->bind == STB_WEAK
1382 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1383 {
1384 p->bind = STB_GLOBAL;
1385 p->abfd = abfd;
1386 }
1387 }
1388 *namep = NULL;
1389 return true;
1390 }
4ab82700 1391 else if (*namep && **namep
986b7daa 1392 && info->hash->creator == abfd->xvec)
587ff49e
RH
1393 {
1394 int i;
1395 struct sparc64_elf_app_reg *p;
1396
1397 p = sparc64_elf_hash_table(info)->app_regs;
1398 for (i = 0; i < 4; i++, p++)
1399 if (p->name != NULL && ! strcmp (p->name, *namep))
1400 {
1401 unsigned char type = ELF_ST_TYPE (sym->st_info);
1402
8f615d07
AM
1403 if (type > STT_FUNC)
1404 type = 0;
1405 (*_bfd_error_handler)
ca09e32b
NC
1406 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1407 *namep, stt_types[type], bfd_archive_filename (abfd),
1408 bfd_archive_filename (p->abfd));
587ff49e
RH
1409 return false;
1410 }
1411 }
1412 return true;
1413}
1414
1415/* This function takes care of emiting STT_REGISTER symbols
1416 which we cannot easily keep in the symbol hash table. */
1417
1418static boolean
1419sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
6c08d697 1420 bfd *output_bfd ATTRIBUTE_UNUSED;
587ff49e
RH
1421 struct bfd_link_info *info;
1422 PTR finfo;
1423 boolean (*func) PARAMS ((PTR, const char *,
1424 Elf_Internal_Sym *, asection *));
1425{
1426 int reg;
1427 struct sparc64_elf_app_reg *app_regs =
1428 sparc64_elf_hash_table(info)->app_regs;
1429 Elf_Internal_Sym sym;
1430
1431 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1432 at the end of the dynlocal list, so they came at the end of the local
1433 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1434 to back up symtab->sh_info. */
1435 if (elf_hash_table (info)->dynlocal)
1436 {
1fa0ddb3
RH
1437 bfd * dynobj = elf_hash_table (info)->dynobj;
1438 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
587ff49e
RH
1439 struct elf_link_local_dynamic_entry *e;
1440
1441 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1442 if (e->input_indx == -1)
1443 break;
1444 if (e)
1445 {
1446 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1447 = e->dynindx;
1448 }
1449 }
1450
1451 if (info->strip == strip_all)
1452 return true;
1453
1454 for (reg = 0; reg < 4; reg++)
1455 if (app_regs [reg].name != NULL)
1456 {
1457 if (info->strip == strip_some
1458 && bfd_hash_lookup (info->keep_hash,
1459 app_regs [reg].name,
1460 false, false) == NULL)
1461 continue;
1462
1463 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1464 sym.st_size = 0;
1465 sym.st_other = 0;
1466 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1467 sym.st_shndx = app_regs [reg].shndx;
1468 if (! (*func) (finfo, app_regs [reg].name, &sym,
1469 sym.st_shndx == SHN_ABS
1470 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1471 return false;
1472 }
1473
1474 return true;
1475}
1476
1477static int
1478sparc64_elf_get_symbol_type (elf_sym, type)
1479 Elf_Internal_Sym * elf_sym;
1480 int type;
1481{
1482 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1483 return STT_REGISTER;
1484 else
1485 return type;
1486}
1487
1488/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1489 even in SHN_UNDEF section. */
1490
1491static void
1492sparc64_elf_symbol_processing (abfd, asym)
6c08d697 1493 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
1494 asymbol *asym;
1495{
1496 elf_symbol_type *elfsym;
1497
1498 elfsym = (elf_symbol_type *) asym;
1499 if (elfsym->internal_elf_sym.st_info
1500 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1501 {
1502 asym->flags |= BSF_GLOBAL;
1503 }
1504}
1505
252b5132
RH
1506/* Adjust a symbol defined by a dynamic object and referenced by a
1507 regular object. The current definition is in some section of the
1508 dynamic object, but we're not including those sections. We have to
1509 change the definition to something the rest of the link can
1510 understand. */
1511
1512static boolean
1513sparc64_elf_adjust_dynamic_symbol (info, h)
1514 struct bfd_link_info *info;
1515 struct elf_link_hash_entry *h;
1516{
1517 bfd *dynobj;
1518 asection *s;
1519 unsigned int power_of_two;
1520
1521 dynobj = elf_hash_table (info)->dynobj;
1522
1523 /* Make sure we know what is going on here. */
1524 BFD_ASSERT (dynobj != NULL
1525 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1526 || h->weakdef != NULL
1527 || ((h->elf_link_hash_flags
1528 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1529 && (h->elf_link_hash_flags
1530 & ELF_LINK_HASH_REF_REGULAR) != 0
1531 && (h->elf_link_hash_flags
1532 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1533
1534 /* If this is a function, put it in the procedure linkage table. We
1535 will fill in the contents of the procedure linkage table later
1536 (although we could actually do it here). The STT_NOTYPE
1537 condition is a hack specifically for the Oracle libraries
1538 delivered for Solaris; for some inexplicable reason, they define
1539 some of their functions as STT_NOTYPE when they really should be
1540 STT_FUNC. */
1541 if (h->type == STT_FUNC
1542 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1543 || (h->type == STT_NOTYPE
1544 && (h->root.type == bfd_link_hash_defined
1545 || h->root.type == bfd_link_hash_defweak)
1546 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1547 {
1548 if (! elf_hash_table (info)->dynamic_sections_created)
1549 {
1550 /* This case can occur if we saw a WPLT30 reloc in an input
1551 file, but none of the input files were dynamic objects.
1552 In such a case, we don't actually need to build a
1553 procedure linkage table, and we can just do a WDISP30
1554 reloc instead. */
1555 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1556 return true;
1557 }
1558
1559 s = bfd_get_section_by_name (dynobj, ".plt");
1560 BFD_ASSERT (s != NULL);
1561
1562 /* The first four bit in .plt is reserved. */
1563 if (s->_raw_size == 0)
1564 s->_raw_size = PLT_HEADER_SIZE;
1565
1566 /* If this symbol is not defined in a regular file, and we are
1567 not generating a shared library, then set the symbol to this
1568 location in the .plt. This is required to make function
1569 pointers compare as equal between the normal executable and
1570 the shared library. */
1571 if (! info->shared
1572 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1573 {
1574 h->root.u.def.section = s;
1575 h->root.u.def.value = s->_raw_size;
1576 }
1577
1578 /* To simplify matters later, just store the plt index here. */
1579 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1580
1581 /* Make room for this entry. */
1582 s->_raw_size += PLT_ENTRY_SIZE;
1583
1584 /* We also need to make an entry in the .rela.plt section. */
1585
1586 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1587 BFD_ASSERT (s != NULL);
1588
252b5132
RH
1589 s->_raw_size += sizeof (Elf64_External_Rela);
1590
1591 /* The procedure linkage table size is bounded by the magnitude
1592 of the offset we can describe in the entry. */
1593 if (s->_raw_size >= (bfd_vma)1 << 32)
1594 {
1595 bfd_set_error (bfd_error_bad_value);
1596 return false;
1597 }
1598
1599 return true;
1600 }
1601
1602 /* If this is a weak symbol, and there is a real definition, the
1603 processor independent code will have arranged for us to see the
1604 real definition first, and we can just use the same value. */
1605 if (h->weakdef != NULL)
1606 {
1607 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1608 || h->weakdef->root.type == bfd_link_hash_defweak);
1609 h->root.u.def.section = h->weakdef->root.u.def.section;
1610 h->root.u.def.value = h->weakdef->root.u.def.value;
1611 return true;
1612 }
1613
1614 /* This is a reference to a symbol defined by a dynamic object which
1615 is not a function. */
1616
1617 /* If we are creating a shared library, we must presume that the
1618 only references to the symbol are via the global offset table.
1619 For such cases we need not do anything here; the relocations will
1620 be handled correctly by relocate_section. */
1621 if (info->shared)
1622 return true;
1623
1624 /* We must allocate the symbol in our .dynbss section, which will
1625 become part of the .bss section of the executable. There will be
1626 an entry for this symbol in the .dynsym section. The dynamic
1627 object will contain position independent code, so all references
1628 from the dynamic object to this symbol will go through the global
1629 offset table. The dynamic linker will use the .dynsym entry to
1630 determine the address it must put in the global offset table, so
1631 both the dynamic object and the regular object will refer to the
1632 same memory location for the variable. */
1633
1634 s = bfd_get_section_by_name (dynobj, ".dynbss");
1635 BFD_ASSERT (s != NULL);
1636
1637 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1638 to copy the initial value out of the dynamic object and into the
1639 runtime process image. We need to remember the offset into the
1640 .rel.bss section we are going to use. */
1641 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1642 {
1643 asection *srel;
1644
1645 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1646 BFD_ASSERT (srel != NULL);
1647 srel->_raw_size += sizeof (Elf64_External_Rela);
1648 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1649 }
1650
1651 /* We need to figure out the alignment required for this symbol. I
1652 have no idea how ELF linkers handle this. 16-bytes is the size
1653 of the largest type that requires hard alignment -- long double. */
1654 power_of_two = bfd_log2 (h->size);
1655 if (power_of_two > 4)
1656 power_of_two = 4;
1657
1658 /* Apply the required alignment. */
1659 s->_raw_size = BFD_ALIGN (s->_raw_size,
1660 (bfd_size_type) (1 << power_of_two));
1661 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1662 {
1663 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1664 return false;
1665 }
1666
1667 /* Define the symbol as being at this point in the section. */
1668 h->root.u.def.section = s;
1669 h->root.u.def.value = s->_raw_size;
1670
1671 /* Increment the section size to make room for the symbol. */
1672 s->_raw_size += h->size;
1673
1674 return true;
1675}
1676
1677/* Set the sizes of the dynamic sections. */
1678
1679static boolean
1680sparc64_elf_size_dynamic_sections (output_bfd, info)
1681 bfd *output_bfd;
1682 struct bfd_link_info *info;
1683{
1684 bfd *dynobj;
1685 asection *s;
252b5132
RH
1686 boolean relplt;
1687
1688 dynobj = elf_hash_table (info)->dynobj;
1689 BFD_ASSERT (dynobj != NULL);
1690
1691 if (elf_hash_table (info)->dynamic_sections_created)
1692 {
1693 /* Set the contents of the .interp section to the interpreter. */
1694 if (! info->shared)
1695 {
1696 s = bfd_get_section_by_name (dynobj, ".interp");
1697 BFD_ASSERT (s != NULL);
1698 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1699 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1700 }
1701 }
1702 else
1703 {
1704 /* We may have created entries in the .rela.got section.
1705 However, if we are not creating the dynamic sections, we will
1706 not actually use these entries. Reset the size of .rela.got,
1707 which will cause it to get stripped from the output file
1708 below. */
1709 s = bfd_get_section_by_name (dynobj, ".rela.got");
1710 if (s != NULL)
1711 s->_raw_size = 0;
1712 }
1713
1714 /* The check_relocs and adjust_dynamic_symbol entry points have
1715 determined the sizes of the various dynamic sections. Allocate
1716 memory for them. */
252b5132
RH
1717 relplt = false;
1718 for (s = dynobj->sections; s != NULL; s = s->next)
1719 {
1720 const char *name;
1721 boolean strip;
1722
1723 if ((s->flags & SEC_LINKER_CREATED) == 0)
1724 continue;
1725
1726 /* It's OK to base decisions on the section name, because none
1727 of the dynobj section names depend upon the input files. */
1728 name = bfd_get_section_name (dynobj, s);
1729
1730 strip = false;
1731
1732 if (strncmp (name, ".rela", 5) == 0)
1733 {
1734 if (s->_raw_size == 0)
1735 {
1736 /* If we don't need this section, strip it from the
1737 output file. This is to handle .rela.bss and
1738 .rel.plt. We must create it in
1739 create_dynamic_sections, because it must be created
1740 before the linker maps input sections to output
1741 sections. The linker does that before
1742 adjust_dynamic_symbol is called, and it is that
1743 function which decides whether anything needs to go
1744 into these sections. */
1745 strip = true;
1746 }
1747 else
1748 {
252b5132
RH
1749 if (strcmp (name, ".rela.plt") == 0)
1750 relplt = true;
1751
1752 /* We use the reloc_count field as a counter if we need
1753 to copy relocs into the output file. */
1754 s->reloc_count = 0;
1755 }
1756 }
1757 else if (strcmp (name, ".plt") != 0
1758 && strncmp (name, ".got", 4) != 0)
1759 {
1760 /* It's not one of our sections, so don't allocate space. */
1761 continue;
1762 }
1763
1764 if (strip)
1765 {
7f8d5fc9 1766 _bfd_strip_section_from_output (info, s);
252b5132
RH
1767 continue;
1768 }
1769
1770 /* Allocate memory for the section contents. Zero the memory
1771 for the benefit of .rela.plt, which has 4 unused entries
1772 at the beginning, and we don't want garbage. */
1773 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1774 if (s->contents == NULL && s->_raw_size != 0)
1775 return false;
1776 }
1777
1778 if (elf_hash_table (info)->dynamic_sections_created)
1779 {
1780 /* Add some entries to the .dynamic section. We fill in the
1781 values later, in sparc64_elf_finish_dynamic_sections, but we
1782 must add the entries now so that we get the correct size for
1783 the .dynamic section. The DT_DEBUG entry is filled in by the
1784 dynamic linker and used by the debugger. */
dc810e39
AM
1785#define add_dynamic_entry(TAG, VAL) \
1786 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1787
587ff49e
RH
1788 int reg;
1789 struct sparc64_elf_app_reg * app_regs;
350836e3 1790 struct elf_strtab_hash *dynstr;
587ff49e
RH
1791 struct elf_link_hash_table *eht = elf_hash_table (info);
1792
dc810e39 1793 if (!info->shared)
252b5132 1794 {
dc810e39 1795 if (!add_dynamic_entry (DT_DEBUG, 0))
252b5132
RH
1796 return false;
1797 }
1798
1799 if (relplt)
1800 {
dc810e39
AM
1801 if (!add_dynamic_entry (DT_PLTGOT, 0)
1802 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1803 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1804 || !add_dynamic_entry (DT_JMPREL, 0))
252b5132
RH
1805 return false;
1806 }
1807
dc810e39
AM
1808 if (!add_dynamic_entry (DT_RELA, 0)
1809 || !add_dynamic_entry (DT_RELASZ, 0)
1810 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
252b5132
RH
1811 return false;
1812
db6751f2 1813 if (info->flags & DF_TEXTREL)
252b5132 1814 {
dc810e39 1815 if (!add_dynamic_entry (DT_TEXTREL, 0))
252b5132
RH
1816 return false;
1817 }
587ff49e
RH
1818
1819 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1820 entries if needed. */
1821 app_regs = sparc64_elf_hash_table (info)->app_regs;
1822 dynstr = eht->dynstr;
1823
1824 for (reg = 0; reg < 4; reg++)
1825 if (app_regs [reg].name != NULL)
1826 {
1827 struct elf_link_local_dynamic_entry *entry, *e;
435b1e90 1828
dc810e39 1829 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
587ff49e
RH
1830 return false;
1831
1832 entry = (struct elf_link_local_dynamic_entry *)
1833 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1834 if (entry == NULL)
1835 return false;
1836
1837 /* We cheat here a little bit: the symbol will not be local, so we
1838 put it at the end of the dynlocal linked list. We will fix it
1839 later on, as we have to fix other fields anyway. */
1840 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1841 entry->isym.st_size = 0;
1842 if (*app_regs [reg].name != '\0')
1843 entry->isym.st_name
2b0f7ef9 1844 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
587ff49e
RH
1845 else
1846 entry->isym.st_name = 0;
1847 entry->isym.st_other = 0;
1848 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1849 STT_REGISTER);
1850 entry->isym.st_shndx = app_regs [reg].shndx;
1851 entry->next = NULL;
1852 entry->input_bfd = output_bfd;
1853 entry->input_indx = -1;
1854
1855 if (eht->dynlocal == NULL)
1856 eht->dynlocal = entry;
1857 else
1858 {
1859 for (e = eht->dynlocal; e->next; e = e->next)
1860 ;
1861 e->next = entry;
1862 }
1863 eht->dynsymcount++;
1864 }
252b5132 1865 }
dc810e39 1866#undef add_dynamic_entry
252b5132 1867
252b5132
RH
1868 return true;
1869}
252b5132 1870\f
f7775d95
JJ
1871#define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1872#define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1873
f7775d95
JJ
1874static boolean
1875sparc64_elf_relax_section (abfd, section, link_info, again)
1876 bfd *abfd ATTRIBUTE_UNUSED;
1877 asection *section ATTRIBUTE_UNUSED;
1878 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1879 boolean *again;
1880{
1881 *again = false;
1882 SET_SEC_DO_RELAX (section);
1883 return true;
1884}
1885\f
e36f7d53
RH
1886/* This is the condition under which finish_dynamic_symbol will be called
1887 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1888 routine, we'll need to do something about initializing any .plt and
1889 .got entries in relocate_section. */
1890#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1891 ((DYN) \
1892 && ((INFO)->shared \
1893 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1894 && ((H)->dynindx != -1 \
1895 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1896
252b5132
RH
1897/* Relocate a SPARC64 ELF section. */
1898
1899static boolean
1900sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1901 contents, relocs, local_syms, local_sections)
1902 bfd *output_bfd;
1903 struct bfd_link_info *info;
1904 bfd *input_bfd;
1905 asection *input_section;
1906 bfd_byte *contents;
1907 Elf_Internal_Rela *relocs;
1908 Elf_Internal_Sym *local_syms;
1909 asection **local_sections;
1910{
1911 bfd *dynobj;
1912 Elf_Internal_Shdr *symtab_hdr;
1913 struct elf_link_hash_entry **sym_hashes;
1914 bfd_vma *local_got_offsets;
1915 bfd_vma got_base;
1916 asection *sgot;
1917 asection *splt;
1918 asection *sreloc;
1919 Elf_Internal_Rela *rel;
1920 Elf_Internal_Rela *relend;
1921
f0fe0e16
AM
1922 if (info->relocateable)
1923 return true;
1924
252b5132
RH
1925 dynobj = elf_hash_table (info)->dynobj;
1926 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1927 sym_hashes = elf_sym_hashes (input_bfd);
1928 local_got_offsets = elf_local_got_offsets (input_bfd);
1929
1930 if (elf_hash_table(info)->hgot == NULL)
1931 got_base = 0;
1932 else
1933 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1934
1935 sgot = splt = sreloc = NULL;
1936
1937 rel = relocs;
e90fdc1a 1938 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
252b5132
RH
1939 for (; rel < relend; rel++)
1940 {
1941 int r_type;
1942 reloc_howto_type *howto;
6c08d697 1943 unsigned long r_symndx;
252b5132
RH
1944 struct elf_link_hash_entry *h;
1945 Elf_Internal_Sym *sym;
1946 asection *sec;
e36f7d53 1947 bfd_vma relocation, off;
252b5132 1948 bfd_reloc_status_type r;
bd5e6e7e 1949 boolean is_plt = false;
e36f7d53 1950 boolean unresolved_reloc;
252b5132 1951
f65054f7 1952 r_type = ELF64_R_TYPE_ID (rel->r_info);
60dac299 1953 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
252b5132
RH
1954 {
1955 bfd_set_error (bfd_error_bad_value);
1956 return false;
1957 }
1958 howto = sparc64_elf_howto_table + r_type;
1959
252b5132 1960 /* This is a final link. */
f0fe0e16 1961 r_symndx = ELF64_R_SYM (rel->r_info);
252b5132
RH
1962 h = NULL;
1963 sym = NULL;
1964 sec = NULL;
e36f7d53 1965 unresolved_reloc = false;
252b5132
RH
1966 if (r_symndx < symtab_hdr->sh_info)
1967 {
1968 sym = local_syms + r_symndx;
1969 sec = local_sections[r_symndx];
f8df10f4 1970 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
252b5132
RH
1971 }
1972 else
1973 {
1974 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1975 while (h->root.type == bfd_link_hash_indirect
1976 || h->root.type == bfd_link_hash_warning)
1977 h = (struct elf_link_hash_entry *) h->root.u.i.link;
e36f7d53
RH
1978
1979 relocation = 0;
252b5132
RH
1980 if (h->root.type == bfd_link_hash_defined
1981 || h->root.type == bfd_link_hash_defweak)
1982 {
252b5132 1983 sec = h->root.u.def.section;
e36f7d53
RH
1984 if (sec->output_section == NULL)
1985 /* Set a flag that will be cleared later if we find a
1986 relocation value for this symbol. output_section
1987 is typically NULL for symbols satisfied by a shared
1988 library. */
1989 unresolved_reloc = true;
252b5132 1990 else
e36f7d53
RH
1991 relocation = (h->root.u.def.value
1992 + sec->output_section->vma
1993 + sec->output_offset);
252b5132
RH
1994 }
1995 else if (h->root.type == bfd_link_hash_undefweak)
e36f7d53 1996 ;
671bae9c
NC
1997 else if (info->shared
1998 && (!info->symbolic || info->allow_shlib_undefined)
3a27a730
L
1999 && !info->no_undefined
2000 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
e36f7d53 2001 ;
252b5132
RH
2002 else
2003 {
2004 if (! ((*info->callbacks->undefined_symbol)
2005 (info, h->root.root.string, input_bfd,
5cc7c785 2006 input_section, rel->r_offset,
3a27a730
L
2007 (!info->shared || info->no_undefined
2008 || ELF_ST_VISIBILITY (h->other)))))
252b5132 2009 return false;
be040dbb
JJ
2010
2011 /* To avoid generating warning messages about truncated
2012 relocations, set the relocation's address to be the same as
2013 the start of this section. */
2014
2015 if (input_section->output_section != NULL)
2016 relocation = input_section->output_section->vma;
2017 else
2018 relocation = 0;
252b5132
RH
2019 }
2020 }
2021
e36f7d53 2022 do_dynreloc:
252b5132
RH
2023 /* When generating a shared object, these relocations are copied
2024 into the output file to be resolved at run time. */
ec338859 2025 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
252b5132
RH
2026 {
2027 switch (r_type)
2028 {
2029 case R_SPARC_PC10:
2030 case R_SPARC_PC22:
2031 case R_SPARC_PC_HH22:
2032 case R_SPARC_PC_HM10:
2033 case R_SPARC_PC_LM22:
2034 if (h != NULL
2035 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2036 break;
2037 /* Fall through. */
2038 case R_SPARC_DISP8:
2039 case R_SPARC_DISP16:
2040 case R_SPARC_DISP32:
b88a866a 2041 case R_SPARC_DISP64:
252b5132
RH
2042 case R_SPARC_WDISP30:
2043 case R_SPARC_WDISP22:
2044 case R_SPARC_WDISP19:
2045 case R_SPARC_WDISP16:
252b5132
RH
2046 if (h == NULL)
2047 break;
2048 /* Fall through. */
2049 case R_SPARC_8:
2050 case R_SPARC_16:
2051 case R_SPARC_32:
2052 case R_SPARC_HI22:
2053 case R_SPARC_22:
2054 case R_SPARC_13:
2055 case R_SPARC_LO10:
2056 case R_SPARC_UA32:
2057 case R_SPARC_10:
2058 case R_SPARC_11:
2059 case R_SPARC_64:
2060 case R_SPARC_OLO10:
2061 case R_SPARC_HH22:
2062 case R_SPARC_HM10:
2063 case R_SPARC_LM22:
2064 case R_SPARC_7:
2065 case R_SPARC_5:
2066 case R_SPARC_6:
2067 case R_SPARC_HIX22:
2068 case R_SPARC_LOX10:
2069 case R_SPARC_H44:
2070 case R_SPARC_M44:
2071 case R_SPARC_L44:
2072 case R_SPARC_UA64:
2073 case R_SPARC_UA16:
2074 {
2075 Elf_Internal_Rela outrel;
0bb2d96a 2076 boolean skip, relocate;
252b5132
RH
2077
2078 if (sreloc == NULL)
2079 {
2080 const char *name =
2081 (bfd_elf_string_from_elf_section
2082 (input_bfd,
2083 elf_elfheader (input_bfd)->e_shstrndx,
2084 elf_section_data (input_section)->rel_hdr.sh_name));
2085
2086 if (name == NULL)
2087 return false;
2088
2089 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2090 && strcmp (bfd_get_section_name(input_bfd,
2091 input_section),
2092 name + 5) == 0);
2093
2094 sreloc = bfd_get_section_by_name (dynobj, name);
2095 BFD_ASSERT (sreloc != NULL);
2096 }
2097
2098 skip = false;
0bb2d96a 2099 relocate = false;
252b5132 2100
c629eae0
JJ
2101 outrel.r_offset =
2102 _bfd_elf_section_offset (output_bfd, info, input_section,
2103 rel->r_offset);
2104 if (outrel.r_offset == (bfd_vma) -1)
2105 skip = true;
0bb2d96a
JJ
2106 else if (outrel.r_offset == (bfd_vma) -2)
2107 skip = true, relocate = true;
252b5132
RH
2108
2109 outrel.r_offset += (input_section->output_section->vma
2110 + input_section->output_offset);
2111
2112 /* Optimize unaligned reloc usage now that we know where
2113 it finally resides. */
2114 switch (r_type)
2115 {
2116 case R_SPARC_16:
2117 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2118 break;
2119 case R_SPARC_UA16:
2120 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2121 break;
2122 case R_SPARC_32:
2123 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2124 break;
2125 case R_SPARC_UA32:
2126 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2127 break;
2128 case R_SPARC_64:
2129 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2130 break;
2131 case R_SPARC_UA64:
2132 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2133 break;
b88a866a
JJ
2134 case R_SPARC_DISP8:
2135 case R_SPARC_DISP16:
2136 case R_SPARC_DISP32:
2137 case R_SPARC_DISP64:
2138 /* If the symbol is not dynamic, we should not keep
2139 a dynamic relocation. But an .rela.* slot has been
2140 allocated for it, output R_SPARC_NONE.
2141 FIXME: Add code tracking needed dynamic relocs as
2142 e.g. i386 has. */
2143 if (h->dynindx == -1)
2144 skip = true, relocate = true;
2145 break;
252b5132
RH
2146 }
2147
2148 if (skip)
2149 memset (&outrel, 0, sizeof outrel);
2150 /* h->dynindx may be -1 if the symbol was marked to
2151 become local. */
bd5e6e7e 2152 else if (h != NULL && ! is_plt
252b5132
RH
2153 && ((! info->symbolic && h->dynindx != -1)
2154 || (h->elf_link_hash_flags
2155 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2156 {
2157 BFD_ASSERT (h->dynindx != -1);
f65054f7
RH
2158 outrel.r_info
2159 = ELF64_R_INFO (h->dynindx,
2160 ELF64_R_TYPE_INFO (
2161 ELF64_R_TYPE_DATA (rel->r_info),
2162 r_type));
252b5132
RH
2163 outrel.r_addend = rel->r_addend;
2164 }
2165 else
2166 {
2167 if (r_type == R_SPARC_64)
2168 {
2169 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2170 outrel.r_addend = relocation + rel->r_addend;
2171 }
2172 else
2173 {
2174 long indx;
2175
bd5e6e7e
JJ
2176 if (is_plt)
2177 sec = splt;
2178 else if (h == NULL)
252b5132
RH
2179 sec = local_sections[r_symndx];
2180 else
2181 {
2182 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2183 || (h->root.type
2184 == bfd_link_hash_defweak));
2185 sec = h->root.u.def.section;
2186 }
2187 if (sec != NULL && bfd_is_abs_section (sec))
2188 indx = 0;
2189 else if (sec == NULL || sec->owner == NULL)
2190 {
2191 bfd_set_error (bfd_error_bad_value);
2192 return false;
2193 }
2194 else
2195 {
2196 asection *osec;
2197
2198 osec = sec->output_section;
2199 indx = elf_section_data (osec)->dynindx;
2200
2201 /* FIXME: we really should be able to link non-pic
2202 shared libraries. */
2203 if (indx == 0)
2204 {
2205 BFD_FAIL ();
2206 (*_bfd_error_handler)
2207 (_("%s: probably compiled without -fPIC?"),
8f615d07 2208 bfd_archive_filename (input_bfd));
252b5132
RH
2209 bfd_set_error (bfd_error_bad_value);
2210 return false;
2211 }
2212 }
2213
f65054f7
RH
2214 outrel.r_info
2215 = ELF64_R_INFO (indx,
2216 ELF64_R_TYPE_INFO (
2217 ELF64_R_TYPE_DATA (rel->r_info),
2218 r_type));
840a9995 2219 outrel.r_addend = relocation + rel->r_addend;
252b5132
RH
2220 }
2221 }
2222
2223 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2224 (((Elf64_External_Rela *)
2225 sreloc->contents)
2226 + sreloc->reloc_count));
2227 ++sreloc->reloc_count;
2228
2229 /* This reloc will be computed at runtime, so there's no
20278fa3 2230 need to do anything now. */
0bb2d96a
JJ
2231 if (! relocate)
2232 continue;
252b5132
RH
2233 }
2234 break;
2235 }
2236 }
2237
2238 switch (r_type)
2239 {
2240 case R_SPARC_GOT10:
2241 case R_SPARC_GOT13:
2242 case R_SPARC_GOT22:
2243 /* Relocation is to the entry for this symbol in the global
2244 offset table. */
2245 if (sgot == NULL)
2246 {
2247 sgot = bfd_get_section_by_name (dynobj, ".got");
2248 BFD_ASSERT (sgot != NULL);
2249 }
2250
2251 if (h != NULL)
2252 {
e36f7d53
RH
2253 boolean dyn;
2254
2255 off = h->got.offset;
252b5132 2256 BFD_ASSERT (off != (bfd_vma) -1);
e36f7d53 2257 dyn = elf_hash_table (info)->dynamic_sections_created;
252b5132 2258
e36f7d53 2259 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
252b5132 2260 || (info->shared
e36f7d53
RH
2261 && (info->symbolic
2262 || h->dynindx == -1
2263 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2264 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
252b5132
RH
2265 {
2266 /* This is actually a static link, or it is a -Bsymbolic
2267 link and the symbol is defined locally, or the symbol
2268 was forced to be local because of a version file. We
2269 must initialize this entry in the global offset table.
2270 Since the offset must always be a multiple of 8, we
2271 use the least significant bit to record whether we
2272 have initialized it already.
2273
2274 When doing a dynamic link, we create a .rela.got
2275 relocation entry to initialize the value. This is
2276 done in the finish_dynamic_symbol routine. */
2277
2278 if ((off & 1) != 0)
2279 off &= ~1;
2280 else
2281 {
2282 bfd_put_64 (output_bfd, relocation,
2283 sgot->contents + off);
2284 h->got.offset |= 1;
2285 }
2286 }
e36f7d53
RH
2287 else
2288 unresolved_reloc = false;
252b5132
RH
2289 }
2290 else
2291 {
252b5132
RH
2292 BFD_ASSERT (local_got_offsets != NULL);
2293 off = local_got_offsets[r_symndx];
2294 BFD_ASSERT (off != (bfd_vma) -1);
2295
2296 /* The offset must always be a multiple of 8. We use
2297 the least significant bit to record whether we have
2298 already processed this entry. */
2299 if ((off & 1) != 0)
2300 off &= ~1;
2301 else
2302 {
252b5132
RH
2303 local_got_offsets[r_symndx] |= 1;
2304
2305 if (info->shared)
2306 {
2307 asection *srelgot;
2308 Elf_Internal_Rela outrel;
2309
ea5fbc67
GK
2310 /* The Solaris 2.7 64-bit linker adds the contents
2311 of the location to the value of the reloc.
2312 Note this is different behaviour to the
2313 32-bit linker, which both adds the contents
2314 and ignores the addend. So clear the location. */
dc810e39
AM
2315 bfd_put_64 (output_bfd, (bfd_vma) 0,
2316 sgot->contents + off);
435b1e90 2317
252b5132
RH
2318 /* We need to generate a R_SPARC_RELATIVE reloc
2319 for the dynamic linker. */
2320 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2321 BFD_ASSERT (srelgot != NULL);
2322
2323 outrel.r_offset = (sgot->output_section->vma
2324 + sgot->output_offset
2325 + off);
2326 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2327 outrel.r_addend = relocation;
2328 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2329 (((Elf64_External_Rela *)
2330 srelgot->contents)
2331 + srelgot->reloc_count));
2332 ++srelgot->reloc_count;
2333 }
ea5fbc67
GK
2334 else
2335 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
252b5132 2336 }
252b5132 2337 }
e36f7d53 2338 relocation = sgot->output_offset + off - got_base;
252b5132
RH
2339 goto do_default;
2340
2341 case R_SPARC_WPLT30:
2342 case R_SPARC_PLT32:
2343 case R_SPARC_HIPLT22:
2344 case R_SPARC_LOPLT10:
2345 case R_SPARC_PCPLT32:
2346 case R_SPARC_PCPLT22:
2347 case R_SPARC_PCPLT10:
2348 case R_SPARC_PLT64:
2349 /* Relocation is to the entry for this symbol in the
2350 procedure linkage table. */
2351 BFD_ASSERT (h != NULL);
2352
2353 if (h->plt.offset == (bfd_vma) -1)
2354 {
2355 /* We didn't make a PLT entry for this symbol. This
2356 happens when statically linking PIC code, or when
2357 using -Bsymbolic. */
2358 goto do_default;
2359 }
2360
2361 if (splt == NULL)
2362 {
2363 splt = bfd_get_section_by_name (dynobj, ".plt");
2364 BFD_ASSERT (splt != NULL);
2365 }
2366
2367 relocation = (splt->output_section->vma
2368 + splt->output_offset
2369 + sparc64_elf_plt_entry_offset (h->plt.offset));
e36f7d53 2370 unresolved_reloc = false;
f7775d95
JJ
2371 if (r_type == R_SPARC_WPLT30)
2372 goto do_wplt30;
bd5e6e7e
JJ
2373 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2374 {
2375 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2376 is_plt = true;
2377 goto do_dynreloc;
2378 }
252b5132
RH
2379 goto do_default;
2380
2381 case R_SPARC_OLO10:
2382 {
2383 bfd_vma x;
2384
2385 relocation += rel->r_addend;
2386 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2387
2388 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2389 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
252b5132
RH
2390 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2391
2392 r = bfd_check_overflow (howto->complain_on_overflow,
2393 howto->bitsize, howto->rightshift,
2394 bfd_arch_bits_per_address (input_bfd),
2395 relocation);
2396 }
2397 break;
2398
2399 case R_SPARC_WDISP16:
2400 {
2401 bfd_vma x;
2402
2403 relocation += rel->r_addend;
2404 /* Adjust for pc-relative-ness. */
2405 relocation -= (input_section->output_section->vma
2406 + input_section->output_offset);
2407 relocation -= rel->r_offset;
2408
2409 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39
AM
2410 x &= ~(bfd_vma) 0x303fff;
2411 x |= ((((relocation >> 2) & 0xc000) << 6)
2412 | ((relocation >> 2) & 0x3fff));
252b5132
RH
2413 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2414
2415 r = bfd_check_overflow (howto->complain_on_overflow,
2416 howto->bitsize, howto->rightshift,
2417 bfd_arch_bits_per_address (input_bfd),
2418 relocation);
2419 }
2420 break;
2421
2422 case R_SPARC_HIX22:
2423 {
2424 bfd_vma x;
2425
2426 relocation += rel->r_addend;
2427 relocation = relocation ^ MINUS_ONE;
2428
2429 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2430 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
252b5132
RH
2431 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2432
2433 r = bfd_check_overflow (howto->complain_on_overflow,
2434 howto->bitsize, howto->rightshift,
2435 bfd_arch_bits_per_address (input_bfd),
2436 relocation);
2437 }
2438 break;
2439
2440 case R_SPARC_LOX10:
2441 {
2442 bfd_vma x;
2443
2444 relocation += rel->r_addend;
2445 relocation = (relocation & 0x3ff) | 0x1c00;
2446
2447 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2448 x = (x & ~(bfd_vma) 0x1fff) | relocation;
252b5132
RH
2449 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2450
2451 r = bfd_reloc_ok;
2452 }
2453 break;
2454
f7775d95
JJ
2455 case R_SPARC_WDISP30:
2456 do_wplt30:
2457 if (SEC_DO_RELAX (input_section)
2458 && rel->r_offset + 4 < input_section->_raw_size)
2459 {
2460#define G0 0
2461#define O7 15
2462#define XCC (2 << 20)
2463#define COND(x) (((x)&0xf)<<25)
2464#define CONDA COND(0x8)
2465#define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2466#define INSN_BA (F2(0,2) | CONDA)
2467#define INSN_OR F3(2, 0x2, 0)
2468#define INSN_NOP F2(0,4)
2469
2470 bfd_vma x, y;
2471
2472 /* If the instruction is a call with either:
2473 restore
2474 arithmetic instruction with rd == %o7
2475 where rs1 != %o7 and rs2 if it is register != %o7
2476 then we can optimize if the call destination is near
2477 by changing the call into a branch always. */
2478 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2479 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2480 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2481 {
2482 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2483 || ((y & OP3(0x28)) == 0 /* arithmetic */
2484 && (y & RD(~0)) == RD(O7)))
2485 && (y & RS1(~0)) != RS1(O7)
2486 && ((y & F3I(~0))
2487 || (y & RS2(~0)) != RS2(O7)))
2488 {
2489 bfd_vma reloc;
2490
2491 reloc = relocation + rel->r_addend - rel->r_offset;
2492 reloc -= (input_section->output_section->vma
2493 + input_section->output_offset);
2494 if (reloc & 3)
2495 goto do_default;
2496
2497 /* Ensure the branch fits into simm22. */
2498 if ((reloc & ~(bfd_vma)0x7fffff)
2499 && ((reloc | 0x7fffff) != MINUS_ONE))
2500 goto do_default;
2501 reloc >>= 2;
2502
2503 /* Check whether it fits into simm19. */
2504 if ((reloc & 0x3c0000) == 0
2505 || (reloc & 0x3c0000) == 0x3c0000)
2506 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2507 else
2508 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2509 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2510 r = bfd_reloc_ok;
2511 if (rel->r_offset >= 4
2512 && (y & (0xffffffff ^ RS1(~0)))
2513 == (INSN_OR | RD(O7) | RS2(G0)))
2514 {
2515 bfd_vma z;
2516 unsigned int reg;
2517
2518 z = bfd_get_32 (input_bfd,
2519 contents + rel->r_offset - 4);
2520 if ((z & (0xffffffff ^ RD(~0)))
2521 != (INSN_OR | RS1(O7) | RS2(G0)))
2522 break;
2523
2524 /* The sequence was
2525 or %o7, %g0, %rN
2526 call foo
2527 or %rN, %g0, %o7
2528
2529 If call foo was replaced with ba, replace
2530 or %rN, %g0, %o7 with nop. */
2531
2532 reg = (y & RS1(~0)) >> 14;
2533 if (reg != ((z & RD(~0)) >> 25)
2534 || reg == G0 || reg == O7)
2535 break;
2536
dc810e39 2537 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
f7775d95
JJ
2538 contents + rel->r_offset + 4);
2539 }
2540 break;
2541 }
2542 }
2543 }
2544 /* FALLTHROUGH */
2545
252b5132
RH
2546 default:
2547 do_default:
2548 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2549 contents, rel->r_offset,
2550 relocation, rel->r_addend);
2551 break;
2552 }
2553
239e1f3a
AM
2554 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2555 because such sections are not SEC_ALLOC and thus ld.so will
2556 not process them. */
e36f7d53 2557 if (unresolved_reloc
239e1f3a 2558 && !((input_section->flags & SEC_DEBUGGING) != 0
e36f7d53
RH
2559 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2560 (*_bfd_error_handler)
2561 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2562 bfd_archive_filename (input_bfd),
2563 bfd_get_section_name (input_bfd, input_section),
2564 (long) rel->r_offset,
2565 h->root.root.string);
2566
252b5132
RH
2567 switch (r)
2568 {
2569 case bfd_reloc_ok:
2570 break;
2571
2572 default:
2573 case bfd_reloc_outofrange:
2574 abort ();
2575
2576 case bfd_reloc_overflow:
2577 {
2578 const char *name;
2579
6361c4c9
AO
2580 /* The Solaris native linker silently disregards
2581 overflows. We don't, but this breaks stabs debugging
2582 info, whose relocations are only 32-bits wide. Ignore
2583 overflows in this case. */
2584 if (r_type == R_SPARC_32
2585 && (input_section->flags & SEC_DEBUGGING) != 0
2586 && strcmp (bfd_section_name (input_bfd, input_section),
2587 ".stab") == 0)
2588 break;
2589
252b5132
RH
2590 if (h != NULL)
2591 {
2592 if (h->root.type == bfd_link_hash_undefweak
2593 && howto->pc_relative)
2594 {
2595 /* Assume this is a call protected by other code that
2596 detect the symbol is undefined. If this is the case,
435b1e90 2597 we can safely ignore the overflow. If not, the
252b5132
RH
2598 program is hosed anyway, and a little warning isn't
2599 going to help. */
2600 break;
2601 }
435b1e90 2602
252b5132
RH
2603 name = h->root.root.string;
2604 }
2605 else
2606 {
2607 name = (bfd_elf_string_from_elf_section
2608 (input_bfd,
2609 symtab_hdr->sh_link,
2610 sym->st_name));
2611 if (name == NULL)
2612 return false;
2613 if (*name == '\0')
2614 name = bfd_section_name (input_bfd, sec);
2615 }
2616 if (! ((*info->callbacks->reloc_overflow)
2617 (info, name, howto->name, (bfd_vma) 0,
2618 input_bfd, input_section, rel->r_offset)))
2619 return false;
2620 }
2621 break;
2622 }
2623 }
2624
2625 return true;
2626}
2627
2628/* Finish up dynamic symbol handling. We set the contents of various
2629 dynamic sections here. */
2630
2631static boolean
2632sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2633 bfd *output_bfd;
2634 struct bfd_link_info *info;
2635 struct elf_link_hash_entry *h;
2636 Elf_Internal_Sym *sym;
2637{
2638 bfd *dynobj;
2639
2640 dynobj = elf_hash_table (info)->dynobj;
2641
2642 if (h->plt.offset != (bfd_vma) -1)
2643 {
2644 asection *splt;
2645 asection *srela;
2646 Elf_Internal_Rela rela;
2647
435b1e90 2648 /* This symbol has an entry in the PLT. Set it up. */
252b5132
RH
2649
2650 BFD_ASSERT (h->dynindx != -1);
2651
2652 splt = bfd_get_section_by_name (dynobj, ".plt");
2653 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2654 BFD_ASSERT (splt != NULL && srela != NULL);
2655
2656 /* Fill in the entry in the .rela.plt section. */
2657
2658 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2659 {
2660 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2661 rela.r_addend = 0;
2662 }
2663 else
2664 {
dc810e39 2665 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
252b5132 2666 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
a11c78e7
RH
2667 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2668 -(splt->output_section->vma + splt->output_offset);
252b5132
RH
2669 }
2670 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2671 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2672
be040dbb
JJ
2673 /* Adjust for the first 4 reserved elements in the .plt section
2674 when setting the offset in the .rela.plt section.
2675 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2676 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2677
252b5132
RH
2678 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2679 ((Elf64_External_Rela *) srela->contents
be040dbb 2680 + (h->plt.offset - 4)));
252b5132
RH
2681
2682 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2683 {
2684 /* Mark the symbol as undefined, rather than as defined in
2685 the .plt section. Leave the value alone. */
2686 sym->st_shndx = SHN_UNDEF;
8701c1bc
JJ
2687 /* If the symbol is weak, we do need to clear the value.
2688 Otherwise, the PLT entry would provide a definition for
2689 the symbol even if the symbol wasn't defined anywhere,
2690 and so the symbol would never be NULL. */
2691 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2692 == 0)
2693 sym->st_value = 0;
252b5132
RH
2694 }
2695 }
2696
2697 if (h->got.offset != (bfd_vma) -1)
2698 {
2699 asection *sgot;
2700 asection *srela;
2701 Elf_Internal_Rela rela;
2702
2703 /* This symbol has an entry in the GOT. Set it up. */
2704
2705 sgot = bfd_get_section_by_name (dynobj, ".got");
2706 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2707 BFD_ASSERT (sgot != NULL && srela != NULL);
2708
2709 rela.r_offset = (sgot->output_section->vma
2710 + sgot->output_offset
dc810e39 2711 + (h->got.offset &~ (bfd_vma) 1));
252b5132
RH
2712
2713 /* If this is a -Bsymbolic link, and the symbol is defined
2714 locally, we just want to emit a RELATIVE reloc. Likewise if
2715 the symbol was forced to be local because of a version file.
2716 The entry in the global offset table will already have been
2717 initialized in the relocate_section function. */
2718 if (info->shared
2719 && (info->symbolic || h->dynindx == -1)
2720 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2721 {
2722 asection *sec = h->root.u.def.section;
2723 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2724 rela.r_addend = (h->root.u.def.value
2725 + sec->output_section->vma
2726 + sec->output_offset);
2727 }
2728 else
2729 {
252b5132
RH
2730 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2731 rela.r_addend = 0;
2732 }
2733
6b3ac709
JJ
2734 bfd_put_64 (output_bfd, (bfd_vma) 0,
2735 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
252b5132
RH
2736 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2737 ((Elf64_External_Rela *) srela->contents
2738 + srela->reloc_count));
2739 ++srela->reloc_count;
2740 }
2741
2742 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2743 {
2744 asection *s;
2745 Elf_Internal_Rela rela;
2746
2747 /* This symbols needs a copy reloc. Set it up. */
2748
2749 BFD_ASSERT (h->dynindx != -1);
2750
2751 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2752 ".rela.bss");
2753 BFD_ASSERT (s != NULL);
2754
2755 rela.r_offset = (h->root.u.def.value
2756 + h->root.u.def.section->output_section->vma
2757 + h->root.u.def.section->output_offset);
2758 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2759 rela.r_addend = 0;
2760 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2761 ((Elf64_External_Rela *) s->contents
2762 + s->reloc_count));
2763 ++s->reloc_count;
2764 }
2765
2766 /* Mark some specially defined symbols as absolute. */
2767 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2768 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2769 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2770 sym->st_shndx = SHN_ABS;
2771
2772 return true;
2773}
2774
2775/* Finish up the dynamic sections. */
2776
2777static boolean
2778sparc64_elf_finish_dynamic_sections (output_bfd, info)
2779 bfd *output_bfd;
2780 struct bfd_link_info *info;
2781{
2782 bfd *dynobj;
587ff49e 2783 int stt_regidx = -1;
252b5132
RH
2784 asection *sdyn;
2785 asection *sgot;
2786
2787 dynobj = elf_hash_table (info)->dynobj;
2788
2789 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2790
2791 if (elf_hash_table (info)->dynamic_sections_created)
2792 {
2793 asection *splt;
2794 Elf64_External_Dyn *dyncon, *dynconend;
2795
2796 splt = bfd_get_section_by_name (dynobj, ".plt");
2797 BFD_ASSERT (splt != NULL && sdyn != NULL);
2798
2799 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2800 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2801 for (; dyncon < dynconend; dyncon++)
2802 {
2803 Elf_Internal_Dyn dyn;
2804 const char *name;
2805 boolean size;
2806
2807 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2808
2809 switch (dyn.d_tag)
2810 {
2811 case DT_PLTGOT: name = ".plt"; size = false; break;
2812 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2813 case DT_JMPREL: name = ".rela.plt"; size = false; break;
587ff49e
RH
2814 case DT_SPARC_REGISTER:
2815 if (stt_regidx == -1)
2816 {
2817 stt_regidx =
2818 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2819 if (stt_regidx == -1)
2820 return false;
2821 }
2822 dyn.d_un.d_val = stt_regidx++;
2823 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2824 /* fallthrough */
252b5132
RH
2825 default: name = NULL; size = false; break;
2826 }
2827
2828 if (name != NULL)
2829 {
2830 asection *s;
2831
2832 s = bfd_get_section_by_name (output_bfd, name);
2833 if (s == NULL)
2834 dyn.d_un.d_val = 0;
2835 else
2836 {
2837 if (! size)
2838 dyn.d_un.d_ptr = s->vma;
2839 else
2840 {
2841 if (s->_cooked_size != 0)
2842 dyn.d_un.d_val = s->_cooked_size;
2843 else
2844 dyn.d_un.d_val = s->_raw_size;
2845 }
2846 }
2847 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2848 }
2849 }
2850
2851 /* Initialize the contents of the .plt section. */
2852 if (splt->_raw_size > 0)
2853 {
dc810e39
AM
2854 sparc64_elf_build_plt (output_bfd, splt->contents,
2855 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
252b5132
RH
2856 }
2857
2858 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2859 PLT_ENTRY_SIZE;
2860 }
2861
2862 /* Set the first entry in the global offset table to the address of
2863 the dynamic section. */
2864 sgot = bfd_get_section_by_name (dynobj, ".got");
2865 BFD_ASSERT (sgot != NULL);
2866 if (sgot->_raw_size > 0)
2867 {
2868 if (sdyn == NULL)
2869 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2870 else
2871 bfd_put_64 (output_bfd,
2872 sdyn->output_section->vma + sdyn->output_offset,
2873 sgot->contents);
2874 }
2875
2876 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2877
252b5132
RH
2878 return true;
2879}
db6751f2
JJ
2880
2881static enum elf_reloc_type_class
f51e552e
AM
2882sparc64_elf_reloc_type_class (rela)
2883 const Elf_Internal_Rela *rela;
db6751f2 2884{
f51e552e 2885 switch ((int) ELF64_R_TYPE (rela->r_info))
db6751f2
JJ
2886 {
2887 case R_SPARC_RELATIVE:
2888 return reloc_class_relative;
2889 case R_SPARC_JMP_SLOT:
2890 return reloc_class_plt;
2891 case R_SPARC_COPY:
2892 return reloc_class_copy;
2893 default:
2894 return reloc_class_normal;
2895 }
2896}
252b5132 2897\f
435b1e90 2898/* Functions for dealing with the e_flags field. */
252b5132
RH
2899
2900/* Merge backend specific data from an object file to the output
2901 object file when linking. */
2902
2903static boolean
2904sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2905 bfd *ibfd;
2906 bfd *obfd;
2907{
2908 boolean error;
2909 flagword new_flags, old_flags;
2910 int new_mm, old_mm;
2911
2912 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2913 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2914 return true;
2915
2916 new_flags = elf_elfheader (ibfd)->e_flags;
2917 old_flags = elf_elfheader (obfd)->e_flags;
2918
2919 if (!elf_flags_init (obfd)) /* First call, no flags set */
2920 {
2921 elf_flags_init (obfd) = true;
2922 elf_elfheader (obfd)->e_flags = new_flags;
2923 }
435b1e90 2924
252b5132
RH
2925 else if (new_flags == old_flags) /* Compatible flags are ok */
2926 ;
435b1e90 2927
252b5132
RH
2928 else /* Incompatible flags */
2929 {
2930 error = false;
19f7b010
JJ
2931
2932#define EF_SPARC_ISA_EXTENSIONS \
2933 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2934
37fb6db1
ILT
2935 if ((ibfd->flags & DYNAMIC) != 0)
2936 {
2937 /* We don't want dynamic objects memory ordering and
2938 architecture to have any role. That's what dynamic linker
2939 should do. */
19f7b010 2940 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
6c08d697 2941 new_flags |= (old_flags
19f7b010 2942 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
37fb6db1
ILT
2943 }
2944 else
2945 {
2946 /* Choose the highest architecture requirements. */
19f7b010
JJ
2947 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2948 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2949 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2950 && (old_flags & EF_SPARC_HAL_R1))
37fb6db1
ILT
2951 {
2952 error = true;
2953 (*_bfd_error_handler)
2954 (_("%s: linking UltraSPARC specific with HAL specific code"),
8f615d07 2955 bfd_archive_filename (ibfd));
37fb6db1
ILT
2956 }
2957 /* Choose the most restrictive memory ordering. */
2958 old_mm = (old_flags & EF_SPARCV9_MM);
2959 new_mm = (new_flags & EF_SPARCV9_MM);
2960 old_flags &= ~EF_SPARCV9_MM;
2961 new_flags &= ~EF_SPARCV9_MM;
2962 if (new_mm < old_mm)
2963 old_mm = new_mm;
2964 old_flags |= old_mm;
2965 new_flags |= old_mm;
2966 }
252b5132
RH
2967
2968 /* Warn about any other mismatches */
2969 if (new_flags != old_flags)
2970 {
2971 error = true;
2972 (*_bfd_error_handler)
2973 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
8f615d07 2974 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
252b5132
RH
2975 }
2976
2977 elf_elfheader (obfd)->e_flags = old_flags;
2978
2979 if (error)
2980 {
2981 bfd_set_error (bfd_error_bad_value);
2982 return false;
2983 }
2984 }
2985 return true;
2986}
0594c12d
AM
2987
2988/* MARCO: Set the correct entry size for the .stab section. */
2989
2990static boolean
2991sparc64_elf_fake_sections (abfd, hdr, sec)
2992 bfd *abfd ATTRIBUTE_UNUSED;
2993 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
2994 asection *sec;
2995{
2996 const char *name;
2997
2998 name = bfd_get_section_name (abfd, sec);
2999
3000 if (strcmp (name, ".stab") == 0)
3001 {
3002 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3003 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3004 }
3005
3006 return true;
3007}
587ff49e
RH
3008\f
3009/* Print a STT_REGISTER symbol to file FILE. */
252b5132 3010
587ff49e
RH
3011static const char *
3012sparc64_elf_print_symbol_all (abfd, filep, symbol)
6c08d697 3013 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
3014 PTR filep;
3015 asymbol *symbol;
3016{
3017 FILE *file = (FILE *) filep;
3018 int reg, type;
435b1e90 3019
587ff49e
RH
3020 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3021 != STT_REGISTER)
3022 return NULL;
3023
3024 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3025 type = symbol->flags;
3026 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3027 ((type & BSF_LOCAL)
3028 ? (type & BSF_GLOBAL) ? '!' : 'l'
99c79b2e
AJ
3029 : (type & BSF_GLOBAL) ? 'g' : ' '),
3030 (type & BSF_WEAK) ? 'w' : ' ');
587ff49e
RH
3031 if (symbol->name == NULL || symbol->name [0] == '\0')
3032 return "#scratch";
3033 else
3034 return symbol->name;
3035}
252b5132
RH
3036\f
3037/* Set the right machine number for a SPARC64 ELF file. */
3038
3039static boolean
3040sparc64_elf_object_p (abfd)
3041 bfd *abfd;
3042{
3043 unsigned long mach = bfd_mach_sparc_v9;
19f7b010
JJ
3044
3045 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3046 mach = bfd_mach_sparc_v9b;
3047 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
252b5132
RH
3048 mach = bfd_mach_sparc_v9a;
3049 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3050}
3051
f65054f7
RH
3052/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3053 standard ELF, because R_SPARC_OLO10 has secondary addend in
3054 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3055 relocation handling routines. */
3056
3057const struct elf_size_info sparc64_elf_size_info =
3058{
3059 sizeof (Elf64_External_Ehdr),
3060 sizeof (Elf64_External_Phdr),
3061 sizeof (Elf64_External_Shdr),
3062 sizeof (Elf64_External_Rel),
3063 sizeof (Elf64_External_Rela),
3064 sizeof (Elf64_External_Sym),
3065 sizeof (Elf64_External_Dyn),
3066 sizeof (Elf_External_Note),
a11c78e7 3067 4, /* hash-table entry size */
f65054f7
RH
3068 /* internal relocations per external relocations.
3069 For link purposes we use just 1 internal per
3070 1 external, for assembly and slurp symbol table
435b1e90 3071 we use 2. */
f65054f7
RH
3072 1,
3073 64, /* arch_size */
3074 8, /* file_align */
3075 ELFCLASS64,
3076 EV_CURRENT,
3077 bfd_elf64_write_out_phdrs,
3078 bfd_elf64_write_shdrs_and_ehdr,
3079 sparc64_elf_write_relocs,
73ff0d56 3080 bfd_elf64_swap_symbol_in,
f65054f7
RH
3081 bfd_elf64_swap_symbol_out,
3082 sparc64_elf_slurp_reloc_table,
3083 bfd_elf64_slurp_symbol_table,
3084 bfd_elf64_swap_dyn_in,
3085 bfd_elf64_swap_dyn_out,
3086 NULL,
3087 NULL,
3088 NULL,
3089 NULL
3090};
3091
252b5132
RH
3092#define TARGET_BIG_SYM bfd_elf64_sparc_vec
3093#define TARGET_BIG_NAME "elf64-sparc"
3094#define ELF_ARCH bfd_arch_sparc
3095#define ELF_MAXPAGESIZE 0x100000
3096
3097/* This is the official ABI value. */
3098#define ELF_MACHINE_CODE EM_SPARCV9
3099
3100/* This is the value that we used before the ABI was released. */
3101#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3102
587ff49e
RH
3103#define bfd_elf64_bfd_link_hash_table_create \
3104 sparc64_elf_bfd_link_hash_table_create
435b1e90 3105
252b5132
RH
3106#define elf_info_to_howto \
3107 sparc64_elf_info_to_howto
f65054f7
RH
3108#define bfd_elf64_get_reloc_upper_bound \
3109 sparc64_elf_get_reloc_upper_bound
3110#define bfd_elf64_get_dynamic_reloc_upper_bound \
3111 sparc64_elf_get_dynamic_reloc_upper_bound
3112#define bfd_elf64_canonicalize_dynamic_reloc \
3113 sparc64_elf_canonicalize_dynamic_reloc
252b5132
RH
3114#define bfd_elf64_bfd_reloc_type_lookup \
3115 sparc64_elf_reloc_type_lookup
f7775d95
JJ
3116#define bfd_elf64_bfd_relax_section \
3117 sparc64_elf_relax_section
252b5132
RH
3118
3119#define elf_backend_create_dynamic_sections \
3120 _bfd_elf_create_dynamic_sections
587ff49e
RH
3121#define elf_backend_add_symbol_hook \
3122 sparc64_elf_add_symbol_hook
3123#define elf_backend_get_symbol_type \
3124 sparc64_elf_get_symbol_type
3125#define elf_backend_symbol_processing \
3126 sparc64_elf_symbol_processing
252b5132
RH
3127#define elf_backend_check_relocs \
3128 sparc64_elf_check_relocs
3129#define elf_backend_adjust_dynamic_symbol \
3130 sparc64_elf_adjust_dynamic_symbol
3131#define elf_backend_size_dynamic_sections \
3132 sparc64_elf_size_dynamic_sections
3133#define elf_backend_relocate_section \
3134 sparc64_elf_relocate_section
3135#define elf_backend_finish_dynamic_symbol \
3136 sparc64_elf_finish_dynamic_symbol
3137#define elf_backend_finish_dynamic_sections \
3138 sparc64_elf_finish_dynamic_sections
587ff49e
RH
3139#define elf_backend_print_symbol_all \
3140 sparc64_elf_print_symbol_all
3141#define elf_backend_output_arch_syms \
3142 sparc64_elf_output_arch_syms
252b5132
RH
3143#define bfd_elf64_bfd_merge_private_bfd_data \
3144 sparc64_elf_merge_private_bfd_data
0594c12d
AM
3145#define elf_backend_fake_sections \
3146 sparc64_elf_fake_sections
252b5132 3147
f65054f7
RH
3148#define elf_backend_size_info \
3149 sparc64_elf_size_info
252b5132
RH
3150#define elf_backend_object_p \
3151 sparc64_elf_object_p
db6751f2
JJ
3152#define elf_backend_reloc_type_class \
3153 sparc64_elf_reloc_type_class
252b5132
RH
3154
3155#define elf_backend_want_got_plt 0
3156#define elf_backend_plt_readonly 0
3157#define elf_backend_want_plt_sym 1
f0fe0e16 3158#define elf_backend_rela_normal 1
252b5132
RH
3159
3160/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3161#define elf_backend_plt_alignment 8
3162
3163#define elf_backend_got_header_size 8
3164#define elf_backend_plt_header_size PLT_HEADER_SIZE
3165
3166#include "elf64-target.h"
This page took 0.314768 seconds and 4 git commands to generate.