Unify messages in coff-arm.c and elf32-arm.h.
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
CommitLineData
252b5132 1/* SPARC-specific support for 64-bit ELF
7898deda 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
37fb6db1 3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
f7775d95 25#include "opcode/sparc.h"
252b5132
RH
26
27/* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30/*#define SPARC64_OLD_RELOCS*/
31
32#include "elf/sparc.h"
33
34/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35#define MINUS_ONE (~ (bfd_vma) 0)
36
587ff49e 37static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
99c79b2e
AJ
38 PARAMS ((bfd *));
39static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
252b5132
RH
42static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47static void sparc64_elf_build_plt
99c79b2e 48 PARAMS ((bfd *, unsigned char *, int));
252b5132 49static bfd_vma sparc64_elf_plt_entry_offset
dc810e39 50 PARAMS ((bfd_vma));
252b5132 51static bfd_vma sparc64_elf_plt_ptr_offset
dc810e39 52 PARAMS ((bfd_vma, bfd_vma));
252b5132
RH
53
54static boolean sparc64_elf_check_relocs
99c79b2e
AJ
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
252b5132 57static boolean sparc64_elf_adjust_dynamic_symbol
99c79b2e 58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
252b5132 59static boolean sparc64_elf_size_dynamic_sections
99c79b2e 60 PARAMS ((bfd *, struct bfd_link_info *));
587ff49e
RH
61static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
99c79b2e 65 const char **, flagword *, asection **, bfd_vma *));
5d964dfa
AM
66static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
587ff49e
RH
69static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
252b5132
RH
71
72static boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
99c79b2e
AJ
75static const char *sparc64_elf_print_symbol_all
76 PARAMS ((bfd *, PTR, asymbol *));
f7775d95
JJ
77static boolean sparc64_elf_relax_section
78 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
252b5132
RH
79static boolean sparc64_elf_relocate_section
80 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
81 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
99c79b2e
AJ
82static boolean sparc64_elf_finish_dynamic_symbol
83 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
84 Elf_Internal_Sym *));
85static boolean sparc64_elf_finish_dynamic_sections
86 PARAMS ((bfd *, struct bfd_link_info *));
252b5132 87static boolean sparc64_elf_object_p PARAMS ((bfd *));
f65054f7
RH
88static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
89static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
90static boolean sparc64_elf_slurp_one_reloc_table
91 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
92static boolean sparc64_elf_slurp_reloc_table
93 PARAMS ((bfd *, asection *, asymbol **, boolean));
94static long sparc64_elf_canonicalize_dynamic_reloc
95 PARAMS ((bfd *, arelent **, asymbol **));
96static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
f51e552e
AM
97static enum elf_reloc_type_class sparc64_elf_reloc_type_class
98 PARAMS ((const Elf_Internal_Rela *));
252b5132
RH
99\f
100/* The relocation "howto" table. */
101
102static bfd_reloc_status_type sparc_elf_notsup_reloc
103 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
104static bfd_reloc_status_type sparc_elf_wdisp16_reloc
105 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
106static bfd_reloc_status_type sparc_elf_hix22_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108static bfd_reloc_status_type sparc_elf_lox10_reloc
109 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
110
111static reloc_howto_type sparc64_elf_howto_table[] =
112{
113 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
114 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
115 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
116 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
117 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
118 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
bd5e6e7e 119 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0xffffffff,true),
252b5132
RH
120 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
121 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
122 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
123 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
125 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
126 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
127 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
128 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
129 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
130 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
131 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
132 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
133 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
134 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
135 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
9fc54e19 136 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
252b5132 137#ifndef SPARC64_OLD_RELOCS
bd5e6e7e 138 HOWTO(R_SPARC_PLT32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", false,0,0xffffffff,true),
252b5132 139 /* These aren't implemented yet. */
252b5132
RH
140 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
141 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
142 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
143 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
145#endif
146 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
147 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
148 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
149 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
150 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
151 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
152 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
153 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
155 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
157 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
158 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
159 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
160 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
161 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
162 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
bd5e6e7e 163 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, true),
252b5132
RH
164 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
165 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
167 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
168 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
169 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
170 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
171 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
172};
173
174struct elf_reloc_map {
175 bfd_reloc_code_real_type bfd_reloc_val;
176 unsigned char elf_reloc_val;
177};
178
dc810e39 179static const struct elf_reloc_map sparc_reloc_map[] =
252b5132
RH
180{
181 { BFD_RELOC_NONE, R_SPARC_NONE, },
182 { BFD_RELOC_16, R_SPARC_16, },
bd5e6e7e 183 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
252b5132
RH
184 { BFD_RELOC_8, R_SPARC_8 },
185 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
186 { BFD_RELOC_CTOR, R_SPARC_64 },
187 { BFD_RELOC_32, R_SPARC_32 },
188 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
189 { BFD_RELOC_HI22, R_SPARC_HI22 },
190 { BFD_RELOC_LO10, R_SPARC_LO10, },
191 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
bd5e6e7e 192 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
252b5132
RH
193 { BFD_RELOC_SPARC22, R_SPARC_22 },
194 { BFD_RELOC_SPARC13, R_SPARC_13 },
195 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
196 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
197 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
198 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
199 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
200 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
201 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
202 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
203 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
204 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
205 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
0f2712ed
NC
206 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
207 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
208 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
209 { BFD_RELOC_SPARC_10, R_SPARC_10 },
210 { BFD_RELOC_SPARC_11, R_SPARC_11 },
211 { BFD_RELOC_SPARC_64, R_SPARC_64 },
212 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
213 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
214 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
215 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
216 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
217 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
218 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
219 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
220 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
221 { BFD_RELOC_SPARC_7, R_SPARC_7 },
222 { BFD_RELOC_SPARC_5, R_SPARC_5 },
223 { BFD_RELOC_SPARC_6, R_SPARC_6 },
224 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
bd5e6e7e
JJ
225#ifndef SPARC64_OLD_RELOCS
226 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
227#endif
0f2712ed
NC
228 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
229 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
230 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
231 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
232 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
233 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
234 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
252b5132
RH
235};
236
237static reloc_howto_type *
238sparc64_elf_reloc_type_lookup (abfd, code)
6c08d697 239 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
240 bfd_reloc_code_real_type code;
241{
242 unsigned int i;
243 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
244 {
245 if (sparc_reloc_map[i].bfd_reloc_val == code)
246 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
247 }
248 return 0;
249}
250
251static void
252sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
6c08d697 253 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
254 arelent *cache_ptr;
255 Elf64_Internal_Rela *dst;
256{
f65054f7
RH
257 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
258 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
259}
260\f
261/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
262 section can represent up to two relocs, we must tell the user to allocate
263 more space. */
435b1e90 264
f65054f7
RH
265static long
266sparc64_elf_get_reloc_upper_bound (abfd, sec)
6c08d697 267 bfd *abfd ATTRIBUTE_UNUSED;
f65054f7
RH
268 asection *sec;
269{
270 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
271}
272
273static long
274sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
275 bfd *abfd;
276{
277 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
278}
279
435b1e90 280/* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
f65054f7
RH
281 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
282 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
283 for the same location, R_SPARC_LO10 and R_SPARC_13. */
284
285static boolean
286sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
287 bfd *abfd;
288 asection *asect;
289 Elf_Internal_Shdr *rel_hdr;
290 asymbol **symbols;
291 boolean dynamic;
292{
f65054f7
RH
293 PTR allocated = NULL;
294 bfd_byte *native_relocs;
295 arelent *relent;
296 unsigned int i;
297 int entsize;
298 bfd_size_type count;
299 arelent *relents;
300
dc810e39 301 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
f65054f7
RH
302 if (allocated == NULL)
303 goto error_return;
304
305 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
dc810e39 306 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
f65054f7
RH
307 goto error_return;
308
309 native_relocs = (bfd_byte *) allocated;
310
311 relents = asect->relocation + asect->reloc_count;
312
313 entsize = rel_hdr->sh_entsize;
314 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
435b1e90 315
f65054f7
RH
316 count = rel_hdr->sh_size / entsize;
317
318 for (i = 0, relent = relents; i < count;
319 i++, relent++, native_relocs += entsize)
320 {
321 Elf_Internal_Rela rela;
322
323 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
324
325 /* The address of an ELF reloc is section relative for an object
326 file, and absolute for an executable file or shared library.
327 The address of a normal BFD reloc is always section relative,
328 and the address of a dynamic reloc is absolute.. */
329 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
330 relent->address = rela.r_offset;
331 else
332 relent->address = rela.r_offset - asect->vma;
333
334 if (ELF64_R_SYM (rela.r_info) == 0)
335 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
336 else
337 {
338 asymbol **ps, *s;
339
340 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
341 s = *ps;
342
343 /* Canonicalize ELF section symbols. FIXME: Why? */
344 if ((s->flags & BSF_SECTION_SYM) == 0)
345 relent->sym_ptr_ptr = ps;
346 else
347 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
348 }
349
350 relent->addend = rela.r_addend;
351
352 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
353 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
354 {
355 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
356 relent[1].address = relent->address;
357 relent++;
358 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
359 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
360 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
361 }
362 else
363 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
364 }
365
366 asect->reloc_count += relent - relents;
367
368 if (allocated != NULL)
369 free (allocated);
370
371 return true;
372
373 error_return:
374 if (allocated != NULL)
375 free (allocated);
376 return false;
377}
378
379/* Read in and swap the external relocs. */
380
381static boolean
382sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
383 bfd *abfd;
384 asection *asect;
385 asymbol **symbols;
386 boolean dynamic;
387{
388 struct bfd_elf_section_data * const d = elf_section_data (asect);
389 Elf_Internal_Shdr *rel_hdr;
390 Elf_Internal_Shdr *rel_hdr2;
dc810e39 391 bfd_size_type amt;
f65054f7
RH
392
393 if (asect->relocation != NULL)
394 return true;
395
396 if (! dynamic)
397 {
398 if ((asect->flags & SEC_RELOC) == 0
399 || asect->reloc_count == 0)
400 return true;
401
402 rel_hdr = &d->rel_hdr;
403 rel_hdr2 = d->rel_hdr2;
404
405 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
406 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
407 }
408 else
409 {
410 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
411 case because relocations against this section may use the
412 dynamic symbol table, and in that case bfd_section_from_shdr
413 in elf.c does not update the RELOC_COUNT. */
414 if (asect->_raw_size == 0)
415 return true;
416
417 rel_hdr = &d->this_hdr;
d9bc7a44 418 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
f65054f7
RH
419 rel_hdr2 = NULL;
420 }
421
dc810e39
AM
422 amt = asect->reloc_count;
423 amt *= 2 * sizeof (arelent);
424 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
f65054f7
RH
425 if (asect->relocation == NULL)
426 return false;
427
428 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
429 asect->reloc_count = 0;
435b1e90 430
f65054f7
RH
431 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
432 dynamic))
433 return false;
435b1e90
KH
434
435 if (rel_hdr2
f65054f7
RH
436 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
437 dynamic))
438 return false;
439
440 return true;
441}
442
443/* Canonicalize the dynamic relocation entries. Note that we return
444 the dynamic relocations as a single block, although they are
445 actually associated with particular sections; the interface, which
446 was designed for SunOS style shared libraries, expects that there
447 is only one set of dynamic relocs. Any section that was actually
448 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
449 the dynamic symbol table, is considered to be a dynamic reloc
450 section. */
451
452static long
453sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
454 bfd *abfd;
455 arelent **storage;
456 asymbol **syms;
457{
458 asection *s;
459 long ret;
460
461 if (elf_dynsymtab (abfd) == 0)
462 {
463 bfd_set_error (bfd_error_invalid_operation);
464 return -1;
465 }
466
467 ret = 0;
468 for (s = abfd->sections; s != NULL; s = s->next)
469 {
470 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
471 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
472 {
473 arelent *p;
474 long count, i;
475
476 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
477 return -1;
478 count = s->reloc_count;
479 p = s->relocation;
480 for (i = 0; i < count; i++)
481 *storage++ = p++;
482 ret += count;
483 }
484 }
485
486 *storage = NULL;
487
488 return ret;
489}
490
491/* Write out the relocs. */
492
493static void
494sparc64_elf_write_relocs (abfd, sec, data)
495 bfd *abfd;
496 asection *sec;
497 PTR data;
498{
499 boolean *failedp = (boolean *) data;
500 Elf_Internal_Shdr *rela_hdr;
37fb6db1 501 Elf64_External_Rela *outbound_relocas, *src_rela;
f65054f7
RH
502 unsigned int idx, count;
503 asymbol *last_sym = 0;
504 int last_sym_idx = 0;
505
506 /* If we have already failed, don't do anything. */
507 if (*failedp)
508 return;
509
510 if ((sec->flags & SEC_RELOC) == 0)
511 return;
512
513 /* The linker backend writes the relocs out itself, and sets the
514 reloc_count field to zero to inhibit writing them here. Also,
515 sometimes the SEC_RELOC flag gets set even when there aren't any
516 relocs. */
517 if (sec->reloc_count == 0)
518 return;
519
520 /* We can combine two relocs that refer to the same address
521 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
522 latter is R_SPARC_13 with no associated symbol. */
523 count = 0;
524 for (idx = 0; idx < sec->reloc_count; idx++)
525 {
526 bfd_vma addr;
f65054f7
RH
527
528 ++count;
529
530 addr = sec->orelocation[idx]->address;
531 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
532 && idx < sec->reloc_count - 1)
533 {
534 arelent *r = sec->orelocation[idx + 1];
535
536 if (r->howto->type == R_SPARC_13
537 && r->address == addr
538 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
539 && (*r->sym_ptr_ptr)->value == 0)
540 ++idx;
541 }
542 }
543
544 rela_hdr = &elf_section_data (sec)->rel_hdr;
545
546 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
547 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
548 if (rela_hdr->contents == NULL)
549 {
550 *failedp = true;
551 return;
552 }
553
554 /* Figure out whether the relocations are RELA or REL relocations. */
555 if (rela_hdr->sh_type != SHT_RELA)
556 abort ();
557
435b1e90 558 /* orelocation has the data, reloc_count has the count... */
f65054f7 559 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
37fb6db1 560 src_rela = outbound_relocas;
f65054f7
RH
561
562 for (idx = 0; idx < sec->reloc_count; idx++)
563 {
564 Elf_Internal_Rela dst_rela;
f65054f7
RH
565 arelent *ptr;
566 asymbol *sym;
567 int n;
568
569 ptr = sec->orelocation[idx];
f65054f7
RH
570
571 /* The address of an ELF reloc is section relative for an object
572 file, and absolute for an executable file or shared library.
573 The address of a BFD reloc is always section relative. */
574 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
575 dst_rela.r_offset = ptr->address;
576 else
577 dst_rela.r_offset = ptr->address + sec->vma;
578
579 sym = *ptr->sym_ptr_ptr;
580 if (sym == last_sym)
581 n = last_sym_idx;
582 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
583 n = STN_UNDEF;
584 else
585 {
586 last_sym = sym;
587 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
588 if (n < 0)
589 {
590 *failedp = true;
591 return;
592 }
593 last_sym_idx = n;
594 }
595
596 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
597 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
598 && ! _bfd_elf_validate_reloc (abfd, ptr))
599 {
600 *failedp = true;
601 return;
602 }
603
604 if (ptr->howto->type == R_SPARC_LO10
605 && idx < sec->reloc_count - 1)
606 {
607 arelent *r = sec->orelocation[idx + 1];
608
609 if (r->howto->type == R_SPARC_13
610 && r->address == ptr->address
611 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
612 && (*r->sym_ptr_ptr)->value == 0)
613 {
614 idx++;
615 dst_rela.r_info
616 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
617 R_SPARC_OLO10));
618 }
619 else
620 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
621 }
622 else
623 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
624
625 dst_rela.r_addend = ptr->addend;
626 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
37fb6db1 627 ++src_rela;
f65054f7 628 }
252b5132 629}
587ff49e
RH
630\f
631/* Sparc64 ELF linker hash table. */
632
633struct sparc64_elf_app_reg
634{
635 unsigned char bind;
636 unsigned short shndx;
637 bfd *abfd;
638 char *name;
639};
640
641struct sparc64_elf_link_hash_table
642{
643 struct elf_link_hash_table root;
644
645 struct sparc64_elf_app_reg app_regs [4];
646};
647
648/* Get the Sparc64 ELF linker hash table from a link_info structure. */
649
650#define sparc64_elf_hash_table(p) \
651 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
435b1e90 652
587ff49e
RH
653/* Create a Sparc64 ELF linker hash table. */
654
655static struct bfd_link_hash_table *
656sparc64_elf_bfd_link_hash_table_create (abfd)
657 bfd *abfd;
658{
659 struct sparc64_elf_link_hash_table *ret;
dc810e39 660 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
587ff49e 661
dc810e39 662 ret = (struct sparc64_elf_link_hash_table *) bfd_zalloc (abfd, amt);
587ff49e
RH
663 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
664 return NULL;
665
666 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
667 _bfd_elf_link_hash_newfunc))
668 {
669 bfd_release (abfd, ret);
670 return NULL;
671 }
672
673 return &ret->root.root;
674}
252b5132
RH
675\f
676/* Utility for performing the standard initial work of an instruction
677 relocation.
678 *PRELOCATION will contain the relocated item.
679 *PINSN will contain the instruction from the input stream.
680 If the result is `bfd_reloc_other' the caller can continue with
681 performing the relocation. Otherwise it must stop and return the
682 value to its caller. */
683
684static bfd_reloc_status_type
685init_insn_reloc (abfd,
686 reloc_entry,
687 symbol,
688 data,
689 input_section,
690 output_bfd,
691 prelocation,
692 pinsn)
693 bfd *abfd;
694 arelent *reloc_entry;
695 asymbol *symbol;
696 PTR data;
697 asection *input_section;
698 bfd *output_bfd;
699 bfd_vma *prelocation;
700 bfd_vma *pinsn;
701{
702 bfd_vma relocation;
703 reloc_howto_type *howto = reloc_entry->howto;
704
705 if (output_bfd != (bfd *) NULL
706 && (symbol->flags & BSF_SECTION_SYM) == 0
707 && (! howto->partial_inplace
708 || reloc_entry->addend == 0))
709 {
710 reloc_entry->address += input_section->output_offset;
711 return bfd_reloc_ok;
712 }
713
714 /* This works because partial_inplace == false. */
715 if (output_bfd != NULL)
716 return bfd_reloc_continue;
717
718 if (reloc_entry->address > input_section->_cooked_size)
719 return bfd_reloc_outofrange;
720
721 relocation = (symbol->value
722 + symbol->section->output_section->vma
723 + symbol->section->output_offset);
724 relocation += reloc_entry->addend;
725 if (howto->pc_relative)
726 {
727 relocation -= (input_section->output_section->vma
728 + input_section->output_offset);
729 relocation -= reloc_entry->address;
730 }
731
732 *prelocation = relocation;
733 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
734 return bfd_reloc_other;
735}
736
737/* For unsupported relocs. */
738
739static bfd_reloc_status_type
740sparc_elf_notsup_reloc (abfd,
741 reloc_entry,
742 symbol,
743 data,
744 input_section,
745 output_bfd,
746 error_message)
6c08d697
JJ
747 bfd *abfd ATTRIBUTE_UNUSED;
748 arelent *reloc_entry ATTRIBUTE_UNUSED;
749 asymbol *symbol ATTRIBUTE_UNUSED;
750 PTR data ATTRIBUTE_UNUSED;
751 asection *input_section ATTRIBUTE_UNUSED;
752 bfd *output_bfd ATTRIBUTE_UNUSED;
753 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
754{
755 return bfd_reloc_notsupported;
756}
757
758/* Handle the WDISP16 reloc. */
759
760static bfd_reloc_status_type
761sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
762 output_bfd, error_message)
763 bfd *abfd;
764 arelent *reloc_entry;
765 asymbol *symbol;
766 PTR data;
767 asection *input_section;
768 bfd *output_bfd;
6c08d697 769 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
770{
771 bfd_vma relocation;
772 bfd_vma insn;
773 bfd_reloc_status_type status;
774
775 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
776 input_section, output_bfd, &relocation, &insn);
777 if (status != bfd_reloc_other)
778 return status;
779
dc810e39
AM
780 insn &= ~ (bfd_vma) 0x303fff;
781 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
252b5132
RH
782 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
783
784 if ((bfd_signed_vma) relocation < - 0x40000
785 || (bfd_signed_vma) relocation > 0x3ffff)
786 return bfd_reloc_overflow;
787 else
788 return bfd_reloc_ok;
789}
790
791/* Handle the HIX22 reloc. */
792
793static bfd_reloc_status_type
794sparc_elf_hix22_reloc (abfd,
795 reloc_entry,
796 symbol,
797 data,
798 input_section,
799 output_bfd,
800 error_message)
801 bfd *abfd;
802 arelent *reloc_entry;
803 asymbol *symbol;
804 PTR data;
805 asection *input_section;
806 bfd *output_bfd;
6c08d697 807 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
808{
809 bfd_vma relocation;
810 bfd_vma insn;
811 bfd_reloc_status_type status;
812
813 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
814 input_section, output_bfd, &relocation, &insn);
815 if (status != bfd_reloc_other)
816 return status;
817
818 relocation ^= MINUS_ONE;
dc810e39 819 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
252b5132
RH
820 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
821
822 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
823 return bfd_reloc_overflow;
824 else
825 return bfd_reloc_ok;
826}
827
828/* Handle the LOX10 reloc. */
829
830static bfd_reloc_status_type
831sparc_elf_lox10_reloc (abfd,
832 reloc_entry,
833 symbol,
834 data,
835 input_section,
836 output_bfd,
837 error_message)
838 bfd *abfd;
839 arelent *reloc_entry;
840 asymbol *symbol;
841 PTR data;
842 asection *input_section;
843 bfd *output_bfd;
6c08d697 844 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
845{
846 bfd_vma relocation;
847 bfd_vma insn;
848 bfd_reloc_status_type status;
849
850 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
851 input_section, output_bfd, &relocation, &insn);
852 if (status != bfd_reloc_other)
853 return status;
854
dc810e39 855 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
252b5132
RH
856 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
857
858 return bfd_reloc_ok;
859}
860\f
861/* PLT/GOT stuff */
862
863/* Both the headers and the entries are icache aligned. */
864#define PLT_ENTRY_SIZE 32
865#define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
866#define LARGE_PLT_THRESHOLD 32768
867#define GOT_RESERVED_ENTRIES 1
868
869#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
870
252b5132
RH
871/* Fill in the .plt section. */
872
873static void
874sparc64_elf_build_plt (output_bfd, contents, nentries)
875 bfd *output_bfd;
876 unsigned char *contents;
877 int nentries;
878{
879 const unsigned int nop = 0x01000000;
880 int i, j;
435b1e90 881
252b5132
RH
882 /* The first four entries are reserved, and are initially undefined.
883 We fill them with `illtrap 0' to force ld.so to do something. */
884
885 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
dc810e39 886 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
252b5132
RH
887
888 /* The first 32768 entries are close enough to plt1 to get there via
889 a straight branch. */
890
891 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
892 {
893 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
894 unsigned int sethi, ba;
895
896 /* sethi (. - plt0), %g1 */
897 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
898
a11c78e7
RH
899 /* ba,a,pt %xcc, plt1 */
900 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
252b5132 901
dc810e39
AM
902 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
903 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
904 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
905 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
906 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
907 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
908 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
909 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
252b5132
RH
910 }
911
912 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
913 160: 160 entries and 160 pointers. This is to separate code from data,
914 which is much friendlier on the cache. */
435b1e90 915
252b5132
RH
916 for (; i < nentries; i += 160)
917 {
918 int block = (i + 160 <= nentries ? 160 : nentries - i);
919 for (j = 0; j < block; ++j)
920 {
921 unsigned char *entry, *ptr;
922 unsigned int ldx;
923
924 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
925 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
926
e62de969
JJ
927 /* ldx [%o7 + ptr - (entry+4)], %g1 */
928 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
252b5132 929
dc810e39
AM
930 /* mov %o7,%g5
931 call .+8
932 nop
933 ldx [%o7+P],%g1
934 jmpl %o7+%g1,%g1
935 mov %g5,%o7 */
936 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
937 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
938 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
939 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
940 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
941 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
942
943 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
252b5132
RH
944 }
945 }
946}
947
948/* Return the offset of a particular plt entry within the .plt section. */
949
950static bfd_vma
951sparc64_elf_plt_entry_offset (index)
dc810e39 952 bfd_vma index;
252b5132 953{
dc810e39 954 bfd_vma block, ofs;
252b5132
RH
955
956 if (index < LARGE_PLT_THRESHOLD)
957 return index * PLT_ENTRY_SIZE;
958
959 /* See above for details. */
960
961 block = (index - LARGE_PLT_THRESHOLD) / 160;
962 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
963
dc810e39 964 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
252b5132
RH
965}
966
967static bfd_vma
968sparc64_elf_plt_ptr_offset (index, max)
dc810e39
AM
969 bfd_vma index;
970 bfd_vma max;
252b5132 971{
dc810e39 972 bfd_vma block, ofs, last;
252b5132
RH
973
974 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
975
976 /* See above for details. */
977
dc810e39 978 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
a11c78e7
RH
979 ofs = index - block;
980 if (block + 160 > max)
981 last = (max - LARGE_PLT_THRESHOLD) % 160;
982 else
983 last = 160;
252b5132 984
a11c78e7 985 return (block * PLT_ENTRY_SIZE
252b5132
RH
986 + last * 6*4
987 + ofs * 8);
988}
252b5132
RH
989\f
990/* Look through the relocs for a section during the first phase, and
991 allocate space in the global offset table or procedure linkage
992 table. */
993
994static boolean
995sparc64_elf_check_relocs (abfd, info, sec, relocs)
996 bfd *abfd;
997 struct bfd_link_info *info;
998 asection *sec;
999 const Elf_Internal_Rela *relocs;
1000{
1001 bfd *dynobj;
1002 Elf_Internal_Shdr *symtab_hdr;
1003 struct elf_link_hash_entry **sym_hashes;
1004 bfd_vma *local_got_offsets;
1005 const Elf_Internal_Rela *rel;
1006 const Elf_Internal_Rela *rel_end;
1007 asection *sgot;
1008 asection *srelgot;
1009 asection *sreloc;
1010
1011 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1012 return true;
1013
1014 dynobj = elf_hash_table (info)->dynobj;
1015 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1016 sym_hashes = elf_sym_hashes (abfd);
1017 local_got_offsets = elf_local_got_offsets (abfd);
1018
1019 sgot = NULL;
1020 srelgot = NULL;
1021 sreloc = NULL;
1022
d9bc7a44 1023 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
252b5132
RH
1024 for (rel = relocs; rel < rel_end; rel++)
1025 {
1026 unsigned long r_symndx;
1027 struct elf_link_hash_entry *h;
1028
1029 r_symndx = ELF64_R_SYM (rel->r_info);
1030 if (r_symndx < symtab_hdr->sh_info)
1031 h = NULL;
1032 else
1033 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1034
f65054f7 1035 switch (ELF64_R_TYPE_ID (rel->r_info))
252b5132
RH
1036 {
1037 case R_SPARC_GOT10:
1038 case R_SPARC_GOT13:
1039 case R_SPARC_GOT22:
1040 /* This symbol requires a global offset table entry. */
1041
1042 if (dynobj == NULL)
1043 {
1044 /* Create the .got section. */
1045 elf_hash_table (info)->dynobj = dynobj = abfd;
1046 if (! _bfd_elf_create_got_section (dynobj, info))
1047 return false;
1048 }
1049
1050 if (sgot == NULL)
1051 {
1052 sgot = bfd_get_section_by_name (dynobj, ".got");
1053 BFD_ASSERT (sgot != NULL);
1054 }
1055
1056 if (srelgot == NULL && (h != NULL || info->shared))
1057 {
1058 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1059 if (srelgot == NULL)
1060 {
1061 srelgot = bfd_make_section (dynobj, ".rela.got");
1062 if (srelgot == NULL
1063 || ! bfd_set_section_flags (dynobj, srelgot,
1064 (SEC_ALLOC
1065 | SEC_LOAD
1066 | SEC_HAS_CONTENTS
1067 | SEC_IN_MEMORY
1068 | SEC_LINKER_CREATED
1069 | SEC_READONLY))
1070 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1071 return false;
1072 }
1073 }
1074
1075 if (h != NULL)
1076 {
1077 if (h->got.offset != (bfd_vma) -1)
1078 {
1079 /* We have already allocated space in the .got. */
1080 break;
1081 }
1082 h->got.offset = sgot->_raw_size;
1083
1084 /* Make sure this symbol is output as a dynamic symbol. */
1085 if (h->dynindx == -1)
1086 {
1087 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1088 return false;
1089 }
1090
1091 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1092 }
1093 else
1094 {
1095 /* This is a global offset table entry for a local
1096 symbol. */
1097 if (local_got_offsets == NULL)
1098 {
dc810e39 1099 bfd_size_type size;
252b5132
RH
1100 register unsigned int i;
1101
dc810e39
AM
1102 size = symtab_hdr->sh_info;
1103 size *= sizeof (bfd_vma);
252b5132
RH
1104 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1105 if (local_got_offsets == NULL)
1106 return false;
1107 elf_local_got_offsets (abfd) = local_got_offsets;
1108 for (i = 0; i < symtab_hdr->sh_info; i++)
1109 local_got_offsets[i] = (bfd_vma) -1;
1110 }
1111 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1112 {
1113 /* We have already allocated space in the .got. */
1114 break;
1115 }
1116 local_got_offsets[r_symndx] = sgot->_raw_size;
1117
1118 if (info->shared)
1119 {
1120 /* If we are generating a shared object, we need to
1121 output a R_SPARC_RELATIVE reloc so that the
1122 dynamic linker can adjust this GOT entry. */
1123 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1124 }
1125 }
1126
1127 sgot->_raw_size += 8;
1128
1129#if 0
1130 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1131 unsigned numbers. If we permit ourselves to modify
1132 code so we get sethi/xor, this could work.
1133 Question: do we consider conditionally re-enabling
1134 this for -fpic, once we know about object code models? */
1135 /* If the .got section is more than 0x1000 bytes, we add
1136 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1137 bit relocations have a greater chance of working. */
1138 if (sgot->_raw_size >= 0x1000
1139 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1140 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1141#endif
1142
1143 break;
1144
1145 case R_SPARC_WPLT30:
1146 case R_SPARC_PLT32:
1147 case R_SPARC_HIPLT22:
1148 case R_SPARC_LOPLT10:
1149 case R_SPARC_PCPLT32:
1150 case R_SPARC_PCPLT22:
1151 case R_SPARC_PCPLT10:
1152 case R_SPARC_PLT64:
1153 /* This symbol requires a procedure linkage table entry. We
1154 actually build the entry in adjust_dynamic_symbol,
1155 because this might be a case of linking PIC code without
1156 linking in any dynamic objects, in which case we don't
1157 need to generate a procedure linkage table after all. */
1158
1159 if (h == NULL)
1160 {
1161 /* It does not make sense to have a procedure linkage
1162 table entry for a local symbol. */
1163 bfd_set_error (bfd_error_bad_value);
1164 return false;
1165 }
1166
1167 /* Make sure this symbol is output as a dynamic symbol. */
1168 if (h->dynindx == -1)
1169 {
1170 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1171 return false;
1172 }
1173
1174 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
bd5e6e7e
JJ
1175 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1176 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1177 break;
1178 /* Fall through. */
252b5132
RH
1179 case R_SPARC_PC10:
1180 case R_SPARC_PC22:
1181 case R_SPARC_PC_HH22:
1182 case R_SPARC_PC_HM10:
1183 case R_SPARC_PC_LM22:
1184 if (h != NULL
1185 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1186 break;
1187 /* Fall through. */
1188 case R_SPARC_DISP8:
1189 case R_SPARC_DISP16:
1190 case R_SPARC_DISP32:
1191 case R_SPARC_DISP64:
1192 case R_SPARC_WDISP30:
1193 case R_SPARC_WDISP22:
1194 case R_SPARC_WDISP19:
1195 case R_SPARC_WDISP16:
1196 if (h == NULL)
1197 break;
1198 /* Fall through. */
1199 case R_SPARC_8:
1200 case R_SPARC_16:
1201 case R_SPARC_32:
1202 case R_SPARC_HI22:
1203 case R_SPARC_22:
1204 case R_SPARC_13:
1205 case R_SPARC_LO10:
1206 case R_SPARC_UA32:
1207 case R_SPARC_10:
1208 case R_SPARC_11:
1209 case R_SPARC_64:
1210 case R_SPARC_OLO10:
1211 case R_SPARC_HH22:
1212 case R_SPARC_HM10:
1213 case R_SPARC_LM22:
1214 case R_SPARC_7:
1215 case R_SPARC_5:
1216 case R_SPARC_6:
1217 case R_SPARC_HIX22:
1218 case R_SPARC_LOX10:
1219 case R_SPARC_H44:
1220 case R_SPARC_M44:
1221 case R_SPARC_L44:
1222 case R_SPARC_UA64:
1223 case R_SPARC_UA16:
1224 /* When creating a shared object, we must copy these relocs
1225 into the output file. We create a reloc section in
435b1e90 1226 dynobj and make room for the reloc.
252b5132
RH
1227
1228 But don't do this for debugging sections -- this shows up
1229 with DWARF2 -- first because they are not loaded, and
1230 second because DWARF sez the debug info is not to be
1231 biased by the load address. */
1232 if (info->shared && (sec->flags & SEC_ALLOC))
1233 {
1234 if (sreloc == NULL)
1235 {
1236 const char *name;
1237
1238 name = (bfd_elf_string_from_elf_section
1239 (abfd,
1240 elf_elfheader (abfd)->e_shstrndx,
1241 elf_section_data (sec)->rel_hdr.sh_name));
1242 if (name == NULL)
1243 return false;
1244
1245 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1246 && strcmp (bfd_get_section_name (abfd, sec),
1247 name + 5) == 0);
1248
1249 sreloc = bfd_get_section_by_name (dynobj, name);
1250 if (sreloc == NULL)
1251 {
1252 flagword flags;
1253
1254 sreloc = bfd_make_section (dynobj, name);
1255 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1256 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1257 if ((sec->flags & SEC_ALLOC) != 0)
1258 flags |= SEC_ALLOC | SEC_LOAD;
1259 if (sreloc == NULL
1260 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1261 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1262 return false;
1263 }
db6751f2
JJ
1264 if (sec->flags & SEC_READONLY)
1265 info->flags |= DF_TEXTREL;
252b5132
RH
1266 }
1267
1268 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1269 }
1270 break;
1271
1272 case R_SPARC_REGISTER:
1273 /* Nothing to do. */
1274 break;
1275
1276 default:
435b1e90 1277 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
8f615d07 1278 bfd_archive_filename (abfd),
f65054f7 1279 ELF64_R_TYPE_ID (rel->r_info));
252b5132
RH
1280 return false;
1281 }
1282 }
1283
1284 return true;
1285}
1286
587ff49e
RH
1287/* Hook called by the linker routine which adds symbols from an object
1288 file. We use it for STT_REGISTER symbols. */
1289
1290static boolean
1291sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1292 bfd *abfd;
1293 struct bfd_link_info *info;
1294 const Elf_Internal_Sym *sym;
1295 const char **namep;
6c08d697
JJ
1296 flagword *flagsp ATTRIBUTE_UNUSED;
1297 asection **secp ATTRIBUTE_UNUSED;
1298 bfd_vma *valp ATTRIBUTE_UNUSED;
587ff49e 1299{
8f615d07 1300 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
587ff49e
RH
1301
1302 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1303 {
1304 int reg;
1305 struct sparc64_elf_app_reg *p;
435b1e90 1306
587ff49e
RH
1307 reg = (int)sym->st_value;
1308 switch (reg & ~1)
1309 {
1310 case 2: reg -= 2; break;
1311 case 6: reg -= 4; break;
1312 default:
1313 (*_bfd_error_handler)
1314 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
8f615d07 1315 bfd_archive_filename (abfd));
587ff49e
RH
1316 return false;
1317 }
1318
1319 if (info->hash->creator != abfd->xvec
1320 || (abfd->flags & DYNAMIC) != 0)
1321 {
1322 /* STT_REGISTER only works when linking an elf64_sparc object.
1323 If STT_REGISTER comes from a dynamic object, don't put it into
1324 the output bfd. The dynamic linker will recheck it. */
1325 *namep = NULL;
1326 return true;
1327 }
1328
1329 p = sparc64_elf_hash_table(info)->app_regs + reg;
1330
1331 if (p->name != NULL && strcmp (p->name, *namep))
1332 {
1333 (*_bfd_error_handler)
8f615d07
AM
1334 (_("Register %%g%d used incompatibly: %s in %s"),
1335 (int) sym->st_value,
1336 **namep ? *namep : "#scratch", bfd_archive_filename (abfd));
1337 (*_bfd_error_handler)
1338 (_(" previously %s in %s"),
1339 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
587ff49e
RH
1340 return false;
1341 }
1342
1343 if (p->name == NULL)
1344 {
1345 if (**namep)
1346 {
1347 struct elf_link_hash_entry *h;
435b1e90 1348
587ff49e
RH
1349 h = (struct elf_link_hash_entry *)
1350 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1351
1352 if (h != NULL)
1353 {
1354 unsigned char type = h->type;
1355
8f615d07
AM
1356 if (type > STT_FUNC)
1357 type = 0;
1358 (*_bfd_error_handler)
1359 (_("Symbol `%s' has differing types: %s in %s"),
1360 *namep, "REGISTER", bfd_archive_filename (abfd));
587ff49e 1361 (*_bfd_error_handler)
8f615d07
AM
1362 (_(" previously %s in %s"),
1363 stt_types[type], bfd_archive_filename (p->abfd));
587ff49e
RH
1364 return false;
1365 }
1366
1367 p->name = bfd_hash_allocate (&info->hash->table,
1368 strlen (*namep) + 1);
1369 if (!p->name)
1370 return false;
1371
1372 strcpy (p->name, *namep);
1373 }
1374 else
1375 p->name = "";
1376 p->bind = ELF_ST_BIND (sym->st_info);
1377 p->abfd = abfd;
1378 p->shndx = sym->st_shndx;
1379 }
1380 else
1381 {
1382 if (p->bind == STB_WEAK
1383 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1384 {
1385 p->bind = STB_GLOBAL;
1386 p->abfd = abfd;
1387 }
1388 }
1389 *namep = NULL;
1390 return true;
1391 }
1392 else if (! *namep || ! **namep)
1393 return true;
1394 else
1395 {
1396 int i;
1397 struct sparc64_elf_app_reg *p;
1398
1399 p = sparc64_elf_hash_table(info)->app_regs;
1400 for (i = 0; i < 4; i++, p++)
1401 if (p->name != NULL && ! strcmp (p->name, *namep))
1402 {
1403 unsigned char type = ELF_ST_TYPE (sym->st_info);
1404
8f615d07
AM
1405 if (type > STT_FUNC)
1406 type = 0;
1407 (*_bfd_error_handler)
1408 (_("Symbol `%s' has differing types: %s in %s"),
1409 *namep, stt_types[type], bfd_archive_filename (abfd));
587ff49e 1410 (*_bfd_error_handler)
8f615d07
AM
1411 (_(" previously %s in %s"),
1412 "REGISTER", bfd_archive_filename (p->abfd));
587ff49e
RH
1413 return false;
1414 }
1415 }
1416 return true;
1417}
1418
1419/* This function takes care of emiting STT_REGISTER symbols
1420 which we cannot easily keep in the symbol hash table. */
1421
1422static boolean
1423sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
6c08d697 1424 bfd *output_bfd ATTRIBUTE_UNUSED;
587ff49e
RH
1425 struct bfd_link_info *info;
1426 PTR finfo;
1427 boolean (*func) PARAMS ((PTR, const char *,
1428 Elf_Internal_Sym *, asection *));
1429{
1430 int reg;
1431 struct sparc64_elf_app_reg *app_regs =
1432 sparc64_elf_hash_table(info)->app_regs;
1433 Elf_Internal_Sym sym;
1434
1435 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1436 at the end of the dynlocal list, so they came at the end of the local
1437 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1438 to back up symtab->sh_info. */
1439 if (elf_hash_table (info)->dynlocal)
1440 {
1fa0ddb3
RH
1441 bfd * dynobj = elf_hash_table (info)->dynobj;
1442 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
587ff49e
RH
1443 struct elf_link_local_dynamic_entry *e;
1444
1445 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1446 if (e->input_indx == -1)
1447 break;
1448 if (e)
1449 {
1450 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1451 = e->dynindx;
1452 }
1453 }
1454
1455 if (info->strip == strip_all)
1456 return true;
1457
1458 for (reg = 0; reg < 4; reg++)
1459 if (app_regs [reg].name != NULL)
1460 {
1461 if (info->strip == strip_some
1462 && bfd_hash_lookup (info->keep_hash,
1463 app_regs [reg].name,
1464 false, false) == NULL)
1465 continue;
1466
1467 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1468 sym.st_size = 0;
1469 sym.st_other = 0;
1470 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1471 sym.st_shndx = app_regs [reg].shndx;
1472 if (! (*func) (finfo, app_regs [reg].name, &sym,
1473 sym.st_shndx == SHN_ABS
1474 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1475 return false;
1476 }
1477
1478 return true;
1479}
1480
1481static int
1482sparc64_elf_get_symbol_type (elf_sym, type)
1483 Elf_Internal_Sym * elf_sym;
1484 int type;
1485{
1486 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1487 return STT_REGISTER;
1488 else
1489 return type;
1490}
1491
1492/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1493 even in SHN_UNDEF section. */
1494
1495static void
1496sparc64_elf_symbol_processing (abfd, asym)
6c08d697 1497 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
1498 asymbol *asym;
1499{
1500 elf_symbol_type *elfsym;
1501
1502 elfsym = (elf_symbol_type *) asym;
1503 if (elfsym->internal_elf_sym.st_info
1504 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1505 {
1506 asym->flags |= BSF_GLOBAL;
1507 }
1508}
1509
252b5132
RH
1510/* Adjust a symbol defined by a dynamic object and referenced by a
1511 regular object. The current definition is in some section of the
1512 dynamic object, but we're not including those sections. We have to
1513 change the definition to something the rest of the link can
1514 understand. */
1515
1516static boolean
1517sparc64_elf_adjust_dynamic_symbol (info, h)
1518 struct bfd_link_info *info;
1519 struct elf_link_hash_entry *h;
1520{
1521 bfd *dynobj;
1522 asection *s;
1523 unsigned int power_of_two;
1524
1525 dynobj = elf_hash_table (info)->dynobj;
1526
1527 /* Make sure we know what is going on here. */
1528 BFD_ASSERT (dynobj != NULL
1529 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1530 || h->weakdef != NULL
1531 || ((h->elf_link_hash_flags
1532 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1533 && (h->elf_link_hash_flags
1534 & ELF_LINK_HASH_REF_REGULAR) != 0
1535 && (h->elf_link_hash_flags
1536 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1537
1538 /* If this is a function, put it in the procedure linkage table. We
1539 will fill in the contents of the procedure linkage table later
1540 (although we could actually do it here). The STT_NOTYPE
1541 condition is a hack specifically for the Oracle libraries
1542 delivered for Solaris; for some inexplicable reason, they define
1543 some of their functions as STT_NOTYPE when they really should be
1544 STT_FUNC. */
1545 if (h->type == STT_FUNC
1546 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1547 || (h->type == STT_NOTYPE
1548 && (h->root.type == bfd_link_hash_defined
1549 || h->root.type == bfd_link_hash_defweak)
1550 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1551 {
1552 if (! elf_hash_table (info)->dynamic_sections_created)
1553 {
1554 /* This case can occur if we saw a WPLT30 reloc in an input
1555 file, but none of the input files were dynamic objects.
1556 In such a case, we don't actually need to build a
1557 procedure linkage table, and we can just do a WDISP30
1558 reloc instead. */
1559 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1560 return true;
1561 }
1562
1563 s = bfd_get_section_by_name (dynobj, ".plt");
1564 BFD_ASSERT (s != NULL);
1565
1566 /* The first four bit in .plt is reserved. */
1567 if (s->_raw_size == 0)
1568 s->_raw_size = PLT_HEADER_SIZE;
1569
1570 /* If this symbol is not defined in a regular file, and we are
1571 not generating a shared library, then set the symbol to this
1572 location in the .plt. This is required to make function
1573 pointers compare as equal between the normal executable and
1574 the shared library. */
1575 if (! info->shared
1576 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1577 {
1578 h->root.u.def.section = s;
1579 h->root.u.def.value = s->_raw_size;
1580 }
1581
1582 /* To simplify matters later, just store the plt index here. */
1583 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1584
1585 /* Make room for this entry. */
1586 s->_raw_size += PLT_ENTRY_SIZE;
1587
1588 /* We also need to make an entry in the .rela.plt section. */
1589
1590 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1591 BFD_ASSERT (s != NULL);
1592
252b5132
RH
1593 s->_raw_size += sizeof (Elf64_External_Rela);
1594
1595 /* The procedure linkage table size is bounded by the magnitude
1596 of the offset we can describe in the entry. */
1597 if (s->_raw_size >= (bfd_vma)1 << 32)
1598 {
1599 bfd_set_error (bfd_error_bad_value);
1600 return false;
1601 }
1602
1603 return true;
1604 }
1605
1606 /* If this is a weak symbol, and there is a real definition, the
1607 processor independent code will have arranged for us to see the
1608 real definition first, and we can just use the same value. */
1609 if (h->weakdef != NULL)
1610 {
1611 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1612 || h->weakdef->root.type == bfd_link_hash_defweak);
1613 h->root.u.def.section = h->weakdef->root.u.def.section;
1614 h->root.u.def.value = h->weakdef->root.u.def.value;
1615 return true;
1616 }
1617
1618 /* This is a reference to a symbol defined by a dynamic object which
1619 is not a function. */
1620
1621 /* If we are creating a shared library, we must presume that the
1622 only references to the symbol are via the global offset table.
1623 For such cases we need not do anything here; the relocations will
1624 be handled correctly by relocate_section. */
1625 if (info->shared)
1626 return true;
1627
1628 /* We must allocate the symbol in our .dynbss section, which will
1629 become part of the .bss section of the executable. There will be
1630 an entry for this symbol in the .dynsym section. The dynamic
1631 object will contain position independent code, so all references
1632 from the dynamic object to this symbol will go through the global
1633 offset table. The dynamic linker will use the .dynsym entry to
1634 determine the address it must put in the global offset table, so
1635 both the dynamic object and the regular object will refer to the
1636 same memory location for the variable. */
1637
1638 s = bfd_get_section_by_name (dynobj, ".dynbss");
1639 BFD_ASSERT (s != NULL);
1640
1641 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1642 to copy the initial value out of the dynamic object and into the
1643 runtime process image. We need to remember the offset into the
1644 .rel.bss section we are going to use. */
1645 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1646 {
1647 asection *srel;
1648
1649 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1650 BFD_ASSERT (srel != NULL);
1651 srel->_raw_size += sizeof (Elf64_External_Rela);
1652 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1653 }
1654
1655 /* We need to figure out the alignment required for this symbol. I
1656 have no idea how ELF linkers handle this. 16-bytes is the size
1657 of the largest type that requires hard alignment -- long double. */
1658 power_of_two = bfd_log2 (h->size);
1659 if (power_of_two > 4)
1660 power_of_two = 4;
1661
1662 /* Apply the required alignment. */
1663 s->_raw_size = BFD_ALIGN (s->_raw_size,
1664 (bfd_size_type) (1 << power_of_two));
1665 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1666 {
1667 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1668 return false;
1669 }
1670
1671 /* Define the symbol as being at this point in the section. */
1672 h->root.u.def.section = s;
1673 h->root.u.def.value = s->_raw_size;
1674
1675 /* Increment the section size to make room for the symbol. */
1676 s->_raw_size += h->size;
1677
1678 return true;
1679}
1680
1681/* Set the sizes of the dynamic sections. */
1682
1683static boolean
1684sparc64_elf_size_dynamic_sections (output_bfd, info)
1685 bfd *output_bfd;
1686 struct bfd_link_info *info;
1687{
1688 bfd *dynobj;
1689 asection *s;
252b5132
RH
1690 boolean relplt;
1691
1692 dynobj = elf_hash_table (info)->dynobj;
1693 BFD_ASSERT (dynobj != NULL);
1694
1695 if (elf_hash_table (info)->dynamic_sections_created)
1696 {
1697 /* Set the contents of the .interp section to the interpreter. */
1698 if (! info->shared)
1699 {
1700 s = bfd_get_section_by_name (dynobj, ".interp");
1701 BFD_ASSERT (s != NULL);
1702 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1703 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1704 }
1705 }
1706 else
1707 {
1708 /* We may have created entries in the .rela.got section.
1709 However, if we are not creating the dynamic sections, we will
1710 not actually use these entries. Reset the size of .rela.got,
1711 which will cause it to get stripped from the output file
1712 below. */
1713 s = bfd_get_section_by_name (dynobj, ".rela.got");
1714 if (s != NULL)
1715 s->_raw_size = 0;
1716 }
1717
1718 /* The check_relocs and adjust_dynamic_symbol entry points have
1719 determined the sizes of the various dynamic sections. Allocate
1720 memory for them. */
252b5132
RH
1721 relplt = false;
1722 for (s = dynobj->sections; s != NULL; s = s->next)
1723 {
1724 const char *name;
1725 boolean strip;
1726
1727 if ((s->flags & SEC_LINKER_CREATED) == 0)
1728 continue;
1729
1730 /* It's OK to base decisions on the section name, because none
1731 of the dynobj section names depend upon the input files. */
1732 name = bfd_get_section_name (dynobj, s);
1733
1734 strip = false;
1735
1736 if (strncmp (name, ".rela", 5) == 0)
1737 {
1738 if (s->_raw_size == 0)
1739 {
1740 /* If we don't need this section, strip it from the
1741 output file. This is to handle .rela.bss and
1742 .rel.plt. We must create it in
1743 create_dynamic_sections, because it must be created
1744 before the linker maps input sections to output
1745 sections. The linker does that before
1746 adjust_dynamic_symbol is called, and it is that
1747 function which decides whether anything needs to go
1748 into these sections. */
1749 strip = true;
1750 }
1751 else
1752 {
252b5132
RH
1753 if (strcmp (name, ".rela.plt") == 0)
1754 relplt = true;
1755
1756 /* We use the reloc_count field as a counter if we need
1757 to copy relocs into the output file. */
1758 s->reloc_count = 0;
1759 }
1760 }
1761 else if (strcmp (name, ".plt") != 0
1762 && strncmp (name, ".got", 4) != 0)
1763 {
1764 /* It's not one of our sections, so don't allocate space. */
1765 continue;
1766 }
1767
1768 if (strip)
1769 {
7f8d5fc9 1770 _bfd_strip_section_from_output (info, s);
252b5132
RH
1771 continue;
1772 }
1773
1774 /* Allocate memory for the section contents. Zero the memory
1775 for the benefit of .rela.plt, which has 4 unused entries
1776 at the beginning, and we don't want garbage. */
1777 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1778 if (s->contents == NULL && s->_raw_size != 0)
1779 return false;
1780 }
1781
1782 if (elf_hash_table (info)->dynamic_sections_created)
1783 {
1784 /* Add some entries to the .dynamic section. We fill in the
1785 values later, in sparc64_elf_finish_dynamic_sections, but we
1786 must add the entries now so that we get the correct size for
1787 the .dynamic section. The DT_DEBUG entry is filled in by the
1788 dynamic linker and used by the debugger. */
dc810e39
AM
1789#define add_dynamic_entry(TAG, VAL) \
1790 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1791
587ff49e
RH
1792 int reg;
1793 struct sparc64_elf_app_reg * app_regs;
350836e3 1794 struct elf_strtab_hash *dynstr;
587ff49e
RH
1795 struct elf_link_hash_table *eht = elf_hash_table (info);
1796
dc810e39 1797 if (!info->shared)
252b5132 1798 {
dc810e39 1799 if (!add_dynamic_entry (DT_DEBUG, 0))
252b5132
RH
1800 return false;
1801 }
1802
1803 if (relplt)
1804 {
dc810e39
AM
1805 if (!add_dynamic_entry (DT_PLTGOT, 0)
1806 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1807 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1808 || !add_dynamic_entry (DT_JMPREL, 0))
252b5132
RH
1809 return false;
1810 }
1811
dc810e39
AM
1812 if (!add_dynamic_entry (DT_RELA, 0)
1813 || !add_dynamic_entry (DT_RELASZ, 0)
1814 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
252b5132
RH
1815 return false;
1816
db6751f2 1817 if (info->flags & DF_TEXTREL)
252b5132 1818 {
dc810e39 1819 if (!add_dynamic_entry (DT_TEXTREL, 0))
252b5132
RH
1820 return false;
1821 }
587ff49e
RH
1822
1823 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1824 entries if needed. */
1825 app_regs = sparc64_elf_hash_table (info)->app_regs;
1826 dynstr = eht->dynstr;
1827
1828 for (reg = 0; reg < 4; reg++)
1829 if (app_regs [reg].name != NULL)
1830 {
1831 struct elf_link_local_dynamic_entry *entry, *e;
435b1e90 1832
dc810e39 1833 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
587ff49e
RH
1834 return false;
1835
1836 entry = (struct elf_link_local_dynamic_entry *)
1837 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1838 if (entry == NULL)
1839 return false;
1840
1841 /* We cheat here a little bit: the symbol will not be local, so we
1842 put it at the end of the dynlocal linked list. We will fix it
1843 later on, as we have to fix other fields anyway. */
1844 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1845 entry->isym.st_size = 0;
1846 if (*app_regs [reg].name != '\0')
1847 entry->isym.st_name
2b0f7ef9 1848 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
587ff49e
RH
1849 else
1850 entry->isym.st_name = 0;
1851 entry->isym.st_other = 0;
1852 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1853 STT_REGISTER);
1854 entry->isym.st_shndx = app_regs [reg].shndx;
1855 entry->next = NULL;
1856 entry->input_bfd = output_bfd;
1857 entry->input_indx = -1;
1858
1859 if (eht->dynlocal == NULL)
1860 eht->dynlocal = entry;
1861 else
1862 {
1863 for (e = eht->dynlocal; e->next; e = e->next)
1864 ;
1865 e->next = entry;
1866 }
1867 eht->dynsymcount++;
1868 }
252b5132 1869 }
dc810e39 1870#undef add_dynamic_entry
252b5132 1871
252b5132
RH
1872 return true;
1873}
252b5132 1874\f
f7775d95
JJ
1875#define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1876#define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1877
f7775d95
JJ
1878static boolean
1879sparc64_elf_relax_section (abfd, section, link_info, again)
1880 bfd *abfd ATTRIBUTE_UNUSED;
1881 asection *section ATTRIBUTE_UNUSED;
1882 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1883 boolean *again;
1884{
1885 *again = false;
1886 SET_SEC_DO_RELAX (section);
1887 return true;
1888}
1889\f
252b5132
RH
1890/* Relocate a SPARC64 ELF section. */
1891
1892static boolean
1893sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1894 contents, relocs, local_syms, local_sections)
1895 bfd *output_bfd;
1896 struct bfd_link_info *info;
1897 bfd *input_bfd;
1898 asection *input_section;
1899 bfd_byte *contents;
1900 Elf_Internal_Rela *relocs;
1901 Elf_Internal_Sym *local_syms;
1902 asection **local_sections;
1903{
1904 bfd *dynobj;
1905 Elf_Internal_Shdr *symtab_hdr;
1906 struct elf_link_hash_entry **sym_hashes;
1907 bfd_vma *local_got_offsets;
1908 bfd_vma got_base;
1909 asection *sgot;
1910 asection *splt;
1911 asection *sreloc;
1912 Elf_Internal_Rela *rel;
1913 Elf_Internal_Rela *relend;
1914
1915 dynobj = elf_hash_table (info)->dynobj;
1916 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1917 sym_hashes = elf_sym_hashes (input_bfd);
1918 local_got_offsets = elf_local_got_offsets (input_bfd);
1919
1920 if (elf_hash_table(info)->hgot == NULL)
1921 got_base = 0;
1922 else
1923 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1924
1925 sgot = splt = sreloc = NULL;
1926
1927 rel = relocs;
e90fdc1a 1928 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
252b5132
RH
1929 for (; rel < relend; rel++)
1930 {
1931 int r_type;
1932 reloc_howto_type *howto;
6c08d697 1933 unsigned long r_symndx;
252b5132
RH
1934 struct elf_link_hash_entry *h;
1935 Elf_Internal_Sym *sym;
1936 asection *sec;
1937 bfd_vma relocation;
1938 bfd_reloc_status_type r;
bd5e6e7e 1939 boolean is_plt = false;
252b5132 1940
f65054f7 1941 r_type = ELF64_R_TYPE_ID (rel->r_info);
60dac299 1942 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
252b5132
RH
1943 {
1944 bfd_set_error (bfd_error_bad_value);
1945 return false;
1946 }
1947 howto = sparc64_elf_howto_table + r_type;
1948
1949 r_symndx = ELF64_R_SYM (rel->r_info);
1950
1951 if (info->relocateable)
1952 {
1953 /* This is a relocateable link. We don't have to change
1954 anything, unless the reloc is against a section symbol,
1955 in which case we have to adjust according to where the
1956 section symbol winds up in the output section. */
1957 if (r_symndx < symtab_hdr->sh_info)
1958 {
1959 sym = local_syms + r_symndx;
1960 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1961 {
1962 sec = local_sections[r_symndx];
1963 rel->r_addend += sec->output_offset + sym->st_value;
1964 }
1965 }
1966
1967 continue;
1968 }
1969
1970 /* This is a final link. */
1971 h = NULL;
1972 sym = NULL;
1973 sec = NULL;
1974 if (r_symndx < symtab_hdr->sh_info)
1975 {
1976 sym = local_syms + r_symndx;
1977 sec = local_sections[r_symndx];
f8df10f4 1978 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
252b5132
RH
1979 }
1980 else
1981 {
1982 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1983 while (h->root.type == bfd_link_hash_indirect
1984 || h->root.type == bfd_link_hash_warning)
1985 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1986 if (h->root.type == bfd_link_hash_defined
1987 || h->root.type == bfd_link_hash_defweak)
1988 {
1989 boolean skip_it = false;
1990 sec = h->root.u.def.section;
1991
1992 switch (r_type)
1993 {
1994 case R_SPARC_WPLT30:
1995 case R_SPARC_PLT32:
1996 case R_SPARC_HIPLT22:
1997 case R_SPARC_LOPLT10:
1998 case R_SPARC_PCPLT32:
1999 case R_SPARC_PCPLT22:
2000 case R_SPARC_PCPLT10:
2001 case R_SPARC_PLT64:
2002 if (h->plt.offset != (bfd_vma) -1)
2003 skip_it = true;
2004 break;
2005
2006 case R_SPARC_GOT10:
2007 case R_SPARC_GOT13:
2008 case R_SPARC_GOT22:
2009 if (elf_hash_table(info)->dynamic_sections_created
2010 && (!info->shared
2011 || (!info->symbolic && h->dynindx != -1)
2012 || !(h->elf_link_hash_flags
2013 & ELF_LINK_HASH_DEF_REGULAR)))
2014 skip_it = true;
2015 break;
2016
2017 case R_SPARC_PC10:
2018 case R_SPARC_PC22:
2019 case R_SPARC_PC_HH22:
2020 case R_SPARC_PC_HM10:
2021 case R_SPARC_PC_LM22:
2022 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2023 break;
2024 /* FALLTHRU */
2025
2026 case R_SPARC_8:
2027 case R_SPARC_16:
2028 case R_SPARC_32:
2029 case R_SPARC_DISP8:
2030 case R_SPARC_DISP16:
2031 case R_SPARC_DISP32:
2032 case R_SPARC_WDISP30:
2033 case R_SPARC_WDISP22:
2034 case R_SPARC_HI22:
2035 case R_SPARC_22:
2036 case R_SPARC_13:
2037 case R_SPARC_LO10:
2038 case R_SPARC_UA32:
2039 case R_SPARC_10:
2040 case R_SPARC_11:
2041 case R_SPARC_64:
2042 case R_SPARC_OLO10:
2043 case R_SPARC_HH22:
2044 case R_SPARC_HM10:
2045 case R_SPARC_LM22:
2046 case R_SPARC_WDISP19:
2047 case R_SPARC_WDISP16:
2048 case R_SPARC_7:
2049 case R_SPARC_5:
2050 case R_SPARC_6:
2051 case R_SPARC_DISP64:
2052 case R_SPARC_HIX22:
2053 case R_SPARC_LOX10:
2054 case R_SPARC_H44:
2055 case R_SPARC_M44:
2056 case R_SPARC_L44:
2057 case R_SPARC_UA64:
2058 case R_SPARC_UA16:
2059 if (info->shared
2060 && ((!info->symbolic && h->dynindx != -1)
2061 || !(h->elf_link_hash_flags
2e549b45
JJ
2062 & ELF_LINK_HASH_DEF_REGULAR))
2063 && ((input_section->flags & SEC_ALLOC) != 0
2064 /* DWARF will emit R_SPARC_{32,64} relocations in
2065 its sections against symbols defined externally
2066 in shared libraries. We can't do anything
2067 with them here. */
2068 || ((input_section->flags & SEC_DEBUGGING) != 0
2069 && (h->elf_link_hash_flags
2070 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)))
252b5132
RH
2071 skip_it = true;
2072 break;
2073 }
2074
2075 if (skip_it)
2076 {
2077 /* In these cases, we don't need the relocation
2078 value. We check specially because in some
2079 obscure cases sec->output_section will be NULL. */
2080 relocation = 0;
2081 }
2082 else
2083 {
2084 relocation = (h->root.u.def.value
2085 + sec->output_section->vma
2086 + sec->output_offset);
2087 }
2088 }
2089 else if (h->root.type == bfd_link_hash_undefweak)
2090 relocation = 0;
671bae9c
NC
2091 else if (info->shared
2092 && (!info->symbolic || info->allow_shlib_undefined)
3a27a730
L
2093 && !info->no_undefined
2094 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
252b5132
RH
2095 relocation = 0;
2096 else
2097 {
2098 if (! ((*info->callbacks->undefined_symbol)
2099 (info, h->root.root.string, input_bfd,
5cc7c785 2100 input_section, rel->r_offset,
3a27a730
L
2101 (!info->shared || info->no_undefined
2102 || ELF_ST_VISIBILITY (h->other)))))
252b5132 2103 return false;
be040dbb
JJ
2104
2105 /* To avoid generating warning messages about truncated
2106 relocations, set the relocation's address to be the same as
2107 the start of this section. */
2108
2109 if (input_section->output_section != NULL)
2110 relocation = input_section->output_section->vma;
2111 else
2112 relocation = 0;
252b5132
RH
2113 }
2114 }
2115
bd5e6e7e 2116do_dynreloc:
252b5132
RH
2117 /* When generating a shared object, these relocations are copied
2118 into the output file to be resolved at run time. */
ec338859 2119 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
252b5132
RH
2120 {
2121 switch (r_type)
2122 {
2123 case R_SPARC_PC10:
2124 case R_SPARC_PC22:
2125 case R_SPARC_PC_HH22:
2126 case R_SPARC_PC_HM10:
2127 case R_SPARC_PC_LM22:
2128 if (h != NULL
2129 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2130 break;
2131 /* Fall through. */
2132 case R_SPARC_DISP8:
2133 case R_SPARC_DISP16:
2134 case R_SPARC_DISP32:
2135 case R_SPARC_WDISP30:
2136 case R_SPARC_WDISP22:
2137 case R_SPARC_WDISP19:
2138 case R_SPARC_WDISP16:
2139 case R_SPARC_DISP64:
2140 if (h == NULL)
2141 break;
2142 /* Fall through. */
2143 case R_SPARC_8:
2144 case R_SPARC_16:
2145 case R_SPARC_32:
2146 case R_SPARC_HI22:
2147 case R_SPARC_22:
2148 case R_SPARC_13:
2149 case R_SPARC_LO10:
2150 case R_SPARC_UA32:
2151 case R_SPARC_10:
2152 case R_SPARC_11:
2153 case R_SPARC_64:
2154 case R_SPARC_OLO10:
2155 case R_SPARC_HH22:
2156 case R_SPARC_HM10:
2157 case R_SPARC_LM22:
2158 case R_SPARC_7:
2159 case R_SPARC_5:
2160 case R_SPARC_6:
2161 case R_SPARC_HIX22:
2162 case R_SPARC_LOX10:
2163 case R_SPARC_H44:
2164 case R_SPARC_M44:
2165 case R_SPARC_L44:
2166 case R_SPARC_UA64:
2167 case R_SPARC_UA16:
2168 {
2169 Elf_Internal_Rela outrel;
2170 boolean skip;
2171
2172 if (sreloc == NULL)
2173 {
2174 const char *name =
2175 (bfd_elf_string_from_elf_section
2176 (input_bfd,
2177 elf_elfheader (input_bfd)->e_shstrndx,
2178 elf_section_data (input_section)->rel_hdr.sh_name));
2179
2180 if (name == NULL)
2181 return false;
2182
2183 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2184 && strcmp (bfd_get_section_name(input_bfd,
2185 input_section),
2186 name + 5) == 0);
2187
2188 sreloc = bfd_get_section_by_name (dynobj, name);
2189 BFD_ASSERT (sreloc != NULL);
2190 }
2191
2192 skip = false;
2193
c629eae0
JJ
2194 outrel.r_offset =
2195 _bfd_elf_section_offset (output_bfd, info, input_section,
2196 rel->r_offset);
2197 if (outrel.r_offset == (bfd_vma) -1)
2198 skip = true;
252b5132
RH
2199
2200 outrel.r_offset += (input_section->output_section->vma
2201 + input_section->output_offset);
2202
2203 /* Optimize unaligned reloc usage now that we know where
2204 it finally resides. */
2205 switch (r_type)
2206 {
2207 case R_SPARC_16:
2208 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2209 break;
2210 case R_SPARC_UA16:
2211 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2212 break;
2213 case R_SPARC_32:
2214 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2215 break;
2216 case R_SPARC_UA32:
2217 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2218 break;
2219 case R_SPARC_64:
2220 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2221 break;
2222 case R_SPARC_UA64:
2223 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2224 break;
2225 }
2226
2227 if (skip)
2228 memset (&outrel, 0, sizeof outrel);
2229 /* h->dynindx may be -1 if the symbol was marked to
2230 become local. */
bd5e6e7e 2231 else if (h != NULL && ! is_plt
252b5132
RH
2232 && ((! info->symbolic && h->dynindx != -1)
2233 || (h->elf_link_hash_flags
2234 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2235 {
2236 BFD_ASSERT (h->dynindx != -1);
f65054f7
RH
2237 outrel.r_info
2238 = ELF64_R_INFO (h->dynindx,
2239 ELF64_R_TYPE_INFO (
2240 ELF64_R_TYPE_DATA (rel->r_info),
2241 r_type));
252b5132
RH
2242 outrel.r_addend = rel->r_addend;
2243 }
2244 else
2245 {
2246 if (r_type == R_SPARC_64)
2247 {
2248 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2249 outrel.r_addend = relocation + rel->r_addend;
2250 }
2251 else
2252 {
2253 long indx;
2254
bd5e6e7e
JJ
2255 if (is_plt)
2256 sec = splt;
2257 else if (h == NULL)
252b5132
RH
2258 sec = local_sections[r_symndx];
2259 else
2260 {
2261 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2262 || (h->root.type
2263 == bfd_link_hash_defweak));
2264 sec = h->root.u.def.section;
2265 }
2266 if (sec != NULL && bfd_is_abs_section (sec))
2267 indx = 0;
2268 else if (sec == NULL || sec->owner == NULL)
2269 {
2270 bfd_set_error (bfd_error_bad_value);
2271 return false;
2272 }
2273 else
2274 {
2275 asection *osec;
2276
2277 osec = sec->output_section;
2278 indx = elf_section_data (osec)->dynindx;
2279
2280 /* FIXME: we really should be able to link non-pic
2281 shared libraries. */
2282 if (indx == 0)
2283 {
2284 BFD_FAIL ();
2285 (*_bfd_error_handler)
2286 (_("%s: probably compiled without -fPIC?"),
8f615d07 2287 bfd_archive_filename (input_bfd));
252b5132
RH
2288 bfd_set_error (bfd_error_bad_value);
2289 return false;
2290 }
2291 }
2292
f65054f7
RH
2293 outrel.r_info
2294 = ELF64_R_INFO (indx,
2295 ELF64_R_TYPE_INFO (
2296 ELF64_R_TYPE_DATA (rel->r_info),
2297 r_type));
840a9995 2298 outrel.r_addend = relocation + rel->r_addend;
252b5132
RH
2299 }
2300 }
2301
2302 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2303 (((Elf64_External_Rela *)
2304 sreloc->contents)
2305 + sreloc->reloc_count));
2306 ++sreloc->reloc_count;
2307
2308 /* This reloc will be computed at runtime, so there's no
20278fa3
JJ
2309 need to do anything now. */
2310 continue;
252b5132
RH
2311 }
2312 break;
2313 }
2314 }
2315
2316 switch (r_type)
2317 {
2318 case R_SPARC_GOT10:
2319 case R_SPARC_GOT13:
2320 case R_SPARC_GOT22:
2321 /* Relocation is to the entry for this symbol in the global
2322 offset table. */
2323 if (sgot == NULL)
2324 {
2325 sgot = bfd_get_section_by_name (dynobj, ".got");
2326 BFD_ASSERT (sgot != NULL);
2327 }
2328
2329 if (h != NULL)
2330 {
2331 bfd_vma off = h->got.offset;
2332 BFD_ASSERT (off != (bfd_vma) -1);
2333
2334 if (! elf_hash_table (info)->dynamic_sections_created
2335 || (info->shared
2336 && (info->symbolic || h->dynindx == -1)
2337 && (h->elf_link_hash_flags
2338 & ELF_LINK_HASH_DEF_REGULAR)))
2339 {
2340 /* This is actually a static link, or it is a -Bsymbolic
2341 link and the symbol is defined locally, or the symbol
2342 was forced to be local because of a version file. We
2343 must initialize this entry in the global offset table.
2344 Since the offset must always be a multiple of 8, we
2345 use the least significant bit to record whether we
2346 have initialized it already.
2347
2348 When doing a dynamic link, we create a .rela.got
2349 relocation entry to initialize the value. This is
2350 done in the finish_dynamic_symbol routine. */
2351
2352 if ((off & 1) != 0)
2353 off &= ~1;
2354 else
2355 {
2356 bfd_put_64 (output_bfd, relocation,
2357 sgot->contents + off);
2358 h->got.offset |= 1;
2359 }
2360 }
2361 relocation = sgot->output_offset + off - got_base;
2362 }
2363 else
2364 {
2365 bfd_vma off;
2366
2367 BFD_ASSERT (local_got_offsets != NULL);
2368 off = local_got_offsets[r_symndx];
2369 BFD_ASSERT (off != (bfd_vma) -1);
2370
2371 /* The offset must always be a multiple of 8. We use
2372 the least significant bit to record whether we have
2373 already processed this entry. */
2374 if ((off & 1) != 0)
2375 off &= ~1;
2376 else
2377 {
252b5132
RH
2378 local_got_offsets[r_symndx] |= 1;
2379
2380 if (info->shared)
2381 {
2382 asection *srelgot;
2383 Elf_Internal_Rela outrel;
2384
ea5fbc67
GK
2385 /* The Solaris 2.7 64-bit linker adds the contents
2386 of the location to the value of the reloc.
2387 Note this is different behaviour to the
2388 32-bit linker, which both adds the contents
2389 and ignores the addend. So clear the location. */
dc810e39
AM
2390 bfd_put_64 (output_bfd, (bfd_vma) 0,
2391 sgot->contents + off);
435b1e90 2392
252b5132
RH
2393 /* We need to generate a R_SPARC_RELATIVE reloc
2394 for the dynamic linker. */
2395 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2396 BFD_ASSERT (srelgot != NULL);
2397
2398 outrel.r_offset = (sgot->output_section->vma
2399 + sgot->output_offset
2400 + off);
2401 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2402 outrel.r_addend = relocation;
2403 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2404 (((Elf64_External_Rela *)
2405 srelgot->contents)
2406 + srelgot->reloc_count));
2407 ++srelgot->reloc_count;
2408 }
ea5fbc67
GK
2409 else
2410 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
252b5132
RH
2411 }
2412 relocation = sgot->output_offset + off - got_base;
2413 }
2414 goto do_default;
2415
2416 case R_SPARC_WPLT30:
2417 case R_SPARC_PLT32:
2418 case R_SPARC_HIPLT22:
2419 case R_SPARC_LOPLT10:
2420 case R_SPARC_PCPLT32:
2421 case R_SPARC_PCPLT22:
2422 case R_SPARC_PCPLT10:
2423 case R_SPARC_PLT64:
2424 /* Relocation is to the entry for this symbol in the
2425 procedure linkage table. */
2426 BFD_ASSERT (h != NULL);
2427
2428 if (h->plt.offset == (bfd_vma) -1)
2429 {
2430 /* We didn't make a PLT entry for this symbol. This
2431 happens when statically linking PIC code, or when
2432 using -Bsymbolic. */
2433 goto do_default;
2434 }
2435
2436 if (splt == NULL)
2437 {
2438 splt = bfd_get_section_by_name (dynobj, ".plt");
2439 BFD_ASSERT (splt != NULL);
2440 }
2441
2442 relocation = (splt->output_section->vma
2443 + splt->output_offset
2444 + sparc64_elf_plt_entry_offset (h->plt.offset));
f7775d95
JJ
2445 if (r_type == R_SPARC_WPLT30)
2446 goto do_wplt30;
bd5e6e7e
JJ
2447 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2448 {
2449 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2450 is_plt = true;
2451 goto do_dynreloc;
2452 }
252b5132
RH
2453 goto do_default;
2454
2455 case R_SPARC_OLO10:
2456 {
2457 bfd_vma x;
2458
2459 relocation += rel->r_addend;
2460 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2461
2462 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2463 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
252b5132
RH
2464 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2465
2466 r = bfd_check_overflow (howto->complain_on_overflow,
2467 howto->bitsize, howto->rightshift,
2468 bfd_arch_bits_per_address (input_bfd),
2469 relocation);
2470 }
2471 break;
2472
2473 case R_SPARC_WDISP16:
2474 {
2475 bfd_vma x;
2476
2477 relocation += rel->r_addend;
2478 /* Adjust for pc-relative-ness. */
2479 relocation -= (input_section->output_section->vma
2480 + input_section->output_offset);
2481 relocation -= rel->r_offset;
2482
2483 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39
AM
2484 x &= ~(bfd_vma) 0x303fff;
2485 x |= ((((relocation >> 2) & 0xc000) << 6)
2486 | ((relocation >> 2) & 0x3fff));
252b5132
RH
2487 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2488
2489 r = bfd_check_overflow (howto->complain_on_overflow,
2490 howto->bitsize, howto->rightshift,
2491 bfd_arch_bits_per_address (input_bfd),
2492 relocation);
2493 }
2494 break;
2495
2496 case R_SPARC_HIX22:
2497 {
2498 bfd_vma x;
2499
2500 relocation += rel->r_addend;
2501 relocation = relocation ^ MINUS_ONE;
2502
2503 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2504 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
252b5132
RH
2505 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2506
2507 r = bfd_check_overflow (howto->complain_on_overflow,
2508 howto->bitsize, howto->rightshift,
2509 bfd_arch_bits_per_address (input_bfd),
2510 relocation);
2511 }
2512 break;
2513
2514 case R_SPARC_LOX10:
2515 {
2516 bfd_vma x;
2517
2518 relocation += rel->r_addend;
2519 relocation = (relocation & 0x3ff) | 0x1c00;
2520
2521 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
dc810e39 2522 x = (x & ~(bfd_vma) 0x1fff) | relocation;
252b5132
RH
2523 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2524
2525 r = bfd_reloc_ok;
2526 }
2527 break;
2528
f7775d95
JJ
2529 case R_SPARC_WDISP30:
2530 do_wplt30:
2531 if (SEC_DO_RELAX (input_section)
2532 && rel->r_offset + 4 < input_section->_raw_size)
2533 {
2534#define G0 0
2535#define O7 15
2536#define XCC (2 << 20)
2537#define COND(x) (((x)&0xf)<<25)
2538#define CONDA COND(0x8)
2539#define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2540#define INSN_BA (F2(0,2) | CONDA)
2541#define INSN_OR F3(2, 0x2, 0)
2542#define INSN_NOP F2(0,4)
2543
2544 bfd_vma x, y;
2545
2546 /* If the instruction is a call with either:
2547 restore
2548 arithmetic instruction with rd == %o7
2549 where rs1 != %o7 and rs2 if it is register != %o7
2550 then we can optimize if the call destination is near
2551 by changing the call into a branch always. */
2552 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2553 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2554 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2555 {
2556 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2557 || ((y & OP3(0x28)) == 0 /* arithmetic */
2558 && (y & RD(~0)) == RD(O7)))
2559 && (y & RS1(~0)) != RS1(O7)
2560 && ((y & F3I(~0))
2561 || (y & RS2(~0)) != RS2(O7)))
2562 {
2563 bfd_vma reloc;
2564
2565 reloc = relocation + rel->r_addend - rel->r_offset;
2566 reloc -= (input_section->output_section->vma
2567 + input_section->output_offset);
2568 if (reloc & 3)
2569 goto do_default;
2570
2571 /* Ensure the branch fits into simm22. */
2572 if ((reloc & ~(bfd_vma)0x7fffff)
2573 && ((reloc | 0x7fffff) != MINUS_ONE))
2574 goto do_default;
2575 reloc >>= 2;
2576
2577 /* Check whether it fits into simm19. */
2578 if ((reloc & 0x3c0000) == 0
2579 || (reloc & 0x3c0000) == 0x3c0000)
2580 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2581 else
2582 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2583 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2584 r = bfd_reloc_ok;
2585 if (rel->r_offset >= 4
2586 && (y & (0xffffffff ^ RS1(~0)))
2587 == (INSN_OR | RD(O7) | RS2(G0)))
2588 {
2589 bfd_vma z;
2590 unsigned int reg;
2591
2592 z = bfd_get_32 (input_bfd,
2593 contents + rel->r_offset - 4);
2594 if ((z & (0xffffffff ^ RD(~0)))
2595 != (INSN_OR | RS1(O7) | RS2(G0)))
2596 break;
2597
2598 /* The sequence was
2599 or %o7, %g0, %rN
2600 call foo
2601 or %rN, %g0, %o7
2602
2603 If call foo was replaced with ba, replace
2604 or %rN, %g0, %o7 with nop. */
2605
2606 reg = (y & RS1(~0)) >> 14;
2607 if (reg != ((z & RD(~0)) >> 25)
2608 || reg == G0 || reg == O7)
2609 break;
2610
dc810e39 2611 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
f7775d95
JJ
2612 contents + rel->r_offset + 4);
2613 }
2614 break;
2615 }
2616 }
2617 }
2618 /* FALLTHROUGH */
2619
252b5132
RH
2620 default:
2621 do_default:
2622 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2623 contents, rel->r_offset,
2624 relocation, rel->r_addend);
2625 break;
2626 }
2627
2628 switch (r)
2629 {
2630 case bfd_reloc_ok:
2631 break;
2632
2633 default:
2634 case bfd_reloc_outofrange:
2635 abort ();
2636
2637 case bfd_reloc_overflow:
2638 {
2639 const char *name;
2640
6361c4c9
AO
2641 /* The Solaris native linker silently disregards
2642 overflows. We don't, but this breaks stabs debugging
2643 info, whose relocations are only 32-bits wide. Ignore
2644 overflows in this case. */
2645 if (r_type == R_SPARC_32
2646 && (input_section->flags & SEC_DEBUGGING) != 0
2647 && strcmp (bfd_section_name (input_bfd, input_section),
2648 ".stab") == 0)
2649 break;
2650
252b5132
RH
2651 if (h != NULL)
2652 {
2653 if (h->root.type == bfd_link_hash_undefweak
2654 && howto->pc_relative)
2655 {
2656 /* Assume this is a call protected by other code that
2657 detect the symbol is undefined. If this is the case,
435b1e90 2658 we can safely ignore the overflow. If not, the
252b5132
RH
2659 program is hosed anyway, and a little warning isn't
2660 going to help. */
2661 break;
2662 }
435b1e90 2663
252b5132
RH
2664 name = h->root.root.string;
2665 }
2666 else
2667 {
2668 name = (bfd_elf_string_from_elf_section
2669 (input_bfd,
2670 symtab_hdr->sh_link,
2671 sym->st_name));
2672 if (name == NULL)
2673 return false;
2674 if (*name == '\0')
2675 name = bfd_section_name (input_bfd, sec);
2676 }
2677 if (! ((*info->callbacks->reloc_overflow)
2678 (info, name, howto->name, (bfd_vma) 0,
2679 input_bfd, input_section, rel->r_offset)))
2680 return false;
2681 }
2682 break;
2683 }
2684 }
2685
2686 return true;
2687}
2688
2689/* Finish up dynamic symbol handling. We set the contents of various
2690 dynamic sections here. */
2691
2692static boolean
2693sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2694 bfd *output_bfd;
2695 struct bfd_link_info *info;
2696 struct elf_link_hash_entry *h;
2697 Elf_Internal_Sym *sym;
2698{
2699 bfd *dynobj;
2700
2701 dynobj = elf_hash_table (info)->dynobj;
2702
2703 if (h->plt.offset != (bfd_vma) -1)
2704 {
2705 asection *splt;
2706 asection *srela;
2707 Elf_Internal_Rela rela;
2708
435b1e90 2709 /* This symbol has an entry in the PLT. Set it up. */
252b5132
RH
2710
2711 BFD_ASSERT (h->dynindx != -1);
2712
2713 splt = bfd_get_section_by_name (dynobj, ".plt");
2714 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2715 BFD_ASSERT (splt != NULL && srela != NULL);
2716
2717 /* Fill in the entry in the .rela.plt section. */
2718
2719 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2720 {
2721 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2722 rela.r_addend = 0;
2723 }
2724 else
2725 {
dc810e39 2726 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
252b5132 2727 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
a11c78e7
RH
2728 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2729 -(splt->output_section->vma + splt->output_offset);
252b5132
RH
2730 }
2731 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2732 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2733
be040dbb
JJ
2734 /* Adjust for the first 4 reserved elements in the .plt section
2735 when setting the offset in the .rela.plt section.
2736 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2737 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2738
252b5132
RH
2739 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2740 ((Elf64_External_Rela *) srela->contents
be040dbb 2741 + (h->plt.offset - 4)));
252b5132
RH
2742
2743 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2744 {
2745 /* Mark the symbol as undefined, rather than as defined in
2746 the .plt section. Leave the value alone. */
2747 sym->st_shndx = SHN_UNDEF;
8701c1bc
JJ
2748 /* If the symbol is weak, we do need to clear the value.
2749 Otherwise, the PLT entry would provide a definition for
2750 the symbol even if the symbol wasn't defined anywhere,
2751 and so the symbol would never be NULL. */
2752 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2753 == 0)
2754 sym->st_value = 0;
252b5132
RH
2755 }
2756 }
2757
2758 if (h->got.offset != (bfd_vma) -1)
2759 {
2760 asection *sgot;
2761 asection *srela;
2762 Elf_Internal_Rela rela;
2763
2764 /* This symbol has an entry in the GOT. Set it up. */
2765
2766 sgot = bfd_get_section_by_name (dynobj, ".got");
2767 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2768 BFD_ASSERT (sgot != NULL && srela != NULL);
2769
2770 rela.r_offset = (sgot->output_section->vma
2771 + sgot->output_offset
dc810e39 2772 + (h->got.offset &~ (bfd_vma) 1));
252b5132
RH
2773
2774 /* If this is a -Bsymbolic link, and the symbol is defined
2775 locally, we just want to emit a RELATIVE reloc. Likewise if
2776 the symbol was forced to be local because of a version file.
2777 The entry in the global offset table will already have been
2778 initialized in the relocate_section function. */
2779 if (info->shared
2780 && (info->symbolic || h->dynindx == -1)
2781 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2782 {
2783 asection *sec = h->root.u.def.section;
2784 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2785 rela.r_addend = (h->root.u.def.value
2786 + sec->output_section->vma
2787 + sec->output_offset);
2788 }
2789 else
2790 {
2791 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2792 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2793 rela.r_addend = 0;
2794 }
2795
2796 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2797 ((Elf64_External_Rela *) srela->contents
2798 + srela->reloc_count));
2799 ++srela->reloc_count;
2800 }
2801
2802 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2803 {
2804 asection *s;
2805 Elf_Internal_Rela rela;
2806
2807 /* This symbols needs a copy reloc. Set it up. */
2808
2809 BFD_ASSERT (h->dynindx != -1);
2810
2811 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2812 ".rela.bss");
2813 BFD_ASSERT (s != NULL);
2814
2815 rela.r_offset = (h->root.u.def.value
2816 + h->root.u.def.section->output_section->vma
2817 + h->root.u.def.section->output_offset);
2818 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2819 rela.r_addend = 0;
2820 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2821 ((Elf64_External_Rela *) s->contents
2822 + s->reloc_count));
2823 ++s->reloc_count;
2824 }
2825
2826 /* Mark some specially defined symbols as absolute. */
2827 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2828 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2829 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2830 sym->st_shndx = SHN_ABS;
2831
2832 return true;
2833}
2834
2835/* Finish up the dynamic sections. */
2836
2837static boolean
2838sparc64_elf_finish_dynamic_sections (output_bfd, info)
2839 bfd *output_bfd;
2840 struct bfd_link_info *info;
2841{
2842 bfd *dynobj;
587ff49e 2843 int stt_regidx = -1;
252b5132
RH
2844 asection *sdyn;
2845 asection *sgot;
2846
2847 dynobj = elf_hash_table (info)->dynobj;
2848
2849 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2850
2851 if (elf_hash_table (info)->dynamic_sections_created)
2852 {
2853 asection *splt;
2854 Elf64_External_Dyn *dyncon, *dynconend;
2855
2856 splt = bfd_get_section_by_name (dynobj, ".plt");
2857 BFD_ASSERT (splt != NULL && sdyn != NULL);
2858
2859 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2860 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2861 for (; dyncon < dynconend; dyncon++)
2862 {
2863 Elf_Internal_Dyn dyn;
2864 const char *name;
2865 boolean size;
2866
2867 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2868
2869 switch (dyn.d_tag)
2870 {
2871 case DT_PLTGOT: name = ".plt"; size = false; break;
2872 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2873 case DT_JMPREL: name = ".rela.plt"; size = false; break;
587ff49e
RH
2874 case DT_SPARC_REGISTER:
2875 if (stt_regidx == -1)
2876 {
2877 stt_regidx =
2878 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2879 if (stt_regidx == -1)
2880 return false;
2881 }
2882 dyn.d_un.d_val = stt_regidx++;
2883 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2884 /* fallthrough */
252b5132
RH
2885 default: name = NULL; size = false; break;
2886 }
2887
2888 if (name != NULL)
2889 {
2890 asection *s;
2891
2892 s = bfd_get_section_by_name (output_bfd, name);
2893 if (s == NULL)
2894 dyn.d_un.d_val = 0;
2895 else
2896 {
2897 if (! size)
2898 dyn.d_un.d_ptr = s->vma;
2899 else
2900 {
2901 if (s->_cooked_size != 0)
2902 dyn.d_un.d_val = s->_cooked_size;
2903 else
2904 dyn.d_un.d_val = s->_raw_size;
2905 }
2906 }
2907 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2908 }
2909 }
2910
2911 /* Initialize the contents of the .plt section. */
2912 if (splt->_raw_size > 0)
2913 {
dc810e39
AM
2914 sparc64_elf_build_plt (output_bfd, splt->contents,
2915 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
252b5132
RH
2916 }
2917
2918 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2919 PLT_ENTRY_SIZE;
2920 }
2921
2922 /* Set the first entry in the global offset table to the address of
2923 the dynamic section. */
2924 sgot = bfd_get_section_by_name (dynobj, ".got");
2925 BFD_ASSERT (sgot != NULL);
2926 if (sgot->_raw_size > 0)
2927 {
2928 if (sdyn == NULL)
2929 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2930 else
2931 bfd_put_64 (output_bfd,
2932 sdyn->output_section->vma + sdyn->output_offset,
2933 sgot->contents);
2934 }
2935
2936 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2937
252b5132
RH
2938 return true;
2939}
db6751f2
JJ
2940
2941static enum elf_reloc_type_class
f51e552e
AM
2942sparc64_elf_reloc_type_class (rela)
2943 const Elf_Internal_Rela *rela;
db6751f2 2944{
f51e552e 2945 switch ((int) ELF64_R_TYPE (rela->r_info))
db6751f2
JJ
2946 {
2947 case R_SPARC_RELATIVE:
2948 return reloc_class_relative;
2949 case R_SPARC_JMP_SLOT:
2950 return reloc_class_plt;
2951 case R_SPARC_COPY:
2952 return reloc_class_copy;
2953 default:
2954 return reloc_class_normal;
2955 }
2956}
252b5132 2957\f
435b1e90 2958/* Functions for dealing with the e_flags field. */
252b5132
RH
2959
2960/* Merge backend specific data from an object file to the output
2961 object file when linking. */
2962
2963static boolean
2964sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2965 bfd *ibfd;
2966 bfd *obfd;
2967{
2968 boolean error;
2969 flagword new_flags, old_flags;
2970 int new_mm, old_mm;
2971
2972 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2973 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2974 return true;
2975
2976 new_flags = elf_elfheader (ibfd)->e_flags;
2977 old_flags = elf_elfheader (obfd)->e_flags;
2978
2979 if (!elf_flags_init (obfd)) /* First call, no flags set */
2980 {
2981 elf_flags_init (obfd) = true;
2982 elf_elfheader (obfd)->e_flags = new_flags;
2983 }
435b1e90 2984
252b5132
RH
2985 else if (new_flags == old_flags) /* Compatible flags are ok */
2986 ;
435b1e90 2987
252b5132
RH
2988 else /* Incompatible flags */
2989 {
2990 error = false;
19f7b010
JJ
2991
2992#define EF_SPARC_ISA_EXTENSIONS \
2993 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2994
37fb6db1
ILT
2995 if ((ibfd->flags & DYNAMIC) != 0)
2996 {
2997 /* We don't want dynamic objects memory ordering and
2998 architecture to have any role. That's what dynamic linker
2999 should do. */
19f7b010 3000 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
6c08d697 3001 new_flags |= (old_flags
19f7b010 3002 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
37fb6db1
ILT
3003 }
3004 else
3005 {
3006 /* Choose the highest architecture requirements. */
19f7b010
JJ
3007 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3008 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3009 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3010 && (old_flags & EF_SPARC_HAL_R1))
37fb6db1
ILT
3011 {
3012 error = true;
3013 (*_bfd_error_handler)
3014 (_("%s: linking UltraSPARC specific with HAL specific code"),
8f615d07 3015 bfd_archive_filename (ibfd));
37fb6db1
ILT
3016 }
3017 /* Choose the most restrictive memory ordering. */
3018 old_mm = (old_flags & EF_SPARCV9_MM);
3019 new_mm = (new_flags & EF_SPARCV9_MM);
3020 old_flags &= ~EF_SPARCV9_MM;
3021 new_flags &= ~EF_SPARCV9_MM;
3022 if (new_mm < old_mm)
3023 old_mm = new_mm;
3024 old_flags |= old_mm;
3025 new_flags |= old_mm;
3026 }
252b5132
RH
3027
3028 /* Warn about any other mismatches */
3029 if (new_flags != old_flags)
3030 {
3031 error = true;
3032 (*_bfd_error_handler)
3033 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
8f615d07 3034 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
252b5132
RH
3035 }
3036
3037 elf_elfheader (obfd)->e_flags = old_flags;
3038
3039 if (error)
3040 {
3041 bfd_set_error (bfd_error_bad_value);
3042 return false;
3043 }
3044 }
3045 return true;
3046}
587ff49e
RH
3047\f
3048/* Print a STT_REGISTER symbol to file FILE. */
252b5132 3049
587ff49e
RH
3050static const char *
3051sparc64_elf_print_symbol_all (abfd, filep, symbol)
6c08d697 3052 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
3053 PTR filep;
3054 asymbol *symbol;
3055{
3056 FILE *file = (FILE *) filep;
3057 int reg, type;
435b1e90 3058
587ff49e
RH
3059 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3060 != STT_REGISTER)
3061 return NULL;
3062
3063 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3064 type = symbol->flags;
3065 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3066 ((type & BSF_LOCAL)
3067 ? (type & BSF_GLOBAL) ? '!' : 'l'
99c79b2e
AJ
3068 : (type & BSF_GLOBAL) ? 'g' : ' '),
3069 (type & BSF_WEAK) ? 'w' : ' ');
587ff49e
RH
3070 if (symbol->name == NULL || symbol->name [0] == '\0')
3071 return "#scratch";
3072 else
3073 return symbol->name;
3074}
252b5132
RH
3075\f
3076/* Set the right machine number for a SPARC64 ELF file. */
3077
3078static boolean
3079sparc64_elf_object_p (abfd)
3080 bfd *abfd;
3081{
3082 unsigned long mach = bfd_mach_sparc_v9;
19f7b010
JJ
3083
3084 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3085 mach = bfd_mach_sparc_v9b;
3086 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
252b5132
RH
3087 mach = bfd_mach_sparc_v9a;
3088 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3089}
3090
f65054f7
RH
3091/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3092 standard ELF, because R_SPARC_OLO10 has secondary addend in
3093 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3094 relocation handling routines. */
3095
3096const struct elf_size_info sparc64_elf_size_info =
3097{
3098 sizeof (Elf64_External_Ehdr),
3099 sizeof (Elf64_External_Phdr),
3100 sizeof (Elf64_External_Shdr),
3101 sizeof (Elf64_External_Rel),
3102 sizeof (Elf64_External_Rela),
3103 sizeof (Elf64_External_Sym),
3104 sizeof (Elf64_External_Dyn),
3105 sizeof (Elf_External_Note),
a11c78e7 3106 4, /* hash-table entry size */
f65054f7
RH
3107 /* internal relocations per external relocations.
3108 For link purposes we use just 1 internal per
3109 1 external, for assembly and slurp symbol table
435b1e90 3110 we use 2. */
f65054f7
RH
3111 1,
3112 64, /* arch_size */
3113 8, /* file_align */
3114 ELFCLASS64,
3115 EV_CURRENT,
3116 bfd_elf64_write_out_phdrs,
3117 bfd_elf64_write_shdrs_and_ehdr,
3118 sparc64_elf_write_relocs,
3119 bfd_elf64_swap_symbol_out,
3120 sparc64_elf_slurp_reloc_table,
3121 bfd_elf64_slurp_symbol_table,
3122 bfd_elf64_swap_dyn_in,
3123 bfd_elf64_swap_dyn_out,
3124 NULL,
3125 NULL,
3126 NULL,
3127 NULL
3128};
3129
252b5132
RH
3130#define TARGET_BIG_SYM bfd_elf64_sparc_vec
3131#define TARGET_BIG_NAME "elf64-sparc"
3132#define ELF_ARCH bfd_arch_sparc
3133#define ELF_MAXPAGESIZE 0x100000
3134
3135/* This is the official ABI value. */
3136#define ELF_MACHINE_CODE EM_SPARCV9
3137
3138/* This is the value that we used before the ABI was released. */
3139#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3140
587ff49e
RH
3141#define bfd_elf64_bfd_link_hash_table_create \
3142 sparc64_elf_bfd_link_hash_table_create
435b1e90 3143
252b5132
RH
3144#define elf_info_to_howto \
3145 sparc64_elf_info_to_howto
f65054f7
RH
3146#define bfd_elf64_get_reloc_upper_bound \
3147 sparc64_elf_get_reloc_upper_bound
3148#define bfd_elf64_get_dynamic_reloc_upper_bound \
3149 sparc64_elf_get_dynamic_reloc_upper_bound
3150#define bfd_elf64_canonicalize_dynamic_reloc \
3151 sparc64_elf_canonicalize_dynamic_reloc
252b5132
RH
3152#define bfd_elf64_bfd_reloc_type_lookup \
3153 sparc64_elf_reloc_type_lookup
f7775d95
JJ
3154#define bfd_elf64_bfd_relax_section \
3155 sparc64_elf_relax_section
252b5132
RH
3156
3157#define elf_backend_create_dynamic_sections \
3158 _bfd_elf_create_dynamic_sections
587ff49e
RH
3159#define elf_backend_add_symbol_hook \
3160 sparc64_elf_add_symbol_hook
3161#define elf_backend_get_symbol_type \
3162 sparc64_elf_get_symbol_type
3163#define elf_backend_symbol_processing \
3164 sparc64_elf_symbol_processing
252b5132
RH
3165#define elf_backend_check_relocs \
3166 sparc64_elf_check_relocs
3167#define elf_backend_adjust_dynamic_symbol \
3168 sparc64_elf_adjust_dynamic_symbol
3169#define elf_backend_size_dynamic_sections \
3170 sparc64_elf_size_dynamic_sections
3171#define elf_backend_relocate_section \
3172 sparc64_elf_relocate_section
3173#define elf_backend_finish_dynamic_symbol \
3174 sparc64_elf_finish_dynamic_symbol
3175#define elf_backend_finish_dynamic_sections \
3176 sparc64_elf_finish_dynamic_sections
587ff49e
RH
3177#define elf_backend_print_symbol_all \
3178 sparc64_elf_print_symbol_all
3179#define elf_backend_output_arch_syms \
3180 sparc64_elf_output_arch_syms
252b5132
RH
3181#define bfd_elf64_bfd_merge_private_bfd_data \
3182 sparc64_elf_merge_private_bfd_data
3183
f65054f7
RH
3184#define elf_backend_size_info \
3185 sparc64_elf_size_info
252b5132
RH
3186#define elf_backend_object_p \
3187 sparc64_elf_object_p
db6751f2
JJ
3188#define elf_backend_reloc_type_class \
3189 sparc64_elf_reloc_type_class
252b5132
RH
3190
3191#define elf_backend_want_got_plt 0
3192#define elf_backend_plt_readonly 0
3193#define elf_backend_want_plt_sym 1
3194
3195/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3196#define elf_backend_plt_alignment 8
3197
3198#define elf_backend_got_header_size 8
3199#define elf_backend_plt_header_size PLT_HEADER_SIZE
3200
3201#include "elf64-target.h"
This page took 0.255569 seconds and 4 git commands to generate.