2000-07-19 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
CommitLineData
252b5132 1/* SPARC-specific support for 64-bit ELF
37fb6db1
ILT
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
252b5132
RH
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
f7775d95 25#include "opcode/sparc.h"
252b5132
RH
26
27/* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30/*#define SPARC64_OLD_RELOCS*/
31
32#include "elf/sparc.h"
33
34/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35#define MINUS_ONE (~ (bfd_vma) 0)
36
587ff49e
RH
37static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS((bfd *));
252b5132
RH
39static reloc_howto_type *sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd *, bfd_reloc_code_real_type));
41static void sparc64_elf_info_to_howto
42 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
43
44static void sparc64_elf_build_plt
45 PARAMS((bfd *, unsigned char *, int));
46static bfd_vma sparc64_elf_plt_entry_offset
47 PARAMS((int));
48static bfd_vma sparc64_elf_plt_ptr_offset
49 PARAMS((int, int));
50
51static boolean sparc64_elf_check_relocs
52 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
53 const Elf_Internal_Rela *));
54static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
56static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd *, struct bfd_link_info *));
587ff49e
RH
58static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym *, int));
60static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
62 const char **, flagword *, asection **, bfd_vma *));
63static void sparc64_elf_symbol_processing
64 PARAMS ((bfd *, asymbol *));
252b5132
RH
65
66static boolean sparc64_elf_merge_private_bfd_data
67 PARAMS ((bfd *, bfd *));
68
f7775d95
JJ
69static boolean sparc64_elf_relax_section
70 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
252b5132
RH
71static boolean sparc64_elf_relocate_section
72 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
73 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
74static boolean sparc64_elf_object_p PARAMS ((bfd *));
f65054f7
RH
75static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
76static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
77static boolean sparc64_elf_slurp_one_reloc_table
78 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
79static boolean sparc64_elf_slurp_reloc_table
80 PARAMS ((bfd *, asection *, asymbol **, boolean));
81static long sparc64_elf_canonicalize_dynamic_reloc
82 PARAMS ((bfd *, arelent **, asymbol **));
83static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
252b5132
RH
84\f
85/* The relocation "howto" table. */
86
87static bfd_reloc_status_type sparc_elf_notsup_reloc
88 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
89static bfd_reloc_status_type sparc_elf_wdisp16_reloc
90 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
91static bfd_reloc_status_type sparc_elf_hix22_reloc
92 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
93static bfd_reloc_status_type sparc_elf_lox10_reloc
94 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
95
96static reloc_howto_type sparc64_elf_howto_table[] =
97{
98 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
99 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
102 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
103 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
104 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
105 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
106 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
107 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
108 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
113 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
114 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
115 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
117 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
118 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
119 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
120 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
121 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true),
122#ifndef SPARC64_OLD_RELOCS
123 /* These aren't implemented yet. */
124 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
127 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
128 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
130#endif
131 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
132 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
133 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
134 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
135 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
139 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
140 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
142 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
143 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
144 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
145 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
146 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
147 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
148 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
149 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
150 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
151 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
152 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
153 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
154 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
155 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
156 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
157};
158
159struct elf_reloc_map {
160 bfd_reloc_code_real_type bfd_reloc_val;
161 unsigned char elf_reloc_val;
162};
163
164static CONST struct elf_reloc_map sparc_reloc_map[] =
165{
166 { BFD_RELOC_NONE, R_SPARC_NONE, },
167 { BFD_RELOC_16, R_SPARC_16, },
168 { BFD_RELOC_8, R_SPARC_8 },
169 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
170 { BFD_RELOC_CTOR, R_SPARC_64 },
171 { BFD_RELOC_32, R_SPARC_32 },
172 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
173 { BFD_RELOC_HI22, R_SPARC_HI22 },
174 { BFD_RELOC_LO10, R_SPARC_LO10, },
175 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
176 { BFD_RELOC_SPARC22, R_SPARC_22 },
177 { BFD_RELOC_SPARC13, R_SPARC_13 },
178 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
179 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
180 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
181 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
182 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
183 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
184 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
185 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
186 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
187 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
188 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
189 /* ??? Doesn't dwarf use this? */
190/*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
191 {BFD_RELOC_SPARC_10, R_SPARC_10},
192 {BFD_RELOC_SPARC_11, R_SPARC_11},
193 {BFD_RELOC_SPARC_64, R_SPARC_64},
194 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
195 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
196 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
197 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
198 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
199 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
200 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
201 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
202 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
203 {BFD_RELOC_SPARC_7, R_SPARC_7},
204 {BFD_RELOC_SPARC_5, R_SPARC_5},
205 {BFD_RELOC_SPARC_6, R_SPARC_6},
206 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
207 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
208 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
209 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
210 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
211 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
212 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
213 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
214};
215
216static reloc_howto_type *
217sparc64_elf_reloc_type_lookup (abfd, code)
6c08d697 218 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
219 bfd_reloc_code_real_type code;
220{
221 unsigned int i;
222 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
223 {
224 if (sparc_reloc_map[i].bfd_reloc_val == code)
225 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
226 }
227 return 0;
228}
229
230static void
231sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
6c08d697 232 bfd *abfd ATTRIBUTE_UNUSED;
252b5132
RH
233 arelent *cache_ptr;
234 Elf64_Internal_Rela *dst;
235{
f65054f7
RH
236 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
237 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
238}
239\f
240/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
241 section can represent up to two relocs, we must tell the user to allocate
242 more space. */
243
244static long
245sparc64_elf_get_reloc_upper_bound (abfd, sec)
6c08d697 246 bfd *abfd ATTRIBUTE_UNUSED;
f65054f7
RH
247 asection *sec;
248{
249 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
250}
251
252static long
253sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
254 bfd *abfd;
255{
256 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
257}
258
259/* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
260 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
261 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
262 for the same location, R_SPARC_LO10 and R_SPARC_13. */
263
264static boolean
265sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
266 bfd *abfd;
267 asection *asect;
268 Elf_Internal_Shdr *rel_hdr;
269 asymbol **symbols;
270 boolean dynamic;
271{
f65054f7
RH
272 PTR allocated = NULL;
273 bfd_byte *native_relocs;
274 arelent *relent;
275 unsigned int i;
276 int entsize;
277 bfd_size_type count;
278 arelent *relents;
279
280 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
281 if (allocated == NULL)
282 goto error_return;
283
284 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
285 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
286 != rel_hdr->sh_size))
287 goto error_return;
288
289 native_relocs = (bfd_byte *) allocated;
290
291 relents = asect->relocation + asect->reloc_count;
292
293 entsize = rel_hdr->sh_entsize;
294 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
295
296 count = rel_hdr->sh_size / entsize;
297
298 for (i = 0, relent = relents; i < count;
299 i++, relent++, native_relocs += entsize)
300 {
301 Elf_Internal_Rela rela;
302
303 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
304
305 /* The address of an ELF reloc is section relative for an object
306 file, and absolute for an executable file or shared library.
307 The address of a normal BFD reloc is always section relative,
308 and the address of a dynamic reloc is absolute.. */
309 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
310 relent->address = rela.r_offset;
311 else
312 relent->address = rela.r_offset - asect->vma;
313
314 if (ELF64_R_SYM (rela.r_info) == 0)
315 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
316 else
317 {
318 asymbol **ps, *s;
319
320 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
321 s = *ps;
322
323 /* Canonicalize ELF section symbols. FIXME: Why? */
324 if ((s->flags & BSF_SECTION_SYM) == 0)
325 relent->sym_ptr_ptr = ps;
326 else
327 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
328 }
329
330 relent->addend = rela.r_addend;
331
332 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
333 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
334 {
335 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
336 relent[1].address = relent->address;
337 relent++;
338 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
339 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
340 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
341 }
342 else
343 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
344 }
345
346 asect->reloc_count += relent - relents;
347
348 if (allocated != NULL)
349 free (allocated);
350
351 return true;
352
353 error_return:
354 if (allocated != NULL)
355 free (allocated);
356 return false;
357}
358
359/* Read in and swap the external relocs. */
360
361static boolean
362sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
363 bfd *abfd;
364 asection *asect;
365 asymbol **symbols;
366 boolean dynamic;
367{
368 struct bfd_elf_section_data * const d = elf_section_data (asect);
369 Elf_Internal_Shdr *rel_hdr;
370 Elf_Internal_Shdr *rel_hdr2;
371
372 if (asect->relocation != NULL)
373 return true;
374
375 if (! dynamic)
376 {
377 if ((asect->flags & SEC_RELOC) == 0
378 || asect->reloc_count == 0)
379 return true;
380
381 rel_hdr = &d->rel_hdr;
382 rel_hdr2 = d->rel_hdr2;
383
384 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
385 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
386 }
387 else
388 {
389 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
390 case because relocations against this section may use the
391 dynamic symbol table, and in that case bfd_section_from_shdr
392 in elf.c does not update the RELOC_COUNT. */
393 if (asect->_raw_size == 0)
394 return true;
395
396 rel_hdr = &d->this_hdr;
397 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
398 rel_hdr2 = NULL;
399 }
400
401 asect->relocation = ((arelent *)
402 bfd_alloc (abfd,
403 asect->reloc_count * 2 * sizeof (arelent)));
404 if (asect->relocation == NULL)
405 return false;
406
407 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
408 asect->reloc_count = 0;
409
410 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
411 dynamic))
412 return false;
413
414 if (rel_hdr2
415 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
416 dynamic))
417 return false;
418
419 return true;
420}
421
422/* Canonicalize the dynamic relocation entries. Note that we return
423 the dynamic relocations as a single block, although they are
424 actually associated with particular sections; the interface, which
425 was designed for SunOS style shared libraries, expects that there
426 is only one set of dynamic relocs. Any section that was actually
427 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
428 the dynamic symbol table, is considered to be a dynamic reloc
429 section. */
430
431static long
432sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
433 bfd *abfd;
434 arelent **storage;
435 asymbol **syms;
436{
437 asection *s;
438 long ret;
439
440 if (elf_dynsymtab (abfd) == 0)
441 {
442 bfd_set_error (bfd_error_invalid_operation);
443 return -1;
444 }
445
446 ret = 0;
447 for (s = abfd->sections; s != NULL; s = s->next)
448 {
449 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
450 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
451 {
452 arelent *p;
453 long count, i;
454
455 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
456 return -1;
457 count = s->reloc_count;
458 p = s->relocation;
459 for (i = 0; i < count; i++)
460 *storage++ = p++;
461 ret += count;
462 }
463 }
464
465 *storage = NULL;
466
467 return ret;
468}
469
470/* Write out the relocs. */
471
472static void
473sparc64_elf_write_relocs (abfd, sec, data)
474 bfd *abfd;
475 asection *sec;
476 PTR data;
477{
478 boolean *failedp = (boolean *) data;
479 Elf_Internal_Shdr *rela_hdr;
37fb6db1 480 Elf64_External_Rela *outbound_relocas, *src_rela;
f65054f7
RH
481 unsigned int idx, count;
482 asymbol *last_sym = 0;
483 int last_sym_idx = 0;
484
485 /* If we have already failed, don't do anything. */
486 if (*failedp)
487 return;
488
489 if ((sec->flags & SEC_RELOC) == 0)
490 return;
491
492 /* The linker backend writes the relocs out itself, and sets the
493 reloc_count field to zero to inhibit writing them here. Also,
494 sometimes the SEC_RELOC flag gets set even when there aren't any
495 relocs. */
496 if (sec->reloc_count == 0)
497 return;
498
499 /* We can combine two relocs that refer to the same address
500 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
501 latter is R_SPARC_13 with no associated symbol. */
502 count = 0;
503 for (idx = 0; idx < sec->reloc_count; idx++)
504 {
505 bfd_vma addr;
f65054f7
RH
506
507 ++count;
508
509 addr = sec->orelocation[idx]->address;
510 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
511 && idx < sec->reloc_count - 1)
512 {
513 arelent *r = sec->orelocation[idx + 1];
514
515 if (r->howto->type == R_SPARC_13
516 && r->address == addr
517 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
518 && (*r->sym_ptr_ptr)->value == 0)
519 ++idx;
520 }
521 }
522
523 rela_hdr = &elf_section_data (sec)->rel_hdr;
524
525 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
526 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
527 if (rela_hdr->contents == NULL)
528 {
529 *failedp = true;
530 return;
531 }
532
533 /* Figure out whether the relocations are RELA or REL relocations. */
534 if (rela_hdr->sh_type != SHT_RELA)
535 abort ();
536
537 /* orelocation has the data, reloc_count has the count... */
538 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
37fb6db1 539 src_rela = outbound_relocas;
f65054f7
RH
540
541 for (idx = 0; idx < sec->reloc_count; idx++)
542 {
543 Elf_Internal_Rela dst_rela;
f65054f7
RH
544 arelent *ptr;
545 asymbol *sym;
546 int n;
547
548 ptr = sec->orelocation[idx];
f65054f7
RH
549
550 /* The address of an ELF reloc is section relative for an object
551 file, and absolute for an executable file or shared library.
552 The address of a BFD reloc is always section relative. */
553 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
554 dst_rela.r_offset = ptr->address;
555 else
556 dst_rela.r_offset = ptr->address + sec->vma;
557
558 sym = *ptr->sym_ptr_ptr;
559 if (sym == last_sym)
560 n = last_sym_idx;
561 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
562 n = STN_UNDEF;
563 else
564 {
565 last_sym = sym;
566 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
567 if (n < 0)
568 {
569 *failedp = true;
570 return;
571 }
572 last_sym_idx = n;
573 }
574
575 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
576 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
577 && ! _bfd_elf_validate_reloc (abfd, ptr))
578 {
579 *failedp = true;
580 return;
581 }
582
583 if (ptr->howto->type == R_SPARC_LO10
584 && idx < sec->reloc_count - 1)
585 {
586 arelent *r = sec->orelocation[idx + 1];
587
588 if (r->howto->type == R_SPARC_13
589 && r->address == ptr->address
590 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
591 && (*r->sym_ptr_ptr)->value == 0)
592 {
593 idx++;
594 dst_rela.r_info
595 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
596 R_SPARC_OLO10));
597 }
598 else
599 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
600 }
601 else
602 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
603
604 dst_rela.r_addend = ptr->addend;
605 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
37fb6db1 606 ++src_rela;
f65054f7 607 }
252b5132 608}
587ff49e
RH
609\f
610/* Sparc64 ELF linker hash table. */
611
612struct sparc64_elf_app_reg
613{
614 unsigned char bind;
615 unsigned short shndx;
616 bfd *abfd;
617 char *name;
618};
619
620struct sparc64_elf_link_hash_table
621{
622 struct elf_link_hash_table root;
623
624 struct sparc64_elf_app_reg app_regs [4];
625};
626
627/* Get the Sparc64 ELF linker hash table from a link_info structure. */
628
629#define sparc64_elf_hash_table(p) \
630 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
631
632/* Create a Sparc64 ELF linker hash table. */
633
634static struct bfd_link_hash_table *
635sparc64_elf_bfd_link_hash_table_create (abfd)
636 bfd *abfd;
637{
638 struct sparc64_elf_link_hash_table *ret;
639
640 ret = ((struct sparc64_elf_link_hash_table *)
641 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
642 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
643 return NULL;
644
645 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
646 _bfd_elf_link_hash_newfunc))
647 {
648 bfd_release (abfd, ret);
649 return NULL;
650 }
651
652 return &ret->root.root;
653}
654
252b5132
RH
655\f
656/* Utility for performing the standard initial work of an instruction
657 relocation.
658 *PRELOCATION will contain the relocated item.
659 *PINSN will contain the instruction from the input stream.
660 If the result is `bfd_reloc_other' the caller can continue with
661 performing the relocation. Otherwise it must stop and return the
662 value to its caller. */
663
664static bfd_reloc_status_type
665init_insn_reloc (abfd,
666 reloc_entry,
667 symbol,
668 data,
669 input_section,
670 output_bfd,
671 prelocation,
672 pinsn)
673 bfd *abfd;
674 arelent *reloc_entry;
675 asymbol *symbol;
676 PTR data;
677 asection *input_section;
678 bfd *output_bfd;
679 bfd_vma *prelocation;
680 bfd_vma *pinsn;
681{
682 bfd_vma relocation;
683 reloc_howto_type *howto = reloc_entry->howto;
684
685 if (output_bfd != (bfd *) NULL
686 && (symbol->flags & BSF_SECTION_SYM) == 0
687 && (! howto->partial_inplace
688 || reloc_entry->addend == 0))
689 {
690 reloc_entry->address += input_section->output_offset;
691 return bfd_reloc_ok;
692 }
693
694 /* This works because partial_inplace == false. */
695 if (output_bfd != NULL)
696 return bfd_reloc_continue;
697
698 if (reloc_entry->address > input_section->_cooked_size)
699 return bfd_reloc_outofrange;
700
701 relocation = (symbol->value
702 + symbol->section->output_section->vma
703 + symbol->section->output_offset);
704 relocation += reloc_entry->addend;
705 if (howto->pc_relative)
706 {
707 relocation -= (input_section->output_section->vma
708 + input_section->output_offset);
709 relocation -= reloc_entry->address;
710 }
711
712 *prelocation = relocation;
713 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
714 return bfd_reloc_other;
715}
716
717/* For unsupported relocs. */
718
719static bfd_reloc_status_type
720sparc_elf_notsup_reloc (abfd,
721 reloc_entry,
722 symbol,
723 data,
724 input_section,
725 output_bfd,
726 error_message)
6c08d697
JJ
727 bfd *abfd ATTRIBUTE_UNUSED;
728 arelent *reloc_entry ATTRIBUTE_UNUSED;
729 asymbol *symbol ATTRIBUTE_UNUSED;
730 PTR data ATTRIBUTE_UNUSED;
731 asection *input_section ATTRIBUTE_UNUSED;
732 bfd *output_bfd ATTRIBUTE_UNUSED;
733 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
734{
735 return bfd_reloc_notsupported;
736}
737
738/* Handle the WDISP16 reloc. */
739
740static bfd_reloc_status_type
741sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
742 output_bfd, error_message)
743 bfd *abfd;
744 arelent *reloc_entry;
745 asymbol *symbol;
746 PTR data;
747 asection *input_section;
748 bfd *output_bfd;
6c08d697 749 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
750{
751 bfd_vma relocation;
752 bfd_vma insn;
753 bfd_reloc_status_type status;
754
755 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
756 input_section, output_bfd, &relocation, &insn);
757 if (status != bfd_reloc_other)
758 return status;
759
760 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
761 | ((relocation >> 2) & 0x3fff));
762 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
763
764 if ((bfd_signed_vma) relocation < - 0x40000
765 || (bfd_signed_vma) relocation > 0x3ffff)
766 return bfd_reloc_overflow;
767 else
768 return bfd_reloc_ok;
769}
770
771/* Handle the HIX22 reloc. */
772
773static bfd_reloc_status_type
774sparc_elf_hix22_reloc (abfd,
775 reloc_entry,
776 symbol,
777 data,
778 input_section,
779 output_bfd,
780 error_message)
781 bfd *abfd;
782 arelent *reloc_entry;
783 asymbol *symbol;
784 PTR data;
785 asection *input_section;
786 bfd *output_bfd;
6c08d697 787 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
788{
789 bfd_vma relocation;
790 bfd_vma insn;
791 bfd_reloc_status_type status;
792
793 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
794 input_section, output_bfd, &relocation, &insn);
795 if (status != bfd_reloc_other)
796 return status;
797
798 relocation ^= MINUS_ONE;
799 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
800 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
801
802 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
803 return bfd_reloc_overflow;
804 else
805 return bfd_reloc_ok;
806}
807
808/* Handle the LOX10 reloc. */
809
810static bfd_reloc_status_type
811sparc_elf_lox10_reloc (abfd,
812 reloc_entry,
813 symbol,
814 data,
815 input_section,
816 output_bfd,
817 error_message)
818 bfd *abfd;
819 arelent *reloc_entry;
820 asymbol *symbol;
821 PTR data;
822 asection *input_section;
823 bfd *output_bfd;
6c08d697 824 char **error_message ATTRIBUTE_UNUSED;
252b5132
RH
825{
826 bfd_vma relocation;
827 bfd_vma insn;
828 bfd_reloc_status_type status;
829
830 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
831 input_section, output_bfd, &relocation, &insn);
832 if (status != bfd_reloc_other)
833 return status;
834
835 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
836 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
837
838 return bfd_reloc_ok;
839}
840\f
841/* PLT/GOT stuff */
842
843/* Both the headers and the entries are icache aligned. */
844#define PLT_ENTRY_SIZE 32
845#define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
846#define LARGE_PLT_THRESHOLD 32768
847#define GOT_RESERVED_ENTRIES 1
848
849#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
850
851
852/* Fill in the .plt section. */
853
854static void
855sparc64_elf_build_plt (output_bfd, contents, nentries)
856 bfd *output_bfd;
857 unsigned char *contents;
858 int nentries;
859{
860 const unsigned int nop = 0x01000000;
861 int i, j;
862
863 /* The first four entries are reserved, and are initially undefined.
864 We fill them with `illtrap 0' to force ld.so to do something. */
865
866 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
867 bfd_put_32 (output_bfd, 0, contents+i*4);
868
869 /* The first 32768 entries are close enough to plt1 to get there via
870 a straight branch. */
871
872 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
873 {
874 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
875 unsigned int sethi, ba;
876
877 /* sethi (. - plt0), %g1 */
878 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
879
a11c78e7
RH
880 /* ba,a,pt %xcc, plt1 */
881 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
252b5132
RH
882
883 bfd_put_32 (output_bfd, sethi, entry);
884 bfd_put_32 (output_bfd, ba, entry+4);
885 bfd_put_32 (output_bfd, nop, entry+8);
886 bfd_put_32 (output_bfd, nop, entry+12);
887 bfd_put_32 (output_bfd, nop, entry+16);
888 bfd_put_32 (output_bfd, nop, entry+20);
889 bfd_put_32 (output_bfd, nop, entry+24);
890 bfd_put_32 (output_bfd, nop, entry+28);
891 }
892
893 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
894 160: 160 entries and 160 pointers. This is to separate code from data,
895 which is much friendlier on the cache. */
896
897 for (; i < nentries; i += 160)
898 {
899 int block = (i + 160 <= nentries ? 160 : nentries - i);
900 for (j = 0; j < block; ++j)
901 {
902 unsigned char *entry, *ptr;
903 unsigned int ldx;
904
905 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
906 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
907
908 /* ldx [%o7 + ptr - entry+4], %g1 */
909 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
910
911 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
912 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
913 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
914 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
915 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
916 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
917
a11c78e7 918 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
252b5132
RH
919 }
920 }
921}
922
923/* Return the offset of a particular plt entry within the .plt section. */
924
925static bfd_vma
926sparc64_elf_plt_entry_offset (index)
927 int index;
928{
929 int block, ofs;
930
931 if (index < LARGE_PLT_THRESHOLD)
932 return index * PLT_ENTRY_SIZE;
933
934 /* See above for details. */
935
936 block = (index - LARGE_PLT_THRESHOLD) / 160;
937 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
938
939 return ((bfd_vma)(LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
940 + ofs * 6*4);
941}
942
943static bfd_vma
944sparc64_elf_plt_ptr_offset (index, max)
945 int index, max;
946{
947 int block, ofs, last;
948
949 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
950
951 /* See above for details. */
952
a11c78e7
RH
953 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
954 + LARGE_PLT_THRESHOLD;
955 ofs = index - block;
956 if (block + 160 > max)
957 last = (max - LARGE_PLT_THRESHOLD) % 160;
958 else
959 last = 160;
252b5132 960
a11c78e7 961 return (block * PLT_ENTRY_SIZE
252b5132
RH
962 + last * 6*4
963 + ofs * 8);
964}
965
966
967\f
968/* Look through the relocs for a section during the first phase, and
969 allocate space in the global offset table or procedure linkage
970 table. */
971
972static boolean
973sparc64_elf_check_relocs (abfd, info, sec, relocs)
974 bfd *abfd;
975 struct bfd_link_info *info;
976 asection *sec;
977 const Elf_Internal_Rela *relocs;
978{
979 bfd *dynobj;
980 Elf_Internal_Shdr *symtab_hdr;
981 struct elf_link_hash_entry **sym_hashes;
982 bfd_vma *local_got_offsets;
983 const Elf_Internal_Rela *rel;
984 const Elf_Internal_Rela *rel_end;
985 asection *sgot;
986 asection *srelgot;
987 asection *sreloc;
988
989 if (info->relocateable || !(sec->flags & SEC_ALLOC))
990 return true;
991
992 dynobj = elf_hash_table (info)->dynobj;
993 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
994 sym_hashes = elf_sym_hashes (abfd);
995 local_got_offsets = elf_local_got_offsets (abfd);
996
997 sgot = NULL;
998 srelgot = NULL;
999 sreloc = NULL;
1000
1001 rel_end = relocs + sec->reloc_count;
1002 for (rel = relocs; rel < rel_end; rel++)
1003 {
1004 unsigned long r_symndx;
1005 struct elf_link_hash_entry *h;
1006
1007 r_symndx = ELF64_R_SYM (rel->r_info);
1008 if (r_symndx < symtab_hdr->sh_info)
1009 h = NULL;
1010 else
1011 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012
f65054f7 1013 switch (ELF64_R_TYPE_ID (rel->r_info))
252b5132
RH
1014 {
1015 case R_SPARC_GOT10:
1016 case R_SPARC_GOT13:
1017 case R_SPARC_GOT22:
1018 /* This symbol requires a global offset table entry. */
1019
1020 if (dynobj == NULL)
1021 {
1022 /* Create the .got section. */
1023 elf_hash_table (info)->dynobj = dynobj = abfd;
1024 if (! _bfd_elf_create_got_section (dynobj, info))
1025 return false;
1026 }
1027
1028 if (sgot == NULL)
1029 {
1030 sgot = bfd_get_section_by_name (dynobj, ".got");
1031 BFD_ASSERT (sgot != NULL);
1032 }
1033
1034 if (srelgot == NULL && (h != NULL || info->shared))
1035 {
1036 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1037 if (srelgot == NULL)
1038 {
1039 srelgot = bfd_make_section (dynobj, ".rela.got");
1040 if (srelgot == NULL
1041 || ! bfd_set_section_flags (dynobj, srelgot,
1042 (SEC_ALLOC
1043 | SEC_LOAD
1044 | SEC_HAS_CONTENTS
1045 | SEC_IN_MEMORY
1046 | SEC_LINKER_CREATED
1047 | SEC_READONLY))
1048 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1049 return false;
1050 }
1051 }
1052
1053 if (h != NULL)
1054 {
1055 if (h->got.offset != (bfd_vma) -1)
1056 {
1057 /* We have already allocated space in the .got. */
1058 break;
1059 }
1060 h->got.offset = sgot->_raw_size;
1061
1062 /* Make sure this symbol is output as a dynamic symbol. */
1063 if (h->dynindx == -1)
1064 {
1065 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1066 return false;
1067 }
1068
1069 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1070 }
1071 else
1072 {
1073 /* This is a global offset table entry for a local
1074 symbol. */
1075 if (local_got_offsets == NULL)
1076 {
1077 size_t size;
1078 register unsigned int i;
1079
1080 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1081 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1082 if (local_got_offsets == NULL)
1083 return false;
1084 elf_local_got_offsets (abfd) = local_got_offsets;
1085 for (i = 0; i < symtab_hdr->sh_info; i++)
1086 local_got_offsets[i] = (bfd_vma) -1;
1087 }
1088 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1089 {
1090 /* We have already allocated space in the .got. */
1091 break;
1092 }
1093 local_got_offsets[r_symndx] = sgot->_raw_size;
1094
1095 if (info->shared)
1096 {
1097 /* If we are generating a shared object, we need to
1098 output a R_SPARC_RELATIVE reloc so that the
1099 dynamic linker can adjust this GOT entry. */
1100 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1101 }
1102 }
1103
1104 sgot->_raw_size += 8;
1105
1106#if 0
1107 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1108 unsigned numbers. If we permit ourselves to modify
1109 code so we get sethi/xor, this could work.
1110 Question: do we consider conditionally re-enabling
1111 this for -fpic, once we know about object code models? */
1112 /* If the .got section is more than 0x1000 bytes, we add
1113 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1114 bit relocations have a greater chance of working. */
1115 if (sgot->_raw_size >= 0x1000
1116 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1117 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1118#endif
1119
1120 break;
1121
1122 case R_SPARC_WPLT30:
1123 case R_SPARC_PLT32:
1124 case R_SPARC_HIPLT22:
1125 case R_SPARC_LOPLT10:
1126 case R_SPARC_PCPLT32:
1127 case R_SPARC_PCPLT22:
1128 case R_SPARC_PCPLT10:
1129 case R_SPARC_PLT64:
1130 /* This symbol requires a procedure linkage table entry. We
1131 actually build the entry in adjust_dynamic_symbol,
1132 because this might be a case of linking PIC code without
1133 linking in any dynamic objects, in which case we don't
1134 need to generate a procedure linkage table after all. */
1135
1136 if (h == NULL)
1137 {
1138 /* It does not make sense to have a procedure linkage
1139 table entry for a local symbol. */
1140 bfd_set_error (bfd_error_bad_value);
1141 return false;
1142 }
1143
1144 /* Make sure this symbol is output as a dynamic symbol. */
1145 if (h->dynindx == -1)
1146 {
1147 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1148 return false;
1149 }
1150
1151 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1152 break;
1153
1154 case R_SPARC_PC10:
1155 case R_SPARC_PC22:
1156 case R_SPARC_PC_HH22:
1157 case R_SPARC_PC_HM10:
1158 case R_SPARC_PC_LM22:
1159 if (h != NULL
1160 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1161 break;
1162 /* Fall through. */
1163 case R_SPARC_DISP8:
1164 case R_SPARC_DISP16:
1165 case R_SPARC_DISP32:
1166 case R_SPARC_DISP64:
1167 case R_SPARC_WDISP30:
1168 case R_SPARC_WDISP22:
1169 case R_SPARC_WDISP19:
1170 case R_SPARC_WDISP16:
1171 if (h == NULL)
1172 break;
1173 /* Fall through. */
1174 case R_SPARC_8:
1175 case R_SPARC_16:
1176 case R_SPARC_32:
1177 case R_SPARC_HI22:
1178 case R_SPARC_22:
1179 case R_SPARC_13:
1180 case R_SPARC_LO10:
1181 case R_SPARC_UA32:
1182 case R_SPARC_10:
1183 case R_SPARC_11:
1184 case R_SPARC_64:
1185 case R_SPARC_OLO10:
1186 case R_SPARC_HH22:
1187 case R_SPARC_HM10:
1188 case R_SPARC_LM22:
1189 case R_SPARC_7:
1190 case R_SPARC_5:
1191 case R_SPARC_6:
1192 case R_SPARC_HIX22:
1193 case R_SPARC_LOX10:
1194 case R_SPARC_H44:
1195 case R_SPARC_M44:
1196 case R_SPARC_L44:
1197 case R_SPARC_UA64:
1198 case R_SPARC_UA16:
1199 /* When creating a shared object, we must copy these relocs
1200 into the output file. We create a reloc section in
1201 dynobj and make room for the reloc.
1202
1203 But don't do this for debugging sections -- this shows up
1204 with DWARF2 -- first because they are not loaded, and
1205 second because DWARF sez the debug info is not to be
1206 biased by the load address. */
1207 if (info->shared && (sec->flags & SEC_ALLOC))
1208 {
1209 if (sreloc == NULL)
1210 {
1211 const char *name;
1212
1213 name = (bfd_elf_string_from_elf_section
1214 (abfd,
1215 elf_elfheader (abfd)->e_shstrndx,
1216 elf_section_data (sec)->rel_hdr.sh_name));
1217 if (name == NULL)
1218 return false;
1219
1220 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1221 && strcmp (bfd_get_section_name (abfd, sec),
1222 name + 5) == 0);
1223
1224 sreloc = bfd_get_section_by_name (dynobj, name);
1225 if (sreloc == NULL)
1226 {
1227 flagword flags;
1228
1229 sreloc = bfd_make_section (dynobj, name);
1230 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1231 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1232 if ((sec->flags & SEC_ALLOC) != 0)
1233 flags |= SEC_ALLOC | SEC_LOAD;
1234 if (sreloc == NULL
1235 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1236 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1237 return false;
1238 }
1239 }
1240
1241 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1242 }
1243 break;
1244
1245 case R_SPARC_REGISTER:
1246 /* Nothing to do. */
1247 break;
1248
1249 default:
1250 (*_bfd_error_handler)(_("%s: check_relocs: unhandled reloc type %d"),
1251 bfd_get_filename(abfd),
f65054f7 1252 ELF64_R_TYPE_ID (rel->r_info));
252b5132
RH
1253 return false;
1254 }
1255 }
1256
1257 return true;
1258}
1259
587ff49e
RH
1260/* Hook called by the linker routine which adds symbols from an object
1261 file. We use it for STT_REGISTER symbols. */
1262
1263static boolean
1264sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1265 bfd *abfd;
1266 struct bfd_link_info *info;
1267 const Elf_Internal_Sym *sym;
1268 const char **namep;
6c08d697
JJ
1269 flagword *flagsp ATTRIBUTE_UNUSED;
1270 asection **secp ATTRIBUTE_UNUSED;
1271 bfd_vma *valp ATTRIBUTE_UNUSED;
587ff49e
RH
1272{
1273 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1274
1275 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1276 {
1277 int reg;
1278 struct sparc64_elf_app_reg *p;
1279
1280 reg = (int)sym->st_value;
1281 switch (reg & ~1)
1282 {
1283 case 2: reg -= 2; break;
1284 case 6: reg -= 4; break;
1285 default:
1286 (*_bfd_error_handler)
1287 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1288 bfd_get_filename (abfd));
1289 return false;
1290 }
1291
1292 if (info->hash->creator != abfd->xvec
1293 || (abfd->flags & DYNAMIC) != 0)
1294 {
1295 /* STT_REGISTER only works when linking an elf64_sparc object.
1296 If STT_REGISTER comes from a dynamic object, don't put it into
1297 the output bfd. The dynamic linker will recheck it. */
1298 *namep = NULL;
1299 return true;
1300 }
1301
1302 p = sparc64_elf_hash_table(info)->app_regs + reg;
1303
1304 if (p->name != NULL && strcmp (p->name, *namep))
1305 {
1306 (*_bfd_error_handler)
1307 (_("Register %%g%d used incompatibly: "
1308 "previously declared in %s to %s, in %s redefined to %s"),
1309 (int)sym->st_value,
1310 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1311 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1312 return false;
1313 }
1314
1315 if (p->name == NULL)
1316 {
1317 if (**namep)
1318 {
1319 struct elf_link_hash_entry *h;
1320
1321 h = (struct elf_link_hash_entry *)
1322 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1323
1324 if (h != NULL)
1325 {
1326 unsigned char type = h->type;
1327
1328 if (type > STT_FUNC) type = 0;
1329 (*_bfd_error_handler)
1330 (_("Symbol `%s' has differing types: "
1331 "previously %s, REGISTER in %s"),
1332 *namep, stt_types [type], bfd_get_filename (abfd));
1333 return false;
1334 }
1335
1336 p->name = bfd_hash_allocate (&info->hash->table,
1337 strlen (*namep) + 1);
1338 if (!p->name)
1339 return false;
1340
1341 strcpy (p->name, *namep);
1342 }
1343 else
1344 p->name = "";
1345 p->bind = ELF_ST_BIND (sym->st_info);
1346 p->abfd = abfd;
1347 p->shndx = sym->st_shndx;
1348 }
1349 else
1350 {
1351 if (p->bind == STB_WEAK
1352 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1353 {
1354 p->bind = STB_GLOBAL;
1355 p->abfd = abfd;
1356 }
1357 }
1358 *namep = NULL;
1359 return true;
1360 }
1361 else if (! *namep || ! **namep)
1362 return true;
1363 else
1364 {
1365 int i;
1366 struct sparc64_elf_app_reg *p;
1367
1368 p = sparc64_elf_hash_table(info)->app_regs;
1369 for (i = 0; i < 4; i++, p++)
1370 if (p->name != NULL && ! strcmp (p->name, *namep))
1371 {
1372 unsigned char type = ELF_ST_TYPE (sym->st_info);
1373
1374 if (type > STT_FUNC) type = 0;
1375 (*_bfd_error_handler)
1376 (_("Symbol `%s' has differing types: "
1377 "REGISTER in %s, %s in %s"),
1378 *namep, bfd_get_filename (p->abfd), stt_types [type],
1379 bfd_get_filename (abfd));
1380 return false;
1381 }
1382 }
1383 return true;
1384}
1385
1386/* This function takes care of emiting STT_REGISTER symbols
1387 which we cannot easily keep in the symbol hash table. */
1388
1389static boolean
1390sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
6c08d697 1391 bfd *output_bfd ATTRIBUTE_UNUSED;
587ff49e
RH
1392 struct bfd_link_info *info;
1393 PTR finfo;
1394 boolean (*func) PARAMS ((PTR, const char *,
1395 Elf_Internal_Sym *, asection *));
1396{
1397 int reg;
1398 struct sparc64_elf_app_reg *app_regs =
1399 sparc64_elf_hash_table(info)->app_regs;
1400 Elf_Internal_Sym sym;
1401
1402 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1403 at the end of the dynlocal list, so they came at the end of the local
1404 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1405 to back up symtab->sh_info. */
1406 if (elf_hash_table (info)->dynlocal)
1407 {
1fa0ddb3
RH
1408 bfd * dynobj = elf_hash_table (info)->dynobj;
1409 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
587ff49e
RH
1410 struct elf_link_local_dynamic_entry *e;
1411
1412 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1413 if (e->input_indx == -1)
1414 break;
1415 if (e)
1416 {
1417 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1418 = e->dynindx;
1419 }
1420 }
1421
1422 if (info->strip == strip_all)
1423 return true;
1424
1425 for (reg = 0; reg < 4; reg++)
1426 if (app_regs [reg].name != NULL)
1427 {
1428 if (info->strip == strip_some
1429 && bfd_hash_lookup (info->keep_hash,
1430 app_regs [reg].name,
1431 false, false) == NULL)
1432 continue;
1433
1434 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1435 sym.st_size = 0;
1436 sym.st_other = 0;
1437 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1438 sym.st_shndx = app_regs [reg].shndx;
1439 if (! (*func) (finfo, app_regs [reg].name, &sym,
1440 sym.st_shndx == SHN_ABS
1441 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1442 return false;
1443 }
1444
1445 return true;
1446}
1447
1448static int
1449sparc64_elf_get_symbol_type (elf_sym, type)
1450 Elf_Internal_Sym * elf_sym;
1451 int type;
1452{
1453 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1454 return STT_REGISTER;
1455 else
1456 return type;
1457}
1458
1459/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1460 even in SHN_UNDEF section. */
1461
1462static void
1463sparc64_elf_symbol_processing (abfd, asym)
6c08d697 1464 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
1465 asymbol *asym;
1466{
1467 elf_symbol_type *elfsym;
1468
1469 elfsym = (elf_symbol_type *) asym;
1470 if (elfsym->internal_elf_sym.st_info
1471 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1472 {
1473 asym->flags |= BSF_GLOBAL;
1474 }
1475}
1476
252b5132
RH
1477/* Adjust a symbol defined by a dynamic object and referenced by a
1478 regular object. The current definition is in some section of the
1479 dynamic object, but we're not including those sections. We have to
1480 change the definition to something the rest of the link can
1481 understand. */
1482
1483static boolean
1484sparc64_elf_adjust_dynamic_symbol (info, h)
1485 struct bfd_link_info *info;
1486 struct elf_link_hash_entry *h;
1487{
1488 bfd *dynobj;
1489 asection *s;
1490 unsigned int power_of_two;
1491
1492 dynobj = elf_hash_table (info)->dynobj;
1493
1494 /* Make sure we know what is going on here. */
1495 BFD_ASSERT (dynobj != NULL
1496 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1497 || h->weakdef != NULL
1498 || ((h->elf_link_hash_flags
1499 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1500 && (h->elf_link_hash_flags
1501 & ELF_LINK_HASH_REF_REGULAR) != 0
1502 && (h->elf_link_hash_flags
1503 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1504
1505 /* If this is a function, put it in the procedure linkage table. We
1506 will fill in the contents of the procedure linkage table later
1507 (although we could actually do it here). The STT_NOTYPE
1508 condition is a hack specifically for the Oracle libraries
1509 delivered for Solaris; for some inexplicable reason, they define
1510 some of their functions as STT_NOTYPE when they really should be
1511 STT_FUNC. */
1512 if (h->type == STT_FUNC
1513 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1514 || (h->type == STT_NOTYPE
1515 && (h->root.type == bfd_link_hash_defined
1516 || h->root.type == bfd_link_hash_defweak)
1517 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1518 {
1519 if (! elf_hash_table (info)->dynamic_sections_created)
1520 {
1521 /* This case can occur if we saw a WPLT30 reloc in an input
1522 file, but none of the input files were dynamic objects.
1523 In such a case, we don't actually need to build a
1524 procedure linkage table, and we can just do a WDISP30
1525 reloc instead. */
1526 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1527 return true;
1528 }
1529
1530 s = bfd_get_section_by_name (dynobj, ".plt");
1531 BFD_ASSERT (s != NULL);
1532
1533 /* The first four bit in .plt is reserved. */
1534 if (s->_raw_size == 0)
1535 s->_raw_size = PLT_HEADER_SIZE;
1536
1537 /* If this symbol is not defined in a regular file, and we are
1538 not generating a shared library, then set the symbol to this
1539 location in the .plt. This is required to make function
1540 pointers compare as equal between the normal executable and
1541 the shared library. */
1542 if (! info->shared
1543 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1544 {
1545 h->root.u.def.section = s;
1546 h->root.u.def.value = s->_raw_size;
1547 }
1548
1549 /* To simplify matters later, just store the plt index here. */
1550 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1551
1552 /* Make room for this entry. */
1553 s->_raw_size += PLT_ENTRY_SIZE;
1554
1555 /* We also need to make an entry in the .rela.plt section. */
1556
1557 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1558 BFD_ASSERT (s != NULL);
1559
1560 /* The first plt entries are reserved, and the relocations must
1561 pair up exactly. */
1562 if (s->_raw_size == 0)
1563 s->_raw_size += (PLT_HEADER_SIZE/PLT_ENTRY_SIZE
1564 * sizeof (Elf64_External_Rela));
1565
1566 s->_raw_size += sizeof (Elf64_External_Rela);
1567
1568 /* The procedure linkage table size is bounded by the magnitude
1569 of the offset we can describe in the entry. */
1570 if (s->_raw_size >= (bfd_vma)1 << 32)
1571 {
1572 bfd_set_error (bfd_error_bad_value);
1573 return false;
1574 }
1575
1576 return true;
1577 }
1578
1579 /* If this is a weak symbol, and there is a real definition, the
1580 processor independent code will have arranged for us to see the
1581 real definition first, and we can just use the same value. */
1582 if (h->weakdef != NULL)
1583 {
1584 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1585 || h->weakdef->root.type == bfd_link_hash_defweak);
1586 h->root.u.def.section = h->weakdef->root.u.def.section;
1587 h->root.u.def.value = h->weakdef->root.u.def.value;
1588 return true;
1589 }
1590
1591 /* This is a reference to a symbol defined by a dynamic object which
1592 is not a function. */
1593
1594 /* If we are creating a shared library, we must presume that the
1595 only references to the symbol are via the global offset table.
1596 For such cases we need not do anything here; the relocations will
1597 be handled correctly by relocate_section. */
1598 if (info->shared)
1599 return true;
1600
1601 /* We must allocate the symbol in our .dynbss section, which will
1602 become part of the .bss section of the executable. There will be
1603 an entry for this symbol in the .dynsym section. The dynamic
1604 object will contain position independent code, so all references
1605 from the dynamic object to this symbol will go through the global
1606 offset table. The dynamic linker will use the .dynsym entry to
1607 determine the address it must put in the global offset table, so
1608 both the dynamic object and the regular object will refer to the
1609 same memory location for the variable. */
1610
1611 s = bfd_get_section_by_name (dynobj, ".dynbss");
1612 BFD_ASSERT (s != NULL);
1613
1614 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1615 to copy the initial value out of the dynamic object and into the
1616 runtime process image. We need to remember the offset into the
1617 .rel.bss section we are going to use. */
1618 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1619 {
1620 asection *srel;
1621
1622 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1623 BFD_ASSERT (srel != NULL);
1624 srel->_raw_size += sizeof (Elf64_External_Rela);
1625 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1626 }
1627
1628 /* We need to figure out the alignment required for this symbol. I
1629 have no idea how ELF linkers handle this. 16-bytes is the size
1630 of the largest type that requires hard alignment -- long double. */
1631 power_of_two = bfd_log2 (h->size);
1632 if (power_of_two > 4)
1633 power_of_two = 4;
1634
1635 /* Apply the required alignment. */
1636 s->_raw_size = BFD_ALIGN (s->_raw_size,
1637 (bfd_size_type) (1 << power_of_two));
1638 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1639 {
1640 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1641 return false;
1642 }
1643
1644 /* Define the symbol as being at this point in the section. */
1645 h->root.u.def.section = s;
1646 h->root.u.def.value = s->_raw_size;
1647
1648 /* Increment the section size to make room for the symbol. */
1649 s->_raw_size += h->size;
1650
1651 return true;
1652}
1653
1654/* Set the sizes of the dynamic sections. */
1655
1656static boolean
1657sparc64_elf_size_dynamic_sections (output_bfd, info)
1658 bfd *output_bfd;
1659 struct bfd_link_info *info;
1660{
1661 bfd *dynobj;
1662 asection *s;
1663 boolean reltext;
1664 boolean relplt;
1665
1666 dynobj = elf_hash_table (info)->dynobj;
1667 BFD_ASSERT (dynobj != NULL);
1668
1669 if (elf_hash_table (info)->dynamic_sections_created)
1670 {
1671 /* Set the contents of the .interp section to the interpreter. */
1672 if (! info->shared)
1673 {
1674 s = bfd_get_section_by_name (dynobj, ".interp");
1675 BFD_ASSERT (s != NULL);
1676 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1677 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1678 }
1679 }
1680 else
1681 {
1682 /* We may have created entries in the .rela.got section.
1683 However, if we are not creating the dynamic sections, we will
1684 not actually use these entries. Reset the size of .rela.got,
1685 which will cause it to get stripped from the output file
1686 below. */
1687 s = bfd_get_section_by_name (dynobj, ".rela.got");
1688 if (s != NULL)
1689 s->_raw_size = 0;
1690 }
1691
1692 /* The check_relocs and adjust_dynamic_symbol entry points have
1693 determined the sizes of the various dynamic sections. Allocate
1694 memory for them. */
1695 reltext = false;
1696 relplt = false;
1697 for (s = dynobj->sections; s != NULL; s = s->next)
1698 {
1699 const char *name;
1700 boolean strip;
1701
1702 if ((s->flags & SEC_LINKER_CREATED) == 0)
1703 continue;
1704
1705 /* It's OK to base decisions on the section name, because none
1706 of the dynobj section names depend upon the input files. */
1707 name = bfd_get_section_name (dynobj, s);
1708
1709 strip = false;
1710
1711 if (strncmp (name, ".rela", 5) == 0)
1712 {
1713 if (s->_raw_size == 0)
1714 {
1715 /* If we don't need this section, strip it from the
1716 output file. This is to handle .rela.bss and
1717 .rel.plt. We must create it in
1718 create_dynamic_sections, because it must be created
1719 before the linker maps input sections to output
1720 sections. The linker does that before
1721 adjust_dynamic_symbol is called, and it is that
1722 function which decides whether anything needs to go
1723 into these sections. */
1724 strip = true;
1725 }
1726 else
1727 {
1728 const char *outname;
1729 asection *target;
1730
1731 /* If this relocation section applies to a read only
1732 section, then we probably need a DT_TEXTREL entry. */
1733 outname = bfd_get_section_name (output_bfd,
1734 s->output_section);
1735 target = bfd_get_section_by_name (output_bfd, outname + 5);
1736 if (target != NULL
1737 && (target->flags & SEC_READONLY) != 0)
1738 reltext = true;
1739
1740 if (strcmp (name, ".rela.plt") == 0)
1741 relplt = true;
1742
1743 /* We use the reloc_count field as a counter if we need
1744 to copy relocs into the output file. */
1745 s->reloc_count = 0;
1746 }
1747 }
1748 else if (strcmp (name, ".plt") != 0
1749 && strncmp (name, ".got", 4) != 0)
1750 {
1751 /* It's not one of our sections, so don't allocate space. */
1752 continue;
1753 }
1754
1755 if (strip)
1756 {
7f8d5fc9 1757 _bfd_strip_section_from_output (info, s);
252b5132
RH
1758 continue;
1759 }
1760
1761 /* Allocate memory for the section contents. Zero the memory
1762 for the benefit of .rela.plt, which has 4 unused entries
1763 at the beginning, and we don't want garbage. */
1764 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1765 if (s->contents == NULL && s->_raw_size != 0)
1766 return false;
1767 }
1768
1769 if (elf_hash_table (info)->dynamic_sections_created)
1770 {
1771 /* Add some entries to the .dynamic section. We fill in the
1772 values later, in sparc64_elf_finish_dynamic_sections, but we
1773 must add the entries now so that we get the correct size for
1774 the .dynamic section. The DT_DEBUG entry is filled in by the
1775 dynamic linker and used by the debugger. */
587ff49e
RH
1776 int reg;
1777 struct sparc64_elf_app_reg * app_regs;
1778 struct bfd_strtab_hash *dynstr;
1779 struct elf_link_hash_table *eht = elf_hash_table (info);
1780
252b5132
RH
1781 if (! info->shared)
1782 {
1783 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1784 return false;
1785 }
1786
1787 if (relplt)
1788 {
1789 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1791 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
d6bcbdc1 1792 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
252b5132
RH
1793 return false;
1794 }
1795
1796 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1797 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1798 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1799 sizeof (Elf64_External_Rela)))
1800 return false;
1801
1802 if (reltext)
1803 {
1804 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1805 return false;
d6cf2879 1806 info->flags |= DF_TEXTREL;
252b5132 1807 }
587ff49e
RH
1808
1809 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1810 entries if needed. */
1811 app_regs = sparc64_elf_hash_table (info)->app_regs;
1812 dynstr = eht->dynstr;
1813
1814 for (reg = 0; reg < 4; reg++)
1815 if (app_regs [reg].name != NULL)
1816 {
1817 struct elf_link_local_dynamic_entry *entry, *e;
1818
1819 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1820 return false;
1821
1822 entry = (struct elf_link_local_dynamic_entry *)
1823 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1824 if (entry == NULL)
1825 return false;
1826
1827 /* We cheat here a little bit: the symbol will not be local, so we
1828 put it at the end of the dynlocal linked list. We will fix it
1829 later on, as we have to fix other fields anyway. */
1830 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1831 entry->isym.st_size = 0;
1832 if (*app_regs [reg].name != '\0')
1833 entry->isym.st_name
1834 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1835 else
1836 entry->isym.st_name = 0;
1837 entry->isym.st_other = 0;
1838 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1839 STT_REGISTER);
1840 entry->isym.st_shndx = app_regs [reg].shndx;
1841 entry->next = NULL;
1842 entry->input_bfd = output_bfd;
1843 entry->input_indx = -1;
1844
1845 if (eht->dynlocal == NULL)
1846 eht->dynlocal = entry;
1847 else
1848 {
1849 for (e = eht->dynlocal; e->next; e = e->next)
1850 ;
1851 e->next = entry;
1852 }
1853 eht->dynsymcount++;
1854 }
252b5132
RH
1855 }
1856
252b5132
RH
1857 return true;
1858}
252b5132 1859\f
f7775d95
JJ
1860#define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1861#define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1862
1863/*ARGSUSED*/
1864static boolean
1865sparc64_elf_relax_section (abfd, section, link_info, again)
1866 bfd *abfd ATTRIBUTE_UNUSED;
1867 asection *section ATTRIBUTE_UNUSED;
1868 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1869 boolean *again;
1870{
1871 *again = false;
1872 SET_SEC_DO_RELAX (section);
1873 return true;
1874}
1875\f
252b5132
RH
1876/* Relocate a SPARC64 ELF section. */
1877
1878static boolean
1879sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1880 contents, relocs, local_syms, local_sections)
1881 bfd *output_bfd;
1882 struct bfd_link_info *info;
1883 bfd *input_bfd;
1884 asection *input_section;
1885 bfd_byte *contents;
1886 Elf_Internal_Rela *relocs;
1887 Elf_Internal_Sym *local_syms;
1888 asection **local_sections;
1889{
1890 bfd *dynobj;
1891 Elf_Internal_Shdr *symtab_hdr;
1892 struct elf_link_hash_entry **sym_hashes;
1893 bfd_vma *local_got_offsets;
1894 bfd_vma got_base;
1895 asection *sgot;
1896 asection *splt;
1897 asection *sreloc;
1898 Elf_Internal_Rela *rel;
1899 Elf_Internal_Rela *relend;
1900
1901 dynobj = elf_hash_table (info)->dynobj;
1902 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1903 sym_hashes = elf_sym_hashes (input_bfd);
1904 local_got_offsets = elf_local_got_offsets (input_bfd);
1905
1906 if (elf_hash_table(info)->hgot == NULL)
1907 got_base = 0;
1908 else
1909 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1910
1911 sgot = splt = sreloc = NULL;
1912
1913 rel = relocs;
1914 relend = relocs + input_section->reloc_count;
1915 for (; rel < relend; rel++)
1916 {
1917 int r_type;
1918 reloc_howto_type *howto;
6c08d697 1919 unsigned long r_symndx;
252b5132
RH
1920 struct elf_link_hash_entry *h;
1921 Elf_Internal_Sym *sym;
1922 asection *sec;
1923 bfd_vma relocation;
1924 bfd_reloc_status_type r;
1925
f65054f7 1926 r_type = ELF64_R_TYPE_ID (rel->r_info);
60dac299 1927 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
252b5132
RH
1928 {
1929 bfd_set_error (bfd_error_bad_value);
1930 return false;
1931 }
1932 howto = sparc64_elf_howto_table + r_type;
1933
1934 r_symndx = ELF64_R_SYM (rel->r_info);
1935
1936 if (info->relocateable)
1937 {
1938 /* This is a relocateable link. We don't have to change
1939 anything, unless the reloc is against a section symbol,
1940 in which case we have to adjust according to where the
1941 section symbol winds up in the output section. */
1942 if (r_symndx < symtab_hdr->sh_info)
1943 {
1944 sym = local_syms + r_symndx;
1945 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1946 {
1947 sec = local_sections[r_symndx];
1948 rel->r_addend += sec->output_offset + sym->st_value;
1949 }
1950 }
1951
1952 continue;
1953 }
1954
1955 /* This is a final link. */
1956 h = NULL;
1957 sym = NULL;
1958 sec = NULL;
1959 if (r_symndx < symtab_hdr->sh_info)
1960 {
1961 sym = local_syms + r_symndx;
1962 sec = local_sections[r_symndx];
1963 relocation = (sec->output_section->vma
1964 + sec->output_offset
1965 + sym->st_value);
1966 }
1967 else
1968 {
1969 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1970 while (h->root.type == bfd_link_hash_indirect
1971 || h->root.type == bfd_link_hash_warning)
1972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1973 if (h->root.type == bfd_link_hash_defined
1974 || h->root.type == bfd_link_hash_defweak)
1975 {
1976 boolean skip_it = false;
1977 sec = h->root.u.def.section;
1978
1979 switch (r_type)
1980 {
1981 case R_SPARC_WPLT30:
1982 case R_SPARC_PLT32:
1983 case R_SPARC_HIPLT22:
1984 case R_SPARC_LOPLT10:
1985 case R_SPARC_PCPLT32:
1986 case R_SPARC_PCPLT22:
1987 case R_SPARC_PCPLT10:
1988 case R_SPARC_PLT64:
1989 if (h->plt.offset != (bfd_vma) -1)
1990 skip_it = true;
1991 break;
1992
1993 case R_SPARC_GOT10:
1994 case R_SPARC_GOT13:
1995 case R_SPARC_GOT22:
1996 if (elf_hash_table(info)->dynamic_sections_created
1997 && (!info->shared
1998 || (!info->symbolic && h->dynindx != -1)
1999 || !(h->elf_link_hash_flags
2000 & ELF_LINK_HASH_DEF_REGULAR)))
2001 skip_it = true;
2002 break;
2003
2004 case R_SPARC_PC10:
2005 case R_SPARC_PC22:
2006 case R_SPARC_PC_HH22:
2007 case R_SPARC_PC_HM10:
2008 case R_SPARC_PC_LM22:
2009 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2010 break;
2011 /* FALLTHRU */
2012
2013 case R_SPARC_8:
2014 case R_SPARC_16:
2015 case R_SPARC_32:
2016 case R_SPARC_DISP8:
2017 case R_SPARC_DISP16:
2018 case R_SPARC_DISP32:
2019 case R_SPARC_WDISP30:
2020 case R_SPARC_WDISP22:
2021 case R_SPARC_HI22:
2022 case R_SPARC_22:
2023 case R_SPARC_13:
2024 case R_SPARC_LO10:
2025 case R_SPARC_UA32:
2026 case R_SPARC_10:
2027 case R_SPARC_11:
2028 case R_SPARC_64:
2029 case R_SPARC_OLO10:
2030 case R_SPARC_HH22:
2031 case R_SPARC_HM10:
2032 case R_SPARC_LM22:
2033 case R_SPARC_WDISP19:
2034 case R_SPARC_WDISP16:
2035 case R_SPARC_7:
2036 case R_SPARC_5:
2037 case R_SPARC_6:
2038 case R_SPARC_DISP64:
2039 case R_SPARC_HIX22:
2040 case R_SPARC_LOX10:
2041 case R_SPARC_H44:
2042 case R_SPARC_M44:
2043 case R_SPARC_L44:
2044 case R_SPARC_UA64:
2045 case R_SPARC_UA16:
2046 if (info->shared
2047 && ((!info->symbolic && h->dynindx != -1)
2048 || !(h->elf_link_hash_flags
2049 & ELF_LINK_HASH_DEF_REGULAR)))
2050 skip_it = true;
2051 break;
2052 }
2053
2054 if (skip_it)
2055 {
2056 /* In these cases, we don't need the relocation
2057 value. We check specially because in some
2058 obscure cases sec->output_section will be NULL. */
2059 relocation = 0;
2060 }
2061 else
2062 {
2063 relocation = (h->root.u.def.value
2064 + sec->output_section->vma
2065 + sec->output_offset);
2066 }
2067 }
2068 else if (h->root.type == bfd_link_hash_undefweak)
2069 relocation = 0;
3a27a730
L
2070 else if (info->shared && !info->symbolic
2071 && !info->no_undefined
2072 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
252b5132
RH
2073 relocation = 0;
2074 else
2075 {
2076 if (! ((*info->callbacks->undefined_symbol)
2077 (info, h->root.root.string, input_bfd,
5cc7c785 2078 input_section, rel->r_offset,
3a27a730
L
2079 (!info->shared || info->no_undefined
2080 || ELF_ST_VISIBILITY (h->other)))))
252b5132
RH
2081 return false;
2082 relocation = 0;
2083 }
2084 }
2085
2086 /* When generating a shared object, these relocations are copied
2087 into the output file to be resolved at run time. */
2088 if (info->shared && (input_section->flags & SEC_ALLOC))
2089 {
2090 switch (r_type)
2091 {
2092 case R_SPARC_PC10:
2093 case R_SPARC_PC22:
2094 case R_SPARC_PC_HH22:
2095 case R_SPARC_PC_HM10:
2096 case R_SPARC_PC_LM22:
2097 if (h != NULL
2098 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2099 break;
2100 /* Fall through. */
2101 case R_SPARC_DISP8:
2102 case R_SPARC_DISP16:
2103 case R_SPARC_DISP32:
2104 case R_SPARC_WDISP30:
2105 case R_SPARC_WDISP22:
2106 case R_SPARC_WDISP19:
2107 case R_SPARC_WDISP16:
2108 case R_SPARC_DISP64:
2109 if (h == NULL)
2110 break;
2111 /* Fall through. */
2112 case R_SPARC_8:
2113 case R_SPARC_16:
2114 case R_SPARC_32:
2115 case R_SPARC_HI22:
2116 case R_SPARC_22:
2117 case R_SPARC_13:
2118 case R_SPARC_LO10:
2119 case R_SPARC_UA32:
2120 case R_SPARC_10:
2121 case R_SPARC_11:
2122 case R_SPARC_64:
2123 case R_SPARC_OLO10:
2124 case R_SPARC_HH22:
2125 case R_SPARC_HM10:
2126 case R_SPARC_LM22:
2127 case R_SPARC_7:
2128 case R_SPARC_5:
2129 case R_SPARC_6:
2130 case R_SPARC_HIX22:
2131 case R_SPARC_LOX10:
2132 case R_SPARC_H44:
2133 case R_SPARC_M44:
2134 case R_SPARC_L44:
2135 case R_SPARC_UA64:
2136 case R_SPARC_UA16:
2137 {
2138 Elf_Internal_Rela outrel;
2139 boolean skip;
2140
2141 if (sreloc == NULL)
2142 {
2143 const char *name =
2144 (bfd_elf_string_from_elf_section
2145 (input_bfd,
2146 elf_elfheader (input_bfd)->e_shstrndx,
2147 elf_section_data (input_section)->rel_hdr.sh_name));
2148
2149 if (name == NULL)
2150 return false;
2151
2152 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2153 && strcmp (bfd_get_section_name(input_bfd,
2154 input_section),
2155 name + 5) == 0);
2156
2157 sreloc = bfd_get_section_by_name (dynobj, name);
2158 BFD_ASSERT (sreloc != NULL);
2159 }
2160
2161 skip = false;
2162
2163 if (elf_section_data (input_section)->stab_info == NULL)
2164 outrel.r_offset = rel->r_offset;
2165 else
2166 {
2167 bfd_vma off;
2168
2169 off = (_bfd_stab_section_offset
2170 (output_bfd, &elf_hash_table (info)->stab_info,
2171 input_section,
2172 &elf_section_data (input_section)->stab_info,
2173 rel->r_offset));
2174 if (off == MINUS_ONE)
2175 skip = true;
2176 outrel.r_offset = off;
2177 }
2178
2179 outrel.r_offset += (input_section->output_section->vma
2180 + input_section->output_offset);
2181
2182 /* Optimize unaligned reloc usage now that we know where
2183 it finally resides. */
2184 switch (r_type)
2185 {
2186 case R_SPARC_16:
2187 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2188 break;
2189 case R_SPARC_UA16:
2190 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2191 break;
2192 case R_SPARC_32:
2193 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2194 break;
2195 case R_SPARC_UA32:
2196 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2197 break;
2198 case R_SPARC_64:
2199 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2200 break;
2201 case R_SPARC_UA64:
2202 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2203 break;
2204 }
2205
2206 if (skip)
2207 memset (&outrel, 0, sizeof outrel);
2208 /* h->dynindx may be -1 if the symbol was marked to
2209 become local. */
2210 else if (h != NULL
2211 && ((! info->symbolic && h->dynindx != -1)
2212 || (h->elf_link_hash_flags
2213 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2214 {
2215 BFD_ASSERT (h->dynindx != -1);
f65054f7
RH
2216 outrel.r_info
2217 = ELF64_R_INFO (h->dynindx,
2218 ELF64_R_TYPE_INFO (
2219 ELF64_R_TYPE_DATA (rel->r_info),
2220 r_type));
252b5132
RH
2221 outrel.r_addend = rel->r_addend;
2222 }
2223 else
2224 {
2225 if (r_type == R_SPARC_64)
2226 {
2227 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2228 outrel.r_addend = relocation + rel->r_addend;
2229 }
2230 else
2231 {
2232 long indx;
2233
2234 if (h == NULL)
2235 sec = local_sections[r_symndx];
2236 else
2237 {
2238 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2239 || (h->root.type
2240 == bfd_link_hash_defweak));
2241 sec = h->root.u.def.section;
2242 }
2243 if (sec != NULL && bfd_is_abs_section (sec))
2244 indx = 0;
2245 else if (sec == NULL || sec->owner == NULL)
2246 {
2247 bfd_set_error (bfd_error_bad_value);
2248 return false;
2249 }
2250 else
2251 {
2252 asection *osec;
2253
2254 osec = sec->output_section;
2255 indx = elf_section_data (osec)->dynindx;
2256
2257 /* FIXME: we really should be able to link non-pic
2258 shared libraries. */
2259 if (indx == 0)
2260 {
2261 BFD_FAIL ();
2262 (*_bfd_error_handler)
2263 (_("%s: probably compiled without -fPIC?"),
2264 bfd_get_filename (input_bfd));
2265 bfd_set_error (bfd_error_bad_value);
2266 return false;
2267 }
2268 }
2269
f65054f7
RH
2270 outrel.r_info
2271 = ELF64_R_INFO (indx,
2272 ELF64_R_TYPE_INFO (
2273 ELF64_R_TYPE_DATA (rel->r_info),
2274 r_type));
840a9995 2275 outrel.r_addend = relocation + rel->r_addend;
252b5132
RH
2276 }
2277 }
2278
2279 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2280 (((Elf64_External_Rela *)
2281 sreloc->contents)
2282 + sreloc->reloc_count));
2283 ++sreloc->reloc_count;
2284
2285 /* This reloc will be computed at runtime, so there's no
2286 need to do anything now, unless this is a RELATIVE
2287 reloc in an unallocated section. */
2288 if (skip
2289 || (input_section->flags & SEC_ALLOC) != 0
f65054f7 2290 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
252b5132
RH
2291 continue;
2292 }
2293 break;
2294 }
2295 }
2296
2297 switch (r_type)
2298 {
2299 case R_SPARC_GOT10:
2300 case R_SPARC_GOT13:
2301 case R_SPARC_GOT22:
2302 /* Relocation is to the entry for this symbol in the global
2303 offset table. */
2304 if (sgot == NULL)
2305 {
2306 sgot = bfd_get_section_by_name (dynobj, ".got");
2307 BFD_ASSERT (sgot != NULL);
2308 }
2309
2310 if (h != NULL)
2311 {
2312 bfd_vma off = h->got.offset;
2313 BFD_ASSERT (off != (bfd_vma) -1);
2314
2315 if (! elf_hash_table (info)->dynamic_sections_created
2316 || (info->shared
2317 && (info->symbolic || h->dynindx == -1)
2318 && (h->elf_link_hash_flags
2319 & ELF_LINK_HASH_DEF_REGULAR)))
2320 {
2321 /* This is actually a static link, or it is a -Bsymbolic
2322 link and the symbol is defined locally, or the symbol
2323 was forced to be local because of a version file. We
2324 must initialize this entry in the global offset table.
2325 Since the offset must always be a multiple of 8, we
2326 use the least significant bit to record whether we
2327 have initialized it already.
2328
2329 When doing a dynamic link, we create a .rela.got
2330 relocation entry to initialize the value. This is
2331 done in the finish_dynamic_symbol routine. */
2332
2333 if ((off & 1) != 0)
2334 off &= ~1;
2335 else
2336 {
2337 bfd_put_64 (output_bfd, relocation,
2338 sgot->contents + off);
2339 h->got.offset |= 1;
2340 }
2341 }
2342 relocation = sgot->output_offset + off - got_base;
2343 }
2344 else
2345 {
2346 bfd_vma off;
2347
2348 BFD_ASSERT (local_got_offsets != NULL);
2349 off = local_got_offsets[r_symndx];
2350 BFD_ASSERT (off != (bfd_vma) -1);
2351
2352 /* The offset must always be a multiple of 8. We use
2353 the least significant bit to record whether we have
2354 already processed this entry. */
2355 if ((off & 1) != 0)
2356 off &= ~1;
2357 else
2358 {
2359 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2360 local_got_offsets[r_symndx] |= 1;
2361
2362 if (info->shared)
2363 {
2364 asection *srelgot;
2365 Elf_Internal_Rela outrel;
2366
2367 /* We need to generate a R_SPARC_RELATIVE reloc
2368 for the dynamic linker. */
2369 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2370 BFD_ASSERT (srelgot != NULL);
2371
2372 outrel.r_offset = (sgot->output_section->vma
2373 + sgot->output_offset
2374 + off);
2375 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2376 outrel.r_addend = relocation;
2377 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2378 (((Elf64_External_Rela *)
2379 srelgot->contents)
2380 + srelgot->reloc_count));
2381 ++srelgot->reloc_count;
2382 }
2383 }
2384 relocation = sgot->output_offset + off - got_base;
2385 }
2386 goto do_default;
2387
2388 case R_SPARC_WPLT30:
2389 case R_SPARC_PLT32:
2390 case R_SPARC_HIPLT22:
2391 case R_SPARC_LOPLT10:
2392 case R_SPARC_PCPLT32:
2393 case R_SPARC_PCPLT22:
2394 case R_SPARC_PCPLT10:
2395 case R_SPARC_PLT64:
2396 /* Relocation is to the entry for this symbol in the
2397 procedure linkage table. */
2398 BFD_ASSERT (h != NULL);
2399
2400 if (h->plt.offset == (bfd_vma) -1)
2401 {
2402 /* We didn't make a PLT entry for this symbol. This
2403 happens when statically linking PIC code, or when
2404 using -Bsymbolic. */
2405 goto do_default;
2406 }
2407
2408 if (splt == NULL)
2409 {
2410 splt = bfd_get_section_by_name (dynobj, ".plt");
2411 BFD_ASSERT (splt != NULL);
2412 }
2413
2414 relocation = (splt->output_section->vma
2415 + splt->output_offset
2416 + sparc64_elf_plt_entry_offset (h->plt.offset));
f7775d95
JJ
2417 if (r_type == R_SPARC_WPLT30)
2418 goto do_wplt30;
252b5132
RH
2419 goto do_default;
2420
2421 case R_SPARC_OLO10:
2422 {
2423 bfd_vma x;
2424
2425 relocation += rel->r_addend;
2426 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2427
2428 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2429 x = (x & ~0x1fff) | (relocation & 0x1fff);
2430 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2431
2432 r = bfd_check_overflow (howto->complain_on_overflow,
2433 howto->bitsize, howto->rightshift,
2434 bfd_arch_bits_per_address (input_bfd),
2435 relocation);
2436 }
2437 break;
2438
2439 case R_SPARC_WDISP16:
2440 {
2441 bfd_vma x;
2442
2443 relocation += rel->r_addend;
2444 /* Adjust for pc-relative-ness. */
2445 relocation -= (input_section->output_section->vma
2446 + input_section->output_offset);
2447 relocation -= rel->r_offset;
2448
2449 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2450 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2451 | ((relocation >> 2) & 0x3fff));
2452 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2453
2454 r = bfd_check_overflow (howto->complain_on_overflow,
2455 howto->bitsize, howto->rightshift,
2456 bfd_arch_bits_per_address (input_bfd),
2457 relocation);
2458 }
2459 break;
2460
2461 case R_SPARC_HIX22:
2462 {
2463 bfd_vma x;
2464
2465 relocation += rel->r_addend;
2466 relocation = relocation ^ MINUS_ONE;
2467
2468 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2469 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2470 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2471
2472 r = bfd_check_overflow (howto->complain_on_overflow,
2473 howto->bitsize, howto->rightshift,
2474 bfd_arch_bits_per_address (input_bfd),
2475 relocation);
2476 }
2477 break;
2478
2479 case R_SPARC_LOX10:
2480 {
2481 bfd_vma x;
2482
2483 relocation += rel->r_addend;
2484 relocation = (relocation & 0x3ff) | 0x1c00;
2485
2486 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2487 x = (x & ~0x1fff) | relocation;
2488 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2489
2490 r = bfd_reloc_ok;
2491 }
2492 break;
2493
f7775d95
JJ
2494 case R_SPARC_WDISP30:
2495 do_wplt30:
2496 if (SEC_DO_RELAX (input_section)
2497 && rel->r_offset + 4 < input_section->_raw_size)
2498 {
2499#define G0 0
2500#define O7 15
2501#define XCC (2 << 20)
2502#define COND(x) (((x)&0xf)<<25)
2503#define CONDA COND(0x8)
2504#define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2505#define INSN_BA (F2(0,2) | CONDA)
2506#define INSN_OR F3(2, 0x2, 0)
2507#define INSN_NOP F2(0,4)
2508
2509 bfd_vma x, y;
2510
2511 /* If the instruction is a call with either:
2512 restore
2513 arithmetic instruction with rd == %o7
2514 where rs1 != %o7 and rs2 if it is register != %o7
2515 then we can optimize if the call destination is near
2516 by changing the call into a branch always. */
2517 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2518 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2519 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2520 {
2521 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2522 || ((y & OP3(0x28)) == 0 /* arithmetic */
2523 && (y & RD(~0)) == RD(O7)))
2524 && (y & RS1(~0)) != RS1(O7)
2525 && ((y & F3I(~0))
2526 || (y & RS2(~0)) != RS2(O7)))
2527 {
2528 bfd_vma reloc;
2529
2530 reloc = relocation + rel->r_addend - rel->r_offset;
2531 reloc -= (input_section->output_section->vma
2532 + input_section->output_offset);
2533 if (reloc & 3)
2534 goto do_default;
2535
2536 /* Ensure the branch fits into simm22. */
2537 if ((reloc & ~(bfd_vma)0x7fffff)
2538 && ((reloc | 0x7fffff) != MINUS_ONE))
2539 goto do_default;
2540 reloc >>= 2;
2541
2542 /* Check whether it fits into simm19. */
2543 if ((reloc & 0x3c0000) == 0
2544 || (reloc & 0x3c0000) == 0x3c0000)
2545 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2546 else
2547 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2548 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2549 r = bfd_reloc_ok;
2550 if (rel->r_offset >= 4
2551 && (y & (0xffffffff ^ RS1(~0)))
2552 == (INSN_OR | RD(O7) | RS2(G0)))
2553 {
2554 bfd_vma z;
2555 unsigned int reg;
2556
2557 z = bfd_get_32 (input_bfd,
2558 contents + rel->r_offset - 4);
2559 if ((z & (0xffffffff ^ RD(~0)))
2560 != (INSN_OR | RS1(O7) | RS2(G0)))
2561 break;
2562
2563 /* The sequence was
2564 or %o7, %g0, %rN
2565 call foo
2566 or %rN, %g0, %o7
2567
2568 If call foo was replaced with ba, replace
2569 or %rN, %g0, %o7 with nop. */
2570
2571 reg = (y & RS1(~0)) >> 14;
2572 if (reg != ((z & RD(~0)) >> 25)
2573 || reg == G0 || reg == O7)
2574 break;
2575
2576 bfd_put_32 (input_bfd, INSN_NOP,
2577 contents + rel->r_offset + 4);
2578 }
2579 break;
2580 }
2581 }
2582 }
2583 /* FALLTHROUGH */
2584
252b5132
RH
2585 default:
2586 do_default:
2587 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2588 contents, rel->r_offset,
2589 relocation, rel->r_addend);
2590 break;
2591 }
2592
2593 switch (r)
2594 {
2595 case bfd_reloc_ok:
2596 break;
2597
2598 default:
2599 case bfd_reloc_outofrange:
2600 abort ();
2601
2602 case bfd_reloc_overflow:
2603 {
2604 const char *name;
2605
2606 if (h != NULL)
2607 {
2608 if (h->root.type == bfd_link_hash_undefweak
2609 && howto->pc_relative)
2610 {
2611 /* Assume this is a call protected by other code that
2612 detect the symbol is undefined. If this is the case,
2613 we can safely ignore the overflow. If not, the
2614 program is hosed anyway, and a little warning isn't
2615 going to help. */
2616 break;
2617 }
2618
2619 name = h->root.root.string;
2620 }
2621 else
2622 {
2623 name = (bfd_elf_string_from_elf_section
2624 (input_bfd,
2625 symtab_hdr->sh_link,
2626 sym->st_name));
2627 if (name == NULL)
2628 return false;
2629 if (*name == '\0')
2630 name = bfd_section_name (input_bfd, sec);
2631 }
2632 if (! ((*info->callbacks->reloc_overflow)
2633 (info, name, howto->name, (bfd_vma) 0,
2634 input_bfd, input_section, rel->r_offset)))
2635 return false;
2636 }
2637 break;
2638 }
2639 }
2640
2641 return true;
2642}
2643
2644/* Finish up dynamic symbol handling. We set the contents of various
2645 dynamic sections here. */
2646
2647static boolean
2648sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2649 bfd *output_bfd;
2650 struct bfd_link_info *info;
2651 struct elf_link_hash_entry *h;
2652 Elf_Internal_Sym *sym;
2653{
2654 bfd *dynobj;
2655
2656 dynobj = elf_hash_table (info)->dynobj;
2657
2658 if (h->plt.offset != (bfd_vma) -1)
2659 {
2660 asection *splt;
2661 asection *srela;
2662 Elf_Internal_Rela rela;
2663
2664 /* This symbol has an entry in the PLT. Set it up. */
2665
2666 BFD_ASSERT (h->dynindx != -1);
2667
2668 splt = bfd_get_section_by_name (dynobj, ".plt");
2669 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2670 BFD_ASSERT (splt != NULL && srela != NULL);
2671
2672 /* Fill in the entry in the .rela.plt section. */
2673
2674 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2675 {
2676 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2677 rela.r_addend = 0;
2678 }
2679 else
2680 {
2681 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2682 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
a11c78e7
RH
2683 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2684 -(splt->output_section->vma + splt->output_offset);
252b5132
RH
2685 }
2686 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2687 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2688
2689 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2690 ((Elf64_External_Rela *) srela->contents
2691 + h->plt.offset));
2692
2693 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2694 {
2695 /* Mark the symbol as undefined, rather than as defined in
2696 the .plt section. Leave the value alone. */
2697 sym->st_shndx = SHN_UNDEF;
2698 }
2699 }
2700
2701 if (h->got.offset != (bfd_vma) -1)
2702 {
2703 asection *sgot;
2704 asection *srela;
2705 Elf_Internal_Rela rela;
2706
2707 /* This symbol has an entry in the GOT. Set it up. */
2708
2709 sgot = bfd_get_section_by_name (dynobj, ".got");
2710 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2711 BFD_ASSERT (sgot != NULL && srela != NULL);
2712
2713 rela.r_offset = (sgot->output_section->vma
2714 + sgot->output_offset
2715 + (h->got.offset &~ 1));
2716
2717 /* If this is a -Bsymbolic link, and the symbol is defined
2718 locally, we just want to emit a RELATIVE reloc. Likewise if
2719 the symbol was forced to be local because of a version file.
2720 The entry in the global offset table will already have been
2721 initialized in the relocate_section function. */
2722 if (info->shared
2723 && (info->symbolic || h->dynindx == -1)
2724 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2725 {
2726 asection *sec = h->root.u.def.section;
2727 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2728 rela.r_addend = (h->root.u.def.value
2729 + sec->output_section->vma
2730 + sec->output_offset);
2731 }
2732 else
2733 {
2734 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2735 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2736 rela.r_addend = 0;
2737 }
2738
2739 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2740 ((Elf64_External_Rela *) srela->contents
2741 + srela->reloc_count));
2742 ++srela->reloc_count;
2743 }
2744
2745 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2746 {
2747 asection *s;
2748 Elf_Internal_Rela rela;
2749
2750 /* This symbols needs a copy reloc. Set it up. */
2751
2752 BFD_ASSERT (h->dynindx != -1);
2753
2754 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2755 ".rela.bss");
2756 BFD_ASSERT (s != NULL);
2757
2758 rela.r_offset = (h->root.u.def.value
2759 + h->root.u.def.section->output_section->vma
2760 + h->root.u.def.section->output_offset);
2761 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2762 rela.r_addend = 0;
2763 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2764 ((Elf64_External_Rela *) s->contents
2765 + s->reloc_count));
2766 ++s->reloc_count;
2767 }
2768
2769 /* Mark some specially defined symbols as absolute. */
2770 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2771 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2772 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2773 sym->st_shndx = SHN_ABS;
2774
2775 return true;
2776}
2777
2778/* Finish up the dynamic sections. */
2779
2780static boolean
2781sparc64_elf_finish_dynamic_sections (output_bfd, info)
2782 bfd *output_bfd;
2783 struct bfd_link_info *info;
2784{
2785 bfd *dynobj;
587ff49e 2786 int stt_regidx = -1;
252b5132
RH
2787 asection *sdyn;
2788 asection *sgot;
2789
2790 dynobj = elf_hash_table (info)->dynobj;
2791
2792 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2793
2794 if (elf_hash_table (info)->dynamic_sections_created)
2795 {
2796 asection *splt;
2797 Elf64_External_Dyn *dyncon, *dynconend;
2798
2799 splt = bfd_get_section_by_name (dynobj, ".plt");
2800 BFD_ASSERT (splt != NULL && sdyn != NULL);
2801
2802 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2803 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2804 for (; dyncon < dynconend; dyncon++)
2805 {
2806 Elf_Internal_Dyn dyn;
2807 const char *name;
2808 boolean size;
2809
2810 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2811
2812 switch (dyn.d_tag)
2813 {
2814 case DT_PLTGOT: name = ".plt"; size = false; break;
2815 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2816 case DT_JMPREL: name = ".rela.plt"; size = false; break;
587ff49e
RH
2817 case DT_SPARC_REGISTER:
2818 if (stt_regidx == -1)
2819 {
2820 stt_regidx =
2821 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2822 if (stt_regidx == -1)
2823 return false;
2824 }
2825 dyn.d_un.d_val = stt_regidx++;
2826 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2827 /* fallthrough */
252b5132
RH
2828 default: name = NULL; size = false; break;
2829 }
2830
2831 if (name != NULL)
2832 {
2833 asection *s;
2834
2835 s = bfd_get_section_by_name (output_bfd, name);
2836 if (s == NULL)
2837 dyn.d_un.d_val = 0;
2838 else
2839 {
2840 if (! size)
2841 dyn.d_un.d_ptr = s->vma;
2842 else
2843 {
2844 if (s->_cooked_size != 0)
2845 dyn.d_un.d_val = s->_cooked_size;
2846 else
2847 dyn.d_un.d_val = s->_raw_size;
2848 }
2849 }
2850 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2851 }
2852 }
2853
2854 /* Initialize the contents of the .plt section. */
2855 if (splt->_raw_size > 0)
2856 {
2857 sparc64_elf_build_plt(output_bfd, splt->contents,
2858 splt->_raw_size / PLT_ENTRY_SIZE);
2859 }
2860
2861 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2862 PLT_ENTRY_SIZE;
2863 }
2864
2865 /* Set the first entry in the global offset table to the address of
2866 the dynamic section. */
2867 sgot = bfd_get_section_by_name (dynobj, ".got");
2868 BFD_ASSERT (sgot != NULL);
2869 if (sgot->_raw_size > 0)
2870 {
2871 if (sdyn == NULL)
2872 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2873 else
2874 bfd_put_64 (output_bfd,
2875 sdyn->output_section->vma + sdyn->output_offset,
2876 sgot->contents);
2877 }
2878
2879 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2880
252b5132
RH
2881 return true;
2882}
2883\f
2884/* Functions for dealing with the e_flags field. */
2885
2886/* Merge backend specific data from an object file to the output
2887 object file when linking. */
2888
2889static boolean
2890sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2891 bfd *ibfd;
2892 bfd *obfd;
2893{
2894 boolean error;
2895 flagword new_flags, old_flags;
2896 int new_mm, old_mm;
2897
2898 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2899 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2900 return true;
2901
2902 new_flags = elf_elfheader (ibfd)->e_flags;
2903 old_flags = elf_elfheader (obfd)->e_flags;
2904
2905 if (!elf_flags_init (obfd)) /* First call, no flags set */
2906 {
2907 elf_flags_init (obfd) = true;
2908 elf_elfheader (obfd)->e_flags = new_flags;
2909 }
2910
2911 else if (new_flags == old_flags) /* Compatible flags are ok */
2912 ;
2913
2914 else /* Incompatible flags */
2915 {
2916 error = false;
2917
37fb6db1
ILT
2918 if ((ibfd->flags & DYNAMIC) != 0)
2919 {
2920 /* We don't want dynamic objects memory ordering and
2921 architecture to have any role. That's what dynamic linker
2922 should do. */
6c08d697
JJ
2923 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1);
2924 new_flags |= (old_flags
37fb6db1
ILT
2925 & (EF_SPARCV9_MM
2926 | EF_SPARC_SUN_US1
2927 | EF_SPARC_HAL_R1));
2928 }
2929 else
2930 {
2931 /* Choose the highest architecture requirements. */
2932 old_flags |= (new_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2933 new_flags |= (old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2934 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2935 == (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2936 {
2937 error = true;
2938 (*_bfd_error_handler)
2939 (_("%s: linking UltraSPARC specific with HAL specific code"),
2940 bfd_get_filename (ibfd));
2941 }
2942 /* Choose the most restrictive memory ordering. */
2943 old_mm = (old_flags & EF_SPARCV9_MM);
2944 new_mm = (new_flags & EF_SPARCV9_MM);
2945 old_flags &= ~EF_SPARCV9_MM;
2946 new_flags &= ~EF_SPARCV9_MM;
2947 if (new_mm < old_mm)
2948 old_mm = new_mm;
2949 old_flags |= old_mm;
2950 new_flags |= old_mm;
2951 }
252b5132
RH
2952
2953 /* Warn about any other mismatches */
2954 if (new_flags != old_flags)
2955 {
2956 error = true;
2957 (*_bfd_error_handler)
2958 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2959 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2960 }
2961
2962 elf_elfheader (obfd)->e_flags = old_flags;
2963
2964 if (error)
2965 {
2966 bfd_set_error (bfd_error_bad_value);
2967 return false;
2968 }
2969 }
2970 return true;
2971}
587ff49e
RH
2972\f
2973/* Print a STT_REGISTER symbol to file FILE. */
252b5132 2974
587ff49e
RH
2975static const char *
2976sparc64_elf_print_symbol_all (abfd, filep, symbol)
6c08d697 2977 bfd *abfd ATTRIBUTE_UNUSED;
587ff49e
RH
2978 PTR filep;
2979 asymbol *symbol;
2980{
2981 FILE *file = (FILE *) filep;
2982 int reg, type;
2983
2984 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2985 != STT_REGISTER)
2986 return NULL;
2987
2988 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2989 type = symbol->flags;
2990 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
2991 ((type & BSF_LOCAL)
2992 ? (type & BSF_GLOBAL) ? '!' : 'l'
2993 : (type & BSF_GLOBAL) ? 'g' : ' '),
2994 (type & BSF_WEAK) ? 'w' : ' ');
2995 if (symbol->name == NULL || symbol->name [0] == '\0')
2996 return "#scratch";
2997 else
2998 return symbol->name;
2999}
252b5132
RH
3000\f
3001/* Set the right machine number for a SPARC64 ELF file. */
3002
3003static boolean
3004sparc64_elf_object_p (abfd)
3005 bfd *abfd;
3006{
3007 unsigned long mach = bfd_mach_sparc_v9;
3008
3009 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3010 mach = bfd_mach_sparc_v9a;
3011 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3012}
3013
f65054f7
RH
3014/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3015 standard ELF, because R_SPARC_OLO10 has secondary addend in
3016 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3017 relocation handling routines. */
3018
3019const struct elf_size_info sparc64_elf_size_info =
3020{
3021 sizeof (Elf64_External_Ehdr),
3022 sizeof (Elf64_External_Phdr),
3023 sizeof (Elf64_External_Shdr),
3024 sizeof (Elf64_External_Rel),
3025 sizeof (Elf64_External_Rela),
3026 sizeof (Elf64_External_Sym),
3027 sizeof (Elf64_External_Dyn),
3028 sizeof (Elf_External_Note),
a11c78e7 3029 4, /* hash-table entry size */
f65054f7
RH
3030 /* internal relocations per external relocations.
3031 For link purposes we use just 1 internal per
3032 1 external, for assembly and slurp symbol table
3033 we use 2. */
3034 1,
3035 64, /* arch_size */
3036 8, /* file_align */
3037 ELFCLASS64,
3038 EV_CURRENT,
3039 bfd_elf64_write_out_phdrs,
3040 bfd_elf64_write_shdrs_and_ehdr,
3041 sparc64_elf_write_relocs,
3042 bfd_elf64_swap_symbol_out,
3043 sparc64_elf_slurp_reloc_table,
3044 bfd_elf64_slurp_symbol_table,
3045 bfd_elf64_swap_dyn_in,
3046 bfd_elf64_swap_dyn_out,
3047 NULL,
3048 NULL,
3049 NULL,
3050 NULL
3051};
3052
252b5132
RH
3053#define TARGET_BIG_SYM bfd_elf64_sparc_vec
3054#define TARGET_BIG_NAME "elf64-sparc"
3055#define ELF_ARCH bfd_arch_sparc
3056#define ELF_MAXPAGESIZE 0x100000
3057
3058/* This is the official ABI value. */
3059#define ELF_MACHINE_CODE EM_SPARCV9
3060
3061/* This is the value that we used before the ABI was released. */
3062#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3063
587ff49e
RH
3064#define bfd_elf64_bfd_link_hash_table_create \
3065 sparc64_elf_bfd_link_hash_table_create
3066
252b5132
RH
3067#define elf_info_to_howto \
3068 sparc64_elf_info_to_howto
f65054f7
RH
3069#define bfd_elf64_get_reloc_upper_bound \
3070 sparc64_elf_get_reloc_upper_bound
3071#define bfd_elf64_get_dynamic_reloc_upper_bound \
3072 sparc64_elf_get_dynamic_reloc_upper_bound
3073#define bfd_elf64_canonicalize_dynamic_reloc \
3074 sparc64_elf_canonicalize_dynamic_reloc
252b5132
RH
3075#define bfd_elf64_bfd_reloc_type_lookup \
3076 sparc64_elf_reloc_type_lookup
f7775d95
JJ
3077#define bfd_elf64_bfd_relax_section \
3078 sparc64_elf_relax_section
252b5132
RH
3079
3080#define elf_backend_create_dynamic_sections \
3081 _bfd_elf_create_dynamic_sections
587ff49e
RH
3082#define elf_backend_add_symbol_hook \
3083 sparc64_elf_add_symbol_hook
3084#define elf_backend_get_symbol_type \
3085 sparc64_elf_get_symbol_type
3086#define elf_backend_symbol_processing \
3087 sparc64_elf_symbol_processing
252b5132
RH
3088#define elf_backend_check_relocs \
3089 sparc64_elf_check_relocs
3090#define elf_backend_adjust_dynamic_symbol \
3091 sparc64_elf_adjust_dynamic_symbol
3092#define elf_backend_size_dynamic_sections \
3093 sparc64_elf_size_dynamic_sections
3094#define elf_backend_relocate_section \
3095 sparc64_elf_relocate_section
3096#define elf_backend_finish_dynamic_symbol \
3097 sparc64_elf_finish_dynamic_symbol
3098#define elf_backend_finish_dynamic_sections \
3099 sparc64_elf_finish_dynamic_sections
587ff49e
RH
3100#define elf_backend_print_symbol_all \
3101 sparc64_elf_print_symbol_all
3102#define elf_backend_output_arch_syms \
3103 sparc64_elf_output_arch_syms
252b5132
RH
3104
3105#define bfd_elf64_bfd_merge_private_bfd_data \
3106 sparc64_elf_merge_private_bfd_data
3107
f65054f7
RH
3108#define elf_backend_size_info \
3109 sparc64_elf_size_info
252b5132
RH
3110#define elf_backend_object_p \
3111 sparc64_elf_object_p
3112
3113#define elf_backend_want_got_plt 0
3114#define elf_backend_plt_readonly 0
3115#define elf_backend_want_plt_sym 1
3116
3117/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3118#define elf_backend_plt_alignment 8
3119
3120#define elf_backend_got_header_size 8
3121#define elf_backend_plt_header_size PLT_HEADER_SIZE
3122
3123#include "elf64-target.h"
This page took 0.176266 seconds and 4 git commands to generate.