Commit | Line | Data |
---|---|---|
244ffee7 | 1 | /* ELF executable support for BFD. |
51fbf454 | 2 | Copyright 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. |
244ffee7 JK |
3 | |
4 | Written by Fred Fish @ Cygnus Support, from information published | |
5 | in "UNIX System V Release 4, Programmers Guide: ANSI C and | |
6 | Programming Support Tools". Sufficient support for gdb. | |
7 | ||
8 | Rewritten by Mark Eichin @ Cygnus Support, from information | |
9 | published in "System V Application Binary Interface", chapters 4 | |
10 | and 5, as well as the various "Processor Supplement" documents | |
11 | derived from it. Added support for assembler and other object file | |
12 | utilities. Further work done by Ken Raeburn (Cygnus Support), Michael | |
13 | Meissner (Open Software Foundation), and Peter Hoogenboom (University | |
14 | of Utah) to finish and extend this. | |
15 | ||
16 | This file is part of BFD, the Binary File Descriptor library. | |
17 | ||
18 | This program is free software; you can redistribute it and/or modify | |
19 | it under the terms of the GNU General Public License as published by | |
20 | the Free Software Foundation; either version 2 of the License, or | |
21 | (at your option) any later version. | |
22 | ||
23 | This program is distributed in the hope that it will be useful, | |
24 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
25 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
26 | GNU General Public License for more details. | |
27 | ||
28 | You should have received a copy of the GNU General Public License | |
29 | along with this program; if not, write to the Free Software | |
30 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
31 | ||
244ffee7 JK |
32 | /* Problems and other issues to resolve. |
33 | ||
34 | (1) BFD expects there to be some fixed number of "sections" in | |
35 | the object file. I.E. there is a "section_count" variable in the | |
36 | bfd structure which contains the number of sections. However, ELF | |
37 | supports multiple "views" of a file. In particular, with current | |
38 | implementations, executable files typically have two tables, a | |
39 | program header table and a section header table, both of which | |
40 | partition the executable. | |
41 | ||
42 | In ELF-speak, the "linking view" of the file uses the section header | |
43 | table to access "sections" within the file, and the "execution view" | |
44 | uses the program header table to access "segments" within the file. | |
45 | "Segments" typically may contain all the data from one or more | |
46 | "sections". | |
47 | ||
48 | Note that the section header table is optional in ELF executables, | |
49 | but it is this information that is most useful to gdb. If the | |
50 | section header table is missing, then gdb should probably try | |
51 | to make do with the program header table. (FIXME) | |
52 | ||
6a3eb9b6 KR |
53 | (2) The code in this file is compiled twice, once in 32-bit mode and |
54 | once in 64-bit mode. More of it should be made size-independent | |
55 | and moved into elf.c. | |
56 | ||
d24928c0 KR |
57 | (3) ELF section symbols are handled rather sloppily now. This should |
58 | be cleaned up, and ELF section symbols reconciled with BFD section | |
59 | symbols. | |
5546cc7e KR |
60 | |
61 | (4) We need a published spec for 64-bit ELF. We've got some stuff here | |
62 | that we're using for SPARC V9 64-bit chips, but don't assume that | |
63 | it's cast in stone. | |
d24928c0 | 64 | */ |
244ffee7 JK |
65 | |
66 | #include <string.h> /* For strrchr and friends */ | |
67 | #include "bfd.h" | |
68 | #include "sysdep.h" | |
6ec3bb6a | 69 | #include "bfdlink.h" |
244ffee7 JK |
70 | #include "libbfd.h" |
71 | #include "libelf.h" | |
72 | ||
32090b8e | 73 | /* Renaming structures, typedefs, macros and functions to be size-specific. */ |
244ffee7 | 74 | #define Elf_External_Ehdr NAME(Elf,External_Ehdr) |
244ffee7 | 75 | #define Elf_External_Sym NAME(Elf,External_Sym) |
244ffee7 | 76 | #define Elf_External_Shdr NAME(Elf,External_Shdr) |
244ffee7 | 77 | #define Elf_External_Phdr NAME(Elf,External_Phdr) |
244ffee7 JK |
78 | #define Elf_External_Rel NAME(Elf,External_Rel) |
79 | #define Elf_External_Rela NAME(Elf,External_Rela) | |
013dec1a | 80 | #define Elf_External_Dyn NAME(Elf,External_Dyn) |
244ffee7 | 81 | |
244ffee7 JK |
82 | #define elf_core_file_failing_command NAME(bfd_elf,core_file_failing_command) |
83 | #define elf_core_file_failing_signal NAME(bfd_elf,core_file_failing_signal) | |
cb71adf1 PS |
84 | #define elf_core_file_matches_executable_p \ |
85 | NAME(bfd_elf,core_file_matches_executable_p) | |
244ffee7 JK |
86 | #define elf_object_p NAME(bfd_elf,object_p) |
87 | #define elf_core_file_p NAME(bfd_elf,core_file_p) | |
244ffee7 | 88 | #define elf_get_symtab_upper_bound NAME(bfd_elf,get_symtab_upper_bound) |
cb71adf1 PS |
89 | #define elf_get_dynamic_symtab_upper_bound \ |
90 | NAME(bfd_elf,get_dynamic_symtab_upper_bound) | |
013dec1a ILT |
91 | #define elf_swap_reloc_in NAME(bfd_elf,swap_reloc_in) |
92 | #define elf_swap_reloca_in NAME(bfd_elf,swap_reloca_in) | |
93 | #define elf_swap_reloc_out NAME(bfd_elf,swap_reloc_out) | |
94 | #define elf_swap_reloca_out NAME(bfd_elf,swap_reloca_out) | |
71edd06d ILT |
95 | #define elf_swap_symbol_in NAME(bfd_elf,swap_symbol_in) |
96 | #define elf_swap_symbol_out NAME(bfd_elf,swap_symbol_out) | |
013dec1a ILT |
97 | #define elf_swap_dyn_in NAME(bfd_elf,swap_dyn_in) |
98 | #define elf_swap_dyn_out NAME(bfd_elf,swap_dyn_out) | |
244ffee7 JK |
99 | #define elf_get_reloc_upper_bound NAME(bfd_elf,get_reloc_upper_bound) |
100 | #define elf_canonicalize_reloc NAME(bfd_elf,canonicalize_reloc) | |
101 | #define elf_get_symtab NAME(bfd_elf,get_symtab) | |
cb71adf1 PS |
102 | #define elf_canonicalize_dynamic_symtab \ |
103 | NAME(bfd_elf,canonicalize_dynamic_symtab) | |
244ffee7 JK |
104 | #define elf_make_empty_symbol NAME(bfd_elf,make_empty_symbol) |
105 | #define elf_get_symbol_info NAME(bfd_elf,get_symbol_info) | |
244ffee7 JK |
106 | #define elf_get_lineno NAME(bfd_elf,get_lineno) |
107 | #define elf_set_arch_mach NAME(bfd_elf,set_arch_mach) | |
108 | #define elf_find_nearest_line NAME(bfd_elf,find_nearest_line) | |
109 | #define elf_sizeof_headers NAME(bfd_elf,sizeof_headers) | |
110 | #define elf_set_section_contents NAME(bfd_elf,set_section_contents) | |
111 | #define elf_no_info_to_howto NAME(bfd_elf,no_info_to_howto) | |
112 | #define elf_no_info_to_howto_rel NAME(bfd_elf,no_info_to_howto_rel) | |
fce36137 | 113 | #define elf_new_section_hook NAME(bfd_elf,new_section_hook) |
32090b8e | 114 | #define write_relocs NAME(bfd_elf,_write_relocs) |
f035cc47 | 115 | #define elf_find_section NAME(bfd_elf,find_section) |
6ec3bb6a | 116 | #define elf_bfd_link_add_symbols NAME(bfd_elf,bfd_link_add_symbols) |
013dec1a | 117 | #define elf_add_dynamic_entry NAME(bfd_elf,add_dynamic_entry) |
374d2ef9 ILT |
118 | #define elf_link_create_dynamic_sections \ |
119 | NAME(bfd_elf,link_create_dynamic_sections) | |
120 | #define elf_link_record_dynamic_symbol \ | |
121 | NAME(bfd_elf,link_record_dynamic_symbol) | |
6ec3bb6a | 122 | #define elf_bfd_final_link NAME(bfd_elf,bfd_final_link) |
244ffee7 | 123 | |
6a3eb9b6 KR |
124 | #if ARCH_SIZE == 64 |
125 | #define ELF_R_INFO(X,Y) ELF64_R_INFO(X,Y) | |
126 | #define ELF_R_SYM(X) ELF64_R_SYM(X) | |
6ec3bb6a | 127 | #define ELF_R_TYPE(X) ELF64_R_TYPE(X) |
32090b8e | 128 | #define ELFCLASS ELFCLASS64 |
f035cc47 | 129 | #define FILE_ALIGN 8 |
013dec1a | 130 | #define LOG_FILE_ALIGN 3 |
6a3eb9b6 KR |
131 | #endif |
132 | #if ARCH_SIZE == 32 | |
133 | #define ELF_R_INFO(X,Y) ELF32_R_INFO(X,Y) | |
134 | #define ELF_R_SYM(X) ELF32_R_SYM(X) | |
6ec3bb6a | 135 | #define ELF_R_TYPE(X) ELF32_R_TYPE(X) |
32090b8e | 136 | #define ELFCLASS ELFCLASS32 |
f035cc47 | 137 | #define FILE_ALIGN 4 |
013dec1a | 138 | #define LOG_FILE_ALIGN 2 |
244ffee7 JK |
139 | #endif |
140 | ||
244ffee7 JK |
141 | /* Forward declarations of static functions */ |
142 | ||
eb4267a3 | 143 | static struct bfd_strtab_hash *elf_stringtab_init PARAMS ((void)); |
2e03ce18 | 144 | static asection *section_from_elf_index PARAMS ((bfd *, unsigned int)); |
244ffee7 JK |
145 | |
146 | static int elf_section_from_bfd_section PARAMS ((bfd *, struct sec *)); | |
147 | ||
cb71adf1 | 148 | static long elf_slurp_symbol_table PARAMS ((bfd *, asymbol **, boolean)); |
244ffee7 | 149 | |
ea617174 ILT |
150 | static boolean elf_slurp_reloc_table PARAMS ((bfd *, asection *, asymbol **)); |
151 | ||
244ffee7 | 152 | static int elf_symbol_from_bfd_symbol PARAMS ((bfd *, |
1c6042ee | 153 | struct symbol_cache_entry **)); |
244ffee7 | 154 | |
6ec3bb6a ILT |
155 | static boolean elf_compute_section_file_positions |
156 | PARAMS ((bfd *, struct bfd_link_info *)); | |
157 | static boolean prep_headers PARAMS ((bfd *)); | |
fa15568a | 158 | static void elf_fake_sections PARAMS ((bfd *, asection *, PTR)); |
6ec3bb6a | 159 | static boolean assign_section_numbers PARAMS ((bfd *)); |
013dec1a ILT |
160 | static file_ptr align_file_position PARAMS ((file_ptr)); |
161 | static file_ptr assign_file_position_for_section | |
162 | PARAMS ((Elf_Internal_Shdr *, file_ptr, boolean)); | |
6ec3bb6a | 163 | static boolean assign_file_positions_except_relocs PARAMS ((bfd *, boolean)); |
11bb5591 | 164 | static int elf_sort_hdrs PARAMS ((const PTR, const PTR)); |
013dec1a | 165 | static void assign_file_positions_for_relocs PARAMS ((bfd *)); |
6c97aedf ILT |
166 | static bfd_size_type get_program_header_size PARAMS ((bfd *, |
167 | Elf_Internal_Shdr **, | |
168 | unsigned int, | |
169 | bfd_vma)); | |
013dec1a | 170 | static file_ptr map_program_segments |
5945db29 ILT |
171 | PARAMS ((bfd *, file_ptr, Elf_Internal_Shdr *, Elf_Internal_Shdr **, |
172 | bfd_size_type)); | |
6ec3bb6a | 173 | |
9783e04a | 174 | static boolean elf_map_symbols PARAMS ((bfd *)); |
eb4267a3 | 175 | static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **)); |
244ffee7 | 176 | |
2e03ce18 ILT |
177 | static boolean bfd_section_from_shdr PARAMS ((bfd *, unsigned int shindex)); |
178 | ||
6a3eb9b6 | 179 | #ifdef DEBUG |
eb4267a3 | 180 | static void elf_debug_section PARAMS ((int, Elf_Internal_Shdr *)); |
6a3eb9b6 KR |
181 | static void elf_debug_file PARAMS ((Elf_Internal_Ehdr *)); |
182 | #endif | |
238ac6ec | 183 | |
32090b8e KR |
184 | #define elf_string_from_elf_strtab(abfd,strindex) \ |
185 | elf_string_from_elf_section(abfd,elf_elfheader(abfd)->e_shstrndx,strindex) | |
32090b8e KR |
186 | \f |
187 | /* Structure swapping routines */ | |
188 | ||
6a3eb9b6 KR |
189 | /* Should perhaps use put_offset, put_word, etc. For now, the two versions |
190 | can be handled by explicitly specifying 32 bits or "the long type". */ | |
238ac6ec KR |
191 | #if ARCH_SIZE == 64 |
192 | #define put_word bfd_h_put_64 | |
193 | #define get_word bfd_h_get_64 | |
194 | #endif | |
195 | #if ARCH_SIZE == 32 | |
196 | #define put_word bfd_h_put_32 | |
197 | #define get_word bfd_h_get_32 | |
198 | #endif | |
199 | ||
244ffee7 JK |
200 | /* Translate an ELF symbol in external format into an ELF symbol in internal |
201 | format. */ | |
202 | ||
71edd06d | 203 | void |
1c6042ee ILT |
204 | elf_swap_symbol_in (abfd, src, dst) |
205 | bfd *abfd; | |
206 | Elf_External_Sym *src; | |
207 | Elf_Internal_Sym *dst; | |
244ffee7 JK |
208 | { |
209 | dst->st_name = bfd_h_get_32 (abfd, (bfd_byte *) src->st_name); | |
238ac6ec KR |
210 | dst->st_value = get_word (abfd, (bfd_byte *) src->st_value); |
211 | dst->st_size = get_word (abfd, (bfd_byte *) src->st_size); | |
244ffee7 JK |
212 | dst->st_info = bfd_h_get_8 (abfd, (bfd_byte *) src->st_info); |
213 | dst->st_other = bfd_h_get_8 (abfd, (bfd_byte *) src->st_other); | |
214 | dst->st_shndx = bfd_h_get_16 (abfd, (bfd_byte *) src->st_shndx); | |
215 | } | |
216 | ||
217 | /* Translate an ELF symbol in internal format into an ELF symbol in external | |
218 | format. */ | |
219 | ||
71edd06d | 220 | void |
1c6042ee ILT |
221 | elf_swap_symbol_out (abfd, src, dst) |
222 | bfd *abfd; | |
223 | Elf_Internal_Sym *src; | |
224 | Elf_External_Sym *dst; | |
244ffee7 JK |
225 | { |
226 | bfd_h_put_32 (abfd, src->st_name, dst->st_name); | |
238ac6ec KR |
227 | put_word (abfd, src->st_value, dst->st_value); |
228 | put_word (abfd, src->st_size, dst->st_size); | |
244ffee7 JK |
229 | bfd_h_put_8 (abfd, src->st_info, dst->st_info); |
230 | bfd_h_put_8 (abfd, src->st_other, dst->st_other); | |
231 | bfd_h_put_16 (abfd, src->st_shndx, dst->st_shndx); | |
232 | } | |
233 | ||
234 | ||
235 | /* Translate an ELF file header in external format into an ELF file header in | |
236 | internal format. */ | |
237 | ||
238 | static void | |
1c6042ee ILT |
239 | elf_swap_ehdr_in (abfd, src, dst) |
240 | bfd *abfd; | |
241 | Elf_External_Ehdr *src; | |
242 | Elf_Internal_Ehdr *dst; | |
244ffee7 JK |
243 | { |
244 | memcpy (dst->e_ident, src->e_ident, EI_NIDENT); | |
245 | dst->e_type = bfd_h_get_16 (abfd, (bfd_byte *) src->e_type); | |
246 | dst->e_machine = bfd_h_get_16 (abfd, (bfd_byte *) src->e_machine); | |
247 | dst->e_version = bfd_h_get_32 (abfd, (bfd_byte *) src->e_version); | |
238ac6ec KR |
248 | dst->e_entry = get_word (abfd, (bfd_byte *) src->e_entry); |
249 | dst->e_phoff = get_word (abfd, (bfd_byte *) src->e_phoff); | |
250 | dst->e_shoff = get_word (abfd, (bfd_byte *) src->e_shoff); | |
244ffee7 JK |
251 | dst->e_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->e_flags); |
252 | dst->e_ehsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_ehsize); | |
253 | dst->e_phentsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_phentsize); | |
254 | dst->e_phnum = bfd_h_get_16 (abfd, (bfd_byte *) src->e_phnum); | |
255 | dst->e_shentsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shentsize); | |
256 | dst->e_shnum = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shnum); | |
257 | dst->e_shstrndx = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shstrndx); | |
258 | } | |
259 | ||
260 | /* Translate an ELF file header in internal format into an ELF file header in | |
261 | external format. */ | |
262 | ||
263 | static void | |
1c6042ee ILT |
264 | elf_swap_ehdr_out (abfd, src, dst) |
265 | bfd *abfd; | |
266 | Elf_Internal_Ehdr *src; | |
267 | Elf_External_Ehdr *dst; | |
244ffee7 JK |
268 | { |
269 | memcpy (dst->e_ident, src->e_ident, EI_NIDENT); | |
270 | /* note that all elements of dst are *arrays of unsigned char* already... */ | |
271 | bfd_h_put_16 (abfd, src->e_type, dst->e_type); | |
272 | bfd_h_put_16 (abfd, src->e_machine, dst->e_machine); | |
273 | bfd_h_put_32 (abfd, src->e_version, dst->e_version); | |
238ac6ec KR |
274 | put_word (abfd, src->e_entry, dst->e_entry); |
275 | put_word (abfd, src->e_phoff, dst->e_phoff); | |
276 | put_word (abfd, src->e_shoff, dst->e_shoff); | |
244ffee7 JK |
277 | bfd_h_put_32 (abfd, src->e_flags, dst->e_flags); |
278 | bfd_h_put_16 (abfd, src->e_ehsize, dst->e_ehsize); | |
279 | bfd_h_put_16 (abfd, src->e_phentsize, dst->e_phentsize); | |
280 | bfd_h_put_16 (abfd, src->e_phnum, dst->e_phnum); | |
281 | bfd_h_put_16 (abfd, src->e_shentsize, dst->e_shentsize); | |
282 | bfd_h_put_16 (abfd, src->e_shnum, dst->e_shnum); | |
283 | bfd_h_put_16 (abfd, src->e_shstrndx, dst->e_shstrndx); | |
284 | } | |
285 | ||
286 | ||
287 | /* Translate an ELF section header table entry in external format into an | |
288 | ELF section header table entry in internal format. */ | |
289 | ||
290 | static void | |
1c6042ee ILT |
291 | elf_swap_shdr_in (abfd, src, dst) |
292 | bfd *abfd; | |
293 | Elf_External_Shdr *src; | |
294 | Elf_Internal_Shdr *dst; | |
244ffee7 JK |
295 | { |
296 | dst->sh_name = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_name); | |
297 | dst->sh_type = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_type); | |
238ac6ec KR |
298 | dst->sh_flags = get_word (abfd, (bfd_byte *) src->sh_flags); |
299 | dst->sh_addr = get_word (abfd, (bfd_byte *) src->sh_addr); | |
300 | dst->sh_offset = get_word (abfd, (bfd_byte *) src->sh_offset); | |
301 | dst->sh_size = get_word (abfd, (bfd_byte *) src->sh_size); | |
244ffee7 JK |
302 | dst->sh_link = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_link); |
303 | dst->sh_info = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_info); | |
238ac6ec KR |
304 | dst->sh_addralign = get_word (abfd, (bfd_byte *) src->sh_addralign); |
305 | dst->sh_entsize = get_word (abfd, (bfd_byte *) src->sh_entsize); | |
24f13b03 ILT |
306 | dst->bfd_section = NULL; |
307 | dst->contents = NULL; | |
244ffee7 JK |
308 | } |
309 | ||
310 | /* Translate an ELF section header table entry in internal format into an | |
311 | ELF section header table entry in external format. */ | |
312 | ||
313 | static void | |
1c6042ee ILT |
314 | elf_swap_shdr_out (abfd, src, dst) |
315 | bfd *abfd; | |
316 | Elf_Internal_Shdr *src; | |
317 | Elf_External_Shdr *dst; | |
244ffee7 JK |
318 | { |
319 | /* note that all elements of dst are *arrays of unsigned char* already... */ | |
320 | bfd_h_put_32 (abfd, src->sh_name, dst->sh_name); | |
321 | bfd_h_put_32 (abfd, src->sh_type, dst->sh_type); | |
238ac6ec KR |
322 | put_word (abfd, src->sh_flags, dst->sh_flags); |
323 | put_word (abfd, src->sh_addr, dst->sh_addr); | |
324 | put_word (abfd, src->sh_offset, dst->sh_offset); | |
325 | put_word (abfd, src->sh_size, dst->sh_size); | |
244ffee7 JK |
326 | bfd_h_put_32 (abfd, src->sh_link, dst->sh_link); |
327 | bfd_h_put_32 (abfd, src->sh_info, dst->sh_info); | |
238ac6ec KR |
328 | put_word (abfd, src->sh_addralign, dst->sh_addralign); |
329 | put_word (abfd, src->sh_entsize, dst->sh_entsize); | |
244ffee7 JK |
330 | } |
331 | ||
332 | ||
333 | /* Translate an ELF program header table entry in external format into an | |
334 | ELF program header table entry in internal format. */ | |
335 | ||
336 | static void | |
1c6042ee ILT |
337 | elf_swap_phdr_in (abfd, src, dst) |
338 | bfd *abfd; | |
339 | Elf_External_Phdr *src; | |
340 | Elf_Internal_Phdr *dst; | |
244ffee7 JK |
341 | { |
342 | dst->p_type = bfd_h_get_32 (abfd, (bfd_byte *) src->p_type); | |
244ffee7 | 343 | dst->p_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->p_flags); |
238ac6ec KR |
344 | dst->p_offset = get_word (abfd, (bfd_byte *) src->p_offset); |
345 | dst->p_vaddr = get_word (abfd, (bfd_byte *) src->p_vaddr); | |
346 | dst->p_paddr = get_word (abfd, (bfd_byte *) src->p_paddr); | |
347 | dst->p_filesz = get_word (abfd, (bfd_byte *) src->p_filesz); | |
348 | dst->p_memsz = get_word (abfd, (bfd_byte *) src->p_memsz); | |
349 | dst->p_align = get_word (abfd, (bfd_byte *) src->p_align); | |
244ffee7 JK |
350 | } |
351 | ||
244ffee7 | 352 | static void |
1c6042ee ILT |
353 | elf_swap_phdr_out (abfd, src, dst) |
354 | bfd *abfd; | |
355 | Elf_Internal_Phdr *src; | |
356 | Elf_External_Phdr *dst; | |
244ffee7 JK |
357 | { |
358 | /* note that all elements of dst are *arrays of unsigned char* already... */ | |
359 | bfd_h_put_32 (abfd, src->p_type, dst->p_type); | |
94dbb655 KR |
360 | put_word (abfd, src->p_offset, dst->p_offset); |
361 | put_word (abfd, src->p_vaddr, dst->p_vaddr); | |
362 | put_word (abfd, src->p_paddr, dst->p_paddr); | |
363 | put_word (abfd, src->p_filesz, dst->p_filesz); | |
364 | put_word (abfd, src->p_memsz, dst->p_memsz); | |
244ffee7 | 365 | bfd_h_put_32 (abfd, src->p_flags, dst->p_flags); |
94dbb655 | 366 | put_word (abfd, src->p_align, dst->p_align); |
244ffee7 JK |
367 | } |
368 | ||
369 | /* Translate an ELF reloc from external format to internal format. */ | |
013dec1a | 370 | INLINE void |
1c6042ee ILT |
371 | elf_swap_reloc_in (abfd, src, dst) |
372 | bfd *abfd; | |
373 | Elf_External_Rel *src; | |
374 | Elf_Internal_Rel *dst; | |
244ffee7 | 375 | { |
94dbb655 KR |
376 | dst->r_offset = get_word (abfd, (bfd_byte *) src->r_offset); |
377 | dst->r_info = get_word (abfd, (bfd_byte *) src->r_info); | |
244ffee7 JK |
378 | } |
379 | ||
013dec1a | 380 | INLINE void |
1c6042ee ILT |
381 | elf_swap_reloca_in (abfd, src, dst) |
382 | bfd *abfd; | |
383 | Elf_External_Rela *src; | |
384 | Elf_Internal_Rela *dst; | |
244ffee7 | 385 | { |
94dbb655 KR |
386 | dst->r_offset = get_word (abfd, (bfd_byte *) src->r_offset); |
387 | dst->r_info = get_word (abfd, (bfd_byte *) src->r_info); | |
388 | dst->r_addend = get_word (abfd, (bfd_byte *) src->r_addend); | |
244ffee7 JK |
389 | } |
390 | ||
391 | /* Translate an ELF reloc from internal format to external format. */ | |
013dec1a | 392 | INLINE void |
1c6042ee ILT |
393 | elf_swap_reloc_out (abfd, src, dst) |
394 | bfd *abfd; | |
395 | Elf_Internal_Rel *src; | |
396 | Elf_External_Rel *dst; | |
244ffee7 | 397 | { |
94dbb655 KR |
398 | put_word (abfd, src->r_offset, dst->r_offset); |
399 | put_word (abfd, src->r_info, dst->r_info); | |
244ffee7 JK |
400 | } |
401 | ||
013dec1a | 402 | INLINE void |
1c6042ee ILT |
403 | elf_swap_reloca_out (abfd, src, dst) |
404 | bfd *abfd; | |
405 | Elf_Internal_Rela *src; | |
406 | Elf_External_Rela *dst; | |
244ffee7 | 407 | { |
94dbb655 KR |
408 | put_word (abfd, src->r_offset, dst->r_offset); |
409 | put_word (abfd, src->r_info, dst->r_info); | |
410 | put_word (abfd, src->r_addend, dst->r_addend); | |
244ffee7 | 411 | } |
32090b8e | 412 | |
013dec1a ILT |
413 | INLINE void |
414 | elf_swap_dyn_in (abfd, src, dst) | |
415 | bfd *abfd; | |
416 | const Elf_External_Dyn *src; | |
417 | Elf_Internal_Dyn *dst; | |
418 | { | |
419 | dst->d_tag = get_word (abfd, src->d_tag); | |
420 | dst->d_un.d_val = get_word (abfd, src->d_un.d_val); | |
421 | } | |
1c6042ee | 422 | |
013dec1a ILT |
423 | INLINE void |
424 | elf_swap_dyn_out (abfd, src, dst) | |
425 | bfd *abfd; | |
426 | const Elf_Internal_Dyn *src; | |
427 | Elf_External_Dyn *dst; | |
428 | { | |
429 | put_word (abfd, src->d_tag, dst->d_tag); | |
430 | put_word (abfd, src->d_un.d_val, dst->d_un.d_val); | |
431 | } | |
432 | \f | |
eb4267a3 | 433 | /* Allocate an ELF string table--force the first byte to be zero. */ |
32090b8e | 434 | |
eb4267a3 ILT |
435 | static struct bfd_strtab_hash * |
436 | elf_stringtab_init () | |
32090b8e | 437 | { |
eb4267a3 | 438 | struct bfd_strtab_hash *ret; |
32090b8e | 439 | |
eb4267a3 ILT |
440 | ret = _bfd_stringtab_init (); |
441 | if (ret != NULL) | |
b9d5cdf0 | 442 | { |
eb4267a3 | 443 | bfd_size_type loc; |
244ffee7 | 444 | |
eb4267a3 ILT |
445 | loc = _bfd_stringtab_add (ret, "", true, false); |
446 | BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); | |
447 | if (loc == (bfd_size_type) -1) | |
448 | { | |
449 | _bfd_stringtab_free (ret); | |
450 | ret = NULL; | |
451 | } | |
6ec3bb6a | 452 | } |
eb4267a3 | 453 | return ret; |
244ffee7 | 454 | } |
32090b8e KR |
455 | \f |
456 | /* ELF .o/exec file reading */ | |
457 | ||
458 | /* Create a new bfd section from an ELF section header. */ | |
459 | ||
244ffee7 | 460 | static boolean |
1c6042ee ILT |
461 | bfd_section_from_shdr (abfd, shindex) |
462 | bfd *abfd; | |
463 | unsigned int shindex; | |
244ffee7 | 464 | { |
32090b8e KR |
465 | Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex]; |
466 | Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); | |
244ffee7 JK |
467 | char *name; |
468 | ||
469 | name = elf_string_from_elf_strtab (abfd, hdr->sh_name); | |
470 | ||
471 | switch (hdr->sh_type) | |
472 | { | |
244ffee7 | 473 | case SHT_NULL: |
497c5434 | 474 | /* Inactive section. Throw it away. */ |
244ffee7 JK |
475 | return true; |
476 | ||
497c5434 ILT |
477 | case SHT_PROGBITS: /* Normal section with contents. */ |
478 | case SHT_DYNAMIC: /* Dynamic linking information. */ | |
479 | case SHT_NOBITS: /* .bss section. */ | |
fa15568a | 480 | case SHT_HASH: /* .hash section. */ |
497c5434 | 481 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
244ffee7 JK |
482 | |
483 | case SHT_SYMTAB: /* A symbol table */ | |
32090b8e KR |
484 | if (elf_onesymtab (abfd) == shindex) |
485 | return true; | |
486 | ||
244ffee7 | 487 | BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym)); |
32090b8e | 488 | BFD_ASSERT (elf_onesymtab (abfd) == 0); |
244ffee7 | 489 | elf_onesymtab (abfd) = shindex; |
1c6042ee ILT |
490 | elf_tdata (abfd)->symtab_hdr = *hdr; |
491 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_hdr; | |
244ffee7 | 492 | abfd->flags |= HAS_SYMS; |
823609fe ILT |
493 | |
494 | /* Sometimes a shared object will map in the symbol table. If | |
495 | SHF_ALLOC is set, and this is a shared object, then we also | |
496 | treat this section as a BFD section. We can not base the | |
497 | decision purely on SHF_ALLOC, because that flag is sometimes | |
498 | set in a relocateable object file, which would confuse the | |
499 | linker. */ | |
500 | if ((hdr->sh_flags & SHF_ALLOC) != 0 | |
501 | && (abfd->flags & DYNAMIC) != 0 | |
502 | && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) | |
503 | return false; | |
504 | ||
244ffee7 JK |
505 | return true; |
506 | ||
cb71adf1 PS |
507 | case SHT_DYNSYM: /* A dynamic symbol table */ |
508 | if (elf_dynsymtab (abfd) == shindex) | |
509 | return true; | |
510 | ||
511 | BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym)); | |
512 | BFD_ASSERT (elf_dynsymtab (abfd) == 0); | |
513 | elf_dynsymtab (abfd) = shindex; | |
514 | elf_tdata (abfd)->dynsymtab_hdr = *hdr; | |
515 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->dynsymtab_hdr; | |
516 | abfd->flags |= HAS_SYMS; | |
fa15568a ILT |
517 | |
518 | /* Besides being a symbol table, we also treat this as a regular | |
519 | section, so that objcopy can handle it. */ | |
520 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); | |
cb71adf1 | 521 | |
244ffee7 | 522 | case SHT_STRTAB: /* A string table */ |
24f13b03 | 523 | if (hdr->bfd_section != NULL) |
fce36137 | 524 | return true; |
32090b8e KR |
525 | if (ehdr->e_shstrndx == shindex) |
526 | { | |
1c6042ee ILT |
527 | elf_tdata (abfd)->shstrtab_hdr = *hdr; |
528 | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; | |
32090b8e KR |
529 | return true; |
530 | } | |
531 | { | |
68241b2b | 532 | unsigned int i; |
fce36137 | 533 | |
32090b8e KR |
534 | for (i = 1; i < ehdr->e_shnum; i++) |
535 | { | |
1c6042ee | 536 | Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; |
32090b8e KR |
537 | if (hdr2->sh_link == shindex) |
538 | { | |
2e03ce18 ILT |
539 | if (! bfd_section_from_shdr (abfd, i)) |
540 | return false; | |
32090b8e KR |
541 | if (elf_onesymtab (abfd) == i) |
542 | { | |
1c6042ee | 543 | elf_tdata (abfd)->strtab_hdr = *hdr; |
fa15568a ILT |
544 | elf_elfsections (abfd)[shindex] = |
545 | &elf_tdata (abfd)->strtab_hdr; | |
32090b8e KR |
546 | return true; |
547 | } | |
cb71adf1 PS |
548 | if (elf_dynsymtab (abfd) == i) |
549 | { | |
550 | elf_tdata (abfd)->dynstrtab_hdr = *hdr; | |
fa15568a ILT |
551 | elf_elfsections (abfd)[shindex] = |
552 | &elf_tdata (abfd)->dynstrtab_hdr; | |
553 | /* We also treat this as a regular section, so | |
554 | that objcopy can handle it. */ | |
555 | break; | |
cb71adf1 | 556 | } |
2e03ce18 | 557 | #if 0 /* Not handling other string tables specially right now. */ |
1c6042ee | 558 | hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */ |
32090b8e | 559 | /* We have a strtab for some random other section. */ |
24f13b03 | 560 | newsect = (asection *) hdr2->bfd_section; |
32090b8e KR |
561 | if (!newsect) |
562 | break; | |
24f13b03 | 563 | hdr->bfd_section = newsect; |
32090b8e KR |
564 | hdr2 = &elf_section_data (newsect)->str_hdr; |
565 | *hdr2 = *hdr; | |
1c6042ee | 566 | elf_elfsections (abfd)[shindex] = hdr2; |
32090b8e KR |
567 | #endif |
568 | } | |
569 | } | |
570 | } | |
571 | ||
497c5434 | 572 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
244ffee7 JK |
573 | |
574 | case SHT_REL: | |
575 | case SHT_RELA: | |
497c5434 | 576 | /* *These* do a lot of work -- but build no sections! */ |
244ffee7 JK |
577 | { |
578 | asection *target_sect; | |
32090b8e | 579 | Elf_Internal_Shdr *hdr2; |
244ffee7 JK |
580 | int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; |
581 | ||
497c5434 ILT |
582 | /* Get the symbol table. */ |
583 | if (! bfd_section_from_shdr (abfd, hdr->sh_link)) | |
584 | return false; | |
585 | ||
e6667b2b ILT |
586 | /* If this reloc section does not use the main symbol table we |
587 | don't treat it as a reloc section. BFD can't adequately | |
588 | represent such a section, so at least for now, we don't | |
589 | try. We just present it as a normal section. */ | |
590 | if (hdr->sh_link != elf_onesymtab (abfd)) | |
497c5434 ILT |
591 | return _bfd_elf_make_section_from_shdr (abfd, hdr, name); |
592 | ||
244ffee7 JK |
593 | /* Don't allow REL relocations on a machine that uses RELA and |
594 | vice versa. */ | |
595 | /* @@ Actually, the generic ABI does suggest that both might be | |
596 | used in one file. But the four ABI Processor Supplements I | |
597 | have access to right now all specify that only one is used on | |
598 | each of those architectures. It's conceivable that, e.g., a | |
599 | bunch of absolute 32-bit relocs might be more compact in REL | |
600 | form even on a RELA machine... */ | |
497c5434 ILT |
601 | BFD_ASSERT (use_rela_p |
602 | ? (hdr->sh_type == SHT_RELA | |
603 | && hdr->sh_entsize == sizeof (Elf_External_Rela)) | |
604 | : (hdr->sh_type == SHT_REL | |
605 | && hdr->sh_entsize == sizeof (Elf_External_Rel))); | |
606 | ||
607 | if (! bfd_section_from_shdr (abfd, hdr->sh_info)) | |
2e03ce18 | 608 | return false; |
244ffee7 | 609 | target_sect = section_from_elf_index (abfd, hdr->sh_info); |
24f13b03 | 610 | if (target_sect == NULL) |
244ffee7 JK |
611 | return false; |
612 | ||
32090b8e KR |
613 | hdr2 = &elf_section_data (target_sect)->rel_hdr; |
614 | *hdr2 = *hdr; | |
1c6042ee | 615 | elf_elfsections (abfd)[shindex] = hdr2; |
244ffee7 JK |
616 | target_sect->reloc_count = hdr->sh_size / hdr->sh_entsize; |
617 | target_sect->flags |= SEC_RELOC; | |
497c5434 | 618 | target_sect->relocation = NULL; |
244ffee7 | 619 | target_sect->rel_filepos = hdr->sh_offset; |
32090b8e | 620 | abfd->flags |= HAS_RELOC; |
244ffee7 JK |
621 | return true; |
622 | } | |
623 | break; | |
624 | ||
244ffee7 JK |
625 | case SHT_NOTE: |
626 | #if 0 | |
627 | fprintf (stderr, "Note Sections not yet supported.\n"); | |
628 | BFD_FAIL (); | |
629 | #endif | |
630 | break; | |
631 | ||
632 | case SHT_SHLIB: | |
633 | #if 0 | |
634 | fprintf (stderr, "SHLIB Sections not supported (and non conforming.)\n"); | |
635 | #endif | |
636 | return true; | |
637 | ||
638 | default: | |
e621c5cc ILT |
639 | /* Check for any processor-specific section types. */ |
640 | { | |
641 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
642 | ||
643 | if (bed->elf_backend_section_from_shdr) | |
644 | (*bed->elf_backend_section_from_shdr) (abfd, hdr, name); | |
645 | } | |
244ffee7 JK |
646 | break; |
647 | } | |
648 | ||
649 | return true; | |
650 | } | |
651 | ||
fce36137 | 652 | boolean |
1c6042ee ILT |
653 | elf_new_section_hook (abfd, sec) |
654 | bfd *abfd | |
655 | ; | |
656 | asection *sec; | |
fce36137 | 657 | { |
32090b8e | 658 | struct bfd_elf_section_data *sdata; |
300adb31 KR |
659 | |
660 | sdata = (struct bfd_elf_section_data *) bfd_alloc (abfd, sizeof (*sdata)); | |
9783e04a DM |
661 | if (!sdata) |
662 | { | |
d1ad85a6 | 663 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
664 | return false; |
665 | } | |
300adb31 | 666 | sec->used_by_bfd = (PTR) sdata; |
32090b8e | 667 | memset (sdata, 0, sizeof (*sdata)); |
244ffee7 JK |
668 | return true; |
669 | } | |
670 | ||
671 | /* Create a new bfd section from an ELF program header. | |
672 | ||
673 | Since program segments have no names, we generate a synthetic name | |
674 | of the form segment<NUM>, where NUM is generally the index in the | |
675 | program header table. For segments that are split (see below) we | |
676 | generate the names segment<NUM>a and segment<NUM>b. | |
677 | ||
678 | Note that some program segments may have a file size that is different than | |
679 | (less than) the memory size. All this means is that at execution the | |
680 | system must allocate the amount of memory specified by the memory size, | |
681 | but only initialize it with the first "file size" bytes read from the | |
682 | file. This would occur for example, with program segments consisting | |
683 | of combined data+bss. | |
684 | ||
685 | To handle the above situation, this routine generates TWO bfd sections | |
686 | for the single program segment. The first has the length specified by | |
687 | the file size of the segment, and the second has the length specified | |
688 | by the difference between the two sizes. In effect, the segment is split | |
689 | into it's initialized and uninitialized parts. | |
690 | ||
691 | */ | |
692 | ||
693 | static boolean | |
1c6042ee ILT |
694 | bfd_section_from_phdr (abfd, hdr, index) |
695 | bfd *abfd; | |
696 | Elf_Internal_Phdr *hdr; | |
697 | int index; | |
244ffee7 JK |
698 | { |
699 | asection *newsect; | |
700 | char *name; | |
701 | char namebuf[64]; | |
702 | int split; | |
703 | ||
704 | split = ((hdr->p_memsz > 0) && | |
705 | (hdr->p_filesz > 0) && | |
706 | (hdr->p_memsz > hdr->p_filesz)); | |
707 | sprintf (namebuf, split ? "segment%da" : "segment%d", index); | |
708 | name = bfd_alloc (abfd, strlen (namebuf) + 1); | |
9783e04a DM |
709 | if (!name) |
710 | { | |
d1ad85a6 | 711 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
712 | return false; |
713 | } | |
244ffee7 JK |
714 | strcpy (name, namebuf); |
715 | newsect = bfd_make_section (abfd, name); | |
2e03ce18 ILT |
716 | if (newsect == NULL) |
717 | return false; | |
244ffee7 JK |
718 | newsect->vma = hdr->p_vaddr; |
719 | newsect->_raw_size = hdr->p_filesz; | |
720 | newsect->filepos = hdr->p_offset; | |
721 | newsect->flags |= SEC_HAS_CONTENTS; | |
722 | if (hdr->p_type == PT_LOAD) | |
723 | { | |
724 | newsect->flags |= SEC_ALLOC; | |
725 | newsect->flags |= SEC_LOAD; | |
726 | if (hdr->p_flags & PF_X) | |
727 | { | |
728 | /* FIXME: all we known is that it has execute PERMISSION, | |
729 | may be data. */ | |
730 | newsect->flags |= SEC_CODE; | |
731 | } | |
732 | } | |
733 | if (!(hdr->p_flags & PF_W)) | |
734 | { | |
735 | newsect->flags |= SEC_READONLY; | |
736 | } | |
737 | ||
738 | if (split) | |
739 | { | |
740 | sprintf (namebuf, "segment%db", index); | |
741 | name = bfd_alloc (abfd, strlen (namebuf) + 1); | |
9783e04a DM |
742 | if (!name) |
743 | { | |
d1ad85a6 | 744 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
745 | return false; |
746 | } | |
244ffee7 JK |
747 | strcpy (name, namebuf); |
748 | newsect = bfd_make_section (abfd, name); | |
2e03ce18 ILT |
749 | if (newsect == NULL) |
750 | return false; | |
244ffee7 JK |
751 | newsect->vma = hdr->p_vaddr + hdr->p_filesz; |
752 | newsect->_raw_size = hdr->p_memsz - hdr->p_filesz; | |
753 | if (hdr->p_type == PT_LOAD) | |
754 | { | |
755 | newsect->flags |= SEC_ALLOC; | |
756 | if (hdr->p_flags & PF_X) | |
757 | newsect->flags |= SEC_CODE; | |
758 | } | |
759 | if (!(hdr->p_flags & PF_W)) | |
760 | newsect->flags |= SEC_READONLY; | |
761 | } | |
762 | ||
763 | return true; | |
764 | } | |
765 | ||
32090b8e | 766 | /* Begin processing a given object. |
244ffee7 | 767 | |
32090b8e KR |
768 | First we validate the file by reading in the ELF header and checking |
769 | the magic number. */ | |
770 | ||
771 | static INLINE boolean | |
1c6042ee ILT |
772 | elf_file_p (x_ehdrp) |
773 | Elf_External_Ehdr *x_ehdrp; | |
244ffee7 | 774 | { |
32090b8e KR |
775 | return ((x_ehdrp->e_ident[EI_MAG0] == ELFMAG0) |
776 | && (x_ehdrp->e_ident[EI_MAG1] == ELFMAG1) | |
777 | && (x_ehdrp->e_ident[EI_MAG2] == ELFMAG2) | |
778 | && (x_ehdrp->e_ident[EI_MAG3] == ELFMAG3)); | |
779 | } | |
244ffee7 | 780 | |
d24928c0 KR |
781 | /* Check to see if the file associated with ABFD matches the target vector |
782 | that ABFD points to. | |
783 | ||
784 | Note that we may be called several times with the same ABFD, but different | |
785 | target vectors, most of which will not match. We have to avoid leaving | |
786 | any side effects in ABFD, or any data it points to (like tdata), if the | |
6ec3bb6a | 787 | file does not match the target vector. */ |
d24928c0 | 788 | |
2f3508ad | 789 | const bfd_target * |
1c6042ee ILT |
790 | elf_object_p (abfd) |
791 | bfd *abfd; | |
244ffee7 | 792 | { |
32090b8e KR |
793 | Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ |
794 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ | |
795 | Elf_External_Shdr x_shdr; /* Section header table entry, external form */ | |
6ec3bb6a | 796 | Elf_Internal_Shdr *i_shdrp = NULL; /* Section header table, internal form */ |
68241b2b | 797 | unsigned int shindex; |
32090b8e | 798 | char *shstrtab; /* Internal copy of section header stringtab */ |
062189c6 | 799 | struct elf_backend_data *ebd; |
d24928c0 | 800 | struct elf_obj_tdata *preserved_tdata = elf_tdata (abfd); |
6ec3bb6a | 801 | struct elf_obj_tdata *new_tdata = NULL; |
244ffee7 | 802 | |
32090b8e KR |
803 | /* Read in the ELF header in external format. */ |
804 | ||
805 | if (bfd_read ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr)) | |
25057836 JL |
806 | { |
807 | if (bfd_get_error () != bfd_error_system_call) | |
808 | goto got_wrong_format_error; | |
809 | else | |
810 | goto got_no_match; | |
811 | } | |
244ffee7 | 812 | |
32090b8e KR |
813 | /* Now check to see if we have a valid ELF file, and one that BFD can |
814 | make use of. The magic number must match, the address size ('class') | |
815 | and byte-swapping must match our XVEC entry, and it must have a | |
816 | section header table (FIXME: See comments re sections at top of this | |
817 | file). */ | |
244ffee7 | 818 | |
d24928c0 KR |
819 | if ((elf_file_p (&x_ehdr) == false) || |
820 | (x_ehdr.e_ident[EI_VERSION] != EV_CURRENT) || | |
821 | (x_ehdr.e_ident[EI_CLASS] != ELFCLASS)) | |
822 | goto got_wrong_format_error; | |
244ffee7 | 823 | |
d24928c0 | 824 | /* Check that file's byte order matches xvec's */ |
32090b8e | 825 | switch (x_ehdr.e_ident[EI_DATA]) |
244ffee7 | 826 | { |
32090b8e KR |
827 | case ELFDATA2MSB: /* Big-endian */ |
828 | if (!abfd->xvec->header_byteorder_big_p) | |
d24928c0 | 829 | goto got_wrong_format_error; |
32090b8e KR |
830 | break; |
831 | case ELFDATA2LSB: /* Little-endian */ | |
832 | if (abfd->xvec->header_byteorder_big_p) | |
d24928c0 | 833 | goto got_wrong_format_error; |
32090b8e KR |
834 | break; |
835 | case ELFDATANONE: /* No data encoding specified */ | |
836 | default: /* Unknown data encoding specified */ | |
d24928c0 | 837 | goto got_wrong_format_error; |
244ffee7 | 838 | } |
244ffee7 | 839 | |
32090b8e | 840 | /* Allocate an instance of the elf_obj_tdata structure and hook it up to |
6ec3bb6a | 841 | the tdata pointer in the bfd. */ |
244ffee7 | 842 | |
6ec3bb6a ILT |
843 | new_tdata = ((struct elf_obj_tdata *) |
844 | bfd_zalloc (abfd, sizeof (struct elf_obj_tdata))); | |
845 | if (new_tdata == NULL) | |
d24928c0 | 846 | goto got_no_memory_error; |
6ec3bb6a | 847 | elf_tdata (abfd) = new_tdata; |
244ffee7 | 848 | |
32090b8e KR |
849 | /* Now that we know the byte order, swap in the rest of the header */ |
850 | i_ehdrp = elf_elfheader (abfd); | |
851 | elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp); | |
852 | #if DEBUG & 1 | |
853 | elf_debug_file (i_ehdrp); | |
244ffee7 JK |
854 | #endif |
855 | ||
32090b8e KR |
856 | /* If there is no section header table, we're hosed. */ |
857 | if (i_ehdrp->e_shoff == 0) | |
d24928c0 | 858 | goto got_wrong_format_error; |
244ffee7 | 859 | |
062189c6 ILT |
860 | /* As a simple sanity check, verify that the what BFD thinks is the |
861 | size of each section header table entry actually matches the size | |
862 | recorded in the file. */ | |
863 | if (i_ehdrp->e_shentsize != sizeof (x_shdr)) | |
864 | goto got_wrong_format_error; | |
865 | ||
866 | ebd = get_elf_backend_data (abfd); | |
867 | ||
868 | /* Check that the ELF e_machine field matches what this particular | |
869 | BFD format expects. */ | |
870 | if (ebd->elf_machine_code != i_ehdrp->e_machine) | |
871 | { | |
2f3508ad | 872 | const bfd_target * const *target_ptr; |
062189c6 ILT |
873 | |
874 | if (ebd->elf_machine_code != EM_NONE) | |
875 | goto got_wrong_format_error; | |
876 | ||
877 | /* This is the generic ELF target. Let it match any ELF target | |
878 | for which we do not have a specific backend. */ | |
f4bd7a8f | 879 | for (target_ptr = bfd_target_vector; *target_ptr != NULL; target_ptr++) |
062189c6 ILT |
880 | { |
881 | struct elf_backend_data *back; | |
882 | ||
883 | if ((*target_ptr)->flavour != bfd_target_elf_flavour) | |
884 | continue; | |
885 | back = (struct elf_backend_data *) (*target_ptr)->backend_data; | |
886 | if (back->elf_machine_code == i_ehdrp->e_machine) | |
887 | { | |
888 | /* target_ptr is an ELF backend which matches this | |
889 | object file, so reject the generic ELF target. */ | |
890 | goto got_wrong_format_error; | |
891 | } | |
892 | } | |
893 | } | |
894 | ||
7b8106b4 | 895 | if (i_ehdrp->e_type == ET_EXEC) |
32090b8e | 896 | abfd->flags |= EXEC_P; |
7b8106b4 ILT |
897 | else if (i_ehdrp->e_type == ET_DYN) |
898 | abfd->flags |= DYNAMIC; | |
244ffee7 | 899 | |
fa15568a ILT |
900 | if (i_ehdrp->e_phnum > 0) |
901 | abfd->flags |= D_PAGED; | |
902 | ||
6ec3bb6a ILT |
903 | if (! bfd_default_set_arch_mach (abfd, ebd->arch, 0)) |
904 | goto got_no_match; | |
32090b8e | 905 | |
062189c6 ILT |
906 | /* Remember the entry point specified in the ELF file header. */ |
907 | bfd_get_start_address (abfd) = i_ehdrp->e_entry; | |
32090b8e KR |
908 | |
909 | /* Allocate space for a copy of the section header table in | |
910 | internal form, seek to the section header table in the file, | |
062189c6 | 911 | read it in, and convert it to internal form. */ |
6ec3bb6a ILT |
912 | i_shdrp = ((Elf_Internal_Shdr *) |
913 | bfd_alloc (abfd, sizeof (*i_shdrp) * i_ehdrp->e_shnum)); | |
914 | elf_elfsections (abfd) = ((Elf_Internal_Shdr **) | |
915 | bfd_alloc (abfd, | |
916 | sizeof (i_shdrp) * i_ehdrp->e_shnum)); | |
1c6042ee | 917 | if (!i_shdrp || !elf_elfsections (abfd)) |
d24928c0 | 918 | goto got_no_memory_error; |
6ec3bb6a | 919 | if (bfd_seek (abfd, i_ehdrp->e_shoff, SEEK_SET) != 0) |
25057836 | 920 | goto got_no_match; |
32090b8e | 921 | for (shindex = 0; shindex < i_ehdrp->e_shnum; shindex++) |
244ffee7 | 922 | { |
d24928c0 | 923 | if (bfd_read ((PTR) & x_shdr, sizeof x_shdr, 1, abfd) != sizeof (x_shdr)) |
25057836 | 924 | goto got_no_match; |
32090b8e | 925 | elf_swap_shdr_in (abfd, &x_shdr, i_shdrp + shindex); |
1c6042ee | 926 | elf_elfsections (abfd)[shindex] = i_shdrp + shindex; |
244ffee7 | 927 | } |
32090b8e | 928 | if (i_ehdrp->e_shstrndx) |
244ffee7 | 929 | { |
2e03ce18 ILT |
930 | if (! bfd_section_from_shdr (abfd, i_ehdrp->e_shstrndx)) |
931 | goto got_no_match; | |
244ffee7 JK |
932 | } |
933 | ||
32090b8e KR |
934 | /* Read in the string table containing the names of the sections. We |
935 | will need the base pointer to this table later. */ | |
936 | /* We read this inline now, so that we don't have to go through | |
937 | bfd_section_from_shdr with it (since this particular strtab is | |
938 | used to find all of the ELF section names.) */ | |
244ffee7 | 939 | |
32090b8e KR |
940 | shstrtab = elf_get_str_section (abfd, i_ehdrp->e_shstrndx); |
941 | if (!shstrtab) | |
6ec3bb6a | 942 | goto got_no_match; |
244ffee7 | 943 | |
32090b8e KR |
944 | /* Once all of the section headers have been read and converted, we |
945 | can start processing them. Note that the first section header is | |
6ec3bb6a | 946 | a dummy placeholder entry, so we ignore it. */ |
244ffee7 | 947 | |
32090b8e KR |
948 | for (shindex = 1; shindex < i_ehdrp->e_shnum; shindex++) |
949 | { | |
2e03ce18 ILT |
950 | if (! bfd_section_from_shdr (abfd, shindex)) |
951 | goto got_no_match; | |
32090b8e | 952 | } |
244ffee7 | 953 | |
5315c428 ILT |
954 | /* Let the backend double check the format and override global |
955 | information. */ | |
956 | if (ebd->elf_backend_object_p) | |
957 | { | |
958 | if ((*ebd->elf_backend_object_p) (abfd) == false) | |
959 | goto got_wrong_format_error; | |
960 | } | |
961 | ||
d24928c0 KR |
962 | return (abfd->xvec); |
963 | ||
1c6042ee | 964 | got_wrong_format_error: |
d1ad85a6 | 965 | bfd_set_error (bfd_error_wrong_format); |
d24928c0 | 966 | goto got_no_match; |
1c6042ee | 967 | got_no_memory_error: |
d1ad85a6 | 968 | bfd_set_error (bfd_error_no_memory); |
d24928c0 | 969 | goto got_no_match; |
1c6042ee | 970 | got_no_match: |
6ec3bb6a ILT |
971 | if (new_tdata != NULL |
972 | && new_tdata->elf_sect_ptr != NULL) | |
973 | bfd_release (abfd, new_tdata->elf_sect_ptr); | |
974 | if (i_shdrp != NULL) | |
975 | bfd_release (abfd, i_shdrp); | |
976 | if (new_tdata != NULL) | |
977 | bfd_release (abfd, new_tdata); | |
d24928c0 KR |
978 | elf_tdata (abfd) = preserved_tdata; |
979 | return (NULL); | |
32090b8e | 980 | } |
32090b8e | 981 | \f |
1c6042ee | 982 | |
32090b8e KR |
983 | /* ELF .o/exec file writing */ |
984 | ||
d24928c0 KR |
985 | /* Takes a bfd and a symbol, returns a pointer to the elf specific area |
986 | of the symbol if there is one. */ | |
32090b8e | 987 | static INLINE elf_symbol_type * |
1c6042ee ILT |
988 | elf_symbol_from (ignore_abfd, symbol) |
989 | bfd *ignore_abfd; | |
990 | asymbol *symbol; | |
244ffee7 | 991 | { |
32090b8e KR |
992 | if (symbol->the_bfd->xvec->flavour != bfd_target_elf_flavour) |
993 | return 0; | |
994 | ||
995 | if (symbol->the_bfd->tdata.elf_obj_data == (struct elf_obj_tdata *) NULL) | |
996 | return 0; | |
997 | ||
998 | return (elf_symbol_type *) symbol; | |
244ffee7 JK |
999 | } |
1000 | ||
32090b8e KR |
1001 | void |
1002 | write_relocs (abfd, sec, xxx) | |
1003 | bfd *abfd; | |
1004 | asection *sec; | |
1005 | PTR xxx; | |
1006 | { | |
1007 | Elf_Internal_Shdr *rela_hdr; | |
1008 | Elf_External_Rela *outbound_relocas; | |
1009 | Elf_External_Rel *outbound_relocs; | |
1010 | int idx; | |
1011 | int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; | |
300adb31 | 1012 | asymbol *last_sym = 0; |
38a5f510 | 1013 | int last_sym_idx = 9999999; /* should always be written before use */ |
244ffee7 | 1014 | |
32090b8e KR |
1015 | if ((sec->flags & SEC_RELOC) == 0) |
1016 | return; | |
6ec3bb6a ILT |
1017 | |
1018 | /* The linker backend writes the relocs out itself, and sets the | |
1019 | reloc_count field to zero to inhibit writing them here. Also, | |
1020 | sometimes the SEC_RELOC flag gets set even when there aren't any | |
1021 | relocs. */ | |
32090b8e KR |
1022 | if (sec->reloc_count == 0) |
1023 | return; | |
244ffee7 | 1024 | |
32090b8e | 1025 | rela_hdr = &elf_section_data (sec)->rel_hdr; |
244ffee7 | 1026 | |
32090b8e KR |
1027 | rela_hdr->sh_size = rela_hdr->sh_entsize * sec->reloc_count; |
1028 | rela_hdr->contents = (void *) bfd_alloc (abfd, rela_hdr->sh_size); | |
9783e04a DM |
1029 | if (!rela_hdr->contents) |
1030 | { | |
d1ad85a6 | 1031 | bfd_set_error (bfd_error_no_memory); |
1c6042ee | 1032 | abort (); /* FIXME */ |
9783e04a | 1033 | } |
244ffee7 | 1034 | |
32090b8e | 1035 | /* orelocation has the data, reloc_count has the count... */ |
300adb31 KR |
1036 | if (use_rela_p) |
1037 | { | |
1038 | outbound_relocas = (Elf_External_Rela *) rela_hdr->contents; | |
1039 | ||
1040 | for (idx = 0; idx < sec->reloc_count; idx++) | |
32090b8e | 1041 | { |
300adb31 KR |
1042 | Elf_Internal_Rela dst_rela; |
1043 | Elf_External_Rela *src_rela; | |
1044 | arelent *ptr; | |
1045 | asymbol *sym; | |
1046 | int n; | |
1047 | ||
1048 | ptr = sec->orelocation[idx]; | |
1049 | src_rela = outbound_relocas + idx; | |
4c124191 ILT |
1050 | |
1051 | /* The address of an ELF reloc is section relative for an object | |
1052 | file, and absolute for an executable file or shared library. | |
1053 | The address of a BFD reloc is always section relative. */ | |
1054 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) | |
300adb31 | 1055 | dst_rela.r_offset = ptr->address; |
4c124191 ILT |
1056 | else |
1057 | dst_rela.r_offset = ptr->address + sec->vma; | |
6a3eb9b6 | 1058 | |
300adb31 KR |
1059 | sym = *ptr->sym_ptr_ptr; |
1060 | if (sym == last_sym) | |
1061 | n = last_sym_idx; | |
1062 | else | |
32090b8e | 1063 | { |
300adb31 KR |
1064 | last_sym = sym; |
1065 | last_sym_idx = n = elf_symbol_from_bfd_symbol (abfd, &sym); | |
32090b8e | 1066 | } |
300adb31 KR |
1067 | dst_rela.r_info = ELF_R_INFO (n, ptr->howto->type); |
1068 | ||
1069 | dst_rela.r_addend = ptr->addend; | |
1070 | elf_swap_reloca_out (abfd, &dst_rela, src_rela); | |
244ffee7 | 1071 | } |
300adb31 KR |
1072 | } |
1073 | else | |
1074 | /* REL relocations */ | |
1075 | { | |
1076 | outbound_relocs = (Elf_External_Rel *) rela_hdr->contents; | |
1077 | ||
1078 | for (idx = 0; idx < sec->reloc_count; idx++) | |
32090b8e | 1079 | { |
300adb31 KR |
1080 | Elf_Internal_Rel dst_rel; |
1081 | Elf_External_Rel *src_rel; | |
1082 | arelent *ptr; | |
1083 | int n; | |
1084 | asymbol *sym; | |
1085 | ||
1086 | ptr = sec->orelocation[idx]; | |
1087 | sym = *ptr->sym_ptr_ptr; | |
1088 | src_rel = outbound_relocs + idx; | |
4c124191 ILT |
1089 | |
1090 | /* The address of an ELF reloc is section relative for an object | |
1091 | file, and absolute for an executable file or shared library. | |
1092 | The address of a BFD reloc is always section relative. */ | |
1093 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) | |
300adb31 | 1094 | dst_rel.r_offset = ptr->address; |
4c124191 ILT |
1095 | else |
1096 | dst_rel.r_offset = ptr->address + sec->vma; | |
244ffee7 | 1097 | |
300adb31 KR |
1098 | if (sym == last_sym) |
1099 | n = last_sym_idx; | |
1100 | else | |
32090b8e | 1101 | { |
300adb31 KR |
1102 | last_sym = sym; |
1103 | last_sym_idx = n = elf_symbol_from_bfd_symbol (abfd, &sym); | |
32090b8e | 1104 | } |
300adb31 KR |
1105 | dst_rel.r_info = ELF_R_INFO (n, ptr->howto->type); |
1106 | ||
1107 | elf_swap_reloc_out (abfd, &dst_rel, src_rel); | |
32090b8e | 1108 | } |
300adb31 | 1109 | } |
32090b8e | 1110 | } |
244ffee7 | 1111 | |
fa15568a | 1112 | /* Set up an ELF internal section header for a section. */ |
244ffee7 | 1113 | |
fa15568a | 1114 | /*ARGSUSED*/ |
32090b8e | 1115 | static void |
eb4267a3 | 1116 | elf_fake_sections (abfd, asect, failedptrarg) |
1c6042ee ILT |
1117 | bfd *abfd; |
1118 | asection *asect; | |
eb4267a3 | 1119 | PTR failedptrarg; |
32090b8e | 1120 | { |
eb4267a3 | 1121 | boolean *failedptr = (boolean *) failedptrarg; |
32090b8e | 1122 | Elf_Internal_Shdr *this_hdr; |
fa15568a | 1123 | |
eb4267a3 ILT |
1124 | if (*failedptr) |
1125 | { | |
1126 | /* We already failed; just get out of the bfd_map_over_sections | |
1127 | loop. */ | |
1128 | return; | |
1129 | } | |
1130 | ||
32090b8e | 1131 | this_hdr = &elf_section_data (asect)->this_hdr; |
fa15568a | 1132 | |
eb4267a3 ILT |
1133 | this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd), |
1134 | asect->name, | |
1135 | true, false); | |
6ec3bb6a | 1136 | if (this_hdr->sh_name == (unsigned long) -1) |
eb4267a3 ILT |
1137 | { |
1138 | *failedptr = true; | |
1139 | return; | |
1140 | } | |
fa15568a ILT |
1141 | |
1142 | this_hdr->sh_flags = 0; | |
1143 | if ((asect->flags & SEC_ALLOC) != 0) | |
1144 | this_hdr->sh_addr = asect->vma; | |
1145 | else | |
1146 | this_hdr->sh_addr = 0; | |
1147 | this_hdr->sh_offset = 0; | |
1148 | this_hdr->sh_size = asect->_raw_size; | |
1149 | this_hdr->sh_link = 0; | |
1150 | this_hdr->sh_info = 0; | |
32090b8e | 1151 | this_hdr->sh_addralign = 1 << asect->alignment_power; |
fa15568a ILT |
1152 | this_hdr->sh_entsize = 0; |
1153 | ||
24f13b03 | 1154 | this_hdr->bfd_section = asect; |
fa15568a | 1155 | this_hdr->contents = NULL; |
013dec1a ILT |
1156 | |
1157 | /* FIXME: This should not be based on section names. */ | |
1158 | if (strcmp (asect->name, ".dynstr") == 0) | |
1159 | this_hdr->sh_type = SHT_STRTAB; | |
1160 | else if (strcmp (asect->name, ".hash") == 0) | |
fa15568a ILT |
1161 | { |
1162 | this_hdr->sh_type = SHT_HASH; | |
1163 | this_hdr->sh_entsize = ARCH_SIZE / 8; | |
1164 | } | |
013dec1a | 1165 | else if (strcmp (asect->name, ".dynsym") == 0) |
fa15568a ILT |
1166 | { |
1167 | this_hdr->sh_type = SHT_DYNSYM; | |
1168 | this_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
1169 | } | |
013dec1a | 1170 | else if (strcmp (asect->name, ".dynamic") == 0) |
fa15568a ILT |
1171 | { |
1172 | this_hdr->sh_type = SHT_DYNAMIC; | |
1173 | this_hdr->sh_entsize = sizeof (Elf_External_Dyn); | |
1174 | } | |
0822b56d ILT |
1175 | else if (strncmp (asect->name, ".rela", 5) == 0 |
1176 | && get_elf_backend_data (abfd)->use_rela_p) | |
fa15568a ILT |
1177 | { |
1178 | this_hdr->sh_type = SHT_RELA; | |
1179 | this_hdr->sh_entsize = sizeof (Elf_External_Rela); | |
1180 | } | |
0822b56d ILT |
1181 | else if (strncmp (asect->name, ".rel", 4) == 0 |
1182 | && ! get_elf_backend_data (abfd)->use_rela_p) | |
1183 | { | |
1184 | this_hdr->sh_type = SHT_REL; | |
1185 | this_hdr->sh_entsize = sizeof (Elf_External_Rel); | |
1186 | } | |
fa15568a ILT |
1187 | else if (strcmp (asect->name, ".note") == 0) |
1188 | this_hdr->sh_type = SHT_NOTE; | |
1189 | else if (strncmp (asect->name, ".stab", 5) == 0 | |
1190 | && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0) | |
1191 | this_hdr->sh_type = SHT_STRTAB; | |
1192 | else if ((asect->flags & SEC_ALLOC) != 0 | |
1193 | && (asect->flags & SEC_LOAD) != 0) | |
32090b8e | 1194 | this_hdr->sh_type = SHT_PROGBITS; |
fa15568a ILT |
1195 | else if ((asect->flags & SEC_ALLOC) != 0 |
1196 | && ((asect->flags & SEC_LOAD) == 0)) | |
e621c5cc | 1197 | { |
6c35a16d ILT |
1198 | BFD_ASSERT (strcmp (asect->name, ".bss") == 0 |
1199 | || strcmp (asect->name, ".sbss") == 0); | |
e621c5cc ILT |
1200 | this_hdr->sh_type = SHT_NOBITS; |
1201 | } | |
32090b8e | 1202 | else |
fa15568a ILT |
1203 | { |
1204 | /* Who knows? */ | |
1205 | this_hdr->sh_type = SHT_PROGBITS; | |
1206 | } | |
32090b8e | 1207 | |
fa15568a ILT |
1208 | if ((asect->flags & SEC_ALLOC) != 0) |
1209 | this_hdr->sh_flags |= SHF_ALLOC; | |
1210 | if ((asect->flags & SEC_READONLY) == 0) | |
1211 | this_hdr->sh_flags |= SHF_WRITE; | |
1212 | if ((asect->flags & SEC_CODE) != 0) | |
1213 | this_hdr->sh_flags |= SHF_EXECINSTR; | |
244ffee7 | 1214 | |
fa15568a | 1215 | /* Check for processor-specific section types. */ |
f035cc47 ILT |
1216 | { |
1217 | struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1218 | ||
1219 | if (bed->elf_backend_fake_sections) | |
1220 | (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect); | |
1221 | } | |
1222 | ||
fa15568a ILT |
1223 | /* If the section has relocs, set up a section header for the |
1224 | SHT_REL[A] section. */ | |
1225 | if ((asect->flags & SEC_RELOC) != 0) | |
1226 | { | |
1227 | Elf_Internal_Shdr *rela_hdr; | |
1228 | int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; | |
eb4267a3 | 1229 | char *name; |
244ffee7 | 1230 | |
fa15568a | 1231 | rela_hdr = &elf_section_data (asect)->rel_hdr; |
eb4267a3 ILT |
1232 | name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name)); |
1233 | if (name == NULL) | |
1234 | { | |
1235 | bfd_set_error (bfd_error_no_memory); | |
1236 | *failedptr = true; | |
1237 | return; | |
1238 | } | |
1239 | sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); | |
fa15568a | 1240 | rela_hdr->sh_name = |
eb4267a3 ILT |
1241 | (unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name, |
1242 | true, false); | |
1243 | if (rela_hdr->sh_name == (unsigned int) -1) | |
1244 | { | |
1245 | *failedptr = true; | |
1246 | return; | |
1247 | } | |
fa15568a ILT |
1248 | rela_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; |
1249 | rela_hdr->sh_entsize = (use_rela_p | |
1250 | ? sizeof (Elf_External_Rela) | |
1251 | : sizeof (Elf_External_Rel)); | |
1252 | rela_hdr->sh_addralign = FILE_ALIGN; | |
1253 | rela_hdr->sh_flags = 0; | |
1254 | rela_hdr->sh_addr = 0; | |
1255 | rela_hdr->sh_size = 0; | |
1256 | rela_hdr->sh_offset = 0; | |
fa15568a ILT |
1257 | } |
1258 | } | |
244ffee7 | 1259 | |
fa15568a ILT |
1260 | /* Assign all ELF section numbers. The dummy first section is handled here |
1261 | too. The link/info pointers for the standard section types are filled | |
e6667b2b | 1262 | in here too, while we're at it. */ |
244ffee7 | 1263 | |
fa15568a ILT |
1264 | static boolean |
1265 | assign_section_numbers (abfd) | |
1266 | bfd *abfd; | |
1267 | { | |
1268 | struct elf_obj_tdata *t = elf_tdata (abfd); | |
1269 | asection *sec; | |
1270 | unsigned int section_number; | |
1271 | Elf_Internal_Shdr **i_shdrp; | |
1272 | ||
1273 | section_number = 1; | |
1274 | ||
fa15568a ILT |
1275 | for (sec = abfd->sections; sec; sec = sec->next) |
1276 | { | |
1277 | struct bfd_elf_section_data *d = elf_section_data (sec); | |
1278 | ||
1279 | d->this_idx = section_number++; | |
1280 | if ((sec->flags & SEC_RELOC) == 0) | |
1281 | d->rel_idx = 0; | |
1282 | else | |
1283 | d->rel_idx = section_number++; | |
1284 | } | |
1285 | ||
7c726b66 ILT |
1286 | t->shstrtab_section = section_number++; |
1287 | elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section; | |
eb4267a3 | 1288 | t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); |
7c726b66 ILT |
1289 | |
1290 | if (abfd->symcount > 0) | |
1291 | { | |
1292 | t->symtab_section = section_number++; | |
1293 | t->strtab_section = section_number++; | |
1294 | } | |
1295 | ||
fa15568a ILT |
1296 | elf_elfheader (abfd)->e_shnum = section_number; |
1297 | ||
1298 | /* Set up the list of section header pointers, in agreement with the | |
1299 | indices. */ | |
1300 | i_shdrp = ((Elf_Internal_Shdr **) | |
1301 | bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *))); | |
1302 | if (i_shdrp == NULL) | |
1303 | { | |
1304 | bfd_set_error (bfd_error_no_memory); | |
1305 | return false; | |
1306 | } | |
1307 | ||
1308 | i_shdrp[0] = ((Elf_Internal_Shdr *) | |
1309 | bfd_alloc (abfd, sizeof (Elf_Internal_Shdr))); | |
1310 | if (i_shdrp[0] == NULL) | |
1311 | { | |
1312 | bfd_release (abfd, i_shdrp); | |
1313 | bfd_set_error (bfd_error_no_memory); | |
1314 | return false; | |
1315 | } | |
1316 | memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr)); | |
1317 | ||
1318 | elf_elfsections (abfd) = i_shdrp; | |
1319 | ||
1320 | i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr; | |
1321 | if (abfd->symcount > 0) | |
1322 | { | |
1323 | i_shdrp[t->symtab_section] = &t->symtab_hdr; | |
1324 | i_shdrp[t->strtab_section] = &t->strtab_hdr; | |
1325 | t->symtab_hdr.sh_link = t->strtab_section; | |
1326 | } | |
1327 | for (sec = abfd->sections; sec; sec = sec->next) | |
32090b8e | 1328 | { |
fa15568a ILT |
1329 | struct bfd_elf_section_data *d = elf_section_data (sec); |
1330 | asection *s; | |
1331 | const char *name; | |
1332 | ||
1333 | i_shdrp[d->this_idx] = &d->this_hdr; | |
1334 | if (d->rel_idx != 0) | |
1335 | i_shdrp[d->rel_idx] = &d->rel_hdr; | |
1336 | ||
1337 | /* Fill in the sh_link and sh_info fields while we're at it. */ | |
1338 | ||
1339 | /* sh_link of a reloc section is the section index of the symbol | |
1340 | table. sh_info is the section index of the section to which | |
1341 | the relocation entries apply. */ | |
1342 | if (d->rel_idx != 0) | |
1343 | { | |
1344 | d->rel_hdr.sh_link = t->symtab_section; | |
1345 | d->rel_hdr.sh_info = d->this_idx; | |
1346 | } | |
1347 | ||
1348 | switch (d->this_hdr.sh_type) | |
32090b8e | 1349 | { |
fa15568a ILT |
1350 | case SHT_REL: |
1351 | case SHT_RELA: | |
1352 | /* A reloc section which we are treating as a normal BFD | |
1353 | section. sh_link is the section index of the symbol | |
1354 | table. sh_info is the section index of the section to | |
1355 | which the relocation entries apply. We assume that an | |
1356 | allocated reloc section uses the dynamic symbol table. | |
1357 | FIXME: How can we be sure? */ | |
1358 | s = bfd_get_section_by_name (abfd, ".dynsym"); | |
1359 | if (s != NULL) | |
1360 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1361 | ||
1362 | /* We look up the section the relocs apply to by name. */ | |
1363 | name = sec->name; | |
1364 | if (d->this_hdr.sh_type == SHT_REL) | |
1365 | name += 4; | |
1366 | else | |
1367 | name += 5; | |
1368 | s = bfd_get_section_by_name (abfd, name); | |
1369 | if (s != NULL) | |
1370 | d->this_hdr.sh_info = elf_section_data (s)->this_idx; | |
1371 | break; | |
1372 | ||
1373 | case SHT_STRTAB: | |
1374 | /* We assume that a section named .stab*str is a stabs | |
1375 | string section. We look for a section with the same name | |
1376 | but without the trailing ``str'', and set its sh_link | |
1377 | field to point to this section. */ | |
1378 | if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0 | |
1379 | && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) | |
1380 | { | |
1381 | size_t len; | |
1382 | char *alc; | |
1383 | ||
1384 | len = strlen (sec->name); | |
1385 | alc = (char *) malloc (len - 2); | |
1386 | if (alc == NULL) | |
1387 | { | |
1388 | bfd_set_error (bfd_error_no_memory); | |
1389 | return false; | |
1390 | } | |
1391 | strncpy (alc, sec->name, len - 3); | |
1392 | alc[len - 3] = '\0'; | |
1393 | s = bfd_get_section_by_name (abfd, alc); | |
1394 | free (alc); | |
1395 | if (s != NULL) | |
1396 | { | |
1397 | elf_section_data (s)->this_hdr.sh_link = d->this_idx; | |
1398 | ||
1399 | /* This is a .stab section. */ | |
1400 | elf_section_data (s)->this_hdr.sh_entsize = | |
1401 | 4 + 2 * (ARCH_SIZE / 8); | |
1402 | } | |
1403 | } | |
1404 | break; | |
1405 | ||
1406 | case SHT_DYNAMIC: | |
1407 | case SHT_DYNSYM: | |
1408 | /* sh_link is the section header index of the string table | |
1409 | used for the dynamic entries or symbol table. */ | |
1410 | s = bfd_get_section_by_name (abfd, ".dynstr"); | |
1411 | if (s != NULL) | |
1412 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1413 | break; | |
1414 | ||
1415 | case SHT_HASH: | |
1416 | /* sh_link is the section header index of the symbol table | |
1417 | this hash table is for. */ | |
1418 | s = bfd_get_section_by_name (abfd, ".dynsym"); | |
1419 | if (s != NULL) | |
1420 | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | |
1421 | break; | |
32090b8e KR |
1422 | } |
1423 | } | |
fa15568a ILT |
1424 | |
1425 | return true; | |
244ffee7 JK |
1426 | } |
1427 | ||
32090b8e KR |
1428 | /* Map symbol from it's internal number to the external number, moving |
1429 | all local symbols to be at the head of the list. */ | |
244ffee7 | 1430 | |
32090b8e | 1431 | static INLINE int |
062189c6 ILT |
1432 | sym_is_global (abfd, sym) |
1433 | bfd *abfd; | |
32090b8e KR |
1434 | asymbol *sym; |
1435 | { | |
062189c6 ILT |
1436 | /* If the backend has a special mapping, use it. */ |
1437 | if (get_elf_backend_data (abfd)->elf_backend_sym_is_global) | |
1438 | return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global) | |
1439 | (abfd, sym)); | |
1440 | ||
d24928c0 | 1441 | if (sym->flags & (BSF_GLOBAL | BSF_WEAK)) |
244ffee7 | 1442 | { |
32090b8e KR |
1443 | if (sym->flags & BSF_LOCAL) |
1444 | abort (); | |
1445 | return 1; | |
244ffee7 | 1446 | } |
d24928c0 KR |
1447 | if (sym->section == 0) |
1448 | { | |
1449 | /* Is this valid? */ | |
1450 | abort (); | |
1451 | ||
1452 | return 1; | |
1453 | } | |
badd23e3 | 1454 | if (bfd_is_und_section (sym->section)) |
32090b8e KR |
1455 | return 1; |
1456 | if (bfd_is_com_section (sym->section)) | |
1457 | return 1; | |
1458 | if (sym->flags & (BSF_LOCAL | BSF_SECTION_SYM | BSF_FILE)) | |
1459 | return 0; | |
1460 | return 0; | |
1461 | } | |
244ffee7 | 1462 | |
9783e04a | 1463 | static boolean |
1c6042ee ILT |
1464 | elf_map_symbols (abfd) |
1465 | bfd *abfd; | |
32090b8e KR |
1466 | { |
1467 | int symcount = bfd_get_symcount (abfd); | |
1468 | asymbol **syms = bfd_get_outsymbols (abfd); | |
d24928c0 | 1469 | asymbol **sect_syms; |
32090b8e KR |
1470 | int num_locals = 0; |
1471 | int num_globals = 0; | |
1472 | int num_locals2 = 0; | |
1473 | int num_globals2 = 0; | |
d24928c0 | 1474 | int max_index = 0; |
32090b8e | 1475 | int num_sections = 0; |
32090b8e KR |
1476 | int idx; |
1477 | asection *asect; | |
e4a4da62 | 1478 | asymbol **new_syms; |
6a3eb9b6 | 1479 | |
32090b8e KR |
1480 | #ifdef DEBUG |
1481 | fprintf (stderr, "elf_map_symbols\n"); | |
1482 | fflush (stderr); | |
1483 | #endif | |
244ffee7 | 1484 | |
e4a4da62 ILT |
1485 | /* Add a section symbol for each BFD section. FIXME: Is this really |
1486 | necessary? */ | |
32090b8e | 1487 | for (asect = abfd->sections; asect; asect = asect->next) |
244ffee7 | 1488 | { |
d24928c0 KR |
1489 | if (max_index < asect->index) |
1490 | max_index = asect->index; | |
244ffee7 JK |
1491 | } |
1492 | ||
d24928c0 | 1493 | max_index++; |
d24928c0 | 1494 | sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *)); |
e4a4da62 | 1495 | if (sect_syms == NULL) |
9783e04a | 1496 | { |
d1ad85a6 | 1497 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
1498 | return false; |
1499 | } | |
e4a4da62 | 1500 | elf_section_syms (abfd) = sect_syms; |
d24928c0 | 1501 | |
24f13b03 | 1502 | for (idx = 0; idx < symcount; idx++) |
e621c5cc | 1503 | { |
f5202354 | 1504 | if ((syms[idx]->flags & BSF_SECTION_SYM) != 0 |
85200ebc | 1505 | && syms[idx]->value == 0) |
9783e04a | 1506 | { |
24f13b03 ILT |
1507 | asection *sec; |
1508 | ||
1509 | sec = syms[idx]->section; | |
e4a4da62 | 1510 | if (sec->owner != NULL) |
24f13b03 ILT |
1511 | { |
1512 | if (sec->owner != abfd) | |
1513 | { | |
85200ebc KR |
1514 | if (sec->output_offset != 0) |
1515 | continue; | |
24f13b03 ILT |
1516 | sec = sec->output_section; |
1517 | BFD_ASSERT (sec->owner == abfd); | |
1518 | } | |
1519 | sect_syms[sec->index] = syms[idx]; | |
1520 | } | |
9783e04a | 1521 | } |
24f13b03 ILT |
1522 | } |
1523 | ||
1524 | for (asect = abfd->sections; asect; asect = asect->next) | |
1525 | { | |
1526 | asymbol *sym; | |
1527 | ||
1528 | if (sect_syms[asect->index] != NULL) | |
1529 | continue; | |
1530 | ||
1531 | sym = bfd_make_empty_symbol (abfd); | |
1532 | if (sym == NULL) | |
1533 | return false; | |
e621c5cc ILT |
1534 | sym->the_bfd = abfd; |
1535 | sym->name = asect->name; | |
85200ebc | 1536 | sym->value = 0; |
24f13b03 ILT |
1537 | /* Set the flags to 0 to indicate that this one was newly added. */ |
1538 | sym->flags = 0; | |
e621c5cc ILT |
1539 | sym->section = asect; |
1540 | sect_syms[asect->index] = sym; | |
1541 | num_sections++; | |
d24928c0 | 1542 | #ifdef DEBUG |
e621c5cc ILT |
1543 | fprintf (stderr, |
1544 | "creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n", | |
1545 | asect->name, (long) asect->vma, asect->index, (long) asect); | |
d24928c0 | 1546 | #endif |
e621c5cc | 1547 | } |
d24928c0 | 1548 | |
e4a4da62 ILT |
1549 | /* Classify all of the symbols. */ |
1550 | for (idx = 0; idx < symcount; idx++) | |
244ffee7 | 1551 | { |
e4a4da62 ILT |
1552 | if (!sym_is_global (abfd, syms[idx])) |
1553 | num_locals++; | |
32090b8e | 1554 | else |
e4a4da62 ILT |
1555 | num_globals++; |
1556 | } | |
1557 | for (asect = abfd->sections; asect; asect = asect->next) | |
1558 | { | |
1559 | if (sect_syms[asect->index] != NULL | |
1560 | && sect_syms[asect->index]->flags == 0) | |
32090b8e | 1561 | { |
e4a4da62 ILT |
1562 | sect_syms[asect->index]->flags = BSF_SECTION_SYM; |
1563 | if (!sym_is_global (abfd, sect_syms[asect->index])) | |
1564 | num_locals++; | |
1565 | else | |
1566 | num_globals++; | |
1567 | sect_syms[asect->index]->flags = 0; | |
32090b8e | 1568 | } |
32090b8e | 1569 | } |
244ffee7 | 1570 | |
e4a4da62 ILT |
1571 | /* Now sort the symbols so the local symbols are first. */ |
1572 | new_syms = ((asymbol **) | |
1573 | bfd_alloc (abfd, | |
1574 | (num_locals + num_globals) * sizeof (asymbol *))); | |
1575 | if (new_syms == NULL) | |
9783e04a | 1576 | { |
d1ad85a6 | 1577 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
1578 | return false; |
1579 | } | |
244ffee7 | 1580 | |
32090b8e | 1581 | for (idx = 0; idx < symcount; idx++) |
244ffee7 | 1582 | { |
e4a4da62 ILT |
1583 | asymbol *sym = syms[idx]; |
1584 | int i; | |
1585 | ||
1586 | if (!sym_is_global (abfd, sym)) | |
1587 | i = num_locals2++; | |
32090b8e | 1588 | else |
e4a4da62 ILT |
1589 | i = num_locals + num_globals2++; |
1590 | new_syms[i] = sym; | |
1591 | sym->udata.i = i + 1; | |
244ffee7 | 1592 | } |
e4a4da62 | 1593 | for (asect = abfd->sections; asect; asect = asect->next) |
244ffee7 | 1594 | { |
e4a4da62 ILT |
1595 | if (sect_syms[asect->index] != NULL |
1596 | && sect_syms[asect->index]->flags == 0) | |
1597 | { | |
1598 | asymbol *sym = sect_syms[asect->index]; | |
1599 | int i; | |
1600 | ||
1601 | sym->flags = BSF_SECTION_SYM; | |
1602 | if (!sym_is_global (abfd, sym)) | |
1603 | i = num_locals2++; | |
1604 | else | |
1605 | i = num_locals + num_globals2++; | |
1606 | new_syms[i] = sym; | |
1607 | sym->udata.i = i + 1; | |
1608 | } | |
244ffee7 JK |
1609 | } |
1610 | ||
e4a4da62 ILT |
1611 | bfd_set_symtab (abfd, new_syms, num_locals + num_globals); |
1612 | ||
32090b8e KR |
1613 | elf_num_locals (abfd) = num_locals; |
1614 | elf_num_globals (abfd) = num_globals; | |
9783e04a | 1615 | return true; |
32090b8e | 1616 | } |
244ffee7 | 1617 | |
6ec3bb6a ILT |
1618 | /* Compute the file positions we are going to put the sections at, and |
1619 | otherwise prepare to begin writing out the ELF file. If LINK_INFO | |
1620 | is not NULL, this is being called by the ELF backend linker. */ | |
244ffee7 | 1621 | |
32090b8e | 1622 | static boolean |
6ec3bb6a | 1623 | elf_compute_section_file_positions (abfd, link_info) |
1c6042ee | 1624 | bfd *abfd; |
6ec3bb6a | 1625 | struct bfd_link_info *link_info; |
32090b8e | 1626 | { |
6ec3bb6a | 1627 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
eb4267a3 ILT |
1628 | boolean failed; |
1629 | struct bfd_strtab_hash *strtab; | |
6ec3bb6a ILT |
1630 | Elf_Internal_Shdr *shstrtab_hdr; |
1631 | ||
1632 | if (abfd->output_has_begun) | |
1633 | return true; | |
1634 | ||
1635 | /* Do any elf backend specific processing first. */ | |
1636 | if (bed->elf_backend_begin_write_processing) | |
71edd06d | 1637 | (*bed->elf_backend_begin_write_processing) (abfd, link_info); |
6ec3bb6a ILT |
1638 | |
1639 | if (! prep_headers (abfd)) | |
1640 | return false; | |
1641 | ||
eb4267a3 ILT |
1642 | failed = false; |
1643 | bfd_map_over_sections (abfd, elf_fake_sections, &failed); | |
1644 | if (failed) | |
1645 | return false; | |
244ffee7 | 1646 | |
9783e04a DM |
1647 | if (!assign_section_numbers (abfd)) |
1648 | return false; | |
244ffee7 | 1649 | |
6ec3bb6a ILT |
1650 | /* The backend linker builds symbol table information itself. */ |
1651 | if (link_info == NULL) | |
1652 | { | |
eb4267a3 | 1653 | if (! swap_out_syms (abfd, &strtab)) |
6ec3bb6a ILT |
1654 | return false; |
1655 | } | |
244ffee7 | 1656 | |
6ec3bb6a ILT |
1657 | shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; |
1658 | /* sh_name was set in prep_headers. */ | |
1659 | shstrtab_hdr->sh_type = SHT_STRTAB; | |
1660 | shstrtab_hdr->sh_flags = 0; | |
1661 | shstrtab_hdr->sh_addr = 0; | |
eb4267a3 | 1662 | shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); |
6ec3bb6a ILT |
1663 | shstrtab_hdr->sh_entsize = 0; |
1664 | shstrtab_hdr->sh_link = 0; | |
1665 | shstrtab_hdr->sh_info = 0; | |
1666 | /* sh_offset is set in assign_file_positions_for_symtabs_and_strtabs. */ | |
1667 | shstrtab_hdr->sh_addralign = 1; | |
6ec3bb6a ILT |
1668 | |
1669 | if (!assign_file_positions_except_relocs (abfd, | |
1670 | link_info == NULL ? true : false)) | |
9783e04a | 1671 | return false; |
32090b8e | 1672 | |
eb4267a3 ILT |
1673 | if (link_info == NULL) |
1674 | { | |
1675 | /* Now that we know where the .strtab section goes, write it | |
1676 | out. */ | |
1677 | if ((bfd_seek (abfd, elf_tdata (abfd)->strtab_hdr.sh_offset, SEEK_SET) | |
1678 | != 0) | |
1679 | || ! _bfd_stringtab_emit (abfd, strtab)) | |
1680 | return false; | |
1681 | _bfd_stringtab_free (strtab); | |
1682 | } | |
1683 | ||
6ec3bb6a ILT |
1684 | abfd->output_has_begun = true; |
1685 | ||
32090b8e KR |
1686 | return true; |
1687 | } | |
1688 | ||
244ffee7 | 1689 | |
013dec1a ILT |
1690 | /* Align to the maximum file alignment that could be required for any |
1691 | ELF data structure. */ | |
1692 | ||
1693 | static INLINE file_ptr | |
1694 | align_file_position (off) | |
1695 | file_ptr off; | |
1696 | { | |
1697 | return (off + FILE_ALIGN - 1) & ~(FILE_ALIGN - 1); | |
1698 | } | |
1699 | ||
1700 | /* Assign a file position to a section, optionally aligning to the | |
1701 | required section alignment. */ | |
1702 | ||
32090b8e | 1703 | static INLINE file_ptr |
013dec1a | 1704 | assign_file_position_for_section (i_shdrp, offset, align) |
32090b8e KR |
1705 | Elf_Internal_Shdr *i_shdrp; |
1706 | file_ptr offset; | |
013dec1a | 1707 | boolean align; |
32090b8e | 1708 | { |
013dec1a ILT |
1709 | if (align) |
1710 | { | |
1711 | unsigned int al; | |
f035cc47 | 1712 | |
013dec1a ILT |
1713 | al = i_shdrp->sh_addralign; |
1714 | if (al > 1) | |
1715 | offset = BFD_ALIGN (offset, al); | |
1716 | } | |
1717 | i_shdrp->sh_offset = offset; | |
24f13b03 ILT |
1718 | if (i_shdrp->bfd_section != NULL) |
1719 | i_shdrp->bfd_section->filepos = offset; | |
300adb31 KR |
1720 | if (i_shdrp->sh_type != SHT_NOBITS) |
1721 | offset += i_shdrp->sh_size; | |
32090b8e | 1722 | return offset; |
244ffee7 JK |
1723 | } |
1724 | ||
6c97aedf ILT |
1725 | /* Get the size of the program header. |
1726 | ||
1727 | SORTED_HDRS, if non-NULL, is an array of COUNT pointers to headers sorted | |
1728 | by VMA. Non-allocated sections (!SHF_ALLOC) must appear last. All | |
1729 | section VMAs and sizes are known so we can compute the correct value. | |
1730 | (??? This may not be perfectly true. What cases do we miss?) | |
1731 | ||
1732 | If SORTED_HDRS is NULL we assume there are two segments: text and data | |
1733 | (exclusive of .interp and .dynamic). | |
1734 | ||
1735 | If this is called by the linker before any of the section VMA's are set, it | |
1736 | can't calculate the correct value for a strange memory layout. This only | |
1737 | happens when SIZEOF_HEADERS is used in a linker script. In this case, | |
1738 | SORTED_HDRS is NULL and we assume the normal scenario of one text and one | |
1739 | data segment (exclusive of .interp and .dynamic). | |
1740 | ||
1741 | ??? User written scripts must either not use SIZEOF_HEADERS, or assume there | |
1742 | will be two segments. */ | |
01383fb4 | 1743 | |
013dec1a | 1744 | static bfd_size_type |
6c97aedf | 1745 | get_program_header_size (abfd, sorted_hdrs, count, maxpagesize) |
300adb31 | 1746 | bfd *abfd; |
6c97aedf ILT |
1747 | Elf_Internal_Shdr **sorted_hdrs; |
1748 | unsigned int count; | |
1749 | bfd_vma maxpagesize; | |
300adb31 | 1750 | { |
013dec1a ILT |
1751 | size_t segs; |
1752 | asection *s; | |
300adb31 | 1753 | |
6c97aedf ILT |
1754 | /* We can't return a different result each time we're called. */ |
1755 | if (elf_tdata (abfd)->program_header_size != 0) | |
1756 | return elf_tdata (abfd)->program_header_size; | |
1757 | ||
1758 | if (sorted_hdrs != NULL) | |
1759 | { | |
1760 | unsigned int i; | |
1761 | unsigned int last_type; | |
1762 | Elf_Internal_Shdr **hdrpp; | |
1763 | /* What we think the current segment's offset is. */ | |
1764 | bfd_vma p_offset; | |
1765 | /* What we think the current segment's address is. */ | |
1766 | bfd_vma p_vaddr; | |
1767 | /* How big we think the current segment is. */ | |
1768 | bfd_vma p_memsz; | |
1769 | /* What we think the current file offset is. */ | |
1770 | bfd_vma file_offset; | |
1771 | bfd_vma next_offset; | |
1772 | ||
1773 | /* Scan the headers and compute the number of segments required. This | |
1774 | code is intentionally similar to the code in map_program_segments. | |
1775 | ||
1776 | The `sh_offset' field isn't valid at this point, so we keep our own | |
1777 | running total in `file_offset'. | |
1778 | ||
1779 | This works because section VMAs are already known. */ | |
1780 | ||
1781 | segs = 1; | |
1782 | /* Make sure the first section goes in the first segment. */ | |
1783 | file_offset = p_offset = sorted_hdrs[0]->sh_addr % maxpagesize; | |
1784 | p_vaddr = sorted_hdrs[0]->sh_addr; | |
1785 | p_memsz = 0; | |
1786 | last_type = SHT_PROGBITS; | |
1787 | ||
1788 | for (i = 0, hdrpp = sorted_hdrs; i < count; i++, hdrpp++) | |
1789 | { | |
1790 | Elf_Internal_Shdr *hdr; | |
1791 | ||
1792 | hdr = *hdrpp; | |
1793 | ||
1794 | /* Ignore any section which will not be part of the process | |
1795 | image. */ | |
1796 | if ((hdr->sh_flags & SHF_ALLOC) == 0) | |
1797 | continue; | |
1798 | ||
1799 | /* Keep track of where this and the next sections go. | |
1800 | The section VMA must equal the file position modulo | |
1801 | the page size. */ | |
1802 | file_offset += (hdr->sh_addr - file_offset) % maxpagesize; | |
1803 | next_offset = file_offset; | |
1804 | if (hdr->sh_type != SHT_NOBITS) | |
1805 | next_offset = file_offset + hdr->sh_size; | |
1806 | ||
1807 | /* If this section fits in the segment we are constructing, add | |
1808 | it in. */ | |
1809 | if ((file_offset - (p_offset + p_memsz) | |
1810 | == hdr->sh_addr - (p_vaddr + p_memsz)) | |
1811 | && (last_type != SHT_NOBITS || hdr->sh_type == SHT_NOBITS)) | |
1812 | { | |
1813 | bfd_size_type adjust; | |
1814 | ||
1815 | adjust = hdr->sh_addr - (p_vaddr + p_memsz); | |
1816 | p_memsz += hdr->sh_size + adjust; | |
1817 | file_offset = next_offset; | |
1818 | last_type = hdr->sh_type; | |
1819 | continue; | |
1820 | } | |
1821 | ||
1822 | /* The section won't fit, start a new segment. */ | |
1823 | ++segs; | |
1824 | ||
1825 | /* Initialize the segment. */ | |
1826 | p_vaddr = hdr->sh_addr; | |
1827 | p_memsz = hdr->sh_size; | |
1828 | p_offset = file_offset; | |
1829 | file_offset = next_offset; | |
1830 | ||
1831 | last_type = hdr->sh_type; | |
1832 | } | |
1833 | } | |
1834 | else | |
1835 | { | |
1836 | /* Assume we will need exactly two PT_LOAD segments: one for text | |
1837 | and one for data. */ | |
1838 | segs = 2; | |
1839 | } | |
013dec1a ILT |
1840 | |
1841 | s = bfd_get_section_by_name (abfd, ".interp"); | |
1842 | if (s != NULL && (s->flags & SEC_LOAD) != 0) | |
1843 | { | |
1844 | /* If we have a loadable interpreter section, we need a | |
1845 | PT_INTERP segment. In this case, assume we also need a | |
1846 | PT_PHDR segment, although that may not be true for all | |
1847 | targets. */ | |
1848 | segs += 2; | |
1849 | } | |
1850 | ||
1851 | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | |
1852 | { | |
1853 | /* We need a PT_DYNAMIC segment. */ | |
1854 | ++segs; | |
1855 | } | |
1856 | ||
6c97aedf ILT |
1857 | elf_tdata (abfd)->program_header_size = segs * sizeof (Elf_External_Phdr); |
1858 | return elf_tdata (abfd)->program_header_size; | |
300adb31 KR |
1859 | } |
1860 | ||
013dec1a ILT |
1861 | /* Create the program header. OFF is the file offset where the |
1862 | program header should be written. FIRST is the first loadable ELF | |
5945db29 ILT |
1863 | section. SORTED_HDRS is the ELF sections sorted by section |
1864 | address. PHDR_SIZE is the size of the program header as returned | |
013dec1a | 1865 | by get_program_header_size. */ |
300adb31 | 1866 | |
013dec1a | 1867 | static file_ptr |
5945db29 | 1868 | map_program_segments (abfd, off, first, sorted_hdrs, phdr_size) |
300adb31 | 1869 | bfd *abfd; |
013dec1a ILT |
1870 | file_ptr off; |
1871 | Elf_Internal_Shdr *first; | |
5945db29 | 1872 | Elf_Internal_Shdr **sorted_hdrs; |
013dec1a | 1873 | bfd_size_type phdr_size; |
300adb31 | 1874 | { |
6731b89c | 1875 | Elf_Internal_Phdr phdrs[10]; |
013dec1a | 1876 | unsigned int phdr_count; |
300adb31 | 1877 | Elf_Internal_Phdr *phdr; |
013dec1a ILT |
1878 | int phdr_size_adjust; |
1879 | unsigned int i; | |
1880 | Elf_Internal_Shdr **hdrpp; | |
1881 | asection *sinterp, *sdyn; | |
1882 | unsigned int last_type; | |
1883 | Elf_Internal_Ehdr *i_ehdrp; | |
1884 | ||
df9e066f | 1885 | BFD_ASSERT ((abfd->flags & (EXEC_P | DYNAMIC)) != 0); |
6731b89c ILT |
1886 | BFD_ASSERT (phdr_size / sizeof (Elf_Internal_Phdr) |
1887 | <= sizeof phdrs / sizeof (phdrs[0])); | |
013dec1a ILT |
1888 | |
1889 | phdr_count = 0; | |
1890 | phdr = phdrs; | |
1891 | ||
1892 | phdr_size_adjust = 0; | |
300adb31 | 1893 | |
013dec1a ILT |
1894 | /* If we have a loadable .interp section, we must create a PT_INTERP |
1895 | segment which must precede all PT_LOAD segments. We assume that | |
1896 | we must also create a PT_PHDR segment, although that may not be | |
1897 | true for all targets. */ | |
1898 | sinterp = bfd_get_section_by_name (abfd, ".interp"); | |
1899 | if (sinterp != NULL && (sinterp->flags & SEC_LOAD) != 0) | |
80425e6c | 1900 | { |
013dec1a ILT |
1901 | BFD_ASSERT (first != NULL); |
1902 | ||
1903 | phdr->p_type = PT_PHDR; | |
1904 | ||
1905 | phdr->p_offset = off; | |
1906 | ||
1907 | /* Account for any adjustment made because of the alignment of | |
1908 | the first loadable section. */ | |
1909 | phdr_size_adjust = (first->sh_offset - phdr_size) - off; | |
1910 | BFD_ASSERT (phdr_size_adjust >= 0 && phdr_size_adjust < 128); | |
1911 | ||
1912 | /* The program header precedes all loadable sections. This lets | |
1913 | us compute its loadable address. This depends on the linker | |
1914 | script. */ | |
1915 | phdr->p_vaddr = first->sh_addr - (phdr_size + phdr_size_adjust); | |
1916 | ||
1917 | phdr->p_paddr = 0; | |
1918 | phdr->p_filesz = phdr_size; | |
1919 | phdr->p_memsz = phdr_size; | |
1920 | ||
1921 | /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ | |
1922 | phdr->p_flags = PF_R | PF_X; | |
1923 | ||
1924 | phdr->p_align = FILE_ALIGN; | |
1925 | BFD_ASSERT ((phdr->p_vaddr - phdr->p_offset) % FILE_ALIGN == 0); | |
1926 | ||
1927 | /* Include the ELF header in the first loadable segment. */ | |
1928 | phdr_size_adjust += off; | |
1929 | ||
1930 | ++phdr_count; | |
1931 | ++phdr; | |
1932 | ||
1933 | phdr->p_type = PT_INTERP; | |
1934 | phdr->p_offset = sinterp->filepos; | |
1935 | phdr->p_vaddr = sinterp->vma; | |
1936 | phdr->p_paddr = 0; | |
1937 | phdr->p_filesz = sinterp->_raw_size; | |
1938 | phdr->p_memsz = sinterp->_raw_size; | |
1939 | phdr->p_flags = PF_R; | |
1940 | phdr->p_align = 1 << bfd_get_section_alignment (abfd, sinterp); | |
1941 | ||
1942 | ++phdr_count; | |
1943 | ++phdr; | |
80425e6c | 1944 | } |
013dec1a ILT |
1945 | |
1946 | /* Look through the sections to see how they will be divided into | |
1947 | program segments. The sections must be arranged in order by | |
1948 | sh_addr for this to work correctly. */ | |
1949 | phdr->p_type = PT_NULL; | |
1950 | last_type = SHT_PROGBITS; | |
5945db29 | 1951 | for (i = 1, hdrpp = sorted_hdrs; |
013dec1a ILT |
1952 | i < elf_elfheader (abfd)->e_shnum; |
1953 | i++, hdrpp++) | |
300adb31 | 1954 | { |
013dec1a ILT |
1955 | Elf_Internal_Shdr *hdr; |
1956 | ||
1957 | hdr = *hdrpp; | |
1958 | ||
1959 | /* Ignore any section which will not be part of the process | |
1960 | image. */ | |
1961 | if ((hdr->sh_flags & SHF_ALLOC) == 0) | |
1962 | continue; | |
1963 | ||
1964 | /* If this section fits in the segment we are constructing, add | |
1965 | it in. */ | |
1966 | if (phdr->p_type != PT_NULL | |
1967 | && (hdr->sh_offset - (phdr->p_offset + phdr->p_memsz) | |
1968 | == hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz)) | |
1969 | && (last_type != SHT_NOBITS || hdr->sh_type == SHT_NOBITS)) | |
300adb31 | 1970 | { |
013dec1a ILT |
1971 | bfd_size_type adjust; |
1972 | ||
1973 | adjust = hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz); | |
1974 | phdr->p_memsz += hdr->sh_size + adjust; | |
1975 | if (hdr->sh_type != SHT_NOBITS) | |
1976 | phdr->p_filesz += hdr->sh_size + adjust; | |
1977 | if ((hdr->sh_flags & SHF_WRITE) != 0) | |
1978 | phdr->p_flags |= PF_W; | |
1979 | if ((hdr->sh_flags & SHF_EXECINSTR) != 0) | |
1980 | phdr->p_flags |= PF_X; | |
1981 | last_type = hdr->sh_type; | |
300adb31 KR |
1982 | continue; |
1983 | } | |
300adb31 | 1984 | |
6c97aedf ILT |
1985 | /* The section won't fit, start a new segment. If we're already in one, |
1986 | move to the next one. */ | |
013dec1a | 1987 | if (phdr->p_type != PT_NULL) |
300adb31 | 1988 | { |
013dec1a ILT |
1989 | ++phdr; |
1990 | ++phdr_count; | |
300adb31 | 1991 | } |
013dec1a | 1992 | |
6c97aedf | 1993 | /* Initialize the segment. */ |
013dec1a ILT |
1994 | phdr->p_type = PT_LOAD; |
1995 | phdr->p_offset = hdr->sh_offset; | |
1996 | phdr->p_vaddr = hdr->sh_addr; | |
1997 | phdr->p_paddr = 0; | |
1998 | if (hdr->sh_type == SHT_NOBITS) | |
1999 | phdr->p_filesz = 0; | |
2000 | else | |
2001 | phdr->p_filesz = hdr->sh_size; | |
2002 | phdr->p_memsz = hdr->sh_size; | |
2003 | phdr->p_flags = PF_R; | |
2004 | if ((hdr->sh_flags & SHF_WRITE) != 0) | |
2005 | phdr->p_flags |= PF_W; | |
2006 | if ((hdr->sh_flags & SHF_EXECINSTR) != 0) | |
2007 | phdr->p_flags |= PF_X; | |
2008 | phdr->p_align = get_elf_backend_data (abfd)->maxpagesize; | |
2009 | ||
2010 | if (hdr == first | |
2011 | && sinterp != NULL | |
2012 | && (sinterp->flags & SEC_LOAD) != 0) | |
2f3189e7 | 2013 | { |
013dec1a ILT |
2014 | phdr->p_offset -= phdr_size + phdr_size_adjust; |
2015 | phdr->p_vaddr -= phdr_size + phdr_size_adjust; | |
2016 | phdr->p_filesz += phdr_size + phdr_size_adjust; | |
2017 | phdr->p_memsz += phdr_size + phdr_size_adjust; | |
2f3189e7 | 2018 | } |
300adb31 | 2019 | |
013dec1a | 2020 | last_type = hdr->sh_type; |
300adb31 | 2021 | } |
300adb31 | 2022 | |
013dec1a ILT |
2023 | if (phdr->p_type != PT_NULL) |
2024 | { | |
2025 | ++phdr; | |
2026 | ++phdr_count; | |
2027 | } | |
2028 | ||
2029 | /* If we have a .dynamic section, create a PT_DYNAMIC segment. */ | |
2030 | sdyn = bfd_get_section_by_name (abfd, ".dynamic"); | |
2031 | if (sdyn != NULL && (sdyn->flags & SEC_LOAD) != 0) | |
2032 | { | |
2033 | phdr->p_type = PT_DYNAMIC; | |
2034 | phdr->p_offset = sdyn->filepos; | |
2035 | phdr->p_vaddr = sdyn->vma; | |
2036 | phdr->p_paddr = 0; | |
2037 | phdr->p_filesz = sdyn->_raw_size; | |
2038 | phdr->p_memsz = sdyn->_raw_size; | |
2039 | phdr->p_flags = PF_R; | |
2040 | if ((sdyn->flags & SEC_READONLY) == 0) | |
2041 | phdr->p_flags |= PF_W; | |
2042 | if ((sdyn->flags & SEC_CODE) != 0) | |
2043 | phdr->p_flags |= PF_X; | |
2044 | phdr->p_align = 1 << bfd_get_section_alignment (abfd, sdyn); | |
2045 | ||
2046 | ++phdr; | |
2047 | ++phdr_count; | |
2048 | } | |
2049 | ||
013dec1a | 2050 | /* Make sure the return value from get_program_header_size matches |
57b40081 ILT |
2051 | what we computed here. Actually, it's OK if we allocated too |
2052 | much space in the program header. */ | |
2053 | if (phdr_count > phdr_size / sizeof (Elf_External_Phdr)) | |
013dec1a ILT |
2054 | abort (); |
2055 | ||
2056 | /* Set up program header information. */ | |
2057 | i_ehdrp = elf_elfheader (abfd); | |
2058 | i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr); | |
2059 | i_ehdrp->e_phoff = off; | |
2060 | i_ehdrp->e_phnum = phdr_count; | |
2061 | ||
2062 | /* Save the program headers away. I don't think anybody uses this | |
2063 | information right now. */ | |
2064 | elf_tdata (abfd)->phdr = ((Elf_Internal_Phdr *) | |
2065 | bfd_alloc (abfd, | |
2066 | (phdr_count | |
2067 | * sizeof (Elf_Internal_Phdr)))); | |
2068 | if (elf_tdata (abfd)->phdr == NULL && phdr_count != 0) | |
2069 | { | |
2070 | bfd_set_error (bfd_error_no_memory); | |
2071 | return (file_ptr) -1; | |
2072 | } | |
2073 | memcpy (elf_tdata (abfd)->phdr, phdrs, | |
2074 | phdr_count * sizeof (Elf_Internal_Phdr)); | |
2075 | ||
2076 | /* Write out the program headers. */ | |
2077 | if (bfd_seek (abfd, off, SEEK_SET) != 0) | |
2078 | return (file_ptr) -1; | |
2079 | ||
2080 | for (i = 0, phdr = phdrs; i < phdr_count; i++, phdr++) | |
2081 | { | |
2082 | Elf_External_Phdr extphdr; | |
2083 | ||
2084 | elf_swap_phdr_out (abfd, phdr, &extphdr); | |
2085 | if (bfd_write (&extphdr, sizeof (Elf_External_Phdr), 1, abfd) | |
2086 | != sizeof (Elf_External_Phdr)) | |
2087 | return (file_ptr) -1; | |
2088 | } | |
2089 | ||
2090 | return off + phdr_count * sizeof (Elf_External_Phdr); | |
300adb31 KR |
2091 | } |
2092 | ||
013dec1a ILT |
2093 | /* Work out the file positions of all the sections. This is called by |
2094 | elf_compute_section_file_positions. All the section sizes and VMAs | |
2095 | must be known before this is called. | |
2096 | ||
2097 | We do not consider reloc sections at this point, unless they form | |
2098 | part of the loadable image. Reloc sections are assigned file | |
2099 | positions in assign_file_positions_for_relocs, which is called by | |
2100 | write_object_contents and final_link. | |
2101 | ||
2102 | If DOSYMS is false, we do not assign file positions for the symbol | |
2103 | table or the string table. */ | |
2104 | ||
9783e04a | 2105 | static boolean |
6ec3bb6a | 2106 | assign_file_positions_except_relocs (abfd, dosyms) |
32090b8e | 2107 | bfd *abfd; |
6ec3bb6a | 2108 | boolean dosyms; |
244ffee7 | 2109 | { |
013dec1a ILT |
2110 | struct elf_obj_tdata * const tdata = elf_tdata (abfd); |
2111 | Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd); | |
2112 | Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); | |
32090b8e | 2113 | file_ptr off; |
32090b8e | 2114 | |
013dec1a | 2115 | /* Start after the ELF header. */ |
32090b8e | 2116 | off = i_ehdrp->e_ehsize; |
300adb31 | 2117 | |
df9e066f | 2118 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) |
300adb31 | 2119 | { |
013dec1a ILT |
2120 | Elf_Internal_Shdr **hdrpp; |
2121 | unsigned int i; | |
062189c6 | 2122 | |
013dec1a ILT |
2123 | /* We are not creating an executable, which means that we are |
2124 | not creating a program header, and that the actual order of | |
2125 | the sections in the file is unimportant. */ | |
2126 | for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) | |
244ffee7 | 2127 | { |
013dec1a ILT |
2128 | Elf_Internal_Shdr *hdr; |
2129 | ||
2130 | hdr = *hdrpp; | |
2131 | if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) | |
300adb31 | 2132 | { |
013dec1a | 2133 | hdr->sh_offset = -1; |
300adb31 KR |
2134 | continue; |
2135 | } | |
013dec1a ILT |
2136 | if (! dosyms |
2137 | && (i == tdata->symtab_section | |
2138 | || i == tdata->strtab_section)) | |
300adb31 | 2139 | { |
013dec1a ILT |
2140 | hdr->sh_offset = -1; |
2141 | continue; | |
300adb31 | 2142 | } |
013dec1a ILT |
2143 | |
2144 | off = assign_file_position_for_section (hdr, off, true); | |
300adb31 | 2145 | } |
300adb31 | 2146 | } |
013dec1a | 2147 | else |
300adb31 | 2148 | { |
013dec1a ILT |
2149 | file_ptr phdr_off; |
2150 | bfd_size_type phdr_size; | |
2151 | bfd_vma maxpagesize; | |
11bb5591 ILT |
2152 | size_t hdrppsize; |
2153 | Elf_Internal_Shdr **sorted_hdrs; | |
013dec1a ILT |
2154 | Elf_Internal_Shdr **hdrpp; |
2155 | unsigned int i; | |
2156 | Elf_Internal_Shdr *first; | |
2157 | file_ptr phdr_map; | |
2158 | ||
6c97aedf | 2159 | /* We are creating an executable. */ |
013dec1a ILT |
2160 | |
2161 | maxpagesize = get_elf_backend_data (abfd)->maxpagesize; | |
2162 | if (maxpagesize == 0) | |
2163 | maxpagesize = 1; | |
2164 | ||
11bb5591 ILT |
2165 | /* We must sort the sections. The GNU linker will always create |
2166 | the sections in an appropriate order, but the Irix 5 linker | |
2167 | will not. We don't include the dummy first section in the | |
2168 | sort. We sort sections which are not SHF_ALLOC to the end. */ | |
2169 | hdrppsize = (i_ehdrp->e_shnum - 1) * sizeof (Elf_Internal_Shdr *); | |
2170 | sorted_hdrs = (Elf_Internal_Shdr **) malloc (hdrppsize); | |
2171 | if (sorted_hdrs == NULL) | |
013dec1a | 2172 | { |
11bb5591 ILT |
2173 | bfd_set_error (bfd_error_no_memory); |
2174 | return false; | |
013dec1a | 2175 | } |
300adb31 | 2176 | |
11bb5591 ILT |
2177 | memcpy (sorted_hdrs, i_shdrpp + 1, hdrppsize); |
2178 | qsort (sorted_hdrs, i_ehdrp->e_shnum - 1, sizeof (Elf_Internal_Shdr *), | |
2179 | elf_sort_hdrs); | |
2180 | ||
6c97aedf ILT |
2181 | /* We can't actually create the program header until we have set the |
2182 | file positions for the sections, and we can't do that until we know | |
2183 | how big the header is going to be. */ | |
2184 | off = align_file_position (off); | |
2185 | phdr_size = get_program_header_size (abfd, | |
2186 | sorted_hdrs, i_ehdrp->e_shnum - 1, | |
2187 | maxpagesize); | |
2188 | if (phdr_size == (file_ptr) -1) | |
2189 | return false; | |
2190 | ||
2191 | /* Compute the file offsets of each section. */ | |
2192 | phdr_off = off; | |
2193 | off += phdr_size; | |
11bb5591 ILT |
2194 | first = NULL; |
2195 | for (i = 1, hdrpp = sorted_hdrs; i < i_ehdrp->e_shnum; i++, hdrpp++) | |
300adb31 | 2196 | { |
013dec1a ILT |
2197 | Elf_Internal_Shdr *hdr; |
2198 | ||
2199 | hdr = *hdrpp; | |
11bb5591 | 2200 | if ((hdr->sh_flags & SHF_ALLOC) == 0) |
013dec1a | 2201 | { |
11bb5591 ILT |
2202 | if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) |
2203 | { | |
2204 | hdr->sh_offset = -1; | |
2205 | continue; | |
2206 | } | |
2207 | if (! dosyms | |
2208 | && (hdr == i_shdrpp[tdata->symtab_section] | |
2209 | || hdr == i_shdrpp[tdata->strtab_section])) | |
2210 | { | |
2211 | hdr->sh_offset = -1; | |
2212 | continue; | |
2213 | } | |
013dec1a | 2214 | } |
11bb5591 | 2215 | else |
013dec1a | 2216 | { |
11bb5591 ILT |
2217 | if (first == NULL) |
2218 | first = hdr; | |
2219 | ||
2220 | /* The section VMA must equal the file position modulo | |
2221 | the page size. This is required by the program | |
2222 | header. */ | |
2223 | off += (hdr->sh_addr - off) % maxpagesize; | |
013dec1a ILT |
2224 | } |
2225 | ||
11bb5591 | 2226 | off = assign_file_position_for_section (hdr, off, false); |
300adb31 | 2227 | } |
013dec1a | 2228 | |
6c97aedf | 2229 | /* Create the program header. */ |
5945db29 ILT |
2230 | phdr_map = map_program_segments (abfd, phdr_off, first, sorted_hdrs, |
2231 | phdr_size); | |
013dec1a ILT |
2232 | if (phdr_map == (file_ptr) -1) |
2233 | return false; | |
85200ebc | 2234 | BFD_ASSERT ((bfd_size_type) phdr_map <= (bfd_size_type) phdr_off + phdr_size); |
6977046f ILT |
2235 | |
2236 | free (sorted_hdrs); | |
244ffee7 | 2237 | } |
013dec1a ILT |
2238 | |
2239 | /* Place the section headers. */ | |
2240 | off = align_file_position (off); | |
2241 | i_ehdrp->e_shoff = off; | |
2242 | off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; | |
2243 | ||
32090b8e | 2244 | elf_tdata (abfd)->next_file_pos = off; |
013dec1a | 2245 | |
9783e04a | 2246 | return true; |
244ffee7 JK |
2247 | } |
2248 | ||
11bb5591 ILT |
2249 | /* Sort the ELF headers by VMA. We sort headers which are not |
2250 | SHF_ALLOC to the end. */ | |
2251 | ||
2252 | static int | |
2253 | elf_sort_hdrs (arg1, arg2) | |
2254 | const PTR arg1; | |
2255 | const PTR arg2; | |
2256 | { | |
2257 | const Elf_Internal_Shdr *hdr1 = *(const Elf_Internal_Shdr **) arg1; | |
2258 | const Elf_Internal_Shdr *hdr2 = *(const Elf_Internal_Shdr **) arg2; | |
2259 | ||
2260 | if ((hdr1->sh_flags & SHF_ALLOC) != 0) | |
2261 | { | |
2262 | if ((hdr2->sh_flags & SHF_ALLOC) == 0) | |
2263 | return -1; | |
2264 | if (hdr1->sh_addr < hdr2->sh_addr) | |
2265 | return -1; | |
2266 | else if (hdr1->sh_addr > hdr2->sh_addr) | |
2267 | return 1; | |
121a8465 DE |
2268 | /* Put !SHT_NOBITS sections before SHT_NOBITS ones. |
2269 | The main loop in map_program_segments assumes this. */ | |
2270 | return (hdr1->sh_type == SHT_NOBITS) - (hdr2->sh_type == SHT_NOBITS); | |
11bb5591 ILT |
2271 | } |
2272 | else | |
2273 | { | |
6977046f | 2274 | if ((hdr2->sh_flags & SHF_ALLOC) != 0) |
11bb5591 ILT |
2275 | return 1; |
2276 | return 0; | |
2277 | } | |
2278 | } | |
2279 | ||
32090b8e KR |
2280 | static boolean |
2281 | prep_headers (abfd) | |
2282 | bfd *abfd; | |
2283 | { | |
32090b8e | 2284 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ |
1c6042ee | 2285 | Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */ |
32090b8e | 2286 | Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ |
32090b8e | 2287 | int count; |
eb4267a3 | 2288 | struct bfd_strtab_hash *shstrtab; |
244ffee7 | 2289 | |
32090b8e KR |
2290 | i_ehdrp = elf_elfheader (abfd); |
2291 | i_shdrp = elf_elfsections (abfd); | |
244ffee7 | 2292 | |
eb4267a3 ILT |
2293 | shstrtab = elf_stringtab_init (); |
2294 | if (shstrtab == NULL) | |
b9d5cdf0 | 2295 | return false; |
1c6042ee | 2296 | |
32090b8e | 2297 | elf_shstrtab (abfd) = shstrtab; |
244ffee7 | 2298 | |
32090b8e KR |
2299 | i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; |
2300 | i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; | |
2301 | i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; | |
2302 | i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; | |
244ffee7 | 2303 | |
32090b8e KR |
2304 | i_ehdrp->e_ident[EI_CLASS] = ELFCLASS; |
2305 | i_ehdrp->e_ident[EI_DATA] = | |
2306 | abfd->xvec->byteorder_big_p ? ELFDATA2MSB : ELFDATA2LSB; | |
2307 | i_ehdrp->e_ident[EI_VERSION] = EV_CURRENT; | |
244ffee7 | 2308 | |
32090b8e KR |
2309 | for (count = EI_PAD; count < EI_NIDENT; count++) |
2310 | i_ehdrp->e_ident[count] = 0; | |
244ffee7 | 2311 | |
8af74670 ILT |
2312 | if ((abfd->flags & DYNAMIC) != 0) |
2313 | i_ehdrp->e_type = ET_DYN; | |
2314 | else if ((abfd->flags & EXEC_P) != 0) | |
2315 | i_ehdrp->e_type = ET_EXEC; | |
2316 | else | |
2317 | i_ehdrp->e_type = ET_REL; | |
2318 | ||
32090b8e | 2319 | switch (bfd_get_arch (abfd)) |
fce36137 | 2320 | { |
32090b8e KR |
2321 | case bfd_arch_unknown: |
2322 | i_ehdrp->e_machine = EM_NONE; | |
2323 | break; | |
2324 | case bfd_arch_sparc: | |
32090b8e KR |
2325 | #if ARCH_SIZE == 64 |
2326 | i_ehdrp->e_machine = EM_SPARC64; | |
5546cc7e KR |
2327 | #else |
2328 | i_ehdrp->e_machine = EM_SPARC; | |
32090b8e | 2329 | #endif |
32090b8e KR |
2330 | break; |
2331 | case bfd_arch_i386: | |
2332 | i_ehdrp->e_machine = EM_386; | |
2333 | break; | |
2334 | case bfd_arch_m68k: | |
2335 | i_ehdrp->e_machine = EM_68K; | |
2336 | break; | |
2337 | case bfd_arch_m88k: | |
2338 | i_ehdrp->e_machine = EM_88K; | |
2339 | break; | |
2340 | case bfd_arch_i860: | |
2341 | i_ehdrp->e_machine = EM_860; | |
2342 | break; | |
2343 | case bfd_arch_mips: /* MIPS Rxxxx */ | |
2344 | i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */ | |
2345 | break; | |
2346 | case bfd_arch_hppa: | |
459ae909 | 2347 | i_ehdrp->e_machine = EM_PARISC; |
32090b8e | 2348 | break; |
99ec1f66 | 2349 | case bfd_arch_powerpc: |
c6d729b3 | 2350 | i_ehdrp->e_machine = EM_PPC; |
99ec1f66 | 2351 | break; |
4c124191 ILT |
2352 | /* start-sanitize-arc */ |
2353 | case bfd_arch_arc: | |
2354 | i_ehdrp->e_machine = EM_CYGNUS_ARC; | |
2355 | break; | |
2356 | /* end-sanitize-arc */ | |
32090b8e KR |
2357 | /* also note that EM_M32, AT&T WE32100 is unknown to bfd */ |
2358 | default: | |
2359 | i_ehdrp->e_machine = EM_NONE; | |
fce36137 | 2360 | } |
32090b8e KR |
2361 | i_ehdrp->e_version = EV_CURRENT; |
2362 | i_ehdrp->e_ehsize = sizeof (Elf_External_Ehdr); | |
244ffee7 | 2363 | |
32090b8e KR |
2364 | /* no program header, for now. */ |
2365 | i_ehdrp->e_phoff = 0; | |
2366 | i_ehdrp->e_phentsize = 0; | |
2367 | i_ehdrp->e_phnum = 0; | |
244ffee7 | 2368 | |
32090b8e KR |
2369 | /* each bfd section is section header entry */ |
2370 | i_ehdrp->e_entry = bfd_get_start_address (abfd); | |
2371 | i_ehdrp->e_shentsize = sizeof (Elf_External_Shdr); | |
244ffee7 | 2372 | |
32090b8e KR |
2373 | /* if we're building an executable, we'll need a program header table */ |
2374 | if (abfd->flags & EXEC_P) | |
244ffee7 | 2375 | { |
300adb31 | 2376 | /* it all happens later */ |
32090b8e KR |
2377 | #if 0 |
2378 | i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr); | |
244ffee7 | 2379 | |
32090b8e KR |
2380 | /* elf_build_phdrs() returns a (NULL-terminated) array of |
2381 | Elf_Internal_Phdrs */ | |
2382 | i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum); | |
2383 | i_ehdrp->e_phoff = outbase; | |
2384 | outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum; | |
2385 | #endif | |
244ffee7 | 2386 | } |
32090b8e | 2387 | else |
244ffee7 | 2388 | { |
32090b8e KR |
2389 | i_ehdrp->e_phentsize = 0; |
2390 | i_phdrp = 0; | |
2391 | i_ehdrp->e_phoff = 0; | |
244ffee7 JK |
2392 | } |
2393 | ||
eb4267a3 ILT |
2394 | elf_tdata (abfd)->symtab_hdr.sh_name = |
2395 | (unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false); | |
2396 | elf_tdata (abfd)->strtab_hdr.sh_name = | |
2397 | (unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false); | |
2398 | elf_tdata (abfd)->shstrtab_hdr.sh_name = | |
2399 | (unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false); | |
6ec3bb6a ILT |
2400 | if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 |
2401 | || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 | |
2402 | || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) | |
2403 | return false; | |
2404 | ||
f035cc47 | 2405 | return true; |
244ffee7 JK |
2406 | } |
2407 | ||
b9d5cdf0 | 2408 | static boolean |
eb4267a3 | 2409 | swap_out_syms (abfd, sttp) |
32090b8e | 2410 | bfd *abfd; |
eb4267a3 | 2411 | struct bfd_strtab_hash **sttp; |
244ffee7 | 2412 | { |
9783e04a DM |
2413 | if (!elf_map_symbols (abfd)) |
2414 | return false; | |
244ffee7 | 2415 | |
32090b8e KR |
2416 | /* Dump out the symtabs. */ |
2417 | { | |
2418 | int symcount = bfd_get_symcount (abfd); | |
2419 | asymbol **syms = bfd_get_outsymbols (abfd); | |
eb4267a3 | 2420 | struct bfd_strtab_hash *stt; |
32090b8e KR |
2421 | Elf_Internal_Shdr *symtab_hdr; |
2422 | Elf_Internal_Shdr *symstrtab_hdr; | |
2423 | Elf_External_Sym *outbound_syms; | |
2424 | int idx; | |
244ffee7 | 2425 | |
eb4267a3 ILT |
2426 | stt = elf_stringtab_init (); |
2427 | if (stt == NULL) | |
b9d5cdf0 | 2428 | return false; |
eb4267a3 | 2429 | |
32090b8e KR |
2430 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
2431 | symtab_hdr->sh_type = SHT_SYMTAB; | |
2432 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
2433 | symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); | |
2434 | symtab_hdr->sh_info = elf_num_locals (abfd) + 1; | |
fa15568a | 2435 | symtab_hdr->sh_addralign = FILE_ALIGN; |
244ffee7 | 2436 | |
32090b8e KR |
2437 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; |
2438 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
244ffee7 | 2439 | |
e4a4da62 ILT |
2440 | outbound_syms = ((Elf_External_Sym *) |
2441 | bfd_alloc (abfd, | |
2442 | (1 + symcount) * sizeof (Elf_External_Sym))); | |
2443 | if (outbound_syms == NULL) | |
9783e04a | 2444 | { |
d1ad85a6 | 2445 | bfd_set_error (bfd_error_no_memory); |
9783e04a DM |
2446 | return false; |
2447 | } | |
e4a4da62 ILT |
2448 | symtab_hdr->contents = (PTR) outbound_syms; |
2449 | ||
32090b8e KR |
2450 | /* now generate the data (for "contents") */ |
2451 | { | |
2452 | /* Fill in zeroth symbol and swap it out. */ | |
2453 | Elf_Internal_Sym sym; | |
2454 | sym.st_name = 0; | |
2455 | sym.st_value = 0; | |
2456 | sym.st_size = 0; | |
2457 | sym.st_info = 0; | |
2458 | sym.st_other = 0; | |
2459 | sym.st_shndx = SHN_UNDEF; | |
2460 | elf_swap_symbol_out (abfd, &sym, outbound_syms); | |
e4a4da62 | 2461 | ++outbound_syms; |
244ffee7 | 2462 | } |
32090b8e KR |
2463 | for (idx = 0; idx < symcount; idx++) |
2464 | { | |
2465 | Elf_Internal_Sym sym; | |
2466 | bfd_vma value = syms[idx]->value; | |
71edd06d | 2467 | elf_symbol_type *type_ptr; |
244ffee7 | 2468 | |
32090b8e KR |
2469 | if (syms[idx]->flags & BSF_SECTION_SYM) |
2470 | /* Section symbols have no names. */ | |
2471 | sym.st_name = 0; | |
2472 | else | |
6ec3bb6a | 2473 | { |
eb4267a3 ILT |
2474 | sym.st_name = (unsigned long) _bfd_stringtab_add (stt, |
2475 | syms[idx]->name, | |
2476 | true, false); | |
6ec3bb6a ILT |
2477 | if (sym.st_name == (unsigned long) -1) |
2478 | return false; | |
2479 | } | |
244ffee7 | 2480 | |
71edd06d ILT |
2481 | type_ptr = elf_symbol_from (abfd, syms[idx]); |
2482 | ||
32090b8e | 2483 | if (bfd_is_com_section (syms[idx]->section)) |
244ffee7 | 2484 | { |
32090b8e KR |
2485 | /* ELF common symbols put the alignment into the `value' field, |
2486 | and the size into the `size' field. This is backwards from | |
2487 | how BFD handles it, so reverse it here. */ | |
2488 | sym.st_size = value; | |
4c032270 KR |
2489 | if (type_ptr == NULL |
2490 | || type_ptr->internal_elf_sym.st_value == 0) | |
2491 | sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); | |
2492 | else | |
2493 | sym.st_value = type_ptr->internal_elf_sym.st_value; | |
d4fb8fce ILT |
2494 | sym.st_shndx = elf_section_from_bfd_section (abfd, |
2495 | syms[idx]->section); | |
244ffee7 JK |
2496 | } |
2497 | else | |
2498 | { | |
32090b8e KR |
2499 | asection *sec = syms[idx]->section; |
2500 | int shndx; | |
244ffee7 | 2501 | |
32090b8e KR |
2502 | if (sec->output_section) |
2503 | { | |
2504 | value += sec->output_offset; | |
2505 | sec = sec->output_section; | |
2506 | } | |
2507 | value += sec->vma; | |
2508 | sym.st_value = value; | |
e74034d8 | 2509 | sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; |
32090b8e KR |
2510 | sym.st_shndx = shndx = elf_section_from_bfd_section (abfd, sec); |
2511 | if (shndx == -1) | |
2512 | { | |
2513 | asection *sec2; | |
2514 | /* Writing this would be a hell of a lot easier if we had | |
2515 | some decent documentation on bfd, and knew what to expect | |
2516 | of the library, and what to demand of applications. For | |
2517 | example, it appears that `objcopy' might not set the | |
2518 | section of a symbol to be a section that is actually in | |
2519 | the output file. */ | |
2520 | sec2 = bfd_get_section_by_name (abfd, sec->name); | |
850584ad | 2521 | BFD_ASSERT (sec2 != 0); |
32090b8e | 2522 | sym.st_shndx = shndx = elf_section_from_bfd_section (abfd, sec2); |
850584ad | 2523 | BFD_ASSERT (shndx != -1); |
32090b8e KR |
2524 | } |
2525 | } | |
244ffee7 | 2526 | |
32090b8e | 2527 | if (bfd_is_com_section (syms[idx]->section)) |
38a5f510 | 2528 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_OBJECT); |
badd23e3 | 2529 | else if (bfd_is_und_section (syms[idx]->section)) |
3c9832f8 ILT |
2530 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, |
2531 | ((syms[idx]->flags & BSF_FUNCTION) | |
2532 | ? STT_FUNC | |
2533 | : STT_NOTYPE)); | |
32090b8e KR |
2534 | else if (syms[idx]->flags & BSF_SECTION_SYM) |
2535 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
2536 | else if (syms[idx]->flags & BSF_FILE) | |
2537 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
d24928c0 | 2538 | else |
32090b8e | 2539 | { |
d24928c0 KR |
2540 | int bind = STB_LOCAL; |
2541 | int type = STT_OBJECT; | |
2542 | unsigned int flags = syms[idx]->flags; | |
2543 | ||
2544 | if (flags & BSF_LOCAL) | |
2545 | bind = STB_LOCAL; | |
2546 | else if (flags & BSF_WEAK) | |
2547 | bind = STB_WEAK; | |
2548 | else if (flags & BSF_GLOBAL) | |
2549 | bind = STB_GLOBAL; | |
2550 | ||
2551 | if (flags & BSF_FUNCTION) | |
2552 | type = STT_FUNC; | |
2553 | ||
2554 | sym.st_info = ELF_ST_INFO (bind, type); | |
32090b8e | 2555 | } |
244ffee7 | 2556 | |
32090b8e | 2557 | sym.st_other = 0; |
e4a4da62 ILT |
2558 | elf_swap_symbol_out (abfd, &sym, outbound_syms); |
2559 | ++outbound_syms; | |
32090b8e KR |
2560 | } |
2561 | ||
eb4267a3 ILT |
2562 | *sttp = stt; |
2563 | symstrtab_hdr->sh_size = _bfd_stringtab_size (stt); | |
32090b8e KR |
2564 | symstrtab_hdr->sh_type = SHT_STRTAB; |
2565 | ||
2566 | symstrtab_hdr->sh_flags = 0; | |
2567 | symstrtab_hdr->sh_addr = 0; | |
2568 | symstrtab_hdr->sh_entsize = 0; | |
2569 | symstrtab_hdr->sh_link = 0; | |
2570 | symstrtab_hdr->sh_info = 0; | |
062189c6 | 2571 | symstrtab_hdr->sh_addralign = 1; |
32090b8e KR |
2572 | } |
2573 | ||
b9d5cdf0 | 2574 | return true; |
244ffee7 JK |
2575 | } |
2576 | ||
32090b8e KR |
2577 | static boolean |
2578 | write_shdrs_and_ehdr (abfd) | |
2579 | bfd *abfd; | |
244ffee7 | 2580 | { |
32090b8e KR |
2581 | Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ |
2582 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ | |
32090b8e KR |
2583 | Elf_External_Shdr *x_shdrp; /* Section header table, external form */ |
2584 | Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ | |
68241b2b | 2585 | unsigned int count; |
244ffee7 | 2586 | |
32090b8e KR |
2587 | i_ehdrp = elf_elfheader (abfd); |
2588 | i_shdrp = elf_elfsections (abfd); | |
32090b8e KR |
2589 | |
2590 | /* swap the header before spitting it out... */ | |
2591 | ||
2592 | #if DEBUG & 1 | |
2593 | elf_debug_file (i_ehdrp); | |
244ffee7 | 2594 | #endif |
32090b8e | 2595 | elf_swap_ehdr_out (abfd, i_ehdrp, &x_ehdr); |
4002f18a ILT |
2596 | if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0 |
2597 | || (bfd_write ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) | |
2598 | != sizeof (x_ehdr))) | |
2599 | return false; | |
244ffee7 | 2600 | |
32090b8e KR |
2601 | /* at this point we've concocted all the ELF sections... */ |
2602 | x_shdrp = (Elf_External_Shdr *) | |
2603 | bfd_alloc (abfd, sizeof (*x_shdrp) * (i_ehdrp->e_shnum)); | |
2604 | if (!x_shdrp) | |
2605 | { | |
d1ad85a6 | 2606 | bfd_set_error (bfd_error_no_memory); |
32090b8e KR |
2607 | return false; |
2608 | } | |
2609 | ||
2610 | for (count = 0; count < i_ehdrp->e_shnum; count++) | |
2611 | { | |
2612 | #if DEBUG & 2 | |
eb4267a3 | 2613 | elf_debug_section (count, i_shdrp[count]); |
244ffee7 | 2614 | #endif |
32090b8e KR |
2615 | elf_swap_shdr_out (abfd, i_shdrp[count], x_shdrp + count); |
2616 | } | |
4002f18a ILT |
2617 | if (bfd_seek (abfd, (file_ptr) i_ehdrp->e_shoff, SEEK_SET) != 0 |
2618 | || (bfd_write ((PTR) x_shdrp, sizeof (*x_shdrp), i_ehdrp->e_shnum, abfd) | |
d909628b | 2619 | != sizeof (*x_shdrp) * i_ehdrp->e_shnum)) |
4002f18a ILT |
2620 | return false; |
2621 | ||
32090b8e | 2622 | /* need to dump the string table too... */ |
244ffee7 | 2623 | |
32090b8e KR |
2624 | return true; |
2625 | } | |
244ffee7 | 2626 | |
013dec1a ILT |
2627 | /* Assign file positions for all the reloc sections which are not part |
2628 | of the loadable file image. */ | |
2629 | ||
32090b8e KR |
2630 | static void |
2631 | assign_file_positions_for_relocs (abfd) | |
2632 | bfd *abfd; | |
2633 | { | |
013dec1a | 2634 | file_ptr off; |
68241b2b | 2635 | unsigned int i; |
013dec1a ILT |
2636 | Elf_Internal_Shdr **shdrpp; |
2637 | ||
2638 | off = elf_tdata (abfd)->next_file_pos; | |
2639 | ||
2640 | for (i = 1, shdrpp = elf_elfsections (abfd) + 1; | |
2641 | i < elf_elfheader (abfd)->e_shnum; | |
2642 | i++, shdrpp++) | |
32090b8e | 2643 | { |
013dec1a ILT |
2644 | Elf_Internal_Shdr *shdrp; |
2645 | ||
2646 | shdrp = *shdrpp; | |
2647 | if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) | |
2648 | && shdrp->sh_offset == -1) | |
2649 | off = assign_file_position_for_section (shdrp, off, true); | |
32090b8e | 2650 | } |
013dec1a | 2651 | |
1c6042ee | 2652 | elf_tdata (abfd)->next_file_pos = off; |
32090b8e | 2653 | } |
244ffee7 | 2654 | |
32090b8e | 2655 | boolean |
1c6042ee ILT |
2656 | NAME(bfd_elf,write_object_contents) (abfd) |
2657 | bfd *abfd; | |
32090b8e | 2658 | { |
062189c6 | 2659 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
32090b8e KR |
2660 | Elf_Internal_Ehdr *i_ehdrp; |
2661 | Elf_Internal_Shdr **i_shdrp; | |
68241b2b | 2662 | unsigned int count; |
244ffee7 | 2663 | |
6ec3bb6a ILT |
2664 | if (! abfd->output_has_begun |
2665 | && ! elf_compute_section_file_positions (abfd, | |
2666 | (struct bfd_link_info *) NULL)) | |
2667 | return false; | |
244ffee7 | 2668 | |
32090b8e KR |
2669 | i_shdrp = elf_elfsections (abfd); |
2670 | i_ehdrp = elf_elfheader (abfd); | |
244ffee7 | 2671 | |
32090b8e | 2672 | bfd_map_over_sections (abfd, write_relocs, (PTR) 0); |
32090b8e | 2673 | assign_file_positions_for_relocs (abfd); |
244ffee7 | 2674 | |
32090b8e | 2675 | /* After writing the headers, we need to write the sections too... */ |
062189c6 | 2676 | for (count = 1; count < i_ehdrp->e_shnum; count++) |
e621c5cc | 2677 | { |
e621c5cc ILT |
2678 | if (bed->elf_backend_section_processing) |
2679 | (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); | |
2680 | if (i_shdrp[count]->contents) | |
2681 | { | |
4002f18a ILT |
2682 | if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 |
2683 | || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size, | |
2684 | 1, abfd) | |
2685 | != i_shdrp[count]->sh_size)) | |
2686 | return false; | |
e621c5cc ILT |
2687 | } |
2688 | } | |
062189c6 | 2689 | |
eb4267a3 ILT |
2690 | /* Write out the section header names. */ |
2691 | if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0 | |
2692 | || ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd))) | |
2693 | return false; | |
2694 | ||
062189c6 | 2695 | if (bed->elf_backend_final_write_processing) |
3c9832f8 ILT |
2696 | (*bed->elf_backend_final_write_processing) (abfd, |
2697 | elf_tdata (abfd)->linker); | |
062189c6 | 2698 | |
32090b8e KR |
2699 | return write_shdrs_and_ehdr (abfd); |
2700 | } | |
244ffee7 | 2701 | |
24f13b03 ILT |
2702 | /* Given an ELF section number, retrieve the corresponding BFD |
2703 | section. */ | |
244ffee7 | 2704 | |
2e03ce18 | 2705 | static asection * |
1c6042ee ILT |
2706 | section_from_elf_index (abfd, index) |
2707 | bfd *abfd; | |
2708 | unsigned int index; | |
32090b8e | 2709 | { |
24f13b03 | 2710 | BFD_ASSERT (index > 0 && index < SHN_LORESERVE); |
e9227b42 | 2711 | if (index >= elf_elfheader (abfd)->e_shnum) |
2e03ce18 | 2712 | return NULL; |
24f13b03 | 2713 | return elf_elfsections (abfd)[index]->bfd_section; |
32090b8e | 2714 | } |
244ffee7 | 2715 | |
32090b8e KR |
2716 | /* given a section, search the header to find them... */ |
2717 | static int | |
1c6042ee ILT |
2718 | elf_section_from_bfd_section (abfd, asect) |
2719 | bfd *abfd; | |
2720 | struct sec *asect; | |
32090b8e | 2721 | { |
24f13b03 | 2722 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
32090b8e KR |
2723 | Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd); |
2724 | int index; | |
2725 | Elf_Internal_Shdr *hdr; | |
2726 | int maxindex = elf_elfheader (abfd)->e_shnum; | |
244ffee7 | 2727 | |
32090b8e KR |
2728 | for (index = 0; index < maxindex; index++) |
2729 | { | |
2730 | hdr = i_shdrp[index]; | |
24f13b03 ILT |
2731 | if (hdr->bfd_section == asect) |
2732 | return index; | |
e4a4da62 | 2733 | } |
e621c5cc | 2734 | |
e4a4da62 ILT |
2735 | if (bed->elf_backend_section_from_bfd_section) |
2736 | { | |
2737 | for (index = 0; index < maxindex; index++) | |
24f13b03 ILT |
2738 | { |
2739 | int retval; | |
f035cc47 | 2740 | |
e4a4da62 | 2741 | hdr = i_shdrp[index]; |
24f13b03 ILT |
2742 | retval = index; |
2743 | if ((*bed->elf_backend_section_from_bfd_section) | |
2744 | (abfd, hdr, asect, &retval)) | |
2745 | return retval; | |
32090b8e KR |
2746 | } |
2747 | } | |
24f13b03 | 2748 | |
85200ebc KR |
2749 | if (bfd_is_abs_section (asect)) |
2750 | return SHN_ABS; | |
2751 | if (bfd_is_com_section (asect)) | |
2752 | return SHN_COMMON; | |
2753 | if (bfd_is_und_section (asect)) | |
2754 | return SHN_UNDEF; | |
2755 | ||
32090b8e KR |
2756 | return -1; |
2757 | } | |
244ffee7 | 2758 | |
32090b8e KR |
2759 | /* given a symbol, return the bfd index for that symbol. */ |
2760 | static int | |
1c6042ee ILT |
2761 | elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr) |
2762 | bfd *abfd; | |
2763 | struct symbol_cache_entry **asym_ptr_ptr; | |
32090b8e KR |
2764 | { |
2765 | struct symbol_cache_entry *asym_ptr = *asym_ptr_ptr; | |
32090b8e | 2766 | int idx; |
d24928c0 | 2767 | flagword flags = asym_ptr->flags; |
32090b8e | 2768 | |
d24928c0 KR |
2769 | /* When gas creates relocations against local labels, it creates its |
2770 | own symbol for the section, but does put the symbol into the | |
e621c5cc ILT |
2771 | symbol chain, so udata is 0. When the linker is generating |
2772 | relocatable output, this section symbol may be for one of the | |
2773 | input sections rather than the output section. */ | |
e4a4da62 | 2774 | if (asym_ptr->udata.i == 0 |
d24928c0 | 2775 | && (flags & BSF_SECTION_SYM) |
e621c5cc ILT |
2776 | && asym_ptr->section) |
2777 | { | |
2778 | int indx; | |
2779 | ||
2780 | if (asym_ptr->section->output_section != NULL) | |
2781 | indx = asym_ptr->section->output_section->index; | |
2782 | else | |
2783 | indx = asym_ptr->section->index; | |
2784 | if (elf_section_syms (abfd)[indx]) | |
e4a4da62 | 2785 | asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; |
01383fb4 | 2786 | } |
e621c5cc | 2787 | |
e4a4da62 ILT |
2788 | idx = asym_ptr->udata.i; |
2789 | if (idx == 0) | |
2790 | abort (); | |
244ffee7 | 2791 | |
32090b8e | 2792 | #if DEBUG & 4 |
244ffee7 | 2793 | { |
244ffee7 | 2794 | |
32090b8e | 2795 | fprintf (stderr, |
d24928c0 | 2796 | "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx %s\n", |
1c6042ee | 2797 | (long) asym_ptr, asym_ptr->name, idx, flags, elf_symbol_flags (flags)); |
32090b8e KR |
2798 | fflush (stderr); |
2799 | } | |
2800 | #endif | |
2801 | ||
2802 | return idx; | |
2803 | } | |
2804 | ||
cb71adf1 PS |
2805 | static long |
2806 | elf_slurp_symbol_table (abfd, symptrs, dynamic) | |
1c6042ee ILT |
2807 | bfd *abfd; |
2808 | asymbol **symptrs; /* Buffer for generated bfd symbols */ | |
cb71adf1 | 2809 | boolean dynamic; |
32090b8e | 2810 | { |
cb71adf1 | 2811 | Elf_Internal_Shdr *hdr; |
7d8aaf36 | 2812 | long symcount; /* Number of external ELF symbols */ |
32090b8e KR |
2813 | elf_symbol_type *sym; /* Pointer to current bfd symbol */ |
2814 | elf_symbol_type *symbase; /* Buffer for generated bfd symbols */ | |
2815 | Elf_Internal_Sym i_sym; | |
80425e6c | 2816 | Elf_External_Sym *x_symp = NULL; |
32090b8e | 2817 | |
32090b8e KR |
2818 | /* Read each raw ELF symbol, converting from external ELF form to |
2819 | internal ELF form, and then using the information to create a | |
2820 | canonical bfd symbol table entry. | |
244ffee7 | 2821 | |
32090b8e KR |
2822 | Note that we allocate the initial bfd canonical symbol buffer |
2823 | based on a one-to-one mapping of the ELF symbols to canonical | |
2824 | symbols. We actually use all the ELF symbols, so there will be no | |
2825 | space left over at the end. When we have all the symbols, we | |
2826 | build the caller's pointer vector. */ | |
244ffee7 | 2827 | |
cb71adf1 PS |
2828 | if (dynamic) |
2829 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
2830 | else | |
2831 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
32090b8e | 2832 | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1) |
cb71adf1 | 2833 | return -1; |
244ffee7 | 2834 | |
32090b8e | 2835 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
244ffee7 | 2836 | |
7d8aaf36 ILT |
2837 | if (symcount == 0) |
2838 | sym = symbase = NULL; | |
2839 | else | |
244ffee7 | 2840 | { |
7d8aaf36 | 2841 | long i; |
244ffee7 | 2842 | |
7d8aaf36 | 2843 | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1) |
cb71adf1 | 2844 | return -1; |
7d8aaf36 ILT |
2845 | |
2846 | symbase = ((elf_symbol_type *) | |
2847 | bfd_zalloc (abfd, symcount * sizeof (elf_symbol_type))); | |
2848 | if (symbase == (elf_symbol_type *) NULL) | |
32090b8e | 2849 | { |
7d8aaf36 | 2850 | bfd_set_error (bfd_error_no_memory); |
cb71adf1 | 2851 | return -1; |
32090b8e | 2852 | } |
7d8aaf36 ILT |
2853 | sym = symbase; |
2854 | ||
2855 | /* Temporarily allocate room for the raw ELF symbols. */ | |
2856 | x_symp = ((Elf_External_Sym *) | |
80425e6c | 2857 | malloc (symcount * sizeof (Elf_External_Sym))); |
25057836 | 2858 | if (x_symp == NULL && symcount != 0) |
80425e6c JK |
2859 | { |
2860 | bfd_set_error (bfd_error_no_memory); | |
2861 | goto error_return; | |
2862 | } | |
7d8aaf36 ILT |
2863 | |
2864 | if (bfd_read ((PTR) x_symp, sizeof (Elf_External_Sym), symcount, abfd) | |
2865 | != symcount * sizeof (Elf_External_Sym)) | |
25057836 | 2866 | goto error_return; |
7d8aaf36 ILT |
2867 | /* Skip first symbol, which is a null dummy. */ |
2868 | for (i = 1; i < symcount; i++) | |
32090b8e | 2869 | { |
7d8aaf36 ILT |
2870 | elf_swap_symbol_in (abfd, x_symp + i, &i_sym); |
2871 | memcpy (&sym->internal_elf_sym, &i_sym, sizeof (Elf_Internal_Sym)); | |
2872 | #ifdef ELF_KEEP_EXTSYM | |
2873 | memcpy (&sym->native_elf_sym, x_symp + i, sizeof (Elf_External_Sym)); | |
2874 | #endif | |
2875 | sym->symbol.the_bfd = abfd; | |
244ffee7 | 2876 | |
7d8aaf36 ILT |
2877 | sym->symbol.name = elf_string_from_elf_section (abfd, hdr->sh_link, |
2878 | i_sym.st_name); | |
244ffee7 | 2879 | |
7d8aaf36 | 2880 | sym->symbol.value = i_sym.st_value; |
244ffee7 | 2881 | |
6ec3bb6a | 2882 | if (i_sym.st_shndx > 0 && i_sym.st_shndx < SHN_LORESERVE) |
7d8aaf36 ILT |
2883 | { |
2884 | sym->symbol.section = section_from_elf_index (abfd, | |
2885 | i_sym.st_shndx); | |
2e03ce18 | 2886 | if (sym->symbol.section == NULL) |
013dec1a ILT |
2887 | { |
2888 | /* This symbol is in a section for which we did not | |
2889 | create a BFD section. Just use bfd_abs_section, | |
2890 | although it is wrong. FIXME. */ | |
badd23e3 | 2891 | sym->symbol.section = bfd_abs_section_ptr; |
013dec1a | 2892 | } |
7d8aaf36 ILT |
2893 | } |
2894 | else if (i_sym.st_shndx == SHN_ABS) | |
2895 | { | |
badd23e3 | 2896 | sym->symbol.section = bfd_abs_section_ptr; |
7d8aaf36 ILT |
2897 | } |
2898 | else if (i_sym.st_shndx == SHN_COMMON) | |
2899 | { | |
badd23e3 | 2900 | sym->symbol.section = bfd_com_section_ptr; |
7d8aaf36 ILT |
2901 | /* Elf puts the alignment into the `value' field, and |
2902 | the size into the `size' field. BFD wants to see the | |
2903 | size in the value field, and doesn't care (at the | |
2904 | moment) about the alignment. */ | |
2905 | sym->symbol.value = i_sym.st_size; | |
2906 | } | |
2907 | else if (i_sym.st_shndx == SHN_UNDEF) | |
2908 | { | |
badd23e3 | 2909 | sym->symbol.section = bfd_und_section_ptr; |
7d8aaf36 ILT |
2910 | } |
2911 | else | |
badd23e3 | 2912 | sym->symbol.section = bfd_abs_section_ptr; |
300adb31 | 2913 | |
7d8aaf36 | 2914 | sym->symbol.value -= sym->symbol.section->vma; |
244ffee7 | 2915 | |
7d8aaf36 ILT |
2916 | switch (ELF_ST_BIND (i_sym.st_info)) |
2917 | { | |
2918 | case STB_LOCAL: | |
2919 | sym->symbol.flags |= BSF_LOCAL; | |
2920 | break; | |
2921 | case STB_GLOBAL: | |
42cf6d79 ILT |
2922 | if (i_sym.st_shndx != SHN_UNDEF |
2923 | && i_sym.st_shndx != SHN_COMMON) | |
2924 | sym->symbol.flags |= BSF_GLOBAL; | |
7d8aaf36 ILT |
2925 | break; |
2926 | case STB_WEAK: | |
2927 | sym->symbol.flags |= BSF_WEAK; | |
2928 | break; | |
2929 | } | |
2930 | ||
2931 | switch (ELF_ST_TYPE (i_sym.st_info)) | |
2932 | { | |
2933 | case STT_SECTION: | |
2934 | sym->symbol.flags |= BSF_SECTION_SYM | BSF_DEBUGGING; | |
2935 | break; | |
2936 | case STT_FILE: | |
2937 | sym->symbol.flags |= BSF_FILE | BSF_DEBUGGING; | |
2938 | break; | |
2939 | case STT_FUNC: | |
2940 | sym->symbol.flags |= BSF_FUNCTION; | |
2941 | break; | |
2942 | } | |
2943 | ||
cb71adf1 PS |
2944 | if (dynamic) |
2945 | sym->symbol.flags |= BSF_DYNAMIC; | |
2946 | ||
7d8aaf36 ILT |
2947 | /* Do some backend-specific processing on this symbol. */ |
2948 | { | |
2949 | struct elf_backend_data *ebd = get_elf_backend_data (abfd); | |
2950 | if (ebd->elf_backend_symbol_processing) | |
2951 | (*ebd->elf_backend_symbol_processing) (abfd, &sym->symbol); | |
2952 | } | |
2953 | ||
2954 | sym++; | |
2955 | } | |
244ffee7 JK |
2956 | } |
2957 | ||
e621c5cc ILT |
2958 | /* Do some backend-specific processing on this symbol table. */ |
2959 | { | |
2960 | struct elf_backend_data *ebd = get_elf_backend_data (abfd); | |
2961 | if (ebd->elf_backend_symbol_table_processing) | |
2962 | (*ebd->elf_backend_symbol_table_processing) (abfd, symbase, symcount); | |
2963 | } | |
244ffee7 | 2964 | |
e621c5cc | 2965 | /* We rely on the zalloc to clear out the final symbol entry. */ |
244ffee7 | 2966 | |
cb71adf1 | 2967 | symcount = sym - symbase; |
32090b8e KR |
2968 | |
2969 | /* Fill in the user's symbol pointer vector if needed. */ | |
2970 | if (symptrs) | |
244ffee7 | 2971 | { |
cb71adf1 PS |
2972 | long l = symcount; |
2973 | ||
32090b8e | 2974 | sym = symbase; |
cb71adf1 | 2975 | while (l-- > 0) |
244ffee7 | 2976 | { |
32090b8e KR |
2977 | *symptrs++ = &sym->symbol; |
2978 | sym++; | |
244ffee7 | 2979 | } |
32090b8e | 2980 | *symptrs = 0; /* Final null pointer */ |
244ffee7 JK |
2981 | } |
2982 | ||
80425e6c JK |
2983 | if (x_symp != NULL) |
2984 | free (x_symp); | |
cb71adf1 | 2985 | return symcount; |
1c6042ee | 2986 | error_return: |
80425e6c JK |
2987 | if (x_symp != NULL) |
2988 | free (x_symp); | |
cb71adf1 | 2989 | return -1; |
244ffee7 JK |
2990 | } |
2991 | ||
32090b8e | 2992 | /* Return the number of bytes required to hold the symtab vector. |
244ffee7 | 2993 | |
32090b8e KR |
2994 | Note that we base it on the count plus 1, since we will null terminate |
2995 | the vector allocated based on this size. However, the ELF symbol table | |
2996 | always has a dummy entry as symbol #0, so it ends up even. */ | |
244ffee7 | 2997 | |
326e32d7 | 2998 | long |
1c6042ee ILT |
2999 | elf_get_symtab_upper_bound (abfd) |
3000 | bfd *abfd; | |
244ffee7 | 3001 | { |
326e32d7 ILT |
3002 | long symcount; |
3003 | long symtab_size; | |
1c6042ee | 3004 | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; |
326e32d7 | 3005 | |
32090b8e | 3006 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
d6439785 | 3007 | symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); |
244ffee7 | 3008 | |
32090b8e KR |
3009 | return symtab_size; |
3010 | } | |
244ffee7 | 3011 | |
cb71adf1 PS |
3012 | long |
3013 | elf_get_dynamic_symtab_upper_bound (abfd) | |
3014 | bfd *abfd; | |
3015 | { | |
3016 | long symcount; | |
3017 | long symtab_size; | |
3018 | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
3019 | ||
f9779aad ILT |
3020 | if (elf_dynsymtab (abfd) == 0) |
3021 | { | |
3022 | bfd_set_error (bfd_error_invalid_operation); | |
3023 | return -1; | |
3024 | } | |
3025 | ||
cb71adf1 PS |
3026 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); |
3027 | symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); | |
3028 | ||
3029 | return symtab_size; | |
3030 | } | |
3031 | ||
326e32d7 | 3032 | long |
32090b8e KR |
3033 | elf_get_reloc_upper_bound (abfd, asect) |
3034 | bfd *abfd; | |
3035 | sec_ptr asect; | |
3036 | { | |
51fc377b | 3037 | return (asect->reloc_count + 1) * sizeof (arelent *); |
244ffee7 JK |
3038 | } |
3039 | ||
ea617174 ILT |
3040 | /* Read in and swap the external relocs. */ |
3041 | ||
32090b8e | 3042 | static boolean |
ea617174 | 3043 | elf_slurp_reloc_table (abfd, asect, symbols) |
1c6042ee | 3044 | bfd *abfd; |
ea617174 | 3045 | asection *asect; |
1c6042ee | 3046 | asymbol **symbols; |
244ffee7 | 3047 | { |
ea617174 ILT |
3048 | struct elf_backend_data * const ebd = get_elf_backend_data (abfd); |
3049 | struct bfd_elf_section_data * const d = elf_section_data (asect); | |
3050 | PTR allocated = NULL; | |
3051 | bfd_byte *native_relocs; | |
3052 | arelent *relents; | |
3053 | arelent *relent; | |
3054 | unsigned int i; | |
3055 | int entsize; | |
244ffee7 | 3056 | |
d510fd89 ILT |
3057 | if (asect->relocation != NULL |
3058 | || (asect->flags & SEC_RELOC) == 0 | |
3059 | || asect->reloc_count == 0) | |
32090b8e | 3060 | return true; |
244ffee7 | 3061 | |
ea617174 ILT |
3062 | BFD_ASSERT (asect->rel_filepos == d->rel_hdr.sh_offset |
3063 | && (asect->reloc_count | |
3064 | == d->rel_hdr.sh_size / d->rel_hdr.sh_entsize)); | |
3065 | ||
374d2ef9 ILT |
3066 | allocated = (PTR) malloc (d->rel_hdr.sh_size); |
3067 | if (allocated == NULL) | |
9783e04a | 3068 | { |
374d2ef9 ILT |
3069 | bfd_set_error (bfd_error_no_memory); |
3070 | goto error_return; | |
3071 | } | |
ea617174 | 3072 | |
374d2ef9 ILT |
3073 | if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0 |
3074 | || (bfd_read (allocated, 1, d->rel_hdr.sh_size, abfd) | |
3075 | != d->rel_hdr.sh_size)) | |
3076 | goto error_return; | |
244ffee7 | 3077 | |
374d2ef9 | 3078 | native_relocs = (bfd_byte *) allocated; |
32090b8e | 3079 | |
ea617174 ILT |
3080 | relents = ((arelent *) |
3081 | bfd_alloc (abfd, asect->reloc_count * sizeof (arelent))); | |
3082 | if (relents == NULL) | |
6a3eb9b6 | 3083 | { |
d1ad85a6 | 3084 | bfd_set_error (bfd_error_no_memory); |
ea617174 | 3085 | goto error_return; |
6a3eb9b6 | 3086 | } |
244ffee7 | 3087 | |
ea617174 ILT |
3088 | entsize = d->rel_hdr.sh_entsize; |
3089 | BFD_ASSERT (entsize == sizeof (Elf_External_Rel) | |
3090 | || entsize == sizeof (Elf_External_Rela)); | |
244ffee7 | 3091 | |
ea617174 ILT |
3092 | for (i = 0, relent = relents; |
3093 | i < asect->reloc_count; | |
3094 | i++, relent++, native_relocs += entsize) | |
3095 | { | |
3096 | Elf_Internal_Rela rela; | |
3097 | Elf_Internal_Rel rel; | |
244ffee7 | 3098 | |
ea617174 ILT |
3099 | if (entsize == sizeof (Elf_External_Rela)) |
3100 | elf_swap_reloca_in (abfd, (Elf_External_Rela *) native_relocs, &rela); | |
32090b8e KR |
3101 | else |
3102 | { | |
ea617174 ILT |
3103 | elf_swap_reloc_in (abfd, (Elf_External_Rel *) native_relocs, &rel); |
3104 | rela.r_offset = rel.r_offset; | |
3105 | rela.r_info = rel.r_info; | |
3106 | rela.r_addend = 0; | |
32090b8e | 3107 | } |
7b8106b4 | 3108 | |
ea617174 ILT |
3109 | /* The address of an ELF reloc is section relative for an object |
3110 | file, and absolute for an executable file or shared library. | |
3111 | The address of a BFD reloc is always section relative. */ | |
3112 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) | |
3113 | relent->address = rela.r_offset; | |
3114 | else | |
3115 | relent->address = rela.r_offset - asect->vma; | |
3116 | ||
3117 | if (ELF_R_SYM (rela.r_info) == 0) | |
3118 | relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; | |
7b8106b4 ILT |
3119 | else |
3120 | { | |
ea617174 | 3121 | asymbol **ps, *s; |
7b8106b4 | 3122 | |
ea617174 ILT |
3123 | ps = symbols + ELF_R_SYM (rela.r_info) - 1; |
3124 | s = *ps; | |
7b8106b4 | 3125 | |
ea617174 ILT |
3126 | /* Canonicalize ELF section symbols. FIXME: Why? */ |
3127 | if ((s->flags & BSF_SECTION_SYM) == 0) | |
3128 | relent->sym_ptr_ptr = ps; | |
3129 | else | |
3130 | relent->sym_ptr_ptr = s->section->symbol_ptr_ptr; | |
7b8106b4 | 3131 | } |
244ffee7 | 3132 | |
ea617174 ILT |
3133 | relent->addend = rela.r_addend; |
3134 | ||
3135 | if (entsize == sizeof (Elf_External_Rela)) | |
3136 | (*ebd->elf_info_to_howto) (abfd, relent, &rela); | |
3137 | else | |
3138 | (*ebd->elf_info_to_howto_rel) (abfd, relent, &rel); | |
32090b8e | 3139 | } |
244ffee7 | 3140 | |
ea617174 ILT |
3141 | asect->relocation = relents; |
3142 | ||
3143 | if (allocated != NULL) | |
3144 | free (allocated); | |
3145 | ||
32090b8e | 3146 | return true; |
ea617174 ILT |
3147 | |
3148 | error_return: | |
3149 | if (allocated != NULL) | |
3150 | free (allocated); | |
3151 | return false; | |
32090b8e | 3152 | } |
238ac6ec | 3153 | |
32090b8e KR |
3154 | #ifdef DEBUG |
3155 | static void | |
eb4267a3 | 3156 | elf_debug_section (num, hdr) |
32090b8e KR |
3157 | int num; |
3158 | Elf_Internal_Shdr *hdr; | |
3159 | { | |
eb4267a3 ILT |
3160 | fprintf (stderr, "\nSection#%d '%s' 0x%.8lx\n", num, |
3161 | hdr->bfd_section != NULL ? hfd->bfd_section->name : "", | |
3162 | (long) hdr); | |
32090b8e KR |
3163 | fprintf (stderr, |
3164 | "sh_name = %ld\tsh_type = %ld\tsh_flags = %ld\n", | |
3165 | (long) hdr->sh_name, | |
3166 | (long) hdr->sh_type, | |
3167 | (long) hdr->sh_flags); | |
3168 | fprintf (stderr, | |
3169 | "sh_addr = %ld\tsh_offset = %ld\tsh_size = %ld\n", | |
3170 | (long) hdr->sh_addr, | |
3171 | (long) hdr->sh_offset, | |
3172 | (long) hdr->sh_size); | |
3173 | fprintf (stderr, | |
3174 | "sh_link = %ld\tsh_info = %ld\tsh_addralign = %ld\n", | |
3175 | (long) hdr->sh_link, | |
3176 | (long) hdr->sh_info, | |
3177 | (long) hdr->sh_addralign); | |
3178 | fprintf (stderr, "sh_entsize = %ld\n", | |
3179 | (long) hdr->sh_entsize); | |
32090b8e KR |
3180 | fflush (stderr); |
3181 | } | |
244ffee7 | 3182 | |
32090b8e KR |
3183 | static void |
3184 | elf_debug_file (ehdrp) | |
3185 | Elf_Internal_Ehdr *ehdrp; | |
3186 | { | |
3187 | fprintf (stderr, "e_entry = 0x%.8lx\n", (long) ehdrp->e_entry); | |
3188 | fprintf (stderr, "e_phoff = %ld\n", (long) ehdrp->e_phoff); | |
3189 | fprintf (stderr, "e_phnum = %ld\n", (long) ehdrp->e_phnum); | |
3190 | fprintf (stderr, "e_phentsize = %ld\n", (long) ehdrp->e_phentsize); | |
3191 | fprintf (stderr, "e_shoff = %ld\n", (long) ehdrp->e_shoff); | |
3192 | fprintf (stderr, "e_shnum = %ld\n", (long) ehdrp->e_shnum); | |
3193 | fprintf (stderr, "e_shentsize = %ld\n", (long) ehdrp->e_shentsize); | |
244ffee7 | 3194 | } |
32090b8e | 3195 | #endif |
244ffee7 | 3196 | |
ea617174 | 3197 | /* Canonicalize the relocs. */ |
244ffee7 | 3198 | |
326e32d7 | 3199 | long |
32090b8e KR |
3200 | elf_canonicalize_reloc (abfd, section, relptr, symbols) |
3201 | bfd *abfd; | |
3202 | sec_ptr section; | |
3203 | arelent **relptr; | |
3204 | asymbol **symbols; | |
3205 | { | |
ea617174 ILT |
3206 | arelent *tblptr; |
3207 | unsigned int i; | |
32090b8e | 3208 | |
ea617174 ILT |
3209 | if (! elf_slurp_reloc_table (abfd, section, symbols)) |
3210 | return -1; | |
32090b8e KR |
3211 | |
3212 | tblptr = section->relocation; | |
ea617174 | 3213 | for (i = 0; i < section->reloc_count; i++) |
32090b8e KR |
3214 | *relptr++ = tblptr++; |
3215 | ||
ea617174 ILT |
3216 | *relptr = NULL; |
3217 | ||
32090b8e KR |
3218 | return section->reloc_count; |
3219 | } | |
3220 | ||
326e32d7 | 3221 | long |
1c6042ee ILT |
3222 | elf_get_symtab (abfd, alocation) |
3223 | bfd *abfd; | |
3224 | asymbol **alocation; | |
32090b8e | 3225 | { |
cb71adf1 PS |
3226 | long symcount = elf_slurp_symbol_table (abfd, alocation, false); |
3227 | ||
3228 | if (symcount >= 0) | |
3229 | bfd_get_symcount (abfd) = symcount; | |
3230 | return symcount; | |
3231 | } | |
326e32d7 | 3232 | |
cb71adf1 PS |
3233 | long |
3234 | elf_canonicalize_dynamic_symtab (abfd, alocation) | |
3235 | bfd *abfd; | |
3236 | asymbol **alocation; | |
3237 | { | |
3238 | return elf_slurp_symbol_table (abfd, alocation, true); | |
32090b8e KR |
3239 | } |
3240 | ||
3241 | asymbol * | |
1c6042ee ILT |
3242 | elf_make_empty_symbol (abfd) |
3243 | bfd *abfd; | |
32090b8e KR |
3244 | { |
3245 | elf_symbol_type *newsym; | |
3246 | ||
3247 | newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type)); | |
3248 | if (!newsym) | |
3249 | { | |
d1ad85a6 | 3250 | bfd_set_error (bfd_error_no_memory); |
32090b8e KR |
3251 | return NULL; |
3252 | } | |
3253 | else | |
3254 | { | |
3255 | newsym->symbol.the_bfd = abfd; | |
3256 | return &newsym->symbol; | |
244ffee7 | 3257 | } |
32090b8e | 3258 | } |
244ffee7 | 3259 | |
32090b8e | 3260 | void |
1c6042ee ILT |
3261 | elf_get_symbol_info (ignore_abfd, symbol, ret) |
3262 | bfd *ignore_abfd; | |
3263 | asymbol *symbol; | |
3264 | symbol_info *ret; | |
32090b8e KR |
3265 | { |
3266 | bfd_symbol_info (symbol, ret); | |
3267 | } | |
244ffee7 | 3268 | |
32090b8e | 3269 | alent * |
1c6042ee ILT |
3270 | elf_get_lineno (ignore_abfd, symbol) |
3271 | bfd *ignore_abfd; | |
3272 | asymbol *symbol; | |
32090b8e KR |
3273 | { |
3274 | fprintf (stderr, "elf_get_lineno unimplemented\n"); | |
3275 | fflush (stderr); | |
3276 | BFD_FAIL (); | |
3277 | return NULL; | |
3278 | } | |
3279 | ||
3280 | boolean | |
1c6042ee ILT |
3281 | elf_set_arch_mach (abfd, arch, machine) |
3282 | bfd *abfd; | |
3283 | enum bfd_architecture arch; | |
3284 | unsigned long machine; | |
32090b8e | 3285 | { |
80a903c9 ILT |
3286 | /* If this isn't the right architecture for this backend, and this |
3287 | isn't the generic backend, fail. */ | |
3288 | if (arch != get_elf_backend_data (abfd)->arch | |
3289 | && arch != bfd_arch_unknown | |
3290 | && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) | |
3291 | return false; | |
3292 | ||
3293 | return bfd_default_set_arch_mach (abfd, arch, machine); | |
32090b8e | 3294 | } |
244ffee7 | 3295 | |
32090b8e | 3296 | boolean |
1c6042ee ILT |
3297 | elf_find_nearest_line (abfd, |
3298 | section, | |
3299 | symbols, | |
3300 | offset, | |
3301 | filename_ptr, | |
3302 | functionname_ptr, | |
3303 | line_ptr) | |
3304 | bfd *abfd; | |
3305 | asection *section; | |
3306 | asymbol **symbols; | |
3307 | bfd_vma offset; | |
3308 | CONST char **filename_ptr; | |
3309 | CONST char **functionname_ptr; | |
3310 | unsigned int *line_ptr; | |
32090b8e KR |
3311 | { |
3312 | return false; | |
244ffee7 JK |
3313 | } |
3314 | ||
32090b8e | 3315 | int |
1c6042ee ILT |
3316 | elf_sizeof_headers (abfd, reloc) |
3317 | bfd *abfd; | |
3318 | boolean reloc; | |
32090b8e | 3319 | { |
013dec1a ILT |
3320 | int ret; |
3321 | ||
3322 | ret = sizeof (Elf_External_Ehdr); | |
3323 | if (! reloc) | |
6c97aedf ILT |
3324 | ret += get_program_header_size (abfd, (Elf_Internal_Shdr **) NULL, 0, |
3325 | (bfd_vma) 0); | |
013dec1a | 3326 | return ret; |
32090b8e | 3327 | } |
244ffee7 | 3328 | |
32090b8e | 3329 | boolean |
1c6042ee ILT |
3330 | elf_set_section_contents (abfd, section, location, offset, count) |
3331 | bfd *abfd; | |
3332 | sec_ptr section; | |
3333 | PTR location; | |
3334 | file_ptr offset; | |
3335 | bfd_size_type count; | |
244ffee7 | 3336 | { |
244ffee7 JK |
3337 | Elf_Internal_Shdr *hdr; |
3338 | ||
6ec3bb6a ILT |
3339 | if (! abfd->output_has_begun |
3340 | && ! elf_compute_section_file_positions (abfd, | |
3341 | (struct bfd_link_info *) NULL)) | |
3342 | return false; | |
244ffee7 | 3343 | |
1c6042ee | 3344 | hdr = &elf_section_data (section)->this_hdr; |
244ffee7 | 3345 | |
32090b8e KR |
3346 | if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1) |
3347 | return false; | |
3348 | if (bfd_write (location, 1, count, abfd) != count) | |
3349 | return false; | |
3350 | ||
3351 | return true; | |
3352 | } | |
3353 | ||
3354 | void | |
1c6042ee ILT |
3355 | elf_no_info_to_howto (abfd, cache_ptr, dst) |
3356 | bfd *abfd; | |
3357 | arelent *cache_ptr; | |
3358 | Elf_Internal_Rela *dst; | |
244ffee7 | 3359 | { |
32090b8e KR |
3360 | fprintf (stderr, "elf RELA relocation support for target machine unimplemented\n"); |
3361 | fflush (stderr); | |
3362 | BFD_FAIL (); | |
244ffee7 JK |
3363 | } |
3364 | ||
32090b8e | 3365 | void |
1c6042ee ILT |
3366 | elf_no_info_to_howto_rel (abfd, cache_ptr, dst) |
3367 | bfd *abfd; | |
3368 | arelent *cache_ptr; | |
3369 | Elf_Internal_Rel *dst; | |
244ffee7 | 3370 | { |
32090b8e KR |
3371 | fprintf (stderr, "elf REL relocation support for target machine unimplemented\n"); |
3372 | fflush (stderr); | |
3373 | BFD_FAIL (); | |
3374 | } | |
32090b8e | 3375 | \f |
1c6042ee | 3376 | |
32090b8e | 3377 | /* Core file support */ |
244ffee7 | 3378 | |
32090b8e KR |
3379 | #ifdef HAVE_PROCFS /* Some core file support requires host /proc files */ |
3380 | #include <sys/procfs.h> | |
3381 | #else | |
2e03ce18 ILT |
3382 | #define bfd_prstatus(abfd, descdata, descsz, filepos) true |
3383 | #define bfd_fpregset(abfd, descdata, descsz, filepos) true | |
3384 | #define bfd_prpsinfo(abfd, descdata, descsz, filepos) true | |
32090b8e | 3385 | #endif |
244ffee7 | 3386 | |
32090b8e | 3387 | #ifdef HAVE_PROCFS |
244ffee7 | 3388 | |
2e03ce18 | 3389 | static boolean |
1c6042ee ILT |
3390 | bfd_prstatus (abfd, descdata, descsz, filepos) |
3391 | bfd *abfd; | |
3392 | char *descdata; | |
3393 | int descsz; | |
3394 | long filepos; | |
32090b8e KR |
3395 | { |
3396 | asection *newsect; | |
3397 | prstatus_t *status = (prstatus_t *) 0; | |
244ffee7 | 3398 | |
32090b8e | 3399 | if (descsz == sizeof (prstatus_t)) |
244ffee7 | 3400 | { |
32090b8e | 3401 | newsect = bfd_make_section (abfd, ".reg"); |
2e03ce18 ILT |
3402 | if (newsect == NULL) |
3403 | return false; | |
32090b8e KR |
3404 | newsect->_raw_size = sizeof (status->pr_reg); |
3405 | newsect->filepos = filepos + (long) &status->pr_reg; | |
57a814a9 | 3406 | newsect->flags = SEC_HAS_CONTENTS; |
32090b8e KR |
3407 | newsect->alignment_power = 2; |
3408 | if ((core_prstatus (abfd) = bfd_alloc (abfd, descsz)) != NULL) | |
3409 | { | |
3410 | memcpy (core_prstatus (abfd), descdata, descsz); | |
3411 | } | |
244ffee7 | 3412 | } |
2e03ce18 | 3413 | return true; |
32090b8e | 3414 | } |
244ffee7 | 3415 | |
32090b8e | 3416 | /* Stash a copy of the prpsinfo structure away for future use. */ |
244ffee7 | 3417 | |
2e03ce18 | 3418 | static boolean |
1c6042ee ILT |
3419 | bfd_prpsinfo (abfd, descdata, descsz, filepos) |
3420 | bfd *abfd; | |
3421 | char *descdata; | |
3422 | int descsz; | |
3423 | long filepos; | |
32090b8e | 3424 | { |
32090b8e KR |
3425 | if (descsz == sizeof (prpsinfo_t)) |
3426 | { | |
2e03ce18 | 3427 | if ((core_prpsinfo (abfd) = bfd_alloc (abfd, descsz)) == NULL) |
244ffee7 | 3428 | { |
2e03ce18 ILT |
3429 | bfd_set_error (bfd_error_no_memory); |
3430 | return false; | |
244ffee7 | 3431 | } |
2e03ce18 | 3432 | memcpy (core_prpsinfo (abfd), descdata, descsz); |
244ffee7 | 3433 | } |
2e03ce18 | 3434 | return true; |
244ffee7 JK |
3435 | } |
3436 | ||
2e03ce18 | 3437 | static boolean |
1c6042ee ILT |
3438 | bfd_fpregset (abfd, descdata, descsz, filepos) |
3439 | bfd *abfd; | |
3440 | char *descdata; | |
3441 | int descsz; | |
3442 | long filepos; | |
244ffee7 | 3443 | { |
32090b8e | 3444 | asection *newsect; |
244ffee7 | 3445 | |
32090b8e | 3446 | newsect = bfd_make_section (abfd, ".reg2"); |
2e03ce18 ILT |
3447 | if (newsect == NULL) |
3448 | return false; | |
32090b8e KR |
3449 | newsect->_raw_size = descsz; |
3450 | newsect->filepos = filepos; | |
57a814a9 | 3451 | newsect->flags = SEC_HAS_CONTENTS; |
32090b8e | 3452 | newsect->alignment_power = 2; |
2e03ce18 | 3453 | return true; |
6a3eb9b6 | 3454 | } |
244ffee7 | 3455 | |
32090b8e KR |
3456 | #endif /* HAVE_PROCFS */ |
3457 | ||
3458 | /* Return a pointer to the args (including the command name) that were | |
3459 | seen by the program that generated the core dump. Note that for | |
3460 | some reason, a spurious space is tacked onto the end of the args | |
3461 | in some (at least one anyway) implementations, so strip it off if | |
3462 | it exists. */ | |
3463 | ||
3464 | char * | |
1c6042ee ILT |
3465 | elf_core_file_failing_command (abfd) |
3466 | bfd *abfd; | |
244ffee7 | 3467 | { |
32090b8e KR |
3468 | #ifdef HAVE_PROCFS |
3469 | if (core_prpsinfo (abfd)) | |
3470 | { | |
3471 | prpsinfo_t *p = core_prpsinfo (abfd); | |
3472 | char *scan = p->pr_psargs; | |
3473 | while (*scan++) | |
3474 | {; | |
3475 | } | |
3476 | scan -= 2; | |
3477 | if ((scan > p->pr_psargs) && (*scan == ' ')) | |
3478 | { | |
3479 | *scan = '\000'; | |
3480 | } | |
3481 | return p->pr_psargs; | |
3482 | } | |
3483 | #endif | |
3484 | return NULL; | |
3485 | } | |
244ffee7 | 3486 | |
32090b8e KR |
3487 | /* Return the number of the signal that caused the core dump. Presumably, |
3488 | since we have a core file, we got a signal of some kind, so don't bother | |
3489 | checking the other process status fields, just return the signal number. | |
3490 | */ | |
244ffee7 | 3491 | |
32090b8e | 3492 | int |
1c6042ee ILT |
3493 | elf_core_file_failing_signal (abfd) |
3494 | bfd *abfd; | |
32090b8e KR |
3495 | { |
3496 | #ifdef HAVE_PROCFS | |
3497 | if (core_prstatus (abfd)) | |
3498 | { | |
3499 | return ((prstatus_t *) (core_prstatus (abfd)))->pr_cursig; | |
3500 | } | |
3501 | #endif | |
3502 | return -1; | |
3503 | } | |
244ffee7 | 3504 | |
32090b8e KR |
3505 | /* Check to see if the core file could reasonably be expected to have |
3506 | come for the current executable file. Note that by default we return | |
3507 | true unless we find something that indicates that there might be a | |
3508 | problem. | |
3509 | */ | |
244ffee7 | 3510 | |
32090b8e | 3511 | boolean |
1c6042ee ILT |
3512 | elf_core_file_matches_executable_p (core_bfd, exec_bfd) |
3513 | bfd *core_bfd; | |
3514 | bfd *exec_bfd; | |
32090b8e KR |
3515 | { |
3516 | #ifdef HAVE_PROCFS | |
3517 | char *corename; | |
3518 | char *execname; | |
3519 | #endif | |
244ffee7 | 3520 | |
32090b8e KR |
3521 | /* First, xvecs must match since both are ELF files for the same target. */ |
3522 | ||
3523 | if (core_bfd->xvec != exec_bfd->xvec) | |
244ffee7 | 3524 | { |
d1ad85a6 | 3525 | bfd_set_error (bfd_error_system_call); |
244ffee7 JK |
3526 | return false; |
3527 | } | |
3528 | ||
32090b8e | 3529 | #ifdef HAVE_PROCFS |
244ffee7 | 3530 | |
32090b8e KR |
3531 | /* If no prpsinfo, just return true. Otherwise, grab the last component |
3532 | of the exec'd pathname from the prpsinfo. */ | |
244ffee7 | 3533 | |
32090b8e | 3534 | if (core_prpsinfo (core_bfd)) |
244ffee7 | 3535 | { |
32090b8e KR |
3536 | corename = (((struct prpsinfo *) core_prpsinfo (core_bfd))->pr_fname); |
3537 | } | |
3538 | else | |
3539 | { | |
3540 | return true; | |
3541 | } | |
244ffee7 | 3542 | |
32090b8e | 3543 | /* Find the last component of the executable pathname. */ |
244ffee7 | 3544 | |
32090b8e KR |
3545 | if ((execname = strrchr (exec_bfd->filename, '/')) != NULL) |
3546 | { | |
3547 | execname++; | |
3548 | } | |
3549 | else | |
3550 | { | |
3551 | execname = (char *) exec_bfd->filename; | |
3552 | } | |
244ffee7 | 3553 | |
32090b8e | 3554 | /* See if they match */ |
244ffee7 | 3555 | |
32090b8e | 3556 | return strcmp (execname, corename) ? false : true; |
244ffee7 | 3557 | |
32090b8e | 3558 | #else |
244ffee7 | 3559 | |
244ffee7 | 3560 | return true; |
244ffee7 | 3561 | |
32090b8e KR |
3562 | #endif /* HAVE_PROCFS */ |
3563 | } | |
244ffee7 | 3564 | |
32090b8e KR |
3565 | /* ELF core files contain a segment of type PT_NOTE, that holds much of |
3566 | the information that would normally be available from the /proc interface | |
3567 | for the process, at the time the process dumped core. Currently this | |
3568 | includes copies of the prstatus, prpsinfo, and fpregset structures. | |
244ffee7 | 3569 | |
32090b8e KR |
3570 | Since these structures are potentially machine dependent in size and |
3571 | ordering, bfd provides two levels of support for them. The first level, | |
3572 | available on all machines since it does not require that the host | |
3573 | have /proc support or the relevant include files, is to create a bfd | |
3574 | section for each of the prstatus, prpsinfo, and fpregset structures, | |
3575 | without any interpretation of their contents. With just this support, | |
3576 | the bfd client will have to interpret the structures itself. Even with | |
3577 | /proc support, it might want these full structures for it's own reasons. | |
244ffee7 | 3578 | |
32090b8e KR |
3579 | In the second level of support, where HAVE_PROCFS is defined, bfd will |
3580 | pick apart the structures to gather some additional information that | |
3581 | clients may want, such as the general register set, the name of the | |
3582 | exec'ed file and its arguments, the signal (if any) that caused the | |
3583 | core dump, etc. | |
244ffee7 | 3584 | |
32090b8e | 3585 | */ |
244ffee7 | 3586 | |
32090b8e | 3587 | static boolean |
1c6042ee ILT |
3588 | elf_corefile_note (abfd, hdr) |
3589 | bfd *abfd; | |
3590 | Elf_Internal_Phdr *hdr; | |
244ffee7 | 3591 | { |
32090b8e KR |
3592 | Elf_External_Note *x_note_p; /* Elf note, external form */ |
3593 | Elf_Internal_Note i_note; /* Elf note, internal form */ | |
3594 | char *buf = NULL; /* Entire note segment contents */ | |
3595 | char *namedata; /* Name portion of the note */ | |
3596 | char *descdata; /* Descriptor portion of the note */ | |
3597 | char *sectname; /* Name to use for new section */ | |
3598 | long filepos; /* File offset to descriptor data */ | |
3599 | asection *newsect; | |
3600 | ||
3601 | if (hdr->p_filesz > 0 | |
b9d5cdf0 | 3602 | && (buf = (char *) malloc (hdr->p_filesz)) != NULL |
32090b8e KR |
3603 | && bfd_seek (abfd, hdr->p_offset, SEEK_SET) != -1 |
3604 | && bfd_read ((PTR) buf, hdr->p_filesz, 1, abfd) == hdr->p_filesz) | |
3605 | { | |
3606 | x_note_p = (Elf_External_Note *) buf; | |
3607 | while ((char *) x_note_p < (buf + hdr->p_filesz)) | |
3608 | { | |
3609 | i_note.namesz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->namesz); | |
3610 | i_note.descsz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->descsz); | |
3611 | i_note.type = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->type); | |
3612 | namedata = x_note_p->name; | |
3613 | descdata = namedata + BFD_ALIGN (i_note.namesz, 4); | |
3614 | filepos = hdr->p_offset + (descdata - buf); | |
3615 | switch (i_note.type) | |
3616 | { | |
3617 | case NT_PRSTATUS: | |
3618 | /* process descdata as prstatus info */ | |
2e03ce18 ILT |
3619 | if (! bfd_prstatus (abfd, descdata, i_note.descsz, filepos)) |
3620 | return false; | |
32090b8e KR |
3621 | sectname = ".prstatus"; |
3622 | break; | |
3623 | case NT_FPREGSET: | |
3624 | /* process descdata as fpregset info */ | |
2e03ce18 ILT |
3625 | if (! bfd_fpregset (abfd, descdata, i_note.descsz, filepos)) |
3626 | return false; | |
32090b8e KR |
3627 | sectname = ".fpregset"; |
3628 | break; | |
3629 | case NT_PRPSINFO: | |
3630 | /* process descdata as prpsinfo */ | |
2e03ce18 ILT |
3631 | if (! bfd_prpsinfo (abfd, descdata, i_note.descsz, filepos)) |
3632 | return false; | |
32090b8e KR |
3633 | sectname = ".prpsinfo"; |
3634 | break; | |
3635 | default: | |
3636 | /* Unknown descriptor, just ignore it. */ | |
3637 | sectname = NULL; | |
3638 | break; | |
3639 | } | |
3640 | if (sectname != NULL) | |
3641 | { | |
3642 | newsect = bfd_make_section (abfd, sectname); | |
2e03ce18 ILT |
3643 | if (newsect == NULL) |
3644 | return false; | |
32090b8e KR |
3645 | newsect->_raw_size = i_note.descsz; |
3646 | newsect->filepos = filepos; | |
3647 | newsect->flags = SEC_ALLOC | SEC_HAS_CONTENTS; | |
3648 | newsect->alignment_power = 2; | |
3649 | } | |
3650 | x_note_p = (Elf_External_Note *) | |
3651 | (descdata + BFD_ALIGN (i_note.descsz, 4)); | |
3652 | } | |
3653 | } | |
3654 | if (buf != NULL) | |
3655 | { | |
3656 | free (buf); | |
3657 | } | |
b9d5cdf0 DM |
3658 | else if (hdr->p_filesz > 0) |
3659 | { | |
d1ad85a6 | 3660 | bfd_set_error (bfd_error_no_memory); |
b9d5cdf0 DM |
3661 | return false; |
3662 | } | |
32090b8e | 3663 | return true; |
244ffee7 | 3664 | |
244ffee7 JK |
3665 | } |
3666 | ||
32090b8e KR |
3667 | /* Core files are simply standard ELF formatted files that partition |
3668 | the file using the execution view of the file (program header table) | |
3669 | rather than the linking view. In fact, there is no section header | |
3670 | table in a core file. | |
3671 | ||
3672 | The process status information (including the contents of the general | |
3673 | register set) and the floating point register set are stored in a | |
3674 | segment of type PT_NOTE. We handcraft a couple of extra bfd sections | |
3675 | that allow standard bfd access to the general registers (.reg) and the | |
3676 | floating point registers (.reg2). | |
3677 | ||
3678 | */ | |
3679 | ||
2f3508ad | 3680 | const bfd_target * |
1c6042ee ILT |
3681 | elf_core_file_p (abfd) |
3682 | bfd *abfd; | |
244ffee7 | 3683 | { |
32090b8e KR |
3684 | Elf_External_Ehdr x_ehdr; /* Elf file header, external form */ |
3685 | Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ | |
3686 | Elf_External_Phdr x_phdr; /* Program header table entry, external form */ | |
3687 | Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */ | |
3688 | unsigned int phindex; | |
d6439785 | 3689 | struct elf_backend_data *ebd; |
244ffee7 | 3690 | |
32090b8e KR |
3691 | /* Read in the ELF header in external format. */ |
3692 | ||
3693 | if (bfd_read ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr)) | |
244ffee7 | 3694 | { |
25057836 JL |
3695 | if (bfd_get_error () != bfd_error_system_call) |
3696 | bfd_set_error (bfd_error_wrong_format); | |
244ffee7 JK |
3697 | return NULL; |
3698 | } | |
32090b8e KR |
3699 | |
3700 | /* Now check to see if we have a valid ELF file, and one that BFD can | |
3701 | make use of. The magic number must match, the address size ('class') | |
3702 | and byte-swapping must match our XVEC entry, and it must have a | |
3703 | program header table (FIXME: See comments re segments at top of this | |
3704 | file). */ | |
3705 | ||
3706 | if (elf_file_p (&x_ehdr) == false) | |
244ffee7 | 3707 | { |
32090b8e | 3708 | wrong: |
d1ad85a6 | 3709 | bfd_set_error (bfd_error_wrong_format); |
32090b8e | 3710 | return NULL; |
244ffee7 | 3711 | } |
244ffee7 | 3712 | |
32090b8e | 3713 | /* FIXME, Check EI_VERSION here ! */ |
244ffee7 | 3714 | |
32090b8e KR |
3715 | { |
3716 | #if ARCH_SIZE == 32 | |
3717 | int desired_address_size = ELFCLASS32; | |
3718 | #endif | |
3719 | #if ARCH_SIZE == 64 | |
3720 | int desired_address_size = ELFCLASS64; | |
3721 | #endif | |
3722 | ||
3723 | if (x_ehdr.e_ident[EI_CLASS] != desired_address_size) | |
3724 | goto wrong; | |
3725 | } | |
3726 | ||
3727 | /* Switch xvec to match the specified byte order. */ | |
3728 | switch (x_ehdr.e_ident[EI_DATA]) | |
244ffee7 | 3729 | { |
32090b8e KR |
3730 | case ELFDATA2MSB: /* Big-endian */ |
3731 | if (abfd->xvec->byteorder_big_p == false) | |
3732 | goto wrong; | |
244ffee7 | 3733 | break; |
32090b8e KR |
3734 | case ELFDATA2LSB: /* Little-endian */ |
3735 | if (abfd->xvec->byteorder_big_p == true) | |
3736 | goto wrong; | |
244ffee7 | 3737 | break; |
32090b8e KR |
3738 | case ELFDATANONE: /* No data encoding specified */ |
3739 | default: /* Unknown data encoding specified */ | |
3740 | goto wrong; | |
244ffee7 JK |
3741 | } |
3742 | ||
32090b8e KR |
3743 | /* Allocate an instance of the elf_obj_tdata structure and hook it up to |
3744 | the tdata pointer in the bfd. */ | |
244ffee7 | 3745 | |
32090b8e KR |
3746 | elf_tdata (abfd) = |
3747 | (struct elf_obj_tdata *) bfd_zalloc (abfd, sizeof (struct elf_obj_tdata)); | |
3748 | if (elf_tdata (abfd) == NULL) | |
244ffee7 | 3749 | { |
d1ad85a6 | 3750 | bfd_set_error (bfd_error_no_memory); |
32090b8e | 3751 | return NULL; |
244ffee7 | 3752 | } |
244ffee7 | 3753 | |
32090b8e | 3754 | /* FIXME, `wrong' returns from this point onward, leak memory. */ |
244ffee7 | 3755 | |
32090b8e KR |
3756 | /* Now that we know the byte order, swap in the rest of the header */ |
3757 | i_ehdrp = elf_elfheader (abfd); | |
3758 | elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp); | |
3759 | #if DEBUG & 1 | |
3760 | elf_debug_file (i_ehdrp); | |
3761 | #endif | |
244ffee7 | 3762 | |
d6439785 JL |
3763 | ebd = get_elf_backend_data (abfd); |
3764 | ||
3765 | /* Check that the ELF e_machine field matches what this particular | |
3766 | BFD format expects. */ | |
3767 | if (ebd->elf_machine_code != i_ehdrp->e_machine) | |
3768 | { | |
2f3508ad | 3769 | const bfd_target * const *target_ptr; |
d6439785 JL |
3770 | |
3771 | if (ebd->elf_machine_code != EM_NONE) | |
3772 | goto wrong; | |
3773 | ||
3774 | /* This is the generic ELF target. Let it match any ELF target | |
3775 | for which we do not have a specific backend. */ | |
3776 | for (target_ptr = bfd_target_vector; *target_ptr != NULL; target_ptr++) | |
3777 | { | |
3778 | struct elf_backend_data *back; | |
3779 | ||
3780 | if ((*target_ptr)->flavour != bfd_target_elf_flavour) | |
3781 | continue; | |
3782 | back = (struct elf_backend_data *) (*target_ptr)->backend_data; | |
3783 | if (back->elf_machine_code == i_ehdrp->e_machine) | |
3784 | { | |
3785 | /* target_ptr is an ELF backend which matches this | |
3786 | object file, so reject the generic ELF target. */ | |
3787 | goto wrong; | |
3788 | } | |
3789 | } | |
3790 | } | |
3791 | ||
32090b8e KR |
3792 | /* If there is no program header, or the type is not a core file, then |
3793 | we are hosed. */ | |
3794 | if (i_ehdrp->e_phoff == 0 || i_ehdrp->e_type != ET_CORE) | |
3795 | goto wrong; | |
244ffee7 | 3796 | |
32090b8e KR |
3797 | /* Allocate space for a copy of the program header table in |
3798 | internal form, seek to the program header table in the file, | |
3799 | read it in, and convert it to internal form. As a simple sanity | |
3800 | check, verify that the what BFD thinks is the size of each program | |
3801 | header table entry actually matches the size recorded in the file. */ | |
3802 | ||
3803 | if (i_ehdrp->e_phentsize != sizeof (x_phdr)) | |
3804 | goto wrong; | |
3805 | i_phdrp = (Elf_Internal_Phdr *) | |
3806 | bfd_alloc (abfd, sizeof (*i_phdrp) * i_ehdrp->e_phnum); | |
3807 | if (!i_phdrp) | |
244ffee7 | 3808 | { |
d1ad85a6 | 3809 | bfd_set_error (bfd_error_no_memory); |
32090b8e KR |
3810 | return NULL; |
3811 | } | |
3812 | if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) == -1) | |
25057836 | 3813 | return NULL; |
32090b8e KR |
3814 | for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++) |
3815 | { | |
3816 | if (bfd_read ((PTR) & x_phdr, sizeof (x_phdr), 1, abfd) | |
3817 | != sizeof (x_phdr)) | |
25057836 | 3818 | return NULL; |
32090b8e | 3819 | elf_swap_phdr_in (abfd, &x_phdr, i_phdrp + phindex); |
244ffee7 JK |
3820 | } |
3821 | ||
32090b8e KR |
3822 | /* Once all of the program headers have been read and converted, we |
3823 | can start processing them. */ | |
244ffee7 | 3824 | |
32090b8e KR |
3825 | for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++) |
3826 | { | |
3827 | bfd_section_from_phdr (abfd, i_phdrp + phindex, phindex); | |
3828 | if ((i_phdrp + phindex)->p_type == PT_NOTE) | |
3829 | { | |
2e03ce18 ILT |
3830 | if (! elf_corefile_note (abfd, i_phdrp + phindex)) |
3831 | return NULL; | |
32090b8e KR |
3832 | } |
3833 | } | |
244ffee7 | 3834 | |
32090b8e | 3835 | /* Remember the entry point specified in the ELF file header. */ |
244ffee7 | 3836 | |
32090b8e | 3837 | bfd_get_start_address (abfd) = i_ehdrp->e_entry; |
244ffee7 | 3838 | |
32090b8e | 3839 | return abfd->xvec; |
244ffee7 | 3840 | } |
6ec3bb6a ILT |
3841 | \f |
3842 | /* ELF linker code. */ | |
3843 | ||
3844 | static boolean elf_link_add_object_symbols | |
3845 | PARAMS ((bfd *, struct bfd_link_info *)); | |
3846 | static boolean elf_link_add_archive_symbols | |
3847 | PARAMS ((bfd *, struct bfd_link_info *)); | |
374d2ef9 ILT |
3848 | static Elf_Internal_Rela *elf_link_read_relocs |
3849 | PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean)); | |
11bb5591 ILT |
3850 | static boolean elf_export_symbol |
3851 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
013dec1a ILT |
3852 | static boolean elf_adjust_dynamic_symbol |
3853 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
6ec3bb6a ILT |
3854 | |
3855 | /* Given an ELF BFD, add symbols to the global hash table as | |
3856 | appropriate. */ | |
3857 | ||
3858 | boolean | |
3859 | elf_bfd_link_add_symbols (abfd, info) | |
3860 | bfd *abfd; | |
3861 | struct bfd_link_info *info; | |
3862 | { | |
4c124191 ILT |
3863 | bfd *first; |
3864 | ||
6ec3bb6a ILT |
3865 | switch (bfd_get_format (abfd)) |
3866 | { | |
3867 | case bfd_object: | |
3868 | return elf_link_add_object_symbols (abfd, info); | |
3869 | case bfd_archive: | |
4c124191 ILT |
3870 | first = bfd_openr_next_archived_file (abfd, (bfd *) NULL); |
3871 | if (first == NULL) | |
3872 | return false; | |
3873 | if (! bfd_check_format (first, bfd_object)) | |
3874 | return false; | |
3875 | if (bfd_get_flavour (first) != bfd_target_elf_flavour) | |
3876 | { | |
3877 | /* On Linux, we may have an a.out archive which got | |
3878 | recognized as an ELF archive. Therefore, we treat all | |
3879 | archives as though they were actually of the flavour of | |
3880 | their first element. */ | |
3881 | return (*first->xvec->_bfd_link_add_symbols) (abfd, info); | |
3882 | } | |
6ec3bb6a ILT |
3883 | return elf_link_add_archive_symbols (abfd, info); |
3884 | default: | |
3885 | bfd_set_error (bfd_error_wrong_format); | |
3886 | return false; | |
3887 | } | |
3888 | } | |
3889 | ||
3890 | /* Add symbols from an ELF archive file to the linker hash table. We | |
3891 | don't use _bfd_generic_link_add_archive_symbols because of a | |
3892 | problem which arises on UnixWare. The UnixWare libc.so is an | |
3893 | archive which includes an entry libc.so.1 which defines a bunch of | |
3894 | symbols. The libc.so archive also includes a number of other | |
3895 | object files, which also define symbols, some of which are the same | |
3896 | as those defined in libc.so.1. Correct linking requires that we | |
3897 | consider each object file in turn, and include it if it defines any | |
3898 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |
3899 | this; it looks through the list of undefined symbols, and includes | |
3900 | any object file which defines them. When this algorithm is used on | |
3901 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |
3902 | bunch of symbols. This means that some of the other objects in the | |
3903 | archive are not included in the link, which is incorrect since they | |
3904 | precede libc.so.1 in the archive. | |
3905 | ||
3906 | Fortunately, ELF archive handling is simpler than that done by | |
3907 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
3908 | oddities. In ELF, if we find a symbol in the archive map, and the | |
3909 | symbol is currently undefined, we know that we must pull in that | |
3910 | object file. | |
3911 | ||
3912 | Unfortunately, we do have to make multiple passes over the symbol | |
3913 | table until nothing further is resolved. */ | |
3914 | ||
3915 | static boolean | |
3916 | elf_link_add_archive_symbols (abfd, info) | |
3917 | bfd *abfd; | |
3918 | struct bfd_link_info *info; | |
3919 | { | |
3920 | symindex c; | |
3921 | boolean *defined = NULL; | |
3922 | boolean *included = NULL; | |
3923 | carsym *symdefs; | |
3924 | boolean loop; | |
3925 | ||
3926 | if (! bfd_has_map (abfd)) | |
3927 | { | |
54f16fc4 ILT |
3928 | /* An empty archive is a special case. */ |
3929 | if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) | |
3930 | return true; | |
6ec3bb6a ILT |
3931 | bfd_set_error (bfd_error_no_symbols); |
3932 | return false; | |
3933 | } | |
3934 | ||
3935 | /* Keep track of all symbols we know to be already defined, and all | |
3936 | files we know to be already included. This is to speed up the | |
3937 | second and subsequent passes. */ | |
3938 | c = bfd_ardata (abfd)->symdef_count; | |
3939 | if (c == 0) | |
3940 | return true; | |
3941 | defined = (boolean *) malloc (c * sizeof (boolean)); | |
3942 | included = (boolean *) malloc (c * sizeof (boolean)); | |
3943 | if (defined == (boolean *) NULL || included == (boolean *) NULL) | |
3944 | { | |
3945 | bfd_set_error (bfd_error_no_memory); | |
3946 | goto error_return; | |
3947 | } | |
3948 | memset (defined, 0, c * sizeof (boolean)); | |
3949 | memset (included, 0, c * sizeof (boolean)); | |
3950 | ||
3951 | symdefs = bfd_ardata (abfd)->symdefs; | |
3952 | ||
3953 | do | |
3954 | { | |
3955 | file_ptr last; | |
3956 | symindex i; | |
3957 | carsym *symdef; | |
3958 | carsym *symdefend; | |
3959 | ||
3960 | loop = false; | |
3961 | last = -1; | |
3962 | ||
3963 | symdef = symdefs; | |
3964 | symdefend = symdef + c; | |
3965 | for (i = 0; symdef < symdefend; symdef++, i++) | |
3966 | { | |
3967 | struct elf_link_hash_entry *h; | |
3968 | bfd *element; | |
3969 | struct bfd_link_hash_entry *undefs_tail; | |
3970 | symindex mark; | |
3971 | ||
3972 | if (defined[i] || included[i]) | |
3973 | continue; | |
3974 | if (symdef->file_offset == last) | |
3975 | { | |
3976 | included[i] = true; | |
3977 | continue; | |
3978 | } | |
3979 | ||
3980 | h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, | |
3981 | false, false, false); | |
3982 | if (h == (struct elf_link_hash_entry *) NULL) | |
3983 | continue; | |
3984 | if (h->root.type != bfd_link_hash_undefined) | |
3985 | { | |
3986 | defined[i] = true; | |
3987 | continue; | |
3988 | } | |
3989 | ||
3990 | /* We need to include this archive member. */ | |
3991 | ||
3992 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |
3993 | if (element == (bfd *) NULL) | |
3994 | goto error_return; | |
3995 | ||
3996 | if (! bfd_check_format (element, bfd_object)) | |
3997 | goto error_return; | |
3998 | ||
3999 | /* Doublecheck that we have not included this object | |
4000 | already--it should be impossible, but there may be | |
4001 | something wrong with the archive. */ | |
4002 | if (element->archive_pass != 0) | |
4003 | { | |
4004 | bfd_set_error (bfd_error_bad_value); | |
4005 | goto error_return; | |
4006 | } | |
4007 | element->archive_pass = 1; | |
4008 | ||
4009 | undefs_tail = info->hash->undefs_tail; | |
4010 | ||
4011 | if (! (*info->callbacks->add_archive_element) (info, element, | |
4012 | symdef->name)) | |
4013 | goto error_return; | |
4014 | if (! elf_link_add_object_symbols (element, info)) | |
4015 | goto error_return; | |
4016 | ||
4017 | /* If there are any new undefined symbols, we need to make | |
4018 | another pass through the archive in order to see whether | |
4019 | they can be defined. FIXME: This isn't perfect, because | |
4020 | common symbols wind up on undefs_tail and because an | |
4021 | undefined symbol which is defined later on in this pass | |
4022 | does not require another pass. This isn't a bug, but it | |
4023 | does make the code less efficient than it could be. */ | |
4024 | if (undefs_tail != info->hash->undefs_tail) | |
4025 | loop = true; | |
4026 | ||
4027 | /* Look backward to mark all symbols from this object file | |
4028 | which we have already seen in this pass. */ | |
4029 | mark = i; | |
4030 | do | |
4031 | { | |
4032 | included[mark] = true; | |
4033 | if (mark == 0) | |
4034 | break; | |
4035 | --mark; | |
4036 | } | |
4037 | while (symdefs[mark].file_offset == symdef->file_offset); | |
4038 | ||
4039 | /* We mark subsequent symbols from this object file as we go | |
4040 | on through the loop. */ | |
4041 | last = symdef->file_offset; | |
4042 | } | |
4043 | } | |
4044 | while (loop); | |
4045 | ||
4046 | free (defined); | |
4047 | free (included); | |
4048 | ||
4049 | return true; | |
4050 | ||
4051 | error_return: | |
4052 | if (defined != (boolean *) NULL) | |
4053 | free (defined); | |
4054 | if (included != (boolean *) NULL) | |
4055 | free (included); | |
4056 | return false; | |
4057 | } | |
4058 | ||
013dec1a ILT |
4059 | /* Record a new dynamic symbol. We record the dynamic symbols as we |
4060 | read the input files, since we need to have a list of all of them | |
12662be4 ILT |
4061 | before we can determine the final sizes of the output sections. |
4062 | Note that we may actually call this function even though we are not | |
4063 | going to output any dynamic symbols; in some cases we know that a | |
4064 | symbol should be in the dynamic symbol table, but only if there is | |
4065 | one. */ | |
013dec1a | 4066 | |
12662be4 | 4067 | boolean |
013dec1a ILT |
4068 | elf_link_record_dynamic_symbol (info, h) |
4069 | struct bfd_link_info *info; | |
4070 | struct elf_link_hash_entry *h; | |
4071 | { | |
4072 | if (h->dynindx == -1) | |
4073 | { | |
12662be4 ILT |
4074 | struct bfd_strtab_hash *dynstr; |
4075 | ||
013dec1a ILT |
4076 | h->dynindx = elf_hash_table (info)->dynsymcount; |
4077 | ++elf_hash_table (info)->dynsymcount; | |
12662be4 ILT |
4078 | |
4079 | dynstr = elf_hash_table (info)->dynstr; | |
4080 | if (dynstr == NULL) | |
4081 | { | |
4082 | /* Create a strtab to hold the dynamic symbol names. */ | |
4083 | elf_hash_table (info)->dynstr = dynstr = elf_stringtab_init (); | |
4084 | if (dynstr == NULL) | |
4085 | return false; | |
4086 | } | |
4087 | ||
4088 | h->dynstr_index = ((unsigned long) | |
4089 | _bfd_stringtab_add (dynstr, h->root.root.string, | |
4090 | true, false)); | |
013dec1a ILT |
4091 | if (h->dynstr_index == (unsigned long) -1) |
4092 | return false; | |
4093 | } | |
4094 | ||
4095 | return true; | |
4096 | } | |
4097 | ||
6ec3bb6a ILT |
4098 | /* Add symbols from an ELF object file to the linker hash table. */ |
4099 | ||
4100 | static boolean | |
4101 | elf_link_add_object_symbols (abfd, info) | |
4102 | bfd *abfd; | |
4103 | struct bfd_link_info *info; | |
4104 | { | |
4105 | boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, | |
4106 | const Elf_Internal_Sym *, | |
4107 | const char **, flagword *, | |
4108 | asection **, bfd_vma *)); | |
374d2ef9 ILT |
4109 | boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, |
4110 | asection *, const Elf_Internal_Rela *)); | |
6ec3bb6a ILT |
4111 | boolean collect; |
4112 | Elf_Internal_Shdr *hdr; | |
4113 | size_t symcount; | |
4114 | size_t extsymcount; | |
5315c428 | 4115 | size_t extsymoff; |
6ec3bb6a ILT |
4116 | Elf_External_Sym *buf = NULL; |
4117 | struct elf_link_hash_entry **sym_hash; | |
013dec1a ILT |
4118 | boolean dynamic; |
4119 | Elf_External_Dyn *dynbuf = NULL; | |
4120 | struct elf_link_hash_entry *weaks; | |
6ec3bb6a ILT |
4121 | Elf_External_Sym *esym; |
4122 | Elf_External_Sym *esymend; | |
4123 | ||
4124 | add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook; | |
4125 | collect = get_elf_backend_data (abfd)->collect; | |
4126 | ||
1c640609 ILT |
4127 | /* A stripped shared library might only have a dynamic symbol table, |
4128 | not a regular symbol table. In that case we can still go ahead | |
4129 | and link using the dynamic symbol table. */ | |
4130 | if (elf_onesymtab (abfd) == 0 | |
4131 | && elf_dynsymtab (abfd) != 0) | |
4132 | { | |
4133 | elf_onesymtab (abfd) = elf_dynsymtab (abfd); | |
4134 | elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr; | |
4135 | } | |
4136 | ||
6ec3bb6a ILT |
4137 | hdr = &elf_tdata (abfd)->symtab_hdr; |
4138 | symcount = hdr->sh_size / sizeof (Elf_External_Sym); | |
4139 | ||
4140 | /* The sh_info field of the symtab header tells us where the | |
4141 | external symbols start. We don't care about the local symbols at | |
4142 | this point. */ | |
5315c428 ILT |
4143 | if (elf_bad_symtab (abfd)) |
4144 | { | |
4145 | extsymcount = symcount; | |
4146 | extsymoff = 0; | |
4147 | } | |
4148 | else | |
4149 | { | |
4150 | extsymcount = symcount - hdr->sh_info; | |
4151 | extsymoff = hdr->sh_info; | |
4152 | } | |
6ec3bb6a ILT |
4153 | |
4154 | buf = (Elf_External_Sym *) malloc (extsymcount * sizeof (Elf_External_Sym)); | |
4155 | if (buf == NULL && extsymcount != 0) | |
4156 | { | |
4157 | bfd_set_error (bfd_error_no_memory); | |
4158 | goto error_return; | |
4159 | } | |
4160 | ||
013dec1a ILT |
4161 | /* We store a pointer to the hash table entry for each external |
4162 | symbol. */ | |
6ec3bb6a ILT |
4163 | sym_hash = ((struct elf_link_hash_entry **) |
4164 | bfd_alloc (abfd, | |
4165 | extsymcount * sizeof (struct elf_link_hash_entry *))); | |
4166 | if (sym_hash == NULL) | |
4167 | { | |
4168 | bfd_set_error (bfd_error_no_memory); | |
4169 | goto error_return; | |
4170 | } | |
4171 | elf_sym_hashes (abfd) = sym_hash; | |
4172 | ||
013dec1a | 4173 | if (elf_elfheader (abfd)->e_type != ET_DYN) |
8af74670 ILT |
4174 | { |
4175 | dynamic = false; | |
4176 | ||
4177 | /* If we are creating a shared library, create all the dynamic | |
4178 | sections immediately. We need to attach them to something, | |
4179 | so we attach them to this BFD, provided it is the right | |
4180 | format. FIXME: If there are no input BFD's of the same | |
4181 | format as the output, we can't make a shared library. */ | |
4182 | if (info->shared | |
12662be4 | 4183 | && ! elf_hash_table (info)->dynamic_sections_created |
8af74670 ILT |
4184 | && abfd->xvec == info->hash->creator) |
4185 | { | |
4186 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
4187 | goto error_return; | |
8af74670 ILT |
4188 | } |
4189 | } | |
013dec1a ILT |
4190 | else |
4191 | { | |
4192 | asection *s; | |
4193 | const char *name; | |
eb4267a3 | 4194 | bfd_size_type strindex; |
013dec1a ILT |
4195 | |
4196 | dynamic = true; | |
4197 | ||
374d2ef9 ILT |
4198 | /* You can't use -r against a dynamic object. Also, there's no |
4199 | hope of using a dynamic object which does not exactly match | |
4200 | the format of the output file. */ | |
013dec1a ILT |
4201 | if (info->relocateable |
4202 | || info->hash->creator != abfd->xvec) | |
4203 | { | |
4204 | bfd_set_error (bfd_error_invalid_operation); | |
4205 | goto error_return; | |
4206 | } | |
4207 | ||
4208 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
4209 | object. If the object has a DT_SONAME entry, we use it. | |
c1f84521 ILT |
4210 | Otherwise, if the generic linker stuck something in |
4211 | elf_dt_needed_name, we use that. Otherwise, we just use the | |
4212 | file name. */ | |
013dec1a | 4213 | name = bfd_get_filename (abfd); |
c1f84521 ILT |
4214 | if (elf_dt_needed_name (abfd) != NULL) |
4215 | name = elf_dt_needed_name (abfd); | |
013dec1a ILT |
4216 | s = bfd_get_section_by_name (abfd, ".dynamic"); |
4217 | if (s != NULL) | |
4218 | { | |
4219 | Elf_External_Dyn *extdyn; | |
4220 | Elf_External_Dyn *extdynend; | |
4221 | ||
4222 | dynbuf = (Elf_External_Dyn *) malloc (s->_raw_size); | |
4223 | if (dynbuf == NULL) | |
4224 | { | |
4225 | bfd_set_error (bfd_error_no_memory); | |
4226 | goto error_return; | |
4227 | } | |
4228 | ||
4229 | if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, | |
4230 | (file_ptr) 0, s->_raw_size)) | |
4231 | goto error_return; | |
4232 | ||
4233 | extdyn = dynbuf; | |
4234 | extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); | |
4235 | for (; extdyn < extdynend; extdyn++) | |
4236 | { | |
4237 | Elf_Internal_Dyn dyn; | |
4238 | ||
4239 | elf_swap_dyn_in (abfd, extdyn, &dyn); | |
4240 | if (dyn.d_tag == DT_SONAME) | |
4241 | { | |
4242 | int elfsec; | |
4243 | unsigned long link; | |
4244 | ||
4245 | elfsec = elf_section_from_bfd_section (abfd, s); | |
4246 | if (elfsec == -1) | |
4247 | goto error_return; | |
4248 | link = elf_elfsections (abfd)[elfsec]->sh_link; | |
4249 | name = elf_string_from_elf_section (abfd, link, | |
4250 | dyn.d_un.d_val); | |
4251 | if (name == NULL) | |
4252 | goto error_return; | |
013dec1a | 4253 | } |
59474174 ILT |
4254 | if (dyn.d_tag == DT_NEEDED) |
4255 | elf_hash_table (info)->saw_needed = true; | |
013dec1a ILT |
4256 | } |
4257 | ||
4258 | free (dynbuf); | |
4259 | dynbuf = NULL; | |
4260 | } | |
4261 | ||
4262 | /* We do not want to include any of the sections in a dynamic | |
4263 | object in the output file. We hack by simply clobbering the | |
4264 | list of sections in the BFD. This could be handled more | |
4265 | cleanly by, say, a new section flag; the existing | |
4266 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
4267 | still implies that the section takes up space in the output | |
4268 | file. */ | |
4269 | abfd->sections = NULL; | |
4270 | ||
4271 | /* If this is the first dynamic object found in the link, create | |
12662be4 ILT |
4272 | the special sections required for dynamic linking. */ |
4273 | if (! elf_hash_table (info)->dynamic_sections_created) | |
013dec1a ILT |
4274 | { |
4275 | if (! elf_link_create_dynamic_sections (abfd, info)) | |
4276 | goto error_return; | |
013dec1a ILT |
4277 | } |
4278 | ||
4279 | /* Add a DT_NEEDED entry for this dynamic object. */ | |
eb4267a3 ILT |
4280 | strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, |
4281 | true, false); | |
4282 | if (strindex == (bfd_size_type) -1) | |
013dec1a ILT |
4283 | goto error_return; |
4284 | if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
4285 | goto error_return; | |
4286 | } | |
4287 | ||
6ec3bb6a | 4288 | if (bfd_seek (abfd, |
5315c428 | 4289 | hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), |
6ec3bb6a ILT |
4290 | SEEK_SET) != 0 |
4291 | || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) | |
4292 | != extsymcount * sizeof (Elf_External_Sym))) | |
4293 | goto error_return; | |
4294 | ||
013dec1a ILT |
4295 | weaks = NULL; |
4296 | ||
6ec3bb6a ILT |
4297 | esymend = buf + extsymcount; |
4298 | for (esym = buf; esym < esymend; esym++, sym_hash++) | |
4299 | { | |
4300 | Elf_Internal_Sym sym; | |
4301 | int bind; | |
4302 | bfd_vma value; | |
4303 | asection *sec; | |
4304 | flagword flags; | |
4305 | const char *name; | |
013dec1a ILT |
4306 | struct elf_link_hash_entry *h = NULL; |
4307 | boolean definition; | |
6ec3bb6a ILT |
4308 | |
4309 | elf_swap_symbol_in (abfd, esym, &sym); | |
4310 | ||
4311 | flags = BSF_NO_FLAGS; | |
4312 | sec = NULL; | |
4313 | value = sym.st_value; | |
4314 | *sym_hash = NULL; | |
4315 | ||
4316 | bind = ELF_ST_BIND (sym.st_info); | |
4317 | if (bind == STB_LOCAL) | |
4318 | { | |
4319 | /* This should be impossible, since ELF requires that all | |
4320 | global symbols follow all local symbols, and that sh_info | |
5315c428 ILT |
4321 | point to the first global symbol. Unfortunatealy, Irix 5 |
4322 | screws this up. */ | |
4323 | continue; | |
6ec3bb6a ILT |
4324 | } |
4325 | else if (bind == STB_GLOBAL) | |
42cf6d79 ILT |
4326 | { |
4327 | if (sym.st_shndx != SHN_UNDEF | |
4328 | && sym.st_shndx != SHN_COMMON) | |
4329 | flags = BSF_GLOBAL; | |
4330 | else | |
4331 | flags = 0; | |
4332 | } | |
6ec3bb6a ILT |
4333 | else if (bind == STB_WEAK) |
4334 | flags = BSF_WEAK; | |
4335 | else | |
4336 | { | |
4337 | /* Leave it up to the processor backend. */ | |
4338 | } | |
4339 | ||
4340 | if (sym.st_shndx == SHN_UNDEF) | |
badd23e3 | 4341 | sec = bfd_und_section_ptr; |
6ec3bb6a ILT |
4342 | else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) |
4343 | { | |
4344 | sec = section_from_elf_index (abfd, sym.st_shndx); | |
24f13b03 ILT |
4345 | if (sec != NULL) |
4346 | value -= sec->vma; | |
4347 | else | |
4348 | sec = bfd_abs_section_ptr; | |
6ec3bb6a ILT |
4349 | } |
4350 | else if (sym.st_shndx == SHN_ABS) | |
badd23e3 | 4351 | sec = bfd_abs_section_ptr; |
6ec3bb6a ILT |
4352 | else if (sym.st_shndx == SHN_COMMON) |
4353 | { | |
badd23e3 | 4354 | sec = bfd_com_section_ptr; |
6ec3bb6a ILT |
4355 | /* What ELF calls the size we call the value. What ELF |
4356 | calls the value we call the alignment. */ | |
4357 | value = sym.st_size; | |
4358 | } | |
4359 | else | |
4360 | { | |
4361 | /* Leave it up to the processor backend. */ | |
4362 | } | |
4363 | ||
4364 | name = elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); | |
4365 | if (name == (const char *) NULL) | |
4366 | goto error_return; | |
4367 | ||
4368 | if (add_symbol_hook) | |
4369 | { | |
4370 | if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, | |
4371 | &value)) | |
4372 | goto error_return; | |
4373 | ||
4374 | /* The hook function sets the name to NULL if this symbol | |
4375 | should be skipped for some reason. */ | |
4376 | if (name == (const char *) NULL) | |
4377 | continue; | |
4378 | } | |
4379 | ||
4380 | /* Sanity check that all possibilities were handled. */ | |
f78b3963 | 4381 | if (sec == (asection *) NULL) |
6ec3bb6a ILT |
4382 | { |
4383 | bfd_set_error (bfd_error_bad_value); | |
4384 | goto error_return; | |
4385 | } | |
4386 | ||
badd23e3 | 4387 | if (bfd_is_und_section (sec) |
013dec1a ILT |
4388 | || bfd_is_com_section (sec)) |
4389 | definition = false; | |
4390 | else | |
4391 | definition = true; | |
4392 | ||
4393 | if (info->hash->creator->flavour == bfd_target_elf_flavour) | |
4394 | { | |
4395 | /* We need to look up the symbol now in order to get some of | |
4396 | the dynamic object handling right. We pass the hash | |
4397 | table entry in to _bfd_generic_link_add_one_symbol so | |
4398 | that it does not have to look it up again. */ | |
4399 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
4400 | true, false, false); | |
4401 | if (h == NULL) | |
4402 | goto error_return; | |
4403 | *sym_hash = h; | |
4404 | ||
4405 | /* If we are looking at a dynamic object, and this is a | |
4406 | definition, we need to see if it has already been defined | |
4407 | by some other object. If it has, we want to use the | |
4408 | existing definition, and we do not want to report a | |
4409 | multiple symbol definition error; we do this by | |
badd23e3 | 4410 | clobbering sec to be bfd_und_section_ptr. */ |
013dec1a ILT |
4411 | if (dynamic && definition) |
4412 | { | |
6c97aedf ILT |
4413 | if (h->root.type == bfd_link_hash_defined |
4414 | || h->root.type == bfd_link_hash_defweak) | |
badd23e3 | 4415 | sec = bfd_und_section_ptr; |
013dec1a ILT |
4416 | } |
4417 | ||
4418 | /* Similarly, if we are not looking at a dynamic object, and | |
4419 | we have a definition, we want to override any definition | |
4420 | we may have from a dynamic object. Symbols from regular | |
4421 | files always take precedence over symbols from dynamic | |
4422 | objects, even if they are defined after the dynamic | |
4423 | object in the link. */ | |
4424 | if (! dynamic | |
4425 | && definition | |
6c97aedf ILT |
4426 | && (h->root.type == bfd_link_hash_defined |
4427 | || h->root.type == bfd_link_hash_defweak) | |
013dec1a ILT |
4428 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
4429 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
4430 | == bfd_target_elf_flavour) | |
4431 | && (elf_elfheader (h->root.u.def.section->owner)->e_type | |
4432 | == ET_DYN)) | |
4433 | { | |
4434 | /* Change the hash table entry to undefined, and let | |
4435 | _bfd_generic_link_add_one_symbol do the right thing | |
4436 | with the new definition. */ | |
4437 | h->root.type = bfd_link_hash_undefined; | |
4438 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
4439 | } | |
4440 | } | |
4441 | ||
4442 | if (! (_bfd_generic_link_add_one_symbol | |
4443 | (info, abfd, name, flags, sec, value, (const char *) NULL, | |
4444 | false, collect, (struct bfd_link_hash_entry **) sym_hash))) | |
6ec3bb6a ILT |
4445 | goto error_return; |
4446 | ||
013dec1a ILT |
4447 | if (dynamic |
4448 | && definition | |
4449 | && (flags & BSF_WEAK) != 0 | |
4450 | && ELF_ST_TYPE (sym.st_info) != STT_FUNC | |
4b412ed1 | 4451 | && info->hash->creator->flavour == bfd_target_elf_flavour |
013dec1a ILT |
4452 | && (*sym_hash)->weakdef == NULL) |
4453 | { | |
4454 | /* Keep a list of all weak defined non function symbols from | |
4455 | a dynamic object, using the weakdef field. Later in this | |
4456 | function we will set the weakdef field to the correct | |
4457 | value. We only put non-function symbols from dynamic | |
4458 | objects on this list, because that happens to be the only | |
4459 | time we need to know the normal symbol corresponding to a | |
4460 | weak symbol, and the information is time consuming to | |
4461 | figure out. If the weakdef field is not already NULL, | |
4462 | then this symbol was already defined by some previous | |
4463 | dynamic object, and we will be using that previous | |
4464 | definition anyhow. */ | |
4465 | ||
4466 | (*sym_hash)->weakdef = weaks; | |
4467 | weaks = *sym_hash; | |
4468 | } | |
4469 | ||
374d2ef9 | 4470 | /* Get the alignment of a common symbol. */ |
7c6da9ca | 4471 | if (sym.st_shndx == SHN_COMMON |
cd9dba7b | 4472 | && (*sym_hash)->root.type == bfd_link_hash_common) |
6581a70a | 4473 | (*sym_hash)->root.u.c.p->alignment_power = bfd_log2 (sym.st_value); |
7c6da9ca | 4474 | |
6ec3bb6a ILT |
4475 | if (info->hash->creator->flavour == bfd_target_elf_flavour) |
4476 | { | |
013dec1a ILT |
4477 | int old_flags; |
4478 | boolean dynsym; | |
4479 | int new_flag; | |
4480 | ||
374d2ef9 | 4481 | /* Remember the symbol size and type. */ |
6ec3bb6a ILT |
4482 | if (sym.st_size != 0) |
4483 | { | |
4484 | /* FIXME: We should probably somehow give a warning if | |
4485 | the symbol size changes. */ | |
013dec1a | 4486 | h->size = sym.st_size; |
6ec3bb6a | 4487 | } |
6ec3bb6a ILT |
4488 | if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE) |
4489 | { | |
4490 | /* FIXME: We should probably somehow give a warning if | |
4491 | the symbol type changes. */ | |
013dec1a ILT |
4492 | h->type = ELF_ST_TYPE (sym.st_info); |
4493 | } | |
4494 | ||
4495 | /* Set a flag in the hash table entry indicating the type of | |
4496 | reference or definition we just found. Keep a count of | |
4497 | the number of dynamic symbols we find. A dynamic symbol | |
4498 | is one which is referenced or defined by both a regular | |
4499 | object and a shared object, or one which is referenced or | |
4500 | defined by more than one shared object. */ | |
4501 | old_flags = h->elf_link_hash_flags; | |
4502 | dynsym = false; | |
4503 | if (! dynamic) | |
4504 | { | |
4505 | if (! definition) | |
4506 | new_flag = ELF_LINK_HASH_REF_REGULAR; | |
4507 | else | |
4508 | new_flag = ELF_LINK_HASH_DEF_REGULAR; | |
374d2ef9 ILT |
4509 | if (info->shared |
4510 | || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC | |
4511 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0) | |
013dec1a ILT |
4512 | dynsym = true; |
4513 | } | |
4514 | else | |
4515 | { | |
4516 | if (! definition) | |
4517 | new_flag = ELF_LINK_HASH_REF_DYNAMIC; | |
4518 | else | |
4519 | new_flag = ELF_LINK_HASH_DEF_DYNAMIC; | |
374d2ef9 ILT |
4520 | if ((old_flags & new_flag) != 0 |
4521 | || (old_flags & (ELF_LINK_HASH_DEF_REGULAR | |
4522 | | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
4523 | dynsym = true; | |
013dec1a ILT |
4524 | } |
4525 | ||
4526 | h->elf_link_hash_flags |= new_flag; | |
4527 | if (dynsym && h->dynindx == -1) | |
4528 | { | |
4529 | if (! elf_link_record_dynamic_symbol (info, h)) | |
4530 | goto error_return; | |
4531 | } | |
4532 | } | |
4533 | } | |
4534 | ||
4535 | /* Now set the weakdefs field correctly for all the weak defined | |
4536 | symbols we found. The only way to do this is to search all the | |
4537 | symbols. Since we only need the information for non functions in | |
4538 | dynamic objects, that's the only time we actually put anything on | |
4539 | the list WEAKS. We need this information so that if a regular | |
4540 | object refers to a symbol defined weakly in a dynamic object, the | |
4541 | real symbol in the dynamic object is also put in the dynamic | |
4542 | symbols; we also must arrange for both symbols to point to the | |
4543 | same memory location. We could handle the general case of symbol | |
4544 | aliasing, but a general symbol alias can only be generated in | |
4545 | assembler code, handling it correctly would be very time | |
4546 | consuming, and other ELF linkers don't handle general aliasing | |
4547 | either. */ | |
4548 | while (weaks != NULL) | |
4549 | { | |
4550 | struct elf_link_hash_entry *hlook; | |
4551 | asection *slook; | |
4552 | bfd_vma vlook; | |
4553 | struct elf_link_hash_entry **hpp; | |
4554 | struct elf_link_hash_entry **hppend; | |
4555 | ||
4556 | hlook = weaks; | |
4557 | weaks = hlook->weakdef; | |
4558 | hlook->weakdef = NULL; | |
4559 | ||
6c97aedf ILT |
4560 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defined |
4561 | || hlook->root.type == bfd_link_hash_defweak); | |
013dec1a ILT |
4562 | slook = hlook->root.u.def.section; |
4563 | vlook = hlook->root.u.def.value; | |
4564 | ||
4565 | hpp = elf_sym_hashes (abfd); | |
4566 | hppend = hpp + extsymcount; | |
4567 | for (; hpp < hppend; hpp++) | |
4568 | { | |
4569 | struct elf_link_hash_entry *h; | |
4570 | ||
4571 | h = *hpp; | |
4572 | if (h != hlook | |
6c97aedf ILT |
4573 | && (h->root.type == bfd_link_hash_defined |
4574 | || h->root.type == bfd_link_hash_defweak) | |
013dec1a ILT |
4575 | && h->root.u.def.section == slook |
4576 | && h->root.u.def.value == vlook) | |
4577 | { | |
4578 | hlook->weakdef = h; | |
4579 | ||
4580 | /* If the weak definition is in the list of dynamic | |
4581 | symbols, make sure the real definition is put there | |
4582 | as well. */ | |
4583 | if (hlook->dynindx != -1 | |
4584 | && h->dynindx == -1) | |
4585 | { | |
4586 | if (! elf_link_record_dynamic_symbol (info, h)) | |
4587 | goto error_return; | |
4588 | } | |
4589 | ||
4590 | break; | |
6ec3bb6a ILT |
4591 | } |
4592 | } | |
4593 | } | |
4594 | ||
4595 | if (buf != NULL) | |
374d2ef9 ILT |
4596 | { |
4597 | free (buf); | |
4598 | buf = NULL; | |
4599 | } | |
4600 | ||
4601 | /* If this object is the same format as the output object, and it is | |
4602 | not a shared library, then let the backend look through the | |
4603 | relocs. | |
4604 | ||
4605 | This is required to build global offset table entries and to | |
4606 | arrange for dynamic relocs. It is not required for the | |
4607 | particular common case of linking non PIC code, even when linking | |
4608 | against shared libraries, but unfortunately there is no way of | |
4609 | knowing whether an object file has been compiled PIC or not. | |
4610 | Looking through the relocs is not particularly time consuming. | |
4611 | The problem is that we must either (1) keep the relocs in memory, | |
4612 | which causes the linker to require additional runtime memory or | |
4613 | (2) read the relocs twice from the input file, which wastes time. | |
4614 | This would be a good case for using mmap. | |
4615 | ||
4616 | I have no idea how to handle linking PIC code into a file of a | |
4617 | different format. It probably can't be done. */ | |
4618 | check_relocs = get_elf_backend_data (abfd)->check_relocs; | |
4619 | if (! dynamic | |
4620 | && abfd->xvec == info->hash->creator | |
4621 | && check_relocs != NULL) | |
4622 | { | |
4623 | asection *o; | |
4624 | ||
4625 | for (o = abfd->sections; o != NULL; o = o->next) | |
4626 | { | |
4627 | Elf_Internal_Rela *internal_relocs; | |
4628 | boolean ok; | |
4629 | ||
4630 | if ((o->flags & SEC_RELOC) == 0 | |
4631 | || o->reloc_count == 0) | |
4632 | continue; | |
4633 | ||
4634 | /* I believe we can ignore the relocs for any section which | |
4635 | does not form part of the final process image, such as a | |
4636 | debugging section. */ | |
4637 | if ((o->flags & SEC_ALLOC) == 0) | |
4638 | continue; | |
4639 | ||
4640 | internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL, | |
4641 | (Elf_Internal_Rela *) NULL, | |
4642 | info->keep_memory); | |
4643 | if (internal_relocs == NULL) | |
4644 | goto error_return; | |
4645 | ||
4646 | ok = (*check_relocs) (abfd, info, o, internal_relocs); | |
4647 | ||
4648 | if (! info->keep_memory) | |
4649 | free (internal_relocs); | |
4650 | ||
4651 | if (! ok) | |
4652 | goto error_return; | |
4653 | } | |
4654 | } | |
6ec3bb6a ILT |
4655 | |
4656 | return true; | |
4657 | ||
4658 | error_return: | |
4659 | if (buf != NULL) | |
4660 | free (buf); | |
013dec1a ILT |
4661 | if (dynbuf != NULL) |
4662 | free (dynbuf); | |
6ec3bb6a ILT |
4663 | return false; |
4664 | } | |
013dec1a ILT |
4665 | |
4666 | /* Create some sections which will be filled in with dynamic linking | |
12662be4 ILT |
4667 | information. ABFD is an input file which requires dynamic sections |
4668 | to be created. The dynamic sections take up virtual memory space | |
4669 | when the final executable is run, so we need to create them before | |
4670 | addresses are assigned to the output sections. We work out the | |
4671 | actual contents and size of these sections later. */ | |
013dec1a | 4672 | |
374d2ef9 | 4673 | boolean |
013dec1a ILT |
4674 | elf_link_create_dynamic_sections (abfd, info) |
4675 | bfd *abfd; | |
4676 | struct bfd_link_info *info; | |
4677 | { | |
4678 | flagword flags; | |
4679 | register asection *s; | |
4680 | struct elf_link_hash_entry *h; | |
4681 | struct elf_backend_data *bed; | |
4682 | ||
12662be4 ILT |
4683 | if (elf_hash_table (info)->dynamic_sections_created) |
4684 | return true; | |
4685 | ||
4686 | /* Make sure that all dynamic sections use the same input BFD. */ | |
4687 | if (elf_hash_table (info)->dynobj == NULL) | |
4688 | elf_hash_table (info)->dynobj = abfd; | |
4689 | else | |
4690 | abfd = elf_hash_table (info)->dynobj; | |
4691 | ||
013dec1a ILT |
4692 | /* Note that we set the SEC_IN_MEMORY flag for all of these |
4693 | sections. */ | |
4694 | flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; | |
4695 | ||
8af74670 ILT |
4696 | /* A dynamically linked executable has a .interp section, but a |
4697 | shared library does not. */ | |
4698 | if (! info->shared) | |
4699 | { | |
4700 | s = bfd_make_section (abfd, ".interp"); | |
4701 | if (s == NULL | |
4702 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
4703 | return false; | |
4704 | } | |
013dec1a | 4705 | |
374d2ef9 ILT |
4706 | s = bfd_make_section (abfd, ".dynsym"); |
4707 | if (s == NULL | |
4708 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
4709 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
4710 | return false; | |
4711 | ||
374d2ef9 ILT |
4712 | s = bfd_make_section (abfd, ".dynstr"); |
4713 | if (s == NULL | |
4714 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) | |
4715 | return false; | |
4716 | ||
4717 | /* Create a strtab to hold the dynamic symbol names. */ | |
374d2ef9 | 4718 | if (elf_hash_table (info)->dynstr == NULL) |
12662be4 ILT |
4719 | { |
4720 | elf_hash_table (info)->dynstr = elf_stringtab_init (); | |
4721 | if (elf_hash_table (info)->dynstr == NULL) | |
4722 | return false; | |
4723 | } | |
374d2ef9 | 4724 | |
013dec1a ILT |
4725 | s = bfd_make_section (abfd, ".dynamic"); |
4726 | if (s == NULL | |
4727 | || ! bfd_set_section_flags (abfd, s, flags) | |
4728 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
4729 | return false; | |
4730 | ||
4731 | /* The special symbol _DYNAMIC is always set to the start of the | |
4732 | .dynamic section. This call occurs before we have processed the | |
4733 | symbols for any dynamic object, so we don't have to worry about | |
4734 | overriding a dynamic definition. We could set _DYNAMIC in a | |
4735 | linker script, but we only want to define it if we are, in fact, | |
4736 | creating a .dynamic section. We don't want to define it if there | |
4737 | is no .dynamic section, since on some ELF platforms the start up | |
4738 | code examines it to decide how to initialize the process. */ | |
4739 | h = NULL; | |
4740 | if (! (_bfd_generic_link_add_one_symbol | |
4741 | (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, | |
4742 | (const char *) NULL, false, get_elf_backend_data (abfd)->collect, | |
4743 | (struct bfd_link_hash_entry **) &h))) | |
4744 | return false; | |
4745 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
99dd7754 JMD |
4746 | h->type = STT_OBJECT; |
4747 | ||
374d2ef9 ILT |
4748 | if (info->shared |
4749 | && ! elf_link_record_dynamic_symbol (info, h)) | |
013dec1a ILT |
4750 | return false; |
4751 | ||
4752 | s = bfd_make_section (abfd, ".hash"); | |
4753 | if (s == NULL | |
4754 | || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) | |
4755 | || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) | |
4756 | return false; | |
4757 | ||
4758 | /* Let the backend create the rest of the sections. This lets the | |
4759 | backend set the right flags. The backend will normally create | |
4760 | the .got and .plt sections. */ | |
4761 | bed = get_elf_backend_data (abfd); | |
12662be4 ILT |
4762 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) |
4763 | return false; | |
4764 | ||
4765 | elf_hash_table (info)->dynamic_sections_created = true; | |
4766 | ||
4767 | return true; | |
013dec1a ILT |
4768 | } |
4769 | ||
4770 | /* Add an entry to the .dynamic table. */ | |
4771 | ||
4772 | boolean | |
4773 | elf_add_dynamic_entry (info, tag, val) | |
4774 | struct bfd_link_info *info; | |
4775 | bfd_vma tag; | |
4776 | bfd_vma val; | |
4777 | { | |
4778 | Elf_Internal_Dyn dyn; | |
4779 | bfd *dynobj; | |
4780 | asection *s; | |
4781 | size_t newsize; | |
4782 | bfd_byte *newcontents; | |
4783 | ||
4784 | dynobj = elf_hash_table (info)->dynobj; | |
4785 | ||
4786 | s = bfd_get_section_by_name (dynobj, ".dynamic"); | |
4787 | BFD_ASSERT (s != NULL); | |
4788 | ||
4789 | newsize = s->_raw_size + sizeof (Elf_External_Dyn); | |
4790 | if (s->contents == NULL) | |
4791 | newcontents = (bfd_byte *) malloc (newsize); | |
4792 | else | |
4793 | newcontents = (bfd_byte *) realloc (s->contents, newsize); | |
4794 | if (newcontents == NULL) | |
4795 | { | |
4796 | bfd_set_error (bfd_error_no_memory); | |
4797 | return false; | |
4798 | } | |
4799 | ||
4800 | dyn.d_tag = tag; | |
4801 | dyn.d_un.d_val = val; | |
4802 | elf_swap_dyn_out (dynobj, &dyn, | |
4803 | (Elf_External_Dyn *) (newcontents + s->_raw_size)); | |
4804 | ||
4805 | s->_raw_size = newsize; | |
4806 | s->contents = newcontents; | |
4807 | ||
4808 | return true; | |
4809 | } | |
4810 | ||
374d2ef9 ILT |
4811 | /* Read and swap the relocs for a section. They may have been cached. |
4812 | If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL, | |
4813 | they are used as buffers to read into. They are known to be large | |
4814 | enough. If the INTERNAL_RELOCS relocs argument is NULL, the return | |
4815 | value is allocated using either malloc or bfd_alloc, according to | |
4816 | the KEEP_MEMORY argument. */ | |
4817 | ||
4818 | static Elf_Internal_Rela * | |
4819 | elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory) | |
4820 | bfd *abfd; | |
4821 | asection *o; | |
4822 | PTR external_relocs; | |
4823 | Elf_Internal_Rela *internal_relocs; | |
4824 | boolean keep_memory; | |
4825 | { | |
4826 | Elf_Internal_Shdr *rel_hdr; | |
4827 | PTR alloc1 = NULL; | |
4828 | Elf_Internal_Rela *alloc2 = NULL; | |
4829 | ||
4830 | if (elf_section_data (o)->relocs != NULL) | |
4831 | return elf_section_data (o)->relocs; | |
4832 | ||
4833 | if (o->reloc_count == 0) | |
4834 | return NULL; | |
4835 | ||
4836 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
4837 | ||
4838 | if (internal_relocs == NULL) | |
4839 | { | |
4840 | size_t size; | |
4841 | ||
4842 | size = o->reloc_count * sizeof (Elf_Internal_Rela); | |
4843 | if (keep_memory) | |
4844 | internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | |
4845 | else | |
4846 | internal_relocs = alloc2 = (Elf_Internal_Rela *) malloc (size); | |
4847 | if (internal_relocs == NULL) | |
4848 | { | |
4849 | bfd_set_error (bfd_error_no_memory); | |
4850 | goto error_return; | |
4851 | } | |
4852 | } | |
4853 | ||
4854 | if (external_relocs == NULL) | |
4855 | { | |
4856 | alloc1 = (PTR) malloc (rel_hdr->sh_size); | |
4857 | if (alloc1 == NULL) | |
4858 | { | |
4859 | bfd_set_error (bfd_error_no_memory); | |
4860 | goto error_return; | |
4861 | } | |
4862 | external_relocs = alloc1; | |
4863 | } | |
4864 | ||
4865 | if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0) | |
4866 | || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd) | |
4867 | != rel_hdr->sh_size)) | |
4868 | goto error_return; | |
4869 | ||
4870 | /* Swap in the relocs. For convenience, we always produce an | |
4871 | Elf_Internal_Rela array; if the relocs are Rel, we set the addend | |
4872 | to 0. */ | |
4873 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
4874 | { | |
4875 | Elf_External_Rel *erel; | |
4876 | Elf_External_Rel *erelend; | |
4877 | Elf_Internal_Rela *irela; | |
4878 | ||
4879 | erel = (Elf_External_Rel *) external_relocs; | |
4880 | erelend = erel + o->reloc_count; | |
4881 | irela = internal_relocs; | |
4882 | for (; erel < erelend; erel++, irela++) | |
4883 | { | |
4884 | Elf_Internal_Rel irel; | |
4885 | ||
4886 | elf_swap_reloc_in (abfd, erel, &irel); | |
4887 | irela->r_offset = irel.r_offset; | |
4888 | irela->r_info = irel.r_info; | |
4889 | irela->r_addend = 0; | |
4890 | } | |
4891 | } | |
4892 | else | |
4893 | { | |
4894 | Elf_External_Rela *erela; | |
4895 | Elf_External_Rela *erelaend; | |
4896 | Elf_Internal_Rela *irela; | |
4897 | ||
4898 | BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela)); | |
4899 | ||
4900 | erela = (Elf_External_Rela *) external_relocs; | |
4901 | erelaend = erela + o->reloc_count; | |
4902 | irela = internal_relocs; | |
4903 | for (; erela < erelaend; erela++, irela++) | |
4904 | elf_swap_reloca_in (abfd, erela, irela); | |
4905 | } | |
4906 | ||
4907 | /* Cache the results for next time, if we can. */ | |
4908 | if (keep_memory) | |
4909 | elf_section_data (o)->relocs = internal_relocs; | |
4910 | ||
4911 | if (alloc1 != NULL) | |
4912 | free (alloc1); | |
4913 | ||
4914 | /* Don't free alloc2, since if it was allocated we are passing it | |
4915 | back (under the name of internal_relocs). */ | |
4916 | ||
4917 | return internal_relocs; | |
4918 | ||
4919 | error_return: | |
4920 | if (alloc1 != NULL) | |
4921 | free (alloc1); | |
4922 | if (alloc2 != NULL) | |
4923 | free (alloc2); | |
4924 | return NULL; | |
4925 | } | |
4926 | ||
013dec1a ILT |
4927 | /* Record an assignment to a symbol made by a linker script. We need |
4928 | this in case some dynamic object refers to this symbol. */ | |
4929 | ||
4930 | /*ARGSUSED*/ | |
4931 | boolean | |
4932 | NAME(bfd_elf,record_link_assignment) (output_bfd, info, name) | |
4933 | bfd *output_bfd; | |
4934 | struct bfd_link_info *info; | |
4935 | const char *name; | |
4936 | { | |
4937 | struct elf_link_hash_entry *h; | |
4938 | ||
5945db29 ILT |
4939 | if (info->hash->creator->flavour != bfd_target_elf_flavour) |
4940 | return true; | |
4941 | ||
99dd7754 | 4942 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); |
013dec1a | 4943 | if (h == NULL) |
99dd7754 | 4944 | return false; |
013dec1a ILT |
4945 | |
4946 | h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; | |
99dd7754 | 4947 | h->type = STT_OBJECT; |
013dec1a | 4948 | |
374d2ef9 ILT |
4949 | if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC |
4950 | | ELF_LINK_HASH_REF_DYNAMIC)) != 0 | |
4951 | || info->shared) | |
013dec1a ILT |
4952 | && h->dynindx == -1) |
4953 | { | |
4954 | if (! elf_link_record_dynamic_symbol (info, h)) | |
4955 | return false; | |
4956 | ||
4957 | /* If this is a weak defined symbol, and we know a corresponding | |
4958 | real symbol from the same dynamic object, make sure the real | |
4959 | symbol is also made into a dynamic symbol. */ | |
4960 | if (h->weakdef != NULL | |
4961 | && h->weakdef->dynindx == -1) | |
4962 | { | |
4963 | if (! elf_link_record_dynamic_symbol (info, h->weakdef)) | |
4964 | return false; | |
4965 | } | |
4966 | } | |
4967 | ||
4968 | return true; | |
4969 | } | |
4970 | ||
4971 | /* Array used to determine the number of hash table buckets to use | |
4972 | based on the number of symbols there are. If there are fewer than | |
4973 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
4974 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
4975 | than 521 buckets. */ | |
4976 | ||
4977 | static const size_t elf_buckets[] = | |
4978 | { | |
4979 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0 | |
4980 | }; | |
4981 | ||
4982 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
4983 | called by the ELF linker emulation before_allocation routine. We | |
4984 | must set the sizes of the sections before the linker sets the | |
4985 | addresses of the various sections. */ | |
4986 | ||
4987 | boolean | |
11bb5591 ILT |
4988 | NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, |
4989 | export_dynamic, info, sinterpptr) | |
013dec1a | 4990 | bfd *output_bfd; |
0822b56d | 4991 | const char *soname; |
f9779aad | 4992 | const char *rpath; |
11bb5591 | 4993 | boolean export_dynamic; |
013dec1a | 4994 | struct bfd_link_info *info; |
7c726b66 | 4995 | asection **sinterpptr; |
013dec1a ILT |
4996 | { |
4997 | bfd *dynobj; | |
013dec1a ILT |
4998 | asection *s; |
4999 | Elf_Internal_Sym isym; | |
5000 | size_t i; | |
5001 | size_t bucketcount; | |
5002 | struct elf_backend_data *bed; | |
5003 | ||
7c726b66 ILT |
5004 | *sinterpptr = NULL; |
5005 | ||
5945db29 ILT |
5006 | if (info->hash->creator->flavour != bfd_target_elf_flavour) |
5007 | return true; | |
5008 | ||
013dec1a | 5009 | dynobj = elf_hash_table (info)->dynobj; |
013dec1a ILT |
5010 | |
5011 | /* If there were no dynamic objects in the link, there is nothing to | |
5012 | do here. */ | |
5013 | if (dynobj == NULL) | |
5014 | return true; | |
5015 | ||
11bb5591 ILT |
5016 | /* If we are supposed to export all symbols into the dynamic symbol |
5017 | table (this is not the normal case), then do so. */ | |
5018 | if (export_dynamic) | |
5019 | elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, | |
5020 | (PTR) info); | |
5021 | ||
12662be4 ILT |
5022 | if (elf_hash_table (info)->dynamic_sections_created) |
5023 | { | |
12662be4 ILT |
5024 | bfd_size_type strsize; |
5025 | ||
5026 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |
5027 | BFD_ASSERT (*sinterpptr != NULL || info->shared); | |
5028 | ||
12662be4 ILT |
5029 | if (soname != NULL) |
5030 | { | |
5031 | bfd_size_type indx; | |
0822b56d | 5032 | |
12662be4 ILT |
5033 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname, |
5034 | true, true); | |
5035 | if (indx == (bfd_size_type) -1 | |
5036 | || ! elf_add_dynamic_entry (info, DT_SONAME, indx)) | |
5037 | return false; | |
5038 | } | |
0822b56d | 5039 | |
12662be4 ILT |
5040 | if (rpath != NULL) |
5041 | { | |
5042 | bfd_size_type indx; | |
f9779aad | 5043 | |
12662be4 ILT |
5044 | indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, |
5045 | true, true); | |
5046 | if (indx == (bfd_size_type) -1 | |
5047 | || ! elf_add_dynamic_entry (info, DT_RPATH, indx)) | |
5048 | return false; | |
5049 | } | |
f9779aad | 5050 | |
12662be4 ILT |
5051 | /* Find all symbols which were defined in a dynamic object and make |
5052 | the backend pick a reasonable value for them. */ | |
5053 | elf_link_hash_traverse (elf_hash_table (info), | |
5054 | elf_adjust_dynamic_symbol, | |
5055 | (PTR) info); | |
013dec1a | 5056 | |
12662be4 ILT |
5057 | /* Add some entries to the .dynamic section. We fill in some of the |
5058 | values later, in elf_bfd_final_link, but we must add the entries | |
5059 | now so that we know the final size of the .dynamic section. */ | |
197e30e5 ILT |
5060 | if (elf_link_hash_lookup (elf_hash_table (info), "_init", false, |
5061 | false, false) != NULL) | |
12662be4 ILT |
5062 | { |
5063 | if (! elf_add_dynamic_entry (info, DT_INIT, 0)) | |
5064 | return false; | |
5065 | } | |
197e30e5 ILT |
5066 | if (elf_link_hash_lookup (elf_hash_table (info), "_fini", false, |
5067 | false, false) != NULL) | |
12662be4 ILT |
5068 | { |
5069 | if (! elf_add_dynamic_entry (info, DT_FINI, 0)) | |
5070 | return false; | |
5071 | } | |
5072 | strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
5073 | if (! elf_add_dynamic_entry (info, DT_HASH, 0) | |
5074 | || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
5075 | || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
5076 | || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
5077 | || ! elf_add_dynamic_entry (info, DT_SYMENT, | |
5078 | sizeof (Elf_External_Sym))) | |
013dec1a ILT |
5079 | return false; |
5080 | } | |
013dec1a ILT |
5081 | |
5082 | /* The backend must work out the sizes of all the other dynamic | |
5083 | sections. */ | |
5084 | bed = get_elf_backend_data (output_bfd); | |
5085 | if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |
5086 | return false; | |
5087 | ||
12662be4 ILT |
5088 | if (elf_hash_table (info)->dynamic_sections_created) |
5089 | { | |
14cac507 ILT |
5090 | size_t dynsymcount; |
5091 | ||
5092 | /* Set the size of the .dynsym and .hash sections. We counted | |
5093 | the number of dynamic symbols in elf_link_add_object_symbols. | |
5094 | We will build the contents of .dynsym and .hash when we build | |
5095 | the final symbol table, because until then we do not know the | |
5096 | correct value to give the symbols. We built the .dynstr | |
5097 | section as we went along in elf_link_add_object_symbols. */ | |
5098 | dynsymcount = elf_hash_table (info)->dynsymcount; | |
5099 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |
5100 | BFD_ASSERT (s != NULL); | |
5101 | s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); | |
5102 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
5103 | if (s->contents == NULL && s->_raw_size != 0) | |
5104 | { | |
5105 | bfd_set_error (bfd_error_no_memory); | |
5106 | return false; | |
5107 | } | |
5108 | ||
5109 | /* The first entry in .dynsym is a dummy symbol. */ | |
5110 | isym.st_value = 0; | |
5111 | isym.st_size = 0; | |
5112 | isym.st_name = 0; | |
5113 | isym.st_info = 0; | |
5114 | isym.st_other = 0; | |
5115 | isym.st_shndx = 0; | |
5116 | elf_swap_symbol_out (output_bfd, &isym, | |
5117 | (Elf_External_Sym *) s->contents); | |
5118 | ||
5119 | for (i = 0; elf_buckets[i] != 0; i++) | |
5120 | { | |
5121 | bucketcount = elf_buckets[i]; | |
5122 | if (dynsymcount < elf_buckets[i + 1]) | |
5123 | break; | |
5124 | } | |
5125 | ||
5126 | s = bfd_get_section_by_name (dynobj, ".hash"); | |
5127 | BFD_ASSERT (s != NULL); | |
5128 | s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8); | |
5129 | s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); | |
5130 | if (s->contents == NULL) | |
5131 | { | |
5132 | bfd_set_error (bfd_error_no_memory); | |
5133 | return false; | |
5134 | } | |
5135 | memset (s->contents, 0, s->_raw_size); | |
5136 | ||
5137 | put_word (output_bfd, bucketcount, s->contents); | |
5138 | put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8)); | |
5139 | ||
5140 | elf_hash_table (info)->bucketcount = bucketcount; | |
5141 | ||
5142 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |
5143 | BFD_ASSERT (s != NULL); | |
5144 | s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); | |
5145 | ||
12662be4 ILT |
5146 | if (! elf_add_dynamic_entry (info, DT_NULL, 0)) |
5147 | return false; | |
5148 | } | |
5149 | ||
5150 | return true; | |
013dec1a ILT |
5151 | } |
5152 | ||
11bb5591 ILT |
5153 | /* This routine is used to export all defined symbols into the dynamic |
5154 | symbol table. It is called via elf_link_hash_traverse. */ | |
5155 | ||
5156 | static boolean | |
5157 | elf_export_symbol (h, data) | |
5158 | struct elf_link_hash_entry *h; | |
5159 | PTR data; | |
5160 | { | |
5161 | struct bfd_link_info *info = (struct bfd_link_info *) data; | |
5162 | ||
5163 | if (h->dynindx == -1 | |
e6fb0df7 ILT |
5164 | && (h->elf_link_hash_flags |
5165 | & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) | |
11bb5591 ILT |
5166 | { |
5167 | if (! elf_link_record_dynamic_symbol (info, h)) | |
5168 | { | |
5169 | /* FIXME: No way to report error. */ | |
5170 | abort (); | |
5171 | } | |
5172 | } | |
5173 | ||
5174 | return true; | |
5175 | } | |
5176 | ||
013dec1a ILT |
5177 | /* Make the backend pick a good value for a dynamic symbol. This is |
5178 | called via elf_link_hash_traverse, and also calls itself | |
5179 | recursively. */ | |
5180 | ||
5181 | static boolean | |
5182 | elf_adjust_dynamic_symbol (h, data) | |
5183 | struct elf_link_hash_entry *h; | |
5184 | PTR data; | |
5185 | { | |
5186 | struct bfd_link_info *info = (struct bfd_link_info *) data; | |
5187 | bfd *dynobj; | |
5188 | struct elf_backend_data *bed; | |
5189 | ||
12662be4 ILT |
5190 | /* If this symbol does not require a PLT entry, and it is not |
5191 | defined by a dynamic object, or is not referenced by a regular | |
5192 | object, ignore it. FIXME: Do we need to worry about symbols | |
5193 | which are defined by one dynamic object and referenced by another | |
5194 | one? */ | |
5195 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 | |
5196 | && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
5197 | || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 | |
5198 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)) | |
013dec1a ILT |
5199 | return true; |
5200 | ||
5201 | /* If we've already adjusted this symbol, don't do it again. This | |
5202 | can happen via a recursive call. */ | |
5203 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) | |
5204 | return true; | |
5205 | ||
5206 | /* Don't look at this symbol again. Note that we must set this | |
5207 | after checking the above conditions, because we may look at a | |
5208 | symbol once, decide not to do anything, and then get called | |
5209 | recursively later after REF_REGULAR is set below. */ | |
5210 | h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; | |
5211 | ||
5212 | /* If this is a weak definition, and we know a real definition, and | |
5213 | the real symbol is not itself defined by a regular object file, | |
5214 | then get a good value for the real definition. We handle the | |
5215 | real symbol first, for the convenience of the backend routine. | |
5216 | ||
5217 | Note that there is a confusing case here. If the real definition | |
5218 | is defined by a regular object file, we don't get the real symbol | |
5219 | from the dynamic object, but we do get the weak symbol. If the | |
5220 | processor backend uses a COPY reloc, then if some routine in the | |
5221 | dynamic object changes the real symbol, we will not see that | |
5222 | change in the corresponding weak symbol. This is the way other | |
5223 | ELF linkers work as well, and seems to be a result of the shared | |
5224 | library model. | |
5225 | ||
5226 | I will clarify this issue. Most SVR4 shared libraries define the | |
5227 | variable _timezone and define timezone as a weak synonym. The | |
5228 | tzset call changes _timezone. If you write | |
5229 | extern int timezone; | |
5230 | int _timezone = 5; | |
5231 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
5232 | you might expect that, since timezone is a synonym for _timezone, | |
5233 | the same number will print both times. However, if the processor | |
5234 | backend uses a COPY reloc, then actually timezone will be copied | |
5235 | into your process image, and, since you define _timezone | |
5236 | yourself, _timezone will not. Thus timezone and _timezone will | |
5237 | wind up at different memory locations. The tzset call will set | |
5238 | _timezone, leaving timezone unchanged. */ | |
5239 | ||
5240 | if (h->weakdef != NULL) | |
5241 | { | |
5242 | struct elf_link_hash_entry *weakdef; | |
5243 | ||
6c97aedf ILT |
5244 | BFD_ASSERT (h->root.type == bfd_link_hash_defined |
5245 | || h->root.type == bfd_link_hash_defweak); | |
013dec1a | 5246 | weakdef = h->weakdef; |
6c97aedf ILT |
5247 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined |
5248 | || weakdef->root.type == bfd_link_hash_defweak); | |
013dec1a | 5249 | BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); |
30e5ad97 | 5250 | if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) |
013dec1a | 5251 | { |
30e5ad97 ILT |
5252 | /* This symbol is defined by a regular object file, so we |
5253 | will not do anything special. Clear weakdef for the | |
5254 | convenience of the processor backend. */ | |
013dec1a ILT |
5255 | h->weakdef = NULL; |
5256 | } | |
5257 | else | |
5258 | { | |
5259 | /* There is an implicit reference by a regular object file | |
5260 | via the weak symbol. */ | |
5261 | weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; | |
5262 | if (! elf_adjust_dynamic_symbol (weakdef, (PTR) info)) | |
5263 | return false; | |
5264 | } | |
5265 | } | |
5266 | ||
5267 | dynobj = elf_hash_table (info)->dynobj; | |
5268 | bed = get_elf_backend_data (dynobj); | |
5269 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (info, h)) | |
5270 | { | |
5271 | /* FIXME: No way to return error. */ | |
5272 | abort (); | |
5273 | } | |
5274 | ||
5275 | return true; | |
5276 | } | |
6ec3bb6a ILT |
5277 | \f |
5278 | /* Final phase of ELF linker. */ | |
5279 | ||
5280 | /* A structure we use to avoid passing large numbers of arguments. */ | |
5281 | ||
5282 | struct elf_final_link_info | |
5283 | { | |
5284 | /* General link information. */ | |
5285 | struct bfd_link_info *info; | |
5286 | /* Output BFD. */ | |
5287 | bfd *output_bfd; | |
5288 | /* Symbol string table. */ | |
eb4267a3 | 5289 | struct bfd_strtab_hash *symstrtab; |
013dec1a ILT |
5290 | /* .dynsym section. */ |
5291 | asection *dynsym_sec; | |
5292 | /* .hash section. */ | |
5293 | asection *hash_sec; | |
6ec3bb6a ILT |
5294 | /* Buffer large enough to hold contents of any section. */ |
5295 | bfd_byte *contents; | |
5296 | /* Buffer large enough to hold external relocs of any section. */ | |
5297 | PTR external_relocs; | |
5298 | /* Buffer large enough to hold internal relocs of any section. */ | |
5299 | Elf_Internal_Rela *internal_relocs; | |
5300 | /* Buffer large enough to hold external local symbols of any input | |
5301 | BFD. */ | |
5302 | Elf_External_Sym *external_syms; | |
5303 | /* Buffer large enough to hold internal local symbols of any input | |
5304 | BFD. */ | |
5305 | Elf_Internal_Sym *internal_syms; | |
5306 | /* Array large enough to hold a symbol index for each local symbol | |
5307 | of any input BFD. */ | |
5308 | long *indices; | |
5309 | /* Array large enough to hold a section pointer for each local | |
5310 | symbol of any input BFD. */ | |
5311 | asection **sections; | |
5312 | /* Buffer to hold swapped out symbols. */ | |
5313 | Elf_External_Sym *symbuf; | |
5314 | /* Number of swapped out symbols in buffer. */ | |
5315 | size_t symbuf_count; | |
5316 | /* Number of symbols which fit in symbuf. */ | |
5317 | size_t symbuf_size; | |
5318 | }; | |
5319 | ||
5320 | static boolean elf_link_output_sym | |
71edd06d ILT |
5321 | PARAMS ((struct elf_final_link_info *, const char *, |
5322 | Elf_Internal_Sym *, asection *)); | |
6ec3bb6a ILT |
5323 | static boolean elf_link_flush_output_syms |
5324 | PARAMS ((struct elf_final_link_info *)); | |
5325 | static boolean elf_link_output_extsym | |
5326 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
5327 | static boolean elf_link_input_bfd | |
5328 | PARAMS ((struct elf_final_link_info *, bfd *)); | |
5329 | static boolean elf_reloc_link_order | |
5330 | PARAMS ((bfd *, struct bfd_link_info *, asection *, | |
5331 | struct bfd_link_order *)); | |
5332 | ||
5333 | /* Do the final step of an ELF link. */ | |
5334 | ||
5335 | boolean | |
5336 | elf_bfd_final_link (abfd, info) | |
5337 | bfd *abfd; | |
5338 | struct bfd_link_info *info; | |
5339 | { | |
12662be4 | 5340 | boolean dynamic; |
013dec1a | 5341 | bfd *dynobj; |
6ec3bb6a ILT |
5342 | struct elf_final_link_info finfo; |
5343 | register asection *o; | |
5344 | register struct bfd_link_order *p; | |
5345 | register bfd *sub; | |
5346 | size_t max_contents_size; | |
5347 | size_t max_external_reloc_size; | |
5348 | size_t max_internal_reloc_count; | |
5349 | size_t max_sym_count; | |
5350 | file_ptr off; | |
5351 | Elf_Internal_Sym elfsym; | |
013dec1a | 5352 | unsigned int i; |
6ec3bb6a ILT |
5353 | Elf_Internal_Shdr *symtab_hdr; |
5354 | Elf_Internal_Shdr *symstrtab_hdr; | |
71edd06d | 5355 | struct elf_backend_data *bed = get_elf_backend_data (abfd); |
6ec3bb6a | 5356 | |
0ff5d3a6 | 5357 | if (info->shared) |
374d2ef9 | 5358 | abfd->flags |= DYNAMIC; |
0ff5d3a6 | 5359 | |
12662be4 | 5360 | dynamic = elf_hash_table (info)->dynamic_sections_created; |
013dec1a ILT |
5361 | dynobj = elf_hash_table (info)->dynobj; |
5362 | ||
6ec3bb6a ILT |
5363 | finfo.info = info; |
5364 | finfo.output_bfd = abfd; | |
eb4267a3 | 5365 | finfo.symstrtab = elf_stringtab_init (); |
6ec3bb6a ILT |
5366 | if (finfo.symstrtab == NULL) |
5367 | return false; | |
12662be4 | 5368 | if (! dynamic) |
013dec1a ILT |
5369 | { |
5370 | finfo.dynsym_sec = NULL; | |
5371 | finfo.hash_sec = NULL; | |
5372 | } | |
5373 | else | |
5374 | { | |
5375 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |
5376 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |
5377 | if (finfo.dynsym_sec == NULL | |
5378 | || finfo.hash_sec == NULL) | |
5379 | abort (); | |
5380 | } | |
6ec3bb6a ILT |
5381 | finfo.contents = NULL; |
5382 | finfo.external_relocs = NULL; | |
5383 | finfo.internal_relocs = NULL; | |
5384 | finfo.external_syms = NULL; | |
5385 | finfo.internal_syms = NULL; | |
5386 | finfo.indices = NULL; | |
5387 | finfo.sections = NULL; | |
5388 | finfo.symbuf = NULL; | |
5389 | finfo.symbuf_count = 0; | |
5390 | ||
5391 | /* Count up the number of relocations we will output for each output | |
5392 | section, so that we know the sizes of the reloc sections. We | |
5393 | also figure out some maximum sizes. */ | |
5394 | max_contents_size = 0; | |
5395 | max_external_reloc_size = 0; | |
5396 | max_internal_reloc_count = 0; | |
5397 | max_sym_count = 0; | |
5398 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
5399 | { | |
5400 | o->reloc_count = 0; | |
5401 | ||
5402 | for (p = o->link_order_head; p != NULL; p = p->next) | |
5403 | { | |
5404 | if (p->type == bfd_section_reloc_link_order | |
5405 | || p->type == bfd_symbol_reloc_link_order) | |
5406 | ++o->reloc_count; | |
5407 | else if (p->type == bfd_indirect_link_order) | |
5408 | { | |
5409 | asection *sec; | |
5410 | ||
5411 | sec = p->u.indirect.section; | |
5412 | ||
5413 | if (info->relocateable) | |
5414 | o->reloc_count += sec->reloc_count; | |
5415 | ||
5416 | if (sec->_raw_size > max_contents_size) | |
5417 | max_contents_size = sec->_raw_size; | |
5418 | if (sec->_cooked_size > max_contents_size) | |
5419 | max_contents_size = sec->_cooked_size; | |
5420 | ||
5421 | /* We are interested in just local symbols, not all | |
5422 | symbols. */ | |
5315c428 ILT |
5423 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour) |
5424 | { | |
5425 | size_t sym_count; | |
5426 | ||
5427 | if (elf_bad_symtab (sec->owner)) | |
5428 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
5429 | / sizeof (Elf_External_Sym)); | |
5430 | else | |
5431 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
5432 | ||
5433 | if (sym_count > max_sym_count) | |
5434 | max_sym_count = sym_count; | |
6ec3bb6a | 5435 | |
6c8fa8e6 ILT |
5436 | if ((sec->flags & SEC_RELOC) != 0) |
5437 | { | |
5438 | size_t ext_size; | |
6ec3bb6a | 5439 | |
6c8fa8e6 ILT |
5440 | ext_size = elf_section_data (sec)->rel_hdr.sh_size; |
5441 | if (ext_size > max_external_reloc_size) | |
5442 | max_external_reloc_size = ext_size; | |
5443 | if (sec->reloc_count > max_internal_reloc_count) | |
5444 | max_internal_reloc_count = sec->reloc_count; | |
5445 | } | |
6ec3bb6a ILT |
5446 | } |
5447 | } | |
5448 | } | |
5449 | ||
5450 | if (o->reloc_count > 0) | |
5451 | o->flags |= SEC_RELOC; | |
5452 | else | |
5453 | { | |
5454 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
5455 | set it (this is probably a bug) and if it is set | |
5456 | assign_section_numbers will create a reloc section. */ | |
5457 | o->flags &=~ SEC_RELOC; | |
5458 | } | |
1c640609 ILT |
5459 | |
5460 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
5461 | zero. This is done in elf_fake_sections as well, but forcing | |
5462 | the VMA to 0 here will ensure that relocs against these | |
5463 | sections are handled correctly. */ | |
5464 | if ((o->flags & SEC_ALLOC) == 0) | |
5465 | o->vma = 0; | |
6ec3bb6a ILT |
5466 | } |
5467 | ||
5468 | /* Figure out the file positions for everything but the symbol table | |
5469 | and the relocs. We set symcount to force assign_section_numbers | |
5470 | to create a symbol table. */ | |
5471 | abfd->symcount = info->strip == strip_all ? 0 : 1; | |
5472 | BFD_ASSERT (! abfd->output_has_begun); | |
5473 | if (! elf_compute_section_file_positions (abfd, info)) | |
5474 | goto error_return; | |
5475 | ||
5476 | /* That created the reloc sections. Set their sizes, and assign | |
5477 | them file positions, and allocate some buffers. */ | |
5478 | for (o = abfd->sections; o != NULL; o = o->next) | |
5479 | { | |
5480 | if ((o->flags & SEC_RELOC) != 0) | |
5481 | { | |
5482 | Elf_Internal_Shdr *rel_hdr; | |
5483 | register struct elf_link_hash_entry **p, **pend; | |
5484 | ||
5485 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
5486 | ||
5487 | rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count; | |
5488 | ||
5489 | /* The contents field must last into write_object_contents, | |
5490 | so we allocate it with bfd_alloc rather than malloc. */ | |
5491 | rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); | |
5492 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
5493 | { | |
5494 | bfd_set_error (bfd_error_no_memory); | |
5495 | goto error_return; | |
5496 | } | |
5497 | ||
5498 | p = ((struct elf_link_hash_entry **) | |
5499 | malloc (o->reloc_count | |
5500 | * sizeof (struct elf_link_hash_entry *))); | |
5501 | if (p == NULL && o->reloc_count != 0) | |
5502 | { | |
5503 | bfd_set_error (bfd_error_no_memory); | |
5504 | goto error_return; | |
5505 | } | |
5506 | elf_section_data (o)->rel_hashes = p; | |
5507 | pend = p + o->reloc_count; | |
5508 | for (; p < pend; p++) | |
5509 | *p = NULL; | |
5510 | ||
5511 | /* Use the reloc_count field as an index when outputting the | |
5512 | relocs. */ | |
5513 | o->reloc_count = 0; | |
5514 | } | |
5515 | } | |
5516 | ||
5517 | assign_file_positions_for_relocs (abfd); | |
5518 | ||
5519 | /* We have now assigned file positions for all the sections except | |
5520 | .symtab and .strtab. We start the .symtab section at the current | |
5521 | file position, and write directly to it. We build the .strtab | |
5522 | section in memory. When we add .dynsym support, we will build | |
5523 | that in memory as well (.dynsym is smaller than .symtab). */ | |
5524 | abfd->symcount = 0; | |
5525 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
5526 | /* sh_name is set in prep_headers. */ | |
5527 | symtab_hdr->sh_type = SHT_SYMTAB; | |
5528 | symtab_hdr->sh_flags = 0; | |
5529 | symtab_hdr->sh_addr = 0; | |
5530 | symtab_hdr->sh_size = 0; | |
5531 | symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); | |
5532 | /* sh_link is set in assign_section_numbers. */ | |
5533 | /* sh_info is set below. */ | |
5534 | /* sh_offset is set just below. */ | |
5535 | symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ | |
5536 | ||
5537 | off = elf_tdata (abfd)->next_file_pos; | |
013dec1a | 5538 | off = assign_file_position_for_section (symtab_hdr, off, true); |
6ec3bb6a ILT |
5539 | |
5540 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |
5541 | incorrect. We do not yet know the size of the .symtab section. | |
5542 | We correct next_file_pos below, after we do know the size. */ | |
5543 | ||
5544 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |
5545 | continuously seeking to the right position in the file. */ | |
5546 | if (! info->keep_memory || max_sym_count < 20) | |
5547 | finfo.symbuf_size = 20; | |
5548 | else | |
5549 | finfo.symbuf_size = max_sym_count; | |
5550 | finfo.symbuf = ((Elf_External_Sym *) | |
5551 | malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); | |
5552 | if (finfo.symbuf == NULL) | |
5553 | { | |
5554 | bfd_set_error (bfd_error_no_memory); | |
5555 | goto error_return; | |
5556 | } | |
5557 | ||
5558 | /* Start writing out the symbol table. The first symbol is always a | |
5559 | dummy symbol. */ | |
5560 | elfsym.st_value = 0; | |
5561 | elfsym.st_size = 0; | |
5562 | elfsym.st_info = 0; | |
5563 | elfsym.st_other = 0; | |
5564 | elfsym.st_shndx = SHN_UNDEF; | |
71edd06d ILT |
5565 | if (! elf_link_output_sym (&finfo, (const char *) NULL, |
5566 | &elfsym, bfd_und_section_ptr)) | |
6ec3bb6a ILT |
5567 | goto error_return; |
5568 | ||
5569 | #if 0 | |
5570 | /* Some standard ELF linkers do this, but we don't because it causes | |
5571 | bootstrap comparison failures. */ | |
5572 | /* Output a file symbol for the output file as the second symbol. | |
5573 | We output this even if we are discarding local symbols, although | |
5574 | I'm not sure if this is correct. */ | |
5575 | elfsym.st_value = 0; | |
5576 | elfsym.st_size = 0; | |
5577 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
5578 | elfsym.st_other = 0; | |
5579 | elfsym.st_shndx = SHN_ABS; | |
71edd06d ILT |
5580 | if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), |
5581 | &elfsym, bfd_abs_section_ptr)) | |
6ec3bb6a ILT |
5582 | goto error_return; |
5583 | #endif | |
5584 | ||
5585 | /* Output a symbol for each section. We output these even if we are | |
5586 | discarding local symbols, since they are used for relocs. These | |
5587 | symbols have no names. We store the index of each one in the | |
5588 | index field of the section, so that we can find it again when | |
5589 | outputting relocs. */ | |
5590 | elfsym.st_value = 0; | |
5591 | elfsym.st_size = 0; | |
5592 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
5593 | elfsym.st_other = 0; | |
013dec1a | 5594 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) |
6ec3bb6a | 5595 | { |
013dec1a | 5596 | o = section_from_elf_index (abfd, i); |
24f13b03 | 5597 | if (o != NULL) |
013dec1a ILT |
5598 | o->target_index = abfd->symcount; |
5599 | elfsym.st_shndx = i; | |
71edd06d ILT |
5600 | if (! elf_link_output_sym (&finfo, (const char *) NULL, |
5601 | &elfsym, o)) | |
6ec3bb6a ILT |
5602 | goto error_return; |
5603 | } | |
5604 | ||
5605 | /* Allocate some memory to hold information read in from the input | |
5606 | files. */ | |
5607 | finfo.contents = (bfd_byte *) malloc (max_contents_size); | |
5608 | finfo.external_relocs = (PTR) malloc (max_external_reloc_size); | |
5609 | finfo.internal_relocs = ((Elf_Internal_Rela *) | |
5610 | malloc (max_internal_reloc_count | |
5611 | * sizeof (Elf_Internal_Rela))); | |
5612 | finfo.external_syms = ((Elf_External_Sym *) | |
5613 | malloc (max_sym_count * sizeof (Elf_External_Sym))); | |
5614 | finfo.internal_syms = ((Elf_Internal_Sym *) | |
5615 | malloc (max_sym_count * sizeof (Elf_Internal_Sym))); | |
5616 | finfo.indices = (long *) malloc (max_sym_count * sizeof (long)); | |
5617 | finfo.sections = (asection **) malloc (max_sym_count * sizeof (asection *)); | |
5618 | if ((finfo.contents == NULL && max_contents_size != 0) | |
5619 | || (finfo.external_relocs == NULL && max_external_reloc_size != 0) | |
5620 | || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) | |
5621 | || (finfo.external_syms == NULL && max_sym_count != 0) | |
5622 | || (finfo.internal_syms == NULL && max_sym_count != 0) | |
5623 | || (finfo.indices == NULL && max_sym_count != 0) | |
5624 | || (finfo.sections == NULL && max_sym_count != 0)) | |
5625 | { | |
5626 | bfd_set_error (bfd_error_no_memory); | |
5627 | goto error_return; | |
5628 | } | |
5629 | ||
5630 | /* Since ELF permits relocations to be against local symbols, we | |
5631 | must have the local symbols available when we do the relocations. | |
5632 | Since we would rather only read the local symbols once, and we | |
5633 | would rather not keep them in memory, we handle all the | |
5634 | relocations for a single input file at the same time. | |
5635 | ||
5636 | Unfortunately, there is no way to know the total number of local | |
5637 | symbols until we have seen all of them, and the local symbol | |
5638 | indices precede the global symbol indices. This means that when | |
5639 | we are generating relocateable output, and we see a reloc against | |
5640 | a global symbol, we can not know the symbol index until we have | |
5641 | finished examining all the local symbols to see which ones we are | |
5642 | going to output. To deal with this, we keep the relocations in | |
5643 | memory, and don't output them until the end of the link. This is | |
5644 | an unfortunate waste of memory, but I don't see a good way around | |
5645 | it. Fortunately, it only happens when performing a relocateable | |
5646 | link, which is not the common case. FIXME: If keep_memory is set | |
5647 | we could write the relocs out and then read them again; I don't | |
5648 | know how bad the memory loss will be. */ | |
5649 | ||
5650 | for (sub = info->input_bfds; sub != NULL; sub = sub->next) | |
5651 | sub->output_has_begun = false; | |
5652 | for (o = abfd->sections; o != NULL; o = o->next) | |
5653 | { | |
5654 | for (p = o->link_order_head; p != NULL; p = p->next) | |
5655 | { | |
5656 | if (p->type == bfd_indirect_link_order | |
5657 | && (bfd_get_flavour (p->u.indirect.section->owner) | |
5658 | == bfd_target_elf_flavour)) | |
5659 | { | |
5660 | sub = p->u.indirect.section->owner; | |
5661 | if (! sub->output_has_begun) | |
5662 | { | |
5663 | if (! elf_link_input_bfd (&finfo, sub)) | |
5664 | goto error_return; | |
5665 | sub->output_has_begun = true; | |
5666 | } | |
5667 | } | |
5668 | else if (p->type == bfd_section_reloc_link_order | |
5669 | || p->type == bfd_symbol_reloc_link_order) | |
5670 | { | |
5671 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
5672 | goto error_return; | |
5673 | } | |
5674 | else | |
5675 | { | |
5676 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
5677 | goto error_return; | |
5678 | } | |
5679 | } | |
5680 | } | |
5681 | ||
5682 | /* That wrote out all the local symbols. Finish up the symbol table | |
5683 | with the global symbols. */ | |
5684 | ||
5685 | /* The sh_info field records the index of the first non local | |
5686 | symbol. */ | |
5687 | symtab_hdr->sh_info = abfd->symcount; | |
12662be4 | 5688 | if (dynamic) |
013dec1a | 5689 | elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1; |
6ec3bb6a ILT |
5690 | |
5691 | /* We get the global symbols from the hash table. */ | |
013dec1a ILT |
5692 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, |
5693 | (PTR) &finfo); | |
6ec3bb6a ILT |
5694 | |
5695 | /* Flush all symbols to the file. */ | |
5696 | if (! elf_link_flush_output_syms (&finfo)) | |
5697 | return false; | |
5698 | ||
5699 | /* Now we know the size of the symtab section. */ | |
5700 | off += symtab_hdr->sh_size; | |
5701 | ||
eb4267a3 ILT |
5702 | /* Finish up and write out the symbol string table (.strtab) |
5703 | section. */ | |
6ec3bb6a ILT |
5704 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; |
5705 | /* sh_name was set in prep_headers. */ | |
5706 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
5707 | symstrtab_hdr->sh_flags = 0; | |
5708 | symstrtab_hdr->sh_addr = 0; | |
eb4267a3 | 5709 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); |
6ec3bb6a ILT |
5710 | symstrtab_hdr->sh_entsize = 0; |
5711 | symstrtab_hdr->sh_link = 0; | |
5712 | symstrtab_hdr->sh_info = 0; | |
5713 | /* sh_offset is set just below. */ | |
5714 | symstrtab_hdr->sh_addralign = 1; | |
6ec3bb6a | 5715 | |
013dec1a | 5716 | off = assign_file_position_for_section (symstrtab_hdr, off, true); |
6ec3bb6a ILT |
5717 | elf_tdata (abfd)->next_file_pos = off; |
5718 | ||
eb4267a3 ILT |
5719 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 |
5720 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |
5721 | return false; | |
5722 | ||
6ec3bb6a ILT |
5723 | /* Adjust the relocs to have the correct symbol indices. */ |
5724 | for (o = abfd->sections; o != NULL; o = o->next) | |
5725 | { | |
5726 | struct elf_link_hash_entry **rel_hash; | |
5727 | Elf_Internal_Shdr *rel_hdr; | |
6ec3bb6a ILT |
5728 | |
5729 | if ((o->flags & SEC_RELOC) == 0) | |
5730 | continue; | |
5731 | ||
5732 | rel_hash = elf_section_data (o)->rel_hashes; | |
5733 | rel_hdr = &elf_section_data (o)->rel_hdr; | |
5734 | for (i = 0; i < o->reloc_count; i++, rel_hash++) | |
5735 | { | |
5736 | if (*rel_hash == NULL) | |
5737 | continue; | |
5738 | ||
5739 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
5740 | ||
5741 | if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
5742 | { | |
5743 | Elf_External_Rel *erel; | |
5744 | Elf_Internal_Rel irel; | |
5745 | ||
5746 | erel = (Elf_External_Rel *) rel_hdr->contents + i; | |
5747 | elf_swap_reloc_in (abfd, erel, &irel); | |
5748 | irel.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
5749 | ELF_R_TYPE (irel.r_info)); | |
5750 | elf_swap_reloc_out (abfd, &irel, erel); | |
5751 | } | |
5752 | else | |
5753 | { | |
5754 | Elf_External_Rela *erela; | |
5755 | Elf_Internal_Rela irela; | |
5756 | ||
5757 | BFD_ASSERT (rel_hdr->sh_entsize | |
5758 | == sizeof (Elf_External_Rela)); | |
5759 | ||
5760 | erela = (Elf_External_Rela *) rel_hdr->contents + i; | |
5761 | elf_swap_reloca_in (abfd, erela, &irela); | |
5762 | irela.r_info = ELF_R_INFO ((*rel_hash)->indx, | |
5763 | ELF_R_TYPE (irela.r_info)); | |
5764 | elf_swap_reloca_out (abfd, &irela, erela); | |
5765 | } | |
5766 | } | |
5767 | ||
5768 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
5769 | trying to swap the relocs out itself. */ | |
5770 | o->reloc_count = 0; | |
5771 | } | |
5772 | ||
12662be4 ILT |
5773 | /* If we are linking against a dynamic object, or generating a |
5774 | shared library, finish up the dynamic linking information. */ | |
5775 | if (dynamic) | |
013dec1a ILT |
5776 | { |
5777 | Elf_External_Dyn *dyncon, *dynconend; | |
013dec1a ILT |
5778 | |
5779 | /* Fix up .dynamic entries. */ | |
5780 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |
5781 | BFD_ASSERT (o != NULL); | |
5782 | ||
5783 | dyncon = (Elf_External_Dyn *) o->contents; | |
5784 | dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); | |
5785 | for (; dyncon < dynconend; dyncon++) | |
5786 | { | |
5787 | Elf_Internal_Dyn dyn; | |
5788 | const char *name; | |
5789 | unsigned int type; | |
5790 | ||
5791 | elf_swap_dyn_in (dynobj, dyncon, &dyn); | |
5792 | ||
5793 | switch (dyn.d_tag) | |
5794 | { | |
5795 | default: | |
5796 | break; | |
5797 | ||
197e30e5 ILT |
5798 | /* SVR4 linkers seem to set DT_INIT and DT_FINI based on |
5799 | magic _init and _fini symbols. This is pretty ugly, | |
5800 | but we are compatible. */ | |
013dec1a | 5801 | case DT_INIT: |
197e30e5 ILT |
5802 | name = "_init"; |
5803 | goto get_sym; | |
013dec1a | 5804 | case DT_FINI: |
197e30e5 ILT |
5805 | name = "_fini"; |
5806 | get_sym: | |
5807 | { | |
5808 | struct elf_link_hash_entry *h; | |
5809 | ||
5810 | h = elf_link_hash_lookup (elf_hash_table (info), name, | |
5811 | false, false, true); | |
5812 | BFD_ASSERT (h != NULL); | |
6c97aedf ILT |
5813 | if (h->root.type == bfd_link_hash_defined |
5814 | || h->root.type == bfd_link_hash_defweak) | |
197e30e5 ILT |
5815 | { |
5816 | dyn.d_un.d_val = h->root.u.def.value; | |
5817 | o = h->root.u.def.section; | |
5818 | if (o->output_section != NULL) | |
5819 | dyn.d_un.d_val += (o->output_section->vma | |
5820 | + o->output_offset); | |
5821 | else | |
5822 | dyn.d_un.d_val += o->vma; | |
5823 | } | |
5824 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
5825 | } | |
5826 | break; | |
5827 | ||
013dec1a ILT |
5828 | case DT_HASH: |
5829 | name = ".hash"; | |
5830 | goto get_vma; | |
5831 | case DT_STRTAB: | |
5832 | name = ".dynstr"; | |
5833 | goto get_vma; | |
5834 | case DT_SYMTAB: | |
5835 | name = ".dynsym"; | |
5836 | get_vma: | |
5837 | o = bfd_get_section_by_name (abfd, name); | |
5838 | BFD_ASSERT (o != NULL); | |
5839 | dyn.d_un.d_ptr = o->vma; | |
5840 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
5841 | break; | |
5842 | ||
5843 | case DT_REL: | |
5844 | case DT_RELA: | |
5845 | case DT_RELSZ: | |
5846 | case DT_RELASZ: | |
5847 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
5848 | type = SHT_REL; | |
5849 | else | |
5850 | type = SHT_RELA; | |
5851 | dyn.d_un.d_val = 0; | |
5852 | for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) | |
5853 | { | |
5854 | Elf_Internal_Shdr *hdr; | |
5855 | ||
5856 | hdr = elf_elfsections (abfd)[i]; | |
5857 | if (hdr->sh_type == type | |
5858 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
5859 | { | |
5860 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
5861 | dyn.d_un.d_val += hdr->sh_size; | |
5862 | else | |
5863 | { | |
5864 | if (dyn.d_un.d_val == 0 | |
5865 | || hdr->sh_addr < dyn.d_un.d_val) | |
5866 | dyn.d_un.d_val = hdr->sh_addr; | |
5867 | } | |
5868 | } | |
5869 | } | |
5870 | elf_swap_dyn_out (dynobj, &dyn, dyncon); | |
5871 | break; | |
5872 | } | |
5873 | } | |
12662be4 | 5874 | } |
013dec1a | 5875 | |
12662be4 ILT |
5876 | /* If we have created any dynamic sections, then output them. */ |
5877 | if (dynobj != NULL) | |
5878 | { | |
013dec1a ILT |
5879 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) |
5880 | goto error_return; | |
5881 | ||
5882 | for (o = dynobj->sections; o != NULL; o = o->next) | |
5883 | { | |
12662be4 ILT |
5884 | if ((o->flags & SEC_HAS_CONTENTS) == 0 |
5885 | || o->_raw_size == 0) | |
013dec1a | 5886 | continue; |
8af74670 ILT |
5887 | if ((o->flags & SEC_IN_MEMORY) == 0) |
5888 | { | |
fb562be0 ILT |
5889 | /* At this point, we are only interested in sections |
5890 | created by elf_link_create_dynamic_sections. FIXME: | |
5891 | This test is fragile. */ | |
8af74670 ILT |
5892 | continue; |
5893 | } | |
eb4267a3 ILT |
5894 | if ((elf_section_data (o->output_section)->this_hdr.sh_type |
5895 | != SHT_STRTAB) | |
5896 | || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) | |
5897 | { | |
5898 | if (! bfd_set_section_contents (abfd, o->output_section, | |
5899 | o->contents, o->output_offset, | |
5900 | o->_raw_size)) | |
5901 | goto error_return; | |
5902 | } | |
5903 | else | |
5904 | { | |
5905 | file_ptr off; | |
5906 | ||
5907 | /* The contents of the .dynstr section are actually in a | |
5908 | stringtab. */ | |
5909 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
5910 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
5911 | || ! _bfd_stringtab_emit (abfd, | |
5912 | elf_hash_table (info)->dynstr)) | |
5913 | goto error_return; | |
5914 | } | |
013dec1a ILT |
5915 | } |
5916 | } | |
5917 | ||
eb4267a3 ILT |
5918 | if (finfo.symstrtab != NULL) |
5919 | _bfd_stringtab_free (finfo.symstrtab); | |
6ec3bb6a ILT |
5920 | if (finfo.contents != NULL) |
5921 | free (finfo.contents); | |
5922 | if (finfo.external_relocs != NULL) | |
5923 | free (finfo.external_relocs); | |
5924 | if (finfo.internal_relocs != NULL) | |
5925 | free (finfo.internal_relocs); | |
5926 | if (finfo.external_syms != NULL) | |
5927 | free (finfo.external_syms); | |
5928 | if (finfo.internal_syms != NULL) | |
5929 | free (finfo.internal_syms); | |
5930 | if (finfo.indices != NULL) | |
5931 | free (finfo.indices); | |
5932 | if (finfo.sections != NULL) | |
5933 | free (finfo.sections); | |
5934 | if (finfo.symbuf != NULL) | |
5935 | free (finfo.symbuf); | |
5936 | for (o = abfd->sections; o != NULL; o = o->next) | |
5937 | { | |
5938 | if ((o->flags & SEC_RELOC) != 0 | |
5939 | && elf_section_data (o)->rel_hashes != NULL) | |
5940 | free (elf_section_data (o)->rel_hashes); | |
5941 | } | |
5942 | ||
3c9832f8 ILT |
5943 | elf_tdata (abfd)->linker = true; |
5944 | ||
6ec3bb6a ILT |
5945 | return true; |
5946 | ||
5947 | error_return: | |
eb4267a3 ILT |
5948 | if (finfo.symstrtab != NULL) |
5949 | _bfd_stringtab_free (finfo.symstrtab); | |
6ec3bb6a ILT |
5950 | if (finfo.contents != NULL) |
5951 | free (finfo.contents); | |
5952 | if (finfo.external_relocs != NULL) | |
5953 | free (finfo.external_relocs); | |
5954 | if (finfo.internal_relocs != NULL) | |
5955 | free (finfo.internal_relocs); | |
5956 | if (finfo.external_syms != NULL) | |
5957 | free (finfo.external_syms); | |
5958 | if (finfo.internal_syms != NULL) | |
5959 | free (finfo.internal_syms); | |
5960 | if (finfo.indices != NULL) | |
5961 | free (finfo.indices); | |
5962 | if (finfo.sections != NULL) | |
5963 | free (finfo.sections); | |
5964 | if (finfo.symbuf != NULL) | |
5965 | free (finfo.symbuf); | |
5966 | for (o = abfd->sections; o != NULL; o = o->next) | |
5967 | { | |
5968 | if ((o->flags & SEC_RELOC) != 0 | |
5969 | && elf_section_data (o)->rel_hashes != NULL) | |
5970 | free (elf_section_data (o)->rel_hashes); | |
5971 | } | |
5972 | ||
5973 | return false; | |
5974 | } | |
5975 | ||
5976 | /* Add a symbol to the output symbol table. */ | |
5977 | ||
5978 | static boolean | |
71edd06d | 5979 | elf_link_output_sym (finfo, name, elfsym, input_sec) |
6ec3bb6a ILT |
5980 | struct elf_final_link_info *finfo; |
5981 | const char *name; | |
5982 | Elf_Internal_Sym *elfsym; | |
71edd06d | 5983 | asection *input_sec; |
6ec3bb6a | 5984 | { |
71edd06d ILT |
5985 | boolean (*output_symbol_hook) PARAMS ((bfd *, |
5986 | struct bfd_link_info *info, | |
5987 | const char *, | |
5988 | Elf_Internal_Sym *, | |
5989 | asection *)); | |
5990 | ||
5991 | output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> | |
5992 | elf_backend_link_output_symbol_hook; | |
57a814a9 PS |
5993 | if (output_symbol_hook != NULL) |
5994 | { | |
5995 | if (! ((*output_symbol_hook) | |
5996 | (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) | |
5997 | return false; | |
5998 | } | |
71edd06d | 5999 | |
6ec3bb6a ILT |
6000 | if (name == (const char *) NULL || *name == '\0') |
6001 | elfsym->st_name = 0; | |
6002 | else | |
6003 | { | |
eb4267a3 ILT |
6004 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, |
6005 | name, true, | |
6006 | false); | |
6ec3bb6a ILT |
6007 | if (elfsym->st_name == (unsigned long) -1) |
6008 | return false; | |
6009 | } | |
6010 | ||
6011 | if (finfo->symbuf_count >= finfo->symbuf_size) | |
6012 | { | |
6013 | if (! elf_link_flush_output_syms (finfo)) | |
6014 | return false; | |
6015 | } | |
6016 | ||
6017 | elf_swap_symbol_out (finfo->output_bfd, elfsym, | |
6018 | finfo->symbuf + finfo->symbuf_count); | |
6019 | ++finfo->symbuf_count; | |
6020 | ||
6021 | ++finfo->output_bfd->symcount; | |
6022 | ||
6023 | return true; | |
6024 | } | |
6025 | ||
6026 | /* Flush the output symbols to the file. */ | |
6027 | ||
6028 | static boolean | |
6029 | elf_link_flush_output_syms (finfo) | |
6030 | struct elf_final_link_info *finfo; | |
6031 | { | |
6032 | Elf_Internal_Shdr *symtab; | |
6033 | ||
6034 | symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; | |
6035 | ||
6036 | if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, | |
6037 | SEEK_SET) != 0 | |
6038 | || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, | |
6039 | sizeof (Elf_External_Sym), finfo->output_bfd) | |
6040 | != finfo->symbuf_count * sizeof (Elf_External_Sym))) | |
6041 | return false; | |
6042 | ||
6043 | symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); | |
6044 | ||
6045 | finfo->symbuf_count = 0; | |
6046 | ||
6047 | return true; | |
6048 | } | |
6049 | ||
6050 | /* Add an external symbol to the symbol table. This is called from | |
6051 | the hash table traversal routine. */ | |
6052 | ||
6053 | static boolean | |
6054 | elf_link_output_extsym (h, data) | |
6055 | struct elf_link_hash_entry *h; | |
6056 | PTR data; | |
6057 | { | |
6058 | struct elf_final_link_info *finfo = (struct elf_final_link_info *) data; | |
013dec1a | 6059 | boolean strip; |
6ec3bb6a | 6060 | Elf_Internal_Sym sym; |
71edd06d | 6061 | asection *input_sec; |
6ec3bb6a | 6062 | |
59474174 ILT |
6063 | /* If we are not creating a shared library, and this symbol is |
6064 | referenced by a shared library but is not defined anywhere, then | |
6065 | warn that it is undefined. If we do not do this, the runtime | |
6066 | linker will complain that the symbol is undefined when the | |
6067 | program is run. We don't have to worry about symbols that are | |
6068 | referenced by regular files, because we will already have issued | |
6069 | warnings for them. | |
6070 | ||
6071 | FIXME: If we are linking against an object which uses DT_NEEDED, | |
6072 | we don't give this warning, because it might be the case that the | |
6073 | needed dynamic object will define the symbols. Unfortunately, | |
6074 | this makes this type of check much less useful, but the only way | |
6075 | to fix it would be to locate the needed object and read its | |
6076 | symbol table. That seems like a real waste of time just to give | |
6077 | better error messages. */ | |
6078 | if (! finfo->info->relocateable | |
6079 | && ! finfo->info->shared | |
6080 | && ! elf_hash_table (finfo->info)->saw_needed | |
6081 | && h->root.type == bfd_link_hash_undefined | |
6082 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 | |
6083 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) | |
6084 | { | |
6085 | if (! ((*finfo->info->callbacks->undefined_symbol) | |
6086 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |
6087 | (asection *) NULL, 0))) | |
6088 | { | |
6089 | /* FIXME: No way to return error. */ | |
6090 | abort (); | |
6091 | } | |
6092 | } | |
6093 | ||
013dec1a ILT |
6094 | /* We don't want to output symbols that have never been mentioned by |
6095 | a regular file, or that we have been told to strip. However, if | |
6096 | h->indx is set to -2, the symbol is used by a reloc and we must | |
6097 | output it. */ | |
6098 | if (h->indx == -2) | |
6099 | strip = false; | |
5315c428 ILT |
6100 | else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
6101 | || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) | |
6102 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 | |
013dec1a ILT |
6103 | && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) |
6104 | strip = true; | |
6105 | else if (finfo->info->strip == strip_all | |
6106 | || (finfo->info->strip == strip_some | |
6107 | && bfd_hash_lookup (finfo->info->keep_hash, | |
6108 | h->root.root.string, | |
6109 | false, false) == NULL)) | |
6110 | strip = true; | |
6111 | else | |
6112 | strip = false; | |
6113 | ||
6114 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
6115 | nothing else to do. */ | |
6116 | if (strip && h->dynindx == -1) | |
6ec3bb6a ILT |
6117 | return true; |
6118 | ||
6119 | sym.st_value = 0; | |
6120 | sym.st_size = h->size; | |
6ec3bb6a | 6121 | sym.st_other = 0; |
6c97aedf | 6122 | if (h->root.type == bfd_link_hash_undefweak |
0bef7f72 | 6123 | || h->root.type == bfd_link_hash_defweak) |
bf73e4f3 ILT |
6124 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); |
6125 | else | |
6126 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); | |
6ec3bb6a ILT |
6127 | |
6128 | switch (h->root.type) | |
6129 | { | |
6130 | default: | |
6131 | case bfd_link_hash_new: | |
6132 | abort (); | |
6133 | return false; | |
6134 | ||
6135 | case bfd_link_hash_undefined: | |
71edd06d | 6136 | input_sec = bfd_und_section_ptr; |
6ec3bb6a ILT |
6137 | sym.st_shndx = SHN_UNDEF; |
6138 | break; | |
6139 | ||
6c97aedf | 6140 | case bfd_link_hash_undefweak: |
71edd06d | 6141 | input_sec = bfd_und_section_ptr; |
6ec3bb6a | 6142 | sym.st_shndx = SHN_UNDEF; |
6ec3bb6a ILT |
6143 | break; |
6144 | ||
6145 | case bfd_link_hash_defined: | |
6c97aedf | 6146 | case bfd_link_hash_defweak: |
6ec3bb6a | 6147 | { |
71edd06d ILT |
6148 | input_sec = h->root.u.def.section; |
6149 | if (input_sec->output_section != NULL) | |
6ec3bb6a | 6150 | { |
eb4267a3 ILT |
6151 | sym.st_shndx = |
6152 | elf_section_from_bfd_section (finfo->output_bfd, | |
6153 | input_sec->output_section); | |
013dec1a ILT |
6154 | if (sym.st_shndx == (unsigned short) -1) |
6155 | { | |
6156 | /* FIXME: No way to handle errors. */ | |
6157 | abort (); | |
6158 | } | |
6ec3bb6a | 6159 | |
013dec1a ILT |
6160 | /* ELF symbols in relocateable files are section relative, |
6161 | but in nonrelocateable files they are virtual | |
6162 | addresses. */ | |
71edd06d | 6163 | sym.st_value = h->root.u.def.value + input_sec->output_offset; |
013dec1a | 6164 | if (! finfo->info->relocateable) |
71edd06d | 6165 | sym.st_value += input_sec->output_section->vma; |
013dec1a ILT |
6166 | } |
6167 | else | |
6168 | { | |
197e30e5 ILT |
6169 | BFD_ASSERT ((bfd_get_flavour (input_sec->owner) |
6170 | == bfd_target_elf_flavour) | |
71edd06d | 6171 | && elf_elfheader (input_sec->owner)->e_type == ET_DYN); |
013dec1a | 6172 | sym.st_shndx = SHN_UNDEF; |
71edd06d | 6173 | input_sec = bfd_und_section_ptr; |
013dec1a | 6174 | } |
6ec3bb6a ILT |
6175 | } |
6176 | break; | |
6177 | ||
6178 | case bfd_link_hash_common: | |
71edd06d | 6179 | input_sec = bfd_com_section_ptr; |
6ec3bb6a | 6180 | sym.st_shndx = SHN_COMMON; |
6581a70a | 6181 | sym.st_value = 1 << h->root.u.c.p->alignment_power; |
6ec3bb6a ILT |
6182 | break; |
6183 | ||
6184 | case bfd_link_hash_indirect: | |
6185 | case bfd_link_hash_warning: | |
6186 | /* I have no idea how these should be handled. */ | |
6187 | return true; | |
6188 | } | |
6189 | ||
013dec1a ILT |
6190 | /* If this symbol should be put in the .dynsym section, then put it |
6191 | there now. We have already know the symbol index. We also fill | |
6192 | in the entry in the .hash section. */ | |
12662be4 ILT |
6193 | if (h->dynindx != -1 |
6194 | && elf_hash_table (finfo->info)->dynamic_sections_created) | |
013dec1a ILT |
6195 | { |
6196 | struct elf_backend_data *bed; | |
6197 | size_t bucketcount; | |
6198 | size_t bucket; | |
6199 | bfd_byte *bucketpos; | |
6200 | bfd_vma chain; | |
6201 | ||
6202 | sym.st_name = h->dynstr_index; | |
6203 | ||
6204 | /* Give the processor backend a chance to tweak the symbol | |
6205 | value, and also to finish up anything that needs to be done | |
6206 | for this symbol. */ | |
6207 | bed = get_elf_backend_data (finfo->output_bfd); | |
6208 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
6209 | (finfo->output_bfd, finfo->info, h, &sym))) | |
6210 | { | |
6211 | /* FIXME: No way to return error. */ | |
6212 | abort (); | |
6213 | } | |
6214 | ||
6215 | elf_swap_symbol_out (finfo->output_bfd, &sym, | |
6216 | ((Elf_External_Sym *) finfo->dynsym_sec->contents | |
6217 | + h->dynindx)); | |
6218 | ||
6219 | bucketcount = elf_hash_table (finfo->info)->bucketcount; | |
12662be4 ILT |
6220 | bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string) |
6221 | % bucketcount); | |
013dec1a ILT |
6222 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents |
6223 | + (bucket + 2) * (ARCH_SIZE / 8)); | |
6224 | chain = get_word (finfo->output_bfd, bucketpos); | |
6225 | put_word (finfo->output_bfd, h->dynindx, bucketpos); | |
6226 | put_word (finfo->output_bfd, chain, | |
6227 | ((bfd_byte *) finfo->hash_sec->contents | |
6228 | + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8))); | |
6229 | } | |
6230 | ||
6231 | /* If we're stripping it, then it was just a dynamic symbol, and | |
6232 | there's nothing else to do. */ | |
6233 | if (strip) | |
6234 | return true; | |
6235 | ||
6ec3bb6a ILT |
6236 | h->indx = finfo->output_bfd->symcount; |
6237 | ||
71edd06d | 6238 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) |
6ec3bb6a ILT |
6239 | { |
6240 | /* FIXME: No way to return error. */ | |
6241 | abort (); | |
6242 | } | |
6243 | ||
6244 | return true; | |
6245 | } | |
6246 | ||
6247 | /* Link an input file into the linker output file. This function | |
6248 | handles all the sections and relocations of the input file at once. | |
6249 | This is so that we only have to read the local symbols once, and | |
6250 | don't have to keep them in memory. */ | |
6251 | ||
6252 | static boolean | |
6253 | elf_link_input_bfd (finfo, input_bfd) | |
6254 | struct elf_final_link_info *finfo; | |
6255 | bfd *input_bfd; | |
6256 | { | |
6257 | boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, | |
6258 | bfd *, asection *, bfd_byte *, | |
6259 | Elf_Internal_Rela *, | |
eb4267a3 | 6260 | Elf_Internal_Sym *, asection **)); |
6ec3bb6a ILT |
6261 | bfd *output_bfd; |
6262 | Elf_Internal_Shdr *symtab_hdr; | |
5315c428 ILT |
6263 | size_t locsymcount; |
6264 | size_t extsymoff; | |
6ec3bb6a ILT |
6265 | Elf_External_Sym *esym; |
6266 | Elf_External_Sym *esymend; | |
6267 | Elf_Internal_Sym *isym; | |
6268 | long *pindex; | |
6269 | asection **ppsection; | |
6270 | asection *o; | |
6271 | ||
6272 | output_bfd = finfo->output_bfd; | |
6273 | relocate_section = | |
6274 | get_elf_backend_data (output_bfd)->elf_backend_relocate_section; | |
6275 | ||
013dec1a ILT |
6276 | /* If this is a dynamic object, we don't want to do anything here: |
6277 | we don't want the local symbols, and we don't want the section | |
6278 | contents. */ | |
6279 | if (elf_elfheader (input_bfd)->e_type == ET_DYN) | |
6280 | return true; | |
6281 | ||
6ec3bb6a | 6282 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
5315c428 ILT |
6283 | if (elf_bad_symtab (input_bfd)) |
6284 | { | |
6285 | locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); | |
6286 | extsymoff = 0; | |
6287 | } | |
6288 | else | |
6289 | { | |
6290 | locsymcount = symtab_hdr->sh_info; | |
6291 | extsymoff = symtab_hdr->sh_info; | |
6292 | } | |
6293 | ||
6294 | /* Read the local symbols. */ | |
c46b8ed7 JL |
6295 | if (locsymcount > 0 |
6296 | && (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
6297 | || (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym), | |
6298 | locsymcount, input_bfd) | |
6299 | != locsymcount * sizeof (Elf_External_Sym)))) | |
6ec3bb6a ILT |
6300 | return false; |
6301 | ||
6302 | /* Swap in the local symbols and write out the ones which we know | |
6303 | are going into the output file. */ | |
6304 | esym = finfo->external_syms; | |
5315c428 | 6305 | esymend = esym + locsymcount; |
6ec3bb6a ILT |
6306 | isym = finfo->internal_syms; |
6307 | pindex = finfo->indices; | |
6308 | ppsection = finfo->sections; | |
6309 | for (; esym < esymend; esym++, isym++, pindex++, ppsection++) | |
6310 | { | |
6311 | asection *isec; | |
6312 | const char *name; | |
eb4267a3 | 6313 | Elf_Internal_Sym osym; |
6ec3bb6a ILT |
6314 | |
6315 | elf_swap_symbol_in (input_bfd, esym, isym); | |
6316 | *pindex = -1; | |
6317 | ||
5315c428 ILT |
6318 | if (elf_bad_symtab (input_bfd)) |
6319 | { | |
6320 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
6321 | { | |
6322 | *ppsection = NULL; | |
6323 | continue; | |
6324 | } | |
6325 | } | |
6326 | ||
6ec3bb6a | 6327 | if (isym->st_shndx == SHN_UNDEF) |
badd23e3 | 6328 | isec = bfd_und_section_ptr; |
6ec3bb6a | 6329 | else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) |
24f13b03 | 6330 | isec = section_from_elf_index (input_bfd, isym->st_shndx); |
6ec3bb6a | 6331 | else if (isym->st_shndx == SHN_ABS) |
badd23e3 | 6332 | isec = bfd_abs_section_ptr; |
6ec3bb6a | 6333 | else if (isym->st_shndx == SHN_COMMON) |
badd23e3 | 6334 | isec = bfd_com_section_ptr; |
6ec3bb6a ILT |
6335 | else |
6336 | { | |
6337 | /* Who knows? */ | |
6338 | isec = NULL; | |
6339 | } | |
6340 | ||
6341 | *ppsection = isec; | |
6342 | ||
6343 | /* Don't output the first, undefined, symbol. */ | |
6344 | if (esym == finfo->external_syms) | |
6345 | continue; | |
6346 | ||
6347 | /* If we are stripping all symbols, we don't want to output this | |
6348 | one. */ | |
6349 | if (finfo->info->strip == strip_all) | |
6350 | continue; | |
6351 | ||
6352 | /* We never output section symbols. Instead, we use the section | |
6353 | symbol of the corresponding section in the output file. */ | |
6354 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
6355 | continue; | |
6356 | ||
6357 | /* If we are discarding all local symbols, we don't want to | |
6358 | output this one. If we are generating a relocateable output | |
6359 | file, then some of the local symbols may be required by | |
6360 | relocs; we output them below as we discover that they are | |
6361 | needed. */ | |
6362 | if (finfo->info->discard == discard_all) | |
6363 | continue; | |
6364 | ||
6365 | /* Get the name of the symbol. */ | |
6366 | name = elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
6367 | isym->st_name); | |
6368 | if (name == NULL) | |
6369 | return false; | |
6370 | ||
6371 | /* See if we are discarding symbols with this name. */ | |
6372 | if ((finfo->info->strip == strip_some | |
6373 | && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) | |
6374 | == NULL)) | |
6375 | || (finfo->info->discard == discard_l | |
6376 | && strncmp (name, finfo->info->lprefix, | |
6377 | finfo->info->lprefix_len) == 0)) | |
6378 | continue; | |
6379 | ||
6380 | /* If we get here, we are going to output this symbol. */ | |
6381 | ||
eb4267a3 ILT |
6382 | osym = *isym; |
6383 | ||
6ec3bb6a | 6384 | /* Adjust the section index for the output file. */ |
eb4267a3 ILT |
6385 | osym.st_shndx = elf_section_from_bfd_section (output_bfd, |
6386 | isec->output_section); | |
6387 | if (osym.st_shndx == (unsigned short) -1) | |
6ec3bb6a ILT |
6388 | return false; |
6389 | ||
6390 | *pindex = output_bfd->symcount; | |
6391 | ||
6392 | /* ELF symbols in relocateable files are section relative, but | |
6393 | in executable files they are virtual addresses. Note that | |
6394 | this code assumes that all ELF sections have an associated | |
6395 | BFD section with a reasonable value for output_offset; below | |
6396 | we assume that they also have a reasonable value for | |
6397 | output_section. Any special sections must be set up to meet | |
6398 | these requirements. */ | |
eb4267a3 | 6399 | osym.st_value += isec->output_offset; |
6ec3bb6a | 6400 | if (! finfo->info->relocateable) |
eb4267a3 | 6401 | osym.st_value += isec->output_section->vma; |
6ec3bb6a | 6402 | |
eb4267a3 | 6403 | if (! elf_link_output_sym (finfo, name, &osym, isec)) |
6ec3bb6a | 6404 | return false; |
6ec3bb6a ILT |
6405 | } |
6406 | ||
6407 | /* Relocate the contents of each section. */ | |
6408 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
6409 | { | |
6ec3bb6a ILT |
6410 | if ((o->flags & SEC_HAS_CONTENTS) == 0) |
6411 | continue; | |
6412 | ||
8af74670 ILT |
6413 | if ((o->flags & SEC_IN_MEMORY) != 0 |
6414 | && input_bfd == elf_hash_table (finfo->info)->dynobj) | |
6415 | { | |
6416 | /* Section was created by elf_link_create_dynamic_sections. | |
6417 | FIXME: This test is fragile. */ | |
6418 | continue; | |
6419 | } | |
6420 | ||
6ec3bb6a ILT |
6421 | /* Read the contents of the section. */ |
6422 | if (! bfd_get_section_contents (input_bfd, o, finfo->contents, | |
6423 | (file_ptr) 0, o->_raw_size)) | |
6424 | return false; | |
6425 | ||
6426 | if ((o->flags & SEC_RELOC) != 0) | |
6427 | { | |
374d2ef9 ILT |
6428 | Elf_Internal_Rela *internal_relocs; |
6429 | ||
6430 | /* Get the swapped relocs. */ | |
6431 | internal_relocs = elf_link_read_relocs (input_bfd, o, | |
6432 | finfo->external_relocs, | |
6433 | finfo->internal_relocs, | |
6434 | false); | |
6435 | if (internal_relocs == NULL | |
6436 | && o->reloc_count > 0) | |
6437 | return false; | |
6ec3bb6a ILT |
6438 | |
6439 | /* Relocate the section by invoking a back end routine. | |
6440 | ||
6441 | The back end routine is responsible for adjusting the | |
6442 | section contents as necessary, and (if using Rela relocs | |
6443 | and generating a relocateable output file) adjusting the | |
6444 | reloc addend as necessary. | |
6445 | ||
6446 | The back end routine does not have to worry about setting | |
6447 | the reloc address or the reloc symbol index. | |
6448 | ||
6449 | The back end routine is given a pointer to the swapped in | |
6450 | internal symbols, and can access the hash table entries | |
6451 | for the external symbols via elf_sym_hashes (input_bfd). | |
6452 | ||
6453 | When generating relocateable output, the back end routine | |
6454 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
6455 | output symbol is going to be a section symbol | |
6456 | corresponding to the output section, which will require | |
6457 | the addend to be adjusted. */ | |
6458 | ||
6459 | if (! (*relocate_section) (output_bfd, finfo->info, | |
6460 | input_bfd, o, | |
6461 | finfo->contents, | |
374d2ef9 | 6462 | internal_relocs, |
6ec3bb6a | 6463 | finfo->internal_syms, |
eb4267a3 | 6464 | finfo->sections)) |
6ec3bb6a ILT |
6465 | return false; |
6466 | ||
6467 | if (finfo->info->relocateable) | |
6468 | { | |
6469 | Elf_Internal_Rela *irela; | |
6470 | Elf_Internal_Rela *irelaend; | |
6471 | struct elf_link_hash_entry **rel_hash; | |
374d2ef9 | 6472 | Elf_Internal_Shdr *input_rel_hdr; |
6ec3bb6a ILT |
6473 | Elf_Internal_Shdr *output_rel_hdr; |
6474 | ||
6475 | /* Adjust the reloc addresses and symbol indices. */ | |
6476 | ||
374d2ef9 | 6477 | irela = internal_relocs; |
6ec3bb6a ILT |
6478 | irelaend = irela + o->reloc_count; |
6479 | rel_hash = (elf_section_data (o->output_section)->rel_hashes | |
6480 | + o->output_section->reloc_count); | |
6481 | for (; irela < irelaend; irela++, rel_hash++) | |
6482 | { | |
6483 | long r_symndx; | |
6484 | Elf_Internal_Sym *isym; | |
6485 | asection *sec; | |
6486 | ||
6487 | irela->r_offset += o->output_offset; | |
6488 | ||
6489 | r_symndx = ELF_R_SYM (irela->r_info); | |
6490 | ||
6491 | if (r_symndx == 0) | |
6492 | continue; | |
6493 | ||
5315c428 ILT |
6494 | if (r_symndx >= locsymcount |
6495 | || (elf_bad_symtab (input_bfd) | |
6496 | && finfo->sections[r_symndx] == NULL)) | |
6ec3bb6a ILT |
6497 | { |
6498 | long indx; | |
6499 | ||
6500 | /* This is a reloc against a global symbol. We | |
6501 | have not yet output all the local symbols, so | |
6502 | we do not know the symbol index of any global | |
6503 | symbol. We set the rel_hash entry for this | |
6504 | reloc to point to the global hash table entry | |
6505 | for this symbol. The symbol index is then | |
6506 | set at the end of elf_bfd_final_link. */ | |
5315c428 | 6507 | indx = r_symndx - extsymoff; |
6ec3bb6a ILT |
6508 | *rel_hash = elf_sym_hashes (input_bfd)[indx]; |
6509 | ||
6510 | /* Setting the index to -2 tells | |
6511 | elf_link_output_extsym that this symbol is | |
6512 | used by a reloc. */ | |
6513 | BFD_ASSERT ((*rel_hash)->indx < 0); | |
6514 | (*rel_hash)->indx = -2; | |
6515 | ||
6516 | continue; | |
6517 | } | |
6518 | ||
6519 | /* This is a reloc against a local symbol. */ | |
6520 | ||
6521 | *rel_hash = NULL; | |
6522 | isym = finfo->internal_syms + r_symndx; | |
6523 | sec = finfo->sections[r_symndx]; | |
6524 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
6525 | { | |
6526 | /* I suppose the backend ought to fill in the | |
6527 | section of any STT_SECTION symbol against a | |
6528 | processor specific section. */ | |
badd23e3 ILT |
6529 | if (sec != NULL && bfd_is_abs_section (sec)) |
6530 | r_symndx = 0; | |
6531 | else if (sec == NULL || sec->owner == NULL) | |
6ec3bb6a ILT |
6532 | { |
6533 | bfd_set_error (bfd_error_bad_value); | |
6534 | return false; | |
6535 | } | |
6ec3bb6a | 6536 | else |
013dec1a ILT |
6537 | { |
6538 | r_symndx = sec->output_section->target_index; | |
6539 | if (r_symndx == 0) | |
6540 | abort (); | |
6541 | } | |
6ec3bb6a ILT |
6542 | } |
6543 | else | |
6544 | { | |
6545 | if (finfo->indices[r_symndx] == -1) | |
6546 | { | |
6547 | unsigned long link; | |
6548 | const char *name; | |
6549 | asection *osec; | |
6550 | ||
6551 | if (finfo->info->strip == strip_all) | |
6552 | { | |
6553 | /* You can't do ld -r -s. */ | |
6554 | bfd_set_error (bfd_error_invalid_operation); | |
6555 | return false; | |
6556 | } | |
6557 | ||
6558 | /* This symbol was skipped earlier, but | |
6559 | since it is needed by a reloc, we | |
6560 | must output it now. */ | |
6561 | link = symtab_hdr->sh_link; | |
6562 | name = elf_string_from_elf_section (input_bfd, | |
6563 | link, | |
6564 | isym->st_name); | |
6565 | if (name == NULL) | |
6566 | return false; | |
6567 | ||
6568 | osec = sec->output_section; | |
6569 | isym->st_shndx = | |
6570 | elf_section_from_bfd_section (output_bfd, | |
6571 | osec); | |
013dec1a | 6572 | if (isym->st_shndx == (unsigned short) -1) |
6ec3bb6a ILT |
6573 | return false; |
6574 | ||
6575 | isym->st_value += sec->output_offset; | |
6576 | if (! finfo->info->relocateable) | |
6577 | isym->st_value += osec->vma; | |
6578 | ||
6579 | finfo->indices[r_symndx] = output_bfd->symcount; | |
6580 | ||
71edd06d | 6581 | if (! elf_link_output_sym (finfo, name, isym, sec)) |
6ec3bb6a ILT |
6582 | return false; |
6583 | } | |
6584 | ||
6585 | r_symndx = finfo->indices[r_symndx]; | |
6586 | } | |
6587 | ||
6588 | irela->r_info = ELF_R_INFO (r_symndx, | |
6589 | ELF_R_TYPE (irela->r_info)); | |
6590 | } | |
6591 | ||
6592 | /* Swap out the relocs. */ | |
374d2ef9 | 6593 | input_rel_hdr = &elf_section_data (o)->rel_hdr; |
6ec3bb6a ILT |
6594 | output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr; |
6595 | BFD_ASSERT (output_rel_hdr->sh_entsize | |
6596 | == input_rel_hdr->sh_entsize); | |
374d2ef9 | 6597 | irela = internal_relocs; |
6ec3bb6a ILT |
6598 | irelaend = irela + o->reloc_count; |
6599 | if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) | |
6600 | { | |
6601 | Elf_External_Rel *erel; | |
6602 | ||
6603 | erel = ((Elf_External_Rel *) output_rel_hdr->contents | |
6604 | + o->output_section->reloc_count); | |
6605 | for (; irela < irelaend; irela++, erel++) | |
6606 | { | |
6607 | Elf_Internal_Rel irel; | |
6608 | ||
6609 | irel.r_offset = irela->r_offset; | |
6610 | irel.r_info = irela->r_info; | |
6611 | BFD_ASSERT (irela->r_addend == 0); | |
6612 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
6613 | } | |
6614 | } | |
6615 | else | |
6616 | { | |
6617 | Elf_External_Rela *erela; | |
6618 | ||
6619 | BFD_ASSERT (input_rel_hdr->sh_entsize | |
6620 | == sizeof (Elf_External_Rela)); | |
6621 | erela = ((Elf_External_Rela *) output_rel_hdr->contents | |
6622 | + o->output_section->reloc_count); | |
6623 | for (; irela < irelaend; irela++, erela++) | |
6624 | elf_swap_reloca_out (output_bfd, irela, erela); | |
6625 | } | |
6626 | ||
6627 | o->output_section->reloc_count += o->reloc_count; | |
6628 | } | |
6629 | } | |
6630 | ||
6631 | /* Write out the modified section contents. */ | |
6632 | if (! bfd_set_section_contents (output_bfd, o->output_section, | |
6633 | finfo->contents, o->output_offset, | |
6634 | (o->_cooked_size != 0 | |
6635 | ? o->_cooked_size | |
6636 | : o->_raw_size))) | |
6637 | return false; | |
6638 | } | |
6639 | ||
6640 | return true; | |
6641 | } | |
6642 | ||
6643 | /* Generate a reloc when linking an ELF file. This is a reloc | |
6644 | requested by the linker, and does come from any input file. This | |
6645 | is used to build constructor and destructor tables when linking | |
6646 | with -Ur. */ | |
6647 | ||
6648 | static boolean | |
6649 | elf_reloc_link_order (output_bfd, info, output_section, link_order) | |
6650 | bfd *output_bfd; | |
6651 | struct bfd_link_info *info; | |
6652 | asection *output_section; | |
6653 | struct bfd_link_order *link_order; | |
6654 | { | |
51fbf454 | 6655 | reloc_howto_type *howto; |
6ec3bb6a ILT |
6656 | long indx; |
6657 | bfd_vma offset; | |
6658 | struct elf_link_hash_entry **rel_hash_ptr; | |
6659 | Elf_Internal_Shdr *rel_hdr; | |
6660 | ||
6661 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
6662 | if (howto == NULL) | |
6663 | { | |
6664 | bfd_set_error (bfd_error_bad_value); | |
6665 | return false; | |
6666 | } | |
6667 | ||
6668 | /* If this is an inplace reloc, we must write the addend into the | |
6669 | object file. */ | |
6670 | if (howto->partial_inplace | |
6671 | && link_order->u.reloc.p->addend != 0) | |
6672 | { | |
6673 | bfd_size_type size; | |
6674 | bfd_reloc_status_type rstat; | |
6675 | bfd_byte *buf; | |
6676 | boolean ok; | |
6677 | ||
6678 | size = bfd_get_reloc_size (howto); | |
6679 | buf = (bfd_byte *) bfd_zmalloc (size); | |
6680 | if (buf == (bfd_byte *) NULL) | |
6681 | { | |
6682 | bfd_set_error (bfd_error_no_memory); | |
6683 | return false; | |
6684 | } | |
6685 | rstat = _bfd_relocate_contents (howto, output_bfd, | |
6686 | link_order->u.reloc.p->addend, buf); | |
6687 | switch (rstat) | |
6688 | { | |
6689 | case bfd_reloc_ok: | |
6690 | break; | |
6691 | default: | |
6692 | case bfd_reloc_outofrange: | |
6693 | abort (); | |
6694 | case bfd_reloc_overflow: | |
6695 | if (! ((*info->callbacks->reloc_overflow) | |
6696 | (info, | |
6697 | (link_order->type == bfd_section_reloc_link_order | |
6698 | ? bfd_section_name (output_bfd, | |
6699 | link_order->u.reloc.p->u.section) | |
6700 | : link_order->u.reloc.p->u.name), | |
6701 | howto->name, link_order->u.reloc.p->addend, | |
6702 | (bfd *) NULL, (asection *) NULL, (bfd_vma) 0))) | |
6703 | { | |
6704 | free (buf); | |
6705 | return false; | |
6706 | } | |
6707 | break; | |
6708 | } | |
6709 | ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, | |
6710 | (file_ptr) link_order->offset, size); | |
6711 | free (buf); | |
6712 | if (! ok) | |
6713 | return false; | |
6714 | } | |
6715 | ||
6716 | /* Figure out the symbol index. */ | |
6717 | rel_hash_ptr = (elf_section_data (output_section)->rel_hashes | |
6718 | + output_section->reloc_count); | |
6719 | if (link_order->type == bfd_section_reloc_link_order) | |
6720 | { | |
013dec1a ILT |
6721 | indx = link_order->u.reloc.p->u.section->target_index; |
6722 | if (indx == 0) | |
6723 | abort (); | |
6ec3bb6a ILT |
6724 | *rel_hash_ptr = NULL; |
6725 | } | |
6726 | else | |
6727 | { | |
6728 | struct elf_link_hash_entry *h; | |
6729 | ||
6730 | h = elf_link_hash_lookup (elf_hash_table (info), | |
6731 | link_order->u.reloc.p->u.name, | |
6732 | false, false, true); | |
6733 | if (h != NULL) | |
6734 | { | |
6735 | /* Setting the index to -2 tells elf_link_output_extsym that | |
6736 | this symbol is used by a reloc. */ | |
6737 | h->indx = -2; | |
6738 | *rel_hash_ptr = h; | |
6739 | indx = 0; | |
6740 | } | |
6741 | else | |
6742 | { | |
6743 | if (! ((*info->callbacks->unattached_reloc) | |
6744 | (info, link_order->u.reloc.p->u.name, (bfd *) NULL, | |
6745 | (asection *) NULL, (bfd_vma) 0))) | |
6746 | return false; | |
6747 | indx = 0; | |
6748 | } | |
6749 | } | |
6750 | ||
6751 | /* The address of a reloc is relative to the section in a | |
6752 | relocateable file, and is a virtual address in an executable | |
6753 | file. */ | |
6754 | offset = link_order->offset; | |
6755 | if (! info->relocateable) | |
6756 | offset += output_section->vma; | |
6757 | ||
6758 | rel_hdr = &elf_section_data (output_section)->rel_hdr; | |
6759 | ||
6760 | if (rel_hdr->sh_type == SHT_REL) | |
6761 | { | |
6762 | Elf_Internal_Rel irel; | |
6763 | Elf_External_Rel *erel; | |
6764 | ||
6765 | irel.r_offset = offset; | |
6766 | irel.r_info = ELF_R_INFO (indx, howto->type); | |
6767 | erel = ((Elf_External_Rel *) rel_hdr->contents | |
6768 | + output_section->reloc_count); | |
6769 | elf_swap_reloc_out (output_bfd, &irel, erel); | |
6770 | } | |
6771 | else | |
6772 | { | |
6773 | Elf_Internal_Rela irela; | |
6774 | Elf_External_Rela *erela; | |
6775 | ||
6776 | irela.r_offset = offset; | |
6777 | irela.r_info = ELF_R_INFO (indx, howto->type); | |
6778 | irela.r_addend = link_order->u.reloc.p->addend; | |
6779 | erela = ((Elf_External_Rela *) rel_hdr->contents | |
6780 | + output_section->reloc_count); | |
6781 | elf_swap_reloca_out (output_bfd, &irela, erela); | |
6782 | } | |
6783 | ||
6784 | ++output_section->reloc_count; | |
6785 | ||
6786 | return true; | |
6787 | } |